code
stringlengths
110
64.5k
apis
list
extract_api
stringlengths
123
69.9k
import argparse import megengine.core.tensor.megbrain_graph as G import megengine.utils.comp_graph_tools as cgtools from megengine.core._imperative_rt import make_h2d def change_batch_and_dump(inp_file, oup_file): cg, _, outputs = G.load_graph(inp_file) inputs = cgtools.get_dep_vars(outputs[0], "Host2DeviceCopy") replace_dict = {} for var in inputs: n_shape = list(var.shape) n_shape[0] = 1 new_input = make_h2d(cg, "xpux", var.dtype, n_shape, var.name) replace_dict[var] = new_input new_outputs = cgtools.replace_vars(outputs, replace_dict) dump_content, _ = G.dump_graph(map(G.VarNode, new_outputs), keep_var_name=2) with open(oup_file, "wb") as file: file.write(dump_content) def main(): parser = argparse.ArgumentParser() parser.add_argument( "-i", "--input", required=True, type=str, help="Input megengine dump model file" ) parser.add_argument( "-o", "--output", required=True, type=str, help="Output batch1 model file" ) args = parser.parse_args() change_batch_and_dump(args.input, args.output) if __name__ == "__main__": main()
[ "megengine.core._imperative_rt.make_h2d", "megengine.utils.comp_graph_tools.replace_vars", "megengine.utils.comp_graph_tools.get_dep_vars", "megengine.core.tensor.megbrain_graph.load_graph" ]
[((238, 260), 'megengine.core.tensor.megbrain_graph.load_graph', 'G.load_graph', (['inp_file'], {}), '(inp_file)\n', (250, 260), True, 'import megengine.core.tensor.megbrain_graph as G\n'), ((274, 325), 'megengine.utils.comp_graph_tools.get_dep_vars', 'cgtools.get_dep_vars', (['outputs[0]', '"""Host2DeviceCopy"""'], {}), "(outputs[0], 'Host2DeviceCopy')\n", (294, 325), True, 'import megengine.utils.comp_graph_tools as cgtools\n'), ((556, 599), 'megengine.utils.comp_graph_tools.replace_vars', 'cgtools.replace_vars', (['outputs', 'replace_dict'], {}), '(outputs, replace_dict)\n', (576, 599), True, 'import megengine.utils.comp_graph_tools as cgtools\n'), ((780, 805), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (803, 805), False, 'import argparse\n'), ((448, 498), 'megengine.core._imperative_rt.make_h2d', 'make_h2d', (['cg', '"""xpux"""', 'var.dtype', 'n_shape', 'var.name'], {}), "(cg, 'xpux', var.dtype, n_shape, var.name)\n", (456, 498), False, 'from megengine.core._imperative_rt import make_h2d\n')]
import megengine.module as M import megengine.functional as F from megengine import amp from .update import BasicUpdateBlock from .extractor import BasicEncoder from .corr import AGCL from .attention import PositionEncodingSine, LocalFeatureTransformer class CREStereo(M.Module): def __init__(self, max_disp=192, mixed_precision=False, test_mode=False): super(CREStereo, self).__init__() self.max_flow = max_disp self.mixed_precision = mixed_precision self.test_mode = test_mode self.hidden_dim = 128 self.context_dim = 128 self.dropout = 0 # feature network and update block self.fnet = BasicEncoder( output_dim=256, norm_fn="instance", dropout=self.dropout ) self.update_block = BasicUpdateBlock( hidden_dim=self.hidden_dim, cor_planes=4 * 9, mask_size=4 ) # loftr self.self_att_fn = LocalFeatureTransformer( d_model=256, nhead=8, layer_names=["self"] * 1, attention="linear" ) self.cross_att_fn = LocalFeatureTransformer( d_model=256, nhead=8, layer_names=["cross"] * 1, attention="linear" ) # adaptive search self.search_num = 9 self.conv_offset_16 = M.Conv2d( 256, self.search_num * 2, kernel_size=3, stride=1, padding=1 ) self.conv_offset_8 = M.Conv2d( 256, self.search_num * 2, kernel_size=3, stride=1, padding=1 ) self.range_16 = 1 self.range_8 = 1 def freeze_bn(self): for m in self.modules(): if isinstance(m, M.BatchNorm2d): m.eval() def unfold(self, x, kernel_size, dilation=1, padding=0, stride=1): n, c, h, w = x.shape if isinstance(kernel_size, tuple) or isinstance(kernel_size, list): assert len(kernel_size) == 2 k1, k2 = kernel_size else: assert isinstance(kernel_size, int) k1 = k2 = kernel_size x = F.sliding_window( x, kernel_size=kernel_size, dilation=dilation, padding=padding, stride=stride, ) x = F.reshape(x, (n, c, -1, k1 * k2)) x = F.transpose(x, (0, 1, 3, 2)) x = F.reshape(x, (n, c * k1 * k2, -1)) return x def convex_upsample(self, flow, mask, rate=4): """[H/rate, W/rate, 2] -> [H, W, 2]""" N, _, H, W = flow.shape mask = F.reshape(mask, (N, 1, 9, rate, rate, H, W)) mask = F.softmax(mask, axis=2) up_flow = self.unfold(rate * flow, [3, 3], padding=1) up_flow = F.reshape(up_flow, (N, 2, 9, 1, 1, H, W)) up_flow = F.sum(mask * up_flow, axis=2) up_flow = F.transpose(up_flow, (0, 1, 4, 2, 5, 3)) return F.reshape(up_flow, (N, 2, rate * H, rate * W)) def zero_init(self, fmap): N, C, H, W = fmap.shape _x = F.zeros([N, 1, H, W], dtype="float32") _y = F.zeros([N, 1, H, W], dtype="float32") zero_flow = F.concat([_x, _y], axis=1).to(fmap.device) return zero_flow def forward(self, image1, image2, iters=10, flow_init=None): image1 = 2 * (image1 / 255.0) - 1.0 image2 = 2 * (image2 / 255.0) - 1.0 hdim = self.hidden_dim cdim = self.context_dim # feature network with amp.autocast(enabled=self.mixed_precision): fmap1, fmap2 = self.fnet([image1, image2]) fmap1 = fmap1.astype("float32") fmap2 = fmap2.astype("float32") with amp.autocast(enabled=self.mixed_precision): # 1/4 -> 1/8 # feature fmap1_dw8 = F.avg_pool2d(fmap1, 2, stride=2) fmap2_dw8 = F.avg_pool2d(fmap2, 2, stride=2) # offset offset_dw8 = self.conv_offset_8(fmap1_dw8) offset_dw8 = self.range_8 * (F.sigmoid(offset_dw8) - 0.5) * 2.0 # context net, inp = F.split(fmap1, [hdim], axis=1) net = F.tanh(net) inp = F.relu(inp) net_dw8 = F.avg_pool2d(net, 2, stride=2) inp_dw8 = F.avg_pool2d(inp, 2, stride=2) # 1/4 -> 1/16 # feature fmap1_dw16 = F.avg_pool2d(fmap1, 4, stride=4) fmap2_dw16 = F.avg_pool2d(fmap2, 4, stride=4) offset_dw16 = self.conv_offset_16(fmap1_dw16) offset_dw16 = self.range_16 * (F.sigmoid(offset_dw16) - 0.5) * 2.0 # context net_dw16 = F.avg_pool2d(net, 4, stride=4) inp_dw16 = F.avg_pool2d(inp, 4, stride=4) # positional encoding and self-attention pos_encoding_fn_small = PositionEncodingSine( d_model=256, max_shape=(image1.shape[2] // 16, image1.shape[3] // 16) ) # 'n c h w -> n (h w) c' x_tmp = pos_encoding_fn_small(fmap1_dw16) fmap1_dw16 = F.reshape( F.transpose(x_tmp, (0, 2, 3, 1)), (x_tmp.shape[0], x_tmp.shape[2] * x_tmp.shape[3], x_tmp.shape[1]), ) # 'n c h w -> n (h w) c' x_tmp = pos_encoding_fn_small(fmap2_dw16) fmap2_dw16 = F.reshape( F.transpose(x_tmp, (0, 2, 3, 1)), (x_tmp.shape[0], x_tmp.shape[2] * x_tmp.shape[3], x_tmp.shape[1]), ) fmap1_dw16, fmap2_dw16 = self.self_att_fn(fmap1_dw16, fmap2_dw16) fmap1_dw16, fmap2_dw16 = [ F.transpose( F.reshape(x, (x.shape[0], image1.shape[2] // 16, -1, x.shape[2])), (0, 3, 1, 2), ) for x in [fmap1_dw16, fmap2_dw16] ] corr_fn = AGCL(fmap1, fmap2) corr_fn_dw8 = AGCL(fmap1_dw8, fmap2_dw8) corr_fn_att_dw16 = AGCL(fmap1_dw16, fmap2_dw16, att=self.cross_att_fn) # Cascaded refinement (1/16 + 1/8 + 1/4) predictions = [] flow = None flow_up = None if flow_init is not None: scale = fmap1.shape[2] / flow_init.shape[2] flow = -scale * F.nn.interpolate( flow_init, size=(fmap1.shape[2], fmap1.shape[3]), mode="bilinear", align_corners=True, ) else: # zero initialization flow_dw16 = self.zero_init(fmap1_dw16) # Recurrent Update Module # RUM: 1/16 for itr in range(iters // 2): if itr % 2 == 0: small_patch = False else: small_patch = True flow_dw16 = flow_dw16.detach() out_corrs = corr_fn_att_dw16( flow_dw16, offset_dw16, small_patch=small_patch ) with amp.autocast(enabled=self.mixed_precision): net_dw16, up_mask, delta_flow = self.update_block( net_dw16, inp_dw16, out_corrs, flow_dw16 ) flow_dw16 = flow_dw16 + delta_flow flow = self.convex_upsample(flow_dw16, up_mask, rate=4) flow_up = -4 * F.nn.interpolate( flow, size=(4 * flow.shape[2], 4 * flow.shape[3]), mode="bilinear", align_corners=True, ) predictions.append(flow_up) scale = fmap1_dw8.shape[2] / flow.shape[2] flow_dw8 = -scale * F.nn.interpolate( flow, size=(fmap1_dw8.shape[2], fmap1_dw8.shape[3]), mode="bilinear", align_corners=True, ) # RUM: 1/8 for itr in range(iters // 2): if itr % 2 == 0: small_patch = False else: small_patch = True flow_dw8 = flow_dw8.detach() out_corrs = corr_fn_dw8(flow_dw8, offset_dw8, small_patch=small_patch) with amp.autocast(enabled=self.mixed_precision): net_dw8, up_mask, delta_flow = self.update_block( net_dw8, inp_dw8, out_corrs, flow_dw8 ) flow_dw8 = flow_dw8 + delta_flow flow = self.convex_upsample(flow_dw8, up_mask, rate=4) flow_up = -2 * F.nn.interpolate( flow, size=(2 * flow.shape[2], 2 * flow.shape[3]), mode="bilinear", align_corners=True, ) predictions.append(flow_up) scale = fmap1.shape[2] / flow.shape[2] flow = -scale * F.nn.interpolate( flow, size=(fmap1.shape[2], fmap1.shape[3]), mode="bilinear", align_corners=True, ) # RUM: 1/4 for itr in range(iters): if itr % 2 == 0: small_patch = False else: small_patch = True flow = flow.detach() out_corrs = corr_fn(flow, None, small_patch=small_patch, iter_mode=True) with amp.autocast(enabled=self.mixed_precision): net, up_mask, delta_flow = self.update_block(net, inp, out_corrs, flow) flow = flow + delta_flow flow_up = -self.convex_upsample(flow, up_mask, rate=4) predictions.append(flow_up) if self.test_mode: return flow_up return predictions
[ "megengine.functional.split", "megengine.functional.sigmoid", "megengine.functional.nn.interpolate", "megengine.functional.softmax", "megengine.functional.transpose", "megengine.amp.autocast", "megengine.functional.avg_pool2d", "megengine.functional.relu", "megengine.functional.sum", "megengine.functional.zeros", "megengine.functional.concat", "megengine.module.Conv2d", "megengine.functional.reshape", "megengine.functional.sliding_window", "megengine.functional.tanh" ]
[((1276, 1346), 'megengine.module.Conv2d', 'M.Conv2d', (['(256)', '(self.search_num * 2)'], {'kernel_size': '(3)', 'stride': '(1)', 'padding': '(1)'}), '(256, self.search_num * 2, kernel_size=3, stride=1, padding=1)\n', (1284, 1346), True, 'import megengine.module as M\n'), ((1398, 1468), 'megengine.module.Conv2d', 'M.Conv2d', (['(256)', '(self.search_num * 2)'], {'kernel_size': '(3)', 'stride': '(1)', 'padding': '(1)'}), '(256, self.search_num * 2, kernel_size=3, stride=1, padding=1)\n', (1406, 1468), True, 'import megengine.module as M\n'), ((2030, 2130), 'megengine.functional.sliding_window', 'F.sliding_window', (['x'], {'kernel_size': 'kernel_size', 'dilation': 'dilation', 'padding': 'padding', 'stride': 'stride'}), '(x, kernel_size=kernel_size, dilation=dilation, padding=\n padding, stride=stride)\n', (2046, 2130), True, 'import megengine.functional as F\n'), ((2209, 2242), 'megengine.functional.reshape', 'F.reshape', (['x', '(n, c, -1, k1 * k2)'], {}), '(x, (n, c, -1, k1 * k2))\n', (2218, 2242), True, 'import megengine.functional as F\n'), ((2255, 2283), 'megengine.functional.transpose', 'F.transpose', (['x', '(0, 1, 3, 2)'], {}), '(x, (0, 1, 3, 2))\n', (2266, 2283), True, 'import megengine.functional as F\n'), ((2296, 2330), 'megengine.functional.reshape', 'F.reshape', (['x', '(n, c * k1 * k2, -1)'], {}), '(x, (n, c * k1 * k2, -1))\n', (2305, 2330), True, 'import megengine.functional as F\n'), ((2494, 2538), 'megengine.functional.reshape', 'F.reshape', (['mask', '(N, 1, 9, rate, rate, H, W)'], {}), '(mask, (N, 1, 9, rate, rate, H, W))\n', (2503, 2538), True, 'import megengine.functional as F\n'), ((2554, 2577), 'megengine.functional.softmax', 'F.softmax', (['mask'], {'axis': '(2)'}), '(mask, axis=2)\n', (2563, 2577), True, 'import megengine.functional as F\n'), ((2659, 2700), 'megengine.functional.reshape', 'F.reshape', (['up_flow', '(N, 2, 9, 1, 1, H, W)'], {}), '(up_flow, (N, 2, 9, 1, 1, H, W))\n', (2668, 2700), True, 'import megengine.functional as F\n'), ((2720, 2749), 'megengine.functional.sum', 'F.sum', (['(mask * up_flow)'], {'axis': '(2)'}), '(mask * up_flow, axis=2)\n', (2725, 2749), True, 'import megengine.functional as F\n'), ((2768, 2808), 'megengine.functional.transpose', 'F.transpose', (['up_flow', '(0, 1, 4, 2, 5, 3)'], {}), '(up_flow, (0, 1, 4, 2, 5, 3))\n', (2779, 2808), True, 'import megengine.functional as F\n'), ((2824, 2870), 'megengine.functional.reshape', 'F.reshape', (['up_flow', '(N, 2, rate * H, rate * W)'], {}), '(up_flow, (N, 2, rate * H, rate * W))\n', (2833, 2870), True, 'import megengine.functional as F\n'), ((2948, 2986), 'megengine.functional.zeros', 'F.zeros', (['[N, 1, H, W]'], {'dtype': '"""float32"""'}), "([N, 1, H, W], dtype='float32')\n", (2955, 2986), True, 'import megengine.functional as F\n'), ((3000, 3038), 'megengine.functional.zeros', 'F.zeros', (['[N, 1, H, W]'], {'dtype': '"""float32"""'}), "([N, 1, H, W], dtype='float32')\n", (3007, 3038), True, 'import megengine.functional as F\n'), ((3386, 3428), 'megengine.amp.autocast', 'amp.autocast', ([], {'enabled': 'self.mixed_precision'}), '(enabled=self.mixed_precision)\n', (3398, 3428), False, 'from megengine import amp\n'), ((3580, 3622), 'megengine.amp.autocast', 'amp.autocast', ([], {'enabled': 'self.mixed_precision'}), '(enabled=self.mixed_precision)\n', (3592, 3622), False, 'from megengine import amp\n'), ((3696, 3728), 'megengine.functional.avg_pool2d', 'F.avg_pool2d', (['fmap1', '(2)'], {'stride': '(2)'}), '(fmap1, 2, stride=2)\n', (3708, 3728), True, 'import megengine.functional as F\n'), ((3753, 3785), 'megengine.functional.avg_pool2d', 'F.avg_pool2d', (['fmap2', '(2)'], {'stride': '(2)'}), '(fmap2, 2, stride=2)\n', (3765, 3785), True, 'import megengine.functional as F\n'), ((3985, 4015), 'megengine.functional.split', 'F.split', (['fmap1', '[hdim]'], {'axis': '(1)'}), '(fmap1, [hdim], axis=1)\n', (3992, 4015), True, 'import megengine.functional as F\n'), ((4034, 4045), 'megengine.functional.tanh', 'F.tanh', (['net'], {}), '(net)\n', (4040, 4045), True, 'import megengine.functional as F\n'), ((4064, 4075), 'megengine.functional.relu', 'F.relu', (['inp'], {}), '(inp)\n', (4070, 4075), True, 'import megengine.functional as F\n'), ((4098, 4128), 'megengine.functional.avg_pool2d', 'F.avg_pool2d', (['net', '(2)'], {'stride': '(2)'}), '(net, 2, stride=2)\n', (4110, 4128), True, 'import megengine.functional as F\n'), ((4151, 4181), 'megengine.functional.avg_pool2d', 'F.avg_pool2d', (['inp', '(2)'], {'stride': '(2)'}), '(inp, 2, stride=2)\n', (4163, 4181), True, 'import megengine.functional as F\n'), ((4256, 4288), 'megengine.functional.avg_pool2d', 'F.avg_pool2d', (['fmap1', '(4)'], {'stride': '(4)'}), '(fmap1, 4, stride=4)\n', (4268, 4288), True, 'import megengine.functional as F\n'), ((4314, 4346), 'megengine.functional.avg_pool2d', 'F.avg_pool2d', (['fmap2', '(4)'], {'stride': '(4)'}), '(fmap2, 4, stride=4)\n', (4326, 4346), True, 'import megengine.functional as F\n'), ((4530, 4560), 'megengine.functional.avg_pool2d', 'F.avg_pool2d', (['net', '(4)'], {'stride': '(4)'}), '(net, 4, stride=4)\n', (4542, 4560), True, 'import megengine.functional as F\n'), ((4584, 4614), 'megengine.functional.avg_pool2d', 'F.avg_pool2d', (['inp', '(4)'], {'stride': '(4)'}), '(inp, 4, stride=4)\n', (4596, 4614), True, 'import megengine.functional as F\n'), ((3059, 3085), 'megengine.functional.concat', 'F.concat', (['[_x, _y]'], {'axis': '(1)'}), '([_x, _y], axis=1)\n', (3067, 3085), True, 'import megengine.functional as F\n'), ((4970, 5002), 'megengine.functional.transpose', 'F.transpose', (['x_tmp', '(0, 2, 3, 1)'], {}), '(x_tmp, (0, 2, 3, 1))\n', (4981, 5002), True, 'import megengine.functional as F\n'), ((5244, 5276), 'megengine.functional.transpose', 'F.transpose', (['x_tmp', '(0, 2, 3, 1)'], {}), '(x_tmp, (0, 2, 3, 1))\n', (5255, 5276), True, 'import megengine.functional as F\n'), ((6127, 6235), 'megengine.functional.nn.interpolate', 'F.nn.interpolate', (['flow_init'], {'size': '(fmap1.shape[2], fmap1.shape[3])', 'mode': '"""bilinear"""', 'align_corners': '(True)'}), "(flow_init, size=(fmap1.shape[2], fmap1.shape[3]), mode=\n 'bilinear', align_corners=True)\n", (6143, 6235), True, 'import megengine.functional as F\n'), ((7543, 7654), 'megengine.functional.nn.interpolate', 'F.nn.interpolate', (['flow'], {'size': '(fmap1_dw8.shape[2], fmap1_dw8.shape[3])', 'mode': '"""bilinear"""', 'align_corners': '(True)'}), "(flow, size=(fmap1_dw8.shape[2], fmap1_dw8.shape[3]), mode=\n 'bilinear', align_corners=True)\n", (7559, 7654), True, 'import megengine.functional as F\n'), ((8762, 8865), 'megengine.functional.nn.interpolate', 'F.nn.interpolate', (['flow'], {'size': '(fmap1.shape[2], fmap1.shape[3])', 'mode': '"""bilinear"""', 'align_corners': '(True)'}), "(flow, size=(fmap1.shape[2], fmap1.shape[3]), mode=\n 'bilinear', align_corners=True)\n", (8778, 8865), True, 'import megengine.functional as F\n'), ((9248, 9290), 'megengine.amp.autocast', 'amp.autocast', ([], {'enabled': 'self.mixed_precision'}), '(enabled=self.mixed_precision)\n', (9260, 9290), False, 'from megengine import amp\n'), ((5542, 5607), 'megengine.functional.reshape', 'F.reshape', (['x', '(x.shape[0], image1.shape[2] // 16, -1, x.shape[2])'], {}), '(x, (x.shape[0], image1.shape[2] // 16, -1, x.shape[2]))\n', (5551, 5607), True, 'import megengine.functional as F\n'), ((6850, 6892), 'megengine.amp.autocast', 'amp.autocast', ([], {'enabled': 'self.mixed_precision'}), '(enabled=self.mixed_precision)\n', (6862, 6892), False, 'from megengine import amp\n'), ((7207, 7316), 'megengine.functional.nn.interpolate', 'F.nn.interpolate', (['flow'], {'size': '(4 * flow.shape[2], 4 * flow.shape[3])', 'mode': '"""bilinear"""', 'align_corners': '(True)'}), "(flow, size=(4 * flow.shape[2], 4 * flow.shape[3]), mode=\n 'bilinear', align_corners=True)\n", (7223, 7316), True, 'import megengine.functional as F\n'), ((8084, 8126), 'megengine.amp.autocast', 'amp.autocast', ([], {'enabled': 'self.mixed_precision'}), '(enabled=self.mixed_precision)\n', (8096, 8126), False, 'from megengine import amp\n'), ((8434, 8543), 'megengine.functional.nn.interpolate', 'F.nn.interpolate', (['flow'], {'size': '(2 * flow.shape[2], 2 * flow.shape[3])', 'mode': '"""bilinear"""', 'align_corners': '(True)'}), "(flow, size=(2 * flow.shape[2], 2 * flow.shape[3]), mode=\n 'bilinear', align_corners=True)\n", (8450, 8543), True, 'import megengine.functional as F\n'), ((3904, 3925), 'megengine.functional.sigmoid', 'F.sigmoid', (['offset_dw8'], {}), '(offset_dw8)\n', (3913, 3925), True, 'import megengine.functional as F\n'), ((4448, 4470), 'megengine.functional.sigmoid', 'F.sigmoid', (['offset_dw16'], {}), '(offset_dw16)\n', (4457, 4470), True, 'import megengine.functional as F\n')]
from sfepy.base.testing import TestCommon, assert_ ## # 28.08.2007, c class Test( TestCommon ): ## # 28.08.2007, c def from_conf( conf, options ): return Test( conf = conf, options = options ) from_conf = staticmethod( from_conf ) ## # 28.08.2007, c def test_struct_add( self ): from sfepy.base.base import Struct from copy import deepcopy a = Struct( f1 = 0, f2 = [1, 2, 3], f3 = Struct( ff = 'abc' ), f4 = 3.14 ) a0 = deepcopy( a ) b = Struct( f1 = 5, f2 = [1], f3 = Struct( ff = '', gg = 123 ), f5 = 'new one' ) c = a + b assert_( c.f1 == 0 ) assert_( c.f2 == [1, 2, 3] ) assert_( c.f3.ff == 'abc' ) assert_( c.f3.gg == 123 ) assert_( c.f4 == 3.14 ) assert_( c.f5 == 'new one' ) assert_( a.f1 == a0.f1 ) assert_( a.f2 == a0.f2 ) assert_( a.f3.ff == a0.f3.ff ) assert_( a.f4 == a0.f4 ) return True ## # 28.08.2007, c def test_struct_i_add( self ): from sfepy.base.base import Struct a = Struct( f1 = 0, f2 = [1, 2, 3], f3 = Struct( ff = 'abc' ) ) b = Struct( f1 = 5, f2 = [1], f3 = Struct( ff = '', gg = 123 ), f4 = 'new one' ) a += b assert_( a.f1 == 0 ) assert_( a.f2 == [1, 2, 3] ) assert_( a.f3.ff == 'abc' ) assert_( a.f3.gg == 123 ) assert_( a.f4 == 'new one' ) return True
[ "sfepy.base.testing.assert_", "sfepy.base.base.Struct" ]
[((552, 563), 'copy.deepcopy', 'deepcopy', (['a'], {}), '(a)\n', (560, 563), False, 'from copy import deepcopy\n'), ((742, 760), 'sfepy.base.testing.assert_', 'assert_', (['(c.f1 == 0)'], {}), '(c.f1 == 0)\n', (749, 760), False, 'from sfepy.base.testing import TestCommon, assert_\n'), ((771, 797), 'sfepy.base.testing.assert_', 'assert_', (['(c.f2 == [1, 2, 3])'], {}), '(c.f2 == [1, 2, 3])\n', (778, 797), False, 'from sfepy.base.testing import TestCommon, assert_\n'), ((808, 833), 'sfepy.base.testing.assert_', 'assert_', (["(c.f3.ff == 'abc')"], {}), "(c.f3.ff == 'abc')\n", (815, 833), False, 'from sfepy.base.testing import TestCommon, assert_\n'), ((844, 867), 'sfepy.base.testing.assert_', 'assert_', (['(c.f3.gg == 123)'], {}), '(c.f3.gg == 123)\n', (851, 867), False, 'from sfepy.base.testing import TestCommon, assert_\n'), ((878, 899), 'sfepy.base.testing.assert_', 'assert_', (['(c.f4 == 3.14)'], {}), '(c.f4 == 3.14)\n', (885, 899), False, 'from sfepy.base.testing import TestCommon, assert_\n'), ((910, 936), 'sfepy.base.testing.assert_', 'assert_', (["(c.f5 == 'new one')"], {}), "(c.f5 == 'new one')\n", (917, 936), False, 'from sfepy.base.testing import TestCommon, assert_\n'), ((948, 970), 'sfepy.base.testing.assert_', 'assert_', (['(a.f1 == a0.f1)'], {}), '(a.f1 == a0.f1)\n', (955, 970), False, 'from sfepy.base.testing import TestCommon, assert_\n'), ((981, 1003), 'sfepy.base.testing.assert_', 'assert_', (['(a.f2 == a0.f2)'], {}), '(a.f2 == a0.f2)\n', (988, 1003), False, 'from sfepy.base.testing import TestCommon, assert_\n'), ((1014, 1042), 'sfepy.base.testing.assert_', 'assert_', (['(a.f3.ff == a0.f3.ff)'], {}), '(a.f3.ff == a0.f3.ff)\n', (1021, 1042), False, 'from sfepy.base.testing import TestCommon, assert_\n'), ((1053, 1075), 'sfepy.base.testing.assert_', 'assert_', (['(a.f4 == a0.f4)'], {}), '(a.f4 == a0.f4)\n', (1060, 1075), False, 'from sfepy.base.testing import TestCommon, assert_\n'), ((1491, 1509), 'sfepy.base.testing.assert_', 'assert_', (['(a.f1 == 0)'], {}), '(a.f1 == 0)\n', (1498, 1509), False, 'from sfepy.base.testing import TestCommon, assert_\n'), ((1520, 1546), 'sfepy.base.testing.assert_', 'assert_', (['(a.f2 == [1, 2, 3])'], {}), '(a.f2 == [1, 2, 3])\n', (1527, 1546), False, 'from sfepy.base.testing import TestCommon, assert_\n'), ((1557, 1582), 'sfepy.base.testing.assert_', 'assert_', (["(a.f3.ff == 'abc')"], {}), "(a.f3.ff == 'abc')\n", (1564, 1582), False, 'from sfepy.base.testing import TestCommon, assert_\n'), ((1593, 1616), 'sfepy.base.testing.assert_', 'assert_', (['(a.f3.gg == 123)'], {}), '(a.f3.gg == 123)\n', (1600, 1616), False, 'from sfepy.base.testing import TestCommon, assert_\n'), ((1627, 1653), 'sfepy.base.testing.assert_', 'assert_', (["(a.f4 == 'new one')"], {}), "(a.f4 == 'new one')\n", (1634, 1653), False, 'from sfepy.base.testing import TestCommon, assert_\n'), ((485, 501), 'sfepy.base.base.Struct', 'Struct', ([], {'ff': '"""abc"""'}), "(ff='abc')\n", (491, 501), False, 'from sfepy.base.base import Struct\n'), ((649, 670), 'sfepy.base.base.Struct', 'Struct', ([], {'ff': '""""""', 'gg': '(123)'}), "(ff='', gg=123)\n", (655, 670), False, 'from sfepy.base.base import Struct\n'), ((1295, 1311), 'sfepy.base.base.Struct', 'Struct', ([], {'ff': '"""abc"""'}), "(ff='abc')\n", (1301, 1311), False, 'from sfepy.base.base import Struct\n'), ((1401, 1422), 'sfepy.base.base.Struct', 'Struct', ([], {'ff': '""""""', 'gg': '(123)'}), "(ff='', gg=123)\n", (1407, 1422), False, 'from sfepy.base.base import Struct\n')]
import logging from sqlmodel import SQLModel, create_engine import json from dataclasses import dataclass from etl.stores import run as etl_stores from etl.sales import run as etl_sales from etl.products import run as etl_products # config to define variables @dataclass class Config: stores_url: str stores_filepath: str db_conn_uri: str log_level: str # TODO convert this to a DAG or a pipeline if __name__ == '__main__': # load the config config_dict = {} with open('config.json', 'r') as f: config_dict = json.load(f) if config_dict['log_level'] == 'DEBUG': config_dict['log_level'] = logging.DEBUG else: config_dict['log_level'] = logging.INFO # create the config object config = Config(**config_dict) # setup logging logging.basicConfig() logging.getLogger().setLevel(config.log_level) # create the database engine engine = create_engine(config.db_conn_uri) # create the sqlmodel metadata for the engine SQLModel.metadata.create_all(engine) # handle stores etl_stores(config.stores_filepath, config.stores_url, engine) # handle products etl_products(engine) # handle sales data etl_sales(engine)
[ "sqlmodel.create_engine", "sqlmodel.SQLModel.metadata.create_all" ]
[((807, 828), 'logging.basicConfig', 'logging.basicConfig', ([], {}), '()\n', (826, 828), False, 'import logging\n'), ((927, 960), 'sqlmodel.create_engine', 'create_engine', (['config.db_conn_uri'], {}), '(config.db_conn_uri)\n', (940, 960), False, 'from sqlmodel import SQLModel, create_engine\n'), ((1016, 1052), 'sqlmodel.SQLModel.metadata.create_all', 'SQLModel.metadata.create_all', (['engine'], {}), '(engine)\n', (1044, 1052), False, 'from sqlmodel import SQLModel, create_engine\n'), ((1078, 1139), 'etl.stores.run', 'etl_stores', (['config.stores_filepath', 'config.stores_url', 'engine'], {}), '(config.stores_filepath, config.stores_url, engine)\n', (1088, 1139), True, 'from etl.stores import run as etl_stores\n'), ((1167, 1187), 'etl.products.run', 'etl_products', (['engine'], {}), '(engine)\n', (1179, 1187), True, 'from etl.products import run as etl_products\n'), ((1220, 1237), 'etl.sales.run', 'etl_sales', (['engine'], {}), '(engine)\n', (1229, 1237), True, 'from etl.sales import run as etl_sales\n'), ((547, 559), 'json.load', 'json.load', (['f'], {}), '(f)\n', (556, 559), False, 'import json\n'), ((833, 852), 'logging.getLogger', 'logging.getLogger', ([], {}), '()\n', (850, 852), False, 'import logging\n')]
# Some code is modified from pytorch # pytorch is licensed under BSD # From PyTorch: # Copyright (c) 2016- Facebook, Inc (<NAME>) # Copyright (c) 2014- Facebook, Inc (<NAME>) # Copyright (c) 2011-2014 Idiap Research Institute (<NAME>) # Copyright (c) 2012-2014 Deepmind Technologies (Koray Kavukcuoglu) # Copyright (c) 2011-2012 NEC Laboratories America (Koray Kavukcuoglu) # Copyright (c) 2011-2013 NYU (<NAME>) # Copyright (c) 2006-2010 NEC Laboratories America (<NAME>, <NAME>, <NAME>, <NAME>) # Copyright (c) 2006 Idiap Research Institute (<NAME>) # Copyright (c) 2001-2004 Idiap Research Institute (<NAME>, <NAME>, <NAME>) # From Caffe2: # Copyright (c) 2016-present, Facebook Inc. All rights reserved. # All contributions by Facebook: # Copyright (c) 2016 Facebook Inc. # All contributions by Google: # Copyright (c) 2015 Google Inc. # All rights reserved. # All contributions by Yang<NAME>: # Copyright (c) 2015 Yang<NAME> # All rights reserved. # All contributions by Kakao Brain: # Copyright 2019-2020 Kakao Brain # All contributions from Caffe: # Copyright(c) 2013, 2014, 2015, the respective contributors # All rights reserved. # All other contributions: # Copyright(c) 2015, 2016 the respective contributors # All rights reserved. # Caffe2 uses a copyright model similar to Caffe: each contributor holds # copyright over their contributions to Caffe2. The project versioning records # all such contribution and copyright details. If a contributor wants to further # mark their specific copyright on a particular contribution, they should # indicate their copyright solely in the commit message of the change when it is # committed. # All rights reserved. # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # 1. Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # 3. Neither the names of Facebook, Deepmind Technologies, NYU, NEC Laboratories America # and IDIAP Research Institute nor the names of its contributors may be # used to endorse or promote products derived from this software without # specific prior written permission. # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. import megengine as mge import megengine.module as M from megengine import functional as F from megengine import Parameter from megengine.module.init import xavier_uniform_, zeros_ from typing import List, Tuple, Dict, Optional import numpy as np from .utility import safe_masked_fill, has_nan_or_inf def multi_head_attention_forward( query: mge.Tensor, key: mge.Tensor, value: mge.Tensor, embed_dim_to_check: int, num_heads: int, in_proj_weight: mge.Tensor, in_proj_bias: Optional[mge.Tensor], bias_k: Optional[mge.Tensor], bias_v: Optional[mge.Tensor], add_zero_attn: bool, dropout_p: float, out_proj_weight: mge.Tensor, out_proj_bias: Optional[mge.Tensor], training: bool = True, key_padding_mask: Optional[mge.Tensor] = None, need_weights: bool = True, attn_mask: Optional[mge.Tensor] = None, use_separate_proj_weight: bool = False, q_proj_weight: Optional[mge.Tensor] = None, k_proj_weight: Optional[mge.Tensor] = None, v_proj_weight: Optional[mge.Tensor] = None, static_k: Optional[mge.Tensor] = None, static_v: Optional[mge.Tensor] = None, proj_only: bool = False ) -> Tuple[mge.Tensor, Optional[mge.Tensor]]: r""" Args: query, key, value: map a query and a set of key-value pairs to an output. See "Attention Is All You Need" for more details. embed_dim_to_check: total dimension of the model. num_heads: parallel attention heads. in_proj_weight, in_proj_bias: input projection weight and bias. bias_k, bias_v: bias of the key and value sequences to be added at dim=0. add_zero_attn: add a new batch of zeros to the key and value sequences at dim=1. dropout_p: probability of an element to be zeroed. out_proj_weight, out_proj_bias: the output projection weight and bias. training: apply dropout if is ``True``. key_padding_mask: if provided, specified padding elements in the key will be ignored by the attention. This is an binary mask. When the value is True, the corresponding value on the attention layer will be filled with -inf. need_weights: output attn_output_weights. attn_mask: 2D or 3D mask that prevents attention to certain positions. A 2D mask will be broadcasted for all the batches while a 3D mask allows to specify a different mask for the entries of each batch. use_separate_proj_weight: the function accept the proj. weights for query, key, and value in different forms. If false, in_proj_weight will be used, which is a combination of q_proj_weight, k_proj_weight, v_proj_weight. q_proj_weight, k_proj_weight, v_proj_weight, in_proj_bias: input projection weight and bias. static_k, static_v: static key and value used for attention operators. Shape: Inputs: - query: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is the embedding dimension. - key: :math:`(S, N, E)`, where S is the source sequence length, N is the batch size, E is the embedding dimension. - value: :math:`(S, N, E)` where S is the source sequence length, N is the batch size, E is the embedding dimension. - key_padding_mask: :math:`(N, S)` where N is the batch size, S is the source sequence length. If a ByteTensor is provided, the non-zero positions will be ignored while the zero positions will be unchanged. If a BoolTensor is provided, the positions with the value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged. - attn_mask: 2D mask :math:`(L, S)` where L is the target sequence length, S is the source sequence length. 3D mask :math:`(N*num_heads, L, S)` where N is the batch size, L is the target sequence length, S is the source sequence length. attn_mask ensures that position i is allowed to attend the unmasked positions. If a ByteTensor is provided, the non-zero positions are not allowed to attend while the zero positions will be unchanged. If a BoolTensor is provided, positions with ``True`` are not allowed to attend while ``False`` values will be unchanged. If a FloatTensor is provided, it will be added to the attention weight. - static_k: :math:`(N*num_heads, S, E/num_heads)`, where S is the source sequence length, N is the batch size, E is the embedding dimension. E/num_heads is the head dimension. - static_v: :math:`(N*num_heads, S, E/num_heads)`, where S is the source sequence length, N is the batch size, E is the embedding dimension. E/num_heads is the head dimension. Outputs: - attn_output: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is the embedding dimension. - attn_output_weights: :math:`(N, L, S)` where N is the batch size, L is the target sequence length, S is the source sequence length. """ tgt_len, bsz, embed_dim = query.shape assert embed_dim == embed_dim_to_check # allow MHA to have different sizes for the feature dimension assert key.shape[0] == value.shape[0] and key.shape[1] == value.shape[1] if isinstance(embed_dim, mge.Tensor): # embed_dim can be a tensor when JIT tracing #head_dim = embed_dim.div(num_heads, rounding_mode='trunc') #NOTE: when positive number, floor_div is equivalent to trunc_div (in megengine only floor_div is available) head_dim = F.floor_div(embed_dim, num_heads) else: head_dim = embed_dim // num_heads assert head_dim * num_heads == embed_dim, "embed_dim must be divisible by num_heads" scaling = float(head_dim) ** -0.5 assert not use_separate_proj_weight assert need_weights assert attn_mask is None assert bias_k is None and bias_v is None assert not add_zero_attn # This is inline in_proj function with in_proj_weight and in_proj_bias _b = in_proj_bias _start = 0 _end = embed_dim _w = in_proj_weight[_start:_end, :] if _b is not None: _b = _b[_start:_end] q = F.linear(query, _w, _b) # This is inline in_proj function with in_proj_weight and in_proj_bias _b = in_proj_bias _start = embed_dim _end = embed_dim * 2 _w = in_proj_weight[_start:_end, :] if _b is not None: _b = _b[_start:_end] k = F.linear(key, _w, _b) # This is inline in_proj function with in_proj_weight and in_proj_bias _b = in_proj_bias _start = embed_dim * 2 _end = None _w = in_proj_weight[_start:, :] if _b is not None: _b = _b[_start:] v = F.linear(value, _w, _b) q = q * scaling raw_v = v raw_v = raw_v.reshape(-1, bsz, num_heads, head_dim) if proj_only: return query, None, raw_v # convert ByteTensor key_padding_mask to bool if key_padding_mask is not None and key_padding_mask.dtype == np.uint8: warnings.warn( "Byte tensor for key_padding_mask in nn.MultiheadAttention is deprecated. Use bool tensor instead." ) key_padding_mask = key_padding_mask.astype(np.bool) #def _pad_last_dim_right_only(tensor): # ''' # To replace with torch.nn.functional.pad(tensor, (0, 1)) # ''' # return F.concat([tensor, F.expand_dims(F.zeros(tensor.shape[:-1]), axis=-1)], axis=-1) #q = q.contiguous().view(tgt_len, bsz * num_heads, head_dim).transpose(0, 1) q = q.reshape(tgt_len, bsz * num_heads, head_dim).transpose(1, 0, 2) if k is not None: #k = k.contiguous().view(-1, bsz * num_heads, head_dim).transpose(0, 1) k = k.reshape(-1, bsz * num_heads, head_dim).transpose(1, 0, 2) if v is not None: #v = v.contiguous().view(-1, bsz * num_heads, head_dim).transpose(0, 1) v = v.reshape(-1, bsz * num_heads, head_dim).transpose(1, 0, 2) if static_k is not None: assert static_k.shape[0] == bsz * num_heads assert static_k.shape[2] == head_dim k = static_k if static_v is not None: assert static_v.shape[0] == bsz * num_heads assert static_v.shape[2] == head_dim v = static_v src_len = k.shape[1] if key_padding_mask is not None: assert key_padding_mask.shape[1] == src_len #attn_output_weights = torch.bmm(q, k.transpose(1, 2)) attn_output_weights = F.matmul(q, k.transpose(0, 2, 1)) assert list(attn_output_weights.shape) == [bsz * num_heads, tgt_len, src_len] if key_padding_mask is not None: attn_output_weights = attn_output_weights.reshape(bsz, num_heads, tgt_len, src_len) key_padding_mask = F.expand_dims(F.expand_dims(key_padding_mask, axis=1), axis=2) attn_output_weights = safe_masked_fill(attn_output_weights, key_padding_mask, float("-inf")) attn_output_weights = attn_output_weights.reshape(bsz * num_heads, tgt_len, src_len) attn_output_weights_no_softmax = attn_output_weights attn_output_weights = F.softmax(attn_output_weights, axis=-1) attn_output_weights = F.dropout(attn_output_weights, dropout_p, training=training) attn_output = F.matmul(attn_output_weights, v) assert attn_output.shape == (bsz * num_heads, tgt_len, head_dim) attn_output = F.transpose(attn_output, (1, 0, 2)).reshape(tgt_len, bsz, embed_dim) attn_output = F.nn.linear(attn_output, out_proj_weight, out_proj_bias) # average attention weights over heads attn_output_weights = attn_output_weights_no_softmax.reshape(bsz, num_heads, tgt_len, src_len) return attn_output, attn_output_weights, raw_v class MultiheadAttention(M.Module): r"""Allows the model to jointly attend to information from different representation subspaces. See `Attention Is All You Need <https://arxiv.org/abs/1706.03762>`_ .. math:: \text{MultiHead}(Q, K, V) = \text{Concat}(head_1,\dots,head_h)W^O where :math:`head_i = \text{Attention}(QW_i^Q, KW_i^K, VW_i^V)`. Args: embed_dim: total dimension of the model. num_heads: parallel attention heads. dropout: a Dropout layer on attn_output_weights. Default: 0.0. bias: add bias as module parameter. Default: True. add_bias_kv: add bias to the key and value sequences at dim=0. add_zero_attn: add a new batch of zeros to the key and value sequences at dim=1. kdim: total number of features in key. Default: None. vdim: total number of features in value. Default: None. batch_first: If ``True``, then the input and output tensors are provided as (batch, seq, feature). Default: ``False`` (seq, batch, feature). Note that if :attr:`kdim` and :attr:`vdim` are None, they will be set to :attr:`embed_dim` such that query, key, and value have the same number of features. Examples:: >>> multihead_attn = nn.MultiheadAttention(embed_dim, num_heads) >>> attn_output, attn_output_weights = multihead_attn(query, key, value) """ __constants__ = ['batch_first'] bias_k: Optional[mge.Tensor] bias_v: Optional[mge.Tensor] def __init__(self, embed_dim, num_heads, dropout=0., bias=True, add_bias_kv=False, add_zero_attn=False, kdim=None, vdim=None, batch_first=False): super(MultiheadAttention, self).__init__() self.embed_dim = embed_dim self.kdim = kdim if kdim is not None else embed_dim self.vdim = vdim if vdim is not None else embed_dim # True By default self._qkv_same_embed_dim = self.kdim == embed_dim and self.vdim == embed_dim self.num_heads = num_heads self.dropout = dropout # False By default self.batch_first = batch_first self.head_dim = embed_dim // num_heads assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads" self.in_proj_weight = Parameter(F.zeros((3 * embed_dim, embed_dim))) if bias: self.in_proj_bias = Parameter(F.zeros((3 * embed_dim,))) else: self.in_proj_bias = None self.out_proj = M.Linear(embed_dim, embed_dim, bias=bias) if add_bias_kv: self.bias_k = Parameter(F.zeros((1, 1, embed_dim))) self.bias_v = Parameter(F.zeros((1, 1, embed_dim))) else: self.bias_k = self.bias_v = None self.add_zero_attn = add_zero_attn self._reset_parameters() def _reset_parameters(self): xavier_uniform_(self.in_proj_weight) if self.in_proj_bias is not None: zeros_(self.in_proj_bias) zeros_(self.out_proj.bias) if self.bias_k is not None: xavier_normal_(self.bias_k) if self.bias_v is not None: xavier_normal_(self.bias_v) def __setstate__(self, state): # Support loading old MultiheadAttention checkpoints generated by v1.1.0 if '_qkv_same_embed_dim' not in state: state['_qkv_same_embed_dim'] = True super(MultiheadAttention, self).__setstate__(state) def forward(self, query: mge.Tensor, key: mge.Tensor, value: mge.Tensor, key_padding_mask: Optional[mge.Tensor] = None, need_weights: bool = True, attn_mask: Optional[mge.Tensor] = None, proj_only=False) -> Tuple[mge.Tensor, Optional[mge.Tensor]]: r""" Args: query, key, value: map a query and a set of key-value pairs to an output. See "Attention Is All You Need" for more details. key_padding_mask: if provided, specified padding elements in the key will be ignored by the attention. When given a binary mask and a value is True, the corresponding value on the attention layer will be ignored. When given a byte mask and a value is non-zero, the corresponding value on the attention layer will be ignored need_weights: output attn_output_weights. attn_mask: 2D or 3D mask that prevents attention to certain positions. A 2D mask will be broadcasted for all the batches while a 3D mask allows to specify a different mask for the entries of each batch. Shapes for inputs: - query: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is the embedding dimension. :math:`(N, L, E)` if ``batch_first`` is ``True``. - key: :math:`(S, N, E)`, where S is the source sequence length, N is the batch size, E is the embedding dimension. :math:`(N, S, E)` if ``batch_first`` is ``True``. - value: :math:`(S, N, E)` where S is the source sequence length, N is the batch size, E is the embedding dimension. :math:`(N, S, E)` if ``batch_first`` is ``True``. - key_padding_mask: :math:`(N, S)` where N is the batch size, S is the source sequence length. If a ByteTensor is provided, the non-zero positions will be ignored while the position with the zero positions will be unchanged. If a BoolTensor is provided, the positions with the value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged. - attn_mask: if a 2D mask: :math:`(L, S)` where L is the target sequence length, S is the source sequence length. If a 3D mask: :math:`(N\cdot\text{num\_heads}, L, S)` where N is the batch size, L is the target sequence length, S is the source sequence length. ``attn_mask`` ensure that position i is allowed to attend the unmasked positions. If a ByteTensor is provided, the non-zero positions are not allowed to attend while the zero positions will be unchanged. If a BoolTensor is provided, positions with ``True`` is not allowed to attend while ``False`` values will be unchanged. If a FloatTensor is provided, it will be added to the attention weight. Shapes for outputs: - attn_output: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is the embedding dimension. :math:`(N, L, E)` if ``batch_first`` is ``True``. - attn_output_weights: :math:`(N, L, S)` where N is the batch size, L is the target sequence length, S is the source sequence length. """ attn_output, attn_output_weights, values = multi_head_attention_forward( query, key, value, self.embed_dim, self.num_heads, self.in_proj_weight, self.in_proj_bias, self.bias_k, self.bias_v, self.add_zero_attn, self.dropout, self.out_proj.weight, self.out_proj.bias, training=self.training, key_padding_mask=key_padding_mask, need_weights=need_weights, #need_weights by default is True attn_mask=attn_mask, proj_only=proj_only) return attn_output, attn_output_weights, values
[ "megengine.functional.nn.linear", "megengine.functional.floor_div", "megengine.functional.zeros", "megengine.module.init.zeros_", "megengine.functional.matmul", "megengine.functional.softmax", "megengine.functional.expand_dims", "megengine.functional.transpose", "megengine.functional.dropout", "megengine.module.Linear", "megengine.functional.linear", "megengine.module.init.xavier_uniform_" ]
[((9573, 9596), 'megengine.functional.linear', 'F.linear', (['query', '_w', '_b'], {}), '(query, _w, _b)\n', (9581, 9596), True, 'from megengine import functional as F\n'), ((9843, 9864), 'megengine.functional.linear', 'F.linear', (['key', '_w', '_b'], {}), '(key, _w, _b)\n', (9851, 9864), True, 'from megengine import functional as F\n'), ((10098, 10121), 'megengine.functional.linear', 'F.linear', (['value', '_w', '_b'], {}), '(value, _w, _b)\n', (10106, 10121), True, 'from megengine import functional as F\n'), ((12452, 12491), 'megengine.functional.softmax', 'F.softmax', (['attn_output_weights'], {'axis': '(-1)'}), '(attn_output_weights, axis=-1)\n', (12461, 12491), True, 'from megengine import functional as F\n'), ((12518, 12578), 'megengine.functional.dropout', 'F.dropout', (['attn_output_weights', 'dropout_p'], {'training': 'training'}), '(attn_output_weights, dropout_p, training=training)\n', (12527, 12578), True, 'from megengine import functional as F\n'), ((12598, 12630), 'megengine.functional.matmul', 'F.matmul', (['attn_output_weights', 'v'], {}), '(attn_output_weights, v)\n', (12606, 12630), True, 'from megengine import functional as F\n'), ((12805, 12861), 'megengine.functional.nn.linear', 'F.nn.linear', (['attn_output', 'out_proj_weight', 'out_proj_bias'], {}), '(attn_output, out_proj_weight, out_proj_bias)\n', (12816, 12861), True, 'from megengine import functional as F\n'), ((8958, 8991), 'megengine.functional.floor_div', 'F.floor_div', (['embed_dim', 'num_heads'], {}), '(embed_dim, num_heads)\n', (8969, 8991), True, 'from megengine import functional as F\n'), ((15589, 15630), 'megengine.module.Linear', 'M.Linear', (['embed_dim', 'embed_dim'], {'bias': 'bias'}), '(embed_dim, embed_dim, bias=bias)\n', (15597, 15630), True, 'import megengine.module as M\n'), ((15963, 15999), 'megengine.module.init.xavier_uniform_', 'xavier_uniform_', (['self.in_proj_weight'], {}), '(self.in_proj_weight)\n', (15978, 15999), False, 'from megengine.module.init import xavier_uniform_, zeros_\n'), ((12125, 12164), 'megengine.functional.expand_dims', 'F.expand_dims', (['key_padding_mask'], {'axis': '(1)'}), '(key_padding_mask, axis=1)\n', (12138, 12164), True, 'from megengine import functional as F\n'), ((12718, 12753), 'megengine.functional.transpose', 'F.transpose', (['attn_output', '(1, 0, 2)'], {}), '(attn_output, (1, 0, 2))\n', (12729, 12753), True, 'from megengine import functional as F\n'), ((15390, 15425), 'megengine.functional.zeros', 'F.zeros', (['(3 * embed_dim, embed_dim)'], {}), '((3 * embed_dim, embed_dim))\n', (15397, 15425), True, 'from megengine import functional as F\n'), ((16055, 16080), 'megengine.module.init.zeros_', 'zeros_', (['self.in_proj_bias'], {}), '(self.in_proj_bias)\n', (16061, 16080), False, 'from megengine.module.init import xavier_uniform_, zeros_\n'), ((16093, 16119), 'megengine.module.init.zeros_', 'zeros_', (['self.out_proj.bias'], {}), '(self.out_proj.bias)\n', (16099, 16119), False, 'from megengine.module.init import xavier_uniform_, zeros_\n'), ((15487, 15512), 'megengine.functional.zeros', 'F.zeros', (['(3 * embed_dim,)'], {}), '((3 * embed_dim,))\n', (15494, 15512), True, 'from megengine import functional as F\n'), ((15692, 15718), 'megengine.functional.zeros', 'F.zeros', (['(1, 1, embed_dim)'], {}), '((1, 1, embed_dim))\n', (15699, 15718), True, 'from megengine import functional as F\n'), ((15756, 15782), 'megengine.functional.zeros', 'F.zeros', (['(1, 1, embed_dim)'], {}), '((1, 1, embed_dim))\n', (15763, 15782), True, 'from megengine import functional as F\n')]
import os import jwt import time import requests from flask import abort from flask import Blueprint from flask import request from flask import jsonify from flask import redirect from flask import current_app from flask import session from urllib.parse import unquote from base64 import b64encode from datetime import datetime from sqlmodel import select from sqlmodel import Session as SQLSession from app.models.user import User bp = Blueprint("auth", __name__) @bp.route("/login") def login(): CLIENT_ID = current_app.config["CLIENT_ID"] REDIRECT_URI = current_app.config["REDIRECT_URI"] USER_STATE = b64encode(os.urandom(64)).decode("utf-8") UAA_AUTHORIZE_URI = current_app.config["UAA_AUTHORIZE_URI"] session["USER_STATE"] = USER_STATE UAA_LOGIN = f"{UAA_AUTHORIZE_URI}?client_id={CLIENT_ID}&response_type=code&redirect_uri={REDIRECT_URI}&state={USER_STATE}" return redirect(UAA_LOGIN) @bp.route("/logout") def logout(): CLIENT_ID = current_app.config["CLIENT_ID"] REDIRECT_URI = current_app.config["REDIRECT_URI"] UAA_LOGOUT_URI = current_app.config["UAA_LOGOUT_URI"] UAA_LGOUT = f"{UAA_LOGOUT_URI}?client_id={CLIENT_ID}&redirect={REDIRECT_URI}" session.clear() requests.post(UAA_LGOUT) return redirect("/") @bp.route("/callback") def callback(): # @url_param {string} code # @url_param {string} status code = request.args.get("code") state = request.args.get("state") if not code or not state: abort(400) UAA_TOKEN_URI = current_app.config["UAA_TOKEN_URI"] data = { "code": code, "grant_type": "authorization_code", "response_type": "token", "client_id": current_app.config["CLIENT_ID"], "client_secret": current_app.config["CLIENT_SECRET"], "redirect_uri": current_app.config["REDIRECT_URI"], } response = requests.post(UAA_TOKEN_URI, data=data) if response.status_code != 200: abort(response.status_code) response = response.json() token = response["access_token"] header = jwt.get_unverified_header(token) session["claims"] = jwt.decode( token, header["alg"], options={"verify_signature": False} ) session["expiry"] = time.time() + (response["expires_in"] * 1000) session["refresh_token"] = response["refresh_token"] session["authenticated"] = True with SQLSession(current_app.engine) as s: query = select(User).where(User.email == session["claims"]["email"]) user = s.exec(query).first() if user: # Account exists user.last_logon = datetime.now() s.add(user) s.commit() else: # Account does not exist new_user = User( user_name=session["claims"]["user_name"], email=session["claims"]["email"], last_logon=datetime.now(), ) s.add(new_user) s.commit() user = s.exec(query).first() session["user"] = user.dict() return redirect("/")
[ "sqlmodel.select", "sqlmodel.Session" ]
[((438, 465), 'flask.Blueprint', 'Blueprint', (['"""auth"""', '__name__'], {}), "('auth', __name__)\n", (447, 465), False, 'from flask import Blueprint\n'), ((906, 925), 'flask.redirect', 'redirect', (['UAA_LOGIN'], {}), '(UAA_LOGIN)\n', (914, 925), False, 'from flask import redirect\n'), ((1210, 1225), 'flask.session.clear', 'session.clear', ([], {}), '()\n', (1223, 1225), False, 'from flask import session\n'), ((1230, 1254), 'requests.post', 'requests.post', (['UAA_LGOUT'], {}), '(UAA_LGOUT)\n', (1243, 1254), False, 'import requests\n'), ((1267, 1280), 'flask.redirect', 'redirect', (['"""/"""'], {}), "('/')\n", (1275, 1280), False, 'from flask import redirect\n'), ((1397, 1421), 'flask.request.args.get', 'request.args.get', (['"""code"""'], {}), "('code')\n", (1413, 1421), False, 'from flask import request\n'), ((1434, 1459), 'flask.request.args.get', 'request.args.get', (['"""state"""'], {}), "('state')\n", (1450, 1459), False, 'from flask import request\n'), ((1879, 1918), 'requests.post', 'requests.post', (['UAA_TOKEN_URI'], {'data': 'data'}), '(UAA_TOKEN_URI, data=data)\n', (1892, 1918), False, 'import requests\n'), ((2075, 2107), 'jwt.get_unverified_header', 'jwt.get_unverified_header', (['token'], {}), '(token)\n', (2100, 2107), False, 'import jwt\n'), ((2133, 2202), 'jwt.decode', 'jwt.decode', (['token', "header['alg']"], {'options': "{'verify_signature': False}"}), "(token, header['alg'], options={'verify_signature': False})\n", (2143, 2202), False, 'import jwt\n'), ((3065, 3078), 'flask.redirect', 'redirect', (['"""/"""'], {}), "('/')\n", (3073, 3078), False, 'from flask import redirect\n'), ((1499, 1509), 'flask.abort', 'abort', (['(400)'], {}), '(400)\n', (1504, 1509), False, 'from flask import abort\n'), ((1964, 1991), 'flask.abort', 'abort', (['response.status_code'], {}), '(response.status_code)\n', (1969, 1991), False, 'from flask import abort\n'), ((2241, 2252), 'time.time', 'time.time', ([], {}), '()\n', (2250, 2252), False, 'import time\n'), ((2390, 2420), 'sqlmodel.Session', 'SQLSession', (['current_app.engine'], {}), '(current_app.engine)\n', (2400, 2420), True, 'from sqlmodel import Session as SQLSession\n'), ((2618, 2632), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (2630, 2632), False, 'from datetime import datetime\n'), ((630, 644), 'os.urandom', 'os.urandom', (['(64)'], {}), '(64)\n', (640, 644), False, 'import os\n'), ((2443, 2455), 'sqlmodel.select', 'select', (['User'], {}), '(User)\n', (2449, 2455), False, 'from sqlmodel import select\n'), ((2896, 2910), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (2908, 2910), False, 'from datetime import datetime\n')]
import logging from megengine.distributed.group import get_rank from megengine.distributed import is_distributed logger_initialized = {} def get_logger(name, log_file=None, log_level=logging.INFO): """Initialize and get a logger by name. If the logger has not been initialized, this method will initialize the logger by adding one or two handlers, otherwise the initialized logger will be directly returned. During initialization, a StreamHandler will always be added. If `log_file` is specified and the process rank is 0, a FileHandler will also be added. Args: name (str): Logger name. log_file (str | None): The log filename. If specified, a FileHandler will be added to the logger. log_level (int): The logger level. Note that only the process of rank 0 is affected, and other processes will set the level to "Error" thus be silent most of the time. Returns: logging.Logger: The expected logger. """ logger = logging.getLogger(name) if name in logger_initialized: return logger # handle hierarchical names # e.g., logger "a" is initialized, then logger "a.b" will skip the # initialization since it is a child of "a". for logger_name in logger_initialized: if name.startswith(logger_name): # child return logger # fix stream twice bug # while logger.handlers: # logger.handlers.pop() stream_handler = logging.StreamHandler() handlers = [stream_handler] if is_distributed(): rank = get_rank() else: rank = 0 # only rank 0 will add a FileHandler if rank == 0 and log_file is not None: file_handler = logging.FileHandler(log_file, 'w') handlers.append(file_handler) formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') for handler in handlers: handler.setFormatter(formatter) handler.setLevel(log_level) logger.addHandler(handler) if rank == 0: logger.setLevel(log_level) else: logger.setLevel(logging.ERROR) logger_initialized[name] = True return logger def get_root_logger(log_file=None, log_level=logging.INFO): """Get the root logger. The logger will be initialized if it has not been initialized. By default a StreamHandler will be added. If `log_file` is specified, a FileHandler will also be added. The name of the root logger is the top-level package name, e.g., "edit". Args: log_file (str | None): The log filename. If specified, a FileHandler will be added to the root logger. log_level (int): The root logger level. Note that only the process of rank 0 is affected, while other processes will set the level to "Error" and be silent most of the time. Returns: logging.Logger: The root logger. """ root_name = __name__.split('.')[0] # edit.utils.logger if is_distributed(): rank = get_rank() root_name = "rank" + str(rank) + "_" + root_name logger = get_logger(root_name, log_file, log_level) return logger
[ "megengine.distributed.is_distributed", "megengine.distributed.group.get_rank" ]
[((1026, 1049), 'logging.getLogger', 'logging.getLogger', (['name'], {}), '(name)\n', (1043, 1049), False, 'import logging\n'), ((1494, 1517), 'logging.StreamHandler', 'logging.StreamHandler', ([], {}), '()\n', (1515, 1517), False, 'import logging\n'), ((1558, 1574), 'megengine.distributed.is_distributed', 'is_distributed', ([], {}), '()\n', (1572, 1574), False, 'from megengine.distributed import is_distributed\n'), ((1827, 1900), 'logging.Formatter', 'logging.Formatter', (['"""%(asctime)s - %(name)s - %(levelname)s - %(message)s"""'], {}), "('%(asctime)s - %(name)s - %(levelname)s - %(message)s')\n", (1844, 1900), False, 'import logging\n'), ((3007, 3023), 'megengine.distributed.is_distributed', 'is_distributed', ([], {}), '()\n', (3021, 3023), False, 'from megengine.distributed import is_distributed\n'), ((1591, 1601), 'megengine.distributed.group.get_rank', 'get_rank', ([], {}), '()\n', (1599, 1601), False, 'from megengine.distributed.group import get_rank\n'), ((1737, 1771), 'logging.FileHandler', 'logging.FileHandler', (['log_file', '"""w"""'], {}), "(log_file, 'w')\n", (1756, 1771), False, 'import logging\n'), ((3040, 3050), 'megengine.distributed.group.get_rank', 'get_rank', ([], {}), '()\n', (3048, 3050), False, 'from megengine.distributed.group import get_rank\n')]
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import os import platform import time import numpy as np import pytest from megengine.data.collator import Collator from megengine.data.dataloader import DataLoader from megengine.data.dataset import ArrayDataset, StreamDataset from megengine.data.sampler import RandomSampler, SequentialSampler, StreamSampler from megengine.data.transform import ( Compose, Normalize, PseudoTransform, ToMode, Transform, ) def init_dataset(): sample_num = 100 rand_data = np.random.randint(0, 255, size=(sample_num, 1, 32, 32), dtype=np.uint8) label = np.random.randint(0, 10, size=(sample_num,), dtype=int) dataset = ArrayDataset(rand_data, label) return dataset def test_dataloader_init(): dataset = init_dataset() with pytest.raises(ValueError): dataloader = DataLoader(dataset, num_workers=2, divide=True) with pytest.raises(ValueError): dataloader = DataLoader(dataset, num_workers=-1) with pytest.raises(ValueError): dataloader = DataLoader(dataset, timeout=-1) with pytest.raises(ValueError): dataloader = DataLoader(dataset, num_workers=0, divide=True) dataloader = DataLoader(dataset) assert isinstance(dataloader.sampler, SequentialSampler) assert isinstance(dataloader.transform, PseudoTransform) assert isinstance(dataloader.collator, Collator) dataloader = DataLoader( dataset, sampler=RandomSampler(dataset, batch_size=6, drop_last=False) ) assert len(dataloader) == 17 dataloader = DataLoader( dataset, sampler=RandomSampler(dataset, batch_size=6, drop_last=True) ) assert len(dataloader) == 16 class MyStream(StreamDataset): def __init__(self, number, batch=False, error_foramt=False, block=False): self.number = number self.batch = batch self.error_format = error_foramt self.block = block def __iter__(self): for cnt in range(self.number): if self.block: for _ in range(10): time.sleep(1) if self.batch: data = np.random.randint(0, 256, (2, 2, 2, 3), dtype="uint8") yield (True, (data, [cnt, cnt - self.number])) else: data = np.random.randint(0, 256, (2, 2, 3), dtype="uint8") if self.error_format: yield (data, cnt) else: yield (False, (data, cnt)) raise StopIteration @pytest.mark.parametrize("batch", [True, False]) @pytest.mark.parametrize("num_workers", [0, 2]) def test_stream_dataloader(batch, num_workers): dataset = MyStream(100, batch=batch) sampler = StreamSampler(batch_size=4) dataloader = DataLoader( dataset, sampler, Compose([Normalize(mean=(103, 116, 123), std=(57, 57, 58)), ToMode("CHW")]), num_workers=num_workers, ) check_set = set() for step, data in enumerate(dataloader): if step == 10: break assert data[0].shape == (4, 3, 2, 2) assert data[1].shape == (4,) for i in data[1]: assert i not in check_set check_set.add(i) def test_stream_dataloader_error(): dataset = MyStream(100, error_foramt=True) sampler = StreamSampler(batch_size=4) dataloader = DataLoader(dataset, sampler) with pytest.raises(AssertionError, match=r".*tuple.*"): data_iter = iter(dataloader) next(data_iter) @pytest.mark.parametrize("num_workers", [0, 2]) def test_stream_dataloader_timeout(num_workers): dataset = MyStream(100, False, block=True) sampler = StreamSampler(batch_size=4) dataloader = DataLoader(dataset, sampler, num_workers=num_workers, timeout=2) with pytest.raises(RuntimeError, match=r".*timeout.*"): data_iter = iter(dataloader) next(data_iter) def test_dataloader_serial(): dataset = init_dataset() dataloader = DataLoader( dataset, sampler=RandomSampler(dataset, batch_size=4, drop_last=False) ) for (data, label) in dataloader: assert data.shape == (4, 1, 32, 32) assert label.shape == (4,) def test_dataloader_parallel(): # set max shared memory to 100M os.environ["MGE_PLASMA_MEMORY"] = "100000000" dataset = init_dataset() dataloader = DataLoader( dataset, sampler=RandomSampler(dataset, batch_size=4, drop_last=False), num_workers=2, divide=False, ) for (data, label) in dataloader: assert data.shape == (4, 1, 32, 32) assert label.shape == (4,) dataloader = DataLoader( dataset, sampler=RandomSampler(dataset, batch_size=4, drop_last=False), num_workers=2, divide=True, ) for (data, label) in dataloader: assert data.shape == (4, 1, 32, 32) assert label.shape == (4,) @pytest.mark.skipif( platform.system() == "Windows", reason="dataloader do not support parallel on windows", ) def test_dataloader_parallel_timeout(): dataset = init_dataset() class TimeoutTransform(Transform): def __init__(self): pass def apply(self, input): time.sleep(10) return input dataloader = DataLoader( dataset, sampler=RandomSampler(dataset, batch_size=4, drop_last=False), transform=TimeoutTransform(), num_workers=2, timeout=2, ) with pytest.raises(RuntimeError, match=r".*timeout.*"): data_iter = iter(dataloader) batch_data = next(data_iter) @pytest.mark.skipif( platform.system() == "Windows", reason="dataloader do not support parallel on windows", ) def test_dataloader_parallel_worker_exception(): dataset = init_dataset() class FakeErrorTransform(Transform): def __init__(self): pass def apply(self, input): raise RuntimeError("test raise error") return input dataloader = DataLoader( dataset, sampler=RandomSampler(dataset, batch_size=4, drop_last=False), transform=FakeErrorTransform(), num_workers=2, ) with pytest.raises(RuntimeError, match=r"worker.*died"): data_iter = iter(dataloader) batch_data = next(data_iter) def _multi_instances_parallel_dataloader_worker(): dataset = init_dataset() for divide_flag in [True, False]: train_dataloader = DataLoader( dataset, sampler=RandomSampler(dataset, batch_size=4, drop_last=False), num_workers=2, divide=divide_flag, ) val_dataloader = DataLoader( dataset, sampler=RandomSampler(dataset, batch_size=10, drop_last=False), num_workers=2, divide=divide_flag, ) for idx, (data, label) in enumerate(train_dataloader): assert data.shape == (4, 1, 32, 32) assert label.shape == (4,) if idx % 5 == 0: for val_data, val_label in val_dataloader: assert val_data.shape == (10, 1, 32, 32) assert val_label.shape == (10,) def test_dataloader_parallel_multi_instances(): # set max shared memory to 100M os.environ["MGE_PLASMA_MEMORY"] = "100000000" _multi_instances_parallel_dataloader_worker() @pytest.mark.isolated_distributed def test_dataloader_parallel_multi_instances_multiprocessing(): # set max shared memory to 100M os.environ["MGE_PLASMA_MEMORY"] = "100000000" import multiprocessing as mp # mp.set_start_method("spawn") processes = [] for i in range(4): p = mp.Process(target=_multi_instances_parallel_dataloader_worker) p.start() processes.append(p) for p in processes: p.join() assert p.exitcode == 0 @pytest.mark.parametrize("num_workers", [0, 2]) def test_timeout_event(num_workers): def cb(): return (True, (np.zeros(shape=(2, 2, 2, 3)), np.ones(shape=(2,)))) dataset = MyStream(100, block=True) sampler = StreamSampler(batch_size=4) dataloader = DataLoader( dataset, sampler, num_workers=num_workers, timeout=2, timeout_event=cb ) for _, data in enumerate(dataloader): np.testing.assert_equal(data[0], np.zeros(shape=(4, 2, 2, 3))) np.testing.assert_equal(data[1], np.ones(shape=(4,))) break
[ "megengine.data.sampler.RandomSampler", "megengine.data.dataset.ArrayDataset", "megengine.data.dataloader.DataLoader", "megengine.data.sampler.StreamSampler", "megengine.data.transform.Normalize", "megengine.data.transform.ToMode" ]
[((2861, 2908), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""batch"""', '[True, False]'], {}), "('batch', [True, False])\n", (2884, 2908), False, 'import pytest\n'), ((2910, 2956), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""num_workers"""', '[0, 2]'], {}), "('num_workers', [0, 2])\n", (2933, 2956), False, 'import pytest\n'), ((3857, 3903), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""num_workers"""', '[0, 2]'], {}), "('num_workers', [0, 2])\n", (3880, 3903), False, 'import pytest\n'), ((8231, 8277), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""num_workers"""', '[0, 2]'], {}), "('num_workers', [0, 2])\n", (8254, 8277), False, 'import pytest\n'), ((866, 937), 'numpy.random.randint', 'np.random.randint', (['(0)', '(255)'], {'size': '(sample_num, 1, 32, 32)', 'dtype': 'np.uint8'}), '(0, 255, size=(sample_num, 1, 32, 32), dtype=np.uint8)\n', (883, 937), True, 'import numpy as np\n'), ((950, 1005), 'numpy.random.randint', 'np.random.randint', (['(0)', '(10)'], {'size': '(sample_num,)', 'dtype': 'int'}), '(0, 10, size=(sample_num,), dtype=int)\n', (967, 1005), True, 'import numpy as np\n'), ((1020, 1050), 'megengine.data.dataset.ArrayDataset', 'ArrayDataset', (['rand_data', 'label'], {}), '(rand_data, label)\n', (1032, 1050), False, 'from megengine.data.dataset import ArrayDataset, StreamDataset\n'), ((1539, 1558), 'megengine.data.dataloader.DataLoader', 'DataLoader', (['dataset'], {}), '(dataset)\n', (1549, 1558), False, 'from megengine.data.dataloader import DataLoader\n'), ((3060, 3087), 'megengine.data.sampler.StreamSampler', 'StreamSampler', ([], {'batch_size': '(4)'}), '(batch_size=4)\n', (3073, 3087), False, 'from megengine.data.sampler import RandomSampler, SequentialSampler, StreamSampler\n'), ((3659, 3686), 'megengine.data.sampler.StreamSampler', 'StreamSampler', ([], {'batch_size': '(4)'}), '(batch_size=4)\n', (3672, 3686), False, 'from megengine.data.sampler import RandomSampler, SequentialSampler, StreamSampler\n'), ((3704, 3732), 'megengine.data.dataloader.DataLoader', 'DataLoader', (['dataset', 'sampler'], {}), '(dataset, sampler)\n', (3714, 3732), False, 'from megengine.data.dataloader import DataLoader\n'), ((4014, 4041), 'megengine.data.sampler.StreamSampler', 'StreamSampler', ([], {'batch_size': '(4)'}), '(batch_size=4)\n', (4027, 4041), False, 'from megengine.data.sampler import RandomSampler, SequentialSampler, StreamSampler\n'), ((4060, 4124), 'megengine.data.dataloader.DataLoader', 'DataLoader', (['dataset', 'sampler'], {'num_workers': 'num_workers', 'timeout': '(2)'}), '(dataset, sampler, num_workers=num_workers, timeout=2)\n', (4070, 4124), False, 'from megengine.data.dataloader import DataLoader\n'), ((8459, 8486), 'megengine.data.sampler.StreamSampler', 'StreamSampler', ([], {'batch_size': '(4)'}), '(batch_size=4)\n', (8472, 8486), False, 'from megengine.data.sampler import RandomSampler, SequentialSampler, StreamSampler\n'), ((8505, 8591), 'megengine.data.dataloader.DataLoader', 'DataLoader', (['dataset', 'sampler'], {'num_workers': 'num_workers', 'timeout': '(2)', 'timeout_event': 'cb'}), '(dataset, sampler, num_workers=num_workers, timeout=2,\n timeout_event=cb)\n', (8515, 8591), False, 'from megengine.data.dataloader import DataLoader\n'), ((1138, 1163), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (1151, 1163), False, 'import pytest\n'), ((1186, 1233), 'megengine.data.dataloader.DataLoader', 'DataLoader', (['dataset'], {'num_workers': '(2)', 'divide': '(True)'}), '(dataset, num_workers=2, divide=True)\n', (1196, 1233), False, 'from megengine.data.dataloader import DataLoader\n'), ((1243, 1268), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (1256, 1268), False, 'import pytest\n'), ((1291, 1326), 'megengine.data.dataloader.DataLoader', 'DataLoader', (['dataset'], {'num_workers': '(-1)'}), '(dataset, num_workers=-1)\n', (1301, 1326), False, 'from megengine.data.dataloader import DataLoader\n'), ((1336, 1361), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (1349, 1361), False, 'import pytest\n'), ((1384, 1415), 'megengine.data.dataloader.DataLoader', 'DataLoader', (['dataset'], {'timeout': '(-1)'}), '(dataset, timeout=-1)\n', (1394, 1415), False, 'from megengine.data.dataloader import DataLoader\n'), ((1425, 1450), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (1438, 1450), False, 'import pytest\n'), ((1473, 1520), 'megengine.data.dataloader.DataLoader', 'DataLoader', (['dataset'], {'num_workers': '(0)', 'divide': '(True)'}), '(dataset, num_workers=0, divide=True)\n', (1483, 1520), False, 'from megengine.data.dataloader import DataLoader\n'), ((3742, 3790), 'pytest.raises', 'pytest.raises', (['AssertionError'], {'match': '""".*tuple.*"""'}), "(AssertionError, match='.*tuple.*')\n", (3755, 3790), False, 'import pytest\n'), ((4134, 4182), 'pytest.raises', 'pytest.raises', (['RuntimeError'], {'match': '""".*timeout.*"""'}), "(RuntimeError, match='.*timeout.*')\n", (4147, 4182), False, 'import pytest\n'), ((5828, 5876), 'pytest.raises', 'pytest.raises', (['RuntimeError'], {'match': '""".*timeout.*"""'}), "(RuntimeError, match='.*timeout.*')\n", (5841, 5876), False, 'import pytest\n'), ((5282, 5299), 'platform.system', 'platform.system', ([], {}), '()\n', (5297, 5299), False, 'import platform\n'), ((6544, 6593), 'pytest.raises', 'pytest.raises', (['RuntimeError'], {'match': '"""worker.*died"""'}), "(RuntimeError, match='worker.*died')\n", (6557, 6593), False, 'import pytest\n'), ((5980, 5997), 'platform.system', 'platform.system', ([], {}), '()\n', (5995, 5997), False, 'import platform\n'), ((8046, 8108), 'multiprocessing.Process', 'mp.Process', ([], {'target': '_multi_instances_parallel_dataloader_worker'}), '(target=_multi_instances_parallel_dataloader_worker)\n', (8056, 8108), True, 'import multiprocessing as mp\n'), ((1789, 1842), 'megengine.data.sampler.RandomSampler', 'RandomSampler', (['dataset'], {'batch_size': '(6)', 'drop_last': '(False)'}), '(dataset, batch_size=6, drop_last=False)\n', (1802, 1842), False, 'from megengine.data.sampler import RandomSampler, SequentialSampler, StreamSampler\n'), ((1936, 1988), 'megengine.data.sampler.RandomSampler', 'RandomSampler', (['dataset'], {'batch_size': '(6)', 'drop_last': '(True)'}), '(dataset, batch_size=6, drop_last=True)\n', (1949, 1988), False, 'from megengine.data.sampler import RandomSampler, SequentialSampler, StreamSampler\n'), ((4361, 4414), 'megengine.data.sampler.RandomSampler', 'RandomSampler', (['dataset'], {'batch_size': '(4)', 'drop_last': '(False)'}), '(dataset, batch_size=4, drop_last=False)\n', (4374, 4414), False, 'from megengine.data.sampler import RandomSampler, SequentialSampler, StreamSampler\n'), ((4749, 4802), 'megengine.data.sampler.RandomSampler', 'RandomSampler', (['dataset'], {'batch_size': '(4)', 'drop_last': '(False)'}), '(dataset, batch_size=4, drop_last=False)\n', (4762, 4802), False, 'from megengine.data.sampler import RandomSampler, SequentialSampler, StreamSampler\n'), ((5034, 5087), 'megengine.data.sampler.RandomSampler', 'RandomSampler', (['dataset'], {'batch_size': '(4)', 'drop_last': '(False)'}), '(dataset, batch_size=4, drop_last=False)\n', (5047, 5087), False, 'from megengine.data.sampler import RandomSampler, SequentialSampler, StreamSampler\n'), ((5575, 5589), 'time.sleep', 'time.sleep', (['(10)'], {}), '(10)\n', (5585, 5589), False, 'import time\n'), ((5678, 5731), 'megengine.data.sampler.RandomSampler', 'RandomSampler', (['dataset'], {'batch_size': '(4)', 'drop_last': '(False)'}), '(dataset, batch_size=4, drop_last=False)\n', (5691, 5731), False, 'from megengine.data.sampler import RandomSampler, SequentialSampler, StreamSampler\n'), ((6411, 6464), 'megengine.data.sampler.RandomSampler', 'RandomSampler', (['dataset'], {'batch_size': '(4)', 'drop_last': '(False)'}), '(dataset, batch_size=4, drop_last=False)\n', (6424, 6464), False, 'from megengine.data.sampler import RandomSampler, SequentialSampler, StreamSampler\n'), ((8685, 8713), 'numpy.zeros', 'np.zeros', ([], {'shape': '(4, 2, 2, 3)'}), '(shape=(4, 2, 2, 3))\n', (8693, 8713), True, 'import numpy as np\n'), ((8756, 8775), 'numpy.ones', 'np.ones', ([], {'shape': '(4,)'}), '(shape=(4,))\n', (8763, 8775), True, 'import numpy as np\n'), ((2474, 2528), 'numpy.random.randint', 'np.random.randint', (['(0)', '(256)', '(2, 2, 2, 3)'], {'dtype': '"""uint8"""'}), "(0, 256, (2, 2, 2, 3), dtype='uint8')\n", (2491, 2528), True, 'import numpy as np\n'), ((2633, 2684), 'numpy.random.randint', 'np.random.randint', (['(0)', '(256)', '(2, 2, 3)'], {'dtype': '"""uint8"""'}), "(0, 256, (2, 2, 3), dtype='uint8')\n", (2650, 2684), True, 'import numpy as np\n'), ((3168, 3217), 'megengine.data.transform.Normalize', 'Normalize', ([], {'mean': '(103, 116, 123)', 'std': '(57, 57, 58)'}), '(mean=(103, 116, 123), std=(57, 57, 58))\n', (3177, 3217), False, 'from megengine.data.transform import Compose, Normalize, PseudoTransform, ToMode, Transform\n'), ((3219, 3232), 'megengine.data.transform.ToMode', 'ToMode', (['"""CHW"""'], {}), "('CHW')\n", (3225, 3232), False, 'from megengine.data.transform import Compose, Normalize, PseudoTransform, ToMode, Transform\n'), ((6871, 6924), 'megengine.data.sampler.RandomSampler', 'RandomSampler', (['dataset'], {'batch_size': '(4)', 'drop_last': '(False)'}), '(dataset, batch_size=4, drop_last=False)\n', (6884, 6924), False, 'from megengine.data.sampler import RandomSampler, SequentialSampler, StreamSampler\n'), ((7073, 7127), 'megengine.data.sampler.RandomSampler', 'RandomSampler', (['dataset'], {'batch_size': '(10)', 'drop_last': '(False)'}), '(dataset, batch_size=10, drop_last=False)\n', (7086, 7127), False, 'from megengine.data.sampler import RandomSampler, SequentialSampler, StreamSampler\n'), ((8352, 8380), 'numpy.zeros', 'np.zeros', ([], {'shape': '(2, 2, 2, 3)'}), '(shape=(2, 2, 2, 3))\n', (8360, 8380), True, 'import numpy as np\n'), ((8382, 8401), 'numpy.ones', 'np.ones', ([], {'shape': '(2,)'}), '(shape=(2,))\n', (8389, 8401), True, 'import numpy as np\n'), ((2410, 2423), 'time.sleep', 'time.sleep', (['(1)'], {}), '(1)\n', (2420, 2423), False, 'import time\n')]
import asyncio import strawberry from sqlmodel import Session, select from strawberry.types import Info from fastapi_server.models.user import User from fastapi_server.routes.graph_ql.broadcaster import Broadcast broadcast = Broadcast() @strawberry.type class UserSystemQuery: @strawberry.field def user_login(self, info: Info, email: str, password: str) -> str: # TODO Replace with actual password hash function session: Session = info.context['session'] statement = select(User).where(User.email == email, User.password_hashed == password) user = session.exec(statement).first() if user is None: raise FileNotFoundError('Email and password do not match') return f'Login successful for {email}' @strawberry.type class UserSystemMutation: @strawberry.mutation def user_register(self, info: Info, username: str, email: str, password: str, password_repeated: str) -> bool: if password != password_repeated: raise KeyError('not same pw') # TODO Replace with actual password hash function password_hashed = hash(password) session: Session = info.context['session'] username_taken = session.exec(select(User).where(User.username == username)).first() if username_taken is not None: raise KeyError('username taken') email_taken = session.exec(select(User).where(User.email == email)).first() if email_taken is not None: raise KeyError('email taken') session.add( User( username=username, email=email, password_hashed=password_hashed, is_admin=False, is_disabled=False, is_verified=False, ) ) session.commit() return True @strawberry.mutation def user_send_password_reset_email(self, info: Info, email: str) -> bool: # Check if email exists in db, send password reset with token pass @strawberry.mutation def user_reset_password(self, info: Info, token: str) -> bool: # Decypher email from token, if token is valid reset password and send a generated password per email pass @strawberry.mutation def user_check_logged_in(self, info: Info) -> bool: # Read request cookies to check if user is logged in. Also check if the token in the cookie is valid pass async def main(): pass if __name__ == '__main__': asyncio.run(main())
[ "sqlmodel.select" ]
[((228, 239), 'fastapi_server.routes.graph_ql.broadcaster.Broadcast', 'Broadcast', ([], {}), '()\n', (237, 239), False, 'from fastapi_server.routes.graph_ql.broadcaster import Broadcast\n'), ((1560, 1687), 'fastapi_server.models.user.User', 'User', ([], {'username': 'username', 'email': 'email', 'password_hashed': 'password_hashed', 'is_admin': '(False)', 'is_disabled': '(False)', 'is_verified': '(False)'}), '(username=username, email=email, password_hashed=password_hashed,\n is_admin=False, is_disabled=False, is_verified=False)\n', (1564, 1687), False, 'from fastapi_server.models.user import User\n'), ((505, 517), 'sqlmodel.select', 'select', (['User'], {}), '(User)\n', (511, 517), False, 'from sqlmodel import Session, select\n'), ((1226, 1238), 'sqlmodel.select', 'select', (['User'], {}), '(User)\n', (1232, 1238), False, 'from sqlmodel import Session, select\n'), ((1400, 1412), 'sqlmodel.select', 'select', (['User'], {}), '(User)\n', (1406, 1412), False, 'from sqlmodel import Session, select\n')]
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import os import time import numpy as np import pytest from megengine.data.collator import Collator from megengine.data.dataloader import DataLoader from megengine.data.dataset import ArrayDataset from megengine.data.sampler import RandomSampler, SequentialSampler from megengine.data.transform import PseudoTransform, Transform def init_dataset(): sample_num = 100 rand_data = np.random.randint(0, 255, size=(sample_num, 1, 32, 32), dtype=np.uint8) label = np.random.randint(0, 10, size=(sample_num,), dtype=int) dataset = ArrayDataset(rand_data, label) return dataset def test_dataloader_init(): dataset = init_dataset() with pytest.raises(ValueError): dataloader = DataLoader(dataset, num_workers=2, divide=True) with pytest.raises(ValueError): dataloader = DataLoader(dataset, num_workers=-1) with pytest.raises(ValueError): dataloader = DataLoader(dataset, timeout=-1) with pytest.raises(ValueError): dataloader = DataLoader(dataset, num_workers=0, divide=True) dataloader = DataLoader(dataset) assert isinstance(dataloader.sampler, SequentialSampler) assert isinstance(dataloader.transform, PseudoTransform) assert isinstance(dataloader.collator, Collator) dataloader = DataLoader( dataset, sampler=RandomSampler(dataset, batch_size=6, drop_last=False) ) assert len(dataloader) == 17 dataloader = DataLoader( dataset, sampler=RandomSampler(dataset, batch_size=6, drop_last=True) ) assert len(dataloader) == 16 def test_dataloader_serial(): dataset = init_dataset() dataloader = DataLoader( dataset, sampler=RandomSampler(dataset, batch_size=4, drop_last=False) ) for (data, label) in dataloader: assert data.shape == (4, 1, 32, 32) assert label.shape == (4,) def test_dataloader_parallel(): # set max shared memory to 100M os.environ["MGE_PLASMA_MEMORY"] = "100000000" dataset = init_dataset() dataloader = DataLoader( dataset, sampler=RandomSampler(dataset, batch_size=4, drop_last=False), num_workers=2, divide=False, ) for (data, label) in dataloader: assert data.shape == (4, 1, 32, 32) assert label.shape == (4,) dataloader = DataLoader( dataset, sampler=RandomSampler(dataset, batch_size=4, drop_last=False), num_workers=2, divide=True, ) for (data, label) in dataloader: assert data.shape == (4, 1, 32, 32) assert label.shape == (4,) def test_dataloader_parallel_timeout(): dataset = init_dataset() class TimeoutTransform(Transform): def __init__(self): pass def apply(self, input): time.sleep(10) return input dataloader = DataLoader( dataset, sampler=RandomSampler(dataset, batch_size=4, drop_last=False), transform=TimeoutTransform(), num_workers=2, timeout=2, ) with pytest.raises(RuntimeError, match=r".*timeout.*"): data_iter = iter(dataloader) batch_data = next(data_iter) def test_dataloader_parallel_worker_exception(): dataset = init_dataset() class FakeErrorTransform(Transform): def __init__(self): pass def apply(self, input): y = x + 1 return input dataloader = DataLoader( dataset, sampler=RandomSampler(dataset, batch_size=4, drop_last=False), transform=FakeErrorTransform(), num_workers=2, ) with pytest.raises(RuntimeError, match=r"worker.*died"): data_iter = iter(dataloader) batch_data = next(data_iter)
[ "megengine.data.sampler.RandomSampler", "megengine.data.dataloader.DataLoader", "megengine.data.dataset.ArrayDataset" ]
[((767, 838), 'numpy.random.randint', 'np.random.randint', (['(0)', '(255)'], {'size': '(sample_num, 1, 32, 32)', 'dtype': 'np.uint8'}), '(0, 255, size=(sample_num, 1, 32, 32), dtype=np.uint8)\n', (784, 838), True, 'import numpy as np\n'), ((851, 906), 'numpy.random.randint', 'np.random.randint', (['(0)', '(10)'], {'size': '(sample_num,)', 'dtype': 'int'}), '(0, 10, size=(sample_num,), dtype=int)\n', (868, 906), True, 'import numpy as np\n'), ((921, 951), 'megengine.data.dataset.ArrayDataset', 'ArrayDataset', (['rand_data', 'label'], {}), '(rand_data, label)\n', (933, 951), False, 'from megengine.data.dataset import ArrayDataset\n'), ((1440, 1459), 'megengine.data.dataloader.DataLoader', 'DataLoader', (['dataset'], {}), '(dataset)\n', (1450, 1459), False, 'from megengine.data.dataloader import DataLoader\n'), ((1039, 1064), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (1052, 1064), False, 'import pytest\n'), ((1087, 1134), 'megengine.data.dataloader.DataLoader', 'DataLoader', (['dataset'], {'num_workers': '(2)', 'divide': '(True)'}), '(dataset, num_workers=2, divide=True)\n', (1097, 1134), False, 'from megengine.data.dataloader import DataLoader\n'), ((1144, 1169), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (1157, 1169), False, 'import pytest\n'), ((1192, 1227), 'megengine.data.dataloader.DataLoader', 'DataLoader', (['dataset'], {'num_workers': '(-1)'}), '(dataset, num_workers=-1)\n', (1202, 1227), False, 'from megengine.data.dataloader import DataLoader\n'), ((1237, 1262), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (1250, 1262), False, 'import pytest\n'), ((1285, 1316), 'megengine.data.dataloader.DataLoader', 'DataLoader', (['dataset'], {'timeout': '(-1)'}), '(dataset, timeout=-1)\n', (1295, 1316), False, 'from megengine.data.dataloader import DataLoader\n'), ((1326, 1351), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (1339, 1351), False, 'import pytest\n'), ((1374, 1421), 'megengine.data.dataloader.DataLoader', 'DataLoader', (['dataset'], {'num_workers': '(0)', 'divide': '(True)'}), '(dataset, num_workers=0, divide=True)\n', (1384, 1421), False, 'from megengine.data.dataloader import DataLoader\n'), ((3392, 3440), 'pytest.raises', 'pytest.raises', (['RuntimeError'], {'match': '""".*timeout.*"""'}), "(RuntimeError, match='.*timeout.*')\n", (3405, 3440), False, 'import pytest\n'), ((3960, 4009), 'pytest.raises', 'pytest.raises', (['RuntimeError'], {'match': '"""worker.*died"""'}), "(RuntimeError, match='worker.*died')\n", (3973, 4009), False, 'import pytest\n'), ((1690, 1743), 'megengine.data.sampler.RandomSampler', 'RandomSampler', (['dataset'], {'batch_size': '(6)', 'drop_last': '(False)'}), '(dataset, batch_size=6, drop_last=False)\n', (1703, 1743), False, 'from megengine.data.sampler import RandomSampler, SequentialSampler\n'), ((1837, 1889), 'megengine.data.sampler.RandomSampler', 'RandomSampler', (['dataset'], {'batch_size': '(6)', 'drop_last': '(True)'}), '(dataset, batch_size=6, drop_last=True)\n', (1850, 1889), False, 'from megengine.data.sampler import RandomSampler, SequentialSampler\n'), ((2044, 2097), 'megengine.data.sampler.RandomSampler', 'RandomSampler', (['dataset'], {'batch_size': '(4)', 'drop_last': '(False)'}), '(dataset, batch_size=4, drop_last=False)\n', (2057, 2097), False, 'from megengine.data.sampler import RandomSampler, SequentialSampler\n'), ((2432, 2485), 'megengine.data.sampler.RandomSampler', 'RandomSampler', (['dataset'], {'batch_size': '(4)', 'drop_last': '(False)'}), '(dataset, batch_size=4, drop_last=False)\n', (2445, 2485), False, 'from megengine.data.sampler import RandomSampler, SequentialSampler\n'), ((2717, 2770), 'megengine.data.sampler.RandomSampler', 'RandomSampler', (['dataset'], {'batch_size': '(4)', 'drop_last': '(False)'}), '(dataset, batch_size=4, drop_last=False)\n', (2730, 2770), False, 'from megengine.data.sampler import RandomSampler, SequentialSampler\n'), ((3139, 3153), 'time.sleep', 'time.sleep', (['(10)'], {}), '(10)\n', (3149, 3153), False, 'import time\n'), ((3242, 3295), 'megengine.data.sampler.RandomSampler', 'RandomSampler', (['dataset'], {'batch_size': '(4)', 'drop_last': '(False)'}), '(dataset, batch_size=4, drop_last=False)\n', (3255, 3295), False, 'from megengine.data.sampler import RandomSampler, SequentialSampler\n'), ((3827, 3880), 'megengine.data.sampler.RandomSampler', 'RandomSampler', (['dataset'], {'batch_size': '(4)', 'drop_last': '(False)'}), '(dataset, batch_size=4, drop_last=False)\n', (3840, 3880), False, 'from megengine.data.sampler import RandomSampler, SequentialSampler\n')]
from sfepy.terms.extmods import terms from sfepy.terms.cache import DataCache from sfepy.base.base import nm, pause, debug class ExpHistoryDataCache(DataCache): """History for exponential decay convolution kernels. The decay argument is F(\Delta t), F(t_0=0) is assumed to be 1.0. """ name = 'exp_history' arg_types = ('decay', 'values') def __init__(self, name, arg_names, history_sizes=None): DataCache.__init__(self, name, arg_names, ['history', 'increment', 'decay'], history_sizes) def init_data(self, key, ckey, term, **kwargs): decay, values = self.get_args(**kwargs) shape = values.shape self.shapes = { 'history' : shape, 'increment' : shape, 'decay' : decay.shape, } DataCache.init_datas(self, ckey, self.shapes, zero=True) def update(self, key, term, ih, **kwargs): decay, values = self.get_args(**kwargs) ckey = self.get_key(term) self.data['increment'][ckey][ih] = values self.data['decay'][ckey][ih] = decay self.valid['history'][ckey] = True self.valid['increment'][ckey] = True self.valid['decay'][ckey] = True def custom_advance(self, key, ckey, step): if key == 'history': history = self.data['history'][ckey][0] increment = self.data['increment'][ckey][0] decay = self.data['decay'][ckey][0] self.data['history'][ckey][0][:] = decay * (history + increment)
[ "sfepy.terms.cache.DataCache.init_datas", "sfepy.terms.cache.DataCache.__init__" ]
[((430, 525), 'sfepy.terms.cache.DataCache.__init__', 'DataCache.__init__', (['self', 'name', 'arg_names', "['history', 'increment', 'decay']", 'history_sizes'], {}), "(self, name, arg_names, ['history', 'increment', 'decay'],\n history_sizes)\n", (448, 525), False, 'from sfepy.terms.cache import DataCache\n'), ((820, 876), 'sfepy.terms.cache.DataCache.init_datas', 'DataCache.init_datas', (['self', 'ckey', 'self.shapes'], {'zero': '(True)'}), '(self, ckey, self.shapes, zero=True)\n', (840, 876), False, 'from sfepy.terms.cache import DataCache\n')]
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import random import megengine as mge import megengine.functional as F import megengine.module as M import numpy as np from megengine.jit import trace def dump_mge_model(net, data, fpath="test_model", optimize_for_inference=False): if mge.__version__ <= "0.6.0": @trace(symbolic=True) def inference(data, *, net): net.eval() output = net(data) return output inference.trace(data, net=net) mge_result = inference(data, net=net).numpy() inference.dump( fpath + ".mge", arg_names=["data"], optimize_for_inference=optimize_for_inference, ) return mge_result else: mge_result = net(mge.tensor(data)) net.eval() mge_result = net(mge.tensor(data)) @trace(symbolic=True, capture_as_const=True) def inference(data): net.eval() output = net(data) return output inference(mge.tensor(data)) inference.dump( fpath + ".mge", arg_names=["data"], optimize_for_inference=optimize_for_inference, ) return mge_result.numpy() class ConvOpr(M.Module): def __init__(self, mode): super().__init__() self.mode = mode self.data = np.random.random((1, 3, 224, 224)).astype(np.float32) self.normal_conv = M.Conv2d( 3, 30, 3, stride=(2, 3), dilation=(2, 2), padding=(3, 1) ) self.group_conv = M.Conv2d( 3, 30, 3, stride=(2, 3), dilation=(2, 2), padding=(3, 1), groups=3 ) self.normal_conv.bias = mge.Parameter( np.random.random(self.normal_conv.bias.shape).astype(np.float32) ) self.group_conv.bias = mge.Parameter( np.random.random(self.group_conv.bias.shape).astype(np.float32) ) self.transpose_conv = M.Sequential( M.ConvTranspose2d( 3, 5, (3, 4), dilation=(2, 2), stride=(3, 2), padding=(2, 3), groups=1 ), M.ConvTranspose2d(5, 3, (3, 3)), ) self.transpose_conv[0].bias = mge.Parameter( np.random.random(self.transpose_conv[0].bias.shape).astype(np.float32) ) self.transpose_conv[1].bias = mge.Parameter( np.random.random(self.transpose_conv[1].bias.shape).astype(np.float32) ) self.tflite_transpose_conv = M.Sequential( M.ConvTranspose2d(3, 5, (3, 4), stride=(3, 2), groups=1), M.ConvTranspose2d(5, 3, (3, 3)), ) self.tflite_transpose_conv[0].bias = mge.Parameter( np.random.random(self.transpose_conv[0].bias.shape).astype(np.float32) ) self.tflite_transpose_conv[1].bias = mge.Parameter( np.random.random(self.transpose_conv[1].bias.shape).astype(np.float32) ) def forward(self, x): return getattr(self, self.mode + "_conv")(x) class LinearOpr(M.Module): def __init__(self): super().__init__() self.data = np.random.random((10, 100)).astype(np.float32) self.linear = M.Linear(100, 200, bias=False) self.linear_bias = M.Linear(200, 200, bias=True) self.linear_bias.bias = mge.Parameter( np.random.random(self.linear_bias.bias.shape).astype(np.float32) ) def forward(self, x): x = self.linear(x) x = self.linear_bias(x) x = F.relu(x) return x class PoolOpr(M.Module): def __init__(self, mode): super().__init__() self.mode = mode self.data = np.random.random((30, 3, 224, 224)).astype(np.float32) self.maxpool = M.pooling.MaxPool2d(kernel_size=3, stride=2, padding=2) self.avgpool = M.pooling.AvgPool2d(kernel_size=3, stride=2, padding=2) def forward(self, x): return getattr(self, self.mode + "pool")(x) class BnOpr(M.Module): def __init__(self, mode): super().__init__() self.mode = mode self.data1 = np.random.random((1, 32, 32)).astype(np.float32) self.data2 = np.random.random((20, 3, 24, 24)).astype(np.float32) self.bn1d = M.BatchNorm1d(32) self.bn2d = M.BatchNorm2d(3) def forward(self, x): return getattr(self, self.mode)(x) class SubtensorOpr(M.Module): def __init__(self, fix_batch=False): super().__init__() self.fix_batch = fix_batch self.data = np.random.random((10, 10, 10, 10)).astype(np.float32) def forward(self, x): if self.fix_batch: x = x[:, 4:8, :, 4:9] x = x[:, :, 2:7, 3] else: x = x[1:3, 4:8, :, 4:9] x = x[:, :, :, 3] x = x[1, 1:] return x class TransposeOpr(M.Module): def __init__(self): super().__init__() self.data = np.random.random((1, 2, 3, 4)).astype(np.float32) self.perm = [0, 2, 3, 1] def forward(self, x): return F.transpose(x, self.perm) class ConcatOpr(M.Module): def __init__(self): super().__init__() self.concat_idx = random.randint(0, 3) self.data = np.random.random((1, 2, 4, 5)).astype(np.float32) def forward(self, a): return F.concat([a, a], self.concat_idx) class SoftmaxOpr(M.Module): def __init__(self): super().__init__() self.data = np.random.random((1, 1000)).astype(np.float32) def forward(self, a): return F.softmax(a) class SqueezeOpr(M.Module): def __init__(self): super().__init__() self.data = np.random.random((1, 1, 1000)).astype(np.float32) def forward(self, a): if mge.__version__ <= "0.6.0": return F.remove_axis(a, 0) # pylint: disable=no-member else: return F.squeeze(a, 0) class ReshapeOpr(M.Module): def __init__(self, fix_batch=False): super().__init__() if fix_batch: self.data = np.random.random((1, 2, 3, 4)).astype(np.float32) self.out_shape = (1, 2 * 3, 4) self.out_shape1 = (1, 2 * 3 * 4) self.out_shape2 = (1, 2, 3 * 4) else: self.data = np.random.random((1, 2, 3, 4, 5)).astype(np.float32) self.out_shape = [1, 2, 3 * 4, 5] self.out_shape1 = [1 * 2, 3 * 4 * 5] self.out_shape2 = [1 * 2 * 3, 4 * 5] def forward(self, x): x = F.reshape(x, self.out_shape) x = F.reshape(x, self.out_shape1) x = F.reshape(x, self.out_shape2) return x class ElemwiseOpr(M.Module): def __init__(self, mode): super().__init__() self.data = np.ones((2, 3, 224, 224)).astype(np.float32) self.data1 = np.random.random((1, 3, 1, 1)).astype(np.float32) self.data2 = np.random.random((2, 3, 224, 224)).astype(np.float32) - 0.8 self.mode = mode def forward(self, a): # add if self.mode == "add": x = a + mge.tensor(np.float32(10)) y = a + mge.tensor(self.data1) z = x + y # sub elif self.mode == "sub": x = a - mge.tensor(np.float32(10)) y = a - mge.tensor(self.data1) z = x - y # mul elif self.mode == "mul": x = a * mge.tensor(np.float32(10)) y = mge.tensor(self.data1) * a z = x * y # div elif self.mode == "max": x = a + mge.tensor(self.data) y = a + mge.tensor(self.data2) z = F.maximum(x, y) elif self.mode == "min": x = a + mge.tensor(self.data) y = a + mge.tensor(self.data2) z = F.minimum(x, y) elif self.mode == "pow": z = a ** 2 elif self.mode == "ceil": z = F.ceil(a) elif self.mode == "floor": z = F.floor(a) elif self.mode == "div": y = mge.tensor(self.data1) / a x = a / mge.tensor(np.float32(2)) z = y / x # cycle_div elif self.mode == "cycle_div": z = a / mge.tensor(self.data1) # abs elif self.mode == "abs": z = F.abs(a) # exp elif self.mode == "exp": z = F.exp(a) # log elif self.mode == "log": z = F.log(a) elif self.mode == "fuse_add_relu": y = a + mge.tensor(self.data2) z = F.relu(y) elif self.mode == "fuse_mul_add3": y = a * mge.tensor(self.data1) z = y + mge.tensor(self.data2) elif self.mode == "fuse_add_sigmoid": y = a + mge.tensor(self.data2) z = F.sigmoid(y) else: raise NotImplementedError('no such elemwise mode "%s"' % self.mode) return z class ReduceOpr(M.Module): def __init__(self, mode): super().__init__() self.mode = mode self.data = np.random.random((1, 3, 1000)).astype(np.float32) def forward(self, a): if self.mode == "sum": return F.sum(a, axis=2) elif self.mode == "mean": return F.mean(a, axis=2) else: return F.max(a, axis=2) class ResizeOpr(M.Module): def __init__(self): super().__init__() self.data = np.random.random((1, 2, 3, 4)).astype(np.float32) self.out_shape = [8, 8] self.out_shape2 = [3, 4] def forward(self, x): x = F.vision.interpolate(x, size=self.out_shape, mode="bilinear") x = F.vision.interpolate(x, size=self.out_shape2, mode="bilinear") return x class ActiveOpr(M.Module): str2fun = { "relu": F.relu, "tanh": F.tanh, "sigmoid": F.sigmoid, "leaky_relu": F.leaky_relu, "softmax": F.softmax, "relu6": lambda x: F.maximum(F.minimum(x, 6), 0), } def __init__(self, mode, fused=False): super().__init__() self.mode = mode self.fused = fused self.data = (np.random.random((1, 2, 3, 4)).astype(np.float32) - 0.5) * 8.0 def forward(self, x): if self.fused: return ActiveOpr.str2fun[self.mode](x + x) else: return ActiveOpr.str2fun[self.mode](x) class BroadcastOpr(M.Module): def __init__(self): super().__init__() self.data = np.array([1], dtype=np.float16) def forward(self, x): return F.broadcast_to(x, (3, 5)) class TypeCvtOpr(M.Module): def __init__(self): super().__init__() self.data = np.array([[2, 2, 2, 2], [3, 3, 3, 3]], dtype=np.int32) def forward(self, x): x = x + 1 x = x.astype(np.float32) return x class XORNet(M.Module): def __init__(self, converter="normal"): self.converter = converter self.mid_dim = 14 self.num_class = 2 super().__init__() self.fc0 = M.Linear(self.num_class, self.mid_dim, bias=True) self.bn0 = M.BatchNorm1d(self.mid_dim) self.fc1 = M.Linear(self.mid_dim, self.mid_dim, bias=True) self.bn1 = M.BatchNorm1d(self.mid_dim) self.fc2 = M.Linear(self.mid_dim, self.num_class, bias=True) self.data = np.arange(24).reshape(12, 2).astype(np.float32) def forward(self, x): x = self.fc0(x) x = self.bn0(x) x = F.softmax(x) if self.converter == "tflite" else F.tanh(x) x = self.fc1(x) x = self.bn1(x) x = F.softmax(x) if self.converter == "tflite" else F.tanh(x) x = self.fc2(x) return x class XORNet_LeakyRelu(M.Module): def __init__(self): self.mid_dim = 14 self.num_class = 2 super().__init__() self.fc0 = M.Linear(self.num_class, self.mid_dim, bias=True) self.bn0 = M.BatchNorm1d(self.mid_dim) self.fc1 = M.Linear(self.mid_dim, self.mid_dim, bias=True) self.bn1 = M.BatchNorm1d(self.mid_dim) self.fc2 = M.Linear(self.mid_dim, self.num_class, bias=True) self.data = np.random.random((12, 2)).astype(np.float32) def forward(self, x): x = self.fc0(x) x = self.bn0(x) x = F.leaky_relu(x) x = F.leaky_relu(x) x = F.tanh(x) x = self.fc1(x) x = F.leaky_relu(x) x = self.bn1(x) x = F.tanh(x) x = self.fc2(x) x = F.leaky_relu(x) return x
[ "megengine.functional.transpose", "megengine.functional.sum", "megengine.module.Conv2d", "megengine.module.pooling.MaxPool2d", "megengine.functional.remove_axis", "megengine.functional.squeeze", "megengine.functional.floor", "megengine.module.BatchNorm2d", "megengine.functional.log", "megengine.functional.leaky_relu", "megengine.functional.broadcast_to", "megengine.jit.trace", "megengine.tensor", "megengine.functional.concat", "megengine.module.ConvTranspose2d", "megengine.module.BatchNorm1d", "megengine.functional.exp", "megengine.functional.ceil", "megengine.functional.vision.interpolate", "megengine.functional.minimum", "megengine.module.Linear", "megengine.functional.sigmoid", "megengine.module.pooling.AvgPool2d", "megengine.functional.maximum", "megengine.functional.softmax", "megengine.functional.relu", "megengine.functional.mean", "megengine.functional.abs", "megengine.functional.max", "megengine.functional.reshape", "megengine.functional.tanh" ]
[((657, 677), 'megengine.jit.trace', 'trace', ([], {'symbolic': '(True)'}), '(symbolic=True)\n', (662, 677), False, 'from megengine.jit import trace\n'), ((1193, 1236), 'megengine.jit.trace', 'trace', ([], {'symbolic': '(True)', 'capture_as_const': '(True)'}), '(symbolic=True, capture_as_const=True)\n', (1198, 1236), False, 'from megengine.jit import trace\n'), ((1780, 1846), 'megengine.module.Conv2d', 'M.Conv2d', (['(3)', '(30)', '(3)'], {'stride': '(2, 3)', 'dilation': '(2, 2)', 'padding': '(3, 1)'}), '(3, 30, 3, stride=(2, 3), dilation=(2, 2), padding=(3, 1))\n', (1788, 1846), True, 'import megengine.module as M\n'), ((1895, 1971), 'megengine.module.Conv2d', 'M.Conv2d', (['(3)', '(30)', '(3)'], {'stride': '(2, 3)', 'dilation': '(2, 2)', 'padding': '(3, 1)', 'groups': '(3)'}), '(3, 30, 3, stride=(2, 3), dilation=(2, 2), padding=(3, 1), groups=3)\n', (1903, 1971), True, 'import megengine.module as M\n'), ((3518, 3548), 'megengine.module.Linear', 'M.Linear', (['(100)', '(200)'], {'bias': '(False)'}), '(100, 200, bias=False)\n', (3526, 3548), True, 'import megengine.module as M\n'), ((3576, 3605), 'megengine.module.Linear', 'M.Linear', (['(200)', '(200)'], {'bias': '(True)'}), '(200, 200, bias=True)\n', (3584, 3605), True, 'import megengine.module as M\n'), ((3838, 3847), 'megengine.functional.relu', 'F.relu', (['x'], {}), '(x)\n', (3844, 3847), True, 'import megengine.functional as F\n'), ((4072, 4127), 'megengine.module.pooling.MaxPool2d', 'M.pooling.MaxPool2d', ([], {'kernel_size': '(3)', 'stride': '(2)', 'padding': '(2)'}), '(kernel_size=3, stride=2, padding=2)\n', (4091, 4127), True, 'import megengine.module as M\n'), ((4151, 4206), 'megengine.module.pooling.AvgPool2d', 'M.pooling.AvgPool2d', ([], {'kernel_size': '(3)', 'stride': '(2)', 'padding': '(2)'}), '(kernel_size=3, stride=2, padding=2)\n', (4170, 4206), True, 'import megengine.module as M\n'), ((4557, 4574), 'megengine.module.BatchNorm1d', 'M.BatchNorm1d', (['(32)'], {}), '(32)\n', (4570, 4574), True, 'import megengine.module as M\n'), ((4595, 4611), 'megengine.module.BatchNorm2d', 'M.BatchNorm2d', (['(3)'], {}), '(3)\n', (4608, 4611), True, 'import megengine.module as M\n'), ((5361, 5386), 'megengine.functional.transpose', 'F.transpose', (['x', 'self.perm'], {}), '(x, self.perm)\n', (5372, 5386), True, 'import megengine.functional as F\n'), ((5493, 5513), 'random.randint', 'random.randint', (['(0)', '(3)'], {}), '(0, 3)\n', (5507, 5513), False, 'import random\n'), ((5626, 5659), 'megengine.functional.concat', 'F.concat', (['[a, a]', 'self.concat_idx'], {}), '([a, a], self.concat_idx)\n', (5634, 5659), True, 'import megengine.functional as F\n'), ((5850, 5862), 'megengine.functional.softmax', 'F.softmax', (['a'], {}), '(a)\n', (5859, 5862), True, 'import megengine.functional as F\n'), ((6797, 6825), 'megengine.functional.reshape', 'F.reshape', (['x', 'self.out_shape'], {}), '(x, self.out_shape)\n', (6806, 6825), True, 'import megengine.functional as F\n'), ((6838, 6867), 'megengine.functional.reshape', 'F.reshape', (['x', 'self.out_shape1'], {}), '(x, self.out_shape1)\n', (6847, 6867), True, 'import megengine.functional as F\n'), ((6880, 6909), 'megengine.functional.reshape', 'F.reshape', (['x', 'self.out_shape2'], {}), '(x, self.out_shape2)\n', (6889, 6909), True, 'import megengine.functional as F\n'), ((9837, 9898), 'megengine.functional.vision.interpolate', 'F.vision.interpolate', (['x'], {'size': 'self.out_shape', 'mode': '"""bilinear"""'}), "(x, size=self.out_shape, mode='bilinear')\n", (9857, 9898), True, 'import megengine.functional as F\n'), ((9911, 9973), 'megengine.functional.vision.interpolate', 'F.vision.interpolate', (['x'], {'size': 'self.out_shape2', 'mode': '"""bilinear"""'}), "(x, size=self.out_shape2, mode='bilinear')\n", (9931, 9973), True, 'import megengine.functional as F\n'), ((10724, 10755), 'numpy.array', 'np.array', (['[1]'], {'dtype': 'np.float16'}), '([1], dtype=np.float16)\n', (10732, 10755), True, 'import numpy as np\n'), ((10798, 10823), 'megengine.functional.broadcast_to', 'F.broadcast_to', (['x', '(3, 5)'], {}), '(x, (3, 5))\n', (10812, 10823), True, 'import megengine.functional as F\n'), ((10925, 10979), 'numpy.array', 'np.array', (['[[2, 2, 2, 2], [3, 3, 3, 3]]'], {'dtype': 'np.int32'}), '([[2, 2, 2, 2], [3, 3, 3, 3]], dtype=np.int32)\n', (10933, 10979), True, 'import numpy as np\n'), ((11279, 11328), 'megengine.module.Linear', 'M.Linear', (['self.num_class', 'self.mid_dim'], {'bias': '(True)'}), '(self.num_class, self.mid_dim, bias=True)\n', (11287, 11328), True, 'import megengine.module as M\n'), ((11348, 11375), 'megengine.module.BatchNorm1d', 'M.BatchNorm1d', (['self.mid_dim'], {}), '(self.mid_dim)\n', (11361, 11375), True, 'import megengine.module as M\n'), ((11395, 11442), 'megengine.module.Linear', 'M.Linear', (['self.mid_dim', 'self.mid_dim'], {'bias': '(True)'}), '(self.mid_dim, self.mid_dim, bias=True)\n', (11403, 11442), True, 'import megengine.module as M\n'), ((11462, 11489), 'megengine.module.BatchNorm1d', 'M.BatchNorm1d', (['self.mid_dim'], {}), '(self.mid_dim)\n', (11475, 11489), True, 'import megengine.module as M\n'), ((11509, 11558), 'megengine.module.Linear', 'M.Linear', (['self.mid_dim', 'self.num_class'], {'bias': '(True)'}), '(self.mid_dim, self.num_class, bias=True)\n', (11517, 11558), True, 'import megengine.module as M\n'), ((12090, 12139), 'megengine.module.Linear', 'M.Linear', (['self.num_class', 'self.mid_dim'], {'bias': '(True)'}), '(self.num_class, self.mid_dim, bias=True)\n', (12098, 12139), True, 'import megengine.module as M\n'), ((12159, 12186), 'megengine.module.BatchNorm1d', 'M.BatchNorm1d', (['self.mid_dim'], {}), '(self.mid_dim)\n', (12172, 12186), True, 'import megengine.module as M\n'), ((12206, 12253), 'megengine.module.Linear', 'M.Linear', (['self.mid_dim', 'self.mid_dim'], {'bias': '(True)'}), '(self.mid_dim, self.mid_dim, bias=True)\n', (12214, 12253), True, 'import megengine.module as M\n'), ((12273, 12300), 'megengine.module.BatchNorm1d', 'M.BatchNorm1d', (['self.mid_dim'], {}), '(self.mid_dim)\n', (12286, 12300), True, 'import megengine.module as M\n'), ((12320, 12369), 'megengine.module.Linear', 'M.Linear', (['self.mid_dim', 'self.num_class'], {'bias': '(True)'}), '(self.mid_dim, self.num_class, bias=True)\n', (12328, 12369), True, 'import megengine.module as M\n'), ((12522, 12537), 'megengine.functional.leaky_relu', 'F.leaky_relu', (['x'], {}), '(x)\n', (12534, 12537), True, 'import megengine.functional as F\n'), ((12550, 12565), 'megengine.functional.leaky_relu', 'F.leaky_relu', (['x'], {}), '(x)\n', (12562, 12565), True, 'import megengine.functional as F\n'), ((12578, 12587), 'megengine.functional.tanh', 'F.tanh', (['x'], {}), '(x)\n', (12584, 12587), True, 'import megengine.functional as F\n'), ((12624, 12639), 'megengine.functional.leaky_relu', 'F.leaky_relu', (['x'], {}), '(x)\n', (12636, 12639), True, 'import megengine.functional as F\n'), ((12676, 12685), 'megengine.functional.tanh', 'F.tanh', (['x'], {}), '(x)\n', (12682, 12685), True, 'import megengine.functional as F\n'), ((12722, 12737), 'megengine.functional.leaky_relu', 'F.leaky_relu', (['x'], {}), '(x)\n', (12734, 12737), True, 'import megengine.functional as F\n'), ((1103, 1119), 'megengine.tensor', 'mge.tensor', (['data'], {}), '(data)\n', (1113, 1119), True, 'import megengine as mge\n'), ((1165, 1181), 'megengine.tensor', 'mge.tensor', (['data'], {}), '(data)\n', (1175, 1181), True, 'import megengine as mge\n'), ((1365, 1381), 'megengine.tensor', 'mge.tensor', (['data'], {}), '(data)\n', (1375, 1381), True, 'import megengine as mge\n'), ((2318, 2411), 'megengine.module.ConvTranspose2d', 'M.ConvTranspose2d', (['(3)', '(5)', '(3, 4)'], {'dilation': '(2, 2)', 'stride': '(3, 2)', 'padding': '(2, 3)', 'groups': '(1)'}), '(3, 5, (3, 4), dilation=(2, 2), stride=(3, 2), padding=(2,\n 3), groups=1)\n', (2335, 2411), True, 'import megengine.module as M\n'), ((2451, 2482), 'megengine.module.ConvTranspose2d', 'M.ConvTranspose2d', (['(5)', '(3)', '(3, 3)'], {}), '(5, 3, (3, 3))\n', (2468, 2482), True, 'import megengine.module as M\n'), ((2850, 2906), 'megengine.module.ConvTranspose2d', 'M.ConvTranspose2d', (['(3)', '(5)', '(3, 4)'], {'stride': '(3, 2)', 'groups': '(1)'}), '(3, 5, (3, 4), stride=(3, 2), groups=1)\n', (2867, 2906), True, 'import megengine.module as M\n'), ((2920, 2951), 'megengine.module.ConvTranspose2d', 'M.ConvTranspose2d', (['(5)', '(3)', '(3, 3)'], {}), '(5, 3, (3, 3))\n', (2937, 2951), True, 'import megengine.module as M\n'), ((6099, 6118), 'megengine.functional.remove_axis', 'F.remove_axis', (['a', '(0)'], {}), '(a, 0)\n', (6112, 6118), True, 'import megengine.functional as F\n'), ((6181, 6196), 'megengine.functional.squeeze', 'F.squeeze', (['a', '(0)'], {}), '(a, 0)\n', (6190, 6196), True, 'import megengine.functional as F\n'), ((9445, 9461), 'megengine.functional.sum', 'F.sum', (['a'], {'axis': '(2)'}), '(a, axis=2)\n', (9450, 9461), True, 'import megengine.functional as F\n'), ((11714, 11726), 'megengine.functional.softmax', 'F.softmax', (['x'], {}), '(x)\n', (11723, 11726), True, 'import megengine.functional as F\n'), ((11762, 11771), 'megengine.functional.tanh', 'F.tanh', (['x'], {}), '(x)\n', (11768, 11771), True, 'import megengine.functional as F\n'), ((11832, 11844), 'megengine.functional.softmax', 'F.softmax', (['x'], {}), '(x)\n', (11841, 11844), True, 'import megengine.functional as F\n'), ((11880, 11889), 'megengine.functional.tanh', 'F.tanh', (['x'], {}), '(x)\n', (11886, 11889), True, 'import megengine.functional as F\n'), ((1699, 1733), 'numpy.random.random', 'np.random.random', (['(1, 3, 224, 224)'], {}), '((1, 3, 224, 224))\n', (1715, 1733), True, 'import numpy as np\n'), ((3449, 3476), 'numpy.random.random', 'np.random.random', (['(10, 100)'], {}), '((10, 100))\n', (3465, 3476), True, 'import numpy as np\n'), ((3994, 4029), 'numpy.random.random', 'np.random.random', (['(30, 3, 224, 224)'], {}), '((30, 3, 224, 224))\n', (4010, 4029), True, 'import numpy as np\n'), ((4414, 4443), 'numpy.random.random', 'np.random.random', (['(1, 32, 32)'], {}), '((1, 32, 32))\n', (4430, 4443), True, 'import numpy as np\n'), ((4484, 4517), 'numpy.random.random', 'np.random.random', (['(20, 3, 24, 24)'], {}), '((20, 3, 24, 24))\n', (4500, 4517), True, 'import numpy as np\n'), ((4837, 4871), 'numpy.random.random', 'np.random.random', (['(10, 10, 10, 10)'], {}), '((10, 10, 10, 10))\n', (4853, 4871), True, 'import numpy as np\n'), ((5236, 5266), 'numpy.random.random', 'np.random.random', (['(1, 2, 3, 4)'], {}), '((1, 2, 3, 4))\n', (5252, 5266), True, 'import numpy as np\n'), ((5534, 5564), 'numpy.random.random', 'np.random.random', (['(1, 2, 4, 5)'], {}), '((1, 2, 4, 5))\n', (5550, 5564), True, 'import numpy as np\n'), ((5761, 5788), 'numpy.random.random', 'np.random.random', (['(1, 1000)'], {}), '((1, 1000))\n', (5777, 5788), True, 'import numpy as np\n'), ((5964, 5994), 'numpy.random.random', 'np.random.random', (['(1, 1, 1000)'], {}), '((1, 1, 1000))\n', (5980, 5994), True, 'import numpy as np\n'), ((7035, 7060), 'numpy.ones', 'np.ones', (['(2, 3, 224, 224)'], {}), '((2, 3, 224, 224))\n', (7042, 7060), True, 'import numpy as np\n'), ((7101, 7131), 'numpy.random.random', 'np.random.random', (['(1, 3, 1, 1)'], {}), '((1, 3, 1, 1))\n', (7117, 7131), True, 'import numpy as np\n'), ((7396, 7418), 'megengine.tensor', 'mge.tensor', (['self.data1'], {}), '(self.data1)\n', (7406, 7418), True, 'import megengine as mge\n'), ((9318, 9348), 'numpy.random.random', 'np.random.random', (['(1, 3, 1000)'], {}), '((1, 3, 1000))\n', (9334, 9348), True, 'import numpy as np\n'), ((9515, 9532), 'megengine.functional.mean', 'F.mean', (['a'], {'axis': '(2)'}), '(a, axis=2)\n', (9521, 9532), True, 'import megengine.functional as F\n'), ((9566, 9582), 'megengine.functional.max', 'F.max', (['a'], {'axis': '(2)'}), '(a, axis=2)\n', (9571, 9582), True, 'import megengine.functional as F\n'), ((9683, 9713), 'numpy.random.random', 'np.random.random', (['(1, 2, 3, 4)'], {}), '((1, 2, 3, 4))\n', (9699, 9713), True, 'import numpy as np\n'), ((10217, 10232), 'megengine.functional.minimum', 'F.minimum', (['x', '(6)'], {}), '(x, 6)\n', (10226, 10232), True, 'import megengine.functional as F\n'), ((12390, 12415), 'numpy.random.random', 'np.random.random', (['(12, 2)'], {}), '((12, 2))\n', (12406, 12415), True, 'import numpy as np\n'), ((2054, 2099), 'numpy.random.random', 'np.random.random', (['self.normal_conv.bias.shape'], {}), '(self.normal_conv.bias.shape)\n', (2070, 2099), True, 'import numpy as np\n'), ((2187, 2231), 'numpy.random.random', 'np.random.random', (['self.group_conv.bias.shape'], {}), '(self.group_conv.bias.shape)\n', (2203, 2231), True, 'import numpy as np\n'), ((2559, 2610), 'numpy.random.random', 'np.random.random', (['self.transpose_conv[0].bias.shape'], {}), '(self.transpose_conv[0].bias.shape)\n', (2575, 2610), True, 'import numpy as np\n'), ((2705, 2756), 'numpy.random.random', 'np.random.random', (['self.transpose_conv[1].bias.shape'], {}), '(self.transpose_conv[1].bias.shape)\n', (2721, 2756), True, 'import numpy as np\n'), ((3035, 3086), 'numpy.random.random', 'np.random.random', (['self.transpose_conv[0].bias.shape'], {}), '(self.transpose_conv[0].bias.shape)\n', (3051, 3086), True, 'import numpy as np\n'), ((3188, 3239), 'numpy.random.random', 'np.random.random', (['self.transpose_conv[1].bias.shape'], {}), '(self.transpose_conv[1].bias.shape)\n', (3204, 3239), True, 'import numpy as np\n'), ((3665, 3710), 'numpy.random.random', 'np.random.random', (['self.linear_bias.bias.shape'], {}), '(self.linear_bias.bias.shape)\n', (3681, 3710), True, 'import numpy as np\n'), ((6341, 6371), 'numpy.random.random', 'np.random.random', (['(1, 2, 3, 4)'], {}), '((1, 2, 3, 4))\n', (6357, 6371), True, 'import numpy as np\n'), ((6561, 6594), 'numpy.random.random', 'np.random.random', (['(1, 2, 3, 4, 5)'], {}), '((1, 2, 3, 4, 5))\n', (6577, 6594), True, 'import numpy as np\n'), ((7172, 7206), 'numpy.random.random', 'np.random.random', (['(2, 3, 224, 224)'], {}), '((2, 3, 224, 224))\n', (7188, 7206), True, 'import numpy as np\n'), ((7360, 7374), 'numpy.float32', 'np.float32', (['(10)'], {}), '(10)\n', (7370, 7374), True, 'import numpy as np\n'), ((7555, 7577), 'megengine.tensor', 'mge.tensor', (['self.data1'], {}), '(self.data1)\n', (7565, 7577), True, 'import megengine as mge\n'), ((7519, 7533), 'numpy.float32', 'np.float32', (['(10)'], {}), '(10)\n', (7529, 7533), True, 'import numpy as np\n'), ((7710, 7732), 'megengine.tensor', 'mge.tensor', (['self.data1'], {}), '(self.data1)\n', (7720, 7732), True, 'import megengine as mge\n'), ((7907, 7922), 'megengine.functional.maximum', 'F.maximum', (['x', 'y'], {}), '(x, y)\n', (7916, 7922), True, 'import megengine.functional as F\n'), ((10388, 10418), 'numpy.random.random', 'np.random.random', (['(1, 2, 3, 4)'], {}), '((1, 2, 3, 4))\n', (10404, 10418), True, 'import numpy as np\n'), ((11579, 11592), 'numpy.arange', 'np.arange', (['(24)'], {}), '(24)\n', (11588, 11592), True, 'import numpy as np\n'), ((7678, 7692), 'numpy.float32', 'np.float32', (['(10)'], {}), '(10)\n', (7688, 7692), True, 'import numpy as np\n'), ((7826, 7847), 'megengine.tensor', 'mge.tensor', (['self.data'], {}), '(self.data)\n', (7836, 7847), True, 'import megengine as mge\n'), ((7868, 7890), 'megengine.tensor', 'mge.tensor', (['self.data2'], {}), '(self.data2)\n', (7878, 7890), True, 'import megengine as mge\n'), ((8057, 8072), 'megengine.functional.minimum', 'F.minimum', (['x', 'y'], {}), '(x, y)\n', (8066, 8072), True, 'import megengine.functional as F\n'), ((7976, 7997), 'megengine.tensor', 'mge.tensor', (['self.data'], {}), '(self.data)\n', (7986, 7997), True, 'import megengine as mge\n'), ((8018, 8040), 'megengine.tensor', 'mge.tensor', (['self.data2'], {}), '(self.data2)\n', (8028, 8040), True, 'import megengine as mge\n'), ((8181, 8190), 'megengine.functional.ceil', 'F.ceil', (['a'], {}), '(a)\n', (8187, 8190), True, 'import megengine.functional as F\n'), ((8243, 8253), 'megengine.functional.floor', 'F.floor', (['a'], {}), '(a)\n', (8250, 8253), True, 'import megengine.functional as F\n'), ((8304, 8326), 'megengine.tensor', 'mge.tensor', (['self.data1'], {}), '(self.data1)\n', (8314, 8326), True, 'import megengine as mge\n'), ((8362, 8375), 'numpy.float32', 'np.float32', (['(2)'], {}), '(2)\n', (8372, 8375), True, 'import numpy as np\n'), ((8478, 8500), 'megengine.tensor', 'mge.tensor', (['self.data1'], {}), '(self.data1)\n', (8488, 8500), True, 'import megengine as mge\n'), ((8564, 8572), 'megengine.functional.abs', 'F.abs', (['a'], {}), '(a)\n', (8569, 8572), True, 'import megengine.functional as F\n'), ((8636, 8644), 'megengine.functional.exp', 'F.exp', (['a'], {}), '(a)\n', (8641, 8644), True, 'import megengine.functional as F\n'), ((8708, 8716), 'megengine.functional.log', 'F.log', (['a'], {}), '(a)\n', (8713, 8716), True, 'import megengine.functional as F\n'), ((8819, 8828), 'megengine.functional.relu', 'F.relu', (['y'], {}), '(y)\n', (8825, 8828), True, 'import megengine.functional as F\n'), ((8780, 8802), 'megengine.tensor', 'mge.tensor', (['self.data2'], {}), '(self.data2)\n', (8790, 8802), True, 'import megengine as mge\n'), ((8892, 8914), 'megengine.tensor', 'mge.tensor', (['self.data1'], {}), '(self.data1)\n', (8902, 8914), True, 'import megengine as mge\n'), ((8935, 8957), 'megengine.tensor', 'mge.tensor', (['self.data2'], {}), '(self.data2)\n', (8945, 8957), True, 'import megengine as mge\n'), ((9063, 9075), 'megengine.functional.sigmoid', 'F.sigmoid', (['y'], {}), '(y)\n', (9072, 9075), True, 'import megengine.functional as F\n'), ((9024, 9046), 'megengine.tensor', 'mge.tensor', (['self.data2'], {}), '(self.data2)\n', (9034, 9046), True, 'import megengine as mge\n')]
from sqlmodel import SQLModel, create_engine from aot_quotes.common.db.quotes import Quotes engine = create_engine("sqlite:///database.db", echo=True) def migrate(): SQLModel.metadata.create_all(engine) if __name__ == "__main__": migrate() __all__ = ["Quotes"]
[ "sqlmodel.SQLModel.metadata.create_all", "sqlmodel.create_engine" ]
[((103, 152), 'sqlmodel.create_engine', 'create_engine', (['"""sqlite:///database.db"""'], {'echo': '(True)'}), "('sqlite:///database.db', echo=True)\n", (116, 152), False, 'from sqlmodel import SQLModel, create_engine\n'), ((174, 210), 'sqlmodel.SQLModel.metadata.create_all', 'SQLModel.metadata.create_all', (['engine'], {}), '(engine)\n', (202, 210), False, 'from sqlmodel import SQLModel, create_engine\n')]
import asyncio import uuid from typing import List, Optional import pytest from fastapi_users import models from pydantic import UUID4 from sqlmodel import Field, Relationship from fastapi_users_db_sqlmodel import SQLModelBaseOAuthAccount, SQLModelBaseUserDB class User(models.BaseUser): first_name: Optional[str] class UserCreate(models.BaseUserCreate): first_name: Optional[str] class UserUpdate(models.BaseUserUpdate): pass class UserDB(SQLModelBaseUserDB, User, table=True): class Config: orm_mode = True class UserOAuth(User): pass class UserDBOAuth(SQLModelBaseUserDB, table=True): __tablename__ = "user_oauth" oauth_accounts: List["OAuthAccount"] = Relationship( back_populates="user", sa_relationship_kwargs={"lazy": "joined", "cascade": "all, delete"}, ) class OAuthAccount(SQLModelBaseOAuthAccount, table=True): user_id: UUID4 = Field(foreign_key="user_oauth.id") user: Optional[UserDBOAuth] = Relationship(back_populates="oauth_accounts") @pytest.fixture(scope="session") def event_loop(): """Force the pytest-asyncio loop to be the main one.""" loop = asyncio.get_event_loop() yield loop @pytest.fixture def oauth_account1() -> OAuthAccount: return OAuthAccount( id=uuid.UUID("b9089e5d-2642-406d-a7c0-cbc641aca0ec"), oauth_name="service1", access_token="TOKEN", expires_at=1579000751, account_id="user_oauth1", account_email="<EMAIL>", ) @pytest.fixture def oauth_account2() -> OAuthAccount: return OAuthAccount( id=uuid.UUID("c9089e5d-2642-406d-a7c0-cbc641aca0ec"), oauth_name="service2", access_token="TOKEN", expires_at=1579000751, account_id="user_oauth2", account_email="<EMAIL>", )
[ "sqlmodel.Relationship", "sqlmodel.Field" ]
[((1033, 1064), 'pytest.fixture', 'pytest.fixture', ([], {'scope': '"""session"""'}), "(scope='session')\n", (1047, 1064), False, 'import pytest\n'), ((706, 814), 'sqlmodel.Relationship', 'Relationship', ([], {'back_populates': '"""user"""', 'sa_relationship_kwargs': "{'lazy': 'joined', 'cascade': 'all, delete'}"}), "(back_populates='user', sa_relationship_kwargs={'lazy':\n 'joined', 'cascade': 'all, delete'})\n", (718, 814), False, 'from sqlmodel import Field, Relationship\n'), ((915, 949), 'sqlmodel.Field', 'Field', ([], {'foreign_key': '"""user_oauth.id"""'}), "(foreign_key='user_oauth.id')\n", (920, 949), False, 'from sqlmodel import Field, Relationship\n'), ((984, 1029), 'sqlmodel.Relationship', 'Relationship', ([], {'back_populates': '"""oauth_accounts"""'}), "(back_populates='oauth_accounts')\n", (996, 1029), False, 'from sqlmodel import Field, Relationship\n'), ((1154, 1178), 'asyncio.get_event_loop', 'asyncio.get_event_loop', ([], {}), '()\n', (1176, 1178), False, 'import asyncio\n'), ((1286, 1335), 'uuid.UUID', 'uuid.UUID', (['"""b9089e5d-2642-406d-a7c0-cbc641aca0ec"""'], {}), "('b9089e5d-2642-406d-a7c0-cbc641aca0ec')\n", (1295, 1335), False, 'import uuid\n'), ((1594, 1643), 'uuid.UUID', 'uuid.UUID', (['"""c9089e5d-2642-406d-a7c0-cbc641aca0ec"""'], {}), "('c9089e5d-2642-406d-a7c0-cbc641aca0ec')\n", (1603, 1643), False, 'import uuid\n')]
from uuid import UUID from sqlalchemy import event from sqlalchemy.schema import Column, ForeignKey, UniqueConstraint from sqlmodel import Field, Relationship from sqlmodel.sql.sqltypes import GUID from joj.horse.models.base import DomainURLORMModel, url_pre_save from joj.horse.models.domain import Domain from joj.horse.schemas.domain_invitation import DomainInvitationDetail class DomainInvitation(DomainURLORMModel, DomainInvitationDetail, table=True): # type: ignore[call-arg] __tablename__ = "domain_invitations" __table_args__ = ( UniqueConstraint("domain_id", "url"), UniqueConstraint("domain_id", "code"), ) domain_id: UUID = Field( sa_column=Column( GUID, ForeignKey("domains.id", ondelete="CASCADE"), nullable=False ) ) domain: "Domain" = Relationship(back_populates="invitations") event.listen(DomainInvitation, "before_insert", url_pre_save) event.listen(DomainInvitation, "before_update", url_pre_save)
[ "sqlmodel.Relationship" ]
[((869, 930), 'sqlalchemy.event.listen', 'event.listen', (['DomainInvitation', '"""before_insert"""', 'url_pre_save'], {}), "(DomainInvitation, 'before_insert', url_pre_save)\n", (881, 930), False, 'from sqlalchemy import event\n'), ((931, 992), 'sqlalchemy.event.listen', 'event.listen', (['DomainInvitation', '"""before_update"""', 'url_pre_save'], {}), "(DomainInvitation, 'before_update', url_pre_save)\n", (943, 992), False, 'from sqlalchemy import event\n'), ((824, 866), 'sqlmodel.Relationship', 'Relationship', ([], {'back_populates': '"""invitations"""'}), "(back_populates='invitations')\n", (836, 866), False, 'from sqlmodel import Field, Relationship\n'), ((559, 595), 'sqlalchemy.schema.UniqueConstraint', 'UniqueConstraint', (['"""domain_id"""', '"""url"""'], {}), "('domain_id', 'url')\n", (575, 595), False, 'from sqlalchemy.schema import Column, ForeignKey, UniqueConstraint\n'), ((605, 642), 'sqlalchemy.schema.UniqueConstraint', 'UniqueConstraint', (['"""domain_id"""', '"""code"""'], {}), "('domain_id', 'code')\n", (621, 642), False, 'from sqlalchemy.schema import Column, ForeignKey, UniqueConstraint\n'), ((724, 768), 'sqlalchemy.schema.ForeignKey', 'ForeignKey', (['"""domains.id"""'], {'ondelete': '"""CASCADE"""'}), "('domains.id', ondelete='CASCADE')\n", (734, 768), False, 'from sqlalchemy.schema import Column, ForeignKey, UniqueConstraint\n')]
import numpy as np import megengine import megengine.module as M import megengine.functional as F import math from . import default_init_weights class ShuffleV2Block(M.Module): def __init__(self, inp, oup, mid_channels, *, ksize, stride): super().__init__() self.stride = stride assert stride in [1, 2] self.mid_channels = mid_channels self.ksize = ksize pad = ksize // 2 self.pad = pad self.inp = inp outputs = oup - inp branch_main = [ # pw M.Conv2d(inp, mid_channels, 1, 1, 0, bias=False), M.ReLU(), # dw M.Conv2d( mid_channels, mid_channels, ksize, stride, pad, groups=mid_channels, bias=False, ), # pw-linear M.Conv2d(mid_channels, outputs, 1, 1, 0, bias=False), M.ReLU(), ] self.branch_main = M.Sequential(*branch_main) if stride == 2: branch_proj = [ # dw M.Conv2d(inp, inp, ksize, stride, pad, groups=inp, bias=False), M.BatchNorm2d(inp), # pw-linear M.Conv2d(inp, inp, 1, 1, 0, bias=False), M.BatchNorm2d(inp), M.ReLU(), ] self.branch_proj = M.Sequential(*branch_proj) else: self.branch_proj = None self.init_weights() def forward(self, old_x): if self.stride == 1: x_proj, x = self.channel_shuffle(old_x) return F.concat((x_proj, self.branch_main(x)), 1) elif self.stride == 2: x_proj = old_x x = old_x return F.concat((self.branch_proj(x_proj), self.branch_main(x)), 1) else: raise ValueError("use stride 1 or 2, current stride {}".format(self.stride)) def channel_shuffle(self, x): batchsize, num_channels, height, width = x.shape # assert (num_channels % 4 == 0) x = x.reshape(batchsize * num_channels // 2, 2, height * width) x = F.transpose(x, (1, 0, 2)) x = x.reshape(2, -1, num_channels // 2, height, width) return x[0], x[1] def init_weights(self): default_init_weights(self, scale=0.2)
[ "megengine.module.ReLU", "megengine.module.BatchNorm2d", "megengine.functional.transpose", "megengine.module.Sequential", "megengine.module.Conv2d" ]
[((943, 969), 'megengine.module.Sequential', 'M.Sequential', (['*branch_main'], {}), '(*branch_main)\n', (955, 969), True, 'import megengine.module as M\n'), ((2111, 2136), 'megengine.functional.transpose', 'F.transpose', (['x', '(1, 0, 2)'], {}), '(x, (1, 0, 2))\n', (2122, 2136), True, 'import megengine.functional as F\n'), ((555, 603), 'megengine.module.Conv2d', 'M.Conv2d', (['inp', 'mid_channels', '(1)', '(1)', '(0)'], {'bias': '(False)'}), '(inp, mid_channels, 1, 1, 0, bias=False)\n', (563, 603), True, 'import megengine.module as M\n'), ((617, 625), 'megengine.module.ReLU', 'M.ReLU', ([], {}), '()\n', (623, 625), True, 'import megengine.module as M\n'), ((656, 750), 'megengine.module.Conv2d', 'M.Conv2d', (['mid_channels', 'mid_channels', 'ksize', 'stride', 'pad'], {'groups': 'mid_channels', 'bias': '(False)'}), '(mid_channels, mid_channels, ksize, stride, pad, groups=\n mid_channels, bias=False)\n', (664, 750), True, 'import megengine.module as M\n'), ((830, 882), 'megengine.module.Conv2d', 'M.Conv2d', (['mid_channels', 'outputs', '(1)', '(1)', '(0)'], {'bias': '(False)'}), '(mid_channels, outputs, 1, 1, 0, bias=False)\n', (838, 882), True, 'import megengine.module as M\n'), ((896, 904), 'megengine.module.ReLU', 'M.ReLU', ([], {}), '()\n', (902, 904), True, 'import megengine.module as M\n'), ((1352, 1378), 'megengine.module.Sequential', 'M.Sequential', (['*branch_proj'], {}), '(*branch_proj)\n', (1364, 1378), True, 'import megengine.module as M\n'), ((1060, 1122), 'megengine.module.Conv2d', 'M.Conv2d', (['inp', 'inp', 'ksize', 'stride', 'pad'], {'groups': 'inp', 'bias': '(False)'}), '(inp, inp, ksize, stride, pad, groups=inp, bias=False)\n', (1068, 1122), True, 'import megengine.module as M\n'), ((1140, 1158), 'megengine.module.BatchNorm2d', 'M.BatchNorm2d', (['inp'], {}), '(inp)\n', (1153, 1158), True, 'import megengine.module as M\n'), ((1204, 1243), 'megengine.module.Conv2d', 'M.Conv2d', (['inp', 'inp', '(1)', '(1)', '(0)'], {'bias': '(False)'}), '(inp, inp, 1, 1, 0, bias=False)\n', (1212, 1243), True, 'import megengine.module as M\n'), ((1261, 1279), 'megengine.module.BatchNorm2d', 'M.BatchNorm2d', (['inp'], {}), '(inp)\n', (1274, 1279), True, 'import megengine.module as M\n'), ((1297, 1305), 'megengine.module.ReLU', 'M.ReLU', ([], {}), '()\n', (1303, 1305), True, 'import megengine.module as M\n')]
import sys import os import click from app import config from sqlmodel import Session from sqlmodel import create_engine from app.models.server import Server from sqlmodel import select API_ENVIRONMENT = os.environ.get("API_ENVIRONMENT", "Testing") settings = getattr(sys.modules[__name__].config, API_ENVIRONMENT) engine = create_engine(settings.DATABASE_URI) @click.group() @click.pass_context def main(): pass @main.command(name="settings") def get_settings(): """ Prints current API settings from $API_ENVIRONMENT. """ click.echo(settings) @main.group(name="import") def import_group(): pass @import_group.command(name="catagories") def import_catagories(): """ Commands for importing a database. """ import yaml from app.models.server import Catagory, ServerCatagoryLink print("Looking for catagories.yml") with Session(engine) as session: with open("config.yml", "r") as stream: catagories = yaml.safe_load(stream) for name, data in catagories.get("catagories").items(): print(data) _catagory = Catagory( title = name, meta_ref = name.lower().replace(" ", "-"), color = f"#{data['color']}" ) session.add(_catagory) session.commit() session.refresh(_catagory) _query = select(Server).where(Server.domain_name.like(data['match'])) _result = session.exec(_query).all() for server in _result: _link = ServerCatagoryLink( server_id = server.id, catagory_id = _catagory.id ) session.add(_link) session.commit() @import_group.command(name="csv") def csv_file(file): """ Commands for importing a database. """ import csv with Session(engine) as session: with open(file, "r") as stream: csv_reader = csv.DictReader(stream) line_count = 0 for row in csv_reader: if line_count == 0: line_count += 1 _server = Server( domain_name=row["Domain Name"], domain_type=row["Domain Type"], agency=row["Agency"], organization=row["Organization"], ) session.add(_server) session.commit() @import_group.command(name="file") @click.argument("file") def basic_file(file): with Session(engine) as session: with open(file, "r") as stream: stream = stream.readlines() servers = [] for row in stream: servers.append(row.strip().lower()) for row in list(set(servers)): session.add(Server(domain_name=row)) session.commit() @main.group() def tables(): """ Commands for handling database tables. """ pass @tables.command() def drop(): """ Forcefully remove all tables within the database. """ import sqlalchemy from sqlalchemy import create_engine from sqlalchemy import MetaData from sqlalchemy import inspect from sqlalchemy.orm import sessionmaker from sqlalchemy.ext.declarative import declarative_base engine = create_engine(settings.DATABASE_URI) meta = MetaData() meta.reflect(bind=engine) meta.drop_all(engine, checkfirst=False) print("Dropped tables.") @tables.command() def create(): """ Creates all tables within the API. """ from sqlmodel import SQLModel from app.models.user import User, Log from app.models.server import Server, ServerLog SQLModel.metadata.create_all(engine) print("Created tables.") cli = click.CommandCollection(sources=[main]) if __name__ == "__main__": cli()
[ "sqlmodel.select", "sqlmodel.Session", "sqlmodel.SQLModel.metadata.create_all" ]
[((205, 249), 'os.environ.get', 'os.environ.get', (['"""API_ENVIRONMENT"""', '"""Testing"""'], {}), "('API_ENVIRONMENT', 'Testing')\n", (219, 249), False, 'import os\n'), ((326, 362), 'sqlalchemy.create_engine', 'create_engine', (['settings.DATABASE_URI'], {}), '(settings.DATABASE_URI)\n', (339, 362), False, 'from sqlalchemy import create_engine\n'), ((366, 379), 'click.group', 'click.group', ([], {}), '()\n', (377, 379), False, 'import click\n'), ((2575, 2597), 'click.argument', 'click.argument', (['"""file"""'], {}), "('file')\n", (2589, 2597), False, 'import click\n'), ((3878, 3917), 'click.CommandCollection', 'click.CommandCollection', ([], {'sources': '[main]'}), '(sources=[main])\n', (3901, 3917), False, 'import click\n'), ((549, 569), 'click.echo', 'click.echo', (['settings'], {}), '(settings)\n', (559, 569), False, 'import click\n'), ((3420, 3456), 'sqlalchemy.create_engine', 'create_engine', (['settings.DATABASE_URI'], {}), '(settings.DATABASE_URI)\n', (3433, 3456), False, 'from sqlalchemy import create_engine\n'), ((3468, 3478), 'sqlalchemy.MetaData', 'MetaData', ([], {}), '()\n', (3476, 3478), False, 'from sqlalchemy import MetaData\n'), ((3804, 3840), 'sqlmodel.SQLModel.metadata.create_all', 'SQLModel.metadata.create_all', (['engine'], {}), '(engine)\n', (3832, 3840), False, 'from sqlmodel import SQLModel\n'), ((880, 895), 'sqlmodel.Session', 'Session', (['engine'], {}), '(engine)\n', (887, 895), False, 'from sqlmodel import Session\n'), ((1972, 1987), 'sqlmodel.Session', 'Session', (['engine'], {}), '(engine)\n', (1979, 1987), False, 'from sqlmodel import Session\n'), ((2629, 2644), 'sqlmodel.Session', 'Session', (['engine'], {}), '(engine)\n', (2636, 2644), False, 'from sqlmodel import Session\n'), ((981, 1003), 'yaml.safe_load', 'yaml.safe_load', (['stream'], {}), '(stream)\n', (995, 1003), False, 'import yaml\n'), ((2065, 2087), 'csv.DictReader', 'csv.DictReader', (['stream'], {}), '(stream)\n', (2079, 2087), False, 'import csv\n'), ((2249, 2379), 'app.models.server.Server', 'Server', ([], {'domain_name': "row['Domain Name']", 'domain_type': "row['Domain Type']", 'agency': "row['Agency']", 'organization': "row['Organization']"}), "(domain_name=row['Domain Name'], domain_type=row['Domain Type'],\n agency=row['Agency'], organization=row['Organization'])\n", (2255, 2379), False, 'from app.models.server import Server, ServerLog\n'), ((1465, 1503), 'app.models.server.Server.domain_name.like', 'Server.domain_name.like', (["data['match']"], {}), "(data['match'])\n", (1488, 1503), False, 'from app.models.server import Server, ServerLog\n'), ((1625, 1690), 'app.models.server.ServerCatagoryLink', 'ServerCatagoryLink', ([], {'server_id': 'server.id', 'catagory_id': '_catagory.id'}), '(server_id=server.id, catagory_id=_catagory.id)\n', (1643, 1690), False, 'from app.models.server import Catagory, ServerCatagoryLink\n'), ((2917, 2940), 'app.models.server.Server', 'Server', ([], {'domain_name': 'row'}), '(domain_name=row)\n', (2923, 2940), False, 'from app.models.server import Server, ServerLog\n'), ((1444, 1458), 'sqlmodel.select', 'select', (['Server'], {}), '(Server)\n', (1450, 1458), False, 'from sqlmodel import select\n')]
from typing import TYPE_CHECKING from pydantic import validator from sqlalchemy import Column, ForeignKey, Integer, String from sqlmodel import Field, Relationship, SQLModel if TYPE_CHECKING: from .event import Event, EventList from .participant import Participant, ParticipantList class FeedbackBase(SQLModel): presentation: int content: int interest: int comments: str = Field(default="", nullable=False) again: bool = Field(default=True, nullable=False) @validator("presentation", "content", "interest") def between_1_and_5(cls, value: int): if value < 1 or value > 5: raise ValueError("must be between 1 and 5 inclusive") return value class Feedback(FeedbackBase, table=True): __tablename__ = "feedback" participant_id: str = Field( sa_column=Column( String(), ForeignKey("participants.id", ondelete="CASCADE"), nullable=False, primary_key=True, ) ) participant: "Participant" = Relationship() event_id: int = Field( sa_column=Column( Integer(), ForeignKey("events.id", ondelete="CASCADE"), nullable=False, primary_key=True, ) ) event: "Event" = Relationship(back_populates="feedback") class FeedbackCreate(FeedbackBase): pass class FeedbackList(SQLModel): participant: "ParticipantList" presentation: int content: int interest: int class FeedbackRead(FeedbackBase): participant: "ParticipantList" event: "EventList"
[ "sqlmodel.Field", "sqlmodel.Relationship" ]
[((402, 435), 'sqlmodel.Field', 'Field', ([], {'default': '""""""', 'nullable': '(False)'}), "(default='', nullable=False)\n", (407, 435), False, 'from sqlmodel import Field, Relationship, SQLModel\n'), ((454, 489), 'sqlmodel.Field', 'Field', ([], {'default': '(True)', 'nullable': '(False)'}), '(default=True, nullable=False)\n', (459, 489), False, 'from sqlmodel import Field, Relationship, SQLModel\n'), ((496, 544), 'pydantic.validator', 'validator', (['"""presentation"""', '"""content"""', '"""interest"""'], {}), "('presentation', 'content', 'interest')\n", (505, 544), False, 'from pydantic import validator\n'), ((1036, 1050), 'sqlmodel.Relationship', 'Relationship', ([], {}), '()\n', (1048, 1050), False, 'from sqlmodel import Field, Relationship, SQLModel\n'), ((1280, 1319), 'sqlmodel.Relationship', 'Relationship', ([], {'back_populates': '"""feedback"""'}), "(back_populates='feedback')\n", (1292, 1319), False, 'from sqlmodel import Field, Relationship, SQLModel\n'), ((856, 864), 'sqlalchemy.String', 'String', ([], {}), '()\n', (862, 864), False, 'from sqlalchemy import Column, ForeignKey, Integer, String\n'), ((878, 927), 'sqlalchemy.ForeignKey', 'ForeignKey', (['"""participants.id"""'], {'ondelete': '"""CASCADE"""'}), "('participants.id', ondelete='CASCADE')\n", (888, 927), False, 'from sqlalchemy import Column, ForeignKey, Integer, String\n'), ((1117, 1126), 'sqlalchemy.Integer', 'Integer', ([], {}), '()\n', (1124, 1126), False, 'from sqlalchemy import Column, ForeignKey, Integer, String\n'), ((1140, 1183), 'sqlalchemy.ForeignKey', 'ForeignKey', (['"""events.id"""'], {'ondelete': '"""CASCADE"""'}), "('events.id', ondelete='CASCADE')\n", (1150, 1183), False, 'from sqlalchemy import Column, ForeignKey, Integer, String\n')]
#!/usr/bin/env python3 # -*- coding:utf-8 -*- import megengine as mge import megengine.module as M from models.yolo_fpn import YOLOFPN from models.yolo_head import YOLOXHead from models.yolo_pafpn import YOLOPAFPN from models.yolox import YOLOX def build_yolox(name="yolox-s"): num_classes = 80 # value meaning: depth, width param_dict = { "yolox-nano": (0.33, 0.25), "yolox-tiny": (0.33, 0.375), "yolox-s": (0.33, 0.50), "yolox-m": (0.67, 0.75), "yolox-l": (1.0, 1.0), "yolox-x": (1.33, 1.25), } if name == "yolov3": depth = 1.0 width = 1.0 backbone = YOLOFPN() head = YOLOXHead(num_classes, width, in_channels=[128, 256, 512], act="lrelu") model = YOLOX(backbone, head) else: assert name in param_dict kwargs = {} depth, width = param_dict[name] if name == "yolox-nano": kwargs["depthwise"] = True in_channels = [256, 512, 1024] backbone = YOLOPAFPN(depth, width, in_channels=in_channels, **kwargs) head = YOLOXHead(num_classes, width, in_channels=in_channels, **kwargs) model = YOLOX(backbone, head) for m in model.modules(): if isinstance(m, M.BatchNorm2d): m.eps = 1e-3 return model def build_and_load(weight_file, name="yolox-s"): model = build_yolox(name) model_weights = mge.load(weight_file) model.load_state_dict(model_weights, strict=False) return model
[ "megengine.load" ]
[((1412, 1433), 'megengine.load', 'mge.load', (['weight_file'], {}), '(weight_file)\n', (1420, 1433), True, 'import megengine as mge\n'), ((650, 659), 'models.yolo_fpn.YOLOFPN', 'YOLOFPN', ([], {}), '()\n', (657, 659), False, 'from models.yolo_fpn import YOLOFPN\n'), ((675, 746), 'models.yolo_head.YOLOXHead', 'YOLOXHead', (['num_classes', 'width'], {'in_channels': '[128, 256, 512]', 'act': '"""lrelu"""'}), "(num_classes, width, in_channels=[128, 256, 512], act='lrelu')\n", (684, 746), False, 'from models.yolo_head import YOLOXHead\n'), ((763, 784), 'models.yolox.YOLOX', 'YOLOX', (['backbone', 'head'], {}), '(backbone, head)\n', (768, 784), False, 'from models.yolox import YOLOX\n'), ((1019, 1077), 'models.yolo_pafpn.YOLOPAFPN', 'YOLOPAFPN', (['depth', 'width'], {'in_channels': 'in_channels'}), '(depth, width, in_channels=in_channels, **kwargs)\n', (1028, 1077), False, 'from models.yolo_pafpn import YOLOPAFPN\n'), ((1093, 1157), 'models.yolo_head.YOLOXHead', 'YOLOXHead', (['num_classes', 'width'], {'in_channels': 'in_channels'}), '(num_classes, width, in_channels=in_channels, **kwargs)\n', (1102, 1157), False, 'from models.yolo_head import YOLOXHead\n'), ((1174, 1195), 'models.yolox.YOLOX', 'YOLOX', (['backbone', 'head'], {}), '(backbone, head)\n', (1179, 1195), False, 'from models.yolox import YOLOX\n')]
from sqlmodel import SQLModel, create_engine, Session from victor_api.config import settings engine = create_engine( url=settings.db.url, echo=settings.db.echo, connect_args=settings.db.connect_args ) def get_session(): with Session(engine) as session: yield session def init_db(): SQLModel.metadata.create_all(engine)
[ "sqlmodel.Session", "sqlmodel.SQLModel.metadata.create_all", "sqlmodel.create_engine" ]
[((104, 205), 'sqlmodel.create_engine', 'create_engine', ([], {'url': 'settings.db.url', 'echo': 'settings.db.echo', 'connect_args': 'settings.db.connect_args'}), '(url=settings.db.url, echo=settings.db.echo, connect_args=\n settings.db.connect_args)\n', (117, 205), False, 'from sqlmodel import SQLModel, create_engine, Session\n'), ((316, 352), 'sqlmodel.SQLModel.metadata.create_all', 'SQLModel.metadata.create_all', (['engine'], {}), '(engine)\n', (344, 352), False, 'from sqlmodel import SQLModel, create_engine, Session\n'), ((245, 260), 'sqlmodel.Session', 'Session', (['engine'], {}), '(engine)\n', (252, 260), False, 'from sqlmodel import SQLModel, create_engine, Session\n')]
from fastapi import APIRouter, Depends from ..utils import engine, get_session from sqlmodel import Session, select, SQLModel, or_ from sqlalchemy.exc import NoResultFound from ..models.user import User from typing import Optional from datetime import datetime router = APIRouter(prefix="/api/users", tags=["user"]) session = Session(engine) @router.post("/") async def post_user( user: User, session: Session = Depends(get_session), ): """ Post a new user. Parameters ---------- user : User User that is to be added to the database. session : Session SQL session that is to be used to add the user. Defaults to creating a dependency on the running SQL model session. """ statement = select(User).where(User.short_name == user.short_name) try: result = session.exec(statement).one() return False except NoResultFound: session.add(user) session.commit() session.refresh(user) return user @router.get("/") async def get_users( session: Session = Depends(get_session), is_active: bool = None, short_name: str = None, ): """ Get list of user(s). Parameters ---------- session : Session SQL session that is to be used to get the users. Defaults to creating a dependency on the running SQL model session. is_active : bool Status of users to be pulled. short_name : str Short name of user to be pulled. """ statement = select(User) if is_active != None: statement = ( select(User) .where(User.is_active == is_active) .order_by(User.start_date.desc()) ) result = session.exec(statement).all() return result @router.put("/{user_id}/") async def update_user( user_id: int, is_active: Optional[bool] = None, new_short_name: Optional[str] = None, new_first_name: Optional[str] = None, new_last_name: Optional[str] = None, new_email: Optional[str] = None, new_team_id: Optional[str] = None, session: Session = Depends(get_session), ): """ Update a user. Parameters ---------- user_id : int ID of user to be updated. is_active : Optional[bool] Updated status of user. new_short_name : Optional[bool] Updated short name of user. new_first_name : Optional[bool] Updated first name of user. new_last_name : Optional[bool] Updated last name of user. new_email : Optional[bool] Updated email of user new_team_id : Optional[bool] Updated team id. session : Session SQL session that is to be used to update the user. Defaults to creating a dependency on the running SQL model session. """ statement = select(User).where(User.id == user_id) user_to_update = session.exec(statement).one() if is_active != None: user_to_update.is_active = is_active if new_short_name != None: user_to_update.short_name = new_short_name if new_first_name != None: user_to_update.first_name = new_first_name if new_last_name != None: user_to_update.last_name = new_last_name if new_email != None: user_to_update.email = new_email if new_team_id != None: user_to_update.team_id = new_team_id user_to_update.updated_at = datetime.now() session.add(user_to_update) session.commit() session.refresh(user_to_update) return user_to_update
[ "sqlmodel.select", "sqlmodel.Session" ]
[((271, 316), 'fastapi.APIRouter', 'APIRouter', ([], {'prefix': '"""/api/users"""', 'tags': "['user']"}), "(prefix='/api/users', tags=['user'])\n", (280, 316), False, 'from fastapi import APIRouter, Depends\n'), ((327, 342), 'sqlmodel.Session', 'Session', (['engine'], {}), '(engine)\n', (334, 342), False, 'from sqlmodel import Session, select, SQLModel, or_\n'), ((423, 443), 'fastapi.Depends', 'Depends', (['get_session'], {}), '(get_session)\n', (430, 443), False, 'from fastapi import APIRouter, Depends\n'), ((1074, 1094), 'fastapi.Depends', 'Depends', (['get_session'], {}), '(get_session)\n', (1081, 1094), False, 'from fastapi import APIRouter, Depends\n'), ((1519, 1531), 'sqlmodel.select', 'select', (['User'], {}), '(User)\n', (1525, 1531), False, 'from sqlmodel import Session, select, SQLModel, or_\n'), ((2102, 2122), 'fastapi.Depends', 'Depends', (['get_session'], {}), '(get_session)\n', (2109, 2122), False, 'from fastapi import APIRouter, Depends\n'), ((3390, 3404), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (3402, 3404), False, 'from datetime import datetime\n'), ((752, 764), 'sqlmodel.select', 'select', (['User'], {}), '(User)\n', (758, 764), False, 'from sqlmodel import Session, select, SQLModel, or_\n'), ((2814, 2826), 'sqlmodel.select', 'select', (['User'], {}), '(User)\n', (2820, 2826), False, 'from sqlmodel import Session, select, SQLModel, or_\n'), ((1592, 1604), 'sqlmodel.select', 'select', (['User'], {}), '(User)\n', (1598, 1604), False, 'from sqlmodel import Session, select, SQLModel, or_\n')]
import numpy as nm from sfepy.terms.extmods import terms from sfepy.terms.cache import DataCache from sfepy.base.base import pause, debug class FiniteStrainTLDataCache( DataCache ): """ Stores shared deformation-related data useful for the total Lagrangian formulation of finite strain elasticity. arguments: - state : displacements supported: - deformation gradient F - jacobian J = det( F ) - right Cauchy-Green deformation tensor C = F^T F in vector (symmetric) storage - 1st invariant of C : tr( C ) - 2nd invariant of C - C^{-1} in vector (symmetric) storage - Green strain E = 1/2 (C - I) All data are computed together, no matter which one is requested! """ name = 'finite_strain_tl' arg_types = ('state',) def __init__( self, name, arg_names, history_sizes = None ): keys = ['F', 'detF', 'C', 'trC', 'in2C', 'invC', 'E'] DataCache.__init__( self, name, arg_names, keys, history_sizes, terms.dq_finite_strain_tl ) def init_data(self, key, ckey, term, **kwargs): state, = self.get_args( **kwargs ) n_el, n_qp, dim = state.get_data_shapes(term.integral, ckey[-1])[:3] sym = dim * (dim + 1) / 2 self.shapes = { 'F' : (n_el, n_qp, dim, dim), 'detF' : (n_el, n_qp, 1, 1), 'C' : (n_el, n_qp, sym, 1), 'trC' : (n_el, n_qp, 1, 1), 'in2C' : (n_el, n_qp, 1, 1), 'invC' : (n_el, n_qp, sym, 1), 'E' : (n_el, n_qp, sym, 1), } DataCache.init_datas( self, ckey, self.shapes ) def update(self, key, term, ih, **kwargs): state, = self.get_args( **kwargs ) ap, vg = term.get_approximation(state) ckey = self.get_key(term) self.function( self.data['F'][ckey][ih], self.data['detF'][ckey][ih], self.data['C'][ckey][ih], self.data['trC'][ckey][ih], self.data['in2C'][ckey][ih], self.data['invC'][ckey][ih], self.data['E'][ckey][ih], state(), 0, vg, ap.econn ) self.valid['F'][ckey] = True self.valid['detF'][ckey] = True self.valid['C'][ckey] = True self.valid['trC'][ckey] = True self.valid['in2C'][ckey] = True self.valid['invC'][ckey] = True self.valid['E'][ckey] = True class FiniteStrainSurfaceTLDataCache(DataCache): """ Stores shared deformation-related data useful for the total Lagrangian formulation of finite strain elasticity for surface integrals. arguments: - state : displacements supported: - deformation gradient F - inverse deformation gradient F^{-1} - jacobian J = det( F ) All data are computed together, no matter which one is requested! """ name = 'finite_strain_surface_tl' arg_types = ('state', 'data_shape') def __init__( self, name, arg_names, history_sizes = None ): keys = ['F', 'detF', 'invF'] DataCache.__init__( self, name, arg_names, keys, history_sizes, terms.dq_tl_finite_strain_surface ) def init_data(self, key, ckey, term, **kwargs): state, data_shape = self.get_args( **kwargs ) n_fa, n_qp, dim, n_ep = data_shape self.shapes = { 'F' : (n_fa, n_qp, dim, dim), 'invF' : (n_fa, n_qp, dim, dim), 'detF' : (n_fa, n_qp, 1, 1), } DataCache.init_datas( self, ckey, self.shapes ) def update(self, key, term, ih, **kwargs): state = self.get_args(**kwargs)[0] ap, sg = term.get_approximation(state) sd = ap.surface_data[term.region.name] ckey = self.get_key(term) self.function( self.data['F'][ckey][ih], self.data['detF'][ckey][ih], self.data['invF'][ckey][ih], state(), 0, sg, sd.fis, ap.econn ) self.valid['F'][ckey] = True self.valid['detF'][ckey] = True self.valid['invF'][ckey] = True class FiniteStrainULDataCache( DataCache ): """ Stores shared deformation-related data useful for the updated Lagrangian formulation of finite strain elasticity. arguments: - state(s) : displacements u(t), u(t-1) supported: - relative deformation gradient F - jacobian J = det( F ) - left Cauchy-Green deformation tensor b = F F^T in vector (symmetric) storage - 1st invariant of b : tr( b ) - 2nd invariant of b ??? - Green strain E = 1/2 (C - I) All data are computed together, no matter which one is requested! """ name = 'finite_strain_ul' arg_types = ('state',) def __init__( self, name, arg_names, history_sizes = None ): keys = ['F', 'detF', 'B', 'trB', 'in2B', 'E'] DataCache.__init__( self, name, arg_names, keys, history_sizes, terms.dq_finite_strain_ul ) def init_data(self, key, ckey, term, **kwargs): state, = self.get_args( **kwargs ) n_el, n_qp, dim = state.get_data_shapes(term.integral, ckey[-1])[:3] sym = dim * (dim + 1) / 2 self.shapes = { 'F' : (n_el, n_qp, dim, dim), 'detF' : (n_el, n_qp, 1, 1), 'B' : (n_el, n_qp, sym, 1), 'trB' : (n_el, n_qp, 1, 1), 'in2B' : (n_el, n_qp, 1, 1), 'E' : (n_el, n_qp, sym, 1), } DataCache.init_datas( self, ckey, self.shapes ) def update(self, key, term, ih, **kwargs): state, = self.get_args( **kwargs ) ap, vg = term.get_approximation(state) ckey = self.get_key(term) self.function( self.data['F'][ckey][ih], self.data['detF'][ckey][ih], self.data['B'][ckey][ih], self.data['trB'][ckey][ih], self.data['in2B'][ckey][ih], self.data['E'][ckey][ih], state(), state(step = -1), 0, vg, ap.econn ) self.valid['F'][ckey] = True self.valid['detF'][ckey] = True self.valid['B'][ckey] = True self.valid['trB'][ckey] = True self.valid['in2B'][ckey] = True self.valid['E'][ckey] = True
[ "sfepy.terms.cache.DataCache.__init__", "sfepy.terms.cache.DataCache.init_datas" ]
[((947, 1041), 'sfepy.terms.cache.DataCache.__init__', 'DataCache.__init__', (['self', 'name', 'arg_names', 'keys', 'history_sizes', 'terms.dq_finite_strain_tl'], {}), '(self, name, arg_names, keys, history_sizes, terms.\n dq_finite_strain_tl)\n', (965, 1041), False, 'from sfepy.terms.cache import DataCache\n'), ((1606, 1651), 'sfepy.terms.cache.DataCache.init_datas', 'DataCache.init_datas', (['self', 'ckey', 'self.shapes'], {}), '(self, ckey, self.shapes)\n', (1626, 1651), False, 'from sfepy.terms.cache import DataCache\n'), ((3148, 3250), 'sfepy.terms.cache.DataCache.__init__', 'DataCache.__init__', (['self', 'name', 'arg_names', 'keys', 'history_sizes', 'terms.dq_tl_finite_strain_surface'], {}), '(self, name, arg_names, keys, history_sizes, terms.\n dq_tl_finite_strain_surface)\n', (3166, 3250), False, 'from sfepy.terms.cache import DataCache\n'), ((3599, 3644), 'sfepy.terms.cache.DataCache.init_datas', 'DataCache.init_datas', (['self', 'ckey', 'self.shapes'], {}), '(self, ckey, self.shapes)\n', (3619, 3644), False, 'from sfepy.terms.cache import DataCache\n'), ((4991, 5085), 'sfepy.terms.cache.DataCache.__init__', 'DataCache.__init__', (['self', 'name', 'arg_names', 'keys', 'history_sizes', 'terms.dq_finite_strain_ul'], {}), '(self, name, arg_names, keys, history_sizes, terms.\n dq_finite_strain_ul)\n', (5009, 5085), False, 'from sfepy.terms.cache import DataCache\n'), ((5607, 5652), 'sfepy.terms.cache.DataCache.init_datas', 'DataCache.init_datas', (['self', 'ckey', 'self.shapes'], {}), '(self, ckey, self.shapes)\n', (5627, 5652), False, 'from sfepy.terms.cache import DataCache\n')]
from typing import List, Optional from sqlmodel import Field, Relationship, Session, SQLModel, create_engine, select class Team(SQLModel, table=True): id: Optional[int] = Field(default=None, primary_key=True) name: str = Field(index=True) headquarters: str heroes: List["Hero"] = Relationship() class Hero(SQLModel, table=True): id: Optional[int] = Field(default=None, primary_key=True) name: str = Field(index=True) secret_name: str age: Optional[int] = Field(default=None, index=True) team_id: Optional[int] = Field(default=None, foreign_key="team.id") team: Optional[Team] = Relationship() sqlite_file_name = "database.db" sqlite_url = f"sqlite:///{sqlite_file_name}" engine = create_engine(sqlite_url, echo=True) def create_db_and_tables(): SQLModel.metadata.create_all(engine) def create_heroes(): with Session(engine) as session: team_preventers = Team(name="Preventers", headquarters="Sharp Tower") team_z_force = Team(name="Z-Force", headquarters="Sister Margaret’s Bar") hero_deadpond = Hero( name="Deadpond", secret_name="<NAME>", team=team_z_force ) hero_rusty_man = Hero( name="Rusty-Man", secret_name="<NAME>", age=48, team=team_preventers ) hero_spider_boy = Hero(name="Spider-Boy", secret_name="<NAME>") session.add(hero_deadpond) session.add(hero_rusty_man) session.add(hero_spider_boy) session.commit() session.refresh(hero_deadpond) session.refresh(hero_rusty_man) session.refresh(hero_spider_boy) print("Created hero:", hero_deadpond) print("Created hero:", hero_rusty_man) print("Created hero:", hero_spider_boy) hero_spider_boy.team = team_preventers session.add(hero_spider_boy) session.commit() session.refresh(hero_spider_boy) print("Updated hero:", hero_spider_boy) hero_black_lion = Hero(name="<NAME>", secret_name="<NAME>", age=35) hero_sure_e = Hero(name="<NAME>", secret_name="Sure-E") team_wakaland = Team( name="Wakaland", headquarters="Wakaland Capital City", heroes=[hero_black_lion, hero_sure_e], ) session.add(team_wakaland) session.commit() session.refresh(team_wakaland) print("Team Wakaland:", team_wakaland) hero_tarantula = Hero(name="Tarantula", secret_name="<NAME>", age=32) hero_dr_weird = Hero(name="<NAME>", secret_name="<NAME>", age=36) hero_cap = Hero( name="Captain North America", secret_name="<NAME>", age=93 ) team_preventers.heroes.append(hero_tarantula) team_preventers.heroes.append(hero_dr_weird) team_preventers.heroes.append(hero_cap) session.add(team_preventers) session.commit() session.refresh(hero_tarantula) session.refresh(hero_dr_weird) session.refresh(hero_cap) print("Preventers new hero:", hero_tarantula) print("Preventers new hero:", hero_dr_weird) print("Preventers new hero:", hero_cap) def select_heroes(): with Session(engine) as session: statement = select(Team).where(Team.name == "Preventers") result = session.exec(statement) team_preventers = result.one() print("Preventers heroes:", team_preventers.heroes) def update_heroes(): with Session(engine) as session: hero_spider_boy = session.exec( select(Hero).where(Hero.name == "Spider-Boy") ).one() preventers_team = session.exec( select(Team).where(Team.name == "Preventers") ).one() print("Hero Spider-Boy:", hero_spider_boy) print("Preventers Team:", preventers_team) print("Preventers Team Heroes:", preventers_team.heroes) hero_spider_boy.team = None print("Spider-Boy without team:", hero_spider_boy) print("Preventers Team Heroes again:", preventers_team.heroes) session.add(hero_spider_boy) session.commit() print("After committing") session.refresh(hero_spider_boy) print("Spider-Boy after commit:", hero_spider_boy) print("Preventers Team Heroes after commit:", preventers_team.heroes) def main(): create_db_and_tables() create_heroes() select_heroes() update_heroes() if __name__ == "__main__": main()
[ "sqlmodel.Relationship", "sqlmodel.create_engine", "sqlmodel.Session", "sqlmodel.SQLModel.metadata.create_all", "sqlmodel.Field", "sqlmodel.select" ]
[((730, 766), 'sqlmodel.create_engine', 'create_engine', (['sqlite_url'], {'echo': '(True)'}), '(sqlite_url, echo=True)\n', (743, 766), False, 'from sqlmodel import Field, Relationship, Session, SQLModel, create_engine, select\n'), ((178, 215), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'primary_key': '(True)'}), '(default=None, primary_key=True)\n', (183, 215), False, 'from sqlmodel import Field, Relationship, Session, SQLModel, create_engine, select\n'), ((232, 249), 'sqlmodel.Field', 'Field', ([], {'index': '(True)'}), '(index=True)\n', (237, 249), False, 'from sqlmodel import Field, Relationship, Session, SQLModel, create_engine, select\n'), ((300, 314), 'sqlmodel.Relationship', 'Relationship', ([], {}), '()\n', (312, 314), False, 'from sqlmodel import Field, Relationship, Session, SQLModel, create_engine, select\n'), ((375, 412), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'primary_key': '(True)'}), '(default=None, primary_key=True)\n', (380, 412), False, 'from sqlmodel import Field, Relationship, Session, SQLModel, create_engine, select\n'), ((429, 446), 'sqlmodel.Field', 'Field', ([], {'index': '(True)'}), '(index=True)\n', (434, 446), False, 'from sqlmodel import Field, Relationship, Session, SQLModel, create_engine, select\n'), ((493, 524), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'index': '(True)'}), '(default=None, index=True)\n', (498, 524), False, 'from sqlmodel import Field, Relationship, Session, SQLModel, create_engine, select\n'), ((555, 597), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'foreign_key': '"""team.id"""'}), "(default=None, foreign_key='team.id')\n", (560, 597), False, 'from sqlmodel import Field, Relationship, Session, SQLModel, create_engine, select\n'), ((625, 639), 'sqlmodel.Relationship', 'Relationship', ([], {}), '()\n', (637, 639), False, 'from sqlmodel import Field, Relationship, Session, SQLModel, create_engine, select\n'), ((801, 837), 'sqlmodel.SQLModel.metadata.create_all', 'SQLModel.metadata.create_all', (['engine'], {}), '(engine)\n', (829, 837), False, 'from sqlmodel import Field, Relationship, Session, SQLModel, create_engine, select\n'), ((870, 885), 'sqlmodel.Session', 'Session', (['engine'], {}), '(engine)\n', (877, 885), False, 'from sqlmodel import Field, Relationship, Session, SQLModel, create_engine, select\n'), ((3191, 3206), 'sqlmodel.Session', 'Session', (['engine'], {}), '(engine)\n', (3198, 3206), False, 'from sqlmodel import Field, Relationship, Session, SQLModel, create_engine, select\n'), ((3458, 3473), 'sqlmodel.Session', 'Session', (['engine'], {}), '(engine)\n', (3465, 3473), False, 'from sqlmodel import Field, Relationship, Session, SQLModel, create_engine, select\n'), ((3239, 3251), 'sqlmodel.select', 'select', (['Team'], {}), '(Team)\n', (3245, 3251), False, 'from sqlmodel import Field, Relationship, Session, SQLModel, create_engine, select\n'), ((3538, 3550), 'sqlmodel.select', 'select', (['Hero'], {}), '(Hero)\n', (3544, 3550), False, 'from sqlmodel import Field, Relationship, Session, SQLModel, create_engine, select\n'), ((3653, 3665), 'sqlmodel.select', 'select', (['Team'], {}), '(Team)\n', (3659, 3665), False, 'from sqlmodel import Field, Relationship, Session, SQLModel, create_engine, select\n')]
from __future__ import absolute_import import os.path as op import shutil import numpy as nm from sfepy.base.base import ordered_iteritems, output, set_defaults, assert_ from sfepy.base.base import Struct from sfepy.homogenization.engine import HomogenizationEngine from sfepy.homogenization.homogen_app import HomogenizationApp from sfepy.homogenization.coefficients import Coefficients from sfepy.homogenization.coefs_base import CoefDummy from sfepy.applications import PDESolverApp from sfepy.base.plotutils import plt import six from six.moves import range def try_set_defaults(obj, attr, defaults, recur=False): try: values = getattr(obj, attr) except: values = defaults else: if recur and isinstance(values, dict): for key, val in six.iteritems(values): set_defaults(val, defaults) else: set_defaults(values, defaults) return values def save_raw_bg_logs(filename, logs): """ Save raw band gaps `logs` into the `filename` file. """ out = {} iranges = nm.cumsum([0] + [len(ii) for ii in logs.freqs]) out['iranges'] = iranges for key, log in ordered_iteritems(logs.to_dict()): out[key] = nm.concatenate(log, axis=0) with open(filename, 'w') as fd: nm.savez(fd, **out) def transform_plot_data(datas, plot_transform, conf): if plot_transform is not None: fun = conf.get_function(plot_transform[0]) dmin, dmax = 1e+10, -1e+10 tdatas = [] for data in datas: tdata = data.copy() if plot_transform is not None: tdata = fun(tdata, *plot_transform[1:]) dmin = min(dmin, nm.nanmin(tdata)) dmax = max(dmax, nm.nanmax(tdata)) tdatas.append(tdata) dmin, dmax = min(dmax - 1e-8, dmin), max(dmin + 1e-8, dmax) return (dmin, dmax), tdatas def plot_eigs(fig_num, plot_rsc, plot_labels, valid, freq_range, plot_range, show=False, clear=False, new_axes=False): """ Plot resonance/eigen-frequencies. `valid` must correspond to `freq_range` resonances : red masked resonances: dotted red """ if plt is None: return assert_(len(valid) == len(freq_range)) fig = plt.figure(fig_num) if clear: fig.clf() if new_axes: ax = fig.add_subplot(111) else: ax = fig.gca() l0 = l1 = None for ii, f in enumerate(freq_range): if valid[ii]: l0 = ax.plot([f, f], plot_range, **plot_rsc['resonance'])[0] else: l1 = ax.plot([f, f], plot_range, **plot_rsc['masked'])[0] if l0: l0.set_label(plot_labels['resonance']) if l1: l1.set_label(plot_labels['masked']) if new_axes: ax.set_xlim([freq_range[0], freq_range[-1]]) ax.set_ylim(plot_range) if show: plt.show() return fig def plot_logs(fig_num, plot_rsc, plot_labels, freqs, logs, valid, freq_range, plot_range, draw_eigs=True, show_legend=True, show=False, clear=False, new_axes=False): """ Plot logs of min/middle/max eigs of a mass matrix. """ if plt is None: return fig = plt.figure(fig_num) if clear: fig.clf() if new_axes: ax = fig.add_subplot(111) else: ax = fig.gca() if draw_eigs: plot_eigs(fig_num, plot_rsc, plot_labels, valid, freq_range, plot_range) for ii, log in enumerate(logs): l1 = ax.plot(freqs[ii], log[:, -1], **plot_rsc['eig_max']) if log.shape[1] >= 2: l2 = ax.plot(freqs[ii], log[:, 0], **plot_rsc['eig_min']) else: l2 = None if log.shape[1] == 3: l3 = ax.plot(freqs[ii], log[:, 1], **plot_rsc['eig_mid']) else: l3 = None l1[0].set_label(plot_labels['eig_max']) if l2: l2[0].set_label(plot_labels['eig_min']) if l3: l3[0].set_label(plot_labels['eig_mid']) fmin, fmax = freqs[0][0], freqs[-1][-1] ax.plot([fmin, fmax], [0, 0], **plot_rsc['x_axis']) ax.set_xlabel(plot_labels['x_axis']) ax.set_ylabel(plot_labels['y_axis']) if new_axes: ax.set_xlim([fmin, fmax]) ax.set_ylim(plot_range) if show_legend: ax.legend() if show: plt.show() return fig def plot_gap(ax, ranges, kind, kind_desc, plot_range, plot_rsc): """ Plot single band gap frequency ranges as rectangles. """ def draw_rect(ax, x, y, rsc): ax.fill(nm.asarray(x)[[0,1,1,0]], nm.asarray(y)[[0,0,1,1]], **rsc) # Colors. strong = plot_rsc['strong_gap'] weak = plot_rsc['weak_gap'] propagation = plot_rsc['propagation'] if kind == 'p': draw_rect(ax, ranges[0], plot_range, propagation) elif kind == 'w': draw_rect(ax, ranges[0], plot_range, weak) elif kind == 'wp': draw_rect(ax, ranges[0], plot_range, weak) draw_rect(ax, ranges[1], plot_range, propagation) elif kind == 's': draw_rect(ax, ranges[0], plot_range, strong) elif kind == 'sw': draw_rect(ax, ranges[0], plot_range, strong) draw_rect(ax, ranges[1], plot_range, weak) elif kind == 'swp': draw_rect(ax, ranges[0], plot_range, strong) draw_rect(ax, ranges[1], plot_range, weak) draw_rect(ax, ranges[2], plot_range, propagation) elif kind == 'is': draw_rect(ax, ranges[0], plot_range, strong) elif kind == 'iw': draw_rect(ax, ranges[0], plot_range, weak) else: raise ValueError('unknown band gap kind! (%s)' % kind) def plot_gaps(fig_num, plot_rsc, gaps, kinds, gap_ranges, freq_range, plot_range, show=False, clear=False, new_axes=False): """ Plot band gaps as rectangles. """ if plt is None: return fig = plt.figure(fig_num) if clear: fig.clf() if new_axes: ax = fig.add_subplot(111) else: ax = fig.gca() for ii in range(len(freq_range) - 1): f0, f1 = freq_range[[ii, ii+1]] gap = gaps[ii] ranges = gap_ranges[ii] if isinstance(gap, list): for ig, (gmin, gmax) in enumerate(gap): kind, kind_desc = kinds[ii][ig] plot_gap(ax, ranges[ig], kind, kind_desc, plot_range, plot_rsc) output(ii, gmin[0], gmax[0], '%.8f' % f0, '%.8f' % f1) output(' -> %s\n %s' %(kind_desc, ranges[ig])) else: gmin, gmax = gap kind, kind_desc = kinds[ii] plot_gap(ax, ranges, kind, kind_desc, plot_range, plot_rsc) output(ii, gmin[0], gmax[0], '%.8f' % f0, '%.8f' % f1) output(' -> %s\n %s' %(kind_desc, ranges)) if new_axes: ax.set_xlim([freq_range[0], freq_range[-1]]) ax.set_ylim(plot_range) if show: plt.show() return fig def _get_fig_name(output_dir, fig_name, key, common, fig_suffix): """ Construct the complete name of figure file. """ name = key.replace(common, '') if name and (not name.startswith('_')): name = '_' + name fig_name = fig_name + name + fig_suffix return op.join(output_dir, fig_name) class AcousticBandGapsApp(HomogenizationApp): """ Application for computing acoustic band gaps. """ @staticmethod def process_options(options): """ Application options setup. Sets default values for missing non-compulsory options. """ get = options.get default_plot_options = {'show' : True,'legend' : False,} aux = { 'resonance' : 'eigenfrequencies', 'masked' : 'masked eigenfrequencies', 'eig_min' : r'min eig($M^*$)', 'eig_mid' : r'mid eig($M^*$)', 'eig_max' : r'max eig($M^*$)', 'x_axis' : r'$\sqrt{\lambda}$, $\omega$', 'y_axis' : r'eigenvalues of mass matrix $M^*$', } plot_labels = try_set_defaults(options, 'plot_labels', aux, recur=True) aux = { 'resonance' : 'eigenfrequencies', 'masked' : 'masked eigenfrequencies', 'eig_min' : r'$\kappa$(min)', 'eig_mid' : r'$\kappa$(mid)', 'eig_max' : r'$\kappa$(max)', 'x_axis' : r'$\sqrt{\lambda}$, $\omega$', 'y_axis' : 'polarization angles', } plot_labels_angle = try_set_defaults(options, 'plot_labels_angle', aux) aux = { 'resonance' : 'eigenfrequencies', 'masked' : 'masked eigenfrequencies', 'eig_min' : r'wave number (min)', 'eig_mid' : r'wave number (mid)', 'eig_max' : r'wave number (max)', 'x_axis' : r'$\sqrt{\lambda}$, $\omega$', 'y_axis' : 'wave numbers', } plot_labels_wave = try_set_defaults(options, 'plot_labels_wave', aux) plot_rsc = { 'resonance' : {'linewidth' : 0.5, 'color' : 'r', 'linestyle' : '-'}, 'masked' : {'linewidth' : 0.5, 'color' : 'r', 'linestyle' : ':'}, 'x_axis' : {'linewidth' : 0.5, 'color' : 'k', 'linestyle' : '--'}, 'eig_min' : {'linewidth' : 2.0, 'color' : (0.0, 0.0, 1.0), 'linestyle' : ':' }, 'eig_mid' : {'linewidth' : 2.0, 'color' : (0.0, 0.0, 0.8), 'linestyle' : '--' }, 'eig_max' : {'linewidth' : 2.0, 'color' : (0.0, 0.0, 0.6), 'linestyle' : '-' }, 'strong_gap' : {'linewidth' : 0, 'facecolor' : (0.2, 0.4, 0.2)}, 'weak_gap' : {'linewidth' : 0, 'facecolor' : (0.6, 0.8, 0.6)}, 'propagation' : {'linewidth' : 0, 'facecolor' : (1, 1, 1)}, 'params' : {'axes.labelsize': 'x-large', 'font.size': 14, 'legend.fontsize': 'large', 'legend.loc': 'best', 'xtick.labelsize': 'large', 'ytick.labelsize': 'large', 'text.usetex': True}, } plot_rsc = try_set_defaults(options, 'plot_rsc', plot_rsc) return Struct(incident_wave_dir=get('incident_wave_dir', None), plot_transform=get('plot_transform', None), plot_transform_wave=get('plot_transform_wave', None), plot_transform_angle=get('plot_transform_angle', None), plot_options=get('plot_options', default_plot_options), fig_name=get('fig_name', None), fig_name_wave=get('fig_name_wave', None), fig_name_angle=get('fig_name_angle', None), fig_suffix=get('fig_suffix', '.pdf'), plot_labels=plot_labels, plot_labels_angle=plot_labels_angle, plot_labels_wave=plot_labels_wave, plot_rsc=plot_rsc) @staticmethod def process_options_pv(options): """ Application options setup for phase velocity computation. Sets default values for missing non-compulsory options. """ get = options.get incident_wave_dir=get('incident_wave_dir', None, 'missing "incident_wave_dir" in options!') return Struct(incident_wave_dir=incident_wave_dir) def __init__(self, conf, options, output_prefix, **kwargs): PDESolverApp.__init__(self, conf, options, output_prefix, init_equations=False) self.setup_options() if conf._filename: output_dir = self.problem.output_dir shutil.copyfile(conf._filename, op.join(output_dir, op.basename(conf._filename))) def setup_options(self): HomogenizationApp.setup_options(self) if self.options.phase_velocity: process_options = AcousticBandGapsApp.process_options_pv else: process_options = AcousticBandGapsApp.process_options self.app_options += process_options(self.conf.options) def call(self): """ Construct and call the homogenization engine accoring to options. """ options = self.options opts = self.app_options conf = self.problem.conf coefs_name = opts.coefs coef_info = conf.get(opts.coefs, None, 'missing "%s" in problem description!' % opts.coefs) if options.detect_band_gaps: # Compute band gaps coefficients and data. keys = [key for key in coef_info if key.startswith('band_gaps')] elif options.analyze_dispersion or options.phase_velocity: # Insert incident wave direction to coefficients that need it. for key, val in six.iteritems(coef_info): coef_opts = val.get('options', None) if coef_opts is None: continue if (('incident_wave_dir' in coef_opts) and (coef_opts['incident_wave_dir'] is None)): coef_opts['incident_wave_dir'] = opts.incident_wave_dir if options.analyze_dispersion: # Compute dispersion coefficients and data. keys = [key for key in coef_info if key.startswith('dispersion') or key.startswith('polarization_angles')] else: # Compute phase velocity and its requirements. keys = [key for key in coef_info if key.startswith('phase_velocity')] else: # Compute only the eigenvalue problems. names = [req for req in conf.get(opts.requirements, ['']) if req.startswith('evp')] coefs = {'dummy' : {'requires' : names, 'class' : CoefDummy,}} conf.coefs_dummy = coefs coefs_name = 'coefs_dummy' keys = ['dummy'] he_options = Struct(coefs=coefs_name, requirements=opts.requirements, compute_only=keys, post_process_hook=self.post_process_hook, multiprocessing=False) volumes = {} if hasattr(opts, 'volumes') and (opts.volumes is not None): volumes.update(opts.volumes) elif hasattr(opts, 'volume') and (opts.volume is not None): volumes['total'] = opts.volume else: volumes['total'] = 1.0 he = HomogenizationEngine(self.problem, options, app_options=he_options, volumes=volumes) coefs = he() coefs = Coefficients(**coefs.to_dict()) coefs_filename = op.join(opts.output_dir, opts.coefs_filename) coefs.to_file_txt(coefs_filename + '.txt', opts.tex_names, opts.float_format) bg_keys = [key for key in coefs.to_dict() if key.startswith('band_gaps') or key.startswith('dispersion')] for ii, key in enumerate(bg_keys): bg = coefs.get(key) log_save_name = bg.get('log_save_name', None) if log_save_name is not None: filename = op.join(self.problem.output_dir, log_save_name) bg.save_log(filename, opts.float_format, bg) raw_log_save_name = bg.get('raw_log_save_name', None) if raw_log_save_name is not None: filename = op.join(self.problem.output_dir, raw_log_save_name) save_raw_bg_logs(filename, bg.logs) if options.plot: if options.detect_band_gaps: self.plot_band_gaps(coefs) elif options.analyze_dispersion: self.plot_dispersion(coefs) elif options.phase_velocity: keys = [key for key in coefs.to_dict() if key.startswith('phase_velocity')] for key in keys: output('%s:' % key, coefs.get(key)) return coefs def plot_band_gaps(self, coefs): opts = self.app_options bg_keys = [key for key in coefs.to_dict() if key.startswith('band_gaps')] plot_opts = opts.plot_options plot_rsc = opts.plot_rsc plt.rcParams.update(plot_rsc['params']) for ii, key in enumerate(bg_keys): bg = coefs.get(key) plot_labels = opts.plot_labels.get(key, opts.plot_labels) plot_range, teigs = transform_plot_data(bg.logs.eigs, opts.plot_transform, self.conf) fig = plot_gaps(ii, plot_rsc, bg.gaps, bg.kinds, bg.gap_ranges, bg.freq_range_margins, plot_range, clear=True) fig = plot_logs(ii, plot_rsc, plot_labels, bg.logs.freqs, teigs, bg.valid[bg.eig_range], bg.freq_range_initial, plot_range, show_legend=plot_opts['legend'], new_axes=True) plt.tight_layout() if opts.fig_name is not None: fig_name = _get_fig_name(self.problem.output_dir, opts.fig_name, key, 'band_gaps', opts.fig_suffix) fig.savefig(fig_name) if plot_opts['show']: plt.show() def plot_dispersion(self, coefs): opts = self.app_options bg_keys = [key for key in coefs.to_dict() if key.startswith('dispersion')] plot_rsc = opts.plot_rsc plot_opts = opts.plot_options plt.rcParams.update(plot_rsc['params']) plot_labels = opts.plot_labels_angle for ii, key in enumerate(bg_keys): pas_key = key.replace('dispersion', 'polarization_angles') pas = coefs.get(pas_key) aux = transform_plot_data(pas, opts.plot_transform_angle, self.conf) plot_range, pas = aux bg = coefs.get(key) fig = plot_gaps(1, plot_rsc, bg.gaps, bg.kinds, bg.gap_ranges, bg.freq_range_margins, plot_range, clear=True) fig = plot_logs(1, plot_rsc, plot_labels, bg.logs.freqs, pas, bg.valid[bg.eig_range], bg.freq_range_initial, plot_range, show_legend=plot_opts['legend'], new_axes=True) plt.tight_layout() fig_name = opts.fig_name_angle if fig_name is not None: fig_name = _get_fig_name(self.problem.output_dir, fig_name, key, 'dispersion', opts.fig_suffix) fig.savefig(fig_name) aux = transform_plot_data(bg.logs.eigs, opts.plot_transform_wave, self.conf) plot_range, teigs = aux plot_labels = opts.plot_labels_wave fig = plot_gaps(2, plot_rsc, bg.gaps, bg.kinds, bg.gap_ranges, bg.freq_range_margins, plot_range, clear=True) fig = plot_logs(2, plot_rsc, plot_labels, bg.logs.freqs, teigs, bg.valid[bg.eig_range], bg.freq_range_initial, plot_range, show_legend=plot_opts['legend'], new_axes=True) plt.tight_layout() fig_name = opts.fig_name_wave if fig_name is not None: fig_name = _get_fig_name(self.problem.output_dir, fig_name, key, 'dispersion', opts.fig_suffix) fig.savefig(fig_name) if plot_opts['show']: plt.show()
[ "sfepy.base.base.set_defaults", "sfepy.applications.PDESolverApp.__init__", "sfepy.base.base.output", "sfepy.base.base.Struct", "sfepy.homogenization.homogen_app.HomogenizationApp.setup_options", "sfepy.base.plotutils.plt.rcParams.update", "sfepy.homogenization.engine.HomogenizationEngine", "sfepy.base.plotutils.plt.tight_layout", "sfepy.base.plotutils.plt.show", "sfepy.base.plotutils.plt.figure" ]
[((2230, 2249), 'sfepy.base.plotutils.plt.figure', 'plt.figure', (['fig_num'], {}), '(fig_num)\n', (2240, 2249), False, 'from sfepy.base.plotutils import plt\n'), ((3188, 3207), 'sfepy.base.plotutils.plt.figure', 'plt.figure', (['fig_num'], {}), '(fig_num)\n', (3198, 3207), False, 'from sfepy.base.plotutils import plt\n'), ((5869, 5888), 'sfepy.base.plotutils.plt.figure', 'plt.figure', (['fig_num'], {}), '(fig_num)\n', (5879, 5888), False, 'from sfepy.base.plotutils import plt\n'), ((7219, 7248), 'os.path.join', 'op.join', (['output_dir', 'fig_name'], {}), '(output_dir, fig_name)\n', (7226, 7248), True, 'import os.path as op\n'), ((1225, 1252), 'numpy.concatenate', 'nm.concatenate', (['log'], {'axis': '(0)'}), '(log, axis=0)\n', (1239, 1252), True, 'import numpy as nm\n'), ((1298, 1317), 'numpy.savez', 'nm.savez', (['fd'], {}), '(fd, **out)\n', (1306, 1317), True, 'import numpy as nm\n'), ((2844, 2854), 'sfepy.base.plotutils.plt.show', 'plt.show', ([], {}), '()\n', (2852, 2854), False, 'from sfepy.base.plotutils import plt\n'), ((4314, 4324), 'sfepy.base.plotutils.plt.show', 'plt.show', ([], {}), '()\n', (4322, 4324), False, 'from sfepy.base.plotutils import plt\n'), ((6901, 6911), 'sfepy.base.plotutils.plt.show', 'plt.show', ([], {}), '()\n', (6909, 6911), False, 'from sfepy.base.plotutils import plt\n'), ((11399, 11442), 'sfepy.base.base.Struct', 'Struct', ([], {'incident_wave_dir': 'incident_wave_dir'}), '(incident_wave_dir=incident_wave_dir)\n', (11405, 11442), False, 'from sfepy.base.base import Struct\n'), ((11516, 11595), 'sfepy.applications.PDESolverApp.__init__', 'PDESolverApp.__init__', (['self', 'conf', 'options', 'output_prefix'], {'init_equations': '(False)'}), '(self, conf, options, output_prefix, init_equations=False)\n', (11537, 11595), False, 'from sfepy.applications import PDESolverApp\n'), ((11893, 11930), 'sfepy.homogenization.homogen_app.HomogenizationApp.setup_options', 'HomogenizationApp.setup_options', (['self'], {}), '(self)\n', (11924, 11930), False, 'from sfepy.homogenization.homogen_app import HomogenizationApp\n'), ((14142, 14286), 'sfepy.base.base.Struct', 'Struct', ([], {'coefs': 'coefs_name', 'requirements': 'opts.requirements', 'compute_only': 'keys', 'post_process_hook': 'self.post_process_hook', 'multiprocessing': '(False)'}), '(coefs=coefs_name, requirements=opts.requirements, compute_only=keys,\n post_process_hook=self.post_process_hook, multiprocessing=False)\n', (14148, 14286), False, 'from sfepy.base.base import Struct\n'), ((14672, 14761), 'sfepy.homogenization.engine.HomogenizationEngine', 'HomogenizationEngine', (['self.problem', 'options'], {'app_options': 'he_options', 'volumes': 'volumes'}), '(self.problem, options, app_options=he_options, volumes\n =volumes)\n', (14692, 14761), False, 'from sfepy.homogenization.engine import HomogenizationEngine\n'), ((14921, 14966), 'os.path.join', 'op.join', (['opts.output_dir', 'opts.coefs_filename'], {}), '(opts.output_dir, opts.coefs_filename)\n', (14928, 14966), True, 'import os.path as op\n'), ((16516, 16555), 'sfepy.base.plotutils.plt.rcParams.update', 'plt.rcParams.update', (["plot_rsc['params']"], {}), "(plot_rsc['params'])\n", (16535, 16555), False, 'from sfepy.base.plotutils import plt\n'), ((17988, 18027), 'sfepy.base.plotutils.plt.rcParams.update', 'plt.rcParams.update', (["plot_rsc['params']"], {}), "(plot_rsc['params'])\n", (18007, 18027), False, 'from sfepy.base.plotutils import plt\n'), ((791, 812), 'six.iteritems', 'six.iteritems', (['values'], {}), '(values)\n', (804, 812), False, 'import six\n'), ((885, 915), 'sfepy.base.base.set_defaults', 'set_defaults', (['values', 'defaults'], {}), '(values, defaults)\n', (897, 915), False, 'from sfepy.base.base import ordered_iteritems, output, set_defaults, assert_\n'), ((1674, 1690), 'numpy.nanmin', 'nm.nanmin', (['tdata'], {}), '(tdata)\n', (1683, 1690), True, 'import numpy as nm\n'), ((1717, 1733), 'numpy.nanmax', 'nm.nanmax', (['tdata'], {}), '(tdata)\n', (1726, 1733), True, 'import numpy as nm\n'), ((6663, 6717), 'sfepy.base.base.output', 'output', (['ii', 'gmin[0]', 'gmax[0]', "('%.8f' % f0)", "('%.8f' % f1)"], {}), "(ii, gmin[0], gmax[0], '%.8f' % f0, '%.8f' % f1)\n", (6669, 6717), False, 'from sfepy.base.base import ordered_iteritems, output, set_defaults, assert_\n'), ((6730, 6776), 'sfepy.base.base.output', 'output', (["(' -> %s\\n %s' % (kind_desc, ranges))"], {}), "(' -> %s\\n %s' % (kind_desc, ranges))\n", (6736, 6776), False, 'from sfepy.base.base import ordered_iteritems, output, set_defaults, assert_\n'), ((17422, 17440), 'sfepy.base.plotutils.plt.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (17438, 17440), False, 'from sfepy.base.plotutils import plt\n'), ((17722, 17732), 'sfepy.base.plotutils.plt.show', 'plt.show', ([], {}), '()\n', (17730, 17732), False, 'from sfepy.base.plotutils import plt\n'), ((18965, 18983), 'sfepy.base.plotutils.plt.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (18981, 18983), False, 'from sfepy.base.plotutils import plt\n'), ((20022, 20040), 'sfepy.base.plotutils.plt.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (20038, 20040), False, 'from sfepy.base.plotutils import plt\n'), ((20355, 20365), 'sfepy.base.plotutils.plt.show', 'plt.show', ([], {}), '()\n', (20363, 20365), False, 'from sfepy.base.plotutils import plt\n'), ((830, 857), 'sfepy.base.base.set_defaults', 'set_defaults', (['val', 'defaults'], {}), '(val, defaults)\n', (842, 857), False, 'from sfepy.base.base import ordered_iteritems, output, set_defaults, assert_\n'), ((4529, 4542), 'numpy.asarray', 'nm.asarray', (['x'], {}), '(x)\n', (4539, 4542), True, 'import numpy as nm\n'), ((4572, 4585), 'numpy.asarray', 'nm.asarray', (['y'], {}), '(y)\n', (4582, 4585), True, 'import numpy as nm\n'), ((6375, 6429), 'sfepy.base.base.output', 'output', (['ii', 'gmin[0]', 'gmax[0]', "('%.8f' % f0)", "('%.8f' % f1)"], {}), "(ii, gmin[0], gmax[0], '%.8f' % f0, '%.8f' % f1)\n", (6381, 6429), False, 'from sfepy.base.base import ordered_iteritems, output, set_defaults, assert_\n'), ((6446, 6496), 'sfepy.base.base.output', 'output', (["(' -> %s\\n %s' % (kind_desc, ranges[ig]))"], {}), "(' -> %s\\n %s' % (kind_desc, ranges[ig]))\n", (6452, 6496), False, 'from sfepy.base.base import ordered_iteritems, output, set_defaults, assert_\n'), ((12932, 12956), 'six.iteritems', 'six.iteritems', (['coef_info'], {}), '(coef_info)\n', (12945, 12956), False, 'import six\n'), ((15460, 15507), 'os.path.join', 'op.join', (['self.problem.output_dir', 'log_save_name'], {}), '(self.problem.output_dir, log_save_name)\n', (15467, 15507), True, 'import os.path as op\n'), ((15709, 15760), 'os.path.join', 'op.join', (['self.problem.output_dir', 'raw_log_save_name'], {}), '(self.problem.output_dir, raw_log_save_name)\n', (15716, 15760), True, 'import os.path as op\n'), ((11825, 11852), 'os.path.basename', 'op.basename', (['conf._filename'], {}), '(conf._filename)\n', (11836, 11852), True, 'import os.path as op\n')]
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import numpy as np import pytest import megengine as mge import megengine._internal as mgb from megengine.core import tensor from megengine.test import assertTensorClose def test_recoverable(): a = tensor() b = tensor() a_np = np.random.random((4, 3)).astype("float32") b_np = np.random.random((3, 7)).astype("float32") a.set_value(a_np) b.set_value(b_np) # Do some normal computation. a2 = a * 2 ab = a @ b # Raise a computation error. with pytest.raises(mgb.MegBrainError): _ = a * b # Variable a2 and ab should be still usable after error happened. assertTensorClose(a2.numpy(), a_np * 2) assertTensorClose(ab.numpy(), a_np @ b_np) # Should allow computation as well. ab2 = ab ** 2 assertTensorClose(ab2.numpy(), (a_np @ b_np) ** 2)
[ "megengine.core.tensor" ]
[((582, 590), 'megengine.core.tensor', 'tensor', ([], {}), '()\n', (588, 590), False, 'from megengine.core import tensor\n'), ((599, 607), 'megengine.core.tensor', 'tensor', ([], {}), '()\n', (605, 607), False, 'from megengine.core import tensor\n'), ((868, 900), 'pytest.raises', 'pytest.raises', (['mgb.MegBrainError'], {}), '(mgb.MegBrainError)\n', (881, 900), False, 'import pytest\n'), ((619, 643), 'numpy.random.random', 'np.random.random', (['(4, 3)'], {}), '((4, 3))\n', (635, 643), True, 'import numpy as np\n'), ((673, 697), 'numpy.random.random', 'np.random.random', (['(3, 7)'], {}), '((3, 7))\n', (689, 697), True, 'import numpy as np\n')]
import numpy as nm from sfepy.base.base import output, Struct from sfepy.base.conf import ProblemConf, get_standard_keywords from sfepy.homogenization.homogen_app import HomogenizationApp from sfepy.homogenization.coefficients import Coefficients import tables as pt from sfepy.discrete.fem.meshio import HDF5MeshIO import os.path as op def get_homog_coefs_linear(ts, coor, mode, micro_filename=None, regenerate=False, coefs_filename=None): oprefix = output.prefix output.prefix = 'micro:' required, other = get_standard_keywords() required.remove( 'equations' ) conf = ProblemConf.from_file(micro_filename, required, other, verbose=False) if coefs_filename is None: coefs_filename = conf.options.get('coefs_filename', 'coefs') coefs_filename = op.join(conf.options.get('output_dir', '.'), coefs_filename) + '.h5' if not regenerate: if op.exists( coefs_filename ): if not pt.isHDF5File( coefs_filename ): regenerate = True else: regenerate = True if regenerate: options = Struct( output_filename_trunk = None ) app = HomogenizationApp( conf, options, 'micro:' ) coefs = app() if type(coefs) is tuple: coefs = coefs[0] coefs.to_file_hdf5( coefs_filename ) else: coefs = Coefficients.from_file_hdf5( coefs_filename ) out = {} if mode == None: for key, val in coefs.__dict__.iteritems(): out[key] = val elif mode == 'qp': for key, val in coefs.__dict__.iteritems(): if type( val ) == nm.ndarray or type(val) == nm.float64: out[key] = nm.tile( val, (coor.shape[0], 1, 1) ) elif type(val) == dict: for key2, val2 in val.iteritems(): if type(val2) == nm.ndarray or type(val2) == nm.float64: out[key+'_'+key2] = \ nm.tile(val2, (coor.shape[0], 1, 1)) else: out = None output.prefix = oprefix return out def get_correctors_from_file( coefs_filename = 'coefs.h5', dump_names = None ): if dump_names == None: coefs = Coefficients.from_file_hdf5( coefs_filename ) if hasattr( coefs, 'dump_names' ): dump_names = coefs.dump_names else: raise ValueError( ' "filenames" coefficient must be used!' ) out = {} for key, val in dump_names.iteritems(): corr_name = op.split( val )[-1] io = HDF5MeshIO( val+'.h5' ) data = io.read_data( 0 ) dkeys = data.keys() corr = {} for dk in dkeys: corr[dk] = data[dk].data.reshape(data[dk].shape) out[corr_name] = corr return out
[ "sfepy.base.conf.ProblemConf.from_file", "sfepy.discrete.fem.meshio.HDF5MeshIO", "sfepy.base.base.Struct", "sfepy.homogenization.coefficients.Coefficients.from_file_hdf5", "sfepy.base.conf.get_standard_keywords", "sfepy.homogenization.homogen_app.HomogenizationApp" ]
[((578, 601), 'sfepy.base.conf.get_standard_keywords', 'get_standard_keywords', ([], {}), '()\n', (599, 601), False, 'from sfepy.base.conf import ProblemConf, get_standard_keywords\n'), ((649, 718), 'sfepy.base.conf.ProblemConf.from_file', 'ProblemConf.from_file', (['micro_filename', 'required', 'other'], {'verbose': '(False)'}), '(micro_filename, required, other, verbose=False)\n', (670, 718), False, 'from sfepy.base.conf import ProblemConf, get_standard_keywords\n'), ((981, 1006), 'os.path.exists', 'op.exists', (['coefs_filename'], {}), '(coefs_filename)\n', (990, 1006), True, 'import os.path as op\n'), ((1178, 1212), 'sfepy.base.base.Struct', 'Struct', ([], {'output_filename_trunk': 'None'}), '(output_filename_trunk=None)\n', (1184, 1212), False, 'from sfepy.base.base import output, Struct\n'), ((1232, 1274), 'sfepy.homogenization.homogen_app.HomogenizationApp', 'HomogenizationApp', (['conf', 'options', '"""micro:"""'], {}), "(conf, options, 'micro:')\n", (1249, 1274), False, 'from sfepy.homogenization.homogen_app import HomogenizationApp\n'), ((1433, 1476), 'sfepy.homogenization.coefficients.Coefficients.from_file_hdf5', 'Coefficients.from_file_hdf5', (['coefs_filename'], {}), '(coefs_filename)\n', (1460, 1476), False, 'from sfepy.homogenization.coefficients import Coefficients\n'), ((2322, 2365), 'sfepy.homogenization.coefficients.Coefficients.from_file_hdf5', 'Coefficients.from_file_hdf5', (['coefs_filename'], {}), '(coefs_filename)\n', (2349, 2365), False, 'from sfepy.homogenization.coefficients import Coefficients\n'), ((2652, 2675), 'sfepy.discrete.fem.meshio.HDF5MeshIO', 'HDF5MeshIO', (["(val + '.h5')"], {}), "(val + '.h5')\n", (2662, 2675), False, 'from sfepy.discrete.fem.meshio import HDF5MeshIO\n'), ((2619, 2632), 'os.path.split', 'op.split', (['val'], {}), '(val)\n', (2627, 2632), True, 'import os.path as op\n'), ((1029, 1058), 'tables.isHDF5File', 'pt.isHDF5File', (['coefs_filename'], {}), '(coefs_filename)\n', (1042, 1058), True, 'import tables as pt\n'), ((1765, 1800), 'numpy.tile', 'nm.tile', (['val', '(coor.shape[0], 1, 1)'], {}), '(val, (coor.shape[0], 1, 1))\n', (1772, 1800), True, 'import numpy as nm\n'), ((2055, 2091), 'numpy.tile', 'nm.tile', (['val2', '(coor.shape[0], 1, 1)'], {}), '(val2, (coor.shape[0], 1, 1))\n', (2062, 2091), True, 'import numpy as nm\n')]
from glob import glob from typing import Optional from sqlmodel import Field, Session, SQLModel, create_engine, select class Image(SQLModel, table=True): key: Optional[int] = Field(default=None, primary_key=True) image_name: str label: str image_url: str engine = create_engine("sqlite:///image.db") def read_images(): with Session(engine) as session: statement = select(Image) images = session.exec(statement).all() return images read_images()
[ "sqlmodel.select", "sqlmodel.Session", "sqlmodel.create_engine", "sqlmodel.Field" ]
[((283, 318), 'sqlmodel.create_engine', 'create_engine', (['"""sqlite:///image.db"""'], {}), "('sqlite:///image.db')\n", (296, 318), False, 'from sqlmodel import Field, Session, SQLModel, create_engine, select\n'), ((181, 218), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'primary_key': '(True)'}), '(default=None, primary_key=True)\n', (186, 218), False, 'from sqlmodel import Field, Session, SQLModel, create_engine, select\n'), ((348, 363), 'sqlmodel.Session', 'Session', (['engine'], {}), '(engine)\n', (355, 363), False, 'from sqlmodel import Field, Session, SQLModel, create_engine, select\n'), ((396, 409), 'sqlmodel.select', 'select', (['Image'], {}), '(Image)\n', (402, 409), False, 'from sqlmodel import Field, Session, SQLModel, create_engine, select\n')]
#!/usr/bin/env python3 # -*- coding:utf-8 -*- # Copyright (c) Megvii, Inc. and its affiliates. import random import megengine as mge import megengine.distributed as dist import megengine.functional as F class DataPrefetcher: """ DataPrefetcher is inspired by code of following file: https://github.com/NVIDIA/apex/blob/master/examples/imagenet/main_amp.py It could speedup your pytorch dataloader. For more information, please check https://github.com/NVIDIA/apex/issues/304#issuecomment-493562789. """ def __init__(self, loader): self.loader = iter(loader) def preload(self): try: self.next_input, self.next_target, _, _ = next(self.loader) except StopIteration: self.next_input = None self.next_target = None return def next(self): inputs, target, _, _ = next(self.loader) return inputs.numpy(), target.numpy() def random_resize(data_loader, exp, epoch, rank, is_distributed): tensor = mge.tensor([1]) if rank == 0: if epoch > exp.max_epoch - 10: size = exp.input_size else: size = random.randint(*exp.random_size) size = int(32 * size) tensor *= size if is_distributed: tensor = F.distributed.broadcast(tensor) dist.group_barrier() input_size = data_loader.change_input_dim(multiple=tensor.item(), random_range=None) return input_size
[ "megengine.functional.distributed.broadcast", "megengine.tensor", "megengine.distributed.group_barrier" ]
[((1025, 1040), 'megengine.tensor', 'mge.tensor', (['[1]'], {}), '([1])\n', (1035, 1040), True, 'import megengine as mge\n'), ((1297, 1328), 'megengine.functional.distributed.broadcast', 'F.distributed.broadcast', (['tensor'], {}), '(tensor)\n', (1320, 1328), True, 'import megengine.functional as F\n'), ((1337, 1357), 'megengine.distributed.group_barrier', 'dist.group_barrier', ([], {}), '()\n', (1355, 1357), True, 'import megengine.distributed as dist\n'), ((1166, 1198), 'random.randint', 'random.randint', (['*exp.random_size'], {}), '(*exp.random_size)\n', (1180, 1198), False, 'import random\n')]
from typing import Optional from sqlmodel import Field, SQLModel from alchemical import Alchemical db = Alchemical('sqlite:///users.sqlite', model_class=SQLModel) class User(db.Model, table=True): id: Optional[int] = Field(default=None, primary_key=True) name: str = Field(max_length=128) def __repr__(self): return f'<User {self.name}>' db.drop_all() db.create_all() with db.begin() as session: for name in ['mary', 'joe', 'susan']: session.add(User(name=name)) with db.Session() as session: print(session.scalars(User.select()).all())
[ "sqlmodel.Field" ]
[((106, 164), 'alchemical.Alchemical', 'Alchemical', (['"""sqlite:///users.sqlite"""'], {'model_class': 'SQLModel'}), "('sqlite:///users.sqlite', model_class=SQLModel)\n", (116, 164), False, 'from alchemical import Alchemical\n'), ((225, 262), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'primary_key': '(True)'}), '(default=None, primary_key=True)\n', (230, 262), False, 'from sqlmodel import Field, SQLModel\n'), ((279, 300), 'sqlmodel.Field', 'Field', ([], {'max_length': '(128)'}), '(max_length=128)\n', (284, 300), False, 'from sqlmodel import Field, SQLModel\n')]
import math import megengine.module as M import megengine.functional as F import megengine as mge class PositionalEncoding(M.Module): """Positional encoding. :param int d_model: embedding dim :param float dropout_rate: dropout rate :param int max_len: maximum input length """ def __init__(self, d_model, dropout_rate, max_len=5000): """Construct an PositionalEncoding object.""" super(PositionalEncoding, self).__init__() self.d_model = d_model self.xscale = math.sqrt(self.d_model) self.dropout = M.dropout.Dropout(dropout_rate) self.pe = mge.Tensor(0.0) self.extend_pe(F.tensor.zeros([1, max_len])) def extend_pe(self, x): """Reset the positional encodings.""" if len(self.pe.shape): if self.pe.shape[1] >= x.shape[1]: if self.pe.dtype != x.dtype or self.pe.device != x.device: self.pe = self.pe.to(dtype=x.dtype, device=x.device) return pe = F.tensor.zeros([x.shape[1], self.d_model]) position = mge.Tensor(F.arange(0, x.shape[1], dtype="float32")).reshape( x.shape[1], -1 ) div_term = F.exp( mge.Tensor(F.arange(0, self.d_model, 2, dtype="float32")) * -(math.log(10000.0) / self.d_model) ) pe[:, 0::2] = F.sin(position * div_term) pe[:, 1::2] = F.cos(position * div_term) h, w = pe.shape pe = pe.reshape(-1, h, w) self.pe[...] = pe.to(device=x.device) def forward(self, x: mge.Tensor): """Add positional encoding. Args: x (megengine.Tensor): Input. Its shape is (batch, time, ...) Returns: megengine.Tensor: Encoded tensor. Its shape is (batch, time, ...) """ self.extend_pe(x) x = x * self.xscale + self.pe[:, : x.shape[1]] return self.dropout(x)
[ "megengine.functional.arange", "megengine.module.dropout.Dropout", "megengine.functional.cos", "megengine.Tensor", "megengine.functional.tensor.zeros", "megengine.functional.sin" ]
[((521, 544), 'math.sqrt', 'math.sqrt', (['self.d_model'], {}), '(self.d_model)\n', (530, 544), False, 'import math\n'), ((568, 599), 'megengine.module.dropout.Dropout', 'M.dropout.Dropout', (['dropout_rate'], {}), '(dropout_rate)\n', (585, 599), True, 'import megengine.module as M\n'), ((618, 633), 'megengine.Tensor', 'mge.Tensor', (['(0.0)'], {}), '(0.0)\n', (628, 633), True, 'import megengine as mge\n'), ((1024, 1066), 'megengine.functional.tensor.zeros', 'F.tensor.zeros', (['[x.shape[1], self.d_model]'], {}), '([x.shape[1], self.d_model])\n', (1038, 1066), True, 'import megengine.functional as F\n'), ((1363, 1389), 'megengine.functional.sin', 'F.sin', (['(position * div_term)'], {}), '(position * div_term)\n', (1368, 1389), True, 'import megengine.functional as F\n'), ((1412, 1438), 'megengine.functional.cos', 'F.cos', (['(position * div_term)'], {}), '(position * div_term)\n', (1417, 1438), True, 'import megengine.functional as F\n'), ((657, 685), 'megengine.functional.tensor.zeros', 'F.tensor.zeros', (['[1, max_len]'], {}), '([1, max_len])\n', (671, 685), True, 'import megengine.functional as F\n'), ((1097, 1137), 'megengine.functional.arange', 'F.arange', (['(0)', 'x.shape[1]'], {'dtype': '"""float32"""'}), "(0, x.shape[1], dtype='float32')\n", (1105, 1137), True, 'import megengine.functional as F\n'), ((1234, 1279), 'megengine.functional.arange', 'F.arange', (['(0)', 'self.d_model', '(2)'], {'dtype': '"""float32"""'}), "(0, self.d_model, 2, dtype='float32')\n", (1242, 1279), True, 'import megengine.functional as F\n'), ((1297, 1314), 'math.log', 'math.log', (['(10000.0)'], {}), '(10000.0)\n', (1305, 1314), False, 'import math\n')]
import megengine.module as M import megengine.functional as F class FlowHead(M.Module): def __init__(self, input_dim=128, hidden_dim=256): super(FlowHead, self).__init__() self.conv1 = M.Conv2d(input_dim, hidden_dim, 3, padding=1) self.conv2 = M.Conv2d(hidden_dim, 2, 3, padding=1) self.relu = M.ReLU() def forward(self, x): return self.conv2(self.relu(self.conv1(x))) class SepConvGRU(M.Module): def __init__(self, hidden_dim=128, input_dim=192 + 128): super(SepConvGRU, self).__init__() self.convz1 = M.Conv2d( hidden_dim + input_dim, hidden_dim, (1, 5), padding=(0, 2) ) self.convr1 = M.Conv2d( hidden_dim + input_dim, hidden_dim, (1, 5), padding=(0, 2) ) self.convq1 = M.Conv2d( hidden_dim + input_dim, hidden_dim, (1, 5), padding=(0, 2) ) self.convz2 = M.Conv2d( hidden_dim + input_dim, hidden_dim, (5, 1), padding=(2, 0) ) self.convr2 = M.Conv2d( hidden_dim + input_dim, hidden_dim, (5, 1), padding=(2, 0) ) self.convq2 = M.Conv2d( hidden_dim + input_dim, hidden_dim, (5, 1), padding=(2, 0) ) def forward(self, h, x): # horizontal hx = F.concat([h, x], axis=1) z = F.sigmoid(self.convz1(hx)) r = F.sigmoid(self.convr1(hx)) q = F.tanh(self.convq1(F.concat([r * h, x], axis=1))) h = (1 - z) * h + z * q # vertical hx = F.concat([h, x], axis=1) z = F.sigmoid(self.convz2(hx)) r = F.sigmoid(self.convr2(hx)) q = F.tanh(self.convq2(F.concat([r * h, x], axis=1))) h = (1 - z) * h + z * q return h class BasicMotionEncoder(M.Module): def __init__(self, cor_planes): super(BasicMotionEncoder, self).__init__() self.convc1 = M.Conv2d(cor_planes, 256, 1, padding=0) self.convc2 = M.Conv2d(256, 192, 3, padding=1) self.convf1 = M.Conv2d(2, 128, 7, padding=3) self.convf2 = M.Conv2d(128, 64, 3, padding=1) self.conv = M.Conv2d(64 + 192, 128 - 2, 3, padding=1) def forward(self, flow, corr): cor = F.relu(self.convc1(corr)) cor = F.relu(self.convc2(cor)) flo = F.relu(self.convf1(flow)) flo = F.relu(self.convf2(flo)) cor_flo = F.concat([cor, flo], axis=1) out = F.relu(self.conv(cor_flo)) return F.concat([out, flow], axis=1) class BasicUpdateBlock(M.Module): def __init__(self, hidden_dim, cor_planes, mask_size=8): super(BasicUpdateBlock, self).__init__() self.encoder = BasicMotionEncoder(cor_planes) self.gru = SepConvGRU(hidden_dim=hidden_dim, input_dim=128 + hidden_dim) self.flow_head = FlowHead(hidden_dim, hidden_dim=256) self.mask = M.Sequential( M.Conv2d(128, 256, 3, padding=1), M.ReLU(), M.Conv2d(256, mask_size**2 * 9, 1, padding=0), ) def forward(self, net, inp, corr, flow, upsample=True): motion_features = self.encoder(flow, corr) inp = F.concat([inp, motion_features], axis=1) net = self.gru(net, inp) delta_flow = self.flow_head(net) # scale mask to balence gradients mask = 0.25 * self.mask(net) return net, mask, delta_flow
[ "megengine.functional.concat", "megengine.module.ReLU", "megengine.module.Conv2d" ]
[((207, 252), 'megengine.module.Conv2d', 'M.Conv2d', (['input_dim', 'hidden_dim', '(3)'], {'padding': '(1)'}), '(input_dim, hidden_dim, 3, padding=1)\n', (215, 252), True, 'import megengine.module as M\n'), ((274, 311), 'megengine.module.Conv2d', 'M.Conv2d', (['hidden_dim', '(2)', '(3)'], {'padding': '(1)'}), '(hidden_dim, 2, 3, padding=1)\n', (282, 311), True, 'import megengine.module as M\n'), ((332, 340), 'megengine.module.ReLU', 'M.ReLU', ([], {}), '()\n', (338, 340), True, 'import megengine.module as M\n'), ((576, 644), 'megengine.module.Conv2d', 'M.Conv2d', (['(hidden_dim + input_dim)', 'hidden_dim', '(1, 5)'], {'padding': '(0, 2)'}), '(hidden_dim + input_dim, hidden_dim, (1, 5), padding=(0, 2))\n', (584, 644), True, 'import megengine.module as M\n'), ((689, 757), 'megengine.module.Conv2d', 'M.Conv2d', (['(hidden_dim + input_dim)', 'hidden_dim', '(1, 5)'], {'padding': '(0, 2)'}), '(hidden_dim + input_dim, hidden_dim, (1, 5), padding=(0, 2))\n', (697, 757), True, 'import megengine.module as M\n'), ((802, 870), 'megengine.module.Conv2d', 'M.Conv2d', (['(hidden_dim + input_dim)', 'hidden_dim', '(1, 5)'], {'padding': '(0, 2)'}), '(hidden_dim + input_dim, hidden_dim, (1, 5), padding=(0, 2))\n', (810, 870), True, 'import megengine.module as M\n'), ((916, 984), 'megengine.module.Conv2d', 'M.Conv2d', (['(hidden_dim + input_dim)', 'hidden_dim', '(5, 1)'], {'padding': '(2, 0)'}), '(hidden_dim + input_dim, hidden_dim, (5, 1), padding=(2, 0))\n', (924, 984), True, 'import megengine.module as M\n'), ((1029, 1097), 'megengine.module.Conv2d', 'M.Conv2d', (['(hidden_dim + input_dim)', 'hidden_dim', '(5, 1)'], {'padding': '(2, 0)'}), '(hidden_dim + input_dim, hidden_dim, (5, 1), padding=(2, 0))\n', (1037, 1097), True, 'import megengine.module as M\n'), ((1142, 1210), 'megengine.module.Conv2d', 'M.Conv2d', (['(hidden_dim + input_dim)', 'hidden_dim', '(5, 1)'], {'padding': '(2, 0)'}), '(hidden_dim + input_dim, hidden_dim, (5, 1), padding=(2, 0))\n', (1150, 1210), True, 'import megengine.module as M\n'), ((1297, 1321), 'megengine.functional.concat', 'F.concat', (['[h, x]'], {'axis': '(1)'}), '([h, x], axis=1)\n', (1305, 1321), True, 'import megengine.functional as F\n'), ((1527, 1551), 'megengine.functional.concat', 'F.concat', (['[h, x]'], {'axis': '(1)'}), '([h, x], axis=1)\n', (1535, 1551), True, 'import megengine.functional as F\n'), ((1890, 1929), 'megengine.module.Conv2d', 'M.Conv2d', (['cor_planes', '(256)', '(1)'], {'padding': '(0)'}), '(cor_planes, 256, 1, padding=0)\n', (1898, 1929), True, 'import megengine.module as M\n'), ((1952, 1984), 'megengine.module.Conv2d', 'M.Conv2d', (['(256)', '(192)', '(3)'], {'padding': '(1)'}), '(256, 192, 3, padding=1)\n', (1960, 1984), True, 'import megengine.module as M\n'), ((2007, 2037), 'megengine.module.Conv2d', 'M.Conv2d', (['(2)', '(128)', '(7)'], {'padding': '(3)'}), '(2, 128, 7, padding=3)\n', (2015, 2037), True, 'import megengine.module as M\n'), ((2060, 2091), 'megengine.module.Conv2d', 'M.Conv2d', (['(128)', '(64)', '(3)'], {'padding': '(1)'}), '(128, 64, 3, padding=1)\n', (2068, 2091), True, 'import megengine.module as M\n'), ((2112, 2153), 'megengine.module.Conv2d', 'M.Conv2d', (['(64 + 192)', '(128 - 2)', '(3)'], {'padding': '(1)'}), '(64 + 192, 128 - 2, 3, padding=1)\n', (2120, 2153), True, 'import megengine.module as M\n'), ((2367, 2395), 'megengine.functional.concat', 'F.concat', (['[cor, flo]'], {'axis': '(1)'}), '([cor, flo], axis=1)\n', (2375, 2395), True, 'import megengine.functional as F\n'), ((2452, 2481), 'megengine.functional.concat', 'F.concat', (['[out, flow]'], {'axis': '(1)'}), '([out, flow], axis=1)\n', (2460, 2481), True, 'import megengine.functional as F\n'), ((3123, 3163), 'megengine.functional.concat', 'F.concat', (['[inp, motion_features]'], {'axis': '(1)'}), '([inp, motion_features], axis=1)\n', (3131, 3163), True, 'import megengine.functional as F\n'), ((2872, 2904), 'megengine.module.Conv2d', 'M.Conv2d', (['(128)', '(256)', '(3)'], {'padding': '(1)'}), '(128, 256, 3, padding=1)\n', (2880, 2904), True, 'import megengine.module as M\n'), ((2918, 2926), 'megengine.module.ReLU', 'M.ReLU', ([], {}), '()\n', (2924, 2926), True, 'import megengine.module as M\n'), ((2940, 2987), 'megengine.module.Conv2d', 'M.Conv2d', (['(256)', '(mask_size ** 2 * 9)', '(1)'], {'padding': '(0)'}), '(256, mask_size ** 2 * 9, 1, padding=0)\n', (2948, 2987), True, 'import megengine.module as M\n'), ((1431, 1459), 'megengine.functional.concat', 'F.concat', (['[r * h, x]'], {'axis': '(1)'}), '([r * h, x], axis=1)\n', (1439, 1459), True, 'import megengine.functional as F\n'), ((1661, 1689), 'megengine.functional.concat', 'F.concat', (['[r * h, x]'], {'axis': '(1)'}), '([r * h, x], axis=1)\n', (1669, 1689), True, 'import megengine.functional as F\n')]
from __future__ import print_function from __future__ import absolute_import from argparse import ArgumentParser import numpy as nm import sys sys.path.append('.') from sfepy.base.base import IndexedStruct from sfepy.discrete import (FieldVariable, Material, Integral, Function, Equation, Equations, Problem) from sfepy.discrete.fem import Mesh, FEDomain, Field from sfepy.terms import Term from sfepy.discrete.conditions import Conditions, EssentialBC from sfepy.solvers.ls import ScipyDirect from sfepy.solvers.nls import Newton from sfepy.postprocess.viewer import Viewer from sfepy.mechanics.matcoefs import stiffness_from_lame import numpy as np def shift_u_fun(ts, coors, bc=None, problem=None, shift=0.0): """ Define a displacement depending on the y coordinate. """ val = shift * coors[:,1]**2 return val helps = { 'show' : 'show the results figure', } # def main(): from sfepy import data_dir parser = ArgumentParser() parser.add_argument('--version', action='version', version='%(prog)s') parser.add_argument('-s', '--show', action="store_true", dest='show', default=False, help=helps['show']) options = parser.parse_args() # mesh = Mesh.from_file(data_dir + '/meshes/2d/rectangle_tri.mesh') mesh = Mesh.from_file(data_dir + '/meshes/3d/cube_medium_hexa.mesh') domain = FEDomain('domain', mesh) # min_x, max_x = domain.get_mesh_bounding_box()[:,0] # eps = 1e-8 * (max_x - min_x) omega = domain.create_region('Omega', 'all') # gamma1 = domain.create_region('Gamma1', # 'vertices in x < %.10f' % (min_x + eps), # 'facet') Bottom = domain.create_region('Bottom', 'vertices in z < %.10f' % -0.499, 'facet') # gamma2 = domain.create_region('Gamma2', # 'vertices in x > %.10f' % (max_x - eps), # 'facet') Top = domain.create_region('Top', 'vertices in z > %.10f' % 0.499, 'facet') field = Field.from_args('fu', nm.float64, 'vector', omega, approx_order=3) u = FieldVariable('u', 'unknown', field) v = FieldVariable('v', 'test', field, primary_var_name='u') # materials = { # 'solid' : ({ # 'D': stiffness_from_lame(dim=3, lam=5.769, mu=3.846), # },), # 'cs' : ({ # 'f' : [1e5, 1e-2], # '.c' : [0.0, 0.0, 1.2], # '.r' : 0.8, # },), # } # defK = materials['cs'][0] # cs = ContactSphere(csc['.c'], csc['.r']) m = Material('m', D=stiffness_from_lame(dim=3, lam=5.769, mu=3.846)) # f = Material('f', val=[[0.02], [0.01]]) # csf = Material('csf', val=[1e5, 1e-2]) # csc = Material('csc', val=[0.0, 0.0, 1.2]) # csr = Material('csr', val=0.8) cs = Material('cs',f=[1e5, 1e-2],c=[0.0, 0.0, 1.2],r=0.8) integral = Integral('i', order=3) integral1 = Integral('i', order=2) t1 = Term.new('dw_lin_elastic(m.D, v, u)', integral, omega, m=m, v=v, u=u) t2 = Term.new('dw_contact_sphere(cs.f, cs.c, cs.r, v, u)', integral1, Top, cs=cs, v=v, u=u) eq = Equation('balance', t1 + t2) eqs = Equations([eq]) fix_u = EssentialBC('fix_u', Bottom, {'u.all' : 0.0}) # bc_fun = Function('shift_u_fun', shift_u_fun, # extra_args={'shift' : 0.01}) # shift_u = EssentialBC('shift_u', gamma2, {'u.0' : bc_fun}) ls = ScipyDirect({}) nls_status = IndexedStruct() nls = Newton({}, lin_solver=ls, status=nls_status) pb = Problem('elasticity', equations=eqs) pb.save_regions_as_groups('regions') pb.set_bcs(ebcs=Conditions([fix_u])) pb.set_solver(nls) status = IndexedStruct() state = pb.solve(status=status) print('Nonlinear solver status:\n', nls_status) print('Stationary solver status:\n', status) pb.save_state('linear_elasticity.vtk', state) # if options.show: view = Viewer('linear_elasticity.vtk') view(vector_mode='warp_norm', rel_scaling=2, is_scalar_bar=True, is_wireframe=True)
[ "sfepy.discrete.conditions.EssentialBC", "sfepy.discrete.Integral", "sfepy.postprocess.viewer.Viewer", "sfepy.solvers.ls.ScipyDirect", "sfepy.discrete.Equations", "sfepy.discrete.fem.Field.from_args", "sfepy.discrete.Equation", "sfepy.discrete.fem.Mesh.from_file", "sfepy.discrete.fem.FEDomain", "sfepy.mechanics.matcoefs.stiffness_from_lame", "sfepy.terms.Term.new", "sfepy.discrete.conditions.Conditions", "sfepy.discrete.FieldVariable", "sfepy.discrete.Material", "sfepy.discrete.Problem", "sfepy.base.base.IndexedStruct", "sfepy.solvers.nls.Newton" ]
[((144, 164), 'sys.path.append', 'sys.path.append', (['"""."""'], {}), "('.')\n", (159, 164), False, 'import sys\n'), ((971, 987), 'argparse.ArgumentParser', 'ArgumentParser', ([], {}), '()\n', (985, 987), False, 'from argparse import ArgumentParser\n'), ((1310, 1371), 'sfepy.discrete.fem.Mesh.from_file', 'Mesh.from_file', (["(data_dir + '/meshes/3d/cube_medium_hexa.mesh')"], {}), "(data_dir + '/meshes/3d/cube_medium_hexa.mesh')\n", (1324, 1371), False, 'from sfepy.discrete.fem import Mesh, FEDomain, Field\n'), ((1381, 1405), 'sfepy.discrete.fem.FEDomain', 'FEDomain', (['"""domain"""', 'mesh'], {}), "('domain', mesh)\n", (1389, 1405), False, 'from sfepy.discrete.fem import Mesh, FEDomain, Field\n'), ((2137, 2203), 'sfepy.discrete.fem.Field.from_args', 'Field.from_args', (['"""fu"""', 'nm.float64', '"""vector"""', 'omega'], {'approx_order': '(3)'}), "('fu', nm.float64, 'vector', omega, approx_order=3)\n", (2152, 2203), False, 'from sfepy.discrete.fem import Mesh, FEDomain, Field\n'), ((2233, 2269), 'sfepy.discrete.FieldVariable', 'FieldVariable', (['"""u"""', '"""unknown"""', 'field'], {}), "('u', 'unknown', field)\n", (2246, 2269), False, 'from sfepy.discrete import FieldVariable, Material, Integral, Function, Equation, Equations, Problem\n'), ((2274, 2329), 'sfepy.discrete.FieldVariable', 'FieldVariable', (['"""v"""', '"""test"""', 'field'], {'primary_var_name': '"""u"""'}), "('v', 'test', field, primary_var_name='u')\n", (2287, 2329), False, 'from sfepy.discrete import FieldVariable, Material, Integral, Function, Equation, Equations, Problem\n'), ((2866, 2926), 'sfepy.discrete.Material', 'Material', (['"""cs"""'], {'f': '[100000.0, 0.01]', 'c': '[0.0, 0.0, 1.2]', 'r': '(0.8)'}), "('cs', f=[100000.0, 0.01], c=[0.0, 0.0, 1.2], r=0.8)\n", (2874, 2926), False, 'from sfepy.discrete import FieldVariable, Material, Integral, Function, Equation, Equations, Problem\n'), ((2931, 2953), 'sfepy.discrete.Integral', 'Integral', (['"""i"""'], {'order': '(3)'}), "('i', order=3)\n", (2939, 2953), False, 'from sfepy.discrete import FieldVariable, Material, Integral, Function, Equation, Equations, Problem\n'), ((2966, 2988), 'sfepy.discrete.Integral', 'Integral', (['"""i"""'], {'order': '(2)'}), "('i', order=2)\n", (2974, 2988), False, 'from sfepy.discrete import FieldVariable, Material, Integral, Function, Equation, Equations, Problem\n'), ((2995, 3064), 'sfepy.terms.Term.new', 'Term.new', (['"""dw_lin_elastic(m.D, v, u)"""', 'integral', 'omega'], {'m': 'm', 'v': 'v', 'u': 'u'}), "('dw_lin_elastic(m.D, v, u)', integral, omega, m=m, v=v, u=u)\n", (3003, 3064), False, 'from sfepy.terms import Term\n'), ((3084, 3174), 'sfepy.terms.Term.new', 'Term.new', (['"""dw_contact_sphere(cs.f, cs.c, cs.r, v, u)"""', 'integral1', 'Top'], {'cs': 'cs', 'v': 'v', 'u': 'u'}), "('dw_contact_sphere(cs.f, cs.c, cs.r, v, u)', integral1, Top, cs=cs,\n v=v, u=u)\n", (3092, 3174), False, 'from sfepy.terms import Term\n'), ((3176, 3204), 'sfepy.discrete.Equation', 'Equation', (['"""balance"""', '(t1 + t2)'], {}), "('balance', t1 + t2)\n", (3184, 3204), False, 'from sfepy.discrete import FieldVariable, Material, Integral, Function, Equation, Equations, Problem\n'), ((3211, 3226), 'sfepy.discrete.Equations', 'Equations', (['[eq]'], {}), '([eq])\n', (3220, 3226), False, 'from sfepy.discrete import FieldVariable, Material, Integral, Function, Equation, Equations, Problem\n'), ((3236, 3280), 'sfepy.discrete.conditions.EssentialBC', 'EssentialBC', (['"""fix_u"""', 'Bottom', "{'u.all': 0.0}"], {}), "('fix_u', Bottom, {'u.all': 0.0})\n", (3247, 3280), False, 'from sfepy.discrete.conditions import Conditions, EssentialBC\n'), ((3447, 3462), 'sfepy.solvers.ls.ScipyDirect', 'ScipyDirect', (['{}'], {}), '({})\n', (3458, 3462), False, 'from sfepy.solvers.ls import ScipyDirect\n'), ((3477, 3492), 'sfepy.base.base.IndexedStruct', 'IndexedStruct', ([], {}), '()\n', (3490, 3492), False, 'from sfepy.base.base import IndexedStruct\n'), ((3499, 3543), 'sfepy.solvers.nls.Newton', 'Newton', (['{}'], {'lin_solver': 'ls', 'status': 'nls_status'}), '({}, lin_solver=ls, status=nls_status)\n', (3505, 3543), False, 'from sfepy.solvers.nls import Newton\n'), ((3550, 3586), 'sfepy.discrete.Problem', 'Problem', (['"""elasticity"""'], {'equations': 'eqs'}), "('elasticity', equations=eqs)\n", (3557, 3586), False, 'from sfepy.discrete import FieldVariable, Material, Integral, Function, Equation, Equations, Problem\n'), ((3692, 3707), 'sfepy.base.base.IndexedStruct', 'IndexedStruct', ([], {}), '()\n', (3705, 3707), False, 'from sfepy.base.base import IndexedStruct\n'), ((3908, 3939), 'sfepy.postprocess.viewer.Viewer', 'Viewer', (['"""linear_elasticity.vtk"""'], {}), "('linear_elasticity.vtk')\n", (3914, 3939), False, 'from sfepy.postprocess.viewer import Viewer\n'), ((2650, 2697), 'sfepy.mechanics.matcoefs.stiffness_from_lame', 'stiffness_from_lame', ([], {'dim': '(3)', 'lam': '(5.769)', 'mu': '(3.846)'}), '(dim=3, lam=5.769, mu=3.846)\n', (2669, 2697), False, 'from sfepy.mechanics.matcoefs import stiffness_from_lame\n'), ((3641, 3660), 'sfepy.discrete.conditions.Conditions', 'Conditions', (['[fix_u]'], {}), '([fix_u])\n', (3651, 3660), False, 'from sfepy.discrete.conditions import Conditions, EssentialBC\n')]
# -*- coding: utf-8 -*- # MIT License # # Copyright (c) 2020 <NAME> # # Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files # (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, # publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, # subject to the following conditions: # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # # This repo is licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import math import collections import megengine.module as nn import megengine.functional as F from model.nn_upsample import NeuralUpsampler, FlowMaskEstimator from common.utils import flow_warp, upsample2d_flow_as def conv(inp, out, k=3, s=1, d=1, isReLU=True): if isReLU: ret = nn.Sequential(nn.Conv2d(inp, out, k, s, padding=((k - 1) * d) // 2, dilation=d, bias=True), nn.LeakyReLU(0.1)) else: ret = nn.Sequential(nn.Conv2d(inp, out, k, s, padding=((k - 1) * d) // 2, dilation=d, bias=True)) return ret class ContextNetwork(nn.Module): def __init__(self, ch_in): super(ContextNetwork, self).__init__() self.convs = nn.Sequential(conv(ch_in, 128, 3, 1, 1), conv(128, 128, 3, 1, 2), conv(128, 128, 3, 1, 4), conv(128, 96, 3, 1, 8), conv(96, 64, 3, 1, 16), conv(64, 32, 3, 1, 1), conv(32, 2, isReLU=False)) def forward(self, x): return self.convs(x) class FlowEstimator(nn.Module): def __init__(self, ch_in): super(FlowEstimator, self).__init__() self.conv1 = conv(ch_in, 128) self.conv2 = conv(128, 128) self.conv3 = conv(128 + 128, 96) self.conv4 = conv(96 + 128, 64) self.conv5 = conv(96 + 64, 32) # channels of the second last layer self.feat_dim = 32 self.predict_flow = conv(64 + 32, 2, isReLU=False) def forward(self, x): x1 = self.conv1(x) x2 = self.conv2(x1) x3 = self.conv3(F.concat([x1, x2], axis=1)) x4 = self.conv4(F.concat([x2, x3], axis=1)) x5 = self.conv5(F.concat([x3, x4], axis=1)) flow = self.predict_flow(F.concat([x4, x5], axis=1)) return x5, flow class CostVolume(nn.Module): def __init__(self, d=4, *args, **kwargs): super(CostVolume, self).__init__() self.d = d self.out_dim = 2 * self.d + 1 self.pad_size = self.d def forward(self, x1, x2): _, _, H, W = x1.shape x2 = F.nn.pad(x2, ((0, 0), (0, 0), (self.pad_size, self.pad_size), (self.pad_size, self.pad_size))) cv = [] for i in range(self.out_dim): for j in range(self.out_dim): cost = x1 * x2[:, :, i:(i + H), j:(j + W)] cost = F.mean(cost, 1, keepdims=True) cv.append(cost) return F.concat(cv, 1) class FeaturePyramidExtractor(nn.Module): def __init__(self, pyr_chans): super(FeaturePyramidExtractor, self).__init__() self.pyr_chans = pyr_chans self.convs = [] for _, (ch_in, ch_out) in enumerate(zip(pyr_chans[:-1], pyr_chans[1:])): layer = nn.Sequential(conv(ch_in, ch_out, s=2), conv(ch_out, ch_out)) self.convs.append(layer) def forward(self, x): feature_pyramid = [] for conv in self.convs: x = conv(x) feature_pyramid.append(x) return feature_pyramid[::-1] class GyroFlow(nn.Module): def __init__(self, params): super(GyroFlow, self).__init__() self.leakyRELU = nn.LeakyReLU(0.1) self.upsample = params.upsample self.with_bk = True self.pyr_chans = [3, 16, 32, 64, 96, 128, 192] self.feature_pyramid_extractor = FeaturePyramidExtractor(self.pyr_chans) # correlation range self.d = 4 self.output_level = 4 # cost volume self.cost_volume = CostVolume(d=self.d) self.cv_dim = (self.d * 2 + 1)**2 self.upsampler = NeuralUpsampler() self.ch_inp = 32 + self.cv_dim + 2 self.flow_estimator = FlowEstimator(self.ch_inp) self.context_net = ContextNetwork(self.flow_estimator.feat_dim + 2) self.conv_1x1 = list([ conv(192, 32, k=1, s=1, d=1), conv(128, 32, k=1, s=1, d=1), conv(96, 32, k=1, s=1, d=1), conv(64, 32, k=1, s=1, d=1), conv(32, 32, k=1, s=1, d=1) ]) self.with_gyro_field = True self.flow_predictor = FlowMaskEstimator(4, (8, 16, 32, 16, 8), 2) self.mask_predictor = FlowMaskEstimator(64, (32, 32, 32, 16, 8), 1) for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.msra_normal_(m.weight, a=math.sqrt(5)) if m.bias is not None: fan_in, _ = nn.init.calculate_fan_in_and_fan_out(m.weight) bound = 1 / math.sqrt(fan_in) nn.init.uniform_(m.bias, -bound, bound) def generate_fused_flow(self, x1, x2): input_feature = F.concat((x1, x2), axis=1) flow = self.flow_predictor(input_feature)[1] assert flow.shape[1] == 2 return flow def generate_map(self, x1, x2): input_feature = F.concat((x1, x2), axis=1) out = self.mask_predictor(input_feature)[1] mask = F.sigmoid(out) assert mask.shape[1] == 1 return mask def self_guided_fusion_module(self, flow, gyro_field_rsz, x1, x2_warp, layer): fuse_flow = self.generate_fused_flow(flow, gyro_field_rsz) mask = self.generate_map(self.conv_1x1[layer](x1), self.conv_1x1[layer](x2_warp)) flow = fuse_flow * mask + gyro_field_rsz * (1 - mask) return flow def normalize_features(self, feature_list, normalize, center, moments_across_channels=True, moments_across_images=True): # Compute feature statistics. statistics = collections.defaultdict(list) axes = [1, 2, 3] if moments_across_channels else [2, 3] # [b, c, h, w] for feature_image in feature_list: mean = F.mean(feature_image, axis=axes, keepdims=True) # [b,1,1,1] or [b,c,1,1] variance = F.var(feature_image, axis=axes, keepdims=True) # [b,1,1,1] or [b,c,1,1] statistics['mean'].append(mean) statistics['var'].append(variance) if moments_across_images: statistics['mean'] = ([F.mean(F.stack(statistics['mean'], axis=0), axis=(0, ))] * len(feature_list)) statistics['var'] = ([F.var(F.stack(statistics['var'], axis=0), axis=(0, ))] * len(feature_list)) statistics['std'] = [F.sqrt(v + 1e-16) for v in statistics['var']] # Center and normalize features. if center: feature_list = [f - mean for f, mean in zip(feature_list, statistics['mean'])] if normalize: feature_list = [f / std for f, std in zip(feature_list, statistics['std'])] return feature_list def predict_flow(self, x1_pyrs, x2_pyrs, gyro_field=None): flow_pyrs = [] batch_size, _, h_x1, w_x1 = x1_pyrs[0].shape dtype = x1_pyrs[0].dtype flow = F.zeros((batch_size, 2, h_x1, w_x1), dtype=dtype) for layer, (x1, x2) in enumerate(zip(x1_pyrs, x2_pyrs)): if layer == 0: x2_warp = x2 else: flow = self.upsampler(flow, self.conv_1x1[layer](x1), self.conv_1x1[layer](x2)) gyro_field_rsz = upsample2d_flow_as(gyro_field, flow, if_rate=True) x2_warp = flow_warp(x2, gyro_field_rsz) flow = self.self_guided_fusion_module(flow, gyro_field_rsz, x1, x2_warp, layer) x2_warp = flow_warp(x2, flow) # cost volume normalized x1_normalized, x2_warp_normalized = self.normalize_features([x1, x2_warp], normalize=True, center=True, moments_across_channels=False, moments_across_images=False) _cv = self.cost_volume(x1_normalized, x2_warp_normalized) _cv_relu = self.leakyRELU(_cv) x1 = self.conv_1x1[layer](x1) _x_feat, flow_pred = self.flow_estimator(F.concat([_cv_relu, x1, flow], axis=1)) flow += flow_pred flow_refine = self.context_net(F.concat([_x_feat, flow], axis=1)) flow += flow_refine flow_pyrs.append(flow) if layer == self.output_level: break if self.upsample: flows = [F.vision.interpolate(flow * 4, scale_factor=4, mode='bilinear', align_corners=True) for flow in flow_pyrs] return flows[::-1] def forward(self, data_batch, with_bk=True): x = data_batch['imgs'] imgs = [x[:, 3 * i:3 * i + 3] for i in range(2)] x = [self.feature_pyramid_extractor(img) + [img] for img in imgs] gyro_field = data_batch["gyro_field"] res = {} res['flow_fw'] = self.predict_flow(x[0], x[1], gyro_field) if with_bk: res['flow_bw'] = self.predict_flow(x[1], x[0], -1 * gyro_field) return res class GyroFlowTestFlops(GyroFlow): def forward(self, data_batch, with_bk=True): x = data_batch imgs = [x[:, 3 * i:3 * i + 3] for i in range(2)] x = [self.feature_pyramid_extractor(img) + [img] for img in imgs] gyro_field = F.ones_like(data_batch)[:, :2, ...] res_fw = self.predict_flow(x[0], x[1], gyro_field) if with_bk: res_bw = self.predict_flow(x[1], x[0], -1 * gyro_field) return res_fw, res_bw def fetch_net(params): if params.net_type == "gyroflow": net = GyroFlow(params) else: raise NotImplementedError return net
[ "megengine.module.init.calculate_fan_in_and_fan_out", "megengine.functional.vision.interpolate", "megengine.functional.sigmoid", "megengine.module.Conv2d", "megengine.functional.nn.pad", "megengine.functional.var", "megengine.functional.stack", "megengine.functional.ones_like", "megengine.functional.concat", "megengine.functional.mean", "megengine.module.init.uniform_", "megengine.functional.zeros", "megengine.functional.sqrt", "megengine.module.LeakyReLU" ]
[((3076, 3175), 'megengine.functional.nn.pad', 'F.nn.pad', (['x2', '((0, 0), (0, 0), (self.pad_size, self.pad_size), (self.pad_size, self.pad_size)\n )'], {}), '(x2, ((0, 0), (0, 0), (self.pad_size, self.pad_size), (self.\n pad_size, self.pad_size)))\n', (3084, 3175), True, 'import megengine.functional as F\n'), ((3427, 3442), 'megengine.functional.concat', 'F.concat', (['cv', '(1)'], {}), '(cv, 1)\n', (3435, 3442), True, 'import megengine.functional as F\n'), ((4151, 4168), 'megengine.module.LeakyReLU', 'nn.LeakyReLU', (['(0.1)'], {}), '(0.1)\n', (4163, 4168), True, 'import megengine.module as nn\n'), ((4589, 4606), 'model.nn_upsample.NeuralUpsampler', 'NeuralUpsampler', ([], {}), '()\n', (4604, 4606), False, 'from model.nn_upsample import NeuralUpsampler, FlowMaskEstimator\n'), ((5100, 5143), 'model.nn_upsample.FlowMaskEstimator', 'FlowMaskEstimator', (['(4)', '(8, 16, 32, 16, 8)', '(2)'], {}), '(4, (8, 16, 32, 16, 8), 2)\n', (5117, 5143), False, 'from model.nn_upsample import NeuralUpsampler, FlowMaskEstimator\n'), ((5174, 5219), 'model.nn_upsample.FlowMaskEstimator', 'FlowMaskEstimator', (['(64)', '(32, 32, 32, 16, 8)', '(1)'], {}), '(64, (32, 32, 32, 16, 8), 1)\n', (5191, 5219), False, 'from model.nn_upsample import NeuralUpsampler, FlowMaskEstimator\n'), ((5654, 5680), 'megengine.functional.concat', 'F.concat', (['(x1, x2)'], {'axis': '(1)'}), '((x1, x2), axis=1)\n', (5662, 5680), True, 'import megengine.functional as F\n'), ((5849, 5875), 'megengine.functional.concat', 'F.concat', (['(x1, x2)'], {'axis': '(1)'}), '((x1, x2), axis=1)\n', (5857, 5875), True, 'import megengine.functional as F\n'), ((5943, 5957), 'megengine.functional.sigmoid', 'F.sigmoid', (['out'], {}), '(out)\n', (5952, 5957), True, 'import megengine.functional as F\n'), ((6520, 6549), 'collections.defaultdict', 'collections.defaultdict', (['list'], {}), '(list)\n', (6543, 6549), False, 'import collections\n'), ((7767, 7816), 'megengine.functional.zeros', 'F.zeros', (['(batch_size, 2, h_x1, w_x1)'], {'dtype': 'dtype'}), '((batch_size, 2, h_x1, w_x1), dtype=dtype)\n', (7774, 7816), True, 'import megengine.functional as F\n'), ((1392, 1466), 'megengine.module.Conv2d', 'nn.Conv2d', (['inp', 'out', 'k', 's'], {'padding': '((k - 1) * d // 2)', 'dilation': 'd', 'bias': '(True)'}), '(inp, out, k, s, padding=(k - 1) * d // 2, dilation=d, bias=True)\n', (1401, 1466), True, 'import megengine.module as nn\n'), ((1470, 1487), 'megengine.module.LeakyReLU', 'nn.LeakyReLU', (['(0.1)'], {}), '(0.1)\n', (1482, 1487), True, 'import megengine.module as nn\n'), ((1527, 1601), 'megengine.module.Conv2d', 'nn.Conv2d', (['inp', 'out', 'k', 's'], {'padding': '((k - 1) * d // 2)', 'dilation': 'd', 'bias': '(True)'}), '(inp, out, k, s, padding=(k - 1) * d // 2, dilation=d, bias=True)\n', (1536, 1601), True, 'import megengine.module as nn\n'), ((2575, 2601), 'megengine.functional.concat', 'F.concat', (['[x1, x2]'], {'axis': '(1)'}), '([x1, x2], axis=1)\n', (2583, 2601), True, 'import megengine.functional as F\n'), ((2627, 2653), 'megengine.functional.concat', 'F.concat', (['[x2, x3]'], {'axis': '(1)'}), '([x2, x3], axis=1)\n', (2635, 2653), True, 'import megengine.functional as F\n'), ((2679, 2705), 'megengine.functional.concat', 'F.concat', (['[x3, x4]'], {'axis': '(1)'}), '([x3, x4], axis=1)\n', (2687, 2705), True, 'import megengine.functional as F\n'), ((2740, 2766), 'megengine.functional.concat', 'F.concat', (['[x4, x5]'], {'axis': '(1)'}), '([x4, x5], axis=1)\n', (2748, 2766), True, 'import megengine.functional as F\n'), ((6692, 6739), 'megengine.functional.mean', 'F.mean', (['feature_image'], {'axis': 'axes', 'keepdims': '(True)'}), '(feature_image, axis=axes, keepdims=True)\n', (6698, 6739), True, 'import megengine.functional as F\n'), ((6789, 6835), 'megengine.functional.var', 'F.var', (['feature_image'], {'axis': 'axes', 'keepdims': '(True)'}), '(feature_image, axis=axes, keepdims=True)\n', (6794, 6835), True, 'import megengine.functional as F\n'), ((7241, 7258), 'megengine.functional.sqrt', 'F.sqrt', (['(v + 1e-16)'], {}), '(v + 1e-16)\n', (7247, 7258), True, 'import megengine.functional as F\n'), ((10234, 10257), 'megengine.functional.ones_like', 'F.ones_like', (['data_batch'], {}), '(data_batch)\n', (10245, 10257), True, 'import megengine.functional as F\n'), ((3349, 3379), 'megengine.functional.mean', 'F.mean', (['cost', '(1)'], {'keepdims': '(True)'}), '(cost, 1, keepdims=True)\n', (3355, 3379), True, 'import megengine.functional as F\n'), ((8087, 8137), 'common.utils.upsample2d_flow_as', 'upsample2d_flow_as', (['gyro_field', 'flow'], {'if_rate': '(True)'}), '(gyro_field, flow, if_rate=True)\n', (8105, 8137), False, 'from common.utils import flow_warp, upsample2d_flow_as\n'), ((8164, 8193), 'common.utils.flow_warp', 'flow_warp', (['x2', 'gyro_field_rsz'], {}), '(x2, gyro_field_rsz)\n', (8173, 8193), False, 'from common.utils import flow_warp, upsample2d_flow_as\n'), ((8318, 8337), 'common.utils.flow_warp', 'flow_warp', (['x2', 'flow'], {}), '(x2, flow)\n', (8327, 8337), False, 'from common.utils import flow_warp, upsample2d_flow_as\n'), ((9050, 9088), 'megengine.functional.concat', 'F.concat', (['[_cv_relu, x1, flow]'], {'axis': '(1)'}), '([_cv_relu, x1, flow], axis=1)\n', (9058, 9088), True, 'import megengine.functional as F\n'), ((9164, 9197), 'megengine.functional.concat', 'F.concat', (['[_x_feat, flow]'], {'axis': '(1)'}), '([_x_feat, flow], axis=1)\n', (9172, 9197), True, 'import megengine.functional as F\n'), ((9379, 9466), 'megengine.functional.vision.interpolate', 'F.vision.interpolate', (['(flow * 4)'], {'scale_factor': '(4)', 'mode': '"""bilinear"""', 'align_corners': '(True)'}), "(flow * 4, scale_factor=4, mode='bilinear',\n align_corners=True)\n", (9399, 9466), True, 'import megengine.functional as F\n'), ((5429, 5475), 'megengine.module.init.calculate_fan_in_and_fan_out', 'nn.init.calculate_fan_in_and_fan_out', (['m.weight'], {}), '(m.weight)\n', (5465, 5475), True, 'import megengine.module as nn\n'), ((5546, 5585), 'megengine.module.init.uniform_', 'nn.init.uniform_', (['m.bias', '(-bound)', 'bound'], {}), '(m.bias, -bound, bound)\n', (5562, 5585), True, 'import megengine.module as nn\n'), ((5344, 5356), 'math.sqrt', 'math.sqrt', (['(5)'], {}), '(5)\n', (5353, 5356), False, 'import math\n'), ((5508, 5525), 'math.sqrt', 'math.sqrt', (['fan_in'], {}), '(fan_in)\n', (5517, 5525), False, 'import math\n'), ((7030, 7065), 'megengine.functional.stack', 'F.stack', (["statistics['mean']"], {'axis': '(0)'}), "(statistics['mean'], axis=0)\n", (7037, 7065), True, 'import megengine.functional as F\n'), ((7141, 7175), 'megengine.functional.stack', 'F.stack', (["statistics['var']"], {'axis': '(0)'}), "(statistics['var'], axis=0)\n", (7148, 7175), True, 'import megengine.functional as F\n')]
from datetime import datetime, timezone from typing import Generic, Optional, Type, TypeVar from fastapi_users.authentication.strategy.db import AccessTokenDatabase from fastapi_users.authentication.strategy.db.models import BaseAccessToken from pydantic import UUID4 from sqlalchemy import Column, types from sqlalchemy.ext.asyncio import AsyncSession from sqlmodel import Field, Session, SQLModel, select def now_utc(): return datetime.now(timezone.utc) class SQLModelBaseAccessToken(BaseAccessToken, SQLModel): __tablename__ = "accesstoken" token: str = Field( sa_column=Column("token", types.String(length=43), primary_key=True) ) created_at: datetime = Field( default_factory=now_utc, sa_column=Column( "created_at", types.DateTime(timezone=True), nullable=False, index=True ), ) user_id: UUID4 = Field(foreign_key="user.id", nullable=False) class Config: orm_mode = True A = TypeVar("A", bound=SQLModelBaseAccessToken) class SQLModelAccessTokenDatabase(Generic[A], AccessTokenDatabase[A]): """ Access token database adapter for SQLModel. :param user_db_model: SQLModel model of a DB representation of an access token. :param session: SQLAlchemy session. """ def __init__(self, access_token_model: Type[A], session: Session): self.access_token_model = access_token_model self.session = session async def get_by_token( self, token: str, max_age: Optional[datetime] = None ) -> Optional[A]: statement = select(self.access_token_model).where( self.access_token_model.token == token ) if max_age is not None: statement = statement.where(self.access_token_model.created_at >= max_age) results = self.session.exec(statement) return results.first() async def create(self, access_token: A) -> A: self.session.add(access_token) self.session.commit() self.session.refresh(access_token) return access_token async def update(self, access_token: A) -> A: self.session.add(access_token) self.session.commit() self.session.refresh(access_token) return access_token async def delete(self, access_token: A) -> None: self.session.delete(access_token) self.session.commit() class SQLModelAccessTokenDatabaseAsync(Generic[A], AccessTokenDatabase[A]): """ Access token database adapter for SQLModel working purely asynchronously. :param user_db_model: SQLModel model of a DB representation of an access token. :param session: SQLAlchemy async session. """ def __init__(self, access_token_model: Type[A], session: AsyncSession): self.access_token_model = access_token_model self.session = session async def get_by_token( self, token: str, max_age: Optional[datetime] = None ) -> Optional[A]: statement = select(self.access_token_model).where( self.access_token_model.token == token ) if max_age is not None: statement = statement.where(self.access_token_model.created_at >= max_age) results = await self.session.execute(statement) object = results.first() if object is None: return None return object[0] async def create(self, access_token: A) -> A: self.session.add(access_token) await self.session.commit() await self.session.refresh(access_token) return access_token async def update(self, access_token: A) -> A: self.session.add(access_token) await self.session.commit() await self.session.refresh(access_token) return access_token async def delete(self, access_token: A) -> None: await self.session.delete(access_token) await self.session.commit()
[ "sqlmodel.Field", "sqlmodel.select" ]
[((974, 1017), 'typing.TypeVar', 'TypeVar', (['"""A"""'], {'bound': 'SQLModelBaseAccessToken'}), "('A', bound=SQLModelBaseAccessToken)\n", (981, 1017), False, 'from typing import Generic, Optional, Type, TypeVar\n'), ((436, 462), 'datetime.datetime.now', 'datetime.now', (['timezone.utc'], {}), '(timezone.utc)\n', (448, 462), False, 'from datetime import datetime, timezone\n'), ((880, 924), 'sqlmodel.Field', 'Field', ([], {'foreign_key': '"""user.id"""', 'nullable': '(False)'}), "(foreign_key='user.id', nullable=False)\n", (885, 924), False, 'from sqlmodel import Field, Session, SQLModel, select\n'), ((616, 639), 'sqlalchemy.types.String', 'types.String', ([], {'length': '(43)'}), '(length=43)\n', (628, 639), False, 'from sqlalchemy import Column, types\n'), ((784, 813), 'sqlalchemy.types.DateTime', 'types.DateTime', ([], {'timezone': '(True)'}), '(timezone=True)\n', (798, 813), False, 'from sqlalchemy import Column, types\n'), ((1568, 1599), 'sqlmodel.select', 'select', (['self.access_token_model'], {}), '(self.access_token_model)\n', (1574, 1599), False, 'from sqlmodel import Field, Session, SQLModel, select\n'), ((2970, 3001), 'sqlmodel.select', 'select', (['self.access_token_model'], {}), '(self.access_token_model)\n', (2976, 3001), False, 'from sqlmodel import Field, Session, SQLModel, select\n')]
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import copy import numpy as np import megengine.autodiff as ad import megengine.functional as F import megengine.optimizer as optimizer from megengine import Parameter from megengine import Tensor as tensor from megengine import tensor from megengine.core.tensor.function import Function from megengine.module import Module def test_single_input(): data_shape = (9, 2, 6) av = np.random.random(data_shape).astype(np.float32) class MulFunc(Function): def forward(self, a): self.a = a return a * 10 def backward(self, grad_o): return grad_o * 10 class Simple(Module): def __init__(self, a): super().__init__() self.a = Parameter(a, dtype=np.float32) self.layer1 = MulFunc() def forward(self): x = self.layer1(self.a) return x net = Simple(av) gm = ad.GradManager().attach(net.parameters()) opt = optimizer.SGD(net.parameters(), lr=1.0) opt.clear_grad() with gm: loss = net() gm.backward(loss.sum()) opt.step() np.testing.assert_almost_equal(loss.numpy(), (av * 10)) np.testing.assert_almost_equal(net.a.numpy(), (av - 10)) def test_multi_input(): data_shape = (9, 2, 6) av = np.random.random(data_shape).astype(np.float32) bv = np.random.random(data_shape).astype(np.float32) class MulFunc(Function): def forward(self, a, b): self.a = a self.b = b return a * b def backward(self, grad_o): return grad_o * self.b * 2, grad_o * self.a * 3 class Simple(Module): def __init__(self, a, b): super().__init__() self.a = Parameter(a, dtype=np.float32) self.b = Parameter(b, dtype=np.float32) self.layer1 = MulFunc() def forward(self): x = self.layer1(self.a, self.b) return x net = Simple(av, bv) gm = ad.GradManager().attach(net.parameters()) opt = optimizer.SGD(net.parameters(), lr=1.0) opt.clear_grad() with gm: loss = net() gm.backward(loss.sum()) opt.step() np.testing.assert_almost_equal(loss.numpy(), (av * bv)) np.testing.assert_almost_equal(net.a.numpy(), (av - 2 * bv)) np.testing.assert_almost_equal(net.b.numpy(), (bv - 3 * av)) def test_multi_output(): data_shape = (9, 2, 6) av = np.random.random(data_shape).astype(np.float32) bv = np.random.random(data_shape).astype(np.float32) class MulFunc(Function): def forward(self, a, b): self.a = a self.b = b return a * b, a + b def backward(self, grad_1, grad_2): return grad_1 * (self.b + 1), grad_2 * (self.a + 1) class Simple(Module): def __init__(self, a, b): super().__init__() self.a = Parameter(a, dtype=np.float32) self.b = Parameter(b, dtype=np.float32) self.layer1 = MulFunc() def forward(self): x, y = self.layer1(self.a, self.b) return x + y net = Simple(av, bv) gm = ad.GradManager().attach(net.parameters()) opt = optimizer.SGD(net.parameters(), lr=1.0) opt.clear_grad() with gm: loss = net() gm.backward(loss.sum()) opt.step() np.testing.assert_almost_equal(loss.numpy(), (av * bv + av + bv), decimal=6) np.testing.assert_almost_equal(net.a.numpy(), (av - bv - 1), decimal=6) np.testing.assert_almost_equal(net.b.numpy(), (bv - av - 1), decimal=6) def test_skip_invalid_grad(): data_shape = (1, 9, 2, 6) av = np.random.random(data_shape).astype(np.float32) bv = np.random.random(data_shape).astype(np.float32) c = np.random.random(data_shape).astype(np.float32) cookie = tensor(c) class EqWithFakeGrad(Function): def forward(self, a, b): return a + b def backward(self, grad_o): _ = grad_o return cookie, cookie class Simple(Module): def __init__(self, a, b): super().__init__() self.a = Parameter(a, dtype=np.float32) self.b = Parameter(b, dtype=np.float32) self.layer1 = EqWithFakeGrad() def forward(self): x = self.layer1(self.a, self.b) return x net = Simple(av, bv) optim = optimizer.SGD(net.parameters(), lr=1.0) gm = ad.GradManager().attach(net.parameters()) optim.clear_grad() with gm: loss = net().sum() gm.backward(loss) optim.step() np.testing.assert_almost_equal(net.a.numpy(), av - c) np.testing.assert_almost_equal(net.b.numpy(), bv - c) def test_ste(): class STE(Function): def forward(self, x): maxv, minv = x.max(), x.min() scale = F.maximum(maxv, -minv) / 127 return F.round(x / scale) * scale def backward(self, grad_y): return grad_y class Simple(Module): def __init__(self, a): super().__init__() self.a = Parameter(a, dtype=np.float32) self.layer1 = STE() def forward(self): x = self.layer1(self.a) x = (x * 2.0).sum() return x data_shape = (1, 9, 2, 6) av = np.random.random(data_shape).astype(np.float32) net = Simple(av) optim = optimizer.SGD(net.parameters(), lr=1.0) gm = ad.GradManager().attach(net.parameters()) optim.clear_grad() with gm: loss = net() gm.backward(loss.sum()) optim.step() np.testing.assert_almost_equal( net.a.numpy(), av - np.broadcast_to(np.array([2.0], dtype=np.float32), data_shape), ) def test_deepcopy(): class Sigmoid(Function): def __init__(self, param): super().__init__() self.param = param def forward(self, x): y = 1 / (1 + F.exp(-x)) self.save_for_backward(y) return y def backward(self, grad_y): (y,) = self.saved_tensors return grad_y * y * (1 - y) origin = Sigmoid(0) new = copy.deepcopy(Sigmoid(0)) assert new.param == origin.param def test_none_in_out_grad(): class Test(Function): def forward(self, a, b): return a, b def backward(self, grad_a, grad_b): assert grad_b is None return (grad_a, 0.0) class Simple(Module): def __init__(self, a, b): super().__init__() self.a = Parameter(a, dtype=np.float32) self.b = Parameter(b, dtype=np.float32) self.layer = Test() def forward(self): aa, bb = self.layer(self.a, self.b) return aa, bb a = tensor(np.array([1.0], dtype=np.float32)) b = tensor(np.array([2.0], dtype=np.float32)) net = Simple(a, b) optim = optimizer.SGD(net.parameters(), lr=1.0) gm = ad.GradManager().attach(net.parameters()) optim.clear_grad() with gm: loss, _ = net() gm.backward(loss) optim.step() np.testing.assert_almost_equal( net.a.numpy(), np.array([1.0 - 1.0], dtype=np.float32) ) np.testing.assert_almost_equal( net.b.numpy(), np.array([2.0 - 0.0], dtype=np.float32) ) def test_zero_grad(): class StopGradient(Function): def forward(self, a): return a def backward(self, *_): return None class Simple(Module): def __init__(self, a): super().__init__() self.a = Parameter(a, dtype=np.float32) self.layer = StopGradient() def forward(self): b = self.a * 3.0 c = self.a * 4.0 return self.layer(b) + c a = tensor(np.array([1.0], dtype=np.float32)) net = Simple(a) optim = optimizer.SGD(net.parameters(), lr=1.0) gm = ad.GradManager().attach(net.parameters()) optim.clear_grad() with gm: loss = net() gm.backward(loss.sum()) optim.step() np.testing.assert_almost_equal( net.a.numpy(), np.array([1.0 - 4.0], dtype=np.float32), )
[ "megengine.functional.round", "megengine.functional.maximum", "megengine.tensor", "megengine.autodiff.GradManager", "megengine.Parameter", "megengine.functional.exp" ]
[((4180, 4189), 'megengine.tensor', 'tensor', (['c'], {}), '(c)\n', (4186, 4189), False, 'from megengine import tensor\n'), ((7147, 7180), 'numpy.array', 'np.array', (['[1.0]'], {'dtype': 'np.float32'}), '([1.0], dtype=np.float32)\n', (7155, 7180), True, 'import numpy as np\n'), ((7197, 7230), 'numpy.array', 'np.array', (['[2.0]'], {'dtype': 'np.float32'}), '([2.0], dtype=np.float32)\n', (7205, 7230), True, 'import numpy as np\n'), ((7521, 7560), 'numpy.array', 'np.array', (['[1.0 - 1.0]'], {'dtype': 'np.float32'}), '([1.0 - 1.0], dtype=np.float32)\n', (7529, 7560), True, 'import numpy as np\n'), ((7626, 7665), 'numpy.array', 'np.array', (['[2.0 - 0.0]'], {'dtype': 'np.float32'}), '([2.0 - 0.0], dtype=np.float32)\n', (7634, 7665), True, 'import numpy as np\n'), ((8158, 8191), 'numpy.array', 'np.array', (['[1.0]'], {'dtype': 'np.float32'}), '([1.0], dtype=np.float32)\n', (8166, 8191), True, 'import numpy as np\n'), ((8482, 8521), 'numpy.array', 'np.array', (['[1.0 - 4.0]'], {'dtype': 'np.float32'}), '([1.0 - 4.0], dtype=np.float32)\n', (8490, 8521), True, 'import numpy as np\n'), ((742, 770), 'numpy.random.random', 'np.random.random', (['data_shape'], {}), '(data_shape)\n', (758, 770), True, 'import numpy as np\n'), ((1077, 1107), 'megengine.Parameter', 'Parameter', (['a'], {'dtype': 'np.float32'}), '(a, dtype=np.float32)\n', (1086, 1107), False, 'from megengine import Parameter\n'), ((1260, 1276), 'megengine.autodiff.GradManager', 'ad.GradManager', ([], {}), '()\n', (1274, 1276), True, 'import megengine.autodiff as ad\n'), ((1639, 1667), 'numpy.random.random', 'np.random.random', (['data_shape'], {}), '(data_shape)\n', (1655, 1667), True, 'import numpy as np\n'), ((1696, 1724), 'numpy.random.random', 'np.random.random', (['data_shape'], {}), '(data_shape)\n', (1712, 1724), True, 'import numpy as np\n'), ((2088, 2118), 'megengine.Parameter', 'Parameter', (['a'], {'dtype': 'np.float32'}), '(a, dtype=np.float32)\n', (2097, 2118), False, 'from megengine import Parameter\n'), ((2140, 2170), 'megengine.Parameter', 'Parameter', (['b'], {'dtype': 'np.float32'}), '(b, dtype=np.float32)\n', (2149, 2170), False, 'from megengine import Parameter\n'), ((2335, 2351), 'megengine.autodiff.GradManager', 'ad.GradManager', ([], {}), '()\n', (2349, 2351), True, 'import megengine.autodiff as ad\n'), ((2784, 2812), 'numpy.random.random', 'np.random.random', (['data_shape'], {}), '(data_shape)\n', (2800, 2812), True, 'import numpy as np\n'), ((2841, 2869), 'numpy.random.random', 'np.random.random', (['data_shape'], {}), '(data_shape)\n', (2857, 2869), True, 'import numpy as np\n'), ((3252, 3282), 'megengine.Parameter', 'Parameter', (['a'], {'dtype': 'np.float32'}), '(a, dtype=np.float32)\n', (3261, 3282), False, 'from megengine import Parameter\n'), ((3304, 3334), 'megengine.Parameter', 'Parameter', (['b'], {'dtype': 'np.float32'}), '(b, dtype=np.float32)\n', (3313, 3334), False, 'from megengine import Parameter\n'), ((3506, 3522), 'megengine.autodiff.GradManager', 'ad.GradManager', ([], {}), '()\n', (3520, 3522), True, 'import megengine.autodiff as ad\n'), ((4006, 4034), 'numpy.random.random', 'np.random.random', (['data_shape'], {}), '(data_shape)\n', (4022, 4034), True, 'import numpy as np\n'), ((4063, 4091), 'numpy.random.random', 'np.random.random', (['data_shape'], {}), '(data_shape)\n', (4079, 4091), True, 'import numpy as np\n'), ((4119, 4147), 'numpy.random.random', 'np.random.random', (['data_shape'], {}), '(data_shape)\n', (4135, 4147), True, 'import numpy as np\n'), ((4492, 4522), 'megengine.Parameter', 'Parameter', (['a'], {'dtype': 'np.float32'}), '(a, dtype=np.float32)\n', (4501, 4522), False, 'from megengine import Parameter\n'), ((4544, 4574), 'megengine.Parameter', 'Parameter', (['b'], {'dtype': 'np.float32'}), '(b, dtype=np.float32)\n', (4553, 4574), False, 'from megengine import Parameter\n'), ((4798, 4814), 'megengine.autodiff.GradManager', 'ad.GradManager', ([], {}), '()\n', (4812, 4814), True, 'import megengine.autodiff as ad\n'), ((5445, 5475), 'megengine.Parameter', 'Parameter', (['a'], {'dtype': 'np.float32'}), '(a, dtype=np.float32)\n', (5454, 5475), False, 'from megengine import Parameter\n'), ((5665, 5693), 'numpy.random.random', 'np.random.random', (['data_shape'], {}), '(data_shape)\n', (5681, 5693), True, 'import numpy as np\n'), ((5795, 5811), 'megengine.autodiff.GradManager', 'ad.GradManager', ([], {}), '()\n', (5809, 5811), True, 'import megengine.autodiff as ad\n'), ((6914, 6944), 'megengine.Parameter', 'Parameter', (['a'], {'dtype': 'np.float32'}), '(a, dtype=np.float32)\n', (6923, 6944), False, 'from megengine import Parameter\n'), ((6966, 6996), 'megengine.Parameter', 'Parameter', (['b'], {'dtype': 'np.float32'}), '(b, dtype=np.float32)\n', (6975, 6996), False, 'from megengine import Parameter\n'), ((7316, 7332), 'megengine.autodiff.GradManager', 'ad.GradManager', ([], {}), '()\n', (7330, 7332), True, 'import megengine.autodiff as ad\n'), ((7948, 7978), 'megengine.Parameter', 'Parameter', (['a'], {'dtype': 'np.float32'}), '(a, dtype=np.float32)\n', (7957, 7978), False, 'from megengine import Parameter\n'), ((8274, 8290), 'megengine.autodiff.GradManager', 'ad.GradManager', ([], {}), '()\n', (8288, 8290), True, 'import megengine.autodiff as ad\n'), ((5197, 5219), 'megengine.functional.maximum', 'F.maximum', (['maxv', '(-minv)'], {}), '(maxv, -minv)\n', (5206, 5219), True, 'import megengine.functional as F\n'), ((5245, 5263), 'megengine.functional.round', 'F.round', (['(x / scale)'], {}), '(x / scale)\n', (5252, 5263), True, 'import megengine.functional as F\n'), ((6033, 6066), 'numpy.array', 'np.array', (['[2.0]'], {'dtype': 'np.float32'}), '([2.0], dtype=np.float32)\n', (6041, 6066), True, 'import numpy as np\n'), ((6292, 6301), 'megengine.functional.exp', 'F.exp', (['(-x)'], {}), '(-x)\n', (6297, 6301), True, 'import megengine.functional as F\n')]
import io import numpy as np import megengine.core.tensor.megbrain_graph as G import megengine.functional as F import megengine.module as M import megengine.utils.network_node as N from megengine.jit.tracing import trace from megengine.tensor import Tensor from megengine.utils.comp_graph_tools import GraphInference from megengine.utils.network import Network as Net from megengine.utils.network import as_oprnode, set_symbolic_shape from megengine.utils.network_node import Host2DeviceCopy, VarNode def test_metadata(): x = Tensor(0) @trace(symbolic=True, capture_as_const=True) def fwd(x): return x * 2 fwd(x) orig_model = io.BytesIO() fwd.dump(orig_model, user_info="test", optimize_for_inference=False) orig_model.seek(0) graph = Net.load(orig_model) assert graph.metadata == { "user_info": "test", "graph_modified": False, # False: tracing.dump "optimized_for_inference": False, } orig_model.seek(0) graph.dump( orig_model, user_info={"str": "x", "tensor": x, "module": M.Module, "none": None}, optimize_for_inference=True, enable_nchw4=True, enable_ioc16=True, ) orig_model.seek(0) graph = Net.load(orig_model) assert graph.metadata == { "user_info": {"str": "x", "tensor": x, "module": M.Module, "none": None}, "graph_modified": True, # True: Network.dump "optimized_for_inference": True, "enable_nchw4": True, "enable_ioc16": True, } orig_model.seek(0) fwd.dump(orig_model, enable_metadata=False) orig_model.seek(0) graph = Net.load(orig_model) assert graph.metadata is None def test_replace_var(): a = Tensor([1, 2]) b = Tensor([3, 4]) @trace(symbolic=True, capture_as_const=True) def fwd(a, b): return (a + b) * 2 fwd(a, b) orig_model = io.BytesIO() fwd.dump( orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False ) orig_model.seek(0) graph = Net.load(orig_model) vara = graph.var_filter.name("a").as_unique() varb = graph.var_filter.name("b").as_unique() out = F.mul(vara, varb) out = F.relu(out) opnode = list(graph.opr_filter.has_input(vara)) repl_dict = {opnode[0].outputs[0]: out} graph.replace_vars(repl_dict) modified_model = io.BytesIO() graph.dump(modified_model) modified_model.seek(0) load_graph = GraphInference(modified_model) out = load_graph.run(a, b) np.testing.assert_equal(out["o"], [6, 16]) def test_replace_opr(): a = Tensor([1, 2]) b = Tensor([3, 4]) @trace(symbolic=True, capture_as_const=True) def fwd(a, b): return (a + b) * 2 fwd(a, b) orig_model = io.BytesIO() fwd.dump( orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False ) orig_model.seek(0) graph = Net.load(orig_model) vara = graph.var_filter.name("a").as_unique() varb = graph.var_filter.name("b").as_unique() out1 = F.sub(vara, varb) out1 = F.relu(out1) out1 = graph.add_dep_oprs(out1) orig_opr = graph.opr_filter.has_input(vara).as_unique() repl_dict = {orig_opr: out1[0].owner} graph.replace_oprs(repl_dict) modified_model1 = io.BytesIO() graph.dump(modified_model1) modified_model1.seek(0) load_graph = GraphInference(modified_model1) out = load_graph.run(a, b) np.testing.assert_equal(out["o"], [0, 0]) def test_splice_network(): x = F.ones((2,)) y = F.ones((2,)) @trace(symbolic=True, capture_as_const=True) def fun1(a, b): return (a + b) * 2 @trace(symbolic=True, capture_as_const=True) def fun2(a): return a * 2 - 1 model = io.BytesIO() fun1(x, y) fun2(x) fun1.dump( model, arg_names=["net1_i0", "net1_i1"], output_names=["net1_o0"], optimize_for_inference=False, ) model.seek(0) net1 = Net.load(model) model.seek(0) fun2.dump( model, arg_names=["net2_i0"], output_names=["net2_o0"], optimize_for_inference=False, ) model.seek(0) net2 = Net.load(model) net1.add_output(*net2.output_vars) var = net1.var_filter.name("net1_i0").as_unique() repl_var = net2.var_filter.name("net2_o0").as_unique() net1.replace_vars({var: repl_var}) assert "net1_i0" not in [var.name for var in net1.all_vars] assert "net2_i0" in [var.name for var in net1.all_vars] model.seek(0) net1.dump(model, keep_var_name=2, optimize_for_inference=False) model.seek(0) net = Net.load(model) assert "net1_i0" not in [var.name for var in net.all_vars] assert "net2_i0" in [var.name for var in net.all_vars] def test_modify_params(): a = Tensor([1, 2]) b = Tensor([3, 4]) @trace(symbolic=True, capture_as_const=True) def fwd(a, b): return (a + b) * 2 fwd(a, b) orig_model = io.BytesIO() fwd.dump( orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False ) orig_model.seek(0) graph = Net.load(orig_model) param_const = graph.params_filter.as_unique() param_const.set_value(3) modified_model = io.BytesIO() graph.dump(modified_model) modified_model.seek(0) load_graph = GraphInference(modified_model) out = load_graph.run(a, b) np.testing.assert_equal(out["o"], [12, 18]) def test_make_const(): a = Tensor([1, 2]) b = Tensor([3, 4]) @trace(symbolic=True, capture_as_const=True) def fwd(a, b): return (a + b) * 2 fwd(a, b) orig_model = io.BytesIO() fwd.dump( orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False ) orig_model.seek(0) graph = Net.load(orig_model) const_b = graph.make_const(np.array([0.0, 0.0]), name="b") varb = graph.var_filter.name("b").as_unique() repl_dict = {varb: const_b} graph.replace_vars(repl_dict) modified_model = io.BytesIO() graph.dump(modified_model) modified_model.seek(0) load_graph = GraphInference(modified_model) out = load_graph.run(a) np.testing.assert_equal(out["o"], [2, 4]) def test_add_input(): a = Tensor([1, 2]) b = Tensor([3, 4]) @trace(symbolic=True, capture_as_const=True) def fwd(a, b): return (a + b) * 2 fwd(a, b) orig_model = io.BytesIO() fwd.dump( orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False ) orig_model.seek(0) graph = Net.load(orig_model) inp_c = graph.make_input_node((2,), np.int32, name="c") varo = graph.var_filter.name("o").as_unique() out = F.add(varo, inp_c) out.name = "o1" graph.remove_output(varo) graph.add_output(out) modified_model = io.BytesIO() graph.dump(modified_model) modified_model.seek(0) load_graph = GraphInference(modified_model) out = load_graph.run(a, b, a) np.testing.assert_equal(out["o1"], ((a + b) * 2 + a).numpy()) def test_add_remove_output(): a = Tensor([1.0, 2.0]) b = Tensor([3.0, 4.0]) @trace(symbolic=True, capture_as_const=True) def fwd(a, b): return (a + b) * 2, (a - b) fwd(a, b) orig_model = io.BytesIO() fwd.dump( orig_model, arg_names=["a", "b"], output_names=["o1", "o2"], optimize_for_inference=False, ) orig_model.seek(0) net = Net.load(orig_model) var_a = net.var_filter.name("a").as_unique() var_b = net.var_filter.name("b").as_unique() y1 = (var_a + var_b) * 3 y2 = F.sigmoid(var_a + var_b) net.remove_output(*net.output_vars) y1.name = "new_o1" y2.name = "new_o2" net.add_output(y1, y2) modified_model = io.BytesIO() net.dump(modified_model) modified_model.seek(0) g = GraphInference(modified_model) out = g.run(a.numpy(), b.numpy()) np.testing.assert_equal(out["new_o1"], ((a + b) * 3).numpy()) np.testing.assert_equal(out["new_o2"], (F.sigmoid((a + b))).numpy()) def test_query(): class Model(M.Module): def __init__(self): super().__init__() self.conv1 = M.Conv2d(3, 32, 3) self.conv2 = M.Conv2d(32, 32, 3) self.conv3 = M.Conv2d(32, 32, 3) def forward(self, data): x = self.conv1(data) x = self.conv2(x) x = self.conv3(x) return x n = Model() @trace(symbolic=True, capture_as_const=True) def fwd(data): return n(data) fwd(Tensor(np.random.random((1, 3, 224, 224)))) orig_model = io.BytesIO() fwd.dump( orig_model, arg_names=["data"], output_names="o", keep_opr_name=True, keep_var_name=True, optimize_for_inference=False, ) orig_model.seek(0) graph = Net.load(orig_model) r = graph.data_providers_filter.as_count() assert r == 1 opr = graph.get_opr_by_type(Host2DeviceCopy) assert isinstance(opr, Host2DeviceCopy) r1 = graph.params_filter.as_count() assert r1 == 6 r2 = graph.opr_filter.type(N.ConvolutionForward).as_count() assert r2 == 3 r3 = graph.opr_filter.not_type(N.ConvolutionForward).as_count() assert r3 == len(graph.all_oprs) - r2 var = graph.var_filter.name("data").as_unique() r4 = graph.opr_filter.has_input(var).as_count() assert r4 == 1 r5 = graph.opr_filter.name("data").as_count() assert r5 == 1 opr = graph.get_opr_by_name("data") assert isinstance(opr, Host2DeviceCopy) var = graph.get_var_by_name("data") assert isinstance(var, VarNode) r6 = graph.var_filter.name("*bias").as_count() assert r6 == 3 def test_optimize_for_inference(): @trace(symbolic=True, capture_as_const=True) def f(x): return F.exp(x) orig_model = io.BytesIO() f(Tensor(5.0)) f.dump(orig_model, optimize_for_inference=False) orig_model.seek(0) optimize_model = io.BytesIO() net = Net.load(orig_model) net.dump(optimize_model, enable_io16xc32=True) optimize_model.seek(0) res = G.load_graph(optimize_model) computing_input = res.output_vars_list[0].owner.inputs[0] assert computing_input.dtype == np.float16 def test_reset_batchsize(): @trace(symbolic=True, capture_as_const=True) def f(x): return F.exp(x) orig_model = io.BytesIO() f(Tensor(np.random.random((3, 3, 224, 224)))) f.dump(orig_model, optimize_for_inference=False) orig_model.seek(0) modified_model = io.BytesIO() net = Net.load(orig_model) net.reset_batch_size(1) net.dump(modified_model, optimize_for_inference=False) modified_model.seek(0) net1 = Net.load(modified_model) assert net1.data_providers_filter.as_unique().shape[0] == 1 def test_modify_opr_name(): @trace(symbolic=True, capture_as_const=True) def f(x): return F.exp(x) orig_model = io.BytesIO() f(Tensor(np.random.random((3, 3, 224, 224)))) f.dump(orig_model, arg_names=["a"], optimize_for_inference=False) orig_model.seek(0) modified_model = io.BytesIO() net = Net.load(orig_model) net.modify_opr_names("net") net.modify_opr_names(lambda x: "net1." + x) net.dump(modified_model, optimize_for_inference=False) modified_model.seek(0) net1 = Net.load(modified_model) assert net1.data_providers_filter.as_unique().name == "net1.net.a" def test_dump_cond_take(): a = Tensor([1.0, 2.0]) @trace(symbolic=True, capture_as_const=True) def fwd(a): return F.cond_take(a > 1, a) fwd(a) orig_model = io.BytesIO() fwd.dump( orig_model, arg_names=["a"], output_names=["o1", "o2"], optimize_for_inference=False, ) orig_model.seek(0) net = Net.load(orig_model) var_a = net.input_vars[0] val, idx = F.cond_take(var_a > 1, var_a) net.remove_output(*net.output_vars) val.name = "value" idx.name = "index" net.add_output(val, idx) modified_model = io.BytesIO() net.dump(modified_model) modified_model.seek(0) g = GraphInference(modified_model) out = g.run(a.numpy()) data = a.numpy() mask = a.numpy() > 1 np.testing.assert_equal(out["index"], np.where(mask.reshape(-1))[0]) np.testing.assert_equal(out["value"], data[mask]) def test_set_symbolic_shape(): a = Tensor([1.0, 2.0]) @trace(symbolic=True, capture_as_const=True) def fwd(a): return F.relu(a * 2) fwd(a) orig_model = io.BytesIO() fwd.dump( orig_model, arg_names=["a"], output_names=["o"], optimize_for_inference=False, ) orig_model.seek(0) net = Net.load(orig_model) var_a = net.input_vars[0] saved_symbolic_shape = set_symbolic_shape(True) assert isinstance(var_a.shape, VarNode) set_symbolic_shape(False) assert var_a.shape == var_a.partial_shape set_symbolic_shape(saved_symbolic_shape)
[ "megengine.utils.comp_graph_tools.GraphInference", "megengine.functional.ones", "megengine.functional.sigmoid", "megengine.module.Conv2d", "megengine.functional.cond_take", "megengine.utils.network.Network.load", "megengine.functional.add", "megengine.jit.tracing.trace", "megengine.functional.mul", "megengine.utils.network.set_symbolic_shape", "megengine.core.tensor.megbrain_graph.load_graph", "megengine.functional.exp", "megengine.functional.relu", "megengine.tensor.Tensor", "megengine.functional.sub" ]
[((534, 543), 'megengine.tensor.Tensor', 'Tensor', (['(0)'], {}), '(0)\n', (540, 543), False, 'from megengine.tensor import Tensor\n'), ((550, 593), 'megengine.jit.tracing.trace', 'trace', ([], {'symbolic': '(True)', 'capture_as_const': '(True)'}), '(symbolic=True, capture_as_const=True)\n', (555, 593), False, 'from megengine.jit.tracing import trace\n'), ((661, 673), 'io.BytesIO', 'io.BytesIO', ([], {}), '()\n', (671, 673), False, 'import io\n'), ((782, 802), 'megengine.utils.network.Network.load', 'Net.load', (['orig_model'], {}), '(orig_model)\n', (790, 802), True, 'from megengine.utils.network import Network as Net\n'), ((1238, 1258), 'megengine.utils.network.Network.load', 'Net.load', (['orig_model'], {}), '(orig_model)\n', (1246, 1258), True, 'from megengine.utils.network import Network as Net\n'), ((1640, 1660), 'megengine.utils.network.Network.load', 'Net.load', (['orig_model'], {}), '(orig_model)\n', (1648, 1660), True, 'from megengine.utils.network import Network as Net\n'), ((1730, 1744), 'megengine.tensor.Tensor', 'Tensor', (['[1, 2]'], {}), '([1, 2])\n', (1736, 1744), False, 'from megengine.tensor import Tensor\n'), ((1753, 1767), 'megengine.tensor.Tensor', 'Tensor', (['[3, 4]'], {}), '([3, 4])\n', (1759, 1767), False, 'from megengine.tensor import Tensor\n'), ((1774, 1817), 'megengine.jit.tracing.trace', 'trace', ([], {'symbolic': '(True)', 'capture_as_const': '(True)'}), '(symbolic=True, capture_as_const=True)\n', (1779, 1817), False, 'from megengine.jit.tracing import trace\n'), ((1896, 1908), 'io.BytesIO', 'io.BytesIO', ([], {}), '()\n', (1906, 1908), False, 'import io\n'), ((2054, 2074), 'megengine.utils.network.Network.load', 'Net.load', (['orig_model'], {}), '(orig_model)\n', (2062, 2074), True, 'from megengine.utils.network import Network as Net\n'), ((2186, 2203), 'megengine.functional.mul', 'F.mul', (['vara', 'varb'], {}), '(vara, varb)\n', (2191, 2203), True, 'import megengine.functional as F\n'), ((2214, 2225), 'megengine.functional.relu', 'F.relu', (['out'], {}), '(out)\n', (2220, 2225), True, 'import megengine.functional as F\n'), ((2379, 2391), 'io.BytesIO', 'io.BytesIO', ([], {}), '()\n', (2389, 2391), False, 'import io\n'), ((2467, 2497), 'megengine.utils.comp_graph_tools.GraphInference', 'GraphInference', (['modified_model'], {}), '(modified_model)\n', (2481, 2497), False, 'from megengine.utils.comp_graph_tools import GraphInference\n'), ((2534, 2576), 'numpy.testing.assert_equal', 'np.testing.assert_equal', (["out['o']", '[6, 16]'], {}), "(out['o'], [6, 16])\n", (2557, 2576), True, 'import numpy as np\n'), ((2612, 2626), 'megengine.tensor.Tensor', 'Tensor', (['[1, 2]'], {}), '([1, 2])\n', (2618, 2626), False, 'from megengine.tensor import Tensor\n'), ((2635, 2649), 'megengine.tensor.Tensor', 'Tensor', (['[3, 4]'], {}), '([3, 4])\n', (2641, 2649), False, 'from megengine.tensor import Tensor\n'), ((2656, 2699), 'megengine.jit.tracing.trace', 'trace', ([], {'symbolic': '(True)', 'capture_as_const': '(True)'}), '(symbolic=True, capture_as_const=True)\n', (2661, 2699), False, 'from megengine.jit.tracing import trace\n'), ((2778, 2790), 'io.BytesIO', 'io.BytesIO', ([], {}), '()\n', (2788, 2790), False, 'import io\n'), ((2936, 2956), 'megengine.utils.network.Network.load', 'Net.load', (['orig_model'], {}), '(orig_model)\n', (2944, 2956), True, 'from megengine.utils.network import Network as Net\n'), ((3069, 3086), 'megengine.functional.sub', 'F.sub', (['vara', 'varb'], {}), '(vara, varb)\n', (3074, 3086), True, 'import megengine.functional as F\n'), ((3098, 3110), 'megengine.functional.relu', 'F.relu', (['out1'], {}), '(out1)\n', (3104, 3110), True, 'import megengine.functional as F\n'), ((3306, 3318), 'io.BytesIO', 'io.BytesIO', ([], {}), '()\n', (3316, 3318), False, 'import io\n'), ((3397, 3428), 'megengine.utils.comp_graph_tools.GraphInference', 'GraphInference', (['modified_model1'], {}), '(modified_model1)\n', (3411, 3428), False, 'from megengine.utils.comp_graph_tools import GraphInference\n'), ((3464, 3505), 'numpy.testing.assert_equal', 'np.testing.assert_equal', (["out['o']", '[0, 0]'], {}), "(out['o'], [0, 0])\n", (3487, 3505), True, 'import numpy as np\n'), ((3543, 3555), 'megengine.functional.ones', 'F.ones', (['(2,)'], {}), '((2,))\n', (3549, 3555), True, 'import megengine.functional as F\n'), ((3564, 3576), 'megengine.functional.ones', 'F.ones', (['(2,)'], {}), '((2,))\n', (3570, 3576), True, 'import megengine.functional as F\n'), ((3583, 3626), 'megengine.jit.tracing.trace', 'trace', ([], {'symbolic': '(True)', 'capture_as_const': '(True)'}), '(symbolic=True, capture_as_const=True)\n', (3588, 3626), False, 'from megengine.jit.tracing import trace\n'), ((3680, 3723), 'megengine.jit.tracing.trace', 'trace', ([], {'symbolic': '(True)', 'capture_as_const': '(True)'}), '(symbolic=True, capture_as_const=True)\n', (3685, 3723), False, 'from megengine.jit.tracing import trace\n'), ((3779, 3791), 'io.BytesIO', 'io.BytesIO', ([], {}), '()\n', (3789, 3791), False, 'import io\n'), ((3998, 4013), 'megengine.utils.network.Network.load', 'Net.load', (['model'], {}), '(model)\n', (4006, 4013), True, 'from megengine.utils.network import Network as Net\n'), ((4200, 4215), 'megengine.utils.network.Network.load', 'Net.load', (['model'], {}), '(model)\n', (4208, 4215), True, 'from megengine.utils.network import Network as Net\n'), ((4645, 4660), 'megengine.utils.network.Network.load', 'Net.load', (['model'], {}), '(model)\n', (4653, 4660), True, 'from megengine.utils.network import Network as Net\n'), ((4820, 4834), 'megengine.tensor.Tensor', 'Tensor', (['[1, 2]'], {}), '([1, 2])\n', (4826, 4834), False, 'from megengine.tensor import Tensor\n'), ((4843, 4857), 'megengine.tensor.Tensor', 'Tensor', (['[3, 4]'], {}), '([3, 4])\n', (4849, 4857), False, 'from megengine.tensor import Tensor\n'), ((4864, 4907), 'megengine.jit.tracing.trace', 'trace', ([], {'symbolic': '(True)', 'capture_as_const': '(True)'}), '(symbolic=True, capture_as_const=True)\n', (4869, 4907), False, 'from megengine.jit.tracing import trace\n'), ((4986, 4998), 'io.BytesIO', 'io.BytesIO', ([], {}), '()\n', (4996, 4998), False, 'import io\n'), ((5144, 5164), 'megengine.utils.network.Network.load', 'Net.load', (['orig_model'], {}), '(orig_model)\n', (5152, 5164), True, 'from megengine.utils.network import Network as Net\n'), ((5266, 5278), 'io.BytesIO', 'io.BytesIO', ([], {}), '()\n', (5276, 5278), False, 'import io\n'), ((5354, 5384), 'megengine.utils.comp_graph_tools.GraphInference', 'GraphInference', (['modified_model'], {}), '(modified_model)\n', (5368, 5384), False, 'from megengine.utils.comp_graph_tools import GraphInference\n'), ((5421, 5464), 'numpy.testing.assert_equal', 'np.testing.assert_equal', (["out['o']", '[12, 18]'], {}), "(out['o'], [12, 18])\n", (5444, 5464), True, 'import numpy as np\n'), ((5499, 5513), 'megengine.tensor.Tensor', 'Tensor', (['[1, 2]'], {}), '([1, 2])\n', (5505, 5513), False, 'from megengine.tensor import Tensor\n'), ((5522, 5536), 'megengine.tensor.Tensor', 'Tensor', (['[3, 4]'], {}), '([3, 4])\n', (5528, 5536), False, 'from megengine.tensor import Tensor\n'), ((5543, 5586), 'megengine.jit.tracing.trace', 'trace', ([], {'symbolic': '(True)', 'capture_as_const': '(True)'}), '(symbolic=True, capture_as_const=True)\n', (5548, 5586), False, 'from megengine.jit.tracing import trace\n'), ((5665, 5677), 'io.BytesIO', 'io.BytesIO', ([], {}), '()\n', (5675, 5677), False, 'import io\n'), ((5823, 5843), 'megengine.utils.network.Network.load', 'Net.load', (['orig_model'], {}), '(orig_model)\n', (5831, 5843), True, 'from megengine.utils.network import Network as Net\n'), ((6046, 6058), 'io.BytesIO', 'io.BytesIO', ([], {}), '()\n', (6056, 6058), False, 'import io\n'), ((6134, 6164), 'megengine.utils.comp_graph_tools.GraphInference', 'GraphInference', (['modified_model'], {}), '(modified_model)\n', (6148, 6164), False, 'from megengine.utils.comp_graph_tools import GraphInference\n'), ((6198, 6239), 'numpy.testing.assert_equal', 'np.testing.assert_equal', (["out['o']", '[2, 4]'], {}), "(out['o'], [2, 4])\n", (6221, 6239), True, 'import numpy as np\n'), ((6273, 6287), 'megengine.tensor.Tensor', 'Tensor', (['[1, 2]'], {}), '([1, 2])\n', (6279, 6287), False, 'from megengine.tensor import Tensor\n'), ((6296, 6310), 'megengine.tensor.Tensor', 'Tensor', (['[3, 4]'], {}), '([3, 4])\n', (6302, 6310), False, 'from megengine.tensor import Tensor\n'), ((6317, 6360), 'megengine.jit.tracing.trace', 'trace', ([], {'symbolic': '(True)', 'capture_as_const': '(True)'}), '(symbolic=True, capture_as_const=True)\n', (6322, 6360), False, 'from megengine.jit.tracing import trace\n'), ((6439, 6451), 'io.BytesIO', 'io.BytesIO', ([], {}), '()\n', (6449, 6451), False, 'import io\n'), ((6597, 6617), 'megengine.utils.network.Network.load', 'Net.load', (['orig_model'], {}), '(orig_model)\n', (6605, 6617), True, 'from megengine.utils.network import Network as Net\n'), ((6739, 6757), 'megengine.functional.add', 'F.add', (['varo', 'inp_c'], {}), '(varo, inp_c)\n', (6744, 6757), True, 'import megengine.functional as F\n'), ((6855, 6867), 'io.BytesIO', 'io.BytesIO', ([], {}), '()\n', (6865, 6867), False, 'import io\n'), ((6944, 6974), 'megengine.utils.comp_graph_tools.GraphInference', 'GraphInference', (['modified_model'], {}), '(modified_model)\n', (6958, 6974), False, 'from megengine.utils.comp_graph_tools import GraphInference\n'), ((7117, 7135), 'megengine.tensor.Tensor', 'Tensor', (['[1.0, 2.0]'], {}), '([1.0, 2.0])\n', (7123, 7135), False, 'from megengine.tensor import Tensor\n'), ((7144, 7162), 'megengine.tensor.Tensor', 'Tensor', (['[3.0, 4.0]'], {}), '([3.0, 4.0])\n', (7150, 7162), False, 'from megengine.tensor import Tensor\n'), ((7169, 7212), 'megengine.jit.tracing.trace', 'trace', ([], {'symbolic': '(True)', 'capture_as_const': '(True)'}), '(symbolic=True, capture_as_const=True)\n', (7174, 7212), False, 'from megengine.jit.tracing import trace\n'), ((7300, 7312), 'io.BytesIO', 'io.BytesIO', ([], {}), '()\n', (7310, 7312), False, 'import io\n'), ((7490, 7510), 'megengine.utils.network.Network.load', 'Net.load', (['orig_model'], {}), '(orig_model)\n', (7498, 7510), True, 'from megengine.utils.network import Network as Net\n'), ((7648, 7672), 'megengine.functional.sigmoid', 'F.sigmoid', (['(var_a + var_b)'], {}), '(var_a + var_b)\n', (7657, 7672), True, 'import megengine.functional as F\n'), ((7809, 7821), 'io.BytesIO', 'io.BytesIO', ([], {}), '()\n', (7819, 7821), False, 'import io\n'), ((7887, 7917), 'megengine.utils.comp_graph_tools.GraphInference', 'GraphInference', (['modified_model'], {}), '(modified_model)\n', (7901, 7917), False, 'from megengine.utils.comp_graph_tools import GraphInference\n'), ((8507, 8550), 'megengine.jit.tracing.trace', 'trace', ([], {'symbolic': '(True)', 'capture_as_const': '(True)'}), '(symbolic=True, capture_as_const=True)\n', (8512, 8550), False, 'from megengine.jit.tracing import trace\n'), ((8663, 8675), 'io.BytesIO', 'io.BytesIO', ([], {}), '()\n', (8673, 8675), False, 'import io\n'), ((8900, 8920), 'megengine.utils.network.Network.load', 'Net.load', (['orig_model'], {}), '(orig_model)\n', (8908, 8920), True, 'from megengine.utils.network import Network as Net\n'), ((9805, 9848), 'megengine.jit.tracing.trace', 'trace', ([], {'symbolic': '(True)', 'capture_as_const': '(True)'}), '(symbolic=True, capture_as_const=True)\n', (9810, 9848), False, 'from megengine.jit.tracing import trace\n'), ((9905, 9917), 'io.BytesIO', 'io.BytesIO', ([], {}), '()\n', (9915, 9917), False, 'import io\n'), ((10035, 10047), 'io.BytesIO', 'io.BytesIO', ([], {}), '()\n', (10045, 10047), False, 'import io\n'), ((10058, 10078), 'megengine.utils.network.Network.load', 'Net.load', (['orig_model'], {}), '(orig_model)\n', (10066, 10078), True, 'from megengine.utils.network import Network as Net\n'), ((10168, 10196), 'megengine.core.tensor.megbrain_graph.load_graph', 'G.load_graph', (['optimize_model'], {}), '(optimize_model)\n', (10180, 10196), True, 'import megengine.core.tensor.megbrain_graph as G\n'), ((10341, 10384), 'megengine.jit.tracing.trace', 'trace', ([], {'symbolic': '(True)', 'capture_as_const': '(True)'}), '(symbolic=True, capture_as_const=True)\n', (10346, 10384), False, 'from megengine.jit.tracing import trace\n'), ((10441, 10453), 'io.BytesIO', 'io.BytesIO', ([], {}), '()\n', (10451, 10453), False, 'import io\n'), ((10602, 10614), 'io.BytesIO', 'io.BytesIO', ([], {}), '()\n', (10612, 10614), False, 'import io\n'), ((10625, 10645), 'megengine.utils.network.Network.load', 'Net.load', (['orig_model'], {}), '(orig_model)\n', (10633, 10645), True, 'from megengine.utils.network import Network as Net\n'), ((10772, 10796), 'megengine.utils.network.Network.load', 'Net.load', (['modified_model'], {}), '(modified_model)\n', (10780, 10796), True, 'from megengine.utils.network import Network as Net\n'), ((10896, 10939), 'megengine.jit.tracing.trace', 'trace', ([], {'symbolic': '(True)', 'capture_as_const': '(True)'}), '(symbolic=True, capture_as_const=True)\n', (10901, 10939), False, 'from megengine.jit.tracing import trace\n'), ((10996, 11008), 'io.BytesIO', 'io.BytesIO', ([], {}), '()\n', (11006, 11008), False, 'import io\n'), ((11174, 11186), 'io.BytesIO', 'io.BytesIO', ([], {}), '()\n', (11184, 11186), False, 'import io\n'), ((11197, 11217), 'megengine.utils.network.Network.load', 'Net.load', (['orig_model'], {}), '(orig_model)\n', (11205, 11217), True, 'from megengine.utils.network import Network as Net\n'), ((11396, 11420), 'megengine.utils.network.Network.load', 'Net.load', (['modified_model'], {}), '(modified_model)\n', (11404, 11420), True, 'from megengine.utils.network import Network as Net\n'), ((11530, 11548), 'megengine.tensor.Tensor', 'Tensor', (['[1.0, 2.0]'], {}), '([1.0, 2.0])\n', (11536, 11548), False, 'from megengine.tensor import Tensor\n'), ((11555, 11598), 'megengine.jit.tracing.trace', 'trace', ([], {'symbolic': '(True)', 'capture_as_const': '(True)'}), '(symbolic=True, capture_as_const=True)\n', (11560, 11598), False, 'from megengine.jit.tracing import trace\n'), ((11681, 11693), 'io.BytesIO', 'io.BytesIO', ([], {}), '()\n', (11691, 11693), False, 'import io\n'), ((11866, 11886), 'megengine.utils.network.Network.load', 'Net.load', (['orig_model'], {}), '(orig_model)\n', (11874, 11886), True, 'from megengine.utils.network import Network as Net\n'), ((11933, 11962), 'megengine.functional.cond_take', 'F.cond_take', (['(var_a > 1)', 'var_a'], {}), '(var_a > 1, var_a)\n', (11944, 11962), True, 'import megengine.functional as F\n'), ((12101, 12113), 'io.BytesIO', 'io.BytesIO', ([], {}), '()\n', (12111, 12113), False, 'import io\n'), ((12179, 12209), 'megengine.utils.comp_graph_tools.GraphInference', 'GraphInference', (['modified_model'], {}), '(modified_model)\n', (12193, 12209), False, 'from megengine.utils.comp_graph_tools import GraphInference\n'), ((12361, 12410), 'numpy.testing.assert_equal', 'np.testing.assert_equal', (["out['value']", 'data[mask]'], {}), "(out['value'], data[mask])\n", (12384, 12410), True, 'import numpy as np\n'), ((12453, 12471), 'megengine.tensor.Tensor', 'Tensor', (['[1.0, 2.0]'], {}), '([1.0, 2.0])\n', (12459, 12471), False, 'from megengine.tensor import Tensor\n'), ((12478, 12521), 'megengine.jit.tracing.trace', 'trace', ([], {'symbolic': '(True)', 'capture_as_const': '(True)'}), '(symbolic=True, capture_as_const=True)\n', (12483, 12521), False, 'from megengine.jit.tracing import trace\n'), ((12596, 12608), 'io.BytesIO', 'io.BytesIO', ([], {}), '()\n', (12606, 12608), False, 'import io\n'), ((12749, 12769), 'megengine.utils.network.Network.load', 'Net.load', (['orig_model'], {}), '(orig_model)\n', (12757, 12769), True, 'from megengine.utils.network import Network as Net\n'), ((12828, 12852), 'megengine.utils.network.set_symbolic_shape', 'set_symbolic_shape', (['(True)'], {}), '(True)\n', (12846, 12852), False, 'from megengine.utils.network import as_oprnode, set_symbolic_shape\n'), ((12901, 12926), 'megengine.utils.network.set_symbolic_shape', 'set_symbolic_shape', (['(False)'], {}), '(False)\n', (12919, 12926), False, 'from megengine.utils.network import as_oprnode, set_symbolic_shape\n'), ((12977, 13017), 'megengine.utils.network.set_symbolic_shape', 'set_symbolic_shape', (['saved_symbolic_shape'], {}), '(saved_symbolic_shape)\n', (12995, 13017), False, 'from megengine.utils.network import as_oprnode, set_symbolic_shape\n'), ((5875, 5895), 'numpy.array', 'np.array', (['[0.0, 0.0]'], {}), '([0.0, 0.0])\n', (5883, 5895), True, 'import numpy as np\n'), ((9878, 9886), 'megengine.functional.exp', 'F.exp', (['x'], {}), '(x)\n', (9883, 9886), True, 'import megengine.functional as F\n'), ((9924, 9935), 'megengine.tensor.Tensor', 'Tensor', (['(5.0)'], {}), '(5.0)\n', (9930, 9935), False, 'from megengine.tensor import Tensor\n'), ((10414, 10422), 'megengine.functional.exp', 'F.exp', (['x'], {}), '(x)\n', (10419, 10422), True, 'import megengine.functional as F\n'), ((10969, 10977), 'megengine.functional.exp', 'F.exp', (['x'], {}), '(x)\n', (10974, 10977), True, 'import megengine.functional as F\n'), ((11630, 11651), 'megengine.functional.cond_take', 'F.cond_take', (['(a > 1)', 'a'], {}), '(a > 1, a)\n', (11641, 11651), True, 'import megengine.functional as F\n'), ((12553, 12566), 'megengine.functional.relu', 'F.relu', (['(a * 2)'], {}), '(a * 2)\n', (12559, 12566), True, 'import megengine.functional as F\n'), ((8227, 8245), 'megengine.module.Conv2d', 'M.Conv2d', (['(3)', '(32)', '(3)'], {}), '(3, 32, 3)\n', (8235, 8245), True, 'import megengine.module as M\n'), ((8271, 8290), 'megengine.module.Conv2d', 'M.Conv2d', (['(32)', '(32)', '(3)'], {}), '(32, 32, 3)\n', (8279, 8290), True, 'import megengine.module as M\n'), ((8316, 8335), 'megengine.module.Conv2d', 'M.Conv2d', (['(32)', '(32)', '(3)'], {}), '(32, 32, 3)\n', (8324, 8335), True, 'import megengine.module as M\n'), ((8609, 8643), 'numpy.random.random', 'np.random.random', (['(1, 3, 224, 224)'], {}), '((1, 3, 224, 224))\n', (8625, 8643), True, 'import numpy as np\n'), ((10467, 10501), 'numpy.random.random', 'np.random.random', (['(3, 3, 224, 224)'], {}), '((3, 3, 224, 224))\n', (10483, 10501), True, 'import numpy as np\n'), ((11022, 11056), 'numpy.random.random', 'np.random.random', (['(3, 3, 224, 224)'], {}), '((3, 3, 224, 224))\n', (11038, 11056), True, 'import numpy as np\n'), ((8067, 8083), 'megengine.functional.sigmoid', 'F.sigmoid', (['(a + b)'], {}), '(a + b)\n', (8076, 8083), True, 'import megengine.functional as F\n')]
from fastapi import FastAPI from sqlmodel import SQLModel, create_engine, Session, select from datetime import datetime from datastore.model import Label, LabelAssignment, Meter, Measurement from pydantic import BaseModel SQLITE_FILE_NAME = "database.db" sqlite_url = f"sqlite:///{SQLITE_FILE_NAME}" connect_args = {"check_same_thread": False} engine = create_engine(sqlite_url, echo=True, connect_args=connect_args) def create_db_and_tables(): SQLModel.metadata.create_all(engine) app = FastAPI() @app.on_event("startup") def on_startup(): create_db_and_tables() @app.get("/meters") def read_usage(): with Session(engine) as session: meters = session.query(Meter).all() return meters @app.get("/meters/{meter_id}/") def read_meter(meter_id: int): with Session(engine) as session: meter = session.query(Meter).filter(Meter.id == meter_id).first() return meter @app.get("/meters/{meter_id}/measurements") def read_measurements(meter_id: int, start_date: datetime = None, end_date: datetime = None): with Session(engine) as session: query = session.query(Measurement).filter( Measurement.meter_id == meter_id) if start_date: query = query.filter(Measurement.capture_time >= start_date) if end_date: query = query.filter(Measurement.capture_time <= end_date) measurements = query.all() return measurements class LabelAssignmentPostData(BaseModel): label_id: int start_time: datetime end_time: datetime @app.post("/meters/{meter_id}/labels") def assign_label(meter_id: int, data: LabelAssignmentPostData): with Session(engine) as session: assignment = LabelAssignment(meter_id=meter_id, label_id=data.label_id, start_time=data.start_time, end_time=data.end_time) ass1 = LabelAssignment(meter_id=1, label_id=1, start_time=datetime( 2020, 1, 1, 0, 0, 30), end_time=datetime(2020, 1, 1, 0, 0, 40)) session.add(assignment) session.commit() return "Label assigned successfully!" @app.get("/meters/{meter_id}/labels") def get_assigned_labels(meter_id: int): with Session(engine) as session: labels = session.query(LabelAssignment.start_time, LabelAssignment.end_time, Label.name, Label.color, LabelAssignment.id).filter( LabelAssignment.meter_id == meter_id).join(Label).all() return labels @app.delete("/labels/assignments/{assignment_id}") def delete_assignment(assignment_id: int): with Session(engine) as session: session.query(LabelAssignment).filter( LabelAssignment.id == assignment_id).delete() session.commit() return "Label assignment deleted successfully!" @app.get("/labels") def get_labels(): with Session(engine) as session: labels = session.query(Label).all() return labels @app.post("/db/setDefaults") def set_defaults(): clear_db() with Session(engine) as session: meter1 = Meter(serial_number="Meter one", id=1) meter2 = Meter(serial_number="Meter two", id=2) for i in range(0, 59): session.add(Measurement(meter_id=meter1.id, voltage_phase_1=10+i, voltage_phase_2=(i*i) % 230, voltage_phase_3=30, capture_time=datetime(2020, 1, 1, 0, 0, i))) session.add(meter1) session.add(meter2) label1 = Label(name="Label one", id=1, color="red") label2 = Label(name="Label two", id=2, color="blue") ass1 = LabelAssignment(meter_id=meter1.id, label_id=label1.id, start_time=datetime( 2020, 1, 1, 0, 0, 30), end_time=datetime(2020, 1, 1, 0, 0, 40)) session.add(label1) session.add(label2) session.add(ass1) session.commit() return "Default set successfully!" @app.post("/db/clear") def clear_db(): with Session(engine) as session: session.query(Meter).delete() session.query(Measurement).delete() session.query(Label).delete() session.query(LabelAssignment).delete() session.commit() return "DB cleared successfuly!" if __name__ == "__main__": import os import uvicorn host = os.getenv("SMIC_HOST", "0.0.0.0") port = int(os.getenv("SMIC_PORT", 8081)) uvicorn.run(app, host=host, port=port)
[ "sqlmodel.SQLModel.metadata.create_all", "sqlmodel.Session", "sqlmodel.create_engine" ]
[((355, 418), 'sqlmodel.create_engine', 'create_engine', (['sqlite_url'], {'echo': '(True)', 'connect_args': 'connect_args'}), '(sqlite_url, echo=True, connect_args=connect_args)\n', (368, 418), False, 'from sqlmodel import SQLModel, create_engine, Session, select\n'), ((498, 507), 'fastapi.FastAPI', 'FastAPI', ([], {}), '()\n', (505, 507), False, 'from fastapi import FastAPI\n'), ((453, 489), 'sqlmodel.SQLModel.metadata.create_all', 'SQLModel.metadata.create_all', (['engine'], {}), '(engine)\n', (481, 489), False, 'from sqlmodel import SQLModel, create_engine, Session, select\n'), ((4336, 4369), 'os.getenv', 'os.getenv', (['"""SMIC_HOST"""', '"""0.0.0.0"""'], {}), "('SMIC_HOST', '0.0.0.0')\n", (4345, 4369), False, 'import os\n'), ((4420, 4458), 'uvicorn.run', 'uvicorn.run', (['app'], {'host': 'host', 'port': 'port'}), '(app, host=host, port=port)\n', (4431, 4458), False, 'import uvicorn\n'), ((629, 644), 'sqlmodel.Session', 'Session', (['engine'], {}), '(engine)\n', (636, 644), False, 'from sqlmodel import SQLModel, create_engine, Session, select\n'), ((797, 812), 'sqlmodel.Session', 'Session', (['engine'], {}), '(engine)\n', (804, 812), False, 'from sqlmodel import SQLModel, create_engine, Session, select\n'), ((1069, 1084), 'sqlmodel.Session', 'Session', (['engine'], {}), '(engine)\n', (1076, 1084), False, 'from sqlmodel import SQLModel, create_engine, Session, select\n'), ((1670, 1685), 'sqlmodel.Session', 'Session', (['engine'], {}), '(engine)\n', (1677, 1685), False, 'from sqlmodel import SQLModel, create_engine, Session, select\n'), ((1719, 1834), 'datastore.model.LabelAssignment', 'LabelAssignment', ([], {'meter_id': 'meter_id', 'label_id': 'data.label_id', 'start_time': 'data.start_time', 'end_time': 'data.end_time'}), '(meter_id=meter_id, label_id=data.label_id, start_time=data.\n start_time, end_time=data.end_time)\n', (1734, 1834), False, 'from datastore.model import Label, LabelAssignment, Meter, Measurement\n'), ((2282, 2297), 'sqlmodel.Session', 'Session', (['engine'], {}), '(engine)\n', (2289, 2297), False, 'from sqlmodel import SQLModel, create_engine, Session, select\n'), ((2643, 2658), 'sqlmodel.Session', 'Session', (['engine'], {}), '(engine)\n', (2650, 2658), False, 'from sqlmodel import SQLModel, create_engine, Session, select\n'), ((2905, 2920), 'sqlmodel.Session', 'Session', (['engine'], {}), '(engine)\n', (2912, 2920), False, 'from sqlmodel import SQLModel, create_engine, Session, select\n'), ((3074, 3089), 'sqlmodel.Session', 'Session', (['engine'], {}), '(engine)\n', (3081, 3089), False, 'from sqlmodel import SQLModel, create_engine, Session, select\n'), ((3119, 3157), 'datastore.model.Meter', 'Meter', ([], {'serial_number': '"""Meter one"""', 'id': '(1)'}), "(serial_number='Meter one', id=1)\n", (3124, 3157), False, 'from datastore.model import Label, LabelAssignment, Meter, Measurement\n'), ((3175, 3213), 'datastore.model.Meter', 'Meter', ([], {'serial_number': '"""Meter two"""', 'id': '(2)'}), "(serial_number='Meter two', id=2)\n", (3180, 3213), False, 'from datastore.model import Label, LabelAssignment, Meter, Measurement\n'), ((3528, 3570), 'datastore.model.Label', 'Label', ([], {'name': '"""Label one"""', 'id': '(1)', 'color': '"""red"""'}), "(name='Label one', id=1, color='red')\n", (3533, 3570), False, 'from datastore.model import Label, LabelAssignment, Meter, Measurement\n'), ((3588, 3631), 'datastore.model.Label', 'Label', ([], {'name': '"""Label two"""', 'id': '(2)', 'color': '"""blue"""'}), "(name='Label two', id=2, color='blue')\n", (3593, 3631), False, 'from datastore.model import Label, LabelAssignment, Meter, Measurement\n'), ((4000, 4015), 'sqlmodel.Session', 'Session', (['engine'], {}), '(engine)\n', (4007, 4015), False, 'from sqlmodel import SQLModel, create_engine, Session, select\n'), ((4385, 4413), 'os.getenv', 'os.getenv', (['"""SMIC_PORT"""', '(8081)'], {}), "('SMIC_PORT', 8081)\n", (4394, 4413), False, 'import os\n'), ((2004, 2034), 'datetime.datetime', 'datetime', (['(2020)', '(1)', '(1)', '(0)', '(0)', '(30)'], {}), '(2020, 1, 1, 0, 0, 30)\n', (2012, 2034), False, 'from datetime import datetime\n'), ((2058, 2088), 'datetime.datetime', 'datetime', (['(2020)', '(1)', '(1)', '(0)', '(0)', '(40)'], {}), '(2020, 1, 1, 0, 0, 40)\n', (2066, 2088), False, 'from datetime import datetime\n'), ((3714, 3744), 'datetime.datetime', 'datetime', (['(2020)', '(1)', '(1)', '(0)', '(0)', '(30)'], {}), '(2020, 1, 1, 0, 0, 30)\n', (3722, 3744), False, 'from datetime import datetime\n'), ((3768, 3798), 'datetime.datetime', 'datetime', (['(2020)', '(1)', '(1)', '(0)', '(0)', '(40)'], {}), '(2020, 1, 1, 0, 0, 40)\n', (3776, 3798), False, 'from datetime import datetime\n'), ((3421, 3450), 'datetime.datetime', 'datetime', (['(2020)', '(1)', '(1)', '(0)', '(0)', 'i'], {}), '(2020, 1, 1, 0, 0, i)\n', (3429, 3450), False, 'from datetime import datetime\n')]
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import functools from typing import Iterable, List, Optional, Union import numpy as np import megengine._internal as mgb from megengine._internal import CompGraph, CompNode from ..core import zeros from ..core.graph import _use_default_if_none from ..core.tensor import Tensor, wrap_io_tensor from .elemwise import ceil from .utils import _decide_comp_node_and_comp_graph @wrap_io_tensor def broadcast_to(inp: Tensor, shape: Union[int, Iterable[int]]) -> Tensor: """ Broadcast a tensor to ``shape`` :param inp: The input tensor :param shape: The target shape :return: The output tensor Examples: .. testcode:: import numpy as np from megengine import tensor import megengine.functional as F data = tensor(np.arange(0, 6, dtype=np.float32).reshape(2, 3)) out = F.broadcast_to(data, (4, 2, 3)) print(out.numpy()) Outputs: .. testoutput:: [[[0. 1. 2.] [3. 4. 5.]] [[0. 1. 2.] [3. 4. 5.]] [[0. 1. 2.] [3. 4. 5.]] [[0. 1. 2.] [3. 4. 5.]]] """ if isinstance(shape, int): shape = (shape,) return mgb.opr.broadcast(inp, shape) def _get_idx(index, axis): index_dims = len(index.imm_shape) idx = [] comp_node, comp_graph = _decide_comp_node_and_comp_graph(index) for i in range(index_dims): if i != axis: shape = [1] * index_dims shape[i] = index.axis_shape(i) arange = mgb.opr.linspace( 0, index.axis_shape(i) - 1, index.axis_shape(i), comp_node=comp_node, comp_graph=comp_graph, ) arange = ( arange.reshape(*shape) .broadcast(index.shape) .reshape(-1) .astype(np.int32) ) idx.append(arange) else: idx.append(index.reshape(-1)) return tuple(idx) @wrap_io_tensor def gather(inp: Tensor, axis: int, index: Tensor) -> Tensor: r""" Gather data from :attr:`inp` on :attr:`axis` using :attr:`index`. For a 3-D tensor, the output is specified by:: out[i][j][k] = inp[index[i][j][k]][j][k] # if axis == 0 out[i][j][k] = inp[i][index[i][j][k]][k] # if axis == 1 out[i][j][k] = inp[i][j][index[i][j][k]] # if axis == 2 if :attr:`inp` is an n-dimensional tensor with size :math:`(x_0,x_1,...,x_{i-1},x_i,x_{i+1},...,x_{n-1})` and axis=i, then :attr:`index` must be an n-dimensional tensor with size :math:`(x_0,x_1,...,x_{i-1},y,x_{i+1},...,x_{n-1})` where :math:`y\ge 1` and output will have the same size as :attr:`index`. :param inp: the source tensor :param axis: the axis along which to index :param index: the indices of elements to gather Examples: .. testcode:: import megengine.functional as F from megengine.core import tensor inp = tensor([ [1,2], [3,4], [5,6], ]) index = tensor([[0,2], [1,0]]) oup = F.gather(inp, 0, index) print(oup.numpy()) Outputs: .. testoutput:: [[1 6] [3 2]] """ input_shape = inp.imm_shape index_shape = index.imm_shape input_dims = len(input_shape) index_dims = len(index_shape) if input_dims != index_dims: raise ValueError( "The index tensor must have same dimensions as input tensor, " "But the input dims:{}, the index dims:{}".format(input_dims, index_dims) ) if axis < 0 or axis >= input_dims: raise ValueError( "Index axis {} is output of bounds, should in range [0 {})".format( axis, input_dims ) ) for i in range(input_dims): if i != axis and input_shape[i] != index_shape[i]: raise ValueError( "The input {} and index {} must have the same size apart from axis {}".format( input_shape, index_shape, axis ) ) idx = _get_idx(index, axis) return mgb.opr.advanced_indexing(inp)[idx].reshape( index.shape ) # pylint: disable=no-member @wrap_io_tensor def concat( inps: Iterable[Tensor], axis: int = 0, device: Optional[CompNode] = None, comp_graph: Optional[CompGraph] = None, ) -> Tensor: r""" Concat some tensors :param inps: Input tensors to concat :param axis: the dimension over which the tensors are concatenated. Default: 0 :param device: The comp node output on. Default: None :param comp_graph: The graph in which output is. Default: None :return: The output tensor Examples: .. testcode:: import numpy as np from megengine import tensor import megengine.functional as F data1 = tensor(np.arange(0, 6, dtype=np.float32).reshape((2, 3))) data2 = tensor(np.arange(6, 12, dtype=np.float32).reshape((2, 3))) out = F.concat([data1, data2]) print(out.numpy()) Outputs: .. testoutput:: [[ 0. 1. 2.] [ 3. 4. 5.] [ 6. 7. 8.] [ 9. 10. 11.]] """ # Output buffer not supported return mgb.opr.concat( *list(inps), axis=axis, comp_node=device, comp_graph=comp_graph ) @wrap_io_tensor def scatter(inp: Tensor, axis: int, index: Tensor, source: Tensor) -> Tensor: r""" Writes all values from the tensor :attr:`source` into :attr:`inp` at the indices specified in the :attr:`index` tensor. For each value in :attr:`source`, its output index is specified by its index in :attr:`source` for ``axis != dimension`` and by the corresponding value in :attr:`index` for ``axis = dimension``. For a 3-D tensor, :attr:`inp` is updated as:: inp[index[i][j][k]][j][k] = source[i][j][k] # if axis == 0 inp[i][index[i][j][k]][k] = source[i][j][k] # if axis == 1 inp[i][j][index[i][j][k]] = source[i][j][k] # if axis == 2 :attr:`inp`, :attr:`index` and :attr:`source` should have same number of dimensions. It is also required that ``source.shape(d) <= inp.shape(d)`` and ``index.shape(d) == source.shape(d)`` for all dimensions ``d``. Moreover, the values of :attr:`index` must be between ``0`` and ``inp.shape(axis) - 1`` inclusive. .. note:: Please notice that, due to performance issues, the result is uncertain on the GPU device if scatter difference positions from source to the same destination position regard to index tensor. Show the case using the following examples, the oup[0][2] is maybe from source[0][2] which value is 0.2256 or source[1][2] which value is 0.5339 if set the index[1][2] from 1 to 0. :param inp: the inp tensor which to be scattered :param axis: the axis along which to index :param index: the indices of elements to scatter :param source: the source element(s) to scatter Examples: .. testcode:: import numpy as np import megengine.functional as F from megengine.core import tensor inp = tensor(np.zeros(shape=(3,5),dtype=np.float32)) source = tensor([[0.9935,0.9465,0.2256,0.8926,0.4396],[0.7723,0.0718,0.5939,0.357,0.4576]]) index = tensor([[0,2,0,2,1],[2,0,1,1,2]]) oup = F.scatter(inp, 0, index,source) print(oup.numpy()) Outputs: .. testoutput:: [[0.9935 0.0718 0.2256 0. 0. ] [0. 0. 0.5939 0.357 0.4396] [0.7723 0.9465 0. 0.8926 0.4576]] """ input_shape = inp.imm_shape index_shape = index.imm_shape source_shape = source.imm_shape input_dims = len(input_shape) index_dims = len(index_shape) source_dims = len(source_shape) if input_dims != index_dims or input_dims != source_dims: raise ValueError("The input, source and index tensor must have same dimensions") if axis < 0 or axis >= input_dims: raise ValueError( "Index axis {} is output of bounds, should in range [0 {})".format( axis, input_dims ) ) for i in range(source_dims): if source_shape[i] > input_shape[i]: raise ValueError( "The each shape size for source {} must be less than or equal to input {} ".format( source_shape, input_shape ) ) for i in range(index_dims): if index_shape[i] != source_shape[i]: raise ValueError( "The each shape size for index {} must be equal to source {} ".format( index_shape, source_shape ) ) for i in range(index_dims): if i != axis and index_shape[i] > input_shape[i]: raise ValueError( "The index {} must be less than or equal to input {} size apart from axis {}".format( index_shape, input_shape, axis ) ) idx = _get_idx(index, axis) return mgb.opr.set_advanced_indexing(inp, source.flatten())[idx] @wrap_io_tensor def where(mask: Tensor, x: Tensor, y: Tensor) -> Tensor: r""" Select elements either from Tensor x or Tensor y, according to mask. .. math:: \textrm{out}_i = x_i \textrm{ if } \textrm{mask}_i \textrm{ is True else } y_i :param mask: a mask used for choosing x or y :param x: the first choice :param y: the second choice Examples: .. testcode:: from megengine import tensor import megengine.functional as F mask = tensor(np.array([[1, 0], [0, 1]], dtype=np.int32)) x = tensor(np.array([[1, np.inf], [np.nan, 4]], dtype=np.float32)) y = tensor(np.array([[5, 6], [7, 8]], dtype=np.float32)) out = F.where(mask, x, y) print(out.numpy()) Outputs: .. testoutput:: [[1. 6.] [7. 4.]] """ v0, index0 = mgb.opr.cond_take( x, mask, mode=mgb.opr_param_defs.CondTake.Mode.EQ, val=1 ) v1, index1 = mgb.opr.cond_take( y, mask, mode=mgb.opr_param_defs.CondTake.Mode.EQ, val=0 ) out = x.flatten() index = mgb.opr.concat(index0, index1, axis=0) v = mgb.opr.concat(v0, v1, axis=0) out = mgb.opr.set_advanced_indexing(out, v)[index] out = out.reshape(x.shape) return out @wrap_io_tensor def cond_take(mask: Tensor, x: Tensor, val=1) -> Tensor: r""" Take elements from data if specific condition is satisfied on mask. This operator has two outputs: the first is the elements taken, and the second is the indices corresponding to those elements; they are both 1-dimensional. High-dimension input would first be flattened. :param mask: condition param; must be the same shape with data :param x: input tensor from which to take elements :param val: value to be compared to by mode Examples: .. testcode:: from megengine import tensor import megengine.functional as F mask = tensor(np.array([[1, 0], [0, 1]], dtype=np.int32)) x = tensor(np.array([[1, np.inf], [np.nan, 4]], dtype=np.float32)) v, index = F.cond_take(mask, x, 1) print(v, index) Outputs: .. testoutput:: Tensor([1. 4.]) Tensor([0 3], dtype=int32) """ v, index = mgb.opr.cond_take( x, mask, mode=mgb.opr_param_defs.CondTake.Mode.EQ, val=val ) return v, index def shapeof(x: Tensor, axis=None): r""" The shape of input tensor. """ return x.shapeof(axis=axis) @wrap_io_tensor def dimshuffle(inp: Tensor, pattern: Iterable[int]) -> Tensor: r""" Swap shapes and strides according to given pattern :param inp: Input tensor :param pattern: a list of integers including 0, 1, ... , ``ndim``-1, and any number of ``'x'`` char in dimensions where this tensor should be broadcasted. For examples: * (``'x'``) -> make a 0d (scalar) into a 1d vector * (0, 1) -> identity for 2d vectors * (1, 0) -> inverts the first and second dimensions * (``'x'``, 0) -> make a row out of a 1d vector (N to 1xN) * (0, ``'x'``) -> make a column out of a 1d vector (N to Nx1) * (2, 0, 1) -> AxBxC to CxAxB * (0, ``'x'``, 1) -> AxB to Ax1xB * (1, ``'x'``, 0) -> AxB to Bx1xA * (1,) -> This remove dimensions 0. It must be a broadcastable dimension (1xA to A) :return: The output tensor Examples: .. testcode:: import numpy as np from megengine import tensor import megengine.functional as F x = tensor(np.array([[1, 1], [0, 0]], dtype=np.int32)) out = F.dimshuffle(x, (1, 0)) print(out.numpy()) Outputs: .. testoutput:: [[1 0] [1 0]] """ return mgb.opr.dimshuffle(inp, pattern) @wrap_io_tensor def reshape(inp: Tensor, target_shape: Iterable[int]) -> Tensor: r""" Reshape a tensor to given target shape; total number of logical elements must remain unchanged :param inp: Input tensor :param target_shape: target shape, the components would be concatenated to form the target shape, and it can contain an element of -1 representing unspec_axis. Examples: .. testcode:: import numpy as np from megengine import tensor import megengine.functional as F x = tensor(np.arange(12, dtype=np.int32)) out = F.reshape(x, (3, 2, 2)) print(out.numpy()) Outputs: .. testoutput:: [[[ 0 1] [ 2 3]] [[ 4 5] [ 6 7]] [[ 8 9] [10 11]]] """ return mgb.opr.reshape(inp, target_shape) def transpose(inp: Tensor, pattern: Iterable[int]) -> Tensor: r"""Equivalent to :func:`dimshuffle` """ return dimshuffle(inp, pattern) @wrap_io_tensor def add_axis(inp: Tensor, axis: int) -> Tensor: r""" Add dimension before given axis. :param inp: Input tensor :param axis: Place of new axes :return: The output tensor Examples: .. testcode:: import numpy as np from megengine import tensor import megengine.functional as F x = tensor([1, 2]) out = F.add_axis(x, 0) print(out.shape) Outputs: .. testoutput:: (1, 2) """ if not isinstance(axis, int): raise ValueError("axis must be int, but got type:{}".format(type(axis))) return mgb.opr.add_axis(inp, axis) @wrap_io_tensor def remove_axis(inp: Tensor, axis: int) -> Tensor: r""" Remove dimension of shape 1. :param inp: Input tensor :param axis: Place of axis to be removed :return: The output tensor Examples: .. testcode:: import numpy as np from megengine import tensor import megengine.functional as F x = tensor(np.array([1, 2], dtype=np.int32).reshape(1, 1, 2, 1)) out = F.remove_axis(x, 3) print(out.shape) Outputs: .. testoutput:: (1, 1, 2) """ if not isinstance(axis, int): raise ValueError("axis must be int, but got type:{}".format(type(axis))) return mgb.opr.remove_axis(inp, axis) def linspace( start: Union[int, float, Tensor], stop: Union[int, float, Tensor], num: Union[int, Tensor], dtype=np.float32, device: Optional[CompNode] = None, comp_graph: Optional[CompGraph] = None, ) -> Tensor: r""" Return equally spaced numbers over a specified interval :param start: Starting value of the squence, shoule be scalar :param stop: The last value of the squence, shoule be scalar :param num: number of values to generate :param dtype: result data type :return: The generated tensor Examples: .. testcode:: import numpy as np import megengine.functional as F a = F.linspace(3,10,5) print(a.numpy()) .. testoutput:: [ 3. 4.75 6.5 8.25 10. ] """ if dtype is not np.float32: raise ValueError("linspace is only implemented for float32") device, comp_graph = _use_default_if_none(device, comp_graph) ret = Tensor( mgb.opr.linspace(start, stop, num, comp_node=device, comp_graph=comp_graph) ) return ret.astype(dtype) def arange( start: Union[int, float, Tensor], end: Union[int, float, Tensor], step: Union[int, float, Tensor] = 1, dtype=np.float32, device: Optional[CompNode] = None, comp_graph: Optional[CompGraph] = None, ) -> Tensor: r""" Returns a Tensor with values from `start` to `end` with adjacent interval `step` :param start: starting value of the squence, shoule be scalar :param end: ending value of the squence, shoule be scalar :param step: the gap between each pair of adjacent values. Default 1 :param dtype: result data type :return: The generated tensor Examples: .. testcode:: import numpy as np import megengine.functional as F a = F.arange(1, 5, 1) print(a.numpy()) .. testoutput:: [1. 2. 3. 4.] """ if dtype is not np.float32: raise ValueError("arange is only implemented for float32") num = ceil((end - start) / step) stop = start + step * (num - 1) ret = linspace(start, stop, num, device=device, comp_graph=comp_graph) return ret def zeros_like(inp: Tensor) -> Tensor: r""" Returns a zero tensor with the same shape as input tensor :param inp: input tensor Examples: .. testcode:: import numpy as np from megengine import tensor import megengine.functional as F inp = tensor(np.arange(1, 7, dtype=np.int32).reshape(2,3)) out = F.zeros_like(inp) print(out.numpy()) .. testoutput:: [[0 0 0] [0 0 0]] """ return zeros(inp.shapeof()).astype(inp.dtype)
[ "megengine._internal.opr.cond_take", "megengine._internal.opr.dimshuffle", "megengine._internal.opr.add_axis", "megengine._internal.opr.remove_axis", "megengine._internal.opr.set_advanced_indexing", "megengine._internal.opr.reshape", "megengine._internal.opr.broadcast", "megengine._internal.opr.linspace", "megengine._internal.opr.advanced_indexing", "megengine._internal.opr.concat" ]
[((1563, 1592), 'megengine._internal.opr.broadcast', 'mgb.opr.broadcast', (['inp', 'shape'], {}), '(inp, shape)\n', (1580, 1592), True, 'import megengine._internal as mgb\n'), ((10424, 10499), 'megengine._internal.opr.cond_take', 'mgb.opr.cond_take', (['x', 'mask'], {'mode': 'mgb.opr_param_defs.CondTake.Mode.EQ', 'val': '(1)'}), '(x, mask, mode=mgb.opr_param_defs.CondTake.Mode.EQ, val=1)\n', (10441, 10499), True, 'import megengine._internal as mgb\n'), ((10531, 10606), 'megengine._internal.opr.cond_take', 'mgb.opr.cond_take', (['y', 'mask'], {'mode': 'mgb.opr_param_defs.CondTake.Mode.EQ', 'val': '(0)'}), '(y, mask, mode=mgb.opr_param_defs.CondTake.Mode.EQ, val=0)\n', (10548, 10606), True, 'import megengine._internal as mgb\n'), ((10655, 10693), 'megengine._internal.opr.concat', 'mgb.opr.concat', (['index0', 'index1'], {'axis': '(0)'}), '(index0, index1, axis=0)\n', (10669, 10693), True, 'import megengine._internal as mgb\n'), ((10702, 10732), 'megengine._internal.opr.concat', 'mgb.opr.concat', (['v0', 'v1'], {'axis': '(0)'}), '(v0, v1, axis=0)\n', (10716, 10732), True, 'import megengine._internal as mgb\n'), ((11809, 11886), 'megengine._internal.opr.cond_take', 'mgb.opr.cond_take', (['x', 'mask'], {'mode': 'mgb.opr_param_defs.CondTake.Mode.EQ', 'val': 'val'}), '(x, mask, mode=mgb.opr_param_defs.CondTake.Mode.EQ, val=val)\n', (11826, 11886), True, 'import megengine._internal as mgb\n'), ((13288, 13320), 'megengine._internal.opr.dimshuffle', 'mgb.opr.dimshuffle', (['inp', 'pattern'], {}), '(inp, pattern)\n', (13306, 13320), True, 'import megengine._internal as mgb\n'), ((14143, 14177), 'megengine._internal.opr.reshape', 'mgb.opr.reshape', (['inp', 'target_shape'], {}), '(inp, target_shape)\n', (14158, 14177), True, 'import megengine._internal as mgb\n'), ((14944, 14971), 'megengine._internal.opr.add_axis', 'mgb.opr.add_axis', (['inp', 'axis'], {}), '(inp, axis)\n', (14960, 14971), True, 'import megengine._internal as mgb\n'), ((15650, 15680), 'megengine._internal.opr.remove_axis', 'mgb.opr.remove_axis', (['inp', 'axis'], {}), '(inp, axis)\n', (15669, 15680), True, 'import megengine._internal as mgb\n'), ((10743, 10780), 'megengine._internal.opr.set_advanced_indexing', 'mgb.opr.set_advanced_indexing', (['out', 'v'], {}), '(out, v)\n', (10772, 10780), True, 'import megengine._internal as mgb\n'), ((16659, 16734), 'megengine._internal.opr.linspace', 'mgb.opr.linspace', (['start', 'stop', 'num'], {'comp_node': 'device', 'comp_graph': 'comp_graph'}), '(start, stop, num, comp_node=device, comp_graph=comp_graph)\n', (16675, 16734), True, 'import megengine._internal as mgb\n'), ((4531, 4561), 'megengine._internal.opr.advanced_indexing', 'mgb.opr.advanced_indexing', (['inp'], {}), '(inp)\n', (4556, 4561), True, 'import megengine._internal as mgb\n')]
# Creazione entità "base", editor support, creazione, id automatici # https://sqlmodel.tiangolo.com/tutorial/insert/ from typing import Optional from sqlmodel import Field, SQLModel, Session, create_engine class Tag(SQLModel, table=True): id: Optional[int] = Field(default=None, primary_key=True) name: str class ProductType(SQLModel, table=True): id: Optional[int] = Field(default=None, primary_key=True) name: str sqlite_file_name = "database.db" sqlite_url = f"sqlite:///{sqlite_file_name}" engine = create_engine(sqlite_url, echo=True) def create_db_and_tables(): SQLModel.metadata.create_all(engine) def create_entities(): tag_offerta = Tag(name="Offerta") tag_maionese = Tag(name="Con Maionese") tag_nomayo = Tag(name="No mayo") tipo_panino = ProductType(name="panino") tipo_bibita = ProductType(name="bibita") with Session(engine) as session: session.add(tag_offerta) session.add(tag_maionese) session.add(tag_nomayo) session.add(tipo_panino) session.add(tipo_bibita) session.commit() print("After committing the session") print("Tag 1:", tag_offerta) # No refresh, no print # https://sqlmodel.tiangolo.com/tutorial/automatic-id-none-refresh/ print("Product Type 1:", tipo_panino) # Refresh automatica se accedo ad un attributo print("Name of product Type 1:", tipo_panino.name) # Refresh esplicita session.refresh(tipo_bibita) session.refresh(tag_maionese) print("Product Type 2:", tipo_bibita) print("After the session closes") print("Tag 2:", tag_maionese) def main(): create_db_and_tables() create_entities() if __name__ == "__main__": main()
[ "sqlmodel.SQLModel.metadata.create_all", "sqlmodel.Field", "sqlmodel.create_engine", "sqlmodel.Session" ]
[((525, 561), 'sqlmodel.create_engine', 'create_engine', (['sqlite_url'], {'echo': '(True)'}), '(sqlite_url, echo=True)\n', (538, 561), False, 'from sqlmodel import Field, SQLModel, Session, create_engine\n'), ((265, 302), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'primary_key': '(True)'}), '(default=None, primary_key=True)\n', (270, 302), False, 'from sqlmodel import Field, SQLModel, Session, create_engine\n'), ((384, 421), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'primary_key': '(True)'}), '(default=None, primary_key=True)\n', (389, 421), False, 'from sqlmodel import Field, SQLModel, Session, create_engine\n'), ((596, 632), 'sqlmodel.SQLModel.metadata.create_all', 'SQLModel.metadata.create_all', (['engine'], {}), '(engine)\n', (624, 632), False, 'from sqlmodel import Field, SQLModel, Session, create_engine\n'), ((876, 891), 'sqlmodel.Session', 'Session', (['engine'], {}), '(engine)\n', (883, 891), False, 'from sqlmodel import Field, SQLModel, Session, create_engine\n')]
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import numpy as np import megengine.functional as F from megengine import Parameter from .init import ones_, zeros_ from .module import Module class GroupNorm(Module): """ Simple implementation of GroupNorm. Only support 4d tensor now. Reference: https://arxiv.org/pdf/1803.08494.pdf. """ def __init__(self, num_groups, num_channels, eps=1e-5, affine=True, **kwargs): super().__init__(**kwargs) assert num_channels % num_groups == 0 self.num_groups = num_groups self.num_channels = num_channels self.eps = eps self.affine = affine if self.affine: self.weight = Parameter(np.ones(num_channels, dtype=np.float32)) self.bias = Parameter(np.zeros(num_channels, dtype=np.float32)) else: self.weight = None self.bias = None self.reset_parameters() def reset_parameters(self): if self.affine: ones_(self.weight) zeros_(self.bias) def forward(self, x): N, C, H, W = x.shape assert C == self.num_channels x = x.reshape(N, self.num_groups, -1) mean = x.mean(axis=2, keepdims=True) var = (x * x).mean(axis=2, keepdims=True) - mean * mean x = (x - mean) / F.sqrt(var + self.eps) x = x.reshape(N, C, H, W) if self.affine: x = self.weight.reshape(1, -1, 1, 1) * x + self.bias.reshape(1, -1, 1, 1) return x def _module_info_string(self) -> str: s = ( "groups={num_groups}, channels={num_channels}, " "eps={eps}, affine={affine}" ) return s.format(**self.__dict__) class InstanceNorm(Module): """ Simple implementation of InstanceNorm. Only support 4d tensor now. Reference: https://arxiv.org/abs/1607.08022. Note that InstanceNorm equals using GroupNome with num_groups=num_channels. """ def __init__(self, num_channels, eps=1e-05, affine=True, **kwargs): super().__init__(**kwargs) self.num_channels = num_channels self.eps = eps self.affine = affine if self.affine: self.weight = Parameter(np.ones(num_channels, dtype="float32")) self.bias = Parameter(np.zeros(num_channels, dtype="float32")) else: self.weight = None self.bias = None self.reset_parameters() def reset_parameters(self): if self.affine: ones_(self.weight) zeros_(self.bias) def forward(self, x): N, C, H, W = x.shape assert C == self.num_channels x = x.reshape(N, C, -1) mean = x.mean(axis=2, keepdims=True) var = (x ** 2).mean(axis=2, keepdims=True) - mean * mean x = (x - mean) / F.sqrt(var + self.eps) x = x.reshape(N, C, H, W) if self.affine: x = self.weight.reshape(1, -1, 1, 1) * x + self.bias.reshape(1, -1, 1, 1) return x def _module_info_string(self) -> str: s = "channels={num_channels}, eps={eps}, affine={affine}" return s.format(**self.__dict__) class LayerNorm(Module): """ Simple implementation of LayerNorm. Support tensor of any shape as input. Reference: https://arxiv.org/pdf/1803.08494.pdf. """ def __init__(self, normalized_shape, eps=1e-05, affine=True, **kwargs): super().__init__(**kwargs) if isinstance(normalized_shape, int): normalized_shape = (normalized_shape,) self.normalized_shape = tuple(normalized_shape) self.eps = eps self.affine = affine if self.affine: self.weight = Parameter(np.ones(self.normalized_shape, dtype="float32")) self.bias = Parameter(np.zeros(self.normalized_shape, dtype="float32")) else: self.weight = None self.bias = None self.reset_parameters() def reset_parameters(self): if self.affine: ones_(self.weight) zeros_(self.bias) def forward(self, x): x_shape = x.shape dim_delta = len(x_shape) - len(self.normalized_shape) non_flatten_shape = x_shape[:dim_delta] x = x.reshape(*non_flatten_shape, -1) mean = x.mean(axis=-1, keepdims=True) var = (x ** 2).mean(axis=-1, keepdims=True) - mean * mean x = (x - mean) / F.sqrt(var + self.eps) x = x.reshape(x_shape) if self.affine: x = self.weight * x + self.bias return x def _module_info_string(self) -> str: s = "normalized_shape={normalized_shape}, eps={eps}, affine={affine}" return s.format(**self.__dict__)
[ "megengine.functional.sqrt" ]
[((1634, 1656), 'megengine.functional.sqrt', 'F.sqrt', (['(var + self.eps)'], {}), '(var + self.eps)\n', (1640, 1656), True, 'import megengine.functional as F\n'), ((3137, 3159), 'megengine.functional.sqrt', 'F.sqrt', (['(var + self.eps)'], {}), '(var + self.eps)\n', (3143, 3159), True, 'import megengine.functional as F\n'), ((4729, 4751), 'megengine.functional.sqrt', 'F.sqrt', (['(var + self.eps)'], {}), '(var + self.eps)\n', (4735, 4751), True, 'import megengine.functional as F\n'), ((1017, 1056), 'numpy.ones', 'np.ones', (['num_channels'], {'dtype': 'np.float32'}), '(num_channels, dtype=np.float32)\n', (1024, 1056), True, 'import numpy as np\n'), ((1092, 1132), 'numpy.zeros', 'np.zeros', (['num_channels'], {'dtype': 'np.float32'}), '(num_channels, dtype=np.float32)\n', (1100, 1132), True, 'import numpy as np\n'), ((2536, 2574), 'numpy.ones', 'np.ones', (['num_channels'], {'dtype': '"""float32"""'}), "(num_channels, dtype='float32')\n", (2543, 2574), True, 'import numpy as np\n'), ((2610, 2649), 'numpy.zeros', 'np.zeros', (['num_channels'], {'dtype': '"""float32"""'}), "(num_channels, dtype='float32')\n", (2618, 2649), True, 'import numpy as np\n'), ((4023, 4070), 'numpy.ones', 'np.ones', (['self.normalized_shape'], {'dtype': '"""float32"""'}), "(self.normalized_shape, dtype='float32')\n", (4030, 4070), True, 'import numpy as np\n'), ((4106, 4154), 'numpy.zeros', 'np.zeros', (['self.normalized_shape'], {'dtype': '"""float32"""'}), "(self.normalized_shape, dtype='float32')\n", (4114, 4154), True, 'import numpy as np\n')]
from typing import List, Union from fastapi import APIRouter, Request from fastapi.exceptions import HTTPException from sqlmodel import Session, or_, select from ..db import ActiveSession from ..models.content import Content, ContentIncoming, ContentResponse from ..security import AuthenticatedUser, User, get_current_user router = APIRouter() @router.get("/", response_model=List[ContentResponse]) async def list_contents(*, session: Session = ActiveSession): contents = session.exec(select(Content)).all() return contents @router.get("/{id_or_slug}/", response_model=ContentResponse) async def query_content(*, id_or_slug: Union[str, int], session: Session = ActiveSession): content = session.query(Content).where( or_( Content.id == id_or_slug, Content.slug == id_or_slug, ) ) if not content: raise HTTPException(status_code=404, detail="Content not found") return content.first() @router.post("/", response_model=ContentResponse, dependencies=[AuthenticatedUser]) async def create_content( *, session: Session = ActiveSession, request: Request, content: ContentIncoming, ): # set the ownsership of the content to the current user db_content = Content.from_orm(content) user: User = get_current_user(request=request) db_content.user_id = user.id session.add(db_content) session.commit() session.refresh(db_content) return db_content @router.patch( "/{content_id}/", response_model=ContentResponse, dependencies=[AuthenticatedUser], ) async def update_content( *, content_id: int, session: Session = ActiveSession, request: Request, patch: ContentIncoming, ): # Query the content content = session.get(Content, content_id) if not content: raise HTTPException(status_code=404, detail="Content not found") # Check the user owns the content current_user: User = get_current_user(request=request) if content.user_id != current_user.id and not current_user.superuser: raise HTTPException(status_code=403, detail="You don't own this content") # Update the content patch_data = patch.dict(exclude_unset=True) for key, value in patch_data.items(): setattr(content, key, value) # Commit the session session.commit() session.refresh(content) return content @router.delete("/{content_id}/", dependencies=[AuthenticatedUser]) def delete_content(*, session: Session = ActiveSession, request: Request, content_id: int): content = session.get(Content, content_id) if not content: raise HTTPException(status_code=404, detail="Content not found") # Check the user owns the content current_user = get_current_user(request=request) if content.user_id != current_user.id and not current_user.superuser: raise HTTPException(status_code=403, detail="You don't own this content") session.delete(content) session.commit() return {"ok": True}
[ "sqlmodel.or_", "sqlmodel.select" ]
[((336, 347), 'fastapi.APIRouter', 'APIRouter', ([], {}), '()\n', (345, 347), False, 'from fastapi import APIRouter, Request\n'), ((745, 802), 'sqlmodel.or_', 'or_', (['(Content.id == id_or_slug)', '(Content.slug == id_or_slug)'], {}), '(Content.id == id_or_slug, Content.slug == id_or_slug)\n', (748, 802), False, 'from sqlmodel import Session, or_, select\n'), ((878, 936), 'fastapi.exceptions.HTTPException', 'HTTPException', ([], {'status_code': '(404)', 'detail': '"""Content not found"""'}), "(status_code=404, detail='Content not found')\n", (891, 936), False, 'from fastapi.exceptions import HTTPException\n'), ((1831, 1889), 'fastapi.exceptions.HTTPException', 'HTTPException', ([], {'status_code': '(404)', 'detail': '"""Content not found"""'}), "(status_code=404, detail='Content not found')\n", (1844, 1889), False, 'from fastapi.exceptions import HTTPException\n'), ((2076, 2143), 'fastapi.exceptions.HTTPException', 'HTTPException', ([], {'status_code': '(403)', 'detail': '"""You don\'t own this content"""'}), '(status_code=403, detail="You don\'t own this content")\n', (2089, 2143), False, 'from fastapi.exceptions import HTTPException\n'), ((2635, 2693), 'fastapi.exceptions.HTTPException', 'HTTPException', ([], {'status_code': '(404)', 'detail': '"""Content not found"""'}), "(status_code=404, detail='Content not found')\n", (2648, 2693), False, 'from fastapi.exceptions import HTTPException\n'), ((2873, 2940), 'fastapi.exceptions.HTTPException', 'HTTPException', ([], {'status_code': '(403)', 'detail': '"""You don\'t own this content"""'}), '(status_code=403, detail="You don\'t own this content")\n', (2886, 2940), False, 'from fastapi.exceptions import HTTPException\n'), ((495, 510), 'sqlmodel.select', 'select', (['Content'], {}), '(Content)\n', (501, 510), False, 'from sqlmodel import Session, or_, select\n')]
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import pickle from tempfile import TemporaryFile import numpy as np import megengine as mge from megengine import Parameter, Tensor def test_tensor_serialization(): def tensor_eq(a, b): assert a.dtype == b.dtype assert a.device == b.device np.testing.assert_equal(a.numpy(), b.numpy()) with TemporaryFile() as f: data = np.random.randint(low=0, high=7, size=[233]) a = Tensor(data, device="xpux", dtype=np.int32) pickle.dump(a, f) f.seek(0) b = pickle.load(f) np.testing.assert_equal(a.numpy(), b.numpy()) with TemporaryFile() as f: a = Parameter(np.random.random(size=(233, 2)).astype(np.float32)) pickle.dump(a, f) f.seek(0) b = pickle.load(f) assert isinstance(b, Parameter) np.testing.assert_equal(a.numpy(), b.numpy()) with TemporaryFile() as f: a = Tensor(np.random.random(size=(2, 233)).astype(np.float32)) pickle.dump(a, f) f.seek(0) b = pickle.load(f) assert type(b) is Tensor np.testing.assert_equal(a.numpy(), b.numpy()) with TemporaryFile() as f: a = Tensor(np.random.random(size=(2, 233)).astype(np.float32)) mge.save(a, f) f.seek(0) b = mge.load(f, map_location="cpux") assert type(b) is Tensor assert "cpu" in str(b.device) np.testing.assert_equal(a.numpy(), b.numpy()) with TemporaryFile() as f: if mge.is_cuda_available(): device_org = mge.get_default_device() mge.set_default_device("gpu0") a = Tensor(np.random.random(size=(2, 233)).astype(np.float32)) mge.save(a, f) f.seek(0) mge.set_default_device("cpux") b = mge.load(f, map_location={"gpu0": "cpu0"}) assert type(b) is Tensor assert "cpu0" in str(b.device) np.testing.assert_equal(a.numpy(), b.numpy()) mge.set_default_device(device_org)
[ "megengine.is_cuda_available", "megengine.Tensor", "megengine.load", "megengine.get_default_device", "megengine.set_default_device", "megengine.save" ]
[((705, 720), 'tempfile.TemporaryFile', 'TemporaryFile', ([], {}), '()\n', (718, 720), False, 'from tempfile import TemporaryFile\n'), ((742, 786), 'numpy.random.randint', 'np.random.randint', ([], {'low': '(0)', 'high': '(7)', 'size': '[233]'}), '(low=0, high=7, size=[233])\n', (759, 786), True, 'import numpy as np\n'), ((799, 842), 'megengine.Tensor', 'Tensor', (['data'], {'device': '"""xpux"""', 'dtype': 'np.int32'}), "(data, device='xpux', dtype=np.int32)\n", (805, 842), False, 'from megengine import Parameter, Tensor\n'), ((851, 868), 'pickle.dump', 'pickle.dump', (['a', 'f'], {}), '(a, f)\n', (862, 868), False, 'import pickle\n'), ((899, 913), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (910, 913), False, 'import pickle\n'), ((978, 993), 'tempfile.TemporaryFile', 'TemporaryFile', ([], {}), '()\n', (991, 993), False, 'from tempfile import TemporaryFile\n'), ((1082, 1099), 'pickle.dump', 'pickle.dump', (['a', 'f'], {}), '(a, f)\n', (1093, 1099), False, 'import pickle\n'), ((1130, 1144), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (1141, 1144), False, 'import pickle\n'), ((1249, 1264), 'tempfile.TemporaryFile', 'TemporaryFile', ([], {}), '()\n', (1262, 1264), False, 'from tempfile import TemporaryFile\n'), ((1350, 1367), 'pickle.dump', 'pickle.dump', (['a', 'f'], {}), '(a, f)\n', (1361, 1367), False, 'import pickle\n'), ((1398, 1412), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (1409, 1412), False, 'import pickle\n'), ((1510, 1525), 'tempfile.TemporaryFile', 'TemporaryFile', ([], {}), '()\n', (1523, 1525), False, 'from tempfile import TemporaryFile\n'), ((1611, 1625), 'megengine.save', 'mge.save', (['a', 'f'], {}), '(a, f)\n', (1619, 1625), True, 'import megengine as mge\n'), ((1656, 1688), 'megengine.load', 'mge.load', (['f'], {'map_location': '"""cpux"""'}), "(f, map_location='cpux')\n", (1664, 1688), True, 'import megengine as mge\n'), ((1824, 1839), 'tempfile.TemporaryFile', 'TemporaryFile', ([], {}), '()\n', (1837, 1839), False, 'from tempfile import TemporaryFile\n'), ((1857, 1880), 'megengine.is_cuda_available', 'mge.is_cuda_available', ([], {}), '()\n', (1878, 1880), True, 'import megengine as mge\n'), ((1907, 1931), 'megengine.get_default_device', 'mge.get_default_device', ([], {}), '()\n', (1929, 1931), True, 'import megengine as mge\n'), ((1944, 1974), 'megengine.set_default_device', 'mge.set_default_device', (['"""gpu0"""'], {}), "('gpu0')\n", (1966, 1974), True, 'import megengine as mge\n'), ((2062, 2076), 'megengine.save', 'mge.save', (['a', 'f'], {}), '(a, f)\n', (2070, 2076), True, 'import megengine as mge\n'), ((2111, 2141), 'megengine.set_default_device', 'mge.set_default_device', (['"""cpux"""'], {}), "('cpux')\n", (2133, 2141), True, 'import megengine as mge\n'), ((2158, 2200), 'megengine.load', 'mge.load', (['f'], {'map_location': "{'gpu0': 'cpu0'}"}), "(f, map_location={'gpu0': 'cpu0'})\n", (2166, 2200), True, 'import megengine as mge\n'), ((2351, 2385), 'megengine.set_default_device', 'mge.set_default_device', (['device_org'], {}), '(device_org)\n', (2373, 2385), True, 'import megengine as mge\n'), ((1022, 1053), 'numpy.random.random', 'np.random.random', ([], {'size': '(233, 2)'}), '(size=(233, 2))\n', (1038, 1053), True, 'import numpy as np\n'), ((1290, 1321), 'numpy.random.random', 'np.random.random', ([], {'size': '(2, 233)'}), '(size=(2, 233))\n', (1306, 1321), True, 'import numpy as np\n'), ((1551, 1582), 'numpy.random.random', 'np.random.random', ([], {'size': '(2, 233)'}), '(size=(2, 233))\n', (1567, 1582), True, 'import numpy as np\n'), ((1998, 2029), 'numpy.random.random', 'np.random.random', ([], {'size': '(2, 233)'}), '(size=(2, 233))\n', (2014, 2029), True, 'import numpy as np\n')]
from fastapi.exceptions import HTTPException from sfm.models import Project, WorkItem from sqlmodel import Session, select from opencensus.ext.azure.log_exporter import AzureLogHandler from sfm.config import get_settings from sfm.logger import create_logger from sfm.utils import ( create_project_auth_token, hash_project_auth_token, verify_admin_key, ) app_settings = get_settings() logger = create_logger(__name__) def get_all(db: Session, skip: int = None, limit: int = None): """Get all the projects and return them.""" projects = db.exec( select(Project).order_by(Project.id).offset(skip).limit(limit) ).all() if not projects: logger.debug("Projects not found") raise HTTPException(status_code=404, detail="Projects not found") return projects def get_by_id(db: Session, project_id: int): """Get the project with corresponding id and return it.""" project = db.get(Project, project_id) if not project: logger.debug("Projects not found") raise HTTPException(status_code=404, detail="Project not found") return project def create_project(db: Session, project_data, admin_key): """Take data from request and create a new project in the database.""" project_name_repeat = db.exec( select(Project).where(Project.name == project_data.name) ).first() if project_name_repeat is not None: logger.debug("Database entry already exists") raise HTTPException(status_code=409, detail="Database entry already exists") verified_admin = verify_admin_key(admin_key) if verified_admin: project_temp = project_data.dict() token = create_project_auth_token() hashed_token = hash_project_auth_token(token) project_temp.update({"project_auth_token_hashed": hashed_token}) project_db = Project(**project_temp) db.add(project_db) db.commit() else: logger.warning("Attempted to verify as an admin with incorrect credentials") raise HTTPException(status_code=401, detail="Credentials are incorrect") # Check the new record db.refresh(project_db) new_project = db.get(Project, project_db.id) if new_project.name == project_data.name: return [new_project, token] # successfully created record else: logger.error("Project did not store correctly in database") return False # didn't store correctly def delete_project(db: Session, project_id, admin_key): """Take a project_name and remove the row from the database.""" verified_admin = verify_admin_key(admin_key) if verified_admin: project = db.get(Project, project_id) if not project: logger.debug("Project not found") raise HTTPException(status_code=404, detail="Project not found") for item in project.work_items: db.delete(item) db.delete(project) db.commit() else: logger.warning("Attempted to verify as admin with incorrect credentials") raise HTTPException(status_code=401, detail="Credentials are incorrect") # Check our work row = db.get(Project, project_id) if row: logger.error("Project did not delete correctly") return False # Row didn't successfully delete or another one exists else: return True # Successful deletion def refresh_project_key(db: Session, project_id, admin_key): verified_admin = verify_admin_key(admin_key) if verified_admin: project_db = db.get(Project, project_id) if not project_db: logger.debug("Project with matching id not found") raise HTTPException( status_code=404, detail="Project with matching id not found" ) new_token = create_project_auth_token() hashed_token = hash_project_auth_token(new_token) project_db.project_auth_token_hashed = hashed_token db.add(project_db) db.commit() else: logger.warning("Attempted to verify as admin with incorrect credentials") raise HTTPException(status_code=401, detail="Credentials are incorrect") check = db.exec( select(Project).where(Project.project_auth_token_hashed == hashed_token) ) if check: return new_token else: logger.error("Project auth token did not update correctly") return False def update_project(db: Session, project_id, project_data, admin_key): """Take data from request and update an existing Project in the database.""" verified_admin = verify_admin_key(admin_key) if verified_admin: project = db.get(Project, project_id) if not project: logger.debug("Project not found") raise HTTPException(status_code=404, detail="Project not found") project_newdata = project_data.dict(exclude_unset=True, exclude_defaults=True) for key, value in project_newdata.items(): setattr(project, key, value) db.add(project) db.commit() else: logger.warning("Attempted to verify as admin with incorrect credentials") raise HTTPException(status_code=401, detail="Credentials are incorrect") # return updated item db.refresh(project) if project: return project # updated record else: logger.error("Project did not store correctly") return False # didn't store correctly
[ "sqlmodel.select" ]
[((382, 396), 'sfm.config.get_settings', 'get_settings', ([], {}), '()\n', (394, 396), False, 'from sfm.config import get_settings\n'), ((408, 431), 'sfm.logger.create_logger', 'create_logger', (['__name__'], {}), '(__name__)\n', (421, 431), False, 'from sfm.logger import create_logger\n'), ((1568, 1595), 'sfm.utils.verify_admin_key', 'verify_admin_key', (['admin_key'], {}), '(admin_key)\n', (1584, 1595), False, 'from sfm.utils import create_project_auth_token, hash_project_auth_token, verify_admin_key\n'), ((2590, 2617), 'sfm.utils.verify_admin_key', 'verify_admin_key', (['admin_key'], {}), '(admin_key)\n', (2606, 2617), False, 'from sfm.utils import create_project_auth_token, hash_project_auth_token, verify_admin_key\n'), ((3466, 3493), 'sfm.utils.verify_admin_key', 'verify_admin_key', (['admin_key'], {}), '(admin_key)\n', (3482, 3493), False, 'from sfm.utils import create_project_auth_token, hash_project_auth_token, verify_admin_key\n'), ((4589, 4616), 'sfm.utils.verify_admin_key', 'verify_admin_key', (['admin_key'], {}), '(admin_key)\n', (4605, 4616), False, 'from sfm.utils import create_project_auth_token, hash_project_auth_token, verify_admin_key\n'), ((730, 789), 'fastapi.exceptions.HTTPException', 'HTTPException', ([], {'status_code': '(404)', 'detail': '"""Projects not found"""'}), "(status_code=404, detail='Projects not found')\n", (743, 789), False, 'from fastapi.exceptions import HTTPException\n'), ((1039, 1097), 'fastapi.exceptions.HTTPException', 'HTTPException', ([], {'status_code': '(404)', 'detail': '"""Project not found"""'}), "(status_code=404, detail='Project not found')\n", (1052, 1097), False, 'from fastapi.exceptions import HTTPException\n'), ((1475, 1545), 'fastapi.exceptions.HTTPException', 'HTTPException', ([], {'status_code': '(409)', 'detail': '"""Database entry already exists"""'}), "(status_code=409, detail='Database entry already exists')\n", (1488, 1545), False, 'from fastapi.exceptions import HTTPException\n'), ((1678, 1705), 'sfm.utils.create_project_auth_token', 'create_project_auth_token', ([], {}), '()\n', (1703, 1705), False, 'from sfm.utils import create_project_auth_token, hash_project_auth_token, verify_admin_key\n'), ((1729, 1759), 'sfm.utils.hash_project_auth_token', 'hash_project_auth_token', (['token'], {}), '(token)\n', (1752, 1759), False, 'from sfm.utils import create_project_auth_token, hash_project_auth_token, verify_admin_key\n'), ((1854, 1877), 'sfm.models.Project', 'Project', ([], {}), '(**project_temp)\n', (1861, 1877), False, 'from sfm.models import Project, WorkItem\n'), ((2034, 2100), 'fastapi.exceptions.HTTPException', 'HTTPException', ([], {'status_code': '(401)', 'detail': '"""Credentials are incorrect"""'}), "(status_code=401, detail='Credentials are incorrect')\n", (2047, 2100), False, 'from fastapi.exceptions import HTTPException\n'), ((3056, 3122), 'fastapi.exceptions.HTTPException', 'HTTPException', ([], {'status_code': '(401)', 'detail': '"""Credentials are incorrect"""'}), "(status_code=401, detail='Credentials are incorrect')\n", (3069, 3122), False, 'from fastapi.exceptions import HTTPException\n'), ((3801, 3828), 'sfm.utils.create_project_auth_token', 'create_project_auth_token', ([], {}), '()\n', (3826, 3828), False, 'from sfm.utils import create_project_auth_token, hash_project_auth_token, verify_admin_key\n'), ((3852, 3886), 'sfm.utils.hash_project_auth_token', 'hash_project_auth_token', (['new_token'], {}), '(new_token)\n', (3875, 3886), False, 'from sfm.utils import create_project_auth_token, hash_project_auth_token, verify_admin_key\n'), ((4100, 4166), 'fastapi.exceptions.HTTPException', 'HTTPException', ([], {'status_code': '(401)', 'detail': '"""Credentials are incorrect"""'}), "(status_code=401, detail='Credentials are incorrect')\n", (4113, 4166), False, 'from fastapi.exceptions import HTTPException\n'), ((5165, 5231), 'fastapi.exceptions.HTTPException', 'HTTPException', ([], {'status_code': '(401)', 'detail': '"""Credentials are incorrect"""'}), "(status_code=401, detail='Credentials are incorrect')\n", (5178, 5231), False, 'from fastapi.exceptions import HTTPException\n'), ((2775, 2833), 'fastapi.exceptions.HTTPException', 'HTTPException', ([], {'status_code': '(404)', 'detail': '"""Project not found"""'}), "(status_code=404, detail='Project not found')\n", (2788, 2833), False, 'from fastapi.exceptions import HTTPException\n'), ((3675, 3750), 'fastapi.exceptions.HTTPException', 'HTTPException', ([], {'status_code': '(404)', 'detail': '"""Project with matching id not found"""'}), "(status_code=404, detail='Project with matching id not found')\n", (3688, 3750), False, 'from fastapi.exceptions import HTTPException\n'), ((4774, 4832), 'fastapi.exceptions.HTTPException', 'HTTPException', ([], {'status_code': '(404)', 'detail': '"""Project not found"""'}), "(status_code=404, detail='Project not found')\n", (4787, 4832), False, 'from fastapi.exceptions import HTTPException\n'), ((4197, 4212), 'sqlmodel.select', 'select', (['Project'], {}), '(Project)\n', (4203, 4212), False, 'from sqlmodel import Session, select\n'), ((1295, 1310), 'sqlmodel.select', 'select', (['Project'], {}), '(Project)\n', (1301, 1310), False, 'from sqlmodel import Session, select\n'), ((577, 592), 'sqlmodel.select', 'select', (['Project'], {}), '(Project)\n', (583, 592), False, 'from sqlmodel import Session, select\n')]
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import functools from typing import Callable, Optional import megengine._internal as mgb from ..core import set_default_device _master_ip = None _master_port = 0 _world_size = 0 _rank = 0 _backend = None def init_process_group( master_ip: str, master_port: int, world_size: int, rank: int, dev: int, backend: Optional[str] = "nccl", ) -> None: """Initialize the distributed process group, and also specify the device used in the current process. :param master_ip: IP address of the master node. :param master_port: Port available for all processes to communicate. :param world_size: Total number of processes participating in the job. :param rank: Rank of the current process. :param dev: The GPU device id to bind this process to. :param backend: Communicator backend, currently support 'nccl' and 'ucx' """ global _master_ip # pylint: disable=global-statement global _master_port # pylint: disable=global-statement global _world_size # pylint: disable=global-statement global _rank # pylint: disable=global-statement global _backend # pylint: disable=global-statement if not isinstance(master_ip, str): raise TypeError("Expect type str but got {}".format(type(master_ip))) if not isinstance(master_port, int): raise TypeError("Expect type int but got {}".format(type(master_port))) if not isinstance(world_size, int): raise TypeError("Expect type int but got {}".format(type(world_size))) if not isinstance(rank, int): raise TypeError("Expect type int but got {}".format(type(rank))) if not isinstance(backend, str): raise TypeError("Expect type str but got {}".format(type(backend))) _master_ip = master_ip _master_port = master_port _world_size = world_size _rank = rank _backend = backend set_default_device(mgb.comp_node("gpu" + str(dev))) if rank == 0: _master_port = mgb.config.create_mm_server("0.0.0.0", master_port) if _master_port == -1: raise Exception("Failed to start server on port {}".format(master_port)) else: assert master_port > 0, "master_port must be specified for non-zero rank" def is_distributed() -> bool: """Return True if the distributed process group has been initialized""" return _world_size is not None and _world_size > 1 def get_master_ip() -> str: """Get the IP address of the master node""" return str(_master_ip) def get_master_port() -> int: """Get the port of the rpc server on the master node""" return _master_port def get_world_size() -> int: """Get the total number of processes participating in the job""" return _world_size def get_rank() -> int: """Get the rank of the current process""" return _rank def get_backend() -> str: """Get the backend str""" return str(_backend) def group_barrier() -> None: """Block until all ranks in the group reach this barrier""" mgb.config.group_barrier(_master_ip, _master_port, _world_size, _rank) def synchronized(func: Callable): """Decorator. Decorated function will synchronize when finished. Specifically, we use this to prevent data race during hub.load""" @functools.wraps(func) def _(*args, **kwargs): if not is_distributed(): return func(*args, **kwargs) ret = func(*args, **kwargs) group_barrier() return ret return _
[ "megengine._internal.config.create_mm_server", "megengine._internal.config.group_barrier" ]
[((3376, 3446), 'megengine._internal.config.group_barrier', 'mgb.config.group_barrier', (['_master_ip', '_master_port', '_world_size', '_rank'], {}), '(_master_ip, _master_port, _world_size, _rank)\n', (3400, 3446), True, 'import megengine._internal as mgb\n'), ((3628, 3649), 'functools.wraps', 'functools.wraps', (['func'], {}), '(func)\n', (3643, 3649), False, 'import functools\n'), ((2339, 2390), 'megengine._internal.config.create_mm_server', 'mgb.config.create_mm_server', (['"""0.0.0.0"""', 'master_port'], {}), "('0.0.0.0', master_port)\n", (2366, 2390), True, 'import megengine._internal as mgb\n')]
# -*- coding:utf-8 -*- # This repo is licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import megengine.functional as F import megengine.module as M import layers class RPN(M.Module): def __init__(self, cfg): super().__init__() self.cfg = cfg self.box_coder = layers.BoxCoder(cfg.rpn_reg_mean, cfg.rpn_reg_std) # check anchor settings assert len(set(len(x) for x in cfg.anchor_scales)) == 1 assert len(set(len(x) for x in cfg.anchor_ratios)) == 1 self.num_cell_anchors = len(cfg.anchor_scales[0]) * len(cfg.anchor_ratios[0]) rpn_channel = cfg.rpn_channel self.in_features = cfg.rpn_in_features self.anchor_generator = layers.AnchorBoxGenerator( anchor_scales=cfg.anchor_scales, anchor_ratios=cfg.anchor_ratios, strides=cfg.rpn_stride, offset=self.cfg.anchor_offset, ) self.matcher = layers.Matcher( cfg.match_thresholds, cfg.match_labels, cfg.match_allow_low_quality ) self.rpn_conv = M.Conv2d(256, rpn_channel, kernel_size=3, stride=1, padding=1) self.rpn_cls_score = M.Conv2d( rpn_channel, self.num_cell_anchors, kernel_size=1, stride=1 ) self.rpn_bbox_offsets = M.Conv2d( rpn_channel, self.num_cell_anchors * 4, kernel_size=1, stride=1 ) for l in [self.rpn_conv, self.rpn_cls_score, self.rpn_bbox_offsets]: M.init.normal_(l.weight, std=0.01) M.init.fill_(l.bias, 0) def forward(self, features, im_info, boxes=None): # prediction features = [features[x] for x in self.in_features] # get anchors anchors_list = self.anchor_generator(features) pred_cls_logit_list = [] pred_bbox_offset_list = [] for x in features: t = F.relu(self.rpn_conv(x)) scores = self.rpn_cls_score(t) pred_cls_logit_list.append( scores.reshape( scores.shape[0], self.num_cell_anchors, scores.shape[2], scores.shape[3], ) ) bbox_offsets = self.rpn_bbox_offsets(t) pred_bbox_offset_list.append( bbox_offsets.reshape( bbox_offsets.shape[0], self.num_cell_anchors, 4, bbox_offsets.shape[2], bbox_offsets.shape[3], ) ) # get rois from the predictions rpn_rois = self.find_top_rpn_proposals( pred_cls_logit_list, pred_bbox_offset_list, anchors_list, im_info ) if self.training: rpn_labels, rpn_offsets = self.get_ground_truth( anchors_list, boxes, im_info[:, 4].astype("int32") ) pred_cls_logits, pred_bbox_offsets = self.merge_rpn_score_box( pred_cls_logit_list, pred_bbox_offset_list ) fg_mask = rpn_labels > 0 valid_mask = rpn_labels >= 0 num_valid = valid_mask.sum() # rpn classification loss loss_rpn_cls = F.loss.binary_cross_entropy( pred_cls_logits[valid_mask], rpn_labels[valid_mask] ) # rpn regression loss loss_rpn_bbox = layers.smooth_l1_loss( pred_bbox_offsets[fg_mask], rpn_offsets[fg_mask], self.cfg.rpn_smooth_l1_beta, ).sum() / F.maximum(num_valid, 1) loss_dict = {"loss_rpn_cls": loss_rpn_cls, "loss_rpn_bbox": loss_rpn_bbox} return rpn_rois, loss_dict else: return rpn_rois def find_top_rpn_proposals( self, rpn_cls_score_list, rpn_bbox_offset_list, anchors_list, im_info ): prev_nms_top_n = ( self.cfg.train_prev_nms_top_n if self.training else self.cfg.test_prev_nms_top_n ) post_nms_top_n = ( self.cfg.train_post_nms_top_n if self.training else self.cfg.test_post_nms_top_n ) return_rois = [] for bid in range(im_info.shape[0]): batch_proposal_list = [] batch_score_list = [] batch_level_list = [] for l, (rpn_cls_score, rpn_bbox_offset, anchors) in enumerate( zip(rpn_cls_score_list, rpn_bbox_offset_list, anchors_list) ): # get proposals and scores offsets = rpn_bbox_offset[bid].transpose(2, 3, 0, 1).reshape(-1, 4) proposals = self.box_coder.decode(anchors, offsets) scores = rpn_cls_score[bid].transpose(1, 2, 0).flatten() scores.detach() # prev nms top n scores, order = F.topk(scores, descending=True, k=prev_nms_top_n) proposals = proposals[order] batch_proposal_list.append(proposals) batch_score_list.append(scores) batch_level_list.append(F.full_like(scores, l)) # gather proposals, scores, level proposals = F.concat(batch_proposal_list, axis=0) scores = F.concat(batch_score_list, axis=0) levels = F.concat(batch_level_list, axis=0) proposals = layers.get_clipped_boxes(proposals, im_info[bid]) # filter invalid proposals and apply total level nms keep_mask = layers.filter_boxes(proposals) proposals = proposals[keep_mask] scores = scores[keep_mask] levels = levels[keep_mask] nms_keep_inds = layers.batched_nms( proposals, scores, levels, self.cfg.rpn_nms_threshold, post_nms_top_n ) # generate rois to rcnn head, rois shape (N, 5), info [batch_id, x1, y1, x2, y2] rois = F.concat([proposals, scores.reshape(-1, 1)], axis=1) rois = rois[nms_keep_inds] batch_inds = F.full((rois.shape[0], 1), bid) batch_rois = F.concat([batch_inds, rois[:, :4]], axis=1) return_rois.append(batch_rois) return_rois = F.concat(return_rois, axis=0) return return_rois.detach() def merge_rpn_score_box(self, rpn_cls_score_list, rpn_bbox_offset_list): final_rpn_cls_score_list = [] final_rpn_bbox_offset_list = [] for bid in range(rpn_cls_score_list[0].shape[0]): batch_rpn_cls_score_list = [] batch_rpn_bbox_offset_list = [] for i in range(len(self.in_features)): rpn_cls_scores = rpn_cls_score_list[i][bid].transpose(1, 2, 0).flatten() rpn_bbox_offsets = ( rpn_bbox_offset_list[i][bid].transpose(2, 3, 0, 1).reshape(-1, 4) ) batch_rpn_cls_score_list.append(rpn_cls_scores) batch_rpn_bbox_offset_list.append(rpn_bbox_offsets) batch_rpn_cls_scores = F.concat(batch_rpn_cls_score_list, axis=0) batch_rpn_bbox_offsets = F.concat(batch_rpn_bbox_offset_list, axis=0) final_rpn_cls_score_list.append(batch_rpn_cls_scores) final_rpn_bbox_offset_list.append(batch_rpn_bbox_offsets) final_rpn_cls_scores = F.concat(final_rpn_cls_score_list, axis=0) final_rpn_bbox_offsets = F.concat(final_rpn_bbox_offset_list, axis=0) return final_rpn_cls_scores, final_rpn_bbox_offsets def get_ground_truth(self, anchors_list, batched_gt_boxes, batched_num_gts): anchors = F.concat(anchors_list, axis=0) labels_list = [] offsets_list = [] for bid in range(batched_gt_boxes.shape[0]): gt_boxes = batched_gt_boxes[bid, :batched_num_gts[bid]] overlaps = layers.get_iou(gt_boxes[:, :4], anchors) matched_indices, labels = self.matcher(overlaps) offsets = self.box_coder.encode(anchors, gt_boxes[matched_indices, :4]) # sample positive labels num_positive = int(self.cfg.num_sample_anchors * self.cfg.positive_anchor_ratio) labels = layers.sample_labels(labels, num_positive, 1, -1) # sample negative labels num_positive = (labels == 1).sum().astype("int32") num_negative = self.cfg.num_sample_anchors - num_positive labels = layers.sample_labels(labels, num_negative, 0, -1) labels_list.append(labels) offsets_list.append(offsets) return ( F.concat(labels_list, axis=0).detach(), F.concat(offsets_list, axis=0).detach(), )
[ "megengine.functional.maximum", "megengine.module.init.normal_", "megengine.functional.full", "megengine.functional.topk", "megengine.functional.concat", "megengine.module.Conv2d", "megengine.functional.loss.binary_cross_entropy", "megengine.module.init.fill_", "megengine.functional.full_like" ]
[((580, 630), 'layers.BoxCoder', 'layers.BoxCoder', (['cfg.rpn_reg_mean', 'cfg.rpn_reg_std'], {}), '(cfg.rpn_reg_mean, cfg.rpn_reg_std)\n', (595, 630), False, 'import layers\n'), ((997, 1148), 'layers.AnchorBoxGenerator', 'layers.AnchorBoxGenerator', ([], {'anchor_scales': 'cfg.anchor_scales', 'anchor_ratios': 'cfg.anchor_ratios', 'strides': 'cfg.rpn_stride', 'offset': 'self.cfg.anchor_offset'}), '(anchor_scales=cfg.anchor_scales, anchor_ratios=\n cfg.anchor_ratios, strides=cfg.rpn_stride, offset=self.cfg.anchor_offset)\n', (1022, 1148), False, 'import layers\n'), ((1227, 1315), 'layers.Matcher', 'layers.Matcher', (['cfg.match_thresholds', 'cfg.match_labels', 'cfg.match_allow_low_quality'], {}), '(cfg.match_thresholds, cfg.match_labels, cfg.\n match_allow_low_quality)\n', (1241, 1315), False, 'import layers\n'), ((1358, 1420), 'megengine.module.Conv2d', 'M.Conv2d', (['(256)', 'rpn_channel'], {'kernel_size': '(3)', 'stride': '(1)', 'padding': '(1)'}), '(256, rpn_channel, kernel_size=3, stride=1, padding=1)\n', (1366, 1420), True, 'import megengine.module as M\n'), ((1450, 1519), 'megengine.module.Conv2d', 'M.Conv2d', (['rpn_channel', 'self.num_cell_anchors'], {'kernel_size': '(1)', 'stride': '(1)'}), '(rpn_channel, self.num_cell_anchors, kernel_size=1, stride=1)\n', (1458, 1519), True, 'import megengine.module as M\n'), ((1574, 1647), 'megengine.module.Conv2d', 'M.Conv2d', (['rpn_channel', '(self.num_cell_anchors * 4)'], {'kernel_size': '(1)', 'stride': '(1)'}), '(rpn_channel, self.num_cell_anchors * 4, kernel_size=1, stride=1)\n', (1582, 1647), True, 'import megengine.module as M\n'), ((6539, 6568), 'megengine.functional.concat', 'F.concat', (['return_rois'], {'axis': '(0)'}), '(return_rois, axis=0)\n', (6547, 6568), True, 'import megengine.functional as F\n'), ((7651, 7693), 'megengine.functional.concat', 'F.concat', (['final_rpn_cls_score_list'], {'axis': '(0)'}), '(final_rpn_cls_score_list, axis=0)\n', (7659, 7693), True, 'import megengine.functional as F\n'), ((7727, 7771), 'megengine.functional.concat', 'F.concat', (['final_rpn_bbox_offset_list'], {'axis': '(0)'}), '(final_rpn_bbox_offset_list, axis=0)\n', (7735, 7771), True, 'import megengine.functional as F\n'), ((7932, 7962), 'megengine.functional.concat', 'F.concat', (['anchors_list'], {'axis': '(0)'}), '(anchors_list, axis=0)\n', (7940, 7962), True, 'import megengine.functional as F\n'), ((1760, 1794), 'megengine.module.init.normal_', 'M.init.normal_', (['l.weight'], {'std': '(0.01)'}), '(l.weight, std=0.01)\n', (1774, 1794), True, 'import megengine.module as M\n'), ((1807, 1830), 'megengine.module.init.fill_', 'M.init.fill_', (['l.bias', '(0)'], {}), '(l.bias, 0)\n', (1819, 1830), True, 'import megengine.module as M\n'), ((3520, 3605), 'megengine.functional.loss.binary_cross_entropy', 'F.loss.binary_cross_entropy', (['pred_cls_logits[valid_mask]', 'rpn_labels[valid_mask]'], {}), '(pred_cls_logits[valid_mask], rpn_labels[valid_mask]\n )\n', (3547, 3605), True, 'import megengine.functional as F\n'), ((5526, 5563), 'megengine.functional.concat', 'F.concat', (['batch_proposal_list'], {'axis': '(0)'}), '(batch_proposal_list, axis=0)\n', (5534, 5563), True, 'import megengine.functional as F\n'), ((5585, 5619), 'megengine.functional.concat', 'F.concat', (['batch_score_list'], {'axis': '(0)'}), '(batch_score_list, axis=0)\n', (5593, 5619), True, 'import megengine.functional as F\n'), ((5641, 5675), 'megengine.functional.concat', 'F.concat', (['batch_level_list'], {'axis': '(0)'}), '(batch_level_list, axis=0)\n', (5649, 5675), True, 'import megengine.functional as F\n'), ((5701, 5750), 'layers.get_clipped_boxes', 'layers.get_clipped_boxes', (['proposals', 'im_info[bid]'], {}), '(proposals, im_info[bid])\n', (5725, 5750), False, 'import layers\n'), ((5840, 5870), 'layers.filter_boxes', 'layers.filter_boxes', (['proposals'], {}), '(proposals)\n', (5859, 5870), False, 'import layers\n'), ((6022, 6115), 'layers.batched_nms', 'layers.batched_nms', (['proposals', 'scores', 'levels', 'self.cfg.rpn_nms_threshold', 'post_nms_top_n'], {}), '(proposals, scores, levels, self.cfg.rpn_nms_threshold,\n post_nms_top_n)\n', (6040, 6115), False, 'import layers\n'), ((6372, 6403), 'megengine.functional.full', 'F.full', (['(rois.shape[0], 1)', 'bid'], {}), '((rois.shape[0], 1), bid)\n', (6378, 6403), True, 'import megengine.functional as F\n'), ((6429, 6472), 'megengine.functional.concat', 'F.concat', (['[batch_inds, rois[:, :4]]'], {'axis': '(1)'}), '([batch_inds, rois[:, :4]], axis=1)\n', (6437, 6472), True, 'import megengine.functional as F\n'), ((7357, 7399), 'megengine.functional.concat', 'F.concat', (['batch_rpn_cls_score_list'], {'axis': '(0)'}), '(batch_rpn_cls_score_list, axis=0)\n', (7365, 7399), True, 'import megengine.functional as F\n'), ((7437, 7481), 'megengine.functional.concat', 'F.concat', (['batch_rpn_bbox_offset_list'], {'axis': '(0)'}), '(batch_rpn_bbox_offset_list, axis=0)\n', (7445, 7481), True, 'import megengine.functional as F\n'), ((8160, 8200), 'layers.get_iou', 'layers.get_iou', (['gt_boxes[:, :4]', 'anchors'], {}), '(gt_boxes[:, :4], anchors)\n', (8174, 8200), False, 'import layers\n'), ((8499, 8548), 'layers.sample_labels', 'layers.sample_labels', (['labels', 'num_positive', '(1)', '(-1)'], {}), '(labels, num_positive, 1, -1)\n', (8519, 8548), False, 'import layers\n'), ((8740, 8789), 'layers.sample_labels', 'layers.sample_labels', (['labels', 'num_negative', '(0)', '(-1)'], {}), '(labels, num_negative, 0, -1)\n', (8760, 8789), False, 'import layers\n'), ((3866, 3889), 'megengine.functional.maximum', 'F.maximum', (['num_valid', '(1)'], {}), '(num_valid, 1)\n', (3875, 3889), True, 'import megengine.functional as F\n'), ((5193, 5242), 'megengine.functional.topk', 'F.topk', (['scores'], {'descending': '(True)', 'k': 'prev_nms_top_n'}), '(scores, descending=True, k=prev_nms_top_n)\n', (5199, 5242), True, 'import megengine.functional as F\n'), ((5431, 5453), 'megengine.functional.full_like', 'F.full_like', (['scores', 'l'], {}), '(scores, l)\n', (5442, 5453), True, 'import megengine.functional as F\n'), ((8901, 8930), 'megengine.functional.concat', 'F.concat', (['labels_list'], {'axis': '(0)'}), '(labels_list, axis=0)\n', (8909, 8930), True, 'import megengine.functional as F\n'), ((8953, 8983), 'megengine.functional.concat', 'F.concat', (['offsets_list'], {'axis': '(0)'}), '(offsets_list, axis=0)\n', (8961, 8983), True, 'import megengine.functional as F\n'), ((3694, 3798), 'layers.smooth_l1_loss', 'layers.smooth_l1_loss', (['pred_bbox_offsets[fg_mask]', 'rpn_offsets[fg_mask]', 'self.cfg.rpn_smooth_l1_beta'], {}), '(pred_bbox_offsets[fg_mask], rpn_offsets[fg_mask],\n self.cfg.rpn_smooth_l1_beta)\n', (3715, 3798), False, 'import layers\n')]
"""domain tag Revision ID: 3321586ad6c4 Revises: <PASSWORD> Create Date: 2021-11-27 19:30:48.062908 """ import sqlalchemy as sa import sqlmodel import sqlmodel.sql.sqltypes from alembic import op # revision identifiers, used by Alembic. revision = "3321586ad6c4" down_revision = "7c2a518ed636" branch_labels = None depends_on = None def upgrade() -> None: # ### commands auto generated by Alembic - please adjust! ### op.add_column( "domains", sa.Column( "tag", sqlmodel.sql.sqltypes.AutoString(), server_default="", nullable=False ), ) # ### end Alembic commands ### def downgrade() -> None: # ### commands auto generated by Alembic - please adjust! ### op.drop_column("domains", "tag") # ### end Alembic commands ###
[ "sqlmodel.sql.sqltypes.AutoString" ]
[((722, 754), 'alembic.op.drop_column', 'op.drop_column', (['"""domains"""', '"""tag"""'], {}), "('domains', 'tag')\n", (736, 754), False, 'from alembic import op\n'), ((503, 537), 'sqlmodel.sql.sqltypes.AutoString', 'sqlmodel.sql.sqltypes.AutoString', ([], {}), '()\n', (535, 537), False, 'import sqlmodel\n')]
from fastapi import APIRouter, Depends from ..utils import engine, get_session from ..models.capacity import Capacity from sqlmodel import Session, select, SQLModel, and_ from sqlalchemy.exc import NoResultFound from ..models.user import User from ..models.team import Team router = APIRouter(prefix="/api/capacities", tags=["capacity"]) session = Session(engine) @router.post("/") async def post_capacity(*, capacity: Capacity, session: Session = Depends(get_session)): """ Post new capacity. Parameters ---------- capacity : Capacity Capacity that is to be added to the database. session : Session SQL session that is to be used to add the capacity. Defaults to creating a dependency on the running SQL model session. """ statement = select(Capacity).where( and_( Capacity.user_id == capacity.user_id, Capacity.team_id == capacity.team_id, capacity.year == capacity.year, Capacity.month == capacity.month, ) ) try: result = session.exec(statement).one() return False except NoResultFound: session.add(capacity) session.commit() session.refresh(capacity) return capacity @router.get("/") async def get_capacities( session: Session = Depends(get_session), is_locked: bool = None, user_id: int = None, team_id: int = None, month: int = None, year: int = None, ): """ Get list of all capacities. Parameters ---------- session : Session SQL session that is to be used to get a list of the epic areas. Defaults to creating a dependency on the running SQL model session. is_locked : bool Whether or not the capacity is locked or not. user_id : int User id of the user in question. team_id : int Team id of the user's team. month : int Month of capacity in question. year : int Year of capacity in question. """ statement = select(Capacity) # Select capacity by user_id, team_id, month, year if (user_id and team_id and month and year) != None: statement = ( select( Capacity.id.label("capacity_id"), User.short_name.label("user_short_name"), Team.short_name.label("team_short_name"), Capacity.year, Capacity.month, Capacity.days, ) .select_from(Capacity) .join(User, Capacity.user_id == User.id) .join(Team, Capacity.team_id == Team.id) .where(Capacity.user_id == user_id) .where(Capacity.team_id == team_id) .where(Capacity.month == month) .where(Capacity.year == year) ) result = session.exec(statement).all() return result @router.delete("/") async def delete_capacities( capacity_id: str = None, session: Session = Depends(get_session), ): """ Delete a capacity Parameters ---------- capacity_id : str ID of the capacity that is to be removed from the database. session : Session SQL session that is to be used to delete the capacity. Defaults to creating a dependency on the running SQL model session. """ statement = select(Capacity).where( Capacity.id == capacity_id, ) capacity_to_delete = session.exec(statement).one() session.delete(capacity_to_delete) session.commit() return True
[ "sqlmodel.Session", "sqlmodel.select", "sqlmodel.and_" ]
[((284, 338), 'fastapi.APIRouter', 'APIRouter', ([], {'prefix': '"""/api/capacities"""', 'tags': "['capacity']"}), "(prefix='/api/capacities', tags=['capacity'])\n", (293, 338), False, 'from fastapi import APIRouter, Depends\n'), ((349, 364), 'sqlmodel.Session', 'Session', (['engine'], {}), '(engine)\n', (356, 364), False, 'from sqlmodel import Session, select, SQLModel, and_\n'), ((451, 471), 'fastapi.Depends', 'Depends', (['get_session'], {}), '(get_session)\n', (458, 471), False, 'from fastapi import APIRouter, Depends\n'), ((1324, 1344), 'fastapi.Depends', 'Depends', (['get_session'], {}), '(get_session)\n', (1331, 1344), False, 'from fastapi import APIRouter, Depends\n'), ((2033, 2049), 'sqlmodel.select', 'select', (['Capacity'], {}), '(Capacity)\n', (2039, 2049), False, 'from sqlmodel import Session, select, SQLModel, and_\n'), ((2976, 2996), 'fastapi.Depends', 'Depends', (['get_session'], {}), '(get_session)\n', (2983, 2996), False, 'from fastapi import APIRouter, Depends\n'), ((828, 979), 'sqlmodel.and_', 'and_', (['(Capacity.user_id == capacity.user_id)', '(Capacity.team_id == capacity.team_id)', '(capacity.year == capacity.year)', '(Capacity.month == capacity.month)'], {}), '(Capacity.user_id == capacity.user_id, Capacity.team_id == capacity.\n team_id, capacity.year == capacity.year, Capacity.month == capacity.month)\n', (832, 979), False, 'from sqlmodel import Session, select, SQLModel, and_\n'), ((796, 812), 'sqlmodel.select', 'select', (['Capacity'], {}), '(Capacity)\n', (802, 812), False, 'from sqlmodel import Session, select, SQLModel, and_\n'), ((3337, 3353), 'sqlmodel.select', 'select', (['Capacity'], {}), '(Capacity)\n', (3343, 3353), False, 'from sqlmodel import Session, select, SQLModel, and_\n')]
"""Classes for probing values of Variables, for example, along a line.""" from __future__ import absolute_import import numpy as nm import numpy.linalg as nla from sfepy.base.base import get_default, basestr, Struct from sfepy.linalg import make_axis_rotation_matrix, norm_l2_along_axis import six def write_results(filename, probe, results): """ Write probing results into a file. Parameters ---------- filename : str or file object The output file name. probe : Probe subclass instance The probe used to obtain the results. results : dict The dictionary of probing results. Keys are data names, values are the probed values. """ fd = open(filename, 'w') if isinstance(filename, basestr) else filename fd.write('\n'.join(probe.report()) + '\n') for key, result in six.iteritems(results): pars, vals = result fd.write('\n# %s %d\n' % (key, vals.shape[-1])) if vals.ndim == 1: aux = nm.hstack((pars[:,None], vals[:,None])) else: aux = nm.hstack((pars[:,None], vals)) nm.savetxt(fd, aux) if isinstance(filename, basestr): fd.close() def read_results(filename, only_names=None): """ Read probing results from a file. Parameters ---------- filename : str or file object The probe results file name. Returns ------- header : Struct instance The probe data header. results : dict The dictionary of probing results. Keys are data names, values are the probed values. """ from sfepy.base.ioutils import read_array only_names = get_default(only_names, []) fd = open(filename, 'r') if isinstance(filename, basestr) else filename header = read_header(fd) results = {} for name, nc in get_data_name(fd): if name not in only_names: continue result = read_array(fd, header.n_point, nc + 1, nm.float64) results[name] = result return header, results def read_header(fd): """ Read the probe data header from file descriptor fd. Returns ------- header : Struct instance The probe data header. """ header = Struct(name='probe_data_header') header.probe_class = fd.readline().strip() aux = fd.readline().strip().split(':')[1] header.n_point = int(aux.strip().split()[0]) details = [] while 1: line = fd.readline().strip() if line == '-----': break else: details.append(line) header.details = '\n'.join(details) return header def get_data_name(fd): """ Try to read next data name in file fd. Returns ------- name : str The data name. nc : int The number of data columns. """ name = None while 1: try: line = fd.readline() if (len(line) == 0): break if len(line) == 1: continue except: raise StopIteration line = line.strip().split() if (len(line) == 3) and (line[0] == '#'): name = line[1] nc = int(line[2]) yield name, nc class Probe(Struct): """ Base class for all point probes. Enforces two points minimum. """ cache = Struct(name='probe_shared_evaluate_cache') is_cyclic = False def __init__(self, name, share_geometry=True, n_point=None, **kwargs): """ Parameters ---------- name : str The probe name, set automatically by the subclasses. share_geometry : bool Set to True to indicate that all the probes will work on the same domain. Certain data are then computed only for the first probe and cached. n_point : int The (fixed) number of probe points, when positive. When non-positive, the number of points is adaptively increased starting from -n_point, until the neighboring point distance is less than the diameter of the elements enclosing the points. When None, it is set to -10. For additional parameters see the __init__() docstrings of the subclasses. """ Struct.__init__(self, name=name, share_geometry=share_geometry, **kwargs) self.set_n_point(n_point) self.options = Struct(close_limit=0.1, size_hint=None) self.cache = Struct(name='probe_local_evaluate_cache') self.is_refined = False def get_evaluate_cache(self): """ Return the evaluate cache for domain-related data given by `self.share_geometry`. """ return Probe.cache if self.share_geometry else self.cache def set_n_point(self, n_point): """ Set the number of probe points. Parameters ---------- n_point : int The (fixed) number of probe points, when positive. When non-positive, the number of points is adaptively increased starting from -n_point, until the neighboring point distance is less than the diameter of the elements enclosing the points. When None, it is set to -10. """ if n_point is None: n_point = -10 if n_point <= 0: n_point = max(-n_point, 2) self.n_point_required = -1 else: n_point = max(n_point, 2) self.n_point_required = n_point self.n_point0 = self.n_point = n_point def set_options(self, close_limit=None, size_hint=None): """ Set the probe options. Parameters ---------- close_limit : float The maximum limit distance of a point from the closest element allowed for extrapolation. size_hint : float Element size hint for the refinement of probe parametrization. """ if close_limit is not None: self.options.close_limit = close_limit if size_hint is not None: self.options.size_hint = size_hint def report(self): """Report the probe parameters.""" out = [self.__class__.__name__] if self.n_point_required == -1: aux = 'adaptive' else: aux = 'fixed' out.append('number of points: %s (%s)' % (self.n_point, aux)) return out def __call__(self, variable, **kwargs): """ Probe the given variable. The actual implementation is in self.probe(), so that it can be overridden in subclasses. Parameters ---------- variable : Variable instance The variable to be sampled along the probe. **kwargs : additional arguments See :func:`Probe.probe()`. """ return self.probe(variable, **kwargs) def probe(self, variable, mode='val', ret_points=False): """ Probe the given variable. Parameters ---------- variable : Variable instance The variable to be sampled along the probe. mode : {'val', 'grad'}, optional The evaluation mode: the variable value (default) or the variable value gradient. ret_points : bool If True, return also the probe points. Returns ------- pars : array The parametrization of the probe points. points : array, optional If `ret_points` is True, the coordinates of points corresponding to `pars`, where the `variable` is evaluated. vals : array The probed values. """ refine_flag = None ev = variable.evaluate_at field = variable.field cache = field.get_evaluate_cache(cache=self.get_evaluate_cache(), share_geometry=self.share_geometry) self.reset_refinement() while True: pars, points = self.get_points(refine_flag) if not nm.isfinite(points).all(): raise ValueError('Inf/nan in probe points!') vals, cells = ev(points, mode=mode, strategy='general', close_limit=self.options.close_limit, cache=cache, ret_cells=True) if self.is_refined: break else: refine_flag = self.refine_points(variable, points, cells) if (refine_flag == False).all(): break self.is_refined = True if ret_points: return pars, points, vals else: return pars, vals def reset_refinement(self): """ Reset the probe refinement state. """ self.is_refined = False self.n_point = self.n_point0 def refine_points(self, variable, points, cells): """ Mark intervals between points for a refinement, based on element sizes at those points. Assumes the points to be ordered. Returns ------- refine_flag : bool array True at places corresponding to intervals between subsequent points that need to be refined. """ if self.n_point_required == self.n_point: refine_flag = nm.array([False]) else: if self.options.size_hint is None: ed = variable.get_element_diameters(cells, 0) pd = 0.5 * (ed[1:] + ed[:-1]) else: pd = self.options.size_hint dist = norm_l2_along_axis(points[1:] - points[:-1]) refine_flag = dist > pd if self.is_cyclic: pd1 = 0.5 * (ed[0] + ed[-1]) dist1 = nla.norm(points[0] - points[-1]) refine_flag = nm.r_[refine_flag, dist1 > pd1] return refine_flag @staticmethod def refine_pars(pars, refine_flag, cyclic_val=None): """ Refine the probe parametrization based on the refine_flag. """ ii = nm.where(refine_flag)[0] ip = ii + 1 if cyclic_val is not None: cpars = nm.r_[pars, cyclic_val] pp = 0.5 * (cpars[ip] + cpars[ii]) else: pp = 0.5 * (pars[ip] + pars[ii]) pars = nm.insert(pars, ip, pp) return pars class PointsProbe(Probe): """ Probe variables in given points. """ def __init__(self, points, share_geometry=True): """ Parameters ---------- points : array_like The coordinates of the points. """ points = nm.array(points, dtype=nm.float64, order='C') if points.ndim == 1: points.shape = points.shape + (1,) n_point = points.shape[0] name = 'points %d' % n_point Probe.__init__(self, name=name, share_geometry=share_geometry, points=points, n_point=n_point) self.n_point_single = n_point def report(self): """Report the probe parameters.""" out = Probe.report(self) for ii, point in enumerate(self.points): out.append('point %d: %s' % (ii, point)) out.append('-----') return out def refine_points(self, variable, points, cache): """No refinement for this probe.""" refine_flag = nm.array([False]) return refine_flag def get_points(self, refine_flag=None): """ Get the probe points. Returns ------- pars : array_like The independent coordinate of the probe. points : array_like The probe points, parametrized by pars. """ pars = nm.arange(self.n_point, dtype=nm.float64) return pars, self.points class LineProbe(Probe): """ Probe variables along a line. If n_point is positive, that number of evenly spaced points is used. If n_point is None or non-positive, an adaptive refinement based on element diameters is used and the number of points and their spacing are determined automatically. If it is negative, -n_point is used as an initial guess. """ def __init__(self, p0, p1, n_point, share_geometry=True): """ Parameters ---------- p0 : array_like The coordinates of the start point. p1 : array_like The coordinates of the end point. """ p0 = nm.array(p0, dtype=nm.float64) p1 = nm.array(p1, dtype=nm.float64) name = 'line [%s, %s]' % (p0, p1) Probe.__init__(self, name=name, share_geometry=share_geometry, p0=p0, p1=p1, n_point=n_point) dirvec = self.p1 - self.p0 self.length = nm.linalg.norm(dirvec) self.dirvec = dirvec / self.length def report(self): """Report the probe parameters.""" out = Probe.report(self) out.append('point 0: %s' % self.p0) out.append('point 1: %s' % self.p1) out.append('-----') return out def get_points(self, refine_flag=None): """ Get the probe points. Returns ------- pars : array_like The independent coordinate of the probe. points : array_like The probe points, parametrized by pars. """ if self.is_refined: return self.pars, self.points if refine_flag is None: pars = nm.linspace(0, self.length, self.n_point) else: pars = Probe.refine_pars(self.pars, refine_flag) self.n_point = pars.shape[0] self.pars = pars self.points = self.p0 + self.dirvec * pars[:,None] return pars, self.points class RayProbe(Probe): """ Probe variables along a ray. The points are parametrized by a function of radial coordinates from a given point in a given direction. """ def __init__(self, p0, dirvec, p_fun, n_point, both_dirs, share_geometry=True): """ Parameters ---------- p0 : array_like The coordinates of the start point. dirvec : array_like The probe direction vector. p_fun : function The function returning the probe parametrization along the dirvec direction. both_dirs : bool If True, the probe works, starting at p0, symmetrically in both dirvec and -dirvec directions. """ p0 = nm.array(p0, dtype=nm.float64) dirvec = nm.array(dirvec, dtype=nm.float64) dirvec /= nla.norm(dirvec) name = 'ray %s [%s, %s]' % (p_fun.__name__, p0, dirvec) if both_dirs: n_point_true = 2 * n_point else: n_point_true = n_point Probe.__init__(self, name=name, share_geometry=share_geometry, p0=p0, dirvec=dirvec, p_fun=p_fun, n_point=n_point_true, both_dirs=both_dirs) self.n_point_single = n_point def report(self): """Report the probe parameters.""" out = Probe.report(self) out.append('point 0: %s' % self.p0) out.append('direction vector: %s' % self.dirvec) out.append('both directions: %s' % self.both_dirs) out.append('distribution function: %s' % self.p_fun.__name__) out.append('-----') return out def refine_points(self, variable, points, cache): """No refinement for this probe.""" refine_flag = nm.array([False]) return refine_flag def gen_points(self, sign): """Generate the probe points and their parametrization.""" pars = self.p_fun(nm.arange(self.n_point_single, dtype=nm.float64)) points = self.p0 + sign * self.dirvec * pars[:,None] return pars, points def get_points(self, refine_flag=None): """ Get the probe points. Returns ------- pars : array_like The independent coordinate of the probe. points : array_like The probe points, parametrized by pars. """ pars, points = self.gen_points(1.0) if self.both_dirs: pars0, points0 = self.gen_points(-1.0) pars = nm.concatenate((-pars0[::-1], pars)) points = nm.concatenate((points0[::-1], points)) return pars, points class CircleProbe(Probe): """ Probe variables along a circle. If n_point is positive, that number of evenly spaced points is used. If n_point is None or non-positive, an adaptive refinement based on element diameters is used and the number of points and their spacing are determined automatically. If it is negative, -n_point is used as an initial guess. """ is_cyclic = True def __init__(self, centre, normal, radius, n_point, share_geometry=True): """ Parameters ---------- centre : array_like The coordinates of the circle centre. normal : array_like The normal vector perpendicular to the circle plane. radius : float The radius of the circle. """ centre = nm.array(centre, dtype=nm.float64) normal = nm.array(normal, dtype=nm.float64) normal /= nla.norm(normal) name = 'circle [%s, %s, %s]' % (centre, normal, radius) Probe.__init__(self, name=name, share_geometry=share_geometry, centre=centre, normal=normal, radius=radius, n_point=n_point) def report(self): """Report the probe parameters.""" out = Probe.report(self) out.append('centre: %s' % self.centre) out.append('normal: %s' % self.normal) out.append('radius: %s' % self.radius) out.append('-----') return out def get_points(self, refine_flag=None): """ Get the probe points. Returns ------- pars : array_like The independent coordinate of the probe. points : array_like The probe points, parametrized by pars. """ # Vector of angles. if self.is_refined: return self.pars, self.points if refine_flag is None: pars = nm.linspace(0.0, 2.0*nm.pi, self.n_point + 1)[:-1] else: pars = Probe.refine_pars(self.pars, refine_flag, cyclic_val=2.0 * nm.pi) self.n_point = pars.shape[0] self.pars = pars # Create the points in xy plane, centered at the origin. x = self.radius * nm.cos(pars[:,None]) y = self.radius * nm.sin(pars[:,None]) if len(self.centre) == 3: z = nm.zeros((self.n_point, 1), dtype=nm.float64) points = nm.c_[x, y, z] # Rotate to satisfy the normal, shift to the centre. n1 = nm.array([0.0, 0.0, 1.0], dtype=nm.float64) axis = nm.cross(n1, self.normal) angle = nm.arccos(nm.dot(n1, self.normal)) if nla.norm(axis) < 0.1: # n1 == self.normal rot_mtx = nm.eye(3, dtype=nm.float64) else: rot_mtx = make_axis_rotation_matrix(axis, angle) points = nm.dot(points, rot_mtx) else: points = nm.c_[x, y] points += self.centre self.points = points return pars, points class IntegralProbe(Struct): """Evaluate integral expressions.""" def __init__(self, name, problem, expressions, labels): Struct.__init__(self, name=name, problem=problem, expressions=expressions, labels=labels) def __call__(self, ip, state=None, **kwargs): return self.problem.evaluate(self.expressions[ip], state, **kwargs)
[ "sfepy.base.base.Struct", "sfepy.linalg.make_axis_rotation_matrix", "sfepy.base.base.get_default", "sfepy.base.base.Struct.__init__", "sfepy.linalg.norm_l2_along_axis", "sfepy.base.ioutils.read_array" ]
[((845, 867), 'six.iteritems', 'six.iteritems', (['results'], {}), '(results)\n', (858, 867), False, 'import six\n'), ((1663, 1690), 'sfepy.base.base.get_default', 'get_default', (['only_names', '[]'], {}), '(only_names, [])\n', (1674, 1690), False, 'from sfepy.base.base import get_default, basestr, Struct\n'), ((2218, 2250), 'sfepy.base.base.Struct', 'Struct', ([], {'name': '"""probe_data_header"""'}), "(name='probe_data_header')\n", (2224, 2250), False, 'from sfepy.base.base import get_default, basestr, Struct\n'), ((3300, 3342), 'sfepy.base.base.Struct', 'Struct', ([], {'name': '"""probe_shared_evaluate_cache"""'}), "(name='probe_shared_evaluate_cache')\n", (3306, 3342), False, 'from sfepy.base.base import get_default, basestr, Struct\n'), ((1113, 1132), 'numpy.savetxt', 'nm.savetxt', (['fd', 'aux'], {}), '(fd, aux)\n', (1123, 1132), True, 'import numpy as nm\n'), ((1916, 1966), 'sfepy.base.ioutils.read_array', 'read_array', (['fd', 'header.n_point', '(nc + 1)', 'nm.float64'], {}), '(fd, header.n_point, nc + 1, nm.float64)\n', (1926, 1966), False, 'from sfepy.base.ioutils import read_array\n'), ((4230, 4303), 'sfepy.base.base.Struct.__init__', 'Struct.__init__', (['self'], {'name': 'name', 'share_geometry': 'share_geometry'}), '(self, name=name, share_geometry=share_geometry, **kwargs)\n', (4245, 4303), False, 'from sfepy.base.base import get_default, basestr, Struct\n'), ((4387, 4426), 'sfepy.base.base.Struct', 'Struct', ([], {'close_limit': '(0.1)', 'size_hint': 'None'}), '(close_limit=0.1, size_hint=None)\n', (4393, 4426), False, 'from sfepy.base.base import get_default, basestr, Struct\n'), ((4448, 4489), 'sfepy.base.base.Struct', 'Struct', ([], {'name': '"""probe_local_evaluate_cache"""'}), "(name='probe_local_evaluate_cache')\n", (4454, 4489), False, 'from sfepy.base.base import get_default, basestr, Struct\n'), ((10325, 10348), 'numpy.insert', 'nm.insert', (['pars', 'ip', 'pp'], {}), '(pars, ip, pp)\n', (10334, 10348), True, 'import numpy as nm\n'), ((10654, 10699), 'numpy.array', 'nm.array', (['points'], {'dtype': 'nm.float64', 'order': '"""C"""'}), "(points, dtype=nm.float64, order='C')\n", (10662, 10699), True, 'import numpy as nm\n'), ((11382, 11399), 'numpy.array', 'nm.array', (['[False]'], {}), '([False])\n', (11390, 11399), True, 'import numpy as nm\n'), ((11731, 11772), 'numpy.arange', 'nm.arange', (['self.n_point'], {'dtype': 'nm.float64'}), '(self.n_point, dtype=nm.float64)\n', (11740, 11772), True, 'import numpy as nm\n'), ((12471, 12501), 'numpy.array', 'nm.array', (['p0'], {'dtype': 'nm.float64'}), '(p0, dtype=nm.float64)\n', (12479, 12501), True, 'import numpy as nm\n'), ((12515, 12545), 'numpy.array', 'nm.array', (['p1'], {'dtype': 'nm.float64'}), '(p1, dtype=nm.float64)\n', (12523, 12545), True, 'import numpy as nm\n'), ((12772, 12794), 'numpy.linalg.norm', 'nm.linalg.norm', (['dirvec'], {}), '(dirvec)\n', (12786, 12794), True, 'import numpy as nm\n'), ((14532, 14562), 'numpy.array', 'nm.array', (['p0'], {'dtype': 'nm.float64'}), '(p0, dtype=nm.float64)\n', (14540, 14562), True, 'import numpy as nm\n'), ((14580, 14614), 'numpy.array', 'nm.array', (['dirvec'], {'dtype': 'nm.float64'}), '(dirvec, dtype=nm.float64)\n', (14588, 14614), True, 'import numpy as nm\n'), ((14633, 14649), 'numpy.linalg.norm', 'nla.norm', (['dirvec'], {}), '(dirvec)\n', (14641, 14649), True, 'import numpy.linalg as nla\n'), ((15558, 15575), 'numpy.array', 'nm.array', (['[False]'], {}), '([False])\n', (15566, 15575), True, 'import numpy as nm\n'), ((17224, 17258), 'numpy.array', 'nm.array', (['centre'], {'dtype': 'nm.float64'}), '(centre, dtype=nm.float64)\n', (17232, 17258), True, 'import numpy as nm\n'), ((17276, 17310), 'numpy.array', 'nm.array', (['normal'], {'dtype': 'nm.float64'}), '(normal, dtype=nm.float64)\n', (17284, 17310), True, 'import numpy as nm\n'), ((17329, 17345), 'numpy.linalg.norm', 'nla.norm', (['normal'], {}), '(normal)\n', (17337, 17345), True, 'import numpy.linalg as nla\n'), ((19627, 19720), 'sfepy.base.base.Struct.__init__', 'Struct.__init__', (['self'], {'name': 'name', 'problem': 'problem', 'expressions': 'expressions', 'labels': 'labels'}), '(self, name=name, problem=problem, expressions=expressions,\n labels=labels)\n', (19642, 19720), False, 'from sfepy.base.base import get_default, basestr, Struct\n'), ((999, 1040), 'numpy.hstack', 'nm.hstack', (['(pars[:, None], vals[:, None])'], {}), '((pars[:, None], vals[:, None]))\n', (1008, 1040), True, 'import numpy as nm\n'), ((1072, 1104), 'numpy.hstack', 'nm.hstack', (['(pars[:, None], vals)'], {}), '((pars[:, None], vals))\n', (1081, 1104), True, 'import numpy as nm\n'), ((9320, 9337), 'numpy.array', 'nm.array', (['[False]'], {}), '([False])\n', (9328, 9337), True, 'import numpy as nm\n'), ((9591, 9635), 'sfepy.linalg.norm_l2_along_axis', 'norm_l2_along_axis', (['(points[1:] - points[:-1])'], {}), '(points[1:] - points[:-1])\n', (9609, 9635), False, 'from sfepy.linalg import make_axis_rotation_matrix, norm_l2_along_axis\n'), ((10077, 10098), 'numpy.where', 'nm.where', (['refine_flag'], {}), '(refine_flag)\n', (10085, 10098), True, 'import numpy as nm\n'), ((13483, 13524), 'numpy.linspace', 'nm.linspace', (['(0)', 'self.length', 'self.n_point'], {}), '(0, self.length, self.n_point)\n', (13494, 13524), True, 'import numpy as nm\n'), ((15729, 15777), 'numpy.arange', 'nm.arange', (['self.n_point_single'], {'dtype': 'nm.float64'}), '(self.n_point_single, dtype=nm.float64)\n', (15738, 15777), True, 'import numpy as nm\n'), ((16298, 16334), 'numpy.concatenate', 'nm.concatenate', (['(-pars0[::-1], pars)'], {}), '((-pars0[::-1], pars))\n', (16312, 16334), True, 'import numpy as nm\n'), ((16356, 16395), 'numpy.concatenate', 'nm.concatenate', (['(points0[::-1], points)'], {}), '((points0[::-1], points))\n', (16370, 16395), True, 'import numpy as nm\n'), ((18665, 18686), 'numpy.cos', 'nm.cos', (['pars[:, None]'], {}), '(pars[:, None])\n', (18671, 18686), True, 'import numpy as nm\n'), ((18712, 18733), 'numpy.sin', 'nm.sin', (['pars[:, None]'], {}), '(pars[:, None])\n', (18718, 18733), True, 'import numpy as nm\n'), ((18784, 18829), 'numpy.zeros', 'nm.zeros', (['(self.n_point, 1)'], {'dtype': 'nm.float64'}), '((self.n_point, 1), dtype=nm.float64)\n', (18792, 18829), True, 'import numpy as nm\n'), ((18949, 18992), 'numpy.array', 'nm.array', (['[0.0, 0.0, 1.0]'], {'dtype': 'nm.float64'}), '([0.0, 0.0, 1.0], dtype=nm.float64)\n', (18957, 18992), True, 'import numpy as nm\n'), ((19012, 19037), 'numpy.cross', 'nm.cross', (['n1', 'self.normal'], {}), '(n1, self.normal)\n', (19020, 19037), True, 'import numpy as nm\n'), ((19326, 19349), 'numpy.dot', 'nm.dot', (['points', 'rot_mtx'], {}), '(points, rot_mtx)\n', (19332, 19349), True, 'import numpy as nm\n'), ((9773, 9805), 'numpy.linalg.norm', 'nla.norm', (['(points[0] - points[-1])'], {}), '(points[0] - points[-1])\n', (9781, 9805), True, 'import numpy.linalg as nla\n'), ((18317, 18364), 'numpy.linspace', 'nm.linspace', (['(0.0)', '(2.0 * nm.pi)', '(self.n_point + 1)'], {}), '(0.0, 2.0 * nm.pi, self.n_point + 1)\n', (18328, 18364), True, 'import numpy as nm\n'), ((19068, 19091), 'numpy.dot', 'nm.dot', (['n1', 'self.normal'], {}), '(n1, self.normal)\n', (19074, 19091), True, 'import numpy as nm\n'), ((19109, 19123), 'numpy.linalg.norm', 'nla.norm', (['axis'], {}), '(axis)\n', (19117, 19123), True, 'import numpy.linalg as nla\n'), ((19193, 19220), 'numpy.eye', 'nm.eye', (['(3)'], {'dtype': 'nm.float64'}), '(3, dtype=nm.float64)\n', (19199, 19220), True, 'import numpy as nm\n'), ((19265, 19303), 'sfepy.linalg.make_axis_rotation_matrix', 'make_axis_rotation_matrix', (['axis', 'angle'], {}), '(axis, angle)\n', (19290, 19303), False, 'from sfepy.linalg import make_axis_rotation_matrix, norm_l2_along_axis\n'), ((8032, 8051), 'numpy.isfinite', 'nm.isfinite', (['points'], {}), '(points)\n', (8043, 8051), True, 'import numpy as nm\n')]
from itertools import product import numpy as np from megengine import tensor from megengine.module import ( Conv2d, ConvBn2d, ConvRelu2d, DequantStub, Module, QuantStub, ) from megengine.quantization.quantize import disable_fake_quant, quantize_qat def test_qat_convbn2d(): in_channels = 32 out_channels = 64 kernel_size = 3 for groups, bias in product([1, 4], [True, False]): module = ConvBn2d( in_channels, out_channels, kernel_size, groups=groups, bias=bias ) module.train() qat_module = quantize_qat(module, inplace=False) disable_fake_quant(qat_module) inputs = tensor(np.random.randn(4, in_channels, 32, 32).astype(np.float32)) normal_outputs = module(inputs) # import pdb # pdb.set_trace() qat_outputs = qat_module(inputs) np.testing.assert_allclose( normal_outputs.numpy(), qat_outputs.numpy(), atol=5e-6 ) np.testing.assert_allclose( module.bn.running_mean.numpy(), qat_module.bn.running_mean.numpy(), atol=5e-8, ) np.testing.assert_allclose( module.bn.running_var.numpy(), qat_module.bn.running_var.numpy(), atol=5e-7, ) module.eval() normal_outputs = module(inputs) qat_module.eval() qat_outputs = qat_module(inputs) np.testing.assert_allclose( normal_outputs.numpy(), qat_outputs.numpy(), atol=5e-6 ) def test_qat_conv(): in_channels = 32 out_channels = 64 kernel_size = 3 class TestNet(Module): def __init__(self, groups, bias): super().__init__() self.quant = QuantStub() self.dequant = DequantStub() self.conv = Conv2d( in_channels, out_channels, kernel_size, groups=groups, bias=bias ) self.conv_relu = ConvRelu2d( out_channels, in_channels, kernel_size, groups=groups, bias=bias ) def forward(self, inp): out = self.quant(inp) out = self.conv(out) out = self.conv_relu(out) out = self.dequant(out) return out inputs = tensor(np.random.randn(4, in_channels, 32, 32).astype(np.float32)) for groups, bias in product([1, 4], [True, False]): net = TestNet(groups, bias) net.train() qat_net = quantize_qat(net, inplace=False) disable_fake_quant(qat_net) normal_outputs = net(inputs) qat_outputs = qat_net(inputs) np.testing.assert_allclose(normal_outputs.numpy(), qat_outputs.numpy()) net.eval() normal_outputs = net(inputs) qat_net.eval() qat_outputs = qat_net(inputs) np.testing.assert_allclose(normal_outputs.numpy(), qat_outputs.numpy())
[ "megengine.quantization.quantize.quantize_qat", "megengine.module.QuantStub", "megengine.module.ConvBn2d", "megengine.quantization.quantize.disable_fake_quant", "megengine.module.DequantStub", "megengine.module.ConvRelu2d", "megengine.module.Conv2d" ]
[((390, 420), 'itertools.product', 'product', (['[1, 4]', '[True, False]'], {}), '([1, 4], [True, False])\n', (397, 420), False, 'from itertools import product\n'), ((2349, 2379), 'itertools.product', 'product', (['[1, 4]', '[True, False]'], {}), '([1, 4], [True, False])\n', (2356, 2379), False, 'from itertools import product\n'), ((439, 513), 'megengine.module.ConvBn2d', 'ConvBn2d', (['in_channels', 'out_channels', 'kernel_size'], {'groups': 'groups', 'bias': 'bias'}), '(in_channels, out_channels, kernel_size, groups=groups, bias=bias)\n', (447, 513), False, 'from megengine.module import Conv2d, ConvBn2d, ConvRelu2d, DequantStub, Module, QuantStub\n'), ((580, 615), 'megengine.quantization.quantize.quantize_qat', 'quantize_qat', (['module'], {'inplace': '(False)'}), '(module, inplace=False)\n', (592, 615), False, 'from megengine.quantization.quantize import disable_fake_quant, quantize_qat\n'), ((624, 654), 'megengine.quantization.quantize.disable_fake_quant', 'disable_fake_quant', (['qat_module'], {}), '(qat_module)\n', (642, 654), False, 'from megengine.quantization.quantize import disable_fake_quant, quantize_qat\n'), ((2455, 2487), 'megengine.quantization.quantize.quantize_qat', 'quantize_qat', (['net'], {'inplace': '(False)'}), '(net, inplace=False)\n', (2467, 2487), False, 'from megengine.quantization.quantize import disable_fake_quant, quantize_qat\n'), ((2496, 2523), 'megengine.quantization.quantize.disable_fake_quant', 'disable_fake_quant', (['qat_net'], {}), '(qat_net)\n', (2514, 2523), False, 'from megengine.quantization.quantize import disable_fake_quant, quantize_qat\n'), ((1731, 1742), 'megengine.module.QuantStub', 'QuantStub', ([], {}), '()\n', (1740, 1742), False, 'from megengine.module import Conv2d, ConvBn2d, ConvRelu2d, DequantStub, Module, QuantStub\n'), ((1770, 1783), 'megengine.module.DequantStub', 'DequantStub', ([], {}), '()\n', (1781, 1783), False, 'from megengine.module import Conv2d, ConvBn2d, ConvRelu2d, DequantStub, Module, QuantStub\n'), ((1808, 1880), 'megengine.module.Conv2d', 'Conv2d', (['in_channels', 'out_channels', 'kernel_size'], {'groups': 'groups', 'bias': 'bias'}), '(in_channels, out_channels, kernel_size, groups=groups, bias=bias)\n', (1814, 1880), False, 'from megengine.module import Conv2d, ConvBn2d, ConvRelu2d, DequantStub, Module, QuantStub\n'), ((1940, 2016), 'megengine.module.ConvRelu2d', 'ConvRelu2d', (['out_channels', 'in_channels', 'kernel_size'], {'groups': 'groups', 'bias': 'bias'}), '(out_channels, in_channels, kernel_size, groups=groups, bias=bias)\n', (1950, 2016), False, 'from megengine.module import Conv2d, ConvBn2d, ConvRelu2d, DequantStub, Module, QuantStub\n'), ((2265, 2304), 'numpy.random.randn', 'np.random.randn', (['(4)', 'in_channels', '(32)', '(32)'], {}), '(4, in_channels, 32, 32)\n', (2280, 2304), True, 'import numpy as np\n'), ((679, 718), 'numpy.random.randn', 'np.random.randn', (['(4)', 'in_channels', '(32)', '(32)'], {}), '(4, in_channels, 32, 32)\n', (694, 718), True, 'import numpy as np\n')]
from fastapi import APIRouter, Depends, HTTPException, Query, Path from sqlmodel import Session, select from sqlalchemy.exc import IntegrityError from typing import List import datetime as dt from app.src.common.security import get_current_user from app.src.common.utils import profiling_api from app.src.models.app_user import AppUser from app.src.models.product_type import ( ProductType, ProductTypeRead, ProductTypeCreate, ProductTypeUpdate, ) from app.src.db.engine import get_session router = APIRouter() # A scopo didattico inserita la validazione di producttype_id con Path: # - non potrà essere < 1 async def get_producttype_or_404( *, session: Session = Depends(get_session), producttype_id: int = Path(..., ge=1), current_user: AppUser = Depends(get_current_user), ): start_time = dt.datetime.now() try: db_pt = session.get(ProductType, producttype_id) if db_pt: return { "db_pt": db_pt, "username": current_user.username, "start_time": start_time, } else: raise HTTPException(status_code=404, detail="Product type not found") except KeyError: raise HTTPException(status_code=400, detail="Product type not found") @router.get("/", response_model=List[ProductTypeRead]) # lte -> less than or equal async def read_product_types( *, session: Session = Depends(get_session), offset: int = 0, limit: int = Query(default=100, lte=100), current_user: AppUser = Depends(get_current_user), ): """ Get all the existing product types """ start_time = dt.datetime.now() product_types = session.exec(select(ProductType).offset(offset).limit(limit)).all() profiling_api("ProductType:get:all", start_time, current_user.username) return product_types @router.get("/{producttype_id}", response_model=ProductTypeRead) async def read_product_type( *, producttype_id: int, db_pt: ProductType = Depends(get_producttype_or_404) ): """ Get the product type by id """ profiling_api( f"ProductType:read:by_id:{producttype_id}", db_pt["start_time"], db_pt["username"], ) return db_pt["db_pt"] @router.post("/", response_model=ProductTypeRead) async def create_product_type( *, session: Session = Depends(get_session), product_type: ProductTypeCreate, current_user: AppUser = Depends(get_current_user), ): """ Create a product type """ start_time = dt.datetime.now() try: db_pt = ProductType.from_orm(product_type) session.add(db_pt) session.commit() session.refresh(db_pt) except IntegrityError: raise HTTPException( status_code=404, detail="Impossible to create product type with same name" ) profiling_api("ProductType:insert:single", start_time, current_user.username) return db_pt @router.patch("/{producttype_id}", response_model=ProductTypeRead) async def update_product_type( *, producttype_id: int, session: Session = Depends(get_session), pt: ProductTypeUpdate, db_pt: ProductType = Depends(get_producttype_or_404), ): """ Modify a product type """ # exclude_unset=True: it would only include the values # that were sent by the client existing_pt = db_pt["db_pt"] pt_data = pt.dict(exclude_unset=True) for key, value in pt_data.items(): setattr(existing_pt, key, value) session.add(existing_pt) session.commit() session.refresh(existing_pt) profiling_api( f"ProductType:update:by_id:{producttype_id}", db_pt["start_time"], db_pt["username"], ) return existing_pt @router.delete("/{producttype_id}") async def delete_product_type( *, producttype_id: int, session: Session = Depends(get_session), db_pt: ProductType = Depends(get_producttype_or_404), ): """ Delete and remove an existing product type by id; it must be >= 1 """ existing_db_pt = db_pt["db_pt"] session.delete(existing_db_pt) session.commit() profiling_api( f"ProductType:delete:by_id:{producttype_id}", db_pt["start_time"], db_pt["username"], ) return {"ok": True}
[ "sqlmodel.select" ]
[((518, 529), 'fastapi.APIRouter', 'APIRouter', ([], {}), '()\n', (527, 529), False, 'from fastapi import APIRouter, Depends, HTTPException, Query, Path\n'), ((693, 713), 'fastapi.Depends', 'Depends', (['get_session'], {}), '(get_session)\n', (700, 713), False, 'from fastapi import APIRouter, Depends, HTTPException, Query, Path\n'), ((741, 756), 'fastapi.Path', 'Path', (['...'], {'ge': '(1)'}), '(..., ge=1)\n', (745, 756), False, 'from fastapi import APIRouter, Depends, HTTPException, Query, Path\n'), ((786, 811), 'fastapi.Depends', 'Depends', (['get_current_user'], {}), '(get_current_user)\n', (793, 811), False, 'from fastapi import APIRouter, Depends, HTTPException, Query, Path\n'), ((833, 850), 'datetime.datetime.now', 'dt.datetime.now', ([], {}), '()\n', (848, 850), True, 'import datetime as dt\n'), ((1435, 1455), 'fastapi.Depends', 'Depends', (['get_session'], {}), '(get_session)\n', (1442, 1455), False, 'from fastapi import APIRouter, Depends, HTTPException, Query, Path\n'), ((1495, 1522), 'fastapi.Query', 'Query', ([], {'default': '(100)', 'lte': '(100)'}), '(default=100, lte=100)\n', (1500, 1522), False, 'from fastapi import APIRouter, Depends, HTTPException, Query, Path\n'), ((1552, 1577), 'fastapi.Depends', 'Depends', (['get_current_user'], {}), '(get_current_user)\n', (1559, 1577), False, 'from fastapi import APIRouter, Depends, HTTPException, Query, Path\n'), ((1654, 1671), 'datetime.datetime.now', 'dt.datetime.now', ([], {}), '()\n', (1669, 1671), True, 'import datetime as dt\n'), ((1764, 1835), 'app.src.common.utils.profiling_api', 'profiling_api', (['"""ProductType:get:all"""', 'start_time', 'current_user.username'], {}), "('ProductType:get:all', start_time, current_user.username)\n", (1777, 1835), False, 'from app.src.common.utils import profiling_api\n'), ((2006, 2037), 'fastapi.Depends', 'Depends', (['get_producttype_or_404'], {}), '(get_producttype_or_404)\n', (2013, 2037), False, 'from fastapi import APIRouter, Depends, HTTPException, Query, Path\n'), ((2092, 2194), 'app.src.common.utils.profiling_api', 'profiling_api', (['f"""ProductType:read:by_id:{producttype_id}"""', "db_pt['start_time']", "db_pt['username']"], {}), "(f'ProductType:read:by_id:{producttype_id}', db_pt[\n 'start_time'], db_pt['username'])\n", (2105, 2194), False, 'from app.src.common.utils import profiling_api\n'), ((2360, 2380), 'fastapi.Depends', 'Depends', (['get_session'], {}), '(get_session)\n', (2367, 2380), False, 'from fastapi import APIRouter, Depends, HTTPException, Query, Path\n'), ((2447, 2472), 'fastapi.Depends', 'Depends', (['get_current_user'], {}), '(get_current_user)\n', (2454, 2472), False, 'from fastapi import APIRouter, Depends, HTTPException, Query, Path\n'), ((2536, 2553), 'datetime.datetime.now', 'dt.datetime.now', ([], {}), '()\n', (2551, 2553), True, 'import datetime as dt\n'), ((2854, 2931), 'app.src.common.utils.profiling_api', 'profiling_api', (['"""ProductType:insert:single"""', 'start_time', 'current_user.username'], {}), "('ProductType:insert:single', start_time, current_user.username)\n", (2867, 2931), False, 'from app.src.common.utils import profiling_api\n'), ((3104, 3124), 'fastapi.Depends', 'Depends', (['get_session'], {}), '(get_session)\n', (3111, 3124), False, 'from fastapi import APIRouter, Depends, HTTPException, Query, Path\n'), ((3178, 3209), 'fastapi.Depends', 'Depends', (['get_producttype_or_404'], {}), '(get_producttype_or_404)\n', (3185, 3209), False, 'from fastapi import APIRouter, Depends, HTTPException, Query, Path\n'), ((3592, 3696), 'app.src.common.utils.profiling_api', 'profiling_api', (['f"""ProductType:update:by_id:{producttype_id}"""', "db_pt['start_time']", "db_pt['username']"], {}), "(f'ProductType:update:by_id:{producttype_id}', db_pt[\n 'start_time'], db_pt['username'])\n", (3605, 3696), False, 'from app.src.common.utils import profiling_api\n'), ((3870, 3890), 'fastapi.Depends', 'Depends', (['get_session'], {}), '(get_session)\n', (3877, 3890), False, 'from fastapi import APIRouter, Depends, HTTPException, Query, Path\n'), ((3917, 3948), 'fastapi.Depends', 'Depends', (['get_producttype_or_404'], {}), '(get_producttype_or_404)\n', (3924, 3948), False, 'from fastapi import APIRouter, Depends, HTTPException, Query, Path\n'), ((4135, 4239), 'app.src.common.utils.profiling_api', 'profiling_api', (['f"""ProductType:delete:by_id:{producttype_id}"""', "db_pt['start_time']", "db_pt['username']"], {}), "(f'ProductType:delete:by_id:{producttype_id}', db_pt[\n 'start_time'], db_pt['username'])\n", (4148, 4239), False, 'from app.src.common.utils import profiling_api\n'), ((2579, 2613), 'app.src.models.product_type.ProductType.from_orm', 'ProductType.from_orm', (['product_type'], {}), '(product_type)\n', (2599, 2613), False, 'from app.src.models.product_type import ProductType, ProductTypeRead, ProductTypeCreate, ProductTypeUpdate\n'), ((1127, 1190), 'fastapi.HTTPException', 'HTTPException', ([], {'status_code': '(404)', 'detail': '"""Product type not found"""'}), "(status_code=404, detail='Product type not found')\n", (1140, 1190), False, 'from fastapi import APIRouter, Depends, HTTPException, Query, Path\n'), ((1226, 1289), 'fastapi.HTTPException', 'HTTPException', ([], {'status_code': '(400)', 'detail': '"""Product type not found"""'}), "(status_code=400, detail='Product type not found')\n", (1239, 1289), False, 'from fastapi import APIRouter, Depends, HTTPException, Query, Path\n'), ((2738, 2832), 'fastapi.HTTPException', 'HTTPException', ([], {'status_code': '(404)', 'detail': '"""Impossible to create product type with same name"""'}), "(status_code=404, detail=\n 'Impossible to create product type with same name')\n", (2751, 2832), False, 'from fastapi import APIRouter, Depends, HTTPException, Query, Path\n'), ((1705, 1724), 'sqlmodel.select', 'select', (['ProductType'], {}), '(ProductType)\n', (1711, 1724), False, 'from sqlmodel import Session, select\n')]
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import argparse import json import os import subprocess import sys import time import numpy as np from resnet50 import Resnet50 import megengine as mge import megengine.distributed as dist import megengine.functional as F from megengine._internal.plugin import CompGraphProfiler from megengine.core import Graph, tensor from megengine.core.graph import get_default_graph from megengine.functional.debug_param import ( get_conv_execution_strategy, set_conv_execution_strategy, ) from megengine.jit import trace from megengine.module import BatchNorm2d, Conv2d, Linear, MaxPool2d, Module from megengine.optimizer import SGD sys.path.append(os.path.join(os.path.dirname(__file__), "..", "..", "..", "examples")) def init_profiler(comp_graph=get_default_graph()): profiler = CompGraphProfiler(comp_graph) return profiler def dump_profiler(profiler, filename): with open(filename, "w") as fout: json.dump(profiler.get(), fout, indent=2) def print_gpu_usage(): stdout = subprocess.getoutput("nvidia-smi") for line in stdout.split("\n"): for item in line.split(" "): if "MiB" in item: print("Finish with GPU Usage", item) break def run_perf( batch_size=64, warm_up=True, dump_prof=None, opt_level=2, conv_fastrun=False, run_step=True, track_bn_stats=True, warm_up_iter=20, run_iter=100, num_gpu=None, device=0, server=None, port=None, scale_batch_size=False, eager=False, ): if conv_fastrun: set_conv_execution_strategy("PROFILE") if num_gpu: dist.init_process_group(args.server, args.port, num_gpu, device, device) if scale_batch_size: batch_size = batch_size // num_gpu print("Run with data parallel, batch size = {} per GPU".format(batch_size)) data = tensor(np.random.randn(batch_size, 3, 224, 224).astype("float32")) label = tensor(np.random.randint(1000, size=[batch_size,], dtype=np.int32)) net = Resnet50(track_bn_stats=track_bn_stats) opt = SGD(net.parameters(), lr=0.01, momentum=0.9, weight_decay=1e-4) def train_func(data, label): logits = net(data) loss = F.cross_entropy_with_softmax(logits, label) if num_gpu: loss = loss / num_gpu opt.zero_grad() opt.backward(loss) return loss train_func = trace( train_func, symbolic=(not eager), opt_level=opt_level, profiling=not (dump_prof is None), ) if warm_up: print("Warm up ...") for _ in range(warm_up_iter): opt.zero_grad() train_func(data, label) if run_step: opt.step() print_gpu_usage() print("Running train ...") start = time.time() for _ in range(run_iter): opt.zero_grad() train_func(data, label) if run_step: opt.step() time_used = time.time() - start if dump_prof: with open(dump_prof, "w") as fout: json.dump(train_func.get_profile(), fout, indent=2) return time_used / run_iter def str2bool(v): if isinstance(v, bool): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise argparse.ArgumentTypeError("Boolean value expected.") if __name__ == "__main__": parser = argparse.ArgumentParser( description="Running regression test on Resnet 50", formatter_class=argparse.ArgumentDefaultsHelpFormatter, ) parser.add_argument("--batch-size", type=int, default=64, help="batch size ") parser.add_argument( "--warm-up", type=str2bool, default=True, help="whether to warm up" ) parser.add_argument( "--dump-prof", type=str, default=None, help="pass the json file path to dump the profiling result", ) parser.add_argument("--opt-level", type=int, default=2, help="graph opt level") parser.add_argument( "--conv-fastrun", type=str2bool, default=False, help="whether to use conv fastrun mode", ) parser.add_argument( "--run-step", type=str2bool, default=True, help="whether to run optimizer.step()", ) parser.add_argument( "--track-bn-stats", type=str2bool, default=True, help="whether to track bn stats", ) parser.add_argument( "--warm-up-iter", type=int, default=20, help="number of iters to warm up" ) parser.add_argument( "--run-iter", type=int, default=100, help="number of iters to collect wall time" ) parser.add_argument("--server", default="0.0.0.0") parser.add_argument("--port", type=int, default=2222) parser.add_argument( "--scale-batch-size", type=str2bool, default=False, help="whether to divide batch size by number of GPUs", ) parser.add_argument( "--eager", type=str2bool, default=False, help="whether to use eager mode" ) # Data parallel related parser.add_argument("--num-gpu", type=int, default=None) parser.add_argument("--device", type=int, default=0) args = parser.parse_args() print(vars(args)) os.environ["MGB_JIT_BACKEND"] = "NVRTC" t = run_perf(**vars(args)) print("**********************************") print("Wall time per iter {:.0f} ms".format(t * 1000)) print("**********************************") get_default_graph().clear_device_memory()
[ "megengine.jit.trace", "megengine.core.graph.get_default_graph", "megengine.distributed.init_process_group", "megengine.functional.cross_entropy_with_softmax", "megengine._internal.plugin.CompGraphProfiler", "megengine.functional.debug_param.set_conv_execution_strategy" ]
[((1128, 1147), 'megengine.core.graph.get_default_graph', 'get_default_graph', ([], {}), '()\n', (1145, 1147), False, 'from megengine.core.graph import get_default_graph\n'), ((1165, 1194), 'megengine._internal.plugin.CompGraphProfiler', 'CompGraphProfiler', (['comp_graph'], {}), '(comp_graph)\n', (1182, 1194), False, 'from megengine._internal.plugin import CompGraphProfiler\n'), ((1382, 1416), 'subprocess.getoutput', 'subprocess.getoutput', (['"""nvidia-smi"""'], {}), "('nvidia-smi')\n", (1402, 1416), False, 'import subprocess\n'), ((2401, 2440), 'resnet50.Resnet50', 'Resnet50', ([], {'track_bn_stats': 'track_bn_stats'}), '(track_bn_stats=track_bn_stats)\n', (2409, 2440), False, 'from resnet50 import Resnet50\n'), ((2780, 2876), 'megengine.jit.trace', 'trace', (['train_func'], {'symbolic': '(not eager)', 'opt_level': 'opt_level', 'profiling': '(not dump_prof is None)'}), '(train_func, symbolic=not eager, opt_level=opt_level, profiling=not \n dump_prof is None)\n', (2785, 2876), False, 'from megengine.jit import trace\n'), ((3180, 3191), 'time.time', 'time.time', ([], {}), '()\n', (3189, 3191), False, 'import time\n'), ((3849, 3984), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Running regression test on Resnet 50"""', 'formatter_class': 'argparse.ArgumentDefaultsHelpFormatter'}), "(description='Running regression test on Resnet 50',\n formatter_class=argparse.ArgumentDefaultsHelpFormatter)\n", (3872, 3984), False, 'import argparse\n'), ((1039, 1064), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (1054, 1064), False, 'import os\n'), ((1934, 1972), 'megengine.functional.debug_param.set_conv_execution_strategy', 'set_conv_execution_strategy', (['"""PROFILE"""'], {}), "('PROFILE')\n", (1961, 1972), False, 'from megengine.functional.debug_param import get_conv_execution_strategy, set_conv_execution_strategy\n'), ((1998, 2070), 'megengine.distributed.init_process_group', 'dist.init_process_group', (['args.server', 'args.port', 'num_gpu', 'device', 'device'], {}), '(args.server, args.port, num_gpu, device, device)\n', (2021, 2070), True, 'import megengine.distributed as dist\n'), ((2329, 2387), 'numpy.random.randint', 'np.random.randint', (['(1000)'], {'size': '[batch_size]', 'dtype': 'np.int32'}), '(1000, size=[batch_size], dtype=np.int32)\n', (2346, 2387), True, 'import numpy as np\n'), ((2591, 2634), 'megengine.functional.cross_entropy_with_softmax', 'F.cross_entropy_with_softmax', (['logits', 'label'], {}), '(logits, label)\n', (2619, 2634), True, 'import megengine.functional as F\n'), ((3339, 3350), 'time.time', 'time.time', ([], {}), '()\n', (3348, 3350), False, 'import time\n'), ((3753, 3806), 'argparse.ArgumentTypeError', 'argparse.ArgumentTypeError', (['"""Boolean value expected."""'], {}), "('Boolean value expected.')\n", (3779, 3806), False, 'import argparse\n'), ((5951, 5970), 'megengine.core.graph.get_default_graph', 'get_default_graph', ([], {}), '()\n', (5968, 5970), False, 'from megengine.core.graph import get_default_graph\n'), ((2250, 2290), 'numpy.random.randn', 'np.random.randn', (['batch_size', '(3)', '(224)', '(224)'], {}), '(batch_size, 3, 224, 224)\n', (2265, 2290), True, 'import numpy as np\n')]
from sqlmodel import Session, select from .models import Person, engine def create_person(nome: str, idade:int): person = Person(nome=nome, idade=idade) with Session(engine) as session: session.add(person) session.commit() session.refresh(person) return person def all_person(): query = select(Person) with Session(engine) as session: result = session.execute(query).scalars().all() return result
[ "sqlmodel.Session", "sqlmodel.select" ]
[((335, 349), 'sqlmodel.select', 'select', (['Person'], {}), '(Person)\n', (341, 349), False, 'from sqlmodel import Session, select\n'), ((167, 182), 'sqlmodel.Session', 'Session', (['engine'], {}), '(engine)\n', (174, 182), False, 'from sqlmodel import Session, select\n'), ((363, 378), 'sqlmodel.Session', 'Session', (['engine'], {}), '(engine)\n', (370, 378), False, 'from sqlmodel import Session, select\n')]
from typing import Optional from sqlmodel import Field, SQLModel from datetime import datetime class Capacity(SQLModel, table=True): """Create an SQLModel for capcities""" id: Optional[int] = Field(default=None, primary_key=True) user_id: int = Field(foreign_key="app_db.appuser.id") team_id: int = Field(foreign_key="app_db.team.id") year: int month: int days: int created_at: datetime updated_at: datetime is_locked: bool = False __table_args__ = {"schema": "app_db"}
[ "sqlmodel.Field" ]
[((203, 240), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'primary_key': '(True)'}), '(default=None, primary_key=True)\n', (208, 240), False, 'from sqlmodel import Field, SQLModel\n'), ((260, 298), 'sqlmodel.Field', 'Field', ([], {'foreign_key': '"""app_db.appuser.id"""'}), "(foreign_key='app_db.appuser.id')\n", (265, 298), False, 'from sqlmodel import Field, SQLModel\n'), ((318, 353), 'sqlmodel.Field', 'Field', ([], {'foreign_key': '"""app_db.team.id"""'}), "(foreign_key='app_db.team.id')\n", (323, 353), False, 'from sqlmodel import Field, SQLModel\n')]
import uuid from datetime import datetime from typing import Optional, List import pydantic from sqlalchemy import Column, JSON from sqlmodel import Field, Relationship from api.db.models.base import BaseModel, BaseTable class SchemaDef(pydantic.BaseModel): id: Optional[str] = None name: Optional[str] = None version: Optional[str] = None attributes: Optional[List[str]] = [] class Governance(pydantic.BaseModel): schema_def: Optional[SchemaDef] = None cred_def_id: Optional[str] = None cred_def_tag: Optional[str] = None class SandboxBase(BaseModel): tag: Optional[str] = Field(nullable=True) governance: dict = Field(default={}, sa_column=Column(JSON)) governance_cas: dict = Field(default={}, sa_column=Column(JSON)) class Sandbox(SandboxBase, BaseTable, table=True): lobs: List["Lob"] = Relationship(back_populates="sandbox") # noqa: F821 students: List["Student"] = Relationship(back_populates="sandbox") # noqa: F821 applicants: List["Applicant"] = Relationship(back_populates="sandbox") # noqa: F821 class SandboxCreate(SandboxBase): tag: Optional[str] = None governance: Optional[Governance] = None governance_cas: Optional[Governance] = None class SandboxUpdate(SandboxBase): id: uuid.UUID tag: Optional[str] = None governance: Optional[Governance] = None governance_cas: Optional[Governance] = None class SandboxRead(SandboxBase): id: uuid.UUID created_at: datetime updated_at: datetime tag: Optional[str] = None governance: Optional[Governance] = None governance_cas: Optional[Governance] = None
[ "sqlmodel.Relationship", "sqlmodel.Field" ]
[((614, 634), 'sqlmodel.Field', 'Field', ([], {'nullable': '(True)'}), '(nullable=True)\n', (619, 634), False, 'from sqlmodel import Field, Relationship\n'), ((846, 884), 'sqlmodel.Relationship', 'Relationship', ([], {'back_populates': '"""sandbox"""'}), "(back_populates='sandbox')\n", (858, 884), False, 'from sqlmodel import Field, Relationship\n'), ((931, 969), 'sqlmodel.Relationship', 'Relationship', ([], {'back_populates': '"""sandbox"""'}), "(back_populates='sandbox')\n", (943, 969), False, 'from sqlmodel import Field, Relationship\n'), ((1020, 1058), 'sqlmodel.Relationship', 'Relationship', ([], {'back_populates': '"""sandbox"""'}), "(back_populates='sandbox')\n", (1032, 1058), False, 'from sqlmodel import Field, Relationship\n'), ((686, 698), 'sqlalchemy.Column', 'Column', (['JSON'], {}), '(JSON)\n', (692, 698), False, 'from sqlalchemy import Column, JSON\n'), ((755, 767), 'sqlalchemy.Column', 'Column', (['JSON'], {}), '(JSON)\n', (761, 767), False, 'from sqlalchemy import Column, JSON\n')]
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import argparse import cv2 import megengine as mge import megengine.data.dataset as dataset import megengine.jit as jit import numpy as np from megengine.utils.http_download import download_from_url from official.vision.segmentation.deeplabv3plus import DeepLabV3Plus class Config: NUM_CLASSES = 21 IMG_SIZE = 512 IMG_MEAN = [103.530, 116.280, 123.675] IMG_STD = [57.375, 57.120, 58.395] cfg = Config() def main(): parser = argparse.ArgumentParser() parser.add_argument("--image_path", type=str, default=None, help="inference image") parser.add_argument("--model_path", type=str, default=None, help="inference model") args = parser.parse_args() net = load_model(args.model_path) if args.image_path is None: download_from_url("https://data.megengine.org.cn/images/cat.jpg", "test.jpg") img = cv2.imread("test.jpg") else: img = cv2.imread(args.image_path) pred = inference(img, net) cv2.imwrite("out.jpg", pred) def load_model(model_path): model_dict = mge.load(model_path) net = DeepLabV3Plus(class_num=cfg.NUM_CLASSES) net.load_state_dict(model_dict["state_dict"]) print("load model %s" % (model_path)) net.eval() return net def inference(img, net): @jit.trace(symbolic=True, opt_level=2) def pred_fun(data, net=None): net.eval() pred = net(data) return pred img = (img.astype("float32") - np.array(cfg.IMG_MEAN)) / np.array(cfg.IMG_STD) orih, oriw = img.shape[:2] img = cv2.resize(img, (cfg.IMG_SIZE, cfg.IMG_SIZE)) img = img.transpose(2, 0, 1)[np.newaxis] data = mge.tensor() data.set_value(img) pred = pred_fun(data, net=net) pred = pred.numpy().squeeze().argmax(0) pred = cv2.resize( pred.astype("uint8"), (oriw, orih), interpolation=cv2.INTER_NEAREST ) class_colors = dataset.PascalVOC.class_colors out = np.zeros((orih, oriw, 3)) nids = np.unique(pred) for t in nids: out[pred == t] = class_colors[t] return out if __name__ == "__main__": main()
[ "megengine.jit.trace", "megengine.tensor", "megengine.load", "megengine.utils.http_download.download_from_url" ]
[((829, 854), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (852, 854), False, 'import argparse\n'), ((1343, 1371), 'cv2.imwrite', 'cv2.imwrite', (['"""out.jpg"""', 'pred'], {}), "('out.jpg', pred)\n", (1354, 1371), False, 'import cv2\n'), ((1419, 1439), 'megengine.load', 'mge.load', (['model_path'], {}), '(model_path)\n', (1427, 1439), True, 'import megengine as mge\n'), ((1450, 1490), 'official.vision.segmentation.deeplabv3plus.DeepLabV3Plus', 'DeepLabV3Plus', ([], {'class_num': 'cfg.NUM_CLASSES'}), '(class_num=cfg.NUM_CLASSES)\n', (1463, 1490), False, 'from official.vision.segmentation.deeplabv3plus import DeepLabV3Plus\n'), ((1645, 1682), 'megengine.jit.trace', 'jit.trace', ([], {'symbolic': '(True)', 'opt_level': '(2)'}), '(symbolic=True, opt_level=2)\n', (1654, 1682), True, 'import megengine.jit as jit\n'), ((1906, 1951), 'cv2.resize', 'cv2.resize', (['img', '(cfg.IMG_SIZE, cfg.IMG_SIZE)'], {}), '(img, (cfg.IMG_SIZE, cfg.IMG_SIZE))\n', (1916, 1951), False, 'import cv2\n'), ((2009, 2021), 'megengine.tensor', 'mge.tensor', ([], {}), '()\n', (2019, 2021), True, 'import megengine as mge\n'), ((2291, 2316), 'numpy.zeros', 'np.zeros', (['(orih, oriw, 3)'], {}), '((orih, oriw, 3))\n', (2299, 2316), True, 'import numpy as np\n'), ((2328, 2343), 'numpy.unique', 'np.unique', (['pred'], {}), '(pred)\n', (2337, 2343), True, 'import numpy as np\n'), ((1141, 1218), 'megengine.utils.http_download.download_from_url', 'download_from_url', (['"""https://data.megengine.org.cn/images/cat.jpg"""', '"""test.jpg"""'], {}), "('https://data.megengine.org.cn/images/cat.jpg', 'test.jpg')\n", (1158, 1218), False, 'from megengine.utils.http_download import download_from_url\n'), ((1233, 1255), 'cv2.imread', 'cv2.imread', (['"""test.jpg"""'], {}), "('test.jpg')\n", (1243, 1255), False, 'import cv2\n'), ((1280, 1307), 'cv2.imread', 'cv2.imread', (['args.image_path'], {}), '(args.image_path)\n', (1290, 1307), False, 'import cv2\n'), ((1843, 1864), 'numpy.array', 'np.array', (['cfg.IMG_STD'], {}), '(cfg.IMG_STD)\n', (1851, 1864), True, 'import numpy as np\n'), ((1817, 1839), 'numpy.array', 'np.array', (['cfg.IMG_MEAN'], {}), '(cfg.IMG_MEAN)\n', (1825, 1839), True, 'import numpy as np\n')]
""" Finite element reference mappings. """ import numpy as nm from sfepy import Config from sfepy.base.base import get_default, output from sfepy.base.mem_usage import raise_if_too_large from sfepy.discrete.common.mappings import Mapping from sfepy.discrete.common.extmods.mappings import CMapping from sfepy.discrete import PolySpace class FEMapping(Mapping): """ Base class for finite element mappings. """ def __init__(self, coors, conn, poly_space=None, gel=None, order=1): self.coors = coors self.conn = conn try: nm.take(self.coors, self.conn) except IndexError: output('coordinates shape: %s' % list(coors.shape)) output('connectivity: min: %d, max: %d' % (conn.min(), conn.max())) msg = 'incompatible connectivity and coordinates (see above)' raise IndexError(msg) self.n_el, self.n_ep = conn.shape self.dim = self.coors.shape[1] if poly_space is None: poly_space = PolySpace.any_from_args(None, gel, order, base='lagrange', force_bubble=False) self.poly_space = poly_space self.indices = slice(None) def get_geometry(self): """ Return reference element geometry as a GeometryElement instance. """ return self.poly_space.geometry def get_base(self, coors, diff=False): """ Get base functions or their gradient evaluated in given coordinates. """ bf = self.poly_space.eval_base(coors, diff=diff) return bf def get_physical_qps(self, qp_coors): """ Get physical quadrature points corresponding to given reference element quadrature points. Returns ------- qps : array The physical quadrature points ordered element by element, i.e. with shape (n_el, n_qp, dim). """ bf = self.get_base(qp_coors) qps = nm.dot(nm.atleast_2d(bf.squeeze()), self.coors[self.conn]) # Reorder so that qps are really element by element. qps = nm.ascontiguousarray(nm.swapaxes(qps, 0, 1)) return qps class VolumeMapping(FEMapping): """ Mapping from reference domain to physical domain of the same space dimension. """ def get_mapping(self, qp_coors, weights, poly_space=None, ori=None, transform=None): """ Get the mapping for given quadrature points, weights, and polynomial space. Returns ------- cmap : CMapping instance The volume mapping. """ poly_space = get_default(poly_space, self.poly_space) bf_g = self.get_base(qp_coors, diff=True) ebf_g = poly_space.eval_base(qp_coors, diff=True, ori=ori, force_axis=True, transform=transform) size = ebf_g.nbytes * self.n_el site_config = Config() raise_if_too_large(size, site_config.refmap_memory_factor()) flag = (ori is not None) or (ebf_g.shape[0] > 1) cmap = CMapping(self.n_el, qp_coors.shape[0], self.dim, poly_space.n_nod, mode='volume', flag=flag) cmap.describe(self.coors, self.conn, bf_g, ebf_g, weights) return cmap class SurfaceMapping(FEMapping): """ Mapping from reference domain to physical domain of the space dimension higher by one. """ def set_basis_indices(self, indices): """ Set indices to cell-based basis that give the facet-based basis. """ self.indices = indices def get_base(self, coors, diff=False): """ Get base functions or their gradient evaluated in given coordinates. """ bf = self.poly_space.eval_base(coors, diff=diff) ii = max(self.dim - 1, 1) return nm.ascontiguousarray(bf[..., :ii:, self.indices]) def get_mapping(self, qp_coors, weights, poly_space=None, mode='surface'): """ Get the mapping for given quadrature points, weights, and polynomial space. Returns ------- cmap : CMapping instance The surface mapping. """ poly_space = get_default(poly_space, self.poly_space) bf_g = self.get_base(qp_coors, diff=True) if nm.allclose(bf_g, 0.0) and self.dim > 1: raise ValueError('zero base function gradient!') cmap = CMapping(self.n_el, qp_coors.shape[0], self.dim, poly_space.n_nod, mode=mode) cmap.describe(self.coors, self.conn, bf_g, None, weights) if self.dim == 1: # Fix normals. ii = nm.where(self.conn == 0)[0] cmap.normal[ii] *= -1.0 return cmap
[ "sfepy.base.base.get_default", "sfepy.discrete.common.extmods.mappings.CMapping", "sfepy.discrete.PolySpace.any_from_args", "sfepy.Config" ]
[((2744, 2784), 'sfepy.base.base.get_default', 'get_default', (['poly_space', 'self.poly_space'], {}), '(poly_space, self.poly_space)\n', (2755, 2784), False, 'from sfepy.base.base import get_default, output\n'), ((3041, 3049), 'sfepy.Config', 'Config', ([], {}), '()\n', (3047, 3049), False, 'from sfepy import Config\n'), ((3193, 3290), 'sfepy.discrete.common.extmods.mappings.CMapping', 'CMapping', (['self.n_el', 'qp_coors.shape[0]', 'self.dim', 'poly_space.n_nod'], {'mode': '"""volume"""', 'flag': 'flag'}), "(self.n_el, qp_coors.shape[0], self.dim, poly_space.n_nod, mode=\n 'volume', flag=flag)\n", (3201, 3290), False, 'from sfepy.discrete.common.extmods.mappings import CMapping\n'), ((3973, 4021), 'numpy.ascontiguousarray', 'nm.ascontiguousarray', (['bf[..., :ii, self.indices]'], {}), '(bf[..., :ii, self.indices])\n', (3993, 4021), True, 'import numpy as nm\n'), ((4339, 4379), 'sfepy.base.base.get_default', 'get_default', (['poly_space', 'self.poly_space'], {}), '(poly_space, self.poly_space)\n', (4350, 4379), False, 'from sfepy.base.base import get_default, output\n'), ((4560, 4637), 'sfepy.discrete.common.extmods.mappings.CMapping', 'CMapping', (['self.n_el', 'qp_coors.shape[0]', 'self.dim', 'poly_space.n_nod'], {'mode': 'mode'}), '(self.n_el, qp_coors.shape[0], self.dim, poly_space.n_nod, mode=mode)\n', (4568, 4637), False, 'from sfepy.discrete.common.extmods.mappings import CMapping\n'), ((575, 605), 'numpy.take', 'nm.take', (['self.coors', 'self.conn'], {}), '(self.coors, self.conn)\n', (582, 605), True, 'import numpy as nm\n'), ((1025, 1103), 'sfepy.discrete.PolySpace.any_from_args', 'PolySpace.any_from_args', (['None', 'gel', 'order'], {'base': '"""lagrange"""', 'force_bubble': '(False)'}), "(None, gel, order, base='lagrange', force_bubble=False)\n", (1048, 1103), False, 'from sfepy.discrete import PolySpace\n'), ((2220, 2242), 'numpy.swapaxes', 'nm.swapaxes', (['qps', '(0)', '(1)'], {}), '(qps, 0, 1)\n', (2231, 2242), True, 'import numpy as nm\n'), ((4442, 4464), 'numpy.allclose', 'nm.allclose', (['bf_g', '(0.0)'], {}), '(bf_g, 0.0)\n', (4453, 4464), True, 'import numpy as nm\n'), ((4798, 4822), 'numpy.where', 'nm.where', (['(self.conn == 0)'], {}), '(self.conn == 0)\n', (4806, 4822), True, 'import numpy as nm\n')]
from datetime import datetime, date from typing import Optional from fastapi import APIRouter, Depends from sqlmodel import Field, SQLModel from ...db import get_session from sqlalchemy import select from sqlalchemy.ext.asyncio import AsyncSession router = APIRouter() class HistoryVpi(SQLModel, table=True): id: Optional[int] = Field(default=None, primary_key=True) history_id: int detail: str vpi_method: str velum_structure: str tonsil_enlargement_right: str tonsil_enlargement_left: str adenoid_hypertrophy_percent: int tonsilectomy_right: bool tonsilectomy_left: bool ademoidectomy: bool tongue_tie: bool tongue_tie_frenectomy: bool veloadenoid_clodure: str gap_type: str gap_length: str vpi: str speech_therapy: bool furlow_palatoplasty: bool furlow_palatoplasty_date: date sphincteroplasty: bool sphicteroplasty_date: date obturator: bool obturator_date: date created_at: datetime updated_at: datetime created_by: int updated_by: Optional[int] = None @router.post("/history_vpi", response_model=HistoryVpi) async def create_history_vpi(history_vpi: HistoryVpi, session: AsyncSession = Depends(get_session)): session.add(history_vpi) await session.commit() await session.refresh(history_vpi) return history_vpi @router.get("/history_vpi/{id}", response_model=HistoryVpi) async def get_history_vpi(id: int, session: AsyncSession = Depends(get_session)): history_vpis = await session.execute(select(HistoryVpi).where(HistoryVpi.id == id)) history_vpi = history_vpis.scalars().first() return history_vpi @router.put("/history_vpi/{id}", response_model=HistoryVpi) async def update_history_vpi(id: int, session: AsyncSession = Depends(get_session)): return None @router.delete("/history_vpi/{id}") async def delete_history_vpi(session: AsyncSession = Depends(get_session)): return None
[ "sqlmodel.Field" ]
[((261, 272), 'fastapi.APIRouter', 'APIRouter', ([], {}), '()\n', (270, 272), False, 'from fastapi import APIRouter, Depends\n'), ((339, 376), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'primary_key': '(True)'}), '(default=None, primary_key=True)\n', (344, 376), False, 'from sqlmodel import Field, SQLModel\n'), ((1212, 1232), 'fastapi.Depends', 'Depends', (['get_session'], {}), '(get_session)\n', (1219, 1232), False, 'from fastapi import APIRouter, Depends\n'), ((1474, 1494), 'fastapi.Depends', 'Depends', (['get_session'], {}), '(get_session)\n', (1481, 1494), False, 'from fastapi import APIRouter, Depends\n'), ((1781, 1801), 'fastapi.Depends', 'Depends', (['get_session'], {}), '(get_session)\n', (1788, 1801), False, 'from fastapi import APIRouter, Depends\n'), ((1911, 1931), 'fastapi.Depends', 'Depends', (['get_session'], {}), '(get_session)\n', (1918, 1931), False, 'from fastapi import APIRouter, Depends\n'), ((1538, 1556), 'sqlalchemy.select', 'select', (['HistoryVpi'], {}), '(HistoryVpi)\n', (1544, 1556), False, 'from sqlalchemy import select\n')]
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import argparse import bisect import multiprocessing import os import time # pylint: disable=import-error import model as resnet_model import megengine import megengine.autodiff as autodiff import megengine.data as data import megengine.data.transform as T import megengine.distributed as dist import megengine.functional as F import megengine.optimizer as optim logging = megengine.logger.get_logger() def main(): parser = argparse.ArgumentParser(description="MegEngine ImageNet Training") parser.add_argument("-d", "--data", metavar="DIR", help="path to imagenet dataset") parser.add_argument( "-a", "--arch", default="resnet50", help="model architecture (default: resnet50)", ) parser.add_argument( "-n", "--ngpus", default=None, type=int, help="number of GPUs per node (default: None, use all available GPUs)", ) parser.add_argument( "--save", metavar="DIR", default="output", help="path to save checkpoint and log", ) parser.add_argument( "--epochs", default=10, type=int, help="number of total epochs to run (default: 10)", ) parser.add_argument( "-b", "--batch-size", metavar="SIZE", default=64, type=int, help="batch size for single GPU (default: 64)", ) parser.add_argument( "--lr", "--learning-rate", metavar="LR", default=0.025, type=float, help="learning rate for single GPU (default: 0.025)", ) parser.add_argument( "--momentum", default=0.9, type=float, help="momentum (default: 0.9)" ) parser.add_argument( "--weight-decay", default=1e-4, type=float, help="weight decay (default: 1e-4)" ) parser.add_argument("-j", "--workers", default=2, type=int) parser.add_argument( "-p", "--print-freq", default=20, type=int, metavar="N", help="print frequency (default: 20)", ) parser.add_argument("--dist-addr", default="localhost") parser.add_argument("--dist-port", default=23456, type=int) parser.add_argument("--world-size", default=1, type=int) parser.add_argument("--rank", default=0, type=int) parser.add_argument( "--enable-dtr", dest="enable_dtr", action="store_true", help="Enable DTR") args = parser.parse_args() # create server if is master if args.rank <= 0: server = dist.Server(port=args.dist_port) # pylint: disable=unused-variable # noqa: F841 # get device count with multiprocessing.Pool(1) as pool: ngpus_per_node, _ = pool.map(megengine.get_device_count, ["gpu", "cpu"]) if args.ngpus: ngpus_per_node = args.ngpus # launch processes procs = [] for local_rank in range(ngpus_per_node): p = multiprocessing.Process( target=worker, kwargs=dict( rank=args.rank * ngpus_per_node + local_rank, world_size=args.world_size * ngpus_per_node, ngpus_per_node=ngpus_per_node, args=args, ), ) p.start() procs.append(p) # join processes for p in procs: p.join() def worker(rank, world_size, ngpus_per_node, args): # pylint: disable=too-many-statements # enable DTR if args.enable_dtr: from megengine.utils.dtr import DTR ds = DTR(memory_budget=5*1024**3) if rank == 0: os.makedirs(os.path.join(args.save, args.arch), exist_ok=True) megengine.logger.set_log_file(os.path.join(args.save, args.arch, "log.txt")) # init process group if world_size > 1: dist.init_process_group( master_ip=args.dist_addr, port=args.dist_port, world_size=world_size, rank=rank, device=rank % ngpus_per_node, backend="nccl", ) logging.info( "init process group rank %d / %d", dist.get_rank(), dist.get_world_size() ) # build dataset train_dataloader, valid_dataloader = build_dataset(args) train_queue = iter(train_dataloader) # infinite steps_per_epoch = 1280000 // (world_size * args.batch_size) # build model model = resnet_model.__dict__[args.arch]() # Sync parameters if world_size > 1: dist.bcast_list_(model.parameters(), dist.WORLD) # Autodiff gradient manager gm = autodiff.GradManager().attach( model.parameters(), callbacks=dist.make_allreduce_cb("SUM") if world_size > 1 else None, ) # Optimizer opt = optim.SGD( model.parameters(), lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay * world_size, # scale weight decay in "SUM" mode ) # train and valid func def train_step(image, label): with gm: logits = model(image) loss = F.nn.cross_entropy(logits, label) acc1, acc5 = F.topk_accuracy(logits, label, topk=(1, 5)) gm.backward(loss) opt.step().clear_grad() return loss, acc1, acc5 def valid_step(image, label): logits = model(image) loss = F.nn.cross_entropy(logits, label) acc1, acc5 = F.topk_accuracy(logits, label, topk=(1, 5)) # calculate mean values if world_size > 1: loss = F.distributed.all_reduce_sum(loss) / world_size acc1 = F.distributed.all_reduce_sum(acc1) / world_size acc5 = F.distributed.all_reduce_sum(acc5) / world_size return loss, acc1, acc5 # multi-step learning rate scheduler with warmup def adjust_learning_rate(step): lr = args.lr * 0.1 ** bisect.bisect_right( [30 * steps_per_epoch, 60 * steps_per_epoch, 80 * steps_per_epoch], step ) if step < 5 * steps_per_epoch: # warmup lr = args.lr * (step / (5 * steps_per_epoch)) for param_group in opt.param_groups: param_group["lr"] = lr return lr # start training objs = AverageMeter("Loss") top1 = AverageMeter("Acc@1") top5 = AverageMeter("Acc@5") clck = AverageMeter("Time") for step in range(0, args.epochs * steps_per_epoch): lr = adjust_learning_rate(step) t = time.time() image, label = next(train_queue) image = megengine.tensor(image, dtype="float32") label = megengine.tensor(label, dtype="int32") loss, acc1, acc5 = train_step(image, label) objs.update(loss.item()) top1.update(100 * acc1.item()) top5.update(100 * acc5.item()) clck.update(time.time() - t) if step % args.print_freq == 0 and dist.get_rank() == 0: logging.info( "Epoch %d Step %d, LR %.4f, %s %s %s %s", step // steps_per_epoch, step, lr, objs, top1, top5, clck, ) objs.reset() top1.reset() top5.reset() clck.reset() if (step + 1) % steps_per_epoch == 0: model.eval() _, valid_acc1, valid_acc5 = valid(valid_step, valid_dataloader, args) model.train() logging.info( "Epoch %d Test Acc@1 %.3f, Acc@5 %.3f", (step + 1) // steps_per_epoch, valid_acc1, valid_acc5, ) megengine.save( { "epoch": (step + 1) // steps_per_epoch, "state_dict": model.state_dict(), }, os.path.join(args.save, args.arch, "checkpoint.pkl"), ) def valid(func, data_queue, args): objs = AverageMeter("Loss") top1 = AverageMeter("Acc@1") top5 = AverageMeter("Acc@5") clck = AverageMeter("Time") t = time.time() for step, (image, label) in enumerate(data_queue): image = megengine.tensor(image, dtype="float32") label = megengine.tensor(label, dtype="int32") n = image.shape[0] loss, acc1, acc5 = func(image, label) objs.update(loss.item(), n) top1.update(100 * acc1.item(), n) top5.update(100 * acc5.item(), n) clck.update(time.time() - t, n) t = time.time() if step % args.print_freq == 0 and dist.get_rank() == 0: logging.info("Test step %d, %s %s %s %s", step, objs, top1, top5, clck) return objs.avg, top1.avg, top5.avg def build_dataset(args): train_dataset = data.dataset.ImageNet(args.data, train=True) train_sampler = data.Infinite( data.RandomSampler(train_dataset, batch_size=args.batch_size, drop_last=True) ) train_dataloader = data.DataLoader( train_dataset, sampler=train_sampler, transform=T.Compose( [ # Baseline Augmentation for small models T.RandomResizedCrop(224), T.RandomHorizontalFlip(), T.Normalize( mean=[103.530, 116.280, 123.675], std=[57.375, 57.120, 58.395] ), # BGR T.ToMode("CHW"), ] ) if args.arch in ("resnet18", "resnet34") else T.Compose( [ # Facebook Augmentation for large models T.RandomResizedCrop(224), T.RandomHorizontalFlip(), T.ColorJitter(brightness=0.4, contrast=0.4, saturation=0.4), T.Normalize( mean=[103.530, 116.280, 123.675], std=[57.375, 57.120, 58.395] ), # BGR T.ToMode("CHW"), ] ), num_workers=args.workers, ) valid_dataset = data.dataset.ImageNet(args.data, train=False) valid_sampler = data.SequentialSampler( valid_dataset, batch_size=100, drop_last=False ) valid_dataloader = data.DataLoader( valid_dataset, sampler=valid_sampler, transform=T.Compose( [ T.Resize(256), T.CenterCrop(224), T.Normalize( mean=[103.530, 116.280, 123.675], std=[57.375, 57.120, 58.395] ), # BGR T.ToMode("CHW"), ] ), num_workers=args.workers, ) return train_dataloader, valid_dataloader class AverageMeter: """Computes and stores the average and current value""" def __init__(self, name, fmt=":.3f"): self.name = name self.fmt = fmt self.reset() def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count def __str__(self): fmtstr = "{name} {val" + self.fmt + "} ({avg" + self.fmt + "})" return fmtstr.format(**self.__dict__) if __name__ == "__main__": main()
[ "megengine.functional.topk_accuracy", "megengine.data.transform.RandomHorizontalFlip", "megengine.distributed.init_process_group", "megengine.utils.dtr.DTR", "megengine.distributed.get_rank", "megengine.functional.distributed.all_reduce_sum", "megengine.data.transform.CenterCrop", "megengine.distributed.get_world_size", "megengine.tensor", "megengine.data.transform.Resize", "megengine.functional.nn.cross_entropy", "megengine.data.SequentialSampler", "megengine.distributed.Server", "megengine.data.transform.Normalize", "megengine.logger.get_logger", "megengine.data.transform.ToMode", "megengine.distributed.make_allreduce_cb", "megengine.data.RandomSampler", "megengine.data.transform.RandomResizedCrop", "megengine.data.transform.ColorJitter", "megengine.data.dataset.ImageNet", "megengine.autodiff.GradManager" ]
[((753, 782), 'megengine.logger.get_logger', 'megengine.logger.get_logger', ([], {}), '()\n', (780, 782), False, 'import megengine\n'), ((809, 875), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""MegEngine ImageNet Training"""'}), "(description='MegEngine ImageNet Training')\n", (832, 875), False, 'import argparse\n'), ((8402, 8413), 'time.time', 'time.time', ([], {}), '()\n', (8411, 8413), False, 'import time\n'), ((9079, 9123), 'megengine.data.dataset.ImageNet', 'data.dataset.ImageNet', (['args.data'], {'train': '(True)'}), '(args.data, train=True)\n', (9100, 9123), True, 'import megengine.data as data\n'), ((10255, 10300), 'megengine.data.dataset.ImageNet', 'data.dataset.ImageNet', (['args.data'], {'train': '(False)'}), '(args.data, train=False)\n', (10276, 10300), True, 'import megengine.data as data\n'), ((10321, 10391), 'megengine.data.SequentialSampler', 'data.SequentialSampler', (['valid_dataset'], {'batch_size': '(100)', 'drop_last': '(False)'}), '(valid_dataset, batch_size=100, drop_last=False)\n', (10343, 10391), True, 'import megengine.data as data\n'), ((2923, 2955), 'megengine.distributed.Server', 'dist.Server', ([], {'port': 'args.dist_port'}), '(port=args.dist_port)\n', (2934, 2955), True, 'import megengine.distributed as dist\n'), ((3038, 3061), 'multiprocessing.Pool', 'multiprocessing.Pool', (['(1)'], {}), '(1)\n', (3058, 3061), False, 'import multiprocessing\n'), ((3897, 3929), 'megengine.utils.dtr.DTR', 'DTR', ([], {'memory_budget': '(5 * 1024 ** 3)'}), '(memory_budget=5 * 1024 ** 3)\n', (3900, 3929), False, 'from megengine.utils.dtr import DTR\n'), ((4156, 4315), 'megengine.distributed.init_process_group', 'dist.init_process_group', ([], {'master_ip': 'args.dist_addr', 'port': 'args.dist_port', 'world_size': 'world_size', 'rank': 'rank', 'device': '(rank % ngpus_per_node)', 'backend': '"""nccl"""'}), "(master_ip=args.dist_addr, port=args.dist_port,\n world_size=world_size, rank=rank, device=rank % ngpus_per_node, backend\n ='nccl')\n", (4179, 4315), True, 'import megengine.distributed as dist\n'), ((5686, 5719), 'megengine.functional.nn.cross_entropy', 'F.nn.cross_entropy', (['logits', 'label'], {}), '(logits, label)\n', (5704, 5719), True, 'import megengine.functional as F\n'), ((5741, 5784), 'megengine.functional.topk_accuracy', 'F.topk_accuracy', (['logits', 'label'], {'topk': '(1, 5)'}), '(logits, label, topk=(1, 5))\n', (5756, 5784), True, 'import megengine.functional as F\n'), ((6781, 6792), 'time.time', 'time.time', ([], {}), '()\n', (6790, 6792), False, 'import time\n'), ((6851, 6891), 'megengine.tensor', 'megengine.tensor', (['image'], {'dtype': '"""float32"""'}), "(image, dtype='float32')\n", (6867, 6891), False, 'import megengine\n'), ((6908, 6946), 'megengine.tensor', 'megengine.tensor', (['label'], {'dtype': '"""int32"""'}), "(label, dtype='int32')\n", (6924, 6946), False, 'import megengine\n'), ((8485, 8525), 'megengine.tensor', 'megengine.tensor', (['image'], {'dtype': '"""float32"""'}), "(image, dtype='float32')\n", (8501, 8525), False, 'import megengine\n'), ((8542, 8580), 'megengine.tensor', 'megengine.tensor', (['label'], {'dtype': '"""int32"""'}), "(label, dtype='int32')\n", (8558, 8580), False, 'import megengine\n'), ((8829, 8840), 'time.time', 'time.time', ([], {}), '()\n', (8838, 8840), False, 'import time\n'), ((9167, 9244), 'megengine.data.RandomSampler', 'data.RandomSampler', (['train_dataset'], {'batch_size': 'args.batch_size', 'drop_last': '(True)'}), '(train_dataset, batch_size=args.batch_size, drop_last=True)\n', (9185, 9244), True, 'import megengine.data as data\n'), ((3964, 3998), 'os.path.join', 'os.path.join', (['args.save', 'args.arch'], {}), '(args.save, args.arch)\n', (3976, 3998), False, 'import os\n'), ((4053, 4098), 'os.path.join', 'os.path.join', (['args.save', 'args.arch', '"""log.txt"""'], {}), "(args.save, args.arch, 'log.txt')\n", (4065, 4098), False, 'import os\n'), ((4459, 4474), 'megengine.distributed.get_rank', 'dist.get_rank', ([], {}), '()\n', (4472, 4474), True, 'import megengine.distributed as dist\n'), ((4476, 4497), 'megengine.distributed.get_world_size', 'dist.get_world_size', ([], {}), '()\n', (4495, 4497), True, 'import megengine.distributed as dist\n'), ((4918, 4940), 'megengine.autodiff.GradManager', 'autodiff.GradManager', ([], {}), '()\n', (4938, 4940), True, 'import megengine.autodiff as autodiff\n'), ((5405, 5438), 'megengine.functional.nn.cross_entropy', 'F.nn.cross_entropy', (['logits', 'label'], {}), '(logits, label)\n', (5423, 5438), True, 'import megengine.functional as F\n'), ((5464, 5507), 'megengine.functional.topk_accuracy', 'F.topk_accuracy', (['logits', 'label'], {'topk': '(1, 5)'}), '(logits, label, topk=(1, 5))\n', (5479, 5507), True, 'import megengine.functional as F\n'), ((4995, 5024), 'megengine.distributed.make_allreduce_cb', 'dist.make_allreduce_cb', (['"""SUM"""'], {}), "('SUM')\n", (5017, 5024), True, 'import megengine.distributed as dist\n'), ((5863, 5897), 'megengine.functional.distributed.all_reduce_sum', 'F.distributed.all_reduce_sum', (['loss'], {}), '(loss)\n', (5891, 5897), True, 'import megengine.functional as F\n'), ((5930, 5964), 'megengine.functional.distributed.all_reduce_sum', 'F.distributed.all_reduce_sum', (['acc1'], {}), '(acc1)\n', (5958, 5964), True, 'import megengine.functional as F\n'), ((5997, 6031), 'megengine.functional.distributed.all_reduce_sum', 'F.distributed.all_reduce_sum', (['acc5'], {}), '(acc5)\n', (6025, 6031), True, 'import megengine.functional as F\n'), ((6197, 6294), 'bisect.bisect_right', 'bisect.bisect_right', (['[30 * steps_per_epoch, 60 * steps_per_epoch, 80 * steps_per_epoch]', 'step'], {}), '([30 * steps_per_epoch, 60 * steps_per_epoch, 80 *\n steps_per_epoch], step)\n', (6216, 6294), False, 'import bisect\n'), ((7132, 7143), 'time.time', 'time.time', ([], {}), '()\n', (7141, 7143), False, 'import time\n'), ((7193, 7208), 'megengine.distributed.get_rank', 'dist.get_rank', ([], {}), '()\n', (7206, 7208), True, 'import megengine.distributed as dist\n'), ((8158, 8210), 'os.path.join', 'os.path.join', (['args.save', 'args.arch', '"""checkpoint.pkl"""'], {}), "(args.save, args.arch, 'checkpoint.pkl')\n", (8170, 8210), False, 'import os\n'), ((8797, 8808), 'time.time', 'time.time', ([], {}), '()\n', (8806, 8808), False, 'import time\n'), ((8885, 8900), 'megengine.distributed.get_rank', 'dist.get_rank', ([], {}), '()\n', (8898, 8900), True, 'import megengine.distributed as dist\n'), ((10559, 10572), 'megengine.data.transform.Resize', 'T.Resize', (['(256)'], {}), '(256)\n', (10567, 10572), True, 'import megengine.data.transform as T\n'), ((10590, 10607), 'megengine.data.transform.CenterCrop', 'T.CenterCrop', (['(224)'], {}), '(224)\n', (10602, 10607), True, 'import megengine.data.transform as T\n'), ((10625, 10697), 'megengine.data.transform.Normalize', 'T.Normalize', ([], {'mean': '[103.53, 116.28, 123.675]', 'std': '[57.375, 57.12, 58.395]'}), '(mean=[103.53, 116.28, 123.675], std=[57.375, 57.12, 58.395])\n', (10636, 10697), True, 'import megengine.data.transform as T\n'), ((10763, 10778), 'megengine.data.transform.ToMode', 'T.ToMode', (['"""CHW"""'], {}), "('CHW')\n", (10771, 10778), True, 'import megengine.data.transform as T\n'), ((9446, 9470), 'megengine.data.transform.RandomResizedCrop', 'T.RandomResizedCrop', (['(224)'], {}), '(224)\n', (9465, 9470), True, 'import megengine.data.transform as T\n'), ((9488, 9512), 'megengine.data.transform.RandomHorizontalFlip', 'T.RandomHorizontalFlip', ([], {}), '()\n', (9510, 9512), True, 'import megengine.data.transform as T\n'), ((9530, 9602), 'megengine.data.transform.Normalize', 'T.Normalize', ([], {'mean': '[103.53, 116.28, 123.675]', 'std': '[57.375, 57.12, 58.395]'}), '(mean=[103.53, 116.28, 123.675], std=[57.375, 57.12, 58.395])\n', (9541, 9602), True, 'import megengine.data.transform as T\n'), ((9668, 9683), 'megengine.data.transform.ToMode', 'T.ToMode', (['"""CHW"""'], {}), "('CHW')\n", (9676, 9683), True, 'import megengine.data.transform as T\n'), ((9854, 9878), 'megengine.data.transform.RandomResizedCrop', 'T.RandomResizedCrop', (['(224)'], {}), '(224)\n', (9873, 9878), True, 'import megengine.data.transform as T\n'), ((9896, 9920), 'megengine.data.transform.RandomHorizontalFlip', 'T.RandomHorizontalFlip', ([], {}), '()\n', (9918, 9920), True, 'import megengine.data.transform as T\n'), ((9938, 9997), 'megengine.data.transform.ColorJitter', 'T.ColorJitter', ([], {'brightness': '(0.4)', 'contrast': '(0.4)', 'saturation': '(0.4)'}), '(brightness=0.4, contrast=0.4, saturation=0.4)\n', (9951, 9997), True, 'import megengine.data.transform as T\n'), ((10015, 10087), 'megengine.data.transform.Normalize', 'T.Normalize', ([], {'mean': '[103.53, 116.28, 123.675]', 'std': '[57.375, 57.12, 58.395]'}), '(mean=[103.53, 116.28, 123.675], std=[57.375, 57.12, 58.395])\n', (10026, 10087), True, 'import megengine.data.transform as T\n'), ((10153, 10168), 'megengine.data.transform.ToMode', 'T.ToMode', (['"""CHW"""'], {}), "('CHW')\n", (10161, 10168), True, 'import megengine.data.transform as T\n')]
from typing import Optional, Dict, List, Any, Union import datetime as dt from sqlmodel import Field, Session, SQLModel, create_engine, select import threading as th import queue # ~~~ Database ~~~~~~~~~~~~~~~ class Database: def __init__(self, uri: str): self.engine = create_engine(uri) SQLModel.metadata.create_all(self.engine) def create_all(self, items: List[SQLModel]): with Session(self.engine) as session: for item in items: session.add(item) session.commit() def get_by_id(self, id: Union[str, int], model: SQLModel): with Session(self.engine) as session: stmt = select(model).where(model.id == id) return session.exec(stmt).first() def get_by_field(self, key: str, value: Any, model: SQLModel): stmt = select(model).where(getattr(model, key) == value) print(stmt) return self.exec(stmt) def exec(self, stmt: str, params = {}): with Session(self.engine) as session: return session.exec(stmt, params=params).all() class DatabaseWorker(th.Thread): def __init__(self, uri: str, queue: queue.Queue, batch: int = None, timeout: int = 10 ): super().__init__() self.q = queue self.db = None self.uri = uri self.timeout = timeout self.batch = batch def run(self): self.db = Database(self.uri) while True: cache = [] try: cache.append(self.q.get(timeout=self.timeout)) if self.batch: if len(cache) % self.batch == 0: self.db.create_all(cache) cache = [] else: cache = [] except queue.Empty: self.db.create_all(cache) break # ~~~ Models ~~~~~~~~~~~~~~~~~ class Document(SQLModel, table=True): id: str = Field(primary_key=True) name: str href: str date: dt.datetime text: Optional[str] = None date_collected: dt.datetime collected_by: str class Paragraph(SQLModel, table=True): id: str = Field(primary_key=True) text: str document_id: str = Field(foreign_key="document.id") sentiment: str sent_score: float class Entity(SQLModel, table=True): id: str = Field(primary_key=True) name: str description: Optional[str] class EntityMention(SQLModel, table=True): id: Optional[int] = Field(default=None, primary_key=True) text: str score: Optional[float] label: str start: int end: int paragraph_id: str = Field(foreign_key="paragraph.id") kb_id: Optional[str] = Field(foreign_key="entity.id") class EntityFeature(SQLModel, table=True): id: int = Field(primary_key=True) kb_id: str = Field(foreign_key="entity.id") key: str value: str
[ "sqlmodel.create_engine", "sqlmodel.select", "sqlmodel.Session", "sqlmodel.SQLModel.metadata.create_all", "sqlmodel.Field" ]
[((2043, 2066), 'sqlmodel.Field', 'Field', ([], {'primary_key': '(True)'}), '(primary_key=True)\n', (2048, 2066), False, 'from sqlmodel import Field, Session, SQLModel, create_engine, select\n'), ((2256, 2279), 'sqlmodel.Field', 'Field', ([], {'primary_key': '(True)'}), '(primary_key=True)\n', (2261, 2279), False, 'from sqlmodel import Field, Session, SQLModel, create_engine, select\n'), ((2317, 2349), 'sqlmodel.Field', 'Field', ([], {'foreign_key': '"""document.id"""'}), "(foreign_key='document.id')\n", (2322, 2349), False, 'from sqlmodel import Field, Session, SQLModel, create_engine, select\n'), ((2442, 2465), 'sqlmodel.Field', 'Field', ([], {'primary_key': '(True)'}), '(primary_key=True)\n', (2447, 2465), False, 'from sqlmodel import Field, Session, SQLModel, create_engine, select\n'), ((2579, 2616), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'primary_key': '(True)'}), '(default=None, primary_key=True)\n', (2584, 2616), False, 'from sqlmodel import Field, Session, SQLModel, create_engine, select\n'), ((2725, 2758), 'sqlmodel.Field', 'Field', ([], {'foreign_key': '"""paragraph.id"""'}), "(foreign_key='paragraph.id')\n", (2730, 2758), False, 'from sqlmodel import Field, Session, SQLModel, create_engine, select\n'), ((2786, 2816), 'sqlmodel.Field', 'Field', ([], {'foreign_key': '"""entity.id"""'}), "(foreign_key='entity.id')\n", (2791, 2816), False, 'from sqlmodel import Field, Session, SQLModel, create_engine, select\n'), ((2875, 2898), 'sqlmodel.Field', 'Field', ([], {'primary_key': '(True)'}), '(primary_key=True)\n', (2880, 2898), False, 'from sqlmodel import Field, Session, SQLModel, create_engine, select\n'), ((2916, 2946), 'sqlmodel.Field', 'Field', ([], {'foreign_key': '"""entity.id"""'}), "(foreign_key='entity.id')\n", (2921, 2946), False, 'from sqlmodel import Field, Session, SQLModel, create_engine, select\n'), ((284, 302), 'sqlmodel.create_engine', 'create_engine', (['uri'], {}), '(uri)\n', (297, 302), False, 'from sqlmodel import Field, Session, SQLModel, create_engine, select\n'), ((311, 352), 'sqlmodel.SQLModel.metadata.create_all', 'SQLModel.metadata.create_all', (['self.engine'], {}), '(self.engine)\n', (339, 352), False, 'from sqlmodel import Field, Session, SQLModel, create_engine, select\n'), ((416, 436), 'sqlmodel.Session', 'Session', (['self.engine'], {}), '(self.engine)\n', (423, 436), False, 'from sqlmodel import Field, Session, SQLModel, create_engine, select\n'), ((620, 640), 'sqlmodel.Session', 'Session', (['self.engine'], {}), '(self.engine)\n', (627, 640), False, 'from sqlmodel import Field, Session, SQLModel, create_engine, select\n'), ((1004, 1024), 'sqlmodel.Session', 'Session', (['self.engine'], {}), '(self.engine)\n', (1011, 1024), False, 'from sqlmodel import Field, Session, SQLModel, create_engine, select\n'), ((841, 854), 'sqlmodel.select', 'select', (['model'], {}), '(model)\n', (847, 854), False, 'from sqlmodel import Field, Session, SQLModel, create_engine, select\n'), ((672, 685), 'sqlmodel.select', 'select', (['model'], {}), '(model)\n', (678, 685), False, 'from sqlmodel import Field, Session, SQLModel, create_engine, select\n')]
import os import math import argparse from multiprocessing import Process, Queue from tqdm import tqdm import numpy as np import megengine as mge from megengine import jit from config import config import network import dataset import misc_utils if_set_nms = True def eval_all(args): # model_path saveDir = config.model_dir evalDir = config.eval_dir misc_utils.ensure_dir(evalDir) model_file = os.path.join(saveDir, 'epoch_{}.pkl'.format(args.resume_weights)) assert os.path.exists(model_file) # load data records = misc_utils.load_json_lines(config.eval_source) # multiprocessing num_records = len(records) num_devs = args.devices num_image = math.ceil(num_records / num_devs) result_queue = Queue(1000) procs = [] all_results = [] for i in range(num_devs): start = i * num_image end = min(start + num_image, num_records) split_records = records[start:end] proc = Process(target=inference, args=( model_file, i, split_records, result_queue)) proc.start() procs.append(proc) pbar = tqdm(total=num_records, ncols=50) for i in range(num_records): t = result_queue.get() all_results.append(t) pbar.update(1) for p in procs: p.join() fpath = os.path.join(evalDir, 'dump-{}.json'.format(args.resume_weights)) misc_utils.save_json_lines(all_results, fpath) def inference(model_file, device, records, result_queue): @jit.trace(symbolic=False) def val_func(): pred_boxes = net(net.inputs) return pred_boxes net = network.Network() net.eval() check_point = mge.load(model_file) net.load_state_dict(check_point['state_dict']) for record in records: np.set_printoptions(precision=2, suppress=True) net.eval() image, gt_boxes, im_info, ID = get_data(record, device) net.inputs["image"].set_value(image.astype(np.float32)) net.inputs["im_info"].set_value(im_info) pred_boxes = val_func().numpy() # nms if if_set_nms: from set_nms_utils import set_cpu_nms n = pred_boxes.shape[0] // 2 idents = np.tile(np.arange(n)[:,None], (1, 2)).reshape(-1, 1) pred_boxes = np.hstack((pred_boxes, idents)) keep = pred_boxes[:, -2] > 0.05 pred_boxes = pred_boxes[keep] keep = set_cpu_nms(pred_boxes, 0.5) pred_boxes = pred_boxes[keep][:, :-1] else: from set_nms_utils import cpu_nms keep = pred_boxes[:, -1] > 0.05 pred_boxes = pred_boxes[keep] keep = cpu_nms(pred_boxes, 0.5) pred_boxes = pred_boxes[keep] result_dict = dict(ID=ID, height=int(im_info[0, -2]), width=int(im_info[0, -1]), dtboxes=boxes_dump(pred_boxes, False), gtboxes=boxes_dump(gt_boxes, True)) result_queue.put_nowait(result_dict) def boxes_dump(boxes, is_gt): result = [] boxes = boxes.tolist() for box in boxes: if is_gt: box_dict = {} box_dict['box'] = [box[0], box[1], box[2]-box[0], box[3]-box[1]] box_dict['tag'] = box[-1] else: box_dict = {} box_dict['box'] = [box[0], box[1], box[2]-box[0], box[3]-box[1]] box_dict['tag'] = 1 box_dict['score'] = box[-1] result.append(box_dict) return result def get_data(record, device): data = dataset.val_dataset(record) image, gt_boxes, ID = \ data['data'], data['boxes'], data['ID'] if config.eval_resize == False: resized_img, scale = image, 1 else: resized_img, scale = dataset.resize_img_by_short_and_max_size( image, config.eval_image_short_size, config.eval_image_max_size) original_height, original_width = image.shape[0:2] height, width = resized_img.shape[0:2] transposed_img = np.ascontiguousarray( resized_img.transpose(2, 0, 1)[None, :, :, :], dtype=np.float32) im_info = np.array([height, width, scale, original_height, original_width], dtype=np.float32)[None, :] return transposed_img, gt_boxes, im_info, ID def run_test(): parser = argparse.ArgumentParser() parser.add_argument('--resume_weights', '-r', default=None, type=str) parser.add_argument('--devices', '-d', default=1, type=int) args = parser.parse_args() eval_all(args) if __name__ == '__main__': run_test()
[ "megengine.jit.trace", "megengine.load" ]
[((370, 400), 'misc_utils.ensure_dir', 'misc_utils.ensure_dir', (['evalDir'], {}), '(evalDir)\n', (391, 400), False, 'import misc_utils\n'), ((508, 534), 'os.path.exists', 'os.path.exists', (['model_file'], {}), '(model_file)\n', (522, 534), False, 'import os\n'), ((565, 611), 'misc_utils.load_json_lines', 'misc_utils.load_json_lines', (['config.eval_source'], {}), '(config.eval_source)\n', (591, 611), False, 'import misc_utils\n'), ((709, 742), 'math.ceil', 'math.ceil', (['(num_records / num_devs)'], {}), '(num_records / num_devs)\n', (718, 742), False, 'import math\n'), ((762, 773), 'multiprocessing.Queue', 'Queue', (['(1000)'], {}), '(1000)\n', (767, 773), False, 'from multiprocessing import Process, Queue\n'), ((1131, 1164), 'tqdm.tqdm', 'tqdm', ([], {'total': 'num_records', 'ncols': '(50)'}), '(total=num_records, ncols=50)\n', (1135, 1164), False, 'from tqdm import tqdm\n'), ((1401, 1447), 'misc_utils.save_json_lines', 'misc_utils.save_json_lines', (['all_results', 'fpath'], {}), '(all_results, fpath)\n', (1427, 1447), False, 'import misc_utils\n'), ((1512, 1537), 'megengine.jit.trace', 'jit.trace', ([], {'symbolic': '(False)'}), '(symbolic=False)\n', (1521, 1537), False, 'from megengine import jit\n'), ((1631, 1648), 'network.Network', 'network.Network', ([], {}), '()\n', (1646, 1648), False, 'import network\n'), ((1682, 1702), 'megengine.load', 'mge.load', (['model_file'], {}), '(model_file)\n', (1690, 1702), True, 'import megengine as mge\n'), ((3529, 3556), 'dataset.val_dataset', 'dataset.val_dataset', (['record'], {}), '(record)\n', (3548, 3556), False, 'import dataset\n'), ((4290, 4315), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (4313, 4315), False, 'import argparse\n'), ((978, 1054), 'multiprocessing.Process', 'Process', ([], {'target': 'inference', 'args': '(model_file, i, split_records, result_queue)'}), '(target=inference, args=(model_file, i, split_records, result_queue))\n', (985, 1054), False, 'from multiprocessing import Process, Queue\n'), ((1789, 1836), 'numpy.set_printoptions', 'np.set_printoptions', ([], {'precision': '(2)', 'suppress': '(True)'}), '(precision=2, suppress=True)\n', (1808, 1836), True, 'import numpy as np\n'), ((3754, 3864), 'dataset.resize_img_by_short_and_max_size', 'dataset.resize_img_by_short_and_max_size', (['image', 'config.eval_image_short_size', 'config.eval_image_max_size'], {}), '(image, config.\n eval_image_short_size, config.eval_image_max_size)\n', (3794, 3864), False, 'import dataset\n'), ((4110, 4198), 'numpy.array', 'np.array', (['[height, width, scale, original_height, original_width]'], {'dtype': 'np.float32'}), '([height, width, scale, original_height, original_width], dtype=np.\n float32)\n', (4118, 4198), True, 'import numpy as np\n'), ((2300, 2331), 'numpy.hstack', 'np.hstack', (['(pred_boxes, idents)'], {}), '((pred_boxes, idents))\n', (2309, 2331), True, 'import numpy as np\n'), ((2437, 2465), 'set_nms_utils.set_cpu_nms', 'set_cpu_nms', (['pred_boxes', '(0.5)'], {}), '(pred_boxes, 0.5)\n', (2448, 2465), False, 'from set_nms_utils import set_cpu_nms\n'), ((2685, 2709), 'set_nms_utils.cpu_nms', 'cpu_nms', (['pred_boxes', '(0.5)'], {}), '(pred_boxes, 0.5)\n', (2692, 2709), False, 'from set_nms_utils import cpu_nms\n'), ((2230, 2242), 'numpy.arange', 'np.arange', (['n'], {}), '(n)\n', (2239, 2242), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import megengine as mge import numpy as np from megengine import get_logger as mge_get_logger mge_version = mge.__version__ if mge_version <= "0.6.0": # pylint: disable=import-error, no-name-in-module import megengine._internal as mgb from megengine._internal import cgtools else: import megengine.core.tensor.megbrain_graph as G import megengine.core._imperative_rt as rt import megengine.utils.comp_graph_tools as cgtools if mge_version <= "1.1.0": from megengine.core.tensor.raw_tensor import ( # pylint: disable=no-name-in-module,import-error as_raw_tensor as Tensor, ) else: from megengine.tensor import Tensor def get_logger(*args): return mge_get_logger(*args) def get_mge_version(): return mge_version def get_symvar_value(sym_var): if mge_version <= "0.6.0": if sym_var.inferred_value is not None: val = sym_var.inferred_value return val else: cg = sym_var.owner_graph func = cg.compile_outonly(sym_var) val = func() return val else: if sym_var.value is not None: return sym_var.value else: out_node = G.ValueOutputNode(sym_var) cg = out_node.outputs[0].graph func = cg.compile(out_node.outputs) func.execute() return out_node.get_value() def isnum(x): return isinstance(x, (int, float)) def isconst(x): return x.np_data is not None def isvar(x): return ( isinstance(x, mgb.SymbolVar) if mge_version <= "0.6.0" else isinstance(x, rt.VarNode) # pylint: disable=c-extension-no-member ) def get_shape(x): return x._get_imm_shape() if mge_version <= "0.6.0" else x.shape def get_dep_vars(x, type=None): return cgtools.get_dep_vars(x, type) def get_dtype_name(x): return ( x.dtype.metadata["mgb_dtype"]["name"] if isinstance(x.dtype, np.dtype) else None ) def get_opr_type(x): return cgtools.get_opr_type(x) def get_owner_opr_type(x): if mge_version <= "0.6.0": return cgtools.get_type(x._var) else: return cgtools.get_owner_opr_type(x._var) def load_comp_graph_from_file(path): if mge_version <= "0.6.0": cg, _, outputs = mgb.load_comp_graph_from_file(path) else: ret = G.load_graph(path) cg = ret.graph outputs = ret.output_vars_list return cg, outputs def graph_traversal(outputs): ( map_oprs, map_vars, var2oprs, opr2receivers, indegree2opr, opr2indegree, ) = cgtools.graph_traversal(outputs) return map_oprs, map_vars, var2oprs, opr2receivers, indegree2opr, opr2indegree def get_oprs_seq(outputs, prune_reshape=True): all_oprs = cgtools.get_oprs_seq(outputs, prune_reshape=prune_reshape) return all_oprs def eval_partial(inp, oup): if not isinstance(oup, (list, tuple)): oup = (oup,) inputs = cgtools.get_dep_vars(oup, "Host2DeviceCopy") if mge_version <= "0.6.0": cg = oup[0].owner_graph outputs = list(map(mgb.copy_output, oup)) f = cg.compile(inputs, outputs) result = f(inp) else: if not isinstance(inp, (list, tuple)): inp = (inp,) replace_dict = {} inp_node_list = [] for i in inputs: inp_node = G.InputNode( device="xpux", dtype=inputs[0].dtype, graph=inputs[0].graph ) replace_dict[i] = inp_node.outputs[0] inp_node_list.append(inp_node) new_out = cgtools.replace_vars(oup, replace_dict) out_node_list = [G.OutputNode(i) for i in new_out] new_out_list = [i.outputs[0] for i in out_node_list] cg = new_out_list[0].graph func = cg.compile(new_out_list) for node, value in zip(inp_node_list, inp): node.set_value(Tensor(value)._dev_tensor()) func.execute() result = [o.get_value().numpy() for o in out_node_list] return result
[ "megengine.core.tensor.megbrain_graph.InputNode", "megengine.utils.comp_graph_tools.get_owner_opr_type", "megengine.utils.comp_graph_tools.get_dep_vars", "megengine.utils.comp_graph_tools.get_opr_type", "megengine.core.tensor.megbrain_graph.load_graph", "megengine.utils.comp_graph_tools.replace_vars", "megengine.core.tensor.megbrain_graph.ValueOutputNode", "megengine._internal.load_comp_graph_from_file", "megengine.utils.comp_graph_tools.get_oprs_seq", "megengine.core.tensor.megbrain_graph.OutputNode", "megengine.utils.comp_graph_tools.graph_traversal", "megengine.get_logger", "megengine.tensor.Tensor", "megengine.utils.comp_graph_tools.get_type" ]
[((1102, 1123), 'megengine.get_logger', 'mge_get_logger', (['*args'], {}), '(*args)\n', (1116, 1123), True, 'from megengine import get_logger as mge_get_logger\n'), ((2222, 2251), 'megengine.utils.comp_graph_tools.get_dep_vars', 'cgtools.get_dep_vars', (['x', 'type'], {}), '(x, type)\n', (2242, 2251), True, 'import megengine.utils.comp_graph_tools as cgtools\n'), ((2419, 2442), 'megengine.utils.comp_graph_tools.get_opr_type', 'cgtools.get_opr_type', (['x'], {}), '(x)\n', (2439, 2442), True, 'import megengine.utils.comp_graph_tools as cgtools\n'), ((3029, 3061), 'megengine.utils.comp_graph_tools.graph_traversal', 'cgtools.graph_traversal', (['outputs'], {}), '(outputs)\n', (3052, 3061), True, 'import megengine.utils.comp_graph_tools as cgtools\n'), ((3209, 3267), 'megengine.utils.comp_graph_tools.get_oprs_seq', 'cgtools.get_oprs_seq', (['outputs'], {'prune_reshape': 'prune_reshape'}), '(outputs, prune_reshape=prune_reshape)\n', (3229, 3267), True, 'import megengine.utils.comp_graph_tools as cgtools\n'), ((3395, 3439), 'megengine.utils.comp_graph_tools.get_dep_vars', 'cgtools.get_dep_vars', (['oup', '"""Host2DeviceCopy"""'], {}), "(oup, 'Host2DeviceCopy')\n", (3415, 3439), True, 'import megengine.utils.comp_graph_tools as cgtools\n'), ((2518, 2542), 'megengine.utils.comp_graph_tools.get_type', 'cgtools.get_type', (['x._var'], {}), '(x._var)\n', (2534, 2542), True, 'import megengine.utils.comp_graph_tools as cgtools\n'), ((2568, 2602), 'megengine.utils.comp_graph_tools.get_owner_opr_type', 'cgtools.get_owner_opr_type', (['x._var'], {}), '(x._var)\n', (2594, 2602), True, 'import megengine.utils.comp_graph_tools as cgtools\n'), ((2698, 2733), 'megengine._internal.load_comp_graph_from_file', 'mgb.load_comp_graph_from_file', (['path'], {}), '(path)\n', (2727, 2733), True, 'import megengine._internal as mgb\n'), ((2758, 2776), 'megengine.core.tensor.megbrain_graph.load_graph', 'G.load_graph', (['path'], {}), '(path)\n', (2770, 2776), True, 'import megengine.core.tensor.megbrain_graph as G\n'), ((4014, 4053), 'megengine.utils.comp_graph_tools.replace_vars', 'cgtools.replace_vars', (['oup', 'replace_dict'], {}), '(oup, replace_dict)\n', (4034, 4053), True, 'import megengine.utils.comp_graph_tools as cgtools\n'), ((1611, 1637), 'megengine.core.tensor.megbrain_graph.ValueOutputNode', 'G.ValueOutputNode', (['sym_var'], {}), '(sym_var)\n', (1628, 1637), True, 'import megengine.core.tensor.megbrain_graph as G\n'), ((3800, 3872), 'megengine.core.tensor.megbrain_graph.InputNode', 'G.InputNode', ([], {'device': '"""xpux"""', 'dtype': 'inputs[0].dtype', 'graph': 'inputs[0].graph'}), "(device='xpux', dtype=inputs[0].dtype, graph=inputs[0].graph)\n", (3811, 3872), True, 'import megengine.core.tensor.megbrain_graph as G\n'), ((4079, 4094), 'megengine.core.tensor.megbrain_graph.OutputNode', 'G.OutputNode', (['i'], {}), '(i)\n', (4091, 4094), True, 'import megengine.core.tensor.megbrain_graph as G\n'), ((4328, 4341), 'megengine.tensor.Tensor', 'Tensor', (['value'], {}), '(value)\n', (4334, 4341), False, 'from megengine.tensor import Tensor\n')]
# c: 21.09.2008 import os import numpy as nm from sfepy import data_dir from sfepy.fem import MeshIO filename_mesh = data_dir + '/meshes/2d/special/circle_in_square.mesh' ## filename_mesh = data_dir + '/meshes/2d/special/circle_in_square_small.mesh' ## filename_mesh = data_dir + '/meshes/3d/special/cube_sphere.mesh' ## filename_mesh = data_dir + '/meshes/2d/special/cube_cylinder.mesh' omega = 1 omega_squared = omega**2 conf_dir = os.path.dirname(__file__) io = MeshIO.any_from_filename(filename_mesh, prefix_dir=conf_dir) bbox, dim = io.read_bounding_box( ret_dim = True ) geom = {3 : '3_4', 2 : '2_3'}[dim] x_left, x_right = bbox[:,0] regions = { 'Y' : ('all', {}), 'Y1' : ('elements of group 1', {}), 'Y2' : ('elements of group 2', {}), 'Y2_Surface': ('r.Y1 *n r.Y2', {'can_cells' : False}), 'Left' : ('nodes in (x < %f)' % (x_left + 1e-3), {}), 'Right' : ('nodes in (x > %f)' % (x_right - 1e-3), {}), } material_2 = { 'name' : 'inclusion', # epoxy 'function' : 'get_inclusion_pars', } def get_inclusion_pars(ts, coor, mode=None, region=None, ig=None): """TODO: implement proper 3D -> 2D transformation of constitutive matrices.""" if mode == 'qp': n_nod, dim = coor.shape sym = (dim + 1) * dim / 2 dielectric = nm.eye( dim, dtype = nm.float64 ) # !!! coupling = nm.ones( (dim, sym), dtype = nm.float64 ) # coupling[0,1] = 0.2 out = { # Lame coefficients in 1e+10 Pa. 'lam' : 0.1798, 'mu' : 0.148, # dielectric tensor 'dielectric' : dielectric, # piezoelectric coupling 'coupling' : coupling, 'density' : 0.1142, # in 1e4 kg/m3 } for key, val in out.iteritems(): out[key] = nm.tile(val, (coor.shape[0], 1, 1)) return out functions = { 'get_inclusion_pars' : (get_inclusion_pars,), } field_0 = { 'name' : 'displacement', 'dtype' : nm.float64, 'shape' : dim, 'region' : 'Y', 'approx_order' : 1, } field_2 = { 'name' : 'potential', 'dtype' : nm.float64, 'shape' : (1,), 'region' : 'Y', 'approx_order' : 1, } variables = { 'u' : ('unknown field', 'displacement', 0), 'v' : ('test field', 'displacement', 'u'), 'phi' : ('unknown field', 'potential', 1), 'psi' : ('test field', 'potential', 'phi'), } ebcs = { 'u1' : ('Left', {'u.all' : 0.0}), 'u2' : ('Right', {'u.0' : 0.1}), 'phi' : ('Y2_Surface', {'phi.all' : 0.0}), } integral_1 = { 'name' : 'i1', 'kind' : 'v', 'quadrature' : 'gauss_o2_d%d' % dim, } equations = { '1' : """- %f * dw_mass_vector.i1.Y( inclusion.density, v, u ) + dw_lin_elastic_iso.i1.Y( inclusion.lam, inclusion.mu, v, u ) - dw_piezo_coupling.i1.Y2( inclusion.coupling, v, phi ) = 0""" % omega_squared, '2' : """dw_diffusion.i1.Y( inclusion.dielectric, psi, phi ) + dw_piezo_coupling.i1.Y2( inclusion.coupling, u, psi ) = 0""", } ## # FE assembling parameters. fe = { 'chunk_size' : 100000 } ## # Solvers etc. solver_0 = { 'name' : 'ls', 'kind' : 'ls.scipy_direct', } solver_1 = { 'name' : 'newton', 'kind' : 'nls.newton', 'i_max' : 1, 'eps_a' : 1e-10, 'eps_r' : 1.0, 'macheps' : 1e-16, 'lin_red' : 1e-2, # Linear system error < (eps_a * lin_red). 'ls_red' : 0.1, 'ls_red_warp': 0.001, 'ls_on' : 1.1, 'ls_min' : 1e-5, 'check' : 0, 'delta' : 1e-6, 'is_plot' : False, 'problem' : 'nonlinear', # 'nonlinear' or 'linear' (ignore i_max) }
[ "sfepy.fem.MeshIO.any_from_filename" ]
[((438, 463), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (453, 463), False, 'import os\n'), ((469, 529), 'sfepy.fem.MeshIO.any_from_filename', 'MeshIO.any_from_filename', (['filename_mesh'], {'prefix_dir': 'conf_dir'}), '(filename_mesh, prefix_dir=conf_dir)\n', (493, 529), False, 'from sfepy.fem import MeshIO\n'), ((1301, 1330), 'numpy.eye', 'nm.eye', (['dim'], {'dtype': 'nm.float64'}), '(dim, dtype=nm.float64)\n', (1307, 1330), True, 'import numpy as nm\n'), ((1368, 1405), 'numpy.ones', 'nm.ones', (['(dim, sym)'], {'dtype': 'nm.float64'}), '((dim, sym), dtype=nm.float64)\n', (1375, 1405), True, 'import numpy as nm\n'), ((1824, 1859), 'numpy.tile', 'nm.tile', (['val', '(coor.shape[0], 1, 1)'], {}), '(val, (coor.shape[0], 1, 1))\n', (1831, 1859), True, 'import numpy as nm\n')]
from datetime import datetime from typing import Optional import typer from sqlalchemy.orm.exc import UnmappedInstanceError from sqlmodel import Session, select from .database import engine from .functions_aux import Status from .tables import ToDo, Timer app = typer.Typer() @app.command() def task(id: str, task: str = None, status: Optional[Status] = typer.Option(None), tag: str = None, remarks: str = None, project: str = None, due_date: datetime = typer.Option(None, formats=['%Y-%m-%d']), reminder: datetime = typer.Option(None, formats=['%Y-%m-%d'])): """Edit record from to-do list""" with Session(engine) as session: try: query = session.get(ToDo, id) if task is not None: query.task = task if tag is not None: query.tag = tag if remarks is not None: query.remarks = remarks if project is not None: query.project = project if status is None or status == query.status: pass elif status == 'done': query.status = status query.date_end = datetime.now().date() elif status == 'doing' and query.status == 'done': query.status = status query.date_end = None elif status == 'to do': timer = session.exec(select(Timer).where( Timer.id_todo == id)).all() if len(timer) > 0: typer.secho(f'\nTask already started\n', fg=typer.colors.RED) raise typer.Exit(code=1) else: query.status = status query.date_end = None else: query.status = status today = datetime.today() if due_date is not None and reminder \ is not None and reminder >= due_date: typer.secho( f'\nreminder must be smaller than {due_date.date()}\n', fg=typer.colors.RED) raise typer.Exit(code=1) elif due_date is not None and due_date <= today: typer.secho(f'\ndue date must be grater than {today.date()}\n', fg=typer.colors.RED) raise typer.Exit(code=1) elif reminder is not None and reminder <= today: typer.secho( f'\nreminder must be grater than {today.date()}\n', fg=typer.colors.RED) raise typer.Exit(code=1) elif due_date is not None and query.reminder \ is not None and due_date < query.reminder: typer.secho( f'\ndue date must be grater than {query.reminder.date()}\n', fg=typer.colors.RED) raise typer.Exit(code=1) elif reminder is not None and query.due_date \ is not None and reminder >= query.due_date: typer.secho( f'\nreminder must be smaller than {query.due_date.date()}\n', fg=typer.colors.RED) raise typer.Exit(code=1) elif reminder is not None: query.reminder = reminder elif due_date is not None: query.due_date = due_date session.add(query) edit = typer.confirm(f"""Are you sure you want to edit: {query}""") if not edit: typer.secho("Not editing", fg=typer.colors.RED) raise typer.Abort() typer.secho("Editing it!", fg=typer.colors.RED) session.commit() except AttributeError: typer.secho(f'\nInvalid task id\n', fg=typer.colors.RED) raise typer.Exit(code=1) except UnmappedInstanceError: typer.secho(f'\nInvalid task id\n', fg=typer.colors.RED) raise typer.Exit(code=1) @app.command() def project(project: str, new_project: str): """Edit project name in tasks""" with Session(engine) as session: tasks = session.exec(select(ToDo).where( ToDo.project == project)).all() if len(tasks) > 0: for task in tasks: task.project = new_project session.add(task) edit = typer.confirm(f"""Are you sure you want to edit: {tasks}""") if not edit: typer.secho("Not editing", fg=typer.colors.RED) raise typer.Abort() typer.secho("Editing it!", fg=typer.colors.RED) session.commit() else: typer.secho(f'\nInvalid project\n', fg=typer.colors.RED) raise typer.Exit(code=1) @app.command() def del_task(id: str): """Delete task""" try: with Session(engine) as session: task = session.get(ToDo, id) timers = session.exec(select(Timer).where( Timer.id_todo == task.id)).all() for timer in timers: session.delete(timer) session.delete(task) edit = typer.confirm(f"""Are you sure you want to delete: {task}""") if not edit: typer.secho("Not deleting", fg=typer.colors.RED) raise typer.Abort() typer.secho("Deleting it!", fg=typer.colors.RED) session.commit() except UnmappedInstanceError: typer.secho(f'\nInvalid task id\n', fg=typer.colors.RED) raise typer.Exit(code=1) @app.command() def del_project(project: str): """Delete all tasks from a project""" with Session(engine) as session: tasks = session.exec(select(ToDo).where( ToDo.project == project)).all() if len(tasks) > 0: for task in tasks: timers = session.exec(select(Timer).where( Timer.id_todo == task.id)).all() for timer in timers: session.delete(timer) session.delete(task) session.delete(task) edit = typer.confirm(f"""Are you sure you want to delete: {tasks}""") if not edit: typer.secho("Not deleting", fg=typer.colors.RED) raise typer.Abort() typer.secho("deleting it!", fg=typer.colors.RED) session.commit() else: typer.secho(f'\nInvalid project\n', fg=typer.colors.RED) raise typer.Exit(code=1) @app.command() def timer(id: int, end: datetime = typer.Option('', formats=['%Y-%m-%d %H:%M:%S'])): """Edit record from Timer""" with Session(engine) as session: try: query = session.get(Timer, id) if end <= query.start: typer.secho( f'\nEnd must be >= {query.start}\n', fg=typer.colors.RED) raise typer.Exit(code=1) if end >= datetime.now(): typer.secho( f'\nEnd must be < {datetime.now()}' ) raise typer.Exit(code=1) query.end = end session.add(query) edit = typer.confirm(f"""Are you sure you want to edit: {query}""") if not edit: typer.secho("Not editing", fg=typer.colors.RED) raise typer.Abort() typer.secho("Editing it!", fg=typer.colors.RED) session.commit() except AttributeError: typer.secho(f'\nInvalid timer id\n', fg=typer.colors.RED) @app.command() def del_timer(id: int): """Delete record from Timer""" with Session(engine) as session: try: query = session.get(Timer, id) session.delete(query) edit = typer.confirm(f"""Are you sure you want to delete: {query}""") if not edit: typer.secho("Not deleting", fg=typer.colors.RED) raise typer.Abort() typer.secho("deleting it!", fg=typer.colors.RED) session.commit() except AttributeError: typer.secho(f'\nInvalid timer id\n', fg=typer.colors.RED)
[ "sqlmodel.Session", "sqlmodel.select" ]
[((265, 278), 'typer.Typer', 'typer.Typer', ([], {}), '()\n', (276, 278), False, 'import typer\n'), ((368, 386), 'typer.Option', 'typer.Option', (['None'], {}), '(None)\n', (380, 386), False, 'import typer\n'), ((486, 526), 'typer.Option', 'typer.Option', (['None'], {'formats': "['%Y-%m-%d']"}), "(None, formats=['%Y-%m-%d'])\n", (498, 526), False, 'import typer\n'), ((558, 598), 'typer.Option', 'typer.Option', (['None'], {'formats': "['%Y-%m-%d']"}), "(None, formats=['%Y-%m-%d'])\n", (570, 598), False, 'import typer\n'), ((7039, 7086), 'typer.Option', 'typer.Option', (['""""""'], {'formats': "['%Y-%m-%d %H:%M:%S']"}), "('', formats=['%Y-%m-%d %H:%M:%S'])\n", (7051, 7086), False, 'import typer\n'), ((648, 663), 'sqlmodel.Session', 'Session', (['engine'], {}), '(engine)\n', (655, 663), False, 'from sqlmodel import Session, select\n'), ((4296, 4311), 'sqlmodel.Session', 'Session', (['engine'], {}), '(engine)\n', (4303, 4311), False, 'from sqlmodel import Session, select\n'), ((6027, 6042), 'sqlmodel.Session', 'Session', (['engine'], {}), '(engine)\n', (6034, 6042), False, 'from sqlmodel import Session, select\n'), ((7131, 7146), 'sqlmodel.Session', 'Session', (['engine'], {}), '(engine)\n', (7138, 7146), False, 'from sqlmodel import Session, select\n'), ((8240, 8255), 'sqlmodel.Session', 'Session', (['engine'], {}), '(engine)\n', (8247, 8255), False, 'from sqlmodel import Session, select\n'), ((1880, 1896), 'datetime.datetime.today', 'datetime.today', ([], {}), '()\n', (1894, 1896), False, 'from datetime import datetime\n'), ((3516, 3592), 'typer.confirm', 'typer.confirm', (['f"""Are you sure you want to edit:\n {query}"""'], {}), '(f"""Are you sure you want to edit:\n {query}""")\n', (3529, 3592), False, 'import typer\n'), ((3758, 3805), 'typer.secho', 'typer.secho', (['"""Editing it!"""'], {'fg': 'typer.colors.RED'}), "('Editing it!', fg=typer.colors.RED)\n", (3769, 3805), False, 'import typer\n'), ((4571, 4643), 'typer.confirm', 'typer.confirm', (['f"""Are you sure you want to edit:\n {tasks}"""'], {}), '(f"""Are you sure you want to edit:\n {tasks}""")\n', (4584, 4643), False, 'import typer\n'), ((4809, 4856), 'typer.secho', 'typer.secho', (['"""Editing it!"""'], {'fg': 'typer.colors.RED'}), "('Editing it!', fg=typer.colors.RED)\n", (4820, 4856), False, 'import typer\n'), ((4936, 4994), 'typer.secho', 'typer.secho', (['f"""\nInvalid project\n"""'], {'fg': 'typer.colors.RED'}), '(f"""\nInvalid project\n""", fg=typer.colors.RED)\n', (4947, 4994), False, 'import typer\n'), ((5035, 5053), 'typer.Exit', 'typer.Exit', ([], {'code': '(1)'}), '(code=1)\n', (5045, 5053), False, 'import typer\n'), ((5138, 5153), 'sqlmodel.Session', 'Session', (['engine'], {}), '(engine)\n', (5145, 5153), False, 'from sqlmodel import Session, select\n'), ((5434, 5507), 'typer.confirm', 'typer.confirm', (['f"""Are you sure you want to delete:\n {task}"""'], {}), '(f"""Are you sure you want to delete:\n {task}""")\n', (5447, 5507), False, 'import typer\n'), ((5674, 5722), 'typer.secho', 'typer.secho', (['"""Deleting it!"""'], {'fg': 'typer.colors.RED'}), "('Deleting it!', fg=typer.colors.RED)\n", (5685, 5722), False, 'import typer\n'), ((5818, 5876), 'typer.secho', 'typer.secho', (['f"""\nInvalid task id\n"""'], {'fg': 'typer.colors.RED'}), '(f"""\nInvalid task id\n""", fg=typer.colors.RED)\n', (5829, 5876), False, 'import typer\n'), ((5909, 5927), 'typer.Exit', 'typer.Exit', ([], {'code': '(1)'}), '(code=1)\n', (5919, 5927), False, 'import typer\n'), ((6490, 6564), 'typer.confirm', 'typer.confirm', (['f"""Are you sure you want to delete:\n {tasks}"""'], {}), '(f"""Are you sure you want to delete:\n {tasks}""")\n', (6503, 6564), False, 'import typer\n'), ((6731, 6779), 'typer.secho', 'typer.secho', (['"""deleting it!"""'], {'fg': 'typer.colors.RED'}), "('deleting it!', fg=typer.colors.RED)\n", (6742, 6779), False, 'import typer\n'), ((6859, 6917), 'typer.secho', 'typer.secho', (['f"""\nInvalid project\n"""'], {'fg': 'typer.colors.RED'}), '(f"""\nInvalid project\n""", fg=typer.colors.RED)\n', (6870, 6917), False, 'import typer\n'), ((6958, 6976), 'typer.Exit', 'typer.Exit', ([], {'code': '(1)'}), '(code=1)\n', (6968, 6976), False, 'import typer\n'), ((7679, 7768), 'typer.confirm', 'typer.confirm', (['f"""Are you sure you want to edit:\n {query}"""'], {}), '(\n f"""Are you sure you want to edit:\n {query}""")\n', (7692, 7768), False, 'import typer\n'), ((7929, 7976), 'typer.secho', 'typer.secho', (['"""Editing it!"""'], {'fg': 'typer.colors.RED'}), "('Editing it!', fg=typer.colors.RED)\n", (7940, 7976), False, 'import typer\n'), ((8377, 8451), 'typer.confirm', 'typer.confirm', (['f"""Are you sure you want to delete:\n {query}"""'], {}), '(f"""Are you sure you want to delete:\n {query}""")\n', (8390, 8451), False, 'import typer\n'), ((8618, 8666), 'typer.secho', 'typer.secho', (['"""deleting it!"""'], {'fg': 'typer.colors.RED'}), "('deleting it!', fg=typer.colors.RED)\n", (8629, 8666), False, 'import typer\n'), ((2174, 2192), 'typer.Exit', 'typer.Exit', ([], {'code': '(1)'}), '(code=1)\n', (2184, 2192), False, 'import typer\n'), ((3634, 3681), 'typer.secho', 'typer.secho', (['"""Not editing"""'], {'fg': 'typer.colors.RED'}), "('Not editing', fg=typer.colors.RED)\n", (3645, 3681), False, 'import typer\n'), ((3732, 3745), 'typer.Abort', 'typer.Abort', ([], {}), '()\n', (3743, 3745), False, 'import typer\n'), ((3902, 3960), 'typer.secho', 'typer.secho', (['f"""\nInvalid task id\n"""'], {'fg': 'typer.colors.RED'}), '(f"""\nInvalid task id\n""", fg=typer.colors.RED)\n', (3913, 3960), False, 'import typer\n'), ((4001, 4019), 'typer.Exit', 'typer.Exit', ([], {'code': '(1)'}), '(code=1)\n', (4011, 4019), False, 'import typer\n'), ((4070, 4128), 'typer.secho', 'typer.secho', (['f"""\nInvalid task id\n"""'], {'fg': 'typer.colors.RED'}), '(f"""\nInvalid task id\n""", fg=typer.colors.RED)\n', (4081, 4128), False, 'import typer\n'), ((4169, 4187), 'typer.Exit', 'typer.Exit', ([], {'code': '(1)'}), '(code=1)\n', (4179, 4187), False, 'import typer\n'), ((4685, 4732), 'typer.secho', 'typer.secho', (['"""Not editing"""'], {'fg': 'typer.colors.RED'}), "('Not editing', fg=typer.colors.RED)\n", (4696, 4732), False, 'import typer\n'), ((4783, 4796), 'typer.Abort', 'typer.Abort', ([], {}), '()\n', (4794, 4796), False, 'import typer\n'), ((5549, 5597), 'typer.secho', 'typer.secho', (['"""Not deleting"""'], {'fg': 'typer.colors.RED'}), "('Not deleting', fg=typer.colors.RED)\n", (5560, 5597), False, 'import typer\n'), ((5648, 5661), 'typer.Abort', 'typer.Abort', ([], {}), '()\n', (5659, 5661), False, 'import typer\n'), ((6606, 6654), 'typer.secho', 'typer.secho', (['"""Not deleting"""'], {'fg': 'typer.colors.RED'}), "('Not deleting', fg=typer.colors.RED)\n", (6617, 6654), False, 'import typer\n'), ((6705, 6718), 'typer.Abort', 'typer.Abort', ([], {}), '()\n', (6716, 6718), False, 'import typer\n'), ((7266, 7337), 'typer.secho', 'typer.secho', (['f"""\nEnd must be >= {query.start}\n"""'], {'fg': 'typer.colors.RED'}), '(f"""\nEnd must be >= {query.start}\n""", fg=typer.colors.RED)\n', (7277, 7337), False, 'import typer\n'), ((7399, 7417), 'typer.Exit', 'typer.Exit', ([], {'code': '(1)'}), '(code=1)\n', (7409, 7417), False, 'import typer\n'), ((7440, 7454), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (7452, 7454), False, 'from datetime import datetime\n'), ((7581, 7599), 'typer.Exit', 'typer.Exit', ([], {'code': '(1)'}), '(code=1)\n', (7591, 7599), False, 'import typer\n'), ((7805, 7852), 'typer.secho', 'typer.secho', (['"""Not editing"""'], {'fg': 'typer.colors.RED'}), "('Not editing', fg=typer.colors.RED)\n", (7816, 7852), False, 'import typer\n'), ((7903, 7916), 'typer.Abort', 'typer.Abort', ([], {}), '()\n', (7914, 7916), False, 'import typer\n'), ((8073, 8132), 'typer.secho', 'typer.secho', (['f"""\nInvalid timer id\n"""'], {'fg': 'typer.colors.RED'}), '(f"""\nInvalid timer id\n""", fg=typer.colors.RED)\n', (8084, 8132), False, 'import typer\n'), ((8493, 8541), 'typer.secho', 'typer.secho', (['"""Not deleting"""'], {'fg': 'typer.colors.RED'}), "('Not deleting', fg=typer.colors.RED)\n", (8504, 8541), False, 'import typer\n'), ((8592, 8605), 'typer.Abort', 'typer.Abort', ([], {}), '()\n', (8603, 8605), False, 'import typer\n'), ((8764, 8823), 'typer.secho', 'typer.secho', (['f"""\nInvalid timer id\n"""'], {'fg': 'typer.colors.RED'}), '(f"""\nInvalid timer id\n""", fg=typer.colors.RED)\n', (8775, 8823), False, 'import typer\n'), ((2406, 2424), 'typer.Exit', 'typer.Exit', ([], {'code': '(1)'}), '(code=1)\n', (2416, 2424), False, 'import typer\n'), ((2651, 2669), 'typer.Exit', 'typer.Exit', ([], {'code': '(1)'}), '(code=1)\n', (2661, 2669), False, 'import typer\n'), ((1200, 1214), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (1212, 1214), False, 'from datetime import datetime\n'), ((2966, 2984), 'typer.Exit', 'typer.Exit', ([], {'code': '(1)'}), '(code=1)\n', (2976, 2984), False, 'import typer\n'), ((4353, 4365), 'sqlmodel.select', 'select', (['ToDo'], {}), '(ToDo)\n', (4359, 4365), False, 'from sqlmodel import Session, select\n'), ((6084, 6096), 'sqlmodel.select', 'select', (['ToDo'], {}), '(ToDo)\n', (6090, 6096), False, 'from sqlmodel import Session, select\n'), ((7524, 7538), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (7536, 7538), False, 'from datetime import datetime\n'), ((1558, 1621), 'typer.secho', 'typer.secho', (['f"""\nTask already started\n"""'], {'fg': 'typer.colors.RED'}), '(f"""\nTask already started\n""", fg=typer.colors.RED)\n', (1569, 1621), False, 'import typer\n'), ((1678, 1696), 'typer.Exit', 'typer.Exit', ([], {'code': '(1)'}), '(code=1)\n', (1688, 1696), False, 'import typer\n'), ((3283, 3301), 'typer.Exit', 'typer.Exit', ([], {'code': '(1)'}), '(code=1)\n', (3293, 3301), False, 'import typer\n'), ((5241, 5254), 'sqlmodel.select', 'select', (['Timer'], {}), '(Timer)\n', (5247, 5254), False, 'from sqlmodel import Session, select\n'), ((6244, 6257), 'sqlmodel.select', 'select', (['Timer'], {}), '(Timer)\n', (6250, 6257), False, 'from sqlmodel import Session, select\n'), ((1434, 1447), 'sqlmodel.select', 'select', (['Timer'], {}), '(Timer)\n', (1440, 1447), False, 'from sqlmodel import Session, select\n')]
"""All Sfepy imports go in this module """ import numpy as np from sfepy.base.goptions import goptions from sfepy.discrete.fem import Field from sfepy.discrete.fem import FEDomain as Domain from sfepy.discrete import ( FieldVariable, Material, Integral, Function, Equation, Equations, Problem, ) from sfepy.terms import Term, Terms from sfepy.discrete.conditions import Conditions, EssentialBC from sfepy.solvers.ls import ScipyDirect from sfepy.solvers.nls import Newton from sfepy.discrete import Functions from sfepy.mesh.mesh_generators import gen_block_mesh from sfepy.base.base import output from toolz.curried import pipe, curry, do goptions["verbose"] = False output.set_output(quiet=True) def check(ids): """Check that the fixed displacement nodes have been isolated Args: ids: the isolated IDs Returns the unchanged IDs >>> check([1, 2, 3, 4]) Traceback (most recent call last): ... RuntimeError: length of ids is incorrect """ if len(ids) != 3: raise RuntimeError("length of ids is incorrect") return ids @curry def subdomain(i_x, domain_, eps, coords, **_): """Find the node IDs that will be fixed Args: i_x: the index (either 0 or 1) depends on direction of axes domain_: the Sfepy domain eps: a small value coords: the coordinates of the nodes Returns: the isolated node IDs """ def i_y(): """Switch the index from 0 -> 1 or from 1 -> 0 """ return (i_x + 1) % 2 return pipe( (coords[:, i_x] > -eps) & (coords[:, i_x] < eps), lambda x: (coords[:, i_x] < domain_.get_mesh_bounding_box()[0][i_x] + eps) | x, lambda x: (coords[:, i_x] > domain_.get_mesh_bounding_box()[1][i_x] - eps) | x, lambda x: (coords[:, i_y()] < eps) & (coords[:, i_y()] > -eps) & x, lambda x: np.where(x)[0], check, ) def get_bc(domain, delta_x, index, cond): """Make a displacement boundary condition Args: domain: the Sfepy domain delta_x: the mesh spacing index: the index (either 0 or 1) depends on direction of axes cond: the BC dictionary Returns: the Sfepy boundary condition """ return pipe( Function("fix_points", subdomain(index, domain, delta_x * 1e-3)), lambda x: domain.create_region( "region_fix_points", "vertices by fix_points", "vertex", functions=Functions([x]), ), lambda x: EssentialBC("fix_points_BC", x, cond), ) def get_bcs(domain, delta_x): """Get the boundary conditions Args: domain: the Sfepy domain delta_x: the mesh spacing Returns: the boundary conditions """ return Conditions( [ get_bc(domain, delta_x, 1, {"u.0": 0.0}), get_bc(domain, delta_x, 0, {"u.1": 0.0}), ] ) def get_material(calc_stiffness, calc_prestress): """Get the material Args: calc_stiffness: the function for calculating the stiffness tensor calc_prestress: the function for calculating the prestress Returns: the material """ def _material_func_(_, coors, mode=None, **__): if mode == "qp": return dict(D=calc_stiffness(coors), stress=calc_prestress(coors)) return None return Material("m", function=Function("material_func", _material_func_)) def get_uv(shape, delta_x): """Get the fields for the displacement and test function Args: shape: the shape of the domain delta_x: the mesh spacing Returns: tuple of field variables """ return pipe( np.array(shape), lambda x: gen_block_mesh( x * delta_x, x + 1, np.zeros_like(shape), verbose=False ), lambda x: Domain("domain", x), lambda x: x.create_region("region_all", "all"), lambda x: Field.from_args("fu", np.float64, "vector", x, approx_order=2), lambda x: ( FieldVariable("u", "unknown", x), FieldVariable("v", "test", x, primary_var_name="u"), ), ) # field = Field.from_args('fu', np.float64, 'vector', region_all, # pylint: disable=no-member # approx_order=2) def get_terms(u_field, v_field, calc_stiffness, calc_prestress): """Get the terms for the equation Args: u_field: the displacement field v_field: the test function field calc_stiffness: a function to calculate the stiffness tensor calc_prestress: a function to calculate the prestress tensor Returns: a tuple of terms for the equation """ return ( Term.new( "dw_lin_elastic(m.D, v, u)", Integral("i", order=4), v_field.field.region, m=get_material(calc_stiffness, calc_prestress), v=v_field, u=u_field, ), Term.new( "dw_lin_prestress(m.stress, v)", Integral("i", order=4), v_field.field.region, m=get_material(calc_stiffness, calc_prestress), v=v_field, ), ) def get_nls(evaluator): """Get the non-linear solver Args: evaluator: the problem evaluator Returns: the non-linear solver """ return Newton( {}, lin_solver=ScipyDirect({}), fun=evaluator.eval_residual, fun_grad=evaluator.eval_tangent_matrix, ) def get_problem(u_field, v_field, calc_stiffness, calc_prestress, delta_x): """Get the problem Args: u_field: the displacement field v_field: the test function field calc_stiffness: a functioin to calcuate the stiffness tensor calc_prestress: a function to calculate the prestress tensor delta_x: the mesh spacing Returns: the Sfepy problem """ return pipe( get_terms(u_field, v_field, calc_stiffness, calc_prestress), lambda x: Equation("balance_of_forces", Terms([x[0], x[1]])), lambda x: Problem("elasticity", equations=Equations([x])), do(lambda x: x.time_update(ebcs=get_bcs(v_field.field.region.domain, delta_x))), do(lambda x: x.set_solver(get_nls(x.get_evaluator()))), ) def get_displacement(vec, shape): """Extract reshaped displacement from output vector Args: vec: the output vector obtained from problem.solve() shape: the shape of the mesh Returns: reshaped displacement field """ return pipe( vec.create_output_dict()["u"].data, lambda x: np.reshape(x, (tuple(y + 1 for y in shape) + x.shape[-1:])), ) def get_strain(problem, shape): """Calculate the strain field Args: problem: the Sfepy problem hape: the shape of the mesh Returns: the reshaped strain field """ return get_stress_strain(problem, shape, "ev_cauchy_strain.{dim}.region_all(u)") def get_stress(problem, shape): """Calculate the strain field Args: problem: the Sfepy problem shape: the shape of the mesh Returns: the reshaped stress field """ return get_stress_strain( problem, shape, "ev_cauchy_stress.{dim}.region_all(m.D, u)" ) def get_stress_strain(problem, shape, str_): """Get the stress or strain field depending on the str_ argument Args: problem: the Sfepy problem shape: the shape of the domain str_: string passed to problem.evaluate to extract the stress or strain Returns the reshaped stress or strain field """ return pipe( np.squeeze( problem.evaluate( str_.format(dim=len(shape)), mode="el_avg", copy_materials=False ) ), lambda x: np.reshape(x, (shape + x.shape[-1:])), ) def get_data(shape, problem, vec): """Extract the displacement, strain and stress fields Args: shape: the shape of the mesh problem: the Sfepy problem vec: the output vector from problem.solve Returns: a tuple of arrays for the strain, displacement and stress fields """ return ( get_strain(problem, shape), get_displacement(vec, shape), get_stress(problem, shape), ) def solve(calc_stiffness, calc_prestress, shape, delta_x): """Solve the linear elasticity problem Args: calc_stiffness: the function to calculate the stiffness tensor calc_prestress: the funtion to calculate the prestress tensor shape: the shape of the mesh delta_x: the mesh spacing Returns: a tuple of arrays for the displacement, strain and stress fields """ return pipe( get_uv(shape, delta_x), lambda x: get_problem(x[0], x[1], calc_stiffness, calc_prestress, delta_x), lambda x: get_data(shape, x, x.solve()), )
[ "sfepy.discrete.Equations", "sfepy.discrete.conditions.EssentialBC", "sfepy.solvers.ls.ScipyDirect", "sfepy.discrete.Functions", "sfepy.terms.Terms", "sfepy.base.base.output.set_output", "sfepy.discrete.Integral", "sfepy.discrete.fem.Field.from_args", "sfepy.discrete.FieldVariable", "sfepy.discrete.Function", "sfepy.discrete.fem.FEDomain" ]
[((698, 727), 'sfepy.base.base.output.set_output', 'output.set_output', ([], {'quiet': '(True)'}), '(quiet=True)\n', (715, 727), False, 'from sfepy.base.base import output\n'), ((3702, 3717), 'numpy.array', 'np.array', (['shape'], {}), '(shape)\n', (3710, 3717), True, 'import numpy as np\n'), ((2537, 2574), 'sfepy.discrete.conditions.EssentialBC', 'EssentialBC', (['"""fix_points_BC"""', 'x', 'cond'], {}), "('fix_points_BC', x, cond)\n", (2548, 2574), False, 'from sfepy.discrete.conditions import Conditions, EssentialBC\n'), ((3409, 3451), 'sfepy.discrete.Function', 'Function', (['"""material_func"""', '_material_func_'], {}), "('material_func', _material_func_)\n", (3417, 3451), False, 'from sfepy.discrete import FieldVariable, Material, Integral, Function, Equation, Equations, Problem\n'), ((3850, 3869), 'sfepy.discrete.fem.FEDomain', 'Domain', (['"""domain"""', 'x'], {}), "('domain', x)\n", (3856, 3869), True, 'from sfepy.discrete.fem import FEDomain as Domain\n'), ((3945, 4007), 'sfepy.discrete.fem.Field.from_args', 'Field.from_args', (['"""fu"""', 'np.float64', '"""vector"""', 'x'], {'approx_order': '(2)'}), "('fu', np.float64, 'vector', x, approx_order=2)\n", (3960, 4007), False, 'from sfepy.discrete.fem import Field\n'), ((4778, 4800), 'sfepy.discrete.Integral', 'Integral', (['"""i"""'], {'order': '(4)'}), "('i', order=4)\n", (4786, 4800), False, 'from sfepy.discrete import FieldVariable, Material, Integral, Function, Equation, Equations, Problem\n'), ((5028, 5050), 'sfepy.discrete.Integral', 'Integral', (['"""i"""'], {'order': '(4)'}), "('i', order=4)\n", (5036, 5050), False, 'from sfepy.discrete import FieldVariable, Material, Integral, Function, Equation, Equations, Problem\n'), ((5395, 5410), 'sfepy.solvers.ls.ScipyDirect', 'ScipyDirect', (['{}'], {}), '({})\n', (5406, 5410), False, 'from sfepy.solvers.ls import ScipyDirect\n'), ((7812, 7847), 'numpy.reshape', 'np.reshape', (['x', '(shape + x.shape[-1:])'], {}), '(x, shape + x.shape[-1:])\n', (7822, 7847), True, 'import numpy as np\n'), ((1890, 1901), 'numpy.where', 'np.where', (['x'], {}), '(x)\n', (1898, 1901), True, 'import numpy as np\n'), ((3785, 3805), 'numpy.zeros_like', 'np.zeros_like', (['shape'], {}), '(shape)\n', (3798, 3805), True, 'import numpy as np\n'), ((4041, 4073), 'sfepy.discrete.FieldVariable', 'FieldVariable', (['"""u"""', '"""unknown"""', 'x'], {}), "('u', 'unknown', x)\n", (4054, 4073), False, 'from sfepy.discrete import FieldVariable, Material, Integral, Function, Equation, Equations, Problem\n'), ((4087, 4138), 'sfepy.discrete.FieldVariable', 'FieldVariable', (['"""v"""', '"""test"""', 'x'], {'primary_var_name': '"""u"""'}), "('v', 'test', x, primary_var_name='u')\n", (4100, 4138), False, 'from sfepy.discrete import FieldVariable, Material, Integral, Function, Equation, Equations, Problem\n'), ((6038, 6057), 'sfepy.terms.Terms', 'Terms', (['[x[0], x[1]]'], {}), '([x[0], x[1]])\n', (6043, 6057), False, 'from sfepy.terms import Term, Terms\n'), ((2492, 2506), 'sfepy.discrete.Functions', 'Functions', (['[x]'], {}), '([x])\n', (2501, 2506), False, 'from sfepy.discrete import Functions\n'), ((6110, 6124), 'sfepy.discrete.Equations', 'Equations', (['[x]'], {}), '([x])\n', (6119, 6124), False, 'from sfepy.discrete import FieldVariable, Material, Integral, Function, Equation, Equations, Problem\n')]
from typing import TYPE_CHECKING, List, Optional from sqlmodel import Field, Relationship, SQLModel if TYPE_CHECKING: from .hero import Hero class TeamBase(SQLModel): name: str headquarters: str class Team(TeamBase, table=True): id: Optional[int] = Field(default=None, primary_key=True) heroes: List["Hero"] = Relationship(back_populates="team") class TeamCreate(TeamBase): pass class TeamRead(TeamBase): id: int class TeamUpdate(SQLModel): id: Optional[int] = None name: Optional[str] = None headquarters: Optional[str] = None
[ "sqlmodel.Field", "sqlmodel.Relationship" ]
[((285, 322), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'primary_key': '(True)'}), '(default=None, primary_key=True)\n', (290, 322), False, 'from sqlmodel import Field, Relationship, SQLModel\n'), ((353, 388), 'sqlmodel.Relationship', 'Relationship', ([], {'back_populates': '"""team"""'}), "(back_populates='team')\n", (365, 388), False, 'from sqlmodel import Field, Relationship, SQLModel\n')]
import math import numpy as np import megengine as mge import megengine.functional as F import megengine.module as M # ================================= GRU Implementation ========================================================== class GRUCell(M.Module): """ An implementation of GRUCell. """ def __init__(self, input_size, hidden_size, bias=True): super().__init__() self.input_size = input_size self.hidden_size = hidden_size self.bias = bias self.ih = M.Linear(input_size, 3 * hidden_size, bias=bias) self.hh = M.Linear(hidden_size, 3 * hidden_size, bias=bias) self.reset_parameters() def reset_parameters(self): std = 1.0 / math.sqrt(self.hidden_size) for w in self.parameters(): M.init.uniform_(w, -std, std) def forward(self, x, hidden): x = F.reshape(x, (-1, x.shape[1])) gate_x = self.ih(x) gate_h = self.hh(hidden) i_r, i_i, i_n = F.split(gate_x, 3, axis=1) h_r, h_i, h_n = F.split(gate_h, 3, axis=1) resetgate = F.sigmoid(i_r + h_r) inputgate = F.sigmoid(i_i + h_i) newgate = F.tanh(i_n + (resetgate * h_n)) hy = newgate + inputgate * (hidden - newgate) return hy class GRU(M.Module): """ An implementation of GRUModule. """ def __init__( self, input_size, hidden_size, num_layers, bias=True, batch_first=False, dropout=0, ): super().__init__() self.input_size = input_size self.hidden_size = hidden_size self.num_layers = num_layers self.bias = bias self.batch_first = batch_first self.dropout = dropout self.rnn_cell_list = [] self.rnn_cell_list.append(GRUCell(self.input_size, self.hidden_size, self.bias)) for l in range(1, self.num_layers): self.rnn_cell_list.append( GRUCell(self.hidden_size, self.hidden_size, self.bias) ) def forward(self, input, hx=None): if hx is None: batch = input.shape[0] if self.batch_first else input.shape[1] h0 = F.zeros((self.num_layers, batch, self.hidden_size)) else: h0 = hx outs = [] hidden = list() for layer in range(self.num_layers): hidden.append(h0[layer, :, :]) length = input.shape[1] if self.batch_first else input.shape[0] for t in range(length): for layer in range(self.num_layers): if layer == 0: if self.batch_first: hidden_l = self.rnn_cell_list[layer]( input[:, t, :], hidden[layer] ) else: hidden_l = self.rnn_cell_list[layer]( input[t, :, :], hidden[layer] ) else: hidden_l = self.rnn_cell_list[layer]( hidden[layer - 1], hidden[layer] ) if self.dropout and (layer is not self.num_layers - 1): hidden_l = F.dropout(hidden_l, self.dropout) hidden[layer] = hidden_l outs.append(hidden_l) if self.batch_first: output = F.stack(outs, axis=1) else: output = F.stack(outs, axis=0) return output # ================================= LSTM Implementation ========================================================== class LSTMCell(M.Module): """ An implementation of LSTMCell. """ def __init__(self, input_size, hidden_size, bias=True): super().__init__() self.input_size = input_size self.hidden_size = hidden_size self.bias = bias self.x2h = M.Linear(input_size, 4 * hidden_size, bias=bias) self.h2h = M.Linear(hidden_size, 4 * hidden_size, bias=bias) self.reset_parameters() def reset_parameters(self): std = 1.0 / math.sqrt(self.hidden_size) for w in self.parameters(): M.init.uniform_(w, -std, std) def forward(self, x, hidden): hx, cx = hidden x = F.reshape(x, (-1, x.shape[1])) gates = self.x2h(x) + self.h2h(hx) ingate, forgetgate, cellgate, outgate = F.split(gates, 4, axis=1) ingate = F.sigmoid(ingate) forgetgate = F.sigmoid(forgetgate) cellgate = F.tanh(cellgate) outgate = F.sigmoid(outgate) cy = F.mul(cx, forgetgate) + F.mul(ingate, cellgate) hy = F.mul(outgate, F.tanh(cy)) return (hy, cy) class LSTM(M.Module): """ An implementation of LSTMModule. """ def __init__( self, input_size, hidden_size, num_layers, bias=True, batch_first=False, dropout=0, ): super().__init__() self.input_size = input_size self.hidden_size = hidden_size self.num_layers = num_layers self.bias = bias self.batch_first = batch_first self.dropout = dropout self.rnn_cell_list = [] self.rnn_cell_list.append( LSTMCell(self.input_size, self.hidden_size, self.bias) ) for l in range(1, self.num_layers): self.rnn_cell_list.append( LSTMCell(self.hidden_size, self.hidden_size, self.bias) ) def forward(self, input, hx=None): if hx is None: batch = input.shape[0] if self.batch_first else input.shape[1] h0 = F.zeros((self.num_layers, batch, self.hidden_size)) c0 = F.zeros((self.num_layers, batch, self.hidden_size)) else: h0 = hx[0] c0 = hx[1] outs = [] hidden = list() for layer in range(self.num_layers): hidden.append((h0[layer, :, :], c0[layer, :, :])) length = input.shape[1] if self.batch_first else input.shape[0] for t in range(length): for layer in range(self.num_layers): if layer == 0: inp = input[:, t, :] if self.batch_first else input[t, :, :] hidden_l = self.rnn_cell_list[layer]( inp, (hidden[layer][0], hidden[layer][1]) ) else: hidden_l = self.rnn_cell_list[layer]( hidden[layer - 1][0], (hidden[layer][0], hidden[layer][1]) ) if self.dropout and (layer is not self.num_layers - 1): hidden_l = ( F.dropout(hidden_l[0], self.dropout), F.dropout(hidden_l[1], self.dropout), ) hidden[layer] = hidden_l outs.append(hidden_l[0]) if self.batch_first: output = F.stack(outs, axis=1) else: output = F.stack(outs, axis=0) return output
[ "megengine.functional.zeros", "megengine.functional.mul", "megengine.functional.sigmoid", "megengine.functional.split", "megengine.functional.stack", "megengine.module.Linear", "megengine.functional.dropout", "megengine.functional.tanh", "megengine.functional.reshape", "megengine.module.init.uniform_" ]
[((520, 568), 'megengine.module.Linear', 'M.Linear', (['input_size', '(3 * hidden_size)'], {'bias': 'bias'}), '(input_size, 3 * hidden_size, bias=bias)\n', (528, 568), True, 'import megengine.module as M\n'), ((587, 636), 'megengine.module.Linear', 'M.Linear', (['hidden_size', '(3 * hidden_size)'], {'bias': 'bias'}), '(hidden_size, 3 * hidden_size, bias=bias)\n', (595, 636), True, 'import megengine.module as M\n'), ((876, 906), 'megengine.functional.reshape', 'F.reshape', (['x', '(-1, x.shape[1])'], {}), '(x, (-1, x.shape[1]))\n', (885, 906), True, 'import megengine.functional as F\n'), ((994, 1020), 'megengine.functional.split', 'F.split', (['gate_x', '(3)'], {'axis': '(1)'}), '(gate_x, 3, axis=1)\n', (1001, 1020), True, 'import megengine.functional as F\n'), ((1045, 1071), 'megengine.functional.split', 'F.split', (['gate_h', '(3)'], {'axis': '(1)'}), '(gate_h, 3, axis=1)\n', (1052, 1071), True, 'import megengine.functional as F\n'), ((1093, 1113), 'megengine.functional.sigmoid', 'F.sigmoid', (['(i_r + h_r)'], {}), '(i_r + h_r)\n', (1102, 1113), True, 'import megengine.functional as F\n'), ((1134, 1154), 'megengine.functional.sigmoid', 'F.sigmoid', (['(i_i + h_i)'], {}), '(i_i + h_i)\n', (1143, 1154), True, 'import megengine.functional as F\n'), ((1173, 1202), 'megengine.functional.tanh', 'F.tanh', (['(i_n + resetgate * h_n)'], {}), '(i_n + resetgate * h_n)\n', (1179, 1202), True, 'import megengine.functional as F\n'), ((3899, 3947), 'megengine.module.Linear', 'M.Linear', (['input_size', '(4 * hidden_size)'], {'bias': 'bias'}), '(input_size, 4 * hidden_size, bias=bias)\n', (3907, 3947), True, 'import megengine.module as M\n'), ((3967, 4016), 'megengine.module.Linear', 'M.Linear', (['hidden_size', '(4 * hidden_size)'], {'bias': 'bias'}), '(hidden_size, 4 * hidden_size, bias=bias)\n', (3975, 4016), True, 'import megengine.module as M\n'), ((4281, 4311), 'megengine.functional.reshape', 'F.reshape', (['x', '(-1, x.shape[1])'], {}), '(x, (-1, x.shape[1]))\n', (4290, 4311), True, 'import megengine.functional as F\n'), ((4405, 4430), 'megengine.functional.split', 'F.split', (['gates', '(4)'], {'axis': '(1)'}), '(gates, 4, axis=1)\n', (4412, 4430), True, 'import megengine.functional as F\n'), ((4449, 4466), 'megengine.functional.sigmoid', 'F.sigmoid', (['ingate'], {}), '(ingate)\n', (4458, 4466), True, 'import megengine.functional as F\n'), ((4488, 4509), 'megengine.functional.sigmoid', 'F.sigmoid', (['forgetgate'], {}), '(forgetgate)\n', (4497, 4509), True, 'import megengine.functional as F\n'), ((4529, 4545), 'megengine.functional.tanh', 'F.tanh', (['cellgate'], {}), '(cellgate)\n', (4535, 4545), True, 'import megengine.functional as F\n'), ((4564, 4582), 'megengine.functional.sigmoid', 'F.sigmoid', (['outgate'], {}), '(outgate)\n', (4573, 4582), True, 'import megengine.functional as F\n'), ((722, 749), 'math.sqrt', 'math.sqrt', (['self.hidden_size'], {}), '(self.hidden_size)\n', (731, 749), False, 'import math\n'), ((798, 827), 'megengine.module.init.uniform_', 'M.init.uniform_', (['w', '(-std)', 'std'], {}), '(w, -std, std)\n', (813, 827), True, 'import megengine.module as M\n'), ((2204, 2255), 'megengine.functional.zeros', 'F.zeros', (['(self.num_layers, batch, self.hidden_size)'], {}), '((self.num_layers, batch, self.hidden_size))\n', (2211, 2255), True, 'import megengine.functional as F\n'), ((3392, 3413), 'megengine.functional.stack', 'F.stack', (['outs'], {'axis': '(1)'}), '(outs, axis=1)\n', (3399, 3413), True, 'import megengine.functional as F\n'), ((3449, 3470), 'megengine.functional.stack', 'F.stack', (['outs'], {'axis': '(0)'}), '(outs, axis=0)\n', (3456, 3470), True, 'import megengine.functional as F\n'), ((4102, 4129), 'math.sqrt', 'math.sqrt', (['self.hidden_size'], {}), '(self.hidden_size)\n', (4111, 4129), False, 'import math\n'), ((4178, 4207), 'megengine.module.init.uniform_', 'M.init.uniform_', (['w', '(-std)', 'std'], {}), '(w, -std, std)\n', (4193, 4207), True, 'import megengine.module as M\n'), ((4597, 4618), 'megengine.functional.mul', 'F.mul', (['cx', 'forgetgate'], {}), '(cx, forgetgate)\n', (4602, 4618), True, 'import megengine.functional as F\n'), ((4621, 4644), 'megengine.functional.mul', 'F.mul', (['ingate', 'cellgate'], {}), '(ingate, cellgate)\n', (4626, 4644), True, 'import megengine.functional as F\n'), ((4674, 4684), 'megengine.functional.tanh', 'F.tanh', (['cy'], {}), '(cy)\n', (4680, 4684), True, 'import megengine.functional as F\n'), ((5661, 5712), 'megengine.functional.zeros', 'F.zeros', (['(self.num_layers, batch, self.hidden_size)'], {}), '((self.num_layers, batch, self.hidden_size))\n', (5668, 5712), True, 'import megengine.functional as F\n'), ((5730, 5781), 'megengine.functional.zeros', 'F.zeros', (['(self.num_layers, batch, self.hidden_size)'], {}), '((self.num_layers, batch, self.hidden_size))\n', (5737, 5781), True, 'import megengine.functional as F\n'), ((6974, 6995), 'megengine.functional.stack', 'F.stack', (['outs'], {'axis': '(1)'}), '(outs, axis=1)\n', (6981, 6995), True, 'import megengine.functional as F\n'), ((7031, 7052), 'megengine.functional.stack', 'F.stack', (['outs'], {'axis': '(0)'}), '(outs, axis=0)\n', (7038, 7052), True, 'import megengine.functional as F\n'), ((3230, 3263), 'megengine.functional.dropout', 'F.dropout', (['hidden_l', 'self.dropout'], {}), '(hidden_l, self.dropout)\n', (3239, 3263), True, 'import megengine.functional as F\n'), ((6721, 6757), 'megengine.functional.dropout', 'F.dropout', (['hidden_l[0]', 'self.dropout'], {}), '(hidden_l[0], self.dropout)\n', (6730, 6757), True, 'import megengine.functional as F\n'), ((6783, 6819), 'megengine.functional.dropout', 'F.dropout', (['hidden_l[1]', 'self.dropout'], {}), '(hidden_l[1], self.dropout)\n', (6792, 6819), True, 'import megengine.functional as F\n')]
import os.path as osp from abc import ABCMeta, abstractmethod import megengine as mge import megengine.distributed as dist from megengine.optimizer.optimizer import Optimizer from megengine.module import Module from edit.utils import mkdir_or_exist, build_from_cfg, get_root_logger from ..hook import Hook, HOOKS, get_priority module_ckpt_suffix = "_module.mge" optim_ckpt_suffix = "_optim.mge" class BaseRunner(metaclass=ABCMeta): """The base class of Runner, a training helper for Mge. All subclasses should implement the following APIs: - ``run()`` - ``train()`` - ``test()`` - ``save_checkpoint()`` - ``resume()`` Args: model (:obj:`megengine.module.Module`): The model to be run. optimizers_cfg (dict): optimizer configs work_dir (str, optional): The working directory to save checkpoints and logs. Defaults to None. """ def __init__(self, model, optimizers_cfg=None, work_dir=None): assert hasattr(model, 'train_step') assert hasattr(model, 'test_step') assert hasattr(model, 'create_gradmanager_and_optimizers') assert hasattr(model, 'cal_for_eval') self.model = model self.optimizers_cfg = optimizers_cfg self.logger = get_root_logger() self.work_dir = work_dir assert self.work_dir is not None # get model name from the model class self._model_name = self.model.__class__.__name__ self.mode = None self._hooks = [] self._epoch = 0 self._iter = 0 self._inner_iter = 0 self._max_epochs = 0 self._max_iters = 0 @property def model_name(self): """str: Name of the model, usually the module class name.""" return self._model_name @property def hooks(self): """list[:obj:`Hook`]: A list of registered hooks.""" return self._hooks @property def epoch(self): """int: Current epoch.""" return self._epoch @property def iter(self): """int: Current iteration.""" return self._iter @property def inner_iter(self): """int: Iteration in an epoch.""" return self._inner_iter @property def max_epochs(self): """int: Maximum training epochs.""" return self._max_epochs @property def max_iters(self): """int: Maximum training iterations.""" return self._max_iters @abstractmethod def train(self, data_loader): pass @abstractmethod def test(self, data_loader): pass @abstractmethod def run(self, data_loaders, workflow, max_iters): pass @abstractmethod def save_checkpoint(self, out_dir, create_symlink=True): pass @abstractmethod def resume(self, path2checkpoint): pass @abstractmethod def register_training_hooks(self, lr_config, checkpoint_config, log_config): """Register default hooks for training. Default hooks include: - LrUpdaterHook - CheckpointSaverHook - log_config """ pass def create_gradmanager_and_optimizers(self): self.model.create_gradmanager_and_optimizers(self.optimizers_cfg) def sync_model_params(self): if dist.is_distributed(): self.logger.info("syncing the model's parameters...") dist.bcast_list_(self.model.parameters(), dist.WORLD) else: pass # do nothing def current_lr(self): """Get current learning rates. Returns: list[float] | dict[str, list[float]]: Current learning rates of all param groups. If the runner has a dict of optimizers, this method will return a dict. """ raise NotImplementedError("") # if isinstance(self.optimizer, Optimizer): # lr = [group['lr'] for group in self.optimizer.param_groups] # elif isinstance(self.optimizer, dict): # lr = dict() # for name, optim in self.optimizer.items(): # lr[name] = [group['lr'] for group in optim.param_groups] # else: # raise RuntimeError('lr is not applicable because optimizer does not exist.') # return lr def current_momentum(self): """Get current momentums. Returns: list[float] | dict[str, list[float]]: Current momentums of all param groups. If the runner has a dict of optimizers, this method will return a dict. """ raise NotImplementedError("") # def _get_momentum(optimizer): # momentums = [] # for group in optimizer.param_groups: # if 'momentum' in group.keys(): # momentums.append(group['momentum']) # elif 'betas' in group.keys(): # momentums.append(group['betas'][0]) # else: # momentums.append(0) # return momentums # # if self.optimizer is None: # raise RuntimeError('momentum is not applicable because optimizer does not exist.') # elif isinstance(self.optimizer, Optimizer): # momentums = _get_momentum(self.optimizer) # elif isinstance(self.optimizer, dict): # momentums = dict() # for name, optim in self.optimizer.items(): # momentums[name] = _get_momentum(optim) # return momentums def register_hook(self, hook, priority='NORMAL'): """Register a hook into the hook list. The hook will be inserted into a priority queue, with the specified priority (See :class:`Priority` for details of priorities). For hooks with the same priority, they will be triggered in the same order as they are registered. Args: hook (:obj:`Hook`): The hook to be registered. priority (int or str or :obj:`Priority`): Hook priority. Lower value means higher priority. """ assert isinstance(hook, Hook) if hasattr(hook, 'priority'): raise ValueError('"priority" is a reserved attribute for hook') priority = get_priority(priority) hook.priority = priority # insert the hook to a sorted list inserted = False for i in range(len(self._hooks) - 1, -1, -1): if priority >= self._hooks[i].priority: self._hooks.insert(i + 1, hook) inserted = True break if not inserted: self._hooks.insert(0, hook) def call_hook(self, fn_name): """Call all hooks. Args: fn_name (str): The function name in each hook to be called, such as "before_train_epoch". """ for hook in self._hooks: getattr(hook, fn_name)(self) def load_checkpoint(self, path2checkpoint, load_optim=True): """ :param path2checkpoint: e.g. workdirs/xxxxx/checkpoint/epoch_10 :return: dict """ assert osp.exists(path2checkpoint), "{} do not exist".format(path2checkpoint) dirname = osp.split(path2checkpoint)[-1] epoch, nums = dirname.split("_") assert epoch in ("epoch", ) self.logger.info('load checkpoint from {}'.format(path2checkpoint)) # 遍历model中的所有配置optimizer的model,并进行load res = dict() res['nums'] = int(nums) for submodule_name in self.optimizers_cfg.keys(): submodule = getattr(self.model, submodule_name, None) assert submodule is not None, "model should have submodule {}".format(submodule_name) assert isinstance(submodule, Module), "submodule should be instance of mge.module.Module" if dist.get_rank() == 0: module_state_dict = mge.load(osp.join(path2checkpoint, submodule_name + module_ckpt_suffix)) submodule.load_state_dict(module_state_dict, strict = False) if load_optim: optim_state_dict = mge.load(osp.join(path2checkpoint, submodule_name + optim_ckpt_suffix)) res[submodule_name] = optim_state_dict return res def register_momentum_hook(self, momentum_config): if momentum_config is None: return if isinstance(momentum_config, dict): assert 'policy' in momentum_config policy_type = momentum_config.pop('policy') # If the type of policy is all in lower case, e.g., 'cyclic', # then its first letter will be capitalized, e.g., to be 'Cyclic'. # This is for the convenient usage of momentum updater. # Since this is not applicable for `CosineAnealingMomentumUpdater`, # the string will not be changed if it contains capital letters. if policy_type == policy_type.lower(): policy_type = policy_type.title() hook_type = policy_type + 'MomentumUpdaterHook' momentum_config['type'] = hook_type hook = build_from_cfg(momentum_config, HOOKS) else: hook = momentum_config self.register_hook(hook) def register_optimizer_hook(self, optimizer_config): if optimizer_config is None: return if isinstance(optimizer_config, dict): optimizer_config.setdefault('type', 'OptimizerHook') hook = build_from_cfg(optimizer_config, HOOKS) else: hook = optimizer_config self.register_hook(hook) def register_lr_hook(self, lr_config): if isinstance(lr_config, dict): assert 'policy' in lr_config policy_type = lr_config.pop('policy') # If the type of policy is all in lower case, e.g., 'cyclic', # then its first letter will be capitalized, e.g., to be 'Cyclic'. # This is for the convenient usage of Lr updater. # Since this is not applicable for `CosineAnealingLrUpdater`, # the string will not be changed if it contains capital letters. if policy_type == policy_type.lower(): policy_type = policy_type.title() hook_type = policy_type + 'LrUpdaterHook' lr_config['type'] = hook_type hook = build_from_cfg(lr_config, HOOKS) else: hook = lr_config self.register_hook(hook) def register_checkpoint_hook(self, checkpoint_config): if isinstance(checkpoint_config, dict): checkpoint_config.setdefault('type', 'CheckpointHook') hook = build_from_cfg(checkpoint_config, HOOKS) else: hook = checkpoint_config self.register_hook(hook) def register_logger_hooks(self, log_config): log_interval = log_config['interval'] for info in log_config['hooks']: logger_hook = build_from_cfg(info, HOOKS, default_args=dict(interval=log_interval)) self.register_hook(logger_hook, priority='HIGH')
[ "megengine.distributed.is_distributed", "megengine.distributed.get_rank" ]
[((1254, 1271), 'edit.utils.get_root_logger', 'get_root_logger', ([], {}), '()\n', (1269, 1271), False, 'from edit.utils import mkdir_or_exist, build_from_cfg, get_root_logger\n'), ((3305, 3326), 'megengine.distributed.is_distributed', 'dist.is_distributed', ([], {}), '()\n', (3324, 3326), True, 'import megengine.distributed as dist\n'), ((7156, 7183), 'os.path.exists', 'osp.exists', (['path2checkpoint'], {}), '(path2checkpoint)\n', (7166, 7183), True, 'import os.path as osp\n'), ((7245, 7271), 'os.path.split', 'osp.split', (['path2checkpoint'], {}), '(path2checkpoint)\n', (7254, 7271), True, 'import os.path as osp\n'), ((9150, 9188), 'edit.utils.build_from_cfg', 'build_from_cfg', (['momentum_config', 'HOOKS'], {}), '(momentum_config, HOOKS)\n', (9164, 9188), False, 'from edit.utils import mkdir_or_exist, build_from_cfg, get_root_logger\n'), ((9516, 9555), 'edit.utils.build_from_cfg', 'build_from_cfg', (['optimizer_config', 'HOOKS'], {}), '(optimizer_config, HOOKS)\n', (9530, 9555), False, 'from edit.utils import mkdir_or_exist, build_from_cfg, get_root_logger\n'), ((10396, 10428), 'edit.utils.build_from_cfg', 'build_from_cfg', (['lr_config', 'HOOKS'], {}), '(lr_config, HOOKS)\n', (10410, 10428), False, 'from edit.utils import mkdir_or_exist, build_from_cfg, get_root_logger\n'), ((10699, 10739), 'edit.utils.build_from_cfg', 'build_from_cfg', (['checkpoint_config', 'HOOKS'], {}), '(checkpoint_config, HOOKS)\n', (10713, 10739), False, 'from edit.utils import mkdir_or_exist, build_from_cfg, get_root_logger\n'), ((7868, 7883), 'megengine.distributed.get_rank', 'dist.get_rank', ([], {}), '()\n', (7881, 7883), True, 'import megengine.distributed as dist\n'), ((7935, 7997), 'os.path.join', 'osp.join', (['path2checkpoint', '(submodule_name + module_ckpt_suffix)'], {}), '(path2checkpoint, submodule_name + module_ckpt_suffix)\n', (7943, 7997), True, 'import os.path as osp\n'), ((8147, 8208), 'os.path.join', 'osp.join', (['path2checkpoint', '(submodule_name + optim_ckpt_suffix)'], {}), '(path2checkpoint, submodule_name + optim_ckpt_suffix)\n', (8155, 8208), True, 'import os.path as osp\n')]
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import pickle from collections import defaultdict from itertools import chain import numpy as np import megengine.functional as F import megengine.module as M import megengine.module.qat as qat from megengine.module.identity import Identity from megengine.traced_module import trace_module from megengine.traced_module.expr import CallFunction, CallMethod, Expr, GetAttr, Input from megengine.traced_module.node import ModuleNode, Node, TensorNode class IdentityMod(M.Module): def forward(self, x): return x class MyBlock(M.Module): def __init__(self, in_channels=3, channels=3): super(MyBlock, self).__init__() self.conv1 = M.Conv2d(in_channels, channels, 3, 1, padding=1, bias=False) self.bn1 = M.BatchNorm2d(channels) self.nothing = IdentityMod() def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = F.relu(x) + 1 x = self.nothing(x) return x class MyModule(M.Module): def __init__(self): super(MyModule, self).__init__() self.block0 = MyBlock() self.block1 = MyBlock() self.nothing = IdentityMod() def forward(self, x): x = self.block0(x) x = self.block1(x) x = self.nothing(x) return x class MyBlock1(M.Module): def forward(self, a): y = F.concat([a, a]) return a, y class MyModule1(M.Module): def __init__(self): super().__init__() self.block0 = MyBlock1() self.block1 = MyBlock1() def forward(self, a): a, y1 = self.block0(a) a = a + 1 a, y2 = self.block1(a) return a, y1 + y2 class NewModule(M.Module): def __init__(self, traced_module): super(NewModule, self).__init__() self.module = traced_module def forward(self, x): x = x - 1 x = self.module(x) x = x + 1 return x def _check_expr_users(traced_module): node_user = defaultdict(list) for expr in traced_module.graph._exprs: for node in expr.inputs: node_user[node].append(expr) for node in traced_module.graph.nodes(): node.users.sort(key=lambda m: m._id) node_user[node].sort(key=lambda m: m._id) assert node.users == node_user[node] def _init_cls(cls): module = cls() x = F.ones((1, 3, 3, 3)) y = module(x) traced_module = trace_module(module, x) return traced_module, x, y def _init_block(): return _init_cls(MyBlock) def _init_module(): return _init_cls(MyModule) def test_search(): traced_module, *_ = _init_block() graph = traced_module.graph relu_expr = graph.get_function_by_type(F.relu).as_unique() assert isinstance(relu_expr, CallFunction) and relu_expr.func == F.relu conv_node = graph.get_module_by_type(M.Conv2d).as_unique() assert isinstance(conv_node, ModuleNode) and conv_node.module_type == M.Conv2d add_expr = graph.get_method_by_type("__add__").as_unique() assert isinstance(add_expr, CallMethod) and add_expr.method == "__add__" conv_node = graph.get_node_by_name("MyBlock_conv1").as_unique() assert isinstance(conv_node, ModuleNode) and conv_node.module_type == M.Conv2d def test_producer_and_users(): traced_module, *_ = _init_module() def _check(exprs): for expr in exprs: for n in chain(expr.inputs, expr.outputs): if not isinstance(n.expr, Input): assert n.expr in exprs for e in n.users: assert e in exprs assert n in e.inputs for mod in traced_module.modules(): if not hasattr(mod, "argdef_graph_map"): continue for g in mod.argdef_graph_map.values(): _check(g._exprs) def test_insert(): traced_module, x, expect = _init_block() graph = traced_module.graph relu_out = graph.get_function_by_type(F.relu).as_unique().outputs[0] with graph.insert_exprs(): neg_out = F.neg(relu_out) graph.replace_node({relu_out: neg_out}) graph.compile() np.testing.assert_allclose(expect - 1, 1 - traced_module(x), atol=1e-6) def test_insert_module(): class Neg(M.Module): def __init__(self, name): super().__init__(name) self.identity = M.Identity() self.identity_list = [M.Identity(), M.Identity()] self.identity_dict = {"0": M.Identity(), "1": M.Identity()} self.param = F.zeros((1,)) def forward(self, x): x = self.identity(x) for m in self.identity_dict: x = self.identity_dict[m](x) for m in self.identity_list: x = m(x) return F.neg(x) + self.param traced_module, x, expect = _init_block() graph = traced_module.graph relu_out = graph.get_function_by_type(F.relu).as_unique().outputs[0] self = graph.inputs[0] setattr(traced_module, "neg", Neg(name="neg")) setattr(traced_module, "neg2", Neg(name="neg")) setattr(traced_module, "param", F.zeros((1,))) with graph.insert_exprs(): neg_out = self.neg(relu_out) neg_out = self.neg2(relu_out) neg_out = neg_out + self.param graph.replace_node({relu_out: neg_out}) graph.compile() np.testing.assert_allclose(expect - 1, 1 - traced_module(x), atol=1e-6) assert traced_module.neg.graph is not None assert traced_module.neg2.graph is not None assert traced_module.neg2.param is not None assert len(traced_module.neg.graph._exprs) == 13 for n in traced_module.graph.nodes(): if isinstance(n, TensorNode): assert n.value is None def test_insert_qat_module(): class concat(qat.Concat): pass traced_module, x, expect = _init_block() graph = traced_module.graph self = graph.inputs[0] out = graph.outputs[0] setattr(traced_module, "cat_0", qat.Concat()) setattr(traced_module, "cat_1", concat()) with graph.insert_exprs(): x_0 = self.cat_0([out, out]) x_1 = self.cat_1([out, x_0]) graph.replace_node({out: x_1}) graph.compile() x = F.copy(x) np.testing.assert_allclose( F.concat([expect, expect, expect]), traced_module(x), atol=1e-6 ) assert not hasattr(traced_module.cat_0, "graph") assert traced_module.cat_1.graph is not None def test_add_input_and_output(): traced_module, x, y = _init_module() data_node = traced_module.graph.add_input_node(shape=(1, 3, 224, 224), name="data") traced_module.graph.add_output_node(data_node) assert data_node.name == "data" assert traced_module.graph.inputs[-1] == data_node assert len(traced_module.graph.inputs) == 3 assert len(traced_module.graph.outputs) == 2 y1, y2 = traced_module(x, x) np.testing.assert_equal(y1.numpy(), y.numpy()) np.testing.assert_equal(y2.numpy(), x.numpy()) y1, y2 = traced_module(x, y) np.testing.assert_equal(y2.numpy(), y.numpy()) traced_module.graph.reset_outputs( ({"orig_out": traced_module.graph.outputs[0]}, traced_module.graph.outputs[1]) ) out = traced_module(x, x) assert isinstance(out, tuple) assert isinstance(out[0], dict) np.testing.assert_equal(out[0]["orig_out"].numpy(), y.numpy()) np.testing.assert_equal(out[1].numpy(), x.numpy()) def test_delete(): traced_module, x, expect = _init_block() graph = traced_module.graph relu_expr = graph.get_function_by_type(F.relu).as_unique() node = relu_expr.outputs repl_node = relu_expr.inputs graph.replace_node({node[0]: repl_node[0]}) graph.compile() np.testing.assert_allclose(expect - 1, F.relu(traced_module(x) - 1), atol=1e-6) # clear graph graph.replace_node({graph.outputs[0]: graph.inputs[1]}) graph.compile() np.testing.assert_equal(len(list(graph._exprs)), 0) np.testing.assert_equal(traced_module(x).numpy(), x.numpy()) def test_flatten(): traced_module, x, expect = _init_module() traced_module = traced_module.flatten() assert len(traced_module.graph._exprs) == 12 np.testing.assert_equal(expect.numpy(), traced_module(x).numpy()) traced_module = traced_module.flatten() assert len(traced_module.graph._exprs) == 12 np.testing.assert_equal(expect.numpy(), traced_module(x).numpy()) traced_module, x, expect = _init_cls(MyModule1) traced_module = traced_module.flatten() _check_expr_users(traced_module) def test_id_and_name(): def _check_id(traced_module): _total_ids = traced_module.graph._total_ids node_ids = [n._id for n in traced_module.graph.nodes().as_list()] assert len(set(node_ids)) == len(node_ids) assert max(node_ids) + 1 == _total_ids[0] expr_ids = [n._id for n in traced_module.graph.exprs().as_list()] assert len(set(expr_ids)) == len(expr_ids) assert max(expr_ids) + 1 == _total_ids[1] def _check_name(flatened_module): node_names = [n._name for n in flatened_module.graph.nodes().as_list()] assert len(set(node_names)) == len(node_names) traced_module, x, expect = _init_module() _check_id(traced_module) flattened_module = traced_module.flatten() _check_id(flattened_module) _check_name(flattened_module) # pickle check obj = pickle.dumps(traced_module) traced_module = pickle.loads(obj) Node._set_next_id(159) Expr._set_next_id(1024) graph = traced_module.graph for expr in graph.get_function_by_type(F.relu).as_list(): relu_out = expr.outputs[0] cur_graph = expr.top_graph with cur_graph.insert_exprs(): neg_out = F.neg(relu_out) cur_graph.replace_node({relu_out: neg_out}) cur_graph.compile() _check_id(traced_module) flattened_module = traced_module.flatten() _check_id(flattened_module) _check_name(flattened_module) # check trace TracedModule obj = pickle.dumps(traced_module) traced_module = pickle.loads(obj) module = NewModule(traced_module) traced_module = trace_module(module, x) _check_id(traced_module) flattened_module = traced_module.flatten() _check_id(flattened_module) _check_name(flattened_module) def test_set_node_name(): traced_module, x, expect = _init_module() graph = traced_module.graph output_node = graph.outputs[0] def rename(name): output_node.name = name np.testing.assert_raises(AssertionError, rename, "block1_out") rename("output") np.testing.assert_equal(str(graph.outputs[0]), "output") def test_set_graph_name(): traced_module, x, expect = _init_module() graph = traced_module.graph output_node = graph.outputs[0] node_name = output_node.name graph.name = "Top" node = graph.get_node_by_name("{}_{}".format("Top", node_name)).as_unique() assert node is output_node def test_extra_block(): class PostProcess(M.Module): def forward(self, x): return x * 2 class Net(M.Module): def __init__(self, traced_module): super().__init__() self.post_process = PostProcess() self.traced_module = traced_module def forward(self, x): x = self.traced_module(x) x = self.post_process(x) return x traced_module, x, expect = _init_block() module = Net(traced_module) np.testing.assert_allclose(2 * expect, module(x), atol=1e-6) traced_module = trace_module(module, x) np.testing.assert_allclose(2 * expect, traced_module(x), atol=1e-6)
[ "megengine.functional.relu", "megengine.traced_module.trace_module", "megengine.traced_module.node.Node._set_next_id", "megengine.functional.zeros", "megengine.functional.ones", "megengine.functional.neg", "megengine.module.Conv2d", "megengine.module.qat.Concat", "megengine.traced_module.expr.Expr._set_next_id", "megengine.functional.copy", "megengine.module.Identity", "megengine.module.BatchNorm2d", "megengine.functional.concat" ]
[((2316, 2333), 'collections.defaultdict', 'defaultdict', (['list'], {}), '(list)\n', (2327, 2333), False, 'from collections import defaultdict\n'), ((2686, 2706), 'megengine.functional.ones', 'F.ones', (['(1, 3, 3, 3)'], {}), '((1, 3, 3, 3))\n', (2692, 2706), True, 'import megengine.functional as F\n'), ((2745, 2768), 'megengine.traced_module.trace_module', 'trace_module', (['module', 'x'], {}), '(module, x)\n', (2757, 2768), False, 'from megengine.traced_module import trace_module\n'), ((6518, 6527), 'megengine.functional.copy', 'F.copy', (['x'], {}), '(x)\n', (6524, 6527), True, 'import megengine.functional as F\n'), ((9703, 9730), 'pickle.dumps', 'pickle.dumps', (['traced_module'], {}), '(traced_module)\n', (9715, 9730), False, 'import pickle\n'), ((9751, 9768), 'pickle.loads', 'pickle.loads', (['obj'], {}), '(obj)\n', (9763, 9768), False, 'import pickle\n'), ((9773, 9795), 'megengine.traced_module.node.Node._set_next_id', 'Node._set_next_id', (['(159)'], {}), '(159)\n', (9790, 9795), False, 'from megengine.traced_module.node import ModuleNode, Node, TensorNode\n'), ((9800, 9823), 'megengine.traced_module.expr.Expr._set_next_id', 'Expr._set_next_id', (['(1024)'], {}), '(1024)\n', (9817, 9823), False, 'from megengine.traced_module.expr import CallFunction, CallMethod, Expr, GetAttr, Input\n'), ((10331, 10358), 'pickle.dumps', 'pickle.dumps', (['traced_module'], {}), '(traced_module)\n', (10343, 10358), False, 'import pickle\n'), ((10379, 10396), 'pickle.loads', 'pickle.loads', (['obj'], {}), '(obj)\n', (10391, 10396), False, 'import pickle\n'), ((10455, 10478), 'megengine.traced_module.trace_module', 'trace_module', (['module', 'x'], {}), '(module, x)\n', (10467, 10478), False, 'from megengine.traced_module import trace_module\n'), ((10823, 10885), 'numpy.testing.assert_raises', 'np.testing.assert_raises', (['AssertionError', 'rename', '"""block1_out"""'], {}), "(AssertionError, rename, 'block1_out')\n", (10847, 10885), True, 'import numpy as np\n'), ((11876, 11899), 'megengine.traced_module.trace_module', 'trace_module', (['module', 'x'], {}), '(module, x)\n', (11888, 11899), False, 'from megengine.traced_module import trace_module\n'), ((1016, 1076), 'megengine.module.Conv2d', 'M.Conv2d', (['in_channels', 'channels', '(3)', '(1)'], {'padding': '(1)', 'bias': '(False)'}), '(in_channels, channels, 3, 1, padding=1, bias=False)\n', (1024, 1076), True, 'import megengine.module as M\n'), ((1096, 1119), 'megengine.module.BatchNorm2d', 'M.BatchNorm2d', (['channels'], {}), '(channels)\n', (1109, 1119), True, 'import megengine.module as M\n'), ((1691, 1707), 'megengine.functional.concat', 'F.concat', (['[a, a]'], {}), '([a, a])\n', (1699, 1707), True, 'import megengine.functional as F\n'), ((4366, 4381), 'megengine.functional.neg', 'F.neg', (['relu_out'], {}), '(relu_out)\n', (4371, 4381), True, 'import megengine.functional as F\n'), ((5432, 5445), 'megengine.functional.zeros', 'F.zeros', (['(1,)'], {}), '((1,))\n', (5439, 5445), True, 'import megengine.functional as F\n'), ((6288, 6300), 'megengine.module.qat.Concat', 'qat.Concat', ([], {}), '()\n', (6298, 6300), True, 'import megengine.module.qat as qat\n'), ((6568, 6602), 'megengine.functional.concat', 'F.concat', (['[expect, expect, expect]'], {}), '([expect, expect, expect])\n', (6576, 6602), True, 'import megengine.functional as F\n'), ((1246, 1255), 'megengine.functional.relu', 'F.relu', (['x'], {}), '(x)\n', (1252, 1255), True, 'import megengine.functional as F\n'), ((3718, 3750), 'itertools.chain', 'chain', (['expr.inputs', 'expr.outputs'], {}), '(expr.inputs, expr.outputs)\n', (3723, 3750), False, 'from itertools import chain\n'), ((4672, 4684), 'megengine.module.Identity', 'M.Identity', ([], {}), '()\n', (4682, 4684), True, 'import megengine.module as M\n'), ((4844, 4857), 'megengine.functional.zeros', 'F.zeros', (['(1,)'], {}), '((1,))\n', (4851, 4857), True, 'import megengine.functional as F\n'), ((10050, 10065), 'megengine.functional.neg', 'F.neg', (['relu_out'], {}), '(relu_out)\n', (10055, 10065), True, 'import megengine.functional as F\n'), ((4719, 4731), 'megengine.module.Identity', 'M.Identity', ([], {}), '()\n', (4729, 4731), True, 'import megengine.module as M\n'), ((4733, 4745), 'megengine.module.Identity', 'M.Identity', ([], {}), '()\n', (4743, 4745), True, 'import megengine.module as M\n'), ((4786, 4798), 'megengine.module.Identity', 'M.Identity', ([], {}), '()\n', (4796, 4798), True, 'import megengine.module as M\n'), ((4805, 4817), 'megengine.module.Identity', 'M.Identity', ([], {}), '()\n', (4815, 4817), True, 'import megengine.module as M\n'), ((5093, 5101), 'megengine.functional.neg', 'F.neg', (['x'], {}), '(x)\n', (5098, 5101), True, 'import megengine.functional as F\n')]
from typing import List, Optional from sqlmodel import Field, Relationship, SQLModel, create_engine class Weapon(SQLModel, table=True): id: Optional[int] = Field(default=None, primary_key=True) name: str hero: "Hero" = Relationship(back_populates="weapon") class Power(SQLModel, table=True): id: Optional[int] = Field(default=None, primary_key=True) name: str hero_id: int = Field(foreign_key="hero.id") hero: "Hero" = Relationship(back_populates="powers") class Team(SQLModel, table=True): id: Optional[int] = Field(default=None, primary_key=True) name: str headquarters: str heroes: List["Hero"] = Relationship(back_populates="team") class Hero(SQLModel, table=True): id: Optional[int] = Field(default=None, primary_key=True) name: str secret_name: str age: Optional[int] = None team_id: Optional[int] = Field(default=None, foreign_key="team.id") team: Optional[Team] = Relationship(back_populates="heroes") weapon_id: Optional[int] = Field(default=None, foreign_key="weapon.id") weapon: Optional[Weapon] = Relationship(back_populates="owner") powers: List[Power] = Relationship(back_populates="hero") sqlite_file_name = "database.db" sqlite_url = f"sqlite:///{sqlite_file_name}" engine = create_engine(sqlite_url, echo=True) def create_db_and_tables(): SQLModel.metadata.create_all(engine) def main(): create_db_and_tables() if __name__ == "__main__": main()
[ "sqlmodel.Relationship", "sqlmodel.SQLModel.metadata.create_all", "sqlmodel.create_engine", "sqlmodel.Field" ]
[((1289, 1325), 'sqlmodel.create_engine', 'create_engine', (['sqlite_url'], {'echo': '(True)'}), '(sqlite_url, echo=True)\n', (1302, 1325), False, 'from sqlmodel import Field, Relationship, SQLModel, create_engine\n'), ((163, 200), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'primary_key': '(True)'}), '(default=None, primary_key=True)\n', (168, 200), False, 'from sqlmodel import Field, Relationship, SQLModel, create_engine\n'), ((235, 272), 'sqlmodel.Relationship', 'Relationship', ([], {'back_populates': '"""weapon"""'}), "(back_populates='weapon')\n", (247, 272), False, 'from sqlmodel import Field, Relationship, SQLModel, create_engine\n'), ((334, 371), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'primary_key': '(True)'}), '(default=None, primary_key=True)\n', (339, 371), False, 'from sqlmodel import Field, Relationship, SQLModel, create_engine\n'), ((406, 434), 'sqlmodel.Field', 'Field', ([], {'foreign_key': '"""hero.id"""'}), "(foreign_key='hero.id')\n", (411, 434), False, 'from sqlmodel import Field, Relationship, SQLModel, create_engine\n'), ((454, 491), 'sqlmodel.Relationship', 'Relationship', ([], {'back_populates': '"""powers"""'}), "(back_populates='powers')\n", (466, 491), False, 'from sqlmodel import Field, Relationship, SQLModel, create_engine\n'), ((552, 589), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'primary_key': '(True)'}), '(default=None, primary_key=True)\n', (557, 589), False, 'from sqlmodel import Field, Relationship, SQLModel, create_engine\n'), ((654, 689), 'sqlmodel.Relationship', 'Relationship', ([], {'back_populates': '"""team"""'}), "(back_populates='team')\n", (666, 689), False, 'from sqlmodel import Field, Relationship, SQLModel, create_engine\n'), ((750, 787), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'primary_key': '(True)'}), '(default=None, primary_key=True)\n', (755, 787), False, 'from sqlmodel import Field, Relationship, SQLModel, create_engine\n'), ((883, 925), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'foreign_key': '"""team.id"""'}), "(default=None, foreign_key='team.id')\n", (888, 925), False, 'from sqlmodel import Field, Relationship, SQLModel, create_engine\n'), ((953, 990), 'sqlmodel.Relationship', 'Relationship', ([], {'back_populates': '"""heroes"""'}), "(back_populates='heroes')\n", (965, 990), False, 'from sqlmodel import Field, Relationship, SQLModel, create_engine\n'), ((1023, 1067), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'foreign_key': '"""weapon.id"""'}), "(default=None, foreign_key='weapon.id')\n", (1028, 1067), False, 'from sqlmodel import Field, Relationship, SQLModel, create_engine\n'), ((1099, 1135), 'sqlmodel.Relationship', 'Relationship', ([], {'back_populates': '"""owner"""'}), "(back_populates='owner')\n", (1111, 1135), False, 'from sqlmodel import Field, Relationship, SQLModel, create_engine\n'), ((1163, 1198), 'sqlmodel.Relationship', 'Relationship', ([], {'back_populates': '"""hero"""'}), "(back_populates='hero')\n", (1175, 1198), False, 'from sqlmodel import Field, Relationship, SQLModel, create_engine\n'), ((1360, 1396), 'sqlmodel.SQLModel.metadata.create_all', 'SQLModel.metadata.create_all', (['engine'], {}), '(engine)\n', (1388, 1396), False, 'from sqlmodel import Field, Relationship, SQLModel, create_engine\n')]
import os import time from megengine.distributed.group import is_distributed import megengine.distributed as dist from megengine.data.dataloader import DataLoader from edit.core.hook import Hook from edit.utils import to_list, is_list_of, get_logger, mkdir_or_exist class EvalIterHook(Hook): """evaluation hook by iteration-based. This hook will regularly perform evaluation in a given interval Args: dataloader (DataLoader): A mge dataloader. interval (int): Evaluation interval. Default: 3000. eval_kwargs (dict): Other eval kwargs. It contains: save_image (bool): Whether to save image. save_path (str): The path to save image. """ def __init__(self, dataloader, **eval_kwargs): if not isinstance(dataloader, DataLoader): raise TypeError('dataloader must be a mge DataLoader, but got {}'.format(type(dataloader))) self.dataloader = dataloader self.eval_kwargs = eval_kwargs self.interval = self.eval_kwargs.pop('interval', 10000) self.save_image = self.eval_kwargs.pop('save_image', False) self.save_path = self.eval_kwargs.pop('save_path', None) self.log_path = self.eval_kwargs.pop('log_path', None) self.multi_process = self.eval_kwargs.pop('multi_process', False) self.ensemble = self.eval_kwargs.pop('ensemble', False) mkdir_or_exist(self.save_path) self.logger = get_logger(name = "EvalIterHook", log_file=self.log_path) # only for rank0 if is_distributed(): self.local_rank = dist.get_rank() self.nranks = dist.get_world_size() else: self.local_rank = 0 self.nranks = 1 def after_train_iter(self, runner): if not self.every_n_iters(runner, self.interval): return self.logger.info("start to eval for iter: {}".format(runner.iter+1)) save_path = os.path.join(self.save_path, "iter_{}".format(runner.iter+1)) mkdir_or_exist(save_path) results = [] # list of dict if self.multi_process: assert is_distributed(), "when set multiprocess eval, you should use multi process training" raise NotImplementedError("not support multi process for eval now") elif self.local_rank == 0: # 全部交给rank0来处理 for data in self.dataloader: outputs = runner.model.test_step(data, save_image=self.save_image, save_path=save_path, ensemble=self.ensemble) result = runner.model.cal_for_eval(outputs, data) assert isinstance(result, list) results += result self.evaluate(results, runner.iter+1) else: pass if is_distributed(): dist.group_barrier() def evaluate(self, results, iters): """Evaluation function. Args: runner (``BaseRunner``): The runner. results (list of dict): Model forward results. iter: now iter. """ save_path = os.path.join(self.save_path, "iter_{}".format(iters)) # save for some information. e.g. SVG for everyframe value in VSR. eval_res = self.dataloader.dataset.evaluate(results, save_path) self.logger.info("***** eval results for {} iters: *****".format(iters)) for name, val in eval_res.items(): self.logger.info("metric: {} average_val: {:.4f}".format(name, val))
[ "megengine.distributed.group.is_distributed", "megengine.distributed.get_rank", "megengine.distributed.group_barrier", "megengine.distributed.get_world_size" ]
[((1392, 1422), 'edit.utils.mkdir_or_exist', 'mkdir_or_exist', (['self.save_path'], {}), '(self.save_path)\n', (1406, 1422), False, 'from edit.utils import to_list, is_list_of, get_logger, mkdir_or_exist\n'), ((1445, 1500), 'edit.utils.get_logger', 'get_logger', ([], {'name': '"""EvalIterHook"""', 'log_file': 'self.log_path'}), "(name='EvalIterHook', log_file=self.log_path)\n", (1455, 1500), False, 'from edit.utils import to_list, is_list_of, get_logger, mkdir_or_exist\n'), ((1540, 1556), 'megengine.distributed.group.is_distributed', 'is_distributed', ([], {}), '()\n', (1554, 1556), False, 'from megengine.distributed.group import is_distributed\n'), ((2012, 2037), 'edit.utils.mkdir_or_exist', 'mkdir_or_exist', (['save_path'], {}), '(save_path)\n', (2026, 2037), False, 'from edit.utils import to_list, is_list_of, get_logger, mkdir_or_exist\n'), ((2752, 2768), 'megengine.distributed.group.is_distributed', 'is_distributed', ([], {}), '()\n', (2766, 2768), False, 'from megengine.distributed.group import is_distributed\n'), ((1588, 1603), 'megengine.distributed.get_rank', 'dist.get_rank', ([], {}), '()\n', (1601, 1603), True, 'import megengine.distributed as dist\n'), ((1630, 1651), 'megengine.distributed.get_world_size', 'dist.get_world_size', ([], {}), '()\n', (1649, 1651), True, 'import megengine.distributed as dist\n'), ((2125, 2141), 'megengine.distributed.group.is_distributed', 'is_distributed', ([], {}), '()\n', (2139, 2141), False, 'from megengine.distributed.group import is_distributed\n'), ((2782, 2802), 'megengine.distributed.group_barrier', 'dist.group_barrier', ([], {}), '()\n', (2800, 2802), True, 'import megengine.distributed as dist\n')]
"""v1-contact-invitation-key Revision ID: <KEY> Revises: e40469d1045a Create Date: 2022-05-11 15:23:29.495804 """ from alembic import op import sqlalchemy as sa import sqlmodel # revision identifiers, used by Alembic. revision = "<KEY>" down_revision = "e40469d1045a" branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.add_column( "contact", sa.Column("invitation_key", sqlmodel.sql.sqltypes.AutoString(), nullable=True), ) op.execute("UPDATE contact SET invitation_key = 'v0'") op.alter_column("contact", "invitation_key", nullable=False) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_column("contact", "invitation_key") # ### end Alembic commands ###
[ "sqlmodel.sql.sqltypes.AutoString" ]
[((529, 583), 'alembic.op.execute', 'op.execute', (['"""UPDATE contact SET invitation_key = \'v0\'"""'], {}), '("UPDATE contact SET invitation_key = \'v0\'")\n', (539, 583), False, 'from alembic import op\n'), ((588, 648), 'alembic.op.alter_column', 'op.alter_column', (['"""contact"""', '"""invitation_key"""'], {'nullable': '(False)'}), "('contact', 'invitation_key', nullable=False)\n", (603, 648), False, 'from alembic import op\n'), ((773, 816), 'alembic.op.drop_column', 'op.drop_column', (['"""contact"""', '"""invitation_key"""'], {}), "('contact', 'invitation_key')\n", (787, 816), False, 'from alembic import op\n'), ((467, 501), 'sqlmodel.sql.sqltypes.AutoString', 'sqlmodel.sql.sqltypes.AutoString', ([], {}), '()\n', (499, 501), False, 'import sqlmodel\n')]
from typing import Optional import uuid as uuid_pkg from sqlmodel import SQLModel, Field from datetime import datetime class BaseUUIDModel(SQLModel): id: uuid_pkg.UUID = Field( default_factory=uuid_pkg.uuid4, primary_key=True, index=True, nullable=False, ) updated_at: Optional[datetime] created_at: Optional[datetime]
[ "sqlmodel.Field" ]
[((175, 262), 'sqlmodel.Field', 'Field', ([], {'default_factory': 'uuid_pkg.uuid4', 'primary_key': '(True)', 'index': '(True)', 'nullable': '(False)'}), '(default_factory=uuid_pkg.uuid4, primary_key=True, index=True,\n nullable=False)\n', (180, 262), False, 'from sqlmodel import SQLModel, Field\n')]
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import os import platform import re import subprocess import sys from math import ceil import numpy as np import pytest import megengine as mge import megengine.autodiff as ad import megengine.distributed as dist import megengine.functional as F from megengine.device import get_default_device, set_default_device from megengine.functional.debug_param import set_conv_execution_strategy from megengine.module import AvgPool2d, BatchNorm2d, Conv2d, Linear, Module from megengine.optimizer import SGD from megengine.tensor import Tensor p_num = 4 def get_gpu_name(): try: gpu_info = subprocess.check_output( ["nvidia-smi", "--query-gpu=gpu_name", "--format=csv,noheader"] ) gpu_info = gpu_info.decode("ascii").split("\n")[0] except: gpu_info = "None" return gpu_info def get_cpu_name(): cpu_info = "None" try: cpu_info = subprocess.check_output(["cat", "/proc/cpuinfo"]).decode("ascii") for line in cpu_info.split("\n"): if "model name" in line: return re.sub(".*model name.*:", "", line, 1).strip() except: pass return cpu_info def get_xpu_name(): if mge.is_cuda_available(): return get_gpu_name() else: return get_cpu_name() class MnistNet(Module): def __init__(self, has_bn=True): super().__init__() self.conv0 = Conv2d(1, 20, kernel_size=5, bias=True) self.pool0 = AvgPool2d(2) self.conv1 = Conv2d(20, 20, kernel_size=5, bias=True) self.pool1 = AvgPool2d(2) self.fc0 = Linear(20 * 4 * 4, 500, bias=True) self.fc1 = Linear(500, 10, bias=True) self.bn0 = None self.bn1 = None if has_bn: self.bn0 = BatchNorm2d(20) self.bn1 = BatchNorm2d(20) def forward(self, x): x = self.conv0(x) if self.bn0: x = self.bn0(x) x = F.relu(x) x = self.pool0(x) x = self.conv1(x) if self.bn1: x = self.bn1(x) x = F.relu(x) x = self.pool1(x) x = F.flatten(x, 1) x = self.fc0(x) x = F.relu(x) x = self.fc1(x) return x def train(data, label, net, opt, gm): opt.clear_grad() with gm: pred = net(data) loss = F.nn.cross_entropy(pred, label) gm.backward(loss) opt.step() return loss def update_model(model_path): """ Update the dumped model with test cases for new reference values. The model with pre-trained weights is trained for one iter with the test data attached. The loss and updated net state dict is dumped. .. code-block:: python from test_dp_correctness import update_model update_model('mnist_model_with_test.mge') # for gpu update_model('mnist_model_with_test_cpu.mge') # for cpu """ net = MnistNet(has_bn=True) checkpoint = mge.load(model_path) net.load_state_dict(checkpoint["net_init"]) lr = checkpoint["sgd_lr"] opt = SGD(net.parameters(), lr=lr) gm = ad.GradManager().attach( net.parameters(), callbacks=[dist.make_allreduce_cb("MEAN", dist.WORLD)] ) data = Tensor(checkpoint["data"], dtype=np.float32) label = Tensor(checkpoint["label"], dtype=np.int32) opt.clear_grad() loss = train(data, label, net=net, opt=opt) opt.step() xpu_name = get_xpu_name() checkpoint.update( {"net_updated": net.state_dict(), "loss": loss.numpy(), "xpu": xpu_name} ) mge.serialization.save(checkpoint, model_path) def run_test( model_path, use_jit, use_symbolic, sublinear_memory_config=None, max_err=None, ): """ Load the model with test cases and run the training for one iter. The loss and updated weights are compared with reference value to verify the correctness. Dump a new file with updated result by calling update_model if you think the test fails due to numerical rounding errors instead of bugs. Please think twice before you do so. """ checkpoint = mge.load(model_path) data = checkpoint["data"] label = checkpoint["label"] @dist.launcher def worker(max_err): net = MnistNet(has_bn=True) net.load_state_dict(checkpoint["net_init"]) lr = checkpoint["sgd_lr"] opt = SGD(net.parameters(), lr=lr) gm = ad.GradManager().attach( net.parameters(), callbacks=[dist.make_allreduce_cb("MEAN", dist.WORLD)] ) # use same data and label for all gpu's # such that the result does not depend on number of gpu data_train = Tensor(data) label_train = Tensor(label) loss = train(data_train, label_train, net, opt, gm) np.testing.assert_allclose(loss.numpy(), checkpoint["loss"], atol=max_err) if dist.get_rank(): return for param, param_ref in zip( net.state_dict().items(), checkpoint["net_updated"].items() ): assert param[0] == param_ref[0] if "bn" in param[0]: ref = param_ref[1].reshape(param[1].shape) np.testing.assert_allclose(param[1], ref, atol=max_err) else: np.testing.assert_allclose(param[1], param_ref[1], atol=max_err) worker(max_err) @pytest.mark.require_ngpu(2) @pytest.mark.isolated_distributed def test_dp_correctness(): model_name = "mnist_model_with_test.mge" model_path = os.path.join(os.path.dirname(__file__), model_name) set_conv_execution_strategy("HEURISTIC_REPRODUCIBLE") run_test(model_path, False, False, max_err=1e-5)
[ "megengine.autodiff.GradManager", "megengine.module.Conv2d", "megengine.module.AvgPool2d", "megengine.functional.nn.cross_entropy", "megengine.functional.debug_param.set_conv_execution_strategy", "megengine.distributed.make_allreduce_cb", "megengine.serialization.save", "megengine.is_cuda_available", "megengine.module.BatchNorm2d", "megengine.load", "megengine.functional.relu", "megengine.functional.flatten", "megengine.distributed.get_rank", "megengine.tensor.Tensor", "megengine.module.Linear" ]
[((5688, 5715), 'pytest.mark.require_ngpu', 'pytest.mark.require_ngpu', (['(2)'], {}), '(2)\n', (5712, 5715), False, 'import pytest\n'), ((1564, 1587), 'megengine.is_cuda_available', 'mge.is_cuda_available', ([], {}), '()\n', (1585, 1587), True, 'import megengine as mge\n'), ((3294, 3314), 'megengine.load', 'mge.load', (['model_path'], {}), '(model_path)\n', (3302, 3314), True, 'import megengine as mge\n'), ((3566, 3610), 'megengine.tensor.Tensor', 'Tensor', (["checkpoint['data']"], {'dtype': 'np.float32'}), "(checkpoint['data'], dtype=np.float32)\n", (3572, 3610), False, 'from megengine.tensor import Tensor\n'), ((3623, 3666), 'megengine.tensor.Tensor', 'Tensor', (["checkpoint['label']"], {'dtype': 'np.int32'}), "(checkpoint['label'], dtype=np.int32)\n", (3629, 3666), False, 'from megengine.tensor import Tensor\n'), ((3898, 3944), 'megengine.serialization.save', 'mge.serialization.save', (['checkpoint', 'model_path'], {}), '(checkpoint, model_path)\n', (3920, 3944), True, 'import megengine as mge\n'), ((4434, 4454), 'megengine.load', 'mge.load', (['model_path'], {}), '(model_path)\n', (4442, 4454), True, 'import megengine as mge\n'), ((5895, 5948), 'megengine.functional.debug_param.set_conv_execution_strategy', 'set_conv_execution_strategy', (['"""HEURISTIC_REPRODUCIBLE"""'], {}), "('HEURISTIC_REPRODUCIBLE')\n", (5922, 5948), False, 'from megengine.functional.debug_param import set_conv_execution_strategy\n'), ((975, 1067), 'subprocess.check_output', 'subprocess.check_output', (["['nvidia-smi', '--query-gpu=gpu_name', '--format=csv,noheader']"], {}), "(['nvidia-smi', '--query-gpu=gpu_name',\n '--format=csv,noheader'])\n", (998, 1067), False, 'import subprocess\n'), ((1770, 1809), 'megengine.module.Conv2d', 'Conv2d', (['(1)', '(20)'], {'kernel_size': '(5)', 'bias': '(True)'}), '(1, 20, kernel_size=5, bias=True)\n', (1776, 1809), False, 'from megengine.module import AvgPool2d, BatchNorm2d, Conv2d, Linear, Module\n'), ((1831, 1843), 'megengine.module.AvgPool2d', 'AvgPool2d', (['(2)'], {}), '(2)\n', (1840, 1843), False, 'from megengine.module import AvgPool2d, BatchNorm2d, Conv2d, Linear, Module\n'), ((1865, 1905), 'megengine.module.Conv2d', 'Conv2d', (['(20)', '(20)'], {'kernel_size': '(5)', 'bias': '(True)'}), '(20, 20, kernel_size=5, bias=True)\n', (1871, 1905), False, 'from megengine.module import AvgPool2d, BatchNorm2d, Conv2d, Linear, Module\n'), ((1927, 1939), 'megengine.module.AvgPool2d', 'AvgPool2d', (['(2)'], {}), '(2)\n', (1936, 1939), False, 'from megengine.module import AvgPool2d, BatchNorm2d, Conv2d, Linear, Module\n'), ((1959, 1993), 'megengine.module.Linear', 'Linear', (['(20 * 4 * 4)', '(500)'], {'bias': '(True)'}), '(20 * 4 * 4, 500, bias=True)\n', (1965, 1993), False, 'from megengine.module import AvgPool2d, BatchNorm2d, Conv2d, Linear, Module\n'), ((2013, 2039), 'megengine.module.Linear', 'Linear', (['(500)', '(10)'], {'bias': '(True)'}), '(500, 10, bias=True)\n', (2019, 2039), False, 'from megengine.module import AvgPool2d, BatchNorm2d, Conv2d, Linear, Module\n'), ((2299, 2308), 'megengine.functional.relu', 'F.relu', (['x'], {}), '(x)\n', (2305, 2308), True, 'import megengine.functional as F\n'), ((2422, 2431), 'megengine.functional.relu', 'F.relu', (['x'], {}), '(x)\n', (2428, 2431), True, 'import megengine.functional as F\n'), ((2470, 2485), 'megengine.functional.flatten', 'F.flatten', (['x', '(1)'], {}), '(x, 1)\n', (2479, 2485), True, 'import megengine.functional as F\n'), ((2522, 2531), 'megengine.functional.relu', 'F.relu', (['x'], {}), '(x)\n', (2528, 2531), True, 'import megengine.functional as F\n'), ((2687, 2718), 'megengine.functional.nn.cross_entropy', 'F.nn.cross_entropy', (['pred', 'label'], {}), '(pred, label)\n', (2705, 2718), True, 'import megengine.functional as F\n'), ((4995, 5007), 'megengine.tensor.Tensor', 'Tensor', (['data'], {}), '(data)\n', (5001, 5007), False, 'from megengine.tensor import Tensor\n'), ((5030, 5043), 'megengine.tensor.Tensor', 'Tensor', (['label'], {}), '(label)\n', (5036, 5043), False, 'from megengine.tensor import Tensor\n'), ((5201, 5216), 'megengine.distributed.get_rank', 'dist.get_rank', ([], {}), '()\n', (5214, 5216), True, 'import megengine.distributed as dist\n'), ((5852, 5877), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (5867, 5877), False, 'import os\n'), ((2130, 2145), 'megengine.module.BatchNorm2d', 'BatchNorm2d', (['(20)'], {}), '(20)\n', (2141, 2145), False, 'from megengine.module import AvgPool2d, BatchNorm2d, Conv2d, Linear, Module\n'), ((2169, 2184), 'megengine.module.BatchNorm2d', 'BatchNorm2d', (['(20)'], {}), '(20)\n', (2180, 2184), False, 'from megengine.module import AvgPool2d, BatchNorm2d, Conv2d, Linear, Module\n'), ((3442, 3458), 'megengine.autodiff.GradManager', 'ad.GradManager', ([], {}), '()\n', (3456, 3458), True, 'import megengine.autodiff as ad\n'), ((1275, 1324), 'subprocess.check_output', 'subprocess.check_output', (["['cat', '/proc/cpuinfo']"], {}), "(['cat', '/proc/cpuinfo'])\n", (1298, 1324), False, 'import subprocess\n'), ((3504, 3546), 'megengine.distributed.make_allreduce_cb', 'dist.make_allreduce_cb', (['"""MEAN"""', 'dist.WORLD'], {}), "('MEAN', dist.WORLD)\n", (3526, 3546), True, 'import megengine.distributed as dist\n'), ((4741, 4757), 'megengine.autodiff.GradManager', 'ad.GradManager', ([], {}), '()\n', (4755, 4757), True, 'import megengine.autodiff as ad\n'), ((5509, 5564), 'numpy.testing.assert_allclose', 'np.testing.assert_allclose', (['param[1]', 'ref'], {'atol': 'max_err'}), '(param[1], ref, atol=max_err)\n', (5535, 5564), True, 'import numpy as np\n'), ((5599, 5663), 'numpy.testing.assert_allclose', 'np.testing.assert_allclose', (['param[1]', 'param_ref[1]'], {'atol': 'max_err'}), '(param[1], param_ref[1], atol=max_err)\n', (5625, 5663), True, 'import numpy as np\n'), ((4807, 4849), 'megengine.distributed.make_allreduce_cb', 'dist.make_allreduce_cb', (['"""MEAN"""', 'dist.WORLD'], {}), "('MEAN', dist.WORLD)\n", (4829, 4849), True, 'import megengine.distributed as dist\n'), ((1443, 1481), 're.sub', 're.sub', (['""".*model name.*:"""', '""""""', 'line', '(1)'], {}), "('.*model name.*:', '', line, 1)\n", (1449, 1481), False, 'import re\n')]
"""init Revision ID: f9c634db477d Revises: Create Date: 2021-09-10 00:24:32.718895 """ from alembic import op import sqlalchemy as sa import sqlmodel # revision identifiers, used by Alembic. revision = 'f9c634db477d' down_revision = None branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.create_table('song', sa.Column('name', sqlmodel.sql.sqltypes.AutoString(), nullable=False), sa.Column('artist', sqlmodel.sql.sqltypes.AutoString(), nullable=False), sa.Column('id', sa.Integer(), nullable=True), sa.PrimaryKeyConstraint('id') ) op.create_index(op.f('ix_song_artist'), 'song', ['artist'], unique=False) op.create_index(op.f('ix_song_id'), 'song', ['id'], unique=False) op.create_index(op.f('ix_song_name'), 'song', ['name'], unique=False) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_index(op.f('ix_song_name'), table_name='song') op.drop_index(op.f('ix_song_id'), table_name='song') op.drop_index(op.f('ix_song_artist'), table_name='song') op.drop_table('song') # ### end Alembic commands ###
[ "sqlmodel.sql.sqltypes.AutoString" ]
[((1158, 1179), 'alembic.op.drop_table', 'op.drop_table', (['"""song"""'], {}), "('song')\n", (1171, 1179), False, 'from alembic import op\n'), ((599, 628), 'sqlalchemy.PrimaryKeyConstraint', 'sa.PrimaryKeyConstraint', (['"""id"""'], {}), "('id')\n", (622, 628), True, 'import sqlalchemy as sa\n'), ((655, 677), 'alembic.op.f', 'op.f', (['"""ix_song_artist"""'], {}), "('ix_song_artist')\n", (659, 677), False, 'from alembic import op\n'), ((733, 751), 'alembic.op.f', 'op.f', (['"""ix_song_id"""'], {}), "('ix_song_id')\n", (737, 751), False, 'from alembic import op\n'), ((803, 823), 'alembic.op.f', 'op.f', (['"""ix_song_name"""'], {}), "('ix_song_name')\n", (807, 823), False, 'from alembic import op\n'), ((995, 1015), 'alembic.op.f', 'op.f', (['"""ix_song_name"""'], {}), "('ix_song_name')\n", (999, 1015), False, 'from alembic import op\n'), ((1054, 1072), 'alembic.op.f', 'op.f', (['"""ix_song_id"""'], {}), "('ix_song_id')\n", (1058, 1072), False, 'from alembic import op\n'), ((1111, 1133), 'alembic.op.f', 'op.f', (['"""ix_song_artist"""'], {}), "('ix_song_artist')\n", (1115, 1133), False, 'from alembic import op\n'), ((415, 449), 'sqlmodel.sql.sqltypes.AutoString', 'sqlmodel.sql.sqltypes.AutoString', ([], {}), '()\n', (447, 449), False, 'import sqlmodel\n'), ((492, 526), 'sqlmodel.sql.sqltypes.AutoString', 'sqlmodel.sql.sqltypes.AutoString', ([], {}), '()\n', (524, 526), False, 'import sqlmodel\n'), ((565, 577), 'sqlalchemy.Integer', 'sa.Integer', ([], {}), '()\n', (575, 577), True, 'import sqlalchemy as sa\n')]
"""Initial migration Revision ID: 5f31ff8814e7 Revises: Create Date: 2022-04-30 19:39:20.164043+00:00 """ # pylint: disable=no-member, invalid-name, missing-function-docstring, unused-import import sqlalchemy as sa import sqlalchemy_utils import sqlmodel from alembic import op # revision identifiers, used by Alembic. revision = "5f31ff8814e7" down_revision = None branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.create_table( "database", sa.Column("name", sa.String(), nullable=True), sa.Column("created_at", sa.DateTime(timezone=True), nullable=True), sa.Column("updated_at", sa.DateTime(timezone=True), nullable=True), sa.Column("id", sa.Integer(), nullable=True), sa.Column("description", sqlmodel.sql.sqltypes.AutoString(), nullable=True), sa.Column("URI", sqlmodel.sql.sqltypes.AutoString(), nullable=False), sa.Column("read_only", sa.Boolean(), nullable=True), sa.Column("async", sa.Boolean(), nullable=True), sa.Column("cost", sa.Float(), nullable=True), sa.PrimaryKeyConstraint("id"), sa.UniqueConstraint("name"), ) op.create_index(op.f("ix_database_URI"), "database", ["URI"], unique=False) op.create_index(op.f("ix_database_async"), "database", ["async"], unique=False) op.create_index(op.f("ix_database_cost"), "database", ["cost"], unique=False) op.create_index( op.f("ix_database_description"), "database", ["description"], unique=False, ) op.create_index(op.f("ix_database_id"), "database", ["id"], unique=False) op.create_index( op.f("ix_database_read_only"), "database", ["read_only"], unique=False, ) op.create_table( "node", sa.Column("name", sa.String(), nullable=True), sa.Column("created_at", sa.DateTime(timezone=True), nullable=True), sa.Column("updated_at", sa.DateTime(timezone=True), nullable=True), sa.Column( "type", sa.Enum("SOURCE", "TRANSFORM", "METRIC", "DIMENSION", name="nodetype"), nullable=True, ), sa.Column("id", sa.Integer(), nullable=True), sa.Column("description", sqlmodel.sql.sqltypes.AutoString(), nullable=True), sa.Column("expression", sqlmodel.sql.sqltypes.AutoString(), nullable=True), sa.PrimaryKeyConstraint("id"), sa.UniqueConstraint("name"), ) op.create_index(op.f("ix_node_description"), "node", ["description"], unique=False) op.create_index(op.f("ix_node_expression"), "node", ["expression"], unique=False) op.create_index(op.f("ix_node_id"), "node", ["id"], unique=False) op.create_table( "column", sa.Column( "type", sa.Enum( "BYTES", "STR", "FLOAT", "INT", "DECIMAL", "BOOL", "DATETIME", "DATE", "TIME", "TIMEDELTA", "LIST", "DICT", name="columntype", ), nullable=True, ), sa.Column("id", sa.Integer(), nullable=True), sa.Column("name", sqlmodel.sql.sqltypes.AutoString(), nullable=False), sa.Column("dimension_id", sa.Integer(), nullable=True), sa.Column( "dimension_column", sqlmodel.sql.sqltypes.AutoString(), nullable=True, ), sa.ForeignKeyConstraint( ["dimension_id"], ["node.id"], ), sa.PrimaryKeyConstraint("id"), ) op.create_index( op.f("ix_column_dimension_column"), "column", ["dimension_column"], unique=False, ) op.create_index( op.f("ix_column_dimension_id"), "column", ["dimension_id"], unique=False, ) op.create_index(op.f("ix_column_id"), "column", ["id"], unique=False) op.create_index(op.f("ix_column_name"), "column", ["name"], unique=False) op.create_table( "noderelationship", sa.Column("parent_id", sa.Integer(), nullable=True), sa.Column("child_id", sa.Integer(), nullable=True), sa.ForeignKeyConstraint( ["child_id"], ["node.id"], ), sa.ForeignKeyConstraint( ["parent_id"], ["node.id"], ), sa.PrimaryKeyConstraint("parent_id", "child_id"), ) op.create_index( op.f("ix_noderelationship_child_id"), "noderelationship", ["child_id"], unique=False, ) op.create_index( op.f("ix_noderelationship_parent_id"), "noderelationship", ["parent_id"], unique=False, ) op.create_table( "query", sa.Column("id", sqlalchemy_utils.types.uuid.UUIDType(), nullable=False), sa.Column("database_id", sa.Integer(), nullable=False), sa.Column("catalog", sqlmodel.sql.sqltypes.AutoString(), nullable=True), sa.Column("schema_", sqlmodel.sql.sqltypes.AutoString(), nullable=True), sa.Column( "submitted_query", sqlmodel.sql.sqltypes.AutoString(), nullable=False, ), sa.Column("executed_query", sqlmodel.sql.sqltypes.AutoString(), nullable=True), sa.Column("scheduled", sa.DateTime(), nullable=True), sa.Column("started", sa.DateTime(), nullable=True), sa.Column("finished", sa.DateTime(), nullable=True), sa.Column("state", sqlmodel.sql.sqltypes.AutoString(), nullable=True), sa.Column("progress", sa.Float(), nullable=True), sa.ForeignKeyConstraint( ["database_id"], ["database.id"], ), sa.PrimaryKeyConstraint("id"), ) op.create_index(op.f("ix_query_catalog"), "query", ["catalog"], unique=False) op.create_index( op.f("ix_query_database_id"), "query", ["database_id"], unique=False, ) op.create_index( op.f("ix_query_executed_query"), "query", ["executed_query"], unique=False, ) op.create_index(op.f("ix_query_finished"), "query", ["finished"], unique=False) op.create_index(op.f("ix_query_progress"), "query", ["progress"], unique=False) op.create_index(op.f("ix_query_scheduled"), "query", ["scheduled"], unique=False) op.create_index(op.f("ix_query_schema_"), "query", ["schema_"], unique=False) op.create_index(op.f("ix_query_started"), "query", ["started"], unique=False) op.create_index(op.f("ix_query_state"), "query", ["state"], unique=False) op.create_index( op.f("ix_query_submitted_query"), "query", ["submitted_query"], unique=False, ) op.create_table( "table", sa.Column("id", sa.Integer(), nullable=True), sa.Column("node_id", sa.Integer(), nullable=False), sa.Column("database_id", sa.Integer(), nullable=False), sa.Column("catalog", sqlmodel.sql.sqltypes.AutoString(), nullable=True), sa.Column("schema_", sqlmodel.sql.sqltypes.AutoString(), nullable=True), sa.Column("table", sqlmodel.sql.sqltypes.AutoString(), nullable=False), sa.Column("cost", sa.Float(), nullable=True), sa.ForeignKeyConstraint( ["database_id"], ["database.id"], ), sa.ForeignKeyConstraint( ["node_id"], ["node.id"], ), sa.PrimaryKeyConstraint("id"), ) op.create_index(op.f("ix_table_catalog"), "table", ["catalog"], unique=False) op.create_index(op.f("ix_table_cost"), "table", ["cost"], unique=False) op.create_index( op.f("ix_table_database_id"), "table", ["database_id"], unique=False, ) op.create_index(op.f("ix_table_id"), "table", ["id"], unique=False) op.create_index(op.f("ix_table_node_id"), "table", ["node_id"], unique=False) op.create_index(op.f("ix_table_schema_"), "table", ["schema_"], unique=False) op.create_index(op.f("ix_table_table"), "table", ["table"], unique=False) op.create_table( "nodecolumns", sa.Column("node_id", sa.Integer(), nullable=True), sa.Column("column_id", sa.Integer(), nullable=True), sa.ForeignKeyConstraint( ["column_id"], ["column.id"], ), sa.ForeignKeyConstraint( ["node_id"], ["node.id"], ), sa.PrimaryKeyConstraint("node_id", "column_id"), ) op.create_index( op.f("ix_nodecolumns_column_id"), "nodecolumns", ["column_id"], unique=False, ) op.create_index( op.f("ix_nodecolumns_node_id"), "nodecolumns", ["node_id"], unique=False, ) op.create_table( "tablecolumns", sa.Column("table_id", sa.Integer(), nullable=True), sa.Column("column_id", sa.Integer(), nullable=True), sa.ForeignKeyConstraint( ["column_id"], ["column.id"], ), sa.ForeignKeyConstraint( ["table_id"], ["table.id"], ), sa.PrimaryKeyConstraint("table_id", "column_id"), ) op.create_index( op.f("ix_tablecolumns_column_id"), "tablecolumns", ["column_id"], unique=False, ) op.create_index( op.f("ix_tablecolumns_table_id"), "tablecolumns", ["table_id"], unique=False, ) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_index(op.f("ix_tablecolumns_table_id"), table_name="tablecolumns") op.drop_index(op.f("ix_tablecolumns_column_id"), table_name="tablecolumns") op.drop_table("tablecolumns") op.drop_index(op.f("ix_nodecolumns_node_id"), table_name="nodecolumns") op.drop_index(op.f("ix_nodecolumns_column_id"), table_name="nodecolumns") op.drop_table("nodecolumns") op.drop_index(op.f("ix_table_table"), table_name="table") op.drop_index(op.f("ix_table_schema_"), table_name="table") op.drop_index(op.f("ix_table_node_id"), table_name="table") op.drop_index(op.f("ix_table_id"), table_name="table") op.drop_index(op.f("ix_table_database_id"), table_name="table") op.drop_index(op.f("ix_table_cost"), table_name="table") op.drop_index(op.f("ix_table_catalog"), table_name="table") op.drop_table("table") op.drop_index(op.f("ix_query_submitted_query"), table_name="query") op.drop_index(op.f("ix_query_state"), table_name="query") op.drop_index(op.f("ix_query_started"), table_name="query") op.drop_index(op.f("ix_query_schema_"), table_name="query") op.drop_index(op.f("ix_query_scheduled"), table_name="query") op.drop_index(op.f("ix_query_progress"), table_name="query") op.drop_index(op.f("ix_query_finished"), table_name="query") op.drop_index(op.f("ix_query_executed_query"), table_name="query") op.drop_index(op.f("ix_query_database_id"), table_name="query") op.drop_index(op.f("ix_query_catalog"), table_name="query") op.drop_table("query") op.drop_index(op.f("ix_noderelationship_parent_id"), table_name="noderelationship") op.drop_index(op.f("ix_noderelationship_child_id"), table_name="noderelationship") op.drop_table("noderelationship") op.drop_index(op.f("ix_column_name"), table_name="column") op.drop_index(op.f("ix_column_id"), table_name="column") op.drop_index(op.f("ix_column_dimension_id"), table_name="column") op.drop_index(op.f("ix_column_dimension_column"), table_name="column") op.drop_table("column") op.drop_index(op.f("ix_node_id"), table_name="node") op.drop_index(op.f("ix_node_expression"), table_name="node") op.drop_index(op.f("ix_node_description"), table_name="node") op.drop_table("node") op.drop_index(op.f("ix_database_read_only"), table_name="database") op.drop_index(op.f("ix_database_id"), table_name="database") op.drop_index(op.f("ix_database_description"), table_name="database") op.drop_index(op.f("ix_database_cost"), table_name="database") op.drop_index(op.f("ix_database_async"), table_name="database") op.drop_index(op.f("ix_database_URI"), table_name="database") op.drop_table("database") # ### end Alembic commands ###
[ "sqlmodel.sql.sqltypes.AutoString" ]
[((9906, 9935), 'alembic.op.drop_table', 'op.drop_table', (['"""tablecolumns"""'], {}), "('tablecolumns')\n", (9919, 9935), False, 'from alembic import op\n'), ((10094, 10122), 'alembic.op.drop_table', 'op.drop_table', (['"""nodecolumns"""'], {}), "('nodecolumns')\n", (10107, 10122), False, 'from alembic import op\n'), ((10569, 10591), 'alembic.op.drop_table', 'op.drop_table', (['"""table"""'], {}), "('table')\n", (10582, 10591), False, 'from alembic import op\n'), ((11257, 11279), 'alembic.op.drop_table', 'op.drop_table', (['"""query"""'], {}), "('query')\n", (11270, 11279), False, 'from alembic import op\n'), ((11459, 11492), 'alembic.op.drop_table', 'op.drop_table', (['"""noderelationship"""'], {}), "('noderelationship')\n", (11472, 11492), False, 'from alembic import op\n'), ((11767, 11790), 'alembic.op.drop_table', 'op.drop_table', (['"""column"""'], {}), "('column')\n", (11780, 11790), False, 'from alembic import op\n'), ((11983, 12004), 'alembic.op.drop_table', 'op.drop_table', (['"""node"""'], {}), "('node')\n", (11996, 12004), False, 'from alembic import op\n'), ((12421, 12446), 'alembic.op.drop_table', 'op.drop_table', (['"""database"""'], {}), "('database')\n", (12434, 12446), False, 'from alembic import op\n'), ((1138, 1167), 'sqlalchemy.PrimaryKeyConstraint', 'sa.PrimaryKeyConstraint', (['"""id"""'], {}), "('id')\n", (1161, 1167), True, 'import sqlalchemy as sa\n'), ((1177, 1204), 'sqlalchemy.UniqueConstraint', 'sa.UniqueConstraint', (['"""name"""'], {}), "('name')\n", (1196, 1204), True, 'import sqlalchemy as sa\n'), ((1232, 1255), 'alembic.op.f', 'op.f', (['"""ix_database_URI"""'], {}), "('ix_database_URI')\n", (1236, 1255), False, 'from alembic import op\n'), ((1312, 1337), 'alembic.op.f', 'op.f', (['"""ix_database_async"""'], {}), "('ix_database_async')\n", (1316, 1337), False, 'from alembic import op\n'), ((1396, 1420), 'alembic.op.f', 'op.f', (['"""ix_database_cost"""'], {}), "('ix_database_cost')\n", (1400, 1420), False, 'from alembic import op\n'), ((1487, 1518), 'alembic.op.f', 'op.f', (['"""ix_database_description"""'], {}), "('ix_database_description')\n", (1491, 1518), False, 'from alembic import op\n'), ((1613, 1635), 'alembic.op.f', 'op.f', (['"""ix_database_id"""'], {}), "('ix_database_id')\n", (1617, 1635), False, 'from alembic import op\n'), ((1700, 1729), 'alembic.op.f', 'op.f', (['"""ix_database_read_only"""'], {}), "('ix_database_read_only')\n", (1704, 1729), False, 'from alembic import op\n'), ((2438, 2467), 'sqlalchemy.PrimaryKeyConstraint', 'sa.PrimaryKeyConstraint', (['"""id"""'], {}), "('id')\n", (2461, 2467), True, 'import sqlalchemy as sa\n'), ((2477, 2504), 'sqlalchemy.UniqueConstraint', 'sa.UniqueConstraint', (['"""name"""'], {}), "('name')\n", (2496, 2504), True, 'import sqlalchemy as sa\n'), ((2532, 2559), 'alembic.op.f', 'op.f', (['"""ix_node_description"""'], {}), "('ix_node_description')\n", (2536, 2559), False, 'from alembic import op\n'), ((2620, 2646), 'alembic.op.f', 'op.f', (['"""ix_node_expression"""'], {}), "('ix_node_expression')\n", (2624, 2646), False, 'from alembic import op\n'), ((2706, 2724), 'alembic.op.f', 'op.f', (['"""ix_node_id"""'], {}), "('ix_node_id')\n", (2710, 2724), False, 'from alembic import op\n'), ((3585, 3639), 'sqlalchemy.ForeignKeyConstraint', 'sa.ForeignKeyConstraint', (["['dimension_id']", "['node.id']"], {}), "(['dimension_id'], ['node.id'])\n", (3608, 3639), True, 'import sqlalchemy as sa\n'), ((3684, 3713), 'sqlalchemy.PrimaryKeyConstraint', 'sa.PrimaryKeyConstraint', (['"""id"""'], {}), "('id')\n", (3707, 3713), True, 'import sqlalchemy as sa\n'), ((3750, 3784), 'alembic.op.f', 'op.f', (['"""ix_column_dimension_column"""'], {}), "('ix_column_dimension_column')\n", (3754, 3784), False, 'from alembic import op\n'), ((3891, 3921), 'alembic.op.f', 'op.f', (['"""ix_column_dimension_id"""'], {}), "('ix_column_dimension_id')\n", (3895, 3921), False, 'from alembic import op\n'), ((4015, 4035), 'alembic.op.f', 'op.f', (['"""ix_column_id"""'], {}), "('ix_column_id')\n", (4019, 4035), False, 'from alembic import op\n'), ((4089, 4111), 'alembic.op.f', 'op.f', (['"""ix_column_name"""'], {}), "('ix_column_name')\n", (4093, 4111), False, 'from alembic import op\n'), ((4325, 4375), 'sqlalchemy.ForeignKeyConstraint', 'sa.ForeignKeyConstraint', (["['child_id']", "['node.id']"], {}), "(['child_id'], ['node.id'])\n", (4348, 4375), True, 'import sqlalchemy as sa\n'), ((4420, 4471), 'sqlalchemy.ForeignKeyConstraint', 'sa.ForeignKeyConstraint', (["['parent_id']", "['node.id']"], {}), "(['parent_id'], ['node.id'])\n", (4443, 4471), True, 'import sqlalchemy as sa\n'), ((4516, 4564), 'sqlalchemy.PrimaryKeyConstraint', 'sa.PrimaryKeyConstraint', (['"""parent_id"""', '"""child_id"""'], {}), "('parent_id', 'child_id')\n", (4539, 4564), True, 'import sqlalchemy as sa\n'), ((4601, 4637), 'alembic.op.f', 'op.f', (['"""ix_noderelationship_child_id"""'], {}), "('ix_noderelationship_child_id')\n", (4605, 4637), False, 'from alembic import op\n'), ((4746, 4783), 'alembic.op.f', 'op.f', (['"""ix_noderelationship_parent_id"""'], {}), "('ix_noderelationship_parent_id')\n", (4750, 4783), False, 'from alembic import op\n'), ((5762, 5819), 'sqlalchemy.ForeignKeyConstraint', 'sa.ForeignKeyConstraint', (["['database_id']", "['database.id']"], {}), "(['database_id'], ['database.id'])\n", (5785, 5819), True, 'import sqlalchemy as sa\n'), ((5864, 5893), 'sqlalchemy.PrimaryKeyConstraint', 'sa.PrimaryKeyConstraint', (['"""id"""'], {}), "('id')\n", (5887, 5893), True, 'import sqlalchemy as sa\n'), ((5921, 5945), 'alembic.op.f', 'op.f', (['"""ix_query_catalog"""'], {}), "('ix_query_catalog')\n", (5925, 5945), False, 'from alembic import op\n'), ((6012, 6040), 'alembic.op.f', 'op.f', (['"""ix_query_database_id"""'], {}), "('ix_query_database_id')\n", (6016, 6040), False, 'from alembic import op\n'), ((6141, 6172), 'alembic.op.f', 'op.f', (['"""ix_query_executed_query"""'], {}), "('ix_query_executed_query')\n", (6145, 6172), False, 'from alembic import op\n'), ((6267, 6292), 'alembic.op.f', 'op.f', (['"""ix_query_finished"""'], {}), "('ix_query_finished')\n", (6271, 6292), False, 'from alembic import op\n'), ((6351, 6376), 'alembic.op.f', 'op.f', (['"""ix_query_progress"""'], {}), "('ix_query_progress')\n", (6355, 6376), False, 'from alembic import op\n'), ((6435, 6461), 'alembic.op.f', 'op.f', (['"""ix_query_scheduled"""'], {}), "('ix_query_scheduled')\n", (6439, 6461), False, 'from alembic import op\n'), ((6521, 6545), 'alembic.op.f', 'op.f', (['"""ix_query_schema_"""'], {}), "('ix_query_schema_')\n", (6525, 6545), False, 'from alembic import op\n'), ((6603, 6627), 'alembic.op.f', 'op.f', (['"""ix_query_started"""'], {}), "('ix_query_started')\n", (6607, 6627), False, 'from alembic import op\n'), ((6685, 6707), 'alembic.op.f', 'op.f', (['"""ix_query_state"""'], {}), "('ix_query_state')\n", (6689, 6707), False, 'from alembic import op\n'), ((6772, 6804), 'alembic.op.f', 'op.f', (['"""ix_query_submitted_query"""'], {}), "('ix_query_submitted_query')\n", (6776, 6804), False, 'from alembic import op\n'), ((7400, 7457), 'sqlalchemy.ForeignKeyConstraint', 'sa.ForeignKeyConstraint', (["['database_id']", "['database.id']"], {}), "(['database_id'], ['database.id'])\n", (7423, 7457), True, 'import sqlalchemy as sa\n'), ((7502, 7551), 'sqlalchemy.ForeignKeyConstraint', 'sa.ForeignKeyConstraint', (["['node_id']", "['node.id']"], {}), "(['node_id'], ['node.id'])\n", (7525, 7551), True, 'import sqlalchemy as sa\n'), ((7596, 7625), 'sqlalchemy.PrimaryKeyConstraint', 'sa.PrimaryKeyConstraint', (['"""id"""'], {}), "('id')\n", (7619, 7625), True, 'import sqlalchemy as sa\n'), ((7653, 7677), 'alembic.op.f', 'op.f', (['"""ix_table_catalog"""'], {}), "('ix_table_catalog')\n", (7657, 7677), False, 'from alembic import op\n'), ((7735, 7756), 'alembic.op.f', 'op.f', (['"""ix_table_cost"""'], {}), "('ix_table_cost')\n", (7739, 7756), False, 'from alembic import op\n'), ((7820, 7848), 'alembic.op.f', 'op.f', (['"""ix_table_database_id"""'], {}), "('ix_table_database_id')\n", (7824, 7848), False, 'from alembic import op\n'), ((7940, 7959), 'alembic.op.f', 'op.f', (['"""ix_table_id"""'], {}), "('ix_table_id')\n", (7944, 7959), False, 'from alembic import op\n'), ((8012, 8036), 'alembic.op.f', 'op.f', (['"""ix_table_node_id"""'], {}), "('ix_table_node_id')\n", (8016, 8036), False, 'from alembic import op\n'), ((8094, 8118), 'alembic.op.f', 'op.f', (['"""ix_table_schema_"""'], {}), "('ix_table_schema_')\n", (8098, 8118), False, 'from alembic import op\n'), ((8176, 8198), 'alembic.op.f', 'op.f', (['"""ix_table_table"""'], {}), "('ix_table_table')\n", (8180, 8198), False, 'from alembic import op\n'), ((8406, 8459), 'sqlalchemy.ForeignKeyConstraint', 'sa.ForeignKeyConstraint', (["['column_id']", "['column.id']"], {}), "(['column_id'], ['column.id'])\n", (8429, 8459), True, 'import sqlalchemy as sa\n'), ((8504, 8553), 'sqlalchemy.ForeignKeyConstraint', 'sa.ForeignKeyConstraint', (["['node_id']", "['node.id']"], {}), "(['node_id'], ['node.id'])\n", (8527, 8553), True, 'import sqlalchemy as sa\n'), ((8598, 8645), 'sqlalchemy.PrimaryKeyConstraint', 'sa.PrimaryKeyConstraint', (['"""node_id"""', '"""column_id"""'], {}), "('node_id', 'column_id')\n", (8621, 8645), True, 'import sqlalchemy as sa\n'), ((8682, 8714), 'alembic.op.f', 'op.f', (['"""ix_nodecolumns_column_id"""'], {}), "('ix_nodecolumns_column_id')\n", (8686, 8714), False, 'from alembic import op\n'), ((8819, 8849), 'alembic.op.f', 'op.f', (['"""ix_nodecolumns_node_id"""'], {}), "('ix_nodecolumns_node_id')\n", (8823, 8849), False, 'from alembic import op\n'), ((9097, 9150), 'sqlalchemy.ForeignKeyConstraint', 'sa.ForeignKeyConstraint', (["['column_id']", "['column.id']"], {}), "(['column_id'], ['column.id'])\n", (9120, 9150), True, 'import sqlalchemy as sa\n'), ((9195, 9246), 'sqlalchemy.ForeignKeyConstraint', 'sa.ForeignKeyConstraint', (["['table_id']", "['table.id']"], {}), "(['table_id'], ['table.id'])\n", (9218, 9246), True, 'import sqlalchemy as sa\n'), ((9291, 9339), 'sqlalchemy.PrimaryKeyConstraint', 'sa.PrimaryKeyConstraint', (['"""table_id"""', '"""column_id"""'], {}), "('table_id', 'column_id')\n", (9314, 9339), True, 'import sqlalchemy as sa\n'), ((9376, 9409), 'alembic.op.f', 'op.f', (['"""ix_tablecolumns_column_id"""'], {}), "('ix_tablecolumns_column_id')\n", (9380, 9409), False, 'from alembic import op\n'), ((9515, 9547), 'alembic.op.f', 'op.f', (['"""ix_tablecolumns_table_id"""'], {}), "('ix_tablecolumns_table_id')\n", (9519, 9547), False, 'from alembic import op\n'), ((9761, 9793), 'alembic.op.f', 'op.f', (['"""ix_tablecolumns_table_id"""'], {}), "('ix_tablecolumns_table_id')\n", (9765, 9793), False, 'from alembic import op\n'), ((9840, 9873), 'alembic.op.f', 'op.f', (['"""ix_tablecolumns_column_id"""'], {}), "('ix_tablecolumns_column_id')\n", (9844, 9873), False, 'from alembic import op\n'), ((9954, 9984), 'alembic.op.f', 'op.f', (['"""ix_nodecolumns_node_id"""'], {}), "('ix_nodecolumns_node_id')\n", (9958, 9984), False, 'from alembic import op\n'), ((10030, 10062), 'alembic.op.f', 'op.f', (['"""ix_nodecolumns_column_id"""'], {}), "('ix_nodecolumns_column_id')\n", (10034, 10062), False, 'from alembic import op\n'), ((10141, 10163), 'alembic.op.f', 'op.f', (['"""ix_table_table"""'], {}), "('ix_table_table')\n", (10145, 10163), False, 'from alembic import op\n'), ((10203, 10227), 'alembic.op.f', 'op.f', (['"""ix_table_schema_"""'], {}), "('ix_table_schema_')\n", (10207, 10227), False, 'from alembic import op\n'), ((10267, 10291), 'alembic.op.f', 'op.f', (['"""ix_table_node_id"""'], {}), "('ix_table_node_id')\n", (10271, 10291), False, 'from alembic import op\n'), ((10331, 10350), 'alembic.op.f', 'op.f', (['"""ix_table_id"""'], {}), "('ix_table_id')\n", (10335, 10350), False, 'from alembic import op\n'), ((10390, 10418), 'alembic.op.f', 'op.f', (['"""ix_table_database_id"""'], {}), "('ix_table_database_id')\n", (10394, 10418), False, 'from alembic import op\n'), ((10458, 10479), 'alembic.op.f', 'op.f', (['"""ix_table_cost"""'], {}), "('ix_table_cost')\n", (10462, 10479), False, 'from alembic import op\n'), ((10519, 10543), 'alembic.op.f', 'op.f', (['"""ix_table_catalog"""'], {}), "('ix_table_catalog')\n", (10523, 10543), False, 'from alembic import op\n'), ((10610, 10642), 'alembic.op.f', 'op.f', (['"""ix_query_submitted_query"""'], {}), "('ix_query_submitted_query')\n", (10614, 10642), False, 'from alembic import op\n'), ((10682, 10704), 'alembic.op.f', 'op.f', (['"""ix_query_state"""'], {}), "('ix_query_state')\n", (10686, 10704), False, 'from alembic import op\n'), ((10744, 10768), 'alembic.op.f', 'op.f', (['"""ix_query_started"""'], {}), "('ix_query_started')\n", (10748, 10768), False, 'from alembic import op\n'), ((10808, 10832), 'alembic.op.f', 'op.f', (['"""ix_query_schema_"""'], {}), "('ix_query_schema_')\n", (10812, 10832), False, 'from alembic import op\n'), ((10872, 10898), 'alembic.op.f', 'op.f', (['"""ix_query_scheduled"""'], {}), "('ix_query_scheduled')\n", (10876, 10898), False, 'from alembic import op\n'), ((10938, 10963), 'alembic.op.f', 'op.f', (['"""ix_query_progress"""'], {}), "('ix_query_progress')\n", (10942, 10963), False, 'from alembic import op\n'), ((11003, 11028), 'alembic.op.f', 'op.f', (['"""ix_query_finished"""'], {}), "('ix_query_finished')\n", (11007, 11028), False, 'from alembic import op\n'), ((11068, 11099), 'alembic.op.f', 'op.f', (['"""ix_query_executed_query"""'], {}), "('ix_query_executed_query')\n", (11072, 11099), False, 'from alembic import op\n'), ((11139, 11167), 'alembic.op.f', 'op.f', (['"""ix_query_database_id"""'], {}), "('ix_query_database_id')\n", (11143, 11167), False, 'from alembic import op\n'), ((11207, 11231), 'alembic.op.f', 'op.f', (['"""ix_query_catalog"""'], {}), "('ix_query_catalog')\n", (11211, 11231), False, 'from alembic import op\n'), ((11298, 11335), 'alembic.op.f', 'op.f', (['"""ix_noderelationship_parent_id"""'], {}), "('ix_noderelationship_parent_id')\n", (11302, 11335), False, 'from alembic import op\n'), ((11386, 11422), 'alembic.op.f', 'op.f', (['"""ix_noderelationship_child_id"""'], {}), "('ix_noderelationship_child_id')\n", (11390, 11422), False, 'from alembic import op\n'), ((11511, 11533), 'alembic.op.f', 'op.f', (['"""ix_column_name"""'], {}), "('ix_column_name')\n", (11515, 11533), False, 'from alembic import op\n'), ((11574, 11594), 'alembic.op.f', 'op.f', (['"""ix_column_id"""'], {}), "('ix_column_id')\n", (11578, 11594), False, 'from alembic import op\n'), ((11635, 11665), 'alembic.op.f', 'op.f', (['"""ix_column_dimension_id"""'], {}), "('ix_column_dimension_id')\n", (11639, 11665), False, 'from alembic import op\n'), ((11706, 11740), 'alembic.op.f', 'op.f', (['"""ix_column_dimension_column"""'], {}), "('ix_column_dimension_column')\n", (11710, 11740), False, 'from alembic import op\n'), ((11809, 11827), 'alembic.op.f', 'op.f', (['"""ix_node_id"""'], {}), "('ix_node_id')\n", (11813, 11827), False, 'from alembic import op\n'), ((11866, 11892), 'alembic.op.f', 'op.f', (['"""ix_node_expression"""'], {}), "('ix_node_expression')\n", (11870, 11892), False, 'from alembic import op\n'), ((11931, 11958), 'alembic.op.f', 'op.f', (['"""ix_node_description"""'], {}), "('ix_node_description')\n", (11935, 11958), False, 'from alembic import op\n'), ((12023, 12052), 'alembic.op.f', 'op.f', (['"""ix_database_read_only"""'], {}), "('ix_database_read_only')\n", (12027, 12052), False, 'from alembic import op\n'), ((12095, 12117), 'alembic.op.f', 'op.f', (['"""ix_database_id"""'], {}), "('ix_database_id')\n", (12099, 12117), False, 'from alembic import op\n'), ((12160, 12191), 'alembic.op.f', 'op.f', (['"""ix_database_description"""'], {}), "('ix_database_description')\n", (12164, 12191), False, 'from alembic import op\n'), ((12234, 12258), 'alembic.op.f', 'op.f', (['"""ix_database_cost"""'], {}), "('ix_database_cost')\n", (12238, 12258), False, 'from alembic import op\n'), ((12301, 12326), 'alembic.op.f', 'op.f', (['"""ix_database_async"""'], {}), "('ix_database_async')\n", (12305, 12326), False, 'from alembic import op\n'), ((12369, 12392), 'alembic.op.f', 'op.f', (['"""ix_database_URI"""'], {}), "('ix_database_URI')\n", (12373, 12392), False, 'from alembic import op\n'), ((560, 571), 'sqlalchemy.String', 'sa.String', ([], {}), '()\n', (569, 571), True, 'import sqlalchemy as sa\n'), ((621, 647), 'sqlalchemy.DateTime', 'sa.DateTime', ([], {'timezone': '(True)'}), '(timezone=True)\n', (632, 647), True, 'import sqlalchemy as sa\n'), ((697, 723), 'sqlalchemy.DateTime', 'sa.DateTime', ([], {'timezone': '(True)'}), '(timezone=True)\n', (708, 723), True, 'import sqlalchemy as sa\n'), ((765, 777), 'sqlalchemy.Integer', 'sa.Integer', ([], {}), '()\n', (775, 777), True, 'import sqlalchemy as sa\n'), ((828, 862), 'sqlmodel.sql.sqltypes.AutoString', 'sqlmodel.sql.sqltypes.AutoString', ([], {}), '()\n', (860, 862), False, 'import sqlmodel\n'), ((905, 939), 'sqlmodel.sql.sqltypes.AutoString', 'sqlmodel.sql.sqltypes.AutoString', ([], {}), '()\n', (937, 939), False, 'import sqlmodel\n'), ((989, 1001), 'sqlalchemy.Boolean', 'sa.Boolean', ([], {}), '()\n', (999, 1001), True, 'import sqlalchemy as sa\n'), ((1046, 1058), 'sqlalchemy.Boolean', 'sa.Boolean', ([], {}), '()\n', (1056, 1058), True, 'import sqlalchemy as sa\n'), ((1102, 1112), 'sqlalchemy.Float', 'sa.Float', ([], {}), '()\n', (1110, 1112), True, 'import sqlalchemy as sa\n'), ((1865, 1876), 'sqlalchemy.String', 'sa.String', ([], {}), '()\n', (1874, 1876), True, 'import sqlalchemy as sa\n'), ((1926, 1952), 'sqlalchemy.DateTime', 'sa.DateTime', ([], {'timezone': '(True)'}), '(timezone=True)\n', (1937, 1952), True, 'import sqlalchemy as sa\n'), ((2002, 2028), 'sqlalchemy.DateTime', 'sa.DateTime', ([], {'timezone': '(True)'}), '(timezone=True)\n', (2013, 2028), True, 'import sqlalchemy as sa\n'), ((2097, 2167), 'sqlalchemy.Enum', 'sa.Enum', (['"""SOURCE"""', '"""TRANSFORM"""', '"""METRIC"""', '"""DIMENSION"""'], {'name': '"""nodetype"""'}), "('SOURCE', 'TRANSFORM', 'METRIC', 'DIMENSION', name='nodetype')\n", (2104, 2167), True, 'import sqlalchemy as sa\n'), ((2231, 2243), 'sqlalchemy.Integer', 'sa.Integer', ([], {}), '()\n', (2241, 2243), True, 'import sqlalchemy as sa\n'), ((2294, 2328), 'sqlmodel.sql.sqltypes.AutoString', 'sqlmodel.sql.sqltypes.AutoString', ([], {}), '()\n', (2326, 2328), False, 'import sqlmodel\n'), ((2378, 2412), 'sqlmodel.sql.sqltypes.AutoString', 'sqlmodel.sql.sqltypes.AutoString', ([], {}), '()\n', (2410, 2412), False, 'import sqlmodel\n'), ((2846, 2984), 'sqlalchemy.Enum', 'sa.Enum', (['"""BYTES"""', '"""STR"""', '"""FLOAT"""', '"""INT"""', '"""DECIMAL"""', '"""BOOL"""', '"""DATETIME"""', '"""DATE"""', '"""TIME"""', '"""TIMEDELTA"""', '"""LIST"""', '"""DICT"""'], {'name': '"""columntype"""'}), "('BYTES', 'STR', 'FLOAT', 'INT', 'DECIMAL', 'BOOL', 'DATETIME',\n 'DATE', 'TIME', 'TIMEDELTA', 'LIST', 'DICT', name='columntype')\n", (2853, 2984), True, 'import sqlalchemy as sa\n'), ((3267, 3279), 'sqlalchemy.Integer', 'sa.Integer', ([], {}), '()\n', (3277, 3279), True, 'import sqlalchemy as sa\n'), ((3323, 3357), 'sqlmodel.sql.sqltypes.AutoString', 'sqlmodel.sql.sqltypes.AutoString', ([], {}), '()\n', (3355, 3357), False, 'import sqlmodel\n'), ((3410, 3422), 'sqlalchemy.Integer', 'sa.Integer', ([], {}), '()\n', (3420, 3422), True, 'import sqlalchemy as sa\n'), ((3503, 3537), 'sqlmodel.sql.sqltypes.AutoString', 'sqlmodel.sql.sqltypes.AutoString', ([], {}), '()\n', (3535, 3537), False, 'import sqlmodel\n'), ((4227, 4239), 'sqlalchemy.Integer', 'sa.Integer', ([], {}), '()\n', (4237, 4239), True, 'import sqlalchemy as sa\n'), ((4287, 4299), 'sqlalchemy.Integer', 'sa.Integer', ([], {}), '()\n', (4297, 4299), True, 'import sqlalchemy as sa\n'), ((4926, 4964), 'sqlalchemy_utils.types.uuid.UUIDType', 'sqlalchemy_utils.types.uuid.UUIDType', ([], {}), '()\n', (4962, 4964), False, 'import sqlalchemy_utils\n'), ((5016, 5028), 'sqlalchemy.Integer', 'sa.Integer', ([], {}), '()\n', (5026, 5028), True, 'import sqlalchemy as sa\n'), ((5076, 5110), 'sqlmodel.sql.sqltypes.AutoString', 'sqlmodel.sql.sqltypes.AutoString', ([], {}), '()\n', (5108, 5110), False, 'import sqlmodel\n'), ((5157, 5191), 'sqlmodel.sql.sqltypes.AutoString', 'sqlmodel.sql.sqltypes.AutoString', ([], {}), '()\n', (5189, 5191), False, 'import sqlmodel\n'), ((5271, 5305), 'sqlmodel.sql.sqltypes.AutoString', 'sqlmodel.sql.sqltypes.AutoString', ([], {}), '()\n', (5303, 5305), False, 'import sqlmodel\n'), ((5382, 5416), 'sqlmodel.sql.sqltypes.AutoString', 'sqlmodel.sql.sqltypes.AutoString', ([], {}), '()\n', (5414, 5416), False, 'import sqlmodel\n'), ((5465, 5478), 'sqlalchemy.DateTime', 'sa.DateTime', ([], {}), '()\n', (5476, 5478), True, 'import sqlalchemy as sa\n'), ((5525, 5538), 'sqlalchemy.DateTime', 'sa.DateTime', ([], {}), '()\n', (5536, 5538), True, 'import sqlalchemy as sa\n'), ((5586, 5599), 'sqlalchemy.DateTime', 'sa.DateTime', ([], {}), '()\n', (5597, 5599), True, 'import sqlalchemy as sa\n'), ((5644, 5678), 'sqlmodel.sql.sqltypes.AutoString', 'sqlmodel.sql.sqltypes.AutoString', ([], {}), '()\n', (5676, 5678), False, 'import sqlmodel\n'), ((5726, 5736), 'sqlalchemy.Float', 'sa.Float', ([], {}), '()\n', (5734, 5736), True, 'import sqlalchemy as sa\n'), ((6942, 6954), 'sqlalchemy.Integer', 'sa.Integer', ([], {}), '()\n', (6952, 6954), True, 'import sqlalchemy as sa\n'), ((7001, 7013), 'sqlalchemy.Integer', 'sa.Integer', ([], {}), '()\n', (7011, 7013), True, 'import sqlalchemy as sa\n'), ((7065, 7077), 'sqlalchemy.Integer', 'sa.Integer', ([], {}), '()\n', (7075, 7077), True, 'import sqlalchemy as sa\n'), ((7125, 7159), 'sqlmodel.sql.sqltypes.AutoString', 'sqlmodel.sql.sqltypes.AutoString', ([], {}), '()\n', (7157, 7159), False, 'import sqlmodel\n'), ((7206, 7240), 'sqlmodel.sql.sqltypes.AutoString', 'sqlmodel.sql.sqltypes.AutoString', ([], {}), '()\n', (7238, 7240), False, 'import sqlmodel\n'), ((7285, 7319), 'sqlmodel.sql.sqltypes.AutoString', 'sqlmodel.sql.sqltypes.AutoString', ([], {}), '()\n', (7317, 7319), False, 'import sqlmodel\n'), ((7364, 7374), 'sqlalchemy.Float', 'sa.Float', ([], {}), '()\n', (7372, 7374), True, 'import sqlalchemy as sa\n'), ((8307, 8319), 'sqlalchemy.Integer', 'sa.Integer', ([], {}), '()\n', (8317, 8319), True, 'import sqlalchemy as sa\n'), ((8368, 8380), 'sqlalchemy.Integer', 'sa.Integer', ([], {}), '()\n', (8378, 8380), True, 'import sqlalchemy as sa\n'), ((8998, 9010), 'sqlalchemy.Integer', 'sa.Integer', ([], {}), '()\n', (9008, 9010), True, 'import sqlalchemy as sa\n'), ((9059, 9071), 'sqlalchemy.Integer', 'sa.Integer', ([], {}), '()\n', (9069, 9071), True, 'import sqlalchemy as sa\n')]
# from sqlmodel import select from app.src.db.engine import get_db from sqlmodel import Session, select from app.src.db.manager import create_table from app.src.models.db.product import Product from app.src.models.db.product_type import ProductType from app.src.models.db.tag import Tag def test_data(): # create the tables (come renderle dipendenti da una sessione) engine = get_db() create_table() with Session(engine) as session: # define data type_panini = ProductType(name="Panino", description="Tutto ciò che è panino") cibo_tag = Tag(name="cibo") panino = Product( name="panino", description="panino buono", price=3.30, available=True, product_type=type_panini, tags=[cibo_tag], ) kebab = Product( name="kebab", description="senza cipolla", price=4, available=True, product_type=type_panini, tags=[cibo_tag], ) session.add(type_panini) session.add(cibo_tag) session.add(panino) session.add(kebab) statement = select(Product) results = session.exec(statement) products = results.all() assert len(products) >= 1 results = select(Product).where(Product.name == "kebab") results = session.exec(statement) products = results.all() assert len(products) != 0 session.rollback()
[ "sqlmodel.Session", "sqlmodel.select" ]
[((387, 395), 'app.src.db.engine.get_db', 'get_db', ([], {}), '()\n', (393, 395), False, 'from app.src.db.engine import get_db\n'), ((400, 414), 'app.src.db.manager.create_table', 'create_table', ([], {}), '()\n', (412, 414), False, 'from app.src.db.manager import create_table\n'), ((425, 440), 'sqlmodel.Session', 'Session', (['engine'], {}), '(engine)\n', (432, 440), False, 'from sqlmodel import Session, select\n'), ((497, 561), 'app.src.models.db.product_type.ProductType', 'ProductType', ([], {'name': '"""Panino"""', 'description': '"""Tutto ciò che è panino"""'}), "(name='Panino', description='Tutto ciò che è panino')\n", (508, 561), False, 'from app.src.models.db.product_type import ProductType\n'), ((581, 597), 'app.src.models.db.tag.Tag', 'Tag', ([], {'name': '"""cibo"""'}), "(name='cibo')\n", (584, 597), False, 'from app.src.models.db.tag import Tag\n'), ((615, 740), 'app.src.models.db.product.Product', 'Product', ([], {'name': '"""panino"""', 'description': '"""panino buono"""', 'price': '(3.3)', 'available': '(True)', 'product_type': 'type_panini', 'tags': '[cibo_tag]'}), "(name='panino', description='panino buono', price=3.3, available=\n True, product_type=type_panini, tags=[cibo_tag])\n", (622, 740), False, 'from app.src.models.db.product import Product\n'), ((836, 958), 'app.src.models.db.product.Product', 'Product', ([], {'name': '"""kebab"""', 'description': '"""senza cipolla"""', 'price': '(4)', 'available': '(True)', 'product_type': 'type_panini', 'tags': '[cibo_tag]'}), "(name='kebab', description='senza cipolla', price=4, available=True,\n product_type=type_panini, tags=[cibo_tag])\n", (843, 958), False, 'from app.src.models.db.product import Product\n'), ((1178, 1193), 'sqlmodel.select', 'select', (['Product'], {}), '(Product)\n', (1184, 1193), False, 'from sqlmodel import Session, select\n'), ((1322, 1337), 'sqlmodel.select', 'select', (['Product'], {}), '(Product)\n', (1328, 1337), False, 'from sqlmodel import Session, select\n')]
from pathlib import Path import pytest from sqlmodel import select from kfs import db @pytest.fixture() def base_dir(tmp_path: Path) -> Path: return tmp_path @pytest.fixture() def sql_file_path(base_dir: Path) -> Path: return base_dir / "kfs.db" @pytest.fixture() def sqlite_url(sql_file_path: Path) -> str: return f"sqlite:///{sql_file_path}" @pytest.fixture(autouse=True) def database(sqlite_url: str) -> None: db.init(sqlite_url) def test_init(sql_file_path: Path) -> None: """After init, the database has been created and the file exists""" assert sql_file_path.exists() def test_database() -> None: with db.get_session() as session: # Create a new file with a tag tag = db.Tag(category="vendor", value="chevron") file = db.File(name="test_file.csv", path="/some/directory", tags=[tag]) session.add(file) session.commit() with db.get_session() as session: # Retrieve the file from database read_file = session.exec(select(db.File)).one() assert file is not read_file assert read_file.name == "test_file.csv" assert read_file.path == "/some/directory" assert len(read_file.tags) == 1 read_tag = read_file.tags[0] assert read_tag.category == "vendor" assert read_tag.value == "chevron" assert len(read_tag.files) == 1
[ "sqlmodel.select" ]
[((91, 107), 'pytest.fixture', 'pytest.fixture', ([], {}), '()\n', (105, 107), False, 'import pytest\n'), ((169, 185), 'pytest.fixture', 'pytest.fixture', ([], {}), '()\n', (183, 185), False, 'import pytest\n'), ((263, 279), 'pytest.fixture', 'pytest.fixture', ([], {}), '()\n', (277, 279), False, 'import pytest\n'), ((367, 395), 'pytest.fixture', 'pytest.fixture', ([], {'autouse': '(True)'}), '(autouse=True)\n', (381, 395), False, 'import pytest\n'), ((439, 458), 'kfs.db.init', 'db.init', (['sqlite_url'], {}), '(sqlite_url)\n', (446, 458), False, 'from kfs import db\n'), ((651, 667), 'kfs.db.get_session', 'db.get_session', ([], {}), '()\n', (665, 667), False, 'from kfs import db\n'), ((733, 775), 'kfs.db.Tag', 'db.Tag', ([], {'category': '"""vendor"""', 'value': '"""chevron"""'}), "(category='vendor', value='chevron')\n", (739, 775), False, 'from kfs import db\n'), ((791, 856), 'kfs.db.File', 'db.File', ([], {'name': '"""test_file.csv"""', 'path': '"""/some/directory"""', 'tags': '[tag]'}), "(name='test_file.csv', path='/some/directory', tags=[tag])\n", (798, 856), False, 'from kfs import db\n'), ((918, 934), 'kfs.db.get_session', 'db.get_session', ([], {}), '()\n', (932, 934), False, 'from kfs import db\n'), ((1022, 1037), 'sqlmodel.select', 'select', (['db.File'], {}), '(db.File)\n', (1028, 1037), False, 'from sqlmodel import select\n')]
""" Database related APIs. """ import logging from typing import List from fastapi import APIRouter, Depends from sqlmodel import Session, select from datajunction.models.database import Database from datajunction.utils import get_session _logger = logging.getLogger(__name__) router = APIRouter() @router.get("/databases/", response_model=List[Database]) def read_databases(*, session: Session = Depends(get_session)) -> List[Database]: """ List the available databases. """ return session.exec(select(Database)).all()
[ "sqlmodel.select" ]
[((253, 280), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (270, 280), False, 'import logging\n'), ((290, 301), 'fastapi.APIRouter', 'APIRouter', ([], {}), '()\n', (299, 301), False, 'from fastapi import APIRouter, Depends\n'), ((403, 423), 'fastapi.Depends', 'Depends', (['get_session'], {}), '(get_session)\n', (410, 423), False, 'from fastapi import APIRouter, Depends\n'), ((518, 534), 'sqlmodel.select', 'select', (['Database'], {}), '(Database)\n', (524, 534), False, 'from sqlmodel import Session, select\n')]
# This example implements macroscopic homogenized model of Biot-Darcy-Brinkman model of flow in deformable # double porous media. # The mathematical model is described in: # #<NAME>., <NAME>., <NAME>. #The Biot-Darcy-Brinkman model of flow in deformable double porous media; homogenization and numerical modelling. # Computers and Mathematics with applications, 78(9):3044-3066, 2019, # https://doi.org/10.1016/j.camwa.2019.04.004 # # Run simulation: # # ./simple.py example_perfusion_BDB/perf_BDB_mac.py # # The results are stored in `example_perfusion_BDB/results/macro` directory. # import numpy as nm from sfepy.homogenization.micmac import get_homog_coefs_linear from sfepy.homogenization.utils import define_box_regions from sfepy.discrete.fem.mesh import Mesh import os.path as osp material_cache = {} data_dir = 'example_perfusion_BDB' def coefs2qp(coefs, nqp): out = {} for k, v in coefs.items(): if type(v) not in [nm.ndarray, float]: continue if type(v) is nm.ndarray: if len(v.shape) >= 3: out[k] = v out[k] = nm.tile(v, (nqp, 1, 1)) return out # Get raw homogenized coefficients, recalculate them if necessary def get_raw_coefs(problem): if 'raw_coefs' not in material_cache: micro_filename = material_cache['meso_filename'] coefs_filename = 'coefs_meso' coefs_filename = osp.join(problem.conf.options.get('output_dir', '.'), coefs_filename) + '.h5' coefs = get_homog_coefs_linear(0, 0, None, micro_filename=micro_filename, coefs_filename=coefs_filename) coefs['B'] = coefs['B'][:, nm.newaxis] material_cache['raw_coefs'] = coefs return material_cache['raw_coefs'] #Get homogenized coefficients in quadrature points def get_homog(coors,pb, mode, **kwargs): if not (mode == 'qp'): return nqp = coors.shape[0] coefs=get_raw_coefs(pb) for k in coefs.keys(): v = coefs[k] if type(v) is nm.ndarray: if len(v.shape) == 0: coefs[k] = v.reshape((1, 1)) elif len(v.shape) == 1: coefs[k] = v[:, nm.newaxis] elif isinstance(v, float): coefs[k] = nm.array([[v]]) out = coefs2qp(coefs, nqp) return out #Definition of dirichlet boundary conditions def get_ebc( coors, amplitude, cg1, cg2,const=False): """ Define the essential boundary conditions as a function of coordinates `coors` of region nodes. """ y = coors[:, 1] - cg1 z = coors[:, 2] - cg2 val = amplitude*((cg1**2 - (abs(y)**2))+(cg2**2 - (abs(z)**2))) if const: val=nm.ones_like(y) *amplitude return val #Returns value of \phi_c\bar{w}^{mes} as a material function def get_ebc_mat( coors,pb, mode, amplitude, cg1, cg2,konst=False): if mode == 'qp': val = get_ebc( coors, amplitude, cg1, cg2,konst) phic = get_raw_coefs(pb)['vol']["fraction_Zc"] v_w1 = val[:, nm.newaxis, nm.newaxis] return {'val': v_w1*phic} #Definition of boundary conditions for numerical example at http://sfepy.org/sfepy_examples/example_perfusion_BDB/ def define_bc(cg1,cg2, val_in=1e2, val_out=1e2): funs = { 'w_in': (lambda ts, coor, bc, problem, **kwargs: get_ebc( coor, val_in, cg1, cg2),), 'w_out': (lambda ts, coor, bc, problem, **kwargs: get_ebc( coor, val_out, cg1, cg2),), 'w_in_mat': (lambda ts,coor, problem, mode=None, **kwargs: get_ebc_mat( coor, problem, mode, val_in, cg1, cg2),), 'w_out_mat': (lambda ts,coor, problem, mode=None, **kwargs: get_ebc_mat( coor, problem, mode, val_out, cg1, cg2),), } mats = { 'w_in': 'w_in_mat', 'w_out': 'w_out_mat', } ebcs = { 'fix_u_in': ('In', {'u.all': 0.0}), 'fix_u_out': ('Out', {'u.all': 0.0}), 'w_in': ('In', {'w.0': 'w_in','w.[1,2]': 0.0}), 'w_out': ('Out', {'w.0': 'w_out','w.[1,2]': 0.0}), 'wB_dirichlet':('Bottom',{'w.2' :0.0,'u.2':0.0}), 'WT_dirichlet':('Top',{'w.2' :0.0,'u.2':0.0}), 'wN_dirichlet':('Near',{'w.1' :0.0,'u.1':0.0}), 'wF_dirichlet':('Far',{'w.1' :0.0,'u.1':0.0}), } lcbcs = { 'imv': ('Omega', {'ls.all' : None}, None, 'integral_mean_value') } return ebcs, funs, mats, lcbcs #Definition of macroscopic problem def define(filename_mesh=None,cg1=None, cg2=None): if filename_mesh is None: filename_mesh = osp.join(data_dir, 'macro_perf.vtk') cg1, cg2 = 0.0015, 0.0015 # y and z coordinates of center of gravity mesh = Mesh.from_file(filename_mesh) poroela_mezo_file = osp.join(data_dir,'perf_BDB_mes.py') material_cache['meso_filename']=poroela_mezo_file bbox = mesh.get_bounding_box() regions = define_box_regions(mesh.dim, bbox[0], bbox[1], eps=1e-6) regions.update({ 'Omega': 'all', 'Wall': ('r.Top +v r.Bottom +v r.Far +v r.Near', 'facet'), 'In': ('r.Left -v r.Wall', 'facet'), 'Out': ('r.Right -v r.Wall', 'facet'), }) ebcs, bc_funs, mats, lcbcs = define_bc(cg1,cg2,val_in=1.e4,val_out=1.e4) fields = { 'displacement': ('real', 'vector', 'Omega', 1), 'pressure': ('real', 'scalar', 'Omega', 1), 'velocity': ('real', 'vector', 'Omega', 2), } variables = { #Displacement 'u': ('unknown field', 'displacement'), 'v': ('test field', 'displacement', 'u'), #Pressure 'p': ('unknown field', 'pressure'), 'q': ('test field', 'pressure', 'p'), 'ls': ('unknown field', 'pressure'), 'lv': ('test field', 'pressure', 'ls'), #Velocity 'w': ('unknown field', 'velocity'), 'z': ('test field', 'velocity', 'w'), } functions = { 'get_homog': (lambda ts, coors, problem, mode=None, **kwargs: \ get_homog(coors,problem, mode, **kwargs),), } functions.update(bc_funs) materials = { 'hom': 'get_homog', } materials.update(mats) integrals = { 'i': 4, "is": ("s", 4), } #Definition of solvers solvers = { 'ls': ('ls.mumps', {}), 'newton': ('nls.newton', {'i_max': 2, 'eps_a': 1e-12, 'eps_r': 1e-3, 'problem': 'nonlinear', }) } #Definition of macroscopic equations, see (43) equations = { 'eq1': """ dw_lin_elastic.i.Omega(hom.A, v, u) - dw_biot.i.Omega(hom.B, v, p) - dw_v_dot_grad_s.i.Omega(hom.PT, v, p) - dw_volume_dot.i.Omega(hom.H, v, w) = 0""", 'eq2': """ dw_diffusion.i.Omega(hom.K, q, p) - dw_v_dot_grad_s.i.Omega(hom.P, w, q)+ dw_volume_dot.i.Omega( q,ls ) = + dw_surface_integrate.is.In(w_in.val, q) - dw_surface_integrate.is.Out(w_out.val, q) """, 'eq3': """ dw_lin_elastic.i.Omega(hom.S, z, w) + dw_volume_dot.i.Omega(hom.H, z, w) + dw_v_dot_grad_s.i.Omega(hom.PT, z, p) = 0""", 'eq_imv': 'dw_volume_dot.i.Omega( lv, p ) = 0', } options = { 'output_dir': data_dir + '/results/macro', 'ls': 'ls', 'nls': 'newton', 'micro_filename' : poroela_mezo_file, 'absolute_mesh_path': True, } return locals()
[ "sfepy.homogenization.micmac.get_homog_coefs_linear", "sfepy.homogenization.utils.define_box_regions", "sfepy.discrete.fem.mesh.Mesh.from_file" ]
[((4957, 4986), 'sfepy.discrete.fem.mesh.Mesh.from_file', 'Mesh.from_file', (['filename_mesh'], {}), '(filename_mesh)\n', (4971, 4986), False, 'from sfepy.discrete.fem.mesh import Mesh\n'), ((5012, 5049), 'os.path.join', 'osp.join', (['data_dir', '"""perf_BDB_mes.py"""'], {}), "(data_dir, 'perf_BDB_mes.py')\n", (5020, 5049), True, 'import os.path as osp\n'), ((5157, 5214), 'sfepy.homogenization.utils.define_box_regions', 'define_box_regions', (['mesh.dim', 'bbox[0]', 'bbox[1]'], {'eps': '(1e-06)'}), '(mesh.dim, bbox[0], bbox[1], eps=1e-06)\n', (5175, 5214), False, 'from sfepy.homogenization.utils import define_box_regions\n'), ((1140, 1163), 'numpy.tile', 'nm.tile', (['v', '(nqp, 1, 1)'], {}), '(v, (nqp, 1, 1))\n', (1147, 1163), True, 'import numpy as nm\n'), ((1576, 1676), 'sfepy.homogenization.micmac.get_homog_coefs_linear', 'get_homog_coefs_linear', (['(0)', '(0)', 'None'], {'micro_filename': 'micro_filename', 'coefs_filename': 'coefs_filename'}), '(0, 0, None, micro_filename=micro_filename,\n coefs_filename=coefs_filename)\n', (1598, 1676), False, 'from sfepy.homogenization.micmac import get_homog_coefs_linear\n'), ((4827, 4863), 'os.path.join', 'osp.join', (['data_dir', '"""macro_perf.vtk"""'], {}), "(data_dir, 'macro_perf.vtk')\n", (4835, 4863), True, 'import os.path as osp\n'), ((2800, 2815), 'numpy.ones_like', 'nm.ones_like', (['y'], {}), '(y)\n', (2812, 2815), True, 'import numpy as nm\n'), ((2352, 2367), 'numpy.array', 'nm.array', (['[[v]]'], {}), '([[v]])\n', (2360, 2367), True, 'import numpy as nm\n')]
""" Functions to visualize the CMesh geometry and topology. """ from sfepy.postprocess.plot_dofs import _get_axes, _to2d def plot_wireframe(ax, cmesh, color='k'): """ Plot a finite element mesh as a wireframe using edges connectivity. """ coors = cmesh.coors coors = _to2d(coors) dim = cmesh.dim ax = _get_axes(ax, dim) edges = cmesh.get_conn(1, 0) for edge_vertices in edges.indices.reshape((edges.num, 2)): cc = coors[edge_vertices] ax.plot(*cc.T, color=color) return ax def plot_entities(ax, cmesh, edim, color='b', size=10): """ Plot mesh topology entities using scatter plot. """ coors = cmesh.get_centroids(edim) coors = _to2d(coors) dim = cmesh.dim ax = _get_axes(ax, dim) ax.scatter(*coors.T, s=size, c=color) return ax def label_global_entities(ax, cmesh, edim, color='b', fontsize=10): """ Label mesh topology entities using global ids. """ coors = cmesh.get_centroids(edim) coors = _to2d(coors) dim = cmesh.dim ax = _get_axes(ax, dim) for ii, cc in enumerate(coors): ax.text(*cc.T, s=ii, color=color, fontsize=fontsize) return ax def label_local_entities(ax, cmesh, edim, color='b', fontsize=10): """ Label mesh topology entities using cell-local ids. """ coors = cmesh.get_centroids(edim) coors = _to2d(coors) dim = cmesh.dim centres = cmesh.get_centroids(dim) cmesh.setup_connectivity(dim, edim) conn = cmesh.get_conn(dim, edim) off = conn.offsets ax = _get_axes(ax, dim) eps = 0.1 oeps = 1.0 - eps for ii in xrange(conn.num): for ic, ie in enumerate(conn.indices[off[ii]:off[ii+1]]): # Shift labels towards the cell centre. cc = oeps * coors[ie] + eps * centres[ii] ax.text(*cc.T, s=ic, color=color, fontsize=fontsize) return ax
[ "sfepy.postprocess.plot_dofs._to2d", "sfepy.postprocess.plot_dofs._get_axes" ]
[((288, 300), 'sfepy.postprocess.plot_dofs._to2d', '_to2d', (['coors'], {}), '(coors)\n', (293, 300), False, 'from sfepy.postprocess.plot_dofs import _get_axes, _to2d\n'), ((331, 349), 'sfepy.postprocess.plot_dofs._get_axes', '_get_axes', (['ax', 'dim'], {}), '(ax, dim)\n', (340, 349), False, 'from sfepy.postprocess.plot_dofs import _get_axes, _to2d\n'), ((708, 720), 'sfepy.postprocess.plot_dofs._to2d', '_to2d', (['coors'], {}), '(coors)\n', (713, 720), False, 'from sfepy.postprocess.plot_dofs import _get_axes, _to2d\n'), ((751, 769), 'sfepy.postprocess.plot_dofs._get_axes', '_get_axes', (['ax', 'dim'], {}), '(ax, dim)\n', (760, 769), False, 'from sfepy.postprocess.plot_dofs import _get_axes, _to2d\n'), ((1013, 1025), 'sfepy.postprocess.plot_dofs._to2d', '_to2d', (['coors'], {}), '(coors)\n', (1018, 1025), False, 'from sfepy.postprocess.plot_dofs import _get_axes, _to2d\n'), ((1056, 1074), 'sfepy.postprocess.plot_dofs._get_axes', '_get_axes', (['ax', 'dim'], {}), '(ax, dim)\n', (1065, 1074), False, 'from sfepy.postprocess.plot_dofs import _get_axes, _to2d\n'), ((1377, 1389), 'sfepy.postprocess.plot_dofs._to2d', '_to2d', (['coors'], {}), '(coors)\n', (1382, 1389), False, 'from sfepy.postprocess.plot_dofs import _get_axes, _to2d\n'), ((1560, 1578), 'sfepy.postprocess.plot_dofs._get_axes', '_get_axes', (['ax', 'dim'], {}), '(ax, dim)\n', (1569, 1578), False, 'from sfepy.postprocess.plot_dofs import _get_axes, _to2d\n')]
from sqlmodel import select from sqlalchemy.sql import expression from sqlalchemy.exc import SQLAlchemyError from sqlalchemy.orm import defer from typing import Any from app.db import models, pagination, session_scope from app.logs import fastapi_logger def get_user(email: str) -> Any: """ Get User Data based on email""" try: with session_scope() as db: statement = select(models.User).where( models.User.email == email).options(defer('password')) results = db.exec(statement) data = results.one() return data except SQLAlchemyError as e: fastapi_logger.exception("get_user") return None def get_user_password(email: str) -> Any: """ Get User Password based on email""" try: with session_scope() as db: statement = select(models.User).where( models.User.email == email) results = db.exec(statement) data = results.one() return data except SQLAlchemyError as e: fastapi_logger.exception("get_user") return None def get_active_user(email: str) -> Any: """ Get User Data based on email and active status""" try: with session_scope() as db: statement = select(models.User).where( models.User.email == email).where( models.User.is_active == expression.true()).options(defer('password')) results = db.exec(statement) data = results.one() return data except SQLAlchemyError as e: fastapi_logger.exception("get_user") return None
[ "sqlmodel.select" ]
[((363, 378), 'app.db.session_scope', 'session_scope', ([], {}), '()\n', (376, 378), False, 'from app.db import models, pagination, session_scope\n'), ((654, 690), 'app.logs.fastapi_logger.exception', 'fastapi_logger.exception', (['"""get_user"""'], {}), "('get_user')\n", (678, 690), False, 'from app.logs import fastapi_logger\n'), ((826, 841), 'app.db.session_scope', 'session_scope', ([], {}), '()\n', (839, 841), False, 'from app.db import models, pagination, session_scope\n'), ((1090, 1126), 'app.logs.fastapi_logger.exception', 'fastapi_logger.exception', (['"""get_user"""'], {}), "('get_user')\n", (1114, 1126), False, 'from app.logs import fastapi_logger\n'), ((1274, 1289), 'app.db.session_scope', 'session_scope', ([], {}), '()\n', (1287, 1289), False, 'from app.db import models, pagination, session_scope\n'), ((1633, 1669), 'app.logs.fastapi_logger.exception', 'fastapi_logger.exception', (['"""get_user"""'], {}), "('get_user')\n", (1657, 1669), False, 'from app.logs import fastapi_logger\n'), ((491, 508), 'sqlalchemy.orm.defer', 'defer', (['"""password"""'], {}), "('password')\n", (496, 508), False, 'from sqlalchemy.orm import defer\n'), ((1470, 1487), 'sqlalchemy.orm.defer', 'defer', (['"""password"""'], {}), "('password')\n", (1475, 1487), False, 'from sqlalchemy.orm import defer\n'), ((874, 893), 'sqlmodel.select', 'select', (['models.User'], {}), '(models.User)\n', (880, 893), False, 'from sqlmodel import select\n'), ((411, 430), 'sqlmodel.select', 'select', (['models.User'], {}), '(models.User)\n', (417, 430), False, 'from sqlmodel import select\n'), ((1443, 1460), 'sqlalchemy.sql.expression.true', 'expression.true', ([], {}), '()\n', (1458, 1460), False, 'from sqlalchemy.sql import expression\n'), ((1322, 1341), 'sqlmodel.select', 'select', (['models.User'], {}), '(models.User)\n', (1328, 1341), False, 'from sqlmodel import select\n')]
from datetime import date from typing import Optional from sqlmodel import SQLModel, Field # if TYPE_CHECKING: # from app.src.models.db.order import Order class AppUserBase(SQLModel): username: str name: Optional[str] surname: Optional[str] birth_date: Optional[date] email: str password: str isAdmin: bool = False class AppUser(AppUserBase, table=True): id: Optional[int] = Field(default=None, primary_key=True) class AppUserCreate(AppUserBase): pass class AppUserRead(AppUserBase): id: int # Nel modello update tutti gli attributi devono essere opzionali class AppUserUpdate(AppUserBase): name: Optional[str] = None surname: Optional[str] = None birth_date: Optional[date] = None username: Optional[str] = None email: str password: str isAdmin: Optional[bool] = None
[ "sqlmodel.Field" ]
[((415, 452), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'primary_key': '(True)'}), '(default=None, primary_key=True)\n', (420, 452), False, 'from sqlmodel import SQLModel, Field\n')]
import scrapy from imdb_rating.dependencies.models import Movie from pydantic import ValidationError from scrapy.crawler import CrawlerProcess from sqlmodel import Session, select class IMDBSpider(scrapy.Spider): name = "imdb" custom_settings = {"FEED_EXPORT_ENCODING": "utf-8"} def start_requests(self): """ This method is called by Scrapy to start the crawl. """ self.start = self.start.strftime("%Y-%m-%d") self.end = self.end.strftime("%Y-%m-%d") yield scrapy.Request( url=f"https://www.imdb.com/search/title/?title_type=feature&year={self.start},{self.end}&start=1", callback=self.parse, ) def parse(self, response): """ This method is called by Scrapy to parse the response. Parameters ---------- response : scrapy.http.Response The response from the server. Yields ------ scrapy.http.Request The next request to be crawled. """ for film in response.xpath('//*[@id="main"]/div/div[3]/div/div'): try: title = film.xpath(".//div[3]/h3/a/text()").get() except: title = None try: year = ( film.xpath(".//div[3]/h3/span[2]/text()") .get() .split(" ")[-1] .replace("(", "") .replace(")", "") ) except: year = None try: rating = film.xpath(".//div[3]/div/div/strong/text()").get() except: rating = None try: duration = film.css("span.runtime::text").get().replace(" min", "") except: duration = None try: votes = film.css(".//div[3]/p[4]/span[2]/@data-value").get() except: votes = None try: genres = film.css("span.genre::text").get().split(", ") genres = [genre.strip() for genre in genres] genres.extend([None for _ in range(3 - len(genres))]) genre1, genre2, genre3 = genres[:3] except: genre1, genre2, genre3 = None, None, None try: certificate = film.css("span.certificate::text").get() except: certificate = None try: synopsis = film.xpath(".//div[3]/p[2]/text()").get().strip() except: synopsis = None try: image = film.xpath(".//div[2]/a/img/@loadlate").get().split("._V1_")[0] except: image = None try: cast = film.xpath(".//div[3]/p[3]/*/text()").getall() split = cast.index("|") directors = cast[:split] directors.extend([None for _ in range(3 - len(directors))]) director1, director2, director3 = directors[:3] actors = cast[split + 1 :] actors.extend([None for _ in range(3 - len(actors))]) actor1, actor2, actor3 = actors[:3] except: actor1, actor2, actor3 = None, None, None director1, director2, director3 = None, None, None try: movie = Movie.validate( dict( title=title, year=year, actual_rating=rating, votes=votes, duration=duration, certificate=certificate, synopsis=synopsis, image=image, actor1=actor1, actor2=actor2, actor3=actor3, director1=director1, director2=director2, director3=director3, genre1=genre1, genre2=genre2, genre3=genre3, ) ) with Session(self.engine) as session: statement = select(Movie).where( Movie.title == movie.title and Movie.year == movie.year ) results = session.exec(statement) movie_orig = results.first() if movie_orig: movie_orig_values = dict(movie_orig) movie_orig_values.pop("id") movie_new_values = dict(movie) movie_new_values.pop("id") if movie_orig_values != movie_new_values: for key, value in movie_new_values.items(): setattr(movie_orig, key, value) session.add(movie_orig) session.commit() else: session.add(movie) session.commit() except ValidationError: continue try: next_page = response.css("a.next-page::attr(href)").get() yield response.follow(next_page, callback=self.parse) except: pass if __name__ == "__main__": from datetime import datetime, timedelta start = datetime.today() - timedelta(days=90) end = datetime.today() + timedelta(days=30) process = CrawlerProcess({"FEED_FORMAT": "json", "FEED_URI": f"data/test.json"}) process.crawl(IMDBSpider, start=start, end=end) process.start()
[ "sqlmodel.Session", "sqlmodel.select" ]
[((5642, 5712), 'scrapy.crawler.CrawlerProcess', 'CrawlerProcess', (["{'FEED_FORMAT': 'json', 'FEED_URI': f'data/test.json'}"], {}), "({'FEED_FORMAT': 'json', 'FEED_URI': f'data/test.json'})\n", (5656, 5712), False, 'from scrapy.crawler import CrawlerProcess\n'), ((5541, 5557), 'datetime.datetime.today', 'datetime.today', ([], {}), '()\n', (5555, 5557), False, 'from datetime import datetime, timedelta\n'), ((5560, 5578), 'datetime.timedelta', 'timedelta', ([], {'days': '(90)'}), '(days=90)\n', (5569, 5578), False, 'from datetime import datetime, timedelta\n'), ((5589, 5605), 'datetime.datetime.today', 'datetime.today', ([], {}), '()\n', (5603, 5605), False, 'from datetime import datetime, timedelta\n'), ((5608, 5626), 'datetime.timedelta', 'timedelta', ([], {'days': '(30)'}), '(days=30)\n', (5617, 5626), False, 'from datetime import datetime, timedelta\n'), ((520, 664), 'scrapy.Request', 'scrapy.Request', ([], {'url': 'f"""https://www.imdb.com/search/title/?title_type=feature&year={self.start},{self.end}&start=1"""', 'callback': 'self.parse'}), "(url=\n f'https://www.imdb.com/search/title/?title_type=feature&year={self.start},{self.end}&start=1'\n , callback=self.parse)\n", (534, 664), False, 'import scrapy\n'), ((4252, 4272), 'sqlmodel.Session', 'Session', (['self.engine'], {}), '(self.engine)\n', (4259, 4272), False, 'from sqlmodel import Session, select\n'), ((4317, 4330), 'sqlmodel.select', 'select', (['Movie'], {}), '(Movie)\n', (4323, 4330), False, 'from sqlmodel import Session, select\n')]
#!/usr/bin/env python3 # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. import copy from typing import Any, Mapping import megengine as mge import megengine.functional as F import megengine.module as M from .modules import SE, activation, conv2d, gap2d, linear, norm2d __all__ = ["build_head", "ClsHead", "MBV3Head", "VGGHead"] def build_head( w_in: int, head_args: Mapping[str, Any] = None, norm_name: str = "BN", act_name: str = "relu" ) -> M.Module: """The factory function to build head. Note: if ``head_args`` is ``None`` or ``head_args["name"]`` is ``None``, this function will do nothing and return ``None``. Args: w_in: input width. head_args: head args. Default: ``None`` norm_name: default normalization function, will be overridden by the same key in ``head_args``. Default: ``"BN"`` act_name: default activation function, will be overridden by the same key in ``head_args``. Default: ``"relu"`` Returns: A head. """ if head_args is None: return None head_args = copy.deepcopy(head_args) head_name = head_args.pop("name", None) if head_name is None: return None head_args["w_in"] = w_in head_args.setdefault("norm_name", norm_name) head_args.setdefault("act_name", act_name) if callable(head_name): return head_name(**head_args) if isinstance(head_name, str): head_funcs = { "ClsHead": ClsHead, "MBV3Head": MBV3Head, "VGGHead": VGGHead, } if head_name in head_funcs: return head_funcs[head_name](**head_args) raise ValueError(f"Head '{head_name}' not supported") class ClsHead(M.Module): """Cls head: Conv, BN, Act, AvgPool, FC. Args: w_in: input width. w_out: output width, normally the number of classes. Default: ``1000`` width: width for first conv in head, conv will be omitted if set to 0. Default: ``0`` dropout_prob: dropout probability. Default: ``0.0`` norm_name: normalization function. Default: ``"BN"`` act_name: activation function. Default: ``"relu"`` bias: whether fc has bias. Default: ``True`` """ def __init__( self, w_in: int, w_out: int = 1000, width: int = 0, dropout_prob: float = 0.0, norm_name: str = "BN", act_name: str = "relu", bias: bool = True, ): super().__init__() self.width = width if self.width > 0: self.conv = conv2d(w_in, self.width, 1) self.bn = norm2d(norm_name, self.width) self.act = activation(act_name) w_in = self.width self.avg_pool = gap2d() if dropout_prob > 0.0: self.dropout = M.Dropout(dropout_prob) self.fc = linear(w_in, w_out, bias=bias) def forward(self, x: mge.Tensor) -> mge.Tensor: if self.width > 0: x = self.conv(x) x = self.bn(x) x = self.act(x) x = self.avg_pool(x) x = F.flatten(x, 1) if getattr(self, "dropout", None) is not None: x = self.dropout(x) x = self.fc(x) return x class MBV3Head(M.Module): """MobileNet V3 head: Conv, BN, Act, AvgPool, SE, FC, Act, FC. Args: w_in: input width. w_out: output width, normally the number of classes. width: width for first conv in head. w_h: width for first linear in head. dropout_prob: dropout probability. Default: ``0.0`` se_r: Squeeze-and-Excitation (SE) ratio. Default: ``0.0`` norm_name: normalization function. Default: ``"BN"`` act_name: activation function. Default: ``"hswish"`` bias: whether fc has bias. Default: ``True`` """ def __init__( self, w_in: int, w_out: int = 1000, width: int = 960, w_h: int = 1280, dropout_prob: float = 0.0, se_r: float = 0.0, norm_name: str = "BN", act_name: str = "hswish", bias: bool = True, ): super().__init__() self.conv = conv2d(w_in, width, 1) self.bn = norm2d(norm_name, width) self.act = activation(act_name) self.avg_pool = gap2d() if se_r > 0.0: self.se = SE(width, int(se_r * width), act_name) self.h_fc = linear(width, w_h, bias=bias) self.h_act = activation(act_name) if dropout_prob > 0.0: self.dropout = M.Dropout(dropout_prob) self.fc = linear(w_h, w_out, bias=bias) def forward(self, x: mge.Tensor) -> mge.Tensor: x = self.conv(x) x = self.bn(x) x = self.act(x) x = self.avg_pool(x) if getattr(self, "se", None) is not None: x = self.se(x) x = F.flatten(x, 1) x = self.h_fc(x) x = self.h_act(x) if getattr(self, "dropout", None) is not None: x = self.dropout(x) x = self.fc(x) return x class VGGHead(M.Module): """VGG head: AvgPool, [FC, Act, Dropout] x2, FC. Args: w_in: input width. w_out: output width, normally the number of classes. Default: ``1000`` width: width for linear in head. Default: ``4096`` dropout_prob: dropout probability. Default: ``0.5`` act_name: activation function. Default: ``"relu"`` """ def __init__( self, w_in: int, w_out: int = 1000, width: int = 4096, dropout_prob: float = 0.5, act_name: str = "relu", **kwargs, ): super().__init__() self.avg_pool = gap2d(7) self.classifier = M.Sequential( linear(w_in * 7 * 7, width, bias=True), activation(act_name), M.Dropout(dropout_prob), linear(width, width, bias=True), activation(act_name), M.Dropout(dropout_prob), linear(width, w_out, bias=True), ) def forward(self, x: mge.Tensor) -> mge.Tensor: x = self.avg_pool(x) x = F.flatten(x, 1) x = self.classifier(x) return x
[ "megengine.module.Dropout", "megengine.functional.flatten" ]
[((1112, 1136), 'copy.deepcopy', 'copy.deepcopy', (['head_args'], {}), '(head_args)\n', (1125, 1136), False, 'import copy\n'), ((3120, 3135), 'megengine.functional.flatten', 'F.flatten', (['x', '(1)'], {}), '(x, 1)\n', (3129, 3135), True, 'import megengine.functional as F\n'), ((4881, 4896), 'megengine.functional.flatten', 'F.flatten', (['x', '(1)'], {}), '(x, 1)\n', (4890, 4896), True, 'import megengine.functional as F\n'), ((6144, 6159), 'megengine.functional.flatten', 'F.flatten', (['x', '(1)'], {}), '(x, 1)\n', (6153, 6159), True, 'import megengine.functional as F\n'), ((2842, 2865), 'megengine.module.Dropout', 'M.Dropout', (['dropout_prob'], {}), '(dropout_prob)\n', (2851, 2865), True, 'import megengine.module as M\n'), ((4566, 4589), 'megengine.module.Dropout', 'M.Dropout', (['dropout_prob'], {}), '(dropout_prob)\n', (4575, 4589), True, 'import megengine.module as M\n'), ((5854, 5877), 'megengine.module.Dropout', 'M.Dropout', (['dropout_prob'], {}), '(dropout_prob)\n', (5863, 5877), True, 'import megengine.module as M\n'), ((5970, 5993), 'megengine.module.Dropout', 'M.Dropout', (['dropout_prob'], {}), '(dropout_prob)\n', (5979, 5993), True, 'import megengine.module as M\n')]
""" Elapsed time measurement utilities. """ import time from sfepy.base.base import Struct class Timer(Struct): def __init__(self, name='timer', start=False): Struct.__init__(self, name=name) self.time_function = time.perf_counter self.reset() if start: self.start() def reset(self): self.t0 = self.t1 = None self.total = self.dt = 0.0 def start(self, reset=False): if reset: self.reset() self.t1 = None self.t0 = self.time_function() def stop(self): self.t1 = self.time_function() if self.t0 is None: raise ValueError('timer "%s" was not started!' % self.name) self.dt = self.t1 - self.t0 self.total += self.dt return self.dt
[ "sfepy.base.base.Struct.__init__" ]
[((174, 206), 'sfepy.base.base.Struct.__init__', 'Struct.__init__', (['self'], {'name': 'name'}), '(self, name=name)\n', (189, 206), False, 'from sfepy.base.base import Struct\n')]
from typing import Optional from sqlmodel import Field, Session, SQLModel, create_engine def test_query(clear_sqlmodel): class Hero(SQLModel, table=True): id: Optional[int] = Field(default=None, primary_key=True) name: str secret_name: str age: Optional[int] = None hero_1 = Hero(name="Deadpond", secret_name="<NAME>") engine = create_engine("sqlite://") SQLModel.metadata.create_all(engine) with Session(engine) as session: session.add(hero_1) session.commit() session.refresh(hero_1) with Session(engine) as session: query_hero = session.query(Hero).first() assert query_hero assert query_hero.name == hero_1.name
[ "sqlmodel.SQLModel.metadata.create_all", "sqlmodel.Field", "sqlmodel.create_engine", "sqlmodel.Session" ]
[((377, 403), 'sqlmodel.create_engine', 'create_engine', (['"""sqlite://"""'], {}), "('sqlite://')\n", (390, 403), False, 'from sqlmodel import Field, Session, SQLModel, create_engine\n'), ((409, 445), 'sqlmodel.SQLModel.metadata.create_all', 'SQLModel.metadata.create_all', (['engine'], {}), '(engine)\n', (437, 445), False, 'from sqlmodel import Field, Session, SQLModel, create_engine\n'), ((190, 227), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'primary_key': '(True)'}), '(default=None, primary_key=True)\n', (195, 227), False, 'from sqlmodel import Field, Session, SQLModel, create_engine\n'), ((455, 470), 'sqlmodel.Session', 'Session', (['engine'], {}), '(engine)\n', (462, 470), False, 'from sqlmodel import Field, Session, SQLModel, create_engine\n'), ((578, 593), 'sqlmodel.Session', 'Session', (['engine'], {}), '(engine)\n', (585, 593), False, 'from sqlmodel import Field, Session, SQLModel, create_engine\n')]
from __future__ import annotations from fastapi import Depends from fastapi.security import OAuth2PasswordBearer from sqlmodel import Session, select from src.database import engine from src.models import User from src.services.auth import decode_jwt from .http_exceptions import credentials_exception def get_db(): with Session(engine) as session: yield session oauth2_scheme = OAuth2PasswordBearer(tokenUrl="/auth/sign-in") def get_current_user( db: Session = Depends(get_db), token: str = Depends(oauth2_scheme) ): token_data = decode_jwt(token) if token_data is None or token_data.email is None: raise credentials_exception stmt = select(User).where(User.email == token_data.email) user = db.exec(stmt).first() if user is None: raise credentials_exception return user
[ "sqlmodel.Session", "sqlmodel.select" ]
[((398, 444), 'fastapi.security.OAuth2PasswordBearer', 'OAuth2PasswordBearer', ([], {'tokenUrl': '"""/auth/sign-in"""'}), "(tokenUrl='/auth/sign-in')\n", (418, 444), False, 'from fastapi.security import OAuth2PasswordBearer\n'), ((487, 502), 'fastapi.Depends', 'Depends', (['get_db'], {}), '(get_db)\n', (494, 502), False, 'from fastapi import Depends\n'), ((517, 539), 'fastapi.Depends', 'Depends', (['oauth2_scheme'], {}), '(oauth2_scheme)\n', (524, 539), False, 'from fastapi import Depends\n'), ((560, 577), 'src.services.auth.decode_jwt', 'decode_jwt', (['token'], {}), '(token)\n', (570, 577), False, 'from src.services.auth import decode_jwt\n'), ((330, 345), 'sqlmodel.Session', 'Session', (['engine'], {}), '(engine)\n', (337, 345), False, 'from sqlmodel import Session, select\n'), ((681, 693), 'sqlmodel.select', 'select', (['User'], {}), '(User)\n', (687, 693), False, 'from sqlmodel import Session, select\n')]
"""initial-db-tables Revision ID: d925cb39480e Revises: Create Date: 2022-05-05 11:45:18.781171 """ from alembic import op import sqlalchemy as sa import sqlmodel from sqlalchemy.dialects import postgresql # revision identifiers, used by Alembic. revision = "d925cb39480e" down_revision = None branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.create_table( "contact", sa.Column( "contact_id", postgresql.UUID(as_uuid=True), server_default=sa.text("gen_random_uuid()"), nullable=False, ), sa.Column("tags", postgresql.ARRAY(sa.String()), nullable=True), sa.Column( "created_at", postgresql.TIMESTAMP(), server_default=sa.text("now()"), nullable=False, ), sa.Column( "updated_at", postgresql.TIMESTAMP(), server_default=sa.text("now()"), nullable=False, ), sa.Column("author_status", sqlmodel.sql.sqltypes.AutoString(), nullable=False), sa.Column("endorse_status", sqlmodel.sql.sqltypes.AutoString(), nullable=False), sa.Column("connection_id", sqlmodel.sql.sqltypes.GUID(), nullable=False), sa.Column("connection_protocol", sqlmodel.sql.sqltypes.AutoString(), nullable=False), sa.Column( "connection_alias", sqlmodel.sql.sqltypes.AutoString(), nullable=True ), sa.Column("public_did", sqlmodel.sql.sqltypes.AutoString(), nullable=True), sa.Column("state", sqlmodel.sql.sqltypes.AutoString(), nullable=False), sa.PrimaryKeyConstraint("contact_id"), ) op.create_table( "endorserequest", sa.Column( "endorse_request_id", postgresql.UUID(as_uuid=True), server_default=sa.text("gen_random_uuid()"), nullable=False, ), sa.Column("tags", postgresql.ARRAY(sa.String()), nullable=True), sa.Column( "created_at", postgresql.TIMESTAMP(), server_default=sa.text("now()"), nullable=False, ), sa.Column( "updated_at", postgresql.TIMESTAMP(), server_default=sa.text("now()"), nullable=False, ), sa.Column("transaction_id", sqlmodel.sql.sqltypes.GUID(), nullable=False), sa.Column("connection_id", sqlmodel.sql.sqltypes.GUID(), nullable=False), sa.Column("endorser_did", sqlmodel.sql.sqltypes.AutoString(), nullable=False), sa.Column("author_did", sqlmodel.sql.sqltypes.AutoString(), nullable=False), sa.Column( "transaction_type", sqlmodel.sql.sqltypes.AutoString(), nullable=False ), sa.Column("state", sqlmodel.sql.sqltypes.AutoString(), nullable=False), sa.Column("ledger_txn", sqlmodel.sql.sqltypes.AutoString(), nullable=True), sa.PrimaryKeyConstraint("endorse_request_id"), ) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_table("endorserequest") op.drop_table("contact") # ### end Alembic commands ###
[ "sqlmodel.sql.sqltypes.GUID", "sqlmodel.sql.sqltypes.AutoString" ]
[((3169, 3200), 'alembic.op.drop_table', 'op.drop_table', (['"""endorserequest"""'], {}), "('endorserequest')\n", (3182, 3200), False, 'from alembic import op\n'), ((3205, 3229), 'alembic.op.drop_table', 'op.drop_table', (['"""contact"""'], {}), "('contact')\n", (3218, 3229), False, 'from alembic import op\n'), ((1683, 1720), 'sqlalchemy.PrimaryKeyConstraint', 'sa.PrimaryKeyConstraint', (['"""contact_id"""'], {}), "('contact_id')\n", (1706, 1720), True, 'import sqlalchemy as sa\n'), ((2992, 3037), 'sqlalchemy.PrimaryKeyConstraint', 'sa.PrimaryKeyConstraint', (['"""endorse_request_id"""'], {}), "('endorse_request_id')\n", (3015, 3037), True, 'import sqlalchemy as sa\n'), ((516, 545), 'sqlalchemy.dialects.postgresql.UUID', 'postgresql.UUID', ([], {'as_uuid': '(True)'}), '(as_uuid=True)\n', (531, 545), False, 'from sqlalchemy.dialects import postgresql\n'), ((773, 795), 'sqlalchemy.dialects.postgresql.TIMESTAMP', 'postgresql.TIMESTAMP', ([], {}), '()\n', (793, 795), False, 'from sqlalchemy.dialects import postgresql\n'), ((938, 960), 'sqlalchemy.dialects.postgresql.TIMESTAMP', 'postgresql.TIMESTAMP', ([], {}), '()\n', (958, 960), False, 'from sqlalchemy.dialects import postgresql\n'), ((1081, 1115), 'sqlmodel.sql.sqltypes.AutoString', 'sqlmodel.sql.sqltypes.AutoString', ([], {}), '()\n', (1113, 1115), False, 'import sqlmodel\n'), ((1170, 1204), 'sqlmodel.sql.sqltypes.AutoString', 'sqlmodel.sql.sqltypes.AutoString', ([], {}), '()\n', (1202, 1204), False, 'import sqlmodel\n'), ((1258, 1286), 'sqlmodel.sql.sqltypes.GUID', 'sqlmodel.sql.sqltypes.GUID', ([], {}), '()\n', (1284, 1286), False, 'import sqlmodel\n'), ((1346, 1380), 'sqlmodel.sql.sqltypes.AutoString', 'sqlmodel.sql.sqltypes.AutoString', ([], {}), '()\n', (1378, 1380), False, 'import sqlmodel\n'), ((1450, 1484), 'sqlmodel.sql.sqltypes.AutoString', 'sqlmodel.sql.sqltypes.AutoString', ([], {}), '()\n', (1482, 1484), False, 'import sqlmodel\n'), ((1543, 1577), 'sqlmodel.sql.sqltypes.AutoString', 'sqlmodel.sql.sqltypes.AutoString', ([], {}), '()\n', (1575, 1577), False, 'import sqlmodel\n'), ((1622, 1656), 'sqlmodel.sql.sqltypes.AutoString', 'sqlmodel.sql.sqltypes.AutoString', ([], {}), '()\n', (1654, 1656), False, 'import sqlmodel\n'), ((1840, 1869), 'sqlalchemy.dialects.postgresql.UUID', 'postgresql.UUID', ([], {'as_uuid': '(True)'}), '(as_uuid=True)\n', (1855, 1869), False, 'from sqlalchemy.dialects import postgresql\n'), ((2097, 2119), 'sqlalchemy.dialects.postgresql.TIMESTAMP', 'postgresql.TIMESTAMP', ([], {}), '()\n', (2117, 2119), False, 'from sqlalchemy.dialects import postgresql\n'), ((2262, 2284), 'sqlalchemy.dialects.postgresql.TIMESTAMP', 'postgresql.TIMESTAMP', ([], {}), '()\n', (2282, 2284), False, 'from sqlalchemy.dialects import postgresql\n'), ((2406, 2434), 'sqlmodel.sql.sqltypes.GUID', 'sqlmodel.sql.sqltypes.GUID', ([], {}), '()\n', (2432, 2434), False, 'import sqlmodel\n'), ((2488, 2516), 'sqlmodel.sql.sqltypes.GUID', 'sqlmodel.sql.sqltypes.GUID', ([], {}), '()\n', (2514, 2516), False, 'import sqlmodel\n'), ((2569, 2603), 'sqlmodel.sql.sqltypes.AutoString', 'sqlmodel.sql.sqltypes.AutoString', ([], {}), '()\n', (2601, 2603), False, 'import sqlmodel\n'), ((2654, 2688), 'sqlmodel.sql.sqltypes.AutoString', 'sqlmodel.sql.sqltypes.AutoString', ([], {}), '()\n', (2686, 2688), False, 'import sqlmodel\n'), ((2758, 2792), 'sqlmodel.sql.sqltypes.AutoString', 'sqlmodel.sql.sqltypes.AutoString', ([], {}), '()\n', (2790, 2792), False, 'import sqlmodel\n'), ((2847, 2881), 'sqlmodel.sql.sqltypes.AutoString', 'sqlmodel.sql.sqltypes.AutoString', ([], {}), '()\n', (2879, 2881), False, 'import sqlmodel\n'), ((2932, 2966), 'sqlmodel.sql.sqltypes.AutoString', 'sqlmodel.sql.sqltypes.AutoString', ([], {}), '()\n', (2964, 2966), False, 'import sqlmodel\n'), ((574, 602), 'sqlalchemy.text', 'sa.text', (['"""gen_random_uuid()"""'], {}), "('gen_random_uuid()')\n", (581, 602), True, 'import sqlalchemy as sa\n'), ((686, 697), 'sqlalchemy.String', 'sa.String', ([], {}), '()\n', (695, 697), True, 'import sqlalchemy as sa\n'), ((824, 840), 'sqlalchemy.text', 'sa.text', (['"""now()"""'], {}), "('now()')\n", (831, 840), True, 'import sqlalchemy as sa\n'), ((989, 1005), 'sqlalchemy.text', 'sa.text', (['"""now()"""'], {}), "('now()')\n", (996, 1005), True, 'import sqlalchemy as sa\n'), ((1898, 1926), 'sqlalchemy.text', 'sa.text', (['"""gen_random_uuid()"""'], {}), "('gen_random_uuid()')\n", (1905, 1926), True, 'import sqlalchemy as sa\n'), ((2010, 2021), 'sqlalchemy.String', 'sa.String', ([], {}), '()\n', (2019, 2021), True, 'import sqlalchemy as sa\n'), ((2148, 2164), 'sqlalchemy.text', 'sa.text', (['"""now()"""'], {}), "('now()')\n", (2155, 2164), True, 'import sqlalchemy as sa\n'), ((2313, 2329), 'sqlalchemy.text', 'sa.text', (['"""now()"""'], {}), "('now()')\n", (2320, 2329), True, 'import sqlalchemy as sa\n')]
from datetime import date from typing import List, Optional from api.ecoindex.models.responses import ApiEcoindex from api.models.enums import Version from sqlalchemy.ext.asyncio.session import AsyncSession from sqlmodel import select from db.helper import date_filter async def get_host_list_db( session: AsyncSession, version: Optional[Version] = Version.v1, q: Optional[str] = None, date_from: Optional[date] = None, date_to: Optional[date] = None, page: Optional[int] = 1, size: Optional[int] = 50, ) -> List[str]: statement = ( select(ApiEcoindex.host) .where(ApiEcoindex.version == version.get_version_number()) .offset(size * (page - 1)) .limit(size) ) if q: statement = statement.filter(ApiEcoindex.host.like(f"%{q}%")) statement = date_filter(statement=statement, date_from=date_from, date_to=date_to) statement = statement.group_by(ApiEcoindex.host).order_by(ApiEcoindex.host) hosts = await session.execute(statement) return hosts.scalars().all() async def get_count_hosts_db( session: AsyncSession, version: Optional[Version] = Version.v1, q: Optional[str] = None, date_from: Optional[date] = None, date_to: Optional[date] = None, ) -> int: sub_statement = ( f"SELECT host FROM apiecoindex WHERE version = {version.get_version_number()}" ) if q: sub_statement += f" AND host LIKE '%{q}%'" if date_from: sub_statement += f" AND date >= '{date_from}'" if date_to: sub_statement += f" AND date <= '{date_to}'" sub_statement += " GROUP BY host" statement = f"SELECT count(*) FROM ({sub_statement}) t" result = await session.execute(statement=statement) return result.scalar()
[ "sqlmodel.select" ]
[((830, 900), 'db.helper.date_filter', 'date_filter', ([], {'statement': 'statement', 'date_from': 'date_from', 'date_to': 'date_to'}), '(statement=statement, date_from=date_from, date_to=date_to)\n', (841, 900), False, 'from db.helper import date_filter\n'), ((780, 811), 'api.ecoindex.models.responses.ApiEcoindex.host.like', 'ApiEcoindex.host.like', (['f"""%{q}%"""'], {}), "(f'%{q}%')\n", (801, 811), False, 'from api.ecoindex.models.responses import ApiEcoindex\n'), ((577, 601), 'sqlmodel.select', 'select', (['ApiEcoindex.host'], {}), '(ApiEcoindex.host)\n', (583, 601), False, 'from sqlmodel import select\n')]
"""Initial Migration3 Revision ID: 849d12c13c8a Revises: Create Date: 2021-12-19 17:06:36.345137 """ import sqlalchemy as sa import sqlmodel from alembic import op # revision identifiers, used by Alembic. revision = '849d12<PASSWORD>' down_revision = None branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.create_table( 'user', sa.Column('id', sa.Integer(), nullable=True), sa.Column('username', sqlmodel.sql.sqltypes.AutoString(), nullable=False), sa.Column('email', sqlmodel.sql.sqltypes.AutoString(), nullable=False), sa.Column('password_hashed', sqlmodel.sql.sqltypes.AutoString(), nullable=False), sa.Column('is_admin', sa.Boolean(), nullable=False), sa.Column('is_disabled', sa.Boolean(), nullable=False), sa.Column('is_verified', sa.Boolean(), nullable=False), sa.PrimaryKeyConstraint('id', 'username', 'email') ) op.create_index(op.f('ix_user_email'), 'user', ['email'], unique=False) op.create_index(op.f('ix_user_id'), 'user', ['id'], unique=False) op.create_index(op.f('ix_user_is_admin'), 'user', ['is_admin'], unique=False) op.create_index(op.f('ix_user_is_disabled'), 'user', ['is_disabled'], unique=False) op.create_index(op.f('ix_user_is_verified'), 'user', ['is_verified'], unique=False) op.create_index(op.f('ix_user_password_hashed'), 'user', ['password_hashed'], unique=False) op.create_index(op.f('ix_user_username'), 'user', ['username'], unique=False) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_index(op.f('ix_user_username'), table_name='user') op.drop_index(op.f('ix_user_password_hashed'), table_name='user') op.drop_index(op.f('ix_user_is_verified'), table_name='user') op.drop_index(op.f('ix_user_is_disabled'), table_name='user') op.drop_index(op.f('ix_user_is_admin'), table_name='user') op.drop_index(op.f('ix_user_id'), table_name='user') op.drop_index(op.f('ix_user_email'), table_name='user') op.drop_table('user') # ### end Alembic commands ###
[ "sqlmodel.sql.sqltypes.AutoString" ]
[((2106, 2127), 'alembic.op.drop_table', 'op.drop_table', (['"""user"""'], {}), "('user')\n", (2119, 2127), False, 'from alembic import op\n'), ((898, 948), 'sqlalchemy.PrimaryKeyConstraint', 'sa.PrimaryKeyConstraint', (['"""id"""', '"""username"""', '"""email"""'], {}), "('id', 'username', 'email')\n", (921, 948), True, 'import sqlalchemy as sa\n'), ((975, 996), 'alembic.op.f', 'op.f', (['"""ix_user_email"""'], {}), "('ix_user_email')\n", (979, 996), False, 'from alembic import op\n'), ((1051, 1069), 'alembic.op.f', 'op.f', (['"""ix_user_id"""'], {}), "('ix_user_id')\n", (1055, 1069), False, 'from alembic import op\n'), ((1121, 1145), 'alembic.op.f', 'op.f', (['"""ix_user_is_admin"""'], {}), "('ix_user_is_admin')\n", (1125, 1145), False, 'from alembic import op\n'), ((1203, 1230), 'alembic.op.f', 'op.f', (['"""ix_user_is_disabled"""'], {}), "('ix_user_is_disabled')\n", (1207, 1230), False, 'from alembic import op\n'), ((1291, 1318), 'alembic.op.f', 'op.f', (['"""ix_user_is_verified"""'], {}), "('ix_user_is_verified')\n", (1295, 1318), False, 'from alembic import op\n'), ((1379, 1410), 'alembic.op.f', 'op.f', (['"""ix_user_password_hashed"""'], {}), "('ix_user_password_hashed')\n", (1383, 1410), False, 'from alembic import op\n'), ((1475, 1499), 'alembic.op.f', 'op.f', (['"""ix_user_username"""'], {}), "('ix_user_username')\n", (1479, 1499), False, 'from alembic import op\n'), ((1675, 1699), 'alembic.op.f', 'op.f', (['"""ix_user_username"""'], {}), "('ix_user_username')\n", (1679, 1699), False, 'from alembic import op\n'), ((1738, 1769), 'alembic.op.f', 'op.f', (['"""ix_user_password_hashed"""'], {}), "('ix_user_password_hashed')\n", (1742, 1769), False, 'from alembic import op\n'), ((1808, 1835), 'alembic.op.f', 'op.f', (['"""ix_user_is_verified"""'], {}), "('ix_user_is_verified')\n", (1812, 1835), False, 'from alembic import op\n'), ((1874, 1901), 'alembic.op.f', 'op.f', (['"""ix_user_is_disabled"""'], {}), "('ix_user_is_disabled')\n", (1878, 1901), False, 'from alembic import op\n'), ((1940, 1964), 'alembic.op.f', 'op.f', (['"""ix_user_is_admin"""'], {}), "('ix_user_is_admin')\n", (1944, 1964), False, 'from alembic import op\n'), ((2003, 2021), 'alembic.op.f', 'op.f', (['"""ix_user_id"""'], {}), "('ix_user_id')\n", (2007, 2021), False, 'from alembic import op\n'), ((2060, 2081), 'alembic.op.f', 'op.f', (['"""ix_user_email"""'], {}), "('ix_user_email')\n", (2064, 2081), False, 'from alembic import op\n'), ((434, 446), 'sqlalchemy.Integer', 'sa.Integer', ([], {}), '()\n', (444, 446), True, 'import sqlalchemy as sa\n'), ((494, 528), 'sqlmodel.sql.sqltypes.AutoString', 'sqlmodel.sql.sqltypes.AutoString', ([], {}), '()\n', (526, 528), False, 'import sqlmodel\n'), ((574, 608), 'sqlmodel.sql.sqltypes.AutoString', 'sqlmodel.sql.sqltypes.AutoString', ([], {}), '()\n', (606, 608), False, 'import sqlmodel\n'), ((664, 698), 'sqlmodel.sql.sqltypes.AutoString', 'sqlmodel.sql.sqltypes.AutoString', ([], {}), '()\n', (696, 698), False, 'import sqlmodel\n'), ((747, 759), 'sqlalchemy.Boolean', 'sa.Boolean', ([], {}), '()\n', (757, 759), True, 'import sqlalchemy as sa\n'), ((803, 815), 'sqlalchemy.Boolean', 'sa.Boolean', ([], {}), '()\n', (813, 815), True, 'import sqlalchemy as sa\n'), ((867, 879), 'sqlalchemy.Boolean', 'sa.Boolean', ([], {}), '()\n', (877, 879), True, 'import sqlalchemy as sa\n')]
r""" Diametrically point loaded 2-D disk. See :ref:`sec-primer`. Find :math:`\ul{u}` such that: .. math:: \int_{\Omega} D_{ijkl}\ e_{ij}(\ul{v}) e_{kl}(\ul{u}) = 0 \;, \quad \forall \ul{v} \;, where .. math:: D_{ijkl} = \mu (\delta_{ik} \delta_{jl}+\delta_{il} \delta_{jk}) + \lambda \ \delta_{ij} \delta_{kl} \;. """ from __future__ import absolute_import from sfepy.mechanics.matcoefs import stiffness_from_youngpoisson from sfepy.discrete.fem.utils import refine_mesh from sfepy import data_dir # Fix the mesh file name if you run this file outside the SfePy directory. filename_mesh = data_dir + '/meshes/2d/its2D.mesh' refinement_level = 0 filename_mesh = refine_mesh(filename_mesh, refinement_level) output_dir = '.' # set this to a valid directory you have write access to young = 2000.0 # Young's modulus [MPa] poisson = 0.4 # Poisson's ratio options = { 'output_dir' : output_dir, } regions = { 'Omega' : 'all', 'Left' : ('vertices in (x < 0.001)', 'facet'), 'Bottom' : ('vertices in (y < 0.001)', 'facet'), 'Top' : ('vertex 2', 'vertex'), } materials = { 'Asphalt' : ({'D': stiffness_from_youngpoisson(2, young, poisson)},), 'Load' : ({'.val' : [0.0, -1000.0]},), } fields = { 'displacement': ('real', 'vector', 'Omega', 1), } equations = { 'balance_of_forces' : """dw_lin_elastic.2.Omega(Asphalt.D, v, u) = dw_point_load.0.Top(Load.val, v)""", } variables = { 'u' : ('unknown field', 'displacement', 0), 'v' : ('test field', 'displacement', 'u'), } ebcs = { 'XSym' : ('Bottom', {'u.1' : 0.0}), 'YSym' : ('Left', {'u.0' : 0.0}), } solvers = { 'ls' : ('ls.scipy_direct', {}), 'newton' : ('nls.newton', { 'i_max' : 1, 'eps_a' : 1e-6, }), }
[ "sfepy.discrete.fem.utils.refine_mesh", "sfepy.mechanics.matcoefs.stiffness_from_youngpoisson" ]
[((691, 735), 'sfepy.discrete.fem.utils.refine_mesh', 'refine_mesh', (['filename_mesh', 'refinement_level'], {}), '(filename_mesh, refinement_level)\n', (702, 735), False, 'from sfepy.discrete.fem.utils import refine_mesh\n'), ((1144, 1190), 'sfepy.mechanics.matcoefs.stiffness_from_youngpoisson', 'stiffness_from_youngpoisson', (['(2)', 'young', 'poisson'], {}), '(2, young, poisson)\n', (1171, 1190), False, 'from sfepy.mechanics.matcoefs import stiffness_from_youngpoisson\n')]
import logging import os import secrets import aioredis import boto3 import pytest import redis as pyredis from fastapi.testclient import TestClient from sqlalchemy import text from sqlalchemy_utils import create_database, database_exists, drop_database from sqlmodel import Session, create_engine from iris.agent.settings import AgentSettings from iris.api.authentication import ( current_active_user, current_superuser, current_verified_user, ) from iris.api.main import app from iris.api.settings import APISettings from iris.commons.clickhouse import ClickHouse from iris.commons.dependencies import get_settings from iris.commons.models.base import Base from iris.commons.redis import Redis from iris.commons.settings import CommonSettings from iris.commons.storage import Storage from iris.commons.utils import json_serializer from iris.worker import WorkerSettings pytest.register_assert_rewrite("tests.assertions") pytest_plugins = ["tests.fixtures.models", "tests.fixtures.storage"] def should_cleanup(): return os.environ.get("IRIS_TEST_CLEANUP", "") != "0" @pytest.fixture def logger(): return logging.getLogger(__name__) @pytest.fixture def settings(): namespace = secrets.token_hex(nbytes=4) print(f"@{namespace}", end=" ") # Redis has 16 databases by default, we use the last one for testing. return CommonSettings( CLICKHOUSE_PUBLIC_USER="public", CLICKHOUSE_DATABASE="iris_test", DATABASE_URL=f"postgresql://iris:[email protected]/iris-test-{namespace}", S3_PREFIX=f"iris-test-{namespace}", S3_PUBLIC_RESOURCES=["arn:aws:s3:::test-public-exports/*"], REDIS_NAMESPACE=f"iris-test-{namespace}", REDIS_URL="redis://default:[email protected]?db=15", RETRY_TIMEOUT=-1, ) @pytest.fixture def api_settings(settings): return APISettings( API_CORS_ALLOW_ORIGIN="https://example.org,http://localhost:8000", **settings.dict(), ) @pytest.fixture def agent_settings(settings, tmp_path): return AgentSettings( **settings.dict(), AGENT_CARACAL_SNIFFER_WAIT_TIME=1, AGENT_MIN_TTL=0, AGENT_RESULTS_DIR_PATH=tmp_path / "agent_results", AGENT_TARGETS_DIR_PATH=tmp_path / "agent_targets", ) @pytest.fixture def worker_settings(settings, tmp_path): return WorkerSettings( **settings.dict(), WORKER_RESULTS_DIR_PATH=tmp_path / "worker_results", WORKER_MAX_OPEN_FILES=128, ) @pytest.fixture def clickhouse(settings, logger): return ClickHouse(settings, logger) @pytest.fixture def engine(settings): engine = create_engine(settings.DATABASE_URL, json_serializer=json_serializer) if not database_exists(engine.url): create_database(engine.url) Base.metadata.create_all(engine) return engine @pytest.fixture async def redis(settings, logger): client = aioredis.from_url(settings.REDIS_URL, decode_responses=True) yield Redis(client, settings, logger) await client.close() @pytest.fixture def session(engine): with Session(engine) as session: yield session @pytest.fixture def storage(settings, logger): return Storage(settings, logger) @pytest.fixture def make_client(engine, api_settings): def _make_client(user=None): if user and user.is_active: app.dependency_overrides[current_active_user] = lambda: user if user and user.is_active and user.is_verified: app.dependency_overrides[current_verified_user] = lambda: user if user and user.is_active and user.is_verified and user.is_superuser: app.dependency_overrides[current_superuser] = lambda: user app.dependency_overrides[get_settings] = lambda: api_settings return TestClient(app) yield _make_client app.dependency_overrides.clear() @pytest.fixture(autouse=True, scope="session") def cleanup_redis(): yield if should_cleanup(): redis_ = pyredis.from_url("redis://default:[email protected]?db=15") redis_.flushdb() redis_.close() @pytest.fixture(autouse=True, scope="session") def cleanup_database(): yield if should_cleanup(): # TODO: Cleanup/simplify this code. engine = create_engine("postgresql://iris:[email protected]") with engine.connect() as conn: databases = conn.execute( text( """ SELECT datname FROM pg_database WHERE datistemplate = false AND datname LIKE 'iris-test-%' """ ) ).all() for (database,) in databases: drop_database( f"postgresql://iris:[email protected]/{database}" ) @pytest.fixture(autouse=True, scope="session") def cleanup_s3(): yield if should_cleanup(): s3 = boto3.client( "s3", aws_access_key_id="minioadmin", aws_secret_access_key="minioadmin", endpoint_url="http://minio.docker.localhost", ) buckets = s3.list_buckets() buckets = [x["Name"] for x in buckets["Buckets"]] for bucket in buckets: if "test-" in bucket: objects = s3.list_objects_v2(Bucket=bucket) if objects["KeyCount"]: objects = [{"Key": x["Key"]} for x in objects.get("Contents", [])] s3.delete_objects(Bucket=bucket, Delete=dict(Objects=objects)) s3.delete_bucket(Bucket=bucket) # https://github.com/boto/botocore/pull/1810 s3._endpoint.http_session._manager.clear()
[ "sqlmodel.create_engine", "sqlmodel.Session" ]
[((887, 937), 'pytest.register_assert_rewrite', 'pytest.register_assert_rewrite', (['"""tests.assertions"""'], {}), "('tests.assertions')\n", (917, 937), False, 'import pytest\n'), ((3884, 3929), 'pytest.fixture', 'pytest.fixture', ([], {'autouse': '(True)', 'scope': '"""session"""'}), "(autouse=True, scope='session')\n", (3898, 3929), False, 'import pytest\n'), ((4124, 4169), 'pytest.fixture', 'pytest.fixture', ([], {'autouse': '(True)', 'scope': '"""session"""'}), "(autouse=True, scope='session')\n", (4138, 4169), False, 'import pytest\n'), ((4865, 4910), 'pytest.fixture', 'pytest.fixture', ([], {'autouse': '(True)', 'scope': '"""session"""'}), "(autouse=True, scope='session')\n", (4879, 4910), False, 'import pytest\n'), ((1132, 1159), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (1149, 1159), False, 'import logging\n'), ((1210, 1237), 'secrets.token_hex', 'secrets.token_hex', ([], {'nbytes': '(4)'}), '(nbytes=4)\n', (1227, 1237), False, 'import secrets\n'), ((1359, 1775), 'iris.commons.settings.CommonSettings', 'CommonSettings', ([], {'CLICKHOUSE_PUBLIC_USER': '"""public"""', 'CLICKHOUSE_DATABASE': '"""iris_test"""', 'DATABASE_URL': 'f"""postgresql://iris:[email protected]/iris-test-{namespace}"""', 'S3_PREFIX': 'f"""iris-test-{namespace}"""', 'S3_PUBLIC_RESOURCES': "['arn:aws:s3:::test-public-exports/*']", 'REDIS_NAMESPACE': 'f"""iris-test-{namespace}"""', 'REDIS_URL': '"""redis://default:[email protected]?db=15"""', 'RETRY_TIMEOUT': '(-1)'}), "(CLICKHOUSE_PUBLIC_USER='public', CLICKHOUSE_DATABASE=\n 'iris_test', DATABASE_URL=\n f'postgresql://iris:[email protected]/iris-test-{namespace}',\n S3_PREFIX=f'iris-test-{namespace}', S3_PUBLIC_RESOURCES=[\n 'arn:aws:s3:::test-public-exports/*'], REDIS_NAMESPACE=\n f'iris-test-{namespace}', REDIS_URL=\n 'redis://default:[email protected]?db=15', RETRY_TIMEOUT=-1)\n", (1373, 1775), False, 'from iris.commons.settings import CommonSettings\n'), ((2577, 2605), 'iris.commons.clickhouse.ClickHouse', 'ClickHouse', (['settings', 'logger'], {}), '(settings, logger)\n', (2587, 2605), False, 'from iris.commons.clickhouse import ClickHouse\n'), ((2659, 2728), 'sqlmodel.create_engine', 'create_engine', (['settings.DATABASE_URL'], {'json_serializer': 'json_serializer'}), '(settings.DATABASE_URL, json_serializer=json_serializer)\n', (2672, 2728), False, 'from sqlmodel import Session, create_engine\n'), ((2809, 2841), 'iris.commons.models.base.Base.metadata.create_all', 'Base.metadata.create_all', (['engine'], {}), '(engine)\n', (2833, 2841), False, 'from iris.commons.models.base import Base\n'), ((2926, 2986), 'aioredis.from_url', 'aioredis.from_url', (['settings.REDIS_URL'], {'decode_responses': '(True)'}), '(settings.REDIS_URL, decode_responses=True)\n', (2943, 2986), False, 'import aioredis\n'), ((3212, 3237), 'iris.commons.storage.Storage', 'Storage', (['settings', 'logger'], {}), '(settings, logger)\n', (3219, 3237), False, 'from iris.commons.storage import Storage\n'), ((3848, 3880), 'iris.api.main.app.dependency_overrides.clear', 'app.dependency_overrides.clear', ([], {}), '()\n', (3878, 3880), False, 'from iris.api.main import app\n'), ((1042, 1081), 'os.environ.get', 'os.environ.get', (['"""IRIS_TEST_CLEANUP"""', '""""""'], {}), "('IRIS_TEST_CLEANUP', '')\n", (1056, 1081), False, 'import os\n'), ((2740, 2767), 'sqlalchemy_utils.database_exists', 'database_exists', (['engine.url'], {}), '(engine.url)\n', (2755, 2767), False, 'from sqlalchemy_utils import create_database, database_exists, drop_database\n'), ((2777, 2804), 'sqlalchemy_utils.create_database', 'create_database', (['engine.url'], {}), '(engine.url)\n', (2792, 2804), False, 'from sqlalchemy_utils import create_database, database_exists, drop_database\n'), ((2997, 3028), 'iris.commons.redis.Redis', 'Redis', (['client', 'settings', 'logger'], {}), '(client, settings, logger)\n', (3002, 3028), False, 'from iris.commons.redis import Redis\n'), ((3102, 3117), 'sqlmodel.Session', 'Session', (['engine'], {}), '(engine)\n', (3109, 3117), False, 'from sqlmodel import Session, create_engine\n'), ((3804, 3819), 'fastapi.testclient.TestClient', 'TestClient', (['app'], {}), '(app)\n', (3814, 3819), False, 'from fastapi.testclient import TestClient\n'), ((4003, 4072), 'redis.from_url', 'pyredis.from_url', (['"""redis://default:[email protected]?db=15"""'], {}), "('redis://default:[email protected]?db=15')\n", (4019, 4072), True, 'import redis as pyredis\n'), ((4290, 4355), 'sqlmodel.create_engine', 'create_engine', (['"""postgresql://iris:[email protected]"""'], {}), "('postgresql://iris:[email protected]')\n", (4303, 4355), False, 'from sqlmodel import Session, create_engine\n'), ((4977, 5114), 'boto3.client', 'boto3.client', (['"""s3"""'], {'aws_access_key_id': '"""minioadmin"""', 'aws_secret_access_key': '"""minioadmin"""', 'endpoint_url': '"""http://minio.docker.localhost"""'}), "('s3', aws_access_key_id='minioadmin', aws_secret_access_key=\n 'minioadmin', endpoint_url='http://minio.docker.localhost')\n", (4989, 5114), False, 'import boto3\n'), ((4754, 4831), 'sqlalchemy_utils.drop_database', 'drop_database', (['f"""postgresql://iris:[email protected]/{database}"""'], {}), "(f'postgresql://iris:[email protected]/{database}')\n", (4767, 4831), False, 'from sqlalchemy_utils import create_database, database_exists, drop_database\n'), ((4449, 4655), 'sqlalchemy.text', 'text', (['"""\n SELECT datname\n FROM pg_database\n WHERE datistemplate = false AND datname LIKE \'iris-test-%\'\n """'], {}), '(\n """\n SELECT datname\n FROM pg_database\n WHERE datistemplate = false AND datname LIKE \'iris-test-%\'\n """\n )\n', (4453, 4655), False, 'from sqlalchemy import text\n')]
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import argparse import multiprocessing import time # pylint: disable=import-error import model as snet_model import megengine import megengine.data as data import megengine.data.transform as T import megengine.distributed as dist import megengine.functional as F logging = megengine.logger.get_logger() def main(): parser = argparse.ArgumentParser(description="MegEngine ImageNet Training") parser.add_argument("-d", "--data", metavar="DIR", help="path to imagenet dataset") parser.add_argument( "-a", "--arch", default="shufflenet_v2_x1_0", help="model architecture (default: shufflenet_v2_x1_0)", ) parser.add_argument( "-n", "--ngpus", default=None, type=int, help="number of GPUs per node (default: None, use all available GPUs)", ) parser.add_argument( "-m", "--model", metavar="PKL", default=None, help="path to model checkpoint" ) parser.add_argument("-j", "--workers", default=2, type=int) parser.add_argument( "-p", "--print-freq", default=20, type=int, metavar="N", help="print frequency (default: 10)", ) parser.add_argument("--dist-addr", default="localhost") parser.add_argument("--dist-port", default=23456, type=int) parser.add_argument("--world-size", default=1, type=int) parser.add_argument("--rank", default=0, type=int) args = parser.parse_args() # create server if is master if args.rank <= 0: server = dist.Server(port=args.dist_port) # pylint: disable=unused-variable # noqa: F841 # get device count with multiprocessing.Pool(1) as pool: ngpus_per_node, _ = pool.map(megengine.get_device_count, ["gpu", "cpu"]) if args.ngpus: ngpus_per_node = args.ngpus # launch processes procs = [] for local_rank in range(ngpus_per_node): p = multiprocessing.Process( target=worker, kwargs=dict( rank=args.rank * ngpus_per_node + local_rank, world_size=args.world_size * ngpus_per_node, ngpus_per_node=ngpus_per_node, args=args, ), ) p.start() procs.append(p) # join processes for p in procs: p.join() def worker(rank, world_size, ngpus_per_node, args): # init process group if world_size > 1: dist.init_process_group( master_ip=args.dist_addr, port=args.dist_port, world_size=world_size, rank=rank, device=rank % ngpus_per_node, backend="nccl", ) logging.info( "init process group rank %d / %d", dist.get_rank(), dist.get_world_size() ) # build dataset _, valid_dataloader = build_dataset(args) # build model model = snet_model.__dict__[args.arch](pretrained=args.model is None) if args.model is not None: logging.info("load from checkpoint %s", args.model) checkpoint = megengine.load(args.model) if "state_dict" in checkpoint: state_dict = checkpoint["state_dict"] model.load_state_dict(state_dict) def valid_step(image, label): logits = model(image) loss = F.nn.cross_entropy(logits, label) acc1, acc5 = F.topk_accuracy(logits, label, topk=(1, 5)) # calculate mean values if world_size > 1: loss = F.distributed.all_reduce_sum(loss) / world_size acc1 = F.distributed.all_reduce_sum(acc1) / world_size acc5 = F.distributed.all_reduce_sum(acc5) / world_size return loss, acc1, acc5 model.eval() _, valid_acc1, valid_acc5 = valid(valid_step, valid_dataloader, args) logging.info( "Test Acc@1 %.3f, Acc@5 %.3f", valid_acc1, valid_acc5, ) def valid(func, data_queue, args): objs = AverageMeter("Loss") top1 = AverageMeter("Acc@1") top5 = AverageMeter("Acc@5") clck = AverageMeter("Time") t = time.time() for step, (image, label) in enumerate(data_queue): image = megengine.tensor(image, dtype="float32") label = megengine.tensor(label, dtype="int32") n = image.shape[0] loss, acc1, acc5 = func(image, label) objs.update(loss.item(), n) top1.update(100 * acc1.item(), n) top5.update(100 * acc5.item(), n) clck.update(time.time() - t, n) t = time.time() if step % args.print_freq == 0 and dist.get_rank() == 0: logging.info("Test step %d, %s %s %s %s", step, objs, top1, top5, clck) return objs.avg, top1.avg, top5.avg def build_dataset(args): train_dataloader = None valid_dataset = data.dataset.ImageNet(args.data, train=False) valid_sampler = data.SequentialSampler( valid_dataset, batch_size=100, drop_last=False ) valid_dataloader = data.DataLoader( valid_dataset, sampler=valid_sampler, transform=T.Compose( [ T.Resize(256), T.CenterCrop(224), T.Normalize( mean=[103.530, 116.280, 123.675], std=[57.375, 57.120, 58.395] ), # BGR T.ToMode("CHW"), ] ), num_workers=args.workers, ) return train_dataloader, valid_dataloader class AverageMeter: """Computes and stores the average and current value""" def __init__(self, name, fmt=":.3f"): self.name = name self.fmt = fmt self.reset() def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count def __str__(self): fmtstr = "{name} {val" + self.fmt + "} ({avg" + self.fmt + "})" return fmtstr.format(**self.__dict__) if __name__ == "__main__": main()
[ "megengine.data.dataset.ImageNet", "megengine.logger.get_logger", "megengine.functional.nn.cross_entropy", "megengine.distributed.init_process_group", "megengine.functional.topk_accuracy", "megengine.data.SequentialSampler", "megengine.tensor", "megengine.distributed.Server", "megengine.functional.distributed.all_reduce_sum", "megengine.load", "megengine.data.transform.Normalize", "megengine.data.transform.CenterCrop", "megengine.distributed.get_rank", "megengine.data.transform.Resize", "megengine.distributed.get_world_size", "megengine.data.transform.ToMode" ]
[((653, 682), 'megengine.logger.get_logger', 'megengine.logger.get_logger', ([], {}), '()\n', (680, 682), False, 'import megengine\n'), ((710, 776), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""MegEngine ImageNet Training"""'}), "(description='MegEngine ImageNet Training')\n", (733, 776), False, 'import argparse\n'), ((4432, 4443), 'time.time', 'time.time', ([], {}), '()\n', (4441, 4443), False, 'import time\n'), ((5137, 5182), 'megengine.data.dataset.ImageNet', 'data.dataset.ImageNet', (['args.data'], {'train': '(False)'}), '(args.data, train=False)\n', (5158, 5182), True, 'import megengine.data as data\n'), ((5203, 5273), 'megengine.data.SequentialSampler', 'data.SequentialSampler', (['valid_dataset'], {'batch_size': '(100)', 'drop_last': '(False)'}), '(valid_dataset, batch_size=100, drop_last=False)\n', (5225, 5273), True, 'import megengine.data as data\n'), ((1918, 1950), 'megengine.distributed.Server', 'dist.Server', ([], {'port': 'args.dist_port'}), '(port=args.dist_port)\n', (1929, 1950), True, 'import megengine.distributed as dist\n'), ((2033, 2056), 'multiprocessing.Pool', 'multiprocessing.Pool', (['(1)'], {}), '(1)\n', (2053, 2056), False, 'import multiprocessing\n'), ((2808, 2967), 'megengine.distributed.init_process_group', 'dist.init_process_group', ([], {'master_ip': 'args.dist_addr', 'port': 'args.dist_port', 'world_size': 'world_size', 'rank': 'rank', 'device': '(rank % ngpus_per_node)', 'backend': '"""nccl"""'}), "(master_ip=args.dist_addr, port=args.dist_port,\n world_size=world_size, rank=rank, device=rank % ngpus_per_node, backend\n ='nccl')\n", (2831, 2967), True, 'import megengine.distributed as dist\n'), ((3432, 3458), 'megengine.load', 'megengine.load', (['args.model'], {}), '(args.model)\n', (3446, 3458), False, 'import megengine\n'), ((3670, 3703), 'megengine.functional.nn.cross_entropy', 'F.nn.cross_entropy', (['logits', 'label'], {}), '(logits, label)\n', (3688, 3703), True, 'import megengine.functional as F\n'), ((3725, 3768), 'megengine.functional.topk_accuracy', 'F.topk_accuracy', (['logits', 'label'], {'topk': '(1, 5)'}), '(logits, label, topk=(1, 5))\n', (3740, 3768), True, 'import megengine.functional as F\n'), ((4515, 4555), 'megengine.tensor', 'megengine.tensor', (['image'], {'dtype': '"""float32"""'}), "(image, dtype='float32')\n", (4531, 4555), False, 'import megengine\n'), ((4572, 4610), 'megengine.tensor', 'megengine.tensor', (['label'], {'dtype': '"""int32"""'}), "(label, dtype='int32')\n", (4588, 4610), False, 'import megengine\n'), ((4859, 4870), 'time.time', 'time.time', ([], {}), '()\n', (4868, 4870), False, 'import time\n'), ((3111, 3126), 'megengine.distributed.get_rank', 'dist.get_rank', ([], {}), '()\n', (3124, 3126), True, 'import megengine.distributed as dist\n'), ((3128, 3149), 'megengine.distributed.get_world_size', 'dist.get_world_size', ([], {}), '()\n', (3147, 3149), True, 'import megengine.distributed as dist\n'), ((3847, 3881), 'megengine.functional.distributed.all_reduce_sum', 'F.distributed.all_reduce_sum', (['loss'], {}), '(loss)\n', (3875, 3881), True, 'import megengine.functional as F\n'), ((3914, 3948), 'megengine.functional.distributed.all_reduce_sum', 'F.distributed.all_reduce_sum', (['acc1'], {}), '(acc1)\n', (3942, 3948), True, 'import megengine.functional as F\n'), ((3981, 4015), 'megengine.functional.distributed.all_reduce_sum', 'F.distributed.all_reduce_sum', (['acc5'], {}), '(acc5)\n', (4009, 4015), True, 'import megengine.functional as F\n'), ((4827, 4838), 'time.time', 'time.time', ([], {}), '()\n', (4836, 4838), False, 'import time\n'), ((4915, 4930), 'megengine.distributed.get_rank', 'dist.get_rank', ([], {}), '()\n', (4928, 4930), True, 'import megengine.distributed as dist\n'), ((5441, 5454), 'megengine.data.transform.Resize', 'T.Resize', (['(256)'], {}), '(256)\n', (5449, 5454), True, 'import megengine.data.transform as T\n'), ((5472, 5489), 'megengine.data.transform.CenterCrop', 'T.CenterCrop', (['(224)'], {}), '(224)\n', (5484, 5489), True, 'import megengine.data.transform as T\n'), ((5507, 5579), 'megengine.data.transform.Normalize', 'T.Normalize', ([], {'mean': '[103.53, 116.28, 123.675]', 'std': '[57.375, 57.12, 58.395]'}), '(mean=[103.53, 116.28, 123.675], std=[57.375, 57.12, 58.395])\n', (5518, 5579), True, 'import megengine.data.transform as T\n'), ((5645, 5660), 'megengine.data.transform.ToMode', 'T.ToMode', (['"""CHW"""'], {}), "('CHW')\n", (5653, 5660), True, 'import megengine.data.transform as T\n')]
from datetime import date from typing import List, Optional from uuid import UUID from api.ecoindex.models.responses import ApiEcoindex from api.helper import new_uuid from api.models.enums import Version from ecoindex_scraper.models import Result from sqlalchemy import func from sqlalchemy.ext.asyncio.session import AsyncSession from sqlalchemy.sql.expression import asc from sqlmodel import select from db.helper import date_filter async def save_ecoindex_result_db( session: AsyncSession, ecoindex_result: Result, version: Optional[Version] = Version.v1, ) -> ApiEcoindex: ranking = await get_rank_analysis_db( ecoindex=ecoindex_result, session=session, version=version ) total_results = await get_count_analysis_db(session=session, version=version) db_ecoindex = ApiEcoindex( id=new_uuid(), date=ecoindex_result.date, url=ecoindex_result.url, host=ecoindex_result.url.host, width=ecoindex_result.width, height=ecoindex_result.height, size=ecoindex_result.size, nodes=ecoindex_result.nodes, requests=ecoindex_result.requests, grade=ecoindex_result.grade, score=ecoindex_result.score, ges=ecoindex_result.ges, water=ecoindex_result.water, page_type=ecoindex_result.page_type, version=version.get_version_number(), initial_ranking=ranking if ranking else total_results + 1, initial_total_results=total_results + 1, ) session.add(db_ecoindex) await session.commit() await session.refresh(db_ecoindex) return db_ecoindex async def get_count_analysis_db( session: AsyncSession, version: Optional[Version] = Version.v1, host: Optional[str] = None, date_from: Optional[date] = None, date_to: Optional[date] = None, ) -> int: statement = f"SELECT count(*) FROM apiecoindex WHERE version = {version.get_version_number()}" if host: statement += f" AND host = '{host}'" if date_from: statement += f" AND date >= '{date_from}'" if date_to: statement += f" AND date <= '{date_to}'" result = await session.execute(statement=statement) return result.scalar() async def get_rank_analysis_db( ecoindex: Result, session: AsyncSession, version: Optional[Version] = Version.v1 ) -> Optional[int]: result = await session.execute( ( "SELECT ranking FROM (" "SELECT *, ROW_NUMBER() OVER (ORDER BY score DESC) ranking " "FROM apiecoindex " f"WHERE version={version.get_version_number()} " "ORDER BY score DESC) t " f"WHERE score <= {ecoindex.score} " "LIMIT 1;" ) ) return result.scalar() async def get_ecoindex_result_list_db( session: AsyncSession, version: Optional[Version] = Version.v1, host: Optional[str] = None, date_from: Optional[date] = None, date_to: Optional[date] = None, page: Optional[int] = 1, size: Optional[int] = 50, ) -> List[ApiEcoindex]: statement = ( select(ApiEcoindex) .where(ApiEcoindex.version == version.get_version_number()) .offset((page - 1) * size) .limit(size) ) if host: statement = statement.where(ApiEcoindex.host == host) statement = date_filter(statement=statement, date_from=date_from, date_to=date_to) ecoindexes = await session.execute(statement.order_by(asc("date"))) return ecoindexes.scalars().all() async def get_ecoindex_result_by_id_db( session: AsyncSession, id: UUID, version: Optional[Version] = Version.v1 ) -> ApiEcoindex: statement = ( select(ApiEcoindex) .where(ApiEcoindex.id == id) .where(ApiEcoindex.version == version.get_version_number()) ) ecoindex = await session.execute(statement) return ecoindex.scalar_one_or_none() async def get_count_daily_request_per_host(session: AsyncSession, host: str) -> int: statement = select(ApiEcoindex).where( func.date(ApiEcoindex.date) == date.today(), ApiEcoindex.host == host ) results = await session.execute(statement) return len(results.all())
[ "sqlmodel.select" ]
[((3331, 3401), 'db.helper.date_filter', 'date_filter', ([], {'statement': 'statement', 'date_from': 'date_from', 'date_to': 'date_to'}), '(statement=statement, date_from=date_from, date_to=date_to)\n', (3342, 3401), False, 'from db.helper import date_filter\n'), ((833, 843), 'api.helper.new_uuid', 'new_uuid', ([], {}), '()\n', (841, 843), False, 'from api.helper import new_uuid\n'), ((4001, 4020), 'sqlmodel.select', 'select', (['ApiEcoindex'], {}), '(ApiEcoindex)\n', (4007, 4020), False, 'from sqlmodel import select\n'), ((4036, 4063), 'sqlalchemy.func.date', 'func.date', (['ApiEcoindex.date'], {}), '(ApiEcoindex.date)\n', (4045, 4063), False, 'from sqlalchemy import func\n'), ((4067, 4079), 'datetime.date.today', 'date.today', ([], {}), '()\n', (4077, 4079), False, 'from datetime import date\n'), ((3461, 3472), 'sqlalchemy.sql.expression.asc', 'asc', (['"""date"""'], {}), "('date')\n", (3464, 3472), False, 'from sqlalchemy.sql.expression import asc\n'), ((3677, 3696), 'sqlmodel.select', 'select', (['ApiEcoindex'], {}), '(ApiEcoindex)\n', (3683, 3696), False, 'from sqlmodel import select\n'), ((3089, 3108), 'sqlmodel.select', 'select', (['ApiEcoindex'], {}), '(ApiEcoindex)\n', (3095, 3108), False, 'from sqlmodel import select\n')]
#!/usr/bin/env python3 from sqlalchemy.orm import sessionmaker from sqlmodel import create_engine from . import constants #postgres_url = f"postgresql://postgres:{constants.POSTGRES_PW}@localhost/billsim" if constants.POSTGRES_URL is None: postgres_url = f"postgresql://postgres:{constants.POSTGRES_PW}@localhost" else: postgres_url = constants.POSTGRES_URL engine = create_engine(postgres_url, echo=True) SessionLocal = sessionmaker(autocommit=False, autoflush=False, expire_on_commit=False, bind=engine)
[ "sqlmodel.create_engine" ]
[((379, 417), 'sqlmodel.create_engine', 'create_engine', (['postgres_url'], {'echo': '(True)'}), '(postgres_url, echo=True)\n', (392, 417), False, 'from sqlmodel import create_engine\n'), ((434, 522), 'sqlalchemy.orm.sessionmaker', 'sessionmaker', ([], {'autocommit': '(False)', 'autoflush': '(False)', 'expire_on_commit': '(False)', 'bind': 'engine'}), '(autocommit=False, autoflush=False, expire_on_commit=False,\n bind=engine)\n', (446, 522), False, 'from sqlalchemy.orm import sessionmaker\n')]
import logging import os import pickle import numpy as np import h5py from megengine.data import DataLoader from megengine.data.dataset import Dataset from megengine.data.sampler import RandomSampler, SequentialSampler import megengine.distributed as dist from dataset.transformations import fetch_transform from common import utils _logger = logging.getLogger(__name__) class ModelNetNpy(Dataset): def __init__(self, dataset_path: str, dataset_mode: str, subset: str = "train", categories=None, transform=None): self._logger = logging.getLogger(self.__class__.__name__) self._root = dataset_path self._subset = subset self._is_master = dist.get_rank() == 0 metadata_fpath = os.path.join(self._root, "modelnet_{}_{}.pickle".format(dataset_mode, subset)) utils.master_logger(self._logger, "Loading data from {} for {}".format(metadata_fpath, subset), self._is_master) if not os.path.exists(os.path.join(dataset_path)): assert FileNotFoundError("Not found dataset_path: {}".format(dataset_path)) with open(os.path.join(dataset_path, "shape_names.txt")) as fid: self._classes = [l.strip() for l in fid] self._category2idx = {e[1]: e[0] for e in enumerate(self._classes)} self._idx2category = self._classes if categories is not None: categories_idx = [self._category2idx[c] for c in categories] utils.master_logger(self._logger, "Categories used: {}.".format(categories_idx), self._is_master) self._classes = categories else: categories_idx = None utils.master_logger(self._logger, "Using all categories.", self._is_master) self._data = self._read_pickle_files(os.path.join(dataset_path, "modelnet_{}_{}.pickle".format(dataset_mode, subset)), categories_idx) self._transform = transform utils.master_logger(self._logger, "Loaded {} {} instances.".format(len(self._data), subset), self._is_master) @property def classes(self): return self._classes @staticmethod def _read_pickle_files(fnames, categories): all_data_dict = [] with open(fnames, "rb") as f: data = pickle.load(f) for category in categories: all_data_dict.extend(data[category]) return all_data_dict def to_category(self, i): return self._idx2category[i] def __getitem__(self, item): data_path = self._data[item] # load and process data points = np.load(data_path) idx = np.array(int(os.path.splitext(os.path.basename(data_path))[0].split("_")[1])) label = np.array(int(os.path.splitext(os.path.basename(data_path))[0].split("_")[3])) sample = {"points": points, "label": label, "idx": idx} if self._transform: sample = self._transform(sample) return sample def __len__(self): return len(self._data) def fetch_dataloader(params): utils.master_logger(_logger, "Dataset type: {}, transform type: {}".format(params.dataset_type, params.transform_type), dist.get_rank() == 0) train_transforms, test_transforms = fetch_transform(params) if params.dataset_type == "modelnet_os": dataset_path = "./dataset/data/modelnet_os" train_categories = [line.rstrip("\n") for line in open("./dataset/data/modelnet40_half1_rm_rotate.txt")] val_categories = [line.rstrip("\n") for line in open("./dataset/data/modelnet40_half1_rm_rotate.txt")] test_categories = [line.rstrip("\n") for line in open("./dataset/data/modelnet40_half2_rm_rotate.txt")] train_categories.sort() val_categories.sort() test_categories.sort() train_ds = ModelNetNpy(dataset_path, dataset_mode="os", subset="train", categories=train_categories, transform=train_transforms) val_ds = ModelNetNpy(dataset_path, dataset_mode="os", subset="val", categories=val_categories, transform=test_transforms) test_ds = ModelNetNpy(dataset_path, dataset_mode="os", subset="test", categories=test_categories, transform=test_transforms) elif params.dataset_type == "modelnet_ts": dataset_path = "./dataset/data/modelnet_ts" train_categories = [line.rstrip("\n") for line in open("./dataset/data/modelnet40_half1_rm_rotate.txt")] val_categories = [line.rstrip("\n") for line in open("./dataset/data/modelnet40_half1_rm_rotate.txt")] test_categories = [line.rstrip("\n") for line in open("./dataset/data/modelnet40_half2_rm_rotate.txt")] train_categories.sort() val_categories.sort() test_categories.sort() train_ds = ModelNetNpy(dataset_path, dataset_mode="ts", subset="train", categories=train_categories, transform=train_transforms) val_ds = ModelNetNpy(dataset_path, dataset_mode="ts", subset="val", categories=val_categories, transform=test_transforms) test_ds = ModelNetNpy(dataset_path, dataset_mode="ts", subset="test", categories=test_categories, transform=test_transforms) dataloaders = {} # add defalt train data loader train_sampler = RandomSampler(train_ds, batch_size=params.train_batch_size, drop_last=True) train_dl = DataLoader(train_ds, train_sampler, num_workers=params.num_workers) dataloaders["train"] = train_dl # chosse val or test data loader for evaluate for split in ["val", "test"]: if split in params.eval_type: if split == "val": val_sampler = SequentialSampler(val_ds, batch_size=params.eval_batch_size) dl = DataLoader(val_ds, val_sampler, num_workers=params.num_workers) elif split == "test": test_sampler = SequentialSampler(test_ds, batch_size=params.eval_batch_size) dl = DataLoader(test_ds, test_sampler, num_workers=params.num_workers) else: raise ValueError("Unknown eval_type in params, should in [val, test]") dataloaders[split] = dl else: dataloaders[split] = None return dataloaders
[ "megengine.data.DataLoader", "megengine.data.sampler.RandomSampler", "megengine.data.sampler.SequentialSampler", "megengine.distributed.get_rank" ]
[((347, 374), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (364, 374), False, 'import logging\n'), ((3269, 3292), 'dataset.transformations.fetch_transform', 'fetch_transform', (['params'], {}), '(params)\n', (3284, 3292), False, 'from dataset.transformations import fetch_transform\n'), ((5226, 5301), 'megengine.data.sampler.RandomSampler', 'RandomSampler', (['train_ds'], {'batch_size': 'params.train_batch_size', 'drop_last': '(True)'}), '(train_ds, batch_size=params.train_batch_size, drop_last=True)\n', (5239, 5301), False, 'from megengine.data.sampler import RandomSampler, SequentialSampler\n'), ((5317, 5384), 'megengine.data.DataLoader', 'DataLoader', (['train_ds', 'train_sampler'], {'num_workers': 'params.num_workers'}), '(train_ds, train_sampler, num_workers=params.num_workers)\n', (5327, 5384), False, 'from megengine.data import DataLoader\n'), ((546, 588), 'logging.getLogger', 'logging.getLogger', (['self.__class__.__name__'], {}), '(self.__class__.__name__)\n', (563, 588), False, 'import logging\n'), ((2606, 2624), 'numpy.load', 'np.load', (['data_path'], {}), '(data_path)\n', (2613, 2624), True, 'import numpy as np\n'), ((679, 694), 'megengine.distributed.get_rank', 'dist.get_rank', ([], {}), '()\n', (692, 694), True, 'import megengine.distributed as dist\n'), ((1646, 1721), 'common.utils.master_logger', 'utils.master_logger', (['self._logger', '"""Using all categories."""', 'self._is_master'], {}), "(self._logger, 'Using all categories.', self._is_master)\n", (1665, 1721), False, 'from common import utils\n'), ((2285, 2299), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (2296, 2299), False, 'import pickle\n'), ((3206, 3221), 'megengine.distributed.get_rank', 'dist.get_rank', ([], {}), '()\n', (3219, 3221), True, 'import megengine.distributed as dist\n'), ((957, 983), 'os.path.join', 'os.path.join', (['dataset_path'], {}), '(dataset_path)\n', (969, 983), False, 'import os\n'), ((1093, 1138), 'os.path.join', 'os.path.join', (['dataset_path', '"""shape_names.txt"""'], {}), "(dataset_path, 'shape_names.txt')\n", (1105, 1138), False, 'import os\n'), ((5605, 5665), 'megengine.data.sampler.SequentialSampler', 'SequentialSampler', (['val_ds'], {'batch_size': 'params.eval_batch_size'}), '(val_ds, batch_size=params.eval_batch_size)\n', (5622, 5665), False, 'from megengine.data.sampler import RandomSampler, SequentialSampler\n'), ((5687, 5750), 'megengine.data.DataLoader', 'DataLoader', (['val_ds', 'val_sampler'], {'num_workers': 'params.num_workers'}), '(val_ds, val_sampler, num_workers=params.num_workers)\n', (5697, 5750), False, 'from megengine.data import DataLoader\n'), ((5816, 5877), 'megengine.data.sampler.SequentialSampler', 'SequentialSampler', (['test_ds'], {'batch_size': 'params.eval_batch_size'}), '(test_ds, batch_size=params.eval_batch_size)\n', (5833, 5877), False, 'from megengine.data.sampler import RandomSampler, SequentialSampler\n'), ((5899, 5964), 'megengine.data.DataLoader', 'DataLoader', (['test_ds', 'test_sampler'], {'num_workers': 'params.num_workers'}), '(test_ds, test_sampler, num_workers=params.num_workers)\n', (5909, 5964), False, 'from megengine.data import DataLoader\n'), ((2669, 2696), 'os.path.basename', 'os.path.basename', (['data_path'], {}), '(data_path)\n', (2685, 2696), False, 'import os\n'), ((2763, 2790), 'os.path.basename', 'os.path.basename', (['data_path'], {}), '(data_path)\n', (2779, 2790), False, 'import os\n')]
import numpy as np import megengine as mge import megengine.functional as F from common import se3, so3 def compute_losses(data_batch, endpoints, params): loss = {} # compute losses if params.loss_type == "omnet": num_iter = len(endpoints["all_pose_pair"]) for i in range(num_iter): # mask loss src_cls_pair, ref_cls_pair = endpoints["all_src_cls_pair"][i], endpoints["all_ref_cls_pair"][i] src_cls = F.nn.frequency_weighted_cross_entropy(src_cls_pair[1], src_cls_pair[0], weight=mge.tensor([0.7, 0.3])) ref_cls = F.nn.frequency_weighted_cross_entropy(ref_cls_pair[1], ref_cls_pair[0], weight=mge.tensor([0.7, 0.3])) loss["cls_{}".format(i)] = (src_cls + ref_cls) / 2.0 # reg loss pose_pair = endpoints["all_pose_pair"][i] loss["quat_{}".format(i)] = F.nn.l1_loss(pose_pair[1][:, :4], pose_pair[0][:, :4]) * params.loss_alpha1 loss["translate_{}".format(i)] = F.nn.square_loss(pose_pair[1][:, 4:], pose_pair[0][:, 4:]) * params.loss_alpha2 # total loss total_losses = [] for k in loss: total_losses.append(loss[k]) loss["total"] = F.sum(F.concat(total_losses)) else: raise NotImplementedError return loss def compute_metrics(data_batch, endpoints, params): metrics = {} gt_transforms = endpoints["transform_pair"][0] pred_transforms = endpoints["transform_pair"][1] # Euler angles, Individual translation errors (Deep Closest Point convention) if "prnet" in params.transform_type: r_gt_euler_deg = so3.mge_dcm2euler(gt_transforms[:, :3, :3], seq="zyx") r_pred_euler_deg = so3.mge_dcm2euler(pred_transforms[:, :3, :3], seq="zyx") else: r_gt_euler_deg = so3.mge_dcm2euler(gt_transforms[:, :3, :3], seq="xyz") r_pred_euler_deg = so3.mge_dcm2euler(pred_transforms[:, :3, :3], seq="xyz") t_gt = gt_transforms[:, :3, 3] t_pred = pred_transforms[:, :3, 3] r_mse = F.mean((r_gt_euler_deg - r_pred_euler_deg)**2, axis=1) r_mae = F.mean(F.abs(r_gt_euler_deg - r_pred_euler_deg), axis=1) t_mse = F.mean((t_gt - t_pred)**2, axis=1) t_mae = F.mean(F.abs(t_gt - t_pred), axis=1) r_mse = F.mean(r_mse) t_mse = F.mean(t_mse) r_mae = F.mean(r_mae) t_mae = F.mean(t_mae) # Rotation, translation errors (isotropic, i.e. doesn"t depend on error # direction, which is more representative of the actual error) concatenated = se3.mge_concatenate(se3.mge_inverse(gt_transforms), pred_transforms) rot_trace = concatenated[:, 0, 0] + concatenated[:, 1, 1] + concatenated[:, 2, 2] residual_rotdeg = F.acos(F.clip(0.5 * (rot_trace - 1), -1.0, 1.0)) * 180.0 / np.pi residual_transmag = F.norm(concatenated[:, :, 3], axis=-1) err_r = F.mean(residual_rotdeg) err_t = F.mean(residual_transmag) # weighted score of isotropic errors score = err_r * 0.01 + err_t metrics = {"R_MSE": r_mse, "R_MAE": r_mae, "t_MSE": t_mse, "t_MAE": t_mae, "Err_R": err_r, "Err_t": err_t, "score": score} # metrics = utils.tensor_mge(metrics, check_on=False) return metrics
[ "megengine.tensor", "megengine.functional.nn.l1_loss", "megengine.functional.clip", "megengine.functional.nn.square_loss", "megengine.functional.mean", "megengine.functional.norm", "megengine.functional.abs", "megengine.functional.concat" ]
[((2027, 2083), 'megengine.functional.mean', 'F.mean', (['((r_gt_euler_deg - r_pred_euler_deg) ** 2)'], {'axis': '(1)'}), '((r_gt_euler_deg - r_pred_euler_deg) ** 2, axis=1)\n', (2033, 2083), True, 'import megengine.functional as F\n'), ((2163, 2199), 'megengine.functional.mean', 'F.mean', (['((t_gt - t_pred) ** 2)'], {'axis': '(1)'}), '((t_gt - t_pred) ** 2, axis=1)\n', (2169, 2199), True, 'import megengine.functional as F\n'), ((2260, 2273), 'megengine.functional.mean', 'F.mean', (['r_mse'], {}), '(r_mse)\n', (2266, 2273), True, 'import megengine.functional as F\n'), ((2286, 2299), 'megengine.functional.mean', 'F.mean', (['t_mse'], {}), '(t_mse)\n', (2292, 2299), True, 'import megengine.functional as F\n'), ((2312, 2325), 'megengine.functional.mean', 'F.mean', (['r_mae'], {}), '(r_mae)\n', (2318, 2325), True, 'import megengine.functional as F\n'), ((2338, 2351), 'megengine.functional.mean', 'F.mean', (['t_mae'], {}), '(t_mae)\n', (2344, 2351), True, 'import megengine.functional as F\n'), ((2781, 2819), 'megengine.functional.norm', 'F.norm', (['concatenated[:, :, 3]'], {'axis': '(-1)'}), '(concatenated[:, :, 3], axis=-1)\n', (2787, 2819), True, 'import megengine.functional as F\n'), ((2832, 2855), 'megengine.functional.mean', 'F.mean', (['residual_rotdeg'], {}), '(residual_rotdeg)\n', (2838, 2855), True, 'import megengine.functional as F\n'), ((2868, 2893), 'megengine.functional.mean', 'F.mean', (['residual_transmag'], {}), '(residual_transmag)\n', (2874, 2893), True, 'import megengine.functional as F\n'), ((1627, 1681), 'common.so3.mge_dcm2euler', 'so3.mge_dcm2euler', (['gt_transforms[:, :3, :3]'], {'seq': '"""zyx"""'}), "(gt_transforms[:, :3, :3], seq='zyx')\n", (1644, 1681), False, 'from common import se3, so3\n'), ((1709, 1765), 'common.so3.mge_dcm2euler', 'so3.mge_dcm2euler', (['pred_transforms[:, :3, :3]'], {'seq': '"""zyx"""'}), "(pred_transforms[:, :3, :3], seq='zyx')\n", (1726, 1765), False, 'from common import se3, so3\n'), ((1801, 1855), 'common.so3.mge_dcm2euler', 'so3.mge_dcm2euler', (['gt_transforms[:, :3, :3]'], {'seq': '"""xyz"""'}), "(gt_transforms[:, :3, :3], seq='xyz')\n", (1818, 1855), False, 'from common import se3, so3\n'), ((1883, 1939), 'common.so3.mge_dcm2euler', 'so3.mge_dcm2euler', (['pred_transforms[:, :3, :3]'], {'seq': '"""xyz"""'}), "(pred_transforms[:, :3, :3], seq='xyz')\n", (1900, 1939), False, 'from common import se3, so3\n'), ((2101, 2141), 'megengine.functional.abs', 'F.abs', (['(r_gt_euler_deg - r_pred_euler_deg)'], {}), '(r_gt_euler_deg - r_pred_euler_deg)\n', (2106, 2141), True, 'import megengine.functional as F\n'), ((2217, 2237), 'megengine.functional.abs', 'F.abs', (['(t_gt - t_pred)'], {}), '(t_gt - t_pred)\n', (2222, 2237), True, 'import megengine.functional as F\n'), ((2535, 2565), 'common.se3.mge_inverse', 'se3.mge_inverse', (['gt_transforms'], {}), '(gt_transforms)\n', (2550, 2565), False, 'from common import se3, so3\n'), ((1219, 1241), 'megengine.functional.concat', 'F.concat', (['total_losses'], {}), '(total_losses)\n', (1227, 1241), True, 'import megengine.functional as F\n'), ((877, 931), 'megengine.functional.nn.l1_loss', 'F.nn.l1_loss', (['pose_pair[1][:, :4]', 'pose_pair[0][:, :4]'], {}), '(pose_pair[1][:, :4], pose_pair[0][:, :4])\n', (889, 931), True, 'import megengine.functional as F\n'), ((998, 1056), 'megengine.functional.nn.square_loss', 'F.nn.square_loss', (['pose_pair[1][:, 4:]', 'pose_pair[0][:, 4:]'], {}), '(pose_pair[1][:, 4:], pose_pair[0][:, 4:])\n', (1014, 1056), True, 'import megengine.functional as F\n'), ((2699, 2739), 'megengine.functional.clip', 'F.clip', (['(0.5 * (rot_trace - 1))', '(-1.0)', '(1.0)'], {}), '(0.5 * (rot_trace - 1), -1.0, 1.0)\n', (2705, 2739), True, 'import megengine.functional as F\n'), ((546, 568), 'megengine.tensor', 'mge.tensor', (['[0.7, 0.3]'], {}), '([0.7, 0.3])\n', (556, 568), True, 'import megengine as mge\n'), ((671, 693), 'megengine.tensor', 'mge.tensor', (['[0.7, 0.3]'], {}), '([0.7, 0.3])\n', (681, 693), True, 'import megengine as mge\n')]
"""Add participant and application Revision ID: 58d2280520b8 Revises: Create Date: 2022-02-12 07:30:30.427270+00:00 """ import sqlalchemy as sa import sqlmodel from alembic import op # revision identifiers, used by Alembic. revision = "58d2280520b8" down_revision = None branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.create_table( "participants", sa.Column("first_name", sqlmodel.sql.sqltypes.AutoString(), nullable=False), sa.Column("last_name", sqlmodel.sql.sqltypes.AutoString(), nullable=False), sa.Column("email", sqlmodel.sql.sqltypes.AutoString(), nullable=False), sa.Column("id", sa.Integer(), nullable=False), sa.PrimaryKeyConstraint("id"), ) op.create_table( "applications", sa.Column( "gender", sa.Enum("MALE", "FEMALE", "NON_BINARY", name="gender"), nullable=True, ), sa.Column( "race_ethnicity", sa.Enum( "AMERICAN_INDIAN", "ASIAN", "PACIFIC_ISLANDER", "BLACK", "HISPANIC", "CAUCASIAN", "MULTIPLE_OTHER", name="raceethnicity", ), nullable=True, ), sa.Column("participant_id", sa.Integer(), nullable=False), sa.Column("level_of_study", sqlmodel.sql.sqltypes.AutoString(), nullable=False), sa.Column("graduation_year", sa.Integer(), nullable=False), sa.Column("major", sqlmodel.sql.sqltypes.AutoString(), nullable=True), sa.Column("date_of_birth", sqlmodel.sql.sqltypes.AutoString(), nullable=False), sa.Column("hackathons_attended", sa.Integer(), nullable=False), sa.Column("portfolio_url", sqlmodel.sql.sqltypes.AutoString(), nullable=True), sa.Column("vcs_url", sqlmodel.sql.sqltypes.AutoString(), nullable=True), sa.Column( "shipping_address", sqlmodel.sql.sqltypes.AutoString(), nullable=True ), sa.Column("share_information", sa.Boolean(), nullable=False), sa.ForeignKeyConstraint( ["participant_id"], ["participants.id"], ), sa.PrimaryKeyConstraint("participant_id"), ) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_table("applications") op.drop_table("participants") # ### end Alembic commands ###
[ "sqlmodel.sql.sqltypes.AutoString" ]
[((2458, 2487), 'alembic.op.drop_table', 'op.drop_table', (['"""applications"""'], {}), "('applications')\n", (2471, 2487), False, 'from alembic import op\n'), ((2492, 2521), 'alembic.op.drop_table', 'op.drop_table', (['"""participants"""'], {}), "('participants')\n", (2505, 2521), False, 'from alembic import op\n'), ((753, 782), 'sqlalchemy.PrimaryKeyConstraint', 'sa.PrimaryKeyConstraint', (['"""id"""'], {}), "('id')\n", (776, 782), True, 'import sqlalchemy as sa\n'), ((2176, 2240), 'sqlalchemy.ForeignKeyConstraint', 'sa.ForeignKeyConstraint', (["['participant_id']", "['participants.id']"], {}), "(['participant_id'], ['participants.id'])\n", (2199, 2240), True, 'import sqlalchemy as sa\n'), ((2285, 2326), 'sqlalchemy.PrimaryKeyConstraint', 'sa.PrimaryKeyConstraint', (['"""participant_id"""'], {}), "('participant_id')\n", (2308, 2326), True, 'import sqlalchemy as sa\n'), ((473, 507), 'sqlmodel.sql.sqltypes.AutoString', 'sqlmodel.sql.sqltypes.AutoString', ([], {}), '()\n', (505, 507), False, 'import sqlmodel\n'), ((557, 591), 'sqlmodel.sql.sqltypes.AutoString', 'sqlmodel.sql.sqltypes.AutoString', ([], {}), '()\n', (589, 591), False, 'import sqlmodel\n'), ((637, 671), 'sqlmodel.sql.sqltypes.AutoString', 'sqlmodel.sql.sqltypes.AutoString', ([], {}), '()\n', (669, 671), False, 'import sqlmodel\n'), ((714, 726), 'sqlalchemy.Integer', 'sa.Integer', ([], {}), '()\n', (724, 726), True, 'import sqlalchemy as sa\n'), ((888, 942), 'sqlalchemy.Enum', 'sa.Enum', (['"""MALE"""', '"""FEMALE"""', '"""NON_BINARY"""'], {'name': '"""gender"""'}), "('MALE', 'FEMALE', 'NON_BINARY', name='gender')\n", (895, 942), True, 'import sqlalchemy as sa\n'), ((1043, 1176), 'sqlalchemy.Enum', 'sa.Enum', (['"""AMERICAN_INDIAN"""', '"""ASIAN"""', '"""PACIFIC_ISLANDER"""', '"""BLACK"""', '"""HISPANIC"""', '"""CAUCASIAN"""', '"""MULTIPLE_OTHER"""'], {'name': '"""raceethnicity"""'}), "('AMERICAN_INDIAN', 'ASIAN', 'PACIFIC_ISLANDER', 'BLACK', 'HISPANIC',\n 'CAUCASIAN', 'MULTIPLE_OTHER', name='raceethnicity')\n", (1050, 1176), True, 'import sqlalchemy as sa\n'), ((1391, 1403), 'sqlalchemy.Integer', 'sa.Integer', ([], {}), '()\n', (1401, 1403), True, 'import sqlalchemy as sa\n'), ((1458, 1492), 'sqlmodel.sql.sqltypes.AutoString', 'sqlmodel.sql.sqltypes.AutoString', ([], {}), '()\n', (1490, 1492), False, 'import sqlmodel\n'), ((1548, 1560), 'sqlalchemy.Integer', 'sa.Integer', ([], {}), '()\n', (1558, 1560), True, 'import sqlalchemy as sa\n'), ((1606, 1640), 'sqlmodel.sql.sqltypes.AutoString', 'sqlmodel.sql.sqltypes.AutoString', ([], {}), '()\n', (1638, 1640), False, 'import sqlmodel\n'), ((1693, 1727), 'sqlmodel.sql.sqltypes.AutoString', 'sqlmodel.sql.sqltypes.AutoString', ([], {}), '()\n', (1725, 1727), False, 'import sqlmodel\n'), ((1787, 1799), 'sqlalchemy.Integer', 'sa.Integer', ([], {}), '()\n', (1797, 1799), True, 'import sqlalchemy as sa\n'), ((1853, 1887), 'sqlmodel.sql.sqltypes.AutoString', 'sqlmodel.sql.sqltypes.AutoString', ([], {}), '()\n', (1885, 1887), False, 'import sqlmodel\n'), ((1934, 1968), 'sqlmodel.sql.sqltypes.AutoString', 'sqlmodel.sql.sqltypes.AutoString', ([], {}), '()\n', (1966, 1968), False, 'import sqlmodel\n'), ((2037, 2071), 'sqlmodel.sql.sqltypes.AutoString', 'sqlmodel.sql.sqltypes.AutoString', ([], {}), '()\n', (2069, 2071), False, 'import sqlmodel\n'), ((2137, 2149), 'sqlalchemy.Boolean', 'sa.Boolean', ([], {}), '()\n', (2147, 2149), True, 'import sqlalchemy as sa\n')]
from typing import TYPE_CHECKING, List, Optional, Type from uuid import UUID from sqlalchemy import event from sqlalchemy.schema import Column, ForeignKey, UniqueConstraint from sqlmodel import Field, Relationship from sqlmodel.sql.sqltypes import GUID from joj.horse.models.base import DomainURLORMModel, url_pre_save from joj.horse.models.link_tables import ProblemProblemSetLink from joj.horse.schemas.problem import ProblemDetail, WithLatestRecordType from joj.horse.services.db import db_session if TYPE_CHECKING: from joj.horse.models import ( Domain, ProblemConfig, ProblemGroup, ProblemSet, Record, User, ) class Problem(DomainURLORMModel, ProblemDetail, table=True): # type: ignore[call-arg] __tablename__ = "problems" __table_args__ = (UniqueConstraint("domain_id", "url"),) domain_id: UUID = Field( sa_column=Column( GUID, ForeignKey("domains.id", ondelete="CASCADE"), nullable=False ) ) domain: "Domain" = Relationship(back_populates="problems") owner_id: Optional[UUID] = Field( sa_column=Column( GUID, ForeignKey("users.id", ondelete="SET NULL"), nullable=True ) ) owner: Optional["User"] = Relationship(back_populates="owned_problems") problem_group_id: Optional[UUID] = Field( sa_column=Column( GUID, ForeignKey("problem_groups.id", ondelete="SET NULL"), nullable=True ) ) problem_group: Optional["ProblemGroup"] = Relationship(back_populates="problems") problem_sets: List["ProblemSet"] = Relationship( back_populates="problems", link_model=ProblemProblemSetLink, ) problem_problem_set_links: List[ProblemProblemSetLink] = Relationship( back_populates="problem", ) records: List["Record"] = Relationship(back_populates="problem") problem_configs: List["ProblemConfig"] = Relationship(back_populates="problem") @classmethod async def get_problems_with_record_states( cls, result_cls: Type[WithLatestRecordType], problem_set_id: Optional[UUID], problems: List["Problem"], user_id: UUID, ) -> List[WithLatestRecordType]: from joj.horse import models problem_ids = [problem.id for problem in problems] records = await models.Record.get_user_latest_records( problem_set_id=problem_set_id, problem_ids=problem_ids, user_id=user_id ) problems = [ result_cls(**problems[i].dict(), latest_record=records[i]) for i, record in enumerate(records) ] return problems async def get_latest_problem_config(self) -> Optional["ProblemConfig"]: from joj.horse import models statement = ( models.ProblemConfig.sql_select() .where(models.ProblemConfig.problem_id == self.id) .order_by(models.ProblemConfig.created_at.desc()) # type: ignore .limit(1) ) async with db_session() as session: results = await session.exec(statement) return results.one_or_none() event.listen(Problem, "before_insert", url_pre_save) event.listen(Problem, "before_update", url_pre_save)
[ "sqlmodel.Relationship" ]
[((3154, 3206), 'sqlalchemy.event.listen', 'event.listen', (['Problem', '"""before_insert"""', 'url_pre_save'], {}), "(Problem, 'before_insert', url_pre_save)\n", (3166, 3206), False, 'from sqlalchemy import event\n'), ((3207, 3259), 'sqlalchemy.event.listen', 'event.listen', (['Problem', '"""before_update"""', 'url_pre_save'], {}), "(Problem, 'before_update', url_pre_save)\n", (3219, 3259), False, 'from sqlalchemy import event\n'), ((1029, 1068), 'sqlmodel.Relationship', 'Relationship', ([], {'back_populates': '"""problems"""'}), "(back_populates='problems')\n", (1041, 1068), False, 'from sqlmodel import Field, Relationship\n'), ((1257, 1302), 'sqlmodel.Relationship', 'Relationship', ([], {'back_populates': '"""owned_problems"""'}), "(back_populates='owned_problems')\n", (1269, 1302), False, 'from sqlmodel import Field, Relationship\n'), ((1524, 1563), 'sqlmodel.Relationship', 'Relationship', ([], {'back_populates': '"""problems"""'}), "(back_populates='problems')\n", (1536, 1563), False, 'from sqlmodel import Field, Relationship\n'), ((1604, 1677), 'sqlmodel.Relationship', 'Relationship', ([], {'back_populates': '"""problems"""', 'link_model': 'ProblemProblemSetLink'}), "(back_populates='problems', link_model=ProblemProblemSetLink)\n", (1616, 1677), False, 'from sqlmodel import Field, Relationship\n'), ((1762, 1800), 'sqlmodel.Relationship', 'Relationship', ([], {'back_populates': '"""problem"""'}), "(back_populates='problem')\n", (1774, 1800), False, 'from sqlmodel import Field, Relationship\n'), ((1847, 1885), 'sqlmodel.Relationship', 'Relationship', ([], {'back_populates': '"""problem"""'}), "(back_populates='problem')\n", (1859, 1885), False, 'from sqlmodel import Field, Relationship\n'), ((1931, 1969), 'sqlmodel.Relationship', 'Relationship', ([], {'back_populates': '"""problem"""'}), "(back_populates='problem')\n", (1943, 1969), False, 'from sqlmodel import Field, Relationship\n'), ((816, 852), 'sqlalchemy.schema.UniqueConstraint', 'UniqueConstraint', (['"""domain_id"""', '"""url"""'], {}), "('domain_id', 'url')\n", (832, 852), False, 'from sqlalchemy.schema import Column, ForeignKey, UniqueConstraint\n'), ((2352, 2466), 'joj.horse.models.Record.get_user_latest_records', 'models.Record.get_user_latest_records', ([], {'problem_set_id': 'problem_set_id', 'problem_ids': 'problem_ids', 'user_id': 'user_id'}), '(problem_set_id=problem_set_id,\n problem_ids=problem_ids, user_id=user_id)\n', (2389, 2466), False, 'from joj.horse import models\n'), ((3034, 3046), 'joj.horse.services.db.db_session', 'db_session', ([], {}), '()\n', (3044, 3046), False, 'from joj.horse.services.db import db_session\n'), ((929, 973), 'sqlalchemy.schema.ForeignKey', 'ForeignKey', (['"""domains.id"""'], {'ondelete': '"""CASCADE"""'}), "('domains.id', ondelete='CASCADE')\n", (939, 973), False, 'from sqlalchemy.schema import Column, ForeignKey, UniqueConstraint\n'), ((1152, 1195), 'sqlalchemy.schema.ForeignKey', 'ForeignKey', (['"""users.id"""'], {'ondelete': '"""SET NULL"""'}), "('users.id', ondelete='SET NULL')\n", (1162, 1195), False, 'from sqlalchemy.schema import Column, ForeignKey, UniqueConstraint\n'), ((1394, 1446), 'sqlalchemy.schema.ForeignKey', 'ForeignKey', (['"""problem_groups.id"""'], {'ondelete': '"""SET NULL"""'}), "('problem_groups.id', ondelete='SET NULL')\n", (1404, 1446), False, 'from sqlalchemy.schema import Column, ForeignKey, UniqueConstraint\n'), ((2927, 2965), 'joj.horse.models.ProblemConfig.created_at.desc', 'models.ProblemConfig.created_at.desc', ([], {}), '()\n', (2963, 2965), False, 'from joj.horse import models\n'), ((2808, 2841), 'joj.horse.models.ProblemConfig.sql_select', 'models.ProblemConfig.sql_select', ([], {}), '()\n', (2839, 2841), False, 'from joj.horse import models\n')]
from copy import copy from sfepy.base.base import output, get_default, Struct from sfepy.applications import PDESolverApp, Application from coefs_base import MiniAppBase def insert_sub_reqs(reqs, levels, req_info): """Recursively build all requirements in correct order.""" all_reqs = [] for _, req in enumerate(reqs): # Coefficients are referenced as 'c.<name>'... areq = req if req.startswith('c.'): areq = req[2:] try: rargs = req_info[areq] except KeyError: raise ValueError('requirement "%s" is not defined!' % req) sub_reqs = rargs.get('requires', []) if req in levels: raise ValueError('circular requirement "%s"!' % (req)) if sub_reqs: levels.append(req) all_reqs.extend(insert_sub_reqs(sub_reqs, levels, req_info)) levels.pop() if req in all_reqs: raise ValueError('circular requirement "%s"!' % (req)) else: all_reqs.append(req) return all_reqs class HomogenizationEngine(PDESolverApp): @staticmethod def process_options(options): get = options.get return Struct(coefs=get('coefs', None, 'missing "coefs" in options!'), requirements=get('requirements', None, 'missing "requirements" in options!'), compute_only=get('compute_only', None), save_format=get('save_format', 'vtk'), dump_format=get('dump_format', 'h5'), coefs_info=get('coefs_info', None)) def __init__(self, problem, options, app_options=None, volume=None, output_prefix='he:', **kwargs): """Bypasses PDESolverApp.__init__()!""" Application.__init__(self, problem.conf, options, output_prefix, **kwargs) self.problem = problem self.setup_options(app_options=app_options) self.setup_output_info(self.problem, self.options) if volume is None: self.volume = self.problem.evaluate(self.app_options.total_volume) else: self.volume = volume def setup_options(self, app_options=None): PDESolverApp.setup_options(self) app_options = get_default(app_options, self.conf.options) po = HomogenizationEngine.process_options self.app_options += po(app_options) def compute_requirements(self, requirements, dependencies, store): problem = self.problem opts = self.app_options req_info = getattr(self.conf, opts.requirements) requires = insert_sub_reqs(copy(requirements), [], req_info) for req in requires: if req in dependencies and (dependencies[req] is not None): continue output('computing dependency %s...' % req) rargs = req_info[req] mini_app = MiniAppBase.any_from_conf(req, problem, rargs) mini_app.setup_output(save_format=opts.save_format, dump_format=opts.dump_format, post_process_hook=self.post_process_hook, file_per_var=opts.file_per_var) store(mini_app) problem.clear_equations() # Pass only the direct dependencies, not the indirect ones. dep_requires = rargs.get('requires', []) data = {} for key in dep_requires: data[key] = dependencies[key] dep = mini_app(data=data) dependencies[req] = dep output('...done') return dependencies def call(self, ret_all=False): problem = self.problem opts = self.app_options coef_info = getattr(self.conf, opts.coefs) compute_names = set(get_default(opts.compute_only, coef_info.keys())) compute_names = ['c.' + key for key in compute_names] is_store_filenames = coef_info.pop('filenames', None) is not None try: compute_names.remove('c.filenames') except: pass dependencies = {} save_names = {} dump_names = {} def store_filenames(app): if not '(not_set)' in app.get_save_name_base(): save_names[app.name] = app.get_save_name_base() if not '(not_set)' in app.get_dump_name_base(): dump_names[app.name] = app.get_dump_name_base() # Some coefficients can require other coefficients - resolve their # order here. req_info = self.conf.get(opts.requirements, {}) info = copy(coef_info) info.update(req_info) all_deps = set(compute_names) sorted_names = [] for coef_name in compute_names: cargs = coef_info[coef_name[2:]] requires = cargs.get('requires', []) deps = insert_sub_reqs(copy(requires), [], info) all_deps.update(deps) aux = [key for key in deps if key.startswith('c.')] + [coef_name] sorted_names.extend(aux) sorted_coef_names = [] for name in sorted_names: if name[2:] not in sorted_coef_names: sorted_coef_names.append(name[2:]) coefs = Struct() for coef_name in sorted_coef_names: cargs = coef_info[coef_name] output('computing %s...' % coef_name) requires = cargs.get('requires', []) requirements = [name for name in requires if not name.startswith('c.')] self.compute_requirements(requirements, dependencies, store_filenames) for name in requires: if name.startswith('c.'): dependencies[name] = getattr(coefs, name[2:]) mini_app = MiniAppBase.any_from_conf(coef_name, problem, cargs) problem.clear_equations() # Pass only the direct dependencies, not the indirect ones. data = {} for key in requires: data[key] = dependencies[key] val = mini_app(self.volume, data=data) setattr(coefs, coef_name, val) output('...done') # remove "auxiliary" coefs for coef_name in sorted_coef_names: cstat = coef_info[coef_name].get('status', 'main') if cstat == 'auxiliary': delattr(coefs, coef_name) # Store filenames of all requirements as a "coefficient". if is_store_filenames: coefs.save_names = save_names coefs.dump_names = dump_names if opts.coefs_info is not None: coefs.info = opts.coefs_info if ret_all: return coefs, dependencies else: return coefs
[ "sfepy.base.base.output", "sfepy.applications.Application.__init__", "sfepy.base.base.Struct", "sfepy.applications.PDESolverApp.setup_options", "sfepy.base.base.get_default" ]
[((1859, 1933), 'sfepy.applications.Application.__init__', 'Application.__init__', (['self', 'problem.conf', 'options', 'output_prefix'], {}), '(self, problem.conf, options, output_prefix, **kwargs)\n', (1879, 1933), False, 'from sfepy.applications import PDESolverApp, Application\n'), ((2316, 2348), 'sfepy.applications.PDESolverApp.setup_options', 'PDESolverApp.setup_options', (['self'], {}), '(self)\n', (2342, 2348), False, 'from sfepy.applications import PDESolverApp, Application\n'), ((2371, 2414), 'sfepy.base.base.get_default', 'get_default', (['app_options', 'self.conf.options'], {}), '(app_options, self.conf.options)\n', (2382, 2414), False, 'from sfepy.base.base import output, get_default, Struct\n'), ((4753, 4768), 'copy.copy', 'copy', (['coef_info'], {}), '(coef_info)\n', (4757, 4768), False, 'from copy import copy\n'), ((5392, 5400), 'sfepy.base.base.Struct', 'Struct', ([], {}), '()\n', (5398, 5400), False, 'from sfepy.base.base import output, get_default, Struct\n'), ((2739, 2757), 'copy.copy', 'copy', (['requirements'], {}), '(requirements)\n', (2743, 2757), False, 'from copy import copy\n'), ((2913, 2955), 'sfepy.base.base.output', 'output', (["('computing dependency %s...' % req)"], {}), "('computing dependency %s...' % req)\n", (2919, 2955), False, 'from sfepy.base.base import output, get_default, Struct\n'), ((3015, 3061), 'coefs_base.MiniAppBase.any_from_conf', 'MiniAppBase.any_from_conf', (['req', 'problem', 'rargs'], {}), '(req, problem, rargs)\n', (3040, 3061), False, 'from coefs_base import MiniAppBase\n'), ((3718, 3735), 'sfepy.base.base.output', 'output', (['"""...done"""'], {}), "('...done')\n", (3724, 3735), False, 'from sfepy.base.base import output, get_default, Struct\n'), ((5498, 5535), 'sfepy.base.base.output', 'output', (["('computing %s...' % coef_name)"], {}), "('computing %s...' % coef_name)\n", (5504, 5535), False, 'from sfepy.base.base import output, get_default, Struct\n'), ((5986, 6038), 'coefs_base.MiniAppBase.any_from_conf', 'MiniAppBase.any_from_conf', (['coef_name', 'problem', 'cargs'], {}), '(coef_name, problem, cargs)\n', (6011, 6038), False, 'from coefs_base import MiniAppBase\n'), ((6359, 6376), 'sfepy.base.base.output', 'output', (['"""...done"""'], {}), "('...done')\n", (6365, 6376), False, 'from sfepy.base.base import output, get_default, Struct\n'), ((5032, 5046), 'copy.copy', 'copy', (['requires'], {}), '(requires)\n', (5036, 5046), False, 'from copy import copy\n')]