code
stringlengths
110
64.5k
apis
list
extract_api
stringlengths
123
69.9k
import os import os.path as osp import bisect import argparse import multiprocessing as mp import numpy as np from tqdm import tqdm import megengine as mge from megengine import distributed as dist from megengine import optimizer as optim import megengine.autodiff as autodiff from megengine import jit import dataset, network from config import config as cfg from misc_utils import ensure_dir import socket import pdb ensure_dir(cfg.output_dir) logger = mge.get_logger(__name__) log_path = osp.join(cfg.output_dir, 'logger.log') mge.set_log_file(log_path, mode='a') def find_free_port(): sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) sock.bind(("", 0)) port = sock.getsockname()[1] sock.close() return port def allreduce_cb(param, grad, group=dist.WORLD): return dist.functional.all_reduce_sum(grad, group) / group.size def train_one_epoch(model, gm, data_iter, opt, max_steps, rank, epoch_id, gpu_num): # @jit.trace(symbolic=False,) def propagate(): with gm: loss_dict = model(model.inputs) total_loss = sum([loss_dict[key].mean() for key in loss_dict.keys()]) gm.backward(total_loss) opt.step().clear_grad() loss_dict['total_loss'] = total_loss return loss_dict for step in range(max_steps): # learing rate if epoch_id == 0 and step < cfg.warm_iters: base_lr = ( cfg.basic_lr * gpu_num * cfg.batch_per_gpu * (cfg.lr_decay_rate ** bisect.bisect_right(cfg.lr_decay_sates, epoch_id) ) ) lr_factor = (step + 1.0) / cfg.warm_iters for param_group in opt.param_groups: param_group['lr'] = (0.33 + 0.67 * lr_factor) * base_lr mini_batch = next(data_iter) im_info = mini_batch["im_info"] image = mini_batch["data"][:, :, :int(im_info[0, 0]), :int(im_info[0, 1])] model.inputs["image"].set_value(image) model.inputs["gt_boxes"].set_value(mini_batch["boxes"]) model.inputs["im_info"].set_value(mini_batch["im_info"]) del mini_batch losses = propagate() print_str = ' ' for loss_name, loss_value in losses.items(): print_str += ', {}: {:.4f}'.format(loss_name, loss_value.numpy()) if rank == 0: if step % cfg.log_dump_interval == 0: logger.info( "epoch-{}, {}/{}, lr: {:.4f}{}.\n{}".format( epoch_id, step, max_steps, opt.param_groups[0]["lr"], print_str, cfg.workspace, ) ) def worker(rank, gpu_num, args): # using sublinear os.environ["MGB_COMP_GRAPH_OPT"] = "enable_sublinear_memory_opt=1;seq_opt.enable_seq_comp_node_opt=0" os.environ["MGB_SUBLINEAR_MEMORY_GENETIC_NR_ITER"] = '10' os.environ['MGB_CUDA_RESERVE_MEMORY'] = '1' # establish the server if is the master dist_port = args.port if rank == 0: dist.Server(port=dist_port) if gpu_num> 1: dist.init_process_group( master_ip="localhost", port=dist_port, world_size=gpu_num, rank=rank, device=rank, ) logger.info("Init process group for gpu%d done", rank) model = network.Network() params = model.parameters(requires_grad=True) model.train() # Autodiff gradient manager gm = autodiff.GradManager().attach( model.parameters(), callbacks=allreduce_cb, ) opt = optim.SGD( params, lr=cfg.basic_lr * gpu_num * cfg.batch_per_gpu, momentum=cfg.momentum, weight_decay=cfg.weight_decay, ) if cfg.pretrain_weight is not None: weights = mge.load(cfg.pretrain_weight) del weights['fc.weight'] del weights['fc.bias'] model.resnet50.load_state_dict(weights) start_epoch = 0 if args.resume_weights is not None: assert osp.exists(args.resume_weights) model_file = args.resume_weights model_dict = mge.load(model_file) start_epoch, weights = model_dict['epoch'] + 1, model_dict['state_dict'] model.load_state_dict(weights, strict=False) logger.info("Prepare dataset") train_loader = dataset.train_dataset(rank) logger.info("Training...") for epoch_id in range(start_epoch, cfg.max_epoch): for param_group in opt.param_groups: param_group["lr"] = ( cfg.basic_lr * gpu_num * cfg.batch_per_gpu * (cfg.lr_decay_rate ** bisect.bisect_right(cfg.lr_decay_sates, epoch_id)) ) max_steps = cfg.nr_images_epoch // (cfg.batch_per_gpu * gpu_num) train_one_epoch(model, gm, train_loader, opt, max_steps, rank, epoch_id, gpu_num) if rank == 0: save_path = osp.join(cfg.model_dir, 'epoch-{}.pkl'.format(epoch_id + 1)) state_dict = model.state_dict() names = [k for k, _ in state_dict.items()] for name in names: if name.startswith('inputs.'): del state_dict[name] mge.save( {"epoch": epoch_id, "state_dict": state_dict}, save_path, ) logger.info("dump weights to %s", save_path) def train(args): # ------------------------ begin training -------------------------- # valid_nr_dev = mge.get_device_count("gpu") gpu_num = min(valid_nr_dev, args.num_gpus) assert gpu_num > 0 logger.info('Device Count: {}'.format(gpu_num)) ensure_dir(cfg.model_dir) if not osp.exists('output'): os.symlink(cfg.output_dir,'output') if gpu_num > 1: args.port =find_free_port() mp.set_start_method("spawn") processes = list() for i in range(gpu_num): process = mp.Process(target=worker, args=(i, gpu_num, args)) process.start() processes.append(process) for p in processes: p.join() else: worker(0, 1, args) def run_train(): parser = argparse.ArgumentParser() parser.add_argument("--num_gpus", "-d", default=-1, type=int, help="total number of gpus for training") parser.add_argument('--resume_weights', '-r', default=None, type=str) parser.add_argument('--progressbar', '-p', action='store_true', default=False) parser.add_argument('--port', '-pt', type=int, default=11123) args = parser.parse_args() train(args) if __name__ == '__main__': run_train()
[ "megengine.set_log_file", "megengine.get_device_count", "megengine.save", "megengine.get_logger", "megengine.optimizer.SGD", "megengine.distributed.functional.all_reduce_sum", "megengine.distributed.init_process_group", "megengine.autodiff.GradManager", "megengine.distributed.Server", "megengine.load" ]
[((420, 446), 'misc_utils.ensure_dir', 'ensure_dir', (['cfg.output_dir'], {}), '(cfg.output_dir)\n', (430, 446), False, 'from misc_utils import ensure_dir\n'), ((456, 480), 'megengine.get_logger', 'mge.get_logger', (['__name__'], {}), '(__name__)\n', (470, 480), True, 'import megengine as mge\n'), ((492, 530), 'os.path.join', 'osp.join', (['cfg.output_dir', '"""logger.log"""'], {}), "(cfg.output_dir, 'logger.log')\n", (500, 530), True, 'import os.path as osp\n'), ((531, 567), 'megengine.set_log_file', 'mge.set_log_file', (['log_path'], {'mode': '"""a"""'}), "(log_path, mode='a')\n", (547, 567), True, 'import megengine as mge\n'), ((603, 652), 'socket.socket', 'socket.socket', (['socket.AF_INET', 'socket.SOCK_STREAM'], {}), '(socket.AF_INET, socket.SOCK_STREAM)\n', (616, 652), False, 'import socket\n'), ((3444, 3461), 'network.Network', 'network.Network', ([], {}), '()\n', (3459, 3461), False, 'import dataset, network\n'), ((3680, 3803), 'megengine.optimizer.SGD', 'optim.SGD', (['params'], {'lr': '(cfg.basic_lr * gpu_num * cfg.batch_per_gpu)', 'momentum': 'cfg.momentum', 'weight_decay': 'cfg.weight_decay'}), '(params, lr=cfg.basic_lr * gpu_num * cfg.batch_per_gpu, momentum=\n cfg.momentum, weight_decay=cfg.weight_decay)\n', (3689, 3803), True, 'from megengine import optimizer as optim\n'), ((4423, 4450), 'dataset.train_dataset', 'dataset.train_dataset', (['rank'], {}), '(rank)\n', (4444, 4450), False, 'import dataset, network\n'), ((5549, 5576), 'megengine.get_device_count', 'mge.get_device_count', (['"""gpu"""'], {}), "('gpu')\n", (5569, 5576), True, 'import megengine as mge\n'), ((5704, 5729), 'misc_utils.ensure_dir', 'ensure_dir', (['cfg.model_dir'], {}), '(cfg.model_dir)\n', (5714, 5729), False, 'from misc_utils import ensure_dir\n'), ((6224, 6249), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (6247, 6249), False, 'import argparse\n'), ((803, 846), 'megengine.distributed.functional.all_reduce_sum', 'dist.functional.all_reduce_sum', (['grad', 'group'], {}), '(grad, group)\n', (833, 846), True, 'from megengine import distributed as dist\n'), ((3134, 3161), 'megengine.distributed.Server', 'dist.Server', ([], {'port': 'dist_port'}), '(port=dist_port)\n', (3145, 3161), True, 'from megengine import distributed as dist\n'), ((3190, 3301), 'megengine.distributed.init_process_group', 'dist.init_process_group', ([], {'master_ip': '"""localhost"""', 'port': 'dist_port', 'world_size': 'gpu_num', 'rank': 'rank', 'device': 'rank'}), "(master_ip='localhost', port=dist_port, world_size=\n gpu_num, rank=rank, device=rank)\n", (3213, 3301), True, 'from megengine import distributed as dist\n'), ((3897, 3926), 'megengine.load', 'mge.load', (['cfg.pretrain_weight'], {}), '(cfg.pretrain_weight)\n', (3905, 3926), True, 'import megengine as mge\n'), ((4115, 4146), 'os.path.exists', 'osp.exists', (['args.resume_weights'], {}), '(args.resume_weights)\n', (4125, 4146), True, 'import os.path as osp\n'), ((4209, 4229), 'megengine.load', 'mge.load', (['model_file'], {}), '(model_file)\n', (4217, 4229), True, 'import megengine as mge\n'), ((5742, 5762), 'os.path.exists', 'osp.exists', (['"""output"""'], {}), "('output')\n", (5752, 5762), True, 'import os.path as osp\n'), ((5772, 5808), 'os.symlink', 'os.symlink', (['cfg.output_dir', '"""output"""'], {}), "(cfg.output_dir, 'output')\n", (5782, 5808), False, 'import os\n'), ((5873, 5901), 'multiprocessing.set_start_method', 'mp.set_start_method', (['"""spawn"""'], {}), "('spawn')\n", (5892, 5901), True, 'import multiprocessing as mp\n'), ((3572, 3594), 'megengine.autodiff.GradManager', 'autodiff.GradManager', ([], {}), '()\n', (3592, 3594), True, 'import megengine.autodiff as autodiff\n'), ((5282, 5348), 'megengine.save', 'mge.save', (["{'epoch': epoch_id, 'state_dict': state_dict}", 'save_path'], {}), "({'epoch': epoch_id, 'state_dict': state_dict}, save_path)\n", (5290, 5348), True, 'import megengine as mge\n'), ((5984, 6034), 'multiprocessing.Process', 'mp.Process', ([], {'target': 'worker', 'args': '(i, gpu_num, args)'}), '(target=worker, args=(i, gpu_num, args))\n', (5994, 6034), True, 'import multiprocessing as mp\n'), ((1531, 1580), 'bisect.bisect_right', 'bisect.bisect_right', (['cfg.lr_decay_sates', 'epoch_id'], {}), '(cfg.lr_decay_sates, epoch_id)\n', (1550, 1580), False, 'import bisect\n'), ((4715, 4764), 'bisect.bisect_right', 'bisect.bisect_right', (['cfg.lr_decay_sates', 'epoch_id'], {}), '(cfg.lr_decay_sates, epoch_id)\n', (4734, 4764), False, 'import bisect\n')]
#!/usr/bin/env python """ Plot logs of variables saved in a text file by sfepy.base.log.Log class. The plot should be almost the same as the plot that would be generated by the Log directly. """ from optparse import OptionParser import matplotlib.pyplot as plt from sfepy.base.log import read_log, plot_log usage = '%prog [options] filename\n' + __doc__.rstrip() def parse_rc(option, opt, value, parser): pars = {} for pair in value.split(','): key, val = pair.split('=') pars[key] = eval(val) setattr(parser.values, option.dest, pars) helps = { 'output_filename' : 'save the figure using the given file name', 'rc' : 'matplotlib resources', 'no_show' : 'do not show the figure', } def main(): parser = OptionParser(usage=usage) parser.add_option('-o', '--output', metavar='filename', action='store', dest='output_filename', default=None, help=helps['output_filename']) parser.add_option('--rc', type='str', metavar='key=val,...', action='callback', dest='rc', callback=parse_rc, default={}, help=helps['rc']) parser.add_option('-n', '--no-show', action='store_true', dest='no_show', default=False, help=helps['no_show']) options, args = parser.parse_args() if len(args) == 1: filename = args[0] else: parser.print_help() return log, info = read_log(filename) plt.rcParams.update(options.rc) plot_log(1, log, info) if options.output_filename: plt.savefig(options.output_filename) if not options.no_show: plt.show() if __name__ == '__main__': main()
[ "sfepy.base.log.plot_log", "sfepy.base.log.read_log" ]
[((763, 788), 'optparse.OptionParser', 'OptionParser', ([], {'usage': 'usage'}), '(usage=usage)\n', (775, 788), False, 'from optparse import OptionParser\n'), ((1488, 1506), 'sfepy.base.log.read_log', 'read_log', (['filename'], {}), '(filename)\n', (1496, 1506), False, 'from sfepy.base.log import read_log, plot_log\n'), ((1512, 1543), 'matplotlib.pyplot.rcParams.update', 'plt.rcParams.update', (['options.rc'], {}), '(options.rc)\n', (1531, 1543), True, 'import matplotlib.pyplot as plt\n'), ((1549, 1571), 'sfepy.base.log.plot_log', 'plot_log', (['(1)', 'log', 'info'], {}), '(1, log, info)\n', (1557, 1571), False, 'from sfepy.base.log import read_log, plot_log\n'), ((1613, 1649), 'matplotlib.pyplot.savefig', 'plt.savefig', (['options.output_filename'], {}), '(options.output_filename)\n', (1624, 1649), True, 'import matplotlib.pyplot as plt\n'), ((1687, 1697), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (1695, 1697), True, 'import matplotlib.pyplot as plt\n')]
from typing import Optional from sqlmodel import Field, SQLModel from fastapi_server.models.user import User class ChatMessage(SQLModel, table=True): id: Optional[int] = Field(default=None, primary_key=True) timestamp: int message: str user_id: int = Field(foreign_key='user.id') user: User
[ "sqlmodel.Field" ]
[((178, 215), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'primary_key': '(True)'}), '(default=None, primary_key=True)\n', (183, 215), False, 'from sqlmodel import Field, SQLModel\n'), ((271, 299), 'sqlmodel.Field', 'Field', ([], {'foreign_key': '"""user.id"""'}), "(foreign_key='user.id')\n", (276, 299), False, 'from sqlmodel import Field, SQLModel\n')]
from fastapi import APIRouter, Depends from ..utils import engine, get_session from sqlmodel import Session, select from sqlalchemy.exc import NoResultFound from ..models.client import Client from ..models.epic import Epic from datetime import datetime router = APIRouter(prefix="/api/clients", tags=["client"]) @router.post("/") async def post_client(*, client: Client, session: Session = Depends(get_session)): """ Post a new client. Parameters ---------- client : Client Client that is to be added to the database. session : Session SQL session that is to be used to add the client. Defaults to creating a dependency on the running SQL model session. """ statement = select(Client).where(Client.name == client.name) try: result = session.exec(statement).one() return False except NoResultFound: session.add(client) session.commit() session.refresh(client) return client @router.get("/") async def read_clients(session: Session = Depends(get_session)): """ Get a list of all clients. Parameters ---------- session : Session SQL session that is to be used to get a list of the clients. Defaults to creating a dependency on the running SQL model session. """ statement = select(Client) results = session.exec(statement).all() return results @router.get("/active") async def read_clients(session: Session = Depends(get_session)): """ Get a list of all active clients. Parameters ---------- session : Session SQL session that is to be used to get a list of all of the active clients. Defaults to creating a dependency on the running SQL model session. """ statement = select(Client).where(Client.is_active == True).order_by(Client.id.asc()) results = session.exec(statement).all() return results @router.get("/{client_id}") async def read_clients( *, client_id: int = None, session: Session = Depends(get_session) ): """ Get a client by client_id. Parameters ---------- client_id : int ID of client that is to be read. session : Session SQL session that is to be used to read a client. Defaults to creating a dependency on the running SQL model session. """ statement = select(Client).where(Client.id == client_id) try: result = session.exec(statement).one() return result except NoResultFound: msg = f"""There is no client with id = {client_id}""" return msg @router.get("/names/{name}") async def read_clients_by_name( *, name: str = None, session: Session = Depends(get_session) ): """ Get a client by client_name. Parameters ---------- name : str Name of client to be read. session : Session SQL session that is to be used to read a client. Defaults to creating a dependency on the running SQL model session. """ statement = select(Client).where(Client.name == name) result = session.exec(statement).one() return result @router.get("/{client_id}/epics/") async def read_clients_epics( client_id: int = None, session: Session = Depends(get_session) ): """ Get epics from a client_id. Parameters ---------- client_id : int ID of client that is to be used to pull epics from. session : Session SQL session that is to be used to pull the epics. Defaults to creating a dependency on the running SQL model session. """ statement = ( select(Client.id, Client.name, Epic.name) .select_from(Client) .join(Epic) .where(Client.id == client_id) ) results = session.exec(statement).all() return results @router.put("/{client_id}/deactivate-client") async def update_clients( *, client_id: int, session: Session = Depends(get_session), ): """Deactivate a client""" statement = select(Client).where(Client.id == client_id) client_to_update = session.exec(statement).one() client_to_update.active = False statement2 = select(Epic).join(Client) client_to_update = session.exec(statement).one() client_to_update.active = False session.add(client_to_update) session.commit() session.refresh(client_to_update) return client_to_update @router.put("/{client_id}/activate") async def activate_clients( *, client_id: int, session: Session = Depends(get_session), ): """ Activate a client using its id as a key. Parameters ---------- client_id : int ID of the client to be activated. session : Session SQL session that is to be used to activate a client. Defaults to creating a dependency on the running SQL model session. """ statement = select(Client).where(Client.id == client_id) client_to_update = session.exec(statement).one() client_to_update.is_active = True client_to_update.updated_at = datetime.now() session.add(client_to_update) session.commit() session.refresh(client_to_update) return client_to_update @router.put("/{client_id}/deactivate") async def deactivate_clients( *, client_id: int, session: Session = Depends(get_session), ): """ Deactivate a client using its id as a key. Parameters ---------- client_id : int ID of the client to be deactivated. session : Session SQL session that is to be used to deactivate a client. Defaults to creating a dependency on the running SQL model session. """ statement = select(Client).where(Client.id == client_id) client_to_update = session.exec(statement).one() client_to_update.is_active = False client_to_update.updated_at = datetime.now() session.add(client_to_update) session.commit() session.refresh(client_to_update) return client_to_update @router.put("/{client_id}/deactivate-epics") async def update_clients_and_epics( *, client_id: int, session: Session = Depends(get_session), ): """Deactivate a client and its epics""" """ Deactivate a client and its epics using the client's ID as a key. Parameters ---------- client_id : int ID of the client to deactivate. session : Session SQL session that is to be used to deactivate the client and its respective epics. Defaults to creating a dependency on the running SQL model session. """ statement1 = select(Client).where(Client.id == client_id) client_to_update = session.exec(statement1).one() client_to_update.is_active = False client_to_update.updated_at = datetime.now() session.add(client_to_update) statement2 = select(Epic).where(Epic.client_id == client_id) epics_to_update = session.exec(statement2).all() for epic in epics_to_update: epic.is_active = False session.add(epic) session.commit() return True @router.put("/{client_id}") async def update_clients( *, client_id: int = None, new_client_name: str = None, is_active: bool = None, session: Session = Depends(get_session), ): """ Update a client from a client_id. Parameters ---------- client_id : int ID of the client to update. new_client_name : str New name of the client. session : Session SQL session that is to be used to update a client. Defaults to creating a dependency on the running SQL model session. """ statement = select(Client).where(Client.id == client_id) client_to_update = session.exec(statement).one() if new_client_name != None: client_to_update.name = new_client_name if is_active != None: client_to_update.is_active = is_active client_to_update.updated_at = datetime.now() session.add(client_to_update) session.commit() session.refresh(client_to_update) return client_to_update
[ "sqlmodel.select" ]
[((263, 312), 'fastapi.APIRouter', 'APIRouter', ([], {'prefix': '"""/api/clients"""', 'tags': "['client']"}), "(prefix='/api/clients', tags=['client'])\n", (272, 312), False, 'from fastapi import APIRouter, Depends\n'), ((393, 413), 'fastapi.Depends', 'Depends', (['get_session'], {}), '(get_session)\n', (400, 413), False, 'from fastapi import APIRouter, Depends\n'), ((1050, 1070), 'fastapi.Depends', 'Depends', (['get_session'], {}), '(get_session)\n', (1057, 1070), False, 'from fastapi import APIRouter, Depends\n'), ((1334, 1348), 'sqlmodel.select', 'select', (['Client'], {}), '(Client)\n', (1340, 1348), False, 'from sqlmodel import Session, select\n'), ((1479, 1499), 'fastapi.Depends', 'Depends', (['get_session'], {}), '(get_session)\n', (1486, 1499), False, 'from fastapi import APIRouter, Depends\n'), ((2023, 2043), 'fastapi.Depends', 'Depends', (['get_session'], {}), '(get_session)\n', (2030, 2043), False, 'from fastapi import APIRouter, Depends\n'), ((2694, 2714), 'fastapi.Depends', 'Depends', (['get_session'], {}), '(get_session)\n', (2701, 2714), False, 'from fastapi import APIRouter, Depends\n'), ((3235, 3255), 'fastapi.Depends', 'Depends', (['get_session'], {}), '(get_session)\n', (3242, 3255), False, 'from fastapi import APIRouter, Depends\n'), ((3923, 3943), 'fastapi.Depends', 'Depends', (['get_session'], {}), '(get_session)\n', (3930, 3943), False, 'from fastapi import APIRouter, Depends\n'), ((4499, 4519), 'fastapi.Depends', 'Depends', (['get_session'], {}), '(get_session)\n', (4506, 4519), False, 'from fastapi import APIRouter, Depends\n'), ((5023, 5037), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (5035, 5037), False, 'from datetime import datetime\n'), ((5280, 5300), 'fastapi.Depends', 'Depends', (['get_session'], {}), '(get_session)\n', (5287, 5300), False, 'from fastapi import APIRouter, Depends\n'), ((5811, 5825), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (5823, 5825), False, 'from datetime import datetime\n'), ((6081, 6101), 'fastapi.Depends', 'Depends', (['get_session'], {}), '(get_session)\n', (6088, 6101), False, 'from fastapi import APIRouter, Depends\n'), ((6704, 6718), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (6716, 6718), False, 'from datetime import datetime\n'), ((7172, 7192), 'fastapi.Depends', 'Depends', (['get_session'], {}), '(get_session)\n', (7179, 7192), False, 'from fastapi import APIRouter, Depends\n'), ((7855, 7869), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (7867, 7869), False, 'from datetime import datetime\n'), ((730, 744), 'sqlmodel.select', 'select', (['Client'], {}), '(Client)\n', (736, 744), False, 'from sqlmodel import Session, select\n'), ((2357, 2371), 'sqlmodel.select', 'select', (['Client'], {}), '(Client)\n', (2363, 2371), False, 'from sqlmodel import Session, select\n'), ((3019, 3033), 'sqlmodel.select', 'select', (['Client'], {}), '(Client)\n', (3025, 3033), False, 'from sqlmodel import Session, select\n'), ((3994, 4008), 'sqlmodel.select', 'select', (['Client'], {}), '(Client)\n', (4000, 4008), False, 'from sqlmodel import Session, select\n'), ((4145, 4157), 'sqlmodel.select', 'select', (['Epic'], {}), '(Epic)\n', (4151, 4157), False, 'from sqlmodel import Session, select\n'), ((4853, 4867), 'sqlmodel.select', 'select', (['Client'], {}), '(Client)\n', (4859, 4867), False, 'from sqlmodel import Session, select\n'), ((5640, 5654), 'sqlmodel.select', 'select', (['Client'], {}), '(Client)\n', (5646, 5654), False, 'from sqlmodel import Session, select\n'), ((6532, 6546), 'sqlmodel.select', 'select', (['Client'], {}), '(Client)\n', (6538, 6546), False, 'from sqlmodel import Session, select\n'), ((6770, 6782), 'sqlmodel.select', 'select', (['Epic'], {}), '(Epic)\n', (6776, 6782), False, 'from sqlmodel import Session, select\n'), ((7570, 7584), 'sqlmodel.select', 'select', (['Client'], {}), '(Client)\n', (7576, 7584), False, 'from sqlmodel import Session, select\n'), ((1784, 1798), 'sqlmodel.select', 'select', (['Client'], {}), '(Client)\n', (1790, 1798), False, 'from sqlmodel import Session, select\n'), ((3600, 3641), 'sqlmodel.select', 'select', (['Client.id', 'Client.name', 'Epic.name'], {}), '(Client.id, Client.name, Epic.name)\n', (3606, 3641), False, 'from sqlmodel import Session, select\n')]
"""add messages Revision ID: d2388da5bbfd Revises: <PASSWORD> Create Date: 2022-05-04 21:49:29.234380+00:00 """ import sqlalchemy as sa import sqlmodel from alembic import op from common.database.tables.types import TimeStamp # revision identifiers, used by Alembic. revision = "d2388da5bbfd" down_revision = "3<PASSWORD>" branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.create_table( "messages", sa.Column( "created_at", TimeStamp(), server_default=sa.func.now(), nullable=False, ), sa.Column( "updated_at", TimeStamp(), server_default=sa.func.now(), nullable=False, ), sa.Column("sent", sa.Boolean(), nullable=False), sa.Column("subject", sqlmodel.sql.sqltypes.AutoString(), nullable=False), sa.Column("content", sqlmodel.sql.sqltypes.AutoString(), nullable=False), sa.Column("id", sa.Integer(), nullable=False), sa.PrimaryKeyConstraint("id"), ) op.create_table( "recipients", sa.Column("message_id", sa.Integer(), nullable=True), sa.Column( "group", sa.Enum( "EVERYONE", "APPLICATION_COMPLETE", "APPLICATION_INCOMPLETE", "STATUS_ACCEPTED", "STATUS_DENIED", "STATUS_PENDING", name="group", ), nullable=False, ), sa.Column("id", sa.Integer(), nullable=False), sa.ForeignKeyConstraint(["message_id"], ["messages.id"], ondelete="CASCADE"), sa.PrimaryKeyConstraint("id"), ) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_table("recipients") op.drop_table("messages") # ### end Alembic commands ###
[ "sqlmodel.sql.sqltypes.AutoString" ]
[((1885, 1912), 'alembic.op.drop_table', 'op.drop_table', (['"""recipients"""'], {}), "('recipients')\n", (1898, 1912), False, 'from alembic import op\n'), ((1917, 1942), 'alembic.op.drop_table', 'op.drop_table', (['"""messages"""'], {}), "('messages')\n", (1930, 1942), False, 'from alembic import op\n'), ((1076, 1105), 'sqlalchemy.PrimaryKeyConstraint', 'sa.PrimaryKeyConstraint', (['"""id"""'], {}), "('id')\n", (1099, 1105), True, 'import sqlalchemy as sa\n'), ((1638, 1714), 'sqlalchemy.ForeignKeyConstraint', 'sa.ForeignKeyConstraint', (["['message_id']", "['messages.id']"], {'ondelete': '"""CASCADE"""'}), "(['message_id'], ['messages.id'], ondelete='CASCADE')\n", (1661, 1714), True, 'import sqlalchemy as sa\n'), ((1724, 1753), 'sqlalchemy.PrimaryKeyConstraint', 'sa.PrimaryKeyConstraint', (['"""id"""'], {}), "('id')\n", (1747, 1753), True, 'import sqlalchemy as sa\n'), ((547, 558), 'common.database.tables.types.TimeStamp', 'TimeStamp', ([], {}), '()\n', (556, 558), False, 'from common.database.tables.types import TimeStamp\n'), ((698, 709), 'common.database.tables.types.TimeStamp', 'TimeStamp', ([], {}), '()\n', (707, 709), False, 'from common.database.tables.types import TimeStamp\n'), ((818, 830), 'sqlalchemy.Boolean', 'sa.Boolean', ([], {}), '()\n', (828, 830), True, 'import sqlalchemy as sa\n'), ((878, 912), 'sqlmodel.sql.sqltypes.AutoString', 'sqlmodel.sql.sqltypes.AutoString', ([], {}), '()\n', (910, 912), False, 'import sqlmodel\n'), ((960, 994), 'sqlmodel.sql.sqltypes.AutoString', 'sqlmodel.sql.sqltypes.AutoString', ([], {}), '()\n', (992, 994), False, 'import sqlmodel\n'), ((1037, 1049), 'sqlalchemy.Integer', 'sa.Integer', ([], {}), '()\n', (1047, 1049), True, 'import sqlalchemy as sa\n'), ((1188, 1200), 'sqlalchemy.Integer', 'sa.Integer', ([], {}), '()\n', (1198, 1200), True, 'import sqlalchemy as sa\n'), ((1270, 1411), 'sqlalchemy.Enum', 'sa.Enum', (['"""EVERYONE"""', '"""APPLICATION_COMPLETE"""', '"""APPLICATION_INCOMPLETE"""', '"""STATUS_ACCEPTED"""', '"""STATUS_DENIED"""', '"""STATUS_PENDING"""'], {'name': '"""group"""'}), "('EVERYONE', 'APPLICATION_COMPLETE', 'APPLICATION_INCOMPLETE',\n 'STATUS_ACCEPTED', 'STATUS_DENIED', 'STATUS_PENDING', name='group')\n", (1277, 1411), True, 'import sqlalchemy as sa\n'), ((1599, 1611), 'sqlalchemy.Integer', 'sa.Integer', ([], {}), '()\n', (1609, 1611), True, 'import sqlalchemy as sa\n'), ((587, 600), 'sqlalchemy.func.now', 'sa.func.now', ([], {}), '()\n', (598, 600), True, 'import sqlalchemy as sa\n'), ((738, 751), 'sqlalchemy.func.now', 'sa.func.now', ([], {}), '()\n', (749, 751), True, 'import sqlalchemy as sa\n')]
# Vibroacoustics # # E.Rohan, V.Lukeš # Homogenization of the vibro–acoustic transmission on periodically # perforated elastic plates with arrays of resonators. # https://arxiv.org/abs/2104.01367 (arXiv:2104.01367v1) import os.path as op import numpy as nm from collections.abc import Iterable from scipy.io import savemat, loadmat from sfepy.base.base import output, debug, Struct from sfepy import data_dir from sfepy.discrete.fem.periodic import match_y_plane, match_x_plane from acoustics_macro_utils import eval_phi, post_process,\ generate_plate_mesh, get_region_entities from sfepy.discrete.projections import project_by_component from sfepy.discrete.fem import Mesh, FEDomain wdir = op.dirname(__file__) def post_process_macro(out, pb, state, extend=False): pbvars = pb.get_variables() n1, ng1, c1, cg1, ds1, nmap1 = get_region_entities(pbvars['p1']) noff = n1.shape[0] n2, ng2, c2, cg2, _, nmap2 = get_region_entities(pbvars['p2'], noff=noff) nend = nm.max(c2) + 1 nmap = nm.hstack([nmap1, nmap2]) n1[:, 2] += pb.conf.eps0 * 0.5 n2[:, 2] -= pb.conf.eps0 * 0.5 mesh2 = Mesh.from_data('m2', nm.vstack([n1, n2]), nm.hstack([ng1, ng2]), [nm.vstack([c1, c2])], [nm.hstack([cg1, cg2])], [ds1]) oname = op.join(pb.output_dir, pb.ofn_trunk + '_p.vtk') out2 = {} for ir in ['real.', 'imag.']: pdata = nm.zeros((nmap.shape[0], 1), dtype=nm.float64) for v, idxs in [('p1', slice(0, noff)), ('p2', slice(noff, nend))]: pdata[idxs, :] = out[ir + v].data out2[ir + 'p'] = Struct(name='p', mode='vertex', data=pdata) mesh2.write(oname, out=out2) post_process(out, pb, state, save_var0='dp0') for k1 in ['g01', 'imag.g01', 'real.g01']: o = out[k1] k0 = k1.replace('01', '0') k2 = k1.replace('01', '02') out[k0] = Struct(name=o.name, mode=o.mode, dofs=o.dofs, var_name=o.var_name, data=(out[k1].data - out[k2].data) / pb.conf.eps0) for k in ['', 'imag.', 'real.']: o = out[k + 'dp0'] k0 = k + 'jP1' out[k0] = Struct(name=o.name, mode=o.mode, dofs=o.dofs, var_name=o.var_name, data=o.data / pb.conf.eps0) o = out[k + 'g01'] o2 = out[k + 'g02'] out[k + 'G1'] = Struct(name=o.name, mode=o.mode, dofs=o.dofs, var_name=o.var_name, data=(o.data - o2.data) / pb.conf.eps0) return out def get_mat(coors, mode, pb): if mode == 'qp': conf = pb.conf c = conf.sound_speed w = conf.wave_num * c nqp = coors.shape[0] aux = nm.ones((nqp, 1, 1), dtype=nm.float64) out = { 'c2': aux * c**2, 'w2': aux * w**2, 'wc': aux * w * c, 'wc2': aux * w * c**2, } print('### material: wave number = ', conf.wave_num) return out def param_w(pb): out = [] tl_out = [] conf = pb.conf ofn_trunk = pb.ofn_trunk for k in conf.wave_nums: print('### wave number: ', k) conf.wave_num = k pb.ofn_trunk = ofn_trunk + '_w%d' % (k * pb.conf.sound_speed) pb.conf.ofn_trunk = pb.ofn_trunk yield pb, out state = out[-1][1].get_parts() tl_out.append(eval_phi(pb, state['p1'], state['p2'], conf.p_inc)) print('>>> TL: ', tl_out[-1]) yield None savemat(op.join(wdir, 'results', 'tloss.mat'), {'k': conf.wave_nums, 'tl': tl_out}) ############################################################ def define(filename_mesh=None, sound_speed=None, rho0=None, freqs=None, p_inc=None, eps0=None, coefs_filename=None, coefs_filename_plate=None): # generate mid mesh filename_mesh_plate = generate_plate_mesh(op.join(wdir, filename_mesh)) wave_num = nm.array(freqs) / sound_speed wave_nums, wave_num = wave_num, wave_num[0] regions = { 'Omega1': 'cells of group 1', 'Omega2': 'cells of group 2', 'GammaIn': ('vertices of group 1', 'facet'), 'GammaOut': ('vertices of group 2', 'facet'), 'Gamma_aux': ('r.Omega1 *v r.Omega2', 'facet'), 'Gamma0_1': ('copy r.Gamma_aux', 'facet', 'Omega1'), 'Gamma0_2': ('copy r.Gamma_aux', 'facet', 'Omega2'), 'Recovery': ('copy r.Gamma0_1', 'facet'), } fields = { 'pressure1': ('complex', 'scalar', 'Omega1', 1), 'pressure2': ('complex', 'scalar', 'Omega2', 1), 'tvelocity0': ('complex', 'scalar', 'Gamma0_1', 1), 'pressure0': ('complex', 'scalar', 'Gamma0_1', 1), 'vfield1': ('complex', 'vector', 'Omega1', 1), 'vfield2': ('complex', 'vector', 'Omega2', 1), } variables = { 'p1': ('unknown field', 'pressure1', 0), 'q1': ('test field', 'pressure1', 'p1'), 'p2': ('unknown field', 'pressure2', 1), 'q2': ('test field', 'pressure2', 'p2'), 'sp0': ('unknown field', 'pressure0', 2), 'sq0': ('test field', 'pressure0', 'sp0'), 'dp0': ('unknown field', 'pressure0', 3), 'dq0': ('test field', 'pressure0', 'dp0'), 'g01': ('unknown field', 'tvelocity0', 4), 'f01': ('test field', 'tvelocity0', 'g01'), 'g02': ('unknown field', 'tvelocity0', 5), 'f02': ('test field', 'tvelocity0', 'g02'), 'P1': ('parameter field', 'pressure1', '(set-to-None)'), 'P2': ('parameter field', 'pressure2', '(set-to-None)'), 's1': ('parameter field', 'pressure1', '(set-to-None)'), 's2': ('parameter field', 'pressure2', '(set-to-None)'), 'v1': ('parameter field', 'vfield1', '(set-to-None)'), 'v2': ('parameter field', 'vfield2', '(set-to-None)'), } integrals = { 'i': 2, } ebcs = {} functions = { 'get_mat': (lambda ts, coors, mode=None, problem=None, **kwargs: get_mat(coors, mode, problem),), 'match_y_plane': (match_y_plane,), } materials = { 'ac': 'get_mat', } regions.update({ 'Near': ('vertices of group 3', 'facet'), 'Far': ('vertices of group 4', 'facet'), }) epbcs = { 'per_p1': (['Near', 'Far'], {'p1.0': 'p1.0'}, 'match_y_plane'), 'per_p2': (['Near', 'Far'], {'p2.0': 'p2.0'}, 'match_y_plane'), } options = { 'output_dir': op.join(wdir, 'results'), 'file_per_var': True, 'post_process_hook': 'post_process_macro', 'parametric_hook': 'param_w', } # p1 = P^+, p2 = P^- equations = { 'eq_p1': """ dw_laplace.i.Omega1(ac.c2, q1, p1) - dw_volume_dot.i.Omega1(ac.w2, q1, p1) + %s * dw_surface_dot.i.GammaOut(ac.wc, q1, p1) - %s * dw_surface_dot.i.Gamma0_1(ac.wc2, q1, g01) = 0""" % (1j, 1j), 'eq_p2': """ dw_laplace.i.Omega2(ac.c2, q2, p2) - dw_volume_dot.i.Omega2(ac.w2, q2, p2) + %s * dw_surface_dot.i.GammaIn(ac.wc, q2, p2) + %s * dw_surface_dot.i.Gamma0_2(ac.wc2, q2, tr(g02)) = %s * dw_surface_integrate.i.GammaIn(ac.wc, q2)""" % (1j, 1j, 2j * p_inc), 'eq_dp': """ dw_surface_dot.i.Gamma0_1(dq0, p1) - dw_surface_dot.i.Gamma0_1(dq0, tr(p2)) - dw_surface_dot.i.Gamma0_1(dq0, dp0) = 0""", 'eq_sp': """ dw_surface_dot.i.Gamma0_1(sq0, p1) + dw_surface_dot.i.Gamma0_1(sq0, tr(p2)) - dw_surface_dot.i.Gamma0_1(sq0, sp0) = 0""", } solvers = { 'nls': ('nls.newton', {'i_max': 1, 'eps_a': 1e-6, 'eps_r': 1e-6, 'problem': 'nonlinear', }) } mid_file = op.join(wdir, 'acoustics_macro_plate.py') solvers.update({ 'ls': ('ls.cm_pb', {'others': [mid_file], 'coupling_variables': ['g01', 'g02', 'dp0', 'sp0'], 'needs_problem_instance': True, }) }) return locals()
[ "sfepy.base.base.Struct" ]
[((697, 717), 'os.path.dirname', 'op.dirname', (['__file__'], {}), '(__file__)\n', (707, 717), True, 'import os.path as op\n'), ((842, 875), 'acoustics_macro_utils.get_region_entities', 'get_region_entities', (["pbvars['p1']"], {}), "(pbvars['p1'])\n", (861, 875), False, 'from acoustics_macro_utils import eval_phi, post_process, generate_plate_mesh, get_region_entities\n'), ((932, 976), 'acoustics_macro_utils.get_region_entities', 'get_region_entities', (["pbvars['p2']"], {'noff': 'noff'}), "(pbvars['p2'], noff=noff)\n", (951, 976), False, 'from acoustics_macro_utils import eval_phi, post_process, generate_plate_mesh, get_region_entities\n'), ((1014, 1039), 'numpy.hstack', 'nm.hstack', (['[nmap1, nmap2]'], {}), '([nmap1, nmap2])\n', (1023, 1039), True, 'import numpy as nm\n'), ((1310, 1357), 'os.path.join', 'op.join', (['pb.output_dir', "(pb.ofn_trunk + '_p.vtk')"], {}), "(pb.output_dir, pb.ofn_trunk + '_p.vtk')\n", (1317, 1357), True, 'import os.path as op\n'), ((1701, 1746), 'acoustics_macro_utils.post_process', 'post_process', (['out', 'pb', 'state'], {'save_var0': '"""dp0"""'}), "(out, pb, state, save_var0='dp0')\n", (1713, 1746), False, 'from acoustics_macro_utils import eval_phi, post_process, generate_plate_mesh, get_region_entities\n'), ((8070, 8111), 'os.path.join', 'op.join', (['wdir', '"""acoustics_macro_plate.py"""'], {}), "(wdir, 'acoustics_macro_plate.py')\n", (8077, 8111), True, 'import os.path as op\n'), ((988, 998), 'numpy.max', 'nm.max', (['c2'], {}), '(c2)\n', (994, 998), True, 'import numpy as nm\n'), ((1144, 1163), 'numpy.vstack', 'nm.vstack', (['[n1, n2]'], {}), '([n1, n2])\n', (1153, 1163), True, 'import numpy as nm\n'), ((1165, 1186), 'numpy.hstack', 'nm.hstack', (['[ng1, ng2]'], {}), '([ng1, ng2])\n', (1174, 1186), True, 'import numpy as nm\n'), ((1423, 1469), 'numpy.zeros', 'nm.zeros', (['(nmap.shape[0], 1)'], {'dtype': 'nm.float64'}), '((nmap.shape[0], 1), dtype=nm.float64)\n', (1431, 1469), True, 'import numpy as nm\n'), ((1618, 1661), 'sfepy.base.base.Struct', 'Struct', ([], {'name': '"""p"""', 'mode': '"""vertex"""', 'data': 'pdata'}), "(name='p', mode='vertex', data=pdata)\n", (1624, 1661), False, 'from sfepy.base.base import output, debug, Struct\n'), ((1904, 2026), 'sfepy.base.base.Struct', 'Struct', ([], {'name': 'o.name', 'mode': 'o.mode', 'dofs': 'o.dofs', 'var_name': 'o.var_name', 'data': '((out[k1].data - out[k2].data) / pb.conf.eps0)'}), '(name=o.name, mode=o.mode, dofs=o.dofs, var_name=o.var_name, data=(\n out[k1].data - out[k2].data) / pb.conf.eps0)\n', (1910, 2026), False, 'from sfepy.base.base import output, debug, Struct\n'), ((2228, 2327), 'sfepy.base.base.Struct', 'Struct', ([], {'name': 'o.name', 'mode': 'o.mode', 'dofs': 'o.dofs', 'var_name': 'o.var_name', 'data': '(o.data / pb.conf.eps0)'}), '(name=o.name, mode=o.mode, dofs=o.dofs, var_name=o.var_name, data=o.\n data / pb.conf.eps0)\n', (2234, 2327), False, 'from sfepy.base.base import output, debug, Struct\n'), ((2503, 2614), 'sfepy.base.base.Struct', 'Struct', ([], {'name': 'o.name', 'mode': 'o.mode', 'dofs': 'o.dofs', 'var_name': 'o.var_name', 'data': '((o.data - o2.data) / pb.conf.eps0)'}), '(name=o.name, mode=o.mode, dofs=o.dofs, var_name=o.var_name, data=(o.\n data - o2.data) / pb.conf.eps0)\n', (2509, 2614), False, 'from sfepy.base.base import output, debug, Struct\n'), ((2928, 2966), 'numpy.ones', 'nm.ones', (['(nqp, 1, 1)'], {'dtype': 'nm.float64'}), '((nqp, 1, 1), dtype=nm.float64)\n', (2935, 2966), True, 'import numpy as nm\n'), ((3711, 3748), 'os.path.join', 'op.join', (['wdir', '"""results"""', '"""tloss.mat"""'], {}), "(wdir, 'results', 'tloss.mat')\n", (3718, 3748), True, 'import os.path as op\n'), ((4087, 4115), 'os.path.join', 'op.join', (['wdir', 'filename_mesh'], {}), '(wdir, filename_mesh)\n', (4094, 4115), True, 'import os.path as op\n'), ((4132, 4147), 'numpy.array', 'nm.array', (['freqs'], {}), '(freqs)\n', (4140, 4147), True, 'import numpy as nm\n'), ((6659, 6683), 'os.path.join', 'op.join', (['wdir', '"""results"""'], {}), "(wdir, 'results')\n", (6666, 6683), True, 'import os.path as op\n'), ((1216, 1235), 'numpy.vstack', 'nm.vstack', (['[c1, c2]'], {}), '([c1, c2])\n', (1225, 1235), True, 'import numpy as nm\n'), ((1239, 1260), 'numpy.hstack', 'nm.hstack', (['[cg1, cg2]'], {}), '([cg1, cg2])\n', (1248, 1260), True, 'import numpy as nm\n'), ((3588, 3638), 'acoustics_macro_utils.eval_phi', 'eval_phi', (['pb', "state['p1']", "state['p2']", 'conf.p_inc'], {}), "(pb, state['p1'], state['p2'], conf.p_inc)\n", (3596, 3638), False, 'from acoustics_macro_utils import eval_phi, post_process, generate_plate_mesh, get_region_entities\n')]
import numpy as np import pytest import megengine.functional as F from megengine import tensor from megengine.test import assertTensorClose def test_onehot_low_dimension(): inp = tensor(np.arange(1, 4, dtype=np.int32)) out = F.one_hot(inp) assertTensorClose( out.numpy(), np.eye(4, dtype=np.int32)[np.arange(1, 4, dtype=np.int32)] ) def test_onehot_high_dimension(): arr = np.array( [[3, 2, 4, 4, 2, 4, 0, 4, 4, 1], [4, 1, 1, 3, 2, 2, 4, 2, 4, 3]], dtype=np.int32 ) inp = tensor(arr) out = F.one_hot(inp, 10) assertTensorClose(out.numpy(), np.eye(10, dtype=np.int32)[arr])
[ "megengine.functional.one_hot", "megengine.tensor" ]
[((236, 250), 'megengine.functional.one_hot', 'F.one_hot', (['inp'], {}), '(inp)\n', (245, 250), True, 'import megengine.functional as F\n'), ((407, 501), 'numpy.array', 'np.array', (['[[3, 2, 4, 4, 2, 4, 0, 4, 4, 1], [4, 1, 1, 3, 2, 2, 4, 2, 4, 3]]'], {'dtype': 'np.int32'}), '([[3, 2, 4, 4, 2, 4, 0, 4, 4, 1], [4, 1, 1, 3, 2, 2, 4, 2, 4, 3]],\n dtype=np.int32)\n', (415, 501), True, 'import numpy as np\n'), ((523, 534), 'megengine.tensor', 'tensor', (['arr'], {}), '(arr)\n', (529, 534), False, 'from megengine import tensor\n'), ((545, 563), 'megengine.functional.one_hot', 'F.one_hot', (['inp', '(10)'], {}), '(inp, 10)\n', (554, 563), True, 'import megengine.functional as F\n'), ((193, 224), 'numpy.arange', 'np.arange', (['(1)', '(4)'], {'dtype': 'np.int32'}), '(1, 4, dtype=np.int32)\n', (202, 224), True, 'import numpy as np\n'), ((296, 321), 'numpy.eye', 'np.eye', (['(4)'], {'dtype': 'np.int32'}), '(4, dtype=np.int32)\n', (302, 321), True, 'import numpy as np\n'), ((322, 353), 'numpy.arange', 'np.arange', (['(1)', '(4)'], {'dtype': 'np.int32'}), '(1, 4, dtype=np.int32)\n', (331, 353), True, 'import numpy as np\n'), ((600, 626), 'numpy.eye', 'np.eye', (['(10)'], {'dtype': 'np.int32'}), '(10, dtype=np.int32)\n', (606, 626), True, 'import numpy as np\n')]
from sqlmodel import SQLModel, create_engine sqlite_file_name = "database.db" sqlite_url = f"sqlite:///{sqlite_file_name}" engine = create_engine(sqlite_url) def create_db_and_tables(): SQLModel.metadata.create_all(engine)
[ "sqlmodel.create_engine", "sqlmodel.SQLModel.metadata.create_all" ]
[((134, 159), 'sqlmodel.create_engine', 'create_engine', (['sqlite_url'], {}), '(sqlite_url)\n', (147, 159), False, 'from sqlmodel import SQLModel, create_engine\n'), ((194, 230), 'sqlmodel.SQLModel.metadata.create_all', 'SQLModel.metadata.create_all', (['engine'], {}), '(engine)\n', (222, 230), False, 'from sqlmodel import SQLModel, create_engine\n')]
import math import numpy as np import megengine as mge import megengine.functional as F import megengine.module as M def bias_act(x, b=None, dim=1, act='linear', alpha=None, gain=None, clamp=None): assert clamp is None or clamp >= 0 def_gain = 1.0 if act in ['relu', 'lrelu', 'swish']: # 除了这些激活函数的def_gain = np.sqrt(2),其余激活函数的def_gain = 1.0 def_gain = np.sqrt(2) def_alpha = 0.0 if act in ['lrelu']: # 除了这些激活函数的def_alpha = 0.2,其余激活函数的def_alpha = 0.0 def_alpha = 0.2 alpha = float(alpha if alpha is not None else def_alpha) gain = float(gain if gain is not None else def_gain) clamp = float(clamp if clamp is not None else -1) # 加上偏移 if b is not None: new_shape = [-1 if i == dim else 1 for i in range(x.ndim)] b_ = F.reshape(b, new_shape) x = x + b_ x_add_b = x # 经过激活函数 alpha = float(alpha) # 只有leaky_relu需要 if act == 'linear': pass elif act == 'relu': x = F.relu(x) elif act == 'lrelu': x = F.leaky_relu(x, alpha) elif act == 'tanh': x = F.tanh(x) elif act == 'sigmoid': x = F.sigmoid(x) elif act == 'elu': x = F.elu(x) elif act == 'selu': x = F.selu(x) elif act == 'softplus': x = F.softplus(x) elif act == 'swish': x = F.sigmoid(x) * x else: raise NotImplementedError("activation \'{}\' is not implemented.".format(act)) act_x = x # 乘以缩放因子 gain = float(gain) if gain != 1: x = x * gain gain_x = x # 限制范围 if clamp >= 0: x = F.clip(x, -clamp, clamp) clamp_x = x return clamp_x class FullyConnectedLayer(M.Module): def __init__(self, in_features, # Number of input features. out_features, # Number of output features. bias = True, # Apply additive bias before the activation function? activation = 'linear', # Activation function: 'relu', 'lrelu', etc. lr_multiplier = 1, # Learning rate multiplier. bias_init = 0, # Initial value for the additive bias. ): super().__init__() self.activation = activation self.weight = mge.Parameter(mge.tensor(np.random.randn(out_features, in_features).astype(np.float32)) / lr_multiplier) self.bias = mge.Parameter(mge.tensor(np.ones(out_features, ).astype(np.float32) * bias_init)) if bias else None self.weight_gain = lr_multiplier / np.sqrt(in_features) self.weight_gain = float(self.weight_gain) self.bias_gain = lr_multiplier def forward(self, x): # w = self.weight.to(x.dtype) * self.weight_gain w = self.weight * self.weight_gain b = self.bias if b is not None: # b = b.to(x.dtype) if self.bias_gain != 1: b = b * self.bias_gain if self.activation == 'linear' and b is not None: out = F.matmul(x, w, transpose_b=True) + F.expand_dims(b, 0) else: # r = x.matmul(w.t()) r = F.matmul(x, w, transpose_b=True) out = bias_act(r, b, act=self.activation) return out
[ "megengine.functional.sigmoid", "megengine.functional.softplus", "megengine.functional.matmul", "megengine.functional.expand_dims", "megengine.functional.relu", "megengine.functional.leaky_relu", "megengine.functional.elu", "megengine.functional.clip", "megengine.functional.selu", "megengine.functional.reshape", "megengine.functional.tanh" ]
[((379, 389), 'numpy.sqrt', 'np.sqrt', (['(2)'], {}), '(2)\n', (386, 389), True, 'import numpy as np\n'), ((797, 820), 'megengine.functional.reshape', 'F.reshape', (['b', 'new_shape'], {}), '(b, new_shape)\n', (806, 820), True, 'import megengine.functional as F\n'), ((1597, 1621), 'megengine.functional.clip', 'F.clip', (['x', '(-clamp)', 'clamp'], {}), '(x, -clamp, clamp)\n', (1603, 1621), True, 'import megengine.functional as F\n'), ((986, 995), 'megengine.functional.relu', 'F.relu', (['x'], {}), '(x)\n', (992, 995), True, 'import megengine.functional as F\n'), ((2521, 2541), 'numpy.sqrt', 'np.sqrt', (['in_features'], {}), '(in_features)\n', (2528, 2541), True, 'import numpy as np\n'), ((3110, 3142), 'megengine.functional.matmul', 'F.matmul', (['x', 'w'], {'transpose_b': '(True)'}), '(x, w, transpose_b=True)\n', (3118, 3142), True, 'import megengine.functional as F\n'), ((1033, 1055), 'megengine.functional.leaky_relu', 'F.leaky_relu', (['x', 'alpha'], {}), '(x, alpha)\n', (1045, 1055), True, 'import megengine.functional as F\n'), ((2991, 3023), 'megengine.functional.matmul', 'F.matmul', (['x', 'w'], {'transpose_b': '(True)'}), '(x, w, transpose_b=True)\n', (2999, 3023), True, 'import megengine.functional as F\n'), ((3026, 3045), 'megengine.functional.expand_dims', 'F.expand_dims', (['b', '(0)'], {}), '(b, 0)\n', (3039, 3045), True, 'import megengine.functional as F\n'), ((1092, 1101), 'megengine.functional.tanh', 'F.tanh', (['x'], {}), '(x)\n', (1098, 1101), True, 'import megengine.functional as F\n'), ((1141, 1153), 'megengine.functional.sigmoid', 'F.sigmoid', (['x'], {}), '(x)\n', (1150, 1153), True, 'import megengine.functional as F\n'), ((1189, 1197), 'megengine.functional.elu', 'F.elu', (['x'], {}), '(x)\n', (1194, 1197), True, 'import megengine.functional as F\n'), ((2278, 2320), 'numpy.random.randn', 'np.random.randn', (['out_features', 'in_features'], {}), '(out_features, in_features)\n', (2293, 2320), True, 'import numpy as np\n'), ((1234, 1243), 'megengine.functional.selu', 'F.selu', (['x'], {}), '(x)\n', (1240, 1243), True, 'import megengine.functional as F\n'), ((2403, 2424), 'numpy.ones', 'np.ones', (['out_features'], {}), '(out_features)\n', (2410, 2424), True, 'import numpy as np\n'), ((1284, 1297), 'megengine.functional.softplus', 'F.softplus', (['x'], {}), '(x)\n', (1294, 1297), True, 'import megengine.functional as F\n'), ((1335, 1347), 'megengine.functional.sigmoid', 'F.sigmoid', (['x'], {}), '(x)\n', (1344, 1347), True, 'import megengine.functional as F\n')]
"""add events Revision ID: 02338256c6aa Revises: 108677b68119 Create Date: 2022-06-01 03:17:51.063172+00:00 """ import sqlalchemy as sa import sqlmodel from alembic import op from common.database.tables.types import TimeStamp # revision identifiers, used by Alembic. revision = "02338256c6aa" down_revision = "108677b68119" branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.create_table( "events", sa.Column( "valid_from", TimeStamp(timezone=True), nullable=False, ), sa.Column( "valid_until", TimeStamp(timezone=True), nullable=False, ), sa.Column("name", sqlmodel.sql.sqltypes.AutoString(), nullable=False), sa.Column("code", sqlmodel.sql.sqltypes.AutoString(), nullable=False), sa.Column("enabled", sa.Boolean(), nullable=False), sa.Column("id", sa.Integer(), nullable=False), sa.PrimaryKeyConstraint("id"), ) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_table("events") # ### end Alembic commands ###
[ "sqlmodel.sql.sqltypes.AutoString" ]
[((1176, 1199), 'alembic.op.drop_table', 'op.drop_table', (['"""events"""'], {}), "('events')\n", (1189, 1199), False, 'from alembic import op\n'), ((1015, 1044), 'sqlalchemy.PrimaryKeyConstraint', 'sa.PrimaryKeyConstraint', (['"""id"""'], {}), "('id')\n", (1038, 1044), True, 'import sqlalchemy as sa\n'), ((546, 570), 'common.database.tables.types.TimeStamp', 'TimeStamp', ([], {'timezone': '(True)'}), '(timezone=True)\n', (555, 570), False, 'from common.database.tables.types import TimeStamp\n'), ((669, 693), 'common.database.tables.types.TimeStamp', 'TimeStamp', ([], {'timezone': '(True)'}), '(timezone=True)\n', (678, 693), False, 'from common.database.tables.types import TimeStamp\n'), ((760, 794), 'sqlmodel.sql.sqltypes.AutoString', 'sqlmodel.sql.sqltypes.AutoString', ([], {}), '()\n', (792, 794), False, 'import sqlmodel\n'), ((839, 873), 'sqlmodel.sql.sqltypes.AutoString', 'sqlmodel.sql.sqltypes.AutoString', ([], {}), '()\n', (871, 873), False, 'import sqlmodel\n'), ((921, 933), 'sqlalchemy.Boolean', 'sa.Boolean', ([], {}), '()\n', (931, 933), True, 'import sqlalchemy as sa\n'), ((976, 988), 'sqlalchemy.Integer', 'sa.Integer', ([], {}), '()\n', (986, 988), True, 'import sqlalchemy as sa\n')]
from datetime import datetime from typing import Optional from fastapi import APIRouter, Depends from sqlmodel import Field, SQLModel from ...db import get_session from sqlalchemy import select from sqlalchemy.ext.asyncio import AsyncSession router = APIRouter() class HistoryEntPlasticConference(SQLModel, table=True): id: Optional[int] = Field(default=None, primary_key=True) history_id_order: int history_id_conference: int ent_plastic_conference_id: int state: str created_at: datetime updated_at: datetime created_by: int updated_by: Optional[int] = None class EntPlasticConference(SQLModel, table=True): id: Optional[int] = Field(default=None, primary_key=True) problem: str question: str ent_plan: str surgeon_plant: str post_plan: str surgeon_post_plan: str created_at: datetime updated_at: datetime created_by: int updated_by: Optional[int] = None class EntPlasticConferenceDoctorMap(SQLModel, table=True): id: Optional[int] = Field(default=None, primary_key=True) ent_plastic_conference_id: int doctor_id: int created_at: datetime updated_at: datetime created_by: int updated_by: Optional[int] = None @router.post("/history_ent_conference", response_model=HistoryEntPlasticConference) async def create_history_ent_conference(history_ent_conference: HistoryEntPlasticConference, session: AsyncSession = Depends(get_session)): session.add(history_ent_conference) await session.commit() await session.refresh(history_ent_conference) return history_ent_conference @router.post("/ent_conference", response_model=EntPlasticConference) async def create_ent_conference(ent_conference: EntPlasticConference, session: AsyncSession = Depends(get_session)): session.add(ent_conference) await session.commit() await session.refresh(ent_conference) return ent_conference @router.get("/history_ent_conference/{id}", response_model=HistoryEntPlasticConference) async def get_history_ent_conference(id: int, session: AsyncSession = Depends(get_session)): history_ent_conferences = await session.execute(select(HistoryEntPlasticConference).where(HistoryEntPlasticConference.id == id)) history_ent_conference = history_ent_conferences.scalars().first() return history_ent_conference @router.put("/history_ent_conference/{id}", response_model=HistoryEntPlasticConference) async def update_history_ent_conference(id: int, session: AsyncSession = Depends(get_session)): return None @router.delete("/history_ent_conference/{id}") async def delete_history_ent_conference(session: AsyncSession = Depends(get_session)): return None @router.delete("/history_ent_conference/{id}") async def delete_ent_conference(session: AsyncSession = Depends(get_session)): return None
[ "sqlmodel.Field" ]
[((256, 267), 'fastapi.APIRouter', 'APIRouter', ([], {}), '()\n', (265, 267), False, 'from fastapi import APIRouter, Depends\n'), ((351, 388), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'primary_key': '(True)'}), '(default=None, primary_key=True)\n', (356, 388), False, 'from sqlmodel import Field, SQLModel\n'), ((679, 716), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'primary_key': '(True)'}), '(default=None, primary_key=True)\n', (684, 716), False, 'from sqlmodel import Field, SQLModel\n'), ((1031, 1068), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'primary_key': '(True)'}), '(default=None, primary_key=True)\n', (1036, 1068), False, 'from sqlmodel import Field, SQLModel\n'), ((1433, 1453), 'fastapi.Depends', 'Depends', (['get_session'], {}), '(get_session)\n', (1440, 1453), False, 'from fastapi import APIRouter, Depends\n'), ((1772, 1792), 'fastapi.Depends', 'Depends', (['get_session'], {}), '(get_session)\n', (1779, 1792), False, 'from fastapi import APIRouter, Depends\n'), ((2082, 2102), 'fastapi.Depends', 'Depends', (['get_session'], {}), '(get_session)\n', (2089, 2102), False, 'from fastapi import APIRouter, Depends\n'), ((2507, 2527), 'fastapi.Depends', 'Depends', (['get_session'], {}), '(get_session)\n', (2514, 2527), False, 'from fastapi import APIRouter, Depends\n'), ((2659, 2679), 'fastapi.Depends', 'Depends', (['get_session'], {}), '(get_session)\n', (2666, 2679), False, 'from fastapi import APIRouter, Depends\n'), ((2803, 2823), 'fastapi.Depends', 'Depends', (['get_session'], {}), '(get_session)\n', (2810, 2823), False, 'from fastapi import APIRouter, Depends\n'), ((2157, 2192), 'sqlalchemy.select', 'select', (['HistoryEntPlasticConference'], {}), '(HistoryEntPlasticConference)\n', (2163, 2192), False, 'from sqlalchemy import select\n')]
from unittest.mock import patch import pytest from sqlalchemy.exc import NoResultFound from sqlmodel import Session, create_engine, delete from ...conftest import get_testing_print_function def test_tutorial(clear_sqlmodel): from docs_src.tutorial.one import tutorial005 as mod mod.sqlite_url = "sqlite://" mod.engine = create_engine(mod.sqlite_url) with pytest.raises(NoResultFound): mod.main() with Session(mod.engine) as session: # TODO: create delete() function # TODO: add overloads for .exec() with delete object session.exec(delete(mod.Hero)) session.add(mod.Hero(name="<NAME>", secret_name="<NAME>", age=24)) session.commit() calls = [] new_print = get_testing_print_function(calls) with patch("builtins.print", new=new_print): mod.select_heroes() assert calls == [ [ "Hero:", { "id": 1, "name": "<NAME>", "secret_name": "<NAME>", "age": 24, }, ] ]
[ "sqlmodel.delete", "sqlmodel.Session", "sqlmodel.create_engine" ]
[((337, 366), 'sqlmodel.create_engine', 'create_engine', (['mod.sqlite_url'], {}), '(mod.sqlite_url)\n', (350, 366), False, 'from sqlmodel import Session, create_engine, delete\n'), ((376, 404), 'pytest.raises', 'pytest.raises', (['NoResultFound'], {}), '(NoResultFound)\n', (389, 404), False, 'import pytest\n'), ((414, 424), 'docs_src.tutorial.one.tutorial005.main', 'mod.main', ([], {}), '()\n', (422, 424), True, 'from docs_src.tutorial.one import tutorial005 as mod\n'), ((434, 453), 'sqlmodel.Session', 'Session', (['mod.engine'], {}), '(mod.engine)\n', (441, 453), False, 'from sqlmodel import Session, create_engine, delete\n'), ((784, 822), 'unittest.mock.patch', 'patch', (['"""builtins.print"""'], {'new': 'new_print'}), "('builtins.print', new=new_print)\n", (789, 822), False, 'from unittest.mock import patch\n'), ((832, 851), 'docs_src.tutorial.one.tutorial005.select_heroes', 'mod.select_heroes', ([], {}), '()\n', (849, 851), True, 'from docs_src.tutorial.one import tutorial005 as mod\n'), ((589, 605), 'sqlmodel.delete', 'delete', (['mod.Hero'], {}), '(mod.Hero)\n', (595, 605), False, 'from sqlmodel import Session, create_engine, delete\n'), ((627, 680), 'docs_src.tutorial.one.tutorial005.Hero', 'mod.Hero', ([], {'name': '"""<NAME>"""', 'secret_name': '"""<NAME>"""', 'age': '(24)'}), "(name='<NAME>', secret_name='<NAME>', age=24)\n", (635, 680), True, 'from docs_src.tutorial.one import tutorial005 as mod\n')]
import requests import logging import us from pydantic import validator from sqlmodel import Field, SQLModel, Session, create_engine import json from os.path import exists # Define the Store model # The model is a SQLModel so it gets Pydantic and SQLAlchemy methods # It will be a SQL table with the name 'store' class Store(SQLModel, table=True): id: str = Field(default=None, primary_key=True) name: str state: str latitude: float longitude: float # Grab the needed fields from the data from the API def __init__(self, source_data): self.id = source_data['key']['id'] self.name = source_data['name']['label'] self.state = source_data['location']['address']['administrativeArea'] self.latitude = source_data['location']['geo']['latitude'] self.longitude = source_data['location']['geo']['longitude'] # Verify that the State is a valid US state or territory @validator('state') def validate_state(cls, v): v = us.states.lookup(v) if v not in us.states.STATES_AND_TERRITORIES: raise ValueError(f'{v} is not a valid state') return v # Verify that the latitude is a float and between -90 and 90 @validator('latitude') def validate_latitude(cls, v): v = float(v) if v < -90 or v > 90: raise ValueError(f'{v} is not a valid latitude') return v # Verify that the longitude is a float and between -180 and 180 @validator('longitude') def validate_longitude(cls, v): v = float(v) if v < -180 or v > 180: raise ValueError(f'{v} is not a valid longitude') return v # Verify that the name is a string and not empty @validator('name') def validate_name(cls, v): if len(v) < 1: raise ValueError(f'{v} is not a valid name') return v # read the store data from the provided filepath or if the file does not exist pull the store data from the API def extract(filepath: str, url: str) -> dict: # try filepath if exists(filepath): with open(filepath, 'r') as f: return json.load(f) # try API try: r = requests.get(url) r.raise_for_status() logging.info('Successfully retrieved stores data') return r.json() except Exception as e: logging.warning(f'Error getting stores data: {e}') return None # transform the data into a list of Store objects def transform(data: dict) -> dict: stores = [] if 'store' in data: for s in data['store']: try: stores.append(Store(s)) except Exception as e: logging.warning(f'Error transforming store: {e}') return stores return None # load the data into the database def load(stores: list, engine) -> None: if not stores: logging.warning('No stores to load') return try: # Create a session to connect to the database with Session(engine) as session: # add the stores to the database session.add_all(stores) session.commit() logging.info(f'Successfully loaded {len(stores)} stores') except Exception as e: logging.warning(f'Error loading stores: {e}') # main function to be called by the pipeline def run(filepath: str, stores_url: str, engine): data = extract(filepath, stores_url) logging.debug(data.keys()) stores = transform(data) load(stores, engine)
[ "sqlmodel.Session", "sqlmodel.Field" ]
[((363, 400), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'primary_key': '(True)'}), '(default=None, primary_key=True)\n', (368, 400), False, 'from sqlmodel import Field, SQLModel, Session, create_engine\n'), ((938, 956), 'pydantic.validator', 'validator', (['"""state"""'], {}), "('state')\n", (947, 956), False, 'from pydantic import validator\n'), ((1221, 1242), 'pydantic.validator', 'validator', (['"""latitude"""'], {}), "('latitude')\n", (1230, 1242), False, 'from pydantic import validator\n'), ((1481, 1503), 'pydantic.validator', 'validator', (['"""longitude"""'], {}), "('longitude')\n", (1490, 1503), False, 'from pydantic import validator\n'), ((1731, 1748), 'pydantic.validator', 'validator', (['"""name"""'], {}), "('name')\n", (1740, 1748), False, 'from pydantic import validator\n'), ((2062, 2078), 'os.path.exists', 'exists', (['filepath'], {}), '(filepath)\n', (2068, 2078), False, 'from os.path import exists\n'), ((1001, 1020), 'us.states.lookup', 'us.states.lookup', (['v'], {}), '(v)\n', (1017, 1020), False, 'import us\n'), ((2191, 2208), 'requests.get', 'requests.get', (['url'], {}), '(url)\n', (2203, 2208), False, 'import requests\n'), ((2246, 2296), 'logging.info', 'logging.info', (['"""Successfully retrieved stores data"""'], {}), "('Successfully retrieved stores data')\n", (2258, 2296), False, 'import logging\n'), ((2883, 2919), 'logging.warning', 'logging.warning', (['"""No stores to load"""'], {}), "('No stores to load')\n", (2898, 2919), False, 'import logging\n'), ((2138, 2150), 'json.load', 'json.load', (['f'], {}), '(f)\n', (2147, 2150), False, 'import json\n'), ((2356, 2406), 'logging.warning', 'logging.warning', (['f"""Error getting stores data: {e}"""'], {}), "(f'Error getting stores data: {e}')\n", (2371, 2406), False, 'import logging\n'), ((3011, 3026), 'sqlmodel.Session', 'Session', (['engine'], {}), '(engine)\n', (3018, 3026), False, 'from sqlmodel import Field, SQLModel, Session, create_engine\n'), ((3254, 3299), 'logging.warning', 'logging.warning', (['f"""Error loading stores: {e}"""'], {}), "(f'Error loading stores: {e}')\n", (3269, 3299), False, 'import logging\n'), ((2693, 2742), 'logging.warning', 'logging.warning', (['f"""Error transforming store: {e}"""'], {}), "(f'Error transforming store: {e}')\n", (2708, 2742), False, 'import logging\n')]
from datetime import date from typing import Optional, Iterator from sqlmodel import SQLModel, Field, create_engine, Session # type: ignore[import] from my_feed.log import logger from app.settings import settings # base non-table sql model class FeedBase(SQLModel): # type: ignore[misc] model_id: str ftype: str # feed item type title: str score: Optional[float] = Field(default=None) # more metadata subtitle: Optional[str] = Field(default=None) creator: Optional[str] = Field(default=None) part: Optional[int] = Field(default=None) subpart: Optional[int] = Field(default=None) collection: Optional[str] = Field(default=None) # dates when: int release_date: Optional[date] = Field(default=None) # urls image_url: Optional[str] = Field(default=None) url: Optional[str] = Field(default=None) # feedbase, with an ID/table class FeedModel(FeedBase, table=True): # type: ignore id: int = Field(index=True, primary_key=True) # store JSON as strings, these are only used on the frontend anyways tags: str = Field(default=r"[]") # List[str] data: Optional[bytes] = Field(default=None) # Dict[str, Any] feed_engine = create_engine( settings.SQLITE_DB_PATH, echo=settings.SQL_ECHO, ) def init_db() -> None: logger.info("Creating tables...") SQLModel.metadata.create_all(feed_engine) def get_db() -> Iterator[Session]: with Session(feed_engine) as session: yield session
[ "sqlmodel.create_engine", "sqlmodel.Session", "sqlmodel.SQLModel.metadata.create_all", "sqlmodel.Field" ]
[((1207, 1269), 'sqlmodel.create_engine', 'create_engine', (['settings.SQLITE_DB_PATH'], {'echo': 'settings.SQL_ECHO'}), '(settings.SQLITE_DB_PATH, echo=settings.SQL_ECHO)\n', (1220, 1269), False, 'from sqlmodel import SQLModel, Field, create_engine, Session\n'), ((388, 407), 'sqlmodel.Field', 'Field', ([], {'default': 'None'}), '(default=None)\n', (393, 407), False, 'from sqlmodel import SQLModel, Field, create_engine, Session\n'), ((459, 478), 'sqlmodel.Field', 'Field', ([], {'default': 'None'}), '(default=None)\n', (464, 478), False, 'from sqlmodel import SQLModel, Field, create_engine, Session\n'), ((508, 527), 'sqlmodel.Field', 'Field', ([], {'default': 'None'}), '(default=None)\n', (513, 527), False, 'from sqlmodel import SQLModel, Field, create_engine, Session\n'), ((554, 573), 'sqlmodel.Field', 'Field', ([], {'default': 'None'}), '(default=None)\n', (559, 573), False, 'from sqlmodel import SQLModel, Field, create_engine, Session\n'), ((603, 622), 'sqlmodel.Field', 'Field', ([], {'default': 'None'}), '(default=None)\n', (608, 622), False, 'from sqlmodel import SQLModel, Field, create_engine, Session\n'), ((655, 674), 'sqlmodel.Field', 'Field', ([], {'default': 'None'}), '(default=None)\n', (660, 674), False, 'from sqlmodel import SQLModel, Field, create_engine, Session\n'), ((737, 756), 'sqlmodel.Field', 'Field', ([], {'default': 'None'}), '(default=None)\n', (742, 756), False, 'from sqlmodel import SQLModel, Field, create_engine, Session\n'), ((800, 819), 'sqlmodel.Field', 'Field', ([], {'default': 'None'}), '(default=None)\n', (805, 819), False, 'from sqlmodel import SQLModel, Field, create_engine, Session\n'), ((845, 864), 'sqlmodel.Field', 'Field', ([], {'default': 'None'}), '(default=None)\n', (850, 864), False, 'from sqlmodel import SQLModel, Field, create_engine, Session\n'), ((965, 1000), 'sqlmodel.Field', 'Field', ([], {'index': '(True)', 'primary_key': '(True)'}), '(index=True, primary_key=True)\n', (970, 1000), False, 'from sqlmodel import SQLModel, Field, create_engine, Session\n'), ((1091, 1110), 'sqlmodel.Field', 'Field', ([], {'default': '"""[]"""'}), "(default='[]')\n", (1096, 1110), False, 'from sqlmodel import SQLModel, Field, create_engine, Session\n'), ((1153, 1172), 'sqlmodel.Field', 'Field', ([], {'default': 'None'}), '(default=None)\n', (1158, 1172), False, 'from sqlmodel import SQLModel, Field, create_engine, Session\n'), ((1310, 1343), 'my_feed.log.logger.info', 'logger.info', (['"""Creating tables..."""'], {}), "('Creating tables...')\n", (1321, 1343), False, 'from my_feed.log import logger\n'), ((1348, 1389), 'sqlmodel.SQLModel.metadata.create_all', 'SQLModel.metadata.create_all', (['feed_engine'], {}), '(feed_engine)\n', (1376, 1389), False, 'from sqlmodel import SQLModel, Field, create_engine, Session\n'), ((1436, 1456), 'sqlmodel.Session', 'Session', (['feed_engine'], {}), '(feed_engine)\n', (1443, 1456), False, 'from sqlmodel import SQLModel, Field, create_engine, Session\n')]
import numpy as np import itertools import os import scipy.linalg from sfepy.discrete import fem from .algo_core import generalized_courant_fischer, spring_energy_matrix_accelerate_3D import util.geometry_util as geo_util import util.meshgen as meshgen from util.timer import SimpleTimer from visualization.model_visualizer import visualize_hinges, visualize_3D import visualization.model_visualizer as vis from .constraints_3d import select_non_colinear_points, direction_for_relative_disallowed_motions from .internal_structure import tetrahedron from .stiffness_matrix import stiffness_matrix_from_mesh class Model: """ Represent an assembly """ def __init__(self): self.beams = [] self.joints = [] def point_matrix(self) -> np.ndarray: beam_points = np.vstack([b.points for b in self.beams]).reshape(-1, 3) # joint_points = np.array([j.virtual_points for j in self.joints]).reshape(-1, 3) return np.vstack(( beam_points, )) def point_indices(self): beam_point_count = np.array([b.point_count for b in self.beams]) end_indices = np.cumsum(beam_point_count) start_indices = end_indices - beam_point_count return [np.arange(start, end) for start, end in zip(start_indices, end_indices)] def edge_matrix(self) -> np.ndarray: edge_indices = [] index_offset = 0 for beam in self.beams: edge_indices.append(beam.edges + index_offset) index_offset += beam.point_count matrix = np.vstack([edges for edges in edge_indices if edges.size > 0]) return matrix def constraint_matrix(self) -> np.ndarray: matrix = [] # collect constraints for each joint and stack them for joint in self.joints: constraints = joint.linear_constraints(self) matrix.append(constraints) numpy_matrix = np.vstack(matrix) if len(matrix) > 0 else np.empty(0) return numpy_matrix def constraints_fixing_first_part(self): count = len(self.beams[0].points) fixed_coordinates = np.zeros((count * 3, self.point_count * 3)) for r, c in enumerate(range(count * 3)): fixed_coordinates[r, c] = 1 return fixed_coordinates @property def point_count(self): return sum(beam.point_count for beam in self.beams) def add_beam(self, beam): self.beams.append(beam) def add_beams(self, beams): for beam in beams: self.add_beam(beam) def add_joint(self, joint): self.joints.append(joint) def add_joints(self, joints): for joint in joints: self.add_joint(joint) def beam_point_index(self, beam): beam_index = self.beams.index(beam) return sum(b.point_count for b in self.beams[:beam_index]) def joint_point_indices(self): indices = [] for joint in self.joints: offset_part_1 = self.beam_point_index(joint.part1) offset_part_2 = self.beam_point_index(joint.part2) indice_on_part_1 = select_non_colinear_points(joint.part1.points, near=joint.pivot_point)[1] + offset_part_1 indice_on_part_2 = select_non_colinear_points(joint.part2.points, near=joint.pivot_point)[1] + offset_part_2 indices.append((indice_on_part_1, indice_on_part_2)) return np.array(indices) def save_json(self, filename: str, **kwargs): import json from util.json_encoder import ModelEncoder with open(filename, "w") as f: json.dump(self, f, cls=ModelEncoder, **kwargs) def visualize(self, arrows=None, show_axis=True, show_hinge=True, arrow_style=None): defaults = { "length_coeff": 0.2, "radius_coeff": 0.2, } if arrow_style is not None: arrow_style = { **defaults, **arrow_style, } else: arrow_style = defaults geometries = [] model_mesh = vis.get_lineset_for_edges(self.point_matrix(), self.edge_matrix()) geometries.append(model_mesh) if show_hinge: rotation_axes_pairs = [(j.pivot, j.rotation_axes[0]) for j in self.joints if j.rotation_axes is not None] if len(rotation_axes_pairs) > 0: rotation_pivots, rotation_axes = zip(*rotation_axes_pairs) axes_arrows = vis.get_mesh_for_arrows( rotation_pivots, geo_util.normalize(rotation_axes), length_coeff=0.01, radius_coeff=0.4) axes_arrows.paint_uniform_color([0.5, 0.2, 0.8]) geometries.append(axes_arrows) translation_vector_pairs = [(j.pivot, j.translation_vectors[0]) for j in self.joints if j.translation_vectors is not None] if len(translation_vector_pairs) > 0: translation_pivots, translation_vector = zip(*translation_vector_pairs) vector_arrows = vis.get_mesh_for_arrows(translation_pivots, translation_vector, length_coeff=0.01, radius_coeff=0.4) vector_arrows.paint_uniform_color([0.2, 0.8, 0.5]) geometries.append(vector_arrows) melded_points = [j.pivot for j in self.joints if j.translation_vectors is None and j.rotation_axes is None] if len(melded_points) > 0: point_meshes = vis.get_mesh_for_points(melded_points) geometries.append(point_meshes) mesh_frame = vis.o3d.geometry.TriangleMesh.create_coordinate_frame(size=10, origin=[0, 0, 0]) geometries.append(mesh_frame) if arrows is not None: points = self.point_matrix() arrow_mesh = vis.get_mesh_for_arrows(points, arrows.reshape(-1, points.shape[1]), **arrow_style) model_meshes = vis.get_geometries_3D(self.point_matrix(), edges=self.edge_matrix(), show_axis=False, show_point=False) geometries.extend([arrow_mesh, *model_meshes]) vis.o3d.visualization.draw_geometries(geometries) def joint_stiffness_matrix(self): from functools import reduce matrix = reduce(lambda x, y: x + y, [j.joint_stiffness(self) for j in self.joints]) return matrix def soft_solve(self, num_pairs=-1, extra_constr=None, verbose=False): points = self.point_matrix() edges = self.edge_matrix() part_stiffness = spring_energy_matrix_accelerate_3D(points, edges, abstract_edges=[]) joint_stiffness = self.joint_stiffness_matrix() K = part_stiffness + joint_stiffness # global stiffness eigenpairs = geo_util.eigen(K, symmetric=True) if verbose: print(self.report()) if num_pairs == -1: return [(e, v) for e, v in eigenpairs] else: return [(e, v) for e, v in eigenpairs[:num_pairs]] def eigen_solve(self, num_pairs=-1, extra_constr=None, verbose=False): points = self.point_matrix() edges = self.edge_matrix() timer = SimpleTimer() stiffness = spring_energy_matrix_accelerate_3D(points, edges, abstract_edges=[]) timer.checkpoint("K") constraints = self.constraint_matrix() if extra_constr is not None: constraints = np.vstack((constraints, extra_constr)) K, B = generalized_courant_fischer(stiffness, constraints) eigenpairs = geo_util.eigen(K, symmetric=True) timer.checkpoint("eig") if verbose: print(self.report()) timer.report() if num_pairs == -1: return [(e, B @ v) for e, v in eigenpairs[:]] else: return [(e, B @ v) for e, v in eigenpairs[:num_pairs]] def __str__(self): return str(self.report()) def report(self) -> dict: return { **{ "#parts": len(self.beams), "#points": self.point_count, "#joints": len(self.joints), "#constraints": len(self.constraint_matrix()) }, **vars(self) } class Beam: def __init__(self, points, edges=None, principle_points=None): if edges is None: index_range = range(len(points)) edges = np.array(list(itertools.combinations(index_range, 2))) self._edges = edges self.points = points self.principle_points = principle_points @classmethod def crystal(cls, p1, p2, crystal_counts): from solvers.rigidity_solver.internal_structure import get_crystal_vertices orient = (p2 - p1) / np.linalg.norm(p2 - p1) crystals = [get_crystal_vertices(c, orient) for c in np.linspace(p1, p2, num=crystal_counts)] points = np.vstack(crystals) return Beam(points) @classmethod def tetra(cls, p, q, thickness=1, density=0.333333, ori=None): points, edges = tetrahedron(p, q, thickness=thickness, density=density, ori=ori) return Beam(points, edges, principle_points=(p, q)) @classmethod def dense_tetra(cls, p, q, density=0.333333, thickness=1, ori=None): points, _ = tetrahedron(p, q, density=density, thickness=thickness, ori=ori) return Beam(points, principle_points=(p, q)) @classmethod def vertices(cls, points, orient): orient = orient / np.linalg.norm(orient) * 10 points = np.vstack((points, points + orient)) return Beam(points) @classmethod def cube_as_mesh(cls, pivot, u, v, w): hashes = hash((tuple(pivot), tuple(u), tuple(v), tuple(w))) soup_filename = f"data/{hashes}.stl" mesh_filename = f"data/{hashes}.mesh" import os if not os.path.exists(mesh_filename): meshgen.cube_surface_mesh(soup_filename, pivot, u, v, w) meshgen.tetrahedralize(soup_filename, mesh_filename) mesh = fem.Mesh.from_file(mesh_filename) points = mesh.coors nonzero_x, nonzero_y = mesh.create_conn_graph().nonzero() edges = np.hstack((nonzero_x.reshape(-1, 1), nonzero_y.reshape(-1, 1))) beam = Beam(points, edges) beam.stiffness = stiffness_matrix_from_mesh(mesh_filename) beam.mesh_filename = mesh_filename return beam @classmethod def from_soup_file(cls, soup_filename: str): mesh_filename = soup_filename.replace(".obj", ".mesh") if not os.path.exists(mesh_filename): meshgen.tetrahedralize(soup_filename, mesh_filename) beam = cls.from_mesh_file(mesh_filename) return beam @classmethod def from_mesh_file(cls, mesh_filename): mesh = fem.Mesh.from_file(mesh_filename) points = mesh.coors nonzero_x, nonzero_y = mesh.create_conn_graph().nonzero() edges = np.hstack((nonzero_x.reshape(-1, 1), nonzero_y.reshape(-1, 1))) beam = Beam(points, edges) beam.stiffness = stiffness_matrix_from_mesh(mesh_filename) beam.mesh_filename = mesh_filename return beam @property def edges(self) -> np.ndarray: return self._edges @property def point_count(self): return len(self.points) class Joint: def __init__(self, part1, part2, pivot, rotation_axes=None, translation_vectors=None, soft_translation=None, soft_rotation=None, soft_translation_coeff=None, soft_rotation_coeff=None, ): self.part1 = part1 self.part2 = part2 self.soft_translation = soft_translation self.soft_rotation = soft_rotation self.soft_translation_coeff = soft_translation_coeff self.soft_rotation_coeff = soft_rotation_coeff self.pivot = np.array(pivot) assert self.pivot.shape == (3,), f"received pivot {self.pivot}, shape {self.pivot.shape}" if rotation_axes is not None: self.rotation_axes = np.array(rotation_axes).reshape(-1, 3) assert np.linalg.matrix_rank(self.rotation_axes) == len(self.rotation_axes) else: self.rotation_axes = None if translation_vectors is not None: self.translation_vectors = np.array(translation_vectors).reshape(-1, 3) assert self.translation_vectors.shape[1] == 3 assert np.linalg.matrix_rank(self.translation_vectors) == len(self.translation_vectors) else: self.translation_vectors = None if soft_rotation is not None: self.soft_rotation = np.array(soft_rotation).reshape(-1, 3) assert np.linalg.matrix_rank(self.soft_rotation) == len(self.soft_rotation) else: self.soft_rotation = None if soft_translation is not None: self.soft_translation = np.array(soft_translation).reshape(-1, 3) assert self.soft_translation.shape[1] == 3 assert np.linalg.matrix_rank(self.soft_translation) == len(self.soft_translation) else: self.soft_translation = None def joint_stiffness(self, model: Model) -> np.ndarray: dim = 3 source, target = self.part1, self.part2 # aliases source_points, source_point_indices = select_non_colinear_points(source.points, num=3, near=self.pivot) target_points, target_point_indices = select_non_colinear_points(target.points, num=3, near=self.pivot) source_point_indices += model.beam_point_index(source) target_point_indices += model.beam_point_index(target) # (n x 18) matrix, standing for prohibitive motion space soft_allowed_translation = np.vstack([vectors for vectors in (self.translation_vectors, self.soft_translation) if vectors is not None]) soft_allowed_rotation = np.vstack([vectors for vectors in (self.rotation_axes, self.soft_rotation) if vectors is not None]) prohibitive = direction_for_relative_disallowed_motions( source_points, target_points, rotation_pivot=self.pivot, rotation_axes=soft_allowed_rotation, translation_vectors=soft_allowed_translation, ) prohibitive = geo_util.rowwise_normalize(prohibitive) motion_basis = [prohibitive] coefficients = [np.ones(prohibitive.shape[0])] if self.soft_translation is not None: relative_translation = np.vstack([direction_for_relative_disallowed_motions(source_points, target_points, rotation_pivot=self.pivot, translation_vectors=scipy.linalg.null_space(translation.reshape(-1, 3)).T, rotation_axes=np.eye(3)) for translation in self.soft_translation]) assert relative_translation.shape == (len(self.soft_translation_coeff), 18), f"number of soft translation ({relative_translation.shape} and coefficient don't match ({len(self.soft_translation_coeff), 18})" motion_basis.append(relative_translation) coefficients.append(self.soft_translation_coeff) if self.soft_rotation is not None: relative_rotation = np.vstack([direction_for_relative_disallowed_motions(source_points, target_points, rotation_pivot=self.pivot, rotation_axes=scipy.linalg.null_space(rotation.reshape(-1, 3)).T, translation_vectors=np.eye(3)) for rotation in self.soft_rotation]) assert relative_rotation.shape == (len(self.soft_rotation_coeff), 18) motion_basis.append(relative_rotation) coefficients.append(self.soft_rotation_coeff) # cast to numpy array motion_basis = np.vstack(motion_basis) coefficients = np.concatenate(coefficients) # (18 x m) @ (m x m) @ (m x 18) matrix local_stiffness = motion_basis.T @ np.diag(coefficients) @ motion_basis assert local_stiffness.shape == (18, 18) # clip the stiffness matrix to a zero matrix of the same size as the global stiffness matrix global_indices = np.concatenate((source_point_indices, target_point_indices)) stiffness_at_global = np.zeros((model.point_count * dim, model.point_count * dim)) for local_row_index, global_row_index in enumerate(global_indices): for local_col_index, global_col_index in enumerate(global_indices): l_row_slice = slice(local_row_index * 3, local_row_index * 3 + 3) l_col_slice = slice(local_col_index * 3, local_col_index * 3 + 3) g_row_slice = slice(global_row_index * 3, global_row_index * 3 + 3) g_col_slice = slice(global_col_index * 3, global_col_index * 3 + 3) stiffness_at_global[g_row_slice, g_col_slice] = local_stiffness[l_row_slice, l_col_slice] return stiffness_at_global def linear_constraints(self, model: Model) -> np.ndarray: dim = 3 constraint_matrices = [] for source, target in [ (self.part1, self.part2), (self.part2, self.part1) ]: source_points, source_point_indices = select_non_colinear_points(source.points, num=3, near=self.pivot) target_points, target_point_indices = select_non_colinear_points(target.points, num=3, near=self.pivot) source_point_indices += model.beam_point_index(source) target_point_indices += model.beam_point_index(target) constraints = direction_for_relative_disallowed_motions( source_points, target_points, rotation_pivot=self.pivot, rotation_axes=self.rotation_axes, translation_vectors=self.translation_vectors, ) i, j, k = source_point_indices t1, t2, t3 = target_point_indices zero_constraint = np.zeros((constraints.shape[0], model.point_count * dim)) for index, target_index in enumerate(target_point_indices): l = target_index zero_constraint[:, i * 3: (i + 1) * 3] = constraints[:, 0: 3] zero_constraint[:, j * 3: (j + 1) * 3] = constraints[:, 3: 6] zero_constraint[:, k * 3: (k + 1) * 3] = constraints[:, 6: 9] zero_constraint[:, l * 3: (l + 1) * 3] = constraints[:, (index + 3) * 3: (index + 4) * 3] constraint_matrices.append(zero_constraint) matrix = np.vstack(constraint_matrices) return matrix
[ "sfepy.discrete.fem.Mesh.from_file" ]
[((965, 990), 'numpy.vstack', 'np.vstack', (['(beam_points,)'], {}), '((beam_points,))\n', (974, 990), True, 'import numpy as np\n'), ((1070, 1115), 'numpy.array', 'np.array', (['[b.point_count for b in self.beams]'], {}), '([b.point_count for b in self.beams])\n', (1078, 1115), True, 'import numpy as np\n'), ((1138, 1165), 'numpy.cumsum', 'np.cumsum', (['beam_point_count'], {}), '(beam_point_count)\n', (1147, 1165), True, 'import numpy as np\n'), ((1558, 1620), 'numpy.vstack', 'np.vstack', (['[edges for edges in edge_indices if edges.size > 0]'], {}), '([edges for edges in edge_indices if edges.size > 0])\n', (1567, 1620), True, 'import numpy as np\n'), ((2125, 2168), 'numpy.zeros', 'np.zeros', (['(count * 3, self.point_count * 3)'], {}), '((count * 3, self.point_count * 3))\n', (2133, 2168), True, 'import numpy as np\n'), ((3406, 3423), 'numpy.array', 'np.array', (['indices'], {}), '(indices)\n', (3414, 3423), True, 'import numpy as np\n'), ((6078, 6127), 'visualization.model_visualizer.o3d.visualization.draw_geometries', 'vis.o3d.visualization.draw_geometries', (['geometries'], {}), '(geometries)\n', (6115, 6127), True, 'import visualization.model_visualizer as vis\n'), ((6704, 6737), 'util.geometry_util.eigen', 'geo_util.eigen', (['K'], {'symmetric': '(True)'}), '(K, symmetric=True)\n', (6718, 6737), True, 'import util.geometry_util as geo_util\n'), ((7114, 7127), 'util.timer.SimpleTimer', 'SimpleTimer', ([], {}), '()\n', (7125, 7127), False, 'from util.timer import SimpleTimer\n'), ((7485, 7518), 'util.geometry_util.eigen', 'geo_util.eigen', (['K'], {'symmetric': '(True)'}), '(K, symmetric=True)\n', (7499, 7518), True, 'import util.geometry_util as geo_util\n'), ((8820, 8839), 'numpy.vstack', 'np.vstack', (['crystals'], {}), '(crystals)\n', (8829, 8839), True, 'import numpy as np\n'), ((9459, 9495), 'numpy.vstack', 'np.vstack', (['(points, points + orient)'], {}), '((points, points + orient))\n', (9468, 9495), True, 'import numpy as np\n'), ((9959, 9992), 'sfepy.discrete.fem.Mesh.from_file', 'fem.Mesh.from_file', (['mesh_filename'], {}), '(mesh_filename)\n', (9977, 9992), False, 'from sfepy.discrete import fem\n'), ((10722, 10755), 'sfepy.discrete.fem.Mesh.from_file', 'fem.Mesh.from_file', (['mesh_filename'], {}), '(mesh_filename)\n', (10740, 10755), False, 'from sfepy.discrete import fem\n'), ((11808, 11823), 'numpy.array', 'np.array', (['pivot'], {}), '(pivot)\n', (11816, 11823), True, 'import numpy as np\n'), ((13681, 13794), 'numpy.vstack', 'np.vstack', (['[vectors for vectors in (self.translation_vectors, self.soft_translation) if\n vectors is not None]'], {}), '([vectors for vectors in (self.translation_vectors, self.\n soft_translation) if vectors is not None])\n', (13690, 13794), True, 'import numpy as np\n'), ((13822, 13925), 'numpy.vstack', 'np.vstack', (['[vectors for vectors in (self.rotation_axes, self.soft_rotation) if vectors\n is not None]'], {}), '([vectors for vectors in (self.rotation_axes, self.soft_rotation) if\n vectors is not None])\n', (13831, 13925), True, 'import numpy as np\n'), ((14220, 14259), 'util.geometry_util.rowwise_normalize', 'geo_util.rowwise_normalize', (['prohibitive'], {}), '(prohibitive)\n', (14246, 14259), True, 'import util.geometry_util as geo_util\n'), ((15905, 15928), 'numpy.vstack', 'np.vstack', (['motion_basis'], {}), '(motion_basis)\n', (15914, 15928), True, 'import numpy as np\n'), ((15952, 15980), 'numpy.concatenate', 'np.concatenate', (['coefficients'], {}), '(coefficients)\n', (15966, 15980), True, 'import numpy as np\n'), ((16285, 16345), 'numpy.concatenate', 'np.concatenate', (['(source_point_indices, target_point_indices)'], {}), '((source_point_indices, target_point_indices))\n', (16299, 16345), True, 'import numpy as np\n'), ((16376, 16436), 'numpy.zeros', 'np.zeros', (['(model.point_count * dim, model.point_count * dim)'], {}), '((model.point_count * dim, model.point_count * dim))\n', (16384, 16436), True, 'import numpy as np\n'), ((18668, 18698), 'numpy.vstack', 'np.vstack', (['constraint_matrices'], {}), '(constraint_matrices)\n', (18677, 18698), True, 'import numpy as np\n'), ((1237, 1258), 'numpy.arange', 'np.arange', (['start', 'end'], {}), '(start, end)\n', (1246, 1258), True, 'import numpy as np\n'), ((1926, 1943), 'numpy.vstack', 'np.vstack', (['matrix'], {}), '(matrix)\n', (1935, 1943), True, 'import numpy as np\n'), ((1968, 1979), 'numpy.empty', 'np.empty', (['(0)'], {}), '(0)\n', (1976, 1979), True, 'import numpy as np\n'), ((3597, 3643), 'json.dump', 'json.dump', (['self', 'f'], {'cls': 'ModelEncoder'}), '(self, f, cls=ModelEncoder, **kwargs)\n', (3606, 3643), False, 'import json\n'), ((5574, 5659), 'visualization.model_visualizer.o3d.geometry.TriangleMesh.create_coordinate_frame', 'vis.o3d.geometry.TriangleMesh.create_coordinate_frame', ([], {'size': '(10)', 'origin': '[0, 0, 0]'}), '(size=10, origin=[0, 0, 0]\n )\n', (5627, 5659), True, 'import visualization.model_visualizer as vis\n'), ((7358, 7396), 'numpy.vstack', 'np.vstack', (['(constraints, extra_constr)'], {}), '((constraints, extra_constr))\n', (7367, 7396), True, 'import numpy as np\n'), ((8677, 8700), 'numpy.linalg.norm', 'np.linalg.norm', (['(p2 - p1)'], {}), '(p2 - p1)\n', (8691, 8700), True, 'import numpy as np\n'), ((8721, 8752), 'solvers.rigidity_solver.internal_structure.get_crystal_vertices', 'get_crystal_vertices', (['c', 'orient'], {}), '(c, orient)\n', (8741, 8752), False, 'from solvers.rigidity_solver.internal_structure import get_crystal_vertices\n'), ((9778, 9807), 'os.path.exists', 'os.path.exists', (['mesh_filename'], {}), '(mesh_filename)\n', (9792, 9807), False, 'import os\n'), ((9821, 9877), 'util.meshgen.cube_surface_mesh', 'meshgen.cube_surface_mesh', (['soup_filename', 'pivot', 'u', 'v', 'w'], {}), '(soup_filename, pivot, u, v, w)\n', (9846, 9877), True, 'import util.meshgen as meshgen\n'), ((9890, 9942), 'util.meshgen.tetrahedralize', 'meshgen.tetrahedralize', (['soup_filename', 'mesh_filename'], {}), '(soup_filename, mesh_filename)\n', (9912, 9942), True, 'import util.meshgen as meshgen\n'), ((10479, 10508), 'os.path.exists', 'os.path.exists', (['mesh_filename'], {}), '(mesh_filename)\n', (10493, 10508), False, 'import os\n'), ((10522, 10574), 'util.meshgen.tetrahedralize', 'meshgen.tetrahedralize', (['soup_filename', 'mesh_filename'], {}), '(soup_filename, mesh_filename)\n', (10544, 10574), True, 'import util.meshgen as meshgen\n'), ((14322, 14351), 'numpy.ones', 'np.ones', (['prohibitive.shape[0]'], {}), '(prohibitive.shape[0])\n', (14329, 14351), True, 'import numpy as np\n'), ((18087, 18144), 'numpy.zeros', 'np.zeros', (['(constraints.shape[0], model.point_count * dim)'], {}), '((constraints.shape[0], model.point_count * dim))\n', (18095, 18144), True, 'import numpy as np\n'), ((803, 844), 'numpy.vstack', 'np.vstack', (['[b.points for b in self.beams]'], {}), '([b.points for b in self.beams])\n', (812, 844), True, 'import numpy as np\n'), ((5053, 5157), 'visualization.model_visualizer.get_mesh_for_arrows', 'vis.get_mesh_for_arrows', (['translation_pivots', 'translation_vector'], {'length_coeff': '(0.01)', 'radius_coeff': '(0.4)'}), '(translation_pivots, translation_vector,\n length_coeff=0.01, radius_coeff=0.4)\n', (5076, 5157), True, 'import visualization.model_visualizer as vis\n'), ((5461, 5499), 'visualization.model_visualizer.get_mesh_for_points', 'vis.get_mesh_for_points', (['melded_points'], {}), '(melded_points)\n', (5484, 5499), True, 'import visualization.model_visualizer as vis\n'), ((8762, 8801), 'numpy.linspace', 'np.linspace', (['p1', 'p2'], {'num': 'crystal_counts'}), '(p1, p2, num=crystal_counts)\n', (8773, 8801), True, 'import numpy as np\n'), ((9414, 9436), 'numpy.linalg.norm', 'np.linalg.norm', (['orient'], {}), '(orient)\n', (9428, 9436), True, 'import numpy as np\n'), ((12052, 12093), 'numpy.linalg.matrix_rank', 'np.linalg.matrix_rank', (['self.rotation_axes'], {}), '(self.rotation_axes)\n', (12073, 12093), True, 'import numpy as np\n'), ((12379, 12426), 'numpy.linalg.matrix_rank', 'np.linalg.matrix_rank', (['self.translation_vectors'], {}), '(self.translation_vectors)\n', (12400, 12426), True, 'import numpy as np\n'), ((12648, 12689), 'numpy.linalg.matrix_rank', 'np.linalg.matrix_rank', (['self.soft_rotation'], {}), '(self.soft_rotation)\n', (12669, 12689), True, 'import numpy as np\n'), ((12963, 13007), 'numpy.linalg.matrix_rank', 'np.linalg.matrix_rank', (['self.soft_translation'], {}), '(self.soft_translation)\n', (12984, 13007), True, 'import numpy as np\n'), ((16072, 16093), 'numpy.diag', 'np.diag', (['coefficients'], {}), '(coefficients)\n', (16079, 16093), True, 'import numpy as np\n'), ((4543, 4576), 'util.geometry_util.normalize', 'geo_util.normalize', (['rotation_axes'], {}), '(rotation_axes)\n', (4561, 4576), True, 'import util.geometry_util as geo_util\n'), ((8352, 8390), 'itertools.combinations', 'itertools.combinations', (['index_range', '(2)'], {}), '(index_range, 2)\n', (8374, 8390), False, 'import itertools\n'), ((11994, 12017), 'numpy.array', 'np.array', (['rotation_axes'], {}), '(rotation_axes)\n', (12002, 12017), True, 'import numpy as np\n'), ((12257, 12286), 'numpy.array', 'np.array', (['translation_vectors'], {}), '(translation_vectors)\n', (12265, 12286), True, 'import numpy as np\n'), ((12590, 12613), 'numpy.array', 'np.array', (['soft_rotation'], {}), '(soft_rotation)\n', (12598, 12613), True, 'import numpy as np\n'), ((12847, 12873), 'numpy.array', 'np.array', (['soft_translation'], {}), '(soft_translation)\n', (12855, 12873), True, 'import numpy as np\n'), ((14749, 14758), 'numpy.eye', 'np.eye', (['(3)'], {}), '(3)\n', (14755, 14758), True, 'import numpy as np\n'), ((15569, 15578), 'numpy.eye', 'np.eye', (['(3)'], {}), '(3)\n', (15575, 15578), True, 'import numpy as np\n')]
"""record model Revision ID: 6c2a16b349b1 Revises: 2bafd0d01ae2 Create Date: 2021-11-20 18:51:45.427996 """ import sqlalchemy as sa import sqlmodel import sqlmodel.sql.sqltypes from alembic import op # revision identifiers, used by Alembic. revision = "6c2a16b349b1" down_revision = "2bafd0d01ae2" branch_labels = None depends_on = None def upgrade() -> None: # ### commands auto generated by Alembic - please adjust! ### op.create_table( "records", sa.Column( "created_at", sa.DateTime(timezone=True), server_default=sa.text("TIMEZONE('utc', CURRENT_TIMESTAMP)"), nullable=False, ), sa.Column( "updated_at", sa.DateTime(timezone=True), server_default=sa.text("TIMEZONE('utc', CURRENT_TIMESTAMP)"), nullable=False, ), sa.Column("problem_set_id", sqlmodel.sql.sqltypes.GUID(), nullable=True), sa.Column("problem_id", sqlmodel.sql.sqltypes.GUID(), nullable=True), sa.Column("user_id", sqlmodel.sql.sqltypes.GUID(), nullable=True), sa.Column("id", sqlmodel.sql.sqltypes.GUID(), nullable=False), sa.Column("status", sqlmodel.sql.sqltypes.AutoString(), nullable=True), sa.Column("score", sa.Integer(), nullable=True), sa.Column("time_ms", sa.Integer(), nullable=True), sa.Column("memory_kb", sa.Integer(), nullable=True), sa.Column("commit_id", sqlmodel.sql.sqltypes.AutoString(), nullable=True), sa.ForeignKeyConstraint(["problem_id"], ["problems.id"], ondelete="SET NULL"), sa.ForeignKeyConstraint( ["problem_set_id"], ["problem_sets.id"], ondelete="SET NULL" ), sa.ForeignKeyConstraint(["user_id"], ["users.id"], ondelete="SET NULL"), sa.PrimaryKeyConstraint("id"), ) op.create_index( op.f("ix_records_commit_id"), "records", ["commit_id"], unique=False ) op.create_index( op.f("ix_records_created_at"), "records", ["created_at"], unique=False ) op.create_index(op.f("ix_records_id"), "records", ["id"], unique=False) op.create_index( op.f("ix_records_memory_kb"), "records", ["memory_kb"], unique=False ) op.create_index(op.f("ix_records_score"), "records", ["score"], unique=False) op.create_index(op.f("ix_records_status"), "records", ["status"], unique=False) op.create_index(op.f("ix_records_time_ms"), "records", ["time_ms"], unique=False) op.create_index( op.f("ix_records_updated_at"), "records", ["updated_at"], unique=False ) # ### end Alembic commands ### def downgrade() -> None: # ### commands auto generated by Alembic - please adjust! ### op.drop_index(op.f("ix_records_updated_at"), table_name="records") op.drop_index(op.f("ix_records_time_ms"), table_name="records") op.drop_index(op.f("ix_records_status"), table_name="records") op.drop_index(op.f("ix_records_score"), table_name="records") op.drop_index(op.f("ix_records_memory_kb"), table_name="records") op.drop_index(op.f("ix_records_id"), table_name="records") op.drop_index(op.f("ix_records_created_at"), table_name="records") op.drop_index(op.f("ix_records_commit_id"), table_name="records") op.drop_table("records") # ### end Alembic commands ###
[ "sqlmodel.sql.sqltypes.GUID", "sqlmodel.sql.sqltypes.AutoString" ]
[((3269, 3293), 'alembic.op.drop_table', 'op.drop_table', (['"""records"""'], {}), "('records')\n", (3282, 3293), False, 'from alembic import op\n'), ((1521, 1598), 'sqlalchemy.ForeignKeyConstraint', 'sa.ForeignKeyConstraint', (["['problem_id']", "['problems.id']"], {'ondelete': '"""SET NULL"""'}), "(['problem_id'], ['problems.id'], ondelete='SET NULL')\n", (1544, 1598), True, 'import sqlalchemy as sa\n'), ((1608, 1698), 'sqlalchemy.ForeignKeyConstraint', 'sa.ForeignKeyConstraint', (["['problem_set_id']", "['problem_sets.id']"], {'ondelete': '"""SET NULL"""'}), "(['problem_set_id'], ['problem_sets.id'], ondelete=\n 'SET NULL')\n", (1631, 1698), True, 'import sqlalchemy as sa\n'), ((1725, 1796), 'sqlalchemy.ForeignKeyConstraint', 'sa.ForeignKeyConstraint', (["['user_id']", "['users.id']"], {'ondelete': '"""SET NULL"""'}), "(['user_id'], ['users.id'], ondelete='SET NULL')\n", (1748, 1796), True, 'import sqlalchemy as sa\n'), ((1806, 1835), 'sqlalchemy.PrimaryKeyConstraint', 'sa.PrimaryKeyConstraint', (['"""id"""'], {}), "('id')\n", (1829, 1835), True, 'import sqlalchemy as sa\n'), ((1872, 1900), 'alembic.op.f', 'op.f', (['"""ix_records_commit_id"""'], {}), "('ix_records_commit_id')\n", (1876, 1900), False, 'from alembic import op\n'), ((1976, 2005), 'alembic.op.f', 'op.f', (['"""ix_records_created_at"""'], {}), "('ix_records_created_at')\n", (1980, 2005), False, 'from alembic import op\n'), ((2073, 2094), 'alembic.op.f', 'op.f', (['"""ix_records_id"""'], {}), "('ix_records_id')\n", (2077, 2094), False, 'from alembic import op\n'), ((2158, 2186), 'alembic.op.f', 'op.f', (['"""ix_records_memory_kb"""'], {}), "('ix_records_memory_kb')\n", (2162, 2186), False, 'from alembic import op\n'), ((2253, 2277), 'alembic.op.f', 'op.f', (['"""ix_records_score"""'], {}), "('ix_records_score')\n", (2257, 2277), False, 'from alembic import op\n'), ((2335, 2360), 'alembic.op.f', 'op.f', (['"""ix_records_status"""'], {}), "('ix_records_status')\n", (2339, 2360), False, 'from alembic import op\n'), ((2419, 2445), 'alembic.op.f', 'op.f', (['"""ix_records_time_ms"""'], {}), "('ix_records_time_ms')\n", (2423, 2445), False, 'from alembic import op\n'), ((2514, 2543), 'alembic.op.f', 'op.f', (['"""ix_records_updated_at"""'], {}), "('ix_records_updated_at')\n", (2518, 2543), False, 'from alembic import op\n'), ((2737, 2766), 'alembic.op.f', 'op.f', (['"""ix_records_updated_at"""'], {}), "('ix_records_updated_at')\n", (2741, 2766), False, 'from alembic import op\n'), ((2808, 2834), 'alembic.op.f', 'op.f', (['"""ix_records_time_ms"""'], {}), "('ix_records_time_ms')\n", (2812, 2834), False, 'from alembic import op\n'), ((2876, 2901), 'alembic.op.f', 'op.f', (['"""ix_records_status"""'], {}), "('ix_records_status')\n", (2880, 2901), False, 'from alembic import op\n'), ((2943, 2967), 'alembic.op.f', 'op.f', (['"""ix_records_score"""'], {}), "('ix_records_score')\n", (2947, 2967), False, 'from alembic import op\n'), ((3009, 3037), 'alembic.op.f', 'op.f', (['"""ix_records_memory_kb"""'], {}), "('ix_records_memory_kb')\n", (3013, 3037), False, 'from alembic import op\n'), ((3079, 3100), 'alembic.op.f', 'op.f', (['"""ix_records_id"""'], {}), "('ix_records_id')\n", (3083, 3100), False, 'from alembic import op\n'), ((3142, 3171), 'alembic.op.f', 'op.f', (['"""ix_records_created_at"""'], {}), "('ix_records_created_at')\n", (3146, 3171), False, 'from alembic import op\n'), ((3213, 3241), 'alembic.op.f', 'op.f', (['"""ix_records_commit_id"""'], {}), "('ix_records_commit_id')\n", (3217, 3241), False, 'from alembic import op\n'), ((528, 554), 'sqlalchemy.DateTime', 'sa.DateTime', ([], {'timezone': '(True)'}), '(timezone=True)\n', (539, 554), True, 'import sqlalchemy as sa\n'), ((726, 752), 'sqlalchemy.DateTime', 'sa.DateTime', ([], {'timezone': '(True)'}), '(timezone=True)\n', (737, 752), True, 'import sqlalchemy as sa\n'), ((903, 931), 'sqlmodel.sql.sqltypes.GUID', 'sqlmodel.sql.sqltypes.GUID', ([], {}), '()\n', (929, 931), False, 'import sqlmodel\n'), ((981, 1009), 'sqlmodel.sql.sqltypes.GUID', 'sqlmodel.sql.sqltypes.GUID', ([], {}), '()\n', (1007, 1009), False, 'import sqlmodel\n'), ((1056, 1084), 'sqlmodel.sql.sqltypes.GUID', 'sqlmodel.sql.sqltypes.GUID', ([], {}), '()\n', (1082, 1084), False, 'import sqlmodel\n'), ((1126, 1154), 'sqlmodel.sql.sqltypes.GUID', 'sqlmodel.sql.sqltypes.GUID', ([], {}), '()\n', (1152, 1154), False, 'import sqlmodel\n'), ((1201, 1235), 'sqlmodel.sql.sqltypes.AutoString', 'sqlmodel.sql.sqltypes.AutoString', ([], {}), '()\n', (1233, 1235), False, 'import sqlmodel\n'), ((1280, 1292), 'sqlalchemy.Integer', 'sa.Integer', ([], {}), '()\n', (1290, 1292), True, 'import sqlalchemy as sa\n'), ((1339, 1351), 'sqlalchemy.Integer', 'sa.Integer', ([], {}), '()\n', (1349, 1351), True, 'import sqlalchemy as sa\n'), ((1400, 1412), 'sqlalchemy.Integer', 'sa.Integer', ([], {}), '()\n', (1410, 1412), True, 'import sqlalchemy as sa\n'), ((1461, 1495), 'sqlmodel.sql.sqltypes.AutoString', 'sqlmodel.sql.sqltypes.AutoString', ([], {}), '()\n', (1493, 1495), False, 'import sqlmodel\n'), ((583, 628), 'sqlalchemy.text', 'sa.text', (['"""TIMEZONE(\'utc\', CURRENT_TIMESTAMP)"""'], {}), '("TIMEZONE(\'utc\', CURRENT_TIMESTAMP)")\n', (590, 628), True, 'import sqlalchemy as sa\n'), ((781, 826), 'sqlalchemy.text', 'sa.text', (['"""TIMEZONE(\'utc\', CURRENT_TIMESTAMP)"""'], {}), '("TIMEZONE(\'utc\', CURRENT_TIMESTAMP)")\n', (788, 826), True, 'import sqlalchemy as sa\n')]
#!/usr/bin/env python """ Compare various elastic materials w.r.t. uniaxial tension/compression test. Requires Matplotlib. """ from optparse import OptionParser import sys sys.path.append('.') import numpy as nm def define(): """Define the problem to solve.""" from sfepy.discrete.fem.meshio import UserMeshIO from sfepy.mesh.mesh_generators import gen_block_mesh from sfepy.mechanics.matcoefs import stiffness_from_lame def mesh_hook(mesh, mode): """ Generate the block mesh. """ if mode == 'read': mesh = gen_block_mesh([2, 2, 3], [2, 2, 4], [0, 0, 1.5], name='el3', verbose=False) return mesh elif mode == 'write': pass filename_mesh = UserMeshIO(mesh_hook) options = { 'nls' : 'newton', 'ls' : 'ls', 'ts' : 'ts', 'save_steps' : -1, } functions = { 'linear_tension' : (linear_tension,), 'linear_compression' : (linear_compression,), 'empty' : (lambda ts, coor, mode, region, ig: None,), } fields = { 'displacement' : ('real', 3, 'Omega', 1), } # Coefficients are chosen so that the tangent stiffness is the same for all # material for zero strains. # Young modulus = 10 kPa, Poisson's ratio = 0.3 materials = { 'solid' : ({ 'K' : 8.333, # bulk modulus 'mu_nh' : 3.846, # shear modulus of neoHookean term 'mu_mr' : 1.923, # shear modulus of Mooney-Rivlin term 'kappa' : 1.923, # second modulus of Mooney-Rivlin term # elasticity for LE term 'D' : stiffness_from_lame(dim=3, lam=5.769, mu=3.846), },), 'load' : 'empty', } variables = { 'u' : ('unknown field', 'displacement', 0), 'v' : ('test field', 'displacement', 'u'), } regions = { 'Omega' : 'all', 'Bottom' : ('vertices in (z < 0.1)', 'facet'), 'Top' : ('vertices in (z > 2.9)', 'facet'), } ebcs = { 'fixb' : ('Bottom', {'u.all' : 0.0}), 'fixt' : ('Top', {'u.[0,1]' : 0.0}), } integrals = { 'i' : 1, 'isurf' : 2, } equations = { 'linear' : """dw_lin_elastic.i.Omega(solid.D, v, u) = dw_surface_ltr.isurf.Top(load.val, v)""", 'neo-Hookean' : """dw_tl_he_neohook.i.Omega(solid.mu_nh, v, u) + dw_tl_bulk_penalty.i.Omega(solid.K, v, u) = dw_surface_ltr.isurf.Top(load.val, v)""", 'Mooney-Rivlin' : """dw_tl_he_neohook.i.Omega(solid.mu_mr, v, u) + dw_tl_he_mooney_rivlin.i.Omega(solid.kappa, v, u) + dw_tl_bulk_penalty.i.Omega(solid.K, v, u) = dw_surface_ltr.isurf.Top(load.val, v)""", } solvers = { 'ls' : ('ls.scipy_direct', {}), 'newton' : ('nls.newton', { 'i_max' : 5, 'eps_a' : 1e-10, 'eps_r' : 1.0, }), 'ts' : ('ts.simple', { 't0' : 0, 't1' : 1, 'dt' : None, 'n_step' : 101, # has precedence over dt! }), } return locals() ## # Pressure tractions. def linear_tension(ts, coor, mode=None, **kwargs): if mode == 'qp': val = nm.tile(0.1 * ts.step, (coor.shape[0], 1, 1)) return {'val' : val} def linear_compression(ts, coor, mode=None, **kwargs): if mode == 'qp': val = nm.tile(-0.1 * ts.step, (coor.shape[0], 1, 1)) return {'val' : val} def store_top_u(displacements): """Function _store() will be called at the end of each loading step. Top displacements will be stored into `displacements`.""" def _store(problem, ts, state): top = problem.domain.regions['Top'] top_u = problem.get_variables()['u'].get_state_in_region(top) displacements.append(nm.mean(top_u[:,-1])) return _store def solve_branch(problem, branch_function): displacements = {} for key, eq in problem.conf.equations.iteritems(): problem.set_equations({key : eq}) load = problem.get_materials()['load'] load.set_function(branch_function) time_solver = problem.get_time_solver() time_solver.init_time() out = [] for _ in time_solver(save_results=False, step_hook=store_top_u(out)): pass displacements[key] = nm.array(out, dtype=nm.float64) return displacements usage = '%prog [options]\n' + __doc__.rstrip() helps = { 'no_plot' : 'do not show plot window', } def main(): from sfepy.base.base import output from sfepy.base.conf import ProblemConf, get_standard_keywords from sfepy.discrete import Problem from sfepy.base.plotutils import plt parser = OptionParser(usage=usage, version='%prog') parser.add_option('-n', '--no-plot', action="store_true", dest='no_plot', default=False, help=helps['no_plot']) options, args = parser.parse_args() required, other = get_standard_keywords() # Use this file as the input file. conf = ProblemConf.from_file(__file__, required, other) # Create problem instance, but do not set equations. problem = Problem.from_conf(conf, init_equations=False) # Solve the problem. Output is ignored, results stored by using the # step_hook. u_t = solve_branch(problem, linear_tension) u_c = solve_branch(problem, linear_compression) # Get pressure load by calling linear_*() for each time step. ts = problem.get_timestepper() load_t = nm.array([linear_tension(ts, nm.array([[0.0]]), 'qp')['val'] for aux in ts.iter_from(0)], dtype=nm.float64).squeeze() load_c = nm.array([linear_compression(ts, nm.array([[0.0]]), 'qp')['val'] for aux in ts.iter_from(0)], dtype=nm.float64).squeeze() # Join the branches. displacements = {} for key in u_t.keys(): displacements[key] = nm.r_[u_c[key][::-1], u_t[key]] load = nm.r_[load_c[::-1], load_t] if plt is None: output('matplotlib cannot be imported, printing raw data!') output(displacements) output(load) else: legend = [] for key, val in displacements.iteritems(): plt.plot(load, val) legend.append(key) plt.legend(legend, loc = 2) plt.xlabel('tension [kPa]') plt.ylabel('displacement [mm]') plt.grid(True) plt.gcf().savefig('pressure_displacement.png') if not options.no_plot: plt.show() if __name__ == '__main__': main()
[ "sfepy.base.plotutils.plt.ylabel", "sfepy.mesh.mesh_generators.gen_block_mesh", "sfepy.base.plotutils.plt.xlabel", "sfepy.base.plotutils.plt.legend", "sfepy.base.conf.ProblemConf.from_file", "sfepy.discrete.fem.meshio.UserMeshIO", "sfepy.base.plotutils.plt.grid", "sfepy.base.plotutils.plt.plot", "sfepy.base.plotutils.plt.gcf", "sfepy.base.plotutils.plt.show", "sfepy.base.conf.get_standard_keywords", "sfepy.base.base.output", "sfepy.discrete.Problem.from_conf", "sfepy.mechanics.matcoefs.stiffness_from_lame" ]
[((173, 193), 'sys.path.append', 'sys.path.append', (['"""."""'], {}), "('.')\n", (188, 193), False, 'import sys\n'), ((779, 800), 'sfepy.discrete.fem.meshio.UserMeshIO', 'UserMeshIO', (['mesh_hook'], {}), '(mesh_hook)\n', (789, 800), False, 'from sfepy.discrete.fem.meshio import UserMeshIO\n'), ((4880, 4922), 'optparse.OptionParser', 'OptionParser', ([], {'usage': 'usage', 'version': '"""%prog"""'}), "(usage=usage, version='%prog')\n", (4892, 4922), False, 'from optparse import OptionParser\n'), ((5146, 5169), 'sfepy.base.conf.get_standard_keywords', 'get_standard_keywords', ([], {}), '()\n', (5167, 5169), False, 'from sfepy.base.conf import ProblemConf, get_standard_keywords\n'), ((5220, 5268), 'sfepy.base.conf.ProblemConf.from_file', 'ProblemConf.from_file', (['__file__', 'required', 'other'], {}), '(__file__, required, other)\n', (5241, 5268), False, 'from sfepy.base.conf import ProblemConf, get_standard_keywords\n'), ((5341, 5386), 'sfepy.discrete.Problem.from_conf', 'Problem.from_conf', (['conf'], {'init_equations': '(False)'}), '(conf, init_equations=False)\n', (5358, 5386), False, 'from sfepy.discrete import Problem\n'), ((3395, 3440), 'numpy.tile', 'nm.tile', (['(0.1 * ts.step)', '(coor.shape[0], 1, 1)'], {}), '(0.1 * ts.step, (coor.shape[0], 1, 1))\n', (3402, 3440), True, 'import numpy as nm\n'), ((3561, 3607), 'numpy.tile', 'nm.tile', (['(-0.1 * ts.step)', '(coor.shape[0], 1, 1)'], {}), '(-0.1 * ts.step, (coor.shape[0], 1, 1))\n', (3568, 3607), True, 'import numpy as nm\n'), ((4506, 4537), 'numpy.array', 'nm.array', (['out'], {'dtype': 'nm.float64'}), '(out, dtype=nm.float64)\n', (4514, 4537), True, 'import numpy as nm\n'), ((6241, 6300), 'sfepy.base.base.output', 'output', (['"""matplotlib cannot be imported, printing raw data!"""'], {}), "('matplotlib cannot be imported, printing raw data!')\n", (6247, 6300), False, 'from sfepy.base.base import output\n'), ((6309, 6330), 'sfepy.base.base.output', 'output', (['displacements'], {}), '(displacements)\n', (6315, 6330), False, 'from sfepy.base.base import output\n'), ((6339, 6351), 'sfepy.base.base.output', 'output', (['load'], {}), '(load)\n', (6345, 6351), False, 'from sfepy.base.base import output\n'), ((6505, 6530), 'sfepy.base.plotutils.plt.legend', 'plt.legend', (['legend'], {'loc': '(2)'}), '(legend, loc=2)\n', (6515, 6530), False, 'from sfepy.base.plotutils import plt\n'), ((6541, 6568), 'sfepy.base.plotutils.plt.xlabel', 'plt.xlabel', (['"""tension [kPa]"""'], {}), "('tension [kPa]')\n", (6551, 6568), False, 'from sfepy.base.plotutils import plt\n'), ((6577, 6608), 'sfepy.base.plotutils.plt.ylabel', 'plt.ylabel', (['"""displacement [mm]"""'], {}), "('displacement [mm]')\n", (6587, 6608), False, 'from sfepy.base.plotutils import plt\n'), ((6617, 6631), 'sfepy.base.plotutils.plt.grid', 'plt.grid', (['(True)'], {}), '(True)\n', (6625, 6631), False, 'from sfepy.base.plotutils import plt\n'), ((575, 651), 'sfepy.mesh.mesh_generators.gen_block_mesh', 'gen_block_mesh', (['[2, 2, 3]', '[2, 2, 4]', '[0, 0, 1.5]'], {'name': '"""el3"""', 'verbose': '(False)'}), "([2, 2, 3], [2, 2, 4], [0, 0, 1.5], name='el3', verbose=False)\n", (589, 651), False, 'from sfepy.mesh.mesh_generators import gen_block_mesh\n'), ((3986, 4007), 'numpy.mean', 'nm.mean', (['top_u[:, -1]'], {}), '(top_u[:, -1])\n', (3993, 4007), True, 'import numpy as nm\n'), ((6445, 6464), 'sfepy.base.plotutils.plt.plot', 'plt.plot', (['load', 'val'], {}), '(load, val)\n', (6453, 6464), False, 'from sfepy.base.plotutils import plt\n'), ((6733, 6743), 'sfepy.base.plotutils.plt.show', 'plt.show', ([], {}), '()\n', (6741, 6743), False, 'from sfepy.base.plotutils import plt\n'), ((1678, 1725), 'sfepy.mechanics.matcoefs.stiffness_from_lame', 'stiffness_from_lame', ([], {'dim': '(3)', 'lam': '(5.769)', 'mu': '(3.846)'}), '(dim=3, lam=5.769, mu=3.846)\n', (1697, 1725), False, 'from sfepy.mechanics.matcoefs import stiffness_from_lame\n'), ((6641, 6650), 'sfepy.base.plotutils.plt.gcf', 'plt.gcf', ([], {}), '()\n', (6648, 6650), False, 'from sfepy.base.plotutils import plt\n'), ((5721, 5738), 'numpy.array', 'nm.array', (['[[0.0]]'], {}), '([[0.0]])\n', (5729, 5738), True, 'import numpy as nm\n'), ((5901, 5918), 'numpy.array', 'nm.array', (['[[0.0]]'], {}), '([[0.0]])\n', (5909, 5918), True, 'import numpy as nm\n')]
"""v1-messages Revision ID: b01986f67aa3 Revises: <KEY> Create Date: 2022-06-01 16:00:25.954662 """ from alembic import op import sqlalchemy as sa import sqlmodel from sqlalchemy.dialects import postgresql # revision identifiers, used by Alembic. revision = "<KEY>" down_revision = "c9b007919a5d" branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.create_table( "message", sa.Column( "message_id", postgresql.UUID(as_uuid=True), server_default=sa.text("gen_random_uuid()"), nullable=False, ), sa.Column("tags", postgresql.ARRAY(sa.String()), nullable=True), sa.Column("sent_time", postgresql.TIMESTAMP(), nullable=True), sa.Column( "created_at", postgresql.TIMESTAMP(), server_default=sa.text("now()"), nullable=False, ), sa.Column( "updated_at", postgresql.TIMESTAMP(), server_default=sa.text("now()"), nullable=False, ), sa.Column("tenant_id", sqlmodel.sql.sqltypes.GUID(), nullable=False), sa.Column("contact_id", sqlmodel.sql.sqltypes.GUID(), nullable=False), sa.Column("status", sqlmodel.sql.sqltypes.AutoString(), nullable=False), sa.Column("role", sqlmodel.sql.sqltypes.AutoString(), nullable=False), sa.Column("deleted", sa.Boolean(), nullable=False), sa.Column("content", sqlmodel.sql.sqltypes.AutoString(), nullable=True), sa.Column( "revocation_comment", sqlmodel.sql.sqltypes.AutoString(), nullable=True ), sa.Column("state", sqlmodel.sql.sqltypes.AutoString(), nullable=False), sa.ForeignKeyConstraint( ["contact_id"], ["contact.contact_id"], ), sa.ForeignKeyConstraint( ["tenant_id"], ["tenant.id"], ), sa.PrimaryKeyConstraint("message_id"), ) op.create_index( op.f("ix_message_contact_id"), "message", ["contact_id"], unique=False ) op.create_index( op.f("ix_message_tenant_id"), "message", ["tenant_id"], unique=False ) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_index(op.f("ix_message_tenant_id"), table_name="message") op.drop_index(op.f("ix_message_contact_id"), table_name="message") op.drop_table("message") # ### end Alembic commands ###
[ "sqlmodel.sql.sqltypes.AutoString", "sqlmodel.sql.sqltypes.GUID" ]
[((2506, 2530), 'alembic.op.drop_table', 'op.drop_table', (['"""message"""'], {}), "('message')\n", (2519, 2530), False, 'from alembic import op\n'), ((1780, 1843), 'sqlalchemy.ForeignKeyConstraint', 'sa.ForeignKeyConstraint', (["['contact_id']", "['contact.contact_id']"], {}), "(['contact_id'], ['contact.contact_id'])\n", (1803, 1843), True, 'import sqlalchemy as sa\n'), ((1888, 1941), 'sqlalchemy.ForeignKeyConstraint', 'sa.ForeignKeyConstraint', (["['tenant_id']", "['tenant.id']"], {}), "(['tenant_id'], ['tenant.id'])\n", (1911, 1941), True, 'import sqlalchemy as sa\n'), ((1986, 2023), 'sqlalchemy.PrimaryKeyConstraint', 'sa.PrimaryKeyConstraint', (['"""message_id"""'], {}), "('message_id')\n", (2009, 2023), True, 'import sqlalchemy as sa\n'), ((2060, 2089), 'alembic.op.f', 'op.f', (['"""ix_message_contact_id"""'], {}), "('ix_message_contact_id')\n", (2064, 2089), False, 'from alembic import op\n'), ((2166, 2194), 'alembic.op.f', 'op.f', (['"""ix_message_tenant_id"""'], {}), "('ix_message_tenant_id')\n", (2170, 2194), False, 'from alembic import op\n'), ((2379, 2407), 'alembic.op.f', 'op.f', (['"""ix_message_tenant_id"""'], {}), "('ix_message_tenant_id')\n", (2383, 2407), False, 'from alembic import op\n'), ((2449, 2478), 'alembic.op.f', 'op.f', (['"""ix_message_contact_id"""'], {}), "('ix_message_contact_id')\n", (2453, 2478), False, 'from alembic import op\n'), ((519, 548), 'sqlalchemy.dialects.postgresql.UUID', 'postgresql.UUID', ([], {'as_uuid': '(True)'}), '(as_uuid=True)\n', (534, 548), False, 'from sqlalchemy.dialects import postgresql\n'), ((750, 772), 'sqlalchemy.dialects.postgresql.TIMESTAMP', 'postgresql.TIMESTAMP', ([], {}), '()\n', (770, 772), False, 'from sqlalchemy.dialects import postgresql\n'), ((847, 869), 'sqlalchemy.dialects.postgresql.TIMESTAMP', 'postgresql.TIMESTAMP', ([], {}), '()\n', (867, 869), False, 'from sqlalchemy.dialects import postgresql\n'), ((1012, 1034), 'sqlalchemy.dialects.postgresql.TIMESTAMP', 'postgresql.TIMESTAMP', ([], {}), '()\n', (1032, 1034), False, 'from sqlalchemy.dialects import postgresql\n'), ((1151, 1179), 'sqlmodel.sql.sqltypes.GUID', 'sqlmodel.sql.sqltypes.GUID', ([], {}), '()\n', (1177, 1179), False, 'import sqlmodel\n'), ((1230, 1258), 'sqlmodel.sql.sqltypes.GUID', 'sqlmodel.sql.sqltypes.GUID', ([], {}), '()\n', (1256, 1258), False, 'import sqlmodel\n'), ((1305, 1339), 'sqlmodel.sql.sqltypes.AutoString', 'sqlmodel.sql.sqltypes.AutoString', ([], {}), '()\n', (1337, 1339), False, 'import sqlmodel\n'), ((1384, 1418), 'sqlmodel.sql.sqltypes.AutoString', 'sqlmodel.sql.sqltypes.AutoString', ([], {}), '()\n', (1416, 1418), False, 'import sqlmodel\n'), ((1466, 1478), 'sqlalchemy.Boolean', 'sa.Boolean', ([], {}), '()\n', (1476, 1478), True, 'import sqlalchemy as sa\n'), ((1526, 1560), 'sqlmodel.sql.sqltypes.AutoString', 'sqlmodel.sql.sqltypes.AutoString', ([], {}), '()\n', (1558, 1560), False, 'import sqlmodel\n'), ((1631, 1665), 'sqlmodel.sql.sqltypes.AutoString', 'sqlmodel.sql.sqltypes.AutoString', ([], {}), '()\n', (1663, 1665), False, 'import sqlmodel\n'), ((1719, 1753), 'sqlmodel.sql.sqltypes.AutoString', 'sqlmodel.sql.sqltypes.AutoString', ([], {}), '()\n', (1751, 1753), False, 'import sqlmodel\n'), ((577, 605), 'sqlalchemy.text', 'sa.text', (['"""gen_random_uuid()"""'], {}), "('gen_random_uuid()')\n", (584, 605), True, 'import sqlalchemy as sa\n'), ((689, 700), 'sqlalchemy.String', 'sa.String', ([], {}), '()\n', (698, 700), True, 'import sqlalchemy as sa\n'), ((898, 914), 'sqlalchemy.text', 'sa.text', (['"""now()"""'], {}), "('now()')\n", (905, 914), True, 'import sqlalchemy as sa\n'), ((1063, 1079), 'sqlalchemy.text', 'sa.text', (['"""now()"""'], {}), "('now()')\n", (1070, 1079), True, 'import sqlalchemy as sa\n')]
#!/usr/bin/env python import sys sys.path.append('.') from optparse import OptionParser from sfepy.base.base import nm, output from sfepy.fem import Mesh from sfepy.fem.meshio import io_table, supported_capabilities usage = """%prog [options] filename_in filename_out Convert a mesh file from one SfePy-supported format to another. Examples: $ ./script/convert_mesh.py meshes/3d/cylinder.mesh new.vtk $ ./script/convert_mesh.py meshes/3d/cylinder.mesh new.vtk -s2.5 $ ./script/convert_mesh.py meshes/3d/cylinder.mesh new.vtk -s0.5,2,1 """ help = { 'scale' : 'scale factor [default: %default]', 'format' : 'output mesh format (overrides filename_out extension)', 'list' : 'list supported writable output mesh formats', } def output_writable_meshes(): output('Supported writable mesh formats are:') for key, val in supported_capabilities.iteritems(): if 'w' in val: output(key) def main(): parser = OptionParser(usage=usage) parser.add_option("-s", "--scale", metavar='scale', action="store", dest="scale", default=None, help=help['scale']) parser.add_option("-f", "--format", metavar='format', action="store", type='string', dest="format", default=None, help=help['format']) parser.add_option("-l", "--list", action="store_true", dest="list", help=help['list']) (options, args) = parser.parse_args() if options.list: output_writable_meshes() sys.exit(0) if len(args) != 2: parser.print_help() sys.exit(1) scale = options.scale if scale is not None: try: try: scale = float(scale) except ValueError: scale = [float(ii) for ii in scale.split(',')] scale = nm.array(scale, dtype=nm.float64, ndmin=1) except: output('bad scale! (%s)' % scale) parser.print_help() sys.exit(1) filename_in, filename_out = args mesh = Mesh.from_file(filename_in) if scale is not None: if len(scale) == 1: tr = nm.eye(mesh.dim, dtype=nm.float64) * scale elif len(scale) == mesh.dim: tr = nm.diag(scale) else: raise ValueError('bad scale! (%s)' % scale) mesh.transform_coors(tr) io = 'auto' if options.format: try: io = io_table[options.format](filename_out) except KeyError: output('unknown output mesh format! (%s)' % options.format) output_writable_meshes() sys.exit(1) if 'w' not in supported_capabilities[options.format]: output('write support not implemented for output mesh format! (%s)' % options.format) output_writable_meshes() sys.exit(1) output('writing %s...' % filename_out) mesh.write(filename_out, io=io) output('...done') if __name__ == '__main__': main()
[ "sfepy.base.base.output", "sfepy.base.base.nm.array", "sfepy.base.base.nm.diag", "sfepy.fem.meshio.supported_capabilities.iteritems", "sfepy.base.base.nm.eye", "sfepy.fem.Mesh.from_file" ]
[((33, 53), 'sys.path.append', 'sys.path.append', (['"""."""'], {}), "('.')\n", (48, 53), False, 'import sys\n'), ((773, 819), 'sfepy.base.base.output', 'output', (['"""Supported writable mesh formats are:"""'], {}), "('Supported writable mesh formats are:')\n", (779, 819), False, 'from sfepy.base.base import nm, output\n'), ((840, 874), 'sfepy.fem.meshio.supported_capabilities.iteritems', 'supported_capabilities.iteritems', ([], {}), '()\n', (872, 874), False, 'from sfepy.fem.meshio import io_table, supported_capabilities\n'), ((949, 974), 'optparse.OptionParser', 'OptionParser', ([], {'usage': 'usage'}), '(usage=usage)\n', (961, 974), False, 'from optparse import OptionParser\n'), ((2086, 2113), 'sfepy.fem.Mesh.from_file', 'Mesh.from_file', (['filename_in'], {}), '(filename_in)\n', (2100, 2113), False, 'from sfepy.fem import Mesh\n'), ((2927, 2965), 'sfepy.base.base.output', 'output', (["('writing %s...' % filename_out)"], {}), "('writing %s...' % filename_out)\n", (2933, 2965), False, 'from sfepy.base.base import nm, output\n'), ((3006, 3023), 'sfepy.base.base.output', 'output', (['"""...done"""'], {}), "('...done')\n", (3012, 3023), False, 'from sfepy.base.base import nm, output\n'), ((1541, 1552), 'sys.exit', 'sys.exit', (['(0)'], {}), '(0)\n', (1549, 1552), False, 'import sys\n'), ((1613, 1624), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (1621, 1624), False, 'import sys\n'), ((911, 922), 'sfepy.base.base.output', 'output', (['key'], {}), '(key)\n', (917, 922), False, 'from sfepy.base.base import nm, output\n'), ((1863, 1905), 'sfepy.base.base.nm.array', 'nm.array', (['scale'], {'dtype': 'nm.float64', 'ndmin': '(1)'}), '(scale, dtype=nm.float64, ndmin=1)\n', (1871, 1905), False, 'from sfepy.base.base import nm, output\n'), ((2755, 2844), 'sfepy.base.base.output', 'output', (["('write support not implemented for output mesh format! (%s)' % options.format)"], {}), "('write support not implemented for output mesh format! (%s)' %\n options.format)\n", (2761, 2844), False, 'from sfepy.base.base import nm, output\n'), ((2910, 2921), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (2918, 2921), False, 'import sys\n'), ((1934, 1967), 'sfepy.base.base.output', 'output', (["('bad scale! (%s)' % scale)"], {}), "('bad scale! (%s)' % scale)\n", (1940, 1967), False, 'from sfepy.base.base import nm, output\n'), ((2012, 2023), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (2020, 2023), False, 'import sys\n'), ((2186, 2220), 'sfepy.base.base.nm.eye', 'nm.eye', (['mesh.dim'], {'dtype': 'nm.float64'}), '(mesh.dim, dtype=nm.float64)\n', (2192, 2220), False, 'from sfepy.base.base import nm, output\n'), ((2283, 2297), 'sfepy.base.base.nm.diag', 'nm.diag', (['scale'], {}), '(scale)\n', (2290, 2297), False, 'from sfepy.base.base import nm, output\n'), ((2547, 2606), 'sfepy.base.base.output', 'output', (["('unknown output mesh format! (%s)' % options.format)"], {}), "('unknown output mesh format! (%s)' % options.format)\n", (2553, 2606), False, 'from sfepy.base.base import nm, output\n'), ((2656, 2667), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (2664, 2667), False, 'import sys\n')]
#!/usr/bin/env python3 # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. import copy from typing import Optional, Sequence import cv2 import megengine.data as data import megengine.data.transform as T import numpy as np from basecore.config import ConfigDict from loguru import logger from basecls.utils import registers from .augment import WARP_PARAMS, TorchAutoAugment, TorchRandAugment from .const import CV2_INTERP, PIL_INTERP from .mixup import MixupCutmixCollator from .rand_erase import RandomErasing __all__ = [ "build_transform", "AutoAugment", "SimpleAugment", "ColorAugment", "RandAugment", "build_mixup", ] def build_transform( cfg: ConfigDict, train: bool = True, augments: T.Transform = None ) -> T.Transform: """Build function for MegEngine transform. Args: cfg: config for building transform. train: train set or test set. Default: ``True`` augments: augments for building transform. Returns: A transform. """ if train: assert augments is not None bgr_mean = copy.deepcopy(cfg.preprocess.img_mean) bgr_std = copy.deepcopy(cfg.preprocess.img_std) if cfg.preprocess.img_color_space == "RGB": bgr_mean = bgr_mean[::-1] bgr_std = bgr_std[::-1] WARP_PARAMS["fillcolor"] = tuple(round(v) for v in bgr_mean[::-1]) # need RGB WARP_PARAMS["resample"] = PIL_INTERP[cfg.augments.resize.interpolation] transforms = [ T.RandomResizedCrop( cfg.preprocess.img_size, cfg.augments.resize.scale_range, cfg.augments.resize.ratio_range, CV2_INTERP[cfg.augments.resize.interpolation], ), T.RandomHorizontalFlip(), augments, RandomErasing( **cfg.augments.rand_erase.to_dict(), pad_mean=bgr_mean, # need BGR pad_std=bgr_std, # need BGR ), ToColorSpace(cfg.preprocess.img_color_space), T.ToMode(), ] else: assert augments is None transforms = [ T.Resize( int(cfg.test.img_size / cfg.test.crop_pct / 2 + 0.5) * 2, # make it even CV2_INTERP[cfg.augments.resize.interpolation], ), T.CenterCrop(cfg.test.img_size), ToColorSpace(cfg.preprocess.img_color_space), T.ToMode(), ] return T.Compose(transforms=transforms, order=["image", "image_category"]) class ToColorSpace(T.VisionTransform): """Transform to transfer color space. Args: color_space: color space, supports ``"BGR"``, ``"RGB"`` and ``"GRAY"``. """ def __init__(self, color_space: str, *, order: Sequence = None): super().__init__(order) if color_space not in ("BGR", "RGB", "GRAY"): raise ValueError(f"Color space '{color_space}' not supported") self.color_space = color_space def _apply_image(self, image: np.ndarray) -> np.ndarray: if self.color_space == "BGR": return image elif self.color_space == "RGB": return cv2.cvtColor(image, cv2.COLOR_BGR2RGB) elif self.color_space == "GRAY": return cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)[..., np.newaxis] else: raise ValueError(f"Color space '{self.color_space}' not supported") @registers.augments.register() class SimpleAugment: """Simple augmentation.""" @classmethod def build(cls, cfg: ConfigDict) -> T.Transform: return T.PseudoTransform() @registers.augments.register() class ColorAugment: """Color augmentation.""" @classmethod def build(cls, cfg: ConfigDict) -> T.Transform: aug_args = cfg.augments.color_aug.to_dict() lighting_scale = aug_args.pop("lighting") return T.Compose([T.ColorJitter(**aug_args), T.Lighting(lighting_scale)]) @registers.augments.register() class AutoAugment: """AutoAugment.""" @classmethod def build(cls, cfg: ConfigDict) -> T.Transform: return T.TorchTransformCompose([TorchAutoAugment()]) @registers.augments.register() class RandAugment: """Random augmentation.""" @classmethod def build(cls, cfg: ConfigDict) -> T.Transform: return T.TorchTransformCompose([TorchRandAugment(**cfg.augments.rand_aug.to_dict())]) def build_mixup(cfg: ConfigDict, train: bool = True) -> Optional[data.Collator]: """Build (optionally) Mixup/CutMix augment. Args: cfg: config for building Mixup/CutMix collator. train: train set or test set. Default: ``True`` Returns: :py:class:`~basecls.data.mixup.MixupCutmixCollator` or ``None`` """ mixup_cfg = cfg.augments.mixup if train and ( mixup_cfg.mixup_alpha > 0.0 or mixup_cfg.cutmix_alpha > 0.0 or mixup_cfg.cutmix_minmax is not None ): mixup_collator = MixupCutmixCollator(**mixup_cfg.to_dict(), num_classes=cfg.num_classes) logger.info(f"Using mixup with configuration:\n{mixup_cfg}") else: mixup_collator = None return mixup_collator
[ "megengine.data.transform.Lighting", "megengine.data.transform.PseudoTransform", "megengine.data.transform.RandomResizedCrop", "megengine.data.transform.RandomHorizontalFlip", "megengine.data.transform.ColorJitter", "megengine.data.transform.Compose", "megengine.data.transform.ToMode", "megengine.data.transform.CenterCrop" ]
[((3450, 3479), 'basecls.utils.registers.augments.register', 'registers.augments.register', ([], {}), '()\n', (3477, 3479), False, 'from basecls.utils import registers\n'), ((3640, 3669), 'basecls.utils.registers.augments.register', 'registers.augments.register', ([], {}), '()\n', (3667, 3669), False, 'from basecls.utils import registers\n'), ((3977, 4006), 'basecls.utils.registers.augments.register', 'registers.augments.register', ([], {}), '()\n', (4004, 4006), False, 'from basecls.utils import registers\n'), ((4183, 4212), 'basecls.utils.registers.augments.register', 'registers.augments.register', ([], {}), '()\n', (4210, 4212), False, 'from basecls.utils import registers\n'), ((2493, 2560), 'megengine.data.transform.Compose', 'T.Compose', ([], {'transforms': 'transforms', 'order': "['image', 'image_category']"}), "(transforms=transforms, order=['image', 'image_category'])\n", (2502, 2560), True, 'import megengine.data.transform as T\n'), ((1089, 1127), 'copy.deepcopy', 'copy.deepcopy', (['cfg.preprocess.img_mean'], {}), '(cfg.preprocess.img_mean)\n', (1102, 1127), False, 'import copy\n'), ((1146, 1183), 'copy.deepcopy', 'copy.deepcopy', (['cfg.preprocess.img_std'], {}), '(cfg.preprocess.img_std)\n', (1159, 1183), False, 'import copy\n'), ((3617, 3636), 'megengine.data.transform.PseudoTransform', 'T.PseudoTransform', ([], {}), '()\n', (3634, 3636), True, 'import megengine.data.transform as T\n'), ((5064, 5127), 'loguru.logger.info', 'logger.info', (['f"""Using mixup with configuration:\n{mixup_cfg}"""'], {}), '(f"""Using mixup with configuration:\n{mixup_cfg}""")\n', (5075, 5127), False, 'from loguru import logger\n'), ((1513, 1680), 'megengine.data.transform.RandomResizedCrop', 'T.RandomResizedCrop', (['cfg.preprocess.img_size', 'cfg.augments.resize.scale_range', 'cfg.augments.resize.ratio_range', 'CV2_INTERP[cfg.augments.resize.interpolation]'], {}), '(cfg.preprocess.img_size, cfg.augments.resize.\n scale_range, cfg.augments.resize.ratio_range, CV2_INTERP[cfg.augments.\n resize.interpolation])\n', (1532, 1680), True, 'import megengine.data.transform as T\n'), ((1763, 1787), 'megengine.data.transform.RandomHorizontalFlip', 'T.RandomHorizontalFlip', ([], {}), '()\n', (1785, 1787), True, 'import megengine.data.transform as T\n'), ((2068, 2078), 'megengine.data.transform.ToMode', 'T.ToMode', ([], {}), '()\n', (2076, 2078), True, 'import megengine.data.transform as T\n'), ((2357, 2388), 'megengine.data.transform.CenterCrop', 'T.CenterCrop', (['cfg.test.img_size'], {}), '(cfg.test.img_size)\n', (2369, 2388), True, 'import megengine.data.transform as T\n'), ((2460, 2470), 'megengine.data.transform.ToMode', 'T.ToMode', ([], {}), '()\n', (2468, 2470), True, 'import megengine.data.transform as T\n'), ((3197, 3235), 'cv2.cvtColor', 'cv2.cvtColor', (['image', 'cv2.COLOR_BGR2RGB'], {}), '(image, cv2.COLOR_BGR2RGB)\n', (3209, 3235), False, 'import cv2\n'), ((3918, 3943), 'megengine.data.transform.ColorJitter', 'T.ColorJitter', ([], {}), '(**aug_args)\n', (3931, 3943), True, 'import megengine.data.transform as T\n'), ((3945, 3971), 'megengine.data.transform.Lighting', 'T.Lighting', (['lighting_scale'], {}), '(lighting_scale)\n', (3955, 3971), True, 'import megengine.data.transform as T\n'), ((3296, 3335), 'cv2.cvtColor', 'cv2.cvtColor', (['image', 'cv2.COLOR_BGR2GRAY'], {}), '(image, cv2.COLOR_BGR2GRAY)\n', (3308, 3335), False, 'import cv2\n')]
import uuid from datetime import datetime from sqlmodel import Field from api.db.models.base import BaseModel, BaseTable class TenantSchemaBase(BaseModel): tenant_id: uuid.UUID = Field(nullable=False) wallet_id: uuid.UUID = Field(nullable=False) # workflow_id will be null until the tenant kcks it off workflow_id: uuid.UUID = Field(nullable=True, default=None) schema_id: str = Field(nullable=True, default=None) schema_name: str = Field(nullable=True, default=None) schema_version: str = Field(nullable=True, default=None) schema_attrs: str = Field(nullable=True, default=None) schema_txn_id: uuid.UUID = Field(nullable=True, default=None) schema_state: str = Field(nullable=True, default=None) cred_def_tag: str = Field(nullable=True, default=None) cred_def_txn_id: uuid.UUID = Field(nullable=True, default=None) cred_def_id: str = Field(nullable=True, default=None) cred_def_state: str = Field(nullable=True, default=None) cred_revocation: bool = Field(nullable=True, default=None) cred_revoc_reg_size: int = Field(nullable=True, default=None) revoc_reg_state: str = Field(nullable=True, default=None) class TenantSchema(TenantSchemaBase, BaseTable, table=True): # This is the class that represents the table pass class TenantSchemaCreate(TenantSchemaBase): # This is the class that represents interface for creating a tenant # we must set all the required fields, # but do not need to set optional (and shouldn't) pass class TenantSchemaRead(TenantSchemaBase): # This is the class that represents interface for reading a tenant # here we indicate id, created_at and updated_at must be included id: uuid.UUID created_at: datetime updated_at: datetime class TenantSchemaUpdate(BaseModel): # This is our update interface # This does NOT inherit from TenantSchemaBase, # so no need to worry about accidentally updating id or other fields id: uuid.UUID workflow_id: uuid.UUID = Field(nullable=True, default=None) schema_id: str = Field(nullable=True, default=None) schema_txn_id: uuid.UUID = Field(nullable=True, default=None) schema_state: str = Field(nullable=True, default=None) cred_def_txn_id: uuid.UUID = Field(nullable=True, default=None) cred_def_id: str = Field(nullable=True, default=None) cred_def_state: str = Field(nullable=True, default=None) revoc_reg_state: str = Field(nullable=True, default=None)
[ "sqlmodel.Field" ]
[((187, 208), 'sqlmodel.Field', 'Field', ([], {'nullable': '(False)'}), '(nullable=False)\n', (192, 208), False, 'from sqlmodel import Field\n'), ((236, 257), 'sqlmodel.Field', 'Field', ([], {'nullable': '(False)'}), '(nullable=False)\n', (241, 257), False, 'from sqlmodel import Field\n'), ((347, 381), 'sqlmodel.Field', 'Field', ([], {'nullable': '(True)', 'default': 'None'}), '(nullable=True, default=None)\n', (352, 381), False, 'from sqlmodel import Field\n'), ((403, 437), 'sqlmodel.Field', 'Field', ([], {'nullable': '(True)', 'default': 'None'}), '(nullable=True, default=None)\n', (408, 437), False, 'from sqlmodel import Field\n'), ((461, 495), 'sqlmodel.Field', 'Field', ([], {'nullable': '(True)', 'default': 'None'}), '(nullable=True, default=None)\n', (466, 495), False, 'from sqlmodel import Field\n'), ((522, 556), 'sqlmodel.Field', 'Field', ([], {'nullable': '(True)', 'default': 'None'}), '(nullable=True, default=None)\n', (527, 556), False, 'from sqlmodel import Field\n'), ((581, 615), 'sqlmodel.Field', 'Field', ([], {'nullable': '(True)', 'default': 'None'}), '(nullable=True, default=None)\n', (586, 615), False, 'from sqlmodel import Field\n'), ((647, 681), 'sqlmodel.Field', 'Field', ([], {'nullable': '(True)', 'default': 'None'}), '(nullable=True, default=None)\n', (652, 681), False, 'from sqlmodel import Field\n'), ((706, 740), 'sqlmodel.Field', 'Field', ([], {'nullable': '(True)', 'default': 'None'}), '(nullable=True, default=None)\n', (711, 740), False, 'from sqlmodel import Field\n'), ((765, 799), 'sqlmodel.Field', 'Field', ([], {'nullable': '(True)', 'default': 'None'}), '(nullable=True, default=None)\n', (770, 799), False, 'from sqlmodel import Field\n'), ((833, 867), 'sqlmodel.Field', 'Field', ([], {'nullable': '(True)', 'default': 'None'}), '(nullable=True, default=None)\n', (838, 867), False, 'from sqlmodel import Field\n'), ((891, 925), 'sqlmodel.Field', 'Field', ([], {'nullable': '(True)', 'default': 'None'}), '(nullable=True, default=None)\n', (896, 925), False, 'from sqlmodel import Field\n'), ((952, 986), 'sqlmodel.Field', 'Field', ([], {'nullable': '(True)', 'default': 'None'}), '(nullable=True, default=None)\n', (957, 986), False, 'from sqlmodel import Field\n'), ((1015, 1049), 'sqlmodel.Field', 'Field', ([], {'nullable': '(True)', 'default': 'None'}), '(nullable=True, default=None)\n', (1020, 1049), False, 'from sqlmodel import Field\n'), ((1081, 1115), 'sqlmodel.Field', 'Field', ([], {'nullable': '(True)', 'default': 'None'}), '(nullable=True, default=None)\n', (1086, 1115), False, 'from sqlmodel import Field\n'), ((1143, 1177), 'sqlmodel.Field', 'Field', ([], {'nullable': '(True)', 'default': 'None'}), '(nullable=True, default=None)\n', (1148, 1177), False, 'from sqlmodel import Field\n'), ((2022, 2056), 'sqlmodel.Field', 'Field', ([], {'nullable': '(True)', 'default': 'None'}), '(nullable=True, default=None)\n', (2027, 2056), False, 'from sqlmodel import Field\n'), ((2078, 2112), 'sqlmodel.Field', 'Field', ([], {'nullable': '(True)', 'default': 'None'}), '(nullable=True, default=None)\n', (2083, 2112), False, 'from sqlmodel import Field\n'), ((2144, 2178), 'sqlmodel.Field', 'Field', ([], {'nullable': '(True)', 'default': 'None'}), '(nullable=True, default=None)\n', (2149, 2178), False, 'from sqlmodel import Field\n'), ((2203, 2237), 'sqlmodel.Field', 'Field', ([], {'nullable': '(True)', 'default': 'None'}), '(nullable=True, default=None)\n', (2208, 2237), False, 'from sqlmodel import Field\n'), ((2271, 2305), 'sqlmodel.Field', 'Field', ([], {'nullable': '(True)', 'default': 'None'}), '(nullable=True, default=None)\n', (2276, 2305), False, 'from sqlmodel import Field\n'), ((2329, 2363), 'sqlmodel.Field', 'Field', ([], {'nullable': '(True)', 'default': 'None'}), '(nullable=True, default=None)\n', (2334, 2363), False, 'from sqlmodel import Field\n'), ((2390, 2424), 'sqlmodel.Field', 'Field', ([], {'nullable': '(True)', 'default': 'None'}), '(nullable=True, default=None)\n', (2395, 2424), False, 'from sqlmodel import Field\n'), ((2452, 2486), 'sqlmodel.Field', 'Field', ([], {'nullable': '(True)', 'default': 'None'}), '(nullable=True, default=None)\n', (2457, 2486), False, 'from sqlmodel import Field\n')]
"""Add playlist and item models Revision ID: 979da9b7aff0 Revises: <PASSWORD> Create Date: 2021-10-31 13:09:14.064217 """ from alembic import op import sqlalchemy as sa import sqlmodel # revision identifiers, used by Alembic. revision = '979da9b7aff0' down_revision = 'a<PASSWORD>' branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.create_table('item', sa.Column('title', sqlmodel.sql.sqltypes.AutoString(), nullable=False), sa.Column('artist', sqlmodel.sql.sqltypes.AutoString(), nullable=False), sa.Column('id', sa.Integer(), nullable=True), sa.PrimaryKeyConstraint('id') ) op.create_index(op.f('ix_item_artist'), 'item', ['artist'], unique=False) op.create_index(op.f('ix_item_id'), 'item', ['id'], unique=False) op.create_index(op.f('ix_item_title'), 'item', ['title'], unique=False) op.create_table('playlist', sa.Column('entity_id', sqlmodel.sql.sqltypes.AutoString(), nullable=False), sa.Column('name', sqlmodel.sql.sqltypes.AutoString(), nullable=False), sa.Column('spotify', sqlmodel.sql.sqltypes.AutoString(), nullable=True), sa.Column('amazon', sqlmodel.sql.sqltypes.AutoString(), nullable=True), sa.Column('apple_music', sqlmodel.sql.sqltypes.AutoString(), nullable=True), sa.Column('image', sqlmodel.sql.sqltypes.AutoString(), nullable=True), sa.Column('release_date', sa.DateTime(), nullable=True), sa.Column('id', sa.Integer(), nullable=True), sa.Column('category_id', sa.Integer(), nullable=True), sa.ForeignKeyConstraint(['category_id'], ['category.id'], ), sa.PrimaryKeyConstraint('id') ) op.create_index(op.f('ix_playlist_amazon'), 'playlist', ['amazon'], unique=False) op.create_index(op.f('ix_playlist_apple_music'), 'playlist', ['apple_music'], unique=False) op.create_index(op.f('ix_playlist_category_id'), 'playlist', ['category_id'], unique=False) op.create_index(op.f('ix_playlist_entity_id'), 'playlist', ['entity_id'], unique=False) op.create_index(op.f('ix_playlist_id'), 'playlist', ['id'], unique=False) op.create_index(op.f('ix_playlist_image'), 'playlist', ['image'], unique=False) op.create_index(op.f('ix_playlist_name'), 'playlist', ['name'], unique=False) op.create_index(op.f('ix_playlist_release_date'), 'playlist', ['release_date'], unique=False) op.create_index(op.f('ix_playlist_spotify'), 'playlist', ['spotify'], unique=False) op.create_table('playlistitemlink', sa.Column('playlist_id', sa.Integer(), nullable=True), sa.Column('item_id', sa.Integer(), nullable=True), sa.ForeignKeyConstraint(['item_id'], ['item.id'], ), sa.ForeignKeyConstraint(['playlist_id'], ['playlist.id'], ), sa.PrimaryKeyConstraint('playlist_id', 'item_id') ) op.create_index(op.f('ix_playlistitemlink_item_id'), 'playlistitemlink', ['item_id'], unique=False) op.create_index(op.f('ix_playlistitemlink_playlist_id'), 'playlistitemlink', ['playlist_id'], unique=False) op.drop_index('ix_category_playlists', table_name='category') op.drop_column('category', 'playlists') # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.add_column('category', sa.Column('playlists', sa.VARCHAR(), nullable=False)) op.create_index('ix_category_playlists', 'category', ['playlists'], unique=False) op.drop_index(op.f('ix_playlistitemlink_playlist_id'), table_name='playlistitemlink') op.drop_index(op.f('ix_playlistitemlink_item_id'), table_name='playlistitemlink') op.drop_table('playlistitemlink') op.drop_index(op.f('ix_playlist_spotify'), table_name='playlist') op.drop_index(op.f('ix_playlist_release_date'), table_name='playlist') op.drop_index(op.f('ix_playlist_name'), table_name='playlist') op.drop_index(op.f('ix_playlist_image'), table_name='playlist') op.drop_index(op.f('ix_playlist_id'), table_name='playlist') op.drop_index(op.f('ix_playlist_entity_id'), table_name='playlist') op.drop_index(op.f('ix_playlist_category_id'), table_name='playlist') op.drop_index(op.f('ix_playlist_apple_music'), table_name='playlist') op.drop_index(op.f('ix_playlist_amazon'), table_name='playlist') op.drop_table('playlist') op.drop_index(op.f('ix_item_title'), table_name='item') op.drop_index(op.f('ix_item_id'), table_name='item') op.drop_index(op.f('ix_item_artist'), table_name='item') op.drop_table('item') # ### end Alembic commands ###
[ "sqlmodel.sql.sqltypes.AutoString" ]
[((3030, 3091), 'alembic.op.drop_index', 'op.drop_index', (['"""ix_category_playlists"""'], {'table_name': '"""category"""'}), "('ix_category_playlists', table_name='category')\n", (3043, 3091), False, 'from alembic import op\n'), ((3096, 3135), 'alembic.op.drop_column', 'op.drop_column', (['"""category"""', '"""playlists"""'], {}), "('category', 'playlists')\n", (3110, 3135), False, 'from alembic import op\n'), ((3344, 3430), 'alembic.op.create_index', 'op.create_index', (['"""ix_category_playlists"""', '"""category"""', "['playlists']"], {'unique': '(False)'}), "('ix_category_playlists', 'category', ['playlists'], unique=\n False)\n", (3359, 3430), False, 'from alembic import op\n'), ((3606, 3639), 'alembic.op.drop_table', 'op.drop_table', (['"""playlistitemlink"""'], {}), "('playlistitemlink')\n", (3619, 3639), False, 'from alembic import op\n'), ((4278, 4303), 'alembic.op.drop_table', 'op.drop_table', (['"""playlist"""'], {}), "('playlist')\n", (4291, 4303), False, 'from alembic import op\n'), ((4486, 4507), 'alembic.op.drop_table', 'op.drop_table', (['"""item"""'], {}), "('item')\n", (4499, 4507), False, 'from alembic import op\n'), ((643, 672), 'sqlalchemy.PrimaryKeyConstraint', 'sa.PrimaryKeyConstraint', (['"""id"""'], {}), "('id')\n", (666, 672), True, 'import sqlalchemy as sa\n'), ((699, 721), 'alembic.op.f', 'op.f', (['"""ix_item_artist"""'], {}), "('ix_item_artist')\n", (703, 721), False, 'from alembic import op\n'), ((777, 795), 'alembic.op.f', 'op.f', (['"""ix_item_id"""'], {}), "('ix_item_id')\n", (781, 795), False, 'from alembic import op\n'), ((847, 868), 'alembic.op.f', 'op.f', (['"""ix_item_title"""'], {}), "('ix_item_title')\n", (851, 868), False, 'from alembic import op\n'), ((1573, 1630), 'sqlalchemy.ForeignKeyConstraint', 'sa.ForeignKeyConstraint', (["['category_id']", "['category.id']"], {}), "(['category_id'], ['category.id'])\n", (1596, 1630), True, 'import sqlalchemy as sa\n'), ((1638, 1667), 'sqlalchemy.PrimaryKeyConstraint', 'sa.PrimaryKeyConstraint', (['"""id"""'], {}), "('id')\n", (1661, 1667), True, 'import sqlalchemy as sa\n'), ((1694, 1720), 'alembic.op.f', 'op.f', (['"""ix_playlist_amazon"""'], {}), "('ix_playlist_amazon')\n", (1698, 1720), False, 'from alembic import op\n'), ((1780, 1811), 'alembic.op.f', 'op.f', (['"""ix_playlist_apple_music"""'], {}), "('ix_playlist_apple_music')\n", (1784, 1811), False, 'from alembic import op\n'), ((1876, 1907), 'alembic.op.f', 'op.f', (['"""ix_playlist_category_id"""'], {}), "('ix_playlist_category_id')\n", (1880, 1907), False, 'from alembic import op\n'), ((1972, 2001), 'alembic.op.f', 'op.f', (['"""ix_playlist_entity_id"""'], {}), "('ix_playlist_entity_id')\n", (1976, 2001), False, 'from alembic import op\n'), ((2064, 2086), 'alembic.op.f', 'op.f', (['"""ix_playlist_id"""'], {}), "('ix_playlist_id')\n", (2068, 2086), False, 'from alembic import op\n'), ((2142, 2167), 'alembic.op.f', 'op.f', (['"""ix_playlist_image"""'], {}), "('ix_playlist_image')\n", (2146, 2167), False, 'from alembic import op\n'), ((2226, 2250), 'alembic.op.f', 'op.f', (['"""ix_playlist_name"""'], {}), "('ix_playlist_name')\n", (2230, 2250), False, 'from alembic import op\n'), ((2308, 2340), 'alembic.op.f', 'op.f', (['"""ix_playlist_release_date"""'], {}), "('ix_playlist_release_date')\n", (2312, 2340), False, 'from alembic import op\n'), ((2406, 2433), 'alembic.op.f', 'op.f', (['"""ix_playlist_spotify"""'], {}), "('ix_playlist_spotify')\n", (2410, 2433), False, 'from alembic import op\n'), ((2632, 2681), 'sqlalchemy.ForeignKeyConstraint', 'sa.ForeignKeyConstraint', (["['item_id']", "['item.id']"], {}), "(['item_id'], ['item.id'])\n", (2655, 2681), True, 'import sqlalchemy as sa\n'), ((2689, 2746), 'sqlalchemy.ForeignKeyConstraint', 'sa.ForeignKeyConstraint', (["['playlist_id']", "['playlist.id']"], {}), "(['playlist_id'], ['playlist.id'])\n", (2712, 2746), True, 'import sqlalchemy as sa\n'), ((2754, 2803), 'sqlalchemy.PrimaryKeyConstraint', 'sa.PrimaryKeyConstraint', (['"""playlist_id"""', '"""item_id"""'], {}), "('playlist_id', 'item_id')\n", (2777, 2803), True, 'import sqlalchemy as sa\n'), ((2830, 2865), 'alembic.op.f', 'op.f', (['"""ix_playlistitemlink_item_id"""'], {}), "('ix_playlistitemlink_item_id')\n", (2834, 2865), False, 'from alembic import op\n'), ((2934, 2973), 'alembic.op.f', 'op.f', (['"""ix_playlistitemlink_playlist_id"""'], {}), "('ix_playlistitemlink_playlist_id')\n", (2938, 2973), False, 'from alembic import op\n'), ((3444, 3483), 'alembic.op.f', 'op.f', (['"""ix_playlistitemlink_playlist_id"""'], {}), "('ix_playlistitemlink_playlist_id')\n", (3448, 3483), False, 'from alembic import op\n'), ((3534, 3569), 'alembic.op.f', 'op.f', (['"""ix_playlistitemlink_item_id"""'], {}), "('ix_playlistitemlink_item_id')\n", (3538, 3569), False, 'from alembic import op\n'), ((3658, 3685), 'alembic.op.f', 'op.f', (['"""ix_playlist_spotify"""'], {}), "('ix_playlist_spotify')\n", (3662, 3685), False, 'from alembic import op\n'), ((3728, 3760), 'alembic.op.f', 'op.f', (['"""ix_playlist_release_date"""'], {}), "('ix_playlist_release_date')\n", (3732, 3760), False, 'from alembic import op\n'), ((3803, 3827), 'alembic.op.f', 'op.f', (['"""ix_playlist_name"""'], {}), "('ix_playlist_name')\n", (3807, 3827), False, 'from alembic import op\n'), ((3870, 3895), 'alembic.op.f', 'op.f', (['"""ix_playlist_image"""'], {}), "('ix_playlist_image')\n", (3874, 3895), False, 'from alembic import op\n'), ((3938, 3960), 'alembic.op.f', 'op.f', (['"""ix_playlist_id"""'], {}), "('ix_playlist_id')\n", (3942, 3960), False, 'from alembic import op\n'), ((4003, 4032), 'alembic.op.f', 'op.f', (['"""ix_playlist_entity_id"""'], {}), "('ix_playlist_entity_id')\n", (4007, 4032), False, 'from alembic import op\n'), ((4075, 4106), 'alembic.op.f', 'op.f', (['"""ix_playlist_category_id"""'], {}), "('ix_playlist_category_id')\n", (4079, 4106), False, 'from alembic import op\n'), ((4149, 4180), 'alembic.op.f', 'op.f', (['"""ix_playlist_apple_music"""'], {}), "('ix_playlist_apple_music')\n", (4153, 4180), False, 'from alembic import op\n'), ((4223, 4249), 'alembic.op.f', 'op.f', (['"""ix_playlist_amazon"""'], {}), "('ix_playlist_amazon')\n", (4227, 4249), False, 'from alembic import op\n'), ((4322, 4343), 'alembic.op.f', 'op.f', (['"""ix_item_title"""'], {}), "('ix_item_title')\n", (4326, 4343), False, 'from alembic import op\n'), ((4382, 4400), 'alembic.op.f', 'op.f', (['"""ix_item_id"""'], {}), "('ix_item_id')\n", (4386, 4400), False, 'from alembic import op\n'), ((4439, 4461), 'alembic.op.f', 'op.f', (['"""ix_item_artist"""'], {}), "('ix_item_artist')\n", (4443, 4461), False, 'from alembic import op\n'), ((459, 493), 'sqlmodel.sql.sqltypes.AutoString', 'sqlmodel.sql.sqltypes.AutoString', ([], {}), '()\n', (491, 493), False, 'import sqlmodel\n'), ((536, 570), 'sqlmodel.sql.sqltypes.AutoString', 'sqlmodel.sql.sqltypes.AutoString', ([], {}), '()\n', (568, 570), False, 'import sqlmodel\n'), ((609, 621), 'sqlalchemy.Integer', 'sa.Integer', ([], {}), '()\n', (619, 621), True, 'import sqlalchemy as sa\n'), ((962, 996), 'sqlmodel.sql.sqltypes.AutoString', 'sqlmodel.sql.sqltypes.AutoString', ([], {}), '()\n', (994, 996), False, 'import sqlmodel\n'), ((1037, 1071), 'sqlmodel.sql.sqltypes.AutoString', 'sqlmodel.sql.sqltypes.AutoString', ([], {}), '()\n', (1069, 1071), False, 'import sqlmodel\n'), ((1115, 1149), 'sqlmodel.sql.sqltypes.AutoString', 'sqlmodel.sql.sqltypes.AutoString', ([], {}), '()\n', (1147, 1149), False, 'import sqlmodel\n'), ((1191, 1225), 'sqlmodel.sql.sqltypes.AutoString', 'sqlmodel.sql.sqltypes.AutoString', ([], {}), '()\n', (1223, 1225), False, 'import sqlmodel\n'), ((1272, 1306), 'sqlmodel.sql.sqltypes.AutoString', 'sqlmodel.sql.sqltypes.AutoString', ([], {}), '()\n', (1304, 1306), False, 'import sqlmodel\n'), ((1347, 1381), 'sqlmodel.sql.sqltypes.AutoString', 'sqlmodel.sql.sqltypes.AutoString', ([], {}), '()\n', (1379, 1381), False, 'import sqlmodel\n'), ((1429, 1442), 'sqlalchemy.DateTime', 'sa.DateTime', ([], {}), '()\n', (1440, 1442), True, 'import sqlalchemy as sa\n'), ((1480, 1492), 'sqlalchemy.Integer', 'sa.Integer', ([], {}), '()\n', (1490, 1492), True, 'import sqlalchemy as sa\n'), ((1539, 1551), 'sqlalchemy.Integer', 'sa.Integer', ([], {}), '()\n', (1549, 1551), True, 'import sqlalchemy as sa\n'), ((2543, 2555), 'sqlalchemy.Integer', 'sa.Integer', ([], {}), '()\n', (2553, 2555), True, 'import sqlalchemy as sa\n'), ((2598, 2610), 'sqlalchemy.Integer', 'sa.Integer', ([], {}), '()\n', (2608, 2610), True, 'import sqlalchemy as sa\n'), ((3309, 3321), 'sqlalchemy.VARCHAR', 'sa.VARCHAR', ([], {}), '()\n', (3319, 3321), True, 'import sqlalchemy as sa\n')]
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import numpy as np import megengine as mge import megengine.autodiff as ad import megengine.functional as F import megengine.module as M import megengine.optimizer as optim class Net(M.Module): def __init__(self): super().__init__() self.conv1 = M.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = M.BatchNorm2d(64) self.avgpool = M.AvgPool2d(kernel_size=5, stride=5, padding=0) self.fc = M.Linear(64, 10) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = F.relu(x) x = self.avgpool(x) x = F.avg_pool2d(x, 22) x = F.flatten(x, 1) x = self.fc(x) return x def save_grad_value(net): for param in net.parameters(): param.grad_backup = param.grad.numpy().copy() def test_clip_grad_norm(): net = Net() x = mge.tensor(np.random.randn(10, 3, 224, 224)) gm = ad.GradManager().attach(net.parameters()) opt = optim.SGD(net.parameters(), 1e-3, momentum=0.9) with gm: loss = net(x).sum() gm.backward(loss) save_grad_value(net) max_norm = 1.0 original_norm = optim.clip_grad_norm(net.parameters(), max_norm=max_norm, ord=2) scale = max_norm / original_norm for param in net.parameters(): np.testing.assert_almost_equal(param.grad.numpy(), param.grad_backup * scale) opt.step().clear_grad() def test_clip_grad_value(): net = Net() x = np.random.randn(10, 3, 224, 224).astype("float32") gm = ad.GradManager().attach(net.parameters()) opt = optim.SGD(net.parameters(), 1e-3, momentum=0.9) with gm: y = net(mge.tensor(x)) y = y.mean() gm.backward(y) save_grad_value(net) max_val = 5 min_val = -2 optim.clip_grad_value(net.parameters(), lower=min_val, upper=max_val) for param in net.parameters(): np.testing.assert_almost_equal( param.grad.numpy(), np.maximum(np.minimum(param.grad_backup, max_val), min_val), ) opt.step().clear_grad()
[ "megengine.module.Linear", "megengine.tensor", "megengine.module.AvgPool2d", "megengine.module.BatchNorm2d", "megengine.functional.avg_pool2d", "megengine.functional.relu", "megengine.autodiff.GradManager", "megengine.module.Conv2d", "megengine.functional.flatten" ]
[((623, 686), 'megengine.module.Conv2d', 'M.Conv2d', (['(3)', '(64)'], {'kernel_size': '(7)', 'stride': '(2)', 'padding': '(3)', 'bias': '(False)'}), '(3, 64, kernel_size=7, stride=2, padding=3, bias=False)\n', (631, 686), True, 'import megengine.module as M\n'), ((706, 723), 'megengine.module.BatchNorm2d', 'M.BatchNorm2d', (['(64)'], {}), '(64)\n', (719, 723), True, 'import megengine.module as M\n'), ((747, 794), 'megengine.module.AvgPool2d', 'M.AvgPool2d', ([], {'kernel_size': '(5)', 'stride': '(5)', 'padding': '(0)'}), '(kernel_size=5, stride=5, padding=0)\n', (758, 794), True, 'import megengine.module as M\n'), ((813, 829), 'megengine.module.Linear', 'M.Linear', (['(64)', '(10)'], {}), '(64, 10)\n', (821, 829), True, 'import megengine.module as M\n'), ((919, 928), 'megengine.functional.relu', 'F.relu', (['x'], {}), '(x)\n', (925, 928), True, 'import megengine.functional as F\n'), ((969, 988), 'megengine.functional.avg_pool2d', 'F.avg_pool2d', (['x', '(22)'], {}), '(x, 22)\n', (981, 988), True, 'import megengine.functional as F\n'), ((1001, 1016), 'megengine.functional.flatten', 'F.flatten', (['x', '(1)'], {}), '(x, 1)\n', (1010, 1016), True, 'import megengine.functional as F\n'), ((1238, 1270), 'numpy.random.randn', 'np.random.randn', (['(10)', '(3)', '(224)', '(224)'], {}), '(10, 3, 224, 224)\n', (1253, 1270), True, 'import numpy as np\n'), ((1281, 1297), 'megengine.autodiff.GradManager', 'ad.GradManager', ([], {}), '()\n', (1295, 1297), True, 'import megengine.autodiff as ad\n'), ((1817, 1849), 'numpy.random.randn', 'np.random.randn', (['(10)', '(3)', '(224)', '(224)'], {}), '(10, 3, 224, 224)\n', (1832, 1849), True, 'import numpy as np\n'), ((1877, 1893), 'megengine.autodiff.GradManager', 'ad.GradManager', ([], {}), '()\n', (1891, 1893), True, 'import megengine.autodiff as ad\n'), ((2006, 2019), 'megengine.tensor', 'mge.tensor', (['x'], {}), '(x)\n', (2016, 2019), True, 'import megengine as mge\n'), ((2327, 2365), 'numpy.minimum', 'np.minimum', (['param.grad_backup', 'max_val'], {}), '(param.grad_backup, max_val)\n', (2337, 2365), True, 'import numpy as np\n')]
from datetime import datetime from typing import Optional from sqlmodel import Field, SQLModel, Relationship from sqlalchemy import Column from sqlalchemy.dialects.postgresql import JSON class ZeroShotInferenceBase(SQLModel): text: str = Field(nullable=False, index=True) candidate_labels: list[str] = Field( nullable=False, index=True, sa_column=Column(JSON) ) class ZeroShotInference(ZeroShotInferenceBase, table=True): id: Optional[int] = Field(default=None, nullable=False, primary_key=True) result: dict[str, float] = Field(nullable=False, sa_column=Column(JSON)) created_at: Optional[datetime] updated_at: Optional[datetime] created_by_id: Optional[int] = Field(default=None, foreign_key="user.id") created_by: "User" = Relationship( sa_relationship_kwargs={ "lazy": "selectin", "primaryjoin": "ZeroShotInference.created_by_id == User.id", } )
[ "sqlmodel.Relationship", "sqlmodel.Field" ]
[((244, 277), 'sqlmodel.Field', 'Field', ([], {'nullable': '(False)', 'index': '(True)'}), '(nullable=False, index=True)\n', (249, 277), False, 'from sqlmodel import Field, SQLModel, Relationship\n'), ((470, 523), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'nullable': '(False)', 'primary_key': '(True)'}), '(default=None, nullable=False, primary_key=True)\n', (475, 523), False, 'from sqlmodel import Field, SQLModel, Relationship\n'), ((706, 748), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'foreign_key': '"""user.id"""'}), "(default=None, foreign_key='user.id')\n", (711, 748), False, 'from sqlmodel import Field, SQLModel, Relationship\n'), ((774, 896), 'sqlmodel.Relationship', 'Relationship', ([], {'sa_relationship_kwargs': "{'lazy': 'selectin', 'primaryjoin':\n 'ZeroShotInference.created_by_id == User.id'}"}), "(sa_relationship_kwargs={'lazy': 'selectin', 'primaryjoin':\n 'ZeroShotInference.created_by_id == User.id'})\n", (786, 896), False, 'from sqlmodel import Field, SQLModel, Relationship\n'), ((365, 377), 'sqlalchemy.Column', 'Column', (['JSON'], {}), '(JSON)\n', (371, 377), False, 'from sqlalchemy import Column\n'), ((587, 599), 'sqlalchemy.Column', 'Column', (['JSON'], {}), '(JSON)\n', (593, 599), False, 'from sqlalchemy import Column\n')]
# -*- coding: utf-8 -*- # This repo is licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import argparse import bisect import copy import os import time import megengine as mge import megengine.distributed as dist from megengine.autodiff import GradManager from megengine.data import DataLoader, Infinite, RandomSampler from megengine.data import transform as T from megengine.optimizer import AdamW, SGD import math from megengine.core._imperative_rt.utils import _set_defrag _set_defrag(True) from layers.tools.data_mapper import data_mapper from layers.tools.utils import ( AverageMeter, DetectionPadCollator, GroupedRandomSampler, get_config_info, import_from_file ) logger = mge.get_logger(__name__) logger.setLevel("INFO") mge.device.set_prealloc_config(1024, 1024, 256 * 1024 * 1024, 4.0) def make_parser(): parser = argparse.ArgumentParser() parser.add_argument( "-f", "--file", default="net.py", type=str, help="net description file" ) parser.add_argument( "-df", "--distill_file", default="distill_configs/ICD.py", type=str, help="distill description file" ) parser.add_argument( "-tf", "--teacher_file", default="net.py", type=str, help="net description file" ) parser.add_argument( "-w", "--weight_file", default=None, type=str, help="weights file", ) parser.add_argument( "-tw", "--teacher_weight_file", default=None, type=str, help="weights file", ) parser.add_argument( "-n", "--devices", default=1, type=int, help="total number of gpus for training", ) parser.add_argument( "-b", "--batch_size", default=2, type=int, help="batch size for training", ) parser.add_argument( "-d", "--dataset_dir", default="/data/datasets", type=str, ) parser.add_argument( "-l", "--load_head", action='store_true' ) parser.add_argument( "-sp", "--save_path", type=str, ) return parser def main(): parser = make_parser() args = parser.parse_args() # ------------------------ begin training -------------------------- # logger.info("Device Count = %d", args.devices) from datetime import datetime now = datetime.now() log_dir = "log-of-ICD-{}-{}".format(os.path.basename(args.file).split(".")[0], now.strftime('%H:%M') + ('-Inherent' if args.load_head else '')) if not os.path.isdir(log_dir): os.makedirs(log_dir) args.save_path = log_dir if args.devices > 1: trainer = dist.launcher(worker, n_gpus=args.devices) trainer(args) else: worker(args) def worker(args): mge.dtr.eviction_threshold = "6GB" # set the eviction threshold to 5 GB mge.dtr.enable() # enable the DTR optimization current_network = import_from_file(args.file) model = current_network.Net(current_network.Cfg()) model.train() ########### BUILD TEACHER MODEL ############ current_teacher = import_from_file(args.teacher_file) cfg_tea = current_teacher.Cfg() cfg_tea.backbone_pretrained = False model_tea = current_teacher.Net(cfg_tea) model_tea.train() # model_tea.training = True # run in train mod state_dict_tea = mge.load(args.teacher_weight_file) if "state_dict" in state_dict_tea: state_dict_tea = state_dict_tea["state_dict"] model_tea.load_state_dict(state_dict_tea) ############### LOADED #################### ################## DISTILLER ############## distiller_cfg = import_from_file(args.distill_file) distiller = distiller_cfg.Net() ############### END #################### if dist.get_rank() == 0: logger.info(get_config_info(model.cfg)) logger.info(repr(model)) params_with_grad = [] for name, param in model.named_parameters(): if "bottom_up.conv1" in name and model.cfg.backbone_freeze_at >= 1: continue if "bottom_up.layer1" in name and model.cfg.backbone_freeze_at >= 2: continue params_with_grad.append(param) opt = SGD( params_with_grad, lr=model.cfg.basic_lr * args.batch_size * dist.get_world_size(), momentum=model.cfg.momentum, weight_decay=model.cfg.weight_decay, ) opt_d = AdamW( distiller.parameters(), lr=1e-4, weight_decay=1e-4, ) params_with_grad.extend(distiller.parameters()) gm = GradManager() if dist.get_world_size() > 1: gm.attach( params_with_grad, callbacks=[dist.make_allreduce_cb("mean", dist.WORLD)] ) else: gm.attach(params_with_grad) if args.weight_file is not None: weights = mge.load(args.weight_file) model.backbone.bottom_up.load_state_dict(weights, strict=False) if args.load_head: print('Loading Prameters Besides from Backbones.') res = model.load_state_dict({k:v for k, v in model_tea.state_dict().items() if 'bottom_up' not in k}, strict=False) if dist.get_world_size() > 1: dist.bcast_list_(model.parameters()) # sync parameters dist.bcast_list_(distiller.parameters()) # sync parameters dist.bcast_list_(model.buffers()) # sync buffers dist.bcast_list_(distiller.buffers()) # sync parameters if dist.get_rank() == 0: logger.info("Prepare dataset") train_loader = iter(build_dataloader(args.batch_size, args.dataset_dir, model.cfg)) ############## REGISTER ############### # To get intermediate representations holder = [None, None] def register_tea_hooker(m, i, o): holder[0] = o return model_tea.backbone.register_forward_hook(register_tea_hooker) def register_stu_hooker(m, i, o): holder[1] = o return model.backbone.register_forward_hook(register_stu_hooker) for epoch in range(model.cfg.max_epoch): train_one_epoch(model, model_tea, distiller, holder, train_loader, opt, opt_d, gm, epoch, args) if dist.get_rank() == 0: save_path = "{}/epoch_{}.pkl".format( args.save_path, epoch ) mge.save( {"epoch": epoch, "state_dict": model.state_dict()}, save_path, ) logger.info("dump weights to %s", save_path) def train_one_epoch(model, model_tea, distiller, feat_holder, data_queue, opt, opt_d, gm, epoch, args): def train_func(image, im_info, gt_boxes, **args): model_tea(image=image, im_info=im_info, gt_boxes=gt_boxes) with gm: loss_dict = model(image=image, im_info=im_info, gt_boxes=gt_boxes) loss_distill = distiller(feat_holder[0], feat_holder[1], image, gt_boxes, im_info, distill_flag=0 if args['cur_step'] < 1000 else 1) loss_dict.update(loss_distill) loss_dict["total_loss"] = loss_dict["total_loss"] + sum(loss_distill.values()) gm.backward(loss_dict["total_loss"]) loss_list = list(loss_dict.values()) mge.optimizer.clip_grad_norm( distiller.parameters(), 0.01) opt.step().clear_grad() opt_d.step().clear_grad() return loss_list meter = AverageMeter(record_len=model.cfg.num_losses + distiller.num_losses) time_meter = AverageMeter(record_len=2) log_interval = model.cfg.log_interval tot_step = model.cfg.nr_images_epoch // (args.batch_size * dist.get_world_size()) full_step = tot_step * model.cfg.max_epoch for step in range(tot_step): cur_step = tot_step * epoch + step adjust_learning_rate(opt, epoch, step, model.cfg, args) adjust_learning_rate_cos(opt_d, cur_step, full_step) data_tik = time.time() mini_batch = next(data_queue) data_tok = time.time() tik = time.time() loss_list = train_func( image=mge.tensor(mini_batch["data"]), im_info=mge.tensor(mini_batch["im_info"]), gt_boxes=mge.tensor(mini_batch["gt_boxes"]), cur_step=cur_step, full_step=full_step ) tok = time.time() time_meter.update([tok - tik, data_tok - data_tik]) if dist.get_rank() == 0: info_str = "e%d, %d/%d, lr:%f, " loss_str = ", ".join( ["{}:%f".format(loss) for loss in model.cfg.losses_keys] + ["{}:%f".format(loss) for loss in distiller.loss_keys] ) time_str = ", train_time:%.3fs, data_time:%.3fs" log_info_str = info_str + loss_str + time_str meter.update([loss.numpy() for loss in loss_list]) if step % log_interval == 0: logger.info( log_info_str, epoch, step, tot_step, opt.param_groups[0]["lr"], *meter.average(), *time_meter.average() ) meter.reset() time_meter.reset() def adjust_learning_rate_cos(optimizer, cur_iter, total_iter): base_lr = 1e-4 # Warm up lr = 0.5 * base_lr * (1 + math.cos(cur_iter / total_iter * math.pi)) for param_group in optimizer.param_groups: param_group["lr"] = lr def adjust_learning_rate(optimizer, epoch, step, cfg, args): base_lr = ( cfg.basic_lr * args.batch_size * dist.get_world_size() * ( cfg.lr_decay_rate ** bisect.bisect_right(cfg.lr_decay_stages, epoch) ) ) # Warm up lr_factor = 1.0 if epoch == 0 and step < cfg.warm_iters: lr_factor = (step + 1.0) / cfg.warm_iters for param_group in optimizer.param_groups: param_group["lr"] = base_lr * lr_factor def build_dataset(dataset_dir, cfg): data_cfg = copy.deepcopy(cfg.train_dataset) data_name = data_cfg.pop("name") data_cfg["root"] = os.path.join(dataset_dir, data_name, data_cfg["root"]) if "ann_file" in data_cfg: data_cfg["ann_file"] = os.path.join(dataset_dir, data_name, data_cfg["ann_file"]) data_cfg["order"] = ["image", "boxes", "boxes_category", "info"] return data_mapper[data_name](**data_cfg) # pylint: disable=dangerous-default-value def build_sampler(train_dataset, batch_size, aspect_grouping=[1]): def _compute_aspect_ratios(dataset): aspect_ratios = [] for i in range(len(dataset)): info = dataset.get_img_info(i) aspect_ratios.append(info["height"] / info["width"]) return aspect_ratios def _quantize(x, bins): return list(map(lambda y: bisect.bisect_right(sorted(bins), y), x)) if len(aspect_grouping) == 0: return Infinite(RandomSampler(train_dataset, batch_size, drop_last=True)) aspect_ratios = _compute_aspect_ratios(train_dataset) group_ids = _quantize(aspect_ratios, aspect_grouping) return Infinite(GroupedRandomSampler(train_dataset, batch_size, group_ids)) def build_dataloader(batch_size, dataset_dir, cfg): train_dataset = build_dataset(dataset_dir, cfg) train_sampler = build_sampler(train_dataset, batch_size) train_dataloader = DataLoader( train_dataset, sampler=train_sampler, transform=T.Compose( transforms=[ T.ShortestEdgeResize( cfg.train_image_short_size, cfg.train_image_max_size, sample_style="choice", ), T.RandomHorizontalFlip(), T.ToMode(), ], order=["image", "boxes", "boxes_category"], ), collator=DetectionPadCollator(), num_workers=2, ) return train_dataloader if __name__ == "__main__": main()
[ "megengine.data.transform.ToMode", "megengine.device.set_prealloc_config", "megengine.distributed.get_rank", "megengine.distributed.get_world_size", "megengine.dtr.enable", "megengine.get_logger", "megengine.distributed.make_allreduce_cb", "megengine.data.transform.RandomHorizontalFlip", "megengine.tensor", "megengine.data.RandomSampler", "megengine.data.transform.ShortestEdgeResize", "megengine.autodiff.GradManager", "megengine.load", "megengine.distributed.launcher", "megengine.core._imperative_rt.utils._set_defrag" ]
[((767, 784), 'megengine.core._imperative_rt.utils._set_defrag', '_set_defrag', (['(True)'], {}), '(True)\n', (778, 784), False, 'from megengine.core._imperative_rt.utils import _set_defrag\n'), ((992, 1016), 'megengine.get_logger', 'mge.get_logger', (['__name__'], {}), '(__name__)\n', (1006, 1016), True, 'import megengine as mge\n'), ((1041, 1107), 'megengine.device.set_prealloc_config', 'mge.device.set_prealloc_config', (['(1024)', '(1024)', '(256 * 1024 * 1024)', '(4.0)'], {}), '(1024, 1024, 256 * 1024 * 1024, 4.0)\n', (1071, 1107), True, 'import megengine as mge\n'), ((1142, 1167), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (1165, 1167), False, 'import argparse\n'), ((2517, 2531), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (2529, 2531), False, 'from datetime import datetime\n'), ((3015, 3031), 'megengine.dtr.enable', 'mge.dtr.enable', ([], {}), '()\n', (3029, 3031), True, 'import megengine as mge\n'), ((3103, 3130), 'layers.tools.utils.import_from_file', 'import_from_file', (['args.file'], {}), '(args.file)\n', (3119, 3130), False, 'from layers.tools.utils import AverageMeter, DetectionPadCollator, GroupedRandomSampler, get_config_info, import_from_file\n'), ((3277, 3312), 'layers.tools.utils.import_from_file', 'import_from_file', (['args.teacher_file'], {}), '(args.teacher_file)\n', (3293, 3312), False, 'from layers.tools.utils import AverageMeter, DetectionPadCollator, GroupedRandomSampler, get_config_info, import_from_file\n'), ((3529, 3563), 'megengine.load', 'mge.load', (['args.teacher_weight_file'], {}), '(args.teacher_weight_file)\n', (3537, 3563), True, 'import megengine as mge\n'), ((3821, 3856), 'layers.tools.utils.import_from_file', 'import_from_file', (['args.distill_file'], {}), '(args.distill_file)\n', (3837, 3856), False, 'from layers.tools.utils import AverageMeter, DetectionPadCollator, GroupedRandomSampler, get_config_info, import_from_file\n'), ((4725, 4738), 'megengine.autodiff.GradManager', 'GradManager', ([], {}), '()\n', (4736, 4738), False, 'from megengine.autodiff import GradManager\n'), ((7515, 7583), 'layers.tools.utils.AverageMeter', 'AverageMeter', ([], {'record_len': '(model.cfg.num_losses + distiller.num_losses)'}), '(record_len=model.cfg.num_losses + distiller.num_losses)\n', (7527, 7583), False, 'from layers.tools.utils import AverageMeter, DetectionPadCollator, GroupedRandomSampler, get_config_info, import_from_file\n'), ((7601, 7627), 'layers.tools.utils.AverageMeter', 'AverageMeter', ([], {'record_len': '(2)'}), '(record_len=2)\n', (7613, 7627), False, 'from layers.tools.utils import AverageMeter, DetectionPadCollator, GroupedRandomSampler, get_config_info, import_from_file\n'), ((10114, 10146), 'copy.deepcopy', 'copy.deepcopy', (['cfg.train_dataset'], {}), '(cfg.train_dataset)\n', (10127, 10146), False, 'import copy\n'), ((10208, 10262), 'os.path.join', 'os.path.join', (['dataset_dir', 'data_name', "data_cfg['root']"], {}), "(dataset_dir, data_name, data_cfg['root'])\n", (10220, 10262), False, 'import os\n'), ((2692, 2714), 'os.path.isdir', 'os.path.isdir', (['log_dir'], {}), '(log_dir)\n', (2705, 2714), False, 'import os\n'), ((2724, 2744), 'os.makedirs', 'os.makedirs', (['log_dir'], {}), '(log_dir)\n', (2735, 2744), False, 'import os\n'), ((2819, 2861), 'megengine.distributed.launcher', 'dist.launcher', (['worker'], {'n_gpus': 'args.devices'}), '(worker, n_gpus=args.devices)\n', (2832, 2861), True, 'import megengine.distributed as dist\n'), ((3946, 3961), 'megengine.distributed.get_rank', 'dist.get_rank', ([], {}), '()\n', (3959, 3961), True, 'import megengine.distributed as dist\n'), ((4746, 4767), 'megengine.distributed.get_world_size', 'dist.get_world_size', ([], {}), '()\n', (4765, 4767), True, 'import megengine.distributed as dist\n'), ((5001, 5027), 'megengine.load', 'mge.load', (['args.weight_file'], {}), '(args.weight_file)\n', (5009, 5027), True, 'import megengine as mge\n'), ((5315, 5336), 'megengine.distributed.get_world_size', 'dist.get_world_size', ([], {}), '()\n', (5334, 5336), True, 'import megengine.distributed as dist\n'), ((5605, 5620), 'megengine.distributed.get_rank', 'dist.get_rank', ([], {}), '()\n', (5618, 5620), True, 'import megengine.distributed as dist\n'), ((8029, 8040), 'time.time', 'time.time', ([], {}), '()\n', (8038, 8040), False, 'import time\n'), ((8098, 8109), 'time.time', 'time.time', ([], {}), '()\n', (8107, 8109), False, 'import time\n'), ((8125, 8136), 'time.time', 'time.time', ([], {}), '()\n', (8134, 8136), False, 'import time\n'), ((8419, 8430), 'time.time', 'time.time', ([], {}), '()\n', (8428, 8430), False, 'import time\n'), ((10326, 10384), 'os.path.join', 'os.path.join', (['dataset_dir', 'data_name', "data_cfg['ann_file']"], {}), "(dataset_dir, data_name, data_cfg['ann_file'])\n", (10338, 10384), False, 'import os\n'), ((11215, 11273), 'layers.tools.utils.GroupedRandomSampler', 'GroupedRandomSampler', (['train_dataset', 'batch_size', 'group_ids'], {}), '(train_dataset, batch_size, group_ids)\n', (11235, 11273), False, 'from layers.tools.utils import AverageMeter, DetectionPadCollator, GroupedRandomSampler, get_config_info, import_from_file\n'), ((3988, 4014), 'layers.tools.utils.get_config_info', 'get_config_info', (['model.cfg'], {}), '(model.cfg)\n', (4003, 4014), False, 'from layers.tools.utils import AverageMeter, DetectionPadCollator, GroupedRandomSampler, get_config_info, import_from_file\n'), ((6315, 6330), 'megengine.distributed.get_rank', 'dist.get_rank', ([], {}), '()\n', (6328, 6330), True, 'import megengine.distributed as dist\n'), ((7733, 7754), 'megengine.distributed.get_world_size', 'dist.get_world_size', ([], {}), '()\n', (7752, 7754), True, 'import megengine.distributed as dist\n'), ((8504, 8519), 'megengine.distributed.get_rank', 'dist.get_rank', ([], {}), '()\n', (8517, 8519), True, 'import megengine.distributed as dist\n'), ((9456, 9497), 'math.cos', 'math.cos', (['(cur_iter / total_iter * math.pi)'], {}), '(cur_iter / total_iter * math.pi)\n', (9464, 9497), False, 'import math\n'), ((9701, 9722), 'megengine.distributed.get_world_size', 'dist.get_world_size', ([], {}), '()\n', (9720, 9722), True, 'import megengine.distributed as dist\n'), ((9772, 9819), 'bisect.bisect_right', 'bisect.bisect_right', (['cfg.lr_decay_stages', 'epoch'], {}), '(cfg.lr_decay_stages, epoch)\n', (9791, 9819), False, 'import bisect\n'), ((11020, 11076), 'megengine.data.RandomSampler', 'RandomSampler', (['train_dataset', 'batch_size'], {'drop_last': '(True)'}), '(train_dataset, batch_size, drop_last=True)\n', (11033, 11076), False, 'from megengine.data import DataLoader, Infinite, RandomSampler\n'), ((11948, 11970), 'layers.tools.utils.DetectionPadCollator', 'DetectionPadCollator', ([], {}), '()\n', (11968, 11970), False, 'from layers.tools.utils import AverageMeter, DetectionPadCollator, GroupedRandomSampler, get_config_info, import_from_file\n'), ((4451, 4472), 'megengine.distributed.get_world_size', 'dist.get_world_size', ([], {}), '()\n', (4470, 4472), True, 'import megengine.distributed as dist\n'), ((8187, 8217), 'megengine.tensor', 'mge.tensor', (["mini_batch['data']"], {}), "(mini_batch['data'])\n", (8197, 8217), True, 'import megengine as mge\n'), ((8239, 8272), 'megengine.tensor', 'mge.tensor', (["mini_batch['im_info']"], {}), "(mini_batch['im_info'])\n", (8249, 8272), True, 'import megengine as mge\n'), ((8295, 8329), 'megengine.tensor', 'mge.tensor', (["mini_batch['gt_boxes']"], {}), "(mini_batch['gt_boxes'])\n", (8305, 8329), True, 'import megengine as mge\n'), ((2573, 2600), 'os.path.basename', 'os.path.basename', (['args.file'], {}), '(args.file)\n', (2589, 2600), False, 'import os\n'), ((4845, 4887), 'megengine.distributed.make_allreduce_cb', 'dist.make_allreduce_cb', (['"""mean"""', 'dist.WORLD'], {}), "('mean', dist.WORLD)\n", (4867, 4887), True, 'import megengine.distributed as dist\n'), ((11601, 11702), 'megengine.data.transform.ShortestEdgeResize', 'T.ShortestEdgeResize', (['cfg.train_image_short_size', 'cfg.train_image_max_size'], {'sample_style': '"""choice"""'}), "(cfg.train_image_short_size, cfg.train_image_max_size,\n sample_style='choice')\n", (11621, 11702), True, 'from megengine.data import transform as T\n'), ((11795, 11819), 'megengine.data.transform.RandomHorizontalFlip', 'T.RandomHorizontalFlip', ([], {}), '()\n', (11817, 11819), True, 'from megengine.data import transform as T\n'), ((11837, 11847), 'megengine.data.transform.ToMode', 'T.ToMode', ([], {}), '()\n', (11845, 11847), True, 'from megengine.data import transform as T\n')]
import os import numpy as np import collections import megengine.module as M import megengine.functional as F import megengine as mge from megengine.data.dataset import Dataset from megengine.data import DataLoader import hparams as hp from megengine.data import Collator class AsrDataset(Dataset): def __init__(self, data_set="train"): """ Args: root_dir (string): Directory with all the spectrograms. """ self.metas = self.load_metas(hp.dataset_root, data_set) def load_metas(self, root, data_set): # fix a bug metas = [] with open(os.path.join(root, f"{data_set}.txt")) as f: for line in f.readlines(): info = line.split("|") metas.append( { "mel_path": os.path.join(root, info[0]), "frames": info[1], "token_ids_str": info[2], "speaker": info[3], } ) return metas def __len__(self): return len(self.metas) def __getitem__(self, idx): meta = self.metas[idx] token_ids = [int(i) for i in meta["token_ids_str"].split(" ")] text = np.array(token_ids, dtype=np.int32) mel = np.load(meta["mel_path"]) text_input = text[:-1] text_output = text[1:] text_length = text_input.shape[0] pos_text = np.arange(1, text_length + 1) pos_mel = np.arange(1, mel.shape[0] + 1) return { "text": text, "text_input": text_input, "text_output": text_output, "text_length": text_length, "mel": mel, "pos_mel": pos_mel, "pos_text": pos_text, } class AsrCollator(Collator): def __init__(self, pad_value: float = 0.0): super().__init__() self.pad_value = pad_value def apply(self, batch): # Puts each data field into a tensor with outer dimension batch size if isinstance(batch[0], collections.Mapping): text = [d["text"] for d in batch] text_input = [d["text_input"] for d in batch] text_output = [d["text_output"] for d in batch] text_length = [d["text_length"] for d in batch] mel = [d["mel"] for d in batch] mel_length = [d["mel"].shape[0] for d in batch] pos_mel = [d["pos_mel"] for d in batch] pos_text = [d["pos_text"] for d in batch] text = [ i for i, _ in sorted( zip(text, mel_length), key=lambda x: x[1], reverse=True ) ] text_input = [ i for i, _ in sorted( zip(text_input, mel_length), key=lambda x: x[1], reverse=True ) ] text_output = [ i for i, _ in sorted( zip(text_output, mel_length), key=lambda x: x[1], reverse=True ) ] text_length = [ i for i, _ in sorted( zip(text_length, mel_length), key=lambda x: x[1], reverse=True ) ] mel = [ i for i, _ in sorted( zip(mel, mel_length), key=lambda x: x[1], reverse=True ) ] pos_text = [ i for i, _ in sorted( zip(pos_text, mel_length), key=lambda x: x[1], reverse=True ) ] pos_mel = [ i for i, _ in sorted( zip(pos_mel, mel_length), key=lambda x: x[1], reverse=True ) ] mel_length = sorted(mel_length, reverse=True) # PAD sequences with largest length of the batch text_input = _prepare_data(text_input).astype(np.int32) text_output = _prepare_data(text_output).astype(np.int32) mel = _pad_mel(mel) pos_mel = _prepare_data(pos_mel).astype(np.int32) pos_text = _prepare_data(pos_text).astype(np.int32) return ( mge.Tensor(text_input), mge.Tensor(text_output), mge.Tensor(mel), mge.Tensor(pos_text), mge.Tensor(pos_mel), mge.Tensor(text_length), mge.Tensor(mel_length), ) raise TypeError( ( "batch must contain tensors, numbers, dicts or lists; found {}".format( type(batch[0]) ) ) ) def collate_fn_transformer_test(batch): # Puts each data field into a tensor with outer dimension batch size # if isinstance(batch[0], collections.Mapping): text = [batch["text"]] # for d in batch] text_input = batch["text_input"] text_output = batch["text_output"] text_length = batch["text_length"] mel = [batch["mel"]] mel_length = [batch["mel"].shape[1]] pos_mel = batch["pos_mel"] pos_text = batch["pos_text"] text = [ i for i, _ in sorted(zip(text, mel_length), key=lambda x: x[1], reverse=True) ] text_input = [ i for i, _ in sorted( zip(text_input, mel_length), key=lambda x: x[1], reverse=True ) ] text_output = [ i for i, _ in sorted( zip(text_output, mel_length), key=lambda x: x[1], reverse=True ) ] text_length = [ i for i, _ in sorted( zip(text_length, mel_length), key=lambda x: x[1], reverse=True ) ] mel = [i for i, _ in sorted(zip(mel, mel_length), key=lambda x: x[1], reverse=True)] pos_text = [ i for i, _ in sorted(zip(pos_text, mel_length), key=lambda x: x[1], reverse=True) ] pos_mel = [ i for i, _ in sorted(zip(pos_mel, mel_length), key=lambda x: x[1], reverse=True) ] mel_length = sorted(mel_length, reverse=True) # PAD sequences with largest length of the batch text_input = _prepare_data(text_input).astype(np.int32) text_output = _prepare_data(text_output).astype(np.int32) mel = _pad_mel(mel[0]) pos_mel = _prepare_data(pos_mel).astype(np.int32) pos_text = _prepare_data(pos_text).astype(np.int32) return ( mge.Tensor(text_input), mge.Tensor(text_output), mge.Tensor(mel), mge.Tensor(pos_text), mge.Tensor(pos_mel), mge.Tensor(text_length), mge.Tensor(mel_length), ) raise TypeError( ( "batch must contain tensors, numbers, dicts or lists; found {}".format( type(batch[0]) ) ) ) ############################ Utils ################################### def _pad_data(x, length): _pad = 0 return np.pad(x, (0, length - x.shape[0]), mode="constant", constant_values=_pad) def _prepare_data(inputs): max_len = max((len(x) for x in inputs)) return np.stack([_pad_data(x, max_len) for x in inputs]) def _pad_mel(inputs): _pad = 0 def _pad_one(x, max_len): mel_len = x.shape[0] return np.pad( x, [[0, max_len - mel_len], [0, 0]], mode="constant", constant_values=_pad ) max_len = max((x.shape[0] for x in inputs)) return np.stack([_pad_one(x, max_len) for x in inputs])
[ "megengine.Tensor" ]
[((7013, 7087), 'numpy.pad', 'np.pad', (['x', '(0, length - x.shape[0])'], {'mode': '"""constant"""', 'constant_values': '_pad'}), "(x, (0, length - x.shape[0]), mode='constant', constant_values=_pad)\n", (7019, 7087), True, 'import numpy as np\n'), ((1250, 1285), 'numpy.array', 'np.array', (['token_ids'], {'dtype': 'np.int32'}), '(token_ids, dtype=np.int32)\n', (1258, 1285), True, 'import numpy as np\n'), ((1300, 1325), 'numpy.load', 'np.load', (["meta['mel_path']"], {}), "(meta['mel_path'])\n", (1307, 1325), True, 'import numpy as np\n'), ((1449, 1478), 'numpy.arange', 'np.arange', (['(1)', '(text_length + 1)'], {}), '(1, text_length + 1)\n', (1458, 1478), True, 'import numpy as np\n'), ((1497, 1527), 'numpy.arange', 'np.arange', (['(1)', '(mel.shape[0] + 1)'], {}), '(1, mel.shape[0] + 1)\n', (1506, 1527), True, 'import numpy as np\n'), ((6499, 6521), 'megengine.Tensor', 'mge.Tensor', (['text_input'], {}), '(text_input)\n', (6509, 6521), True, 'import megengine as mge\n'), ((6531, 6554), 'megengine.Tensor', 'mge.Tensor', (['text_output'], {}), '(text_output)\n', (6541, 6554), True, 'import megengine as mge\n'), ((6564, 6579), 'megengine.Tensor', 'mge.Tensor', (['mel'], {}), '(mel)\n', (6574, 6579), True, 'import megengine as mge\n'), ((6589, 6609), 'megengine.Tensor', 'mge.Tensor', (['pos_text'], {}), '(pos_text)\n', (6599, 6609), True, 'import megengine as mge\n'), ((6619, 6638), 'megengine.Tensor', 'mge.Tensor', (['pos_mel'], {}), '(pos_mel)\n', (6629, 6638), True, 'import megengine as mge\n'), ((6648, 6671), 'megengine.Tensor', 'mge.Tensor', (['text_length'], {}), '(text_length)\n', (6658, 6671), True, 'import megengine as mge\n'), ((6681, 6703), 'megengine.Tensor', 'mge.Tensor', (['mel_length'], {}), '(mel_length)\n', (6691, 6703), True, 'import megengine as mge\n'), ((7334, 7420), 'numpy.pad', 'np.pad', (['x', '[[0, max_len - mel_len], [0, 0]]'], {'mode': '"""constant"""', 'constant_values': '_pad'}), "(x, [[0, max_len - mel_len], [0, 0]], mode='constant',\n constant_values=_pad)\n", (7340, 7420), True, 'import numpy as np\n'), ((607, 644), 'os.path.join', 'os.path.join', (['root', 'f"""{data_set}.txt"""'], {}), "(root, f'{data_set}.txt')\n", (619, 644), False, 'import os\n'), ((4312, 4334), 'megengine.Tensor', 'mge.Tensor', (['text_input'], {}), '(text_input)\n', (4322, 4334), True, 'import megengine as mge\n'), ((4352, 4375), 'megengine.Tensor', 'mge.Tensor', (['text_output'], {}), '(text_output)\n', (4362, 4375), True, 'import megengine as mge\n'), ((4393, 4408), 'megengine.Tensor', 'mge.Tensor', (['mel'], {}), '(mel)\n', (4403, 4408), True, 'import megengine as mge\n'), ((4426, 4446), 'megengine.Tensor', 'mge.Tensor', (['pos_text'], {}), '(pos_text)\n', (4436, 4446), True, 'import megengine as mge\n'), ((4464, 4483), 'megengine.Tensor', 'mge.Tensor', (['pos_mel'], {}), '(pos_mel)\n', (4474, 4483), True, 'import megengine as mge\n'), ((4501, 4524), 'megengine.Tensor', 'mge.Tensor', (['text_length'], {}), '(text_length)\n', (4511, 4524), True, 'import megengine as mge\n'), ((4542, 4564), 'megengine.Tensor', 'mge.Tensor', (['mel_length'], {}), '(mel_length)\n', (4552, 4564), True, 'import megengine as mge\n'), ((818, 845), 'os.path.join', 'os.path.join', (['root', 'info[0]'], {}), '(root, info[0])\n', (830, 845), False, 'import os\n')]
""" Module for handling state variables. """ import numpy as nm from sfepy.base.base import Struct class State(Struct): """ Class holding/manipulating the state variables and corresponding DOF vectors. Manipulating the state class changes the underlying variables, and hence also the corresponding equations/terms (if any). Notes ----- This class allows working with LCBC conditions in time-dependent problems, as it keeps track of the reduced DOF vector that cannot be reconstructed from the full DOF vector by using the usual `variables.strip_state_vector()`. """ @staticmethod def from_variables(variables): """ Create a State instance for the given variables. The DOF vector is created using the DOF data in `variables`. Parameters ---------- variables : Variables instance The variables. """ parts = variables.get_state_parts() vec = variables.create_state_vector() for key, part in parts.iteritems(): indx = variables.get_indx(key) vec[indx] = part return State(variables, vec) def __init__(self, variables, vec=None, preserve_caches=False): """ Create a State instance for the given variables. Parameters ---------- variables : Variables instance The variables. vec : array, optional The (initial) DOF vector corresponding to the variables. preserve_caches : bool If True, do not invalidate evaluate caches of variables. """ Struct.__init__(self, variables=variables, vec=vec, r_vec=None) if self.vec is None: self.vec = variables.create_state_vector() self.variables.set_data(self.vec, preserve_caches=preserve_caches) def copy(self, deep=False, preserve_caches=False): """ Copy the state. By default, the new state contains the same variables, and creates new DOF vectors. If `deep` is True, also the DOF vectors are copied. Parameters ---------- deep : bool If True, make a copy of the DOF vectors. preserve_caches : bool If True, do not invalidate evaluate caches of variables. """ if deep: other = State(self.variables, self.vec.copy(), preserve_caches=True) if self.r_vec is not None: other.r_vec = self.r_vec.copy() else: other = State(self.variables, preserve_caches=True) return other def fill(self, value): """ Fill the DOF vector with given value. """ if self.r_vec is not None: self.r_vec.fill(value) self.vec.fill(value) def init_history(self): """ Initialize variables with history. """ self.variables.init_history() def apply_ebc(self, force_values=None): """ Apply essential (Dirichlet) boundary conditions to the state. """ self.variables.apply_ebc(self.vec, force_values=force_values) def has_ebc(self): """ Test whether the essential (Dirichlet) boundary conditions have been applied to the DOF vector. """ return self.variables.has_ebc(self.vec) def apply_ic(self, force_values=None): """ Apply initial conditions to the state. """ if self.r_vec is not None: raise ValueError('cannot re-apply initial conditions with LCBCs!') self.variables.apply_ic(self.vec, force_values=force_values) def get_reduced(self, follow_epbc=False): """ Get the reduced DOF vector, with EBC and PBC DOFs removed. """ strip = self.variables.strip_state_vector if self.variables.has_lcbc: if self.r_vec is None: r_vec = strip(self.vec, follow_epbc=follow_epbc) r_vec = self.variables.op_lcbc.T * r_vec else: r_vec = self.r_vec else: r_vec = strip(self.vec, follow_epbc=follow_epbc) return r_vec def set_reduced(self, r_vec, preserve_caches=False): """ Set the reduced DOF vector, with EBC and PBC DOFs removed. Parameters ---------- r_vec : array The reduced DOF vector corresponding to the variables. preserve_caches : bool If True, do not invalidate evaluate caches of variables. """ self.vec = self.variables.make_full_vec(r_vec) if self.variables.has_lcbc: self.r_vec = r_vec self.variables.set_data(self.vec, preserve_caches=preserve_caches) def set_full(self, vec, var_name=None, force=False): """ Set the full DOF vector (including EBC and PBC DOFs). If `var_name` is given, set only the DOF sub-vector corresponding to the given variable. If `force` is True, setting variables with LCBC DOFs is allowed. """ if var_name is None: if self.variables.has_lcbc and not force: raise ValueError('cannot set full DOF vector with LCBCs!') self.vec = vec self.variables.set_data(self.vec) else: var = self.variables[var_name] if var.has_lcbc and not force: raise ValueError('cannot set full DOF vector with LCBCs!') self.variables.set_state_part(self.vec, vec, var_name) var.set_data(self.vec, self.variables.get_indx(var_name)) def __call__(self, var_name=None): """ Get the full DOF vector (including EBC and PBC DOFs). If `var_name` is given, return only the DOF vector corresponding to the given variable. """ if var_name is None: out = self.vec else: out = self.variables.get_state_part_view(self.vec, var_name) return out def set_parts(self, parts, force=False): """ Set parts of the DOF vector corresponding to individual state variables. Parameters ---------- parts : dict The dictionary of the DOF vector parts. """ if self.variables.has_lcbc and not force: raise ValueError('cannot set full DOF vector with LCBCs!') self.variables.set_data(parts) for key, part in parts.iteritems(): indx = self.variables.get_indx(key) self.vec[indx] = part def get_parts(self): """ Return parts of the DOF vector corresponding to individual state variables. Returns ------- out : dict The dictionary of the DOF vector parts. """ return self.variables.get_state_parts(self.vec) def create_output_dict(self, fill_value=None, var_info=None, extend=True, linearization=None): """ Transforms state to an output dictionary, that can be passed as 'out' kwarg to Mesh.write(). Then the dictionary entries are formed by components of the state vector corresponding to unknown variables according to kind of linearization given by `linearization`. Examples -------- >>> out = state.create_output_dict() >>> problem.save_state('file.vtk', out=out) """ return self.variables.state_to_output(self.vec, fill_value, var_info, extend, linearization=linearization) def get_weighted_norm(self, vec, weights=None, return_weights=False): """ Return the weighted norm of DOF vector `vec`. By default, each component of `vec` is weighted by the 1/norm of the corresponding state part, or 1 if the norm is zero. Alternatively, the weights can be provided explicitly using `weights` argument. Parameters ---------- vec : array The DOF vector corresponding to the variables. weights : dict, optional If given, the weights are used instead of the norms of the state parts. Keys of the dictionary must be equal to the names of variables comprising the DOF vector. return_weights: bool If True, return also the used weights. Returns ------- norm : float The weighted norm. weights : dict, optional If `return_weights` is True, the used weights. Examples -------- >>> err = state0.get_weighted_norm(state() - state0()) """ if weights is None: parts = self.get_parts() weights = {} for key, part in parts.iteritems(): pnorm = nm.linalg.norm(part) if pnorm < 10.0 * nm.finfo(nm.float64).eps: pnorm = 1.0 weights[key] = 1.0 / pnorm else: if set(weights.keys()) != self.variables.state: raise ValueError('weights keys have to be in %s!' % self.variables.state) wvec = vec.copy() for key in weights.iterkeys(): indx = self.variables.get_indx(key) wvec[indx] *= weights[key] norm = nm.linalg.norm(wvec) if return_weights: return norm, weights else: return norm
[ "sfepy.base.base.Struct.__init__" ]
[((1635, 1698), 'sfepy.base.base.Struct.__init__', 'Struct.__init__', (['self'], {'variables': 'variables', 'vec': 'vec', 'r_vec': 'None'}), '(self, variables=variables, vec=vec, r_vec=None)\n', (1650, 1698), False, 'from sfepy.base.base import Struct\n'), ((9457, 9477), 'numpy.linalg.norm', 'nm.linalg.norm', (['wvec'], {}), '(wvec)\n', (9471, 9477), True, 'import numpy as nm\n'), ((8934, 8954), 'numpy.linalg.norm', 'nm.linalg.norm', (['part'], {}), '(part)\n', (8948, 8954), True, 'import numpy as nm\n'), ((8989, 9009), 'numpy.finfo', 'nm.finfo', (['nm.float64'], {}), '(nm.float64)\n', (8997, 9009), True, 'import numpy as nm\n')]
import os from flask import Flask import os import requests from app import config from app.routes import default from app.routes import debug from app.routes import auth from app.routes import admin from app.routes import profile from app.routes import server from app.pages import create_pages from sqlmodel import SQLModel from sqlmodel import create_engine from app.models.user import Log, User APP_SETTINGS = os.getenv("APP_SETTINGS", "Testing") def drop_database(config): import sqlalchemy from sqlalchemy import create_engine from sqlalchemy import MetaData from sqlalchemy import inspect from sqlalchemy.orm import sessionmaker from sqlalchemy.ext.declarative import declarative_base engine = create_engine(config["DATABASE_URI"]) meta = MetaData() meta.reflect(bind=engine) meta.drop_all(engine, checkfirst=False) def create_app(): app = Flask(__name__, template_folder="app/templates/", static_folder="app/static/") app.count_requests = 0 app.config.from_object(f"app.config.{APP_SETTINGS}") app.secret_key = os.urandom(256) app.url_map.strict_slashes = False app.register_blueprint(default.bp) app.register_blueprint(debug.bp, url_prefix="/debug") app.register_blueprint(auth.bp, url_prefix="/auth") app.register_blueprint(admin.bp, url_prefix="/admin") app.register_blueprint(profile.bp, url_prefix="/user") app.register_blueprint(server.bp, url_prefix="/server") app.register_error_handler(Exception, default.handle_exception) return app app = create_app() app.pages = create_pages() with app.app_context(): from app.database import engine app.engine = engine if os.getenv("DROP_DATABASE", False): drop_database(app.config) SQLModel.metadata.create_all(engine) if __name__ == "__main__": app.run(host=app.config.get("HOST"), port=app.config.get("PORT"))
[ "sqlmodel.SQLModel.metadata.create_all" ]
[((417, 453), 'os.getenv', 'os.getenv', (['"""APP_SETTINGS"""', '"""Testing"""'], {}), "('APP_SETTINGS', 'Testing')\n", (426, 453), False, 'import os\n'), ((1587, 1601), 'app.pages.create_pages', 'create_pages', ([], {}), '()\n', (1599, 1601), False, 'from app.pages import create_pages\n'), ((1691, 1724), 'os.getenv', 'os.getenv', (['"""DROP_DATABASE"""', '(False)'], {}), "('DROP_DATABASE', False)\n", (1700, 1724), False, 'import os\n'), ((1757, 1793), 'sqlmodel.SQLModel.metadata.create_all', 'SQLModel.metadata.create_all', (['engine'], {}), '(engine)\n', (1785, 1793), False, 'from sqlmodel import SQLModel\n'), ((735, 772), 'sqlalchemy.create_engine', 'create_engine', (["config['DATABASE_URI']"], {}), "(config['DATABASE_URI'])\n", (748, 772), False, 'from sqlalchemy import create_engine\n'), ((784, 794), 'sqlalchemy.MetaData', 'MetaData', ([], {}), '()\n', (792, 794), False, 'from sqlalchemy import MetaData\n'), ((899, 977), 'flask.Flask', 'Flask', (['__name__'], {'template_folder': '"""app/templates/"""', 'static_folder': '"""app/static/"""'}), "(__name__, template_folder='app/templates/', static_folder='app/static/')\n", (904, 977), False, 'from flask import Flask\n'), ((1084, 1099), 'os.urandom', 'os.urandom', (['(256)'], {}), '(256)\n', (1094, 1099), False, 'import os\n')]
from typing import Optional import pandas as pd import streamlit as st import os from sqlmodel import Field, Session, SQLModel, create_engine, select class Hero(SQLModel, table=True): __table_args__ = {'extend_existing': True} # required for streamlit refreshing id: Optional[int] = Field(default=None, primary_key=True) name: str secret_name: str age: Optional[int] = None sqlite_file_name = 'database.db' sqlite_url = f"sqlite:///{sqlite_file_name}" engine = create_engine(sqlite_url, echo=True) def create_db_and_tables(): SQLModel.metadata.create_all(engine) def create_heroes(): hero_1 = Hero(name="Rusty-Man", secret_name="<NAME>", age=36) hero_2 = Hero(name="Tarantula", secret_name="<NAME>", age=26) hero_3 = Hero(name="<NAME>", secret_name="<NAME>", age=33) with Session(engine) as session: session.add(hero_1) session.add(hero_2) session.add(hero_3) session.commit() def get_db_size(): with Session(engine) as session: heroes = session.exec(select(Hero)).all() return len(heroes) def select_heros(): with Session(engine) as session: statement = select(Hero).where(Hero.age <= 35) results = session.exec(statement) for hero in results: st.text(hero) #st.text(len(results)) def show_table(): with Session(engine) as session: heroes = session.exec(select(Hero)).all() st.table(pd.DataFrame([s.dict() for s in heroes[-5:]])) def delete_db(): with Session(engine) as session: heroes = session.exec(select(Hero)).all() for hero in heroes: session.delete(hero) session.commit() st.text("Deleted all rows") def write_new_row(): with st.form('new_row'): name_input = st.text_input('Name', value="<NAME>") secret_name = st.text_input('Secret alias', value="Dr. Jon") submitted = st.form_submit_button("Submit") if submitted: hero = Hero(name=name_input, secret_name=secret_name, age=23) st.write('submitted') hero_1 = Hero(name="Rusty-Man", secret_name="<NAME>", age=36) with Session(engine) as session: session.add(hero_1) session.commit() # ====================================== main ====================================== # def main(): create_db_and_tables() st.title('🦄 SQLModel Demo') b1, b2, b3, b4= st.columns(4) #if b1.button('Add Filter'): # pass #select_heros() # todo if b4.button("♻️ Empty db"): delete_db() #if b2.button('Create db'): # create_db_and_tables() if b3.button('+ Add 3 rows'): create_heroes() if st.button("➡️ Insert Row"): write_new_row() show_table() col0, col1, col2 = st.columns(3) file_size = os.path.getsize('database.db') col1.metric("💾 database.db", f"{get_db_size()}", "total rows") col2.metric("filesize", f"{file_size/1000:0.1f}", 'kb') if __name__ == '__main__': st.set_page_config( page_title="SQLModel Demo", page_icon="🦄", layout="centered", initial_sidebar_state="auto") main()
[ "sqlmodel.create_engine", "sqlmodel.Session", "sqlmodel.SQLModel.metadata.create_all", "sqlmodel.Field", "sqlmodel.select" ]
[((487, 523), 'sqlmodel.create_engine', 'create_engine', (['sqlite_url'], {'echo': '(True)'}), '(sqlite_url, echo=True)\n', (500, 523), False, 'from sqlmodel import Field, Session, SQLModel, create_engine, select\n'), ((294, 331), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'primary_key': '(True)'}), '(default=None, primary_key=True)\n', (299, 331), False, 'from sqlmodel import Field, Session, SQLModel, create_engine, select\n'), ((558, 594), 'sqlmodel.SQLModel.metadata.create_all', 'SQLModel.metadata.create_all', (['engine'], {}), '(engine)\n', (586, 594), False, 'from sqlmodel import Field, Session, SQLModel, create_engine, select\n'), ((1703, 1730), 'streamlit.text', 'st.text', (['"""Deleted all rows"""'], {}), "('Deleted all rows')\n", (1710, 1730), True, 'import streamlit as st\n'), ((2419, 2446), 'streamlit.title', 'st.title', (['"""🦄 SQLModel Demo"""'], {}), "('🦄 SQLModel Demo')\n", (2427, 2446), True, 'import streamlit as st\n'), ((2467, 2480), 'streamlit.columns', 'st.columns', (['(4)'], {}), '(4)\n', (2477, 2480), True, 'import streamlit as st\n'), ((2745, 2771), 'streamlit.button', 'st.button', (['"""➡️ Insert Row"""'], {}), "('➡️ Insert Row')\n", (2754, 2771), True, 'import streamlit as st\n'), ((2838, 2851), 'streamlit.columns', 'st.columns', (['(3)'], {}), '(3)\n', (2848, 2851), True, 'import streamlit as st\n'), ((2868, 2898), 'os.path.getsize', 'os.path.getsize', (['"""database.db"""'], {}), "('database.db')\n", (2883, 2898), False, 'import os\n'), ((3059, 3174), 'streamlit.set_page_config', 'st.set_page_config', ([], {'page_title': '"""SQLModel Demo"""', 'page_icon': '"""🦄"""', 'layout': '"""centered"""', 'initial_sidebar_state': '"""auto"""'}), "(page_title='SQLModel Demo', page_icon='🦄', layout=\n 'centered', initial_sidebar_state='auto')\n", (3077, 3174), True, 'import streamlit as st\n'), ((822, 837), 'sqlmodel.Session', 'Session', (['engine'], {}), '(engine)\n', (829, 837), False, 'from sqlmodel import Field, Session, SQLModel, create_engine, select\n'), ((989, 1004), 'sqlmodel.Session', 'Session', (['engine'], {}), '(engine)\n', (996, 1004), False, 'from sqlmodel import Field, Session, SQLModel, create_engine, select\n'), ((1121, 1136), 'sqlmodel.Session', 'Session', (['engine'], {}), '(engine)\n', (1128, 1136), False, 'from sqlmodel import Field, Session, SQLModel, create_engine, select\n'), ((1361, 1376), 'sqlmodel.Session', 'Session', (['engine'], {}), '(engine)\n', (1368, 1376), False, 'from sqlmodel import Field, Session, SQLModel, create_engine, select\n'), ((1531, 1546), 'sqlmodel.Session', 'Session', (['engine'], {}), '(engine)\n', (1538, 1546), False, 'from sqlmodel import Field, Session, SQLModel, create_engine, select\n'), ((1766, 1784), 'streamlit.form', 'st.form', (['"""new_row"""'], {}), "('new_row')\n", (1773, 1784), True, 'import streamlit as st\n'), ((1807, 1844), 'streamlit.text_input', 'st.text_input', (['"""Name"""'], {'value': '"""<NAME>"""'}), "('Name', value='<NAME>')\n", (1820, 1844), True, 'import streamlit as st\n'), ((1867, 1913), 'streamlit.text_input', 'st.text_input', (['"""Secret alias"""'], {'value': '"""Dr. Jon"""'}), "('Secret alias', value='Dr. Jon')\n", (1880, 1913), True, 'import streamlit as st\n'), ((1935, 1966), 'streamlit.form_submit_button', 'st.form_submit_button', (['"""Submit"""'], {}), "('Submit')\n", (1956, 1966), True, 'import streamlit as st\n'), ((1287, 1300), 'streamlit.text', 'st.text', (['hero'], {}), '(hero)\n', (1294, 1300), True, 'import streamlit as st\n'), ((2075, 2096), 'streamlit.write', 'st.write', (['"""submitted"""'], {}), "('submitted')\n", (2083, 2096), True, 'import streamlit as st\n'), ((1169, 1181), 'sqlmodel.select', 'select', (['Hero'], {}), '(Hero)\n', (1175, 1181), False, 'from sqlmodel import Field, Session, SQLModel, create_engine, select\n'), ((2189, 2204), 'sqlmodel.Session', 'Session', (['engine'], {}), '(engine)\n', (2196, 2204), False, 'from sqlmodel import Field, Session, SQLModel, create_engine, select\n'), ((1047, 1059), 'sqlmodel.select', 'select', (['Hero'], {}), '(Hero)\n', (1053, 1059), False, 'from sqlmodel import Field, Session, SQLModel, create_engine, select\n'), ((1419, 1431), 'sqlmodel.select', 'select', (['Hero'], {}), '(Hero)\n', (1425, 1431), False, 'from sqlmodel import Field, Session, SQLModel, create_engine, select\n'), ((1589, 1601), 'sqlmodel.select', 'select', (['Hero'], {}), '(Hero)\n', (1595, 1601), False, 'from sqlmodel import Field, Session, SQLModel, create_engine, select\n')]
#! /usr/bin/env python3 # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import argparse import json import math import os from megengine.utils.module_stats import sizeof_fmt from megengine.utils.tensorboard import SummaryWriterExtend def load_single_graph(fpath): with open(fpath) as fin: data = json.load(fin) for t in ["operator", "var"]: data[t] = {int(i): j for i, j in data[t].items()} gvars = data["var"] for oid, i in data["operator"].items(): i["input"] = list(map(int, i["input"])) out = i["output"] = list(map(int, i["output"])) for j in out: gvars[j]["owner_opr"] = oid for var in data["var"].values(): mp = var.get("mem_plan", None) if mp: var["shape"] = "{" + ",".join(map(str, mp["layout"]["shape"])) + "}" else: var["shape"] = "<?>" return data def comp_graph_plotter(input, writer): jgraph = load_single_graph(input) all_oprs = jgraph["operator"] all_vars = jgraph["var"] for i in all_oprs: opr = all_oprs[i] if opr["type"] == "ImmutableTensor": continue inputlist = [] for var in opr["input"]: inpopr = all_oprs[all_vars[var]["owner_opr"]] if inpopr["type"] == "ImmutableTensor": continue inputlist.append(all_oprs[all_vars[var]["owner_opr"]]["name"]) writer.add_node_raw(opr["name"], opr["type"], inputlist) writer.add_graph_by_node_raw_list() def load_mem_info(fpath): with open(fpath) as fin: data = json.load(fin) oprs = data["opr"] for oid, i in oprs.items(): i["size"] = 0 for oid, i in data["chunk"].items(): i["size"] = int(i["logic_addr_end"]) - int(i["logic_addr_begin"]) data["peak_memory"] = 0 data["weight_memory"] = 0 for oid, i in data["chunk"].items(): if i["type"] == "static_mem": i["owner_opr"] = oprs[i["time_begin"]]["name"] life_begin = int(i["time_begin"]) life_end = int(i["time_end"]) if i["overwrite_dest_id"] != "-1": life_begin = life_begin + 1 if data["peak_memory"] < int(i["logic_addr_end"]): data["peak_memory"] = int(i["logic_addr_end"]) for j in range(life_begin, life_end): oprs[str(j)]["size"] = oprs[str(j)]["size"] + i["size"] elif i["type"] == "weight_mem": data["weight_memory"] += int(i["logic_addr_end"]) - int( i["logic_addr_begin"] ) return data def peak_mem_regist(input, writer): jmem = load_mem_info(input) writer.add_text( "PEAK_MEMORY_SIZE", [sizeof_fmt(jmem["peak_memory"]) + "(" + str(jmem["peak_memory"]) + " B)"], ) writer.add_text( "WEIGHT_MEMORY_SIZE", [sizeof_fmt(jmem["weight_memory"]) + "(" + str(jmem["weight_memory"]) + " B)"], ) all_oprs = jmem["opr"] all_chunks = jmem["chunk"] max_size = 0 max_size_oprs = [] # get oprs that reach the max memory for oid, i in all_oprs.items(): if i["size"] == max_size: max_size_oprs.append(int(i["id"])) elif i["size"] > max_size: max_size = i["size"] max_size_oprs.clear() max_size_oprs.append(int(i["id"])) # get component of chunks max_size_oprs.sort() opr2chunks = [] num = len(max_size_oprs) for i in range(num): opr2chunks.append([]) for oid, i in all_chunks.items(): if i["type"] == "static_mem": life_begin = int(i["time_begin"]) life_end = int(i["time_end"]) if i["overwrite_dest_id"] != "-1": life_begin = life_begin + 1 if max_size_oprs[0] >= life_end or max_size_oprs[-1] < life_begin: continue for j in range(num): if max_size_oprs[j] >= life_end: break elif max_size_oprs[j] >= life_begin: opr2chunks[j].append(i["id"]) peak_num = 0 for i in range(num): suffix_1 = "PEAK" + str(peak_num) if i - 1 > 0 and opr2chunks[i - 1] == opr2chunks[i]: continue max_num = 0 opr2chunks[i] = sorted( opr2chunks[i], key=lambda chunk_id: all_chunks[chunk_id]["size"], reverse=True, ) writer.add_text( suffix_1 + "/" + "<SUMMARY_INFO>", ["reached_max_opr_name: " + all_oprs[str(max_size_oprs[i])]["name"]], 0, ) writer.add_text( suffix_1 + "/" + "<SUMMARY_INFO>", ["max_used_size: " + sizeof_fmt(max_size)], 1, ) for j in opr2chunks[i]: suffix_2 = "MAX" + str(max_num) j_size = sizeof_fmt(all_chunks[j]["size"]) j_percent = round(all_chunks[j]["size"] / max_size * 100, 3) writer.add_text( suffix_1 + "/" + suffix_2 + "_OPR", ["percent: " + str(j_percent) + "%"], 0, ) writer.add_text( suffix_1 + "/" + suffix_2 + "_OPR", ["memory_size: " + j_size], 1, ) writer.add_text( suffix_1 + "/" + suffix_2 + "_OPR", ["owner_opr: " + all_chunks[j]["owner_opr"]], 2, ) writer.add_node_raw_attributes( all_chunks[j]["owner_opr"], { "memory_" + all_chunks[j]["id"]: j_size, "memory_percent": str(j_percent) + "%", "summary_memory_" + str(peak_num): sizeof_fmt(max_size), }, ) writer.add_node_raw_name_suffix( all_chunks[j]["owner_opr"], "_" + suffix_1 + "_" + suffix_2 ) max_num += 1 peak_num += 1 writer.add_graph_by_node_raw_list() def convert(args): file_process_order = { "graph.json": comp_graph_plotter, "StaticMemoryInfo.json": peak_mem_regist, } g = os.walk(args.input) for path, dir_list, file_list in g: out_path = path.replace(args.input, args.output) writer = SummaryWriterExtend(out_path) for key, value in file_process_order.items(): if key in file_list: value(os.path.join(path, key), writer) def main(): """`graph_info_analyze.py` is uesed to convert json dumped by `VisableDataSet` class to logs which can be read by python `tensorboard`. Now `get_static_memory_alloc_info()` support this feature,it will dump a dir which can be convert by `graph_info_analyze.py`. Examples: .. code-block:: shell graph_info_analyze.py -i <input_dir_name> -o <output_dir_name> tensorboard --logdir <output_dir_name> """ parser = argparse.ArgumentParser( "convert json dumped by c to logs which can be read by python tensorboard", formatter_class=argparse.ArgumentDefaultsHelpFormatter, ) parser.add_argument( "-i", "--input", required=True, help="input dirctor name(c tensorboard info)" ) parser.add_argument( "-o", "--output", required=True, help="output dirctor name(python tensorboard info)", ) args = parser.parse_args() convert(args) if __name__ == "__main__": main()
[ "megengine.utils.module_stats.sizeof_fmt", "megengine.utils.tensorboard.SummaryWriterExtend" ]
[((6623, 6642), 'os.walk', 'os.walk', (['args.input'], {}), '(args.input)\n', (6630, 6642), False, 'import os\n'), ((7413, 7577), 'argparse.ArgumentParser', 'argparse.ArgumentParser', (['"""convert json dumped by c to logs which can be read by python tensorboard"""'], {'formatter_class': 'argparse.ArgumentDefaultsHelpFormatter'}), "(\n 'convert json dumped by c to logs which can be read by python tensorboard',\n formatter_class=argparse.ArgumentDefaultsHelpFormatter)\n", (7436, 7577), False, 'import argparse\n'), ((616, 630), 'json.load', 'json.load', (['fin'], {}), '(fin)\n', (625, 630), False, 'import json\n'), ((1952, 1966), 'json.load', 'json.load', (['fin'], {}), '(fin)\n', (1961, 1966), False, 'import json\n'), ((6757, 6786), 'megengine.utils.tensorboard.SummaryWriterExtend', 'SummaryWriterExtend', (['out_path'], {}), '(out_path)\n', (6776, 6786), False, 'from megengine.utils.tensorboard import SummaryWriterExtend\n'), ((5321, 5354), 'megengine.utils.module_stats.sizeof_fmt', 'sizeof_fmt', (["all_chunks[j]['size']"], {}), "(all_chunks[j]['size'])\n", (5331, 5354), False, 'from megengine.utils.module_stats import sizeof_fmt\n'), ((5175, 5195), 'megengine.utils.module_stats.sizeof_fmt', 'sizeof_fmt', (['max_size'], {}), '(max_size)\n', (5185, 5195), False, 'from megengine.utils.module_stats import sizeof_fmt\n'), ((6191, 6211), 'megengine.utils.module_stats.sizeof_fmt', 'sizeof_fmt', (['max_size'], {}), '(max_size)\n', (6201, 6211), False, 'from megengine.utils.module_stats import sizeof_fmt\n'), ((6896, 6919), 'os.path.join', 'os.path.join', (['path', 'key'], {}), '(path, key)\n', (6908, 6919), False, 'import os\n'), ((3178, 3209), 'megengine.utils.module_stats.sizeof_fmt', 'sizeof_fmt', (["jmem['peak_memory']"], {}), "(jmem['peak_memory'])\n", (3188, 3209), False, 'from megengine.utils.module_stats import sizeof_fmt\n'), ((3319, 3352), 'megengine.utils.module_stats.sizeof_fmt', 'sizeof_fmt', (["jmem['weight_memory']"], {}), "(jmem['weight_memory'])\n", (3329, 3352), False, 'from megengine.utils.module_stats import sizeof_fmt\n')]
""" Rewards are Txs with the claim-iscore method but since this service only listens for new Txs, this job backfills the value and iscore from the logs service. """ import json from requests import RequestException, get from sqlmodel import func, select from icon_governance.config import settings from icon_governance.log import logger from icon_governance.models.rewards import Reward from icon_governance.utils.rpc import convert_hex_int def get_iscore_value(tx_hash): """Get rewards value and Tx from logs service.""" try: response = get(f"{settings.LOGS_SERVICE_URL}/api/v1/logs?transaction_hash={tx_hash}") except RequestException as e: logger.info(f"Exception in iscore - \n{e} - \n{tx_hash}") return None, None if response.status_code == 200: try: data = json.loads(response.json()[0]["data"]) return convert_hex_int(data[0]) / 1e18, convert_hex_int(data[1]) / 1e18 except Exception as e: logger.info(f"Exception in iscore - \n{e} - \n{tx_hash}") return None, None else: logger.info(f"Could not find Tx hash from logs service {tx_hash}") def get_rewards(session): """ Cron to get all the values and iscores for rewards txs. Works by getting all the iscore distributions which are picked up by the transactions processor and insert them into a DB. The values are then inserted with this cron job by querying for rewards that have no value. """ count = ( session.execute(select([func.count(Reward.address)]).where(Reward.value == None)) .scalars() .all() ) logger.info(f"Found {count} number of rewards records.") chunk_size = 10 for i in range(0, int(count[0] / chunk_size) + 1): rewards = ( session.execute(select(Reward).where(Reward.value == None).limit(chunk_size)) .scalars() .all() ) for r in rewards: # Get value from logs service iscore, value = get_iscore_value(tx_hash=r.tx_hash) if iscore is None: continue r.value = value r.iscore = iscore session.add(r) try: session.commit() except: session.rollback() raise
[ "sqlmodel.func.count", "sqlmodel.select" ]
[((1647, 1703), 'icon_governance.log.logger.info', 'logger.info', (['f"""Found {count} number of rewards records."""'], {}), "(f'Found {count} number of rewards records.')\n", (1658, 1703), False, 'from icon_governance.log import logger\n'), ((558, 632), 'requests.get', 'get', (['f"""{settings.LOGS_SERVICE_URL}/api/v1/logs?transaction_hash={tx_hash}"""'], {}), "(f'{settings.LOGS_SERVICE_URL}/api/v1/logs?transaction_hash={tx_hash}')\n", (561, 632), False, 'from requests import RequestException, get\n'), ((1100, 1166), 'icon_governance.log.logger.info', 'logger.info', (['f"""Could not find Tx hash from logs service {tx_hash}"""'], {}), "(f'Could not find Tx hash from logs service {tx_hash}')\n", (1111, 1166), False, 'from icon_governance.log import logger\n'), ((675, 734), 'icon_governance.log.logger.info', 'logger.info', (['f"""Exception in iscore - \n{e} - \n{tx_hash}"""'], {}), '(f"""Exception in iscore - \n{e} - \n{tx_hash}""")\n', (686, 734), False, 'from icon_governance.log import logger\n'), ((994, 1053), 'icon_governance.log.logger.info', 'logger.info', (['f"""Exception in iscore - \n{e} - \n{tx_hash}"""'], {}), '(f"""Exception in iscore - \n{e} - \n{tx_hash}""")\n', (1005, 1053), False, 'from icon_governance.log import logger\n'), ((886, 910), 'icon_governance.utils.rpc.convert_hex_int', 'convert_hex_int', (['data[0]'], {}), '(data[0])\n', (901, 910), False, 'from icon_governance.utils.rpc import convert_hex_int\n'), ((919, 943), 'icon_governance.utils.rpc.convert_hex_int', 'convert_hex_int', (['data[1]'], {}), '(data[1])\n', (934, 943), False, 'from icon_governance.utils.rpc import convert_hex_int\n'), ((1544, 1570), 'sqlmodel.func.count', 'func.count', (['Reward.address'], {}), '(Reward.address)\n', (1554, 1570), False, 'from sqlmodel import func, select\n'), ((1828, 1842), 'sqlmodel.select', 'select', (['Reward'], {}), '(Reward)\n', (1834, 1842), False, 'from sqlmodel import func, select\n')]
from datetime import datetime from typing import Any, Dict, Generic, List, Optional, Type, TypeVar, Union from uuid import UUID from fastapi_pagination.ext.async_sqlmodel import paginate from fastapi_pagination import Params, Page from fastapi.encoders import jsonable_encoder from pydantic import BaseModel from sqlmodel import SQLModel, select, func from sqlalchemy.orm import selectinload from sqlmodel.ext.asyncio.session import AsyncSession from sqlmodel.sql.expression import Select, SelectOfScalar ModelType = TypeVar("ModelType", bound=SQLModel) CreateSchemaType = TypeVar("CreateSchemaType", bound=BaseModel) UpdateSchemaType = TypeVar("UpdateSchemaType", bound=BaseModel) SchemaType = TypeVar("SchemaType", bound=BaseModel) T = TypeVar("T", bound=SQLModel) class CRUDBase(Generic[ModelType, CreateSchemaType, UpdateSchemaType]): def __init__(self, model: Type[ModelType]): """ CRUD object with default methods to Create, Read, Update, Delete (CRUD). **Parameters** * `model`: A SQLAlchemy model class * `schema`: A Pydantic model (schema) class """ self.model = model async def get( self, db_session: AsyncSession, *, id: Union[UUID, str] ) -> Optional[ModelType]: response = await db_session.exec(select(self.model).where(self.model.id == id).options(selectinload('*'))) return response.first() async def get_by_ids(self, db_session: AsyncSession, list_ids: List[Union[UUID, str]],) -> Optional[List[ModelType]]: response = await db_session.exec(select(self.model).where(self.model.id.in_(list_ids))) return response.all() async def get_count( self, db_session: AsyncSession ) -> Optional[ModelType]: response = await db_session.exec(select(func.count()).select_from(select(self.model).subquery())) return response.one() async def get_multi( self, db_session: AsyncSession, *, skip: int = 0, limit: int = 100 ) -> List[ModelType]: response = await db_session.exec( select(self.model).offset(skip).limit(limit).order_by(self.model.id) ) return response.all() async def get_multi_paginated( self, db_session: AsyncSession, *, params: Optional[Params] = Params(), query: Optional[Union[T, Select[T], SelectOfScalar[T]]] = None ) -> Page[ModelType]: if query == None: query = self.model return await paginate(db_session, query, params) async def create( self, db_session: AsyncSession, *, obj_in: Union[CreateSchemaType, ModelType], created_by_id: Optional[Union[UUID, str]] = None ) -> ModelType: db_obj = self.model.from_orm(obj_in) # type: ignore db_obj.created_at = datetime.utcnow() db_obj.updated_at = datetime.utcnow() if(created_by_id): db_obj.created_by_id = created_by_id db_session.add(db_obj) await db_session.commit() await db_session.refresh(db_obj) return db_obj async def update( self, db_session: AsyncSession, *, obj_current: ModelType, obj_new: Union[UpdateSchemaType, Dict[str, Any], ModelType] ) -> ModelType: obj_data = jsonable_encoder(obj_current) if isinstance(obj_new, dict): update_data = obj_new else: update_data = obj_new.dict(exclude_unset=True) #This tells Pydantic to not include the values that were not sent for field in obj_data: if field in update_data: setattr(obj_current, field, update_data[field]) if field == "updated_at": setattr(obj_current, field, datetime.utcnow()) db_session.add(obj_current) await db_session.commit() await db_session.refresh(obj_current) return obj_current async def remove( self, db_session: AsyncSession, *, id: Union[UUID, str] ) -> ModelType: response = await db_session.exec(select(self.model).where(self.model.id == id)) obj = response.one() await db_session.delete(obj) await db_session.commit() return obj
[ "sqlmodel.select", "sqlmodel.func.count" ]
[((518, 554), 'typing.TypeVar', 'TypeVar', (['"""ModelType"""'], {'bound': 'SQLModel'}), "('ModelType', bound=SQLModel)\n", (525, 554), False, 'from typing import Any, Dict, Generic, List, Optional, Type, TypeVar, Union\n'), ((574, 618), 'typing.TypeVar', 'TypeVar', (['"""CreateSchemaType"""'], {'bound': 'BaseModel'}), "('CreateSchemaType', bound=BaseModel)\n", (581, 618), False, 'from typing import Any, Dict, Generic, List, Optional, Type, TypeVar, Union\n'), ((638, 682), 'typing.TypeVar', 'TypeVar', (['"""UpdateSchemaType"""'], {'bound': 'BaseModel'}), "('UpdateSchemaType', bound=BaseModel)\n", (645, 682), False, 'from typing import Any, Dict, Generic, List, Optional, Type, TypeVar, Union\n'), ((696, 734), 'typing.TypeVar', 'TypeVar', (['"""SchemaType"""'], {'bound': 'BaseModel'}), "('SchemaType', bound=BaseModel)\n", (703, 734), False, 'from typing import Any, Dict, Generic, List, Optional, Type, TypeVar, Union\n'), ((739, 767), 'typing.TypeVar', 'TypeVar', (['"""T"""'], {'bound': 'SQLModel'}), "('T', bound=SQLModel)\n", (746, 767), False, 'from typing import Any, Dict, Generic, List, Optional, Type, TypeVar, Union\n'), ((2277, 2285), 'fastapi_pagination.Params', 'Params', ([], {}), '()\n', (2283, 2285), False, 'from fastapi_pagination import Params, Page\n'), ((2759, 2776), 'datetime.datetime.utcnow', 'datetime.utcnow', ([], {}), '()\n', (2774, 2776), False, 'from datetime import datetime\n'), ((2805, 2822), 'datetime.datetime.utcnow', 'datetime.utcnow', ([], {}), '()\n', (2820, 2822), False, 'from datetime import datetime\n'), ((3257, 3286), 'fastapi.encoders.jsonable_encoder', 'jsonable_encoder', (['obj_current'], {}), '(obj_current)\n', (3273, 3286), False, 'from fastapi.encoders import jsonable_encoder\n'), ((2454, 2489), 'fastapi_pagination.ext.async_sqlmodel.paginate', 'paginate', (['db_session', 'query', 'params'], {}), '(db_session, query, params)\n', (2462, 2489), False, 'from fastapi_pagination.ext.async_sqlmodel import paginate\n'), ((1349, 1366), 'sqlalchemy.orm.selectinload', 'selectinload', (['"""*"""'], {}), "('*')\n", (1361, 1366), False, 'from sqlalchemy.orm import selectinload\n'), ((3713, 3730), 'datetime.datetime.utcnow', 'datetime.utcnow', ([], {}), '()\n', (3728, 3730), False, 'from datetime import datetime\n'), ((1565, 1583), 'sqlmodel.select', 'select', (['self.model'], {}), '(self.model)\n', (1571, 1583), False, 'from sqlmodel import SQLModel, select, func\n'), ((4024, 4042), 'sqlmodel.select', 'select', (['self.model'], {}), '(self.model)\n', (4030, 4042), False, 'from sqlmodel import SQLModel, select, func\n'), ((1793, 1805), 'sqlmodel.func.count', 'func.count', ([], {}), '()\n', (1803, 1805), False, 'from sqlmodel import SQLModel, select, func\n'), ((1819, 1837), 'sqlmodel.select', 'select', (['self.model'], {}), '(self.model)\n', (1825, 1837), False, 'from sqlmodel import SQLModel, select, func\n'), ((1295, 1313), 'sqlmodel.select', 'select', (['self.model'], {}), '(self.model)\n', (1301, 1313), False, 'from sqlmodel import SQLModel, select, func\n'), ((2062, 2080), 'sqlmodel.select', 'select', (['self.model'], {}), '(self.model)\n', (2068, 2080), False, 'from sqlmodel import SQLModel, select, func\n')]
# Copyright 2021 Modelyst LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pathlib import Path from sqlmodel import create_engine def main(): engine = create_engine('postgresql://michaelstatt@localhost/sqlalchemy') file_name = Path(__file__).parent / 'test.csv' test_conn = engine.raw_connection() try: with test_conn.cursor() as curs: with open(file_name) as f: curs.copy_from(f, 'test', null="None", columns=['name', 'tags'], sep='|') f.seek(0) print(f.read()) test_conn.commit() finally: test_conn.close() if __name__ == '__main__': main()
[ "sqlmodel.create_engine" ]
[((685, 748), 'sqlmodel.create_engine', 'create_engine', (['"""postgresql://michaelstatt@localhost/sqlalchemy"""'], {}), "('postgresql://michaelstatt@localhost/sqlalchemy')\n", (698, 748), False, 'from sqlmodel import create_engine\n'), ((765, 779), 'pathlib.Path', 'Path', (['__file__'], {}), '(__file__)\n', (769, 779), False, 'from pathlib import Path\n')]
import numpy as nm from sfepy.base.base import assert_, Struct import sfepy.linalg as la class ContactPlane(Struct): def __init__(self, anchor, normal, bounds): Struct.__init__(self, anchor=nm.array(anchor, dtype=nm.float64), bounds=nm.asarray(bounds, dtype=nm.float64)) self.normal = nm.asarray(normal, dtype=nm.float64) norm = nm.linalg.norm self.normal /= norm(self.normal) e3 = [0.0, 0.0, 1.0] dd = nm.dot(e3, self.normal) rot_angle = nm.arccos(dd) if nm.abs(rot_angle) < 1e-14: mtx = nm.eye(3, dtype=nm.float64) bounds2d = self.bounds[:, :2] else: rot_axis = nm.cross([0.0, 0.0, 1.0], self.normal) mtx = la.make_axis_rotation_matrix(rot_axis, rot_angle) mm = la.insert_strided_axis(mtx, 0, self.bounds.shape[0]) rbounds = la.dot_sequences(mm, self.bounds) bounds2d = rbounds[:, :2] assert_(nm.allclose(nm.dot(mtx, self.normal), e3, rtol=0.0, atol=1e-12)) self.adotn = nm.dot(self.anchor, self.normal) self.rot_angle = rot_angle self.mtx = mtx self.bounds2d = bounds2d def mask_points(self, points): mm = la.insert_strided_axis(self.mtx, 0, points.shape[0]) points2d = la.dot_sequences(mm, points)[:, :2] return la.flag_points_in_polygon2d(self.bounds2d, points2d) def get_distance(self, points): dist = la.dot_sequences(points, self.normal) - self.adotn return dist class ContactSphere(Struct): def __init__(self, centre, radius): self.centre = nm.asarray(centre) self.radius = radius def mask_points(self, points, eps): dist2 = la.norm_l2_along_axis(points - self.centre, squared=True) radius2 = self.radius**2 mask = dist2 <= ((1 + eps)**2) * radius2 return mask def get_distance(self, points): """ Get the penetration distance and normals of points w.r.t. the sphere surface. Returns ------- d : array The penetration distance. normals : array The normals from the points to the sphere centre. """ vecs = self.centre - points dist = la.norm_l2_along_axis(vecs) # Prevent zero division. ii = dist > 1e-8 normals = nm.where(ii[:, None], vecs[ii] / dist[ii][:, None], vecs[ii]) return self.radius - dist, normals def _get_derivatives(self, points): vecs = self.centre - points dist = la.norm_l2_along_axis(vecs) # Distance derivative w.r.t. point coordinates. dd = vecs / dist[:, None] normals = dd # Unit normal derivative w.r.t. point coordinates. dim = points.shape[1] ee = nm.eye(dim)[None, ...] nnt = normals[..., None] * normals[..., None, :] dn = - (ee - nnt) / dist[:, None, None] return dd, dn def plot_polygon(ax, polygon): from sfepy.postprocess.plot_dofs import _get_axes dim = polygon.shape[1] ax = _get_axes(ax, dim) pp = nm.r_[polygon, polygon[:1]] px, py = pp[:, 0], pp[:, 1] if dim == 2: ax.plot(px, py) else: pz = pp[:, 2] ax.plot(px, py, pz) return ax def plot_points(ax, points, marker, **kwargs): from sfepy.postprocess.plot_dofs import _get_axes dim = points.shape[1] ax = _get_axes(ax, dim) px, py = points[:, 0], points[:, 1] if dim == 2: ax.plot(px, py, marker, **kwargs) else: pz = points[:, 2] ax.plot(px, py, pz, marker, **kwargs) return ax if __name__ == '__main__': import matplotlib.pyplot as plt # Test and draw the plane. anchor = [1, 1, 1] normal = [2, -1, 1] bounds = [[-2, 0, 0], [2, 1, 0], [4, 3, 1], [1, 3, 1], [2, 2, 1]] cp = ContactPlane(anchor, normal, bounds) pps = 2 * nm.random.rand(20, 3) mask = cp.mask_points(pps) dist = cp.get_distance(pps) v1, v2 = la.get_perpendiculars(cp.normal) ax = plot_polygon(None, cp.bounds) ax = plot_polygon(ax, nm.r_[cp.anchor[None, :], cp.anchor[None, :] + cp.normal[None, :]]) ax = plot_polygon(ax, nm.r_[cp.anchor[None, :], cp.anchor[None, :] + v1]) ax = plot_polygon(ax, nm.r_[cp.anchor[None, :], cp.anchor[None, :] + v2]) ax = plot_points(ax, cp.anchor[None, :], 'r*') ax = plot_points(ax, pps[mask], 'bs', ms=10, mec='None') ax = plot_points(ax, pps[~mask], 'go', ms=10, mec='None') mask = dist >= 0.0 ax = plot_points(ax, pps[mask], 'r^', mec='None') ax = plot_points(ax, pps[~mask], 'kv', mec='None') # Test and draw the sphere. pps = nm.random.rand(5000, 3) centre = [0, 0.5, 0.5] radius = 0.8 cs = ContactSphere(centre, radius) mask = cs.mask_points(pps, 0.0) dist = cs.get_distance(pps) ax = plot_points(None, cs.centre[None, :], 'b*', ms=30) ax = plot_points(ax, pps[mask], 'kv') ax = plot_points(ax, pps[~mask], 'r.') plt.show()
[ "sfepy.linalg.make_axis_rotation_matrix", "sfepy.linalg.get_perpendiculars", "sfepy.linalg.dot_sequences", "sfepy.linalg.norm_l2_along_axis", "sfepy.linalg.insert_strided_axis", "sfepy.linalg.flag_points_in_polygon2d", "sfepy.postprocess.plot_dofs._get_axes" ]
[((3170, 3188), 'sfepy.postprocess.plot_dofs._get_axes', '_get_axes', (['ax', 'dim'], {}), '(ax, dim)\n', (3179, 3188), False, 'from sfepy.postprocess.plot_dofs import _get_axes\n'), ((3514, 3532), 'sfepy.postprocess.plot_dofs._get_axes', '_get_axes', (['ax', 'dim'], {}), '(ax, dim)\n', (3523, 3532), False, 'from sfepy.postprocess.plot_dofs import _get_axes\n'), ((4161, 4193), 'sfepy.linalg.get_perpendiculars', 'la.get_perpendiculars', (['cp.normal'], {}), '(cp.normal)\n', (4182, 4193), True, 'import sfepy.linalg as la\n'), ((4930, 4953), 'numpy.random.rand', 'nm.random.rand', (['(5000)', '(3)'], {}), '(5000, 3)\n', (4944, 4953), True, 'import numpy as nm\n'), ((5257, 5267), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (5265, 5267), True, 'import matplotlib.pyplot as plt\n'), ((332, 368), 'numpy.asarray', 'nm.asarray', (['normal'], {'dtype': 'nm.float64'}), '(normal, dtype=nm.float64)\n', (342, 368), True, 'import numpy as nm\n'), ((484, 507), 'numpy.dot', 'nm.dot', (['e3', 'self.normal'], {}), '(e3, self.normal)\n', (490, 507), True, 'import numpy as nm\n'), ((528, 541), 'numpy.arccos', 'nm.arccos', (['dd'], {}), '(dd)\n', (537, 541), True, 'import numpy as nm\n'), ((1111, 1143), 'numpy.dot', 'nm.dot', (['self.anchor', 'self.normal'], {}), '(self.anchor, self.normal)\n', (1117, 1143), True, 'import numpy as nm\n'), ((1285, 1337), 'sfepy.linalg.insert_strided_axis', 'la.insert_strided_axis', (['self.mtx', '(0)', 'points.shape[0]'], {}), '(self.mtx, 0, points.shape[0])\n', (1307, 1337), True, 'import sfepy.linalg as la\n'), ((1409, 1461), 'sfepy.linalg.flag_points_in_polygon2d', 'la.flag_points_in_polygon2d', (['self.bounds2d', 'points2d'], {}), '(self.bounds2d, points2d)\n', (1436, 1461), True, 'import sfepy.linalg as la\n'), ((1679, 1697), 'numpy.asarray', 'nm.asarray', (['centre'], {}), '(centre)\n', (1689, 1697), True, 'import numpy as nm\n'), ((1784, 1841), 'sfepy.linalg.norm_l2_along_axis', 'la.norm_l2_along_axis', (['(points - self.centre)'], {'squared': '(True)'}), '(points - self.centre, squared=True)\n', (1805, 1841), True, 'import sfepy.linalg as la\n'), ((2325, 2352), 'sfepy.linalg.norm_l2_along_axis', 'la.norm_l2_along_axis', (['vecs'], {}), '(vecs)\n', (2346, 2352), True, 'import sfepy.linalg as la\n'), ((2429, 2490), 'numpy.where', 'nm.where', (['ii[:, None]', '(vecs[ii] / dist[ii][:, None])', 'vecs[ii]'], {}), '(ii[:, None], vecs[ii] / dist[ii][:, None], vecs[ii])\n', (2437, 2490), True, 'import numpy as nm\n'), ((2653, 2680), 'sfepy.linalg.norm_l2_along_axis', 'la.norm_l2_along_axis', (['vecs'], {}), '(vecs)\n', (2674, 2680), True, 'import sfepy.linalg as la\n'), ((4061, 4082), 'numpy.random.rand', 'nm.random.rand', (['(20)', '(3)'], {}), '(20, 3)\n', (4075, 4082), True, 'import numpy as nm\n'), ((554, 571), 'numpy.abs', 'nm.abs', (['rot_angle'], {}), '(rot_angle)\n', (560, 571), True, 'import numpy as nm\n'), ((599, 626), 'numpy.eye', 'nm.eye', (['(3)'], {'dtype': 'nm.float64'}), '(3, dtype=nm.float64)\n', (605, 626), True, 'import numpy as nm\n'), ((707, 745), 'numpy.cross', 'nm.cross', (['[0.0, 0.0, 1.0]', 'self.normal'], {}), '([0.0, 0.0, 1.0], self.normal)\n', (715, 745), True, 'import numpy as nm\n'), ((764, 813), 'sfepy.linalg.make_axis_rotation_matrix', 'la.make_axis_rotation_matrix', (['rot_axis', 'rot_angle'], {}), '(rot_axis, rot_angle)\n', (792, 813), True, 'import sfepy.linalg as la\n'), ((832, 884), 'sfepy.linalg.insert_strided_axis', 'la.insert_strided_axis', (['mtx', '(0)', 'self.bounds.shape[0]'], {}), '(mtx, 0, self.bounds.shape[0])\n', (854, 884), True, 'import sfepy.linalg as la\n'), ((907, 940), 'sfepy.linalg.dot_sequences', 'la.dot_sequences', (['mm', 'self.bounds'], {}), '(mm, self.bounds)\n', (923, 940), True, 'import sfepy.linalg as la\n'), ((1357, 1385), 'sfepy.linalg.dot_sequences', 'la.dot_sequences', (['mm', 'points'], {}), '(mm, points)\n', (1373, 1385), True, 'import sfepy.linalg as la\n'), ((1514, 1551), 'sfepy.linalg.dot_sequences', 'la.dot_sequences', (['points', 'self.normal'], {}), '(points, self.normal)\n', (1530, 1551), True, 'import sfepy.linalg as la\n'), ((2896, 2907), 'numpy.eye', 'nm.eye', (['dim'], {}), '(dim)\n', (2902, 2907), True, 'import numpy as nm\n'), ((205, 239), 'numpy.array', 'nm.array', (['anchor'], {'dtype': 'nm.float64'}), '(anchor, dtype=nm.float64)\n', (213, 239), True, 'import numpy as nm\n'), ((272, 308), 'numpy.asarray', 'nm.asarray', (['bounds'], {'dtype': 'nm.float64'}), '(bounds, dtype=nm.float64)\n', (282, 308), True, 'import numpy as nm\n'), ((1008, 1032), 'numpy.dot', 'nm.dot', (['mtx', 'self.normal'], {}), '(mtx, self.normal)\n', (1014, 1032), True, 'import numpy as nm\n')]
from fastapi import APIRouter, Depends, HTTPException, Path from sqlmodel import Session, select from sqlalchemy.exc import IntegrityError from typing import List import datetime as dt from app.src.common.security import get_current_user from app.src.common.utils import profiling_api from app.src.models.app_user import AppUser from app.src.models.tag import Tag, TagRead, TagCreate, TagUpdate from app.src.db.engine import get_session router = APIRouter() async def get_tag_or_404( *, session: Session = Depends(get_session), tag_id: int = Path(..., ge=1), current_user: AppUser = Depends(get_current_user), ): start_time = dt.datetime.now() try: db_tag = session.get(Tag, tag_id) if db_tag: return { "db_tag": db_tag, "username": current_user.username, "start_time": start_time, } else: raise HTTPException(status_code=404, detail="Tag not found") except KeyError: raise HTTPException(status_code=400, detail="Tag not found") async def get_tag_by_name_or_404( *, session: Session = Depends(get_session), tag_name: str, current_user: AppUser = Depends(get_current_user), ): start_time = dt.datetime.now() try: db_tag = session.exec(select(Tag).where(Tag.name == tag_name)).one() if db_tag: return { "db_tag": db_tag, "username": current_user.username, "start_time": start_time, } else: raise HTTPException(status_code=404, detail="Tag not found by name") except KeyError: raise HTTPException(status_code=400, detail="Tag not found by name") @router.get("/", response_model=List[TagRead]) async def read_tags( *, session: Session = Depends(get_session), current_user: AppUser = Depends(get_current_user), ): """ Get all the existing tags """ start_time = dt.datetime.now() tags = session.exec(select(Tag)).all() profiling_api("Tags:get:all", start_time, current_user.username) return tags @router.get("/{tag_id}", response_model=TagRead) async def read_tag(*, tag_id: int, db_tag: Tag = Depends(get_tag_or_404)): """ Get the tag by id """ profiling_api( f"Tag:read:by_id:{tag_id}", db_tag["start_time"], db_tag["username"], ) return db_tag["db_tag"] @router.post("/", response_model=TagRead) async def create_tags( *, session: Session = Depends(get_session), tag: TagCreate, current_user: AppUser = Depends(get_current_user), ): """ Create a tag """ start_time = dt.datetime.now() try: db_t = Tag.from_orm(tag) session.add(db_t) session.commit() session.refresh(db_t) except IntegrityError: raise HTTPException( status_code=404, detail="Impossible to create tag with same name" ) profiling_api("Tag:insert:single", start_time, current_user.username) return db_t @router.patch("/{tag_id}", response_model=TagRead) async def update_tag( *, tag_id: int, session: Session = Depends(get_session), tag: TagUpdate, db_tag: Tag = Depends(get_tag_or_404), ): """ Modify a tag """ # exclude_unset=True: it would only include the values # that were sent by the client existing_tag = db_tag["db_tag"] tag_data = tag.dict(exclude_unset=True) for key, value in tag_data.items(): setattr(existing_tag, key, value) session.add(existing_tag) session.commit() session.refresh(existing_tag) profiling_api( f"Tag:update:by_id:{tag_id}", db_tag["start_time"], db_tag["username"], ) return existing_tag @router.delete("/{tag_id}") async def delete_tag( *, tag_id: int, session: Session = Depends(get_session), db_tag: Tag = Depends(get_tag_or_404), ): """ Delete and remove an existing product type by id; it must be >= 1 """ existing_tag = db_tag["db_tag"] session.delete(existing_tag) session.commit() profiling_api( f"Tag:delete:by_id:{tag_id}", db_tag["start_time"], db_tag["username"], ) return {"ok": True}
[ "sqlmodel.select" ]
[((449, 460), 'fastapi.APIRouter', 'APIRouter', ([], {}), '()\n', (458, 460), False, 'from fastapi import APIRouter, Depends, HTTPException, Path\n'), ((519, 539), 'fastapi.Depends', 'Depends', (['get_session'], {}), '(get_session)\n', (526, 539), False, 'from fastapi import APIRouter, Depends, HTTPException, Path\n'), ((559, 574), 'fastapi.Path', 'Path', (['...'], {'ge': '(1)'}), '(..., ge=1)\n', (563, 574), False, 'from fastapi import APIRouter, Depends, HTTPException, Path\n'), ((604, 629), 'fastapi.Depends', 'Depends', (['get_current_user'], {}), '(get_current_user)\n', (611, 629), False, 'from fastapi import APIRouter, Depends, HTTPException, Path\n'), ((651, 668), 'datetime.datetime.now', 'dt.datetime.now', ([], {}), '()\n', (666, 668), True, 'import datetime as dt\n'), ((1144, 1164), 'fastapi.Depends', 'Depends', (['get_session'], {}), '(get_session)\n', (1151, 1164), False, 'from fastapi import APIRouter, Depends, HTTPException, Path\n'), ((1213, 1238), 'fastapi.Depends', 'Depends', (['get_current_user'], {}), '(get_current_user)\n', (1220, 1238), False, 'from fastapi import APIRouter, Depends, HTTPException, Path\n'), ((1260, 1277), 'datetime.datetime.now', 'dt.datetime.now', ([], {}), '()\n', (1275, 1277), True, 'import datetime as dt\n'), ((1838, 1858), 'fastapi.Depends', 'Depends', (['get_session'], {}), '(get_session)\n', (1845, 1858), False, 'from fastapi import APIRouter, Depends, HTTPException, Path\n'), ((1888, 1913), 'fastapi.Depends', 'Depends', (['get_current_user'], {}), '(get_current_user)\n', (1895, 1913), False, 'from fastapi import APIRouter, Depends, HTTPException, Path\n'), ((1981, 1998), 'datetime.datetime.now', 'dt.datetime.now', ([], {}), '()\n', (1996, 1998), True, 'import datetime as dt\n'), ((2046, 2110), 'app.src.common.utils.profiling_api', 'profiling_api', (['"""Tags:get:all"""', 'start_time', 'current_user.username'], {}), "('Tags:get:all', start_time, current_user.username)\n", (2059, 2110), False, 'from app.src.common.utils import profiling_api\n'), ((2227, 2250), 'fastapi.Depends', 'Depends', (['get_tag_or_404'], {}), '(get_tag_or_404)\n', (2234, 2250), False, 'from fastapi import APIRouter, Depends, HTTPException, Path\n'), ((2295, 2383), 'app.src.common.utils.profiling_api', 'profiling_api', (['f"""Tag:read:by_id:{tag_id}"""', "db_tag['start_time']", "db_tag['username']"], {}), "(f'Tag:read:by_id:{tag_id}', db_tag['start_time'], db_tag[\n 'username'])\n", (2308, 2383), False, 'from app.src.common.utils import profiling_api\n'), ((2535, 2555), 'fastapi.Depends', 'Depends', (['get_session'], {}), '(get_session)\n', (2542, 2555), False, 'from fastapi import APIRouter, Depends, HTTPException, Path\n'), ((2605, 2630), 'fastapi.Depends', 'Depends', (['get_current_user'], {}), '(get_current_user)\n', (2612, 2630), False, 'from fastapi import APIRouter, Depends, HTTPException, Path\n'), ((2685, 2702), 'datetime.datetime.now', 'dt.datetime.now', ([], {}), '()\n', (2700, 2702), True, 'import datetime as dt\n'), ((2974, 3043), 'app.src.common.utils.profiling_api', 'profiling_api', (['"""Tag:insert:single"""', 'start_time', 'current_user.username'], {}), "('Tag:insert:single', start_time, current_user.username)\n", (2987, 3043), False, 'from app.src.common.utils import profiling_api\n'), ((3182, 3202), 'fastapi.Depends', 'Depends', (['get_session'], {}), '(get_session)\n', (3189, 3202), False, 'from fastapi import APIRouter, Depends, HTTPException, Path\n'), ((3242, 3265), 'fastapi.Depends', 'Depends', (['get_tag_or_404'], {}), '(get_tag_or_404)\n', (3249, 3265), False, 'from fastapi import APIRouter, Depends, HTTPException, Path\n'), ((3648, 3738), 'app.src.common.utils.profiling_api', 'profiling_api', (['f"""Tag:update:by_id:{tag_id}"""', "db_tag['start_time']", "db_tag['username']"], {}), "(f'Tag:update:by_id:{tag_id}', db_tag['start_time'], db_tag[\n 'username'])\n", (3661, 3738), False, 'from app.src.common.utils import profiling_api\n'), ((3888, 3908), 'fastapi.Depends', 'Depends', (['get_session'], {}), '(get_session)\n', (3895, 3908), False, 'from fastapi import APIRouter, Depends, HTTPException, Path\n'), ((3928, 3951), 'fastapi.Depends', 'Depends', (['get_tag_or_404'], {}), '(get_tag_or_404)\n', (3935, 3951), False, 'from fastapi import APIRouter, Depends, HTTPException, Path\n'), ((4136, 4226), 'app.src.common.utils.profiling_api', 'profiling_api', (['f"""Tag:delete:by_id:{tag_id}"""', "db_tag['start_time']", "db_tag['username']"], {}), "(f'Tag:delete:by_id:{tag_id}', db_tag['start_time'], db_tag[\n 'username'])\n", (4149, 4226), False, 'from app.src.common.utils import profiling_api\n'), ((2727, 2744), 'app.src.models.tag.Tag.from_orm', 'Tag.from_orm', (['tag'], {}), '(tag)\n', (2739, 2744), False, 'from app.src.models.tag import Tag, TagRead, TagCreate, TagUpdate\n'), ((933, 987), 'fastapi.HTTPException', 'HTTPException', ([], {'status_code': '(404)', 'detail': '"""Tag not found"""'}), "(status_code=404, detail='Tag not found')\n", (946, 987), False, 'from fastapi import APIRouter, Depends, HTTPException, Path\n'), ((1023, 1077), 'fastapi.HTTPException', 'HTTPException', ([], {'status_code': '(400)', 'detail': '"""Tag not found"""'}), "(status_code=400, detail='Tag not found')\n", (1036, 1077), False, 'from fastapi import APIRouter, Depends, HTTPException, Path\n'), ((1577, 1639), 'fastapi.HTTPException', 'HTTPException', ([], {'status_code': '(404)', 'detail': '"""Tag not found by name"""'}), "(status_code=404, detail='Tag not found by name')\n", (1590, 1639), False, 'from fastapi import APIRouter, Depends, HTTPException, Path\n'), ((1675, 1737), 'fastapi.HTTPException', 'HTTPException', ([], {'status_code': '(400)', 'detail': '"""Tag not found by name"""'}), "(status_code=400, detail='Tag not found by name')\n", (1688, 1737), False, 'from fastapi import APIRouter, Depends, HTTPException, Path\n'), ((2867, 2952), 'fastapi.HTTPException', 'HTTPException', ([], {'status_code': '(404)', 'detail': '"""Impossible to create tag with same name"""'}), "(status_code=404, detail='Impossible to create tag with same name'\n )\n", (2880, 2952), False, 'from fastapi import APIRouter, Depends, HTTPException, Path\n'), ((2023, 2034), 'sqlmodel.select', 'select', (['Tag'], {}), '(Tag)\n', (2029, 2034), False, 'from sqlmodel import Session, select\n'), ((1317, 1328), 'sqlmodel.select', 'select', (['Tag'], {}), '(Tag)\n', (1323, 1328), False, 'from sqlmodel import Session, select\n')]
import sys sys.path.append('.') import cv2 import megengine as mge import megengine.functional as F import numpy as np from model.RIFE import Model model = Model() model.load_model('train_log') model.eval() name = ['Beanbags', 'Dimetrodon', 'DogDance', 'Grove2', 'Grove3', 'Hydrangea', 'MiniCooper', 'RubberWhale', 'Urban2', 'Urban3', 'Venus', 'Walking'] IE_list = [] for i in name: i0 = cv2.imread('other-data/{}/frame10.png'.format(i)).transpose(2, 0, 1) / 255. i1 = cv2.imread('other-data/{}/frame11.png'.format(i)).transpose(2, 0, 1) / 255. gt = cv2.imread('other-gt-interp/{}/frame10i11.png'.format(i)) h, w = i0.shape[1], i0.shape[2] imgs = F.zeros([1, 6, 480, 640]) ph = (480 - h) // 2 pw = (640 - w) // 2 imgs[:, :3, :h, :w] = F.expand_dims(mge.Tensor(i0), 0).astype("float32") imgs[:, 3:, :h, :w] = F.expand_dims(mge.Tensor(i1), 0).astype("float32") I0 = imgs[:, :3] I2 = imgs[:, 3:] pred = model.inference(I0, I2) out = pred[0].detach().numpy().transpose(1, 2, 0) out = np.round(out[:h, :w] * 255) IE_list.append(np.abs((out - gt * 1.0)).mean()) print(np.mean(IE_list))
[ "megengine.functional.zeros", "megengine.Tensor" ]
[((11, 31), 'sys.path.append', 'sys.path.append', (['"""."""'], {}), "('.')\n", (26, 31), False, 'import sys\n'), ((157, 164), 'model.RIFE.Model', 'Model', ([], {}), '()\n', (162, 164), False, 'from model.RIFE import Model\n'), ((670, 695), 'megengine.functional.zeros', 'F.zeros', (['[1, 6, 480, 640]'], {}), '([1, 6, 480, 640])\n', (677, 695), True, 'import megengine.functional as F\n'), ((1039, 1066), 'numpy.round', 'np.round', (['(out[:h, :w] * 255)'], {}), '(out[:h, :w] * 255)\n', (1047, 1066), True, 'import numpy as np\n'), ((1129, 1145), 'numpy.mean', 'np.mean', (['IE_list'], {}), '(IE_list)\n', (1136, 1145), True, 'import numpy as np\n'), ((784, 798), 'megengine.Tensor', 'mge.Tensor', (['i0'], {}), '(i0)\n', (794, 798), True, 'import megengine as mge\n'), ((861, 875), 'megengine.Tensor', 'mge.Tensor', (['i1'], {}), '(i1)\n', (871, 875), True, 'import megengine as mge\n'), ((1086, 1108), 'numpy.abs', 'np.abs', (['(out - gt * 1.0)'], {}), '(out - gt * 1.0)\n', (1092, 1108), True, 'import numpy as np\n')]
#!/usr/bin/env python3 import megengine as mge import megengine.module as nn import megengine.functional as F def conv3x3(in_chn, out_chn, bias=True): layer = nn.Conv2d(in_chn, out_chn, kernel_size=3, stride=1, padding=1, bias=bias) return layer def conv_down(in_chn, out_chn, bias=False): layer = nn.Conv2d(in_chn, out_chn, kernel_size=4, stride=2, padding=1, bias=bias) return layer class UNetD(nn.Module): def __init__(self, in_chn, wf=32, depth=5, relu_slope=0.2, subspace_dim=16): super(UNetD, self).__init__() self.depth = depth self.down_path = [] prev_channels = self.get_input_chn(in_chn) for i in range(depth): downsample = True if (i+1) < depth else False self.down_path.append(UNetConvBlock(prev_channels, (2**i)*wf, downsample, relu_slope)) prev_channels = (2**i) * wf # self.ema = EMAU(prev_channels, prev_channels//8) self.up_path = [] subnet_repeat_num = 1 for i in reversed(range(depth - 1)): self.up_path.append(UNetUpBlock(prev_channels, (2**i)*wf, relu_slope, subnet_repeat_num, subspace_dim)) prev_channels = (2**i)*wf subnet_repeat_num += 1 self.last = conv3x3(prev_channels, in_chn, bias=True) #self._initialize() def forward(self, x1): blocks = [] for i, down in enumerate(self.down_path): # print(x1.shape) if (i+1) < self.depth: x1, x1_up = down(x1) blocks.append(x1_up) else: x1 = down(x1) # print(x1.shape) # x1 = self.ema(x1) for i, up in enumerate(self.up_path): # print(x1.shape, blocks[-i-1].shape) x1 = up(x1, blocks[-i-1]) pred = self.last(x1) return pred def get_input_chn(self, in_chn): return in_chn def _initialize(self): gain = nn.init.calculate_gain('leaky_relu', 0.20) for m in self.modules(): if isinstance(m, nn.Conv2d): print("weight") nn.init.xavier_uniform_(m.weight) if m.bias is not None: print("bias") nn.init.zeros_(m.bias) class UNetConvBlock(nn.Module): def __init__(self, in_size, out_size, downsample, relu_slope): super(UNetConvBlock, self).__init__() self.block = nn.Sequential( nn.Conv2d(in_size, out_size, kernel_size=3, padding=1, bias=True), nn.LeakyReLU(relu_slope), nn.Conv2d(out_size, out_size, kernel_size=3, padding=1, bias=True), nn.LeakyReLU(relu_slope)) self.downsample = downsample if downsample: self.downsample = conv_down(out_size, out_size, bias=False) self.shortcut = nn.Conv2d(in_size, out_size, kernel_size=1, bias=True) def forward(self, x): out = self.block(x) sc = self.shortcut(x) out = out + sc if self.downsample: out_down = self.downsample(out) return out_down, out else: return out class UNetUpBlock(nn.Module): def __init__(self, in_size, out_size, relu_slope, subnet_repeat_num, subspace_dim=16): super(UNetUpBlock, self).__init__() self.up = nn.ConvTranspose2d(in_size, out_size, kernel_size=2, stride=2, bias=True) self.conv_block = UNetConvBlock(in_size, out_size, False, relu_slope) self.num_subspace = subspace_dim print(self.num_subspace, subnet_repeat_num) self.subnet = Subspace(in_size, self.num_subspace) self.skip_m = skip_blocks(out_size, out_size, subnet_repeat_num) def forward(self, x, bridge): up = self.up(x) bridge = self.skip_m(bridge) out = F.concat([up, bridge], 1) if self.subnet: b_, c_, h_, w_ = bridge.shape sub = self.subnet(out) V_t = sub.reshape(b_, self.num_subspace, h_*w_) V_t = V_t / (1e-6 + F.abs(V_t).sum(axis=2, keepdims=True)) V = V_t.transpose(0, 2, 1) mat = F.matmul(V_t, V) mat_inv = F.matinv(mat) project_mat = F.matmul(mat_inv, V_t) bridge_ = bridge.reshape(b_, c_, h_*w_) project_feature = F.matmul(project_mat, bridge_.transpose(0, 2, 1)) bridge = F.matmul(V, project_feature).transpose(0, 2, 1).reshape(b_, c_, h_, w_) out = F.concat([up, bridge], 1) out = self.conv_block(out) return out class Subspace(nn.Module): def __init__(self, in_size, out_size): super(Subspace, self).__init__() self.blocks = [] self.blocks.append(UNetConvBlock(in_size, out_size, False, 0.2)) self.shortcut = nn.Conv2d(in_size, out_size, kernel_size=1, bias=True) def forward(self, x): sc = self.shortcut(x) for i in range(len(self.blocks)): x = self.blocks[i](x) return x + sc class skip_blocks(nn.Module): def __init__(self, in_size, out_size, repeat_num=1): super(skip_blocks, self).__init__() self.blocks = [] self.re_num = repeat_num mid_c = 128 self.blocks.append(UNetConvBlock(in_size, mid_c, False, 0.2)) for i in range(self.re_num - 2): self.blocks.append(UNetConvBlock(mid_c, mid_c, False, 0.2)) self.blocks.append(UNetConvBlock(mid_c, out_size, False, 0.2)) self.shortcut = nn.Conv2d(in_size, out_size, kernel_size=1, bias=True) def forward(self, x): sc = self.shortcut(x) for m in self.blocks: x = m(x) return x + sc if __name__ == "__main__": import numpy as np a = UNetD(3) #print(a) im = mge.tensor(np.random.randn(1, 3, 128, 128).astype(np.float32)) print(a(im))
[ "megengine.module.init.calculate_gain", "megengine.functional.matmul", "megengine.module.init.zeros_", "megengine.functional.concat", "megengine.functional.matinv", "megengine.module.ConvTranspose2d", "megengine.module.init.xavier_uniform_", "megengine.module.Conv2d", "megengine.functional.abs", "megengine.module.LeakyReLU" ]
[((164, 237), 'megengine.module.Conv2d', 'nn.Conv2d', (['in_chn', 'out_chn'], {'kernel_size': '(3)', 'stride': '(1)', 'padding': '(1)', 'bias': 'bias'}), '(in_chn, out_chn, kernel_size=3, stride=1, padding=1, bias=bias)\n', (173, 237), True, 'import megengine.module as nn\n'), ((313, 386), 'megengine.module.Conv2d', 'nn.Conv2d', (['in_chn', 'out_chn'], {'kernel_size': '(4)', 'stride': '(2)', 'padding': '(1)', 'bias': 'bias'}), '(in_chn, out_chn, kernel_size=4, stride=2, padding=1, bias=bias)\n', (322, 386), True, 'import megengine.module as nn\n'), ((1951, 1992), 'megengine.module.init.calculate_gain', 'nn.init.calculate_gain', (['"""leaky_relu"""', '(0.2)'], {}), "('leaky_relu', 0.2)\n", (1973, 1992), True, 'import megengine.module as nn\n'), ((2843, 2897), 'megengine.module.Conv2d', 'nn.Conv2d', (['in_size', 'out_size'], {'kernel_size': '(1)', 'bias': '(True)'}), '(in_size, out_size, kernel_size=1, bias=True)\n', (2852, 2897), True, 'import megengine.module as nn\n'), ((3334, 3407), 'megengine.module.ConvTranspose2d', 'nn.ConvTranspose2d', (['in_size', 'out_size'], {'kernel_size': '(2)', 'stride': '(2)', 'bias': '(True)'}), '(in_size, out_size, kernel_size=2, stride=2, bias=True)\n', (3352, 3407), True, 'import megengine.module as nn\n'), ((3821, 3846), 'megengine.functional.concat', 'F.concat', (['[up, bridge]', '(1)'], {}), '([up, bridge], 1)\n', (3829, 3846), True, 'import megengine.functional as F\n'), ((4797, 4851), 'megengine.module.Conv2d', 'nn.Conv2d', (['in_size', 'out_size'], {'kernel_size': '(1)', 'bias': '(True)'}), '(in_size, out_size, kernel_size=1, bias=True)\n', (4806, 4851), True, 'import megengine.module as nn\n'), ((5497, 5551), 'megengine.module.Conv2d', 'nn.Conv2d', (['in_size', 'out_size'], {'kernel_size': '(1)', 'bias': '(True)'}), '(in_size, out_size, kernel_size=1, bias=True)\n', (5506, 5551), True, 'import megengine.module as nn\n'), ((2462, 2527), 'megengine.module.Conv2d', 'nn.Conv2d', (['in_size', 'out_size'], {'kernel_size': '(3)', 'padding': '(1)', 'bias': '(True)'}), '(in_size, out_size, kernel_size=3, padding=1, bias=True)\n', (2471, 2527), True, 'import megengine.module as nn\n'), ((2541, 2565), 'megengine.module.LeakyReLU', 'nn.LeakyReLU', (['relu_slope'], {}), '(relu_slope)\n', (2553, 2565), True, 'import megengine.module as nn\n'), ((2579, 2645), 'megengine.module.Conv2d', 'nn.Conv2d', (['out_size', 'out_size'], {'kernel_size': '(3)', 'padding': '(1)', 'bias': '(True)'}), '(out_size, out_size, kernel_size=3, padding=1, bias=True)\n', (2588, 2645), True, 'import megengine.module as nn\n'), ((2659, 2683), 'megengine.module.LeakyReLU', 'nn.LeakyReLU', (['relu_slope'], {}), '(relu_slope)\n', (2671, 2683), True, 'import megengine.module as nn\n'), ((4136, 4152), 'megengine.functional.matmul', 'F.matmul', (['V_t', 'V'], {}), '(V_t, V)\n', (4144, 4152), True, 'import megengine.functional as F\n'), ((4175, 4188), 'megengine.functional.matinv', 'F.matinv', (['mat'], {}), '(mat)\n', (4183, 4188), True, 'import megengine.functional as F\n'), ((4215, 4237), 'megengine.functional.matmul', 'F.matmul', (['mat_inv', 'V_t'], {}), '(mat_inv, V_t)\n', (4223, 4237), True, 'import megengine.functional as F\n'), ((4481, 4506), 'megengine.functional.concat', 'F.concat', (['[up, bridge]', '(1)'], {}), '([up, bridge], 1)\n', (4489, 4506), True, 'import megengine.functional as F\n'), ((2116, 2149), 'megengine.module.init.xavier_uniform_', 'nn.init.xavier_uniform_', (['m.weight'], {}), '(m.weight)\n', (2139, 2149), True, 'import megengine.module as nn\n'), ((5786, 5817), 'numpy.random.randn', 'np.random.randn', (['(1)', '(3)', '(128)', '(128)'], {}), '(1, 3, 128, 128)\n', (5801, 5817), True, 'import numpy as np\n'), ((2243, 2265), 'megengine.module.init.zeros_', 'nn.init.zeros_', (['m.bias'], {}), '(m.bias)\n', (2257, 2265), True, 'import megengine.module as nn\n'), ((4040, 4050), 'megengine.functional.abs', 'F.abs', (['V_t'], {}), '(V_t)\n', (4045, 4050), True, 'import megengine.functional as F\n'), ((4391, 4419), 'megengine.functional.matmul', 'F.matmul', (['V', 'project_feature'], {}), '(V, project_feature)\n', (4399, 4419), True, 'import megengine.functional as F\n')]
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # pylint: disable=import-error,no-name-in-module,no-member from typing import List, Union import megengine as mge from megengine.traced_module import TracedModule from ..backend.ir_to_caffe.caffe_converter import BackEnd, CaffeConverter from ..converter_ir.ir_quantizer import IRQuantizer from ..converter_ir.ir_transform import IRTransform, TransformerRule from ..frontend.tm_to_ir import TM_FrontEnd from ..frontend.tm_to_ir.tm_utils import _update_inputs_qparams def tracedmodule_to_caffe( traced_module, prototxt="out.prototxt", caffemodel="out.caffemodel", outspec=None, use_empty_blobs=False, input_data_type: str = None, input_scales: Union[float, List[float]] = None, input_zero_points: Union[int, List[int]] = None, require_quantize=False, param_fake_quant=False, split_conv_relu=False, quantize_file_path="quant_params.json", convert_backend: BackEnd = BackEnd.CAFFE, ): """ Convert TracedModule model to Caffe, and save caffe model to `prototxt` and `caffemodel`. :param traced_module: the file path of TracedModule model. :type traced_module: str :param prototxt: the filename used for saved model definition. :type prototxt: str :param caffemodel: the filename used for saved model weights. :type caffemodel: str :param outspec: specify the end points of the model, expect the full names of nodes. :type outspec: list """ if isinstance(traced_module, str): traced_module = mge.load(traced_module) assert isinstance( traced_module, TracedModule ), "Input should be a traced module or a path of traced module." _update_inputs_qparams( traced_module, input_data_type, input_scales, input_zero_points ) irgraph = TM_FrontEnd(traced_module, outspec=outspec).resolve() transformer_options = [ TransformerRule.REMOVE_DROPOUT, TransformerRule.REMOVE_RESHAPE_REALTED_OP, TransformerRule.REMOVE_UNRELATED_IROP, TransformerRule.ADD_FAKE_HSIGMOID_OUT, TransformerRule.EXPAND_CONVRELU, ] if split_conv_relu: transformer_options += [TransformerRule.REMOVE_RELU] transformer = IRTransform(transformer_options) transformed_irgraph = transformer.transform(irgraph) quantizer = IRQuantizer( require_quantize=require_quantize, param_fake_quant=param_fake_quant ) if require_quantize: quantizer.save_quantize_params(transformed_irgraph) converter = CaffeConverter( transformed_irgraph, quantizer, use_empty_blobs, convert_backend ) converter.convert() if require_quantize: quantizer.dump_quant_param(path=quantize_file_path) assert isinstance(prototxt, str) and isinstance( caffemodel, str ), "'prototxt' and 'caffemodel' must be string" converter.dump(prototxt, caffemodel)
[ "megengine.load" ]
[((1858, 1881), 'megengine.load', 'mge.load', (['traced_module'], {}), '(traced_module)\n', (1866, 1881), True, 'import megengine as mge\n')]
#!/usr/bin/env python # -*- encoding: utf-8 -*- # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. import megengine.functional as F import megengine.module as M from .darknet import Darknet from .network_blocks import BaseConv, UpSample class YOLOFPN(M.Module): """ YOLOFPN module. Darknet 53 is the default backbone of this model. """ def __init__( self, depth=53, in_features=["dark3", "dark4", "dark5"], ): super().__init__() self.backbone = Darknet(depth) self.in_features = in_features # out 1 self.out1_cbl = self._make_cbl(512, 256, 1) self.out1 = self._make_embedding([256, 512], 512 + 256) # out 2 self.out2_cbl = self._make_cbl(256, 128, 1) self.out2 = self._make_embedding([128, 256], 256 + 128) # upsample self.upsample = UpSample(scale_factor=2, mode="bilinear") def _make_cbl(self, _in, _out, ks): return BaseConv(_in, _out, ks, stride=1, act="lrelu") def _make_embedding(self, filters_list, in_filters): m = M.Sequential( *[ self._make_cbl(in_filters, filters_list[0], 1), self._make_cbl(filters_list[0], filters_list[1], 3), self._make_cbl(filters_list[1], filters_list[0], 1), self._make_cbl(filters_list[0], filters_list[1], 3), self._make_cbl(filters_list[1], filters_list[0], 1), ] ) return m def forward(self, inputs): """ Args: inputs (Tensor): input image. Returns: Tuple[Tensor]: FPN output features.. """ # backbone out_features = self.backbone(inputs) x2, x1, x0 = [out_features[f] for f in self.in_features] # yolo branch 1 x1_in = self.out1_cbl(x0) x1_in = self.upsample(x1_in) x1_in = F.concat([x1_in, x1], 1) out_dark4 = self.out1(x1_in) # yolo branch 2 x2_in = self.out2_cbl(out_dark4) x2_in = self.upsample(x2_in) x2_in = F.concat([x2_in, x2], 1) out_dark3 = self.out2(x2_in) outputs = (out_dark3, out_dark4, x0) return outputs
[ "megengine.functional.concat" ]
[((1916, 1940), 'megengine.functional.concat', 'F.concat', (['[x1_in, x1]', '(1)'], {}), '([x1_in, x1], 1)\n', (1924, 1940), True, 'import megengine.functional as F\n'), ((2098, 2122), 'megengine.functional.concat', 'F.concat', (['[x2_in, x2]', '(1)'], {}), '([x2_in, x2], 1)\n', (2106, 2122), True, 'import megengine.functional as F\n')]
r""" Piezo-elasticity problem - homogenization of a piezoelectric linear elastic matrix with embedded metalic electrodes, see [1] for details. [1] E.Rohan, V.Lukes: Homogenization of the fluid-saturated piezoelectric porous media. International Journal of Solids and Structures 147, 2018, pages 110-125. https://doi.org/10.1016/j.ijsolstr.2018.05.017 """ import numpy as nm from sfepy import data_dir from sfepy.base.base import Struct from sfepy.homogenization.micmac import get_homog_coefs_linear import os.path as osp from sfepy.homogenization.recovery import recover_micro_hook_eps from sfepy.discrete.projections import make_l2_projection_data def linear_projection(pb, data_qp): svar = pb.create_variables(['svar'])['svar'] aux = [] for ii in range(data_qp.shape[2]): make_l2_projection_data(svar, data_qp[..., ii, :].copy()) aux.append(svar()) return nm.ascontiguousarray(nm.array(aux).T) def post_process(out, pb, state, extend=False): # evaluate macroscopic strain strain = pb.evaluate('ev_cauchy_strain.i2.Omega(u)', mode='el_avg') out['e'] = Struct(name='output_data', mode='cell', dofs=None, var_name='u', data=strain) # micro recovery rreg = pb.domain.regions['Recovery'] dim = rreg.dim state_dict = state.get_parts() displ = state_dict['u'] strain_qp = pb.evaluate('ev_cauchy_strain.i2.Omega(u)', mode='qp') nodal_data = { 'u': displ.reshape((displ.shape[0] // dim, dim)), # displacement 'strain': linear_projection(pb, strain_qp), # strain } const_data = { 'phi': pb.conf.phi, # el. potentials } def_args = { 'eps0': pb.conf.eps0, 'filename_mesh': pb.conf.filename_mesh_micro, } pvar = pb.create_variables(['svar']) recover_micro_hook_eps(pb.conf.filename_micro, rreg, pvar['svar'], nodal_data, const_data, pb.conf.eps0, define_args=def_args) return out def get_homog_fun(fname): return lambda ts, coors, mode=None, problem=None, **kwargs:\ get_homog(coors, mode, problem, fname, **kwargs) def get_homog(coors, mode, pb, micro_filename, **kwargs): if not (mode == 'qp'): return nqp = coors.shape[0] coefs_filename = osp.join(pb.conf.options.get('output_dir', '.'), 'coefs_piezo.h5') def_args = { 'eps0': pb.conf.eps0, 'filename_mesh': pb.conf.filename_mesh_micro, } coefs = get_homog_coefs_linear(0, 0, None, micro_filename=micro_filename, coefs_filename=coefs_filename, define_args=def_args) Vf = coefs['V0'] * pb.conf.phi[0] + coefs['V1'] * pb.conf.phi[1] out = { 'A': nm.tile(coefs['A'], (nqp, 1, 1)), 'Vf': nm.tile(Vf[:, nm.newaxis], (nqp, 1, 1)), } return out def define(): eps0 = 1. / 30 # real size of the reference cell phi = nm.array([1, -1]) * 1e4 # prescribed el. potential filename_mesh = data_dir + '/meshes/3d/cube_medium_hexa.mesh' # define the micro problem - homogenization procedure filename_micro = data_dir +\ '/examples/multi_physics/piezo_elasticity_micro.py' filename_mesh_micro = data_dir + '/meshes/3d/piezo_mesh_micro.vtk' fields = { 'displacement': ('real', 'vector', 'Omega', 1), 'sfield': ('real', 'scalar', 'Omega', 1), } variables = { 'u': ('unknown field', 'displacement'), 'v': ('test field', 'displacement', 'u'), 'svar': ('parameter field', 'sfield', 'set-to-none'), } # define material - homogenization functions = { 'get_homog': (get_homog_fun(filename_micro),), } materials = { 'hom': 'get_homog', } integrals = { 'i2': 2, } regions = { 'Omega': 'all', 'Left': ('vertices in (x < -0.4999)', 'facet'), 'Recovery': ('cell 266'), } ebcs = { 'fixed_u': ('Left', {'u.all': 0.0}), } equations = { 'balance_of_forces': """ dw_lin_elastic.i2.Omega(hom.A, v, u) = - dw_lin_prestress.i2.Omega(hom.Vf, v)""", } solvers = { 'ls': ('ls.scipy_direct', {}), 'newton': ('nls.newton', {'i_max': 10, 'eps_a': 1e-3, 'eps_r': 1e-3, 'problem': 'nonlinear', }) } options = { 'output_dir': 'output', 'nls': 'newton', 'post_process_hook': 'post_process', } return locals()
[ "sfepy.base.base.Struct", "sfepy.homogenization.micmac.get_homog_coefs_linear", "sfepy.homogenization.recovery.recover_micro_hook_eps" ]
[((1104, 1181), 'sfepy.base.base.Struct', 'Struct', ([], {'name': '"""output_data"""', 'mode': '"""cell"""', 'dofs': 'None', 'var_name': '"""u"""', 'data': 'strain'}), "(name='output_data', mode='cell', dofs=None, var_name='u', data=strain)\n", (1110, 1181), False, 'from sfepy.base.base import Struct\n'), ((1807, 1937), 'sfepy.homogenization.recovery.recover_micro_hook_eps', 'recover_micro_hook_eps', (['pb.conf.filename_micro', 'rreg', "pvar['svar']", 'nodal_data', 'const_data', 'pb.conf.eps0'], {'define_args': 'def_args'}), "(pb.conf.filename_micro, rreg, pvar['svar'],\n nodal_data, const_data, pb.conf.eps0, define_args=def_args)\n", (1829, 1937), False, 'from sfepy.homogenization.recovery import recover_micro_hook_eps\n'), ((2521, 2643), 'sfepy.homogenization.micmac.get_homog_coefs_linear', 'get_homog_coefs_linear', (['(0)', '(0)', 'None'], {'micro_filename': 'micro_filename', 'coefs_filename': 'coefs_filename', 'define_args': 'def_args'}), '(0, 0, None, micro_filename=micro_filename,\n coefs_filename=coefs_filename, define_args=def_args)\n', (2543, 2643), False, 'from sfepy.homogenization.micmac import get_homog_coefs_linear\n'), ((2841, 2873), 'numpy.tile', 'nm.tile', (["coefs['A']", '(nqp, 1, 1)'], {}), "(coefs['A'], (nqp, 1, 1))\n", (2848, 2873), True, 'import numpy as nm\n'), ((2889, 2928), 'numpy.tile', 'nm.tile', (['Vf[:, nm.newaxis]', '(nqp, 1, 1)'], {}), '(Vf[:, nm.newaxis], (nqp, 1, 1))\n', (2896, 2928), True, 'import numpy as nm\n'), ((3033, 3050), 'numpy.array', 'nm.array', (['[1, -1]'], {}), '([1, -1])\n', (3041, 3050), True, 'import numpy as nm\n'), ((916, 929), 'numpy.array', 'nm.array', (['aux'], {}), '(aux)\n', (924, 929), True, 'import numpy as nm\n')]
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import multiprocessing as mp import platform import queue from time import sleep import pytest import megengine as mge import megengine._internal as mgb import megengine.distributed as dist _LOCALHOST = "127.0.0.1" def _assert_q_empty(q): try: res = q.get(timeout=1) except Exception as e: assert isinstance(e, queue.Empty) else: assert False, "queue is not empty" def _assert_q_val(q, val): ret = q.get() assert ret == val def _init_process_group_wrapper(world_size, rank, dev, backend, q): if rank == 0: dist.init_process_group(_LOCALHOST, 0, world_size, rank, dev, backend) q.put(dist.get_master_port()) else: port = q.get() dist.init_process_group(_LOCALHOST, port, world_size, rank, dev, backend) @pytest.mark.skipif( platform.system() == "Darwin", reason="do not imp GPU mode at macos now" ) @pytest.mark.isolated_distributed def test_create_mm_server(): def worker(): if not mge.is_cuda_available(): return port = mgb.config.create_mm_server("0.0.0.0", 0) assert port > 0 res = mgb.config.create_mm_server("0.0.0.0", port) assert res == -1 p = mp.Process(target=worker) p.start() p.join(10) assert p.exitcode == 0 @pytest.mark.skipif( platform.system() == "Darwin", reason="do not imp GPU mode at macos now" ) @pytest.mark.isolated_distributed def test_init_process_group(): world_size = 2 def worker(rank, backend, q): if not mge.is_cuda_available(): return _init_process_group_wrapper(world_size, rank, rank, backend, q) assert dist.is_distributed() == True assert dist.get_master_ip() == _LOCALHOST assert dist.get_master_port() > 0 assert dist.get_world_size() == world_size assert dist.get_rank() == rank assert dist.get_backend() == backend def check(backend): Q = mp.Queue() p0 = mp.Process(target=worker, args=(0, backend, Q)) p1 = mp.Process(target=worker, args=(1, backend, Q)) p0.start() p1.start() p0.join(10) p1.join(10) assert p0.exitcode == 0 and p1.exitcode == 0 check("nccl") check("ucx") @pytest.mark.skipif( platform.system() == "Darwin", reason="do not imp GPU mode at macos now" ) @pytest.mark.isolated_distributed def test_group_barrier(): world_size = 2 ip = "127.0.0.1" backend = "nccl" def worker(rank, q): if not mge.is_cuda_available(): return _init_process_group_wrapper(world_size, rank, rank, backend, q) dist.group_barrier() if rank == 0: dist.group_barrier() q.put(0) # to be observed in rank 1 else: _assert_q_empty(q) # q.put(0) is not executed in rank 0 dist.group_barrier() _assert_q_val(q, 0) # q.put(0) executed in rank 0 Q = mp.Queue() p0 = mp.Process(target=worker, args=(0, Q)) p1 = mp.Process(target=worker, args=(1, Q)) p0.start() p1.start() p0.join(10) p1.join(10) assert p0.exitcode == 0 and p1.exitcode == 0 @pytest.mark.skipif( platform.system() == "Darwin", reason="do not imp GPU mode at macos now" ) @pytest.mark.isolated_distributed def test_synchronized(): world_size = 2 backend = "nccl" @dist.synchronized def func(rank, q): q.put(rank) def worker(rank, q): if not mge.is_cuda_available(): return _init_process_group_wrapper(world_size, rank, rank, backend, q) dist.group_barrier() if rank == 0: func(0, q) # q.put(0) q.put(2) else: _assert_q_val(q, 0) # func executed in rank 0 _assert_q_empty(q) # q.put(2) is not executed func(1, q) _assert_q_val( q, 1 ) # func in rank 1 executed earlier than q.put(2) in rank 0 _assert_q_val(q, 2) # q.put(2) executed in rank 0 Q = mp.Queue() p0 = mp.Process(target=worker, args=(0, Q)) p1 = mp.Process(target=worker, args=(1, Q)) p0.start() p1.start() p0.join(10) p1.join(10) assert p0.exitcode == 0 and p1.exitcode == 0
[ "megengine.distributed.group_barrier", "megengine.distributed.get_backend", "megengine.distributed.get_master_ip", "megengine.distributed.get_master_port", "megengine.distributed.get_rank", "megengine.distributed.init_process_group", "megengine.distributed.is_distributed", "megengine.distributed.get_world_size", "megengine.is_cuda_available", "megengine._internal.config.create_mm_server" ]
[((1564, 1589), 'multiprocessing.Process', 'mp.Process', ([], {'target': 'worker'}), '(target=worker)\n', (1574, 1589), True, 'import multiprocessing as mp\n'), ((3314, 3324), 'multiprocessing.Queue', 'mp.Queue', ([], {}), '()\n', (3322, 3324), True, 'import multiprocessing as mp\n'), ((3334, 3372), 'multiprocessing.Process', 'mp.Process', ([], {'target': 'worker', 'args': '(0, Q)'}), '(target=worker, args=(0, Q))\n', (3344, 3372), True, 'import multiprocessing as mp\n'), ((3382, 3420), 'multiprocessing.Process', 'mp.Process', ([], {'target': 'worker', 'args': '(1, Q)'}), '(target=worker, args=(1, Q))\n', (3392, 3420), True, 'import multiprocessing as mp\n'), ((4415, 4425), 'multiprocessing.Queue', 'mp.Queue', ([], {}), '()\n', (4423, 4425), True, 'import multiprocessing as mp\n'), ((4435, 4473), 'multiprocessing.Process', 'mp.Process', ([], {'target': 'worker', 'args': '(0, Q)'}), '(target=worker, args=(0, Q))\n', (4445, 4473), True, 'import multiprocessing as mp\n'), ((4483, 4521), 'multiprocessing.Process', 'mp.Process', ([], {'target': 'worker', 'args': '(1, Q)'}), '(target=worker, args=(1, Q))\n', (4493, 4521), True, 'import multiprocessing as mp\n'), ((924, 994), 'megengine.distributed.init_process_group', 'dist.init_process_group', (['_LOCALHOST', '(0)', 'world_size', 'rank', 'dev', 'backend'], {}), '(_LOCALHOST, 0, world_size, rank, dev, backend)\n', (947, 994), True, 'import megengine.distributed as dist\n'), ((1074, 1147), 'megengine.distributed.init_process_group', 'dist.init_process_group', (['_LOCALHOST', 'port', 'world_size', 'rank', 'dev', 'backend'], {}), '(_LOCALHOST, port, world_size, rank, dev, backend)\n', (1097, 1147), True, 'import megengine.distributed as dist\n'), ((1405, 1446), 'megengine._internal.config.create_mm_server', 'mgb.config.create_mm_server', (['"""0.0.0.0"""', '(0)'], {}), "('0.0.0.0', 0)\n", (1432, 1446), True, 'import megengine._internal as mgb\n'), ((1485, 1529), 'megengine._internal.config.create_mm_server', 'mgb.config.create_mm_server', (['"""0.0.0.0"""', 'port'], {}), "('0.0.0.0', port)\n", (1512, 1529), True, 'import megengine._internal as mgb\n'), ((1175, 1192), 'platform.system', 'platform.system', ([], {}), '()\n', (1190, 1192), False, 'import platform\n'), ((2310, 2320), 'multiprocessing.Queue', 'mp.Queue', ([], {}), '()\n', (2318, 2320), True, 'import multiprocessing as mp\n'), ((2334, 2381), 'multiprocessing.Process', 'mp.Process', ([], {'target': 'worker', 'args': '(0, backend, Q)'}), '(target=worker, args=(0, backend, Q))\n', (2344, 2381), True, 'import multiprocessing as mp\n'), ((2395, 2442), 'multiprocessing.Process', 'mp.Process', ([], {'target': 'worker', 'args': '(1, backend, Q)'}), '(target=worker, args=(1, backend, Q))\n', (2405, 2442), True, 'import multiprocessing as mp\n'), ((1676, 1693), 'platform.system', 'platform.system', ([], {}), '()\n', (1691, 1693), False, 'import platform\n'), ((3001, 3021), 'megengine.distributed.group_barrier', 'dist.group_barrier', ([], {}), '()\n', (3019, 3021), True, 'import megengine.distributed as dist\n'), ((2640, 2657), 'platform.system', 'platform.system', ([], {}), '()\n', (2655, 2657), False, 'import platform\n'), ((3968, 3988), 'megengine.distributed.group_barrier', 'dist.group_barrier', ([], {}), '()\n', (3986, 3988), True, 'import megengine.distributed as dist\n'), ((3562, 3579), 'platform.system', 'platform.system', ([], {}), '()\n', (3577, 3579), False, 'import platform\n'), ((1009, 1031), 'megengine.distributed.get_master_port', 'dist.get_master_port', ([], {}), '()\n', (1029, 1031), True, 'import megengine.distributed as dist\n'), ((1346, 1369), 'megengine.is_cuda_available', 'mge.is_cuda_available', ([], {}), '()\n', (1367, 1369), True, 'import megengine as mge\n'), ((1885, 1908), 'megengine.is_cuda_available', 'mge.is_cuda_available', ([], {}), '()\n', (1906, 1908), True, 'import megengine as mge\n'), ((2016, 2037), 'megengine.distributed.is_distributed', 'dist.is_distributed', ([], {}), '()\n', (2035, 2037), True, 'import megengine.distributed as dist\n'), ((2061, 2081), 'megengine.distributed.get_master_ip', 'dist.get_master_ip', ([], {}), '()\n', (2079, 2081), True, 'import megengine.distributed as dist\n'), ((2111, 2133), 'megengine.distributed.get_master_port', 'dist.get_master_port', ([], {}), '()\n', (2131, 2133), True, 'import megengine.distributed as dist\n'), ((2153, 2174), 'megengine.distributed.get_world_size', 'dist.get_world_size', ([], {}), '()\n', (2172, 2174), True, 'import megengine.distributed as dist\n'), ((2204, 2219), 'megengine.distributed.get_rank', 'dist.get_rank', ([], {}), '()\n', (2217, 2219), True, 'import megengine.distributed as dist\n'), ((2243, 2261), 'megengine.distributed.get_backend', 'dist.get_backend', ([], {}), '()\n', (2259, 2261), True, 'import megengine.distributed as dist\n'), ((2877, 2900), 'megengine.is_cuda_available', 'mge.is_cuda_available', ([], {}), '()\n', (2898, 2900), True, 'import megengine as mge\n'), ((3056, 3076), 'megengine.distributed.group_barrier', 'dist.group_barrier', ([], {}), '()\n', (3074, 3076), True, 'import megengine.distributed as dist\n'), ((3221, 3241), 'megengine.distributed.group_barrier', 'dist.group_barrier', ([], {}), '()\n', (3239, 3241), True, 'import megengine.distributed as dist\n'), ((3844, 3867), 'megengine.is_cuda_available', 'mge.is_cuda_available', ([], {}), '()\n', (3865, 3867), True, 'import megengine as mge\n')]
from typing import Optional from fastapi import FastAPI from sqlmodel import ( SQLModel, Field, create_engine, select, Session ) # Criar engine do banco engine = create_engine('sqlite:///database.db') class Pessoa(SQLModel, table=True): id: Optional[int] = Field(default=None, primary_key=True) nome: str idade: int # Cria o banco de dados SQLModel.metadata.create_all(engine) app = FastAPI() @app.get('/') def home(): return {'message': 'Deu bom'} @app.get('/pessoa') def get_pessoa(): query = select(Pessoa) with Session(engine) as session: result = session.execute(query).scalars().all() return result @app.get('/pessoa-nome') def get_pessoa(): query = select(Pessoa.nome) with Session(engine) as session: result = session.execute(query).scalars().all() return result @app.get('/pessoa-nome-idade') def get_pessoa(): query = select(Pessoa.nome, Pessoa.idade) with Session(engine) as session: result = session.execute(query).scalars().all() return result
[ "sqlmodel.SQLModel.metadata.create_all", "sqlmodel.Session", "sqlmodel.Field", "sqlmodel.select", "sqlmodel.create_engine" ]
[((183, 221), 'sqlmodel.create_engine', 'create_engine', (['"""sqlite:///database.db"""'], {}), "('sqlite:///database.db')\n", (196, 221), False, 'from sqlmodel import SQLModel, Field, create_engine, select, Session\n'), ((377, 413), 'sqlmodel.SQLModel.metadata.create_all', 'SQLModel.metadata.create_all', (['engine'], {}), '(engine)\n', (405, 413), False, 'from sqlmodel import SQLModel, Field, create_engine, select, Session\n'), ((422, 431), 'fastapi.FastAPI', 'FastAPI', ([], {}), '()\n', (429, 431), False, 'from fastapi import FastAPI\n'), ((284, 321), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'primary_key': '(True)'}), '(default=None, primary_key=True)\n', (289, 321), False, 'from sqlmodel import SQLModel, Field, create_engine, select, Session\n'), ((546, 560), 'sqlmodel.select', 'select', (['Pessoa'], {}), '(Pessoa)\n', (552, 560), False, 'from sqlmodel import SQLModel, Field, create_engine, select, Session\n'), ((730, 749), 'sqlmodel.select', 'select', (['Pessoa.nome'], {}), '(Pessoa.nome)\n', (736, 749), False, 'from sqlmodel import SQLModel, Field, create_engine, select, Session\n'), ((925, 958), 'sqlmodel.select', 'select', (['Pessoa.nome', 'Pessoa.idade'], {}), '(Pessoa.nome, Pessoa.idade)\n', (931, 958), False, 'from sqlmodel import SQLModel, Field, create_engine, select, Session\n'), ((570, 585), 'sqlmodel.Session', 'Session', (['engine'], {}), '(engine)\n', (577, 585), False, 'from sqlmodel import SQLModel, Field, create_engine, select, Session\n'), ((759, 774), 'sqlmodel.Session', 'Session', (['engine'], {}), '(engine)\n', (766, 774), False, 'from sqlmodel import SQLModel, Field, create_engine, select, Session\n'), ((968, 983), 'sqlmodel.Session', 'Session', (['engine'], {}), '(engine)\n', (975, 983), False, 'from sqlmodel import SQLModel, Field, create_engine, select, Session\n')]
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import multiprocessing as mp import platform import numpy as np import pytest import megengine as mge import megengine.distributed as dist from megengine.core import Parameter, tensor def _init_process_group_wrapper(world_size, rank, dev, backend, q): if rank == 0: dist.init_process_group("localhost", 0, world_size, rank, dev, backend) q.put(dist.get_master_port()) else: port = q.get() dist.init_process_group("localhost", port, world_size, rank, dev, backend) @pytest.mark.skipif( platform.system() == "Darwin", reason="do not imp GPU mode at macos now" ) @pytest.mark.skipif( platform.system() == "Windows", reason="do not imp GPU mode at Windows now" ) @pytest.mark.isolated_distributed def test_reduce_sum(): world_size = 2 def worker(rank, data, backend, expect, port_queue): if mge.get_device_count("gpu") < world_size: return _init_process_group_wrapper(world_size, rank, rank, backend, port_queue) inp = tensor(data) output = dist.functional.reduce_sum(inp) if rank == 0: assert np.allclose(output.numpy(), expect) else: assert np.allclose(output.numpy(), 0) def check(shape, backend): port_queue = mp.Queue() x = np.random.rand(*shape).astype("float32") y = np.random.rand(*shape).astype("float32") z = x + y p0 = mp.Process(target=worker, args=(0, x, backend, z, port_queue)) p1 = mp.Process(target=worker, args=(1, y, backend, None, port_queue)) p0.start() p1.start() p0.join(10) p1.join(10) assert p0.exitcode == 0 and p1.exitcode == 0 for shape in [(2, 3), (8, 10), (99, 77)]: for backend in ["nccl", "ucx"]: check(shape, backend) @pytest.mark.skipif( platform.system() == "Darwin", reason="do not imp GPU mode at macos now" ) @pytest.mark.skipif( platform.system() == "Windows", reason="do not imp GPU mode at Windows now" ) @pytest.mark.isolated_distributed def test_gather(): world_size = 2 def worker(rank, data, backend, expect, port_queue): if mge.get_device_count("gpu") < world_size: return _init_process_group_wrapper(world_size, rank, rank, backend, port_queue) inp = tensor(data) output = dist.functional.gather(inp) if rank == 0: assert np.allclose(output.numpy(), expect) else: assert np.allclose(output.numpy(), 0) def check(shape, backend): port_queue = mp.Queue() x = np.random.rand(*shape).astype("float32") y = np.random.rand(*shape).astype("float32") z = np.concatenate((x, y)) p0 = mp.Process(target=worker, args=(0, x, backend, z, port_queue)) p1 = mp.Process(target=worker, args=(1, y, backend, None, port_queue)) p0.start() p1.start() p0.join(10) p1.join(10) assert p0.exitcode == 0 and p1.exitcode == 0 for shape in [(2, 3), (8, 10), (99, 77)]: for backend in ["nccl", "ucx"]: check(shape, backend) @pytest.mark.skipif( platform.system() == "Darwin", reason="do not imp GPU mode at macos now" ) @pytest.mark.skipif( platform.system() == "Windows", reason="do not imp GPU mode at Windows now" ) @pytest.mark.isolated_distributed def test_broadcast(): world_size = 2 def worker(rank, data, backend, expect, port_queue): if mge.get_device_count("gpu") < world_size: return _init_process_group_wrapper(world_size, rank, rank, backend, port_queue) inp = tensor(data) output = dist.functional.broadcast(inp) assert np.allclose(output.numpy(), expect) def check(shape, backend): port_queue = mp.Queue() x = np.random.rand(*shape).astype("float32") y = x + 1 p0 = mp.Process(target=worker, args=(0, x, backend, x, port_queue)) p1 = mp.Process(target=worker, args=(1, y, backend, x, port_queue)) p0.start() p1.start() p0.join(10) p1.join(10) assert p0.exitcode == 0 and p1.exitcode == 0 for shape in [(2, 3), (8, 10), (99, 77)]: for backend in ["nccl", "ucx"]: check(shape, backend) @pytest.mark.skipif( platform.system() == "Darwin", reason="do not imp GPU mode at macos now" ) @pytest.mark.skipif( platform.system() == "Windows", reason="do not imp GPU mode at Windows now" ) @pytest.mark.isolated_distributed def test_scatter(): world_size = 2 def worker(rank, data, backend, expect, port_queue): if mge.get_device_count("gpu") < world_size: return _init_process_group_wrapper(world_size, rank, rank, backend, port_queue) inp = tensor(data) output = dist.functional.scatter(inp) assert np.allclose(output.numpy(), expect) def check(shape, backend): port_queue = mp.Queue() x = np.random.rand(*shape).astype("float32") y = x + 1 p0 = mp.Process( target=worker, args=(0, x, backend, x[: shape[0] // 2], port_queue) ) p1 = mp.Process( target=worker, args=(1, y, backend, x[shape[0] // 2 :], port_queue) ) p0.start() p1.start() p0.join(10) p1.join(10) assert p0.exitcode == 0 and p1.exitcode == 0 for shape in [(2, 3), (8, 10), (100, 77)]: for backend in ["nccl", "ucx"]: check(shape, backend) @pytest.mark.skipif( platform.system() == "Darwin", reason="do not imp GPU mode at macos now" ) @pytest.mark.skipif( platform.system() == "Windows", reason="do not imp GPU mode at Windows now" ) @pytest.mark.isolated_distributed def test_all_to_all(): world_size = 2 def worker(rank, data, backend, expect, port_queue): if mge.get_device_count("gpu") < world_size: return _init_process_group_wrapper(world_size, rank, rank, backend, port_queue) inp = tensor(data) output = dist.functional.all_to_all(inp) assert np.allclose(output.numpy(), expect) def check(shape, backend): port_queue = mp.Queue() x = np.random.rand(*shape).astype("float32") y = np.random.rand(*shape).astype("float32") a = np.concatenate((x[: shape[0] // 2], y[: shape[0] // 2])) b = np.concatenate((x[shape[0] // 2 :], y[shape[0] // 2 :])) p0 = mp.Process(target=worker, args=(0, x, backend, a, port_queue)) p1 = mp.Process(target=worker, args=(1, y, backend, b, port_queue)) p0.start() p1.start() p0.join(10) p1.join(10) assert p0.exitcode == 0 and p1.exitcode == 0 for shape in [(2, 3), (8, 10), (100, 77)]: for backend in ["nccl", "ucx"]: check(shape, backend) @pytest.mark.skipif( platform.system() == "Darwin", reason="do not imp GPU mode at macos now" ) @pytest.mark.skipif( platform.system() == "Windows", reason="do not imp GPU mode at Windows now" ) @pytest.mark.isolated_distributed def test_all_gather(): world_size = 2 def worker(rank, data, backend, expect, port_queue): if mge.get_device_count("gpu") < world_size: return _init_process_group_wrapper(world_size, rank, rank, backend, port_queue) inp = tensor(data) output = dist.functional.all_gather(inp) assert np.allclose(output.numpy(), expect) def check(shape, backend): port_queue = mp.Queue() x = np.random.rand(*shape).astype("float32") y = np.random.rand(*shape).astype("float32") z = np.concatenate((x, y)) p0 = mp.Process(target=worker, args=(0, x, backend, z, port_queue)) p1 = mp.Process(target=worker, args=(1, y, backend, z, port_queue)) p0.start() p1.start() p0.join(10) p1.join(10) assert p0.exitcode == 0 and p1.exitcode == 0 for shape in [(2, 3), (8, 10), (99, 77)]: for backend in ["nccl", "ucx"]: check(shape, backend) @pytest.mark.skipif( platform.system() == "Darwin", reason="do not imp GPU mode at macos now" ) @pytest.mark.skipif( platform.system() == "Windows", reason="do not imp GPU mode at Windows now" ) @pytest.mark.isolated_distributed def test_reduce_scatter_sum(): world_size = 2 def worker(rank, data, backend, expect, port_queue): if mge.get_device_count("gpu") < world_size: return _init_process_group_wrapper(world_size, rank, rank, backend, port_queue) inp = tensor(data) output = dist.functional.reduce_scatter_sum(inp) assert np.allclose(output.numpy(), expect) def check(shape, backend): port_queue = mp.Queue() x = np.random.rand(*shape).astype("float32") y = np.random.rand(*shape).astype("float32") z = x + y p0 = mp.Process( target=worker, args=(0, x, backend, z[: shape[0] // 2], port_queue) ) p1 = mp.Process( target=worker, args=(1, y, backend, z[shape[0] // 2 :], port_queue) ) p0.start() p1.start() p0.join(10) p1.join(10) assert p0.exitcode == 0 and p1.exitcode == 0 for shape in [(2, 4), (8, 10), (88, 44)]: for backend in ["nccl", "ucx"]: check(shape, backend) @pytest.mark.skipif( platform.system() == "Darwin", reason="do not imp GPU mode at macos now" ) @pytest.mark.skipif( platform.system() == "Windows", reason="do not imp GPU mode at Windows now" ) @pytest.mark.isolated_distributed def test_all_reduce_sum(): world_size = 2 def worker(rank, data, backend, expect, port_queue): if mge.get_device_count("gpu") < world_size: return _init_process_group_wrapper(world_size, rank, rank, backend, port_queue) inp = tensor(data) output = dist.functional.all_reduce_sum(inp) assert np.allclose(output.numpy(), expect) def check(shape, backend): port_queue = mp.Queue() x = np.random.rand(*shape).astype("float32") y = np.random.rand(*shape).astype("float32") z = x + y p0 = mp.Process(target=worker, args=(0, x, backend, z, port_queue)) p1 = mp.Process(target=worker, args=(1, y, backend, z, port_queue)) p0.start() p1.start() p0.join(10) p1.join(10) assert p0.exitcode == 0 and p1.exitcode == 0 for shape in [(2, 3), (8, 10), (99, 77)]: for backend in ["nccl", "ucx"]: check(shape, backend) @pytest.mark.skipif( platform.system() == "Darwin", reason="do not imp GPU mode at macos now" ) @pytest.mark.skipif( platform.system() == "Windows", reason="do not imp GPU mode at Windows now" ) @pytest.mark.isolated_distributed def test_all_reduce_max(): world_size = 2 def worker(rank, data, backend, expect, port_queue): if mge.get_device_count("gpu") < world_size: return _init_process_group_wrapper(world_size, rank, rank, backend, port_queue) inp = tensor(data) output = dist.functional.all_reduce_max(inp) assert np.allclose(output.numpy(), expect) def check(shape, backend): port_queue = mp.Queue() x = np.random.rand(*shape).astype("float32") y = np.random.rand(*shape).astype("float32") z = np.maximum(x, y) p0 = mp.Process(target=worker, args=(0, x, backend, z, port_queue)) p1 = mp.Process(target=worker, args=(1, y, backend, z, port_queue)) p0.start() p1.start() p0.join(10) p1.join(10) assert p0.exitcode == 0 and p1.exitcode == 0 for shape in [(2, 3), (8, 10), (99, 77)]: for backend in ["nccl", "ucx"]: check(shape, backend) @pytest.mark.skipif( platform.system() == "Darwin", reason="do not imp GPU mode at macos now" ) @pytest.mark.skipif( platform.system() == "Windows", reason="do not imp GPU mode at Windows now" ) @pytest.mark.isolated_distributed def test_all_reduce_min(): world_size = 2 def worker(rank, data, backend, expect, port_queue): if mge.get_device_count("gpu") < world_size: return _init_process_group_wrapper(world_size, rank, rank, backend, port_queue) inp = tensor(data) output = dist.functional.all_reduce_min(inp) assert np.allclose(output.numpy(), expect) def check(shape, backend): port_queue = mp.Queue() x = np.random.rand(*shape).astype("float32") y = np.random.rand(*shape).astype("float32") z = np.minimum(x, y) p0 = mp.Process(target=worker, args=(0, x, backend, z, port_queue)) p1 = mp.Process(target=worker, args=(1, y, backend, z, port_queue)) p0.start() p1.start() p0.join(10) p1.join(10) assert p0.exitcode == 0 and p1.exitcode == 0 for shape in [(2, 3), (8, 10), (99, 77)]: for backend in ["nccl", "ucx"]: check(shape, backend) @pytest.mark.skipif( platform.system() == "Darwin", reason="do not imp GPU mode at macos now" ) @pytest.mark.skipif( platform.system() == "Windows", reason="do not imp GPU mode at Windows now" ) @pytest.mark.isolated_distributed def test_bcast_param(): world_size = 2 def worker(rank, data, backend, expect, port_queue): if mge.get_device_count("gpu") < world_size: return _init_process_group_wrapper(world_size, rank, rank, backend, port_queue) inp = Parameter(data) dist.functional.bcast_param(inp) assert np.allclose(inp.numpy(), expect) def check(shape, backend): port_queue = mp.Queue() x = np.random.rand(*shape).astype("float32") y = x + 1 p0 = mp.Process(target=worker, args=(0, x, backend, x, port_queue)) p1 = mp.Process(target=worker, args=(1, y, backend, x, port_queue)) p0.start() p1.start() p0.join(10) p1.join(10) assert p0.exitcode == 0 and p1.exitcode == 0 for shape in [(2, 3), (8, 10), (99, 77)]: for backend in ["nccl", "ucx"]: check(shape, backend)
[ "megengine.core.tensor", "megengine.distributed.functional.all_reduce_min", "megengine.distributed.get_master_port", "megengine.distributed.functional.all_gather", "megengine.distributed.init_process_group", "megengine.distributed.functional.all_to_all", "megengine.get_device_count", "megengine.distributed.functional.bcast_param", "megengine.distributed.functional.reduce_sum", "megengine.distributed.functional.gather", "megengine.distributed.functional.broadcast", "megengine.distributed.functional.all_reduce_max", "megengine.distributed.functional.scatter", "megengine.distributed.functional.all_reduce_sum", "megengine.core.Parameter", "megengine.distributed.functional.reduce_scatter_sum" ]
[((636, 707), 'megengine.distributed.init_process_group', 'dist.init_process_group', (['"""localhost"""', '(0)', 'world_size', 'rank', 'dev', 'backend'], {}), "('localhost', 0, world_size, rank, dev, backend)\n", (659, 707), True, 'import megengine.distributed as dist\n'), ((787, 861), 'megengine.distributed.init_process_group', 'dist.init_process_group', (['"""localhost"""', 'port', 'world_size', 'rank', 'dev', 'backend'], {}), "('localhost', port, world_size, rank, dev, backend)\n", (810, 861), True, 'import megengine.distributed as dist\n'), ((1368, 1380), 'megengine.core.tensor', 'tensor', (['data'], {}), '(data)\n', (1374, 1380), False, 'from megengine.core import Parameter, tensor\n'), ((1398, 1429), 'megengine.distributed.functional.reduce_sum', 'dist.functional.reduce_sum', (['inp'], {}), '(inp)\n', (1424, 1429), True, 'import megengine.distributed as dist\n'), ((1624, 1634), 'multiprocessing.Queue', 'mp.Queue', ([], {}), '()\n', (1632, 1634), True, 'import multiprocessing as mp\n'), ((1772, 1834), 'multiprocessing.Process', 'mp.Process', ([], {'target': 'worker', 'args': '(0, x, backend, z, port_queue)'}), '(target=worker, args=(0, x, backend, z, port_queue))\n', (1782, 1834), True, 'import multiprocessing as mp\n'), ((1848, 1913), 'multiprocessing.Process', 'mp.Process', ([], {'target': 'worker', 'args': '(1, y, backend, None, port_queue)'}), '(target=worker, args=(1, y, backend, None, port_queue))\n', (1858, 1913), True, 'import multiprocessing as mp\n'), ((889, 906), 'platform.system', 'platform.system', ([], {}), '()\n', (904, 906), False, 'import platform\n'), ((989, 1006), 'platform.system', 'platform.system', ([], {}), '()\n', (1004, 1006), False, 'import platform\n'), ((2671, 2683), 'megengine.core.tensor', 'tensor', (['data'], {}), '(data)\n', (2677, 2683), False, 'from megengine.core import Parameter, tensor\n'), ((2701, 2728), 'megengine.distributed.functional.gather', 'dist.functional.gather', (['inp'], {}), '(inp)\n', (2723, 2728), True, 'import megengine.distributed as dist\n'), ((2923, 2933), 'multiprocessing.Queue', 'mp.Queue', ([], {}), '()\n', (2931, 2933), True, 'import multiprocessing as mp\n'), ((3052, 3074), 'numpy.concatenate', 'np.concatenate', (['(x, y)'], {}), '((x, y))\n', (3066, 3074), True, 'import numpy as np\n'), ((3088, 3150), 'multiprocessing.Process', 'mp.Process', ([], {'target': 'worker', 'args': '(0, x, backend, z, port_queue)'}), '(target=worker, args=(0, x, backend, z, port_queue))\n', (3098, 3150), True, 'import multiprocessing as mp\n'), ((3164, 3229), 'multiprocessing.Process', 'mp.Process', ([], {'target': 'worker', 'args': '(1, y, backend, None, port_queue)'}), '(target=worker, args=(1, y, backend, None, port_queue))\n', (3174, 3229), True, 'import multiprocessing as mp\n'), ((2196, 2213), 'platform.system', 'platform.system', ([], {}), '()\n', (2211, 2213), False, 'import platform\n'), ((2296, 2313), 'platform.system', 'platform.system', ([], {}), '()\n', (2311, 2313), False, 'import platform\n'), ((3990, 4002), 'megengine.core.tensor', 'tensor', (['data'], {}), '(data)\n', (3996, 4002), False, 'from megengine.core import Parameter, tensor\n'), ((4020, 4050), 'megengine.distributed.functional.broadcast', 'dist.functional.broadcast', (['inp'], {}), '(inp)\n', (4045, 4050), True, 'import megengine.distributed as dist\n'), ((4155, 4165), 'multiprocessing.Queue', 'mp.Queue', ([], {}), '()\n', (4163, 4165), True, 'import multiprocessing as mp\n'), ((4250, 4312), 'multiprocessing.Process', 'mp.Process', ([], {'target': 'worker', 'args': '(0, x, backend, x, port_queue)'}), '(target=worker, args=(0, x, backend, x, port_queue))\n', (4260, 4312), True, 'import multiprocessing as mp\n'), ((4326, 4388), 'multiprocessing.Process', 'mp.Process', ([], {'target': 'worker', 'args': '(1, y, backend, x, port_queue)'}), '(target=worker, args=(1, y, backend, x, port_queue))\n', (4336, 4388), True, 'import multiprocessing as mp\n'), ((3512, 3529), 'platform.system', 'platform.system', ([], {}), '()\n', (3527, 3529), False, 'import platform\n'), ((3612, 3629), 'platform.system', 'platform.system', ([], {}), '()\n', (3627, 3629), False, 'import platform\n'), ((5147, 5159), 'megengine.core.tensor', 'tensor', (['data'], {}), '(data)\n', (5153, 5159), False, 'from megengine.core import Parameter, tensor\n'), ((5177, 5205), 'megengine.distributed.functional.scatter', 'dist.functional.scatter', (['inp'], {}), '(inp)\n', (5200, 5205), True, 'import megengine.distributed as dist\n'), ((5310, 5320), 'multiprocessing.Queue', 'mp.Queue', ([], {}), '()\n', (5318, 5320), True, 'import multiprocessing as mp\n'), ((5405, 5483), 'multiprocessing.Process', 'mp.Process', ([], {'target': 'worker', 'args': '(0, x, backend, x[:shape[0] // 2], port_queue)'}), '(target=worker, args=(0, x, backend, x[:shape[0] // 2], port_queue))\n', (5415, 5483), True, 'import multiprocessing as mp\n'), ((5520, 5598), 'multiprocessing.Process', 'mp.Process', ([], {'target': 'worker', 'args': '(1, y, backend, x[shape[0] // 2:], port_queue)'}), '(target=worker, args=(1, y, backend, x[shape[0] // 2:], port_queue))\n', (5530, 5598), True, 'import multiprocessing as mp\n'), ((4671, 4688), 'platform.system', 'platform.system', ([], {}), '()\n', (4686, 4688), False, 'import platform\n'), ((4771, 4788), 'platform.system', 'platform.system', ([], {}), '()\n', (4786, 4788), False, 'import platform\n'), ((6384, 6396), 'megengine.core.tensor', 'tensor', (['data'], {}), '(data)\n', (6390, 6396), False, 'from megengine.core import Parameter, tensor\n'), ((6414, 6445), 'megengine.distributed.functional.all_to_all', 'dist.functional.all_to_all', (['inp'], {}), '(inp)\n', (6440, 6445), True, 'import megengine.distributed as dist\n'), ((6550, 6560), 'multiprocessing.Queue', 'mp.Queue', ([], {}), '()\n', (6558, 6560), True, 'import multiprocessing as mp\n'), ((6679, 6733), 'numpy.concatenate', 'np.concatenate', (['(x[:shape[0] // 2], y[:shape[0] // 2])'], {}), '((x[:shape[0] // 2], y[:shape[0] // 2]))\n', (6693, 6733), True, 'import numpy as np\n'), ((6748, 6802), 'numpy.concatenate', 'np.concatenate', (['(x[shape[0] // 2:], y[shape[0] // 2:])'], {}), '((x[shape[0] // 2:], y[shape[0] // 2:]))\n', (6762, 6802), True, 'import numpy as np\n'), ((6818, 6880), 'multiprocessing.Process', 'mp.Process', ([], {'target': 'worker', 'args': '(0, x, backend, a, port_queue)'}), '(target=worker, args=(0, x, backend, a, port_queue))\n', (6828, 6880), True, 'import multiprocessing as mp\n'), ((6894, 6956), 'multiprocessing.Process', 'mp.Process', ([], {'target': 'worker', 'args': '(1, y, backend, b, port_queue)'}), '(target=worker, args=(1, y, backend, b, port_queue))\n', (6904, 6956), True, 'import multiprocessing as mp\n'), ((5905, 5922), 'platform.system', 'platform.system', ([], {}), '()\n', (5920, 5922), False, 'import platform\n'), ((6005, 6022), 'platform.system', 'platform.system', ([], {}), '()\n', (6020, 6022), False, 'import platform\n'), ((7719, 7731), 'megengine.core.tensor', 'tensor', (['data'], {}), '(data)\n', (7725, 7731), False, 'from megengine.core import Parameter, tensor\n'), ((7749, 7780), 'megengine.distributed.functional.all_gather', 'dist.functional.all_gather', (['inp'], {}), '(inp)\n', (7775, 7780), True, 'import megengine.distributed as dist\n'), ((7885, 7895), 'multiprocessing.Queue', 'mp.Queue', ([], {}), '()\n', (7893, 7895), True, 'import multiprocessing as mp\n'), ((8014, 8036), 'numpy.concatenate', 'np.concatenate', (['(x, y)'], {}), '((x, y))\n', (8028, 8036), True, 'import numpy as np\n'), ((8050, 8112), 'multiprocessing.Process', 'mp.Process', ([], {'target': 'worker', 'args': '(0, x, backend, z, port_queue)'}), '(target=worker, args=(0, x, backend, z, port_queue))\n', (8060, 8112), True, 'import multiprocessing as mp\n'), ((8126, 8188), 'multiprocessing.Process', 'mp.Process', ([], {'target': 'worker', 'args': '(1, y, backend, z, port_queue)'}), '(target=worker, args=(1, y, backend, z, port_queue))\n', (8136, 8188), True, 'import multiprocessing as mp\n'), ((7240, 7257), 'platform.system', 'platform.system', ([], {}), '()\n', (7255, 7257), False, 'import platform\n'), ((7340, 7357), 'platform.system', 'platform.system', ([], {}), '()\n', (7355, 7357), False, 'import platform\n'), ((8958, 8970), 'megengine.core.tensor', 'tensor', (['data'], {}), '(data)\n', (8964, 8970), False, 'from megengine.core import Parameter, tensor\n'), ((8988, 9027), 'megengine.distributed.functional.reduce_scatter_sum', 'dist.functional.reduce_scatter_sum', (['inp'], {}), '(inp)\n', (9022, 9027), True, 'import megengine.distributed as dist\n'), ((9132, 9142), 'multiprocessing.Queue', 'mp.Queue', ([], {}), '()\n', (9140, 9142), True, 'import multiprocessing as mp\n'), ((9280, 9358), 'multiprocessing.Process', 'mp.Process', ([], {'target': 'worker', 'args': '(0, x, backend, z[:shape[0] // 2], port_queue)'}), '(target=worker, args=(0, x, backend, z[:shape[0] // 2], port_queue))\n', (9290, 9358), True, 'import multiprocessing as mp\n'), ((9395, 9473), 'multiprocessing.Process', 'mp.Process', ([], {'target': 'worker', 'args': '(1, y, backend, z[shape[0] // 2:], port_queue)'}), '(target=worker, args=(1, y, backend, z[shape[0] // 2:], port_queue))\n', (9405, 9473), True, 'import multiprocessing as mp\n'), ((8471, 8488), 'platform.system', 'platform.system', ([], {}), '()\n', (8486, 8488), False, 'import platform\n'), ((8571, 8588), 'platform.system', 'platform.system', ([], {}), '()\n', (8586, 8588), False, 'import platform\n'), ((10262, 10274), 'megengine.core.tensor', 'tensor', (['data'], {}), '(data)\n', (10268, 10274), False, 'from megengine.core import Parameter, tensor\n'), ((10292, 10327), 'megengine.distributed.functional.all_reduce_sum', 'dist.functional.all_reduce_sum', (['inp'], {}), '(inp)\n', (10322, 10327), True, 'import megengine.distributed as dist\n'), ((10432, 10442), 'multiprocessing.Queue', 'mp.Queue', ([], {}), '()\n', (10440, 10442), True, 'import multiprocessing as mp\n'), ((10580, 10642), 'multiprocessing.Process', 'mp.Process', ([], {'target': 'worker', 'args': '(0, x, backend, z, port_queue)'}), '(target=worker, args=(0, x, backend, z, port_queue))\n', (10590, 10642), True, 'import multiprocessing as mp\n'), ((10656, 10718), 'multiprocessing.Process', 'mp.Process', ([], {'target': 'worker', 'args': '(1, y, backend, z, port_queue)'}), '(target=worker, args=(1, y, backend, z, port_queue))\n', (10666, 10718), True, 'import multiprocessing as mp\n'), ((9779, 9796), 'platform.system', 'platform.system', ([], {}), '()\n', (9794, 9796), False, 'import platform\n'), ((9879, 9896), 'platform.system', 'platform.system', ([], {}), '()\n', (9894, 9896), False, 'import platform\n'), ((11484, 11496), 'megengine.core.tensor', 'tensor', (['data'], {}), '(data)\n', (11490, 11496), False, 'from megengine.core import Parameter, tensor\n'), ((11514, 11549), 'megengine.distributed.functional.all_reduce_max', 'dist.functional.all_reduce_max', (['inp'], {}), '(inp)\n', (11544, 11549), True, 'import megengine.distributed as dist\n'), ((11654, 11664), 'multiprocessing.Queue', 'mp.Queue', ([], {}), '()\n', (11662, 11664), True, 'import multiprocessing as mp\n'), ((11783, 11799), 'numpy.maximum', 'np.maximum', (['x', 'y'], {}), '(x, y)\n', (11793, 11799), True, 'import numpy as np\n'), ((11813, 11875), 'multiprocessing.Process', 'mp.Process', ([], {'target': 'worker', 'args': '(0, x, backend, z, port_queue)'}), '(target=worker, args=(0, x, backend, z, port_queue))\n', (11823, 11875), True, 'import multiprocessing as mp\n'), ((11889, 11951), 'multiprocessing.Process', 'mp.Process', ([], {'target': 'worker', 'args': '(1, y, backend, z, port_queue)'}), '(target=worker, args=(1, y, backend, z, port_queue))\n', (11899, 11951), True, 'import multiprocessing as mp\n'), ((11001, 11018), 'platform.system', 'platform.system', ([], {}), '()\n', (11016, 11018), False, 'import platform\n'), ((11101, 11118), 'platform.system', 'platform.system', ([], {}), '()\n', (11116, 11118), False, 'import platform\n'), ((12717, 12729), 'megengine.core.tensor', 'tensor', (['data'], {}), '(data)\n', (12723, 12729), False, 'from megengine.core import Parameter, tensor\n'), ((12747, 12782), 'megengine.distributed.functional.all_reduce_min', 'dist.functional.all_reduce_min', (['inp'], {}), '(inp)\n', (12777, 12782), True, 'import megengine.distributed as dist\n'), ((12887, 12897), 'multiprocessing.Queue', 'mp.Queue', ([], {}), '()\n', (12895, 12897), True, 'import multiprocessing as mp\n'), ((13016, 13032), 'numpy.minimum', 'np.minimum', (['x', 'y'], {}), '(x, y)\n', (13026, 13032), True, 'import numpy as np\n'), ((13046, 13108), 'multiprocessing.Process', 'mp.Process', ([], {'target': 'worker', 'args': '(0, x, backend, z, port_queue)'}), '(target=worker, args=(0, x, backend, z, port_queue))\n', (13056, 13108), True, 'import multiprocessing as mp\n'), ((13122, 13184), 'multiprocessing.Process', 'mp.Process', ([], {'target': 'worker', 'args': '(1, y, backend, z, port_queue)'}), '(target=worker, args=(1, y, backend, z, port_queue))\n', (13132, 13184), True, 'import multiprocessing as mp\n'), ((12234, 12251), 'platform.system', 'platform.system', ([], {}), '()\n', (12249, 12251), False, 'import platform\n'), ((12334, 12351), 'platform.system', 'platform.system', ([], {}), '()\n', (12349, 12351), False, 'import platform\n'), ((13947, 13962), 'megengine.core.Parameter', 'Parameter', (['data'], {}), '(data)\n', (13956, 13962), False, 'from megengine.core import Parameter, tensor\n'), ((13971, 14003), 'megengine.distributed.functional.bcast_param', 'dist.functional.bcast_param', (['inp'], {}), '(inp)\n', (13998, 14003), True, 'import megengine.distributed as dist\n'), ((14105, 14115), 'multiprocessing.Queue', 'mp.Queue', ([], {}), '()\n', (14113, 14115), True, 'import multiprocessing as mp\n'), ((14200, 14262), 'multiprocessing.Process', 'mp.Process', ([], {'target': 'worker', 'args': '(0, x, backend, x, port_queue)'}), '(target=worker, args=(0, x, backend, x, port_queue))\n', (14210, 14262), True, 'import multiprocessing as mp\n'), ((14276, 14338), 'multiprocessing.Process', 'mp.Process', ([], {'target': 'worker', 'args': '(1, y, backend, x, port_queue)'}), '(target=worker, args=(1, y, backend, x, port_queue))\n', (14286, 14338), True, 'import multiprocessing as mp\n'), ((13467, 13484), 'platform.system', 'platform.system', ([], {}), '()\n', (13482, 13484), False, 'import platform\n'), ((13567, 13584), 'platform.system', 'platform.system', ([], {}), '()\n', (13582, 13584), False, 'import platform\n'), ((722, 744), 'megengine.distributed.get_master_port', 'dist.get_master_port', ([], {}), '()\n', (742, 744), True, 'import megengine.distributed as dist\n'), ((1212, 1239), 'megengine.get_device_count', 'mge.get_device_count', (['"""gpu"""'], {}), "('gpu')\n", (1232, 1239), True, 'import megengine as mge\n'), ((2515, 2542), 'megengine.get_device_count', 'mge.get_device_count', (['"""gpu"""'], {}), "('gpu')\n", (2535, 2542), True, 'import megengine as mge\n'), ((3834, 3861), 'megengine.get_device_count', 'mge.get_device_count', (['"""gpu"""'], {}), "('gpu')\n", (3854, 3861), True, 'import megengine as mge\n'), ((4991, 5018), 'megengine.get_device_count', 'mge.get_device_count', (['"""gpu"""'], {}), "('gpu')\n", (5011, 5018), True, 'import megengine as mge\n'), ((6228, 6255), 'megengine.get_device_count', 'mge.get_device_count', (['"""gpu"""'], {}), "('gpu')\n", (6248, 6255), True, 'import megengine as mge\n'), ((7563, 7590), 'megengine.get_device_count', 'mge.get_device_count', (['"""gpu"""'], {}), "('gpu')\n", (7583, 7590), True, 'import megengine as mge\n'), ((8802, 8829), 'megengine.get_device_count', 'mge.get_device_count', (['"""gpu"""'], {}), "('gpu')\n", (8822, 8829), True, 'import megengine as mge\n'), ((10106, 10133), 'megengine.get_device_count', 'mge.get_device_count', (['"""gpu"""'], {}), "('gpu')\n", (10126, 10133), True, 'import megengine as mge\n'), ((11328, 11355), 'megengine.get_device_count', 'mge.get_device_count', (['"""gpu"""'], {}), "('gpu')\n", (11348, 11355), True, 'import megengine as mge\n'), ((12561, 12588), 'megengine.get_device_count', 'mge.get_device_count', (['"""gpu"""'], {}), "('gpu')\n", (12581, 12588), True, 'import megengine as mge\n'), ((13791, 13818), 'megengine.get_device_count', 'mge.get_device_count', (['"""gpu"""'], {}), "('gpu')\n", (13811, 13818), True, 'import megengine as mge\n'), ((1647, 1669), 'numpy.random.rand', 'np.random.rand', (['*shape'], {}), '(*shape)\n', (1661, 1669), True, 'import numpy as np\n'), ((1700, 1722), 'numpy.random.rand', 'np.random.rand', (['*shape'], {}), '(*shape)\n', (1714, 1722), True, 'import numpy as np\n'), ((2946, 2968), 'numpy.random.rand', 'np.random.rand', (['*shape'], {}), '(*shape)\n', (2960, 2968), True, 'import numpy as np\n'), ((2999, 3021), 'numpy.random.rand', 'np.random.rand', (['*shape'], {}), '(*shape)\n', (3013, 3021), True, 'import numpy as np\n'), ((4178, 4200), 'numpy.random.rand', 'np.random.rand', (['*shape'], {}), '(*shape)\n', (4192, 4200), True, 'import numpy as np\n'), ((5333, 5355), 'numpy.random.rand', 'np.random.rand', (['*shape'], {}), '(*shape)\n', (5347, 5355), True, 'import numpy as np\n'), ((6573, 6595), 'numpy.random.rand', 'np.random.rand', (['*shape'], {}), '(*shape)\n', (6587, 6595), True, 'import numpy as np\n'), ((6626, 6648), 'numpy.random.rand', 'np.random.rand', (['*shape'], {}), '(*shape)\n', (6640, 6648), True, 'import numpy as np\n'), ((7908, 7930), 'numpy.random.rand', 'np.random.rand', (['*shape'], {}), '(*shape)\n', (7922, 7930), True, 'import numpy as np\n'), ((7961, 7983), 'numpy.random.rand', 'np.random.rand', (['*shape'], {}), '(*shape)\n', (7975, 7983), True, 'import numpy as np\n'), ((9155, 9177), 'numpy.random.rand', 'np.random.rand', (['*shape'], {}), '(*shape)\n', (9169, 9177), True, 'import numpy as np\n'), ((9208, 9230), 'numpy.random.rand', 'np.random.rand', (['*shape'], {}), '(*shape)\n', (9222, 9230), True, 'import numpy as np\n'), ((10455, 10477), 'numpy.random.rand', 'np.random.rand', (['*shape'], {}), '(*shape)\n', (10469, 10477), True, 'import numpy as np\n'), ((10508, 10530), 'numpy.random.rand', 'np.random.rand', (['*shape'], {}), '(*shape)\n', (10522, 10530), True, 'import numpy as np\n'), ((11677, 11699), 'numpy.random.rand', 'np.random.rand', (['*shape'], {}), '(*shape)\n', (11691, 11699), True, 'import numpy as np\n'), ((11730, 11752), 'numpy.random.rand', 'np.random.rand', (['*shape'], {}), '(*shape)\n', (11744, 11752), True, 'import numpy as np\n'), ((12910, 12932), 'numpy.random.rand', 'np.random.rand', (['*shape'], {}), '(*shape)\n', (12924, 12932), True, 'import numpy as np\n'), ((12963, 12985), 'numpy.random.rand', 'np.random.rand', (['*shape'], {}), '(*shape)\n', (12977, 12985), True, 'import numpy as np\n'), ((14128, 14150), 'numpy.random.rand', 'np.random.rand', (['*shape'], {}), '(*shape)\n', (14142, 14150), True, 'import numpy as np\n')]
from sqlmodel import create_engine from pyflarum.database.session import FlarumDatabase from pyflarum.database.flarum.core.users import DB_User DATABASE = FlarumDatabase(create_engine('sqlite:///tests/database/database.db')) if __name__ == "__main__": with DATABASE: DATABASE.create_user(username='test_wfkeoge', password=b'<PASSWORD>', email='<EMAIL>') saved = DATABASE.generic_filter(DB_User, username='test_wfkeoge').first() print(saved)
[ "sqlmodel.create_engine" ]
[((173, 226), 'sqlmodel.create_engine', 'create_engine', (['"""sqlite:///tests/database/database.db"""'], {}), "('sqlite:///tests/database/database.db')\n", (186, 226), False, 'from sqlmodel import create_engine\n')]
# -*- coding: utf-8 -*- # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # --------------------------------------------------------------------- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # # This file has been modified by Megvii ("Megvii Modifications"). # All Megvii Modifications are Copyright (C) 2014-2021 Megvii Inc. All rights reserved. # ---------------------------------------------------------------------- """Megengine BERT model.""" import copy import json import math import os import urllib import urllib.request from io import open import numpy as np import megengine as mge import megengine.functional as F import megengine.hub as hub from megengine import Parameter from megengine.functional.loss import cross_entropy from megengine.module import Dropout, Embedding, Linear, Module, Sequential from megengine.module.activation import Softmax def transpose(inp, a, b): cur_shape = list(range(0, inp.ndim)) cur_shape[a], cur_shape[b] = cur_shape[b], cur_shape[a] return inp.transpose(cur_shape) def gelu(x): """Implementation of the gelu activation function. For information: OpenAI GPT's gelu is slightly different (and gives slightly different results): x * 0.5 * (1.0 + F.tanh((F.sqrt(2 / math.pi) * (x + 0.044715 * (x ** 3))))) Also see https://arxiv.org/abs/1606.08415 """ return x * 0.5 * (1.0 + F.tanh(F.sqrt(2 / math.pi) * (x + 0.044715 * (x ** 3)))) ACT2FN = {"gelu": gelu, "relu": F.relu} class BertConfig: """Configuration class to store the configuration of a `BertModel`. """ def __init__( self, vocab_size_or_config_json_file, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=2, initializer_range=0.02, ): """Constructs BertConfig. Args: vocab_size_or_config_json_file: Vocabulary size of `inputs_ids` in `BertModel`. hidden_size: Size of the encoder layers and the pooler layer. num_hidden_layers: Number of hidden layers in the Transformer encoder. num_attention_heads: Number of attention heads for each attention layer in the Transformer encoder. intermediate_size: The size of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. hidden_act: The non-linear activation function (function or string) in the encoder and pooler. If string, "gelu", "relu" and "swish" are supported. hidden_dropout_prob: The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob: The dropout ratio for the attention probabilities. max_position_embeddings: The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). type_vocab_size: The vocabulary size of the `token_type_ids` passed into `BertModel`. initializer_range: The sttdev of the truncated_normal_initializer for initializing all weight matrices. """ if isinstance(vocab_size_or_config_json_file, str): with open(vocab_size_or_config_json_file, "r", encoding="utf-8") as reader: json_config = json.loads(reader.read()) for key, value in json_config.items(): self.__dict__[key] = value elif isinstance(vocab_size_or_config_json_file, int): self.vocab_size = vocab_size_or_config_json_file self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.hidden_act = hidden_act self.intermediate_size = intermediate_size self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.initializer_range = initializer_range else: raise ValueError( "First argument must be either a vocabulary size (int)" "or the path to a pretrained model config file (str)" ) @classmethod def from_dict(cls, json_object): """Constructs a `BertConfig` from a Python dictionary of parameters.""" config = BertConfig(vocab_size_or_config_json_file=-1) for key, value in json_object.items(): config.__dict__[key] = value return config @classmethod def from_json_file(cls, json_file): """Constructs a `BertConfig` from a json file of parameters.""" with open(json_file, "r", encoding="utf-8") as reader: text = reader.read() return cls.from_dict(json.loads(text)) def __repr__(self): return str(self.to_json_string()) def to_dict(self): """Serializes this instance to a Python dictionary.""" output = copy.deepcopy(self.__dict__) return output def to_json_string(self): """Serializes this instance to a JSON string.""" return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n" def to_json_file(self, json_file_path): """ Save this instance to a json file.""" with open(json_file_path, "w", encoding="utf-8") as writer: writer.write(self.to_json_string()) class BertLayerNorm(Module): """Construct a layernorm module in the TF style (epsilon inside the square root). """ def __init__(self, hidden_size, eps=1e-12): super().__init__() self.weight = Parameter(np.ones(hidden_size).astype(np.float32)) self.bias = Parameter(np.zeros(hidden_size).astype(np.float32)) self.variance_epsilon = eps def forward(self, x): u = F.mean(x, len(x.shape) - 1, True) s = F.mean((x - u) ** 2, len(x.shape) - 1, True) x = (x - u) / ((s + self.variance_epsilon) ** 0.5) return self.weight * x + self.bias class BertEmbeddings(Module): """Construct the embeddings from word, position and token_type embeddings. """ def __init__(self, config): super().__init__() self.word_embeddings = Embedding(config.vocab_size, config.hidden_size) self.position_embeddings = Embedding( config.max_position_embeddings, config.hidden_size ) self.token_type_embeddings = Embedding( config.type_vocab_size, config.hidden_size ) # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name # and be able to load any TensorFlow checkpoint file self.LayerNorm = BertLayerNorm(config.hidden_size, eps=1e-12) self.dropout = Dropout(config.hidden_dropout_prob) def forward(self, input_ids, token_type_ids=None): seq_length = input_ids.shape[1] if token_type_ids is None: token_type_ids = F.zeros_like(input_ids) position_ids = F.linspace(0, seq_length - 1, seq_length).astype(np.int32) position_ids = F.broadcast_to(F.expand_dims(position_ids, 0), input_ids.shape) words_embeddings = self.word_embeddings(input_ids) position_embeddings = self.position_embeddings(position_ids) token_type_embeddings = self.token_type_embeddings(token_type_ids) embeddings = words_embeddings + position_embeddings + token_type_embeddings embeddings = self.LayerNorm(embeddings) embeddings = self.dropout(embeddings) return embeddings class BertSelfAttention(Module): def __init__(self, config): super().__init__() if config.hidden_size % config.num_attention_heads != 0: raise ValueError( "The hidden size (%d) is not a multiple of the number of attention " "heads (%d)" % (config.hidden_size, config.num_attention_heads) ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = Linear(config.hidden_size, self.all_head_size) self.key = Linear(config.hidden_size, self.all_head_size) self.value = Linear(config.hidden_size, self.all_head_size) self.dropout = Dropout(config.attention_probs_dropout_prob) def transpose_for_scores(self, x): # using symbolic shapes to make trace happy x_shape = mge.tensor(x.shape) new_x_shape = F.concat( [x_shape[:-1], (self.num_attention_heads, self.attention_head_size)] ) x = x.reshape(new_x_shape) return x.transpose(0, 2, 1, 3) def forward(self, hidden_states, attention_mask): mixed_query_layer = self.query(hidden_states) mixed_key_layer = self.key(hidden_states) mixed_value_layer = self.value(hidden_states) query_layer = self.transpose_for_scores(mixed_query_layer) key_layer = self.transpose_for_scores(mixed_key_layer) value_layer = self.transpose_for_scores(mixed_value_layer) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = F.matmul(query_layer, transpose(key_layer, -1, -2)) attention_scores = attention_scores / math.sqrt(self.attention_head_size) # Apply the attention mask is (precomputed for all layers in BertModel forward() function) attention_scores = attention_scores + attention_mask # Normalize the attention scores to probabilities. attention_probs = Softmax(len(attention_scores.shape) - 1)(attention_scores) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) context_layer = F.matmul(attention_probs, value_layer) context_layer = context_layer.transpose(0, 2, 1, 3) # using symbolic shapes to make trace happy context_shape = mge.tensor(context_layer.shape) new_context_layer_shape = F.concat([context_shape[:-2], self.all_head_size]) context_layer = context_layer.reshape(new_context_layer_shape) return context_layer class BertSelfOutput(Module): def __init__(self, config): super().__init__() self.dense = Linear(config.hidden_size, config.hidden_size) self.LayerNorm = BertLayerNorm(config.hidden_size, eps=1e-12) self.dropout = Dropout(config.hidden_dropout_prob) def forward(self, hidden_states, input_tensor): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states class BertAttention(Module): def __init__(self, config): super().__init__() self.self = BertSelfAttention(config) self.output = BertSelfOutput(config) def forward(self, input_tensor, attention_mask): self_output = self.self(input_tensor, attention_mask) attention_output = self.output(self_output, input_tensor) return attention_output class BertIntermediate(Module): def __init__(self, config): super().__init__() self.dense = Linear(config.hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states): hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states class BertOutput(Module): def __init__(self, config): super().__init__() self.dense = Linear(config.intermediate_size, config.hidden_size) self.LayerNorm = BertLayerNorm(config.hidden_size, eps=1e-12) self.dropout = Dropout(config.hidden_dropout_prob) def forward(self, hidden_states, input_tensor): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states class BertLayer(Module): def __init__(self, config): super().__init__() self.attention = BertAttention(config) self.intermediate = BertIntermediate(config) self.output = BertOutput(config) def forward(self, hidden_states, attention_mask): attention_output = self.attention(hidden_states, attention_mask) intermediate_output = self.intermediate(attention_output) layer_output = self.output(intermediate_output, attention_output) return layer_output class BertEncoder(Module): def __init__(self, config): super().__init__() self.layer = Sequential( *[BertLayer(config) for _ in range(config.num_hidden_layers)] ) # self.layer = ModuleList([BertLayer(config) for _ in range(config.num_hidden_layers)]) def forward(self, hidden_states, attention_mask, output_all_encoded_layers=True): all_encoder_layers = [] for layer_module in self.layer: hidden_states = layer_module(hidden_states, attention_mask) if output_all_encoded_layers: all_encoder_layers.append(hidden_states) if not output_all_encoded_layers: all_encoder_layers.append(hidden_states) return all_encoder_layers class BertPooler(Module): def __init__(self, config): super().__init__() self.dense = Linear(config.hidden_size, config.hidden_size) self.activation = F.tanh def forward(self, hidden_states): # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] pooled_output = self.dense(first_token_tensor) pooled_output = self.activation(pooled_output) return pooled_output class BertModel(Module): """BERT model ("Bidirectional Embedding Representations from a Transformer"). Params: config: a BertConfig class instance with the configuration to build a new model Inputs: `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length] with the word token indices in the vocabulary (see the tokens preprocessing logic in the scripts `extract_features.py`, `run_classifier.py` and `run_squad.py`) `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to a `sentence B` token (see BERT paper for more details). `attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max input sequence length in the current batch. It's the mask that we typically use for attention when a batch has varying length sentences. `output_all_encoded_layers`: boolean which controls the content of the `encoded_layers` output as described below. Default: `True`. Outputs: Tuple of (encoded_layers, pooled_output) `encoded_layers`: controled by `output_all_encoded_layers` argument: - `output_all_encoded_layers=True`: outputs a list of the full sequences of encoded-hidden-states at the end of each attention block (i.e. 12 full sequences for BERT-base, 24 for BERT-large), each encoded-hidden-state is a torch.FloatTensor of size [batch_size, sequence_length, hidden_size], - `output_all_encoded_layers=False`: outputs only the full sequence of hidden-states corresponding to the last attention block of shape [batch_size, sequence_length, hidden_size], `pooled_output`: a torch.FloatTensor of size [batch_size, hidden_size] which is the output of classifier pretrained on top of the hidden state associated to the first character of the input (`CLS`) to train on the Next-Sentence task (see BERT's paper). Example usage: ```python # Already been converted into WordPiece token ids input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]]) input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]]) token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]]) config = modeling.BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072) model = modeling.BertModel(config=config) all_encoder_layers, pooled_output = model(input_ids, token_type_ids, input_mask) ``` """ def __init__(self, config): super().__init__() self.embeddings = BertEmbeddings(config) self.encoder = BertEncoder(config) self.pooler = BertPooler(config) def forward( self, input_ids, token_type_ids=None, attention_mask=None, output_all_encoded_layers=True, ): if attention_mask is None: attention_mask = F.ones_like(input_ids) if token_type_ids is None: token_type_ids = F.zeros_like(input_ids) # print('input_ids', input_ids.sum()) # We create a 3D attention mask from a 2D tensor mask. # Sizes are [batch_size, 1, 1, to_seq_length] # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length] # this attention mask is more simple than the triangular masking of causal attention # used in OpenAI GPT, we just need to prepare the broadcast dimension here. # print('attention_mask', attention_mask.sum()) extended_attention_mask = F.expand_dims(attention_mask, (1, 2)) # Since attention_mask is 1.0 for positions we want to attend and 0.0 for # masked positions, this operation will create a tensor which is 0.0 for # positions we want to attend and -10000.0 for masked positions. # Since we are adding it to the raw scores before the softmax, this is # effectively the same as removing these entirely. extended_attention_mask = extended_attention_mask.astype( next(self.parameters()).dtype ) # fp16 compatibility extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0 embedding_output = self.embeddings(input_ids, token_type_ids) encoded_layers = self.encoder( embedding_output, extended_attention_mask, output_all_encoded_layers=output_all_encoded_layers, ) sequence_output = encoded_layers[-1] pooled_output = self.pooler(sequence_output) if not output_all_encoded_layers: encoded_layers = encoded_layers[-1] return encoded_layers, pooled_output class BertForSequenceClassification(Module): """BERT model for classification. This module is composed of the BERT model with a linear layer on top of the pooled output. Params: `config`: a BertConfig class instance with the configuration to build a new model. `num_labels`: the number of classes for the classifier. Default = 2. Inputs: `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length] with the word token indices in the vocabulary. Items in the batch should begin with the special "CLS" token. (see the tokens preprocessing logic in the scripts `extract_features.py`, `run_classifier.py` and `run_squad.py`) `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to a `sentence B` token (see BERT paper for more details). `attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max input sequence length in the current batch. It's the mask that we typically use for attention when a batch has varying length sentences. `labels`: labels for the classification output: torch.LongTensor of shape [batch_size] with indices selected in [0, ..., num_labels]. Outputs: if `labels` is not `None`: Outputs the CrossEntropy classification loss of the output with the labels. if `labels` is `None`: Outputs the classification logits of shape [batch_size, num_labels]. Example usage: ```python # Already been converted into WordPiece token ids input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]]) input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]]) token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]]) config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072) num_labels = 2 model = BertForSequenceClassification(config, num_labels) logits = model(input_ids, token_type_ids, input_mask) ``` """ def __init__(self, config, num_labels, bert=None): super().__init__() if bert is None: self.bert = BertModel(config) else: self.bert = bert self.num_labels = num_labels self.dropout = Dropout(config.hidden_dropout_prob) self.classifier = Linear(config.hidden_size, num_labels) def forward(self, input_ids, token_type_ids=None, attention_mask=None, labels=None): _, pooled_output = self.bert( input_ids, token_type_ids, attention_mask, output_all_encoded_layers=False ) pooled_output = self.dropout(pooled_output) logits = self.classifier(pooled_output) if labels is not None: loss = cross_entropy( logits.reshape(-1, self.num_labels), labels.reshape(-1) ) return logits, loss else: return logits, None DATA_URL = "https://data.megengine.org.cn/models/weights/bert" CONFIG_NAME = "bert_config.json" VOCAB_NAME = "vocab.txt" MODEL_NAME = { "wwm_cased_L-24_H-1024_A-16": "wwm_cased_L_24_H_1024_A_16", "wwm_uncased_L-24_H-1024_A-16": "wwm_uncased_L_24_H_1024_A_16", "cased_L-12_H-768_A-12": "cased_L_12_H_768_A_12", "cased_L-24_H-1024_A-16": "cased_L_24_H_1024_A_16", "uncased_L-12_H-768_A-12": "uncased_L_12_H_768_A_12", "uncased_L-24_H-1024_A-16": "uncased_L_24_H_1024_A_16", "chinese_L-12_H-768_A-12": "chinese_L_12_H_768_A_12", "multi_cased_L-12_H-768_A-12": "multi_cased_L_12_H_768_A_12", } def download_file(url, filename): # urllib.URLopener().retrieve(url, filename) urllib.request.urlretrieve(url, filename) def create_hub_bert(model_name, pretrained): assert model_name in MODEL_NAME, "{} not in the valid models {}".format( model_name, MODEL_NAME ) data_dir = "./{}".format(model_name) if not os.path.exists(data_dir): os.makedirs(data_dir) vocab_url = "{}/{}/{}".format(DATA_URL, model_name, VOCAB_NAME) config_url = "{}/{}/{}".format(DATA_URL, model_name, CONFIG_NAME) vocab_file = "./{}/{}".format(model_name, VOCAB_NAME) config_file = "./{}/{}".format(model_name, CONFIG_NAME) download_file(vocab_url, vocab_file) download_file(config_url, config_file) config = BertConfig(config_file) model = hub.load("megengine/models", MODEL_NAME[model_name], pretrained=pretrained) return model, config, vocab_file @hub.pretrained( "https://data.megengine.org.cn/models/weights/bert/" "uncased_L-12_H-768_A-12/bert_4f2157f7_uncased_L-12_H-768_A-12.pkl" ) def uncased_L_12_H_768_A_12(): config_dict = { "attention_probs_dropout_prob": 0.1, "hidden_act": "gelu", "hidden_dropout_prob": 0.1, "hidden_size": 768, "initializer_range": 0.02, "intermediate_size": 3072, "max_position_embeddings": 512, "num_attention_heads": 12, "num_hidden_layers": 12, "type_vocab_size": 2, "vocab_size": 30522, } config = BertConfig.from_dict(config_dict) return BertModel(config) @hub.pretrained( "https://data.megengine.org.cn/models/weights/bert/" "cased_L-12_H-768_A-12/bert_b9727c2f_cased_L-12_H-768_A-12.pkl" ) def cased_L_12_H_768_A_12(): config_dict = { "attention_probs_dropout_prob": 0.1, "hidden_act": "gelu", "hidden_dropout_prob": 0.1, "hidden_size": 768, "initializer_range": 0.02, "intermediate_size": 3072, "max_position_embeddings": 512, "num_attention_heads": 12, "num_hidden_layers": 12, "type_vocab_size": 2, "vocab_size": 28996, } config = BertConfig.from_dict(config_dict) return BertModel(config) @hub.pretrained( "https://data.megengine.org.cn/models/weights/bert/" "uncased_L-24_H-1024_A-16/bert_222f5012_uncased_L-24_H-1024_A-16.pkl" ) def uncased_L_24_H_1024_A_16(): config_dict = { "attention_probs_dropout_prob": 0.1, "hidden_act": "gelu", "hidden_dropout_prob": 0.1, "hidden_size": 1024, "initializer_range": 0.02, "intermediate_size": 4096, "max_position_embeddings": 512, "num_attention_heads": 16, "num_hidden_layers": 24, "type_vocab_size": 2, "vocab_size": 30522, } config = BertConfig.from_dict(config_dict) return BertModel(config) @hub.pretrained( "https://data.megengine.org.cn/models/weights/bert/" "cased_L-24_H-1024_A-16/bert_01f2a65f_cased_L-24_H-1024_A-16.pkl" ) def cased_L_24_H_1024_A_16(): config_dict = { "attention_probs_dropout_prob": 0.1, "directionality": "bidi", "hidden_act": "gelu", "hidden_dropout_prob": 0.1, "hidden_size": 1024, "initializer_range": 0.02, "intermediate_size": 4096, "max_position_embeddings": 512, "num_attention_heads": 16, "num_hidden_layers": 24, "pooler_fc_size": 768, "pooler_num_attention_heads": 12, "pooler_num_fc_layers": 3, "pooler_size_per_head": 128, "pooler_type": "first_token_transform", "type_vocab_size": 2, "vocab_size": 28996, } config = BertConfig.from_dict(config_dict) return BertModel(config) @hub.pretrained( "https://data.megengine.org.cn/models/weights/bert/" "chinese_L-12_H-768_A-12/bert_ee91be1a_chinese_L-12_H-768_A-12.pkl" ) def chinese_L_12_H_768_A_12(): config_dict = { "attention_probs_dropout_prob": 0.1, "directionality": "bidi", "hidden_act": "gelu", "hidden_dropout_prob": 0.1, "hidden_size": 768, "initializer_range": 0.02, "intermediate_size": 3072, "max_position_embeddings": 512, "num_attention_heads": 12, "num_hidden_layers": 12, "pooler_fc_size": 768, "pooler_num_attention_heads": 12, "pooler_num_fc_layers": 3, "pooler_size_per_head": 128, "pooler_type": "first_token_transform", "type_vocab_size": 2, "vocab_size": 21128, } config = BertConfig.from_dict(config_dict) return BertModel(config) @hub.pretrained( "https://data.megengine.org.cn/models/weights/bert/" "multi_cased_L-12_H-768_A-12/bert_283ceec5_multi_cased_L-12_H-768_A-12.pkl" ) def multi_cased_L_12_H_768_A_12(): config_dict = { "attention_probs_dropout_prob": 0.1, "directionality": "bidi", "hidden_act": "gelu", "hidden_dropout_prob": 0.1, "hidden_size": 768, "initializer_range": 0.02, "intermediate_size": 3072, "max_position_embeddings": 512, "num_attention_heads": 12, "num_hidden_layers": 12, "pooler_fc_size": 768, "pooler_num_attention_heads": 12, "pooler_num_fc_layers": 3, "pooler_size_per_head": 128, "pooler_type": "first_token_transform", "type_vocab_size": 2, "vocab_size": 119547, } config = BertConfig.from_dict(config_dict) return BertModel(config) @hub.pretrained( "https://data.megengine.org.cn/models/weights/bert/" "wwm_uncased_L-24_H-1024_A-16/bert_e2780a6a_wwm_uncased_L-24_H-1024_A-16.pkl" ) def wwm_uncased_L_24_H_1024_A_16(): config_dict = { "attention_probs_dropout_prob": 0.1, "hidden_act": "gelu", "hidden_dropout_prob": 0.1, "hidden_size": 1024, "initializer_range": 0.02, "intermediate_size": 4096, "max_position_embeddings": 512, "num_attention_heads": 16, "num_hidden_layers": 24, "type_vocab_size": 2, "vocab_size": 30522, } config = BertConfig.from_dict(config_dict) return BertModel(config) @hub.pretrained( "https://data.megengine.org.cn/models/weights/bert/" "wwm_cased_L-24_H-1024_A-16/bert_0a8f1389_wwm_cased_L-24_H-1024_A-16.pkl" ) def wwm_cased_L_24_H_1024_A_16(): config_dict = { "attention_probs_dropout_prob": 0.1, "directionality": "bidi", "hidden_act": "gelu", "hidden_dropout_prob": 0.1, "hidden_size": 1024, "initializer_range": 0.02, "intermediate_size": 4096, "max_position_embeddings": 512, "num_attention_heads": 16, "num_hidden_layers": 24, "pooler_fc_size": 768, "pooler_num_attention_heads": 12, "pooler_num_fc_layers": 3, "pooler_size_per_head": 128, "pooler_type": "first_token_transform", "type_vocab_size": 2, "vocab_size": 28996, } config = BertConfig.from_dict(config_dict) return BertModel(config)
[ "megengine.hub.pretrained", "megengine.module.Embedding", "megengine.hub.load", "megengine.tensor", "megengine.functional.concat", "megengine.functional.matmul", "megengine.functional.sqrt", "megengine.functional.ones_like", "megengine.functional.zeros_like", "megengine.functional.linspace", "megengine.module.Dropout", "megengine.module.Linear", "megengine.functional.expand_dims" ]
[((24900, 25043), 'megengine.hub.pretrained', 'hub.pretrained', (['"""https://data.megengine.org.cn/models/weights/bert/uncased_L-12_H-768_A-12/bert_4f2157f7_uncased_L-12_H-768_A-12.pkl"""'], {}), "(\n 'https://data.megengine.org.cn/models/weights/bert/uncased_L-12_H-768_A-12/bert_4f2157f7_uncased_L-12_H-768_A-12.pkl'\n )\n", (24914, 25043), True, 'import megengine.hub as hub\n'), ((25559, 25698), 'megengine.hub.pretrained', 'hub.pretrained', (['"""https://data.megengine.org.cn/models/weights/bert/cased_L-12_H-768_A-12/bert_b9727c2f_cased_L-12_H-768_A-12.pkl"""'], {}), "(\n 'https://data.megengine.org.cn/models/weights/bert/cased_L-12_H-768_A-12/bert_b9727c2f_cased_L-12_H-768_A-12.pkl'\n )\n", (25573, 25698), True, 'import megengine.hub as hub\n'), ((26212, 26357), 'megengine.hub.pretrained', 'hub.pretrained', (['"""https://data.megengine.org.cn/models/weights/bert/uncased_L-24_H-1024_A-16/bert_222f5012_uncased_L-24_H-1024_A-16.pkl"""'], {}), "(\n 'https://data.megengine.org.cn/models/weights/bert/uncased_L-24_H-1024_A-16/bert_222f5012_uncased_L-24_H-1024_A-16.pkl'\n )\n", (26226, 26357), True, 'import megengine.hub as hub\n'), ((26876, 27017), 'megengine.hub.pretrained', 'hub.pretrained', (['"""https://data.megengine.org.cn/models/weights/bert/cased_L-24_H-1024_A-16/bert_01f2a65f_cased_L-24_H-1024_A-16.pkl"""'], {}), "(\n 'https://data.megengine.org.cn/models/weights/bert/cased_L-24_H-1024_A-16/bert_01f2a65f_cased_L-24_H-1024_A-16.pkl'\n )\n", (26890, 27017), True, 'import megengine.hub as hub\n'), ((27761, 27904), 'megengine.hub.pretrained', 'hub.pretrained', (['"""https://data.megengine.org.cn/models/weights/bert/chinese_L-12_H-768_A-12/bert_ee91be1a_chinese_L-12_H-768_A-12.pkl"""'], {}), "(\n 'https://data.megengine.org.cn/models/weights/bert/chinese_L-12_H-768_A-12/bert_ee91be1a_chinese_L-12_H-768_A-12.pkl'\n )\n", (27775, 27904), True, 'import megengine.hub as hub\n'), ((28647, 28798), 'megengine.hub.pretrained', 'hub.pretrained', (['"""https://data.megengine.org.cn/models/weights/bert/multi_cased_L-12_H-768_A-12/bert_283ceec5_multi_cased_L-12_H-768_A-12.pkl"""'], {}), "(\n 'https://data.megengine.org.cn/models/weights/bert/multi_cased_L-12_H-768_A-12/bert_283ceec5_multi_cased_L-12_H-768_A-12.pkl'\n )\n", (28661, 28798), True, 'import megengine.hub as hub\n'), ((29547, 29700), 'megengine.hub.pretrained', 'hub.pretrained', (['"""https://data.megengine.org.cn/models/weights/bert/wwm_uncased_L-24_H-1024_A-16/bert_e2780a6a_wwm_uncased_L-24_H-1024_A-16.pkl"""'], {}), "(\n 'https://data.megengine.org.cn/models/weights/bert/wwm_uncased_L-24_H-1024_A-16/bert_e2780a6a_wwm_uncased_L-24_H-1024_A-16.pkl'\n )\n", (29561, 29700), True, 'import megengine.hub as hub\n'), ((30222, 30371), 'megengine.hub.pretrained', 'hub.pretrained', (['"""https://data.megengine.org.cn/models/weights/bert/wwm_cased_L-24_H-1024_A-16/bert_0a8f1389_wwm_cased_L-24_H-1024_A-16.pkl"""'], {}), "(\n 'https://data.megengine.org.cn/models/weights/bert/wwm_cased_L-24_H-1024_A-16/bert_0a8f1389_wwm_cased_L-24_H-1024_A-16.pkl'\n )\n", (30236, 30371), True, 'import megengine.hub as hub\n'), ((24078, 24119), 'urllib.request.urlretrieve', 'urllib.request.urlretrieve', (['url', 'filename'], {}), '(url, filename)\n', (24104, 24119), False, 'import urllib\n'), ((24783, 24858), 'megengine.hub.load', 'hub.load', (['"""megengine/models"""', 'MODEL_NAME[model_name]'], {'pretrained': 'pretrained'}), "('megengine/models', MODEL_NAME[model_name], pretrained=pretrained)\n", (24791, 24858), True, 'import megengine.hub as hub\n'), ((5786, 5814), 'copy.deepcopy', 'copy.deepcopy', (['self.__dict__'], {}), '(self.__dict__)\n', (5799, 5814), False, 'import copy\n'), ((7035, 7083), 'megengine.module.Embedding', 'Embedding', (['config.vocab_size', 'config.hidden_size'], {}), '(config.vocab_size, config.hidden_size)\n', (7044, 7083), False, 'from megengine.module import Dropout, Embedding, Linear, Module, Sequential\n'), ((7119, 7180), 'megengine.module.Embedding', 'Embedding', (['config.max_position_embeddings', 'config.hidden_size'], {}), '(config.max_position_embeddings, config.hidden_size)\n', (7128, 7180), False, 'from megengine.module import Dropout, Embedding, Linear, Module, Sequential\n'), ((7240, 7293), 'megengine.module.Embedding', 'Embedding', (['config.type_vocab_size', 'config.hidden_size'], {}), '(config.type_vocab_size, config.hidden_size)\n', (7249, 7293), False, 'from megengine.module import Dropout, Embedding, Linear, Module, Sequential\n'), ((7560, 7595), 'megengine.module.Dropout', 'Dropout', (['config.hidden_dropout_prob'], {}), '(config.hidden_dropout_prob)\n', (7567, 7595), False, 'from megengine.module import Dropout, Embedding, Linear, Module, Sequential\n'), ((8981, 9027), 'megengine.module.Linear', 'Linear', (['config.hidden_size', 'self.all_head_size'], {}), '(config.hidden_size, self.all_head_size)\n', (8987, 9027), False, 'from megengine.module import Dropout, Embedding, Linear, Module, Sequential\n'), ((9047, 9093), 'megengine.module.Linear', 'Linear', (['config.hidden_size', 'self.all_head_size'], {}), '(config.hidden_size, self.all_head_size)\n', (9053, 9093), False, 'from megengine.module import Dropout, Embedding, Linear, Module, Sequential\n'), ((9115, 9161), 'megengine.module.Linear', 'Linear', (['config.hidden_size', 'self.all_head_size'], {}), '(config.hidden_size, self.all_head_size)\n', (9121, 9161), False, 'from megengine.module import Dropout, Embedding, Linear, Module, Sequential\n'), ((9186, 9230), 'megengine.module.Dropout', 'Dropout', (['config.attention_probs_dropout_prob'], {}), '(config.attention_probs_dropout_prob)\n', (9193, 9230), False, 'from megengine.module import Dropout, Embedding, Linear, Module, Sequential\n'), ((9341, 9360), 'megengine.tensor', 'mge.tensor', (['x.shape'], {}), '(x.shape)\n', (9351, 9360), True, 'import megengine as mge\n'), ((9383, 9461), 'megengine.functional.concat', 'F.concat', (['[x_shape[:-1], (self.num_attention_heads, self.attention_head_size)]'], {}), '([x_shape[:-1], (self.num_attention_heads, self.attention_head_size)])\n', (9391, 9461), True, 'import megengine.functional as F\n'), ((10768, 10806), 'megengine.functional.matmul', 'F.matmul', (['attention_probs', 'value_layer'], {}), '(attention_probs, value_layer)\n', (10776, 10806), True, 'import megengine.functional as F\n'), ((10943, 10974), 'megengine.tensor', 'mge.tensor', (['context_layer.shape'], {}), '(context_layer.shape)\n', (10953, 10974), True, 'import megengine as mge\n'), ((11009, 11059), 'megengine.functional.concat', 'F.concat', (['[context_shape[:-2], self.all_head_size]'], {}), '([context_shape[:-2], self.all_head_size])\n', (11017, 11059), True, 'import megengine.functional as F\n'), ((11272, 11318), 'megengine.module.Linear', 'Linear', (['config.hidden_size', 'config.hidden_size'], {}), '(config.hidden_size, config.hidden_size)\n', (11278, 11318), False, 'from megengine.module import Dropout, Embedding, Linear, Module, Sequential\n'), ((11412, 11447), 'megengine.module.Dropout', 'Dropout', (['config.hidden_dropout_prob'], {}), '(config.hidden_dropout_prob)\n', (11419, 11447), False, 'from megengine.module import Dropout, Embedding, Linear, Module, Sequential\n'), ((12210, 12262), 'megengine.module.Linear', 'Linear', (['config.hidden_size', 'config.intermediate_size'], {}), '(config.hidden_size, config.intermediate_size)\n', (12216, 12262), False, 'from megengine.module import Dropout, Embedding, Linear, Module, Sequential\n'), ((12736, 12788), 'megengine.module.Linear', 'Linear', (['config.intermediate_size', 'config.hidden_size'], {}), '(config.intermediate_size, config.hidden_size)\n', (12742, 12788), False, 'from megengine.module import Dropout, Embedding, Linear, Module, Sequential\n'), ((12882, 12917), 'megengine.module.Dropout', 'Dropout', (['config.hidden_dropout_prob'], {}), '(config.hidden_dropout_prob)\n', (12889, 12917), False, 'from megengine.module import Dropout, Embedding, Linear, Module, Sequential\n'), ((14562, 14608), 'megengine.module.Linear', 'Linear', (['config.hidden_size', 'config.hidden_size'], {}), '(config.hidden_size, config.hidden_size)\n', (14568, 14608), False, 'from megengine.module import Dropout, Embedding, Linear, Module, Sequential\n'), ((18962, 18999), 'megengine.functional.expand_dims', 'F.expand_dims', (['attention_mask', '(1, 2)'], {}), '(attention_mask, (1, 2))\n', (18975, 18999), True, 'import megengine.functional as F\n'), ((22709, 22744), 'megengine.module.Dropout', 'Dropout', (['config.hidden_dropout_prob'], {}), '(config.hidden_dropout_prob)\n', (22716, 22744), False, 'from megengine.module import Dropout, Embedding, Linear, Module, Sequential\n'), ((22771, 22809), 'megengine.module.Linear', 'Linear', (['config.hidden_size', 'num_labels'], {}), '(config.hidden_size, num_labels)\n', (22777, 22809), False, 'from megengine.module import Dropout, Embedding, Linear, Module, Sequential\n'), ((24333, 24357), 'os.path.exists', 'os.path.exists', (['data_dir'], {}), '(data_dir)\n', (24347, 24357), False, 'import os\n'), ((24367, 24388), 'os.makedirs', 'os.makedirs', (['data_dir'], {}), '(data_dir)\n', (24378, 24388), False, 'import os\n'), ((5485, 5523), 'io.open', 'open', (['json_file', '"""r"""'], {'encoding': '"""utf-8"""'}), "(json_file, 'r', encoding='utf-8')\n", (5489, 5523), False, 'from io import open\n'), ((5597, 5613), 'json.loads', 'json.loads', (['text'], {}), '(text)\n', (5607, 5613), False, 'import json\n'), ((6108, 6151), 'io.open', 'open', (['json_file_path', '"""w"""'], {'encoding': '"""utf-8"""'}), "(json_file_path, 'w', encoding='utf-8')\n", (6112, 6151), False, 'from io import open\n'), ((7757, 7780), 'megengine.functional.zeros_like', 'F.zeros_like', (['input_ids'], {}), '(input_ids)\n', (7769, 7780), True, 'import megengine.functional as F\n'), ((7902, 7932), 'megengine.functional.expand_dims', 'F.expand_dims', (['position_ids', '(0)'], {}), '(position_ids, 0)\n', (7915, 7932), True, 'import megengine.functional as F\n'), ((10185, 10220), 'math.sqrt', 'math.sqrt', (['self.attention_head_size'], {}), '(self.attention_head_size)\n', (10194, 10220), False, 'import math\n'), ((18332, 18354), 'megengine.functional.ones_like', 'F.ones_like', (['input_ids'], {}), '(input_ids)\n', (18343, 18354), True, 'import megengine.functional as F\n'), ((18419, 18442), 'megengine.functional.zeros_like', 'F.zeros_like', (['input_ids'], {}), '(input_ids)\n', (18431, 18442), True, 'import megengine.functional as F\n'), ((3928, 3987), 'io.open', 'open', (['vocab_size_or_config_json_file', '"""r"""'], {'encoding': '"""utf-8"""'}), "(vocab_size_or_config_json_file, 'r', encoding='utf-8')\n", (3932, 3987), False, 'from io import open\n'), ((7805, 7846), 'megengine.functional.linspace', 'F.linspace', (['(0)', '(seq_length - 1)', 'seq_length'], {}), '(0, seq_length - 1, seq_length)\n', (7815, 7846), True, 'import megengine.functional as F\n'), ((1797, 1816), 'megengine.functional.sqrt', 'F.sqrt', (['(2 / math.pi)'], {}), '(2 / math.pi)\n', (1803, 1816), True, 'import megengine.functional as F\n'), ((6444, 6464), 'numpy.ones', 'np.ones', (['hidden_size'], {}), '(hidden_size)\n', (6451, 6464), True, 'import numpy as np\n'), ((6515, 6536), 'numpy.zeros', 'np.zeros', (['hidden_size'], {}), '(hidden_size)\n', (6523, 6536), True, 'import numpy as np\n')]
from sqlmodel import Field from typing import Optional from app.models.base_uuid_model import BaseUUIDModel from uuid import UUID class LinkGroupUser(BaseUUIDModel, table=True): group_id: Optional[UUID] = Field(default=None, nullable=False, foreign_key="group.id", primary_key=True) user_id: Optional[UUID] = Field(default=None, nullable=False, foreign_key="user.id", primary_key=True)
[ "sqlmodel.Field" ]
[((210, 287), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'nullable': '(False)', 'foreign_key': '"""group.id"""', 'primary_key': '(True)'}), "(default=None, nullable=False, foreign_key='group.id', primary_key=True)\n", (215, 287), False, 'from sqlmodel import Field\n'), ((318, 394), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'nullable': '(False)', 'foreign_key': '"""user.id"""', 'primary_key': '(True)'}), "(default=None, nullable=False, foreign_key='user.id', primary_key=True)\n", (323, 394), False, 'from sqlmodel import Field\n')]
"""node state add Revision ID: <KEY> Revises: ad46aa4e<PASSWORD> Create Date: 2021-11-15 21:08:52.990959 """ import sqlalchemy as sa import sqlmodel from alembic import op # revision identifiers, used by Alembic. revision = "<KEY>" down_revision = "<KEY>" branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.add_column( "preps", sa.Column("node_state", sqlmodel.sql.sqltypes.AutoString(), nullable=True) ) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.alter_column( "proposals", "id", existing_type=sa.INTEGER(), nullable=False, autoincrement=True ) op.drop_column("preps", "node_state") # ### end Alembic commands ###
[ "sqlmodel.sql.sqltypes.AutoString" ]
[((739, 776), 'alembic.op.drop_column', 'op.drop_column', (['"""preps"""', '"""node_state"""'], {}), "('preps', 'node_state')\n", (753, 776), False, 'from alembic import op\n'), ((441, 475), 'sqlmodel.sql.sqltypes.AutoString', 'sqlmodel.sql.sqltypes.AutoString', ([], {}), '()\n', (473, 475), False, 'import sqlmodel\n'), ((680, 692), 'sqlalchemy.INTEGER', 'sa.INTEGER', ([], {}), '()\n', (690, 692), True, 'import sqlalchemy as sa\n')]
import numpy as nm from sfepy.linalg import dot_sequences from sfepy.terms.terms import Term, terms class PiezoCouplingTerm(Term): r""" Piezoelectric coupling term. Can be evaluated. :Definition: .. math:: \int_{\Omega} g_{kij}\ e_{ij}(\ul{v}) \nabla_k p \mbox{ , } \int_{\Omega} g_{kij}\ e_{ij}(\ul{u}) \nabla_k q :Arguments 1: - material : :math:`g_{kij}` - virtual : :math:`\ul{v}` - state : :math:`p` :Arguments 2: - material : :math:`g_{kij}` - state : :math:`\ul{u}` - virtual : :math:`q` :Arguments 3: - material : :math:`g_{kij}` - parameter_v : :math:`\ul{u}` - parameter_s : :math:`p` """ name = 'dw_piezo_coupling' arg_types = (('material', 'virtual', 'state'), ('material', 'state', 'virtual'), ('material', 'parameter_v', 'parameter_s')) arg_shapes = {'material' : 'D, S', 'virtual/grad' : ('D', None), 'state/grad' : 1, 'virtual/div' : (1, None), 'state/div' : 'D', 'parameter_v' : 'D', 'parameter_s' : 1} modes = ('grad', 'div', 'eval') def get_fargs(self, mat, vvar, svar, mode=None, term_mode=None, diff_var=None, **kwargs): if self.mode == 'grad': qp_var, qp_name = svar, 'grad' else: qp_var, qp_name = vvar, 'cauchy_strain' vvg, _ = self.get_mapping(vvar) if mode == 'weak': aux = nm.array([0], ndmin=4, dtype=nm.float64) if diff_var is None: # grad or strain according to mode. val_qp = self.get(qp_var, qp_name) fmode = 0 else: val_qp = aux fmode = 1 if self.mode == 'grad': strain, grad = aux, val_qp else: strain, grad = val_qp, aux fmode += 2 return strain, grad, mat, vvg, fmode elif mode == 'eval': strain = self.get(vvar, 'cauchy_strain') grad = self.get(svar, 'grad') return strain, grad, mat, vvg else: raise ValueError('unsupported evaluation mode in %s! (%s)' % (self.name, mode)) def get_eval_shape(self, mat, vvar, svar, mode=None, term_mode=None, diff_var=None, **kwargs): n_el, n_qp, dim, n_en, n_c = self.get_data_shape(vvar) return (n_el, 1, 1, 1), vvar.dtype def set_arg_types( self ): self.function = { 'grad' : terms.dw_piezo_coupling, 'div' : terms.dw_piezo_coupling, 'eval' : terms.d_piezo_coupling, }[self.mode] class PiezoStressTerm(Term): r""" Evaluate piezoelectric stress tensor. It is given in the usual vector form exploiting symmetry: in 3D it has 6 components with the indices ordered as :math:`[11, 22, 33, 12, 13, 23]`, in 2D it has 3 components with the indices ordered as :math:`[11, 22, 12]`. Supports 'eval', 'el_avg' and 'qp' evaluation modes. :Definition: .. math:: \int_{\Omega} g_{kij} \nabla_k p :Arguments: - material : :math:`g_{kij}` - parameter : :math:`p` """ name = 'ev_piezo_stress' arg_types = ('material', 'parameter') arg_shapes = {'material' : 'D, S', 'parameter' : '1'} @staticmethod def function(out, val_qp, vg, fmode): if fmode == 2: out[:] = val_qp status = 0 else: status = vg.integrate(out, val_qp, fmode) return status def get_fargs(self, mat, parameter, mode=None, term_mode=None, diff_var=None, **kwargs): vg, _ = self.get_mapping(parameter) grad = self.get(parameter, 'grad') val_qp = dot_sequences(mat, grad, mode='ATB') fmode = {'eval' : 0, 'el_avg' : 1, 'qp' : 2}.get(mode, 1) return val_qp, vg, fmode def get_eval_shape(self, mat, parameter, mode=None, term_mode=None, diff_var=None, **kwargs): n_el, n_qp, dim, n_en, n_c = self.get_data_shape(parameter) if mode != 'qp': n_qp = 1 return (n_el, n_qp, dim * (dim + 1) / 2, 1), parameter.dtype
[ "sfepy.linalg.dot_sequences" ]
[((3897, 3933), 'sfepy.linalg.dot_sequences', 'dot_sequences', (['mat', 'grad'], {'mode': '"""ATB"""'}), "(mat, grad, mode='ATB')\n", (3910, 3933), False, 'from sfepy.linalg import dot_sequences\n'), ((1536, 1576), 'numpy.array', 'nm.array', (['[0]'], {'ndmin': '(4)', 'dtype': 'nm.float64'}), '([0], ndmin=4, dtype=nm.float64)\n', (1544, 1576), True, 'import numpy as nm\n')]
from datetime import datetime from typing import TYPE_CHECKING, Optional from models.base import BaseModel, BaseTableFields from sqlmodel import Field, Relationship, Column, String if TYPE_CHECKING: from models.user import User class Session(BaseModel, BaseTableFields, table=True): __tablename__ = "sessions" access_token: str = Field( sa_column=Column( String, unique=True, nullable=False ) ) ip_address: Optional[str] = Field( sa_column=Column( String(100), nullable=True ) ) user_agent: Optional[str] = Field( sa_column=Column( String(100), nullable=True ) ) user_id: int = Field(foreign_key="users.id") user: "User" = Relationship(back_populates="sessions") class SessionRead(BaseModel): id: int access_token: str ip_address: Optional[str] user_agent: Optional[str] created_at: datetime updated_at: datetime is_active: bool class SessionCreate(BaseModel): access_token: str ip_address: Optional[str] user_agent: Optional[str] user_id: int class SessionUpdate(BaseModel): is_active: Optional[bool] = None
[ "sqlmodel.String", "sqlmodel.Relationship", "sqlmodel.Field", "sqlmodel.Column" ]
[((751, 780), 'sqlmodel.Field', 'Field', ([], {'foreign_key': '"""users.id"""'}), "(foreign_key='users.id')\n", (756, 780), False, 'from sqlmodel import Field, Relationship, Column, String\n'), ((800, 839), 'sqlmodel.Relationship', 'Relationship', ([], {'back_populates': '"""sessions"""'}), "(back_populates='sessions')\n", (812, 839), False, 'from sqlmodel import Field, Relationship, Column, String\n'), ((371, 414), 'sqlmodel.Column', 'Column', (['String'], {'unique': '(True)', 'nullable': '(False)'}), '(String, unique=True, nullable=False)\n', (377, 414), False, 'from sqlmodel import Field, Relationship, Column, String\n'), ((544, 555), 'sqlmodel.String', 'String', (['(100)'], {}), '(100)\n', (550, 555), False, 'from sqlmodel import Field, Relationship, Column, String\n'), ((676, 687), 'sqlmodel.String', 'String', (['(100)'], {}), '(100)\n', (682, 687), False, 'from sqlmodel import Field, Relationship, Column, String\n')]
from typing import Optional from loguru import logger from sqlmodel import Field, Session, SQLModel, create_engine, or_, select class Hero(SQLModel, table=True): id: Optional[int] = Field(default=None, primary_key=True) name: str secret_name: str = Field(max_length=30) age: Optional[int] = None def test_database_with_sqlmodel(): hero_1 = Hero(name='Deadpond', secret_name='<NAME>') hero_2 = Hero(name='Spider-Boy', secret_name='<NAME>') hero_3 = Hero(name='Rusty-Man', secret_name='<NAME>', age=48) # engine = create_engine('sqlite:///temp.db') engine = create_engine('sqlite:///:memory:') SQLModel.metadata.create_all(engine) with Session(engine) as session: for hero in [hero_1, hero_2, hero_3]: session.add(hero) session.commit() with Session(engine) as session: statement = select(Hero).where(Hero.name == 'Spider-Boy') hero = session.exec(statement).first() logger.info(hero) # Or statement statement = select(Hero).where((Hero.name == 'Spider-Boy') | (Hero.name == 'Rusty-Man')) heroes = session.exec(statement) for hero in heroes: logger.info(hero) # Or statement, alternative way statement = select(Hero).where(or_(Hero.name == 'Spider-Boy', Hero.name == 'Rusty-Man')) heroes = session.exec(statement) for hero in heroes: logger.info(hero) # And statement statement = select(Hero).where(Hero.name == 'Spider-Boy', Hero.secret_name == '<NAME>') heroes = session.exec(statement) for hero in heroes: logger.info(hero) # And statement, alternative way statement = select(Hero).where(Hero.name == 'Spider-Boy').where(Hero.secret_name == '<NAME>') heroes = session.exec(statement) for hero in heroes: logger.info(hero) if __name__ == '__main__': test_database_with_sqlmodel()
[ "sqlmodel.SQLModel.metadata.create_all", "sqlmodel.Session", "sqlmodel.or_", "sqlmodel.Field", "sqlmodel.select", "sqlmodel.create_engine" ]
[((189, 226), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'primary_key': '(True)'}), '(default=None, primary_key=True)\n', (194, 226), False, 'from sqlmodel import Field, Session, SQLModel, create_engine, or_, select\n'), ((264, 284), 'sqlmodel.Field', 'Field', ([], {'max_length': '(30)'}), '(max_length=30)\n', (269, 284), False, 'from sqlmodel import Field, Session, SQLModel, create_engine, or_, select\n'), ((598, 633), 'sqlmodel.create_engine', 'create_engine', (['"""sqlite:///:memory:"""'], {}), "('sqlite:///:memory:')\n", (611, 633), False, 'from sqlmodel import Field, Session, SQLModel, create_engine, or_, select\n'), ((639, 675), 'sqlmodel.SQLModel.metadata.create_all', 'SQLModel.metadata.create_all', (['engine'], {}), '(engine)\n', (667, 675), False, 'from sqlmodel import Field, Session, SQLModel, create_engine, or_, select\n'), ((686, 701), 'sqlmodel.Session', 'Session', (['engine'], {}), '(engine)\n', (693, 701), False, 'from sqlmodel import Field, Session, SQLModel, create_engine, or_, select\n'), ((825, 840), 'sqlmodel.Session', 'Session', (['engine'], {}), '(engine)\n', (832, 840), False, 'from sqlmodel import Field, Session, SQLModel, create_engine, or_, select\n'), ((974, 991), 'loguru.logger.info', 'logger.info', (['hero'], {}), '(hero)\n', (985, 991), False, 'from loguru import logger\n'), ((1194, 1211), 'loguru.logger.info', 'logger.info', (['hero'], {}), '(hero)\n', (1205, 1211), False, 'from loguru import logger\n'), ((1292, 1348), 'sqlmodel.or_', 'or_', (["(Hero.name == 'Spider-Boy')", "(Hero.name == 'Rusty-Man')"], {}), "(Hero.name == 'Spider-Boy', Hero.name == 'Rusty-Man')\n", (1295, 1348), False, 'from sqlmodel import Field, Session, SQLModel, create_engine, or_, select\n'), ((1431, 1448), 'loguru.logger.info', 'logger.info', (['hero'], {}), '(hero)\n', (1442, 1448), False, 'from loguru import logger\n'), ((1651, 1668), 'loguru.logger.info', 'logger.info', (['hero'], {}), '(hero)\n', (1662, 1668), False, 'from loguru import logger\n'), ((1894, 1911), 'loguru.logger.info', 'logger.info', (['hero'], {}), '(hero)\n', (1905, 1911), False, 'from loguru import logger\n'), ((873, 885), 'sqlmodel.select', 'select', (['Hero'], {}), '(Hero)\n', (879, 885), False, 'from sqlmodel import Field, Session, SQLModel, create_engine, or_, select\n'), ((1036, 1048), 'sqlmodel.select', 'select', (['Hero'], {}), '(Hero)\n', (1042, 1048), False, 'from sqlmodel import Field, Session, SQLModel, create_engine, or_, select\n'), ((1273, 1285), 'sqlmodel.select', 'select', (['Hero'], {}), '(Hero)\n', (1279, 1285), False, 'from sqlmodel import Field, Session, SQLModel, create_engine, or_, select\n'), ((1494, 1506), 'sqlmodel.select', 'select', (['Hero'], {}), '(Hero)\n', (1500, 1506), False, 'from sqlmodel import Field, Session, SQLModel, create_engine, or_, select\n'), ((1731, 1743), 'sqlmodel.select', 'select', (['Hero'], {}), '(Hero)\n', (1737, 1743), False, 'from sqlmodel import Field, Session, SQLModel, create_engine, or_, select\n')]
"""Anime CRUD controller.""" import sqlmodel from sqlmodel.ext.asyncio import session as aio_session from app.crud import base from app.models import anime class AnimeCRUD(base.BaseCRUD[anime.Anime, anime.AnimeCreate, anime.AnimeUpdate]): """CRUD controller for anime. It contains Create, Read, Update, and Delete methods. """ @classmethod async def get_by_title(cls, session: aio_session.AsyncSession, title: str) -> anime.Anime | None: """Gets an anime by their title. Args: session: The database session. title: The anime's title. """ anime_list = await session.exec( sqlmodel.select(anime.Anime).where(anime.Anime.title_en == title)) return anime_list.first()
[ "sqlmodel.select" ]
[((723, 751), 'sqlmodel.select', 'sqlmodel.select', (['anime.Anime'], {}), '(anime.Anime)\n', (738, 751), False, 'import sqlmodel\n')]
from decimal import Decimal from unittest.mock import patch from sqlmodel import create_engine from ...conftest import get_testing_print_function expected_calls = [ [ "Hero 1:", { "name": "Deadpond", "age": None, "id": 1, "secret_name": "<NAME>", "money": Decimal("1.100"), }, ], [ "Hero 2:", { "name": "Rusty-Man", "age": 48, "id": 3, "secret_name": "<NAME>", "money": Decimal("2.200"), }, ], ["Total money: 3.300"], ] def test_tutorial(clear_sqlmodel): from docs_src.advanced.decimal import tutorial001 as mod mod.sqlite_url = "sqlite://" mod.engine = create_engine(mod.sqlite_url) calls = [] new_print = get_testing_print_function(calls) with patch("builtins.print", new=new_print): mod.main() assert calls == expected_calls
[ "sqlmodel.create_engine" ]
[((760, 789), 'sqlmodel.create_engine', 'create_engine', (['mod.sqlite_url'], {}), '(mod.sqlite_url)\n', (773, 789), False, 'from sqlmodel import create_engine\n'), ((866, 904), 'unittest.mock.patch', 'patch', (['"""builtins.print"""'], {'new': 'new_print'}), "('builtins.print', new=new_print)\n", (871, 904), False, 'from unittest.mock import patch\n'), ((914, 924), 'docs_src.advanced.decimal.tutorial001.main', 'mod.main', ([], {}), '()\n', (922, 924), True, 'from docs_src.advanced.decimal import tutorial001 as mod\n'), ((339, 355), 'decimal.Decimal', 'Decimal', (['"""1.100"""'], {}), "('1.100')\n", (346, 355), False, 'from decimal import Decimal\n'), ((545, 561), 'decimal.Decimal', 'Decimal', (['"""2.200"""'], {}), "('2.200')\n", (552, 561), False, 'from decimal import Decimal\n')]
import megengine as mge import megengine.functional as F from megengine.core import Tensor def softmax_loss(pred, label, ignore_label=-1): max_pred = F.zero_grad(pred.max(axis=1, keepdims=True)) pred -= max_pred log_prob = pred - F.log(F.exp(pred).sum(axis=1, keepdims=True)) mask = 1 - F.equal(label, ignore_label) vlabel = label * mask loss = -(F.indexing_one_hot(log_prob, vlabel, 1) * mask) return loss def smooth_l1_loss(pred, target, beta: float): abs_x = F.abs(pred - target) in_mask = abs_x < beta out_mask = 1 - in_mask in_loss = 0.5 * abs_x ** 2 / beta out_loss = abs_x - 0.5 * beta loss = in_loss * in_mask + out_loss * out_mask return loss.sum(axis=1)
[ "megengine.functional.abs", "megengine.functional.equal", "megengine.functional.exp", "megengine.functional.indexing_one_hot" ]
[((496, 516), 'megengine.functional.abs', 'F.abs', (['(pred - target)'], {}), '(pred - target)\n', (501, 516), True, 'import megengine.functional as F\n'), ((304, 332), 'megengine.functional.equal', 'F.equal', (['label', 'ignore_label'], {}), '(label, ignore_label)\n', (311, 332), True, 'import megengine.functional as F\n'), ((372, 411), 'megengine.functional.indexing_one_hot', 'F.indexing_one_hot', (['log_prob', 'vlabel', '(1)'], {}), '(log_prob, vlabel, 1)\n', (390, 411), True, 'import megengine.functional as F\n'), ((249, 260), 'megengine.functional.exp', 'F.exp', (['pred'], {}), '(pred)\n', (254, 260), True, 'import megengine.functional as F\n')]
#! /usr/bin/env python3 # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import argparse import getopt import os import runpy import sys from megengine.logger import get_logger from megengine.utils.profiler import Profiler, merge_trace_events def main(): parser = argparse.ArgumentParser( prog="megengine.tools.profiler", description="Profiling megengine program" ) parser.add_argument( "-m", "--module", action="store_true", help="whether launch program as module" ) parser.add_argument("-o", "--output", type=str, help="output file location") parser.add_argument( "-f", "--format", action="append", type=str, help="output file format", choices=Profiler.valid_formats, ) parser.add_argument( "--merge_trace_events", action="store_true", ) parser.add_argument( "--clean", action="store_true", ) for opt in Profiler.valid_options: parser.add_argument("--" + opt, type=int, default=None) args, extras = parser.parse_known_args(sys.argv[1:]) prof_args = {} for opt in Profiler.valid_options: optval = getattr(args, opt, None) if optval is not None: prof_args[opt] = optval if args.output is not None: prof_args["path"] = args.output if args.format: prof_args["formats"] = args.format if args.clean: for file in os.listdir(profiler.directory): os.remove(os.path.join(profiler.directory, file)) if len(extras) == 0: if not args.merge_trace_events: parser.print_usage() exit(1) else: filename = extras[0] if not args.module: if not os.path.exists(filename): get_logger().fatal("cannot find file {}".format(filename)) exit(1) filename = os.path.realpath(filename) # Replace profiler's dir with script's dir in front of module search path. sys.path[0] = os.path.dirname(filename) sys.argv[:] = [filename, *extras[1:]] profiler = Profiler(**prof_args) with profiler: if args.module: runpy.run_module(filename) else: run_script(filename) profiler.dump() if args.merge_trace_events: merge_trace_events(profiler.directory) def run_module(modulename): runpy.run_module(modulename, None, "__main__", True) def run_script(filename): runpy.run_path(filename, None, "__main__") if __name__ == "__main__": main()
[ "megengine.utils.profiler.merge_trace_events", "megengine.logger.get_logger", "megengine.utils.profiler.Profiler" ]
[((575, 679), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'prog': '"""megengine.tools.profiler"""', 'description': '"""Profiling megengine program"""'}), "(prog='megengine.tools.profiler', description=\n 'Profiling megengine program')\n", (598, 679), False, 'import argparse\n'), ((2719, 2771), 'runpy.run_module', 'runpy.run_module', (['modulename', 'None', '"""__main__"""', '(True)'], {}), "(modulename, None, '__main__', True)\n", (2735, 2771), False, 'import runpy\n'), ((2804, 2846), 'runpy.run_path', 'runpy.run_path', (['filename', 'None', '"""__main__"""'], {}), "(filename, None, '__main__')\n", (2818, 2846), False, 'import runpy\n'), ((1730, 1760), 'os.listdir', 'os.listdir', (['profiler.directory'], {}), '(profiler.directory)\n', (1740, 1760), False, 'import os\n'), ((2410, 2431), 'megengine.utils.profiler.Profiler', 'Profiler', ([], {}), '(**prof_args)\n', (2418, 2431), False, 'from megengine.utils.profiler import Profiler, merge_trace_events\n'), ((2646, 2684), 'megengine.utils.profiler.merge_trace_events', 'merge_trace_events', (['profiler.directory'], {}), '(profiler.directory)\n', (2664, 2684), False, 'from megengine.utils.profiler import Profiler, merge_trace_events\n'), ((2177, 2203), 'os.path.realpath', 'os.path.realpath', (['filename'], {}), '(filename)\n', (2193, 2203), False, 'import os\n'), ((2317, 2342), 'os.path.dirname', 'os.path.dirname', (['filename'], {}), '(filename)\n', (2332, 2342), False, 'import os\n'), ((1784, 1822), 'os.path.join', 'os.path.join', (['profiler.directory', 'file'], {}), '(profiler.directory, file)\n', (1796, 1822), False, 'import os\n'), ((2029, 2053), 'os.path.exists', 'os.path.exists', (['filename'], {}), '(filename)\n', (2043, 2053), False, 'import os\n'), ((2499, 2525), 'runpy.run_module', 'runpy.run_module', (['filename'], {}), '(filename)\n', (2515, 2525), False, 'import runpy\n'), ((2071, 2083), 'megengine.logger.get_logger', 'get_logger', ([], {}), '()\n', (2081, 2083), False, 'from megengine.logger import get_logger\n')]
import datetime from typing import Optional from pydantic import PositiveInt from sqlalchemy import Integer, ForeignKey from sqlmodel import Field, Column, DateTime, Relationship, SQLModel from sqlalchemy import UniqueConstraint from sb_backend.app.models.base.base_model import TimeStampMixin from sb_backend.app.models.fields import SeriesCode from .noseries import NoSeries class NoSeriesLineBase(SQLModel): """«No. Series Line» («Серия Номеров Строка»)""" starting_date: datetime.datetime = Field( sa_column=Column( DateTime(timezone=True), nullable=False ) ) starting_no: SeriesCode ending_no: SeriesCode # starting_no: str = Field(max_length=20, nullable=False) # ending_no: str = Field(max_length=20, nullable=True, default='') last_date_used: datetime.datetime = Field( sa_column=Column( DateTime(timezone=True), nullable=True ) ) warning_no: str = Field(max_length=20, nullable=True, default='') last_no_used: str = Field(max_length=20, nullable=True, default='') increment_by: PositiveInt = Field(default=1) blocked: bool = False # series_no_id: int = Field( # sa_column=Column( # Integer, # ForeignKey(NoSeries.id, ondelete="CASCADE"), # ), # nullable = False # ) # ForeignKey(NoSeries.id, ondelete="RESTRICT"), # series_no_id: int = Field(default=None, foreign_key="no_series.id") series_no_id: int series_no: Optional[NoSeries] = Relationship(back_populates = "noserieslines") class NoSeriesLine(NoSeriesLineBase, TimeStampMixin, table=True): """«No. Series Line» («Серия Номеров Строка»)""" __tablename__ = "no_series_line" __table_args__ = (UniqueConstraint("series_no_id", "starting_date"),) id: Optional[int] = Field(default=None, primary_key=True) series_no_id: int = Field( sa_column=Column( Integer, ForeignKey(NoSeries.id, ondelete="RESTRICT"), ), nullable = False ) class NoSeriesLineCreate(NoSeriesLineBase): """«No. Series Line» («Серия Номеров Строка»)""" pass class NoSeriesLineRead(NoSeriesLineBase): """«No. Series Line» («Серия Номеров Строка»)""" id: int class NoSeriesLineUpdate(SQLModel): """«No. Series Line» («Серия Номеров Строка»)""" starting_date: datetime.datetime starting_no: SeriesCode ending_no: Optional[SeriesCode] last_date_used: datetime.datetime warning_no: Optional[SeriesCode] increment_by: Optional[PositiveInt] = 1 blocked: Optional[bool] = False series_no_id: PositiveInt # series_no_id: Optional[int] = None
[ "sqlmodel.Relationship", "sqlmodel.Field", "sqlmodel.DateTime" ]
[((967, 1014), 'sqlmodel.Field', 'Field', ([], {'max_length': '(20)', 'nullable': '(True)', 'default': '""""""'}), "(max_length=20, nullable=True, default='')\n", (972, 1014), False, 'from sqlmodel import Field, Column, DateTime, Relationship, SQLModel\n'), ((1039, 1086), 'sqlmodel.Field', 'Field', ([], {'max_length': '(20)', 'nullable': '(True)', 'default': '""""""'}), "(max_length=20, nullable=True, default='')\n", (1044, 1086), False, 'from sqlmodel import Field, Column, DateTime, Relationship, SQLModel\n'), ((1119, 1135), 'sqlmodel.Field', 'Field', ([], {'default': '(1)'}), '(default=1)\n', (1124, 1135), False, 'from sqlmodel import Field, Column, DateTime, Relationship, SQLModel\n'), ((1529, 1573), 'sqlmodel.Relationship', 'Relationship', ([], {'back_populates': '"""noserieslines"""'}), "(back_populates='noserieslines')\n", (1541, 1573), False, 'from sqlmodel import Field, Column, DateTime, Relationship, SQLModel\n'), ((1831, 1868), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'primary_key': '(True)'}), '(default=None, primary_key=True)\n', (1836, 1868), False, 'from sqlmodel import Field, Column, DateTime, Relationship, SQLModel\n'), ((1755, 1804), 'sqlalchemy.UniqueConstraint', 'UniqueConstraint', (['"""series_no_id"""', '"""starting_date"""'], {}), "('series_no_id', 'starting_date')\n", (1771, 1804), False, 'from sqlalchemy import UniqueConstraint\n'), ((548, 571), 'sqlmodel.DateTime', 'DateTime', ([], {'timezone': '(True)'}), '(timezone=True)\n', (556, 571), False, 'from sqlmodel import Field, Column, DateTime, Relationship, SQLModel\n'), ((882, 905), 'sqlmodel.DateTime', 'DateTime', ([], {'timezone': '(True)'}), '(timezone=True)\n', (890, 905), False, 'from sqlmodel import Field, Column, DateTime, Relationship, SQLModel\n'), ((1954, 1998), 'sqlalchemy.ForeignKey', 'ForeignKey', (['NoSeries.id'], {'ondelete': '"""RESTRICT"""'}), "(NoSeries.id, ondelete='RESTRICT')\n", (1964, 1998), False, 'from sqlalchemy import Integer, ForeignKey\n')]
import os import numpy as nm from sfepy.base.testing import TestCommon class Test(TestCommon): @staticmethod def from_conf(conf, options): test = Test(conf=conf, options=options) test.join = lambda x: os.path.join(test.options.out_dir, x) return test def test_linearization(self): from sfepy.base.base import Struct from sfepy.discrete.fem import Mesh, FEDomain, Field from sfepy import data_dir geometries = ['2_3', '2_4', '3_4', '3_8'] approx_orders = [1, 2] funs = [nm.cos, nm.sin, lambda x: x] ok = True for geometry in geometries: name = os.path.join(data_dir, 'meshes/elements/%s_1.mesh' % geometry) mesh = Mesh.from_file(name) domain = FEDomain('', mesh) domain = domain.refine() domain.mesh.write(self.join('linearizer-%s-0.mesh' % geometry)) omega = domain.create_region('Omega', 'all') for approx_order in approx_orders: for dpn in [1, mesh.dim]: self.report('geometry: %s, approx. order: %d, dpn: %d' % (geometry, approx_order, dpn)) field = Field.from_args('fu', nm.float64, dpn, omega, approx_order=approx_order) cc = field.get_coor() dofs = nm.zeros((field.n_nod, dpn), dtype=nm.float64) for ic in range(dpn): dofs[:, ic] = funs[ic](3 * (cc[:, 0] * cc[:, 1])) vmesh, vdofs, level = field.linearize(dofs, min_level=0, max_level=3, eps=1e-2) if approx_order == 1: _ok = level == 0 else: _ok = level > 0 self.report('max. refinement level: %d: %s' % (level, _ok)) ok = ok and _ok rdofs = nm.zeros((vmesh.n_nod, dpn), dtype=nm.float64) cc = vmesh.coors for ic in range(dpn): rdofs[:, ic] = funs[ic](3 * (cc[:, 0] * cc[:, 1])) _ok = nm.allclose(rdofs, vdofs, rtol=0.0, atol=0.03) self.report('interpolation: %s' % _ok) ok = ok and _ok out = { 'u' : Struct(name='output_data', mode='vertex', data=vdofs, var_name='u', dofs=None) } name = self.join('linearizer-%s-%d-%d' % (geometry, approx_order, dpn)) vmesh.write(name + '.mesh') vmesh.write(name + '.vtk', out=out) return ok
[ "sfepy.base.base.Struct", "sfepy.discrete.fem.Mesh.from_file", "sfepy.discrete.fem.Field.from_args", "sfepy.discrete.fem.FEDomain" ]
[((228, 265), 'os.path.join', 'os.path.join', (['test.options.out_dir', 'x'], {}), '(test.options.out_dir, x)\n', (240, 265), False, 'import os\n'), ((661, 723), 'os.path.join', 'os.path.join', (['data_dir', "('meshes/elements/%s_1.mesh' % geometry)"], {}), "(data_dir, 'meshes/elements/%s_1.mesh' % geometry)\n", (673, 723), False, 'import os\n'), ((775, 795), 'sfepy.discrete.fem.Mesh.from_file', 'Mesh.from_file', (['name'], {}), '(name)\n', (789, 795), False, 'from sfepy.discrete.fem import Mesh, FEDomain, Field\n'), ((818, 836), 'sfepy.discrete.fem.FEDomain', 'FEDomain', (['""""""', 'mesh'], {}), "('', mesh)\n", (826, 836), False, 'from sfepy.discrete.fem import Mesh, FEDomain, Field\n'), ((1268, 1340), 'sfepy.discrete.fem.Field.from_args', 'Field.from_args', (['"""fu"""', 'nm.float64', 'dpn', 'omega'], {'approx_order': 'approx_order'}), "('fu', nm.float64, dpn, omega, approx_order=approx_order)\n", (1283, 1340), False, 'from sfepy.discrete.fem import Mesh, FEDomain, Field\n'), ((1455, 1501), 'numpy.zeros', 'nm.zeros', (['(field.n_nod, dpn)'], {'dtype': 'nm.float64'}), '((field.n_nod, dpn), dtype=nm.float64)\n', (1463, 1501), True, 'import numpy as nm\n'), ((2191, 2237), 'numpy.zeros', 'nm.zeros', (['(vmesh.n_nod, dpn)'], {'dtype': 'nm.float64'}), '((vmesh.n_nod, dpn), dtype=nm.float64)\n', (2199, 2237), True, 'import numpy as nm\n'), ((2419, 2465), 'numpy.allclose', 'nm.allclose', (['rdofs', 'vdofs'], {'rtol': '(0.0)', 'atol': '(0.03)'}), '(rdofs, vdofs, rtol=0.0, atol=0.03)\n', (2430, 2465), True, 'import numpy as nm\n'), ((2620, 2698), 'sfepy.base.base.Struct', 'Struct', ([], {'name': '"""output_data"""', 'mode': '"""vertex"""', 'data': 'vdofs', 'var_name': '"""u"""', 'dofs': 'None'}), "(name='output_data', mode='vertex', data=vdofs, var_name='u', dofs=None)\n", (2626, 2698), False, 'from sfepy.base.base import Struct\n')]
import numpy as nm from sfepy.base.base import assert_, Struct from sfepy.terms.terms import terms from sfepy.terms.terms_hyperelastic_base import HyperElasticBase class HyperElasticTLBase(HyperElasticBase): """ Base class for all hyperelastic terms in TL formulation family. The subclasses should have the following static method attributes: - `stress_function()` (the stress) - `tan_mod_function()` (the tangent modulus) The common (family) data are cached in the evaluate cache of state variable. """ family_function = staticmethod(terms.dq_finite_strain_tl) weak_function = staticmethod(terms.dw_he_rtm) fd_cache_name = 'tl_common' hyperelastic_mode = 0 def compute_family_data(self, state): ap, vg = self.get_approximation(state) vec = self.get_vector(state) n_el, n_qp, dim, n_en, n_c = self.get_data_shape(state) sym = dim * (dim + 1) / 2 shapes = { 'mtx_f' : (n_el, n_qp, dim, dim), 'det_f' : (n_el, n_qp, 1, 1), 'sym_c' : (n_el, n_qp, sym, 1), 'tr_c' : (n_el, n_qp, 1, 1), 'in2_c' : (n_el, n_qp, 1, 1), 'sym_inv_c' : (n_el, n_qp, sym, 1), 'green_strain' : (n_el, n_qp, sym, 1), } data = Struct(name='tl_family_data') for key, shape in shapes.iteritems(): setattr(data, key, nm.zeros(shape, dtype=nm.float64)) self.family_function(data.mtx_f, data.det_f, data.sym_c, data.tr_c, data.in2_c, data.sym_inv_c, data.green_strain, vec, vg, ap.econn) return data class NeoHookeanTLTerm(HyperElasticTLBase): r""" Hyperelastic neo-Hookean term. Effective stress :math:`S_{ij} = \mu J^{-\frac{2}{3}}(\delta_{ij} - \frac{1}{3}C_{kk}C_{ij}^{-1})`. :Definition: .. math:: \int_{\Omega} S_{ij}(\ul{u}) \delta E_{ij}(\ul{u};\ul{v}) :Arguments: - material : :math:`\mu` - virtual : :math:`\ul{v}` - state : :math:`\ul{u}` """ name = 'dw_tl_he_neohook' family_data_names = ['det_f', 'tr_c', 'sym_inv_c'] stress_function = staticmethod(terms.dq_tl_he_stress_neohook) tan_mod_function = staticmethod(terms.dq_tl_he_tan_mod_neohook) class MooneyRivlinTLTerm(HyperElasticTLBase): r""" Hyperelastic Mooney-Rivlin term. Effective stress :math:`S_{ij} = \kappa J^{-\frac{4}{3}} (C_{kk} \delta_{ij} - C_{ij} - \frac{2}{3 } I_2 C_{ij}^{-1})`. :Definition: .. math:: \int_{\Omega} S_{ij}(\ul{u}) \delta E_{ij}(\ul{u};\ul{v}) :Arguments: - material : :math:`\kappa` - virtual : :math:`\ul{v}` - state : :math:`\ul{u}` """ name = 'dw_tl_he_mooney_rivlin' family_data_names = ['det_f', 'tr_c', 'sym_inv_c', 'sym_c', 'in2_c'] stress_function = staticmethod(terms.dq_tl_he_stress_mooney_rivlin) tan_mod_function = staticmethod(terms.dq_tl_he_tan_mod_mooney_rivlin) class BulkPenaltyTLTerm(HyperElasticTLBase): r""" Hyperelastic bulk penalty term. Stress :math:`S_{ij} = K(J-1)\; J C_{ij}^{-1}`. :Definition: .. math:: \int_{\Omega} S_{ij}(\ul{u}) \delta E_{ij}(\ul{u};\ul{v}) :Arguments: - material : :math:`K` - virtual : :math:`\ul{v}` - state : :math:`\ul{u}` """ name = 'dw_tl_bulk_penalty' family_data_names = ['det_f', 'sym_inv_c'] stress_function = staticmethod(terms.dq_tl_he_stress_bulk) tan_mod_function = staticmethod(terms.dq_tl_he_tan_mod_bulk) class BulkActiveTLTerm(HyperElasticTLBase): r""" Hyperelastic bulk active term. Stress :math:`S_{ij} = A J C_{ij}^{-1}`, where :math:`A` is the activation in :math:`[0, F_{\rm max}]`. :Definition: .. math:: \int_{\Omega} S_{ij}(\ul{u}) \delta E_{ij}(\ul{u};\ul{v}) :Arguments: - material : :math:`A` - virtual : :math:`\ul{v}` - state : :math:`\ul{u}` """ name = 'dw_tl_bulk_active' family_data_names = ['det_f', 'sym_inv_c'] stress_function = staticmethod(terms.dq_tl_he_stress_bulk_active) tan_mod_function = staticmethod(terms.dq_tl_he_tan_mod_bulk_active) class BulkPressureTLTerm(HyperElasticTLBase): r""" Hyperelastic bulk pressure term. Stress :math:`S_{ij} = -p J C_{ij}^{-1}`. :Definition: .. math:: \int_{\Omega} S_{ij}(p) \delta E_{ij}(\ul{u};\ul{v}) :Arguments: - virtual : :math:`\ul{v}` - state : :math:`\ul{u}` - state_p : :math:`p` """ name = 'dw_tl_bulk_pressure' arg_types = ('virtual', 'state', 'state_p') arg_shapes = {'virtual' : ('D', 'state'), 'state' : 'D', 'state_p' : 1} family_data_names = ['det_f', 'sym_inv_c'] family_function = staticmethod(terms.dq_finite_strain_tl) weak_function = staticmethod(terms.dw_he_rtm) weak_dp_function = staticmethod(terms.dw_tl_volume) stress_function = staticmethod(terms.dq_tl_stress_bulk_pressure) tan_mod_u_function = staticmethod(terms.dq_tl_tan_mod_bulk_pressure_u) def compute_data(self, family_data, mode, **kwargs): det_f, sym_inv_c = family_data.det_f, family_data.sym_inv_c p_qp = family_data.p_qp if mode == 0: out = nm.empty_like(sym_inv_c) fun = self.stress_function elif mode == 1: shape = list(sym_inv_c.shape) shape[-1] = shape[-2] out = nm.empty(shape, dtype=nm.float64) fun = self.tan_mod_u_function else: raise ValueError('bad mode! (%d)' % mode) fun(out, p_qp, det_f, sym_inv_c) return out def get_fargs(self, virtual, state, state_p, mode=None, term_mode=None, diff_var=None, **kwargs): vgv, _ = self.get_mapping(state) fd = self.get_family_data(state, 'tl_common', self.family_data_names) fd.p_qp = self.get(state_p, 'val') if mode == 'weak': if diff_var != state_p.name: if diff_var is None: stress = self.compute_data(fd, 0, **kwargs) self.stress_cache = stress tan_mod = nm.array([0], ndmin=4, dtype=nm.float64) fmode = 0 else: stress = self.stress_cache if stress is None: stress = self.compute_data(fd, 0, **kwargs) tan_mod = self.compute_data(fd, 1, **kwargs) fmode = 1 fargs = (self.weak_function, stress, tan_mod, fd.mtx_f, fd.det_f, vgv, fmode, 0) else: vgs, _ = self.get_mapping(state_p) fargs = (self.weak_dp_function, fd.mtx_f, fd.sym_inv_c, fd.det_f, vgs, vgv, 1, -1) return fargs elif mode == 'el_avg': if term_mode == 'strain': out_qp = fd.green_strain elif term_mode == 'stress': out_qp = self.compute_data(fd, 0, **kwargs) else: raise ValueError('unsupported term mode in %s! (%s)' % (self.name, term_mode)) return self.integrate, out_qp, vgv, 1 else: raise ValueError('unsupported evaluation mode in %s! (%s)' % (self.name, mode)) def get_eval_shape(self, virtual, state, state_p, mode=None, term_mode=None, diff_var=None, **kwargs): n_el, n_qp, dim, n_en, n_c = self.get_data_shape(state) sym = dim * (dim + 1) / 2 return (n_el, 1, sym, 1), state.dtype class VolumeTLTerm(HyperElasticTLBase): r""" Volume term (weak form) in the total Lagrangian formulation. :Definition: .. math:: \begin{array}{l} \int_{\Omega} q J(\ul{u}) \\ \mbox{volume mode: vector for } K \from \Ical_h: \int_{T_K} J(\ul{u}) \\ \mbox{rel\_volume mode: vector for } K \from \Ical_h: \int_{T_K} J(\ul{u}) / \int_{T_K} 1 \end{array} :Arguments: - virtual : :math:`q` - state : :math:`\ul{u}` """ name = 'dw_tl_volume' arg_types = ('virtual', 'state') arg_shapes = {'virtual' : (1, None), 'state' : 'D'} family_data_names = ['mtx_f', 'det_f', 'sym_inv_c'] function = staticmethod(terms.dw_tl_volume) def get_fargs(self, virtual, state, mode=None, term_mode=None, diff_var=None, **kwargs): vgs, _ = self.get_mapping(virtual) vgv, _ = self.get_mapping(state) fd = self.get_family_data(state, 'tl_common', self.family_data_names) if mode == 'weak': if diff_var is None: fmode = 0 else: fmode = 1 elif (mode == 'eval') or (mode == 'el_avg'): if term_mode == 'volume': fmode = 2 elif term_mode == 'rel_volume': fmode = 3 else: raise ValueError('unsupported term evaluation mode in %s! (%s)' % (self.name, term_mode)) else: raise ValueError('unsupported evaluation mode in %s! (%s)' % (self.name, mode)) return fd.mtx_f, fd.sym_inv_c, fd.det_f, vgs, vgv, 0, fmode def get_eval_shape(self, virtual, state, mode=None, term_mode=None, diff_var=None, **kwargs): n_el, n_qp, dim, n_en, n_c = self.get_data_shape(state) return (n_el, 1, 1, 1), state.dtype class DiffusionTLTerm(HyperElasticTLBase): r""" Diffusion term in the total Lagrangian formulation with linearized deformation-dependent permeability :math:`\ull{K}(\ul{u}) = J \ull{F}^{-1} \ull{k} f(J) \ull{F}^{-T}`, where :math:`\ul{u}` relates to the previous time step :math:`(n-1)` and :math:`f(J) = \max\left(0, \left(1 + \frac{(J - 1)}{N_f}\right)\right)^2` expresses the dependence on volume compression/expansion. :Definition: .. math:: \int_{\Omega} \ull{K}(\ul{u}^{(n-1)}) : \pdiff{q}{\ul{X}} \pdiff{p}{\ul{X}} :Arguments: - material_1 : :math:`\ull{k}` - material_2 : :math:`N_f` - virtual : :math:`q` - state : :math:`p` - parameter : :math:`\ul{u}^{(n-1)}` """ name = 'dw_tl_diffusion' arg_types = ('material_1', 'material_2', 'virtual', 'state', 'parameter') arg_shapes = {'material_1' : 'D, D', 'material_2' : '1, 1', 'virtual' : (1, 'state'), 'state' : 1, 'parameter' : 'D'} family_data_names = ['mtx_f', 'det_f'] function = staticmethod(terms.dw_tl_diffusion) def get_fargs(self, perm, ref_porosity, virtual, state, parameter, mode=None, term_mode=None, diff_var=None, **kwargs): vgv, _ = self.get_mapping(parameter) fd = self.get_family_data(parameter, 'tl_common', self.family_data_names) grad = self.get(state, 'grad') if mode == 'weak': if diff_var is None: fmode = 0 else: fmode = 1 elif mode == 'el_avg': if term_mode == 'diffusion_velocity': fmode = 2 else: raise ValueError('unsupported term evaluation mode in %s! (%s)' % (self.name, term_mode)) else: raise ValueError('unsupported evaluation mode in %s! (%s)' % (self.name, mode)) return grad, perm, ref_porosity, fd.mtx_f, fd.det_f, vgv, fmode def get_eval_shape(self, perm, ref_porosity, virtual, state, parameter, mode=None, term_mode=None, diff_var=None, **kwargs): n_el, n_qp, dim, n_en, n_c = self.get_data_shape(state) return (n_el, 1, dim, 1), state.dtype class HyperElasticSurfaceTLBase(HyperElasticBase): """ Base class for all hyperelastic surface terms in TL formulation family. """ family_function = staticmethod(terms.dq_tl_finite_strain_surface) fd_cache_name = 'tl_surface_common' def compute_family_data(self, state): ap, sg = self.get_approximation(state) sd = ap.surface_data[self.region.name] vec = self.get_vector(state) n_el, n_qp, dim, n_en, n_c = self.get_data_shape(state) shapes = { 'mtx_f' : (n_el, n_qp, dim, dim), 'det_f' : (n_el, n_qp, 1, 1), 'inv_f' : (n_el, n_qp, dim, dim), } data = Struct(name='tl_surface_family_data') for key, shape in shapes.iteritems(): setattr(data, key, nm.zeros(shape, dtype=nm.float64)) self.family_function(data.mtx_f, data.det_f, data.inv_f, vec, sg, sd.fis, ap.econn) return data class SurfaceFluxTLTerm(HyperElasticSurfaceTLBase): r""" Surface flux term in the total Lagrangian formulation, consistent with :class:`DiffusionTLTerm`. :Definition: .. math:: \int_{\Gamma} \ul{\nu} \cdot \ull{K}(\ul{u}^{(n-1)}) \pdiff{p}{\ul{X}} :Arguments: - material_1 : :math:`\ull{k}` - material_2 : :math:`N_f` - parameter_1 : :math:`p` - parameter_2 : :math:`\ul{u}^{(n-1)}` """ name = 'd_tl_surface_flux' arg_types = ('material_1', 'material_2', 'parameter_1', 'parameter_2') arg_shapes = {'material_1' : 'D, D', 'material_2' : '1, 1', 'parameter_1' : 1, 'parameter_2' : 'D'} family_data_names = ['det_f', 'inv_f'] integration = 'surface_extra' function = staticmethod(terms.d_tl_surface_flux) def get_fargs(self, perm, ref_porosity, pressure, displacement, mode=None, term_mode=None, diff_var=None, **kwargs): ap, sg = self.get_approximation(displacement) fd = self.get_family_data(displacement, 'tl_surface_common', self.family_data_names) grad = self.get(pressure, 'grad') fmode = {'eval' : 0, 'el_avg' : 1}.get(mode, 0) return grad, perm, ref_porosity, fd.inv_f, fd.det_f, sg, fmode def get_eval_shape(self, perm, ref_porosity, pressure, displacement, mode=None, term_mode=None, diff_var=None, **kwargs): n_fa, n_qp, dim, n_en, n_c = self.get_data_shape(displacement) return (n_fa, 1, 1, 1), pressure.dtype class SurfaceTractionTLTerm(HyperElasticSurfaceTLBase): r""" Surface traction term in the total Lagrangian formulation, expressed using :math:`\ul{\nu}`, the outward unit normal vector w.r.t. the undeformed surface, :math:`\ull{F}(\ul{u})`, the deformation gradient, :math:`J = \det(\ull{F})`, and :math:`\ull{\sigma}` a given traction, often equal to a given pressure, i.e. :math:`\ull{\sigma} = \pi \ull{I}`. :Definition: .. math:: \int_{\Gamma} \ul{\nu} \cdot \ull{F}^{-1} \cdot \ull{\sigma} \cdot \ul{v} J :Arguments: - material : :math:`\ull{\sigma}` - virtual : :math:`\ul{v}` - state : :math:`\ul{u}` """ name = 'dw_tl_surface_traction' arg_types = ('opt_material', 'virtual', 'state') arg_shapes = [{'opt_material' : 'D, D', 'virtual' : ('D', 'state'), 'state' : 'D'}, {'opt_material' : None}] family_data_names = ['det_f', 'inv_f'] integration = 'surface_extra' function = staticmethod(terms.dw_tl_surface_traction) def get_fargs(self, mat, virtual, state, mode=None, term_mode=None, diff_var=None, **kwargs): ap, sg = self.get_approximation(virtual) sd = ap.surface_data[self.region.name] bf = ap.get_base(sd.bkey, 0, self.integral) fd = self.get_family_data(state, 'tl_surface_common', self.family_data_names) if mat is None: eye = nm.eye(sg.dim, dtype=nm.float64) mat = nm.tile(eye, ((1, sg.n_qp, 1, 1))) if diff_var is None: fmode = 0 else: fmode = 1 return mat, fd.det_f, fd.inv_f, bf, sg, sd.fis, fmode class VolumeSurfaceTLTerm(HyperElasticSurfaceTLBase): r""" Volume of a :math:`D`-dimensional domain, using a surface integral in the total Lagrangian formulation, expressed using :math:`\ul{\nu}`, the outward unit normal vector w.r.t. the undeformed surface, :math:`\ull{F}(\ul{u})`, the deformation gradient, and :math:`J = \det(\ull{F})`. Uses the approximation of :math:`\ul{u}` for the deformed surface coordinates :math:`\ul{x}`. :Definition: .. math:: 1 / D \int_{\Gamma} \ul{\nu} \cdot \ull{F}^{-1} \cdot \ul{x} J :Arguments: - parameter : :math:`\ul{u}` """ name = 'd_tl_volume_surface' arg_types = ('parameter',) arg_shapes = {'parameter' : 'D'} family_data_names = ['det_f', 'inv_f'] integration = 'surface_extra' function = staticmethod(terms.d_tl_volume_surface) def get_fargs(self, parameter, mode=None, term_mode=None, diff_var=None, **kwargs): ap, sg = self.get_approximation(parameter) sd = ap.surface_data[self.region.name] bf = ap.get_base(sd.bkey, 0, self.integral) fd = self.get_family_data(parameter, 'tl_surface_common', self.family_data_names) asc = nm.ascontiguousarray coors0 = parameter.field.get_coor() coors = asc(coors0 + parameter().reshape(coors0.shape)) return coors, fd.det_f, fd.inv_f, bf, sg, asc(sd.econn) def get_eval_shape(self, parameter, mode=None, term_mode=None, diff_var=None, **kwargs): n_el, n_qp, dim, n_en, n_c = self.get_data_shape(parameter) return (n_el, 1, 1, 1), parameter.dtype
[ "sfepy.base.base.Struct" ]
[((1296, 1325), 'sfepy.base.base.Struct', 'Struct', ([], {'name': '"""tl_family_data"""'}), "(name='tl_family_data')\n", (1302, 1325), False, 'from sfepy.base.base import assert_, Struct\n'), ((12851, 12888), 'sfepy.base.base.Struct', 'Struct', ([], {'name': '"""tl_surface_family_data"""'}), "(name='tl_surface_family_data')\n", (12857, 12888), False, 'from sfepy.base.base import assert_, Struct\n'), ((5459, 5483), 'numpy.empty_like', 'nm.empty_like', (['sym_inv_c'], {}), '(sym_inv_c)\n', (5472, 5483), True, 'import numpy as nm\n'), ((16288, 16320), 'numpy.eye', 'nm.eye', (['sg.dim'], {'dtype': 'nm.float64'}), '(sg.dim, dtype=nm.float64)\n', (16294, 16320), True, 'import numpy as nm\n'), ((16339, 16371), 'numpy.tile', 'nm.tile', (['eye', '(1, sg.n_qp, 1, 1)'], {}), '(eye, (1, sg.n_qp, 1, 1))\n', (16346, 16371), True, 'import numpy as nm\n'), ((1403, 1436), 'numpy.zeros', 'nm.zeros', (['shape'], {'dtype': 'nm.float64'}), '(shape, dtype=nm.float64)\n', (1411, 1436), True, 'import numpy as nm\n'), ((5642, 5675), 'numpy.empty', 'nm.empty', (['shape'], {'dtype': 'nm.float64'}), '(shape, dtype=nm.float64)\n', (5650, 5675), True, 'import numpy as nm\n'), ((12966, 12999), 'numpy.zeros', 'nm.zeros', (['shape'], {'dtype': 'nm.float64'}), '(shape, dtype=nm.float64)\n', (12974, 12999), True, 'import numpy as nm\n'), ((6380, 6420), 'numpy.array', 'nm.array', (['[0]'], {'ndmin': '(4)', 'dtype': 'nm.float64'}), '([0], ndmin=4, dtype=nm.float64)\n', (6388, 6420), True, 'import numpy as nm\n')]
from datetime import datetime from decimal import Decimal from typing import Optional from fastapi import APIRouter from sqlmodel import Field, SQLModel router = APIRouter() class Guardian(SQLModel, table=True): id: Optional[int] = Field(default=None, primary_key=True) email = str email_verified_at: Optional[datetime] = None password: str remember_token: str first_name_thai: str last_name_thai: str first_name_english: str last_name_english: str occupation_id: Optional[int] = None gender: str is_thai_address: bool address_house_number: str address_moo: str address_soi: str address_road: str address_tambon_id: Optional[int] = None address_amphoe_id: Optional[int] = None address_province_id: Optional[int] = None address_other: str latitude: Decimal longitude: Decimal latitude_custom: Decimal longitude_custom: Decimal alive: bool created_at: datetime updated_at: datetime created_by: int updated_by: Optional[int] = None class GuardianPhone(SQLModel, table=True): id: Optional[int] = Field(default=None, primary_key=True) guardian_id: int number: str detail: str receive_sms: bool created_at: datetime updated_at: datetime created_by: int updated_by: Optional[int] = None class GuardianIdNumber(SQLModel, table=True): id: Optional[int] = Field(default=None, primary_key=True) guardian_id: int id_type_id: int number: str created_at: datetime updated_at: datetime created_by: int updated_by: Optional[int] = None class GuardianPatientMap(SQLModel, table=True): id: Optional[int] = Field(default=None, primary_key=True) guardian_id: int patient_id: int created_at: datetime updated_at: datetime created_by: int updated_by: Optional[int] = None class GuardianNotification(SQLModel, table=True): id: Optional[int] = Field(default=None, primary_key=True) guardian_id: int name: str detail: str is_read: bool created_at: datetime updated_at: datetime created_by: int updated_by: Optional[int] = None
[ "sqlmodel.Field" ]
[((164, 175), 'fastapi.APIRouter', 'APIRouter', ([], {}), '()\n', (173, 175), False, 'from fastapi import APIRouter\n'), ((240, 277), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'primary_key': '(True)'}), '(default=None, primary_key=True)\n', (245, 277), False, 'from sqlmodel import Field, SQLModel\n'), ((1118, 1155), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'primary_key': '(True)'}), '(default=None, primary_key=True)\n', (1123, 1155), False, 'from sqlmodel import Field, SQLModel\n'), ((1410, 1447), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'primary_key': '(True)'}), '(default=None, primary_key=True)\n', (1415, 1447), False, 'from sqlmodel import Field, SQLModel\n'), ((1686, 1723), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'primary_key': '(True)'}), '(default=None, primary_key=True)\n', (1691, 1723), False, 'from sqlmodel import Field, SQLModel\n'), ((1948, 1985), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'primary_key': '(True)'}), '(default=None, primary_key=True)\n', (1953, 1985), False, 'from sqlmodel import Field, SQLModel\n')]
# 04.08.2009 #! #! Homogenization: Linear Elasticity #! ================================= #$ \centerline{Example input file, \today} #! Homogenization of heterogeneous linear elastic material import sfepy.discrete.fem.periodic as per from sfepy.mechanics.matcoefs import stiffness_from_youngpoisson from sfepy.homogenization.utils import define_box_regions import sfepy.homogenization.coefs_base as cb from sfepy import data_dir from sfepy.base.base import Struct from sfepy.homogenization.recovery import compute_micro_u, compute_stress_strain_u, compute_mac_stress_part def recovery_le( pb, corrs, macro ): out = {} dim = corrs['corrs_le']['u_00'].shape[1] mic_u = - compute_micro_u( corrs['corrs_le'], macro['strain'], 'u', dim ) out['u_mic'] = Struct( name = 'output_data', mode = 'vertex', data = mic_u, var_name = 'u', dofs = None ) stress_Y, strain_Y = compute_stress_strain_u( pb, 'i', 'Y', 'mat.D', 'u', mic_u ) stress_Y += compute_mac_stress_part( pb, 'i', 'Y', 'mat.D', 'u', macro['strain'] ) strain = macro['strain'] + strain_Y out['cauchy_strain'] = Struct( name = 'output_data', mode = 'cell', data = strain, dofs = None ) out['cauchy_stress'] = Struct( name = 'output_data', mode = 'cell', data = stress_Y, dofs = None ) return out #! Mesh #! ---- filename_mesh = data_dir + '/meshes/3d/matrix_fiber.mesh' dim = 3 region_lbn = (0, 0, 0) region_rtf = (1, 1, 1) #! Regions #! ------- #! Regions, edges, ... regions = { 'Y' : 'all', 'Ym' : 'cells of group 1', 'Yc' : 'cells of group 2', } regions.update( define_box_regions( dim, region_lbn, region_rtf ) ) #! Materials #! --------- materials = { 'mat' : ({'D' : {'Ym': stiffness_from_youngpoisson(dim, 7.0e9, 0.4), 'Yc': stiffness_from_youngpoisson(dim, 70.0e9, 0.2)}},), } #! Fields #! ------ #! Scalar field for corrector basis functions. fields = { 'corrector' : ('real', dim, 'Y', 1), } #! Variables #! --------- #! Unknown and corresponding test variables. Parameter fields #! used for evaluation of homogenized coefficients. variables = { 'u' : ('unknown field', 'corrector', 0), 'v' : ('test field', 'corrector', 'u'), 'Pi' : ('parameter field', 'corrector', 'u'), 'Pi1' : ('parameter field', 'corrector', '(set-to-None)'), 'Pi2' : ('parameter field', 'corrector', '(set-to-None)'), } #! Functions functions = { 'match_x_plane' : (per.match_x_plane,), 'match_y_plane' : (per.match_y_plane,), 'match_z_plane' : (per.match_z_plane,), } #! Boundary Conditions #! ------------------- #! Fixed nodes. ebcs = { 'fixed_u' : ('Corners', {'u.all' : 0.0}), } if dim == 3: epbcs = { 'periodic_x' : (['Left', 'Right'], {'u.all' : 'u.all'}, 'match_x_plane'), 'periodic_y' : (['Near', 'Far'], {'u.all' : 'u.all'}, 'match_y_plane'), 'periodic_z' : (['Top', 'Bottom'], {'u.all' : 'u.all'}, 'match_z_plane'), } else: epbcs = { 'periodic_x' : (['Left', 'Right'], {'u.all' : 'u.all'}, 'match_x_plane'), 'periodic_y' : (['Bottom', 'Top'], {'u.all' : 'u.all'}, 'match_y_plane'), } all_periodic = ['periodic_%s' % ii for ii in ['x', 'y', 'z'][:dim] ] #! Integrals #! --------- #! Define the integral type Volume/Surface and quadrature rule. integrals = { 'i' : 2, } #! Options #! ------- #! Various problem-specific options. options = { 'coefs' : 'coefs', 'requirements' : 'requirements', 'ls' : 'ls', # linear solver to use 'volume' : { 'variables' : ['u'], 'expression' : 'd_volume.i.Y( u )' }, 'output_dir' : 'output', 'coefs_filename' : 'coefs_le', 'recovery_hook' : 'recovery_le', } #! Equations #! --------- #! Equations for corrector functions. equation_corrs = { 'balance_of_forces' : """dw_lin_elastic.i.Y(mat.D, v, u ) = - dw_lin_elastic.i.Y(mat.D, v, Pi )""" } #! Expressions for homogenized linear elastic coefficients. expr_coefs = """dw_lin_elastic.i.Y(mat.D, Pi1, Pi2 )""" #! Coefficients #! ------------ #! Definition of homogenized acoustic coefficients. def set_elastic(variables, ir, ic, mode, pis, corrs_rs): mode2var = {'row' : 'Pi1', 'col' : 'Pi2'} val = pis.states[ir, ic]['u'] + corrs_rs.states[ir, ic]['u'] variables[mode2var[mode]].set_data(val) coefs = { 'D' : { 'requires' : ['pis', 'corrs_rs'], 'expression' : expr_coefs, 'set_variables' : set_elastic, 'class' : cb.CoefSymSym, }, 'filenames' : {}, } requirements = { 'pis' : { 'variables' : ['u'], 'class' : cb.ShapeDimDim, }, 'corrs_rs' : { 'requires' : ['pis'], 'ebcs' : ['fixed_u'], 'epbcs' : all_periodic, 'equations' : equation_corrs, 'set_variables' : [('Pi', 'pis', 'u')], 'class' : cb.CorrDimDim, 'save_name' : 'corrs_le', 'dump_variables' : ['u'], }, } #! Solvers #! ------- #! Define linear and nonlinear solver. solvers = { 'ls' : ('ls.umfpack', {}), 'newton' : ('nls.newton', {'i_max' : 1, 'eps_a' : 1e-4, 'problem' : 'nonlinear', }) }
[ "sfepy.base.base.Struct", "sfepy.homogenization.recovery.compute_micro_u", "sfepy.homogenization.utils.define_box_regions", "sfepy.homogenization.recovery.compute_mac_stress_part", "sfepy.homogenization.recovery.compute_stress_strain_u", "sfepy.mechanics.matcoefs.stiffness_from_youngpoisson" ]
[((770, 848), 'sfepy.base.base.Struct', 'Struct', ([], {'name': '"""output_data"""', 'mode': '"""vertex"""', 'data': 'mic_u', 'var_name': '"""u"""', 'dofs': 'None'}), "(name='output_data', mode='vertex', data=mic_u, var_name='u', dofs=None)\n", (776, 848), False, 'from sfepy.base.base import Struct\n'), ((941, 999), 'sfepy.homogenization.recovery.compute_stress_strain_u', 'compute_stress_strain_u', (['pb', '"""i"""', '"""Y"""', '"""mat.D"""', '"""u"""', 'mic_u'], {}), "(pb, 'i', 'Y', 'mat.D', 'u', mic_u)\n", (964, 999), False, 'from sfepy.homogenization.recovery import compute_micro_u, compute_stress_strain_u, compute_mac_stress_part\n'), ((1018, 1086), 'sfepy.homogenization.recovery.compute_mac_stress_part', 'compute_mac_stress_part', (['pb', '"""i"""', '"""Y"""', '"""mat.D"""', '"""u"""', "macro['strain']"], {}), "(pb, 'i', 'Y', 'mat.D', 'u', macro['strain'])\n", (1041, 1086), False, 'from sfepy.homogenization.recovery import compute_micro_u, compute_stress_strain_u, compute_mac_stress_part\n'), ((1158, 1221), 'sfepy.base.base.Struct', 'Struct', ([], {'name': '"""output_data"""', 'mode': '"""cell"""', 'data': 'strain', 'dofs': 'None'}), "(name='output_data', mode='cell', data=strain, dofs=None)\n", (1164, 1221), False, 'from sfepy.base.base import Struct\n'), ((1329, 1394), 'sfepy.base.base.Struct', 'Struct', ([], {'name': '"""output_data"""', 'mode': '"""cell"""', 'data': 'stress_Y', 'dofs': 'None'}), "(name='output_data', mode='cell', data=stress_Y, dofs=None)\n", (1335, 1394), False, 'from sfepy.base.base import Struct\n'), ((1773, 1820), 'sfepy.homogenization.utils.define_box_regions', 'define_box_regions', (['dim', 'region_lbn', 'region_rtf'], {}), '(dim, region_lbn, region_rtf)\n', (1791, 1820), False, 'from sfepy.homogenization.utils import define_box_regions\n'), ((686, 747), 'sfepy.homogenization.recovery.compute_micro_u', 'compute_micro_u', (["corrs['corrs_le']", "macro['strain']", '"""u"""', 'dim'], {}), "(corrs['corrs_le'], macro['strain'], 'u', dim)\n", (701, 747), False, 'from sfepy.homogenization.recovery import compute_micro_u, compute_stress_strain_u, compute_mac_stress_part\n'), ((1892, 1943), 'sfepy.mechanics.matcoefs.stiffness_from_youngpoisson', 'stiffness_from_youngpoisson', (['dim', '(7000000000.0)', '(0.4)'], {}), '(dim, 7000000000.0, 0.4)\n', (1919, 1943), False, 'from sfepy.mechanics.matcoefs import stiffness_from_youngpoisson\n'), ((1965, 2017), 'sfepy.mechanics.matcoefs.stiffness_from_youngpoisson', 'stiffness_from_youngpoisson', (['dim', '(70000000000.0)', '(0.2)'], {}), '(dim, 70000000000.0, 0.2)\n', (1992, 2017), False, 'from sfepy.mechanics.matcoefs import stiffness_from_youngpoisson\n')]
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import inspect import io import itertools from tempfile import mkstemp import numpy as np import pytest import megengine.core.tensor.megbrain_graph as G import megengine.functional as F import megengine.optimizer as optim import megengine.utils.comp_graph_tools as cgtools from megengine import Parameter, tensor from megengine.autodiff import GradManager from megengine.core._trace_option import set_symbolic_shape from megengine.core.ops import builtin as ops from megengine.core.ops.builtin import Elemwise from megengine.core.tensor.utils import isscalar from megengine.functional import exp, log from megengine.jit import exclude_from_trace, trace from megengine.module import Module from megengine.random import normal, uniform from megengine.utils.naming import AutoNaming @pytest.mark.parametrize("trace_mode", [False, True]) @pytest.mark.parametrize("return_mode", ["Value", "Tuple", "List", "Dict"]) def test_trace(trace_mode, return_mode): @trace(symbolic=trace_mode) def f(x): if return_mode == "Tuple": return (-x,) elif return_mode == "List": return [-x] elif return_mode == "Dict": return {"neg": -x} else: return -x def get_numpy(y): if return_mode == "Tuple" or return_mode == "List": return y[0].numpy() elif return_mode == "Dict": return y["neg"].numpy() return y.numpy() x = tensor([1]) y = get_numpy(f(x)) for i in range(3): np.testing.assert_equal(get_numpy(f(x)), y) def test_output_copy_trace(): class Simple(Module): def __init__(self): super().__init__() self.a = Parameter([1.0], dtype=np.float32) def forward(self, x): x = x * self.a # will result into a copy of output in grad x = F.exp(x) return x ys = {False: [], True: []} for symbolic in [False, True]: net = Simple() gm = GradManager().attach(net.parameters()) opt = optim.SGD(net.parameters(), 1e-3, momentum=0.9) data = tensor(np.arange(4).reshape(2, 2), dtype="float32") @trace(symbolic=symbolic) def train_func(d): with gm: loss = net(d) gm.backward(loss) opt.step().clear_grad() return loss for i in range(3): y = train_func(data).numpy() ys[symbolic].append(y) for i in range(3): np.testing.assert_equal(ys[False][i], ys[True][i]) @pytest.mark.parametrize("trace_mode", [False, True]) def test_exclude_from_trace(trace_mode): @trace(symbolic=trace_mode) def f(x): x = -x with exclude_from_trace(): if i % 2: x = -x x = -x return x x = tensor([1]) for i in range(3): y = f(x).numpy() np.testing.assert_equal(f(x).numpy(), y) @pytest.mark.parametrize("trace_mode", [False, True]) def test_elemwise_fuse(trace_mode): # explicitly declare opt_level as 2 @trace(symbolic=trace_mode, opt_level=2) def f(a, b): base = 0 c = b - a _, idx = F.topk(c, 3) # internally, biased_idx will be idx as gopt will ignore the addition biased_idx = base + idx return biased_idx a = tensor(np.ones((7, 2)), dtype=np.int32) b = tensor(2 * np.ones((7, 2)), dtype=np.float32) for i in range(3): y = f(a, b) y.numpy() @pytest.mark.parametrize("trace_mode", [False, True]) def test_elemwise_fuse_in_grad(trace_mode): w = Parameter(np.ones([4, 6]), dtype="float32") gm = GradManager().attach(w) opt = optim.SGD([w], lr=0.01, momentum=0.9, weight_decay=5e-4) # explicitly declare opt_level as 2 @trace(symbolic=trace_mode, opt_level=2) def f(): with gm: wm = F.sum(w ** 2, axis=1) ** 0.5 loss = wm.mean() gm.backward(loss) opt.step().clear_grad() return loss for i in range(3): y = f() y.numpy() def test_print_in_trace(): for symbolic in [False]: # cannot read value in symbolic mode @trace(symbolic=symbolic) def f(x): nonlocal buf x = -x buf = x.numpy() x = -x return x buf = None x = tensor([1]) for i in range(3): y = f(x).numpy() z = buf buf = None np.testing.assert_equal(f(x).numpy(), y) np.testing.assert_equal(z, buf) def test_dump(): @trace(symbolic=True, capture_as_const=True) def f(a, b): return a + b # prevent from remaining scope from exception test AutoNaming.clear() a = tensor([2]) b = tensor([4]) y = f(a, b).numpy() for i in range(3): np.testing.assert_equal(f(a, b).numpy(), y) file = io.BytesIO() dump_info = f.dump(file) assert dump_info.nr_opr == 3 np.testing.assert_equal(dump_info.inputs, ["arg_0", "arg_1"]) np.testing.assert_equal(dump_info.outputs, ["ADD"]) file.seek(0) infer_cg = cgtools.GraphInference(file) result = list((infer_cg.run(a, b)).values())[0] np.testing.assert_equal(result[0], y) def test_capture_dump(): a = tensor([2]) @trace(symbolic=True, capture_as_const=True) def f(x): return x * a x = tensor([3]) y = f(x).numpy() for i in range(3): np.testing.assert_equal(f(x).numpy(), y) file = io.BytesIO() f.dump(file) file.seek(0) infer_cg = cgtools.GraphInference(file) result = list((infer_cg.run(x)).values())[0] np.testing.assert_equal(result[0], y) def test_dump_volatile(): p = tensor([2]) @trace(symbolic=True, capture_as_const=True) def f(x): return x * p x = tensor([3]) y = f(x).numpy() for i in range(3): np.testing.assert_equal(f(x).numpy(), y) file = io.BytesIO() f.dump(file, optimize_for_inference=False) file.seek(0) cg, _, outputs = G.load_graph(file) (out,) = outputs assert ( cgtools.get_owner_opr_type(cgtools.get_owner_opr_inputs(out)[1]) == "ImmutableTensor" ) @pytest.mark.parametrize("trace_mode", [False, True]) def test_trace_profiler(trace_mode): @trace(symbolic=trace_mode, profiling=True) def f(x): return -x x = tensor([1]) y = f(x).numpy() f(x) f(x) # XXX: has to run twice out = f.get_profile() assert out.get("profiler") def test_goptions(): @trace(symbolic=True, opt_level=0, capture_as_const=True) def f(x): # directly return x / x will not trigger gopt # since there's no way to tell the two x are the same y = 2.0 * x return y / y @trace(symbolic=True, opt_level=1, capture_as_const=True) def g(x): y = 2.0 * x return y / y d = tensor(0.0) assert not np.isfinite(f(d).numpy()) np.testing.assert_equal(g(d).numpy().item(), 1.0) def test_goptions_log_sum_exp(): @trace(symbolic=True, opt_level=0, capture_as_const=True) def f(x, y): return log(exp(x) + exp(y)) @trace(symbolic=True, opt_level=1, capture_as_const=True) def g(x, y): return log(exp(x) + exp(y)) val = 1.0e4 d = tensor(val) o = tensor(0.0) assert not np.isfinite(f(d, o).numpy()) np.testing.assert_almost_equal(g(d, o), val) def test_goptions_log_exp(): @trace(symbolic=True, opt_level=0, capture_as_const=True) def f(x): return log(exp(x)) @trace(symbolic=True, opt_level=1, capture_as_const=True) def g(x): return log(exp(x)) f(tensor(1.0)) _, out = mkstemp() f.dump(out, optimize_for_inference=False) *_, outputs = G.load_graph(out) oprs_1 = cgtools.get_oprs_seq(outputs) g(tensor(1.0)) g.dump(out, optimize_for_inference=False) *_, outputs = G.load_graph(out) oprs_2 = cgtools.get_oprs_seq(outputs) assert len(oprs_1) - len(oprs_2) == 2 def test_optimize_for_inference(): @trace(symbolic=True, capture_as_const=True) def f(x): return exp(x) _, out = mkstemp() f(tensor(5.0)) f.dump(out, enable_io16xc32=True) res = G.load_graph(out) computing_input = res.output_vars_list[0].owner.inputs[0] assert computing_input.dtype == np.float16 def test_optimize_for_inference_broadcast(): a = tensor(np.ones(1, dtype=np.float32)) @trace(capture_as_const=True, symbolic_shape=True) def f(): return a._broadcast(tensor([1, 10], dtype=np.int32)) f() f.dump(io.BytesIO()) def test_trace_cvt_bool(): x = tensor([0], dtype=np.int32) @trace(symbolic=True) def f(x): a = x.shape b = a[0] assert isscalar(b) return b == 0 for i in range(3): np.testing.assert_equal(f(x).numpy(), False) @pytest.mark.parametrize("trace_mode", [False, True]) def test_trace_reshape(trace_mode): x1 = tensor(np.random.randn(2, 10, 10)) x2 = tensor(np.random.randn(4, 10, 10)) x3 = tensor(np.random.randn(8, 10, 10)) @trace(symbolic=trace_mode, capture_as_const=True) def f(x): y = x.reshape(x.shape[0], 100) return y f(x1) f(x2) f(x3) def test_trace_topk(): x = tensor([5, 2, 7, 1, 0, 3, 2]) @trace(symbolic=True) def f(x): y = F.topk(x, 3) np.testing.assert_equal(y[0].shape.numpy(), np.array([3,])) return y for i in range(3): f(x) def test_trace_warp_perspective(): inp_shape = (1, 1, 4, 4) x = tensor(np.arange(16, dtype=np.float32).reshape(inp_shape)) M_shape = (1, 3, 3) M = tensor( np.array( [[1.0, 0.0, 1.0], [0.0, 1.0, 1.0], [0.0, 0.0, 1.0]], dtype=np.float32 ).reshape(M_shape) ) @trace(symbolic=True) def f(x, M): out = F.vision.warp_perspective(x, M, (2, 2)) np.testing.assert_equal(out.shape.numpy(), np.array([1, 1, 2, 2])) return out for i in range(3): f(x, M) def test_raise_on_trace(): step_count = 0 catch_count = 0 bad_step = 10 class CatchMe(Exception): pass a = tensor([1, 2, 3, 4]) b = tensor([5, 6, 7, 8]) c = tensor([9, 0, 1, 2]) @trace def add_abc(a, b, c): ps = a + b result = ps + c if step_count == bad_step: raise CatchMe("catch me") return result for i in range(100): try: d = add_abc(a, b, c) except CatchMe as e: catch_count += 1 else: np.testing.assert_equal(d.numpy(), (a + b + c).numpy()) step_count += 1 assert catch_count == 1 @pytest.mark.parametrize("trace_mode", [False, True]) def test_trace_broadcast(trace_mode): x1 = tensor(np.random.randn(3, 1, 1)) x2 = tensor(np.random.randn(1, 4, 1)) x3 = tensor(np.random.randn(1, 1, 5)) @trace(symbolic=trace_mode, capture_as_const=True) def f(x): y = F.broadcast_to(x, (3, 4, 5)) return y f(x1) f(x2) f(x3) def test_trace_nms(): def make_inputs(n): boxes = np.zeros((n, 4)) boxes[:, :2] = np.random.rand(n, 2) * 100 boxes[:, 2:] = np.random.rand(n, 2) * 100 + 100 scores = np.random.rand(n) return tensor(boxes), tensor(scores) @trace(symbolic=False) def f(boxes, scores): # with tracing, max_output must be specified results = F.vision.nms(boxes, scores=scores, iou_thresh=0.5, max_output=20) # without tracing, max output can be inferred inside nms with exclude_from_trace(): _ = F.vision.nms(boxes, scores=scores, iou_thresh=0.5) return results f(*make_inputs(10)) f(*make_inputs(20)) f(*make_inputs(30)) def test_trace_valid_broadcast(): x1 = tensor(np.random.randn(1, 1)) x2 = tensor(np.random.randn(1, 2)) shape = (tensor([2]), tensor([2])) @trace(symbolic=False) def f(x, shape): y = F.broadcast_to(x, shape) return y f(x1, shape) f(x2, shape) def test_clip(): x = tensor(np.random.randn(10, 10)) @trace(symbolic=True) def f(x, lower, upper): y = F.clip(x, lower, upper) return y for i in range(3): f(x, tensor([0]), tensor([1])) # test returning noncontiguous tensor from trace def test_slice(): @trace def f(x): return x[:, 1::2] x = F.arange(8).reshape(2, 4) f(x) y = f(x) np.testing.assert_array_equal(y.numpy(), x.numpy()[:, 1::2]) y + y @pytest.mark.parametrize("shape_mode", [False, True]) def test_random(shape_mode): def run_test(op): @trace(symbolic=True, symbolic_shape=shape_mode) def f(): out = op(size=[10, 10]) out_shape = out.shape assert out_shape is not None if not isinstance(out_shape, tuple): assert out.shape.numpy() is not None return out for _ in range(3): f() run_test(uniform) run_test(normal) @pytest.mark.parametrize("shape_mode", [False, True]) def test_trace_advance_indexing(shape_mode): funcs = [ lambda x, i: x[i], # lambda x, i, j: x[i, j], # FIXME lambda x, i, j: x[i, :, j, ...], # lambda x, start, end: x[start:end], # FIXME lambda x, start, end: x[:, 0, start:end, ..., 1], lambda x, vec: x[vec], lambda x, vec: x[vec, ..., 0, 1:3], lambda x, vec: x[vec, vec[0], vec[1]], # lambda x, i, start, end, vec: x[i, ..., :, vec, start:end], # FIXME lambda x, mask: x[mask], ] inputs = { "x": np.random.randn(5, 5, 5, 5, 5).astype("float32"), "i": 0, "j": 2, "start": 1, "end": 3, "vec": [1, 2, 3], "mask": np.random.randn(5, 5, 5, 5, 5) >= 0, } for f in funcs: sig = inspect.signature(f) param_names = list(sig._parameters.keys()) params = {} params_np = {} f_traced = trace(f, symbolic=False, symbolic_shape=shape_mode) for name in param_names: params[name] = tensor(inputs[name]) params_np[name] = inputs[name] expected = f(**params_np) result_imperative = f(**params) np.testing.assert_equal(expected, result_imperative.numpy()) for _ in range(3): result_trace = f_traced(**params) np.testing.assert_equal(expected, result_trace.numpy())
[ "megengine.functional.arange", "megengine.utils.comp_graph_tools.GraphInference", "megengine.utils.naming.AutoNaming.clear", "megengine.optimizer.SGD", "megengine.autodiff.GradManager", "megengine.jit.trace", "megengine.functional.clip", "megengine.functional.sum", "megengine.core.tensor.utils.isscalar", "megengine.functional.vision.warp_perspective", "megengine.utils.comp_graph_tools.get_owner_opr_inputs", "megengine.functional.vision.nms", "megengine.tensor", "megengine.core.tensor.megbrain_graph.load_graph", "megengine.functional.topk", "megengine.functional.exp", "megengine.functional.broadcast_to", "megengine.jit.exclude_from_trace", "megengine.Parameter", "megengine.utils.comp_graph_tools.get_oprs_seq" ]
[((1162, 1214), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""trace_mode"""', '[False, True]'], {}), "('trace_mode', [False, True])\n", (1185, 1214), False, 'import pytest\n'), ((1216, 1290), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""return_mode"""', "['Value', 'Tuple', 'List', 'Dict']"], {}), "('return_mode', ['Value', 'Tuple', 'List', 'Dict'])\n", (1239, 1290), False, 'import pytest\n'), ((2940, 2992), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""trace_mode"""', '[False, True]'], {}), "('trace_mode', [False, True])\n", (2963, 2992), False, 'import pytest\n'), ((3329, 3381), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""trace_mode"""', '[False, True]'], {}), "('trace_mode', [False, True])\n", (3352, 3381), False, 'import pytest\n'), ((3889, 3941), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""trace_mode"""', '[False, True]'], {}), "('trace_mode', [False, True])\n", (3912, 3941), False, 'import pytest\n'), ((6628, 6680), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""trace_mode"""', '[False, True]'], {}), "('trace_mode', [False, True])\n", (6651, 6680), False, 'import pytest\n'), ((9311, 9363), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""trace_mode"""', '[False, True]'], {}), "('trace_mode', [False, True])\n", (9334, 9363), False, 'import pytest\n'), ((11140, 11192), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""trace_mode"""', '[False, True]'], {}), "('trace_mode', [False, True])\n", (11163, 11192), False, 'import pytest\n'), ((13015, 13067), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""shape_mode"""', '[False, True]'], {}), "('shape_mode', [False, True])\n", (13038, 13067), False, 'import pytest\n'), ((13520, 13572), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""shape_mode"""', '[False, True]'], {}), "('shape_mode', [False, True])\n", (13543, 13572), False, 'import pytest\n'), ((1337, 1363), 'megengine.jit.trace', 'trace', ([], {'symbolic': 'trace_mode'}), '(symbolic=trace_mode)\n', (1342, 1363), False, 'from megengine.jit import exclude_from_trace, trace\n'), ((1822, 1833), 'megengine.tensor', 'tensor', (['[1]'], {}), '([1])\n', (1828, 1833), False, 'from megengine import Parameter, tensor\n'), ((3039, 3065), 'megengine.jit.trace', 'trace', ([], {'symbolic': 'trace_mode'}), '(symbolic=trace_mode)\n', (3044, 3065), False, 'from megengine.jit import exclude_from_trace, trace\n'), ((3216, 3227), 'megengine.tensor', 'tensor', (['[1]'], {}), '([1])\n', (3222, 3227), False, 'from megengine import Parameter, tensor\n'), ((3463, 3502), 'megengine.jit.trace', 'trace', ([], {'symbolic': 'trace_mode', 'opt_level': '(2)'}), '(symbolic=trace_mode, opt_level=2)\n', (3468, 3502), False, 'from megengine.jit import exclude_from_trace, trace\n'), ((4082, 4140), 'megengine.optimizer.SGD', 'optim.SGD', (['[w]'], {'lr': '(0.01)', 'momentum': '(0.9)', 'weight_decay': '(0.0005)'}), '([w], lr=0.01, momentum=0.9, weight_decay=0.0005)\n', (4091, 4140), True, 'import megengine.optimizer as optim\n'), ((4185, 4224), 'megengine.jit.trace', 'trace', ([], {'symbolic': 'trace_mode', 'opt_level': '(2)'}), '(symbolic=trace_mode, opt_level=2)\n', (4190, 4224), False, 'from megengine.jit import exclude_from_trace, trace\n'), ((5000, 5043), 'megengine.jit.trace', 'trace', ([], {'symbolic': '(True)', 'capture_as_const': '(True)'}), '(symbolic=True, capture_as_const=True)\n', (5005, 5043), False, 'from megengine.jit import exclude_from_trace, trace\n'), ((5142, 5160), 'megengine.utils.naming.AutoNaming.clear', 'AutoNaming.clear', ([], {}), '()\n', (5158, 5160), False, 'from megengine.utils.naming import AutoNaming\n'), ((5169, 5180), 'megengine.tensor', 'tensor', (['[2]'], {}), '([2])\n', (5175, 5180), False, 'from megengine import Parameter, tensor\n'), ((5189, 5200), 'megengine.tensor', 'tensor', (['[4]'], {}), '([4])\n', (5195, 5200), False, 'from megengine import Parameter, tensor\n'), ((5313, 5325), 'io.BytesIO', 'io.BytesIO', ([], {}), '()\n', (5323, 5325), False, 'import io\n'), ((5392, 5453), 'numpy.testing.assert_equal', 'np.testing.assert_equal', (['dump_info.inputs', "['arg_0', 'arg_1']"], {}), "(dump_info.inputs, ['arg_0', 'arg_1'])\n", (5415, 5453), True, 'import numpy as np\n'), ((5458, 5509), 'numpy.testing.assert_equal', 'np.testing.assert_equal', (['dump_info.outputs', "['ADD']"], {}), "(dump_info.outputs, ['ADD'])\n", (5481, 5509), True, 'import numpy as np\n'), ((5542, 5570), 'megengine.utils.comp_graph_tools.GraphInference', 'cgtools.GraphInference', (['file'], {}), '(file)\n', (5564, 5570), True, 'import megengine.utils.comp_graph_tools as cgtools\n'), ((5627, 5664), 'numpy.testing.assert_equal', 'np.testing.assert_equal', (['result[0]', 'y'], {}), '(result[0], y)\n', (5650, 5664), True, 'import numpy as np\n'), ((5700, 5711), 'megengine.tensor', 'tensor', (['[2]'], {}), '([2])\n', (5706, 5711), False, 'from megengine import Parameter, tensor\n'), ((5718, 5761), 'megengine.jit.trace', 'trace', ([], {'symbolic': '(True)', 'capture_as_const': '(True)'}), '(symbolic=True, capture_as_const=True)\n', (5723, 5761), False, 'from megengine.jit import exclude_from_trace, trace\n'), ((5806, 5817), 'megengine.tensor', 'tensor', (['[3]'], {}), '([3])\n', (5812, 5817), False, 'from megengine import Parameter, tensor\n'), ((5924, 5936), 'io.BytesIO', 'io.BytesIO', ([], {}), '()\n', (5934, 5936), False, 'import io\n'), ((5986, 6014), 'megengine.utils.comp_graph_tools.GraphInference', 'cgtools.GraphInference', (['file'], {}), '(file)\n', (6008, 6014), True, 'import megengine.utils.comp_graph_tools as cgtools\n'), ((6068, 6105), 'numpy.testing.assert_equal', 'np.testing.assert_equal', (['result[0]', 'y'], {}), '(result[0], y)\n', (6091, 6105), True, 'import numpy as np\n'), ((6142, 6153), 'megengine.tensor', 'tensor', (['[2]'], {}), '([2])\n', (6148, 6153), False, 'from megengine import Parameter, tensor\n'), ((6160, 6203), 'megengine.jit.trace', 'trace', ([], {'symbolic': '(True)', 'capture_as_const': '(True)'}), '(symbolic=True, capture_as_const=True)\n', (6165, 6203), False, 'from megengine.jit import exclude_from_trace, trace\n'), ((6248, 6259), 'megengine.tensor', 'tensor', (['[3]'], {}), '([3])\n', (6254, 6259), False, 'from megengine import Parameter, tensor\n'), ((6366, 6378), 'io.BytesIO', 'io.BytesIO', ([], {}), '()\n', (6376, 6378), False, 'import io\n'), ((6464, 6482), 'megengine.core.tensor.megbrain_graph.load_graph', 'G.load_graph', (['file'], {}), '(file)\n', (6476, 6482), True, 'import megengine.core.tensor.megbrain_graph as G\n'), ((6723, 6765), 'megengine.jit.trace', 'trace', ([], {'symbolic': 'trace_mode', 'profiling': '(True)'}), '(symbolic=trace_mode, profiling=True)\n', (6728, 6765), False, 'from megengine.jit import exclude_from_trace, trace\n'), ((6807, 6818), 'megengine.tensor', 'tensor', (['[1]'], {}), '([1])\n', (6813, 6818), False, 'from megengine import Parameter, tensor\n'), ((6970, 7026), 'megengine.jit.trace', 'trace', ([], {'symbolic': '(True)', 'opt_level': '(0)', 'capture_as_const': '(True)'}), '(symbolic=True, opt_level=0, capture_as_const=True)\n', (6975, 7026), False, 'from megengine.jit import exclude_from_trace, trace\n'), ((7204, 7260), 'megengine.jit.trace', 'trace', ([], {'symbolic': '(True)', 'opt_level': '(1)', 'capture_as_const': '(True)'}), '(symbolic=True, opt_level=1, capture_as_const=True)\n', (7209, 7260), False, 'from megengine.jit import exclude_from_trace, trace\n'), ((7325, 7336), 'megengine.tensor', 'tensor', (['(0.0)'], {}), '(0.0)\n', (7331, 7336), False, 'from megengine import Parameter, tensor\n'), ((7472, 7528), 'megengine.jit.trace', 'trace', ([], {'symbolic': '(True)', 'opt_level': '(0)', 'capture_as_const': '(True)'}), '(symbolic=True, opt_level=0, capture_as_const=True)\n', (7477, 7528), False, 'from megengine.jit import exclude_from_trace, trace\n'), ((7588, 7644), 'megengine.jit.trace', 'trace', ([], {'symbolic': '(True)', 'opt_level': '(1)', 'capture_as_const': '(True)'}), '(symbolic=True, opt_level=1, capture_as_const=True)\n', (7593, 7644), False, 'from megengine.jit import exclude_from_trace, trace\n'), ((7723, 7734), 'megengine.tensor', 'tensor', (['val'], {}), '(val)\n', (7729, 7734), False, 'from megengine import Parameter, tensor\n'), ((7743, 7754), 'megengine.tensor', 'tensor', (['(0.0)'], {}), '(0.0)\n', (7749, 7754), False, 'from megengine import Parameter, tensor\n'), ((7884, 7940), 'megengine.jit.trace', 'trace', ([], {'symbolic': '(True)', 'opt_level': '(0)', 'capture_as_const': '(True)'}), '(symbolic=True, opt_level=0, capture_as_const=True)\n', (7889, 7940), False, 'from megengine.jit import exclude_from_trace, trace\n'), ((7988, 8044), 'megengine.jit.trace', 'trace', ([], {'symbolic': '(True)', 'opt_level': '(1)', 'capture_as_const': '(True)'}), '(symbolic=True, opt_level=1, capture_as_const=True)\n', (7993, 8044), False, 'from megengine.jit import exclude_from_trace, trace\n'), ((8119, 8128), 'tempfile.mkstemp', 'mkstemp', ([], {}), '()\n', (8126, 8128), False, 'from tempfile import mkstemp\n'), ((8193, 8210), 'megengine.core.tensor.megbrain_graph.load_graph', 'G.load_graph', (['out'], {}), '(out)\n', (8205, 8210), True, 'import megengine.core.tensor.megbrain_graph as G\n'), ((8224, 8253), 'megengine.utils.comp_graph_tools.get_oprs_seq', 'cgtools.get_oprs_seq', (['outputs'], {}), '(outputs)\n', (8244, 8253), True, 'import megengine.utils.comp_graph_tools as cgtools\n'), ((8338, 8355), 'megengine.core.tensor.megbrain_graph.load_graph', 'G.load_graph', (['out'], {}), '(out)\n', (8350, 8355), True, 'import megengine.core.tensor.megbrain_graph as G\n'), ((8369, 8398), 'megengine.utils.comp_graph_tools.get_oprs_seq', 'cgtools.get_oprs_seq', (['outputs'], {}), '(outputs)\n', (8389, 8398), True, 'import megengine.utils.comp_graph_tools as cgtools\n'), ((8484, 8527), 'megengine.jit.trace', 'trace', ([], {'symbolic': '(True)', 'capture_as_const': '(True)'}), '(symbolic=True, capture_as_const=True)\n', (8489, 8527), False, 'from megengine.jit import exclude_from_trace, trace\n'), ((8578, 8587), 'tempfile.mkstemp', 'mkstemp', ([], {}), '()\n', (8585, 8587), False, 'from tempfile import mkstemp\n'), ((8656, 8673), 'megengine.core.tensor.megbrain_graph.load_graph', 'G.load_graph', (['out'], {}), '(out)\n', (8668, 8673), True, 'import megengine.core.tensor.megbrain_graph as G\n'), ((8881, 8930), 'megengine.jit.trace', 'trace', ([], {'capture_as_const': '(True)', 'symbolic_shape': '(True)'}), '(capture_as_const=True, symbolic_shape=True)\n', (8886, 8930), False, 'from megengine.jit import exclude_from_trace, trace\n'), ((9076, 9103), 'megengine.tensor', 'tensor', (['[0]'], {'dtype': 'np.int32'}), '([0], dtype=np.int32)\n', (9082, 9103), False, 'from megengine import Parameter, tensor\n'), ((9110, 9130), 'megengine.jit.trace', 'trace', ([], {'symbolic': '(True)'}), '(symbolic=True)\n', (9115, 9130), False, 'from megengine.jit import exclude_from_trace, trace\n'), ((9538, 9587), 'megengine.jit.trace', 'trace', ([], {'symbolic': 'trace_mode', 'capture_as_const': '(True)'}), '(symbolic=trace_mode, capture_as_const=True)\n', (9543, 9587), False, 'from megengine.jit import exclude_from_trace, trace\n'), ((9722, 9751), 'megengine.tensor', 'tensor', (['[5, 2, 7, 1, 0, 3, 2]'], {}), '([5, 2, 7, 1, 0, 3, 2])\n', (9728, 9751), False, 'from megengine import Parameter, tensor\n'), ((9758, 9778), 'megengine.jit.trace', 'trace', ([], {'symbolic': '(True)'}), '(symbolic=True)\n', (9763, 9778), False, 'from megengine.jit import exclude_from_trace, trace\n'), ((10252, 10272), 'megengine.jit.trace', 'trace', ([], {'symbolic': '(True)'}), '(symbolic=True)\n', (10257, 10272), False, 'from megengine.jit import exclude_from_trace, trace\n'), ((10617, 10637), 'megengine.tensor', 'tensor', (['[1, 2, 3, 4]'], {}), '([1, 2, 3, 4])\n', (10623, 10637), False, 'from megengine import Parameter, tensor\n'), ((10646, 10666), 'megengine.tensor', 'tensor', (['[5, 6, 7, 8]'], {}), '([5, 6, 7, 8])\n', (10652, 10666), False, 'from megengine import Parameter, tensor\n'), ((10675, 10695), 'megengine.tensor', 'tensor', (['[9, 0, 1, 2]'], {}), '([9, 0, 1, 2])\n', (10681, 10695), False, 'from megengine import Parameter, tensor\n'), ((11363, 11412), 'megengine.jit.trace', 'trace', ([], {'symbolic': 'trace_mode', 'capture_as_const': '(True)'}), '(symbolic=trace_mode, capture_as_const=True)\n', (11368, 11412), False, 'from megengine.jit import exclude_from_trace, trace\n'), ((11791, 11812), 'megengine.jit.trace', 'trace', ([], {'symbolic': '(False)'}), '(symbolic=False)\n', (11796, 11812), False, 'from megengine.jit import exclude_from_trace, trace\n'), ((12398, 12419), 'megengine.jit.trace', 'trace', ([], {'symbolic': '(False)'}), '(symbolic=False)\n', (12403, 12419), False, 'from megengine.jit import exclude_from_trace, trace\n'), ((12595, 12615), 'megengine.jit.trace', 'trace', ([], {'symbolic': '(True)'}), '(symbolic=True)\n', (12600, 12615), False, 'from megengine.jit import exclude_from_trace, trace\n'), ((2549, 2573), 'megengine.jit.trace', 'trace', ([], {'symbolic': 'symbolic'}), '(symbolic=symbolic)\n', (2554, 2573), False, 'from megengine.jit import exclude_from_trace, trace\n'), ((2886, 2936), 'numpy.testing.assert_equal', 'np.testing.assert_equal', (['ys[False][i]', 'ys[True][i]'], {}), '(ys[False][i], ys[True][i])\n', (2909, 2936), True, 'import numpy as np\n'), ((3572, 3584), 'megengine.functional.topk', 'F.topk', (['c', '(3)'], {}), '(c, 3)\n', (3578, 3584), True, 'import megengine.functional as F\n'), ((3737, 3752), 'numpy.ones', 'np.ones', (['(7, 2)'], {}), '((7, 2))\n', (3744, 3752), True, 'import numpy as np\n'), ((4004, 4019), 'numpy.ones', 'np.ones', (['[4, 6]'], {}), '([4, 6])\n', (4011, 4019), True, 'import numpy as np\n'), ((4580, 4604), 'megengine.jit.trace', 'trace', ([], {'symbolic': 'symbolic'}), '(symbolic=symbolic)\n', (4585, 4604), False, 'from megengine.jit import exclude_from_trace, trace\n'), ((4767, 4778), 'megengine.tensor', 'tensor', (['[1]'], {}), '([1])\n', (4773, 4778), False, 'from megengine import Parameter, tensor\n'), ((8093, 8104), 'megengine.tensor', 'tensor', (['(1.0)'], {}), '(1.0)\n', (8099, 8104), False, 'from megengine import Parameter, tensor\n'), ((8261, 8272), 'megengine.tensor', 'tensor', (['(1.0)'], {}), '(1.0)\n', (8267, 8272), False, 'from megengine import Parameter, tensor\n'), ((8557, 8563), 'megengine.functional.exp', 'exp', (['x'], {}), '(x)\n', (8560, 8563), False, 'from megengine.functional import exp, log\n'), ((8594, 8605), 'megengine.tensor', 'tensor', (['(5.0)'], {}), '(5.0)\n', (8600, 8605), False, 'from megengine import Parameter, tensor\n'), ((8845, 8873), 'numpy.ones', 'np.ones', (['(1)'], {'dtype': 'np.float32'}), '(1, dtype=np.float32)\n', (8852, 8873), True, 'import numpy as np\n'), ((9025, 9037), 'io.BytesIO', 'io.BytesIO', ([], {}), '()\n', (9035, 9037), False, 'import io\n'), ((9197, 9208), 'megengine.core.tensor.utils.isscalar', 'isscalar', (['b'], {}), '(b)\n', (9205, 9208), False, 'from megengine.core.tensor.utils import isscalar\n'), ((9416, 9442), 'numpy.random.randn', 'np.random.randn', (['(2)', '(10)', '(10)'], {}), '(2, 10, 10)\n', (9431, 9442), True, 'import numpy as np\n'), ((9460, 9486), 'numpy.random.randn', 'np.random.randn', (['(4)', '(10)', '(10)'], {}), '(4, 10, 10)\n', (9475, 9486), True, 'import numpy as np\n'), ((9504, 9530), 'numpy.random.randn', 'np.random.randn', (['(8)', '(10)', '(10)'], {}), '(8, 10, 10)\n', (9519, 9530), True, 'import numpy as np\n'), ((9805, 9817), 'megengine.functional.topk', 'F.topk', (['x', '(3)'], {}), '(x, 3)\n', (9811, 9817), True, 'import megengine.functional as F\n'), ((10304, 10343), 'megengine.functional.vision.warp_perspective', 'F.vision.warp_perspective', (['x', 'M', '(2, 2)'], {}), '(x, M, (2, 2))\n', (10329, 10343), True, 'import megengine.functional as F\n'), ((11247, 11271), 'numpy.random.randn', 'np.random.randn', (['(3)', '(1)', '(1)'], {}), '(3, 1, 1)\n', (11262, 11271), True, 'import numpy as np\n'), ((11289, 11313), 'numpy.random.randn', 'np.random.randn', (['(1)', '(4)', '(1)'], {}), '(1, 4, 1)\n', (11304, 11313), True, 'import numpy as np\n'), ((11331, 11355), 'numpy.random.randn', 'np.random.randn', (['(1)', '(1)', '(5)'], {}), '(1, 1, 5)\n', (11346, 11355), True, 'import numpy as np\n'), ((11439, 11467), 'megengine.functional.broadcast_to', 'F.broadcast_to', (['x', '(3, 4, 5)'], {}), '(x, (3, 4, 5))\n', (11453, 11467), True, 'import megengine.functional as F\n'), ((11580, 11596), 'numpy.zeros', 'np.zeros', (['(n, 4)'], {}), '((n, 4))\n', (11588, 11596), True, 'import numpy as np\n'), ((11721, 11738), 'numpy.random.rand', 'np.random.rand', (['n'], {}), '(n)\n', (11735, 11738), True, 'import numpy as np\n'), ((11910, 11975), 'megengine.functional.vision.nms', 'F.vision.nms', (['boxes'], {'scores': 'scores', 'iou_thresh': '(0.5)', 'max_output': '(20)'}), '(boxes, scores=scores, iou_thresh=0.5, max_output=20)\n', (11922, 11975), True, 'import megengine.functional as F\n'), ((12291, 12312), 'numpy.random.randn', 'np.random.randn', (['(1)', '(1)'], {}), '(1, 1)\n', (12306, 12312), True, 'import numpy as np\n'), ((12330, 12351), 'numpy.random.randn', 'np.random.randn', (['(1)', '(2)'], {}), '(1, 2)\n', (12345, 12351), True, 'import numpy as np\n'), ((12366, 12377), 'megengine.tensor', 'tensor', (['[2]'], {}), '([2])\n', (12372, 12377), False, 'from megengine import Parameter, tensor\n'), ((12379, 12390), 'megengine.tensor', 'tensor', (['[2]'], {}), '([2])\n', (12385, 12390), False, 'from megengine import Parameter, tensor\n'), ((12453, 12477), 'megengine.functional.broadcast_to', 'F.broadcast_to', (['x', 'shape'], {}), '(x, shape)\n', (12467, 12477), True, 'import megengine.functional as F\n'), ((12564, 12587), 'numpy.random.randn', 'np.random.randn', (['(10)', '(10)'], {}), '(10, 10)\n', (12579, 12587), True, 'import numpy as np\n'), ((12656, 12679), 'megengine.functional.clip', 'F.clip', (['x', 'lower', 'upper'], {}), '(x, lower, upper)\n', (12662, 12679), True, 'import megengine.functional as F\n'), ((13128, 13175), 'megengine.jit.trace', 'trace', ([], {'symbolic': '(True)', 'symbolic_shape': 'shape_mode'}), '(symbolic=True, symbolic_shape=shape_mode)\n', (13133, 13175), False, 'from megengine.jit import exclude_from_trace, trace\n'), ((14365, 14385), 'inspect.signature', 'inspect.signature', (['f'], {}), '(f)\n', (14382, 14385), False, 'import inspect\n'), ((14499, 14550), 'megengine.jit.trace', 'trace', (['f'], {'symbolic': '(False)', 'symbolic_shape': 'shape_mode'}), '(f, symbolic=False, symbolic_shape=shape_mode)\n', (14504, 14550), False, 'from megengine.jit import exclude_from_trace, trace\n'), ((2072, 2106), 'megengine.Parameter', 'Parameter', (['[1.0]'], {'dtype': 'np.float32'}), '([1.0], dtype=np.float32)\n', (2081, 2106), False, 'from megengine import Parameter, tensor\n'), ((2237, 2245), 'megengine.functional.exp', 'F.exp', (['x'], {}), '(x)\n', (2242, 2245), True, 'import megengine.functional as F\n'), ((3108, 3128), 'megengine.jit.exclude_from_trace', 'exclude_from_trace', ([], {}), '()\n', (3126, 3128), False, 'from megengine.jit import exclude_from_trace, trace\n'), ((3789, 3804), 'numpy.ones', 'np.ones', (['(7, 2)'], {}), '((7, 2))\n', (3796, 3804), True, 'import numpy as np\n'), ((4048, 4061), 'megengine.autodiff.GradManager', 'GradManager', ([], {}), '()\n', (4059, 4061), False, 'from megengine.autodiff import GradManager\n'), ((4944, 4975), 'numpy.testing.assert_equal', 'np.testing.assert_equal', (['z', 'buf'], {}), '(z, buf)\n', (4967, 4975), True, 'import numpy as np\n'), ((7974, 7980), 'megengine.functional.exp', 'exp', (['x'], {}), '(x)\n', (7977, 7980), False, 'from megengine.functional import exp, log\n'), ((8078, 8084), 'megengine.functional.exp', 'exp', (['x'], {}), '(x)\n', (8081, 8084), False, 'from megengine.functional import exp, log\n'), ((8972, 9003), 'megengine.tensor', 'tensor', (['[1, 10]'], {'dtype': 'np.int32'}), '([1, 10], dtype=np.int32)\n', (8978, 9003), False, 'from megengine import Parameter, tensor\n'), ((9870, 9883), 'numpy.array', 'np.array', (['[3]'], {}), '([3])\n', (9878, 9883), True, 'import numpy as np\n'), ((10395, 10417), 'numpy.array', 'np.array', (['[1, 1, 2, 2]'], {}), '([1, 1, 2, 2])\n', (10403, 10417), True, 'import numpy as np\n'), ((11620, 11640), 'numpy.random.rand', 'np.random.rand', (['n', '(2)'], {}), '(n, 2)\n', (11634, 11640), True, 'import numpy as np\n'), ((11755, 11768), 'megengine.tensor', 'tensor', (['boxes'], {}), '(boxes)\n', (11761, 11768), False, 'from megengine import Parameter, tensor\n'), ((11770, 11784), 'megengine.tensor', 'tensor', (['scores'], {}), '(scores)\n', (11776, 11784), False, 'from megengine import Parameter, tensor\n'), ((12054, 12074), 'megengine.jit.exclude_from_trace', 'exclude_from_trace', ([], {}), '()\n', (12072, 12074), False, 'from megengine.jit import exclude_from_trace, trace\n'), ((12092, 12142), 'megengine.functional.vision.nms', 'F.vision.nms', (['boxes'], {'scores': 'scores', 'iou_thresh': '(0.5)'}), '(boxes, scores=scores, iou_thresh=0.5)\n', (12104, 12142), True, 'import megengine.functional as F\n'), ((12734, 12745), 'megengine.tensor', 'tensor', (['[0]'], {}), '([0])\n', (12740, 12745), False, 'from megengine import Parameter, tensor\n'), ((12747, 12758), 'megengine.tensor', 'tensor', (['[1]'], {}), '([1])\n', (12753, 12758), False, 'from megengine import Parameter, tensor\n'), ((12889, 12900), 'megengine.functional.arange', 'F.arange', (['(8)'], {}), '(8)\n', (12897, 12900), True, 'import megengine.functional as F\n'), ((14288, 14318), 'numpy.random.randn', 'np.random.randn', (['(5)', '(5)', '(5)', '(5)', '(5)'], {}), '(5, 5, 5, 5, 5)\n', (14303, 14318), True, 'import numpy as np\n'), ((14611, 14631), 'megengine.tensor', 'tensor', (['inputs[name]'], {}), '(inputs[name])\n', (14617, 14631), False, 'from megengine import Parameter, tensor\n'), ((2371, 2384), 'megengine.autodiff.GradManager', 'GradManager', ([], {}), '()\n', (2382, 2384), False, 'from megengine.autodiff import GradManager\n'), ((4272, 4293), 'megengine.functional.sum', 'F.sum', (['(w ** 2)'], {'axis': '(1)'}), '(w ** 2, axis=1)\n', (4277, 4293), True, 'import megengine.functional as F\n'), ((6552, 6585), 'megengine.utils.comp_graph_tools.get_owner_opr_inputs', 'cgtools.get_owner_opr_inputs', (['out'], {}), '(out)\n', (6580, 6585), True, 'import megengine.utils.comp_graph_tools as cgtools\n'), ((7565, 7571), 'megengine.functional.exp', 'exp', (['x'], {}), '(x)\n', (7568, 7571), False, 'from megengine.functional import exp, log\n'), ((7574, 7580), 'megengine.functional.exp', 'exp', (['y'], {}), '(y)\n', (7577, 7580), False, 'from megengine.functional import exp, log\n'), ((7681, 7687), 'megengine.functional.exp', 'exp', (['x'], {}), '(x)\n', (7684, 7687), False, 'from megengine.functional import exp, log\n'), ((7690, 7696), 'megengine.functional.exp', 'exp', (['y'], {}), '(y)\n', (7693, 7696), False, 'from megengine.functional import exp, log\n'), ((10021, 10052), 'numpy.arange', 'np.arange', (['(16)'], {'dtype': 'np.float32'}), '(16, dtype=np.float32)\n', (10030, 10052), True, 'import numpy as np\n'), ((10121, 10200), 'numpy.array', 'np.array', (['[[1.0, 0.0, 1.0], [0.0, 1.0, 1.0], [0.0, 0.0, 1.0]]'], {'dtype': 'np.float32'}), '([[1.0, 0.0, 1.0], [0.0, 1.0, 1.0], [0.0, 0.0, 1.0]], dtype=np.float32)\n', (10129, 10200), True, 'import numpy as np\n'), ((11670, 11690), 'numpy.random.rand', 'np.random.rand', (['n', '(2)'], {}), '(n, 2)\n', (11684, 11690), True, 'import numpy as np\n'), ((14126, 14156), 'numpy.random.randn', 'np.random.randn', (['(5)', '(5)', '(5)', '(5)', '(5)'], {}), '(5, 5, 5, 5, 5)\n', (14141, 14156), True, 'import numpy as np\n'), ((2494, 2506), 'numpy.arange', 'np.arange', (['(4)'], {}), '(4)\n', (2503, 2506), True, 'import numpy as np\n')]
import numpy as np import megengine as mge import megengine.module as M import megengine.functional as F from .utils.utils import bilinear_sampler, coords_grid class AGCL: """ Implementation of Adaptive Group Correlation Layer (AGCL). """ def __init__(self, fmap1, fmap2, att=None): self.fmap1 = fmap1 self.fmap2 = fmap2 self.att = att self.coords = coords_grid(fmap1.shape[0], fmap1.shape[2], fmap1.shape[3]).to( fmap1.device ) def __call__(self, flow, extra_offset, small_patch=False, iter_mode=False): if iter_mode: corr = self.corr_iter(self.fmap1, self.fmap2, flow, small_patch) else: corr = self.corr_att_offset( self.fmap1, self.fmap2, flow, extra_offset, small_patch ) return corr def get_correlation(self, left_feature, right_feature, psize=(3, 3), dilate=(1, 1)): N, C, H, W = left_feature.shape di_y, di_x = dilate[0], dilate[1] pady, padx = psize[0] // 2 * di_y, psize[1] // 2 * di_x right_pad = F.pad(right_feature, pad_witdth=( (0, 0), (0, 0), (pady, pady), (padx, padx)), mode="replicate") right_slid = F.sliding_window( right_pad, kernel_size=(H, W), stride=(di_y, di_x)) right_slid = right_slid.reshape(N, C, -1, H, W) right_slid = F.transpose(right_slid, (0, 2, 1, 3, 4)) right_slid = right_slid.reshape(-1, C, H, W) corr_mean = F.mean(left_feature * right_slid, axis=1, keepdims=True) corr_final = corr_mean.reshape(1, -1, H, W) return corr_final def corr_iter(self, left_feature, right_feature, flow, small_patch): coords = self.coords + flow coords = F.transpose(coords, (0, 2, 3, 1)) right_feature = bilinear_sampler(right_feature, coords) if small_patch: psize_list = [(3, 3), (3, 3), (3, 3), (3, 3)] dilate_list = [(1, 1), (1, 1), (1, 1), (1, 1)] else: psize_list = [(1, 9), (1, 9), (1, 9), (1, 9)] dilate_list = [(1, 1), (1, 1), (1, 1), (1, 1)] N, C, H, W = left_feature.shape lefts = F.split(left_feature, 4, axis=1) rights = F.split(right_feature, 4, axis=1) corrs = [] for i in range(len(psize_list)): corr = self.get_correlation( lefts[i], rights[i], psize_list[i], dilate_list[i] ) corrs.append(corr) final_corr = F.concat(corrs, axis=1) return final_corr def corr_att_offset( self, left_feature, right_feature, flow, extra_offset, small_patch ): N, C, H, W = left_feature.shape if self.att is not None: left_feature = F.reshape( F.transpose(left_feature, (0, 2, 3, 1)), (N, H * W, C) ) # 'n c h w -> n (h w) c' right_feature = F.reshape( F.transpose(right_feature, (0, 2, 3, 1)), (N, H * W, C) ) # 'n c h w -> n (h w) c' left_feature, right_feature = self.att(left_feature, right_feature) # 'n (h w) c -> n c h w' left_feature, right_feature = [ F.transpose(F.reshape(x, (N, H, W, C)), (0, 3, 1, 2)) for x in [left_feature, right_feature] ] lefts = F.split(left_feature, 4, axis=1) rights = F.split(right_feature, 4, axis=1) C = C // 4 if small_patch: psize_list = [(3, 3), (3, 3), (3, 3), (3, 3)] dilate_list = [(1, 1), (1, 1), (1, 1), (1, 1)] else: psize_list = [(1, 9), (1, 9), (1, 9), (1, 9)] dilate_list = [(1, 1), (1, 1), (1, 1), (1, 1)] search_num = 9 extra_offset = F.transpose( F.reshape(extra_offset, (N, search_num, 2, H, W)), (0, 1, 3, 4, 2) ) # [N, search_num, 1, 1, 2] corrs = [] for i in range(len(psize_list)): left_feature, right_feature = lefts[i], rights[i] psize, dilate = psize_list[i], dilate_list[i] psizey, psizex = psize[0], psize[1] dilatey, dilatex = dilate[0], dilate[1] ry = psizey // 2 * dilatey rx = psizex // 2 * dilatex x_grid, y_grid = np.meshgrid( np.arange(-rx, rx + 1, dilatex), np.arange(-ry, ry + 1, dilatey) ) y_grid, x_grid = mge.tensor(y_grid, device=self.fmap1.device), mge.tensor( x_grid, device=self.fmap1.device ) offsets = F.transpose( F.reshape(F.stack((x_grid, y_grid)), (2, -1)), (1, 0) ) # [search_num, 2] offsets = F.expand_dims(offsets, (0, 2, 3)) offsets = offsets + extra_offset coords = self.coords + flow # [N, 2, H, W] coords = F.transpose(coords, (0, 2, 3, 1)) # [N, H, W, 2] coords = F.expand_dims(coords, 1) + offsets coords = F.reshape(coords, (N, -1, W, 2)) # [N, search_num*H, W, 2] right_feature = bilinear_sampler( right_feature, coords ) # [N, C, search_num*H, W] right_feature = F.reshape( right_feature, (N, C, -1, H, W) ) # [N, C, search_num, H, W] left_feature = F.expand_dims(left_feature, 2) corr = F.mean(left_feature * right_feature, axis=1) corrs.append(corr) final_corr = F.concat(corrs, axis=1) return final_corr
[ "megengine.functional.split", "megengine.functional.pad", "megengine.tensor", "megengine.functional.expand_dims", "megengine.functional.transpose", "megengine.functional.mean", "megengine.functional.concat", "megengine.functional.reshape", "megengine.functional.sliding_window", "megengine.functional.stack" ]
[((1102, 1202), 'megengine.functional.pad', 'F.pad', (['right_feature'], {'pad_witdth': '((0, 0), (0, 0), (pady, pady), (padx, padx))', 'mode': '"""replicate"""'}), "(right_feature, pad_witdth=((0, 0), (0, 0), (pady, pady), (padx, padx)\n ), mode='replicate')\n", (1107, 1202), True, 'import megengine.functional as F\n'), ((1233, 1301), 'megengine.functional.sliding_window', 'F.sliding_window', (['right_pad'], {'kernel_size': '(H, W)', 'stride': '(di_y, di_x)'}), '(right_pad, kernel_size=(H, W), stride=(di_y, di_x))\n', (1249, 1301), True, 'import megengine.functional as F\n'), ((1392, 1432), 'megengine.functional.transpose', 'F.transpose', (['right_slid', '(0, 2, 1, 3, 4)'], {}), '(right_slid, (0, 2, 1, 3, 4))\n', (1403, 1432), True, 'import megengine.functional as F\n'), ((1507, 1563), 'megengine.functional.mean', 'F.mean', (['(left_feature * right_slid)'], {'axis': '(1)', 'keepdims': '(True)'}), '(left_feature * right_slid, axis=1, keepdims=True)\n', (1513, 1563), True, 'import megengine.functional as F\n'), ((1771, 1804), 'megengine.functional.transpose', 'F.transpose', (['coords', '(0, 2, 3, 1)'], {}), '(coords, (0, 2, 3, 1))\n', (1782, 1804), True, 'import megengine.functional as F\n'), ((2199, 2231), 'megengine.functional.split', 'F.split', (['left_feature', '(4)'], {'axis': '(1)'}), '(left_feature, 4, axis=1)\n', (2206, 2231), True, 'import megengine.functional as F\n'), ((2249, 2282), 'megengine.functional.split', 'F.split', (['right_feature', '(4)'], {'axis': '(1)'}), '(right_feature, 4, axis=1)\n', (2256, 2282), True, 'import megengine.functional as F\n'), ((2519, 2542), 'megengine.functional.concat', 'F.concat', (['corrs'], {'axis': '(1)'}), '(corrs, axis=1)\n', (2527, 2542), True, 'import megengine.functional as F\n'), ((3370, 3402), 'megengine.functional.split', 'F.split', (['left_feature', '(4)'], {'axis': '(1)'}), '(left_feature, 4, axis=1)\n', (3377, 3402), True, 'import megengine.functional as F\n'), ((3420, 3453), 'megengine.functional.split', 'F.split', (['right_feature', '(4)'], {'axis': '(1)'}), '(right_feature, 4, axis=1)\n', (3427, 3453), True, 'import megengine.functional as F\n'), ((5509, 5532), 'megengine.functional.concat', 'F.concat', (['corrs'], {'axis': '(1)'}), '(corrs, axis=1)\n', (5517, 5532), True, 'import megengine.functional as F\n'), ((3819, 3868), 'megengine.functional.reshape', 'F.reshape', (['extra_offset', '(N, search_num, 2, H, W)'], {}), '(extra_offset, (N, search_num, 2, H, W))\n', (3828, 3868), True, 'import megengine.functional as F\n'), ((4733, 4766), 'megengine.functional.expand_dims', 'F.expand_dims', (['offsets', '(0, 2, 3)'], {}), '(offsets, (0, 2, 3))\n', (4746, 4766), True, 'import megengine.functional as F\n'), ((4890, 4923), 'megengine.functional.transpose', 'F.transpose', (['coords', '(0, 2, 3, 1)'], {}), '(coords, (0, 2, 3, 1))\n', (4901, 4923), True, 'import megengine.functional as F\n'), ((5017, 5049), 'megengine.functional.reshape', 'F.reshape', (['coords', '(N, -1, W, 2)'], {}), '(coords, (N, -1, W, 2))\n', (5026, 5049), True, 'import megengine.functional as F\n'), ((5231, 5273), 'megengine.functional.reshape', 'F.reshape', (['right_feature', '(N, C, -1, H, W)'], {}), '(right_feature, (N, C, -1, H, W))\n', (5240, 5273), True, 'import megengine.functional as F\n'), ((5360, 5390), 'megengine.functional.expand_dims', 'F.expand_dims', (['left_feature', '(2)'], {}), '(left_feature, 2)\n', (5373, 5390), True, 'import megengine.functional as F\n'), ((5410, 5454), 'megengine.functional.mean', 'F.mean', (['(left_feature * right_feature)'], {'axis': '(1)'}), '(left_feature * right_feature, axis=1)\n', (5416, 5454), True, 'import megengine.functional as F\n'), ((2807, 2846), 'megengine.functional.transpose', 'F.transpose', (['left_feature', '(0, 2, 3, 1)'], {}), '(left_feature, (0, 2, 3, 1))\n', (2818, 2846), True, 'import megengine.functional as F\n'), ((2957, 2997), 'megengine.functional.transpose', 'F.transpose', (['right_feature', '(0, 2, 3, 1)'], {}), '(right_feature, (0, 2, 3, 1))\n', (2968, 2997), True, 'import megengine.functional as F\n'), ((4344, 4375), 'numpy.arange', 'np.arange', (['(-rx)', '(rx + 1)', 'dilatex'], {}), '(-rx, rx + 1, dilatex)\n', (4353, 4375), True, 'import numpy as np\n'), ((4377, 4408), 'numpy.arange', 'np.arange', (['(-ry)', '(ry + 1)', 'dilatey'], {}), '(-ry, ry + 1, dilatey)\n', (4386, 4408), True, 'import numpy as np\n'), ((4452, 4496), 'megengine.tensor', 'mge.tensor', (['y_grid'], {'device': 'self.fmap1.device'}), '(y_grid, device=self.fmap1.device)\n', (4462, 4496), True, 'import megengine as mge\n'), ((4498, 4542), 'megengine.tensor', 'mge.tensor', (['x_grid'], {'device': 'self.fmap1.device'}), '(x_grid, device=self.fmap1.device)\n', (4508, 4542), True, 'import megengine as mge\n'), ((4961, 4985), 'megengine.functional.expand_dims', 'F.expand_dims', (['coords', '(1)'], {}), '(coords, 1)\n', (4974, 4985), True, 'import megengine.functional as F\n'), ((3242, 3268), 'megengine.functional.reshape', 'F.reshape', (['x', '(N, H, W, C)'], {}), '(x, (N, H, W, C))\n', (3251, 3268), True, 'import megengine.functional as F\n'), ((4634, 4659), 'megengine.functional.stack', 'F.stack', (['(x_grid, y_grid)'], {}), '((x_grid, y_grid))\n', (4641, 4659), True, 'import megengine.functional as F\n')]
# Vibroacoustics # # E.Rohan, V.Lukeš # Homogenization of the vibro–acoustic transmission on periodically # perforated elastic plates with arrays of resonators. # https://arxiv.org/abs/2104.01367 (arXiv:2104.01367v1) import os.path as op import numpy as nm from acoustics_macro_utils import get_homogmat from sfepy.homogenization.utils import define_box_regions from sfepy.discrete.fem import Mesh from sfepy.discrete.fem.periodic import match_y_plane, match_x_plane wdir = op.dirname(__file__) def get_regions(filename_mesh): mesh = Mesh.from_file(filename_mesh) bbox = nm.array(mesh.get_bounding_box()) region_lb, region_rt = bbox return define_box_regions(2, region_lb, region_rt) def get_homogmat_plate(coors, mode, pb): if mode != 'qp': return mconf = pb.conf.mconf c = mconf.sound_speed wave_num = mconf.wave_num rho0 = mconf.rho0 c2 = c**2 w = wave_num * c w2 = w**2 pb.ofn_trunk = mconf.ofn_trunk + '_plate' out_ac = get_homogmat(coors, mode, pb, mconf.coefs_filename, omega=w) nqp = coors.shape[0] out = {} out['A'] = out_ac['A'] out['w2F'] = out_ac['F'] * w2 out['wB'] = out_ac['B'] * w vol_Imp = 0.5 * (out_ac['Vol_Imp']['volume_Im'] + out_ac['Vol_Imp']['volume_Ip']) zeta = out_ac['volumes']['volume_Y'] / vol_Imp out['w2Kr'] = nm.tile(zeta / c2, (nqp, 1, 1)) * w2 out['w'] = nm.ones((nqp, 1, 1), dtype=nm.float64) * w out_vc = get_homogmat(coors, mode, pb, mconf.coefs_filename_plate) bar_h = out_ac['h'] h = mconf.eps0 * bar_h out['E'] = bar_h / rho0 * out_vc['Cm'] out['h2E'] = h**2 / 12. * out['E'] out['wH'] = bar_h * out_vc['Hm'] * w out['w2K'] = out['w2Kr'] + rho0 * out_vc['Km'] * bar_h * w2 out['S'] = bar_h / rho0 * out_vc['Gm'] sfdim = out_vc['Gm'].shape[2] out['w2C3'] = out_ac['C'][:, sfdim:, :] * w2 out['wD'] = nm.ascontiguousarray(out_ac['D'][:, :sfdim, :sfdim]) * w out['w2M'] = (out_ac['tM'] + out_ac['M'][:, :sfdim, :sfdim]) * w2 out['w2N'] = out_ac['M'][:, sfdim:, sfdim:] * w2 out['w2h2L'] = h**2 / 12. * out_ac['tM'] * w2 print('### material-plate: wave number = ', wave_num) return out def define(**kwargs): mconf = kwargs['master_problem'].conf filename_mesh = mconf.filename_mesh_plate regions = { 'Gamma0_1': 'all', } regions.update(get_regions(filename_mesh)) functions = { 'get_homogmat': (lambda ts, coors, mode=None, problem=None, **kwargs: get_homogmat_plate(coors, mode, problem),), 'match_y_plane': (match_y_plane,), } materials = { 'ac': 'get_homogmat', } fields = { 'tvelocity0': ('complex', 'scalar', 'Gamma0_1', 1), 'pressure0': ('complex', 'scalar', 'Gamma0_1', 1), 'deflection': ('complex', 'scalar', 'Gamma0_1', 2), 'displacement': ('complex', 'vector', 'Gamma0_1', 1), 'rotation': ('complex', 'vector', 'Gamma0_1', 1), } integrals = { 'i': 4, } variables = { 'sp0': ('unknown field', 'pressure0', 0), 'sq0': ('test field', 'pressure0', 'sp0'), 'dp0': ('unknown field', 'pressure0', 1), 'dq0': ('test field', 'pressure0', 'dp0'), 'g01': ('unknown field', 'tvelocity0', 2), 'f01': ('test field', 'tvelocity0', 'g01'), 'g02': ('unknown field', 'tvelocity0', 3), 'f02': ('test field', 'tvelocity0', 'g02'), 'u': ('unknown field', 'displacement', 4), 'v': ('test field', 'displacement', 'u'), 'w': ('unknown field', 'deflection', 5), 'z': ('test field', 'deflection', 'w'), 'theta': ('unknown field', 'rotation', 6), 'nu': ('test field', 'rotation', 'theta'), } ebcs = { 'fixed_l': ('Left', {'w.0': 0.0, 'u.all': 0.0, 'theta.all': 0.0}), 'fixed_r': ('Right', {'w.0': 0.0, 'u.all': 0.0, 'theta.all': 0.0}), } epbcs = { # 'per_g01': (['Bottom', 'Top'], {'g01.0': 'g01.0'}, # 'match_y_plane'), # 'per_g02': (['Bottom', 'Top'], {'g02.0': 'g02.0'}, # 'match_y_plane'), # 'per_dp0': (['Bottom', 'Top'], {'dp0.0': 'dp0.0'}, # 'match_y_plane'), # 'per_sp0': (['Bottom', 'Top'], {'sp0.0': 'sp0.0'}, # 'match_y_plane'), 'per_w': (['Bottom', 'Top'], {'w.0': 'w.0'}, 'match_y_plane'), 'per_u': (['Bottom', 'Top'], {'u.all': 'u.all'}, 'match_y_plane'), 'per_theta': (['Bottom', 'Top'], {'theta.all': 'theta.all'}, 'match_y_plane'), } equations = { # p^0 = 0.5 * (P^+ + P^-) # eq. (79)_1 'eq_g01': """ 0.5 * dw_diffusion.i.Gamma0_1(ac.A, f01, sp0) - 0.5 * dw_volume_dot.i.Gamma0_1(ac.w2K, f01, sp0) + %s * dw_v_dot_grad_s.i.Gamma0_1(ac.wD, u, f01) + %s * dw_biot.i.Gamma0_1(ac.wH, u, f01) + %s * dw_volume_dot.i.Gamma0_1(ac.w, f01, g01) - %s * dw_volume_dot.i.Gamma0_1(ac.w, f01, g02) = 0""" % (1j, 1j, 1j / mconf.eps0, 1j / mconf.eps0), # eq. (80)_1 'eq_g02': """ + 0.5 * dw_volume_dot.i.Gamma0_1(ac.w2F, f02, g01) + 0.5 * dw_volume_dot.i.Gamma0_1(ac.w2F, f02, g02) - dw_volume_dot.i.Gamma0_1(ac.w2C3, f02, w) - %s * dw_volume_dot.i.Gamma0_1(ac.w, f02, dp0) = 0""" % (1j / mconf.eps0,), # p^0 = 0.5 * (P^+ + P^-) # eq. (79)_2 'eq_v': """ - %s * dw_v_dot_grad_s.i.Gamma0_1(ac.wD, v, sp0) - %s * dw_biot.i.Gamma0_1(ac.wH, v, sp0) + dw_lin_elastic.i.Gamma0_1(ac.E, v, u) - dw_volume_dot.i.Gamma0_1(ac.w2M, v, u) = 0""" % (1j * 0.5, 1j * 0.5), # eq. (80)_2 'eq_z': """ - dw_volume_dot.i.Gamma0_1(ac.w2N, z, w) + dw_diffusion.i.Gamma0_1(ac.S, z, w) - dw_v_dot_grad_s.i.Gamma0_1(ac.S, theta, z) + 0.5 * dw_volume_dot.i.Gamma0_1(ac.w2C3, z, g01) + 0.5 * dw_volume_dot.i.Gamma0_1(ac.w2C3, z, g02) = 0""", # eq. (80)_2 'eq_nu': """ - dw_volume_dot.i.Gamma0_1(ac.w2h2L, nu, theta) + dw_lin_elastic.i.Gamma0_1(ac.h2E, nu, theta) + dw_volume_dot.i.Gamma0_1(ac.S, nu, theta) - dw_v_dot_grad_s.i.Gamma0_1(ac.S, nu, w) = 0""", } options = { 'output_dir': op.join(wdir, 'results'), 'output_format': 'h5', } solvers = { 'ls': ('ls.scipy_direct', {}), 'newton': ('nls.newton', {'i_max': 1, 'eps_a': 1e-6, 'eps_r': 1e-6, 'problem': 'nonlinear', }) } return locals()
[ "sfepy.discrete.fem.Mesh.from_file", "sfepy.homogenization.utils.define_box_regions" ]
[((476, 496), 'os.path.dirname', 'op.dirname', (['__file__'], {}), '(__file__)\n', (486, 496), True, 'import os.path as op\n'), ((542, 571), 'sfepy.discrete.fem.Mesh.from_file', 'Mesh.from_file', (['filename_mesh'], {}), '(filename_mesh)\n', (556, 571), False, 'from sfepy.discrete.fem import Mesh\n'), ((661, 704), 'sfepy.homogenization.utils.define_box_regions', 'define_box_regions', (['(2)', 'region_lb', 'region_rt'], {}), '(2, region_lb, region_rt)\n', (679, 704), False, 'from sfepy.homogenization.utils import define_box_regions\n'), ((1000, 1060), 'acoustics_macro_utils.get_homogmat', 'get_homogmat', (['coors', 'mode', 'pb', 'mconf.coefs_filename'], {'omega': 'w'}), '(coors, mode, pb, mconf.coefs_filename, omega=w)\n', (1012, 1060), False, 'from acoustics_macro_utils import get_homogmat\n'), ((1481, 1538), 'acoustics_macro_utils.get_homogmat', 'get_homogmat', (['coors', 'mode', 'pb', 'mconf.coefs_filename_plate'], {}), '(coors, mode, pb, mconf.coefs_filename_plate)\n', (1493, 1538), False, 'from acoustics_macro_utils import get_homogmat\n'), ((1372, 1403), 'numpy.tile', 'nm.tile', (['(zeta / c2)', '(nqp, 1, 1)'], {}), '(zeta / c2, (nqp, 1, 1))\n', (1379, 1403), True, 'import numpy as nm\n'), ((1424, 1462), 'numpy.ones', 'nm.ones', (['(nqp, 1, 1)'], {'dtype': 'nm.float64'}), '((nqp, 1, 1), dtype=nm.float64)\n', (1431, 1462), True, 'import numpy as nm\n'), ((1922, 1974), 'numpy.ascontiguousarray', 'nm.ascontiguousarray', (["out_ac['D'][:, :sfdim, :sfdim]"], {}), "(out_ac['D'][:, :sfdim, :sfdim])\n", (1942, 1974), True, 'import numpy as nm\n'), ((6668, 6692), 'os.path.join', 'op.join', (['wdir', '"""results"""'], {}), "(wdir, 'results')\n", (6675, 6692), True, 'import os.path as op\n')]
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import itertools import numpy as np import megengine as mge import megengine.autodiff as ad import megengine.functional as F from megengine import Tensor from megengine.core._imperative_rt.core2 import ( _set_drop_flag, _set_swap_flag, get_option, set_option, ) from megengine.module import Linear, Module from megengine.optimizer import SGD batch_size = 64 data_shape = (batch_size, 2) label_shape = (batch_size,) def minibatch_generator(): while True: inp_data = np.zeros((batch_size, 2)) label = np.zeros(batch_size, dtype=np.int32) for i in range(batch_size): # [x0, x1], sampled from U[-1, 1] inp_data[i, :] = np.random.rand(2) * 2 - 1 label[i] = 0 if np.prod(inp_data[i]) < 0 else 1 yield inp_data.astype(np.float32), label.astype(np.int32) def calculate_precision(data: np.ndarray, pred: np.ndarray) -> float: """ Calculate precision for given data and prediction. :type data: [[x, y], ...] :param data: Input data :type pred: [[x_pred, y_pred], ...] :param pred: Network output data """ correct = 0 assert len(data) == len(pred) for inp_data, pred_output in zip(data, pred): label = 0 if np.prod(inp_data) < 0 else 1 pred_label = np.argmax(pred_output) if pred_label == label: correct += 1 return float(correct) / len(data) class XORNet(Module): def __init__(self): self.mid_layers = 14 self.num_class = 2 super().__init__() self.fc0 = Linear(self.num_class, self.mid_layers, bias=True) self.fc1 = Linear(self.mid_layers, self.mid_layers, bias=True) self.fc2 = Linear(self.mid_layers, self.num_class, bias=True) def forward(self, x): y = self.fc0(x) x._swap_out() x = F.tanh(y) y = self.fc1(x) x = F.tanh(y) x = self.fc2(x) y = (x + x) / 2 # in order to test drop() y._drop() return y def test_training_converge_with_swap_and_drop(): _set_swap_flag(True) _set_drop_flag(True) old_buffer_length = get_option("buffer_length") set_option("buffer_length", 0) net = XORNet() opt = SGD(net.parameters(), lr=0.01, momentum=0.9, weight_decay=5e-4) gm = ad.GradManager().attach(net.parameters()) def train(data, label): with gm: pred = net(data) loss = F.nn.cross_entropy(pred, label) gm.backward(loss) return loss def infer(data): return net(data) train_dataset = minibatch_generator() losses = [] for data, label in itertools.islice(train_dataset, 2000): data = Tensor(data, dtype=np.float32) label = Tensor(label, dtype=np.int32) opt.clear_grad() loss = train(data, label) opt.step() losses.append(loss.numpy()) assert np.mean(losses[-100:]) < 0.1, "Final training Loss must be low enough" ngrid = 10 x = np.linspace(-1.0, 1.0, ngrid) xx, yy = np.meshgrid(x, x) xx = xx.reshape((ngrid * ngrid, 1)) yy = yy.reshape((ngrid * ngrid, 1)) data = mge.tensor(np.concatenate((xx, yy), axis=1).astype(np.float32)) pred = infer(Tensor(data)).numpy() precision = calculate_precision(data.numpy(), pred) assert precision == 1.0, "Test precision must be high enough, get {}".format( precision ) _set_swap_flag(False) _set_drop_flag(False) set_option("buffer_length", old_buffer_length)
[ "megengine.core._imperative_rt.core2._set_swap_flag", "megengine.core._imperative_rt.core2.set_option", "megengine.Tensor", "megengine.module.Linear", "megengine.functional.nn.cross_entropy", "megengine.core._imperative_rt.core2._set_drop_flag", "megengine.autodiff.GradManager", "megengine.functional.tanh", "megengine.core._imperative_rt.core2.get_option" ]
[((2431, 2451), 'megengine.core._imperative_rt.core2._set_swap_flag', '_set_swap_flag', (['(True)'], {}), '(True)\n', (2445, 2451), False, 'from megengine.core._imperative_rt.core2 import _set_drop_flag, _set_swap_flag, get_option, set_option\n'), ((2456, 2476), 'megengine.core._imperative_rt.core2._set_drop_flag', '_set_drop_flag', (['(True)'], {}), '(True)\n', (2470, 2476), False, 'from megengine.core._imperative_rt.core2 import _set_drop_flag, _set_swap_flag, get_option, set_option\n'), ((2501, 2528), 'megengine.core._imperative_rt.core2.get_option', 'get_option', (['"""buffer_length"""'], {}), "('buffer_length')\n", (2511, 2528), False, 'from megengine.core._imperative_rt.core2 import _set_drop_flag, _set_swap_flag, get_option, set_option\n'), ((2533, 2563), 'megengine.core._imperative_rt.core2.set_option', 'set_option', (['"""buffer_length"""', '(0)'], {}), "('buffer_length', 0)\n", (2543, 2563), False, 'from megengine.core._imperative_rt.core2 import _set_drop_flag, _set_swap_flag, get_option, set_option\n'), ((3014, 3051), 'itertools.islice', 'itertools.islice', (['train_dataset', '(2000)'], {}), '(train_dataset, 2000)\n', (3030, 3051), False, 'import itertools\n'), ((3366, 3395), 'numpy.linspace', 'np.linspace', (['(-1.0)', '(1.0)', 'ngrid'], {}), '(-1.0, 1.0, ngrid)\n', (3377, 3395), True, 'import numpy as np\n'), ((3409, 3426), 'numpy.meshgrid', 'np.meshgrid', (['x', 'x'], {}), '(x, x)\n', (3420, 3426), True, 'import numpy as np\n'), ((3789, 3810), 'megengine.core._imperative_rt.core2._set_swap_flag', '_set_swap_flag', (['(False)'], {}), '(False)\n', (3803, 3810), False, 'from megengine.core._imperative_rt.core2 import _set_drop_flag, _set_swap_flag, get_option, set_option\n'), ((3815, 3836), 'megengine.core._imperative_rt.core2._set_drop_flag', '_set_drop_flag', (['(False)'], {}), '(False)\n', (3829, 3836), False, 'from megengine.core._imperative_rt.core2 import _set_drop_flag, _set_swap_flag, get_option, set_option\n'), ((3841, 3887), 'megengine.core._imperative_rt.core2.set_option', 'set_option', (['"""buffer_length"""', 'old_buffer_length'], {}), "('buffer_length', old_buffer_length)\n", (3851, 3887), False, 'from megengine.core._imperative_rt.core2 import _set_drop_flag, _set_swap_flag, get_option, set_option\n'), ((875, 900), 'numpy.zeros', 'np.zeros', (['(batch_size, 2)'], {}), '((batch_size, 2))\n', (883, 900), True, 'import numpy as np\n'), ((917, 953), 'numpy.zeros', 'np.zeros', (['batch_size'], {'dtype': 'np.int32'}), '(batch_size, dtype=np.int32)\n', (925, 953), True, 'import numpy as np\n'), ((1663, 1685), 'numpy.argmax', 'np.argmax', (['pred_output'], {}), '(pred_output)\n', (1672, 1685), True, 'import numpy as np\n'), ((1932, 1982), 'megengine.module.Linear', 'Linear', (['self.num_class', 'self.mid_layers'], {'bias': '(True)'}), '(self.num_class, self.mid_layers, bias=True)\n', (1938, 1982), False, 'from megengine.module import Linear, Module\n'), ((2002, 2053), 'megengine.module.Linear', 'Linear', (['self.mid_layers', 'self.mid_layers'], {'bias': '(True)'}), '(self.mid_layers, self.mid_layers, bias=True)\n', (2008, 2053), False, 'from megengine.module import Linear, Module\n'), ((2074, 2124), 'megengine.module.Linear', 'Linear', (['self.mid_layers', 'self.num_class'], {'bias': '(True)'}), '(self.mid_layers, self.num_class, bias=True)\n', (2080, 2124), False, 'from megengine.module import Linear, Module\n'), ((2210, 2219), 'megengine.functional.tanh', 'F.tanh', (['y'], {}), '(y)\n', (2216, 2219), True, 'import megengine.functional as F\n'), ((2256, 2265), 'megengine.functional.tanh', 'F.tanh', (['y'], {}), '(y)\n', (2262, 2265), True, 'import megengine.functional as F\n'), ((3068, 3098), 'megengine.Tensor', 'Tensor', (['data'], {'dtype': 'np.float32'}), '(data, dtype=np.float32)\n', (3074, 3098), False, 'from megengine import Tensor\n'), ((3115, 3144), 'megengine.Tensor', 'Tensor', (['label'], {'dtype': 'np.int32'}), '(label, dtype=np.int32)\n', (3121, 3144), False, 'from megengine import Tensor\n'), ((3271, 3293), 'numpy.mean', 'np.mean', (['losses[-100:]'], {}), '(losses[-100:])\n', (3278, 3293), True, 'import numpy as np\n'), ((2666, 2682), 'megengine.autodiff.GradManager', 'ad.GradManager', ([], {}), '()\n', (2680, 2682), True, 'import megengine.autodiff as ad\n'), ((2802, 2833), 'megengine.functional.nn.cross_entropy', 'F.nn.cross_entropy', (['pred', 'label'], {}), '(pred, label)\n', (2820, 2833), True, 'import megengine.functional as F\n'), ((1613, 1630), 'numpy.prod', 'np.prod', (['inp_data'], {}), '(inp_data)\n', (1620, 1630), True, 'import numpy as np\n'), ((3529, 3561), 'numpy.concatenate', 'np.concatenate', (['(xx, yy)'], {'axis': '(1)'}), '((xx, yy), axis=1)\n', (3543, 3561), True, 'import numpy as np\n'), ((3600, 3612), 'megengine.Tensor', 'Tensor', (['data'], {}), '(data)\n', (3606, 3612), False, 'from megengine import Tensor\n'), ((1065, 1082), 'numpy.random.rand', 'np.random.rand', (['(2)'], {}), '(2)\n', (1079, 1082), True, 'import numpy as np\n'), ((1119, 1139), 'numpy.prod', 'np.prod', (['inp_data[i]'], {}), '(inp_data[i])\n', (1126, 1139), True, 'import numpy as np\n')]
import io import pickle import numpy as np import megengine as mge import megengine.functional as F import megengine.module as M import megengine.utils.comp_graph_tools as cgtools from megengine.core._trace_option import set_symbolic_shape from megengine.jit import trace from megengine.traced_module import trace_module set_symbolic_shape(True) class Main(M.Module): def forward(self, x): return x["data"] class PreProcess(M.Module): def __init__(self): super().__init__() self.A = F.zeros((1,)) self.I = F.ones((1,)) self.bb_out = mge.tensor( np.array([[[0, 0], [160, 0], [160, 48], [0, 48]]], dtype="float32") ) def forward(self, data, quad): """ data: (1, 3, 48, 160) quad: (1, 4, 2) """ N = quad.shape[0] dst = F.repeat(self.bb_out, N, axis=0).reshape(-1, 4, 2) I = F.broadcast_to(self.I, quad.shape) A = F.broadcast_to(self.A, (N, 8, 8)) A[:, 0:4, 0:2] = quad A[:, 4:8, 5:6] = I[:, :, 0:1] A[:, 0:4, 6:8] = -quad * dst[:, :, 0:1] A[:, 4:8, 3:5] = quad A[:, 0:4, 2:3] = I[:, :, 0:1] A[:, 4:8, 6:8] = -quad * dst[:, :, 1:2] B = dst.transpose(0, 2, 1).reshape(-1, 8, 1) M = F.concat([F.matmul(F.matinv(A), B)[:, :, 0], I[:, 0:1, 0]], axis=1).reshape( -1, 3, 3 ) new_data = F.warp_perspective(data, M, (48, 160)) # (N, 3, 48, 160) return {"data": new_data} class Net(M.Module): def __init__(self, traced_module): super().__init__() self.pre_process = PreProcess() self.traced_module = traced_module def forward(self, data, quad): x = self.pre_process(data, quad) x = self.traced_module(x) return x def test_preprocess(): batch_size = 2 module = Main() data = mge.tensor( np.random.randint(0, 256, size=(batch_size, 3, 48, 160)), dtype=np.float32 ) traced_module = trace_module(module, {"data": data}) obj = pickle.dumps(traced_module) traced_module = pickle.loads(obj) module = Net(traced_module) module.eval() quad = mge.tensor(np.random.normal(size=(batch_size, 4, 2)), dtype=np.float32) expect = module(data, quad) traced_module = trace_module(module, data, quad) actual = traced_module(data, quad) for i, j in zip(expect, actual): np.testing.assert_array_equal(i, j) func = trace(traced_module, capture_as_const=True) actual = func(data, quad) for i, j in zip(expect, actual): np.testing.assert_array_equal(i, j) model = io.BytesIO() func.dump(model, arg_names=("data", "quad")) model.seek(0) infer_cg = cgtools.GraphInference(model) actual = list( infer_cg.run(inp_dict={"data": data.numpy(), "quad": quad.numpy()}).values() )[0] np.testing.assert_allclose(expect, actual)
[ "megengine.jit.trace", "megengine.functional.repeat", "megengine.functional.zeros", "megengine.functional.broadcast_to", "megengine.functional.ones", "megengine.functional.matinv", "megengine.functional.warp_perspective", "megengine.core._trace_option.set_symbolic_shape", "megengine.traced_module.trace_module", "megengine.utils.comp_graph_tools.GraphInference" ]
[((324, 348), 'megengine.core._trace_option.set_symbolic_shape', 'set_symbolic_shape', (['(True)'], {}), '(True)\n', (342, 348), False, 'from megengine.core._trace_option import set_symbolic_shape\n'), ((2000, 2036), 'megengine.traced_module.trace_module', 'trace_module', (['module', "{'data': data}"], {}), "(module, {'data': data})\n", (2012, 2036), False, 'from megengine.traced_module import trace_module\n'), ((2047, 2074), 'pickle.dumps', 'pickle.dumps', (['traced_module'], {}), '(traced_module)\n', (2059, 2074), False, 'import pickle\n'), ((2095, 2112), 'pickle.loads', 'pickle.loads', (['obj'], {}), '(obj)\n', (2107, 2112), False, 'import pickle\n'), ((2298, 2330), 'megengine.traced_module.trace_module', 'trace_module', (['module', 'data', 'quad'], {}), '(module, data, quad)\n', (2310, 2330), False, 'from megengine.traced_module import trace_module\n'), ((2462, 2505), 'megengine.jit.trace', 'trace', (['traced_module'], {'capture_as_const': '(True)'}), '(traced_module, capture_as_const=True)\n', (2467, 2505), False, 'from megengine.jit import trace\n'), ((2629, 2641), 'io.BytesIO', 'io.BytesIO', ([], {}), '()\n', (2639, 2641), False, 'import io\n'), ((2724, 2753), 'megengine.utils.comp_graph_tools.GraphInference', 'cgtools.GraphInference', (['model'], {}), '(model)\n', (2746, 2753), True, 'import megengine.utils.comp_graph_tools as cgtools\n'), ((2871, 2913), 'numpy.testing.assert_allclose', 'np.testing.assert_allclose', (['expect', 'actual'], {}), '(expect, actual)\n', (2897, 2913), True, 'import numpy as np\n'), ((522, 535), 'megengine.functional.zeros', 'F.zeros', (['(1,)'], {}), '((1,))\n', (529, 535), True, 'import megengine.functional as F\n'), ((553, 565), 'megengine.functional.ones', 'F.ones', (['(1,)'], {}), '((1,))\n', (559, 565), True, 'import megengine.functional as F\n'), ((907, 941), 'megengine.functional.broadcast_to', 'F.broadcast_to', (['self.I', 'quad.shape'], {}), '(self.I, quad.shape)\n', (921, 941), True, 'import megengine.functional as F\n'), ((954, 987), 'megengine.functional.broadcast_to', 'F.broadcast_to', (['self.A', '(N, 8, 8)'], {}), '(self.A, (N, 8, 8))\n', (968, 987), True, 'import megengine.functional as F\n'), ((1412, 1450), 'megengine.functional.warp_perspective', 'F.warp_perspective', (['data', 'M', '(48, 160)'], {}), '(data, M, (48, 160))\n', (1430, 1450), True, 'import megengine.functional as F\n'), ((1899, 1955), 'numpy.random.randint', 'np.random.randint', (['(0)', '(256)'], {'size': '(batch_size, 3, 48, 160)'}), '(0, 256, size=(batch_size, 3, 48, 160))\n', (1916, 1955), True, 'import numpy as np\n'), ((2185, 2226), 'numpy.random.normal', 'np.random.normal', ([], {'size': '(batch_size, 4, 2)'}), '(size=(batch_size, 4, 2))\n', (2201, 2226), True, 'import numpy as np\n'), ((2415, 2450), 'numpy.testing.assert_array_equal', 'np.testing.assert_array_equal', (['i', 'j'], {}), '(i, j)\n', (2444, 2450), True, 'import numpy as np\n'), ((2581, 2616), 'numpy.testing.assert_array_equal', 'np.testing.assert_array_equal', (['i', 'j'], {}), '(i, j)\n', (2610, 2616), True, 'import numpy as np\n'), ((612, 679), 'numpy.array', 'np.array', (['[[[0, 0], [160, 0], [160, 48], [0, 48]]]'], {'dtype': '"""float32"""'}), "([[[0, 0], [160, 0], [160, 48], [0, 48]]], dtype='float32')\n", (620, 679), True, 'import numpy as np\n'), ((844, 876), 'megengine.functional.repeat', 'F.repeat', (['self.bb_out', 'N'], {'axis': '(0)'}), '(self.bb_out, N, axis=0)\n', (852, 876), True, 'import megengine.functional as F\n'), ((1304, 1315), 'megengine.functional.matinv', 'F.matinv', (['A'], {}), '(A)\n', (1312, 1315), True, 'import megengine.functional as F\n')]
from sqlmodel import create_engine, Session from sqlmodel.main import SQLModel from core.config import settings engine = create_engine(settings.SQLALCHEMY_DATABASE_URI, pool_pre_ping=True) def init_db(): SQLModel.metadata.create_all(engine) def get_session(): with Session(engine) as session: yield session
[ "sqlmodel.main.SQLModel.metadata.create_all", "sqlmodel.Session", "sqlmodel.create_engine" ]
[((123, 190), 'sqlmodel.create_engine', 'create_engine', (['settings.SQLALCHEMY_DATABASE_URI'], {'pool_pre_ping': '(True)'}), '(settings.SQLALCHEMY_DATABASE_URI, pool_pre_ping=True)\n', (136, 190), False, 'from sqlmodel import create_engine, Session\n'), ((212, 248), 'sqlmodel.main.SQLModel.metadata.create_all', 'SQLModel.metadata.create_all', (['engine'], {}), '(engine)\n', (240, 248), False, 'from sqlmodel.main import SQLModel\n'), ((279, 294), 'sqlmodel.Session', 'Session', (['engine'], {}), '(engine)\n', (286, 294), False, 'from sqlmodel import create_engine, Session\n')]
from urllib.parse import urlparse from datetime import datetime import dramatiq from dramatiq.brokers.redis import RedisBroker from sqlmodel import Session from app.db import engine from app.models import Document, DocumentInput from app.predict import CategoryPrediction from app.settings import settings redis_parameters = urlparse(settings.redis_url) redis_broker = RedisBroker( host=redis_parameters.hostname, port=redis_parameters.port, username=redis_parameters.username, password=redis_parameters.password, # Heroku Redis with TLS use self-signed certs, so we need to tinker a bit ssl=redis_parameters.scheme == "rediss", ssl_cert_reqs=None, ) dramatiq.set_broker(redis_broker) category_prediction = CategoryPrediction() @dramatiq.actor def ingest_document(document_json: str): document = DocumentInput.parse_raw(document_json) with Session(engine) as session: document_db = session.get(Document, document.id) if document_db is None: document_db = Document(**document.dict()) else: document_dict = document.dict(exclude_unset=True) for key, value in document_dict.items(): setattr(document_db, key, value) document_db.category = category_prediction.predict(document_db.content) document_db.updated_at = datetime.utcnow() session.add(document_db) session.commit()
[ "sqlmodel.Session" ]
[((328, 356), 'urllib.parse.urlparse', 'urlparse', (['settings.redis_url'], {}), '(settings.redis_url)\n', (336, 356), False, 'from urllib.parse import urlparse\n'), ((372, 584), 'dramatiq.brokers.redis.RedisBroker', 'RedisBroker', ([], {'host': 'redis_parameters.hostname', 'port': 'redis_parameters.port', 'username': 'redis_parameters.username', 'password': 'redis_parameters.password', 'ssl': "(redis_parameters.scheme == 'rediss')", 'ssl_cert_reqs': 'None'}), "(host=redis_parameters.hostname, port=redis_parameters.port,\n username=redis_parameters.username, password=redis_parameters.password,\n ssl=redis_parameters.scheme == 'rediss', ssl_cert_reqs=None)\n", (383, 584), False, 'from dramatiq.brokers.redis import RedisBroker\n'), ((682, 715), 'dramatiq.set_broker', 'dramatiq.set_broker', (['redis_broker'], {}), '(redis_broker)\n', (701, 715), False, 'import dramatiq\n'), ((740, 760), 'app.predict.CategoryPrediction', 'CategoryPrediction', ([], {}), '()\n', (758, 760), False, 'from app.predict import CategoryPrediction\n'), ((835, 873), 'app.models.DocumentInput.parse_raw', 'DocumentInput.parse_raw', (['document_json'], {}), '(document_json)\n', (858, 873), False, 'from app.models import Document, DocumentInput\n'), ((883, 898), 'sqlmodel.Session', 'Session', (['engine'], {}), '(engine)\n', (890, 898), False, 'from sqlmodel import Session\n'), ((1346, 1363), 'datetime.datetime.utcnow', 'datetime.utcnow', ([], {}), '()\n', (1361, 1363), False, 'from datetime import datetime\n')]
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import numpy as np import pytest import megengine as mge import megengine.distributed as dist from megengine import tensor from megengine.distributed.functional import ( all_gather, all_to_all, gather, reduce_scatter_sum, scatter, ) from megengine.jit import trace @pytest.mark.require_ngpu(2) @pytest.mark.parametrize("shape", [(2, 3), (8, 10), (99, 77), (2, 2, 2, 2)], ids=str) @pytest.mark.parametrize("symbolic", [False, True], ids=str) @pytest.mark.parametrize("axis", [0, 1], ids=str) @pytest.mark.isolated_distributed def test_all_gather(shape, symbolic, axis): @dist.launcher(n_gpus=2) def worker(data, expect): rank = dist.get_rank() inp = tensor(data[rank]) def func(): output = all_gather(inp, axis=axis) return output func = trace(symbolic=symbolic)(func) output = func() assert np.allclose(output.numpy(), expect[rank]) x = np.random.random_sample(shape).astype("float32") y = np.random.random_sample(shape).astype("float32") z = np.concatenate((x, y), axis=axis) data = (x, y) expect = (z, z) worker(data, expect) @pytest.mark.require_ngpu(2) @pytest.mark.parametrize( "shape,symbolic", [((2, 4, 6, 8), False), ((2, 4, 6, 8), True)], ids=str ) @pytest.mark.parametrize("axis", [1, 0, 2, 3], ids=str) @pytest.mark.isolated_distributed def test_reduce_scatter_sum(shape, symbolic, axis): @dist.launcher(n_gpus=2) def worker(data, expect): rank = dist.get_rank() inp = tensor(data[rank]) def func(): output = reduce_scatter_sum(inp, axis=axis) return output func = trace(symbolic=symbolic)(func) output = func() assert np.allclose(output.numpy(), expect[rank]) x = np.random.random_sample(shape).astype("float32") y = np.random.random_sample(shape).astype("float32") z = x + y data = (x, y) z = np.split(z, 2, axis=axis) z = np.concatenate(z, axis=0) expect = (z[: z.shape[0] // 2], z[z.shape[0] // 2 :]) worker(data, expect) @pytest.mark.require_ngpu(2) @pytest.mark.parametrize( "shape,symbolic", [((2, 4, 6, 8), True), ((2, 4, 6, 8), False)], ids=str ) @pytest.mark.parametrize("axis", [1, 0, 2, 3], ids=str) @pytest.mark.isolated_distributed def test_scatter(shape, symbolic, axis): @dist.launcher(n_gpus=2) def worker(data, expect): rank = dist.get_rank() inp = tensor(data[rank]) def func(): output = scatter(inp, axis=axis) return output func = trace(symbolic=symbolic)(func) output = func() assert np.allclose(output.numpy(), expect[rank]) x = np.random.random_sample(shape).astype("float32") y = x + 1 data = (x, y) _x = np.split(x, 2, axis=axis) _x = np.concatenate(_x, axis=0) expect = (_x[: _x.shape[0] // 2], _x[_x.shape[0] // 2 :]) worker(data, expect) @pytest.mark.require_ngpu(2) @pytest.mark.parametrize("shape", [(2, 4, 6, 8)], ids=str) @pytest.mark.parametrize("symbolic", [False, True], ids=str) @pytest.mark.parametrize( "split_axis,concat_axis", [(0, 1), (1, 0), (2, 0), (0, 2), (2, 3)], ids=str ) @pytest.mark.isolated_distributed def test_all_to_all(shape, symbolic, split_axis, concat_axis): @dist.launcher(n_gpus=2) def worker(data): rank = dist.get_rank() inp = tensor(data[rank]) def func(): all_to_all_output = all_to_all( inp, split_axis=split_axis, concat_axis=concat_axis ) gather_C = gather(inp, axis=concat_axis) gather_B = gather(all_to_all_output, axis=split_axis) if rank == 0: return gather_B, gather_C return all_to_all_output func = trace(symbolic=symbolic)(func) ret = func() if rank == 0: assert np.allclose(ret[0], ret[1]) x = np.random.random_sample(shape).astype("float32") y = np.random.random_sample(shape).astype("float32") data = (x, y) worker(data)
[ "megengine.tensor", "megengine.distributed.functional.reduce_scatter_sum", "megengine.distributed.get_rank", "megengine.distributed.functional.all_gather", "megengine.distributed.functional.scatter", "megengine.distributed.functional.all_to_all", "megengine.jit.trace", "megengine.distributed.launcher", "megengine.distributed.functional.gather" ]
[((666, 693), 'pytest.mark.require_ngpu', 'pytest.mark.require_ngpu', (['(2)'], {}), '(2)\n', (690, 693), False, 'import pytest\n'), ((695, 783), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""shape"""', '[(2, 3), (8, 10), (99, 77), (2, 2, 2, 2)]'], {'ids': 'str'}), "('shape', [(2, 3), (8, 10), (99, 77), (2, 2, 2, 2)],\n ids=str)\n", (718, 783), False, 'import pytest\n'), ((781, 840), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""symbolic"""', '[False, True]'], {'ids': 'str'}), "('symbolic', [False, True], ids=str)\n", (804, 840), False, 'import pytest\n'), ((842, 890), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""axis"""', '[0, 1]'], {'ids': 'str'}), "('axis', [0, 1], ids=str)\n", (865, 890), False, 'import pytest\n'), ((1538, 1565), 'pytest.mark.require_ngpu', 'pytest.mark.require_ngpu', (['(2)'], {}), '(2)\n', (1562, 1565), False, 'import pytest\n'), ((1567, 1668), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""shape,symbolic"""', '[((2, 4, 6, 8), False), ((2, 4, 6, 8), True)]'], {'ids': 'str'}), "('shape,symbolic', [((2, 4, 6, 8), False), ((2, 4, 6,\n 8), True)], ids=str)\n", (1590, 1668), False, 'import pytest\n'), ((1672, 1726), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""axis"""', '[1, 0, 2, 3]'], {'ids': 'str'}), "('axis', [1, 0, 2, 3], ids=str)\n", (1695, 1726), False, 'import pytest\n'), ((2468, 2495), 'pytest.mark.require_ngpu', 'pytest.mark.require_ngpu', (['(2)'], {}), '(2)\n', (2492, 2495), False, 'import pytest\n'), ((2497, 2598), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""shape,symbolic"""', '[((2, 4, 6, 8), True), ((2, 4, 6, 8), False)]'], {'ids': 'str'}), "('shape,symbolic', [((2, 4, 6, 8), True), ((2, 4, 6,\n 8), False)], ids=str)\n", (2520, 2598), False, 'import pytest\n'), ((2602, 2656), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""axis"""', '[1, 0, 2, 3]'], {'ids': 'str'}), "('axis', [1, 0, 2, 3], ids=str)\n", (2625, 2656), False, 'import pytest\n'), ((3326, 3353), 'pytest.mark.require_ngpu', 'pytest.mark.require_ngpu', (['(2)'], {}), '(2)\n', (3350, 3353), False, 'import pytest\n'), ((3355, 3412), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""shape"""', '[(2, 4, 6, 8)]'], {'ids': 'str'}), "('shape', [(2, 4, 6, 8)], ids=str)\n", (3378, 3412), False, 'import pytest\n'), ((3414, 3473), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""symbolic"""', '[False, True]'], {'ids': 'str'}), "('symbolic', [False, True], ids=str)\n", (3437, 3473), False, 'import pytest\n'), ((3475, 3579), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""split_axis,concat_axis"""', '[(0, 1), (1, 0), (2, 0), (0, 2), (2, 3)]'], {'ids': 'str'}), "('split_axis,concat_axis', [(0, 1), (1, 0), (2, 0),\n (0, 2), (2, 3)], ids=str)\n", (3498, 3579), False, 'import pytest\n'), ((974, 997), 'megengine.distributed.launcher', 'dist.launcher', ([], {'n_gpus': '(2)'}), '(n_gpus=2)\n', (987, 997), True, 'import megengine.distributed as dist\n'), ((1438, 1471), 'numpy.concatenate', 'np.concatenate', (['(x, y)'], {'axis': 'axis'}), '((x, y), axis=axis)\n', (1452, 1471), True, 'import numpy as np\n'), ((1818, 1841), 'megengine.distributed.launcher', 'dist.launcher', ([], {'n_gpus': '(2)'}), '(n_gpus=2)\n', (1831, 1841), True, 'import megengine.distributed as dist\n'), ((2322, 2347), 'numpy.split', 'np.split', (['z', '(2)'], {'axis': 'axis'}), '(z, 2, axis=axis)\n', (2330, 2347), True, 'import numpy as np\n'), ((2356, 2381), 'numpy.concatenate', 'np.concatenate', (['z'], {'axis': '(0)'}), '(z, axis=0)\n', (2370, 2381), True, 'import numpy as np\n'), ((2737, 2760), 'megengine.distributed.launcher', 'dist.launcher', ([], {'n_gpus': '(2)'}), '(n_gpus=2)\n', (2750, 2760), True, 'import megengine.distributed as dist\n'), ((3174, 3199), 'numpy.split', 'np.split', (['x', '(2)'], {'axis': 'axis'}), '(x, 2, axis=axis)\n', (3182, 3199), True, 'import numpy as np\n'), ((3209, 3235), 'numpy.concatenate', 'np.concatenate', (['_x'], {'axis': '(0)'}), '(_x, axis=0)\n', (3223, 3235), True, 'import numpy as np\n'), ((3684, 3707), 'megengine.distributed.launcher', 'dist.launcher', ([], {'n_gpus': '(2)'}), '(n_gpus=2)\n', (3697, 3707), True, 'import megengine.distributed as dist\n'), ((1043, 1058), 'megengine.distributed.get_rank', 'dist.get_rank', ([], {}), '()\n', (1056, 1058), True, 'import megengine.distributed as dist\n'), ((1073, 1091), 'megengine.tensor', 'tensor', (['data[rank]'], {}), '(data[rank])\n', (1079, 1091), False, 'from megengine import tensor\n'), ((1887, 1902), 'megengine.distributed.get_rank', 'dist.get_rank', ([], {}), '()\n', (1900, 1902), True, 'import megengine.distributed as dist\n'), ((1917, 1935), 'megengine.tensor', 'tensor', (['data[rank]'], {}), '(data[rank])\n', (1923, 1935), False, 'from megengine import tensor\n'), ((2806, 2821), 'megengine.distributed.get_rank', 'dist.get_rank', ([], {}), '()\n', (2819, 2821), True, 'import megengine.distributed as dist\n'), ((2836, 2854), 'megengine.tensor', 'tensor', (['data[rank]'], {}), '(data[rank])\n', (2842, 2854), False, 'from megengine import tensor\n'), ((3745, 3760), 'megengine.distributed.get_rank', 'dist.get_rank', ([], {}), '()\n', (3758, 3760), True, 'import megengine.distributed as dist\n'), ((3775, 3793), 'megengine.tensor', 'tensor', (['data[rank]'], {}), '(data[rank])\n', (3781, 3793), False, 'from megengine import tensor\n'), ((1134, 1160), 'megengine.distributed.functional.all_gather', 'all_gather', (['inp'], {'axis': 'axis'}), '(inp, axis=axis)\n', (1144, 1160), False, 'from megengine.distributed.functional import all_gather, all_to_all, gather, reduce_scatter_sum, scatter\n'), ((1203, 1227), 'megengine.jit.trace', 'trace', ([], {'symbolic': 'symbolic'}), '(symbolic=symbolic)\n', (1208, 1227), False, 'from megengine.jit import trace\n'), ((1324, 1354), 'numpy.random.random_sample', 'np.random.random_sample', (['shape'], {}), '(shape)\n', (1347, 1354), True, 'import numpy as np\n'), ((1381, 1411), 'numpy.random.random_sample', 'np.random.random_sample', (['shape'], {}), '(shape)\n', (1404, 1411), True, 'import numpy as np\n'), ((1978, 2012), 'megengine.distributed.functional.reduce_scatter_sum', 'reduce_scatter_sum', (['inp'], {'axis': 'axis'}), '(inp, axis=axis)\n', (1996, 2012), False, 'from megengine.distributed.functional import all_gather, all_to_all, gather, reduce_scatter_sum, scatter\n'), ((2055, 2079), 'megengine.jit.trace', 'trace', ([], {'symbolic': 'symbolic'}), '(symbolic=symbolic)\n', (2060, 2079), False, 'from megengine.jit import trace\n'), ((2176, 2206), 'numpy.random.random_sample', 'np.random.random_sample', (['shape'], {}), '(shape)\n', (2199, 2206), True, 'import numpy as np\n'), ((2233, 2263), 'numpy.random.random_sample', 'np.random.random_sample', (['shape'], {}), '(shape)\n', (2256, 2263), True, 'import numpy as np\n'), ((2897, 2920), 'megengine.distributed.functional.scatter', 'scatter', (['inp'], {'axis': 'axis'}), '(inp, axis=axis)\n', (2904, 2920), False, 'from megengine.distributed.functional import all_gather, all_to_all, gather, reduce_scatter_sum, scatter\n'), ((2963, 2987), 'megengine.jit.trace', 'trace', ([], {'symbolic': 'symbolic'}), '(symbolic=symbolic)\n', (2968, 2987), False, 'from megengine.jit import trace\n'), ((3084, 3114), 'numpy.random.random_sample', 'np.random.random_sample', (['shape'], {}), '(shape)\n', (3107, 3114), True, 'import numpy as np\n'), ((3847, 3910), 'megengine.distributed.functional.all_to_all', 'all_to_all', (['inp'], {'split_axis': 'split_axis', 'concat_axis': 'concat_axis'}), '(inp, split_axis=split_axis, concat_axis=concat_axis)\n', (3857, 3910), False, 'from megengine.distributed.functional import all_gather, all_to_all, gather, reduce_scatter_sum, scatter\n'), ((3964, 3993), 'megengine.distributed.functional.gather', 'gather', (['inp'], {'axis': 'concat_axis'}), '(inp, axis=concat_axis)\n', (3970, 3993), False, 'from megengine.distributed.functional import all_gather, all_to_all, gather, reduce_scatter_sum, scatter\n'), ((4017, 4059), 'megengine.distributed.functional.gather', 'gather', (['all_to_all_output'], {'axis': 'split_axis'}), '(all_to_all_output, axis=split_axis)\n', (4023, 4059), False, 'from megengine.distributed.functional import all_gather, all_to_all, gather, reduce_scatter_sum, scatter\n'), ((4181, 4205), 'megengine.jit.trace', 'trace', ([], {'symbolic': 'symbolic'}), '(symbolic=symbolic)\n', (4186, 4205), False, 'from megengine.jit import trace\n'), ((4274, 4301), 'numpy.allclose', 'np.allclose', (['ret[0]', 'ret[1]'], {}), '(ret[0], ret[1])\n', (4285, 4301), True, 'import numpy as np\n'), ((4311, 4341), 'numpy.random.random_sample', 'np.random.random_sample', (['shape'], {}), '(shape)\n', (4334, 4341), True, 'import numpy as np\n'), ((4368, 4398), 'numpy.random.random_sample', 'np.random.random_sample', (['shape'], {}), '(shape)\n', (4391, 4398), True, 'import numpy as np\n')]
from create_db import Student from sqlmodel import Session, create_engine student_1 = Student(id=1, first_name="Misal", last_name="Gupta", email="<EMAIL>") student_2 = Student(id=2, first_name="Vivek", last_name="Kumar", email="<EMAIL>") student_3 = Student(id=3, first_name="Himesh", last_name="Mahto", email="<EMAIL>") sqlite_url = "sqlite:///school.db" engine = create_engine(sqlite_url, echo=True) session = Session(engine) session.add(student_1) session.add(student_2) session.add(student_3) session.commit() session.close()
[ "sqlmodel.Session", "sqlmodel.create_engine" ]
[((87, 156), 'create_db.Student', 'Student', ([], {'id': '(1)', 'first_name': '"""Misal"""', 'last_name': '"""Gupta"""', 'email': '"""<EMAIL>"""'}), "(id=1, first_name='Misal', last_name='Gupta', email='<EMAIL>')\n", (94, 156), False, 'from create_db import Student\n'), ((169, 238), 'create_db.Student', 'Student', ([], {'id': '(2)', 'first_name': '"""Vivek"""', 'last_name': '"""Kumar"""', 'email': '"""<EMAIL>"""'}), "(id=2, first_name='Vivek', last_name='Kumar', email='<EMAIL>')\n", (176, 238), False, 'from create_db import Student\n'), ((251, 321), 'create_db.Student', 'Student', ([], {'id': '(3)', 'first_name': '"""Himesh"""', 'last_name': '"""Mahto"""', 'email': '"""<EMAIL>"""'}), "(id=3, first_name='Himesh', last_name='Mahto', email='<EMAIL>')\n", (258, 321), False, 'from create_db import Student\n'), ((367, 403), 'sqlmodel.create_engine', 'create_engine', (['sqlite_url'], {'echo': '(True)'}), '(sqlite_url, echo=True)\n', (380, 403), False, 'from sqlmodel import Session, create_engine\n'), ((414, 429), 'sqlmodel.Session', 'Session', (['engine'], {}), '(engine)\n', (421, 429), False, 'from sqlmodel import Session, create_engine\n')]
import asyncio import os from decimal import Decimal from typing import Optional from pydantic import condecimal from sqlalchemy.ext.asyncio import AsyncSession, create_async_engine from sqlmodel import Field, SQLModel, select class Restaurant(SQLModel, table=True): id: int = Field(default=None, primary_key=True) name: str = Field(index=True) address: str currency: str class MenuItem(SQLModel, table=True): id: int = Field(default=None, primary_key=True) name: str price: condecimal(decimal_places=2) restaurant_id: Optional[int] = Field(default=None, foreign_key="restaurant.id") async def main() -> None: db_url = os.environ.get("RESTAURANT_DB_URL", "sqlite+aiosqlite:///my_db") db_engine = create_async_engine(db_url) async with db_engine.begin() as conn: await conn.run_sync(SQLModel.metadata.create_all) async with AsyncSession(db_engine, expire_on_commit=False) as session: # Writing restaurant = Restaurant( name="Second best Pizza in town", address="Foo street 1", currency="EUR" ) session.add(restaurant) await session.commit() pizza1 = MenuItem(name="Margherita", price=10.50, restaurant_id=restaurant.id) pizza2 = MenuItem(name="2xPineapple", price=16.80, restaurant_id=restaurant.id) session.add_all((pizza1, pizza2)) await session.commit() # Reading query = ( select(MenuItem) .join(Restaurant) .where(Restaurant.name == "Second best Pizza in town") ) result = await session.execute(query) menu_items = result.scalars().all() assert len(menu_items) == 2 assert menu_items[0] == MenuItem( id=1, name="Margherita", price=Decimal("10.50"), restaurant_id=restaurant.id ) if __name__ == "__main__": asyncio.run(main())
[ "sqlmodel.select", "sqlmodel.Field" ]
[((284, 321), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'primary_key': '(True)'}), '(default=None, primary_key=True)\n', (289, 321), False, 'from sqlmodel import Field, SQLModel, select\n'), ((338, 355), 'sqlmodel.Field', 'Field', ([], {'index': '(True)'}), '(index=True)\n', (343, 355), False, 'from sqlmodel import Field, SQLModel, select\n'), ((445, 482), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'primary_key': '(True)'}), '(default=None, primary_key=True)\n', (450, 482), False, 'from sqlmodel import Field, SQLModel, select\n'), ((508, 536), 'pydantic.condecimal', 'condecimal', ([], {'decimal_places': '(2)'}), '(decimal_places=2)\n', (518, 536), False, 'from pydantic import condecimal\n'), ((573, 621), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'foreign_key': '"""restaurant.id"""'}), "(default=None, foreign_key='restaurant.id')\n", (578, 621), False, 'from sqlmodel import Field, SQLModel, select\n'), ((663, 727), 'os.environ.get', 'os.environ.get', (['"""RESTAURANT_DB_URL"""', '"""sqlite+aiosqlite:///my_db"""'], {}), "('RESTAURANT_DB_URL', 'sqlite+aiosqlite:///my_db')\n", (677, 727), False, 'import os\n'), ((744, 771), 'sqlalchemy.ext.asyncio.create_async_engine', 'create_async_engine', (['db_url'], {}), '(db_url)\n', (763, 771), False, 'from sqlalchemy.ext.asyncio import AsyncSession, create_async_engine\n'), ((888, 935), 'sqlalchemy.ext.asyncio.AsyncSession', 'AsyncSession', (['db_engine'], {'expire_on_commit': '(False)'}), '(db_engine, expire_on_commit=False)\n', (900, 935), False, 'from sqlalchemy.ext.asyncio import AsyncSession, create_async_engine\n'), ((1791, 1807), 'decimal.Decimal', 'Decimal', (['"""10.50"""'], {}), "('10.50')\n", (1798, 1807), False, 'from decimal import Decimal\n'), ((1455, 1471), 'sqlmodel.select', 'select', (['MenuItem'], {}), '(MenuItem)\n', (1461, 1471), False, 'from sqlmodel import Field, SQLModel, select\n')]
# Copyright (c) Megvii, Inc. and its affiliates. """do the evaluation work with single gpu """ import argparse import os import megengine as mge import megengine.data as data import megengine.data.transform as T import megengine.functional as F import numpy as np from tqdm.auto import tqdm from recognition.datasets import get_eval_dataset from recognition.models import FaceRecognitionModel from recognition.tools.utils import load_config_from_path logger = mge.get_logger(__name__) def get_inference_func(configs): """load checkpoint and construct inference function Args: configs (dict): configuration, required fields include: base_dir: base directory of experiment outputs evaluate_epoch: model of evaluate_epoch to evaluate Raises: FileNotFoundError: model of given epoch is not found Returns: inference_func (function): inference function mapping image to embedding """ model = FaceRecognitionModel(configs) evaluate_epoch = configs["evaluate_epoch"] checkpoint_path = os.path.join(configs["base_dir"], f"epoch-{evaluate_epoch}-checkpoint.pkl") if os.path.exists(checkpoint_path): checkpoint_data = mge.load(checkpoint_path) model.load_state_dict(checkpoint_data["state_dict"], strict=False) else: raise FileNotFoundError(f"{checkpoint_path} not found!!!") def inference_func(images): model.eval() # classic test-time mirror augment embedding_origin = model.forward_embedding_only(images) embedding_mirror = model.forward_embedding_only(images[:, :, :, ::-1]) embedding = embedding_origin + embedding_mirror embedding = F.normalize(embedding, axis=1) return embedding return inference_func def extract_feature_and_clean_noise(configs, inference_func): """extract feature and clean noise. the noise cleaning algorithm is proposed in `"ArcFace: Additive Angular Margin Loss for Deep Face Recognition" <https://arxiv.org/pdf/1801.07698.pdf>`_ please refer to https://github.com/deepinsight/insightface/blob/master/Evaluation/Megaface/remove_noises.py for more detail. this implement does basicly the same thing as the above, but with much higher speed Args: configs (dict): configuration, required fields include: batch_size: inference batch size feature_dim: model output feature dimension base_dir: base directory of experiment outputs dataset_dir: directory of dataset root inference_func (function): constructed inference function Returns: facescrub_feature (np.array): noise-cleaned feature of facescrub (shape: n * (feature_dim + 1)) facescrub_label (np.array): label of facescrub (shape: n) megaface_feature (np.array): noise-cleaned feature of megaface (shape: m * (feature_dim + 1)) """ def prepare_dataset(name): """prepare dataset Args: name (str): name of the dataset, should be one of {facescrub, megaface} Returns: dataset (data.Dataset): required dataset queue (data.DataLoader): corresponding dataloader """ preprocess = T.Compose([T.Normalize(mean=127.5, std=128), T.ToMode("CHW")]) dataset = get_eval_dataset(name, dataset_dir=configs["dataset_dir"]) sampler = data.SequentialSampler(dataset, batch_size=configs["batch_size"]) queue = data.DataLoader(dataset, sampler=sampler, transform=preprocess) return dataset, queue def extract_vanilla_feature(n, data_queue): """extract features without any postprocessing Args: n (int): size of dataset data_queue (data.DataLoader): dataloader to extract feature Returns: feature_store (np.array): extracted feature (shape: n * feature_dim) label (np.array): label of this instance, -1 if unknown (shape: n) is_noise (np.array): whether this instance is a noise (shape: n) """ feature_store = np.zeros((n, configs["feature_dim"]), dtype="float32") label_store = np.zeros(n, dtype="int32") is_noise_store = np.zeros(n, dtype="bool") for images, indice, labels, is_noise in tqdm(data_queue): images = mge.tensor(images, dtype="float32") embedding = inference_func(images) embedding = embedding.numpy() feature_store[indice] = embedding label_store[indice] = labels is_noise_store[indice] = is_noise return feature_store, label_store, is_noise_store # prepare facescrub dataset logger.info("preparing facescrub dataset...") facescrub_dataset, facescrub_queue = prepare_dataset("facescrub") # extract facescrub feature logger.info("extracting facescrub...") facescrub_feature_store, facescrub_label, facescrub_is_noise = extract_vanilla_feature( n=len(facescrub_dataset), data_queue=facescrub_queue ) # prepare megaface dataset logger.info("preparing megaface dataset...") megaface_dataset, megaface_queue = prepare_dataset("megaface") # extract feature for megaface logger.info("extracting megaface...") megaface_feature_store, _, megaface_is_noise = extract_vanilla_feature( n=len(megaface_dataset), data_queue=megaface_queue ) # parse facescrub noise, replace noisy feature with class center of same person facescrub_feature_center = np.zeros((facescrub_dataset.num_class, configs["feature_dim"]), dtype="float32") for i in range(facescrub_dataset.num_class): mask = (facescrub_label == i) & (~facescrub_is_noise) center = facescrub_feature_store[mask].sum(axis=0) center = center / np.linalg.norm(center) facescrub_feature_center[i] = center for index in np.where(facescrub_is_noise)[0]: center = facescrub_feature_center[facescrub_label[index]] disturb = np.random.uniform(-1e-5, 1e-5, (configs["feature_dim"],)) feat = center + disturb # avoid identical features with minor disturb feat = feat / np.linalg.norm(feat) facescrub_feature_store[index] = feat # extend feature by 1 dimension # the extended feature is infinitly large (100) if and only if megaface noise, 0 otherwise # so, the distance between probe and a noisy distractor is infinitly large, while other distances remain unchanged facescrub_feature_extend = np.zeros((len(facescrub_dataset), 1), dtype="float32") facescrub_feature = np.concatenate([facescrub_feature_store, facescrub_feature_extend], axis=1) megaface_feature_extend = megaface_is_noise.astype("float32").reshape(-1, 1) * 100 megaface_feature = np.concatenate([megaface_feature_store, megaface_feature_extend], axis=1) # write to file system facescrub_feature_path = os.path.join(configs["base_dir"], "facescrub.npy") np.save(facescrub_feature_path, facescrub_feature) facescrub_label_path = os.path.join(configs["base_dir"], "facescrub_label.npy") np.save(facescrub_label_path, facescrub_label) megaface_feature_path = os.path.join(configs["base_dir"], "megaface.npy") np.save(megaface_feature_path, megaface_feature) return facescrub_feature, facescrub_label, megaface_feature def calculate_score(configs, facescrub, labels, megaface): """calculate megaface identification top1 score. this evaluation implement strictly follows the description of `"The MegaFace Benchmark: 1 Million Faces for Recognition at Scale" <https://arxiv.org/pdf/1512.00596.pdf>`_ this implement outputs exactly the same as dev-sdk provided by the official, but with much higher speed Args: configs (dict): configuration facescrub (np.array): feature of facescrub labels (np.array): label of facescrub megaface (np.array): feature of megaface Returns: megaface_score (float): top1 score of megaface """ facescrub = mge.tensor(facescrub, dtype="float32") megaface = mge.tensor(megaface, dtype="float32") # note: (x - y) ** 2 = x ** 2 + y ** 2 - 2 * x * y # facescrub_score[i][j] = l2-dist(facescrub[i], facescrub[j]) facescrub_score = ( (facescrub ** 2).sum(axis=-1, keepdims=True) + (facescrub ** 2).sum(axis=-1, keepdims=True).transpose(1, 0) - 2 * F.matmul(facescrub, facescrub.transpose(1, 0)) ) facescrub_score = facescrub_score.numpy() def get_score_min_megaface(x): distr_score = (x ** 2).sum(axis=-1) + (megaface ** 2).sum(axis=-1) - 2 * (x * megaface).sum(axis=-1) return distr_score.min() up, down = 0, 0 for probe_i in tqdm(range(len(facescrub))): distr_score_min = get_score_min_megaface(facescrub[probe_i]).numpy() mask = (labels == labels[probe_i]) & (np.arange(len(facescrub)) != probe_i) for probe_j in np.where(mask)[0]: probe_score = facescrub_score[probe_i][probe_j] up += probe_score < distr_score_min down += 1 megaface_score = up / down * 100 return megaface_score def main(args): configs = load_config_from_path(args.config_file) configs["evaluate_epoch"] = args.epoch if args.epoch is not None else configs["num_epoch"] # write log to worklog.txt os.makedirs(configs["base_dir"], exist_ok=True) worklog_path = os.path.join(configs["base_dir"], "worklog.txt") mge.set_log_file(worklog_path) inference_func = get_inference_func(configs) facescrub_feature, facescrub_label, megaface_feature = extract_feature_and_clean_noise(configs, inference_func) megaface_score = calculate_score(configs, facescrub_feature, facescrub_label, megaface_feature) logger.info("Epoch: %d", configs["evaluate_epoch"]) logger.info("MegaFace Top1: %.2f", megaface_score) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("-f", "--config-file", help="path to experiment configuration", required=True) parser.add_argument( "-e", "--epoch", help="model of num epoch to evaluate (default: num_epoch)", default=None, type=int ) args = parser.parse_args() main(args)
[ "megengine.functional.normalize", "megengine.data.DataLoader", "megengine.load", "megengine.tensor", "megengine.data.SequentialSampler", "megengine.get_logger", "megengine.set_log_file", "megengine.data.transform.Normalize", "megengine.data.transform.ToMode" ]
[((464, 488), 'megengine.get_logger', 'mge.get_logger', (['__name__'], {}), '(__name__)\n', (478, 488), True, 'import megengine as mge\n'), ((967, 996), 'recognition.models.FaceRecognitionModel', 'FaceRecognitionModel', (['configs'], {}), '(configs)\n', (987, 996), False, 'from recognition.models import FaceRecognitionModel\n'), ((1066, 1141), 'os.path.join', 'os.path.join', (["configs['base_dir']", 'f"""epoch-{evaluate_epoch}-checkpoint.pkl"""'], {}), "(configs['base_dir'], f'epoch-{evaluate_epoch}-checkpoint.pkl')\n", (1078, 1141), False, 'import os\n'), ((1149, 1180), 'os.path.exists', 'os.path.exists', (['checkpoint_path'], {}), '(checkpoint_path)\n', (1163, 1180), False, 'import os\n'), ((5515, 5600), 'numpy.zeros', 'np.zeros', (["(facescrub_dataset.num_class, configs['feature_dim'])"], {'dtype': '"""float32"""'}), "((facescrub_dataset.num_class, configs['feature_dim']), dtype='float32'\n )\n", (5523, 5600), True, 'import numpy as np\n'), ((6581, 6656), 'numpy.concatenate', 'np.concatenate', (['[facescrub_feature_store, facescrub_feature_extend]'], {'axis': '(1)'}), '([facescrub_feature_store, facescrub_feature_extend], axis=1)\n', (6595, 6656), True, 'import numpy as np\n'), ((6767, 6840), 'numpy.concatenate', 'np.concatenate', (['[megaface_feature_store, megaface_feature_extend]'], {'axis': '(1)'}), '([megaface_feature_store, megaface_feature_extend], axis=1)\n', (6781, 6840), True, 'import numpy as np\n'), ((6898, 6948), 'os.path.join', 'os.path.join', (["configs['base_dir']", '"""facescrub.npy"""'], {}), "(configs['base_dir'], 'facescrub.npy')\n", (6910, 6948), False, 'import os\n'), ((6953, 7003), 'numpy.save', 'np.save', (['facescrub_feature_path', 'facescrub_feature'], {}), '(facescrub_feature_path, facescrub_feature)\n', (6960, 7003), True, 'import numpy as np\n'), ((7031, 7087), 'os.path.join', 'os.path.join', (["configs['base_dir']", '"""facescrub_label.npy"""'], {}), "(configs['base_dir'], 'facescrub_label.npy')\n", (7043, 7087), False, 'import os\n'), ((7092, 7138), 'numpy.save', 'np.save', (['facescrub_label_path', 'facescrub_label'], {}), '(facescrub_label_path, facescrub_label)\n', (7099, 7138), True, 'import numpy as np\n'), ((7167, 7216), 'os.path.join', 'os.path.join', (["configs['base_dir']", '"""megaface.npy"""'], {}), "(configs['base_dir'], 'megaface.npy')\n", (7179, 7216), False, 'import os\n'), ((7221, 7269), 'numpy.save', 'np.save', (['megaface_feature_path', 'megaface_feature'], {}), '(megaface_feature_path, megaface_feature)\n', (7228, 7269), True, 'import numpy as np\n'), ((8020, 8058), 'megengine.tensor', 'mge.tensor', (['facescrub'], {'dtype': '"""float32"""'}), "(facescrub, dtype='float32')\n", (8030, 8058), True, 'import megengine as mge\n'), ((8074, 8111), 'megengine.tensor', 'mge.tensor', (['megaface'], {'dtype': '"""float32"""'}), "(megaface, dtype='float32')\n", (8084, 8111), True, 'import megengine as mge\n'), ((9171, 9210), 'recognition.tools.utils.load_config_from_path', 'load_config_from_path', (['args.config_file'], {}), '(args.config_file)\n', (9192, 9210), False, 'from recognition.tools.utils import load_config_from_path\n'), ((9343, 9390), 'os.makedirs', 'os.makedirs', (["configs['base_dir']"], {'exist_ok': '(True)'}), "(configs['base_dir'], exist_ok=True)\n", (9354, 9390), False, 'import os\n'), ((9410, 9458), 'os.path.join', 'os.path.join', (["configs['base_dir']", '"""worklog.txt"""'], {}), "(configs['base_dir'], 'worklog.txt')\n", (9422, 9458), False, 'import os\n'), ((9463, 9493), 'megengine.set_log_file', 'mge.set_log_file', (['worklog_path'], {}), '(worklog_path)\n', (9479, 9493), True, 'import megengine as mge\n'), ((9914, 9939), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (9937, 9939), False, 'import argparse\n'), ((1208, 1233), 'megengine.load', 'mge.load', (['checkpoint_path'], {}), '(checkpoint_path)\n', (1216, 1233), True, 'import megengine as mge\n'), ((1702, 1732), 'megengine.functional.normalize', 'F.normalize', (['embedding'], {'axis': '(1)'}), '(embedding, axis=1)\n', (1713, 1732), True, 'import megengine.functional as F\n'), ((3313, 3371), 'recognition.datasets.get_eval_dataset', 'get_eval_dataset', (['name'], {'dataset_dir': "configs['dataset_dir']"}), "(name, dataset_dir=configs['dataset_dir'])\n", (3329, 3371), False, 'from recognition.datasets import get_eval_dataset\n'), ((3390, 3455), 'megengine.data.SequentialSampler', 'data.SequentialSampler', (['dataset'], {'batch_size': "configs['batch_size']"}), "(dataset, batch_size=configs['batch_size'])\n", (3412, 3455), True, 'import megengine.data as data\n'), ((3472, 3535), 'megengine.data.DataLoader', 'data.DataLoader', (['dataset'], {'sampler': 'sampler', 'transform': 'preprocess'}), '(dataset, sampler=sampler, transform=preprocess)\n', (3487, 3535), True, 'import megengine.data as data\n'), ((4085, 4139), 'numpy.zeros', 'np.zeros', (["(n, configs['feature_dim'])"], {'dtype': '"""float32"""'}), "((n, configs['feature_dim']), dtype='float32')\n", (4093, 4139), True, 'import numpy as np\n'), ((4162, 4188), 'numpy.zeros', 'np.zeros', (['n'], {'dtype': '"""int32"""'}), "(n, dtype='int32')\n", (4170, 4188), True, 'import numpy as np\n'), ((4214, 4239), 'numpy.zeros', 'np.zeros', (['n'], {'dtype': '"""bool"""'}), "(n, dtype='bool')\n", (4222, 4239), True, 'import numpy as np\n'), ((4288, 4304), 'tqdm.auto.tqdm', 'tqdm', (['data_queue'], {}), '(data_queue)\n', (4292, 4304), False, 'from tqdm.auto import tqdm\n'), ((5877, 5905), 'numpy.where', 'np.where', (['facescrub_is_noise'], {}), '(facescrub_is_noise)\n', (5885, 5905), True, 'import numpy as np\n'), ((5994, 6053), 'numpy.random.uniform', 'np.random.uniform', (['(-1e-05)', '(1e-05)', "(configs['feature_dim'],)"], {}), "(-1e-05, 1e-05, (configs['feature_dim'],))\n", (6011, 6053), True, 'import numpy as np\n'), ((4327, 4362), 'megengine.tensor', 'mge.tensor', (['images'], {'dtype': '"""float32"""'}), "(images, dtype='float32')\n", (4337, 4362), True, 'import megengine as mge\n'), ((5792, 5814), 'numpy.linalg.norm', 'np.linalg.norm', (['center'], {}), '(center)\n', (5806, 5814), True, 'import numpy as np\n'), ((6153, 6173), 'numpy.linalg.norm', 'np.linalg.norm', (['feat'], {}), '(feat)\n', (6167, 6173), True, 'import numpy as np\n'), ((8926, 8940), 'numpy.where', 'np.where', (['mask'], {}), '(mask)\n', (8934, 8940), True, 'import numpy as np\n'), ((3243, 3275), 'megengine.data.transform.Normalize', 'T.Normalize', ([], {'mean': '(127.5)', 'std': '(128)'}), '(mean=127.5, std=128)\n', (3254, 3275), True, 'import megengine.data.transform as T\n'), ((3277, 3292), 'megengine.data.transform.ToMode', 'T.ToMode', (['"""CHW"""'], {}), "('CHW')\n", (3285, 3292), True, 'import megengine.data.transform as T\n')]
from typing import Optional, List import sqlalchemy from sqlmodel import SQLModel, Field, Relationship from datetime import date, datetime # ############################################################################# # Links class ListingFacilityLink(SQLModel, table=True): listing_id: int = Field( foreign_key="listings.id", primary_key=True ) facility_id: int = Field( foreign_key="facilities.id", primary_key=True ) # ############################################################################# class SongBase(SQLModel): id: Optional[int] name: str artist: str year: Optional[int] = None class Song(SongBase, table=True): id: int = Field(primary_key=True) created_at: datetime = Field(default=datetime.now()) updated_at: datetime = Field(default=datetime.now(), sa_column_kwargs={'onupdate': datetime.now()}) class SongRead(SongBase): id: int created_at: datetime updated_at: datetime class SongUpdate(SQLModel): name: Optional[str] = None artist: Optional[str] = None year: Optional[int] = None class SongCreate(SongBase): pass class Increment(SQLModel, table=True): id: int = Field(primary_key=True) # ############################################################################# class ListingBase(SQLModel): id: int = Field(primary_key=True) is_active: bool title: Optional[str] = None description: Optional[str] = None url: str source: str source_id: str source_code: Optional[str] = None address: str short_postal_code: Optional[str] = None property_type: Optional[str] = None postal_code: Optional[str] = None ber_code: Optional[str] = None views: Optional[int] = None bedrooms: Optional[int] = None bathrooms: Optional[int] = None price: Optional[int] = None rating_auto: Optional[int] = None rating_user: Optional[int] = None telegram_sent_at: Optional[datetime] = None images_count: Optional[int] = 0 latitude: Optional[float] = None longitude: Optional[float] = None notes: Optional[str] = None publish_date: Optional[datetime] = None last_updated: Optional[datetime] = None class Listing(ListingBase, table=True): __tablename__ = 'listings' id: int = Field(primary_key=True) created_at: datetime = Field(default=datetime.now()) updated_at: datetime = Field(default=datetime.now(), sa_column_kwargs={'onupdate': datetime.now()}) images: List["Image"] = Relationship(back_populates="listing", # sa_relationship_kwargs={'lazy': 'joined'} ) facilities: List["Facility"] = Relationship(link_model=ListingFacilityLink) places_nearby: List["PlaceNearby"] = Relationship( back_populates="listing",) routes: List["Route"] = Relationship(back_populates="listing",) class ListingRead(ListingBase): id: str created_at: datetime updated_at: datetime class ListingCreate(ListingBase): pass class ListingUpdate(ListingBase): id: Optional[str] is_active: Optional[bool] url: Optional[str] source: Optional[str] source_id: Optional[str] address: Optional[str] # ############################################################################# class FacilityBase(SQLModel): id: Optional[int] name: str category: Optional[str] = None notes: Optional[str] = None class Facility(FacilityBase, table=True): __tablename__ = 'facilities' id: int = Field(primary_key=True) created_at: datetime = Field(default=datetime.now()) updated_at: datetime = Field(default=datetime.now(), sa_column_kwargs={'onupdate': datetime.now()}) class FacilityRead(FacilityBase): id: int created_at: datetime updated_at: datetime class FacilityCreate(FacilityBase): pass # ############################################################################# class ImageBase(SQLModel): id: Optional[int] url: str url_600: Optional[str] size_x: Optional[float] size_y: Optional[float] listing_id: Optional[int] = Field(default=None, foreign_key="listings.id") class Image(ImageBase, table=True): __tablename__ = 'images' id: int = Field(primary_key=True) created_at: datetime = Field(default=datetime.now()) updated_at: datetime = Field(default=datetime.now(), sa_column_kwargs={'onupdate': datetime.now()}) listing: Optional[Listing] = Relationship(back_populates="images", # sa_relationship_kwargs={'lazy': 'selectin'} ) class ImageRead(ImageBase): id: int created_at: datetime updated_at: datetime class ImageCreate(ImageBase): pass # ############################################################################# class PlaceNearbyBase(SQLModel): id: Optional[int] latitude: Optional[float] = None longitude: Optional[float] = None query: Optional[str] = None name: str address: str distance: int website: Optional[str] = None website_domain: Optional[str] = None chain_name: Optional[str] = None listing_id: Optional[int] = Field(default=None, foreign_key="listings.id") class PlaceNearby(PlaceNearbyBase, table=True): __tablename__ = 'places_nearby' id: Optional[int] = Field(primary_key=True) created_at: datetime = Field(default=datetime.now()) updated_at: datetime = Field(default=datetime.now(), sa_column_kwargs={'onupdate': datetime.now()}) listing: Optional[Listing] = Relationship(back_populates="places_nearby",) class PlaceNearbyRead(PlaceNearbyBase): id: int created_at: datetime updated_at: datetime class PlaceNearbyCreate(PlaceNearbyBase): pass # ############################################################################# class InterestPointBase(SQLModel): id: Optional[int] name: str is_active: bool latitude: Optional[float] = None longitude: Optional[float] = None class InterestPoint(InterestPointBase, table=True): __tablename__ = 'interest_points' id: Optional[int] = Field(primary_key=True) created_at: datetime = Field(default=datetime.now()) updated_at: datetime = Field(default=datetime.now(), sa_column_kwargs={'onupdate': datetime.now()}) class InterestPointRead(InterestPointBase): id: int created_at: datetime updated_at: datetime class InterestPointCreate(InterestPointBase): pass # ############################################################################# class RouteBase(SQLModel): id: Optional[int] waking_distance: Optional[int] = 0 total_distance: Optional[int] = 0 total_time: Optional[int] = 0 public_transport_count: Optional[int] = 0 listing_id: Optional[int] = Field(default=None, foreign_key="listings.id") interest_point_id: Optional[int] = Field( default=None, foreign_key="interest_points.id") class Route(RouteBase, table=True): __tablename__ = 'routes' id: int = Field(primary_key=True) created_at: datetime = Field(default=datetime.now()) updated_at: datetime = Field( default=datetime.now(), sa_column_kwargs={'onupdate': datetime.now()}) listing: Optional[Listing] = Relationship(back_populates="routes",) interest_point: Optional[InterestPoint] = Relationship() class RouteRead(RouteBase): id: int created_at: datetime updated_at: datetime class RouteCreate(RouteBase): id: Optional[int] = None # ############################################################################# # ############################################################################# class ImageReadWithListings(ImageRead): listing: Optional[Listing] = None class ListingReadWithRelations(ListingRead): images: List["ImageRead"] = [] facilities: List["Facility"] = [] places_nearby: List["PlaceNearby"] = [] routes: List["Route"] = [] class ListingCreateWithRelations(ListingCreate): images: List["ImageCreate"] = [] facilities: List["Facility"] = []
[ "sqlmodel.Relationship", "sqlmodel.Field" ]
[((300, 350), 'sqlmodel.Field', 'Field', ([], {'foreign_key': '"""listings.id"""', 'primary_key': '(True)'}), "(foreign_key='listings.id', primary_key=True)\n", (305, 350), False, 'from sqlmodel import SQLModel, Field, Relationship\n'), ((388, 440), 'sqlmodel.Field', 'Field', ([], {'foreign_key': '"""facilities.id"""', 'primary_key': '(True)'}), "(foreign_key='facilities.id', primary_key=True)\n", (393, 440), False, 'from sqlmodel import SQLModel, Field, Relationship\n'), ((698, 721), 'sqlmodel.Field', 'Field', ([], {'primary_key': '(True)'}), '(primary_key=True)\n', (703, 721), False, 'from sqlmodel import SQLModel, Field, Relationship\n'), ((1225, 1248), 'sqlmodel.Field', 'Field', ([], {'primary_key': '(True)'}), '(primary_key=True)\n', (1230, 1248), False, 'from sqlmodel import SQLModel, Field, Relationship\n'), ((1374, 1397), 'sqlmodel.Field', 'Field', ([], {'primary_key': '(True)'}), '(primary_key=True)\n', (1379, 1397), False, 'from sqlmodel import SQLModel, Field, Relationship\n'), ((2327, 2350), 'sqlmodel.Field', 'Field', ([], {'primary_key': '(True)'}), '(primary_key=True)\n', (2332, 2350), False, 'from sqlmodel import SQLModel, Field, Relationship\n'), ((2573, 2611), 'sqlmodel.Relationship', 'Relationship', ([], {'back_populates': '"""listing"""'}), "(back_populates='listing')\n", (2585, 2611), False, 'from sqlmodel import SQLModel, Field, Relationship\n'), ((2705, 2749), 'sqlmodel.Relationship', 'Relationship', ([], {'link_model': 'ListingFacilityLink'}), '(link_model=ListingFacilityLink)\n', (2717, 2749), False, 'from sqlmodel import SQLModel, Field, Relationship\n'), ((2791, 2829), 'sqlmodel.Relationship', 'Relationship', ([], {'back_populates': '"""listing"""'}), "(back_populates='listing')\n", (2803, 2829), False, 'from sqlmodel import SQLModel, Field, Relationship\n'), ((2868, 2906), 'sqlmodel.Relationship', 'Relationship', ([], {'back_populates': '"""listing"""'}), "(back_populates='listing')\n", (2880, 2906), False, 'from sqlmodel import SQLModel, Field, Relationship\n'), ((3547, 3570), 'sqlmodel.Field', 'Field', ([], {'primary_key': '(True)'}), '(primary_key=True)\n', (3552, 3570), False, 'from sqlmodel import SQLModel, Field, Relationship\n'), ((4171, 4217), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'foreign_key': '"""listings.id"""'}), "(default=None, foreign_key='listings.id')\n", (4176, 4217), False, 'from sqlmodel import SQLModel, Field, Relationship\n'), ((4299, 4322), 'sqlmodel.Field', 'Field', ([], {'primary_key': '(True)'}), '(primary_key=True)\n', (4304, 4322), False, 'from sqlmodel import SQLModel, Field, Relationship\n'), ((4550, 4587), 'sqlmodel.Relationship', 'Relationship', ([], {'back_populates': '"""images"""'}), "(back_populates='images')\n", (4562, 4587), False, 'from sqlmodel import SQLModel, Field, Relationship\n'), ((5301, 5347), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'foreign_key': '"""listings.id"""'}), "(default=None, foreign_key='listings.id')\n", (5306, 5347), False, 'from sqlmodel import SQLModel, Field, Relationship\n'), ((5458, 5481), 'sqlmodel.Field', 'Field', ([], {'primary_key': '(True)'}), '(primary_key=True)\n', (5463, 5481), False, 'from sqlmodel import SQLModel, Field, Relationship\n'), ((5709, 5753), 'sqlmodel.Relationship', 'Relationship', ([], {'back_populates': '"""places_nearby"""'}), "(back_populates='places_nearby')\n", (5721, 5753), False, 'from sqlmodel import SQLModel, Field, Relationship\n'), ((6277, 6300), 'sqlmodel.Field', 'Field', ([], {'primary_key': '(True)'}), '(primary_key=True)\n', (6282, 6300), False, 'from sqlmodel import SQLModel, Field, Relationship\n'), ((6986, 7032), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'foreign_key': '"""listings.id"""'}), "(default=None, foreign_key='listings.id')\n", (6991, 7032), False, 'from sqlmodel import SQLModel, Field, Relationship\n'), ((7072, 7125), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'foreign_key': '"""interest_points.id"""'}), "(default=None, foreign_key='interest_points.id')\n", (7077, 7125), False, 'from sqlmodel import SQLModel, Field, Relationship\n'), ((7216, 7239), 'sqlmodel.Field', 'Field', ([], {'primary_key': '(True)'}), '(primary_key=True)\n', (7221, 7239), False, 'from sqlmodel import SQLModel, Field, Relationship\n'), ((7452, 7489), 'sqlmodel.Relationship', 'Relationship', ([], {'back_populates': '"""routes"""'}), "(back_populates='routes')\n", (7464, 7489), False, 'from sqlmodel import SQLModel, Field, Relationship\n'), ((7537, 7551), 'sqlmodel.Relationship', 'Relationship', ([], {}), '()\n', (7549, 7551), False, 'from sqlmodel import SQLModel, Field, Relationship\n'), ((763, 777), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (775, 777), False, 'from datetime import date, datetime\n'), ((820, 834), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (832, 834), False, 'from datetime import date, datetime\n'), ((2392, 2406), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (2404, 2406), False, 'from datetime import date, datetime\n'), ((2449, 2463), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (2461, 2463), False, 'from datetime import date, datetime\n'), ((3612, 3626), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (3624, 3626), False, 'from datetime import date, datetime\n'), ((3669, 3683), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (3681, 3683), False, 'from datetime import date, datetime\n'), ((4364, 4378), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (4376, 4378), False, 'from datetime import date, datetime\n'), ((4421, 4435), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (4433, 4435), False, 'from datetime import date, datetime\n'), ((5523, 5537), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (5535, 5537), False, 'from datetime import date, datetime\n'), ((5580, 5594), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (5592, 5594), False, 'from datetime import date, datetime\n'), ((6342, 6356), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (6354, 6356), False, 'from datetime import date, datetime\n'), ((6399, 6413), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (6411, 6413), False, 'from datetime import date, datetime\n'), ((7281, 7295), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (7293, 7295), False, 'from datetime import date, datetime\n'), ((7347, 7361), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (7359, 7361), False, 'from datetime import date, datetime\n'), ((899, 913), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (911, 913), False, 'from datetime import date, datetime\n'), ((2528, 2542), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (2540, 2542), False, 'from datetime import date, datetime\n'), ((3748, 3762), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (3760, 3762), False, 'from datetime import date, datetime\n'), ((4500, 4514), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (4512, 4514), False, 'from datetime import date, datetime\n'), ((5659, 5673), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (5671, 5673), False, 'from datetime import date, datetime\n'), ((6478, 6492), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (6490, 6492), False, 'from datetime import date, datetime\n'), ((7401, 7415), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (7413, 7415), False, 'from datetime import date, datetime\n')]
import typing as t from sqlmodel import SQLModel, Field, Relationship from datetime import datetime from .users import DB_User class DB_AccessToken(SQLModel, table=True): __tablename__ = 'access_tokens' id: t.Optional[int] = Field(default=None, primary_key=True) """The ID of the access token. This is handled by the database.""" token: str = Field(max_length=40, sa_column_kwargs={'unique': True}) """The unique access token.""" user_id: t.Optional[int] = Field(default=None, foreign_key="users.id") user: DB_User = Relationship(back_populates="access_tokens") """To what user does this token belong to.""" last_activity_at: datetime """When was the access token last active.""" created_at: datetime """When was this token created at?""" type: str = Field(max_length=100) """The type of the access token (example: `'session_remember'`)""" title: t.Optional[str] = Field(max_length=150) """The title of the access token.""" last_ip_address: t.Optional[str] = Field(max_length=45) """The last IP address associated with this access token.""" last_user_agent: t.Optional[str] = Field(max_length=255) """The last browser's user agent that used this token.""" class DB_APIKey(SQLModel, table=True): __tablename__ = 'api_keys' id: t.Optional[int] = Field(default=None, primary_key=True) """The ID of the API key. This is handled by the database.""" key: str = Field(max_length=100) """The unique API key.""" allowedips: t.Optional[str] = Field(max_length=255) """The IP addresses that are allowed to use this API key.""" scopes: t.Optional[str] = Field(max_length=255) """The scopes that this API key has access to.""" user_id: t.Optional[int] = Field(default=None, foreign_key="users.id") user: DB_User = Relationship(back_populates="api_keys") """As what user to perform actions when using this API key.""" created_at: datetime = Field(default=datetime.utcnow()) """When was this API key created at?""" last_activity_at: t.Optional[datetime] """When was the API key last active?"""
[ "sqlmodel.Relationship", "sqlmodel.Field" ]
[((238, 275), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'primary_key': '(True)'}), '(default=None, primary_key=True)\n', (243, 275), False, 'from sqlmodel import SQLModel, Field, Relationship\n'), ((365, 420), 'sqlmodel.Field', 'Field', ([], {'max_length': '(40)', 'sa_column_kwargs': "{'unique': True}"}), "(max_length=40, sa_column_kwargs={'unique': True})\n", (370, 420), False, 'from sqlmodel import SQLModel, Field, Relationship\n'), ((487, 530), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'foreign_key': '"""users.id"""'}), "(default=None, foreign_key='users.id')\n", (492, 530), False, 'from sqlmodel import SQLModel, Field, Relationship\n'), ((551, 595), 'sqlmodel.Relationship', 'Relationship', ([], {'back_populates': '"""access_tokens"""'}), "(back_populates='access_tokens')\n", (563, 595), False, 'from sqlmodel import SQLModel, Field, Relationship\n'), ((811, 832), 'sqlmodel.Field', 'Field', ([], {'max_length': '(100)'}), '(max_length=100)\n', (816, 832), False, 'from sqlmodel import SQLModel, Field, Relationship\n'), ((934, 955), 'sqlmodel.Field', 'Field', ([], {'max_length': '(150)'}), '(max_length=150)\n', (939, 955), False, 'from sqlmodel import SQLModel, Field, Relationship\n'), ((1036, 1056), 'sqlmodel.Field', 'Field', ([], {'max_length': '(45)'}), '(max_length=45)\n', (1041, 1056), False, 'from sqlmodel import SQLModel, Field, Relationship\n'), ((1161, 1182), 'sqlmodel.Field', 'Field', ([], {'max_length': '(255)'}), '(max_length=255)\n', (1166, 1182), False, 'from sqlmodel import SQLModel, Field, Relationship\n'), ((1344, 1381), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'primary_key': '(True)'}), '(default=None, primary_key=True)\n', (1349, 1381), False, 'from sqlmodel import SQLModel, Field, Relationship\n'), ((1464, 1485), 'sqlmodel.Field', 'Field', ([], {'max_length': '(100)'}), '(max_length=100)\n', (1469, 1485), False, 'from sqlmodel import SQLModel, Field, Relationship\n'), ((1551, 1572), 'sqlmodel.Field', 'Field', ([], {'max_length': '(255)'}), '(max_length=255)\n', (1556, 1572), False, 'from sqlmodel import SQLModel, Field, Relationship\n'), ((1668, 1689), 'sqlmodel.Field', 'Field', ([], {'max_length': '(255)'}), '(max_length=255)\n', (1673, 1689), False, 'from sqlmodel import SQLModel, Field, Relationship\n'), ((1775, 1818), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'foreign_key': '"""users.id"""'}), "(default=None, foreign_key='users.id')\n", (1780, 1818), False, 'from sqlmodel import SQLModel, Field, Relationship\n'), ((1839, 1878), 'sqlmodel.Relationship', 'Relationship', ([], {'back_populates': '"""api_keys"""'}), "(back_populates='api_keys')\n", (1851, 1878), False, 'from sqlmodel import SQLModel, Field, Relationship\n'), ((1988, 2005), 'datetime.datetime.utcnow', 'datetime.utcnow', ([], {}), '()\n', (2003, 2005), False, 'from datetime import datetime\n')]
#!/usr/bin/env python3 # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. """VGG Series VGG: `"Very Deep Convolutional Networks for Large-Scale Image Recognition" <https://arxiv.org/abs/1409.1556>`_ """ from typing import Any, Mapping, Sequence import megengine as mge import megengine.hub as hub import megengine.module as M from basecls.layers import activation, build_head, conv2d, init_weights, norm2d from basecls.utils import recursive_update, registers __all__ = ["VGGStage", "VGG"] class VGGStage(M.Module): """VGG stage (sequence of blocks w/ the same output shape).""" def __init__(self, w_in: int, w_out: int, depth: int, norm_name: str, act_name: str): super().__init__() self.depth = depth for i in range(depth): block = M.Sequential( conv2d(w_in, w_out, 3), norm2d(norm_name, w_out), activation(act_name) ) setattr(self, f"b{i + 1}", block) w_in = w_out self.max_pool = M.MaxPool2d(kernel_size=2, stride=2) def __len__(self): return self.depth def forward(self, x: mge.Tensor) -> mge.Tensor: for i in range(self.depth): block = getattr(self, f"b{i + 1}") x = block(x) x = self.max_pool(x) return x @registers.models.register() class VGG(M.Module): """VGG model. Args: depths: depth for each stage (number of blocks in the stage). widths: width for each stage (width of each block in the stage). norm_name: normalization function. Default: ``None`` act_name: activation function. Default: ``"relu"`` head: head args. Default: ``None`` """ def __init__( self, depths: Sequence[int], widths: Sequence[int], norm_name: str = None, act_name: str = "relu", head: Mapping[str, Any] = None, ): super().__init__() self.depths = depths model_args = [depths, widths] prev_w = 3 for i, (d, w) in enumerate(zip(*model_args)): stage = VGGStage(prev_w, w, d, norm_name, act_name) setattr(self, f"s{i + 1}", stage) prev_w = w self.head = build_head(prev_w, head, None, act_name) self.apply(init_weights) def forward(self, x: mge.Tensor) -> mge.Tensor: for i in range(len(self.depths)): stage = getattr(self, f"s{i + 1}") x = stage(x) if getattr(self, "head", None) is not None: x = self.head(x) return x def _build_vgg(**kwargs): model_args = dict(head=dict(name="VGGHead", dropout_prob=0.5)) recursive_update(model_args, kwargs) return VGG(**model_args) @registers.models.register() @hub.pretrained("https://data.megengine.org.cn/research/basecls/models/vgg/vgg11/vgg11.pkl") def vgg11(**kwargs): model_args = dict(depths=[1, 1, 2, 2, 2], widths=[64, 128, 256, 512, 512]) recursive_update(model_args, kwargs) return _build_vgg(**model_args) @registers.models.register() @hub.pretrained("https://data.megengine.org.cn/research/basecls/models/vgg/vgg11_bn/vgg11_bn.pkl") def vgg11_bn(**kwargs): model_args = dict(norm_name="BN") recursive_update(model_args, kwargs) return vgg11(**model_args) @registers.models.register() @hub.pretrained("https://data.megengine.org.cn/research/basecls/models/vgg/vgg13/vgg13.pkl") def vgg13(**kwargs): model_args = dict(depths=[2, 2, 2, 2, 2], widths=[64, 128, 256, 512, 512]) recursive_update(model_args, kwargs) return _build_vgg(**model_args) @registers.models.register() @hub.pretrained("https://data.megengine.org.cn/research/basecls/models/vgg/vgg13_bn/vgg13_bn.pkl") def vgg13_bn(**kwargs): model_args = dict(norm_name="BN") recursive_update(model_args, kwargs) return vgg13(**model_args) @registers.models.register() @hub.pretrained("https://data.megengine.org.cn/research/basecls/models/vgg/vgg16/vgg16.pkl") def vgg16(**kwargs): model_args = dict(depths=[2, 2, 3, 3, 3], widths=[64, 128, 256, 512, 512]) recursive_update(model_args, kwargs) return _build_vgg(**model_args) @registers.models.register() @hub.pretrained("https://data.megengine.org.cn/research/basecls/models/vgg/vgg16_bn/vgg16_bn.pkl") def vgg16_bn(**kwargs): model_args = dict(norm_name="BN") recursive_update(model_args, kwargs) return vgg16(**model_args) @registers.models.register() @hub.pretrained("https://data.megengine.org.cn/research/basecls/models/vgg/vgg19/vgg19.pkl") def vgg19(**kwargs): model_args = dict(depths=[2, 2, 4, 4, 4], widths=[64, 128, 256, 512, 512]) recursive_update(model_args, kwargs) return _build_vgg(**model_args) @registers.models.register() @hub.pretrained("https://data.megengine.org.cn/research/basecls/models/vgg/vgg19_bn/vgg19_bn.pkl") def vgg19_bn(**kwargs): model_args = dict(norm_name="BN") recursive_update(model_args, kwargs) return vgg19(**model_args)
[ "megengine.module.MaxPool2d", "megengine.hub.pretrained" ]
[((1300, 1327), 'basecls.utils.registers.models.register', 'registers.models.register', ([], {}), '()\n', (1325, 1327), False, 'from basecls.utils import recursive_update, registers\n'), ((2727, 2754), 'basecls.utils.registers.models.register', 'registers.models.register', ([], {}), '()\n', (2752, 2754), False, 'from basecls.utils import recursive_update, registers\n'), ((2756, 2857), 'megengine.hub.pretrained', 'hub.pretrained', (['"""https://data.megengine.org.cn/research/basecls/models/vgg/vgg11/vgg11.pkl"""'], {}), "(\n 'https://data.megengine.org.cn/research/basecls/models/vgg/vgg11/vgg11.pkl'\n )\n", (2770, 2857), True, 'import megengine.hub as hub\n'), ((3028, 3055), 'basecls.utils.registers.models.register', 'registers.models.register', ([], {}), '()\n', (3053, 3055), False, 'from basecls.utils import recursive_update, registers\n'), ((3057, 3164), 'megengine.hub.pretrained', 'hub.pretrained', (['"""https://data.megengine.org.cn/research/basecls/models/vgg/vgg11_bn/vgg11_bn.pkl"""'], {}), "(\n 'https://data.megengine.org.cn/research/basecls/models/vgg/vgg11_bn/vgg11_bn.pkl'\n )\n", (3071, 3164), True, 'import megengine.hub as hub\n'), ((3292, 3319), 'basecls.utils.registers.models.register', 'registers.models.register', ([], {}), '()\n', (3317, 3319), False, 'from basecls.utils import recursive_update, registers\n'), ((3321, 3422), 'megengine.hub.pretrained', 'hub.pretrained', (['"""https://data.megengine.org.cn/research/basecls/models/vgg/vgg13/vgg13.pkl"""'], {}), "(\n 'https://data.megengine.org.cn/research/basecls/models/vgg/vgg13/vgg13.pkl'\n )\n", (3335, 3422), True, 'import megengine.hub as hub\n'), ((3593, 3620), 'basecls.utils.registers.models.register', 'registers.models.register', ([], {}), '()\n', (3618, 3620), False, 'from basecls.utils import recursive_update, registers\n'), ((3622, 3729), 'megengine.hub.pretrained', 'hub.pretrained', (['"""https://data.megengine.org.cn/research/basecls/models/vgg/vgg13_bn/vgg13_bn.pkl"""'], {}), "(\n 'https://data.megengine.org.cn/research/basecls/models/vgg/vgg13_bn/vgg13_bn.pkl'\n )\n", (3636, 3729), True, 'import megengine.hub as hub\n'), ((3857, 3884), 'basecls.utils.registers.models.register', 'registers.models.register', ([], {}), '()\n', (3882, 3884), False, 'from basecls.utils import recursive_update, registers\n'), ((3886, 3987), 'megengine.hub.pretrained', 'hub.pretrained', (['"""https://data.megengine.org.cn/research/basecls/models/vgg/vgg16/vgg16.pkl"""'], {}), "(\n 'https://data.megengine.org.cn/research/basecls/models/vgg/vgg16/vgg16.pkl'\n )\n", (3900, 3987), True, 'import megengine.hub as hub\n'), ((4158, 4185), 'basecls.utils.registers.models.register', 'registers.models.register', ([], {}), '()\n', (4183, 4185), False, 'from basecls.utils import recursive_update, registers\n'), ((4187, 4294), 'megengine.hub.pretrained', 'hub.pretrained', (['"""https://data.megengine.org.cn/research/basecls/models/vgg/vgg16_bn/vgg16_bn.pkl"""'], {}), "(\n 'https://data.megengine.org.cn/research/basecls/models/vgg/vgg16_bn/vgg16_bn.pkl'\n )\n", (4201, 4294), True, 'import megengine.hub as hub\n'), ((4422, 4449), 'basecls.utils.registers.models.register', 'registers.models.register', ([], {}), '()\n', (4447, 4449), False, 'from basecls.utils import recursive_update, registers\n'), ((4451, 4552), 'megengine.hub.pretrained', 'hub.pretrained', (['"""https://data.megengine.org.cn/research/basecls/models/vgg/vgg19/vgg19.pkl"""'], {}), "(\n 'https://data.megengine.org.cn/research/basecls/models/vgg/vgg19/vgg19.pkl'\n )\n", (4465, 4552), True, 'import megengine.hub as hub\n'), ((4723, 4750), 'basecls.utils.registers.models.register', 'registers.models.register', ([], {}), '()\n', (4748, 4750), False, 'from basecls.utils import recursive_update, registers\n'), ((4752, 4859), 'megengine.hub.pretrained', 'hub.pretrained', (['"""https://data.megengine.org.cn/research/basecls/models/vgg/vgg19_bn/vgg19_bn.pkl"""'], {}), "(\n 'https://data.megengine.org.cn/research/basecls/models/vgg/vgg19_bn/vgg19_bn.pkl'\n )\n", (4766, 4859), True, 'import megengine.hub as hub\n'), ((2658, 2694), 'basecls.utils.recursive_update', 'recursive_update', (['model_args', 'kwargs'], {}), '(model_args, kwargs)\n', (2674, 2694), False, 'from basecls.utils import recursive_update, registers\n'), ((2952, 2988), 'basecls.utils.recursive_update', 'recursive_update', (['model_args', 'kwargs'], {}), '(model_args, kwargs)\n', (2968, 2988), False, 'from basecls.utils import recursive_update, registers\n'), ((3221, 3257), 'basecls.utils.recursive_update', 'recursive_update', (['model_args', 'kwargs'], {}), '(model_args, kwargs)\n', (3237, 3257), False, 'from basecls.utils import recursive_update, registers\n'), ((3517, 3553), 'basecls.utils.recursive_update', 'recursive_update', (['model_args', 'kwargs'], {}), '(model_args, kwargs)\n', (3533, 3553), False, 'from basecls.utils import recursive_update, registers\n'), ((3786, 3822), 'basecls.utils.recursive_update', 'recursive_update', (['model_args', 'kwargs'], {}), '(model_args, kwargs)\n', (3802, 3822), False, 'from basecls.utils import recursive_update, registers\n'), ((4082, 4118), 'basecls.utils.recursive_update', 'recursive_update', (['model_args', 'kwargs'], {}), '(model_args, kwargs)\n', (4098, 4118), False, 'from basecls.utils import recursive_update, registers\n'), ((4351, 4387), 'basecls.utils.recursive_update', 'recursive_update', (['model_args', 'kwargs'], {}), '(model_args, kwargs)\n', (4367, 4387), False, 'from basecls.utils import recursive_update, registers\n'), ((4647, 4683), 'basecls.utils.recursive_update', 'recursive_update', (['model_args', 'kwargs'], {}), '(model_args, kwargs)\n', (4663, 4683), False, 'from basecls.utils import recursive_update, registers\n'), ((4916, 4952), 'basecls.utils.recursive_update', 'recursive_update', (['model_args', 'kwargs'], {}), '(model_args, kwargs)\n', (4932, 4952), False, 'from basecls.utils import recursive_update, registers\n'), ((1003, 1039), 'megengine.module.MaxPool2d', 'M.MaxPool2d', ([], {'kernel_size': '(2)', 'stride': '(2)'}), '(kernel_size=2, stride=2)\n', (1014, 1039), True, 'import megengine.module as M\n'), ((2219, 2259), 'basecls.layers.build_head', 'build_head', (['prev_w', 'head', 'None', 'act_name'], {}), '(prev_w, head, None, act_name)\n', (2229, 2259), False, 'from basecls.layers import activation, build_head, conv2d, init_weights, norm2d\n'), ((823, 845), 'basecls.layers.conv2d', 'conv2d', (['w_in', 'w_out', '(3)'], {}), '(w_in, w_out, 3)\n', (829, 845), False, 'from basecls.layers import activation, build_head, conv2d, init_weights, norm2d\n'), ((847, 871), 'basecls.layers.norm2d', 'norm2d', (['norm_name', 'w_out'], {}), '(norm_name, w_out)\n', (853, 871), False, 'from basecls.layers import activation, build_head, conv2d, init_weights, norm2d\n'), ((873, 893), 'basecls.layers.activation', 'activation', (['act_name'], {}), '(act_name)\n', (883, 893), False, 'from basecls.layers import activation, build_head, conv2d, init_weights, norm2d\n')]
from __future__ import print_function from __future__ import absolute_import import numpy as nm import sys from six.moves import range sys.path.append('.') from sfepy.base.base import output, assert_ from sfepy.base.ioutils import ensure_path from sfepy.linalg import cycle from sfepy.discrete.fem.mesh import Mesh from sfepy.mesh.mesh_tools import elems_q2t def get_tensor_product_conn(shape): """ Generate vertex connectivity for cells of a tensor-product mesh of the given shape. Parameters ---------- shape : array of 2 or 3 ints Shape (counts of nodes in x, y, z) of the mesh. Returns ------- conn : array The vertex connectivity array. desc : str The cell kind. """ shape = nm.asarray(shape) dim = len(shape) assert_(1 <= dim <= 3) n_nod = nm.prod(shape) n_el = nm.prod(shape - 1) grid = nm.arange(n_nod, dtype=nm.int32) grid.shape = shape if dim == 1: conn = nm.zeros((n_el, 2), dtype=nm.int32) conn[:, 0] = grid[:-1] conn[:, 1] = grid[1:] desc = '1_2' elif dim == 2: conn = nm.zeros((n_el, 4), dtype=nm.int32) conn[:, 0] = grid[:-1, :-1].flat conn[:, 1] = grid[1:, :-1].flat conn[:, 2] = grid[1:, 1:].flat conn[:, 3] = grid[:-1, 1:].flat desc = '2_4' else: conn = nm.zeros((n_el, 8), dtype=nm.int32) conn[:, 0] = grid[:-1, :-1, :-1].flat conn[:, 1] = grid[1:, :-1, :-1].flat conn[:, 2] = grid[1:, 1:, :-1].flat conn[:, 3] = grid[:-1, 1:, :-1].flat conn[:, 4] = grid[:-1, :-1, 1:].flat conn[:, 5] = grid[1:, :-1, 1:].flat conn[:, 6] = grid[1:, 1:, 1:].flat conn[:, 7] = grid[:-1, 1:, 1:].flat desc = '3_8' return conn, desc def gen_block_mesh(dims, shape, centre, mat_id=0, name='block', coors=None, verbose=True): """ Generate a 2D or 3D block mesh. The dimension is determined by the lenght of the shape argument. Parameters ---------- dims : array of 2 or 3 floats Dimensions of the block. shape : array of 2 or 3 ints Shape (counts of nodes in x, y, z) of the block mesh. centre : array of 2 or 3 floats Centre of the block. mat_id : int, optional The material id of all elements. name : string Mesh name. verbose : bool If True, show progress of the mesh generation. Returns ------- mesh : Mesh instance """ dims = nm.asarray(dims, dtype=nm.float64) shape = nm.asarray(shape, dtype=nm.int32) centre = nm.asarray(centre, dtype=nm.float64) dim = shape.shape[0] centre = centre[:dim] dims = dims[:dim] n_nod = nm.prod(shape) output('generating %d vertices...' % n_nod, verbose=verbose) x0 = centre - 0.5 * dims dd = dims / (shape - 1) ngrid = nm.mgrid[[slice(ii) for ii in shape]] ngrid.shape = (dim, n_nod) coors = x0 + ngrid.T * dd output('...done', verbose=verbose) n_el = nm.prod(shape - 1) output('generating %d cells...' % n_el, verbose=verbose) mat_ids = nm.empty((n_el,), dtype=nm.int32) mat_ids.fill(mat_id) conn, desc = get_tensor_product_conn(shape) output('...done', verbose=verbose) mesh = Mesh.from_data(name, coors, None, [conn], [mat_ids], [desc]) return mesh def gen_cylinder_mesh(dims, shape, centre, axis='x', force_hollow=False, is_open=False, open_angle=0.0, non_uniform=False, name='cylinder', verbose=True): """ Generate a cylindrical mesh along an axis. Its cross-section can be ellipsoidal. Parameters ---------- dims : array of 5 floats Dimensions of the cylinder: inner surface semi-axes a1, b1, outer surface semi-axes a2, b2, length. shape : array of 3 ints Shape (counts of nodes in radial, circumferential and longitudinal directions) of the cylinder mesh. centre : array of 3 floats Centre of the cylinder. axis: one of 'x', 'y', 'z' The axis of the cylinder. force_hollow : boolean Force hollow mesh even if inner radii a1 = b1 = 0. is_open : boolean Generate an open cylinder segment. open_angle : float Opening angle in radians. non_uniform : boolean If True, space the mesh nodes in radial direction so that the element volumes are (approximately) the same, making thus the elements towards the outer surface thinner. name : string Mesh name. verbose : bool If True, show progress of the mesh generation. Returns ------- mesh : Mesh instance """ dims = nm.asarray(dims, dtype=nm.float64) shape = nm.asarray(shape, dtype=nm.int32) centre = nm.asarray(centre, dtype=nm.float64) a1, b1, a2, b2, length = dims nr, nfi, nl = shape origin = centre - nm.array([0.5 * length, 0.0, 0.0]) dfi = 2.0 * (nm.pi - open_angle) / nfi if is_open: nnfi = nfi + 1 else: nnfi = nfi is_hollow = force_hollow or not (max(abs(a1), abs(b1)) < 1e-15) if is_hollow: mr = 0 else: mr = (nnfi - 1) * nl grid = nm.zeros((nr, nnfi, nl), dtype=nm.int32) n_nod = nr * nnfi * nl - mr coors = nm.zeros((n_nod, 3), dtype=nm.float64) angles = nm.linspace(open_angle, open_angle+(nfi)*dfi, nfi+1) xs = nm.linspace(0.0, length, nl) if non_uniform: ras = nm.zeros((nr,), dtype=nm.float64) rbs = nm.zeros_like(ras) advol = (a2**2 - a1**2) / (nr - 1) bdvol = (b2**2 - b1**2) / (nr - 1) ras[0], rbs[0] = a1, b1 for ii in range(1, nr): ras[ii] = nm.sqrt(advol + ras[ii-1]**2) rbs[ii] = nm.sqrt(bdvol + rbs[ii-1]**2) else: ras = nm.linspace(a1, a2, nr) rbs = nm.linspace(b1, b2, nr) # This is 3D only... output('generating %d vertices...' % n_nod, verbose=verbose) ii = 0 for ix in range(nr): a, b = ras[ix], rbs[ix] for iy, fi in enumerate(angles[:nnfi]): for iz, x in enumerate(xs): grid[ix,iy,iz] = ii coors[ii] = origin + [x, a * nm.cos(fi), b * nm.sin(fi)] ii += 1 if not is_hollow and (ix == 0): if iy > 0: grid[ix,iy,iz] = grid[ix,0,iz] ii -= 1 assert_(ii == n_nod) output('...done', verbose=verbose) n_el = (nr - 1) * nfi * (nl - 1) conn = nm.zeros((n_el, 8), dtype=nm.int32) output('generating %d cells...' % n_el, verbose=verbose) ii = 0 for (ix, iy, iz) in cycle([nr-1, nnfi, nl-1]): if iy < (nnfi - 1): conn[ii,:] = [grid[ix ,iy ,iz ], grid[ix+1,iy ,iz ], grid[ix+1,iy+1,iz ], grid[ix ,iy+1,iz ], grid[ix ,iy ,iz+1], grid[ix+1,iy ,iz+1], grid[ix+1,iy+1,iz+1], grid[ix ,iy+1,iz+1]] ii += 1 elif not is_open: conn[ii,:] = [grid[ix ,iy ,iz ], grid[ix+1,iy ,iz ], grid[ix+1,0,iz ], grid[ix ,0,iz ], grid[ix ,iy ,iz+1], grid[ix+1,iy ,iz+1], grid[ix+1,0,iz+1], grid[ix ,0,iz+1]] ii += 1 mat_id = nm.zeros((n_el,), dtype = nm.int32) desc = '3_8' assert_(n_nod == (conn.max() + 1)) output('...done', verbose=verbose) if axis == 'z': coors = coors[:,[1,2,0]] elif axis == 'y': coors = coors[:,[2,0,1]] mesh = Mesh.from_data(name, coors, None, [conn], [mat_id], [desc]) return mesh def _spread_along_axis(axis, coors, tangents, grading_fun): """ Spread the coordinates along the given axis using the grading function, and the tangents in the other two directions. """ oo = list(set([0, 1, 2]).difference([axis])) c0, c1, c2 = coors[:, axis], coors[:, oo[0]], coors[:, oo[1]] out = nm.empty_like(coors) mi, ma = c0.min(), c0.max() nc0 = (c0 - mi) / (ma - mi) out[:, axis] = oc0 = grading_fun(nc0) * (ma - mi) + mi nc = oc0 - oc0.min() mi, ma = c1.min(), c1.max() n1 = 2 * (c1 - mi) / (ma - mi) - 1 out[:, oo[0]] = c1 + n1 * nc * tangents[oo[0]] mi, ma = c2.min(), c2.max() n2 = 2 * (c2 - mi) / (ma - mi) - 1 out[:, oo[1]] = c2 + n2 * nc * tangents[oo[1]] return out def _get_extension_side(side, grading_fun, mat_id, b_dims, b_shape, e_dims, e_shape, centre): """ Get a mesh extending the given side of a block mesh. """ # Pure extension dimensions. pe_dims = 0.5 * (e_dims - b_dims) coff = 0.5 * (b_dims + pe_dims) cc = centre + coff * nm.eye(3)[side] if side == 0: # x axis. dims = [pe_dims[0], b_dims[1], b_dims[2]] shape = [e_shape, b_shape[1], b_shape[2]] tangents = [0, pe_dims[1] / pe_dims[0], pe_dims[2] / pe_dims[0]] elif side == 1: # y axis. dims = [b_dims[0], pe_dims[1], b_dims[2]] shape = [b_shape[0], e_shape, b_shape[2]] tangents = [pe_dims[0] / pe_dims[1], 0, pe_dims[2] / pe_dims[1]] elif side == 2: # z axis. dims = [b_dims[0], b_dims[1], pe_dims[2]] shape = [b_shape[0], b_shape[1], e_shape] tangents = [pe_dims[0] / pe_dims[2], pe_dims[1] / pe_dims[2], 0] e_mesh = gen_block_mesh(dims, shape, cc, mat_id=mat_id, verbose=False) e_mesh.coors[:] = _spread_along_axis(side, e_mesh.coors, tangents, grading_fun) return e_mesh, shape def gen_extended_block_mesh(b_dims, b_shape, e_dims, e_shape, centre, grading_fun=None, name=None): """ Generate a 3D mesh with a central block and (coarse) extending side meshes. The resulting mesh is again a block. Each of the components has a different material id. Parameters ---------- b_dims : array of 3 floats The dimensions of the central block. b_shape : array of 3 ints The shape (counts of nodes in x, y, z) of the central block mesh. e_dims : array of 3 floats The dimensions of the complete block (central block + extensions). e_shape : int The count of nodes of extending blocks in the direction from the central block. centre : array of 3 floats The centre of the mesh. grading_fun : callable, optional A function of :math:`x \in [0, 1]` that can be used to shift nodes in the extension axis directions to allow smooth grading of element sizes from the centre. The default function is :math:`x**p` with :math:`p` determined so that the element sizes next to the central block have the size of the shortest edge of the central block. name : string, optional The mesh name. Returns ------- mesh : Mesh instance """ b_dims = nm.asarray(b_dims, dtype=nm.float64) b_shape = nm.asarray(b_shape, dtype=nm.int32) e_dims = nm.asarray(e_dims, dtype=nm.float64) centre = nm.asarray(centre, dtype=nm.float64) # Pure extension dimensions. pe_dims = 0.5 * (e_dims - b_dims) # Central block element sizes. dd = (b_dims / (b_shape - 1)) # The "first x" going to grading_fun. nc = 1.0 / (e_shape - 1) # Grading power and function. power = nm.log(dd.min() / pe_dims.min()) / nm.log(nc) grading_fun = (lambda x: x**power) if grading_fun is None else grading_fun # Central block mesh. b_mesh = gen_block_mesh(b_dims, b_shape, centre, mat_id=0, verbose=False) # 'x' extension. e_mesh, xs = _get_extension_side(0, grading_fun, 10, b_dims, b_shape, e_dims, e_shape, centre) mesh = b_mesh + e_mesh # Mirror by 'x'. e_mesh.coors[:, 0] = (2 * centre[0]) - e_mesh.coors[:, 0] e_mesh.cmesh.cell_groups.fill(11) mesh = mesh + e_mesh # 'y' extension. e_mesh, ys = _get_extension_side(1, grading_fun, 20, b_dims, b_shape, e_dims, e_shape, centre) mesh = mesh + e_mesh # Mirror by 'y'. e_mesh.coors[:, 1] = (2 * centre[1]) - e_mesh.coors[:, 1] e_mesh.cmesh.cell_groups.fill(21) mesh = mesh + e_mesh # 'z' extension. e_mesh, zs = _get_extension_side(2, grading_fun, 30, b_dims, b_shape, e_dims, e_shape, centre) mesh = mesh + e_mesh # Mirror by 'z'. e_mesh.coors[:, 2] = (2 * centre[2]) - e_mesh.coors[:, 2] e_mesh.cmesh.cell_groups.fill(31) mesh = mesh + e_mesh if name is not None: mesh.name = name # Verify merging by checking the number of nodes. n_nod = (nm.prod(nm.maximum(b_shape - 2, 0)) + 2 * nm.prod(xs) + 2 * (max(ys[0] - 2, 0) * ys[1] * ys[2]) + 2 * (max(zs[0] - 2, 0) * max(zs[1] - 2, 0) * zs[2])) if n_nod != mesh.n_nod: raise ValueError('Merge of meshes failed! (%d == %d)' % (n_nod, mesh.n_nod)) return mesh def tiled_mesh1d(conn, coors, ngrps, idim, n_rep, bb, eps=1e-6, ndmap=False): from sfepy.discrete.fem.periodic import match_grid_plane s1 = nm.nonzero(coors[:,idim] < (bb[0] + eps))[0] s2 = nm.nonzero(coors[:,idim] > (bb[1] - eps))[0] if s1.shape != s2.shape: raise ValueError('incompatible shapes: %s == %s'\ % (s1.shape, s2.shape)) (nnod0, dim) = coors.shape nnod = nnod0 * n_rep - s1.shape[0] * (n_rep - 1) (nel0, nnel) = conn.shape nel = nel0 * n_rep dd = nm.zeros((dim,), dtype=nm.float64) dd[idim] = bb[1] - bb[0] m1, m2 = match_grid_plane(coors[s1], coors[s2], idim) oconn = nm.zeros((nel, nnel), dtype=nm.int32) ocoors = nm.zeros((nnod, dim), dtype=nm.float64) ongrps = nm.zeros((nnod,), dtype=nm.int32) if type(ndmap) is bool: ret_ndmap = ndmap else: ret_ndmap= True ndmap_out = nm.zeros((nnod,), dtype=nm.int32) el_off = 0 nd_off = 0 for ii in range(n_rep): if ii == 0: oconn[0:nel0,:] = conn ocoors[0:nnod0,:] = coors ongrps[0:nnod0] = ngrps.squeeze() nd_off += nnod0 mapto = s2[m2] mask = nm.ones((nnod0,), dtype=nm.int32) mask[s1] = 0 remap0 = nm.cumsum(mask) - 1 nnod0r = nnod0 - s1.shape[0] cidx = nm.where(mask) if ret_ndmap: ndmap_out[0:nnod0] = nm.arange(nnod0) else: remap = remap0 + nd_off remap[s1[m1]] = mapto mapto = remap[s2[m2]] ocoors[nd_off:(nd_off + nnod0r),:] =\ (coors[cidx,:] + ii * dd) ongrps[nd_off:(nd_off + nnod0r)] = ngrps[cidx].squeeze() oconn[el_off:(el_off + nel0),:] = remap[conn] if ret_ndmap: ndmap_out[nd_off:(nd_off + nnod0r)] = cidx[0] nd_off += nnod0r el_off += nel0 if ret_ndmap: if ndmap is not None: max_nd_ref = nm.max(ndmap) idxs = nm.where(ndmap_out > max_nd_ref) ndmap_out[idxs] = ndmap[ndmap_out[idxs]] return oconn, ocoors, ongrps, ndmap_out else: return oconn, ocoors, ongrps def gen_tiled_mesh(mesh, grid=None, scale=1.0, eps=1e-6, ret_ndmap=False): """ Generate a new mesh by repeating a given periodic element along each axis. Parameters ---------- mesh : Mesh instance The input periodic FE mesh. grid : array Number of repetition along each axis. scale : float, optional Scaling factor. eps : float, optional Tolerance for boundary detection. ret_ndmap : bool, optional If True, return global node map. Returns ------- mesh_out : Mesh instance FE mesh. ndmap : array Maps: actual node id --> node id in the reference cell. """ bbox = mesh.get_bounding_box() if grid is None: iscale = max(int(1.0 / scale), 1) grid = [iscale] * mesh.dim conn = mesh.get_conn(mesh.descs[0]) mat_ids = mesh.cmesh.cell_groups coors = mesh.coors ngrps = mesh.cmesh.vertex_groups nrep = nm.prod(grid) ndmap = None output('repeating %s ...' % grid) nblk = 1 for ii, gr in enumerate(grid): if ret_ndmap: (conn, coors, ngrps, ndmap0) = tiled_mesh1d(conn, coors, ngrps, ii, gr, bbox.transpose()[ii], eps=eps, ndmap=ndmap) ndmap = ndmap0 else: conn, coors, ngrps = tiled_mesh1d(conn, coors, ngrps, ii, gr, bbox.transpose()[ii], eps=eps) nblk *= gr output('...done') mat_ids = nm.tile(mat_ids, (nrep,)) mesh_out = Mesh.from_data('tiled mesh', coors * scale, ngrps, [conn], [mat_ids], [mesh.descs[0]]) if ret_ndmap: return mesh_out, ndmap else: return mesh_out def gen_misc_mesh(mesh_dir, force_create, kind, args, suffix='.mesh', verbose=False): """ Create sphere or cube mesh according to `kind` in the given directory if it does not exist and return path to it. """ import os from sfepy import data_dir defdir = os.path.join(data_dir, 'meshes') if mesh_dir is None: mesh_dir = defdir def retype(args, types, defaults): args=list(args) args.extend(defaults[len(args):len(defaults)]) return tuple([type(value) for type, value in zip(types, args) ]) if kind == 'sphere': default = [5, 41, args[0]] args = retype(args, [float, int, float], default) mesh_pattern = os.path.join(mesh_dir, 'sphere-%.2f-%.2f-%i') else: assert_(kind == 'cube') args = retype(args, (int, float, int, float, int, float), (args[0], args[1], args[0], args[1], args[0], args[1])) mesh_pattern = os.path.join(mesh_dir, 'cube-%i_%.2f-%i_%.2f-%i_%.2f') if verbose: output(args) filename = mesh_pattern % args if not force_create: if os.path.exists(filename): return filename if os.path.exists(filename + '.mesh') : return filename + '.mesh' if os.path.exists(filename + '.vtk'): return filename + '.vtk' if kind == 'cube': filename = filename + suffix ensure_path(filename) output('creating new cube mesh') output('(%i nodes in %.2f) x (%i nodes in %.2f) x (%i nodes in %.2f)' % args) output('to file %s...' % filename) mesh = gen_block_mesh(args[1::2], args[0::2], (0.0, 0.0, 0.0), name=filename) mesh.write(filename, io='auto') output('...done') else: import subprocess, shutil, tempfile filename = filename + '.mesh' ensure_path(filename) output('creating new sphere mesh (%i nodes, r=%.2f) and gradation %d' % args) output('to file %s...' % filename) f = open(os.path.join(defdir, 'quantum', 'sphere.geo')) tmp_dir = tempfile.mkdtemp() tmpfile = os.path.join(tmp_dir, 'sphere.geo.temp') ff = open(tmpfile, "w") ff.write(""" R = %i.0; n = %i.0; dens = %f; """ % args) ff.write(f.read()) f.close() ff.close() subprocess.call(['gmsh', '-3', tmpfile, '-format', 'mesh', '-o', filename]) shutil.rmtree(tmp_dir) output('...done') return filename def gen_mesh_from_string(mesh_name, mesh_dir): import re result = re.match('^\\s*([a-zA-Z]+)[:\\(]([^\\):]*)[:\\)](\\*)?\\s*$', mesh_name) if result is None: return mesh_name else: args = re.split(',', result.group(2)) kind = result.group(1) return gen_misc_mesh(mesh_dir, result.group(3)=='*', kind, args) def gen_mesh_from_geom(geo, a=None, verbose=False, refine=False): """ Runs mesh generator - tetgen for 3D or triangle for 2D meshes. Parameters ---------- geo : geometry geometry description a : int, optional a maximum area/volume constraint verbose : bool, optional detailed information refine : bool, optional refines mesh Returns ------- mesh : Mesh instance triangular or tetrahedral mesh """ import os.path as op import pexpect import tempfile import shutil tmp_dir = tempfile.mkdtemp() polyfilename = op.join(tmp_dir, 'meshgen.poly') # write geometry to poly file geo.to_poly_file(polyfilename) meshgen_call = {2: ('triangle', ''), 3: ('tetgen', 'BFENk')} params = "-ACp" params += "q" if refine else '' params += "V" if verbose else "Q" params += meshgen_call[geo.dim][1] if a is not None: params += "a%f" % (a) params += " %s" % (polyfilename) cmd = "%s %s" % (meshgen_call[geo.dim][0], params) if verbose: print("Generating mesh using", cmd) p=pexpect.run(cmd, timeout=None) bname, ext = op.splitext(polyfilename) if geo.dim == 2: mesh = Mesh.from_file(bname + '.1.node') if geo.dim == 3: mesh = Mesh.from_file(bname + '.1.vtk') shutil.rmtree(tmp_dir) return mesh def gen_mesh_from_voxels(voxels, dims, etype='q'): """ Generate FE mesh from voxels (volumetric data). Parameters ---------- voxels : array Voxel matrix, 1=material. dims : array Size of one voxel. etype : integer, optional 'q' - quadrilateral or hexahedral elements 't' - triangular or tetrahedral elements Returns ------- mesh : Mesh instance Finite element mesh. """ dims = nm.array(dims).squeeze() dim = len(dims) nddims = nm.array(voxels.shape) + 2 nodemtx = nm.zeros(nddims, dtype=nm.int32) if dim == 2: #iy, ix = nm.where(voxels.transpose()) iy, ix = nm.where(voxels) nel = ix.shape[0] if etype == 'q': nodemtx[ix,iy] += 1 nodemtx[ix + 1,iy] += 1 nodemtx[ix + 1,iy + 1] += 1 nodemtx[ix,iy + 1] += 1 elif etype == 't': nodemtx[ix,iy] += 2 nodemtx[ix + 1,iy] += 1 nodemtx[ix + 1,iy + 1] += 2 nodemtx[ix,iy + 1] += 1 nel *= 2 elif dim == 3: #iy, ix, iz = nm.where(voxels.transpose(1, 0, 2)) iy, ix, iz = nm.where(voxels) nel = ix.shape[0] if etype == 'q': nodemtx[ix,iy,iz] += 1 nodemtx[ix + 1,iy,iz] += 1 nodemtx[ix + 1,iy + 1,iz] += 1 nodemtx[ix,iy + 1,iz] += 1 nodemtx[ix,iy,iz + 1] += 1 nodemtx[ix + 1,iy,iz + 1] += 1 nodemtx[ix + 1,iy + 1,iz + 1] += 1 nodemtx[ix,iy + 1,iz + 1] += 1 elif etype == 't': nodemtx[ix,iy,iz] += 6 nodemtx[ix + 1,iy,iz] += 2 nodemtx[ix + 1,iy + 1,iz] += 2 nodemtx[ix,iy + 1,iz] += 2 nodemtx[ix,iy,iz + 1] += 2 nodemtx[ix + 1,iy,iz + 1] += 2 nodemtx[ix + 1,iy + 1,iz + 1] += 6 nodemtx[ix,iy + 1,iz + 1] += 2 nel *= 6 else: msg = 'incorrect voxel dimension! (%d)' % dim raise ValueError(msg) ndidx = nm.where(nodemtx) coors = nm.array(ndidx).transpose() * dims nnod = coors.shape[0] nodeid = -nm.ones(nddims, dtype=nm.int32) nodeid[ndidx] = nm.arange(nnod) # generate elements if dim == 2: elems = nm.array([nodeid[ix,iy], nodeid[ix + 1,iy], nodeid[ix + 1,iy + 1], nodeid[ix,iy + 1]]).transpose() elif dim == 3: elems = nm.array([nodeid[ix,iy,iz], nodeid[ix + 1,iy,iz], nodeid[ix + 1,iy + 1,iz], nodeid[ix,iy + 1,iz], nodeid[ix,iy,iz + 1], nodeid[ix + 1,iy,iz + 1], nodeid[ix + 1,iy + 1,iz + 1], nodeid[ix,iy + 1,iz + 1]]).transpose() if etype == 't': elems = elems_q2t(elems) eid = etype + str(dim) eltab = {'q2': 4, 'q3': 8, 't2': 3, 't3': 4} mesh = Mesh.from_data('voxel_data', coors, nm.ones((nnod,), dtype=nm.int32), [nm.ascontiguousarray(elems)], [nm.ones((nel,), dtype=nm.int32)], ['%d_%d' % (dim, eltab[eid])]) return mesh def main(): mesh = gen_block_mesh(nm.array((1.0, 2.0, 3.0)), nm.array((10,10,10)), nm.array((1.0, 2.0, 3.0)), name='') mesh.write('0.mesh', io = 'auto') mesh = gen_cylinder_mesh(nm.array((1.0, 1.0, 2.0, 2.0, 3)), nm.array((10,10,10)), nm.array((1.0, 2.0, 3.0)), is_open=False, open_angle = 0.0, name='') mesh.write('1.mesh', io = 'auto') mesh = gen_cylinder_mesh(nm.array((1.0, 1.0, 2.0, 2.0, 3)), nm.array((10,10,10)), nm.array((1.0, 2.0, 3.0)), is_open=True, open_angle = 0.0, name='') mesh.write('2.mesh', io = 'auto') mesh = gen_cylinder_mesh(nm.array((1.0, 1.0, 2.0, 2.0, 3)), nm.array((10,10,10)), nm.array((1.0, 2.0, 3.0)), is_open=True, open_angle = 0.5, name='') mesh.write('3.mesh', io = 'auto') mesh = gen_cylinder_mesh(nm.array((0.0, 0.0, 2.0, 2.0, 3)), nm.array((10,10,10)), nm.array((1.0, 2.0, 3.0)), is_open=False, open_angle = 0.0, name='') mesh.write('4.mesh', io = 'auto') mesh = gen_cylinder_mesh(nm.array((0.0, 0.0, 1.0, 2.0, 3)), nm.array((10,10,10)), nm.array((1.0, 2.0, 3.0)), is_open=True, open_angle = 0.5, name='') mesh.write('5.mesh', io = 'auto') mesh = gen_cylinder_mesh(nm.array((0.0, 0.0, 1.0, 2.0, 3)), nm.array((10,10,10)), nm.array((1.0, 2.0, 3.0)), is_open=True, open_angle = 0.5, non_uniform=True, name='') mesh.write('6.mesh', io = 'auto') mesh = gen_cylinder_mesh(nm.array((0.5, 0.5, 1.0, 2.0, 3)), nm.array((10,10,10)), nm.array((1.0, 2.0, 3.0)), is_open=True, open_angle = 0.5, non_uniform=True, name='') mesh.write('7.mesh', io = 'auto') if __name__ == '__main__': main()
[ "sfepy.linalg.cycle", "sfepy.discrete.fem.mesh.Mesh.from_data", "sfepy.base.ioutils.ensure_path", "sfepy.discrete.fem.mesh.Mesh.from_file", "sfepy.discrete.fem.periodic.match_grid_plane", "sfepy.base.base.output", "sfepy.base.base.assert_", "sfepy.mesh.mesh_tools.elems_q2t" ]
[((135, 155), 'sys.path.append', 'sys.path.append', (['"""."""'], {}), "('.')\n", (150, 155), False, 'import sys\n'), ((756, 773), 'numpy.asarray', 'nm.asarray', (['shape'], {}), '(shape)\n', (766, 773), True, 'import numpy as nm\n'), ((799, 821), 'sfepy.base.base.assert_', 'assert_', (['(1 <= dim <= 3)'], {}), '(1 <= dim <= 3)\n', (806, 821), False, 'from sfepy.base.base import output, assert_\n'), ((835, 849), 'numpy.prod', 'nm.prod', (['shape'], {}), '(shape)\n', (842, 849), True, 'import numpy as nm\n'), ((861, 879), 'numpy.prod', 'nm.prod', (['(shape - 1)'], {}), '(shape - 1)\n', (868, 879), True, 'import numpy as nm\n'), ((892, 924), 'numpy.arange', 'nm.arange', (['n_nod'], {'dtype': 'nm.int32'}), '(n_nod, dtype=nm.int32)\n', (901, 924), True, 'import numpy as nm\n'), ((2543, 2577), 'numpy.asarray', 'nm.asarray', (['dims'], {'dtype': 'nm.float64'}), '(dims, dtype=nm.float64)\n', (2553, 2577), True, 'import numpy as nm\n'), ((2590, 2623), 'numpy.asarray', 'nm.asarray', (['shape'], {'dtype': 'nm.int32'}), '(shape, dtype=nm.int32)\n', (2600, 2623), True, 'import numpy as nm\n'), ((2637, 2673), 'numpy.asarray', 'nm.asarray', (['centre'], {'dtype': 'nm.float64'}), '(centre, dtype=nm.float64)\n', (2647, 2673), True, 'import numpy as nm\n'), ((2762, 2776), 'numpy.prod', 'nm.prod', (['shape'], {}), '(shape)\n', (2769, 2776), True, 'import numpy as nm\n'), ((2781, 2841), 'sfepy.base.base.output', 'output', (["('generating %d vertices...' % n_nod)"], {'verbose': 'verbose'}), "('generating %d vertices...' % n_nod, verbose=verbose)\n", (2787, 2841), False, 'from sfepy.base.base import output, assert_\n'), ((3017, 3051), 'sfepy.base.base.output', 'output', (['"""...done"""'], {'verbose': 'verbose'}), "('...done', verbose=verbose)\n", (3023, 3051), False, 'from sfepy.base.base import output, assert_\n'), ((3064, 3082), 'numpy.prod', 'nm.prod', (['(shape - 1)'], {}), '(shape - 1)\n', (3071, 3082), True, 'import numpy as nm\n'), ((3087, 3143), 'sfepy.base.base.output', 'output', (["('generating %d cells...' % n_el)"], {'verbose': 'verbose'}), "('generating %d cells...' % n_el, verbose=verbose)\n", (3093, 3143), False, 'from sfepy.base.base import output, assert_\n'), ((3159, 3192), 'numpy.empty', 'nm.empty', (['(n_el,)'], {'dtype': 'nm.int32'}), '((n_el,), dtype=nm.int32)\n', (3167, 3192), True, 'import numpy as nm\n'), ((3271, 3305), 'sfepy.base.base.output', 'output', (['"""...done"""'], {'verbose': 'verbose'}), "('...done', verbose=verbose)\n", (3277, 3305), False, 'from sfepy.base.base import output, assert_\n'), ((3318, 3378), 'sfepy.discrete.fem.mesh.Mesh.from_data', 'Mesh.from_data', (['name', 'coors', 'None', '[conn]', '[mat_ids]', '[desc]'], {}), '(name, coors, None, [conn], [mat_ids], [desc])\n', (3332, 3378), False, 'from sfepy.discrete.fem.mesh import Mesh\n'), ((4747, 4781), 'numpy.asarray', 'nm.asarray', (['dims'], {'dtype': 'nm.float64'}), '(dims, dtype=nm.float64)\n', (4757, 4781), True, 'import numpy as nm\n'), ((4794, 4827), 'numpy.asarray', 'nm.asarray', (['shape'], {'dtype': 'nm.int32'}), '(shape, dtype=nm.int32)\n', (4804, 4827), True, 'import numpy as nm\n'), ((4841, 4877), 'numpy.asarray', 'nm.asarray', (['centre'], {'dtype': 'nm.float64'}), '(centre, dtype=nm.float64)\n', (4851, 4877), True, 'import numpy as nm\n'), ((5260, 5300), 'numpy.zeros', 'nm.zeros', (['(nr, nnfi, nl)'], {'dtype': 'nm.int32'}), '((nr, nnfi, nl), dtype=nm.int32)\n', (5268, 5300), True, 'import numpy as nm\n'), ((5346, 5384), 'numpy.zeros', 'nm.zeros', (['(n_nod, 3)'], {'dtype': 'nm.float64'}), '((n_nod, 3), dtype=nm.float64)\n', (5354, 5384), True, 'import numpy as nm\n'), ((5399, 5455), 'numpy.linspace', 'nm.linspace', (['open_angle', '(open_angle + nfi * dfi)', '(nfi + 1)'], {}), '(open_angle, open_angle + nfi * dfi, nfi + 1)\n', (5410, 5455), True, 'import numpy as nm\n'), ((5461, 5489), 'numpy.linspace', 'nm.linspace', (['(0.0)', 'length', 'nl'], {}), '(0.0, length, nl)\n', (5472, 5489), True, 'import numpy as nm\n'), ((5961, 6021), 'sfepy.base.base.output', 'output', (["('generating %d vertices...' % n_nod)"], {'verbose': 'verbose'}), "('generating %d vertices...' % n_nod, verbose=verbose)\n", (5967, 6021), False, 'from sfepy.base.base import output, assert_\n'), ((6047, 6056), 'six.moves.range', 'range', (['nr'], {}), '(nr)\n', (6052, 6056), False, 'from six.moves import range\n'), ((6482, 6502), 'sfepy.base.base.assert_', 'assert_', (['(ii == n_nod)'], {}), '(ii == n_nod)\n', (6489, 6502), False, 'from sfepy.base.base import output, assert_\n'), ((6507, 6541), 'sfepy.base.base.output', 'output', (['"""...done"""'], {'verbose': 'verbose'}), "('...done', verbose=verbose)\n", (6513, 6541), False, 'from sfepy.base.base import output, assert_\n'), ((6591, 6626), 'numpy.zeros', 'nm.zeros', (['(n_el, 8)'], {'dtype': 'nm.int32'}), '((n_el, 8), dtype=nm.int32)\n', (6599, 6626), True, 'import numpy as nm\n'), ((6632, 6688), 'sfepy.base.base.output', 'output', (["('generating %d cells...' % n_el)"], {'verbose': 'verbose'}), "('generating %d cells...' % n_el, verbose=verbose)\n", (6638, 6688), False, 'from sfepy.base.base import output, assert_\n'), ((6724, 6753), 'sfepy.linalg.cycle', 'cycle', (['[nr - 1, nnfi, nl - 1]'], {}), '([nr - 1, nnfi, nl - 1])\n', (6729, 6753), False, 'from sfepy.linalg import cycle\n'), ((7407, 7440), 'numpy.zeros', 'nm.zeros', (['(n_el,)'], {'dtype': 'nm.int32'}), '((n_el,), dtype=nm.int32)\n', (7415, 7440), True, 'import numpy as nm\n'), ((7504, 7538), 'sfepy.base.base.output', 'output', (['"""...done"""'], {'verbose': 'verbose'}), "('...done', verbose=verbose)\n", (7510, 7538), False, 'from sfepy.base.base import output, assert_\n'), ((7660, 7719), 'sfepy.discrete.fem.mesh.Mesh.from_data', 'Mesh.from_data', (['name', 'coors', 'None', '[conn]', '[mat_id]', '[desc]'], {}), '(name, coors, None, [conn], [mat_id], [desc])\n', (7674, 7719), False, 'from sfepy.discrete.fem.mesh import Mesh\n'), ((8065, 8085), 'numpy.empty_like', 'nm.empty_like', (['coors'], {}), '(coors)\n', (8078, 8085), True, 'import numpy as nm\n'), ((11013, 11049), 'numpy.asarray', 'nm.asarray', (['b_dims'], {'dtype': 'nm.float64'}), '(b_dims, dtype=nm.float64)\n', (11023, 11049), True, 'import numpy as nm\n'), ((11064, 11099), 'numpy.asarray', 'nm.asarray', (['b_shape'], {'dtype': 'nm.int32'}), '(b_shape, dtype=nm.int32)\n', (11074, 11099), True, 'import numpy as nm\n'), ((11113, 11149), 'numpy.asarray', 'nm.asarray', (['e_dims'], {'dtype': 'nm.float64'}), '(e_dims, dtype=nm.float64)\n', (11123, 11149), True, 'import numpy as nm\n'), ((11163, 11199), 'numpy.asarray', 'nm.asarray', (['centre'], {'dtype': 'nm.float64'}), '(centre, dtype=nm.float64)\n', (11173, 11199), True, 'import numpy as nm\n'), ((13654, 13688), 'numpy.zeros', 'nm.zeros', (['(dim,)'], {'dtype': 'nm.float64'}), '((dim,), dtype=nm.float64)\n', (13662, 13688), True, 'import numpy as nm\n'), ((13732, 13776), 'sfepy.discrete.fem.periodic.match_grid_plane', 'match_grid_plane', (['coors[s1]', 'coors[s2]', 'idim'], {}), '(coors[s1], coors[s2], idim)\n', (13748, 13776), False, 'from sfepy.discrete.fem.periodic import match_grid_plane\n'), ((13790, 13827), 'numpy.zeros', 'nm.zeros', (['(nel, nnel)'], {'dtype': 'nm.int32'}), '((nel, nnel), dtype=nm.int32)\n', (13798, 13827), True, 'import numpy as nm\n'), ((13841, 13880), 'numpy.zeros', 'nm.zeros', (['(nnod, dim)'], {'dtype': 'nm.float64'}), '((nnod, dim), dtype=nm.float64)\n', (13849, 13880), True, 'import numpy as nm\n'), ((13894, 13927), 'numpy.zeros', 'nm.zeros', (['(nnod,)'], {'dtype': 'nm.int32'}), '((nnod,), dtype=nm.int32)\n', (13902, 13927), True, 'import numpy as nm\n'), ((14118, 14130), 'six.moves.range', 'range', (['n_rep'], {}), '(n_rep)\n', (14123, 14130), False, 'from six.moves import range\n'), ((16329, 16342), 'numpy.prod', 'nm.prod', (['grid'], {}), '(grid)\n', (16336, 16342), True, 'import numpy as nm\n'), ((16365, 16398), 'sfepy.base.base.output', 'output', (["('repeating %s ...' % grid)"], {}), "('repeating %s ...' % grid)\n", (16371, 16398), False, 'from sfepy.base.base import output, assert_\n'), ((16959, 16976), 'sfepy.base.base.output', 'output', (['"""...done"""'], {}), "('...done')\n", (16965, 16976), False, 'from sfepy.base.base import output, assert_\n'), ((16992, 17017), 'numpy.tile', 'nm.tile', (['mat_ids', '(nrep,)'], {}), '(mat_ids, (nrep,))\n', (16999, 17017), True, 'import numpy as nm\n'), ((17033, 17124), 'sfepy.discrete.fem.mesh.Mesh.from_data', 'Mesh.from_data', (['"""tiled mesh"""', '(coors * scale)', 'ngrps', '[conn]', '[mat_ids]', '[mesh.descs[0]]'], {}), "('tiled mesh', coors * scale, ngrps, [conn], [mat_ids], [mesh\n .descs[0]])\n", (17047, 17124), False, 'from sfepy.discrete.fem.mesh import Mesh\n'), ((17536, 17568), 'os.path.join', 'os.path.join', (['data_dir', '"""meshes"""'], {}), "(data_dir, 'meshes')\n", (17548, 17568), False, 'import os\n'), ((19896, 19968), 're.match', 're.match', (['"""^\\\\s*([a-zA-Z]+)[:\\\\(]([^\\\\):]*)[:\\\\)](\\\\*)?\\\\s*$"""', 'mesh_name'], {}), "('^\\\\s*([a-zA-Z]+)[:\\\\(]([^\\\\):]*)[:\\\\)](\\\\*)?\\\\s*$', mesh_name)\n", (19904, 19968), False, 'import re\n'), ((20787, 20805), 'tempfile.mkdtemp', 'tempfile.mkdtemp', ([], {}), '()\n', (20803, 20805), False, 'import subprocess, shutil, tempfile\n'), ((20825, 20857), 'os.path.join', 'op.join', (['tmp_dir', '"""meshgen.poly"""'], {}), "(tmp_dir, 'meshgen.poly')\n", (20832, 20857), True, 'import os.path as op\n'), ((21331, 21361), 'pexpect.run', 'pexpect.run', (['cmd'], {'timeout': 'None'}), '(cmd, timeout=None)\n', (21342, 21361), False, 'import pexpect\n'), ((21379, 21404), 'os.path.splitext', 'op.splitext', (['polyfilename'], {}), '(polyfilename)\n', (21390, 21404), True, 'import os.path as op\n'), ((21549, 21571), 'shutil.rmtree', 'shutil.rmtree', (['tmp_dir'], {}), '(tmp_dir)\n', (21562, 21571), False, 'import subprocess, shutil, tempfile\n'), ((22157, 22189), 'numpy.zeros', 'nm.zeros', (['nddims'], {'dtype': 'nm.int32'}), '(nddims, dtype=nm.int32)\n', (22165, 22189), True, 'import numpy as nm\n'), ((23659, 23676), 'numpy.where', 'nm.where', (['nodemtx'], {}), '(nodemtx)\n', (23667, 23676), True, 'import numpy as nm\n'), ((23817, 23832), 'numpy.arange', 'nm.arange', (['nnod'], {}), '(nnod)\n', (23826, 23832), True, 'import numpy as nm\n'), ((981, 1016), 'numpy.zeros', 'nm.zeros', (['(n_el, 2)'], {'dtype': 'nm.int32'}), '((n_el, 2), dtype=nm.int32)\n', (989, 1016), True, 'import numpy as nm\n'), ((4959, 4993), 'numpy.array', 'nm.array', (['[0.5 * length, 0.0, 0.0]'], {}), '([0.5 * length, 0.0, 0.0])\n', (4967, 4993), True, 'import numpy as nm\n'), ((5524, 5557), 'numpy.zeros', 'nm.zeros', (['(nr,)'], {'dtype': 'nm.float64'}), '((nr,), dtype=nm.float64)\n', (5532, 5557), True, 'import numpy as nm\n'), ((5572, 5590), 'numpy.zeros_like', 'nm.zeros_like', (['ras'], {}), '(ras)\n', (5585, 5590), True, 'import numpy as nm\n'), ((5727, 5739), 'six.moves.range', 'range', (['(1)', 'nr'], {}), '(1, nr)\n', (5732, 5739), False, 'from six.moves import range\n'), ((5869, 5892), 'numpy.linspace', 'nm.linspace', (['a1', 'a2', 'nr'], {}), '(a1, a2, nr)\n', (5880, 5892), True, 'import numpy as nm\n'), ((5907, 5930), 'numpy.linspace', 'nm.linspace', (['b1', 'b2', 'nr'], {}), '(b1, b2, nr)\n', (5918, 5930), True, 'import numpy as nm\n'), ((11493, 11503), 'numpy.log', 'nm.log', (['nc'], {}), '(nc)\n', (11499, 11503), True, 'import numpy as nm\n'), ((13281, 13321), 'numpy.nonzero', 'nm.nonzero', (['(coors[:, idim] < bb[0] + eps)'], {}), '(coors[:, idim] < bb[0] + eps)\n', (13291, 13321), True, 'import numpy as nm\n'), ((13335, 13375), 'numpy.nonzero', 'nm.nonzero', (['(coors[:, idim] > bb[1] - eps)'], {}), '(coors[:, idim] > bb[1] - eps)\n', (13345, 13375), True, 'import numpy as nm\n'), ((14038, 14071), 'numpy.zeros', 'nm.zeros', (['(nnod,)'], {'dtype': 'nm.int32'}), '((nnod,), dtype=nm.int32)\n', (14046, 14071), True, 'import numpy as nm\n'), ((17954, 17999), 'os.path.join', 'os.path.join', (['mesh_dir', '"""sphere-%.2f-%.2f-%i"""'], {}), "(mesh_dir, 'sphere-%.2f-%.2f-%i')\n", (17966, 17999), False, 'import os\n'), ((18019, 18042), 'sfepy.base.base.assert_', 'assert_', (["(kind == 'cube')"], {}), "(kind == 'cube')\n", (18026, 18042), False, 'from sfepy.base.base import output, assert_\n'), ((18233, 18287), 'os.path.join', 'os.path.join', (['mesh_dir', '"""cube-%i_%.2f-%i_%.2f-%i_%.2f"""'], {}), "(mesh_dir, 'cube-%i_%.2f-%i_%.2f-%i_%.2f')\n", (18245, 18287), False, 'import os\n'), ((18313, 18325), 'sfepy.base.base.output', 'output', (['args'], {}), '(args)\n', (18319, 18325), False, 'from sfepy.base.base import output, assert_\n'), ((18398, 18422), 'os.path.exists', 'os.path.exists', (['filename'], {}), '(filename)\n', (18412, 18422), False, 'import os\n'), ((18451, 18485), 'os.path.exists', 'os.path.exists', (["(filename + '.mesh')"], {}), "(filename + '.mesh')\n", (18465, 18485), False, 'import os\n'), ((18525, 18558), 'os.path.exists', 'os.path.exists', (["(filename + '.vtk')"], {}), "(filename + '.vtk')\n", (18539, 18558), False, 'import os\n'), ((18654, 18675), 'sfepy.base.ioutils.ensure_path', 'ensure_path', (['filename'], {}), '(filename)\n', (18665, 18675), False, 'from sfepy.base.ioutils import ensure_path\n'), ((18685, 18717), 'sfepy.base.base.output', 'output', (['"""creating new cube mesh"""'], {}), "('creating new cube mesh')\n", (18691, 18717), False, 'from sfepy.base.base import output, assert_\n'), ((18726, 18803), 'sfepy.base.base.output', 'output', (["('(%i nodes in %.2f) x (%i nodes in %.2f) x (%i nodes in %.2f)' % args)"], {}), "('(%i nodes in %.2f) x (%i nodes in %.2f) x (%i nodes in %.2f)' % args)\n", (18732, 18803), False, 'from sfepy.base.base import output, assert_\n'), ((18827, 18861), 'sfepy.base.base.output', 'output', (["('to file %s...' % filename)"], {}), "('to file %s...' % filename)\n", (18833, 18861), False, 'from sfepy.base.base import output, assert_\n'), ((19027, 19044), 'sfepy.base.base.output', 'output', (['"""...done"""'], {}), "('...done')\n", (19033, 19044), False, 'from sfepy.base.base import output, assert_\n'), ((19146, 19167), 'sfepy.base.ioutils.ensure_path', 'ensure_path', (['filename'], {}), '(filename)\n', (19157, 19167), False, 'from sfepy.base.ioutils import ensure_path\n'), ((19177, 19254), 'sfepy.base.base.output', 'output', (["('creating new sphere mesh (%i nodes, r=%.2f) and gradation %d' % args)"], {}), "('creating new sphere mesh (%i nodes, r=%.2f) and gradation %d' % args)\n", (19183, 19254), False, 'from sfepy.base.base import output, assert_\n'), ((19278, 19312), 'sfepy.base.base.output', 'output', (["('to file %s...' % filename)"], {}), "('to file %s...' % filename)\n", (19284, 19312), False, 'from sfepy.base.base import output, assert_\n'), ((19396, 19414), 'tempfile.mkdtemp', 'tempfile.mkdtemp', ([], {}), '()\n', (19412, 19414), False, 'import subprocess, shutil, tempfile\n'), ((19433, 19473), 'os.path.join', 'os.path.join', (['tmp_dir', '"""sphere.geo.temp"""'], {}), "(tmp_dir, 'sphere.geo.temp')\n", (19445, 19473), False, 'import os\n'), ((19642, 19717), 'subprocess.call', 'subprocess.call', (["['gmsh', '-3', tmpfile, '-format', 'mesh', '-o', filename]"], {}), "(['gmsh', '-3', tmpfile, '-format', 'mesh', '-o', filename])\n", (19657, 19717), False, 'import subprocess, shutil, tempfile\n'), ((19751, 19773), 'shutil.rmtree', 'shutil.rmtree', (['tmp_dir'], {}), '(tmp_dir)\n', (19764, 19773), False, 'import subprocess, shutil, tempfile\n'), ((19782, 19799), 'sfepy.base.base.output', 'output', (['"""...done"""'], {}), "('...done')\n", (19788, 19799), False, 'from sfepy.base.base import output, assert_\n'), ((21441, 21474), 'sfepy.discrete.fem.mesh.Mesh.from_file', 'Mesh.from_file', (["(bname + '.1.node')"], {}), "(bname + '.1.node')\n", (21455, 21474), False, 'from sfepy.discrete.fem.mesh import Mesh\n'), ((21511, 21543), 'sfepy.discrete.fem.mesh.Mesh.from_file', 'Mesh.from_file', (["(bname + '.1.vtk')"], {}), "(bname + '.1.vtk')\n", (21525, 21543), False, 'from sfepy.discrete.fem.mesh import Mesh\n'), ((22115, 22137), 'numpy.array', 'nm.array', (['voxels.shape'], {}), '(voxels.shape)\n', (22123, 22137), True, 'import numpy as nm\n'), ((22272, 22288), 'numpy.where', 'nm.where', (['voxels'], {}), '(voxels)\n', (22280, 22288), True, 'import numpy as nm\n'), ((23765, 23796), 'numpy.ones', 'nm.ones', (['nddims'], {'dtype': 'nm.int32'}), '(nddims, dtype=nm.int32)\n', (23772, 23796), True, 'import numpy as nm\n'), ((24539, 24555), 'sfepy.mesh.mesh_tools.elems_q2t', 'elems_q2t', (['elems'], {}), '(elems)\n', (24548, 24555), False, 'from sfepy.mesh.mesh_tools import elems_q2t\n'), ((24707, 24739), 'numpy.ones', 'nm.ones', (['(nnod,)'], {'dtype': 'nm.int32'}), '((nnod,), dtype=nm.int32)\n', (24714, 24739), True, 'import numpy as nm\n'), ((24973, 24998), 'numpy.array', 'nm.array', (['(1.0, 2.0, 3.0)'], {}), '((1.0, 2.0, 3.0))\n', (24981, 24998), True, 'import numpy as nm\n'), ((25026, 25048), 'numpy.array', 'nm.array', (['(10, 10, 10)'], {}), '((10, 10, 10))\n', (25034, 25048), True, 'import numpy as nm\n'), ((25048, 25073), 'numpy.array', 'nm.array', (['(1.0, 2.0, 3.0)'], {}), '((1.0, 2.0, 3.0))\n', (25056, 25073), True, 'import numpy as nm\n'), ((25178, 25211), 'numpy.array', 'nm.array', (['(1.0, 1.0, 2.0, 2.0, 3)'], {}), '((1.0, 1.0, 2.0, 2.0, 3))\n', (25186, 25211), True, 'import numpy as nm\n'), ((25242, 25264), 'numpy.array', 'nm.array', (['(10, 10, 10)'], {}), '((10, 10, 10))\n', (25250, 25264), True, 'import numpy as nm\n'), ((25264, 25289), 'numpy.array', 'nm.array', (['(1.0, 2.0, 3.0)'], {}), '((1.0, 2.0, 3.0))\n', (25272, 25289), True, 'import numpy as nm\n'), ((25458, 25491), 'numpy.array', 'nm.array', (['(1.0, 1.0, 2.0, 2.0, 3)'], {}), '((1.0, 1.0, 2.0, 2.0, 3))\n', (25466, 25491), True, 'import numpy as nm\n'), ((25522, 25544), 'numpy.array', 'nm.array', (['(10, 10, 10)'], {}), '((10, 10, 10))\n', (25530, 25544), True, 'import numpy as nm\n'), ((25544, 25569), 'numpy.array', 'nm.array', (['(1.0, 2.0, 3.0)'], {}), '((1.0, 2.0, 3.0))\n', (25552, 25569), True, 'import numpy as nm\n'), ((25737, 25770), 'numpy.array', 'nm.array', (['(1.0, 1.0, 2.0, 2.0, 3)'], {}), '((1.0, 1.0, 2.0, 2.0, 3))\n', (25745, 25770), True, 'import numpy as nm\n'), ((25801, 25823), 'numpy.array', 'nm.array', (['(10, 10, 10)'], {}), '((10, 10, 10))\n', (25809, 25823), True, 'import numpy as nm\n'), ((25823, 25848), 'numpy.array', 'nm.array', (['(1.0, 2.0, 3.0)'], {}), '((1.0, 2.0, 3.0))\n', (25831, 25848), True, 'import numpy as nm\n'), ((26017, 26050), 'numpy.array', 'nm.array', (['(0.0, 0.0, 2.0, 2.0, 3)'], {}), '((0.0, 0.0, 2.0, 2.0, 3))\n', (26025, 26050), True, 'import numpy as nm\n'), ((26081, 26103), 'numpy.array', 'nm.array', (['(10, 10, 10)'], {}), '((10, 10, 10))\n', (26089, 26103), True, 'import numpy as nm\n'), ((26103, 26128), 'numpy.array', 'nm.array', (['(1.0, 2.0, 3.0)'], {}), '((1.0, 2.0, 3.0))\n', (26111, 26128), True, 'import numpy as nm\n'), ((26298, 26331), 'numpy.array', 'nm.array', (['(0.0, 0.0, 1.0, 2.0, 3)'], {}), '((0.0, 0.0, 1.0, 2.0, 3))\n', (26306, 26331), True, 'import numpy as nm\n'), ((26362, 26384), 'numpy.array', 'nm.array', (['(10, 10, 10)'], {}), '((10, 10, 10))\n', (26370, 26384), True, 'import numpy as nm\n'), ((26384, 26409), 'numpy.array', 'nm.array', (['(1.0, 2.0, 3.0)'], {}), '((1.0, 2.0, 3.0))\n', (26392, 26409), True, 'import numpy as nm\n'), ((26578, 26611), 'numpy.array', 'nm.array', (['(0.0, 0.0, 1.0, 2.0, 3)'], {}), '((0.0, 0.0, 1.0, 2.0, 3))\n', (26586, 26611), True, 'import numpy as nm\n'), ((26642, 26664), 'numpy.array', 'nm.array', (['(10, 10, 10)'], {}), '((10, 10, 10))\n', (26650, 26664), True, 'import numpy as nm\n'), ((26664, 26689), 'numpy.array', 'nm.array', (['(1.0, 2.0, 3.0)'], {}), '((1.0, 2.0, 3.0))\n', (26672, 26689), True, 'import numpy as nm\n'), ((26876, 26909), 'numpy.array', 'nm.array', (['(0.5, 0.5, 1.0, 2.0, 3)'], {}), '((0.5, 0.5, 1.0, 2.0, 3))\n', (26884, 26909), True, 'import numpy as nm\n'), ((26940, 26962), 'numpy.array', 'nm.array', (['(10, 10, 10)'], {}), '((10, 10, 10))\n', (26948, 26962), True, 'import numpy as nm\n'), ((26962, 26987), 'numpy.array', 'nm.array', (['(1.0, 2.0, 3.0)'], {}), '((1.0, 2.0, 3.0))\n', (26970, 26987), True, 'import numpy as nm\n'), ((1134, 1169), 'numpy.zeros', 'nm.zeros', (['(n_el, 4)'], {'dtype': 'nm.int32'}), '((n_el, 4), dtype=nm.int32)\n', (1142, 1169), True, 'import numpy as nm\n'), ((1377, 1412), 'numpy.zeros', 'nm.zeros', (['(n_el, 8)'], {'dtype': 'nm.int32'}), '((n_el, 8), dtype=nm.int32)\n', (1385, 1412), True, 'import numpy as nm\n'), ((5763, 5796), 'numpy.sqrt', 'nm.sqrt', (['(advol + ras[ii - 1] ** 2)'], {}), '(advol + ras[ii - 1] ** 2)\n', (5770, 5796), True, 'import numpy as nm\n'), ((5815, 5848), 'numpy.sqrt', 'nm.sqrt', (['(bdvol + rbs[ii - 1] ** 2)'], {}), '(bdvol + rbs[ii - 1] ** 2)\n', (5822, 5848), True, 'import numpy as nm\n'), ((14346, 14379), 'numpy.ones', 'nm.ones', (['(nnod0,)'], {'dtype': 'nm.int32'}), '((nnod0,), dtype=nm.int32)\n', (14353, 14379), True, 'import numpy as nm\n'), ((14506, 14520), 'numpy.where', 'nm.where', (['mask'], {}), '(mask)\n', (14514, 14520), True, 'import numpy as nm\n'), ((15154, 15167), 'numpy.max', 'nm.max', (['ndmap'], {}), '(ndmap)\n', (15160, 15167), True, 'import numpy as nm\n'), ((15187, 15219), 'numpy.where', 'nm.where', (['(ndmap_out > max_nd_ref)'], {}), '(ndmap_out > max_nd_ref)\n', (15195, 15219), True, 'import numpy as nm\n'), ((19331, 19376), 'os.path.join', 'os.path.join', (['defdir', '"""quantum"""', '"""sphere.geo"""'], {}), "(defdir, 'quantum', 'sphere.geo')\n", (19343, 19376), False, 'import os\n'), ((22057, 22071), 'numpy.array', 'nm.array', (['dims'], {}), '(dims)\n', (22065, 22071), True, 'import numpy as nm\n'), ((22777, 22793), 'numpy.where', 'nm.where', (['voxels'], {}), '(voxels)\n', (22785, 22793), True, 'import numpy as nm\n'), ((24768, 24795), 'numpy.ascontiguousarray', 'nm.ascontiguousarray', (['elems'], {}), '(elems)\n', (24788, 24795), True, 'import numpy as nm\n'), ((24825, 24856), 'numpy.ones', 'nm.ones', (['(nel,)'], {'dtype': 'nm.int32'}), '((nel,), dtype=nm.int32)\n', (24832, 24856), True, 'import numpy as nm\n'), ((8822, 8831), 'numpy.eye', 'nm.eye', (['(3)'], {}), '(3)\n', (8828, 8831), True, 'import numpy as nm\n'), ((14426, 14441), 'numpy.cumsum', 'nm.cumsum', (['mask'], {}), '(mask)\n', (14435, 14441), True, 'import numpy as nm\n'), ((14584, 14600), 'numpy.arange', 'nm.arange', (['nnod0'], {}), '(nnod0)\n', (14593, 14600), True, 'import numpy as nm\n'), ((23689, 23704), 'numpy.array', 'nm.array', (['ndidx'], {}), '(ndidx)\n', (23697, 23704), True, 'import numpy as nm\n'), ((23891, 23985), 'numpy.array', 'nm.array', (['[nodeid[ix, iy], nodeid[ix + 1, iy], nodeid[ix + 1, iy + 1], nodeid[ix, iy + 1]\n ]'], {}), '([nodeid[ix, iy], nodeid[ix + 1, iy], nodeid[ix + 1, iy + 1],\n nodeid[ix, iy + 1]])\n', (23899, 23985), True, 'import numpy as nm\n'), ((12807, 12833), 'numpy.maximum', 'nm.maximum', (['(b_shape - 2)', '(0)'], {}), '(b_shape - 2, 0)\n', (12817, 12833), True, 'import numpy as nm\n'), ((12841, 12852), 'numpy.prod', 'nm.prod', (['xs'], {}), '(xs)\n', (12848, 12852), True, 'import numpy as nm\n'), ((24104, 24330), 'numpy.array', 'nm.array', (['[nodeid[ix, iy, iz], nodeid[ix + 1, iy, iz], nodeid[ix + 1, iy + 1, iz],\n nodeid[ix, iy + 1, iz], nodeid[ix, iy, iz + 1], nodeid[ix + 1, iy, iz +\n 1], nodeid[ix + 1, iy + 1, iz + 1], nodeid[ix, iy + 1, iz + 1]]'], {}), '([nodeid[ix, iy, iz], nodeid[ix + 1, iy, iz], nodeid[ix + 1, iy + 1,\n iz], nodeid[ix, iy + 1, iz], nodeid[ix, iy, iz + 1], nodeid[ix + 1, iy,\n iz + 1], nodeid[ix + 1, iy + 1, iz + 1], nodeid[ix, iy + 1, iz + 1]])\n', (24112, 24330), True, 'import numpy as nm\n'), ((6259, 6269), 'numpy.cos', 'nm.cos', (['fi'], {}), '(fi)\n', (6265, 6269), True, 'import numpy as nm\n'), ((6275, 6285), 'numpy.sin', 'nm.sin', (['fi'], {}), '(fi)\n', (6281, 6285), True, 'import numpy as nm\n')]
import megengine import megengine.module as M import megengine.functional as F def default_init_weights(module, scale=1, nonlinearity="relu"): """ nonlinearity: leaky_relu """ for m in module.modules(): if isinstance(m, M.Conv2d): M.init.msra_normal_(m.weight, mode="fan_in", nonlinearity=nonlinearity) m.weight *= scale if m.bias is not None: M.init.zeros_(m.bias) else: pass
[ "megengine.module.init.zeros_", "megengine.module.init.msra_normal_" ]
[((272, 343), 'megengine.module.init.msra_normal_', 'M.init.msra_normal_', (['m.weight'], {'mode': '"""fan_in"""', 'nonlinearity': 'nonlinearity'}), "(m.weight, mode='fan_in', nonlinearity=nonlinearity)\n", (291, 343), True, 'import megengine.module as M\n'), ((425, 446), 'megengine.module.init.zeros_', 'M.init.zeros_', (['m.bias'], {}), '(m.bias)\n', (438, 446), True, 'import megengine.module as M\n')]
import os import megengine as mge import megengine.functional as F import argparse import numpy as np import cv2 from nets import Model def load_model(model_path): print("Loading model:", os.path.abspath(model_path)) pretrained_dict = mge.load(model_path) model = Model(max_disp=256, mixed_precision=False, test_mode=True) model.load_state_dict(pretrained_dict["state_dict"], strict=True) model.eval() return model def inference(left, right, model, n_iter=20): print("Model Forwarding...") imgL = left.transpose(2, 0, 1) imgR = right.transpose(2, 0, 1) imgL = np.ascontiguousarray(imgL[None, :, :, :]) imgR = np.ascontiguousarray(imgR[None, :, :, :]) imgL = mge.tensor(imgL).astype("float32") imgR = mge.tensor(imgR).astype("float32") imgL_dw2 = F.nn.interpolate( imgL, size=(imgL.shape[2] // 2, imgL.shape[3] // 2), mode="bilinear", align_corners=True, ) imgR_dw2 = F.nn.interpolate( imgR, size=(imgL.shape[2] // 2, imgL.shape[3] // 2), mode="bilinear", align_corners=True, ) pred_flow_dw2 = model(imgL_dw2, imgR_dw2, iters=n_iter, flow_init=None) pred_flow = model(imgL, imgR, iters=n_iter, flow_init=pred_flow_dw2) pred_disp = F.squeeze(pred_flow[:, 0, :, :]).numpy() return pred_disp if __name__ == "__main__": parser = argparse.ArgumentParser(description="A demo to run CREStereo.") parser.add_argument( "--model_path", default="crestereo_eth3d.mge", help="The path of pre-trained MegEngine model.", ) parser.add_argument( "--left", default="img/test/left.png", help="The path of left image." ) parser.add_argument( "--right", default="img/test/right.png", help="The path of right image." ) parser.add_argument( "--size", default="1024x1536", help="The image size for inference. Te default setting is 1024x1536. \ To evaluate on ETH3D Benchmark, use 768x1024 instead.", ) parser.add_argument( "--output", default="disparity.png", help="The path of output disparity." ) args = parser.parse_args() assert os.path.exists(args.model_path), "The model path do not exist." assert os.path.exists(args.left), "The left image path do not exist." assert os.path.exists(args.right), "The right image path do not exist." model_func = load_model(args.model_path) left = cv2.imread(args.left) right = cv2.imread(args.right) assert left.shape == right.shape, "The input images have inconsistent shapes." in_h, in_w = left.shape[:2] print("Images resized:", args.size) eval_h, eval_w = [int(e) for e in args.size.split("x")] left_img = cv2.resize(left, (eval_w, eval_h), interpolation=cv2.INTER_LINEAR) right_img = cv2.resize(right, (eval_w, eval_h), interpolation=cv2.INTER_LINEAR) pred = inference(left_img, right_img, model_func, n_iter=20) t = float(in_w) / float(eval_w) disp = cv2.resize(pred, (in_w, in_h), interpolation=cv2.INTER_LINEAR) * t disp_vis = (disp - disp.min()) / (disp.max() - disp.min()) * 255.0 disp_vis = disp_vis.astype("uint8") disp_vis = cv2.applyColorMap(disp_vis, cv2.COLORMAP_INFERNO) parent_path = os.path.abspath(os.path.join(args.output, os.pardir)) if not os.path.exists(parent_path): os.makedirs(parent_path) cv2.imwrite(args.output, disp_vis) print("Done! Result path:", os.path.abspath(args.output))
[ "megengine.functional.nn.interpolate", "megengine.functional.squeeze", "megengine.tensor", "megengine.load" ]
[((247, 267), 'megengine.load', 'mge.load', (['model_path'], {}), '(model_path)\n', (255, 267), True, 'import megengine as mge\n'), ((280, 338), 'nets.Model', 'Model', ([], {'max_disp': '(256)', 'mixed_precision': '(False)', 'test_mode': '(True)'}), '(max_disp=256, mixed_precision=False, test_mode=True)\n', (285, 338), False, 'from nets import Model\n'), ((608, 649), 'numpy.ascontiguousarray', 'np.ascontiguousarray', (['imgL[None, :, :, :]'], {}), '(imgL[None, :, :, :])\n', (628, 649), True, 'import numpy as np\n'), ((661, 702), 'numpy.ascontiguousarray', 'np.ascontiguousarray', (['imgR[None, :, :, :]'], {}), '(imgR[None, :, :, :])\n', (681, 702), True, 'import numpy as np\n'), ((812, 923), 'megengine.functional.nn.interpolate', 'F.nn.interpolate', (['imgL'], {'size': '(imgL.shape[2] // 2, imgL.shape[3] // 2)', 'mode': '"""bilinear"""', 'align_corners': '(True)'}), "(imgL, size=(imgL.shape[2] // 2, imgL.shape[3] // 2), mode=\n 'bilinear', align_corners=True)\n", (828, 923), True, 'import megengine.functional as F\n'), ((973, 1084), 'megengine.functional.nn.interpolate', 'F.nn.interpolate', (['imgR'], {'size': '(imgL.shape[2] // 2, imgL.shape[3] // 2)', 'mode': '"""bilinear"""', 'align_corners': '(True)'}), "(imgR, size=(imgL.shape[2] // 2, imgL.shape[3] // 2), mode=\n 'bilinear', align_corners=True)\n", (989, 1084), True, 'import megengine.functional as F\n'), ((1390, 1453), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""A demo to run CREStereo."""'}), "(description='A demo to run CREStereo.')\n", (1413, 1453), False, 'import argparse\n'), ((2219, 2250), 'os.path.exists', 'os.path.exists', (['args.model_path'], {}), '(args.model_path)\n', (2233, 2250), False, 'import os\n'), ((2294, 2319), 'os.path.exists', 'os.path.exists', (['args.left'], {}), '(args.left)\n', (2308, 2319), False, 'import os\n'), ((2368, 2394), 'os.path.exists', 'os.path.exists', (['args.right'], {}), '(args.right)\n', (2382, 2394), False, 'import os\n'), ((2490, 2511), 'cv2.imread', 'cv2.imread', (['args.left'], {}), '(args.left)\n', (2500, 2511), False, 'import cv2\n'), ((2524, 2546), 'cv2.imread', 'cv2.imread', (['args.right'], {}), '(args.right)\n', (2534, 2546), False, 'import cv2\n'), ((2780, 2846), 'cv2.resize', 'cv2.resize', (['left', '(eval_w, eval_h)'], {'interpolation': 'cv2.INTER_LINEAR'}), '(left, (eval_w, eval_h), interpolation=cv2.INTER_LINEAR)\n', (2790, 2846), False, 'import cv2\n'), ((2863, 2930), 'cv2.resize', 'cv2.resize', (['right', '(eval_w, eval_h)'], {'interpolation': 'cv2.INTER_LINEAR'}), '(right, (eval_w, eval_h), interpolation=cv2.INTER_LINEAR)\n', (2873, 2930), False, 'import cv2\n'), ((3239, 3288), 'cv2.applyColorMap', 'cv2.applyColorMap', (['disp_vis', 'cv2.COLORMAP_INFERNO'], {}), '(disp_vis, cv2.COLORMAP_INFERNO)\n', (3256, 3288), False, 'import cv2\n'), ((3439, 3473), 'cv2.imwrite', 'cv2.imwrite', (['args.output', 'disp_vis'], {}), '(args.output, disp_vis)\n', (3450, 3473), False, 'import cv2\n'), ((196, 223), 'os.path.abspath', 'os.path.abspath', (['model_path'], {}), '(model_path)\n', (211, 223), False, 'import os\n'), ((3045, 3107), 'cv2.resize', 'cv2.resize', (['pred', '(in_w, in_h)'], {'interpolation': 'cv2.INTER_LINEAR'}), '(pred, (in_w, in_h), interpolation=cv2.INTER_LINEAR)\n', (3055, 3107), False, 'import cv2\n'), ((3324, 3360), 'os.path.join', 'os.path.join', (['args.output', 'os.pardir'], {}), '(args.output, os.pardir)\n', (3336, 3360), False, 'import os\n'), ((3373, 3400), 'os.path.exists', 'os.path.exists', (['parent_path'], {}), '(parent_path)\n', (3387, 3400), False, 'import os\n'), ((3410, 3434), 'os.makedirs', 'os.makedirs', (['parent_path'], {}), '(parent_path)\n', (3421, 3434), False, 'import os\n'), ((3506, 3534), 'os.path.abspath', 'os.path.abspath', (['args.output'], {}), '(args.output)\n', (3521, 3534), False, 'import os\n'), ((715, 731), 'megengine.tensor', 'mge.tensor', (['imgL'], {}), '(imgL)\n', (725, 731), True, 'import megengine as mge\n'), ((761, 777), 'megengine.tensor', 'mge.tensor', (['imgR'], {}), '(imgR)\n', (771, 777), True, 'import megengine as mge\n'), ((1285, 1317), 'megengine.functional.squeeze', 'F.squeeze', (['pred_flow[:, 0, :, :]'], {}), '(pred_flow[:, 0, :, :])\n', (1294, 1317), True, 'import megengine.functional as F\n')]
# This example implements homogenization of piezoeletric porous media. # The mathematical model and numerical results are described in: # # <NAME>., <NAME>. # Homogenization of the fluid-saturated piezoelectric porous media. # International Journal of Solids and Structures # Volume 147, 15 August 2018, Pages 110-125 # https://doi.org/10.1016/j.ijsolstr.2018.05.017 # # Run simulation: # # ./simple.py example_poropiezo-1/poropiezo_macro_dfc.py # # The results are stored in `example_poropiezo-1/results` directory. # import sys import numpy as nm import os.path as osp from sfepy import data_dir from sfepy.base.base import Struct from sfepy.homogenization.micmac import get_homog_coefs_linear from sfepy.homogenization.recovery import recover_micro_hook_eps data_dir = 'example_poropiezo-1' def set_grad(ts, coors, mode=None, problem=None, **kwargs): if mode == 'qp': out = problem.data.reshape((coors.shape[0], 1, 1)) return {'cs': out} # projection of values from integration points into mesh vertices def linear_projection(pb, cval): from sfepy.discrete import (FieldVariable, Material, Integral, Equation, Equations, Problem) from sfepy.discrete.fem import Mesh, FEDomain, Field from sfepy.terms import Term from sfepy.solvers.ls import ScipyDirect from sfepy.solvers.nls import Newton from sfepy.base.base import IndexedStruct mesh = Mesh.from_file(pb.conf.filename_mesh) domain = FEDomain('domain', mesh) omega = domain.create_region('Omega', 'all') field = Field.from_args('scf', nm.float64, 'scalar', omega, approx_order=1) g = FieldVariable('g', 'unknown', field) f = FieldVariable('f', 'test', field, primary_var_name='g') integral = Integral('i', order=2) m = Material('m', function=set_grad) t1 = Term.new('dw_volume_dot(f, g)', integral, omega, f=f, g=g) t2 = Term.new('dw_volume_lvf(m.cs, f)', integral, omega, m=m, f=f) eq = Equation('balance', t1 - t2) eqs = Equations([eq]) ls = ScipyDirect({}) nls_status = IndexedStruct() nls = Newton({'eps_a': 1e-15}, lin_solver=ls, status=nls_status) pb = Problem('elasticity', equations=eqs) pb.set_solver(nls) out = nm.empty((g.n_dof, cval.shape[2]), dtype=nm.float64) for ii in range(cval.shape[2]): pb.data = nm.ascontiguousarray(cval[:, :, ii, :]) pb.time_update() state = pb.solve() out[:, ii] = state.get_parts()['g'] return out # recover microsccopic fields in a given region, see Section 6.2 def recover_micro(pb, state): rreg = pb.domain.regions['Recovery'] state_dict = state.get_parts() strain_qp = pb.evaluate('ev_cauchy_strain.i2.Omega(u)', mode='qp') press_qp = pb.evaluate('ev_volume_integrate.i2.Omega(p)', mode='qp') pressg_qp = pb.evaluate('ev_grad.i2.Omega(p)', mode='qp') dim = rreg.dim displ = state_dict['u'] nodal_data = { 'u': displ.reshape((displ.shape[0] // dim, dim)), 'press': linear_projection(pb, press_qp), 'strain': linear_projection(pb, strain_qp), 'dp': linear_projection(pb, pressg_qp), } const_data = { 'phi': pb.conf.phi, } pvar = pb.create_variables(['svar']) def_args = { 'grid0': pb.conf.grid0, 'filename_mesh': pb.conf.filename_mesh_micro, } recover_micro_hook_eps(pb.conf.poroela_micro_file, rreg, pvar['svar'], nodal_data, const_data, pb.conf.eps0, recovery_file_tag='_%d' % pb.conf.grid0, define_args=def_args) # evaluate macroscopic strain and export to output def post_process(out, pb, state, extend=False): strain = pb.evaluate('ev_cauchy_strain.i2.Omega(u)', mode='el_avg') out['e'] = Struct(name='output_data', mode='cell', dofs=None, var_name='u', data=strain) if pb.conf.options.get('recover_micro', False): recover_micro(pb, state) return out def coefs2qp(coefs, nqp): out = {} for k, v in coefs.items(): if type(v) not in [nm.ndarray, float]: continue if type(v) is nm.ndarray: if len(v.shape) >= 3: out[k] = v out[k] = nm.tile(v, (nqp, 1, 1)) return out # get homogenized coefficients, recalculate them if necessary def get_homog(coors, mode, pb, micro_filename, **kwargs): if not (mode == 'qp'): return nqp = coors.shape[0] coefs_filename = 'coefs_poropiezo_%d' % pb.conf.grid0 coefs_filename = osp.join(pb.conf.options.get('output_dir', '.'), coefs_filename) + '.h5' def_args = { 'grid0': pb.conf.grid0, 'filename_mesh': pb.conf.filename_mesh_micro, } coefs = get_homog_coefs_linear(0, 0, None, micro_filename=micro_filename, coefs_filename=coefs_filename, define_args=def_args) for k in coefs.keys(): v = coefs[k] if type(v) is nm.ndarray: if len(v.shape) == 0: coefs[k] = v.reshape((1, 1)) elif len(v.shape) == 1: coefs[k] = v[:, nm.newaxis] elif isinstance(v, float): coefs[k] = nm.array([[v]]) out = coefs2qp(coefs, nqp) phi = pb.conf.phi Hf, Zf = 0, 0 for ii in range(2): Hf += out['H%d' % ii] * phi[ii] Zf += out['Z%d' % ii] * phi[ii] out['Hf'] = Hf out['Zf'] = Zf return out def define(grid0=16, bcmode='example'): eps0 = 0.01 / grid0 phi = nm.array([-1, 1]) * 1e3 poroela_micro_file = osp.join(data_dir, 'poropiezo_micro_dfc.py') fields = { 'displacement': ('real', 'vector', 'Omega', 1), 'pressure': ('real', 'scalar', 'Omega', 0), 'sfield': ('real', 'scalar', 'Omega', 1), } variables = { 'u': ('unknown field', 'displacement'), 'v': ('test field', 'displacement', 'u'), 'p': ('unknown field', 'pressure'), 'q': ('test field', 'pressure', 'p'), 'U': ('parameter field', 'displacement', 'u'), 'P': ('parameter field', 'pressure', 'p'), 'svar': ('parameter field', 'sfield', 'p'), } functions = { 'get_homog': (lambda ts, coors, mode=None, problem=None, **kwargs:\ get_homog(coors, mode, problem, poroela_micro_file, **kwargs),), } materials = { 'hom': 'get_homog', } integrals = { 'i2': 2, } solvers = { 'ls': ('ls.scipy_direct', {}), 'newton': ('nls.newton', {'i_max': 10, 'eps_a': 1e-1, 'eps_r': 1e-3, 'problem': 'nonlinear', }) } options = { 'output_dir': osp.join(data_dir, 'results'), 'nls': 'newton', 'absolute_mesh_path': True, 'recover_micro': True, 'post_process_hook': 'post_process', } regions = { 'Omega': 'all', 'Left': ('vertices in (x < 0.00001)', 'facet'), 'Right': ('vertices in (x > 0.00999)', 'facet'), 'Top': ('vertices in (z > 0.00999)', 'facet'), 'Bottom': ('vertices in (z < 0.00001)', 'facet'), 'Far': ('vertices in (y > 0.00249)', 'facet'), 'Near': ('vertices in (y < 0.00001)', 'facet'), 'Recovery': ('vertices in (x > 0.008) & (z > 0.008) & (y < 0.0013)', 'cell'), } filename_mesh = osp.join(data_dir, 'piezo_mesh_macro.vtk') filename_mesh_micro = osp.join(data_dir, 'piezo_mesh_micro_dfc.vtk') ebcs = { 'fixed_u_left': ('Left', {'u.all': 0.0}), } epbcs = {} # equations (47) equations = { 'balance_of_forces': """ dw_lin_elastic.i2.Omega(hom.A, v, u) - dw_biot.i2.Omega(hom.B, v, p) = - dw_lin_prestress.i2.Omega(hom.Hf, v)""", 'mass_conservation': """ - dw_biot.i2.Omega(hom.B, u, q) - dw_volume_dot.i2.Omega(hom.M, q, p) = - dw_volume_integrate.i2.Omega(hom.Zf, q)""" } return locals()
[ "sfepy.base.base.IndexedStruct", "sfepy.discrete.Equation", "sfepy.discrete.Material", "sfepy.base.base.Struct", "sfepy.discrete.fem.Mesh.from_file", "sfepy.solvers.ls.ScipyDirect", "sfepy.homogenization.micmac.get_homog_coefs_linear", "sfepy.homogenization.recovery.recover_micro_hook_eps", "sfepy.discrete.fem.Field.from_args", "sfepy.solvers.nls.Newton", "sfepy.terms.Term.new", "sfepy.discrete.Equations", "sfepy.discrete.Integral", "sfepy.discrete.fem.FEDomain", "sfepy.discrete.Problem", "sfepy.discrete.FieldVariable" ]
[((1432, 1469), 'sfepy.discrete.fem.Mesh.from_file', 'Mesh.from_file', (['pb.conf.filename_mesh'], {}), '(pb.conf.filename_mesh)\n', (1446, 1469), False, 'from sfepy.discrete.fem import Mesh, FEDomain, Field\n'), ((1483, 1507), 'sfepy.discrete.fem.FEDomain', 'FEDomain', (['"""domain"""', 'mesh'], {}), "('domain', mesh)\n", (1491, 1507), False, 'from sfepy.discrete.fem import Mesh, FEDomain, Field\n'), ((1569, 1636), 'sfepy.discrete.fem.Field.from_args', 'Field.from_args', (['"""scf"""', 'nm.float64', '"""scalar"""', 'omega'], {'approx_order': '(1)'}), "('scf', nm.float64, 'scalar', omega, approx_order=1)\n", (1584, 1636), False, 'from sfepy.discrete.fem import Mesh, FEDomain, Field\n'), ((1674, 1710), 'sfepy.discrete.FieldVariable', 'FieldVariable', (['"""g"""', '"""unknown"""', 'field'], {}), "('g', 'unknown', field)\n", (1687, 1710), False, 'from sfepy.discrete import FieldVariable, Material, Integral, Equation, Equations, Problem\n'), ((1719, 1774), 'sfepy.discrete.FieldVariable', 'FieldVariable', (['"""f"""', '"""test"""', 'field'], {'primary_var_name': '"""g"""'}), "('f', 'test', field, primary_var_name='g')\n", (1732, 1774), False, 'from sfepy.discrete import FieldVariable, Material, Integral, Equation, Equations, Problem\n'), ((1791, 1813), 'sfepy.discrete.Integral', 'Integral', (['"""i"""'], {'order': '(2)'}), "('i', order=2)\n", (1799, 1813), False, 'from sfepy.discrete import FieldVariable, Material, Integral, Equation, Equations, Problem\n'), ((1822, 1854), 'sfepy.discrete.Material', 'Material', (['"""m"""'], {'function': 'set_grad'}), "('m', function=set_grad)\n", (1830, 1854), False, 'from sfepy.discrete import FieldVariable, Material, Integral, Equation, Equations, Problem\n'), ((1865, 1923), 'sfepy.terms.Term.new', 'Term.new', (['"""dw_volume_dot(f, g)"""', 'integral', 'omega'], {'f': 'f', 'g': 'g'}), "('dw_volume_dot(f, g)', integral, omega, f=f, g=g)\n", (1873, 1923), False, 'from sfepy.terms import Term\n'), ((1933, 1994), 'sfepy.terms.Term.new', 'Term.new', (['"""dw_volume_lvf(m.cs, f)"""', 'integral', 'omega'], {'m': 'm', 'f': 'f'}), "('dw_volume_lvf(m.cs, f)', integral, omega, m=m, f=f)\n", (1941, 1994), False, 'from sfepy.terms import Term\n'), ((2022, 2050), 'sfepy.discrete.Equation', 'Equation', (['"""balance"""', '(t1 - t2)'], {}), "('balance', t1 - t2)\n", (2030, 2050), False, 'from sfepy.discrete import FieldVariable, Material, Integral, Equation, Equations, Problem\n'), ((2061, 2076), 'sfepy.discrete.Equations', 'Equations', (['[eq]'], {}), '([eq])\n', (2070, 2076), False, 'from sfepy.discrete import FieldVariable, Material, Integral, Equation, Equations, Problem\n'), ((2086, 2101), 'sfepy.solvers.ls.ScipyDirect', 'ScipyDirect', (['{}'], {}), '({})\n', (2097, 2101), False, 'from sfepy.solvers.ls import ScipyDirect\n'), ((2120, 2135), 'sfepy.base.base.IndexedStruct', 'IndexedStruct', ([], {}), '()\n', (2133, 2135), False, 'from sfepy.base.base import IndexedStruct\n'), ((2146, 2204), 'sfepy.solvers.nls.Newton', 'Newton', (["{'eps_a': 1e-15}"], {'lin_solver': 'ls', 'status': 'nls_status'}), "({'eps_a': 1e-15}, lin_solver=ls, status=nls_status)\n", (2152, 2204), False, 'from sfepy.solvers.nls import Newton\n'), ((2214, 2250), 'sfepy.discrete.Problem', 'Problem', (['"""elasticity"""'], {'equations': 'eqs'}), "('elasticity', equations=eqs)\n", (2221, 2250), False, 'from sfepy.discrete import FieldVariable, Material, Integral, Equation, Equations, Problem\n'), ((2285, 2337), 'numpy.empty', 'nm.empty', (['(g.n_dof, cval.shape[2])'], {'dtype': 'nm.float64'}), '((g.n_dof, cval.shape[2]), dtype=nm.float64)\n', (2293, 2337), True, 'import numpy as nm\n'), ((3414, 3594), 'sfepy.homogenization.recovery.recover_micro_hook_eps', 'recover_micro_hook_eps', (['pb.conf.poroela_micro_file', 'rreg', "pvar['svar']", 'nodal_data', 'const_data', 'pb.conf.eps0'], {'recovery_file_tag': "('_%d' % pb.conf.grid0)", 'define_args': 'def_args'}), "(pb.conf.poroela_micro_file, rreg, pvar['svar'],\n nodal_data, const_data, pb.conf.eps0, recovery_file_tag='_%d' % pb.conf\n .grid0, define_args=def_args)\n", (3436, 3594), False, 'from sfepy.homogenization.recovery import recover_micro_hook_eps\n'), ((3856, 3933), 'sfepy.base.base.Struct', 'Struct', ([], {'name': '"""output_data"""', 'mode': '"""cell"""', 'dofs': 'None', 'var_name': '"""u"""', 'data': 'strain'}), "(name='output_data', mode='cell', dofs=None, var_name='u', data=strain)\n", (3862, 3933), False, 'from sfepy.base.base import Struct\n'), ((4912, 5034), 'sfepy.homogenization.micmac.get_homog_coefs_linear', 'get_homog_coefs_linear', (['(0)', '(0)', 'None'], {'micro_filename': 'micro_filename', 'coefs_filename': 'coefs_filename', 'define_args': 'def_args'}), '(0, 0, None, micro_filename=micro_filename,\n coefs_filename=coefs_filename, define_args=def_args)\n', (4934, 5034), False, 'from sfepy.homogenization.micmac import get_homog_coefs_linear\n'), ((5811, 5855), 'os.path.join', 'osp.join', (['data_dir', '"""poropiezo_micro_dfc.py"""'], {}), "(data_dir, 'poropiezo_micro_dfc.py')\n", (5819, 5855), True, 'import os.path as osp\n'), ((7649, 7691), 'os.path.join', 'osp.join', (['data_dir', '"""piezo_mesh_macro.vtk"""'], {}), "(data_dir, 'piezo_mesh_macro.vtk')\n", (7657, 7691), True, 'import os.path as osp\n'), ((7718, 7764), 'os.path.join', 'osp.join', (['data_dir', '"""piezo_mesh_micro_dfc.vtk"""'], {}), "(data_dir, 'piezo_mesh_micro_dfc.vtk')\n", (7726, 7764), True, 'import os.path as osp\n'), ((2392, 2431), 'numpy.ascontiguousarray', 'nm.ascontiguousarray', (['cval[:, :, ii, :]'], {}), '(cval[:, :, ii, :])\n', (2412, 2431), True, 'import numpy as nm\n'), ((4378, 4401), 'numpy.tile', 'nm.tile', (['v', '(nqp, 1, 1)'], {}), '(v, (nqp, 1, 1))\n', (4385, 4401), True, 'import numpy as nm\n'), ((5761, 5778), 'numpy.array', 'nm.array', (['[-1, 1]'], {}), '([-1, 1])\n', (5769, 5778), True, 'import numpy as nm\n'), ((6984, 7013), 'os.path.join', 'osp.join', (['data_dir', '"""results"""'], {}), "(data_dir, 'results')\n", (6992, 7013), True, 'import os.path as osp\n'), ((5436, 5451), 'numpy.array', 'nm.array', (['[[v]]'], {}), '([[v]])\n', (5444, 5451), True, 'import numpy as nm\n')]
# Copyright 2021 Modelyst LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Optional from uuid import UUID import sqlalchemy.types as types from sqlalchemy import Column from sqlalchemy.orm import registry from sqlmodel import Field, select from dbgen.core.decorators import transform from dbgen.core.entity import Entity from dbgen.core.generator import Generator from dbgen.core.model import Model from dbgen.core.node.extract import Extract from dbgen.core.node.query import Query my_registry = registry() class Parent(Entity, registry=my_registry, table=True): __identifying__ = {"label"} label: str myColumn: Optional[dict] = Field(None, sa_column=Column(types.JSON())) class Child(Entity, registry=my_registry, table=True): __identifying__ = {"label", "parent_id"} label: str new_col: str = "test" parent_id: Optional[UUID] = Field(None, foreign_key="public.parent.id") class CustomExtractor(Extract): n: int = 1000 def extract(self): for i in range(self.n): yield {'out': str(i)} def length(self, **_): return self.n @transform def failing_func(): raise ValueError("Failed") @transform def inputs_skipped(): from dbgen.exceptions import DBgenSkipException raise DBgenSkipException(msg="Skip!") def make_model(): with Model(name='new_api', registry=my_registry) as model: with Generator('add_parent'): new_extract = CustomExtractor(n=1000) Parent.load(insert=True, label=new_extract["out"], validation='strict', myColumn={'a': 1}) with Generator('add_parents_v2'): Parent.load(insert=True, label="parentier") with Generator('add_parents_v3'): Parent.load(insert=True, label="parent") @transform def concise_func(label: str) -> str: return f"{label}-test" with Generator('add_child'): query = Query(select(Parent.id, Parent.label)) parent_id, parent_label = query.results() concise_pyblock = concise_func(query["label"]) Child.load(insert=True, label=concise_pyblock.results(), parent_id=query["id"]) with Generator('failing_gen'): failing_func() with Generator('skip_gen'): inputs_skipped() return model
[ "sqlmodel.select", "sqlmodel.Field" ]
[((1041, 1051), 'sqlalchemy.orm.registry', 'registry', ([], {}), '()\n', (1049, 1051), False, 'from sqlalchemy.orm import registry\n'), ((1407, 1450), 'sqlmodel.Field', 'Field', (['None'], {'foreign_key': '"""public.parent.id"""'}), "(None, foreign_key='public.parent.id')\n", (1412, 1450), False, 'from sqlmodel import Field, select\n'), ((1805, 1836), 'dbgen.exceptions.DBgenSkipException', 'DBgenSkipException', ([], {'msg': '"""Skip!"""'}), "(msg='Skip!')\n", (1823, 1836), False, 'from dbgen.exceptions import DBgenSkipException\n'), ((1866, 1909), 'dbgen.core.model.Model', 'Model', ([], {'name': '"""new_api"""', 'registry': 'my_registry'}), "(name='new_api', registry=my_registry)\n", (1871, 1909), False, 'from dbgen.core.model import Model\n'), ((1933, 1956), 'dbgen.core.generator.Generator', 'Generator', (['"""add_parent"""'], {}), "('add_parent')\n", (1942, 1956), False, 'from dbgen.core.generator import Generator\n'), ((2125, 2152), 'dbgen.core.generator.Generator', 'Generator', (['"""add_parents_v2"""'], {}), "('add_parents_v2')\n", (2134, 2152), False, 'from dbgen.core.generator import Generator\n'), ((2224, 2251), 'dbgen.core.generator.Generator', 'Generator', (['"""add_parents_v3"""'], {}), "('add_parents_v3')\n", (2233, 2251), False, 'from dbgen.core.generator import Generator\n'), ((2420, 2442), 'dbgen.core.generator.Generator', 'Generator', (['"""add_child"""'], {}), "('add_child')\n", (2429, 2442), False, 'from dbgen.core.generator import Generator\n'), ((2722, 2746), 'dbgen.core.generator.Generator', 'Generator', (['"""failing_gen"""'], {}), "('failing_gen')\n", (2731, 2746), False, 'from dbgen.core.generator import Generator\n'), ((2789, 2810), 'dbgen.core.generator.Generator', 'Generator', (['"""skip_gen"""'], {}), "('skip_gen')\n", (2798, 2810), False, 'from dbgen.core.generator import Generator\n'), ((1217, 1229), 'sqlalchemy.types.JSON', 'types.JSON', ([], {}), '()\n', (1227, 1229), True, 'import sqlalchemy.types as types\n'), ((2470, 2501), 'sqlmodel.select', 'select', (['Parent.id', 'Parent.label'], {}), '(Parent.id, Parent.label)\n', (2476, 2501), False, 'from sqlmodel import Field, select\n')]
import random from datetime import datetime from typing import List, Optional from sqlmodel import or_, select from config.notif_config import NotifConfig from src.api.fixtures_client import FixturesClient from src.db.db_manager import NotifierDBManager from src.db.notif_sql_models import Fixture as DBFixture from src.db.notif_sql_models import League as DBLeague from src.db.notif_sql_models import Team as DBTeam from src.emojis import Emojis from src.entities import Fixture, TeamStanding from src.senders.email_sender import send_email_html from src.senders.telegram_sender import send_telegram_message from src.utils.date_utils import get_date_spanish_text_format from src.utils.fixtures_utils import ( get_image_search, get_last_fixture, get_last_fixture_db, get_next_fixture, get_next_fixture_db, get_youtube_highlights_videos, ) from src.utils.message_utils import ( get_first_phrase_msg, get_team_intro_message, is_subscripted_for_team, ) class TeamFixturesManager: def __init__(self, season: str, team_id: str) -> None: self._season = season self._team_id = team_id self._fixtures_client = FixturesClient() self._notifier_db_manager = NotifierDBManager() def get_next_team_fixture_text(self, user: str = "") -> tuple: next_team_fixture = self.get_next_team_fixture() return ( self._telegram_next_fixture_notification(next_team_fixture, True, user) if next_team_fixture else ("Fixture para el equipo no encontrado", "") ) def get_last_team_fixture_text(self, user: str = "") -> tuple: last_team_fixture = self.get_last_team_fixture() return ( self._telegram_last_fixture_notification(last_team_fixture, user) if last_team_fixture else ("Fixture para el equipo no encontrado", "") ) def get_next_team_fixture(self) -> Optional[Fixture]: fixtures_statement = select(DBFixture).where( or_( DBFixture.home_team == self._team_id, DBFixture.away_team == self._team_id, ) ) team_fixtures = self._notifier_db_manager.select_records(fixtures_statement) next_team_fixture = None if len(team_fixtures): next_team_fixture = get_next_fixture_db(team_fixtures) return next_team_fixture def notify_next_fixture_db(self) -> None: next_team_fixture = self.get_next_team_fixture() if next_team_fixture: if next_team_fixture.remaining_time().days < NotifConfig.NEXT_MATCH_THRESHOLD: self._perform_fixture_notification(next_team_fixture) def notify_next_fixture(self) -> None: team_fixtures = self._fixtures_client.get_fixtures_by( self._season, self._team_id ) next_team_fixture = None if "response" in team_fixtures.as_dict: next_team_fixture = get_next_fixture( team_fixtures.as_dict["response"], self._team_id ) if next_team_fixture: if next_team_fixture.remaining_time().days < 500: self._perform_fixture_notification(next_team_fixture) def notify_fixture_line_up_update(self) -> None: team_fixtures = self._fixtures_client.get_fixtures_by( self._season, self._team_id ) next_team_fixture = None if "response" in team_fixtures.as_dict: next_team_fixture = get_next_fixture( team_fixtures.as_dict["response"], self._team_id ) if next_team_fixture: if ( next_team_fixture.remaining_time().days < 1 and next_team_fixture.remaining_time().hours < 6 and next_team_fixture.line_up ): self._perform_line_up_confirmed_notification(next_team_fixture) else: print( f"There is still no line up for the match of {next_team_fixture.home_team} vs {next_team_fixture.away_team}" ) print(str(next_team_fixture.remaining_time())) def get_last_team_fixture(self) -> Optional[Fixture]: fixtures_statement = select(DBFixture).where( or_( DBFixture.home_team == self._team_id, DBFixture.away_team == self._team_id, ) ) team_fixtures = self._notifier_db_manager.select_records(fixtures_statement) last_team_fixture = None if team_fixtures: last_team_fixture = get_last_fixture_db(team_fixtures) return last_team_fixture def notify_last_fixture_db(self) -> None: fixtures_statement = select(DBFixture).where( or_( DBFixture.home_team == self._team_id, DBFixture.away_team == self._team_id, ) ) team_fixtures = self._notifier_db_manager.select_records(fixtures_statement) last_team_fixture = None if team_fixtures: last_team_fixture = get_last_fixture_db(team_fixtures) if last_team_fixture: if ( NotifConfig.LAST_MATCH_THRESHOLD_DAYS <= last_team_fixture.remaining_time().days <= 0 ): self._perform_last_fixture_notification(last_team_fixture) def notify_last_fixture(self) -> None: team_fixtures = self._fixtures_client.get_fixtures_by( self._season, self._team_id ) last_team_fixture = get_last_fixture( team_fixtures.as_dict["response"], self._team_id ) if last_team_fixture: if ( -1 <= last_team_fixture.remaining_time().days <= NotifConfig.LAST_MATCH_THRESHOLD_DAYS ): last_team_fixture.highlights = get_youtube_highlights_videos( last_team_fixture.home_team, last_team_fixture.away_team ) self._perform_last_fixture_notification(last_team_fixture) def _telegram_last_fixture_notification( self, team_fixture: Fixture, user: str = "" ) -> tuple: match_images = self._get_match_images(team_fixture.championship.league_id) match_image_url = random.choice(match_images) spanish_format_date = get_date_spanish_text_format(team_fixture.bsas_date) team_intro_message = get_team_intro_message( team_fixture.home_team if str(team_fixture.home_team.id) == str(self._team_id) else team_fixture.away_team )["last_match"] highlights_yt_url = f"https://www.youtube.com/results?search_query={team_fixture.home_team.name}+vs+{team_fixture.away_team.name}+jugadas+resumen" highlights_text = f"{Emojis.FILM_PROJECTOR.value} <a href='{highlights_yt_url}'>HIGHLIGHTS</a>" telegram_message = ( f"{Emojis.WAVING_HAND.value}Hola {user}!\n\n" f"{team_intro_message} " f"jugó el {spanish_format_date}! \nEste fue el resultado: \n\n" f"{team_fixture.matched_played_telegram_like_repr()}" f"{highlights_text}" ) return (telegram_message, match_image_url) def _telegram_next_fixture_notification( self, team_fixture: Fixture, is_on_demand: False, user: str = "" ) -> tuple: spanish_format_date = get_date_spanish_text_format(team_fixture.bsas_date) match_images = self._get_match_images(team_fixture.championship.league_id) match_image_url = random.choice(match_images) date_text = ( "es HOY!" if team_fixture.bsas_date.day == datetime.today().day else f"es el {Emojis.SPIRAL_CALENDAR.value} {spanish_format_date}." ) first_phrase = get_first_phrase_msg(True, is_on_demand) team_intro_message = get_team_intro_message( team_fixture.home_team if str(team_fixture.home_team.id) == str(self._team_id) else team_fixture.away_team )["next_match"] intro_message = f"{first_phrase} {team_intro_message}" telegram_message = ( f"{Emojis.WAVING_HAND.value}Hola {user}! " f"\n\n{intro_message} {date_text}\n\n{team_fixture.telegram_like_repr()}" ) return (telegram_message, match_image_url) def _perform_last_fixture_notification( self, team_fixture: Fixture, team_standing: TeamStanding = None ) -> None: match_images = self._get_match_images(team_fixture.championship.league_id) match_image_url = random.choice(match_images) # telegram team_standing_msg = ( f"{Emojis.RED_EXCLAMATION_MARK.value} Situación actual en el campeonato: \n\n{team_standing.telegram_like_repr()}\n" if team_standing else "" ) team_intro_message = get_team_intro_message( team_fixture.home_team if str(team_fixture.home_team.id) == str(self._team_id) else team_fixture.away_team )["last_match"] highlights_yt_url = f"https://www.youtube.com/results?search_query={team_fixture.home_team.name}+vs+{team_fixture.away_team.name}+jugadas+resumen" highlights_text = f"{Emojis.FILM_PROJECTOR.value} <a href='{highlights_yt_url}'>HIGHLIGHTS</a>" FOOTBALL_TELEGRAM_RECIPIENTS = NotifConfig.TELEGRAM_RECIPIENTS for recipient in FOOTBALL_TELEGRAM_RECIPIENTS: if is_subscripted_for_team(recipient, self._team_id): telegram_message = ( f"{Emojis.WAVING_HAND.value}Hola {recipient.name}!\n\n" f"{team_intro_message} " f"jugó ayer! \nEste fue el resultado: \n\n" f"{team_fixture.matched_played_telegram_like_repr()}" f"\n{highlights_text}" ) send_telegram_message( recipient.telegram_id, telegram_message, match_image_url, ) # email team_standing_email_msg = ( f"Situación actual en el campeonato: \n\n{team_standing.email_like_repr()}" if team_standing else "" ) match_image_text = f"<img src='{match_image_url}'>" email_standing_message = ( f"{Emojis.RED_EXCLAMATION_MARK.value}{team_standing_email_msg}\n" ) highlights_text = f"https://www.youtube.com/results?search_query={team_fixture.home_team.name}+vs+{team_fixture.away_team.name}+jugadas+resumen" EMAIL_RECIPIENTS = NotifConfig.EMAIL_RECIPIENTS for recipient in EMAIL_RECIPIENTS: message = ( f"{Emojis.WAVING_HAND.value}Hola {recipient.name}!\n\n{team_intro_message} " f"jugó ayer!<br /><br />{match_image_text}<br /><br />Este fue el resultado: \n\n{team_fixture.matched_played_email_like_repr()}" f"<br /><br />{email_standing_message}<br /><br />{highlights_text}" ) send_email_html( f"{team_fixture.home_team.name} ({team_fixture.match_score.home_score}) - " f"({team_fixture.match_score.away_score}) {team_fixture.away_team.name}", message, recipient.email, ) def _perform_fixture_notification(self, team_fixture: Fixture) -> None: spanish_format_date = get_date_spanish_text_format(team_fixture.bsas_date) match_images = self._get_match_images(team_fixture.championship.league_id) match_image_url = random.choice(match_images) match_image_text = f"<img width='100%' height='100%' src='{match_image_url}'>" date_text = ( "es HOY!" if team_fixture.bsas_date.day == datetime.today().day else f"es el {Emojis.SPIRAL_CALENDAR.value} {spanish_format_date}." ) first_phrase = get_first_phrase_msg(True) team_intro_message = get_team_intro_message( team_fixture.home_team if str(team_fixture.home_team.id) == str(self._team_id) else team_fixture.away_team )["next_match"] intro_message = f"{first_phrase} {team_intro_message}" # telegram FOOTBALL_TELEGRAM_RECIPIENTS = NotifConfig.TELEGRAM_RECIPIENTS for recipient in FOOTBALL_TELEGRAM_RECIPIENTS: if is_subscripted_for_team(recipient, self._team_id): telegram_message = ( f"{Emojis.WAVING_HAND.value}Hola " f"{recipient.name}!\n\n{intro_message} {date_text}\n\n{team_fixture.telegram_like_repr()}" ) send_telegram_message( recipient.telegram_id, telegram_message, photo=match_image_url, ) # email EMAIL_RECIPIENTS = NotifConfig.EMAIL_RECIPIENTS for recipient in EMAIL_RECIPIENTS: message = f"{Emojis.WAVING_HAND.value}Hola {recipient.name}!\n\n{intro_message} {date_text}\n\n<br /><br />{match_image_text}<br /><br />{team_fixture.email_like_repr()}" send_email_html( f"{team_fixture.home_team.name} vs. {team_fixture.away_team.name}", message, recipient.email, ) def _perform_line_up_confirmed_notification(self, team_fixture: Fixture) -> None: match_teams = f"{team_fixture.home_team.name} vs {team_fixture.away_team.name}" match_image_url = get_image_search(match_teams) match_image_text = f"<img src='{match_image_url}'>" # telegram FOOTBALL_TELEGRAM_RECIPIENTS = NotifConfig.TELEGRAM_RECIPIENTS for recipient in FOOTBALL_TELEGRAM_RECIPIENTS: intro_message = f"Se actualizó la alineación para {match_teams}:" telegram_message = f"{Emojis.WAVING_HAND.value}Hola {recipient.name}!\n\n{intro_message}\n\n{team_fixture.telegram_like_repr()}" send_telegram_message( recipient.telegram_id, telegram_message, photo=match_image_url, ) # email EMAIL_RECIPIENTS = NotifConfig.EMAIL_RECIPIENTS for recipient in EMAIL_RECIPIENTS: message = f"{Emojis.WAVING_HAND.value}Hola {recipient.name}!\n\n{intro_message}\n\n<br /><br />{match_image_text}<br /><br />{team_fixture.email_like_repr()}" send_email_html( f"{team_fixture.home_team.name} vs. {team_fixture.away_team.name}", message, recipient.email, ) def _get_match_images(self, league_id: int) -> List[str]: match_image_url_team_statement = select(DBTeam).where( DBTeam.id == self._team_id ) match_image_url_league_statement = select(DBLeague).where( DBLeague.id == league_id ) team_image_url = self._notifier_db_manager.select_records( match_image_url_team_statement )[0].picture league_image_url = self._notifier_db_manager.select_records( match_image_url_league_statement )[0].logo return [team_image_url, league_image_url]
[ "sqlmodel.select", "sqlmodel.or_" ]
[((1170, 1186), 'src.api.fixtures_client.FixturesClient', 'FixturesClient', ([], {}), '()\n', (1184, 1186), False, 'from src.api.fixtures_client import FixturesClient\n'), ((1223, 1242), 'src.db.db_manager.NotifierDBManager', 'NotifierDBManager', ([], {}), '()\n', (1240, 1242), False, 'from src.db.db_manager import NotifierDBManager\n'), ((5615, 5681), 'src.utils.fixtures_utils.get_last_fixture', 'get_last_fixture', (["team_fixtures.as_dict['response']", 'self._team_id'], {}), "(team_fixtures.as_dict['response'], self._team_id)\n", (5631, 5681), False, 'from src.utils.fixtures_utils import get_image_search, get_last_fixture, get_last_fixture_db, get_next_fixture, get_next_fixture_db, get_youtube_highlights_videos\n'), ((6373, 6400), 'random.choice', 'random.choice', (['match_images'], {}), '(match_images)\n', (6386, 6400), False, 'import random\n'), ((6431, 6483), 'src.utils.date_utils.get_date_spanish_text_format', 'get_date_spanish_text_format', (['team_fixture.bsas_date'], {}), '(team_fixture.bsas_date)\n', (6459, 6483), False, 'from src.utils.date_utils import get_date_spanish_text_format\n'), ((7492, 7544), 'src.utils.date_utils.get_date_spanish_text_format', 'get_date_spanish_text_format', (['team_fixture.bsas_date'], {}), '(team_fixture.bsas_date)\n', (7520, 7544), False, 'from src.utils.date_utils import get_date_spanish_text_format\n'), ((7654, 7681), 'random.choice', 'random.choice', (['match_images'], {}), '(match_images)\n', (7667, 7681), False, 'import random\n'), ((7906, 7946), 'src.utils.message_utils.get_first_phrase_msg', 'get_first_phrase_msg', (['(True)', 'is_on_demand'], {}), '(True, is_on_demand)\n', (7926, 7946), False, 'from src.utils.message_utils import get_first_phrase_msg, get_team_intro_message, is_subscripted_for_team\n'), ((8705, 8732), 'random.choice', 'random.choice', (['match_images'], {}), '(match_images)\n', (8718, 8732), False, 'import random\n'), ((11566, 11618), 'src.utils.date_utils.get_date_spanish_text_format', 'get_date_spanish_text_format', (['team_fixture.bsas_date'], {}), '(team_fixture.bsas_date)\n', (11594, 11618), False, 'from src.utils.date_utils import get_date_spanish_text_format\n'), ((11728, 11755), 'random.choice', 'random.choice', (['match_images'], {}), '(match_images)\n', (11741, 11755), False, 'import random\n'), ((12067, 12093), 'src.utils.message_utils.get_first_phrase_msg', 'get_first_phrase_msg', (['(True)'], {}), '(True)\n', (12087, 12093), False, 'from src.utils.message_utils import get_first_phrase_msg, get_team_intro_message, is_subscripted_for_team\n'), ((13677, 13706), 'src.utils.fixtures_utils.get_image_search', 'get_image_search', (['match_teams'], {}), '(match_teams)\n', (13693, 13706), False, 'from src.utils.fixtures_utils import get_image_search, get_last_fixture, get_last_fixture_db, get_next_fixture, get_next_fixture_db, get_youtube_highlights_videos\n'), ((2024, 2103), 'sqlmodel.or_', 'or_', (['(DBFixture.home_team == self._team_id)', '(DBFixture.away_team == self._team_id)'], {}), '(DBFixture.home_team == self._team_id, DBFixture.away_team == self._team_id)\n', (2027, 2103), False, 'from sqlmodel import or_, select\n'), ((2344, 2378), 'src.utils.fixtures_utils.get_next_fixture_db', 'get_next_fixture_db', (['team_fixtures'], {}), '(team_fixtures)\n', (2363, 2378), False, 'from src.utils.fixtures_utils import get_image_search, get_last_fixture, get_last_fixture_db, get_next_fixture, get_next_fixture_db, get_youtube_highlights_videos\n'), ((2981, 3047), 'src.utils.fixtures_utils.get_next_fixture', 'get_next_fixture', (["team_fixtures.as_dict['response']", 'self._team_id'], {}), "(team_fixtures.as_dict['response'], self._team_id)\n", (2997, 3047), False, 'from src.utils.fixtures_utils import get_image_search, get_last_fixture, get_last_fixture_db, get_next_fixture, get_next_fixture_db, get_youtube_highlights_videos\n'), ((3523, 3589), 'src.utils.fixtures_utils.get_next_fixture', 'get_next_fixture', (["team_fixtures.as_dict['response']", 'self._team_id'], {}), "(team_fixtures.as_dict['response'], self._team_id)\n", (3539, 3589), False, 'from src.utils.fixtures_utils import get_image_search, get_last_fixture, get_last_fixture_db, get_next_fixture, get_next_fixture_db, get_youtube_highlights_videos\n'), ((4310, 4389), 'sqlmodel.or_', 'or_', (['(DBFixture.home_team == self._team_id)', '(DBFixture.away_team == self._team_id)'], {}), '(DBFixture.home_team == self._team_id, DBFixture.away_team == self._team_id)\n', (4313, 4389), False, 'from sqlmodel import or_, select\n'), ((4625, 4659), 'src.utils.fixtures_utils.get_last_fixture_db', 'get_last_fixture_db', (['team_fixtures'], {}), '(team_fixtures)\n', (4644, 4659), False, 'from src.utils.fixtures_utils import get_image_search, get_last_fixture, get_last_fixture_db, get_next_fixture, get_next_fixture_db, get_youtube_highlights_videos\n'), ((4807, 4886), 'sqlmodel.or_', 'or_', (['(DBFixture.home_team == self._team_id)', '(DBFixture.away_team == self._team_id)'], {}), '(DBFixture.home_team == self._team_id, DBFixture.away_team == self._team_id)\n', (4810, 4886), False, 'from sqlmodel import or_, select\n'), ((5122, 5156), 'src.utils.fixtures_utils.get_last_fixture_db', 'get_last_fixture_db', (['team_fixtures'], {}), '(team_fixtures)\n', (5141, 5156), False, 'from src.utils.fixtures_utils import get_image_search, get_last_fixture, get_last_fixture_db, get_next_fixture, get_next_fixture_db, get_youtube_highlights_videos\n'), ((9594, 9643), 'src.utils.message_utils.is_subscripted_for_team', 'is_subscripted_for_team', (['recipient', 'self._team_id'], {}), '(recipient, self._team_id)\n', (9617, 9643), False, 'from src.utils.message_utils import get_first_phrase_msg, get_team_intro_message, is_subscripted_for_team\n'), ((11188, 11385), 'src.senders.email_sender.send_email_html', 'send_email_html', (['f"""{team_fixture.home_team.name} ({team_fixture.match_score.home_score}) - ({team_fixture.match_score.away_score}) {team_fixture.away_team.name}"""', 'message', 'recipient.email'], {}), "(\n f'{team_fixture.home_team.name} ({team_fixture.match_score.home_score}) - ({team_fixture.match_score.away_score}) {team_fixture.away_team.name}'\n , message, recipient.email)\n", (11203, 11385), False, 'from src.senders.email_sender import send_email_html\n'), ((12539, 12588), 'src.utils.message_utils.is_subscripted_for_team', 'is_subscripted_for_team', (['recipient', 'self._team_id'], {}), '(recipient, self._team_id)\n', (12562, 12588), False, 'from src.utils.message_utils import get_first_phrase_msg, get_team_intro_message, is_subscripted_for_team\n'), ((13303, 13421), 'src.senders.email_sender.send_email_html', 'send_email_html', (['f"""{team_fixture.home_team.name} vs. {team_fixture.away_team.name}"""', 'message', 'recipient.email'], {}), "(\n f'{team_fixture.home_team.name} vs. {team_fixture.away_team.name}',\n message, recipient.email)\n", (13318, 13421), False, 'from src.senders.email_sender import send_email_html\n'), ((14144, 14234), 'src.senders.telegram_sender.send_telegram_message', 'send_telegram_message', (['recipient.telegram_id', 'telegram_message'], {'photo': 'match_image_url'}), '(recipient.telegram_id, telegram_message, photo=\n match_image_url)\n', (14165, 14234), False, 'from src.senders.telegram_sender import send_telegram_message\n'), ((14592, 14710), 'src.senders.email_sender.send_email_html', 'send_email_html', (['f"""{team_fixture.home_team.name} vs. {team_fixture.away_team.name}"""', 'message', 'recipient.email'], {}), "(\n f'{team_fixture.home_team.name} vs. {team_fixture.away_team.name}',\n message, recipient.email)\n", (14607, 14710), False, 'from src.senders.email_sender import send_email_html\n'), ((1987, 2004), 'sqlmodel.select', 'select', (['DBFixture'], {}), '(DBFixture)\n', (1993, 2004), False, 'from sqlmodel import or_, select\n'), ((4273, 4290), 'sqlmodel.select', 'select', (['DBFixture'], {}), '(DBFixture)\n', (4279, 4290), False, 'from sqlmodel import or_, select\n'), ((4770, 4787), 'sqlmodel.select', 'select', (['DBFixture'], {}), '(DBFixture)\n', (4776, 4787), False, 'from sqlmodel import or_, select\n'), ((5949, 6040), 'src.utils.fixtures_utils.get_youtube_highlights_videos', 'get_youtube_highlights_videos', (['last_team_fixture.home_team', 'last_team_fixture.away_team'], {}), '(last_team_fixture.home_team,\n last_team_fixture.away_team)\n', (5978, 6040), False, 'from src.utils.fixtures_utils import get_image_search, get_last_fixture, get_last_fixture_db, get_next_fixture, get_next_fixture_db, get_youtube_highlights_videos\n'), ((10018, 10097), 'src.senders.telegram_sender.send_telegram_message', 'send_telegram_message', (['recipient.telegram_id', 'telegram_message', 'match_image_url'], {}), '(recipient.telegram_id, telegram_message, match_image_url)\n', (10039, 10097), False, 'from src.senders.telegram_sender import send_telegram_message\n'), ((12827, 12917), 'src.senders.telegram_sender.send_telegram_message', 'send_telegram_message', (['recipient.telegram_id', 'telegram_message'], {'photo': 'match_image_url'}), '(recipient.telegram_id, telegram_message, photo=\n match_image_url)\n', (12848, 12917), False, 'from src.senders.telegram_sender import send_telegram_message\n'), ((14869, 14883), 'sqlmodel.select', 'select', (['DBTeam'], {}), '(DBTeam)\n', (14875, 14883), False, 'from sqlmodel import or_, select\n'), ((14983, 14999), 'sqlmodel.select', 'select', (['DBLeague'], {}), '(DBLeague)\n', (14989, 14999), False, 'from sqlmodel import or_, select\n'), ((7771, 7787), 'datetime.datetime.today', 'datetime.today', ([], {}), '()\n', (7785, 7787), False, 'from datetime import datetime\n'), ((11932, 11948), 'datetime.datetime.today', 'datetime.today', ([], {}), '()\n', (11946, 11948), False, 'from datetime import datetime\n')]
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied import json import os import pytest from megengine import Parameter, tensor from megengine.core import option from megengine.module import Module from megengine.utils.profiler import Profiler, scope class Simple(Module): def __init__(self): super().__init__() self.a = Parameter([1.23], dtype="float32") def forward(self, x): x = x * self.a return x def test_profiler(): profile_prefix = "pytest_profile" profile_format = "chrome_timeline.json" profile_path = "{}.{}".format(profile_prefix, profile_format) with Profiler(profile_prefix, format=profile_format): with scope("my_scope"): oup = Simple()(tensor([1.23], dtype="float32")) with open(profile_path, "r") as f: events = json.load(f) os.remove(profile_path) prev_ts = {} scope_count = 0 for event in events: if "dur" in event: assert event["dur"] >= 0 elif "ts" in event and "tid" in event: ts = event["ts"] tid = event["tid"] if ts == 0: continue assert (tid not in prev_ts) or prev_ts[tid] <= ts prev_ts[tid] = ts if "name" in event and event["name"] == "my_scope": scope_count += 1 assert scope_count > 0 and scope_count % 2 == 0
[ "megengine.tensor", "megengine.utils.profiler.scope", "megengine.Parameter", "megengine.utils.profiler.Profiler" ]
[((1165, 1188), 'os.remove', 'os.remove', (['profile_path'], {}), '(profile_path)\n', (1174, 1188), False, 'import os\n'), ((669, 703), 'megengine.Parameter', 'Parameter', (['[1.23]'], {'dtype': '"""float32"""'}), "([1.23], dtype='float32')\n", (678, 703), False, 'from megengine import Parameter, tensor\n'), ((951, 998), 'megengine.utils.profiler.Profiler', 'Profiler', (['profile_prefix'], {'format': 'profile_format'}), '(profile_prefix, format=profile_format)\n', (959, 998), False, 'from megengine.utils.profiler import Profiler, scope\n'), ((1148, 1160), 'json.load', 'json.load', (['f'], {}), '(f)\n', (1157, 1160), False, 'import json\n'), ((1013, 1030), 'megengine.utils.profiler.scope', 'scope', (['"""my_scope"""'], {}), "('my_scope')\n", (1018, 1030), False, 'from megengine.utils.profiler import Profiler, scope\n'), ((1059, 1090), 'megengine.tensor', 'tensor', (['[1.23]'], {'dtype': '"""float32"""'}), "([1.23], dtype='float32')\n", (1065, 1090), False, 'from megengine import Parameter, tensor\n')]
import numpy as np from megengine import tensor def _default_compare_fn(x, y): np.testing.assert_allclose(x.numpy(), y, rtol=1e-6) def opr_test(cases, func, compare_fn=_default_compare_fn, ref_fn=None, **kwargs): """ :param cases: the list which have dict element, the list length should be 2 for dynamic shape test. and the dict should have input, and should have output if ref_fn is None. should use list for multiple inputs and outputs for each case. :param func: the function to run opr. :param compare_fn: the function to compare the result and expected, use ``np.testing.assert_allclose`` if None. :param ref_fn: the function to generate expected data, should assign output if None. Examples: .. code-block:: dtype = np.float32 cases = [{"input": [10, 20]}, {"input": [20, 30]}] opr_test(cases, F.eye, ref_fn=lambda n, m: np.eye(n, m).astype(dtype), dtype=dtype) """ def check_results(results, expected): if not isinstance(results, (tuple, list)): results = (results,) for r, e in zip(results, expected): compare_fn(r, e) def get_param(cases, idx): case = cases[idx] inp = case.get("input", None) outp = case.get("output", None) if inp is None: raise ValueError("the test case should have input") if not isinstance(inp, (tuple, list)): inp = (inp,) if ref_fn is not None and callable(ref_fn): outp = ref_fn(*inp) if outp is None: raise ValueError("the test case should have output or reference function") if not isinstance(outp, (tuple, list)): outp = (outp,) return inp, outp if len(cases) == 0: raise ValueError("should give one case at least") if not callable(func): raise ValueError("the input func should be callable") inp, outp = get_param(cases, 0) inp_tensor = [tensor(inpi) for inpi in inp] results = func(*inp_tensor, **kwargs) check_results(results, outp)
[ "megengine.tensor" ]
[((2055, 2067), 'megengine.tensor', 'tensor', (['inpi'], {}), '(inpi)\n', (2061, 2067), False, 'from megengine import tensor\n')]
"""Example code""" from sqlmodel import Field, SQLModel class CarBase(SQLModel): """ CarBase is the base model. This is a data-only model(Pydantic), since it lacks `table=True`. """ name: str manufacturer: str class Car(CarBase, table=True): # type: ignore """ Add `id` property to the base model. Since `table=True` it is a pydantic AND SQLAlchemy model and represents a database table. """ id: int = Field(default=None, primary_key=True) class CarRead(CarBase): id: int # Make `id` a required field in our response model class CarCreate(CarBase): """ This is a data-only pydantic model. Used to create new songs. """ pass
[ "sqlmodel.Field" ]
[((449, 486), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'primary_key': '(True)'}), '(default=None, primary_key=True)\n', (454, 486), False, 'from sqlmodel import Field, SQLModel\n')]
# 26.02.2007, c # last revision: 25.02.2008 from sfepy import data_dir filename_mesh = data_dir + '/meshes/3d/elbow2.mesh' options = { 'nls' : 'newton', 'ls' : 'ls', 'post_process_hook' : 'verify_incompressibility', } field_1 = { 'name' : '3_velocity', 'dtype' : 'real', 'shape' : (3,), 'region' : 'Omega', 'approx_order' : '1B', } field_2 = { 'name' : 'pressure', 'dtype' : 'real', 'shape' : (1,), 'region' : 'Omega', 'approx_order' : 1, } # Can use logical operations '&' (and), '|' (or). region_1000 = { 'name' : 'Omega', 'select' : 'elements of group 6', } region_0 = { 'name' : 'Walls', 'select' : 'nodes of surface -n (r.Outlet +n r.Inlet)', 'can_cells' : False, } region_1 = { 'name' : 'Inlet', 'select' : 'nodes by cinc0', # In 'can_cells' : False, } region_2 = { 'name' : 'Outlet', 'select' : 'nodes by cinc1', # Out 'can_cells' : False, } ebc_1 = { 'name' : 'Walls', 'region' : 'Walls', 'dofs' : {'u.all' : 0.0}, } ebc_2 = { 'name' : 'Inlet', 'region' : 'Inlet', 'dofs' : {'u.1' : 1.0, 'u.[0,2]' : 0.0}, } material_1 = { 'name' : 'fluid', 'values' : { 'viscosity' : 1.25e-3, 'density' : 1e0, }, } variable_1 = { 'name' : 'u', 'kind' : 'unknown field', 'field' : '3_velocity', 'order' : 0, } variable_2 = { 'name' : 'v', 'kind' : 'test field', 'field' : '3_velocity', 'dual' : 'u', } variable_3 = { 'name' : 'p', 'kind' : 'unknown field', 'field' : 'pressure', 'order' : 1, } variable_4 = { 'name' : 'q', 'kind' : 'test field', 'field' : 'pressure', 'dual' : 'p', } variable_5 = { 'name' : 'pp', 'kind' : 'parameter field', 'field' : 'pressure', 'like' : 'p', } integral_1 = { 'name' : 'i1', 'kind' : 'v', 'quadrature' : 'gauss_o2_d3', } integral_2 = { 'name' : 'i2', 'kind' : 'v', 'quadrature' : 'gauss_o3_d3', } ## # Stationary Navier-Stokes equations. equations = { 'balance' : """+ dw_div_grad.i2.Omega( fluid.viscosity, v, u ) + dw_convect.i2.Omega( v, u ) - dw_stokes.i1.Omega( v, p ) = 0""", 'incompressibility' : """dw_stokes.i1.Omega( u, q ) = 0""", } ## # FE assembling parameters. fe = { 'chunk_size' : 1000 } solver_0 = { 'name' : 'ls', 'kind' : 'ls.scipy_direct', } solver_1 = { 'name' : 'newton', 'kind' : 'nls.newton', 'i_max' : 5, 'eps_a' : 1e-8, 'eps_r' : 1.0, 'macheps' : 1e-16, 'lin_red' : 1e-2, # Linear system error < (eps_a * lin_red). 'ls_red' : 0.1, 'ls_red_warp' : 0.001, 'ls_on' : 0.99999, 'ls_min' : 1e-5, 'check' : 0, 'delta' : 1e-6, 'is_plot' : False, 'problem' : 'nonlinear', # 'nonlinear' or 'linear' (ignore i_max) } def verify_incompressibility( out, problem, state, extend = False ): """This hook is normally used for post-processing (additional results can be inserted into `out` dictionary), but here we just verify the weak incompressibility condition.""" from sfepy.base.base import Struct, debug, nm, output, assert_ vv = problem.get_variables() one = nm.ones( (vv['p'].field.n_nod,), dtype = nm.float64 ) vv['p'].data_from_any( one ) zero = problem.evaluate('dw_stokes.i1.Omega( u, p )', p=one, u=vv['u'](), call_mode='d_eval') output('div( u ) = %.3e' % zero) assert_(abs(zero) < 1e-14) return out ## # Functions. import os.path as op import utils cinc_name = 'cinc_' + op.splitext(op.basename(filename_mesh))[0] cinc = getattr(utils, cinc_name) functions = { 'cinc0' : (lambda coors, domain=None: cinc(coors, 0),), 'cinc1' : (lambda coors, domain=None: cinc(coors, 1),), }
[ "sfepy.base.base.output", "sfepy.base.base.nm.ones" ]
[((3241, 3290), 'sfepy.base.base.nm.ones', 'nm.ones', (["(vv['p'].field.n_nod,)"], {'dtype': 'nm.float64'}), "((vv['p'].field.n_nod,), dtype=nm.float64)\n", (3248, 3290), False, 'from sfepy.base.base import Struct, debug, nm, output, assert_\n'), ((3458, 3490), 'sfepy.base.base.output', 'output', (["('div( u ) = %.3e' % zero)"], {}), "('div( u ) = %.3e' % zero)\n", (3464, 3490), False, 'from sfepy.base.base import Struct, debug, nm, output, assert_\n'), ((3625, 3651), 'os.path.basename', 'op.basename', (['filename_mesh'], {}), '(filename_mesh)\n', (3636, 3651), True, 'import os.path as op\n')]
from typing import Optional from sqlmodel import Field, SQLModel from datetime import datetime class Meter(SQLModel, table=True): id: Optional[int] = Field(default=None, primary_key=True) serial_number: str class Measurement(SQLModel, table=True): id: Optional[int] = Field(default=None, primary_key=True) meter_id: Optional[int] = Field(default=None, foreign_key="meter.id") capture_time: datetime = Field() voltage_phase_1: float = Field(default=0.0) voltage_phase_2: float = Field(default=0.0) voltage_phase_3: float = Field(default=0.0) power: float = Field(default=0.0) thd_1: float = Field(default=0.0) thd_2: float = Field(default=0.0) thd_3: float = Field(default=0.0) thd_4: float = Field(default=0.0) thd_5: float = Field(default=0.0) thd_6: float = Field(default=0.0) thd_7: float = Field(default=0.0) thd_8: float = Field(default=0.0) thd_9: float = Field(default=0.0) thd_10: float = Field(default=0.0) class Label(SQLModel, table=True): id: Optional[int] = Field(default=None, primary_key=True) name: str = Field() color: str = Field() class LabelAssignment(SQLModel, table=True): id: Optional[int] = Field(default=None, primary_key=True) label_id: Optional[int] = Field(default=None, foreign_key="label.id") meter_id: Optional[int] = Field(default=None, foreign_key="meter.id") start_time: datetime = Field() end_time: datetime = Field()
[ "sqlmodel.Field" ]
[((156, 193), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'primary_key': '(True)'}), '(default=None, primary_key=True)\n', (161, 193), False, 'from sqlmodel import Field, SQLModel\n'), ((284, 321), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'primary_key': '(True)'}), '(default=None, primary_key=True)\n', (289, 321), False, 'from sqlmodel import Field, SQLModel\n'), ((352, 395), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'foreign_key': '"""meter.id"""'}), "(default=None, foreign_key='meter.id')\n", (357, 395), False, 'from sqlmodel import Field, SQLModel\n'), ((425, 432), 'sqlmodel.Field', 'Field', ([], {}), '()\n', (430, 432), False, 'from sqlmodel import Field, SQLModel\n'), ((462, 480), 'sqlmodel.Field', 'Field', ([], {'default': '(0.0)'}), '(default=0.0)\n', (467, 480), False, 'from sqlmodel import Field, SQLModel\n'), ((510, 528), 'sqlmodel.Field', 'Field', ([], {'default': '(0.0)'}), '(default=0.0)\n', (515, 528), False, 'from sqlmodel import Field, SQLModel\n'), ((558, 576), 'sqlmodel.Field', 'Field', ([], {'default': '(0.0)'}), '(default=0.0)\n', (563, 576), False, 'from sqlmodel import Field, SQLModel\n'), ((596, 614), 'sqlmodel.Field', 'Field', ([], {'default': '(0.0)'}), '(default=0.0)\n', (601, 614), False, 'from sqlmodel import Field, SQLModel\n'), ((634, 652), 'sqlmodel.Field', 'Field', ([], {'default': '(0.0)'}), '(default=0.0)\n', (639, 652), False, 'from sqlmodel import Field, SQLModel\n'), ((672, 690), 'sqlmodel.Field', 'Field', ([], {'default': '(0.0)'}), '(default=0.0)\n', (677, 690), False, 'from sqlmodel import Field, SQLModel\n'), ((710, 728), 'sqlmodel.Field', 'Field', ([], {'default': '(0.0)'}), '(default=0.0)\n', (715, 728), False, 'from sqlmodel import Field, SQLModel\n'), ((748, 766), 'sqlmodel.Field', 'Field', ([], {'default': '(0.0)'}), '(default=0.0)\n', (753, 766), False, 'from sqlmodel import Field, SQLModel\n'), ((786, 804), 'sqlmodel.Field', 'Field', ([], {'default': '(0.0)'}), '(default=0.0)\n', (791, 804), False, 'from sqlmodel import Field, SQLModel\n'), ((824, 842), 'sqlmodel.Field', 'Field', ([], {'default': '(0.0)'}), '(default=0.0)\n', (829, 842), False, 'from sqlmodel import Field, SQLModel\n'), ((862, 880), 'sqlmodel.Field', 'Field', ([], {'default': '(0.0)'}), '(default=0.0)\n', (867, 880), False, 'from sqlmodel import Field, SQLModel\n'), ((900, 918), 'sqlmodel.Field', 'Field', ([], {'default': '(0.0)'}), '(default=0.0)\n', (905, 918), False, 'from sqlmodel import Field, SQLModel\n'), ((938, 956), 'sqlmodel.Field', 'Field', ([], {'default': '(0.0)'}), '(default=0.0)\n', (943, 956), False, 'from sqlmodel import Field, SQLModel\n'), ((977, 995), 'sqlmodel.Field', 'Field', ([], {'default': '(0.0)'}), '(default=0.0)\n', (982, 995), False, 'from sqlmodel import Field, SQLModel\n'), ((1057, 1094), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'primary_key': '(True)'}), '(default=None, primary_key=True)\n', (1062, 1094), False, 'from sqlmodel import Field, SQLModel\n'), ((1112, 1119), 'sqlmodel.Field', 'Field', ([], {}), '()\n', (1117, 1119), False, 'from sqlmodel import Field, SQLModel\n'), ((1138, 1145), 'sqlmodel.Field', 'Field', ([], {}), '()\n', (1143, 1145), False, 'from sqlmodel import Field, SQLModel\n'), ((1217, 1254), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'primary_key': '(True)'}), '(default=None, primary_key=True)\n', (1222, 1254), False, 'from sqlmodel import Field, SQLModel\n'), ((1285, 1328), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'foreign_key': '"""label.id"""'}), "(default=None, foreign_key='label.id')\n", (1290, 1328), False, 'from sqlmodel import Field, SQLModel\n'), ((1359, 1402), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'foreign_key': '"""meter.id"""'}), "(default=None, foreign_key='meter.id')\n", (1364, 1402), False, 'from sqlmodel import Field, SQLModel\n'), ((1430, 1437), 'sqlmodel.Field', 'Field', ([], {}), '()\n', (1435, 1437), False, 'from sqlmodel import Field, SQLModel\n'), ((1463, 1470), 'sqlmodel.Field', 'Field', ([], {}), '()\n', (1468, 1470), False, 'from sqlmodel import Field, SQLModel\n')]
from sqlmodel import Session from aot_quotes.common.db import Quotes, engine def seed_data(filename): with Session(engine) as session: with open(filename, "r") as fp: for line in fp.readlines(): quote_obj = Quotes(quote=line.strip()) session.add(quote_obj) session.commit() if __name__ == "__main__": seed_data("./seed/data.txt")
[ "sqlmodel.Session" ]
[((114, 129), 'sqlmodel.Session', 'Session', (['engine'], {}), '(engine)\n', (121, 129), False, 'from sqlmodel import Session\n')]
from sqlmodel import Session from .database import create_db_and_tables, engine from .hero_model import Hero from .team_model import Team def create_heroes(): with Session(engine) as session: team_z_force = Team(name="Z-Force", headquarters="<NAME>") hero_deadpond = Hero( name="Deadpond", secret_name="<NAME>", team=team_z_force, experience_points=1 ) session.add(hero_deadpond) session.commit() session.refresh(hero_deadpond) print("Created hero:", hero_deadpond) print("Hero's team:", hero_deadpond.team) def main(): create_db_and_tables() create_heroes() if __name__ == "__main__": main()
[ "sqlmodel.Session" ]
[((171, 186), 'sqlmodel.Session', 'Session', (['engine'], {}), '(engine)\n', (178, 186), False, 'from sqlmodel import Session\n')]
""" Functions for a mesh refinement with hanging nodes. Notes ----- Using LCBCs with hanging nodes is not supported. """ from __future__ import absolute_import from six.moves import range, zip import numpy as nm from sfepy.base.base import assert_ from sfepy.discrete import Functions, Function from sfepy.discrete.fem import Mesh, FEDomain # Rows = facets of reference cell, columns = [sub_cell_i, local facet_i] refine_edges_2_4 = nm.array([[[0, 0], [1, 3]], [[1, 0], [2, 3]], [[2, 0], [3, 3]], [[3, 0], [0, 3]]]) refine_faces_3_8 = nm.array([[[0, 0], [1, 0], [2, 0], [3, 0]], [[0, 1], [3, 2], [4, 2], [7, 1]], [[0, 2], [1, 1], [4, 1], [5, 2]], [[4, 0], [5, 0], [6, 0], [7, 0]], [[1, 2], [2, 1], [5, 1], [6, 2]], [[2, 2], [3, 1], [6, 1], [7, 2]]]) refine_edges_3_8 = nm.array([[[0, 0], [1, 3]], [[1, 0], [2, 3]], [[2, 0], [3, 3]], [[3, 0], [0, 3]], [[4, 3], [5, 0]], [[5, 3], [6, 0]], [[6, 3], [7, 0]], [[7, 3], [4, 0]], [[0, 8], [4, 8]], [[1, 8], [5, 8]], [[2, 8], [6, 8]], [[3, 8], [7, 8]]]) def find_level_interface(domain, refine_flag): """ Find facets of the coarse mesh that are on the coarse-refined cell boundary. ids w.r.t. current mesh: - facets: global, local w.r.t. cells[:, 0], local w.r.t. cells[:, 1] - interface cells: - cells[:, 0] - cells to refine - cells[:, 1] - their facet sharing neighbors (w.r.t. both meshes) - cells[:, 2] - facet kind: 0 = face, 1 = edge """ if not refine_flag.any(): facets = nm.zeros((0, 3), dtype=nm.uint32) cells = nm.zeros((0, 3), dtype=nm.uint32) return facets, cells, 0, None, None def _get_refine(coors, domain=None): return nm.nonzero(refine_flag)[0] def _get_coarse(coors, domain=None): return nm.nonzero(1 - refine_flag)[0] get_refine = Function('get_refine', _get_refine) get_coarse = Function('get_coarse', _get_coarse) functions = Functions([get_refine, get_coarse]) region0 = domain.create_region('coarse', 'cells by get_coarse', functions=functions, add_to_regions=False, allow_empty=True) region1 = domain.create_region('refine', 'cells by get_refine', functions=functions, add_to_regions=False) cmesh = domain.mesh.cmesh dim = cmesh.dim if dim == 2: oe = 0 facets = nm.intersect1d(region0.facets, region1.facets) cmesh.setup_connectivity(dim - 1, dim) cells, offs = cmesh.get_incident(dim, facets, dim - 1, ret_offsets=True) assert_((nm.diff(offs) == 2).all()) ii = cmesh.get_local_ids(facets, dim - 1, cells, offs, dim) ii = ii.reshape((-1, 2)) cells = cells.reshape((-1, 2)) ii = nm.where(refine_flag[cells], ii[:, :1], ii[:, 1:]) cells = nm.where(refine_flag[cells], cells[:, :1], cells[:, 1:]) facets = nm.c_[facets, ii] cells = nm.c_[cells, nm.zeros_like(cells[:, 1])] else: # if dim == 3: gel = domain.geom_els['3_8'] epf = gel.get_edges_per_face() cmesh.setup_connectivity(dim, dim) fc, coffs = cmesh.get_incident(dim, region1.cells, dim, ret_offsets=True) cc = nm.repeat(region1.cells, nm.diff(coffs)) aux = nm.c_[cc, fc] """ nnn[:, 0] cells to refine, nnn[:, 1] non-refined neighbours, nnn[:, 2] neighbour kind : 0 face, 1 edge. """ nn = aux[refine_flag[fc] == 0] cf = nn[:, 0].copy().astype(nm.uint32) cc = nn[:, 1].copy().astype(nm.uint32) vc, vco = cmesh.get_incident(0, cc, dim, ret_offsets=True) vf, vfo = cmesh.get_incident(0, cf, dim, ret_offsets=True) vc = vc.reshape((-1, 8)) vf = vf.reshape((-1, 8)) nnn = [] oe = 0 ov = nn.shape[0] for ii in range(vc.shape[0]): aux = set(vc[ii]).intersection(vf[ii]) nc = len(aux) if nc == 1: nnn.append((0, 0, 2)) ov -= 1 elif nc == 4: nnn.append((nn[ii, 0], nn[ii, 1], 0)) oe += 1 else: nnn.append((nn[ii, 0], nn[ii, 1], 1)) nnn = nm.array(nnn) if nnn.shape[0] == 0: facets = nm.zeros((0, 3), dtype=nm.uint32) cells = nm.zeros((0, 4), dtype=nm.uint32) return facets, cells, 0, region0, region1 # Sort by neighbour kind, skip vertex-only neighbours. ii = nm.argsort(nnn[:, 2]) nnn = nnn[ii][:ov] cf = cf[ii][:ov] cc = cc[ii][:ov] ec, eco = cmesh.get_incident(1, cc, dim, ret_offsets=True) ef, efo = cmesh.get_incident(1, cf, dim, ret_offsets=True) ec = ec.reshape((-1, 12)) ef = ef.reshape((-1, 12)) fc, fco = cmesh.get_incident(2, cc, dim, ret_offsets=True) ff, ffo = cmesh.get_incident(2, cf, dim, ret_offsets=True) fc = fc.reshape((-1, 6)) ff = ff.reshape((-1, 6)) emask = nm.zeros((domain.shape.n_el, 12), dtype=nm.bool) ffs = [] for ii in range(oe): facet = nm.intersect1d(fc[ii], ff[ii])[0] i1 = nm.where(ff[ii] == facet)[0][0] i0 = nm.where(fc[ii] == facet)[0][0] ffs.append((facet, i1, i0)) emask[nnn[ii, 0], epf[i1]] = True for ii in range(oe, nnn.shape[0]): facet = nm.intersect1d(ec[ii], ef[ii])[0] i1 = nm.where(ef[ii] == facet)[0][0] i0 = nm.where(ec[ii] == facet)[0][0] ffs.append((facet, i1, i0)) ffs = nm.array(ffs) ie = nm.where(nnn[:, 2] == 1)[0] ennn = nnn[ie] effs = ffs[ie] omit = ie[emask[ennn[:, 0], effs[:, 1]]] valid = nm.ones(nnn.shape[0], dtype=nm.bool) valid[omit] = False cells = nnn[valid] facets = ffs[valid] return facets, cells, oe, region0, region1 def refine_region(domain0, region0, region1): """ Coarse cell sub_cells[ii, 0] in mesh0 is split into sub_cells[ii, 1:] in mesh1. The new fine cells are interleaved among the original coarse cells so that the indices of the coarse cells do not change. The cell groups are preserved. The vertex groups are preserved only in the coarse (non-refined) cells. """ if region1 is None: return domain0, None mesh0 = domain0.mesh mesh1 = Mesh.from_region(region1, mesh0) domain1 = FEDomain('d', mesh1) domain1r = domain1.refine() mesh1r = domain1r.mesh n_cell = region1.shape.n_cell n_sub = 4 if mesh0.cmesh.tdim == 2 else 8 sub_cells = nm.empty((n_cell, n_sub + 1), dtype=nm.uint32) sub_cells[:, 0] = region1.cells sub_cells[:, 1] = region1.cells aux = nm.arange((n_sub - 1) * n_cell, dtype=nm.uint32) sub_cells[:, 2:] = mesh0.n_el + aux.reshape((n_cell, -1)) coors0, vgs0, conns0, mat_ids0, descs0 = mesh0._get_io_data() coors, vgs, _conns, _mat_ids, descs = mesh1r._get_io_data() # Preserve vertex groups of non-refined cells. vgs[:len(vgs0)] = vgs0 def _interleave_refined(c0, c1): if c1.ndim == 1: c0 = c0[:, None] c1 = c1[:, None] n_row, n_col = c1.shape n_new = region0.shape.n_cell + n_row out = nm.empty((n_new, n_col), dtype=c0.dtype) out[region0.cells] = c0[region0.cells] out[region1.cells] = c1[::n_sub] aux = c1.reshape((-1, n_col * n_sub)) out[mesh0.n_el:] = aux[:, n_col:].reshape((-1, n_col)) return out conn = _interleave_refined(conns0[0], _conns[0]) mat_id = _interleave_refined(mat_ids0[0], _mat_ids[0]).squeeze() mesh = Mesh.from_data('a', coors, vgs, [conn], [mat_id], descs) domain = FEDomain('d', mesh) return domain, sub_cells def find_facet_substitutions(facets, cells, sub_cells, refine_facets): """ Find facet substitutions in connectivity. sub = [coarse cell, coarse facet, fine1 cell, fine1 facet, fine2 cell, fine2 facet] """ subs = [] for ii, fac in enumerate(facets): fine = cells[ii, 0] coarse = cells[ii, 1] isub = nm.searchsorted(sub_cells[:, 0], fine) refined = sub_cells[isub, 1:] rf = refine_facets[fac[1]] used = refined[rf[:, 0]] fused = rf[:, 1] master = [coarse, fac[2]] slave = list(zip(used, fused)) sub = nm.r_[[master], slave].ravel() subs.append(sub) subs = nm.array(subs) return subs def refine(domain0, refine, subs=None, ret_sub_cells=False): desc = domain0.mesh.descs[0] assert_(desc in ['2_4', '3_8']) facets, cells, oe, region0, region1 = find_level_interface(domain0, refine) if region1 is None: return domain0, None domain, sub_cells = refine_region(domain0, region0, region1) if facets.shape[0] > 0: desc = domain0.mesh.descs[0] conn0 = domain0.mesh.get_conn(desc) conn1 = domain.mesh.get_conn(desc) assert_((conn0[cells[:, 1]] == conn1[cells[:, 1]]).all()) desc = domain0.mesh.descs[0] if desc == '2_4': subs1 = find_facet_substitutions(facets, cells, sub_cells, refine_edges_2_4) if subs is None: subs = subs1 if len(subs1) else None elif len(subs1): subs = nm.r_[subs, subs1] else: subs1f = find_facet_substitutions(facets[:oe], cells[:oe], sub_cells, refine_faces_3_8) subs1e = find_facet_substitutions(facets[oe:], cells[oe:], sub_cells, refine_edges_3_8) if subs is None: subs = (subs1f if len(subs1f) else None, subs1e if len(subs1f) else None) # !!! elif len(subs1f): subsf, subse = subs subsf = nm.r_[subsf, subs1f] if len(subse): if len(subs1e): subse = nm.r_[subse, subs1e] subs = (subsf, subse) if (isinstance(subs, tuple) and (subs[0] is None) and (subs[1] is None)): subs = None out = (domain, subs) if ret_sub_cells: out += (sub_cells,) return out
[ "sfepy.base.base.assert_", "sfepy.discrete.fem.Mesh.from_region", "sfepy.discrete.Function", "sfepy.discrete.fem.Mesh.from_data", "sfepy.discrete.fem.FEDomain", "sfepy.discrete.Functions" ]
[((437, 523), 'numpy.array', 'nm.array', (['[[[0, 0], [1, 3]], [[1, 0], [2, 3]], [[2, 0], [3, 3]], [[3, 0], [0, 3]]]'], {}), '([[[0, 0], [1, 3]], [[1, 0], [2, 3]], [[2, 0], [3, 3]], [[3, 0], [0,\n 3]]])\n', (445, 523), True, 'import numpy as nm\n'), ((627, 850), 'numpy.array', 'nm.array', (['[[[0, 0], [1, 0], [2, 0], [3, 0]], [[0, 1], [3, 2], [4, 2], [7, 1]], [[0, 2\n ], [1, 1], [4, 1], [5, 2]], [[4, 0], [5, 0], [6, 0], [7, 0]], [[1, 2],\n [2, 1], [5, 1], [6, 2]], [[2, 2], [3, 1], [6, 1], [7, 2]]]'], {}), '([[[0, 0], [1, 0], [2, 0], [3, 0]], [[0, 1], [3, 2], [4, 2], [7, 1]\n ], [[0, 2], [1, 1], [4, 1], [5, 2]], [[4, 0], [5, 0], [6, 0], [7, 0]],\n [[1, 2], [2, 1], [5, 1], [6, 2]], [[2, 2], [3, 1], [6, 1], [7, 2]]])\n', (635, 850), True, 'import numpy as nm\n'), ((1007, 1245), 'numpy.array', 'nm.array', (['[[[0, 0], [1, 3]], [[1, 0], [2, 3]], [[2, 0], [3, 3]], [[3, 0], [0, 3]], [[\n 4, 3], [5, 0]], [[5, 3], [6, 0]], [[6, 3], [7, 0]], [[7, 3], [4, 0]], [\n [0, 8], [4, 8]], [[1, 8], [5, 8]], [[2, 8], [6, 8]], [[3, 8], [7, 8]]]'], {}), '([[[0, 0], [1, 3]], [[1, 0], [2, 3]], [[2, 0], [3, 3]], [[3, 0], [0,\n 3]], [[4, 3], [5, 0]], [[5, 3], [6, 0]], [[6, 3], [7, 0]], [[7, 3], [4,\n 0]], [[0, 8], [4, 8]], [[1, 8], [5, 8]], [[2, 8], [6, 8]], [[3, 8], [7,\n 8]]])\n', (1015, 1245), True, 'import numpy as nm\n'), ((2358, 2393), 'sfepy.discrete.Function', 'Function', (['"""get_refine"""', '_get_refine'], {}), "('get_refine', _get_refine)\n", (2366, 2393), False, 'from sfepy.discrete import Functions, Function\n'), ((2411, 2446), 'sfepy.discrete.Function', 'Function', (['"""get_coarse"""', '_get_coarse'], {}), "('get_coarse', _get_coarse)\n", (2419, 2446), False, 'from sfepy.discrete import Functions, Function\n'), ((2463, 2498), 'sfepy.discrete.Functions', 'Functions', (['[get_refine, get_coarse]'], {}), '([get_refine, get_coarse])\n', (2472, 2498), False, 'from sfepy.discrete import Functions, Function\n'), ((7074, 7106), 'sfepy.discrete.fem.Mesh.from_region', 'Mesh.from_region', (['region1', 'mesh0'], {}), '(region1, mesh0)\n', (7090, 7106), False, 'from sfepy.discrete.fem import Mesh, FEDomain\n'), ((7121, 7141), 'sfepy.discrete.fem.FEDomain', 'FEDomain', (['"""d"""', 'mesh1'], {}), "('d', mesh1)\n", (7129, 7141), False, 'from sfepy.discrete.fem import Mesh, FEDomain\n'), ((7299, 7345), 'numpy.empty', 'nm.empty', (['(n_cell, n_sub + 1)'], {'dtype': 'nm.uint32'}), '((n_cell, n_sub + 1), dtype=nm.uint32)\n', (7307, 7345), True, 'import numpy as nm\n'), ((7428, 7476), 'numpy.arange', 'nm.arange', (['((n_sub - 1) * n_cell)'], {'dtype': 'nm.uint32'}), '((n_sub - 1) * n_cell, dtype=nm.uint32)\n', (7437, 7476), True, 'import numpy as nm\n'), ((8356, 8412), 'sfepy.discrete.fem.Mesh.from_data', 'Mesh.from_data', (['"""a"""', 'coors', 'vgs', '[conn]', '[mat_id]', 'descs'], {}), "('a', coors, vgs, [conn], [mat_id], descs)\n", (8370, 8412), False, 'from sfepy.discrete.fem import Mesh, FEDomain\n'), ((8426, 8445), 'sfepy.discrete.fem.FEDomain', 'FEDomain', (['"""d"""', 'mesh'], {}), "('d', mesh)\n", (8434, 8445), False, 'from sfepy.discrete.fem import Mesh, FEDomain\n'), ((9164, 9178), 'numpy.array', 'nm.array', (['subs'], {}), '(subs)\n', (9172, 9178), True, 'import numpy as nm\n'), ((9294, 9325), 'sfepy.base.base.assert_', 'assert_', (["(desc in ['2_4', '3_8'])"], {}), "(desc in ['2_4', '3_8'])\n", (9301, 9325), False, 'from sfepy.base.base import assert_\n'), ((2040, 2073), 'numpy.zeros', 'nm.zeros', (['(0, 3)'], {'dtype': 'nm.uint32'}), '((0, 3), dtype=nm.uint32)\n', (2048, 2073), True, 'import numpy as nm\n'), ((2090, 2123), 'numpy.zeros', 'nm.zeros', (['(0, 3)'], {'dtype': 'nm.uint32'}), '((0, 3), dtype=nm.uint32)\n', (2098, 2123), True, 'import numpy as nm\n'), ((2946, 2992), 'numpy.intersect1d', 'nm.intersect1d', (['region0.facets', 'region1.facets'], {}), '(region0.facets, region1.facets)\n', (2960, 2992), True, 'import numpy as nm\n'), ((3363, 3413), 'numpy.where', 'nm.where', (['refine_flag[cells]', 'ii[:, :1]', 'ii[:, 1:]'], {}), '(refine_flag[cells], ii[:, :1], ii[:, 1:])\n', (3371, 3413), True, 'import numpy as nm\n'), ((3430, 3486), 'numpy.where', 'nm.where', (['refine_flag[cells]', 'cells[:, :1]', 'cells[:, 1:]'], {}), '(refine_flag[cells], cells[:, :1], cells[:, 1:])\n', (3438, 3486), True, 'import numpy as nm\n'), ((4485, 4503), 'six.moves.range', 'range', (['vc.shape[0]'], {}), '(vc.shape[0])\n', (4490, 4503), False, 'from six.moves import range, zip\n'), ((4860, 4873), 'numpy.array', 'nm.array', (['nnn'], {}), '(nnn)\n', (4868, 4873), True, 'import numpy as nm\n'), ((5146, 5167), 'numpy.argsort', 'nm.argsort', (['nnn[:, 2]'], {}), '(nnn[:, 2])\n', (5156, 5167), True, 'import numpy as nm\n'), ((5666, 5714), 'numpy.zeros', 'nm.zeros', (['(domain.shape.n_el, 12)'], {'dtype': 'nm.bool'}), '((domain.shape.n_el, 12), dtype=nm.bool)\n', (5674, 5714), True, 'import numpy as nm\n'), ((5751, 5760), 'six.moves.range', 'range', (['oe'], {}), '(oe)\n', (5756, 5760), False, 'from six.moves import range, zip\n'), ((6020, 6043), 'six.moves.range', 'range', (['oe', 'nnn.shape[0]'], {}), '(oe, nnn.shape[0])\n', (6025, 6043), False, 'from six.moves import range, zip\n'), ((6252, 6265), 'numpy.array', 'nm.array', (['ffs'], {}), '(ffs)\n', (6260, 6265), True, 'import numpy as nm\n'), ((6420, 6456), 'numpy.ones', 'nm.ones', (['nnn.shape[0]'], {'dtype': 'nm.bool'}), '(nnn.shape[0], dtype=nm.bool)\n', (6427, 6456), True, 'import numpy as nm\n'), ((7963, 8003), 'numpy.empty', 'nm.empty', (['(n_new, n_col)'], {'dtype': 'c0.dtype'}), '((n_new, n_col), dtype=c0.dtype)\n', (7971, 8003), True, 'import numpy as nm\n'), ((8836, 8874), 'numpy.searchsorted', 'nm.searchsorted', (['sub_cells[:, 0]', 'fine'], {}), '(sub_cells[:, 0], fine)\n', (8851, 8874), True, 'import numpy as nm\n'), ((2225, 2248), 'numpy.nonzero', 'nm.nonzero', (['refine_flag'], {}), '(refine_flag)\n', (2235, 2248), True, 'import numpy as nm\n'), ((2309, 2336), 'numpy.nonzero', 'nm.nonzero', (['(1 - refine_flag)'], {}), '(1 - refine_flag)\n', (2319, 2336), True, 'import numpy as nm\n'), ((3886, 3900), 'numpy.diff', 'nm.diff', (['coffs'], {}), '(coffs)\n', (3893, 3900), True, 'import numpy as nm\n'), ((4926, 4959), 'numpy.zeros', 'nm.zeros', (['(0, 3)'], {'dtype': 'nm.uint32'}), '((0, 3), dtype=nm.uint32)\n', (4934, 4959), True, 'import numpy as nm\n'), ((4980, 5013), 'numpy.zeros', 'nm.zeros', (['(0, 4)'], {'dtype': 'nm.uint32'}), '((0, 4), dtype=nm.uint32)\n', (4988, 5013), True, 'import numpy as nm\n'), ((6280, 6304), 'numpy.where', 'nm.where', (['(nnn[:, 2] == 1)'], {}), '(nnn[:, 2] == 1)\n', (6288, 6304), True, 'import numpy as nm\n'), ((9063, 9079), 'six.moves.zip', 'zip', (['used', 'fused'], {}), '(used, fused)\n', (9066, 9079), False, 'from six.moves import range, zip\n'), ((3553, 3579), 'numpy.zeros_like', 'nm.zeros_like', (['cells[:, 1]'], {}), '(cells[:, 1])\n', (3566, 3579), True, 'import numpy as nm\n'), ((5782, 5812), 'numpy.intersect1d', 'nm.intersect1d', (['fc[ii]', 'ff[ii]'], {}), '(fc[ii], ff[ii])\n', (5796, 5812), True, 'import numpy as nm\n'), ((6065, 6095), 'numpy.intersect1d', 'nm.intersect1d', (['ec[ii]', 'ef[ii]'], {}), '(ec[ii], ef[ii])\n', (6079, 6095), True, 'import numpy as nm\n'), ((5833, 5858), 'numpy.where', 'nm.where', (['(ff[ii] == facet)'], {}), '(ff[ii] == facet)\n', (5841, 5858), True, 'import numpy as nm\n'), ((5882, 5907), 'numpy.where', 'nm.where', (['(fc[ii] == facet)'], {}), '(fc[ii] == facet)\n', (5890, 5907), True, 'import numpy as nm\n'), ((6116, 6141), 'numpy.where', 'nm.where', (['(ef[ii] == facet)'], {}), '(ef[ii] == facet)\n', (6124, 6141), True, 'import numpy as nm\n'), ((6165, 6190), 'numpy.where', 'nm.where', (['(ec[ii] == facet)'], {}), '(ec[ii] == facet)\n', (6173, 6190), True, 'import numpy as nm\n'), ((3180, 3193), 'numpy.diff', 'nm.diff', (['offs'], {}), '(offs)\n', (3187, 3193), True, 'import numpy as nm\n')]
from __future__ import annotations from sqlmodel import Session, select from src.models import User from src.schemas.user import CreateUser from src.services.auth import check_password_hash, generate_password_hash def get_user_by_email(db: Session, email: str) -> User | None: """ Finds a user with the given email in the database and returns it. Returns None if a user with the email does not exists. """ stmt = select(User).where(User.email == email) return db.exec(stmt).first() def create_user(user_data: CreateUser) -> User: """ Creates a user and returns it. """ password = generate_password_hash(user_data.password) created_user = User(name=user_data.name, email=user_data.email, password=password) return created_user def get_user_by_email_and_password( db: Session, email: str, password: str ) -> User | None: """ Checks if the given email and password are valid, and returns the user. Returns None if the email or password is wrong. """ user = get_user_by_email(db, email) if user is None or not check_password_hash(password, user.password): return None return user
[ "sqlmodel.select" ]
[((627, 669), 'src.services.auth.generate_password_hash', 'generate_password_hash', (['user_data.password'], {}), '(user_data.password)\n', (649, 669), False, 'from src.services.auth import check_password_hash, generate_password_hash\n'), ((690, 757), 'src.models.User', 'User', ([], {'name': 'user_data.name', 'email': 'user_data.email', 'password': 'password'}), '(name=user_data.name, email=user_data.email, password=password)\n', (694, 757), False, 'from src.models import User\n'), ((437, 449), 'sqlmodel.select', 'select', (['User'], {}), '(User)\n', (443, 449), False, 'from sqlmodel import Session, select\n'), ((1094, 1138), 'src.services.auth.check_password_hash', 'check_password_hash', (['password', 'user.password'], {}), '(password, user.password)\n', (1113, 1138), False, 'from src.services.auth import check_password_hash, generate_password_hash\n')]
import platform import numpy as np import pytest import megengine as mge import megengine.distributed as dist from megengine.distributed.helper import get_device_count_by_fork from megengine.quantization.observer import ( ExponentialMovingAverageObserver, MinMaxObserver, Observer, PassiveObserver, SyncExponentialMovingAverageObserver, SyncMinMaxObserver, ) def test_observer(): with pytest.raises(TypeError): Observer("qint8") def test_min_max_observer(): x = np.random.rand(3, 3, 3, 3).astype("float32") np_min, np_max = x.min(), x.max() x = mge.tensor(x) m = MinMaxObserver() m(x) np.testing.assert_allclose(m.min_val.numpy(), np_min) np.testing.assert_allclose(m.max_val.numpy(), np_max) def test_exponential_moving_average_observer(): t = np.random.rand() x1 = np.random.rand(3, 3, 3, 3).astype("float32") x2 = np.random.rand(3, 3, 3, 3).astype("float32") expected_min = x1.min() * t + x2.min() * (1 - t) expected_max = x1.max() * t + x2.max() * (1 - t) m = ExponentialMovingAverageObserver(momentum=t) m(mge.tensor(x1, dtype=np.float32)) m(mge.tensor(x2, dtype=np.float32)) np.testing.assert_allclose(m.min_val.numpy(), expected_min) np.testing.assert_allclose(m.max_val.numpy(), expected_max) def test_passive_observer(): q_dict = {"scale": mge.tensor(1.0)} m = PassiveObserver(q_dict, "qint8") assert m.orig_scale == 1.0 assert m.scale == 1.0 m.scale = 2.0 assert m.scale == 2.0 assert m.get_qparams() == {"scale": mge.tensor(2.0)} @pytest.mark.skipif( platform.system() == "Darwin", reason="do not imp GPU mode at macos now" ) @pytest.mark.skipif( platform.system() == "Windows", reason="windows disable MGB_ENABLE_OPR_MM" ) @pytest.mark.skipif(get_device_count_by_fork("gpu") < 2, reason="need more gpu device") @pytest.mark.isolated_distributed def test_sync_min_max_observer(): word_size = get_device_count_by_fork("gpu") x = np.random.rand(3 * word_size, 3, 3, 3).astype("float32") np_min, np_max = x.min(), x.max() @dist.launcher def worker(): rank = dist.get_rank() m = SyncMinMaxObserver() y = mge.tensor(x[rank * 3 : (rank + 1) * 3]) m(y) assert m.min_val == np_min and m.max_val == np_max worker() @pytest.mark.skipif( platform.system() == "Darwin", reason="do not imp GPU mode at macos now" ) @pytest.mark.skipif( platform.system() == "Windows", reason="windows disable MGB_ENABLE_OPR_MM" ) @pytest.mark.skipif(get_device_count_by_fork("gpu") < 2, reason="need more gpu device") @pytest.mark.isolated_distributed def test_sync_exponential_moving_average_observer(): word_size = get_device_count_by_fork("gpu") t = np.random.rand() x1 = np.random.rand(3 * word_size, 3, 3, 3).astype("float32") x2 = np.random.rand(3 * word_size, 3, 3, 3).astype("float32") expected_min = x1.min() * t + x2.min() * (1 - t) expected_max = x1.max() * t + x2.max() * (1 - t) @dist.launcher def worker(): rank = dist.get_rank() m = SyncExponentialMovingAverageObserver(momentum=t) y1 = mge.tensor(x1[rank * 3 : (rank + 1) * 3]) y2 = mge.tensor(x2[rank * 3 : (rank + 1) * 3]) m(y1) m(y2) np.testing.assert_allclose(m.min_val.numpy(), expected_min, atol=1e-6) np.testing.assert_allclose(m.max_val.numpy(), expected_max, atol=1e-6) worker()
[ "megengine.quantization.observer.Observer", "megengine.tensor", "megengine.distributed.get_rank", "megengine.quantization.observer.SyncMinMaxObserver", "megengine.distributed.helper.get_device_count_by_fork", "megengine.quantization.observer.PassiveObserver", "megengine.quantization.observer.ExponentialMovingAverageObserver", "megengine.quantization.observer.SyncExponentialMovingAverageObserver", "megengine.quantization.observer.MinMaxObserver" ]
[((599, 612), 'megengine.tensor', 'mge.tensor', (['x'], {}), '(x)\n', (609, 612), True, 'import megengine as mge\n'), ((621, 637), 'megengine.quantization.observer.MinMaxObserver', 'MinMaxObserver', ([], {}), '()\n', (635, 637), False, 'from megengine.quantization.observer import ExponentialMovingAverageObserver, MinMaxObserver, Observer, PassiveObserver, SyncExponentialMovingAverageObserver, SyncMinMaxObserver\n'), ((821, 837), 'numpy.random.rand', 'np.random.rand', ([], {}), '()\n', (835, 837), True, 'import numpy as np\n'), ((1060, 1104), 'megengine.quantization.observer.ExponentialMovingAverageObserver', 'ExponentialMovingAverageObserver', ([], {'momentum': 't'}), '(momentum=t)\n', (1092, 1104), False, 'from megengine.quantization.observer import ExponentialMovingAverageObserver, MinMaxObserver, Observer, PassiveObserver, SyncExponentialMovingAverageObserver, SyncMinMaxObserver\n'), ((1392, 1424), 'megengine.quantization.observer.PassiveObserver', 'PassiveObserver', (['q_dict', '"""qint8"""'], {}), "(q_dict, 'qint8')\n", (1407, 1424), False, 'from megengine.quantization.observer import ExponentialMovingAverageObserver, MinMaxObserver, Observer, PassiveObserver, SyncExponentialMovingAverageObserver, SyncMinMaxObserver\n'), ((1959, 1990), 'megengine.distributed.helper.get_device_count_by_fork', 'get_device_count_by_fork', (['"""gpu"""'], {}), "('gpu')\n", (1983, 1990), False, 'from megengine.distributed.helper import get_device_count_by_fork\n'), ((2730, 2761), 'megengine.distributed.helper.get_device_count_by_fork', 'get_device_count_by_fork', (['"""gpu"""'], {}), "('gpu')\n", (2754, 2761), False, 'from megengine.distributed.helper import get_device_count_by_fork\n'), ((2770, 2786), 'numpy.random.rand', 'np.random.rand', ([], {}), '()\n', (2784, 2786), True, 'import numpy as np\n'), ((417, 441), 'pytest.raises', 'pytest.raises', (['TypeError'], {}), '(TypeError)\n', (430, 441), False, 'import pytest\n'), ((451, 468), 'megengine.quantization.observer.Observer', 'Observer', (['"""qint8"""'], {}), "('qint8')\n", (459, 468), False, 'from megengine.quantization.observer import ExponentialMovingAverageObserver, MinMaxObserver, Observer, PassiveObserver, SyncExponentialMovingAverageObserver, SyncMinMaxObserver\n'), ((1111, 1143), 'megengine.tensor', 'mge.tensor', (['x1'], {'dtype': 'np.float32'}), '(x1, dtype=np.float32)\n', (1121, 1143), True, 'import megengine as mge\n'), ((1151, 1183), 'megengine.tensor', 'mge.tensor', (['x2'], {'dtype': 'np.float32'}), '(x2, dtype=np.float32)\n', (1161, 1183), True, 'import megengine as mge\n'), ((1367, 1382), 'megengine.tensor', 'mge.tensor', (['(1.0)'], {}), '(1.0)\n', (1377, 1382), True, 'import megengine as mge\n'), ((2147, 2162), 'megengine.distributed.get_rank', 'dist.get_rank', ([], {}), '()\n', (2160, 2162), True, 'import megengine.distributed as dist\n'), ((2175, 2195), 'megengine.quantization.observer.SyncMinMaxObserver', 'SyncMinMaxObserver', ([], {}), '()\n', (2193, 2195), False, 'from megengine.quantization.observer import ExponentialMovingAverageObserver, MinMaxObserver, Observer, PassiveObserver, SyncExponentialMovingAverageObserver, SyncMinMaxObserver\n'), ((2208, 2246), 'megengine.tensor', 'mge.tensor', (['x[rank * 3:(rank + 1) * 3]'], {}), '(x[rank * 3:(rank + 1) * 3])\n', (2218, 2246), True, 'import megengine as mge\n'), ((1610, 1627), 'platform.system', 'platform.system', ([], {}), '()\n', (1625, 1627), False, 'import platform\n'), ((1710, 1727), 'platform.system', 'platform.system', ([], {}), '()\n', (1725, 1727), False, 'import platform\n'), ((1807, 1838), 'megengine.distributed.helper.get_device_count_by_fork', 'get_device_count_by_fork', (['"""gpu"""'], {}), "('gpu')\n", (1831, 1838), False, 'from megengine.distributed.helper import get_device_count_by_fork\n'), ((3078, 3093), 'megengine.distributed.get_rank', 'dist.get_rank', ([], {}), '()\n', (3091, 3093), True, 'import megengine.distributed as dist\n'), ((3106, 3154), 'megengine.quantization.observer.SyncExponentialMovingAverageObserver', 'SyncExponentialMovingAverageObserver', ([], {'momentum': 't'}), '(momentum=t)\n', (3142, 3154), False, 'from megengine.quantization.observer import ExponentialMovingAverageObserver, MinMaxObserver, Observer, PassiveObserver, SyncExponentialMovingAverageObserver, SyncMinMaxObserver\n'), ((3168, 3207), 'megengine.tensor', 'mge.tensor', (['x1[rank * 3:(rank + 1) * 3]'], {}), '(x1[rank * 3:(rank + 1) * 3])\n', (3178, 3207), True, 'import megengine as mge\n'), ((3223, 3262), 'megengine.tensor', 'mge.tensor', (['x2[rank * 3:(rank + 1) * 3]'], {}), '(x2[rank * 3:(rank + 1) * 3])\n', (3233, 3262), True, 'import megengine as mge\n'), ((2362, 2379), 'platform.system', 'platform.system', ([], {}), '()\n', (2377, 2379), False, 'import platform\n'), ((2462, 2479), 'platform.system', 'platform.system', ([], {}), '()\n', (2477, 2479), False, 'import platform\n'), ((2559, 2590), 'megengine.distributed.helper.get_device_count_by_fork', 'get_device_count_by_fork', (['"""gpu"""'], {}), "('gpu')\n", (2583, 2590), False, 'from megengine.distributed.helper import get_device_count_by_fork\n'), ((508, 534), 'numpy.random.rand', 'np.random.rand', (['(3)', '(3)', '(3)', '(3)'], {}), '(3, 3, 3, 3)\n', (522, 534), True, 'import numpy as np\n'), ((847, 873), 'numpy.random.rand', 'np.random.rand', (['(3)', '(3)', '(3)', '(3)'], {}), '(3, 3, 3, 3)\n', (861, 873), True, 'import numpy as np\n'), ((901, 927), 'numpy.random.rand', 'np.random.rand', (['(3)', '(3)', '(3)', '(3)'], {}), '(3, 3, 3, 3)\n', (915, 927), True, 'import numpy as np\n'), ((1566, 1581), 'megengine.tensor', 'mge.tensor', (['(2.0)'], {}), '(2.0)\n', (1576, 1581), True, 'import megengine as mge\n'), ((1999, 2037), 'numpy.random.rand', 'np.random.rand', (['(3 * word_size)', '(3)', '(3)', '(3)'], {}), '(3 * word_size, 3, 3, 3)\n', (2013, 2037), True, 'import numpy as np\n'), ((2796, 2834), 'numpy.random.rand', 'np.random.rand', (['(3 * word_size)', '(3)', '(3)', '(3)'], {}), '(3 * word_size, 3, 3, 3)\n', (2810, 2834), True, 'import numpy as np\n'), ((2862, 2900), 'numpy.random.rand', 'np.random.rand', (['(3 * word_size)', '(3)', '(3)', '(3)'], {}), '(3 * word_size, 3, 3, 3)\n', (2876, 2900), True, 'import numpy as np\n')]
from __future__ import absolute_import import re from copy import copy import numpy as nm from sfepy.base.base import (as_float_or_complex, get_default, assert_, Container, Struct, basestr, goptions) from sfepy.base.compat import in1d # Used for imports in term files. from sfepy.terms.extmods import terms import six from six.moves import range from functools import reduce _match_args = re.compile('^([^\(\}]*)\((.*)\)$').match _match_virtual = re.compile('^virtual$').match _match_state = re.compile('^state(_[_a-zA-Z0-9]+)?$').match _match_parameter = re.compile('^parameter(_[_a-zA-Z0-9]+)?$').match _match_material = re.compile('^material(_[_a-zA-Z0-9]+)?$').match _match_material_opt = re.compile('^opt_material(_[_a-zA-Z0-9]+)?$').match _match_material_root = re.compile('(.+)\.(.*)').match _match_ts = re.compile('^ts$').match def get_arg_kinds(arg_types): """ Translate `arg_types` of a Term to a canonical form. Parameters ---------- arg_types : tuple of strings The term argument types, as given in the `arg_types` attribute. Returns ------- arg_kinds : list of strings The argument kinds - one of 'virtual_variable', 'state_variable', 'parameter_variable', 'opt_material', 'ts', 'user'. """ arg_kinds = [] for ii, arg_type in enumerate(arg_types): if _match_virtual(arg_type): arg_kinds.append('virtual_variable') elif _match_state(arg_type): arg_kinds.append('state_variable') elif _match_parameter(arg_type): arg_kinds.append('parameter_variable') elif _match_material(arg_type): arg_kinds.append('material') elif _match_material_opt(arg_type): arg_kinds.append('opt_material') if ii > 0: msg = 'opt_material at position %d, must be at 0!' % ii raise ValueError(msg) elif _match_ts(arg_type): arg_kinds.append('ts') else: arg_kinds.append('user') return arg_kinds def get_shape_kind(integration): """ Get data shape kind for given integration type. """ if integration == 'surface': shape_kind = 'surface' elif integration in ('volume', 'plate', 'surface_extra'): shape_kind = 'volume' elif integration == 'point': shape_kind = 'point' else: raise NotImplementedError('unsupported term integration! (%s)' % integration) return shape_kind def split_complex_args(args): """ Split complex arguments to real and imaginary parts. Returns ------- newargs : dictionary Dictionary with lists corresponding to `args` such that each argument of numpy.complex128 data type is split to its real and imaginary part. The output depends on the number of complex arguments in 'args': - 0: list (key 'r') identical to input one - 1: two lists with keys 'r', 'i' corresponding to real and imaginary parts - 2: output dictionary contains four lists: - 'r' - real(arg1), real(arg2) - 'i' - imag(arg1), imag(arg2) - 'ri' - real(arg1), imag(arg2) - 'ir' - imag(arg1), real(arg2) """ newargs = {} cai = [] for ii, arg in enumerate(args): if isinstance(arg, nm.ndarray) and (arg.dtype == nm.complex128): cai.append(ii) if len(cai) > 0: newargs['r'] = list(args[:]) newargs['i'] = list(args[:]) arg1 = cai[0] newargs['r'][arg1] = args[arg1].real.copy() newargs['i'][arg1] = args[arg1].imag.copy() if len(cai) == 2: arg2 = cai[1] newargs['r'][arg2] = args[arg2].real.copy() newargs['i'][arg2] = args[arg2].imag.copy() newargs['ri'] = list(args[:]) newargs['ir'] = list(args[:]) newargs['ri'][arg1] = newargs['r'][arg1] newargs['ri'][arg2] = newargs['i'][arg2] newargs['ir'][arg1] = newargs['i'][arg1] newargs['ir'][arg2] = newargs['r'][arg2] elif len(cai) > 2: raise NotImplementedError('more than 2 complex arguments! (%d)' % len(cai)) else: newargs['r'] = args[:] return newargs def create_arg_parser(): from pyparsing import Literal, Word, delimitedList, Group, \ StringStart, StringEnd, Optional, nums, alphas, alphanums inumber = Word("+-" + nums, nums) history = Optional(Literal('[').suppress() + inumber + Literal(']').suppress(), default=0)("history") history.setParseAction(lambda str, loc, toks: int(toks[0])) variable = Group(Word(alphas, alphanums + '._') + history) derivative = Group(Literal('d') + variable\ + Literal('/').suppress() + Literal('dt')) trace = Group(Literal('tr') + Literal('(').suppress() + variable \ + Literal(')').suppress()) generalized_var = derivative | trace | variable args = StringStart() + delimitedList(generalized_var) + StringEnd() return args class ConnInfo(Struct): def get_region(self, can_trace=True): if self.is_trace and can_trace: return self.region.get_mirror_region() else: return self.region def get_region_name(self, can_trace=True): if self.is_trace and can_trace: reg = self.region.get_mirror_region() else: reg = self.region if reg is not None: return reg.name else: return None class Terms(Container): @staticmethod def from_desc(term_descs, regions, integrals=None): """ Create terms, assign each term its region. """ from sfepy.terms import term_table terms = Terms() for td in term_descs: try: constructor = term_table[td.name] except: msg = "term '%s' is not in %s" % (td.name, sorted(term_table.keys())) raise ValueError(msg) try: region = regions[td.region] except IndexError: raise KeyError('region "%s" does not exist!' % td.region) term = Term.from_desc(constructor, td, region, integrals=integrals) terms.append(term) return terms def __init__(self, objs=None): Container.__init__(self, objs=objs) self.update_expression() def insert(self, ii, obj): Container.insert(self, ii, obj) self.update_expression() def append(self, obj): Container.append(self, obj) self.update_expression() def update_expression(self): self.expression = [] for term in self: aux = [term.sign, term.name, term.arg_str, term.integral_name, term.region.name] self.expression.append(aux) def __mul__(self, other): out = Terms() for name, term in self.iteritems(): out.append(term * other) return out def __rmul__(self, other): return self * other def __add__(self, other): if isinstance(other, Term): out = self.copy() out.append(other) elif isinstance(other, Terms): out = Terms(self._objs + other._objs) else: raise ValueError('cannot add Terms with %s!' % other) return out def __radd__(self, other): return self + other def __sub__(self, other): if isinstance(other, Term): out = self + (-other) elif isinstance(other, Terms): out = self + (-other) else: raise ValueError('cannot subtract Terms with %s!' % other) return out def __rsub__(self, other): return -self + other def __pos__(self): return self def __neg__(self): return -1.0 * self def setup(self): for term in self: term.setup() def assign_args(self, variables, materials, user=None): """ Assign all term arguments. """ for term in self: term.assign_args(variables, materials, user) def get_variable_names(self): out = [] for term in self: out.extend(term.get_variable_names()) return list(set(out)) def get_material_names(self): out = [] for term in self: out.extend(term.get_material_names()) return list(set(out)) def get_user_names(self): out = [] for term in self: out.extend(term.get_user_names()) return list(set(out)) class Term(Struct): name = '' arg_types = () arg_shapes = {} integration = 'volume' geometries = ['1_2', '2_3', '2_4', '3_4', '3_8'] @staticmethod def new(name, integral, region, **kwargs): from sfepy.terms import term_table arg_str = _match_args(name) if arg_str is not None: name, arg_str = arg_str.groups() else: raise ValueError('bad term syntax! (%s)' % name) if name in term_table: constructor = term_table[name] else: msg = "term '%s' is not in %s" % (name, sorted(term_table.keys())) raise ValueError(msg) obj = constructor(name, arg_str, integral, region, **kwargs) return obj @staticmethod def from_desc(constructor, desc, region, integrals=None): from sfepy.discrete import Integrals if integrals is None: integrals = Integrals() integral = integrals.get(desc.integral) obj = constructor(desc.name, desc.args, integral, region) obj.sign = desc.sign return obj def __init__(self, name, arg_str, integral, region, **kwargs): self.name = name self.arg_str = arg_str self.region = region self._kwargs = kwargs self._integration = self.integration self.sign = 1.0 self.set_integral(integral) def __mul__(self, other): try: mul = as_float_or_complex(other) except ValueError: raise ValueError('cannot multiply Term with %s!' % other) out = self.copy(name=self.name) out.sign = mul * self.sign return out def __rmul__(self, other): return self * other def __add__(self, other): if isinstance(other, Term): out = Terms([self, other]) else: out = NotImplemented return out def __sub__(self, other): if isinstance(other, Term): out = Terms([self, -1.0 * other]) else: out = NotImplemented return out def __pos__(self): return self def __neg__(self): out = -1.0 * self return out def get_str(self): return ('%+.2e * %s.%d.%s(%s)' % (self.sign, self.name, self.integral.order, self.region.name, self.arg_str)) def set_integral(self, integral): """ Set the term integral. """ self.integral = integral if self.integral is not None: self.integral_name = self.integral.name def setup(self): self.function = Struct.get(self, 'function', None) self.step = 0 self.dt = 1.0 self.is_quasistatic = False self.has_region = True self.setup_formal_args() if self._kwargs: self.setup_args(**self._kwargs) else: self.args = [] def setup_formal_args(self): self.arg_names = [] self.arg_steps = {} self.arg_derivatives = {} self.arg_traces = {} parser = create_arg_parser() self.arg_desc = parser.parseString(self.arg_str) for arg in self.arg_desc: trace = False derivative = None if isinstance(arg[1], int): name, step = arg else: kind = arg[0] name, step = arg[1] if kind == 'd': derivative = arg[2] elif kind == 'tr': trace = True match = _match_material_root(name) if match: name = (match.group(1), match.group(2)) self.arg_names.append(name) self.arg_steps[name] = step self.arg_derivatives[name] = derivative self.arg_traces[name] = trace def setup_args(self, **kwargs): self._kwargs = kwargs self.args = [] for arg_name in self.arg_names: if isinstance(arg_name, basestr): self.args.append(self._kwargs[arg_name]) else: self.args.append((self._kwargs[arg_name[0]], arg_name[1])) self.classify_args() self.check_args() def assign_args(self, variables, materials, user=None): """ Check term argument existence in variables, materials, user data and assign the arguments to terms. Also check compatibility of field and term regions. """ if user is None: user = {} user.setdefault('ts', Struct()) kwargs = {} for arg_name in self.arg_names: if isinstance(arg_name, basestr): if arg_name in variables.names: kwargs[arg_name] = variables[arg_name] elif arg_name in user: kwargs[arg_name] = user[arg_name] else: raise ValueError('argument %s not found!' % arg_name) else: arg_name = arg_name[0] if arg_name in materials.names: kwargs[arg_name] = materials[arg_name] else: raise ValueError('material argument %s not found!' % arg_name) self.setup_args(**kwargs) def classify_args(self): """ Classify types of the term arguments and find matching call signature. A state variable can be in place of a parameter variable and vice versa. """ self.names = Struct(name='arg_names', material=[], variable=[], user=[], state=[], virtual=[], parameter=[]) # Prepare for 'opt_material' - just prepend a None argument if needed. if isinstance(self.arg_types[0], tuple): arg_types = self.arg_types[0] else: arg_types = self.arg_types if len(arg_types) == (len(self.args) + 1): self.args.insert(0, (None, None)) self.arg_names.insert(0, (None, None)) if isinstance(self.arg_types[0], tuple): assert_(len(self.modes) == len(self.arg_types)) # Find matching call signature using variable arguments - material # and user arguments are ignored! matched = [] for it, arg_types in enumerate(self.arg_types): arg_kinds = get_arg_kinds(arg_types) if self._check_variables(arg_kinds): matched.append((it, arg_kinds)) if len(matched) == 1: i_match, arg_kinds = matched[0] arg_types = self.arg_types[i_match] self.mode = self.modes[i_match] elif len(matched) == 0: msg = 'cannot match arguments! (%s)' % self.arg_names raise ValueError(msg) else: msg = 'ambiguous arguments! (%s)' % self.arg_names raise ValueError(msg) else: arg_types = self.arg_types arg_kinds = get_arg_kinds(self.arg_types) self.mode = Struct.get(self, 'mode', None) if not self._check_variables(arg_kinds): raise ValueError('cannot match variables! (%s)' % self.arg_names) # Set actual argument types. self.ats = list(arg_types) for ii, arg_kind in enumerate(arg_kinds): name = self.arg_names[ii] if arg_kind.endswith('variable'): names = self.names.variable if arg_kind == 'virtual_variable': self.names.virtual.append(name) elif arg_kind == 'state_variable': self.names.state.append(name) elif arg_kind == 'parameter_variable': self.names.parameter.append(name) elif arg_kind.endswith('material'): names = self.names.material else: names = self.names.user names.append(name) self.n_virtual = len(self.names.virtual) if self.n_virtual > 1: raise ValueError('at most one virtual variable is allowed! (%d)' % self.n_virtual) self.set_arg_types() self.setup_integration() def _check_variables(self, arg_kinds): for ii, arg_kind in enumerate(arg_kinds): if arg_kind.endswith('variable'): var = self.args[ii] check = {'virtual_variable' : var.is_virtual, 'state_variable' : var.is_state_or_parameter, 'parameter_variable' : var.is_state_or_parameter} if not check[arg_kind](): return False else: return True def set_arg_types(self): pass def check_args(self): """ Common checking to all terms. Check compatibility of field and term regions. """ vns = self.get_variable_names() for name in vns: field = self._kwargs[name].get_field() if field is None: continue if not nm.all(in1d(self.region.vertices, field.region.vertices)): msg = ('%s: incompatible regions: (self, field %s)' + '(%s in %s)') %\ (self.name, field.name, self.region.vertices, field.region.vertices) raise ValueError(msg) def get_variable_names(self): return self.names.variable def get_material_names(self): out = [] for aux in self.names.material: if aux[0] is not None: out.append(aux[0]) return out def get_user_names(self): return self.names.user def get_virtual_name(self): if not self.names.virtual: return None var = self.get_virtual_variable() return var.name def get_state_names(self): """ If variables are given, return only true unknowns whose data are of the current time step (0). """ variables = self.get_state_variables() return [var.name for var in variables] def get_parameter_names(self): return copy(self.names.parameter) def get_conn_key(self): """The key to be used in DOF connectivity information.""" key = (self.name,) + tuple(self.arg_names) key += (self.integral_name, self.region.name) return key def get_conn_info(self): vvar = self.get_virtual_variable() svars = self.get_state_variables() pvars = self.get_parameter_variables() all_vars = self.get_variables() dc_type = self.get_dof_conn_type() tgs = self.get_geometry_types() v_tg = None if vvar is not None: field = vvar.get_field() if field is not None: if vvar.name in tgs: v_tg = tgs[vvar.name] else: v_tg = None else: # No virtual variable -> all unknowns are in fact known parameters. pvars += svars svars = [] region = self.get_region() if region is not None: is_any_trace = reduce(lambda x, y: x or y, list(self.arg_traces.values())) if is_any_trace: region.setup_mirror_region() vals = [] aux_pvars = [] for svar in svars: # Allow only true state variables. if not svar.is_state(): aux_pvars.append(svar) continue field = svar.get_field() is_trace = self.arg_traces[svar.name] if svar.name in tgs: ps_tg = tgs[svar.name] else: ps_tg = v_tg val = ConnInfo(virtual=vvar, state=svar, primary=svar, has_virtual=True, has_state=True, is_trace=is_trace, dc_type=dc_type, v_tg=v_tg, ps_tg=ps_tg, region=region, all_vars=all_vars) vals.append(val) pvars += aux_pvars for pvar in pvars: field = pvar.get_field() is_trace = self.arg_traces[pvar.name] if pvar.name in tgs: ps_tg = tgs[pvar.name] else: ps_tg = v_tg val = ConnInfo(virtual=vvar, state=None, primary=pvar.get_primary(), has_virtual=vvar is not None, has_state=False, is_trace=is_trace, dc_type=dc_type, v_tg=v_tg, ps_tg=ps_tg, region=region, all_vars=all_vars) vals.append(val) if vvar and (len(vals) == 0): # No state, parameter variables, just the virtual one. val = ConnInfo(virtual=vvar, state=vvar.get_primary(), primary=vvar.get_primary(), has_virtual=True, has_state=False, is_trace=False, dc_type=dc_type, v_tg=v_tg, ps_tg=v_tg, region=region, all_vars=all_vars) vals.append(val) return vals def get_args_by_name(self, arg_names): """ Return arguments by name. """ out = [] for name in arg_names: try: ii = self.arg_names.index(name) except ValueError: raise ValueError('non-existing argument! (%s)' % name) out.append(self.args[ii]) return out def get_args(self, arg_types=None, **kwargs): """ Return arguments by type as specified in arg_types (or self.ats). Arguments in **kwargs can override the ones assigned at the term construction - this is useful for passing user data. """ ats = self.ats if arg_types is None: arg_types = ats args = [] region_name, iorder = self.region.name, self.integral.order for at in arg_types: ii = ats.index(at) arg_name = self.arg_names[ii] if isinstance(arg_name, basestr): if arg_name in kwargs: args.append(kwargs[arg_name]) else: args.append(self.args[ii]) else: mat, par_name = self.args[ii] if mat is not None: mat_data = mat.get_data((region_name, iorder), par_name) else: mat_data = None args.append(mat_data) return args def get_kwargs(self, keys, **kwargs): """Extract arguments from **kwargs listed in keys (default is None).""" return [kwargs.get(name) for name in keys] def get_arg_name(self, arg_type, full=False, join=None): """ Get the name of the argument specified by `arg_type.` Parameters ---------- arg_type : str The argument type string. full : bool If True, return the full name. For example, if the name of a variable argument is 'u' and its time derivative is requested, the full name is 'du/dt'. join : str, optional Optionally, the material argument name tuple can be joined to a single string using the `join` string. Returns ------- name : str The argument name. """ try: ii = self.ats.index(arg_type) except ValueError: return None name = self.arg_names[ii] if full: # Include derivatives. if self.arg_derivatives[name]: name = 'd%s/%s' % (name, self.arg_derivatives[name]) if (join is not None) and isinstance(name, tuple): name = join.join(name) return name def setup_integration(self): self.has_geometry = True self.geometry_types = {} if isinstance(self.integration, basestr): for var in self.get_variables(): self.geometry_types[var.name] = self.integration else: if self.mode is not None: self.integration = self._integration[self.mode] if self.integration is not None: for arg_type, gtype in six.iteritems(self.integration): var = self.get_args(arg_types=[arg_type])[0] self.geometry_types[var.name] = gtype gtypes = list(set(self.geometry_types.values())) if 'surface_extra' in gtypes: self.dof_conn_type = 'volume' elif len(gtypes): self.dof_conn_type = gtypes[0] def get_region(self): return self.region def get_geometry_types(self): """ Returns ------- out : dict The required geometry types for each variable argument. """ return self.geometry_types def get_dof_conn_type(self): return Struct(name='dof_conn_info', type=self.dof_conn_type, region_name=self.region.name) def get_assembling_cells(self, shape=None): """ Return the assembling cell indices into a DOF connectivity. """ cells = nm.arange(shape[0], dtype=nm.int32) return cells def time_update(self, ts): if ts is not None: self.step = ts.step self.dt = ts.dt self.is_quasistatic = ts.is_quasistatic if 'ts' in self._kwargs: self._kwargs['ts'].update(ts) def advance(self, ts): """ Advance to the next time step. Implemented in subclasses. """ def get_vector(self, variable): """Get the vector stored in `variable` according to self.arg_steps and self.arg_derivatives. Supports only the backward difference w.r.t. time.""" name = variable.name return variable(step=self.arg_steps[name], derivative=self.arg_derivatives[name]) def get_variables(self, as_list=True): if as_list: variables = self.get_args_by_name(self.names.variable) else: variables = {} for var in self.get_args_by_name(self.names.variable): variables[var.name] = var return variables def get_virtual_variable(self): aux = self.get_args_by_name(self.names.virtual) if len(aux) == 1: var = aux[0] else: var = None return var def get_state_variables(self, unknown_only=False): variables = self.get_args_by_name(self.names.state) if unknown_only: variables = [var for var in variables if (var.kind == 'unknown') and (self.arg_steps[var.name] == 0)] return variables def get_parameter_variables(self): return self.get_args_by_name(self.names.parameter) def get_materials(self, join=False): materials = self.get_args_by_name(self.names.material) for mat in materials: if mat[0] is None: materials.remove(mat) if join: materials = list(set(mat[0] for mat in materials)) return materials def get_qp_key(self): """ Return a key identifying uniquely the term quadrature points. """ return (self.region.name, self.integral.order) def get_physical_qps(self): """ Get physical quadrature points corresponding to the term region and integral. """ from sfepy.discrete.common.mappings import get_physical_qps, PhysicalQPs if self.integration == 'point': phys_qps = PhysicalQPs() else: phys_qps = get_physical_qps(self.region, self.integral) return phys_qps def get_mapping(self, variable, get_saved=False, return_key=False): """ Get the reference mapping from a variable. Notes ----- This is a convenience wrapper of Field.get_mapping() that initializes the arguments using the term data. """ integration = self.geometry_types[variable.name] is_trace = self.arg_traces[variable.name] if is_trace: region = self.region.get_mirror_region() else: region = self.region out = variable.field.get_mapping(region, self.integral, integration, get_saved=get_saved, return_key=return_key) return out def get_data_shape(self, variable): """ Get data shape information from variable. Notes ----- This is a convenience wrapper of FieldVariable.get_data_shape() that initializes the arguments using the term data. """ integration = self.geometry_types[variable.name] is_trace = self.arg_traces[variable.name] if is_trace: region = self.region.get_mirror_region() else: region = self.region out = variable.get_data_shape(self.integral, integration, region.name) return out def get(self, variable, quantity_name, bf=None, integration=None, step=None, time_derivative=None): """ Get the named quantity related to the variable. Notes ----- This is a convenience wrapper of Variable.evaluate() that initializes the arguments using the term data. """ name = variable.name step = get_default(step, self.arg_steps[name]) time_derivative = get_default(time_derivative, self.arg_derivatives[name]) integration = get_default(integration, self.geometry_types[name]) data = variable.evaluate(mode=quantity_name, region=self.region, integral=self.integral, integration=integration, step=step, time_derivative=time_derivative, is_trace=self.arg_traces[name], bf=bf) return data def check_shapes(self, *args, **kwargs): """ Check term argument shapes at run-time. """ from sfepy.base.base import output from sfepy.mechanics.tensors import dim2sym dim = self.region.dim sym = dim2sym(dim) def _parse_scalar_shape(sh): if isinstance(sh, basestr): if sh == 'D': return dim elif sh == 'D2': return dim**2 elif sh == 'S': return sym elif sh == 'N': # General number. return nm.inf elif sh == 'str': return 'str' else: return int(sh) else: return sh def _parse_tuple_shape(sh): if isinstance(sh, basestr): return tuple((_parse_scalar_shape(ii.strip()) for ii in sh.split(','))) else: return (int(sh),) arg_kinds = get_arg_kinds(self.ats) arg_shapes_list = self.arg_shapes if not isinstance(arg_shapes_list, list): arg_shapes_list = [arg_shapes_list] # Loop allowed shapes until a match is found, else error. allowed_shapes = [] prev_shapes = {} actual_shapes = {} for _arg_shapes in arg_shapes_list: # Unset shapes are taken from the previous iteration. arg_shapes = copy(prev_shapes) arg_shapes.update(_arg_shapes) prev_shapes = arg_shapes allowed_shapes.append(arg_shapes) n_ok = 0 for ii, arg_kind in enumerate(arg_kinds): if arg_kind in ('user', 'ts'): n_ok += 1 continue arg = args[ii] key = '%s:%s' % (self.ats[ii], self.arg_names[ii]) if self.mode is not None: extended_ats = self.ats[ii] + ('/%s' % self.mode) else: extended_ats = self.ats[ii] try: sh = arg_shapes[self.ats[ii]] except KeyError: sh = arg_shapes[extended_ats] if arg_kind.endswith('variable'): n_el, n_qp, _dim, n_en, n_c = self.get_data_shape(arg) actual_shapes[key] = (n_c,) shape = _parse_scalar_shape(sh[0] if isinstance(sh, tuple) else sh) if nm.isinf(shape): n_ok += 1 else: n_ok += shape == n_c elif arg_kind.endswith('material'): if arg is None: # Switched-off opt_material. n_ok += sh is None continue if sh is None: continue prefix = '' if isinstance(sh, basestr): aux = sh.split(':') if len(aux) == 2: prefix, sh = aux if sh == 'str': n_ok += isinstance(arg, basestr) continue shape = _parse_tuple_shape(sh) ls = len(shape) aarg = nm.array(arg, ndmin=1) actual_shapes[key] = aarg.shape # Substiture general dimension 'N' with actual value. iinfs = nm.where(nm.isinf(shape))[0] if len(iinfs): shape = list(shape) for iinf in iinfs: shape[iinf] = aarg.shape[-ls+iinf] shape = tuple(shape) if (ls > 1) or (shape[0] > 1): # Array. n_ok += shape == aarg.shape[-ls:] actual_shapes[key] = aarg.shape[-ls:] elif (ls == 1) and (shape[0] == 1): # Scalar constant. from numbers import Number n_ok += isinstance(arg, Number) else: n_ok += 1 if n_ok == len(arg_kinds): break else: term_str = self.get_str() output('allowed argument shapes for term "%s":' % term_str) output(allowed_shapes) output('actual argument shapes:') output(actual_shapes) raise ValueError('wrong arguments shapes for "%s" term! (see above)' % term_str) def standalone_setup(self): from sfepy.discrete import create_adof_conns, Variables conn_info = {'aux' : self.get_conn_info()} adcs = create_adof_conns(conn_info, None) variables = Variables(self.get_variables()) variables.set_adof_conns(adcs) materials = self.get_materials(join=True) for mat in materials: mat.time_update(None, [Struct(terms=[self])]) def call_get_fargs(self, args, kwargs): try: fargs = self.get_fargs(*args, **kwargs) except (RuntimeError, ValueError): terms.errclear() raise return fargs def call_function(self, out, fargs): try: status = self.function(out, *fargs) except (RuntimeError, ValueError): terms.errclear() raise if status: terms.errclear() raise ValueError('term evaluation failed! (%s)' % self.name) return status def eval_real(self, shape, fargs, mode='eval', term_mode=None, diff_var=None, **kwargs): out = nm.empty(shape, dtype=nm.float64) if mode == 'eval': status = self.call_function(out, fargs) # Sum over elements but not over components. out1 = nm.sum(out, 0).squeeze() return out1, status else: status = self.call_function(out, fargs) return out, status def eval_complex(self, shape, fargs, mode='eval', term_mode=None, diff_var=None, **kwargs): rout = nm.empty(shape, dtype=nm.float64) fargsd = split_complex_args(fargs) # Assuming linear forms. Then the matrix is the # same both for real and imaginary part. rstatus = self.call_function(rout, fargsd['r']) if (diff_var is None) and len(fargsd) >= 2: iout = nm.empty(shape, dtype=nm.float64) istatus = self.call_function(iout, fargsd['i']) if mode == 'eval' and len(fargsd) >= 4: irout = nm.empty(shape, dtype=nm.float64) irstatus = self.call_function(irout, fargsd['ir']) riout = nm.empty(shape, dtype=nm.float64) ristatus = self.call_function(riout, fargsd['ri']) out = (rout - iout) + (riout + irout) * 1j status = rstatus or istatus or ristatus or irstatus else: out = rout + 1j * iout status = rstatus or istatus else: out, status = rout + 0j, rstatus if mode == 'eval': out1 = nm.sum(out, 0).squeeze() return out1, status else: return out, status def evaluate(self, mode='eval', diff_var=None, standalone=True, ret_status=False, **kwargs): """ Evaluate the term. Parameters ---------- mode : 'eval' (default), or 'weak' The term evaluation mode. Returns ------- val : float or array In 'eval' mode, the term returns a single value (the integral, it does not need to be a scalar), while in 'weak' mode it returns an array for each element. status : int, optional The flag indicating evaluation success (0) or failure (nonzero). Only provided if `ret_status` is True. iels : array of ints, optional The local elements indices in 'weak' mode. Only provided in non-'eval' modes. """ if standalone: self.standalone_setup() kwargs = kwargs.copy() term_mode = kwargs.pop('term_mode', None) if mode in ('eval', 'el_eval', 'el_avg', 'qp'): args = self.get_args(**kwargs) self.check_shapes(*args) emode = 'eval' if mode == 'el_eval' else mode _args = tuple(args) + (emode, term_mode, diff_var) fargs = self.call_get_fargs(_args, kwargs) shape, dtype = self.get_eval_shape(*_args, **kwargs) if dtype == nm.float64: val, status = self.eval_real(shape, fargs, mode, term_mode, **kwargs) elif dtype == nm.complex128: val, status = self.eval_complex(shape, fargs, mode, term_mode, **kwargs) else: raise ValueError('unsupported term dtype! (%s)' % dtype) val *= self.sign out = (val,) elif mode == 'weak': varr = self.get_virtual_variable() if varr is None: raise ValueError('no virtual variable in weak mode! (in "%s")' % self.get_str()) if diff_var is not None: varc = self.get_variables(as_list=False)[diff_var] args = self.get_args(**kwargs) self.check_shapes(*args) _args = tuple(args) + (mode, term_mode, diff_var) fargs = self.call_get_fargs(_args, kwargs) n_elr, n_qpr, dim, n_enr, n_cr = self.get_data_shape(varr) n_row = n_cr * n_enr if diff_var is None: shape = (n_elr, 1, n_row, 1) else: n_elc, n_qpc, dim, n_enc, n_cc = self.get_data_shape(varc) n_col = n_cc * n_enc shape = (n_elr, 1, n_row, n_col) if varr.dtype == nm.float64: vals, status = self.eval_real(shape, fargs, mode, term_mode, diff_var, **kwargs) elif varr.dtype == nm.complex128: vals, status = self.eval_complex(shape, fargs, mode, term_mode, diff_var, **kwargs) else: raise ValueError('unsupported term dtype! (%s)' % varr.dtype) if not isinstance(vals, tuple): vals *= self.sign iels = self.get_assembling_cells(vals.shape) else: vals = (self.sign * vals[0],) + vals[1:] iels = None out = (vals, iels) if goptions['check_term_finiteness']: assert_(nm.isfinite(out[0]).all(), msg='"%s" term values not finite!' % self.get_str()) if ret_status: out = out + (status,) if len(out) == 1: out = out[0] return out def assemble_to(self, asm_obj, val, iels, mode='vector', diff_var=None): """ Assemble the results of term evaluation. For standard terms, assemble the values in `val` corresponding to elements/cells `iels` into a vector or a CSR sparse matrix `asm_obj`, depending on `mode`. For terms with a dynamic connectivity (e.g. contact terms), in `'matrix'` mode, return the extra COO sparse matrix instead. The extra matrix has to be added to the global matrix by the caller. By default, this is done in :func:`Equations.evaluate() <sfepy.discrete.equations.Equations.evaluate()>`. """ import sfepy.discrete.common.extmods.assemble as asm vvar = self.get_virtual_variable() dc_type = self.get_dof_conn_type() extra = None if mode == 'vector': if asm_obj.dtype == nm.float64: assemble = asm.assemble_vector else: assert_(asm_obj.dtype == nm.complex128) assemble = asm.assemble_vector_complex for ii in range(len(val)): if not(val[ii].dtype == nm.complex128): val[ii] = nm.complex128(val[ii]) if not isinstance(val, tuple): dc = vvar.get_dof_conn(dc_type) assert_(val.shape[2] == dc.shape[1]) assemble(asm_obj, val, iels, 1.0, dc) else: vals, rows, var = val if var.eq_map is not None: eq = var.eq_map.eq rows = eq[rows] active = (rows >= 0) vals, rows = vals[active], rows[active] # Assumes no repeated indices in rows! asm_obj[rows] += vals elif mode == 'matrix': if asm_obj.dtype == nm.float64: assemble = asm.assemble_matrix else: assert_(asm_obj.dtype == nm.complex128) assemble = asm.assemble_matrix_complex svar = diff_var tmd = (asm_obj.data, asm_obj.indptr, asm_obj.indices) if ((asm_obj.dtype == nm.complex128) and (val.dtype == nm.float64)): val = val.astype(nm.complex128) sign = 1.0 if self.arg_derivatives[svar.name]: if not self.is_quasistatic or (self.step > 0): sign *= 1.0 / self.dt else: sign = 0.0 if not isinstance(val, tuple): rdc = vvar.get_dof_conn(dc_type) is_trace = self.arg_traces[svar.name] cdc = svar.get_dof_conn(dc_type, is_trace=is_trace) assert_(val.shape[2:] == (rdc.shape[1], cdc.shape[1])) assemble(tmd[0], tmd[1], tmd[2], val, iels, sign, rdc, cdc) else: from scipy.sparse import coo_matrix vals, rows, cols, rvar, cvar = val if rvar.eq_map is not None: req, ceq = rvar.eq_map.eq, cvar.eq_map.eq rows, cols = req[rows], ceq[cols] active = (rows >= 0) & (cols >= 0) vals, rows, cols = vals[active], rows[active], cols[active] extra = coo_matrix((sign * vals, (rows, cols)), shape=asm_obj.shape) else: raise ValueError('unknown assembling mode! (%s)' % mode) return extra
[ "sfepy.terms.term_table.keys", "sfepy.base.base.Container.append", "sfepy.terms.extmods.terms.append", "sfepy.base.base.assert_", "sfepy.discrete.Integrals", "sfepy.discrete.common.mappings.get_physical_qps", "sfepy.base.base.Struct", "sfepy.discrete.create_adof_conns", "sfepy.discrete.common.mappings.PhysicalQPs", "sfepy.base.base.get_default", "sfepy.base.base.as_float_or_complex", "sfepy.base.base.Container.__init__", "sfepy.base.base.Container.insert", "sfepy.mechanics.tensors.dim2sym", "sfepy.base.base.output", "sfepy.terms.extmods.terms.errclear", "sfepy.base.compat.in1d", "sfepy.base.base.Struct.get" ]
[((422, 460), 're.compile', 're.compile', (['"""^([^\\\\(\\\\}]*)\\\\((.*)\\\\)$"""'], {}), "('^([^\\\\(\\\\}]*)\\\\((.*)\\\\)$')\n", (432, 460), False, 'import re\n'), ((480, 503), 're.compile', 're.compile', (['"""^virtual$"""'], {}), "('^virtual$')\n", (490, 503), False, 'import re\n'), ((525, 563), 're.compile', 're.compile', (['"""^state(_[_a-zA-Z0-9]+)?$"""'], {}), "('^state(_[_a-zA-Z0-9]+)?$')\n", (535, 563), False, 'import re\n'), ((589, 631), 're.compile', 're.compile', (['"""^parameter(_[_a-zA-Z0-9]+)?$"""'], {}), "('^parameter(_[_a-zA-Z0-9]+)?$')\n", (599, 631), False, 'import re\n'), ((656, 697), 're.compile', 're.compile', (['"""^material(_[_a-zA-Z0-9]+)?$"""'], {}), "('^material(_[_a-zA-Z0-9]+)?$')\n", (666, 697), False, 'import re\n'), ((726, 771), 're.compile', 're.compile', (['"""^opt_material(_[_a-zA-Z0-9]+)?$"""'], {}), "('^opt_material(_[_a-zA-Z0-9]+)?$')\n", (736, 771), False, 'import re\n'), ((801, 826), 're.compile', 're.compile', (['"""(.+)\\\\.(.*)"""'], {}), "('(.+)\\\\.(.*)')\n", (811, 826), False, 'import re\n'), ((844, 862), 're.compile', 're.compile', (['"""^ts$"""'], {}), "('^ts$')\n", (854, 862), False, 'import re\n'), ((4570, 4593), 'pyparsing.Word', 'Word', (["('+-' + nums)", 'nums'], {}), "('+-' + nums, nums)\n", (4574, 4593), False, 'from pyparsing import Literal, Word, delimitedList, Group, StringStart, StringEnd, Optional, nums, alphas, alphanums\n'), ((5198, 5209), 'pyparsing.StringEnd', 'StringEnd', ([], {}), '()\n', (5207, 5209), False, 'from pyparsing import Literal, Word, delimitedList, Group, StringStart, StringEnd, Optional, nums, alphas, alphanums\n'), ((6587, 6622), 'sfepy.base.base.Container.__init__', 'Container.__init__', (['self'], {'objs': 'objs'}), '(self, objs=objs)\n', (6605, 6622), False, 'from sfepy.base.base import as_float_or_complex, get_default, assert_, Container, Struct, basestr, goptions\n'), ((6697, 6728), 'sfepy.base.base.Container.insert', 'Container.insert', (['self', 'ii', 'obj'], {}), '(self, ii, obj)\n', (6713, 6728), False, 'from sfepy.base.base import as_float_or_complex, get_default, assert_, Container, Struct, basestr, goptions\n'), ((6798, 6825), 'sfepy.base.base.Container.append', 'Container.append', (['self', 'obj'], {}), '(self, obj)\n', (6814, 6825), False, 'from sfepy.base.base import as_float_or_complex, get_default, assert_, Container, Struct, basestr, goptions\n'), ((11514, 11548), 'sfepy.base.base.Struct.get', 'Struct.get', (['self', '"""function"""', 'None'], {}), "(self, 'function', None)\n", (11524, 11548), False, 'from sfepy.base.base import as_float_or_complex, get_default, assert_, Container, Struct, basestr, goptions\n'), ((14479, 14578), 'sfepy.base.base.Struct', 'Struct', ([], {'name': '"""arg_names"""', 'material': '[]', 'variable': '[]', 'user': '[]', 'state': '[]', 'virtual': '[]', 'parameter': '[]'}), "(name='arg_names', material=[], variable=[], user=[], state=[],\n virtual=[], parameter=[])\n", (14485, 14578), False, 'from sfepy.base.base import as_float_or_complex, get_default, assert_, Container, Struct, basestr, goptions\n'), ((19303, 19329), 'copy.copy', 'copy', (['self.names.parameter'], {}), '(self.names.parameter)\n', (19307, 19329), False, 'from copy import copy\n'), ((26721, 26809), 'sfepy.base.base.Struct', 'Struct', ([], {'name': '"""dof_conn_info"""', 'type': 'self.dof_conn_type', 'region_name': 'self.region.name'}), "(name='dof_conn_info', type=self.dof_conn_type, region_name=self.\n region.name)\n", (26727, 26809), False, 'from sfepy.base.base import as_float_or_complex, get_default, assert_, Container, Struct, basestr, goptions\n'), ((26984, 27019), 'numpy.arange', 'nm.arange', (['shape[0]'], {'dtype': 'nm.int32'}), '(shape[0], dtype=nm.int32)\n', (26993, 27019), True, 'import numpy as nm\n'), ((31397, 31436), 'sfepy.base.base.get_default', 'get_default', (['step', 'self.arg_steps[name]'], {}), '(step, self.arg_steps[name])\n', (31408, 31436), False, 'from sfepy.base.base import as_float_or_complex, get_default, assert_, Container, Struct, basestr, goptions\n'), ((31463, 31519), 'sfepy.base.base.get_default', 'get_default', (['time_derivative', 'self.arg_derivatives[name]'], {}), '(time_derivative, self.arg_derivatives[name])\n', (31474, 31519), False, 'from sfepy.base.base import as_float_or_complex, get_default, assert_, Container, Struct, basestr, goptions\n'), ((31580, 31631), 'sfepy.base.base.get_default', 'get_default', (['integration', 'self.geometry_types[name]'], {}), '(integration, self.geometry_types[name])\n', (31591, 31631), False, 'from sfepy.base.base import as_float_or_complex, get_default, assert_, Container, Struct, basestr, goptions\n'), ((32248, 32260), 'sfepy.mechanics.tensors.dim2sym', 'dim2sym', (['dim'], {}), '(dim)\n', (32255, 32260), False, 'from sfepy.mechanics.tensors import dim2sym\n'), ((36934, 36968), 'sfepy.discrete.create_adof_conns', 'create_adof_conns', (['conn_info', 'None'], {}), '(conn_info, None)\n', (36951, 36968), False, 'from sfepy.discrete import create_adof_conns, Variables\n'), ((37889, 37922), 'numpy.empty', 'nm.empty', (['shape'], {'dtype': 'nm.float64'}), '(shape, dtype=nm.float64)\n', (37897, 37922), True, 'import numpy as nm\n'), ((38368, 38401), 'numpy.empty', 'nm.empty', (['shape'], {'dtype': 'nm.float64'}), '(shape, dtype=nm.float64)\n', (38376, 38401), True, 'import numpy as nm\n'), ((4810, 4840), 'pyparsing.Word', 'Word', (['alphas', "(alphanums + '._')"], {}), "(alphas, alphanums + '._')\n", (4814, 4840), False, 'from pyparsing import Literal, Word, delimitedList, Group, StringStart, StringEnd, Optional, nums, alphas, alphanums\n'), ((4952, 4965), 'pyparsing.Literal', 'Literal', (['"""dt"""'], {}), "('dt')\n", (4959, 4965), False, 'from pyparsing import Literal, Word, delimitedList, Group, StringStart, StringEnd, Optional, nums, alphas, alphanums\n'), ((5149, 5162), 'pyparsing.StringStart', 'StringStart', ([], {}), '()\n', (5160, 5162), False, 'from pyparsing import Literal, Word, delimitedList, Group, StringStart, StringEnd, Optional, nums, alphas, alphanums\n'), ((5165, 5195), 'pyparsing.delimitedList', 'delimitedList', (['generalized_var'], {}), '(generalized_var)\n', (5178, 5195), False, 'from pyparsing import Literal, Word, delimitedList, Group, StringStart, StringEnd, Optional, nums, alphas, alphanums\n'), ((6502, 6520), 'sfepy.terms.extmods.terms.append', 'terms.append', (['term'], {}), '(term)\n', (6514, 6520), False, 'from sfepy.terms.extmods import terms\n'), ((9797, 9808), 'sfepy.discrete.Integrals', 'Integrals', ([], {}), '()\n', (9806, 9808), False, 'from sfepy.discrete import Integrals\n'), ((10324, 10350), 'sfepy.base.base.as_float_or_complex', 'as_float_or_complex', (['other'], {}), '(other)\n', (10343, 10350), False, 'from sfepy.base.base import as_float_or_complex, get_default, assert_, Container, Struct, basestr, goptions\n'), ((13469, 13477), 'sfepy.base.base.Struct', 'Struct', ([], {}), '()\n', (13475, 13477), False, 'from sfepy.base.base import as_float_or_complex, get_default, assert_, Container, Struct, basestr, goptions\n'), ((16067, 16097), 'sfepy.base.base.Struct.get', 'Struct.get', (['self', '"""mode"""', 'None'], {}), "(self, 'mode', None)\n", (16077, 16097), False, 'from sfepy.base.base import as_float_or_complex, get_default, assert_, Container, Struct, basestr, goptions\n'), ((29485, 29498), 'sfepy.discrete.common.mappings.PhysicalQPs', 'PhysicalQPs', ([], {}), '()\n', (29496, 29498), False, 'from sfepy.discrete.common.mappings import get_physical_qps, PhysicalQPs\n'), ((29537, 29581), 'sfepy.discrete.common.mappings.get_physical_qps', 'get_physical_qps', (['self.region', 'self.integral'], {}), '(self.region, self.integral)\n', (29553, 29581), False, 'from sfepy.discrete.common.mappings import get_physical_qps, PhysicalQPs\n'), ((33504, 33521), 'copy.copy', 'copy', (['prev_shapes'], {}), '(prev_shapes)\n', (33508, 33521), False, 'from copy import copy\n'), ((36473, 36532), 'sfepy.base.base.output', 'output', (['(\'allowed argument shapes for term "%s":\' % term_str)'], {}), '(\'allowed argument shapes for term "%s":\' % term_str)\n', (36479, 36532), False, 'from sfepy.base.base import output\n'), ((36545, 36567), 'sfepy.base.base.output', 'output', (['allowed_shapes'], {}), '(allowed_shapes)\n', (36551, 36567), False, 'from sfepy.base.base import output\n'), ((36580, 36613), 'sfepy.base.base.output', 'output', (['"""actual argument shapes:"""'], {}), "('actual argument shapes:')\n", (36586, 36613), False, 'from sfepy.base.base import output\n'), ((36626, 36647), 'sfepy.base.base.output', 'output', (['actual_shapes'], {}), '(actual_shapes)\n', (36632, 36647), False, 'from sfepy.base.base import output\n'), ((37650, 37666), 'sfepy.terms.extmods.terms.errclear', 'terms.errclear', ([], {}), '()\n', (37664, 37666), False, 'from sfepy.terms.extmods import terms\n'), ((38679, 38712), 'numpy.empty', 'nm.empty', (['shape'], {'dtype': 'nm.float64'}), '(shape, dtype=nm.float64)\n', (38687, 38712), True, 'import numpy as nm\n'), ((26040, 26071), 'six.iteritems', 'six.iteritems', (['self.integration'], {}), '(self.integration)\n', (26053, 26071), False, 'import six\n'), ((37367, 37383), 'sfepy.terms.extmods.terms.errclear', 'terms.errclear', ([], {}), '()\n', (37381, 37383), False, 'from sfepy.terms.extmods import terms\n'), ((37583, 37599), 'sfepy.terms.extmods.terms.errclear', 'terms.errclear', ([], {}), '()\n', (37597, 37599), False, 'from sfepy.terms.extmods import terms\n'), ((38850, 38883), 'numpy.empty', 'nm.empty', (['shape'], {'dtype': 'nm.float64'}), '(shape, dtype=nm.float64)\n', (38858, 38883), True, 'import numpy as nm\n'), ((38975, 39008), 'numpy.empty', 'nm.empty', (['shape'], {'dtype': 'nm.float64'}), '(shape, dtype=nm.float64)\n', (38983, 39008), True, 'import numpy as nm\n'), ((44359, 44398), 'sfepy.base.base.assert_', 'assert_', (['(asm_obj.dtype == nm.complex128)'], {}), '(asm_obj.dtype == nm.complex128)\n', (44366, 44398), False, 'from sfepy.base.base import as_float_or_complex, get_default, assert_, Container, Struct, basestr, goptions\n'), ((44722, 44758), 'sfepy.base.base.assert_', 'assert_', (['(val.shape[2] == dc.shape[1])'], {}), '(val.shape[2] == dc.shape[1])\n', (44729, 44758), False, 'from sfepy.base.base import as_float_or_complex, get_default, assert_, Container, Struct, basestr, goptions\n'), ((4876, 4888), 'pyparsing.Literal', 'Literal', (['"""d"""'], {}), "('d')\n", (4883, 4888), False, 'from pyparsing import Literal, Word, delimitedList, Group, StringStart, StringEnd, Optional, nums, alphas, alphanums\n'), ((4986, 4999), 'pyparsing.Literal', 'Literal', (['"""tr"""'], {}), "('tr')\n", (4993, 4999), False, 'from pyparsing import Literal, Word, delimitedList, Group, StringStart, StringEnd, Optional, nums, alphas, alphanums\n'), ((5059, 5071), 'pyparsing.Literal', 'Literal', (['""")"""'], {}), "(')')\n", (5066, 5071), False, 'from pyparsing import Literal, Word, delimitedList, Group, StringStart, StringEnd, Optional, nums, alphas, alphanums\n'), ((18172, 18221), 'sfepy.base.compat.in1d', 'in1d', (['self.region.vertices', 'field.region.vertices'], {}), '(self.region.vertices, field.region.vertices)\n', (18176, 18221), False, 'from sfepy.base.compat import in1d\n'), ((34603, 34618), 'numpy.isinf', 'nm.isinf', (['shape'], {}), '(shape)\n', (34611, 34618), True, 'import numpy as nm\n'), ((37178, 37198), 'sfepy.base.base.Struct', 'Struct', ([], {'terms': '[self]'}), '(terms=[self])\n', (37184, 37198), False, 'from sfepy.base.base import as_float_or_complex, get_default, assert_, Container, Struct, basestr, goptions\n'), ((38079, 38093), 'numpy.sum', 'nm.sum', (['out', '(0)'], {}), '(out, 0)\n', (38085, 38093), True, 'import numpy as nm\n'), ((39413, 39427), 'numpy.sum', 'nm.sum', (['out', '(0)'], {}), '(out, 0)\n', (39419, 39427), True, 'import numpy as nm\n'), ((45343, 45382), 'sfepy.base.base.assert_', 'assert_', (['(asm_obj.dtype == nm.complex128)'], {}), '(asm_obj.dtype == nm.complex128)\n', (45350, 45382), False, 'from sfepy.base.base import as_float_or_complex, get_default, assert_, Container, Struct, basestr, goptions\n'), ((46142, 46196), 'sfepy.base.base.assert_', 'assert_', (['(val.shape[2:] == (rdc.shape[1], cdc.shape[1]))'], {}), '(val.shape[2:] == (rdc.shape[1], cdc.shape[1]))\n', (46149, 46196), False, 'from sfepy.base.base import as_float_or_complex, get_default, assert_, Container, Struct, basestr, goptions\n'), ((46718, 46778), 'scipy.sparse.coo_matrix', 'coo_matrix', (['(sign * vals, (rows, cols))'], {'shape': 'asm_obj.shape'}), '((sign * vals, (rows, cols)), shape=asm_obj.shape)\n', (46728, 46778), False, 'from scipy.sparse import coo_matrix\n'), ((4677, 4689), 'pyparsing.Literal', 'Literal', (['"""]"""'], {}), "(']')\n", (4684, 4689), False, 'from pyparsing import Literal, Word, delimitedList, Group, StringStart, StringEnd, Optional, nums, alphas, alphanums\n'), ((4926, 4938), 'pyparsing.Literal', 'Literal', (['"""/"""'], {}), "('/')\n", (4933, 4938), False, 'from pyparsing import Literal, Word, delimitedList, Group, StringStart, StringEnd, Optional, nums, alphas, alphanums\n'), ((9473, 9490), 'sfepy.terms.term_table.keys', 'term_table.keys', ([], {}), '()\n', (9488, 9490), False, 'from sfepy.terms import term_table\n'), ((35444, 35466), 'numpy.array', 'nm.array', (['arg'], {'ndmin': '(1)'}), '(arg, ndmin=1)\n', (35452, 35466), True, 'import numpy as nm\n'), ((43130, 43149), 'numpy.isfinite', 'nm.isfinite', (['out[0]'], {}), '(out[0])\n', (43141, 43149), True, 'import numpy as nm\n'), ((44591, 44613), 'numpy.complex128', 'nm.complex128', (['val[ii]'], {}), '(val[ii])\n', (44604, 44613), True, 'import numpy as nm\n'), ((4618, 4630), 'pyparsing.Literal', 'Literal', (['"""["""'], {}), "('[')\n", (4625, 4630), False, 'from pyparsing import Literal, Word, delimitedList, Group, StringStart, StringEnd, Optional, nums, alphas, alphanums\n'), ((5002, 5014), 'pyparsing.Literal', 'Literal', (['"""("""'], {}), "('(')\n", (5009, 5014), False, 'from pyparsing import Literal, Word, delimitedList, Group, StringStart, StringEnd, Optional, nums, alphas, alphanums\n'), ((6184, 6201), 'sfepy.terms.term_table.keys', 'term_table.keys', ([], {}), '()\n', (6199, 6201), False, 'from sfepy.terms import term_table\n'), ((35631, 35646), 'numpy.isinf', 'nm.isinf', (['shape'], {}), '(shape)\n', (35639, 35646), True, 'import numpy as nm\n')]
# Copyright 2021 Modelyst LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from datetime import datetime from typing import Optional from sqlmodel import Field, Session, SQLModel, create_engine, func, select class Item(SQLModel, table=True): id: Optional[int] = Field(default=None, primary_key=True) created: datetime deleted: bool = False category: str version: float = 1 data: str # Create and save records to show that the query itself is working. item_1 = Item(created=datetime.now(), category="category_1", data="❤️ I love SQLModel.") item_2 = Item( created=datetime.now(), category="category_1", data="❤️ I love FastAPI.", deleted=True, ) item_3 = Item( created=datetime.now(), category="category_2", data="🥰 I appreciate your work on all of it!", ) engine = create_engine("sqlite://") SQLModel.metadata.create_all(engine) with Session(engine) as session: session.add(item_1) session.add(item_2) session.add(item_3) session.commit() # This "statement" is where the issue presents itself in PyCharm statement = ( select( Item.category, func.count(Item.id).label("my_count"), func.total(Item.deleted).label("delete_count"), func.min(Item.created).label("oldest_timestamp"), func.max(Item.created).label("newest_timestamp"), func.group_concat(Item.version).label("version_list"), ) .distinct() .group_by(Item.category) ) category_metadata = session.exec(statement) for result in category_metadata: print(dict(result))
[ "sqlmodel.func.min", "sqlmodel.SQLModel.metadata.create_all", "sqlmodel.func.total", "sqlmodel.func.group_concat", "sqlmodel.Session", "sqlmodel.Field", "sqlmodel.func.count", "sqlmodel.func.max", "sqlmodel.create_engine" ]
[((1345, 1371), 'sqlmodel.create_engine', 'create_engine', (['"""sqlite://"""'], {}), "('sqlite://')\n", (1358, 1371), False, 'from sqlmodel import Field, Session, SQLModel, create_engine, func, select\n'), ((1373, 1409), 'sqlmodel.SQLModel.metadata.create_all', 'SQLModel.metadata.create_all', (['engine'], {}), '(engine)\n', (1401, 1409), False, 'from sqlmodel import Field, Session, SQLModel, create_engine, func, select\n'), ((791, 828), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'primary_key': '(True)'}), '(default=None, primary_key=True)\n', (796, 828), False, 'from sqlmodel import Field, Session, SQLModel, create_engine, func, select\n'), ((1416, 1431), 'sqlmodel.Session', 'Session', (['engine'], {}), '(engine)\n', (1423, 1431), False, 'from sqlmodel import Field, Session, SQLModel, create_engine, func, select\n'), ((1024, 1038), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (1036, 1038), False, 'from datetime import datetime\n'), ((1118, 1132), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (1130, 1132), False, 'from datetime import datetime\n'), ((1239, 1253), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (1251, 1253), False, 'from datetime import datetime\n'), ((1680, 1699), 'sqlmodel.func.count', 'func.count', (['Item.id'], {}), '(Item.id)\n', (1690, 1699), False, 'from sqlmodel import Field, Session, SQLModel, create_engine, func, select\n'), ((1731, 1755), 'sqlmodel.func.total', 'func.total', (['Item.deleted'], {}), '(Item.deleted)\n', (1741, 1755), False, 'from sqlmodel import Field, Session, SQLModel, create_engine, func, select\n'), ((1791, 1813), 'sqlmodel.func.min', 'func.min', (['Item.created'], {}), '(Item.created)\n', (1799, 1813), False, 'from sqlmodel import Field, Session, SQLModel, create_engine, func, select\n'), ((1853, 1875), 'sqlmodel.func.max', 'func.max', (['Item.created'], {}), '(Item.created)\n', (1861, 1875), False, 'from sqlmodel import Field, Session, SQLModel, create_engine, func, select\n'), ((1915, 1946), 'sqlmodel.func.group_concat', 'func.group_concat', (['Item.version'], {}), '(Item.version)\n', (1932, 1946), False, 'from sqlmodel import Field, Session, SQLModel, create_engine, func, select\n')]
# A file containing fixtures for testing # Fixtures defined here are available for the whole scope from fastapi.testclient import TestClient import pytest import os from ..main import app, session from sqlmodel import SQLModel, Session, create_engine from sqlmodel.pool import StaticPool from ..utils import get_session db_name = "test_db.sqlite" test_con = f"sqlite:///{db_name}" test_engine = create_engine( test_con, connect_args={"check_same_thread": False}, echo=True ) @pytest.fixture(name="create_db", scope="session") def create_db(): # setup SQLModel.metadata.create_all(test_engine) yield # teardown os.remove(db_name) @pytest.fixture(name="session") def session_fixture(create_db): create_db with Session(test_engine) as session: yield session @pytest.fixture(name="client") def client_fixture(session: Session): def get_session_override(): return session app.dependency_overrides[get_session] = get_session_override client = TestClient(app) yield client app.dependency_overrides.clear()
[ "sqlmodel.create_engine", "sqlmodel.Session", "sqlmodel.SQLModel.metadata.create_all" ]
[((397, 474), 'sqlmodel.create_engine', 'create_engine', (['test_con'], {'connect_args': "{'check_same_thread': False}", 'echo': '(True)'}), "(test_con, connect_args={'check_same_thread': False}, echo=True)\n", (410, 474), False, 'from sqlmodel import SQLModel, Session, create_engine\n'), ((484, 533), 'pytest.fixture', 'pytest.fixture', ([], {'name': '"""create_db"""', 'scope': '"""session"""'}), "(name='create_db', scope='session')\n", (498, 533), False, 'import pytest\n'), ((660, 690), 'pytest.fixture', 'pytest.fixture', ([], {'name': '"""session"""'}), "(name='session')\n", (674, 690), False, 'import pytest\n'), ((805, 834), 'pytest.fixture', 'pytest.fixture', ([], {'name': '"""client"""'}), "(name='client')\n", (819, 834), False, 'import pytest\n'), ((567, 608), 'sqlmodel.SQLModel.metadata.create_all', 'SQLModel.metadata.create_all', (['test_engine'], {}), '(test_engine)\n', (595, 608), False, 'from sqlmodel import SQLModel, Session, create_engine\n'), ((638, 656), 'os.remove', 'os.remove', (['db_name'], {}), '(db_name)\n', (647, 656), False, 'import os\n'), ((1007, 1022), 'fastapi.testclient.TestClient', 'TestClient', (['app'], {}), '(app)\n', (1017, 1022), False, 'from fastapi.testclient import TestClient\n'), ((747, 767), 'sqlmodel.Session', 'Session', (['test_engine'], {}), '(test_engine)\n', (754, 767), False, 'from sqlmodel import SQLModel, Session, create_engine\n')]
""" Time stepping solvers. """ import numpy as nm from sfepy.base.base import output, Struct, IndexedStruct, basestr from sfepy.solvers.solvers import make_get_conf, TimeSteppingSolver from sfepy.discrete.mass_operator import MassOperator from sfepy.solvers.ts import TimeStepper, VariableTimeStepper class StationarySolver(TimeSteppingSolver): """ Solver for stationary problems without time stepping. This class is provided to have a unified interface of the time stepping solvers also for stationary problems. """ name = 'ts.stationary' def __init__(self, conf, **kwargs): TimeSteppingSolver.__init__(self, conf, ts=None, **kwargs) def __call__(self, state0=None, save_results=True, step_hook=None, post_process_hook=None, nls_status=None): problem = self.problem problem.time_update() state = problem.solve(state0=state0, nls_status=nls_status) if step_hook is not None: step_hook(problem, None, state) if save_results: problem.save_state(problem.get_output_name(), state, post_process_hook=post_process_hook, file_per_var=None) return state def replace_virtuals(deps, pairs): out = {} for key, val in deps.iteritems(): out[pairs[key]] = val return out class EquationSequenceSolver(TimeSteppingSolver): """ Solver for stationary problems with an equation sequence. """ name = 'ts.equation_sequence' def __init__(self, conf, **kwargs): TimeSteppingSolver.__init__(self, conf, ts=None, **kwargs) def __call__(self, state0=None, save_results=True, step_hook=None, post_process_hook=None, nls_status=None): from sfepy.base.base import invert_dict, get_subdict from sfepy.base.resolve_deps import resolve problem = self.problem if state0 is None: state0 = problem.create_state() variables = problem.get_variables() vtos = variables.get_dual_names() vdeps = problem.equations.get_variable_dependencies() sdeps = replace_virtuals(vdeps, vtos) sorder = resolve(sdeps) stov = invert_dict(vtos) vorder = [[stov[ii] for ii in block] for block in sorder] parts0 = state0.get_parts() state = state0.copy() solved = [] for ib, block in enumerate(vorder): output('solving for %s...' % sorder[ib]) subpb = problem.create_subproblem(block, solved) subpb.equations.print_terms() subpb.time_update() substate0 = subpb.create_state() vals = get_subdict(parts0, block) substate0.set_parts(vals) substate = subpb.solve(state0=substate0, nls_status=nls_status) state.set_parts(substate.get_parts()) solved.extend(sorder[ib]) output('...done') if step_hook is not None: step_hook(problem, None, state) if save_results: problem.save_state(problem.get_output_name(), state, post_process_hook=post_process_hook, file_per_var=None) return state def get_initial_state(problem): """ Create a zero state vector and apply initial conditions. """ state = problem.create_state() problem.setup_ic() state.apply_ic() return state def prepare_save_data(ts, conf): """ Given a time stepper configuration, return a list of time steps when the state should be saved. """ try: save_steps = conf.options.save_steps except: save_steps = -1 if save_steps == -1: save_steps = ts.n_step is_save = nm.linspace(0, ts.n_step - 1, save_steps).astype(nm.int32) is_save = nm.unique(is_save) return ts.suffix, is_save def prepare_matrix(problem, state): """ Pre-assemble tangent system matrix. """ problem.update_materials() ev = problem.get_evaluator() try: mtx = ev.eval_tangent_matrix(state(), is_full=True) except ValueError: output('matrix evaluation failed, giving up...') raise return mtx def make_implicit_step(ts, state0, problem, nls_status=None): """ Make a step of an implicit time stepping solver. """ problem.time_update(ts) if ts.step == 0: state0.apply_ebc() state = state0.copy(deep=True) if not ts.is_quasistatic: problem.init_time(ts) ev = problem.get_evaluator() try: vec_r = ev.eval_residual(state(), is_full=True) except ValueError: output('initial residual evaluation failed, giving up...') raise else: err = nm.linalg.norm(vec_r) output('initial residual: %e' % err) if problem.is_linear(): mtx = prepare_matrix(problem, state) else: mtx = None # Initialize solvers (and possibly presolve the matrix). presolve = mtx is not None problem.init_solvers(nls_status=nls_status, mtx=mtx, presolve=presolve) # Initialize variables with history. state0.init_history() if ts.is_quasistatic: # Ordinary solve. state = problem.solve(state0=state0, nls_status=nls_status) else: if (ts.step == 1) and ts.is_quasistatic and problem.is_linear(): mtx = prepare_matrix(problem, state0) problem.init_solvers(nls_status=nls_status, mtx=mtx) state = problem.solve(state0=state0, nls_status=nls_status) return state def make_explicit_step(ts, state0, problem, mass, nls_status=None): """ Make a step of an explicit time stepping solver. """ problem.time_update(ts) if ts.step == 0: state0.apply_ebc() state = state0.copy(deep=True) problem.init_time(ts) # Initialize variables with history. state0.init_history() ev = problem.get_evaluator() try: vec_r = ev.eval_residual(state0(), is_full=True) except ValueError: output('residual evaluation failed, giving up...') raise else: err = nm.linalg.norm(vec_r) output('residual: %e' % err) if ts.step > 0: variables = problem.get_variables() vec_rf = variables.make_full_vec(vec_r, force_value=0.0) rhs = -ts.dt * vec_rf + mass.action(state0()) vec = mass.inverse_action(rhs) state = state0.copy(preserve_caches=True) state.set_full(vec) state.apply_ebc() return state def get_min_dt(adt): red = adt.red while red >= adt.red_max: red *= adt.red_factor dt = adt.dt0 * red return dt def adapt_time_step(ts, status, adt, problem=None): """ Adapt the time step of `ts` according to the exit status of the nonlinear solver. The time step dt is reduced, if the nonlinear solver did not converge. If it converged in less then a specified number of iterations for several time steps, the time step is increased. This is governed by the following parameters: - red_factor : time step reduction factor - red_max : maximum time step reduction factor - inc_factor : time step increase factor - inc_on_iter : increase time step if the nonlinear solver converged in less than this amount of iterations... - inc_wait : ...for this number of consecutive time steps Parameters ---------- ts : VariableTimeStepper instance The time stepper. status : IndexedStruct instance The nonlinear solver exit status. adt : Struct instance The adaptivity parameters of the time solver: problem : Problem instance, optional This canbe used in user-defined adaptivity functions. Not used here. Returns ------- is_break : bool If True, the adaptivity loop should stop. """ is_break = False if status.condition == 0: if status.n_iter <= adt.inc_on_iter: adt.wait += 1 if adt.wait > adt.inc_wait: if adt.red < 1.0: adt.red = adt.red * adt.inc_factor ts.set_time_step(adt.dt0 * adt.red) output('+++++ new time step: %e +++++' % ts.dt) adt.wait = 0 else: adt.wait = 0 is_break = True else: adt.red = adt.red * adt.red_factor if adt.red < adt.red_max: is_break = True else: ts.set_time_step(adt.dt0 * adt.red, update_time=True) output('----- new time step: %e -----' % ts.dt) adt.wait = 0 return is_break class SimpleTimeSteppingSolver(TimeSteppingSolver): """ Implicit time stepping solver with a fixed time step. """ name = 'ts.simple' @staticmethod def process_conf(conf, kwargs): """ Process configuration options. """ get = make_get_conf(conf, kwargs) common = TimeSteppingSolver.process_conf(conf) return Struct(t0=get('t0', 0.0), t1=get('t1', 1.0), dt=get('dt', None), n_step=get('n_step', 10), quasistatic=get('quasistatic', False)) + common def __init__(self, conf, **kwargs): TimeSteppingSolver.__init__(self, conf, **kwargs) self.ts = TimeStepper.from_conf(self.conf) nd = self.ts.n_digit format = '====== time %%e (step %%%dd of %%%dd) =====' % (nd, nd) self.format = format def __call__(self, state0=None, save_results=True, step_hook=None, post_process_hook=None, nls_status=None): """ Solve the time-dependent problem. """ problem = self.problem ts = self.ts suffix, is_save = prepare_save_data(ts, problem.conf) if state0 is None: state0 = get_initial_state(problem) ii = 0 for step, time in ts: output(self.format % (time, step + 1, ts.n_step)) state = self.solve_step(ts, state0, nls_status=nls_status) state0 = state.copy(deep=True) if step_hook is not None: step_hook(problem, ts, state) if save_results and (is_save[ii] == ts.step): filename = problem.get_output_name(suffix=suffix % ts.step) problem.save_state(filename, state, post_process_hook=post_process_hook, file_per_var=None, ts=ts) ii += 1 problem.advance(ts) return state def solve_step(self, ts, state0, nls_status=None): """ Solve a single time step. """ state = make_implicit_step(ts, state0, self.problem, nls_status=nls_status) return state class ExplicitTimeSteppingSolver(SimpleTimeSteppingSolver): """ Explicit time stepping solver with a fixed time step. """ name = 'ts.explicit' @staticmethod def process_conf(conf, kwargs): """ Process configuration options. """ get = make_get_conf(conf, kwargs) common = SimpleTimeSteppingSolver.process_conf(conf, kwargs) return Struct(mass=get('mass', None, 'missing "mass" in options!'), lumped=get('lumped', False)) + common def __init__(self, conf, **kwargs): SimpleTimeSteppingSolver.__init__(self, conf, **kwargs) self.mass = MassOperator(self.problem, self.conf) def solve_step(self, ts, state0, nls_status=None): """ Solve a single time step. """ state = make_explicit_step(ts, state0, self.problem, self.mass, nls_status=nls_status) return state class AdaptiveTimeSteppingSolver(SimpleTimeSteppingSolver): """ Implicit time stepping solver with an adaptive time step. Either the built-in or user supplied function can be used to adapt the time step. """ name = 'ts.adaptive' @staticmethod def process_conf(conf, kwargs): """ Process configuration options. """ get = make_get_conf(conf, kwargs) common = SimpleTimeSteppingSolver.process_conf(conf, kwargs) adt = Struct(red_factor=get('dt_red_factor', 0.2), red_max=get('dt_red_max', 1e-3), inc_factor=get('dt_inc_factor', 1.25), inc_on_iter=get('dt_inc_on_iter', 4), inc_wait=get('dt_inc_wait', 5), red=1.0, wait=0, dt0=0.0) return Struct(adapt_fun=get('adapt_fun', adapt_time_step), adt=adt) + common def __init__(self, conf, **kwargs): TimeSteppingSolver.__init__(self, conf, **kwargs) self.ts = VariableTimeStepper.from_conf(self.conf) self.adt = adt = self.conf.adt adt.dt0 = self.ts.get_default_time_step() self.ts.set_n_digit_from_min_dt(get_min_dt(adt)) self.format = '====== time %e (dt %e, wait %d, step %d of %d) =====' if isinstance(self.conf.adapt_fun, basestr): self.adapt_time_step = self.problem.functions[self.conf.adapt_fun] else: self.adapt_time_step = self.conf.adapt_fun def __call__(self, state0=None, save_results=True, step_hook=None, post_process_hook=None, nls_status=None): """ Solve the time-dependent problem. """ problem = self.problem ts = self.ts if state0 is None: state0 = get_initial_state(problem) ii = 0 for step, time in ts: output(self.format % (time, ts.dt, self.adt.wait, step + 1, ts.n_step)) state = self.solve_step(ts, state0, nls_status=nls_status) state0 = state.copy(deep=True) if step_hook is not None: step_hook(problem, ts, state) if save_results: filename = problem.get_output_name(suffix=ts.suffix % ts.step) problem.save_state(filename, state, post_process_hook=post_process_hook, file_per_var=None, ts=ts) ii += 1 problem.advance(ts) return state def solve_step(self, ts, state0, nls_status=None): """ Solve a single time step. """ status = IndexedStruct(n_iter=0, condition=0) while 1: state = make_implicit_step(ts, state0, self.problem, nls_status=status) is_break = self.adapt_time_step(ts, status, self.adt, self.problem) if is_break: break if nls_status is not None: nls_status.update(status) return state
[ "sfepy.base.base.invert_dict", "sfepy.base.base.output", "sfepy.solvers.solvers.TimeSteppingSolver.__init__", "sfepy.solvers.solvers.TimeSteppingSolver.process_conf", "sfepy.discrete.mass_operator.MassOperator", "sfepy.solvers.ts.VariableTimeStepper.from_conf", "sfepy.base.base.IndexedStruct", "sfepy.base.base.get_subdict", "sfepy.solvers.solvers.make_get_conf", "sfepy.solvers.ts.TimeStepper.from_conf", "sfepy.base.resolve_deps.resolve" ]
[((3883, 3901), 'numpy.unique', 'nm.unique', (['is_save'], {}), '(is_save)\n', (3892, 3901), True, 'import numpy as nm\n'), ((616, 674), 'sfepy.solvers.solvers.TimeSteppingSolver.__init__', 'TimeSteppingSolver.__init__', (['self', 'conf'], {'ts': 'None'}), '(self, conf, ts=None, **kwargs)\n', (643, 674), False, 'from sfepy.solvers.solvers import make_get_conf, TimeSteppingSolver\n'), ((1592, 1650), 'sfepy.solvers.solvers.TimeSteppingSolver.__init__', 'TimeSteppingSolver.__init__', (['self', 'conf'], {'ts': 'None'}), '(self, conf, ts=None, **kwargs)\n', (1619, 1650), False, 'from sfepy.solvers.solvers import make_get_conf, TimeSteppingSolver\n'), ((2212, 2226), 'sfepy.base.resolve_deps.resolve', 'resolve', (['sdeps'], {}), '(sdeps)\n', (2219, 2226), False, 'from sfepy.base.resolve_deps import resolve\n'), ((2243, 2260), 'sfepy.base.base.invert_dict', 'invert_dict', (['vtos'], {}), '(vtos)\n', (2254, 2260), False, 'from sfepy.base.base import invert_dict, get_subdict\n'), ((6330, 6351), 'numpy.linalg.norm', 'nm.linalg.norm', (['vec_r'], {}), '(vec_r)\n', (6344, 6351), True, 'import numpy as nm\n'), ((6360, 6388), 'sfepy.base.base.output', 'output', (["('residual: %e' % err)"], {}), "('residual: %e' % err)\n", (6366, 6388), False, 'from sfepy.base.base import output, Struct, IndexedStruct, basestr\n'), ((9131, 9158), 'sfepy.solvers.solvers.make_get_conf', 'make_get_conf', (['conf', 'kwargs'], {}), '(conf, kwargs)\n', (9144, 9158), False, 'from sfepy.solvers.solvers import make_get_conf, TimeSteppingSolver\n'), ((9176, 9213), 'sfepy.solvers.solvers.TimeSteppingSolver.process_conf', 'TimeSteppingSolver.process_conf', (['conf'], {}), '(conf)\n', (9207, 9213), False, 'from sfepy.solvers.solvers import make_get_conf, TimeSteppingSolver\n'), ((9506, 9555), 'sfepy.solvers.solvers.TimeSteppingSolver.__init__', 'TimeSteppingSolver.__init__', (['self', 'conf'], {}), '(self, conf, **kwargs)\n', (9533, 9555), False, 'from sfepy.solvers.solvers import make_get_conf, TimeSteppingSolver\n'), ((9575, 9607), 'sfepy.solvers.ts.TimeStepper.from_conf', 'TimeStepper.from_conf', (['self.conf'], {}), '(self.conf)\n', (9596, 9607), False, 'from sfepy.solvers.ts import TimeStepper, VariableTimeStepper\n'), ((11419, 11446), 'sfepy.solvers.solvers.make_get_conf', 'make_get_conf', (['conf', 'kwargs'], {}), '(conf, kwargs)\n', (11432, 11446), False, 'from sfepy.solvers.solvers import make_get_conf, TimeSteppingSolver\n'), ((11810, 11847), 'sfepy.discrete.mass_operator.MassOperator', 'MassOperator', (['self.problem', 'self.conf'], {}), '(self.problem, self.conf)\n', (11822, 11847), False, 'from sfepy.discrete.mass_operator import MassOperator\n'), ((12501, 12528), 'sfepy.solvers.solvers.make_get_conf', 'make_get_conf', (['conf', 'kwargs'], {}), '(conf, kwargs)\n', (12514, 12528), False, 'from sfepy.solvers.solvers import make_get_conf, TimeSteppingSolver\n'), ((13088, 13137), 'sfepy.solvers.solvers.TimeSteppingSolver.__init__', 'TimeSteppingSolver.__init__', (['self', 'conf'], {}), '(self, conf, **kwargs)\n', (13115, 13137), False, 'from sfepy.solvers.solvers import make_get_conf, TimeSteppingSolver\n'), ((13157, 13197), 'sfepy.solvers.ts.VariableTimeStepper.from_conf', 'VariableTimeStepper.from_conf', (['self.conf'], {}), '(self.conf)\n', (13186, 13197), False, 'from sfepy.solvers.ts import TimeStepper, VariableTimeStepper\n'), ((14854, 14890), 'sfepy.base.base.IndexedStruct', 'IndexedStruct', ([], {'n_iter': '(0)', 'condition': '(0)'}), '(n_iter=0, condition=0)\n', (14867, 14890), False, 'from sfepy.base.base import output, Struct, IndexedStruct, basestr\n'), ((2470, 2510), 'sfepy.base.base.output', 'output', (["('solving for %s...' % sorder[ib])"], {}), "('solving for %s...' % sorder[ib])\n", (2476, 2510), False, 'from sfepy.base.base import output, Struct, IndexedStruct, basestr\n'), ((2714, 2740), 'sfepy.base.base.get_subdict', 'get_subdict', (['parts0', 'block'], {}), '(parts0, block)\n', (2725, 2740), False, 'from sfepy.base.base import invert_dict, get_subdict\n'), ((2958, 2975), 'sfepy.base.base.output', 'output', (['"""...done"""'], {}), "('...done')\n", (2964, 2975), False, 'from sfepy.base.base import output, Struct, IndexedStruct, basestr\n'), ((3810, 3851), 'numpy.linspace', 'nm.linspace', (['(0)', '(ts.n_step - 1)', 'save_steps'], {}), '(0, ts.n_step - 1, save_steps)\n', (3821, 3851), True, 'import numpy as nm\n'), ((4192, 4240), 'sfepy.base.base.output', 'output', (['"""matrix evaluation failed, giving up..."""'], {}), "('matrix evaluation failed, giving up...')\n", (4198, 4240), False, 'from sfepy.base.base import output, Struct, IndexedStruct, basestr\n'), ((6241, 6291), 'sfepy.base.base.output', 'output', (['"""residual evaluation failed, giving up..."""'], {}), "('residual evaluation failed, giving up...')\n", (6247, 6291), False, 'from sfepy.base.base import output, Struct, IndexedStruct, basestr\n'), ((8755, 8802), 'sfepy.base.base.output', 'output', (["('----- new time step: %e -----' % ts.dt)"], {}), "('----- new time step: %e -----' % ts.dt)\n", (8761, 8802), False, 'from sfepy.base.base import output, Struct, IndexedStruct, basestr\n'), ((10188, 10237), 'sfepy.base.base.output', 'output', (['(self.format % (time, step + 1, ts.n_step))'], {}), '(self.format % (time, step + 1, ts.n_step))\n', (10194, 10237), False, 'from sfepy.base.base import output, Struct, IndexedStruct, basestr\n'), ((14009, 14080), 'sfepy.base.base.output', 'output', (['(self.format % (time, ts.dt, self.adt.wait, step + 1, ts.n_step))'], {}), '(self.format % (time, ts.dt, self.adt.wait, step + 1, ts.n_step))\n', (14015, 14080), False, 'from sfepy.base.base import output, Struct, IndexedStruct, basestr\n'), ((4879, 4900), 'numpy.linalg.norm', 'nm.linalg.norm', (['vec_r'], {}), '(vec_r)\n', (4893, 4900), True, 'import numpy as nm\n'), ((4917, 4953), 'sfepy.base.base.output', 'output', (["('initial residual: %e' % err)"], {}), "('initial residual: %e' % err)\n", (4923, 4953), False, 'from sfepy.base.base import output, Struct, IndexedStruct, basestr\n'), ((4758, 4816), 'sfepy.base.base.output', 'output', (['"""initial residual evaluation failed, giving up..."""'], {}), "('initial residual evaluation failed, giving up...')\n", (4764, 4816), False, 'from sfepy.base.base import output, Struct, IndexedStruct, basestr\n'), ((8404, 8451), 'sfepy.base.base.output', 'output', (["('+++++ new time step: %e +++++' % ts.dt)"], {}), "('+++++ new time step: %e +++++' % ts.dt)\n", (8410, 8451), False, 'from sfepy.base.base import output, Struct, IndexedStruct, basestr\n')]
import uuid from datetime import datetime from typing import Optional from pydantic import UUID4 from sqlmodel import Field, SQLModel class DocumentInput(SQLModel): id: UUID4 = Field(default_factory=uuid.uuid4, primary_key=True) content: str class Document(DocumentInput, table=True): created_at: datetime = Field(default_factory=datetime.utcnow) updated_at: datetime = Field(default_factory=datetime.utcnow) category: Optional[str] = Field(default=None)
[ "sqlmodel.Field" ]
[((184, 235), 'sqlmodel.Field', 'Field', ([], {'default_factory': 'uuid.uuid4', 'primary_key': '(True)'}), '(default_factory=uuid.uuid4, primary_key=True)\n', (189, 235), False, 'from sqlmodel import Field, SQLModel\n'), ((325, 363), 'sqlmodel.Field', 'Field', ([], {'default_factory': 'datetime.utcnow'}), '(default_factory=datetime.utcnow)\n', (330, 363), False, 'from sqlmodel import Field, SQLModel\n'), ((391, 429), 'sqlmodel.Field', 'Field', ([], {'default_factory': 'datetime.utcnow'}), '(default_factory=datetime.utcnow)\n', (396, 429), False, 'from sqlmodel import Field, SQLModel\n'), ((460, 479), 'sqlmodel.Field', 'Field', ([], {'default': 'None'}), '(default=None)\n', (465, 479), False, 'from sqlmodel import Field, SQLModel\n')]
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. """Test int8 quantizated model on ImageNet. Note: * QAT simulate int8 with fp32, gpu only. * Quantized use real int8, cpu only, a bit slow. * Results may be slightly different between qat and quantized mode. """ import argparse import time # pylint: disable=import-error import models import megengine as mge import megengine.data as data import megengine.data.transform as T import megengine.distributed as dist import megengine.functional as F import megengine.quantization as Q from megengine.quantization.quantize import quantize, quantize_qat logger = mge.get_logger(__name__) def main(): parser = argparse.ArgumentParser() parser.add_argument("-a", "--arch", default="resnet18", type=str) parser.add_argument("-d", "--data", default=None, type=str) parser.add_argument("-s", "--save", default="/data/models", type=str) parser.add_argument( "-c", "--checkpoint", default=None, type=str, help="pretrained model to finetune", ) parser.add_argument( "-m", "--mode", default="qat", type=str, choices=["normal", "qat", "quantized"], help="Quantization Mode\n" "normal: no quantization, using float32\n" "qat: quantization aware training, simulate int8\n" "quantized: convert mode to int8 quantized, inference only", ) parser.add_argument("-n", "--ngpus", default=None, type=int) parser.add_argument("-w", "--workers", default=4, type=int) parser.add_argument("--report-freq", default=50, type=int) args = parser.parse_args() world_size = ( dist.helper.get_device_count_by_fork("gpu") if args.ngpus is None else args.ngpus ) world_size = 1 if world_size == 0 else world_size test_proc = dist.launcher(worker) if world_size > 1 else worker test_proc(world_size, args) def worker(world_size, args): # pylint: disable=too-many-statements rank = dist.get_rank() if world_size > 1: # Initialize distributed process group logger.info("init distributed process group {} / {}".format(rank, world_size)) model = models.__dict__[args.arch]() if args.mode != "normal": quantize_qat(model, qconfig=Q.ema_fakequant_qconfig) if args.checkpoint: logger.info("Load pretrained weights from %s", args.checkpoint) ckpt = mge.load(args.checkpoint) ckpt = ckpt["state_dict"] if "state_dict" in ckpt else ckpt model.load_state_dict(ckpt, strict=False) if args.mode == "quantized": quantize(model) # Define valid graph def valid_func(image, label): model.eval() logits = model(image) loss = F.loss.cross_entropy(logits, label, label_smooth=0.1) acc1, acc5 = F.topk_accuracy(logits, label, (1, 5)) if dist.is_distributed(): # all_reduce_mean loss = dist.functional.all_reduce_sum(loss) / dist.get_world_size() acc1 = dist.functional.all_reduce_sum(acc1) / dist.get_world_size() acc5 = dist.functional.all_reduce_sum(acc5) / dist.get_world_size() return loss, acc1, acc5 # Build valid datasets logger.info("preparing dataset..") valid_dataset = data.dataset.ImageNet(args.data, train=False) valid_sampler = data.SequentialSampler( valid_dataset, batch_size=100, drop_last=False ) valid_queue = data.DataLoader( valid_dataset, sampler=valid_sampler, transform=T.Compose( [T.Resize(256), T.CenterCrop(224), T.Normalize(mean=128), T.ToMode("CHW")] ), num_workers=args.workers, ) _, valid_acc, valid_acc5 = infer(valid_func, valid_queue, args) if rank == 0: logger.info("TEST %f, %f", valid_acc, valid_acc5) def infer(model, data_queue, args): objs = AverageMeter("Loss") top1 = AverageMeter("Acc@1") top5 = AverageMeter("Acc@5") total_time = AverageMeter("Time") t = time.time() for step, (image, label) in enumerate(data_queue): n = image.shape[0] image = mge.tensor(image, dtype="float32") label = mge.tensor(label, dtype="int32") loss, acc1, acc5 = model(image, label) objs.update(loss.numpy()[0], n) top1.update(100 * acc1.numpy()[0], n) top5.update(100 * acc5.numpy()[0], n) total_time.update(time.time() - t) t = time.time() if step % args.report_freq == 0 and dist.get_rank() == 0: logger.info("Step %d, %s %s %s %s", step, objs, top1, top5, total_time) return objs.avg, top1.avg, top5.avg class AverageMeter: """Computes and stores the average and current value""" def __init__(self, name, fmt=":.3f"): self.name = name self.fmt = fmt self.reset() def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count def __str__(self): fmtstr = "{name} {val" + self.fmt + "} ({avg" + self.fmt + "})" return fmtstr.format(**self.__dict__) if __name__ == "__main__": main()
[ "megengine.distributed.is_distributed", "megengine.data.transform.ToMode", "megengine.data.transform.CenterCrop", "megengine.data.transform.Normalize", "megengine.data.SequentialSampler", "megengine.distributed.get_rank", "megengine.distributed.get_world_size", "megengine.get_logger", "megengine.data.dataset.ImageNet", "megengine.data.transform.Resize", "megengine.tensor", "megengine.distributed.helper.get_device_count_by_fork", "megengine.functional.loss.cross_entropy", "megengine.quantization.quantize.quantize", "megengine.quantization.quantize.quantize_qat", "megengine.distributed.functional.all_reduce_sum", "megengine.functional.topk_accuracy", "megengine.load", "megengine.distributed.launcher" ]
[((950, 974), 'megengine.get_logger', 'mge.get_logger', (['__name__'], {}), '(__name__)\n', (964, 974), True, 'import megengine as mge\n'), ((1002, 1027), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (1025, 1027), False, 'import argparse\n'), ((2354, 2369), 'megengine.distributed.get_rank', 'dist.get_rank', ([], {}), '()\n', (2367, 2369), True, 'import megengine.distributed as dist\n'), ((3627, 3672), 'megengine.data.dataset.ImageNet', 'data.dataset.ImageNet', (['args.data'], {'train': '(False)'}), '(args.data, train=False)\n', (3648, 3672), True, 'import megengine.data as data\n'), ((3693, 3763), 'megengine.data.SequentialSampler', 'data.SequentialSampler', (['valid_dataset'], {'batch_size': '(100)', 'drop_last': '(False)'}), '(valid_dataset, batch_size=100, drop_last=False)\n', (3715, 3763), True, 'import megengine.data as data\n'), ((4362, 4373), 'time.time', 'time.time', ([], {}), '()\n', (4371, 4373), False, 'import time\n'), ((2010, 2053), 'megengine.distributed.helper.get_device_count_by_fork', 'dist.helper.get_device_count_by_fork', (['"""gpu"""'], {}), "('gpu')\n", (2046, 2053), True, 'import megengine.distributed as dist\n'), ((2184, 2205), 'megengine.distributed.launcher', 'dist.launcher', (['worker'], {}), '(worker)\n', (2197, 2205), True, 'import megengine.distributed as dist\n'), ((2608, 2660), 'megengine.quantization.quantize.quantize_qat', 'quantize_qat', (['model'], {'qconfig': 'Q.ema_fakequant_qconfig'}), '(model, qconfig=Q.ema_fakequant_qconfig)\n', (2620, 2660), False, 'from megengine.quantization.quantize import quantize, quantize_qat\n'), ((2773, 2798), 'megengine.load', 'mge.load', (['args.checkpoint'], {}), '(args.checkpoint)\n', (2781, 2798), True, 'import megengine as mge\n'), ((2959, 2974), 'megengine.quantization.quantize.quantize', 'quantize', (['model'], {}), '(model)\n', (2967, 2974), False, 'from megengine.quantization.quantize import quantize, quantize_qat\n'), ((3101, 3154), 'megengine.functional.loss.cross_entropy', 'F.loss.cross_entropy', (['logits', 'label'], {'label_smooth': '(0.1)'}), '(logits, label, label_smooth=0.1)\n', (3121, 3154), True, 'import megengine.functional as F\n'), ((3176, 3214), 'megengine.functional.topk_accuracy', 'F.topk_accuracy', (['logits', 'label', '(1, 5)'], {}), '(logits, label, (1, 5))\n', (3191, 3214), True, 'import megengine.functional as F\n'), ((3226, 3247), 'megengine.distributed.is_distributed', 'dist.is_distributed', ([], {}), '()\n', (3245, 3247), True, 'import megengine.distributed as dist\n'), ((4472, 4506), 'megengine.tensor', 'mge.tensor', (['image'], {'dtype': '"""float32"""'}), "(image, dtype='float32')\n", (4482, 4506), True, 'import megengine as mge\n'), ((4523, 4555), 'megengine.tensor', 'mge.tensor', (['label'], {'dtype': '"""int32"""'}), "(label, dtype='int32')\n", (4533, 4555), True, 'import megengine as mge\n'), ((4792, 4803), 'time.time', 'time.time', ([], {}), '()\n', (4801, 4803), False, 'import time\n'), ((3287, 3323), 'megengine.distributed.functional.all_reduce_sum', 'dist.functional.all_reduce_sum', (['loss'], {}), '(loss)\n', (3317, 3323), True, 'import megengine.distributed as dist\n'), ((3326, 3347), 'megengine.distributed.get_world_size', 'dist.get_world_size', ([], {}), '()\n', (3345, 3347), True, 'import megengine.distributed as dist\n'), ((3367, 3403), 'megengine.distributed.functional.all_reduce_sum', 'dist.functional.all_reduce_sum', (['acc1'], {}), '(acc1)\n', (3397, 3403), True, 'import megengine.distributed as dist\n'), ((3406, 3427), 'megengine.distributed.get_world_size', 'dist.get_world_size', ([], {}), '()\n', (3425, 3427), True, 'import megengine.distributed as dist\n'), ((3447, 3483), 'megengine.distributed.functional.all_reduce_sum', 'dist.functional.all_reduce_sum', (['acc5'], {}), '(acc5)\n', (3477, 3483), True, 'import megengine.distributed as dist\n'), ((3486, 3507), 'megengine.distributed.get_world_size', 'dist.get_world_size', ([], {}), '()\n', (3505, 3507), True, 'import megengine.distributed as dist\n'), ((4763, 4774), 'time.time', 'time.time', ([], {}), '()\n', (4772, 4774), False, 'import time\n'), ((4849, 4864), 'megengine.distributed.get_rank', 'dist.get_rank', ([], {}), '()\n', (4862, 4864), True, 'import megengine.distributed as dist\n'), ((3909, 3922), 'megengine.data.transform.Resize', 'T.Resize', (['(256)'], {}), '(256)\n', (3917, 3922), True, 'import megengine.data.transform as T\n'), ((3924, 3941), 'megengine.data.transform.CenterCrop', 'T.CenterCrop', (['(224)'], {}), '(224)\n', (3936, 3941), True, 'import megengine.data.transform as T\n'), ((3943, 3964), 'megengine.data.transform.Normalize', 'T.Normalize', ([], {'mean': '(128)'}), '(mean=128)\n', (3954, 3964), True, 'import megengine.data.transform as T\n'), ((3966, 3981), 'megengine.data.transform.ToMode', 'T.ToMode', (['"""CHW"""'], {}), "('CHW')\n", (3974, 3981), True, 'import megengine.data.transform as T\n')]
import numpy as nm from sfepy.linalg import dot_sequences from sfepy.terms.terms import Term, terms from sfepy.terms.terms_th import THTerm, ETHTerm from sfepy.terms.terms_elastic import CauchyStressTerm class BiotTerm(Term): r""" Biot coupling term with :math:`\alpha_{ij}` given in: * vector form exploiting symmetry - in 3D it has the indices ordered as :math:`[11, 22, 33, 12, 13, 23]`, in 2D it has the indices ordered as :math:`[11, 22, 12]`, * matrix form - non-symmetric coupling parameter. Corresponds to weak forms of Biot gradient and divergence terms. Can be evaluated. Can use derivatives. :Definition: .. math:: \int_{\Omega} p\ \alpha_{ij} e_{ij}(\ul{v}) \mbox{ , } \int_{\Omega} q\ \alpha_{ij} e_{ij}(\ul{u}) :Arguments 1: - material : :math:`\alpha_{ij}` - virtual : :math:`\ul{v}` - state : :math:`p` :Arguments 2: - material : :math:`\alpha_{ij}` - state : :math:`\ul{u}` - virtual : :math:`q` :Arguments 3: - material : :math:`\alpha_{ij}` - parameter_v : :math:`\ul{u}` - parameter_s : :math:`p` """ name = 'dw_biot' arg_types = (('material', 'virtual', 'state'), ('material', 'state', 'virtual'), ('material', 'parameter_v', 'parameter_s')) arg_shapes = [{'material' : 'S, 1', 'virtual/grad' : ('D', None), 'state/grad' : 1, 'virtual/div' : (1, None), 'state/div' : 'D', 'parameter_v' : 'D', 'parameter_s' : 1}, {'material' : 'D, D'}] modes = ('grad', 'div', 'eval') def get_fargs(self, mat, vvar, svar, mode=None, term_mode=None, diff_var=None, **kwargs): sym_mode = False if mat.shape[-2] == mat.shape[-1] > 1 else True if not sym_mode: sh = mat.shape # the gradient given by 'self.get' is transposed mat = nm.swapaxes(mat, 2, 3) mat = mat.reshape(sh[:2] + (sh[2]**2, 1)) if self.mode == 'grad': qp_var, qp_name = svar, 'val' else: if sym_mode: qp_var, qp_name = vvar, 'cauchy_strain' else: qp_var, qp_name = vvar, 'grad' if mode == 'weak': vvg, _ = self.get_mapping(vvar) svg, _ = self.get_mapping(svar) if diff_var is None: val_qp = self.get(qp_var, qp_name) if qp_name == 'grad': sh = val_qp.shape val_qp = val_qp.reshape(sh[:2] + (sh[2]**2, 1)) fmode = 0 else: val_qp = nm.array([0], ndmin=4, dtype=nm.float64) fmode = 1 return 1.0, val_qp, mat, svg, vvg, fmode elif mode == 'eval': vvg, _ = self.get_mapping(vvar) if sym_mode: strain = self.get(vvar, 'cauchy_strain') else: strain = self.get(vvar, 'grad') sh = strain.shape strain = strain.reshape(sh[:2] + (sh[2]**2, 1)) pval = self.get(svar, 'val') return 1.0, pval, strain, mat, vvg else: raise ValueError('unsupported evaluation mode in %s! (%s)' % (self.name, mode)) def get_eval_shape(self, mat, vvar, svar, mode=None, term_mode=None, diff_var=None, **kwargs): n_el, n_qp, dim, n_en, n_c = self.get_data_shape(vvar) return (n_el, 1, 1, 1), vvar.dtype def set_arg_types(self): self.function = { 'grad' : terms.dw_biot_grad, 'div' : terms.dw_biot_div, 'eval' : terms.d_biot_div, }[self.mode] class BiotStressTerm(CauchyStressTerm): r""" Evaluate Biot stress tensor. It is given in the usual vector form exploiting symmetry: in 3D it has 6 components with the indices ordered as :math:`[11, 22, 33, 12, 13, 23]`, in 2D it has 3 components with the indices ordered as :math:`[11, 22, 12]`. Supports 'eval', 'el_avg' and 'qp' evaluation modes. :Definition: .. math:: - \int_{\Omega} \alpha_{ij} \bar{p} .. math:: \mbox{vector for } K \from \Ical_h: - \int_{T_K} \alpha_{ij} \bar{p} / \int_{T_K} 1 .. math:: - \alpha_{ij} \bar{p}|_{qp} :Arguments: - material : :math:`\alpha_{ij}` - parameter : :math:`\bar{p}` """ name = 'ev_biot_stress' arg_types = ('material', 'parameter') arg_shapes = {'material' : 'S, 1', 'parameter' : 1} @staticmethod def function(out, val_qp, mat, vg, fmode): if fmode == 2: out[:] = dot_sequences(mat, val_qp) status = 0 else: status = terms.de_cauchy_stress(out, val_qp, mat, vg, fmode) out *= -1.0 return status def get_fargs(self, mat, parameter, mode=None, term_mode=None, diff_var=None, **kwargs): vg, _ = self.get_mapping(parameter) val_qp = self.get(parameter, 'val') fmode = {'eval' : 0, 'el_avg' : 1, 'qp' : 2}.get(mode, 1) return val_qp, mat, vg, fmode class BiotTHTerm(BiotTerm, THTerm): r""" Fading memory Biot term. Can use derivatives. :Definition: .. math:: \begin{array}{l} \int_{\Omega} \left [\int_0^t \alpha_{ij}(t-\tau)\,p(\tau)) \difd{\tau} \right]\,e_{ij}(\ul{v}) \mbox{ ,} \\ \int_{\Omega} \left [\int_0^t \alpha_{ij}(t-\tau) e_{kl}(\ul{u}(\tau)) \difd{\tau} \right] q \end{array} :Arguments 1: - ts : :class:`TimeStepper` instance - material : :math:`\alpha_{ij}(\tau)` - virtual : :math:`\ul{v}` - state : :math:`p` :Arguments 2: - ts : :class:`TimeStepper` instance - material : :math:`\alpha_{ij}(\tau)` - state : :math:`\ul{u}` - virtual : :math:`q` """ name = 'dw_biot_th' arg_types = (('ts', 'material', 'virtual', 'state'), ('ts', 'material', 'state', 'virtual')) arg_shapes = {'material' : '.: N, S, 1', 'virtual/grad' : ('D', None), 'state/grad' : 1, 'virtual/div' : (1, None), 'state/div' : 'D'} modes = ('grad', 'div') def get_fargs(self, ts, mats, vvar, svar, mode=None, term_mode=None, diff_var=None, **kwargs): if self.mode == 'grad': qp_var, qp_name = svar, 'val' else: qp_var, qp_name = vvar, 'cauchy_strain' n_el, n_qp, dim, n_en, n_c = self.get_data_shape(svar) if mode == 'weak': vvg, _ = self.get_mapping(vvar) svg, _ = self.get_mapping(svar) if diff_var is None: def iter_kernel(): for ii, mat in enumerate(mats): val_qp = self.get(qp_var, qp_name, step=-ii) mat = nm.tile(mat, (n_el, n_qp, 1, 1)) yield ii, (ts.dt, val_qp, mat, svg, vvg, 0) fargs = iter_kernel else: val_qp = nm.array([0], ndmin=4, dtype=nm.float64) mat = nm.tile(mats[0], (n_el, n_qp, 1, 1)) fargs = ts.dt, val_qp, mat, svg, vvg, 1 return fargs else: raise ValueError('unsupported evaluation mode in %s! (%s)' % (self.name, mode)) class BiotETHTerm(BiotTerm, ETHTerm): r""" This term has the same definition as dw_biot_th, but assumes an exponential approximation of the convolution kernel resulting in much higher efficiency. Can use derivatives. :Definition: .. math:: \begin{array}{l} \int_{\Omega} \left [\int_0^t \alpha_{ij}(t-\tau)\,p(\tau)) \difd{\tau} \right]\,e_{ij}(\ul{v}) \mbox{ ,} \\ \int_{\Omega} \left [\int_0^t \alpha_{ij}(t-\tau) e_{kl}(\ul{u}(\tau)) \difd{\tau} \right] q \end{array} :Arguments 1: - ts : :class:`TimeStepper` instance - material_0 : :math:`\alpha_{ij}(0)` - material_1 : :math:`\exp(-\lambda \Delta t)` (decay at :math:`t_1`) - virtual : :math:`\ul{v}` - state : :math:`p` :Arguments 2: - ts : :class:`TimeStepper` instance - material_0 : :math:`\alpha_{ij}(0)` - material_1 : :math:`\exp(-\lambda \Delta t)` (decay at :math:`t_1`) - state : :math:`\ul{u}` - virtual : :math:`q` """ name = 'dw_biot_eth' arg_types = (('ts', 'material_0', 'material_1', 'virtual', 'state'), ('ts', 'material_0', 'material_1', 'state', 'virtual')) arg_shapes = {'material_0' : 'S, 1', 'material_1' : '1, 1', 'virtual/grad' : ('D', None), 'state/grad' : 1, 'virtual/div' : (1, None), 'state/div' : 'D'} modes = ('grad', 'div') def get_fargs(self, ts, mat0, mat1, vvar, svar, mode=None, term_mode=None, diff_var=None, **kwargs): if self.mode == 'grad': qp_var, qp_name, iv = svar, 'val', 4 else: qp_var, qp_name, iv = vvar, 'cauchy_strain', 3 if mode == 'weak': vvg, _, key = self.get_mapping(vvar, return_key=True) svg, _ = self.get_mapping(svar) if diff_var is None: val_qp = self.get(qp_var, qp_name) key += tuple(self.arg_names[ii] for ii in [1, 2, iv]) data = self.get_eth_data(key, qp_var, mat1, val_qp) val = data.history + data.values fargs = (ts.dt, val, mat0, svg, vvg, 0) else: val_qp = nm.array([0], ndmin=4, dtype=nm.float64) fargs = (ts.dt, val_qp, mat0, svg, vvg, 1) return fargs else: raise ValueError('unsupported evaluation mode in %s! (%s)' % (self.name, mode))
[ "sfepy.linalg.dot_sequences", "sfepy.terms.terms.terms.de_cauchy_stress" ]
[((2000, 2022), 'numpy.swapaxes', 'nm.swapaxes', (['mat', '(2)', '(3)'], {}), '(mat, 2, 3)\n', (2011, 2022), True, 'import numpy as nm\n'), ((4783, 4809), 'sfepy.linalg.dot_sequences', 'dot_sequences', (['mat', 'val_qp'], {}), '(mat, val_qp)\n', (4796, 4809), False, 'from sfepy.linalg import dot_sequences\n'), ((4869, 4920), 'sfepy.terms.terms.terms.de_cauchy_stress', 'terms.de_cauchy_stress', (['out', 'val_qp', 'mat', 'vg', 'fmode'], {}), '(out, val_qp, mat, vg, fmode)\n', (4891, 4920), False, 'from sfepy.terms.terms import Term, terms\n'), ((2729, 2769), 'numpy.array', 'nm.array', (['[0]'], {'ndmin': '(4)', 'dtype': 'nm.float64'}), '([0], ndmin=4, dtype=nm.float64)\n', (2737, 2769), True, 'import numpy as nm\n'), ((7237, 7277), 'numpy.array', 'nm.array', (['[0]'], {'ndmin': '(4)', 'dtype': 'nm.float64'}), '([0], ndmin=4, dtype=nm.float64)\n', (7245, 7277), True, 'import numpy as nm\n'), ((7300, 7336), 'numpy.tile', 'nm.tile', (['mats[0]', '(n_el, n_qp, 1, 1)'], {}), '(mats[0], (n_el, n_qp, 1, 1))\n', (7307, 7336), True, 'import numpy as nm\n'), ((9827, 9867), 'numpy.array', 'nm.array', (['[0]'], {'ndmin': '(4)', 'dtype': 'nm.float64'}), '([0], ndmin=4, dtype=nm.float64)\n', (9835, 9867), True, 'import numpy as nm\n'), ((7056, 7088), 'numpy.tile', 'nm.tile', (['mat', '(n_el, n_qp, 1, 1)'], {}), '(mat, (n_el, n_qp, 1, 1))\n', (7063, 7088), True, 'import numpy as nm\n')]
# BSD 3-Clause License # Copyright (c) <NAME> 2016, # All rights reserved. # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # * Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # ------------------------------------------------------------------------------ # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # # This file has been modified by Megvii ("Megvii Modifications"). # All Megvii Modifications are Copyright (C) 2014-2019 Megvii Inc. All rights reserved. # ------------------------------------------------------------------------------ import megengine.functional as F import megengine.module as M __all__ = ['MobileNetV2', 'mobilenet_v2'] def _make_divisible(v, divisor, min_value=None): """ This function is taken from the original tf repo. It ensures that all layers have a channel number that is divisible by 8 It can be seen here: https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py :param v: :param divisor: :param min_value: :return: """ if min_value is None: min_value = divisor new_v = max(min_value, int(v + divisor / 2) // divisor * divisor) # Make sure that round down does not go down by more than 10%. if new_v < 0.9 * v: new_v += divisor return new_v class InvertedResidual(M.Module): def __init__(self, inp, oup, stride, expand_ratio): super(InvertedResidual, self).__init__() self.stride = stride assert stride in [1, 2] hidden_dim = int(round(inp * expand_ratio)) self.use_res_connect = self.stride == 1 and inp == oup layers = [] if expand_ratio != 1: # pw layers.append(M.ConvBnRelu2d(inp, hidden_dim, kernel_size=1, bias=False)) layers.extend([ # dw M.ConvBnRelu2d(hidden_dim, hidden_dim, kernel_size=3, padding=1, stride=stride, groups=hidden_dim, bias=False), # pw-linear M.ConvBn2d(hidden_dim, oup, kernel_size=1, bias=False) ]) self.conv = M.Sequential(*layers) self.add = M.Elemwise("ADD") def forward(self, x): if self.use_res_connect: return self.add(x, self.conv(x)) else: return self.conv(x) class MobileNetV2(M.Module): def __init__(self, num_classes=1000, width_mult=1.0, inverted_residual_setting=None, round_nearest=8): """ MobileNet V2 main class Args: num_classes (int): Number of classes width_mult (float): Width multiplier - adjusts number of channels in each layer by this amount inverted_residual_setting: Network structure round_nearest (int): Round the number of channels in each layer to be a multiple of this number Set to 1 to turn off rounding """ super(MobileNetV2, self).__init__() block = InvertedResidual input_channel = 32 last_channel = 1280 if inverted_residual_setting is None: inverted_residual_setting = [ # t, c, n, s [1, 16, 1, 1], [6, 24, 2, 2], [6, 32, 3, 2], [6, 64, 4, 2], [6, 96, 3, 1], [6, 160, 3, 2], [6, 320, 1, 1], ] # only check the first element, assuming user knows t,c,n,s are required if len(inverted_residual_setting) == 0 or len(inverted_residual_setting[0]) != 4: raise ValueError("inverted_residual_setting should be non-empty " "or a 4-element list, got {}".format(inverted_residual_setting)) # building first layer input_channel = _make_divisible(input_channel * width_mult, round_nearest) self.last_channel = _make_divisible(last_channel * max(1.0, width_mult), round_nearest) features = [M.ConvBnRelu2d(3, input_channel, kernel_size=3, padding=1, stride=2, bias=False)] # building inverted residual blocks for t, c, n, s in inverted_residual_setting: output_channel = _make_divisible(c * width_mult, round_nearest) for i in range(n): stride = s if i == 0 else 1 features.append(block(input_channel, output_channel, stride, expand_ratio=t)) input_channel = output_channel # building last several layers features.append(M.ConvBnRelu2d(input_channel, self.last_channel, kernel_size=1, bias=False)) # make it M.Sequential self.features = M.Sequential(*features) # building classifier self.classifier = M.Sequential( M.Dropout(0.2), M.Linear(self.last_channel, num_classes), ) self.quant = M.QuantStub() self.dequant = M.DequantStub() # weight initialization for m in self.modules(): if isinstance(m, M.Conv2d): M.init.msra_normal_(m.weight, mode='fan_out') if m.bias is not None: M.init.zeros_(m.bias) elif isinstance(m, M.BatchNorm2d): M.init.ones_(m.weight) M.init.zeros_(m.bias) elif isinstance(m, M.Linear): M.init.normal_(m.weight, 0, 0.01) M.init.zeros_(m.bias) def forward(self, x): x = self.quant(x) x = self.features(x) x = F.avg_pool2d(x, 7) x = F.flatten(x, 1) x = self.dequant(x) x = self.classifier(x) return x def mobilenet_v2(**kwargs): """ Constructs a MobileNetV2 architecture from `"MobileNetV2: Inverted Residuals and Linear Bottlenecks" <https://arxiv.org/abs/1801.04381>`_. """ model = MobileNetV2(**kwargs) return model
[ "megengine.module.Elemwise", "megengine.module.ConvBnRelu2d", "megengine.module.Dropout", "megengine.functional.flatten", "megengine.module.DequantStub", "megengine.module.Linear", "megengine.module.ConvBn2d", "megengine.module.init.msra_normal_", "megengine.module.init.zeros_", "megengine.module.init.normal_", "megengine.module.init.ones_", "megengine.functional.avg_pool2d", "megengine.module.Sequential", "megengine.module.QuantStub" ]
[((3759, 3780), 'megengine.module.Sequential', 'M.Sequential', (['*layers'], {}), '(*layers)\n', (3771, 3780), True, 'import megengine.module as M\n'), ((3800, 3817), 'megengine.module.Elemwise', 'M.Elemwise', (['"""ADD"""'], {}), "('ADD')\n", (3810, 3817), True, 'import megengine.module as M\n'), ((6265, 6288), 'megengine.module.Sequential', 'M.Sequential', (['*features'], {}), '(*features)\n', (6277, 6288), True, 'import megengine.module as M\n'), ((6474, 6487), 'megengine.module.QuantStub', 'M.QuantStub', ([], {}), '()\n', (6485, 6487), True, 'import megengine.module as M\n'), ((6511, 6526), 'megengine.module.DequantStub', 'M.DequantStub', ([], {}), '()\n', (6524, 6526), True, 'import megengine.module as M\n'), ((7124, 7142), 'megengine.functional.avg_pool2d', 'F.avg_pool2d', (['x', '(7)'], {}), '(x, 7)\n', (7136, 7142), True, 'import megengine.functional as F\n'), ((7155, 7170), 'megengine.functional.flatten', 'F.flatten', (['x', '(1)'], {}), '(x, 1)\n', (7164, 7170), True, 'import megengine.functional as F\n'), ((5599, 5684), 'megengine.module.ConvBnRelu2d', 'M.ConvBnRelu2d', (['(3)', 'input_channel'], {'kernel_size': '(3)', 'padding': '(1)', 'stride': '(2)', 'bias': '(False)'}), '(3, input_channel, kernel_size=3, padding=1, stride=2, bias=False\n )\n', (5613, 5684), True, 'import megengine.module as M\n'), ((6133, 6208), 'megengine.module.ConvBnRelu2d', 'M.ConvBnRelu2d', (['input_channel', 'self.last_channel'], {'kernel_size': '(1)', 'bias': '(False)'}), '(input_channel, self.last_channel, kernel_size=1, bias=False)\n', (6147, 6208), True, 'import megengine.module as M\n'), ((6372, 6386), 'megengine.module.Dropout', 'M.Dropout', (['(0.2)'], {}), '(0.2)\n', (6381, 6386), True, 'import megengine.module as M\n'), ((6400, 6440), 'megengine.module.Linear', 'M.Linear', (['self.last_channel', 'num_classes'], {}), '(self.last_channel, num_classes)\n', (6408, 6440), True, 'import megengine.module as M\n'), ((3385, 3443), 'megengine.module.ConvBnRelu2d', 'M.ConvBnRelu2d', (['inp', 'hidden_dim'], {'kernel_size': '(1)', 'bias': '(False)'}), '(inp, hidden_dim, kernel_size=1, bias=False)\n', (3399, 3443), True, 'import megengine.module as M\n'), ((3498, 3613), 'megengine.module.ConvBnRelu2d', 'M.ConvBnRelu2d', (['hidden_dim', 'hidden_dim'], {'kernel_size': '(3)', 'padding': '(1)', 'stride': 'stride', 'groups': 'hidden_dim', 'bias': '(False)'}), '(hidden_dim, hidden_dim, kernel_size=3, padding=1, stride=\n stride, groups=hidden_dim, bias=False)\n', (3512, 3613), True, 'import megengine.module as M\n'), ((3673, 3727), 'megengine.module.ConvBn2d', 'M.ConvBn2d', (['hidden_dim', 'oup'], {'kernel_size': '(1)', 'bias': '(False)'}), '(hidden_dim, oup, kernel_size=1, bias=False)\n', (3683, 3727), True, 'import megengine.module as M\n'), ((6649, 6694), 'megengine.module.init.msra_normal_', 'M.init.msra_normal_', (['m.weight'], {'mode': '"""fan_out"""'}), "(m.weight, mode='fan_out')\n", (6668, 6694), True, 'import megengine.module as M\n'), ((6754, 6775), 'megengine.module.init.zeros_', 'M.init.zeros_', (['m.bias'], {}), '(m.bias)\n', (6767, 6775), True, 'import megengine.module as M\n'), ((6839, 6861), 'megengine.module.init.ones_', 'M.init.ones_', (['m.weight'], {}), '(m.weight)\n', (6851, 6861), True, 'import megengine.module as M\n'), ((6878, 6899), 'megengine.module.init.zeros_', 'M.init.zeros_', (['m.bias'], {}), '(m.bias)\n', (6891, 6899), True, 'import megengine.module as M\n'), ((6958, 6991), 'megengine.module.init.normal_', 'M.init.normal_', (['m.weight', '(0)', '(0.01)'], {}), '(m.weight, 0, 0.01)\n', (6972, 6991), True, 'import megengine.module as M\n'), ((7008, 7029), 'megengine.module.init.zeros_', 'M.init.zeros_', (['m.bias'], {}), '(m.bias)\n', (7021, 7029), True, 'import megengine.module as M\n')]
import typing as ty from nepali_dictionary.common.db import Dictionary from sqlmodel import Session, select class SearchService: def search(self, query: str, session: ty.Type[Session], engine) -> ty.Optional[dict]: with session(engine) as s: statement = select(Dictionary).where(Dictionary.word == query) result: ty.Any = s.execute(statement).fetchone() if result: return result[0].dict()
[ "sqlmodel.select" ]
[((282, 300), 'sqlmodel.select', 'select', (['Dictionary'], {}), '(Dictionary)\n', (288, 300), False, 'from sqlmodel import Session, select\n')]
from typing import TYPE_CHECKING, Optional from uuid import UUID from sqlalchemy.orm import joinedload from sqlalchemy.schema import Column, ForeignKey from sqlmodel import Field, Relationship from sqlmodel.sql.sqltypes import GUID from joj.horse.models.base import ORMUtils from joj.horse.utils.base import is_uuid if TYPE_CHECKING: from joj.horse.models import Problem, ProblemSet class ProblemProblemSetLink(ORMUtils, table=True): # type: ignore[call-arg] __tablename__ = "problem_problem_set_links" problem_id: UUID = Field( sa_column=Column( GUID, ForeignKey("problems.id", ondelete="CASCADE"), primary_key=True ), ) problem_set_id: UUID = Field( sa_column=Column( GUID, ForeignKey("problem_sets.id", ondelete="CASCADE"), primary_key=True ), ) position: int = Field( index=True, nullable=False, sa_column_kwargs={"server_default": "0"} ) problem: "Problem" = Relationship(back_populates="problem_problem_set_links") problem_set: "ProblemSet" = Relationship(back_populates="problem_problem_set_links") @classmethod async def find_by_problem_set_and_problem( cls, problem_set: str, problem: str ) -> Optional["ProblemProblemSetLink"]: # this is buggy, do not use! # not sure how much it's better than three queries (maybe even worse) from joj.horse import models statement = cls.sql_select().options( joinedload(cls.problem_set, innerjoin=True), joinedload(cls.problem, innerjoin=True), ) if is_uuid(problem_set): statement = statement.where(cls.problem_set_id == problem_set) else: statement = statement.where(models.ProblemSet.url == problem_set) if is_uuid(problem): statement = statement.where(cls.problem_id == problem) else: statement = statement.where(models.Problem.url == problem) from loguru import logger logger.info(statement) result = await cls.session_exec(statement) logger.info(result.all()) return result.one_or_none()
[ "sqlmodel.Relationship", "sqlmodel.Field" ]
[((856, 931), 'sqlmodel.Field', 'Field', ([], {'index': '(True)', 'nullable': '(False)', 'sa_column_kwargs': "{'server_default': '0'}"}), "(index=True, nullable=False, sa_column_kwargs={'server_default': '0'})\n", (861, 931), False, 'from sqlmodel import Field, Relationship\n'), ((972, 1028), 'sqlmodel.Relationship', 'Relationship', ([], {'back_populates': '"""problem_problem_set_links"""'}), "(back_populates='problem_problem_set_links')\n", (984, 1028), False, 'from sqlmodel import Field, Relationship\n'), ((1061, 1117), 'sqlmodel.Relationship', 'Relationship', ([], {'back_populates': '"""problem_problem_set_links"""'}), "(back_populates='problem_problem_set_links')\n", (1073, 1117), False, 'from sqlmodel import Field, Relationship\n'), ((1602, 1622), 'joj.horse.utils.base.is_uuid', 'is_uuid', (['problem_set'], {}), '(problem_set)\n', (1609, 1622), False, 'from joj.horse.utils.base import is_uuid\n'), ((1802, 1818), 'joj.horse.utils.base.is_uuid', 'is_uuid', (['problem'], {}), '(problem)\n', (1809, 1818), False, 'from joj.horse.utils.base import is_uuid\n'), ((2015, 2037), 'loguru.logger.info', 'logger.info', (['statement'], {}), '(statement)\n', (2026, 2037), False, 'from loguru import logger\n'), ((1483, 1526), 'sqlalchemy.orm.joinedload', 'joinedload', (['cls.problem_set'], {'innerjoin': '(True)'}), '(cls.problem_set, innerjoin=True)\n', (1493, 1526), False, 'from sqlalchemy.orm import joinedload\n'), ((1540, 1579), 'sqlalchemy.orm.joinedload', 'joinedload', (['cls.problem'], {'innerjoin': '(True)'}), '(cls.problem, innerjoin=True)\n', (1550, 1579), False, 'from sqlalchemy.orm import joinedload\n'), ((592, 637), 'sqlalchemy.schema.ForeignKey', 'ForeignKey', (['"""problems.id"""'], {'ondelete': '"""CASCADE"""'}), "('problems.id', ondelete='CASCADE')\n", (602, 637), False, 'from sqlalchemy.schema import Column, ForeignKey\n'), ((751, 800), 'sqlalchemy.schema.ForeignKey', 'ForeignKey', (['"""problem_sets.id"""'], {'ondelete': '"""CASCADE"""'}), "('problem_sets.id', ondelete='CASCADE')\n", (761, 800), False, 'from sqlalchemy.schema import Column, ForeignKey\n')]
#!/usr/bin/env python3 # -*- coding:utf-8 -*- # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. import math import megengine as mge import megengine.functional as F import megengine.module as M from yolox.utils import bboxes_iou from .losses import binary_cross_entropy, iou_loss, l1_loss from .network_blocks import BaseConv, DWConv def meshgrid(x, y): """meshgrid wrapper for megengine""" assert len(x.shape) == 1 assert len(y.shape) == 1 mesh_shape = (y.shape[0], x.shape[0]) mesh_x = F.broadcast_to(x, mesh_shape) mesh_y = F.broadcast_to(y.reshape(-1, 1), mesh_shape) return mesh_x, mesh_y class YOLOXHead(M.Module): def __init__( self, num_classes, width=1.0, strides=[8, 16, 32, 64], in_channels=[256, 512, 1024, 1024], act="silu", depthwise=False ): """ Args: act (str): activation type of conv. Defalut value: "silu". depthwise (bool): wheather apply depthwise conv in conv branch. Defalut value: False. """ super().__init__() self.n_anchors = 1 self.num_classes = num_classes self.decode_in_inference = True # for deploy, set to False self.cls_convs = [] self.reg_convs = [] self.cls_preds = [] self.reg_preds = [] self.obj_preds = [] self.stems = [] Conv = DWConv if depthwise else BaseConv for i in range(len(in_channels)): self.stems.append( BaseConv( in_channels=int(in_channels[i] * width), out_channels=int(256 * width), ksize=1, stride=1, act=act, ) ) self.cls_convs.append( M.Sequential( *[ Conv( in_channels=int(256 * width), out_channels=int(256 * width), ksize=3, stride=1, act=act, ), Conv( in_channels=int(256 * width), out_channels=int(256 * width), ksize=3, stride=1, act=act, ), ] ) ) self.reg_convs.append( M.Sequential( *[ Conv( in_channels=int(256 * width), out_channels=int(256 * width), ksize=3, stride=1, act=act, ), Conv( in_channels=int(256 * width), out_channels=int(256 * width), ksize=3, stride=1, act=act, ), ] ) ) self.cls_preds.append( M.Conv2d( in_channels=int(256 * width), out_channels=self.n_anchors * self.num_classes, kernel_size=1, stride=1, padding=0, ) ) self.reg_preds.append( M.Conv2d( in_channels=int(256 * width), out_channels=4, kernel_size=1, stride=1, padding=0, ) ) self.obj_preds.append( M.Conv2d( in_channels=int(256 * width), out_channels=self.n_anchors * 1, kernel_size=1, stride=1, padding=0, ) ) self.use_l1 = False self.strides = strides self.grids = [F.zeros(1)] * len(in_channels) self.expanded_strides = [None] * len(in_channels) def initialize_biases(self, prior_prob): for conv in self.cls_preds: bias_value = -math.log((1 - prior_prob) / prior_prob) M.init.fill_(conv.bias, bias_value) for conv in self.obj_preds: bias_value = -math.log((1 - prior_prob) / prior_prob) M.init.fill_(conv.bias, bias_value) def forward(self, xin, labels=None, imgs=None): outputs = [] origin_preds = [] x_shifts = [] y_shifts = [] expanded_strides = [] for k, (cls_conv, reg_conv, stride_this_level, x) in enumerate( zip(self.cls_convs, self.reg_convs, self.strides, xin) ): x = self.stems[k](x) cls_x = x reg_x = x cls_feat = cls_conv(cls_x) cls_output = self.cls_preds[k](cls_feat) reg_feat = reg_conv(reg_x) reg_output = self.reg_preds[k](reg_feat) obj_output = self.obj_preds[k](reg_feat) if self.training: output = F.concat([reg_output, obj_output, cls_output], 1) output, grid = self.get_output_and_grid(output, k, stride_this_level) x_shifts.append(grid[:, :, 0]) y_shifts.append(grid[:, :, 1]) expanded_strides.append(F.full((1, grid.shape[1]), stride_this_level)) if self.use_l1: batch_size = reg_output.shape[0] hsize, wsize = reg_output.shape[-2:] reg_output = reg_output.reshape(batch_size, self.n_anchors, 4, hsize, wsize) reg_output = ( F.transpose(reg_output, (0, 1, 3, 4, 2)).reshape(batch_size, -1, 4) ) origin_preds.append(mge.Tensor(reg_output)) else: output = F.concat([reg_output, F.sigmoid(obj_output), F.sigmoid(cls_output)], 1) outputs.append(output) if self.training: return self.get_losses( imgs, x_shifts, y_shifts, expanded_strides, labels, F.concat(outputs, 1), origin_preds, ) else: self.hw = [x.shape[-2:] for x in outputs] # [batch, n_anchors_all, 85] outputs = F.concat([F.flatten(x, start_axis=2) for x in outputs], axis=2) outputs = F.transpose(outputs, (0, 2, 1)) if self.decode_in_inference: return self.decode_outputs(outputs) else: return outputs def get_output_and_grid(self, output, k, stride): grid = self.grids[k] batch_size = output.shape[0] n_ch = 5 + self.num_classes hsize, wsize = output.shape[-2:] if grid.shape[2:4] != output.shape[2:4]: xv, yv = meshgrid(F.arange(hsize), F.arange(wsize)) grid = F.stack((xv, yv), 2).reshape(1, 1, hsize, wsize, 2) self.grids[k] = grid output = output.reshape(batch_size, self.n_anchors, n_ch, hsize, wsize) output = ( F.transpose(output, (0, 1, 3, 4, 2)) .reshape(batch_size, self.n_anchors * hsize * wsize, -1) ) grid = grid.reshape(1, -1, 2) output[..., :2] = (output[..., :2] + grid) * stride output[..., 2:4] = F.exp(output[..., 2:4]) * stride return output, grid def decode_outputs(self, outputs): grids = [] strides = [] for (hsize, wsize), stride in zip(self.hw, self.strides): xv, yv = meshgrid(F.arange(hsize), F.arange(wsize)) grid = F.stack((xv, yv), 2).reshape(1, -1, 2) grids.append(grid) shape = grid.shape[:2] strides.append(F.full((*shape, 1), stride)) grids = F.concat(grids, axis=1) strides = F.concat(strides, axis=1) outputs[..., :2] = (outputs[..., :2] + grids) * strides outputs[..., 2:4] = F.exp(outputs[..., 2:4]) * strides return outputs def focal_loss_discrite(self, pred, gt): pos_inds = F.equal(gt, 1).astype("float32") neg_inds = F.equal(gt, 0).astype("float32") pos_loss = F.log(pred+1e-5) * F.pow(1-pred, 2) * pos_inds * 0.75 neg_loss = F.log(1-pred+1e-5) * F.pow(pred, 2) * neg_inds * 0.25 loss = -(pos_loss + neg_loss) return loss def get_losses( self, imgs, x_shifts, y_shifts, expanded_strides, labels, outputs, origin_preds, ): bbox_preds = outputs[:, :, :4] # [batch, n_anchors_all, 4] obj_preds = F.expand_dims(outputs[:, :, 4], axis=-1) # [batch, n_anchors_all, 1] cls_preds = outputs[:, :, 5:] # [batch, n_anchors_all, n_cls] # calculate targets mixup = labels.shape[2] > 5 if mixup: label_cut = labels[..., :5] else: label_cut = labels nlabel = (label_cut.sum(axis=2) > 0).sum(axis=1) # number of objects total_num_anchors = outputs.shape[1] x_shifts = F.concat(x_shifts, 1) # [1, n_anchors_all] y_shifts = F.concat(y_shifts, 1) # [1, n_anchors_all] expanded_strides = F.concat(expanded_strides, 1) if self.use_l1: origin_preds = F.concat(origin_preds, 1) cls_targets = [] reg_targets = [] l1_targets = [] obj_targets = [] fg_masks = [] num_fg = 0.0 num_gts = 0.0 for batch_idx in range(outputs.shape[0]): num_gt = int(nlabel[batch_idx]) num_gts += num_gt if num_gt == 0: cls_target = F.zeros((0, self.num_classes)) reg_target = F.zeros((0, 4)) l1_target = F.zeros((0, 4)) obj_target = F.zeros((total_num_anchors, 1)) fg_mask = F.zeros(total_num_anchors).astype("bool") else: gt_bboxes_per_image = labels[batch_idx, :num_gt, 1:5] gt_classes = labels[batch_idx, :num_gt, 0] bboxes_preds_per_image = bbox_preds[batch_idx] gt_matched_classes, fg_mask, pred_ious_this_matching, matched_gt_inds, num_fg_img = self.get_assignments( # noqa batch_idx, num_gt, total_num_anchors, gt_bboxes_per_image, gt_classes, bboxes_preds_per_image, expanded_strides, x_shifts, y_shifts, cls_preds, bbox_preds, obj_preds, labels, imgs, ) num_fg += num_fg_img cls_target = F.one_hot( gt_matched_classes.astype("int32"), self.num_classes ) * F.expand_dims(pred_ious_this_matching, axis=-1) obj_target = F.expand_dims(fg_mask, axis=-1) reg_target = gt_bboxes_per_image[matched_gt_inds] if self.use_l1: l1_target = self.get_l1_target( F.zeros((num_fg_img, 4)), gt_bboxes_per_image[matched_gt_inds], expanded_strides[0][fg_mask], x_shifts=x_shifts[0][fg_mask], y_shifts=y_shifts[0][fg_mask], ) cls_targets.append(cls_target) reg_targets.append(reg_target) obj_targets.append(obj_target) fg_masks.append(fg_mask) if self.use_l1: l1_targets.append(l1_target) cls_targets = F.concat(cls_targets, 0) reg_targets = F.concat(reg_targets, 0) obj_targets = F.concat(obj_targets, 0) fg_masks = F.concat(fg_masks, 0) num_fg = max(num_fg, 1) loss_iou = (iou_loss(bbox_preds.reshape(-1, 4)[fg_masks], reg_targets)).sum() / num_fg loss_obj = ( # todo 修改为focalloss self.focal_loss_discrite(F.sigmoid(obj_preds).reshape(-1, 1), obj_targets) # self.bcewithlog_loss(obj_preds.view(-1, 1), obj_targets) # 原先的loss ).sum() / num_fg # loss_obj = (binary_cross_entropy(obj_preds.reshape(-1, 1), obj_targets)).sum() / num_fg loss_cls = ( binary_cross_entropy(cls_preds.reshape(-1, self.num_classes)[fg_masks], cls_targets) ).sum() / num_fg if self.use_l1: l1_targets = F.concat(l1_targets, 0) loss_l1 = (l1_loss(origin_preds.reshape(-1, 4)[fg_masks], l1_targets)).sum() / num_fg else: loss_l1 = mge.Tensor(0.0) reg_weight = 5.0 loss = reg_weight * loss_iou + loss_obj + loss_cls + loss_l1 return loss, reg_weight * loss_iou, loss_obj, loss_cls, loss_l1, num_fg / max(num_gts, 1) def get_l1_target(self, l1_target, gt, stride, x_shifts, y_shifts, eps=1e-8): l1_target[:, 0] = gt[:, 0] / stride - x_shifts l1_target[:, 1] = gt[:, 1] / stride - y_shifts l1_target[:, 2] = F.log(gt[:, 2] / stride + eps) l1_target[:, 3] = F.log(gt[:, 3] / stride + eps) return l1_target def get_assignments( self, batch_idx, num_gt, total_num_anchors, gt_bboxes_per_image, gt_classes, bboxes_preds_per_image, expanded_strides, x_shifts, y_shifts, cls_preds, bbox_preds, obj_preds, labels, imgs ): fg_mask, is_in_boxes_and_center = self.get_in_boxes_info( gt_bboxes_per_image, expanded_strides, x_shifts, y_shifts, total_num_anchors, num_gt, ) bboxes_preds_per_image = bboxes_preds_per_image[fg_mask] cls_preds_ = cls_preds[batch_idx][fg_mask] obj_preds_ = obj_preds[batch_idx][fg_mask] num_in_boxes_anchor = bboxes_preds_per_image.shape[0] pair_wise_ious = bboxes_iou( gt_bboxes_per_image, bboxes_preds_per_image, False ) # MGE might bring bad exper gt_cls_per_image = ( F.repeat( F.expand_dims( F.one_hot(gt_classes.astype("int32"), self.num_classes).astype("float32"), axis=1, ), repeats=num_in_boxes_anchor, axis=1, ) ) pair_wise_ious_loss = -F.log(pair_wise_ious + 1e-8) # ditto cls_preds_ = F.sigmoid( F.repeat(F.expand_dims(cls_preds_.astype("float32"), axis=0), repeats=num_gt, axis=0) ) * F.sigmoid(F.repeat(F.expand_dims(obj_preds_, axis=0), repeats=num_gt, axis=0)) pair_wise_cls_loss = binary_cross_entropy( F.sqrt(cls_preds_), gt_cls_per_image, with_logits=False, ).sum(-1) del cls_preds_ cost = ( pair_wise_cls_loss + 3.0 * pair_wise_ious_loss + 100000.0 * (~is_in_boxes_and_center) ) ( num_fg, gt_matched_classes, pred_ious_this_matching, matched_gt_inds ) = self.dynamic_k_matching(cost, pair_wise_ious, gt_classes, num_gt, fg_mask) del pair_wise_cls_loss, cost, pair_wise_ious, pair_wise_ious_loss return ( gt_matched_classes.detach(), fg_mask, pred_ious_this_matching, matched_gt_inds, num_fg ) def get_in_boxes_info( self, gt_bboxes_per_image, expanded_strides, x_shifts, y_shifts, total_num_anchors, num_gt, ): expanded_strides_per_image = expanded_strides[0] x_shifts_per_image = x_shifts[0] * expanded_strides_per_image y_shifts_per_image = y_shifts[0] * expanded_strides_per_image x_centers_per_image = ( F.repeat( F.expand_dims(x_shifts_per_image + 0.5 * expanded_strides_per_image, axis=0), repeats=num_gt, axis=0, ) ) # [n_anchor] -> [n_gt, n_anchor] y_centers_per_image = F.repeat( F.expand_dims(y_shifts_per_image + 0.5 * expanded_strides_per_image, axis=0), repeats=num_gt, axis=0, ) gt_bboxes_per_image_l = F.repeat( F.expand_dims(gt_bboxes_per_image[:, 0] - 0.5 * gt_bboxes_per_image[:, 2], axis=1), repeats=total_num_anchors, axis=1, ) gt_bboxes_per_image_r = F.repeat( F.expand_dims(gt_bboxes_per_image[:, 0] + 0.5 * gt_bboxes_per_image[:, 2], axis=1), repeats=total_num_anchors, axis=1, ) gt_bboxes_per_image_t = F.repeat( F.expand_dims(gt_bboxes_per_image[:, 1] - 0.5 * gt_bboxes_per_image[:, 3], axis=1), repeats=total_num_anchors, axis=1, ) gt_bboxes_per_image_b = F.repeat( F.expand_dims(gt_bboxes_per_image[:, 1] + 0.5 * gt_bboxes_per_image[:, 3], axis=1), repeats=total_num_anchors, axis=1, ) b_l = x_centers_per_image - gt_bboxes_per_image_l b_r = gt_bboxes_per_image_r - x_centers_per_image b_t = y_centers_per_image - gt_bboxes_per_image_t b_b = gt_bboxes_per_image_b - y_centers_per_image bbox_deltas = F.stack([b_l, b_t, b_r, b_b], 2) is_in_boxes = bbox_deltas.min(axis=-1) > 0.0 is_in_boxes_all = is_in_boxes.sum(axis=0) > 0 # in fixed center center_radius = 2.5 gt_bboxes_per_image_l = F.repeat( F.expand_dims(gt_bboxes_per_image[:, 0], axis=1), repeats=total_num_anchors, axis=1, ) - center_radius * F.expand_dims(expanded_strides_per_image, axis=0) gt_bboxes_per_image_r = F.repeat( F.expand_dims(gt_bboxes_per_image[:, 0], axis=1), repeats=total_num_anchors, axis=1, ) + center_radius * F.expand_dims(expanded_strides_per_image, axis=0) gt_bboxes_per_image_t = F.repeat( F.expand_dims(gt_bboxes_per_image[:, 1], axis=1), repeats=total_num_anchors, axis=1, ) - center_radius * F.expand_dims(expanded_strides_per_image, axis=0) gt_bboxes_per_image_b = F.repeat( F.expand_dims(gt_bboxes_per_image[:, 1], axis=1), repeats=total_num_anchors, axis=1, ) + center_radius * F.expand_dims(expanded_strides_per_image, axis=0) c_l = x_centers_per_image - gt_bboxes_per_image_l c_r = gt_bboxes_per_image_r - x_centers_per_image c_t = y_centers_per_image - gt_bboxes_per_image_t c_b = gt_bboxes_per_image_b - y_centers_per_image center_deltas = F.stack([c_l, c_t, c_r, c_b], 2) is_in_centers = center_deltas.min(axis=-1) > 0.0 is_in_centers_all = is_in_centers.sum(axis=0) > 0 # in boxes and in centers is_in_boxes_anchor = is_in_boxes_all | is_in_centers_all is_in_boxes_and_center = ( is_in_boxes[:, is_in_boxes_anchor] & is_in_centers[:, is_in_boxes_anchor] ) return is_in_boxes_anchor.detach(), is_in_boxes_and_center.detach() def dynamic_k_matching(self, cost, pair_wise_ious, gt_classes, num_gt, fg_mask): # Dynamic K # --------------------------------------------------------------- matching_matrix = F.zeros_like(cost) ious_in_boxes_matrix = pair_wise_ious n_candidate_k = min(10, ious_in_boxes_matrix.shape[1]) topk_ious, _ = F.topk(ious_in_boxes_matrix, n_candidate_k, descending=True) dynamic_ks = F.clip(topk_ious.sum(1).astype("int32"), lower=1) for gt_idx in range(num_gt): _, pos_idx = F.topk(cost[gt_idx], k=dynamic_ks[gt_idx], descending=False) matching_matrix[gt_idx, pos_idx] = 1.0 del topk_ious, dynamic_ks, pos_idx anchor_matching_gt = matching_matrix.sum(0) if (anchor_matching_gt > 1).sum() > 0: cost_argmin = F.argmin(cost[:, anchor_matching_gt > 1], axis=0) matching_matrix[:, anchor_matching_gt > 1] = 0.0 matching_matrix[cost_argmin, anchor_matching_gt > 1] = 1.0 fg_mask_inboxes = matching_matrix.sum(0) > 0.0 num_fg = fg_mask_inboxes.sum() # set True part to fg_mask_inboxes fg_mask[fg_mask] = fg_mask_inboxes matched_gt_inds = F.argmax(matching_matrix[:, fg_mask_inboxes], axis=0) gt_matched_classes = gt_classes[matched_gt_inds] pred_ious_this_matching = (matching_matrix * pair_wise_ious).sum(0)[fg_mask_inboxes] return ( num_fg.detach(), gt_matched_classes.detach(), pred_ious_this_matching.detach(), matched_gt_inds.detach(), )
[ "megengine.functional.equal", "megengine.functional.pow", "megengine.functional.transpose", "megengine.functional.zeros", "megengine.functional.argmax", "megengine.functional.log", "megengine.functional.broadcast_to", "megengine.functional.stack", "megengine.functional.flatten", "megengine.functional.sqrt", "megengine.functional.concat", "megengine.functional.exp", "megengine.functional.zeros_like", "megengine.functional.argmin", "megengine.module.init.fill_", "megengine.functional.sigmoid", "megengine.functional.arange", "megengine.functional.expand_dims", "megengine.functional.topk", "megengine.Tensor", "megengine.functional.full" ]
[((523, 552), 'megengine.functional.broadcast_to', 'F.broadcast_to', (['x', 'mesh_shape'], {}), '(x, mesh_shape)\n', (537, 552), True, 'import megengine.functional as F\n'), ((8005, 8028), 'megengine.functional.concat', 'F.concat', (['grids'], {'axis': '(1)'}), '(grids, axis=1)\n', (8013, 8028), True, 'import megengine.functional as F\n'), ((8047, 8072), 'megengine.functional.concat', 'F.concat', (['strides'], {'axis': '(1)'}), '(strides, axis=1)\n', (8055, 8072), True, 'import megengine.functional as F\n'), ((8787, 8827), 'megengine.functional.expand_dims', 'F.expand_dims', (['outputs[:, :, 4]'], {'axis': '(-1)'}), '(outputs[:, :, 4], axis=-1)\n', (8800, 8827), True, 'import megengine.functional as F\n'), ((9239, 9260), 'megengine.functional.concat', 'F.concat', (['x_shifts', '(1)'], {}), '(x_shifts, 1)\n', (9247, 9260), True, 'import megengine.functional as F\n'), ((9302, 9323), 'megengine.functional.concat', 'F.concat', (['y_shifts', '(1)'], {}), '(y_shifts, 1)\n', (9310, 9323), True, 'import megengine.functional as F\n'), ((9373, 9402), 'megengine.functional.concat', 'F.concat', (['expanded_strides', '(1)'], {}), '(expanded_strides, 1)\n', (9381, 9402), True, 'import megengine.functional as F\n'), ((11669, 11693), 'megengine.functional.concat', 'F.concat', (['cls_targets', '(0)'], {}), '(cls_targets, 0)\n', (11677, 11693), True, 'import megengine.functional as F\n'), ((11716, 11740), 'megengine.functional.concat', 'F.concat', (['reg_targets', '(0)'], {}), '(reg_targets, 0)\n', (11724, 11740), True, 'import megengine.functional as F\n'), ((11763, 11787), 'megengine.functional.concat', 'F.concat', (['obj_targets', '(0)'], {}), '(obj_targets, 0)\n', (11771, 11787), True, 'import megengine.functional as F\n'), ((11807, 11828), 'megengine.functional.concat', 'F.concat', (['fg_masks', '(0)'], {}), '(fg_masks, 0)\n', (11815, 11828), True, 'import megengine.functional as F\n'), ((13081, 13111), 'megengine.functional.log', 'F.log', (['(gt[:, 2] / stride + eps)'], {}), '(gt[:, 2] / stride + eps)\n', (13086, 13111), True, 'import megengine.functional as F\n'), ((13138, 13168), 'megengine.functional.log', 'F.log', (['(gt[:, 3] / stride + eps)'], {}), '(gt[:, 3] / stride + eps)\n', (13143, 13168), True, 'import megengine.functional as F\n'), ((13867, 13929), 'yolox.utils.bboxes_iou', 'bboxes_iou', (['gt_bboxes_per_image', 'bboxes_preds_per_image', '(False)'], {}), '(gt_bboxes_per_image, bboxes_preds_per_image, False)\n', (13877, 13929), False, 'from yolox.utils import bboxes_iou\n'), ((17118, 17150), 'megengine.functional.stack', 'F.stack', (['[b_l, b_t, b_r, b_b]', '(2)'], {}), '([b_l, b_t, b_r, b_b], 2)\n', (17125, 17150), True, 'import megengine.functional as F\n'), ((18488, 18520), 'megengine.functional.stack', 'F.stack', (['[c_l, c_t, c_r, c_b]', '(2)'], {}), '([c_l, c_t, c_r, c_b], 2)\n', (18495, 18520), True, 'import megengine.functional as F\n'), ((19150, 19168), 'megengine.functional.zeros_like', 'F.zeros_like', (['cost'], {}), '(cost)\n', (19162, 19168), True, 'import megengine.functional as F\n'), ((19302, 19362), 'megengine.functional.topk', 'F.topk', (['ious_in_boxes_matrix', 'n_candidate_k'], {'descending': '(True)'}), '(ious_in_boxes_matrix, n_candidate_k, descending=True)\n', (19308, 19362), True, 'import megengine.functional as F\n'), ((20168, 20221), 'megengine.functional.argmax', 'F.argmax', (['matching_matrix[:, fg_mask_inboxes]'], {'axis': '(0)'}), '(matching_matrix[:, fg_mask_inboxes], axis=0)\n', (20176, 20221), True, 'import megengine.functional as F\n'), ((4374, 4409), 'megengine.module.init.fill_', 'M.init.fill_', (['conv.bias', 'bias_value'], {}), '(conv.bias, bias_value)\n', (4386, 4409), True, 'import megengine.module as M\n'), ((4525, 4560), 'megengine.module.init.fill_', 'M.init.fill_', (['conv.bias', 'bias_value'], {}), '(conv.bias, bias_value)\n', (4537, 4560), True, 'import megengine.module as M\n'), ((6593, 6624), 'megengine.functional.transpose', 'F.transpose', (['outputs', '(0, 2, 1)'], {}), '(outputs, (0, 2, 1))\n', (6604, 6624), True, 'import megengine.functional as F\n'), ((7537, 7560), 'megengine.functional.exp', 'F.exp', (['output[..., 2:4]'], {}), '(output[..., 2:4])\n', (7542, 7560), True, 'import megengine.functional as F\n'), ((8166, 8190), 'megengine.functional.exp', 'F.exp', (['outputs[..., 2:4]'], {}), '(outputs[..., 2:4])\n', (8171, 8190), True, 'import megengine.functional as F\n'), ((9454, 9479), 'megengine.functional.concat', 'F.concat', (['origin_preds', '(1)'], {}), '(origin_preds, 1)\n', (9462, 9479), True, 'import megengine.functional as F\n'), ((12494, 12517), 'megengine.functional.concat', 'F.concat', (['l1_targets', '(0)'], {}), '(l1_targets, 0)\n', (12502, 12517), True, 'import megengine.functional as F\n'), ((12652, 12667), 'megengine.Tensor', 'mge.Tensor', (['(0.0)'], {}), '(0.0)\n', (12662, 12667), True, 'import megengine as mge\n'), ((14321, 14350), 'megengine.functional.log', 'F.log', (['(pair_wise_ious + 1e-08)'], {}), '(pair_wise_ious + 1e-08)\n', (14326, 14350), True, 'import megengine.functional as F\n'), ((15730, 15806), 'megengine.functional.expand_dims', 'F.expand_dims', (['(x_shifts_per_image + 0.5 * expanded_strides_per_image)'], {'axis': '(0)'}), '(x_shifts_per_image + 0.5 * expanded_strides_per_image, axis=0)\n', (15743, 15806), True, 'import megengine.functional as F\n'), ((15958, 16034), 'megengine.functional.expand_dims', 'F.expand_dims', (['(y_shifts_per_image + 0.5 * expanded_strides_per_image)'], {'axis': '(0)'}), '(y_shifts_per_image + 0.5 * expanded_strides_per_image, axis=0)\n', (15971, 16034), True, 'import megengine.functional as F\n'), ((16137, 16223), 'megengine.functional.expand_dims', 'F.expand_dims', (['(gt_bboxes_per_image[:, 0] - 0.5 * gt_bboxes_per_image[:, 2])'], {'axis': '(1)'}), '(gt_bboxes_per_image[:, 0] - 0.5 * gt_bboxes_per_image[:, 2],\n axis=1)\n', (16150, 16223), True, 'import megengine.functional as F\n'), ((16332, 16418), 'megengine.functional.expand_dims', 'F.expand_dims', (['(gt_bboxes_per_image[:, 0] + 0.5 * gt_bboxes_per_image[:, 2])'], {'axis': '(1)'}), '(gt_bboxes_per_image[:, 0] + 0.5 * gt_bboxes_per_image[:, 2],\n axis=1)\n', (16345, 16418), True, 'import megengine.functional as F\n'), ((16527, 16613), 'megengine.functional.expand_dims', 'F.expand_dims', (['(gt_bboxes_per_image[:, 1] - 0.5 * gt_bboxes_per_image[:, 3])'], {'axis': '(1)'}), '(gt_bboxes_per_image[:, 1] - 0.5 * gt_bboxes_per_image[:, 3],\n axis=1)\n', (16540, 16613), True, 'import megengine.functional as F\n'), ((16722, 16808), 'megengine.functional.expand_dims', 'F.expand_dims', (['(gt_bboxes_per_image[:, 1] + 0.5 * gt_bboxes_per_image[:, 3])'], {'axis': '(1)'}), '(gt_bboxes_per_image[:, 1] + 0.5 * gt_bboxes_per_image[:, 3],\n axis=1)\n', (16735, 16808), True, 'import megengine.functional as F\n'), ((19496, 19556), 'megengine.functional.topk', 'F.topk', (['cost[gt_idx]'], {'k': 'dynamic_ks[gt_idx]', 'descending': '(False)'}), '(cost[gt_idx], k=dynamic_ks[gt_idx], descending=False)\n', (19502, 19556), True, 'import megengine.functional as F\n'), ((19778, 19827), 'megengine.functional.argmin', 'F.argmin', (['cost[:, anchor_matching_gt > 1]'], {'axis': '(0)'}), '(cost[:, anchor_matching_gt > 1], axis=0)\n', (19786, 19827), True, 'import megengine.functional as F\n'), ((4125, 4135), 'megengine.functional.zeros', 'F.zeros', (['(1)'], {}), '(1)\n', (4132, 4135), True, 'import megengine.functional as F\n'), ((4322, 4361), 'math.log', 'math.log', (['((1 - prior_prob) / prior_prob)'], {}), '((1 - prior_prob) / prior_prob)\n', (4330, 4361), False, 'import math\n'), ((4473, 4512), 'math.log', 'math.log', (['((1 - prior_prob) / prior_prob)'], {}), '((1 - prior_prob) / prior_prob)\n', (4481, 4512), False, 'import math\n'), ((5258, 5307), 'megengine.functional.concat', 'F.concat', (['[reg_output, obj_output, cls_output]', '(1)'], {}), '([reg_output, obj_output, cls_output], 1)\n', (5266, 5307), True, 'import megengine.functional as F\n'), ((6326, 6346), 'megengine.functional.concat', 'F.concat', (['outputs', '(1)'], {}), '(outputs, 1)\n', (6334, 6346), True, 'import megengine.functional as F\n'), ((7046, 7061), 'megengine.functional.arange', 'F.arange', (['hsize'], {}), '(hsize)\n', (7054, 7061), True, 'import megengine.functional as F\n'), ((7063, 7078), 'megengine.functional.arange', 'F.arange', (['wsize'], {}), '(wsize)\n', (7071, 7078), True, 'import megengine.functional as F\n'), ((7296, 7332), 'megengine.functional.transpose', 'F.transpose', (['output', '(0, 1, 3, 4, 2)'], {}), '(output, (0, 1, 3, 4, 2))\n', (7307, 7332), True, 'import megengine.functional as F\n'), ((7774, 7789), 'megengine.functional.arange', 'F.arange', (['hsize'], {}), '(hsize)\n', (7782, 7789), True, 'import megengine.functional as F\n'), ((7791, 7806), 'megengine.functional.arange', 'F.arange', (['wsize'], {}), '(wsize)\n', (7799, 7806), True, 'import megengine.functional as F\n'), ((7959, 7986), 'megengine.functional.full', 'F.full', (['(*shape, 1)', 'stride'], {}), '((*shape, 1), stride)\n', (7965, 7986), True, 'import megengine.functional as F\n'), ((8293, 8307), 'megengine.functional.equal', 'F.equal', (['gt', '(1)'], {}), '(gt, 1)\n', (8300, 8307), True, 'import megengine.functional as F\n'), ((8345, 8359), 'megengine.functional.equal', 'F.equal', (['gt', '(0)'], {}), '(gt, 0)\n', (8352, 8359), True, 'import megengine.functional as F\n'), ((9828, 9858), 'megengine.functional.zeros', 'F.zeros', (['(0, self.num_classes)'], {}), '((0, self.num_classes))\n', (9835, 9858), True, 'import megengine.functional as F\n'), ((9888, 9903), 'megengine.functional.zeros', 'F.zeros', (['(0, 4)'], {}), '((0, 4))\n', (9895, 9903), True, 'import megengine.functional as F\n'), ((9932, 9947), 'megengine.functional.zeros', 'F.zeros', (['(0, 4)'], {}), '((0, 4))\n', (9939, 9947), True, 'import megengine.functional as F\n'), ((9977, 10008), 'megengine.functional.zeros', 'F.zeros', (['(total_num_anchors, 1)'], {}), '((total_num_anchors, 1))\n', (9984, 10008), True, 'import megengine.functional as F\n'), ((10926, 10957), 'megengine.functional.expand_dims', 'F.expand_dims', (['fg_mask'], {'axis': '(-1)'}), '(fg_mask, axis=-1)\n', (10939, 10957), True, 'import megengine.functional as F\n'), ((17369, 17417), 'megengine.functional.expand_dims', 'F.expand_dims', (['gt_bboxes_per_image[:, 0]'], {'axis': '(1)'}), '(gt_bboxes_per_image[:, 0], axis=1)\n', (17382, 17417), True, 'import megengine.functional as F\n'), ((17494, 17543), 'megengine.functional.expand_dims', 'F.expand_dims', (['expanded_strides_per_image'], {'axis': '(0)'}), '(expanded_strides_per_image, axis=0)\n', (17507, 17543), True, 'import megengine.functional as F\n'), ((17598, 17646), 'megengine.functional.expand_dims', 'F.expand_dims', (['gt_bboxes_per_image[:, 0]'], {'axis': '(1)'}), '(gt_bboxes_per_image[:, 0], axis=1)\n', (17611, 17646), True, 'import megengine.functional as F\n'), ((17723, 17772), 'megengine.functional.expand_dims', 'F.expand_dims', (['expanded_strides_per_image'], {'axis': '(0)'}), '(expanded_strides_per_image, axis=0)\n', (17736, 17772), True, 'import megengine.functional as F\n'), ((17827, 17875), 'megengine.functional.expand_dims', 'F.expand_dims', (['gt_bboxes_per_image[:, 1]'], {'axis': '(1)'}), '(gt_bboxes_per_image[:, 1], axis=1)\n', (17840, 17875), True, 'import megengine.functional as F\n'), ((17952, 18001), 'megengine.functional.expand_dims', 'F.expand_dims', (['expanded_strides_per_image'], {'axis': '(0)'}), '(expanded_strides_per_image, axis=0)\n', (17965, 18001), True, 'import megengine.functional as F\n'), ((18056, 18104), 'megengine.functional.expand_dims', 'F.expand_dims', (['gt_bboxes_per_image[:, 1]'], {'axis': '(1)'}), '(gt_bboxes_per_image[:, 1], axis=1)\n', (18069, 18104), True, 'import megengine.functional as F\n'), ((18181, 18230), 'megengine.functional.expand_dims', 'F.expand_dims', (['expanded_strides_per_image'], {'axis': '(0)'}), '(expanded_strides_per_image, axis=0)\n', (18194, 18230), True, 'import megengine.functional as F\n'), ((5528, 5573), 'megengine.functional.full', 'F.full', (['(1, grid.shape[1])', 'stride_this_level'], {}), '((1, grid.shape[1]), stride_this_level)\n', (5534, 5573), True, 'import megengine.functional as F\n'), ((6517, 6543), 'megengine.functional.flatten', 'F.flatten', (['x'], {'start_axis': '(2)'}), '(x, start_axis=2)\n', (6526, 6543), True, 'import megengine.functional as F\n'), ((7099, 7119), 'megengine.functional.stack', 'F.stack', (['(xv, yv)', '(2)'], {}), '((xv, yv), 2)\n', (7106, 7119), True, 'import megengine.functional as F\n'), ((7827, 7847), 'megengine.functional.stack', 'F.stack', (['(xv, yv)', '(2)'], {}), '((xv, yv), 2)\n', (7834, 7847), True, 'import megengine.functional as F\n'), ((8397, 8416), 'megengine.functional.log', 'F.log', (['(pred + 1e-05)'], {}), '(pred + 1e-05)\n', (8402, 8416), True, 'import megengine.functional as F\n'), ((8416, 8434), 'megengine.functional.pow', 'F.pow', (['(1 - pred)', '(2)'], {}), '(1 - pred, 2)\n', (8421, 8434), True, 'import megengine.functional as F\n'), ((8470, 8493), 'megengine.functional.log', 'F.log', (['(1 - pred + 1e-05)'], {}), '(1 - pred + 1e-05)\n', (8475, 8493), True, 'import megengine.functional as F\n'), ((8491, 8505), 'megengine.functional.pow', 'F.pow', (['pred', '(2)'], {}), '(pred, 2)\n', (8496, 8505), True, 'import megengine.functional as F\n'), ((10849, 10896), 'megengine.functional.expand_dims', 'F.expand_dims', (['pred_ious_this_matching'], {'axis': '(-1)'}), '(pred_ious_this_matching, axis=-1)\n', (10862, 10896), True, 'import megengine.functional as F\n'), ((14528, 14561), 'megengine.functional.expand_dims', 'F.expand_dims', (['obj_preds_'], {'axis': '(0)'}), '(obj_preds_, axis=0)\n', (14541, 14561), True, 'import megengine.functional as F\n'), ((14652, 14670), 'megengine.functional.sqrt', 'F.sqrt', (['cls_preds_'], {}), '(cls_preds_)\n', (14658, 14670), True, 'import megengine.functional as F\n'), ((6003, 6025), 'megengine.Tensor', 'mge.Tensor', (['reg_output'], {}), '(reg_output)\n', (6013, 6025), True, 'import megengine as mge\n'), ((6093, 6114), 'megengine.functional.sigmoid', 'F.sigmoid', (['obj_output'], {}), '(obj_output)\n', (6102, 6114), True, 'import megengine.functional as F\n'), ((6116, 6137), 'megengine.functional.sigmoid', 'F.sigmoid', (['cls_output'], {}), '(cls_output)\n', (6125, 6137), True, 'import megengine.functional as F\n'), ((10035, 10061), 'megengine.functional.zeros', 'F.zeros', (['total_num_anchors'], {}), '(total_num_anchors)\n', (10042, 10061), True, 'import megengine.functional as F\n'), ((11132, 11156), 'megengine.functional.zeros', 'F.zeros', (['(num_fg_img, 4)'], {}), '((num_fg_img, 4))\n', (11139, 11156), True, 'import megengine.functional as F\n'), ((5873, 5913), 'megengine.functional.transpose', 'F.transpose', (['reg_output', '(0, 1, 3, 4, 2)'], {}), '(reg_output, (0, 1, 3, 4, 2))\n', (5884, 5913), True, 'import megengine.functional as F\n'), ((12047, 12067), 'megengine.functional.sigmoid', 'F.sigmoid', (['obj_preds'], {}), '(obj_preds)\n', (12056, 12067), True, 'import megengine.functional as F\n')]