code
stringlengths
110
64.5k
apis
list
extract_api
stringlengths
123
69.9k
import os.path as op import numpy as nm import sfepy from sfepy.discrete.common import Field import sfepy.discrete.common.global_interp as gi from sfepy.base.testing import TestCommon class Test(TestCommon): @staticmethod def from_conf(conf, options): test = Test(conf=conf, options=options) return test def test_ref_coors_fem(self): from sfepy.discrete.fem import Mesh, FEDomain mesh = Mesh.from_file('meshes/3d/special/cross3d.mesh', prefix_dir=sfepy.data_dir) domain = FEDomain('domain', mesh) omega = domain.create_region('Omega', 'all') field = Field.from_args('linear', nm.float64, 'scalar', omega, approx_order=1) mcoors = field.domain.get_mesh_coors() conn = field.domain.get_conn() bbox = field.domain.get_mesh_bounding_box() ray = nm.linspace(bbox[0, 0], bbox[1, 0], 7) coors = nm.zeros((ray.shape[0], 3), dtype=nm.float64) def gen_rays(): coors[:, 0] = ray yield coors coors.fill(0.0) coors[:, 1] = ray yield coors coors.fill(0.0) coors[:, 2] = ray yield coors ok = True ctx = field.create_basis_context()._geo_ctx for ir, coors in enumerate(gen_rays()): self.report('ray %d' % ir) ref_coors, cells, status = gi.get_ref_coors(field, coors, strategy='general', close_limit=0.0, verbose=False) self.report(ref_coors) self.report(cells) self.report(status) # In the distorted cell 2, the Newton method finds a solution # outside of the cell. This will be fixed when box constraints # are applied. _ok = nm.all((status == 0) | ((cells == 2) & (status == 3))) if not _ok: self.report('wrong status %s for ray %d!' % (status, ir)) ok = ok and _ok for ic, cell in enumerate(cells): ctx.iel = cell bf = ctx.evaluate(ref_coors[ic:ic+1], check_errors=False) cell_coors = mcoors[conn[cell]] coor = nm.dot(bf, cell_coors).ravel() _ok = nm.allclose(coor, coors[ic], atol=1e-14, rtol=0.0) if not _ok: self.report('ray %d point %d:' % (ir, ic)) self.report(' - wrong reference coordinates %s!' % ref_coors[ic]) self.report(' - given point: %s' % coors[ic]) self.report(' - found point: %s' % coor) ok = ok and _ok return ok def test_ref_coors_iga(self): from sfepy.discrete.iga.domain import IGDomain domain = IGDomain.from_file(op.join(sfepy.data_dir, 'meshes/iga/block2d.iga')) omega = domain.create_region('Omega', 'all') field = Field.from_args('iga', nm.float64, 'scalar', omega, approx_order='iga', poly_space_base='iga') mcoors = field.nurbs.cps conn = field.get_econn('volume', field.region) bbox = domain.eval_mesh.get_bounding_box() ray = nm.linspace(bbox[0, 0], bbox[1, 0], 11) coors = nm.c_[ray, ray] ref_coors, cells, status = gi.get_ref_coors(field, coors, strategy='general', close_limit=0.0, verbose=False) self.report(ref_coors) self.report(cells) self.report(status) ok = nm.all(status == 0) ctx = field.create_basis_context() for ic, cell in enumerate(cells): ctx.iel = cell bf = ctx.evaluate(ref_coors[ic:ic+1]) cell_coors = mcoors[conn[cell]] coor = nm.dot(bf, cell_coors).ravel() _ok = nm.allclose(coor, coors[ic], atol=1e-14, rtol=0.0) if not _ok: self.report('point %d:' % ic) self.report(' - wrong reference coordinates %s!' % ref_coors[ic]) self.report(' - given point: %s' % coors[ic]) self.report(' - found point: %s' % coor) ok = ok and _ok return ok
[ "sfepy.discrete.common.Field.from_args", "sfepy.discrete.common.global_interp.get_ref_coors", "sfepy.discrete.fem.Mesh.from_file", "sfepy.discrete.fem.FEDomain" ]
[((438, 513), 'sfepy.discrete.fem.Mesh.from_file', 'Mesh.from_file', (['"""meshes/3d/special/cross3d.mesh"""'], {'prefix_dir': 'sfepy.data_dir'}), "('meshes/3d/special/cross3d.mesh', prefix_dir=sfepy.data_dir)\n", (452, 513), False, 'from sfepy.discrete.fem import Mesh, FEDomain\n'), ((561, 585), 'sfepy.discrete.fem.FEDomain', 'FEDomain', (['"""domain"""', 'mesh'], {}), "('domain', mesh)\n", (569, 585), False, 'from sfepy.discrete.fem import Mesh, FEDomain\n'), ((657, 727), 'sfepy.discrete.common.Field.from_args', 'Field.from_args', (['"""linear"""', 'nm.float64', '"""scalar"""', 'omega'], {'approx_order': '(1)'}), "('linear', nm.float64, 'scalar', omega, approx_order=1)\n", (672, 727), False, 'from sfepy.discrete.common import Field\n'), ((915, 953), 'numpy.linspace', 'nm.linspace', (['bbox[0, 0]', 'bbox[1, 0]', '(7)'], {}), '(bbox[0, 0], bbox[1, 0], 7)\n', (926, 953), True, 'import numpy as nm\n'), ((970, 1015), 'numpy.zeros', 'nm.zeros', (['(ray.shape[0], 3)'], {'dtype': 'nm.float64'}), '((ray.shape[0], 3), dtype=nm.float64)\n', (978, 1015), True, 'import numpy as nm\n'), ((3195, 3293), 'sfepy.discrete.common.Field.from_args', 'Field.from_args', (['"""iga"""', 'nm.float64', '"""scalar"""', 'omega'], {'approx_order': '"""iga"""', 'poly_space_base': '"""iga"""'}), "('iga', nm.float64, 'scalar', omega, approx_order='iga',\n poly_space_base='iga')\n", (3210, 3293), False, 'from sfepy.discrete.common import Field\n'), ((3477, 3516), 'numpy.linspace', 'nm.linspace', (['bbox[0, 0]', 'bbox[1, 0]', '(11)'], {}), '(bbox[0, 0], bbox[1, 0], 11)\n', (3488, 3516), True, 'import numpy as nm\n'), ((3585, 3672), 'sfepy.discrete.common.global_interp.get_ref_coors', 'gi.get_ref_coors', (['field', 'coors'], {'strategy': '"""general"""', 'close_limit': '(0.0)', 'verbose': '(False)'}), "(field, coors, strategy='general', close_limit=0.0, verbose\n =False)\n", (3601, 3672), True, 'import sfepy.discrete.common.global_interp as gi\n'), ((3924, 3943), 'numpy.all', 'nm.all', (['(status == 0)'], {}), '(status == 0)\n', (3930, 3943), True, 'import numpy as nm\n'), ((1460, 1547), 'sfepy.discrete.common.global_interp.get_ref_coors', 'gi.get_ref_coors', (['field', 'coors'], {'strategy': '"""general"""', 'close_limit': '(0.0)', 'verbose': '(False)'}), "(field, coors, strategy='general', close_limit=0.0, verbose\n =False)\n", (1476, 1547), True, 'import sfepy.discrete.common.global_interp as gi\n'), ((2004, 2056), 'numpy.all', 'nm.all', (['((status == 0) | (cells == 2) & (status == 3))'], {}), '((status == 0) | (cells == 2) & (status == 3))\n', (2010, 2056), True, 'import numpy as nm\n'), ((3029, 3078), 'os.path.join', 'op.join', (['sfepy.data_dir', '"""meshes/iga/block2d.iga"""'], {}), "(sfepy.data_dir, 'meshes/iga/block2d.iga')\n", (3036, 3078), True, 'import os.path as op\n'), ((4222, 4272), 'numpy.allclose', 'nm.allclose', (['coor', 'coors[ic]'], {'atol': '(1e-14)', 'rtol': '(0.0)'}), '(coor, coors[ic], atol=1e-14, rtol=0.0)\n', (4233, 4272), True, 'import numpy as nm\n'), ((2464, 2514), 'numpy.allclose', 'nm.allclose', (['coor', 'coors[ic]'], {'atol': '(1e-14)', 'rtol': '(0.0)'}), '(coor, coors[ic], atol=1e-14, rtol=0.0)\n', (2475, 2514), True, 'import numpy as nm\n'), ((4172, 4194), 'numpy.dot', 'nm.dot', (['bf', 'cell_coors'], {}), '(bf, cell_coors)\n', (4178, 4194), True, 'import numpy as nm\n'), ((2410, 2432), 'numpy.dot', 'nm.dot', (['bf', 'cell_coors'], {}), '(bf, cell_coors)\n', (2416, 2432), True, 'import numpy as nm\n')]
#!/usr/bin/env python3 # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. import megengine as mge import megengine.module as M import numpy as np import pytest from basecls.layers import SE, DropPath, conv2d, gap2d, linear, norm2d, pool2d @pytest.mark.parametrize("w_in", [4]) @pytest.mark.parametrize("w_out", [8]) @pytest.mark.parametrize("k", [3, 5]) @pytest.mark.parametrize("stride", [1, 2]) @pytest.mark.parametrize("dilation", [1, 2]) @pytest.mark.parametrize("groups", [1, 2]) @pytest.mark.parametrize("bias", [True, False]) def test_conv2d(w_in, w_out, k, stride, dilation, groups, bias): m = conv2d(w_in, w_out, k, stride=stride, dilation=dilation, groups=groups, bias=bias) assert isinstance(m, M.Conv2d) m(mge.random.normal(size=(2, 4, 8, 8))) @pytest.mark.parametrize("drop_prob", [0.0, 0.5]) def test_drop_path(drop_prob): m = DropPath(drop_prob) assert isinstance(m, M.Module) m.training = True m(mge.random.normal(size=(2, 4, 8, 8))) m.training = False x = np.random.rand(2, 4, 8, 8).astype("float32") y = m(mge.Tensor(x)).numpy() np.testing.assert_allclose(y, x, rtol=1e-4, atol=1e-6) @pytest.mark.parametrize("shape", [1, (7, 7)]) def test_gap2d(shape): m = gap2d(shape) assert isinstance(m, M.AdaptiveAvgPool2d) m(mge.random.normal(size=(2, 4, 8, 8))) @pytest.mark.parametrize("w_in", [4]) @pytest.mark.parametrize("w_out", [8]) @pytest.mark.parametrize("bias", [True, False]) def test_linear(w_in, w_out, bias): m = linear(w_in, w_out, bias=bias) assert isinstance(m, M.Linear) m(mge.random.normal(size=(2, 8, 4))) # TODO: "GN", "IN" and "LN" need different hyper-parameters @pytest.mark.parametrize("name", [None, "BN", "SyncBN"]) @pytest.mark.parametrize("w_in", [4]) def test_norm2d(name, w_in): m = norm2d(name, w_in) assert isinstance(m, M.Module) m(mge.random.normal(size=(2, 4, 8, 8))) @pytest.mark.parametrize("k", [3, 5]) @pytest.mark.parametrize("stride", [1, 2]) @pytest.mark.parametrize("name", ["avg", "max"]) def test_pool2d(k, stride, name): m = pool2d(k, stride=stride, name=name) assert isinstance(m, M.Module) m(mge.random.normal(size=(2, 4, 8, 8))) @pytest.mark.parametrize("w_in", [8]) @pytest.mark.parametrize("w_se", [4]) @pytest.mark.parametrize("act_name", ["relu", "silu"]) def test_se(w_in, w_se, act_name): m = SE(w_in, w_se, act_name) assert isinstance(m, M.Module) m(mge.random.normal(size=(2, 8, 8, 8)))
[ "megengine.random.normal", "megengine.Tensor" ]
[((251, 287), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""w_in"""', '[4]'], {}), "('w_in', [4])\n", (274, 287), False, 'import pytest\n'), ((289, 326), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""w_out"""', '[8]'], {}), "('w_out', [8])\n", (312, 326), False, 'import pytest\n'), ((328, 364), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""k"""', '[3, 5]'], {}), "('k', [3, 5])\n", (351, 364), False, 'import pytest\n'), ((366, 407), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""stride"""', '[1, 2]'], {}), "('stride', [1, 2])\n", (389, 407), False, 'import pytest\n'), ((409, 452), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""dilation"""', '[1, 2]'], {}), "('dilation', [1, 2])\n", (432, 452), False, 'import pytest\n'), ((454, 495), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""groups"""', '[1, 2]'], {}), "('groups', [1, 2])\n", (477, 495), False, 'import pytest\n'), ((497, 543), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""bias"""', '[True, False]'], {}), "('bias', [True, False])\n", (520, 543), False, 'import pytest\n'), ((783, 831), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""drop_prob"""', '[0.0, 0.5]'], {}), "('drop_prob', [0.0, 0.5])\n", (806, 831), False, 'import pytest\n'), ((1165, 1210), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""shape"""', '[1, (7, 7)]'], {}), "('shape', [1, (7, 7)])\n", (1188, 1210), False, 'import pytest\n'), ((1349, 1385), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""w_in"""', '[4]'], {}), "('w_in', [4])\n", (1372, 1385), False, 'import pytest\n'), ((1387, 1424), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""w_out"""', '[8]'], {}), "('w_out', [8])\n", (1410, 1424), False, 'import pytest\n'), ((1426, 1472), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""bias"""', '[True, False]'], {}), "('bias', [True, False])\n", (1449, 1472), False, 'import pytest\n'), ((1688, 1743), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""name"""', "[None, 'BN', 'SyncBN']"], {}), "('name', [None, 'BN', 'SyncBN'])\n", (1711, 1743), False, 'import pytest\n'), ((1745, 1781), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""w_in"""', '[4]'], {}), "('w_in', [4])\n", (1768, 1781), False, 'import pytest\n'), ((1921, 1957), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""k"""', '[3, 5]'], {}), "('k', [3, 5])\n", (1944, 1957), False, 'import pytest\n'), ((1959, 2000), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""stride"""', '[1, 2]'], {}), "('stride', [1, 2])\n", (1982, 2000), False, 'import pytest\n'), ((2002, 2049), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""name"""', "['avg', 'max']"], {}), "('name', ['avg', 'max'])\n", (2025, 2049), False, 'import pytest\n'), ((2211, 2247), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""w_in"""', '[8]'], {}), "('w_in', [8])\n", (2234, 2247), False, 'import pytest\n'), ((2249, 2285), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""w_se"""', '[4]'], {}), "('w_se', [4])\n", (2272, 2285), False, 'import pytest\n'), ((2287, 2340), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""act_name"""', "['relu', 'silu']"], {}), "('act_name', ['relu', 'silu'])\n", (2310, 2340), False, 'import pytest\n'), ((617, 703), 'basecls.layers.conv2d', 'conv2d', (['w_in', 'w_out', 'k'], {'stride': 'stride', 'dilation': 'dilation', 'groups': 'groups', 'bias': 'bias'}), '(w_in, w_out, k, stride=stride, dilation=dilation, groups=groups,\n bias=bias)\n', (623, 703), False, 'from basecls.layers import SE, DropPath, conv2d, gap2d, linear, norm2d, pool2d\n'), ((871, 890), 'basecls.layers.DropPath', 'DropPath', (['drop_prob'], {}), '(drop_prob)\n', (879, 890), False, 'from basecls.layers import SE, DropPath, conv2d, gap2d, linear, norm2d, pool2d\n'), ((1107, 1164), 'numpy.testing.assert_allclose', 'np.testing.assert_allclose', (['y', 'x'], {'rtol': '(0.0001)', 'atol': '(1e-06)'}), '(y, x, rtol=0.0001, atol=1e-06)\n', (1133, 1164), True, 'import numpy as np\n'), ((1242, 1254), 'basecls.layers.gap2d', 'gap2d', (['shape'], {}), '(shape)\n', (1247, 1254), False, 'from basecls.layers import SE, DropPath, conv2d, gap2d, linear, norm2d, pool2d\n'), ((1517, 1547), 'basecls.layers.linear', 'linear', (['w_in', 'w_out'], {'bias': 'bias'}), '(w_in, w_out, bias=bias)\n', (1523, 1547), False, 'from basecls.layers import SE, DropPath, conv2d, gap2d, linear, norm2d, pool2d\n'), ((1819, 1837), 'basecls.layers.norm2d', 'norm2d', (['name', 'w_in'], {}), '(name, w_in)\n', (1825, 1837), False, 'from basecls.layers import SE, DropPath, conv2d, gap2d, linear, norm2d, pool2d\n'), ((2092, 2127), 'basecls.layers.pool2d', 'pool2d', (['k'], {'stride': 'stride', 'name': 'name'}), '(k, stride=stride, name=name)\n', (2098, 2127), False, 'from basecls.layers import SE, DropPath, conv2d, gap2d, linear, norm2d, pool2d\n'), ((2384, 2408), 'basecls.layers.SE', 'SE', (['w_in', 'w_se', 'act_name'], {}), '(w_in, w_se, act_name)\n', (2386, 2408), False, 'from basecls.layers import SE, DropPath, conv2d, gap2d, linear, norm2d, pool2d\n'), ((742, 778), 'megengine.random.normal', 'mge.random.normal', ([], {'size': '(2, 4, 8, 8)'}), '(size=(2, 4, 8, 8))\n', (759, 778), True, 'import megengine as mge\n'), ((955, 991), 'megengine.random.normal', 'mge.random.normal', ([], {'size': '(2, 4, 8, 8)'}), '(size=(2, 4, 8, 8))\n', (972, 991), True, 'import megengine as mge\n'), ((1308, 1344), 'megengine.random.normal', 'mge.random.normal', ([], {'size': '(2, 4, 8, 8)'}), '(size=(2, 4, 8, 8))\n', (1325, 1344), True, 'import megengine as mge\n'), ((1590, 1623), 'megengine.random.normal', 'mge.random.normal', ([], {'size': '(2, 8, 4)'}), '(size=(2, 8, 4))\n', (1607, 1623), True, 'import megengine as mge\n'), ((1880, 1916), 'megengine.random.normal', 'mge.random.normal', ([], {'size': '(2, 4, 8, 8)'}), '(size=(2, 4, 8, 8))\n', (1897, 1916), True, 'import megengine as mge\n'), ((2170, 2206), 'megengine.random.normal', 'mge.random.normal', ([], {'size': '(2, 4, 8, 8)'}), '(size=(2, 4, 8, 8))\n', (2187, 2206), True, 'import megengine as mge\n'), ((2451, 2487), 'megengine.random.normal', 'mge.random.normal', ([], {'size': '(2, 8, 8, 8)'}), '(size=(2, 8, 8, 8))\n', (2468, 2487), True, 'import megengine as mge\n'), ((1025, 1051), 'numpy.random.rand', 'np.random.rand', (['(2)', '(4)', '(8)', '(8)'], {}), '(2, 4, 8, 8)\n', (1039, 1051), True, 'import numpy as np\n'), ((1080, 1093), 'megengine.Tensor', 'mge.Tensor', (['x'], {}), '(x)\n', (1090, 1093), True, 'import megengine as mge\n')]
import numpy as nm from sfepy.base.base import Struct class SplineBox(Struct): """ B-spline geometry parametrization. Geometry can be modified by moving spline control points. """ @staticmethod def mmax(x, y): n = len(x) aux = nm.zeros((2,n), dtype=nm.int) aux[0,:] = x[:] aux[1,:] = nm.ones((1,n)) * y out = nm.max(aux, axis=0) return out @staticmethod def spsorted(meshsites, sites): n1 = len(meshsites) n2 = len(sites) aux = nm.zeros((n1 + n2,), dtype=nm.double) aux[:n1] = meshsites aux[n1:] = sites inx = nm.argsort(aux) out = nm.where(inx >= len(meshsites)) - nm.arange(len(sites)) return out[0] @staticmethod def augknt(knots, k, mults=1): if mults > 1: aux = [] for j in k[1:-1]: aux += [j] * mults; else: aux = knots[1:-1] augknot = [knots[0]] * k + list(aux) + [knots[-1]] * k return augknot @staticmethod def spcol(knots, k, tau): npk = len(knots) n = npk - k nrows = tau.shape[0] pts = tau km1 = k - 1 savl = SplineBox.mmax(SplineBox.spsorted(knots[:n], pts), k) b = nm.zeros((nrows, k), dtype=nm.double) b[:,0] = nm.ones((nrows,), dtype=nm.double) for j in range(km1): saved = nm.zeros((nrows,), dtype=nm.double); for r in range(j+1): tr = knots[savl + r] - pts tl = pts - knots[savl + r - j - 1] term = nm.double(b[:,r]) / (tr + tl) b[:,r] = saved + tr * term saved = tl * term b[:,j+1] = saved idx = nm.where((tau < knots[0]) | (tau > knots[npk-1]))[0] if len(idx) > 0: b[idx,:] = 0 idx1 = nm.tile(nm.arange(1-nrows, 1), (k,)) idx2 = nm.tile(nrows * savl, (k,)) idx3 = nm.tile(nrows * nm.arange(-km1, 1), (nrows, 1)) idx3 = nm.reshape(idx3, (nrows * k,), order='F') width = n + km1 + km1 nn = nrows * width cc = nm.zeros((nn,), dtype=nm.double) idx = idx1 + idx2 + idx3 - 1 cc[idx] = b.reshape((len(idx),), order='F') idx1 = nm.tile(nm.arange(1-nrows, 1), (n,)) idx2 = nm.tile(nrows * nm.arange(1, n + 1), (nrows, 1)) idx2 = nm.reshape(idx2, (nrows * n,), order='F') idx = idx1 + idx2 - 1 colloc = cc[idx].reshape((nrows, n), order='F') return colloc @staticmethod def create_spb(bbox, coors, nsg=None): if type(bbox) is not nm.ndarray: bbox = nm.array(bbox) if type(coors) is not nm.ndarray: coors = nm.array(coors) dim = coors.shape[1] axes = [] if nsg is None: nsg = nm.ones((dim,), dtype=nm.int) else: nsg = nm.array(nsg) cpt = [] ncpt = [] for idim in range(dim): axes.append({}) aux = nm.linspace(bbox[idim,0], bbox[idim,1], nsg[idim] + 1) knots = nm.array(SplineBox.augknt(aux, 4)) axes[idim]['knots'] = knots nn = 4 + nsg[idim] - 1 ncpt.append(nn) cpt.append(nm.zeros((nn,), dtype=nm.double)) for j in range(nn): cpt[idim][j] = nm.sum(knots[(j+1):(j+4)]) / 3.0 inx = nm.argsort(coors[:,idim]) aux = SplineBox.spcol(knots, 4, coors[inx,idim]) axes[idim]['bsc'] = nm.zeros_like(aux) axes[idim]['bsc'][inx,:] = aux[:,:] ncpts = nm.prod(ncpt) cpoints = nm.zeros((ncpts, dim), dtype=nm.double) cpoints_idx = nm.zeros(ncpt, dtype=nm.int) n2 = nm.prod(ncpt[:2]) aux = nm.arange(n2).reshape(ncpt[:2], order='F') if dim == 2: idx = nm.mgrid[0:ncpt[1],0:ncpt[0]] cpoints[:,0] = cpt[0][idx[1].reshape((ncpts,))] cpoints[:,1] = cpt[1][idx[0].reshape((ncpts,))] cpoints_idx[:,:] = aux elif dim == 3: idx = nm.mgrid[0:ncpt[2],0:ncpt[1],0:ncpt[0]] cpoints[:,0] = cpt[0][idx[2].reshape((ncpts,))] cpoints[:,1] = cpt[1][idx[1].reshape((ncpts,))] cpoints[:,2] = cpt[2][idx[0].reshape((ncpts,))] for j in range(ncpt[2]): cpoints_idx[:,:,j] = aux + j * n2 return axes, cpoints, cpoints_idx def __init__(self, bbox, coors, name='spbox', **kwargs): """ Create a SplineBox. Parameters ---------- bbox : array Mesh bounding box. coors : array Coordinates of mesh nodes. name : str Object name. """ Struct.__init__(self, name=name, **kwargs) self.axes, self.control_points, self.control_points_idx\ = self.create_spb(bbox, coors) self.dim = self.control_points.shape[1] self.coors_shape = (self.axes[0]['bsc'].shape[0], self.dim) self.control_points0 = self.control_points.copy() def get_control_points(self, init=False): """ Get spline control points coordinates. Return ------ cpt_coors : array The coordinates of the spline control points. init : bool If True, return initial state. """ if init: return self.control_points0 else: return self.control_points def set_control_points(self, cpt_coors, add=False): """ Set spline control points position. Parameters ---------- cpt_coors : array The coordinates of the spline control points. add : bool If True, coors += cpt_coors """ if add: self.control_points += cpt_coors else: self.control_points = cpt_coors.copy() def change_shape(self, cpoint, val): """ Change shape of spline parametrization. Parameters ---------- cpoint : list The indices of the spline control point. val : array Displacement. """ idx = self.control_points_idx[cpoint] self.control_points[idx] += val def evaluate(self, cp_coors=None): """ Evaluate SplineBox. Returns ------- coors : array The coordinates corresponding to the actual spline control points position. cp_coors : array If is not None, use as control points cooardinates. """ coors = nm.zeros((self.axes[0]['bsc'].shape[0], self.dim), dtype=nm.double) if cp_coors is None: cp_coors = self.control_points cptidx = self.control_points_idx nn = self.control_points_idx.shape if self.dim == 2: for i in range(nn[0]): for j in range(nn[1]): aux = self.axes[0]['bsc'][:,i] * self.axes[1]['bsc'][:,j] inx = cptidx[i,j] coors += nm.dot(aux[:,nm.newaxis], cp_coors[inx,:][nm.newaxis,:]) elif self.dim == 3: for i in range(nn[0]): for j in range(nn[1]): aux = self.axes[0]['bsc'][:,i] * self.axes[1]['bsc'][:,j] for k in range(nn[2]): inx = cptidx[i,j,k] aux2 = aux * self.axes[2]['bsc'][:,k] coors += nm.dot(aux2[:,nm.newaxis], cp_coors[inx,:][nm.newaxis,:]) return coors def dvelocity(self, cpoint, dir): """ Evaluate derivative of spline in a given control point and direction. Parameters ---------- cpoint : list The indices of the spline control point. dir : array The directional vector. Returns ------- dvel : array The design velocity field. """ if type(dir) is not nm.ndarray: dir = nm.array(dir) dvel = nm.zeros((self.axes[0]['bsc'].shape[0], self.dim), dtype=nm.double) ax = self.axes if self.dim == 2: aux = ax[0]['bsc'][:,cpoint[0]] * ax[1]['bsc'][:,cpoint[1]] dvel = nm.dot(aux[:,nm.newaxis], dir[nm.newaxis,:]) elif self.dim == 3: aux = ax[0]['bsc'][:,cpoint[0]] * ax[1]['bsc'][:,cpoint[1]]\ * ax[2]['bsc'][:,cpoint[2]] dvel = nm.dot(aux[:,nm.newaxis], dir[nm.newaxis,:]) return dvel def write_vtk(self, filename): cptidx = self.control_points_idx ncpt = cptidx.shape nnd = nm.prod(ncpt) f = open(filename, 'w') f.write("# vtk DataFile Version 2.6\nspbox file\n" "ASCII\nDATASET UNSTRUCTURED_GRID\n\n") f.write("POINTS %d float\n" % nnd) if self.dim == 2: nel = (ncpt[0] - 1) * ncpt[1] + (ncpt[1] - 1) * ncpt[0] for cpt in self.control_points: f.write("%e %e 0.0\n" % (cpt[0], cpt[1])) f.write("\nCELLS %d %d\n" % (nel, 3 * nel)) for i in range(ncpt[0]): for j in range(ncpt[1] - 1): inx1 = cptidx[i,j] inx2 = cptidx[i,j + 1] f.write("2 %d %d\n" % (inx1, inx2)) for i in range(ncpt[0] - 1): for j in range(ncpt[1]): inx1 = cptidx[i,j] inx2 = cptidx[i + 1,j] f.write("2 %d %d\n" % (inx1, inx2)) elif self.dim == 3: nel = ((ncpt[0] - 1) * ncpt[1] + (ncpt[1] - 1) * ncpt[0]) * ncpt[2] nel += ncpt[0] * ncpt[1] * (ncpt[2] - 1) for cpt in self.control_points: f.write("%e %e %e\n" % (cpt[0], cpt[1], cpt[2])) f.write("\nCELLS %d %d\n" % (nel, 3 * nel)) for k in range(ncpt[2]): for i in range(ncpt[0]): for j in range(ncpt[1] - 1): inx1 = cptidx[i, j, k] inx2 = cptidx[i, j + 1, k] f.write("2 %d %d\n" % (inx1, inx2)) for i in range(ncpt[0] - 1): for j in range(ncpt[1]): inx1 = cptidx[i, j, k] inx2 = cptidx[i + 1, j, k] f.write("2 %d %d\n" % (inx1, inx2)) for k in range(ncpt[2] - 1): for i in range(ncpt[0]): for j in range(ncpt[1]): inx1 = cptidx[i, j, k] inx2 = cptidx[i, j, k + 1] f.write("2 %d %d\n" % (inx1, inx2)) f.write("\nCELL_TYPES %d\n" % nel ) f.write("3\n" * nel) f.close()
[ "sfepy.base.base.Struct.__init__" ]
[((269, 299), 'numpy.zeros', 'nm.zeros', (['(2, n)'], {'dtype': 'nm.int'}), '((2, n), dtype=nm.int)\n', (277, 299), True, 'import numpy as nm\n'), ((376, 395), 'numpy.max', 'nm.max', (['aux'], {'axis': '(0)'}), '(aux, axis=0)\n', (382, 395), True, 'import numpy as nm\n'), ((536, 573), 'numpy.zeros', 'nm.zeros', (['(n1 + n2,)'], {'dtype': 'nm.double'}), '((n1 + n2,), dtype=nm.double)\n', (544, 573), True, 'import numpy as nm\n'), ((643, 658), 'numpy.argsort', 'nm.argsort', (['aux'], {}), '(aux)\n', (653, 658), True, 'import numpy as nm\n'), ((1292, 1329), 'numpy.zeros', 'nm.zeros', (['(nrows, k)'], {'dtype': 'nm.double'}), '((nrows, k), dtype=nm.double)\n', (1300, 1329), True, 'import numpy as nm\n'), ((1347, 1381), 'numpy.ones', 'nm.ones', (['(nrows,)'], {'dtype': 'nm.double'}), '((nrows,), dtype=nm.double)\n', (1354, 1381), True, 'import numpy as nm\n'), ((1942, 1969), 'numpy.tile', 'nm.tile', (['(nrows * savl)', '(k,)'], {}), '(nrows * savl, (k,))\n', (1949, 1969), True, 'import numpy as nm\n'), ((2048, 2089), 'numpy.reshape', 'nm.reshape', (['idx3', '(nrows * k,)'], {'order': '"""F"""'}), "(idx3, (nrows * k,), order='F')\n", (2058, 2089), True, 'import numpy as nm\n'), ((2161, 2193), 'numpy.zeros', 'nm.zeros', (['(nn,)'], {'dtype': 'nm.double'}), '((nn,), dtype=nm.double)\n', (2169, 2193), True, 'import numpy as nm\n'), ((2415, 2456), 'numpy.reshape', 'nm.reshape', (['idx2', '(nrows * n,)'], {'order': '"""F"""'}), "(idx2, (nrows * n,), order='F')\n", (2425, 2456), True, 'import numpy as nm\n'), ((3653, 3666), 'numpy.prod', 'nm.prod', (['ncpt'], {}), '(ncpt)\n', (3660, 3666), True, 'import numpy as nm\n'), ((3685, 3724), 'numpy.zeros', 'nm.zeros', (['(ncpts, dim)'], {'dtype': 'nm.double'}), '((ncpts, dim), dtype=nm.double)\n', (3693, 3724), True, 'import numpy as nm\n'), ((3747, 3775), 'numpy.zeros', 'nm.zeros', (['ncpt'], {'dtype': 'nm.int'}), '(ncpt, dtype=nm.int)\n', (3755, 3775), True, 'import numpy as nm\n'), ((3789, 3806), 'numpy.prod', 'nm.prod', (['ncpt[:2]'], {}), '(ncpt[:2])\n', (3796, 3806), True, 'import numpy as nm\n'), ((4814, 4856), 'sfepy.base.base.Struct.__init__', 'Struct.__init__', (['self'], {'name': 'name'}), '(self, name=name, **kwargs)\n', (4829, 4856), False, 'from sfepy.base.base import Struct\n'), ((6698, 6765), 'numpy.zeros', 'nm.zeros', (["(self.axes[0]['bsc'].shape[0], self.dim)"], {'dtype': 'nm.double'}), "((self.axes[0]['bsc'].shape[0], self.dim), dtype=nm.double)\n", (6706, 6765), True, 'import numpy as nm\n'), ((8262, 8329), 'numpy.zeros', 'nm.zeros', (["(self.axes[0]['bsc'].shape[0], self.dim)"], {'dtype': 'nm.double'}), "((self.axes[0]['bsc'].shape[0], self.dim), dtype=nm.double)\n", (8270, 8329), True, 'import numpy as nm\n'), ((8890, 8903), 'numpy.prod', 'nm.prod', (['ncpt'], {}), '(ncpt)\n', (8897, 8903), True, 'import numpy as nm\n'), ((342, 357), 'numpy.ones', 'nm.ones', (['(1, n)'], {}), '((1, n))\n', (349, 357), True, 'import numpy as nm\n'), ((1432, 1467), 'numpy.zeros', 'nm.zeros', (['(nrows,)'], {'dtype': 'nm.double'}), '((nrows,), dtype=nm.double)\n', (1440, 1467), True, 'import numpy as nm\n'), ((1770, 1821), 'numpy.where', 'nm.where', (['((tau < knots[0]) | (tau > knots[npk - 1]))'], {}), '((tau < knots[0]) | (tau > knots[npk - 1]))\n', (1778, 1821), True, 'import numpy as nm\n'), ((1898, 1921), 'numpy.arange', 'nm.arange', (['(1 - nrows)', '(1)'], {}), '(1 - nrows, 1)\n', (1907, 1921), True, 'import numpy as nm\n'), ((2307, 2330), 'numpy.arange', 'nm.arange', (['(1 - nrows)', '(1)'], {}), '(1 - nrows, 1)\n', (2316, 2330), True, 'import numpy as nm\n'), ((2688, 2702), 'numpy.array', 'nm.array', (['bbox'], {}), '(bbox)\n', (2696, 2702), True, 'import numpy as nm\n'), ((2766, 2781), 'numpy.array', 'nm.array', (['coors'], {}), '(coors)\n', (2774, 2781), True, 'import numpy as nm\n'), ((2874, 2903), 'numpy.ones', 'nm.ones', (['(dim,)'], {'dtype': 'nm.int'}), '((dim,), dtype=nm.int)\n', (2881, 2903), True, 'import numpy as nm\n'), ((2936, 2949), 'numpy.array', 'nm.array', (['nsg'], {}), '(nsg)\n', (2944, 2949), True, 'import numpy as nm\n'), ((3064, 3120), 'numpy.linspace', 'nm.linspace', (['bbox[idim, 0]', 'bbox[idim, 1]', '(nsg[idim] + 1)'], {}), '(bbox[idim, 0], bbox[idim, 1], nsg[idim] + 1)\n', (3075, 3120), True, 'import numpy as nm\n'), ((3450, 3476), 'numpy.argsort', 'nm.argsort', (['coors[:, idim]'], {}), '(coors[:, idim])\n', (3460, 3476), True, 'import numpy as nm\n'), ((3569, 3587), 'numpy.zeros_like', 'nm.zeros_like', (['aux'], {}), '(aux)\n', (3582, 3587), True, 'import numpy as nm\n'), ((8232, 8245), 'numpy.array', 'nm.array', (['dir'], {}), '(dir)\n', (8240, 8245), True, 'import numpy as nm\n'), ((8495, 8541), 'numpy.dot', 'nm.dot', (['aux[:, nm.newaxis]', 'dir[nm.newaxis, :]'], {}), '(aux[:, nm.newaxis], dir[nm.newaxis, :])\n', (8501, 8541), True, 'import numpy as nm\n'), ((2001, 2019), 'numpy.arange', 'nm.arange', (['(-km1)', '(1)'], {}), '(-km1, 1)\n', (2010, 2019), True, 'import numpy as nm\n'), ((2367, 2386), 'numpy.arange', 'nm.arange', (['(1)', '(n + 1)'], {}), '(1, n + 1)\n', (2376, 2386), True, 'import numpy as nm\n'), ((3301, 3333), 'numpy.zeros', 'nm.zeros', (['(nn,)'], {'dtype': 'nm.double'}), '((nn,), dtype=nm.double)\n', (3309, 3333), True, 'import numpy as nm\n'), ((3821, 3834), 'numpy.arange', 'nm.arange', (['n2'], {}), '(n2)\n', (3830, 3834), True, 'import numpy as nm\n'), ((8704, 8750), 'numpy.dot', 'nm.dot', (['aux[:, nm.newaxis]', 'dir[nm.newaxis, :]'], {}), '(aux[:, nm.newaxis], dir[nm.newaxis, :])\n', (8710, 8750), True, 'import numpy as nm\n'), ((1619, 1637), 'numpy.double', 'nm.double', (['b[:, r]'], {}), '(b[:, r])\n', (1628, 1637), True, 'import numpy as nm\n'), ((3398, 3424), 'numpy.sum', 'nm.sum', (['knots[j + 1:j + 4]'], {}), '(knots[j + 1:j + 4])\n', (3404, 3424), True, 'import numpy as nm\n'), ((7194, 7253), 'numpy.dot', 'nm.dot', (['aux[:, nm.newaxis]', 'cp_coors[inx, :][nm.newaxis, :]'], {}), '(aux[:, nm.newaxis], cp_coors[inx, :][nm.newaxis, :])\n', (7200, 7253), True, 'import numpy as nm\n'), ((7649, 7709), 'numpy.dot', 'nm.dot', (['aux2[:, nm.newaxis]', 'cp_coors[inx, :][nm.newaxis, :]'], {}), '(aux2[:, nm.newaxis], cp_coors[inx, :][nm.newaxis, :])\n', (7655, 7709), True, 'import numpy as nm\n')]
from __future__ import absolute_import import os.path as op import numpy as nm from sfepy import data_dir from sfepy.base.testing import TestCommon import six def init_vec(variables): return nm.random.rand(variables.di.ptr[-1]) def check_vec(self, vec, ii, ok, conds, variables): from sfepy.discrete.common.dof_info import expand_nodes_to_equations for var_name, var_conds in six.iteritems(conds.group_by_variables()): var = variables[var_name] for cond in var_conds: cond.canonize_dof_names(var.dofs) self.report('%d: %s %s: %s %s' % (ii, var.name, cond.name, cond.region.name, cond.dofs[0])) nods = var.field.get_dofs_in_region(cond.region) eq = expand_nodes_to_equations(nods, cond.dofs[0], var.dofs) off = variables.di.indx[var_name].start n_nod = len(nods) for cdof, dof_name in enumerate(cond.dofs[0]): idof = var.dofs.index(dof_name) eqs = eq[n_nod * cdof : n_nod * (cdof + 1)] _ok = nm.allclose(vec[off + eqs], idof, atol=1e-14, rtol=0.0) if not _ok: self.report(' %s: failed! (all of %s == %f)' % (dof_name, vec[off + eqs], idof)) ok = ok and _ok return ok class Test(TestCommon): @staticmethod def from_conf(conf, options): from sfepy.discrete import FieldVariable, Variables, Problem from sfepy.discrete.fem import Mesh, FEDomain, Field mesh = Mesh.from_file(data_dir + '/meshes/2d/square_unit_tri.mesh') domain = FEDomain('domain', mesh) omega = domain.create_region('Omega', 'all') domain.create_region('Left', 'vertices in (x < -0.499)', 'facet') domain.create_region('LeftStrip', 'vertices in (x < -0.499)' ' & (y > -0.199) & (y < 0.199)', 'facet') domain.create_region('LeftFix', 'r.Left -v r.LeftStrip', 'facet') domain.create_region('Right', 'vertices in (x > 0.499)', 'facet') domain.create_region('RightStrip', 'vertices in (x > 0.499)' ' & (y > -0.199) & (y < 0.199)', 'facet') domain.create_region('RightFix', 'r.Right -v r.RightStrip', 'facet') fu = Field.from_args('fu', nm.float64, 'vector', omega, approx_order=2) u = FieldVariable('u', 'unknown', fu) fp = Field.from_args('fp', nm.float64, 'scalar', omega, approx_order=2) p = FieldVariable('p', 'unknown', fp) pb = Problem('test', domain=domain, fields=[fu, fp], auto_conf=False, auto_solvers=False) test = Test(problem=pb, variables=Variables([u, p]), conf=conf, options=options) return test def test_ics(self): from sfepy.discrete.conditions import Conditions, InitialCondition variables = self.variables omega = self.problem.domain.regions['Omega'] all_ics = [] all_ics.append(InitialCondition('ic0', omega, {'p.all' : 0.0})) all_ics.append(InitialCondition('ic1', omega, {'u.1' : 1.0})) all_ics.append(InitialCondition('ic2', omega, {'u.all' : nm.array([0.0, 1.0])})) all_ics.append(InitialCondition('ic3', omega, {'p.0' : 0.0, 'u.0' : 0.0, 'u.1' : 1.0})) ok = True for ii, ics in enumerate(all_ics): if not isinstance(ics, list): ics = [ics] ics = Conditions(ics) variables.setup_initial_conditions(ics, functions=None) vec = init_vec(variables) variables.apply_ic(vec) ok = check_vec(self, vec, ii, ok, ics, variables) return ok def test_ebcs(self): from sfepy.discrete.conditions import Conditions, EssentialBC variables = self.variables regions = self.problem.domain.regions all_ebcs = [] all_ebcs.append(EssentialBC('fix_u1', regions['LeftFix'], {'u.all' : nm.array([0.0, 1.0])})) all_ebcs.append(EssentialBC('fix_u2', regions['LeftStrip'], {'u.0' : 0.0, 'u.1' : 1.0})) all_ebcs.append(EssentialBC('fix_p1', regions['RightFix'], {'p.all' : 0.0})) all_ebcs.append(EssentialBC('fix_p2', regions['RightStrip'], {'p.0' : 0.0})) all_ebcs.append([EssentialBC('fix_p3', regions['Right'], {'p.0' : 0.0}), EssentialBC('fix_u3', regions['Left'], {'u.0' : 0.0, 'u.1' : 1.0})]) ok = True for ii, bcs in enumerate(all_ebcs): if not isinstance(bcs, list): bcs = [bcs] ebcs = Conditions(bcs) variables.equation_mapping(ebcs=ebcs, epbcs=None, ts=None, functions=None) vec = init_vec(variables) variables.apply_ebc(vec) ok = check_vec(self, vec, ii, ok, ebcs, variables) return ok def test_epbcs(self): from sfepy.discrete import Function, Functions from sfepy.discrete.conditions import Conditions, PeriodicBC from sfepy.discrete.common.dof_info import expand_nodes_to_equations from sfepy.discrete.fem.periodic import match_y_line variables = self.variables regions = self.problem.domain.regions match_y_line = Function('match_y_line', match_y_line) pbc = PeriodicBC('pbc', [regions['LeftStrip'], regions['RightStrip']], {'u.[1,0]' : 'u.[0,1]'}, match='match_y_line') functions = Functions([match_y_line]) epbcs = Conditions([pbc]) variables.equation_mapping(ebcs=None, epbcs=epbcs, ts=None, functions=functions) vec = init_vec(variables) variables.apply_ebc(vec) var = variables['u'] var_bcs = epbcs.group_by_variables()['u'] bc = var_bcs['pbc'] bc.canonize_dof_names(var.dofs) nods0 = var.field.get_dofs_in_region(bc.regions[0]) nods1 = var.field.get_dofs_in_region(bc.regions[1]) coors0 = var.field.get_coor(nods0) coors1 = var.field.get_coor(nods1) i0, i1 = match_y_line(coors0, coors1) eq0 = expand_nodes_to_equations(nods0[i0], bc.dofs[0], var.dofs) eq1 = expand_nodes_to_equations(nods1[i1], bc.dofs[1], var.dofs) ok = True _ok = len(nm.setdiff1d(eq0, var.eq_map.master)) == 0 if not _ok: self.report('master equations mismatch! (set(%s) == set(%s))' % (eq0, var.eq_map.master)) ok = ok and _ok _ok = len(nm.setdiff1d(eq1, var.eq_map.slave)) == 0 if not _ok: self.report('slave equations mismatch! (set(%s) == set(%s))' % (eq1, var.eq_map.slave)) ok = ok and _ok off = variables.di.indx['u'].start _ok = nm.allclose(vec[off + eq0], vec[off + eq1], atol=1e-14, rtol=0.0) if not _ok: self.report('periodicity test failed! (%s == %s)' % (vec[off + eq0], vec[off + eq0])) ok = ok and _ok return ok def test_save_ebc(self): from sfepy.discrete import (FieldVariable, Integral, Equation, Equations, Problem) from sfepy.discrete.conditions import Conditions, EssentialBC from sfepy.terms import Term name = op.join(self.options.out_dir, op.splitext(op.basename(__file__))[0]) integral = Integral('i', order=1) u = self.variables['u'] v = FieldVariable('v', 'test', u.field, primary_var_name='u') p = self.variables['p'] q = FieldVariable('q', 'test', p.field, primary_var_name='p') regions = self.problem.domain.regions omega = regions['Omega'] # Problem.save_ebc() requires to have equations defined. t1 = Term.new('dw_lin_elastic(v, u)', integral, omega, v=v, u=u) t2 = Term.new('dw_laplace(q, p)', integral, omega, q=q, p=p) eq = Equation('aux', t1 + t2) eqs = Equations([eq]) pb = Problem('test', equations=eqs, auto_solvers=False) all_ebcs = [] all_ebcs.append(EssentialBC('fix_u1', regions['RightFix'], {'u.all' : nm.array([0.0, 1.0])})) all_ebcs.append(EssentialBC('fix_u2', regions['LeftStrip'], {'u.0' : 0.0, 'u.1' : 1.0})) all_ebcs.append(EssentialBC('fix_p1', regions['LeftFix'], {'p.all' : 0.0})) all_ebcs.append(EssentialBC('fix_p2', regions['RightStrip'], {'p.0' : 0.0})) ebcs = Conditions(all_ebcs) pb.time_update(ebcs=ebcs) pb.save_ebc(name + '_ebcs_f.vtk', ebcs=ebcs, force=True) pb.save_ebc(name + '_ebcs.vtk', ebcs=ebcs, default=-1, force=False) return True
[ "sfepy.discrete.Equation", "sfepy.discrete.conditions.PeriodicBC", "sfepy.discrete.conditions.EssentialBC", "sfepy.discrete.fem.periodic.match_y_line", "sfepy.discrete.fem.Mesh.from_file", "sfepy.discrete.common.dof_info.expand_nodes_to_equations", "sfepy.discrete.fem.Field.from_args", "sfepy.discrete.Function", "sfepy.terms.Term.new", "sfepy.discrete.Equations", "sfepy.discrete.Integral", "sfepy.discrete.fem.FEDomain", "sfepy.discrete.Functions", "sfepy.discrete.Problem", "sfepy.discrete.FieldVariable", "sfepy.discrete.Variables", "sfepy.discrete.conditions.Conditions", "sfepy.discrete.conditions.InitialCondition" ]
[((199, 235), 'numpy.random.rand', 'nm.random.rand', (['variables.di.ptr[-1]'], {}), '(variables.di.ptr[-1])\n', (213, 235), True, 'import numpy as nm\n'), ((1632, 1692), 'sfepy.discrete.fem.Mesh.from_file', 'Mesh.from_file', (["(data_dir + '/meshes/2d/square_unit_tri.mesh')"], {}), "(data_dir + '/meshes/2d/square_unit_tri.mesh')\n", (1646, 1692), False, 'from sfepy.discrete.fem import Mesh, FEDomain, Field\n'), ((1710, 1734), 'sfepy.discrete.fem.FEDomain', 'FEDomain', (['"""domain"""', 'mesh'], {}), "('domain', mesh)\n", (1718, 1734), False, 'from sfepy.discrete.fem import Mesh, FEDomain, Field\n'), ((2730, 2796), 'sfepy.discrete.fem.Field.from_args', 'Field.from_args', (['"""fu"""', 'nm.float64', '"""vector"""', 'omega'], {'approx_order': '(2)'}), "('fu', nm.float64, 'vector', omega, approx_order=2)\n", (2745, 2796), False, 'from sfepy.discrete.fem import Mesh, FEDomain, Field\n'), ((2809, 2842), 'sfepy.discrete.FieldVariable', 'FieldVariable', (['"""u"""', '"""unknown"""', 'fu'], {}), "('u', 'unknown', fu)\n", (2822, 2842), False, 'from sfepy.discrete import FieldVariable, Integral, Equation, Equations, Problem\n'), ((2857, 2923), 'sfepy.discrete.fem.Field.from_args', 'Field.from_args', (['"""fp"""', 'nm.float64', '"""scalar"""', 'omega'], {'approx_order': '(2)'}), "('fp', nm.float64, 'scalar', omega, approx_order=2)\n", (2872, 2923), False, 'from sfepy.discrete.fem import Mesh, FEDomain, Field\n'), ((2936, 2969), 'sfepy.discrete.FieldVariable', 'FieldVariable', (['"""p"""', '"""unknown"""', 'fp'], {}), "('p', 'unknown', fp)\n", (2949, 2969), False, 'from sfepy.discrete import FieldVariable, Integral, Equation, Equations, Problem\n'), ((2984, 3072), 'sfepy.discrete.Problem', 'Problem', (['"""test"""'], {'domain': 'domain', 'fields': '[fu, fp]', 'auto_conf': '(False)', 'auto_solvers': '(False)'}), "('test', domain=domain, fields=[fu, fp], auto_conf=False,\n auto_solvers=False)\n", (2991, 3072), False, 'from sfepy.discrete import FieldVariable, Integral, Equation, Equations, Problem\n'), ((6129, 6167), 'sfepy.discrete.Function', 'Function', (['"""match_y_line"""', 'match_y_line'], {}), "('match_y_line', match_y_line)\n", (6137, 6167), False, 'from sfepy.discrete import Function, Functions\n'), ((6182, 6296), 'sfepy.discrete.conditions.PeriodicBC', 'PeriodicBC', (['"""pbc"""', "[regions['LeftStrip'], regions['RightStrip']]", "{'u.[1,0]': 'u.[0,1]'}"], {'match': '"""match_y_line"""'}), "('pbc', [regions['LeftStrip'], regions['RightStrip']], {'u.[1,0]':\n 'u.[0,1]'}, match='match_y_line')\n", (6192, 6296), False, 'from sfepy.discrete.conditions import Conditions, PeriodicBC\n'), ((6340, 6365), 'sfepy.discrete.Functions', 'Functions', (['[match_y_line]'], {}), '([match_y_line])\n', (6349, 6365), False, 'from sfepy.discrete import Function, Functions\n'), ((6383, 6400), 'sfepy.discrete.conditions.Conditions', 'Conditions', (['[pbc]'], {}), '([pbc])\n', (6393, 6400), False, 'from sfepy.discrete.conditions import Conditions, EssentialBC\n'), ((6966, 6994), 'sfepy.discrete.fem.periodic.match_y_line', 'match_y_line', (['coors0', 'coors1'], {}), '(coors0, coors1)\n', (6978, 6994), False, 'from sfepy.discrete.fem.periodic import match_y_line\n'), ((7010, 7068), 'sfepy.discrete.common.dof_info.expand_nodes_to_equations', 'expand_nodes_to_equations', (['nods0[i0]', 'bc.dofs[0]', 'var.dofs'], {}), '(nods0[i0], bc.dofs[0], var.dofs)\n', (7035, 7068), False, 'from sfepy.discrete.common.dof_info import expand_nodes_to_equations\n'), ((7083, 7141), 'sfepy.discrete.common.dof_info.expand_nodes_to_equations', 'expand_nodes_to_equations', (['nods1[i1]', 'bc.dofs[1]', 'var.dofs'], {}), '(nods1[i1], bc.dofs[1], var.dofs)\n', (7108, 7141), False, 'from sfepy.discrete.common.dof_info import expand_nodes_to_equations\n'), ((7680, 7745), 'numpy.allclose', 'nm.allclose', (['vec[off + eq0]', 'vec[off + eq1]'], {'atol': '(1e-14)', 'rtol': '(0.0)'}), '(vec[off + eq0], vec[off + eq1], atol=1e-14, rtol=0.0)\n', (7691, 7745), True, 'import numpy as nm\n'), ((8323, 8345), 'sfepy.discrete.Integral', 'Integral', (['"""i"""'], {'order': '(1)'}), "('i', order=1)\n", (8331, 8345), False, 'from sfepy.discrete import FieldVariable, Integral, Equation, Equations, Problem\n'), ((8391, 8448), 'sfepy.discrete.FieldVariable', 'FieldVariable', (['"""v"""', '"""test"""', 'u.field'], {'primary_var_name': '"""u"""'}), "('v', 'test', u.field, primary_var_name='u')\n", (8404, 8448), False, 'from sfepy.discrete import FieldVariable, Integral, Equation, Equations, Problem\n'), ((8494, 8551), 'sfepy.discrete.FieldVariable', 'FieldVariable', (['"""q"""', '"""test"""', 'p.field'], {'primary_var_name': '"""p"""'}), "('q', 'test', p.field, primary_var_name='p')\n", (8507, 8551), False, 'from sfepy.discrete import FieldVariable, Integral, Equation, Equations, Problem\n'), ((8711, 8770), 'sfepy.terms.Term.new', 'Term.new', (['"""dw_lin_elastic(v, u)"""', 'integral', 'omega'], {'v': 'v', 'u': 'u'}), "('dw_lin_elastic(v, u)', integral, omega, v=v, u=u)\n", (8719, 8770), False, 'from sfepy.terms import Term\n'), ((8806, 8861), 'sfepy.terms.Term.new', 'Term.new', (['"""dw_laplace(q, p)"""', 'integral', 'omega'], {'q': 'q', 'p': 'p'}), "('dw_laplace(q, p)', integral, omega, q=q, p=p)\n", (8814, 8861), False, 'from sfepy.terms import Term\n'), ((8875, 8899), 'sfepy.discrete.Equation', 'Equation', (['"""aux"""', '(t1 + t2)'], {}), "('aux', t1 + t2)\n", (8883, 8899), False, 'from sfepy.discrete import FieldVariable, Integral, Equation, Equations, Problem\n'), ((8914, 8929), 'sfepy.discrete.Equations', 'Equations', (['[eq]'], {}), '([eq])\n', (8923, 8929), False, 'from sfepy.discrete import FieldVariable, Integral, Equation, Equations, Problem\n'), ((8944, 8994), 'sfepy.discrete.Problem', 'Problem', (['"""test"""'], {'equations': 'eqs', 'auto_solvers': '(False)'}), "('test', equations=eqs, auto_solvers=False)\n", (8951, 8994), False, 'from sfepy.discrete import FieldVariable, Integral, Equation, Equations, Problem\n'), ((9545, 9565), 'sfepy.discrete.conditions.Conditions', 'Conditions', (['all_ebcs'], {}), '(all_ebcs)\n', (9555, 9565), False, 'from sfepy.discrete.conditions import Conditions, EssentialBC\n'), ((781, 836), 'sfepy.discrete.common.dof_info.expand_nodes_to_equations', 'expand_nodes_to_equations', (['nods', 'cond.dofs[0]', 'var.dofs'], {}), '(nods, cond.dofs[0], var.dofs)\n', (806, 836), False, 'from sfepy.discrete.common.dof_info import expand_nodes_to_equations\n'), ((3454, 3500), 'sfepy.discrete.conditions.InitialCondition', 'InitialCondition', (['"""ic0"""', 'omega', "{'p.all': 0.0}"], {}), "('ic0', omega, {'p.all': 0.0})\n", (3470, 3500), False, 'from sfepy.discrete.conditions import Conditions, InitialCondition\n'), ((3566, 3610), 'sfepy.discrete.conditions.InitialCondition', 'InitialCondition', (['"""ic1"""', 'omega', "{'u.1': 1.0}"], {}), "('ic1', omega, {'u.1': 1.0})\n", (3582, 3610), False, 'from sfepy.discrete.conditions import Conditions, InitialCondition\n'), ((3805, 3873), 'sfepy.discrete.conditions.InitialCondition', 'InitialCondition', (['"""ic3"""', 'omega', "{'p.0': 0.0, 'u.0': 0.0, 'u.1': 1.0}"], {}), "('ic3', omega, {'p.0': 0.0, 'u.0': 0.0, 'u.1': 1.0})\n", (3821, 3873), False, 'from sfepy.discrete.conditions import Conditions, InitialCondition\n'), ((4094, 4109), 'sfepy.discrete.conditions.Conditions', 'Conditions', (['ics'], {}), '(ics)\n', (4104, 4109), False, 'from sfepy.discrete.conditions import Conditions, EssentialBC\n'), ((4697, 4766), 'sfepy.discrete.conditions.EssentialBC', 'EssentialBC', (['"""fix_u2"""', "regions['LeftStrip']", "{'u.0': 0.0, 'u.1': 1.0}"], {}), "('fix_u2', regions['LeftStrip'], {'u.0': 0.0, 'u.1': 1.0})\n", (4708, 4766), False, 'from sfepy.discrete.conditions import Conditions, EssentialBC\n'), ((4830, 4888), 'sfepy.discrete.conditions.EssentialBC', 'EssentialBC', (['"""fix_p1"""', "regions['RightFix']", "{'p.all': 0.0}"], {}), "('fix_p1', regions['RightFix'], {'p.all': 0.0})\n", (4841, 4888), False, 'from sfepy.discrete.conditions import Conditions, EssentialBC\n'), ((4951, 5009), 'sfepy.discrete.conditions.EssentialBC', 'EssentialBC', (['"""fix_p2"""', "regions['RightStrip']", "{'p.0': 0.0}"], {}), "('fix_p2', regions['RightStrip'], {'p.0': 0.0})\n", (4962, 5009), False, 'from sfepy.discrete.conditions import Conditions, EssentialBC\n'), ((5434, 5449), 'sfepy.discrete.conditions.Conditions', 'Conditions', (['bcs'], {}), '(bcs)\n', (5444, 5449), False, 'from sfepy.discrete.conditions import Conditions, EssentialBC\n'), ((9180, 9249), 'sfepy.discrete.conditions.EssentialBC', 'EssentialBC', (['"""fix_u2"""', "regions['LeftStrip']", "{'u.0': 0.0, 'u.1': 1.0}"], {}), "('fix_u2', regions['LeftStrip'], {'u.0': 0.0, 'u.1': 1.0})\n", (9191, 9249), False, 'from sfepy.discrete.conditions import Conditions, EssentialBC\n'), ((9313, 9370), 'sfepy.discrete.conditions.EssentialBC', 'EssentialBC', (['"""fix_p1"""', "regions['LeftFix']", "{'p.all': 0.0}"], {}), "('fix_p1', regions['LeftFix'], {'p.all': 0.0})\n", (9324, 9370), False, 'from sfepy.discrete.conditions import Conditions, EssentialBC\n'), ((9433, 9491), 'sfepy.discrete.conditions.EssentialBC', 'EssentialBC', (['"""fix_p2"""', "regions['RightStrip']", "{'p.0': 0.0}"], {}), "('fix_p2', regions['RightStrip'], {'p.0': 0.0})\n", (9444, 9491), False, 'from sfepy.discrete.conditions import Conditions, EssentialBC\n'), ((1110, 1165), 'numpy.allclose', 'nm.allclose', (['vec[off + eqs]', 'idof'], {'atol': '(1e-14)', 'rtol': '(0.0)'}), '(vec[off + eqs], idof, atol=1e-14, rtol=0.0)\n', (1121, 1165), True, 'import numpy as nm\n'), ((3133, 3150), 'sfepy.discrete.Variables', 'Variables', (['[u, p]'], {}), '([u, p])\n', (3142, 3150), False, 'from sfepy.discrete import FieldVariable, Variables, Problem\n'), ((5073, 5126), 'sfepy.discrete.conditions.EssentialBC', 'EssentialBC', (['"""fix_p3"""', "regions['Right']", "{'p.0': 0.0}"], {}), "('fix_p3', regions['Right'], {'p.0': 0.0})\n", (5084, 5126), False, 'from sfepy.discrete.conditions import Conditions, EssentialBC\n'), ((5191, 5255), 'sfepy.discrete.conditions.EssentialBC', 'EssentialBC', (['"""fix_u3"""', "regions['Left']", "{'u.0': 0.0, 'u.1': 1.0}"], {}), "('fix_u3', regions['Left'], {'u.0': 0.0, 'u.1': 1.0})\n", (5202, 5255), False, 'from sfepy.discrete.conditions import Conditions, EssentialBC\n'), ((7180, 7216), 'numpy.setdiff1d', 'nm.setdiff1d', (['eq0', 'var.eq_map.master'], {}), '(eq0, var.eq_map.master)\n', (7192, 7216), True, 'import numpy as nm\n'), ((7412, 7447), 'numpy.setdiff1d', 'nm.setdiff1d', (['eq1', 'var.eq_map.slave'], {}), '(eq1, var.eq_map.slave)\n', (7424, 7447), True, 'import numpy as nm\n'), ((3758, 3778), 'numpy.array', 'nm.array', (['[0.0, 1.0]'], {}), '([0.0, 1.0])\n', (3766, 3778), True, 'import numpy as nm\n'), ((4649, 4669), 'numpy.array', 'nm.array', (['[0.0, 1.0]'], {}), '([0.0, 1.0])\n', (4657, 4669), True, 'import numpy as nm\n'), ((8276, 8297), 'os.path.basename', 'op.basename', (['__file__'], {}), '(__file__)\n', (8287, 8297), True, 'import os.path as op\n'), ((9132, 9152), 'numpy.array', 'nm.array', (['[0.0, 1.0]'], {}), '([0.0, 1.0])\n', (9140, 9152), True, 'import numpy as nm\n')]
from time import sleep from sqlmodel import select from icon_governance.config import settings from icon_governance.log import logger from icon_governance.models.preps import Prep from icon_governance.utils.rpc import ( convert_hex_int, get_preps_cps, get_sponsors_record, post_rpc_json, ) def get_cps(session): sponsors = post_rpc_json(get_sponsors_record()) if sponsors is None: logger.info("No sponsors found from rpc.") sleep(1) return for k, v in sponsors.items(): prep = session.get(Prep, k) if prep is None: logger.info("No preps found in db? Should not ever happen cuz of db_init.") continue prep.sponsored_cps_grants = convert_hex_int(v) session.merge(prep) session.commit() result = session.execute(select(Prep)) preps = result.scalars().all() cps_preps = post_rpc_json(get_preps_cps()) prep_list = [i["address"] for i in cps_preps] for prep in preps: if prep.address in prep_list: prep.cps_governance = True else: prep.cps_governance = False session.merge(prep) session.commit() def cps_cron(session): while True: logger.info("Starting cps cron") get_cps(session) logger.info("CPS cron ran.") sleep(settings.CRON_SLEEP_SEC * 10) if __name__ == "__main__": from icon_governance.db import session_factory get_cps(session_factory())
[ "sqlmodel.select" ]
[((361, 382), 'icon_governance.utils.rpc.get_sponsors_record', 'get_sponsors_record', ([], {}), '()\n', (380, 382), False, 'from icon_governance.utils.rpc import convert_hex_int, get_preps_cps, get_sponsors_record, post_rpc_json\n'), ((418, 460), 'icon_governance.log.logger.info', 'logger.info', (['"""No sponsors found from rpc."""'], {}), "('No sponsors found from rpc.')\n", (429, 460), False, 'from icon_governance.log import logger\n'), ((469, 477), 'time.sleep', 'sleep', (['(1)'], {}), '(1)\n', (474, 477), False, 'from time import sleep\n'), ((735, 753), 'icon_governance.utils.rpc.convert_hex_int', 'convert_hex_int', (['v'], {}), '(v)\n', (750, 753), False, 'from icon_governance.utils.rpc import convert_hex_int, get_preps_cps, get_sponsors_record, post_rpc_json\n'), ((838, 850), 'sqlmodel.select', 'select', (['Prep'], {}), '(Prep)\n', (844, 850), False, 'from sqlmodel import select\n'), ((918, 933), 'icon_governance.utils.rpc.get_preps_cps', 'get_preps_cps', ([], {}), '()\n', (931, 933), False, 'from icon_governance.utils.rpc import convert_hex_int, get_preps_cps, get_sponsors_record, post_rpc_json\n'), ((1243, 1275), 'icon_governance.log.logger.info', 'logger.info', (['"""Starting cps cron"""'], {}), "('Starting cps cron')\n", (1254, 1275), False, 'from icon_governance.log import logger\n'), ((1309, 1337), 'icon_governance.log.logger.info', 'logger.info', (['"""CPS cron ran."""'], {}), "('CPS cron ran.')\n", (1320, 1337), False, 'from icon_governance.log import logger\n'), ((1346, 1381), 'time.sleep', 'sleep', (['(settings.CRON_SLEEP_SEC * 10)'], {}), '(settings.CRON_SLEEP_SEC * 10)\n', (1351, 1381), False, 'from time import sleep\n'), ((1475, 1492), 'icon_governance.db.session_factory', 'session_factory', ([], {}), '()\n', (1490, 1492), False, 'from icon_governance.db import session_factory\n'), ((601, 676), 'icon_governance.log.logger.info', 'logger.info', (['"""No preps found in db? Should not ever happen cuz of db_init."""'], {}), "('No preps found in db? Should not ever happen cuz of db_init.')\n", (612, 676), False, 'from icon_governance.log import logger\n')]
from typing import List, Optional from fastapi import Depends, FastAPI, HTTPException, Query from sqlmodel import Field, Relationship, Session, SQLModel, create_engine, select class TeamBase(SQLModel): name: str = Field(index=True) headquarters: str class Team(TeamBase, table=True): id: Optional[int] = Field(default=None, primary_key=True) heroes: List["Hero"] = Relationship(back_populates="team") class TeamCreate(TeamBase): pass class TeamRead(TeamBase): id: int class TeamUpdate(SQLModel): id: Optional[int] = None name: Optional[str] = None headquarters: Optional[str] = None class HeroBase(SQLModel): name: str = Field(index=True) secret_name: str age: Optional[int] = Field(default=None, index=True) team_id: Optional[int] = Field(default=None, foreign_key="team.id") class Hero(HeroBase, table=True): id: Optional[int] = Field(default=None, primary_key=True) team: Optional[Team] = Relationship(back_populates="heroes") class HeroRead(HeroBase): id: int class HeroCreate(HeroBase): pass class HeroUpdate(SQLModel): name: Optional[str] = None secret_name: Optional[str] = None age: Optional[int] = None team_id: Optional[int] = None sqlite_file_name = "database.db" sqlite_url = f"sqlite:///{sqlite_file_name}" connect_args = {"check_same_thread": False} engine = create_engine(sqlite_url, echo=True, connect_args=connect_args) def create_db_and_tables(): SQLModel.metadata.create_all(engine) def get_session(): with Session(engine) as session: yield session app = FastAPI() @app.on_event("startup") def on_startup(): create_db_and_tables() @app.post("/heroes/", response_model=HeroRead) def create_hero(*, session: Session = Depends(get_session), hero: HeroCreate): db_hero = Hero.from_orm(hero) session.add(db_hero) session.commit() session.refresh(db_hero) return db_hero @app.get("/heroes/", response_model=List[HeroRead]) def read_heroes( *, session: Session = Depends(get_session), offset: int = 0, limit: int = Query(default=100, lte=100), ): heroes = session.exec(select(Hero).offset(offset).limit(limit)).all() return heroes @app.get("/heroes/{hero_id}", response_model=HeroRead) def read_hero(*, session: Session = Depends(get_session), hero_id: int): hero = session.get(Hero, hero_id) if not hero: raise HTTPException(status_code=404, detail="Hero not found") return hero @app.patch("/heroes/{hero_id}", response_model=HeroRead) def update_hero( *, session: Session = Depends(get_session), hero_id: int, hero: HeroUpdate ): db_hero = session.get(Hero, hero_id) if not db_hero: raise HTTPException(status_code=404, detail="Hero not found") hero_data = hero.dict(exclude_unset=True) for key, value in hero_data.items(): setattr(db_hero, key, value) session.add(db_hero) session.commit() session.refresh(db_hero) return db_hero @app.delete("/heroes/{hero_id}") def delete_hero(*, session: Session = Depends(get_session), hero_id: int): hero = session.get(Hero, hero_id) if not hero: raise HTTPException(status_code=404, detail="Hero not found") session.delete(hero) session.commit() return {"ok": True} @app.post("/teams/", response_model=TeamRead) def create_team(*, session: Session = Depends(get_session), team: TeamCreate): db_team = Team.from_orm(team) session.add(db_team) session.commit() session.refresh(db_team) return db_team @app.get("/teams/", response_model=List[TeamRead]) def read_teams( *, session: Session = Depends(get_session), offset: int = 0, limit: int = Query(default=100, lte=100), ): teams = session.exec(select(Team).offset(offset).limit(limit)).all() return teams @app.get("/teams/{team_id}", response_model=TeamRead) def read_team(*, team_id: int, session: Session = Depends(get_session)): team = session.get(Team, team_id) if not team: raise HTTPException(status_code=404, detail="Team not found") return team @app.patch("/teams/{team_id}", response_model=TeamRead) def update_team( *, session: Session = Depends(get_session), team_id: int, team: TeamUpdate, ): db_team = session.get(Team, team_id) if not db_team: raise HTTPException(status_code=404, detail="Team not found") team_data = team.dict(exclude_unset=True) for key, value in team_data.items(): setattr(db_team, key, value) session.add(db_team) session.commit() session.refresh(db_team) return db_team @app.delete("/teams/{team_id}") def delete_team(*, session: Session = Depends(get_session), team_id: int): team = session.get(Team, team_id) if not team: raise HTTPException(status_code=404, detail="Team not found") session.delete(team) session.commit() return {"ok": True}
[ "sqlmodel.Relationship", "sqlmodel.create_engine", "sqlmodel.Session", "sqlmodel.SQLModel.metadata.create_all", "sqlmodel.Field", "sqlmodel.select" ]
[((1384, 1447), 'sqlmodel.create_engine', 'create_engine', (['sqlite_url'], {'echo': '(True)', 'connect_args': 'connect_args'}), '(sqlite_url, echo=True, connect_args=connect_args)\n', (1397, 1447), False, 'from sqlmodel import Field, Relationship, Session, SQLModel, create_engine, select\n'), ((1607, 1616), 'fastapi.FastAPI', 'FastAPI', ([], {}), '()\n', (1614, 1616), False, 'from fastapi import Depends, FastAPI, HTTPException, Query\n'), ((221, 238), 'sqlmodel.Field', 'Field', ([], {'index': '(True)'}), '(index=True)\n', (226, 238), False, 'from sqlmodel import Field, Relationship, Session, SQLModel, create_engine, select\n'), ((321, 358), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'primary_key': '(True)'}), '(default=None, primary_key=True)\n', (326, 358), False, 'from sqlmodel import Field, Relationship, Session, SQLModel, create_engine, select\n'), ((387, 422), 'sqlmodel.Relationship', 'Relationship', ([], {'back_populates': '"""team"""'}), "(back_populates='team')\n", (399, 422), False, 'from sqlmodel import Field, Relationship, Session, SQLModel, create_engine, select\n'), ((675, 692), 'sqlmodel.Field', 'Field', ([], {'index': '(True)'}), '(index=True)\n', (680, 692), False, 'from sqlmodel import Field, Relationship, Session, SQLModel, create_engine, select\n'), ((739, 770), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'index': '(True)'}), '(default=None, index=True)\n', (744, 770), False, 'from sqlmodel import Field, Relationship, Session, SQLModel, create_engine, select\n'), ((801, 843), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'foreign_key': '"""team.id"""'}), "(default=None, foreign_key='team.id')\n", (806, 843), False, 'from sqlmodel import Field, Relationship, Session, SQLModel, create_engine, select\n'), ((904, 941), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'primary_key': '(True)'}), '(default=None, primary_key=True)\n', (909, 941), False, 'from sqlmodel import Field, Relationship, Session, SQLModel, create_engine, select\n'), ((970, 1007), 'sqlmodel.Relationship', 'Relationship', ([], {'back_populates': '"""heroes"""'}), "(back_populates='heroes')\n", (982, 1007), False, 'from sqlmodel import Field, Relationship, Session, SQLModel, create_engine, select\n'), ((1482, 1518), 'sqlmodel.SQLModel.metadata.create_all', 'SQLModel.metadata.create_all', (['engine'], {}), '(engine)\n', (1510, 1518), False, 'from sqlmodel import Field, Relationship, Session, SQLModel, create_engine, select\n'), ((1776, 1796), 'fastapi.Depends', 'Depends', (['get_session'], {}), '(get_session)\n', (1783, 1796), False, 'from fastapi import Depends, FastAPI, HTTPException, Query\n'), ((2046, 2066), 'fastapi.Depends', 'Depends', (['get_session'], {}), '(get_session)\n', (2053, 2066), False, 'from fastapi import Depends, FastAPI, HTTPException, Query\n'), ((2106, 2133), 'fastapi.Query', 'Query', ([], {'default': '(100)', 'lte': '(100)'}), '(default=100, lte=100)\n', (2111, 2133), False, 'from fastapi import Depends, FastAPI, HTTPException, Query\n'), ((2323, 2343), 'fastapi.Depends', 'Depends', (['get_session'], {}), '(get_session)\n', (2330, 2343), False, 'from fastapi import Depends, FastAPI, HTTPException, Query\n'), ((2603, 2623), 'fastapi.Depends', 'Depends', (['get_session'], {}), '(get_session)\n', (2610, 2623), False, 'from fastapi import Depends, FastAPI, HTTPException, Query\n'), ((3081, 3101), 'fastapi.Depends', 'Depends', (['get_session'], {}), '(get_session)\n', (3088, 3101), False, 'from fastapi import Depends, FastAPI, HTTPException, Query\n'), ((3400, 3420), 'fastapi.Depends', 'Depends', (['get_session'], {}), '(get_session)\n', (3407, 3420), False, 'from fastapi import Depends, FastAPI, HTTPException, Query\n'), ((3668, 3688), 'fastapi.Depends', 'Depends', (['get_session'], {}), '(get_session)\n', (3675, 3688), False, 'from fastapi import Depends, FastAPI, HTTPException, Query\n'), ((3728, 3755), 'fastapi.Query', 'Query', ([], {'default': '(100)', 'lte': '(100)'}), '(default=100, lte=100)\n', (3733, 3755), False, 'from fastapi import Depends, FastAPI, HTTPException, Query\n'), ((3956, 3976), 'fastapi.Depends', 'Depends', (['get_session'], {}), '(get_session)\n', (3963, 3976), False, 'from fastapi import Depends, FastAPI, HTTPException, Query\n'), ((4225, 4245), 'fastapi.Depends', 'Depends', (['get_session'], {}), '(get_session)\n', (4232, 4245), False, 'from fastapi import Depends, FastAPI, HTTPException, Query\n'), ((4711, 4731), 'fastapi.Depends', 'Depends', (['get_session'], {}), '(get_session)\n', (4718, 4731), False, 'from fastapi import Depends, FastAPI, HTTPException, Query\n'), ((1549, 1564), 'sqlmodel.Session', 'Session', (['engine'], {}), '(engine)\n', (1556, 1564), False, 'from sqlmodel import Field, Relationship, Session, SQLModel, create_engine, select\n'), ((2429, 2484), 'fastapi.HTTPException', 'HTTPException', ([], {'status_code': '(404)', 'detail': '"""Hero not found"""'}), "(status_code=404, detail='Hero not found')\n", (2442, 2484), False, 'from fastapi import Depends, FastAPI, HTTPException, Query\n'), ((2734, 2789), 'fastapi.HTTPException', 'HTTPException', ([], {'status_code': '(404)', 'detail': '"""Hero not found"""'}), "(status_code=404, detail='Hero not found')\n", (2747, 2789), False, 'from fastapi import Depends, FastAPI, HTTPException, Query\n'), ((3188, 3243), 'fastapi.HTTPException', 'HTTPException', ([], {'status_code': '(404)', 'detail': '"""Hero not found"""'}), "(status_code=404, detail='Hero not found')\n", (3201, 3243), False, 'from fastapi import Depends, FastAPI, HTTPException, Query\n'), ((4048, 4103), 'fastapi.HTTPException', 'HTTPException', ([], {'status_code': '(404)', 'detail': '"""Team not found"""'}), "(status_code=404, detail='Team not found')\n", (4061, 4103), False, 'from fastapi import Depends, FastAPI, HTTPException, Query\n'), ((4365, 4420), 'fastapi.HTTPException', 'HTTPException', ([], {'status_code': '(404)', 'detail': '"""Team not found"""'}), "(status_code=404, detail='Team not found')\n", (4378, 4420), False, 'from fastapi import Depends, FastAPI, HTTPException, Query\n'), ((4817, 4872), 'fastapi.HTTPException', 'HTTPException', ([], {'status_code': '(404)', 'detail': '"""Team not found"""'}), "(status_code=404, detail='Team not found')\n", (4830, 4872), False, 'from fastapi import Depends, FastAPI, HTTPException, Query\n'), ((2164, 2176), 'sqlmodel.select', 'select', (['Hero'], {}), '(Hero)\n', (2170, 2176), False, 'from sqlmodel import Field, Relationship, Session, SQLModel, create_engine, select\n'), ((3785, 3797), 'sqlmodel.select', 'select', (['Team'], {}), '(Team)\n', (3791, 3797), False, 'from sqlmodel import Field, Relationship, Session, SQLModel, create_engine, select\n')]
import os.path as op from sfepy.base.base import * from sfepy.base.conf import transform_variables, transform_fields from sfepy.base.testing import TestCommon variables = { 'u' : ('unknown field', 'f', 0), 'v' : ('test field', 'f', 'u'), } def in_dir(adir): return lambda x: op.join(adir, x) def do_interpolation(m2, m1, data, field_name): """Interpolate data from m1 to m2. """ from sfepy.fem import Domain, Field, Variables fields = { 'scalar_si' : ((1,1), 'Omega', 2), 'vector_si' : ((3,1), 'Omega', 2), 'scalar_tp' : ((1,1), 'Omega', 1), 'vector_tp' : ((3,1), 'Omega', 1), } d1 = Domain('d1', m1) omega1 = d1.create_region('Omega', 'all') f = fields[field_name] field1 = Field('f', nm.float64, f[0], d1.regions[f[1]], approx_order=f[2]) ff = {field1.name : field1} vv = Variables.from_conf(transform_variables(variables), ff) u1 = vv['u'] u1.set_from_mesh_vertices(data) d2 = Domain('d2', m2) omega2 = d2.create_region('Omega', 'all') field2 = Field('f', nm.float64, f[0], d2.regions[f[1]], approx_order=f[2]) ff2 = {field2.name : field2} vv2 = Variables.from_conf(transform_variables(variables), ff2) u2 = vv2['u'] # Performs interpolation, if other field differs from self.field # or, in particular, is defined on a different mesh. u2.set_from_other(u1, strategy='interpolation', close_limit=0.5) return u1, u2 class Test(TestCommon): @staticmethod def from_conf(conf, options): test = Test(conf=conf, options=options) return test def test_interpolation(self): from sfepy import data_dir from sfepy.fem import Mesh from sfepy.linalg import make_axis_rotation_matrix fname = in_dir(self.options.out_dir) meshes = { 'tp' : Mesh('original mesh', data_dir + '/meshes/3d/block.mesh'), 'si' : Mesh('original mesh', data_dir + '/meshes/3d/cylinder.mesh'), } datas = {} for key, mesh in meshes.iteritems(): bbox = mesh.get_bounding_box() nx = bbox[1,0] - bbox[0,0] centre = 0.5 * bbox.sum(axis=0) mesh.coors -= centre data = nm.sin(4.0 * nm.pi * mesh.coors[:,0:1] / nx) datas['scalar_' + key] = data data = nm.zeros_like(mesh.coors) data[:,0] = 0.05 * nx * nm.sin(4.0 * nm.pi * mesh.coors[:,0] / nx) data[:,2] = 0.05 * nx * nm.cos(4.0 * nm.pi * mesh.coors[:,0] / nx) datas['vector_' + key] = data for field_name in ['scalar_si', 'vector_si', 'scalar_tp', 'vector_tp']: m1 = meshes[field_name[-2:]] for ia, angle in enumerate(nm.linspace(0.0, nm.pi, 11)): self.report('%s: %d. angle: %f' % (field_name, ia, angle)) shift = [0.0, 0.0, 0.0] mtx = make_axis_rotation_matrix([0, 1, 0], angle) m2 = m1.copy('rotated mesh') m2.transform_coors(mtx) data = datas[field_name] u1, u2 = do_interpolation(m2, m1, data, field_name) if ia == 0: u1.save_as_mesh(fname('test_mesh_interp_%s_u1.vtk' % field_name)) u2.save_as_mesh(fname('test_mesh_interp_%s_u2.%03d.vtk' % (field_name, ia))) return True def test_interpolation_two_meshes(self): from sfepy import data_dir from sfepy.fem import Mesh, Domain, Field, Variables m1 = Mesh('source mesh', data_dir + '/meshes/3d/block.mesh') m2 = Mesh('target mesh', data_dir + '/meshes/3d/cube_medium_tetra.mesh') m2.coors *= 2.0 bbox = m1.get_bounding_box() dd = bbox[1,:] - bbox[0,:] data = nm.sin(4.0 * nm.pi * m1.coors[:,0:1] / dd[0]) \ * nm.cos(4.0 * nm.pi * m1.coors[:,1:2] / dd[1]) variables1 = { 'u' : ('unknown field', 'scalar_tp', 0), 'v' : ('test field', 'scalar_tp', 'u'), } variables2 = { 'u' : ('unknown field', 'scalar_si', 0), 'v' : ('test field', 'scalar_si', 'u'), } d1 = Domain('d1', m1) omega1 = d1.create_region('Omega', 'all') field1 = Field('scalar_tp', nm.float64, (1,1), omega1, approx_order=1) ff1 = {field1.name : field1} d2 = Domain('d2', m2) omega2 = d2.create_region('Omega', 'all') field2 = Field('scalar_si', nm.float64, (1,1), omega2, approx_order=0) ff2 = {field2.name : field2} vv1 = Variables.from_conf(transform_variables(variables1), ff1) u1 = vv1['u'] u1.set_from_mesh_vertices(data) vv2 = Variables.from_conf(transform_variables(variables2), ff2) u2 = vv2['u'] # Performs interpolation, if other field differs from self.field # or, in particular, is defined on a different mesh. u2.set_from_other(u1, strategy='interpolation', close_limit=0.1) fname = in_dir(self.options.out_dir) u1.save_as_mesh(fname('test_mesh_interp_block_scalar.vtk')) u2.save_as_mesh(fname('test_mesh_interp_cube_scalar.vtk')) return True
[ "sfepy.fem.Domain", "sfepy.base.conf.transform_variables", "sfepy.linalg.make_axis_rotation_matrix", "sfepy.fem.Mesh", "sfepy.fem.Field" ]
[((669, 685), 'sfepy.fem.Domain', 'Domain', (['"""d1"""', 'm1'], {}), "('d1', m1)\n", (675, 685), False, 'from sfepy.fem import Mesh, Domain, Field, Variables\n'), ((775, 840), 'sfepy.fem.Field', 'Field', (['"""f"""', 'nm.float64', 'f[0]', 'd1.regions[f[1]]'], {'approx_order': 'f[2]'}), "('f', nm.float64, f[0], d1.regions[f[1]], approx_order=f[2])\n", (780, 840), False, 'from sfepy.fem import Mesh, Domain, Field, Variables\n'), ((1002, 1018), 'sfepy.fem.Domain', 'Domain', (['"""d2"""', 'm2'], {}), "('d2', m2)\n", (1008, 1018), False, 'from sfepy.fem import Mesh, Domain, Field, Variables\n'), ((1079, 1144), 'sfepy.fem.Field', 'Field', (['"""f"""', 'nm.float64', 'f[0]', 'd2.regions[f[1]]'], {'approx_order': 'f[2]'}), "('f', nm.float64, f[0], d2.regions[f[1]], approx_order=f[2])\n", (1084, 1144), False, 'from sfepy.fem import Mesh, Domain, Field, Variables\n'), ((305, 321), 'os.path.join', 'op.join', (['adir', 'x'], {}), '(adir, x)\n', (312, 321), True, 'import os.path as op\n'), ((903, 933), 'sfepy.base.conf.transform_variables', 'transform_variables', (['variables'], {}), '(variables)\n', (922, 933), False, 'from sfepy.base.conf import transform_variables, transform_fields\n'), ((1209, 1239), 'sfepy.base.conf.transform_variables', 'transform_variables', (['variables'], {}), '(variables)\n', (1228, 1239), False, 'from sfepy.base.conf import transform_variables, transform_fields\n'), ((3657, 3712), 'sfepy.fem.Mesh', 'Mesh', (['"""source mesh"""', "(data_dir + '/meshes/3d/block.mesh')"], {}), "('source mesh', data_dir + '/meshes/3d/block.mesh')\n", (3661, 3712), False, 'from sfepy.fem import Mesh, Domain, Field, Variables\n'), ((3727, 3794), 'sfepy.fem.Mesh', 'Mesh', (['"""target mesh"""', "(data_dir + '/meshes/3d/cube_medium_tetra.mesh')"], {}), "('target mesh', data_dir + '/meshes/3d/cube_medium_tetra.mesh')\n", (3731, 3794), False, 'from sfepy.fem import Mesh, Domain, Field, Variables\n'), ((4340, 4356), 'sfepy.fem.Domain', 'Domain', (['"""d1"""', 'm1'], {}), "('d1', m1)\n", (4346, 4356), False, 'from sfepy.fem import Mesh, Domain, Field, Variables\n'), ((4424, 4486), 'sfepy.fem.Field', 'Field', (['"""scalar_tp"""', 'nm.float64', '(1, 1)', 'omega1'], {'approx_order': '(1)'}), "('scalar_tp', nm.float64, (1, 1), omega1, approx_order=1)\n", (4429, 4486), False, 'from sfepy.fem import Mesh, Domain, Field, Variables\n'), ((4537, 4553), 'sfepy.fem.Domain', 'Domain', (['"""d2"""', 'm2'], {}), "('d2', m2)\n", (4543, 4553), False, 'from sfepy.fem import Mesh, Domain, Field, Variables\n'), ((4621, 4683), 'sfepy.fem.Field', 'Field', (['"""scalar_si"""', 'nm.float64', '(1, 1)', 'omega2'], {'approx_order': '(0)'}), "('scalar_si', nm.float64, (1, 1), omega2, approx_order=0)\n", (4626, 4683), False, 'from sfepy.fem import Mesh, Domain, Field, Variables\n'), ((1875, 1932), 'sfepy.fem.Mesh', 'Mesh', (['"""original mesh"""', "(data_dir + '/meshes/3d/block.mesh')"], {}), "('original mesh', data_dir + '/meshes/3d/block.mesh')\n", (1879, 1932), False, 'from sfepy.fem import Mesh, Domain, Field, Variables\n'), ((1953, 2013), 'sfepy.fem.Mesh', 'Mesh', (['"""original mesh"""', "(data_dir + '/meshes/3d/cylinder.mesh')"], {}), "('original mesh', data_dir + '/meshes/3d/cylinder.mesh')\n", (1957, 2013), False, 'from sfepy.fem import Mesh, Domain, Field, Variables\n'), ((4755, 4786), 'sfepy.base.conf.transform_variables', 'transform_variables', (['variables1'], {}), '(variables1)\n', (4774, 4786), False, 'from sfepy.base.conf import transform_variables, transform_fields\n'), ((4890, 4921), 'sfepy.base.conf.transform_variables', 'transform_variables', (['variables2'], {}), '(variables2)\n', (4909, 4921), False, 'from sfepy.base.conf import transform_variables, transform_fields\n'), ((2944, 2987), 'sfepy.linalg.make_axis_rotation_matrix', 'make_axis_rotation_matrix', (['[0, 1, 0]', 'angle'], {}), '([0, 1, 0], angle)\n', (2969, 2987), False, 'from sfepy.linalg import make_axis_rotation_matrix\n')]
""" dayong.models ~~~~~~~~~~~~~ A model maps to a single database table. It contains fields and behaviors of the data stored in the database. """ from typing import Optional from sqlmodel import Field, SQLModel class Message(SQLModel): """Base model class for message table models.""" message_id: str class AnonMessage(Message, table=True): """Table model for anonymized guild messages.""" # pyright cannot recognize the type of SQLModel.__tablename__ # See: https://github.com/tiangolo/sqlmodel/issues/98 __tablename__ = "anon_messages" # type: ignore id: Optional[int] = Field(default=None, primary_key=True) user_id: str username: str nickname: str message: str
[ "sqlmodel.Field" ]
[((610, 647), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'primary_key': '(True)'}), '(default=None, primary_key=True)\n', (615, 647), False, 'from sqlmodel import Field, SQLModel\n')]
import typing as t if t.TYPE_CHECKING: from ..core.discussions import DB_Discussion from ..core.users import DB_User from datetime import datetime from sqlmodel import SQLModel, Field, Relationship class DB_TagUser(SQLModel, table=True): """ Represents a tag-to-user relationship in the database. """ __tablename__ = 'tag_user' user_id: t.Optional[int] = Field(default=None, primary_key=True, foreign_key='users.id') """The ID of the user.""" tag_id: t.Optional[int] = Field(default=None, primary_key=True, foreign_key='tags.id') """The ID of the tag.""" marked_as_read_at: t.Optional[datetime] """When the user marked the tag as read?""" is_hidden: bool = Field(default=False) """?""" class DB_Tag(SQLModel, table=True): """ Represents a tag in the database. """ __tablename__ = 'tags' id: t.Optional[int] = Field(default=None, primary_key=True) """The ID of the tag. This is handled by the database.""" name: str = Field(max_length=100) """The name of the tag.""" slug: str = Field(max_length=100) """The tag's slug (will be used in URL).""" description: t.Optional[t.Text] """The description of the tag.""" color: t.Optional[str] = Field(max_length=50) """The tag's color.""" background_path: t.Optional[str] = Field(max_length=100) """?""" background_mode: t.Optional[str] = Field(max_length=100) """?""" position: t.Optional[int] """The tag's position in the tag tree.""" parent_id: t.Optional[int] = Field(default=None, foreign_key='tags.id') """The ID of the parent tag.""" parent_tag: t.Optional['DB_Tag'] = Relationship(back_populates='children') """The tag's parent tag.""" default_sort: t.Optional[str] """The default sorting behaviour of the tag.""" is_restricted: bool = Field(default=False) """Whether or not the tag is restricted.""" is_hidden: bool = Field(default=False) """Whether or not the tag is hidden.""" discussion_count: int = Field(default=0) """How many discussions are tagged with this tag?""" last_posted_at: t.Optional[datetime] """The datetime when was the last discussion posted in this tag.""" last_posted_discussion_id: t.Optional[int] = Field(default=None, foreign_key='discussions.id') """The ID of the last posted discussion in this tag.""" last_posted_discussion: t.Optional['DB_Discussion'] = Relationship(back_populates='tags') """The last posted discussion in this tag.""" last_posted_user_id: t.Optional[int] = Field(default=None, foreign_key='users.id') """The ID of the user that last posted in this tag.""" last_posted_user: t.Optional['DB_User'] = Relationship(back_populates='tags') """The user that last posted in this tag.""" icon: t.Optional[str] = Field(max_length=100) """The [FontAwesome](https://fontawesome.com/v5.15/icons?d=gallery&m=free) icon for the tag.""" users: t.List['DB_User'] = Relationship(back_populates='tags', link_model=DB_TagUser) """Users that have relationship with this tag."""
[ "sqlmodel.Field", "sqlmodel.Relationship" ]
[((394, 455), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'primary_key': '(True)', 'foreign_key': '"""users.id"""'}), "(default=None, primary_key=True, foreign_key='users.id')\n", (399, 455), False, 'from sqlmodel import SQLModel, Field, Relationship\n'), ((516, 576), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'primary_key': '(True)', 'foreign_key': '"""tags.id"""'}), "(default=None, primary_key=True, foreign_key='tags.id')\n", (521, 576), False, 'from sqlmodel import SQLModel, Field, Relationship\n'), ((721, 741), 'sqlmodel.Field', 'Field', ([], {'default': '(False)'}), '(default=False)\n', (726, 741), False, 'from sqlmodel import SQLModel, Field, Relationship\n'), ((905, 942), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'primary_key': '(True)'}), '(default=None, primary_key=True)\n', (910, 942), False, 'from sqlmodel import SQLModel, Field, Relationship\n'), ((1022, 1043), 'sqlmodel.Field', 'Field', ([], {'max_length': '(100)'}), '(max_length=100)\n', (1027, 1043), False, 'from sqlmodel import SQLModel, Field, Relationship\n'), ((1091, 1112), 'sqlmodel.Field', 'Field', ([], {'max_length': '(100)'}), '(max_length=100)\n', (1096, 1112), False, 'from sqlmodel import SQLModel, Field, Relationship\n'), ((1265, 1285), 'sqlmodel.Field', 'Field', ([], {'max_length': '(50)'}), '(max_length=50)\n', (1270, 1285), False, 'from sqlmodel import SQLModel, Field, Relationship\n'), ((1353, 1374), 'sqlmodel.Field', 'Field', ([], {'max_length': '(100)'}), '(max_length=100)\n', (1358, 1374), False, 'from sqlmodel import SQLModel, Field, Relationship\n'), ((1426, 1447), 'sqlmodel.Field', 'Field', ([], {'max_length': '(100)'}), '(max_length=100)\n', (1431, 1447), False, 'from sqlmodel import SQLModel, Field, Relationship\n'), ((1570, 1612), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'foreign_key': '"""tags.id"""'}), "(default=None, foreign_key='tags.id')\n", (1575, 1612), False, 'from sqlmodel import SQLModel, Field, Relationship\n'), ((1688, 1727), 'sqlmodel.Relationship', 'Relationship', ([], {'back_populates': '"""children"""'}), "(back_populates='children')\n", (1700, 1727), False, 'from sqlmodel import SQLModel, Field, Relationship\n'), ((1874, 1894), 'sqlmodel.Field', 'Field', ([], {'default': '(False)'}), '(default=False)\n', (1879, 1894), False, 'from sqlmodel import SQLModel, Field, Relationship\n'), ((1965, 1985), 'sqlmodel.Field', 'Field', ([], {'default': '(False)'}), '(default=False)\n', (1970, 1985), False, 'from sqlmodel import SQLModel, Field, Relationship\n'), ((2059, 2075), 'sqlmodel.Field', 'Field', ([], {'default': '(0)'}), '(default=0)\n', (2064, 2075), False, 'from sqlmodel import SQLModel, Field, Relationship\n'), ((2296, 2345), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'foreign_key': '"""discussions.id"""'}), "(default=None, foreign_key='discussions.id')\n", (2301, 2345), False, 'from sqlmodel import SQLModel, Field, Relationship\n'), ((2464, 2499), 'sqlmodel.Relationship', 'Relationship', ([], {'back_populates': '"""tags"""'}), "(back_populates='tags')\n", (2476, 2499), False, 'from sqlmodel import SQLModel, Field, Relationship\n'), ((2593, 2636), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'foreign_key': '"""users.id"""'}), "(default=None, foreign_key='users.id')\n", (2598, 2636), False, 'from sqlmodel import SQLModel, Field, Relationship\n'), ((2742, 2777), 'sqlmodel.Relationship', 'Relationship', ([], {'back_populates': '"""tags"""'}), "(back_populates='tags')\n", (2754, 2777), False, 'from sqlmodel import SQLModel, Field, Relationship\n'), ((2856, 2877), 'sqlmodel.Field', 'Field', ([], {'max_length': '(100)'}), '(max_length=100)\n', (2861, 2877), False, 'from sqlmodel import SQLModel, Field, Relationship\n'), ((3010, 3068), 'sqlmodel.Relationship', 'Relationship', ([], {'back_populates': '"""tags"""', 'link_model': 'DB_TagUser'}), "(back_populates='tags', link_model=DB_TagUser)\n", (3022, 3068), False, 'from sqlmodel import SQLModel, Field, Relationship\n')]
from typing import Optional, List from pydantic import BaseModel, validator, ValidationError from sqlmodel import SQLModel, Field class User(SQLModel, table=True): id: Optional[int] = Field(default=None, primary_key=True) username: str = Field(nullable=False, sa_column_kwargs={"unique": True}) superuser: bool = False password: str # Serializers class ValidatePassword(BaseModel): @validator('confirm_password', allow_reuse=True, check_fields=False) def validate_password(cls, v, values, **kwargs): if v != values['password']: raise ValueError("Passwords don't match") return v class UserIn(ValidatePassword): username: str superuser: bool = False password: str confirm_password: str class UserPatch(ValidatePassword): superuser: Optional[bool] password: Optional[str] confirm_password: Optional[str] class UserOut(BaseModel): username: str superuser: bool UserOutList = List[UserOut]
[ "sqlmodel.Field" ]
[((190, 227), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'primary_key': '(True)'}), '(default=None, primary_key=True)\n', (195, 227), False, 'from sqlmodel import SQLModel, Field\n'), ((248, 304), 'sqlmodel.Field', 'Field', ([], {'nullable': '(False)', 'sa_column_kwargs': "{'unique': True}"}), "(nullable=False, sa_column_kwargs={'unique': True})\n", (253, 304), False, 'from sqlmodel import SQLModel, Field\n'), ((408, 475), 'pydantic.validator', 'validator', (['"""confirm_password"""'], {'allow_reuse': '(True)', 'check_fields': '(False)'}), "('confirm_password', allow_reuse=True, check_fields=False)\n", (417, 475), False, 'from pydantic import BaseModel, validator, ValidationError\n')]
from pathlib import Path from typing import List import nonebot import pytest from nonebug import App from .utils import make_fake_event, make_fake_message @pytest.mark.asyncio async def test_db(app: App): """测试数据库""" from sqlmodel import select from nonebot_plugin_datastore.db import create_session, init_db from .example import Example, test nonebot.load_plugin("tests.example") await init_db() async with create_session() as session: session.add(Example(message="test")) await session.commit() async with create_session() as session: statement = select(Example) examples: List[Example] = (await session.exec(statement)).all() # type: ignore assert len(examples) == 1 assert examples[0].message == "test" message = make_fake_message()("/test") event = make_fake_event(_message=message)() async with app.test_matcher(test) as ctx: bot = ctx.create_bot() ctx.receive_event(bot, event) async with create_session() as session: statement = select(Example) examples: List[Example] = (await session.exec(statement)).all() # type: ignore assert len(examples) == 2 assert examples[1].message == "matcher" @pytest.mark.asyncio async def test_disable_db(nonebug_init: None, tmp_path: Path): """测试禁用数据库""" import nonebot config = nonebot.get_driver().config # 插件数据目录 config.datastore_cache_dir = tmp_path / "cache" config.datastore_config_dir = tmp_path / "config" config.datastore_data_dir = tmp_path / "data" # 禁用数据库 config.datastore_enable_database = False # 加载插件 nonebot.load_plugin("nonebot_plugin_datastore") from nonebot_plugin_datastore import create_session with pytest.raises(ValueError) as e: async with create_session() as session: pass assert str(e.value) == "数据库未启用" @pytest.mark.asyncio async def test_default_db_url(nonebug_init: None): """测试默认数据库地址""" import nonebot # 加载插件 nonebot.load_plugin("nonebot_plugin_datastore") from nonebot_plugin_datastore.config import BASE_DATA_DIR, plugin_config assert ( plugin_config.datastore_database_url == f"sqlite+aiosqlite:///{BASE_DATA_DIR / 'data.db'}" )
[ "sqlmodel.select" ]
[((372, 408), 'nonebot.load_plugin', 'nonebot.load_plugin', (['"""tests.example"""'], {}), "('tests.example')\n", (391, 408), False, 'import nonebot\n'), ((1667, 1714), 'nonebot.load_plugin', 'nonebot.load_plugin', (['"""nonebot_plugin_datastore"""'], {}), "('nonebot_plugin_datastore')\n", (1686, 1714), False, 'import nonebot\n'), ((2045, 2092), 'nonebot.load_plugin', 'nonebot.load_plugin', (['"""nonebot_plugin_datastore"""'], {}), "('nonebot_plugin_datastore')\n", (2064, 2092), False, 'import nonebot\n'), ((420, 429), 'nonebot_plugin_datastore.db.init_db', 'init_db', ([], {}), '()\n', (427, 429), False, 'from nonebot_plugin_datastore.db import create_session, init_db\n'), ((446, 462), 'nonebot_plugin_datastore.create_session', 'create_session', ([], {}), '()\n', (460, 462), False, 'from nonebot_plugin_datastore import create_session\n'), ((567, 583), 'nonebot_plugin_datastore.create_session', 'create_session', ([], {}), '()\n', (581, 583), False, 'from nonebot_plugin_datastore import create_session\n'), ((616, 631), 'sqlmodel.select', 'select', (['Example'], {}), '(Example)\n', (622, 631), False, 'from sqlmodel import select\n'), ((1024, 1040), 'nonebot_plugin_datastore.create_session', 'create_session', ([], {}), '()\n', (1038, 1040), False, 'from nonebot_plugin_datastore import create_session\n'), ((1073, 1088), 'sqlmodel.select', 'select', (['Example'], {}), '(Example)\n', (1079, 1088), False, 'from sqlmodel import select\n'), ((1396, 1416), 'nonebot.get_driver', 'nonebot.get_driver', ([], {}), '()\n', (1414, 1416), False, 'import nonebot\n'), ((1782, 1807), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (1795, 1807), False, 'import pytest\n'), ((1833, 1849), 'nonebot_plugin_datastore.create_session', 'create_session', ([], {}), '()\n', (1847, 1849), False, 'from nonebot_plugin_datastore import create_session\n')]
from cryptography.hazmat.primitives import serialization from cryptography.hazmat.primitives.asymmetric import rsa from cryptography.hazmat.primitives.asymmetric.rsa import RSAPrivateKey from typing import List, Optional from sqlmodel import SQLModel, Field, Relationship, VARCHAR, Column from pydantic import EmailStr class UserGroup(SQLModel, table=True): id: int = Field(default=None, primary_key=True) name: str users: List["User"] = Relationship(back_populates="group") class User(SQLModel, table=True): id: int = Field(default=None, primary_key=True) username: str = Field(sa_column=Column('username', VARCHAR, unique=True)) email: EmailStr password: str first_name: str last_name: str public_key: str private_key: str profile_pic: Optional[str] is_staff: bool = Field(default=False) group_id: Optional[int] = Field(foreign_key="usergroup.id") group: Optional[UserGroup] = Relationship(back_populates="users") class RemoteUser(SQLModel, table=True): id: int = Field(default=None, primary_key=True) remote_id: str = Field(sa_column=Column('username', VARCHAR, unique=True)) inbox: str public_key: Optional[str] def generate_new_pk() -> RSAPrivateKey: return rsa.generate_private_key(public_exponent=65537, key_size=4096) def load_pk(pkstr: str) -> RSAPrivateKey: loaded_pk = serialization.load_pem_private_key(pkstr, password=None) def create_user(username: str, password: str, email: str, first_name: str, last_name: str, profile_pic: Optional[str]) -> User: user = User( username=username, password=password, email=email, first_name=first_name, last_name=last_name, profile_pic=profile_pic, ) pk = generate_new_pk() pub_key = pk.public_key() user.public_key = pub_key.public_bytes( encoding=serialization.Encoding.PEM, format=serialization.PublicFormat.SubjectPublicKeyInfo, ).decode('utf-8') user.private_key = pk.private_bytes( encoding=serialization.Encoding.PEM, format=serialization.PrivateFormat.PKCS8, encryption_algorithm=serialization.NoEncryption() ).decode('utf-8') return user
[ "sqlmodel.Relationship", "sqlmodel.Field", "sqlmodel.Column" ]
[((374, 411), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'primary_key': '(True)'}), '(default=None, primary_key=True)\n', (379, 411), False, 'from sqlmodel import SQLModel, Field, Relationship, VARCHAR, Column\n'), ((453, 489), 'sqlmodel.Relationship', 'Relationship', ([], {'back_populates': '"""group"""'}), "(back_populates='group')\n", (465, 489), False, 'from sqlmodel import SQLModel, Field, Relationship, VARCHAR, Column\n'), ((540, 577), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'primary_key': '(True)'}), '(default=None, primary_key=True)\n', (545, 577), False, 'from sqlmodel import SQLModel, Field, Relationship, VARCHAR, Column\n'), ((826, 846), 'sqlmodel.Field', 'Field', ([], {'default': '(False)'}), '(default=False)\n', (831, 846), False, 'from sqlmodel import SQLModel, Field, Relationship, VARCHAR, Column\n'), ((878, 911), 'sqlmodel.Field', 'Field', ([], {'foreign_key': '"""usergroup.id"""'}), "(foreign_key='usergroup.id')\n", (883, 911), False, 'from sqlmodel import SQLModel, Field, Relationship, VARCHAR, Column\n'), ((945, 981), 'sqlmodel.Relationship', 'Relationship', ([], {'back_populates': '"""users"""'}), "(back_populates='users')\n", (957, 981), False, 'from sqlmodel import SQLModel, Field, Relationship, VARCHAR, Column\n'), ((1038, 1075), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'primary_key': '(True)'}), '(default=None, primary_key=True)\n', (1043, 1075), False, 'from sqlmodel import SQLModel, Field, Relationship, VARCHAR, Column\n'), ((1253, 1315), 'cryptography.hazmat.primitives.asymmetric.rsa.generate_private_key', 'rsa.generate_private_key', ([], {'public_exponent': '(65537)', 'key_size': '(4096)'}), '(public_exponent=65537, key_size=4096)\n', (1277, 1315), False, 'from cryptography.hazmat.primitives.asymmetric import rsa\n'), ((1376, 1432), 'cryptography.hazmat.primitives.serialization.load_pem_private_key', 'serialization.load_pem_private_key', (['pkstr'], {'password': 'None'}), '(pkstr, password=None)\n', (1410, 1432), False, 'from cryptography.hazmat.primitives import serialization\n'), ((614, 654), 'sqlmodel.Column', 'Column', (['"""username"""', 'VARCHAR'], {'unique': '(True)'}), "('username', VARCHAR, unique=True)\n", (620, 654), False, 'from sqlmodel import SQLModel, Field, Relationship, VARCHAR, Column\n'), ((1113, 1153), 'sqlmodel.Column', 'Column', (['"""username"""', 'VARCHAR'], {'unique': '(True)'}), "('username', VARCHAR, unique=True)\n", (1119, 1153), False, 'from sqlmodel import SQLModel, Field, Relationship, VARCHAR, Column\n'), ((2154, 2182), 'cryptography.hazmat.primitives.serialization.NoEncryption', 'serialization.NoEncryption', ([], {}), '()\n', (2180, 2182), False, 'from cryptography.hazmat.primitives import serialization\n')]
from typing import List, Union from fastapi import APIRouter, Request from fastapi.exceptions import HTTPException from sqlmodel import Session, or_, select from ..db import ActiveSession from ..security import ( AdminUser, AuthenticatedUser, HashedPassword, User, UserCreate, UserPasswordPatch, UserResponse, get_current_user, ) router = APIRouter() @router.get("/", response_model=List[UserResponse], dependencies=[AdminUser]) async def list_users(*, session: Session = ActiveSession): users = session.exec(select(User)).all() return users @router.post("/", response_model=UserResponse, dependencies=[AdminUser]) async def create_user(*, session: Session = ActiveSession, user: UserCreate): db_user = User.from_orm(user) session.add(db_user) session.commit() session.refresh(db_user) return db_user @router.patch( "/{user_id}/password/", response_model=UserResponse, dependencies=[AuthenticatedUser], ) async def update_user_password( *, user_id: int, session: Session = ActiveSession, request: Request, patch: UserPasswordPatch, ): # Query the content user = session.get(User, user_id) if not user: raise HTTPException(status_code=404, detail="User not found") # Check the user can update the password current_user: User = get_current_user(request=request) if user.id != current_user.id and not current_user.superuser: raise HTTPException(status_code=403, detail="You can't update this user password") if not patch.password == patch.password_confirm: raise HTTPException(status_code=400, detail="Passwords don't match") # Update the password user.password = HashedPassword(patch.password) # Commit the session session.commit() session.refresh(user) return user @router.get("/me/", response_model=UserResponse) async def my_profile(current_user: User = AuthenticatedUser): return current_user @router.get( "/{user_id_or_username}/", response_model=UserResponse, dependencies=[AuthenticatedUser], ) async def query_user(*, session: Session = ActiveSession, user_id_or_username: Union[str, int]): user = session.query(User).where( or_( User.id == user_id_or_username, User.username == user_id_or_username, ) ) if not user: raise HTTPException(status_code=404, detail="User not found") return user.first() @router.delete("/{user_id}/", dependencies=[AdminUser]) def delete_user(*, session: Session = ActiveSession, request: Request, user_id: int): user = session.get(User, user_id) if not user: raise HTTPException(status_code=404, detail="Content not found") # Check the user is not deleting himself current_user = get_current_user(request=request) if user.id == current_user.id: raise HTTPException(status_code=403, detail="You can't delete yourself") session.delete(user) session.commit() return {"ok": True}
[ "sqlmodel.select", "sqlmodel.or_" ]
[((374, 385), 'fastapi.APIRouter', 'APIRouter', ([], {}), '()\n', (383, 385), False, 'from fastapi import APIRouter, Request\n'), ((1229, 1284), 'fastapi.exceptions.HTTPException', 'HTTPException', ([], {'status_code': '(404)', 'detail': '"""User not found"""'}), "(status_code=404, detail='User not found')\n", (1242, 1284), False, 'from fastapi.exceptions import HTTPException\n'), ((1470, 1546), 'fastapi.exceptions.HTTPException', 'HTTPException', ([], {'status_code': '(403)', 'detail': '"""You can\'t update this user password"""'}), '(status_code=403, detail="You can\'t update this user password")\n', (1483, 1546), False, 'from fastapi.exceptions import HTTPException\n'), ((1615, 1677), 'fastapi.exceptions.HTTPException', 'HTTPException', ([], {'status_code': '(400)', 'detail': '"""Passwords don\'t match"""'}), '(status_code=400, detail="Passwords don\'t match")\n', (1628, 1677), False, 'from fastapi.exceptions import HTTPException\n'), ((2244, 2317), 'sqlmodel.or_', 'or_', (['(User.id == user_id_or_username)', '(User.username == user_id_or_username)'], {}), '(User.id == user_id_or_username, User.username == user_id_or_username)\n', (2247, 2317), False, 'from sqlmodel import Session, or_, select\n'), ((2391, 2446), 'fastapi.exceptions.HTTPException', 'HTTPException', ([], {'status_code': '(404)', 'detail': '"""User not found"""'}), "(status_code=404, detail='User not found')\n", (2404, 2446), False, 'from fastapi.exceptions import HTTPException\n'), ((2684, 2742), 'fastapi.exceptions.HTTPException', 'HTTPException', ([], {'status_code': '(404)', 'detail': '"""Content not found"""'}), "(status_code=404, detail='Content not found')\n", (2697, 2742), False, 'from fastapi.exceptions import HTTPException\n'), ((2890, 2956), 'fastapi.exceptions.HTTPException', 'HTTPException', ([], {'status_code': '(403)', 'detail': '"""You can\'t delete yourself"""'}), '(status_code=403, detail="You can\'t delete yourself")\n', (2903, 2956), False, 'from fastapi.exceptions import HTTPException\n'), ((550, 562), 'sqlmodel.select', 'select', (['User'], {}), '(User)\n', (556, 562), False, 'from sqlmodel import Session, or_, select\n')]
from fastapi import FastAPI from api import router from settings.datastore import dbengine from sqlmodel import SQLModel app = FastAPI() #include app api routers router.add_routers(app) SQLModel.metadata.create_all(dbengine) @app.get("/") def main(): return { "message": "Welcome to pilot" }
[ "sqlmodel.SQLModel.metadata.create_all" ]
[((127, 136), 'fastapi.FastAPI', 'FastAPI', ([], {}), '()\n', (134, 136), False, 'from fastapi import FastAPI\n'), ((162, 185), 'api.router.add_routers', 'router.add_routers', (['app'], {}), '(app)\n', (180, 185), False, 'from api import router\n'), ((186, 224), 'sqlmodel.SQLModel.metadata.create_all', 'SQLModel.metadata.create_all', (['dbengine'], {}), '(dbengine)\n', (214, 224), False, 'from sqlmodel import SQLModel\n')]
# MegFlow is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2019-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #!/usr/bin/env python # coding=utf-8 from math import log from loguru import logger import megengine as mge import cv2 import megengine.functional as F import numpy as np from .model import Model if __name__ == "__main__": import sys if len(sys.argv) < 5: print("usage: python3 -m reid_alignedreid/demo reid.pkl positive1.png positive2.png negtive.jpg") sys.exit(0) model = Model() sd = mge.load(sys.argv[1]) model.load_state_dict(sd, strict=False) model.eval() feat1 = model.inference(cv2.imread(sys.argv[2])) logger.info(f'{feat1}') feat2 = model.inference(cv2.imread(sys.argv[3])) logger.info(f'{feat2}') feat3 = model.inference(cv2.imread(sys.argv[4])) logger.info(f'{feat3}') positive = np.linalg.norm(feat1-feat2) print(f'distance_positive: {positive}') negtive = np.linalg.norm(feat3-feat2) print(f'distance_negtive: {negtive}')
[ "megengine.load" ]
[((778, 799), 'megengine.load', 'mge.load', (['sys.argv[1]'], {}), '(sys.argv[1])\n', (786, 799), True, 'import megengine as mge\n'), ((918, 941), 'loguru.logger.info', 'logger.info', (['f"""{feat1}"""'], {}), "(f'{feat1}')\n", (929, 941), False, 'from loguru import logger\n'), ((999, 1022), 'loguru.logger.info', 'logger.info', (['f"""{feat2}"""'], {}), "(f'{feat2}')\n", (1010, 1022), False, 'from loguru import logger\n'), ((1081, 1104), 'loguru.logger.info', 'logger.info', (['f"""{feat3}"""'], {}), "(f'{feat3}')\n", (1092, 1104), False, 'from loguru import logger\n'), ((1121, 1150), 'numpy.linalg.norm', 'np.linalg.norm', (['(feat1 - feat2)'], {}), '(feat1 - feat2)\n', (1135, 1150), True, 'import numpy as np\n'), ((1208, 1237), 'numpy.linalg.norm', 'np.linalg.norm', (['(feat3 - feat2)'], {}), '(feat3 - feat2)\n', (1222, 1237), True, 'import numpy as np\n'), ((737, 748), 'sys.exit', 'sys.exit', (['(0)'], {}), '(0)\n', (745, 748), False, 'import sys\n'), ((889, 912), 'cv2.imread', 'cv2.imread', (['sys.argv[2]'], {}), '(sys.argv[2])\n', (899, 912), False, 'import cv2\n'), ((970, 993), 'cv2.imread', 'cv2.imread', (['sys.argv[3]'], {}), '(sys.argv[3])\n', (980, 993), False, 'import cv2\n'), ((1052, 1075), 'cv2.imread', 'cv2.imread', (['sys.argv[4]'], {}), '(sys.argv[4])\n', (1062, 1075), False, 'import cv2\n')]
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import itertools import platform from functools import partial import numpy as np import pytest from utils import opr_test import megengine.amp as amp import megengine.config as config import megengine.core.ops.builtin as builtin import megengine.core.tensor.dtype as dtype import megengine.functional as F import megengine.jit as jit from megengine import Parameter, Tensor, is_cuda_available, tensor from megengine.core._trace_option import use_symbolic_shape from megengine.core.autodiff.grad import Grad from megengine.core.tensor.utils import make_shape_tuple from megengine.device import get_device_count from megengine.module import LayerNorm def test_where(): maskv0 = np.array([[1, 0], [0, 1]], dtype=np.bool_) xv0 = np.array([[1, np.inf], [np.nan, 4]], dtype=np.float32) yv0 = np.array([[5, 6], [7, 8]], dtype=np.float32) maskv1 = np.array([[1, 0, 1], [1, 0, 0], [1, 1, 0]], dtype=np.bool_) xv1 = np.array([[1, np.inf, 2], [0, np.nan, 4], [1, 5, 7]], dtype=np.float32) yv1 = np.array([[5, 6, 9], [2, 7, 8], [2, 1, 9]], dtype=np.float32) cases = [ {"input": [maskv0, xv0, yv0]}, {"input": [maskv1, xv1, yv1]}, ] opr_test(cases, F.where, ref_fn=np.where, test_trace=False) maskv2 = np.array([1, 1, 1], dtype=np.bool_) xv2 = np.array([1, 3, 2], dtype=np.float32) yv2 = np.array([5, 6, 9], dtype=np.float32) maskv3 = np.array([0, 0, 0], dtype=np.bool_) xv3 = np.array([1, 3, 2], dtype=np.float32) yv3 = np.array([5, 6, 9], dtype=np.float32) cases = [ {"input": [maskv2, xv2, yv2]}, {"input": [maskv3, xv3, yv3]}, ] opr_test(cases, F.where, ref_fn=np.where, test_trace=False) def test_dropout(): from megengine.autodiff import GradManager from megengine.core._imperative_rt.ops import set_global_rng_seed def test_dropout_with_shape(shape, rate): data = tensor(np.ones(shape, dtype=np.float32)) gm = GradManager().attach([data]) with gm: out = F.nn.dropout(data, rate, training=True) gm.backward(out, tensor(np.ones(shape, dtype=np.float32))) assert not out.numpy().all() np.testing.assert_allclose(out.numpy(), data.grad.numpy(), 1e-7, 1e-7) def test_multiple_dropout(shape, rate): data = tensor(np.ones(shape, dtype=np.float32)) gm = GradManager().attach([data]) with gm: out1 = F.nn.dropout(data, rate, training=True) out2 = F.nn.dropout(out1, rate, training=True) out3 = F.nn.dropout(out2, rate, training=True) gm.backward(out3, tensor(np.ones(shape, dtype=np.float32))) np.testing.assert_allclose(out3.numpy(), data.grad.numpy(), 1e-7, 1e-7) def test_dropout_seed(shape, rate): data = tensor(np.random.randn(*shape), dtype="float32") set_global_rng_seed(111) out1 = F.nn.dropout(data, rate, training=True) out2 = F.nn.dropout(data, rate, training=True) assert not (out1.numpy() == out2.numpy()).all() set_global_rng_seed(111) out3 = F.nn.dropout(data, rate, training=True) assert (out1.numpy() == out3.numpy()).all() set_global_rng_seed(222) out4 = F.nn.dropout(data, rate, training=True) assert not (out1.numpy() == out4.numpy()).all() test_dropout_with_shape([13, 17, 63, 21], 0.4) test_dropout_with_shape([16, 32, 64], 0.3) test_multiple_dropout([1024], 0.2) test_dropout_seed([16, 32], 0.2) def test_matinv(): shape1 = (5, 5) shape2 = (3, 9, 9) data1 = np.random.random(shape1).astype("float32") data2 = np.random.random(shape2).astype("float32") # make matrix diagonally dominant for numerical stability data1 += (np.eye(shape1[0]) * shape1[0]).astype("float32") data2 += np.broadcast_to((np.eye(shape2[1]) * shape2[1]).astype("float32"), shape2) cases = [ {"input": data1}, {"input": data2}, ] opr_test( cases, F.matinv, compare_fn=lambda x, y: np.testing.assert_allclose(x.numpy(), y, rtol=1e-4), ref_fn=np.linalg.inv, ) def test_matmul(): shape1 = 3 shape2 = 3 shape3 = (3, 5) shape4 = (5, 6) data1 = np.random.random(shape1).astype("float32") data2 = np.random.random(shape2).astype("float32") data3 = np.random.random(shape3).astype("float32") data4 = np.random.random(shape4).astype("float32") cases = [ {"input": [data1, data2]}, {"input": [data2, data3]}, {"input": [data3, data4]}, ] opr_test(cases, F.matmul, ref_fn=np.matmul) batch_size = 10 shape1 = (2,) shape2 = (batch_size, 2, 3) shape3 = (batch_size, 3, 4) shape4 = (batch_size, 10, 4, 2) shape5 = (batch_size, 10, 2, 4) data1 = np.random.random(shape1).astype("float32") data2 = np.random.random(shape2).astype("float32") data3 = np.random.random(shape3).astype("float32") data4 = np.random.random(shape4).astype("float32") data5 = np.random.random(shape5).astype("float32") cases = [ {"input": [data1, data2]}, {"input": [data2, data3]}, {"input": [data3, data4]}, {"input": [data4, data5]}, ] opr_test(cases, F.matmul, ref_fn=np.matmul) opr_test( [{"input": [data1, data4]}], F.matmul, ref_fn=lambda x, y: np.matmul(x, y.transpose(0, 1, 3, 2)), transpose_b=True, ) opr_test( [{"input": [data3, data2]}], F.matmul, ref_fn=lambda x, y: np.matmul(x.transpose(0, 2, 1), y.transpose(0, 2, 1)), transpose_a=True, transpose_b=True, ) @pytest.mark.parametrize( "shape_a, shape_b", [((0,), (0,)), ((10, 0), (0, 10)), ((3, 10, 0), (3, 0, 10)),], ) @pytest.mark.parametrize("is_symbolic", [None, True, False]) def test_matmul_empty_tensor(shape_a, shape_b, is_symbolic): def func(a, b): return F.matmul(a, b) if is_symbolic is not None: func = jit.trace(symbolic=is_symbolic)(func) a = tensor(np.random.randn(*shape_a)) b = tensor(np.random.randn(*shape_b)) for _ in range(3): out = func(a, b) assert np.all(out.numpy() == 0) if is_symbolic is None: break def test_interpolate(): def linear_interpolate(): inp = tensor(np.arange(1, 3, dtype=np.float32).reshape(1, 1, 2)) out = F.vision.interpolate(inp, scale_factor=2.0, mode="linear") out2 = F.vision.interpolate(inp, 4, mode="linear") np.testing.assert_allclose( out.numpy(), np.array([[[1.0, 1.25, 1.75, 2.0]]], dtype=np.float32) ) np.testing.assert_allclose( out2.numpy(), np.array([[[1.0, 1.25, 1.75, 2.0]]], dtype=np.float32) ) def many_batch_interpolate(): inp = tensor(np.arange(1, 9, dtype=np.float32).reshape(2, 1, 2, 2)) out = F.vision.interpolate(inp, [4, 4]) out2 = F.vision.interpolate(inp, scale_factor=2.0) np.testing.assert_allclose(out.numpy(), out2.numpy()) def assign_corner_interpolate(): inp = tensor(np.arange(1, 5, dtype=np.float32).reshape(1, 1, 2, 2)) out = F.vision.interpolate(inp, [4, 4], align_corners=True) out2 = F.vision.interpolate(inp, scale_factor=2.0, align_corners=True) np.testing.assert_allclose(out.numpy(), out2.numpy()) def error_shape_linear_interpolate(): inp = tensor(np.arange(1, 5, dtype=np.float32).reshape(1, 1, 2, 2)) with pytest.raises(ValueError): F.vision.interpolate(inp, scale_factor=2.0, mode="linear") def inappropriate_scale_linear_interpolate(): inp = tensor(np.arange(1, 3, dtype=np.float32).reshape(1, 1, 2)) with pytest.raises(ValueError): F.vision.interpolate(inp, scale_factor=[2.0, 3.0], mode="linear") linear_interpolate() many_batch_interpolate() assign_corner_interpolate() error_shape_linear_interpolate() inappropriate_scale_linear_interpolate() def _save_to(self, name="grad"): def callback(grad): setattr(self, name, grad) return callback def _gen_roi_inp(): inp_feat = np.random.randn(2, 32, 256, 256) rois = np.zeros((4, 5)) rois[:, 0] = [0, 0, 1, 1] rois[:, 1:3] = np.random.rand(4, 2) * 100 rois[:, 3:] = np.random.rand(4, 2) * 100 + 150 inp_feat = tensor(inp_feat) rois = tensor(rois) return inp_feat, rois def test_roi_align(): inp_feat, rois = _gen_roi_inp() grad = Grad().wrt(inp_feat, callback=_save_to(inp_feat)) output_shape = (7, 7) out_feat = F.vision.roi_align( inp_feat, rois, output_shape=output_shape, mode="average", spatial_scale=1.0 / 4, sample_points=2, aligned=True, ) assert make_shape_tuple(out_feat.shape) == ( rois.shape[0], inp_feat.shape[1], *output_shape, ) grad(out_feat, tensor(F.ones_like(out_feat))) assert make_shape_tuple(inp_feat.grad.shape) == make_shape_tuple(inp_feat.shape) def _gen_correlation(random=True, constant=1, image_shape=(2, 1, 160, 160)): if random: inp_feat1 = np.random.randn( image_shape[0], image_shape[1], image_shape[2], image_shape[3] ) inp_feat2 = np.random.randn( image_shape[0], image_shape[1], image_shape[2], image_shape[3] ) else: inp_feat1 = np.ones(image_shape) * constant inp_feat2 = np.ones(image_shape) * constant return tensor(inp_feat1), tensor(inp_feat2) def test_correlation(): ##test case 0 check the grad shape data1, data2 = _gen_correlation() grad = Grad().wrt(data1, callback=_save_to(data1)) out_feat = F.vision.correlation( data1, data2, kernel_size=5, max_displacement=4, stride1=2, stride2=2, pad_size=2, is_multiply=True, ) grad(out_feat, tensor(F.ones_like(out_feat))) assert make_shape_tuple(data1.grad.shape) == make_shape_tuple(data1.shape) ##test case 1 from https://github.com/NVIDIA/flownet2-pytorch/issues/194 data1, data2 = _gen_correlation(random=False, image_shape=(1, 1, 3, 3)) out_feat = F.vision.correlation( data1, data2, kernel_size=3, max_displacement=0, stride1=1, stride2=1, pad_size=0, is_multiply=True, ) assert abs(out_feat.sum() - 1) < 1e-9 ##test case 2 check same image subduction data1, data2 = _gen_correlation(random=False, image_shape=(1, 1, 3, 3)) out_feat = F.vision.correlation( data1, data2, kernel_size=3, max_displacement=0, stride1=1, stride2=1, pad_size=0, is_multiply=False, ) assert out_feat.sum() < 1e-9 ##test case 3 check same image subduction data1, data2 = _gen_correlation(random=False, image_shape=(1, 1, 3, 3)) out_feat = F.vision.correlation( data1, data2, kernel_size=3, max_displacement=0, stride1=1, stride2=1, pad_size=0, is_multiply=False, ) assert out_feat.sum() < 1e-9 ##test case 4 check correlation data1, _ = _gen_correlation( random=False, image_shape=(1, 1, 220, 220), constant=2.0 ) _, data2 = _gen_correlation( random=False, image_shape=(1, 1, 220, 220), constant=1.0 ) out_feat = F.vision.correlation( data1, data2, kernel_size=3, max_displacement=2, stride1=1, stride2=2, pad_size=0, is_multiply=False, ) assert abs(out_feat.mean() - 1) < 1e-9 def test_roi_pooling(): inp_feat, rois = _gen_roi_inp() grad = Grad().wrt(inp_feat, callback=_save_to(inp_feat)) output_shape = (7, 7) out_feat = F.vision.roi_pooling( inp_feat, rois, output_shape=output_shape, mode="max", scale=1.0 / 4, ) assert make_shape_tuple(out_feat.shape) == ( rois.shape[0], inp_feat.shape[1], *output_shape, ) grad(out_feat, tensor(F.ones_like(out_feat))) assert make_shape_tuple(inp_feat.grad.shape) == make_shape_tuple(inp_feat.shape) def test_adaptive_avg_pool2d(): inp = tensor(np.arange(0, 16, dtype=np.float32).reshape(1, 1, 4, 4)) oshp = (2, 2) grad = Grad().wrt(inp, callback=_save_to(inp)) outp = F.adaptive_avg_pool2d(inp, oshp,) assert make_shape_tuple(outp.shape) == (inp.shape[0], inp.shape[1], *oshp,) np.testing.assert_equal( outp.numpy(), np.array([[[[2.5, 4.5], [10.5, 12.5]]]], dtype=np.float32) ) grad(outp, tensor(F.ones_like(outp))) assert make_shape_tuple(inp.grad.shape) == make_shape_tuple(inp.shape) np.testing.assert_equal( inp.grad.numpy(), np.array( [ [ [ [0.25, 0.25, 0.25, 0.25], [0.25, 0.25, 0.25, 0.25], [0.25, 0.25, 0.25, 0.25], [0.25, 0.25, 0.25, 0.25], ] ] ], dtype=np.float32, ), ) def test_adaptive_max_pool2d(): inp = tensor(np.arange(0, 16, dtype=np.float32).reshape(1, 1, 4, 4)) oshp = (2, 2) grad = Grad().wrt(inp, callback=_save_to(inp)) outp = F.adaptive_max_pool2d(inp, oshp,) assert make_shape_tuple(outp.shape) == (inp.shape[0], inp.shape[1], *oshp,) np.testing.assert_equal( outp.numpy(), np.array([[[[5, 7], [13, 15]]]], dtype=np.float32) ) grad(outp, tensor(F.ones_like(outp))) assert make_shape_tuple(inp.grad.shape) == make_shape_tuple(inp.shape) np.testing.assert_equal( inp.grad.numpy(), np.array( [ [ [ [0.0, 0.0, 0.0, 0.0], [0.0, 1.0, 0.0, 1.0], [0.0, 0.0, 0.0, 0.0], [0.0, 1.0, 0.0, 1.0], ] ] ], dtype=np.float32, ), ) def test_one_hot(): def onehot_low_dimension(): inp = tensor(np.arange(1, 4, dtype=np.int32)) out = F.one_hot(inp, num_classes=4) np.testing.assert_allclose( out.numpy(), np.eye(4, dtype=np.int32)[np.arange(1, 4, dtype=np.int32)] ) def onehot_high_dimension(): arr = np.array( [[3, 2, 4, 4, 2, 4, 0, 4, 4, 1], [4, 1, 1, 3, 2, 2, 4, 2, 4, 3]], dtype=np.int32, ) inp = tensor(arr) out = F.one_hot(inp, 10) np.testing.assert_allclose(out.numpy(), np.eye(10, dtype=np.int32)[arr]) onehot_low_dimension() onehot_high_dimension() def test_interpolate_fastpath(): # check shape test_cases = [ [(1, 1, 10, 10), (5, 5)], [(1, 3, 10, 10), (20, 20)], [(10, 1, 10, 10), (1, 1)], # [(10, 10, 1, 1), (10, 10)], # FIXME, it causes random CI failure ] for inp_shape, target_shape in test_cases: x = tensor(np.random.randn(*inp_shape), dtype=np.float32) out = F.vision.interpolate(x, target_shape, mode="bilinear") assert out.shape[0] == x.shape[0] and out.shape[1] == x.shape[1] assert out.shape[2] == target_shape[0] and out.shape[3] == target_shape[1] # check value x = tensor(np.ones((3, 3, 10, 10)), dtype=np.float32) out = F.vision.interpolate(x, (15, 5), mode="bilinear") np.testing.assert_equal(out.numpy(), np.ones((3, 3, 15, 5)).astype(np.float32)) np_x = np.arange(32) x = tensor(np_x).astype(np.float32).reshape(1, 1, 32, 1) out = F.vision.interpolate(x, (1, 1), mode="bilinear") np.testing.assert_equal(out.item(), np_x.mean()) @pytest.mark.parametrize("dt", [np.float32, np.int8, np.uint8, np.float16]) def test_warp_perspective(dt): inp_shape = (1, 1, 4, 4) x = tensor(np.arange(16, dtype=dt).reshape(inp_shape)) M_shape = (1, 3, 3) # M defines a translation: dst(1, 1, h, w) = rst(1, 1, h+1, w+1) M = tensor( np.array( [[1.0, 0.0, 1.0], [0.0, 1.0, 1.0], [0.0, 0.0, 1.0]], dtype=np.float32 ).reshape(M_shape) ) outp = F.vision.warp_perspective(x, M, (2, 2)) np.testing.assert_equal(outp.numpy(), np.array([[[[5, 6], [9, 10]]]], dtype=dt)) @pytest.mark.parametrize("dt", [np.float32, np.int8, np.uint8, np.float16]) def test_warp_perspective_mat_idx(dt): inp_shape = (2, 1, 4, 4) x = tensor(np.arange(32, dtype=dt).reshape(inp_shape)) M_shape = (1, 3, 3) # M defines a translation: dst(1, 1, h, w) = rst(1, 1, h+1, w+1) M = tensor( np.array( [[1.0, 0.0, 1.0], [0.0, 1.0, 1.0], [0.0, 0.0, 1.0]], dtype=np.float32 ).reshape(M_shape) ) M = F.concat([M,] * 4, 0) outp = F.vision.warp_perspective(x, M, (2, 2), mat_idx=[0, 1, 1, 0]) np.testing.assert_equal( outp.numpy(), np.array( [ [[[5, 6], [9, 10]]], [[[21, 22], [25, 26]]], [[[21, 22], [25, 26]]], [[[5, 6], [9, 10]]], ], dtype=dt, ), ) def test_warp_affine(): inp_shape = (1, 3, 3, 3) x = tensor(np.arange(27, dtype=np.float32).reshape(inp_shape)) weightv = [[[1.26666667, 0.6, -83.33333333], [-0.33333333, 1, 66.66666667]]] outp = F.vision.warp_affine(x, tensor(weightv), (2, 2), border_mode="wrap") res = np.array( [ [ [[7.875, 8.875, 9.875], [8.90625, 9.90625, 10.90625]], [[18.75, 19.75, 20.75], [14.90625, 15.90625, 16.90625]], ] ], dtype=np.float32, ) if not is_cuda_available(): np.testing.assert_almost_equal(outp.numpy(), res, 5) def test_remap(): inp_shape = (1, 1, 4, 4) inp = tensor(np.arange(16, dtype=np.float32).reshape(inp_shape)) map_xy_shape = (1, 2, 2, 2) map_xy = tensor( np.array( [[[1.0, 0.0], [0.0, 1.0]], [[0.0, 1.0], [0.0, 1.0]]], dtype=np.float32 ).reshape(map_xy_shape) ) outp = F.vision.remap(inp, map_xy) np.testing.assert_equal( outp.numpy(), np.array([[[[1.0, 4.0], [4.0, 4.0]]]], dtype=np.float32) ) def test_binary_cross_entropy(): data1_shape = (2, 2) label1_shape = (2, 2) data2_shape = (2, 3) label2_shape = (2, 3) def sigmoid(x): return 1 / (1 + np.exp(-x)) def compare_fn(x, y): np.testing.assert_allclose(x.numpy(), y, atol=5e-4) np.random.seed(123) data1 = np.random.uniform(size=data1_shape).astype(np.float32) label1 = np.random.uniform(size=label1_shape).astype(np.float32) expect1 = np.array([0.6361], dtype=np.float32) np.random.seed(123) data2 = np.random.uniform(size=data2_shape).astype(np.float32) label2 = np.random.uniform(size=label2_shape).astype(np.float32) expect2 = np.array([0.6750], dtype=np.float32) cases = [ {"input": [data1, label1], "output": expect1,}, {"input": [data2, label2], "output": expect2,}, ] opr_test(cases, F.nn.binary_cross_entropy, compare_fn=compare_fn) cases = [ {"input": [sigmoid(data1), label1], "output": expect1,}, {"input": [sigmoid(data2), label2], "output": expect2,}, ] opr_test( cases, partial(F.nn.binary_cross_entropy, with_logits=False), compare_fn=compare_fn, ) def test_hinge_loss(): np.random.seed(123) # case with L1 norm cases = [] for shape in [(2, 2), (2, 3)]: data = np.random.uniform(size=shape).astype(np.float32) label = 2 * np.random.randint(0, 1, size=shape).astype(np.float32) - 1 expect = np.clip(0, np.inf, 1 - data * label).sum(axis=1).mean() cases.append({"input": [data, label], "output": expect}) opr_test(cases, F.nn.hinge_loss) # cases with L2 norm cases = [] for shape in [(2, 2), (2, 3)]: data = np.random.uniform(size=shape).astype(np.float32) label = 2 * np.random.randint(0, 1, size=shape).astype(np.float32) - 1 expect = ((np.clip(0, np.inf, 1 - data * label) ** 2).sum(axis=1)).mean() cases.append({"input": [data, label], "output": expect}) def hinge_loss_with_l2_norm(pred, label): return F.nn.hinge_loss(pred, label, "L2") opr_test(cases, hinge_loss_with_l2_norm) @pytest.mark.parametrize("is_symbolic", [None, False, True]) def test_nms(is_symbolic): def fn(inp, scores): return F.vision.nms( inp, scores=scores, iou_thresh=0.5, max_output=None if is_symbolic is None else 4, ) if is_symbolic is not None: fn = jit.trace(symbolic=is_symbolic)(fn) x = np.array( [ [0, 0, 100, 100], [10, 10, 100, 100], [50, 50, 100, 100], [100, 100, 150, 150], ], dtype=np.float32, ) inp = tensor(x) scores = tensor([0.5, 0.8, 0.9, 0.6], dtype=np.float32) for _ in range(3): result = fn(inp, scores=scores) np.testing.assert_equal(result.numpy(), np.array([2, 1, 3], dtype=np.int32)) x = np.array([], dtype=np.float32,).reshape(0, 4) inp = tensor(x) scores = tensor([], dtype=np.float32) for _ in range(3): result = fn(inp, scores=scores) np.testing.assert_equal(result.numpy(), np.array([], dtype=np.int32)) @pytest.mark.skipif( get_device_count("gpu") > 0, reason="cuda does not support nchw int8" ) def test_conv_bias(): inp_scale = 1.5 w_scale = 2.5 outp_scale = 1.5 inp_dtype = dtype.qint8(inp_scale) w_dtype = dtype.qint8(w_scale) b_dtype = dtype.qint32(inp_scale * w_scale) out_dtype = dtype.qint8(outp_scale) def run( N, IC, OC, IH, IW, KH, KW, PH, PW, SH, SW, has_bias=True, nonlinear_mode="identity", ): inp_v = np.random.normal(size=(N, IC, IH, IW)) w_v = np.random.normal(size=(OC, IC, KH, KW)) b_v = np.random.normal(size=(1, OC, 1, 1)) inp_scale = dtype.get_scale(inp_dtype) w_scale = dtype.get_scale(w_dtype) b_scale = dtype.get_scale(b_dtype) inpv = dtype.convert_to_qint8(inp_v * inp_scale, inp_dtype) wv = dtype.convert_to_qint8(w_v * w_scale, w_dtype) bv = dtype.convert_to_qint32(b_v * b_scale, b_dtype) inp_int8 = tensor(inpv, dtype=inp_dtype) w_int8 = Parameter(wv, dtype=w_dtype) b_int32 = Parameter(bv, dtype=b_dtype) inp_fp32 = inp_int8.astype("float32") w_fp32 = w_int8.astype("float32") b_fp32 = b_int32.astype("float32") def convert_to_nchw4(var): var = F.reshape( var, (var.shape[0], var.shape[1] // 4, 4, var.shape[2], var.shape[3]) ) var = F.transpose(var, (0, 1, 3, 4, 2)) return var def run_conv2d(inp, w, b): O = F.conv2d( inp, w, b if has_bias else None, stride=(SH, SW), padding=(PH, PW), ) if nonlinear_mode == "relu": return F.relu(O) else: return O def run_conv_bias(inp, w, b, format="NCHW"): b = b if has_bias else Parameter(np.zeros_like(b.numpy())) if format == "NCHW4": inp = convert_to_nchw4(inp) w = convert_to_nchw4(w) b = convert_to_nchw4(b) return F.quantized.conv_bias_activation( inp, w, b, stride=(SH, SW), padding=(PH, PW), dtype=out_dtype, nonlinear_mode=nonlinear_mode, ) format = "NCHW4" if is_cuda_available() else "NCHW" expected = run_conv2d(inp_fp32, w_fp32, b_fp32) expected = expected.astype(out_dtype).astype("float32") result = run_conv_bias(inp_int8, w_int8, b_int32, format=format).astype( "float32" ) if format == "NCHW4": result = F.transpose(result, (0, 1, 4, 2, 3)) expected = F.flatten(expected) result = F.flatten(result) np.testing.assert_allclose(result.numpy(), expected.numpy(), atol=outp_scale) run(1, 4, 4, 24, 33, 1, 1, 2, 3, 1, 1, False) run(10, 12, 24, 46, 46, 1, 1, 2, 1, 3, 1, False) run(10, 36, 8, 46, 26, 2, 2, 2, 1, 1, 2, False) run(1, 4, 4, 24, 33, 1, 1, 2, 3, 1, 1) run(10, 12, 24, 46, 46, 1, 1, 2, 1, 3, 1) run(10, 36, 8, 46, 26, 2, 2, 2, 1, 1, 2) run(10, 36, 8, 46, 26, 2, 2, 2, 1, 1, 2, False, "relu") run(10, 36, 8, 46, 26, 2, 2, 2, 1, 1, 2, True, "relu") @pytest.mark.skipif(get_device_count("gpu") > 0, reason="no int8 algorithm on cuda") def test_batch_conv_bias(): inp_scale = 1.5 w_scale = 2.5 outp_scale = 1.5 inp_dtype = dtype.qint8(inp_scale) w_dtype = dtype.qint8(w_scale) b_dtype = dtype.qint32(inp_scale * w_scale) out_dtype = dtype.qint8(outp_scale) def run( N, IC, OC, IH, IW, KH, KW, PH, PW, SH, SW, has_bias=True, ): inp_v = np.random.normal(size=(N, IC, IH, IW)) w_v = np.random.normal(size=(N, OC, IC, KH, KW)) b_v = np.random.normal(size=(1, OC, 1, 1)) inp_scale = dtype.get_scale(inp_dtype) w_scale = dtype.get_scale(w_dtype) b_scale = dtype.get_scale(b_dtype) inpv = dtype.convert_to_qint8(inp_v * inp_scale, inp_dtype) wv = dtype.convert_to_qint8(w_v * w_scale, w_dtype) bv = dtype.convert_to_qint32(b_v * b_scale, b_dtype) inp_int8 = tensor(inpv, dtype=inp_dtype) w_int8 = Parameter(wv, dtype=w_dtype) b_int32 = Parameter(bv, dtype=b_dtype) inp_fp32 = inp_int8.astype("float32") w_fp32 = w_int8.astype("float32") b_fp32 = b_int32.astype("float32") def run_batch_conv_bias(inp, w, b): b = b if has_bias else Parameter(np.zeros_like(b.numpy())) result = F.quantized.batch_conv_bias_activation( inp, w, b, stride=(SH, SW), padding=(PH, PW), dtype=out_dtype, ) return result.astype("float32") expected = F.conv2d(inp_fp32, w_fp32[0], b_fp32 if has_bias else None)[0] expected = expected.astype(out_dtype).astype("float32") expected = F.flatten(expected) result = run_batch_conv_bias(inp_int8, w_int8, b_int32) result = F.flatten(result) np.testing.assert_allclose(result.numpy(), expected.numpy(), atol=outp_scale) run(1, 4, 4, 5, 5, 3, 3, 0, 0, 1, 1, True) def test_conv2d_autocast(): """check amp's result is equal to manually converted result""" amp.enabled = True inp = tensor(np.random.randn(1, 3, 224, 224), dtype=np.float32) weight = tensor(np.random.randn(64, 3, 7, 7), dtype=np.float32) out = F.conv2d(inp, weight, None, (2, 2), (3, 3), (1, 1), 1) amp.enabled = False expected = F.conv2d( inp.astype("float16"), weight.astype("float16"), None, (2, 2), (3, 3), (1, 1), 1, compute_mode="float32", ) assert out.dtype == np.float16 assert expected.dtype == np.float16 np.testing.assert_allclose(out.numpy(), expected.numpy()) def test_conv2d_zero_stride_numpy_array(): inp = np.random.randn(3, 224, 224).astype(np.float32) inp = inp[np.newaxis, :] inp = tensor(inp, dtype=np.float32) weight = tensor(np.random.randn(16, 3, 3, 3), dtype=np.float32) out = F.conv2d(inp, weight, None, (2, 2), (3, 3), (1, 1), 1) def test_conv3d_zero_stride_numpy_array(): inp = np.random.randn(3, 224, 224, 224).astype(np.float32) inp = inp[np.newaxis, :] inp = tensor(inp, dtype=np.float32) weight = tensor(np.random.randn(16, 3, 3, 3, 3), dtype=np.float32) out = F.conv3d(inp, weight, None, (2, 2, 2), (3, 3, 3), (1, 1, 1), 1) out.numpy() def test_conv1d(): inp = tensor(np.ones((2, 2, 4), dtype=np.float32)) weight = tensor(np.ones((3, 2, 2), dtype=np.float32)) out = F.conv1d(inp, weight, None, 2, 0, 1, 1) np.testing.assert_equal( out.numpy(), np.array( [[[4, 4], [4, 4], [4, 4]], [[4, 4], [4, 4], [4, 4]]], dtype=np.float32 ), ) def test_batchnorm2d_autocast(): """check amp's result is equal to manually converted result""" amp.enabled = True tshape = (1, 3, 224, 224) pshape = (1, 3, 1, 1) inp = tensor(np.random.randn(*tshape), dtype=np.float32) weight = tensor(np.ones(pshape, dtype=np.float32)) bias = tensor(np.zeros(pshape, dtype=np.float32)) out = F.batch_norm(inp, weight=weight, bias=bias, training=True, inplace=False) amp.enabled = False expected = F.batch_norm( inp.astype("float16"), weight=weight, bias=bias, training=True, inplace=False, compute_mode="float32", ) assert out.dtype == np.float16 assert expected.dtype == np.float16 np.testing.assert_allclose(out.numpy(), expected.numpy()) def test_conv3d(): inp = tensor(np.ones((2, 2, 4, 4, 4), dtype=np.float32)) weight = tensor(np.ones((3, 2, 2, 2, 2), dtype=np.float32)) out = F.conv3d(inp, weight, None, 2, 0, 1, 1) np.testing.assert_equal( out.numpy(), np.ones((2, 3, 2, 2, 2), dtype=np.float32) * 16 ) def test_condtake(): x = np.array([[1, 2, 3], [4, 5, 6]]) y = np.array([[True, False, True], [False, True, True]]) xx = tensor(x) yy = tensor(y) val, idx = F.cond_take(yy, xx) np.testing.assert_equal(val.numpy(), x[y]) np.testing.assert_equal(idx.numpy(), np.where(y.reshape(-1))[0]) @pytest.mark.parametrize("is_symbolic", [None, False, True]) def test_condtake(is_symbolic): shapes = [ (3, 3, 3), (0,), (3, 0, 3), ] def fn(mask, data): return F.cond_take(mask, data) if is_symbolic is not None: fn = jit.trace(symbolic=is_symbolic)(fn) for shp in shapes: x_np = np.random.randn(*shp).astype("float32") mask_np = x_np > 0 x = tensor(x_np) mask = tensor(mask_np) ref_out = x_np[mask_np] ref_idx = mask_np.flatten().nonzero()[0] for i in range(3): out, idx = fn(mask, x) np.testing.assert_equal(out.numpy(), ref_out) np.testing.assert_equal(idx.numpy(), ref_idx) if is_symbolic is None: break def test_condtake_is_same(): op1 = builtin.CondTake() op2 = builtin.CondTake() assert op1 == op2 def test_nms_is_same(): op1 = builtin.NMSKeep(0.7, 100) op2 = builtin.NMSKeep(0.7, 100) op3 = builtin.NMSKeep(0.8, 100) op4 = builtin.NMSKeep(0.7, 200) assert op1 == op2 assert op1 != op3 assert op1 != op4 assert op3 != op4 def test_argmxx_on_inf(): def run_argmax(): x = F.zeros((100, 100)) x[:] = -float("inf") idxs = F.argmax(x, axis=0) return idxs def run_argmin(): x = F.zeros((100, 100)) x[:] = float("inf") idxs = F.argmin(x, axis=0) return idxs assert all(run_argmax() >= 0) assert all(run_argmin() >= 0) def test_deformable_psroi_pooling(): inp = np.random.random((1, 256, 64, 64)).astype("float32") rois = np.random.random((1, 5)).astype("float32") trans = np.random.random((24, 2, 7, 7)).astype("float32") pooled_h = 7 pooled_w = 7 sample_per_part = 4 no_trans = False part_size = 7 spatial_scale = 1.0 / 64 trans_std = 0.1 y = F.deformable_psroi_pooling( tensor(inp), tensor(rois), tensor(trans), no_trans, part_size, pooled_h, pooled_w, sample_per_part, spatial_scale, trans_std, ) def test_cvt_color(): def rgb2gray(rgb): return np.dot(rgb[..., :3], [0.299, 0.587, 0.114]) def bgr2gray(bgr): return np.dot(bgr[..., :3], [0.114, 0.587, 0.299]) inp = np.random.randn(3, 3, 3, 3).astype(np.float32) out = np.expand_dims(rgb2gray(inp), 3).astype(np.float32) x = tensor(inp) y = F.vision.cvt_color(x, mode="RGB2GRAY") np.testing.assert_allclose(y.numpy(), out, atol=1e-5) out1 = np.expand_dims(bgr2gray(inp), 3).astype(np.float32) y1 = F.vision.cvt_color(x, mode="BGR2GRAY") np.testing.assert_allclose(y1.numpy(), out1, atol=1e-5) @pytest.mark.parametrize("val", [2, [2,], [2, 3]]) def test_ones(val): shp = tensor(val) np_shp = np.array(val) np.testing.assert_equal(F.ones(shp), np.ones(np_shp)) def test_assert_equal(): shape = (2, 3, 4, 5) x = F.ones(shape, dtype=np.float32) y = F.zeros(shape, dtype=np.float32) + 1.00001 z = F.utils._assert_equal(x, y) def test_assert_not_equal(): shape = (2, 3, 4, 5) x = F.ones(shape, dtype=np.float32) y = F.zeros(shape, dtype=np.float32) + 1.1 with pytest.raises(RuntimeError): z = F.utils._assert_equal(x, y) def test_neg_axis(): x = tensor(np.random.normal(0, 1, (32, 5))) y = F.argmax(x, axis=-1) yy = F.argmax(x, axis=1) np.testing.assert_equal(y.numpy(), yy.numpy()) y = F.argmax(x, axis=(-1, -2)) yy = F.argmax(x, axis=(0, 1)) np.testing.assert_equal(y.numpy(), yy.numpy()) y = F.argmin(x, axis=(-1, -2)) yy = F.argmin(x, axis=(0, 1)) np.testing.assert_equal(y.numpy(), yy.numpy()) def test_sliding_window(): N, C, H, W = 2, 3, 7, 8 inp = np.random.normal(size=(N, C, H, W)) ph, pw = 1, 2 sh, sw = 2, 1 wh, ww = 3, 2 dh, dw = 1, 3 s = lambda i, p, s, d, w: (i + p * 2 - (w - 1) * d - 1) // s + 1 inp_pad = np.zeros((N, C, H + ph * 2, W + pw * 2)) inp_pad[:, :, ph : H + ph, pw : W + pw] = inp gt_out = np.empty( (N, C, s(H, ph, sh, dh, wh), s(W, pw, sw, dw, ww), wh, ww), dtype=np.float32 ) for n, c, oh, ow in itertools.product(*map(range, gt_out.shape[:4])): ih, iw = oh * sh, ow * sw gt_out[n, c, oh, ow, :] = inp_pad[ n, c, ih : ih + (wh - 1) * dh + 1 : dh, iw : iw + (ww - 1) * dw + 1 : dw ] out = F.sliding_window( tensor(inp), (wh, ww), padding=(ph, pw), stride=(sh, sw), dilation=(dh, dw) ) np.testing.assert_equal(gt_out, out.numpy()) def test_sliding_window_transpose(): N, C, H, W = 2, 3, 7, 8 ph, pw = 1, 2 sh, sw = 2, 1 wh, ww = 3, 2 dh, dw = 1, 3 s = lambda i, p, s, d, w: (i + p * 2 - (w - 1) * d - 1) // s + 1 inp = np.random.normal( size=(N, C, s(H, ph, sh, dh, wh), s(W, pw, sw, dw, ww), wh, ww) ).astype(np.float32) gt_out = np.zeros((N, C, H, W), dtype=np.float32) for n, c in itertools.product(*map(range, inp.shape[:2])): oh = 0 for ih in range(-ph, H + ph - dh * (wh - 1), sh): ow = 0 for iw in range(-pw, W + pw - dw * (ww - 1), sw): for kh, kw in itertools.product(*map(range, inp.shape[-2:])): ih2 = ih + dh * kh iw2 = iw + dw * kw if ih2 >= 0 and ih2 < H and iw2 >= 0 and iw2 < W: gt_out[n, c, ih2, iw2] += inp[n, c, oh, ow, kh, kw] ow += 1 oh += 1 out = F.sliding_window_transpose( tensor(inp), (H, W), (wh, ww), padding=(ph, pw), stride=(sh, sw), dilation=(dh, dw), ) np.testing.assert_equal(gt_out, out.numpy()) def test_pad(): src = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=np.float32) dst = np.pad(src, ((2, 2), (2, 2)), "constant") res = F.nn.pad(tensor(src), ((2, 2), (2, 2)), "CONSTANT") np.testing.assert_allclose(res, dst, atol=1e-5) dst = np.pad(src, ((2, 2), (2, 2)), "constant", constant_values=3) res = F.nn.pad(tensor(src), ((2, 2), (2, 2)), "CONSTANT", constant_value=3) np.testing.assert_allclose(res, dst, atol=1e-5) dst = np.pad(src, ((2, 2), (2, 2)), "edge") res = F.nn.pad(tensor(src), ((2, 2), (2, 2)), "EDGE") np.testing.assert_allclose(res, dst, atol=1e-5) dst = np.pad(src, ((2, 2), (2, 2)), "reflect") res = F.nn.pad(tensor(src), ((2, 2), (2, 2)), "REFLECT") np.testing.assert_allclose(res, dst, atol=1e-5) def pixel_shuffle(data, r): high_dim = data.shape[:-3] data = data.reshape(-1, data.shape[-3], data.shape[-2], data.shape[-1]) inn, ic, ih, iw = data.shape res = np.zeros((inn, int(ic / (r * r)), ih * r, iw * r)) for n in range(inn): for c in range(ic): for h in range(ih): for w in range(iw): res[ n, int(c / r / r), h * r + int((c % (r * r)) / r), w * r + c % r, ] = data[n, c, h, w] if len(high_dim) > 0: res = res.reshape((*high_dim, int(ic / r / r), ih * r, iw * r)) else: res = res[0] return res def test_pixel_shuffle(): # ndim = 3 inp = np.arange(16 * 3 * 3).reshape(16, 3, 3) out = F.pixel_shuffle(tensor(inp), upscale_factor=4) golden = pixel_shuffle(inp, 4) np.testing.assert_equal(out.numpy(), golden) # ndim = 4 inp = np.arange(3 * 18 * 3 * 3).reshape(3, 18, 3, 3) out = F.pixel_shuffle(tensor(inp), upscale_factor=3) golden = pixel_shuffle(inp, 3) np.testing.assert_equal(out.numpy(), golden) # ndim = 5 inp = np.arange(5 * 3 * 20 * 3 * 4).reshape(5, 3, 20, 3, 4) out = F.pixel_shuffle(tensor(inp), upscale_factor=2) golden = pixel_shuffle(inp, 2) np.testing.assert_equal(out.numpy(), golden) # ndim = 6 inp = np.arange(6 * 5 * 3 * 25 * 3 * 4).reshape(6, 5, 3, 25, 3, 4) out = F.pixel_shuffle(tensor(inp), upscale_factor=5) golden = pixel_shuffle(inp, 5) np.testing.assert_equal(out.numpy(), golden) # ndim = 7 inp = np.arange(2 * 3 * 5 * 3 * 20 * 3 * 4).reshape(2, 3, 5, 3, 20, 3, 4) out = F.pixel_shuffle(tensor(inp), upscale_factor=2) golden = pixel_shuffle(inp, 2) np.testing.assert_equal(out.numpy(), golden) @pytest.mark.parametrize("is_symbolic", [False, True]) def test_pixel_shuffle_symbolic(is_symbolic): def fn(inp, upscale_factor): return F.pixel_shuffle(inp, upscale_factor=upscale_factor) if is_symbolic is not None: fn = jit.trace(symbolic=is_symbolic)(fn) inp = tensor(np.arange(3 * 4 * 5 * 5).reshape(3, 4, 5, 5)) golden = pixel_shuffle(inp, 2) for _ in range(3): out = fn(inp, 2) np.testing.assert_equal(out.numpy(), golden) if is_symbolic is None: break def test_set_conv2d_config(): """check setting config by contextmanager is equal to manually converted result""" config._compute_mode = "float32" inp = tensor(np.random.randn(1, 3, 224, 224), dtype=np.float16) weight = tensor(np.random.randn(64, 3, 7, 7), dtype=np.float16) config_out = F.conv2d(inp, weight, None, (2, 2), (3, 3), (1, 1), 1) config._compute_mode = "default" with config._override(compute_mode="float32"): context_out = F.conv2d(inp, weight, None, (2, 2), (3, 3), (1, 1), 1) expected = F.conv2d( inp, weight, None, (2, 2), (3, 3), (1, 1), 1, compute_mode="float32", ) np.testing.assert_allclose(config_out.numpy(), expected.numpy()) np.testing.assert_allclose(context_out.numpy(), expected.numpy()) def test_set_warp_perspective_config(): config._conv_format = "NHWC" inp_shape = (1, 1, 4, 4) inp = Tensor(np.arange(16, dtype=np.float32).reshape(inp_shape)) M_shape = (1, 3, 3) M = Tensor(np.random.randn(3, 3), dtype=np.float32).reshape(M_shape) config_out = F.vision.warp_perspective(inp, M, (2, 2)) config._conv_format = "default" with config._override(conv_format="NHWC"): context_out = F.vision.warp_perspective(inp, M, (2, 2)) expected = F.vision.warp_perspective(inp, M, (2, 2), format="NHWC") np.testing.assert_allclose(config_out.numpy(), expected.numpy()) np.testing.assert_allclose(context_out.numpy(), expected.numpy()) @pytest.mark.parametrize("stride", [(1, 1)]) @pytest.mark.parametrize("padding", [(1, 1)]) @pytest.mark.parametrize("dilation", [(1, 1)]) @pytest.mark.parametrize("ksize", [(3, 3)]) @pytest.mark.parametrize("groups", [1, 2]) def test_local_conv2d(stride, padding, dilation, ksize, groups): batch_size, in_channels, out_channels = 2, 4, 8 input_height, input_width = 10, 10 output_height = (input_height + padding[0] * 2 - ksize[0]) // stride[0] + 1 output_width = (input_width + padding[1] * 2 - ksize[1]) // stride[1] + 1 def local_conv2d_np(data, weight, stride, padding, dialtion): # naive calculation use numpy # only test output_height == input_height, output_width == input_width data = np.pad(data, ((0, 0), (0, 0), (1, 1), (1, 1))) expected = np.zeros( (batch_size, out_channels, output_height, output_width), dtype=np.float32, ) ic_group_size = in_channels // groups oc_group_size = out_channels // groups for n, oc, oh, ow in itertools.product( *map(range, [batch_size, out_channels, output_height, output_width]) ): ih, iw = oh * stride[0], ow * stride[1] g_id = oc // oc_group_size expected[n, oc, ih, iw] = np.sum( data[ n, g_id * ic_group_size : (g_id + 1) * ic_group_size, ih : ih + ksize[0], iw : iw + ksize[1], ] * weight[g_id, oh, ow, :, :, :, oc % oc_group_size] ) return expected data = np.random.rand(batch_size, in_channels, input_height, input_width).astype( "float32" ) weight = np.random.rand( groups, output_height, output_width, in_channels // groups, *ksize, out_channels // groups, ).astype("float32") output = F.local_conv2d( tensor(data), tensor(weight), None, stride=stride, padding=padding, dilation=dilation, ) ref = local_conv2d_np(data, weight, stride, padding, dilation) np.testing.assert_almost_equal(output.numpy(), ref, 5)
[ "megengine.functional.conv3d", "megengine.functional.pixel_shuffle", "megengine.core.tensor.dtype.convert_to_qint32", "megengine.config._override", "megengine.functional.argmax", "megengine.functional.adaptive_avg_pool2d", "megengine.functional.argmin", "megengine.jit.trace", "megengine.functional.utils._assert_equal", "megengine.functional.nn.hinge_loss", "megengine.core.tensor.dtype.get_scale", "megengine.functional.transpose", "megengine.functional.conv2d", "megengine.functional.conv1d", "megengine.device.get_device_count", "megengine.core.ops.builtin.NMSKeep", "megengine.functional.zeros", "megengine.tensor", "megengine.functional.flatten", "megengine.functional.concat", "megengine.functional.adaptive_max_pool2d", "megengine.functional.vision.cvt_color", "megengine.functional.matmul", "megengine.core._imperative_rt.ops.set_global_rng_seed", "megengine.core.autodiff.grad.Grad", "megengine.functional.vision.correlation", "megengine.functional.vision.remap", "megengine.functional.cond_take", "megengine.functional.vision.nms", "megengine.functional.vision.interpolate", "megengine.core.tensor.dtype.convert_to_qint8", "megengine.functional.ones_like", "megengine.core.tensor.dtype.qint8", "megengine.functional.batch_norm", "megengine.is_cuda_available", "megengine.functional.relu", "megengine.functional.vision.roi_align", "megengine.functional.quantized.batch_conv_bias_activation", "megengine.functional.one_hot", "megengine.core.tensor.utils.make_shape_tuple", "megengine.functional.vision.warp_perspective", "megengine.core.ops.builtin.CondTake", "megengine.functional.ones", "megengine.Parameter", "megengine.autodiff.GradManager", "megengine.core.tensor.dtype.qint32", "megengine.functional.nn.dropout", "megengine.functional.quantized.conv_bias_activation", "megengine.functional.reshape", "megengine.functional.vision.roi_pooling" ]
[((6039, 6149), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""shape_a, shape_b"""', '[((0,), (0,)), ((10, 0), (0, 10)), ((3, 10, 0), (3, 0, 10))]'], {}), "('shape_a, shape_b', [((0,), (0,)), ((10, 0), (0, 10\n )), ((3, 10, 0), (3, 0, 10))])\n", (6062, 6149), False, 'import pytest\n'), ((6154, 6213), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""is_symbolic"""', '[None, True, False]'], {}), "('is_symbolic', [None, True, False])\n", (6177, 6213), False, 'import pytest\n'), ((16189, 16263), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""dt"""', '[np.float32, np.int8, np.uint8, np.float16]'], {}), "('dt', [np.float32, np.int8, np.uint8, np.float16])\n", (16212, 16263), False, 'import pytest\n'), ((16764, 16838), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""dt"""', '[np.float32, np.int8, np.uint8, np.float16]'], {}), "('dt', [np.float32, np.int8, np.uint8, np.float16])\n", (16787, 16838), False, 'import pytest\n'), ((20828, 20887), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""is_symbolic"""', '[None, False, True]'], {}), "('is_symbolic', [None, False, True])\n", (20851, 20887), False, 'import pytest\n'), ((30215, 30274), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""is_symbolic"""', '[None, False, True]'], {}), "('is_symbolic', [None, False, True])\n", (30238, 30274), False, 'import pytest\n'), ((32970, 33018), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""val"""', '[2, [2], [2, 3]]'], {}), "('val', [2, [2], [2, 3]])\n", (32993, 33018), False, 'import pytest\n'), ((38668, 38721), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""is_symbolic"""', '[False, True]'], {}), "('is_symbolic', [False, True])\n", (38691, 38721), False, 'import pytest\n'), ((40667, 40710), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""stride"""', '[(1, 1)]'], {}), "('stride', [(1, 1)])\n", (40690, 40710), False, 'import pytest\n'), ((40712, 40756), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""padding"""', '[(1, 1)]'], {}), "('padding', [(1, 1)])\n", (40735, 40756), False, 'import pytest\n'), ((40758, 40803), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""dilation"""', '[(1, 1)]'], {}), "('dilation', [(1, 1)])\n", (40781, 40803), False, 'import pytest\n'), ((40805, 40847), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""ksize"""', '[(3, 3)]'], {}), "('ksize', [(3, 3)])\n", (40828, 40847), False, 'import pytest\n'), ((40849, 40890), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""groups"""', '[1, 2]'], {}), "('groups', [1, 2])\n", (40872, 40890), False, 'import pytest\n'), ((1062, 1104), 'numpy.array', 'np.array', (['[[1, 0], [0, 1]]'], {'dtype': 'np.bool_'}), '([[1, 0], [0, 1]], dtype=np.bool_)\n', (1070, 1104), True, 'import numpy as np\n'), ((1115, 1169), 'numpy.array', 'np.array', (['[[1, np.inf], [np.nan, 4]]'], {'dtype': 'np.float32'}), '([[1, np.inf], [np.nan, 4]], dtype=np.float32)\n', (1123, 1169), True, 'import numpy as np\n'), ((1180, 1224), 'numpy.array', 'np.array', (['[[5, 6], [7, 8]]'], {'dtype': 'np.float32'}), '([[5, 6], [7, 8]], dtype=np.float32)\n', (1188, 1224), True, 'import numpy as np\n'), ((1239, 1298), 'numpy.array', 'np.array', (['[[1, 0, 1], [1, 0, 0], [1, 1, 0]]'], {'dtype': 'np.bool_'}), '([[1, 0, 1], [1, 0, 0], [1, 1, 0]], dtype=np.bool_)\n', (1247, 1298), True, 'import numpy as np\n'), ((1309, 1380), 'numpy.array', 'np.array', (['[[1, np.inf, 2], [0, np.nan, 4], [1, 5, 7]]'], {'dtype': 'np.float32'}), '([[1, np.inf, 2], [0, np.nan, 4], [1, 5, 7]], dtype=np.float32)\n', (1317, 1380), True, 'import numpy as np\n'), ((1391, 1452), 'numpy.array', 'np.array', (['[[5, 6, 9], [2, 7, 8], [2, 1, 9]]'], {'dtype': 'np.float32'}), '([[5, 6, 9], [2, 7, 8], [2, 1, 9]], dtype=np.float32)\n', (1399, 1452), True, 'import numpy as np\n'), ((1556, 1615), 'utils.opr_test', 'opr_test', (['cases', 'F.where'], {'ref_fn': 'np.where', 'test_trace': '(False)'}), '(cases, F.where, ref_fn=np.where, test_trace=False)\n', (1564, 1615), False, 'from utils import opr_test\n'), ((1630, 1665), 'numpy.array', 'np.array', (['[1, 1, 1]'], {'dtype': 'np.bool_'}), '([1, 1, 1], dtype=np.bool_)\n', (1638, 1665), True, 'import numpy as np\n'), ((1676, 1713), 'numpy.array', 'np.array', (['[1, 3, 2]'], {'dtype': 'np.float32'}), '([1, 3, 2], dtype=np.float32)\n', (1684, 1713), True, 'import numpy as np\n'), ((1724, 1761), 'numpy.array', 'np.array', (['[5, 6, 9]'], {'dtype': 'np.float32'}), '([5, 6, 9], dtype=np.float32)\n', (1732, 1761), True, 'import numpy as np\n'), ((1776, 1811), 'numpy.array', 'np.array', (['[0, 0, 0]'], {'dtype': 'np.bool_'}), '([0, 0, 0], dtype=np.bool_)\n', (1784, 1811), True, 'import numpy as np\n'), ((1822, 1859), 'numpy.array', 'np.array', (['[1, 3, 2]'], {'dtype': 'np.float32'}), '([1, 3, 2], dtype=np.float32)\n', (1830, 1859), True, 'import numpy as np\n'), ((1870, 1907), 'numpy.array', 'np.array', (['[5, 6, 9]'], {'dtype': 'np.float32'}), '([5, 6, 9], dtype=np.float32)\n', (1878, 1907), True, 'import numpy as np\n'), ((2011, 2070), 'utils.opr_test', 'opr_test', (['cases', 'F.where'], {'ref_fn': 'np.where', 'test_trace': '(False)'}), '(cases, F.where, ref_fn=np.where, test_trace=False)\n', (2019, 2070), False, 'from utils import opr_test\n'), ((4953, 4996), 'utils.opr_test', 'opr_test', (['cases', 'F.matmul'], {'ref_fn': 'np.matmul'}), '(cases, F.matmul, ref_fn=np.matmul)\n', (4961, 4996), False, 'from utils import opr_test\n'), ((5612, 5655), 'utils.opr_test', 'opr_test', (['cases', 'F.matmul'], {'ref_fn': 'np.matmul'}), '(cases, F.matmul, ref_fn=np.matmul)\n', (5620, 5655), False, 'from utils import opr_test\n'), ((8551, 8583), 'numpy.random.randn', 'np.random.randn', (['(2)', '(32)', '(256)', '(256)'], {}), '(2, 32, 256, 256)\n', (8566, 8583), True, 'import numpy as np\n'), ((8595, 8611), 'numpy.zeros', 'np.zeros', (['(4, 5)'], {}), '((4, 5))\n', (8603, 8611), True, 'import numpy as np\n'), ((8755, 8771), 'megengine.tensor', 'tensor', (['inp_feat'], {}), '(inp_feat)\n', (8761, 8771), False, 'from megengine import Parameter, Tensor, is_cuda_available, tensor\n'), ((8783, 8795), 'megengine.tensor', 'tensor', (['rois'], {}), '(rois)\n', (8789, 8795), False, 'from megengine import Parameter, Tensor, is_cuda_available, tensor\n'), ((8985, 9121), 'megengine.functional.vision.roi_align', 'F.vision.roi_align', (['inp_feat', 'rois'], {'output_shape': 'output_shape', 'mode': '"""average"""', 'spatial_scale': '(1.0 / 4)', 'sample_points': '(2)', 'aligned': '(True)'}), "(inp_feat, rois, output_shape=output_shape, mode=\n 'average', spatial_scale=1.0 / 4, sample_points=2, aligned=True)\n", (9003, 9121), True, 'import megengine.functional as F\n'), ((10119, 10244), 'megengine.functional.vision.correlation', 'F.vision.correlation', (['data1', 'data2'], {'kernel_size': '(5)', 'max_displacement': '(4)', 'stride1': '(2)', 'stride2': '(2)', 'pad_size': '(2)', 'is_multiply': '(True)'}), '(data1, data2, kernel_size=5, max_displacement=4,\n stride1=2, stride2=2, pad_size=2, is_multiply=True)\n', (10139, 10244), True, 'import megengine.functional as F\n'), ((10612, 10737), 'megengine.functional.vision.correlation', 'F.vision.correlation', (['data1', 'data2'], {'kernel_size': '(3)', 'max_displacement': '(0)', 'stride1': '(1)', 'stride2': '(1)', 'pad_size': '(0)', 'is_multiply': '(True)'}), '(data1, data2, kernel_size=3, max_displacement=0,\n stride1=1, stride2=1, pad_size=0, is_multiply=True)\n', (10632, 10737), True, 'import megengine.functional as F\n'), ((10986, 11112), 'megengine.functional.vision.correlation', 'F.vision.correlation', (['data1', 'data2'], {'kernel_size': '(3)', 'max_displacement': '(0)', 'stride1': '(1)', 'stride2': '(1)', 'pad_size': '(0)', 'is_multiply': '(False)'}), '(data1, data2, kernel_size=3, max_displacement=0,\n stride1=1, stride2=1, pad_size=0, is_multiply=False)\n', (11006, 11112), True, 'import megengine.functional as F\n'), ((11352, 11478), 'megengine.functional.vision.correlation', 'F.vision.correlation', (['data1', 'data2'], {'kernel_size': '(3)', 'max_displacement': '(0)', 'stride1': '(1)', 'stride2': '(1)', 'pad_size': '(0)', 'is_multiply': '(False)'}), '(data1, data2, kernel_size=3, max_displacement=0,\n stride1=1, stride2=1, pad_size=0, is_multiply=False)\n', (11372, 11478), True, 'import megengine.functional as F\n'), ((11840, 11966), 'megengine.functional.vision.correlation', 'F.vision.correlation', (['data1', 'data2'], {'kernel_size': '(3)', 'max_displacement': '(2)', 'stride1': '(1)', 'stride2': '(2)', 'pad_size': '(0)', 'is_multiply': '(False)'}), '(data1, data2, kernel_size=3, max_displacement=2,\n stride1=1, stride2=2, pad_size=0, is_multiply=False)\n', (11860, 11966), True, 'import megengine.functional as F\n'), ((12241, 12335), 'megengine.functional.vision.roi_pooling', 'F.vision.roi_pooling', (['inp_feat', 'rois'], {'output_shape': 'output_shape', 'mode': '"""max"""', 'scale': '(1.0 / 4)'}), "(inp_feat, rois, output_shape=output_shape, mode='max',\n scale=1.0 / 4)\n", (12261, 12335), True, 'import megengine.functional as F\n'), ((12798, 12830), 'megengine.functional.adaptive_avg_pool2d', 'F.adaptive_avg_pool2d', (['inp', 'oshp'], {}), '(inp, oshp)\n', (12819, 12830), True, 'import megengine.functional as F\n'), ((13762, 13794), 'megengine.functional.adaptive_max_pool2d', 'F.adaptive_max_pool2d', (['inp', 'oshp'], {}), '(inp, oshp)\n', (13783, 13794), True, 'import megengine.functional as F\n'), ((15853, 15902), 'megengine.functional.vision.interpolate', 'F.vision.interpolate', (['x', '(15, 5)'], {'mode': '"""bilinear"""'}), "(x, (15, 5), mode='bilinear')\n", (15873, 15902), True, 'import megengine.functional as F\n'), ((15999, 16012), 'numpy.arange', 'np.arange', (['(32)'], {}), '(32)\n', (16008, 16012), True, 'import numpy as np\n'), ((16084, 16132), 'megengine.functional.vision.interpolate', 'F.vision.interpolate', (['x', '(1, 1)'], {'mode': '"""bilinear"""'}), "(x, (1, 1), mode='bilinear')\n", (16104, 16132), True, 'import megengine.functional as F\n'), ((16636, 16675), 'megengine.functional.vision.warp_perspective', 'F.vision.warp_perspective', (['x', 'M', '(2, 2)'], {}), '(x, M, (2, 2))\n', (16661, 16675), True, 'import megengine.functional as F\n'), ((17216, 17236), 'megengine.functional.concat', 'F.concat', (['([M] * 4)', '(0)'], {}), '([M] * 4, 0)\n', (17224, 17236), True, 'import megengine.functional as F\n'), ((17249, 17310), 'megengine.functional.vision.warp_perspective', 'F.vision.warp_perspective', (['x', 'M', '(2, 2)'], {'mat_idx': '[0, 1, 1, 0]'}), '(x, M, (2, 2), mat_idx=[0, 1, 1, 0])\n', (17274, 17310), True, 'import megengine.functional as F\n'), ((17895, 18042), 'numpy.array', 'np.array', (['[[[[7.875, 8.875, 9.875], [8.90625, 9.90625, 10.90625]], [[18.75, 19.75, \n 20.75], [14.90625, 15.90625, 16.90625]]]]'], {'dtype': 'np.float32'}), '([[[[7.875, 8.875, 9.875], [8.90625, 9.90625, 10.90625]], [[18.75, \n 19.75, 20.75], [14.90625, 15.90625, 16.90625]]]], dtype=np.float32)\n', (17903, 18042), True, 'import numpy as np\n'), ((18544, 18571), 'megengine.functional.vision.remap', 'F.vision.remap', (['inp', 'map_xy'], {}), '(inp, map_xy)\n', (18558, 18571), True, 'import megengine.functional as F\n'), ((18972, 18991), 'numpy.random.seed', 'np.random.seed', (['(123)'], {}), '(123)\n', (18986, 18991), True, 'import numpy as np\n'), ((19142, 19178), 'numpy.array', 'np.array', (['[0.6361]'], {'dtype': 'np.float32'}), '([0.6361], dtype=np.float32)\n', (19150, 19178), True, 'import numpy as np\n'), ((19184, 19203), 'numpy.random.seed', 'np.random.seed', (['(123)'], {}), '(123)\n', (19198, 19203), True, 'import numpy as np\n'), ((19354, 19389), 'numpy.array', 'np.array', (['[0.675]'], {'dtype': 'np.float32'}), '([0.675], dtype=np.float32)\n', (19362, 19389), True, 'import numpy as np\n'), ((19528, 19593), 'utils.opr_test', 'opr_test', (['cases', 'F.nn.binary_cross_entropy'], {'compare_fn': 'compare_fn'}), '(cases, F.nn.binary_cross_entropy, compare_fn=compare_fn)\n', (19536, 19593), False, 'from utils import opr_test\n'), ((19903, 19922), 'numpy.random.seed', 'np.random.seed', (['(123)'], {}), '(123)\n', (19917, 19922), True, 'import numpy as np\n'), ((20283, 20315), 'utils.opr_test', 'opr_test', (['cases', 'F.nn.hinge_loss'], {}), '(cases, F.nn.hinge_loss)\n', (20291, 20315), False, 'from utils import opr_test\n'), ((20784, 20824), 'utils.opr_test', 'opr_test', (['cases', 'hinge_loss_with_l2_norm'], {}), '(cases, hinge_loss_with_l2_norm)\n', (20792, 20824), False, 'from utils import opr_test\n'), ((21201, 21314), 'numpy.array', 'np.array', (['[[0, 0, 100, 100], [10, 10, 100, 100], [50, 50, 100, 100], [100, 100, 150, 150]\n ]'], {'dtype': 'np.float32'}), '([[0, 0, 100, 100], [10, 10, 100, 100], [50, 50, 100, 100], [100, \n 100, 150, 150]], dtype=np.float32)\n', (21209, 21314), True, 'import numpy as np\n'), ((21402, 21411), 'megengine.tensor', 'tensor', (['x'], {}), '(x)\n', (21408, 21411), False, 'from megengine import Parameter, Tensor, is_cuda_available, tensor\n'), ((21425, 21471), 'megengine.tensor', 'tensor', (['[0.5, 0.8, 0.9, 0.6]'], {'dtype': 'np.float32'}), '([0.5, 0.8, 0.9, 0.6], dtype=np.float32)\n', (21431, 21471), False, 'from megengine import Parameter, Tensor, is_cuda_available, tensor\n'), ((21685, 21694), 'megengine.tensor', 'tensor', (['x'], {}), '(x)\n', (21691, 21694), False, 'from megengine import Parameter, Tensor, is_cuda_available, tensor\n'), ((21708, 21736), 'megengine.tensor', 'tensor', (['[]'], {'dtype': 'np.float32'}), '([], dtype=np.float32)\n', (21714, 21736), False, 'from megengine import Parameter, Tensor, is_cuda_available, tensor\n'), ((22074, 22096), 'megengine.core.tensor.dtype.qint8', 'dtype.qint8', (['inp_scale'], {}), '(inp_scale)\n', (22085, 22096), True, 'import megengine.core.tensor.dtype as dtype\n'), ((22111, 22131), 'megengine.core.tensor.dtype.qint8', 'dtype.qint8', (['w_scale'], {}), '(w_scale)\n', (22122, 22131), True, 'import megengine.core.tensor.dtype as dtype\n'), ((22146, 22179), 'megengine.core.tensor.dtype.qint32', 'dtype.qint32', (['(inp_scale * w_scale)'], {}), '(inp_scale * w_scale)\n', (22158, 22179), True, 'import megengine.core.tensor.dtype as dtype\n'), ((22196, 22219), 'megengine.core.tensor.dtype.qint8', 'dtype.qint8', (['outp_scale'], {}), '(outp_scale)\n', (22207, 22219), True, 'import megengine.core.tensor.dtype as dtype\n'), ((25405, 25427), 'megengine.core.tensor.dtype.qint8', 'dtype.qint8', (['inp_scale'], {}), '(inp_scale)\n', (25416, 25427), True, 'import megengine.core.tensor.dtype as dtype\n'), ((25442, 25462), 'megengine.core.tensor.dtype.qint8', 'dtype.qint8', (['w_scale'], {}), '(w_scale)\n', (25453, 25462), True, 'import megengine.core.tensor.dtype as dtype\n'), ((25477, 25510), 'megengine.core.tensor.dtype.qint32', 'dtype.qint32', (['(inp_scale * w_scale)'], {}), '(inp_scale * w_scale)\n', (25489, 25510), True, 'import megengine.core.tensor.dtype as dtype\n'), ((25527, 25550), 'megengine.core.tensor.dtype.qint8', 'dtype.qint8', (['outp_scale'], {}), '(outp_scale)\n', (25538, 25550), True, 'import megengine.core.tensor.dtype as dtype\n'), ((27400, 27454), 'megengine.functional.conv2d', 'F.conv2d', (['inp', 'weight', 'None', '(2, 2)', '(3, 3)', '(1, 1)', '(1)'], {}), '(inp, weight, None, (2, 2), (3, 3), (1, 1), 1)\n', (27408, 27454), True, 'import megengine.functional as F\n'), ((27960, 27989), 'megengine.tensor', 'tensor', (['inp'], {'dtype': 'np.float32'}), '(inp, dtype=np.float32)\n', (27966, 27989), False, 'from megengine import Parameter, Tensor, is_cuda_available, tensor\n'), ((28068, 28122), 'megengine.functional.conv2d', 'F.conv2d', (['inp', 'weight', 'None', '(2, 2)', '(3, 3)', '(1, 1)', '(1)'], {}), '(inp, weight, None, (2, 2), (3, 3), (1, 1), 1)\n', (28076, 28122), True, 'import megengine.functional as F\n'), ((28271, 28300), 'megengine.tensor', 'tensor', (['inp'], {'dtype': 'np.float32'}), '(inp, dtype=np.float32)\n', (28277, 28300), False, 'from megengine import Parameter, Tensor, is_cuda_available, tensor\n'), ((28382, 28445), 'megengine.functional.conv3d', 'F.conv3d', (['inp', 'weight', 'None', '(2, 2, 2)', '(3, 3, 3)', '(1, 1, 1)', '(1)'], {}), '(inp, weight, None, (2, 2, 2), (3, 3, 3), (1, 1, 1), 1)\n', (28390, 28445), True, 'import megengine.functional as F\n'), ((28606, 28645), 'megengine.functional.conv1d', 'F.conv1d', (['inp', 'weight', 'None', '(2)', '(0)', '(1)', '(1)'], {}), '(inp, weight, None, 2, 0, 1, 1)\n', (28614, 28645), True, 'import megengine.functional as F\n'), ((29176, 29249), 'megengine.functional.batch_norm', 'F.batch_norm', (['inp'], {'weight': 'weight', 'bias': 'bias', 'training': '(True)', 'inplace': '(False)'}), '(inp, weight=weight, bias=bias, training=True, inplace=False)\n', (29188, 29249), True, 'import megengine.functional as F\n'), ((29754, 29793), 'megengine.functional.conv3d', 'F.conv3d', (['inp', 'weight', 'None', '(2)', '(0)', '(1)', '(1)'], {}), '(inp, weight, None, 2, 0, 1, 1)\n', (29762, 29793), True, 'import megengine.functional as F\n'), ((29929, 29961), 'numpy.array', 'np.array', (['[[1, 2, 3], [4, 5, 6]]'], {}), '([[1, 2, 3], [4, 5, 6]])\n', (29937, 29961), True, 'import numpy as np\n'), ((29970, 30022), 'numpy.array', 'np.array', (['[[True, False, True], [False, True, True]]'], {}), '([[True, False, True], [False, True, True]])\n', (29978, 30022), True, 'import numpy as np\n'), ((30032, 30041), 'megengine.tensor', 'tensor', (['x'], {}), '(x)\n', (30038, 30041), False, 'from megengine import Parameter, Tensor, is_cuda_available, tensor\n'), ((30051, 30060), 'megengine.tensor', 'tensor', (['y'], {}), '(y)\n', (30057, 30060), False, 'from megengine import Parameter, Tensor, is_cuda_available, tensor\n'), ((30076, 30095), 'megengine.functional.cond_take', 'F.cond_take', (['yy', 'xx'], {}), '(yy, xx)\n', (30087, 30095), True, 'import megengine.functional as F\n'), ((31046, 31064), 'megengine.core.ops.builtin.CondTake', 'builtin.CondTake', ([], {}), '()\n', (31062, 31064), True, 'import megengine.core.ops.builtin as builtin\n'), ((31075, 31093), 'megengine.core.ops.builtin.CondTake', 'builtin.CondTake', ([], {}), '()\n', (31091, 31093), True, 'import megengine.core.ops.builtin as builtin\n'), ((31152, 31177), 'megengine.core.ops.builtin.NMSKeep', 'builtin.NMSKeep', (['(0.7)', '(100)'], {}), '(0.7, 100)\n', (31167, 31177), True, 'import megengine.core.ops.builtin as builtin\n'), ((31188, 31213), 'megengine.core.ops.builtin.NMSKeep', 'builtin.NMSKeep', (['(0.7)', '(100)'], {}), '(0.7, 100)\n', (31203, 31213), True, 'import megengine.core.ops.builtin as builtin\n'), ((31224, 31249), 'megengine.core.ops.builtin.NMSKeep', 'builtin.NMSKeep', (['(0.8)', '(100)'], {}), '(0.8, 100)\n', (31239, 31249), True, 'import megengine.core.ops.builtin as builtin\n'), ((31260, 31285), 'megengine.core.ops.builtin.NMSKeep', 'builtin.NMSKeep', (['(0.7)', '(200)'], {}), '(0.7, 200)\n', (31275, 31285), True, 'import megengine.core.ops.builtin as builtin\n'), ((32678, 32689), 'megengine.tensor', 'tensor', (['inp'], {}), '(inp)\n', (32684, 32689), False, 'from megengine import Parameter, Tensor, is_cuda_available, tensor\n'), ((32698, 32736), 'megengine.functional.vision.cvt_color', 'F.vision.cvt_color', (['x'], {'mode': '"""RGB2GRAY"""'}), "(x, mode='RGB2GRAY')\n", (32716, 32736), True, 'import megengine.functional as F\n'), ((32868, 32906), 'megengine.functional.vision.cvt_color', 'F.vision.cvt_color', (['x'], {'mode': '"""BGR2GRAY"""'}), "(x, mode='BGR2GRAY')\n", (32886, 32906), True, 'import megengine.functional as F\n'), ((33050, 33061), 'megengine.tensor', 'tensor', (['val'], {}), '(val)\n', (33056, 33061), False, 'from megengine import Parameter, Tensor, is_cuda_available, tensor\n'), ((33075, 33088), 'numpy.array', 'np.array', (['val'], {}), '(val)\n', (33083, 33088), True, 'import numpy as np\n'), ((33207, 33238), 'megengine.functional.ones', 'F.ones', (['shape'], {'dtype': 'np.float32'}), '(shape, dtype=np.float32)\n', (33213, 33238), True, 'import megengine.functional as F\n'), ((33298, 33325), 'megengine.functional.utils._assert_equal', 'F.utils._assert_equal', (['x', 'y'], {}), '(x, y)\n', (33319, 33325), True, 'import megengine.functional as F\n'), ((33390, 33421), 'megengine.functional.ones', 'F.ones', (['shape'], {'dtype': 'np.float32'}), '(shape, dtype=np.float32)\n', (33396, 33421), True, 'import megengine.functional as F\n'), ((33627, 33647), 'megengine.functional.argmax', 'F.argmax', (['x'], {'axis': '(-1)'}), '(x, axis=-1)\n', (33635, 33647), True, 'import megengine.functional as F\n'), ((33657, 33676), 'megengine.functional.argmax', 'F.argmax', (['x'], {'axis': '(1)'}), '(x, axis=1)\n', (33665, 33676), True, 'import megengine.functional as F\n'), ((33737, 33763), 'megengine.functional.argmax', 'F.argmax', (['x'], {'axis': '(-1, -2)'}), '(x, axis=(-1, -2))\n', (33745, 33763), True, 'import megengine.functional as F\n'), ((33773, 33797), 'megengine.functional.argmax', 'F.argmax', (['x'], {'axis': '(0, 1)'}), '(x, axis=(0, 1))\n', (33781, 33797), True, 'import megengine.functional as F\n'), ((33858, 33884), 'megengine.functional.argmin', 'F.argmin', (['x'], {'axis': '(-1, -2)'}), '(x, axis=(-1, -2))\n', (33866, 33884), True, 'import megengine.functional as F\n'), ((33894, 33918), 'megengine.functional.argmin', 'F.argmin', (['x'], {'axis': '(0, 1)'}), '(x, axis=(0, 1))\n', (33902, 33918), True, 'import megengine.functional as F\n'), ((34037, 34072), 'numpy.random.normal', 'np.random.normal', ([], {'size': '(N, C, H, W)'}), '(size=(N, C, H, W))\n', (34053, 34072), True, 'import numpy as np\n'), ((34228, 34268), 'numpy.zeros', 'np.zeros', (['(N, C, H + ph * 2, W + pw * 2)'], {}), '((N, C, H + ph * 2, W + pw * 2))\n', (34236, 34268), True, 'import numpy as np\n'), ((35193, 35233), 'numpy.zeros', 'np.zeros', (['(N, C, H, W)'], {'dtype': 'np.float32'}), '((N, C, H, W), dtype=np.float32)\n', (35201, 35233), True, 'import numpy as np\n'), ((36053, 36114), 'numpy.array', 'np.array', (['[[1, 2, 3], [4, 5, 6], [7, 8, 9]]'], {'dtype': 'np.float32'}), '([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=np.float32)\n', (36061, 36114), True, 'import numpy as np\n'), ((36125, 36166), 'numpy.pad', 'np.pad', (['src', '((2, 2), (2, 2))', '"""constant"""'], {}), "(src, ((2, 2), (2, 2)), 'constant')\n", (36131, 36166), True, 'import numpy as np\n'), ((36233, 36281), 'numpy.testing.assert_allclose', 'np.testing.assert_allclose', (['res', 'dst'], {'atol': '(1e-05)'}), '(res, dst, atol=1e-05)\n', (36259, 36281), True, 'import numpy as np\n'), ((36292, 36352), 'numpy.pad', 'np.pad', (['src', '((2, 2), (2, 2))', '"""constant"""'], {'constant_values': '(3)'}), "(src, ((2, 2), (2, 2)), 'constant', constant_values=3)\n", (36298, 36352), True, 'import numpy as np\n'), ((36437, 36485), 'numpy.testing.assert_allclose', 'np.testing.assert_allclose', (['res', 'dst'], {'atol': '(1e-05)'}), '(res, dst, atol=1e-05)\n', (36463, 36485), True, 'import numpy as np\n'), ((36496, 36533), 'numpy.pad', 'np.pad', (['src', '((2, 2), (2, 2))', '"""edge"""'], {}), "(src, ((2, 2), (2, 2)), 'edge')\n", (36502, 36533), True, 'import numpy as np\n'), ((36596, 36644), 'numpy.testing.assert_allclose', 'np.testing.assert_allclose', (['res', 'dst'], {'atol': '(1e-05)'}), '(res, dst, atol=1e-05)\n', (36622, 36644), True, 'import numpy as np\n'), ((36655, 36695), 'numpy.pad', 'np.pad', (['src', '((2, 2), (2, 2))', '"""reflect"""'], {}), "(src, ((2, 2), (2, 2)), 'reflect')\n", (36661, 36695), True, 'import numpy as np\n'), ((36761, 36809), 'numpy.testing.assert_allclose', 'np.testing.assert_allclose', (['res', 'dst'], {'atol': '(1e-05)'}), '(res, dst, atol=1e-05)\n', (36787, 36809), True, 'import numpy as np\n'), ((39509, 39563), 'megengine.functional.conv2d', 'F.conv2d', (['inp', 'weight', 'None', '(2, 2)', '(3, 3)', '(1, 1)', '(1)'], {}), '(inp, weight, None, (2, 2), (3, 3), (1, 1), 1)\n', (39517, 39563), True, 'import megengine.functional as F\n'), ((39744, 39822), 'megengine.functional.conv2d', 'F.conv2d', (['inp', 'weight', 'None', '(2, 2)', '(3, 3)', '(1, 1)', '(1)'], {'compute_mode': '"""float32"""'}), "(inp, weight, None, (2, 2), (3, 3), (1, 1), 1, compute_mode='float32')\n", (39752, 39822), True, 'import megengine.functional as F\n'), ((40264, 40305), 'megengine.functional.vision.warp_perspective', 'F.vision.warp_perspective', (['inp', 'M', '(2, 2)'], {}), '(inp, M, (2, 2))\n', (40289, 40305), True, 'import megengine.functional as F\n'), ((40468, 40524), 'megengine.functional.vision.warp_perspective', 'F.vision.warp_perspective', (['inp', 'M', '(2, 2)'], {'format': '"""NHWC"""'}), "(inp, M, (2, 2), format='NHWC')\n", (40493, 40524), True, 'import megengine.functional as F\n'), ((3231, 3255), 'megengine.core._imperative_rt.ops.set_global_rng_seed', 'set_global_rng_seed', (['(111)'], {}), '(111)\n', (3250, 3255), False, 'from megengine.core._imperative_rt.ops import set_global_rng_seed\n'), ((3271, 3310), 'megengine.functional.nn.dropout', 'F.nn.dropout', (['data', 'rate'], {'training': '(True)'}), '(data, rate, training=True)\n', (3283, 3310), True, 'import megengine.functional as F\n'), ((3326, 3365), 'megengine.functional.nn.dropout', 'F.nn.dropout', (['data', 'rate'], {'training': '(True)'}), '(data, rate, training=True)\n', (3338, 3365), True, 'import megengine.functional as F\n'), ((3431, 3455), 'megengine.core._imperative_rt.ops.set_global_rng_seed', 'set_global_rng_seed', (['(111)'], {}), '(111)\n', (3450, 3455), False, 'from megengine.core._imperative_rt.ops import set_global_rng_seed\n'), ((3471, 3510), 'megengine.functional.nn.dropout', 'F.nn.dropout', (['data', 'rate'], {'training': '(True)'}), '(data, rate, training=True)\n', (3483, 3510), True, 'import megengine.functional as F\n'), ((3572, 3596), 'megengine.core._imperative_rt.ops.set_global_rng_seed', 'set_global_rng_seed', (['(222)'], {}), '(222)\n', (3591, 3596), False, 'from megengine.core._imperative_rt.ops import set_global_rng_seed\n'), ((3612, 3651), 'megengine.functional.nn.dropout', 'F.nn.dropout', (['data', 'rate'], {'training': '(True)'}), '(data, rate, training=True)\n', (3624, 3651), True, 'import megengine.functional as F\n'), ((6310, 6324), 'megengine.functional.matmul', 'F.matmul', (['a', 'b'], {}), '(a, b)\n', (6318, 6324), True, 'import megengine.functional as F\n'), ((6427, 6452), 'numpy.random.randn', 'np.random.randn', (['*shape_a'], {}), '(*shape_a)\n', (6442, 6452), True, 'import numpy as np\n'), ((6469, 6494), 'numpy.random.randn', 'np.random.randn', (['*shape_b'], {}), '(*shape_b)\n', (6484, 6494), True, 'import numpy as np\n'), ((6778, 6836), 'megengine.functional.vision.interpolate', 'F.vision.interpolate', (['inp'], {'scale_factor': '(2.0)', 'mode': '"""linear"""'}), "(inp, scale_factor=2.0, mode='linear')\n", (6798, 6836), True, 'import megengine.functional as F\n'), ((6852, 6895), 'megengine.functional.vision.interpolate', 'F.vision.interpolate', (['inp', '(4)'], {'mode': '"""linear"""'}), "(inp, 4, mode='linear')\n", (6872, 6895), True, 'import megengine.functional as F\n'), ((7276, 7309), 'megengine.functional.vision.interpolate', 'F.vision.interpolate', (['inp', '[4, 4]'], {}), '(inp, [4, 4])\n', (7296, 7309), True, 'import megengine.functional as F\n'), ((7325, 7368), 'megengine.functional.vision.interpolate', 'F.vision.interpolate', (['inp'], {'scale_factor': '(2.0)'}), '(inp, scale_factor=2.0)\n', (7345, 7368), True, 'import megengine.functional as F\n'), ((7561, 7614), 'megengine.functional.vision.interpolate', 'F.vision.interpolate', (['inp', '[4, 4]'], {'align_corners': '(True)'}), '(inp, [4, 4], align_corners=True)\n', (7581, 7614), True, 'import megengine.functional as F\n'), ((7630, 7693), 'megengine.functional.vision.interpolate', 'F.vision.interpolate', (['inp'], {'scale_factor': '(2.0)', 'align_corners': '(True)'}), '(inp, scale_factor=2.0, align_corners=True)\n', (7650, 7693), True, 'import megengine.functional as F\n'), ((8661, 8681), 'numpy.random.rand', 'np.random.rand', (['(4)', '(2)'], {}), '(4, 2)\n', (8675, 8681), True, 'import numpy as np\n'), ((9191, 9223), 'megengine.core.tensor.utils.make_shape_tuple', 'make_shape_tuple', (['out_feat.shape'], {}), '(out_feat.shape)\n', (9207, 9223), False, 'from megengine.core.tensor.utils import make_shape_tuple\n'), ((9370, 9407), 'megengine.core.tensor.utils.make_shape_tuple', 'make_shape_tuple', (['inp_feat.grad.shape'], {}), '(inp_feat.grad.shape)\n', (9386, 9407), False, 'from megengine.core.tensor.utils import make_shape_tuple\n'), ((9411, 9443), 'megengine.core.tensor.utils.make_shape_tuple', 'make_shape_tuple', (['inp_feat.shape'], {}), '(inp_feat.shape)\n', (9427, 9443), False, 'from megengine.core.tensor.utils import make_shape_tuple\n'), ((9558, 9637), 'numpy.random.randn', 'np.random.randn', (['image_shape[0]', 'image_shape[1]', 'image_shape[2]', 'image_shape[3]'], {}), '(image_shape[0], image_shape[1], image_shape[2], image_shape[3])\n', (9573, 9637), True, 'import numpy as np\n'), ((9680, 9759), 'numpy.random.randn', 'np.random.randn', (['image_shape[0]', 'image_shape[1]', 'image_shape[2]', 'image_shape[3]'], {}), '(image_shape[0], image_shape[1], image_shape[2], image_shape[3])\n', (9695, 9759), True, 'import numpy as np\n'), ((9908, 9925), 'megengine.tensor', 'tensor', (['inp_feat1'], {}), '(inp_feat1)\n', (9914, 9925), False, 'from megengine import Parameter, Tensor, is_cuda_available, tensor\n'), ((9927, 9944), 'megengine.tensor', 'tensor', (['inp_feat2'], {}), '(inp_feat2)\n', (9933, 9944), False, 'from megengine import Parameter, Tensor, is_cuda_available, tensor\n'), ((10374, 10408), 'megengine.core.tensor.utils.make_shape_tuple', 'make_shape_tuple', (['data1.grad.shape'], {}), '(data1.grad.shape)\n', (10390, 10408), False, 'from megengine.core.tensor.utils import make_shape_tuple\n'), ((10412, 10441), 'megengine.core.tensor.utils.make_shape_tuple', 'make_shape_tuple', (['data1.shape'], {}), '(data1.shape)\n', (10428, 10441), False, 'from megengine.core.tensor.utils import make_shape_tuple\n'), ((12358, 12390), 'megengine.core.tensor.utils.make_shape_tuple', 'make_shape_tuple', (['out_feat.shape'], {}), '(out_feat.shape)\n', (12374, 12390), False, 'from megengine.core.tensor.utils import make_shape_tuple\n'), ((12537, 12574), 'megengine.core.tensor.utils.make_shape_tuple', 'make_shape_tuple', (['inp_feat.grad.shape'], {}), '(inp_feat.grad.shape)\n', (12553, 12574), False, 'from megengine.core.tensor.utils import make_shape_tuple\n'), ((12578, 12610), 'megengine.core.tensor.utils.make_shape_tuple', 'make_shape_tuple', (['inp_feat.shape'], {}), '(inp_feat.shape)\n', (12594, 12610), False, 'from megengine.core.tensor.utils import make_shape_tuple\n'), ((12843, 12871), 'megengine.core.tensor.utils.make_shape_tuple', 'make_shape_tuple', (['outp.shape'], {}), '(outp.shape)\n', (12859, 12871), False, 'from megengine.core.tensor.utils import make_shape_tuple\n'), ((12963, 13021), 'numpy.array', 'np.array', (['[[[[2.5, 4.5], [10.5, 12.5]]]]'], {'dtype': 'np.float32'}), '([[[[2.5, 4.5], [10.5, 12.5]]]], dtype=np.float32)\n', (12971, 13021), True, 'import numpy as np\n'), ((13082, 13114), 'megengine.core.tensor.utils.make_shape_tuple', 'make_shape_tuple', (['inp.grad.shape'], {}), '(inp.grad.shape)\n', (13098, 13114), False, 'from megengine.core.tensor.utils import make_shape_tuple\n'), ((13118, 13145), 'megengine.core.tensor.utils.make_shape_tuple', 'make_shape_tuple', (['inp.shape'], {}), '(inp.shape)\n', (13134, 13145), False, 'from megengine.core.tensor.utils import make_shape_tuple\n'), ((13209, 13349), 'numpy.array', 'np.array', (['[[[[0.25, 0.25, 0.25, 0.25], [0.25, 0.25, 0.25, 0.25], [0.25, 0.25, 0.25, \n 0.25], [0.25, 0.25, 0.25, 0.25]]]]'], {'dtype': 'np.float32'}), '([[[[0.25, 0.25, 0.25, 0.25], [0.25, 0.25, 0.25, 0.25], [0.25, 0.25,\n 0.25, 0.25], [0.25, 0.25, 0.25, 0.25]]]], dtype=np.float32)\n', (13217, 13349), True, 'import numpy as np\n'), ((13807, 13835), 'megengine.core.tensor.utils.make_shape_tuple', 'make_shape_tuple', (['outp.shape'], {}), '(outp.shape)\n', (13823, 13835), False, 'from megengine.core.tensor.utils import make_shape_tuple\n'), ((13927, 13977), 'numpy.array', 'np.array', (['[[[[5, 7], [13, 15]]]]'], {'dtype': 'np.float32'}), '([[[[5, 7], [13, 15]]]], dtype=np.float32)\n', (13935, 13977), True, 'import numpy as np\n'), ((14038, 14070), 'megengine.core.tensor.utils.make_shape_tuple', 'make_shape_tuple', (['inp.grad.shape'], {}), '(inp.grad.shape)\n', (14054, 14070), False, 'from megengine.core.tensor.utils import make_shape_tuple\n'), ((14074, 14101), 'megengine.core.tensor.utils.make_shape_tuple', 'make_shape_tuple', (['inp.shape'], {}), '(inp.shape)\n', (14090, 14101), False, 'from megengine.core.tensor.utils import make_shape_tuple\n'), ((14165, 14290), 'numpy.array', 'np.array', (['[[[[0.0, 0.0, 0.0, 0.0], [0.0, 1.0, 0.0, 1.0], [0.0, 0.0, 0.0, 0.0], [0.0, \n 1.0, 0.0, 1.0]]]]'], {'dtype': 'np.float32'}), '([[[[0.0, 0.0, 0.0, 0.0], [0.0, 1.0, 0.0, 1.0], [0.0, 0.0, 0.0, 0.0\n ], [0.0, 1.0, 0.0, 1.0]]]], dtype=np.float32)\n', (14173, 14290), True, 'import numpy as np\n'), ((14637, 14666), 'megengine.functional.one_hot', 'F.one_hot', (['inp'], {'num_classes': '(4)'}), '(inp, num_classes=4)\n', (14646, 14666), True, 'import megengine.functional as F\n'), ((14846, 14940), 'numpy.array', 'np.array', (['[[3, 2, 4, 4, 2, 4, 0, 4, 4, 1], [4, 1, 1, 3, 2, 2, 4, 2, 4, 3]]'], {'dtype': 'np.int32'}), '([[3, 2, 4, 4, 2, 4, 0, 4, 4, 1], [4, 1, 1, 3, 2, 2, 4, 2, 4, 3]],\n dtype=np.int32)\n', (14854, 14940), True, 'import numpy as np\n'), ((14987, 14998), 'megengine.tensor', 'tensor', (['arr'], {}), '(arr)\n', (14993, 14998), False, 'from megengine import Parameter, Tensor, is_cuda_available, tensor\n'), ((15013, 15031), 'megengine.functional.one_hot', 'F.one_hot', (['inp', '(10)'], {}), '(inp, 10)\n', (15022, 15031), True, 'import megengine.functional as F\n'), ((15555, 15609), 'megengine.functional.vision.interpolate', 'F.vision.interpolate', (['x', 'target_shape'], {'mode': '"""bilinear"""'}), "(x, target_shape, mode='bilinear')\n", (15575, 15609), True, 'import megengine.functional as F\n'), ((15800, 15823), 'numpy.ones', 'np.ones', (['(3, 3, 10, 10)'], {}), '((3, 3, 10, 10))\n', (15807, 15823), True, 'import numpy as np\n'), ((16718, 16759), 'numpy.array', 'np.array', (['[[[[5, 6], [9, 10]]]]'], {'dtype': 'dt'}), '([[[[5, 6], [9, 10]]]], dtype=dt)\n', (16726, 16759), True, 'import numpy as np\n'), ((17370, 17485), 'numpy.array', 'np.array', (['[[[[5, 6], [9, 10]]], [[[21, 22], [25, 26]]], [[[21, 22], [25, 26]]], [[[5,\n 6], [9, 10]]]]'], {'dtype': 'dt'}), '([[[[5, 6], [9, 10]]], [[[21, 22], [25, 26]]], [[[21, 22], [25, 26]\n ]], [[[5, 6], [9, 10]]]], dtype=dt)\n', (17378, 17485), True, 'import numpy as np\n'), ((17840, 17855), 'megengine.tensor', 'tensor', (['weightv'], {}), '(weightv)\n', (17846, 17855), False, 'from megengine import Parameter, Tensor, is_cuda_available, tensor\n'), ((18141, 18160), 'megengine.is_cuda_available', 'is_cuda_available', ([], {}), '()\n', (18158, 18160), False, 'from megengine import Parameter, Tensor, is_cuda_available, tensor\n'), ((18623, 18679), 'numpy.array', 'np.array', (['[[[[1.0, 4.0], [4.0, 4.0]]]]'], {'dtype': 'np.float32'}), '([[[[1.0, 4.0], [4.0, 4.0]]]], dtype=np.float32)\n', (18631, 18679), True, 'import numpy as np\n'), ((19782, 19835), 'functools.partial', 'partial', (['F.nn.binary_cross_entropy'], {'with_logits': '(False)'}), '(F.nn.binary_cross_entropy, with_logits=False)\n', (19789, 19835), False, 'from functools import partial\n'), ((20744, 20778), 'megengine.functional.nn.hinge_loss', 'F.nn.hinge_loss', (['pred', 'label', '"""L2"""'], {}), "(pred, label, 'L2')\n", (20759, 20778), True, 'import megengine.functional as F\n'), ((20955, 21055), 'megengine.functional.vision.nms', 'F.vision.nms', (['inp'], {'scores': 'scores', 'iou_thresh': '(0.5)', 'max_output': '(None if is_symbolic is None else 4)'}), '(inp, scores=scores, iou_thresh=0.5, max_output=None if \n is_symbolic is None else 4)\n', (20967, 21055), True, 'import megengine.functional as F\n'), ((22446, 22484), 'numpy.random.normal', 'np.random.normal', ([], {'size': '(N, IC, IH, IW)'}), '(size=(N, IC, IH, IW))\n', (22462, 22484), True, 'import numpy as np\n'), ((22499, 22538), 'numpy.random.normal', 'np.random.normal', ([], {'size': '(OC, IC, KH, KW)'}), '(size=(OC, IC, KH, KW))\n', (22515, 22538), True, 'import numpy as np\n'), ((22553, 22589), 'numpy.random.normal', 'np.random.normal', ([], {'size': '(1, OC, 1, 1)'}), '(size=(1, OC, 1, 1))\n', (22569, 22589), True, 'import numpy as np\n'), ((22610, 22636), 'megengine.core.tensor.dtype.get_scale', 'dtype.get_scale', (['inp_dtype'], {}), '(inp_dtype)\n', (22625, 22636), True, 'import megengine.core.tensor.dtype as dtype\n'), ((22655, 22679), 'megengine.core.tensor.dtype.get_scale', 'dtype.get_scale', (['w_dtype'], {}), '(w_dtype)\n', (22670, 22679), True, 'import megengine.core.tensor.dtype as dtype\n'), ((22698, 22722), 'megengine.core.tensor.dtype.get_scale', 'dtype.get_scale', (['b_dtype'], {}), '(b_dtype)\n', (22713, 22722), True, 'import megengine.core.tensor.dtype as dtype\n'), ((22739, 22791), 'megengine.core.tensor.dtype.convert_to_qint8', 'dtype.convert_to_qint8', (['(inp_v * inp_scale)', 'inp_dtype'], {}), '(inp_v * inp_scale, inp_dtype)\n', (22761, 22791), True, 'import megengine.core.tensor.dtype as dtype\n'), ((22805, 22851), 'megengine.core.tensor.dtype.convert_to_qint8', 'dtype.convert_to_qint8', (['(w_v * w_scale)', 'w_dtype'], {}), '(w_v * w_scale, w_dtype)\n', (22827, 22851), True, 'import megengine.core.tensor.dtype as dtype\n'), ((22865, 22912), 'megengine.core.tensor.dtype.convert_to_qint32', 'dtype.convert_to_qint32', (['(b_v * b_scale)', 'b_dtype'], {}), '(b_v * b_scale, b_dtype)\n', (22888, 22912), True, 'import megengine.core.tensor.dtype as dtype\n'), ((22933, 22962), 'megengine.tensor', 'tensor', (['inpv'], {'dtype': 'inp_dtype'}), '(inpv, dtype=inp_dtype)\n', (22939, 22962), False, 'from megengine import Parameter, Tensor, is_cuda_available, tensor\n'), ((22980, 23008), 'megengine.Parameter', 'Parameter', (['wv'], {'dtype': 'w_dtype'}), '(wv, dtype=w_dtype)\n', (22989, 23008), False, 'from megengine import Parameter, Tensor, is_cuda_available, tensor\n'), ((23027, 23055), 'megengine.Parameter', 'Parameter', (['bv'], {'dtype': 'b_dtype'}), '(bv, dtype=b_dtype)\n', (23036, 23055), False, 'from megengine import Parameter, Tensor, is_cuda_available, tensor\n'), ((24663, 24682), 'megengine.functional.flatten', 'F.flatten', (['expected'], {}), '(expected)\n', (24672, 24682), True, 'import megengine.functional as F\n'), ((24700, 24717), 'megengine.functional.flatten', 'F.flatten', (['result'], {}), '(result)\n', (24709, 24717), True, 'import megengine.functional as F\n'), ((21905, 21928), 'megengine.device.get_device_count', 'get_device_count', (['"""gpu"""'], {}), "('gpu')\n", (21921, 21928), False, 'from megengine.device import get_device_count\n'), ((25654, 25692), 'numpy.random.normal', 'np.random.normal', ([], {'size': '(N, IC, IH, IW)'}), '(size=(N, IC, IH, IW))\n', (25670, 25692), True, 'import numpy as np\n'), ((25707, 25749), 'numpy.random.normal', 'np.random.normal', ([], {'size': '(N, OC, IC, KH, KW)'}), '(size=(N, OC, IC, KH, KW))\n', (25723, 25749), True, 'import numpy as np\n'), ((25764, 25800), 'numpy.random.normal', 'np.random.normal', ([], {'size': '(1, OC, 1, 1)'}), '(size=(1, OC, 1, 1))\n', (25780, 25800), True, 'import numpy as np\n'), ((25821, 25847), 'megengine.core.tensor.dtype.get_scale', 'dtype.get_scale', (['inp_dtype'], {}), '(inp_dtype)\n', (25836, 25847), True, 'import megengine.core.tensor.dtype as dtype\n'), ((25866, 25890), 'megengine.core.tensor.dtype.get_scale', 'dtype.get_scale', (['w_dtype'], {}), '(w_dtype)\n', (25881, 25890), True, 'import megengine.core.tensor.dtype as dtype\n'), ((25909, 25933), 'megengine.core.tensor.dtype.get_scale', 'dtype.get_scale', (['b_dtype'], {}), '(b_dtype)\n', (25924, 25933), True, 'import megengine.core.tensor.dtype as dtype\n'), ((25950, 26002), 'megengine.core.tensor.dtype.convert_to_qint8', 'dtype.convert_to_qint8', (['(inp_v * inp_scale)', 'inp_dtype'], {}), '(inp_v * inp_scale, inp_dtype)\n', (25972, 26002), True, 'import megengine.core.tensor.dtype as dtype\n'), ((26016, 26062), 'megengine.core.tensor.dtype.convert_to_qint8', 'dtype.convert_to_qint8', (['(w_v * w_scale)', 'w_dtype'], {}), '(w_v * w_scale, w_dtype)\n', (26038, 26062), True, 'import megengine.core.tensor.dtype as dtype\n'), ((26076, 26123), 'megengine.core.tensor.dtype.convert_to_qint32', 'dtype.convert_to_qint32', (['(b_v * b_scale)', 'b_dtype'], {}), '(b_v * b_scale, b_dtype)\n', (26099, 26123), True, 'import megengine.core.tensor.dtype as dtype\n'), ((26144, 26173), 'megengine.tensor', 'tensor', (['inpv'], {'dtype': 'inp_dtype'}), '(inpv, dtype=inp_dtype)\n', (26150, 26173), False, 'from megengine import Parameter, Tensor, is_cuda_available, tensor\n'), ((26191, 26219), 'megengine.Parameter', 'Parameter', (['wv'], {'dtype': 'w_dtype'}), '(wv, dtype=w_dtype)\n', (26200, 26219), False, 'from megengine import Parameter, Tensor, is_cuda_available, tensor\n'), ((26238, 26266), 'megengine.Parameter', 'Parameter', (['bv'], {'dtype': 'b_dtype'}), '(bv, dtype=b_dtype)\n', (26247, 26266), False, 'from megengine import Parameter, Tensor, is_cuda_available, tensor\n'), ((26879, 26898), 'megengine.functional.flatten', 'F.flatten', (['expected'], {}), '(expected)\n', (26888, 26898), True, 'import megengine.functional as F\n'), ((26981, 26998), 'megengine.functional.flatten', 'F.flatten', (['result'], {}), '(result)\n', (26990, 26998), True, 'import megengine.functional as F\n'), ((25237, 25260), 'megengine.device.get_device_count', 'get_device_count', (['"""gpu"""'], {}), "('gpu')\n", (25253, 25260), False, 'from megengine.device import get_device_count\n'), ((27271, 27302), 'numpy.random.randn', 'np.random.randn', (['(1)', '(3)', '(224)', '(224)'], {}), '(1, 3, 224, 224)\n', (27286, 27302), True, 'import numpy as np\n'), ((27342, 27370), 'numpy.random.randn', 'np.random.randn', (['(64)', '(3)', '(7)', '(7)'], {}), '(64, 3, 7, 7)\n', (27357, 27370), True, 'import numpy as np\n'), ((28010, 28038), 'numpy.random.randn', 'np.random.randn', (['(16)', '(3)', '(3)', '(3)'], {}), '(16, 3, 3, 3)\n', (28025, 28038), True, 'import numpy as np\n'), ((28321, 28352), 'numpy.random.randn', 'np.random.randn', (['(16)', '(3)', '(3)', '(3)', '(3)'], {}), '(16, 3, 3, 3, 3)\n', (28336, 28352), True, 'import numpy as np\n'), ((28500, 28536), 'numpy.ones', 'np.ones', (['(2, 2, 4)'], {'dtype': 'np.float32'}), '((2, 2, 4), dtype=np.float32)\n', (28507, 28536), True, 'import numpy as np\n'), ((28558, 28594), 'numpy.ones', 'np.ones', (['(3, 2, 2)'], {'dtype': 'np.float32'}), '((3, 2, 2), dtype=np.float32)\n', (28565, 28594), True, 'import numpy as np\n'), ((28704, 28789), 'numpy.array', 'np.array', (['[[[4, 4], [4, 4], [4, 4]], [[4, 4], [4, 4], [4, 4]]]'], {'dtype': 'np.float32'}), '([[[4, 4], [4, 4], [4, 4]], [[4, 4], [4, 4], [4, 4]]], dtype=np.float32\n )\n', (28712, 28789), True, 'import numpy as np\n'), ((29012, 29036), 'numpy.random.randn', 'np.random.randn', (['*tshape'], {}), '(*tshape)\n', (29027, 29036), True, 'import numpy as np\n'), ((29076, 29109), 'numpy.ones', 'np.ones', (['pshape'], {'dtype': 'np.float32'}), '(pshape, dtype=np.float32)\n', (29083, 29109), True, 'import numpy as np\n'), ((29129, 29163), 'numpy.zeros', 'np.zeros', (['pshape'], {'dtype': 'np.float32'}), '(pshape, dtype=np.float32)\n', (29137, 29163), True, 'import numpy as np\n'), ((29636, 29678), 'numpy.ones', 'np.ones', (['(2, 2, 4, 4, 4)'], {'dtype': 'np.float32'}), '((2, 2, 4, 4, 4), dtype=np.float32)\n', (29643, 29678), True, 'import numpy as np\n'), ((29700, 29742), 'numpy.ones', 'np.ones', (['(3, 2, 2, 2, 2)'], {'dtype': 'np.float32'}), '((3, 2, 2, 2, 2), dtype=np.float32)\n', (29707, 29742), True, 'import numpy as np\n'), ((30420, 30443), 'megengine.functional.cond_take', 'F.cond_take', (['mask', 'data'], {}), '(mask, data)\n', (30431, 30443), True, 'import megengine.functional as F\n'), ((30644, 30656), 'megengine.tensor', 'tensor', (['x_np'], {}), '(x_np)\n', (30650, 30656), False, 'from megengine import Parameter, Tensor, is_cuda_available, tensor\n'), ((30672, 30687), 'megengine.tensor', 'tensor', (['mask_np'], {}), '(mask_np)\n', (30678, 30687), False, 'from megengine import Parameter, Tensor, is_cuda_available, tensor\n'), ((31436, 31455), 'megengine.functional.zeros', 'F.zeros', (['(100, 100)'], {}), '((100, 100))\n', (31443, 31455), True, 'import megengine.functional as F\n'), ((31500, 31519), 'megengine.functional.argmax', 'F.argmax', (['x'], {'axis': '(0)'}), '(x, axis=0)\n', (31508, 31519), True, 'import megengine.functional as F\n'), ((31575, 31594), 'megengine.functional.zeros', 'F.zeros', (['(100, 100)'], {}), '((100, 100))\n', (31582, 31594), True, 'import megengine.functional as F\n'), ((31638, 31657), 'megengine.functional.argmin', 'F.argmin', (['x'], {'axis': '(0)'}), '(x, axis=0)\n', (31646, 31657), True, 'import megengine.functional as F\n'), ((32157, 32168), 'megengine.tensor', 'tensor', (['inp'], {}), '(inp)\n', (32163, 32168), False, 'from megengine import Parameter, Tensor, is_cuda_available, tensor\n'), ((32178, 32190), 'megengine.tensor', 'tensor', (['rois'], {}), '(rois)\n', (32184, 32190), False, 'from megengine import Parameter, Tensor, is_cuda_available, tensor\n'), ((32200, 32213), 'megengine.tensor', 'tensor', (['trans'], {}), '(trans)\n', (32206, 32213), False, 'from megengine import Parameter, Tensor, is_cuda_available, tensor\n'), ((32423, 32466), 'numpy.dot', 'np.dot', (['rgb[..., :3]', '[0.299, 0.587, 0.114]'], {}), '(rgb[..., :3], [0.299, 0.587, 0.114])\n', (32429, 32466), True, 'import numpy as np\n'), ((32506, 32549), 'numpy.dot', 'np.dot', (['bgr[..., :3]', '[0.114, 0.587, 0.299]'], {}), '(bgr[..., :3], [0.114, 0.587, 0.299])\n', (32512, 32549), True, 'import numpy as np\n'), ((33117, 33128), 'megengine.functional.ones', 'F.ones', (['shp'], {}), '(shp)\n', (33123, 33128), True, 'import megengine.functional as F\n'), ((33130, 33145), 'numpy.ones', 'np.ones', (['np_shp'], {}), '(np_shp)\n', (33137, 33145), True, 'import numpy as np\n'), ((33247, 33279), 'megengine.functional.zeros', 'F.zeros', (['shape'], {'dtype': 'np.float32'}), '(shape, dtype=np.float32)\n', (33254, 33279), True, 'import megengine.functional as F\n'), ((33430, 33462), 'megengine.functional.zeros', 'F.zeros', (['shape'], {'dtype': 'np.float32'}), '(shape, dtype=np.float32)\n', (33437, 33462), True, 'import megengine.functional as F\n'), ((33478, 33505), 'pytest.raises', 'pytest.raises', (['RuntimeError'], {}), '(RuntimeError)\n', (33491, 33505), False, 'import pytest\n'), ((33519, 33546), 'megengine.functional.utils._assert_equal', 'F.utils._assert_equal', (['x', 'y'], {}), '(x, y)\n', (33540, 33546), True, 'import megengine.functional as F\n'), ((33585, 33616), 'numpy.random.normal', 'np.random.normal', (['(0)', '(1)', '(32, 5)'], {}), '(0, 1, (32, 5))\n', (33601, 33616), True, 'import numpy as np\n'), ((34716, 34727), 'megengine.tensor', 'tensor', (['inp'], {}), '(inp)\n', (34722, 34727), False, 'from megengine import Parameter, Tensor, is_cuda_available, tensor\n'), ((35845, 35856), 'megengine.tensor', 'tensor', (['inp'], {}), '(inp)\n', (35851, 35856), False, 'from megengine import Parameter, Tensor, is_cuda_available, tensor\n'), ((36186, 36197), 'megengine.tensor', 'tensor', (['src'], {}), '(src)\n', (36192, 36197), False, 'from megengine import Parameter, Tensor, is_cuda_available, tensor\n'), ((36372, 36383), 'megengine.tensor', 'tensor', (['src'], {}), '(src)\n', (36378, 36383), False, 'from megengine import Parameter, Tensor, is_cuda_available, tensor\n'), ((36553, 36564), 'megengine.tensor', 'tensor', (['src'], {}), '(src)\n', (36559, 36564), False, 'from megengine import Parameter, Tensor, is_cuda_available, tensor\n'), ((36715, 36726), 'megengine.tensor', 'tensor', (['src'], {}), '(src)\n', (36721, 36726), False, 'from megengine import Parameter, Tensor, is_cuda_available, tensor\n'), ((37652, 37663), 'megengine.tensor', 'tensor', (['inp'], {}), '(inp)\n', (37658, 37663), False, 'from megengine import Parameter, Tensor, is_cuda_available, tensor\n'), ((37866, 37877), 'megengine.tensor', 'tensor', (['inp'], {}), '(inp)\n', (37872, 37877), False, 'from megengine import Parameter, Tensor, is_cuda_available, tensor\n'), ((38087, 38098), 'megengine.tensor', 'tensor', (['inp'], {}), '(inp)\n', (38093, 38098), False, 'from megengine import Parameter, Tensor, is_cuda_available, tensor\n'), ((38315, 38326), 'megengine.tensor', 'tensor', (['inp'], {}), '(inp)\n', (38321, 38326), False, 'from megengine import Parameter, Tensor, is_cuda_available, tensor\n'), ((38550, 38561), 'megengine.tensor', 'tensor', (['inp'], {}), '(inp)\n', (38556, 38561), False, 'from megengine import Parameter, Tensor, is_cuda_available, tensor\n'), ((38816, 38867), 'megengine.functional.pixel_shuffle', 'F.pixel_shuffle', (['inp'], {'upscale_factor': 'upscale_factor'}), '(inp, upscale_factor=upscale_factor)\n', (38831, 38867), True, 'import megengine.functional as F\n'), ((39373, 39404), 'numpy.random.randn', 'np.random.randn', (['(1)', '(3)', '(224)', '(224)'], {}), '(1, 3, 224, 224)\n', (39388, 39404), True, 'import numpy as np\n'), ((39444, 39472), 'numpy.random.randn', 'np.random.randn', (['(64)', '(3)', '(7)', '(7)'], {}), '(64, 3, 7, 7)\n', (39459, 39472), True, 'import numpy as np\n'), ((39610, 39650), 'megengine.config._override', 'config._override', ([], {'compute_mode': '"""float32"""'}), "(compute_mode='float32')\n", (39626, 39650), True, 'import megengine.config as config\n'), ((39674, 39728), 'megengine.functional.conv2d', 'F.conv2d', (['inp', 'weight', 'None', '(2, 2)', '(3, 3)', '(1, 1)', '(1)'], {}), '(inp, weight, None, (2, 2), (3, 3), (1, 1), 1)\n', (39682, 39728), True, 'import megengine.functional as F\n'), ((40351, 40387), 'megengine.config._override', 'config._override', ([], {'conv_format': '"""NHWC"""'}), "(conv_format='NHWC')\n", (40367, 40387), True, 'import megengine.config as config\n'), ((40411, 40452), 'megengine.functional.vision.warp_perspective', 'F.vision.warp_perspective', (['inp', 'M', '(2, 2)'], {}), '(inp, M, (2, 2))\n', (40436, 40452), True, 'import megengine.functional as F\n'), ((41404, 41450), 'numpy.pad', 'np.pad', (['data', '((0, 0), (0, 0), (1, 1), (1, 1))'], {}), '(data, ((0, 0), (0, 0), (1, 1), (1, 1)))\n', (41410, 41450), True, 'import numpy as np\n'), ((41470, 41558), 'numpy.zeros', 'np.zeros', (['(batch_size, out_channels, output_height, output_width)'], {'dtype': 'np.float32'}), '((batch_size, out_channels, output_height, output_width), dtype=np.\n float32)\n', (41478, 41558), True, 'import numpy as np\n'), ((42608, 42620), 'megengine.tensor', 'tensor', (['data'], {}), '(data)\n', (42614, 42620), False, 'from megengine import Parameter, Tensor, is_cuda_available, tensor\n'), ((42630, 42644), 'megengine.tensor', 'tensor', (['weight'], {}), '(weight)\n', (42636, 42644), False, 'from megengine import Parameter, Tensor, is_cuda_available, tensor\n'), ((2279, 2311), 'numpy.ones', 'np.ones', (['shape'], {'dtype': 'np.float32'}), '(shape, dtype=np.float32)\n', (2286, 2311), True, 'import numpy as np\n'), ((2390, 2429), 'megengine.functional.nn.dropout', 'F.nn.dropout', (['data', 'rate'], {'training': '(True)'}), '(data, rate, training=True)\n', (2402, 2429), True, 'import megengine.functional as F\n'), ((2692, 2724), 'numpy.ones', 'np.ones', (['shape'], {'dtype': 'np.float32'}), '(shape, dtype=np.float32)\n', (2699, 2724), True, 'import numpy as np\n'), ((2804, 2843), 'megengine.functional.nn.dropout', 'F.nn.dropout', (['data', 'rate'], {'training': '(True)'}), '(data, rate, training=True)\n', (2816, 2843), True, 'import megengine.functional as F\n'), ((2863, 2902), 'megengine.functional.nn.dropout', 'F.nn.dropout', (['out1', 'rate'], {'training': '(True)'}), '(out1, rate, training=True)\n', (2875, 2902), True, 'import megengine.functional as F\n'), ((2922, 2961), 'megengine.functional.nn.dropout', 'F.nn.dropout', (['out2', 'rate'], {'training': '(True)'}), '(out2, rate, training=True)\n', (2934, 2961), True, 'import megengine.functional as F\n'), ((3181, 3204), 'numpy.random.randn', 'np.random.randn', (['*shape'], {}), '(*shape)\n', (3196, 3204), True, 'import numpy as np\n'), ((3959, 3983), 'numpy.random.random', 'np.random.random', (['shape1'], {}), '(shape1)\n', (3975, 3983), True, 'import numpy as np\n'), ((4014, 4038), 'numpy.random.random', 'np.random.random', (['shape2'], {}), '(shape2)\n', (4030, 4038), True, 'import numpy as np\n'), ((4615, 4639), 'numpy.random.random', 'np.random.random', (['shape1'], {}), '(shape1)\n', (4631, 4639), True, 'import numpy as np\n'), ((4670, 4694), 'numpy.random.random', 'np.random.random', (['shape2'], {}), '(shape2)\n', (4686, 4694), True, 'import numpy as np\n'), ((4725, 4749), 'numpy.random.random', 'np.random.random', (['shape3'], {}), '(shape3)\n', (4741, 4749), True, 'import numpy as np\n'), ((4780, 4804), 'numpy.random.random', 'np.random.random', (['shape4'], {}), '(shape4)\n', (4796, 4804), True, 'import numpy as np\n'), ((5184, 5208), 'numpy.random.random', 'np.random.random', (['shape1'], {}), '(shape1)\n', (5200, 5208), True, 'import numpy as np\n'), ((5239, 5263), 'numpy.random.random', 'np.random.random', (['shape2'], {}), '(shape2)\n', (5255, 5263), True, 'import numpy as np\n'), ((5294, 5318), 'numpy.random.random', 'np.random.random', (['shape3'], {}), '(shape3)\n', (5310, 5318), True, 'import numpy as np\n'), ((5349, 5373), 'numpy.random.random', 'np.random.random', (['shape4'], {}), '(shape4)\n', (5365, 5373), True, 'import numpy as np\n'), ((5404, 5428), 'numpy.random.random', 'np.random.random', (['shape5'], {}), '(shape5)\n', (5420, 5428), True, 'import numpy as np\n'), ((6373, 6404), 'megengine.jit.trace', 'jit.trace', ([], {'symbolic': 'is_symbolic'}), '(symbolic=is_symbolic)\n', (6382, 6404), True, 'import megengine.jit as jit\n'), ((6958, 7012), 'numpy.array', 'np.array', (['[[[1.0, 1.25, 1.75, 2.0]]]'], {'dtype': 'np.float32'}), '([[[1.0, 1.25, 1.75, 2.0]]], dtype=np.float32)\n', (6966, 7012), True, 'import numpy as np\n'), ((7085, 7139), 'numpy.array', 'np.array', (['[[[1.0, 1.25, 1.75, 2.0]]]'], {'dtype': 'np.float32'}), '([[[1.0, 1.25, 1.75, 2.0]]], dtype=np.float32)\n', (7093, 7139), True, 'import numpy as np\n'), ((7890, 7915), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (7903, 7915), False, 'import pytest\n'), ((7929, 7987), 'megengine.functional.vision.interpolate', 'F.vision.interpolate', (['inp'], {'scale_factor': '(2.0)', 'mode': '"""linear"""'}), "(inp, scale_factor=2.0, mode='linear')\n", (7949, 7987), True, 'import megengine.functional as F\n'), ((8126, 8151), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (8139, 8151), False, 'import pytest\n'), ((8165, 8230), 'megengine.functional.vision.interpolate', 'F.vision.interpolate', (['inp'], {'scale_factor': '[2.0, 3.0]', 'mode': '"""linear"""'}), "(inp, scale_factor=[2.0, 3.0], mode='linear')\n", (8185, 8230), True, 'import megengine.functional as F\n'), ((8706, 8726), 'numpy.random.rand', 'np.random.rand', (['(4)', '(2)'], {}), '(4, 2)\n', (8720, 8726), True, 'import numpy as np\n'), ((8893, 8899), 'megengine.core.autodiff.grad.Grad', 'Grad', ([], {}), '()\n', (8897, 8899), False, 'from megengine.core.autodiff.grad import Grad\n'), ((9335, 9356), 'megengine.functional.ones_like', 'F.ones_like', (['out_feat'], {}), '(out_feat)\n', (9346, 9356), True, 'import megengine.functional as F\n'), ((9812, 9832), 'numpy.ones', 'np.ones', (['image_shape'], {}), '(image_shape)\n', (9819, 9832), True, 'import numpy as np\n'), ((9864, 9884), 'numpy.ones', 'np.ones', (['image_shape'], {}), '(image_shape)\n', (9871, 9884), True, 'import numpy as np\n'), ((10059, 10065), 'megengine.core.autodiff.grad.Grad', 'Grad', ([], {}), '()\n', (10063, 10065), False, 'from megengine.core.autodiff.grad import Grad\n'), ((10339, 10360), 'megengine.functional.ones_like', 'F.ones_like', (['out_feat'], {}), '(out_feat)\n', (10350, 10360), True, 'import megengine.functional as F\n'), ((12150, 12156), 'megengine.core.autodiff.grad.Grad', 'Grad', ([], {}), '()\n', (12154, 12156), False, 'from megengine.core.autodiff.grad import Grad\n'), ((12502, 12523), 'megengine.functional.ones_like', 'F.ones_like', (['out_feat'], {}), '(out_feat)\n', (12513, 12523), True, 'import megengine.functional as F\n'), ((12747, 12753), 'megengine.core.autodiff.grad.Grad', 'Grad', ([], {}), '()\n', (12751, 12753), False, 'from megengine.core.autodiff.grad import Grad\n'), ((13051, 13068), 'megengine.functional.ones_like', 'F.ones_like', (['outp'], {}), '(outp)\n', (13062, 13068), True, 'import megengine.functional as F\n'), ((13711, 13717), 'megengine.core.autodiff.grad.Grad', 'Grad', ([], {}), '()\n', (13715, 13717), False, 'from megengine.core.autodiff.grad import Grad\n'), ((14007, 14024), 'megengine.functional.ones_like', 'F.ones_like', (['outp'], {}), '(outp)\n', (14018, 14024), True, 'import megengine.functional as F\n'), ((14590, 14621), 'numpy.arange', 'np.arange', (['(1)', '(4)'], {'dtype': 'np.int32'}), '(1, 4, dtype=np.int32)\n', (14599, 14621), True, 'import numpy as np\n'), ((15494, 15521), 'numpy.random.randn', 'np.random.randn', (['*inp_shape'], {}), '(*inp_shape)\n', (15509, 15521), True, 'import numpy as np\n'), ((19004, 19039), 'numpy.random.uniform', 'np.random.uniform', ([], {'size': 'data1_shape'}), '(size=data1_shape)\n', (19021, 19039), True, 'import numpy as np\n'), ((19072, 19108), 'numpy.random.uniform', 'np.random.uniform', ([], {'size': 'label1_shape'}), '(size=label1_shape)\n', (19089, 19108), True, 'import numpy as np\n'), ((19216, 19251), 'numpy.random.uniform', 'np.random.uniform', ([], {'size': 'data2_shape'}), '(size=data2_shape)\n', (19233, 19251), True, 'import numpy as np\n'), ((19284, 19320), 'numpy.random.uniform', 'np.random.uniform', ([], {'size': 'label2_shape'}), '(size=label2_shape)\n', (19301, 19320), True, 'import numpy as np\n'), ((21156, 21187), 'megengine.jit.trace', 'jit.trace', ([], {'symbolic': 'is_symbolic'}), '(symbolic=is_symbolic)\n', (21165, 21187), True, 'import megengine.jit as jit\n'), ((21583, 21618), 'numpy.array', 'np.array', (['[2, 1, 3]'], {'dtype': 'np.int32'}), '([2, 1, 3], dtype=np.int32)\n', (21591, 21618), True, 'import numpy as np\n'), ((21629, 21659), 'numpy.array', 'np.array', (['[]'], {'dtype': 'np.float32'}), '([], dtype=np.float32)\n', (21637, 21659), True, 'import numpy as np\n'), ((21848, 21876), 'numpy.array', 'np.array', (['[]'], {'dtype': 'np.int32'}), '([], dtype=np.int32)\n', (21856, 21876), True, 'import numpy as np\n'), ((23242, 23327), 'megengine.functional.reshape', 'F.reshape', (['var', '(var.shape[0], var.shape[1] // 4, 4, var.shape[2], var.shape[3])'], {}), '(var, (var.shape[0], var.shape[1] // 4, 4, var.shape[2], var.shape[3])\n )\n', (23251, 23327), True, 'import megengine.functional as F\n'), ((23371, 23404), 'megengine.functional.transpose', 'F.transpose', (['var', '(0, 1, 3, 4, 2)'], {}), '(var, (0, 1, 3, 4, 2))\n', (23382, 23404), True, 'import megengine.functional as F\n'), ((23480, 23556), 'megengine.functional.conv2d', 'F.conv2d', (['inp', 'w', '(b if has_bias else None)'], {'stride': '(SH, SW)', 'padding': '(PH, PW)'}), '(inp, w, b if has_bias else None, stride=(SH, SW), padding=(PH, PW))\n', (23488, 23556), True, 'import megengine.functional as F\n'), ((24007, 24137), 'megengine.functional.quantized.conv_bias_activation', 'F.quantized.conv_bias_activation', (['inp', 'w', 'b'], {'stride': '(SH, SW)', 'padding': '(PH, PW)', 'dtype': 'out_dtype', 'nonlinear_mode': 'nonlinear_mode'}), '(inp, w, b, stride=(SH, SW), padding=(PH,\n PW), dtype=out_dtype, nonlinear_mode=nonlinear_mode)\n', (24039, 24137), True, 'import megengine.functional as F\n'), ((24290, 24309), 'megengine.is_cuda_available', 'is_cuda_available', ([], {}), '()\n', (24307, 24309), False, 'from megengine import Parameter, Tensor, is_cuda_available, tensor\n'), ((24607, 24643), 'megengine.functional.transpose', 'F.transpose', (['result', '(0, 1, 4, 2, 3)'], {}), '(result, (0, 1, 4, 2, 3))\n', (24618, 24643), True, 'import megengine.functional as F\n'), ((26536, 26642), 'megengine.functional.quantized.batch_conv_bias_activation', 'F.quantized.batch_conv_bias_activation', (['inp', 'w', 'b'], {'stride': '(SH, SW)', 'padding': '(PH, PW)', 'dtype': 'out_dtype'}), '(inp, w, b, stride=(SH, SW), padding=\n (PH, PW), dtype=out_dtype)\n', (26574, 26642), True, 'import megengine.functional as F\n'), ((26733, 26792), 'megengine.functional.conv2d', 'F.conv2d', (['inp_fp32', 'w_fp32[0]', '(b_fp32 if has_bias else None)'], {}), '(inp_fp32, w_fp32[0], b_fp32 if has_bias else None)\n', (26741, 26792), True, 'import megengine.functional as F\n'), ((27872, 27900), 'numpy.random.randn', 'np.random.randn', (['(3)', '(224)', '(224)'], {}), '(3, 224, 224)\n', (27887, 27900), True, 'import numpy as np\n'), ((28178, 28211), 'numpy.random.randn', 'np.random.randn', (['(3)', '(224)', '(224)', '(224)'], {}), '(3, 224, 224, 224)\n', (28193, 28211), True, 'import numpy as np\n'), ((29844, 29886), 'numpy.ones', 'np.ones', (['(2, 3, 2, 2, 2)'], {'dtype': 'np.float32'}), '((2, 3, 2, 2, 2), dtype=np.float32)\n', (29851, 29886), True, 'import numpy as np\n'), ((30490, 30521), 'megengine.jit.trace', 'jit.trace', ([], {'symbolic': 'is_symbolic'}), '(symbolic=is_symbolic)\n', (30499, 30521), True, 'import megengine.jit as jit\n'), ((31796, 31830), 'numpy.random.random', 'np.random.random', (['(1, 256, 64, 64)'], {}), '((1, 256, 64, 64))\n', (31812, 31830), True, 'import numpy as np\n'), ((31860, 31884), 'numpy.random.random', 'np.random.random', (['(1, 5)'], {}), '((1, 5))\n', (31876, 31884), True, 'import numpy as np\n'), ((31915, 31946), 'numpy.random.random', 'np.random.random', (['(24, 2, 7, 7)'], {}), '((24, 2, 7, 7))\n', (31931, 31946), True, 'import numpy as np\n'), ((32561, 32588), 'numpy.random.randn', 'np.random.randn', (['(3)', '(3)', '(3)', '(3)'], {}), '(3, 3, 3, 3)\n', (32576, 32588), True, 'import numpy as np\n'), ((37586, 37607), 'numpy.arange', 'np.arange', (['(16 * 3 * 3)'], {}), '(16 * 3 * 3)\n', (37595, 37607), True, 'import numpy as np\n'), ((37793, 37818), 'numpy.arange', 'np.arange', (['(3 * 18 * 3 * 3)'], {}), '(3 * 18 * 3 * 3)\n', (37802, 37818), True, 'import numpy as np\n'), ((38007, 38036), 'numpy.arange', 'np.arange', (['(5 * 3 * 20 * 3 * 4)'], {}), '(5 * 3 * 20 * 3 * 4)\n', (38016, 38036), True, 'import numpy as np\n'), ((38228, 38261), 'numpy.arange', 'np.arange', (['(6 * 5 * 3 * 25 * 3 * 4)'], {}), '(6 * 5 * 3 * 25 * 3 * 4)\n', (38237, 38261), True, 'import numpy as np\n'), ((38456, 38493), 'numpy.arange', 'np.arange', (['(2 * 3 * 5 * 3 * 20 * 3 * 4)'], {}), '(2 * 3 * 5 * 3 * 20 * 3 * 4)\n', (38465, 38493), True, 'import numpy as np\n'), ((38914, 38945), 'megengine.jit.trace', 'jit.trace', ([], {'symbolic': 'is_symbolic'}), '(symbolic=is_symbolic)\n', (38923, 38945), True, 'import megengine.jit as jit\n'), ((41939, 42099), 'numpy.sum', 'np.sum', (['(data[n, g_id * ic_group_size:(g_id + 1) * ic_group_size, ih:ih + ksize[0],\n iw:iw + ksize[1]] * weight[g_id, oh, ow, :, :, :, oc % oc_group_size])'], {}), '(data[n, g_id * ic_group_size:(g_id + 1) * ic_group_size, ih:ih +\n ksize[0], iw:iw + ksize[1]] * weight[g_id, oh, ow, :, :, :, oc %\n oc_group_size])\n', (41945, 42099), True, 'import numpy as np\n'), ((42279, 42345), 'numpy.random.rand', 'np.random.rand', (['batch_size', 'in_channels', 'input_height', 'input_width'], {}), '(batch_size, in_channels, input_height, input_width)\n', (42293, 42345), True, 'import numpy as np\n'), ((42391, 42501), 'numpy.random.rand', 'np.random.rand', (['groups', 'output_height', 'output_width', '(in_channels // groups)', '*ksize', '(out_channels // groups)'], {}), '(groups, output_height, output_width, in_channels // groups,\n *ksize, out_channels // groups)\n', (42405, 42501), True, 'import numpy as np\n'), ((2326, 2339), 'megengine.autodiff.GradManager', 'GradManager', ([], {}), '()\n', (2337, 2339), False, 'from megengine.autodiff import GradManager\n'), ((2739, 2752), 'megengine.autodiff.GradManager', 'GradManager', ([], {}), '()\n', (2750, 2752), False, 'from megengine.autodiff import GradManager\n'), ((4133, 4150), 'numpy.eye', 'np.eye', (['shape1[0]'], {}), '(shape1[0])\n', (4139, 4150), True, 'import numpy as np\n'), ((12662, 12696), 'numpy.arange', 'np.arange', (['(0)', '(16)'], {'dtype': 'np.float32'}), '(0, 16, dtype=np.float32)\n', (12671, 12696), True, 'import numpy as np\n'), ((13626, 13660), 'numpy.arange', 'np.arange', (['(0)', '(16)'], {'dtype': 'np.float32'}), '(0, 16, dtype=np.float32)\n', (13635, 13660), True, 'import numpy as np\n'), ((14729, 14754), 'numpy.eye', 'np.eye', (['(4)'], {'dtype': 'np.int32'}), '(4, dtype=np.int32)\n', (14735, 14754), True, 'import numpy as np\n'), ((14755, 14786), 'numpy.arange', 'np.arange', (['(1)', '(4)'], {'dtype': 'np.int32'}), '(1, 4, dtype=np.int32)\n', (14764, 14786), True, 'import numpy as np\n'), ((15081, 15107), 'numpy.eye', 'np.eye', (['(10)'], {'dtype': 'np.int32'}), '(10, dtype=np.int32)\n', (15087, 15107), True, 'import numpy as np\n'), ((15944, 15966), 'numpy.ones', 'np.ones', (['(3, 3, 15, 5)'], {}), '((3, 3, 15, 5))\n', (15951, 15966), True, 'import numpy as np\n'), ((16339, 16362), 'numpy.arange', 'np.arange', (['(16)'], {'dtype': 'dt'}), '(16, dtype=dt)\n', (16348, 16362), True, 'import numpy as np\n'), ((16500, 16579), 'numpy.array', 'np.array', (['[[1.0, 0.0, 1.0], [0.0, 1.0, 1.0], [0.0, 0.0, 1.0]]'], {'dtype': 'np.float32'}), '([[1.0, 0.0, 1.0], [0.0, 1.0, 1.0], [0.0, 0.0, 1.0]], dtype=np.float32)\n', (16508, 16579), True, 'import numpy as np\n'), ((16922, 16945), 'numpy.arange', 'np.arange', (['(32)'], {'dtype': 'dt'}), '(32, dtype=dt)\n', (16931, 16945), True, 'import numpy as np\n'), ((17083, 17162), 'numpy.array', 'np.array', (['[[1.0, 0.0, 1.0], [0.0, 1.0, 1.0], [0.0, 0.0, 1.0]]'], {'dtype': 'np.float32'}), '([[1.0, 0.0, 1.0], [0.0, 1.0, 1.0], [0.0, 0.0, 1.0]], dtype=np.float32)\n', (17091, 17162), True, 'import numpy as np\n'), ((17672, 17703), 'numpy.arange', 'np.arange', (['(27)'], {'dtype': 'np.float32'}), '(27, dtype=np.float32)\n', (17681, 17703), True, 'import numpy as np\n'), ((18289, 18320), 'numpy.arange', 'np.arange', (['(16)'], {'dtype': 'np.float32'}), '(16, dtype=np.float32)\n', (18298, 18320), True, 'import numpy as np\n'), ((18402, 18487), 'numpy.array', 'np.array', (['[[[1.0, 0.0], [0.0, 1.0]], [[0.0, 1.0], [0.0, 1.0]]]'], {'dtype': 'np.float32'}), '([[[1.0, 0.0], [0.0, 1.0]], [[0.0, 1.0], [0.0, 1.0]]], dtype=np.float32\n )\n', (18410, 18487), True, 'import numpy as np\n'), ((18868, 18878), 'numpy.exp', 'np.exp', (['(-x)'], {}), '(-x)\n', (18874, 18878), True, 'import numpy as np\n'), ((20012, 20041), 'numpy.random.uniform', 'np.random.uniform', ([], {'size': 'shape'}), '(size=shape)\n', (20029, 20041), True, 'import numpy as np\n'), ((20407, 20436), 'numpy.random.uniform', 'np.random.uniform', ([], {'size': 'shape'}), '(size=shape)\n', (20424, 20436), True, 'import numpy as np\n'), ((23652, 23661), 'megengine.functional.relu', 'F.relu', (['O'], {}), '(O)\n', (23658, 23661), True, 'import megengine.functional as F\n'), ((30565, 30586), 'numpy.random.randn', 'np.random.randn', (['*shp'], {}), '(*shp)\n', (30580, 30586), True, 'import numpy as np\n'), ((38968, 38992), 'numpy.arange', 'np.arange', (['(3 * 4 * 5 * 5)'], {}), '(3 * 4 * 5 * 5)\n', (38977, 38992), True, 'import numpy as np\n'), ((40098, 40129), 'numpy.arange', 'np.arange', (['(16)'], {'dtype': 'np.float32'}), '(16, dtype=np.float32)\n', (40107, 40129), True, 'import numpy as np\n'), ((40189, 40210), 'numpy.random.randn', 'np.random.randn', (['(3)', '(3)'], {}), '(3, 3)\n', (40204, 40210), True, 'import numpy as np\n'), ((2466, 2498), 'numpy.ones', 'np.ones', (['shape'], {'dtype': 'np.float32'}), '(shape, dtype=np.float32)\n', (2473, 2498), True, 'import numpy as np\n'), ((2999, 3031), 'numpy.ones', 'np.ones', (['shape'], {'dtype': 'np.float32'}), '(shape, dtype=np.float32)\n', (3006, 3031), True, 'import numpy as np\n'), ((4212, 4229), 'numpy.eye', 'np.eye', (['shape2[1]'], {}), '(shape2[1])\n', (4218, 4229), True, 'import numpy as np\n'), ((6711, 6744), 'numpy.arange', 'np.arange', (['(1)', '(3)'], {'dtype': 'np.float32'}), '(1, 3, dtype=np.float32)\n', (6720, 6744), True, 'import numpy as np\n'), ((7206, 7239), 'numpy.arange', 'np.arange', (['(1)', '(9)'], {'dtype': 'np.float32'}), '(1, 9, dtype=np.float32)\n', (7215, 7239), True, 'import numpy as np\n'), ((7491, 7524), 'numpy.arange', 'np.arange', (['(1)', '(5)'], {'dtype': 'np.float32'}), '(1, 5, dtype=np.float32)\n', (7500, 7524), True, 'import numpy as np\n'), ((7821, 7854), 'numpy.arange', 'np.arange', (['(1)', '(5)'], {'dtype': 'np.float32'}), '(1, 5, dtype=np.float32)\n', (7830, 7854), True, 'import numpy as np\n'), ((8060, 8093), 'numpy.arange', 'np.arange', (['(1)', '(3)'], {'dtype': 'np.float32'}), '(1, 3, dtype=np.float32)\n', (8069, 8093), True, 'import numpy as np\n'), ((16021, 16033), 'megengine.tensor', 'tensor', (['np_x'], {}), '(np_x)\n', (16027, 16033), False, 'from megengine import Parameter, Tensor, is_cuda_available, tensor\n'), ((20081, 20116), 'numpy.random.randint', 'np.random.randint', (['(0)', '(1)'], {'size': 'shape'}), '(0, 1, size=shape)\n', (20098, 20116), True, 'import numpy as np\n'), ((20157, 20193), 'numpy.clip', 'np.clip', (['(0)', 'np.inf', '(1 - data * label)'], {}), '(0, np.inf, 1 - data * label)\n', (20164, 20193), True, 'import numpy as np\n'), ((20476, 20511), 'numpy.random.randint', 'np.random.randint', (['(0)', '(1)'], {'size': 'shape'}), '(0, 1, size=shape)\n', (20493, 20511), True, 'import numpy as np\n'), ((20554, 20590), 'numpy.clip', 'np.clip', (['(0)', 'np.inf', '(1 - data * label)'], {}), '(0, np.inf, 1 - data * label)\n', (20561, 20590), True, 'import numpy as np\n')]
from __future__ import absolute_import import numpy as nm from sfepy.base.base import load_classes, Struct from sfepy import get_paths def transform_basis(transform, bf): """ Transform a basis `bf` using `transform` array of matrices. """ if bf.ndim == 3: nbf = nm.einsum('cij,qdj->cqdi', transform, bf, order='C') elif bf.ndim == 4: if bf.shape[0] == 1: nbf = nm.einsum('cij,qdj->cqdi', transform, bf[0], order='C') else: nbf = nm.einsum('cij,cqdj->cqdi', transform, bf, order='C') # Note: the 2nd derivatives are not supported here. # Workaround for NumPy 1.14.0 - order is ignored(?) nbf = nm.ascontiguousarray(nbf) return nbf class PolySpace(Struct): """Abstract polynomial space class.""" _all = None keys = { (0, 1) : 'simplex', (1, 2) : 'simplex', (2, 3) : 'simplex', (3, 4) : 'simplex', (2, 4) : 'tensor_product', (3, 8) : 'tensor_product', } @staticmethod def any_from_args(name, geometry, order, base='lagrange', force_bubble=False): """ Construct a particular polynomial space classes according to the arguments passed in. """ if name is None: name = PolySpace.suggest_name(geometry, order, base, force_bubble) if PolySpace._all is None: ps_files = get_paths('sfepy/discrete/fem/poly_spaces.py') ps_files += get_paths('sfepy/discrete/dg/poly_spaces.py') PolySpace._all = load_classes(ps_files, [PolySpace], ignore_errors=True, name_attr='name') table = PolySpace._all key = '%s_%s' % (base, PolySpace.keys[(geometry.dim, geometry.n_vertex)]) if (geometry.name == '1_2') and (key not in table): key = '%s_%s' % (base, 'tensor_product') if force_bubble: key += '_bubble' return table[key](name, geometry, order) @staticmethod def suggest_name(geometry, order, base='lagrange', force_bubble=False): """ Suggest the polynomial space name given its constructor parameters. """ aux = geometry.get_interpolation_name()[:-1] if force_bubble: return aux + ('%dB' % order) else: return aux + ('%d' % order) def __init__(self, name, geometry, order): self.name = name self.geometry = geometry self.order = order self.bbox = nm.vstack((geometry.coors.min(0), geometry.coors.max(0))) def eval_base(self, coors, diff=0, ori=None, force_axis=False, transform=None, suppress_errors=False, eps=1e-15): """ Evaluate the basis or its first or second derivatives in points given by coordinates. The real work is done in _eval_base() implemented in subclasses. Note that the second derivative code is a work-in-progress and only `coors` and `transform` arguments are used. Parameters ---------- coors : array_like The coordinates of points where the basis is evaluated. See Notes. diff : 0, 1 or 2 If nonzero, return the given derivative. ori : array_like, optional Optional orientation of element facets for per element basis. force_axis : bool If True, force the resulting array shape to have one more axis even when `ori` is None. transform : array_like, optional The basis transform array. suppress_errors : bool If True, do not report points outside the reference domain. eps : float Accuracy for comparing coordinates. Returns ------- base : array The basis (shape (n_coor, 1, n_base)) or its first derivative (shape (n_coor, dim, n_base)) or its second derivative (shape (n_coor, dim, dim, n_base)) evaluated in the given points. An additional axis is pre-pended of length n_cell, if `ori` is given, or of length 1, if `force_axis` is True. Notes ----- If coors.ndim == 3, several point sets are assumed, with equal number of points in each of them. This is the case, for example, of the values of the volume base functions on the element facets. The indexing (of bf_b(g)) is then (ifa,iqp,:,n_ep), so that the facet can be set in C using FMF_SetCell. """ coors = nm.asarray(coors) if not coors.ndim in (2, 3): raise ValueError('coordinates must have 2 or 3 dimensions! (%d)' % coors.ndim) if (coors.ndim == 2): base = self._eval_base(coors, diff=diff, ori=ori, suppress_errors=suppress_errors, eps=eps) if (base.ndim == 3) and force_axis: base = base[None, ...] if not base.flags['C_CONTIGUOUS']: base = nm.ascontiguousarray(base) else: # Several point sets. if diff: bdim = self.geometry.dim else: bdim = 1 base = nm.empty((coors.shape[0], coors.shape[1], bdim, self.n_nod), dtype=nm.float64) for ii, _coors in enumerate(coors): base[ii] = self._eval_base(_coors, diff=diff, ori=ori, suppress_errors=suppress_errors, eps=eps) if transform is not None: base = transform_basis(transform, base) return base
[ "sfepy.base.base.load_classes", "sfepy.get_paths" ]
[((678, 703), 'numpy.ascontiguousarray', 'nm.ascontiguousarray', (['nbf'], {}), '(nbf)\n', (698, 703), True, 'import numpy as nm\n'), ((288, 340), 'numpy.einsum', 'nm.einsum', (['"""cij,qdj->cqdi"""', 'transform', 'bf'], {'order': '"""C"""'}), "('cij,qdj->cqdi', transform, bf, order='C')\n", (297, 340), True, 'import numpy as nm\n'), ((4682, 4699), 'numpy.asarray', 'nm.asarray', (['coors'], {}), '(coors)\n', (4692, 4699), True, 'import numpy as nm\n'), ((1420, 1466), 'sfepy.get_paths', 'get_paths', (['"""sfepy/discrete/fem/poly_spaces.py"""'], {}), "('sfepy/discrete/fem/poly_spaces.py')\n", (1429, 1466), False, 'from sfepy import get_paths\n'), ((1491, 1536), 'sfepy.get_paths', 'get_paths', (['"""sfepy/discrete/dg/poly_spaces.py"""'], {}), "('sfepy/discrete/dg/poly_spaces.py')\n", (1500, 1536), False, 'from sfepy import get_paths\n'), ((1566, 1639), 'sfepy.base.base.load_classes', 'load_classes', (['ps_files', '[PolySpace]'], {'ignore_errors': '(True)', 'name_attr': '"""name"""'}), "(ps_files, [PolySpace], ignore_errors=True, name_attr='name')\n", (1578, 1639), False, 'from sfepy.base.base import load_classes, Struct\n'), ((5410, 5488), 'numpy.empty', 'nm.empty', (['(coors.shape[0], coors.shape[1], bdim, self.n_nod)'], {'dtype': 'nm.float64'}), '((coors.shape[0], coors.shape[1], bdim, self.n_nod), dtype=nm.float64)\n', (5418, 5488), True, 'import numpy as nm\n'), ((412, 467), 'numpy.einsum', 'nm.einsum', (['"""cij,qdj->cqdi"""', 'transform', 'bf[0]'], {'order': '"""C"""'}), "('cij,qdj->cqdi', transform, bf[0], order='C')\n", (421, 467), True, 'import numpy as nm\n'), ((501, 554), 'numpy.einsum', 'nm.einsum', (['"""cij,cqdj->cqdi"""', 'transform', 'bf'], {'order': '"""C"""'}), "('cij,cqdj->cqdi', transform, bf, order='C')\n", (510, 554), True, 'import numpy as nm\n'), ((5221, 5247), 'numpy.ascontiguousarray', 'nm.ascontiguousarray', (['base'], {}), '(base)\n', (5241, 5247), True, 'import numpy as nm\n')]
r""" Incompressible Stokes flow with Navier (slip) boundary conditions, flow driven by a moving wall and a small diffusion for stabilization. This example demonstrates the use of `no-penetration` boundary conditions as well as `edge direction` boundary conditions together with Navier or slip boundary conditions. Find :math:`\ul{u}`, :math:`p` such that: .. math:: \int_{\Omega} \nu\ \nabla \ul{v} : \nabla \ul{u} - \int_{\Omega} p\ \nabla \cdot \ul{v} + \int_{\Gamma_1} \beta \ul{v} \cdot (\ul{u} - \ul{u}_d) + \int_{\Gamma_2} \beta \ul{v} \cdot \ul{u} = 0 \;, \quad \forall \ul{v} \;, \int_{\Omega} \mu \nabla q \cdot \nabla p + \int_{\Omega} q\ \nabla \cdot \ul{u} = 0 \;, \quad \forall q \;, where :math:`\nu` is the fluid viscosity, :math:`\beta` is the slip coefficient, :math:`\mu` is the (small) numerical diffusion coefficient, :math:`\Gamma_1` is the top wall that moves with the given driving velocity :math:`\ul{u}_d` and :math:`\Gamma_2` are the remaining walls. The Navier conditions are in effect on both :math:`\Gamma_1`, :math:`\Gamma_2` and are expressed by the corresponding integrals in the equations above. The `no-penetration` boundary conditions are applied on :math:`\Gamma_1`, :math:`\Gamma_2`, except the vertices of the block edges, where the `edge direction` boundary conditions are applied. Optionally, Dirichlet boundary conditions can be applied on the inlet, see the code below. The mesh is created by ``gen_block_mesh()`` function - try different mesh dimensions and resolutions below. For large meshes use the ``'ls_i'`` linear solver - PETSc + petsc4py is needed in that case. """ import numpy as nm from sfepy.discrete.fem.meshio import UserMeshIO from sfepy.mesh.mesh_generators import gen_block_mesh from sfepy.homogenization.utils import define_box_regions # Mesh dimensions. dims = nm.array([3, 1, 0.5]) # Mesh resolution: increase to improve accuracy. shape = [11, 15, 15] def mesh_hook(mesh, mode): """ Generate the block mesh. """ if mode == 'read': mesh = gen_block_mesh(dims, shape, [0, 0, 0], name='user_block', verbose=False) return mesh elif mode == 'write': pass filename_mesh = UserMeshIO(mesh_hook) regions = define_box_regions(3, 0.5 * dims) regions.update({ 'Omega' : 'all', 'Edges_v' : ("""(r.Near *v r.Bottom) +v (r.Bottom *v r.Far) +v (r.Far *v r.Top) +v (r.Top *v r.Near)""", 'edge'), 'Gamma1_f' : ('copy r.Top', 'face'), 'Gamma2_f' : ('r.Near +v r.Bottom +v r.Far', 'face'), 'Gamma_f' : ('r.Gamma1_f +v r.Gamma2_f', 'face'), 'Gamma_v' : ('r.Gamma_f -v r.Edges_v', 'face'), 'Inlet_f' : ('r.Left -v r.Gamma_f', 'face'), }) fields = { 'velocity' : ('real', 3, 'Omega', 1), 'pressure' : ('real', 1, 'Omega', 1), } def get_u_d(ts, coors, region=None): """ Given stator velocity. """ out = nm.zeros_like(coors) out[:] = [1.0, 1.0, 0.0] return out functions = { 'get_u_d' : (get_u_d,), } variables = { 'u' : ('unknown field', 'velocity', 0), 'v' : ('test field', 'velocity', 'u'), 'u_d' : ('parameter field', 'velocity', {'setter' : 'get_u_d'}), 'p' : ('unknown field', 'pressure', 1), 'q' : ('test field', 'pressure', 'p'), } # Try setting the inlet velocity by un-commenting the ebcs. ebcs = { ## 'inlet' : ('Inlet_f', {'u.0' : 1.0, 'u.[1, 2]' : 0.0}), } lcbcs = { 'walls' : ('Gamma_v', {'u.all' : 'no_penetration'}, 'normals_Gamma.vtk'), 'edges' : ('Edges_v', {'u.all' : 'edge_direction'}, 'edges_Edges.vtk'), } materials = { 'm' : ({ 'nu' : 1e-3, 'beta' : 1e-2, 'mu' : 1e-10, },), } equations = { 'balance' : """dw_div_grad.5.Omega(m.nu, v, u) - dw_stokes.5.Omega(v, p) + dw_surface_dot.5.Gamma1_f(m.beta, v, u) + dw_surface_dot.5.Gamma2_f(m.beta, v, u) = + dw_surface_dot.5.Gamma1_f(m.beta, v, u_d)""", 'incompressibility' : """dw_laplace.5.Omega(m.mu, q, p) + dw_stokes.5.Omega(u, q) = 0""", } solvers = { 'ls_d' : ('ls.scipy_direct', {}), ## 'ls_i' : ('ls.petsc', { ## 'method' : 'bcgsl', # ksp_type ## 'precond' : 'ilu', # pc_type ## 'eps_a' : 0.0, # abstol ## 'eps_r' : 1e-12, # rtol ## 'eps_d' : 1e10, # Divergence tolerance. ## 'i_max' : 2500, # maxits ## }), 'newton' : ('nls.newton', { 'i_max' : 1, 'eps_a' : 1e-10, }), } options = { 'nls' : 'newton', 'ls' : 'ls_d', }
[ "sfepy.mesh.mesh_generators.gen_block_mesh", "sfepy.discrete.fem.meshio.UserMeshIO", "sfepy.homogenization.utils.define_box_regions" ]
[((1872, 1893), 'numpy.array', 'nm.array', (['[3, 1, 0.5]'], {}), '([3, 1, 0.5])\n', (1880, 1893), True, 'import numpy as nm\n'), ((2256, 2277), 'sfepy.discrete.fem.meshio.UserMeshIO', 'UserMeshIO', (['mesh_hook'], {}), '(mesh_hook)\n', (2266, 2277), False, 'from sfepy.discrete.fem.meshio import UserMeshIO\n'), ((2289, 2322), 'sfepy.homogenization.utils.define_box_regions', 'define_box_regions', (['(3)', '(0.5 * dims)'], {}), '(3, 0.5 * dims)\n', (2307, 2322), False, 'from sfepy.homogenization.utils import define_box_regions\n'), ((2985, 3005), 'numpy.zeros_like', 'nm.zeros_like', (['coors'], {}), '(coors)\n', (2998, 3005), True, 'import numpy as nm\n'), ((2076, 2148), 'sfepy.mesh.mesh_generators.gen_block_mesh', 'gen_block_mesh', (['dims', 'shape', '[0, 0, 0]'], {'name': '"""user_block"""', 'verbose': '(False)'}), "(dims, shape, [0, 0, 0], name='user_block', verbose=False)\n", (2090, 2148), False, 'from sfepy.mesh.mesh_generators import gen_block_mesh\n')]
# AtrialFibrePlugin # Copyright (C) 2018 <NAME>, King's College London, all rights reserved, see LICENSE file ''' Atrial fibre generation plugin. ''' import os import stat import ast import shutil import datetime import zipfile import warnings from itertools import starmap from collections import defaultdict try: import configparser except ImportError: import ConfigParser as configparser try: from sfepy.base.conf import ProblemConf from sfepy.applications import solve_pde from sfepy.base.base import output except ImportError: warnings.warn('SfePy needs to be installed or in PYTHONPATH to generate fiber directions.') from eidolon import ( ui, ScenePlugin, Project, avg, vec3, successive, first, RealMatrix, IndexMatrix, StdProps, timing, ReprType, listToMatrix,MeshSceneObject, BoundBox, ElemType, reduceMesh, PyDataSet, taskmethod, taskroutine, printFlush ) import eidolon import numpy as np from scipy.spatial import cKDTree plugindir= os.path.dirname(os.path.abspath(__file__)) # this file's directory # directory/file names uifile=os.path.join(plugindir,'AtrialFibrePlugin.ui') deformDir=os.path.join(plugindir,'deformetricaC') deformExe=os.path.join(deformDir,'deformetrica') architecture=os.path.join(plugindir,'architecture.ini') problemFile=os.path.join(plugindir,'problemfile.py') # registration file names decimatedFile='subject.vtk' targetFile='target.vtk' datasetFile='data_set.xml' modelFile='model.xml' optimFile='optimization_parameters.xml' registeredFile='Registration_subject_to_subject_0__t_9.vtk' decimate='decimate-surface' # deformetrica parameters kernelWidthSub=5000 kernelWidthDef=8000 kernelType='cudaexact' dataSigma=0.1 stepSize=0.000001 # field names #regionField='regions' #landmarkField='landmarks' #directionField='directions' #gradientDirField='gradientDirs' #elemDirField='elemDirs' #elemRegionField='elemRegions' #elemthickness='elemThickness' #elemGradient='elemGradient' fieldNames=eidolon.enum( 'regions','landmarks', 'directions','gradientDirs', 'elemDirs','elemRegions','elemThickness', 'nodeGradient' ) objNames=eidolon.enum( 'atlasmesh', 'origmesh', 'epimesh','epinodes', 'endomesh','endonodes', 'architecture' ) regTypes=eidolon.enum('endo','epi') # load the UI file into the ui namespace, this is subtyped below ui.loadUI(open(uifile).read()) def showLines(nodes,lines,name='Lines',matname='Default'): mgr=eidolon.getSceneMgr() lineds=eidolon.LineDataSet(name+'DS',nodes,lines) obj=MeshSceneObject(name,lineds) mgr.addSceneObject(obj) rep=obj.createRepr(eidolon.ReprType._line,matname=matname) mgr.addSceneObjectRepr(rep) return obj,rep def showElemDirs(obj,glyphscale,mgr): ds=obj.datasets[0] nodes=ds.getNodes() tets=first(i for i in ds.enumIndexSets() if i.getType()==ElemType._Tet1NL) elemdirfield=ds.getDataField(fieldNames._elemDirs) mid=ElemType.Tet1NL.basis(0.25,0.25,0.25) elemnodes=[ElemType.Tet1NL.applyCoeffs([nodes[e] for e in elem],mid) for elem in tets] elemobj=MeshSceneObject('elemobj',PyDataSet('elemobjds',elemnodes,[],[elemdirfield])) mgr.addSceneObject(elemobj) rep=elemobj.createRepr(eidolon.ReprType._glyph,0,externalOnly=False,drawInternal=True,glyphname='arrow', glyphscale=glyphscale,dfield=elemdirfield.getName(),vecfunc=eidolon.VecFunc._Linear) mgr.addSceneObjectRepr(rep) class initdict(defaultdict): def __init__(self,initfunc,*args,**kwargs): defaultdict.__init__(self,None,*args,**kwargs) self.initfunc=initfunc def __missing__(self,key): value=self.initfunc(key) self.__setitem__(key,value) return value class plane(object): def __init__(self,center,norm): self.center=center self.norm=norm.norm() def dist(self,pt): return pt.planeDist(self.center,self.norm) def moveUp(self,dist): self.center+=self.norm*dist def numPointsAbove(self,nodes): return sum(1 for n in nodes if self.dist(n)>=0) def between(self,nodes,otherplane): numnodes=len(nodes) return self.numPointsAbove(nodes)==numnodes and otherplane.numPointsAbove(nodes)==numnodes def findIntersects(self,nodes,inds): numnodes=inds.m() result=[] for n in range(inds.n()): if 0<self.numPointsAbove(nodes.mapIndexRow(inds,n))<numnodes: result.append(n) return result class TriMeshGraph(object): def __init__(self,nodes,tris,ocdepth=3): self.nodes=nodes if isinstance(nodes,eidolon.Vec3Matrix) else listToMatrix(nodes,'nodes') self.tris=tris if isinstance(tris,eidolon.IndexMatrix) else listToMatrix(tris,'tris') self.tricenters=[avg(self.getTriNodes(r),vec3()) for r in range(self.tris.n())] self.adj,self.ragged=generateTriAdj(self.tris) # elem -> elems self.nodeelem=generateNodeElemMap(self.nodes.n(),self.tris) # node -> elems self.edges=generateSimplexEdgeMap(self.nodes.n(),self.tris) # node -> nodes self.boundbox=BoundBox(nodes) # self.octree=eidolon.Octree(ocdepth,self.boundbox.getDimensions(),self.boundbox.center) # self.octree.addMesh(self.nodes,self.tris) def computeDist(key): i,j=key return self.tricenters[i].distTo(self.tricenters[j]) self.tridists=initdict(computeDist) # def getIntersectedTri(self,start,end): # ''' # Returns the triangle index and the (t,u,v) triple if the line from `start' to `end' intersects the indexed triangle # at a distance of `t' from `start' with xi coord (u,v). Returns None if no triangle intersected. # ''' # startoc=self.octree.getLeaf(start) # endoc=self.octree.getLeaf(end) # inds=(startoc.leafdata if startoc is not None else []) + (endoc.leafdata if endoc is not None else []) # # r=eidolon.Ray(start,end-start) # # for tri in inds: # d=r.intersectsTri(*self.getTriNodes(tri)) # if d:# and d[0]<=start.distTo(end): # return tri,d # # return None def getPathSubgraph(self,starttri,endtri): return getAdjTo(self.adj,starttri,endtri) def getTriNodes(self,triindex): return self.nodes.mapIndexRow(self.tris,triindex) def getTriNorm(self,triindex): a,b,c=self.getTriNodes(triindex) return a.planeNorm(b,c) def getSharedNodeTris(self,triindex): tris=set() for n in self.tris[triindex]: tris.update(self.nodeelem[n]) tris.remove(triindex) return list(sorted(tris)) def getNearestTri(self,pt): def triDist(tri): norm=self.getTriNorm(tri) pt=self.tricenters[tri] return abs(pt.planeDist(pt,norm)) nearestnode=min([n for n in range(self.nodes.n()) if self.nodeelem[n]],key=lambda n:self.nodes[n].distToSq(pt)) tris=self.nodeelem[nearestnode] return min(tris,key=triDist) def getPath(self,starttri,endtri,acceptTri=None): return dijkstra(self.adj,starttri,endtri,lambda i,j:self.tridists[(i,j)],acceptTri) def loadArchitecture(path,section): ''' Load the architecture from the given file `path' and return values from the given section (endo or epi). The return value is a tuple containing: landmarks: 0-based indices of landmark nodes in the atlas lmlines : 0-based index pairs defining lines between indices in landmarks lmregions: a list of maps, each map defining a region which are mappings from a 0-based indices into lmlines to the line's landmark index pair lmstim : a per-region specifier list stating which lines (L# for index #) or atlas node (N#) defines stimulation lground : a per-region specifier list stating which lines (L# for index #) or atlas node (N#) defines ground appendageregion: region number for the appendage appendagenode: node index for the appendage's division node which must be generated ''' c=configparser.SafeConfigParser() assert len(c.read(path))>0 landmarks=ast.literal_eval(c.get(section,'landmarks')) # 0-based node indices lines=ast.literal_eval(c.get(section,'lines')) # 1-based landmark indices regions=ast.literal_eval(c.get(section,'regions')) # 1-based landmark indices stimulus=ast.literal_eval(c.get(section,'stimulus')) # per region ground=ast.literal_eval(c.get(section,'ground')) # per region appendageregion=ast.literal_eval(c.get(section,'appendageregion')) appendagenode=ast.literal_eval(c.get(section,'appendagenode')) appendagelmindex=ast.literal_eval(c.get(section,'appendagelmindex')) # types=ast.literal_eval(c.get(section,'type')) # per region # indices that don't exist are for landmarks that need to be calculated lmlines=[subone(l) for l in lines ]#if max(l)<=len(landmarks)] # filter for lines with existing node indices lmregions=[subone(r) for r in regions] # lmregions=[subone(r) for r in regions if all(i<=len(landmarks) for i in r)] lmstim=stimulus#[:len(lmregions)] lmground=ground#[:len(lmregions)] allregions=[] for r in lmregions: lr={i:(a,b) for i,(a,b) in enumerate(lmlines) if a in r and b in r} if len(lr)>2: allregions.append(lr) return landmarks,lmlines,allregions,lmstim,lmground, appendageregion,appendagenode,appendagelmindex def writeMeshFile(filename,nodes,inds,nodegroup,indgroup,dim): '''Write a medit format mesh file to `filename'.''' with open(filename,'w') as o: print('MeshVersionFormatted 1',file=o) print('Dimension %i'%dim,file=o) print('Vertices',file=o) print(len(nodes),file=o) for n in range(len(nodes)): for v in tuple(nodes[n])[:dim]: print('%20.10f'%v,end=' ',file=o) group=0 if nodegroup is None else nodegroup[n] print(group,file=o) print('Triangles' if len(inds[0])==3 else 'Tetrahedra',file=o) print(len(inds),file=o) for n in range(len(inds)): print(*['%10i'%(t+1) for t in inds[n]],file=o,end=' ') group=0 if indgroup is None else indgroup[n] print(group,file=o) def createNodeQuery(nodes): ''' Create a cKDTree object from `nodes' and return a query function which accepts a position and radius value. The function will return the nearest point index to the given position if radius<=0 and a list of indices of points within the given radius of the position otherwise. The node list is also returned as a second return value. ''' tree=cKDTree(np.asarray(list(map(tuple,nodes)))) def _query(pos,radius=0): '''Query `nodes' for the nearest node to `pos' if `radius'<=0 or a list of those within `radius' otherwise.''' pos=tuple(pos) if radius<=0: return tree.query(pos)[1],tree.data else: return tree.query_ball_point(pos,radius),tree.data return _query def registerSubjectToTarget(subjectObj,targetObj,targetTrans,outdir,decimpath,VTK): ''' Register the `subjectObj' mesh object to `targetObj' mesh object putting data into directory `outdir'. The subject will be decimated to have roughly the same number of nodes as the target and then stored as subject.vtk in `outdir'. Registration is done with Deformetrica and result stored as 'Registration_subject_to_subject_0__t_9.vtk' in `outdir'. If `targetTrans' must be None or a transform which is applied to the nodes of `targetObj' before registration. ''' dpath=os.path.join(outdir,decimatedFile) tmpfile=os.path.join(outdir,'tmp.vtk') # if a transform is given, apply that transform to the target mesh when saving otherwise do no transformation vecfunc=(lambda i: tuple(targetTrans*i)) if targetTrans else None shutil.copy(os.path.join(deformDir,datasetFile),os.path.join(outdir,datasetFile)) # copy dataset file unchanged model=open(os.path.join(deformDir,modelFile)).read() model=model.replace('%1',str(dataSigma)) model=model.replace('%2',str(kernelWidthSub)) model=model.replace('%3',str(kernelType)) model=model.replace('%4',str(kernelWidthDef)) with open(os.path.join(outdir,modelFile),'w') as o: # save modified model file o.write(model) optim=open(os.path.join(deformDir,optimFile)).read() optim=optim.replace('%1',str(stepSize)) with open(os.path.join(outdir,optimFile),'w') as o: # save modified optimization file o.write(optim) VTK.saveLegacyFile(tmpfile,subjectObj,datasettype='POLYDATA') VTK.saveLegacyFile(os.path.join(outdir,targetFile),targetObj,datasettype='POLYDATA',vecfunc=vecfunc) snodes=subjectObj.datasets[0].getNodes() tnodes=targetObj.datasets[0].getNodes() sizeratio=float(tnodes.n())/snodes.n() sizepercent=str(100*(1-sizeratio))[:6] # percent to decimate by # decimate the mesh most of the way towards having the same number of nodes as the target ret,output=eidolon.execBatchProgram(decimpath,tmpfile,dpath,'-reduceby',sizepercent,'-ascii',logcmd=True) assert ret==0,output env={'LD_LIBRARY_PATH':deformDir} ret,output=eidolon.execBatchProgram(deformExe,"registration", "3D", modelFile, datasetFile, optimFile, "--output-dir=.",cwd=outdir,env=env,logcmd=True) assert ret==0,output return output def transferLandmarks(archFilename,fieldname,targetObj,targetTrans,subjectObj,outdir,VTK): ''' Register the landmarks defined as node indices on `targetObj' to equivalent node indices on `subjectObj' via the decimated and registered intermediary stored in `outdir'. The result is a list of index pairs associating a node index in `subjectObj' for every landmark index in `targetObj'. ''' decimated=os.path.join(outdir,decimatedFile) registered=os.path.join(outdir,registeredFile) arch=loadArchitecture(archFilename,fieldname) lmarks,lines=arch[:2] appendagelmindex=arch[-1] # append the index for the estimated appendage node, this will have to be adjusted manually after registration lmarks.append(appendagelmindex) reg=VTK.loadObject(registered) # mesh registered to target dec=VTK.loadObject(decimated) # decimated unregistered mesh tnodes=targetObj.datasets[0].getNodes() # target points rnodes=reg.datasets[0].getNodes() # registered decimated points dnodes=dec.datasets[0].getNodes() # unregistered decimated points snodes=subjectObj.datasets[0].getNodes() # original subject points targetTrans=targetTrans or eidolon.transform() lmpoints=[(targetTrans*tnodes[m],m) for m in lmarks] # (transformed landmark node, index) pairs # find the points in the registered mesh closest to the landmark points in the target object query=createNodeQuery(rnodes) rpoints=[(query(pt)[0],m) for pt,m in lmpoints] # find the subject nodes closes to landmark points in the decimated mesh (which are at the same indices as in the registered mesh) query=createNodeQuery(snodes) spoints=[(query(dnodes[i])[0],m) for i,m in rpoints] assert len(spoints)==len(lmpoints) assert all(p[0] is not None for p in spoints) slines=[l for l in lines if max(l)<len(spoints)] return spoints,slines # return list (i,m) pairs where node index i in the subject mesh is landmark m def generateTriAdj(tris): ''' Generates a table (n,3) giving the indices of adjacent triangles for each triangle, with a value of `n' indicating a free edge. The indices in each row are in sorted order rather than per triangle edge. The result is the dual of the triangle mesh represented as the (n,3) array and a map relating the mesh's ragged edges to their triangle. ''' edgemap = {} # maps edges to the first triangle having that edge result=IndexMatrix(tris.getName()+'Adj',tris.n(),3) result.fill(tris.n()) # Find adjacent triangles by constructing a map from edges defined by points (a,b) to the triangle having that edge, # when that edge is encountered twice then the current triangle is adjacent to the one that originally added the edge. for t1,tri in enumerate(tris): # iterate over each triangle t1 for a,b in successive(tri,2,True): # iterate over each edge (a,b) of t1 k=(min(a,b),max(a,b)) # key has uniform edge order t2=edgemap.pop(k,None) # attempt to find edge k in the map, None indicates edge not found if t2 is not None: # an edge is shared if already encountered, thus t1 is adjacent to t2 result[t1]=sorted(set(result[t1]+(t2,))) result[t2]=sorted(set(result[t2]+(t1,))) else: edgemap[k]=t1 # first time edge is encountered, associate this triangle with it return result,edgemap @timing def getAdjTo(adj,start,end): ''' Returns a subgraph of `adj',represented as a node->[neighbours] dict, which includes nodes `start' and `end'. If `end' is None or an index not appearing in the mesh, the result will be the submesh contiguous with `start'. ''' visiting=set([start]) found={} numnodes=adj.n() while visiting and end not in found: visit=visiting.pop() neighbours=[n for n in adj[visit] if n<numnodes] found[visit]=neighbours visiting.update(n for n in neighbours if n not in found) return found def generateNodeElemMap(numnodes,tris): '''Returns a list relating each node index to the set of element indices using that node.''' nodemap=[set() for _ in range(numnodes)] for i,tri in enumerate(tris): for n in tri: nodemap[n].add(i) #assert all(len(s)>0 for s in nodemap), 'Unused nodes in triangle topology' return nodemap def generateSimplexEdgeMap(numnodes,simplices): ''' Returns a list relating each node index to the set of node indices joined to it by graph edges. This assumes the mesh has `numnodes' number of nodes and simplex topology `simplices'. ''' nodemap=[set() for _ in range(numnodes)] for simplex in simplices: simplex=set(simplex) for s in simplex: nodemap[s].update(simplex.difference((s,))) return nodemap @timing def dijkstra(adj, start, end,distFunc,acceptTri=None): #http://benalexkeen.com/implementing-djikstras-shortest-path-algorithm-with-python/ # shortest paths is a dict of nodes to previous node and distance paths = {start: (None,0)} curnode = start visited = set() # consider only subgraph containing start and end, this expands geometrically so should contain the minimal path adj=getAdjTo(adj,start,end) eidolon.printFlush(len(adj)) if acceptTri is not None: accept=lambda a: (a in adj and acceptTri(a)) else: accept=lambda a: a in adj while curnode != end: visited.add(curnode) destinations = list(filter(accept,adj[curnode])) curweight = paths[curnode][1] for dest in destinations: weight = curweight+distFunc(curnode,dest) if dest not in paths or weight < paths[dest][1]: paths[dest] = (curnode, weight) nextnodes = {node: paths[node] for node in paths if node not in visited} if not nextnodes: raise ValueError("Route %i -> %i not possible"%(start,end)) # next node is the destination with the lowest weight curnode = min(nextnodes, key=lambda k:nextnodes[k][1]) # collect path from end node back to the start path = [] while curnode is not None: path.insert(0,curnode) curnode = paths[curnode][0] return path def subone(v): return tuple(i-1 for i in v) def findNearestIndex(pt,nodelist): return min(range(len(nodelist)),key=lambda i:pt.distToSq(nodelist[i])) def findFarthestIndex(pt,nodelist): return max(range(len(nodelist)),key=lambda i:pt.distToSq(nodelist[i])) def getContiguousTris(graph,starttri,acceptTri): accepted=[starttri] adjacent=first(i for i in graph.getSharedNodeTris(starttri) if i not in accepted and acceptTri(i)) while adjacent is not None: accepted.append(adjacent) for a in accepted[::-1]: allneighbours=graph.getSharedNodeTris(a) adjacent=first(i for i in allneighbours if i not in accepted and acceptTri(i)) if adjacent: break return accepted @timing def findTrisBetweenNodes(start,end,landmarks,graph): eidolon.printFlush('Nodes:',start,end) start=landmarks[start] end=landmarks[end] assert 0<=start<len(graph.nodeelem) assert 0<=end<len(graph.nodeelem) starttri=first(graph.nodeelem[start]) endtri=first(graph.nodeelem[end]) assert starttri is not None assert endtri is not None nodes=graph.nodes startnode=nodes[start] endnode=nodes[end] easypath= graph.getPath(starttri,endtri) midnode=graph.tricenters[easypath[len(easypath)//2]] # define planes to bound the areas to search for triangles to within the space of the line splane=plane(startnode,midnode-startnode) eplane=plane(endnode,midnode-endnode) # adjust the plane's positions to account for numeric error adjustdist=1e1 splane.moveUp(-adjustdist) eplane.moveUp(-adjustdist) assert starttri is not None assert endtri is not None # TODO: plane normal determination still needs work #linenorm=midnode.planeNorm(startnode,endnode) #linenorm=graph.getTriNorm(easypath[len(easypath)//2]).cross(midnode-startnode) linenorm=eidolon.avg(graph.getTriNorm(e) for e in easypath).cross(midnode-startnode) lineplane=plane(splane.center,linenorm) indices=set([starttri,endtri]) # list of element indices on lineplane between splane and eplane for i in range(graph.tris.n()): trinodes=graph.getTriNodes(i) numabove=lineplane.numPointsAbove(trinodes) if numabove in (1,2) and splane.between(trinodes,eplane): indices.add(i) accepted=getContiguousTris(graph,starttri,lambda i:i in indices) if endtri not in accepted or len(easypath)<len(accepted): eidolon.printFlush('---Resorting to easypath') accepted=easypath return accepted @timing def assignRegion(region,index,assignmat,landmarks,linemap,graph): def getEnclosedGraph(adj,excludes,start): visiting=set([start]) found=set() numnodes=adj.n() assert start is not None while visiting: visit=visiting.pop() neighbours=[n for n in adj.getRow(visit) if n<numnodes and n not in excludes] found.add(visit) visiting.update(n for n in neighbours if n not in found) return found # collect all tri indices on the border of this region bordertris=set() for lineindex,(a,b) in region.items(): if (a,b) in linemap: line=linemap[(a,b)] else: line=findTrisBetweenNodes(a,b,landmarks,graph) linemap[(a,b)]=line linemap[(b,a)]=line # assign line ID to triangles on the line for tri in line: assignmat[tri,0]=lineindex bordertris.update(line) bordertri=graph.tricenters[first(bordertris)] farthest=max(range(len(graph.tris)),key=lambda i:graph.tricenters[i].distToSq(bordertri)) maxgraph=getEnclosedGraph(graph.adj,bordertris,farthest) for tri in range(len(graph.tris)): if tri in bordertris or tri not in maxgraph: if assignmat[tri,1]<0: assignmat[tri,1]=index elif assignmat[tri,2]<0: assignmat[tri,2]=index elif assignmat[tri,3]<0: assignmat[tri,3]=index @timing def generateRegionField(obj,landmarkObj,regions,appendageregion,appendagenode,task=None): ds=obj.datasets[0] nodes=ds.getNodes() tris=first(ind for ind in ds.enumIndexSets() if ind.m()==3 and bool(ind.meta(StdProps._isspatial))) lmnodes=landmarkObj.datasets[0].getNodes() linemap={} landmarks={i:nodes.indexOf(lm)[0] for i,lm in enumerate(lmnodes)} assert all(0<=l<nodes.n() for l in landmarks) graph=TriMeshGraph(nodes,tris) edgenodeinds=set(eidolon.listSum(graph.ragged)) # list of all node indices on the ragged edge filledregions=RealMatrix(fieldNames._regions,tris.n(),4) filledregions.meta(StdProps._elemdata,'True') filledregions.fill(-10) #landmarks[appendagenode]=0 # TODO: skipping appendage node for now for region in regions: for a,b in region.values(): if appendagenode not in (a,b): if a in landmarks and b not in landmarks: oldlmnode=nodes[landmarks[a]] newlm=b elif b in landmarks and a not in landmarks: oldlmnode=nodes[landmarks[b]] newlm=a else: continue newlmnode=min(edgenodeinds,key=lambda i:nodes[i].distToSq(oldlmnode)) # ragged edge node closest to landmark landmarks[newlm]=newlmnode # eidolon.printFlush(newlm,newlmnode,graph.getPath(min(a,b),newlmnode),'\n') # line=findTrisBetweenNodes(a,b,landmarks,graph) # for tri in line: # filledregions[tri,0]=max(a,b) if task: task.setMaxProgress(len(regions)) for rindex,region in enumerate(regions): eidolon.printFlush('Region',rindex,'of',len(regions),region) allnodes=set(eidolon.listSum(region.values())) if all(a in landmarks for a in allnodes): assignRegion(region,rindex,filledregions,landmarks,linemap,graph) else: eidolon.printFlush('Skipping',rindex,[a for a in allnodes if a not in landmarks]) if task: task.setProgress(rindex+1) return filledregions,linemap def extractTriRegion(nodes,tris,acceptFunc): ''' Extract the region from the mesh (nodes,tris) as defined by the triangle acceptance function `acceptFunc'. The return value is a tuple containing the list of new nodes, a list of new tris, a map from old node indices in `nodes' to new indices in the returned node list, and a map from triangle indices in `tris' to new ones in the returned triangle list. ''' #old -> new newnodes=[] # new node set newtris=[] # new triangle set nodemap={} # maps old node indices to new trimap={} # maps old triangle indices to new for tri in range(len(tris)): if acceptFunc(tri): newtri=list(tris[tri]) for i,n in enumerate(newtri): if n not in nodemap: nodemap[n]=len(newnodes) newnodes.append(nodes[n]) newtri[i]=nodemap[n] trimap[tri]=len(newtris) newtris.append(newtri) return newnodes,newtris,nodemap,trimap def calculateMeshGradient(prefix,nodes,elems,groups,VTK): '''Calculate the laplace gradient for the mesh given as (nodes,elems,groups) using sfepy.''' tempdir=os.path.dirname(prefix) infile=prefix+'.mesh' logfile=prefix+'.log' outfile=prefix+'.vtk' probfile=prefix+'.py' writeMeshFile(infile,nodes,elems,groups,None,3) with open(problemFile) as p: with open(probfile,'w') as o: o.write(p.read()%{'inputfile':infile,'outdir':tempdir}) p=ProblemConf.from_file(probfile) output.set_output(logfile,True,True) solve_pde(p) robj=VTK.loadObject(outfile) return robj.datasets[0].getDataField('t') @timing def calculateGradientDirs(nodes,edges,gradientField): ''' Returns a RealMatrix object containing the vector field for each node of `nodes' pointing in the gradient direction for the given field RealMatrix object `gradientField'. The `edges' argument is a map relating each node index to the set of node indices sharing an edge with that index. ''' #https://math.stackexchange.com/questions/2627946/how-to-approximate-numerically-the-gradient-of-the-function-on-a-triangular-mesh/2632616#2632616 numnodes=len(nodes) nodedirs=[]#eidolon.RealMatrix(gradientDirField,numnodes,3) for n in range(numnodes): edgenodes=edges[n] if edgenodes: ngrad=gradientField[n] nnode=nodes[n] edgegrads=[gradientField[i]-ngrad for i in edgenodes] # field gradient in edge directions edgedirs=[nodes[i]-nnode for i in edgenodes] # edge directional vectors # minlen=min(e.lenSq() for e in edgedirs)**0.5 edgedirs=[list(e) for e in edgedirs] # node direction is solution for x in Ax=b where A is edge directions and b edge gradients nodedir=np.linalg.lstsq(np.asarray(edgedirs),np.asarray(edgegrads),rcond=None) #nodedirs[n]=vec3(*nodedir[0]).norm()*minlen nodedirs.append(vec3(*nodedir[0]).norm()) else: nodedirs.append(vec3()) return nodedirs @timing def calculateDirectionField(obj,landmarkObj,regions,regtype,tempdir,VTK): lmlines,allregions,lmstim,lmground=loadArchitecture(architecture,regtype)[1:5] regions=regions or list(range(len(allregions))) ds=obj.datasets[0] nodes=ds.getNodes() tris=first(ind for ind in ds.enumIndexSets() if ind.m()==3 and bool(ind.meta(StdProps._isspatial))) regionfield=ds.getDataField(fieldNames._regions) regionfield=np.asarray(regionfield,np.int32) lmnodes=landmarkObj.datasets[0].getNodes() landmarks=[nodes.indexOf(lm)[0] for lm in lmnodes] directionfield=RealMatrix(fieldNames._directions,nodes.n(),3) directionfield.fill(0) gradientfield=RealMatrix('gradient',nodes.n(),1) gradientfield.fill(-1) obj.datasets[0].setDataField(gradientfield) obj.datasets[0].setDataField(directionfield) def selectRegion(region,triregions): return region==int(triregions[0]) or region==int(triregions[1]) or region==int(triregions[2]) def collectNodes(nodemap,trimap,components): '''Collect the nodes for the given components, being lines or landmark points.''' nodeinds=set() for comp in components: if comp[0]=='L': lind=int(comp[1:])-1 for tri in trimap: if int(regionfield[tri,0])==lind: nodeinds.update(nodemap[t] for t in tris[tri]) else: nodeinds.add(nodemap[landmarks[int(comp[1:])-1]]) return nodeinds # for each region calculate the laplace gradient and fill in the direction field for r in regions: eidolon.printFlush('Region',r,lmstim[r],lmground[r]) try: newnodes,newtris,nodemap,trimap=extractTriRegion(nodes,tris,lambda i:selectRegion(r,regionfield[i,1:])) assert len(newtris)>0, 'Empty region selected' stimnodes=collectNodes(nodemap,trimap,lmstim[r]) groundnodes=collectNodes(nodemap,trimap,lmground[r]) if len(stimnodes)==0: raise ValueError('Region %i has no stim nodes'%r) elif not all(0<=s<len(newnodes) for s in stimnodes): raise ValueError('Region %i has invalid stim nodes: %r'%(r,stimnodes)) if len(groundnodes)==0: raise ValueError('Region %i has no ground nodes'%r) elif not all(0<=s<len(newnodes) for s in groundnodes): raise ValueError('Region %i has invalid ground nodes: %r'%(r,groundnodes)) # convert triangles to tets for t in range(len(newtris)): a,b,c=[newnodes[i] for i in newtris[t]] norm=a.planeNorm(b,c) newtris[t].append(len(newnodes)) newnodes.append(avg((a,b,c))+norm) nodegroup=[1 if n in stimnodes else (2 if n in groundnodes else 0) for n in range(len(newnodes))] assert 1 in nodegroup, 'Region %i does not assign stim nodes (%r)'%(r,stimnodes) assert 2 in nodegroup, 'Region %i does not assign ground nodes (%r)'%(r,groundnodes) gfield=calculateMeshGradient(os.path.join(tempdir,'region%.2i'%r),newnodes,newtris,nodegroup,VTK) for oldn,newn in nodemap.items(): gradientfield[oldn,0]=gfield[newn] graddirs=calculateGradientDirs(newnodes,generateSimplexEdgeMap(len(newnodes),newtris),gfield) for oldn,newn in nodemap.items(): directionfield[oldn]=graddirs[newn]+vec3(*directionfield[oldn]) except Exception as e: eidolon.printFlush(e) return gradientfield,directionfield @timing def getElemDirectionAdj(nodes,elems,adj,dirField): ''' Generate an index matrix with a row for each element of `elems' storing which face is the forward direction of the directional field `dirField', which adjanct element is in the forward direction, which face is in the backward direction, and which adjacent element is in the backward direction. ''' assert len(nodes)==len(dirField) et=ElemType[elems.getType()] result=IndexMatrix('diradj',elems.n(),4) result.meta(StdProps._elemdata,'True') result.fill(elems.n()) def getFaceInDirection(start,direction,enodes): dray=eidolon.Ray(start,direction) for f,face in enumerate(et.faces): fnodes=[enodes[i] for i in face[:3]] if dray.intersectsTri(*fnodes): return f return None for e,elem in enumerate(elems): edirs=[vec3(*dirField[n]) for n in elem] # elem directions enodes=[nodes[n] for n in elem] # elem nodes edir=et.applyBasis(edirs,0.25,0.25,0.25) # elem center center=et.applyBasis(enodes,0.25,0.25,0.25) # elem center forward=getFaceInDirection(center,edir,enodes) result[e,0]=forward result[e,1]=adj[e,forward] backward=getFaceInDirection(center,-edir,enodes) result[e,2]=backward result[e,3]=adj[e,backward] assert result[e,0]<elems.n() return result @timing def followElemDirAdj(elemdiradj,task=None): ''' Follow the direction adjacency matrix `elemdiradj', storing a row for each element stating the final forward element, final forward face, final backward element, and final backward face. The given element/face pairs are on the mesh surface. ''' result=IndexMatrix('diradj',elemdiradj.n(),4) result.fill(elemdiradj.n()) result.meta(StdProps._elemdata,'True') def followElem(start,isForward): '''From the starting element, follow the adjacency hops until a surface element is found.''' curelem=start index=1 if isForward else 3 visited=set() while curelem not in visited and curelem>=start and elemdiradj[curelem,index]<elemdiradj.n(): visited.add(curelem) curelem=elemdiradj[curelem,index] if curelem<start: # previously assigned value, use this since the path from here on is the same return result[curelem,index-1] else: return curelem if task: task.setMaxProgress(elemdiradj.n()) for e in range(elemdiradj.n()): forward=followElem(e,True) result[e,0]=forward result[e,1]=elemdiradj[forward,0] backward=followElem(e,False) result[e,2]=backward result[e,3]=elemdiradj[backward,2] if task: task.setProgress(e+1) return result @timing def estimateThickness(nodes,tets,elemdiradj,task=None): ''' Follow the direction adjacency matrix `elemdiradj', and estimate thickness by measuring how far each tet along the path to the forward and backward surface is. The assigned value in the returned field is the maximal estimated thickness for each element. ''' result=RealMatrix(fieldNames._elemThickness,tets.n(),1) result.fill(elemdiradj.n()) result.meta(StdProps._elemdata,'True') result.fill(-1) def getTetCenter(ind): return avg(nodes.mapIndexRow(tets,ind)) def followElem(start,isForward): curelem=start index=1 if isForward else 3 visited=set() curpos=getTetCenter(start) dist=0 while elemdiradj[curelem,index]<elemdiradj.n(): visited.add(curelem) curelem=elemdiradj[curelem,index] if curelem in visited: # circular path, assign no value to this element dist=0 break else: nextpos=getTetCenter(curelem) dist+=nextpos.distTo(curpos) curpos=nextpos return dist if task: task.setMaxProgress(elemdiradj.n()) for e in range(elemdiradj.n()): result[e]=max(result[e],followElem(e,True)+followElem(e,False)) if task: task.setProgress(e+1) return result @timing def calculateTetDirections(tetmesh,endomesh,epimesh,tempdir,interpFunc,VTK,task=None): def getTriCenterOctree(obj,ocdepth=2): ds=obj.datasets[0] nodes=ds.getNodes() tris=first(i for i in ds.enumIndexSets() if i.getType()==ElemType._Tri1NL) graph=TriMeshGraph(nodes,tris) centeroc=eidolon.Octree(ocdepth,graph.boundbox.getDimensions(),graph.boundbox.center) for i,c in enumerate(graph.tricenters): centeroc.addNode(c,i) return graph,centeroc,ds.getDataField(fieldNames._directions),ds.getDataField(fieldNames._regions) if interpFunc is None: interpFunc=lambda dir1,dir2,grad:tuple(dir1*grad+dir2*(1-grad)) et=ElemType.Tet1NL faces=[f[:3] for f in et.faces] ds=tetmesh.datasets[0] eidolon.calculateElemExtAdj(ds) nodes=ds.getNodes() tets=first(i for i in ds.enumIndexSets() if i.getType()==ElemType._Tet1NL) adj=ds.getIndexSet(tets.getName()+eidolon.MatrixType.adj[1]) numElems=tets.n() elemdirfield=RealMatrix(fieldNames._elemDirs,tets.n(),3) elemdirfield.fill(0) elemdirfield.meta(StdProps._elemdata,'True') ds.setDataField(elemdirfield) elemregions=RealMatrix(fieldNames._regions,tets.n(),4) elemregions.meta(StdProps._elemdata,'True') elemregions.fill(-1) ds.setDataField(elemregions) endograph,endooc,endodirs,endoregions=getTriCenterOctree(endomesh) epigraph,epioc,epidirs,epiregions=getTriCenterOctree(epimesh) # set of nodes from the tet mesh on each surface endonodes=set() epinodes=set() def calculateTriDir(graph,tri,dirs): inds=graph.tris[tri] trinodes=[graph.nodes[i] for i in inds] trinorm=trinodes[0].planeNorm(trinodes[1],trinodes[2]) tridir=avg(vec3(*dirs[i]).norm() for i in inds) return tridir.planeProject(vec3(),trinorm).norm() # iterate over each element and fill in the above map and set values for endonodes, epinodes, and elemregions for elem in range(numElems): externs=adj[elem,:4] extfaces=[f for i,f in enumerate(faces) if externs[i]==numElems] for face in extfaces: faceinds=[tets[elem,i] for i in face] mid=avg(nodes[i] for i in faceinds) tridir=None if mid in endooc: tri=endooc.getNode(mid) tridir=calculateTriDir(endograph,tri,endodirs) endonodes.update(faceinds) elemregions[elem]=endoregions[tri] elif mid in epioc: tri=epioc.getNode(mid) tridir=calculateTriDir(epigraph,tri,epidirs) epinodes.update(faceinds) elemregions[elem]=epiregions[tri] # set the direction for the equivalent element if tridir is not None: elemdirfield[elem]=tuple(tridir) assert endonodes assert epinodes nodegroup=[1 if n in endonodes else (2 if n in epinodes else 0) for n in range(len(nodes))] gfield=calculateMeshGradient(os.path.join(tempdir,'tetmesh'),nodes,tets,nodegroup,VTK) gfield.setName(fieldNames._nodeGradient) ds.setDataField(gfield) # convert gradient into node directions dirs=calculateGradientDirs(nodes,generateSimplexEdgeMap(nodes.n(),tets),gfield) # follow gradient and determine which elements/faces are the forward and backward endpoints of each element's gradient line elemdiradj=getElemDirectionAdj(nodes,tets,adj,dirs) elemFollow=followElemDirAdj(elemdiradj,task) elemThickness=estimateThickness(nodes,tets,elemdiradj,task) ds.setDataField(elemThickness) for e in range(tets.n()): elem1,face1,elem2,face2=elemFollow[e] dir1=elemdirfield[elem1] dir2=elemdirfield[elem2] grad=avg(gfield[i] for i in tets[e]) elemdirfield[e]=interpFunc(vec3(*dir1),vec3(*dir2),grad) return elemdirfield ### Project objects class AtrialFibrePropWidget(ui.QtWidgets.QWidget,ui.Ui_AtrialFibre): def __init__(self,parent=None): super(AtrialFibrePropWidget,self).__init__(parent) self.setupUi(self) self.endoDoneButton.setVisible(False) self.endoCancelButton.setVisible(False) self.epiDoneButton.setVisible(False) self.epiCancelButton.setVisible(False) def startEdit(self,regtype): '''Adjust button visibility and connected slots when starting to edit endo or epi nodes.''' if regtype==regTypes._endo: edit,other=self.endoEdit,self.epiEdit done,cancel=self.endoDoneButton,self.endoCancelButton else: edit,other=self.epiEdit,self.endoEdit done,cancel=self.epiDoneButton,self.epiCancelButton # adjust button visibility other.setEnabled(False) edit.setVisible(False) done.setVisible(True) cancel.setVisible(True) try: # if the edit button's been already clicked, disconnect existing slots done.clicked.disconnect() cancel.clicked.disconnect() except: pass return done,cancel def stopEdit(self): '''Set UI back to default when done editing.''' self.endoEdit.setVisible(True) self.epiEdit.setVisible(True) self.endoEdit.setEnabled(True) self.epiEdit.setEnabled(True) self.endoDoneButton.setVisible(False) self.endoCancelButton.setVisible(False) self.epiDoneButton.setVisible(False) self.epiCancelButton.setVisible(False) class AtrialFibreProject(Project): def __init__(self,name,parentdir,mgr): Project.__init__(self,name,parentdir,mgr) self.header='AtrialFibre.createProject(%r,scriptdir+"/..")\n' %(self.name) self.AtrialFibre=mgr.getPlugin('AtrialFibre') self.VTK=self.mgr.getPlugin('VTK') self.AtrialFibre.project=self # associate project with plugin self.backDir=self.logDir=self.getProjectFile('logs') self.editRep=None # node representation being edited self.addHandlers() def create(self): Project.create(self) if not os.path.isdir(self.logDir): os.mkdir(self.logDir) def getPropBox(self): prop=Project.getPropBox(self) # remove the UI for changing the project location eidolon.cppdel(prop.chooseLocLayout) eidolon.cppdel(prop.dirButton) eidolon.cppdel(prop.chooseLocLabel) self.afprop=AtrialFibrePropWidget() prop.verticalLayout.insertWidget(prop.verticalLayout.count()-1,self.afprop) def setConfigMap(combo,name): @combo.currentIndexChanged.connect def _set(i): self.configMap[name]=str(combo.itemText(i)) setConfigMap(self.afprop.atlasBox,objNames._atlasmesh) setConfigMap(self.afprop.origBox,objNames._origmesh) setConfigMap(self.afprop.endoBox,objNames._endomesh) setConfigMap(self.afprop.epiBox,objNames._epimesh) self.afprop.importShellButton.clicked.connect(self._importShell) self.afprop.endoReg.clicked.connect(lambda:self._registerLandmarks(objNames._endomesh,regTypes._endo)) self.afprop.endoDiv.clicked.connect(lambda:self._divideRegions(objNames._endomesh,regTypes._endo)) self.afprop.endoEdit.clicked.connect(lambda:self._editLandmarks(objNames._endomesh,regTypes._endo)) self.afprop.epiReg.clicked.connect(lambda:self._registerLandmarks(objNames._epimesh,regTypes._epi)) self.afprop.epiDiv.clicked.connect(lambda:self._divideRegions(objNames._epimesh,regTypes._epi)) self.afprop.epiEdit.clicked.connect(lambda:self._editLandmarks(objNames._epimesh,regTypes._epi)) self.afprop.genButton.clicked.connect(self._generate) return prop def updatePropBox(self,proj,prop): Project.updatePropBox(self,proj,prop) scenemeshes=[o for o in self.memberObjs if isinstance(o,eidolon.MeshSceneObject)] names=sorted(o.getName() for o in scenemeshes) def _fillList(combo,name): # ensure the config value is actually set, when filling a previously empty list currentIndexChanged isn't emitted if not self.configMap.get(name,None): self.configMap[name]=first(names) eidolon.fillList(combo,names,self.configMap[name]) _fillList(self.afprop.atlasBox,objNames._atlasmesh) _fillList(self.afprop.origBox,objNames._origmesh) _fillList(self.afprop.endoBox,objNames._endomesh) _fillList(self.afprop.epiBox,objNames._epimesh) @taskmethod('Adding Object to Project') def checkIncludeObject(self,obj,task): '''Check whether the given object should be added to the project or not.''' if not isinstance(obj,eidolon.MeshSceneObject) or obj in self.memberObjs or obj.getObjFiles() is None: return @timing def _copy(): self.mgr.removeSceneObject(obj) self.addMesh(obj) pdir=self.getProjectDir() files=list(map(os.path.abspath,obj.getObjFiles() or [])) if not files or any(not f.startswith(pdir) for f in files): msg="Do you want to add %r to the project? This requires saving/copying the object's file data into the project directory."%(obj.getName()) self.mgr.win.chooseYesNoDialog(msg,'Adding Object',_copy) def addMesh(self,obj): filename=self.getProjectFile(obj.getName()) self.VTK.saveObject(obj,filename,setFilenames=True) self.addObject(obj) self.mgr.addSceneObject(obj) self.save() def createTempDir(self,prefix='tmp'): path=self.getProjectFile(prefix+datetime.datetime.now().strftime('%Y%m%d%H%M%S')) os.mkdir(path) return path def _importShell(self): filename=self.mgr.win.chooseFileDialog('Choose Endo/Epi Shell filename',filterstr='VTK Files (*.vtk *.vtu *.vtp)') if filename: f=self.AtrialFibre.importShell(filename) self.mgr.checkFutureResult(f) @taskroutine('Add meshes') def _add(task): endo,epi=f() self.addMesh(endo) self.addMesh(epi) self.mgr.runTasks(_add()) def _registerLandmarks(self,meshname,regtype): atlas=self.getProjectObj(self.configMap.get(objNames._atlasmesh,'')) subj=self.getProjectObj(self.configMap.get(meshname,'')) assert atlas is not None assert subj is not None endo=self.getProjectObj(regtype) if endo is not None: self.mgr.removeSceneObject(endo) tempdir=self.createTempDir('reg') result=self.AtrialFibre.registerLandmarks(subj,atlas,regtype,tempdir) self.mgr.checkFutureResult(result) @taskroutine('Add points') def _add(task): name=regtype+'nodes' oldobj=self.getProjectObj(name) if oldobj is not None: self.mgr.removeSceneObject(oldobj) obj=eidolon.Future.get(result) obj.setName(name) self.addMesh(obj) registered=os.path.join(tempdir,registeredFile) regobj=self.VTK.loadObject(registered,regtype+'_RegMesh') self.addMesh(regobj) self.mgr.runTasks(_add()) def _editLandmarks(self,meshname,regtype): surface=self.getProjectObj(self.configMap[meshname]) landmarks=self.getProjectObj(regtype+'nodes') landmarkMap={} # maps landmark index to surface node index if surface is None: self.mgr.showMsg('Cannot find surface object %r'%self.configMap[meshname]) return elif landmarks is None: self.mgr.showMsg('Cannot find landmark object %r'%(regtype+'nodes')) return f=self._startEditLandmarks(surface,landmarks,landmarkMap) self.mgr.checkFutureResult(f) done,cancel=self.afprop.startEdit(regtype) # adjust UI and get done and cancel buttons @cancel.clicked.connect def _cancel(): '''Resets UI when the cancel button is pressed.''' self.afprop.stopEdit() self.mgr.removeSceneObjectRepr(self.editRep) self.editRep=None @done.clicked.connect def _done(): '''Transfer data from moved repr to landmark object, save, and reset UI.''' lmnodes=landmarks.datasets[0].getNodes() surfacenodes=surface.datasets[0].getNodes() for i,j in landmarkMap.items(): lmnodes[i]=surfacenodes[j] f=landmarks.saveObject(landmarks.getObjFiles()[0]) self.mgr.checkFutureResult(f) cancel.clicked.emit() # do cancel's cleanup @taskmethod('Starting to edit landmarks') def _startEditLandmarks(self,surface,landmarks,landmarkMap,task): if not surface.reprs: rep=surface.createRepr(ReprType._volume,0) self.mgr.addSceneObjectRepr(rep) noderep=landmarks.createRepr(ReprType._line,matname='Red') self.mgr.addSceneObjectRepr(noderep) self.editRep=noderep landmarknodes=landmarks.datasets[0].getNodes() editnodes=surface.datasets[0].getNodes() query=createNodeQuery(editnodes) handlecol=eidolon.color(1,0,0,1) def _select(handle,index,release): '''Handle selection callback function, updates landmarkMap and node positions in noderep.''' if release: # on mouse release update the repr f=self.mgr.updateSceneObjectRepr(noderep) self.mgr.checkFutureResult(f) else: oldpos=handle.positionOffset newpos=editnodes[index] landmarkMap[handle.value]=index for n in range(noderep.nodes.n()): # replace every old position with the new if noderep.nodes[n,0]==oldpos: noderep.nodes[n,0]=newpos @eidolon.setmethod(noderep) def createHandles(): '''Overrides the default node creation method to create selection handles instead.''' handles=[] for ind in range(landmarknodes.n()): pos=landmarknodes[ind] h=eidolon.NodeSelectHandle(pos,ind,query,_select,' '+str(ind),handlecol) handles.append(h) return handles self.mgr.showHandle(noderep,True) self.mgr.setCameraSeeAll() def _divideRegions(self,meshname,regtype): mesh=self.getProjectObj(self.configMap.get(meshname,'')) points=self.getProjectObj(regtype+'nodes') assert mesh is not None assert points is not None result=self.AtrialFibre.divideRegions(mesh,points,regtype) self.mgr.checkFutureResult(result) @taskroutine('Save mesh') def _save(task): self.VTK.saveObject(mesh,mesh.getObjFiles()[0]) rep=mesh.createRepr(eidolon.ReprType._volume,0) self.mgr.addSceneObjectRepr(rep) rep.applyMaterial('Rainbow',field=fieldNames._regions,valfunc='Column 1') self.mgr.setCameraSeeAll() # lobj,lrep=showLines(points.datasets[0].getNodes(),lmlines,'AllLines','Red') self.mgr.runTasks(_save()) def _generate(self): tetmesh=self.getProjectObj(self.configMap.get(objNames._origmesh,'')) endomesh=self.getProjectObj(self.configMap.get(objNames._endomesh,'')) epimesh=self.getProjectObj(self.configMap.get(objNames._epimesh,'')) if tetmesh is None: self.mgr.showMsg('Cannot find original tet mesh %r'%self.configMap.get(objNames._endomesh,'')) elif endomesh is None: self.mgr.showMsg('Cannot find endo mesh %r'%self.configMap.get(objNames._endomesh,'')) elif epimesh is None: self.mgr.showMsg('Cannot find epi mesh %r'%self.configMap.get(objNames._epimesh,'')) elif endomesh.datasets[0].getDataField('regions') is None: self.mgr.showMsg('Endo mesh does not have region field assigned!') elif epimesh.datasets[0].getDataField('regions') is None: self.mgr.showMsg('Epi mesh does not have region field assigned!') else: tempdir=self.createTempDir('dirs') endopoints=self.getProjectObj('endonodes') epipoints=self.getProjectObj('epinodes') regions=[] result=self.AtrialFibre.generateMesh(endomesh,epimesh,tetmesh,endopoints,epipoints,tempdir,regions) self.mgr.checkFutureResult(result) @taskroutine('Save') def _save(task): self.VTK.saveObject(tetmesh,tetmesh.getObjFiles()[0]) @taskroutine('Load Rep') def _load(task): #rep=endomesh.createRepr(ReprType._volume,0) #self.mgr.addSceneObjectRepr(rep) #rep.applyMaterial('Rainbow',field='gradient',valfunc='Column 1') rep=tetmesh.createRepr(ReprType._volume,0) self.mgr.addSceneObjectRepr(rep) rep.applyMaterial('Rainbow',field=fieldNames._elemDirs,valfunc='Magnitude') self.mgr.setCameraSeeAll() showElemDirs(tetmesh,(50,50,100),self.mgr) # TODO: replace with createRepr call self.mgr.runTasks([_save(),_load()]) class AtrialFibrePlugin(ScenePlugin): def __init__(self): ScenePlugin.__init__(self,'AtrialFibre') self.project=None def init(self,plugid,win,mgr): ScenePlugin.init(self,plugid,win,mgr) self.VTK=self.mgr.getPlugin('VTK') assert self.VTK is not None, 'Cannot find VTK plugin!' if self.win!=None: self.win.addMenuItem('Project','AtrialFibreProj'+str(plugid),'&Atrial Fibre Project',self._newProjDialog) # extract the deformetrica zip file if not present if not os.path.isdir(deformDir): z=zipfile.ZipFile(deformDir+'.zip') z.extractall(plugindir) os.chmod(deformExe,stat.S_IRUSR|stat.S_IXUSR|stat.S_IWUSR) self.mirtkdir=os.path.join(eidolon.getAppDir(),eidolon.LIBSDIR,'MIRTK','Linux') eidolon.addPathVariable('LD_LIBRARY_PATH',self.mirtkdir) self.decimate=os.path.join(self.mirtkdir,decimate) def _newProjDialog(self): def chooseProjDir(name): newdir=self.win.chooseDirDialog('Choose Project Root Directory') if len(newdir)>0: self.createProject(name,newdir) self.win.chooseStrDialog('Choose Project Name','Project',chooseProjDir) def createProject(self,name,parentdir): if self.project==None: self.mgr.createProjectObj(name,parentdir,AtrialFibreProject) def getArchitecture(self,regtype=regTypes._endo): return loadArchitecture(architecture,regtype) @taskmethod('Import endo/epi shell') def importShell(self,filename,task=None): shells=self.VTK.loadObject(filename) ds=shells.datasets[0] nodes=ds.getNodes() tris=first(ds.enumIndexSets()) adj,_=generateTriAdj(tris) center=avg(nodes) #BoundBox(nodes).center findex=findFarthestIndex(center,nodes) outerinds=getAdjTo(adj,findex,None) outertris=listToMatrix([tris[i] for i in outerinds],'tris',ElemType._Tri1NL) innertris=listToMatrix([tris[i] for i in range(tris.n()) if i not in outerinds],'tris',ElemType._Tri1NL) assert outertris.n()>0 assert innertris.n()>0 outermesh=reduceMesh(nodes,[outertris],marginSq=1e-1) innermesh=reduceMesh(nodes,[innertris],marginSq=1e-1) generateNodeElemMap(outermesh[0].n(),outermesh[1][0]) generateNodeElemMap(innermesh[0].n(),innermesh[1][0]) # TODO: not reliably telling inner from outer shell, until that's better use ambiguous mesh names and have user choose outer=MeshSceneObject('shell1',PyDataSet('ds',outermesh[0],outermesh[1])) inner=MeshSceneObject('shell2',PyDataSet('ds',innermesh[0],innermesh[1])) return inner,outer @taskmethod('Registering landmarks') def registerLandmarks(self,meshObj,atlasObj,regtype,outdir,task=None): if atlasObj.reprs: atlasTrans=atlasObj.reprs[0].getTransform() else: atlasTrans=None output=registerSubjectToTarget(meshObj,atlasObj,atlasTrans,outdir,self.decimate,self.VTK) eidolon.printFlush(output) points,lines=transferLandmarks(architecture,regtype,atlasObj,atlasTrans,meshObj,outdir,self.VTK) subjnodes=meshObj.datasets[0].getNodes() ptds=eidolon.PyDataSet('pts',[subjnodes[n[0]] for n in points],[('lines',ElemType._Line1NL,lines)]) return eidolon.MeshSceneObject('LM',ptds) @taskmethod('Dividing mesh into regions') def divideRegions(self,mesh,points,regtype,task=None): _,_,lmregions,_,_,appendageregion,appendagenode,_=loadArchitecture(architecture,regtype) filledregions,linemap=generateRegionField(mesh,points,lmregions,appendageregion,appendagenode,task) mesh.datasets[0].setDataField(filledregions) @taskmethod('Generating mesh') def generateMesh(self,endomesh,epimesh,tetmesh,endopoints,epipoints,outdir,regions=[],task=None): endograd,endodir=calculateDirectionField(endomesh,endopoints,regions,regTypes._endo,outdir,self.VTK) epigrad,epidir=calculateDirectionField(epimesh,epipoints,regions,regTypes._epi,outdir,self.VTK) return calculateTetDirections(tetmesh,endomesh,epimesh,outdir,None,self.VTK,task) ### Add the project eidolon.addPlugin(AtrialFibrePlugin()) # note this occurs after other projects are loaded and is not in the subprocesses namespaces
[ "sfepy.base.base.output.set_output", "sfepy.base.conf.ProblemConf.from_file", "sfepy.applications.solve_pde" ]
[((1102, 1149), 'os.path.join', 'os.path.join', (['plugindir', '"""AtrialFibrePlugin.ui"""'], {}), "(plugindir, 'AtrialFibrePlugin.ui')\n", (1114, 1149), False, 'import os\n'), ((1160, 1200), 'os.path.join', 'os.path.join', (['plugindir', '"""deformetricaC"""'], {}), "(plugindir, 'deformetricaC')\n", (1172, 1200), False, 'import os\n'), ((1210, 1249), 'os.path.join', 'os.path.join', (['deformDir', '"""deformetrica"""'], {}), "(deformDir, 'deformetrica')\n", (1222, 1249), False, 'import os\n'), ((1262, 1305), 'os.path.join', 'os.path.join', (['plugindir', '"""architecture.ini"""'], {}), "(plugindir, 'architecture.ini')\n", (1274, 1305), False, 'import os\n'), ((1318, 1359), 'os.path.join', 'os.path.join', (['plugindir', '"""problemfile.py"""'], {}), "(plugindir, 'problemfile.py')\n", (1330, 1359), False, 'import os\n'), ((1993, 2123), 'eidolon.enum', 'eidolon.enum', (['"""regions"""', '"""landmarks"""', '"""directions"""', '"""gradientDirs"""', '"""elemDirs"""', '"""elemRegions"""', '"""elemThickness"""', '"""nodeGradient"""'], {}), "('regions', 'landmarks', 'directions', 'gradientDirs',\n 'elemDirs', 'elemRegions', 'elemThickness', 'nodeGradient')\n", (2005, 2123), False, 'import eidolon\n'), ((2145, 2250), 'eidolon.enum', 'eidolon.enum', (['"""atlasmesh"""', '"""origmesh"""', '"""epimesh"""', '"""epinodes"""', '"""endomesh"""', '"""endonodes"""', '"""architecture"""'], {}), "('atlasmesh', 'origmesh', 'epimesh', 'epinodes', 'endomesh',\n 'endonodes', 'architecture')\n", (2157, 2250), False, 'import eidolon\n'), ((2277, 2304), 'eidolon.enum', 'eidolon.enum', (['"""endo"""', '"""epi"""'], {}), "('endo', 'epi')\n", (2289, 2304), False, 'import eidolon\n'), ((1020, 1045), 'os.path.abspath', 'os.path.abspath', (['__file__'], {}), '(__file__)\n', (1035, 1045), False, 'import os\n'), ((2471, 2492), 'eidolon.getSceneMgr', 'eidolon.getSceneMgr', ([], {}), '()\n', (2490, 2492), False, 'import eidolon\n'), ((2504, 2550), 'eidolon.LineDataSet', 'eidolon.LineDataSet', (["(name + 'DS')", 'nodes', 'lines'], {}), "(name + 'DS', nodes, lines)\n", (2523, 2550), False, 'import eidolon\n'), ((2555, 2584), 'eidolon.MeshSceneObject', 'MeshSceneObject', (['name', 'lineds'], {}), '(name, lineds)\n', (2570, 2584), False, 'from eidolon import ui, ScenePlugin, Project, avg, vec3, successive, first, RealMatrix, IndexMatrix, StdProps, timing, ReprType, listToMatrix, MeshSceneObject, BoundBox, ElemType, reduceMesh, PyDataSet, taskmethod, taskroutine, printFlush\n'), ((2970, 3009), 'eidolon.ElemType.Tet1NL.basis', 'ElemType.Tet1NL.basis', (['(0.25)', '(0.25)', '(0.25)'], {}), '(0.25, 0.25, 0.25)\n', (2991, 3009), False, 'from eidolon import ui, ScenePlugin, Project, avg, vec3, successive, first, RealMatrix, IndexMatrix, StdProps, timing, ReprType, listToMatrix, MeshSceneObject, BoundBox, ElemType, reduceMesh, PyDataSet, taskmethod, taskroutine, printFlush\n'), ((8402, 8433), 'ConfigParser.SafeConfigParser', 'configparser.SafeConfigParser', ([], {}), '()\n', (8431, 8433), True, 'import ConfigParser as configparser\n'), ((12107, 12142), 'os.path.join', 'os.path.join', (['outdir', 'decimatedFile'], {}), '(outdir, decimatedFile)\n', (12119, 12142), False, 'import os\n'), ((12154, 12185), 'os.path.join', 'os.path.join', (['outdir', '"""tmp.vtk"""'], {}), "(outdir, 'tmp.vtk')\n", (12166, 12185), False, 'import os\n'), ((13576, 13680), 'eidolon.execBatchProgram', 'eidolon.execBatchProgram', (['decimpath', 'tmpfile', 'dpath', '"""-reduceby"""', 'sizepercent', '"""-ascii"""'], {'logcmd': '(True)'}), "(decimpath, tmpfile, dpath, '-reduceby',\n sizepercent, '-ascii', logcmd=True)\n", (13600, 13680), False, 'import eidolon\n'), ((13754, 13902), 'eidolon.execBatchProgram', 'eidolon.execBatchProgram', (['deformExe', '"""registration"""', '"""3D"""', 'modelFile', 'datasetFile', 'optimFile', '"""--output-dir=."""'], {'cwd': 'outdir', 'env': 'env', 'logcmd': '(True)'}), "(deformExe, 'registration', '3D', modelFile,\n datasetFile, optimFile, '--output-dir=.', cwd=outdir, env=env, logcmd=True)\n", (13778, 13902), False, 'import eidolon\n'), ((14367, 14402), 'os.path.join', 'os.path.join', (['outdir', 'decimatedFile'], {}), '(outdir, decimatedFile)\n', (14379, 14402), False, 'import os\n'), ((14417, 14453), 'os.path.join', 'os.path.join', (['outdir', 'registeredFile'], {}), '(outdir, registeredFile)\n', (14429, 14453), False, 'import os\n'), ((21333, 21373), 'eidolon.printFlush', 'eidolon.printFlush', (['"""Nodes:"""', 'start', 'end'], {}), "('Nodes:', start, end)\n", (21351, 21373), False, 'import eidolon\n'), ((21515, 21543), 'eidolon.first', 'first', (['graph.nodeelem[start]'], {}), '(graph.nodeelem[start])\n', (21520, 21543), False, 'from eidolon import ui, ScenePlugin, Project, avg, vec3, successive, first, RealMatrix, IndexMatrix, StdProps, timing, ReprType, listToMatrix, MeshSceneObject, BoundBox, ElemType, reduceMesh, PyDataSet, taskmethod, taskroutine, printFlush\n'), ((21555, 21581), 'eidolon.first', 'first', (['graph.nodeelem[end]'], {}), '(graph.nodeelem[end])\n', (21560, 21581), False, 'from eidolon import ui, ScenePlugin, Project, avg, vec3, successive, first, RealMatrix, IndexMatrix, StdProps, timing, ReprType, listToMatrix, MeshSceneObject, BoundBox, ElemType, reduceMesh, PyDataSet, taskmethod, taskroutine, printFlush\n'), ((28371, 28394), 'os.path.dirname', 'os.path.dirname', (['prefix'], {}), '(prefix)\n', (28386, 28394), False, 'import os\n'), ((28715, 28746), 'sfepy.base.conf.ProblemConf.from_file', 'ProblemConf.from_file', (['probfile'], {}), '(probfile)\n', (28736, 28746), False, 'from sfepy.base.conf import ProblemConf\n'), ((28751, 28789), 'sfepy.base.base.output.set_output', 'output.set_output', (['logfile', '(True)', '(True)'], {}), '(logfile, True, True)\n', (28768, 28789), False, 'from sfepy.base.base import output\n'), ((28792, 28804), 'sfepy.applications.solve_pde', 'solve_pde', (['p'], {}), '(p)\n', (28801, 28804), False, 'from sfepy.applications import solve_pde\n'), ((30819, 30852), 'numpy.asarray', 'np.asarray', (['regionfield', 'np.int32'], {}), '(regionfield, np.int32)\n', (30829, 30852), True, 'import numpy as np\n'), ((39575, 39606), 'eidolon.calculateElemExtAdj', 'eidolon.calculateElemExtAdj', (['ds'], {}), '(ds)\n', (39602, 39606), False, 'import eidolon\n'), ((47719, 47757), 'eidolon.taskmethod', 'taskmethod', (['"""Adding Object to Project"""'], {}), "('Adding Object to Project')\n", (47729, 47757), False, 'from eidolon import ui, ScenePlugin, Project, avg, vec3, successive, first, RealMatrix, IndexMatrix, StdProps, timing, ReprType, listToMatrix, MeshSceneObject, BoundBox, ElemType, reduceMesh, PyDataSet, taskmethod, taskroutine, printFlush\n'), ((52180, 52220), 'eidolon.taskmethod', 'taskmethod', (['"""Starting to edit landmarks"""'], {}), "('Starting to edit landmarks')\n", (52190, 52220), False, 'from eidolon import ui, ScenePlugin, Project, avg, vec3, successive, first, RealMatrix, IndexMatrix, StdProps, timing, ReprType, listToMatrix, MeshSceneObject, BoundBox, ElemType, reduceMesh, PyDataSet, taskmethod, taskroutine, printFlush\n'), ((58708, 58743), 'eidolon.taskmethod', 'taskmethod', (['"""Import endo/epi shell"""'], {}), "('Import endo/epi shell')\n", (58718, 58743), False, 'from eidolon import ui, ScenePlugin, Project, avg, vec3, successive, first, RealMatrix, IndexMatrix, StdProps, timing, ReprType, listToMatrix, MeshSceneObject, BoundBox, ElemType, reduceMesh, PyDataSet, taskmethod, taskroutine, printFlush\n'), ((60004, 60039), 'eidolon.taskmethod', 'taskmethod', (['"""Registering landmarks"""'], {}), "('Registering landmarks')\n", (60014, 60039), False, 'from eidolon import ui, ScenePlugin, Project, avg, vec3, successive, first, RealMatrix, IndexMatrix, StdProps, timing, ReprType, listToMatrix, MeshSceneObject, BoundBox, ElemType, reduceMesh, PyDataSet, taskmethod, taskroutine, printFlush\n'), ((60731, 60771), 'eidolon.taskmethod', 'taskmethod', (['"""Dividing mesh into regions"""'], {}), "('Dividing mesh into regions')\n", (60741, 60771), False, 'from eidolon import ui, ScenePlugin, Project, avg, vec3, successive, first, RealMatrix, IndexMatrix, StdProps, timing, ReprType, listToMatrix, MeshSceneObject, BoundBox, ElemType, reduceMesh, PyDataSet, taskmethod, taskroutine, printFlush\n'), ((61112, 61141), 'eidolon.taskmethod', 'taskmethod', (['"""Generating mesh"""'], {}), "('Generating mesh')\n", (61122, 61141), False, 'from eidolon import ui, ScenePlugin, Project, avg, vec3, successive, first, RealMatrix, IndexMatrix, StdProps, timing, ReprType, listToMatrix, MeshSceneObject, BoundBox, ElemType, reduceMesh, PyDataSet, taskmethod, taskroutine, printFlush\n'), ((564, 665), 'warnings.warn', 'warnings.warn', (['"""SfePy needs to be installed or in PYTHONPATH to generate fiber directions."""'], {}), "(\n 'SfePy needs to be installed or in PYTHONPATH to generate fiber directions.'\n )\n", (577, 665), False, 'import warnings\n'), ((3028, 3086), 'eidolon.ElemType.Tet1NL.applyCoeffs', 'ElemType.Tet1NL.applyCoeffs', (['[nodes[e] for e in elem]', 'mid'], {}), '([nodes[e] for e in elem], mid)\n', (3055, 3086), False, 'from eidolon import ui, ScenePlugin, Project, avg, vec3, successive, first, RealMatrix, IndexMatrix, StdProps, timing, ReprType, listToMatrix, MeshSceneObject, BoundBox, ElemType, reduceMesh, PyDataSet, taskmethod, taskroutine, printFlush\n'), ((3142, 3195), 'eidolon.PyDataSet', 'PyDataSet', (['"""elemobjds"""', 'elemnodes', '[]', '[elemdirfield]'], {}), "('elemobjds', elemnodes, [], [elemdirfield])\n", (3151, 3195), False, 'from eidolon import ui, ScenePlugin, Project, avg, vec3, successive, first, RealMatrix, IndexMatrix, StdProps, timing, ReprType, listToMatrix, MeshSceneObject, BoundBox, ElemType, reduceMesh, PyDataSet, taskmethod, taskroutine, printFlush\n'), ((3576, 3625), 'collections.defaultdict.__init__', 'defaultdict.__init__', (['self', 'None', '*args'], {}), '(self, None, *args, **kwargs)\n', (3596, 3625), False, 'from collections import defaultdict\n'), ((5258, 5273), 'eidolon.BoundBox', 'BoundBox', (['nodes'], {}), '(nodes)\n', (5266, 5273), False, 'from eidolon import ui, ScenePlugin, Project, avg, vec3, successive, first, RealMatrix, IndexMatrix, StdProps, timing, ReprType, listToMatrix, MeshSceneObject, BoundBox, ElemType, reduceMesh, PyDataSet, taskmethod, taskroutine, printFlush\n'), ((12391, 12427), 'os.path.join', 'os.path.join', (['deformDir', 'datasetFile'], {}), '(deformDir, datasetFile)\n', (12403, 12427), False, 'import os\n'), ((12427, 12460), 'os.path.join', 'os.path.join', (['outdir', 'datasetFile'], {}), '(outdir, datasetFile)\n', (12439, 12460), False, 'import os\n'), ((13166, 13198), 'os.path.join', 'os.path.join', (['outdir', 'targetFile'], {}), '(outdir, targetFile)\n', (13178, 13198), False, 'import os\n'), ((15163, 15182), 'eidolon.transform', 'eidolon.transform', ([], {}), '()\n', (15180, 15182), False, 'import eidolon\n'), ((16853, 16877), 'eidolon.successive', 'successive', (['tri', '(2)', '(True)'], {}), '(tri, 2, True)\n', (16863, 16877), False, 'from eidolon import ui, ScenePlugin, Project, avg, vec3, successive, first, RealMatrix, IndexMatrix, StdProps, timing, ReprType, listToMatrix, MeshSceneObject, BoundBox, ElemType, reduceMesh, PyDataSet, taskmethod, taskroutine, printFlush\n'), ((23070, 23116), 'eidolon.printFlush', 'eidolon.printFlush', (['"""---Resorting to easypath"""'], {}), "('---Resorting to easypath')\n", (23088, 23116), False, 'import eidolon\n'), ((24271, 24288), 'eidolon.first', 'first', (['bordertris'], {}), '(bordertris)\n', (24276, 24288), False, 'from eidolon import ui, ScenePlugin, Project, avg, vec3, successive, first, RealMatrix, IndexMatrix, StdProps, timing, ReprType, listToMatrix, MeshSceneObject, BoundBox, ElemType, reduceMesh, PyDataSet, taskmethod, taskroutine, printFlush\n'), ((25295, 25324), 'eidolon.listSum', 'eidolon.listSum', (['graph.ragged'], {}), '(graph.ragged)\n', (25310, 25324), False, 'import eidolon\n'), ((32079, 32134), 'eidolon.printFlush', 'eidolon.printFlush', (['"""Region"""', 'r', 'lmstim[r]', 'lmground[r]'], {}), "('Region', r, lmstim[r], lmground[r])\n", (32097, 32134), False, 'import eidolon\n'), ((34914, 34943), 'eidolon.Ray', 'eidolon.Ray', (['start', 'direction'], {}), '(start, direction)\n', (34925, 34943), False, 'import eidolon\n'), ((41922, 41954), 'os.path.join', 'os.path.join', (['tempdir', '"""tetmesh"""'], {}), "(tempdir, 'tetmesh')\n", (41934, 41954), False, 'import os\n'), ((42697, 42728), 'eidolon.avg', 'avg', (['(gfield[i] for i in tets[e])'], {}), '(gfield[i] for i in tets[e])\n', (42700, 42728), False, 'from eidolon import ui, ScenePlugin, Project, avg, vec3, successive, first, RealMatrix, IndexMatrix, StdProps, timing, ReprType, listToMatrix, MeshSceneObject, BoundBox, ElemType, reduceMesh, PyDataSet, taskmethod, taskroutine, printFlush\n'), ((44600, 44644), 'eidolon.Project.__init__', 'Project.__init__', (['self', 'name', 'parentdir', 'mgr'], {}), '(self, name, parentdir, mgr)\n', (44616, 44644), False, 'from eidolon import ui, ScenePlugin, Project, avg, vec3, successive, first, RealMatrix, IndexMatrix, StdProps, timing, ReprType, listToMatrix, MeshSceneObject, BoundBox, ElemType, reduceMesh, PyDataSet, taskmethod, taskroutine, printFlush\n'), ((45125, 45145), 'eidolon.Project.create', 'Project.create', (['self'], {}), '(self)\n', (45139, 45145), False, 'from eidolon import ui, ScenePlugin, Project, avg, vec3, successive, first, RealMatrix, IndexMatrix, StdProps, timing, ReprType, listToMatrix, MeshSceneObject, BoundBox, ElemType, reduceMesh, PyDataSet, taskmethod, taskroutine, printFlush\n'), ((45271, 45295), 'eidolon.Project.getPropBox', 'Project.getPropBox', (['self'], {}), '(self)\n', (45289, 45295), False, 'from eidolon import ui, ScenePlugin, Project, avg, vec3, successive, first, RealMatrix, IndexMatrix, StdProps, timing, ReprType, listToMatrix, MeshSceneObject, BoundBox, ElemType, reduceMesh, PyDataSet, taskmethod, taskroutine, printFlush\n'), ((45363, 45399), 'eidolon.cppdel', 'eidolon.cppdel', (['prop.chooseLocLayout'], {}), '(prop.chooseLocLayout)\n', (45377, 45399), False, 'import eidolon\n'), ((45408, 45438), 'eidolon.cppdel', 'eidolon.cppdel', (['prop.dirButton'], {}), '(prop.dirButton)\n', (45422, 45438), False, 'import eidolon\n'), ((45447, 45482), 'eidolon.cppdel', 'eidolon.cppdel', (['prop.chooseLocLabel'], {}), '(prop.chooseLocLabel)\n', (45461, 45482), False, 'import eidolon\n'), ((46935, 46974), 'eidolon.Project.updatePropBox', 'Project.updatePropBox', (['self', 'proj', 'prop'], {}), '(self, proj, prop)\n', (46956, 46974), False, 'from eidolon import ui, ScenePlugin, Project, avg, vec3, successive, first, RealMatrix, IndexMatrix, StdProps, timing, ReprType, listToMatrix, MeshSceneObject, BoundBox, ElemType, reduceMesh, PyDataSet, taskmethod, taskroutine, printFlush\n'), ((48909, 48923), 'os.mkdir', 'os.mkdir', (['path'], {}), '(path)\n', (48917, 48923), False, 'import os\n'), ((50058, 50083), 'eidolon.taskroutine', 'taskroutine', (['"""Add points"""'], {}), "('Add points')\n", (50069, 50083), False, 'from eidolon import ui, ScenePlugin, Project, avg, vec3, successive, first, RealMatrix, IndexMatrix, StdProps, timing, ReprType, listToMatrix, MeshSceneObject, BoundBox, ElemType, reduceMesh, PyDataSet, taskmethod, taskroutine, printFlush\n'), ((52756, 52781), 'eidolon.color', 'eidolon.color', (['(1)', '(0)', '(0)', '(1)'], {}), '(1, 0, 0, 1)\n', (52769, 52781), False, 'import eidolon\n'), ((53496, 53522), 'eidolon.setmethod', 'eidolon.setmethod', (['noderep'], {}), '(noderep)\n', (53513, 53522), False, 'import eidolon\n'), ((54425, 54449), 'eidolon.taskroutine', 'taskroutine', (['"""Save mesh"""'], {}), "('Save mesh')\n", (54436, 54449), False, 'from eidolon import ui, ScenePlugin, Project, avg, vec3, successive, first, RealMatrix, IndexMatrix, StdProps, timing, ReprType, listToMatrix, MeshSceneObject, BoundBox, ElemType, reduceMesh, PyDataSet, taskmethod, taskroutine, printFlush\n'), ((57201, 57242), 'eidolon.ScenePlugin.__init__', 'ScenePlugin.__init__', (['self', '"""AtrialFibre"""'], {}), "(self, 'AtrialFibre')\n", (57221, 57242), False, 'from eidolon import ui, ScenePlugin, Project, avg, vec3, successive, first, RealMatrix, IndexMatrix, StdProps, timing, ReprType, listToMatrix, MeshSceneObject, BoundBox, ElemType, reduceMesh, PyDataSet, taskmethod, taskroutine, printFlush\n'), ((57312, 57352), 'eidolon.ScenePlugin.init', 'ScenePlugin.init', (['self', 'plugid', 'win', 'mgr'], {}), '(self, plugid, win, mgr)\n', (57328, 57352), False, 'from eidolon import ui, ScenePlugin, Project, avg, vec3, successive, first, RealMatrix, IndexMatrix, StdProps, timing, ReprType, listToMatrix, MeshSceneObject, BoundBox, ElemType, reduceMesh, PyDataSet, taskmethod, taskroutine, printFlush\n'), ((57996, 58053), 'eidolon.addPathVariable', 'eidolon.addPathVariable', (['"""LD_LIBRARY_PATH"""', 'self.mirtkdir'], {}), "('LD_LIBRARY_PATH', self.mirtkdir)\n", (58019, 58053), False, 'import eidolon\n'), ((58075, 58112), 'os.path.join', 'os.path.join', (['self.mirtkdir', 'decimate'], {}), '(self.mirtkdir, decimate)\n', (58087, 58112), False, 'import os\n'), ((58991, 59001), 'eidolon.avg', 'avg', (['nodes'], {}), '(nodes)\n', (58994, 59001), False, 'from eidolon import ui, ScenePlugin, Project, avg, vec3, successive, first, RealMatrix, IndexMatrix, StdProps, timing, ReprType, listToMatrix, MeshSceneObject, BoundBox, ElemType, reduceMesh, PyDataSet, taskmethod, taskroutine, printFlush\n'), ((59153, 59221), 'eidolon.listToMatrix', 'listToMatrix', (['[tris[i] for i in outerinds]', '"""tris"""', 'ElemType._Tri1NL'], {}), "([tris[i] for i in outerinds], 'tris', ElemType._Tri1NL)\n", (59165, 59221), False, 'from eidolon import ui, ScenePlugin, Project, avg, vec3, successive, first, RealMatrix, IndexMatrix, StdProps, timing, ReprType, listToMatrix, MeshSceneObject, BoundBox, ElemType, reduceMesh, PyDataSet, taskmethod, taskroutine, printFlush\n'), ((59431, 59475), 'eidolon.reduceMesh', 'reduceMesh', (['nodes', '[outertris]'], {'marginSq': '(0.1)'}), '(nodes, [outertris], marginSq=0.1)\n', (59441, 59475), False, 'from eidolon import ui, ScenePlugin, Project, avg, vec3, successive, first, RealMatrix, IndexMatrix, StdProps, timing, ReprType, listToMatrix, MeshSceneObject, BoundBox, ElemType, reduceMesh, PyDataSet, taskmethod, taskroutine, printFlush\n'), ((59493, 59537), 'eidolon.reduceMesh', 'reduceMesh', (['nodes', '[innertris]'], {'marginSq': '(0.1)'}), '(nodes, [innertris], marginSq=0.1)\n', (59503, 59537), False, 'from eidolon import ui, ScenePlugin, Project, avg, vec3, successive, first, RealMatrix, IndexMatrix, StdProps, timing, ReprType, listToMatrix, MeshSceneObject, BoundBox, ElemType, reduceMesh, PyDataSet, taskmethod, taskroutine, printFlush\n'), ((60355, 60381), 'eidolon.printFlush', 'eidolon.printFlush', (['output'], {}), '(output)\n', (60373, 60381), False, 'import eidolon\n'), ((60567, 60669), 'eidolon.PyDataSet', 'eidolon.PyDataSet', (['"""pts"""', '[subjnodes[n[0]] for n in points]', "[('lines', ElemType._Line1NL, lines)]"], {}), "('pts', [subjnodes[n[0]] for n in points], [('lines',\n ElemType._Line1NL, lines)])\n", (60584, 60669), False, 'import eidolon\n'), ((60686, 60721), 'eidolon.MeshSceneObject', 'eidolon.MeshSceneObject', (['"""LM"""', 'ptds'], {}), "('LM', ptds)\n", (60709, 60721), False, 'import eidolon\n'), ((4778, 4806), 'eidolon.listToMatrix', 'listToMatrix', (['nodes', '"""nodes"""'], {}), "(nodes, 'nodes')\n", (4790, 4806), False, 'from eidolon import ui, ScenePlugin, Project, avg, vec3, successive, first, RealMatrix, IndexMatrix, StdProps, timing, ReprType, listToMatrix, MeshSceneObject, BoundBox, ElemType, reduceMesh, PyDataSet, taskmethod, taskroutine, printFlush\n'), ((4874, 4900), 'eidolon.listToMatrix', 'listToMatrix', (['tris', '"""tris"""'], {}), "(tris, 'tris')\n", (4886, 4900), False, 'from eidolon import ui, ScenePlugin, Project, avg, vec3, successive, first, RealMatrix, IndexMatrix, StdProps, timing, ReprType, listToMatrix, MeshSceneObject, BoundBox, ElemType, reduceMesh, PyDataSet, taskmethod, taskroutine, printFlush\n'), ((12756, 12787), 'os.path.join', 'os.path.join', (['outdir', 'modelFile'], {}), '(outdir, modelFile)\n', (12768, 12787), False, 'import os\n'), ((12977, 13008), 'os.path.join', 'os.path.join', (['outdir', 'optimFile'], {}), '(outdir, optimFile)\n', (12989, 13008), False, 'import os\n'), ((26907, 26994), 'eidolon.printFlush', 'eidolon.printFlush', (['"""Skipping"""', 'rindex', '[a for a in allnodes if a not in landmarks]'], {}), "('Skipping', rindex, [a for a in allnodes if a not in\n landmarks])\n", (26925, 26994), False, 'import eidolon\n'), ((35202, 35220), 'eidolon.vec3', 'vec3', (['*dirField[n]'], {}), '(*dirField[n])\n', (35206, 35220), False, 'from eidolon import ui, ScenePlugin, Project, avg, vec3, successive, first, RealMatrix, IndexMatrix, StdProps, timing, ReprType, listToMatrix, MeshSceneObject, BoundBox, ElemType, reduceMesh, PyDataSet, taskmethod, taskroutine, printFlush\n'), ((41059, 41090), 'eidolon.avg', 'avg', (['(nodes[i] for i in faceinds)'], {}), '(nodes[i] for i in faceinds)\n', (41062, 41090), False, 'from eidolon import ui, ScenePlugin, Project, avg, vec3, successive, first, RealMatrix, IndexMatrix, StdProps, timing, ReprType, listToMatrix, MeshSceneObject, BoundBox, ElemType, reduceMesh, PyDataSet, taskmethod, taskroutine, printFlush\n'), ((42773, 42784), 'eidolon.vec3', 'vec3', (['*dir1'], {}), '(*dir1)\n', (42777, 42784), False, 'from eidolon import ui, ScenePlugin, Project, avg, vec3, successive, first, RealMatrix, IndexMatrix, StdProps, timing, ReprType, listToMatrix, MeshSceneObject, BoundBox, ElemType, reduceMesh, PyDataSet, taskmethod, taskroutine, printFlush\n'), ((42785, 42796), 'eidolon.vec3', 'vec3', (['*dir2'], {}), '(*dir2)\n', (42789, 42796), False, 'from eidolon import ui, ScenePlugin, Project, avg, vec3, successive, first, RealMatrix, IndexMatrix, StdProps, timing, ReprType, listToMatrix, MeshSceneObject, BoundBox, ElemType, reduceMesh, PyDataSet, taskmethod, taskroutine, printFlush\n'), ((45161, 45187), 'os.path.isdir', 'os.path.isdir', (['self.logDir'], {}), '(self.logDir)\n', (45174, 45187), False, 'import os\n'), ((45201, 45222), 'os.mkdir', 'os.mkdir', (['self.logDir'], {}), '(self.logDir)\n', (45209, 45222), False, 'import os\n'), ((47421, 47473), 'eidolon.fillList', 'eidolon.fillList', (['combo', 'names', 'self.configMap[name]'], {}), '(combo, names, self.configMap[name])\n', (47437, 47473), False, 'import eidolon\n'), ((49242, 49267), 'eidolon.taskroutine', 'taskroutine', (['"""Add meshes"""'], {}), "('Add meshes')\n", (49253, 49267), False, 'from eidolon import ui, ScenePlugin, Project, avg, vec3, successive, first, RealMatrix, IndexMatrix, StdProps, timing, ReprType, listToMatrix, MeshSceneObject, BoundBox, ElemType, reduceMesh, PyDataSet, taskmethod, taskroutine, printFlush\n'), ((50313, 50339), 'eidolon.Future.get', 'eidolon.Future.get', (['result'], {}), '(result)\n', (50331, 50339), False, 'import eidolon\n'), ((50436, 50473), 'os.path.join', 'os.path.join', (['tempdir', 'registeredFile'], {}), '(tempdir, registeredFile)\n', (50448, 50473), False, 'import os\n'), ((57706, 57730), 'os.path.isdir', 'os.path.isdir', (['deformDir'], {}), '(deformDir)\n', (57719, 57730), False, 'import os\n'), ((57746, 57781), 'zipfile.ZipFile', 'zipfile.ZipFile', (["(deformDir + '.zip')"], {}), "(deformDir + '.zip')\n", (57761, 57781), False, 'import zipfile\n'), ((57828, 57891), 'os.chmod', 'os.chmod', (['deformExe', '(stat.S_IRUSR | stat.S_IXUSR | stat.S_IWUSR)'], {}), '(deformExe, stat.S_IRUSR | stat.S_IXUSR | stat.S_IWUSR)\n', (57836, 57891), False, 'import os\n'), ((57935, 57954), 'eidolon.getAppDir', 'eidolon.getAppDir', ([], {}), '()\n', (57952, 57954), False, 'import eidolon\n'), ((59845, 59888), 'eidolon.PyDataSet', 'PyDataSet', (['"""ds"""', 'outermesh[0]', 'outermesh[1]'], {}), "('ds', outermesh[0], outermesh[1])\n", (59854, 59888), False, 'from eidolon import ui, ScenePlugin, Project, avg, vec3, successive, first, RealMatrix, IndexMatrix, StdProps, timing, ReprType, listToMatrix, MeshSceneObject, BoundBox, ElemType, reduceMesh, PyDataSet, taskmethod, taskroutine, printFlush\n'), ((59927, 59970), 'eidolon.PyDataSet', 'PyDataSet', (['"""ds"""', 'innermesh[0]', 'innermesh[1]'], {}), "('ds', innermesh[0], innermesh[1])\n", (59936, 59970), False, 'from eidolon import ui, ScenePlugin, Project, avg, vec3, successive, first, RealMatrix, IndexMatrix, StdProps, timing, ReprType, listToMatrix, MeshSceneObject, BoundBox, ElemType, reduceMesh, PyDataSet, taskmethod, taskroutine, printFlush\n'), ((4958, 4964), 'eidolon.vec3', 'vec3', ([], {}), '()\n', (4962, 4964), False, 'from eidolon import ui, ScenePlugin, Project, avg, vec3, successive, first, RealMatrix, IndexMatrix, StdProps, timing, ReprType, listToMatrix, MeshSceneObject, BoundBox, ElemType, reduceMesh, PyDataSet, taskmethod, taskroutine, printFlush\n'), ((12508, 12542), 'os.path.join', 'os.path.join', (['deformDir', 'modelFile'], {}), '(deformDir, modelFile)\n', (12520, 12542), False, 'import os\n'), ((12872, 12906), 'os.path.join', 'os.path.join', (['deformDir', 'optimFile'], {}), '(deformDir, optimFile)\n', (12884, 12906), False, 'import os\n'), ((30112, 30132), 'numpy.asarray', 'np.asarray', (['edgedirs'], {}), '(edgedirs)\n', (30122, 30132), True, 'import numpy as np\n'), ((30133, 30154), 'numpy.asarray', 'np.asarray', (['edgegrads'], {}), '(edgegrads)\n', (30143, 30154), True, 'import numpy as np\n'), ((30337, 30343), 'eidolon.vec3', 'vec3', ([], {}), '()\n', (30341, 30343), False, 'from eidolon import ui, ScenePlugin, Project, avg, vec3, successive, first, RealMatrix, IndexMatrix, StdProps, timing, ReprType, listToMatrix, MeshSceneObject, BoundBox, ElemType, reduceMesh, PyDataSet, taskmethod, taskroutine, printFlush\n'), ((33694, 33733), 'os.path.join', 'os.path.join', (['tempdir', "('region%.2i' % r)"], {}), "(tempdir, 'region%.2i' % r)\n", (33706, 33733), False, 'import os\n'), ((34195, 34216), 'eidolon.printFlush', 'eidolon.printFlush', (['e'], {}), '(e)\n', (34213, 34216), False, 'import eidolon\n'), ((47379, 47391), 'eidolon.first', 'first', (['names'], {}), '(names)\n', (47384, 47391), False, 'from eidolon import ui, ScenePlugin, Project, avg, vec3, successive, first, RealMatrix, IndexMatrix, StdProps, timing, ReprType, listToMatrix, MeshSceneObject, BoundBox, ElemType, reduceMesh, PyDataSet, taskmethod, taskroutine, printFlush\n'), ((34107, 34134), 'eidolon.vec3', 'vec3', (['*directionfield[oldn]'], {}), '(*directionfield[oldn])\n', (34111, 34134), False, 'from eidolon import ui, ScenePlugin, Project, avg, vec3, successive, first, RealMatrix, IndexMatrix, StdProps, timing, ReprType, listToMatrix, MeshSceneObject, BoundBox, ElemType, reduceMesh, PyDataSet, taskmethod, taskroutine, printFlush\n'), ((40677, 40683), 'eidolon.vec3', 'vec3', ([], {}), '()\n', (40681, 40683), False, 'from eidolon import ui, ScenePlugin, Project, avg, vec3, successive, first, RealMatrix, IndexMatrix, StdProps, timing, ReprType, listToMatrix, MeshSceneObject, BoundBox, ElemType, reduceMesh, PyDataSet, taskmethod, taskroutine, printFlush\n'), ((30269, 30286), 'eidolon.vec3', 'vec3', (['*nodedir[0]'], {}), '(*nodedir[0])\n', (30273, 30286), False, 'from eidolon import ui, ScenePlugin, Project, avg, vec3, successive, first, RealMatrix, IndexMatrix, StdProps, timing, ReprType, listToMatrix, MeshSceneObject, BoundBox, ElemType, reduceMesh, PyDataSet, taskmethod, taskroutine, printFlush\n'), ((33295, 33309), 'eidolon.avg', 'avg', (['(a, b, c)'], {}), '((a, b, c))\n', (33298, 33309), False, 'from eidolon import ui, ScenePlugin, Project, avg, vec3, successive, first, RealMatrix, IndexMatrix, StdProps, timing, ReprType, listToMatrix, MeshSceneObject, BoundBox, ElemType, reduceMesh, PyDataSet, taskmethod, taskroutine, printFlush\n'), ((40596, 40610), 'eidolon.vec3', 'vec3', (['*dirs[i]'], {}), '(*dirs[i])\n', (40600, 40610), False, 'from eidolon import ui, ScenePlugin, Project, avg, vec3, successive, first, RealMatrix, IndexMatrix, StdProps, timing, ReprType, listToMatrix, MeshSceneObject, BoundBox, ElemType, reduceMesh, PyDataSet, taskmethod, taskroutine, printFlush\n'), ((48851, 48874), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (48872, 48874), False, 'import datetime\n'), ((56282, 56301), 'eidolon.taskroutine', 'taskroutine', (['"""Save"""'], {}), "('Save')\n", (56293, 56301), False, 'from eidolon import ui, ScenePlugin, Project, avg, vec3, successive, first, RealMatrix, IndexMatrix, StdProps, timing, ReprType, listToMatrix, MeshSceneObject, BoundBox, ElemType, reduceMesh, PyDataSet, taskmethod, taskroutine, printFlush\n'), ((56427, 56450), 'eidolon.taskroutine', 'taskroutine', (['"""Load Rep"""'], {}), "('Load Rep')\n", (56438, 56450), False, 'from eidolon import ui, ScenePlugin, Project, avg, vec3, successive, first, RealMatrix, IndexMatrix, StdProps, timing, ReprType, listToMatrix, MeshSceneObject, BoundBox, ElemType, reduceMesh, PyDataSet, taskmethod, taskroutine, printFlush\n')]
from __future__ import absolute_import from copy import copy import numpy as nm from sfepy.base.testing import TestCommon from sfepy.base.base import ordered_iteritems from sfepy import data_dir filename_meshes = [data_dir + '/meshes/elements/%s_2.mesh' % geom for geom in ['1_2', '2_3', '2_4', '3_4', '3_8', '3_2_4']] def make_term_args(arg_shapes, arg_kinds, arg_types, ats_mode, domain, material_value=None, poly_space_base=None): from sfepy.base.base import basestr from sfepy.discrete import FieldVariable, Material, Variables, Materials from sfepy.discrete.fem import Field from sfepy.solvers.ts import TimeStepper from sfepy.mechanics.tensors import dim2sym omega = domain.regions['Omega'] dim = domain.shape.dim sym = dim2sym(dim) def _parse_scalar_shape(sh): if isinstance(sh, basestr): if sh == 'D': return dim elif sh == 'D2': return dim**2 elif sh == 'S': return sym elif sh == 'N': # General number ;) return 1 else: return int(sh) else: return sh def _parse_tuple_shape(sh): if isinstance(sh, basestr): return [_parse_scalar_shape(ii.strip()) for ii in sh.split(',')] else: return (int(sh),) args = {} str_args = [] materials = [] variables = [] for ii, arg_kind in enumerate(arg_kinds): if arg_kind != 'ts': if ats_mode is not None: extended_ats = arg_types[ii] + ('/%s' % ats_mode) else: extended_ats = arg_types[ii] try: sh = arg_shapes[arg_types[ii]] except KeyError: sh = arg_shapes[extended_ats] if arg_kind.endswith('variable'): shape = _parse_scalar_shape(sh[0] if isinstance(sh, tuple) else sh) field = Field.from_args('f%d' % ii, nm.float64, shape, omega, approx_order=1, poly_space_base=poly_space_base) if arg_kind == 'virtual_variable': if sh[1] is not None: istate = arg_types.index(sh[1]) else: # Only virtual variable in arguments. istate = -1 # -> Make fake variable. var = FieldVariable('u-1', 'unknown', field) var.set_constant(0.0) variables.append(var) var = FieldVariable('v', 'test', field, primary_var_name='u%d' % istate) elif arg_kind == 'state_variable': var = FieldVariable('u%d' % ii, 'unknown', field) var.set_constant(0.0) elif arg_kind == 'parameter_variable': var = FieldVariable('p%d' % ii, 'parameter', field, primary_var_name='(set-to-None)') var.set_constant(0.0) variables.append(var) str_args.append(var.name) args[var.name] = var elif arg_kind.endswith('material'): if sh is None: # Switched-off opt_material. continue prefix = '' if isinstance(sh, basestr): aux = sh.split(':') if len(aux) == 2: prefix, sh = aux if material_value is None: material_value = 1.0 shape = _parse_tuple_shape(sh) if (len(shape) > 1) or (shape[0] > 1): if ((len(shape) == 2) and (shape[0] == shape[1]) and (material_value != 0.0)): # Identity matrix. val = nm.eye(shape[0], dtype=nm.float64) else: # Array. val = nm.empty(shape, dtype=nm.float64) val.fill(material_value) values = {'%sc%d' % (prefix, ii) : val} elif (len(shape) == 1) and (shape[0] == 1): # Single scalar as a special value. values = {'.c%d' % ii : material_value} else: raise ValueError('wrong material shape! (%s)' % shape) mat = Material('m%d' % ii, values=values) materials.append(mat) str_args.append(mat.name + '.' + 'c%d' % ii) args[mat.name] = mat elif arg_kind == 'ts': ts = TimeStepper(0.0, 1.0, 1.0, 5) str_args.append('ts') args['ts'] = ts else: str_args.append('user%d' % ii) args[str_args[-1]] = None materials = Materials(materials) variables = Variables(variables) return args, str_args, materials, variables class Test(TestCommon): @staticmethod def from_conf(conf, options): from sfepy.discrete import Integral from sfepy.discrete.fem import Mesh, FEDomain domains = [] for filename in filename_meshes: mesh = Mesh.from_file(filename) domain = FEDomain('domain_%s' % mesh.name.replace(data_dir, ''), mesh) domain.create_region('Omega', 'all') domain.create_region('Gamma', 'vertices of surface', 'facet') domains.append(domain) integral = Integral('i', order=3) qp_coors, qp_weights = integral.get_qp('3_8') custom_integral = Integral('i', coors=qp_coors, weights=qp_weights, order='custom') test = Test(domains=domains, integral=integral, custom_integral=custom_integral, conf=conf, options=options) return test def test_term_call_modes(self): from sfepy.terms import term_table ok = True failed = [] for domain in self.domains: self.report('domain: %s' % domain.name) domain_geometry = list(domain.geom_els.values())[0].name if domain.shape.dim != domain.shape.tdim: domain_geometry = '%d_%s' % (domain.shape.dim, domain_geometry) for _, term_cls in ordered_iteritems(term_table): if (domain_geometry not in term_cls.geometries) \ or ("dg" in term_cls.name) \ or (term_cls.name == "dw_ns_dot_grad_s"): continue vint = ('volume', 'point', 'custom') rname = 'Omega' if term_cls.integration in vint else 'Gamma' self.report('<-- %s ...' % term_cls.name) if rname == 'Gamma' and domain.mesh.dim == 1: self.report('--> 1D Gamma region: not tested!') elif term_cls.arg_shapes: try: _ok = self._test_single_term(term_cls, domain, rname) except: _ok = False if not _ok: failed.append((domain.name, term_cls.name)) ok = ok and _ok self.report('--> ok: %s' % _ok) else: self.report('--> not tested!') self.report('failed:', failed) return ok def _test_single_term(self, term_cls, domain, rname): from sfepy.terms import Term from sfepy.terms.terms import get_arg_kinds ok = True term_call = term_cls.name + '(%s)' arg_shapes_list = term_cls.arg_shapes if not isinstance(arg_shapes_list, list): arg_shapes_list = [arg_shapes_list] if term_cls.integration != 'custom': integral = self.integral else: integral = self.custom_integral poly_space_base = getattr(term_cls, 'poly_space_base', 'lagrange') prev_shapes = {} for _arg_shapes in arg_shapes_list: # Unset shapes are taken from the previous iteration. arg_shapes = copy(prev_shapes) arg_shapes.update(_arg_shapes) prev_shapes = arg_shapes self.report('arg_shapes:', arg_shapes) arg_types = term_cls.arg_types if not isinstance(arg_types[0], tuple): arg_types = (arg_types,) for iat, ats in enumerate(arg_types): self.report('arg_types:', ats) arg_kinds = get_arg_kinds(ats) modes = getattr(term_cls, 'modes', None) mode = modes[iat] if modes is not None else None if 'dw_s_dot_grad_i_s' in term_cls.name: material_value = 0.0 else: material_value = 1.0 aux = make_term_args(arg_shapes, arg_kinds, ats, mode, domain, material_value=material_value, poly_space_base=poly_space_base) args, str_args, materials, variables = aux self.report('args:', str_args) name = term_call % (', '.join(str_args)) term = Term.new(name, integral, domain.regions[rname], **args) term.setup() call_mode = 'weak' if term.names.virtual else 'eval' self.report('call mode:', call_mode) out = term.evaluate(mode=call_mode, ret_status=True) if call_mode == 'eval': vals, status = out vals = nm.array(vals) else: vals, iels, status = out if isinstance(vals, tuple): # Dynamic connectivity terms. vals = vals[0] _ok = nm.isfinite(vals).all() ok = ok and _ok self.report('values shape: %s' % (vals.shape,)) if not _ok: self.report('values are not finite!') self.report(vals) _ok = status == 0 if not _ok: self.report('status is %s!' % status) ok = ok and _ok if term.names.virtual: # Test differentiation w.r.t. state variables in the weak # mode. svars = term.get_state_variables(unknown_only=True) for svar in svars: vals, iels, status = term.evaluate(mode=call_mode, diff_var=svar.name, ret_status=True) if isinstance(vals, tuple): # Dynamic connectivity terms. vals = vals[0] _ok = status == 0 ok = ok and _ok self.report('diff: %s' % svar.name) if not _ok: self.report('status is %s!' % status) _ok = nm.isfinite(vals).all() ok = ok and _ok self.report('values shape: %s' % (vals.shape,)) if not _ok: self.report('values are not finite!') self.report(vals) return ok
[ "sfepy.discrete.Variables", "sfepy.discrete.fem.Mesh.from_file", "sfepy.discrete.Integral", "sfepy.discrete.fem.Field.from_args", "sfepy.base.base.ordered_iteritems", "sfepy.terms.Term.new", "sfepy.solvers.ts.TimeStepper", "sfepy.discrete.FieldVariable", "sfepy.mechanics.tensors.dim2sym", "sfepy.discrete.Material", "sfepy.discrete.Materials", "sfepy.terms.terms.get_arg_kinds" ]
[((801, 813), 'sfepy.mechanics.tensors.dim2sym', 'dim2sym', (['dim'], {}), '(dim)\n', (808, 813), False, 'from sfepy.mechanics.tensors import dim2sym\n'), ((4849, 4869), 'sfepy.discrete.Materials', 'Materials', (['materials'], {}), '(materials)\n', (4858, 4869), False, 'from sfepy.discrete import FieldVariable, Material, Variables, Materials\n'), ((4886, 4906), 'sfepy.discrete.Variables', 'Variables', (['variables'], {}), '(variables)\n', (4895, 4906), False, 'from sfepy.discrete import FieldVariable, Material, Variables, Materials\n'), ((5531, 5553), 'sfepy.discrete.Integral', 'Integral', (['"""i"""'], {'order': '(3)'}), "('i', order=3)\n", (5539, 5553), False, 'from sfepy.discrete import Integral\n'), ((5634, 5699), 'sfepy.discrete.Integral', 'Integral', (['"""i"""'], {'coors': 'qp_coors', 'weights': 'qp_weights', 'order': '"""custom"""'}), "('i', coors=qp_coors, weights=qp_weights, order='custom')\n", (5642, 5699), False, 'from sfepy.discrete import Integral\n'), ((2002, 2108), 'sfepy.discrete.fem.Field.from_args', 'Field.from_args', (["('f%d' % ii)", 'nm.float64', 'shape', 'omega'], {'approx_order': '(1)', 'poly_space_base': 'poly_space_base'}), "('f%d' % ii, nm.float64, shape, omega, approx_order=1,\n poly_space_base=poly_space_base)\n", (2017, 2108), False, 'from sfepy.discrete.fem import Field\n'), ((5214, 5238), 'sfepy.discrete.fem.Mesh.from_file', 'Mesh.from_file', (['filename'], {}), '(filename)\n', (5228, 5238), False, 'from sfepy.discrete.fem import Mesh, FEDomain\n'), ((6356, 6385), 'sfepy.base.base.ordered_iteritems', 'ordered_iteritems', (['term_table'], {}), '(term_table)\n', (6373, 6385), False, 'from sfepy.base.base import ordered_iteritems\n'), ((8181, 8198), 'copy.copy', 'copy', (['prev_shapes'], {}), '(prev_shapes)\n', (8185, 8198), False, 'from copy import copy\n'), ((2645, 2711), 'sfepy.discrete.FieldVariable', 'FieldVariable', (['"""v"""', '"""test"""', 'field'], {'primary_var_name': "('u%d' % istate)"}), "('v', 'test', field, primary_var_name='u%d' % istate)\n", (2658, 2711), False, 'from sfepy.discrete import FieldVariable, Material, Variables, Materials\n'), ((4434, 4469), 'sfepy.discrete.Material', 'Material', (["('m%d' % ii)"], {'values': 'values'}), "('m%d' % ii, values=values)\n", (4442, 4469), False, 'from sfepy.discrete import FieldVariable, Material, Variables, Materials\n'), ((8594, 8612), 'sfepy.terms.terms.get_arg_kinds', 'get_arg_kinds', (['ats'], {}), '(ats)\n', (8607, 8612), False, 'from sfepy.terms.terms import get_arg_kinds\n'), ((9303, 9358), 'sfepy.terms.Term.new', 'Term.new', (['name', 'integral', 'domain.regions[rname]'], {}), '(name, integral, domain.regions[rname], **args)\n', (9311, 9358), False, 'from sfepy.terms import Term\n'), ((2499, 2537), 'sfepy.discrete.FieldVariable', 'FieldVariable', (['"""u-1"""', '"""unknown"""', 'field'], {}), "('u-1', 'unknown', field)\n", (2512, 2537), False, 'from sfepy.discrete import FieldVariable, Material, Variables, Materials\n'), ((2818, 2861), 'sfepy.discrete.FieldVariable', 'FieldVariable', (["('u%d' % ii)", '"""unknown"""', 'field'], {}), "('u%d' % ii, 'unknown', field)\n", (2831, 2861), False, 'from sfepy.discrete import FieldVariable, Material, Variables, Materials\n'), ((4644, 4673), 'sfepy.solvers.ts.TimeStepper', 'TimeStepper', (['(0.0)', '(1.0)', '(1.0)', '(5)'], {}), '(0.0, 1.0, 1.0, 5)\n', (4655, 4673), False, 'from sfepy.solvers.ts import TimeStepper\n'), ((9688, 9702), 'numpy.array', 'nm.array', (['vals'], {}), '(vals)\n', (9696, 9702), True, 'import numpy as nm\n'), ((2974, 3053), 'sfepy.discrete.FieldVariable', 'FieldVariable', (["('p%d' % ii)", '"""parameter"""', 'field'], {'primary_var_name': '"""(set-to-None)"""'}), "('p%d' % ii, 'parameter', field, primary_var_name='(set-to-None)')\n", (2987, 3053), False, 'from sfepy.discrete import FieldVariable, Material, Variables, Materials\n'), ((3885, 3919), 'numpy.eye', 'nm.eye', (['shape[0]'], {'dtype': 'nm.float64'}), '(shape[0], dtype=nm.float64)\n', (3891, 3919), True, 'import numpy as nm\n'), ((3998, 4031), 'numpy.empty', 'nm.empty', (['shape'], {'dtype': 'nm.float64'}), '(shape, dtype=nm.float64)\n', (4006, 4031), True, 'import numpy as nm\n'), ((9924, 9941), 'numpy.isfinite', 'nm.isfinite', (['vals'], {}), '(vals)\n', (9935, 9941), True, 'import numpy as nm\n'), ((11238, 11255), 'numpy.isfinite', 'nm.isfinite', (['vals'], {}), '(vals)\n', (11249, 11255), True, 'import numpy as nm\n')]
from sqlmodel import create_engine engine = create_engine("sqlite:///database.db") del create_engine from .models import DuelData from .session import Session, SessionManager
[ "sqlmodel.create_engine" ]
[((45, 83), 'sqlmodel.create_engine', 'create_engine', (['"""sqlite:///database.db"""'], {}), "('sqlite:///database.db')\n", (58, 83), False, 'from sqlmodel import create_engine\n')]
import megengine as mge import megengine.functional as F from megengine import tensor import numpy as np from megengine.functional.nn import nms from config import config from det_opr.bbox_opr import bbox_transform_inv_opr, clip_boxes_opr, \ filter_boxes_opr, box_overlap_opr # from bbox_opr import box_overlap_opr import pdb def find_top_rpn_proposals(is_train, rpn_bbox_offsets_list, rpn_cls_prob_list, all_anchors_list, im_info): prev_nms_top_n = config.train_prev_nms_top_n \ if is_train else config.test_prev_nms_top_n post_nms_top_n = config.train_post_nms_top_n \ if is_train else config.test_post_nms_top_n batch_per_gpu = config.batch_per_gpu if is_train else 1 nms_threshold = config.rpn_nms_threshold box_min_size = config.rpn_min_box_size bbox_normalize_targets = config.rpn_bbox_normalize_targets bbox_normalize_means = config.bbox_normalize_means bbox_normalize_stds = config.bbox_normalize_stds list_size = len(rpn_bbox_offsets_list) return_rois, return_probs = [], [] batch_per_gpu = rpn_cls_prob_list[0].shape[0] for bid in range(batch_per_gpu): batch_proposals_list = [] batch_probs_list = [] for l in range(list_size): # get proposals and probs offsets = rpn_bbox_offsets_list[l][bid] \ .transpose(1, 2, 0).reshape(-1, 4) if bbox_normalize_targets: std_opr = tensor(config.bbox_normalize_stds[None, :]) mean_opr = tensor(config.bbox_normalize_means[None, :]) pred_offsets = pred_offsets * std_opr pred_offsets = pred_offsets + mean_opr all_anchors = all_anchors_list[l] proposals = bbox_transform_inv_opr(all_anchors, offsets) if config.anchor_within_border: proposals = clip_boxes_opr(proposals, im_info[bid, :]) probs = rpn_cls_prob_list[l][bid] \ .transpose(1,2,0).reshape(-1, 2) probs = F.softmax(probs)[:, 1] # gather the proposals and probs batch_proposals_list.append(proposals) batch_probs_list.append(probs) batch_proposals = F.concat(batch_proposals_list, axis=0) batch_probs = F.concat(batch_probs_list, axis=0) # filter the boxes with small size. wh = batch_proposals[:, 2:4] - batch_proposals[:, :2] + 1 thresh = box_min_size * im_info[bid, 2] keep_mask = F.prod((wh >= thresh), axis=1) keep_mask = keep_mask + F.equal(keep_mask.sum(), 0) keep_mask, inds = F.cond_take(keep_mask > 0, keep_mask) inds = inds.astype(np.int32) # batch_proposals = F.nn.indexing_one_hot(batch_proposals, inds, 0) # batch_probs = F.nn.indexing_one_hot(batch_probs, inds, 0) batch_proposals, batch_probs = batch_proposals[inds], batch_probs[inds] # prev_nms_top_n num_proposals = F.minimum(prev_nms_top_n, batch_proposals.shape[0]) idx = F.argsort(batch_probs, descending=True) topk_idx = idx[:num_proposals].reshape(-1) batch_proposals = batch_proposals[topk_idx].detach() batch_probs = batch_probs[topk_idx].detach() # For each image, run a total-level NMS, and choose topk results. keep_inds = nms(batch_proposals, batch_probs, nms_threshold, max_output = 2000) # num = F.minimum(post_nms_top_n, keep_inds.shape[0]) # keep_inds = keep_inds[:num] batch_rois, batch_probs = batch_proposals[keep_inds], batch_probs[keep_inds] # cons the rois batch_inds = F.ones((batch_rois.shape[0], 1)) * bid batch_rois = F.concat([batch_inds, batch_rois[:, :4]], axis=1) return_rois.append(batch_rois) return_probs.append(batch_probs) if batch_per_gpu == 1: return batch_rois, batch_probs else: concated_rois = F.concat(return_rois, axis=0) concated_probs = F.concat(return_probs, axis=0) return concated_rois, concated_probs
[ "megengine.functional.nn.nms", "megengine.functional.prod", "megengine.functional.minimum", "megengine.functional.argsort", "megengine.tensor", "megengine.functional.cond_take", "megengine.functional.concat", "megengine.functional.ones", "megengine.functional.softmax" ]
[((2223, 2261), 'megengine.functional.concat', 'F.concat', (['batch_proposals_list'], {'axis': '(0)'}), '(batch_proposals_list, axis=0)\n', (2231, 2261), True, 'import megengine.functional as F\n'), ((2284, 2318), 'megengine.functional.concat', 'F.concat', (['batch_probs_list'], {'axis': '(0)'}), '(batch_probs_list, axis=0)\n', (2292, 2318), True, 'import megengine.functional as F\n'), ((2497, 2525), 'megengine.functional.prod', 'F.prod', (['(wh >= thresh)'], {'axis': '(1)'}), '(wh >= thresh, axis=1)\n', (2503, 2525), True, 'import megengine.functional as F\n'), ((2614, 2651), 'megengine.functional.cond_take', 'F.cond_take', (['(keep_mask > 0)', 'keep_mask'], {}), '(keep_mask > 0, keep_mask)\n', (2625, 2651), True, 'import megengine.functional as F\n'), ((2964, 3015), 'megengine.functional.minimum', 'F.minimum', (['prev_nms_top_n', 'batch_proposals.shape[0]'], {}), '(prev_nms_top_n, batch_proposals.shape[0])\n', (2973, 3015), True, 'import megengine.functional as F\n'), ((3030, 3069), 'megengine.functional.argsort', 'F.argsort', (['batch_probs'], {'descending': '(True)'}), '(batch_probs, descending=True)\n', (3039, 3069), True, 'import megengine.functional as F\n'), ((3338, 3403), 'megengine.functional.nn.nms', 'nms', (['batch_proposals', 'batch_probs', 'nms_threshold'], {'max_output': '(2000)'}), '(batch_proposals, batch_probs, nms_threshold, max_output=2000)\n', (3341, 3403), False, 'from megengine.functional.nn import nms\n'), ((3698, 3747), 'megengine.functional.concat', 'F.concat', (['[batch_inds, batch_rois[:, :4]]'], {'axis': '(1)'}), '([batch_inds, batch_rois[:, :4]], axis=1)\n', (3706, 3747), True, 'import megengine.functional as F\n'), ((3929, 3958), 'megengine.functional.concat', 'F.concat', (['return_rois'], {'axis': '(0)'}), '(return_rois, axis=0)\n', (3937, 3958), True, 'import megengine.functional as F\n'), ((3984, 4014), 'megengine.functional.concat', 'F.concat', (['return_probs'], {'axis': '(0)'}), '(return_probs, axis=0)\n', (3992, 4014), True, 'import megengine.functional as F\n'), ((1744, 1788), 'det_opr.bbox_opr.bbox_transform_inv_opr', 'bbox_transform_inv_opr', (['all_anchors', 'offsets'], {}), '(all_anchors, offsets)\n', (1766, 1788), False, 'from det_opr.bbox_opr import bbox_transform_inv_opr, clip_boxes_opr, filter_boxes_opr, box_overlap_opr\n'), ((3638, 3670), 'megengine.functional.ones', 'F.ones', (['(batch_rois.shape[0], 1)'], {}), '((batch_rois.shape[0], 1))\n', (3644, 3670), True, 'import megengine.functional as F\n'), ((1448, 1491), 'megengine.tensor', 'tensor', (['config.bbox_normalize_stds[None, :]'], {}), '(config.bbox_normalize_stds[None, :])\n', (1454, 1491), False, 'from megengine import tensor\n'), ((1519, 1563), 'megengine.tensor', 'tensor', (['config.bbox_normalize_means[None, :]'], {}), '(config.bbox_normalize_means[None, :])\n', (1525, 1563), False, 'from megengine import tensor\n'), ((1861, 1903), 'det_opr.bbox_opr.clip_boxes_opr', 'clip_boxes_opr', (['proposals', 'im_info[bid, :]'], {}), '(proposals, im_info[bid, :])\n', (1875, 1903), False, 'from det_opr.bbox_opr import bbox_transform_inv_opr, clip_boxes_opr, filter_boxes_opr, box_overlap_opr\n'), ((2025, 2041), 'megengine.functional.softmax', 'F.softmax', (['probs'], {}), '(probs)\n', (2034, 2041), True, 'import megengine.functional as F\n')]
#!/usr/bin/env python # This code was adapted from http://sfepy.org/doc-devel/mat_optim.html. """ Compare various elastic materials w.r.t. uniaxial tension/compression test. Requires Matplotlib. """ from __future__ import absolute_import from argparse import ArgumentParser, RawDescriptionHelpFormatter import sys import six sys.path.append('.') from sfepy.base.base import output from sfepy.base.conf import ProblemConf, get_standard_keywords from sfepy.discrete import Problem from sfepy.base.plotutils import plt from matplotlib.collections import PolyCollection from mpl_toolkits.mplot3d.art3d import Poly3DCollection, Line3DCollection import numpy as np from functools import partial def define( K=8.333, mu_nh=3.846, mu_mr=1.923, kappa=1.923, lam=5.769, mu=3.846 ): """Define the problem to solve.""" from sfepy.discrete.fem.meshio import UserMeshIO from sfepy.mesh.mesh_generators import gen_block_mesh from sfepy.mechanics.matcoefs import stiffness_from_lame def mesh_hook(mesh, mode): """ Generate the block mesh. """ if mode == 'read': mesh = gen_block_mesh([2, 2, 3], [2, 2, 4], [0, 0, 1.5], name='el3', verbose=False) return mesh elif mode == 'write': pass filename_mesh = UserMeshIO(mesh_hook) options = { 'nls' : 'newton', 'ls' : 'ls', 'ts' : 'ts', 'save_times' : 'all', } functions = { 'linear_pressure' : (linear_pressure,), 'empty' : (lambda ts, coor, mode, region, ig: None,), } fields = { 'displacement' : ('real', 3, 'Omega', 1), } # Coefficients are chosen so that the tangent stiffness is the same for all # material for zero strains. materials = { 'solid' : ({ 'K' : K, # bulk modulus 'mu_nh' : mu_nh, # shear modulus of neoHookean term 'mu_mr' : mu_mr, # shear modulus of Mooney-Rivlin term 'kappa' : kappa, # second modulus of Mooney-Rivlin term # elasticity for LE term 'D' : stiffness_from_lame(dim=3, lam=lam, mu=mu), },), 'load' : 'empty', } variables = { 'u' : ('unknown field', 'displacement', 0), 'v' : ('test field', 'displacement', 'u'), } regions = { 'Omega' : 'all', 'Bottom' : ('vertices in (z < 0.1)', 'facet'), 'Top' : ('vertices in (z > 2.9)', 'facet'), } ebcs = { 'fixb' : ('Bottom', {'u.all' : 0.0}), 'fixt' : ('Top', {'u.[0,1]' : 0.0}), } integrals = { 'i' : 1, 'isurf' : 2, } equations = { 'linear' : """dw_lin_elastic.i.Omega(solid.D, v, u) = dw_surface_ltr.isurf.Top(load.val, v)""", 'neo-Hookean' : """dw_tl_he_neohook.i.Omega(solid.mu_nh, v, u) + dw_tl_bulk_penalty.i.Omega(solid.K, v, u) = dw_surface_ltr.isurf.Top(load.val, v)""", 'Mooney-Rivlin' : """dw_tl_he_neohook.i.Omega(solid.mu_mr, v, u) + dw_tl_he_mooney_rivlin.i.Omega(solid.kappa, v, u) + dw_tl_bulk_penalty.i.Omega(solid.K, v, u) = dw_surface_ltr.isurf.Top(load.val, v)""", } solvers = { 'ls' : ('ls.scipy_direct', {}), 'newton' : ('nls.newton', { 'i_max' : 5, 'eps_a' : 1e-10, 'eps_r' : 1.0, }), 'ts' : ('ts.simple', { 't0' : 0, 't1' : 1, 'dt' : None, 'n_step' : 26, # has precedence over dt! 'verbose' : 1, }), } return locals() ## # Pressure tractions. def linear_pressure(ts, coor, mode=None, coef=1, **kwargs): if mode == 'qp': val = np.tile(coef * ts.step, (coor.shape[0], 1, 1)) return {'val' : val} def store_top_u(displacements): """Function _store() will be called at the end of each loading step. Top displacements will be stored into `displacements`.""" def _store(problem, ts, state): top = problem.domain.regions['Top'] top_u = problem.get_variables()['u'].get_state_in_region(top) displacements.append(np.mean(top_u[:,-1])) return _store def solve_branch(problem, branch_function, material_type): eq = problem.conf.equations[material_type] problem.set_equations({material_type : eq}) load = problem.get_materials()['load'] load.set_function(branch_function) out = [] problem.solve(save_results=False, step_hook=store_top_u(out)) displacements = np.array(out, dtype=np.float64) return displacements helps = { 'no_plot' : 'do not show plot window', } def plot_mesh(pb): # plot mesh for macro problem coors = pb.domain.mesh.coors graph = pb.domain.mesh.get_conn(pb.domain.mesh.descs[0]) fig2 = plt.figure(figsize=(5,6)) ax = fig2.add_subplot(111, projection='3d') for e in range(graph.shape[0]): tupleList = coors[graph[e,:],:] vertices = [[0, 1, 2, 3], [4, 5, 6, 7], [0, 1, 5, 4], [1, 2, 6, 5], [2, 3, 7, 6], [3, 0, 4, 7]] verts = [[tupleList[vertices[ix][iy]] for iy in range(len(vertices[0]))] for ix in range(len(vertices))] pc3d = Poly3DCollection(verts=verts, facecolors='white', edgecolors='black', linewidths=1, alpha=0.5) ax.add_collection3d(pc3d) ax.set_xlim3d(-1.2, 1.2) ax.set_ylim3d(-1.2, 1.2) ax.set_zlim3d(-0.01, 3.2) ax.set_title('3D plot of macro system') plt.show(fig2) return None def one_simulation(material_type, define_args, coef_tension=0.25, coef_compression=-0.25, plot_mesh_bool=False, return_load=False): #parser = ArgumentParser(description=__doc__, # formatter_class=RawDescriptionHelpFormatter) #parser.add_argument('--version', action='version', version='%(prog)s') #options = parser.parse_args() output.set_output(filename='sfepy_log.txt', quiet=True) required, other = get_standard_keywords() # Use this file as the input file. conf = ProblemConf.from_file(__file__, required, other, define_args=define_args) # Create problem instance, but do not set equations. problem = Problem.from_conf(conf, init_equations=False) if plot_mesh_bool: plot_mesh(problem) # Solve the problem. Output is ignored, results stored by using the # step_hook. linear_tension = partial(linear_pressure, coef=coef_tension) u_t = solve_branch(problem, linear_tension, material_type) linear_compression = partial(linear_pressure, coef=coef_compression) u_c = solve_branch(problem, linear_compression, material_type) # Get pressure load by calling linear_*() for each time step. ts = problem.get_timestepper() load_t = np.array([linear_tension(ts, np.array([[0.0]]), 'qp')['val'] for aux in ts.iter_from(0)], dtype=np.float64).squeeze() load_c = np.array([linear_compression(ts, np.array([[0.0]]), 'qp')['val'] for aux in ts.iter_from(0)], dtype=np.float64).squeeze() # Join the branches. displacements = np.r_[u_c[::-1], u_t] load = np.r_[load_c[::-1], load_t] if return_load: return displacements, load else: return displacements def one_simulation_linear(theta, plot_mesh_bool=False, return_load=False): material_type = 'linear' theta = np.array(theta).reshape((-1, )) define_args = {'lam':theta[0], 'mu':theta[1]} # bulk modulus return one_simulation(material_type=material_type, plot_mesh_bool=plot_mesh_bool, define_args=define_args, return_load=return_load) def one_simulation_neo_hookean(theta, plot_mesh_bool=False, return_load=False): material_type = 'neo-Hookean' theta = np.array(theta).reshape((-1, )) define_args = {'mu_nh':theta[0]} # bulk modulus return one_simulation(material_type=material_type, plot_mesh_bool=plot_mesh_bool, define_args=define_args, return_load=return_load) def one_simulation_mooney_rivlin(theta, plot_mesh_bool=False, return_load=False): material_type = 'Mooney-Rivlin' theta = np.array(theta).reshape((-1, )) define_args = {'mu_mr':theta[0], 'kappa':theta[1]} # bulk modulus return one_simulation(material_type=material_type, plot_mesh_bool=plot_mesh_bool, define_args=define_args, return_load=return_load) def one_simulation_linear_v2(theta, plot_mesh_bool=False, return_load=False): material_type = 'linear' theta = np.array(theta).reshape((-1, )) define_args = {'lam':theta[0], 'mu':theta[1]} # bulk modulus return one_simulation(material_type=material_type, plot_mesh_bool=plot_mesh_bool, define_args=define_args, return_load=return_load, coef_tension=0.15/5) def one_simulation_neo_hookean_v2(theta, plot_mesh_bool=False, return_load=False): material_type = 'neo-Hookean' theta = np.array(theta).reshape((-1, )) define_args = {'mu_nh':theta[0]} # bulk modulus return one_simulation(material_type=material_type, plot_mesh_bool=plot_mesh_bool, define_args=define_args, return_load=return_load, coef_tension=0.15/5) def one_simulation_mooney_rivlin_v2(theta, plot_mesh_bool=False, return_load=False): material_type = 'Mooney-Rivlin' theta = np.array(theta).reshape((-1, )) define_args = {'mu_mr':theta[0], 'kappa':theta[1]} # bulk modulus return one_simulation(material_type=material_type, plot_mesh_bool=plot_mesh_bool, define_args=define_args, return_load=return_load, coef_tension=0.15/5)
[ "sfepy.base.conf.get_standard_keywords", "sfepy.base.base.output.set_output", "sfepy.discrete.Problem.from_conf", "sfepy.base.conf.ProblemConf.from_file", "sfepy.discrete.fem.meshio.UserMeshIO", "sfepy.mesh.mesh_generators.gen_block_mesh", "sfepy.base.plotutils.plt.show", "sfepy.mechanics.matcoefs.stiffness_from_lame", "sfepy.base.plotutils.plt.figure" ]
[((327, 347), 'sys.path.append', 'sys.path.append', (['"""."""'], {}), "('.')\n", (342, 347), False, 'import sys\n'), ((1326, 1347), 'sfepy.discrete.fem.meshio.UserMeshIO', 'UserMeshIO', (['mesh_hook'], {}), '(mesh_hook)\n', (1336, 1347), False, 'from sfepy.discrete.fem.meshio import UserMeshIO\n'), ((4671, 4702), 'numpy.array', 'np.array', (['out'], {'dtype': 'np.float64'}), '(out, dtype=np.float64)\n', (4679, 4702), True, 'import numpy as np\n'), ((4960, 4986), 'sfepy.base.plotutils.plt.figure', 'plt.figure', ([], {'figsize': '(5, 6)'}), '(figsize=(5, 6))\n', (4970, 4986), False, 'from sfepy.base.plotutils import plt\n'), ((5706, 5720), 'sfepy.base.plotutils.plt.show', 'plt.show', (['fig2'], {}), '(fig2)\n', (5714, 5720), False, 'from sfepy.base.plotutils import plt\n'), ((6123, 6178), 'sfepy.base.base.output.set_output', 'output.set_output', ([], {'filename': '"""sfepy_log.txt"""', 'quiet': '(True)'}), "(filename='sfepy_log.txt', quiet=True)\n", (6140, 6178), False, 'from sfepy.base.base import output\n'), ((6202, 6225), 'sfepy.base.conf.get_standard_keywords', 'get_standard_keywords', ([], {}), '()\n', (6223, 6225), False, 'from sfepy.base.conf import ProblemConf, get_standard_keywords\n'), ((6276, 6349), 'sfepy.base.conf.ProblemConf.from_file', 'ProblemConf.from_file', (['__file__', 'required', 'other'], {'define_args': 'define_args'}), '(__file__, required, other, define_args=define_args)\n', (6297, 6349), False, 'from sfepy.base.conf import ProblemConf, get_standard_keywords\n'), ((6431, 6476), 'sfepy.discrete.Problem.from_conf', 'Problem.from_conf', (['conf'], {'init_equations': '(False)'}), '(conf, init_equations=False)\n', (6448, 6476), False, 'from sfepy.discrete import Problem\n'), ((6638, 6681), 'functools.partial', 'partial', (['linear_pressure'], {'coef': 'coef_tension'}), '(linear_pressure, coef=coef_tension)\n', (6645, 6681), False, 'from functools import partial\n'), ((6770, 6817), 'functools.partial', 'partial', (['linear_pressure'], {'coef': 'coef_compression'}), '(linear_pressure, coef=coef_compression)\n', (6777, 6817), False, 'from functools import partial\n'), ((3867, 3913), 'numpy.tile', 'np.tile', (['(coef * ts.step)', '(coor.shape[0], 1, 1)'], {}), '(coef * ts.step, (coor.shape[0], 1, 1))\n', (3874, 3913), True, 'import numpy as np\n'), ((5400, 5498), 'mpl_toolkits.mplot3d.art3d.Poly3DCollection', 'Poly3DCollection', ([], {'verts': 'verts', 'facecolors': '"""white"""', 'edgecolors': '"""black"""', 'linewidths': '(1)', 'alpha': '(0.5)'}), "(verts=verts, facecolors='white', edgecolors='black',\n linewidths=1, alpha=0.5)\n", (5416, 5498), False, 'from mpl_toolkits.mplot3d.art3d import Poly3DCollection, Line3DCollection\n'), ((1122, 1198), 'sfepy.mesh.mesh_generators.gen_block_mesh', 'gen_block_mesh', (['[2, 2, 3]', '[2, 2, 4]', '[0, 0, 1.5]'], {'name': '"""el3"""', 'verbose': '(False)'}), "([2, 2, 3], [2, 2, 4], [0, 0, 1.5], name='el3', verbose=False)\n", (1136, 1198), False, 'from sfepy.mesh.mesh_generators import gen_block_mesh\n'), ((4291, 4312), 'numpy.mean', 'np.mean', (['top_u[:, -1]'], {}), '(top_u[:, -1])\n', (4298, 4312), True, 'import numpy as np\n'), ((7652, 7667), 'numpy.array', 'np.array', (['theta'], {}), '(theta)\n', (7660, 7667), True, 'import numpy as np\n'), ((8020, 8035), 'numpy.array', 'np.array', (['theta'], {}), '(theta)\n', (8028, 8035), True, 'import numpy as np\n'), ((8379, 8394), 'numpy.array', 'np.array', (['theta'], {}), '(theta)\n', (8387, 8394), True, 'import numpy as np\n'), ((8745, 8760), 'numpy.array', 'np.array', (['theta'], {}), '(theta)\n', (8753, 8760), True, 'import numpy as np\n'), ((9137, 9152), 'numpy.array', 'np.array', (['theta'], {}), '(theta)\n', (9145, 9152), True, 'import numpy as np\n'), ((9520, 9535), 'numpy.array', 'np.array', (['theta'], {}), '(theta)\n', (9528, 9535), True, 'import numpy as np\n'), ((2120, 2162), 'sfepy.mechanics.matcoefs.stiffness_from_lame', 'stiffness_from_lame', ([], {'dim': '(3)', 'lam': 'lam', 'mu': 'mu'}), '(dim=3, lam=lam, mu=mu)\n', (2139, 2162), False, 'from sfepy.mechanics.matcoefs import stiffness_from_lame\n'), ((7029, 7046), 'numpy.array', 'np.array', (['[[0.0]]'], {}), '([[0.0]])\n', (7037, 7046), True, 'import numpy as np\n'), ((7204, 7221), 'numpy.array', 'np.array', (['[[0.0]]'], {}), '([[0.0]])\n', (7212, 7221), True, 'import numpy as np\n')]
import uuid from typing import List from typing import Optional from sqlalchemy.engine import Engine from sqlmodel import Field from sqlmodel import Relationship from sqlmodel import Session from sqlmodel import SQLModel from sqlmodel import create_engine _engine: Optional[Engine] = None class FileTagAssociation(SQLModel, table=True): file_id: Optional[uuid.UUID] = Field( default=None, foreign_key="file.id", primary_key=True ) tag_id: Optional[uuid.UUID] = Field( default=None, foreign_key="tag.id", primary_key=True ) class File(SQLModel, table=True): id: Optional[uuid.UUID] = Field(default_factory=uuid.uuid4, primary_key=True) name: str path: str tags: List["Tag"] = Relationship( back_populates="files", link_model=FileTagAssociation ) class Tag(SQLModel, table=True): id: Optional[uuid.UUID] = Field(default_factory=uuid.uuid4, primary_key=True) category: Optional[str] value: str files: List[File] = Relationship( back_populates="tags", link_model=FileTagAssociation ) def init(url: str) -> None: global _engine _engine = create_engine(url) SQLModel.metadata.create_all(_engine) def get_engine() -> Engine: """Get the global database engine.""" if _engine is None: # pragma: no cover raise ValueError("Engine must be initialized with `db.init()`") return _engine def get_session() -> Session: """Create a new database session to use as a context manager.""" return Session(get_engine())
[ "sqlmodel.SQLModel.metadata.create_all", "sqlmodel.Relationship", "sqlmodel.Field", "sqlmodel.create_engine" ]
[((376, 436), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'foreign_key': '"""file.id"""', 'primary_key': '(True)'}), "(default=None, foreign_key='file.id', primary_key=True)\n", (381, 436), False, 'from sqlmodel import Field\n'), ((485, 544), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'foreign_key': '"""tag.id"""', 'primary_key': '(True)'}), "(default=None, foreign_key='tag.id', primary_key=True)\n", (490, 544), False, 'from sqlmodel import Field\n'), ((625, 676), 'sqlmodel.Field', 'Field', ([], {'default_factory': 'uuid.uuid4', 'primary_key': '(True)'}), '(default_factory=uuid.uuid4, primary_key=True)\n', (630, 676), False, 'from sqlmodel import Field\n'), ((730, 797), 'sqlmodel.Relationship', 'Relationship', ([], {'back_populates': '"""files"""', 'link_model': 'FileTagAssociation'}), "(back_populates='files', link_model=FileTagAssociation)\n", (742, 797), False, 'from sqlmodel import Relationship\n'), ((877, 928), 'sqlmodel.Field', 'Field', ([], {'default_factory': 'uuid.uuid4', 'primary_key': '(True)'}), '(default_factory=uuid.uuid4, primary_key=True)\n', (882, 928), False, 'from sqlmodel import Field\n'), ((997, 1063), 'sqlmodel.Relationship', 'Relationship', ([], {'back_populates': '"""tags"""', 'link_model': 'FileTagAssociation'}), "(back_populates='tags', link_model=FileTagAssociation)\n", (1009, 1063), False, 'from sqlmodel import Relationship\n'), ((1141, 1159), 'sqlmodel.create_engine', 'create_engine', (['url'], {}), '(url)\n', (1154, 1159), False, 'from sqlmodel import create_engine\n'), ((1165, 1202), 'sqlmodel.SQLModel.metadata.create_all', 'SQLModel.metadata.create_all', (['_engine'], {}), '(_engine)\n', (1193, 1202), False, 'from sqlmodel import SQLModel\n')]
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import numpy as np import pytest import megengine import megengine.autodiff as ad import megengine.optimizer as optimizer from megengine import Parameter, tensor from megengine.module import BatchNorm2d def test_frozen_bn(): nchannel = 3 m = BatchNorm2d(nchannel, freeze=True) saved_var = m.running_var.numpy() saved_mean = m.running_mean.numpy() saved_wt = m.weight.numpy() saved_bias = m.bias.numpy() gm = ad.GradManager().attach(m.parameters()) optim = optimizer.SGD(m.parameters(), lr=1.0) optim.clear_grad() data = np.random.random((6, nchannel, 2, 2)).astype("float32") with gm: loss = m(data).mean() gm.backward(loss) optim.step() np.testing.assert_equal(m.running_var.numpy(), saved_var) np.testing.assert_equal(m.running_mean.numpy(), saved_mean) np.testing.assert_equal(m.weight.numpy(), saved_wt) np.testing.assert_equal(m.bias.numpy(), saved_bias) np.testing.assert_almost_equal(loss.numpy(), data.mean(), 5) def test_bn_no_track_stat(): nchannel = 3 m = BatchNorm2d(nchannel, track_running_stats=False) gm = ad.GradManager().attach(m.parameters()) optim = optimizer.SGD(m.parameters(), lr=1.0) optim.clear_grad() data = np.random.random((6, nchannel, 2, 2)).astype("float32") with gm: loss = m(data).sum() gm.backward(loss) optim.step() def test_bn_no_track_stat2(): nchannel = 3 m = BatchNorm2d(nchannel) # Init with track_running_stat = True m.track_running_stats = False # m.running_var and m.running_mean created during init time saved_var = m.running_var.numpy() assert saved_var is not None saved_mean = m.running_mean.numpy() assert saved_mean is not None gm = ad.GradManager().attach(m.parameters()) optim = optimizer.SGD(m.parameters(), lr=1.0) optim.clear_grad() data = np.random.random((6, nchannel, 2, 2)).astype("float32") with gm: loss = m(data).sum() gm.backward(loss) optim.step() np.testing.assert_equal(m.running_var.numpy(), saved_var) np.testing.assert_equal(m.running_mean.numpy(), saved_mean) def test_bn_no_track_stat3(): nchannel = 3 m = BatchNorm2d(nchannel, track_running_stats=False) m.track_running_stats = True data = np.random.random((6, nchannel, 2, 2)).astype("float32") with pytest.raises(Exception): m(data)
[ "megengine.module.BatchNorm2d", "megengine.autodiff.GradManager" ]
[((630, 664), 'megengine.module.BatchNorm2d', 'BatchNorm2d', (['nchannel'], {'freeze': '(True)'}), '(nchannel, freeze=True)\n', (641, 664), False, 'from megengine.module import BatchNorm2d\n'), ((1445, 1493), 'megengine.module.BatchNorm2d', 'BatchNorm2d', (['nchannel'], {'track_running_stats': '(False)'}), '(nchannel, track_running_stats=False)\n', (1456, 1493), False, 'from megengine.module import BatchNorm2d\n'), ((1827, 1848), 'megengine.module.BatchNorm2d', 'BatchNorm2d', (['nchannel'], {}), '(nchannel)\n', (1838, 1848), False, 'from megengine.module import BatchNorm2d\n'), ((2592, 2640), 'megengine.module.BatchNorm2d', 'BatchNorm2d', (['nchannel'], {'track_running_stats': '(False)'}), '(nchannel, track_running_stats=False)\n', (2603, 2640), False, 'from megengine.module import BatchNorm2d\n'), ((2750, 2774), 'pytest.raises', 'pytest.raises', (['Exception'], {}), '(Exception)\n', (2763, 2774), False, 'import pytest\n'), ((818, 834), 'megengine.autodiff.GradManager', 'ad.GradManager', ([], {}), '()\n', (832, 834), True, 'import megengine.autodiff as ad\n'), ((943, 980), 'numpy.random.random', 'np.random.random', (['(6, nchannel, 2, 2)'], {}), '((6, nchannel, 2, 2))\n', (959, 980), True, 'import numpy as np\n'), ((1504, 1520), 'megengine.autodiff.GradManager', 'ad.GradManager', ([], {}), '()\n', (1518, 1520), True, 'import megengine.autodiff as ad\n'), ((1629, 1666), 'numpy.random.random', 'np.random.random', (['(6, nchannel, 2, 2)'], {}), '((6, nchannel, 2, 2))\n', (1645, 1666), True, 'import numpy as np\n'), ((2142, 2158), 'megengine.autodiff.GradManager', 'ad.GradManager', ([], {}), '()\n', (2156, 2158), True, 'import megengine.autodiff as ad\n'), ((2267, 2304), 'numpy.random.random', 'np.random.random', (['(6, nchannel, 2, 2)'], {}), '((6, nchannel, 2, 2))\n', (2283, 2304), True, 'import numpy as np\n'), ((2685, 2722), 'numpy.random.random', 'np.random.random', (['(6, nchannel, 2, 2)'], {}), '((6, nchannel, 2, 2))\n', (2701, 2722), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. """Finetune a pretrained fp32 with int8 post train quantization(calibration)""" import argparse import collections import numbers import os import time # pylint: disable=import-error import models import megengine as mge import megengine.data as data import megengine.data.transform as T import megengine.distributed as dist import megengine.functional as F import megengine.quantization as Q from megengine.quantization.quantize import enable_observer, quantize, quantize_qat logger = mge.get_logger(__name__) def main(): parser = argparse.ArgumentParser() parser.add_argument("-a", "--arch", default="resnet18", type=str) parser.add_argument("-d", "--data", default=None, type=str) parser.add_argument("-s", "--save", default="/data/models", type=str) parser.add_argument( "-c", "--checkpoint", default=None, type=str, help="pretrained model to finetune", ) parser.add_argument("-n", "--ngpus", default=None, type=int) parser.add_argument("-w", "--workers", default=4, type=int) parser.add_argument("--report-freq", default=50, type=int) args = parser.parse_args() world_size = ( dist.helper.get_device_count_by_fork("gpu") if args.ngpus is None else args.ngpus ) world_size = 1 if world_size == 0 else world_size if world_size != 1: logger.warning( "Calibration only supports single GPU now, %d provided", world_size ) proc_func = dist.launcher(worker) if world_size > 1 else worker proc_func(world_size, args) def get_parameters(model, cfg): if isinstance(cfg.WEIGHT_DECAY, numbers.Number): return { "params": model.parameters(requires_grad=True), "weight_decay": cfg.WEIGHT_DECAY, } groups = collections.defaultdict(list) # weight_decay -> List[param] for pname, p in model.named_parameters(requires_grad=True): wd = cfg.WEIGHT_DECAY(pname, p) groups[wd].append(p) groups = [ {"params": params, "weight_decay": wd} for wd, params in groups.items() ] # List[{param, weight_decay}] return groups def worker(world_size, args): # pylint: disable=too-many-statements rank = dist.get_rank() if world_size > 1: # Initialize distributed process group logger.info("init distributed process group {} / {}".format(rank, world_size)) save_dir = os.path.join(args.save, args.arch + "." + "calibration") if not os.path.exists(save_dir): os.makedirs(save_dir, exist_ok=True) mge.set_log_file(os.path.join(save_dir, "log.txt")) model = models.__dict__[args.arch]() # load calibration model assert args.checkpoint logger.info("Load pretrained weights from %s", args.checkpoint) ckpt = mge.load(args.checkpoint) ckpt = ckpt["state_dict"] if "state_dict" in ckpt else ckpt model.load_state_dict(ckpt, strict=False) # Build valid datasets valid_dataset = data.dataset.ImageNet(args.data, train=False) valid_sampler = data.SequentialSampler( valid_dataset, batch_size=100, drop_last=False ) valid_queue = data.DataLoader( valid_dataset, sampler=valid_sampler, transform=T.Compose( [T.Resize(256), T.CenterCrop(224), T.Normalize(mean=128), T.ToMode("CHW")] ), num_workers=args.workers, ) # calibration model.fc.disable_quantize() model = quantize_qat(model, qconfig=Q.calibration_qconfig) # calculate scale def calculate_scale(image, label): model.eval() enable_observer(model) logits = model(image) loss = F.loss.cross_entropy(logits, label, label_smooth=0.1) acc1, acc5 = F.topk_accuracy(logits, label, (1, 5)) if dist.is_distributed(): # all_reduce_mean loss = dist.functional.all_reduce_sum(loss) / dist.get_world_size() acc1 = dist.functional.all_reduce_sum(acc1) / dist.get_world_size() acc5 = dist.functional.all_reduce_sum(acc5) / dist.get_world_size() return loss, acc1, acc5 infer(calculate_scale, valid_queue, args) # quantized model = quantize(model) # eval quantized model def eval_func(image, label): model.eval() logits = model(image) loss = F.loss.cross_entropy(logits, label, label_smooth=0.1) acc1, acc5 = F.topk_accuracy(logits, label, (1, 5)) if dist.is_distributed(): # all_reduce_mean loss = dist.functional.all_reduce_sum(loss) / dist.get_world_size() acc1 = dist.functional.all_reduce_sum(acc1) / dist.get_world_size() acc5 = dist.functional.all_reduce_sum(acc5) / dist.get_world_size() return loss, acc1, acc5 _, valid_acc, valid_acc5 = infer(eval_func, valid_queue, args) logger.info("TEST %f, %f", valid_acc, valid_acc5) # save quantized model mge.save( {"step": -1, "state_dict": model.state_dict()}, os.path.join(save_dir, "checkpoint-calibration.pkl"), ) logger.info( "save in {}".format(os.path.join(save_dir, "checkpoint-calibration.pkl")) ) def infer(model, data_queue, args): objs = AverageMeter("Loss") top1 = AverageMeter("Acc@1") top5 = AverageMeter("Acc@5") total_time = AverageMeter("Time") t = time.time() for step, (image, label) in enumerate(data_queue): n = image.shape[0] image = mge.tensor(image, dtype="float32") label = mge.tensor(label, dtype="int32") loss, acc1, acc5 = model(image, label) objs.update(loss.numpy()[0], n) top1.update(100 * acc1.numpy()[0], n) top5.update(100 * acc5.numpy()[0], n) total_time.update(time.time() - t) t = time.time() if step % args.report_freq == 0 and dist.get_rank() == 0: logger.info("Step %d, %s %s %s %s", step, objs, top1, top5, total_time) # break if step == args.report_freq: break return objs.avg, top1.avg, top5.avg class AverageMeter: """Computes and stores the average and current value""" def __init__(self, name, fmt=":.3f"): self.name = name self.fmt = fmt self.reset() def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count def __str__(self): fmtstr = "{name} {val" + self.fmt + "} ({avg" + self.fmt + "})" return fmtstr.format(**self.__dict__) if __name__ == "__main__": main()
[ "megengine.distributed.is_distributed", "megengine.data.transform.ToMode", "megengine.data.transform.CenterCrop", "megengine.data.transform.Normalize", "megengine.data.SequentialSampler", "megengine.distributed.get_rank", "megengine.distributed.get_world_size", "megengine.get_logger", "megengine.data.dataset.ImageNet", "megengine.data.transform.Resize", "megengine.tensor", "megengine.distributed.helper.get_device_count_by_fork", "megengine.functional.loss.cross_entropy", "megengine.quantization.quantize.quantize", "megengine.quantization.quantize.quantize_qat", "megengine.distributed.functional.all_reduce_sum", "megengine.functional.topk_accuracy", "megengine.quantization.quantize.enable_observer", "megengine.load", "megengine.distributed.launcher" ]
[((866, 890), 'megengine.get_logger', 'mge.get_logger', (['__name__'], {}), '(__name__)\n', (880, 890), True, 'import megengine as mge\n'), ((918, 943), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (941, 943), False, 'import argparse\n'), ((2188, 2217), 'collections.defaultdict', 'collections.defaultdict', (['list'], {}), '(list)\n', (2211, 2217), False, 'import collections\n'), ((2618, 2633), 'megengine.distributed.get_rank', 'dist.get_rank', ([], {}), '()\n', (2631, 2633), True, 'import megengine.distributed as dist\n'), ((2807, 2863), 'os.path.join', 'os.path.join', (['args.save', "(args.arch + '.' + 'calibration')"], {}), "(args.save, args.arch + '.' + 'calibration')\n", (2819, 2863), False, 'import os\n'), ((3180, 3205), 'megengine.load', 'mge.load', (['args.checkpoint'], {}), '(args.checkpoint)\n', (3188, 3205), True, 'import megengine as mge\n'), ((3364, 3409), 'megengine.data.dataset.ImageNet', 'data.dataset.ImageNet', (['args.data'], {'train': '(False)'}), '(args.data, train=False)\n', (3385, 3409), True, 'import megengine.data as data\n'), ((3430, 3500), 'megengine.data.SequentialSampler', 'data.SequentialSampler', (['valid_dataset'], {'batch_size': '(100)', 'drop_last': '(False)'}), '(valid_dataset, batch_size=100, drop_last=False)\n', (3452, 3500), True, 'import megengine.data as data\n'), ((3834, 3884), 'megengine.quantization.quantize.quantize_qat', 'quantize_qat', (['model'], {'qconfig': 'Q.calibration_qconfig'}), '(model, qconfig=Q.calibration_qconfig)\n', (3846, 3884), False, 'from megengine.quantization.quantize import enable_observer, quantize, quantize_qat\n'), ((4559, 4574), 'megengine.quantization.quantize.quantize', 'quantize', (['model'], {}), '(model)\n', (4567, 4574), False, 'from megengine.quantization.quantize import enable_observer, quantize, quantize_qat\n'), ((5717, 5728), 'time.time', 'time.time', ([], {}), '()\n', (5726, 5728), False, 'import time\n'), ((1558, 1601), 'megengine.distributed.helper.get_device_count_by_fork', 'dist.helper.get_device_count_by_fork', (['"""gpu"""'], {}), "('gpu')\n", (1594, 1601), True, 'import megengine.distributed as dist\n'), ((1870, 1891), 'megengine.distributed.launcher', 'dist.launcher', (['worker'], {}), '(worker)\n', (1883, 1891), True, 'import megengine.distributed as dist\n'), ((2875, 2899), 'os.path.exists', 'os.path.exists', (['save_dir'], {}), '(save_dir)\n', (2889, 2899), False, 'import os\n'), ((2909, 2945), 'os.makedirs', 'os.makedirs', (['save_dir'], {'exist_ok': '(True)'}), '(save_dir, exist_ok=True)\n', (2920, 2945), False, 'import os\n'), ((2967, 3000), 'os.path.join', 'os.path.join', (['save_dir', '"""log.txt"""'], {}), "(save_dir, 'log.txt')\n", (2979, 3000), False, 'import os\n'), ((3976, 3998), 'megengine.quantization.quantize.enable_observer', 'enable_observer', (['model'], {}), '(model)\n', (3991, 3998), False, 'from megengine.quantization.quantize import enable_observer, quantize, quantize_qat\n'), ((4044, 4097), 'megengine.functional.loss.cross_entropy', 'F.loss.cross_entropy', (['logits', 'label'], {'label_smooth': '(0.1)'}), '(logits, label, label_smooth=0.1)\n', (4064, 4097), True, 'import megengine.functional as F\n'), ((4119, 4157), 'megengine.functional.topk_accuracy', 'F.topk_accuracy', (['logits', 'label', '(1, 5)'], {}), '(logits, label, (1, 5))\n', (4134, 4157), True, 'import megengine.functional as F\n'), ((4169, 4190), 'megengine.distributed.is_distributed', 'dist.is_distributed', ([], {}), '()\n', (4188, 4190), True, 'import megengine.distributed as dist\n'), ((4702, 4755), 'megengine.functional.loss.cross_entropy', 'F.loss.cross_entropy', (['logits', 'label'], {'label_smooth': '(0.1)'}), '(logits, label, label_smooth=0.1)\n', (4722, 4755), True, 'import megengine.functional as F\n'), ((4777, 4815), 'megengine.functional.topk_accuracy', 'F.topk_accuracy', (['logits', 'label', '(1, 5)'], {}), '(logits, label, (1, 5))\n', (4792, 4815), True, 'import megengine.functional as F\n'), ((4827, 4848), 'megengine.distributed.is_distributed', 'dist.is_distributed', ([], {}), '()\n', (4846, 4848), True, 'import megengine.distributed as dist\n'), ((5369, 5421), 'os.path.join', 'os.path.join', (['save_dir', '"""checkpoint-calibration.pkl"""'], {}), "(save_dir, 'checkpoint-calibration.pkl')\n", (5381, 5421), False, 'import os\n'), ((5827, 5861), 'megengine.tensor', 'mge.tensor', (['image'], {'dtype': '"""float32"""'}), "(image, dtype='float32')\n", (5837, 5861), True, 'import megengine as mge\n'), ((5878, 5910), 'megengine.tensor', 'mge.tensor', (['label'], {'dtype': '"""int32"""'}), "(label, dtype='int32')\n", (5888, 5910), True, 'import megengine as mge\n'), ((6147, 6158), 'time.time', 'time.time', ([], {}), '()\n', (6156, 6158), False, 'import time\n'), ((5474, 5526), 'os.path.join', 'os.path.join', (['save_dir', '"""checkpoint-calibration.pkl"""'], {}), "(save_dir, 'checkpoint-calibration.pkl')\n", (5486, 5526), False, 'import os\n'), ((4230, 4266), 'megengine.distributed.functional.all_reduce_sum', 'dist.functional.all_reduce_sum', (['loss'], {}), '(loss)\n', (4260, 4266), True, 'import megengine.distributed as dist\n'), ((4269, 4290), 'megengine.distributed.get_world_size', 'dist.get_world_size', ([], {}), '()\n', (4288, 4290), True, 'import megengine.distributed as dist\n'), ((4310, 4346), 'megengine.distributed.functional.all_reduce_sum', 'dist.functional.all_reduce_sum', (['acc1'], {}), '(acc1)\n', (4340, 4346), True, 'import megengine.distributed as dist\n'), ((4349, 4370), 'megengine.distributed.get_world_size', 'dist.get_world_size', ([], {}), '()\n', (4368, 4370), True, 'import megengine.distributed as dist\n'), ((4390, 4426), 'megengine.distributed.functional.all_reduce_sum', 'dist.functional.all_reduce_sum', (['acc5'], {}), '(acc5)\n', (4420, 4426), True, 'import megengine.distributed as dist\n'), ((4429, 4450), 'megengine.distributed.get_world_size', 'dist.get_world_size', ([], {}), '()\n', (4448, 4450), True, 'import megengine.distributed as dist\n'), ((4888, 4924), 'megengine.distributed.functional.all_reduce_sum', 'dist.functional.all_reduce_sum', (['loss'], {}), '(loss)\n', (4918, 4924), True, 'import megengine.distributed as dist\n'), ((4927, 4948), 'megengine.distributed.get_world_size', 'dist.get_world_size', ([], {}), '()\n', (4946, 4948), True, 'import megengine.distributed as dist\n'), ((4968, 5004), 'megengine.distributed.functional.all_reduce_sum', 'dist.functional.all_reduce_sum', (['acc1'], {}), '(acc1)\n', (4998, 5004), True, 'import megengine.distributed as dist\n'), ((5007, 5028), 'megengine.distributed.get_world_size', 'dist.get_world_size', ([], {}), '()\n', (5026, 5028), True, 'import megengine.distributed as dist\n'), ((5048, 5084), 'megengine.distributed.functional.all_reduce_sum', 'dist.functional.all_reduce_sum', (['acc5'], {}), '(acc5)\n', (5078, 5084), True, 'import megengine.distributed as dist\n'), ((5087, 5108), 'megengine.distributed.get_world_size', 'dist.get_world_size', ([], {}), '()\n', (5106, 5108), True, 'import megengine.distributed as dist\n'), ((6118, 6129), 'time.time', 'time.time', ([], {}), '()\n', (6127, 6129), False, 'import time\n'), ((6204, 6219), 'megengine.distributed.get_rank', 'dist.get_rank', ([], {}), '()\n', (6217, 6219), True, 'import megengine.distributed as dist\n'), ((3646, 3659), 'megengine.data.transform.Resize', 'T.Resize', (['(256)'], {}), '(256)\n', (3654, 3659), True, 'import megengine.data.transform as T\n'), ((3661, 3678), 'megengine.data.transform.CenterCrop', 'T.CenterCrop', (['(224)'], {}), '(224)\n', (3673, 3678), True, 'import megengine.data.transform as T\n'), ((3680, 3701), 'megengine.data.transform.Normalize', 'T.Normalize', ([], {'mean': '(128)'}), '(mean=128)\n', (3691, 3701), True, 'import megengine.data.transform as T\n'), ((3703, 3718), 'megengine.data.transform.ToMode', 'T.ToMode', (['"""CHW"""'], {}), "('CHW')\n", (3711, 3718), True, 'import megengine.data.transform as T\n')]
import megengine as mge import megengine.module as M import megengine.functional as F from megengine.core import Parameter from utils import * def addLeakyRelu(x): return M.Sequential(x, M.LeakyReLU(0.1)) def addSig(x): return M.Sequential(x, M.Sigmoid()) def up_block(x, ic, oc): return M.ConvTranspose2d(ic, oc, 4, stride=2, padding=1) def down_block(x, ic, oc): return M.Conv2d(ic, oc, 3, padding=1, stride=2) class BasicBlock(M.Module): expansion = 1 def __init__( self, in_channels, channels, stride=1, groups=1, base_width=64, dilation=1, norm=M.BatchNorm2d, ): super().__init__() if groups != 1 or base_width != 64: raise ValueError("BasicBlock only supports groups=1 and base_width=64") if dilation > 1: raise NotImplementedError("Dilation > 1 not supported in BasicBlock") self.conv1 = M.Conv2d( in_channels, channels, 3, stride, padding=dilation, bias=True ) self.conv2 = M.Conv2d(channels, channels, 3, 1, padding=1, bias=True) if in_channels == channels and stride == 1: self.downsample = M.Identity() elif stride == 1: self.downsample = M.Conv2d(in_channels, channels, 1, stride, bias=False) else: self.downsample = M.Sequential( M.AvgPool2d(kernel_size=stride, stride=stride), M.Conv2d(in_channels, channels, 1, 1, bias=False) ) self.fc1 = M.Conv2d(channels, 16, kernel_size=1) self.fc2 = M.Conv2d(16, channels, kernel_size=1) self.relu1 = M.LeakyReLU(0.1) self.relu2 = M.LeakyReLU(0.1) self.relu3 = M.LeakyReLU(0.1) def forward(self, x): identity = x x = self.conv1(x) x = self.relu1(x) x = self.conv2(x) identity = self.downsample(identity) w = x.mean(3, True).mean(2, True) w = self.relu2(self.fc1(w)) w = F.sigmoid(self.fc2(w)) x = x * w + identity x = self.relu3(x) return x def subpixel(x): shape = x.shape x = x.reshape(shape[0], shape[1] // 4, 2, 2, shape[2], shape[3]) x = F.dimshuffle(x, (0, 1, 4, 2, 5, 3)) return x.reshape(shape[0], shape[1] // 4, shape[2]*2, shape[3]*2) c = 64 class SimpleUNet(M.Module): def __init__(self): super().__init__() self.conv0_ = (BasicBlock(3, 32, stride=2)) self.conv1_ = (BasicBlock(32, c, stride=2)) self.conv0 = (BasicBlock(15, 32, stride=2)) self.conv1 = (BasicBlock(32, c, stride=2)) self.conv2 = (BasicBlock(c, 2*c, stride=1)) self.conv3 = (BasicBlock(2*c, 2*c, stride=1)) self.conv4 = (BasicBlock(4*c, 2*c, stride=1)) self.conv5 = (BasicBlock(4*c, 2*c, stride=1)) self.conv6 = (BasicBlock(6*c, 2*c, stride=1)) self.conv7 = (BasicBlock(6*c, 2*c, stride=1)) self.conv8 = (BasicBlock(6*c, 2*c, stride=1)) self.conv9 = (BasicBlock(6*c, 2*c, stride=1)) self.conv10 = (BasicBlock(3*c, 4*c, stride=1)) self.conv11 = addSig(M.Conv2d(c+32, 12, 1)) def forward(self, x): size = x.shape x = x.reshape((size[0] * 5, 3) + size[2:]) conv0 = tsm(self.conv0_(x)) conv1 = tsm(self.conv1_(conv0)) # x = (x.reshape((size[0], 15) + x.shape[2:])) conv0_ = (conv0.reshape((size[0], 5) + conv0.shape[1:]))[:, 2] conv1_ = (conv1.reshape((size[0], 5) + conv1.shape[1:]))[:, 2] conv0 = self.conv0(x) conv1 = self.conv1(conv0) conv0 += conv0_ conv1 += conv1_ conv2 = (self.conv2(conv1)) conv3 = (self.conv3(conv2)) conv4 = (self.conv4(F.concat((conv3, conv2), 1))) conv5 = (self.conv5(F.concat((conv4, conv3), 1))) conv6 = (self.conv6(F.concat((conv5, conv4, conv2), 1))) conv7 = (self.conv7(F.concat((conv6, conv5, conv3), 1))) conv8 = (self.conv8(F.concat((conv7, conv6, conv4), 1))) conv9 = (self.conv9(F.concat((conv8, conv7, conv5), 1))) conv10 = subpixel(self.conv10(F.concat((conv9, conv1), 1))) conv11 = subpixel(self.conv11(F.concat((conv10, conv0), 1))) conv11 = conv11 * 2 - 1 # sigmoid to [-1, 1] return F.minimum(F.maximum(conv11 + x[:, 6:9], 0), 1)
[ "megengine.module.ConvTranspose2d", "megengine.functional.maximum", "megengine.module.LeakyReLU", "megengine.module.Conv2d", "megengine.module.AvgPool2d", "megengine.module.Sigmoid", "megengine.module.Identity", "megengine.functional.dimshuffle", "megengine.functional.concat" ]
[((303, 352), 'megengine.module.ConvTranspose2d', 'M.ConvTranspose2d', (['ic', 'oc', '(4)'], {'stride': '(2)', 'padding': '(1)'}), '(ic, oc, 4, stride=2, padding=1)\n', (320, 352), True, 'import megengine.module as M\n'), ((392, 432), 'megengine.module.Conv2d', 'M.Conv2d', (['ic', 'oc', '(3)'], {'padding': '(1)', 'stride': '(2)'}), '(ic, oc, 3, padding=1, stride=2)\n', (400, 432), True, 'import megengine.module as M\n'), ((2241, 2276), 'megengine.functional.dimshuffle', 'F.dimshuffle', (['x', '(0, 1, 4, 2, 5, 3)'], {}), '(x, (0, 1, 4, 2, 5, 3))\n', (2253, 2276), True, 'import megengine.functional as F\n'), ((192, 208), 'megengine.module.LeakyReLU', 'M.LeakyReLU', (['(0.1)'], {}), '(0.1)\n', (203, 208), True, 'import megengine.module as M\n'), ((253, 264), 'megengine.module.Sigmoid', 'M.Sigmoid', ([], {}), '()\n', (262, 264), True, 'import megengine.module as M\n'), ((949, 1020), 'megengine.module.Conv2d', 'M.Conv2d', (['in_channels', 'channels', '(3)', 'stride'], {'padding': 'dilation', 'bias': '(True)'}), '(in_channels, channels, 3, stride, padding=dilation, bias=True)\n', (957, 1020), True, 'import megengine.module as M\n'), ((1064, 1120), 'megengine.module.Conv2d', 'M.Conv2d', (['channels', 'channels', '(3)', '(1)'], {'padding': '(1)', 'bias': '(True)'}), '(channels, channels, 3, 1, padding=1, bias=True)\n', (1072, 1120), True, 'import megengine.module as M\n'), ((1560, 1597), 'megengine.module.Conv2d', 'M.Conv2d', (['channels', '(16)'], {'kernel_size': '(1)'}), '(channels, 16, kernel_size=1)\n', (1568, 1597), True, 'import megengine.module as M\n'), ((1618, 1655), 'megengine.module.Conv2d', 'M.Conv2d', (['(16)', 'channels'], {'kernel_size': '(1)'}), '(16, channels, kernel_size=1)\n', (1626, 1655), True, 'import megengine.module as M\n'), ((1677, 1693), 'megengine.module.LeakyReLU', 'M.LeakyReLU', (['(0.1)'], {}), '(0.1)\n', (1688, 1693), True, 'import megengine.module as M\n'), ((1715, 1731), 'megengine.module.LeakyReLU', 'M.LeakyReLU', (['(0.1)'], {}), '(0.1)\n', (1726, 1731), True, 'import megengine.module as M\n'), ((1753, 1769), 'megengine.module.LeakyReLU', 'M.LeakyReLU', (['(0.1)'], {}), '(0.1)\n', (1764, 1769), True, 'import megengine.module as M\n'), ((1203, 1215), 'megengine.module.Identity', 'M.Identity', ([], {}), '()\n', (1213, 1215), True, 'import megengine.module as M\n'), ((3156, 3179), 'megengine.module.Conv2d', 'M.Conv2d', (['(c + 32)', '(12)', '(1)'], {}), '(c + 32, 12, 1)\n', (3164, 3179), True, 'import megengine.module as M\n'), ((3782, 3809), 'megengine.functional.concat', 'F.concat', (['(conv3, conv2)', '(1)'], {}), '((conv3, conv2), 1)\n', (3790, 3809), True, 'import megengine.functional as F\n'), ((3840, 3867), 'megengine.functional.concat', 'F.concat', (['(conv4, conv3)', '(1)'], {}), '((conv4, conv3), 1)\n', (3848, 3867), True, 'import megengine.functional as F\n'), ((3898, 3932), 'megengine.functional.concat', 'F.concat', (['(conv5, conv4, conv2)', '(1)'], {}), '((conv5, conv4, conv2), 1)\n', (3906, 3932), True, 'import megengine.functional as F\n'), ((3963, 3997), 'megengine.functional.concat', 'F.concat', (['(conv6, conv5, conv3)', '(1)'], {}), '((conv6, conv5, conv3), 1)\n', (3971, 3997), True, 'import megengine.functional as F\n'), ((4028, 4062), 'megengine.functional.concat', 'F.concat', (['(conv7, conv6, conv4)', '(1)'], {}), '((conv7, conv6, conv4), 1)\n', (4036, 4062), True, 'import megengine.functional as F\n'), ((4093, 4127), 'megengine.functional.concat', 'F.concat', (['(conv8, conv7, conv5)', '(1)'], {}), '((conv8, conv7, conv5), 1)\n', (4101, 4127), True, 'import megengine.functional as F\n'), ((4347, 4379), 'megengine.functional.maximum', 'F.maximum', (['(conv11 + x[:, 6:9])', '(0)'], {}), '(conv11 + x[:, 6:9], 0)\n', (4356, 4379), True, 'import megengine.functional as F\n'), ((1272, 1326), 'megengine.module.Conv2d', 'M.Conv2d', (['in_channels', 'channels', '(1)', 'stride'], {'bias': '(False)'}), '(in_channels, channels, 1, stride, bias=False)\n', (1280, 1326), True, 'import megengine.module as M\n'), ((4168, 4195), 'megengine.functional.concat', 'F.concat', (['(conv9, conv1)', '(1)'], {}), '((conv9, conv1), 1)\n', (4176, 4195), True, 'import megengine.functional as F\n'), ((4236, 4264), 'megengine.functional.concat', 'F.concat', (['(conv10, conv0)', '(1)'], {}), '((conv10, conv0), 1)\n', (4244, 4264), True, 'import megengine.functional as F\n'), ((1405, 1451), 'megengine.module.AvgPool2d', 'M.AvgPool2d', ([], {'kernel_size': 'stride', 'stride': 'stride'}), '(kernel_size=stride, stride=stride)\n', (1416, 1451), True, 'import megengine.module as M\n'), ((1473, 1522), 'megengine.module.Conv2d', 'M.Conv2d', (['in_channels', 'channels', '(1)', '(1)'], {'bias': '(False)'}), '(in_channels, channels, 1, 1, bias=False)\n', (1481, 1522), True, 'import megengine.module as M\n')]
from sfepy.base.testing import TestCommon class Test(TestCommon): @staticmethod def from_conf(conf, options): return Test(conf=conf, options=options) def test_elastic_constants(self): import numpy as nm from sfepy.mechanics.matcoefs import ElasticConstants ok = True names = ['bulk', 'lam', 'mu', 'young', 'poisson', 'p_wave'] ec = ElasticConstants(lam=1.0, mu=1.5) vals = ec.get(names) self.report('using values:', vals) for i1 in range(len(names)): for i2 in range(i1+1, len(names)): kwargs = {names[i1] : vals[i1], names[i2] : vals[i2]} try: ec.init(**kwargs) except: _ok = False else: _ok = True ec_vals = ec.get(names) _ok = _ok and nm.allclose(ec_vals, vals) self.report(names[i1], names[i2], '->', _ok) if not _ok: self.report('correct:', vals) self.report(' got:', ec_vals) ok = ok and _ok return ok def test_conversion_functions(self): import numpy as nm import sfepy.mechanics.matcoefs as mc ok = True lam = 1.0 mu = 1.5 ec = mc.ElasticConstants(lam=lam, mu=mu) young, poisson, bulk = ec.get(['young', 'poisson', 'bulk']) lam = nm.array([lam] * 3) mu = nm.array([mu] * 3) young = nm.array([young] * 3) poisson = nm.array([poisson] * 3) _lam, _mu = mc.lame_from_youngpoisson(young, poisson) _ok = (nm.allclose(lam, _lam, rtol=0.0, atol=1e-14) and nm.allclose(mu, _mu, rtol=0.0, atol=1e-14)) self.report('lame_from_youngpoisson():', _ok) if not _ok: self.report('correct:', lam, mu) self.report(' got:', _lam, _mu) ok = ok and _ok _bulk = mc.bulk_from_youngpoisson(young, poisson) _ok = nm.allclose(bulk, _bulk, rtol=0.0, atol=1e-14) self.report('bulk_from_youngpoisson():', _ok) if not _ok: self.report('correct:', bulk) self.report(' got:', _bulk) ok = ok and _ok _bulk = mc.bulk_from_lame(lam, mu) _ok = nm.allclose(bulk, _bulk, rtol=0.0, atol=1e-14) self.report('bulk_from_lame():', _ok) if not _ok: self.report('correct:', bulk) self.report(' got:', _bulk) ok = ok and _ok return ok def test_stiffness_tensors(self): import numpy as nm from sfepy.base.base import assert_ import sfepy.mechanics.matcoefs as mc ok = True lam = 1.0 mu = 4.0 lam = nm.array([lam] * 3) mu = nm.array([mu] * 3) d = nm.array([[ 9., 1., 1., 0., 0., 0.], [ 1., 9., 1., 0., 0., 0.], [ 1., 1., 9., 0., 0., 0.], [ 0., 0., 0., 4., 0., 0.], [ 0., 0., 0., 0., 4., 0.], [ 0., 0., 0., 0., 0., 4.]]) _ds = mc.stiffness_from_lame(3, lam, mu) assert_(_ds.shape == (3, 6, 6)) _ok = True for _d in _ds: __ok = nm.allclose(_d, d, rtol=0.0, atol=1e-14) _ok = _ok and __ok self.report('stiffness_from_lame():', _ok) ok = ok and _ok d = 4.0 / 3.0 * nm.array([[ 4., -2., -2., 0., 0., 0.], [-2., 4., -2., 0., 0., 0.], [-2., -2., 4., 0., 0., 0.], [ 0., 0., 0., 3., 0., 0.], [ 0., 0., 0., 0., 3., 0.], [ 0., 0., 0., 0., 0., 3.]]) _ds = mc.stiffness_from_lame_mixed(3, lam, mu) assert_(_ds.shape == (3, 6, 6)) _ok = True for _d in _ds: __ok = nm.allclose(_d, d, rtol=0.0, atol=1e-14) _ok = _ok and __ok self.report('stiffness_from_lame_mixed():', _ok) ok = ok and _ok blam = - mu * 2.0 / 3.0 _ds = mc.stiffness_from_lame(3, blam, mu) assert_(_ds.shape == (3, 6, 6)) _ok = True for _d in _ds: __ok = nm.allclose(_d, d, rtol=0.0, atol=1e-14) _ok = _ok and __ok self.report('stiffness_from_lame() with modified lambda:', _ok) ok = ok and _ok return ok
[ "sfepy.mechanics.matcoefs.bulk_from_lame", "sfepy.mechanics.matcoefs.lame_from_youngpoisson", "sfepy.mechanics.matcoefs.stiffness_from_lame_mixed", "sfepy.mechanics.matcoefs.stiffness_from_lame", "sfepy.base.base.assert_", "sfepy.mechanics.matcoefs.ElasticConstants", "sfepy.mechanics.matcoefs.bulk_from_youngpoisson" ]
[((398, 431), 'sfepy.mechanics.matcoefs.ElasticConstants', 'ElasticConstants', ([], {'lam': '(1.0)', 'mu': '(1.5)'}), '(lam=1.0, mu=1.5)\n', (414, 431), False, 'from sfepy.mechanics.matcoefs import ElasticConstants\n'), ((1359, 1394), 'sfepy.mechanics.matcoefs.ElasticConstants', 'mc.ElasticConstants', ([], {'lam': 'lam', 'mu': 'mu'}), '(lam=lam, mu=mu)\n', (1378, 1394), True, 'import sfepy.mechanics.matcoefs as mc\n'), ((1478, 1497), 'numpy.array', 'nm.array', (['([lam] * 3)'], {}), '([lam] * 3)\n', (1486, 1497), True, 'import numpy as nm\n'), ((1511, 1529), 'numpy.array', 'nm.array', (['([mu] * 3)'], {}), '([mu] * 3)\n', (1519, 1529), True, 'import numpy as nm\n'), ((1546, 1567), 'numpy.array', 'nm.array', (['([young] * 3)'], {}), '([young] * 3)\n', (1554, 1567), True, 'import numpy as nm\n'), ((1586, 1609), 'numpy.array', 'nm.array', (['([poisson] * 3)'], {}), '([poisson] * 3)\n', (1594, 1609), True, 'import numpy as nm\n'), ((1631, 1672), 'sfepy.mechanics.matcoefs.lame_from_youngpoisson', 'mc.lame_from_youngpoisson', (['young', 'poisson'], {}), '(young, poisson)\n', (1656, 1672), True, 'import sfepy.mechanics.matcoefs as mc\n'), ((2003, 2044), 'sfepy.mechanics.matcoefs.bulk_from_youngpoisson', 'mc.bulk_from_youngpoisson', (['young', 'poisson'], {}), '(young, poisson)\n', (2028, 2044), True, 'import sfepy.mechanics.matcoefs as mc\n'), ((2059, 2105), 'numpy.allclose', 'nm.allclose', (['bulk', '_bulk'], {'rtol': '(0.0)', 'atol': '(1e-14)'}), '(bulk, _bulk, rtol=0.0, atol=1e-14)\n', (2070, 2105), True, 'import numpy as nm\n'), ((2306, 2332), 'sfepy.mechanics.matcoefs.bulk_from_lame', 'mc.bulk_from_lame', (['lam', 'mu'], {}), '(lam, mu)\n', (2323, 2332), True, 'import sfepy.mechanics.matcoefs as mc\n'), ((2347, 2393), 'numpy.allclose', 'nm.allclose', (['bulk', '_bulk'], {'rtol': '(0.0)', 'atol': '(1e-14)'}), '(bulk, _bulk, rtol=0.0, atol=1e-14)\n', (2358, 2393), True, 'import numpy as nm\n'), ((2815, 2834), 'numpy.array', 'nm.array', (['([lam] * 3)'], {}), '([lam] * 3)\n', (2823, 2834), True, 'import numpy as nm\n'), ((2848, 2866), 'numpy.array', 'nm.array', (['([mu] * 3)'], {}), '([mu] * 3)\n', (2856, 2866), True, 'import numpy as nm\n'), ((2880, 3092), 'numpy.array', 'nm.array', (['[[9.0, 1.0, 1.0, 0.0, 0.0, 0.0], [1.0, 9.0, 1.0, 0.0, 0.0, 0.0], [1.0, 1.0,\n 9.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 4.0, 0.0, 0.0], [0.0, 0.0, 0.0, \n 0.0, 4.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 4.0]]'], {}), '([[9.0, 1.0, 1.0, 0.0, 0.0, 0.0], [1.0, 9.0, 1.0, 0.0, 0.0, 0.0], [\n 1.0, 1.0, 9.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 4.0, 0.0, 0.0], [0.0, \n 0.0, 0.0, 0.0, 4.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 4.0]])\n', (2888, 3092), True, 'import numpy as nm\n'), ((3208, 3242), 'sfepy.mechanics.matcoefs.stiffness_from_lame', 'mc.stiffness_from_lame', (['(3)', 'lam', 'mu'], {}), '(3, lam, mu)\n', (3230, 3242), True, 'import sfepy.mechanics.matcoefs as mc\n'), ((3251, 3282), 'sfepy.base.base.assert_', 'assert_', (['(_ds.shape == (3, 6, 6))'], {}), '(_ds.shape == (3, 6, 6))\n', (3258, 3282), False, 'from sfepy.base.base import assert_\n'), ((3905, 3945), 'sfepy.mechanics.matcoefs.stiffness_from_lame_mixed', 'mc.stiffness_from_lame_mixed', (['(3)', 'lam', 'mu'], {}), '(3, lam, mu)\n', (3933, 3945), True, 'import sfepy.mechanics.matcoefs as mc\n'), ((3954, 3985), 'sfepy.base.base.assert_', 'assert_', (['(_ds.shape == (3, 6, 6))'], {}), '(_ds.shape == (3, 6, 6))\n', (3961, 3985), False, 'from sfepy.base.base import assert_\n'), ((4248, 4283), 'sfepy.mechanics.matcoefs.stiffness_from_lame', 'mc.stiffness_from_lame', (['(3)', 'blam', 'mu'], {}), '(3, blam, mu)\n', (4270, 4283), True, 'import sfepy.mechanics.matcoefs as mc\n'), ((4292, 4323), 'sfepy.base.base.assert_', 'assert_', (['(_ds.shape == (3, 6, 6))'], {}), '(_ds.shape == (3, 6, 6))\n', (4299, 4323), False, 'from sfepy.base.base import assert_\n'), ((1688, 1732), 'numpy.allclose', 'nm.allclose', (['lam', '_lam'], {'rtol': '(0.0)', 'atol': '(1e-14)'}), '(lam, _lam, rtol=0.0, atol=1e-14)\n', (1699, 1732), True, 'import numpy as nm\n'), ((1752, 1794), 'numpy.allclose', 'nm.allclose', (['mu', '_mu'], {'rtol': '(0.0)', 'atol': '(1e-14)'}), '(mu, _mu, rtol=0.0, atol=1e-14)\n', (1763, 1794), True, 'import numpy as nm\n'), ((3345, 3385), 'numpy.allclose', 'nm.allclose', (['_d', 'd'], {'rtol': '(0.0)', 'atol': '(1e-14)'}), '(_d, d, rtol=0.0, atol=1e-14)\n', (3356, 3385), True, 'import numpy as nm\n'), ((3517, 3735), 'numpy.array', 'nm.array', (['[[4.0, -2.0, -2.0, 0.0, 0.0, 0.0], [-2.0, 4.0, -2.0, 0.0, 0.0, 0.0], [-2.0,\n -2.0, 4.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 3.0, 0.0, 0.0], [0.0, 0.0, \n 0.0, 0.0, 3.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 3.0]]'], {}), '([[4.0, -2.0, -2.0, 0.0, 0.0, 0.0], [-2.0, 4.0, -2.0, 0.0, 0.0, 0.0\n ], [-2.0, -2.0, 4.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 3.0, 0.0, 0.0], [\n 0.0, 0.0, 0.0, 0.0, 3.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 3.0]])\n', (3525, 3735), True, 'import numpy as nm\n'), ((4048, 4088), 'numpy.allclose', 'nm.allclose', (['_d', 'd'], {'rtol': '(0.0)', 'atol': '(1e-14)'}), '(_d, d, rtol=0.0, atol=1e-14)\n', (4059, 4088), True, 'import numpy as nm\n'), ((4386, 4426), 'numpy.allclose', 'nm.allclose', (['_d', 'd'], {'rtol': '(0.0)', 'atol': '(1e-14)'}), '(_d, d, rtol=0.0, atol=1e-14)\n', (4397, 4426), True, 'import numpy as nm\n'), ((902, 928), 'numpy.allclose', 'nm.allclose', (['ec_vals', 'vals'], {}), '(ec_vals, vals)\n', (913, 928), True, 'import numpy as nm\n')]
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import argparse import multiprocessing as mp import os import cv2 import megengine as mge import megengine.data as data import megengine.data.dataset as dataset import megengine.data.transform as T import megengine.jit as jit import numpy as np from tqdm import tqdm from official.vision.segmentation.deeplabv3plus import DeepLabV3Plus from official.vision.segmentation.utils import import_config_from_file def main(): parser = argparse.ArgumentParser() parser.add_argument( "-c", "--config", type=str, required=True, help="configuration file" ) parser.add_argument( "-d", "--dataset_dir", type=str, default="/data/datasets/VOC2012", ) parser.add_argument( "-m", "--model_path", type=str, default=None, help="eval model file" ) args = parser.parse_args() cfg = import_config_from_file(args.config) test_loader, test_size = build_dataloader(args.dataset_dir, cfg) print("number of test images: %d" % (test_size)) net = DeepLabV3Plus(class_num=cfg.NUM_CLASSES) model_dict = mge.load(args.model_path) net.load_state_dict(model_dict["state_dict"]) print("load model %s" % (args.model_path)) net.eval() result_list = [] for sample_batched in tqdm(test_loader): img = sample_batched[0].squeeze() label = sample_batched[1].squeeze() im_info = sample_batched[2] pred = evaluate(net, img, cfg) result_list.append({"pred": pred, "gt": label, "name":im_info[2]}) if cfg.VAL_SAVE: save_results(result_list, cfg.VAL_SAVE, cfg) compute_metric(result_list, cfg) ## inference one image def pad_image_to_shape(img, shape, border_mode, value): margin = np.zeros(4, np.uint32) pad_height = shape[0] - img.shape[0] if shape[0] - img.shape[0] > 0 else 0 pad_width = shape[1] - img.shape[1] if shape[1] - img.shape[1] > 0 else 0 margin[0] = pad_height // 2 margin[1] = pad_height // 2 + pad_height % 2 margin[2] = pad_width // 2 margin[3] = pad_width // 2 + pad_width % 2 img = cv2.copyMakeBorder( img, margin[0], margin[1], margin[2], margin[3], border_mode, value=value ) return img, margin def eval_single(net, img, is_flip): @jit.trace(symbolic=True, opt_level=2) def pred_fun(data, net=None): net.eval() pred = net(data) return pred data = mge.tensor() data.set_value(img.transpose(2, 0, 1)[np.newaxis]) pred = pred_fun(data, net=net) if is_flip: img_flip = img[:, ::-1, :] data.set_value(img_flip.transpose(2, 0, 1)[np.newaxis]) pred_flip = pred_fun(data, net=net) pred = (pred + pred_flip[:, :, :, ::-1]) / 2.0 del pred_flip pred = pred.numpy().squeeze().transpose(1, 2, 0) del data return pred def evaluate(net, img, cfg): ori_h, ori_w, _ = img.shape pred_all = np.zeros((ori_h, ori_w, cfg.NUM_CLASSES)) for rate in cfg.VAL_MULTISCALE: if cfg.VAL_SLIP: new_h, new_w = int(ori_h*rate), int(ori_w*rate) val_size = (cfg.VAL_HEIGHT, cfg.VAL_WIDTH) else: new_h, new_w = int(cfg.VAL_HEIGHT*rate), int(cfg.VAL_WIDTH*rate) val_size = (new_h, new_w) img_scale = cv2.resize( img, (new_w, new_h), interpolation=cv2.INTER_LINEAR ) if (new_h <= val_size[0]) and (new_h <= val_size[1]): img_pad, margin = pad_image_to_shape( img_scale, val_size, cv2.BORDER_CONSTANT, value=0 ) pred = eval_single(net, img_pad, cfg.VAL_FLIP) pred = pred[ margin[0] : (pred.shape[0] - margin[1]), margin[2] : (pred.shape[1] - margin[3]), :, ] else: stride_rate = 2 / 3 stride = [int(np.ceil(i * stride_rate)) for i in val_size] img_pad, margin = pad_image_to_shape( img_scale, val_size, cv2.BORDER_CONSTANT, value=0 ) pad_h, pad_w = img_pad.shape[:2] r_grid, c_grid = [ int(np.ceil((ps - cs) / stride)) + 1 for ps, cs, stride in zip(img_pad.shape, val_size, stride) ] pred_scale = np.zeros((pad_h, pad_w, cfg.NUM_CLASSES)) count_scale = np.zeros((pad_h, pad_w, cfg.NUM_CLASSES)) for grid_yidx in range(r_grid): for grid_xidx in range(c_grid): s_x = grid_xidx * stride[1] s_y = grid_yidx * stride[0] e_x = min(s_x + val_size[1], pad_w) e_y = min(s_y + val_size[0], pad_h) s_x = e_x - val_size[1] s_y = e_y - val_size[0] img_sub = img_pad[s_y:e_y, s_x:e_x, :] tpred = eval_single(net, img_sub, cfg.VAL_FLIP) count_scale[s_y:e_y, s_x:e_x, :] += 1 pred_scale[s_y:e_y, s_x:e_x, :] += tpred #pred_scale = pred_scale / count_scale pred = pred_scale[ margin[0] : (pred_scale.shape[0] - margin[1]), margin[2] : (pred_scale.shape[1] - margin[3]), :, ] pred = cv2.resize(pred, (ori_w, ori_h), interpolation=cv2.INTER_LINEAR) pred_all = pred_all + pred #pred_all = pred_all / len(cfg.VAL_MULTISCALE) result = np.argmax(pred_all, axis=2).astype(np.uint8) return result def save_results(result_list, save_dir, cfg): if not os.path.exists(save_dir): os.makedirs(save_dir) for idx, sample in enumerate(result_list): if cfg.DATASET == "Cityscapes": name = sample["name"].split('/')[-1][:-4] else: name = sample["name"] file_path = os.path.join(save_dir, "%s.png"%name) cv2.imwrite(file_path, sample["pred"]) file_path = os.path.join(save_dir, "%s.gt.png"%name) cv2.imwrite(file_path, sample["gt"]) # voc cityscapes metric def compute_metric(result_list, cfg): class_num = cfg.NUM_CLASSES hist = np.zeros((class_num, class_num)) correct = 0 labeled = 0 count = 0 for idx in range(len(result_list)): pred = result_list[idx]['pred'] gt = result_list[idx]['gt'] assert(pred.shape == gt.shape) k = (gt>=0) & (gt<class_num) labeled += np.sum(k) correct += np.sum((pred[k]==gt[k])) hist += np.bincount(class_num * gt[k].astype(int) + pred[k].astype(int), minlength=class_num**2).reshape(class_num, class_num) count += 1 iu = np.diag(hist) / (hist.sum(1) + hist.sum(0) - np.diag(hist)) mean_IU = np.nanmean(iu) mean_IU_no_back = np.nanmean(iu[1:]) freq = hist.sum(1) / hist.sum() freq_IU = (iu[freq > 0] * freq[freq >0]).sum() mean_pixel_acc = correct / labeled if cfg.DATASET == "VOC2012": class_names = ("background", ) + dataset.PascalVOC.class_names elif cfg.DATASET == "Cityscapes": class_names = dataset.Cityscapes.class_names else: raise ValueError("Unsupported dataset {}".format(cfg.DATASET)) n = iu.size lines = [] for i in range(n): if class_names is None: cls = 'Class %d:' % (i+1) else: cls = '%d %s' % (i+1, class_names[i]) lines.append('%-8s\t%.3f%%' % (cls, iu[i] * 100)) lines.append('---------------------------- %-8s\t%.3f%%\t%-8s\t%.3f%%' % ('mean_IU', mean_IU * 100,'mean_pixel_ACC',mean_pixel_acc*100)) line = "\n".join(lines) print(line) return mean_IU class EvalPascalVOC(dataset.PascalVOC): def _trans_mask(self, mask): label = np.ones(mask.shape[:2]) * 255 class_colors = self.class_colors.copy() class_colors.insert(0, [0,0,0]) for i in range(len(class_colors)): b, g, r = class_colors[i] label[ (mask[:, :, 0] == b) & (mask[:, :, 1] == g) & (mask[:, :, 2] == r) ] = i return label.astype(np.uint8) def build_dataloader(dataset_dir, cfg): if cfg.DATASET == "VOC2012": val_dataset = EvalPascalVOC( dataset_dir, "val", order=["image", "mask", "info"] ) elif cfg.DATASET == "Cityscapes": val_dataset = dataset.Cityscapes( dataset_dir, "val", mode='gtFine', order=["image", "mask", "info"] ) else: raise ValueError("Unsupported dataset {}".format(cfg.DATASET)) val_sampler = data.SequentialSampler(val_dataset, cfg.VAL_BATCHES) val_dataloader = data.DataLoader( val_dataset, sampler=val_sampler, transform=T.Normalize( mean=cfg.IMG_MEAN, std=cfg.IMG_STD, order=["image", "mask"] ), num_workers=cfg.DATA_WORKERS, ) return val_dataloader, val_dataset.__len__() if __name__ == "__main__": main()
[ "megengine.data.transform.Normalize", "megengine.data.SequentialSampler", "megengine.jit.trace", "megengine.tensor", "megengine.data.dataset.Cityscapes", "megengine.load" ]
[((813, 838), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (836, 838), False, 'import argparse\n'), ((1203, 1239), 'official.vision.segmentation.utils.import_config_from_file', 'import_config_from_file', (['args.config'], {}), '(args.config)\n', (1226, 1239), False, 'from official.vision.segmentation.utils import import_config_from_file\n'), ((1373, 1413), 'official.vision.segmentation.deeplabv3plus.DeepLabV3Plus', 'DeepLabV3Plus', ([], {'class_num': 'cfg.NUM_CLASSES'}), '(class_num=cfg.NUM_CLASSES)\n', (1386, 1413), False, 'from official.vision.segmentation.deeplabv3plus import DeepLabV3Plus\n'), ((1431, 1456), 'megengine.load', 'mge.load', (['args.model_path'], {}), '(args.model_path)\n', (1439, 1456), True, 'import megengine as mge\n'), ((1618, 1635), 'tqdm.tqdm', 'tqdm', (['test_loader'], {}), '(test_loader)\n', (1622, 1635), False, 'from tqdm import tqdm\n'), ((2078, 2100), 'numpy.zeros', 'np.zeros', (['(4)', 'np.uint32'], {}), '(4, np.uint32)\n', (2086, 2100), True, 'import numpy as np\n'), ((2427, 2524), 'cv2.copyMakeBorder', 'cv2.copyMakeBorder', (['img', 'margin[0]', 'margin[1]', 'margin[2]', 'margin[3]', 'border_mode'], {'value': 'value'}), '(img, margin[0], margin[1], margin[2], margin[3],\n border_mode, value=value)\n', (2445, 2524), False, 'import cv2\n'), ((2601, 2638), 'megengine.jit.trace', 'jit.trace', ([], {'symbolic': '(True)', 'opt_level': '(2)'}), '(symbolic=True, opt_level=2)\n', (2610, 2638), True, 'import megengine.jit as jit\n'), ((2749, 2761), 'megengine.tensor', 'mge.tensor', ([], {}), '()\n', (2759, 2761), True, 'import megengine as mge\n'), ((3248, 3289), 'numpy.zeros', 'np.zeros', (['(ori_h, ori_w, cfg.NUM_CLASSES)'], {}), '((ori_h, ori_w, cfg.NUM_CLASSES))\n', (3256, 3289), True, 'import numpy as np\n'), ((6466, 6498), 'numpy.zeros', 'np.zeros', (['(class_num, class_num)'], {}), '((class_num, class_num))\n', (6474, 6498), True, 'import numpy as np\n'), ((7061, 7075), 'numpy.nanmean', 'np.nanmean', (['iu'], {}), '(iu)\n', (7071, 7075), True, 'import numpy as np\n'), ((7098, 7116), 'numpy.nanmean', 'np.nanmean', (['iu[1:]'], {}), '(iu[1:])\n', (7108, 7116), True, 'import numpy as np\n'), ((8939, 8991), 'megengine.data.SequentialSampler', 'data.SequentialSampler', (['val_dataset', 'cfg.VAL_BATCHES'], {}), '(val_dataset, cfg.VAL_BATCHES)\n', (8961, 8991), True, 'import megengine.data as data\n'), ((3615, 3678), 'cv2.resize', 'cv2.resize', (['img', '(new_w, new_h)'], {'interpolation': 'cv2.INTER_LINEAR'}), '(img, (new_w, new_h), interpolation=cv2.INTER_LINEAR)\n', (3625, 3678), False, 'import cv2\n'), ((5617, 5681), 'cv2.resize', 'cv2.resize', (['pred', '(ori_w, ori_h)'], {'interpolation': 'cv2.INTER_LINEAR'}), '(pred, (ori_w, ori_h), interpolation=cv2.INTER_LINEAR)\n', (5627, 5681), False, 'import cv2\n'), ((5904, 5928), 'os.path.exists', 'os.path.exists', (['save_dir'], {}), '(save_dir)\n', (5918, 5928), False, 'import os\n'), ((5938, 5959), 'os.makedirs', 'os.makedirs', (['save_dir'], {}), '(save_dir)\n', (5949, 5959), False, 'import os\n'), ((6169, 6208), 'os.path.join', 'os.path.join', (['save_dir', "('%s.png' % name)"], {}), "(save_dir, '%s.png' % name)\n", (6181, 6208), False, 'import os\n'), ((6215, 6253), 'cv2.imwrite', 'cv2.imwrite', (['file_path', "sample['pred']"], {}), "(file_path, sample['pred'])\n", (6226, 6253), False, 'import cv2\n'), ((6274, 6316), 'os.path.join', 'os.path.join', (['save_dir', "('%s.gt.png' % name)"], {}), "(save_dir, '%s.gt.png' % name)\n", (6286, 6316), False, 'import os\n'), ((6323, 6359), 'cv2.imwrite', 'cv2.imwrite', (['file_path', "sample['gt']"], {}), "(file_path, sample['gt'])\n", (6334, 6359), False, 'import cv2\n'), ((6756, 6765), 'numpy.sum', 'np.sum', (['k'], {}), '(k)\n', (6762, 6765), True, 'import numpy as np\n'), ((6785, 6809), 'numpy.sum', 'np.sum', (['(pred[k] == gt[k])'], {}), '(pred[k] == gt[k])\n', (6791, 6809), True, 'import numpy as np\n'), ((6985, 6998), 'numpy.diag', 'np.diag', (['hist'], {}), '(hist)\n', (6992, 6998), True, 'import numpy as np\n'), ((4616, 4657), 'numpy.zeros', 'np.zeros', (['(pad_h, pad_w, cfg.NUM_CLASSES)'], {}), '((pad_h, pad_w, cfg.NUM_CLASSES))\n', (4624, 4657), True, 'import numpy as np\n'), ((4684, 4725), 'numpy.zeros', 'np.zeros', (['(pad_h, pad_w, cfg.NUM_CLASSES)'], {}), '((pad_h, pad_w, cfg.NUM_CLASSES))\n', (4692, 4725), True, 'import numpy as np\n'), ((5782, 5809), 'numpy.argmax', 'np.argmax', (['pred_all'], {'axis': '(2)'}), '(pred_all, axis=2)\n', (5791, 5809), True, 'import numpy as np\n'), ((7030, 7043), 'numpy.diag', 'np.diag', (['hist'], {}), '(hist)\n', (7037, 7043), True, 'import numpy as np\n'), ((8068, 8091), 'numpy.ones', 'np.ones', (['mask.shape[:2]'], {}), '(mask.shape[:2])\n', (8075, 8091), True, 'import numpy as np\n'), ((8694, 8784), 'megengine.data.dataset.Cityscapes', 'dataset.Cityscapes', (['dataset_dir', '"""val"""'], {'mode': '"""gtFine"""', 'order': "['image', 'mask', 'info']"}), "(dataset_dir, 'val', mode='gtFine', order=['image',\n 'mask', 'info'])\n", (8712, 8784), True, 'import megengine.data.dataset as dataset\n'), ((9098, 9170), 'megengine.data.transform.Normalize', 'T.Normalize', ([], {'mean': 'cfg.IMG_MEAN', 'std': 'cfg.IMG_STD', 'order': "['image', 'mask']"}), "(mean=cfg.IMG_MEAN, std=cfg.IMG_STD, order=['image', 'mask'])\n", (9109, 9170), True, 'import megengine.data.transform as T\n'), ((4197, 4221), 'numpy.ceil', 'np.ceil', (['(i * stride_rate)'], {}), '(i * stride_rate)\n', (4204, 4221), True, 'import numpy as np\n'), ((4468, 4495), 'numpy.ceil', 'np.ceil', (['((ps - cs) / stride)'], {}), '((ps - cs) / stride)\n', (4475, 4495), True, 'import numpy as np\n')]
#!/usr/bin/env python """ Plot logs of variables saved in a text file by sfepy.base.log.Log class. The plot should be almost the same as the plot that would be generated by the Log directly. """ from __future__ import absolute_import import sys sys.path.append('.') from argparse import ArgumentParser, Action, RawDescriptionHelpFormatter import matplotlib.pyplot as plt from sfepy.base.log import read_log, plot_log class ParseRc(Action): def __call__(self, parser, namespace, values, option_string=None): pars = eval('{' + values + '}') setattr(namespace, self.dest, pars) helps = { 'groups' : 'list of log data groups subplots (from 0) to plot - all groups are' ' plotted if not given', 'output_filename' : 'save the figure using the given file name', 'rc' : 'matplotlib resources', 'no_legends' : 'do not show legends in the log plots', 'nbins' : 'the numbers of bins in x, y axes for all groups [default: %(default)s]', 'swap_axes' : 'swap the axes of the plots', 'no_show' : 'do not show the figure', } def main(): parser = ArgumentParser(description=__doc__, formatter_class=RawDescriptionHelpFormatter) parser.add_argument('-g', '--groups', metavar='int[,int,...]', action='store', dest='groups', default=None, help=helps['groups']) parser.add_argument('-o', '--output', metavar='filename', action='store', dest='output_filename', default=None, help=helps['output_filename']) parser.add_argument('--rc', type=str, metavar='key:val,...', action=ParseRc, dest='rc', default={}, help=helps['rc']) parser.add_argument('--no-legends', action='store_false', dest='show_legends', default=True, help=helps['no_legends']) parser.add_argument('--nbins', metavar='nx1,ny1,...', action='store', dest='nbins', default=None, help=helps['nbins']) parser.add_argument('--swap-axes', action='store_true', dest='swap_axes', default=False, help=helps['swap_axes']) parser.add_argument('-n', '--no-show', action='store_true', dest='no_show', default=False, help=helps['no_show']) parser.add_argument('filename') options = parser.parse_args() filename = options.filename if options.groups is not None: options.groups = [int(ii) for ii in options.groups.split(',')] if options.nbins is not None: aux = [int(ii) if ii != 'None' else None for ii in options.nbins.split(',')] xnbins, ynbins = aux[::2], aux[1::2] else: xnbins = ynbins = None log, info = read_log(filename) plt.rcParams.update(options.rc) plot_log(None, log, info, groups=options.groups, xnbins=xnbins, ynbins=ynbins, show_legends=options.show_legends, swap_axes=options.swap_axes) if options.output_filename: plt.savefig(options.output_filename) if not options.no_show: plt.show() if __name__ == '__main__': main()
[ "sfepy.base.log.plot_log", "sfepy.base.log.read_log" ]
[((246, 266), 'sys.path.append', 'sys.path.append', (['"""."""'], {}), "('.')\n", (261, 266), False, 'import sys\n'), ((1116, 1201), 'argparse.ArgumentParser', 'ArgumentParser', ([], {'description': '__doc__', 'formatter_class': 'RawDescriptionHelpFormatter'}), '(description=__doc__, formatter_class=RawDescriptionHelpFormatter\n )\n', (1130, 1201), False, 'from argparse import ArgumentParser, Action, RawDescriptionHelpFormatter\n'), ((2895, 2913), 'sfepy.base.log.read_log', 'read_log', (['filename'], {}), '(filename)\n', (2903, 2913), False, 'from sfepy.base.log import read_log, plot_log\n'), ((2919, 2950), 'matplotlib.pyplot.rcParams.update', 'plt.rcParams.update', (['options.rc'], {}), '(options.rc)\n', (2938, 2950), True, 'import matplotlib.pyplot as plt\n'), ((2956, 3103), 'sfepy.base.log.plot_log', 'plot_log', (['None', 'log', 'info'], {'groups': 'options.groups', 'xnbins': 'xnbins', 'ynbins': 'ynbins', 'show_legends': 'options.show_legends', 'swap_axes': 'options.swap_axes'}), '(None, log, info, groups=options.groups, xnbins=xnbins, ynbins=\n ynbins, show_legends=options.show_legends, swap_axes=options.swap_axes)\n', (2964, 3103), False, 'from sfepy.base.log import read_log, plot_log\n'), ((3166, 3202), 'matplotlib.pyplot.savefig', 'plt.savefig', (['options.output_filename'], {}), '(options.output_filename)\n', (3177, 3202), True, 'import matplotlib.pyplot as plt\n'), ((3240, 3250), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (3248, 3250), True, 'import matplotlib.pyplot as plt\n')]
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import copy import numpy as np import megengine.functional as F from megengine.core import Function, tensor from megengine.jit import trace from megengine.test import assertTensorClose def test_a_plus_b(): data_shape = (1, 9, 2, 6) av = np.random.random(data_shape).astype(np.float32) bv = np.random.random(data_shape).astype(np.float32) a = tensor(av) b = tensor(bv) class MulFunc(Function): def forward(self, a, b): return a * b def backward(self, grad_o): return (grad_o * b * 2, grad_o * a * 3) c = MulFunc()(a, b).sum() assertTensorClose(c.numpy(), (av * bv).sum()) assertTensorClose(F.grad(c, a, use_virtual_grad=False).numpy(), bv * 2) assertTensorClose(F.grad(c, b, use_virtual_grad=False).numpy(), av * 3) def test_skip_invalid_grad(): data_shape = (1, 9, 2, 6) av = np.random.random(data_shape).astype(np.float32) bv = np.random.random(data_shape).astype(np.float32) a = tensor(av) b = tensor(bv) cookie = tensor(np.random.random(data_shape).astype(np.float32)) class EqWithFakeGrad(Function): def forward(self, a, b): return a == b def backward(self, grad_o): _ = grad_o return cookie, cookie c = EqWithFakeGrad()(a, b).sum() assertTensorClose(c.numpy(), (av == bv).sum().astype(np.float32)) assertTensorClose(F.grad(c, a, use_virtual_grad=False).numpy(), cookie) assertTensorClose(F.grad(c, b, use_virtual_grad=False).numpy(), cookie) def test_ste(): class STE(Function): def forward(self, x): maxv, minv = x.max(), x.min() scale = F.maximum(maxv, -minv) / 127 return F.round(x / scale) * scale def backward(self, grad_y): return grad_y data_shape = (1, 9, 2, 6) av = np.random.random(data_shape).astype(np.float32) a = tensor(av) q = STE()(a) q_2 = (q * 2.0).sum() assertTensorClose( F.grad(q_2, a, use_virtual_grad=False).numpy(), np.broadcast_to(np.array([2.0], dtype=np.float32), data_shape), ) def test_deepcopy(): class Sigmoid(Function): def __init__(self, param): super().__init__() self.param = param def forward(self, x): y = 1 / (1 + F.exp(-x)) self.save_for_backward(y) return y def backward(self, grad_y): (y,) = self.saved_tensors return grad_y * y * (1 - y) origin = Sigmoid(0) new = copy.deepcopy(Sigmoid(0)) assert new.param == origin.param def test_save_context(): class Sigmoid(Function): def forward(self, x): y = 1 / (1 + F.exp(-x)) self.save_for_backward(y) return y def backward(self, grad_y): (y,) = self.saved_tensors return grad_y * y * (1 - y) def run_saved_context(a, net=None): return net(a) def run(use_trace, symbolic): a = tensor(np.array([1926.0817], dtype=np.float32)) net = Sigmoid() func_run = run_saved_context if use_trace: func_run = trace(run_saved_context, symbolic=symbolic) s = func_run(a, net=net) s2 = F.sigmoid(a) assertTensorClose(s.numpy(), s2.numpy()) assertTensorClose( F.grad(s, a, use_virtual_grad=False).numpy(), F.grad(s2, a, use_virtual_grad=False).numpy(), ) run(False, False) run(True, False) run(True, True) def test_none_in_out_grad(): class Test(Function): def forward(self, a, b): return a, b def backward(self, grad_a, grad_b): assert grad_b is None return (grad_a, 0) a = tensor(np.array([1.0], dtype=np.float32)) b = tensor(np.array([2.0], dtype=np.float32)) aa, bb = Test()(a, b) assertTensorClose( F.grad(aa, a, use_virtual_grad=False).numpy(), np.array([1.0], dtype=np.float32) ) assertTensorClose( F.grad(aa, b, use_virtual_grad=False).numpy(), np.array([0.0], dtype=np.float32) ) def test_zero_grad(): class StopGradient(Function): def forward(self, a): return a def backward(self, *_): return None a = tensor(np.array([1.0], dtype=np.float32)) b = a * 3.0 c = a * 4.0 loss = StopGradient()(b) + c assertTensorClose( F.grad(loss, a, use_virtual_grad=False).numpy(), np.array([4.0], dtype=np.float32), )
[ "megengine.functional.sigmoid", "megengine.jit.trace", "megengine.functional.exp", "megengine.core.tensor", "megengine.functional.maximum", "megengine.functional.grad", "megengine.functional.round" ]
[((715, 725), 'megengine.core.tensor', 'tensor', (['av'], {}), '(av)\n', (721, 725), False, 'from megengine.core import Function, tensor\n'), ((734, 744), 'megengine.core.tensor', 'tensor', (['bv'], {}), '(bv)\n', (740, 744), False, 'from megengine.core import Function, tensor\n'), ((1339, 1349), 'megengine.core.tensor', 'tensor', (['av'], {}), '(av)\n', (1345, 1349), False, 'from megengine.core import Function, tensor\n'), ((1358, 1368), 'megengine.core.tensor', 'tensor', (['bv'], {}), '(bv)\n', (1364, 1368), False, 'from megengine.core import Function, tensor\n'), ((2257, 2267), 'megengine.core.tensor', 'tensor', (['av'], {}), '(av)\n', (2263, 2267), False, 'from megengine.core import Function, tensor\n'), ((3606, 3618), 'megengine.functional.sigmoid', 'F.sigmoid', (['a'], {}), '(a)\n', (3615, 3618), True, 'import megengine.functional as F\n'), ((4126, 4159), 'numpy.array', 'np.array', (['[1.0]'], {'dtype': 'np.float32'}), '([1.0], dtype=np.float32)\n', (4134, 4159), True, 'import numpy as np\n'), ((4176, 4209), 'numpy.array', 'np.array', (['[2.0]'], {'dtype': 'np.float32'}), '([2.0], dtype=np.float32)\n', (4184, 4209), True, 'import numpy as np\n'), ((4315, 4348), 'numpy.array', 'np.array', (['[1.0]'], {'dtype': 'np.float32'}), '([1.0], dtype=np.float32)\n', (4323, 4348), True, 'import numpy as np\n'), ((4433, 4466), 'numpy.array', 'np.array', (['[0.0]'], {'dtype': 'np.float32'}), '([0.0], dtype=np.float32)\n', (4441, 4466), True, 'import numpy as np\n'), ((4655, 4688), 'numpy.array', 'np.array', (['[1.0]'], {'dtype': 'np.float32'}), '([1.0], dtype=np.float32)\n', (4663, 4688), True, 'import numpy as np\n'), ((4843, 4876), 'numpy.array', 'np.array', (['[4.0]'], {'dtype': 'np.float32'}), '([4.0], dtype=np.float32)\n', (4851, 4876), True, 'import numpy as np\n'), ((602, 630), 'numpy.random.random', 'np.random.random', (['data_shape'], {}), '(data_shape)\n', (618, 630), True, 'import numpy as np\n'), ((659, 687), 'numpy.random.random', 'np.random.random', (['data_shape'], {}), '(data_shape)\n', (675, 687), True, 'import numpy as np\n'), ((1226, 1254), 'numpy.random.random', 'np.random.random', (['data_shape'], {}), '(data_shape)\n', (1242, 1254), True, 'import numpy as np\n'), ((1283, 1311), 'numpy.random.random', 'np.random.random', (['data_shape'], {}), '(data_shape)\n', (1299, 1311), True, 'import numpy as np\n'), ((2201, 2229), 'numpy.random.random', 'np.random.random', (['data_shape'], {}), '(data_shape)\n', (2217, 2229), True, 'import numpy as np\n'), ((2414, 2447), 'numpy.array', 'np.array', (['[2.0]'], {'dtype': 'np.float32'}), '([2.0], dtype=np.float32)\n', (2422, 2447), True, 'import numpy as np\n'), ((3369, 3408), 'numpy.array', 'np.array', (['[1926.0817]'], {'dtype': 'np.float32'}), '([1926.0817], dtype=np.float32)\n', (3377, 3408), True, 'import numpy as np\n'), ((3516, 3559), 'megengine.jit.trace', 'trace', (['run_saved_context'], {'symbolic': 'symbolic'}), '(run_saved_context, symbolic=symbolic)\n', (3521, 3559), False, 'from megengine.jit import trace\n'), ((1025, 1061), 'megengine.functional.grad', 'F.grad', (['c', 'a'], {'use_virtual_grad': '(False)'}), '(c, a, use_virtual_grad=False)\n', (1031, 1061), True, 'import megengine.functional as F\n'), ((1101, 1137), 'megengine.functional.grad', 'F.grad', (['c', 'b'], {'use_virtual_grad': '(False)'}), '(c, b, use_virtual_grad=False)\n', (1107, 1137), True, 'import megengine.functional as F\n'), ((1389, 1417), 'numpy.random.random', 'np.random.random', (['data_shape'], {}), '(data_shape)\n', (1405, 1417), True, 'import numpy as np\n'), ((1758, 1794), 'megengine.functional.grad', 'F.grad', (['c', 'a'], {'use_virtual_grad': '(False)'}), '(c, a, use_virtual_grad=False)\n', (1764, 1794), True, 'import megengine.functional as F\n'), ((1834, 1870), 'megengine.functional.grad', 'F.grad', (['c', 'b'], {'use_virtual_grad': '(False)'}), '(c, b, use_virtual_grad=False)\n', (1840, 1870), True, 'import megengine.functional as F\n'), ((2023, 2045), 'megengine.functional.maximum', 'F.maximum', (['maxv', '(-minv)'], {}), '(maxv, -minv)\n', (2032, 2045), True, 'import megengine.functional as F\n'), ((2071, 2089), 'megengine.functional.round', 'F.round', (['(x / scale)'], {}), '(x / scale)\n', (2078, 2089), True, 'import megengine.functional as F\n'), ((2342, 2380), 'megengine.functional.grad', 'F.grad', (['q_2', 'a'], {'use_virtual_grad': '(False)'}), '(q_2, a, use_virtual_grad=False)\n', (2348, 2380), True, 'import megengine.functional as F\n'), ((4268, 4305), 'megengine.functional.grad', 'F.grad', (['aa', 'a'], {'use_virtual_grad': '(False)'}), '(aa, a, use_virtual_grad=False)\n', (4274, 4305), True, 'import megengine.functional as F\n'), ((4386, 4423), 'megengine.functional.grad', 'F.grad', (['aa', 'b'], {'use_virtual_grad': '(False)'}), '(aa, b, use_virtual_grad=False)\n', (4392, 4423), True, 'import megengine.functional as F\n'), ((4786, 4825), 'megengine.functional.grad', 'F.grad', (['loss', 'a'], {'use_virtual_grad': '(False)'}), '(loss, a, use_virtual_grad=False)\n', (4792, 4825), True, 'import megengine.functional as F\n'), ((2673, 2682), 'megengine.functional.exp', 'F.exp', (['(-x)'], {}), '(-x)\n', (2678, 2682), True, 'import megengine.functional as F\n'), ((3067, 3076), 'megengine.functional.exp', 'F.exp', (['(-x)'], {}), '(-x)\n', (3072, 3076), True, 'import megengine.functional as F\n'), ((3707, 3743), 'megengine.functional.grad', 'F.grad', (['s', 'a'], {'use_virtual_grad': '(False)'}), '(s, a, use_virtual_grad=False)\n', (3713, 3743), True, 'import megengine.functional as F\n'), ((3765, 3802), 'megengine.functional.grad', 'F.grad', (['s2', 'a'], {'use_virtual_grad': '(False)'}), '(s2, a, use_virtual_grad=False)\n', (3771, 3802), True, 'import megengine.functional as F\n')]
from typing import Optional from sqlmodel import SQLModel, Field, create_engine, Session engine = create_engine(url="sqlite:///users.db", echo=True) class User(SQLModel, table=True): id:Optional[int] = Field(None, primary_key=True) username: str password:str def get_session(): with Session(engine) as session: yield session def init_db(): SQLModel.metadata.create_all(engine)
[ "sqlmodel.SQLModel.metadata.create_all", "sqlmodel.Field", "sqlmodel.create_engine", "sqlmodel.Session" ]
[((99, 149), 'sqlmodel.create_engine', 'create_engine', ([], {'url': '"""sqlite:///users.db"""', 'echo': '(True)'}), "(url='sqlite:///users.db', echo=True)\n", (112, 149), False, 'from sqlmodel import SQLModel, Field, create_engine, Session\n'), ((208, 237), 'sqlmodel.Field', 'Field', (['None'], {'primary_key': '(True)'}), '(None, primary_key=True)\n', (213, 237), False, 'from sqlmodel import SQLModel, Field, create_engine, Session\n'), ((372, 408), 'sqlmodel.SQLModel.metadata.create_all', 'SQLModel.metadata.create_all', (['engine'], {}), '(engine)\n', (400, 408), False, 'from sqlmodel import SQLModel, Field, create_engine, Session\n'), ((302, 317), 'sqlmodel.Session', 'Session', (['engine'], {}), '(engine)\n', (309, 317), False, 'from sqlmodel import SQLModel, Field, create_engine, Session\n')]
import datetime from sqlmodel import Field, Relationship, SQLModel class User(SQLModel, table=True): __tablename__ = "users" id: int = Field(primary_key=True) create_at: datetime.datetime = Field(default_factory=lambda: datetime.datetime.utcnow()) user_name: str password: str alias: str
[ "sqlmodel.Field" ]
[((146, 169), 'sqlmodel.Field', 'Field', ([], {'primary_key': '(True)'}), '(primary_key=True)\n', (151, 169), False, 'from sqlmodel import Field, Relationship, SQLModel\n'), ((235, 261), 'datetime.datetime.utcnow', 'datetime.datetime.utcnow', ([], {}), '()\n', (259, 261), False, 'import datetime\n')]
from __future__ import absolute_import import numpy as nm from sfepy.base.base import output, OneTypeList, Struct from sfepy.discrete.fem.mesh import Mesh from sfepy.discrete.fem.meshio import MeshIO from sfepy.solvers.ts import TimeStepper from sfepy.base.ioutils import get_trunk, write_dict_hdf5 import six from six.moves import range def _linearize(out, fields, linearization): new = {} for key, val in six.iteritems(out): field = fields[val.field_name] new.update(field.create_output(val.data, var_name=key, dof_names=val.dofs, key=key, linearization=linearization)) return new def dump_to_vtk(filename, output_filename_trunk=None, step0=0, steps=None, fields=None, linearization=None): """Dump a multi-time-step results file into a sequence of VTK files.""" def _save_step(suffix, out, mesh): if linearization is not None: output('linearizing...') out = _linearize(out, fields, linearization) output('...done') for key, val in six.iteritems(out): lmesh = val.get('mesh', mesh) lmesh.write(output_filename_trunk + '_' + key + suffix, io='auto', out={key : val}) if hasattr(val, 'levels'): output('max. refinement per group:', val.levels) else: mesh.write(output_filename_trunk + suffix, io='auto', out=out) output('dumping to VTK...') io = MeshIO.any_from_filename(filename) mesh = Mesh.from_file(filename, io=io) if output_filename_trunk is None: output_filename_trunk = get_trunk(filename) try: ts = TimeStepper(*io.read_time_stepper()) all_steps, times, nts, dts = extract_times(filename) except ValueError: output('no time stepping info found, assuming single step') out = io.read_data(0) if out is not None: _save_step('.vtk', out, mesh) ret = None else: ts.times = times ts.n_step = times.shape[0] if steps is None: ii0 = nm.searchsorted(all_steps, step0) iterator = ((all_steps[ii], times[ii]) for ii in range(ii0, len(times))) else: iterator = [(step, ts.times[step]) for step in steps] max_step = all_steps.max() for step, time in iterator: output(ts.format % (step, max_step)) out = io.read_data(step) if out is None: break _save_step('.' + ts.suffix % step + '.vtk', out, mesh) ret = ts.suffix output('...done') return ret def extract_times(filename): """ Read true time step data from individual time steps. Returns ------- steps : array The time steps. times : array The times of the time steps. nts : array The normalized times of the time steps, in [0, 1]. dts : array The true time deltas. """ io = MeshIO.any_from_filename(filename) steps, times, nts = io.read_times() dts = nm.ediff1d(times, to_end=0) return steps, times, nts, dts def extract_time_history(filename, extract, verbose=True): """Extract time history of a variable from a multi-time-step results file. Parameters ---------- filename : str The name of file to extract from. extract : str The description of what to extract in a string of comma-separated description items. A description item consists of: name of the variable to extract, mode ('e' for elements, 'n' for nodes), ids of the nodes or elements (given by the mode). Example: 'u n 10 15, p e 0' means variable 'u' in nodes 10, 15 and variable 'p' in element 0. verbose : bool Verbosity control. Returns ------- ths : dict The time histories in a dict with variable names as keys. If a nodal variable is requested in elements, its value is a dict of histories in the element nodes. ts : TimeStepper instance The time stepping information. """ output('extracting selected data...', verbose=verbose) output('selection:', extract, verbose=verbose) ## # Parse extractions. pes = OneTypeList(Struct) for chunk in extract.split(','): aux = chunk.strip().split() pes.append(Struct(var=aux[0], mode=aux[1], indx=map(int, aux[2:]))) ## # Verify array limits. mesh = Mesh.from_file(filename) for pe in pes: if pe.mode == 'n': for ii in pe.indx: if (ii < 0) or (ii >= mesh.n_nod): raise ValueError('node index 0 <= %d < %d!' % (ii, mesh.n_nod)) if pe.mode == 'e': for ii, ie in enumerate(pe.indx[:]): if (ie < 0) or (ie >= mesh.n_el): raise ValueError('element index 0 <= %d < %d!' % (ie, mesh.n_el)) pe.indx[ii] = ie ## # Extract data. io = MeshIO.any_from_filename(filename) ths = {} for pe in pes: mode, nname = io.read_data_header(pe.var) output(mode, nname, verbose=verbose) if ((pe.mode == 'n' and mode == 'vertex') or (pe.mode == 'e' and mode == 'cell')): th = io.read_time_history(nname, pe.indx) elif pe.mode == 'e' and mode == 'vertex': conn = mesh.conns[0] th = {} for iel in pe.indx: ips = conn[iel] th[iel] = io.read_time_history(nname, ips) else: raise ValueError('cannot extract cell data %s in nodes!' % pe.var) ths[pe.var] = th output('...done', verbose=verbose) ts = TimeStepper(*io.read_time_stepper()) return ths, ts def average_vertex_var_in_cells(ths_in): """Average histories in the element nodes for each nodal variable originally requested in elements.""" ths = dict.fromkeys(list(ths_in.keys())) for var, th in six.iteritems(ths_in): aux = dict.fromkeys(list(th.keys())) for ir, data in six.iteritems(th): if isinstance(data, dict): for ic, ndata in six.iteritems(data): if aux[ir] is None: aux[ir] = ndata else: aux[ir] += ndata aux[ir] /= float(len(data)) else: aux[ir] = data ths[var] = aux return ths def save_time_history(ths, ts, filename_out): """Save time history and time-stepping information in a HDF5 file.""" ths.update({'times' : ts.times, 'dt' : ts.dt}) write_dict_hdf5(filename_out, ths) def guess_time_units(times): """ Given a vector of times in seconds, return suitable time units and new vector of times suitable for plotting. Parameters ---------- times : array The vector of times in seconds. Returns ------- new_times : array The vector of times in `units`. units : str The time units. """ times = nm.asarray(times) if (times[-1] / 60.0 / 60.0) > 10.0: units = 'hours' new_times = times / 60.0 / 60.0 elif (times[-1] / 60.0) > 10.0: units = 'min.' new_times = times / 60.0 else: units = 's' new_times = times return new_times, units
[ "sfepy.base.ioutils.write_dict_hdf5", "sfepy.base.base.OneTypeList", "sfepy.discrete.fem.meshio.MeshIO.any_from_filename", "sfepy.base.base.output", "sfepy.base.ioutils.get_trunk", "sfepy.discrete.fem.mesh.Mesh.from_file" ]
[((417, 435), 'six.iteritems', 'six.iteritems', (['out'], {}), '(out)\n', (430, 435), False, 'import six\n'), ((1525, 1552), 'sfepy.base.base.output', 'output', (['"""dumping to VTK..."""'], {}), "('dumping to VTK...')\n", (1531, 1552), False, 'from sfepy.base.base import output, OneTypeList, Struct\n'), ((1563, 1597), 'sfepy.discrete.fem.meshio.MeshIO.any_from_filename', 'MeshIO.any_from_filename', (['filename'], {}), '(filename)\n', (1587, 1597), False, 'from sfepy.discrete.fem.meshio import MeshIO\n'), ((1609, 1640), 'sfepy.discrete.fem.mesh.Mesh.from_file', 'Mesh.from_file', (['filename'], {'io': 'io'}), '(filename, io=io)\n', (1623, 1640), False, 'from sfepy.discrete.fem.mesh import Mesh\n'), ((2696, 2713), 'sfepy.base.base.output', 'output', (['"""...done"""'], {}), "('...done')\n", (2702, 2713), False, 'from sfepy.base.base import output, OneTypeList, Struct\n'), ((3084, 3118), 'sfepy.discrete.fem.meshio.MeshIO.any_from_filename', 'MeshIO.any_from_filename', (['filename'], {}), '(filename)\n', (3108, 3118), False, 'from sfepy.discrete.fem.meshio import MeshIO\n'), ((3170, 3197), 'numpy.ediff1d', 'nm.ediff1d', (['times'], {'to_end': '(0)'}), '(times, to_end=0)\n', (3180, 3197), True, 'import numpy as nm\n'), ((4206, 4260), 'sfepy.base.base.output', 'output', (['"""extracting selected data..."""'], {'verbose': 'verbose'}), "('extracting selected data...', verbose=verbose)\n", (4212, 4260), False, 'from sfepy.base.base import output, OneTypeList, Struct\n'), ((4266, 4312), 'sfepy.base.base.output', 'output', (['"""selection:"""', 'extract'], {'verbose': 'verbose'}), "('selection:', extract, verbose=verbose)\n", (4272, 4312), False, 'from sfepy.base.base import output, OneTypeList, Struct\n'), ((4356, 4375), 'sfepy.base.base.OneTypeList', 'OneTypeList', (['Struct'], {}), '(Struct)\n', (4367, 4375), False, 'from sfepy.base.base import output, OneTypeList, Struct\n'), ((4623, 4647), 'sfepy.discrete.fem.mesh.Mesh.from_file', 'Mesh.from_file', (['filename'], {}), '(filename)\n', (4637, 4647), False, 'from sfepy.discrete.fem.mesh import Mesh\n'), ((5217, 5251), 'sfepy.discrete.fem.meshio.MeshIO.any_from_filename', 'MeshIO.any_from_filename', (['filename'], {}), '(filename)\n', (5241, 5251), False, 'from sfepy.discrete.fem.meshio import MeshIO\n'), ((5888, 5922), 'sfepy.base.base.output', 'output', (['"""...done"""'], {'verbose': 'verbose'}), "('...done', verbose=verbose)\n", (5894, 5922), False, 'from sfepy.base.base import output, OneTypeList, Struct\n'), ((6211, 6232), 'six.iteritems', 'six.iteritems', (['ths_in'], {}), '(ths_in)\n', (6224, 6232), False, 'import six\n'), ((6870, 6904), 'sfepy.base.ioutils.write_dict_hdf5', 'write_dict_hdf5', (['filename_out', 'ths'], {}), '(filename_out, ths)\n', (6885, 6904), False, 'from sfepy.base.ioutils import get_trunk, write_dict_hdf5\n'), ((7297, 7314), 'numpy.asarray', 'nm.asarray', (['times'], {}), '(times)\n', (7307, 7314), True, 'import numpy as nm\n'), ((1712, 1731), 'sfepy.base.ioutils.get_trunk', 'get_trunk', (['filename'], {}), '(filename)\n', (1721, 1731), False, 'from sfepy.base.ioutils import get_trunk, write_dict_hdf5\n'), ((5342, 5378), 'sfepy.base.base.output', 'output', (['mode', 'nname'], {'verbose': 'verbose'}), '(mode, nname, verbose=verbose)\n', (5348, 5378), False, 'from sfepy.base.base import output, OneTypeList, Struct\n'), ((6303, 6320), 'six.iteritems', 'six.iteritems', (['th'], {}), '(th)\n', (6316, 6320), False, 'import six\n'), ((984, 1008), 'sfepy.base.base.output', 'output', (['"""linearizing..."""'], {}), "('linearizing...')\n", (990, 1008), False, 'from sfepy.base.base import output, OneTypeList, Struct\n'), ((1078, 1095), 'sfepy.base.base.output', 'output', (['"""...done"""'], {}), "('...done')\n", (1084, 1095), False, 'from sfepy.base.base import output, OneTypeList, Struct\n'), ((1124, 1142), 'six.iteritems', 'six.iteritems', (['out'], {}), '(out)\n', (1137, 1142), False, 'import six\n'), ((1885, 1944), 'sfepy.base.base.output', 'output', (['"""no time stepping info found, assuming single step"""'], {}), "('no time stepping info found, assuming single step')\n", (1891, 1944), False, 'from sfepy.base.base import output, OneTypeList, Struct\n'), ((2182, 2215), 'numpy.searchsorted', 'nm.searchsorted', (['all_steps', 'step0'], {}), '(all_steps, step0)\n', (2197, 2215), True, 'import numpy as nm\n'), ((2490, 2526), 'sfepy.base.base.output', 'output', (['(ts.format % (step, max_step))'], {}), '(ts.format % (step, max_step))\n', (2496, 2526), False, 'from sfepy.base.base import output, OneTypeList, Struct\n'), ((6394, 6413), 'six.iteritems', 'six.iteritems', (['data'], {}), '(data)\n', (6407, 6413), False, 'import six\n'), ((1381, 1429), 'sfepy.base.base.output', 'output', (['"""max. refinement per group:"""', 'val.levels'], {}), "('max. refinement per group:', val.levels)\n", (1387, 1429), False, 'from sfepy.base.base import output, OneTypeList, Struct\n')]
"""Contact Database Tables/Models. Models of the Endorser tables for Contacts (Authors) and related data. """ import uuid from datetime import datetime from typing import List from sqlmodel import Field from sqlalchemy import Column, func, text, String from sqlalchemy.dialects.postgresql import UUID, TIMESTAMP, ARRAY from api.db.models.base import BaseModel class Contact(BaseModel, table=True): """Contact. This is the model for the Contact table (postgresql specific dialects in use). Attributes: contact_id: Endorser's Contact ID author_status: Whether they are an approved author or not endorse_status: Whether endorsements are auto-approved or not tags: Set by endorser for arbitrary grouping of Contacts connection_id: Underlying AcaPy connection id connection_alias: Underlying AcaPy connection alias public_did: Represents the Contact's agent's Public DID (if any) state: The underlying AcaPy connection state created_at: Timestamp when record was created updated_at: Timestamp when record was last modified """ contact_id: uuid.UUID = Field( sa_column=Column( UUID(as_uuid=True), primary_key=True, server_default=text("gen_random_uuid()"), ) ) author_status: str = Field(nullable=False) endorse_status: str = Field(nullable=False) tags: List[str] = Field(sa_column=Column(ARRAY(String))) # acapy data --- connection_id: uuid.UUID = Field(nullable=False) connection_protocol: str = Field(nullable=False) connection_alias: str = Field(nullable=True, default=False) public_did: str = Field(nullable=True, default=False) state: str = Field(nullable=False) # --- acapy data created_at: datetime = Field( sa_column=Column(TIMESTAMP, nullable=False, server_default=func.now()) ) updated_at: datetime = Field( sa_column=Column( TIMESTAMP, nullable=False, server_default=func.now(), onupdate=func.now() ) )
[ "sqlmodel.Field" ]
[((1326, 1347), 'sqlmodel.Field', 'Field', ([], {'nullable': '(False)'}), '(nullable=False)\n', (1331, 1347), False, 'from sqlmodel import Field\n'), ((1374, 1395), 'sqlmodel.Field', 'Field', ([], {'nullable': '(False)'}), '(nullable=False)\n', (1379, 1395), False, 'from sqlmodel import Field\n'), ((1510, 1531), 'sqlmodel.Field', 'Field', ([], {'nullable': '(False)'}), '(nullable=False)\n', (1515, 1531), False, 'from sqlmodel import Field\n'), ((1563, 1584), 'sqlmodel.Field', 'Field', ([], {'nullable': '(False)'}), '(nullable=False)\n', (1568, 1584), False, 'from sqlmodel import Field\n'), ((1613, 1648), 'sqlmodel.Field', 'Field', ([], {'nullable': '(True)', 'default': '(False)'}), '(nullable=True, default=False)\n', (1618, 1648), False, 'from sqlmodel import Field\n'), ((1671, 1706), 'sqlmodel.Field', 'Field', ([], {'nullable': '(True)', 'default': '(False)'}), '(nullable=True, default=False)\n', (1676, 1706), False, 'from sqlmodel import Field\n'), ((1724, 1745), 'sqlmodel.Field', 'Field', ([], {'nullable': '(False)'}), '(nullable=False)\n', (1729, 1745), False, 'from sqlmodel import Field\n'), ((1180, 1198), 'sqlalchemy.dialects.postgresql.UUID', 'UUID', ([], {'as_uuid': '(True)'}), '(as_uuid=True)\n', (1184, 1198), False, 'from sqlalchemy.dialects.postgresql import UUID, TIMESTAMP, ARRAY\n'), ((1441, 1454), 'sqlalchemy.dialects.postgresql.ARRAY', 'ARRAY', (['String'], {}), '(String)\n', (1446, 1454), False, 'from sqlalchemy.dialects.postgresql import UUID, TIMESTAMP, ARRAY\n'), ((1257, 1282), 'sqlalchemy.text', 'text', (['"""gen_random_uuid()"""'], {}), "('gen_random_uuid()')\n", (1261, 1282), False, 'from sqlalchemy import Column, func, text, String\n'), ((1869, 1879), 'sqlalchemy.func.now', 'func.now', ([], {}), '()\n', (1877, 1879), False, 'from sqlalchemy import Column, func, text, String\n'), ((2001, 2011), 'sqlalchemy.func.now', 'func.now', ([], {}), '()\n', (2009, 2011), False, 'from sqlalchemy import Column, func, text, String\n'), ((2022, 2032), 'sqlalchemy.func.now', 'func.now', ([], {}), '()\n', (2030, 2032), False, 'from sqlalchemy import Column, func, text, String\n')]
from fastapi import APIRouter, Depends from ..utils import engine, get_session from sqlmodel import Session, select, or_ from ..models.team import Team from ..models.user import User from sqlalchemy.exc import NoResultFound from datetime import datetime router = APIRouter(prefix="/api/teams", tags=["team"]) session = Session(engine) @router.post("/") async def post_team( *, team: Team, session: Session = Depends(get_session), ): """Post new team""" statement = select(Team).where(or_(Team.name == team.name, Team.id == team.id)) try: result = session.exec(statement).one() return False except NoResultFound: session.add(team) session.commit() session.refresh(team) return team @router.get("/") async def get_team_list(session: Session = Depends(get_session)): """Get team list""" statement = select(Team) results = session.exec(statement).all() return results @router.get("/active") async def get_active_team_list(session: Session = Depends(get_session)): """Get list of active teams""" statement = ( select( Team.id, Team.lead_user_id, Team.name.label("team_name"), Team.short_name.label("team_short_name"), User.id, User.short_name.label("user_name"), ) .join(User) .where(Team.is_active == True) ) results = session.exec(statement).all() return results @router.get("/{team_name}") async def read_teams(team_name: str = None, session: Session = Depends(get_session)): """Read the contents of a given team""" statement = select(Team).where(Team.name == team_name) try: result = session.exec(statement).one() return result except NoResultFound: msg = f"""There is no team named {team_name}""" return msg @router.get("/{team_id}/user-name") async def get_user_name_by_team_id( team_id: int, session: Session = Depends(get_session) ): """Get user name by team id""" statement = ( select(Team.id, User.id, User.name) .join(User) .where(Team.id == team_id) .where(User.active == True) ) result = session.exec(statement).one() return result @router.put("/{team_name}/activate") async def activate_team( team_name: str = None, session: Session = Depends(get_session), ): """Activate team""" statement = select(Team).where(Team.name == team_name) team_to_activate = session.exec(statement).one() team_to_activate.is_active = True team_to_activate.updated_at = datetime.now() session.add(team_to_activate) session.commit() session.refresh(team_to_activate) return team_to_activate @router.put("/{team_name}/deactivate") async def deactivate_team( team_name: str = None, session: Session = Depends(get_session), ): """Deactivate team""" statement = select(Team).where(Team.name == team_name) team_to_deactivate = session.exec(statement).one() team_to_deactivate.is_active = False team_to_deactivate.updated_at = datetime.now() session.add(team_to_deactivate) session.commit() session.refresh(team_to_deactivate) return team_to_deactivate @router.put("/") async def update_team( id: str = None, lead_user_id: str = None, name: str = None, is_active: bool = None, session: Session = Depends(get_session), ): """Update team""" statement = select(Team).where(or_(Team.name == name, Team.id == id)) team_to_update = session.exec(statement).one() team_to_update.lead_user_id = lead_user_id team_to_update.name = name team_to_update.is_active = is_active session.add(team_to_update) team_to_update.updated_at = datetime.now() session.commit() session.refresh(team_to_update) return team_to_update
[ "sqlmodel.Session", "sqlmodel.or_", "sqlmodel.select" ]
[((264, 309), 'fastapi.APIRouter', 'APIRouter', ([], {'prefix': '"""/api/teams"""', 'tags': "['team']"}), "(prefix='/api/teams', tags=['team'])\n", (273, 309), False, 'from fastapi import APIRouter, Depends\n'), ((320, 335), 'sqlmodel.Session', 'Session', (['engine'], {}), '(engine)\n', (327, 335), False, 'from sqlmodel import Session, select, or_\n'), ((423, 443), 'fastapi.Depends', 'Depends', (['get_session'], {}), '(get_session)\n', (430, 443), False, 'from fastapi import APIRouter, Depends\n'), ((822, 842), 'fastapi.Depends', 'Depends', (['get_session'], {}), '(get_session)\n', (829, 842), False, 'from fastapi import APIRouter, Depends\n'), ((885, 897), 'sqlmodel.select', 'select', (['Team'], {}), '(Team)\n', (891, 897), False, 'from sqlmodel import Session, select, or_\n'), ((1036, 1056), 'fastapi.Depends', 'Depends', (['get_session'], {}), '(get_session)\n', (1043, 1056), False, 'from fastapi import APIRouter, Depends\n'), ((1576, 1596), 'fastapi.Depends', 'Depends', (['get_session'], {}), '(get_session)\n', (1583, 1596), False, 'from fastapi import APIRouter, Depends\n'), ((1992, 2012), 'fastapi.Depends', 'Depends', (['get_session'], {}), '(get_session)\n', (1999, 2012), False, 'from fastapi import APIRouter, Depends\n'), ((2385, 2405), 'fastapi.Depends', 'Depends', (['get_session'], {}), '(get_session)\n', (2392, 2405), False, 'from fastapi import APIRouter, Depends\n'), ((2618, 2632), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (2630, 2632), False, 'from datetime import datetime\n'), ((2872, 2892), 'fastapi.Depends', 'Depends', (['get_session'], {}), '(get_session)\n', (2879, 2892), False, 'from fastapi import APIRouter, Depends\n'), ((3114, 3128), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (3126, 3128), False, 'from datetime import datetime\n'), ((3421, 3441), 'fastapi.Depends', 'Depends', (['get_session'], {}), '(get_session)\n', (3428, 3441), False, 'from fastapi import APIRouter, Depends\n'), ((3776, 3790), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (3788, 3790), False, 'from datetime import datetime\n'), ((507, 554), 'sqlmodel.or_', 'or_', (['(Team.name == team.name)', '(Team.id == team.id)'], {}), '(Team.name == team.name, Team.id == team.id)\n', (510, 554), False, 'from sqlmodel import Session, select, or_\n'), ((3503, 3540), 'sqlmodel.or_', 'or_', (['(Team.name == name)', '(Team.id == id)'], {}), '(Team.name == name, Team.id == id)\n', (3506, 3540), False, 'from sqlmodel import Session, select, or_\n'), ((488, 500), 'sqlmodel.select', 'select', (['Team'], {}), '(Team)\n', (494, 500), False, 'from sqlmodel import Session, select, or_\n'), ((1659, 1671), 'sqlmodel.select', 'select', (['Team'], {}), '(Team)\n', (1665, 1671), False, 'from sqlmodel import Session, select, or_\n'), ((2450, 2462), 'sqlmodel.select', 'select', (['Team'], {}), '(Team)\n', (2456, 2462), False, 'from sqlmodel import Session, select, or_\n'), ((2939, 2951), 'sqlmodel.select', 'select', (['Team'], {}), '(Team)\n', (2945, 2951), False, 'from sqlmodel import Session, select, or_\n'), ((3484, 3496), 'sqlmodel.select', 'select', (['Team'], {}), '(Team)\n', (3490, 3496), False, 'from sqlmodel import Session, select, or_\n'), ((2077, 2112), 'sqlmodel.select', 'select', (['Team.id', 'User.id', 'User.name'], {}), '(Team.id, User.id, User.name)\n', (2083, 2112), False, 'from sqlmodel import Session, select, or_\n')]
#!/usr/bin/env python """ Diametrically point loaded 2-D disk, using commands for interactive use. See :ref:`sec-primer`. The script combines the functionality of all the ``its2D_?.py`` examples and allows setting various simulation parameters, namely: - material parameters - displacement field approximation order - uniform mesh refinement level The example shows also how to probe the results as in :ref:`linear_elasticity-its2D_4`, and how to display the results using Mayavi. Using :mod:`sfepy.discrete.probes` allows correct probing of fields with the approximation order greater than one. In the SfePy top-level directory the following command can be used to get usage information:: python examples/linear_elasticity/its2D_interactive.py -h Notes ----- The ``--probe`` and ``--show`` options work simultaneously only if Mayavi and Matplotlib use the same backend type (for example wx). """ from __future__ import absolute_import import sys from six.moves import range sys.path.append('.') from argparse import ArgumentParser, RawDescriptionHelpFormatter import numpy as nm import matplotlib.pyplot as plt from sfepy.base.base import assert_, output, ordered_iteritems, IndexedStruct from sfepy.discrete import (FieldVariable, Material, Integral, Integrals, Equation, Equations, Problem) from sfepy.discrete.fem import Mesh, FEDomain, Field from sfepy.terms import Term from sfepy.discrete.conditions import Conditions, EssentialBC from sfepy.mechanics.matcoefs import stiffness_from_youngpoisson from sfepy.solvers.ls import ScipyDirect from sfepy.solvers.nls import Newton from sfepy.discrete.fem.geometry_element import geometry_data from sfepy.discrete.probes import LineProbe from sfepy.discrete.projections import project_by_component from examples.linear_elasticity.its2D_2 import stress_strain from examples.linear_elasticity.its2D_3 import nodal_stress def gen_lines(problem): """ Define two line probes. Additional probes can be added by appending to `ps0` (start points) and `ps1` (end points) lists. """ ps0 = [[0.0, 0.0], [0.0, 0.0]] ps1 = [[75.0, 0.0], [0.0, 75.0]] # Use enough points for higher order approximations. n_point = 1000 labels = ['%s -> %s' % (p0, p1) for p0, p1 in zip(ps0, ps1)] probes = [] for ip in range(len(ps0)): p0, p1 = ps0[ip], ps1[ip] probes.append(LineProbe(p0, p1, n_point)) return probes, labels def probe_results(u, strain, stress, probe, label): """ Probe the results using the given probe and plot the probed values. """ results = {} pars, vals = probe(u) results['u'] = (pars, vals) pars, vals = probe(strain) results['cauchy_strain'] = (pars, vals) pars, vals = probe(stress) results['cauchy_stress'] = (pars, vals) fig = plt.figure() plt.clf() fig.subplots_adjust(hspace=0.4) plt.subplot(311) pars, vals = results['u'] for ic in range(vals.shape[1]): plt.plot(pars, vals[:,ic], label=r'$u_{%d}$' % (ic + 1), lw=1, ls='-', marker='+', ms=3) plt.ylabel('displacements') plt.xlabel('probe %s' % label, fontsize=8) plt.legend(loc='best', fontsize=10) sym_indices = ['11', '22', '12'] plt.subplot(312) pars, vals = results['cauchy_strain'] for ic in range(vals.shape[1]): plt.plot(pars, vals[:,ic], label=r'$e_{%s}$' % sym_indices[ic], lw=1, ls='-', marker='+', ms=3) plt.ylabel('Cauchy strain') plt.xlabel('probe %s' % label, fontsize=8) plt.legend(loc='best', fontsize=10) plt.subplot(313) pars, vals = results['cauchy_stress'] for ic in range(vals.shape[1]): plt.plot(pars, vals[:,ic], label=r'$\sigma_{%s}$' % sym_indices[ic], lw=1, ls='-', marker='+', ms=3) plt.ylabel('Cauchy stress') plt.xlabel('probe %s' % label, fontsize=8) plt.legend(loc='best', fontsize=10) return fig, results helps = { 'young' : "the Young's modulus [default: %(default)s]", 'poisson' : "the Poisson's ratio [default: %(default)s]", 'load' : "the vertical load value (negative means compression)" " [default: %(default)s]", 'order' : 'displacement field approximation order [default: %(default)s]', 'refine' : 'uniform mesh refinement level [default: %(default)s]', 'probe' : 'probe the results', 'show' : 'show the results figure', } def main(): from sfepy import data_dir parser = ArgumentParser(description=__doc__, formatter_class=RawDescriptionHelpFormatter) parser.add_argument('--version', action='version', version='%(prog)s') parser.add_argument('--young', metavar='float', type=float, action='store', dest='young', default=2000.0, help=helps['young']) parser.add_argument('--poisson', metavar='float', type=float, action='store', dest='poisson', default=0.4, help=helps['poisson']) parser.add_argument('--load', metavar='float', type=float, action='store', dest='load', default=-1000.0, help=helps['load']) parser.add_argument('--order', metavar='int', type=int, action='store', dest='order', default=1, help=helps['order']) parser.add_argument('-r', '--refine', metavar='int', type=int, action='store', dest='refine', default=0, help=helps['refine']) parser.add_argument('-s', '--show', action="store_true", dest='show', default=False, help=helps['show']) parser.add_argument('-p', '--probe', action="store_true", dest='probe', default=False, help=helps['probe']) options = parser.parse_args() assert_((0.0 < options.poisson < 0.5), "Poisson's ratio must be in ]0, 0.5[!") assert_((0 < options.order), 'displacement approximation order must be at least 1!') output('using values:') output(" Young's modulus:", options.young) output(" Poisson's ratio:", options.poisson) output(' vertical load:', options.load) output('uniform mesh refinement level:', options.refine) # Build the problem definition. mesh = Mesh.from_file(data_dir + '/meshes/2d/its2D.mesh') domain = FEDomain('domain', mesh) if options.refine > 0: for ii in range(options.refine): output('refine %d...' % ii) domain = domain.refine() output('... %d nodes %d elements' % (domain.shape.n_nod, domain.shape.n_el)) omega = domain.create_region('Omega', 'all') left = domain.create_region('Left', 'vertices in x < 0.001', 'facet') bottom = domain.create_region('Bottom', 'vertices in y < 0.001', 'facet') top = domain.create_region('Top', 'vertex 2', 'vertex') field = Field.from_args('fu', nm.float64, 'vector', omega, approx_order=options.order) u = FieldVariable('u', 'unknown', field) v = FieldVariable('v', 'test', field, primary_var_name='u') D = stiffness_from_youngpoisson(2, options.young, options.poisson) asphalt = Material('Asphalt', D=D) load = Material('Load', values={'.val' : [0.0, options.load]}) integral = Integral('i', order=2*options.order) integral0 = Integral('i', order=0) t1 = Term.new('dw_lin_elastic(Asphalt.D, v, u)', integral, omega, Asphalt=asphalt, v=v, u=u) t2 = Term.new('dw_point_load(Load.val, v)', integral0, top, Load=load, v=v) eq = Equation('balance', t1 - t2) eqs = Equations([eq]) xsym = EssentialBC('XSym', bottom, {'u.1' : 0.0}) ysym = EssentialBC('YSym', left, {'u.0' : 0.0}) ls = ScipyDirect({}) nls_status = IndexedStruct() nls = Newton({}, lin_solver=ls, status=nls_status) pb = Problem('elasticity', equations=eqs, nls=nls, ls=ls) pb.time_update(ebcs=Conditions([xsym, ysym])) # Solve the problem. state = pb.solve() output(nls_status) # Postprocess the solution. out = state.create_output_dict() out = stress_strain(out, pb, state, extend=True) pb.save_state('its2D_interactive.vtk', out=out) gdata = geometry_data['2_3'] nc = len(gdata.coors) integral_vn = Integral('ivn', coors=gdata.coors, weights=[gdata.volume / nc] * nc) nodal_stress(out, pb, state, integrals=Integrals([integral_vn])) if options.probe: # Probe the solution. probes, labels = gen_lines(pb) sfield = Field.from_args('sym_tensor', nm.float64, 3, omega, approx_order=options.order - 1) stress = FieldVariable('stress', 'parameter', sfield, primary_var_name='(set-to-None)') strain = FieldVariable('strain', 'parameter', sfield, primary_var_name='(set-to-None)') cfield = Field.from_args('component', nm.float64, 1, omega, approx_order=options.order - 1) component = FieldVariable('component', 'parameter', cfield, primary_var_name='(set-to-None)') ev = pb.evaluate order = 2 * (options.order - 1) strain_qp = ev('ev_cauchy_strain.%d.Omega(u)' % order, mode='qp') stress_qp = ev('ev_cauchy_stress.%d.Omega(Asphalt.D, u)' % order, mode='qp', copy_materials=False) project_by_component(strain, strain_qp, component, order) project_by_component(stress, stress_qp, component, order) all_results = [] for ii, probe in enumerate(probes): fig, results = probe_results(u, strain, stress, probe, labels[ii]) fig.savefig('its2D_interactive_probe_%d.png' % ii) all_results.append(results) for ii, results in enumerate(all_results): output('probe %d:' % ii) output.level += 2 for key, res in ordered_iteritems(results): output(key + ':') val = res[1] output(' min: %+.2e, mean: %+.2e, max: %+.2e' % (val.min(), val.mean(), val.max())) output.level -= 2 if options.show: # Show the solution. If the approximation order is greater than 1, the # extra DOFs are simply thrown away. from sfepy.postprocess.viewer import Viewer view = Viewer('its2D_interactive.vtk') view(vector_mode='warp_norm', rel_scaling=1, is_scalar_bar=True, is_wireframe=True) if __name__ == '__main__': main()
[ "sfepy.discrete.conditions.EssentialBC", "sfepy.discrete.probes.LineProbe", "sfepy.mechanics.matcoefs.stiffness_from_youngpoisson", "sfepy.discrete.Integral", "sfepy.postprocess.viewer.Viewer", "sfepy.discrete.projections.project_by_component", "sfepy.solvers.ls.ScipyDirect", "sfepy.discrete.Integrals", "sfepy.discrete.Equations", "sfepy.base.base.ordered_iteritems", "sfepy.discrete.fem.Field.from_args", "sfepy.discrete.Equation", "sfepy.discrete.fem.Mesh.from_file", "sfepy.discrete.fem.FEDomain", "sfepy.base.base.output", "sfepy.terms.Term.new", "sfepy.base.base.assert_", "sfepy.discrete.conditions.Conditions", "sfepy.discrete.FieldVariable", "sfepy.discrete.Material", "sfepy.discrete.Problem", "sfepy.base.base.IndexedStruct", "sfepy.solvers.nls.Newton" ]
[((984, 1004), 'sys.path.append', 'sys.path.append', (['"""."""'], {}), "('.')\n", (999, 1004), False, 'import sys\n'), ((2837, 2849), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (2847, 2849), True, 'import matplotlib.pyplot as plt\n'), ((2854, 2863), 'matplotlib.pyplot.clf', 'plt.clf', ([], {}), '()\n', (2861, 2863), True, 'import matplotlib.pyplot as plt\n'), ((2904, 2920), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(311)'], {}), '(311)\n', (2915, 2920), True, 'import matplotlib.pyplot as plt\n'), ((2965, 2985), 'six.moves.range', 'range', (['vals.shape[1]'], {}), '(vals.shape[1])\n', (2970, 2985), False, 'from six.moves import range\n'), ((3105, 3132), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""displacements"""'], {}), "('displacements')\n", (3115, 3132), True, 'import matplotlib.pyplot as plt\n'), ((3137, 3179), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (["('probe %s' % label)"], {'fontsize': '(8)'}), "('probe %s' % label, fontsize=8)\n", (3147, 3179), True, 'import matplotlib.pyplot as plt\n'), ((3184, 3219), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'loc': '"""best"""', 'fontsize': '(10)'}), "(loc='best', fontsize=10)\n", (3194, 3219), True, 'import matplotlib.pyplot as plt\n'), ((3263, 3279), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(312)'], {}), '(312)\n', (3274, 3279), True, 'import matplotlib.pyplot as plt\n'), ((3336, 3356), 'six.moves.range', 'range', (['vals.shape[1]'], {}), '(vals.shape[1])\n', (3341, 3356), False, 'from six.moves import range\n'), ((3483, 3510), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Cauchy strain"""'], {}), "('Cauchy strain')\n", (3493, 3510), True, 'import matplotlib.pyplot as plt\n'), ((3515, 3557), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (["('probe %s' % label)"], {'fontsize': '(8)'}), "('probe %s' % label, fontsize=8)\n", (3525, 3557), True, 'import matplotlib.pyplot as plt\n'), ((3562, 3597), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'loc': '"""best"""', 'fontsize': '(10)'}), "(loc='best', fontsize=10)\n", (3572, 3597), True, 'import matplotlib.pyplot as plt\n'), ((3603, 3619), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(313)'], {}), '(313)\n', (3614, 3619), True, 'import matplotlib.pyplot as plt\n'), ((3676, 3696), 'six.moves.range', 'range', (['vals.shape[1]'], {}), '(vals.shape[1])\n', (3681, 3696), False, 'from six.moves import range\n'), ((3828, 3855), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Cauchy stress"""'], {}), "('Cauchy stress')\n", (3838, 3855), True, 'import matplotlib.pyplot as plt\n'), ((3860, 3902), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (["('probe %s' % label)"], {'fontsize': '(8)'}), "('probe %s' % label, fontsize=8)\n", (3870, 3902), True, 'import matplotlib.pyplot as plt\n'), ((3907, 3942), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'loc': '"""best"""', 'fontsize': '(10)'}), "(loc='best', fontsize=10)\n", (3917, 3942), True, 'import matplotlib.pyplot as plt\n'), ((4485, 4570), 'argparse.ArgumentParser', 'ArgumentParser', ([], {'description': '__doc__', 'formatter_class': 'RawDescriptionHelpFormatter'}), '(description=__doc__, formatter_class=RawDescriptionHelpFormatter\n )\n', (4499, 4570), False, 'from argparse import ArgumentParser, RawDescriptionHelpFormatter\n'), ((5884, 5960), 'sfepy.base.base.assert_', 'assert_', (['(0.0 < options.poisson < 0.5)', '"""Poisson\'s ratio must be in ]0, 0.5[!"""'], {}), '(0.0 < options.poisson < 0.5, "Poisson\'s ratio must be in ]0, 0.5[!")\n', (5891, 5960), False, 'from sfepy.base.base import assert_, output, ordered_iteritems, IndexedStruct\n'), ((5979, 6065), 'sfepy.base.base.assert_', 'assert_', (['(0 < options.order)', '"""displacement approximation order must be at least 1!"""'], {}), "(0 < options.order,\n 'displacement approximation order must be at least 1!')\n", (5986, 6065), False, 'from sfepy.base.base import assert_, output, ordered_iteritems, IndexedStruct\n'), ((6081, 6104), 'sfepy.base.base.output', 'output', (['"""using values:"""'], {}), "('using values:')\n", (6087, 6104), False, 'from sfepy.base.base import assert_, output, ordered_iteritems, IndexedStruct\n'), ((6109, 6152), 'sfepy.base.base.output', 'output', (['""" Young\'s modulus:"""', 'options.young'], {}), '(" Young\'s modulus:", options.young)\n', (6115, 6152), False, 'from sfepy.base.base import assert_, output, ordered_iteritems, IndexedStruct\n'), ((6157, 6202), 'sfepy.base.base.output', 'output', (['""" Poisson\'s ratio:"""', 'options.poisson'], {}), '(" Poisson\'s ratio:", options.poisson)\n', (6163, 6202), False, 'from sfepy.base.base import assert_, output, ordered_iteritems, IndexedStruct\n'), ((6207, 6247), 'sfepy.base.base.output', 'output', (['""" vertical load:"""', 'options.load'], {}), "(' vertical load:', options.load)\n", (6213, 6247), False, 'from sfepy.base.base import assert_, output, ordered_iteritems, IndexedStruct\n'), ((6252, 6308), 'sfepy.base.base.output', 'output', (['"""uniform mesh refinement level:"""', 'options.refine'], {}), "('uniform mesh refinement level:', options.refine)\n", (6258, 6308), False, 'from sfepy.base.base import assert_, output, ordered_iteritems, IndexedStruct\n'), ((6357, 6407), 'sfepy.discrete.fem.Mesh.from_file', 'Mesh.from_file', (["(data_dir + '/meshes/2d/its2D.mesh')"], {}), "(data_dir + '/meshes/2d/its2D.mesh')\n", (6371, 6407), False, 'from sfepy.discrete.fem import Mesh, FEDomain, Field\n'), ((6421, 6445), 'sfepy.discrete.fem.FEDomain', 'FEDomain', (['"""domain"""', 'mesh'], {}), "('domain', mesh)\n", (6429, 6445), False, 'from sfepy.discrete.fem import Mesh, FEDomain, Field\n'), ((7041, 7119), 'sfepy.discrete.fem.Field.from_args', 'Field.from_args', (['"""fu"""', 'nm.float64', '"""vector"""', 'omega'], {'approx_order': 'options.order'}), "('fu', nm.float64, 'vector', omega, approx_order=options.order)\n", (7056, 7119), False, 'from sfepy.discrete.fem import Mesh, FEDomain, Field\n'), ((7157, 7193), 'sfepy.discrete.FieldVariable', 'FieldVariable', (['"""u"""', '"""unknown"""', 'field'], {}), "('u', 'unknown', field)\n", (7170, 7193), False, 'from sfepy.discrete import FieldVariable, Material, Integral, Integrals, Equation, Equations, Problem\n'), ((7202, 7257), 'sfepy.discrete.FieldVariable', 'FieldVariable', (['"""v"""', '"""test"""', 'field'], {'primary_var_name': '"""u"""'}), "('v', 'test', field, primary_var_name='u')\n", (7215, 7257), False, 'from sfepy.discrete import FieldVariable, Material, Integral, Integrals, Equation, Equations, Problem\n'), ((7267, 7329), 'sfepy.mechanics.matcoefs.stiffness_from_youngpoisson', 'stiffness_from_youngpoisson', (['(2)', 'options.young', 'options.poisson'], {}), '(2, options.young, options.poisson)\n', (7294, 7329), False, 'from sfepy.mechanics.matcoefs import stiffness_from_youngpoisson\n'), ((7345, 7369), 'sfepy.discrete.Material', 'Material', (['"""Asphalt"""'], {'D': 'D'}), "('Asphalt', D=D)\n", (7353, 7369), False, 'from sfepy.discrete import FieldVariable, Material, Integral, Integrals, Equation, Equations, Problem\n'), ((7381, 7435), 'sfepy.discrete.Material', 'Material', (['"""Load"""'], {'values': "{'.val': [0.0, options.load]}"}), "('Load', values={'.val': [0.0, options.load]})\n", (7389, 7435), False, 'from sfepy.discrete import FieldVariable, Material, Integral, Integrals, Equation, Equations, Problem\n'), ((7453, 7491), 'sfepy.discrete.Integral', 'Integral', (['"""i"""'], {'order': '(2 * options.order)'}), "('i', order=2 * options.order)\n", (7461, 7491), False, 'from sfepy.discrete import FieldVariable, Material, Integral, Integrals, Equation, Equations, Problem\n'), ((7506, 7528), 'sfepy.discrete.Integral', 'Integral', (['"""i"""'], {'order': '(0)'}), "('i', order=0)\n", (7514, 7528), False, 'from sfepy.discrete import FieldVariable, Material, Integral, Integrals, Equation, Equations, Problem\n'), ((7539, 7631), 'sfepy.terms.Term.new', 'Term.new', (['"""dw_lin_elastic(Asphalt.D, v, u)"""', 'integral', 'omega'], {'Asphalt': 'asphalt', 'v': 'v', 'u': 'u'}), "('dw_lin_elastic(Asphalt.D, v, u)', integral, omega, Asphalt=\n asphalt, v=v, u=u)\n", (7547, 7631), False, 'from sfepy.terms import Term\n'), ((7654, 7724), 'sfepy.terms.Term.new', 'Term.new', (['"""dw_point_load(Load.val, v)"""', 'integral0', 'top'], {'Load': 'load', 'v': 'v'}), "('dw_point_load(Load.val, v)', integral0, top, Load=load, v=v)\n", (7662, 7724), False, 'from sfepy.terms import Term\n'), ((7752, 7780), 'sfepy.discrete.Equation', 'Equation', (['"""balance"""', '(t1 - t2)'], {}), "('balance', t1 - t2)\n", (7760, 7780), False, 'from sfepy.discrete import FieldVariable, Material, Integral, Integrals, Equation, Equations, Problem\n'), ((7791, 7806), 'sfepy.discrete.Equations', 'Equations', (['[eq]'], {}), '([eq])\n', (7800, 7806), False, 'from sfepy.discrete import FieldVariable, Material, Integral, Integrals, Equation, Equations, Problem\n'), ((7819, 7860), 'sfepy.discrete.conditions.EssentialBC', 'EssentialBC', (['"""XSym"""', 'bottom', "{'u.1': 0.0}"], {}), "('XSym', bottom, {'u.1': 0.0})\n", (7830, 7860), False, 'from sfepy.discrete.conditions import Conditions, EssentialBC\n'), ((7873, 7912), 'sfepy.discrete.conditions.EssentialBC', 'EssentialBC', (['"""YSym"""', 'left', "{'u.0': 0.0}"], {}), "('YSym', left, {'u.0': 0.0})\n", (7884, 7912), False, 'from sfepy.discrete.conditions import Conditions, EssentialBC\n'), ((7924, 7939), 'sfepy.solvers.ls.ScipyDirect', 'ScipyDirect', (['{}'], {}), '({})\n', (7935, 7939), False, 'from sfepy.solvers.ls import ScipyDirect\n'), ((7958, 7973), 'sfepy.base.base.IndexedStruct', 'IndexedStruct', ([], {}), '()\n', (7971, 7973), False, 'from sfepy.base.base import assert_, output, ordered_iteritems, IndexedStruct\n'), ((7984, 8028), 'sfepy.solvers.nls.Newton', 'Newton', (['{}'], {'lin_solver': 'ls', 'status': 'nls_status'}), '({}, lin_solver=ls, status=nls_status)\n', (7990, 8028), False, 'from sfepy.solvers.nls import Newton\n'), ((8039, 8091), 'sfepy.discrete.Problem', 'Problem', (['"""elasticity"""'], {'equations': 'eqs', 'nls': 'nls', 'ls': 'ls'}), "('elasticity', equations=eqs, nls=nls, ls=ls)\n", (8046, 8091), False, 'from sfepy.discrete import FieldVariable, Material, Integral, Integrals, Equation, Equations, Problem\n'), ((8196, 8214), 'sfepy.base.base.output', 'output', (['nls_status'], {}), '(nls_status)\n', (8202, 8214), False, 'from sfepy.base.base import assert_, output, ordered_iteritems, IndexedStruct\n'), ((8295, 8337), 'examples.linear_elasticity.its2D_2.stress_strain', 'stress_strain', (['out', 'pb', 'state'], {'extend': '(True)'}), '(out, pb, state, extend=True)\n', (8308, 8337), False, 'from examples.linear_elasticity.its2D_2 import stress_strain\n'), ((8469, 8537), 'sfepy.discrete.Integral', 'Integral', (['"""ivn"""'], {'coors': 'gdata.coors', 'weights': '([gdata.volume / nc] * nc)'}), "('ivn', coors=gdata.coors, weights=[gdata.volume / nc] * nc)\n", (8477, 8537), False, 'from sfepy.discrete import FieldVariable, Material, Integral, Integrals, Equation, Equations, Problem\n'), ((2995, 3087), 'matplotlib.pyplot.plot', 'plt.plot', (['pars', 'vals[:, ic]'], {'label': "('$u_{%d}$' % (ic + 1))", 'lw': '(1)', 'ls': '"""-"""', 'marker': '"""+"""', 'ms': '(3)'}), "(pars, vals[:, ic], label='$u_{%d}$' % (ic + 1), lw=1, ls='-',\n marker='+', ms=3)\n", (3003, 3087), True, 'import matplotlib.pyplot as plt\n'), ((3366, 3466), 'matplotlib.pyplot.plot', 'plt.plot', (['pars', 'vals[:, ic]'], {'label': "('$e_{%s}$' % sym_indices[ic])", 'lw': '(1)', 'ls': '"""-"""', 'marker': '"""+"""', 'ms': '(3)'}), "(pars, vals[:, ic], label='$e_{%s}$' % sym_indices[ic], lw=1, ls=\n '-', marker='+', ms=3)\n", (3374, 3466), True, 'import matplotlib.pyplot as plt\n'), ((3706, 3811), 'matplotlib.pyplot.plot', 'plt.plot', (['pars', 'vals[:, ic]'], {'label': "('$\\\\sigma_{%s}$' % sym_indices[ic])", 'lw': '(1)', 'ls': '"""-"""', 'marker': '"""+"""', 'ms': '(3)'}), "(pars, vals[:, ic], label='$\\\\sigma_{%s}$' % sym_indices[ic], lw=1,\n ls='-', marker='+', ms=3)\n", (3714, 3811), True, 'import matplotlib.pyplot as plt\n'), ((6492, 6513), 'six.moves.range', 'range', (['options.refine'], {}), '(options.refine)\n', (6497, 6513), False, 'from six.moves import range\n'), ((8744, 8832), 'sfepy.discrete.fem.Field.from_args', 'Field.from_args', (['"""sym_tensor"""', 'nm.float64', '(3)', 'omega'], {'approx_order': '(options.order - 1)'}), "('sym_tensor', nm.float64, 3, omega, approx_order=options.\n order - 1)\n", (8759, 8832), False, 'from sfepy.discrete.fem import Mesh, FEDomain, Field\n'), ((8877, 8955), 'sfepy.discrete.FieldVariable', 'FieldVariable', (['"""stress"""', '"""parameter"""', 'sfield'], {'primary_var_name': '"""(set-to-None)"""'}), "('stress', 'parameter', sfield, primary_var_name='(set-to-None)')\n", (8890, 8955), False, 'from sfepy.discrete import FieldVariable, Material, Integral, Integrals, Equation, Equations, Problem\n'), ((9004, 9082), 'sfepy.discrete.FieldVariable', 'FieldVariable', (['"""strain"""', '"""parameter"""', 'sfield'], {'primary_var_name': '"""(set-to-None)"""'}), "('strain', 'parameter', sfield, primary_var_name='(set-to-None)')\n", (9017, 9082), False, 'from sfepy.discrete import FieldVariable, Material, Integral, Integrals, Equation, Equations, Problem\n'), ((9132, 9219), 'sfepy.discrete.fem.Field.from_args', 'Field.from_args', (['"""component"""', 'nm.float64', '(1)', 'omega'], {'approx_order': '(options.order - 1)'}), "('component', nm.float64, 1, omega, approx_order=options.\n order - 1)\n", (9147, 9219), False, 'from sfepy.discrete.fem import Mesh, FEDomain, Field\n'), ((9268, 9354), 'sfepy.discrete.FieldVariable', 'FieldVariable', (['"""component"""', '"""parameter"""', 'cfield'], {'primary_var_name': '"""(set-to-None)"""'}), "('component', 'parameter', cfield, primary_var_name=\n '(set-to-None)')\n", (9281, 9354), False, 'from sfepy.discrete import FieldVariable, Material, Integral, Integrals, Equation, Equations, Problem\n'), ((9663, 9720), 'sfepy.discrete.projections.project_by_component', 'project_by_component', (['strain', 'strain_qp', 'component', 'order'], {}), '(strain, strain_qp, component, order)\n', (9683, 9720), False, 'from sfepy.discrete.projections import project_by_component\n'), ((9729, 9786), 'sfepy.discrete.projections.project_by_component', 'project_by_component', (['stress', 'stress_qp', 'component', 'order'], {}), '(stress, stress_qp, component, order)\n', (9749, 9786), False, 'from sfepy.discrete.projections import project_by_component\n'), ((10646, 10677), 'sfepy.postprocess.viewer.Viewer', 'Viewer', (['"""its2D_interactive.vtk"""'], {}), "('its2D_interactive.vtk')\n", (10652, 10677), False, 'from sfepy.postprocess.viewer import Viewer\n'), ((2404, 2430), 'sfepy.discrete.probes.LineProbe', 'LineProbe', (['p0', 'p1', 'n_point'], {}), '(p0, p1, n_point)\n', (2413, 2430), False, 'from sfepy.discrete.probes import LineProbe\n'), ((6527, 6554), 'sfepy.base.base.output', 'output', (["('refine %d...' % ii)"], {}), "('refine %d...' % ii)\n", (6533, 6554), False, 'from sfepy.base.base import assert_, output, ordered_iteritems, IndexedStruct\n'), ((6604, 6680), 'sfepy.base.base.output', 'output', (["('... %d nodes %d elements' % (domain.shape.n_nod, domain.shape.n_el))"], {}), "('... %d nodes %d elements' % (domain.shape.n_nod, domain.shape.n_el))\n", (6610, 6680), False, 'from sfepy.base.base import assert_, output, ordered_iteritems, IndexedStruct\n'), ((8117, 8141), 'sfepy.discrete.conditions.Conditions', 'Conditions', (['[xsym, ysym]'], {}), '([xsym, ysym])\n', (8127, 8141), False, 'from sfepy.discrete.conditions import Conditions, EssentialBC\n'), ((8608, 8632), 'sfepy.discrete.Integrals', 'Integrals', (['[integral_vn]'], {}), '([integral_vn])\n', (8617, 8632), False, 'from sfepy.discrete import FieldVariable, Material, Integral, Integrals, Equation, Equations, Problem\n'), ((10104, 10128), 'sfepy.base.base.output', 'output', (["('probe %d:' % ii)"], {}), "('probe %d:' % ii)\n", (10110, 10128), False, 'from sfepy.base.base import assert_, output, ordered_iteritems, IndexedStruct\n'), ((10187, 10213), 'sfepy.base.base.ordered_iteritems', 'ordered_iteritems', (['results'], {}), '(results)\n', (10204, 10213), False, 'from sfepy.base.base import assert_, output, ordered_iteritems, IndexedStruct\n'), ((10231, 10248), 'sfepy.base.base.output', 'output', (["(key + ':')"], {}), "(key + ':')\n", (10237, 10248), False, 'from sfepy.base.base import assert_, output, ordered_iteritems, IndexedStruct\n')]
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import platform import weakref import numpy as np import pytest import megengine as mge import megengine.distributed as dist import megengine.functional as F import megengine.module as M import megengine.optimizer as optim from megengine.autodiff import GradManager from megengine.core._imperative_rt.imperative import sync from megengine.distributed.helper import get_device_count_by_fork from megengine.jit import trace def test_basic(): x = mge.tensor([1.0, 3.0, 5.0]).reshape(1, 3) w = mge.tensor([2.0, 4.0, 6.0]).reshape(3, 1) b = mge.tensor(-1.0) gm = GradManager().attach([w, b]) gm.record() p = F.matmul(x, w) y = p + b gm.backward(y) gm.release() # is not necessary np.testing.assert_equal(w.grad.numpy(), [[1], [3], [5]]) np.testing.assert_equal(b.grad.numpy(), [1]) w.grad = None b.grad = None with gm: p = F.matmul(x, w) y = p + b gm.backward(y) np.testing.assert_equal(w.grad.numpy(), [[1], [3], [5]]) np.testing.assert_equal(b.grad.numpy(), [1]) def test_attach_in_with_block(): a = mge.Parameter([1.0]) gm = GradManager() with gm: b = a * 3 gm.attach(b) c = b + 1 gm.backward(c) assert int(b.grad.numpy()) == 1 def test_attach_temporary(): w = mge.Parameter(2.0) gm = GradManager() gm.attach(w) def cb(x, g): assert x is ref() cb.called = True for i in range(3): with gm: cb.called = False x = mge.Tensor(i, dtype="float32") gm.attach(x, callbacks=cb) ref = weakref.ref(x) y = x * w gm.backward(y) assert cb.called del x assert ref() is None # NOTE: does not guarantee timely release when recording # for i in range(3): # with gm: # x = mge.Tensor(i, dtype='float32') # gm.attach(x) # ref = weakref.ref(x) # y = x * w # del x # assert ref() is None # gm.backward(y) @pytest.mark.skipif( platform.system() == "Darwin", reason="do not imp GPU mode at macos now" ) @pytest.mark.skipif( platform.system() == "Windows", reason="windows disable MGB_ENABLE_OPR_MM" ) @pytest.mark.skipif(get_device_count_by_fork("gpu") < 2, reason="need more gpu device") @pytest.mark.isolated_distributed def test_remote_grad(): @dist.launcher def worker(): rank = dist.get_rank() size = dist.get_world_size() x = mge.tensor(np.random.randn(1, rank * 2 + 2), dtype=np.float32) m = M.Linear(rank * 2 + 2, rank * 2 + 4) gm = GradManager().attach(m.parameters()) opt = optim.SGD(m.parameters(), 1e-3, momentum=0.9) @trace(symbolic=True) def train_func(x): with gm: if rank != 0: x = dist.functional.remote_recv( rank - 1, shape=(1, rank * 2 + 2), dtype=np.float32 ) y = m(x) if rank != size - 1: y = dist.functional.remote_send(y, dest_rank=rank + 1) if rank == size - 1: y = y.mean() gm.backward(y) else: gm.backward() opt.step().clear_grad() for i in range(3): train_func(x) for param in m.parameters(): param.numpy() worker()
[ "megengine.distributed.helper.get_device_count_by_fork", "megengine.jit.trace", "megengine.Tensor", "megengine.tensor", "megengine.module.Linear", "megengine.distributed.get_rank", "megengine.autodiff.GradManager", "megengine.Parameter", "megengine.functional.matmul", "megengine.distributed.functional.remote_send", "megengine.distributed.functional.remote_recv", "megengine.distributed.get_world_size" ]
[((905, 921), 'megengine.tensor', 'mge.tensor', (['(-1.0)'], {}), '(-1.0)\n', (915, 921), True, 'import megengine as mge\n'), ((986, 1000), 'megengine.functional.matmul', 'F.matmul', (['x', 'w'], {}), '(x, w)\n', (994, 1000), True, 'import megengine.functional as F\n'), ((1454, 1474), 'megengine.Parameter', 'mge.Parameter', (['[1.0]'], {}), '([1.0])\n', (1467, 1474), True, 'import megengine as mge\n'), ((1484, 1497), 'megengine.autodiff.GradManager', 'GradManager', ([], {}), '()\n', (1495, 1497), False, 'from megengine.autodiff import GradManager\n'), ((1666, 1684), 'megengine.Parameter', 'mge.Parameter', (['(2.0)'], {}), '(2.0)\n', (1679, 1684), True, 'import megengine as mge\n'), ((1694, 1707), 'megengine.autodiff.GradManager', 'GradManager', ([], {}), '()\n', (1705, 1707), False, 'from megengine.autodiff import GradManager\n'), ((1244, 1258), 'megengine.functional.matmul', 'F.matmul', (['x', 'w'], {}), '(x, w)\n', (1252, 1258), True, 'import megengine.functional as F\n'), ((2833, 2848), 'megengine.distributed.get_rank', 'dist.get_rank', ([], {}), '()\n', (2846, 2848), True, 'import megengine.distributed as dist\n'), ((2864, 2885), 'megengine.distributed.get_world_size', 'dist.get_world_size', ([], {}), '()\n', (2883, 2885), True, 'import megengine.distributed as dist\n'), ((2973, 3009), 'megengine.module.Linear', 'M.Linear', (['(rank * 2 + 2)', '(rank * 2 + 4)'], {}), '(rank * 2 + 2, rank * 2 + 4)\n', (2981, 3009), True, 'import megengine.module as M\n'), ((3130, 3150), 'megengine.jit.trace', 'trace', ([], {'symbolic': '(True)'}), '(symbolic=True)\n', (3135, 3150), False, 'from megengine.jit import trace\n'), ((2458, 2475), 'platform.system', 'platform.system', ([], {}), '()\n', (2473, 2475), False, 'import platform\n'), ((2558, 2575), 'platform.system', 'platform.system', ([], {}), '()\n', (2573, 2575), False, 'import platform\n'), ((2655, 2686), 'megengine.distributed.helper.get_device_count_by_fork', 'get_device_count_by_fork', (['"""gpu"""'], {}), "('gpu')\n", (2679, 2686), False, 'from megengine.distributed.helper import get_device_count_by_fork\n'), ((805, 832), 'megengine.tensor', 'mge.tensor', (['[1.0, 3.0, 5.0]'], {}), '([1.0, 3.0, 5.0])\n', (815, 832), True, 'import megengine as mge\n'), ((855, 882), 'megengine.tensor', 'mge.tensor', (['[2.0, 4.0, 6.0]'], {}), '([2.0, 4.0, 6.0])\n', (865, 882), True, 'import megengine as mge\n'), ((932, 945), 'megengine.autodiff.GradManager', 'GradManager', ([], {}), '()\n', (943, 945), False, 'from megengine.autodiff import GradManager\n'), ((1882, 1912), 'megengine.Tensor', 'mge.Tensor', (['i'], {'dtype': '"""float32"""'}), "(i, dtype='float32')\n", (1892, 1912), True, 'import megengine as mge\n'), ((1970, 1984), 'weakref.ref', 'weakref.ref', (['x'], {}), '(x)\n', (1981, 1984), False, 'import weakref\n'), ((2909, 2941), 'numpy.random.randn', 'np.random.randn', (['(1)', '(rank * 2 + 2)'], {}), '(1, rank * 2 + 2)\n', (2924, 2941), True, 'import numpy as np\n'), ((3023, 3036), 'megengine.autodiff.GradManager', 'GradManager', ([], {}), '()\n', (3034, 3036), False, 'from megengine.autodiff import GradManager\n'), ((3253, 3338), 'megengine.distributed.functional.remote_recv', 'dist.functional.remote_recv', (['(rank - 1)'], {'shape': '(1, rank * 2 + 2)', 'dtype': 'np.float32'}), '(rank - 1, shape=(1, rank * 2 + 2), dtype=np.float32\n )\n', (3280, 3338), True, 'import megengine.distributed as dist\n'), ((3466, 3516), 'megengine.distributed.functional.remote_send', 'dist.functional.remote_send', (['y'], {'dest_rank': '(rank + 1)'}), '(y, dest_rank=rank + 1)\n', (3493, 3516), True, 'import megengine.distributed as dist\n')]
import os import cv2 import argparse import warnings import megengine as mge import megengine.functional as F warnings.filterwarnings("ignore") parser = argparse.ArgumentParser(description='Interpolation for a pair of images') parser.add_argument('--img', dest='img', nargs=2, required=True) parser.add_argument('--exp', default=4, type=int) parser.add_argument('--ratio', default=0, type=float, help='inference ratio between two images with 0 - 1 range') parser.add_argument('--rthreshold', default=0.02, type=float, help='returns image when actual ratio falls in given range threshold') parser.add_argument('--rmaxcycles', default=8, type=int, help='limit max number of bisectional cycles') parser.add_argument('--model', dest='modelDir', type=str, default='train_log', help='directory with trained model files') args = parser.parse_args() from model.RIFE import Model model = Model() model.load_model(args.modelDir, -1) print("Loaded model") model.eval() if args.img[0].endswith('.exr') and args.img[1].endswith('.exr'): img0 = cv2.imread(args.img[0], cv2.IMREAD_COLOR | cv2.IMREAD_ANYDEPTH) img1 = cv2.imread(args.img[1], cv2.IMREAD_COLOR | cv2.IMREAD_ANYDEPTH) img0 = F.expand_dims(mge.Tensor(img0.transpose(2, 0, 1)), 0) img1 = F.expand_dims(mge.Tensor(img1.transpose(2, 0, 1)), 0) else: img0 = cv2.imread(args.img[0], cv2.IMREAD_UNCHANGED) img1 = cv2.imread(args.img[1], cv2.IMREAD_UNCHANGED) img0 = F.expand_dims(mge.Tensor(img0.transpose(2, 0, 1)) / 255. , 0) img1 = F.expand_dims(mge.Tensor(img1.transpose(2, 0, 1)) / 255. , 0) n, c, h, w = img0.shape ph = ((h - 1) // 32 + 1) * 32 pw = ((w - 1) // 32 + 1) * 32 padding = ((0, 0), (0, 0), (0, ph - h), (0, pw - w)) img0 = F.nn.pad(img0, padding) img1 = F.nn.pad(img1, padding) if args.ratio: img_list = [img0] img0_ratio = 0.0 img1_ratio = 1.0 if args.ratio <= img0_ratio + args.rthreshold / 2: middle = img0 elif args.ratio >= img1_ratio - args.rthreshold / 2: middle = img1 else: tmp_img0 = img0 tmp_img1 = img1 for inference_cycle in range(args.rmaxcycles): middle = model.inference(tmp_img0, tmp_img1) middle_ratio = ( img0_ratio + img1_ratio ) / 2 if args.ratio - (args.rthreshold / 2) <= middle_ratio <= args.ratio + (args.rthreshold / 2): break if args.ratio > middle_ratio: tmp_img0 = middle img0_ratio = middle_ratio else: tmp_img1 = middle img1_ratio = middle_ratio img_list.append(middle) img_list.append(img1) else: img_list = [img0, img1] for i in range(args.exp): tmp = [] for j in range(len(img_list) - 1): mid = model.inference(img_list[j], img_list[j + 1]) tmp.append(img_list[j]) tmp.append(mid) tmp.append(img1) img_list = tmp if not os.path.exists('output'): os.mkdir('output') for i in range(len(img_list)): if args.img[0].endswith('.exr') and args.img[1].endswith('.exr'): cv2.imwrite('output/img{}.exr'.format(i), (img_list[i][0]).numpy().transpose(1, 2, 0)[:h, :w], [cv2.IMWRITE_EXR_TYPE, cv2.IMWRITE_EXR_TYPE_HALF]) else: cv2.imwrite('output/img{}.png'.format(i), (img_list[i][0] * 255).numpy().transpose(1, 2, 0)[:h, :w])
[ "megengine.functional.nn.pad" ]
[((110, 143), 'warnings.filterwarnings', 'warnings.filterwarnings', (['"""ignore"""'], {}), "('ignore')\n", (133, 143), False, 'import warnings\n'), ((154, 227), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Interpolation for a pair of images"""'}), "(description='Interpolation for a pair of images')\n", (177, 227), False, 'import argparse\n'), ((883, 890), 'model.RIFE.Model', 'Model', ([], {}), '()\n', (888, 890), False, 'from model.RIFE import Model\n'), ((1721, 1744), 'megengine.functional.nn.pad', 'F.nn.pad', (['img0', 'padding'], {}), '(img0, padding)\n', (1729, 1744), True, 'import megengine.functional as F\n'), ((1752, 1775), 'megengine.functional.nn.pad', 'F.nn.pad', (['img1', 'padding'], {}), '(img1, padding)\n', (1760, 1775), True, 'import megengine.functional as F\n'), ((1040, 1103), 'cv2.imread', 'cv2.imread', (['args.img[0]', '(cv2.IMREAD_COLOR | cv2.IMREAD_ANYDEPTH)'], {}), '(args.img[0], cv2.IMREAD_COLOR | cv2.IMREAD_ANYDEPTH)\n', (1050, 1103), False, 'import cv2\n'), ((1115, 1178), 'cv2.imread', 'cv2.imread', (['args.img[1]', '(cv2.IMREAD_COLOR | cv2.IMREAD_ANYDEPTH)'], {}), '(args.img[1], cv2.IMREAD_COLOR | cv2.IMREAD_ANYDEPTH)\n', (1125, 1178), False, 'import cv2\n'), ((1327, 1372), 'cv2.imread', 'cv2.imread', (['args.img[0]', 'cv2.IMREAD_UNCHANGED'], {}), '(args.img[0], cv2.IMREAD_UNCHANGED)\n', (1337, 1372), False, 'import cv2\n'), ((1384, 1429), 'cv2.imread', 'cv2.imread', (['args.img[1]', 'cv2.IMREAD_UNCHANGED'], {}), '(args.img[1], cv2.IMREAD_UNCHANGED)\n', (1394, 1429), False, 'import cv2\n'), ((2943, 2967), 'os.path.exists', 'os.path.exists', (['"""output"""'], {}), "('output')\n", (2957, 2967), False, 'import os\n'), ((2973, 2991), 'os.mkdir', 'os.mkdir', (['"""output"""'], {}), "('output')\n", (2981, 2991), False, 'import os\n')]
import io import pickle import numpy as np import megengine.functional as F import megengine.module as M import megengine.utils.comp_graph_tools as cgtools from megengine.core._trace_option import set_symbolic_shape from megengine.jit import trace from megengine.traced_module import trace_module set_symbolic_shape(True) class Main(M.Module): def forward(self, x): return x class PreProcess(M.Module): def __init__(self): super().__init__() self.I = F.ones((1,)) self.M = F.zeros((1,)) def forward(self, data, idx, roi): N, H, W, C = data.shape xmax = roi[:, 1, 0] xmin = roi[:, 0, 0] ymax = roi[:, 1, 1] ymin = roi[:, 0, 1] scale = F.maximum((xmax - xmin) / W, (ymax - ymin) / H) I = F.broadcast_to(self.I, (N,)) M = F.broadcast_to(self.M, (N, 3, 3)) M[:, 0, 0] = scale M[:, 0, 2] = xmin M[:, 1, 1] = scale M[:, 1, 2] = ymin M[:, 2, 2] = I resized = ( F.warp_perspective( data, M, (H, W), mat_idx=idx, border_mode="CONSTANT", format="NHWC" ) .transpose(0, 3, 1, 2) .astype(np.float32) ) return resized class Net(M.Module): def __init__(self, traced_module): super().__init__() self.pre_process = PreProcess() self.traced_module = traced_module def forward(self, data, idx, roi): x = self.pre_process(data, idx, roi) x = self.traced_module(x) return x def test_preprocess(): module = Main() data = F.ones((1, 14, 8, 8), dtype=np.uint8) traced_module = trace_module(module, data) obj = pickle.dumps(traced_module) traced_module = pickle.loads(obj) module = Net(traced_module) module.eval() idx = F.zeros((1,), dtype=np.int32) roi = F.ones((1, 2, 2), dtype=np.float32) y = module(data, idx, roi) traced_module = trace_module(module, data, idx, roi) np.testing.assert_array_equal(traced_module(data, idx, roi), y) func = trace(traced_module, capture_as_const=True) np.testing.assert_array_equal(func(data, idx, roi), y) model = io.BytesIO() func.dump(model, arg_names=("data", "idx", "roi")) model.seek(0) infer_cg = cgtools.GraphInference(model) np.testing.assert_allclose( list( infer_cg.run( inp_dict={"data": data.numpy(), "idx": idx.numpy(), "roi": roi.numpy()} ).values() )[0], y, atol=1e-6, )
[ "megengine.jit.trace", "megengine.functional.maximum", "megengine.functional.zeros", "megengine.functional.broadcast_to", "megengine.functional.ones", "megengine.functional.warp_perspective", "megengine.core._trace_option.set_symbolic_shape", "megengine.traced_module.trace_module", "megengine.utils.comp_graph_tools.GraphInference" ]
[((300, 324), 'megengine.core._trace_option.set_symbolic_shape', 'set_symbolic_shape', (['(True)'], {}), '(True)\n', (318, 324), False, 'from megengine.core._trace_option import set_symbolic_shape\n'), ((1612, 1649), 'megengine.functional.ones', 'F.ones', (['(1, 14, 8, 8)'], {'dtype': 'np.uint8'}), '((1, 14, 8, 8), dtype=np.uint8)\n', (1618, 1649), True, 'import megengine.functional as F\n'), ((1670, 1696), 'megengine.traced_module.trace_module', 'trace_module', (['module', 'data'], {}), '(module, data)\n', (1682, 1696), False, 'from megengine.traced_module import trace_module\n'), ((1707, 1734), 'pickle.dumps', 'pickle.dumps', (['traced_module'], {}), '(traced_module)\n', (1719, 1734), False, 'import pickle\n'), ((1755, 1772), 'pickle.loads', 'pickle.loads', (['obj'], {}), '(obj)\n', (1767, 1772), False, 'import pickle\n'), ((1833, 1862), 'megengine.functional.zeros', 'F.zeros', (['(1,)'], {'dtype': 'np.int32'}), '((1,), dtype=np.int32)\n', (1840, 1862), True, 'import megengine.functional as F\n'), ((1873, 1908), 'megengine.functional.ones', 'F.ones', (['(1, 2, 2)'], {'dtype': 'np.float32'}), '((1, 2, 2), dtype=np.float32)\n', (1879, 1908), True, 'import megengine.functional as F\n'), ((1960, 1996), 'megengine.traced_module.trace_module', 'trace_module', (['module', 'data', 'idx', 'roi'], {}), '(module, data, idx, roi)\n', (1972, 1996), False, 'from megengine.traced_module import trace_module\n'), ((2076, 2119), 'megengine.jit.trace', 'trace', (['traced_module'], {'capture_as_const': '(True)'}), '(traced_module, capture_as_const=True)\n', (2081, 2119), False, 'from megengine.jit import trace\n'), ((2191, 2203), 'io.BytesIO', 'io.BytesIO', ([], {}), '()\n', (2201, 2203), False, 'import io\n'), ((2292, 2321), 'megengine.utils.comp_graph_tools.GraphInference', 'cgtools.GraphInference', (['model'], {}), '(model)\n', (2314, 2321), True, 'import megengine.utils.comp_graph_tools as cgtools\n'), ((490, 502), 'megengine.functional.ones', 'F.ones', (['(1,)'], {}), '((1,))\n', (496, 502), True, 'import megengine.functional as F\n'), ((520, 533), 'megengine.functional.zeros', 'F.zeros', (['(1,)'], {}), '((1,))\n', (527, 533), True, 'import megengine.functional as F\n'), ((734, 781), 'megengine.functional.maximum', 'F.maximum', (['((xmax - xmin) / W)', '((ymax - ymin) / H)'], {}), '((xmax - xmin) / W, (ymax - ymin) / H)\n', (743, 781), True, 'import megengine.functional as F\n'), ((794, 822), 'megengine.functional.broadcast_to', 'F.broadcast_to', (['self.I', '(N,)'], {}), '(self.I, (N,))\n', (808, 822), True, 'import megengine.functional as F\n'), ((835, 868), 'megengine.functional.broadcast_to', 'F.broadcast_to', (['self.M', '(N, 3, 3)'], {}), '(self.M, (N, 3, 3))\n', (849, 868), True, 'import megengine.functional as F\n'), ((1030, 1121), 'megengine.functional.warp_perspective', 'F.warp_perspective', (['data', 'M', '(H, W)'], {'mat_idx': 'idx', 'border_mode': '"""CONSTANT"""', 'format': '"""NHWC"""'}), "(data, M, (H, W), mat_idx=idx, border_mode='CONSTANT',\n format='NHWC')\n", (1048, 1121), True, 'import megengine.functional as F\n')]
from sqlalchemy.sql.schema import MetaData from sqlmodel import Field, SQLModel from datetime import datetime from uuid import UUID, uuid4 class DbtLog(SQLModel, table=True): """ Table: __Dbt_Log """ __tablename__ = "__Dbt_Log" Id: UUID = Field(default_factory=uuid4, primary_key=True) TaskId: str = Field(max_length=128) Data: str = Field(index=False) Timestamp: datetime = Field(index=False, default_factory=datetime.utcnow)
[ "sqlmodel.Field" ]
[((262, 308), 'sqlmodel.Field', 'Field', ([], {'default_factory': 'uuid4', 'primary_key': '(True)'}), '(default_factory=uuid4, primary_key=True)\n', (267, 308), False, 'from sqlmodel import Field, SQLModel\n'), ((327, 348), 'sqlmodel.Field', 'Field', ([], {'max_length': '(128)'}), '(max_length=128)\n', (332, 348), False, 'from sqlmodel import Field, SQLModel\n'), ((365, 383), 'sqlmodel.Field', 'Field', ([], {'index': '(False)'}), '(index=False)\n', (370, 383), False, 'from sqlmodel import Field, SQLModel\n'), ((410, 461), 'sqlmodel.Field', 'Field', ([], {'index': '(False)', 'default_factory': 'datetime.utcnow'}), '(index=False, default_factory=datetime.utcnow)\n', (415, 461), False, 'from sqlmodel import Field, SQLModel\n')]
#!/usr/bin/env python3 # Copyright (c) 2020 <NAME> # This file has been modified by Megvii ("Megvii Modifications"). # All Megvii Modifications are Copyright (c) 2014-2021 Megvii Inc. All rights reserved. """LARS optimizer References: https://github.com/rwightman/pytorch-image-models/blob/master/timm/optim/lars.py """ import os from typing import Iterable, Union import megengine.functional as F from megengine import Parameter, tensor from megengine.functional.inplace import _inplace_add_ from megengine.optimizer import Optimizer class LARS(Optimizer): r"""Implements LARS algorithm. LARS is proposed in `"Large Batch Optimization for Deep Learning: Training BERT in 76 minutes" <https://arxiv.org/abs/1904.00962>`_. Args: params: iterable of parameters to optimize or dicts defining parameter groups. lr: learning rate. momentum: momentum factor. Default: ``0.0`` nesterov: enables Nesterov momentum. Default: ``False`` weight_decay: weight decay (L2 penalty). Default: ``0.0`` always_adapt: apply adaptive lr to ``0.0`` weight decay parameter. Default: ``False`` """ def __init__( self, params: Union[Iterable[Parameter], dict], lr: float, momentum: float = 0.0, nesterov: bool = False, weight_decay: float = 0.0, always_adapt: bool = False, ): if lr < 0.0: raise ValueError("Invalid learning rate: {}".format(lr)) if momentum < 0.0: raise ValueError("Invalid momentum value: {}".format(momentum)) if weight_decay < 0.0: raise ValueError("Invalid weight_decay value: {}".format(weight_decay)) if nesterov and momentum <= 0: raise ValueError("Nesterov momentum requires a momentum") defaults = dict(lr=lr, momentum=momentum, weight_decay=weight_decay) super().__init__(params, defaults) self.nesterov = nesterov self.always_adapt = always_adapt self._disable_type_convert = True def _create_state(self, param_group): if param_group["momentum"] != 0.0: for param in param_group["params"]: self._add_state(param, "momentum_buffer") def _updates(self, param_group): lr = param_group["lr"] weight_decay = param_group["weight_decay"] momentum = param_group["momentum"] # since `conver_inputs` is disabled for param updates, # scalar should be explicitly tansforred to tensor _lr = tensor(lr) _weight_decay = tensor(weight_decay) _momentum = tensor(momentum) c1, c05, c0 = map(tensor, (1.0, 0.5, 0.0)) def norm(vec): return F.sum(vec * vec) ** c05 inplace_mode = int(os.getenv("MEGENGINE_INPLACE_UPDATE", "0")) if inplace_mode: _neg_lr = tensor(-lr) for param in param_group["params"]: if param.grad is None: continue grad = param.grad if weight_decay != 0.0: grad = grad + param * _weight_decay p_norm = norm(param.flatten()) if inplace_mode: if momentum != 0.0: v = self._state[param]["momentum_buffer"] _inplace_add_(v, grad, alpha=_momentum, beta=c1) if self.nesterov: grad = grad + v * _momentum else: grad = v d_norm = norm(grad.flatten()) trust_ratio = ( p_norm / d_norm if (self.always_adapt or weight_decay > 0) and p_norm > c0 and d_norm > c0 else c1 ) _inplace_add_(param, grad, alpha=c1, beta=_neg_lr * trust_ratio) continue if momentum != 0.0: v = self._state[param]["momentum_buffer"] v *= _momentum v += grad if self.nesterov: grad = grad + v * _momentum else: grad = v d_norm = norm(grad.flatten()) trust_ratio = ( p_norm / d_norm if (self.always_adapt or weight_decay > 0) and p_norm > c0 and d_norm > c0 else c1 ) param -= _lr * trust_ratio * grad
[ "megengine.tensor", "megengine.functional.inplace._inplace_add_", "megengine.functional.sum" ]
[((2538, 2548), 'megengine.tensor', 'tensor', (['lr'], {}), '(lr)\n', (2544, 2548), False, 'from megengine import Parameter, tensor\n'), ((2573, 2593), 'megengine.tensor', 'tensor', (['weight_decay'], {}), '(weight_decay)\n', (2579, 2593), False, 'from megengine import Parameter, tensor\n'), ((2614, 2630), 'megengine.tensor', 'tensor', (['momentum'], {}), '(momentum)\n', (2620, 2630), False, 'from megengine import Parameter, tensor\n'), ((2778, 2820), 'os.getenv', 'os.getenv', (['"""MEGENGINE_INPLACE_UPDATE"""', '"""0"""'], {}), "('MEGENGINE_INPLACE_UPDATE', '0')\n", (2787, 2820), False, 'import os\n'), ((2869, 2880), 'megengine.tensor', 'tensor', (['(-lr)'], {}), '(-lr)\n', (2875, 2880), False, 'from megengine import Parameter, tensor\n'), ((2726, 2742), 'megengine.functional.sum', 'F.sum', (['(vec * vec)'], {}), '(vec * vec)\n', (2731, 2742), True, 'import megengine.functional as F\n'), ((3766, 3830), 'megengine.functional.inplace._inplace_add_', '_inplace_add_', (['param', 'grad'], {'alpha': 'c1', 'beta': '(_neg_lr * trust_ratio)'}), '(param, grad, alpha=c1, beta=_neg_lr * trust_ratio)\n', (3779, 3830), False, 'from megengine.functional.inplace import _inplace_add_\n'), ((3297, 3345), 'megengine.functional.inplace._inplace_add_', '_inplace_add_', (['v', 'grad'], {'alpha': '_momentum', 'beta': 'c1'}), '(v, grad, alpha=_momentum, beta=c1)\n', (3310, 3345), False, 'from megengine.functional.inplace import _inplace_add_\n')]
"""init Revision ID: 3b7e032d2384 Revises: Create Date: 2021-10-01 02:25:02.820531 """ import sqlalchemy as sa import sqlmodel from alembic import op # revision identifiers, used by Alembic. revision = "3b7e032d2384" down_revision = None branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.create_table( "prep", sa.Column("address", sqlmodel.sql.sqltypes.AutoString(), nullable=False), sa.Column("name", sqlmodel.sql.sqltypes.AutoString(), nullable=True), sa.Column("country", sqlmodel.sql.sqltypes.AutoString(), nullable=True), sa.Column("city", sqlmodel.sql.sqltypes.AutoString(), nullable=True), sa.Column("email", sqlmodel.sql.sqltypes.AutoString(), nullable=True), sa.Column("website", sqlmodel.sql.sqltypes.AutoString(), nullable=True), sa.Column("details", sqlmodel.sql.sqltypes.AutoString(), nullable=True), sa.Column("p2p_endpoint", sqlmodel.sql.sqltypes.AutoString(), nullable=True), sa.Column("node_address", sqlmodel.sql.sqltypes.AutoString(), nullable=True), sa.Column("status", sqlmodel.sql.sqltypes.AutoString(), nullable=True), sa.Column("penalty", sqlmodel.sql.sqltypes.AutoString(), nullable=True), sa.Column("grade", sqlmodel.sql.sqltypes.AutoString(), nullable=True), sa.Column("last_updated_block", sa.Integer(), nullable=True), sa.Column("last_updated_timestamp", sa.Integer(), nullable=True), sa.Column("created_block", sa.Integer(), nullable=True), sa.Column("created_timestamp", sa.Integer(), nullable=True), sa.Column("logo_256", sqlmodel.sql.sqltypes.AutoString(), nullable=True), sa.Column("logo_1024", sqlmodel.sql.sqltypes.AutoString(), nullable=True), sa.Column("logo_svg", sqlmodel.sql.sqltypes.AutoString(), nullable=True), sa.Column("steemit", sqlmodel.sql.sqltypes.AutoString(), nullable=True), sa.Column("twitter", sqlmodel.sql.sqltypes.AutoString(), nullable=True), sa.Column("youtube", sqlmodel.sql.sqltypes.AutoString(), nullable=True), sa.Column("facebook", sqlmodel.sql.sqltypes.AutoString(), nullable=True), sa.Column("github", sqlmodel.sql.sqltypes.AutoString(), nullable=True), sa.Column("reddit", sqlmodel.sql.sqltypes.AutoString(), nullable=True), sa.Column("keybase", sqlmodel.sql.sqltypes.AutoString(), nullable=True), sa.Column("telegram", sqlmodel.sql.sqltypes.AutoString(), nullable=True), sa.Column("wechat", sqlmodel.sql.sqltypes.AutoString(), nullable=True), sa.Column("api_endpoint", sqlmodel.sql.sqltypes.AutoString(), nullable=True), sa.Column("server_country", sqlmodel.sql.sqltypes.AutoString(), nullable=True), sa.Column("server_city", sqlmodel.sql.sqltypes.AutoString(), nullable=True), sa.Column("server_type", sqlmodel.sql.sqltypes.AutoString(), nullable=True), sa.PrimaryKeyConstraint("address"), ) op.create_index(op.f("ix_prep_address"), "prep", ["address"], unique=False) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_index(op.f("ix_prep_address"), table_name="prep") op.drop_table("prep") # ### end Alembic commands ###
[ "sqlmodel.sql.sqltypes.AutoString" ]
[((3285, 3306), 'alembic.op.drop_table', 'op.drop_table', (['"""prep"""'], {}), "('prep')\n", (3298, 3306), False, 'from alembic import op\n'), ((2977, 3011), 'sqlalchemy.PrimaryKeyConstraint', 'sa.PrimaryKeyConstraint', (['"""address"""'], {}), "('address')\n", (3000, 3011), True, 'import sqlalchemy as sa\n'), ((3039, 3062), 'alembic.op.f', 'op.f', (['"""ix_prep_address"""'], {}), "('ix_prep_address')\n", (3043, 3062), False, 'from alembic import op\n'), ((3237, 3260), 'alembic.op.f', 'op.f', (['"""ix_prep_address"""'], {}), "('ix_prep_address')\n", (3241, 3260), False, 'from alembic import op\n'), ((429, 463), 'sqlmodel.sql.sqltypes.AutoString', 'sqlmodel.sql.sqltypes.AutoString', ([], {}), '()\n', (461, 463), False, 'import sqlmodel\n'), ((508, 542), 'sqlmodel.sql.sqltypes.AutoString', 'sqlmodel.sql.sqltypes.AutoString', ([], {}), '()\n', (540, 542), False, 'import sqlmodel\n'), ((589, 623), 'sqlmodel.sql.sqltypes.AutoString', 'sqlmodel.sql.sqltypes.AutoString', ([], {}), '()\n', (621, 623), False, 'import sqlmodel\n'), ((667, 701), 'sqlmodel.sql.sqltypes.AutoString', 'sqlmodel.sql.sqltypes.AutoString', ([], {}), '()\n', (699, 701), False, 'import sqlmodel\n'), ((746, 780), 'sqlmodel.sql.sqltypes.AutoString', 'sqlmodel.sql.sqltypes.AutoString', ([], {}), '()\n', (778, 780), False, 'import sqlmodel\n'), ((827, 861), 'sqlmodel.sql.sqltypes.AutoString', 'sqlmodel.sql.sqltypes.AutoString', ([], {}), '()\n', (859, 861), False, 'import sqlmodel\n'), ((908, 942), 'sqlmodel.sql.sqltypes.AutoString', 'sqlmodel.sql.sqltypes.AutoString', ([], {}), '()\n', (940, 942), False, 'import sqlmodel\n'), ((994, 1028), 'sqlmodel.sql.sqltypes.AutoString', 'sqlmodel.sql.sqltypes.AutoString', ([], {}), '()\n', (1026, 1028), False, 'import sqlmodel\n'), ((1080, 1114), 'sqlmodel.sql.sqltypes.AutoString', 'sqlmodel.sql.sqltypes.AutoString', ([], {}), '()\n', (1112, 1114), False, 'import sqlmodel\n'), ((1160, 1194), 'sqlmodel.sql.sqltypes.AutoString', 'sqlmodel.sql.sqltypes.AutoString', ([], {}), '()\n', (1192, 1194), False, 'import sqlmodel\n'), ((1241, 1275), 'sqlmodel.sql.sqltypes.AutoString', 'sqlmodel.sql.sqltypes.AutoString', ([], {}), '()\n', (1273, 1275), False, 'import sqlmodel\n'), ((1320, 1354), 'sqlmodel.sql.sqltypes.AutoString', 'sqlmodel.sql.sqltypes.AutoString', ([], {}), '()\n', (1352, 1354), False, 'import sqlmodel\n'), ((1412, 1424), 'sqlalchemy.Integer', 'sa.Integer', ([], {}), '()\n', (1422, 1424), True, 'import sqlalchemy as sa\n'), ((1486, 1498), 'sqlalchemy.Integer', 'sa.Integer', ([], {}), '()\n', (1496, 1498), True, 'import sqlalchemy as sa\n'), ((1551, 1563), 'sqlalchemy.Integer', 'sa.Integer', ([], {}), '()\n', (1561, 1563), True, 'import sqlalchemy as sa\n'), ((1620, 1632), 'sqlalchemy.Integer', 'sa.Integer', ([], {}), '()\n', (1630, 1632), True, 'import sqlalchemy as sa\n'), ((1680, 1714), 'sqlmodel.sql.sqltypes.AutoString', 'sqlmodel.sql.sqltypes.AutoString', ([], {}), '()\n', (1712, 1714), False, 'import sqlmodel\n'), ((1763, 1797), 'sqlmodel.sql.sqltypes.AutoString', 'sqlmodel.sql.sqltypes.AutoString', ([], {}), '()\n', (1795, 1797), False, 'import sqlmodel\n'), ((1845, 1879), 'sqlmodel.sql.sqltypes.AutoString', 'sqlmodel.sql.sqltypes.AutoString', ([], {}), '()\n', (1877, 1879), False, 'import sqlmodel\n'), ((1926, 1960), 'sqlmodel.sql.sqltypes.AutoString', 'sqlmodel.sql.sqltypes.AutoString', ([], {}), '()\n', (1958, 1960), False, 'import sqlmodel\n'), ((2007, 2041), 'sqlmodel.sql.sqltypes.AutoString', 'sqlmodel.sql.sqltypes.AutoString', ([], {}), '()\n', (2039, 2041), False, 'import sqlmodel\n'), ((2088, 2122), 'sqlmodel.sql.sqltypes.AutoString', 'sqlmodel.sql.sqltypes.AutoString', ([], {}), '()\n', (2120, 2122), False, 'import sqlmodel\n'), ((2170, 2204), 'sqlmodel.sql.sqltypes.AutoString', 'sqlmodel.sql.sqltypes.AutoString', ([], {}), '()\n', (2202, 2204), False, 'import sqlmodel\n'), ((2250, 2284), 'sqlmodel.sql.sqltypes.AutoString', 'sqlmodel.sql.sqltypes.AutoString', ([], {}), '()\n', (2282, 2284), False, 'import sqlmodel\n'), ((2330, 2364), 'sqlmodel.sql.sqltypes.AutoString', 'sqlmodel.sql.sqltypes.AutoString', ([], {}), '()\n', (2362, 2364), False, 'import sqlmodel\n'), ((2411, 2445), 'sqlmodel.sql.sqltypes.AutoString', 'sqlmodel.sql.sqltypes.AutoString', ([], {}), '()\n', (2443, 2445), False, 'import sqlmodel\n'), ((2493, 2527), 'sqlmodel.sql.sqltypes.AutoString', 'sqlmodel.sql.sqltypes.AutoString', ([], {}), '()\n', (2525, 2527), False, 'import sqlmodel\n'), ((2573, 2607), 'sqlmodel.sql.sqltypes.AutoString', 'sqlmodel.sql.sqltypes.AutoString', ([], {}), '()\n', (2605, 2607), False, 'import sqlmodel\n'), ((2659, 2693), 'sqlmodel.sql.sqltypes.AutoString', 'sqlmodel.sql.sqltypes.AutoString', ([], {}), '()\n', (2691, 2693), False, 'import sqlmodel\n'), ((2747, 2781), 'sqlmodel.sql.sqltypes.AutoString', 'sqlmodel.sql.sqltypes.AutoString', ([], {}), '()\n', (2779, 2781), False, 'import sqlmodel\n'), ((2832, 2866), 'sqlmodel.sql.sqltypes.AutoString', 'sqlmodel.sql.sqltypes.AutoString', ([], {}), '()\n', (2864, 2866), False, 'import sqlmodel\n'), ((2917, 2951), 'sqlmodel.sql.sqltypes.AutoString', 'sqlmodel.sql.sqltypes.AutoString', ([], {}), '()\n', (2949, 2951), False, 'import sqlmodel\n')]
from typing import TYPE_CHECKING, List, Optional from sqlalchemy import Column from sqlalchemy.dialects.postgresql import ARRAY from sqlmodel import AutoString, Field, Relationship, SQLModel if TYPE_CHECKING: from .application import Application, ApplicationList class SchoolBase(SQLModel): name: str abbreviations: List[str] = Field( default=[], sa_column=Column(ARRAY(AutoString()), nullable=False), ) alternatives: List[str] = Field( default=[], sa_column=Column(ARRAY(AutoString()), nullable=False), ) class School(SchoolBase, table=True): __tablename__ = "schools" id: Optional[str] = Field(default=None, primary_key=True, nullable=False) needs_review: bool = False applications: List["Application"] = Relationship(back_populates="school") class SchoolCreate(SchoolBase): pass class SchoolList(SQLModel): id: str name: str needs_review: bool class SchoolRead(SchoolBase): id: str needs_review: bool applications: List["ApplicationList"] class SchoolUpdate(SQLModel): name: Optional[str] needs_review: Optional[bool] abbreviations: Optional[List[str]] alternatives: Optional[List[str]]
[ "sqlmodel.Relationship", "sqlmodel.AutoString", "sqlmodel.Field" ]
[((662, 715), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'primary_key': '(True)', 'nullable': '(False)'}), '(default=None, primary_key=True, nullable=False)\n', (667, 715), False, 'from sqlmodel import AutoString, Field, Relationship, SQLModel\n'), ((788, 825), 'sqlmodel.Relationship', 'Relationship', ([], {'back_populates': '"""school"""'}), "(back_populates='school')\n", (800, 825), False, 'from sqlmodel import AutoString, Field, Relationship, SQLModel\n'), ((403, 415), 'sqlmodel.AutoString', 'AutoString', ([], {}), '()\n', (413, 415), False, 'from sqlmodel import AutoString, Field, Relationship, SQLModel\n'), ((529, 541), 'sqlmodel.AutoString', 'AutoString', ([], {}), '()\n', (539, 541), False, 'from sqlmodel import AutoString, Field, Relationship, SQLModel\n')]
import os, sys import numpy as np from config import config from det_opr.bbox_opr import box_overlap_opr, bbox_transform_opr import megengine as mge from megengine import functional as F import pdb def _compute_center(boxes): ptrx = 0.5 * (boxes[:, 0] + boxes[:, 2]) ptry = 0.5 * (boxes[:, 1] + boxes[:, 3]) centre = F.stack([ptrx, ptry], axis=1) return centre def _compute_pos_area(gtboxes, ratio = 0.3): H, W = gtboxes[:, 3] - gtboxes[:, 1], gtboxes[:, 2] - gtboxes[:, 0] centres = _compute_center(gtboxes) l = centres[:, 0] - ratio * W r = centres[:, 0] + ratio * W t = centres[:, 1] - ratio * H b = centres[:, 1] + ratio * H boundary = F.stack([l, t, r, b], axis = 1) return boundary def _anchor_double_target(gt_boxes, im_info, all_anchors): gt_boxes, im_info = gt_boxes.detach(), im_info.detach() all_anchors = all_anchors.detach() gt_boxes = gt_boxes[:im_info[5].astype(np.int32), :] dummy = -F.ones([1, gt_boxes.shape[1]]).to(gt_boxes.device) gt_boxes = F.concat([gt_boxes, dummy], axis=0) valid_mask = 1 - (gt_boxes[:, 4] < 0).astype(np.float32) anchor_centers = _compute_center(all_anchors) gtboxes_centers = _compute_center(gt_boxes) # gtboxes_centers = gtboxes_centers * valid_mask.unsqueeze(1) gtboxes_centers = gtboxes_centers * F.expand_dims(valid_mask, axis=1) N, K = all_anchors.shape[0], gt_boxes.shape[0] an_centers = F.expand_dims(anchor_centers, axis=1) gt_centers = F.expand_dims(gtboxes_centers, axis=0) # an_centers = anchor_centers.unsqueeze(1).repeat(1, K, 1) # gt_centers = gtboxes_centers.unsqueeze(0).repeat(N, 1, 1) distance = F.abs(an_centers - gt_centers) distance = F.sqrt(F.pow(distance, 2).sum(axis=2)) start = 0 end = 5 overlaps = box_overlap_opr(all_anchors[:, :4], gt_boxes[:, :4]) overlaps *= F.expand_dims(valid_mask, axis=0) default_num = 16 ious_list = [] for l in range(start, end): _, index = F.cond_take(all_anchors[:, 4] == l, all_anchors[:, 4]) level_dist = distance[index, :].transpose(1, 0) ious = overlaps[index, :].transpose(1, 0) sorted_index = F.argsort(level_dist, descending=False) n = min(sorted_index.shape[1], default_num) ious = F.gather(ious, 1, sorted_index[:, :n]).transpose(1, 0) ious_list.append(ious) ious = F.concat(ious_list, axis=0) mean_var = F.mean(ious, axis = 0) std_var = F.std(ious, 0) iou_thresh_per_gt = mean_var + std_var iou_thresh_per_gt = F.maximum(iou_thresh_per_gt, 0.2) # limits the anchor centers in the gtboxes N, K = all_anchors.shape[0], gt_boxes.shape[0] anchor_points = an_centers pos_area = _compute_pos_area(gt_boxes, 0.3) # pos_area = pos_area.unsqueeze(0).repeat(N, 1, 1) pos_area = F.broadcast_to(F.expand_dims(pos_area, axis=0), (N, K, pos_area.shape[-1])) l = anchor_points[:, :, 0] - pos_area[:, :, 0] r = pos_area[:, :, 2] - anchor_points[:, :, 0] t = anchor_points[:, :, 1] - pos_area[:, :, 1] b = pos_area[:, :, 3] - anchor_points[:, :, 1] is_in_gt = F.stack([l, r, t, b], axis=2) is_in_gt = is_in_gt.min(axis = 2) > 0.1 valid_mask = (overlaps >= F.expand_dims(iou_thresh_per_gt, axis=0)) * is_in_gt.astype(np.float32) ious = overlaps * valid_mask sorted_index = F.argsort(ious, 1) sorted_overlaps = F.gather(ious, 1, sorted_index) max_overlaps = sorted_overlaps[:, :2].flatten() argmax_overlaps = sorted_index[:, :2].flatten() n, c = all_anchors.shape device = all_anchors.device labels = -F.ones(2 * n).to(device) positive_mask = (max_overlaps >= 0.2).to(device).astype(np.float32) negative_mask = (max_overlaps < 0.2).to(device).astype(np.float32) labels = positive_mask + labels * (1 - positive_mask) * (1 - negative_mask) bbox_targets = gt_boxes[argmax_overlaps, :4] all_anchors = F.broadcast_to(F.expand_dims(all_anchors, axis=1), (n,2, c)).reshape(-1, c) bbox_targets = bbox_transform_opr(all_anchors[:, :4], bbox_targets) labels_cat = gt_boxes[argmax_overlaps, 4] labels_cat = labels_cat * (1 - F.equal(labels, -1).astype(np.float32)) - F.equal(labels, -1).astype(np.float32) return labels, bbox_targets, labels_cat def _anchor_target(gt_boxes, im_info, all_anchors): gt_boxes, im_info = gt_boxes.detach(), im_info.detach() all_anchors = all_anchors.detach() gt_boxes = gt_boxes[:im_info[5], :] valid_mask = 1 - (gt_boxes[:, 4] < 0).astype(np.float32) anchor_centers = _compute_center(all_anchors) gtboxes_centers = _compute_center(gt_boxes) * F.expand_dims(valid_mask, axis=0) N, K = all_anchors.shape[0], gt_boxes.shape[0] # an_centers = anchor_centers.unsqueeze(1).repeat(1, K, 1) an_centers = F.expand_dims(anchor_centers, axis=1) gt_centers = F.expand_dims(gtboxes_centers, axis=0) # gt_centers = gtboxes_centers.unsqueeze(0).repeat(N, 1, 1) distance = F.abs(an_centers - gt_centers) distance = F.sqrt(F.pow(distance, 2).sum(axis=2)) start = 0 end = 5 overlaps = box_overlap_opr(all_anchors[:, :4], gt_boxes[:, :4]) overlaps = overlaps * valid_mask.unsqueeze(0) default_num = 9 ious_list = [] for l in range(start, end): index = torch.nonzero(all_anchors[:,4].eq(l), as_tuple=False)[:, 0] level_dist = level_dist[index, :].transpose(1, 0) ious = distance[index, :].transpose(1, 0) sorted_index = torch.argsort(ious, 1, descending=False) n = min(default_num, sorted_index.shape[1]) ious = torch.gather(ious, 1, sorted_index[:, :n]).transpose(1, 0) ious_list.append(ious) ious = F.concat(ious_list, axis=0) mean_var = ious.mean(0) std_var = ious.std(0) iou_thresh_per_gt = mean_var + std_var iou_thresh_per_gt = torch.clamp(iou_thresh_per_gt, 0.35) n = iou_thresh_per_gt.shape[0] # limits the anchor centers in the gtboxes N, K = all_anchors.shape[0], gt_boxes.shape[0] anchor_points = an_centers proxies = gt_boxes.unsqueeze(0).repeat(N, 1, 1) l = anchor_points[:, :, 0] - proxies[:, :, 0] r = proxies[:, :, 2] - anchor_points[:, :, 0] t = anchor_points[:, :, 1] - proxies[:, :, 1] b = proxies[:, :, 3] - anchor_points[:, :, 1] is_in_gt = F.stack([l, r, t, b], axis=2) is_in_gt = is_in_gt.min(axis = 2) > 0.1 valid_mask = (overlaps >= iou_thresh_per_gt.unsqueeze(0)) * is_in_gt ious = overlaps * valid_mask argmax_overlaps = torch.argmax(ious, axis=1) max_overlaps = torch.gather(ious, 1, argmax_overlaps.unsqueeze(1)) n = all_anchors.shape[0] labels = -F.ones(n) positive_mask = max_overlaps > 0 negative_mask = max_overlaps < config.rpn_negative_overlap labels = positive_mask + labels * (1 - positive_mask) * (1 - negative_mask) bbox_targets = gt_boxes[argmax_overlaps, :4] bbox_targets = bbox_transform_opr(all_anchors[:, :4], bbox_targets) labels_cat = gt_boxes[argmax_overlaps, 4] labels_cat = labels_cat * (1 - labels.eq(0).astype(np.float32)) labels_cat = labels_cat * (1 - labels.eq(-1).astype(np.float32)) - labels.eq(-1).astype(np.float32) return labels, bbox_targets, labels_cat def rpn_anchor_target_opr(gt_boxes, im_info, anchors): rpn_label_list, rpn_target_boxes_list, iou_thresh_list = [], [], [] for i in range(config.train_batch_per_gpu): rpn_labels, rpn_target_boxes, _ = _anchor_double_target(gt_boxes[i], im_info[i], anchors) rpn_labels = rpn_labels.reshape(-1, 2) c = rpn_target_boxes.shape[1] rpn_target_boxes = rpn_target_boxes.reshape(-1, 2, c) # mask the anchors overlapping with ignore regions ignore_label = mask_anchor_opr(gt_boxes[i], im_info[i], anchors, rpn_labels[:, 0]) rpn_labels = rpn_labels - F.equal(rpn_labels, 0).astype(np.float32) * F.expand_dims(ignore_label < 0, 1).astype(np.float32) # rpn_labels = rpn_labels - rpn_labels.eq(0).astype(np.float32) * (ignore_label < 0).unsqueeze(1).astype(np.float32) rpn_label_list.append(F.expand_dims(rpn_labels, 0)) rpn_target_boxes_list.append(F.expand_dims(rpn_target_boxes, 0)) rpn_labels = F.concat(rpn_label_list, axis = 0) rpn_target_boxes = F.concat(rpn_target_boxes_list, axis = 0) return rpn_labels, rpn_target_boxes def mask_anchor_opr(gtboxes, im_info, anchors, labels): eps = 1e-6 gtboxes = gtboxes[:im_info[5].astype(np.int32), :] ignore_mask = (gtboxes[:, 4] < 0).astype(np.float32) mask_flag = F.zeros(labels.shape[0]) N, K = anchors.shape[0], gtboxes.shape[0] p_pred = F.broadcast_to(F.expand_dims(anchors, 1), (N, K, anchors.shape[1])) p_gt = F.broadcast_to(F.expand_dims(gtboxes, 0), (N, K, gtboxes.shape[1])) max_off = F.concat([F.maximum(p_pred[:,:, :2], p_gt[:,:,:2]), F.minimum(p_pred[:, :, 2:4], p_gt[:, :, 2:4])], axis = 2) I = F.maximum(max_off[:, :, 2] - max_off[:, :, 0] + 1, 0) * F.maximum( max_off[:, :, 3] - max_off[:, :, 1] + 1, 0) A = F.maximum(p_pred[:, :, 2] - p_pred[:, :, 0] + 1, 0) * F.maximum( p_pred[:, :, 3] - p_pred[:, :, 1] + 1, 0) # I = F.maximum(I, 0) # A = F.maximum(A, 0) IoA = I / (A + eps) IoA = IoA * F.expand_dims(ignore_mask, 0) mask_flag = (IoA > 0.5).sum(axis=1) > 0 labels = labels - F.equal(labels, 0).astype(np.float32) * mask_flag.astype(np.float32) return labels def rpn_anchor_target_opr_impl( gt_boxes, im_info, anchors, clobber_positives = True, ignore_label=-1, background_label=0): gt_boxes, im_info = gt_boxes.detach(), im_info.detach() anchors = anchors.detach() # NOTE: For multi-gpu version, this function should be re-written a_shp0 = anchors.shape[0] valid_gt_boxes = gt_boxes[:im_info[5], :] valid_mask = (gt_boxes[:im_info[5], 4] > 0).astype(np.float32) overlaps = box_overlap_opr(anchors[:, :4], valid_gt_boxes[:, :4]) overlaps = overlaps * valid_mask.unsqueeze(0) argmax_overlaps = torch.argmax(overlaps,axis=1) max_overlaps = torch.gather(overlaps, 1, argmax_overlaps.unsqueeze(1)) gt_argmax_overlaps = torch.argmax(overlaps, axis=0) gt_argmax_overlaps = torch.gather(overlaps, 1, gt_argmax_overlaps.unsqueeze(0)) cond_max_overlaps = overlaps.eq(gt_argmax_overlaps).astype(np.float32) cmo_shape1 = cond_max_overlaps.shape[1] gt_argmax_overlaps = torch.nonzero(cond_max_overlaps.flatten(), as_tuple=False) gt_argmax_overlaps = gt_argmax_overlaps // cmo_shape1 labels = ignore_label * F.ones(a_shp0) fg_mask = (max_overlaps >= config.rpn_positive_overlap).astype(np.float32) fg_mask[gt_argmax_overlaps] = 1 index = torch.nonzero(fg_mask, as_tuple=False).reshape(-1).long() labels[index] = 1 bbox_targets = bbox_transform_opr(anchors, valid_gt_boxes[index, :4]) # fg_mask[gt_argmax_overlaps] # --- megbrain fashion code --- # argmax_overlaps = O.Argmax(overlaps, axis=1) # max_overlaps = O.IndexingOneHot(overlaps, 1, argmax_overlaps) # gt_argmax_overlaps = O.Argmax(overlaps, axis=0) # gt_max_overlaps = O.IndexingOneHot(overlaps, 0, gt_argmax_overlaps) # cond_max_overlaps = overlaps.eq(gt_max_overlaps.add_axis(0)) # cmo_shape1 = cond_max_overlaps.shape[1] # gt_argmax_overlaps = \ # O.CondTake(cond_max_overlaps.flatten(), cond_max_overlaps.flatten(), # 'EQ',1).outputs[1] # # why should be divided by the cmo_shape1 # gt_argmax_overlaps = gt_argmax_overlaps // cmo_shape1 # labels = O.ones(a_shp0) * ignore_label # const_one = O.ConstProvider(1.0) # if not clobber_positives: # labels = labels * (max_overlaps >= config.rpn_negative_overlap) # fg_mask = (max_overlaps >= config.rpn_positive_overlap) # fg_mask = fg_mask.set_ai[gt_argmax_overlaps]( # const_one.broadcast(gt_argmax_overlaps.shape)) # fg_mask_ind = O.CondTake(fg_mask, fg_mask, 'EQ', 1).outputs[1] # labels = labels.set_ai[fg_mask_ind](const_one.broadcast(fg_mask_ind.shape)) # if clobber_positives: # labels = labels * (max_overlaps >= config.rpn_negative_overlap) # Here, we compute the targets for each anchors # bbox_targets = bbox_transform_opr( # anchors, valid_gt_boxes.ai[argmax_overlaps, :4]) return labels, bbox_targets
[ "megengine.functional.zeros", "megengine.functional.gather", "megengine.functional.minimum", "megengine.functional.mean", "megengine.functional.abs", "megengine.functional.stack", "megengine.functional.std", "megengine.functional.maximum", "megengine.functional.argsort", "megengine.functional.cond_take", "megengine.functional.expand_dims", "megengine.functional.equal", "megengine.functional.concat", "megengine.functional.ones", "megengine.functional.pow" ]
[((330, 359), 'megengine.functional.stack', 'F.stack', (['[ptrx, ptry]'], {'axis': '(1)'}), '([ptrx, ptry], axis=1)\n', (337, 359), True, 'from megengine import functional as F\n'), ((687, 716), 'megengine.functional.stack', 'F.stack', (['[l, t, r, b]'], {'axis': '(1)'}), '([l, t, r, b], axis=1)\n', (694, 716), True, 'from megengine import functional as F\n'), ((1040, 1075), 'megengine.functional.concat', 'F.concat', (['[gt_boxes, dummy]'], {'axis': '(0)'}), '([gt_boxes, dummy], axis=0)\n', (1048, 1075), True, 'from megengine import functional as F\n'), ((1445, 1482), 'megengine.functional.expand_dims', 'F.expand_dims', (['anchor_centers'], {'axis': '(1)'}), '(anchor_centers, axis=1)\n', (1458, 1482), True, 'from megengine import functional as F\n'), ((1500, 1538), 'megengine.functional.expand_dims', 'F.expand_dims', (['gtboxes_centers'], {'axis': '(0)'}), '(gtboxes_centers, axis=0)\n', (1513, 1538), True, 'from megengine import functional as F\n'), ((1682, 1712), 'megengine.functional.abs', 'F.abs', (['(an_centers - gt_centers)'], {}), '(an_centers - gt_centers)\n', (1687, 1712), True, 'from megengine import functional as F\n'), ((1813, 1865), 'det_opr.bbox_opr.box_overlap_opr', 'box_overlap_opr', (['all_anchors[:, :4]', 'gt_boxes[:, :4]'], {}), '(all_anchors[:, :4], gt_boxes[:, :4])\n', (1828, 1865), False, 'from det_opr.bbox_opr import box_overlap_opr, bbox_transform_opr\n'), ((1882, 1915), 'megengine.functional.expand_dims', 'F.expand_dims', (['valid_mask'], {'axis': '(0)'}), '(valid_mask, axis=0)\n', (1895, 1915), True, 'from megengine import functional as F\n'), ((2401, 2428), 'megengine.functional.concat', 'F.concat', (['ious_list'], {'axis': '(0)'}), '(ious_list, axis=0)\n', (2409, 2428), True, 'from megengine import functional as F\n'), ((2444, 2464), 'megengine.functional.mean', 'F.mean', (['ious'], {'axis': '(0)'}), '(ious, axis=0)\n', (2450, 2464), True, 'from megengine import functional as F\n'), ((2481, 2495), 'megengine.functional.std', 'F.std', (['ious', '(0)'], {}), '(ious, 0)\n', (2486, 2495), True, 'from megengine import functional as F\n'), ((2564, 2597), 'megengine.functional.maximum', 'F.maximum', (['iou_thresh_per_gt', '(0.2)'], {}), '(iou_thresh_per_gt, 0.2)\n', (2573, 2597), True, 'from megengine import functional as F\n'), ((3143, 3172), 'megengine.functional.stack', 'F.stack', (['[l, r, t, b]'], {'axis': '(2)'}), '([l, r, t, b], axis=2)\n', (3150, 3172), True, 'from megengine import functional as F\n'), ((3372, 3390), 'megengine.functional.argsort', 'F.argsort', (['ious', '(1)'], {}), '(ious, 1)\n', (3381, 3390), True, 'from megengine import functional as F\n'), ((3413, 3444), 'megengine.functional.gather', 'F.gather', (['ious', '(1)', 'sorted_index'], {}), '(ious, 1, sorted_index)\n', (3421, 3444), True, 'from megengine import functional as F\n'), ((4037, 4089), 'det_opr.bbox_opr.bbox_transform_opr', 'bbox_transform_opr', (['all_anchors[:, :4]', 'bbox_targets'], {}), '(all_anchors[:, :4], bbox_targets)\n', (4055, 4089), False, 'from det_opr.bbox_opr import box_overlap_opr, bbox_transform_opr\n'), ((4825, 4862), 'megengine.functional.expand_dims', 'F.expand_dims', (['anchor_centers'], {'axis': '(1)'}), '(anchor_centers, axis=1)\n', (4838, 4862), True, 'from megengine import functional as F\n'), ((4880, 4918), 'megengine.functional.expand_dims', 'F.expand_dims', (['gtboxes_centers'], {'axis': '(0)'}), '(gtboxes_centers, axis=0)\n', (4893, 4918), True, 'from megengine import functional as F\n'), ((4999, 5029), 'megengine.functional.abs', 'F.abs', (['(an_centers - gt_centers)'], {}), '(an_centers - gt_centers)\n', (5004, 5029), True, 'from megengine import functional as F\n'), ((5130, 5182), 'det_opr.bbox_opr.box_overlap_opr', 'box_overlap_opr', (['all_anchors[:, :4]', 'gt_boxes[:, :4]'], {}), '(all_anchors[:, :4], gt_boxes[:, :4])\n', (5145, 5182), False, 'from det_opr.bbox_opr import box_overlap_opr, bbox_transform_opr\n'), ((5723, 5750), 'megengine.functional.concat', 'F.concat', (['ious_list'], {'axis': '(0)'}), '(ious_list, axis=0)\n', (5731, 5750), True, 'from megengine import functional as F\n'), ((6343, 6372), 'megengine.functional.stack', 'F.stack', (['[l, r, t, b]'], {'axis': '(2)'}), '([l, r, t, b], axis=2)\n', (6350, 6372), True, 'from megengine import functional as F\n'), ((6947, 6999), 'det_opr.bbox_opr.bbox_transform_opr', 'bbox_transform_opr', (['all_anchors[:, :4]', 'bbox_targets'], {}), '(all_anchors[:, :4], bbox_targets)\n', (6965, 6999), False, 'from det_opr.bbox_opr import box_overlap_opr, bbox_transform_opr\n'), ((8267, 8299), 'megengine.functional.concat', 'F.concat', (['rpn_label_list'], {'axis': '(0)'}), '(rpn_label_list, axis=0)\n', (8275, 8299), True, 'from megengine import functional as F\n'), ((8325, 8364), 'megengine.functional.concat', 'F.concat', (['rpn_target_boxes_list'], {'axis': '(0)'}), '(rpn_target_boxes_list, axis=0)\n', (8333, 8364), True, 'from megengine import functional as F\n'), ((8613, 8637), 'megengine.functional.zeros', 'F.zeros', (['labels.shape[0]'], {}), '(labels.shape[0])\n', (8620, 8637), True, 'from megengine import functional as F\n'), ((10025, 10079), 'det_opr.bbox_opr.box_overlap_opr', 'box_overlap_opr', (['anchors[:, :4]', 'valid_gt_boxes[:, :4]'], {}), '(anchors[:, :4], valid_gt_boxes[:, :4])\n', (10040, 10079), False, 'from det_opr.bbox_opr import box_overlap_opr, bbox_transform_opr\n'), ((10932, 10986), 'det_opr.bbox_opr.bbox_transform_opr', 'bbox_transform_opr', (['anchors', 'valid_gt_boxes[index, :4]'], {}), '(anchors, valid_gt_boxes[index, :4])\n', (10950, 10986), False, 'from det_opr.bbox_opr import box_overlap_opr, bbox_transform_opr\n'), ((1342, 1375), 'megengine.functional.expand_dims', 'F.expand_dims', (['valid_mask'], {'axis': '(1)'}), '(valid_mask, axis=1)\n', (1355, 1375), True, 'from megengine import functional as F\n'), ((2010, 2064), 'megengine.functional.cond_take', 'F.cond_take', (['(all_anchors[:, 4] == l)', 'all_anchors[:, 4]'], {}), '(all_anchors[:, 4] == l, all_anchors[:, 4])\n', (2021, 2064), True, 'from megengine import functional as F\n'), ((2195, 2234), 'megengine.functional.argsort', 'F.argsort', (['level_dist'], {'descending': '(False)'}), '(level_dist, descending=False)\n', (2204, 2234), True, 'from megengine import functional as F\n'), ((2861, 2892), 'megengine.functional.expand_dims', 'F.expand_dims', (['pos_area'], {'axis': '(0)'}), '(pos_area, axis=0)\n', (2874, 2892), True, 'from megengine import functional as F\n'), ((4659, 4692), 'megengine.functional.expand_dims', 'F.expand_dims', (['valid_mask'], {'axis': '(0)'}), '(valid_mask, axis=0)\n', (4672, 4692), True, 'from megengine import functional as F\n'), ((6688, 6697), 'megengine.functional.ones', 'F.ones', (['n'], {}), '(n)\n', (6694, 6697), True, 'from megengine import functional as F\n'), ((8712, 8737), 'megengine.functional.expand_dims', 'F.expand_dims', (['anchors', '(1)'], {}), '(anchors, 1)\n', (8725, 8737), True, 'from megengine import functional as F\n'), ((8791, 8816), 'megengine.functional.expand_dims', 'F.expand_dims', (['gtboxes', '(0)'], {}), '(gtboxes, 0)\n', (8804, 8816), True, 'from megengine import functional as F\n'), ((9035, 9088), 'megengine.functional.maximum', 'F.maximum', (['(max_off[:, :, 2] - max_off[:, :, 0] + 1)', '(0)'], {}), '(max_off[:, :, 2] - max_off[:, :, 0] + 1, 0)\n', (9044, 9088), True, 'from megengine import functional as F\n'), ((9091, 9144), 'megengine.functional.maximum', 'F.maximum', (['(max_off[:, :, 3] - max_off[:, :, 1] + 1)', '(0)'], {}), '(max_off[:, :, 3] - max_off[:, :, 1] + 1, 0)\n', (9100, 9144), True, 'from megengine import functional as F\n'), ((9162, 9213), 'megengine.functional.maximum', 'F.maximum', (['(p_pred[:, :, 2] - p_pred[:, :, 0] + 1)', '(0)'], {}), '(p_pred[:, :, 2] - p_pred[:, :, 0] + 1, 0)\n', (9171, 9213), True, 'from megengine import functional as F\n'), ((9216, 9267), 'megengine.functional.maximum', 'F.maximum', (['(p_pred[:, :, 3] - p_pred[:, :, 1] + 1)', '(0)'], {}), '(p_pred[:, :, 3] - p_pred[:, :, 1] + 1, 0)\n', (9225, 9267), True, 'from megengine import functional as F\n'), ((9374, 9403), 'megengine.functional.expand_dims', 'F.expand_dims', (['ignore_mask', '(0)'], {}), '(ignore_mask, 0)\n', (9387, 9403), True, 'from megengine import functional as F\n'), ((10690, 10704), 'megengine.functional.ones', 'F.ones', (['a_shp0'], {}), '(a_shp0)\n', (10696, 10704), True, 'from megengine import functional as F\n'), ((3247, 3287), 'megengine.functional.expand_dims', 'F.expand_dims', (['iou_thresh_per_gt'], {'axis': '(0)'}), '(iou_thresh_per_gt, axis=0)\n', (3260, 3287), True, 'from megengine import functional as F\n'), ((8146, 8174), 'megengine.functional.expand_dims', 'F.expand_dims', (['rpn_labels', '(0)'], {}), '(rpn_labels, 0)\n', (8159, 8174), True, 'from megengine import functional as F\n'), ((8213, 8247), 'megengine.functional.expand_dims', 'F.expand_dims', (['rpn_target_boxes', '(0)'], {}), '(rpn_target_boxes, 0)\n', (8226, 8247), True, 'from megengine import functional as F\n'), ((8873, 8916), 'megengine.functional.maximum', 'F.maximum', (['p_pred[:, :, :2]', 'p_gt[:, :, :2]'], {}), '(p_pred[:, :, :2], p_gt[:, :, :2])\n', (8882, 8916), True, 'from megengine import functional as F\n'), ((8940, 8985), 'megengine.functional.minimum', 'F.minimum', (['p_pred[:, :, 2:4]', 'p_gt[:, :, 2:4]'], {}), '(p_pred[:, :, 2:4], p_gt[:, :, 2:4])\n', (8949, 8985), True, 'from megengine import functional as F\n'), ((974, 1004), 'megengine.functional.ones', 'F.ones', (['[1, gt_boxes.shape[1]]'], {}), '([1, gt_boxes.shape[1]])\n', (980, 1004), True, 'from megengine import functional as F\n'), ((1735, 1753), 'megengine.functional.pow', 'F.pow', (['distance', '(2)'], {}), '(distance, 2)\n', (1740, 1753), True, 'from megengine import functional as F\n'), ((2302, 2340), 'megengine.functional.gather', 'F.gather', (['ious', '(1)', 'sorted_index[:, :n]'], {}), '(ious, 1, sorted_index[:, :n])\n', (2310, 2340), True, 'from megengine import functional as F\n'), ((3625, 3638), 'megengine.functional.ones', 'F.ones', (['(2 * n)'], {}), '(2 * n)\n', (3631, 3638), True, 'from megengine import functional as F\n'), ((3956, 3990), 'megengine.functional.expand_dims', 'F.expand_dims', (['all_anchors'], {'axis': '(1)'}), '(all_anchors, axis=1)\n', (3969, 3990), True, 'from megengine import functional as F\n'), ((4214, 4233), 'megengine.functional.equal', 'F.equal', (['labels', '(-1)'], {}), '(labels, -1)\n', (4221, 4233), True, 'from megengine import functional as F\n'), ((5052, 5070), 'megengine.functional.pow', 'F.pow', (['distance', '(2)'], {}), '(distance, 2)\n', (5057, 5070), True, 'from megengine import functional as F\n'), ((9471, 9489), 'megengine.functional.equal', 'F.equal', (['labels', '(0)'], {}), '(labels, 0)\n', (9478, 9489), True, 'from megengine import functional as F\n'), ((4172, 4191), 'megengine.functional.equal', 'F.equal', (['labels', '(-1)'], {}), '(labels, -1)\n', (4179, 4191), True, 'from megengine import functional as F\n'), ((7884, 7906), 'megengine.functional.equal', 'F.equal', (['rpn_labels', '(0)'], {}), '(rpn_labels, 0)\n', (7891, 7906), True, 'from megengine import functional as F\n'), ((7928, 7962), 'megengine.functional.expand_dims', 'F.expand_dims', (['(ignore_label < 0)', '(1)'], {}), '(ignore_label < 0, 1)\n', (7941, 7962), True, 'from megengine import functional as F\n')]
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import os import platform import sys import pytest from megengine.core import _config as config from megengine.core import _trace_option as trace_option from megengine.core import get_option from megengine.core._imperative_rt.core2 import ( _get_amp_dtype_autocast, _get_amp_high_prec_dtype, _get_amp_low_prec_dtype, _get_convert_inputs, ) from megengine.core.tensor import amp from megengine.device import get_device_count sys.path.append(os.path.join(os.path.dirname(__file__), "helpers")) _ngpu = get_device_count("gpu") @pytest.fixture(autouse=True) def skip_by_ngpu(request): if request.node.get_closest_marker("require_ngpu"): require_ngpu = int(request.node.get_closest_marker("require_ngpu").args[0]) if require_ngpu > _ngpu: pytest.skip("skipped for ngpu unsatisfied: {}".format(require_ngpu)) @pytest.fixture(autouse=True) def skip_distributed(request): if request.node.get_closest_marker("distributed_isolated"): if platform.system() in ("Windows", "Darwin"): pytest.skip( "skipped for distributed unsupported at platform: {}".format( platform.system() ) ) @pytest.fixture(autouse=True) def run_around_tests(): env_vars1 = { "symbolic_shape": trace_option.use_symbolic_shape(), "async_level": get_option("async_level"), "enable_drop": get_option("enable_drop"), "max_recompute_time": get_option("max_recompute_time"), "catch_worker_execption": get_option("catch_worker_execption"), "enable_host_compute": get_option("enable_host_compute"), # "record_computing_path": get_option("record_computing_path"), "disable_memory_forwarding": get_option("disable_memory_forwarding"), "enable_dtr_auto_drop": get_option("enable_dtr_auto_drop"), "enable_dtr_sqrt_sampling": get_option("enable_dtr_sqrt_sampling"), "dtr_eviction_threshold": get_option("dtr_eviction_threshold"), "dtr_evictee_minimum_size": get_option("dtr_evictee_minimum_size"), "benchmark_kernel": config.benchmark_kernel, "deterministic_kernel": config.deterministic_kernel, "compute_mode": config._compute_mode, "conv_format": config._conv_format, "amp_enabled": amp.enabled, "convert_inputs": _get_convert_inputs(), "amp_dtype_autocast": _get_amp_dtype_autocast(), "amp_high_prec_dtype": _get_amp_high_prec_dtype(), "amp_low_prec_dtype": _get_amp_low_prec_dtype(), } yield env_vars2 = { "symbolic_shape": trace_option.use_symbolic_shape(), "async_level": get_option("async_level"), "enable_drop": get_option("enable_drop"), "max_recompute_time": get_option("max_recompute_time"), "catch_worker_execption": get_option("catch_worker_execption"), "enable_host_compute": get_option("enable_host_compute"), # "record_computing_path": get_option("record_computing_path"), "disable_memory_forwarding": get_option("disable_memory_forwarding"), "enable_dtr_auto_drop": get_option("enable_dtr_auto_drop"), "enable_dtr_sqrt_sampling": get_option("enable_dtr_sqrt_sampling"), "dtr_eviction_threshold": get_option("dtr_eviction_threshold"), "dtr_evictee_minimum_size": get_option("dtr_evictee_minimum_size"), "benchmark_kernel": config.benchmark_kernel, "deterministic_kernel": config.deterministic_kernel, "compute_mode": config._compute_mode, "conv_format": config._conv_format, "amp_enabled": amp.enabled, "convert_inputs": _get_convert_inputs(), "amp_dtype_autocast": _get_amp_dtype_autocast(), "amp_high_prec_dtype": _get_amp_high_prec_dtype(), "amp_low_prec_dtype": _get_amp_low_prec_dtype(), } for key in env_vars1: assert ( env_vars1[key] == env_vars2[key] ), "{} have been changed after test".format(key)
[ "megengine.core._imperative_rt.core2._get_amp_low_prec_dtype", "megengine.core._imperative_rt.core2._get_amp_high_prec_dtype", "megengine.device.get_device_count", "megengine.core._trace_option.use_symbolic_shape", "megengine.core._imperative_rt.core2._get_amp_dtype_autocast", "megengine.core.get_option", "megengine.core._imperative_rt.core2._get_convert_inputs" ]
[((873, 896), 'megengine.device.get_device_count', 'get_device_count', (['"""gpu"""'], {}), "('gpu')\n", (889, 896), False, 'from megengine.device import get_device_count\n'), ((900, 928), 'pytest.fixture', 'pytest.fixture', ([], {'autouse': '(True)'}), '(autouse=True)\n', (914, 928), False, 'import pytest\n'), ((1213, 1241), 'pytest.fixture', 'pytest.fixture', ([], {'autouse': '(True)'}), '(autouse=True)\n', (1227, 1241), False, 'import pytest\n'), ((1568, 1596), 'pytest.fixture', 'pytest.fixture', ([], {'autouse': '(True)'}), '(autouse=True)\n', (1582, 1596), False, 'import pytest\n'), ((825, 850), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (840, 850), False, 'import os\n'), ((1665, 1698), 'megengine.core._trace_option.use_symbolic_shape', 'trace_option.use_symbolic_shape', ([], {}), '()\n', (1696, 1698), True, 'from megengine.core import _trace_option as trace_option\n'), ((1723, 1748), 'megengine.core.get_option', 'get_option', (['"""async_level"""'], {}), "('async_level')\n", (1733, 1748), False, 'from megengine.core import get_option\n'), ((1773, 1798), 'megengine.core.get_option', 'get_option', (['"""enable_drop"""'], {}), "('enable_drop')\n", (1783, 1798), False, 'from megengine.core import get_option\n'), ((1830, 1862), 'megengine.core.get_option', 'get_option', (['"""max_recompute_time"""'], {}), "('max_recompute_time')\n", (1840, 1862), False, 'from megengine.core import get_option\n'), ((1898, 1934), 'megengine.core.get_option', 'get_option', (['"""catch_worker_execption"""'], {}), "('catch_worker_execption')\n", (1908, 1934), False, 'from megengine.core import get_option\n'), ((1967, 2000), 'megengine.core.get_option', 'get_option', (['"""enable_host_compute"""'], {}), "('enable_host_compute')\n", (1977, 2000), False, 'from megengine.core import get_option\n'), ((2111, 2150), 'megengine.core.get_option', 'get_option', (['"""disable_memory_forwarding"""'], {}), "('disable_memory_forwarding')\n", (2121, 2150), False, 'from megengine.core import get_option\n'), ((2184, 2218), 'megengine.core.get_option', 'get_option', (['"""enable_dtr_auto_drop"""'], {}), "('enable_dtr_auto_drop')\n", (2194, 2218), False, 'from megengine.core import get_option\n'), ((2256, 2294), 'megengine.core.get_option', 'get_option', (['"""enable_dtr_sqrt_sampling"""'], {}), "('enable_dtr_sqrt_sampling')\n", (2266, 2294), False, 'from megengine.core import get_option\n'), ((2330, 2366), 'megengine.core.get_option', 'get_option', (['"""dtr_eviction_threshold"""'], {}), "('dtr_eviction_threshold')\n", (2340, 2366), False, 'from megengine.core import get_option\n'), ((2404, 2442), 'megengine.core.get_option', 'get_option', (['"""dtr_evictee_minimum_size"""'], {}), "('dtr_evictee_minimum_size')\n", (2414, 2442), False, 'from megengine.core import get_option\n'), ((2710, 2731), 'megengine.core._imperative_rt.core2._get_convert_inputs', '_get_convert_inputs', ([], {}), '()\n', (2729, 2731), False, 'from megengine.core._imperative_rt.core2 import _get_amp_dtype_autocast, _get_amp_high_prec_dtype, _get_amp_low_prec_dtype, _get_convert_inputs\n'), ((2763, 2788), 'megengine.core._imperative_rt.core2._get_amp_dtype_autocast', '_get_amp_dtype_autocast', ([], {}), '()\n', (2786, 2788), False, 'from megengine.core._imperative_rt.core2 import _get_amp_dtype_autocast, _get_amp_high_prec_dtype, _get_amp_low_prec_dtype, _get_convert_inputs\n'), ((2821, 2847), 'megengine.core._imperative_rt.core2._get_amp_high_prec_dtype', '_get_amp_high_prec_dtype', ([], {}), '()\n', (2845, 2847), False, 'from megengine.core._imperative_rt.core2 import _get_amp_dtype_autocast, _get_amp_high_prec_dtype, _get_amp_low_prec_dtype, _get_convert_inputs\n'), ((2879, 2904), 'megengine.core._imperative_rt.core2._get_amp_low_prec_dtype', '_get_amp_low_prec_dtype', ([], {}), '()\n', (2902, 2904), False, 'from megengine.core._imperative_rt.core2 import _get_amp_dtype_autocast, _get_amp_high_prec_dtype, _get_amp_low_prec_dtype, _get_convert_inputs\n'), ((2966, 2999), 'megengine.core._trace_option.use_symbolic_shape', 'trace_option.use_symbolic_shape', ([], {}), '()\n', (2997, 2999), True, 'from megengine.core import _trace_option as trace_option\n'), ((3024, 3049), 'megengine.core.get_option', 'get_option', (['"""async_level"""'], {}), "('async_level')\n", (3034, 3049), False, 'from megengine.core import get_option\n'), ((3074, 3099), 'megengine.core.get_option', 'get_option', (['"""enable_drop"""'], {}), "('enable_drop')\n", (3084, 3099), False, 'from megengine.core import get_option\n'), ((3131, 3163), 'megengine.core.get_option', 'get_option', (['"""max_recompute_time"""'], {}), "('max_recompute_time')\n", (3141, 3163), False, 'from megengine.core import get_option\n'), ((3199, 3235), 'megengine.core.get_option', 'get_option', (['"""catch_worker_execption"""'], {}), "('catch_worker_execption')\n", (3209, 3235), False, 'from megengine.core import get_option\n'), ((3268, 3301), 'megengine.core.get_option', 'get_option', (['"""enable_host_compute"""'], {}), "('enable_host_compute')\n", (3278, 3301), False, 'from megengine.core import get_option\n'), ((3412, 3451), 'megengine.core.get_option', 'get_option', (['"""disable_memory_forwarding"""'], {}), "('disable_memory_forwarding')\n", (3422, 3451), False, 'from megengine.core import get_option\n'), ((3485, 3519), 'megengine.core.get_option', 'get_option', (['"""enable_dtr_auto_drop"""'], {}), "('enable_dtr_auto_drop')\n", (3495, 3519), False, 'from megengine.core import get_option\n'), ((3557, 3595), 'megengine.core.get_option', 'get_option', (['"""enable_dtr_sqrt_sampling"""'], {}), "('enable_dtr_sqrt_sampling')\n", (3567, 3595), False, 'from megengine.core import get_option\n'), ((3631, 3667), 'megengine.core.get_option', 'get_option', (['"""dtr_eviction_threshold"""'], {}), "('dtr_eviction_threshold')\n", (3641, 3667), False, 'from megengine.core import get_option\n'), ((3705, 3743), 'megengine.core.get_option', 'get_option', (['"""dtr_evictee_minimum_size"""'], {}), "('dtr_evictee_minimum_size')\n", (3715, 3743), False, 'from megengine.core import get_option\n'), ((4011, 4032), 'megengine.core._imperative_rt.core2._get_convert_inputs', '_get_convert_inputs', ([], {}), '()\n', (4030, 4032), False, 'from megengine.core._imperative_rt.core2 import _get_amp_dtype_autocast, _get_amp_high_prec_dtype, _get_amp_low_prec_dtype, _get_convert_inputs\n'), ((4064, 4089), 'megengine.core._imperative_rt.core2._get_amp_dtype_autocast', '_get_amp_dtype_autocast', ([], {}), '()\n', (4087, 4089), False, 'from megengine.core._imperative_rt.core2 import _get_amp_dtype_autocast, _get_amp_high_prec_dtype, _get_amp_low_prec_dtype, _get_convert_inputs\n'), ((4122, 4148), 'megengine.core._imperative_rt.core2._get_amp_high_prec_dtype', '_get_amp_high_prec_dtype', ([], {}), '()\n', (4146, 4148), False, 'from megengine.core._imperative_rt.core2 import _get_amp_dtype_autocast, _get_amp_high_prec_dtype, _get_amp_low_prec_dtype, _get_convert_inputs\n'), ((4180, 4205), 'megengine.core._imperative_rt.core2._get_amp_low_prec_dtype', '_get_amp_low_prec_dtype', ([], {}), '()\n', (4203, 4205), False, 'from megengine.core._imperative_rt.core2 import _get_amp_dtype_autocast, _get_amp_high_prec_dtype, _get_amp_low_prec_dtype, _get_convert_inputs\n'), ((1348, 1365), 'platform.system', 'platform.system', ([], {}), '()\n', (1363, 1365), False, 'import platform\n'), ((1515, 1532), 'platform.system', 'platform.system', ([], {}), '()\n', (1530, 1532), False, 'import platform\n')]
from typing import List from app.schemas.role import IRoleCreate, IRoleUpdate from app.models.role import Role from app.models.user import User from app.crud.base_sqlmodel import CRUDBase from sqlmodel.ext.asyncio.session import AsyncSession from datetime import datetime from sqlmodel import select from uuid import UUID class CRUDRole(CRUDBase[Role, IRoleCreate, IRoleUpdate]): async def get_role_by_name(self, db_session: AsyncSession, *, name: str) -> Role: role = await db_session.exec(select(Role).where(Role.name == name)) return role.first() async def add_role_to_user(self, db_session: AsyncSession, *, user: User, role_id: UUID) -> Role: role = await super().get(db_session, role_id) role.users.append(user) db_session.add(role) await db_session.commit() await db_session.refresh(role) return role role = CRUDRole(Role)
[ "sqlmodel.select" ]
[((504, 516), 'sqlmodel.select', 'select', (['Role'], {}), '(Role)\n', (510, 516), False, 'from sqlmodel import select\n')]
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import caffe # pylint: disable=import-error import megengine import megengine.hub import numpy as np import pytest from mgeconvert.caffe_converter import convert_to_caffe from .utils import ( ActiveOpr, BnOpr, BroadcastOpr, ConcatOpr, ConvOpr, ElemwiseOpr, LinearOpr, PoolOpr, ReduceOpr, ReshapeOpr, SoftmaxOpr, SqueezeOpr, SubtensorOpr, TransposeOpr, XORNet, dump_mge_model, ) max_error = 1e-6 tmp_file = "test_model" def _test_convert_result(inputs, fpath, mge_results, max_err): convert_to_caffe( fpath + ".mge", prototxt=tmp_file + ".txt", caffemodel=tmp_file + ".caffemodel" ) caffe_net = caffe.Net(tmp_file + ".txt", "test_model.caffemodel", caffe.TEST) for i in caffe_net.blobs.keys(): if "data" in i: caffe_net.blobs[i].data[...] = inputs break caffe_net.forward() caffe_dict = caffe_net.blobs caffe_results = list(caffe_dict.items())[-1][1].data assert caffe_results.shape == mge_results.shape assert np.allclose(caffe_results, mge_results, atol=max_err) @pytest.mark.parametrize("mode", ["normal", "group", "transpose"]) def test_conv2d(mode): net = ConvOpr(mode) mge_result = dump_mge_model(net, net.data, tmp_file) _test_convert_result(net.data, tmp_file, mge_result, max_error) def test_linear(): net = LinearOpr() mge_result = dump_mge_model(net, net.data, tmp_file) _test_convert_result(net.data, tmp_file, mge_result, max_error) def test_softmax(): net = SoftmaxOpr() mge_result = dump_mge_model(net, net.data, tmp_file) _test_convert_result(net.data, tmp_file, mge_result, max_error) def test_squeeze(): net = SqueezeOpr() mge_result = dump_mge_model(net, net.data, tmp_file) _test_convert_result(net.data, tmp_file, mge_result, max_error) @pytest.mark.parametrize("mode", ["max", "avg"]) def test_pooling(mode): if megengine.__version__ > "0.6.0" and mode == "avg": return net = PoolOpr(mode) mge_result = dump_mge_model(net, net.data, tmp_file) _test_convert_result(net.data, tmp_file, mge_result, max_error) @pytest.mark.parametrize("mode", ["bn1d", "bn2d"]) def test_batchnorm(mode): net = BnOpr(mode) data = net.data1 if mode == "bn1d" else net.data2 mge_result = dump_mge_model(net, data, tmp_file) _test_convert_result(data, tmp_file, mge_result, max_error) def test_subtensor(): net = SubtensorOpr() mge_result = dump_mge_model(net, net.data, tmp_file) _test_convert_result(net.data, tmp_file, mge_result, max_error) def test_transopse(): net = TransposeOpr() mge_result = dump_mge_model(net, net.data, tmp_file) _test_convert_result(net.data, tmp_file, mge_result, max_error) def test_concat(): net = ConcatOpr() mge_result = dump_mge_model(net, net.data, tmp_file) _test_convert_result(net.data, tmp_file, mge_result, max_error) def test_reshape(): net = ReshapeOpr() mge_result = dump_mge_model(net, net.data, tmp_file) _test_convert_result(net.data, tmp_file, mge_result, max_error) @pytest.mark.parametrize( "mode", ["add", "sub", "mul", "div", "abs", "exp", "log", "max", "pow"] ) def test_elemwise(mode): net = ElemwiseOpr(mode) mge_result = dump_mge_model(net, net.data, tmp_file) _test_convert_result(net.data, tmp_file, mge_result, max_error) @pytest.mark.parametrize( "mode", ["add", "sub", "mul", "div", "abs", "exp", "log", "pow"] ) def test_elemwise_broadcast(mode): net = ElemwiseOpr(mode) mge_result = dump_mge_model(net, np.array([2.0]).astype("float32"), tmp_file) _test_convert_result(np.array([2.0]), tmp_file, mge_result, max_error) @pytest.mark.parametrize("mode", ["relu", "sigmoid", "tanh", "leaky_relu"]) def test_active(mode): net = ActiveOpr(mode) mge_result = dump_mge_model(net, net.data, tmp_file) _test_convert_result(net.data, tmp_file, mge_result, max_error) @pytest.mark.parametrize("mode", ["max", "sum", "mean"]) def test_reduce(mode): net = ReduceOpr(mode) mge_result = dump_mge_model(net, net.data, tmp_file) _test_convert_result(net.data, tmp_file, mge_result, max_error) def test_broadcast(): net = BroadcastOpr() mge_result = dump_mge_model(net, net.data, tmp_file) _test_convert_result(net.data, tmp_file, mge_result, max_error) @pytest.mark.parametrize( "model", [ "shufflenet_v2_x0_5", "shufflenet_v2_x1_0", "resnet18", "resnet50", "resnet101", "resnext50_32x4d", ], ) def test_model(model): data = ( np.random.randint(0, 255, 3 * 224 * 224) .reshape((1, 3, 224, 224)) .astype(np.float32) ) if megengine.__version__ < "1.1.0": commit_id = "dc2f2cfb228a135747d083517b98aea56e7aab92" else: commit_id = None net = megengine.hub.load( "megengine/models", model, use_cache=False, commit=commit_id, pretrained=True ) mge_result = dump_mge_model(net, data, tmp_file) _test_convert_result(data, tmp_file, mge_result, 1e-2) def test_xornet(): if megengine.__version__ < "1.1.0": return net = XORNet() mge_result = dump_mge_model(net, net.data, tmp_file, True) _test_convert_result(net.data, tmp_file, mge_result, max_error) def test_leakyrelu_model(): if megengine.__version__ < "1.1.0": return net = XORNet() mge_result = dump_mge_model(net, net.data, tmp_file, False) _test_convert_result(net.data, tmp_file, mge_result, max_error)
[ "megengine.hub.load" ]
[((1489, 1554), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""mode"""', "['normal', 'group', 'transpose']"], {}), "('mode', ['normal', 'group', 'transpose'])\n", (1512, 1554), False, 'import pytest\n'), ((2238, 2285), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""mode"""', "['max', 'avg']"], {}), "('mode', ['max', 'avg'])\n", (2261, 2285), False, 'import pytest\n'), ((2535, 2584), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""mode"""', "['bn1d', 'bn2d']"], {}), "('mode', ['bn1d', 'bn2d'])\n", (2558, 2584), False, 'import pytest\n'), ((3493, 3593), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""mode"""', "['add', 'sub', 'mul', 'div', 'abs', 'exp', 'log', 'max', 'pow']"], {}), "('mode', ['add', 'sub', 'mul', 'div', 'abs', 'exp',\n 'log', 'max', 'pow'])\n", (3516, 3593), False, 'import pytest\n'), ((3777, 3870), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""mode"""', "['add', 'sub', 'mul', 'div', 'abs', 'exp', 'log', 'pow']"], {}), "('mode', ['add', 'sub', 'mul', 'div', 'abs', 'exp',\n 'log', 'pow'])\n", (3800, 3870), False, 'import pytest\n'), ((4096, 4170), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""mode"""', "['relu', 'sigmoid', 'tanh', 'leaky_relu']"], {}), "('mode', ['relu', 'sigmoid', 'tanh', 'leaky_relu'])\n", (4119, 4170), False, 'import pytest\n'), ((4348, 4403), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""mode"""', "['max', 'sum', 'mean']"], {}), "('mode', ['max', 'sum', 'mean'])\n", (4371, 4403), False, 'import pytest\n'), ((4755, 4897), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""model"""', "['shufflenet_v2_x0_5', 'shufflenet_v2_x1_0', 'resnet18', 'resnet50',\n 'resnet101', 'resnext50_32x4d']"], {}), "('model', ['shufflenet_v2_x0_5',\n 'shufflenet_v2_x1_0', 'resnet18', 'resnet50', 'resnet101',\n 'resnext50_32x4d'])\n", (4778, 4897), False, 'import pytest\n'), ((932, 1034), 'mgeconvert.caffe_converter.convert_to_caffe', 'convert_to_caffe', (["(fpath + '.mge')"], {'prototxt': "(tmp_file + '.txt')", 'caffemodel': "(tmp_file + '.caffemodel')"}), "(fpath + '.mge', prototxt=tmp_file + '.txt', caffemodel=\n tmp_file + '.caffemodel')\n", (948, 1034), False, 'from mgeconvert.caffe_converter import convert_to_caffe\n'), ((1060, 1125), 'caffe.Net', 'caffe.Net', (["(tmp_file + '.txt')", '"""test_model.caffemodel"""', 'caffe.TEST'], {}), "(tmp_file + '.txt', 'test_model.caffemodel', caffe.TEST)\n", (1069, 1125), False, 'import caffe\n'), ((1432, 1485), 'numpy.allclose', 'np.allclose', (['caffe_results', 'mge_results'], {'atol': 'max_err'}), '(caffe_results, mge_results, atol=max_err)\n', (1443, 1485), True, 'import numpy as np\n'), ((5258, 5360), 'megengine.hub.load', 'megengine.hub.load', (['"""megengine/models"""', 'model'], {'use_cache': '(False)', 'commit': 'commit_id', 'pretrained': '(True)'}), "('megengine/models', model, use_cache=False, commit=\n commit_id, pretrained=True)\n", (5276, 5360), False, 'import megengine\n'), ((4043, 4058), 'numpy.array', 'np.array', (['[2.0]'], {}), '([2.0])\n', (4051, 4058), True, 'import numpy as np\n'), ((3973, 3988), 'numpy.array', 'np.array', (['[2.0]'], {}), '([2.0])\n', (3981, 3988), True, 'import numpy as np\n'), ((5000, 5040), 'numpy.random.randint', 'np.random.randint', (['(0)', '(255)', '(3 * 224 * 224)'], {}), '(0, 255, 3 * 224 * 224)\n', (5017, 5040), True, 'import numpy as np\n')]
# coding=utf8 from __future__ import absolute_import import os from sfepy import data_dir import six filename_meshes = ['/meshes/3d/cylinder.mesh', '/meshes/3d/cylinder.vtk', '/meshes/various_formats/small2d.mesh', '/meshes/various_formats/small2d.vtk', '/meshes/various_formats/octahedron.node', '/meshes/various_formats/comsol_tri.txt', '/meshes/various_formats/abaqus_hex.inp', '/meshes/various_formats/abaqus_tet.inp', '/meshes/various_formats/abaqus_quad.inp', '/meshes/various_formats/abaqus_tri.inp', '/meshes/various_formats/abaqus_quad_tri.inp', '/meshes/various_formats/hex4.mesh3d', '/meshes/various_formats/tetra8.mesh3d', '/meshes/various_formats/cube.bdf', '/meshes/various_formats/med_2d_tri_quad.med', '/meshes/various_formats/med_3d_tet_hex.med', '/meshes/various_formats/msh_tri.msh', '/meshes/various_formats/msh_tetra.msh', '/meshes/various_formats/xyz_quad.xyz', '/meshes/various_formats/xyz_tet.xyz'] filename_meshes = [data_dir + name for name in filename_meshes] def mesh_hook(mesh, mode): """ Define a mesh programmatically. """ if mode == 'read': nodes = [[0, 0], [1, 0], [1, 1], [0, 1]] nod_ids = [0, 0, 1, 1] conns = [[[0, 1, 2], [0, 2, 3]]] mat_ids = [[0, 1]] descs = ['2_3'] mesh._set_io_data(nodes, nod_ids, conns, mat_ids, descs) elif mode == 'write': pass from sfepy.discrete.fem.meshio import UserMeshIO filename_meshes.extend([mesh_hook, UserMeshIO(mesh_hook)]) same = [(0, 1), (2, 3)] import os.path as op from sfepy.base.base import assert_ from sfepy.base.testing import TestCommon class Test(TestCommon): """Write test names explicitely to impose a given order of evaluation.""" tests = ['test_read_meshes', 'test_compare_same_meshes', 'test_read_dimension', 'test_write_read_meshes', 'test_hdf5_meshio'] @staticmethod def from_conf(conf, options): return Test(conf=conf, options=options) def test_read_meshes(self): """Try to read all listed meshes.""" from sfepy.discrete.fem import Mesh conf_dir = op.dirname(__file__) meshes = {} for ii, filename in enumerate(filename_meshes): self.report('%d. mesh: %s' % (ii + 1, filename)) mesh = Mesh.from_file(filename, prefix_dir=conf_dir) assert_(mesh.dim == (mesh.coors.shape[1])) assert_(mesh.n_nod == (mesh.coors.shape[0])) assert_(mesh.n_nod == (mesh.cmesh.vertex_groups.shape[0])) assert_(mesh.n_el == mesh.cmesh.num[mesh.cmesh.tdim]) self.report('read ok') meshes[filename] = mesh self.meshes = meshes return True def _compare_meshes(self, mesh0, mesh1): import numpy as nm oks = [] ok0 = (mesh0.dim == mesh1.dim) if not ok0: self.report('dimension failed!') oks.append(ok0) ok0 = mesh0.n_nod == mesh1.n_nod if not ok0: self.report('number of nodes failed!') oks.append(ok0) ok0 = mesh0.n_el == mesh1.n_el if not ok0: self.report('number of elements failed!') oks.append(ok0) ok0 = mesh0.descs == mesh1.descs if not ok0: self.report('element types failed!') oks.append(ok0) ok0 = nm.allclose(mesh0.coors, mesh1.coors) if not ok0: self.report('nodes failed!') oks.append(ok0) ok0 = nm.all(mesh0.cmesh.vertex_groups == mesh1.cmesh.vertex_groups) if not ok0: self.report('node groups failed!') oks.append(ok0) ok0 = nm.all(mesh0.cmesh.cell_groups == mesh1.cmesh.cell_groups) if not ok0: self.report('material ids failed!') oks.append(ok0) ok0 = (nm.all(mesh0.cmesh.get_cell_conn().indices == mesh1.cmesh.get_cell_conn().indices) and nm.all(mesh0.cmesh.get_cell_conn().offsets == mesh1.cmesh.get_cell_conn().offsets)) if not ok0: self.report('connectivities failed!') oks.append(ok0) return oks def test_compare_same_meshes(self): """ Compare same meshes in various formats. """ oks = [] for i0, i1 in same: name0 = filename_meshes[i0] name1 = filename_meshes[i1] self.report('comparing meshes from "%s" and "%s"' % (name0, name1)) mesh0 = self.meshes[name0] mesh1 = self.meshes[name1] oks = self._compare_meshes(mesh0, mesh1) return sum(oks) == len(oks) def test_read_dimension(self): from sfepy.discrete.fem import MeshIO meshes = {data_dir + '/meshes/various_formats/small2d.mesh' : 2, data_dir + '/meshes/various_formats/small2d.vtk' : 2, data_dir + '/meshes/various_formats/small3d.mesh' : 3} ok = True conf_dir = op.dirname(__file__) for filename, adim in six.iteritems(meshes): self.report('mesh: %s, dimension %d' % (filename, adim)) io = MeshIO.any_from_filename(filename, prefix_dir=conf_dir) dim = io.read_dimension() if dim != adim: self.report('read dimension %d -> failed' % dim) ok = False else: self.report('read dimension %d -> ok' % dim) return ok def test_write_read_meshes(self): """ Try to write and then read all supported formats. """ from sfepy.discrete.fem import Mesh from sfepy.discrete.fem.meshio import (supported_formats, supported_capabilities) conf_dir = op.dirname(__file__) mesh0 = Mesh.from_file(data_dir + '/meshes/various_formats/small3d.mesh', prefix_dir=conf_dir) oks = [] for suffix, format_ in six.iteritems(supported_formats): if isinstance(format_, tuple) or (format_ == 'xyz'): continue if 'w' not in supported_capabilities[format_]: continue filename = op.join(self.options.out_dir, 'test_mesh_wr' + suffix) self.report('%s format: %s' % (suffix, filename)) mesh0.write(filename, io='auto') mesh1 = Mesh.from_file(filename) oks.extend(self._compare_meshes(mesh0, mesh1)) return sum(oks) == len(oks) def test_hdf5_meshio(self): try: from igakit import igalib except ImportError: self.report('hdf5_meshio not-tested (missing igalib module)!') return True import tempfile import numpy as nm import scipy.sparse as sps from sfepy.discrete.fem.meshio import HDF5MeshIO from sfepy.base.base import Struct from sfepy.base.ioutils import Cached, Uncached, SoftLink, \ DataSoftLink from sfepy.discrete.iga.domain import IGDomain from sfepy.discrete.iga.domain_generators import gen_patch_block_domain from sfepy.solvers.ts import TimeStepper from sfepy.discrete.fem import Mesh conf_dir = op.dirname(__file__) mesh0 = Mesh.from_file(data_dir + '/meshes/various_formats/small3d.mesh', prefix_dir=conf_dir) shape = [4, 4, 4] dims = [5, 5, 5] centre = [0, 0, 0] degrees = [2, 2, 2] nurbs, bmesh, regions = gen_patch_block_domain(dims, shape, centre, degrees, cp_mode='greville', name='iga') ig_domain = IGDomain('iga', nurbs, bmesh, regions=regions) int_ar = nm.arange(4) data = { 'list': range(4), 'mesh1': mesh0, 'mesh2': mesh0, 'mesh3': Uncached(mesh0), 'mesh4': SoftLink('/step0/__cdata/data/data/mesh2'), 'mesh5': DataSoftLink('Mesh','/step0/__cdata/data/data/mesh1/data'), 'mesh6': DataSoftLink('Mesh','/step0/__cdata/data/data/mesh2/data', mesh0), 'mesh7': DataSoftLink('Mesh','/step0/__cdata/data/data/mesh1/data', True), 'iga' : ig_domain, 'cached1': Cached(1), 'cached2': Cached(int_ar), 'cached3': Cached(int_ar), 'types': ( True, False, None ), 'tuple': ('first string', 'druhý UTF8 řetězec'), 'struct': Struct( double=nm.arange(4, dtype=float), int=nm.array([2,3,4,7]), sparse=sps.csr_matrix(nm.array([1,0,0,5]). reshape((2,2))) ) } with tempfile.NamedTemporaryFile(suffix='.h5', delete=False) as fil: io = HDF5MeshIO(fil.name) ts = TimeStepper(0,1.,0.1, 10) io.write(fil.name, mesh0, { 'cdata' : Struct( mode='custom', data=data, unpack_markers=False ) }, ts=ts) ts.advance() mesh = io.read() data['problem_mesh'] = DataSoftLink('Mesh', '/mesh', mesh) io.write(fil.name, mesh0, { 'cdata' : Struct( mode='custom', data=data, unpack_markers=True ) }, ts=ts) cache = {'/mesh': mesh } fout = io.read_data(0, cache=cache) fout2 = io.read_data(1, cache=cache ) out = fout['cdata'] out2 = fout2['cdata'] assert_(out['mesh7'] is out2['mesh7'], 'These two meshes should be in fact the same object') assert_(out['mesh6'] is out2['mesh6'], 'These two meshes should be in fact the same object') assert_(out['mesh5'] is not out2['mesh5'], 'These two meshes shouldn''t be in fact the same object') assert_(out['mesh1'] is out['mesh2'], 'These two meshes should be in fact the same object') assert_(out['mesh1'] is out['mesh2'], 'These two meshes should be in fact the same object') assert_(out['mesh4'] is out['mesh2'], 'These two meshes should be in fact the same object') assert_(out['mesh5'] is not out['mesh2'], 'These two meshes shouldn''t be in fact the same object') assert_(out['mesh6'] is out['mesh2'], 'These two meshes should be in fact the same object') assert_(out['mesh7'] is not out['mesh2'], 'These two meshes shouldn''t be in fact the same object') assert_(out['mesh3'] is not out['mesh2'], 'These two meshes should be different objects') assert_(out['cached2'] is out['cached3'], 'These two array should be the same object') assert_(out2['problem_mesh'] is mesh, 'These two meshes should be the same objects') assert_(self._compare_meshes(out['mesh1'], mesh0), 'Failed to restore mesh') assert_(self._compare_meshes(out['mesh3'], mesh0), 'Failed to restore mesh') assert_((out['struct'].sparse == data['struct'].sparse).todense() .all(), 'Sparse matrix restore failed') ts.advance() io.write(fil.name, mesh0, { 'cdata' : Struct( mode='custom', data=[ DataSoftLink('Mesh', '/step0/__cdata/data/data/mesh1/data', mesh0), mesh0 ] ) }, ts=ts) out3 = io.read_data(2)['cdata'] assert_(out3[0] is out3[1]) os.remove(fil.name) #this property is not restored del data['iga'].nurbs.nurbs #not supporting comparison del data['iga']._bnf del out2['iga']._bnf #restoration of this property fails del data['iga'].vertex_set_bcs del out2['iga'].vertex_set_bcs #these soflink has no information how to unpack, so it must be #done manually data['mesh4'] = mesh0 data['mesh5'] = mesh0 data['mesh7'] = mesh0 for key, val in six.iteritems(out2): self.report('comparing:', key) self.assert_equal(val, data[key]) return True
[ "sfepy.discrete.fem.meshio.HDF5MeshIO", "sfepy.base.ioutils.Uncached", "sfepy.solvers.ts.TimeStepper", "sfepy.base.ioutils.Cached", "sfepy.discrete.fem.Mesh.from_file", "sfepy.discrete.iga.domain_generators.gen_patch_block_domain", "sfepy.base.base.Struct", "sfepy.base.base.assert_", "sfepy.base.ioutils.SoftLink", "sfepy.discrete.fem.MeshIO.any_from_filename", "sfepy.discrete.iga.domain.IGDomain", "sfepy.discrete.fem.meshio.UserMeshIO", "sfepy.base.ioutils.DataSoftLink" ]
[((1816, 1837), 'sfepy.discrete.fem.meshio.UserMeshIO', 'UserMeshIO', (['mesh_hook'], {}), '(mesh_hook)\n', (1826, 1837), False, 'from sfepy.discrete.fem.meshio import UserMeshIO\n'), ((2467, 2487), 'os.path.dirname', 'op.dirname', (['__file__'], {}), '(__file__)\n', (2477, 2487), True, 'import os.path as op\n'), ((3708, 3745), 'numpy.allclose', 'nm.allclose', (['mesh0.coors', 'mesh1.coors'], {}), '(mesh0.coors, mesh1.coors)\n', (3719, 3745), True, 'import numpy as nm\n'), ((3846, 3908), 'numpy.all', 'nm.all', (['(mesh0.cmesh.vertex_groups == mesh1.cmesh.vertex_groups)'], {}), '(mesh0.cmesh.vertex_groups == mesh1.cmesh.vertex_groups)\n', (3852, 3908), True, 'import numpy as nm\n'), ((4015, 4073), 'numpy.all', 'nm.all', (['(mesh0.cmesh.cell_groups == mesh1.cmesh.cell_groups)'], {}), '(mesh0.cmesh.cell_groups == mesh1.cmesh.cell_groups)\n', (4021, 4073), True, 'import numpy as nm\n'), ((5352, 5372), 'os.path.dirname', 'op.dirname', (['__file__'], {}), '(__file__)\n', (5362, 5372), True, 'import os.path as op\n'), ((5403, 5424), 'six.iteritems', 'six.iteritems', (['meshes'], {}), '(meshes)\n', (5416, 5424), False, 'import six\n'), ((6146, 6166), 'os.path.dirname', 'op.dirname', (['__file__'], {}), '(__file__)\n', (6156, 6166), True, 'import os.path as op\n'), ((6183, 6273), 'sfepy.discrete.fem.Mesh.from_file', 'Mesh.from_file', (["(data_dir + '/meshes/various_formats/small3d.mesh')"], {'prefix_dir': 'conf_dir'}), "(data_dir + '/meshes/various_formats/small3d.mesh',\n prefix_dir=conf_dir)\n", (6197, 6273), False, 'from sfepy.discrete.fem import Mesh\n'), ((6381, 6413), 'six.iteritems', 'six.iteritems', (['supported_formats'], {}), '(supported_formats)\n', (6394, 6413), False, 'import six\n'), ((7669, 7689), 'os.path.dirname', 'op.dirname', (['__file__'], {}), '(__file__)\n', (7679, 7689), True, 'import os.path as op\n'), ((7706, 7796), 'sfepy.discrete.fem.Mesh.from_file', 'Mesh.from_file', (["(data_dir + '/meshes/various_formats/small3d.mesh')"], {'prefix_dir': 'conf_dir'}), "(data_dir + '/meshes/various_formats/small3d.mesh',\n prefix_dir=conf_dir)\n", (7720, 7796), False, 'from sfepy.discrete.fem import Mesh\n'), ((7995, 8083), 'sfepy.discrete.iga.domain_generators.gen_patch_block_domain', 'gen_patch_block_domain', (['dims', 'shape', 'centre', 'degrees'], {'cp_mode': '"""greville"""', 'name': '"""iga"""'}), "(dims, shape, centre, degrees, cp_mode='greville',\n name='iga')\n", (8017, 8083), False, 'from sfepy.discrete.iga.domain_generators import gen_patch_block_domain\n'), ((8265, 8311), 'sfepy.discrete.iga.domain.IGDomain', 'IGDomain', (['"""iga"""', 'nurbs', 'bmesh'], {'regions': 'regions'}), "('iga', nurbs, bmesh, regions=regions)\n", (8273, 8311), False, 'from sfepy.discrete.iga.domain import IGDomain\n'), ((8330, 8342), 'numpy.arange', 'nm.arange', (['(4)'], {}), '(4)\n', (8339, 8342), True, 'import numpy as nm\n'), ((12640, 12659), 'os.remove', 'os.remove', (['fil.name'], {}), '(fil.name)\n', (12649, 12659), False, 'import os\n'), ((13163, 13182), 'six.iteritems', 'six.iteritems', (['out2'], {}), '(out2)\n', (13176, 13182), False, 'import six\n'), ((2644, 2689), 'sfepy.discrete.fem.Mesh.from_file', 'Mesh.from_file', (['filename'], {'prefix_dir': 'conf_dir'}), '(filename, prefix_dir=conf_dir)\n', (2658, 2689), False, 'from sfepy.discrete.fem import Mesh\n'), ((2703, 2743), 'sfepy.base.base.assert_', 'assert_', (['(mesh.dim == mesh.coors.shape[1])'], {}), '(mesh.dim == mesh.coors.shape[1])\n', (2710, 2743), False, 'from sfepy.base.base import assert_\n'), ((2758, 2800), 'sfepy.base.base.assert_', 'assert_', (['(mesh.n_nod == mesh.coors.shape[0])'], {}), '(mesh.n_nod == mesh.coors.shape[0])\n', (2765, 2800), False, 'from sfepy.base.base import assert_\n'), ((2815, 2871), 'sfepy.base.base.assert_', 'assert_', (['(mesh.n_nod == mesh.cmesh.vertex_groups.shape[0])'], {}), '(mesh.n_nod == mesh.cmesh.vertex_groups.shape[0])\n', (2822, 2871), False, 'from sfepy.base.base import assert_\n'), ((2886, 2939), 'sfepy.base.base.assert_', 'assert_', (['(mesh.n_el == mesh.cmesh.num[mesh.cmesh.tdim])'], {}), '(mesh.n_el == mesh.cmesh.num[mesh.cmesh.tdim])\n', (2893, 2939), False, 'from sfepy.base.base import assert_\n'), ((5512, 5567), 'sfepy.discrete.fem.MeshIO.any_from_filename', 'MeshIO.any_from_filename', (['filename'], {'prefix_dir': 'conf_dir'}), '(filename, prefix_dir=conf_dir)\n', (5536, 5567), False, 'from sfepy.discrete.fem import MeshIO\n'), ((6597, 6651), 'os.path.join', 'op.join', (['self.options.out_dir', "('test_mesh_wr' + suffix)"], {}), "(self.options.out_dir, 'test_mesh_wr' + suffix)\n", (6604, 6651), True, 'import os.path as op\n'), ((6780, 6804), 'sfepy.discrete.fem.Mesh.from_file', 'Mesh.from_file', (['filename'], {}), '(filename)\n', (6794, 6804), False, 'from sfepy.discrete.fem import Mesh\n'), ((8468, 8483), 'sfepy.base.ioutils.Uncached', 'Uncached', (['mesh0'], {}), '(mesh0)\n', (8476, 8483), False, 'from sfepy.base.ioutils import Cached, Uncached, SoftLink, DataSoftLink\n'), ((8506, 8548), 'sfepy.base.ioutils.SoftLink', 'SoftLink', (['"""/step0/__cdata/data/data/mesh2"""'], {}), "('/step0/__cdata/data/data/mesh2')\n", (8514, 8548), False, 'from sfepy.base.ioutils import Cached, Uncached, SoftLink, DataSoftLink\n'), ((8571, 8630), 'sfepy.base.ioutils.DataSoftLink', 'DataSoftLink', (['"""Mesh"""', '"""/step0/__cdata/data/data/mesh1/data"""'], {}), "('Mesh', '/step0/__cdata/data/data/mesh1/data')\n", (8583, 8630), False, 'from sfepy.base.ioutils import Cached, Uncached, SoftLink, DataSoftLink\n'), ((8652, 8718), 'sfepy.base.ioutils.DataSoftLink', 'DataSoftLink', (['"""Mesh"""', '"""/step0/__cdata/data/data/mesh2/data"""', 'mesh0'], {}), "('Mesh', '/step0/__cdata/data/data/mesh2/data', mesh0)\n", (8664, 8718), False, 'from sfepy.base.ioutils import Cached, Uncached, SoftLink, DataSoftLink\n'), ((8756, 8821), 'sfepy.base.ioutils.DataSoftLink', 'DataSoftLink', (['"""Mesh"""', '"""/step0/__cdata/data/data/mesh1/data"""', '(True)'], {}), "('Mesh', '/step0/__cdata/data/data/mesh1/data', True)\n", (8768, 8821), False, 'from sfepy.base.ioutils import Cached, Uncached, SoftLink, DataSoftLink\n'), ((8892, 8901), 'sfepy.base.ioutils.Cached', 'Cached', (['(1)'], {}), '(1)\n', (8898, 8901), False, 'from sfepy.base.ioutils import Cached, Uncached, SoftLink, DataSoftLink\n'), ((8926, 8940), 'sfepy.base.ioutils.Cached', 'Cached', (['int_ar'], {}), '(int_ar)\n', (8932, 8940), False, 'from sfepy.base.ioutils import Cached, Uncached, SoftLink, DataSoftLink\n'), ((8965, 8979), 'sfepy.base.ioutils.Cached', 'Cached', (['int_ar'], {}), '(int_ar)\n', (8971, 8979), False, 'from sfepy.base.ioutils import Cached, Uncached, SoftLink, DataSoftLink\n'), ((9359, 9414), 'tempfile.NamedTemporaryFile', 'tempfile.NamedTemporaryFile', ([], {'suffix': '""".h5"""', 'delete': '(False)'}), "(suffix='.h5', delete=False)\n", (9386, 9414), False, 'import tempfile\n'), ((9440, 9460), 'sfepy.discrete.fem.meshio.HDF5MeshIO', 'HDF5MeshIO', (['fil.name'], {}), '(fil.name)\n', (9450, 9460), False, 'from sfepy.discrete.fem.meshio import HDF5MeshIO\n'), ((9478, 9506), 'sfepy.solvers.ts.TimeStepper', 'TimeStepper', (['(0)', '(1.0)', '(0.1)', '(10)'], {}), '(0, 1.0, 0.1, 10)\n', (9489, 9506), False, 'from sfepy.solvers.ts import TimeStepper\n'), ((9816, 9851), 'sfepy.base.ioutils.DataSoftLink', 'DataSoftLink', (['"""Mesh"""', '"""/mesh"""', 'mesh'], {}), "('Mesh', '/mesh', mesh)\n", (9828, 9851), False, 'from sfepy.base.ioutils import Cached, Uncached, SoftLink, DataSoftLink\n'), ((10288, 10384), 'sfepy.base.base.assert_', 'assert_', (["(out['mesh7'] is out2['mesh7'])", '"""These two meshes should be in fact the same object"""'], {}), "(out['mesh7'] is out2['mesh7'],\n 'These two meshes should be in fact the same object')\n", (10295, 10384), False, 'from sfepy.base.base import assert_\n'), ((10410, 10506), 'sfepy.base.base.assert_', 'assert_', (["(out['mesh6'] is out2['mesh6'])", '"""These two meshes should be in fact the same object"""'], {}), "(out['mesh6'] is out2['mesh6'],\n 'These two meshes should be in fact the same object')\n", (10417, 10506), False, 'from sfepy.base.base import assert_\n'), ((10532, 10634), 'sfepy.base.base.assert_', 'assert_', (["(out['mesh5'] is not out2['mesh5'])", '"""These two meshes shouldnt be in fact the same object"""'], {}), "(out['mesh5'] is not out2['mesh5'],\n 'These two meshes shouldnt be in fact the same object')\n", (10539, 10634), False, 'from sfepy.base.base import assert_\n'), ((10662, 10757), 'sfepy.base.base.assert_', 'assert_', (["(out['mesh1'] is out['mesh2'])", '"""These two meshes should be in fact the same object"""'], {}), "(out['mesh1'] is out['mesh2'],\n 'These two meshes should be in fact the same object')\n", (10669, 10757), False, 'from sfepy.base.base import assert_\n'), ((10783, 10878), 'sfepy.base.base.assert_', 'assert_', (["(out['mesh1'] is out['mesh2'])", '"""These two meshes should be in fact the same object"""'], {}), "(out['mesh1'] is out['mesh2'],\n 'These two meshes should be in fact the same object')\n", (10790, 10878), False, 'from sfepy.base.base import assert_\n'), ((10904, 10999), 'sfepy.base.base.assert_', 'assert_', (["(out['mesh4'] is out['mesh2'])", '"""These two meshes should be in fact the same object"""'], {}), "(out['mesh4'] is out['mesh2'],\n 'These two meshes should be in fact the same object')\n", (10911, 10999), False, 'from sfepy.base.base import assert_\n'), ((11025, 11126), 'sfepy.base.base.assert_', 'assert_', (["(out['mesh5'] is not out['mesh2'])", '"""These two meshes shouldnt be in fact the same object"""'], {}), "(out['mesh5'] is not out['mesh2'],\n 'These two meshes shouldnt be in fact the same object')\n", (11032, 11126), False, 'from sfepy.base.base import assert_\n'), ((11154, 11249), 'sfepy.base.base.assert_', 'assert_', (["(out['mesh6'] is out['mesh2'])", '"""These two meshes should be in fact the same object"""'], {}), "(out['mesh6'] is out['mesh2'],\n 'These two meshes should be in fact the same object')\n", (11161, 11249), False, 'from sfepy.base.base import assert_\n'), ((11275, 11376), 'sfepy.base.base.assert_', 'assert_', (["(out['mesh7'] is not out['mesh2'])", '"""These two meshes shouldnt be in fact the same object"""'], {}), "(out['mesh7'] is not out['mesh2'],\n 'These two meshes shouldnt be in fact the same object')\n", (11282, 11376), False, 'from sfepy.base.base import assert_\n'), ((11404, 11497), 'sfepy.base.base.assert_', 'assert_', (["(out['mesh3'] is not out['mesh2'])", '"""These two meshes should be different objects"""'], {}), "(out['mesh3'] is not out['mesh2'],\n 'These two meshes should be different objects')\n", (11411, 11497), False, 'from sfepy.base.base import assert_\n'), ((11523, 11613), 'sfepy.base.base.assert_', 'assert_', (["(out['cached2'] is out['cached3'])", '"""These two array should be the same object"""'], {}), "(out['cached2'] is out['cached3'],\n 'These two array should be the same object')\n", (11530, 11613), False, 'from sfepy.base.base import assert_\n'), ((11639, 11727), 'sfepy.base.base.assert_', 'assert_', (["(out2['problem_mesh'] is mesh)", '"""These two meshes should be the same objects"""'], {}), "(out2['problem_mesh'] is mesh,\n 'These two meshes should be the same objects')\n", (11646, 11727), False, 'from sfepy.base.base import assert_\n'), ((12603, 12630), 'sfepy.base.base.assert_', 'assert_', (['(out3[0] is out3[1])'], {}), '(out3[0] is out3[1])\n', (12610, 12630), False, 'from sfepy.base.base import assert_\n'), ((9139, 9164), 'numpy.arange', 'nm.arange', (['(4)'], {'dtype': 'float'}), '(4, dtype=float)\n', (9148, 9164), True, 'import numpy as nm\n'), ((9186, 9208), 'numpy.array', 'nm.array', (['[2, 3, 4, 7]'], {}), '([2, 3, 4, 7])\n', (9194, 9208), True, 'import numpy as nm\n'), ((9571, 9625), 'sfepy.base.base.Struct', 'Struct', ([], {'mode': '"""custom"""', 'data': 'data', 'unpack_markers': '(False)'}), "(mode='custom', data=data, unpack_markers=False)\n", (9577, 9625), False, 'from sfepy.base.base import Struct\n'), ((9919, 9972), 'sfepy.base.base.Struct', 'Struct', ([], {'mode': '"""custom"""', 'data': 'data', 'unpack_markers': '(True)'}), "(mode='custom', data=data, unpack_markers=True)\n", (9925, 9972), False, 'from sfepy.base.base import Struct\n'), ((9245, 9267), 'numpy.array', 'nm.array', (['[1, 0, 0, 5]'], {}), '([1, 0, 0, 5])\n', (9253, 9267), True, 'import numpy as nm\n'), ((12293, 12359), 'sfepy.base.ioutils.DataSoftLink', 'DataSoftLink', (['"""Mesh"""', '"""/step0/__cdata/data/data/mesh1/data"""', 'mesh0'], {}), "('Mesh', '/step0/__cdata/data/data/mesh1/data', mesh0)\n", (12305, 12359), False, 'from sfepy.base.ioutils import Cached, Uncached, SoftLink, DataSoftLink\n')]
"""Instancia da tabela User e seus metodos""" from typing import Optional, List, TYPE_CHECKING from datetime import datetime from sqlalchemy import UniqueConstraint from sqlmodel import SQLModel, Field, Relationship if TYPE_CHECKING: from .tokens import Token class User(SQLModel, table=True): """Tabela de usuarios""" __table_args__ = (UniqueConstraint("email", "username"),) id: Optional[int] = Field(primary_key=True, default=None, nullable=False) name: str email: str username: str password_hash: str secundary_id: int = 0 is_staff: bool is_active_user: bool last_login: datetime date_joined: datetime token: List["Token"] = Relationship(back_populates="user") def __repr__(self): return f"<User {self.name}>"
[ "sqlmodel.Relationship", "sqlmodel.Field" ]
[((418, 471), 'sqlmodel.Field', 'Field', ([], {'primary_key': '(True)', 'default': 'None', 'nullable': '(False)'}), '(primary_key=True, default=None, nullable=False)\n', (423, 471), False, 'from sqlmodel import SQLModel, Field, Relationship\n'), ((692, 727), 'sqlmodel.Relationship', 'Relationship', ([], {'back_populates': '"""user"""'}), "(back_populates='user')\n", (704, 727), False, 'from sqlmodel import SQLModel, Field, Relationship\n'), ((353, 390), 'sqlalchemy.UniqueConstraint', 'UniqueConstraint', (['"""email"""', '"""username"""'], {}), "('email', 'username')\n", (369, 390), False, 'from sqlalchemy import UniqueConstraint\n')]
#!/usr/bin/env python3 import asyncio import datetime import json import os import time from argparse import ArgumentParser from collections.abc import Sequence import httpx import uvloop from dotenv import load_dotenv from loguru import logger from sqlmodel import Session, create_engine from steam2sqlite import APPIDS_URL, BATCH_SIZE, navigator, utils from steam2sqlite.handler import ( get_appids_from_db, get_apps_achievements, get_apps_data, get_error_appids, store_apps_achievements, store_apps_data, ) load_dotenv() APPIDS_FILE = os.getenv("APPIDS_FILE") sqlite_file_name = "database.db" SQLITE_URL = f"sqlite:///{sqlite_file_name}" async def get_appids_from_steam(local_file: str = None) -> dict[int, str]: if local_file: logger.info(f"Loading appids from local file: {local_file}") with open(local_file) as steam_appids_fp: appid_data = json.load(steam_appids_fp) else: logger.info("Loading appids from Steam API") try: async with httpx.AsyncClient() as client: resp = await navigator.get(client, APPIDS_URL) appid_data = resp.json() await asyncio.sleep(1) except navigator.NavigatorError: logger.error("Error getting the appids from Steam") raise return {item["appid"]: item["name"] for item in appid_data["applist"]["apps"]} def main(argv: Sequence[str] | None = None) -> int: parser = ArgumentParser() parser.add_argument( "-l", "--limit", type=float, default=None, nargs="?", const=1, help="limit runtime (minutes)", ) args = parser.parse_args(argv) logger.info("Starting...") start_time = time.monotonic() uvloop.install() engine = create_engine(SQLITE_URL, echo=False) # From steam api, dict of: {appids: names} steam_appids_names = asyncio.run(get_appids_from_steam(APPIDS_FILE)) with Session(engine) as session: # query db for all appids we already have, sort by last_modified db_appids_updated = get_appids_from_db(session) # identify any missing appids -- these go on the top of our stack to process missing_appids = set(steam_appids_names.keys()) - { appid for appid, _ in db_appids_updated } # remove any appids that have been modified recently db_appids = [ appid for appid, updated in db_appids_updated if ((datetime.datetime.utcnow().date() - updated.date()).days > 3) ] appids_missing_and_older = list(missing_appids) + db_appids # remove any appids that have been flagged as errors from previous runs error_appids = get_error_appids(session) appids_to_process = [ appid for appid in appids_missing_and_older if appid not in set(error_appids) ] logger.info("Loading app data from Steam API and saving to db") for appids in utils.grouper(appids_to_process, BATCH_SIZE, fillvalue=None): apps_data = get_apps_data(session, steam_appids_names, appids) apps = store_apps_data(session, steam_appids_names, apps_data) apps_with_achievements = [app for app in apps if app.achievements_total > 0] if apps_with_achievements: apps_achievements_data = utils.delay_by(len(apps_with_achievements))( get_apps_achievements )(apps_with_achievements) store_apps_achievements(session, apps_achievements_data) if args.limit and (time.monotonic() - start_time) / 60 > args.limit: logger.info(f"Limit ({args.limit} min) reached shutting down...") break return 0 if __name__ == "__main__": exit(main())
[ "sqlmodel.create_engine", "sqlmodel.Session" ]
[((538, 551), 'dotenv.load_dotenv', 'load_dotenv', ([], {}), '()\n', (549, 551), False, 'from dotenv import load_dotenv\n'), ((567, 591), 'os.getenv', 'os.getenv', (['"""APPIDS_FILE"""'], {}), "('APPIDS_FILE')\n", (576, 591), False, 'import os\n'), ((1478, 1494), 'argparse.ArgumentParser', 'ArgumentParser', ([], {}), '()\n', (1492, 1494), False, 'from argparse import ArgumentParser\n'), ((1717, 1743), 'loguru.logger.info', 'logger.info', (['"""Starting..."""'], {}), "('Starting...')\n", (1728, 1743), False, 'from loguru import logger\n'), ((1762, 1778), 'time.monotonic', 'time.monotonic', ([], {}), '()\n', (1776, 1778), False, 'import time\n'), ((1784, 1800), 'uvloop.install', 'uvloop.install', ([], {}), '()\n', (1798, 1800), False, 'import uvloop\n'), ((1815, 1852), 'sqlmodel.create_engine', 'create_engine', (['SQLITE_URL'], {'echo': '(False)'}), '(SQLITE_URL, echo=False)\n', (1828, 1852), False, 'from sqlmodel import Session, create_engine\n'), ((775, 835), 'loguru.logger.info', 'logger.info', (['f"""Loading appids from local file: {local_file}"""'], {}), "(f'Loading appids from local file: {local_file}')\n", (786, 835), False, 'from loguru import logger\n'), ((956, 1000), 'loguru.logger.info', 'logger.info', (['"""Loading appids from Steam API"""'], {}), "('Loading appids from Steam API')\n", (967, 1000), False, 'from loguru import logger\n'), ((1984, 1999), 'sqlmodel.Session', 'Session', (['engine'], {}), '(engine)\n', (1991, 1999), False, 'from sqlmodel import Session, create_engine\n'), ((2114, 2141), 'steam2sqlite.handler.get_appids_from_db', 'get_appids_from_db', (['session'], {}), '(session)\n', (2132, 2141), False, 'from steam2sqlite.handler import get_appids_from_db, get_apps_achievements, get_apps_data, get_error_appids, store_apps_achievements, store_apps_data\n'), ((2766, 2791), 'steam2sqlite.handler.get_error_appids', 'get_error_appids', (['session'], {}), '(session)\n', (2782, 2791), False, 'from steam2sqlite.handler import get_appids_from_db, get_apps_achievements, get_apps_data, get_error_appids, store_apps_achievements, store_apps_data\n'), ((2955, 3018), 'loguru.logger.info', 'logger.info', (['"""Loading app data from Steam API and saving to db"""'], {}), "('Loading app data from Steam API and saving to db')\n", (2966, 3018), False, 'from loguru import logger\n'), ((3042, 3102), 'steam2sqlite.utils.grouper', 'utils.grouper', (['appids_to_process', 'BATCH_SIZE'], {'fillvalue': 'None'}), '(appids_to_process, BATCH_SIZE, fillvalue=None)\n', (3055, 3102), False, 'from steam2sqlite import APPIDS_URL, BATCH_SIZE, navigator, utils\n'), ((911, 937), 'json.load', 'json.load', (['steam_appids_fp'], {}), '(steam_appids_fp)\n', (920, 937), False, 'import json\n'), ((3129, 3179), 'steam2sqlite.handler.get_apps_data', 'get_apps_data', (['session', 'steam_appids_names', 'appids'], {}), '(session, steam_appids_names, appids)\n', (3142, 3179), False, 'from steam2sqlite.handler import get_appids_from_db, get_apps_achievements, get_apps_data, get_error_appids, store_apps_achievements, store_apps_data\n'), ((3199, 3254), 'steam2sqlite.handler.store_apps_data', 'store_apps_data', (['session', 'steam_appids_names', 'apps_data'], {}), '(session, steam_appids_names, apps_data)\n', (3214, 3254), False, 'from steam2sqlite.handler import get_appids_from_db, get_apps_achievements, get_apps_data, get_error_appids, store_apps_achievements, store_apps_data\n'), ((1037, 1056), 'httpx.AsyncClient', 'httpx.AsyncClient', ([], {}), '()\n', (1054, 1056), False, 'import httpx\n'), ((1186, 1202), 'asyncio.sleep', 'asyncio.sleep', (['(1)'], {}), '(1)\n', (1199, 1202), False, 'import asyncio\n'), ((1256, 1307), 'loguru.logger.error', 'logger.error', (['"""Error getting the appids from Steam"""'], {}), "('Error getting the appids from Steam')\n", (1268, 1307), False, 'from loguru import logger\n'), ((3570, 3626), 'steam2sqlite.handler.store_apps_achievements', 'store_apps_achievements', (['session', 'apps_achievements_data'], {}), '(session, apps_achievements_data)\n', (3593, 3626), False, 'from steam2sqlite.handler import get_appids_from_db, get_apps_achievements, get_apps_data, get_error_appids, store_apps_achievements, store_apps_data\n'), ((3725, 3790), 'loguru.logger.info', 'logger.info', (['f"""Limit ({args.limit} min) reached shutting down..."""'], {}), "(f'Limit ({args.limit} min) reached shutting down...')\n", (3736, 3790), False, 'from loguru import logger\n'), ((1097, 1130), 'steam2sqlite.navigator.get', 'navigator.get', (['client', 'APPIDS_URL'], {}), '(client, APPIDS_URL)\n', (1110, 1130), False, 'from steam2sqlite import APPIDS_URL, BATCH_SIZE, navigator, utils\n'), ((3659, 3675), 'time.monotonic', 'time.monotonic', ([], {}), '()\n', (3673, 3675), False, 'import time\n'), ((2521, 2547), 'datetime.datetime.utcnow', 'datetime.datetime.utcnow', ([], {}), '()\n', (2545, 2547), False, 'import datetime\n')]
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import numpy as np import megengine as mge import megengine.functional as F import megengine.jit as jit import megengine.module as M import megengine.random as R def test_random_static_diff_result(): @jit.trace(symbolic=True) def graph_a(): return R.uniform(5) + R.gaussian(5) @jit.trace(symbolic=True) def graph_b(): return R.uniform(5) + R.gaussian(5) a = graph_a() b = graph_b() assert np.any(a.numpy() != b.numpy()) def test_random_static_same_result(): @jit.trace(symbolic=True) def graph_a(): R.manual_seed(731) return R.uniform(5) + R.gaussian(5) @jit.trace(symbolic=True) def graph_b(): R.manual_seed(731) return R.uniform(5) + R.gaussian(5) a = graph_a() b = graph_b() assert np.all(a.numpy() == b.numpy()) def test_random_dynamic_diff_result(): a = R.uniform(5) + R.gaussian(5) b = R.uniform(5) + R.gaussian(5) assert np.any(a.numpy() != b.numpy()) def test_random_dynamic_same_result(): R.manual_seed(0) a = R.uniform(5) + R.gaussian(5) R.manual_seed(0) b = R.uniform(5) + R.gaussian(5) assert np.all(a.numpy() == b.numpy()) def test_dropout_dynamic_diff_result(): x = mge.ones(10) a = F.dropout(x, 0.5) b = F.dropout(x, 0.5) assert np.any(a.numpy() != b.numpy()) def test_dropout_dynamic_same_result(): x = mge.ones(10) R.manual_seed(0) a = F.dropout(x, 0.5) R.manual_seed(0) b = F.dropout(x, 0.5) assert np.all(a.numpy() == b.numpy()) def test_M_dropout_static_diff_result(): m = M.Dropout(0.5) @jit.trace(symbolic=True) def graph_a(x): return m(x) @jit.trace(symbolic=True) def graph_b(x): return m(x) x = np.ones(10, dtype="float32") a = graph_a(x) a = a.numpy().copy() b = graph_b(x) c = graph_a(x) assert np.any(a != b.numpy()) assert np.any(a != c.numpy()) def test_M_dropout_static_same_result(): m = M.Dropout(0.5) @jit.trace(symbolic=True) def graph_a(x): return m(x) @jit.trace(symbolic=True) def graph_b(x): return m(x) x = np.ones(10, dtype="float32") R.manual_seed(0) a = graph_a(x) a = a.numpy().copy() R.manual_seed(0) b = graph_b(x) R.manual_seed(0) # useless c = graph_a(x) assert np.all(a == b.numpy()) assert np.any(a != c.numpy())
[ "megengine.module.Dropout", "megengine.jit.trace", "megengine.functional.dropout", "megengine.random.uniform", "megengine.ones", "megengine.random.gaussian", "megengine.random.manual_seed" ]
[((585, 609), 'megengine.jit.trace', 'jit.trace', ([], {'symbolic': '(True)'}), '(symbolic=True)\n', (594, 609), True, 'import megengine.jit as jit\n'), ((679, 703), 'megengine.jit.trace', 'jit.trace', ([], {'symbolic': '(True)'}), '(symbolic=True)\n', (688, 703), True, 'import megengine.jit as jit\n'), ((891, 915), 'megengine.jit.trace', 'jit.trace', ([], {'symbolic': '(True)'}), '(symbolic=True)\n', (900, 915), True, 'import megengine.jit as jit\n'), ((1012, 1036), 'megengine.jit.trace', 'jit.trace', ([], {'symbolic': '(True)'}), '(symbolic=True)\n', (1021, 1036), True, 'import megengine.jit as jit\n'), ((1408, 1424), 'megengine.random.manual_seed', 'R.manual_seed', (['(0)'], {}), '(0)\n', (1421, 1424), True, 'import megengine.random as R\n'), ((1466, 1482), 'megengine.random.manual_seed', 'R.manual_seed', (['(0)'], {}), '(0)\n', (1479, 1482), True, 'import megengine.random as R\n'), ((1612, 1624), 'megengine.ones', 'mge.ones', (['(10)'], {}), '(10)\n', (1620, 1624), True, 'import megengine as mge\n'), ((1633, 1650), 'megengine.functional.dropout', 'F.dropout', (['x', '(0.5)'], {}), '(x, 0.5)\n', (1642, 1650), True, 'import megengine.functional as F\n'), ((1659, 1676), 'megengine.functional.dropout', 'F.dropout', (['x', '(0.5)'], {}), '(x, 0.5)\n', (1668, 1676), True, 'import megengine.functional as F\n'), ((1769, 1781), 'megengine.ones', 'mge.ones', (['(10)'], {}), '(10)\n', (1777, 1781), True, 'import megengine as mge\n'), ((1786, 1802), 'megengine.random.manual_seed', 'R.manual_seed', (['(0)'], {}), '(0)\n', (1799, 1802), True, 'import megengine.random as R\n'), ((1811, 1828), 'megengine.functional.dropout', 'F.dropout', (['x', '(0.5)'], {}), '(x, 0.5)\n', (1820, 1828), True, 'import megengine.functional as F\n'), ((1833, 1849), 'megengine.random.manual_seed', 'R.manual_seed', (['(0)'], {}), '(0)\n', (1846, 1849), True, 'import megengine.random as R\n'), ((1858, 1875), 'megengine.functional.dropout', 'F.dropout', (['x', '(0.5)'], {}), '(x, 0.5)\n', (1867, 1875), True, 'import megengine.functional as F\n'), ((1969, 1983), 'megengine.module.Dropout', 'M.Dropout', (['(0.5)'], {}), '(0.5)\n', (1978, 1983), True, 'import megengine.module as M\n'), ((1990, 2014), 'megengine.jit.trace', 'jit.trace', ([], {'symbolic': '(True)'}), '(symbolic=True)\n', (1999, 2014), True, 'import megengine.jit as jit\n'), ((2061, 2085), 'megengine.jit.trace', 'jit.trace', ([], {'symbolic': '(True)'}), '(symbolic=True)\n', (2070, 2085), True, 'import megengine.jit as jit\n'), ((2135, 2163), 'numpy.ones', 'np.ones', (['(10)'], {'dtype': '"""float32"""'}), "(10, dtype='float32')\n", (2142, 2163), True, 'import numpy as np\n'), ((2365, 2379), 'megengine.module.Dropout', 'M.Dropout', (['(0.5)'], {}), '(0.5)\n', (2374, 2379), True, 'import megengine.module as M\n'), ((2386, 2410), 'megengine.jit.trace', 'jit.trace', ([], {'symbolic': '(True)'}), '(symbolic=True)\n', (2395, 2410), True, 'import megengine.jit as jit\n'), ((2457, 2481), 'megengine.jit.trace', 'jit.trace', ([], {'symbolic': '(True)'}), '(symbolic=True)\n', (2466, 2481), True, 'import megengine.jit as jit\n'), ((2531, 2559), 'numpy.ones', 'np.ones', (['(10)'], {'dtype': '"""float32"""'}), "(10, dtype='float32')\n", (2538, 2559), True, 'import numpy as np\n'), ((2564, 2580), 'megengine.random.manual_seed', 'R.manual_seed', (['(0)'], {}), '(0)\n', (2577, 2580), True, 'import megengine.random as R\n'), ((2629, 2645), 'megengine.random.manual_seed', 'R.manual_seed', (['(0)'], {}), '(0)\n', (2642, 2645), True, 'import megengine.random as R\n'), ((2669, 2685), 'megengine.random.manual_seed', 'R.manual_seed', (['(0)'], {}), '(0)\n', (2682, 2685), True, 'import megengine.random as R\n'), ((943, 961), 'megengine.random.manual_seed', 'R.manual_seed', (['(731)'], {}), '(731)\n', (956, 961), True, 'import megengine.random as R\n'), ((1064, 1082), 'megengine.random.manual_seed', 'R.manual_seed', (['(731)'], {}), '(731)\n', (1077, 1082), True, 'import megengine.random as R\n'), ((1255, 1267), 'megengine.random.uniform', 'R.uniform', (['(5)'], {}), '(5)\n', (1264, 1267), True, 'import megengine.random as R\n'), ((1270, 1283), 'megengine.random.gaussian', 'R.gaussian', (['(5)'], {}), '(5)\n', (1280, 1283), True, 'import megengine.random as R\n'), ((1292, 1304), 'megengine.random.uniform', 'R.uniform', (['(5)'], {}), '(5)\n', (1301, 1304), True, 'import megengine.random as R\n'), ((1307, 1320), 'megengine.random.gaussian', 'R.gaussian', (['(5)'], {}), '(5)\n', (1317, 1320), True, 'import megengine.random as R\n'), ((1433, 1445), 'megengine.random.uniform', 'R.uniform', (['(5)'], {}), '(5)\n', (1442, 1445), True, 'import megengine.random as R\n'), ((1448, 1461), 'megengine.random.gaussian', 'R.gaussian', (['(5)'], {}), '(5)\n', (1458, 1461), True, 'import megengine.random as R\n'), ((1491, 1503), 'megengine.random.uniform', 'R.uniform', (['(5)'], {}), '(5)\n', (1500, 1503), True, 'import megengine.random as R\n'), ((1506, 1519), 'megengine.random.gaussian', 'R.gaussian', (['(5)'], {}), '(5)\n', (1516, 1519), True, 'import megengine.random as R\n'), ((644, 656), 'megengine.random.uniform', 'R.uniform', (['(5)'], {}), '(5)\n', (653, 656), True, 'import megengine.random as R\n'), ((659, 672), 'megengine.random.gaussian', 'R.gaussian', (['(5)'], {}), '(5)\n', (669, 672), True, 'import megengine.random as R\n'), ((738, 750), 'megengine.random.uniform', 'R.uniform', (['(5)'], {}), '(5)\n', (747, 750), True, 'import megengine.random as R\n'), ((753, 766), 'megengine.random.gaussian', 'R.gaussian', (['(5)'], {}), '(5)\n', (763, 766), True, 'import megengine.random as R\n'), ((977, 989), 'megengine.random.uniform', 'R.uniform', (['(5)'], {}), '(5)\n', (986, 989), True, 'import megengine.random as R\n'), ((992, 1005), 'megengine.random.gaussian', 'R.gaussian', (['(5)'], {}), '(5)\n', (1002, 1005), True, 'import megengine.random as R\n'), ((1098, 1110), 'megengine.random.uniform', 'R.uniform', (['(5)'], {}), '(5)\n', (1107, 1110), True, 'import megengine.random as R\n'), ((1113, 1126), 'megengine.random.gaussian', 'R.gaussian', (['(5)'], {}), '(5)\n', (1123, 1126), True, 'import megengine.random as R\n')]
from typing import Optional from sqlmodel import SQLModel, Field, func, DateTime, Column, Boolean from datetime import datetime class BaseModel(SQLModel): """ BaseModel class """ class Config: use_enum_values = True class BaseTableFields(SQLModel): """ BaseTableField class """ id: Optional[int] = Field(default=None, primary_key=True, nullable=False) created_at: Optional[datetime] = Field( default=None, sa_column=Column( DateTime(timezone=True), server_default=func.now(), nullable=False, ) ) updated_at: Optional[datetime] = Field( default=None, sa_column=Column( DateTime(timezone=True), server_default=func.now(), onupdate=func.now(), nullable=False, ) ) is_active: Optional[bool] = Field( default=None, sa_column=Column(Boolean, server_default='true', default=True) )
[ "sqlmodel.func.now", "sqlmodel.Field", "sqlmodel.Column", "sqlmodel.DateTime" ]
[((344, 397), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'primary_key': '(True)', 'nullable': '(False)'}), '(default=None, primary_key=True, nullable=False)\n', (349, 397), False, 'from sqlmodel import SQLModel, Field, func, DateTime, Column, Boolean\n'), ((937, 989), 'sqlmodel.Column', 'Column', (['Boolean'], {'server_default': '"""true"""', 'default': '(True)'}), "(Boolean, server_default='true', default=True)\n", (943, 989), False, 'from sqlmodel import SQLModel, Field, func, DateTime, Column, Boolean\n'), ((503, 526), 'sqlmodel.DateTime', 'DateTime', ([], {'timezone': '(True)'}), '(timezone=True)\n', (511, 526), False, 'from sqlmodel import SQLModel, Field, func, DateTime, Column, Boolean\n'), ((716, 739), 'sqlmodel.DateTime', 'DateTime', ([], {'timezone': '(True)'}), '(timezone=True)\n', (724, 739), False, 'from sqlmodel import SQLModel, Field, func, DateTime, Column, Boolean\n'), ((555, 565), 'sqlmodel.func.now', 'func.now', ([], {}), '()\n', (563, 565), False, 'from sqlmodel import SQLModel, Field, func, DateTime, Column, Boolean\n'), ((768, 778), 'sqlmodel.func.now', 'func.now', ([], {}), '()\n', (776, 778), False, 'from sqlmodel import SQLModel, Field, func, DateTime, Column, Boolean\n'), ((801, 811), 'sqlmodel.func.now', 'func.now', ([], {}), '()\n', (809, 811), False, 'from sqlmodel import SQLModel, Field, func, DateTime, Column, Boolean\n')]
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. from functools import partial import numpy as np import pytest from utils import opr_test import megengine.functional as F from megengine import jit, tensor def common_test_reduce(opr, ref_opr): data1_shape = (5, 6, 7) data2_shape = (2, 9, 12) data1 = np.random.random(data1_shape).astype(np.float32) data2 = np.random.random(data2_shape).astype(np.float32) cases = [ {"input": data1}, {"input": data2}, {"input": np.array([[[1, 2, np.nan, 4], [8, 6, 5, 2], [2, 3, 4, 5]]])}, ] if opr not in (F.argmin, F.argmax): # test default axis opr_test(cases, opr, ref_fn=ref_opr) # test all axises in range of input shape for axis in range(-3, 3): # test keepdims False opr_test(cases, opr, ref_fn=lambda x: ref_opr(x, axis=axis), axis=axis) # test keepdims True opr_test( cases, opr, ref_fn=lambda x: ref_opr(x, axis=axis, keepdims=True), axis=axis, keepdims=True, ) else: # test defaut axis opr_test(cases, opr, ref_fn=lambda x: ref_opr(x).astype(np.int32)) # test all axises in range of input shape for axis in range(0, 3): opr_test( cases, opr, ref_fn=lambda x: ref_opr(x, axis=axis).astype(np.int32), axis=axis, ) # test negative axis axis = axis - len(data1_shape) opr_test( cases, opr, ref_fn=lambda x: ref_opr(x, axis=axis).astype(np.int32), axis=axis, ) def test_sum(): common_test_reduce(opr=F.sum, ref_opr=np.sum) def test_prod(): common_test_reduce(opr=F.prod, ref_opr=np.prod) def test_mean(): common_test_reduce(opr=F.mean, ref_opr=np.mean) def test_var(): common_test_reduce(opr=F.var, ref_opr=np.var) def test_std(): common_test_reduce(opr=F.std, ref_opr=np.std) def test_min(): common_test_reduce(opr=F.min, ref_opr=np.min) def test_max(): common_test_reduce(opr=F.max, ref_opr=np.max) def test_argmin(): common_test_reduce(opr=F.argmin, ref_opr=np.argmin) def test_argmax(): common_test_reduce(opr=F.argmax, ref_opr=np.argmax) def test_sqrt(): d1_shape = (15,) d2_shape = (25,) d1 = np.random.random(d1_shape).astype(np.float32) d2 = np.random.random(d2_shape).astype(np.float32) cases = [{"input": d1}, {"input": d2}] opr_test(cases, F.sqrt, ref_fn=np.sqrt) def test_sort(): data1_shape = (10, 3) data2_shape = (12, 2) data1 = np.random.random(data1_shape).astype(np.float32) data2 = np.random.random(data2_shape).astype(np.float32) output1 = [np.sort(data1), np.argsort(data1).astype(np.int32)] output2 = [np.sort(data2), np.argsort(data2).astype(np.int32)] cases = [ {"input": data1, "output": output1}, {"input": data2, "output": output2}, ] opr_test(cases, F.sort) @pytest.mark.parametrize("is_symbolic", [None, False, True]) def test_sort_empty(is_symbolic): data_shapes = [ (0,), (10, 0), ] def fn(x): return F.sort(x) for shape in data_shapes: if is_symbolic is not None: fn_ = jit.trace(symbolic=is_symbolic)(fn) else: fn_ = fn data = np.random.random(shape).astype(np.float32) for _ in range(3): outs = fn_(tensor(data)) ref_outs = (np.sort(data), np.argsort(data)) assert len(ref_outs) == len(outs) for i in range(len(outs)): np.testing.assert_equal(outs[i].numpy(), ref_outs[i]) if is_symbolic is None: break def test_normalize(): cases = [ {"input": np.random.random((2, 3, 12, 12)).astype(np.float32)} for i in range(2) ] def np_normalize(x, p=2, axis=None, eps=1e-12): if axis is None: norm = np.sum(x ** p) ** (1.0 / p) else: norm = np.sum(x ** p, axis=axis, keepdims=True) ** (1.0 / p) return x / np.clip(norm, a_min=eps, a_max=np.inf) # # Test L-2 norm along all dimensions # opr_test(cases, F.normalize, ref_fn=np_normalize) # # Test L-1 norm along all dimensions # opr_test(cases, partial(F.normalize, p=1), ref_fn=partial(np_normalize, p=1)) # Test L-2 norm along the second dimension opr_test(cases, partial(F.normalize, axis=1), ref_fn=partial(np_normalize, axis=1)) # Test some norm == 0 cases[0]["input"][0, 0, 0, :] = 0 cases[1]["input"][0, 0, 0, :] = 0 opr_test(cases, partial(F.normalize, axis=3), ref_fn=partial(np_normalize, axis=3)) def test_sum_neg_axis(): shape = (2, 3) data = np.random.random(shape).astype(np.float32) for axis in (-1, -2, (-2, 1), (-1, 0)): get = F.sum(tensor(data), axis=axis) ref = np.sum(data, axis=axis) np.testing.assert_allclose(get.numpy(), ref, rtol=1e-6) with pytest.raises(AssertionError): F.sum(tensor(data), axis=(-1, 1)) def test_non_finite(): shape = (32, 3, 32, 32) data1 = np.random.random(shape).astype(np.float32) data2 = np.random.random(shape).astype(np.float32) rst = F.math._check_non_finite([tensor(data1), tensor(data2)]) np.testing.assert_equal(rst.numpy(), [0]) data2[0][0][0][0] = float("inf") rst = F.math._check_non_finite([tensor(data1), tensor(data2)]) np.testing.assert_equal(rst.numpy(), [1]) data2[0][0][0][0] = float("nan") rst = F.math._check_non_finite([tensor(data1), tensor(data2)]) np.testing.assert_equal(rst.numpy(), [1]) @pytest.mark.parametrize("descending", [True, False]) @pytest.mark.parametrize("sorted", [True, False]) @pytest.mark.parametrize("inp1d", [True, False]) @pytest.mark.parametrize("kth_only", [True, False]) def test_topk(descending, sorted, inp1d, kth_only): k = 3 if inp1d: data = np.random.permutation(7) else: data = np.random.permutation(5 * 7).reshape(5, 7) data = data.astype(np.int32) def np_sort(x): if descending: return np.sort(x)[..., ::-1] return np.sort(x) res = F.topk( tensor(data), k, descending=descending, no_sort=(not sorted), kth_only=kth_only ) values, indices = res values = values.numpy() indices = indices.numpy() if kth_only: np.testing.assert_equal( values, np.take_along_axis(data, indices[..., None], -1).squeeze(-1) ) np.testing.assert_equal(values, np_sort(data)[..., k - 1]) else: np.testing.assert_equal(values, np.take_along_axis(data, indices, -1)) if not sorted: values = np_sort(values) np.testing.assert_equal(values, np_sort(data)[..., :k]) @pytest.mark.parametrize("is_trace", [True, False]) def test_reduce_on_empty_tensor(is_trace): dtypes = [np.float32, np.int32, np.bool] inputs = [ (np.random.random((0,)), None), (np.random.random((3, 0, 2)), 1), (np.random.random((10, 10, 0, 10)), 0), ] def run_test(fn, ref_fn, input, dtype, axis=None, symbolic=False): if is_trace: fn = jit.trace(symbolic=symbolic)(fn) for i in range(3): out = fn(tensor(input, dtype=dtype), axis=axis).numpy() out_ref = ref_fn(input.astype(dtype), axis=axis) np.testing.assert_equal(out, out_ref) for dtype in dtypes: for inp, axis in inputs: run_test(F.sum, np.sum, inp, dtype, axis, True) run_test(F.sum, np.sum, inp, dtype, axis, False) run_test(F.prod, np.prod, inp, dtype, axis, True) run_test(F.prod, np.prod, inp, dtype, axis, False)
[ "megengine.jit.trace", "megengine.tensor", "megengine.functional.sort" ]
[((3460, 3519), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""is_symbolic"""', '[None, False, True]'], {}), "('is_symbolic', [None, False, True])\n", (3483, 3519), False, 'import pytest\n'), ((6105, 6157), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""descending"""', '[True, False]'], {}), "('descending', [True, False])\n", (6128, 6157), False, 'import pytest\n'), ((6159, 6207), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""sorted"""', '[True, False]'], {}), "('sorted', [True, False])\n", (6182, 6207), False, 'import pytest\n'), ((6209, 6256), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""inp1d"""', '[True, False]'], {}), "('inp1d', [True, False])\n", (6232, 6256), False, 'import pytest\n'), ((6258, 6308), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""kth_only"""', '[True, False]'], {}), "('kth_only', [True, False])\n", (6281, 6308), False, 'import pytest\n'), ((7259, 7309), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""is_trace"""', '[True, False]'], {}), "('is_trace', [True, False])\n", (7282, 7309), False, 'import pytest\n'), ((2951, 2990), 'utils.opr_test', 'opr_test', (['cases', 'F.sqrt'], {'ref_fn': 'np.sqrt'}), '(cases, F.sqrt, ref_fn=np.sqrt)\n', (2959, 2990), False, 'from utils import opr_test\n'), ((3433, 3456), 'utils.opr_test', 'opr_test', (['cases', 'F.sort'], {}), '(cases, F.sort)\n', (3441, 3456), False, 'from utils import opr_test\n'), ((984, 1020), 'utils.opr_test', 'opr_test', (['cases', 'opr'], {'ref_fn': 'ref_opr'}), '(cases, opr, ref_fn=ref_opr)\n', (992, 1020), False, 'from utils import opr_test\n'), ((3199, 3213), 'numpy.sort', 'np.sort', (['data1'], {}), '(data1)\n', (3206, 3213), True, 'import numpy as np\n'), ((3266, 3280), 'numpy.sort', 'np.sort', (['data2'], {}), '(data2)\n', (3273, 3280), True, 'import numpy as np\n'), ((3642, 3651), 'megengine.functional.sort', 'F.sort', (['x'], {}), '(x)\n', (3648, 3651), True, 'import megengine.functional as F\n'), ((4892, 4920), 'functools.partial', 'partial', (['F.normalize'], {'axis': '(1)'}), '(F.normalize, axis=1)\n', (4899, 4920), False, 'from functools import partial\n'), ((5083, 5111), 'functools.partial', 'partial', (['F.normalize'], {'axis': '(3)'}), '(F.normalize, axis=3)\n', (5090, 5111), False, 'from functools import partial\n'), ((5354, 5377), 'numpy.sum', 'np.sum', (['data'], {'axis': 'axis'}), '(data, axis=axis)\n', (5360, 5377), True, 'import numpy as np\n'), ((5451, 5480), 'pytest.raises', 'pytest.raises', (['AssertionError'], {}), '(AssertionError)\n', (5464, 5480), False, 'import pytest\n'), ((6400, 6424), 'numpy.random.permutation', 'np.random.permutation', (['(7)'], {}), '(7)\n', (6421, 6424), True, 'import numpy as np\n'), ((6626, 6636), 'numpy.sort', 'np.sort', (['x'], {}), '(x)\n', (6633, 6636), True, 'import numpy as np\n'), ((6664, 6676), 'megengine.tensor', 'tensor', (['data'], {}), '(data)\n', (6670, 6676), False, 'from megengine import jit, tensor\n'), ((645, 674), 'numpy.random.random', 'np.random.random', (['data1_shape'], {}), '(data1_shape)\n', (661, 674), True, 'import numpy as np\n'), ((706, 735), 'numpy.random.random', 'np.random.random', (['data2_shape'], {}), '(data2_shape)\n', (722, 735), True, 'import numpy as np\n'), ((839, 898), 'numpy.array', 'np.array', (['[[[1, 2, np.nan, 4], [8, 6, 5, 2], [2, 3, 4, 5]]]'], {}), '([[[1, 2, np.nan, 4], [8, 6, 5, 2], [2, 3, 4, 5]]])\n', (847, 898), True, 'import numpy as np\n'), ((2802, 2828), 'numpy.random.random', 'np.random.random', (['d1_shape'], {}), '(d1_shape)\n', (2818, 2828), True, 'import numpy as np\n'), ((2857, 2883), 'numpy.random.random', 'np.random.random', (['d2_shape'], {}), '(d2_shape)\n', (2873, 2883), True, 'import numpy as np\n'), ((3074, 3103), 'numpy.random.random', 'np.random.random', (['data1_shape'], {}), '(data1_shape)\n', (3090, 3103), True, 'import numpy as np\n'), ((3135, 3164), 'numpy.random.random', 'np.random.random', (['data2_shape'], {}), '(data2_shape)\n', (3151, 3164), True, 'import numpy as np\n'), ((4557, 4595), 'numpy.clip', 'np.clip', (['norm'], {'a_min': 'eps', 'a_max': 'np.inf'}), '(norm, a_min=eps, a_max=np.inf)\n', (4564, 4595), True, 'import numpy as np\n'), ((4929, 4958), 'functools.partial', 'partial', (['np_normalize'], {'axis': '(1)'}), '(np_normalize, axis=1)\n', (4936, 4958), False, 'from functools import partial\n'), ((5120, 5149), 'functools.partial', 'partial', (['np_normalize'], {'axis': '(3)'}), '(np_normalize, axis=3)\n', (5127, 5149), False, 'from functools import partial\n'), ((5208, 5231), 'numpy.random.random', 'np.random.random', (['shape'], {}), '(shape)\n', (5224, 5231), True, 'import numpy as np\n'), ((5315, 5327), 'megengine.tensor', 'tensor', (['data'], {}), '(data)\n', (5321, 5327), False, 'from megengine import jit, tensor\n'), ((5496, 5508), 'megengine.tensor', 'tensor', (['data'], {}), '(data)\n', (5502, 5508), False, 'from megengine import jit, tensor\n'), ((5589, 5612), 'numpy.random.random', 'np.random.random', (['shape'], {}), '(shape)\n', (5605, 5612), True, 'import numpy as np\n'), ((5644, 5667), 'numpy.random.random', 'np.random.random', (['shape'], {}), '(shape)\n', (5660, 5667), True, 'import numpy as np\n'), ((5723, 5736), 'megengine.tensor', 'tensor', (['data1'], {}), '(data1)\n', (5729, 5736), False, 'from megengine import jit, tensor\n'), ((5738, 5751), 'megengine.tensor', 'tensor', (['data2'], {}), '(data2)\n', (5744, 5751), False, 'from megengine import jit, tensor\n'), ((5874, 5887), 'megengine.tensor', 'tensor', (['data1'], {}), '(data1)\n', (5880, 5887), False, 'from megengine import jit, tensor\n'), ((5889, 5902), 'megengine.tensor', 'tensor', (['data2'], {}), '(data2)\n', (5895, 5902), False, 'from megengine import jit, tensor\n'), ((6025, 6038), 'megengine.tensor', 'tensor', (['data1'], {}), '(data1)\n', (6031, 6038), False, 'from megengine import jit, tensor\n'), ((6040, 6053), 'megengine.tensor', 'tensor', (['data2'], {}), '(data2)\n', (6046, 6053), False, 'from megengine import jit, tensor\n'), ((7093, 7130), 'numpy.take_along_axis', 'np.take_along_axis', (['data', 'indices', '(-1)'], {}), '(data, indices, -1)\n', (7111, 7130), True, 'import numpy as np\n'), ((7422, 7444), 'numpy.random.random', 'np.random.random', (['(0,)'], {}), '((0,))\n', (7438, 7444), True, 'import numpy as np\n'), ((7462, 7489), 'numpy.random.random', 'np.random.random', (['(3, 0, 2)'], {}), '((3, 0, 2))\n', (7478, 7489), True, 'import numpy as np\n'), ((7504, 7537), 'numpy.random.random', 'np.random.random', (['(10, 10, 0, 10)'], {}), '((10, 10, 0, 10))\n', (7520, 7537), True, 'import numpy as np\n'), ((7860, 7897), 'numpy.testing.assert_equal', 'np.testing.assert_equal', (['out', 'out_ref'], {}), '(out, out_ref)\n', (7883, 7897), True, 'import numpy as np\n'), ((3215, 3232), 'numpy.argsort', 'np.argsort', (['data1'], {}), '(data1)\n', (3225, 3232), True, 'import numpy as np\n'), ((3282, 3299), 'numpy.argsort', 'np.argsort', (['data2'], {}), '(data2)\n', (3292, 3299), True, 'import numpy as np\n'), ((3737, 3768), 'megengine.jit.trace', 'jit.trace', ([], {'symbolic': 'is_symbolic'}), '(symbolic=is_symbolic)\n', (3746, 3768), False, 'from megengine import jit, tensor\n'), ((3823, 3846), 'numpy.random.random', 'np.random.random', (['shape'], {}), '(shape)\n', (3839, 3846), True, 'import numpy as np\n'), ((3916, 3928), 'megengine.tensor', 'tensor', (['data'], {}), '(data)\n', (3922, 3928), False, 'from megengine import jit, tensor\n'), ((3954, 3967), 'numpy.sort', 'np.sort', (['data'], {}), '(data)\n', (3961, 3967), True, 'import numpy as np\n'), ((3969, 3985), 'numpy.argsort', 'np.argsort', (['data'], {}), '(data)\n', (3979, 3985), True, 'import numpy as np\n'), ((4423, 4437), 'numpy.sum', 'np.sum', (['(x ** p)'], {}), '(x ** p)\n', (4429, 4437), True, 'import numpy as np\n'), ((4484, 4524), 'numpy.sum', 'np.sum', (['(x ** p)'], {'axis': 'axis', 'keepdims': '(True)'}), '(x ** p, axis=axis, keepdims=True)\n', (4490, 4524), True, 'import numpy as np\n'), ((6450, 6478), 'numpy.random.permutation', 'np.random.permutation', (['(5 * 7)'], {}), '(5 * 7)\n', (6471, 6478), True, 'import numpy as np\n'), ((6589, 6599), 'numpy.sort', 'np.sort', (['x'], {}), '(x)\n', (6596, 6599), True, 'import numpy as np\n'), ((7659, 7687), 'megengine.jit.trace', 'jit.trace', ([], {'symbolic': 'symbolic'}), '(symbolic=symbolic)\n', (7668, 7687), False, 'from megengine import jit, tensor\n'), ((4249, 4281), 'numpy.random.random', 'np.random.random', (['(2, 3, 12, 12)'], {}), '((2, 3, 12, 12))\n', (4265, 4281), True, 'import numpy as np\n'), ((6905, 6953), 'numpy.take_along_axis', 'np.take_along_axis', (['data', 'indices[..., None]', '(-1)'], {}), '(data, indices[..., None], -1)\n', (6923, 6953), True, 'import numpy as np\n'), ((7740, 7766), 'megengine.tensor', 'tensor', (['input'], {'dtype': 'dtype'}), '(input, dtype=dtype)\n', (7746, 7766), False, 'from megengine import jit, tensor\n')]
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon Aug 9 19:16:05 2021 @author: shrohanmohapatra """ r""" Navier-Stokes equations for incompressible fluid flow in 2D. Find :math:`\ul{u}`, :math:`p` such that: .. math:: \int_{\Omega} \nu\ \nabla \ul{v} : \nabla \ul{u} + \int_{\Omega} ((\ul{u} \cdot \nabla) \ul{u}) \cdot \ul{v} - \int_{\Omega} p\ \nabla \cdot \ul{v} = 0 \;, \quad \forall \ul{v} \;, \int_{\Omega} q\ \nabla \cdot \ul{u} = 0 \;, \quad \forall q \;. The mesh is created by ``gen_block_mesh()`` function. View the results using:: $ ./postproc.py user_block.vtk -b """ #from __future__ import absolute_import from sfepy.discrete.fem.meshio import UserMeshIO from sfepy.mesh.mesh_generators import gen_block_mesh import numpy as nm # Mesh dimensions. dims = [0.1, 0.1] # Mesh resolution: increase to improve accuracy. shape = [75, 75] def mesh_hook(mesh, mode): """ Generate the block mesh. """ if mode == 'read': mesh = gen_block_mesh(dims, shape, [0, 0], name='user_block', verbose=False) return mesh elif mode == 'write': pass filename_mesh = UserMeshIO(mesh_hook) print('Just a check if the mesh is generated ...') def get_circle(coors, domain=None): r = nm.sqrt(coors[:,0]**2.0 + coors[:,1]**2.0) return nm.where(r < 0.09)[0] functions = { 'get_circle' : (get_circle,), } print('Checked in a function ...') regions = { 'Omega' : 'all', 'Walls' : ('vertices by get_circle', 'facet'), } print('Checked in the definition of regions ...') materials = { 'fluid' : ({'viscosity' : 8.917e-7},), } print('Checked in the definition of the material params ...') fields = { 'velocity': ('real', 'vector', 'Omega', 2), 'pressure': ('real', 'scalar', 'Omega', 1), } print('Checked in the definition of u, v, p ...') variables = { 'u' : ('unknown field', 'velocity', 0), 'v' : ('test field', 'velocity', 'u'), 'p' : ('unknown field', 'pressure', 1), 'q' : ('test field', 'pressure', 'p'), } ebcs = { '1_Wall': {'Walls': {'u.all':10}} } print('Checked in the boundary conditions ...') integrals = { 'i' : 4, } equations = { 'balance' : """+ dw_div_grad.i.Omega(fluid.viscosity, v, u) + dw_convect.i.Omega(v, u) - dw_stokes.i.Omega(v, p) = 0""", 'incompressibility' : """dw_stokes.i.Omega(u, q) = 0""", } solvers = { 'ls' : ('ls.scipy_direct', {}), 'newton' : ('nls.newton', { 'i_max' : 15, 'eps_a' : 1e-10, 'eps_r' : 1.0, }), }
[ "sfepy.mesh.mesh_generators.gen_block_mesh", "sfepy.discrete.fem.meshio.UserMeshIO" ]
[((1195, 1216), 'sfepy.discrete.fem.meshio.UserMeshIO', 'UserMeshIO', (['mesh_hook'], {}), '(mesh_hook)\n', (1205, 1216), False, 'from sfepy.discrete.fem.meshio import UserMeshIO\n'), ((1312, 1360), 'numpy.sqrt', 'nm.sqrt', (['(coors[:, 0] ** 2.0 + coors[:, 1] ** 2.0)'], {}), '(coors[:, 0] ** 2.0 + coors[:, 1] ** 2.0)\n', (1319, 1360), True, 'import numpy as nm\n'), ((1017, 1086), 'sfepy.mesh.mesh_generators.gen_block_mesh', 'gen_block_mesh', (['dims', 'shape', '[0, 0]'], {'name': '"""user_block"""', 'verbose': '(False)'}), "(dims, shape, [0, 0], name='user_block', verbose=False)\n", (1031, 1086), False, 'from sfepy.mesh.mesh_generators import gen_block_mesh\n'), ((1366, 1384), 'numpy.where', 'nm.where', (['(r < 0.09)'], {}), '(r < 0.09)\n', (1374, 1384), True, 'import numpy as nm\n')]
import re from datetime import datetime from enum import Enum from functools import lru_cache from inspect import Parameter, signature from typing import ( TYPE_CHECKING, Any, Callable, Generator, Generic, List, Optional, Tuple, Type, TypeVar, Union, ) from uuid import UUID from fastapi import Depends, File, Form, Request, UploadFile, params from fastapi_utils.api_model import APIModel from fastapi_utils.camelcase import snake2camel from makefun import wraps from pydantic import ( BaseModel as PydanticBaseModel, ConstrainedInt, ConstrainedStr, create_model, ) from pydantic.datetime_parse import parse_datetime from pydantic.fields import Undefined from pydantic.main import ModelMetaclass from sqlalchemy.ext.compiler import compiles from sqlalchemy.sql.functions import FunctionElement from sqlalchemy.sql.schema import Column from sqlalchemy.types import DateTime from sqlmodel import Field, SQLModel from starlette.datastructures import MultiDict from joj.horse.utils.base import is_uuid from joj.horse.utils.errors import ErrorCode if TYPE_CHECKING: Model = TypeVar("Model", bound="BaseModel") class BaseModel(APIModel): """""" class Config: validate_all = True class Operation(Enum): Create = "Create" Read = "Read" Update = "Update" Delete = "Delete" class NoneNegativeInt(ConstrainedInt): ge = 0 # class PositiveInt(ConstrainedInt): # gt = 0 class PaginationLimit(NoneNegativeInt): le = 500 class LongStr(ConstrainedStr): max_length = 256 class NoneEmptyStr(ConstrainedStr): min_length = 1 class SearchQueryStr(ConstrainedStr): min_length = 2 class NoneEmptyLongStr(LongStr, NoneEmptyStr): pass class UserInputURL(str): URL_RE = re.compile(r"[\w-]+", flags=re.ASCII) @classmethod def __get_validators__( cls, ) -> Generator[Callable[[Union[str, Any]], str], None, None]: yield cls.validate @classmethod def validate(cls, v: Optional[str]) -> LongStr: if not v: return LongStr("") if is_uuid(v): raise ValueError("url can not be uuid") if not UserInputURL.URL_RE.fullmatch(v): raise ValueError("url can only contains [a-zA-Z0-9_-]") return LongStr(v) class LongText(ConstrainedStr): max_length = 65536 class utcnow(FunctionElement): type = DateTime() @compiles(utcnow, "postgresql") def pg_utcnow(element: Any, compiler: Any, **kwargs: Any) -> str: return "TIMEZONE('utc', CURRENT_TIMESTAMP)" @compiles(utcnow, "mssql") def ms_utcnow(element: Any, compiler: Any, **kwargs: Any) -> str: return "GETUTCDATE()" def get_datetime_column(**kwargs: Any) -> Column: if "index" not in kwargs: kwargs["index"] = False if "nullable" not in kwargs: kwargs["nullable"] = False return Column(DateTime(timezone=True), **kwargs) class UTCDatetime(datetime): """parse a datetime and convert in into UTC format""" @classmethod def __get_validators__(cls) -> Any: yield cls.validate @classmethod def validate(cls, v: Any) -> datetime: return datetime.fromtimestamp(parse_datetime(v).timestamp()) class BaseORMSchema(SQLModel, BaseModel): pass class URLORMSchema(BaseORMSchema): url: str = Field("", description="(unique) url of the domain") class URLCreateMixin(BaseModel): if not TYPE_CHECKING: url: UserInputURL = Field("", description="(unique) url of the domain") class DomainMixin(BaseModel): domain_id: UUID class IDMixin(BaseModel): id: UUID class TimestampMixin(BaseModel): created_at: Optional[datetime] updated_at: Optional[datetime] class EditMetaclass(ModelMetaclass): async def edit_dependency(cls: Any) -> Any: # pragma: no cover pass def __new__(mcs, name: str, bases: Any, class_dict: Any, **kwargs: Any) -> Any: cls = super().__new__(mcs, name, bases, class_dict, **kwargs) async def edit_dependency(request: Request, edit: cls) -> cls: # type: ignore data = await request.json() for field in cls.__fields__.values(): if field.name not in data and field.alias not in data: setattr(edit, field.name, Undefined) return edit cls.edit_dependency = edit_dependency return cls class FormMetaclass(ModelMetaclass): """ Adds an form_dependency class method to the original model. The form_dependency class method can be used with FastAPI endpoints. """ async def form_dependency(cls: Any) -> Any: # pragma: no cover pass def __new__(mcs, name: str, bases: Any, class_dict: Any, **kwargs: Any) -> Any: cls = super().__new__(mcs, name, bases, class_dict, **kwargs) parameters = [] for field in cls.__fields__.values(): if field.type_ == UploadFile: fastapi_type = File else: fastapi_type = Form parameters.append( Parameter( field.name, Parameter.POSITIONAL_ONLY, default=( fastapi_type(field.default) if not field.required else fastapi_type(...) ), annotation=field.outer_type_, ) ) async def form_dependency(**data: Any) -> cls: # type: ignore return cls(**data) sig = signature(form_dependency) sig = sig.replace(parameters=parameters) form_dependency.__signature__ = sig # type: ignore cls.form_dependency = form_dependency return cls BT = TypeVar("BT", bound=PydanticBaseModel) @lru_cache(maxsize=128) def get_standard_list_response_sub_model( cls: Type[PydanticBaseModel], ) -> Type[PydanticBaseModel]: name = cls.__name__ return create_model( f"{name}List", count=(int, 0), results=(List[cls], []), # type: ignore __base__=BaseModel, ) @lru_cache(maxsize=None) def get_standard_response_model( cls: Type[PydanticBaseModel], is_list: bool = False ) -> Tuple[Type[PydanticBaseModel], Optional[Type[PydanticBaseModel]]]: name = cls.__name__ sub_model: Optional[Type[PydanticBaseModel]] if is_list: model_name = f"{name}ListResp" sub_model = get_standard_list_response_sub_model(cls) data_type = (Optional[sub_model], None) else: model_name = f"{name}Resp" sub_model = None data_type = (Optional[cls], None) return ( create_model( model_name, error_code=(ErrorCode, ...), error_msg=(Optional[str], None), data=data_type, __base__=BaseModel, ), sub_model, ) class Empty(BaseModel): pass class StandardErrorResponse(BaseModel): error_code: ErrorCode error_msg: Optional[str] = None data: Optional[Any] = None class StandardResponse(Generic[BT]): def __class_getitem__(cls, item: Any) -> Type[Any]: return get_standard_response_model(item)[0] def __new__( cls, data: Union[BT, Type[BT], Empty] = Empty() ) -> "StandardResponse[BT]": response_type, _ = get_standard_response_model(type(data)) # type: ignore response_data = data return response_type( # type: ignore error_code=ErrorCode.Success, error_msg=None, data=response_data ) class StandardListResponse(Generic[BT]): def __class_getitem__(cls, item: Any) -> Type[Any]: return get_standard_response_model(item, True)[0] def __new__( cls, results: Optional[List[BT]] = None, count: Optional[int] = None, ) -> "StandardListResponse[BT]": if results is None: results = [] data_type = len(results) and type(results[0]) or Empty response_type, sub_model_type = get_standard_response_model(data_type, True) if count is None: count = len(results) response_data: PydanticBaseModel if sub_model_type is None: response_data = Empty() else: response_data = sub_model_type(count=count, results=results) return response_type( # type: ignore error_code=ErrorCode.Success, error_msg=None, data=response_data ) class LimitOffsetPagination(BaseModel): count: int def camelcase_parameters(func: Any) -> Any: func_sig = signature(func) parameters = list(func_sig.parameters.values()) start_index = -1 for i, parameter in enumerate(parameters): if ( parameter.default and isinstance(parameter.default, (params.Query, params.Path)) and parameter.default.alias is None ): if start_index < 0: start_index = i parameter.default.alias = snake2camel(parameter.name, start_lower=True) if start_index >= 0: parameters.insert( start_index, Parameter( "camelcase_parameters_dependency", kind=Parameter.POSITIONAL_OR_KEYWORD, default=Depends(camelcase_parameters_dependency), ), ) new_sig = func_sig.replace(parameters=parameters) @wraps(func, new_sig=new_sig) def wrapper(*args: Any, **kwargs: Any) -> Any: if "camelcase_parameters_dependency" in kwargs: del kwargs["camelcase_parameters_dependency"] return func(*args, **kwargs) return wrapper def camelcase_parameters_dependency(request: Request) -> None: query_params = request.query_params new_params = MultiDict() for k, v in query_params.multi_items(): if "_" in k: camel = snake2camel(k, start_lower=True) new_params.append(camel, v) else: new_params.append(k, v) request._query_params = new_params
[ "sqlmodel.Field" ]
[((2437, 2467), 'sqlalchemy.ext.compiler.compiles', 'compiles', (['utcnow', '"""postgresql"""'], {}), "(utcnow, 'postgresql')\n", (2445, 2467), False, 'from sqlalchemy.ext.compiler import compiles\n'), ((2585, 2610), 'sqlalchemy.ext.compiler.compiles', 'compiles', (['utcnow', '"""mssql"""'], {}), "(utcnow, 'mssql')\n", (2593, 2610), False, 'from sqlalchemy.ext.compiler import compiles\n'), ((5783, 5821), 'typing.TypeVar', 'TypeVar', (['"""BT"""'], {'bound': 'PydanticBaseModel'}), "('BT', bound=PydanticBaseModel)\n", (5790, 5821), False, 'from typing import TYPE_CHECKING, Any, Callable, Generator, Generic, List, Optional, Tuple, Type, TypeVar, Union\n'), ((5825, 5847), 'functools.lru_cache', 'lru_cache', ([], {'maxsize': '(128)'}), '(maxsize=128)\n', (5834, 5847), False, 'from functools import lru_cache\n'), ((6136, 6159), 'functools.lru_cache', 'lru_cache', ([], {'maxsize': 'None'}), '(maxsize=None)\n', (6145, 6159), False, 'from functools import lru_cache\n'), ((1136, 1171), 'typing.TypeVar', 'TypeVar', (['"""Model"""'], {'bound': '"""BaseModel"""'}), "('Model', bound='BaseModel')\n", (1143, 1171), False, 'from typing import TYPE_CHECKING, Any, Callable, Generator, Generic, List, Optional, Tuple, Type, TypeVar, Union\n'), ((1795, 1832), 're.compile', 're.compile', (['"""[\\\\w-]+"""'], {'flags': 're.ASCII'}), "('[\\\\w-]+', flags=re.ASCII)\n", (1805, 1832), False, 'import re\n'), ((2423, 2433), 'sqlalchemy.types.DateTime', 'DateTime', ([], {}), '()\n', (2431, 2433), False, 'from sqlalchemy.types import DateTime\n'), ((3347, 3398), 'sqlmodel.Field', 'Field', (['""""""'], {'description': '"""(unique) url of the domain"""'}), "('', description='(unique) url of the domain')\n", (3352, 3398), False, 'from sqlmodel import Field, SQLModel\n'), ((5989, 6081), 'pydantic.create_model', 'create_model', (['f"""{name}List"""'], {'count': '(int, 0)', 'results': '(List[cls], [])', '__base__': 'BaseModel'}), "(f'{name}List', count=(int, 0), results=(List[cls], []),\n __base__=BaseModel)\n", (6001, 6081), False, 'from pydantic import BaseModel as PydanticBaseModel, ConstrainedInt, ConstrainedStr, create_model\n'), ((8599, 8614), 'inspect.signature', 'signature', (['func'], {}), '(func)\n', (8608, 8614), False, 'from inspect import Parameter, signature\n'), ((9417, 9445), 'makefun.wraps', 'wraps', (['func'], {'new_sig': 'new_sig'}), '(func, new_sig=new_sig)\n', (9422, 9445), False, 'from makefun import wraps\n'), ((9790, 9801), 'starlette.datastructures.MultiDict', 'MultiDict', ([], {}), '()\n', (9799, 9801), False, 'from starlette.datastructures import MultiDict\n'), ((2115, 2125), 'joj.horse.utils.base.is_uuid', 'is_uuid', (['v'], {}), '(v)\n', (2122, 2125), False, 'from joj.horse.utils.base import is_uuid\n'), ((2903, 2926), 'sqlalchemy.types.DateTime', 'DateTime', ([], {'timezone': '(True)'}), '(timezone=True)\n', (2911, 2926), False, 'from sqlalchemy.types import DateTime\n'), ((3488, 3539), 'sqlmodel.Field', 'Field', (['""""""'], {'description': '"""(unique) url of the domain"""'}), "('', description='(unique) url of the domain')\n", (3493, 3539), False, 'from sqlmodel import Field, SQLModel\n'), ((5575, 5601), 'inspect.signature', 'signature', (['form_dependency'], {}), '(form_dependency)\n', (5584, 5601), False, 'from inspect import Parameter, signature\n'), ((6692, 6819), 'pydantic.create_model', 'create_model', (['model_name'], {'error_code': '(ErrorCode, ...)', 'error_msg': '(Optional[str], None)', 'data': 'data_type', '__base__': 'BaseModel'}), '(model_name, error_code=(ErrorCode, ...), error_msg=(Optional[\n str], None), data=data_type, __base__=BaseModel)\n', (6704, 6819), False, 'from pydantic import BaseModel as PydanticBaseModel, ConstrainedInt, ConstrainedStr, create_model\n'), ((9014, 9059), 'fastapi_utils.camelcase.snake2camel', 'snake2camel', (['parameter.name'], {'start_lower': '(True)'}), '(parameter.name, start_lower=True)\n', (9025, 9059), False, 'from fastapi_utils.camelcase import snake2camel\n'), ((9887, 9919), 'fastapi_utils.camelcase.snake2camel', 'snake2camel', (['k'], {'start_lower': '(True)'}), '(k, start_lower=True)\n', (9898, 9919), False, 'from fastapi_utils.camelcase import snake2camel\n'), ((3211, 3228), 'pydantic.datetime_parse.parse_datetime', 'parse_datetime', (['v'], {}), '(v)\n', (3225, 3228), False, 'from pydantic.datetime_parse import parse_datetime\n'), ((9290, 9330), 'fastapi.Depends', 'Depends', (['camelcase_parameters_dependency'], {}), '(camelcase_parameters_dependency)\n', (9297, 9330), False, 'from fastapi import Depends, File, Form, Request, UploadFile, params\n')]
import traceback from contextlib import contextmanager from sqlmodel import create_engine, Session from fastapi_dream_core.application_dependencies.application_dependencies_abc import ApplicationDependenciesABC from fastapi_dream_core.utils import logger class DatabaseSQLModel(ApplicationDependenciesABC): def __init__(self, db_url: str, echo_queries: bool = False) -> None: self._engine = create_engine(db_url, echo=echo_queries) def readiness(self) -> bool: with Session(self._engine) as session: try: database_status = session.connection().connection.is_valid logger.debug(f"DatabaseSQLModel.readiness = {database_status}") return True except Exception: traceback.print_exc() return False @contextmanager def session(self) -> Session: with Session(self._engine) as session: try: yield session except Exception: logger.exception("Session rollback because of exception") session.rollback() raise finally: session.close() def __str__(self): return "DatabaseSQLModel"
[ "sqlmodel.create_engine", "sqlmodel.Session" ]
[((408, 448), 'sqlmodel.create_engine', 'create_engine', (['db_url'], {'echo': 'echo_queries'}), '(db_url, echo=echo_queries)\n', (421, 448), False, 'from sqlmodel import create_engine, Session\n'), ((496, 517), 'sqlmodel.Session', 'Session', (['self._engine'], {}), '(self._engine)\n', (503, 517), False, 'from sqlmodel import create_engine, Session\n'), ((896, 917), 'sqlmodel.Session', 'Session', (['self._engine'], {}), '(self._engine)\n', (903, 917), False, 'from sqlmodel import create_engine, Session\n'), ((638, 701), 'fastapi_dream_core.utils.logger.debug', 'logger.debug', (['f"""DatabaseSQLModel.readiness = {database_status}"""'], {}), "(f'DatabaseSQLModel.readiness = {database_status}')\n", (650, 701), False, 'from fastapi_dream_core.utils import logger\n'), ((777, 798), 'traceback.print_exc', 'traceback.print_exc', ([], {}), '()\n', (796, 798), False, 'import traceback\n'), ((1023, 1080), 'fastapi_dream_core.utils.logger.exception', 'logger.exception', (['"""Session rollback because of exception"""'], {}), "('Session rollback because of exception')\n", (1039, 1080), False, 'from fastapi_dream_core.utils import logger\n')]
import os import sys import time import logging from collections import namedtuple import megengine as mge import megengine.distributed as dist import megengine.functional as F import megengine.autodiff as autodiff import megengine.optimizer as optim import yaml from tensorboardX import SummaryWriter from nets import Model from dataset import CREStereoDataset from megengine.data import DataLoader, RandomSampler, Infinite def parse_yaml(file_path: str) -> namedtuple: """Parse yaml configuration file and return the object in `namedtuple`.""" with open(file_path, "rb") as f: cfg: dict = yaml.safe_load(f) args = namedtuple("train_args", cfg.keys())(*cfg.values()) return args def format_time(elapse): elapse = int(elapse) hour = elapse // 3600 minute = elapse % 3600 // 60 seconds = elapse % 60 return "{:02d}:{:02d}:{:02d}".format(hour, minute, seconds) def ensure_dir(path): if not os.path.exists(path): os.makedirs(path, exist_ok=True) def adjust_learning_rate(optimizer, epoch): warm_up = 0.02 const_range = 0.6 min_lr_rate = 0.05 if epoch <= args.n_total_epoch * warm_up: lr = (1 - min_lr_rate) * args.base_lr / ( args.n_total_epoch * warm_up ) * epoch + min_lr_rate * args.base_lr elif args.n_total_epoch * warm_up < epoch <= args.n_total_epoch * const_range: lr = args.base_lr else: lr = (min_lr_rate - 1) * args.base_lr / ( (1 - const_range) * args.n_total_epoch ) * epoch + (1 - min_lr_rate * const_range) / (1 - const_range) * args.base_lr optimizer.param_groups[0]["lr"] = lr def sequence_loss(flow_preds, flow_gt, valid, gamma=0.8): n_predictions = len(flow_preds) flow_loss = 0.0 for i in range(n_predictions): i_weight = gamma ** (n_predictions - i - 1) i_loss = F.abs(flow_preds[i] - flow_gt) flow_loss += i_weight * (F.expand_dims(valid, axis=1) * i_loss).mean() return flow_loss def main(args): # initial info mge.random.seed(args.seed) rank, world_size = dist.get_rank(), dist.get_world_size() mge.dtr.enable() # Dynamic tensor rematerialization for memory optimization # directory check log_model_dir = os.path.join(args.log_dir, "models") ensure_dir(log_model_dir) # model / optimizer model = Model( max_disp=args.max_disp, mixed_precision=args.mixed_precision, test_mode=False ) optimizer = optim.Adam(model.parameters(), lr=0.1, betas=(0.9, 0.999)) dist_callbacks = None if world_size == 1 else [dist.make_allreduce_cb("mean")] gm = autodiff.GradManager().attach(model.parameters(), callbacks=dist_callbacks) scaler = mge.amp.GradScaler() if args.mixed_precision else None if rank == 0: # tensorboard tb_log = SummaryWriter(os.path.join(args.log_dir, "train.events")) # worklog logging.basicConfig(level=eval(args.log_level)) worklog = logging.getLogger("train_logger") worklog.propagate = False fileHandler = logging.FileHandler( os.path.join(args.log_dir, "worklog.txt"), mode="a", encoding="utf8" ) formatter = logging.Formatter( fmt="%(asctime)s %(message)s", datefmt="%Y/%m/%d %H:%M:%S" ) fileHandler.setFormatter(formatter) consoleHandler = logging.StreamHandler(sys.stdout) formatter = logging.Formatter( fmt="\x1b[32m%(asctime)s\x1b[0m %(message)s", datefmt="%Y/%m/%d %H:%M:%S" ) consoleHandler.setFormatter(formatter) worklog.handlers = [fileHandler, consoleHandler] # params stat worklog.info(f"Use {world_size} GPU(s)") worklog.info("Params: %s" % sum([p.size for p in model.parameters()])) # load pretrained model if exist chk_path = os.path.join(log_model_dir, "latest.mge") if args.loadmodel is not None: chk_path = args.loadmodel elif not os.path.exists(chk_path): chk_path = None if chk_path is not None: if rank == 0: worklog.info(f"loading model: {chk_path}") pretrained_dict = mge.load(chk_path, map_location="cpu") resume_epoch_idx = pretrained_dict["epoch"] resume_iters = pretrained_dict["iters"] model.load_state_dict(pretrained_dict["state_dict"], strict=True) optimizer.load_state_dict(pretrained_dict["optim_state_dict"]) start_epoch_idx = resume_epoch_idx + 1 start_iters = resume_iters else: start_epoch_idx = 1 start_iters = 0 # auxiliary if world_size > 1: dist.bcast_list_(model.tensors()) # datasets dataset = CREStereoDataset(args.training_data_path) if rank == 0: worklog.info(f"Dataset size: {len(dataset)}") inf_sampler = Infinite( RandomSampler( dataset, batch_size=args.batch_size_single, drop_last=False, world_size=world_size, rank=rank, seed=args.seed, ) ) dataloader = DataLoader( dataset, sampler=inf_sampler, num_workers=0, divide=False, preload=True ) # counter cur_iters = start_iters total_iters = args.minibatch_per_epoch * args.n_total_epoch t0 = time.perf_counter() for epoch_idx in range(start_epoch_idx, args.n_total_epoch + 1): # adjust learning rate epoch_total_train_loss = 0 adjust_learning_rate(optimizer, epoch_idx) model.train() t1 = time.perf_counter() batch_idx = 0 for mini_batch_data in dataloader: if batch_idx % args.minibatch_per_epoch == 0 and batch_idx != 0: break batch_idx += 1 cur_iters += 1 # parse data left, right, gt_disp, valid_mask = ( mini_batch_data["left"], mini_batch_data["right"], mini_batch_data["disparity"], mini_batch_data["mask"], ) t2 = time.perf_counter() with gm: # GradManager with mge.amp.autocast(enabled=args.mixed_precision): # pre-process left = mge.tensor(left) right = mge.tensor(right) gt_disp = mge.tensor(gt_disp) valid_mask = mge.tensor(valid_mask) gt_disp = F.expand_dims(gt_disp, axis=1) gt_flow = F.concat([gt_disp, gt_disp * 0], axis=1) # forward flow_predictions = model(left, right) # loss & backword loss = sequence_loss( flow_predictions, gt_flow, valid_mask, gamma=0.8 ) if args.mixed_precision: scaler.backward(gm, loss) else: gm.backward(loss) optimizer.step().clear_grad() # loss stats loss_item = loss.item() epoch_total_train_loss += loss_item t3 = time.perf_counter() # terminal print log if rank == 0: if cur_iters % 5 == 0: tdata = t2 - t1 time_train_passed = t3 - t0 time_iter_passed = t3 - t1 step_passed = cur_iters - start_iters eta = ( (total_iters - cur_iters) / max(step_passed, 1e-7) * time_train_passed ) meta_info = list() meta_info.append("{:.2g} b/s".format(1.0 / time_iter_passed)) meta_info.append("passed:{}".format(format_time(time_train_passed))) meta_info.append("eta:{}".format(format_time(eta))) meta_info.append( "data_time:{:.2g}".format(tdata / time_iter_passed) ) meta_info.append( "lr:{:.5g}".format(optimizer.param_groups[0]["lr"]) ) meta_info.append( "[{}/{}:{}/{}]".format( epoch_idx, args.n_total_epoch, batch_idx, args.minibatch_per_epoch, ) ) loss_info = [" ==> {}:{:.4g}".format("loss", loss_item)] # exp_name = ['\n' + os.path.basename(os.getcwd())] info = [",".join(meta_info)] + loss_info worklog.info("".join(info)) # minibatch loss tb_log.add_scalar("train/loss_batch", loss_item, cur_iters) tb_log.add_scalar( "train/lr", optimizer.param_groups[0]["lr"], cur_iters ) tb_log.flush() t1 = time.perf_counter() if rank == 0: # epoch loss tb_log.add_scalar( "train/loss", epoch_total_train_loss / args.minibatch_per_epoch, epoch_idx, ) tb_log.flush() # save model params ckp_data = { "epoch": epoch_idx, "iters": cur_iters, "batch_size": args.batch_size_single * args.nr_gpus, "epoch_size": args.minibatch_per_epoch, "train_loss": epoch_total_train_loss / args.minibatch_per_epoch, "state_dict": model.state_dict(), "optim_state_dict": optimizer.state_dict(), } mge.save(ckp_data, os.path.join(log_model_dir, "latest.mge")) if epoch_idx % args.model_save_freq_epoch == 0: save_path = os.path.join(log_model_dir, "epoch-%d.mge" % epoch_idx) worklog.info(f"Model params saved: {save_path}") mge.save(ckp_data, save_path) if rank == 0: worklog.info("Training is done, exit.") if __name__ == "__main__": # train configuration args = parse_yaml("cfgs/train.yaml") # distributed training run = main if mge.get_device_count("gpu") == 1 else dist.launcher(main) run(args)
[ "megengine.distributed.get_rank", "megengine.distributed.get_world_size", "megengine.data.DataLoader", "megengine.get_device_count", "megengine.load", "megengine.functional.abs", "megengine.tensor", "megengine.functional.concat", "megengine.amp.GradScaler", "megengine.distributed.make_allreduce_cb", "megengine.data.RandomSampler", "megengine.random.seed", "megengine.dtr.enable", "megengine.distributed.launcher", "megengine.save", "megengine.amp.autocast", "megengine.functional.expand_dims", "megengine.autodiff.GradManager" ]
[((2048, 2074), 'megengine.random.seed', 'mge.random.seed', (['args.seed'], {}), '(args.seed)\n', (2063, 2074), True, 'import megengine as mge\n'), ((2141, 2157), 'megengine.dtr.enable', 'mge.dtr.enable', ([], {}), '()\n', (2155, 2157), True, 'import megengine as mge\n'), ((2261, 2297), 'os.path.join', 'os.path.join', (['args.log_dir', '"""models"""'], {}), "(args.log_dir, 'models')\n", (2273, 2297), False, 'import os\n'), ((2365, 2453), 'nets.Model', 'Model', ([], {'max_disp': 'args.max_disp', 'mixed_precision': 'args.mixed_precision', 'test_mode': '(False)'}), '(max_disp=args.max_disp, mixed_precision=args.mixed_precision,\n test_mode=False)\n', (2370, 2453), False, 'from nets import Model\n'), ((3852, 3893), 'os.path.join', 'os.path.join', (['log_model_dir', '"""latest.mge"""'], {}), "(log_model_dir, 'latest.mge')\n", (3864, 3893), False, 'import os\n'), ((4700, 4741), 'dataset.CREStereoDataset', 'CREStereoDataset', (['args.training_data_path'], {}), '(args.training_data_path)\n', (4716, 4741), False, 'from dataset import CREStereoDataset\n'), ((5081, 5168), 'megengine.data.DataLoader', 'DataLoader', (['dataset'], {'sampler': 'inf_sampler', 'num_workers': '(0)', 'divide': '(False)', 'preload': '(True)'}), '(dataset, sampler=inf_sampler, num_workers=0, divide=False,\n preload=True)\n', (5091, 5168), False, 'from megengine.data import DataLoader, RandomSampler, Infinite\n'), ((5295, 5314), 'time.perf_counter', 'time.perf_counter', ([], {}), '()\n', (5312, 5314), False, 'import time\n'), ((612, 629), 'yaml.safe_load', 'yaml.safe_load', (['f'], {}), '(f)\n', (626, 629), False, 'import yaml\n'), ((945, 965), 'os.path.exists', 'os.path.exists', (['path'], {}), '(path)\n', (959, 965), False, 'import os\n'), ((975, 1007), 'os.makedirs', 'os.makedirs', (['path'], {'exist_ok': '(True)'}), '(path, exist_ok=True)\n', (986, 1007), False, 'import os\n'), ((1875, 1905), 'megengine.functional.abs', 'F.abs', (['(flow_preds[i] - flow_gt)'], {}), '(flow_preds[i] - flow_gt)\n', (1880, 1905), True, 'import megengine.functional as F\n'), ((2098, 2113), 'megengine.distributed.get_rank', 'dist.get_rank', ([], {}), '()\n', (2111, 2113), True, 'import megengine.distributed as dist\n'), ((2115, 2136), 'megengine.distributed.get_world_size', 'dist.get_world_size', ([], {}), '()\n', (2134, 2136), True, 'import megengine.distributed as dist\n'), ((2720, 2740), 'megengine.amp.GradScaler', 'mge.amp.GradScaler', ([], {}), '()\n', (2738, 2740), True, 'import megengine as mge\n'), ((2984, 3017), 'logging.getLogger', 'logging.getLogger', (['"""train_logger"""'], {}), "('train_logger')\n", (3001, 3017), False, 'import logging\n'), ((3206, 3283), 'logging.Formatter', 'logging.Formatter', ([], {'fmt': '"""%(asctime)s %(message)s"""', 'datefmt': '"""%Y/%m/%d %H:%M:%S"""'}), "(fmt='%(asctime)s %(message)s', datefmt='%Y/%m/%d %H:%M:%S')\n", (3223, 3283), False, 'import logging\n'), ((3375, 3408), 'logging.StreamHandler', 'logging.StreamHandler', (['sys.stdout'], {}), '(sys.stdout)\n', (3396, 3408), False, 'import logging\n'), ((3429, 3526), 'logging.Formatter', 'logging.Formatter', ([], {'fmt': '"""\x1b[32m%(asctime)s\x1b[0m %(message)s"""', 'datefmt': '"""%Y/%m/%d %H:%M:%S"""'}), "(fmt='\\x1b[32m%(asctime)s\\x1b[0m %(message)s', datefmt=\n '%Y/%m/%d %H:%M:%S')\n", (3446, 3526), False, 'import logging\n'), ((4160, 4198), 'megengine.load', 'mge.load', (['chk_path'], {'map_location': '"""cpu"""'}), "(chk_path, map_location='cpu')\n", (4168, 4198), True, 'import megengine as mge\n'), ((4850, 4978), 'megengine.data.RandomSampler', 'RandomSampler', (['dataset'], {'batch_size': 'args.batch_size_single', 'drop_last': '(False)', 'world_size': 'world_size', 'rank': 'rank', 'seed': 'args.seed'}), '(dataset, batch_size=args.batch_size_single, drop_last=False,\n world_size=world_size, rank=rank, seed=args.seed)\n', (4863, 4978), False, 'from megengine.data import DataLoader, RandomSampler, Infinite\n'), ((5538, 5557), 'time.perf_counter', 'time.perf_counter', ([], {}), '()\n', (5555, 5557), False, 'import time\n'), ((10389, 10408), 'megengine.distributed.launcher', 'dist.launcher', (['main'], {}), '(main)\n', (10402, 10408), True, 'import megengine.distributed as dist\n'), ((2590, 2620), 'megengine.distributed.make_allreduce_cb', 'dist.make_allreduce_cb', (['"""mean"""'], {}), "('mean')\n", (2612, 2620), True, 'import megengine.distributed as dist\n'), ((2631, 2653), 'megengine.autodiff.GradManager', 'autodiff.GradManager', ([], {}), '()\n', (2651, 2653), True, 'import megengine.autodiff as autodiff\n'), ((2847, 2889), 'os.path.join', 'os.path.join', (['args.log_dir', '"""train.events"""'], {}), "(args.log_dir, 'train.events')\n", (2859, 2889), False, 'import os\n'), ((3107, 3148), 'os.path.join', 'os.path.join', (['args.log_dir', '"""worklog.txt"""'], {}), "(args.log_dir, 'worklog.txt')\n", (3119, 3148), False, 'import os\n'), ((3976, 4000), 'os.path.exists', 'os.path.exists', (['chk_path'], {}), '(chk_path)\n', (3990, 4000), False, 'import os\n'), ((6055, 6074), 'time.perf_counter', 'time.perf_counter', ([], {}), '()\n', (6072, 6074), False, 'import time\n'), ((7149, 7168), 'time.perf_counter', 'time.perf_counter', ([], {}), '()\n', (7166, 7168), False, 'import time\n'), ((9089, 9108), 'time.perf_counter', 'time.perf_counter', ([], {}), '()\n', (9106, 9108), False, 'import time\n'), ((10351, 10378), 'megengine.get_device_count', 'mge.get_device_count', (['"""gpu"""'], {}), "('gpu')\n", (10371, 10378), True, 'import megengine as mge\n'), ((9844, 9885), 'os.path.join', 'os.path.join', (['log_model_dir', '"""latest.mge"""'], {}), "(log_model_dir, 'latest.mge')\n", (9856, 9885), False, 'import os\n'), ((9975, 10030), 'os.path.join', 'os.path.join', (['log_model_dir', "('epoch-%d.mge' % epoch_idx)"], {}), "(log_model_dir, 'epoch-%d.mge' % epoch_idx)\n", (9987, 10030), False, 'import os\n'), ((10112, 10141), 'megengine.save', 'mge.save', (['ckp_data', 'save_path'], {}), '(ckp_data, save_path)\n', (10120, 10141), True, 'import megengine as mge\n'), ((6133, 6179), 'megengine.amp.autocast', 'mge.amp.autocast', ([], {'enabled': 'args.mixed_precision'}), '(enabled=args.mixed_precision)\n', (6149, 6179), True, 'import megengine as mge\n'), ((6243, 6259), 'megengine.tensor', 'mge.tensor', (['left'], {}), '(left)\n', (6253, 6259), True, 'import megengine as mge\n'), ((6288, 6305), 'megengine.tensor', 'mge.tensor', (['right'], {}), '(right)\n', (6298, 6305), True, 'import megengine as mge\n'), ((6336, 6355), 'megengine.tensor', 'mge.tensor', (['gt_disp'], {}), '(gt_disp)\n', (6346, 6355), True, 'import megengine as mge\n'), ((6389, 6411), 'megengine.tensor', 'mge.tensor', (['valid_mask'], {}), '(valid_mask)\n', (6399, 6411), True, 'import megengine as mge\n'), ((6442, 6472), 'megengine.functional.expand_dims', 'F.expand_dims', (['gt_disp'], {'axis': '(1)'}), '(gt_disp, axis=1)\n', (6455, 6472), True, 'import megengine.functional as F\n'), ((6503, 6543), 'megengine.functional.concat', 'F.concat', (['[gt_disp, gt_disp * 0]'], {'axis': '(1)'}), '([gt_disp, gt_disp * 0], axis=1)\n', (6511, 6543), True, 'import megengine.functional as F\n'), ((1939, 1967), 'megengine.functional.expand_dims', 'F.expand_dims', (['valid'], {'axis': '(1)'}), '(valid, axis=1)\n', (1952, 1967), True, 'import megengine.functional as F\n')]
#!/usr/bin/env python """ Transient Laplace equation (heat equation) with non-constant initial conditions given by a function, using commands for interactive use. The script allows setting various simulation parameters, namely: - the diffusivity coefficient - the max. initial condition value - temperature field approximation order - uniform mesh refinement The example shows also how to probe the results. In the SfePy top-level directory the following command can be used to get usage information:: python examples/diffusion/time_poisson_interactive.py -h """ from __future__ import absolute_import import sys from six.moves import range sys.path.append('.') from argparse import ArgumentParser, RawDescriptionHelpFormatter import numpy as nm import matplotlib.pyplot as plt from sfepy.base.base import assert_, output, ordered_iteritems, IndexedStruct from sfepy.discrete import (FieldVariable, Material, Integral, Function, Equation, Equations, Problem) from sfepy.discrete.problem import prepare_matrix from sfepy.discrete.fem import Mesh, FEDomain, Field from sfepy.terms import Term from sfepy.discrete.conditions import Conditions, EssentialBC, InitialCondition from sfepy.solvers.ls import ScipyDirect from sfepy.solvers.nls import Newton from sfepy.solvers.ts_solvers import SimpleTimeSteppingSolver from sfepy.discrete.probes import LineProbe, CircleProbe from sfepy.discrete.projections import project_by_component def gen_probes(problem): """ Define a line probe and a circle probe. """ # Use enough points for higher order approximations. n_point = 1000 p0, p1 = nm.array([0.0, 0.0, 0.0]), nm.array([0.1, 0.0, 0.0]) line = LineProbe(p0, p1, n_point, share_geometry=True) # Workaround current probe code shortcoming. line.set_options(close_limit=0.5) centre = 0.5 * (p0 + p1) normal = [0.0, 1.0, 0.0] r = 0.019 circle = CircleProbe(centre, normal, r, n_point, share_geometry=True) circle.set_options(close_limit=0.0) probes = [line, circle] labels = ['%s -> %s' % (p0, p1), 'circle(%s, %s, %s' % (centre, normal, r)] return probes, labels def probe_results(ax_num, T, dvel, probe, label): """ Probe the results using the given probe and plot the probed values. """ results = {} pars, vals = probe(T) results['T'] = (pars, vals) pars, vals = probe(dvel) results['dvel'] = (pars, vals) fig = plt.figure(1) ax = plt.subplot(2, 2, 2 * ax_num + 1) ax.cla() pars, vals = results['T'] ax.plot(pars, vals, label=r'$T$', lw=1, ls='-', marker='+', ms=3) dx = 0.05 * (pars[-1] - pars[0]) ax.set_xlim(pars[0] - dx, pars[-1] + dx) ax.set_ylabel('temperature') ax.set_xlabel('probe %s' % label, fontsize=8) ax.legend(loc='best', fontsize=10) ax = plt.subplot(2, 2, 2 * ax_num + 2) ax.cla() pars, vals = results['dvel'] for ic in range(vals.shape[1]): ax.plot(pars, vals[:, ic], label=r'$w_{%d}$' % (ic + 1), lw=1, ls='-', marker='+', ms=3) dx = 0.05 * (pars[-1] - pars[0]) ax.set_xlim(pars[0] - dx, pars[-1] + dx) ax.set_ylabel('diffusion velocity') ax.set_xlabel('probe %s' % label, fontsize=8) ax.legend(loc='best', fontsize=10) return fig, results helps = { 'diffusivity' : 'the diffusivity coefficient [default: %(default)s]', 'ic_max' : 'the max. initial condition value [default: %(default)s]', 'order' : 'temperature field approximation order [default: %(default)s]', 'refine' : 'uniform mesh refinement level [default: %(default)s]', 'probe' : 'probe the results', 'show' : 'show the probing results figure, if --probe is used', } def main(): from sfepy import data_dir parser = ArgumentParser(description=__doc__, formatter_class=RawDescriptionHelpFormatter) parser.add_argument('--version', action='version', version='%(prog)s') parser.add_argument('--diffusivity', metavar='float', type=float, action='store', dest='diffusivity', default=1e-5, help=helps['diffusivity']) parser.add_argument('--ic-max', metavar='float', type=float, action='store', dest='ic_max', default=2.0, help=helps['ic_max']) parser.add_argument('--order', metavar='int', type=int, action='store', dest='order', default=2, help=helps['order']) parser.add_argument('-r', '--refine', metavar='int', type=int, action='store', dest='refine', default=0, help=helps['refine']) parser.add_argument('-p', '--probe', action="store_true", dest='probe', default=False, help=helps['probe']) parser.add_argument('-s', '--show', action="store_true", dest='show', default=False, help=helps['show']) options = parser.parse_args() assert_((0 < options.order), 'temperature approximation order must be at least 1!') output('using values:') output(' diffusivity:', options.diffusivity) output(' max. IC value:', options.ic_max) output('uniform mesh refinement level:', options.refine) mesh = Mesh.from_file(data_dir + '/meshes/3d/cylinder.mesh') domain = FEDomain('domain', mesh) if options.refine > 0: for ii in range(options.refine): output('refine %d...' % ii) domain = domain.refine() output('... %d nodes %d elements' % (domain.shape.n_nod, domain.shape.n_el)) omega = domain.create_region('Omega', 'all') left = domain.create_region('Left', 'vertices in x < 0.00001', 'facet') right = domain.create_region('Right', 'vertices in x > 0.099999', 'facet') field = Field.from_args('fu', nm.float64, 'scalar', omega, approx_order=options.order) T = FieldVariable('T', 'unknown', field, history=1) s = FieldVariable('s', 'test', field, primary_var_name='T') m = Material('m', diffusivity=options.diffusivity * nm.eye(3)) integral = Integral('i', order=2*options.order) t1 = Term.new('dw_diffusion(m.diffusivity, s, T)', integral, omega, m=m, s=s, T=T) t2 = Term.new('dw_volume_dot(s, dT/dt)', integral, omega, s=s, T=T) eq = Equation('balance', t1 + t2) eqs = Equations([eq]) # Boundary conditions. ebc1 = EssentialBC('T1', left, {'T.0' : 2.0}) ebc2 = EssentialBC('T2', right, {'T.0' : -2.0}) # Initial conditions. def get_ic(coors, ic): x, y, z = coors.T return 2 - 40.0 * x + options.ic_max * nm.sin(4 * nm.pi * x / 0.1) ic_fun = Function('ic_fun', get_ic) ic = InitialCondition('ic', omega, {'T.0' : ic_fun}) pb = Problem('heat', equations=eqs) pb.set_bcs(ebcs=Conditions([ebc1, ebc2])) pb.set_ics(Conditions([ic])) state0 = pb.get_initial_state() init_fun, prestep_fun, _poststep_fun = pb.get_tss_functions(state0) ls = ScipyDirect({}) nls_status = IndexedStruct() nls = Newton({'is_linear' : True}, lin_solver=ls, status=nls_status) tss = SimpleTimeSteppingSolver({'t0' : 0.0, 't1' : 100.0, 'n_step' : 11}, nls=nls, context=pb, verbose=True) pb.set_solver(tss) if options.probe: # Prepare probe data. probes, labels = gen_probes(pb) ev = pb.evaluate order = 2 * (options.order - 1) gfield = Field.from_args('gu', nm.float64, 'vector', omega, approx_order=options.order - 1) dvel = FieldVariable('dvel', 'parameter', gfield, primary_var_name='(set-to-None)') cfield = Field.from_args('gu', nm.float64, 'scalar', omega, approx_order=options.order - 1) component = FieldVariable('component', 'parameter', cfield, primary_var_name='(set-to-None)') nls_options = {'eps_a' : 1e-16, 'i_max' : 1} suffix = tss.ts.suffix def poststep_fun(ts, vec): _poststep_fun(ts, vec) # Probe the solution. dvel_qp = ev('ev_diffusion_velocity.%d.Omega(m.diffusivity, T)' % order, copy_materials=False, mode='qp') project_by_component(dvel, dvel_qp, component, order, nls_options=nls_options) all_results = [] for ii, probe in enumerate(probes): fig, results = probe_results(ii, T, dvel, probe, labels[ii]) all_results.append(results) plt.tight_layout() fig.savefig('time_poisson_interactive_probe_%s.png' % (suffix % ts.step), bbox_inches='tight') for ii, results in enumerate(all_results): output('probe %d (%s):' % (ii, probes[ii].name)) output.level += 2 for key, res in ordered_iteritems(results): output(key + ':') val = res[1] output(' min: %+.2e, mean: %+.2e, max: %+.2e' % (val.min(), val.mean(), val.max())) output.level -= 2 else: poststep_fun = _poststep_fun pb.time_update(tss.ts) state0.apply_ebc() # This is required if {'is_linear' : True} is passed to Newton. mtx = prepare_matrix(pb, state0) pb.try_presolve(mtx) tss_status = IndexedStruct() tss(state0.get_vec(pb.active_only), init_fun=init_fun, prestep_fun=prestep_fun, poststep_fun=poststep_fun, status=tss_status) output(tss_status) if options.show: plt.show() if __name__ == '__main__': main()
[ "sfepy.discrete.conditions.InitialCondition", "sfepy.base.base.IndexedStruct", "sfepy.solvers.ts_solvers.SimpleTimeSteppingSolver", "sfepy.base.base.assert_", "sfepy.discrete.Equation", "sfepy.base.base.ordered_iteritems", "sfepy.discrete.projections.project_by_component", "sfepy.discrete.conditions.EssentialBC", "sfepy.discrete.fem.Mesh.from_file", "sfepy.solvers.ls.ScipyDirect", "sfepy.discrete.conditions.Conditions", "sfepy.discrete.probes.CircleProbe", "sfepy.discrete.fem.Field.from_args", "sfepy.solvers.nls.Newton", "sfepy.discrete.Function", "sfepy.terms.Term.new", "sfepy.discrete.problem.prepare_matrix", "sfepy.discrete.Equations", "sfepy.discrete.Integral", "sfepy.discrete.fem.FEDomain", "sfepy.discrete.Problem", "sfepy.discrete.FieldVariable", "sfepy.base.base.output", "sfepy.discrete.probes.LineProbe" ]
[((648, 668), 'sys.path.append', 'sys.path.append', (['"""."""'], {}), "('.')\n", (663, 668), False, 'import sys\n'), ((1705, 1752), 'sfepy.discrete.probes.LineProbe', 'LineProbe', (['p0', 'p1', 'n_point'], {'share_geometry': '(True)'}), '(p0, p1, n_point, share_geometry=True)\n', (1714, 1752), False, 'from sfepy.discrete.probes import LineProbe, CircleProbe\n'), ((1926, 1986), 'sfepy.discrete.probes.CircleProbe', 'CircleProbe', (['centre', 'normal', 'r', 'n_point'], {'share_geometry': '(True)'}), '(centre, normal, r, n_point, share_geometry=True)\n', (1937, 1986), False, 'from sfepy.discrete.probes import LineProbe, CircleProbe\n'), ((2468, 2481), 'matplotlib.pyplot.figure', 'plt.figure', (['(1)'], {}), '(1)\n', (2478, 2481), True, 'import matplotlib.pyplot as plt\n'), ((2492, 2525), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(2)', '(2)', '(2 * ax_num + 1)'], {}), '(2, 2, 2 * ax_num + 1)\n', (2503, 2525), True, 'import matplotlib.pyplot as plt\n'), ((2853, 2886), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(2)', '(2)', '(2 * ax_num + 2)'], {}), '(2, 2, 2 * ax_num + 2)\n', (2864, 2886), True, 'import matplotlib.pyplot as plt\n'), ((2947, 2967), 'six.moves.range', 'range', (['vals.shape[1]'], {}), '(vals.shape[1])\n', (2952, 2967), False, 'from six.moves import range\n'), ((3789, 3874), 'argparse.ArgumentParser', 'ArgumentParser', ([], {'description': '__doc__', 'formatter_class': 'RawDescriptionHelpFormatter'}), '(description=__doc__, formatter_class=RawDescriptionHelpFormatter\n )\n', (3803, 3874), False, 'from argparse import ArgumentParser, RawDescriptionHelpFormatter\n'), ((5052, 5137), 'sfepy.base.base.assert_', 'assert_', (['(0 < options.order)', '"""temperature approximation order must be at least 1!"""'], {}), "(0 < options.order,\n 'temperature approximation order must be at least 1!')\n", (5059, 5137), False, 'from sfepy.base.base import assert_, output, ordered_iteritems, IndexedStruct\n'), ((5153, 5176), 'sfepy.base.base.output', 'output', (['"""using values:"""'], {}), "('using values:')\n", (5159, 5176), False, 'from sfepy.base.base import assert_, output, ordered_iteritems, IndexedStruct\n'), ((5181, 5226), 'sfepy.base.base.output', 'output', (['""" diffusivity:"""', 'options.diffusivity'], {}), "(' diffusivity:', options.diffusivity)\n", (5187, 5226), False, 'from sfepy.base.base import assert_, output, ordered_iteritems, IndexedStruct\n'), ((5231, 5273), 'sfepy.base.base.output', 'output', (['""" max. IC value:"""', 'options.ic_max'], {}), "(' max. IC value:', options.ic_max)\n", (5237, 5273), False, 'from sfepy.base.base import assert_, output, ordered_iteritems, IndexedStruct\n'), ((5278, 5334), 'sfepy.base.base.output', 'output', (['"""uniform mesh refinement level:"""', 'options.refine'], {}), "('uniform mesh refinement level:', options.refine)\n", (5284, 5334), False, 'from sfepy.base.base import assert_, output, ordered_iteritems, IndexedStruct\n'), ((5347, 5400), 'sfepy.discrete.fem.Mesh.from_file', 'Mesh.from_file', (["(data_dir + '/meshes/3d/cylinder.mesh')"], {}), "(data_dir + '/meshes/3d/cylinder.mesh')\n", (5361, 5400), False, 'from sfepy.discrete.fem import Mesh, FEDomain, Field\n'), ((5414, 5438), 'sfepy.discrete.fem.FEDomain', 'FEDomain', (['"""domain"""', 'mesh'], {}), "('domain', mesh)\n", (5422, 5438), False, 'from sfepy.discrete.fem import Mesh, FEDomain, Field\n'), ((5976, 6054), 'sfepy.discrete.fem.Field.from_args', 'Field.from_args', (['"""fu"""', 'nm.float64', '"""scalar"""', 'omega'], {'approx_order': 'options.order'}), "('fu', nm.float64, 'scalar', omega, approx_order=options.order)\n", (5991, 6054), False, 'from sfepy.discrete.fem import Mesh, FEDomain, Field\n'), ((6092, 6139), 'sfepy.discrete.FieldVariable', 'FieldVariable', (['"""T"""', '"""unknown"""', 'field'], {'history': '(1)'}), "('T', 'unknown', field, history=1)\n", (6105, 6139), False, 'from sfepy.discrete import FieldVariable, Material, Integral, Function, Equation, Equations, Problem\n'), ((6148, 6203), 'sfepy.discrete.FieldVariable', 'FieldVariable', (['"""s"""', '"""test"""', 'field'], {'primary_var_name': '"""T"""'}), "('s', 'test', field, primary_var_name='T')\n", (6161, 6203), False, 'from sfepy.discrete import FieldVariable, Material, Integral, Function, Equation, Equations, Problem\n'), ((6288, 6326), 'sfepy.discrete.Integral', 'Integral', (['"""i"""'], {'order': '(2 * options.order)'}), "('i', order=2 * options.order)\n", (6296, 6326), False, 'from sfepy.discrete import FieldVariable, Material, Integral, Function, Equation, Equations, Problem\n'), ((6335, 6412), 'sfepy.terms.Term.new', 'Term.new', (['"""dw_diffusion(m.diffusivity, s, T)"""', 'integral', 'omega'], {'m': 'm', 's': 's', 'T': 'T'}), "('dw_diffusion(m.diffusivity, s, T)', integral, omega, m=m, s=s, T=T)\n", (6343, 6412), False, 'from sfepy.terms import Term\n'), ((6440, 6502), 'sfepy.terms.Term.new', 'Term.new', (['"""dw_volume_dot(s, dT/dt)"""', 'integral', 'omega'], {'s': 's', 'T': 'T'}), "('dw_volume_dot(s, dT/dt)', integral, omega, s=s, T=T)\n", (6448, 6502), False, 'from sfepy.terms import Term\n'), ((6530, 6558), 'sfepy.discrete.Equation', 'Equation', (['"""balance"""', '(t1 + t2)'], {}), "('balance', t1 + t2)\n", (6538, 6558), False, 'from sfepy.discrete import FieldVariable, Material, Integral, Function, Equation, Equations, Problem\n'), ((6569, 6584), 'sfepy.discrete.Equations', 'Equations', (['[eq]'], {}), '([eq])\n', (6578, 6584), False, 'from sfepy.discrete import FieldVariable, Material, Integral, Function, Equation, Equations, Problem\n'), ((6624, 6661), 'sfepy.discrete.conditions.EssentialBC', 'EssentialBC', (['"""T1"""', 'left', "{'T.0': 2.0}"], {}), "('T1', left, {'T.0': 2.0})\n", (6635, 6661), False, 'from sfepy.discrete.conditions import Conditions, EssentialBC, InitialCondition\n'), ((6674, 6713), 'sfepy.discrete.conditions.EssentialBC', 'EssentialBC', (['"""T2"""', 'right', "{'T.0': -2.0}"], {}), "('T2', right, {'T.0': -2.0})\n", (6685, 6713), False, 'from sfepy.discrete.conditions import Conditions, EssentialBC, InitialCondition\n'), ((6883, 6909), 'sfepy.discrete.Function', 'Function', (['"""ic_fun"""', 'get_ic'], {}), "('ic_fun', get_ic)\n", (6891, 6909), False, 'from sfepy.discrete import FieldVariable, Material, Integral, Function, Equation, Equations, Problem\n'), ((6919, 6965), 'sfepy.discrete.conditions.InitialCondition', 'InitialCondition', (['"""ic"""', 'omega', "{'T.0': ic_fun}"], {}), "('ic', omega, {'T.0': ic_fun})\n", (6935, 6965), False, 'from sfepy.discrete.conditions import Conditions, EssentialBC, InitialCondition\n'), ((6977, 7007), 'sfepy.discrete.Problem', 'Problem', (['"""heat"""'], {'equations': 'eqs'}), "('heat', equations=eqs)\n", (6984, 7007), False, 'from sfepy.discrete import FieldVariable, Material, Integral, Function, Equation, Equations, Problem\n'), ((7206, 7221), 'sfepy.solvers.ls.ScipyDirect', 'ScipyDirect', (['{}'], {}), '({})\n', (7217, 7221), False, 'from sfepy.solvers.ls import ScipyDirect\n'), ((7239, 7254), 'sfepy.base.base.IndexedStruct', 'IndexedStruct', ([], {}), '()\n', (7252, 7254), False, 'from sfepy.base.base import assert_, output, ordered_iteritems, IndexedStruct\n'), ((7265, 7326), 'sfepy.solvers.nls.Newton', 'Newton', (["{'is_linear': True}"], {'lin_solver': 'ls', 'status': 'nls_status'}), "({'is_linear': True}, lin_solver=ls, status=nls_status)\n", (7271, 7326), False, 'from sfepy.solvers.nls import Newton\n'), ((7338, 7441), 'sfepy.solvers.ts_solvers.SimpleTimeSteppingSolver', 'SimpleTimeSteppingSolver', (["{'t0': 0.0, 't1': 100.0, 'n_step': 11}"], {'nls': 'nls', 'context': 'pb', 'verbose': '(True)'}), "({'t0': 0.0, 't1': 100.0, 'n_step': 11}, nls=nls,\n context=pb, verbose=True)\n", (7362, 7441), False, 'from sfepy.solvers.ts_solvers import SimpleTimeSteppingSolver\n'), ((9631, 9657), 'sfepy.discrete.problem.prepare_matrix', 'prepare_matrix', (['pb', 'state0'], {}), '(pb, state0)\n', (9645, 9657), False, 'from sfepy.discrete.problem import prepare_matrix\n'), ((9701, 9716), 'sfepy.base.base.IndexedStruct', 'IndexedStruct', ([], {}), '()\n', (9714, 9716), False, 'from sfepy.base.base import assert_, output, ordered_iteritems, IndexedStruct\n'), ((9868, 9886), 'sfepy.base.base.output', 'output', (['tss_status'], {}), '(tss_status)\n', (9874, 9886), False, 'from sfepy.base.base import assert_, output, ordered_iteritems, IndexedStruct\n'), ((1641, 1666), 'numpy.array', 'nm.array', (['[0.0, 0.0, 0.0]'], {}), '([0.0, 0.0, 0.0])\n', (1649, 1666), True, 'import numpy as nm\n'), ((1668, 1693), 'numpy.array', 'nm.array', (['[0.1, 0.0, 0.0]'], {}), '([0.1, 0.0, 0.0])\n', (1676, 1693), True, 'import numpy as nm\n'), ((5485, 5506), 'six.moves.range', 'range', (['options.refine'], {}), '(options.refine)\n', (5490, 5506), False, 'from six.moves import range\n'), ((7069, 7085), 'sfepy.discrete.conditions.Conditions', 'Conditions', (['[ic]'], {}), '([ic])\n', (7079, 7085), False, 'from sfepy.discrete.conditions import Conditions, EssentialBC, InitialCondition\n'), ((7676, 7763), 'sfepy.discrete.fem.Field.from_args', 'Field.from_args', (['"""gu"""', 'nm.float64', '"""vector"""', 'omega'], {'approx_order': '(options.order - 1)'}), "('gu', nm.float64, 'vector', omega, approx_order=options.\n order - 1)\n", (7691, 7763), False, 'from sfepy.discrete.fem import Mesh, FEDomain, Field\n'), ((7806, 7882), 'sfepy.discrete.FieldVariable', 'FieldVariable', (['"""dvel"""', '"""parameter"""', 'gfield'], {'primary_var_name': '"""(set-to-None)"""'}), "('dvel', 'parameter', gfield, primary_var_name='(set-to-None)')\n", (7819, 7882), False, 'from sfepy.discrete import FieldVariable, Material, Integral, Function, Equation, Equations, Problem\n'), ((7929, 8016), 'sfepy.discrete.fem.Field.from_args', 'Field.from_args', (['"""gu"""', 'nm.float64', '"""scalar"""', 'omega'], {'approx_order': '(options.order - 1)'}), "('gu', nm.float64, 'scalar', omega, approx_order=options.\n order - 1)\n", (7944, 8016), False, 'from sfepy.discrete.fem import Mesh, FEDomain, Field\n'), ((8064, 8150), 'sfepy.discrete.FieldVariable', 'FieldVariable', (['"""component"""', '"""parameter"""', 'cfield'], {'primary_var_name': '"""(set-to-None)"""'}), "('component', 'parameter', cfield, primary_var_name=\n '(set-to-None)')\n", (8077, 8150), False, 'from sfepy.discrete import FieldVariable, Material, Integral, Function, Equation, Equations, Problem\n'), ((9917, 9927), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (9925, 9927), True, 'import matplotlib.pyplot as plt\n'), ((5520, 5547), 'sfepy.base.base.output', 'output', (["('refine %d...' % ii)"], {}), "('refine %d...' % ii)\n", (5526, 5547), False, 'from sfepy.base.base import assert_, output, ordered_iteritems, IndexedStruct\n'), ((5597, 5673), 'sfepy.base.base.output', 'output', (["('... %d nodes %d elements' % (domain.shape.n_nod, domain.shape.n_el))"], {}), "('... %d nodes %d elements' % (domain.shape.n_nod, domain.shape.n_el))\n", (5603, 5673), False, 'from sfepy.base.base import assert_, output, ordered_iteritems, IndexedStruct\n'), ((7028, 7052), 'sfepy.discrete.conditions.Conditions', 'Conditions', (['[ebc1, ebc2]'], {}), '([ebc1, ebc2])\n', (7038, 7052), False, 'from sfepy.discrete.conditions import Conditions, EssentialBC, InitialCondition\n'), ((8526, 8604), 'sfepy.discrete.projections.project_by_component', 'project_by_component', (['dvel', 'dvel_qp', 'component', 'order'], {'nls_options': 'nls_options'}), '(dvel, dvel_qp, component, order, nls_options=nls_options)\n', (8546, 8604), False, 'from sfepy.discrete.projections import project_by_component\n'), ((8851, 8869), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (8867, 8869), True, 'import matplotlib.pyplot as plt\n'), ((6261, 6270), 'numpy.eye', 'nm.eye', (['(3)'], {}), '(3)\n', (6267, 6270), True, 'import numpy as nm\n'), ((6842, 6869), 'numpy.sin', 'nm.sin', (['(4 * nm.pi * x / 0.1)'], {}), '(4 * nm.pi * x / 0.1)\n', (6848, 6869), True, 'import numpy as nm\n'), ((9073, 9121), 'sfepy.base.base.output', 'output', (["('probe %d (%s):' % (ii, probes[ii].name))"], {}), "('probe %d (%s):' % (ii, probes[ii].name))\n", (9079, 9121), False, 'from sfepy.base.base import assert_, output, ordered_iteritems, IndexedStruct\n'), ((9188, 9214), 'sfepy.base.base.ordered_iteritems', 'ordered_iteritems', (['results'], {}), '(results)\n', (9205, 9214), False, 'from sfepy.base.base import assert_, output, ordered_iteritems, IndexedStruct\n'), ((9236, 9253), 'sfepy.base.base.output', 'output', (["(key + ':')"], {}), "(key + ':')\n", (9242, 9253), False, 'from sfepy.base.base import assert_, output, ordered_iteritems, IndexedStruct\n')]
from fastapi import FastAPI, Request from fastapi.responses import HTMLResponse from fastapi.templating import Jinja2Templates from geoalchemy2.types import Geometry from sqlmodel import Session, cast, select from .database import engine from .models import Country app = FastAPI() templates = Jinja2Templates(directory="geo_info_svg/templates") @app.get("/", response_class=HTMLResponse) async def test(request: Request): with Session(engine) as session: countries = session.exec( select( # type: ignore Country.name, Country.population, cast(Country.geometry, Geometry).ST_XMin(), cast(Country.geometry, Geometry).ST_YMin(), cast(Country.geometry, Geometry).ST_XMax(), cast(Country.geometry, Geometry).ST_YMax(), Country.geometry.ST_AsSVG(), ) .order_by(Country.population.desc()) # type: ignore .limit(10) ).all() return templates.TemplateResponse( "countries.html", {"request": request, "countries": countries} )
[ "sqlmodel.cast", "sqlmodel.Session" ]
[((274, 283), 'fastapi.FastAPI', 'FastAPI', ([], {}), '()\n', (281, 283), False, 'from fastapi import FastAPI, Request\n'), ((296, 347), 'fastapi.templating.Jinja2Templates', 'Jinja2Templates', ([], {'directory': '"""geo_info_svg/templates"""'}), "(directory='geo_info_svg/templates')\n", (311, 347), False, 'from fastapi.templating import Jinja2Templates\n'), ((436, 451), 'sqlmodel.Session', 'Session', (['engine'], {}), '(engine)\n', (443, 451), False, 'from sqlmodel import Session, cast, select\n'), ((616, 648), 'sqlmodel.cast', 'cast', (['Country.geometry', 'Geometry'], {}), '(Country.geometry, Geometry)\n', (620, 648), False, 'from sqlmodel import Session, cast, select\n'), ((676, 708), 'sqlmodel.cast', 'cast', (['Country.geometry', 'Geometry'], {}), '(Country.geometry, Geometry)\n', (680, 708), False, 'from sqlmodel import Session, cast, select\n'), ((736, 768), 'sqlmodel.cast', 'cast', (['Country.geometry', 'Geometry'], {}), '(Country.geometry, Geometry)\n', (740, 768), False, 'from sqlmodel import Session, cast, select\n'), ((796, 828), 'sqlmodel.cast', 'cast', (['Country.geometry', 'Geometry'], {}), '(Country.geometry, Geometry)\n', (800, 828), False, 'from sqlmodel import Session, cast, select\n')]
r""" Incompressible Stokes flow with Navier (slip) boundary conditions, flow driven by a moving wall and a small diffusion for stabilization. This example demonstrates the use of `no-penetration` and `edge direction` boundary conditions together with Navier or slip boundary conditions. Alternatively the `no-penetration` boundary conditions can be applied in a weak sense using the penalty term ``dw_non_penetration_p``. Find :math:`\ul{u}`, :math:`p` such that: .. math:: \int_{\Omega} \nu\ \nabla \ul{v} : \nabla \ul{u} - \int_{\Omega} p\ \nabla \cdot \ul{v} + \int_{\Gamma_1} \beta \ul{v} \cdot (\ul{u} - \ul{u}_d) + \int_{\Gamma_2} \beta \ul{v} \cdot \ul{u} = 0 \;, \quad \forall \ul{v} \;, \int_{\Omega} \mu \nabla q \cdot \nabla p + \int_{\Omega} q\ \nabla \cdot \ul{u} = 0 \;, \quad \forall q \;, where :math:`\nu` is the fluid viscosity, :math:`\beta` is the slip coefficient, :math:`\mu` is the (small) numerical diffusion coefficient, :math:`\Gamma_1` is the top wall that moves with the given driving velocity :math:`\ul{u}_d` and :math:`\Gamma_2` are the remaining walls. The Navier conditions are in effect on both :math:`\Gamma_1`, :math:`\Gamma_2` and are expressed by the corresponding integrals in the equations above. The `no-penetration` boundary conditions are applied on :math:`\Gamma_1`, :math:`\Gamma_2`, except the vertices of the block edges, where the `edge direction` boundary conditions are applied. The penalty term formulation is given by the following equations. Find :math:`\ul{u}`, :math:`p` such that: .. math:: \int_{\Omega} \nu\ \nabla \ul{v} : \nabla \ul{u} - \int_{\Omega} p\ \nabla \cdot \ul{v} + \int_{\Gamma_1} \beta \ul{v} \cdot (\ul{u} - \ul{u}_d) + \int_{\Gamma_2} \beta \ul{v} \cdot \ul{u} + \int_{\Gamma_1 \cup \Gamma_2} \epsilon (\ul{n} \cdot \ul{v}) (\ul{n} \cdot \ul{u}) = 0 \;, \quad \forall \ul{v} \;, \int_{\Omega} \mu \nabla q \cdot \nabla p + \int_{\Omega} q\ \nabla \cdot \ul{u} = 0 \;, \quad \forall q \;, where :math:`\epsilon` is the penalty coefficient (sufficiently large). The `no-penetration` boundary conditions are applied on :math:`\Gamma_1`, :math:`\Gamma_2`. Optionally, Dirichlet boundary conditions can be applied on the inlet in the both cases, see below. For large meshes use the ``'ls_i'`` linear solver - PETSc + petsc4py are needed in that case. Several parameters can be set using the ``--define`` option of ``simple.py``, see :func:`define()` and the examples below. Examples -------- Specify the inlet velocity and a finer mesh:: python3 simple.py examples/navier_stokes/stokes_slip_bc -d shape="(11,31,31),u_inlet=0.5" python3 resview.py -f p:p0 u:o.4:p1 u:g:f0.2:p1 -- user_block.vtk Use the penalty term formulation and einsum-based terms with the default (numpy) backend:: python3 simple.py examples/navier_stokes/stokes_slip_bc -d "mode=penalty,term_mode=einsum" python3 resview.py -f p:p0 u:o.4:p1 u:g:f0.2:p1 -- user_block.vtk Change backend to opt_einsum (needs to be installed) and use the quadratic velocity approximation order:: python3 simple.py examples/navier_stokes/stokes_slip_bc -d "u_order=2,mode=penalty,term_mode=einsum,backend=opt_einsum,optimize=auto" python3 resview.py -f p:p0 u:o.4:p1 u:g:f0.2:p1 -- user_block.vtk Note the pressure field distribution improvement w.r.t. the previous examples. IfPETSc + petsc4py are installed, try using the iterative solver to speed up the solution:: python3 simple.py examples/navier_stokes/stokes_slip_bc -d "u_order=2,ls=ls_i,mode=penalty,term_mode=einsum,backend=opt_einsum,optimize=auto" python3 resview.py -f p:p0 u:o.4:p1 u:g:f0.2:p1 -- user_block.vtk """ from __future__ import absolute_import import numpy as nm from sfepy.base.base import assert_, output from sfepy.discrete.fem.meshio import UserMeshIO from sfepy.mesh.mesh_generators import gen_block_mesh from sfepy.homogenization.utils import define_box_regions def define(dims=(3, 1, 0.5), shape=(11, 15, 15), u_order=1, refine=0, ls='ls_d', u_inlet=None, mode='lcbc', term_mode='original', backend='numpy', optimize='optimal', verbosity=0): """ Parameters ---------- dims : tuple The block domain dimensions. shape : tuple The mesh resolution: increase to improve accuracy. u_order : int The velocity field approximation order. refine : int The refinement level. ls : 'ls_d' or 'ls_i' The pre-configured linear solver name. u_inlet : float, optional The x-component of the inlet velocity. mode : 'lcbc' or 'penalty' The alternative formulations. term_mode : 'original' or 'einsum' The switch to use either the original or new experimental einsum-based terms. backend : str The einsum mode backend. optimize : str The einsum mode optimization (backend dependent). verbosity : 0, 1, 2, 3 The verbosity level of einsum-based terms. """ output('dims: {}, shape: {}, u_order: {}, refine: {}, u_inlet: {}' .format(dims, shape, u_order, refine, u_inlet)) output('linear solver: {}'.format(ls)) output('mode: {}, term_mode: {}'.format(mode, term_mode)) if term_mode == 'einsum': output('backend: {}, optimize: {}, verbosity: {}' .format(backend, optimize, verbosity)) assert_(mode in {'lcbc', 'penalty'}) assert_(term_mode in {'original', 'einsum'}) if u_order > 1: assert_(mode == 'penalty', msg='set mode=penalty to use u_order > 1!') dims = nm.array(dims, dtype=nm.float64) shape = nm.array(shape, dtype=nm.int32) def mesh_hook(mesh, mode): """ Generate the block mesh. """ if mode == 'read': mesh = gen_block_mesh(dims, shape, [0, 0, 0], name='user_block', verbose=False) return mesh elif mode == 'write': pass filename_mesh = UserMeshIO(mesh_hook) regions = define_box_regions(3, 0.5 * dims) regions.update({ 'Omega' : 'all', 'Edges_v' : ("""(r.Near *v r.Bottom) +v (r.Bottom *v r.Far) +v (r.Far *v r.Top) +v (r.Top *v r.Near)""", 'edge'), 'Gamma1_f' : ('copy r.Top', 'face'), 'Gamma2_f' : ('r.Near +v r.Bottom +v r.Far', 'face'), 'Gamma_f' : ('r.Gamma1_f +v r.Gamma2_f', 'face'), 'Gamma_v' : ('r.Gamma_f -v r.Edges_v', 'face'), 'Inlet_f' : ('r.Left -v r.Gamma_f', 'face'), }) fields = { 'velocity' : ('real', 3, 'Omega', u_order), 'pressure' : ('real', 1, 'Omega', 1), } def get_u_d(ts, coors, region=None): """ Given stator velocity. """ out = nm.zeros_like(coors) out[:] = [1.0, 1.0, 0.0] return out functions = { 'get_u_d' : (get_u_d,), } variables = { 'u' : ('unknown field', 'velocity', 0), 'v' : ('test field', 'velocity', 'u'), 'u_d' : ('parameter field', 'velocity', {'setter' : 'get_u_d'}), 'p' : ('unknown field', 'pressure', 1), 'q' : ('test field', 'pressure', 'p'), } materials = { 'm' : ({ 'nu' : 1e-3, 'beta' : 1e-2, 'mu' : 1e-10, },), } ebcs = { } if u_inlet is not None: ebcs['inlet'] = ('Inlet_f', {'u.0' : u_inlet, 'u.[1, 2]' : 0.0}) if mode == 'lcbc': lcbcs = { 'walls' : ('Gamma_v', {'u.all' : None}, None, 'no_penetration', 'normals_Gamma.vtk'), 'edges' : ('Edges_v', [(-0.5, 1.5)], {'u.all' : None}, None, 'edge_direction', 'edges_Edges.vtk'), } if term_mode == 'original': equations = { 'balance' : """dw_div_grad.5.Omega(m.nu, v, u) - dw_stokes.5.Omega(v, p) + dw_dot.5.Gamma1_f(m.beta, v, u) + dw_dot.5.Gamma2_f(m.beta, v, u) = + dw_dot.5.Gamma1_f(m.beta, v, u_d)""", 'incompressibility' : """dw_laplace.5.Omega(m.mu, q, p) + dw_stokes.5.Omega(u, q) = 0""", } else: equations = { 'balance' : """de_div_grad.5.Omega(m.nu, v, u) - de_stokes.5.Omega(v, p) + de_dot.5.Gamma1_f(m.beta, v, u) + de_dot.5.Gamma2_f(m.beta, v, u) = + de_dot.5.Gamma1_f(m.beta, v, u_d)""", 'incompressibility' : """de_laplace.5.Omega(m.mu, q, p) + de_stokes.5.Omega(u, q) = 0""", } else: materials['m'][0]['np_eps'] = 1e3 if term_mode == 'original': equations = { 'balance' : """dw_div_grad.5.Omega(m.nu, v, u) - dw_stokes.5.Omega(v, p) + dw_dot.5.Gamma1_f(m.beta, v, u) + dw_dot.5.Gamma2_f(m.beta, v, u) + dw_non_penetration_p.5.Gamma1_f(m.np_eps, v, u) + dw_non_penetration_p.5.Gamma2_f(m.np_eps, v, u) = + dw_dot.5.Gamma1_f(m.beta, v, u_d)""", 'incompressibility' : """dw_laplace.5.Omega(m.mu, q, p) + dw_stokes.5.Omega(u, q) = 0""", } else: equations = { 'balance' : """de_div_grad.5.Omega(m.nu, v, u) - de_stokes.5.Omega(v, p) + de_dot.5.Gamma1_f(m.beta, v, u) + de_dot.5.Gamma2_f(m.beta, v, u) + de_non_penetration_p.5.Gamma1_f(m.np_eps, v, u) + de_non_penetration_p.5.Gamma2_f(m.np_eps, v, u) = + de_dot.5.Gamma1_f(m.beta, v, u_d)""", 'incompressibility' : """de_laplace.5.Omega(m.mu, q, p) + de_stokes.5.Omega(u, q) = 0""", } solvers = { 'ls_d' : ('ls.auto_direct', {}), 'ls_i' : ('ls.petsc', { 'method' : 'bcgsl', # ksp_type 'precond' : 'bjacobi', # pc_type 'sub_precond' : 'ilu', # sub_pc_type 'eps_a' : 0.0, # abstol 'eps_r' : 1e-12, # rtol 'eps_d' : 1e10, # Divergence tolerance. 'i_max' : 200, # maxits }), 'newton' : ('nls.newton', { 'i_max' : 1, 'eps_a' : 1e-10, }), } options = { 'nls' : 'newton', 'ls' : ls, 'eterm': { 'verbosity' : verbosity, 'backend_args' : { 'backend' : backend, 'optimize' : optimize, 'layout' : None, }, }, 'refinement_level' : refine, } return locals()
[ "sfepy.base.base.assert_", "sfepy.discrete.fem.meshio.UserMeshIO", "sfepy.homogenization.utils.define_box_regions", "sfepy.mesh.mesh_generators.gen_block_mesh" ]
[((5428, 5464), 'sfepy.base.base.assert_', 'assert_', (["(mode in {'lcbc', 'penalty'})"], {}), "(mode in {'lcbc', 'penalty'})\n", (5435, 5464), False, 'from sfepy.base.base import assert_, output\n'), ((5469, 5513), 'sfepy.base.base.assert_', 'assert_', (["(term_mode in {'original', 'einsum'})"], {}), "(term_mode in {'original', 'einsum'})\n", (5476, 5513), False, 'from sfepy.base.base import assert_, output\n'), ((5624, 5656), 'numpy.array', 'nm.array', (['dims'], {'dtype': 'nm.float64'}), '(dims, dtype=nm.float64)\n', (5632, 5656), True, 'import numpy as nm\n'), ((5669, 5700), 'numpy.array', 'nm.array', (['shape'], {'dtype': 'nm.int32'}), '(shape, dtype=nm.int32)\n', (5677, 5700), True, 'import numpy as nm\n'), ((6036, 6057), 'sfepy.discrete.fem.meshio.UserMeshIO', 'UserMeshIO', (['mesh_hook'], {}), '(mesh_hook)\n', (6046, 6057), False, 'from sfepy.discrete.fem.meshio import UserMeshIO\n'), ((6073, 6106), 'sfepy.homogenization.utils.define_box_regions', 'define_box_regions', (['(3)', '(0.5 * dims)'], {}), '(3, 0.5 * dims)\n', (6091, 6106), False, 'from sfepy.homogenization.utils import define_box_regions\n'), ((5542, 5612), 'sfepy.base.base.assert_', 'assert_', (["(mode == 'penalty')"], {'msg': '"""set mode=penalty to use u_order > 1!"""'}), "(mode == 'penalty', msg='set mode=penalty to use u_order > 1!')\n", (5549, 5612), False, 'from sfepy.base.base import assert_, output\n'), ((6859, 6879), 'numpy.zeros_like', 'nm.zeros_like', (['coors'], {}), '(coors)\n', (6872, 6879), True, 'import numpy as nm\n'), ((5836, 5908), 'sfepy.mesh.mesh_generators.gen_block_mesh', 'gen_block_mesh', (['dims', 'shape', '[0, 0, 0]'], {'name': '"""user_block"""', 'verbose': '(False)'}), "(dims, shape, [0, 0, 0], name='user_block', verbose=False)\n", (5850, 5908), False, 'from sfepy.mesh.mesh_generators import gen_block_mesh\n')]
#!/usr/bin/env python3 # -*- coding:utf-8 -*- # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. import megengine as mge import megengine.functional as F import megengine.module as M __all__ = ["fuse_conv_and_bn", "fuse_model", "replace_module"] def fuse_conv_and_bn(conv, bn): # Fuse convolution and batchnorm layers https://tehnokv.com/posts/fusing-batchnorm-and-conv/ fusedconv = M.Conv2d( conv.in_channels, conv.out_channels, kernel_size=conv.kernel_size, stride=conv.stride, padding=conv.padding, groups=conv.groups, bias=True, ) # fused_conv.weight = bn.weight / running_var * conv.weight w_conv = conv.weight.reshape(conv.out_channels, -1) factor = (bn.weight / F.sqrt(bn.eps + bn.running_var)).reshape(-1) # diag_factor = diag(factor) fusedconv.weight = mge.Parameter( (factor.reshape(-1, 1) * w_conv).reshape(fusedconv.weight.shape) ) # fused_conv.bias = bn.bias + (conv.bias - running_mean) * bn.weight / runing_var conv_bias = F.zeros(bn.running_mean.shape) if conv.bias is None else conv.bias fuse_bias = bn.bias + (conv_bias - bn.running_mean) * factor.reshape(1, -1, 1, 1) fusedconv.bias = mge.Parameter(fuse_bias) return fusedconv def fuse_model(model): from yolox.models.network_blocks import BaseConv for m in model.modules(): if type(m) is BaseConv and hasattr(m, "bn"): m.conv = fuse_conv_and_bn(m.conv, m.bn) # update conv delattr(m, "bn") # remove batchnorm m.forward = m.fuseforward # update forward return model def replace_module(module, replaced_module_type, new_module_type, replace_func=None): """ Replace given type in module to a new type. mostly used in deploy. Args: module (nn.Module): model to apply replace operation. replaced_module_type (Type): module type to be replaced. new_module_type (Type) replace_func (function): python function to describe replace logic. Defalut value None. Returns: model (nn.Module): module that already been replaced. """ def default_replace_func(replaced_module_type, new_module_type): return new_module_type() if replace_func is None: replace_func = default_replace_func model = module if isinstance(module, replaced_module_type): model = replace_func(replaced_module_type, new_module_type) else: # recurrsively replace for name, child in module.named_children(): new_child = replace_module(child, replaced_module_type, new_module_type) if new_child is not child: # child is already replaced model.add_module(name, new_child) return model
[ "megengine.functional.zeros", "megengine.Parameter", "megengine.functional.sqrt", "megengine.module.Conv2d" ]
[((403, 555), 'megengine.module.Conv2d', 'M.Conv2d', (['conv.in_channels', 'conv.out_channels'], {'kernel_size': 'conv.kernel_size', 'stride': 'conv.stride', 'padding': 'conv.padding', 'groups': 'conv.groups', 'bias': '(True)'}), '(conv.in_channels, conv.out_channels, kernel_size=conv.kernel_size,\n stride=conv.stride, padding=conv.padding, groups=conv.groups, bias=True)\n', (411, 555), True, 'import megengine.module as M\n'), ((1234, 1258), 'megengine.Parameter', 'mge.Parameter', (['fuse_bias'], {}), '(fuse_bias)\n', (1247, 1258), True, 'import megengine as mge\n'), ((1060, 1090), 'megengine.functional.zeros', 'F.zeros', (['bn.running_mean.shape'], {}), '(bn.running_mean.shape)\n', (1067, 1090), True, 'import megengine.functional as F\n'), ((762, 793), 'megengine.functional.sqrt', 'F.sqrt', (['(bn.eps + bn.running_var)'], {}), '(bn.eps + bn.running_var)\n', (768, 793), True, 'import megengine.functional as F\n')]
from sqlmodel import Session, select from config.Database import Database class UserDatabase(Database): def __init__(self) -> None: super(UserDatabase, self).__init__() async def get_by_params(self, object: object, email: str): with Session(self._engine) as session: statement = select(object).where(object.email == email) return session.exec(statement).first()
[ "sqlmodel.Session", "sqlmodel.select" ]
[((259, 280), 'sqlmodel.Session', 'Session', (['self._engine'], {}), '(self._engine)\n', (266, 280), False, 'from sqlmodel import Session, select\n'), ((317, 331), 'sqlmodel.select', 'select', (['object'], {}), '(object)\n', (323, 331), False, 'from sqlmodel import Session, select\n')]
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. from typing import Tuple, Union import numpy as np import megengine._internal as mgb from ... import module as Float from ...core import Parameter from ...functional import conv_bias_activation from ..qat import conv as QAT from .module import QuantizedModule class Conv2d(Float.Conv2d, QuantizedModule): r"""quantized version of :class:`~.qat.conv.Conv2d`.""" r"""Applies a 2D convolution over an quantized input tensor, inference only. The parameter is same with :class: `~.Conv2d` """ def __init__( self, in_channels: int, out_channels: int, kernel_size: Union[int, Tuple[int, int]], stride: Union[int, Tuple[int, int]] = 1, padding: Union[int, Tuple[int, int]] = 0, dilation: Union[int, Tuple[int, int]] = 1, groups: int = 1, conv_mode: str = "CROSS_CORRELATION", compute_mode: str = "DEFAULT", dtype=None, ): super().__init__( in_channels, out_channels, kernel_size, stride, padding, dilation, groups, True, conv_mode, compute_mode, ) self.output_dtype = dtype def calc_conv_quantized(self, inp, nonlinear_mode="IDENTITY"): inp_scale = mgb.dtype.get_scale(inp.dtype) w_scale = mgb.dtype.get_scale(self.weight.dtype) bias_scale = inp_scale * w_scale return conv_bias_activation( inp, self.weight, self.bias.astype(mgb.dtype.qint32(bias_scale)), self.output_dtype, self.stride, self.padding, self.dilation, self.groups, conv_mode=self.conv_mode, compute_mode=self.compute_mode, nonlinear_mode=nonlinear_mode, ) @classmethod def from_qat_module(cls, qat_module: QAT.Conv2d): r""" return a :class:`~.QuantizedModule` instance converted from a :class:`~.QATModule` instance. """ output_dtype = qat_module.get_activation_dtype() qconv = cls( qat_module.in_channels, qat_module.out_channels, qat_module.kernel_size, qat_module.stride, qat_module.padding, qat_module.dilation, qat_module.groups, dtype=output_dtype, ) weight = qat_module.weight.astype(qat_module.get_weight_dtype()) qconv.weight = Parameter(weight.numpy()) if qat_module.bias is not None: qconv.bias = Parameter(qat_module.bias.numpy()) else: qconv.bias = Parameter( np.zeros(qat_module._infer_bias_shape(), dtype=np.float32) ) return qconv def forward(self, inp): return self.calc_conv_quantized(inp, nonlinear_mode="IDENTITY") class ConvRelu2d(Conv2d): r"""quantized version of :class:`~.qat.conv.ConvRelu2d`.""" def forward(self, inp): return self.calc_conv_quantized(inp, nonlinear_mode="RELU")
[ "megengine._internal.dtype.get_scale", "megengine._internal.dtype.qint32" ]
[((1670, 1700), 'megengine._internal.dtype.get_scale', 'mgb.dtype.get_scale', (['inp.dtype'], {}), '(inp.dtype)\n', (1689, 1700), True, 'import megengine._internal as mgb\n'), ((1719, 1757), 'megengine._internal.dtype.get_scale', 'mgb.dtype.get_scale', (['self.weight.dtype'], {}), '(self.weight.dtype)\n', (1738, 1757), True, 'import megengine._internal as mgb\n'), ((1907, 1935), 'megengine._internal.dtype.qint32', 'mgb.dtype.qint32', (['bias_scale'], {}), '(bias_scale)\n', (1923, 1935), True, 'import megengine._internal as mgb\n')]
# Copyright 2021 Modelyst LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from string import ascii_lowercase from typing import Any, Dict, Tuple, Type, TypeVar from uuid import UUID from hypothesis import strategies as st from hypothesis.strategies._internal.strategies import SearchStrategy from sqlalchemy.orm import registry from sqlmodel import Field from dbgen.core.entity import BaseEntity, EntityMetaclass protected_words = {"mro"} uni_text = lambda x: st.text(ascii_lowercase, min_size=x) non_private_attr = uni_text(1).filter(lambda x: x[0] != "_").filter(lambda x: x not in protected_words) pydantic_type_strat = st.sampled_from((str, float, bool, int)) id_field = Field( default=None, primary_key=True, sa_column_kwargs={"autoincrement": False, "unique": True}, ) fk_field = lambda x: Field(default=None, foreign_key=x) ID_TYPE = UUID reserved_words = {'hex', 'uuid', 'hash'} @st.composite def example_entity( draw, class_name: str = None, fks: Dict[str, str] = None, attrs: Dict[str, Tuple[type, Any]] = None, draw_attrs: bool = True, registry_: registry = None, ) -> SearchStrategy[Type[BaseEntity]]: class_name = class_name or draw(uni_text(1)) if fks is None: fks = draw( st.dictionaries( non_private_attr.filter( lambda x: attrs and x not in attrs and x != 'id' and x not in reserved_words ), non_private_attr, ) ) annotations: Dict[str, type] = {"id": UUID} if draw_attrs: annotations.update( draw( st.dictionaries( non_private_attr.filter(lambda x: x not in fks and x not in reserved_words), pydantic_type_strat, min_size=1, ) ) ) added_attrs = {"id": id_field} for fk_name, fk_col_reference in fks.items(): annotations[fk_name] = UUID added_attrs[fk_name] = fk_field(fk_col_reference) attrs = attrs or {} for attr_name, attr_dets in attrs.items(): if len(attr_dets) == 1: type_ = attr_dets[0] else: type_, default = attr_dets added_attrs[attr_name] = default annotations[attr_name] = type_ identifying = draw(st.sets(st.sampled_from(list(annotations.keys())))) data = { "__annotations__": annotations, "__identifying__": identifying, "__module__": "tests.strategies.entity", "__qualname__": class_name, "__tablename__": f"table_{class_name}", **added_attrs, } new_class = EntityMetaclass( class_name, (BaseEntity,), data, table=True, registry=registry_ or registry(), force_validation=True, ) return new_class T = TypeVar("T") def fill_required_fields( entity_class: Type[BaseEntity], default_values={}, ): required_fields = [ (name, default_values.get(val.type_, val.type_)) for name, val in entity_class.__fields__.items() if val.required ] return entity_class.validate({x: y() for x, y in required_fields})
[ "sqlmodel.Field" ]
[((1149, 1189), 'hypothesis.strategies.sampled_from', 'st.sampled_from', (['(str, float, bool, int)'], {}), '((str, float, bool, int))\n', (1164, 1189), True, 'from hypothesis import strategies as st\n'), ((1202, 1303), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'primary_key': '(True)', 'sa_column_kwargs': "{'autoincrement': False, 'unique': True}"}), "(default=None, primary_key=True, sa_column_kwargs={'autoincrement': \n False, 'unique': True})\n", (1207, 1303), False, 'from sqlmodel import Field\n'), ((3375, 3387), 'typing.TypeVar', 'TypeVar', (['"""T"""'], {}), "('T')\n", (3382, 3387), False, 'from typing import Any, Dict, Tuple, Type, TypeVar\n'), ((986, 1022), 'hypothesis.strategies.text', 'st.text', (['ascii_lowercase'], {'min_size': 'x'}), '(ascii_lowercase, min_size=x)\n', (993, 1022), True, 'from hypothesis import strategies as st\n'), ((1335, 1369), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'foreign_key': 'x'}), '(default=None, foreign_key=x)\n', (1340, 1369), False, 'from sqlmodel import Field\n'), ((3299, 3309), 'sqlalchemy.orm.registry', 'registry', ([], {}), '()\n', (3307, 3309), False, 'from sqlalchemy.orm import registry\n')]
from enum import Enum from typing import Optional from sqlmodel import Field, SQLModel class ExtensionType(str, Enum): DOCKER = 'DOCKER' WEBHOOK = 'WEBHOOK' BINARY = 'BINARY' class Extension(SQLModel, table=True): id: Optional[int] = Field(default=None, primary_key=True) # condition is a small piece of code that can be eval by the interpreter # i.e., ext-server will run if(eval(condition)): ... # in the condition, the extension has access to the event object, i.e., they can access as e.event_type=='build_image' condition: str extension_type: ExtensionType # ext-server will create new process to execute the entrypoint. For different types, different format of entrypoint will be needed. # 1. for Docker image, it should be like: docker exec xxx # 2. for webhook, it should be a url address. # 3. for a local binary, it should be a shell command entrypoint: str remote_url: Optional[str] vendor: str name: str
[ "sqlmodel.Field" ]
[((254, 291), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'primary_key': '(True)'}), '(default=None, primary_key=True)\n', (259, 291), False, 'from sqlmodel import Field, SQLModel\n')]
from __future__ import absolute_import import numpy as nm from sfepy.base.base import output, assert_, get_default, Struct from sfepy.homogenization.coefs_base import CorrSolution, \ TCorrectorsViaPressureEVP, CorrMiniApp from sfepy.solvers.ts import TimeStepper from six.moves import range class PressureRHSVector( CorrMiniApp ): def __call__( self, problem = None, data = None ): problem = get_default( problem, self.problem ) problem.select_variables( self.variables ) problem.set_equations( self.equations ) problem.select_bcs(ebc_names = self.ebcs, epbc_names = self.epbcs, lcbc_names=self.get('lcbcs', [])) state = problem.create_state() state.apply_ebc() eqs = problem.equations eqs.set_variables_from_state(state.vec) vec = eqs.create_stripped_state_vector() eqs.time_update_materials(problem.get_timestepper()) eqs.evaluate(mode='weak', dw_mode='vector', asm_obj=vec) return vec class TCorrectorsRSViaPressureEVP( TCorrectorsViaPressureEVP ): def __call__( self, problem = None, data = None ): """data: corrs_rs, evp""" problem = get_default( problem, self.problem ) self.init_solvers(problem) ts = problem.get_timestepper() corrs, evp = [data[ii] for ii in self.requires] assert_( evp.ebcs == self.ebcs ) assert_( evp.epbcs == self.epbcs ) dim = problem.get_dim() self.setup_equations(self.equations) solve = self.compute_correctors states = nm.zeros((dim, dim), dtype=nm.object) clist = [] for ir in range( dim ): for ic in range( dim ): states[ir,ic] = solve(evp, -1.0, corrs.states[ir,ic], ts) clist.append((ir, ic)) corr_sol = CorrSolution(name=self.name, states=states, n_step=ts.n_step, components=clist) self.save(corr_sol, problem, ts) return corr_sol class TCorrectorsPressureViaPressureEVP( TCorrectorsViaPressureEVP ): def __call__( self, problem = None, data = None, save_hook = None ): """data: corrs_pressure, evp, optionally vec_g""" problem = get_default( problem, self.problem ) self.init_solvers(problem) ts = problem.get_timestepper() corrs, evp = [data[ii] for ii in self.requires[:2]] if len(self.requires) == 3: vec_g = data[self.requires[2]] else: vec_g = None assert_( evp.ebcs == self.ebcs ) assert_( evp.epbcs == self.epbcs ) self.setup_equations(self.equations) solve = self.compute_correctors state = solve(evp, 1.0, corrs.state, ts, vec_g=vec_g) corr_sol = CorrSolution(name=self.name, state=state, n_step=ts.n_step) self.save(corr_sol, problem, ts) return corr_sol
[ "sfepy.homogenization.coefs_base.CorrSolution", "sfepy.base.base.get_default", "sfepy.base.base.assert_" ]
[((416, 450), 'sfepy.base.base.get_default', 'get_default', (['problem', 'self.problem'], {}), '(problem, self.problem)\n', (427, 450), False, 'from sfepy.base.base import output, assert_, get_default, Struct\n'), ((1204, 1238), 'sfepy.base.base.get_default', 'get_default', (['problem', 'self.problem'], {}), '(problem, self.problem)\n', (1215, 1238), False, 'from sfepy.base.base import output, assert_, get_default, Struct\n'), ((1381, 1411), 'sfepy.base.base.assert_', 'assert_', (['(evp.ebcs == self.ebcs)'], {}), '(evp.ebcs == self.ebcs)\n', (1388, 1411), False, 'from sfepy.base.base import output, assert_, get_default, Struct\n'), ((1422, 1454), 'sfepy.base.base.assert_', 'assert_', (['(evp.epbcs == self.epbcs)'], {}), '(evp.epbcs == self.epbcs)\n', (1429, 1454), False, 'from sfepy.base.base import output, assert_, get_default, Struct\n'), ((1594, 1631), 'numpy.zeros', 'nm.zeros', (['(dim, dim)'], {'dtype': 'nm.object'}), '((dim, dim), dtype=nm.object)\n', (1602, 1631), True, 'import numpy as nm\n'), ((1669, 1679), 'six.moves.range', 'range', (['dim'], {}), '(dim)\n', (1674, 1679), False, 'from six.moves import range\n'), ((1852, 1931), 'sfepy.homogenization.coefs_base.CorrSolution', 'CorrSolution', ([], {'name': 'self.name', 'states': 'states', 'n_step': 'ts.n_step', 'components': 'clist'}), '(name=self.name, states=states, n_step=ts.n_step, components=clist)\n', (1864, 1931), False, 'from sfepy.homogenization.coefs_base import CorrSolution, TCorrectorsViaPressureEVP, CorrMiniApp\n'), ((2317, 2351), 'sfepy.base.base.get_default', 'get_default', (['problem', 'self.problem'], {}), '(problem, self.problem)\n', (2328, 2351), False, 'from sfepy.base.base import output, assert_, get_default, Struct\n'), ((2616, 2646), 'sfepy.base.base.assert_', 'assert_', (['(evp.ebcs == self.ebcs)'], {}), '(evp.ebcs == self.ebcs)\n', (2623, 2646), False, 'from sfepy.base.base import output, assert_, get_default, Struct\n'), ((2657, 2689), 'sfepy.base.base.assert_', 'assert_', (['(evp.epbcs == self.epbcs)'], {}), '(evp.epbcs == self.epbcs)\n', (2664, 2689), False, 'from sfepy.base.base import output, assert_, get_default, Struct\n'), ((2861, 2920), 'sfepy.homogenization.coefs_base.CorrSolution', 'CorrSolution', ([], {'name': 'self.name', 'state': 'state', 'n_step': 'ts.n_step'}), '(name=self.name, state=state, n_step=ts.n_step)\n', (2873, 2920), False, 'from sfepy.homogenization.coefs_base import CorrSolution, TCorrectorsViaPressureEVP, CorrMiniApp\n'), ((1705, 1715), 'six.moves.range', 'range', (['dim'], {}), '(dim)\n', (1710, 1715), False, 'from six.moves import range\n')]
import numpy as nm from sfepy.base.base import assert_ from sfepy.linalg import dot_sequences from sfepy.terms.terms import Term, terms class ZeroTerm(Term): r""" A do-nothing term useful for introducing additional variables into the equations. :Definition: .. math:: 0 :Arguments: - virtual : :math:`q` or :math:`\ul{v}` - state : :math:`p` or :math:`\ul{u}` """ name = 'dw_zero' arg_types = ('virtual', 'state') arg_shapes = {'virtual' : ('N', None), 'state' : 'N'} @staticmethod def function(out): out.fill(0.0) return 0 def get_fargs(self, vvar, svar, mode=None, term_mode=None, diff_var=None, **kwargs): return () class IntegrateVolumeTerm(Term): r""" Evaluate (weighted) variable in a volume region. Depending on evaluation mode, integrate a variable over a volume region ('eval'), average it in elements ('el_avg') or interpolate it into volume quadrature points ('qp'). Supports 'eval', 'el_avg' and 'qp' evaluation modes. :Definition: .. math:: \int_\Omega y \mbox{ , } \int_\Omega \ul{y} \\ \int_\Omega c y \mbox{ , } \int_\Omega c \ul{y} .. math:: \mbox{vector for } K \from \Ical_h: \int_{T_K} y / \int_{T_K} 1 \mbox{ , } \int_{T_K} \ul{y} / \int_{T_K} 1 \\ \mbox{vector for } K \from \Ical_h: \int_{T_K} c y / \int_{T_K} 1 \mbox{ , } \int_{T_K} c \ul{y} / \int_{T_K} 1 .. math:: y|_{qp} \mbox{ , } \ul{y}|_{qp} \\ c y|_{qp} \mbox{ , } c \ul{y}|_{qp} :Arguments: - material : :math:`c` (optional) - parameter : :math:`y` or :math:`\ul{y}` """ name = 'ev_volume_integrate' arg_types = ('opt_material', 'parameter') arg_shapes = [{'opt_material' : '1, 1', 'parameter' : 'N'}, {'opt_material' : None}] @staticmethod def function(out, val_qp, vg, fmode): if fmode == 2: out[:] = val_qp status = 0 else: status = vg.integrate(out, val_qp, fmode) return status def get_fargs(self, material, parameter, mode=None, term_mode=None, diff_var=None, **kwargs): vg, _ = self.get_mapping(parameter) val_qp = self.get(parameter, 'val') if material is not None: val_qp *= material fmode = {'eval' : 0, 'el_avg' : 1, 'qp' : 2}.get(mode, 1) return val_qp, vg, fmode def get_eval_shape(self, material, parameter, mode=None, term_mode=None, diff_var=None, **kwargs): n_el, n_qp, dim, n_en, n_c = self.get_data_shape(parameter) if mode != 'qp': n_qp = 1 return (n_el, n_qp, n_c, 1), parameter.dtype class IntegrateSurfaceTerm(Term): r""" Evaluate (weighted) variable in a surface region. Depending on evaluation mode, integrate a variable over a surface region ('eval'), average it in element faces ('el_avg') or interpolate it into surface quadrature points ('qp'). For vector variables, setting `term_mode` to `'flux'` leads to computing corresponding fluxes for the three modes instead. Supports 'eval', 'el_avg' and 'qp' evaluation modes. :Definition: .. math:: \int_\Gamma y \mbox{ , } \int_\Gamma \ul{y} \mbox{ , } \int_\Gamma \ul{y} \cdot \ul{n} \\ \int_\Gamma c y \mbox{ , } \int_\Gamma c \ul{y} \mbox{ , } \int_\Gamma c \ul{y} \cdot \ul{n} \mbox{ flux } .. math:: \mbox{vector for } K \from \Ical_h: \int_{T_K} y / \int_{T_K} 1 \mbox{ , } \int_{T_K} \ul{y} / \int_{T_K} 1 \mbox{ , } \int_{T_K} (\ul{y} \cdot \ul{n}) / \int_{T_K} 1 \\ \mbox{vector for } K \from \Ical_h: \int_{T_K} c y / \int_{T_K} 1 \mbox{ , } \int_{T_K} c \ul{y} / \int_{T_K} 1 \mbox{ , } \int_{T_K} (c \ul{y} \cdot \ul{n}) / \int_{T_K} 1 .. math:: y|_{qp} \mbox{ , } \ul{y}|_{qp} \mbox{ , } (\ul{y} \cdot \ul{n})|_{qp} \mbox{ flux } \\ c y|_{qp} \mbox{ , } c \ul{y}|_{qp} \mbox{ , } (c \ul{y} \cdot \ul{n})|_{qp} \mbox{ flux } :Arguments: - material : :math:`c` (optional) - parameter : :math:`y` or :math:`\ul{y}` """ name = 'ev_surface_integrate' arg_types = ('opt_material', 'parameter') arg_shapes = [{'opt_material' : '1, 1', 'parameter' : 'N'}, {'opt_material' : None}] integration = 'surface' @staticmethod def function(out, val_qp, sg, fmode): if fmode == 2: out[:] = val_qp status = 0 elif fmode == 5: normal = sg.normal out[:] = dot_sequences(val_qp, normal) status = 0 else: status = sg.integrate(out, val_qp, fmode) return status def get_fargs(self, material, parameter, mode=None, term_mode=None, diff_var=None, **kwargs): sg, _ = self.get_mapping(parameter) val_qp = self.get(parameter, 'val') if material is not None: val_qp *= material fmode = {'eval' : 0, 'el_avg' : 1, 'qp' : 2}.get(mode, 1) if term_mode == 'flux': n_fa, n_qp, dim, n_fn, n_c = self.get_data_shape(parameter) if n_c == dim: fmode += 3 return val_qp, sg, fmode def get_eval_shape(self, material, parameter, mode=None, term_mode=None, diff_var=None, **kwargs): n_fa, n_qp, dim, n_fn, n_c = self.get_data_shape(parameter) if mode != 'qp': n_qp = 1 if term_mode == 'flux': n_c = 1 return (n_fa, n_qp, n_c, 1), parameter.dtype class IntegrateVolumeOperatorTerm(Term): r""" Volume integral of a test function weighted by a scalar function :math:`c`. :Definition: .. math:: \int_\Omega q \mbox{ or } \int_\Omega c q :Arguments: - material : :math:`c` (optional) - virtual : :math:`q` """ name = 'dw_volume_integrate' arg_types = ('opt_material', 'virtual') arg_shapes = [{'opt_material' : '1, 1', 'virtual' : (1, None)}, {'opt_material' : None}] @staticmethod def function(out, material, bf, geo): bf_t = nm.tile(bf.transpose((0, 1, 3, 2)), (out.shape[0], 1, 1, 1)) bf_t = nm.ascontiguousarray(bf_t) if material is not None: status = geo.integrate(out, material * bf_t) else: status = geo.integrate(out, bf_t) return status def get_fargs(self, material, virtual, mode=None, term_mode=None, diff_var=None, **kwargs): assert_(virtual.n_components == 1) geo, _ = self.get_mapping(virtual) return material, geo.bf, geo class IntegrateSurfaceOperatorTerm(IntegrateVolumeOperatorTerm): r""" Surface integral of a test function weighted by a scalar function :math:`c`. :Definition: .. math:: \int_{\Gamma} q \mbox{ or } \int_\Gamma c q :Arguments: - material : :math:`c` (optional) - virtual : :math:`q` """ name = 'dw_surface_integrate' arg_types = ('opt_material', 'virtual') arg_shapes = [{'opt_material' : '1, 1', 'virtual' : (1, None)}, {'opt_material' : None}] integration = 'surface' class VolumeTerm(Term): r""" Volume of a domain. Uses approximation of the parameter variable. :Definition: .. math:: \int_\Omega 1 :Arguments: - parameter : any variable """ name = 'd_volume' arg_types = ('parameter',) arg_shapes = [{'parameter' : 'N'}] @staticmethod def function(out, geo): out[:] = geo.volume return 0 def get_fargs(self, parameter, mode=None, term_mode=None, diff_var=None, **kwargs): geo, _ = self.get_mapping(parameter) return geo, def get_eval_shape(self, parameter, mode=None, term_mode=None, diff_var=None, **kwargs): n_cell, n_qp, dim, n_n, n_c = self.get_data_shape(parameter) return (n_cell, 1, 1, 1), parameter.dtype class SurfaceTerm(VolumeTerm): r""" Surface of a domain. Uses approximation of the parameter variable. :Definition: .. math:: \int_\Gamma 1 :Arguments: - parameter : any variable """ name = 'd_surface' arg_types = ('parameter',) arg_shapes = {'parameter' : 'N'} integration = 'surface' class VolumeSurfaceTerm(Term): r""" Volume of a :math:`D`-dimensional domain, using a surface integral. Uses approximation of the parameter variable. :Definition: .. math:: 1 / D \int_\Gamma \ul{x} \cdot \ul{n} :Arguments: - parameter : any variable """ name = 'd_volume_surface' arg_types = ('parameter',) arg_shapes = {'parameter' : 'N'} integration = 'surface' function = staticmethod(terms.d_volume_surface) def get_fargs(self, parameter, mode=None, term_mode=None, diff_var=None, **kwargs): sg, _ = self.get_mapping(parameter) sd = parameter.field.surface_data[self.region.name] coor = parameter.field.get_coor() return coor, sg, sd.econn.copy() def get_eval_shape(self, parameter, mode=None, term_mode=None, diff_var=None, **kwargs): n_fa, n_qp, dim, n_fn, n_c = self.get_data_shape(parameter) return (n_fa, 1, 1, 1), parameter.dtype class SurfaceMomentTerm(Term): r""" Surface integral of the outer product of the unit outward normal :math:`\ul{n}` and the coordinate :math:`\ul{x}` shifted by :math:`\ul{x}_0` :Definition: .. math:: \int_{\Gamma} \ul{n} (\ul{x} - \ul{x}_0) :Arguments: - material : :math:`\ul{x}_0` (special) - parameter : any variable """ name = 'd_surface_moment' arg_types = ('material', 'parameter') arg_shapes = {'material' : '.: D', 'parameter' : 'N'} integration = 'surface' function = staticmethod(terms.di_surface_moment) def get_fargs(self, material, parameter, mode=None, term_mode=None, diff_var=None, **kwargs): sg, _ = self.get_mapping(parameter) sd = parameter.field.surface_data[self.region.name] coor = parameter.field.get_coor() \ - nm.asarray(material, dtype=nm.float64)[None,:] return coor, sg, sd.econn.copy() def get_eval_shape(self, material, parameter, mode=None, term_mode=None, diff_var=None, **kwargs): n_fa, n_qp, dim, n_fn, n_c = self.get_data_shape(parameter) return (n_fa, 1, dim, dim), parameter.dtype class IntegrateVolumeMatTerm(Term): r""" Evaluate material parameter :math:`m` in a volume region. Depending on evaluation mode, integrate a material parameter over a volume region ('eval'), average it in elements ('el_avg') or interpolate it into volume quadrature points ('qp'). Uses reference mapping of :math:`y` variable. Supports 'eval', 'el_avg' and 'qp' evaluation modes. :Definition: .. math:: \int_\Omega m .. math:: \mbox{vector for } K \from \Ical_h: \int_{T_K} m / \int_{T_K} 1 .. math:: m|_{qp} :Arguments: - material : :math:`m` (can have up to two dimensions) - parameter : :math:`y` """ name = 'ev_volume_integrate_mat' arg_types = ('material', 'parameter') arg_shapes = [{'material' : 'N, N', 'parameter' : 'N'}] @staticmethod def function(out, mat, geo, fmode): if fmode == 2: out[:] = mat status = 0 else: status = geo.integrate(out, mat, fmode) return status def get_fargs(self, mat, parameter, mode=None, term_mode=None, diff_var=None, **kwargs): geo, _ = self.get_mapping(parameter) fmode = {'eval' : 0, 'el_avg' : 1, 'qp' : 2}.get(mode, 1) return mat, geo, fmode def get_eval_shape(self, mat, parameter, mode=None, term_mode=None, diff_var=None, **kwargs): n_el, n_qp, dim, n_en, n_c = self.get_data_shape(parameter) n_row, n_col = mat.shape[-2:] if mode != 'qp': n_qp = 1 return (n_el, n_qp, n_row, n_col), mat.dtype class IntegrateSurfaceMatTerm(IntegrateVolumeMatTerm): r""" Evaluate material parameter :math:`m` in a surface region. Depending on evaluation mode, integrate a material parameter over a surface region ('eval'), average it in faces ('el_avg') or interpolate it into surface quadrature points ('qp'). Uses reference mapping of :math:`y` variable. Supports 'eval', 'el_avg' and 'qp' evaluation modes. :Definition: .. math:: \int_\Gamma m .. math:: \mbox{vector for } K \from \Ical_h: \int_{T_K} m / \int_{T_K} 1 .. math:: m|_{qp} :Arguments: - material : :math:`m` (can have up to two dimensions) - parameter : :math:`y` """ name = 'ev_surface_integrate_mat' arg_types = ('material', 'parameter') arg_shapes = [{'material' : 'N, N', 'parameter' : 'N'}] integration = 'surface' class SumNodalValuesTerm(Term): r""" Sum nodal values. :Arguments: - parameter : :math:`p` or :math:`\ul{u}` """ name = 'd_sum_vals' arg_types = ('parameter',) arg_shapes = {'parameter' : 'N'} @staticmethod def function(out, vec): out[:] = nm.sum(vec, 0) return 0 def get_fargs(self, parameter, mode=None, term_mode=None, diff_var=None, **kwargs): vec = parameter.get_state_in_region(self.region) return vec, def get_eval_shape(self, parameter, mode=None, term_mode=None, diff_var=None, **kwargs): n_el, n_qp, dim, n_en, n_c = self.get_data_shape(parameter) return (n_el, n_c), parameter.dtype
[ "sfepy.linalg.dot_sequences", "sfepy.base.base.assert_" ]
[((6427, 6453), 'numpy.ascontiguousarray', 'nm.ascontiguousarray', (['bf_t'], {}), '(bf_t)\n', (6447, 6453), True, 'import numpy as nm\n'), ((6749, 6783), 'sfepy.base.base.assert_', 'assert_', (['(virtual.n_components == 1)'], {}), '(virtual.n_components == 1)\n', (6756, 6783), False, 'from sfepy.base.base import assert_\n'), ((13648, 13662), 'numpy.sum', 'nm.sum', (['vec', '(0)'], {}), '(vec, 0)\n', (13654, 13662), True, 'import numpy as nm\n'), ((4748, 4777), 'sfepy.linalg.dot_sequences', 'dot_sequences', (['val_qp', 'normal'], {}), '(val_qp, normal)\n', (4761, 4777), False, 'from sfepy.linalg import dot_sequences\n'), ((10473, 10511), 'numpy.asarray', 'nm.asarray', (['material'], {'dtype': 'nm.float64'}), '(material, dtype=nm.float64)\n', (10483, 10511), True, 'import numpy as nm\n')]
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. from io import BytesIO import numpy as np from helpers import MLP, graph_mode import megengine.functional as F from megengine import load, save from megengine.core import TensorDict, tensor from megengine.jit import trace from megengine.optimizer import SGD, Adam from megengine.test import assertTensorClose def get_input(): batch_size = 2 input_dim = 28 data_shape = (batch_size, input_dim) label_shape = (batch_size,) data = tensor() label = tensor(dtype=np.int32) data.set_value(np.random.random(data_shape).astype(np.float32)) label.set_value(np.random.randint(0, 10, label_shape)) return data, data_shape, label, label_shape def test_sgd_simple(): data, data_shape, label, label_shape = get_input() mlp = MLP() opt = SGD(mlp.parameters(), lr=0.01, weight_decay=0.1) for idx in range(3): data.set_value(np.random.random(data_shape).astype(np.float32)) label.set_value(np.random.randint(0, 10, label_shape)) pred = mlp(data) loss = F.square_loss(pred, label.reshape(-1, 1)) if idx % 2: opt.zero_grad() else: mlp.zero_grad() opt.backward(loss) grads = TensorDict() orig_params = TensorDict() for param in mlp.parameters(): grad = F.grad(loss, param, use_virtual_grad=False) assertTensorClose(grad.numpy(), param.grad.numpy()) grads[param] = np.copy(grad.numpy()) orig_params[param] = np.copy(param.numpy()) opt.step() for param in mlp.parameters(): assertTensorClose( param.numpy(), orig_params[param] * 0.999 - grads[param] * 0.01 ) def test_sgd_momentum(): data, data_shape, label, label_shape = get_input() mlp = MLP() opt = SGD(mlp.parameters(), lr=0.01, momentum=0.9) slots = TensorDict() for param in mlp.parameters(): slots[param] = np.zeros(param.shape).astype(np.float32) for _ in range(3): data.set_value(np.random.random(data_shape).astype(np.float32)) label.set_value(np.random.randint(0, 10, label_shape)) pred = mlp(data) loss = F.square_loss(pred, label.reshape(-1, 1)) opt.zero_grad() opt.backward(loss) orig_params = TensorDict() grads = TensorDict() for param in mlp.parameters(): orig_params[param] = np.copy(param.numpy()) grads[param] = np.copy(param.grad.numpy()) opt.step() for param in mlp.parameters(): slot = slots[param] orig_param = orig_params[param] slot *= 0.9 slot -= param.grad.numpy() * 0.01 assertTensorClose(param.numpy(), orig_param + slot) # TODO: put opt.step() inside trace def test_sgd_momentum_static(): _, data_shape, _, label_shape = get_input() mlp = MLP() opt = SGD(mlp.parameters(), lr=0.01, momentum=0.9) @trace def f(data, label): pred = mlp(data) loss = F.square_loss(pred, label.reshape(-1, 1)) opt.zero_grad() opt.backward(loss) slots = TensorDict() for param in mlp.parameters(): slots[param] = np.zeros(param.shape).astype(np.float32) for _ in range(3): f( np.random.random(data_shape).astype(np.float32), np.random.randint(0, 10, label_shape).astype(np.int32), ) orig_params = TensorDict() grads = TensorDict() for param in mlp.parameters(): orig_params[param] = np.copy(param.numpy()) grads[param] = np.copy(param.grad.numpy()) opt.step() for param in mlp.parameters(): slot = slots[param] orig_param = orig_params[param] slot *= 0.9 slot -= param.grad.numpy() * 0.01 assertTensorClose(param.numpy(), orig_param + slot) def test_update_lr(): data, data_shape, label, label_shape = get_input() mlp = MLP() opt = SGD(mlp.parameters(), lr=0.01) pred = mlp(data) loss = F.square_loss(pred, label.reshape(-1, 1)) opt.zero_grad() opt.backward(loss) opt.step() for group in opt.param_groups: group["lr"] += 0.02 for _ in range(3): data.set_value(np.random.random(data_shape).astype(np.float32)) label.set_value(np.random.randint(0, 10, label_shape)) pred = mlp(data) loss = F.square_loss(pred, label.reshape(-1, 1)) opt.zero_grad() opt.backward(loss) for param in mlp.parameters(): grad = F.grad(loss, param, use_virtual_grad=False) assertTensorClose(grad.numpy(), param.grad.numpy()) orig_params = [] for param in mlp.parameters(): orig_params.append(np.copy(param.numpy())) opt.step() for param, orig_param in zip(mlp.parameters(), orig_params): assertTensorClose(param.numpy(), orig_param - param.grad.numpy() * 0.03) def test_adam(): data, data_shape, label, label_shape = get_input() mlp = MLP() beta0 = 0.8 beta1 = 0.9 eps = 1e-4 opt = Adam(mlp.parameters(), lr=0.01, betas=(beta0, beta1), eps=eps) m_slots = TensorDict() v_slots = TensorDict() for param in mlp.parameters(): m_slots[param] = np.zeros(param.shape).astype(np.float32) v_slots[param] = np.zeros(param.shape).astype(np.float32) step_size = 0 def check_value(): for param in mlp.parameters(): grad = param.grad.numpy() orig_param = orig_params[param] m = m_slots[param] v = v_slots[param] m *= beta0 m += (1 - beta0) * grad v *= beta1 v += (1 - beta1) * grad * grad update = (m / (1 - beta0 ** step_size)) / ( np.sqrt(v / (1 - beta1 ** step_size)) + eps ) assertTensorClose(param.numpy(), orig_param - 0.01 * update) # eager for _ in range(3): data.set_value(np.random.random(data_shape).astype(np.float32)) label.set_value(np.random.randint(0, 10, label_shape)) pred = mlp(data) loss = F.square_loss(pred, label.reshape(-1, 1)) opt.zero_grad() grads = opt.backward(loss) orig_params = TensorDict() for param in mlp.parameters(): orig_params[param] = np.copy(param.numpy()) opt.step() step_size += 1 check_value() # static @trace def f(data, label): pred = mlp(data) loss = F.square_loss(pred, label.reshape(-1, 1)) opt.backward(loss) for _ in range(3): opt.zero_grad() orig_params = TensorDict() for param in mlp.parameters(): orig_params[param] = np.copy(param.numpy()) f( np.random.random(data_shape).astype(np.float32), np.random.randint(0, 10, label_shape).astype(np.int32), ) opt.step() step_size += 1 check_value() @graph_mode("eager", "static") def test_optimizer_serialization(): data, data_shape, label, label_shape = get_input() mlp = MLP() opt = SGD(mlp.parameters(), lr=0.01, momentum=0.9) slots = TensorDict() for param in mlp.parameters(): slots[param] = np.zeros(param.shape).astype(np.float32) pred = mlp(data) loss = F.square_loss(pred, label.reshape(-1, 1)) opt.zero_grad() opt.backward(loss) opt.step() for param in mlp.parameters(): slot = slots[param] slot *= 0.9 slot -= param.grad.numpy() * 0.01 with BytesIO() as fout: save(opt.state_dict(), fout) fout.seek(0) state_dict = load(fout) opt1 = SGD(mlp.parameters(), lr=0.02, momentum=0.8) opt1.load_state_dict(state_dict) data.set_value(np.random.random(data_shape).astype(np.float32)) label.set_value(np.random.randint(0, 10, label_shape)) pred = mlp(data) loss = F.square_loss(pred, label.reshape(-1, 1)) opt1.zero_grad() opt1.backward(loss) orig_params = TensorDict() for param in mlp.parameters(): orig_params[param] = np.copy(param.numpy()) opt1.step() for param in mlp.parameters(): orig_param = orig_params[param] slot = slots[param] slot *= 0.9 slot -= param.grad.numpy() * 0.01 assertTensorClose(param.numpy(), orig_param + slot)
[ "megengine.load", "megengine.functional.grad", "megengine.core.TensorDict", "megengine.core.tensor" ]
[((7391, 7420), 'helpers.graph_mode', 'graph_mode', (['"""eager"""', '"""static"""'], {}), "('eager', 'static')\n", (7401, 7420), False, 'from helpers import MLP, graph_mode\n'), ((829, 837), 'megengine.core.tensor', 'tensor', ([], {}), '()\n', (835, 837), False, 'from megengine.core import TensorDict, tensor\n'), ((850, 872), 'megengine.core.tensor', 'tensor', ([], {'dtype': 'np.int32'}), '(dtype=np.int32)\n', (856, 872), False, 'from megengine.core import TensorDict, tensor\n'), ((1138, 1143), 'helpers.MLP', 'MLP', ([], {}), '()\n', (1141, 1143), False, 'from helpers import MLP, graph_mode\n'), ((2172, 2177), 'helpers.MLP', 'MLP', ([], {}), '()\n', (2175, 2177), False, 'from helpers import MLP, graph_mode\n'), ((2245, 2257), 'megengine.core.TensorDict', 'TensorDict', ([], {}), '()\n', (2255, 2257), False, 'from megengine.core import TensorDict, tensor\n'), ((3258, 3263), 'helpers.MLP', 'MLP', ([], {}), '()\n', (3261, 3263), False, 'from helpers import MLP, graph_mode\n'), ((3501, 3513), 'megengine.core.TensorDict', 'TensorDict', ([], {}), '()\n', (3511, 3513), False, 'from megengine.core import TensorDict, tensor\n'), ((4357, 4362), 'helpers.MLP', 'MLP', ([], {}), '()\n', (4360, 4362), False, 'from helpers import MLP, graph_mode\n'), ((5432, 5437), 'helpers.MLP', 'MLP', ([], {}), '()\n', (5435, 5437), False, 'from helpers import MLP, graph_mode\n'), ((5572, 5584), 'megengine.core.TensorDict', 'TensorDict', ([], {}), '()\n', (5582, 5584), False, 'from megengine.core import TensorDict, tensor\n'), ((5599, 5611), 'megengine.core.TensorDict', 'TensorDict', ([], {}), '()\n', (5609, 5611), False, 'from megengine.core import TensorDict, tensor\n'), ((7522, 7527), 'helpers.MLP', 'MLP', ([], {}), '()\n', (7525, 7527), False, 'from helpers import MLP, graph_mode\n'), ((7595, 7607), 'megengine.core.TensorDict', 'TensorDict', ([], {}), '()\n', (7605, 7607), False, 'from megengine.core import TensorDict, tensor\n'), ((961, 998), 'numpy.random.randint', 'np.random.randint', (['(0)', '(10)', 'label_shape'], {}), '(0, 10, label_shape)\n', (978, 998), True, 'import numpy as np\n'), ((1578, 1590), 'megengine.core.TensorDict', 'TensorDict', ([], {}), '()\n', (1588, 1590), False, 'from megengine.core import TensorDict, tensor\n'), ((1613, 1625), 'megengine.core.TensorDict', 'TensorDict', ([], {}), '()\n', (1623, 1625), False, 'from megengine.core import TensorDict, tensor\n'), ((2670, 2682), 'megengine.core.TensorDict', 'TensorDict', ([], {}), '()\n', (2680, 2682), False, 'from megengine.core import TensorDict, tensor\n'), ((2699, 2711), 'megengine.core.TensorDict', 'TensorDict', ([], {}), '()\n', (2709, 2711), False, 'from megengine.core import TensorDict, tensor\n'), ((3808, 3820), 'megengine.core.TensorDict', 'TensorDict', ([], {}), '()\n', (3818, 3820), False, 'from megengine.core import TensorDict, tensor\n'), ((3837, 3849), 'megengine.core.TensorDict', 'TensorDict', ([], {}), '()\n', (3847, 3849), False, 'from megengine.core import TensorDict, tensor\n'), ((6666, 6678), 'megengine.core.TensorDict', 'TensorDict', ([], {}), '()\n', (6676, 6678), False, 'from megengine.core import TensorDict, tensor\n'), ((7066, 7078), 'megengine.core.TensorDict', 'TensorDict', ([], {}), '()\n', (7076, 7078), False, 'from megengine.core import TensorDict, tensor\n'), ((7975, 7984), 'io.BytesIO', 'BytesIO', ([], {}), '()\n', (7982, 7984), False, 'from io import BytesIO\n'), ((8073, 8083), 'megengine.load', 'load', (['fout'], {}), '(fout)\n', (8077, 8083), False, 'from megengine import load, save\n'), ((8478, 8490), 'megengine.core.TensorDict', 'TensorDict', ([], {}), '()\n', (8488, 8490), False, 'from megengine.core import TensorDict, tensor\n'), ((1324, 1361), 'numpy.random.randint', 'np.random.randint', (['(0)', '(10)', 'label_shape'], {}), '(0, 10, label_shape)\n', (1341, 1361), True, 'import numpy as np\n'), ((1684, 1727), 'megengine.functional.grad', 'F.grad', (['loss', 'param'], {'use_virtual_grad': '(False)'}), '(loss, param, use_virtual_grad=False)\n', (1690, 1727), True, 'import megengine.functional as F\n'), ((2476, 2513), 'numpy.random.randint', 'np.random.randint', (['(0)', '(10)', 'label_shape'], {}), '(0, 10, label_shape)\n', (2493, 2513), True, 'import numpy as np\n'), ((4718, 4755), 'numpy.random.randint', 'np.random.randint', (['(0)', '(10)', 'label_shape'], {}), '(0, 10, label_shape)\n', (4735, 4755), True, 'import numpy as np\n'), ((4948, 4991), 'megengine.functional.grad', 'F.grad', (['loss', 'param'], {'use_virtual_grad': '(False)'}), '(loss, param, use_virtual_grad=False)\n', (4954, 4991), True, 'import megengine.functional as F\n'), ((6464, 6501), 'numpy.random.randint', 'np.random.randint', (['(0)', '(10)', 'label_shape'], {}), '(0, 10, label_shape)\n', (6481, 6501), True, 'import numpy as np\n'), ((8282, 8319), 'numpy.random.randint', 'np.random.randint', (['(0)', '(10)', 'label_shape'], {}), '(0, 10, label_shape)\n', (8299, 8319), True, 'import numpy as np\n'), ((892, 920), 'numpy.random.random', 'np.random.random', (['data_shape'], {}), '(data_shape)\n', (908, 920), True, 'import numpy as np\n'), ((2316, 2337), 'numpy.zeros', 'np.zeros', (['param.shape'], {}), '(param.shape)\n', (2324, 2337), True, 'import numpy as np\n'), ((3572, 3593), 'numpy.zeros', 'np.zeros', (['param.shape'], {}), '(param.shape)\n', (3580, 3593), True, 'import numpy as np\n'), ((5672, 5693), 'numpy.zeros', 'np.zeros', (['param.shape'], {}), '(param.shape)\n', (5680, 5693), True, 'import numpy as np\n'), ((5738, 5759), 'numpy.zeros', 'np.zeros', (['param.shape'], {}), '(param.shape)\n', (5746, 5759), True, 'import numpy as np\n'), ((7666, 7687), 'numpy.zeros', 'np.zeros', (['param.shape'], {}), '(param.shape)\n', (7674, 7687), True, 'import numpy as np\n'), ((1251, 1279), 'numpy.random.random', 'np.random.random', (['data_shape'], {}), '(data_shape)\n', (1267, 1279), True, 'import numpy as np\n'), ((2403, 2431), 'numpy.random.random', 'np.random.random', (['data_shape'], {}), '(data_shape)\n', (2419, 2431), True, 'import numpy as np\n'), ((3659, 3687), 'numpy.random.random', 'np.random.random', (['data_shape'], {}), '(data_shape)\n', (3675, 3687), True, 'import numpy as np\n'), ((3720, 3757), 'numpy.random.randint', 'np.random.randint', (['(0)', '(10)', 'label_shape'], {}), '(0, 10, label_shape)\n', (3737, 3757), True, 'import numpy as np\n'), ((4645, 4673), 'numpy.random.random', 'np.random.random', (['data_shape'], {}), '(data_shape)\n', (4661, 4673), True, 'import numpy as np\n'), ((6201, 6238), 'numpy.sqrt', 'np.sqrt', (['(v / (1 - beta1 ** step_size))'], {}), '(v / (1 - beta1 ** step_size))\n', (6208, 6238), True, 'import numpy as np\n'), ((6391, 6419), 'numpy.random.random', 'np.random.random', (['data_shape'], {}), '(data_shape)\n', (6407, 6419), True, 'import numpy as np\n'), ((7197, 7225), 'numpy.random.random', 'np.random.random', (['data_shape'], {}), '(data_shape)\n', (7213, 7225), True, 'import numpy as np\n'), ((7258, 7295), 'numpy.random.randint', 'np.random.randint', (['(0)', '(10)', 'label_shape'], {}), '(0, 10, label_shape)\n', (7275, 7295), True, 'import numpy as np\n'), ((8209, 8237), 'numpy.random.random', 'np.random.random', (['data_shape'], {}), '(data_shape)\n', (8225, 8237), True, 'import numpy as np\n')]
#!/usr/bin/env python """ Convert a mesh file from one SfePy-supported format to another. Examples:: $ ./script/convert_mesh.py meshes/3d/cylinder.mesh new.vtk $ ./script/convert_mesh.py meshes/3d/cylinder.mesh new.vtk -s2.5 $ ./script/convert_mesh.py meshes/3d/cylinder.mesh new.vtk -s0.5,2,1 $ ./script/convert_mesh.py meshes/3d/cylinder.mesh new.vtk -s0.5,2,1 -c 0 """ import sys sys.path.append('.') from optparse import OptionParser from sfepy.base.base import nm, output from sfepy.discrete.fem import Mesh, FEDomain from sfepy.discrete.fem.meshio import (output_mesh_formats, MeshIO, supported_cell_types) usage = '%prog [options] filename_in filename_out\n' + __doc__.rstrip() help = { 'scale' : 'scale factor (float or comma-separated list for each axis)' ' [default: %default]', 'center' : 'center of the output mesh (0 for origin or' ' comma-separated list for each axis) applied after scaling' ' [default: %default]', 'refine' : 'uniform refinement level [default: %default]', 'format' : 'output mesh format (overrides filename_out extension)', 'list' : 'list supported readable/writable output mesh formats', } def _parse_val_or_vec(option, name, parser): if option is not None: try: try: option = float(option) except ValueError: option = [float(ii) for ii in option.split(',')] option = nm.array(option, dtype=nm.float64, ndmin=1) except: output('bad %s! (%s)' % (name, option)) parser.print_help() sys.exit(1) return option def main(): parser = OptionParser(usage=usage) parser.add_option('-s', '--scale', metavar='scale', action='store', dest='scale', default=None, help=help['scale']) parser.add_option('-c', '--center', metavar='center', action='store', dest='center', default=None, help=help['center']) parser.add_option('-r', '--refine', metavar='level', action='store', type=int, dest='refine', default=0, help=help['refine']) parser.add_option('-f', '--format', metavar='format', action='store', type='string', dest='format', default=None, help=help['format']) parser.add_option('-l', '--list', action='store_true', dest='list', help=help['list']) (options, args) = parser.parse_args() if options.list: output('Supported readable mesh formats:') output('--------------------------------') output_mesh_formats('r') output('') output('Supported writable mesh formats:') output('--------------------------------') output_mesh_formats('w') sys.exit(0) if len(args) != 2: parser.print_help() sys.exit(1) scale = _parse_val_or_vec(options.scale, 'scale', parser) center = _parse_val_or_vec(options.center, 'center', parser) filename_in, filename_out = args mesh = Mesh.from_file(filename_in) if scale is not None: if len(scale) == 1: tr = nm.eye(mesh.dim, dtype=nm.float64) * scale elif len(scale) == mesh.dim: tr = nm.diag(scale) else: raise ValueError('bad scale! (%s)' % scale) mesh.transform_coors(tr) if center is not None: cc = 0.5 * mesh.get_bounding_box().sum(0) shift = center - cc tr = nm.c_[nm.eye(mesh.dim, dtype=nm.float64), shift[:, None]] mesh.transform_coors(tr) if options.refine > 0: domain = FEDomain(mesh.name, mesh) output('initial mesh: %d nodes %d elements' % (domain.shape.n_nod, domain.shape.n_el)) for ii in range(options.refine): output('refine %d...' % ii) domain = domain.refine() output('... %d nodes %d elements' % (domain.shape.n_nod, domain.shape.n_el)) mesh = domain.mesh io = MeshIO.for_format(filename_out, format=options.format, writable=True) cell_types = ', '.join(supported_cell_types[io.format]) output('writing [%s] %s...' % (cell_types, filename_out)) mesh.write(filename_out, io=io) output('...done') if __name__ == '__main__': main()
[ "sfepy.discrete.fem.meshio.output_mesh_formats", "sfepy.base.base.nm.diag", "sfepy.discrete.fem.Mesh.from_file", "sfepy.base.base.nm.array", "sfepy.base.base.nm.eye", "sfepy.discrete.fem.meshio.MeshIO.for_format", "sfepy.discrete.fem.FEDomain", "sfepy.base.base.output" ]
[((393, 413), 'sys.path.append', 'sys.path.append', (['"""."""'], {}), "('.')\n", (408, 413), False, 'import sys\n'), ((1680, 1705), 'optparse.OptionParser', 'OptionParser', ([], {'usage': 'usage'}), '(usage=usage)\n', (1692, 1705), False, 'from optparse import OptionParser\n'), ((3131, 3158), 'sfepy.discrete.fem.Mesh.from_file', 'Mesh.from_file', (['filename_in'], {}), '(filename_in)\n', (3145, 3158), False, 'from sfepy.discrete.fem import Mesh, FEDomain\n'), ((4102, 4171), 'sfepy.discrete.fem.meshio.MeshIO.for_format', 'MeshIO.for_format', (['filename_out'], {'format': 'options.format', 'writable': '(True)'}), '(filename_out, format=options.format, writable=True)\n', (4119, 4171), False, 'from sfepy.discrete.fem.meshio import output_mesh_formats, MeshIO, supported_cell_types\n'), ((4264, 4321), 'sfepy.base.base.output', 'output', (["('writing [%s] %s...' % (cell_types, filename_out))"], {}), "('writing [%s] %s...' % (cell_types, filename_out))\n", (4270, 4321), False, 'from sfepy.base.base import nm, output\n'), ((4362, 4379), 'sfepy.base.base.output', 'output', (['"""...done"""'], {}), "('...done')\n", (4368, 4379), False, 'from sfepy.base.base import nm, output\n'), ((2580, 2622), 'sfepy.base.base.output', 'output', (['"""Supported readable mesh formats:"""'], {}), "('Supported readable mesh formats:')\n", (2586, 2622), False, 'from sfepy.base.base import nm, output\n'), ((2631, 2673), 'sfepy.base.base.output', 'output', (['"""--------------------------------"""'], {}), "('--------------------------------')\n", (2637, 2673), False, 'from sfepy.base.base import nm, output\n'), ((2682, 2706), 'sfepy.discrete.fem.meshio.output_mesh_formats', 'output_mesh_formats', (['"""r"""'], {}), "('r')\n", (2701, 2706), False, 'from sfepy.discrete.fem.meshio import output_mesh_formats, MeshIO, supported_cell_types\n'), ((2715, 2725), 'sfepy.base.base.output', 'output', (['""""""'], {}), "('')\n", (2721, 2725), False, 'from sfepy.base.base import nm, output\n'), ((2734, 2776), 'sfepy.base.base.output', 'output', (['"""Supported writable mesh formats:"""'], {}), "('Supported writable mesh formats:')\n", (2740, 2776), False, 'from sfepy.base.base import nm, output\n'), ((2785, 2827), 'sfepy.base.base.output', 'output', (['"""--------------------------------"""'], {}), "('--------------------------------')\n", (2791, 2827), False, 'from sfepy.base.base import nm, output\n'), ((2836, 2860), 'sfepy.discrete.fem.meshio.output_mesh_formats', 'output_mesh_formats', (['"""w"""'], {}), "('w')\n", (2855, 2860), False, 'from sfepy.discrete.fem.meshio import output_mesh_formats, MeshIO, supported_cell_types\n'), ((2869, 2880), 'sys.exit', 'sys.exit', (['(0)'], {}), '(0)\n', (2877, 2880), False, 'import sys\n'), ((2941, 2952), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (2949, 2952), False, 'import sys\n'), ((3701, 3726), 'sfepy.discrete.fem.FEDomain', 'FEDomain', (['mesh.name', 'mesh'], {}), '(mesh.name, mesh)\n', (3709, 3726), False, 'from sfepy.discrete.fem import Mesh, FEDomain\n'), ((3735, 3826), 'sfepy.base.base.output', 'output', (["('initial mesh: %d nodes %d elements' % (domain.shape.n_nod, domain.shape.n_el)\n )"], {}), "('initial mesh: %d nodes %d elements' % (domain.shape.n_nod, domain.\n shape.n_el))\n", (3741, 3826), False, 'from sfepy.base.base import nm, output\n'), ((1467, 1510), 'sfepy.base.base.nm.array', 'nm.array', (['option'], {'dtype': 'nm.float64', 'ndmin': '(1)'}), '(option, dtype=nm.float64, ndmin=1)\n', (1475, 1510), False, 'from sfepy.base.base import nm, output\n'), ((3891, 3918), 'sfepy.base.base.output', 'output', (["('refine %d...' % ii)"], {}), "('refine %d...' % ii)\n", (3897, 3918), False, 'from sfepy.base.base import nm, output\n'), ((3968, 4044), 'sfepy.base.base.output', 'output', (["('... %d nodes %d elements' % (domain.shape.n_nod, domain.shape.n_el))"], {}), "('... %d nodes %d elements' % (domain.shape.n_nod, domain.shape.n_el))\n", (3974, 4044), False, 'from sfepy.base.base import nm, output\n'), ((1539, 1578), 'sfepy.base.base.output', 'output', (["('bad %s! (%s)' % (name, option))"], {}), "('bad %s! (%s)' % (name, option))\n", (1545, 1578), False, 'from sfepy.base.base import nm, output\n'), ((1623, 1634), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (1631, 1634), False, 'import sys\n'), ((3231, 3265), 'sfepy.base.base.nm.eye', 'nm.eye', (['mesh.dim'], {'dtype': 'nm.float64'}), '(mesh.dim, dtype=nm.float64)\n', (3237, 3265), False, 'from sfepy.base.base import nm, output\n'), ((3328, 3342), 'sfepy.base.base.nm.diag', 'nm.diag', (['scale'], {}), '(scale)\n', (3335, 3342), False, 'from sfepy.base.base import nm, output\n'), ((3571, 3605), 'sfepy.base.base.nm.eye', 'nm.eye', (['mesh.dim'], {'dtype': 'nm.float64'}), '(mesh.dim, dtype=nm.float64)\n', (3577, 3605), False, 'from sfepy.base.base import nm, output\n')]
import numpy as np from sfepy.base.goptions import goptions from sfepy.discrete.fem import Field try: from sfepy.discrete.fem import FEDomain as Domain except ImportError: from sfepy.discrete.fem import Domain from sfepy.discrete import (FieldVariable, Material, Integral, Function, Equation, Equations, Problem) from sfepy.terms import Term from sfepy.discrete.conditions import Conditions, EssentialBC, PeriodicBC from sfepy.solvers.ls import ScipyDirect from sfepy.solvers.nls import Newton import sfepy.discrete.fem.periodic as per from sfepy.discrete import Functions from sfepy.mesh.mesh_generators import gen_block_mesh from sfepy.mechanics.matcoefs import ElasticConstants from sfepy.base.base import output from sfepy.discrete.conditions import LinearCombinationBC goptions['verbose'] = False output.set_output(quiet=True) class ElasticFESimulation(object): """ Use SfePy to solve a linear strain problem in 2D with a varying microstructure on a rectangular grid. The rectangle (cube) is held at the negative edge (plane) and displaced by 1 on the positive x edge (plane). Periodic boundary conditions are applied to the other boundaries. The microstructure is of shape (n_samples, n_x, n_y) or (n_samples, n_x, n_y, n_z). >>> X = np.zeros((1, 3, 3), dtype=int) >>> X[0, :, 1] = 1 >>> sim = ElasticFESimulation(elastic_modulus=(1.0, 10.0), ... poissons_ratio=(0., 0.)) >>> sim.run(X) >>> y = sim.strain y is the strain with components as follows >>> exx = y[..., 0] >>> eyy = y[..., 1] >>> exy = y[..., 2] In this example, the strain is only in the x-direction and has a uniform value of 1 since the displacement is always 1 and the size of the domain is 1. >>> assert np.allclose(exx, 1) >>> assert np.allclose(eyy, 0) >>> assert np.allclose(exy, 0) The following example is for a system with contrast. It tests the left/right periodic offset and the top/bottom periodicity. >>> X = np.array([[[1, 0, 0, 1], ... [0, 1, 1, 1], ... [0, 0, 1, 1], ... [1, 0, 0, 1]]]) >>> n_samples, N, N = X.shape >>> macro_strain = 0.1 >>> sim = ElasticFESimulation((10.0,1.0), (0.3,0.3), macro_strain=0.1) >>> sim.run(X) >>> u = sim.displacement[0] Check that the offset for the left/right planes is `N * macro_strain`. >>> assert np.allclose(u[-1,:,0] - u[0,:,0], N * macro_strain) Check that the left/right side planes are periodic in y. >>> assert np.allclose(u[0,:,1], u[-1,:,1]) Check that the top/bottom planes are periodic in both x and y. >>> assert np.allclose(u[:,0], u[:,-1]) """ def __init__(self, elastic_modulus, poissons_ratio, macro_strain=1.,): """Instantiate a ElasticFESimulation. Args: elastic_modulus (1D array): array of elastic moduli for phases poissons_ratio (1D array): array of Possion's ratios for phases macro_strain (float, optional): Scalar for macroscopic strain """ self.macro_strain = macro_strain self.dx = 1.0 self.elastic_modulus = elastic_modulus self.poissons_ratio = poissons_ratio if len(elastic_modulus) != len(poissons_ratio): raise RuntimeError( 'elastic_modulus and poissons_ratio must be the same length') def _convert_properties(self, dim): """ Convert from elastic modulus and Poisson's ratio to the Lame parameter and shear modulus >>> model = ElasticFESimulation(elastic_modulus=(1., 2.), ... poissons_ratio=(1., 1.)) >>> result = model._convert_properties(2) >>> answer = np.array([[-0.5, 1. / 6.], [-1., 1. / 3.]]) >>> assert(np.allclose(result, answer)) Args: dim (int): Scalar value for the dimension of the microstructure. Returns: array with the Lame parameter and the shear modulus for each phase. """ def _convert(E, nu): ec = ElasticConstants(young=E, poisson=nu) mu = dim / 3. * ec.mu lame = ec.lam return lame, mu return np.array([_convert(E, nu) for E, nu in zip(self.elastic_modulus, self.poissons_ratio)]) def _get_property_array(self, X): """ Generate property array with elastic_modulus and poissons_ratio for each phase. Test case for 2D with 3 phases. >>> X2D = np.array([[[0, 1, 2, 1], ... [2, 1, 0, 0], ... [1, 0, 2, 2]]]) >>> model2D = ElasticFESimulation(elastic_modulus=(1., 2., 3.), ... poissons_ratio=(1., 1., 1.)) >>> lame = lame0, lame1, lame2 = -0.5, -1., -1.5 >>> mu = mu0, mu1, mu2 = 1. / 6, 1. / 3, 1. / 2 >>> lm = zip(lame, mu) >>> X2D_property = np.array([[lm[0], lm[1], lm[2], lm[1]], ... [lm[2], lm[1], lm[0], lm[0]], ... [lm[1], lm[0], lm[2], lm[2]]]) >>> assert(np.allclose(model2D._get_property_array(X2D), X2D_property)) Test case for 3D with 2 phases. >>> model3D = ElasticFESimulation(elastic_modulus=(1., 2.), ... poissons_ratio=(1., 1.)) >>> X3D = np.array([[[0, 1], ... [0, 0]], ... [[1, 1], ... [0, 1]]]) >>> X3D_property = np.array([[[lm[0], lm[1]], ... [lm[0], lm[0]]], ... [[lm[1], lm[1]], ... [lm[0], lm[1]]]]) >>> assert(np.allclose(model3D._get_property_array(X3D), X3D_property)) """ dim = len(X.shape) - 1 n_phases = len(self.elastic_modulus) if not issubclass(X.dtype.type, np.integer): raise TypeError("X must be an integer array") if np.max(X) >= n_phases or np.min(X) < 0: raise RuntimeError( "X must be between 0 and {N}.".format(N=n_phases - 1)) if not (2 <= dim <= 3): raise RuntimeError("the shape of X is incorrect") return self._convert_properties(dim)[X] def run(self, X): """ Run the simulation. Args: X (ND array): microstructure with shape (n_samples, n_x, ...) """ X_property = self._get_property_array(X) strain = [] displacement = [] stress = [] for x in X_property: strain_, displacement_, stress_ = self._solve(x) strain.append(strain_) displacement.append(displacement_) stress.append(stress_) self.strain = np.array(strain) self.displacement = np.array(displacement) self.stress = np.array(stress) @property def response(self): return self.strain[..., 0] def _get_material(self, property_array, domain): """ Creates an SfePy material from the material property fields for the quadrature points. Args: property_array: array of the properties with shape (n_x, n_y, n_z, 2) Returns: an SfePy material """ min_xyz = domain.get_mesh_bounding_box()[0] dims = domain.get_mesh_bounding_box().shape[1] def _material_func_(ts, coors, mode=None, **kwargs): if mode == 'qp': ijk_out = np.empty_like(coors, dtype=int) ijk = np.floor((coors - min_xyz[None]) / self.dx, ijk_out, casting="unsafe") ijk_tuple = tuple(ijk.swapaxes(0, 1)) property_array_qp = property_array[ijk_tuple] lam = property_array_qp[..., 0] mu = property_array_qp[..., 1] lam = np.ascontiguousarray(lam.reshape((lam.shape[0], 1, 1))) mu = np.ascontiguousarray(mu.reshape((mu.shape[0], 1, 1))) from sfepy.mechanics.matcoefs import stiffness_from_lame stiffness = stiffness_from_lame(dims, lam=lam, mu=mu) return {'lam': lam, 'mu': mu, 'D': stiffness} else: return material_func = Function('material_func', _material_func_) return Material('m', function=material_func) def _subdomain_func(self, x=(), y=(), z=(), max_x=None): """ Creates a function to mask subdomains in Sfepy. Args: x: tuple of lines or points to be masked in the x-plane y: tuple of lines or points to be masked in the y-plane z: tuple of lines or points to be masked in the z-plane Returns: array of masked location indices """ eps = 1e-3 * self.dx def _func(coords, domain=None): flag_x = len(x) == 0 flag_y = len(y) == 0 flag_z = len(z) == 0 for x_ in x: flag = (coords[:, 0] < (x_ + eps)) & \ (coords[:, 0] > (x_ - eps)) flag_x = flag_x | flag for y_ in y: flag = (coords[:, 1] < (y_ + eps)) & \ (coords[:, 1] > (y_ - eps)) flag_y = flag_y | flag for z_ in z: flag = (coords[:, 2] < (z_ + eps)) & \ (coords[:, 2] > (z_ - eps)) flag_z = flag_z | flag flag = flag_x & flag_y & flag_z if max_x is not None: flag = flag & (coords[:, 0] < (max_x - eps)) return np.where(flag)[0] return _func def _get_mesh(self, shape): """ Generate an Sfepy rectangular mesh Args: shape: proposed shape of domain (vertex shape) (n_x, n_y) Returns: Sfepy mesh """ center = np.zeros_like(shape) return gen_block_mesh(shape, np.array(shape) + 1, center, verbose=False) def _get_fixed_displacementsBCs(self, domain): """ Fix the left top and bottom points in x, y and z Args: domain: an Sfepy domain Returns: the Sfepy boundary conditions """ min_xyz = domain.get_mesh_bounding_box()[0] max_xyz = domain.get_mesh_bounding_box()[1] kwargs = {} fix_points_dict = {'u.0': 0.0, 'u.1': 0.0} if len(min_xyz) == 3: kwargs = {'z': (max_xyz[2], min_xyz[2])} fix_points_dict['u.2'] = 0.0 fix_x_points_ = self._subdomain_func(x=(min_xyz[0],), y=(max_xyz[1], min_xyz[1]), **kwargs) fix_x_points = Function('fix_x_points', fix_x_points_) region_fix_points = domain.create_region( 'region_fix_points', 'vertices by fix_x_points', 'vertex', functions=Functions([fix_x_points])) return EssentialBC('fix_points_BC', region_fix_points, fix_points_dict) def _get_shift_displacementsBCs(self, domain): """ Fix the right top and bottom points in x, y and z Args: domain: an Sfepy domain Returns: the Sfepy boundary conditions """ min_xyz = domain.get_mesh_bounding_box()[0] max_xyz = domain.get_mesh_bounding_box()[1] kwargs = {} if len(min_xyz) == 3: kwargs = {'z': (max_xyz[2], min_xyz[2])} displacement = self.macro_strain * (max_xyz[0] - min_xyz[0]) shift_points_dict = {'u.0': displacement} shift_x_points_ = self._subdomain_func(x=(max_xyz[0],), y=(max_xyz[1], min_xyz[1]), **kwargs) shift_x_points = Function('shift_x_points', shift_x_points_) region_shift_points = domain.create_region( 'region_shift_points', 'vertices by shift_x_points', 'vertex', functions=Functions([shift_x_points])) return EssentialBC('shift_points_BC', region_shift_points, shift_points_dict) def _get_displacementBCs(self, domain): shift_points_BC = self._get_shift_displacementsBCs(domain) fix_points_BC = self._get_fixed_displacementsBCs(domain) return Conditions([fix_points_BC, shift_points_BC]) def _get_linear_combinationBCs(self, domain): """ The right nodes are periodic with the left nodes but also displaced. Args: domain: an Sfepy domain Returns: the Sfepy boundary conditions """ min_xyz = domain.get_mesh_bounding_box()[0] max_xyz = domain.get_mesh_bounding_box()[1] xplus_ = self._subdomain_func(x=(max_xyz[0],)) xminus_ = self._subdomain_func(x=(min_xyz[0],)) xplus = Function('xplus', xplus_) xminus = Function('xminus', xminus_) region_x_plus = domain.create_region('region_x_plus', 'vertices by xplus', 'facet', functions=Functions([xplus])) region_x_minus = domain.create_region('region_x_minus', 'vertices by xminus', 'facet', functions=Functions([xminus])) match_x_plane = Function('match_x_plane', per.match_x_plane) def shift_(ts, coors, region): return np.ones_like(coors[:, 0]) * \ self.macro_strain * (max_xyz[0] - min_xyz[0]) shift = Function('shift', shift_) lcbc = LinearCombinationBC( 'lcbc', [region_x_plus, region_x_minus], { 'u.0': 'u.0'}, match_x_plane, 'shifted_periodic', arguments=(shift,)) return Conditions([lcbc]) def _get_periodicBC_X(self, domain, dim): dim_dict = {1: ('y', per.match_y_plane), 2: ('z', per.match_z_plane)} dim_string = dim_dict[dim][0] match_plane = dim_dict[dim][1] min_, max_ = domain.get_mesh_bounding_box()[:, dim] min_x, max_x = domain.get_mesh_bounding_box()[:, 0] plus_ = self._subdomain_func(max_x=max_x, **{dim_string: (max_,)}) minus_ = self._subdomain_func(max_x=max_x, **{dim_string: (min_,)}) plus_string = dim_string + 'plus' minus_string = dim_string + 'minus' plus = Function(plus_string, plus_) minus = Function(minus_string, minus_) region_plus = domain.create_region( 'region_{0}_plus'.format(dim_string), 'vertices by {0}'.format( plus_string), 'facet', functions=Functions([plus])) region_minus = domain.create_region( 'region_{0}_minus'.format(dim_string), 'vertices by {0}'.format( minus_string), 'facet', functions=Functions([minus])) match_plane = Function( 'match_{0}_plane'.format(dim_string), match_plane) bc_dict = {'u.0': 'u.0'} bc = PeriodicBC('periodic_{0}'.format(dim_string), [region_plus, region_minus], bc_dict, match='match_{0}_plane'.format(dim_string)) return bc, match_plane def _get_periodicBC_YZ(self, domain, dim): dims = domain.get_mesh_bounding_box().shape[1] dim_dict = {0: ('x', per.match_x_plane), 1: ('y', per.match_y_plane), 2: ('z', per.match_z_plane)} dim_string = dim_dict[dim][0] match_plane = dim_dict[dim][1] min_, max_ = domain.get_mesh_bounding_box()[:, dim] plus_ = self._subdomain_func(**{dim_string: (max_,)}) minus_ = self._subdomain_func(**{dim_string: (min_,)}) plus_string = dim_string + 'plus' minus_string = dim_string + 'minus' plus = Function(plus_string, plus_) minus = Function(minus_string, minus_) region_plus = domain.create_region( 'region_{0}_plus'.format(dim_string), 'vertices by {0}'.format( plus_string), 'facet', functions=Functions([plus])) region_minus = domain.create_region( 'region_{0}_minus'.format(dim_string), 'vertices by {0}'.format( minus_string), 'facet', functions=Functions([minus])) match_plane = Function( 'match_{0}_plane'.format(dim_string), match_plane) bc_dict = {'u.1': 'u.1'} if dims == 3: bc_dict['u.2'] = 'u.2' bc = PeriodicBC('periodic_{0}'.format(dim_string), [region_plus, region_minus], bc_dict, match='match_{0}_plane'.format(dim_string)) return bc, match_plane def _solve(self, property_array): """ Solve the Sfepy problem for one sample. Args: property_array: array of shape (n_x, n_y, 2) where the last index is for Lame's parameter and shear modulus, respectively. Returns: the strain field of shape (n_x, n_y, 2) where the last index represents the x and y displacements """ shape = property_array.shape[:-1] mesh = self._get_mesh(shape) domain = Domain('domain', mesh) region_all = domain.create_region('region_all', 'all') field = Field.from_args('fu', np.float64, 'vector', region_all, approx_order=2) u = FieldVariable('u', 'unknown', field) v = FieldVariable('v', 'test', field, primary_var_name='u') m = self._get_material(property_array, domain) integral = Integral('i', order=4) t1 = Term.new('dw_lin_elastic_iso(m.lam, m.mu, v, u)', integral, region_all, m=m, v=v, u=u) eq = Equation('balance_of_forces', t1) eqs = Equations([eq]) epbcs, functions = self._get_periodicBCs(domain) ebcs = self._get_displacementBCs(domain) lcbcs = self._get_linear_combinationBCs(domain) ls = ScipyDirect({}) pb = Problem('elasticity', equations=eqs, auto_solvers=None) pb.time_update( ebcs=ebcs, epbcs=epbcs, lcbcs=lcbcs, functions=functions) ev = pb.get_evaluator() nls = Newton({}, lin_solver=ls, fun=ev.eval_residual, fun_grad=ev.eval_tangent_matrix) try: pb.set_solvers_instances(ls, nls) except AttributeError: pb.set_solver(nls) vec = pb.solve() u = vec.create_output_dict()['u'].data u_reshape = np.reshape(u, (tuple(x + 1 for x in shape) + u.shape[-1:])) dims = domain.get_mesh_bounding_box().shape[1] strain = np.squeeze( pb.evaluate( 'ev_cauchy_strain.{dim}.region_all(u)'.format( dim=dims), mode='el_avg', copy_materials=False)) strain_reshape = np.reshape(strain, (shape + strain.shape[-1:])) stress = np.squeeze( pb.evaluate( 'ev_cauchy_stress.{dim}.region_all(m.D, u)'.format( dim=dims), mode='el_avg', copy_materials=False)) stress_reshape = np.reshape(stress, (shape + stress.shape[-1:])) return strain_reshape, u_reshape, stress_reshape def _get_periodicBCs(self, domain): dims = domain.get_mesh_bounding_box().shape[1] bc_list_YZ, func_list_YZ = list( zip(*[self._get_periodicBC_YZ(domain, i) for i in range(0, dims)])) bc_list_X, func_list_X = list( zip(*[self._get_periodicBC_X(domain, i) for i in range(1, dims)])) return Conditions( bc_list_YZ + bc_list_X), Functions(func_list_YZ + func_list_X)
[ "sfepy.discrete.conditions.EssentialBC", "sfepy.base.base.output.set_output", "sfepy.discrete.Integral", "sfepy.solvers.ls.ScipyDirect", "sfepy.discrete.Equations", "sfepy.discrete.fem.Field.from_args", "sfepy.discrete.Equation", "sfepy.discrete.Function", "sfepy.mechanics.matcoefs.stiffness_from_lame", "sfepy.mechanics.matcoefs.ElasticConstants", "sfepy.terms.Term.new", "sfepy.discrete.conditions.Conditions", "sfepy.discrete.FieldVariable", "sfepy.discrete.Material", "sfepy.discrete.conditions.LinearCombinationBC", "sfepy.discrete.Problem", "sfepy.discrete.Functions", "sfepy.discrete.fem.Domain", "sfepy.solvers.nls.Newton" ]
[((839, 868), 'sfepy.base.base.output.set_output', 'output.set_output', ([], {'quiet': '(True)'}), '(quiet=True)\n', (856, 868), False, 'from sfepy.base.base import output\n'), ((6954, 6970), 'numpy.array', 'np.array', (['strain'], {}), '(strain)\n', (6962, 6970), True, 'import numpy as np\n'), ((6999, 7021), 'numpy.array', 'np.array', (['displacement'], {}), '(displacement)\n', (7007, 7021), True, 'import numpy as np\n'), ((7044, 7060), 'numpy.array', 'np.array', (['stress'], {}), '(stress)\n', (7052, 7060), True, 'import numpy as np\n'), ((8474, 8516), 'sfepy.discrete.Function', 'Function', (['"""material_func"""', '_material_func_'], {}), "('material_func', _material_func_)\n", (8482, 8516), False, 'from sfepy.discrete import FieldVariable, Material, Integral, Function, Equation, Equations, Problem\n'), ((8532, 8569), 'sfepy.discrete.Material', 'Material', (['"""m"""'], {'function': 'material_func'}), "('m', function=material_func)\n", (8540, 8569), False, 'from sfepy.discrete import FieldVariable, Material, Integral, Function, Equation, Equations, Problem\n'), ((10104, 10124), 'numpy.zeros_like', 'np.zeros_like', (['shape'], {}), '(shape)\n', (10117, 10124), True, 'import numpy as np\n'), ((10991, 11030), 'sfepy.discrete.Function', 'Function', (['"""fix_x_points"""', 'fix_x_points_'], {}), "('fix_x_points', fix_x_points_)\n", (10999, 11030), False, 'from sfepy.discrete import FieldVariable, Material, Integral, Function, Equation, Equations, Problem\n'), ((11240, 11304), 'sfepy.discrete.conditions.EssentialBC', 'EssentialBC', (['"""fix_points_BC"""', 'region_fix_points', 'fix_points_dict'], {}), "('fix_points_BC', region_fix_points, fix_points_dict)\n", (11251, 11304), False, 'from sfepy.discrete.conditions import Conditions, EssentialBC, PeriodicBC\n'), ((12097, 12140), 'sfepy.discrete.Function', 'Function', (['"""shift_x_points"""', 'shift_x_points_'], {}), "('shift_x_points', shift_x_points_)\n", (12105, 12140), False, 'from sfepy.discrete import FieldVariable, Material, Integral, Function, Equation, Equations, Problem\n'), ((12358, 12428), 'sfepy.discrete.conditions.EssentialBC', 'EssentialBC', (['"""shift_points_BC"""', 'region_shift_points', 'shift_points_dict'], {}), "('shift_points_BC', region_shift_points, shift_points_dict)\n", (12369, 12428), False, 'from sfepy.discrete.conditions import Conditions, EssentialBC, PeriodicBC\n'), ((12648, 12692), 'sfepy.discrete.conditions.Conditions', 'Conditions', (['[fix_points_BC, shift_points_BC]'], {}), '([fix_points_BC, shift_points_BC])\n', (12658, 12692), False, 'from sfepy.discrete.conditions import Conditions, EssentialBC, PeriodicBC\n'), ((13185, 13210), 'sfepy.discrete.Function', 'Function', (['"""xplus"""', 'xplus_'], {}), "('xplus', xplus_)\n", (13193, 13210), False, 'from sfepy.discrete import FieldVariable, Material, Integral, Function, Equation, Equations, Problem\n'), ((13228, 13255), 'sfepy.discrete.Function', 'Function', (['"""xminus"""', 'xminus_'], {}), "('xminus', xminus_)\n", (13236, 13255), False, 'from sfepy.discrete import FieldVariable, Material, Integral, Function, Equation, Equations, Problem\n'), ((13801, 13845), 'sfepy.discrete.Function', 'Function', (['"""match_x_plane"""', 'per.match_x_plane'], {}), "('match_x_plane', per.match_x_plane)\n", (13809, 13845), False, 'from sfepy.discrete import FieldVariable, Material, Integral, Function, Equation, Equations, Problem\n'), ((14013, 14038), 'sfepy.discrete.Function', 'Function', (['"""shift"""', 'shift_'], {}), "('shift', shift_)\n", (14021, 14038), False, 'from sfepy.discrete import FieldVariable, Material, Integral, Function, Equation, Equations, Problem\n'), ((14054, 14189), 'sfepy.discrete.conditions.LinearCombinationBC', 'LinearCombinationBC', (['"""lcbc"""', '[region_x_plus, region_x_minus]', "{'u.0': 'u.0'}", 'match_x_plane', '"""shifted_periodic"""'], {'arguments': '(shift,)'}), "('lcbc', [region_x_plus, region_x_minus], {'u.0': 'u.0'},\n match_x_plane, 'shifted_periodic', arguments=(shift,))\n", (14073, 14189), False, 'from sfepy.discrete.conditions import LinearCombinationBC\n'), ((14244, 14262), 'sfepy.discrete.conditions.Conditions', 'Conditions', (['[lcbc]'], {}), '([lcbc])\n', (14254, 14262), False, 'from sfepy.discrete.conditions import Conditions, EssentialBC, PeriodicBC\n'), ((14857, 14885), 'sfepy.discrete.Function', 'Function', (['plus_string', 'plus_'], {}), '(plus_string, plus_)\n', (14865, 14885), False, 'from sfepy.discrete import FieldVariable, Material, Integral, Function, Equation, Equations, Problem\n'), ((14902, 14932), 'sfepy.discrete.Function', 'Function', (['minus_string', 'minus_'], {}), '(minus_string, minus_)\n', (14910, 14932), False, 'from sfepy.discrete import FieldVariable, Material, Integral, Function, Equation, Equations, Problem\n'), ((16372, 16400), 'sfepy.discrete.Function', 'Function', (['plus_string', 'plus_'], {}), '(plus_string, plus_)\n', (16380, 16400), False, 'from sfepy.discrete import FieldVariable, Material, Integral, Function, Equation, Equations, Problem\n'), ((16417, 16447), 'sfepy.discrete.Function', 'Function', (['minus_string', 'minus_'], {}), '(minus_string, minus_)\n', (16425, 16447), False, 'from sfepy.discrete import FieldVariable, Material, Integral, Function, Equation, Equations, Problem\n'), ((17843, 17865), 'sfepy.discrete.fem.Domain', 'Domain', (['"""domain"""', 'mesh'], {}), "('domain', mesh)\n", (17849, 17865), False, 'from sfepy.discrete.fem import Domain\n'), ((17947, 18018), 'sfepy.discrete.fem.Field.from_args', 'Field.from_args', (['"""fu"""', 'np.float64', '"""vector"""', 'region_all'], {'approx_order': '(2)'}), "('fu', np.float64, 'vector', region_all, approx_order=2)\n", (17962, 18018), False, 'from sfepy.discrete.fem import Field\n'), ((18064, 18100), 'sfepy.discrete.FieldVariable', 'FieldVariable', (['"""u"""', '"""unknown"""', 'field'], {}), "('u', 'unknown', field)\n", (18077, 18100), False, 'from sfepy.discrete import FieldVariable, Material, Integral, Function, Equation, Equations, Problem\n'), ((18113, 18168), 'sfepy.discrete.FieldVariable', 'FieldVariable', (['"""v"""', '"""test"""', 'field'], {'primary_var_name': '"""u"""'}), "('v', 'test', field, primary_var_name='u')\n", (18126, 18168), False, 'from sfepy.discrete import FieldVariable, Material, Integral, Function, Equation, Equations, Problem\n'), ((18245, 18267), 'sfepy.discrete.Integral', 'Integral', (['"""i"""'], {'order': '(4)'}), "('i', order=4)\n", (18253, 18267), False, 'from sfepy.discrete import FieldVariable, Material, Integral, Function, Equation, Equations, Problem\n'), ((18282, 18372), 'sfepy.terms.Term.new', 'Term.new', (['"""dw_lin_elastic_iso(m.lam, m.mu, v, u)"""', 'integral', 'region_all'], {'m': 'm', 'v': 'v', 'u': 'u'}), "('dw_lin_elastic_iso(m.lam, m.mu, v, u)', integral, region_all, m=m,\n v=v, u=u)\n", (18290, 18372), False, 'from sfepy.terms import Term\n'), ((18404, 18437), 'sfepy.discrete.Equation', 'Equation', (['"""balance_of_forces"""', 't1'], {}), "('balance_of_forces', t1)\n", (18412, 18437), False, 'from sfepy.discrete import FieldVariable, Material, Integral, Function, Equation, Equations, Problem\n'), ((18452, 18467), 'sfepy.discrete.Equations', 'Equations', (['[eq]'], {}), '([eq])\n', (18461, 18467), False, 'from sfepy.discrete import FieldVariable, Material, Integral, Function, Equation, Equations, Problem\n'), ((18645, 18660), 'sfepy.solvers.ls.ScipyDirect', 'ScipyDirect', (['{}'], {}), '({})\n', (18656, 18660), False, 'from sfepy.solvers.ls import ScipyDirect\n'), ((18675, 18730), 'sfepy.discrete.Problem', 'Problem', (['"""elasticity"""'], {'equations': 'eqs', 'auto_solvers': 'None'}), "('elasticity', equations=eqs, auto_solvers=None)\n", (18682, 18730), False, 'from sfepy.discrete import FieldVariable, Material, Integral, Function, Equation, Equations, Problem\n'), ((18873, 18958), 'sfepy.solvers.nls.Newton', 'Newton', (['{}'], {'lin_solver': 'ls', 'fun': 'ev.eval_residual', 'fun_grad': 'ev.eval_tangent_matrix'}), '({}, lin_solver=ls, fun=ev.eval_residual, fun_grad=ev.eval_tangent_matrix\n )\n', (18879, 18958), False, 'from sfepy.solvers.nls import Newton\n'), ((19550, 19595), 'numpy.reshape', 'np.reshape', (['strain', '(shape + strain.shape[-1:])'], {}), '(strain, shape + strain.shape[-1:])\n', (19560, 19595), True, 'import numpy as np\n'), ((19847, 19892), 'numpy.reshape', 'np.reshape', (['stress', '(shape + stress.shape[-1:])'], {}), '(stress, shape + stress.shape[-1:])\n', (19857, 19892), True, 'import numpy as np\n'), ((4180, 4217), 'sfepy.mechanics.matcoefs.ElasticConstants', 'ElasticConstants', ([], {'young': 'E', 'poisson': 'nu'}), '(young=E, poisson=nu)\n', (4196, 4217), False, 'from sfepy.mechanics.matcoefs import ElasticConstants\n'), ((20304, 20338), 'sfepy.discrete.conditions.Conditions', 'Conditions', (['(bc_list_YZ + bc_list_X)'], {}), '(bc_list_YZ + bc_list_X)\n', (20314, 20338), False, 'from sfepy.discrete.conditions import Conditions, EssentialBC, PeriodicBC\n'), ((20353, 20390), 'sfepy.discrete.Functions', 'Functions', (['(func_list_YZ + func_list_X)'], {}), '(func_list_YZ + func_list_X)\n', (20362, 20390), False, 'from sfepy.discrete import Functions\n'), ((6163, 6172), 'numpy.max', 'np.max', (['X'], {}), '(X)\n', (6169, 6172), True, 'import numpy as np\n'), ((6188, 6197), 'numpy.min', 'np.min', (['X'], {}), '(X)\n', (6194, 6197), True, 'import numpy as np\n'), ((7682, 7713), 'numpy.empty_like', 'np.empty_like', (['coors'], {'dtype': 'int'}), '(coors, dtype=int)\n', (7695, 7713), True, 'import numpy as np\n'), ((7736, 7806), 'numpy.floor', 'np.floor', (['((coors - min_xyz[None]) / self.dx)', 'ijk_out'], {'casting': '"""unsafe"""'}), "((coors - min_xyz[None]) / self.dx, ijk_out, casting='unsafe')\n", (7744, 7806), True, 'import numpy as np\n'), ((8304, 8345), 'sfepy.mechanics.matcoefs.stiffness_from_lame', 'stiffness_from_lame', (['dims'], {'lam': 'lam', 'mu': 'mu'}), '(dims, lam=lam, mu=mu)\n', (8323, 8345), False, 'from sfepy.mechanics.matcoefs import stiffness_from_lame\n'), ((9824, 9838), 'numpy.where', 'np.where', (['flag'], {}), '(flag)\n', (9832, 9838), True, 'import numpy as np\n'), ((10162, 10177), 'numpy.array', 'np.array', (['shape'], {}), '(shape)\n', (10170, 10177), True, 'import numpy as np\n'), ((11198, 11223), 'sfepy.discrete.Functions', 'Functions', (['[fix_x_points]'], {}), '([fix_x_points])\n', (11207, 11223), False, 'from sfepy.discrete import Functions\n'), ((12314, 12341), 'sfepy.discrete.Functions', 'Functions', (['[shift_x_points]'], {}), '([shift_x_points])\n', (12323, 12341), False, 'from sfepy.discrete import Functions\n'), ((13493, 13511), 'sfepy.discrete.Functions', 'Functions', (['[xplus]'], {}), '([xplus])\n', (13502, 13511), False, 'from sfepy.discrete import Functions\n'), ((13756, 13775), 'sfepy.discrete.Functions', 'Functions', (['[xminus]'], {}), '([xminus])\n', (13765, 13775), False, 'from sfepy.discrete import Functions\n'), ((15138, 15155), 'sfepy.discrete.Functions', 'Functions', (['[plus]'], {}), '([plus])\n', (15147, 15155), False, 'from sfepy.discrete import Functions\n'), ((15365, 15383), 'sfepy.discrete.Functions', 'Functions', (['[minus]'], {}), '([minus])\n', (15374, 15383), False, 'from sfepy.discrete import Functions\n'), ((16653, 16670), 'sfepy.discrete.Functions', 'Functions', (['[plus]'], {}), '([plus])\n', (16662, 16670), False, 'from sfepy.discrete import Functions\n'), ((16880, 16898), 'sfepy.discrete.Functions', 'Functions', (['[minus]'], {}), '([minus])\n', (16889, 16898), False, 'from sfepy.discrete import Functions\n'), ((13905, 13930), 'numpy.ones_like', 'np.ones_like', (['coors[:, 0]'], {}), '(coors[:, 0])\n', (13917, 13930), True, 'import numpy as np\n')]
#!/usr/bin/env python3 # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. import os from typing import Iterable, Union from megengine import Parameter, tensor from megengine.functional.inplace import _inplace_add_ from megengine.optimizer import Optimizer class SGD(Optimizer): r"""Implements stochastic gradient descent. Nesterov momentum is based on the formula from `"On the importance of initialization and momentum in deep learning" <http://www.cs.toronto.edu/%7Ehinton/absps/momentum.pdf>`_. Args: params: iterable of parameters to optimize or dicts defining parameter groups. lr: learning rate. momentum: momentum factor. Default: ``0.0`` nesterov: enables Nesterov momentum. Default: ``False`` weight_decay: weight decay (L2 penalty). Default: ``0.0`` """ def __init__( self, params: Union[Iterable[Parameter], dict], lr: float, momentum: float = 0.0, nesterov: bool = False, weight_decay: float = 0.0, ): if lr < 0.0: raise ValueError("Invalid learning rate: {}".format(lr)) if momentum < 0.0: raise ValueError("Invalid momentum value: {}".format(momentum)) if weight_decay < 0.0: raise ValueError("Invalid weight_decay value: {}".format(weight_decay)) if nesterov and momentum <= 0: raise ValueError("Nesterov momentum requires a momentum") defaults = dict(lr=lr, momentum=momentum, weight_decay=weight_decay) super().__init__(params, defaults) self.nesterov = nesterov self._disable_type_convert = True def _create_state(self, param_group): if param_group["momentum"] != 0.0: for param in param_group["params"]: self._add_state(param, "momentum_buffer") def _updates(self, param_group): lr = param_group["lr"] weight_decay = param_group["weight_decay"] momentum = param_group["momentum"] # since `conver_inputs` is disabled for param updates, # scalar should be explicitly tansforred to tensor _lr = tensor(lr) _weight_decay = tensor(weight_decay) _momentum = tensor(momentum) inplace_mode = int(os.getenv("MEGENGINE_INPLACE_UPDATE", "0")) if inplace_mode: _neg_lr = tensor(-lr) c1 = tensor([1.0]) for param in param_group["params"]: if param.grad is None: continue grad = param.grad if weight_decay != 0.0: grad = grad + param * _weight_decay if inplace_mode: if momentum != 0.0: v = self._state[param]["momentum_buffer"] _inplace_add_(v, grad, alpha=_momentum, beta=c1) if self.nesterov: grad = grad + v * _momentum else: grad = v _inplace_add_(param, grad, alpha=c1, beta=_neg_lr) continue if momentum != 0.0: v = self._state[param]["momentum_buffer"] v *= _momentum v += grad if self.nesterov: grad = grad + v * _momentum else: grad = v param -= _lr * grad
[ "megengine.tensor", "megengine.functional.inplace._inplace_add_" ]
[((2154, 2164), 'megengine.tensor', 'tensor', (['lr'], {}), '(lr)\n', (2160, 2164), False, 'from megengine import Parameter, tensor\n'), ((2189, 2209), 'megengine.tensor', 'tensor', (['weight_decay'], {}), '(weight_decay)\n', (2195, 2209), False, 'from megengine import Parameter, tensor\n'), ((2230, 2246), 'megengine.tensor', 'tensor', (['momentum'], {}), '(momentum)\n', (2236, 2246), False, 'from megengine import Parameter, tensor\n'), ((2275, 2317), 'os.getenv', 'os.getenv', (['"""MEGENGINE_INPLACE_UPDATE"""', '"""0"""'], {}), "('MEGENGINE_INPLACE_UPDATE', '0')\n", (2284, 2317), False, 'import os\n'), ((2366, 2377), 'megengine.tensor', 'tensor', (['(-lr)'], {}), '(-lr)\n', (2372, 2377), False, 'from megengine import Parameter, tensor\n'), ((2395, 2408), 'megengine.tensor', 'tensor', (['[1.0]'], {}), '([1.0])\n', (2401, 2408), False, 'from megengine import Parameter, tensor\n'), ((2995, 3045), 'megengine.functional.inplace._inplace_add_', '_inplace_add_', (['param', 'grad'], {'alpha': 'c1', 'beta': '_neg_lr'}), '(param, grad, alpha=c1, beta=_neg_lr)\n', (3008, 3045), False, 'from megengine.functional.inplace import _inplace_add_\n'), ((2781, 2829), 'megengine.functional.inplace._inplace_add_', '_inplace_add_', (['v', 'grad'], {'alpha': '_momentum', 'beta': 'c1'}), '(v, grad, alpha=_momentum, beta=c1)\n', (2794, 2829), False, 'from megengine.functional.inplace import _inplace_add_\n')]
from typing import Union from uuid import uuid4 import inject from sqlmodel import Session, select from src.core.events import EventDescription from src.core.models import Context, File from src.core.services import Storage, Streamer from src.utils.miscellaneous import get_file_hash @inject.params(streamer=Streamer, storage=Storage) def get_or_create_file( session: Session, preffix: str, filename: str, file: Union[str, bytes], context: Context, streamer: Streamer, storage: Storage, ) -> File: file_hash = get_file_hash(file) file_obj = session.exec(select(File).where(File.hash == file_hash)).first() extension = filename.split(".")[-1] if not file_obj: streamer.send_event( EventDescription.UPLOAD_FILE, context=context, file={"filename": filename, "hash": file_hash} ) file_obj = File(bucket_key=f"{preffix}-{uuid4()}.{extension}", hash=file_hash) session.add(file_obj) if not storage.check_file_exists(file_obj.bucket_key): storage.upload_file(file, key=file_obj.bucket_key) streamer.send_event( EventDescription.UPLOAD_FILE, context=context, file={"filename": filename, "hash": file_hash, "bucket_key": file_obj.bucket_key}, ) return file_obj @inject.params(storage=Storage) def check_file_exists(bucket_key: str, storage: Storage) -> bool: return storage.check_file_exists(bucket_key)
[ "sqlmodel.select" ]
[((289, 338), 'inject.params', 'inject.params', ([], {'streamer': 'Streamer', 'storage': 'Storage'}), '(streamer=Streamer, storage=Storage)\n', (302, 338), False, 'import inject\n'), ((1318, 1348), 'inject.params', 'inject.params', ([], {'storage': 'Storage'}), '(storage=Storage)\n', (1331, 1348), False, 'import inject\n'), ((546, 565), 'src.utils.miscellaneous.get_file_hash', 'get_file_hash', (['file'], {}), '(file)\n', (559, 565), False, 'from src.utils.miscellaneous import get_file_hash\n'), ((594, 606), 'sqlmodel.select', 'select', (['File'], {}), '(File)\n', (600, 606), False, 'from sqlmodel import Session, select\n'), ((901, 908), 'uuid.uuid4', 'uuid4', ([], {}), '()\n', (906, 908), False, 'from uuid import uuid4\n')]
from datetime import date from fastapi import FastAPI, Query from sqlmodel import Session, create_engine, select from .datatypes import ArtmuseumAddress, ArtmuseumTimeLabel from .db.crud import init_db from .db.models import ArtmuseumExhibition, PhilharmoniaConcert sql_engine = create_engine( "sqlite:///database.db", connect_args={"check_same_thread": False} ) app = FastAPI( title="Murmansk Culture API", # description="", version="0.0.1", contact={ "name": "<NAME>", "url": "https://github.com/anorlovsky", "email": "<EMAIL>", }, redoc_url="/", docs_url=None, ) @app.on_event("startup") def on_startup(): init_db(sql_engine) @app.get( "/artmuseum", response_model=list[ArtmuseumExhibition], description="Возвращает список текущих и ближайших выставок [Мурманского областного художественного музея](https://artmmuseum.ru/)", ) async def get_artmuseum_exhibitions( time: ArtmuseumTimeLabel = Query( None, description='Вернуть только текущие (`"now"`) или только ближайшие (`"soon"`) выставки', ) ): with Session(sql_engine) as session: if time is None: stmt = select(ArtmuseumExhibition) elif time == ArtmuseumTimeLabel.NOW: stmt = select(ArtmuseumExhibition).where( ArtmuseumExhibition.start_date <= date.today() ) elif time == ArtmuseumTimeLabel.SOON: stmt = select(ArtmuseumExhibition).where( ArtmuseumExhibition.start_date > date.today() ) return session.exec(stmt).all() @app.get( "/philharmonia", response_model=list[PhilharmoniaConcert], description="Возвращает список ближайших концертов [Мурманской областной филармонии](https://www.murmansound.ru)", ) async def get_philharmonia_concerts(): with Session(sql_engine) as session: return session.exec(select(PhilharmoniaConcert)).all()
[ "sqlmodel.create_engine", "sqlmodel.select", "sqlmodel.Session" ]
[((283, 369), 'sqlmodel.create_engine', 'create_engine', (['"""sqlite:///database.db"""'], {'connect_args': "{'check_same_thread': False}"}), "('sqlite:///database.db', connect_args={'check_same_thread': \n False})\n", (296, 369), False, 'from sqlmodel import Session, create_engine, select\n'), ((377, 557), 'fastapi.FastAPI', 'FastAPI', ([], {'title': '"""Murmansk Culture API"""', 'version': '"""0.0.1"""', 'contact': "{'name': '<NAME>', 'url': 'https://github.com/anorlovsky', 'email': '<EMAIL>'}", 'redoc_url': '"""/"""', 'docs_url': 'None'}), "(title='Murmansk Culture API', version='0.0.1', contact={'name':\n '<NAME>', 'url': 'https://github.com/anorlovsky', 'email': '<EMAIL>'},\n redoc_url='/', docs_url=None)\n", (384, 557), False, 'from fastapi import FastAPI, Query\n'), ((978, 1088), 'fastapi.Query', 'Query', (['None'], {'description': '"""Вернуть только текущие (`"now"`) или только ближайшие (`"soon"`) выставки"""'}), '(None, description=\n \'Вернуть только текущие (`"now"`) или только ближайшие (`"soon"`) выставки\'\n )\n', (983, 1088), False, 'from fastapi import FastAPI, Query\n'), ((1114, 1133), 'sqlmodel.Session', 'Session', (['sql_engine'], {}), '(sql_engine)\n', (1121, 1133), False, 'from sqlmodel import Session, create_engine, select\n'), ((1859, 1878), 'sqlmodel.Session', 'Session', (['sql_engine'], {}), '(sql_engine)\n', (1866, 1878), False, 'from sqlmodel import Session, create_engine, select\n'), ((1190, 1217), 'sqlmodel.select', 'select', (['ArtmuseumExhibition'], {}), '(ArtmuseumExhibition)\n', (1196, 1217), False, 'from sqlmodel import Session, create_engine, select\n'), ((1919, 1946), 'sqlmodel.select', 'select', (['PhilharmoniaConcert'], {}), '(PhilharmoniaConcert)\n', (1925, 1946), False, 'from sqlmodel import Session, create_engine, select\n'), ((1282, 1309), 'sqlmodel.select', 'select', (['ArtmuseumExhibition'], {}), '(ArtmuseumExhibition)\n', (1288, 1309), False, 'from sqlmodel import Session, create_engine, select\n'), ((1367, 1379), 'datetime.date.today', 'date.today', ([], {}), '()\n', (1377, 1379), False, 'from datetime import date\n'), ((1459, 1486), 'sqlmodel.select', 'select', (['ArtmuseumExhibition'], {}), '(ArtmuseumExhibition)\n', (1465, 1486), False, 'from sqlmodel import Session, create_engine, select\n'), ((1543, 1555), 'datetime.date.today', 'date.today', ([], {}), '()\n', (1553, 1555), False, 'from datetime import date\n')]
import numpy as nm from sfepy.terms.terms import Term, terms from sfepy.base.base import get_default def grad_as_vector(grad): grad = grad.transpose((0, 1, 3, 2)) sh = grad.shape return grad.reshape((sh[0], sh[1], sh[2] * sh[3], 1)) class AdjDivGradTerm(Term): r""" Gateaux differential of :math:`\Psi(\ul{u}) = \int_{\Omega} \nu\ \nabla \ul{v} : \nabla \ul{u}` w.r.t. :math:`\ul{u}` in the direction :math:`\ul{v}` or adjoint term to `dw_div_grad`. :Definition: .. math:: w \delta_{u} \Psi(\ul{u}) \circ \ul{v} :Arguments: - material_1 : :math:`w` (weight) - material_2 : :math:`\nu` (viscosity) - virtual : :math:`\ul{v}` - state : :math:`\ul{u}` """ name = 'dw_adj_div_grad' arg_types = ('material_1', 'material_2', 'virtual', 'parameter') arg_shapes = {'material_1' : '1, 1', 'material_2' : '1, 1', 'virtual' : ('D', None), 'parameter' : 'D'} function = staticmethod(terms.term_ns_asm_div_grad) def get_fargs(self, mat1, mat2, virtual, state, mode=None, term_mode=None, diff_var=None, **kwargs): vg, _ = self.get_mapping(state) if diff_var is None: grad = grad_as_vector(self.get(state, 'grad')) fmode = 0 else: grad = nm.array([0], ndmin=4, dtype=nm.float64) fmode = 1 return grad, mat1 * mat2, vg, fmode class AdjConvect1Term(Term): r""" The first adjoint term to nonlinear convective term `dw_convect`. :Definition: .. math:: \int_{\Omega} ((\ul{v} \cdot \nabla) \ul{u}) \cdot \ul{w} :Arguments: - virtual : :math:`\ul{v}` - state : :math:`\ul{w}` - parameter : :math:`\ul{u}` """ name = 'dw_adj_convect1' arg_types = ('virtual', 'state', 'parameter' ) arg_shapes = {'virtual' : ('D', 'state'), 'state' : 'D', 'parameter' : 'D'} function = staticmethod(terms.dw_adj_convect1) def get_fargs(self, virtual, state, parameter, mode=None, term_mode=None, diff_var=None, **kwargs): vg, _ = self.get_mapping(state) val_w = self.get(state, 'val') grad_u = self.get(parameter, 'grad') # No transposition here! fmode = diff_var is not None return val_w, grad_u, vg, fmode class AdjConvect2Term(Term): r""" The second adjoint term to nonlinear convective term `dw_convect`. :Definition: .. math:: \int_{\Omega} ((\ul{u} \cdot \nabla) \ul{v}) \cdot \ul{w} :Arguments: - virtual : :math:`\ul{v}` - state : :math:`\ul{w}` - parameter : :math:`\ul{u}` """ name = 'dw_adj_convect2' arg_types = ('virtual', 'state', 'parameter' ) arg_shapes = {'virtual' : ('D', 'state'), 'state' : 'D', 'parameter' : 'D'} function = staticmethod(terms.dw_adj_convect2) def get_fargs(self, virtual, state, parameter, mode=None, term_mode=None, diff_var=None, **kwargs): vg, _ = self.get_mapping(state) val_w = self.get(state, 'val') val_u = self.get(parameter, 'val') fmode = diff_var is not None return val_w, val_u, vg, fmode class SUPGCAdjStabilizationTerm(Term): r""" Adjoint term to SUPG stabilization term `dw_st_supg_c`. :Definition: .. math:: \sum_{K \in \Ical_h}\int_{T_K} \delta_K\ [ ((\ul{v} \cdot \nabla) \ul{u}) ((\ul{u} \cdot \nabla) \ul{w}) + ((\ul{u} \cdot \nabla) \ul{u}) ((\ul{v} \cdot \nabla) \ul{w}) ] :Arguments: - material : :math:`\delta_K` - virtual : :math:`\ul{v}` - state : :math:`\ul{w}` - parameter : :math:`\ul{u}` """ name = 'dw_st_adj_supg_c' arg_types = ('material', 'virtual', 'parameter', 'state') arg_shapes = {'material' : '1, 1', 'virtual' : ('D', 'state'), 'state' : 'D', 'parameter' : 'D'} function = staticmethod(terms.dw_st_adj_supg_c) def get_fargs(self, mat, virtual, state, parameter, mode=None, term_mode=None, diff_var=None, **kwargs): vg, _ = self.get_mapping(state) val_u = self.get(parameter, 'val') grad_u = self.get(parameter, 'grad').transpose((0, 1, 3, 2)).copy() conn = state.field.get_connectivity(self.region, self.integration) fmode = diff_var is not None return state(), val_u, grad_u, mat, vg, conn, fmode class SUPGPAdj1StabilizationTerm(Term): r""" The first adjoint term to SUPG stabilization term `dw_st_supg_p`. :Definition: .. math:: \sum_{K \in \Ical_h}\int_{T_K} \delta_K\ \nabla p (\ul{v} \cdot \nabla \ul{w}) :Arguments: - material : :math:`\delta_K` - virtual : :math:`\ul{v}` - state : :math:`\ul{w}` - parameter : :math:`p` """ name = 'dw_st_adj1_supg_p' arg_types = ('material', 'virtual', 'state', 'parameter') arg_shapes = {'material' : '1, 1', 'virtual' : ('D', 'state'), 'state' : 'D', 'parameter' : 1} function = staticmethod(terms.dw_st_adj1_supg_p) def get_fargs(self, mat, virtual, state, parameter, mode=None, term_mode=None, diff_var=None, **kwargs): vg_w, _ = self.get_mapping(state) grad_p = self.get(parameter, 'grad') conn_w = state.field.get_connectivity(self.region, self.integration) fmode = diff_var is not None return state(), grad_p, mat, vg_w, conn_w, fmode class SUPGPAdj2StabilizationTerm(Term): r""" The second adjoint term to SUPG stabilization term `dw_st_supg_p` as well as adjoint term to PSPG stabilization term `dw_st_pspg_c`. :Definition: .. math:: \sum_{K \in \Ical_h}\int_{T_K} \tau_K\ \nabla r (\ul{v} \cdot \nabla \ul{u}) :Arguments: - material : :math:`\tau_K` - virtual : :math:`\ul{v}` - parameter : :math:`\ul{u}` - state : :math:`r` """ name = 'dw_st_adj2_supg_p' arg_types = ('material', 'virtual', 'parameter', 'state') arg_shapes = {'material' : '1, 1', 'virtual' : ('D', 'state'), 'state' : 1, 'parameter' : 'D'} function = staticmethod(terms.dw_st_adj2_supg_p) def get_fargs(self, mat, virtual, parameter, state, mode=None, term_mode=None, diff_var=None, **kwargs): vg_r, _ = self.get_mapping(state) vg_u, _ = self.get_mapping(parameter) grad_u = self.get(parameter, 'grad').transpose((0, 1, 3, 2)).copy() conn_r = state.field.get_connectivity(self.region, self.integration) fmode = diff_var is not None return grad_u, state(), mat, vg_u, vg_r, conn_r, fmode class SDDotVolumeTerm(Term): r""" Sensitivity (shape derivative) of dot product of scalars or vectors. :Definition: .. math:: \int_{\Omega} p q (\nabla \cdot \ul{\Vcal}) \mbox{ , } \int_{\Omega} (\ul{u} \cdot \ul{w}) (\nabla \cdot \ul{\Vcal}) :Arguments: - parameter_1 : :math:`p` or :math:`\ul{u}` - parameter_2 : :math:`q` or :math:`\ul{w}` - parameter_mv : :math:`\ul{\Vcal}` """ name = 'd_sd_volume_dot' arg_types = ('parameter_1', 'parameter_2', 'parameter_mv') arg_shapes = [{'parameter_1' : 'D', 'parameter_2' : 'D', 'parameter_mv' : 'D'}, {'parameter_1' : 1, 'parameter_2' : 1}] function = staticmethod(terms.d_sd_volume_dot) def get_fargs(self, par1, par2, par_mv, mode=None, term_mode=None, diff_var=None, **kwargs): vg, _ = self.get_mapping(par1) val1 = self.get(par1, 'val') val2 = self.get(par2, 'val') div_mv = self.get(par_mv, 'div') return val1, val2, div_mv, vg, get_default(term_mode, 1) def get_eval_shape(self, par1, par2, par_mv, mode=None, term_mode=None, diff_var=None, **kwargs): n_el, n_qp, dim, n_en, n_c = self.get_data_shape(par1) return (n_el, 1, 1, 1), par1.dtype class SDDivTerm(Term): r""" Sensitivity (shape derivative) of Stokes term `dw_stokes` in 'div' mode. Supports the following term modes: 1 (sensitivity) or 0 (original term value). :Definition: .. math:: \int_{\Omega} p [ (\nabla \cdot \ul{w}) (\nabla \cdot \ul{\Vcal}) - \pdiff{\Vcal_k}{x_i} \pdiff{w_i}{x_k} ] :Arguments: - parameter_u : :math:`\ul{u}` - parameter_p : :math:`p` - parameter_mv : :math:`\ul{\Vcal}` """ name = 'd_sd_div' arg_types = ('parameter_u', 'parameter_p', 'parameter_mv') arg_shapes = {'parameter_u' : 'D', 'parameter_p' : 1, 'parameter_mv' : 'D'} function = staticmethod(terms.d_sd_div) def get_fargs(self, par_u, par_p, par_mv, mode=None, term_mode=None, diff_var=None, **kwargs): vg, _ = self.get_mapping(par_u) div_u = self.get(par_u, 'div') grad_u = grad_as_vector(self.get(par_u, 'grad')) val_p = self.get(par_p, 'val') div_mv = self.get(par_mv, 'div') grad_mv = grad_as_vector(self.get(par_mv, 'grad')) return (div_u, grad_u, val_p, div_mv, grad_mv, vg, get_default(term_mode, 1)) def get_eval_shape(self, par_u, par_p, par_mv, mode=None, term_mode=None, diff_var=None, **kwargs): n_el, n_qp, dim, n_en, n_c = self.get_data_shape(par_u) return (n_el, 1, 1, 1), par_u.dtype class SDDivGradTerm(Term): r""" Sensitivity (shape derivative) of diffusion term `dw_div_grad`. Supports the following term modes: 1 (sensitivity) or 0 (original term value). :Definition: .. math:: w \nu \int_{\Omega} [ \pdiff{u_i}{x_k} \pdiff{w_i}{x_k} (\nabla \cdot \ul{\Vcal}) - \pdiff{\Vcal_j}{x_k} \pdiff{u_i}{x_j} \pdiff{w_i}{x_k} - \pdiff{u_i}{x_k} \pdiff{\Vcal_l}{x_k} \pdiff{w_i}{x_k} ] :Arguments: - material : :math:`\nu` (viscosity, optional) - parameter_u : :math:`\ul{u}` - parameter_w : :math:`\ul{w}` - parameter_mv : :math:`\ul{\Vcal}` """ name = 'd_sd_div_grad' arg_types = ('opt_material', 'parameter_u', 'parameter_w', 'parameter_mv') arg_shapes = {'opt_material' : '1, 1', 'parameter_u' : 'D', 'parameter_w' : 'D', 'parameter_mv' : 'D'} function = staticmethod(terms.d_sd_div_grad) def get_fargs(self, mat, par_u, par_w, par_mv, mode=None, term_mode=None, diff_var=None, **kwargs): vg, _ = self.get_mapping(par_u) grad_u = grad_as_vector(self.get(par_u, 'grad')) grad_w = grad_as_vector(self.get(par_w, 'grad')) div_mv = self.get(par_mv, 'div') grad_mv = grad_as_vector(self.get(par_mv, 'grad')) return (grad_u, grad_w, div_mv, grad_mv, mat, vg, get_default(term_mode, 1)) def get_eval_shape(self, mat, par_u, par_w, par_mv, mode=None, term_mode=None, diff_var=None, **kwargs): n_el, n_qp, dim, n_en, n_c = self.get_data_shape(par_u) return (n_el, 1, 1, 1), par_u.dtype class SDConvectTerm(Term): r""" Sensitivity (shape derivative) of convective term `dw_convect`. Supports the following term modes: 1 (sensitivity) or 0 (original term value). :Definition: .. math:: \int_{\Omega} [ u_k \pdiff{u_i}{x_k} w_i (\nabla \cdot \Vcal) - u_k \pdiff{\Vcal_j}{x_k} \pdiff{u_i}{x_j} w_i ] :Arguments: - parameter_u : :math:`\ul{u}` - parameter_w : :math:`\ul{w}` - parameter_mv : :math:`\ul{\Vcal}` """ name = 'd_sd_convect' arg_types = ('parameter_u', 'parameter_w', 'parameter_mv') arg_shapes = {'parameter_u' : 'D', 'parameter_w' : 'D', 'parameter_mv' : 'D'} function = staticmethod(terms.d_sd_convect) def get_fargs(self, par_u, par_w, par_mv, mode=None, term_mode=None, diff_var=None, **kwargs): vg, _ = self.get_mapping(par_u) val_u = self.get(par_u, 'val') grad_u = grad_as_vector(self.get(par_u, 'grad')) val_w = self.get(par_w, 'val') div_mv = self.get(par_mv, 'div') grad_mv = grad_as_vector(self.get(par_mv, 'grad')) return (val_u, grad_u, val_w, div_mv, grad_mv, vg, get_default(term_mode, 1)) def get_eval_shape(self, par_u, par_w, par_mv, mode=None, term_mode=None, diff_var=None, **kwargs): n_el, n_qp, dim, n_en, n_c = self.get_data_shape(par_u) return (n_el, 1, 1, 1), par_u.dtype class NSOFMinGradTerm(Term): name = 'd_of_ns_min_grad' arg_types = ('material_1', 'material_2', 'parameter') arg_shapes = {'material_1' : '1, 1', 'material_2' : '1, 1', 'parameter' : 1} function = staticmethod(terms.d_of_nsMinGrad) def get_fargs(self, weight, mat, parameter, mode=None, term_mode=None, diff_var=None, **kwargs): vg, _ = self.get_mapping(parameter) grad = grad_as_vector(self.get(parameter, 'grad')) return grad, weight * mat, vg def get_eval_shape(self, weight, mat, parameter, mode=None, term_mode=None, diff_var=None, **kwargs): return (1, 1, 1, 1), parameter.dtype class NSOFSurfMinDPressTerm(Term): r""" Sensitivity of :math:`\Psi(p)`. :Definition: .. math:: \delta \Psi(p) = \delta \left( \int_{\Gamma_{in}}p - \int_{\Gamma_{out}}bpress \right) :Arguments: - material_1 : :math:`w` (weight) - material_2 : :math:`bpress` (given pressure) - parameter : :math:`p` """ name = 'd_of_ns_surf_min_d_press' arg_types = ('material_1', 'material_2', 'parameter') arg_shapes = {'material_1' : 1, 'material_2' : 1, 'parameter' : 1} integration = 'surface' function = staticmethod(terms.d_of_nsSurfMinDPress) def get_fargs(self, weight, bpress, parameter, mode=None, term_mode=None, diff_var=None, **kwargs): sg, _ = self.get_mapping(parameter) val_p = self.get(parameter, 'val') return val_p, weight, bpress, sg, 0 def get_eval_shape(self, weight, bpress, parameter, mode=None, term_mode=None, diff_var=None, **kwargs): return (1, 1, 1, 1), parameter.dtype class NSOFSurfMinDPressDiffTerm(NSOFSurfMinDPressTerm): r""" Gateaux differential of :math:`\Psi(p)` w.r.t. :math:`p` in the direction :math:`q`. :Definition: .. math:: w \delta_{p} \Psi(p) \circ q :Arguments: - material : :math:`w` (weight) - virtual : :math:`q` """ name = 'dw_of_ns_surf_min_d_press_diff' arg_types = ('material', 'virtual') arg_shapes = {'material' : 1, 'virtual' : (1, None)} def get_fargs(self, weight, virtual, mode=None, term_mode=None, diff_var=None, **kwargs): sg, _ = self.get_mapping(virtual) aux = nm.array([0], ndmin=4, dtype=nm.float64) return aux, weight, 0.0, sg, 1 class SDGradDivStabilizationTerm(Term): r""" Sensitivity (shape derivative) of stabilization term `dw_st_grad_div`. :Definition: .. math:: \gamma \int_{\Omega} [ (\nabla \cdot \ul{u}) (\nabla \cdot \ul{w}) (\nabla \cdot \ul{\Vcal}) - \pdiff{u_i}{x_k} \pdiff{\Vcal_k}{x_i} (\nabla \cdot \ul{w}) - (\nabla \cdot \ul{u}) \pdiff{w_i}{x_k} \pdiff{\Vcal_k}{x_i} ] :Arguments: - material : :math:`\gamma` - parameter_u : :math:`\ul{u}` - parameter_w : :math:`\ul{w}` - parameter_mv : :math:`\ul{\Vcal}` - mode : 1 (sensitivity) or 0 (original term value) """ name = 'd_sd_st_grad_div' arg_types = ('material', 'parameter_u', 'parameter_w', 'parameter_mv') arg_shapes = {'material' : '1, 1', 'parameter_u' : 'D', 'parameter_w' : 'D', 'parameter_mv' : 'D'} function = staticmethod(terms.d_sd_st_grad_div) def get_fargs(self, mat, par_u, par_w, par_mv, mode=None, term_mode=None, diff_var=None, **kwargs): vg, _ = self.get_mapping(par_u) div_u = self.get(par_u, 'div') grad_u = grad_as_vector(self.get(par_u, 'grad')) div_w = self.get(par_w, 'div') grad_w = grad_as_vector(self.get(par_w, 'grad')) div_mv = self.get(par_mv, 'div') grad_mv = grad_as_vector(self.get(par_mv, 'grad')) return (div_u, grad_u, div_w, grad_w, div_mv, grad_mv, mat, vg, get_default(term_mode, 1)) def get_eval_shape(self, mat, par_u, par_w, par_mv, mode=None, term_mode=None, diff_var=None, **kwargs): n_el, n_qp, dim, n_en, n_c = self.get_data_shape(par_u) return (n_el, 1, 1, 1), par_u.dtype class SDSUPGCStabilizationTerm(Term): r""" Sensitivity (shape derivative) of stabilization term `dw_st_supg_c`. :Definition: .. math:: \sum_{K \in \Ical_h}\int_{T_K} \delta_K\ [ (\ul{b} \cdot \nabla u_k) (\ul{b} \cdot \nabla w_k) (\nabla \cdot \Vcal) - (\ul{b} \cdot \nabla \Vcal_i) \pdiff{u_k}{x_i} (\ul{b} \cdot \nabla w_k) - (\ul{u} \cdot \nabla u_k) (\ul{b} \cdot \nabla \Vcal_i) \pdiff{w_k}{x_i} ] :Arguments: - material : :math:`\delta_K` - parameter_b : :math:`\ul{b}` - parameter_u : :math:`\ul{u}` - parameter_w : :math:`\ul{w}` - parameter_mv : :math:`\ul{\Vcal}` - mode : 1 (sensitivity) or 0 (original term value) """ name = 'd_sd_st_supg_c' arg_types = ('material', 'parameter_b', 'parameter_u', 'parameter_w', 'parameter_mv') arg_shapes = {'material' : '1, 1', 'parameter_b' : 'D', 'parameter_u' : 'D', 'parameter_w' : 'D', 'parameter_mv' : 'D'} function = staticmethod(terms.d_sd_st_supg_c) def get_fargs(self, mat, par_b, par_u, par_w, par_mv, mode=None, term_mode=None, diff_var=None, **kwargs): vg, _ = self.get_mapping(par_u) val_b = self.get(par_b, 'val') grad_u = self.get(par_u, 'grad').transpose((0, 1, 3, 2)).copy() grad_w = self.get(par_w, 'grad').transpose((0, 1, 3, 2)).copy() div_mv = self.get(par_mv, 'div') grad_mv = self.get(par_mv, 'grad').transpose((0, 1, 3, 2)).copy() return (val_b, grad_u, grad_w, div_mv, grad_mv, mat, vg, get_default(term_mode, 1)) def get_eval_shape(self, mat, par_b, par_u, par_w, par_mv, mode=None, term_mode=None, diff_var=None, **kwargs): n_el, n_qp, dim, n_en, n_c = self.get_data_shape(par_u) return (n_el, 1, 1, 1), par_u.dtype class SDPSPGCStabilizationTerm(Term): r""" Sensitivity (shape derivative) of stabilization terms `dw_st_supg_p` or `dw_st_pspg_c`. :Definition: .. math:: \sum_{K \in \Ical_h}\int_{T_K} \delta_K\ [ \pdiff{r}{x_i} (\ul{b} \cdot \nabla u_i) (\nabla \cdot \Vcal) - \pdiff{r}{x_k} \pdiff{\Vcal_k}{x_i} (\ul{b} \cdot \nabla u_i) - \pdiff{r}{x_k} (\ul{b} \cdot \nabla \Vcal_k) \pdiff{u_i}{x_k} ] :Arguments: - material : :math:`\delta_K` - parameter_b : :math:`\ul{b}` - parameter_u : :math:`\ul{u}` - parameter_r : :math:`r` - parameter_mv : :math:`\ul{\Vcal}` - mode : 1 (sensitivity) or 0 (original term value) """ name = 'd_sd_st_pspg_c' arg_types = ('material', 'parameter_b', 'parameter_u', 'parameter_r', 'parameter_mv') arg_shapes = {'material' : '1, 1', 'parameter_b' : 'D', 'parameter_u' : 'D', 'parameter_r' : 1, 'parameter_mv' : 'D'} function = staticmethod(terms.d_sd_st_pspg_c) def get_fargs(self, mat, par_b, par_u, par_r, par_mv, mode=None, term_mode=None, diff_var=None, **kwargs): vg, _ = self.get_mapping(par_u) val_b = self.get(par_b, 'val') grad_u = self.get(par_u, 'grad').transpose((0, 1, 3, 2)).copy() grad_r = self.get(par_r, 'grad') div_mv = self.get(par_mv, 'div') grad_mv = self.get(par_mv, 'grad').transpose((0, 1, 3, 2)).copy() return (val_b, grad_u, grad_r, div_mv, grad_mv, mat, vg, get_default(term_mode, 1)) def get_eval_shape(self, mat, par_b, par_u, par_r, par_mv, mode=None, term_mode=None, diff_var=None, **kwargs): n_el, n_qp, dim, n_en, n_c = self.get_data_shape(par_u) return (n_el, 1, 1, 1), par_u.dtype class SDPSPGPStabilizationTerm(Term): r""" Sensitivity (shape derivative) of stabilization term `dw_st_pspg_p`. :Definition: .. math:: \sum_{K \in \Ical_h}\int_{T_K} \tau_K\ [ (\nabla r \cdot \nabla p) (\nabla \cdot \Vcal) - \pdiff{r}{x_k} (\nabla \Vcal_k \cdot \nabla p) - (\nabla r \cdot \nabla \Vcal_k) \pdiff{p}{x_k} ] :Arguments: - material : :math:`\tau_K` - parameter_r : :math:`r` - parameter_p : :math:`p` - parameter_mv : :math:`\ul{\Vcal}` - mode : 1 (sensitivity) or 0 (original term value) """ name = 'd_sd_st_pspg_p' arg_types = ('material', 'parameter_r', 'parameter_p', 'parameter_mv') arg_shapes = {'material' : '1, 1', 'parameter_r' : 1, 'parameter_p' : 1, 'parameter_mv' : 'D'} function = staticmethod(terms.d_sd_st_pspg_p) def get_fargs(self, mat, par_r, par_p, par_mv, mode=None, term_mode=None, diff_var=None, **kwargs): vg, _ = self.get_mapping(par_p) grad_r = self.get(par_r, 'grad') grad_p = self.get(par_p, 'grad') div_mv = self.get(par_mv, 'div') grad_mv = self.get(par_mv, 'grad').transpose((0, 1, 3, 2)).copy() return (grad_r, grad_p, div_mv, grad_mv, mat, vg, get_default(term_mode, 1)) def get_eval_shape(self, mat, par_r, par_p, par_mv, mode=None, term_mode=None, diff_var=None, **kwargs): n_el, n_qp, dim, n_en, n_c = self.get_data_shape(par_p) return (n_el, 1, 1, 1), par_p.dtype
[ "sfepy.base.base.get_default" ]
[((15137, 15177), 'numpy.array', 'nm.array', (['[0]'], {'ndmin': '(4)', 'dtype': 'nm.float64'}), '([0], ndmin=4, dtype=nm.float64)\n', (15145, 15177), True, 'import numpy as nm\n'), ((1341, 1381), 'numpy.array', 'nm.array', (['[0]'], {'ndmin': '(4)', 'dtype': 'nm.float64'}), '([0], ndmin=4, dtype=nm.float64)\n', (1349, 1381), True, 'import numpy as nm\n'), ((7835, 7860), 'sfepy.base.base.get_default', 'get_default', (['term_mode', '(1)'], {}), '(term_mode, 1)\n', (7846, 7860), False, 'from sfepy.base.base import get_default\n'), ((9288, 9313), 'sfepy.base.base.get_default', 'get_default', (['term_mode', '(1)'], {}), '(term_mode, 1)\n', (9299, 9313), False, 'from sfepy.base.base import get_default\n'), ((10979, 11004), 'sfepy.base.base.get_default', 'get_default', (['term_mode', '(1)'], {}), '(term_mode, 1)\n', (10990, 11004), False, 'from sfepy.base.base import get_default\n'), ((12456, 12481), 'sfepy.base.base.get_default', 'get_default', (['term_mode', '(1)'], {}), '(term_mode, 1)\n', (12467, 12481), False, 'from sfepy.base.base import get_default\n'), ((16739, 16764), 'sfepy.base.base.get_default', 'get_default', (['term_mode', '(1)'], {}), '(term_mode, 1)\n', (16750, 16764), False, 'from sfepy.base.base import get_default\n'), ((18659, 18684), 'sfepy.base.base.get_default', 'get_default', (['term_mode', '(1)'], {}), '(term_mode, 1)\n', (18670, 18684), False, 'from sfepy.base.base import get_default\n'), ((20530, 20555), 'sfepy.base.base.get_default', 'get_default', (['term_mode', '(1)'], {}), '(term_mode, 1)\n', (20541, 20555), False, 'from sfepy.base.base import get_default\n'), ((22155, 22180), 'sfepy.base.base.get_default', 'get_default', (['term_mode', '(1)'], {}), '(term_mode, 1)\n', (22166, 22180), False, 'from sfepy.base.base import get_default\n')]
import time from datetime import datetime, timedelta, date import typer from sqlalchemy.exc import NoResultFound, OperationalError from sqlmodel import Session, select, func from tabulate import tabulate from . import edit from . import reports from .database import create_db_and_tables, engine from .functions_aux import Status, make_table_view, pop_up_msg from .tables import ToDo, Timer app = typer.Typer() app.add_typer(reports.app, name='report', help='Print customized reports.') app.add_typer(edit.app, name='edit', help='Edit records.') @app.command() def add(task: str, project: str = typer.Option(None, '--project', '-p'), due_date: datetime = typer.Option(None, '--due-date', '-d', formats=['%Y-%m-%d']), reminder: datetime = typer.Option(None, '--reminder', '-r', formats=['%Y-%m-%d']), status: Status = typer.Option(Status.to_do, '--status', '-s'), tag: str = typer.Option(None, '--tag', '-t')): """Add task to the to-do list.""" try: today = datetime.today() if due_date is not None and due_date <= today: typer.secho(f'\ndue date must be grater than {today.date()}\n', fg=typer.colors.RED) raise typer.Exit(code=1) if reminder is not None and reminder <= today: typer.secho(f'\nreminder must be grater than {today.date()}\n', fg=typer.colors.RED) raise typer.Exit(code=1) if due_date is not None and reminder is not None and \ reminder >= due_date: typer.secho(f'\nreminder must be smaller than {due_date.date()}\n', fg=typer.colors.RED) raise typer.Exit(code=1) with Session(engine) as session: if project is not None: new_project = session.exec(select(ToDo).where( ToDo.project == project)).first() if new_project is not None: ongoing_project = session.exec(select(ToDo).where( ToDo.project == project, ToDo.status != 'done')).first() if ongoing_project is None: typer.secho(f'\nTasks already done in the project\n', fg=typer.colors.RED) raise typer.Exit(code=1) new_entry = ToDo(task=task, project=project, due_date=due_date, reminder=reminder, status=status, tag=tag) session.add(new_entry) session.commit() new_id = session.exec(select(func.max(ToDo.id))).one() typer.secho(f'Add {task}. Task id: {new_id}\n', fg=typer.colors.GREEN) except OperationalError: create_db_and_tables() add(task=task, project=project, due_date=due_date, reminder=reminder, status=status, tag=tag) @app.command() def start(task_id: int, duration: int = typer.Option(None, '--duration', '-d', help='Duration in minutes')): """Start Timer for a given open task.""" with Session(engine) as session: try: session.exec(select(Timer).where(Timer.end == None)).one() typer.secho('\nThe Timer must be stopped first\n', fg=typer.colors.RED) raise typer.Exit(code=1) except NoResultFound: pass try: query = session.get(ToDo, task_id) if not query.status == 'done': if query.status == 'to do': query.status = 'doing' session.add(query) if duration is not None: duration = timedelta(minutes=duration) if duration <= timedelta(minutes=0): typer.secho( f'\nDuration must be grater than 0\n', fg=typer.colors.RED) raise typer.Exit(code=1) total_seconds = int(duration.total_seconds()) session.add(Timer(id_todo=task_id)) session.commit() new_id = session.exec(select(func.max(Timer.id))).one() typer.secho( f'\nTask Start task {task_id}. Timer id: {new_id}\n', fg=typer.colors.GREEN) with typer.progressbar(length=total_seconds) as progress: end = datetime.utcnow() + duration while datetime.utcnow() < end: time.sleep(1) progress.update(1) else: typer.secho('\n\nYour Time is over! Well done!\n', blink=True, fg=typer.colors.BRIGHT_GREEN) pop_up_msg() remark = typer.confirm("Any remark?") if remark: remark = typer.prompt('Enter your remarks.') else: remark = None stop(remarks=remark) typer.Exit() else: session.add(Timer(id_todo=task_id)) session.commit() new_id = session.exec(select(func.max(Timer.id))).one() typer.secho( f'\nStart task {task_id}. Timer id: {new_id}\n', fg=typer.colors.GREEN) else: typer.secho(f'\nTask already done\n', fg=typer.colors.RED) raise typer.Exit(code=1) except AttributeError: typer.secho(f'\nInvalid task id\n', fg=typer.colors.RED) raise typer.Exit(code=1) @app.command() def stop(remarks: str = typer.Option(None, '--remarks', '-r')): """Stop Timer.""" with Session(engine) as session: try: query_timer = session.exec( select(Timer).where(Timer.end == None)).one() query_timer.end = datetime.utcnow() query_timer.duration = query_timer.end - query_timer.start session.add(query_timer) query = session.get(ToDo, query_timer.id_todo) check = typer.confirm('Is the task done?') if not check and not remarks: pass else: if check: query.status = 'done' query.date_end = query_timer.end.date() if remarks: query.remarks = remarks session.add(query) session.commit() new_id = session.exec(select(func.max(Timer.id))).one() typer.secho( f'\nStop task ({query.id}). Timer id: {new_id}\n', fg=typer.colors.GREEN) except NoResultFound: typer.secho(f'\nNo task running\n', fg=typer.colors.RED) raise typer.Exit(code=1) @app.command() def view(due_date: datetime = typer.Option(datetime.today() + timedelta(weeks=1), formats=['%Y-%m-%d'])): """Print to-do list view.""" overdue = select(ToDo).where(ToDo.due_date < date.today(), ToDo.status != 'done').order_by(ToDo.due_date) reminders = select(ToDo).where(ToDo.reminder <= date.today(), ToDo.status != 'done').order_by( ToDo.due_date) due_in = select(ToDo).where( ToDo.due_date < due_date, ToDo.due_date >= date.today(), ToDo.status != 'done').order_by(ToDo.due_date) no_due = select(ToDo).where( ToDo.due_date == None, ToDo.status != 'done', ToDo.reminder == None).order_by(ToDo.date_init) if len(make_table_view(engine, overdue)) > 1: typer.secho(f'\nOVERDUE\n', fg=typer.colors.BRIGHT_RED, bold=True) typer.secho(tabulate(make_table_view(engine, overdue), headers="firstrow"), fg=typer.colors.BRIGHT_WHITE) if len(make_table_view(engine, reminders)) > 1: typer.secho(f'\nREMINDERS\n', fg=typer.colors.BRIGHT_YELLOW, bold=True) typer.secho(tabulate(make_table_view(engine, reminders), headers="firstrow"), fg=typer.colors.BRIGHT_WHITE) if len(make_table_view(engine, due_in)) > 1: typer.secho(f'\nDUE IN {due_date.date()}\n', fg=typer.colors.BRIGHT_GREEN, bold=True) typer.secho(tabulate(make_table_view(engine, due_in), headers="firstrow"), fg=typer.colors.BRIGHT_WHITE) if len(make_table_view(engine, no_due)) > 1: typer.secho(f'\nNO DUE\n', fg=typer.colors.BRIGHT_BLUE, bold=True) typer.secho(tabulate(make_table_view(engine, no_due), headers="firstrow"), fg=typer.colors.BRIGHT_WHITE) print('\n')
[ "sqlmodel.select", "sqlmodel.Session", "sqlmodel.func.max" ]
[((400, 413), 'typer.Typer', 'typer.Typer', ([], {}), '()\n', (411, 413), False, 'import typer\n'), ((600, 637), 'typer.Option', 'typer.Option', (['None', '"""--project"""', '"""-p"""'], {}), "(None, '--project', '-p')\n", (612, 637), False, 'import typer\n'), ((668, 728), 'typer.Option', 'typer.Option', (['None', '"""--due-date"""', '"""-d"""'], {'formats': "['%Y-%m-%d']"}), "(None, '--due-date', '-d', formats=['%Y-%m-%d'])\n", (680, 728), False, 'import typer\n'), ((801, 861), 'typer.Option', 'typer.Option', (['None', '"""--reminder"""', '"""-r"""'], {'formats': "['%Y-%m-%d']"}), "(None, '--reminder', '-r', formats=['%Y-%m-%d'])\n", (813, 861), False, 'import typer\n'), ((930, 974), 'typer.Option', 'typer.Option', (['Status.to_do', '"""--status"""', '"""-s"""'], {}), "(Status.to_do, '--status', '-s')\n", (942, 974), False, 'import typer\n'), ((995, 1028), 'typer.Option', 'typer.Option', (['None', '"""--tag"""', '"""-t"""'], {}), "(None, '--tag', '-t')\n", (1007, 1028), False, 'import typer\n'), ((3098, 3164), 'typer.Option', 'typer.Option', (['None', '"""--duration"""', '"""-d"""'], {'help': '"""Duration in minutes"""'}), "(None, '--duration', '-d', help='Duration in minutes')\n", (3110, 3164), False, 'import typer\n'), ((6176, 6213), 'typer.Option', 'typer.Option', (['None', '"""--remarks"""', '"""-r"""'], {}), "(None, '--remarks', '-r')\n", (6188, 6213), False, 'import typer\n'), ((1094, 1110), 'datetime.datetime.today', 'datetime.today', ([], {}), '()\n', (1108, 1110), False, 'from datetime import datetime, timedelta, date\n'), ((3274, 3289), 'sqlmodel.Session', 'Session', (['engine'], {}), '(engine)\n', (3281, 3289), False, 'from sqlmodel import Session, select, func\n'), ((6247, 6262), 'sqlmodel.Session', 'Session', (['engine'], {}), '(engine)\n', (6254, 6262), False, 'from sqlmodel import Session, select, func\n'), ((8242, 8308), 'typer.secho', 'typer.secho', (['f"""\nOVERDUE\n"""'], {'fg': 'typer.colors.BRIGHT_RED', 'bold': '(True)'}), "(f'\\nOVERDUE\\n', fg=typer.colors.BRIGHT_RED, bold=True)\n", (8253, 8308), False, 'import typer\n'), ((8533, 8604), 'typer.secho', 'typer.secho', (['f"""\nREMINDERS\n"""'], {'fg': 'typer.colors.BRIGHT_YELLOW', 'bold': '(True)'}), "(f'\\nREMINDERS\\n', fg=typer.colors.BRIGHT_YELLOW, bold=True)\n", (8544, 8604), False, 'import typer\n'), ((9114, 9180), 'typer.secho', 'typer.secho', (['f"""\nNO DUE\n"""'], {'fg': 'typer.colors.BRIGHT_BLUE', 'bold': '(True)'}), "(f'\\nNO DUE\\n', fg=typer.colors.BRIGHT_BLUE, bold=True)\n", (9125, 9180), False, 'import typer\n'), ((1306, 1324), 'typer.Exit', 'typer.Exit', ([], {'code': '(1)'}), '(code=1)\n', (1316, 1324), False, 'import typer\n'), ((1520, 1538), 'typer.Exit', 'typer.Exit', ([], {'code': '(1)'}), '(code=1)\n', (1530, 1538), False, 'import typer\n'), ((1784, 1802), 'typer.Exit', 'typer.Exit', ([], {'code': '(1)'}), '(code=1)\n', (1794, 1802), False, 'import typer\n'), ((1817, 1832), 'sqlmodel.Session', 'Session', (['engine'], {}), '(engine)\n', (1824, 1832), False, 'from sqlmodel import Session, select, func\n'), ((2772, 2842), 'typer.secho', 'typer.secho', (['f"""Add {task}. Task id: {new_id}\n"""'], {'fg': 'typer.colors.GREEN'}), "(f'Add {task}. Task id: {new_id}\\n', fg=typer.colors.GREEN)\n", (2783, 2842), False, 'import typer\n'), ((3398, 3471), 'typer.secho', 'typer.secho', (['"""\nThe Timer must be stopped first\n"""'], {'fg': 'typer.colors.RED'}), '("""\nThe Timer must be stopped first\n""", fg=typer.colors.RED)\n', (3409, 3471), False, 'import typer\n'), ((3512, 3530), 'typer.Exit', 'typer.Exit', ([], {'code': '(1)'}), '(code=1)\n', (3522, 3530), False, 'import typer\n'), ((6420, 6437), 'datetime.datetime.utcnow', 'datetime.utcnow', ([], {}), '()\n', (6435, 6437), False, 'from datetime import datetime, timedelta, date\n'), ((6627, 6661), 'typer.confirm', 'typer.confirm', (['"""Is the task done?"""'], {}), "('Is the task done?')\n", (6640, 6661), False, 'import typer\n'), ((7086, 7178), 'typer.secho', 'typer.secho', (['f"""\nStop task ({query.id}). Timer id: {new_id}\n"""'], {'fg': 'typer.colors.GREEN'}), '(f"""\nStop task ({query.id}). Timer id: {new_id}\n""", fg=typer.\n colors.GREEN)\n', (7097, 7178), False, 'import typer\n'), ((7402, 7418), 'datetime.datetime.today', 'datetime.today', ([], {}), '()\n', (7416, 7418), False, 'from datetime import datetime, timedelta, date\n'), ((7464, 7482), 'datetime.timedelta', 'timedelta', ([], {'weeks': '(1)'}), '(weeks=1)\n', (7473, 7482), False, 'from datetime import datetime, timedelta, date\n'), ((5845, 5905), 'typer.secho', 'typer.secho', (['f"""\nTask already done\n"""'], {'fg': 'typer.colors.RED'}), '(f"""\nTask already done\n""", fg=typer.colors.RED)\n', (5856, 5905), False, 'import typer\n'), ((5954, 5972), 'typer.Exit', 'typer.Exit', ([], {'code': '(1)'}), '(code=1)\n', (5964, 5972), False, 'import typer\n'), ((6017, 6075), 'typer.secho', 'typer.secho', (['f"""\nInvalid task id\n"""'], {'fg': 'typer.colors.RED'}), '(f"""\nInvalid task id\n""", fg=typer.colors.RED)\n', (6028, 6075), False, 'import typer\n'), ((6116, 6134), 'typer.Exit', 'typer.Exit', ([], {'code': '(1)'}), '(code=1)\n', (6126, 6134), False, 'import typer\n'), ((7248, 7306), 'typer.secho', 'typer.secho', (['f"""\nNo task running\n"""'], {'fg': 'typer.colors.RED'}), '(f"""\nNo task running\n""", fg=typer.colors.RED)\n', (7259, 7306), False, 'import typer\n'), ((7323, 7341), 'typer.Exit', 'typer.Exit', ([], {'code': '(1)'}), '(code=1)\n', (7333, 7341), False, 'import typer\n'), ((3880, 3907), 'datetime.timedelta', 'timedelta', ([], {'minutes': 'duration'}), '(minutes=duration)\n', (3889, 3907), False, 'from datetime import datetime, timedelta, date\n'), ((4422, 4517), 'typer.secho', 'typer.secho', (['f"""\nTask Start task {task_id}. Timer id: {new_id}\n"""'], {'fg': 'typer.colors.GREEN'}), '(f"""\nTask Start task {task_id}. Timer id: {new_id}\n""", fg=\n typer.colors.GREEN)\n', (4433, 4517), False, 'import typer\n'), ((5677, 5767), 'typer.secho', 'typer.secho', (['f"""\nStart task {task_id}. Timer id: {new_id}\n"""'], {'fg': 'typer.colors.GREEN'}), '(f"""\nStart task {task_id}. Timer id: {new_id}\n""", fg=typer.\n colors.GREEN)\n', (5688, 5767), False, 'import typer\n'), ((7598, 7610), 'sqlmodel.select', 'select', (['ToDo'], {}), '(ToDo)\n', (7604, 7610), False, 'from sqlmodel import Session, select, func\n'), ((7633, 7645), 'datetime.date.today', 'date.today', ([], {}), '()\n', (7643, 7645), False, 'from datetime import datetime, timedelta, date\n'), ((7744, 7756), 'sqlmodel.select', 'select', (['ToDo'], {}), '(ToDo)\n', (7750, 7756), False, 'from sqlmodel import Session, select, func\n'), ((7780, 7792), 'datetime.date.today', 'date.today', ([], {}), '()\n', (7790, 7792), False, 'from datetime import datetime, timedelta, date\n'), ((7899, 7911), 'sqlmodel.select', 'select', (['ToDo'], {}), '(ToDo)\n', (7905, 7911), False, 'from sqlmodel import Session, select, func\n'), ((7970, 7982), 'datetime.date.today', 'date.today', ([], {}), '()\n', (7980, 7982), False, 'from datetime import datetime, timedelta, date\n'), ((8053, 8065), 'sqlmodel.select', 'select', (['ToDo'], {}), '(ToDo)\n', (8059, 8065), False, 'from sqlmodel import Session, select, func\n'), ((2290, 2366), 'typer.secho', 'typer.secho', (['f"""\nTasks already done in the project\n"""'], {'fg': 'typer.colors.RED'}), '(f"""\nTasks already done in the project\n""", fg=typer.colors.RED)\n', (2301, 2366), False, 'import typer\n'), ((2431, 2449), 'typer.Exit', 'typer.Exit', ([], {'code': '(1)'}), '(code=1)\n', (2441, 2449), False, 'import typer\n'), ((3943, 3963), 'datetime.timedelta', 'timedelta', ([], {'minutes': '(0)'}), '(minutes=0)\n', (3952, 3963), False, 'from datetime import datetime, timedelta, date\n'), ((3989, 4062), 'typer.secho', 'typer.secho', (['f"""\nDuration must be grater than 0\n"""'], {'fg': 'typer.colors.RED'}), '(f"""\nDuration must be grater than 0\n""", fg=typer.colors.RED)\n', (4000, 4062), False, 'import typer\n'), ((4148, 4166), 'typer.Exit', 'typer.Exit', ([], {'code': '(1)'}), '(code=1)\n', (4158, 4166), False, 'import typer\n'), ((4585, 4624), 'typer.progressbar', 'typer.progressbar', ([], {'length': 'total_seconds'}), '(length=total_seconds)\n', (4602, 4624), False, 'import typer\n'), ((2734, 2751), 'sqlmodel.func.max', 'func.max', (['ToDo.id'], {}), '(ToDo.id)\n', (2742, 2751), False, 'from sqlmodel import Session, select, func\n'), ((4668, 4685), 'datetime.datetime.utcnow', 'datetime.utcnow', ([], {}), '()\n', (4683, 4685), False, 'from datetime import datetime, timedelta, date\n'), ((4727, 4744), 'datetime.datetime.utcnow', 'datetime.utcnow', ([], {}), '()\n', (4742, 4744), False, 'from datetime import datetime, timedelta, date\n'), ((4780, 4793), 'time.sleep', 'time.sleep', (['(1)'], {}), '(1)\n', (4790, 4793), False, 'import time\n'), ((4899, 4997), 'typer.secho', 'typer.secho', (['"""\n\nYour Time is over! Well done!\n"""'], {'blink': '(True)', 'fg': 'typer.colors.BRIGHT_GREEN'}), '("""\n\nYour Time is over! Well done!\n""", blink=True, fg=typer.\n colors.BRIGHT_GREEN)\n', (4910, 4997), False, 'import typer\n'), ((5150, 5178), 'typer.confirm', 'typer.confirm', (['"""Any remark?"""'], {}), "('Any remark?')\n", (5163, 5178), False, 'import typer\n'), ((5452, 5464), 'typer.Exit', 'typer.Exit', ([], {}), '()\n', (5462, 5464), False, 'import typer\n'), ((7047, 7065), 'sqlmodel.func.max', 'func.max', (['Timer.id'], {}), '(Timer.id)\n', (7055, 7065), False, 'from sqlmodel import Session, select, func\n'), ((3340, 3353), 'sqlmodel.select', 'select', (['Timer'], {}), '(Timer)\n', (3346, 3353), False, 'from sqlmodel import Session, select, func\n'), ((5259, 5294), 'typer.prompt', 'typer.prompt', (['"""Enter your remarks."""'], {}), "('Enter your remarks.')\n", (5271, 5294), False, 'import typer\n'), ((6344, 6357), 'sqlmodel.select', 'select', (['Timer'], {}), '(Timer)\n', (6350, 6357), False, 'from sqlmodel import Session, select, func\n'), ((1924, 1936), 'sqlmodel.select', 'select', (['ToDo'], {}), '(ToDo)\n', (1930, 1936), False, 'from sqlmodel import Session, select, func\n'), ((4375, 4393), 'sqlmodel.func.max', 'func.max', (['Timer.id'], {}), '(Timer.id)\n', (4383, 4393), False, 'from sqlmodel import Session, select, func\n'), ((5630, 5648), 'sqlmodel.func.max', 'func.max', (['Timer.id'], {}), '(Timer.id)\n', (5638, 5648), False, 'from sqlmodel import Session, select, func\n'), ((2093, 2105), 'sqlmodel.select', 'select', (['ToDo'], {}), '(ToDo)\n', (2099, 2105), False, 'from sqlmodel import Session, select, func\n')]
from __future__ import absolute_import from sfepy.discrete.fem import Mesh, FEDomain import scipy.sparse as sps import numpy as nm from sfepy.base.compat import factorial from sfepy.base.base import output from six.moves import range def elems_q2t(el): nel, nnd = el.shape if nnd > 4: q2t = nm.array([[0, 2, 3, 6], [0, 3, 7, 6], [0, 7, 4, 6], [0, 5, 6, 4], [1, 5, 6, 0], [1, 6, 2, 0]]) else: q2t = nm.array([[0, 1, 2], [0, 2, 3]]) ns, nn = q2t.shape nel *= ns out = nm.zeros((nel, nn), dtype=nm.int32); for ii in range(ns): idxs = nm.arange(ii, nel, ns) out[idxs,:] = el[:, q2t[ii,:]] return nm.ascontiguousarray(out) def triangulate(mesh, verbose=False): """ Triangulate a 2D or 3D tensor product mesh: quadrilaterals->triangles, hexahedrons->tetrahedrons. Parameters ---------- mesh : Mesh The input mesh. Returns ------- mesh : Mesh The triangulated mesh. """ conns = None for k, new_desc in [('3_8', '3_4'), ('2_4', '2_3')]: if k in mesh.descs: conns = mesh.get_conn(k) break if conns is not None: nelo = conns.shape[0] output('initial mesh: %d elements' % nelo, verbose=verbose) new_conns = elems_q2t(conns) nn = new_conns.shape[0] // nelo new_cgroups = nm.repeat(mesh.cmesh.cell_groups, nn) output('new mesh: %d elements' % new_conns.shape[0], verbose=verbose) mesh = Mesh.from_data(mesh.name, mesh.coors, mesh.cmesh.vertex_groups, [new_conns], [new_cgroups], [new_desc]) return mesh def smooth_mesh(mesh, n_iter=4, lam=0.6307, mu=-0.6347, weights=None, bconstr=True, volume_corr=False): """ FE mesh smoothing. Based on: [1] <NAME>, <NAME>, Smooth surface meshing for automated finite element model generation from 3D image data, Journal of Biomechanics, Volume 39, Issue 7, 2006, Pages 1287-1295, ISSN 0021-9290, 10.1016/j.jbiomech.2005.03.006. (http://www.sciencedirect.com/science/article/pii/S0021929005001442) Parameters ---------- mesh : mesh FE mesh. n_iter : integer, optional Number of iteration steps. lam : float, optional Smoothing factor, see [1]. mu : float, optional Unshrinking factor, see [1]. weights : array, optional Edge weights, see [1]. bconstr: logical, optional Boundary constraints, if True only surface smoothing performed. volume_corr: logical, optional Correct volume after smoothing process. Returns ------- coors : array Coordinates of mesh nodes. """ def laplacian(coors, weights): n_nod = coors.shape[0] displ = (weights - sps.identity(n_nod)) * coors return displ def taubin(coors0, weights, lam, mu, n_iter): coors = coors0.copy() for ii in range(n_iter): displ = laplacian(coors, weights) if nm.mod(ii, 2) == 0: coors += lam * displ else: coors += mu * displ return coors def get_volume(el, nd): from sfepy.linalg.utils import dets_fast dim = nd.shape[1] nnd = el.shape[1] etype = '%d_%d' % (dim, nnd) if etype == '2_4' or etype == '3_8': el = elems_q2t(el) nel = el.shape[0] #bc = nm.zeros((dim, ), dtype=nm.double) mul = 1.0 / factorial(dim) if dim == 3: mul *= -1.0 mtx = nm.ones((nel, dim + 1, dim + 1), dtype=nm.double) mtx[:,:,:-1] = nd[el,:] vols = mul * dets_fast(mtx) vol = vols.sum() bc = nm.dot(vols, mtx.sum(1)[:,:-1] / nnd) bc /= vol return vol, bc from sfepy.base.timing import Timer output('smoothing...') timer = Timer(start=True) if weights is None: n_nod = mesh.n_nod domain = FEDomain('mesh', mesh) cmesh = domain.cmesh # initiate all vertices as inner - hierarchy = 2 node_group = nm.ones((n_nod,), dtype=nm.int16) * 2 # boundary vertices - set hierarchy = 4 if bconstr: # get "vertices of surface" facets = cmesh.get_surface_facets() f_verts = cmesh.get_incident(0, facets, cmesh.dim - 1) node_group[f_verts] = 4 # generate costs matrix e_verts = cmesh.get_conn(1, 0).indices fc1, fc2 = e_verts[0::2], e_verts[1::2] idxs = nm.where(node_group[fc2] >= node_group[fc1]) rows1 = fc1[idxs] cols1 = fc2[idxs] idxs = nm.where(node_group[fc1] >= node_group[fc2]) rows2 = fc2[idxs] cols2 = fc1[idxs] crows = nm.concatenate((rows1, rows2)) ccols = nm.concatenate((cols1, cols2)) costs = sps.coo_matrix((nm.ones_like(crows), (crows, ccols)), shape=(n_nod, n_nod), dtype=nm.double) # generate weights matrix idxs = list(range(n_nod)) aux = sps.coo_matrix((1.0 / nm.asarray(costs.sum(1)).squeeze(), (idxs, idxs)), shape=(n_nod, n_nod), dtype=nm.double) #aux.setdiag(1.0 / costs.sum(1)) weights = (aux.tocsc() * costs.tocsc()).tocsr() coors = taubin(mesh.coors, weights, lam, mu, n_iter) output('...done in %.2f s' % timer.stop()) if volume_corr: output('rescaling...') timer.start() volume0, bc = get_volume(mesh.conns[0], mesh.coors) volume, _ = get_volume(mesh.conns[0], coors) scale = volume0 / volume output('scale factor: %.2f' % scale) coors = (coors - bc) * scale + bc output('...done in %.2f s' % timer.stop()) return coors def expand2d(mesh2d, dist, rep): """ Expand 2D planar mesh into 3D volume, convert triangular/quad mesh to tetrahedrons/hexahedrons. Parameters ---------- mesh2d : Mesh The 2D mesh. dist : float The elements size in the 3rd direction. rep : int The number of elements in the 3rd direction. Returns ------- mesh3d : Mesh The 3D mesh. """ if len(mesh2d.descs) > 1: raise ValueError('More than one cell type (%s). Not supported!' % ', '.join(mesh2d.descs)) nel = mesh2d.n_el nnd = mesh2d.n_nod et = mesh2d.descs[0] coors = mesh2d.coors conn = mesh2d.get_conn(et) zcoor = nm.arange(rep + 1) * dist coors3d = nm.hstack([nm.tile(coors, (rep + 1, 1)), nm.tile(zcoor, (nnd,1)).T.flatten()[:,nm.newaxis]]) ngroups = nm.tile(mesh2d.cmesh.vertex_groups, (rep + 1,)) if et == '2_4': descs3d = '3_8' conn3d = nm.zeros((nel * rep, 8), dtype=nm.int32) mats3d = nm.tile(mesh2d.cmesh.cell_groups, (1, rep)).squeeze() elif et == '2_3': descs3d = '3_4' conn3d = nm.zeros((3 * nel * rep, 4), dtype=nm.int32) mats3d = nm.tile(mesh2d.cmesh.cell_groups, (1, 3 * rep)).squeeze() for ii in range(rep): bgn0 = nnd * ii bgn1 = bgn0 + nnd if et == '2_4': bge0 = nel * ii bge1 = bge0 + nel conn3d[bge0:bge1,:4] = conn + bgn0 conn3d[bge0:bge1,4:] = conn + bgn1 elif et == '2_3': # 0 1 2 5 bge0 = 3 * nel * ii bge1 = bge0 + nel conn3d[bge0:bge1,:] = nm.array([conn[:,0] + bgn0, conn[:,1] + bgn0, conn[:,2] + bgn0, conn[:,2] + bgn1]).T # 0 1 5 4 bge0 += nel bge1 += nel conn3d[bge0:bge1,:] = nm.array([conn[:,0] + bgn0, conn[:,1] + bgn0, conn[:,2] + bgn1, conn[:,1] + bgn1]).T # 0 4 5 3 bge0 += nel bge1 += nel conn3d[bge0:bge1,:] = nm.array([conn[:,0] + bgn0, conn[:,1] + bgn1, conn[:,2] + bgn1, conn[:,0] + bgn1]).T mesh3d = Mesh.from_data('mesh', coors3d, ngroups, [conn3d], [mats3d], [descs3d]) return mesh3d
[ "sfepy.base.compat.factorial", "sfepy.linalg.utils.dets_fast", "sfepy.base.timing.Timer", "sfepy.discrete.fem.Mesh.from_data", "sfepy.discrete.fem.FEDomain", "sfepy.base.base.output" ]
[((655, 690), 'numpy.zeros', 'nm.zeros', (['(nel, nn)'], {'dtype': 'nm.int32'}), '((nel, nn), dtype=nm.int32)\n', (663, 690), True, 'import numpy as nm\n'), ((707, 716), 'six.moves.range', 'range', (['ns'], {}), '(ns)\n', (712, 716), False, 'from six.moves import range\n'), ((808, 833), 'numpy.ascontiguousarray', 'nm.ascontiguousarray', (['out'], {}), '(out)\n', (828, 833), True, 'import numpy as nm\n'), ((4073, 4095), 'sfepy.base.base.output', 'output', (['"""smoothing..."""'], {}), "('smoothing...')\n", (4079, 4095), False, 'from sfepy.base.base import output\n'), ((4108, 4125), 'sfepy.base.timing.Timer', 'Timer', ([], {'start': '(True)'}), '(start=True)\n', (4113, 4125), False, 'from sfepy.base.timing import Timer\n'), ((6992, 7039), 'numpy.tile', 'nm.tile', (['mesh2d.cmesh.vertex_groups', '(rep + 1,)'], {}), '(mesh2d.cmesh.vertex_groups, (rep + 1,))\n', (6999, 7039), True, 'import numpy as nm\n'), ((7413, 7423), 'six.moves.range', 'range', (['rep'], {}), '(rep)\n', (7418, 7423), False, 'from six.moves import range\n'), ((8669, 8740), 'sfepy.discrete.fem.Mesh.from_data', 'Mesh.from_data', (['"""mesh"""', 'coors3d', 'ngroups', '[conn3d]', '[mats3d]', '[descs3d]'], {}), "('mesh', coors3d, ngroups, [conn3d], [mats3d], [descs3d])\n", (8683, 8740), False, 'from sfepy.discrete.fem import Mesh, FEDomain\n'), ((309, 407), 'numpy.array', 'nm.array', (['[[0, 2, 3, 6], [0, 3, 7, 6], [0, 7, 4, 6], [0, 5, 6, 4], [1, 5, 6, 0], [1, \n 6, 2, 0]]'], {}), '([[0, 2, 3, 6], [0, 3, 7, 6], [0, 7, 4, 6], [0, 5, 6, 4], [1, 5, 6,\n 0], [1, 6, 2, 0]])\n', (317, 407), True, 'import numpy as nm\n'), ((549, 581), 'numpy.array', 'nm.array', (['[[0, 1, 2], [0, 2, 3]]'], {}), '([[0, 1, 2], [0, 2, 3]])\n', (557, 581), True, 'import numpy as nm\n'), ((733, 755), 'numpy.arange', 'nm.arange', (['ii', 'nel', 'ns'], {}), '(ii, nel, ns)\n', (742, 755), True, 'import numpy as nm\n'), ((1360, 1419), 'sfepy.base.base.output', 'output', (["('initial mesh: %d elements' % nelo)"], {'verbose': 'verbose'}), "('initial mesh: %d elements' % nelo, verbose=verbose)\n", (1366, 1419), False, 'from sfepy.base.base import output\n'), ((1520, 1557), 'numpy.repeat', 'nm.repeat', (['mesh.cmesh.cell_groups', 'nn'], {}), '(mesh.cmesh.cell_groups, nn)\n', (1529, 1557), True, 'import numpy as nm\n'), ((1567, 1636), 'sfepy.base.base.output', 'output', (["('new mesh: %d elements' % new_conns.shape[0])"], {'verbose': 'verbose'}), "('new mesh: %d elements' % new_conns.shape[0], verbose=verbose)\n", (1573, 1636), False, 'from sfepy.base.base import output\n'), ((1652, 1759), 'sfepy.discrete.fem.Mesh.from_data', 'Mesh.from_data', (['mesh.name', 'mesh.coors', 'mesh.cmesh.vertex_groups', '[new_conns]', '[new_cgroups]', '[new_desc]'], {}), '(mesh.name, mesh.coors, mesh.cmesh.vertex_groups, [new_conns],\n [new_cgroups], [new_desc])\n', (1666, 1759), False, 'from sfepy.discrete.fem import Mesh, FEDomain\n'), ((3164, 3177), 'six.moves.range', 'range', (['n_iter'], {}), '(n_iter)\n', (3169, 3177), False, 'from six.moves import range\n'), ((3790, 3839), 'numpy.ones', 'nm.ones', (['(nel, dim + 1, dim + 1)'], {'dtype': 'nm.double'}), '((nel, dim + 1, dim + 1), dtype=nm.double)\n', (3797, 3839), True, 'import numpy as nm\n'), ((4195, 4217), 'sfepy.discrete.fem.FEDomain', 'FEDomain', (['"""mesh"""', 'mesh'], {}), "('mesh', mesh)\n", (4203, 4217), False, 'from sfepy.discrete.fem import Mesh, FEDomain\n'), ((4766, 4810), 'numpy.where', 'nm.where', (['(node_group[fc2] >= node_group[fc1])'], {}), '(node_group[fc2] >= node_group[fc1])\n', (4774, 4810), True, 'import numpy as nm\n'), ((4878, 4922), 'numpy.where', 'nm.where', (['(node_group[fc1] >= node_group[fc2])'], {}), '(node_group[fc1] >= node_group[fc2])\n', (4886, 4922), True, 'import numpy as nm\n'), ((4991, 5021), 'numpy.concatenate', 'nm.concatenate', (['(rows1, rows2)'], {}), '((rows1, rows2))\n', (5005, 5021), True, 'import numpy as nm\n'), ((5038, 5068), 'numpy.concatenate', 'nm.concatenate', (['(cols1, cols2)'], {}), '((cols1, cols2))\n', (5052, 5068), True, 'import numpy as nm\n'), ((5756, 5778), 'sfepy.base.base.output', 'output', (['"""rescaling..."""'], {}), "('rescaling...')\n", (5762, 5778), False, 'from sfepy.base.base import output\n'), ((5956, 5992), 'sfepy.base.base.output', 'output', (["('scale factor: %.2f' % scale)"], {}), "('scale factor: %.2f' % scale)\n", (5962, 5992), False, 'from sfepy.base.base import output\n'), ((6820, 6838), 'numpy.arange', 'nm.arange', (['(rep + 1)'], {}), '(rep + 1)\n', (6829, 6838), True, 'import numpy as nm\n'), ((7102, 7142), 'numpy.zeros', 'nm.zeros', (['(nel * rep, 8)'], {'dtype': 'nm.int32'}), '((nel * rep, 8), dtype=nm.int32)\n', (7110, 7142), True, 'import numpy as nm\n'), ((3715, 3729), 'sfepy.base.compat.factorial', 'factorial', (['dim'], {}), '(dim)\n', (3724, 3729), False, 'from sfepy.base.compat import factorial\n'), ((3893, 3907), 'sfepy.linalg.utils.dets_fast', 'dets_fast', (['mtx'], {}), '(mtx)\n', (3902, 3907), False, 'from sfepy.linalg.utils import dets_fast\n'), ((4326, 4359), 'numpy.ones', 'nm.ones', (['(n_nod,)'], {'dtype': 'nm.int16'}), '((n_nod,), dtype=nm.int16)\n', (4333, 4359), True, 'import numpy as nm\n'), ((5295, 5307), 'six.moves.range', 'range', (['n_nod'], {}), '(n_nod)\n', (5300, 5307), False, 'from six.moves import range\n'), ((6871, 6899), 'numpy.tile', 'nm.tile', (['coors', '(rep + 1, 1)'], {}), '(coors, (rep + 1, 1))\n', (6878, 6899), True, 'import numpy as nm\n'), ((7278, 7322), 'numpy.zeros', 'nm.zeros', (['(3 * nel * rep, 4)'], {'dtype': 'nm.int32'}), '((3 * nel * rep, 4), dtype=nm.int32)\n', (7286, 7322), True, 'import numpy as nm\n'), ((3012, 3031), 'scipy.sparse.identity', 'sps.identity', (['n_nod'], {}), '(n_nod)\n', (3024, 3031), True, 'import scipy.sparse as sps\n'), ((3240, 3253), 'numpy.mod', 'nm.mod', (['ii', '(2)'], {}), '(ii, 2)\n', (3246, 3253), True, 'import numpy as nm\n'), ((5101, 5120), 'numpy.ones_like', 'nm.ones_like', (['crows'], {}), '(crows)\n', (5113, 5120), True, 'import numpy as nm\n'), ((7160, 7203), 'numpy.tile', 'nm.tile', (['mesh2d.cmesh.cell_groups', '(1, rep)'], {}), '(mesh2d.cmesh.cell_groups, (1, rep))\n', (7167, 7203), True, 'import numpy as nm\n'), ((7340, 7387), 'numpy.tile', 'nm.tile', (['mesh2d.cmesh.cell_groups', '(1, 3 * rep)'], {}), '(mesh2d.cmesh.cell_groups, (1, 3 * rep))\n', (7347, 7387), True, 'import numpy as nm\n'), ((7796, 7887), 'numpy.array', 'nm.array', (['[conn[:, 0] + bgn0, conn[:, 1] + bgn0, conn[:, 2] + bgn0, conn[:, 2] + bgn1]'], {}), '([conn[:, 0] + bgn0, conn[:, 1] + bgn0, conn[:, 2] + bgn0, conn[:, \n 2] + bgn1])\n', (7804, 7887), True, 'import numpy as nm\n'), ((8117, 8208), 'numpy.array', 'nm.array', (['[conn[:, 0] + bgn0, conn[:, 1] + bgn0, conn[:, 2] + bgn1, conn[:, 1] + bgn1]'], {}), '([conn[:, 0] + bgn0, conn[:, 1] + bgn0, conn[:, 2] + bgn1, conn[:, \n 1] + bgn1])\n', (8125, 8208), True, 'import numpy as nm\n'), ((8438, 8529), 'numpy.array', 'nm.array', (['[conn[:, 0] + bgn0, conn[:, 1] + bgn1, conn[:, 2] + bgn1, conn[:, 0] + bgn1]'], {}), '([conn[:, 0] + bgn0, conn[:, 1] + bgn1, conn[:, 2] + bgn1, conn[:, \n 0] + bgn1])\n', (8446, 8529), True, 'import numpy as nm\n'), ((6926, 6950), 'numpy.tile', 'nm.tile', (['zcoor', '(nnd, 1)'], {}), '(zcoor, (nnd, 1))\n', (6933, 6950), True, 'import numpy as nm\n')]
import os import math import numpy as np import six import megengine._internal as mgb from enum import Enum from py_proto import mace_pb2 from transform import base_converter from transform.base_converter import PoolingType from transform.base_converter import ActivationType from transform.base_converter import EltwiseType from transform.base_converter import FrameworkType from transform.base_converter import ReduceType from transform.base_converter import DataFormat from transform.base_converter import MaceOp from transform.base_converter import MaceKeyword from transform.base_converter import ConverterUtil from transform.base_converter import RoundMode from utils.util import mace_check mge_kernel_h_str = "window_h" mge_kernel_w_str = "window_w" mge_stride_h_str = "stride_h" mge_stride_w_str = "stride_w" mge_pad_h_str = "pad_h" mge_pad_w_str = "pad_w" mge_dilate_h_str = "dilate_h" mge_dilate_w_str = "dilate_w" MGESupportedOps = [ "AxisAddRemove", "BatchNormForward", "Concat", "ConvolutionForward", "ConvolutionBackwardData", "Dimshuffle", "Elemwise", "GetVarShape", "Host2DeviceCopy", "Identity", "MarkNoBroadcastElemwise", "MatrixMul", "PoolingForward", "Reduce", "Reshape", "SharedDeviceTensor", "Subtensor", ] MGEOpType = Enum("MGEOpType", [(op, op) for op in MGESupportedOps], type=str) def get_symvar_value(mge_symvar): if mge_symvar.inferred_value is not None: val = mge_symvar.inferred_value else: cg = mge_symvar.owner_graph func = cg.compile_outonly(mge_symvar) val = func() return val def is_consumer_group_conv(mge_symvar, var2oprs, map_oprs): consumer_ids = var2oprs[mge_symvar.id] n_consumers = len(consumer_ids) for consumer_id in consumer_ids: consumer_op = map_oprs[consumer_id[0]] if (mgb.cgtools.get_opr_type(consumer_op) in ("ConvolutionForward", "ConvolutionBackwardData") and consumer_op.params["sparse"] == "GROUP"): mace_check(n_consumers == 1, "This tensor should only feed depthwise conv/deconv") return True return False class MegengineConverter(base_converter.ConverterInterface): """A class for convert megengine dumped model to mace model.""" compute_format_type = { "NCHW": DataFormat.NCHW, "NHWC": DataFormat.NHWC, "DEFAULT": DataFormat.NCHW, } reduce_math_type = { "SUM": ReduceType.SUM, "PROD": ReduceType.PROD, "MIN": ReduceType.MIN, "MAX": ReduceType.MAX, } # SQE_DIFF, CLIP, SIGN maybe needed eltwise_type = { "ADD": EltwiseType.SUM, "SUB": EltwiseType.SUB, "MUL": EltwiseType.PROD, "TRUE_DIV": EltwiseType.DIV, "MIN": EltwiseType.MIN, "MAX": EltwiseType.MAX, "NEGATE": EltwiseType.NEG, "ABS": EltwiseType.ABS, "POW": EltwiseType.POW, "EQ": EltwiseType.EQUAL, "FLOOR_DIV": EltwiseType.FLOOR_DIV, "EXP": EltwiseType.POW, } activation_type = { "RELU": ActivationType.RELU, "TANH": ActivationType.TANH, "SIGMOID": ActivationType.SIGMOID, } def __init__(self, option, src_model_file): self._op_converters = { MGEOpType.AxisAddRemove.name: self.convert_axisaddrm, MGEOpType.BatchNormForward.name: self.convert_batchnorm, MGEOpType.Concat.name: self.convert_concat, MGEOpType.ConvolutionForward.name: self.convert_conv2d, MGEOpType.ConvolutionBackwardData.name: self.convert_deconv2d, MGEOpType.Dimshuffle.name: self.convert_dimshuffle, MGEOpType.Elemwise.name: self.convert_elemwise, MGEOpType.GetVarShape.name: self.convert_shape, MGEOpType.Host2DeviceCopy.name: self.convert_nop, MGEOpType.Identity.name: self.convert_identity, MGEOpType.MarkNoBroadcastElemwise.name: self.convert_identity, MGEOpType.MatrixMul.name: self.convert_matmul, MGEOpType.PoolingForward.name: self.convert_pooling, MGEOpType.Reduce.name: self.convert_reduce, MGEOpType.Reshape.name: self.convert_reshape, MGEOpType.SharedDeviceTensor.name: self.convert_nop, MGEOpType.Subtensor.name: self.convert_subtensor, } self._option = option self._mace_net_def = mace_pb2.NetDef() ConverterUtil.set_filter_format(self._mace_net_def, DataFormat.OIHW) ConverterUtil.add_data_format_arg(self._mace_net_def, DataFormat.NCHW) cg, _, outputs = mgb.load_comp_graph_from_file(src_model_file) map_oprs, _, var2oprs, *_ = mgb.cgtools.graph_traversal(outputs) # prune second input of reshape # because it introduces several ops, may increase the overhead operators = mgb.cgtools.get_oprs_seq(outputs, prune_reshape=True) self._mge_cg = cg self._mge_operators = operators self._mge_map_oprs = map_oprs self._mge_var2oprs = var2oprs self._skip_tensors = set() self._bn_statistis_tensors = {} def run(self): self.convert_ops() self.replace_input_output_tensor_name() return self._mace_net_def # only change the input/output tensor name for whole model def replace_input_output_tensor_name(self): for op in self._mace_net_def.op: for i in six.moves.range(len(op.input)): if "," in op.input[i]: op_name = op.input[i] op_name = op_name.replace(",", "#") if (op_name in self._option.input_nodes or op_name in self._option.output_nodes): op.input[i] = op_name for i in six.moves.range(len(op.output)): if "," in op.output[i]: op_name = op.output[i] op_name = op_name.replace(",", "#") if op_name in self._option.output_nodes: op.output[i] = op_name # this method will be called by convert_conv2d/deconv2d and convert_pooling @staticmethod def add_stride_pad_kernel_arg(params, op_def): stride = [params[mge_stride_h_str], params[mge_stride_w_str]] pad = [params[mge_pad_h_str] * 2, params[mge_pad_w_str] * 2] strides_arg = op_def.arg.add() strides_arg.name = MaceKeyword.mace_strides_str strides_arg.ints.extend(stride) padding_arg = op_def.arg.add() padding_arg.name = MaceKeyword.mace_padding_values_str padding_arg.ints.extend(pad) if op_def.type == MaceOp.Pooling.name: kernel = [params[mge_kernel_h_str], params[mge_kernel_w_str]] kernels_arg = op_def.arg.add() kernels_arg.name = MaceKeyword.mace_kernel_str kernels_arg.ints.extend(kernel) if op_def.type in (MaceOp.Conv2D.name, MaceOp.DepthwiseConv2d.name, MaceOp.Deconv2D.name, MaceOp.DepthwiseDeconv2d.name): dilation = [params[mge_dilate_h_str], params[mge_dilate_w_str]] dilation_arg = op_def.arg.add() dilation_arg.name = MaceKeyword.mace_dilations_str dilation_arg.ints.extend(dilation) def convert_ops(self): for mge_op in self._mge_operators: opr_type = mgb.cgtools.get_opr_type(mge_op) # some reshape operators provide data for batchnorm if opr_type == "Reshape": output = mge_op.outputs[0] next_ops = self._mge_var2oprs[output.id] if len(next_ops) == 1: (next_op_id, _) = next_ops[0] next_op = self._mge_map_oprs[next_op_id] if mgb.cgtools.get_opr_type(next_op) == "BatchNormForward": self._skip_tensors.update( [inp.name for inp in mge_op.inputs]) # using output name to address input symbol var self._bn_statistis_tensors[mge_op.outputs[0].name] = \ mge_op.inputs[0] # skip this reshape op continue self._op_converters[opr_type](mge_op) self.convert_tensors() def add_tensor(self, name, shape, data_type, value): tensor = self._mace_net_def.tensors.add() tensor.name = name tensor.dims.extend(list(shape)) tensor.data_type = data_type if data_type == mace_pb2.DT_INT32: tensor.int32_data.extend(value) else: tensor.float_data.extend(value) # convert all pre-calculated and constant tensors def convert_tensors(self): for mge_op in self._mge_operators: type_opr = mgb.cgtools.get_opr_type(mge_op) # all tensors generated by SharedDeviceTensor op if type_opr == "SharedDeviceTensor": output = mge_op.outputs[0] if output.name not in self._skip_tensors: nshape = output.imm_shape # tensor used for depthwise conv/deconv should be reshaped for_group_conv = is_consumer_group_conv( output, self._mge_var2oprs, self._mge_map_oprs ) if for_group_conv: nshape = ( 1, output.imm_shape[0], output.imm_shape[3], output.imm_shape[4], ) self.add_tensor( output.name, nshape, mace_pb2.DT_FLOAT, get_symvar_value(output).flatten()) else: # handle all constant values for const_tensor in mge_op.inputs: if (const_tensor.inferred_value is not None and const_tensor.name not in self._skip_tensors): self.add_tensor( const_tensor.name, const_tensor.imm_shape, mace_pb2.DT_INT32, const_tensor.inferred_value.flatten()) def convert_nop(self, mge_op): pass def convert_general_op(self, mge_op): op = self._mace_net_def.op.add() op.name = mge_op.name op.type = mgb.cgtools.get_opr_type(mge_op) op.input.extend([mge_input.name for mge_input in mge_op.inputs]) op.output.extend([mge_output.name for mge_output in mge_op.outputs]) for mge_output in mge_op.outputs: output_shape = op.output_shape.add() output_shape.dims.extend(mge_output.imm_shape) data_type_arg = op.arg.add() data_type_arg.name = "T" data_type_arg.i = self._option.data_type framework_type_arg = op.arg.add() framework_type_arg.name = MaceKeyword.mace_framework_type_str framework_type_arg.i = FrameworkType.MEGENGINE.value # check compute format of megengine compute_format = DataFormat.NCHW try: if "format" in mge_op.params.keys(): compute_format = self.compute_format_type[ mge_op.params["format"] ] except AttributeError: compute_format = DataFormat.NCHW ConverterUtil.add_data_format_arg(op, compute_format) return op def convert_identity(self, mge_op): op = self.convert_general_op(mge_op) op.type = MaceOp.Identity.name def convert_conv2d(self, mge_op): op = self.convert_general_op(mge_op) if mge_op.params["sparse"] == "GROUP": # weight shape in group conv2d: # (groups, out_channel//groups, in_channels//groups, *kernel_size) groups_divisible = mge_op.inputs[1].imm_shape[2] mace_check( groups_divisible == 1, "Mace does not support group convolution yet", ) op.type = MaceOp.DepthwiseConv2d.name elif mge_op.params["sparse"] == "DENSE": op.type = MaceOp.Conv2D.name else: raise Exception("Unknown sparse mode") mace_check( mge_op.params["mode"] != "CONVOLUTION", "Mace does not support CONVOLUTION computation mode yet", ) self.add_stride_pad_kernel_arg(mge_op.params, op) del op.output[1:] del op.output_shape[1:] def convert_deconv2d(self, mge_op): op = self.convert_general_op(mge_op) if mge_op.params["sparse"] == "GROUP": # weight shape in group conv2d: # (groups, out_channel//groups, in_channels//groups, *kernel_size) groups_divisible = mge_op.inputs[0].imm_shape[2] mace_check( groups_divisible == 1, "Mace does not support group deconvolution yet", ) op.type = MaceOp.DepthwiseConv2d.name elif mge_op.params["sparse"] == "DENSE": op.type = MaceOp.Deconv2D.name else: mace_check(False, "Unknown sparse mode") mace_check( mge_op.params["mode"] != "CONVOLUTION", "Mace does not support CONVOLUTION computation mode yet", ) self.add_stride_pad_kernel_arg(mge_op.params, op) # inputs order is strange in megengine, fix it swaped_list = [op.input[1], op.input[0]] del op.input[:] op.input.extend(swaped_list) del op.output[1:] del op.output_shape[1:] def convert_dimshuffle(self, mge_op): op = self.convert_general_op(mge_op) op.type = MaceOp.Transpose.name dims_arg = op.arg.add() dims_arg.name = MaceKeyword.mace_dims_str dims_arg.ints.extend(mge_op.params["pattern"]) def convert_math_elemwise(self, mge_op): op = self.convert_general_op(mge_op) op.type = MaceOp.Eltwise.name type_arg = op.arg.add() type_arg.name = MaceKeyword.mace_element_type_str type_arg.i = self.eltwise_type[mge_op.params["mode"]].value # EXP in megengine always use the np.e as base if mge_op.params["mode"] == "EXP": exp_tensor_name = mge_op.name + "_exp_base" exp_shape = mge_op.outputs[0].imm_shape exp_value = (np.e * np.ones(exp_shape)).flatten() self.add_tensor( exp_tensor_name, exp_shape, mace_pb2.DT_FLOAT, exp_value ) del op.input[0] op.input.extend([exp_tensor_name, mge_op.inputs[0].name]) def convert_activation(self, mge_op): op = self.convert_general_op(mge_op) op.type = MaceOp.Activation.name type_arg = op.arg.add() type_arg.name = MaceKeyword.mace_activation_type_str type_arg.s = six.b(self.activation_type[mge_op.params["mode"]].name) def convert_elemwise(self, mge_op): mode = mge_op.params["mode"] if mode in self.eltwise_type: self.convert_math_elemwise(mge_op) else: self.convert_activation(mge_op) def convert_pooling(self, mge_op): op = self.convert_general_op(mge_op) op.type = MaceOp.Pooling.name pool_type_arg = op.arg.add() pool_type_arg.name = MaceKeyword.mace_pooling_type_str round_mode_arg = op.arg.add() round_mode_arg.name = MaceKeyword.mace_round_mode_str round_mode_arg.i = RoundMode.FLOOR.value # check the case of counting include padding mode = mge_op.params["mode"] if mode == "AVERAGE_COUNT_EXCLUDE_PADDING" or \ (mode == "AVERAGE" and mge_op.params["pad_w"] == 0 and mge_op.params["pad_h"] == 0): pool_type_arg.i = PoolingType.AVG.value elif mode == "MAX": pool_type_arg.i = PoolingType.MAX.value else: mace_check(False, "AVERAGE pooling should not count padding values") self.add_stride_pad_kernel_arg(mge_op.params, op) # delete workspace output, it's useless del op.output[1:] del op.output_shape[1:] def convert_matmul(self, mge_op): op = self.convert_general_op(mge_op) op.type = MaceOp.MatMul.name transpose_a = mge_op.params["transposeA"] transpose_a_arg = op.arg.add() transpose_a_arg.name = MaceKeyword.mace_transpose_a_str transpose_a_arg.i = int(transpose_a) transpose_b = mge_op.params["transposeB"] transpose_b_arg = op.arg.add() transpose_b_arg.name = MaceKeyword.mace_transpose_b_str transpose_b_arg.i = int(transpose_b) del op.output[1:] del op.output_shape[1:] def convert_reshape(self, mge_op): op = self.convert_general_op(mge_op) op.type = MaceOp.Reshape.name # just use the output shape del op.input[1] t_shape = list(mge_op.outputs[0].imm_shape) shape_tensor_name = mge_op.name + "_dest_shape" self.add_tensor( shape_tensor_name, [len(t_shape)], mace_pb2.DT_INT32, t_shape ) op.input.extend([shape_tensor_name]) # usually after reduce operator, remove dimension with value 1 # it's hard to just follow this operator # sometimes axis-add and axis-remove may exist at the same time # for complicated use-case, using reshape is easier def convert_axisaddrm(self, mge_op): op = self.convert_general_op(mge_op) if mge_op.params["nr_desc"] == 1: if mge_op.params["desc"][0]["method"] == 0: op.type = MaceOp.ExpandDims.name else: op.type = MaceOp.Squeeze.name axis_arg = op.arg.add() axis_arg.name = MaceKeyword.mace_axis_str axis_arg.i = mge_op.params["desc"][0]["axisnum"] else: op.type = MaceOp.Reshape.name dest_shape_tensor_name = op.name + "_dest_shape" dest_shape = mge_op.outputs[0].imm_shape self.add_tensor( dest_shape_tensor_name, (len(dest_shape),), mace_pb2.DT_INT32, dest_shape, ) op.input.extend([dest_shape_tensor_name]) def convert_reduce(self, mge_op): op = self.convert_general_op(mge_op) op.type = MaceOp.Reduce.name reduce_type_arg = op.arg.add() reduce_type_arg.name = MaceKeyword.mace_reduce_type_str reduce_type_arg.i = self.reduce_math_type[mge_op.params["mode"]].value # in megengine axis won't be list, just int axis_arg = op.arg.add() axis_arg.name = MaceKeyword.mace_axis_str axis_arg.ints.append(mge_op.params["axis"]) # megengine will always keep dims in Reduce operator # dim removal will be done by operator AxisAddRemove keep_dims_arg = op.arg.add() keep_dims_arg.name = MaceKeyword.mace_keepdims_str keep_dims_arg.i = 1 del op.output[1:] del op.output_shape[1:] def convert_concat(self, mge_op): op = self.convert_general_op(mge_op) op.type = MaceOp.Concat.name axis_arg = op.arg.add() axis_arg.name = MaceKeyword.mace_axis_str axis_arg.i = mge_op.params["axis"] def convert_batchnorm(self, mge_op): op = self.convert_general_op(mge_op) op.type = MaceOp.BatchNorm.name gamma_value = get_symvar_value( self._bn_statistis_tensors[mge_op.inputs[1].name] ).flatten() beta_value = get_symvar_value( self._bn_statistis_tensors[mge_op.inputs[2].name] ).flatten() mean_value = get_symvar_value(mge_op.inputs[3]).flatten() var_value = get_symvar_value(mge_op.inputs[4]).flatten() epsilon_value = 1e-5 scale_name = mge_op.name + "_scale" offset_name = mge_op.name + "_offset" scale_value = (1.0 / np.vectorize(math.sqrt)( var_value + epsilon_value)) * gamma_value offset_value = (-mean_value * scale_value) + beta_value self.add_tensor( scale_name, scale_value.shape, mace_pb2.DT_FLOAT, scale_value ) self.add_tensor( offset_name, offset_value.shape, mace_pb2.DT_FLOAT, offset_value ) self._skip_tensors.update([inp.name for inp in mge_op.inputs][1:]) del op.input[1:] op.input.extend([scale_name, offset_name]) # outputs[4] is the correct output del op.output[-1:] del op.output_shape[-1:] del op.output[:4] del op.output_shape[:4] def convert_shape(self, mge_op): op = self.convert_general_op(mge_op) op.type = MaceOp.Shape.name op.output_type.extend([mace_pb2.DT_INT32]) # axis of subtensor should be constant # subtensor in megengine: numpy-like indexing def convert_subtensor(self, mge_op): op1 = self.convert_general_op(mge_op) op1.type = MaceOp.StridedSlice.name axis = mge_op.inputs[1].inferred_value t_shape = list(mge_op.inputs[0].imm_shape) begin_tensor_name = mge_op.name + "_begin" end_tensor_name = mge_op.name + "_end" stride_tensor_name = mge_op.name + "_stride" begin_tensor_shape = (len(t_shape),) end_tensor_shape = (len(t_shape),) stride_tensor_shape = (len(t_shape),) begin_vals = [0] * len(t_shape) end_vals = [shapei for shapei in t_shape] stride_vals = [1] * len(t_shape) def check_val(sym_var): try: val = sym_var.inferred_value[0] except TypeError: mace_check( False, "you should feed const values for subtensor axis" ) return val squeeze_dims = [] idx = len(mge_op.inputs) - 1 while idx: val = check_val(mge_op.inputs[idx]) for ai in mge_op.params[::-1]: ai_idx = ai["axis"] if ai["step"] > 0: stride_vals[ai_idx] = val idx -= 1 if idx == 0: break val = check_val(mge_op.inputs[idx]) if ai["end"] > 0: if val < 0: val = t_shape[ai_idx] + val end_vals[ai_idx] = val idx -= 1 if idx == 0: break val = check_val(mge_op.inputs[idx]) if ai["begin"] > 0: if val < 0: val = t_shape[ai_idx] + val begin_vals[ai_idx] = val idx -= 1 if idx == 0: break val = check_val(mge_op.inputs[idx]) if ai["idx"] > 0: if val < 0: val = t_shape[ai_idx] + val squeeze_dims.append(ai_idx) begin_vals[ai_idx] = val end_vals[ai_idx] = val + 1 idx -= 1 if idx == 0: break val = check_val(mge_op.inputs[idx]) for ai_idx in range(len(t_shape)): t_shape[ai_idx] = math.ceil( (end_vals[ai_idx] - begin_vals[ai_idx]) / stride_vals[ai_idx] ) self.add_tensor( begin_tensor_name, begin_tensor_shape, mace_pb2.DT_INT32, begin_vals, ) self.add_tensor( end_tensor_name, end_tensor_shape, mace_pb2.DT_INT32, end_vals ) self.add_tensor( stride_tensor_name, stride_tensor_shape, mace_pb2.DT_INT32, stride_vals, ) del op1.input[1:] op1.input.extend( [begin_tensor_name, end_tensor_name, stride_tensor_name] ) if len(squeeze_dims) > 0: # create squeeze op to remove shape=1 dims mid_output_name = mge_op.name + "_mid_reshape" del op1.output[0] op1.output.extend([mid_output_name]) output_shape = op1.output_shape[0] del output_shape.dims[:] output_shape.dims.extend(t_shape) op2 = self._mace_net_def.op.add() op2.type = MaceOp.Squeeze.name op2.name = mge_op.name + "_squeeze" data_type_arg = op2.arg.add() data_type_arg.name = "T" data_type_arg.i = self._option.data_type framework_type_arg = op2.arg.add() framework_type_arg.name = MaceKeyword.mace_framework_type_str framework_type_arg.i = FrameworkType.MEGENGINE.value ConverterUtil.add_data_format_arg(op2, DataFormat.NCHW) op2.input.extend([mid_output_name]) op2.output.extend([mge_op.outputs[0].name]) output_shape = op2.output_shape.add() output_shape.dims.extend(mge_op.outputs[0].imm_shape) axis_arg = op2.arg.add() axis_arg.name = MaceKeyword.mace_axis_str axis_arg.ints.extend(squeeze_dims)
[ "megengine._internal.cgtools.graph_traversal", "megengine._internal.cgtools.get_opr_type", "megengine._internal.cgtools.get_oprs_seq", "megengine._internal.load_comp_graph_from_file" ]
[((1313, 1378), 'enum.Enum', 'Enum', (['"""MGEOpType"""', '[(op, op) for op in MGESupportedOps]'], {'type': 'str'}), "('MGEOpType', [(op, op) for op in MGESupportedOps], type=str)\n", (1317, 1378), False, 'from enum import Enum\n'), ((4473, 4490), 'py_proto.mace_pb2.NetDef', 'mace_pb2.NetDef', ([], {}), '()\n', (4488, 4490), False, 'from py_proto import mace_pb2\n'), ((4499, 4567), 'transform.base_converter.ConverterUtil.set_filter_format', 'ConverterUtil.set_filter_format', (['self._mace_net_def', 'DataFormat.OIHW'], {}), '(self._mace_net_def, DataFormat.OIHW)\n', (4530, 4567), False, 'from transform.base_converter import ConverterUtil\n'), ((4576, 4646), 'transform.base_converter.ConverterUtil.add_data_format_arg', 'ConverterUtil.add_data_format_arg', (['self._mace_net_def', 'DataFormat.NCHW'], {}), '(self._mace_net_def, DataFormat.NCHW)\n', (4609, 4646), False, 'from transform.base_converter import ConverterUtil\n'), ((4673, 4718), 'megengine._internal.load_comp_graph_from_file', 'mgb.load_comp_graph_from_file', (['src_model_file'], {}), '(src_model_file)\n', (4702, 4718), True, 'import megengine._internal as mgb\n'), ((4755, 4791), 'megengine._internal.cgtools.graph_traversal', 'mgb.cgtools.graph_traversal', (['outputs'], {}), '(outputs)\n', (4782, 4791), True, 'import megengine._internal as mgb\n'), ((4923, 4976), 'megengine._internal.cgtools.get_oprs_seq', 'mgb.cgtools.get_oprs_seq', (['outputs'], {'prune_reshape': '(True)'}), '(outputs, prune_reshape=True)\n', (4947, 4976), True, 'import megengine._internal as mgb\n'), ((10640, 10672), 'megengine._internal.cgtools.get_opr_type', 'mgb.cgtools.get_opr_type', (['mge_op'], {}), '(mge_op)\n', (10664, 10672), True, 'import megengine._internal as mgb\n'), ((11620, 11673), 'transform.base_converter.ConverterUtil.add_data_format_arg', 'ConverterUtil.add_data_format_arg', (['op', 'compute_format'], {}), '(op, compute_format)\n', (11653, 11673), False, 'from transform.base_converter import ConverterUtil\n'), ((12488, 12600), 'utils.util.mace_check', 'mace_check', (["(mge_op.params['mode'] != 'CONVOLUTION')", '"""Mace does not support CONVOLUTION computation mode yet"""'], {}), "(mge_op.params['mode'] != 'CONVOLUTION',\n 'Mace does not support CONVOLUTION computation mode yet')\n", (12498, 12600), False, 'from utils.util import mace_check\n'), ((13428, 13540), 'utils.util.mace_check', 'mace_check', (["(mge_op.params['mode'] != 'CONVOLUTION')", '"""Mace does not support CONVOLUTION computation mode yet"""'], {}), "(mge_op.params['mode'] != 'CONVOLUTION',\n 'Mace does not support CONVOLUTION computation mode yet')\n", (13438, 13540), False, 'from utils.util import mace_check\n'), ((15136, 15191), 'six.b', 'six.b', (["self.activation_type[mge_op.params['mode']].name"], {}), "(self.activation_type[mge_op.params['mode']].name)\n", (15141, 15191), False, 'import six\n'), ((2048, 2134), 'utils.util.mace_check', 'mace_check', (['(n_consumers == 1)', '"""This tensor should only feed depthwise conv/deconv"""'], {}), "(n_consumers == 1,\n 'This tensor should only feed depthwise conv/deconv')\n", (2058, 2134), False, 'from utils.util import mace_check\n'), ((7486, 7518), 'megengine._internal.cgtools.get_opr_type', 'mgb.cgtools.get_opr_type', (['mge_op'], {}), '(mge_op)\n', (7510, 7518), True, 'import megengine._internal as mgb\n'), ((8937, 8969), 'megengine._internal.cgtools.get_opr_type', 'mgb.cgtools.get_opr_type', (['mge_op'], {}), '(mge_op)\n', (8961, 8969), True, 'import megengine._internal as mgb\n'), ((12146, 12231), 'utils.util.mace_check', 'mace_check', (['(groups_divisible == 1)', '"""Mace does not support group convolution yet"""'], {}), "(groups_divisible == 1, 'Mace does not support group convolution yet'\n )\n", (12156, 12231), False, 'from utils.util import mace_check\n'), ((13080, 13166), 'utils.util.mace_check', 'mace_check', (['(groups_divisible == 1)', '"""Mace does not support group deconvolution yet"""'], {}), "(groups_divisible == 1,\n 'Mace does not support group deconvolution yet')\n", (13090, 13166), False, 'from utils.util import mace_check\n'), ((23684, 23756), 'math.ceil', 'math.ceil', (['((end_vals[ai_idx] - begin_vals[ai_idx]) / stride_vals[ai_idx])'], {}), '((end_vals[ai_idx] - begin_vals[ai_idx]) / stride_vals[ai_idx])\n', (23693, 23756), False, 'import math\n'), ((25169, 25224), 'transform.base_converter.ConverterUtil.add_data_format_arg', 'ConverterUtil.add_data_format_arg', (['op2', 'DataFormat.NCHW'], {}), '(op2, DataFormat.NCHW)\n', (25202, 25224), False, 'from transform.base_converter import ConverterUtil\n'), ((1867, 1904), 'megengine._internal.cgtools.get_opr_type', 'mgb.cgtools.get_opr_type', (['consumer_op'], {}), '(consumer_op)\n', (1891, 1904), True, 'import megengine._internal as mgb\n'), ((13378, 13418), 'utils.util.mace_check', 'mace_check', (['(False)', '"""Unknown sparse mode"""'], {}), "(False, 'Unknown sparse mode')\n", (13388, 13418), False, 'from utils.util import mace_check\n'), ((16210, 16278), 'utils.util.mace_check', 'mace_check', (['(False)', '"""AVERAGE pooling should not count padding values"""'], {}), "(False, 'AVERAGE pooling should not count padding values')\n", (16220, 16278), False, 'from utils.util import mace_check\n'), ((20280, 20303), 'numpy.vectorize', 'np.vectorize', (['math.sqrt'], {}), '(math.sqrt)\n', (20292, 20303), True, 'import numpy as np\n'), ((22013, 22081), 'utils.util.mace_check', 'mace_check', (['(False)', '"""you should feed const values for subtensor axis"""'], {}), "(False, 'you should feed const values for subtensor axis')\n", (22023, 22081), False, 'from utils.util import mace_check\n'), ((7896, 7929), 'megengine._internal.cgtools.get_opr_type', 'mgb.cgtools.get_opr_type', (['next_op'], {}), '(next_op)\n', (7920, 7929), True, 'import megengine._internal as mgb\n'), ((14648, 14666), 'numpy.ones', 'np.ones', (['exp_shape'], {}), '(exp_shape)\n', (14655, 14666), True, 'import numpy as np\n')]
""" Notes ----- Important attributes of continuous (order > 0) :class:`Field` and :class:`SurfaceField` instances: - `vertex_remap` : `econn[:, :n_vertex] = vertex_remap[conn]` - `vertex_remap_i` : `conn = vertex_remap_i[econn[:, :n_vertex]]` where `conn` is the mesh vertex connectivity, `econn` is the region-local field connectivity. """ import time import numpy as nm from sfepy.base.base import output, assert_ import fea from sfepy.discrete.fem.utils import prepare_remap from sfepy.discrete.common.dof_info import expand_nodes_to_dofs from sfepy.discrete.fem.global_interp import get_ref_coors from sfepy.discrete.fem.facets import get_facet_dof_permutations from sfepy.discrete.fem.fields_base import (FEField, VolumeField, SurfaceField, H1Mixin) from sfepy.discrete.fem.extmods.bases import evaluate_in_rc class H1NodalMixin(H1Mixin): def _setup_facet_orientations(self): order = self.approx_order self.node_desc = self.interp.describe_nodes() edge_nodes = self.node_desc.edge_nodes if edge_nodes is not None: n_fp = self.gel.edges.shape[1] self.edge_dof_perms = get_facet_dof_permutations(n_fp, self.igs, order) face_nodes = self.node_desc.face_nodes if face_nodes is not None: n_fp = self.gel.faces.shape[1] self.face_dof_perms = get_facet_dof_permutations(n_fp, self.igs, order) def _setup_edge_dofs(self): """ Setup edge DOF connectivity. """ if self.node_desc.edge is None: return 0, None, None return self._setup_facet_dofs(1, self.node_desc.edge, self.edge_dof_perms, self.n_vertex_dof) def _setup_face_dofs(self): """ Setup face DOF connectivity. """ if self.node_desc.face is None: return 0, None, None return self._setup_facet_dofs(self.domain.shape.tdim - 1, self.node_desc.face, self.face_dof_perms, self.n_vertex_dof + self.n_edge_dof) def _setup_facet_dofs(self, dim, facet_desc, facet_perms, offset): """ Helper function to setup facet DOF connectivity, works for both edges and faces. """ facet_desc = nm.array(facet_desc) n_dof_per_facet = facet_desc.shape[1] cmesh = self.domain.cmesh facets = self.region.entities[dim] ii = nm.arange(facets.shape[0], dtype=nm.int32) all_dofs = offset + expand_nodes_to_dofs(ii, n_dof_per_facet) # Prepare global facet id remapping to field-local numbering. remap = prepare_remap(facets, cmesh.num[dim]) cconn = self.region.domain.cmesh.get_conn(self.region.tdim, dim) offs = cconn.offsets n_f = self.gel.edges.shape[0] if dim == 1 else self.gel.faces.shape[0] oris = cmesh.get_orientations(dim) for ig, ap in self.aps.iteritems(): gcells = self.region.get_cells(ig, offset=False) n_el = gcells.shape[0] indices = cconn.indices[offs[gcells[0]]:offs[gcells[-1]+1]] facets_of_cells = remap[indices] ori = oris[offs[gcells[0]]:offs[gcells[-1]+1]] perms = facet_perms[ig][ori] # Define global facet dof numbers. gdofs = offset + expand_nodes_to_dofs(facets_of_cells, n_dof_per_facet) # Elements of facets. iel = nm.arange(n_el, dtype=nm.int32).repeat(n_f) ies = nm.tile(nm.arange(n_f, dtype=nm.int32), n_el) # DOF columns in econn for each facet. iep = facet_desc[ies] iaux = nm.arange(gdofs.shape[0], dtype=nm.int32) ap.econn[iel[:, None], iep] = gdofs[iaux[:, None], perms] n_dof = n_dof_per_facet * facets.shape[0] assert_(n_dof == nm.prod(all_dofs.shape)) return n_dof, all_dofs, remap def _setup_bubble_dofs(self): """ Setup bubble DOF connectivity. """ if self.node_desc.bubble is None: return 0, None, None offset = self.n_vertex_dof + self.n_edge_dof + self.n_face_dof n_dof = 0 n_dof_per_cell = self.node_desc.bubble.shape[0] all_dofs = {} remaps = {} for ig, ap in self.aps.iteritems(): ii = self.region.get_cells(ig) n_cell = ii.shape[0] nd = n_dof_per_cell * n_cell group = self.domain.groups[ig] remaps[ig] = prepare_remap(ii, group.shape.n_el) aux = nm.arange(offset + n_dof, offset + n_dof + nd, dtype=nm.int32) aux.shape = (n_cell, n_dof_per_cell) iep = self.node_desc.bubble[0] ap.econn[:,iep:] = aux all_dofs[ig] = aux n_dof += nd return n_dof, all_dofs, remaps def set_dofs(self, fun=0.0, region=None, dpn=None, warn=None): """ Set the values of DOFs in a given region using a function of space coordinates or value `fun`. """ if region is None: region = self.region if dpn is None: dpn = self.n_components aux = self.get_dofs_in_region(region, clean=True, warn=warn) nods = nm.unique(nm.hstack(aux)) if callable(fun): vals = fun(self.get_coor(nods)) elif nm.isscalar(fun): vals = nm.repeat([fun], nods.shape[0] * dpn) elif isinstance(fun, nm.ndarray): assert_(len(fun) == dpn) vals = nm.repeat(fun, nods.shape[0]) else: raise ValueError('unknown function/value type! (%s)' % type(fun)) return nods, vals def evaluate_at(self, coors, source_vals, strategy='kdtree', close_limit=0.1, cache=None, ret_cells=False, ret_status=False, ret_ref_coors=False, verbose=True): """ Evaluate source DOF values corresponding to the field in the given coordinates using the field interpolation. Parameters ---------- coors : array The coordinates the source values should be interpolated into. source_vals : array The source DOF values corresponding to the field. strategy : str, optional The strategy for finding the elements that contain the coordinates. Only 'kdtree' is supported for the moment. close_limit : float, optional The maximum limit distance of a point from the closest element allowed for extrapolation. cache : Struct, optional To speed up a sequence of evaluations, the field mesh, the inverse connectivity of the field mesh and the KDTree instance can be cached as `cache.mesh`, `cache.offsets`, `cache.iconn` and `cache.kdtree`. Optionally, the cache can also contain the reference element coordinates as `cache.ref_coors`, `cache.cells` and `cache.status`, if the evaluation occurs in the same coordinates repeatedly. In that case the KDTree related data are ignored. ret_cells : bool, optional If True, return also the cell indices the coordinates are in. ret_status : bool, optional If True, return also the status for each point: 0 is success, 1 is extrapolation within `close_limit`, 2 is extrapolation outside `close_limit`, 3 is failure. ret_ref_coors : bool, optional If True, return also the found reference element coordinates. verbose : bool If False, reduce verbosity. Returns ------- vals : array The interpolated values. cells : array The cell indices, if `ret_cells` or `ret_status` are True. status : array The status, if `ret_status` is True. """ output('evaluating in %d points...' % coors.shape[0], verbose=verbose) ref_coors, cells, status = get_ref_coors(self, coors, strategy=strategy, close_limit=close_limit, cache=cache, verbose=verbose) tt = time.clock() vertex_coorss, nodess, orders, mtx_is = [], [], [], [] conns = [] for ap in self.aps.itervalues(): ps = ap.interp.poly_spaces['v'] vertex_coorss.append(ps.geometry.coors) nodess.append(ps.nodes) mtx_is.append(ps.get_mtx_i()) orders.append(ps.order) conns.append(ap.econn) orders = nm.array(orders, dtype=nm.int32) # Interpolate to the reference coordinates. vals = nm.empty((coors.shape[0], source_vals.shape[1]), dtype=source_vals.dtype) evaluate_in_rc(vals, ref_coors, cells, status, source_vals, conns, vertex_coorss, nodess, orders, mtx_is, 1e-15) output('interpolation: %f s' % (time.clock()-tt),verbose=verbose) output('...done',verbose=verbose) if ret_ref_coors: return vals, ref_coors, cells, status elif ret_status: return vals, cells, status elif ret_cells: return vals, cells else: return vals class H1NodalVolumeField(H1NodalMixin, VolumeField): family_name = 'volume_H1_lagrange' def interp_v_vals_to_n_vals(self, vec): """ Interpolate a function defined by vertex DOF values using the FE geometry base (P1 or Q1) into the extra nodes, i.e. define the extra DOF values. """ if not self.node_desc.has_extra_nodes(): enod_vol_val = vec.copy() else: dim = vec.shape[1] enod_vol_val = nm.zeros((self.n_nod, dim), dtype=nm.float64) for ig, ap in self.aps.iteritems(): group = self.domain.groups[ig] econn = ap.econn coors = ap.interp.poly_spaces['v'].node_coors ginterp = ap.interp.gel.interp bf = ginterp.poly_spaces['v'].eval_base(coors) bf = bf[:,0,:].copy() evec = nm.dot(bf, vec[group.conn]) enod_vol_val[econn] = nm.swapaxes(evec, 0, 1) return enod_vol_val def set_basis(self, maps, methods): """ This function along with eval_basis supports the general term IntFE. It sets parameters and basis functions at reference element according to its method (val, grad, div, etc). Parameters ---------- maps : class It provides information about mapping between reference and real element. Quadrature points stored in maps.qp_coor are used here. method : list of string It stores methods for variable evaluation. At first position, there is one of val, grad, or div. self.bfref : numpy.array of shape = (n_qp, n_basis) + basis_shape An array that stores basis functions evaluated at quadrature points. Here n_qp is number of quadrature points, n_basis is number of basis functions, and basis_shape is a shape of basis function, i.e. (1,) for scalar-valued, (dim,) for vector-valued, (dim, dim) for matrix-valued, etc. Returns ------- self.bfref : numpy.array It stores a basis functions at quadrature points of shape according to proceeded methods. self.n_basis : int number of basis functions """ self.eval_method = methods def get_grad(maps, shape): bfref0 = eval_base(maps.qp_coor, diff=True).swapaxes(1, 2) if shape == (1,): # scalar variable bfref = bfref0 elif len(shape) == 1: # vector variable vec_shape = nm.array(bfref0.shape + shape) vec_shape[1] *= shape[0] bfref = nm.zeros(vec_shape) for ii in nm.arange(shape[0]): slc = slice(ii*bfref0.shape[1], (ii+1)*bfref0.shape[1]) bfref[:, slc, ii] = bfref0 else: # higher-order tensors variable msg = "Evaluation of basis has not been implemented \ for higher-order tensors yet." raise NotImplementedError(msg) return bfref def get_val(maps, shape): bfref0 = eval_base(maps.qp_coor, diff=False).swapaxes(1, 2) if self.shape == (1,): # scalar variable bfref = bfref0 elif len(shape) == 1: vec_shape = nm.array(bfref0.shape) vec_shape[1:3] *= shape[0] bfref = nm.zeros(vec_shape) for ii in nm.arange(shape[0]): slc = slice(ii*bfref0.shape[1], (ii+1)*bfref0.shape[1]) bfref[:, slc] = bfref0 else: # higher-order tensors variable msg = "Evaluation of basis has not been implemented \ for higher-order tensors yet." raise NotImplementedError(msg) return bfref eval_base = self.interp.poly_spaces['v'].eval_base if self.eval_method[0] == 'val': bfref = get_val(maps, self.shape) elif self.eval_method[0] == 'grad': bfref = get_grad(maps, self.shape) elif self.eval_method[0] == 'div': bfref = get_grad(maps, self.shape) else: raise NotImplementedError("The method '%s' is not implemented" \ % (self.eval_method)) self.bfref = bfref self.n_basis = self.bfref.shape[1] def eval_basis(self, maps): """ It returns basis functions evaluated at quadrature points and mapped at reference element according to real element. """ if self.eval_method == ['grad']: val = nm.tensordot(self.bfref, maps.inv_jac, axes=(-1, 0)) return val elif self.eval_method == ['val']: return self.bfref elif self.eval_method == ['div']: val = nm.tensordot(self.bfref, maps.inv_jac, axes=(-1, 0)) val = nm.atleast_3d(nm.einsum('ijkk', val)) return val elif self.eval_method == ['grad', 'sym', 'Man']: val = nm.tensordot(self.bfref, maps.inv_jac, axes=(-1, 0)) from sfepy.terms.terms_general import proceed_methods val = proceed_methods(val, self.eval_method[1:]) return val else: msg = "Improper method '%s' for evaluation of basis functions" \ % (self.eval_method) raise NotImplementedError(msg) class H1DiscontinuousField(H1NodalMixin, VolumeField): family_name = 'volume_H1_lagrange_discontinuous' def _setup_approximations(self): self.aps = {} self.aps_by_name = {} for ig in self.igs: name = self.interp.name + '_%s_ig%d' % (self.region.name, ig) ap = fea.DiscontinuousApproximation(name, self.interp, self.region, ig) self.aps[ig] = ap self.aps_by_name[ap.name] = ap def _setup_global_base(self): """ Setup global DOF/base function indices and connectivity of the field. """ self._setup_facet_orientations() self._init_econn() n_dof = 0 all_dofs = {} remaps = {} for ig, ap in self.aps.iteritems(): ii = self.region.get_cells(ig) nd = nm.prod(ap.econn.shape) group = self.domain.groups[ig] remaps[ig] = prepare_remap(ii, group.shape.n_el) aux = nm.arange(n_dof, n_dof + nd, dtype=nm.int32) aux.shape = ap.econn.shape ap.econn[:] = aux all_dofs[ig] = aux n_dof += nd self.n_nod = n_dof self.n_bubble_dof = n_dof self.bubble_dofs = all_dofs self.bubble_remaps = remaps self.n_vertex_dof = self.n_edge_dof = self.n_face_dof = 0 self._setup_esurface() def extend_dofs(self, dofs, fill_value=None): """ Extend DOFs to the whole domain using the `fill_value`, or the smallest value in `dofs` if `fill_value` is None. """ if self.approx_order != 0: dofs = self.average_to_vertices(dofs) new_dofs = FEField.extend_dofs(self, dofs) return new_dofs def remove_extra_dofs(self, dofs): """ Remove DOFs defined in higher order nodes (order > 1). """ if self.approx_order != 0: dofs = self.average_to_vertices(dofs) new_dofs = FEField.remove_extra_dofs(self, dofs) return new_dofs def average_to_vertices(self, dofs): """ Average DOFs of the discontinuous field into the field region vertices. """ data_qp, integral = self.interp_to_qp(dofs) vertex_dofs = self.average_qp_to_vertices(data_qp, integral) return vertex_dofs class H1NodalSurfaceField(H1NodalMixin, SurfaceField): """ A field defined on a surface region. """ family_name = 'surface_H1_lagrange' def interp_v_vals_to_n_vals(self, vec): """ Interpolate a function defined by vertex DOF values using the FE surface geometry base (P1 or Q1) into the extra nodes, i.e. define the extra DOF values. """ if not self.node_desc.has_extra_nodes(): enod_vol_val = vec.copy() else: msg = 'surface nodal fields do not support higher order nodes yet!' raise NotImplementedError(msg) return enod_vol_val
[ "sfepy.discrete.fem.fields_base.FEField.remove_extra_dofs", "sfepy.discrete.fem.fields_base.FEField.extend_dofs", "sfepy.discrete.fem.extmods.bases.evaluate_in_rc", "sfepy.discrete.common.dof_info.expand_nodes_to_dofs", "sfepy.discrete.fem.global_interp.get_ref_coors", "sfepy.base.base.output", "sfepy.discrete.fem.facets.get_facet_dof_permutations", "sfepy.terms.terms_general.proceed_methods", "sfepy.discrete.fem.utils.prepare_remap" ]
[((2552, 2572), 'numpy.array', 'nm.array', (['facet_desc'], {}), '(facet_desc)\n', (2560, 2572), True, 'import numpy as nm\n'), ((2711, 2753), 'numpy.arange', 'nm.arange', (['facets.shape[0]'], {'dtype': 'nm.int32'}), '(facets.shape[0], dtype=nm.int32)\n', (2720, 2753), True, 'import numpy as nm\n'), ((2911, 2948), 'sfepy.discrete.fem.utils.prepare_remap', 'prepare_remap', (['facets', 'cmesh.num[dim]'], {}), '(facets, cmesh.num[dim])\n', (2924, 2948), False, 'from sfepy.discrete.fem.utils import prepare_remap\n'), ((8295, 8365), 'sfepy.base.base.output', 'output', (["('evaluating in %d points...' % coors.shape[0])"], {'verbose': 'verbose'}), "('evaluating in %d points...' % coors.shape[0], verbose=verbose)\n", (8301, 8365), False, 'from sfepy.base.base import output, assert_\n'), ((8402, 8506), 'sfepy.discrete.fem.global_interp.get_ref_coors', 'get_ref_coors', (['self', 'coors'], {'strategy': 'strategy', 'close_limit': 'close_limit', 'cache': 'cache', 'verbose': 'verbose'}), '(self, coors, strategy=strategy, close_limit=close_limit,\n cache=cache, verbose=verbose)\n', (8415, 8506), False, 'from sfepy.discrete.fem.global_interp import get_ref_coors\n'), ((8713, 8725), 'time.clock', 'time.clock', ([], {}), '()\n', (8723, 8725), False, 'import time\n'), ((9114, 9146), 'numpy.array', 'nm.array', (['orders'], {'dtype': 'nm.int32'}), '(orders, dtype=nm.int32)\n', (9122, 9146), True, 'import numpy as nm\n'), ((9215, 9288), 'numpy.empty', 'nm.empty', (['(coors.shape[0], source_vals.shape[1])'], {'dtype': 'source_vals.dtype'}), '((coors.shape[0], source_vals.shape[1]), dtype=source_vals.dtype)\n', (9223, 9288), True, 'import numpy as nm\n'), ((9322, 9438), 'sfepy.discrete.fem.extmods.bases.evaluate_in_rc', 'evaluate_in_rc', (['vals', 'ref_coors', 'cells', 'status', 'source_vals', 'conns', 'vertex_coorss', 'nodess', 'orders', 'mtx_is', '(1e-15)'], {}), '(vals, ref_coors, cells, status, source_vals, conns,\n vertex_coorss, nodess, orders, mtx_is, 1e-15)\n', (9336, 9438), False, 'from sfepy.discrete.fem.extmods.bases import evaluate_in_rc\n'), ((9564, 9598), 'sfepy.base.base.output', 'output', (['"""...done"""'], {'verbose': 'verbose'}), "('...done', verbose=verbose)\n", (9570, 9598), False, 'from sfepy.base.base import output, assert_\n'), ((17089, 17120), 'sfepy.discrete.fem.fields_base.FEField.extend_dofs', 'FEField.extend_dofs', (['self', 'dofs'], {}), '(self, dofs)\n', (17108, 17120), False, 'from sfepy.discrete.fem.fields_base import FEField, VolumeField, SurfaceField, H1Mixin\n'), ((17378, 17415), 'sfepy.discrete.fem.fields_base.FEField.remove_extra_dofs', 'FEField.remove_extra_dofs', (['self', 'dofs'], {}), '(self, dofs)\n', (17403, 17415), False, 'from sfepy.discrete.fem.fields_base import FEField, VolumeField, SurfaceField, H1Mixin\n'), ((1183, 1232), 'sfepy.discrete.fem.facets.get_facet_dof_permutations', 'get_facet_dof_permutations', (['n_fp', 'self.igs', 'order'], {}), '(n_fp, self.igs, order)\n', (1209, 1232), False, 'from sfepy.discrete.fem.facets import get_facet_dof_permutations\n'), ((1454, 1503), 'sfepy.discrete.fem.facets.get_facet_dof_permutations', 'get_facet_dof_permutations', (['n_fp', 'self.igs', 'order'], {}), '(n_fp, self.igs, order)\n', (1480, 1503), False, 'from sfepy.discrete.fem.facets import get_facet_dof_permutations\n'), ((2782, 2823), 'sfepy.discrete.common.dof_info.expand_nodes_to_dofs', 'expand_nodes_to_dofs', (['ii', 'n_dof_per_facet'], {}), '(ii, n_dof_per_facet)\n', (2802, 2823), False, 'from sfepy.discrete.common.dof_info import expand_nodes_to_dofs\n'), ((3984, 4025), 'numpy.arange', 'nm.arange', (['gdofs.shape[0]'], {'dtype': 'nm.int32'}), '(gdofs.shape[0], dtype=nm.int32)\n', (3993, 4025), True, 'import numpy as nm\n'), ((4827, 4862), 'sfepy.discrete.fem.utils.prepare_remap', 'prepare_remap', (['ii', 'group.shape.n_el'], {}), '(ii, group.shape.n_el)\n', (4840, 4862), False, 'from sfepy.discrete.fem.utils import prepare_remap\n'), ((4882, 4944), 'numpy.arange', 'nm.arange', (['(offset + n_dof)', '(offset + n_dof + nd)'], {'dtype': 'nm.int32'}), '(offset + n_dof, offset + n_dof + nd, dtype=nm.int32)\n', (4891, 4944), True, 'import numpy as nm\n'), ((5615, 5629), 'numpy.hstack', 'nm.hstack', (['aux'], {}), '(aux)\n', (5624, 5629), True, 'import numpy as nm\n'), ((5716, 5732), 'numpy.isscalar', 'nm.isscalar', (['fun'], {}), '(fun)\n', (5727, 5732), True, 'import numpy as nm\n'), ((10327, 10372), 'numpy.zeros', 'nm.zeros', (['(self.n_nod, dim)'], {'dtype': 'nm.float64'}), '((self.n_nod, dim), dtype=nm.float64)\n', (10335, 10372), True, 'import numpy as nm\n'), ((14557, 14609), 'numpy.tensordot', 'nm.tensordot', (['self.bfref', 'maps.inv_jac'], {'axes': '(-1, 0)'}), '(self.bfref, maps.inv_jac, axes=(-1, 0))\n', (14569, 14609), True, 'import numpy as nm\n'), ((15668, 15734), 'fea.DiscontinuousApproximation', 'fea.DiscontinuousApproximation', (['name', 'self.interp', 'self.region', 'ig'], {}), '(name, self.interp, self.region, ig)\n', (15698, 15734), False, 'import fea\n'), ((16227, 16250), 'numpy.prod', 'nm.prod', (['ap.econn.shape'], {}), '(ap.econn.shape)\n', (16234, 16250), True, 'import numpy as nm\n'), ((16320, 16355), 'sfepy.discrete.fem.utils.prepare_remap', 'prepare_remap', (['ii', 'group.shape.n_el'], {}), '(ii, group.shape.n_el)\n', (16333, 16355), False, 'from sfepy.discrete.fem.utils import prepare_remap\n'), ((16375, 16419), 'numpy.arange', 'nm.arange', (['n_dof', '(n_dof + nd)'], {'dtype': 'nm.int32'}), '(n_dof, n_dof + nd, dtype=nm.int32)\n', (16384, 16419), True, 'import numpy as nm\n'), ((3612, 3666), 'sfepy.discrete.common.dof_info.expand_nodes_to_dofs', 'expand_nodes_to_dofs', (['facets_of_cells', 'n_dof_per_facet'], {}), '(facets_of_cells, n_dof_per_facet)\n', (3632, 3666), False, 'from sfepy.discrete.common.dof_info import expand_nodes_to_dofs\n'), ((3840, 3870), 'numpy.arange', 'nm.arange', (['n_f'], {'dtype': 'nm.int32'}), '(n_f, dtype=nm.int32)\n', (3849, 3870), True, 'import numpy as nm\n'), ((4172, 4195), 'numpy.prod', 'nm.prod', (['all_dofs.shape'], {}), '(all_dofs.shape)\n', (4179, 4195), True, 'import numpy as nm\n'), ((5753, 5790), 'numpy.repeat', 'nm.repeat', (['[fun]', '(nods.shape[0] * dpn)'], {}), '([fun], nods.shape[0] * dpn)\n', (5762, 5790), True, 'import numpy as nm\n'), ((10737, 10764), 'numpy.dot', 'nm.dot', (['bf', 'vec[group.conn]'], {}), '(bf, vec[group.conn])\n', (10743, 10764), True, 'import numpy as nm\n'), ((10803, 10826), 'numpy.swapaxes', 'nm.swapaxes', (['evec', '(0)', '(1)'], {}), '(evec, 0, 1)\n', (10814, 10826), True, 'import numpy as nm\n'), ((3770, 3801), 'numpy.arange', 'nm.arange', (['n_el'], {'dtype': 'nm.int32'}), '(n_el, dtype=nm.int32)\n', (3779, 3801), True, 'import numpy as nm\n'), ((5890, 5919), 'numpy.repeat', 'nm.repeat', (['fun', 'nods.shape[0]'], {}), '(fun, nods.shape[0])\n', (5899, 5919), True, 'import numpy as nm\n'), ((9521, 9533), 'time.clock', 'time.clock', ([], {}), '()\n', (9531, 9533), False, 'import time\n'), ((12453, 12483), 'numpy.array', 'nm.array', (['(bfref0.shape + shape)'], {}), '(bfref0.shape + shape)\n', (12461, 12483), True, 'import numpy as nm\n'), ((12549, 12568), 'numpy.zeros', 'nm.zeros', (['vec_shape'], {}), '(vec_shape)\n', (12557, 12568), True, 'import numpy as nm\n'), ((12595, 12614), 'numpy.arange', 'nm.arange', (['shape[0]'], {}), '(shape[0])\n', (12604, 12614), True, 'import numpy as nm\n'), ((13236, 13258), 'numpy.array', 'nm.array', (['bfref0.shape'], {}), '(bfref0.shape)\n', (13244, 13258), True, 'import numpy as nm\n'), ((13326, 13345), 'numpy.zeros', 'nm.zeros', (['vec_shape'], {}), '(vec_shape)\n', (13334, 13345), True, 'import numpy as nm\n'), ((13372, 13391), 'numpy.arange', 'nm.arange', (['shape[0]'], {}), '(shape[0])\n', (13381, 13391), True, 'import numpy as nm\n'), ((14767, 14819), 'numpy.tensordot', 'nm.tensordot', (['self.bfref', 'maps.inv_jac'], {'axes': '(-1, 0)'}), '(self.bfref, maps.inv_jac, axes=(-1, 0))\n', (14779, 14819), True, 'import numpy as nm\n'), ((14852, 14874), 'numpy.einsum', 'nm.einsum', (['"""ijkk"""', 'val'], {}), "('ijkk', val)\n", (14861, 14874), True, 'import numpy as nm\n'), ((14975, 15027), 'numpy.tensordot', 'nm.tensordot', (['self.bfref', 'maps.inv_jac'], {'axes': '(-1, 0)'}), '(self.bfref, maps.inv_jac, axes=(-1, 0))\n', (14987, 15027), True, 'import numpy as nm\n'), ((15112, 15154), 'sfepy.terms.terms_general.proceed_methods', 'proceed_methods', (['val', 'self.eval_method[1:]'], {}), '(val, self.eval_method[1:])\n', (15127, 15154), False, 'from sfepy.terms.terms_general import proceed_methods\n')]
from sqlmodel import Session, select from db import BaseDBModel from service.base_crud import BaseCRUD class TestTable(BaseDBModel, table=True): test_str: str test_int: int TEST_ROW_DATA1 = {'test_str': 'str1', 'test_int': 1} TEST_ROW_DATA2 = {'test_str': 'str2', 'test_int': 2} class TestCRUD(BaseCRUD): model = TestTable test_crud = TestCRUD() def test_get_returns_none_for_not_existing_rows(session: Session): row = TestTable(**TEST_ROW_DATA1) result_row = test_crud.get(session, row.id) assert result_row is None def test_get_returns_existing_row(session: Session): row = TestTable(**TEST_ROW_DATA1) session.add(row) session.commit() result_row: TestTable = test_crud.get(session, row.id) assert row == result_row def test_get_multiple_values_returns_empty_array_for_not_existing_rows(session: Session): result_arr = test_crud.get_multiple_values(session) assert len(result_arr) == 0 def create_and_return_multiple_rows(db_session: Session): row1 = TestTable(**TEST_ROW_DATA1) row2 = TestTable(**TEST_ROW_DATA2) db_session.add(row1) db_session.add(row2) db_session.commit() return [row1, row2] def test_get_multiple_values_returns_existing_rows(session: Session): rows = create_and_return_multiple_rows(session) result_arr = test_crud.get_multiple_values(session) assert result_arr == rows def test_get_multiple_values_returns_limited_rows(session: Session): rows = create_and_return_multiple_rows(session) result_arr = test_crud.get_multiple_values(session, limit=1) assert result_arr == [rows[0]] def test_get_multiple_values_returns_offset_rows(session: Session): rows = create_and_return_multiple_rows(session) result_arr = test_crud.get_multiple_values(session, offset=1) assert result_arr == [rows[1]] def test_create_row_returns_inserted_row(session: Session): row = TestTable(**TEST_ROW_DATA1) inserted_row: TestTable = test_crud.create(session, row) assert inserted_row == row def test_create_all_does_not_throw_errors(session: Session): rows = [TestTable(**TEST_ROW_DATA1), TestTable(**TEST_ROW_DATA2)] test_crud.create_all(session, rows) inserted_rows = session.exec(select(TestTable)).all() assert inserted_rows == rows def test_update_returns_updated_row(session: Session): row = TestTable(**TEST_ROW_DATA1) session.add(row) session.commit() new_item = TestTable.from_orm(row) new_item.test_int = 10 updated_row: TestTable = test_crud.update(session, row, new_item) assert new_item.test_int == updated_row.test_int def test_delete_row_does_not_throw_error(session: Session): row = TestTable(**TEST_ROW_DATA1) session.add(row) session.commit() test_crud.delete(session, row.id) inserted_row = session.exec( select(TestTable).where(TestTable.id == row.id)).first() assert inserted_row is None def test_model_attribute_returns_test_model(): assert test_crud.model == TestTable def test_model_in_base_crud_returns_none_when_not_implemented(): BaseCRUD.__abstractmethods__ = set() class MockCRUD(BaseCRUD): string: str mock_crud = MockCRUD() assert mock_crud.model is None
[ "sqlmodel.select" ]
[((2249, 2266), 'sqlmodel.select', 'select', (['TestTable'], {}), '(TestTable)\n', (2255, 2266), False, 'from sqlmodel import Session, select\n'), ((2857, 2874), 'sqlmodel.select', 'select', (['TestTable'], {}), '(TestTable)\n', (2863, 2874), False, 'from sqlmodel import Session, select\n')]
# Copyright (c) Megvii, Inc. and its affiliates. import math import megengine.functional as F import megengine.module as M class LogitsFullyConnected(M.Module): """single fully connected layer, mapping embedding to logits with normalized weight """ def __init__(self, num_class, feature_dim): super().__init__() fc = M.Linear(feature_dim, num_class, bias=False) self.weight = fc.weight M.init.msra_uniform_(self.weight, a=math.sqrt(5)) def forward(self, embedding): w = F.normalize(self.weight, axis=1) x = embedding # embedding has been normalized already logits = F.matmul(x, w.transpose(1, 0)) return logits class AdditiveMarginSoftmax(M.Module): """additive margin softmax from `"Additive Margin Softmax for Face Verification" <https://arxiv.org/pdf/1801.05599.pdf>`_ and `"CosFace: Large Margin Cosine Loss for Deep Face Recognition" <https://arxiv.org/pdf/1801.09414.pdf>`_ """ def __init__(self, num_class, scale, m1, m2, m3, feature_dim=512): assert m1 == 1.0, f"m1 expected to be 1.0 in AdditiveMarginSoftmax, got {m1}" assert m2 == 0.0, f"m2 expected to be 0.0 in AdditiveMarginSoftmax, got {m2}" super().__init__() self.fc = LogitsFullyConnected(num_class, feature_dim) self.num_class = num_class self.scale = scale self.margin = m3 def forward(self, embedding, target): origin_logits = self.fc(embedding) one_hot_target = F.one_hot(target, self.num_class) # get how much to decrease delta_one_hot_target = one_hot_target * self.margin # apply the decrease logits = origin_logits - delta_one_hot_target logits = logits * self.scale loss = F.loss.cross_entropy(logits, target) accuracy = F.topk_accuracy(origin_logits, target, topk=1) return loss, accuracy class AdditiveAngularMarginSoftmax(M.Module): """additive angular margin softmax from `"ArcFace: Additive Angular Margin Loss for Deep Face Recognition" <https://arxiv.org/pdf/1801.07698.pdf>`_ """ def __init__(self, num_class, scale, m1, m2, m3, feature_dim=512): assert m1 == 1.0, f"m1 expected to be 1.0 in AdditiveAngularMarginSoftmax, got {m1}" assert m3 == 0.0, f"m3 expected to be 0.0 in AdditiveAngularMarginSoftmax, got {m3}" super().__init__() self.fc = LogitsFullyConnected(num_class, feature_dim) self.num_class = num_class self.scale = scale self.margin = m2 def forward(self, embedding, target): origin_logits = self.fc(embedding) one_hot_target = F.one_hot(target, self.num_class).astype("bool") large_margined_logit = F.cos(F.acos(origin_logits) + self.margin) small_margined_logit = origin_logits margined_logit = F.where(origin_logits >= 0, large_margined_logit, small_margined_logit) logits = F.where(one_hot_target, margined_logit, origin_logits) logits = logits * self.scale loss = F.loss.cross_entropy(logits, target) accuracy = F.topk_accuracy(origin_logits, target, topk=1) return loss, accuracy def get_loss(name): """get loss class by name Args: name (str): costum name of loss Returns: M.Module: corresponding loss class """ mapping = { "cosface": AdditiveMarginSoftmax, "arcface": AdditiveAngularMarginSoftmax, } assert name in mapping, f"head {name} is not found, choose one from {mapping.keys()}" return mapping[name]
[ "megengine.module.Linear", "megengine.functional.normalize", "megengine.functional.topk_accuracy", "megengine.functional.where", "megengine.functional.acos", "megengine.functional.one_hot", "megengine.functional.loss.cross_entropy" ]
[((350, 394), 'megengine.module.Linear', 'M.Linear', (['feature_dim', 'num_class'], {'bias': '(False)'}), '(feature_dim, num_class, bias=False)\n', (358, 394), True, 'import megengine.module as M\n'), ((532, 564), 'megengine.functional.normalize', 'F.normalize', (['self.weight'], {'axis': '(1)'}), '(self.weight, axis=1)\n', (543, 564), True, 'import megengine.functional as F\n'), ((1527, 1560), 'megengine.functional.one_hot', 'F.one_hot', (['target', 'self.num_class'], {}), '(target, self.num_class)\n', (1536, 1560), True, 'import megengine.functional as F\n'), ((1793, 1829), 'megengine.functional.loss.cross_entropy', 'F.loss.cross_entropy', (['logits', 'target'], {}), '(logits, target)\n', (1813, 1829), True, 'import megengine.functional as F\n'), ((1849, 1895), 'megengine.functional.topk_accuracy', 'F.topk_accuracy', (['origin_logits', 'target'], {'topk': '(1)'}), '(origin_logits, target, topk=1)\n', (1864, 1895), True, 'import megengine.functional as F\n'), ((2878, 2949), 'megengine.functional.where', 'F.where', (['(origin_logits >= 0)', 'large_margined_logit', 'small_margined_logit'], {}), '(origin_logits >= 0, large_margined_logit, small_margined_logit)\n', (2885, 2949), True, 'import megengine.functional as F\n'), ((2967, 3021), 'megengine.functional.where', 'F.where', (['one_hot_target', 'margined_logit', 'origin_logits'], {}), '(one_hot_target, margined_logit, origin_logits)\n', (2974, 3021), True, 'import megengine.functional as F\n'), ((3074, 3110), 'megengine.functional.loss.cross_entropy', 'F.loss.cross_entropy', (['logits', 'target'], {}), '(logits, target)\n', (3094, 3110), True, 'import megengine.functional as F\n'), ((3130, 3176), 'megengine.functional.topk_accuracy', 'F.topk_accuracy', (['origin_logits', 'target'], {'topk': '(1)'}), '(origin_logits, target, topk=1)\n', (3145, 3176), True, 'import megengine.functional as F\n'), ((471, 483), 'math.sqrt', 'math.sqrt', (['(5)'], {}), '(5)\n', (480, 483), False, 'import math\n'), ((2685, 2718), 'megengine.functional.one_hot', 'F.one_hot', (['target', 'self.num_class'], {}), '(target, self.num_class)\n', (2694, 2718), True, 'import megengine.functional as F\n'), ((2771, 2792), 'megengine.functional.acos', 'F.acos', (['origin_logits'], {}), '(origin_logits)\n', (2777, 2792), True, 'import megengine.functional as F\n')]
import os from pathlib import Path from app import MyApp from dotenv import load_dotenv from sqlmodel import Session, SQLModel, create_engine load_dotenv() MOVIES_PATH = Path(os.getenv("MOVIES_FILEPATH", None)) dbfile = Path("database.db") engine = create_engine("sqlite:///database.db", echo=False) def create_db_and_tables(): SQLModel.metadata.create_all(engine) def main(): if not dbfile.exists(): create_db_and_tables() with Session(engine) as session: MyApp.run( title="Media Organizer", log="textual.log", path=str(MOVIES_PATH.absolute()), session=session, ) if __name__ == "__main__": main()
[ "sqlmodel.SQLModel.metadata.create_all", "sqlmodel.Session", "sqlmodel.create_engine" ]
[((144, 157), 'dotenv.load_dotenv', 'load_dotenv', ([], {}), '()\n', (155, 157), False, 'from dotenv import load_dotenv\n'), ((224, 243), 'pathlib.Path', 'Path', (['"""database.db"""'], {}), "('database.db')\n", (228, 243), False, 'from pathlib import Path\n'), ((253, 303), 'sqlmodel.create_engine', 'create_engine', (['"""sqlite:///database.db"""'], {'echo': '(False)'}), "('sqlite:///database.db', echo=False)\n", (266, 303), False, 'from sqlmodel import Session, SQLModel, create_engine\n'), ((178, 212), 'os.getenv', 'os.getenv', (['"""MOVIES_FILEPATH"""', 'None'], {}), "('MOVIES_FILEPATH', None)\n", (187, 212), False, 'import os\n'), ((338, 374), 'sqlmodel.SQLModel.metadata.create_all', 'SQLModel.metadata.create_all', (['engine'], {}), '(engine)\n', (366, 374), False, 'from sqlmodel import Session, SQLModel, create_engine\n'), ((458, 473), 'sqlmodel.Session', 'Session', (['engine'], {}), '(engine)\n', (465, 473), False, 'from sqlmodel import Session, SQLModel, create_engine\n')]
import math import numpy import megengine as mge import megengine.module as M import megengine.functional as F from .layer_norm import LayerNorm class DecoderLayer(M.Module): """Single decoder layer module.""" def __init__( self, size, self_attn, src_attn, feed_forward, dropout_rate, normalize_before=True, ): """Construct an DecoderLayer object.""" super(DecoderLayer, self).__init__() self.size = size self.self_attn = self_attn self.src_attn = src_attn self.feed_forward = feed_forward self.norm1 = LayerNorm(size) self.norm2 = LayerNorm(size) self.norm3 = LayerNorm(size) self.dropout = M.dropout.Dropout(dropout_rate) self.normalize_before = normalize_before def forward(self, tgt, tgt_mask, memory, memory_mask, cache=None): """Compute decoded features. Args: tgt (megengine.Tensor): decoded previous target features (batch, max_time_out, size) tgt_mask (megengine.Tensor): mask for x (batch, max_time_out) memory (megengine.Tensor): encoded source features (batch, max_time_in, size) memory_mask (megengine.Tensor): mask for memory (batch, max_time_in) cache (megengine.Tensor): cached output (batch, max_time_out-1, size) """ residual = tgt if self.normalize_before: tgt = self.norm1(tgt) if cache is None: tgt_q = tgt tgt_q_mask = tgt_mask else: # compute only the last frame query keeping dim: max_time_out -> 1 assert cache.shape == ( tgt.shape[0], tgt.shape[1] - 1, self.size, ), f"{cache.shape} == {(tgt.shape[0], tgt.shape[1] - 1, self.size)}" tgt_q = tgt[:, -1:, :] residual = residual[:, -1:, :] tgt_q_mask = None if tgt_mask is not None: tgt_q_mask = tgt_mask[:, -1:, :] x = residual + self.dropout(self.self_attn(tgt_q, tgt, tgt, tgt_q_mask)) if not self.normalize_before: x = self.norm1(x) residual = x if self.normalize_before: x = self.norm2(x) x = residual + self.dropout(self.src_attn(x, memory, memory, memory_mask)) if not self.normalize_before: x = self.norm2(x) residual = x if self.normalize_before: x = self.norm3(x) x = residual + self.dropout(self.feed_forward(x)) if not self.normalize_before: x = self.norm3(x) if cache is not None: x = F.concat([cache, x], axis=1) return x, tgt_mask, memory, memory_mask
[ "megengine.module.dropout.Dropout", "megengine.functional.concat" ]
[((744, 775), 'megengine.module.dropout.Dropout', 'M.dropout.Dropout', (['dropout_rate'], {}), '(dropout_rate)\n', (761, 775), True, 'import megengine.module as M\n'), ((2705, 2733), 'megengine.functional.concat', 'F.concat', (['[cache, x]'], {'axis': '(1)'}), '([cache, x], axis=1)\n', (2713, 2733), True, 'import megengine.functional as F\n')]
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. """Test int8 quantizated model on ImageNet. Note: * QAT simulate int8 with fp32, gpu only. * Quantized use real int8, cpu only, a bit slow. * Results may be slightly different between qat and quantized mode. """ import argparse import multiprocessing as mp import time import megengine as mge import megengine.data as data import megengine.data.transform as T import megengine.distributed as dist import megengine.functional as F import megengine.jit as jit import megengine.quantization as Q import models logger = mge.get_logger(__name__) def main(): parser = argparse.ArgumentParser() parser.add_argument("-a", "--arch", default="resnet18", type=str) parser.add_argument("-d", "--data", default=None, type=str) parser.add_argument("-s", "--save", default="/data/models", type=str) parser.add_argument("-c", "--checkpoint", default=None, type=str, help="pretrained model to finetune") parser.add_argument("-m", "--mode", default="qat", type=str, choices=["normal", "qat", "quantized"], help="Quantization Mode\n" "normal: no quantization, using float32\n" "qat: quantization aware training, simulate int8\n" "quantized: convert mode to int8 quantized, inference only") parser.add_argument("-n", "--ngpus", default=None, type=int) parser.add_argument("-w", "--workers", default=4, type=int) parser.add_argument("--report-freq", default=50, type=int) args = parser.parse_args() world_size = mge.get_device_count("gpu") if args.ngpus is None else args.ngpus if args.mode == "quantized": world_size = 1 args.report_freq = 1 # test is slow on cpu mge.set_default_device("cpux") logger.warning("quantized mode use cpu only") if world_size > 1: # start distributed training, dispatch sub-processes mp.set_start_method("spawn") processes = [] for rank in range(world_size): p = mp.Process(target=worker, args=(rank, world_size, args)) p.start() processes.append(p) for p in processes: p.join() else: worker(0, 1, args) def worker(rank, world_size, args): # pylint: disable=too-many-statements if world_size > 1: # Initialize distributed process group logger.info("init distributed process group {} / {}".format(rank, world_size)) dist.init_process_group( master_ip="localhost", master_port=23456, world_size=world_size, rank=rank, dev=rank, ) model = models.__dict__[args.arch]() if args.mode != "normal": Q.quantize_qat(model, Q.ema_fakequant_qconfig) if args.checkpoint: logger.info("Load pretrained weights from %s", args.checkpoint) ckpt = mge.load(args.checkpoint) ckpt = ckpt["state_dict"] if "state_dict" in ckpt else ckpt model.load_state_dict(ckpt, strict=False) if args.mode == "quantized": Q.quantize(model) # Define valid graph @jit.trace(symbolic=True) def valid_func(image, label): model.eval() logits = model(image) loss = F.cross_entropy_with_softmax(logits, label, label_smooth=0.1) acc1, acc5 = F.accuracy(logits, label, (1, 5)) if dist.is_distributed(): # all_reduce_mean loss = dist.all_reduce_sum(loss, "valid_loss") / dist.get_world_size() acc1 = dist.all_reduce_sum(acc1, "valid_acc1") / dist.get_world_size() acc5 = dist.all_reduce_sum(acc5, "valid_acc5") / dist.get_world_size() return loss, acc1, acc5 # Build valid datasets logger.info("preparing dataset..") valid_dataset = data.dataset.ImageNet(args.data, train=False) valid_sampler = data.SequentialSampler( valid_dataset, batch_size=100, drop_last=False ) valid_queue = data.DataLoader( valid_dataset, sampler=valid_sampler, transform=T.Compose( [ T.Resize(256), T.CenterCrop(224), T.Normalize(mean=128), T.ToMode("CHW"), ] ), num_workers=args.workers, ) _, valid_acc, valid_acc5 = infer(valid_func, valid_queue, args) logger.info("TEST %f, %f", valid_acc, valid_acc5) def infer(model, data_queue, args): objs = AverageMeter("Loss") top1 = AverageMeter("Acc@1") top5 = AverageMeter("Acc@5") total_time = AverageMeter("Time") t = time.time() for step, (image, label) in enumerate(data_queue): n = image.shape[0] image = image.astype("float32") # convert np.uint8 to float32 label = label.astype("int32") loss, acc1, acc5 = model(image, label) objs.update(loss.numpy()[0], n) top1.update(100 * acc1.numpy()[0], n) top5.update(100 * acc5.numpy()[0], n) total_time.update(time.time() - t) t = time.time() if step % args.report_freq == 0 and dist.get_rank() == 0: logger.info("Step %d, %s %s %s %s", step, objs, top1, top5, total_time) return objs.avg, top1.avg, top5.avg class AverageMeter: """Computes and stores the average and current value""" def __init__(self, name, fmt=":.3f"): self.name = name self.fmt = fmt self.reset() def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count def __str__(self): fmtstr = "{name} {val" + self.fmt + "} ({avg" + self.fmt + "})" return fmtstr.format(**self.__dict__) if __name__ == "__main__": main()
[ "megengine.jit.trace", "megengine.distributed.init_process_group", "megengine.distributed.is_distributed", "megengine.functional.cross_entropy_with_softmax", "megengine.distributed.get_rank", "megengine.distributed.get_world_size", "megengine.data.transform.CenterCrop", "megengine.get_device_count", "megengine.load", "megengine.data.transform.Resize", "megengine.set_default_device", "megengine.quantization.quantize_qat", "megengine.get_logger", "megengine.data.SequentialSampler", "megengine.data.transform.Normalize", "megengine.data.transform.ToMode", "megengine.functional.accuracy", "megengine.data.dataset.ImageNet", "megengine.quantization.quantize", "megengine.distributed.all_reduce_sum" ]
[((909, 933), 'megengine.get_logger', 'mge.get_logger', (['__name__'], {}), '(__name__)\n', (923, 933), True, 'import megengine as mge\n'), ((961, 986), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (984, 986), False, 'import argparse\n'), ((3464, 3488), 'megengine.jit.trace', 'jit.trace', ([], {'symbolic': '(True)'}), '(symbolic=True)\n', (3473, 3488), True, 'import megengine.jit as jit\n'), ((4127, 4172), 'megengine.data.dataset.ImageNet', 'data.dataset.ImageNet', (['args.data'], {'train': '(False)'}), '(args.data, train=False)\n', (4148, 4172), True, 'import megengine.data as data\n'), ((4193, 4263), 'megengine.data.SequentialSampler', 'data.SequentialSampler', (['valid_dataset'], {'batch_size': '(100)', 'drop_last': '(False)'}), '(valid_dataset, batch_size=100, drop_last=False)\n', (4215, 4263), True, 'import megengine.data as data\n'), ((4919, 4930), 'time.time', 'time.time', ([], {}), '()\n', (4928, 4930), False, 'import time\n'), ((1896, 1923), 'megengine.get_device_count', 'mge.get_device_count', (['"""gpu"""'], {}), "('gpu')\n", (1916, 1923), True, 'import megengine as mge\n'), ((2079, 2109), 'megengine.set_default_device', 'mge.set_default_device', (['"""cpux"""'], {}), "('cpux')\n", (2101, 2109), True, 'import megengine as mge\n'), ((2257, 2285), 'multiprocessing.set_start_method', 'mp.set_start_method', (['"""spawn"""'], {}), "('spawn')\n", (2276, 2285), True, 'import multiprocessing as mp\n'), ((2808, 2921), 'megengine.distributed.init_process_group', 'dist.init_process_group', ([], {'master_ip': '"""localhost"""', 'master_port': '(23456)', 'world_size': 'world_size', 'rank': 'rank', 'dev': 'rank'}), "(master_ip='localhost', master_port=23456,\n world_size=world_size, rank=rank, dev=rank)\n", (2831, 2921), True, 'import megengine.distributed as dist\n'), ((3070, 3116), 'megengine.quantization.quantize_qat', 'Q.quantize_qat', (['model', 'Q.ema_fakequant_qconfig'], {}), '(model, Q.ema_fakequant_qconfig)\n', (3084, 3116), True, 'import megengine.quantization as Q\n'), ((3229, 3254), 'megengine.load', 'mge.load', (['args.checkpoint'], {}), '(args.checkpoint)\n', (3237, 3254), True, 'import megengine as mge\n'), ((3415, 3432), 'megengine.quantization.quantize', 'Q.quantize', (['model'], {}), '(model)\n', (3425, 3432), True, 'import megengine.quantization as Q\n'), ((3589, 3650), 'megengine.functional.cross_entropy_with_softmax', 'F.cross_entropy_with_softmax', (['logits', 'label'], {'label_smooth': '(0.1)'}), '(logits, label, label_smooth=0.1)\n', (3617, 3650), True, 'import megengine.functional as F\n'), ((3672, 3705), 'megengine.functional.accuracy', 'F.accuracy', (['logits', 'label', '(1, 5)'], {}), '(logits, label, (1, 5))\n', (3682, 3705), True, 'import megengine.functional as F\n'), ((3717, 3738), 'megengine.distributed.is_distributed', 'dist.is_distributed', ([], {}), '()\n', (3736, 3738), True, 'import megengine.distributed as dist\n'), ((5358, 5369), 'time.time', 'time.time', ([], {}), '()\n', (5367, 5369), False, 'import time\n'), ((2364, 2420), 'multiprocessing.Process', 'mp.Process', ([], {'target': 'worker', 'args': '(rank, world_size, args)'}), '(target=worker, args=(rank, world_size, args))\n', (2374, 2420), True, 'import multiprocessing as mp\n'), ((3778, 3817), 'megengine.distributed.all_reduce_sum', 'dist.all_reduce_sum', (['loss', '"""valid_loss"""'], {}), "(loss, 'valid_loss')\n", (3797, 3817), True, 'import megengine.distributed as dist\n'), ((3820, 3841), 'megengine.distributed.get_world_size', 'dist.get_world_size', ([], {}), '()\n', (3839, 3841), True, 'import megengine.distributed as dist\n'), ((3861, 3900), 'megengine.distributed.all_reduce_sum', 'dist.all_reduce_sum', (['acc1', '"""valid_acc1"""'], {}), "(acc1, 'valid_acc1')\n", (3880, 3900), True, 'import megengine.distributed as dist\n'), ((3903, 3924), 'megengine.distributed.get_world_size', 'dist.get_world_size', ([], {}), '()\n', (3922, 3924), True, 'import megengine.distributed as dist\n'), ((3944, 3983), 'megengine.distributed.all_reduce_sum', 'dist.all_reduce_sum', (['acc5', '"""valid_acc5"""'], {}), "(acc5, 'valid_acc5')\n", (3963, 3983), True, 'import megengine.distributed as dist\n'), ((3986, 4007), 'megengine.distributed.get_world_size', 'dist.get_world_size', ([], {}), '()\n', (4005, 4007), True, 'import megengine.distributed as dist\n'), ((5329, 5340), 'time.time', 'time.time', ([], {}), '()\n', (5338, 5340), False, 'import time\n'), ((5415, 5430), 'megengine.distributed.get_rank', 'dist.get_rank', ([], {}), '()\n', (5428, 5430), True, 'import megengine.distributed as dist\n'), ((4426, 4439), 'megengine.data.transform.Resize', 'T.Resize', (['(256)'], {}), '(256)\n', (4434, 4439), True, 'import megengine.data.transform as T\n'), ((4457, 4474), 'megengine.data.transform.CenterCrop', 'T.CenterCrop', (['(224)'], {}), '(224)\n', (4469, 4474), True, 'import megengine.data.transform as T\n'), ((4492, 4513), 'megengine.data.transform.Normalize', 'T.Normalize', ([], {'mean': '(128)'}), '(mean=128)\n', (4503, 4513), True, 'import megengine.data.transform as T\n'), ((4531, 4546), 'megengine.data.transform.ToMode', 'T.ToMode', (['"""CHW"""'], {}), "('CHW')\n", (4539, 4546), True, 'import megengine.data.transform as T\n')]
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import contextlib import functools import itertools import os from typing import Callable, Tuple, Union import numpy as np import megengine._internal as mgb from megengine._internal.plugin import CompGraphProfiler from ..core import Tensor, graph, tensor from .sublinear_memory_config import SublinearMemoryConfig def sideeffect(f): # during eager tracing, wrapped function is called with proxy inputs # during static tracing, wrapped function will not be called at all @functools.wraps(f) def wrapper(*args, **kwargs): # pylint: disable=inconsistent-return-statements if not trace._active_instance: return f(*args, **kwargs) tensors = {} for i, x in itertools.chain(enumerate(args), kwargs.items()): if isinstance(x, Tensor): tensors[i] = x if tensors: _keys, tensors = zip(*tensors.items()) else: _keys, tensors = (), () def callback(*tensors, f=f, keys=_keys, args=args, kwargs=kwargs): replace = dict(zip(keys, tensors)) args = tuple(replace.get(i, x) for i, x in enumerate(args)) kwargs = {i: replace.get(i, x) for i, x in kwargs.items()} if f(*args, **kwargs) is not None: raise TypeError("a sideeffect function should return None") # TODO: clear memory trace._active_instance._register_callback(callback, tensors) return wrapper def mark_impure(x): if not trace._active_instance: return x return trace._active_instance._mark_impure(x) def barrier(x): if not trace._active_instance: return x return trace._active_instance._insert_barrier(x) def _dummy(): return mgb.make_immutable(*graph._use_default_if_none(None, None), 0) class unset: pass class trace: """ Wrap a callable and provide: * tracing via :meth:`.trace` and :meth:`.dump` * accelerated evalutaion via :meth:`.__call__` :param func: Positional only argument. :param symbolic: Whether to use symbolic tensor. Default: False :param opt_level: Optimization level for compiling trace. :param log_level: Log level. :param sublinear_memory_config: Configuration for sublinear memory optimization. If not None, it enables sublinear memory optimization with given setting. :param allreduce_pack_max_size: Maximum size of an allreduce pack in MB. If not None, multiple gradients will be packed and synchronized together :param profiling: Whether to profile compiled trace. Default: False """ _active_instance = None enabled = not os.getenv("MGE_DISABLE_TRACE") _UNSTARTED = "unstarted" _STARTED = "started" _FINISHED = "finished" def __new__(cls, *args, **kwargs): if not args: return functools.partial(cls, **kwargs) return super().__new__(cls) def __init__( self, func: Callable[..., Union[None, Tensor, Tuple[Tensor]]], *, symbolic: bool = False, opt_level: int = None, log_level: int = None, sublinear_memory_config: SublinearMemoryConfig = None, allreduce_pack_max_size: int = None, profiling: bool = False ): self.__wrapped__ = func self._symbolic = symbolic self._graph_opt_level = opt_level self._log_level = log_level self._sublinear_memory_config = sublinear_memory_config self._allreduce_pack_max_size = allreduce_pack_max_size self._status = self._UNSTARTED self._args = None self._kwargs = None self._outputs = unset self._sym_outputs = unset self._outspec = None self._checkpoint = None self._compiled_func = None self._profiling = profiling self._profiler = None @property def _active(self): c1 = self._status == self._STARTED c2 = type(self)._active_instance is self assert c1 == c2 return c1 def _register_callback(self, f, args=()): assert self._active assert isinstance(args, (tuple, list)) proxies = self._make_proxies(args) self._forward(args, proxies, checkpoint=True) # NOTE: under eager graph callback will fire immediately job = mgb.opr.callback_injector( self._insert_barrier(_dummy()), lambda _: f(*proxies) ) self._insert_checkpoint(job) self._outspec.append(job) def _insert_barrier(self, x): assert self._active if self._checkpoint is None: return x if isinstance(x, Tensor): x = x._symvar wrap = True else: wrap = False if not isinstance(x, mgb.SymbolVar): raise TypeError x = mgb.opr.virtual_dep([x, self._checkpoint]) if wrap: x = Tensor(x) return x def _insert_checkpoint(self, *args, no_barrier=False): assert self._active if not args: return args = tuple(x._symvar if isinstance(x, Tensor) else x for x in args) for x in args: if not isinstance(x, mgb.SymbolVar): raise TypeError if not no_barrier and self._checkpoint is not None: # normally no need to _insert_barrier here, but if # someone forget to call _insert_barrier beforehand, # this can make things less broken args += (self._checkpoint,) if len(args) == 1: self._checkpoint = args[0] else: self._checkpoint = mgb.opr.virtual_dep(args) def _mark_impure(self, x): assert self._active ret = x if isinstance(x, Tensor): x = x._symvar if not isinstance(x, mgb.SymbolVar): raise TypeError self._outspec.append(x) self._insert_checkpoint(x) return ret def _make_proxies(self, args): assert isinstance(args, (tuple, list)) for x in args: assert isinstance(x, Tensor) return tuple(tensor(dtype=x.dtype, device=x.device) for x in args) def _forward(self, srcs, dests, checkpoint=True): # pseudo-op: does not run under static graph; traced # TODO: use shared memory assert len(srcs) == len(dests) if not self._active: for s, d in zip(srcs, dests): d.set_value(s, share=False) return jobs = [] for s, d in zip(srcs, dests): def callback(value, dest=d): dest.set_value(value, share=False) s = self._insert_barrier(s._symvar) # NOTE: callback immediately fire in eager graph jobs.append(mgb.opr.callback_injector(s, callback)) self._outspec.extend(jobs) if checkpoint: self._insert_checkpoint(*jobs, no_barrier=True) def _forward_inputs(self, *args, **kwargs): if self._kwargs is None: self._kwargs = kwargs elif self._kwargs != kwargs: raise ValueError("kwargs must not change between invocations") if self._args is None: self._args = [] for i in args: if isinstance(i, Tensor): self._args.append(tensor(dtype=i.dtype, device=i.device)) self._args[-1].set_value(i, share=False) else: self._args.append(tensor(i)) else: if not len(args) == len(self._args): raise TypeError for i, proxy in zip(args, self._args): proxy.set_value(i, share=False) # XXX: sync? def _make_outputs(self, outputs): if outputs is None: self._outputs = None return if isinstance(outputs, Tensor): # no one is able to call barrier after this, so no need to checkpoint # but checkpoint do little harm anyway (self._outputs,) = self._make_proxies([outputs]) return if not isinstance(outputs, (tuple, list)): raise TypeError("should return (tuple of) tensor") for i in outputs: if not isinstance(i, Tensor): raise TypeError("should return (tuple of) tensor") self._outputs = self._make_proxies(outputs) def _foward_outputs(self, outputs): # pseudo-op: does not run under static graph; traced if self._outputs is unset: self._make_outputs(outputs) if self._outputs is None: if outputs is not None: raise TypeError("should return None") elif isinstance(self._outputs, Tensor): if not isinstance(outputs, Tensor): raise TypeError("should return a tensor") self._forward([outputs], [self._outputs]) else: assert isinstance(self._outputs, tuple) def check(): if not isinstance(outputs, (tuple, list)): return False if len(self._outputs) != len(outputs): return False for x in outputs: if not isinstance(x, Tensor): return False return True if not check(): raise TypeError( "should return tuple of %d tensors" % len(self._outputs) ) self._forward(outputs, self._outputs) def _apply_graph_options(self, cg): # graph opt level if self._graph_opt_level is not None: cg.set_option("graph_opt_level", self._graph_opt_level) # log level if self._log_level is not None: cg.set_option("log_level", self._log_level) # sublinear if self._sublinear_memory_config is not None: cg.set_option("enable_sublinear_memory_opt", True) cg.set_option( "sublinear_mem_cofig.lb_memory", self._sublinear_memory_config.lb_memory, ) cg.set_option( "sublinear_mem_cofig.genetic_nr_iter", self._sublinear_memory_config.genetic_nr_iter, ) cg.set_option( "sublinear_mem_cofig.genetic_pool_size", self._sublinear_memory_config.genetic_pool_size, ) cg.set_option( "sublinear_mem_cofig.thresh_nr_try", self._sublinear_memory_config.thresh_nr_try, ) cg.set_option( "sublinear_mem_cofig.num_worker", self._sublinear_memory_config.num_worker, ) # pack allreduce if self._allreduce_pack_max_size is not None: cg.set_option("allreduce_pack_max_size", self._allreduce_pack_max_size) # profile if self._profiling: self._profiler = CompGraphProfiler(cg) def _get_graph(self, eager): if eager: if not hasattr(self, "_eager_graph"): # pylint: disable=attribute-defined-outside-init self._eager_graph = graph.Graph(eager_evaluation=True) self._apply_graph_options(self._eager_graph) return self._eager_graph else: if not hasattr(self, "_static_graph"): # pylint: disable=attribute-defined-outside-init self._static_graph = graph.Graph(eager_evaluation=False) self._apply_graph_options(self._static_graph) return self._static_graph @contextlib.contextmanager def _prepare(self, args, kwargs, enable): # prepare for execution self._forward_inputs(*args, **kwargs) if not enable: # XXX: use our own graph here? cg = None elif self._status == self._FINISHED: cg = None elif self._symbolic: cg = self._get_graph(eager=False) else: cg = self._get_graph(eager=True) try: # NOTE: always trace in a new graph, so capturing an undetached tensor # will never work (would work if tracing in default graph) if cg is None: yield else: with cg: yield finally: # XXX: properly release memory if cg: cg.clear_device_memory() @contextlib.contextmanager def _activate(self): # prepare for tracing if self._status != self._UNSTARTED: raise RuntimeError("cannot trace a second time") if type(self)._active_instance is not None: raise RuntimeError("nested trace is unsupported") self._status = self._STARTED type(self)._active_instance = self self._user_cache = {} try: yield finally: self._status = self._FINISHED self._user_cache = None type(self)._active_instance = None def _run_wrapped(self): outputs = self.__wrapped__(*self._args, **self._kwargs) self._foward_outputs(outputs) return outputs def _do_trace(self): with self._activate(): self._outspec = [] outputs = self._run_wrapped() if outputs is None: self._sym_outputs = None else: if isinstance(outputs, Tensor): outputs = [outputs] # _run_wrapped has checked validity of outputs self._sym_outputs = tuple(i._symvar for i in outputs) mgb.comp_graph_tools.set_priority_to_id(self._outspec) self._compiled_func = graph.get_default_graph().compile(None, self._outspec) def trace(self, *args: Tensor, **kwargs): """ Trace wrapped callable with provided arguments. """ with self._prepare(args, kwargs, enable=True): self._do_trace() return self def __call__(self, *args: Tensor, **kwargs): """ Evaluate on provided arguments, using compiled trace instead of the original callable if applicable. :return: ``None`` or :class:`~.Tensor` or tuple of :class:`~.Tensor`, depending on the return value of wrapped callable. """ with self._prepare(args, kwargs, enable=self.enabled): if not self.enabled: self._run_wrapped() elif self._status == self._FINISHED: self._compiled_func() else: if self._status == self._UNSTARTED: self._do_trace() if self._symbolic: self._compiled_func() return self._outputs def dump( self, fpath, *, arg_names=None, append=False, optimize_for_inference=False, **kwargs ): """ Serialize trace to file system. :param fpath: positional only argument. Path of output file. :param arg_names: names of the input tensors in the traced function. :param append: whether output is appended to ``fpath``. :param optimize_for_inference: whether to enable optimize_for_inference pass before dump. :param enable_io16xc32: whether to use float16 for I/O between oprs and use float32 as internal computation precision. Note the output var would be changed to float16. :param enable_ioc16: whether to use float16 for both I/O and computation precision. :param enable_hwcd4: whether to use NHWCD4 data layout. This is faster on some OpenCL backend. :param enable_nchw88: whether to use NCHW88 data layout. it currently used in X86 AVX backend. :param enable_nchw44: whether to use NCHW44 data layout. it currently used in arm backend. :param enable_nchw44_dot: whether to use NCHW44_dot data layout. it currently used in armv8.2+dotprod backend. :param enable_nchw4: whether to use NCHW4 data layout. it currently used in nvidia backend(based on cudnn). :param enable_nchw32: whether to use NCHW32 data layout. it currently used in nvidia backend with tensorcore(based on cudnn). :param enable_chwn4: whether to use CHWN4 data layout. it currently used in nvidia backend with tensorcore. :param enable_fuse_conv_bias_nonlinearity: whether to fuse conv+bias+nonlinearty into one opr. :param enable_fuse_conv_bias_with_z: whether to fuse conv_bias with z input for inference on nvidia backend(this optimization pass will result in mismatch of the precision of output of training and inference) """ if self._status != self._FINISHED: raise ValueError("not traced") assert isinstance(self._sym_outputs, (tuple, type(None))) if not self._sym_outputs: raise ValueError("not outputs") if arg_names is None: arg_names = ["arg_%d" % i for i in range(len(self._args))] elif len(arg_names) != len(self._args): raise ValueError( "len(arg_names) should be {}, got {}".format( len(self._args), len(arg_names) ) ) optimize_for_inference_args_map = { "enable_io16xc32": "f16_io_f32_comp", "enable_ioc16": "f16_io_comp", "enable_hwcd4": "use_nhwcd4", "enable_nchw4": "use_nchw4", "enable_nchw88": "use_nchw88", "enable_nchw32": "use_nchw32", "enable_nchw44": "use_nchw44", "enable_nchw44_dot": "use_nchw44_dot", "enable_chwn4": "use_chwn4", "enable_fuse_conv_bias_nonlinearity": "fuse_conv_bias_nonlinearity", "enable_fuse_conv_bias_with_z": "fuse_conv_bias_with_z", } if optimize_for_inference: optimize_for_inference_kwargs = {} for k, v in optimize_for_inference_args_map.items(): if kwargs.pop(k, False): optimize_for_inference_kwargs[v] = True else: for k in optimize_for_inference_args_map: if kwargs.get(k, False): raise ValueError( "cannot set %s when optimize_for_inference is not set" % k ) if kwargs: raise ValueError("unknown options: %s" % list(kwargs)) cg = self._sym_outputs[0].owner_graph replace = {} for t, name in zip(self._args, arg_names): # relies on symvar dedup s = t.__mgb_symvar__(comp_graph=cg) replace[s] = mgb.make_arg( t.device, cg, dtype=t.dtype, shape=t.shape, name=name ) # Convert VolatileSharedDeviceTensor to SharedDeviceTensor, # otherwise some optimizations would not work. The conversion is # safe because there simply is no way (using builtin ops) to make # a VolatileSharedDeviceTensor actually volatile. for s in mgb.cgtools.get_dep_vars( self._sym_outputs, "VolatileSharedDeviceTensor" ): if s in replace: continue # is an input replace[s] = mgb.SharedND._from_symvar(s).symvar( cg, name=s.name, volatile=False ) sym_outputs = mgb.cgtools.replace_vars(self._sym_outputs, replace) sym_outputs = list(sym_outputs) if optimize_for_inference: sym_outputs = mgb.optimize_for_inference( sym_outputs, **optimize_for_inference_kwargs ) mgb.serialize_comp_graph_to_file(fpath, sym_outputs, append=append) def get_profile(self): """ Get profiling result for compiled trace. :return: a json compatible object. """ if not self._profiler: raise RuntimeError("trace is not set with profiling=True") return self._profiler.get()
[ "megengine._internal.cgtools.get_dep_vars", "megengine._internal.opr.callback_injector", "megengine._internal.make_arg", "megengine._internal.plugin.CompGraphProfiler", "megengine._internal.serialize_comp_graph_to_file", "megengine._internal.optimize_for_inference", "megengine._internal.comp_graph_tools.set_priority_to_id", "megengine._internal.opr.virtual_dep", "megengine._internal.SharedND._from_symvar", "megengine._internal.cgtools.replace_vars" ]
[((865, 883), 'functools.wraps', 'functools.wraps', (['f'], {}), '(f)\n', (880, 883), False, 'import functools\n'), ((3018, 3048), 'os.getenv', 'os.getenv', (['"""MGE_DISABLE_TRACE"""'], {}), "('MGE_DISABLE_TRACE')\n", (3027, 3048), False, 'import os\n'), ((5194, 5236), 'megengine._internal.opr.virtual_dep', 'mgb.opr.virtual_dep', (['[x, self._checkpoint]'], {}), '([x, self._checkpoint])\n', (5213, 5236), True, 'import megengine._internal as mgb\n'), ((19650, 19723), 'megengine._internal.cgtools.get_dep_vars', 'mgb.cgtools.get_dep_vars', (['self._sym_outputs', '"""VolatileSharedDeviceTensor"""'], {}), "(self._sym_outputs, 'VolatileSharedDeviceTensor')\n", (19674, 19723), True, 'import megengine._internal as mgb\n'), ((19962, 20014), 'megengine._internal.cgtools.replace_vars', 'mgb.cgtools.replace_vars', (['self._sym_outputs', 'replace'], {}), '(self._sym_outputs, replace)\n', (19986, 20014), True, 'import megengine._internal as mgb\n'), ((20227, 20294), 'megengine._internal.serialize_comp_graph_to_file', 'mgb.serialize_comp_graph_to_file', (['fpath', 'sym_outputs'], {'append': 'append'}), '(fpath, sym_outputs, append=append)\n', (20259, 20294), True, 'import megengine._internal as mgb\n'), ((3211, 3243), 'functools.partial', 'functools.partial', (['cls'], {}), '(cls, **kwargs)\n', (3228, 3243), False, 'import functools\n'), ((5993, 6018), 'megengine._internal.opr.virtual_dep', 'mgb.opr.virtual_dep', (['args'], {}), '(args)\n', (6012, 6018), True, 'import megengine._internal as mgb\n'), ((11341, 11362), 'megengine._internal.plugin.CompGraphProfiler', 'CompGraphProfiler', (['cg'], {}), '(cg)\n', (11358, 11362), False, 'from megengine._internal.plugin import CompGraphProfiler\n'), ((14050, 14104), 'megengine._internal.comp_graph_tools.set_priority_to_id', 'mgb.comp_graph_tools.set_priority_to_id', (['self._outspec'], {}), '(self._outspec)\n', (14089, 14104), True, 'import megengine._internal as mgb\n'), ((19262, 19329), 'megengine._internal.make_arg', 'mgb.make_arg', (['t.device', 'cg'], {'dtype': 't.dtype', 'shape': 't.shape', 'name': 'name'}), '(t.device, cg, dtype=t.dtype, shape=t.shape, name=name)\n', (19274, 19329), True, 'import megengine._internal as mgb\n'), ((20116, 20188), 'megengine._internal.optimize_for_inference', 'mgb.optimize_for_inference', (['sym_outputs'], {}), '(sym_outputs, **optimize_for_inference_kwargs)\n', (20142, 20188), True, 'import megengine._internal as mgb\n'), ((7142, 7180), 'megengine._internal.opr.callback_injector', 'mgb.opr.callback_injector', (['s', 'callback'], {}), '(s, callback)\n', (7167, 7180), True, 'import megengine._internal as mgb\n'), ((19841, 19869), 'megengine._internal.SharedND._from_symvar', 'mgb.SharedND._from_symvar', (['s'], {}), '(s)\n', (19866, 19869), True, 'import megengine._internal as mgb\n')]
#!/usr/bin/env python3 from dataset import SIDDValData from model import UNetD import megengine.data as data from utils import batch_PSNR from tqdm import tqdm import argparse import pickle import megengine def test(args): valid_dataset = SIDDValData(args.data) valid_sampler = data.SequentialSampler( valid_dataset, batch_size=1, drop_last=False ) valid_dataloader = data.DataLoader( valid_dataset, sampler=valid_sampler, num_workers=8, ) model = UNetD(3) with open(args.checkpoint, "rb") as f: state = pickle.load(f) model.load_state_dict(state["state_dict"]) model.eval() def valid_step(image, label): pred = model(image) pred = image - pred psnr_it = batch_PSNR(pred, label) return psnr_it def valid(func, data_queue): psnr_v = 0. for step, (image, label) in tqdm(enumerate(data_queue)): image = megengine.tensor(image) label = megengine.tensor(label) psnr_it = func(image, label) psnr_v += psnr_it psnr_v /= step + 1 return psnr_v psnr_v = valid(valid_step, valid_dataloader) print("PSNR: {:.3f}".format(psnr_v.item()) ) if __name__ == "__main__": parser = argparse.ArgumentParser(description="MegEngine NBNet") parser.add_argument("-d", "--data", default="/data/sidd", metavar="DIR", help="path to imagenet dataset") parser.add_argument("-c", "--checkpoint", help="path to checkpoint") args = parser.parse_args() test(args) # vim: ts=4 sw=4 sts=4 expandtab
[ "megengine.data.DataLoader", "megengine.tensor", "megengine.data.SequentialSampler" ]
[((245, 267), 'dataset.SIDDValData', 'SIDDValData', (['args.data'], {}), '(args.data)\n', (256, 267), False, 'from dataset import SIDDValData\n'), ((288, 356), 'megengine.data.SequentialSampler', 'data.SequentialSampler', (['valid_dataset'], {'batch_size': '(1)', 'drop_last': '(False)'}), '(valid_dataset, batch_size=1, drop_last=False)\n', (310, 356), True, 'import megengine.data as data\n'), ((394, 462), 'megengine.data.DataLoader', 'data.DataLoader', (['valid_dataset'], {'sampler': 'valid_sampler', 'num_workers': '(8)'}), '(valid_dataset, sampler=valid_sampler, num_workers=8)\n', (409, 462), True, 'import megengine.data as data\n'), ((506, 514), 'model.UNetD', 'UNetD', (['(3)'], {}), '(3)\n', (511, 514), False, 'from model import UNetD\n'), ((1276, 1330), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""MegEngine NBNet"""'}), "(description='MegEngine NBNet')\n", (1299, 1330), False, 'import argparse\n'), ((574, 588), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (585, 588), False, 'import pickle\n'), ((762, 785), 'utils.batch_PSNR', 'batch_PSNR', (['pred', 'label'], {}), '(pred, label)\n', (772, 785), False, 'from utils import batch_PSNR\n'), ((948, 971), 'megengine.tensor', 'megengine.tensor', (['image'], {}), '(image)\n', (964, 971), False, 'import megengine\n'), ((992, 1015), 'megengine.tensor', 'megengine.tensor', (['label'], {}), '(label)\n', (1008, 1015), False, 'import megengine\n')]
from typing import Optional, List from fastapi import FastAPI, File, UploadFile, Request from sqlmodel import Field, Session, SQLModel, create_engine, select from pydantic import BaseModel from network import Network import requests from PIL import Image as ImagePIL import torchvision as tv app = FastAPI() network = Network() network.model.eval() class Image(SQLModel, table=True): key: Optional[int] = Field(default=None, primary_key=True) image_name: str label: str image_url: str engine = create_engine("sqlite:///image.db") @app.get("/") def read_images(): with Session(engine) as session: statement = select(Image) images = session.exec(statement).all() return images class Item(BaseModel): key: int label: str = "" @app.post("/") def update_heroes(item: Item): with Session(engine) as session: statement = select(Image).where(Image.key == item.key) results = session.exec(statement) image = results.one() image.label = item.label session.add(image) session.commit() @app.get("/predict/{item}") def predict(item: int): import torch import numpy as np with Session(engine) as session: statement = select(Image).where(Image.key == item) results = session.exec(statement) image = results.one() image_url = image.image_url img = ImagePIL.open(requests.get(image_url, stream=True).raw) img = tv.transforms.functional.pil_to_tensor(img).float().unsqueeze(0) with torch.no_grad(): result = network.model(img) result = torch.nn.functional.softmax(result) ret = { '1' : float(result[0][0]), '2': float(result[0][1]) } return str(ret) @app.post("/upload_image") async def upload_image(files: List[UploadFile]): # return {"filenames": [file.filename for file in files]} from minio import Minio import io with Session(engine) as session: client = Minio( "localhost:9001", secure=False, access_key="<KEY>", secret_key="<KEY>" ) for item in files: image_name = item.filename cont = await item.read() content = io.BytesIO(cont) length = len(content.read()) content = io.BytesIO(cont) client.put_object( "image", image_name, content, length ) image_url = f"http://localhost:9001/image/{image_name}" data = Image(image_name=image_name[:-4], label="", image_url=image_url) session.add(data) session.commit()
[ "sqlmodel.create_engine", "sqlmodel.select", "sqlmodel.Session", "sqlmodel.Field" ]
[((299, 308), 'fastapi.FastAPI', 'FastAPI', ([], {}), '()\n', (306, 308), False, 'from fastapi import FastAPI, File, UploadFile, Request\n'), ((319, 328), 'network.Network', 'Network', ([], {}), '()\n', (326, 328), False, 'from network import Network\n'), ((514, 549), 'sqlmodel.create_engine', 'create_engine', (['"""sqlite:///image.db"""'], {}), "('sqlite:///image.db')\n", (527, 549), False, 'from sqlmodel import Field, Session, SQLModel, create_engine, select\n'), ((412, 449), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'primary_key': '(True)'}), '(default=None, primary_key=True)\n', (417, 449), False, 'from sqlmodel import Field, Session, SQLModel, create_engine, select\n'), ((593, 608), 'sqlmodel.Session', 'Session', (['engine'], {}), '(engine)\n', (600, 608), False, 'from sqlmodel import Field, Session, SQLModel, create_engine, select\n'), ((641, 654), 'sqlmodel.select', 'select', (['Image'], {}), '(Image)\n', (647, 654), False, 'from sqlmodel import Field, Session, SQLModel, create_engine, select\n'), ((837, 852), 'sqlmodel.Session', 'Session', (['engine'], {}), '(engine)\n', (844, 852), False, 'from sqlmodel import Field, Session, SQLModel, create_engine, select\n'), ((1187, 1202), 'sqlmodel.Session', 'Session', (['engine'], {}), '(engine)\n', (1194, 1202), False, 'from sqlmodel import Field, Session, SQLModel, create_engine, select\n'), ((1979, 1994), 'sqlmodel.Session', 'Session', (['engine'], {}), '(engine)\n', (1986, 1994), False, 'from sqlmodel import Field, Session, SQLModel, create_engine, select\n'), ((2024, 2101), 'minio.Minio', 'Minio', (['"""localhost:9001"""'], {'secure': '(False)', 'access_key': '"""<KEY>"""', 'secret_key': '"""<KEY>"""'}), "('localhost:9001', secure=False, access_key='<KEY>', secret_key='<KEY>')\n", (2029, 2101), False, 'from minio import Minio\n'), ((1544, 1559), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (1557, 1559), False, 'import torch\n'), ((1622, 1657), 'torch.nn.functional.softmax', 'torch.nn.functional.softmax', (['result'], {}), '(result)\n', (1649, 1657), False, 'import torch\n'), ((2286, 2302), 'io.BytesIO', 'io.BytesIO', (['cont'], {}), '(cont)\n', (2296, 2302), False, 'import io\n'), ((2366, 2382), 'io.BytesIO', 'io.BytesIO', (['cont'], {}), '(cont)\n', (2376, 2382), False, 'import io\n'), ((885, 898), 'sqlmodel.select', 'select', (['Image'], {}), '(Image)\n', (891, 898), False, 'from sqlmodel import Field, Session, SQLModel, create_engine, select\n'), ((1235, 1248), 'sqlmodel.select', 'select', (['Image'], {}), '(Image)\n', (1241, 1248), False, 'from sqlmodel import Field, Session, SQLModel, create_engine, select\n'), ((1410, 1446), 'requests.get', 'requests.get', (['image_url'], {'stream': '(True)'}), '(image_url, stream=True)\n', (1422, 1446), False, 'import requests\n'), ((1466, 1509), 'torchvision.transforms.functional.pil_to_tensor', 'tv.transforms.functional.pil_to_tensor', (['img'], {}), '(img)\n', (1504, 1509), True, 'import torchvision as tv\n')]
from typing import Callable from sqlmodel import select, Session from . import BaseRepository, engine from ..models import ProfileDB, UserDB from app.shared.exc import ( EmailAlreadyTakenError, UserDoesNotExist, UsernameAlreadyTakenError) class UserRepository(BaseRepository): model = UserDB @classmethod def create_with_profile(cls, **kwargs) -> UserDB: user = cls.model(**kwargs) user.profile = ProfileDB() user.profile.create_gravatar() user.save() return user @classmethod def get_all_ilike_username(cls, search_for: str ) -> list[UserDB]: with Session(engine) as session: return session.exec(select(cls.model) .where(cls.model.username.like(f"%{search_for}%")) ).unique().all() @classmethod def get_model_by_username(cls, username: str) -> UserDB | None: return cls.get_model_by_attr(username=username) @classmethod def get_model_by_email(cls, email: str) -> UserDB | None: return cls.get_model_by_attr(email=email) @classmethod def is_credentials_valid(cls, username: str, password: str, verify_hash_func: Callable ) -> bool: if not verify_hash_func: raise NameError("Hash Function is not defined.") if not (user := cls.get_model_by_username(username)): return False return verify_hash_func(password, user.hashed_password) @classmethod def change_username(cls, old_username: str, new_username: str) -> UserDB | None: # IF the new username is the same as the user' current # OR already taken by another user if old_username == new_username or cls.get_model_by_username(new_username): raise UsernameAlreadyTakenError("Please try a different username.") if not (user := cls.get_model_by_username(old_username)): raise UserDoesNotExist("User not found.") user.username = new_username user.save() return user @classmethod def change_email(cls, old_email: str, new_email: str) -> UserDB | None: # IF the new email is the same as the user' current # OR already taken by another user if old_email == new_email or cls.get_model_by_email(new_email): raise EmailAlreadyTakenError("Please try a different username.") if not (user := cls.get_model_by_email(old_email)): raise UserDoesNotExist("User not found.") user.email = new_email user.save() return user @classmethod def change_password(cls, user_id: int, new_password: str) -> bool: pass
[ "sqlmodel.Session", "sqlmodel.select" ]
[((697, 712), 'sqlmodel.Session', 'Session', (['engine'], {}), '(engine)\n', (704, 712), False, 'from sqlmodel import select, Session\n'), ((1973, 2034), 'app.shared.exc.UsernameAlreadyTakenError', 'UsernameAlreadyTakenError', (['"""Please try a different username."""'], {}), "('Please try a different username.')\n", (1998, 2034), False, 'from app.shared.exc import EmailAlreadyTakenError, UserDoesNotExist, UsernameAlreadyTakenError\n'), ((2120, 2155), 'app.shared.exc.UserDoesNotExist', 'UserDoesNotExist', (['"""User not found."""'], {}), "('User not found.')\n", (2136, 2155), False, 'from app.shared.exc import EmailAlreadyTakenError, UserDoesNotExist, UsernameAlreadyTakenError\n'), ((2521, 2579), 'app.shared.exc.EmailAlreadyTakenError', 'EmailAlreadyTakenError', (['"""Please try a different username."""'], {}), "('Please try a different username.')\n", (2543, 2579), False, 'from app.shared.exc import EmailAlreadyTakenError, UserDoesNotExist, UsernameAlreadyTakenError\n'), ((2659, 2694), 'app.shared.exc.UserDoesNotExist', 'UserDoesNotExist', (['"""User not found."""'], {}), "('User not found.')\n", (2675, 2694), False, 'from app.shared.exc import EmailAlreadyTakenError, UserDoesNotExist, UsernameAlreadyTakenError\n'), ((757, 774), 'sqlmodel.select', 'select', (['cls.model'], {}), '(cls.model)\n', (763, 774), False, 'from sqlmodel import select, Session\n')]
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. from functools import partial import numpy as np import pytest import megengine as mge import megengine.functional as F import megengine.module as Float import megengine.module.qat as QAT import megengine.module.quantized as Q from megengine import Parameter, Tensor from megengine.core.tensor import dtype from megengine.quantization import ( FakeQuantize, MinMaxObserver, QConfig, QuantMode, create_qparams, ) from megengine.quantization.quantize import ( disable_fake_quant, disable_observer, propagate_qconfig, ) min_max_fakequant_qconfig = QConfig( weight_observer=partial(MinMaxObserver, dtype="qint8_narrow"), act_observer=partial(MinMaxObserver, dtype="qint8"), weight_fake_quant=partial(FakeQuantize, dtype="qint8_narrow"), act_fake_quant=partial(FakeQuantize, dtype="qint8"), ) def gen_inp_scale(): return np.float32(np.random.rand() + 1) min_val = np.random.randint(-127, 0, size=(2,)).astype("float32") max_val = np.random.randint(1, 127, size=(2,)).astype("float32") weight_scale = np.float32(np.max([-min_val[0], max_val[0]]) / 254 * 2) act_scale = np.float32(np.max([-min_val[1], max_val[1]]) / 255 * 2) def quant(x, scale): inp_dtype = dtype.qint8(scale) return x.astype(inp_dtype) def fake_quant(x, scale, qmin, qmax): x = x / scale x = F.round(x) x = F.clip(x, qmin, qmax) x = x * scale return x fake_quant_act = partial(fake_quant, qmin=-128, qmax=127) fake_quant_weight = partial(fake_quant, qmin=-127, qmax=127) fake_quant_bias = partial(fake_quant, qmin=-(2 ** 31), qmax=2 ** 31 - 1) def init_qat_net(net): if net.with_weight: net.weight_observer.min_val[...] = Tensor(min_val[0]) net.weight_observer.max_val[...] = Tensor(max_val[0]) if net.with_act: net.act_observer.min_val[...] = Tensor(min_val[1]) net.act_observer.max_val[...] = Tensor(max_val[1]) def test_quant_stub(): normal_net = Float.QuantStub() normal_net.eval() qat_from_float = QAT.QuantStub.from_float_module(normal_net) qat_from_float.eval() disable_observer(qat_from_float) disable_fake_quant(qat_from_float) qat_net = QAT.QuantStub() qat_net.eval() disable_observer(qat_net) propagate_qconfig(qat_net, min_max_fakequant_qconfig) init_qat_net(qat_net) q_net = Q.QuantStub.from_qat_module(qat_net) q_net.eval() x = mge.tensor(np.random.normal(size=(3, 3)).astype("float32")) normal = normal_net(x) qat_without_fakequant = qat_from_float(x) fake_quant_normal = fake_quant_act(normal_net(x), act_scale) qat = qat_net(x) q = q_net(x).numpy() * act_scale np.testing.assert_allclose(qat_without_fakequant, normal) np.testing.assert_allclose(qat, fake_quant_normal) np.testing.assert_allclose(q, fake_quant_normal.numpy()) def test_dequant_stub(): normal_net = Float.DequantStub() normal_net.eval() qat_from_float = QAT.DequantStub.from_float_module(normal_net) qat_from_float.eval() disable_fake_quant(qat_from_float) disable_observer(qat_from_float) qat_net = QAT.DequantStub() qat_net.eval() disable_observer(qat_net) propagate_qconfig(qat_net, min_max_fakequant_qconfig) init_qat_net(qat_net) q_net = Q.DequantStub.from_qat_module(qat_net) q_net.eval() x = mge.tensor(np.random.normal(size=(3, 3)).astype("float32")) inp_scale = gen_inp_scale() x = fake_quant_act(x, inp_scale) x.qparams.scale = inp_scale normal = normal_net(x) qat_without_fakequant = qat_from_float(x) fake_quant_normal = normal_net(x) qat = qat_net(x) q = q_net(quant(x, inp_scale)).numpy() np.testing.assert_allclose(qat_without_fakequant, normal) np.testing.assert_allclose(qat, fake_quant_normal) np.testing.assert_allclose(q, fake_quant_normal.numpy()) @pytest.mark.parametrize("kind", ["cos", "relu", "add", "mul", "fuse_add_relu"]) def test_elemwise(kind): normal_net = Float.Elemwise(kind) normal_net.eval() qat_from_float = QAT.Elemwise.from_float_module(normal_net) qat_from_float.eval() disable_observer(qat_from_float) disable_fake_quant(qat_from_float) qat_net = QAT.Elemwise(kind) qat_net.eval() disable_observer(qat_net) propagate_qconfig(qat_net, min_max_fakequant_qconfig) init_qat_net(qat_net) q_net = Q.Elemwise.from_qat_module(qat_net) q_net.eval() x1_scale = np.float32(np.random.rand() + 1) x1 = mge.tensor(np.random.normal(size=(3, 3)).astype("float32")) x1 = fake_quant_act(x1, x1_scale) x1.qparams.scale = x1_scale x2_scale = np.float32(np.random.rand() + 1) x2 = mge.tensor(np.random.normal(size=(3, 3)).astype("float32")) x2 = fake_quant_act(x2, x2_scale) x2.qparams.scale = x2_scale x1_int8 = quant(x1, x1_scale) x2_int8 = quant(x2, x2_scale) # test correctness of `Float`, `QAT` and `Quantized` if kind in ("add", "mul", "fuse_add_relu"): normal = normal_net(x1, x2) qat_without_fakequant = qat_from_float(x1, x2) fake_quant_normal = fake_quant_act(normal_net(x1, x2), act_scale) qat = qat_net(x1, x2) q = q_net(x1_int8, x2_int8).numpy() * act_scale else: normal = normal_net(x1) qat_without_fakequant = qat_from_float(x1) fake_quant_normal = fake_quant_act(normal_net(x1), act_scale) qat = qat_net(x1) q = q_net(x1_int8).numpy() * act_scale np.testing.assert_allclose(qat_without_fakequant, normal) np.testing.assert_allclose(qat, fake_quant_normal) np.testing.assert_allclose(q, fake_quant_normal.numpy()) def test_linear(): normal_net = Float.Linear(3, 3, bias=True) normal_net.eval() qat_net = QAT.Linear(3, 3, bias=True) qat_net.eval() disable_observer(qat_net) propagate_qconfig(qat_net, min_max_fakequant_qconfig) init_qat_net(qat_net) x = mge.tensor(np.random.normal(size=(3, 3)).astype("float32")) inp_scale = gen_inp_scale() x = fake_quant_act(x, inp_scale) x.qparams.update(create_qparams(QuantMode.SYMMERTIC, "qint8", inp_scale)) x_int8 = quant(x, inp_scale) weight = np.random.normal(size=(3, 3)).astype("float32") bias = np.random.normal(size=(3,)).astype("float32") normal_net.weight[...] = fake_quant_weight(weight, weight_scale) normal_net.bias[...] = fake_quant_bias(bias, inp_scale * weight_scale) qat_net.weight[...] = Parameter(weight) qat_net.bias[...] = Parameter(bias) qat_from_float = QAT.Linear.from_float_module(normal_net) qat_from_float.eval() disable_fake_quant(qat_from_float) disable_observer(qat_from_float) q_net = Q.Linear.from_qat_module(qat_net) q_net.eval() normal = normal_net(x) qat_without_fakequant = qat_from_float(x) fake_quant_normal = fake_quant_act(normal_net(x), act_scale) qat = qat_net(x) q = q_net(x_int8).numpy() * act_scale np.testing.assert_allclose(qat_without_fakequant, normal) np.testing.assert_allclose(qat, fake_quant_normal.numpy()) np.testing.assert_allclose(q, fake_quant_normal.numpy()) @pytest.mark.parametrize("module", ["Conv2d", "ConvBn2d", "ConvBnRelu2d"]) def test_conv(module): normal_net = getattr(Float, module)(3, 3, 3, 1, 1, 1, bias=True) normal_net.eval() qat_net = getattr(QAT, module)(3, 3, 3, 1, 1, 1, bias=True) qat_net.eval() disable_observer(qat_net) propagate_qconfig(qat_net, min_max_fakequant_qconfig) init_qat_net(qat_net) x = mge.tensor(np.random.normal(size=(1, 3, 3, 3)).astype("float32")) inp_scale = gen_inp_scale() x = fake_quant_act(x, inp_scale) x.qparams.update(create_qparams(QuantMode.SYMMERTIC, "qint8", inp_scale)) x_int8 = quant(x, inp_scale) weight = np.random.normal(size=(3, 3, 3, 3)).astype("float32") bias = np.random.normal(size=(1, 3, 1, 1)).astype("float32") if module in ("ConvBn2d", "ConvBnRelu2d"): normal_net.conv.weight[...] = fake_quant_weight(weight, weight_scale) normal_net.conv.bias[...] = fake_quant_bias(bias, inp_scale * weight_scale) qat_net.conv.weight[...] = Parameter(weight) qat_net.conv.bias[...] = Parameter(bias) else: normal_net.weight[...] = fake_quant_weight(weight, weight_scale) normal_net.bias[...] = fake_quant_bias(bias, inp_scale * weight_scale) qat_net.weight[...] = Parameter(weight) qat_net.bias[...] = Parameter(bias) qat_from_float = getattr(QAT, module).from_float_module(normal_net) qat_from_float.eval() disable_observer(qat_from_float) disable_fake_quant(qat_from_float) q_net = getattr(Q, module).from_qat_module(qat_net) q_net.eval() normal = normal_net(x) qat_without_fakequant = qat_from_float(x) fake_quant_normal = fake_quant_act(normal_net(x), act_scale) qat = qat_net(x) q = q_net(x_int8).numpy() * act_scale np.testing.assert_allclose(qat_without_fakequant, normal, atol=1e-5) np.testing.assert_allclose(qat, fake_quant_normal, atol=act_scale) np.testing.assert_allclose(q, fake_quant_normal.numpy(), atol=act_scale) def test_concat(): normal_net = Float.Concat() normal_net.eval() qat_net = QAT.Concat() qat_net.eval() disable_observer(qat_net) propagate_qconfig(qat_net, min_max_fakequant_qconfig) init_qat_net(qat_net) inps = [] inps_int8 = [] for i in range(3): inp_scale = gen_inp_scale() inps.append(mge.tensor(np.random.normal(size=(3, 3)).astype("float32"))) inps[i] = fake_quant_act(inps[i], inp_scale) inps[i].qparams.update(create_qparams(QuantMode.SYMMERTIC, "qint8", inp_scale)) inps_int8.append(quant(inps[i], inp_scale)) qat_from_float = QAT.Concat.from_float_module(normal_net) qat_from_float.eval() disable_fake_quant(qat_from_float) disable_observer(qat_from_float) q_net = Q.Concat.from_qat_module(qat_net) q_net.eval() normal = normal_net(inps) qat_without_fakequant = qat_from_float(inps) fake_quant_normal = fake_quant_act(normal_net(inps), act_scale) qat = qat_net(inps) q = q_net(inps_int8).numpy() * act_scale np.testing.assert_allclose(qat_without_fakequant, normal) np.testing.assert_allclose(qat, fake_quant_normal.numpy()) np.testing.assert_allclose(q, fake_quant_normal.numpy())
[ "megengine.quantization.quantize.propagate_qconfig", "megengine.module.Elemwise", "megengine.module.quantized.Elemwise.from_qat_module", "megengine.module.qat.Linear", "megengine.core.tensor.dtype.qint8", "megengine.module.DequantStub", "megengine.module.qat.Linear.from_float_module", "megengine.module.qat.Elemwise", "megengine.module.quantized.QuantStub.from_qat_module", "megengine.module.qat.QuantStub", "megengine.module.quantized.Linear.from_qat_module", "megengine.module.quantized.DequantStub.from_qat_module", "megengine.module.qat.Concat", "megengine.module.qat.Elemwise.from_float_module", "megengine.Parameter", "megengine.module.qat.Concat.from_float_module", "megengine.module.QuantStub", "megengine.module.qat.DequantStub", "megengine.module.quantized.Concat.from_qat_module", "megengine.quantization.quantize.disable_observer", "megengine.functional.round", "megengine.module.Linear", "megengine.module.Concat", "megengine.module.qat.QuantStub.from_float_module", "megengine.functional.clip", "megengine.quantization.quantize.disable_fake_quant", "megengine.module.qat.DequantStub.from_float_module", "megengine.Tensor", "megengine.quantization.create_qparams" ]
[((1778, 1818), 'functools.partial', 'partial', (['fake_quant'], {'qmin': '(-128)', 'qmax': '(127)'}), '(fake_quant, qmin=-128, qmax=127)\n', (1785, 1818), False, 'from functools import partial\n'), ((1839, 1879), 'functools.partial', 'partial', (['fake_quant'], {'qmin': '(-127)', 'qmax': '(127)'}), '(fake_quant, qmin=-127, qmax=127)\n', (1846, 1879), False, 'from functools import partial\n'), ((1898, 1950), 'functools.partial', 'partial', (['fake_quant'], {'qmin': '(-2 ** 31)', 'qmax': '(2 ** 31 - 1)'}), '(fake_quant, qmin=-2 ** 31, qmax=2 ** 31 - 1)\n', (1905, 1950), False, 'from functools import partial\n'), ((4210, 4289), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""kind"""', "['cos', 'relu', 'add', 'mul', 'fuse_add_relu']"], {}), "('kind', ['cos', 'relu', 'add', 'mul', 'fuse_add_relu'])\n", (4233, 4289), False, 'import pytest\n'), ((7476, 7549), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""module"""', "['Conv2d', 'ConvBn2d', 'ConvBnRelu2d']"], {}), "('module', ['Conv2d', 'ConvBn2d', 'ConvBnRelu2d'])\n", (7499, 7549), False, 'import pytest\n'), ((1571, 1589), 'megengine.core.tensor.dtype.qint8', 'dtype.qint8', (['scale'], {}), '(scale)\n', (1582, 1589), False, 'from megengine.core.tensor import dtype\n'), ((1687, 1697), 'megengine.functional.round', 'F.round', (['x'], {}), '(x)\n', (1694, 1697), True, 'import megengine.functional as F\n'), ((1706, 1727), 'megengine.functional.clip', 'F.clip', (['x', 'qmin', 'qmax'], {}), '(x, qmin, qmax)\n', (1712, 1727), True, 'import megengine.functional as F\n'), ((2307, 2324), 'megengine.module.QuantStub', 'Float.QuantStub', ([], {}), '()\n', (2322, 2324), True, 'import megengine.module as Float\n'), ((2369, 2412), 'megengine.module.qat.QuantStub.from_float_module', 'QAT.QuantStub.from_float_module', (['normal_net'], {}), '(normal_net)\n', (2400, 2412), True, 'import megengine.module.qat as QAT\n'), ((2443, 2475), 'megengine.quantization.quantize.disable_observer', 'disable_observer', (['qat_from_float'], {}), '(qat_from_float)\n', (2459, 2475), False, 'from megengine.quantization.quantize import disable_fake_quant, disable_observer, propagate_qconfig\n'), ((2480, 2514), 'megengine.quantization.quantize.disable_fake_quant', 'disable_fake_quant', (['qat_from_float'], {}), '(qat_from_float)\n', (2498, 2514), False, 'from megengine.quantization.quantize import disable_fake_quant, disable_observer, propagate_qconfig\n'), ((2530, 2545), 'megengine.module.qat.QuantStub', 'QAT.QuantStub', ([], {}), '()\n', (2543, 2545), True, 'import megengine.module.qat as QAT\n'), ((2569, 2594), 'megengine.quantization.quantize.disable_observer', 'disable_observer', (['qat_net'], {}), '(qat_net)\n', (2585, 2594), False, 'from megengine.quantization.quantize import disable_fake_quant, disable_observer, propagate_qconfig\n'), ((2600, 2653), 'megengine.quantization.quantize.propagate_qconfig', 'propagate_qconfig', (['qat_net', 'min_max_fakequant_qconfig'], {}), '(qat_net, min_max_fakequant_qconfig)\n', (2617, 2653), False, 'from megengine.quantization.quantize import disable_fake_quant, disable_observer, propagate_qconfig\n'), ((2693, 2729), 'megengine.module.quantized.QuantStub.from_qat_module', 'Q.QuantStub.from_qat_module', (['qat_net'], {}), '(qat_net)\n', (2720, 2729), True, 'import megengine.module.quantized as Q\n'), ((3017, 3074), 'numpy.testing.assert_allclose', 'np.testing.assert_allclose', (['qat_without_fakequant', 'normal'], {}), '(qat_without_fakequant, normal)\n', (3043, 3074), True, 'import numpy as np\n'), ((3079, 3129), 'numpy.testing.assert_allclose', 'np.testing.assert_allclose', (['qat', 'fake_quant_normal'], {}), '(qat, fake_quant_normal)\n', (3105, 3129), True, 'import numpy as np\n'), ((3235, 3254), 'megengine.module.DequantStub', 'Float.DequantStub', ([], {}), '()\n', (3252, 3254), True, 'import megengine.module as Float\n'), ((3299, 3344), 'megengine.module.qat.DequantStub.from_float_module', 'QAT.DequantStub.from_float_module', (['normal_net'], {}), '(normal_net)\n', (3332, 3344), True, 'import megengine.module.qat as QAT\n'), ((3375, 3409), 'megengine.quantization.quantize.disable_fake_quant', 'disable_fake_quant', (['qat_from_float'], {}), '(qat_from_float)\n', (3393, 3409), False, 'from megengine.quantization.quantize import disable_fake_quant, disable_observer, propagate_qconfig\n'), ((3414, 3446), 'megengine.quantization.quantize.disable_observer', 'disable_observer', (['qat_from_float'], {}), '(qat_from_float)\n', (3430, 3446), False, 'from megengine.quantization.quantize import disable_fake_quant, disable_observer, propagate_qconfig\n'), ((3462, 3479), 'megengine.module.qat.DequantStub', 'QAT.DequantStub', ([], {}), '()\n', (3477, 3479), True, 'import megengine.module.qat as QAT\n'), ((3503, 3528), 'megengine.quantization.quantize.disable_observer', 'disable_observer', (['qat_net'], {}), '(qat_net)\n', (3519, 3528), False, 'from megengine.quantization.quantize import disable_fake_quant, disable_observer, propagate_qconfig\n'), ((3534, 3587), 'megengine.quantization.quantize.propagate_qconfig', 'propagate_qconfig', (['qat_net', 'min_max_fakequant_qconfig'], {}), '(qat_net, min_max_fakequant_qconfig)\n', (3551, 3587), False, 'from megengine.quantization.quantize import disable_fake_quant, disable_observer, propagate_qconfig\n'), ((3627, 3665), 'megengine.module.quantized.DequantStub.from_qat_module', 'Q.DequantStub.from_qat_module', (['qat_net'], {}), '(qat_net)\n', (3656, 3665), True, 'import megengine.module.quantized as Q\n'), ((4033, 4090), 'numpy.testing.assert_allclose', 'np.testing.assert_allclose', (['qat_without_fakequant', 'normal'], {}), '(qat_without_fakequant, normal)\n', (4059, 4090), True, 'import numpy as np\n'), ((4095, 4145), 'numpy.testing.assert_allclose', 'np.testing.assert_allclose', (['qat', 'fake_quant_normal'], {}), '(qat, fake_quant_normal)\n', (4121, 4145), True, 'import numpy as np\n'), ((4332, 4352), 'megengine.module.Elemwise', 'Float.Elemwise', (['kind'], {}), '(kind)\n', (4346, 4352), True, 'import megengine.module as Float\n'), ((4397, 4439), 'megengine.module.qat.Elemwise.from_float_module', 'QAT.Elemwise.from_float_module', (['normal_net'], {}), '(normal_net)\n', (4427, 4439), True, 'import megengine.module.qat as QAT\n'), ((4470, 4502), 'megengine.quantization.quantize.disable_observer', 'disable_observer', (['qat_from_float'], {}), '(qat_from_float)\n', (4486, 4502), False, 'from megengine.quantization.quantize import disable_fake_quant, disable_observer, propagate_qconfig\n'), ((4507, 4541), 'megengine.quantization.quantize.disable_fake_quant', 'disable_fake_quant', (['qat_from_float'], {}), '(qat_from_float)\n', (4525, 4541), False, 'from megengine.quantization.quantize import disable_fake_quant, disable_observer, propagate_qconfig\n'), ((4557, 4575), 'megengine.module.qat.Elemwise', 'QAT.Elemwise', (['kind'], {}), '(kind)\n', (4569, 4575), True, 'import megengine.module.qat as QAT\n'), ((4599, 4624), 'megengine.quantization.quantize.disable_observer', 'disable_observer', (['qat_net'], {}), '(qat_net)\n', (4615, 4624), False, 'from megengine.quantization.quantize import disable_fake_quant, disable_observer, propagate_qconfig\n'), ((4630, 4683), 'megengine.quantization.quantize.propagate_qconfig', 'propagate_qconfig', (['qat_net', 'min_max_fakequant_qconfig'], {}), '(qat_net, min_max_fakequant_qconfig)\n', (4647, 4683), False, 'from megengine.quantization.quantize import disable_fake_quant, disable_observer, propagate_qconfig\n'), ((4723, 4758), 'megengine.module.quantized.Elemwise.from_qat_module', 'Q.Elemwise.from_qat_module', (['qat_net'], {}), '(qat_net)\n', (4749, 4758), True, 'import megengine.module.quantized as Q\n'), ((5818, 5875), 'numpy.testing.assert_allclose', 'np.testing.assert_allclose', (['qat_without_fakequant', 'normal'], {}), '(qat_without_fakequant, normal)\n', (5844, 5875), True, 'import numpy as np\n'), ((5880, 5930), 'numpy.testing.assert_allclose', 'np.testing.assert_allclose', (['qat', 'fake_quant_normal'], {}), '(qat, fake_quant_normal)\n', (5906, 5930), True, 'import numpy as np\n'), ((6030, 6059), 'megengine.module.Linear', 'Float.Linear', (['(3)', '(3)'], {'bias': '(True)'}), '(3, 3, bias=True)\n', (6042, 6059), True, 'import megengine.module as Float\n'), ((6097, 6124), 'megengine.module.qat.Linear', 'QAT.Linear', (['(3)', '(3)'], {'bias': '(True)'}), '(3, 3, bias=True)\n', (6107, 6124), True, 'import megengine.module.qat as QAT\n'), ((6148, 6173), 'megengine.quantization.quantize.disable_observer', 'disable_observer', (['qat_net'], {}), '(qat_net)\n', (6164, 6173), False, 'from megengine.quantization.quantize import disable_fake_quant, disable_observer, propagate_qconfig\n'), ((6179, 6232), 'megengine.quantization.quantize.propagate_qconfig', 'propagate_qconfig', (['qat_net', 'min_max_fakequant_qconfig'], {}), '(qat_net, min_max_fakequant_qconfig)\n', (6196, 6232), False, 'from megengine.quantization.quantize import disable_fake_quant, disable_observer, propagate_qconfig\n'), ((6798, 6815), 'megengine.Parameter', 'Parameter', (['weight'], {}), '(weight)\n', (6807, 6815), False, 'from megengine import Parameter, Tensor\n'), ((6840, 6855), 'megengine.Parameter', 'Parameter', (['bias'], {}), '(bias)\n', (6849, 6855), False, 'from megengine import Parameter, Tensor\n'), ((6878, 6918), 'megengine.module.qat.Linear.from_float_module', 'QAT.Linear.from_float_module', (['normal_net'], {}), '(normal_net)\n', (6906, 6918), True, 'import megengine.module.qat as QAT\n'), ((6949, 6983), 'megengine.quantization.quantize.disable_fake_quant', 'disable_fake_quant', (['qat_from_float'], {}), '(qat_from_float)\n', (6967, 6983), False, 'from megengine.quantization.quantize import disable_fake_quant, disable_observer, propagate_qconfig\n'), ((6988, 7020), 'megengine.quantization.quantize.disable_observer', 'disable_observer', (['qat_from_float'], {}), '(qat_from_float)\n', (7004, 7020), False, 'from megengine.quantization.quantize import disable_fake_quant, disable_observer, propagate_qconfig\n'), ((7034, 7067), 'megengine.module.quantized.Linear.from_qat_module', 'Q.Linear.from_qat_module', (['qat_net'], {}), '(qat_net)\n', (7058, 7067), True, 'import megengine.module.quantized as Q\n'), ((7291, 7348), 'numpy.testing.assert_allclose', 'np.testing.assert_allclose', (['qat_without_fakequant', 'normal'], {}), '(qat_without_fakequant, normal)\n', (7317, 7348), True, 'import numpy as np\n'), ((7752, 7777), 'megengine.quantization.quantize.disable_observer', 'disable_observer', (['qat_net'], {}), '(qat_net)\n', (7768, 7777), False, 'from megengine.quantization.quantize import disable_fake_quant, disable_observer, propagate_qconfig\n'), ((7783, 7836), 'megengine.quantization.quantize.propagate_qconfig', 'propagate_qconfig', (['qat_net', 'min_max_fakequant_qconfig'], {}), '(qat_net, min_max_fakequant_qconfig)\n', (7800, 7836), False, 'from megengine.quantization.quantize import disable_fake_quant, disable_observer, propagate_qconfig\n'), ((8920, 8952), 'megengine.quantization.quantize.disable_observer', 'disable_observer', (['qat_from_float'], {}), '(qat_from_float)\n', (8936, 8952), False, 'from megengine.quantization.quantize import disable_fake_quant, disable_observer, propagate_qconfig\n'), ((8957, 8991), 'megengine.quantization.quantize.disable_fake_quant', 'disable_fake_quant', (['qat_from_float'], {}), '(qat_from_float)\n', (8975, 8991), False, 'from megengine.quantization.quantize import disable_fake_quant, disable_observer, propagate_qconfig\n'), ((9272, 9341), 'numpy.testing.assert_allclose', 'np.testing.assert_allclose', (['qat_without_fakequant', 'normal'], {'atol': '(1e-05)'}), '(qat_without_fakequant, normal, atol=1e-05)\n', (9298, 9341), True, 'import numpy as np\n'), ((9345, 9411), 'numpy.testing.assert_allclose', 'np.testing.assert_allclose', (['qat', 'fake_quant_normal'], {'atol': 'act_scale'}), '(qat, fake_quant_normal, atol=act_scale)\n', (9371, 9411), True, 'import numpy as np\n'), ((9527, 9541), 'megengine.module.Concat', 'Float.Concat', ([], {}), '()\n', (9539, 9541), True, 'import megengine.module as Float\n'), ((9579, 9591), 'megengine.module.qat.Concat', 'QAT.Concat', ([], {}), '()\n', (9589, 9591), True, 'import megengine.module.qat as QAT\n'), ((9615, 9640), 'megengine.quantization.quantize.disable_observer', 'disable_observer', (['qat_net'], {}), '(qat_net)\n', (9631, 9640), False, 'from megengine.quantization.quantize import disable_fake_quant, disable_observer, propagate_qconfig\n'), ((9646, 9699), 'megengine.quantization.quantize.propagate_qconfig', 'propagate_qconfig', (['qat_net', 'min_max_fakequant_qconfig'], {}), '(qat_net, min_max_fakequant_qconfig)\n', (9663, 9699), False, 'from megengine.quantization.quantize import disable_fake_quant, disable_observer, propagate_qconfig\n'), ((10115, 10155), 'megengine.module.qat.Concat.from_float_module', 'QAT.Concat.from_float_module', (['normal_net'], {}), '(normal_net)\n', (10143, 10155), True, 'import megengine.module.qat as QAT\n'), ((10186, 10220), 'megengine.quantization.quantize.disable_fake_quant', 'disable_fake_quant', (['qat_from_float'], {}), '(qat_from_float)\n', (10204, 10220), False, 'from megengine.quantization.quantize import disable_fake_quant, disable_observer, propagate_qconfig\n'), ((10225, 10257), 'megengine.quantization.quantize.disable_observer', 'disable_observer', (['qat_from_float'], {}), '(qat_from_float)\n', (10241, 10257), False, 'from megengine.quantization.quantize import disable_fake_quant, disable_observer, propagate_qconfig\n'), ((10271, 10304), 'megengine.module.quantized.Concat.from_qat_module', 'Q.Concat.from_qat_module', (['qat_net'], {}), '(qat_net)\n', (10295, 10304), True, 'import megengine.module.quantized as Q\n'), ((10543, 10600), 'numpy.testing.assert_allclose', 'np.testing.assert_allclose', (['qat_without_fakequant', 'normal'], {}), '(qat_without_fakequant, normal)\n', (10569, 10600), True, 'import numpy as np\n'), ((963, 1008), 'functools.partial', 'partial', (['MinMaxObserver'], {'dtype': '"""qint8_narrow"""'}), "(MinMaxObserver, dtype='qint8_narrow')\n", (970, 1008), False, 'from functools import partial\n'), ((1027, 1065), 'functools.partial', 'partial', (['MinMaxObserver'], {'dtype': '"""qint8"""'}), "(MinMaxObserver, dtype='qint8')\n", (1034, 1065), False, 'from functools import partial\n'), ((1089, 1132), 'functools.partial', 'partial', (['FakeQuantize'], {'dtype': '"""qint8_narrow"""'}), "(FakeQuantize, dtype='qint8_narrow')\n", (1096, 1132), False, 'from functools import partial\n'), ((1153, 1189), 'functools.partial', 'partial', (['FakeQuantize'], {'dtype': '"""qint8"""'}), "(FakeQuantize, dtype='qint8')\n", (1160, 1189), False, 'from functools import partial\n'), ((1272, 1309), 'numpy.random.randint', 'np.random.randint', (['(-127)', '(0)'], {'size': '(2,)'}), '(-127, 0, size=(2,))\n', (1289, 1309), True, 'import numpy as np\n'), ((1338, 1374), 'numpy.random.randint', 'np.random.randint', (['(1)', '(127)'], {'size': '(2,)'}), '(1, 127, size=(2,))\n', (1355, 1374), True, 'import numpy as np\n'), ((2045, 2063), 'megengine.Tensor', 'Tensor', (['min_val[0]'], {}), '(min_val[0])\n', (2051, 2063), False, 'from megengine import Parameter, Tensor\n'), ((2107, 2125), 'megengine.Tensor', 'Tensor', (['max_val[0]'], {}), '(max_val[0])\n', (2113, 2125), False, 'from megengine import Parameter, Tensor\n'), ((2187, 2205), 'megengine.Tensor', 'Tensor', (['min_val[1]'], {}), '(min_val[1])\n', (2193, 2205), False, 'from megengine import Parameter, Tensor\n'), ((2246, 2264), 'megengine.Tensor', 'Tensor', (['max_val[1]'], {}), '(max_val[1])\n', (2252, 2264), False, 'from megengine import Parameter, Tensor\n'), ((6418, 6473), 'megengine.quantization.create_qparams', 'create_qparams', (['QuantMode.SYMMERTIC', '"""qint8"""', 'inp_scale'], {}), "(QuantMode.SYMMERTIC, 'qint8', inp_scale)\n", (6432, 6473), False, 'from megengine.quantization import FakeQuantize, MinMaxObserver, QConfig, QuantMode, create_qparams\n'), ((8028, 8083), 'megengine.quantization.create_qparams', 'create_qparams', (['QuantMode.SYMMERTIC', '"""qint8"""', 'inp_scale'], {}), "(QuantMode.SYMMERTIC, 'qint8', inp_scale)\n", (8042, 8083), False, 'from megengine.quantization import FakeQuantize, MinMaxObserver, QConfig, QuantMode, create_qparams\n'), ((8496, 8513), 'megengine.Parameter', 'Parameter', (['weight'], {}), '(weight)\n', (8505, 8513), False, 'from megengine import Parameter, Tensor\n'), ((8547, 8562), 'megengine.Parameter', 'Parameter', (['bias'], {}), '(bias)\n', (8556, 8562), False, 'from megengine import Parameter, Tensor\n'), ((8755, 8772), 'megengine.Parameter', 'Parameter', (['weight'], {}), '(weight)\n', (8764, 8772), False, 'from megengine import Parameter, Tensor\n'), ((8801, 8816), 'megengine.Parameter', 'Parameter', (['bias'], {}), '(bias)\n', (8810, 8816), False, 'from megengine import Parameter, Tensor\n'), ((1238, 1254), 'numpy.random.rand', 'np.random.rand', ([], {}), '()\n', (1252, 1254), True, 'import numpy as np\n'), ((1419, 1452), 'numpy.max', 'np.max', (['[-min_val[0], max_val[0]]'], {}), '([-min_val[0], max_val[0]])\n', (1425, 1452), True, 'import numpy as np\n'), ((1487, 1520), 'numpy.max', 'np.max', (['[-min_val[1], max_val[1]]'], {}), '([-min_val[1], max_val[1]])\n', (1493, 1520), True, 'import numpy as np\n'), ((4803, 4819), 'numpy.random.rand', 'np.random.rand', ([], {}), '()\n', (4817, 4819), True, 'import numpy as np\n'), ((4991, 5007), 'numpy.random.rand', 'np.random.rand', ([], {}), '()\n', (5005, 5007), True, 'import numpy as np\n'), ((6523, 6552), 'numpy.random.normal', 'np.random.normal', ([], {'size': '(3, 3)'}), '(size=(3, 3))\n', (6539, 6552), True, 'import numpy as np\n'), ((6582, 6609), 'numpy.random.normal', 'np.random.normal', ([], {'size': '(3,)'}), '(size=(3,))\n', (6598, 6609), True, 'import numpy as np\n'), ((8133, 8168), 'numpy.random.normal', 'np.random.normal', ([], {'size': '(3, 3, 3, 3)'}), '(size=(3, 3, 3, 3))\n', (8149, 8168), True, 'import numpy as np\n'), ((8198, 8233), 'numpy.random.normal', 'np.random.normal', ([], {'size': '(1, 3, 1, 1)'}), '(size=(1, 3, 1, 1))\n', (8214, 8233), True, 'import numpy as np\n'), ((9984, 10039), 'megengine.quantization.create_qparams', 'create_qparams', (['QuantMode.SYMMERTIC', '"""qint8"""', 'inp_scale'], {}), "(QuantMode.SYMMERTIC, 'qint8', inp_scale)\n", (9998, 10039), False, 'from megengine.quantization import FakeQuantize, MinMaxObserver, QConfig, QuantMode, create_qparams\n'), ((2767, 2796), 'numpy.random.normal', 'np.random.normal', ([], {'size': '(3, 3)'}), '(size=(3, 3))\n', (2783, 2796), True, 'import numpy as np\n'), ((3703, 3732), 'numpy.random.normal', 'np.random.normal', ([], {'size': '(3, 3)'}), '(size=(3, 3))\n', (3719, 3732), True, 'import numpy as np\n'), ((4845, 4874), 'numpy.random.normal', 'np.random.normal', ([], {'size': '(3, 3)'}), '(size=(3, 3))\n', (4861, 4874), True, 'import numpy as np\n'), ((5033, 5062), 'numpy.random.normal', 'np.random.normal', ([], {'size': '(3, 3)'}), '(size=(3, 3))\n', (5049, 5062), True, 'import numpy as np\n'), ((6279, 6308), 'numpy.random.normal', 'np.random.normal', ([], {'size': '(3, 3)'}), '(size=(3, 3))\n', (6295, 6308), True, 'import numpy as np\n'), ((7883, 7918), 'numpy.random.normal', 'np.random.normal', ([], {'size': '(1, 3, 3, 3)'}), '(size=(1, 3, 3, 3))\n', (7899, 7918), True, 'import numpy as np\n'), ((9850, 9879), 'numpy.random.normal', 'np.random.normal', ([], {'size': '(3, 3)'}), '(size=(3, 3))\n', (9866, 9879), True, 'import numpy as np\n')]
import pytest import megengine as mge import megengine.functional as F from megengine.core._imperative_rt.core2 import config_async_level, get_async_level def test_basic(): config_async_level(2) assert get_async_level() == 2 with pytest.raises(RuntimeError): config_async_level(3) def test_level1_infer_value(): config_async_level(1) a = mge.tensor([[1, 2], [2, 3], [3, 4]], dtype="float32") b = mge.tensor([1, 1], dtype="float32") # make DepType::VALUE unknown c = b * 2 with pytest.raises(RuntimeError): d = F.reshape(a, c) def test_level1_infer_shape_with_unknown(): config_async_level(2) a = mge.tensor([[1, 2, 2, 3]], dtype="float32") b = mge.tensor([1, 1]) c = b * 2 # make DepType::SHAPE unknown d = F.reshape(a, c) config_async_level(1) e = mge.tensor([[1, 2]], dtype="float32") with pytest.raises(RuntimeError): f = F.matmul(d, e)
[ "megengine.core._imperative_rt.core2.get_async_level", "megengine.core._imperative_rt.core2.config_async_level", "megengine.tensor", "megengine.functional.matmul", "megengine.functional.reshape" ]
[((180, 201), 'megengine.core._imperative_rt.core2.config_async_level', 'config_async_level', (['(2)'], {}), '(2)\n', (198, 201), False, 'from megengine.core._imperative_rt.core2 import config_async_level, get_async_level\n'), ((341, 362), 'megengine.core._imperative_rt.core2.config_async_level', 'config_async_level', (['(1)'], {}), '(1)\n', (359, 362), False, 'from megengine.core._imperative_rt.core2 import config_async_level, get_async_level\n'), ((371, 424), 'megengine.tensor', 'mge.tensor', (['[[1, 2], [2, 3], [3, 4]]'], {'dtype': '"""float32"""'}), "([[1, 2], [2, 3], [3, 4]], dtype='float32')\n", (381, 424), True, 'import megengine as mge\n'), ((433, 468), 'megengine.tensor', 'mge.tensor', (['[1, 1]'], {'dtype': '"""float32"""'}), "([1, 1], dtype='float32')\n", (443, 468), True, 'import megengine as mge\n'), ((633, 654), 'megengine.core._imperative_rt.core2.config_async_level', 'config_async_level', (['(2)'], {}), '(2)\n', (651, 654), False, 'from megengine.core._imperative_rt.core2 import config_async_level, get_async_level\n'), ((663, 706), 'megengine.tensor', 'mge.tensor', (['[[1, 2, 2, 3]]'], {'dtype': '"""float32"""'}), "([[1, 2, 2, 3]], dtype='float32')\n", (673, 706), True, 'import megengine as mge\n'), ((715, 733), 'megengine.tensor', 'mge.tensor', (['[1, 1]'], {}), '([1, 1])\n', (725, 733), True, 'import megengine as mge\n'), ((790, 805), 'megengine.functional.reshape', 'F.reshape', (['a', 'c'], {}), '(a, c)\n', (799, 805), True, 'import megengine.functional as F\n'), ((810, 831), 'megengine.core._imperative_rt.core2.config_async_level', 'config_async_level', (['(1)'], {}), '(1)\n', (828, 831), False, 'from megengine.core._imperative_rt.core2 import config_async_level, get_async_level\n'), ((840, 877), 'megengine.tensor', 'mge.tensor', (['[[1, 2]]'], {'dtype': '"""float32"""'}), "([[1, 2]], dtype='float32')\n", (850, 877), True, 'import megengine as mge\n'), ((213, 230), 'megengine.core._imperative_rt.core2.get_async_level', 'get_async_level', ([], {}), '()\n', (228, 230), False, 'from megengine.core._imperative_rt.core2 import config_async_level, get_async_level\n'), ((245, 272), 'pytest.raises', 'pytest.raises', (['RuntimeError'], {}), '(RuntimeError)\n', (258, 272), False, 'import pytest\n'), ((282, 303), 'megengine.core._imperative_rt.core2.config_async_level', 'config_async_level', (['(3)'], {}), '(3)\n', (300, 303), False, 'from megengine.core._imperative_rt.core2 import config_async_level, get_async_level\n'), ((526, 553), 'pytest.raises', 'pytest.raises', (['RuntimeError'], {}), '(RuntimeError)\n', (539, 553), False, 'import pytest\n'), ((567, 582), 'megengine.functional.reshape', 'F.reshape', (['a', 'c'], {}), '(a, c)\n', (576, 582), True, 'import megengine.functional as F\n'), ((887, 914), 'pytest.raises', 'pytest.raises', (['RuntimeError'], {}), '(RuntimeError)\n', (900, 914), False, 'import pytest\n'), ((928, 942), 'megengine.functional.matmul', 'F.matmul', (['d', 'e'], {}), '(d, e)\n', (936, 942), True, 'import megengine.functional as F\n')]
# -*- coding: utf-8 -*- # Copyright 2019 - present, Facebook, Inc # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # --------------------------------------------------------------------- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # # This file has been modified by Megvii ("Megvii Modifications"). # All Megvii Modifications are Copyright (C) 2014-2020 Megvii Inc. All rights reserved. # --------------------------------------------------------------------- import numpy as np import megengine.functional as F import megengine.module as M from megengine import Parameter class FrozenBatchNorm2d(M.Module): """ BatchNorm2d, which the weight, bias, running_mean, running_var are immutable. """ def __init__(self, num_features, eps=1e-5): super().__init__() self.num_features = num_features self.eps = eps self.weight = Parameter(np.ones(num_features, dtype=np.float32)) self.bias = Parameter(np.zeros(num_features, dtype=np.float32)) self.running_mean = Parameter(np.zeros((1, num_features, 1, 1), dtype=np.float32)) self.running_var = Parameter(np.ones((1, num_features, 1, 1), dtype=np.float32)) def forward(self, x): scale = self.weight.reshape(1, -1, 1, 1) * ( 1.0 / F.sqrt(self.running_var + self.eps) ) bias = self.bias.reshape(1, -1, 1, 1) - self.running_mean * scale return x * scale.detach() + bias.detach() class GroupNorm(M.Module): def __init__(self, num_groups, num_channels, eps=1e-5, affine=True): super().__init__() self.num_groups = num_groups self.num_channels = num_channels self.eps = eps self.affine = affine if self.affine: self.weight = Parameter(np.ones(num_channels, dtype=np.float32)) self.bias = Parameter(np.zeros(num_channels, dtype=np.float32)) else: self.weight = None self.bias = None self.reset_parameters() def reset_parameters(self): if self.affine: M.init.ones_(self.weight) M.init.zeros_(self.bias) def forward(self, x): output = x.reshape(x.shape[0], self.num_groups, -1) mean = F.mean(output, axis=2, keepdims=True) mean2 = F.mean(output ** 2, axis=2, keepdims=True) var = mean2 - mean * mean output = (output - mean) / F.sqrt(var + self.eps) output = output.reshape(x.shape) if self.affine: output = self.weight.reshape(1, -1, 1, 1) * output + \ self.bias.reshape(1, -1, 1, 1) return output def get_norm(norm): """ Args: norm (str): currently support "BN", "SyncBN", "FrozenBN" and "GN" Returns: M.Module or None: the normalization layer """ if norm is None: return None norm = { "BN": M.BatchNorm2d, "SyncBN": M.SyncBatchNorm, "FrozenBN": FrozenBatchNorm2d, "GN": GroupNorm, }[norm] return norm
[ "megengine.functional.mean", "megengine.functional.sqrt", "megengine.module.init.zeros_", "megengine.module.init.ones_" ]
[((3029, 3066), 'megengine.functional.mean', 'F.mean', (['output'], {'axis': '(2)', 'keepdims': '(True)'}), '(output, axis=2, keepdims=True)\n', (3035, 3066), True, 'import megengine.functional as F\n'), ((3083, 3125), 'megengine.functional.mean', 'F.mean', (['(output ** 2)'], {'axis': '(2)', 'keepdims': '(True)'}), '(output ** 2, axis=2, keepdims=True)\n', (3089, 3125), True, 'import megengine.functional as F\n'), ((1691, 1730), 'numpy.ones', 'np.ones', (['num_features'], {'dtype': 'np.float32'}), '(num_features, dtype=np.float32)\n', (1698, 1730), True, 'import numpy as np\n'), ((1762, 1802), 'numpy.zeros', 'np.zeros', (['num_features'], {'dtype': 'np.float32'}), '(num_features, dtype=np.float32)\n', (1770, 1802), True, 'import numpy as np\n'), ((1843, 1894), 'numpy.zeros', 'np.zeros', (['(1, num_features, 1, 1)'], {'dtype': 'np.float32'}), '((1, num_features, 1, 1), dtype=np.float32)\n', (1851, 1894), True, 'import numpy as np\n'), ((1933, 1983), 'numpy.ones', 'np.ones', (['(1, num_features, 1, 1)'], {'dtype': 'np.float32'}), '((1, num_features, 1, 1), dtype=np.float32)\n', (1940, 1983), True, 'import numpy as np\n'), ((2864, 2889), 'megengine.module.init.ones_', 'M.init.ones_', (['self.weight'], {}), '(self.weight)\n', (2876, 2889), True, 'import megengine.module as M\n'), ((2902, 2926), 'megengine.module.init.zeros_', 'M.init.zeros_', (['self.bias'], {}), '(self.bias)\n', (2915, 2926), True, 'import megengine.module as M\n'), ((3196, 3218), 'megengine.functional.sqrt', 'F.sqrt', (['(var + self.eps)'], {}), '(var + self.eps)\n', (3202, 3218), True, 'import megengine.functional as F\n'), ((2083, 2118), 'megengine.functional.sqrt', 'F.sqrt', (['(self.running_var + self.eps)'], {}), '(self.running_var + self.eps)\n', (2089, 2118), True, 'import megengine.functional as F\n'), ((2572, 2611), 'numpy.ones', 'np.ones', (['num_channels'], {'dtype': 'np.float32'}), '(num_channels, dtype=np.float32)\n', (2579, 2611), True, 'import numpy as np\n'), ((2647, 2687), 'numpy.zeros', 'np.zeros', (['num_channels'], {'dtype': 'np.float32'}), '(num_channels, dtype=np.float32)\n', (2655, 2687), True, 'import numpy as np\n')]
# Imports from standard library import os from typing import Optional, Union import asyncio import time import sqlite3 import hashlib # Import these utilities from utils.merkletree import MerkleTree, MerkleError # Import the HTTP app server from fastapi import FastAPI, BackgroundTasks ################################## from sqlmodel import Field, SQLModel, create_engine class MerkleTable(SQLModel, table=True): id: Optional[int] = Field(default=None, primary_key=True) timestamp: int ngsi_id_hash: str ngsi_value_hash: str ngsi_receipt: Optional[str] = None # The table scripts drop_table_script = """ DROP TABLE IF EXISTS testing; """ create_table_script = """ CREATE TABLE IF NOT EXISTS testing ( id INTEGER PRIMARY KEY, timestamp INTEGER NOT NULL, ngsi_id_hash TEXT NOT NULL, ngsi_value_hash TEXT NOT NULL, ngsi_receipt TEXT ); """ set_journal_wal = 'PRAGMA journal_mode=WAL' query_journal_mode = """PRAGMA journal_mode""" class MerkleBuffer: def __init__(self, db_name: str = 'mkbuffer.db', # Name of the database db_max_elements: int = 10000, # Maximum size of database, in number of records maxLeaves: int = 1024, # Maximum number of leaves of the Merkle Tree to notarize maxInterval: int = 60, # Notarize every maxInterval (seconds) even if not enough leaves received yet durability: int = 10 # Commit database every durability seconds, to make data permanent ) -> None: self.db_name = db_name self.maxLeaves = maxLeaves self.db_max_elements = db_max_elements self.maxInterval = maxInterval self.durability = durability self.next_record = 1 self.leaves = 0 self.last_notarization = time.time() print(f'MaxLeaves: {maxLeaves}') self.open() # Create a background task which commits the db every durability secs (or 2 sec as a minimum), # and registers the Merkle Tree even if not enough entries have been received if durability > 0 or maxInterval > 0: self.commit_task = asyncio.create_task(self.commit_background_task(min(durability, maxInterval))) def db_name(self): self.db_name def open(self): sqlite_file_name = "sqlmodel.db" sqlite_url = f"sqlite:///{sqlite_file_name}" engine = create_engine(sqlite_url, echo=True) # # Connect to db # self.db = sqlite3.connect(self.db_name, # detect_types=sqlite3.PARSE_DECLTYPES,) # self.db.row_factory = sqlite3.Row # self.db.close() # self.db = sqlite3.connect(self.db_name, # detect_types=sqlite3.PARSE_DECLTYPES,) # self.db.row_factory = sqlite3.Row def open_erase(self): # Erase the database if os.path.exists(self.db_name): os.remove(self.db_name) # Connect to db self.db = sqlite3.connect(self.db_name, detect_types=sqlite3.PARSE_DECLTYPES,) self.db.row_factory = sqlite3.Row # Create the table, dropping it before. self.db.executescript(drop_table_script) self.db.executescript(create_table_script) # Set the db to WAL mode for better performance self.db.execute(set_journal_wal) def commit(self): self.db.commit() def close(self): self.next_record = 1 self.leaves = 0 self.commit_task.cancel() self.db.close() def _hash(self, text: Union[str, bytes]) -> bytes: if isinstance(text, str): text = bytes(text, "utf-8") h = hashlib.sha256() h.update(text) d = h.digest() return d def put(self, id: str, value: str): need_process_batch = False # calculate hashes id_hash = self._hash(id) value_hash = self._hash(value) # Insert the record try: # Execute the INSERT or REPLACE self.db.execute( '''insert or replace into testing (id, timestamp, ngsi_id_hash, ngsi_value_hash) values (?, ?, ?, ?)''', (self.next_record, time.time_ns(), id_hash, value_hash)) # Increment the record number self.next_record += 1 self.leaves += 1 except Exception as e: raise e # Check if we should create the Merkle Tree and notarize if self.leaves >= self.maxLeaves: # Process the batch of records, possibly asynchronously need_process_batch = True # self.processBatch() self.leaves = 0 # Check if the database size has reached the maximum and start reusing rows if self.next_record > self.db_max_elements: print("Rotate the database") self.next_record = 1 return need_process_batch def processBatch(self, db): # stmt = 'select * from testing where ngsi_receipt is null limit 100' stmt = 'select * from testing' result = db.execute(stmt) rows = result.fetchall() print(f'Rows: {len(rows)}') # for row in rows: # print(f'{row["timestamp"]}-{row["ngsi_id_hash"].hex()}-{row["ngsi_value_hash"].hex()}') # Update last notarization self.last_notarization = time.time() # Create a background task to make sure commit is called for the last put, # even if no more puts are coming async def commit_background_task(self, frequency: int): while True: await asyncio.sleep(frequency) print("BKG Task: committing") # Commit the database self.db.commit() # Check if must notarize even though not enough records have arrived now = time.time() if now - self.last_notarization > self.maxInterval: self.processBatch(self.db) self.last_notarization = now f: MerkleBuffer = None app = FastAPI() def processBatch(): global f print(f'In return from call process') # Connect to db db = sqlite3.connect(f.db_name, detect_types=sqlite3.PARSE_DECLTYPES,) db.row_factory = sqlite3.Row f.processBatch(db) @app.on_event("startup") async def startup_event(): global f f = MerkleBuffer() @app.on_event("shutdown") def shutdown_event(): print("SHUTDOWN: closing the database") global f f.close() @app.get("/store/initialize") async def store_initialize(): global f f = MerkleBuffer(maxLeaves=4) return {"result": "OK"} @app.get("/store/{item_id}/{value_id}") async def store_item(item_id: str = "Hello", value_id: str = "Pepe", background_tasks: BackgroundTasks = None): global f result = f.put(item_id, item_id) if result: background_tasks.add_task(processBatch) return {"result": "OK"} import uvicorn if __name__ == "__main__": uvicorn.run("lserver:app", host="127.0.0.1", port=8000, log_level="warning")
[ "sqlmodel.create_engine", "sqlmodel.Field" ]
[((6014, 6023), 'fastapi.FastAPI', 'FastAPI', ([], {}), '()\n', (6021, 6023), False, 'from fastapi import FastAPI, BackgroundTasks\n'), ((443, 480), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'primary_key': '(True)'}), '(default=None, primary_key=True)\n', (448, 480), False, 'from sqlmodel import Field, SQLModel, create_engine\n'), ((6129, 6193), 'sqlite3.connect', 'sqlite3.connect', (['f.db_name'], {'detect_types': 'sqlite3.PARSE_DECLTYPES'}), '(f.db_name, detect_types=sqlite3.PARSE_DECLTYPES)\n', (6144, 6193), False, 'import sqlite3\n'), ((6950, 7026), 'uvicorn.run', 'uvicorn.run', (['"""lserver:app"""'], {'host': '"""127.0.0.1"""', 'port': '(8000)', 'log_level': '"""warning"""'}), "('lserver:app', host='127.0.0.1', port=8000, log_level='warning')\n", (6961, 7026), False, 'import uvicorn\n'), ((1790, 1801), 'time.time', 'time.time', ([], {}), '()\n', (1799, 1801), False, 'import time\n'), ((2390, 2426), 'sqlmodel.create_engine', 'create_engine', (['sqlite_url'], {'echo': '(True)'}), '(sqlite_url, echo=True)\n', (2403, 2426), False, 'from sqlmodel import Field, SQLModel, create_engine\n'), ((2843, 2871), 'os.path.exists', 'os.path.exists', (['self.db_name'], {}), '(self.db_name)\n', (2857, 2871), False, 'import os\n'), ((2952, 3019), 'sqlite3.connect', 'sqlite3.connect', (['self.db_name'], {'detect_types': 'sqlite3.PARSE_DECLTYPES'}), '(self.db_name, detect_types=sqlite3.PARSE_DECLTYPES)\n', (2967, 3019), False, 'import sqlite3\n'), ((3645, 3661), 'hashlib.sha256', 'hashlib.sha256', ([], {}), '()\n', (3659, 3661), False, 'import hashlib\n'), ((5359, 5370), 'time.time', 'time.time', ([], {}), '()\n', (5368, 5370), False, 'import time\n'), ((2885, 2908), 'os.remove', 'os.remove', (['self.db_name'], {}), '(self.db_name)\n', (2894, 2908), False, 'import os\n'), ((5818, 5829), 'time.time', 'time.time', ([], {}), '()\n', (5827, 5829), False, 'import time\n'), ((5587, 5611), 'asyncio.sleep', 'asyncio.sleep', (['frequency'], {}), '(frequency)\n', (5600, 5611), False, 'import asyncio\n'), ((4190, 4204), 'time.time_ns', 'time.time_ns', ([], {}), '()\n', (4202, 4204), False, 'import time\n')]
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. from functools import partial import numpy as np import tabulate import megengine as mge import megengine._internal as mgb import megengine.module as m import megengine.module.qat as qatm import megengine.module.quantized as qm try: mge.logger.MegEngineLogFormatter.max_lines = float("inf") except AttributeError as e: raise ValueError("set logger max lines failed") logger = mge.get_logger(__name__) CALC_FLOPS = {} def _register_modules(*modules): def callback(impl): for module in modules: CALC_FLOPS[module] = impl return impl return callback @_register_modules( m.Conv2d, m.ConvTranspose2d, m.LocalConv2d, qm.Conv2d, qm.ConvRelu2d, qm.ConvBn2d, qm.ConvBnRelu2d, qatm.Conv2d, qatm.ConvRelu2d, qatm.ConvBn2d, qatm.ConvBnRelu2d, ) def count_convNd(module, input, output): bias = 1 if module.bias is not None else 0 group = module.groups ic = input[0].shape[1] oc = output[0].shape[1] goc = oc // group gic = ic // group N = output[0].shape[0] HW = np.prod(output[0].shape[2:]) # N x Cout x H x W x (Cin x Kw x Kh + bias) return N * HW * goc * (gic * np.prod(module.kernel_size) + bias) @_register_modules(m.ConvTranspose2d) def count_deconvNd(module, input, output): return np.prod(input[0].shape) * output[0].shape[1] * np.prod(module.kernel_size) @_register_modules(m.Linear, qatm.Linear, qm.Linear) def count_linear(module, input, output): return np.prod(output[0].shape) * module.in_features # does not need import qat and quantized module since they inherit from float module. hook_modules = ( m.Conv2d, m.ConvTranspose2d, m.LocalConv2d, m.BatchNorm2d, m.Linear, ) def net_stats(model, input_size, bar_length_max=20, log_params=True, log_flops=True): def dict2table(list_of_dict, header): table_data = [header] for d in list_of_dict: row = [] for h in header: v = "" if h in d: v = d[h] row.append(v) table_data.append(row) return table_data def sizeof_fmt(num, suffix="B"): for unit in ["", "Ki", "Mi", "Gi", "Ti", "Pi", "Ei", "Zi"]: if abs(num) < 1024.0: return "{:3.3f} {}{}".format(num, unit, suffix) num /= 1024.0 sign_str = "-" if num < 0 else "" return "{}{:.1f} {}{}".format(sign_str, num, "Yi", suffix) def get_byteswidth(tensor): dtype = tensor.dtype if mgb.dtype.is_quantize(dtype): return 1 elif mgb.dtype.is_bfloat16(dtype): return 2 else: return 4 def print_flops_stats(flops): flops_list = [i["flops_num"] for i in flops] max_flops_num = max(flops_list + [0]) # calc total flops and set flops_cum total_flops_num = 0 for d in flops: total_flops_num += int(d["flops_num"]) d["flops_cum"] = sizeof_fmt(total_flops_num, suffix="OPs") for i in flops: f = i["flops_num"] i["flops"] = sizeof_fmt(f, suffix="OPs") r = i["ratio"] = f / total_flops_num i["percentage"] = "{:.2f}%".format(r * 100) bar_length = int(f / max_flops_num * bar_length_max) i["bar"] = "#" * bar_length header = [ "name", "class_name", "input_shapes", "output_shapes", "flops", "flops_cum", "percentage", "bar", ] total_flops_str = sizeof_fmt(total_flops_num, suffix="OPs") total_var_size = sum(sum(s[1] for s in i["output_shapes"]) for i in flops) flops.append( dict(name="total", flops=total_flops_str, output_shapes=total_var_size) ) logger.info( "flops stats: \n" + tabulate.tabulate(dict2table(flops, header=header)) ) return total_flops_num def print_params_stats(params): total_param_dims, total_param_size = 0, 0 for d in params: total_param_dims += int(d["param_dim"]) total_param_size += int(d["size"]) d["size"] = sizeof_fmt(d["size"]) d["size_cum"] = sizeof_fmt(total_param_size) for d in params: ratio = d["param_dim"] / total_param_dims d["ratio"] = ratio d["percentage"] = "{:.2f}%".format(ratio * 100) # construct bar max_ratio = max([d["ratio"] for d in params]) for d in params: bar_length = int(d["ratio"] / max_ratio * bar_length_max) d["size_bar"] = "#" * bar_length param_size = sizeof_fmt(total_param_size) params.append(dict(name="total", param_dim=total_param_dims, size=param_size,)) header = [ "name", "shape", "mean", "std", "param_dim", "bits", "size", "size_cum", "percentage", "size_bar", ] logger.info( "param stats: \n" + tabulate.tabulate(dict2table(params, header=header)) ) return total_param_size def net_stats_hook(module, input, output, name=""): class_name = str(module.__class__).split(".")[-1].split("'")[0] flops_fun = CALC_FLOPS.get(type(module)) if callable(flops_fun): flops_num = flops_fun(module, input, output) if not isinstance(output, (list, tuple)): output = [output] flops.append( dict( name=name, class_name=class_name, input_shapes=[i.shape for i in input], output_shapes=[o.shape for o in output], flops_num=flops_num, flops_cum=0, ) ) if hasattr(module, "weight") and module.weight is not None: w = module.weight value = w.numpy() param_dim = np.prod(w.shape) param_bytes = get_byteswidth(w) params.append( dict( name=name + "-w", shape=w.shape, param_dim=param_dim, bits=param_bytes * 8, size=param_dim * param_bytes, size_cum=0, mean="{:.2g}".format(value.mean()), std="{:.2g}".format(value.std()), ) ) if hasattr(module, "bias") and module.bias is not None: b = module.bias value = b.numpy() param_dim = np.prod(b.shape) param_bytes = get_byteswidth(b) params.append( dict( name=name + "-b", shape=b.shape, param_dim=param_dim, bits=param_bytes * 8, size=param_dim * param_bytes, size_cum=0, mean="{:.2g}".format(value.mean()), std="{:.2g}".format(value.std()), ) ) # multiple inputs to the network if not isinstance(input_size[0], tuple): input_size = [input_size] params = [] flops = [] hooks = [] for (name, module) in model.named_modules(): if isinstance(module, hook_modules): hooks.append( module.register_forward_hook(partial(net_stats_hook, name=name)) ) inputs = [mge.zeros(in_size, dtype=np.float32) for in_size in input_size] model.eval() model(*inputs) for h in hooks: h.remove() total_flops, total_params = 0, 0 if log_params: total_params = print_params_stats(params) if log_flops: total_flops = print_flops_stats(flops) return total_params, total_flops
[ "megengine._internal.dtype.is_quantize", "megengine._internal.dtype.is_bfloat16", "megengine.zeros", "megengine.get_logger" ]
[((741, 765), 'megengine.get_logger', 'mge.get_logger', (['__name__'], {}), '(__name__)\n', (755, 765), True, 'import megengine as mge\n'), ((1434, 1462), 'numpy.prod', 'np.prod', (['output[0].shape[2:]'], {}), '(output[0].shape[2:])\n', (1441, 1462), True, 'import numpy as np\n'), ((1722, 1749), 'numpy.prod', 'np.prod', (['module.kernel_size'], {}), '(module.kernel_size)\n', (1729, 1749), True, 'import numpy as np\n'), ((1857, 1881), 'numpy.prod', 'np.prod', (['output[0].shape'], {}), '(output[0].shape)\n', (1864, 1881), True, 'import numpy as np\n'), ((2922, 2950), 'megengine._internal.dtype.is_quantize', 'mgb.dtype.is_quantize', (['dtype'], {}), '(dtype)\n', (2943, 2950), True, 'import megengine._internal as mgb\n'), ((8007, 8043), 'megengine.zeros', 'mge.zeros', (['in_size'], {'dtype': 'np.float32'}), '(in_size, dtype=np.float32)\n', (8016, 8043), True, 'import megengine as mge\n'), ((1675, 1698), 'numpy.prod', 'np.prod', (['input[0].shape'], {}), '(input[0].shape)\n', (1682, 1698), True, 'import numpy as np\n'), ((2986, 3014), 'megengine._internal.dtype.is_bfloat16', 'mgb.dtype.is_bfloat16', (['dtype'], {}), '(dtype)\n', (3007, 3014), True, 'import megengine._internal as mgb\n'), ((6485, 6501), 'numpy.prod', 'np.prod', (['w.shape'], {}), '(w.shape)\n', (6492, 6501), True, 'import numpy as np\n'), ((7122, 7138), 'numpy.prod', 'np.prod', (['b.shape'], {}), '(b.shape)\n', (7129, 7138), True, 'import numpy as np\n'), ((1545, 1572), 'numpy.prod', 'np.prod', (['module.kernel_size'], {}), '(module.kernel_size)\n', (1552, 1572), True, 'import numpy as np\n'), ((7942, 7976), 'functools.partial', 'partial', (['net_stats_hook'], {'name': 'name'}), '(net_stats_hook, name=name)\n', (7949, 7976), False, 'from functools import partial\n')]
""" Query related functions. """ from datetime import datetime, timezone from typing import List, Tuple import sqlparse from sqlalchemy import text from sqlmodel import Session, create_engine from datajunction.config import Settings from datajunction.models.query import ( ColumnMetadata, Query, QueryResults, QueryState, QueryWithResults, StatementResults, ) from datajunction.typing import ColumnType, Description, SQLADialect, Stream, TypeEnum def get_columns_from_description( description: Description, dialect: SQLADialect, ) -> List[ColumnMetadata]: """ Extract column metadata from the cursor description. For now this uses the information from the cursor description, which only allow us to distinguish between 4 types (see ``TypeEnum``). In the future we should use a type inferrer to determine the types based on the query. """ type_map = { TypeEnum.STRING: ColumnType.STR, TypeEnum.BINARY: ColumnType.BYTES, TypeEnum.NUMBER: ColumnType.FLOAT, TypeEnum.DATETIME: ColumnType.DATETIME, } columns = [] for column in description or []: name, native_type = column[:2] for dbapi_type in TypeEnum: if native_type == getattr(dialect.dbapi, dbapi_type.value, None): type_ = type_map[dbapi_type] break else: # fallback to string type_ = ColumnType.STR columns.append(ColumnMetadata(name=name, type=type_)) return columns def run_query(query: Query) -> List[Tuple[str, List[ColumnMetadata], Stream]]: """ Run a query and return its results. For each statement we return a tuple with the statement SQL, a description of the columns (name and type) and a stream of rows (tuples). """ engine = create_engine(query.database.URI, **query.database.extra_params) connection = engine.connect() output: List[Tuple[str, List[ColumnMetadata], Stream]] = [] statements = sqlparse.parse(query.executed_query) for statement in statements: # Druid doesn't like statements that end in a semicolon... sql = str(statement).strip().rstrip(";") results = connection.execute(text(sql)) stream = (tuple(row) for row in results) columns = get_columns_from_description( results.cursor.description, engine.dialect, ) output.append((sql, columns, stream)) return output def process_query( session: Session, settings: Settings, query: Query, ) -> QueryWithResults: """ Process a query. """ query.scheduled = datetime.now(timezone.utc) query.state = QueryState.SCHEDULED query.executed_query = query.submitted_query errors = [] query.started = datetime.now(timezone.utc) try: root = [] for sql, columns, stream in run_query(query): rows = list(stream) root.append( StatementResults( sql=sql, columns=columns, rows=rows, row_count=len(rows), ), ) results = QueryResults(__root__=root) query.state = QueryState.FINISHED query.progress = 1.0 except Exception as ex: # pylint: disable=broad-except results = QueryResults(__root__=[]) query.state = QueryState.FAILED errors = [str(ex)] query.finished = datetime.now(timezone.utc) session.add(query) session.commit() session.refresh(query) settings.results_backend.add(str(query.id), results.json()) return QueryWithResults(results=results, errors=errors, **query.dict())
[ "sqlmodel.create_engine" ]
[((1834, 1898), 'sqlmodel.create_engine', 'create_engine', (['query.database.URI'], {}), '(query.database.URI, **query.database.extra_params)\n', (1847, 1898), False, 'from sqlmodel import Session, create_engine\n'), ((2015, 2051), 'sqlparse.parse', 'sqlparse.parse', (['query.executed_query'], {}), '(query.executed_query)\n', (2029, 2051), False, 'import sqlparse\n'), ((2657, 2683), 'datetime.datetime.now', 'datetime.now', (['timezone.utc'], {}), '(timezone.utc)\n', (2669, 2683), False, 'from datetime import datetime, timezone\n'), ((2809, 2835), 'datetime.datetime.now', 'datetime.now', (['timezone.utc'], {}), '(timezone.utc)\n', (2821, 2835), False, 'from datetime import datetime, timezone\n'), ((3490, 3516), 'datetime.datetime.now', 'datetime.now', (['timezone.utc'], {}), '(timezone.utc)\n', (3502, 3516), False, 'from datetime import datetime, timezone\n'), ((3197, 3224), 'datajunction.models.query.QueryResults', 'QueryResults', ([], {'__root__': 'root'}), '(__root__=root)\n', (3209, 3224), False, 'from datajunction.models.query import ColumnMetadata, Query, QueryResults, QueryState, QueryWithResults, StatementResults\n'), ((1479, 1516), 'datajunction.models.query.ColumnMetadata', 'ColumnMetadata', ([], {'name': 'name', 'type': 'type_'}), '(name=name, type=type_)\n', (1493, 1516), False, 'from datajunction.models.query import ColumnMetadata, Query, QueryResults, QueryState, QueryWithResults, StatementResults\n'), ((2239, 2248), 'sqlalchemy.text', 'text', (['sql'], {}), '(sql)\n', (2243, 2248), False, 'from sqlalchemy import text\n'), ((3375, 3400), 'datajunction.models.query.QueryResults', 'QueryResults', ([], {'__root__': '[]'}), '(__root__=[])\n', (3387, 3400), False, 'from datajunction.models.query import ColumnMetadata, Query, QueryResults, QueryState, QueryWithResults, StatementResults\n')]
import numpy as nm from sfepy.terms.terms import Term, terms _msg_missing_data = 'missing family data!' class HyperElasticBase(Term): """ Base class for all hyperelastic terms in TL/UL formulation. `HyperElasticBase.__call__()` computes element contributions given either stress (-> rezidual) or tangent modulus (-> tangent sitffnes matrix), i.e. constitutive relation type (CRT) related data. The CRT data are computed in subclasses implementing particular CRT (e.g. neo-Hookean material), in self.compute_crt_data(). Modes: - 0: total formulation - 1: updated formulation Notes ----- This is not a proper Term! """ arg_types = ('material', 'virtual', 'state') arg_shapes = {'material' : '1, 1', 'virtual' : ('D', 'state'), 'state' : 'D'} @staticmethod def integrate(out, val_qp, vg, fmode): if fmode == 2: out[:] = val_qp status = 0 else: status = vg.integrate(out, val_qp, fmode) return status @staticmethod def function(out, fun, *args): return fun(out, *args) def __init__(self, *args, **kwargs): Term.__init__(self, *args, **kwargs) self.stress_cache = None def get_family_data(self, state, cache_name, data_names): """ Notes ----- `data_names` argument is ignored for now. """ name = state.name step_cache = state.evaluate_cache.setdefault(cache_name, {}) cache = step_cache.setdefault(self.arg_steps[name], {}) vg, _, key = self.get_mapping(state, return_key=True) data_key = key + (self.arg_derivatives[name],) if data_key in cache: out = cache[data_key] else: out = self.compute_family_data(state) cache[data_key] = out return out def compute_stress(self, mat, family_data, **kwargs): out = nm.empty_like(family_data.green_strain) get = family_data.get fargs = [get(name, msg_if_none=_msg_missing_data) for name in self.family_data_names] self.stress_function(out, mat, *fargs, **kwargs) return out def compute_tan_mod(self, mat, family_data, **kwargs): shape = list(family_data.green_strain.shape) shape[-1] = shape[-2] out = nm.empty(shape, dtype=nm.float64) get = family_data.get fargs = [get(name, msg_if_none=_msg_missing_data) for name in self.family_data_names] self.tan_mod_function(out, mat, *fargs, **kwargs) return out def get_fargs(self, mat, virtual, state, mode=None, term_mode=None, diff_var=None, **kwargs): vg, _ = self.get_mapping(state) fd = self.get_family_data(state, self.fd_cache_name, self.family_data_names) if mode == 'weak': if diff_var is None: stress = self.compute_stress(mat, fd, **kwargs) self.stress_cache = stress tan_mod = nm.array([0], ndmin=4, dtype=nm.float64) fmode = 0 else: stress = self.stress_cache if stress is None: stress = self.compute_stress(mat, fd, **kwargs) tan_mod = self.compute_tan_mod(mat, fd, **kwargs) fmode = 1 return (self.weak_function, stress, tan_mod, fd.mtx_f, fd.det_f, vg, fmode, self.hyperelastic_mode) elif mode in ('el_avg', 'qp'): if term_mode == 'strain': out_qp = fd.green_strain elif term_mode == 'stress': out_qp = self.compute_stress(mat, fd, **kwargs) else: raise ValueError('unsupported term mode in %s! (%s)' % (self.name, term_mode)) fmode = {'el_avg' : 1, 'qp' : 2}[mode] return self.integrate, out_qp, vg, fmode else: raise ValueError('unsupported evaluation mode in %s! (%s)' % (self.name, mode)) def get_eval_shape(self, mat, virtual, state, mode=None, term_mode=None, diff_var=None, **kwargs): n_el, n_qp, dim, n_en, n_c = self.get_data_shape(state) sym = dim * (dim + 1) / 2 if mode != 'qp': n_qp = 1 return (n_el, n_qp, sym, 1), state.dtype class DeformationGradientTerm(Term): r""" Deformation gradient :math:`\ull{F}` in quadrature points for `term_mode='def_grad'` (default) or the jacobian :math:`J` if `term_mode='jacobian'`. Supports 'eval', 'el_avg' and 'qp' evaluation modes. :Definition: .. math:: \ull{F} = \pdiff{\ul{x}}{\ul{X}}|_{qp} = \ull{I} + \pdiff{\ul{u}}{\ul{X}}|_{qp} \;, \\ \ul{x} = \ul{X} + \ul{u} \;, J = \det{(\ull{F})} :Arguments: - parameter : :math:`\ul{u}` """ name = 'ev_def_grad' arg_types = ('parameter',) arg_shapes = {'parameter' : 'D'} @staticmethod def function(out, vec, vg, econn, term_mode, fmode): d = 1 if term_mode == 'jacobian' else vg.dim out_qp = nm.empty((out.shape[0], vg.n_qp, d, d), dtype=out.dtype) mode = 1 if term_mode == 'jacobian' else 0 terms.dq_def_grad(out_qp, vec, vg, econn, mode) if fmode == 2: out[:] = out_qp status = 0 else: status = vg.integrate(out, out_qp, fmode) return status def get_fargs(self, parameter, mode=None, term_mode=None, diff_var=None, **kwargs): ap, vg = self.get_approximation(parameter) vec = self.get_vector(parameter) fmode = {'eval' : 0, 'el_avg' : 1, 'qp' : 2}.get(mode, 1) return vec, vg, ap.econn, term_mode, fmode def get_eval_shape(self, parameter, mode=None, term_mode=None, diff_var=None, **kwargs): n_el, n_qp, dim, n_en, n_c = self.get_data_shape(parameter) if mode != 'qp': n_qp = 1 if term_mode == 'jacobian': return (n_el, n_qp, 1, 1), parameter.dtype else: # 'def_grad' return (n_el, n_qp, dim, dim), parameter.dtype
[ "sfepy.terms.terms.Term.__init__", "sfepy.terms.terms.terms.dq_def_grad" ]
[((1195, 1231), 'sfepy.terms.terms.Term.__init__', 'Term.__init__', (['self', '*args'], {}), '(self, *args, **kwargs)\n', (1208, 1231), False, 'from sfepy.terms.terms import Term, terms\n'), ((1967, 2006), 'numpy.empty_like', 'nm.empty_like', (['family_data.green_strain'], {}), '(family_data.green_strain)\n', (1980, 2006), True, 'import numpy as nm\n'), ((2384, 2417), 'numpy.empty', 'nm.empty', (['shape'], {'dtype': 'nm.float64'}), '(shape, dtype=nm.float64)\n', (2392, 2417), True, 'import numpy as nm\n'), ((5283, 5339), 'numpy.empty', 'nm.empty', (['(out.shape[0], vg.n_qp, d, d)'], {'dtype': 'out.dtype'}), '((out.shape[0], vg.n_qp, d, d), dtype=out.dtype)\n', (5291, 5339), True, 'import numpy as nm\n'), ((5400, 5447), 'sfepy.terms.terms.terms.dq_def_grad', 'terms.dq_def_grad', (['out_qp', 'vec', 'vg', 'econn', 'mode'], {}), '(out_qp, vec, vg, econn, mode)\n', (5417, 5447), False, 'from sfepy.terms.terms import Term, terms\n'), ((3110, 3150), 'numpy.array', 'nm.array', (['[0]'], {'ndmin': '(4)', 'dtype': 'nm.float64'}), '([0], ndmin=4, dtype=nm.float64)\n', (3118, 3150), True, 'import numpy as nm\n')]
r""" Piezo-elasticity problem - linear elastic material with piezoelectric effects. Find :math:`\ul{u}`, :math:`\phi` such that: .. math:: - \omega^2 \int_{Y} \rho\ \ul{v} \cdot \ul{u} + \int_{Y} D_{ijkl}\ e_{ij}(\ul{v}) e_{kl}(\ul{u}) - \int_{Y_2} g_{kij}\ e_{ij}(\ul{v}) \nabla_k \phi = 0 \;, \quad \forall \ul{v} \;, \int_{Y_2} g_{kij}\ e_{ij}(\ul{u}) \nabla_k \psi + \int_{Y} K_{ij} \nabla_i \psi \nabla_j \phi = 0 \;, \quad \forall \psi \;, where .. math:: D_{ijkl} = \mu (\delta_{ik} \delta_{jl}+\delta_{il} \delta_{jk}) + \lambda \ \delta_{ij} \delta_{kl} \;. """ import os import numpy as nm from sfepy import data_dir from sfepy.discrete.fem import MeshIO filename_mesh = data_dir + '/meshes/2d/special/circle_in_square.mesh' ## filename_mesh = data_dir + '/meshes/2d/special/circle_in_square_small.mesh' ## filename_mesh = data_dir + '/meshes/3d/special/cube_sphere.mesh' ## filename_mesh = data_dir + '/meshes/2d/special/cube_cylinder.mesh' omega = 1 omega_squared = omega**2 conf_dir = os.path.dirname(__file__) io = MeshIO.any_from_filename(filename_mesh, prefix_dir=conf_dir) bbox, dim = io.read_bounding_box( ret_dim = True ) geom = {3 : '3_4', 2 : '2_3'}[dim] x_left, x_right = bbox[:,0] regions = { 'Y' : 'all', 'Y1' : 'cells of group 1', 'Y2' : 'cells of group 2', 'Y2_Surface': ('r.Y1 *v r.Y2', 'facet'), 'Left' : ('vertices in (x < %f)' % (x_left + 1e-3), 'facet'), 'Right' : ('vertices in (x > %f)' % (x_right - 1e-3), 'facet'), } material_2 = { 'name' : 'inclusion', # epoxy 'function' : 'get_inclusion_pars', } def get_inclusion_pars(ts, coor, mode=None, **kwargs): """TODO: implement proper 3D -> 2D transformation of constitutive matrices.""" if mode == 'qp': n_nod, dim = coor.shape sym = (dim + 1) * dim / 2 dielectric = nm.eye( dim, dtype = nm.float64 ) # !!! coupling = nm.ones( (dim, sym), dtype = nm.float64 ) # coupling[0,1] = 0.2 out = { # Lame coefficients in 1e+10 Pa. 'lam' : 0.1798, 'mu' : 0.148, # dielectric tensor 'dielectric' : dielectric, # piezoelectric coupling 'coupling' : coupling, 'density' : 0.1142, # in 1e4 kg/m3 } for key, val in out.iteritems(): out[key] = nm.tile(val, (coor.shape[0], 1, 1)) return out functions = { 'get_inclusion_pars' : (get_inclusion_pars,), } field_0 = { 'name' : 'displacement', 'dtype' : nm.float64, 'shape' : dim, 'region' : 'Y', 'approx_order' : 1, } field_2 = { 'name' : 'potential', 'dtype' : nm.float64, 'shape' : (1,), 'region' : 'Y', 'approx_order' : 1, } variables = { 'u' : ('unknown field', 'displacement', 0), 'v' : ('test field', 'displacement', 'u'), 'phi' : ('unknown field', 'potential', 1), 'psi' : ('test field', 'potential', 'phi'), } ebcs = { 'u1' : ('Left', {'u.all' : 0.0}), 'u2' : ('Right', {'u.0' : 0.1}), 'phi' : ('Y2_Surface', {'phi.all' : 0.0}), } integral_1 = { 'name' : 'i', 'order' : 2, } equations = { '1' : """- %f * dw_volume_dot.i.Y( inclusion.density, v, u ) + dw_lin_elastic_iso.i.Y( inclusion.lam, inclusion.mu, v, u ) - dw_piezo_coupling.i.Y2( inclusion.coupling, v, phi ) = 0""" % omega_squared, '2' : """dw_piezo_coupling.i.Y2( inclusion.coupling, u, psi ) + dw_diffusion.i.Y( inclusion.dielectric, psi, phi ) = 0""", } ## # Solvers etc. solver_0 = { 'name' : 'ls', 'kind' : 'ls.scipy_direct', } solver_1 = { 'name' : 'newton', 'kind' : 'nls.newton', 'i_max' : 1, 'eps_a' : 1e-10, 'eps_r' : 1.0, 'macheps' : 1e-16, 'lin_red' : 1e-2, # Linear system error < (eps_a * lin_red). 'ls_red' : 0.1, 'ls_red_warp': 0.001, 'ls_on' : 1.1, 'ls_min' : 1e-5, 'check' : 0, 'delta' : 1e-6, 'problem' : 'nonlinear', # 'nonlinear' or 'linear' (ignore i_max) }
[ "sfepy.discrete.fem.MeshIO.any_from_filename" ]
[((1055, 1080), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (1070, 1080), False, 'import os\n'), ((1086, 1146), 'sfepy.discrete.fem.MeshIO.any_from_filename', 'MeshIO.any_from_filename', (['filename_mesh'], {'prefix_dir': 'conf_dir'}), '(filename_mesh, prefix_dir=conf_dir)\n', (1110, 1146), False, 'from sfepy.discrete.fem import MeshIO\n'), ((1884, 1913), 'numpy.eye', 'nm.eye', (['dim'], {'dtype': 'nm.float64'}), '(dim, dtype=nm.float64)\n', (1890, 1913), True, 'import numpy as nm\n'), ((1951, 1988), 'numpy.ones', 'nm.ones', (['(dim, sym)'], {'dtype': 'nm.float64'}), '((dim, sym), dtype=nm.float64)\n', (1958, 1988), True, 'import numpy as nm\n'), ((2407, 2442), 'numpy.tile', 'nm.tile', (['val', '(coor.shape[0], 1, 1)'], {}), '(val, (coor.shape[0], 1, 1))\n', (2414, 2442), True, 'import numpy as nm\n')]
# -*- coding: utf-8 -*- from datetime import datetime from typing import Optional from sqlmodel import Column, DateTime, Field, Relationship, SQLModel class Device(SQLModel, table=True): # type: ignore """The Device model. It is used to model a device. """ # setup the primary key of the table uuid: str = Field(primary_key=True) # setup the columns / properties name: Optional[str] type: Optional[str] arch: Optional[str] cpid: Optional[str] cpu_type: Optional[str] cpu_architecture: Optional[str] cpu_features: Optional[str] processor_count: Optional[int] coprocessor_count: Optional[int] product_name: Optional[str] floating_point_speed: Optional[float] integer_speed: Optional[float] total_disk_space: Optional[float] free_disk_space: Optional[float] swap_space: Optional[float] domain_name: Optional[str] operating_system_version: Optional[str] boinc_version: Optional[str] scitizen_version: Optional[str] platform: Optional[str] # setup the pseudo-columns (metadata related to the record) created_at: Optional[datetime] = Field( sa_column=Column(DateTime(), default=datetime.utcnow, name="_created_at") ) updated_at: Optional[datetime] = Field( sa_column=Column(DateTime(), onupdate=datetime.utcnow, name="_updated_at") ) class Project(SQLModel, table=True): # type: ignore """The Project model. It is used to model a project. """ # setup the primary key of the table uuid: str = Field(primary_key=True) # setup the columns / properties name: Optional[str] avatar: Optional[str] description: Optional[str] general_area: Optional[str] home: Optional[str] image: Optional[str] is_active: Optional[bool] = True keywords: Optional[str] name: Optional[str] # type: ignore platforms: Optional[str] specific_area: Optional[str] summary: Optional[str] url: Optional[str] web_url: Optional[str] weak_authenticator: Optional[str] # setup the pseudo-columns (metadata related to the record) created_at: Optional[datetime] = Field( sa_column=Column(DateTime(), default=datetime.utcnow, name="_created_at") ) updated_at: Optional[datetime] = Field( sa_column=Column(DateTime(), onupdate=datetime.utcnow, name="_updated_at") ) # setup the relationship task: Optional["Task"] = Relationship(back_populates="project_rel") class Task(SQLModel, table=True): # type: ignore """The Task model. It is used to model a task. """ # setup the primary key of the table uuid: str = Field(primary_key=True) # setup the columns / properties active_task_state: Optional[str] app_version_num: Optional[float] bytes_received: Optional[float] bytes_sent: Optional[float] checkpoint_cpu_time: Optional[float] completed_at: Optional[datetime] current_cpu_time: Optional[float] elapsed_time: Optional[float] estimated_cpu_time_remaining: Optional[float] exit_code: Optional[float] exit_statement: Optional[str] fraction_done: Optional[float] name: Optional[str] page_fault_rate: Optional[float] pid: Optional[float] plan_class: Optional[str] platform: Optional[str] progress_rate: Optional[float] received_at: Optional[datetime] report_deadline_at: Optional[datetime] scheduler_state: Optional[str] set_size: Optional[float] slot: Optional[float] slot_path: Optional[str] state: Optional[str] swap_size: Optional[float] version_num: Optional[float] wu_name: Optional[str] # setup the pseudo-columns (metadata related to the record) created_at: Optional[datetime] = Field( sa_column=Column(DateTime(), default=datetime.utcnow, name="_created_at") ) updated_at: Optional[datetime] = Field( sa_column=Column(DateTime(), onupdate=datetime.utcnow, name="_updated_at") ) # setup the relationship project_url: Optional[str] = Field(foreign_key="project.url") project_rel: Optional[Project] = Relationship(back_populates="task") class TaskWithProject(Task): """The TaskWithProject model. It is used to model a task linked to a project, so the API will be able in one GET to fetch a task with the linked project. """ # setup the columns / properties project: Optional[Project]
[ "sqlmodel.Field", "sqlmodel.DateTime", "sqlmodel.Relationship" ]
[((333, 356), 'sqlmodel.Field', 'Field', ([], {'primary_key': '(True)'}), '(primary_key=True)\n', (338, 356), False, 'from sqlmodel import Column, DateTime, Field, Relationship, SQLModel\n'), ((1560, 1583), 'sqlmodel.Field', 'Field', ([], {'primary_key': '(True)'}), '(primary_key=True)\n', (1565, 1583), False, 'from sqlmodel import Column, DateTime, Field, Relationship, SQLModel\n'), ((2455, 2497), 'sqlmodel.Relationship', 'Relationship', ([], {'back_populates': '"""project_rel"""'}), "(back_populates='project_rel')\n", (2467, 2497), False, 'from sqlmodel import Column, DateTime, Field, Relationship, SQLModel\n'), ((2672, 2695), 'sqlmodel.Field', 'Field', ([], {'primary_key': '(True)'}), '(primary_key=True)\n', (2677, 2695), False, 'from sqlmodel import Column, DateTime, Field, Relationship, SQLModel\n'), ((4063, 4095), 'sqlmodel.Field', 'Field', ([], {'foreign_key': '"""project.url"""'}), "(foreign_key='project.url')\n", (4068, 4095), False, 'from sqlmodel import Column, DateTime, Field, Relationship, SQLModel\n'), ((4133, 4168), 'sqlmodel.Relationship', 'Relationship', ([], {'back_populates': '"""task"""'}), "(back_populates='task')\n", (4145, 4168), False, 'from sqlmodel import Column, DateTime, Field, Relationship, SQLModel\n'), ((1181, 1191), 'sqlmodel.DateTime', 'DateTime', ([], {}), '()\n', (1189, 1191), False, 'from sqlmodel import Column, DateTime, Field, Relationship, SQLModel\n'), ((1313, 1323), 'sqlmodel.DateTime', 'DateTime', ([], {}), '()\n', (1321, 1323), False, 'from sqlmodel import Column, DateTime, Field, Relationship, SQLModel\n'), ((2200, 2210), 'sqlmodel.DateTime', 'DateTime', ([], {}), '()\n', (2208, 2210), False, 'from sqlmodel import Column, DateTime, Field, Relationship, SQLModel\n'), ((2332, 2342), 'sqlmodel.DateTime', 'DateTime', ([], {}), '()\n', (2340, 2342), False, 'from sqlmodel import Column, DateTime, Field, Relationship, SQLModel\n'), ((3804, 3814), 'sqlmodel.DateTime', 'DateTime', ([], {}), '()\n', (3812, 3814), False, 'from sqlmodel import Column, DateTime, Field, Relationship, SQLModel\n'), ((3936, 3946), 'sqlmodel.DateTime', 'DateTime', ([], {}), '()\n', (3944, 3946), False, 'from sqlmodel import Column, DateTime, Field, Relationship, SQLModel\n')]
""" Quantum oscillator. See :ref:`quantum-quantum_common`. """ from __future__ import absolute_import from sfepy.linalg import norm_l2_along_axis from examples.quantum.quantum_common import common def get_exact(n_eigs, box_size, dim): if dim == 2: eigs = [1] + [2]*2 + [3]*3 + [4]*4 + [5]*5 + [6]*6 elif dim == 3: eigs = [float(1)/2 + x for x in [1] + [2]*3 + [3]*6 + [4]*10] return eigs def fun_v(ts, coor, mode=None, **kwargs): if not mode == 'qp': return out = {} C = 0.5 val = C * norm_l2_along_axis(coor, axis=1, squared=True) val.shape = (val.shape[0], 1, 1) out['V'] = val return out def define(n_eigs=20, tau=0.0): l = common(fun_v, get_exact=get_exact, n_eigs=n_eigs, tau=tau) return l
[ "sfepy.linalg.norm_l2_along_axis" ]
[((696, 754), 'examples.quantum.quantum_common.common', 'common', (['fun_v'], {'get_exact': 'get_exact', 'n_eigs': 'n_eigs', 'tau': 'tau'}), '(fun_v, get_exact=get_exact, n_eigs=n_eigs, tau=tau)\n', (702, 754), False, 'from examples.quantum.quantum_common import common\n'), ((536, 582), 'sfepy.linalg.norm_l2_along_axis', 'norm_l2_along_axis', (['coor'], {'axis': '(1)', 'squared': '(True)'}), '(coor, axis=1, squared=True)\n', (554, 582), False, 'from sfepy.linalg import norm_l2_along_axis\n')]
import os import numpy as nm try: from enthought.tvtk.api import tvtk from enthought.mayavi.sources.vtk_data_source import VTKDataSource from enthought.pyface.timer.api import Timer except: from tvtk.api import tvtk from mayavi.sources.vtk_data_source import VTKDataSource from pyface.timer.api import Timer from dataset_manager import DatasetManager from sfepy.base.base import Struct, basestr from sfepy.postprocess.utils import mlab from sfepy.discrete.fem import Mesh from sfepy.discrete.fem.meshio import MeshIO, vtk_cell_types, supported_formats def create_file_source(filename, watch=False, offscreen=True): """Factory function to create a file source corresponding to the given file format.""" kwargs = {'watch' : watch, 'offscreen' : offscreen} if isinstance(filename, basestr): fmt = os.path.splitext(filename)[1] is_sequence = False else: # A sequence. fmt = os.path.splitext(filename[0])[1] is_sequence = True fmt = fmt.lower() if fmt == '.vtk': # VTK is supported directly by Mayavi, no need to use MeshIO. if is_sequence: return VTKSequenceFileSource(filename, **kwargs) else: return VTKFileSource(filename, **kwargs) elif fmt in supported_formats.keys(): if is_sequence: if fmt == '.h5': raise ValueError('format .h5 does not support file sequences!') else: return GenericSequenceFileSource(filename, **kwargs) else: return GenericFileSource(filename, **kwargs) else: raise ValueError('unknown file format! (%s)' % fmt) class FileSource(Struct): """General file source.""" def __init__(self, filename, watch=False, offscreen=True): """Create a file source using the given file name.""" mlab.options.offscreen = offscreen self.watch = watch self.filename = filename self.reset() def __call__(self, step=0): """Get the file source.""" if self.source is None: self.source = self.create_source() if self.watch: self.timer = Timer(1000, self.poll_file) return self.source def reset(self): """Reset.""" self.mat_id_name = None self.source = None self.notify_obj = None self.steps = [] self.times = [] self.step = 0 self.time = 0.0 if self.watch: self.last_stat = os.stat(self.filename) def setup_mat_id(self, mat_id_name='mat_id', single_color=False): self.mat_id_name = mat_id_name self.single_color = single_color def get_step_time(self, step=None, time=None): """ Set current step and time to the values closest greater or equal to either step or time. Return the found values. """ if (step is not None) and len(self.steps): step = step if step >= 0 else self.steps[-1] + step + 1 ii = nm.searchsorted(self.steps, step) ii = nm.clip(ii, 0, len(self.steps) - 1) self.step = self.steps[ii] if len(self.times): self.time = self.times[ii] elif (time is not None) and len(self.times): ii = nm.searchsorted(self.times, time) ii = nm.clip(ii, 0, len(self.steps) - 1) self.step = self.steps[ii] self.time = self.times[ii] return self.step, self.time def get_ts_info(self): return self.steps, self.times def get_mat_id(self, mat_id_name='mat_id'): """ Get material ID numbers of the underlying mesh elements. """ if self.source is not None: dm = DatasetManager(dataset=self.source.outputs[0]) mat_id = dm.cell_scalars[mat_id_name] return mat_id def file_changed(self): pass def setup_notification(self, obj, attr): """The attribute 'attr' of the object 'obj' will be set to True when the source file is watched and changes.""" self.notify_obj = obj self.notify_attr = attr def poll_file(self): """Check the source file's time stamp and notify the self.notify_obj in case it changed. Subclasses should implement the file_changed() method.""" if not self.notify_obj: return s = os.stat(self.filename) if s[-2] == self.last_stat[-2]: setattr(self.notify_obj, self.notify_attr, False) else: self.file_changed() setattr(self.notify_obj, self.notify_attr, True) self.last_stat = s class VTKFileSource(FileSource): """A thin wrapper around mlab.pipeline.open().""" def create_source(self): """Create a VTK file source """ return mlab.pipeline.open(self.filename) def get_bounding_box(self): bbox = nm.array(self.source.reader.unstructured_grid_output.bounds) return bbox.reshape((3,2)).T def set_filename(self, filename, vis_source): self.filename = filename vis_source.base_file_name = filename # Force re-read. vis_source.reader.modified() vis_source.update() # Propagate changes in the pipeline. vis_source.data_changed = True class VTKSequenceFileSource(VTKFileSource): """A thin wrapper around mlab.pipeline.open() for VTK file sequences.""" def __init__(self, *args, **kwargs): FileSource.__init__(self, *args, **kwargs) self.steps = nm.arange(len(self.filename), dtype=nm.int32) def create_source(self): """Create a VTK file source """ return mlab.pipeline.open(self.filename[0]) def set_filename(self, filename, vis_source): self.filename = filename vis_source.base_file_name = filename[self.step] class GenericFileSource(FileSource): """File source usable with any format supported by MeshIO classes.""" def __init__(self, *args, **kwargs): FileSource.__init__(self, *args, **kwargs) self.read_common(self.filename) def read_common(self, filename): self.io = MeshIO.any_from_filename(filename) self.steps, self.times, _ = self.io.read_times() self.mesh = Mesh.from_file(filename) self.n_nod, self.dim = self.mesh.coors.shape def create_source(self): """ Create a VTK source from data in a SfePy-supported file. Notes ----- All data need to be set here, otherwise time stepping will not work properly - data added by user later will be thrown away on time step change. """ if self.io is None: self.read_common(self.filename) dataset = self.create_dataset() try: out = self.io.read_data(self.step) except ValueError: out = None if out is not None: self.add_data_to_dataset(dataset, out) if self.mat_id_name is not None: mat_id = nm.concatenate(self.mesh.mat_ids) if self.single_color: rm = mat_id.min(), mat_id.max() mat_id[mat_id > rm[0]] = rm[1] dm = DatasetManager(dataset=dataset) dm.add_array(mat_id, self.mat_id_name, 'cell') src = VTKDataSource(data=dataset) # src.print_traits() # debug() return src def get_bounding_box(self): bbox = self.mesh.get_bounding_box() if self.dim == 2: bbox = nm.c_[bbox, [0.0, 0.0]] return bbox def set_filename(self, filename, vis_source): self.filename = filename self.source = self.create_source() vis_source.data = self.source.data def get_mat_id(self, mat_id_name='mat_id'): """ Get material ID numbers of the underlying mesh elements. """ if self.source is not None: mat_id = nm.concatenate(self.mesh.mat_ids) return mat_id def file_changed(self): self.steps, self.times, _ = self.io.read_times() def create_dataset(self): """Create a tvtk.UnstructuredGrid dataset from the Mesh instance of the file source.""" mesh = self.mesh n_nod, dim = self.n_nod, self.dim n_el, n_els, n_e_ps = mesh.n_el, mesh.n_els, mesh.n_e_ps if dim == 2: nod_zz = nm.zeros((n_nod, 1), dtype=mesh.coors.dtype) points = nm.c_[mesh.coors, nod_zz] else: points = mesh.coors dataset = tvtk.UnstructuredGrid(points=points) cell_types = [] cells = [] offset = [0] for ig, conn in enumerate(mesh.conns): cell_types += [vtk_cell_types[mesh.descs[ig]]] * n_els[ig] nn = nm.array([conn.shape[1]] * n_els[ig]) aux = nm.c_[nn[:,None], conn] cells.extend(aux.ravel()) offset.extend([aux.shape[1]] * n_els[ig]) cells = nm.array(cells) cell_types = nm.array(cell_types) offset = nm.cumsum(offset)[:-1] cell_array = tvtk.CellArray() cell_array.set_cells(n_el, cells) dataset.set_cells(cell_types, offset, cell_array) return dataset def add_data_to_dataset(self, dataset, data): """Add point and cell data to the dataset.""" dim = self.dim sym = (dim + 1) * dim / 2 dm = DatasetManager(dataset=dataset) for key, val in data.iteritems(): vd = val.data ## print vd.shape if val.mode == 'vertex': if vd.shape[1] == 1: aux = vd.reshape((vd.shape[0],)) elif vd.shape[1] == 2: zz = nm.zeros((vd.shape[0], 1), dtype=vd.dtype) aux = nm.c_[vd, zz] elif vd.shape[1] == 3: aux = vd else: raise ValueError('unknown vertex data format! (%s)'\ % vd.shape) dm.add_array(aux, key, 'point') elif val.mode == 'cell': ne, aux, nr, nc = vd.shape if (nr == 1) and (nc == 1): aux = vd.reshape((ne,)) elif (nr == dim) and (nc == 1): if dim == 3: aux = vd.reshape((ne, dim)) else: zz = nm.zeros((vd.shape[0], 1), dtype=vd.dtype); aux = nm.c_[vd.squeeze(), zz] elif (((nr == sym) or (nr == (dim * dim))) and (nc == 1)) \ or ((nr == dim) and (nc == dim)): vd = vd.squeeze() if dim == 3: if nr == sym: aux = vd[:,[0,3,4,3,1,5,4,5,2]] elif nr == (dim * dim): aux = vd[:,[0,3,4,6,1,5,7,8,2]] else: aux = vd.reshape((vd.shape[0], dim*dim)) else: zz = nm.zeros((vd.shape[0], 1), dtype=vd.dtype); if nr == sym: aux = nm.c_[vd[:,[0,2]], zz, vd[:,[2,1]], zz, zz, zz, zz] elif nr == (dim * dim): aux = nm.c_[vd[:,[0,2]], zz, vd[:,[3,1]], zz, zz, zz, zz] else: aux = nm.c_[vd[:,0,[0,1]], zz, vd[:,1,[0,1]], zz, zz, zz, zz] dm.add_array(aux, key, 'cell') class GenericSequenceFileSource(GenericFileSource): """File source usable with any format supported by MeshIO classes, with exception of HDF5 (.h5), for file sequences.""" def read_common(self, filename): self.steps = nm.arange(len(self.filename), dtype=nm.int32) def create_source(self): """Create a VTK source from data in a SfePy-supported file.""" if self.io is None: self.read_common(self.filename[self.step]) dataset = self.create_dataset() src = VTKDataSource(data=dataset) return src def set_filename(self, filename, vis_source): self.filename = filename self.io = None self.source = self.create_source() vis_source.data = self.source.data
[ "sfepy.postprocess.utils.mlab.pipeline.open", "sfepy.discrete.fem.Mesh.from_file", "sfepy.discrete.fem.meshio.MeshIO.any_from_filename", "sfepy.discrete.fem.meshio.supported_formats.keys" ]
[((4437, 4459), 'os.stat', 'os.stat', (['self.filename'], {}), '(self.filename)\n', (4444, 4459), False, 'import os\n'), ((4873, 4906), 'sfepy.postprocess.utils.mlab.pipeline.open', 'mlab.pipeline.open', (['self.filename'], {}), '(self.filename)\n', (4891, 4906), False, 'from sfepy.postprocess.utils import mlab\n'), ((4955, 5015), 'numpy.array', 'nm.array', (['self.source.reader.unstructured_grid_output.bounds'], {}), '(self.source.reader.unstructured_grid_output.bounds)\n', (4963, 5015), True, 'import numpy as nm\n'), ((5725, 5761), 'sfepy.postprocess.utils.mlab.pipeline.open', 'mlab.pipeline.open', (['self.filename[0]'], {}), '(self.filename[0])\n', (5743, 5761), False, 'from sfepy.postprocess.utils import mlab\n'), ((6204, 6238), 'sfepy.discrete.fem.meshio.MeshIO.any_from_filename', 'MeshIO.any_from_filename', (['filename'], {}), '(filename)\n', (6228, 6238), False, 'from sfepy.discrete.fem.meshio import MeshIO, vtk_cell_types, supported_formats\n'), ((6317, 6341), 'sfepy.discrete.fem.Mesh.from_file', 'Mesh.from_file', (['filename'], {}), '(filename)\n', (6331, 6341), False, 'from sfepy.discrete.fem import Mesh\n'), ((7366, 7393), 'mayavi.sources.vtk_data_source.VTKDataSource', 'VTKDataSource', ([], {'data': 'dataset'}), '(data=dataset)\n', (7379, 7393), False, 'from mayavi.sources.vtk_data_source import VTKDataSource\n'), ((8602, 8638), 'tvtk.api.tvtk.UnstructuredGrid', 'tvtk.UnstructuredGrid', ([], {'points': 'points'}), '(points=points)\n', (8623, 8638), False, 'from tvtk.api import tvtk\n'), ((9030, 9045), 'numpy.array', 'nm.array', (['cells'], {}), '(cells)\n', (9038, 9045), True, 'import numpy as nm\n'), ((9067, 9087), 'numpy.array', 'nm.array', (['cell_types'], {}), '(cell_types)\n', (9075, 9087), True, 'import numpy as nm\n'), ((9158, 9174), 'tvtk.api.tvtk.CellArray', 'tvtk.CellArray', ([], {}), '()\n', (9172, 9174), False, 'from tvtk.api import tvtk\n'), ((9476, 9507), 'dataset_manager.DatasetManager', 'DatasetManager', ([], {'dataset': 'dataset'}), '(dataset=dataset)\n', (9490, 9507), False, 'from dataset_manager import DatasetManager\n'), ((12284, 12311), 'mayavi.sources.vtk_data_source.VTKDataSource', 'VTKDataSource', ([], {'data': 'dataset'}), '(data=dataset)\n', (12297, 12311), False, 'from mayavi.sources.vtk_data_source import VTKDataSource\n'), ((849, 875), 'os.path.splitext', 'os.path.splitext', (['filename'], {}), '(filename)\n', (865, 875), False, 'import os\n'), ((946, 975), 'os.path.splitext', 'os.path.splitext', (['filename[0]'], {}), '(filename[0])\n', (962, 975), False, 'import os\n'), ((1291, 1315), 'sfepy.discrete.fem.meshio.supported_formats.keys', 'supported_formats.keys', ([], {}), '()\n', (1313, 1315), False, 'from sfepy.discrete.fem.meshio import MeshIO, vtk_cell_types, supported_formats\n'), ((2525, 2547), 'os.stat', 'os.stat', (['self.filename'], {}), '(self.filename)\n', (2532, 2547), False, 'import os\n'), ((3041, 3074), 'numpy.searchsorted', 'nm.searchsorted', (['self.steps', 'step'], {}), '(self.steps, step)\n', (3056, 3074), True, 'import numpy as nm\n'), ((3774, 3820), 'dataset_manager.DatasetManager', 'DatasetManager', ([], {'dataset': 'self.source.outputs[0]'}), '(dataset=self.source.outputs[0])\n', (3788, 3820), False, 'from dataset_manager import DatasetManager\n'), ((7079, 7112), 'numpy.concatenate', 'nm.concatenate', (['self.mesh.mat_ids'], {}), '(self.mesh.mat_ids)\n', (7093, 7112), True, 'import numpy as nm\n'), ((7260, 7291), 'dataset_manager.DatasetManager', 'DatasetManager', ([], {'dataset': 'dataset'}), '(dataset=dataset)\n', (7274, 7291), False, 'from dataset_manager import DatasetManager\n'), ((7989, 8022), 'numpy.concatenate', 'nm.concatenate', (['self.mesh.mat_ids'], {}), '(self.mesh.mat_ids)\n', (8003, 8022), True, 'import numpy as nm\n'), ((8445, 8489), 'numpy.zeros', 'nm.zeros', (['(n_nod, 1)'], {'dtype': 'mesh.coors.dtype'}), '((n_nod, 1), dtype=mesh.coors.dtype)\n', (8453, 8489), True, 'import numpy as nm\n'), ((8840, 8877), 'numpy.array', 'nm.array', (['([conn.shape[1]] * n_els[ig])'], {}), '([conn.shape[1]] * n_els[ig])\n', (8848, 8877), True, 'import numpy as nm\n'), ((9105, 9122), 'numpy.cumsum', 'nm.cumsum', (['offset'], {}), '(offset)\n', (9114, 9122), True, 'import numpy as nm\n'), ((2190, 2217), 'pyface.timer.api.Timer', 'Timer', (['(1000)', 'self.poll_file'], {}), '(1000, self.poll_file)\n', (2195, 2217), False, 'from pyface.timer.api import Timer\n'), ((3314, 3347), 'numpy.searchsorted', 'nm.searchsorted', (['self.times', 'time'], {}), '(self.times, time)\n', (3329, 3347), True, 'import numpy as nm\n'), ((9798, 9840), 'numpy.zeros', 'nm.zeros', (['(vd.shape[0], 1)'], {'dtype': 'vd.dtype'}), '((vd.shape[0], 1), dtype=vd.dtype)\n', (9806, 9840), True, 'import numpy as nm\n'), ((10502, 10544), 'numpy.zeros', 'nm.zeros', (['(vd.shape[0], 1)'], {'dtype': 'vd.dtype'}), '((vd.shape[0], 1), dtype=vd.dtype)\n', (10510, 10544), True, 'import numpy as nm\n'), ((11168, 11210), 'numpy.zeros', 'nm.zeros', (['(vd.shape[0], 1)'], {'dtype': 'vd.dtype'}), '((vd.shape[0], 1), dtype=vd.dtype)\n', (11176, 11210), True, 'import numpy as nm\n')]
#!/usr/bin/env python3 # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. import argparse import importlib import json import multiprocessing as mp import os import pathlib import sys import megengine as mge import megengine.distributed as dist from basecore.config import ConfigDict from loguru import logger from basecls.engine import ClsTester from basecls.models import build_model, load_model from basecls.utils import default_logging, registers, set_nccl_env, set_num_threads, setup_logger def make_parser() -> argparse.ArgumentParser: """Build args parser for testing script. Returns: The args parser. """ parser = argparse.ArgumentParser() parser.add_argument("-d", "--dir", type=str, help="testing directory") return parser @logger.catch def worker(args: argparse.Namespace): """Worker function for testing script. Args: args: args for testing script. """ logger.info(f"Init process group for gpu{dist.get_rank()} done") args.dir = os.path.abspath(args.dir) setup_logger(args.dir, "test_all_log.txt", to_loguru=True) logger.info(f"args: {args}") result = dict() for f in pathlib.Path(args.dir).glob("**/*.py"): sys.path.append(os.path.dirname(f)) module_name = os.path.splitext(os.path.basename(f))[0] current_network = importlib.import_module(module_name) cfg = current_network.Cfg() weight_path = f"{os.path.splitext(f)[0]}.pkl" if os.path.isfile(weight_path): cfg.weights = weight_path else: sys.path.pop(-1) continue cfg.set_mode("freeze") if cfg.fastrun: logger.info("Using fastrun mode...") mge.functional.debug_param.set_execution_strategy("PROFILE") tester = build(cfg) acc1, acc5 = tester.test() result[module_name] = dict(acc1=acc1, acc5=acc5) sys.path.pop(-1) logger.info(json.dumps(result, indent=4)) with open("result.json", "w") as f: json.dump(result, f) def build(cfg: ConfigDict): """Build function for testing script. Args: cfg: config for testing. Returns: A tester. """ model = build_model(cfg) load_model(model, cfg.weights) model.eval() default_logging(cfg, model) dataloader = registers.dataloaders.get(cfg.data.name).build(cfg, False) # FIXME: need atomic user_pop, maybe in MegEngine 1.5? # tester = BaseTester(model, dataloader, AccEvaluator()) return ClsTester(cfg, model, dataloader) def main(): """Main function for testing script.""" parser = make_parser() args = parser.parse_args() mp.set_start_method("spawn") set_nccl_env() set_num_threads() if not os.path.exists(args.dir): raise ValueError("Directory does not exist") device_count = mge.device.get_device_count("gpu") if device_count == 0: logger.warning("No GPU was found, testing on CPU") worker(args) elif device_count > 1: mp_worker = dist.launcher(worker) mp_worker(args) else: worker(args) if __name__ == "__main__": main()
[ "megengine.distributed.get_rank", "megengine.device.get_device_count", "megengine.functional.debug_param.set_execution_strategy", "megengine.distributed.launcher" ]
[((659, 684), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (682, 684), False, 'import argparse\n'), ((1017, 1042), 'os.path.abspath', 'os.path.abspath', (['args.dir'], {}), '(args.dir)\n', (1032, 1042), False, 'import os\n'), ((1047, 1105), 'basecls.utils.setup_logger', 'setup_logger', (['args.dir', '"""test_all_log.txt"""'], {'to_loguru': '(True)'}), "(args.dir, 'test_all_log.txt', to_loguru=True)\n", (1059, 1105), False, 'from basecls.utils import default_logging, registers, set_nccl_env, set_num_threads, setup_logger\n'), ((1110, 1138), 'loguru.logger.info', 'logger.info', (['f"""args: {args}"""'], {}), "(f'args: {args}')\n", (1121, 1138), False, 'from loguru import logger\n'), ((2228, 2244), 'basecls.models.build_model', 'build_model', (['cfg'], {}), '(cfg)\n', (2239, 2244), False, 'from basecls.models import build_model, load_model\n'), ((2249, 2279), 'basecls.models.load_model', 'load_model', (['model', 'cfg.weights'], {}), '(model, cfg.weights)\n', (2259, 2279), False, 'from basecls.models import build_model, load_model\n'), ((2302, 2329), 'basecls.utils.default_logging', 'default_logging', (['cfg', 'model'], {}), '(cfg, model)\n', (2317, 2329), False, 'from basecls.utils import default_logging, registers, set_nccl_env, set_num_threads, setup_logger\n'), ((2538, 2571), 'basecls.engine.ClsTester', 'ClsTester', (['cfg', 'model', 'dataloader'], {}), '(cfg, model, dataloader)\n', (2547, 2571), False, 'from basecls.engine import ClsTester\n'), ((2693, 2721), 'multiprocessing.set_start_method', 'mp.set_start_method', (['"""spawn"""'], {}), "('spawn')\n", (2712, 2721), True, 'import multiprocessing as mp\n'), ((2727, 2741), 'basecls.utils.set_nccl_env', 'set_nccl_env', ([], {}), '()\n', (2739, 2741), False, 'from basecls.utils import default_logging, registers, set_nccl_env, set_num_threads, setup_logger\n'), ((2746, 2763), 'basecls.utils.set_num_threads', 'set_num_threads', ([], {}), '()\n', (2761, 2763), False, 'from basecls.utils import default_logging, registers, set_nccl_env, set_num_threads, setup_logger\n'), ((2875, 2909), 'megengine.device.get_device_count', 'mge.device.get_device_count', (['"""gpu"""'], {}), "('gpu')\n", (2902, 2909), True, 'import megengine as mge\n'), ((1347, 1383), 'importlib.import_module', 'importlib.import_module', (['module_name'], {}), '(module_name)\n', (1370, 1383), False, 'import importlib\n'), ((1486, 1513), 'os.path.isfile', 'os.path.isfile', (['weight_path'], {}), '(weight_path)\n', (1500, 1513), False, 'import os\n'), ((1927, 1943), 'sys.path.pop', 'sys.path.pop', (['(-1)'], {}), '(-1)\n', (1939, 1943), False, 'import sys\n'), ((1961, 1989), 'json.dumps', 'json.dumps', (['result'], {'indent': '(4)'}), '(result, indent=4)\n', (1971, 1989), False, 'import json\n'), ((2039, 2059), 'json.dump', 'json.dump', (['result', 'f'], {}), '(result, f)\n', (2048, 2059), False, 'import json\n'), ((2776, 2800), 'os.path.exists', 'os.path.exists', (['args.dir'], {}), '(args.dir)\n', (2790, 2800), False, 'import os\n'), ((2945, 2995), 'loguru.logger.warning', 'logger.warning', (['"""No GPU was found, testing on CPU"""'], {}), "('No GPU was found, testing on CPU')\n", (2959, 2995), False, 'from loguru import logger\n'), ((1173, 1195), 'pathlib.Path', 'pathlib.Path', (['args.dir'], {}), '(args.dir)\n', (1185, 1195), False, 'import pathlib\n'), ((1237, 1255), 'os.path.dirname', 'os.path.dirname', (['f'], {}), '(f)\n', (1252, 1255), False, 'import os\n'), ((1579, 1595), 'sys.path.pop', 'sys.path.pop', (['(-1)'], {}), '(-1)\n', (1591, 1595), False, 'import sys\n'), ((1686, 1722), 'loguru.logger.info', 'logger.info', (['"""Using fastrun mode..."""'], {}), "('Using fastrun mode...')\n", (1697, 1722), False, 'from loguru import logger\n'), ((1735, 1795), 'megengine.functional.debug_param.set_execution_strategy', 'mge.functional.debug_param.set_execution_strategy', (['"""PROFILE"""'], {}), "('PROFILE')\n", (1784, 1795), True, 'import megengine as mge\n'), ((2348, 2388), 'basecls.utils.registers.dataloaders.get', 'registers.dataloaders.get', (['cfg.data.name'], {}), '(cfg.data.name)\n', (2373, 2388), False, 'from basecls.utils import default_logging, registers, set_nccl_env, set_num_threads, setup_logger\n'), ((3064, 3085), 'megengine.distributed.launcher', 'dist.launcher', (['worker'], {}), '(worker)\n', (3077, 3085), True, 'import megengine.distributed as dist\n'), ((978, 993), 'megengine.distributed.get_rank', 'dist.get_rank', ([], {}), '()\n', (991, 993), True, 'import megengine.distributed as dist\n'), ((1297, 1316), 'os.path.basename', 'os.path.basename', (['f'], {}), '(f)\n', (1313, 1316), False, 'import os\n'), ((1446, 1465), 'os.path.splitext', 'os.path.splitext', (['f'], {}), '(f)\n', (1462, 1465), False, 'import os\n')]