code
stringlengths
110
64.5k
apis
list
extract_api
stringlengths
123
69.9k
from unittest.mock import patch from sqlmodel import create_engine from ...conftest import get_testing_print_function def test_tutorial(clear_sqlmodel): from docs_src.tutorial.where import tutorial002 as mod mod.sqlite_url = "sqlite://" mod.engine = create_engine(mod.sqlite_url) calls = [] new_print = get_testing_print_function(calls) with patch("builtins.print", new=new_print): mod.main() assert calls == [ [ { "name": "Spider-Boy", "secret_name": "<NAME>", "age": None, "id": 2, } ], [{"name": "Rusty-Man", "secret_name": "<NAME>", "age": 48, "id": 3}], ]
[ "sqlmodel.create_engine" ]
[((267, 296), 'sqlmodel.create_engine', 'create_engine', (['mod.sqlite_url'], {}), '(mod.sqlite_url)\n', (280, 296), False, 'from sqlmodel import create_engine\n'), ((373, 411), 'unittest.mock.patch', 'patch', (['"""builtins.print"""'], {'new': 'new_print'}), "('builtins.print', new=new_print)\n", (378, 411), False, 'from unittest.mock import patch\n'), ((421, 431), 'docs_src.tutorial.where.tutorial002.main', 'mod.main', ([], {}), '()\n', (429, 431), True, 'from docs_src.tutorial.where import tutorial002 as mod\n')]
# Lettura dati con SQLModel, all, first, one; update; delete # https://sqlmodel.tiangolo.com/tutorial/select/ e seguito from typing import Optional from sqlmodel import Field, SQLModel, Session, create_engine, select class Tag(SQLModel, table=True): id: Optional[int] = Field(default=None, primary_key=True) name: str class ProductType(SQLModel, table=True): id: Optional[int] = Field(default=None, primary_key=True) name: str sqlite_file_name = "database.db" sqlite_url = f"sqlite:///{sqlite_file_name}" engine = create_engine(sqlite_url, echo=True) def create_db_and_tables(): SQLModel.metadata.create_all(engine) def create_entities(): tag_offerta = Tag(name="Offerta") tag_maionese = Tag(name="Con Maionese") tipo_panino = ProductType(name="panino") tipo_bibita = ProductType(name="bibita") with Session(engine) as session: session.add(tag_offerta) session.add(tag_maionese) session.add(tipo_panino) session.add(tipo_bibita) session.commit() print("After committing the session") print("Tag 1:", tag_offerta) # No refresh, no print print("Product Type 1:", tipo_panino) # Refresh automatica print("Product Type 1:", tipo_panino.name) # Refresh esplicita session.refresh(tipo_bibita) session.refresh(tag_maionese) print("Product Type 2:", tipo_bibita) print("After the session closes") print("Tag 2:", tag_maionese) def select_product_types(): with Session(engine) as session: statement = select(ProductType) results = session.exec(statement) for product_type in results: print("product_type:", product_type) def select_product_type_panino(): with Session(engine) as session: statement = select(ProductType).where(ProductType.name == 'panino') results = session.exec(statement) for product_type in results: print("panino:", product_type) def select_first_row_tag(): with Session(engine) as session: statement = select(Tag).where(Tag.name == 'Offerta') results = session.exec(statement) tag = results.first() print("first:", tag) def select_all_tags(): with Session(engine) as session: statement = select(Tag) results = session.exec(statement) tags = results.all() print(tags) def select_four_tags(): with Session(engine) as session: statement = select(Tag).limit(4) results = session.exec(statement) tags = results.all() print(tags) def select_next_four_tags(): with Session(engine) as session: statement = select(Tag).offset(4).limit(4) results = session.exec(statement) tags = results.all() print(tags) def update_tag(): with Session(engine) as session: statement = select(Tag).where(Tag.name == "Con Maionese") results = session.exec(statement) # mayo = results.one() mayo = results.first() print("Tag:", mayo) mayo.name = "<NAME>" session.add(mayo) session.commit() session.refresh(mayo) print(mayo) def delete_tag(): with Session(engine) as session: statement = select(Tag).where(Tag.name == "<NAME>") results = session.exec(statement) no_mayo = results.first() print("no_mayo: ", no_mayo) session.delete(no_mayo) session.commit() print("Deleted:", no_mayo) statement = select(Tag).where(Tag.name == "<NAME>") results = session.exec(statement) no_mayo = results.first() if no_mayo is None: print("There's no no_mayo") def main(): create_db_and_tables() create_entities() # select_product_types() # select_product_type_panino() # select_first_row_tag() # select_all_tags() # select_four_tags() # select_next_four_tags() # update_tag() delete_tag() if __name__ == "__main__": main()
[ "sqlmodel.create_engine", "sqlmodel.Session", "sqlmodel.SQLModel.metadata.create_all", "sqlmodel.select", "sqlmodel.Field" ]
[((536, 572), 'sqlmodel.create_engine', 'create_engine', (['sqlite_url'], {'echo': '(True)'}), '(sqlite_url, echo=True)\n', (549, 572), False, 'from sqlmodel import Field, SQLModel, Session, create_engine, select\n'), ((276, 313), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'primary_key': '(True)'}), '(default=None, primary_key=True)\n', (281, 313), False, 'from sqlmodel import Field, SQLModel, Session, create_engine, select\n'), ((395, 432), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'primary_key': '(True)'}), '(default=None, primary_key=True)\n', (400, 432), False, 'from sqlmodel import Field, SQLModel, Session, create_engine, select\n'), ((607, 643), 'sqlmodel.SQLModel.metadata.create_all', 'SQLModel.metadata.create_all', (['engine'], {}), '(engine)\n', (635, 643), False, 'from sqlmodel import Field, SQLModel, Session, create_engine, select\n'), ((850, 865), 'sqlmodel.Session', 'Session', (['engine'], {}), '(engine)\n', (857, 865), False, 'from sqlmodel import Field, SQLModel, Session, create_engine, select\n'), ((1536, 1551), 'sqlmodel.Session', 'Session', (['engine'], {}), '(engine)\n', (1543, 1551), False, 'from sqlmodel import Field, SQLModel, Session, create_engine, select\n'), ((1584, 1603), 'sqlmodel.select', 'select', (['ProductType'], {}), '(ProductType)\n', (1590, 1603), False, 'from sqlmodel import Field, SQLModel, Session, create_engine, select\n'), ((1777, 1792), 'sqlmodel.Session', 'Session', (['engine'], {}), '(engine)\n', (1784, 1792), False, 'from sqlmodel import Field, SQLModel, Session, create_engine, select\n'), ((2042, 2057), 'sqlmodel.Session', 'Session', (['engine'], {}), '(engine)\n', (2049, 2057), False, 'from sqlmodel import Field, SQLModel, Session, create_engine, select\n'), ((2266, 2281), 'sqlmodel.Session', 'Session', (['engine'], {}), '(engine)\n', (2273, 2281), False, 'from sqlmodel import Field, SQLModel, Session, create_engine, select\n'), ((2314, 2325), 'sqlmodel.select', 'select', (['Tag'], {}), '(Tag)\n', (2320, 2325), False, 'from sqlmodel import Field, SQLModel, Session, create_engine, select\n'), ((2452, 2467), 'sqlmodel.Session', 'Session', (['engine'], {}), '(engine)\n', (2459, 2467), False, 'from sqlmodel import Field, SQLModel, Session, create_engine, select\n'), ((2652, 2667), 'sqlmodel.Session', 'Session', (['engine'], {}), '(engine)\n', (2659, 2667), False, 'from sqlmodel import Field, SQLModel, Session, create_engine, select\n'), ((2851, 2866), 'sqlmodel.Session', 'Session', (['engine'], {}), '(engine)\n', (2858, 2866), False, 'from sqlmodel import Field, SQLModel, Session, create_engine, select\n'), ((3236, 3251), 'sqlmodel.Session', 'Session', (['engine'], {}), '(engine)\n', (3243, 3251), False, 'from sqlmodel import Field, SQLModel, Session, create_engine, select\n'), ((1825, 1844), 'sqlmodel.select', 'select', (['ProductType'], {}), '(ProductType)\n', (1831, 1844), False, 'from sqlmodel import Field, SQLModel, Session, create_engine, select\n'), ((2090, 2101), 'sqlmodel.select', 'select', (['Tag'], {}), '(Tag)\n', (2096, 2101), False, 'from sqlmodel import Field, SQLModel, Session, create_engine, select\n'), ((2500, 2511), 'sqlmodel.select', 'select', (['Tag'], {}), '(Tag)\n', (2506, 2511), False, 'from sqlmodel import Field, SQLModel, Session, create_engine, select\n'), ((2899, 2910), 'sqlmodel.select', 'select', (['Tag'], {}), '(Tag)\n', (2905, 2910), False, 'from sqlmodel import Field, SQLModel, Session, create_engine, select\n'), ((3284, 3295), 'sqlmodel.select', 'select', (['Tag'], {}), '(Tag)\n', (3290, 3295), False, 'from sqlmodel import Field, SQLModel, Session, create_engine, select\n'), ((3548, 3559), 'sqlmodel.select', 'select', (['Tag'], {}), '(Tag)\n', (3554, 3559), False, 'from sqlmodel import Field, SQLModel, Session, create_engine, select\n'), ((2700, 2711), 'sqlmodel.select', 'select', (['Tag'], {}), '(Tag)\n', (2706, 2711), False, 'from sqlmodel import Field, SQLModel, Session, create_engine, select\n')]
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # pylint: disable=import-error,no-name-in-module,no-member from test.utils import LinearOpr import megengine as mge import megengine.module as M import numpy as np from megengine.core.tensor import dtype from megengine.core.tensor.dtype import _builtin_quant_dtypes from megengine.module.quant_dequant import QuantStub from megengine.quantization.quantize import quantize_qat from megengine.quantization.utils import create_qparams from megengine.traced_module.fake_quant import FakeQuantize from .test_caffe import _test_convert_result from .tm_utils import get_traced_module max_err = 1e-6 def get_qat_net(inp_dtype, net, num_inp=1, shape=(1, 16, 32, 32)): qat_net = quantize_qat(net) inps = [] for _ in range(num_inp): data1 = mge.tensor(np.random.random(shape)) * 16 data1 = data1.astype(inp_dtype) inp1 = mge.tensor(dtype.convert_from_qint8(data1.numpy())) inp1.qparams.scale = mge.tensor(dtype.get_scale(inp_dtype)) inp1.qparams.dtype_meta = dtype._builtin_quant_dtypes["qint8"] inps.append(inp1) return qat_net, inps def get_qat_inputs_quint8(inp_dtype, num_inp=1, shape=(1, 16, 384, 512)): inps = [] for _ in range(num_inp): data1 = mge.tensor(np.random.random(shape)) * 16 data1 = data1.astype(inp_dtype) inp1 = mge.tensor(dtype.convert_from_quint8(data1.numpy())) inp1.qparams.scale = mge.tensor(dtype.get_scale(inp_dtype)) inp1.qparams.zero_point = mge.tensor(dtype.get_zero_point(inp_dtype)) inp1.qparams.dtype_meta = dtype._builtin_quant_dtypes["quint8"] inps.append(inp1) return inps def test_linear(): net = LinearOpr() inp_dtype = dtype.qint8(16.0 / 128.0) qat_net, inps = get_qat_net(inp_dtype, net, shape=(10, 100)) traced_module, tm_result = get_traced_module(qat_net, inps[0]) inp = inps[0].astype(inp_dtype) _test_convert_result(inp, traced_module, tm_result, max_err, require_quantize=False) def test_add(): class ElemwiseOpr(M.Module): def __init__(self,): super().__init__() self.data = np.ones((2, 3, 224, 224)).astype(np.float32) self.data1 = np.random.random((1, 3, 1, 1)).astype(np.float32) self.add1 = M.Elemwise("add") self.add2 = M.Elemwise("add") self.add3 = M.Elemwise("add") scale = mge.tensor((16.0 / 128.0)) self.quant_stub = QuantStub() self.quant_stub.act_fake_quant = FakeQuantize( _builtin_quant_dtypes["qint8"] ) self.quant_stub.act_fake_quant.set_qparams( create_qparams( dtype_meta=_builtin_quant_dtypes["qint8"], scale=scale, zero_point=None, ) ) self.quant_stub1 = QuantStub() self.quant_stub1.act_fake_quant = FakeQuantize( _builtin_quant_dtypes["qint8"] ) self.quant_stub1.act_fake_quant.set_qparams( create_qparams( dtype_meta=_builtin_quant_dtypes["qint8"], scale=scale, zero_point=None, ) ) def forward(self, a): n = self.quant_stub(mge.tensor(np.float32(10))) data1 = self.quant_stub1(mge.tensor(self.data1)) x = self.add1(a, n) y = self.add2(a, data1) z = self.add3(x, y) return z net = ElemwiseOpr() inp_dtype = dtype.qint8(16.0 / 128.0) qat_net, inps = get_qat_net(inp_dtype, net, shape=(1, 3, 1, 1)) traced_module, tm_result = get_traced_module(qat_net, inps[0]) print(traced_module.flatten().graph) inp = inps[0].astype(inp_dtype) _test_convert_result( inp, traced_module, tm_result, max_err, require_quantize=False, split_conv_relu=True, ) def test_det_model(): net = mge.load("models_fire_det.fix_batch.fuse_scale_cpu.pkl") inp_dtype = dtype.qint8(16.0 / 128.0) qat_net, inps = get_qat_net(inp_dtype, net, shape=(1, 3, 512, 512)) traced_module, tm_result = get_traced_module(qat_net, inps[0]) inp = inps[0].astype(inp_dtype) _test_convert_result(inp, traced_module, tm_result, max_err, require_quantize=False) def test_snpe_model_8f(): model = "8w16f_backbone.tm" net = mge.load(model) print(net.flatten().graph) inp_dtype = dtype.quint8(16.0 / 128.0, 128) inps = get_qat_inputs_quint8(inp_dtype, num_inp=2, shape=(1, 16, 384, 512)) tm_result = dict(zip(net.graph.outputs, net(*inps))) _test_convert_result( inps, net, tm_result, max_err, input_data_type="quint8", input_scales=inps[0].qparams.scale, input_zero_points=inps[0].qparams.zero_point, require_quantize=False, param_fake_quant=True, split_conv_relu=True, input_name=["inp", "prev"], )
[ "megengine.core.tensor.dtype.get_scale", "megengine.quantization.quantize.quantize_qat", "megengine.tensor", "megengine.core.tensor.dtype.get_zero_point", "megengine.core.tensor.dtype.qint8", "megengine.core.tensor.dtype.quint8", "megengine.module.quant_dequant.QuantStub", "megengine.quantization.utils.create_qparams", "megengine.module.Elemwise", "megengine.traced_module.fake_quant.FakeQuantize", "megengine.load" ]
[((1033, 1050), 'megengine.quantization.quantize.quantize_qat', 'quantize_qat', (['net'], {}), '(net)\n', (1045, 1050), False, 'from megengine.quantization.quantize import quantize_qat\n'), ((2023, 2034), 'test.utils.LinearOpr', 'LinearOpr', ([], {}), '()\n', (2032, 2034), False, 'from test.utils import LinearOpr\n'), ((2051, 2076), 'megengine.core.tensor.dtype.qint8', 'dtype.qint8', (['(16.0 / 128.0)'], {}), '(16.0 / 128.0)\n', (2062, 2076), False, 'from megengine.core.tensor import dtype\n'), ((3910, 3935), 'megengine.core.tensor.dtype.qint8', 'dtype.qint8', (['(16.0 / 128.0)'], {}), '(16.0 / 128.0)\n', (3921, 3935), False, 'from megengine.core.tensor import dtype\n'), ((4348, 4404), 'megengine.load', 'mge.load', (['"""models_fire_det.fix_batch.fuse_scale_cpu.pkl"""'], {}), "('models_fire_det.fix_batch.fuse_scale_cpu.pkl')\n", (4356, 4404), True, 'import megengine as mge\n'), ((4421, 4446), 'megengine.core.tensor.dtype.qint8', 'dtype.qint8', (['(16.0 / 128.0)'], {}), '(16.0 / 128.0)\n', (4432, 4446), False, 'from megengine.core.tensor import dtype\n'), ((4781, 4796), 'megengine.load', 'mge.load', (['model'], {}), '(model)\n', (4789, 4796), True, 'import megengine as mge\n'), ((4844, 4875), 'megengine.core.tensor.dtype.quint8', 'dtype.quint8', (['(16.0 / 128.0)', '(128)'], {}), '(16.0 / 128.0, 128)\n', (4856, 4875), False, 'from megengine.core.tensor import dtype\n'), ((1298, 1324), 'megengine.core.tensor.dtype.get_scale', 'dtype.get_scale', (['inp_dtype'], {}), '(inp_dtype)\n', (1313, 1324), False, 'from megengine.core.tensor import dtype\n'), ((1772, 1798), 'megengine.core.tensor.dtype.get_scale', 'dtype.get_scale', (['inp_dtype'], {}), '(inp_dtype)\n', (1787, 1798), False, 'from megengine.core.tensor import dtype\n'), ((1845, 1876), 'megengine.core.tensor.dtype.get_zero_point', 'dtype.get_zero_point', (['inp_dtype'], {}), '(inp_dtype)\n', (1865, 1876), False, 'from megengine.core.tensor import dtype\n'), ((2613, 2630), 'megengine.module.Elemwise', 'M.Elemwise', (['"""add"""'], {}), "('add')\n", (2623, 2630), True, 'import megengine.module as M\n'), ((2655, 2672), 'megengine.module.Elemwise', 'M.Elemwise', (['"""add"""'], {}), "('add')\n", (2665, 2672), True, 'import megengine.module as M\n'), ((2697, 2714), 'megengine.module.Elemwise', 'M.Elemwise', (['"""add"""'], {}), "('add')\n", (2707, 2714), True, 'import megengine.module as M\n'), ((2736, 2760), 'megengine.tensor', 'mge.tensor', (['(16.0 / 128.0)'], {}), '(16.0 / 128.0)\n', (2746, 2760), True, 'import megengine as mge\n'), ((2793, 2804), 'megengine.module.quant_dequant.QuantStub', 'QuantStub', ([], {}), '()\n', (2802, 2804), False, 'from megengine.module.quant_dequant import QuantStub\n'), ((2850, 2894), 'megengine.traced_module.fake_quant.FakeQuantize', 'FakeQuantize', (["_builtin_quant_dtypes['qint8']"], {}), "(_builtin_quant_dtypes['qint8'])\n", (2862, 2894), False, 'from megengine.traced_module.fake_quant import FakeQuantize\n'), ((3209, 3220), 'megengine.module.quant_dequant.QuantStub', 'QuantStub', ([], {}), '()\n', (3218, 3220), False, 'from megengine.module.quant_dequant import QuantStub\n'), ((3267, 3311), 'megengine.traced_module.fake_quant.FakeQuantize', 'FakeQuantize', (["_builtin_quant_dtypes['qint8']"], {}), "(_builtin_quant_dtypes['qint8'])\n", (3279, 3311), False, 'from megengine.traced_module.fake_quant import FakeQuantize\n'), ((1121, 1144), 'numpy.random.random', 'np.random.random', (['shape'], {}), '(shape)\n', (1137, 1144), True, 'import numpy as np\n'), ((1594, 1617), 'numpy.random.random', 'np.random.random', (['shape'], {}), '(shape)\n', (1610, 1617), True, 'import numpy as np\n'), ((2997, 3088), 'megengine.quantization.utils.create_qparams', 'create_qparams', ([], {'dtype_meta': "_builtin_quant_dtypes['qint8']", 'scale': 'scale', 'zero_point': 'None'}), "(dtype_meta=_builtin_quant_dtypes['qint8'], scale=scale,\n zero_point=None)\n", (3011, 3088), False, 'from megengine.quantization.utils import create_qparams\n'), ((3415, 3506), 'megengine.quantization.utils.create_qparams', 'create_qparams', ([], {'dtype_meta': "_builtin_quant_dtypes['qint8']", 'scale': 'scale', 'zero_point': 'None'}), "(dtype_meta=_builtin_quant_dtypes['qint8'], scale=scale,\n zero_point=None)\n", (3429, 3506), False, 'from megengine.quantization.utils import create_qparams\n'), ((3724, 3746), 'megengine.tensor', 'mge.tensor', (['self.data1'], {}), '(self.data1)\n', (3734, 3746), True, 'import megengine as mge\n'), ((2469, 2494), 'numpy.ones', 'np.ones', (['(2, 3, 224, 224)'], {}), '((2, 3, 224, 224))\n', (2476, 2494), True, 'import numpy as np\n'), ((2539, 2569), 'numpy.random.random', 'np.random.random', (['(1, 3, 1, 1)'], {}), '((1, 3, 1, 1))\n', (2555, 2569), True, 'import numpy as np\n'), ((3670, 3684), 'numpy.float32', 'np.float32', (['(10)'], {}), '(10)\n', (3680, 3684), True, 'import numpy as np\n')]
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import pickle import numpy as np import pytest from megengine.core.tensor.dtype import intb1, intb2, intb4 from megengine.tensor import Tensor def bit_define_test(bit, low_bit_type): max_value = (1 << bit) - 1 min_value = 1 - (1 << bit) a = np.array([i for i in range(min_value, max_value + 2, 2)], dtype=low_bit_type) for i in range(max_value + 1): np.testing.assert_equal(a[i], i * 2 - max_value) np.testing.assert_equal(str(a[i]), str(i * 2 - max_value)) with pytest.raises(ValueError): np.arange(min_value, max_value, dtype=low_bit_type) with pytest.raises(ValueError): np.arange(min_value - 2, max_value + 4, 2, dtype=low_bit_type) np.testing.assert_allclose( np.arange(min_value, 12, 2, dtype=low_bit_type), (np.arange((13 - min_value) // 2, dtype=np.int8) % (max_value + 1)) * 2 - max_value, ) np.testing.assert_allclose( np.arange(max_value, max_value - 20, -2, dtype=low_bit_type), (np.arange(max_value, max_value - 10, -1, dtype=np.int8) % (max_value + 1)) * 2 - max_value, ) def test_define(): bit_define_test(1, intb1) bit_define_test(2, intb2) bit_define_test(4, intb4) def _bit_cast_test(bit, low_bit_type): dtypes = [np.int8, np.int16, np.int32, np.float32, np.float64] max_value = (1 << bit) - 1 min_value = 1 - (1 << bit) for dtype in dtypes: np.testing.assert_allclose( np.arange(min_value, max_value + 2, 2, dtype=low_bit_type).astype(dtype), np.arange(min_value, max_value + 2, 2, dtype=dtype), ) with pytest.raises(ValueError): np.array([2, 1, -1], dtype=int).astype(low_bit_type) with pytest.raises(ValueError): np.array([min_value - 2, 1, max_value + 2], dtype=int).astype(low_bit_type) def test_cast(): _bit_cast_test(1, intb1) _bit_cast_test(2, intb2) _bit_cast_test(4, intb4) def _shared_nd_test(bit, low_bit_type): max_value = (1 << bit) - 1 min_value = 1 - (1 << bit) data = np.arange(min_value, max_value + 2, 2, dtype=low_bit_type) snd = Tensor(data, dtype=low_bit_type, device="xpux") np.testing.assert_allclose(snd.numpy(), range(min_value, max_value + 2, 2)) data = np.arange(min_value, max_value + 2, 4, dtype=low_bit_type) snd = Tensor(data, dtype=low_bit_type, device="xpux") np.testing.assert_allclose(snd.numpy(), range(min_value, max_value + 2, 4)) def test_shared_nd(): _shared_nd_test(1, intb1) _shared_nd_test(2, intb2) _shared_nd_test(4, intb4) def test_pickle(): x = np.ascontiguousarray(np.random.randint(2, size=8192) * 2 - 1, dtype=intb1) pkl = pickle.dumps(x, pickle.HIGHEST_PROTOCOL) y = pickle.loads(pkl) assert x.dtype is y.dtype np.testing.assert_allclose(x.astype(np.float32), y.astype(np.float32))
[ "megengine.tensor.Tensor" ]
[((2414, 2472), 'numpy.arange', 'np.arange', (['min_value', '(max_value + 2)', '(2)'], {'dtype': 'low_bit_type'}), '(min_value, max_value + 2, 2, dtype=low_bit_type)\n', (2423, 2472), True, 'import numpy as np\n'), ((2483, 2530), 'megengine.tensor.Tensor', 'Tensor', (['data'], {'dtype': 'low_bit_type', 'device': '"""xpux"""'}), "(data, dtype=low_bit_type, device='xpux')\n", (2489, 2530), False, 'from megengine.tensor import Tensor\n'), ((2623, 2681), 'numpy.arange', 'np.arange', (['min_value', '(max_value + 2)', '(4)'], {'dtype': 'low_bit_type'}), '(min_value, max_value + 2, 4, dtype=low_bit_type)\n', (2632, 2681), True, 'import numpy as np\n'), ((2692, 2739), 'megengine.tensor.Tensor', 'Tensor', (['data'], {'dtype': 'low_bit_type', 'device': '"""xpux"""'}), "(data, dtype=low_bit_type, device='xpux')\n", (2698, 2739), False, 'from megengine.tensor import Tensor\n'), ((3048, 3088), 'pickle.dumps', 'pickle.dumps', (['x', 'pickle.HIGHEST_PROTOCOL'], {}), '(x, pickle.HIGHEST_PROTOCOL)\n', (3060, 3088), False, 'import pickle\n'), ((3097, 3114), 'pickle.loads', 'pickle.loads', (['pkl'], {}), '(pkl)\n', (3109, 3114), False, 'import pickle\n'), ((734, 782), 'numpy.testing.assert_equal', 'np.testing.assert_equal', (['a[i]', '(i * 2 - max_value)'], {}), '(a[i], i * 2 - max_value)\n', (757, 782), True, 'import numpy as np\n'), ((860, 885), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (873, 885), False, 'import pytest\n'), ((895, 946), 'numpy.arange', 'np.arange', (['min_value', 'max_value'], {'dtype': 'low_bit_type'}), '(min_value, max_value, dtype=low_bit_type)\n', (904, 946), True, 'import numpy as np\n'), ((957, 982), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (970, 982), False, 'import pytest\n'), ((992, 1054), 'numpy.arange', 'np.arange', (['(min_value - 2)', '(max_value + 4)', '(2)'], {'dtype': 'low_bit_type'}), '(min_value - 2, max_value + 4, 2, dtype=low_bit_type)\n', (1001, 1054), True, 'import numpy as np\n'), ((1096, 1143), 'numpy.arange', 'np.arange', (['min_value', '(12)', '(2)'], {'dtype': 'low_bit_type'}), '(min_value, 12, 2, dtype=low_bit_type)\n', (1105, 1143), True, 'import numpy as np\n'), ((1293, 1353), 'numpy.arange', 'np.arange', (['max_value', '(max_value - 20)', '(-2)'], {'dtype': 'low_bit_type'}), '(max_value, max_value - 20, -2, dtype=low_bit_type)\n', (1302, 1353), True, 'import numpy as np\n'), ((1984, 2009), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (1997, 2009), False, 'import pytest\n'), ((2081, 2106), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (2094, 2106), False, 'import pytest\n'), ((1911, 1962), 'numpy.arange', 'np.arange', (['min_value', '(max_value + 2)', '(2)'], {'dtype': 'dtype'}), '(min_value, max_value + 2, 2, dtype=dtype)\n', (1920, 1962), True, 'import numpy as np\n'), ((2019, 2050), 'numpy.array', 'np.array', (['[2, 1, -1]'], {'dtype': 'int'}), '([2, 1, -1], dtype=int)\n', (2027, 2050), True, 'import numpy as np\n'), ((2116, 2170), 'numpy.array', 'np.array', (['[min_value - 2, 1, max_value + 2]'], {'dtype': 'int'}), '([min_value - 2, 1, max_value + 2], dtype=int)\n', (2124, 2170), True, 'import numpy as np\n'), ((2984, 3015), 'numpy.random.randint', 'np.random.randint', (['(2)'], {'size': '(8192)'}), '(2, size=8192)\n', (3001, 3015), True, 'import numpy as np\n'), ((1154, 1201), 'numpy.arange', 'np.arange', (['((13 - min_value) // 2)'], {'dtype': 'np.int8'}), '((13 - min_value) // 2, dtype=np.int8)\n', (1163, 1201), True, 'import numpy as np\n'), ((1364, 1419), 'numpy.arange', 'np.arange', (['max_value', '(max_value - 10)', '(-1)'], {'dtype': 'np.int8'}), '(max_value, max_value - 10, -1, dtype=np.int8)\n', (1373, 1419), True, 'import numpy as np\n'), ((1825, 1883), 'numpy.arange', 'np.arange', (['min_value', '(max_value + 2)', '(2)'], {'dtype': 'low_bit_type'}), '(min_value, max_value + 2, 2, dtype=low_bit_type)\n', (1834, 1883), True, 'import numpy as np\n')]
from sqlmodel import SQLModel, create_engine from sqlalchemy.orm import sessionmaker from sqlmodel.ext.asyncio.session import AsyncSession, AsyncEngine from app.settings import Settings settings = Settings() engine = AsyncEngine(create_engine(settings.ASYNC_DATABASE_URI, echo=True, future=True)) async def init_db(): async with engine.begin() as conn: # await conn.run_sync(SQLModel.metadata.drop_all) await conn.run_sync(SQLModel.metadata.create_all) async def get_session() -> AsyncSession: async_session = sessionmaker( engine, class_=AsyncSession, expire_on_commit=False ) async with async_session() as session: yield session
[ "sqlmodel.create_engine" ]
[((198, 208), 'app.settings.Settings', 'Settings', ([], {}), '()\n', (206, 208), False, 'from app.settings import Settings\n'), ((231, 297), 'sqlmodel.create_engine', 'create_engine', (['settings.ASYNC_DATABASE_URI'], {'echo': '(True)', 'future': '(True)'}), '(settings.ASYNC_DATABASE_URI, echo=True, future=True)\n', (244, 297), False, 'from sqlmodel import SQLModel, create_engine\n'), ((539, 604), 'sqlalchemy.orm.sessionmaker', 'sessionmaker', (['engine'], {'class_': 'AsyncSession', 'expire_on_commit': '(False)'}), '(engine, class_=AsyncSession, expire_on_commit=False)\n', (551, 604), False, 'from sqlalchemy.orm import sessionmaker\n')]
""" Biot problem with the non-penetration BC on the Walls boundary region. The non-penetration condition is enforced weakly using the Lagrange multiplier approach. There is also a rigid body movement constraint imposed on the Outlet region using the linear combination boundary conditions. """ from biot_npbc import cinc_simple, define_regions, get_pars def define(): from sfepy import data_dir filename = data_dir + '/meshes/3d/cylinder.mesh' output_dir = 'output' return define_input(filename, output_dir) def post_process(out, pb, state, extend=False): from sfepy.base.base import Struct dvel = pb.evaluate('de_diffusion_velocity.2.Omega( m.K, p )') out['dvel'] = Struct(name='output_data', var_name='p', mode='cell', data=dvel, dofs=None) stress = pb.evaluate('de_cauchy_stress.2.Omega( m.D, u )') out['cauchy_stress'] = Struct(name='output_data', var_name='u', mode='cell', data=stress, dofs=None) return out def define_input(filename, output_dir): filename_mesh = filename options = { 'output_dir' : output_dir, 'output_format' : 'vtk', 'post_process_hook' : 'post_process', ## 'file_per_var' : True, 'ls' : 'ls', 'nls' : 'newton', } functions = { 'cinc_simple0' : (lambda coors, domain: cinc_simple(coors, 0),), 'cinc_simple1' : (lambda coors, domain: cinc_simple(coors, 1),), 'cinc_simple2' : (lambda coors, domain: cinc_simple(coors, 2),), 'get_pars' : (lambda ts, coors, mode=None, region=None, ig=None: get_pars(ts, coors, mode, region, ig, output_dir=output_dir),), } regions, dim = define_regions(filename_mesh) fields = { 'displacement': ('real', 'vector', 'Omega', 1), 'pressure': ('real', 'scalar', 'Omega', 1), 'multiplier': ('real', 'scalar', ('Walls', 'surface'), 1), } variables = { 'u' : ('unknown field', 'displacement', 0), 'v' : ('test field', 'displacement', 'u'), 'p' : ('unknown field', 'pressure', 1), 'q' : ('test field', 'pressure', 'p'), 'ul' : ('unknown field', 'multiplier', 2), 'vl' : ('test field', 'multiplier', 'ul'), } ebcs = { 'inlet' : ('Inlet', {'p.0' : 1.0, 'u.all' : 0.0}), 'outlet' : ('Outlet', {'p.0' : -1.0}), } lcbcs = { 'rigid' : ('Outlet', {'u.all' : 'rigid'}), } materials = { 'm' : 'get_pars', } equations = { 'eq_1' : """dw_lin_elastic.2.Omega( m.D, v, u ) - dw_biot.2.Omega( m.alpha, v, p ) + dw_non_penetration.2.Walls( v, ul ) = 0""", 'eq_2' : """dw_biot.2.Omega( m.alpha, u, q ) + dw_diffusion.2.Omega( m.K, q, p ) = 0""", 'eq_3' : """dw_non_penetration.2.Walls( u, vl ) = 0""", } solvers = { 'ls' : ('ls.scipy_direct', {}), 'newton' : ('nls.newton', {}), } return locals()
[ "sfepy.base.base.Struct" ]
[((699, 774), 'sfepy.base.base.Struct', 'Struct', ([], {'name': '"""output_data"""', 'var_name': '"""p"""', 'mode': '"""cell"""', 'data': 'dvel', 'dofs': 'None'}), "(name='output_data', var_name='p', mode='cell', data=dvel, dofs=None)\n", (705, 774), False, 'from sfepy.base.base import Struct\n'), ((891, 968), 'sfepy.base.base.Struct', 'Struct', ([], {'name': '"""output_data"""', 'var_name': '"""u"""', 'mode': '"""cell"""', 'data': 'stress', 'dofs': 'None'}), "(name='output_data', var_name='u', mode='cell', data=stress, dofs=None)\n", (897, 968), False, 'from sfepy.base.base import Struct\n'), ((1838, 1867), 'biot_npbc.define_regions', 'define_regions', (['filename_mesh'], {}), '(filename_mesh)\n', (1852, 1867), False, 'from biot_npbc import cinc_simple, define_regions, get_pars\n'), ((1400, 1421), 'biot_npbc.cinc_simple', 'cinc_simple', (['coors', '(0)'], {}), '(coors, 0)\n', (1411, 1421), False, 'from biot_npbc import cinc_simple, define_regions, get_pars\n'), ((1499, 1520), 'biot_npbc.cinc_simple', 'cinc_simple', (['coors', '(1)'], {}), '(coors, 1)\n', (1510, 1520), False, 'from biot_npbc import cinc_simple, define_regions, get_pars\n'), ((1598, 1619), 'biot_npbc.cinc_simple', 'cinc_simple', (['coors', '(2)'], {}), '(coors, 2)\n', (1609, 1619), False, 'from biot_npbc import cinc_simple, define_regions, get_pars\n'), ((1718, 1778), 'biot_npbc.get_pars', 'get_pars', (['ts', 'coors', 'mode', 'region', 'ig'], {'output_dir': 'output_dir'}), '(ts, coors, mode, region, ig, output_dir=output_dir)\n', (1726, 1778), False, 'from biot_npbc import cinc_simple, define_regions, get_pars\n')]
from typing import Optional from sqlalchemy import create_engine, select from sqlalchemy.orm import Session from sqlmodel import Field, SQLModel def test_allow_instantiation_without_arguments(clear_sqlmodel): class Item(SQLModel): id: Optional[int] = Field(default=None, primary_key=True) name: str description: Optional[str] = None class Config: table = True engine = create_engine("sqlite:///:memory:") SQLModel.metadata.create_all(engine) with Session(engine) as db: item = Item() item.name = "Rick" db.add(item) db.commit() result = db.execute(select(Item)).scalars().all() assert len(result) == 1 assert isinstance(item.id, int) SQLModel.metadata.clear()
[ "sqlmodel.SQLModel.metadata.create_all", "sqlmodel.Field", "sqlmodel.SQLModel.metadata.clear" ]
[((426, 461), 'sqlalchemy.create_engine', 'create_engine', (['"""sqlite:///:memory:"""'], {}), "('sqlite:///:memory:')\n", (439, 461), False, 'from sqlalchemy import create_engine, select\n'), ((466, 502), 'sqlmodel.SQLModel.metadata.create_all', 'SQLModel.metadata.create_all', (['engine'], {}), '(engine)\n', (494, 502), False, 'from sqlmodel import Field, SQLModel\n'), ((751, 776), 'sqlmodel.SQLModel.metadata.clear', 'SQLModel.metadata.clear', ([], {}), '()\n', (774, 776), False, 'from sqlmodel import Field, SQLModel\n'), ((266, 303), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'primary_key': '(True)'}), '(default=None, primary_key=True)\n', (271, 303), False, 'from sqlmodel import Field, SQLModel\n'), ((512, 527), 'sqlalchemy.orm.Session', 'Session', (['engine'], {}), '(engine)\n', (519, 527), False, 'from sqlalchemy.orm import Session\n'), ((653, 665), 'sqlalchemy.select', 'select', (['Item'], {}), '(Item)\n', (659, 665), False, 'from sqlalchemy import create_engine, select\n')]
import math import megengine.module as M import megengine.functional as F class PositionEncodingSine(M.Module): """ This is a sinusoidal position encoding that generalized to 2-dimensional images """ def __init__(self, d_model, max_shape=(256, 256)): """ Args: max_shape (tuple): for 1/8 featmap, the max length of 256 corresponds to 2048 pixels """ super().__init__() pe = F.zeros((d_model, *max_shape)) y_position = F.expand_dims(F.cumsum(F.ones(max_shape), 0), 0) x_position = F.expand_dims(F.cumsum(F.ones(max_shape), 1), 0) div_term = F.exp( F.arange(0, d_model // 2, 2) * (-math.log(10000.0) / d_model // 2) ) div_term = F.expand_dims(div_term, (1, 2)) # [C//4, 1, 1] pe[0::4, :, :] = F.sin(x_position * div_term) pe[1::4, :, :] = F.cos(x_position * div_term) pe[2::4, :, :] = F.sin(y_position * div_term) pe[3::4, :, :] = F.cos(y_position * div_term) self.pe = F.expand_dims(pe, 0) def forward(self, x): """ Args: x: [N, C, H, W] """ return x + self.pe[:, :, : x.shape[2], : x.shape[3]].to(x.device)
[ "megengine.functional.arange", "megengine.functional.cos", "megengine.functional.zeros", "megengine.functional.ones", "megengine.functional.expand_dims", "megengine.functional.sin" ]
[((446, 476), 'megengine.functional.zeros', 'F.zeros', (['(d_model, *max_shape)'], {}), '((d_model, *max_shape))\n', (453, 476), True, 'import megengine.functional as F\n'), ((751, 782), 'megengine.functional.expand_dims', 'F.expand_dims', (['div_term', '(1, 2)'], {}), '(div_term, (1, 2))\n', (764, 782), True, 'import megengine.functional as F\n'), ((824, 852), 'megengine.functional.sin', 'F.sin', (['(x_position * div_term)'], {}), '(x_position * div_term)\n', (829, 852), True, 'import megengine.functional as F\n'), ((878, 906), 'megengine.functional.cos', 'F.cos', (['(x_position * div_term)'], {}), '(x_position * div_term)\n', (883, 906), True, 'import megengine.functional as F\n'), ((932, 960), 'megengine.functional.sin', 'F.sin', (['(y_position * div_term)'], {}), '(y_position * div_term)\n', (937, 960), True, 'import megengine.functional as F\n'), ((986, 1014), 'megengine.functional.cos', 'F.cos', (['(y_position * div_term)'], {}), '(y_position * div_term)\n', (991, 1014), True, 'import megengine.functional as F\n'), ((1034, 1054), 'megengine.functional.expand_dims', 'F.expand_dims', (['pe', '(0)'], {}), '(pe, 0)\n', (1047, 1054), True, 'import megengine.functional as F\n'), ((521, 538), 'megengine.functional.ones', 'F.ones', (['max_shape'], {}), '(max_shape)\n', (527, 538), True, 'import megengine.functional as F\n'), ((591, 608), 'megengine.functional.ones', 'F.ones', (['max_shape'], {}), '(max_shape)\n', (597, 608), True, 'import megengine.functional as F\n'), ((655, 683), 'megengine.functional.arange', 'F.arange', (['(0)', '(d_model // 2)', '(2)'], {}), '(0, d_model // 2, 2)\n', (663, 683), True, 'import megengine.functional as F\n'), ((688, 705), 'math.log', 'math.log', (['(10000.0)'], {}), '(10000.0)\n', (696, 705), False, 'import math\n')]
from typing import Optional from sqlmodel import Field, SQLModel class Example(SQLModel, table=True): """测试一下""" id: Optional[int] = Field(default=None, primary_key=True) message: str
[ "sqlmodel.Field" ]
[((145, 182), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'primary_key': '(True)'}), '(default=None, primary_key=True)\n', (150, 182), False, 'from sqlmodel import Field, SQLModel\n')]
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. from io import BytesIO import numpy as np from helpers import MLP, graph_mode import megengine.functional as F from megengine import load, optimizer, save from megengine.core import TensorDict, tensor from megengine.jit import trace from megengine.test import assertTensorClose def get_input(): batch_size, input_dim = 2, 28 data_shape, label_shape = (batch_size, input_dim), (batch_size,) data, label = tensor(dtype=np.float32), tensor(dtype=np.int32) data.set_value(np.random.random(data_shape).astype(np.float32)) label.set_value(np.random.randint(0, 10, label_shape)) return data, data_shape, label, label_shape @graph_mode("eager", "static") def test_optimizer_serialization(): data, data_shape, label, label_shape = get_input() mlp = MLP() opt = optimizer.SGD(mlp.parameters(), lr=0.01, momentum=0.9) slots = TensorDict() for param in mlp.parameters(): slots[param] = np.zeros(param.shape).astype(np.float32) pred = mlp(data) loss = F.square_loss(pred, label.reshape(-1, 1)) opt.zero_grad() opt.backward(loss) opt.step() for param in mlp.parameters(): slots[param] = slots[param] * 0.9 + param.grad.numpy() with BytesIO() as fout: save(opt.state_dict(), fout) fout.seek(0) state_dict = load(fout) opt1 = optimizer.SGD(mlp.parameters(), lr=0.02, momentum=0.8) opt1.load_state_dict(state_dict) data.set_value(np.random.random(data_shape).astype(np.float32)) label.set_value(np.random.randint(0, 10, label_shape)) pred = mlp(data) loss = F.square_loss(pred, label.reshape(-1, 1)) opt1.zero_grad() opt1.backward(loss) orig_params = TensorDict() for param in mlp.parameters(): orig_params[param] = np.copy(param.numpy()) opt1.step() for param in mlp.parameters(): orig_param = orig_params[param] slots[param] = slots[param] * 0.9 + param.grad.numpy() assertTensorClose(param.numpy(), orig_param - 0.01 * slots[param]) def _test_optimizer(opt_str, test_case, check_class, update_lr=False): iter_num = 3 data, data_shape, label, label_shape = get_input() net = MLP() opt = getattr(optimizer, opt_str)(net.parameters(), **test_case) check_func = check_class(net, **test_case) step = 0 # eager graph for i in range(iter_num): if update_lr and i == 1: # change learning rate for group in opt.param_groups: group["lr"] += 0.01 check_func.lr += 0.01 data.set_value(np.random.random(data_shape).astype(np.float32)) label.set_value(np.random.randint(0, 10, label_shape)) pred = net(data) loss = F.square_loss(pred, label.reshape(-1, 1)) opt.zero_grad() opt.backward(loss) ori_params = TensorDict() for param in net.parameters(): ori_params[param] = np.copy(param.numpy()) opt.step() step += 1 check_func(ori_params, net.parameters(), step) # static graph @trace def train_func(data, label): pred = net(data) loss = F.square_loss(pred, label.reshape(-1, 1)) opt.backward(loss) for i in range(iter_num): if update_lr and i == 1: # change learning rate for group in opt.param_groups: group["lr"] += 0.01 check_func.lr += 0.01 opt.zero_grad() ori_params = TensorDict() for param in net.parameters(): ori_params[param] = np.copy(param.numpy()) train_func( np.random.random(data_shape).astype(np.float32), np.random.randint(0, 10, label_shape).astype(np.int32), ) opt.step() step += 1 check_func(ori_params, net.parameters(), step) def test_sgd(): class CheckValue: def __init__(self, net, **kwarg): self.slots = TensorDict() for param in net.parameters(): self.slots[param] = np.zeros(param.shape).astype(np.float32) for k, v in kwarg.items(): setattr(self, k, v) def __call__(self, ori_params, new_params, step): for param in new_params: grad = param.grad.numpy() if hasattr(self, "momentum"): self.slots[param] = grad + self.slots[param] * self.momentum delta = -self.lr * self.slots[param] else: delta = -self.lr * grad assertTensorClose(param.numpy(), ori_params[param] + delta) cases = [ {"momentum": 0.9, "lr": 0.01}, # SGD with momentum {"lr": 0.01}, # simple SGD {"weight_decay": 0.1, "lr": 0.01}, # with weight_decay ] for case in cases: _test_optimizer("SGD", case, CheckValue) _test_optimizer("SGD", case, CheckValue, update_lr=True) def test_adam(): class CheckValue: def __init__(self, net, **kwarg): self.m_slots = TensorDict() self.v_slots = TensorDict() for param in net.parameters(): self.m_slots[param] = np.zeros(param.shape).astype(np.float32) self.v_slots[param] = np.zeros(param.shape).astype(np.float32) for k, v in kwarg.items(): setattr(self, k, v) def __call__(self, ori_params, new_params, step): for param in new_params: grad = param.grad.numpy() m = self.m_slots[param] v = self.v_slots[param] m *= self.betas[0] m += (1 - self.betas[0]) * grad v *= self.betas[1] v += (1 - self.betas[1]) * grad * grad delta = (m / (1 - self.betas[0] ** step)) / ( np.sqrt(v / (1 - self.betas[1] ** step)) + self.eps ) assertTensorClose(param.numpy(), ori_params[param] - self.lr * delta) cases = [ {"betas": (0.8, 0.9), "eps": 1e-04, "lr": 0.01}, { "betas": (0.8, 0.9), "eps": 1e-04, "lr": 0.01, "weight_decay": 0.1, }, # with weight_decay ] for case in cases: _test_optimizer("Adam", case, CheckValue) _test_optimizer("Adam", case, CheckValue, update_lr=True) def test_adagrad(): class CheckValue: def __init__(self, net, **kwarg): self.s_slots = TensorDict() for param in net.parameters(): self.s_slots[param] = np.zeros(param.shape).astype(np.float32) for k, v in kwarg.items(): setattr(self, k, v) def __call__(self, ori_params, new_params, step): for param in new_params: grad = param.grad.numpy() self.s_slots[param] += grad ** 2 delta = grad / (self.s_slots[param] + self.eps) ** 0.5 delta *= -(self.lr / (1 + (step - 1) * self.lr_decay)) assertTensorClose(param.numpy(), ori_params[param] + delta) cases = [ {"lr": 0.01, "eps": 1e-06, "lr_decay": 0.01}, {"lr": 0.01, "eps": 1e-06, "lr_decay": 0.0}, # without lr_decay { "lr": 0.01, "eps": 1e-06, "lr_decay": 0.01, "weight_decay": 0.1, }, # with weight_decay ] for case in cases: _test_optimizer("Adagrad", case, CheckValue) _test_optimizer("Adagrad", case, CheckValue, update_lr=True) def test_adadelta(): class CheckValue: def __init__(self, net, **kwarg): self.s_slots = TensorDict() self.a_slots = TensorDict() for param in net.parameters(): self.s_slots[param] = np.zeros(param.shape).astype(np.float32) self.a_slots[param] = np.zeros(param.shape).astype(np.float32) for k, v in kwarg.items(): setattr(self, k, v) def __call__(self, ori_params, new_params, step): for param in new_params: grad = param.grad.numpy() self.s_slots[param] = self.s_slots[param] * self.rho + grad ** 2 * ( 1 - self.rho ) delta = ( grad * ((self.a_slots[param] + self.eps) ** 0.5) / (self.s_slots[param] + self.eps) ** 0.5 ) self.a_slots[param] = self.a_slots[param] * self.rho + delta ** 2 * ( 1 - self.rho ) delta *= -self.lr assertTensorClose(param.numpy(), ori_params[param] + delta) cases = [ {"lr": 1.0, "eps": 1e-06, "rho": 0.9}, {"lr": 1.0, "eps": 1e-06, "rho": 0.9, "weight_decay": 0.9}, # with weight_decay ] for case in cases: _test_optimizer("Adadelta", case, CheckValue) _test_optimizer("Adadelta", case, CheckValue, update_lr=True)
[ "megengine.core.TensorDict", "megengine.load", "megengine.core.tensor" ]
[((1024, 1053), 'helpers.graph_mode', 'graph_mode', (['"""eager"""', '"""static"""'], {}), "('eager', 'static')\n", (1034, 1053), False, 'from helpers import MLP, graph_mode\n'), ((1155, 1160), 'helpers.MLP', 'MLP', ([], {}), '()\n', (1158, 1160), False, 'from helpers import MLP, graph_mode\n'), ((1238, 1250), 'megengine.core.TensorDict', 'TensorDict', ([], {}), '()\n', (1248, 1250), False, 'from megengine.core import TensorDict, tensor\n'), ((2617, 2622), 'helpers.MLP', 'MLP', ([], {}), '()\n', (2620, 2622), False, 'from helpers import MLP, graph_mode\n'), ((797, 821), 'megengine.core.tensor', 'tensor', ([], {'dtype': 'np.float32'}), '(dtype=np.float32)\n', (803, 821), False, 'from megengine.core import TensorDict, tensor\n'), ((823, 845), 'megengine.core.tensor', 'tensor', ([], {'dtype': 'np.int32'}), '(dtype=np.int32)\n', (829, 845), False, 'from megengine.core import TensorDict, tensor\n'), ((934, 971), 'numpy.random.randint', 'np.random.randint', (['(0)', '(10)', 'label_shape'], {}), '(0, 10, label_shape)\n', (951, 971), True, 'import numpy as np\n'), ((1591, 1600), 'io.BytesIO', 'BytesIO', ([], {}), '()\n', (1598, 1600), False, 'from io import BytesIO\n'), ((1689, 1699), 'megengine.load', 'load', (['fout'], {}), '(fout)\n', (1693, 1699), False, 'from megengine import load, optimizer, save\n'), ((2104, 2116), 'megengine.core.TensorDict', 'TensorDict', ([], {}), '()\n', (2114, 2116), False, 'from megengine.core import TensorDict, tensor\n'), ((3261, 3273), 'megengine.core.TensorDict', 'TensorDict', ([], {}), '()\n', (3271, 3273), False, 'from megengine.core import TensorDict, tensor\n'), ((3879, 3891), 'megengine.core.TensorDict', 'TensorDict', ([], {}), '()\n', (3889, 3891), False, 'from megengine.core import TensorDict, tensor\n'), ((1908, 1945), 'numpy.random.randint', 'np.random.randint', (['(0)', '(10)', 'label_shape'], {}), '(0, 10, label_shape)\n', (1925, 1945), True, 'import numpy as np\n'), ((3068, 3105), 'numpy.random.randint', 'np.random.randint', (['(0)', '(10)', 'label_shape'], {}), '(0, 10, label_shape)\n', (3085, 3105), True, 'import numpy as np\n'), ((4344, 4356), 'megengine.core.TensorDict', 'TensorDict', ([], {}), '()\n', (4354, 4356), False, 'from megengine.core import TensorDict, tensor\n'), ((5444, 5456), 'megengine.core.TensorDict', 'TensorDict', ([], {}), '()\n', (5454, 5456), False, 'from megengine.core import TensorDict, tensor\n'), ((5484, 5496), 'megengine.core.TensorDict', 'TensorDict', ([], {}), '()\n', (5494, 5496), False, 'from megengine.core import TensorDict, tensor\n'), ((6890, 6902), 'megengine.core.TensorDict', 'TensorDict', ([], {}), '()\n', (6900, 6902), False, 'from megengine.core import TensorDict, tensor\n'), ((8067, 8079), 'megengine.core.TensorDict', 'TensorDict', ([], {}), '()\n', (8077, 8079), False, 'from megengine.core import TensorDict, tensor\n'), ((8107, 8119), 'megengine.core.TensorDict', 'TensorDict', ([], {}), '()\n', (8117, 8119), False, 'from megengine.core import TensorDict, tensor\n'), ((865, 893), 'numpy.random.random', 'np.random.random', (['data_shape'], {}), '(data_shape)\n', (881, 893), True, 'import numpy as np\n'), ((1309, 1330), 'numpy.zeros', 'np.zeros', (['param.shape'], {}), '(param.shape)\n', (1317, 1330), True, 'import numpy as np\n'), ((1835, 1863), 'numpy.random.random', 'np.random.random', (['data_shape'], {}), '(data_shape)\n', (1851, 1863), True, 'import numpy as np\n'), ((2995, 3023), 'numpy.random.random', 'np.random.random', (['data_shape'], {}), '(data_shape)\n', (3011, 3023), True, 'import numpy as np\n'), ((4018, 4046), 'numpy.random.random', 'np.random.random', (['data_shape'], {}), '(data_shape)\n', (4034, 4046), True, 'import numpy as np\n'), ((4079, 4116), 'numpy.random.randint', 'np.random.randint', (['(0)', '(10)', 'label_shape'], {}), '(0, 10, label_shape)\n', (4096, 4116), True, 'import numpy as np\n'), ((4436, 4457), 'numpy.zeros', 'np.zeros', (['param.shape'], {}), '(param.shape)\n', (4444, 4457), True, 'import numpy as np\n'), ((5578, 5599), 'numpy.zeros', 'np.zeros', (['param.shape'], {}), '(param.shape)\n', (5586, 5599), True, 'import numpy as np\n'), ((5657, 5678), 'numpy.zeros', 'np.zeros', (['param.shape'], {}), '(param.shape)\n', (5665, 5678), True, 'import numpy as np\n'), ((6246, 6286), 'numpy.sqrt', 'np.sqrt', (['(v / (1 - self.betas[1] ** step))'], {}), '(v / (1 - self.betas[1] ** step))\n', (6253, 6286), True, 'import numpy as np\n'), ((6984, 7005), 'numpy.zeros', 'np.zeros', (['param.shape'], {}), '(param.shape)\n', (6992, 7005), True, 'import numpy as np\n'), ((8201, 8222), 'numpy.zeros', 'np.zeros', (['param.shape'], {}), '(param.shape)\n', (8209, 8222), True, 'import numpy as np\n'), ((8280, 8301), 'numpy.zeros', 'np.zeros', (['param.shape'], {}), '(param.shape)\n', (8288, 8301), True, 'import numpy as np\n')]
from sfepy.base.base import Struct, output, insert_as_static_method, \ pause, debug class Application( Struct ): """Base class for applications. Subclasses should implement: __init__(), call(). Automates parametric studies, see parametrize(). """ def __init__( self, conf, options, output_prefix, **kwargs ): Struct.__init__( self, conf = conf, options = options, output_prefix = output_prefix ) output.prefix = self.output_prefix self.restore() def setup_options( self ): pass def __call__( self, **kwargs ): """ This is either call_basic() or call_parametrized(). """ pass def call_basic( self, **kwargs ): return self.call( **kwargs ) def call_parametrized( self, **kwargs ): generator = self.parametric_hook( self.problem ) for aux in generator: if isinstance( aux, tuple ) and (len( aux ) == 2): problem, container = aux mode = 'coroutine' else: problem = aux mode = 'simple' self.problem = problem generator_prefix = output.prefix output.prefix = self.output_prefix # Restore default. """Application options have to be re-processed here as they can change in the parametric hook.""" self.setup_options() out = self.call( **kwargs ) output.prefix = generator_prefix if mode == 'coroutine': # Pass application output to the generator. container.append( out ) generator.next() def restore( self ): """Removes parametric_hook, restores __call__ to call_basic.""" self.parametric_hook = None insert_as_static_method( self.__class__, '__call__', self.call_basic ) def parametrize( self, parametric_hook ): """Adds parametric_hook, sets __call__ to call_parametrized.""" if parametric_hook is None: return self.parametric_hook = parametric_hook insert_as_static_method( self.__class__, '__call__', self.call_parametrized )
[ "sfepy.base.base.insert_as_static_method", "sfepy.base.base.Struct.__init__" ]
[((345, 423), 'sfepy.base.base.Struct.__init__', 'Struct.__init__', (['self'], {'conf': 'conf', 'options': 'options', 'output_prefix': 'output_prefix'}), '(self, conf=conf, options=options, output_prefix=output_prefix)\n', (360, 423), False, 'from sfepy.base.base import Struct, output, insert_as_static_method, pause, debug\n'), ((1897, 1965), 'sfepy.base.base.insert_as_static_method', 'insert_as_static_method', (['self.__class__', '"""__call__"""', 'self.call_basic'], {}), "(self.__class__, '__call__', self.call_basic)\n", (1920, 1965), False, 'from sfepy.base.base import Struct, output, insert_as_static_method, pause, debug\n'), ((2227, 2302), 'sfepy.base.base.insert_as_static_method', 'insert_as_static_method', (['self.__class__', '"""__call__"""', 'self.call_parametrized'], {}), "(self.__class__, '__call__', self.call_parametrized)\n", (2250, 2302), False, 'from sfepy.base.base import Struct, output, insert_as_static_method, pause, debug\n')]
import time import numpy as nm import warnings import scipy.sparse as sps warnings.simplefilter('ignore', sps.SparseEfficiencyWarning) from sfepy.base.base import output, get_default, assert_, try_imports, Struct from sfepy.solvers.solvers import make_get_conf, LinearSolver def standard_call(call): """ Decorator handling argument preparation and timing for linear solvers. """ def _standard_call(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): tt = time.clock() conf = get_default(conf, self.conf) mtx = get_default(mtx, self.mtx) status = get_default(status, self.status) assert_(mtx.shape[0] == mtx.shape[1] == rhs.shape[0]) if x0 is not None: assert_(x0.shape[0] == rhs.shape[0]) result = call(self, rhs, x0, conf, eps_a, eps_r, i_max, mtx, status, **kwargs) ttt = time.clock() - tt if status is not None: status['time'] = ttt return result return _standard_call class ScipyDirect(LinearSolver): name = 'ls.scipy_direct' @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_1100 = { 'name' : 'dls1100', 'kind' : 'ls.scipy_direct', 'method' : 'superlu', 'presolve' : False, 'warn' : True, } """ get = make_get_conf(conf, kwargs) common = LinearSolver.process_conf(conf) return Struct(method=get('method', 'auto'), presolve=get('presolve', False), warn=get('warn', True), i_max=None, eps_a=None, eps_r=None) + common def __init__(self, conf, **kwargs): LinearSolver.__init__(self, conf, **kwargs) um = self.sls = None aux = try_imports(['import scipy.linsolve as sls', 'import scipy.splinalg.dsolve as sls', 'import scipy.sparse.linalg.dsolve as sls'], 'cannot import scipy sparse direct solvers!') self.sls = aux['sls'] aux = try_imports(['import scipy.linsolve.umfpack as um', 'import scipy.splinalg.dsolve.umfpack as um', 'import scipy.sparse.linalg.dsolve.umfpack as um', 'import scikits.umfpack as um']) if 'um' in aux: um = aux['um'] if um is not None: is_umfpack = hasattr(um, 'UMFPACK_OK') else: is_umfpack = False method = self.conf.method if method == 'superlu': self.sls.use_solver(useUmfpack=False) elif method == 'umfpack': if not is_umfpack and self.conf.warn: output('umfpack not available, using superlu!') elif method != 'auto': raise ValueError('uknown solution method! (%s)' % method) if method != 'superlu' and is_umfpack: self.sls.use_solver(useUmfpack=True, assumeSortedIndices=True) self.solve = None if self._presolve() and hasattr(self, 'mtx'): if self.mtx is not None: self.solve = self.sls.factorized(self.mtx) @standard_call def __call__(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): if self.solve is not None: # Matrix is already prefactorized. return self.solve(rhs) else: return self.sls.spsolve(mtx, rhs) def _presolve(self): if hasattr(self, 'presolve'): return self.presolve else: return self.conf.presolve class Umfpack(ScipyDirect): """This class stays for compatability with old input files. Use ScipyDirect isntead.""" name = 'ls.umfpack' def __init__(self, conf, **kwargs): conf.method = 'umfpack' ScipyDirect.__init__(self, conf, **kwargs) ## # c: 22.02.2008 class ScipyIterative( LinearSolver ): """ Interface to SciPy iterative solvers. Notes ----- The `eps_r` tolerance is both absolute and relative - the solvers stop when either the relative or the absolute residual is below it. A preconditioner can be anything that the SciPy solvers accept (sparse matrix, dense matrix, LinearOperator). """ name = 'ls.scipy_iterative' @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_110 = { 'name' : 'ls110', 'kind' : 'ls.scipy_iterative', 'method' : 'cg', 'precond' : None, 'callback' : None, 'i_max' : 1000, 'eps_r' : 1e-12, } """ get = make_get_conf(conf, kwargs) common = LinearSolver.process_conf(conf) return Struct(method=get('method', 'cg'), precond=get('precond', None), callback=get('callback', None), i_max=get('i_max', 100), eps_a=None, eps_r=get('eps_r', 1e-8)) + common def __init__(self, conf, **kwargs): import scipy.sparse.linalg.isolve as la LinearSolver.__init__(self, conf, **kwargs) try: solver = getattr( la, self.conf.method ) except AttributeError: output( 'scipy solver %s does not exist!' % self.conf.method ) output( 'using cg instead' ) solver = la.cg self.solver = solver self.converged_reasons = { 0 : 'successful exit', 1 : 'number of iterations', -1 : 'illegal input or breakdown', } @standard_call def __call__(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): eps_r = get_default(eps_r, self.conf.eps_r) i_max = get_default(i_max, self.conf.i_max) precond = get_default(kwargs.get('precond', None), self.conf.precond) callback = get_default(kwargs.get('callback', None), self.conf.callback) if conf.method == 'qmr': prec_args = {'M1' : precond, 'M2' : precond} else: prec_args = {'M' : precond} sol, info = self.solver(mtx, rhs, x0=x0, tol=eps_r, maxiter=i_max, callback=callback, **prec_args) output('%s convergence: %s (%s)' % (self.conf.method, info, self.converged_reasons[nm.sign(info)])) return sol ## # c: 02.05.2008, r: 02.05.2008 class PyAMGSolver( LinearSolver ): """ Interface to PyAMG solvers. Notes ----- Uses relative convergence tolerance, i.e. eps_r is scaled by `||b||`. """ name = 'ls.pyamg' @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_102 = { 'name' : 'ls102', 'kind' : 'ls.pyamg', 'method' : 'smoothed_aggregation_solver', 'accel' : 'cg' 'eps_r' : 1e-12, } """ get = make_get_conf(conf, kwargs) common = LinearSolver.process_conf(conf) return Struct(method=get('method', 'smoothed_aggregation_solver'), accel = get('accel', None), i_max=None, eps_a=None, eps_r=get('eps_r', 1e-8)) + common ## # c: 02.05.2008, r: 02.05.2008 def __init__( self, conf, **kwargs ): try: import pyamg except ImportError: msg = 'cannot import pyamg!' raise ImportError( msg ) LinearSolver.__init__(self, conf, mg=None, **kwargs) try: solver = getattr( pyamg, self.conf.method ) except AttributeError: output( 'pyamg.%s does not exist!' % self.conf.method ) output( 'using pyamg.smoothed_aggregation_solver instead' ) solver = pyamg.smoothed_aggregation_solver self.solver = solver if hasattr( self, 'mtx' ): if self.mtx is not None: self.mg = self.solver( self.mtx ) @standard_call def __call__(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): eps_r = get_default(eps_r, self.conf.eps_r) if (self.mg is None) or (mtx is not self.mtx): self.mg = self.solver(mtx) self.mtx = mtx sol = self.mg.solve(rhs, x0=x0, accel=conf.accel, tol=eps_r) return sol class PETScKrylovSolver( LinearSolver ): """ PETSc Krylov subspace solver. The solver and preconditioner types are set upon the solver object creation. Tolerances can be overriden when called by passing a `conf` object. Notes ----- Convergence is reached when `rnorm < max(eps_r * rnorm_0, eps_a)`, where, in PETSc, `rnorm` is by default the norm of *preconditioned* residual. """ name = 'ls.petsc' _precond_sides = {None : None, 'left' : 0, 'right' : 1, 'symmetric' : 2} @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_120 = { 'name' : 'ls120', 'kind' : 'ls.petsc', 'method' : 'cg', # ksp_type 'precond' : 'icc', # pc_type 'precond_side' : 'left', # ksp_pc_side 'eps_a' : 1e-12, # abstol 'eps_r' : 1e-12, # rtol 'eps_d' : 1e5, # divtol 'i_max' : 1000, # maxits } """ get = make_get_conf(conf, kwargs) common = LinearSolver.process_conf(conf) return Struct(method=get('method', 'cg'), precond=get('precond', 'icc'), precond_side=get('precond_side', None), i_max=get('i_max', 100), eps_a=get('eps_a', 1e-8), eps_r=get('eps_r', 1e-8), eps_d=get('eps_d', 1e5)) + common def __init__( self, conf, **kwargs ): try: import petsc4py petsc4py.init([]) from petsc4py import PETSc except ImportError: msg = 'cannot import petsc4py!' raise ImportError( msg ) LinearSolver.__init__(self, conf, petsc=PETSc, pmtx=None, **kwargs) ksp = PETSc.KSP().create() ksp.setType( self.conf.method ) ksp.getPC().setType( self.conf.precond ) side = self._precond_sides[self.conf.precond_side] if side is not None: ksp.setPCSide(side) self.ksp = ksp self.converged_reasons = {} for key, val in ksp.ConvergedReason.__dict__.iteritems(): if isinstance(val, int): self.converged_reasons[val] = key def set_matrix( self, mtx ): mtx = sps.csr_matrix(mtx) pmtx = self.petsc.Mat().createAIJ( mtx.shape, csr = (mtx.indptr, mtx.indices, mtx.data) ) sol, rhs = pmtx.getVecs() return pmtx, sol, rhs @standard_call def __call__(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): eps_a = get_default(eps_a, self.conf.eps_a) eps_r = get_default(eps_r, self.conf.eps_r) i_max = get_default(i_max, self.conf.i_max) eps_d = self.conf.eps_d # There is no use in caching matrix in the solver - always set as new. pmtx, psol, prhs = self.set_matrix(mtx) ksp = self.ksp ksp.setOperators(pmtx) ksp.setFromOptions() # PETSc.Options() not used yet... ksp.setTolerances(atol=eps_a, rtol=eps_r, divtol=eps_d, max_it=i_max) # Set PETSc rhs, solve, get solution from PETSc solution. if x0 is not None: psol[...] = x0 ksp.setInitialGuessNonzero(True) prhs[...] = rhs ksp.solve(prhs, psol) sol = psol[...].copy() output('%s(%s) convergence: %s (%s)' % (self.conf.method, self.conf.precond, ksp.reason, self.converged_reasons[ksp.reason])) return sol class PETScParallelKrylovSolver(PETScKrylovSolver): """ PETSc Krylov subspace solver able to run in parallel by storing the system to disk and running a separate script via `mpiexec`. The solver and preconditioner types are set upon the solver object creation. Tolerances can be overriden when called by passing a `conf` object. Notes ----- Convergence is reached when `rnorm < max(eps_r * rnorm_0, eps_a)`, where, in PETSc, `rnorm` is by default the norm of *preconditioned* residual. """ name = 'ls.petsc_parallel' @staticmethod def process_conf(conf, kwargs): """ Missing items are set to default values. Example configuration, all items:: solver_1 = { 'name' : 'ls', 'kind' : 'ls.petsc_parallel', 'log_dir' : '.', # Store logs here. 'n_proc' : 5, # Number of processes to run. 'method' : 'cg', # ksp_type 'precond' : 'bjacobi', # pc_type 'sub_precond' : 'icc', # sub_pc_type 'eps_a' : 1e-12, # abstol 'eps_r' : 1e-12, # rtol 'eps_d' : 1e5, # divtol 'i_max' : 1000, # maxits } """ get = make_get_conf(conf, kwargs) common = PETScKrylovSolver.process_conf(conf, kwargs) return Struct(log_dir=get('log_dir', '.'), n_proc=get('n_proc', 1), sub_precond=get('sub_precond', 'icc')) + common @standard_call def __call__(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): import os, sys, shutil, tempfile from sfepy import base_dir from sfepy.base.ioutils import ensure_path eps_a = get_default(eps_a, self.conf.eps_a) eps_r = get_default(eps_r, self.conf.eps_r) i_max = get_default(i_max, self.conf.i_max) eps_d = self.conf.eps_d petsc = self.petsc # There is no use in caching matrix in the solver - always set as new. pmtx, psol, prhs = self.set_matrix(mtx) ksp = self.ksp ksp.setOperators(pmtx) ksp.setFromOptions() # PETSc.Options() not used yet... ksp.setTolerances(atol=eps_a, rtol=eps_r, divtol=eps_d, max_it=i_max) output_dir = tempfile.mkdtemp() # Set PETSc rhs, solve, get solution from PETSc solution. if x0 is not None: psol[...] = x0 sol0_filename = os.path.join(output_dir, 'sol0.dat') else: sol0_filename = '' prhs[...] = rhs script_filename = os.path.join(base_dir, 'solvers/petsc_worker.py') mtx_filename = os.path.join(output_dir, 'mtx.dat') rhs_filename = os.path.join(output_dir, 'rhs.dat') sol_filename = os.path.join(output_dir, 'sol.dat') status_filename = os.path.join(output_dir, 'status.txt') log_filename = os.path.join(self.conf.log_dir, 'sol.log') ensure_path(log_filename) output('storing system to %s...' % output_dir) tt = time.clock() view_mtx = petsc.Viewer().createBinary(mtx_filename, mode='w') view_rhs = petsc.Viewer().createBinary(rhs_filename, mode='w') pmtx.view(view_mtx) prhs.view(view_rhs) if sol0_filename: view_sol0 = petsc.Viewer().createBinary(sol0_filename, mode='w') psol.view(view_sol0) output('...done in %.2f s' % (time.clock() - tt)) command = [ 'mpiexec -n %d' % self.conf.n_proc, sys.executable, script_filename, '-mtx %s' % mtx_filename, '-rhs %s' % rhs_filename, '-sol0 %s' % sol0_filename, '-sol %s' % sol_filename, '-status %s' % status_filename, '-ksp_type %s' % self.conf.method, '-pc_type %s' % self.conf.precond, '-sub_pc_type %s' % self.conf.sub_precond, '-ksp_atol %.3e' % self.conf.eps_a, '-ksp_rtol %.3e' % self.conf.eps_r, '-ksp_max_it %d' % self.conf.i_max, '-ksp_monitor %s' % log_filename, '-ksp_view %s' % log_filename, ] if self.conf.precond_side is not None: command.append('-ksp_pc_side %s' % self.conf.precond_side) out = os.system(" ".join(command)) assert_(out == 0) output('reading solution...') tt = time.clock() view_sol = self.petsc.Viewer().createBinary(sol_filename, mode='r') psol = petsc.Vec().load(view_sol) fd = open(status_filename, 'r') line = fd.readline().split() reason = int(line[0]) elapsed = float(line[1]) fd.close() output('...done in %.2f s' % (time.clock() - tt)) sol = psol[...].copy() output('%s(%s, %s/proc) convergence: %s (%s)' % (self.conf.method, self.conf.precond, self.conf.sub_precond, reason, self.converged_reasons[reason])) output('elapsed: %.2f [s]' % elapsed) shutil.rmtree(output_dir) return sol class SchurGeneralized(ScipyDirect): r""" Generalized Schur complement. Defines the matrix blocks and calls user defined function. """ name = 'ls.schur_generalized' @staticmethod def process_conf(conf, kwargs): """ Setup solver configuration options. Example configuration:: solvers = { 'ls': ('ls.schur_generalized', {'blocks': {'u': ['displacement1', 'displacement2'], 'v': ['velocity1', 'velocity2'], 'w': ['pressure1', 'pressure2'], }, 'function': my_schur, 'needs_problem_instance': True, }) } """ get = make_get_conf(conf, kwargs) common = ScipyDirect.process_conf(conf, kwargs) return Struct(blocks=get('blocks', None, 'missing "blocks" in options!'), function=get('function', None, 'missing "function" in options!'), needs_problem_instance=True) + common def __init__(self, conf, **kwargs): from sfepy.discrete.state import State ScipyDirect.__init__(self, conf, **kwargs) equations = self.problem.equations aux_state = State(equations.variables) conf.idxs = {} for bk, bv in conf.blocks.iteritems(): aux_state.fill(0.0) for jj in bv: idx = equations.variables.di.indx[jj] aux_state.vec[idx] = nm.nan aux_state.apply_ebc() vec0 = aux_state.get_reduced() conf.idxs[bk] = nm.where(nm.isnan(vec0))[0] @standard_call def __call__(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): mtxi= self.orig_conf.idxs mtxslc_s = {} mtxslc_f = {} nn = {} for ik, iv in mtxi.iteritems(): ptr = 0 nn[ik] = len(iv) mtxslc_s[ik] = [] mtxslc_f[ik] = [] while ptr < nn[ik]: idx0 = iv[ptr:] idxrange = nm.arange(idx0[0], idx0[0] + len(idx0)) aux = nm.where(idx0 == idxrange)[0] mtxslc_s[ik].append(slice(ptr + aux[0], ptr + aux[-1] + 1)) mtxslc_f[ik].append(slice(idx0[aux][0], idx0[aux][-1] + 1)) ptr += aux[-1] + 1 mtxs = {} rhss = {} ress = {} for ir in mtxi.iterkeys(): rhss[ir] = nm.zeros((nn[ir],), dtype=nm.float64) ress[ir] = nm.zeros((nn[ir],), dtype=nm.float64) for jr, idxr in enumerate(mtxslc_f[ir]): rhss[ir][mtxslc_s[ir][jr]] = rhs[idxr] for ic in mtxi.iterkeys(): mtxid = '%s%s' % (ir, ic) mtxs[mtxid] = nm.zeros((nn[ir], nn[ic]), dtype=nm.float64) for jr, idxr in enumerate(mtxslc_f[ir]): for jc, idxc in enumerate(mtxslc_f[ic]): iir = mtxslc_s[ir][jr] iic = mtxslc_s[ic][jc] mtxs[mtxid][iir, iic] = mtx._get_submatrix(idxr, idxc).todense() self.orig_conf.function(ress, mtxs, rhss, nn) res = nm.zeros_like(rhs) for ir in mtxi.iterkeys(): for jr, idxr in enumerate(mtxslc_f[ir]): res[idxr] = ress[ir][mtxslc_s[ir][jr]] return res def _presolve(self): if hasattr(self, 'presolve'): return self.presolve else: return self.conf.presolve class SchurComplement(SchurGeneralized): r""" Schur complement. Solution of the linear system .. math:: \left[ \begin{array}{cc} A & B \\ C & D \end{array} \right] \cdot \left[ \begin{array}{c} u \\ v \end{array} \right] = \left[ \begin{array}{c} f \\ g \end{array} \right] is obtained by solving the following equation: .. math:: (D - C A^{-1} B) \cdot v = g - C A^{-1} f variable(s) :math:`u` are specified in "eliminate" list, variable(s) :math:`v` are specified in "keep" list, See: http://en.wikipedia.org/wiki/Schur_complement """ name = 'ls.schur_complement' @staticmethod def process_conf(conf, kwargs): """ Setup solver configuration options. Example configuration:: solvers = { 'ls': ('ls.schur_complement', {'eliminate': ['displacement'], 'keep': ['pressure'], 'needs_problem_instance': True, }) } """ get = make_get_conf(conf, kwargs) conf.blocks = {'1': get('eliminate', None, 'missing "eliminate" in options!'), '2': get('keep', None, 'missing "keep" in options!'),} conf.function = SchurComplement.schur_fun common = SchurGeneralized.process_conf(conf, kwargs) return common @staticmethod def schur_fun(res, mtx, rhs, nn): import scipy.sparse as scs import scipy.sparse.linalg as sls invA = sls.splu(scs.csc_matrix(mtx['11'])) invAB = nm.zeros_like(mtx['12']) for j, b in enumerate(mtx['12'].T): invAB[:,j] = invA.solve(b) invAf = invA.solve(rhs['1']) spC = scs.csc_matrix(mtx['21']) k_rhs = rhs['2'] - spC * invAf res['2'] = sls.spsolve(scs.csc_matrix(mtx['22'] - spC * invAB), k_rhs) res['1'] = invAf - nm.dot(invAB, res['2']) class MultiProblem(ScipyDirect): r""" Conjugate multiple problems. Allows to define conjugate multiple problems. """ name = 'ls.cm_pb' @staticmethod def process_conf(conf, kwargs): """ Setup solver configuration options. Example configuration:: solvers = { 'ls': ('ls.cm_pb', {'others': ['acoustic_subproblem.py'], 'coupling_variables': ['g'], 'needs_problem_instance': True, }) } """ get = make_get_conf(conf, kwargs) common = ScipyDirect.process_conf(conf, kwargs) return Struct(others=get('others', None, 'missing "others" in options!'), coupling_variables=get('coupling_variables', None, 'missing "coupling_variables"!'), needs_problem_instance=True) + common def __init__(self, conf, problem, **kwargs): from sfepy.discrete.state import State from sfepy.discrete import Problem from sfepy.base.conf import ProblemConf, get_standard_keywords from scipy.spatial import cKDTree as KDTree ScipyDirect.__init__(self, conf, **kwargs) # init subproblems pb_vars = problem.get_variables() # get "master" DofInfo and last index pb_adi_indx = problem.equations.variables.adi.indx self.adi_indx = pb_adi_indx.copy() last_indx = -1 for ii in self.adi_indx.itervalues(): last_indx = nm.max([last_indx, ii.stop]) # coupling variables self.cvars_to_pb = {} for jj in conf.coupling_variables: self.cvars_to_pb[jj] = [None, None] if jj in pb_vars.names: if pb_vars[jj].dual_var_name is not None: self.cvars_to_pb[jj][0] = -1 else: self.cvars_to_pb[jj][1] = -1 # init subproblems self.subpb = [] required, other = get_standard_keywords() master_prefix = output.get_output_prefix() for ii, ifname in enumerate(conf.others): sub_prefix = master_prefix[:-1] + '-sub%d:' % (ii + 1) output.set_output_prefix(sub_prefix) kwargs['master_problem'] = problem confi = ProblemConf.from_file(ifname, required, other, define_args=kwargs) pbi = Problem.from_conf(confi, init_equations=True) sti = State(pbi.equations.variables) pbi.equations.set_data(None, ignore_unknown=True) pbi.time_update() pbi.update_materials() sti.apply_ebc() pbi_vars = pbi.get_variables() output.set_output_prefix(master_prefix) self.subpb.append([pbi, sti, None]) # append "slave" DofInfo for jj in pbi_vars.names: if not(pbi_vars[jj].is_state()): continue didx = pbi.equations.variables.adi.indx[jj] ndof = didx.stop - didx.start if jj in self.adi_indx: if ndof != \ (self.adi_indx[jj].stop - self.adi_indx[jj].start): raise ValueError('DOFs do not match!') else: self.adi_indx.update({ jj: slice(last_indx, last_indx + ndof, None)}) last_indx += ndof for jj in conf.coupling_variables: if jj in pbi_vars.names: if pbi_vars[jj].dual_var_name is not None: self.cvars_to_pb[jj][0] = ii else: self.cvars_to_pb[jj][1] = ii self.subpb.append([problem, None, None]) self.cvars_to_pb_map = {} for varname, pbs in self.cvars_to_pb.iteritems(): # match field nodes coors = [] for ii in pbs: pbi = self.subpb[ii][0] pbi_vars = pbi.get_variables() fcoors = pbi_vars[varname].field.coors dc = nm.abs(nm.max(fcoors, axis=0)\ - nm.min(fcoors, axis=0)) ax = nm.where(dc > 1e-9)[0] coors.append(fcoors[:,ax]) if len(coors[0]) != len(coors[1]): raise ValueError('number of nodes does not match!') kdtree = KDTree(coors[0]) map_12 = kdtree.query(coors[1])[1] pbi1 = self.subpb[pbs[0]][0] pbi1_vars = pbi1.get_variables() eq_map_1 = pbi1_vars[varname].eq_map pbi2 = self.subpb[pbs[1]][0] pbi2_vars = pbi2.get_variables() eq_map_2 = pbi2_vars[varname].eq_map dpn = eq_map_2.dpn nnd = map_12.shape[0] map_12_nd = nm.zeros((nnd * dpn,), dtype=nm.int32) if dpn > 1: for ii in range(dpn): map_12_nd[ii::dpn] = map_12 * dpn + ii else: map_12_nd = map_12 idx = nm.where(eq_map_2.eq >= 0)[0] self.cvars_to_pb_map[varname] = eq_map_1.eq[map_12[idx]] def sparse_submat(self, Ad, Ar, Ac, gr, gc, S): """ A[gr,gc] = S """ if type(gr) is slice: gr = nm.arange(gr.start, gr.stop) if type(gc) is slice: gc = nm.arange(gc.start, gc.stop) for ii, lrow in enumerate(S): m = lrow.indices.shape[0] idxrow = nm.ones((m, ), dtype=nm.int32) * gr[ii] Ar = nm.hstack([Ar, idxrow]) Ac = nm.hstack([Ac, gc[lrow.indices]]) Ad = nm.hstack([Ad, lrow.data]) return Ad, Ar, Ac @standard_call def __call__(self, rhs, x0=None, conf=None, eps_a=None, eps_r=None, i_max=None, mtx=None, status=None, **kwargs): max_indx = 0 hst = nm.hstack for ii in self.adi_indx.itervalues(): max_indx = nm.max([max_indx, ii.stop]) new_rhs = nm.zeros((max_indx,), dtype=rhs.dtype) new_rhs[:rhs.shape[0]] = rhs # copy "master" matrices pbi = self.subpb[-1][0] adi_indxi = pbi.equations.variables.adi.indx mtxc = mtx.tocsc() aux_data = nm.array([], dtype=mtxc.dtype) aux_rows = nm.array([], dtype=nm.int32) aux_cols = nm.array([], dtype=nm.int32) for jk, jv in adi_indxi.iteritems(): if jk in self.cvars_to_pb: if not(self.cvars_to_pb[jk][0] == -1): continue gjv = self.adi_indx[jk] ii = gjv.start for jj in nm.arange(jv.start, jv.stop): ptr = mtxc.indptr[jj] nn = mtxc.indptr[jj + 1] - ptr sl = slice(ptr, ptr + nn, None) aux_data = hst([aux_data, mtxc.data[sl]]) aux_rows = hst([aux_rows, mtxc.indices[sl]]) aux_cols = hst([aux_cols, nm.ones((nn,), dtype=nm.int32) * ii]) ii += 1 # copy "slave" (sub)matricies mtxs = [] for kk, (pbi, sti0, _) in enumerate(self.subpb[:-1]): x0i = sti0.get_reduced() evi = pbi.get_evaluator() mtxi = evi.eval_tangent_matrix(x0i, mtx=pbi.mtx_a) rhsi = evi.eval_residual(x0i) mtxs.append(mtxi) adi_indxi = pbi.equations.variables.adi.indx for ik, iv in adi_indxi.iteritems(): if ik in self.cvars_to_pb: if not(self.cvars_to_pb[ik][0] == kk): continue giv = self.adi_indx[ik] for jk, jv in adi_indxi.iteritems(): gjv = self.adi_indx[jk] if jk in self.cvars_to_pb: if not(self.cvars_to_pb[jk][0] == kk): continue aux_data, aux_rows, aux_cols =\ self.sparse_submat(aux_data, aux_rows, aux_cols, giv, gjv, mtxi[iv, jv]) new_rhs[giv] = rhsi[iv] mtxs.append(mtx) # copy "coupling" (sub)matricies for varname, pbs in self.cvars_to_pb.iteritems(): idx = pbs[1] pbi = self.subpb[idx][0] mtxi = mtxs[idx] gjv = self.adi_indx[varname] jv = pbi.equations.variables.adi.indx[varname] adi_indxi = pbi.equations.variables.adi.indx for ik, iv in adi_indxi.iteritems(): if ik == varname: continue giv = self.adi_indx[ik] aux_mtx = mtxi[iv,:].tocsc() for ll, jj in enumerate(nm.arange(jv.start, jv.stop)): ptr = aux_mtx.indptr[jj] nn = aux_mtx.indptr[jj + 1] - ptr if nn < 1: continue sl = slice(ptr, ptr + nn, None) aux_data = hst([aux_data, aux_mtx.data[sl]]) aux_rows = hst([aux_rows, aux_mtx.indices[sl] + giv.start]) jjr = gjv.start + self.cvars_to_pb_map[varname][ll] aux_cols = hst([aux_cols, nm.ones((nn,), dtype=nm.int32) * jjr]) # create new matrix new_mtx = sps.coo_matrix((aux_data, (aux_rows, aux_cols))).tocsr() res0 = ScipyDirect.__call__(self, new_rhs, mtx=new_mtx) res = [] for kk, (pbi, sti0, _) in enumerate(self.subpb): adi_indxi = pbi.equations.variables.adi.indx max_indx = 0 for ii in adi_indxi.itervalues(): max_indx = nm.max([max_indx, ii.stop]) resi = nm.zeros((max_indx,), dtype=res0.dtype) for ik, iv in adi_indxi.iteritems(): giv = self.adi_indx[ik] if ik in self.cvars_to_pb: if pbi is self.subpb[self.cvars_to_pb[ik][1]][0]: giv = self.cvars_to_pb_map[ik] + giv.start resi[iv] = res0[giv] if sti0 is not None: sti = sti0.copy() sti.set_reduced(-resi) pbi.setup_default_output() pbi.save_state(pbi.get_output_name(), sti) self.subpb[kk][-1] = sti res.append(resi) return res[-1] def _presolve(self): if hasattr(self, 'presolve'): return self.presolve else: return self.conf.presolve
[ "sfepy.base.conf.ProblemConf.from_file", "sfepy.solvers.solvers.LinearSolver.__init__", "sfepy.base.base.assert_", "sfepy.base.base.output.set_output_prefix", "sfepy.discrete.Problem.from_conf", "sfepy.discrete.state.State", "sfepy.base.conf.get_standard_keywords", "sfepy.base.base.get_default", "sfepy.base.base.try_imports", "sfepy.base.base.output.get_output_prefix", "sfepy.solvers.solvers.LinearSolver.process_conf", "sfepy.base.ioutils.ensure_path", "sfepy.solvers.solvers.make_get_conf", "sfepy.base.base.output" ]
[((77, 137), 'warnings.simplefilter', 'warnings.simplefilter', (['"""ignore"""', 'sps.SparseEfficiencyWarning'], {}), "('ignore', sps.SparseEfficiencyWarning)\n", (98, 137), False, 'import warnings\n'), ((556, 568), 'time.clock', 'time.clock', ([], {}), '()\n', (566, 568), False, 'import time\n'), ((585, 613), 'sfepy.base.base.get_default', 'get_default', (['conf', 'self.conf'], {}), '(conf, self.conf)\n', (596, 613), False, 'from sfepy.base.base import output, get_default, assert_, try_imports, Struct\n'), ((628, 654), 'sfepy.base.base.get_default', 'get_default', (['mtx', 'self.mtx'], {}), '(mtx, self.mtx)\n', (639, 654), False, 'from sfepy.base.base import output, get_default, assert_, try_imports, Struct\n'), ((672, 704), 'sfepy.base.base.get_default', 'get_default', (['status', 'self.status'], {}), '(status, self.status)\n', (683, 704), False, 'from sfepy.base.base import output, get_default, assert_, try_imports, Struct\n'), ((714, 767), 'sfepy.base.base.assert_', 'assert_', (['(mtx.shape[0] == mtx.shape[1] == rhs.shape[0])'], {}), '(mtx.shape[0] == mtx.shape[1] == rhs.shape[0])\n', (721, 767), False, 'from sfepy.base.base import output, get_default, assert_, try_imports, Struct\n'), ((1579, 1606), 'sfepy.solvers.solvers.make_get_conf', 'make_get_conf', (['conf', 'kwargs'], {}), '(conf, kwargs)\n', (1592, 1606), False, 'from sfepy.solvers.solvers import make_get_conf, LinearSolver\n'), ((1624, 1655), 'sfepy.solvers.solvers.LinearSolver.process_conf', 'LinearSolver.process_conf', (['conf'], {}), '(conf)\n', (1649, 1655), False, 'from sfepy.solvers.solvers import make_get_conf, LinearSolver\n'), ((1926, 1969), 'sfepy.solvers.solvers.LinearSolver.__init__', 'LinearSolver.__init__', (['self', 'conf'], {}), '(self, conf, **kwargs)\n', (1947, 1969), False, 'from sfepy.solvers.solvers import make_get_conf, LinearSolver\n'), ((2014, 2200), 'sfepy.base.base.try_imports', 'try_imports', (["['import scipy.linsolve as sls', 'import scipy.splinalg.dsolve as sls',\n 'import scipy.sparse.linalg.dsolve as sls']", '"""cannot import scipy sparse direct solvers!"""'], {}), "(['import scipy.linsolve as sls',\n 'import scipy.splinalg.dsolve as sls',\n 'import scipy.sparse.linalg.dsolve as sls'],\n 'cannot import scipy sparse direct solvers!')\n", (2025, 2200), False, 'from sfepy.base.base import output, get_default, assert_, try_imports, Struct\n'), ((2313, 2506), 'sfepy.base.base.try_imports', 'try_imports', (["['import scipy.linsolve.umfpack as um',\n 'import scipy.splinalg.dsolve.umfpack as um',\n 'import scipy.sparse.linalg.dsolve.umfpack as um',\n 'import scikits.umfpack as um']"], {}), "(['import scipy.linsolve.umfpack as um',\n 'import scipy.splinalg.dsolve.umfpack as um',\n 'import scipy.sparse.linalg.dsolve.umfpack as um',\n 'import scikits.umfpack as um'])\n", (2324, 2506), False, 'from sfepy.base.base import output, get_default, assert_, try_imports, Struct\n'), ((5111, 5138), 'sfepy.solvers.solvers.make_get_conf', 'make_get_conf', (['conf', 'kwargs'], {}), '(conf, kwargs)\n', (5124, 5138), False, 'from sfepy.solvers.solvers import make_get_conf, LinearSolver\n'), ((5156, 5187), 'sfepy.solvers.solvers.LinearSolver.process_conf', 'LinearSolver.process_conf', (['conf'], {}), '(conf)\n', (5181, 5187), False, 'from sfepy.solvers.solvers import make_get_conf, LinearSolver\n'), ((5581, 5624), 'sfepy.solvers.solvers.LinearSolver.__init__', 'LinearSolver.__init__', (['self', 'conf'], {}), '(self, conf, **kwargs)\n', (5602, 5624), False, 'from sfepy.solvers.solvers import make_get_conf, LinearSolver\n'), ((6234, 6269), 'sfepy.base.base.get_default', 'get_default', (['eps_r', 'self.conf.eps_r'], {}), '(eps_r, self.conf.eps_r)\n', (6245, 6269), False, 'from sfepy.base.base import output, get_default, assert_, try_imports, Struct\n'), ((6286, 6321), 'sfepy.base.base.get_default', 'get_default', (['i_max', 'self.conf.i_max'], {}), '(i_max, self.conf.i_max)\n', (6297, 6321), False, 'from sfepy.base.base import output, get_default, assert_, try_imports, Struct\n'), ((7586, 7613), 'sfepy.solvers.solvers.make_get_conf', 'make_get_conf', (['conf', 'kwargs'], {}), '(conf, kwargs)\n', (7599, 7613), False, 'from sfepy.solvers.solvers import make_get_conf, LinearSolver\n'), ((7631, 7662), 'sfepy.solvers.solvers.LinearSolver.process_conf', 'LinearSolver.process_conf', (['conf'], {}), '(conf)\n', (7656, 7662), False, 'from sfepy.solvers.solvers import make_get_conf, LinearSolver\n'), ((8131, 8183), 'sfepy.solvers.solvers.LinearSolver.__init__', 'LinearSolver.__init__', (['self', 'conf'], {'mg': 'None'}), '(self, conf, mg=None, **kwargs)\n', (8152, 8183), False, 'from sfepy.solvers.solvers import make_get_conf, LinearSolver\n'), ((8804, 8839), 'sfepy.base.base.get_default', 'get_default', (['eps_r', 'self.conf.eps_r'], {}), '(eps_r, self.conf.eps_r)\n', (8815, 8839), False, 'from sfepy.base.base import output, get_default, assert_, try_imports, Struct\n'), ((10187, 10214), 'sfepy.solvers.solvers.make_get_conf', 'make_get_conf', (['conf', 'kwargs'], {}), '(conf, kwargs)\n', (10200, 10214), False, 'from sfepy.solvers.solvers import make_get_conf, LinearSolver\n'), ((10232, 10263), 'sfepy.solvers.solvers.LinearSolver.process_conf', 'LinearSolver.process_conf', (['conf'], {}), '(conf)\n', (10257, 10263), False, 'from sfepy.solvers.solvers import make_get_conf, LinearSolver\n'), ((10900, 10967), 'sfepy.solvers.solvers.LinearSolver.__init__', 'LinearSolver.__init__', (['self', 'conf'], {'petsc': 'PETSc', 'pmtx': 'None'}), '(self, conf, petsc=PETSc, pmtx=None, **kwargs)\n', (10921, 10967), False, 'from sfepy.solvers.solvers import make_get_conf, LinearSolver\n'), ((11475, 11494), 'scipy.sparse.csr_matrix', 'sps.csr_matrix', (['mtx'], {}), '(mtx)\n', (11489, 11494), True, 'import scipy.sparse as sps\n'), ((11973, 12008), 'sfepy.base.base.get_default', 'get_default', (['eps_a', 'self.conf.eps_a'], {}), '(eps_a, self.conf.eps_a)\n', (11984, 12008), False, 'from sfepy.base.base import output, get_default, assert_, try_imports, Struct\n'), ((12025, 12060), 'sfepy.base.base.get_default', 'get_default', (['eps_r', 'self.conf.eps_r'], {}), '(eps_r, self.conf.eps_r)\n', (12036, 12060), False, 'from sfepy.base.base import output, get_default, assert_, try_imports, Struct\n'), ((12077, 12112), 'sfepy.base.base.get_default', 'get_default', (['i_max', 'self.conf.i_max'], {}), '(i_max, self.conf.i_max)\n', (12088, 12112), False, 'from sfepy.base.base import output, get_default, assert_, try_imports, Struct\n'), ((12728, 12857), 'sfepy.base.base.output', 'output', (["('%s(%s) convergence: %s (%s)' % (self.conf.method, self.conf.precond, ksp.\n reason, self.converged_reasons[ksp.reason]))"], {}), "('%s(%s) convergence: %s (%s)' % (self.conf.method, self.conf.precond,\n ksp.reason, self.converged_reasons[ksp.reason]))\n", (12734, 12857), False, 'from sfepy.base.base import output, get_default, assert_, try_imports, Struct\n'), ((14205, 14232), 'sfepy.solvers.solvers.make_get_conf', 'make_get_conf', (['conf', 'kwargs'], {}), '(conf, kwargs)\n', (14218, 14232), False, 'from sfepy.solvers.solvers import make_get_conf, LinearSolver\n'), ((14763, 14798), 'sfepy.base.base.get_default', 'get_default', (['eps_a', 'self.conf.eps_a'], {}), '(eps_a, self.conf.eps_a)\n', (14774, 14798), False, 'from sfepy.base.base import output, get_default, assert_, try_imports, Struct\n'), ((14815, 14850), 'sfepy.base.base.get_default', 'get_default', (['eps_r', 'self.conf.eps_r'], {}), '(eps_r, self.conf.eps_r)\n', (14826, 14850), False, 'from sfepy.base.base import output, get_default, assert_, try_imports, Struct\n'), ((14867, 14902), 'sfepy.base.base.get_default', 'get_default', (['i_max', 'self.conf.i_max'], {}), '(i_max, self.conf.i_max)\n', (14878, 14902), False, 'from sfepy.base.base import output, get_default, assert_, try_imports, Struct\n'), ((15309, 15327), 'tempfile.mkdtemp', 'tempfile.mkdtemp', ([], {}), '()\n', (15325, 15327), False, 'import os, sys, shutil, tempfile\n'), ((15612, 15661), 'os.path.join', 'os.path.join', (['base_dir', '"""solvers/petsc_worker.py"""'], {}), "(base_dir, 'solvers/petsc_worker.py')\n", (15624, 15661), False, 'import os, sys, shutil, tempfile\n'), ((15686, 15721), 'os.path.join', 'os.path.join', (['output_dir', '"""mtx.dat"""'], {}), "(output_dir, 'mtx.dat')\n", (15698, 15721), False, 'import os, sys, shutil, tempfile\n'), ((15745, 15780), 'os.path.join', 'os.path.join', (['output_dir', '"""rhs.dat"""'], {}), "(output_dir, 'rhs.dat')\n", (15757, 15780), False, 'import os, sys, shutil, tempfile\n'), ((15804, 15839), 'os.path.join', 'os.path.join', (['output_dir', '"""sol.dat"""'], {}), "(output_dir, 'sol.dat')\n", (15816, 15839), False, 'import os, sys, shutil, tempfile\n'), ((15866, 15904), 'os.path.join', 'os.path.join', (['output_dir', '"""status.txt"""'], {}), "(output_dir, 'status.txt')\n", (15878, 15904), False, 'import os, sys, shutil, tempfile\n'), ((15929, 15971), 'os.path.join', 'os.path.join', (['self.conf.log_dir', '"""sol.log"""'], {}), "(self.conf.log_dir, 'sol.log')\n", (15941, 15971), False, 'import os, sys, shutil, tempfile\n'), ((15980, 16005), 'sfepy.base.ioutils.ensure_path', 'ensure_path', (['log_filename'], {}), '(log_filename)\n', (15991, 16005), False, 'from sfepy.base.ioutils import ensure_path\n'), ((16015, 16061), 'sfepy.base.base.output', 'output', (["('storing system to %s...' % output_dir)"], {}), "('storing system to %s...' % output_dir)\n", (16021, 16061), False, 'from sfepy.base.base import output, get_default, assert_, try_imports, Struct\n'), ((16075, 16087), 'time.clock', 'time.clock', ([], {}), '()\n', (16085, 16087), False, 'import time\n'), ((17330, 17347), 'sfepy.base.base.assert_', 'assert_', (['(out == 0)'], {}), '(out == 0)\n', (17337, 17347), False, 'from sfepy.base.base import output, get_default, assert_, try_imports, Struct\n'), ((17357, 17386), 'sfepy.base.base.output', 'output', (['"""reading solution..."""'], {}), "('reading solution...')\n", (17363, 17386), False, 'from sfepy.base.base import output, get_default, assert_, try_imports, Struct\n'), ((17400, 17412), 'time.clock', 'time.clock', ([], {}), '()\n', (17410, 17412), False, 'import time\n'), ((17789, 17948), 'sfepy.base.base.output', 'output', (["('%s(%s, %s/proc) convergence: %s (%s)' % (self.conf.method, self.conf.\n precond, self.conf.sub_precond, reason, self.converged_reasons[reason]))"], {}), "('%s(%s, %s/proc) convergence: %s (%s)' % (self.conf.method, self.\n conf.precond, self.conf.sub_precond, reason, self.converged_reasons[\n reason]))\n", (17795, 17948), False, 'from sfepy.base.base import output, get_default, assert_, try_imports, Struct\n'), ((17980, 18017), 'sfepy.base.base.output', 'output', (["('elapsed: %.2f [s]' % elapsed)"], {}), "('elapsed: %.2f [s]' % elapsed)\n", (17986, 18017), False, 'from sfepy.base.base import output, get_default, assert_, try_imports, Struct\n'), ((18027, 18052), 'shutil.rmtree', 'shutil.rmtree', (['output_dir'], {}), '(output_dir)\n', (18040, 18052), False, 'import os, sys, shutil, tempfile\n'), ((18889, 18916), 'sfepy.solvers.solvers.make_get_conf', 'make_get_conf', (['conf', 'kwargs'], {}), '(conf, kwargs)\n', (18902, 18916), False, 'from sfepy.solvers.solvers import make_get_conf, LinearSolver\n'), ((19476, 19502), 'sfepy.discrete.state.State', 'State', (['equations.variables'], {}), '(equations.variables)\n', (19481, 19502), False, 'from sfepy.discrete.state import State\n'), ((21482, 21500), 'numpy.zeros_like', 'nm.zeros_like', (['rhs'], {}), '(rhs)\n', (21495, 21500), True, 'import numpy as nm\n'), ((22953, 22980), 'sfepy.solvers.solvers.make_get_conf', 'make_get_conf', (['conf', 'kwargs'], {}), '(conf, kwargs)\n', (22966, 22980), False, 'from sfepy.solvers.solvers import make_get_conf, LinearSolver\n'), ((23546, 23570), 'numpy.zeros_like', 'nm.zeros_like', (["mtx['12']"], {}), "(mtx['12'])\n", (23559, 23570), True, 'import numpy as nm\n'), ((23707, 23732), 'scipy.sparse.csc_matrix', 'scs.csc_matrix', (["mtx['21']"], {}), "(mtx['21'])\n", (23721, 23732), True, 'import scipy.sparse as scs\n'), ((24501, 24528), 'sfepy.solvers.solvers.make_get_conf', 'make_get_conf', (['conf', 'kwargs'], {}), '(conf, kwargs)\n', (24514, 24528), False, 'from sfepy.solvers.solvers import make_get_conf, LinearSolver\n'), ((26012, 26035), 'sfepy.base.conf.get_standard_keywords', 'get_standard_keywords', ([], {}), '()\n', (26033, 26035), False, 'from sfepy.base.conf import ProblemConf, get_standard_keywords\n'), ((26060, 26086), 'sfepy.base.base.output.get_output_prefix', 'output.get_output_prefix', ([], {}), '()\n', (26084, 26086), False, 'from sfepy.base.base import output, get_default, assert_, try_imports, Struct\n'), ((30097, 30135), 'numpy.zeros', 'nm.zeros', (['(max_indx,)'], {'dtype': 'rhs.dtype'}), '((max_indx,), dtype=rhs.dtype)\n', (30105, 30135), True, 'import numpy as nm\n'), ((30338, 30368), 'numpy.array', 'nm.array', (['[]'], {'dtype': 'mtxc.dtype'}), '([], dtype=mtxc.dtype)\n', (30346, 30368), True, 'import numpy as nm\n'), ((30388, 30416), 'numpy.array', 'nm.array', (['[]'], {'dtype': 'nm.int32'}), '([], dtype=nm.int32)\n', (30396, 30416), True, 'import numpy as nm\n'), ((30436, 30464), 'numpy.array', 'nm.array', (['[]'], {'dtype': 'nm.int32'}), '([], dtype=nm.int32)\n', (30444, 30464), True, 'import numpy as nm\n'), ((807, 843), 'sfepy.base.base.assert_', 'assert_', (['(x0.shape[0] == rhs.shape[0])'], {}), '(x0.shape[0] == rhs.shape[0])\n', (814, 843), False, 'from sfepy.base.base import output, get_default, assert_, try_imports, Struct\n'), ((969, 981), 'time.clock', 'time.clock', ([], {}), '()\n', (979, 981), False, 'import time\n'), ((10725, 10742), 'petsc4py.init', 'petsc4py.init', (['[]'], {}), '([])\n', (10738, 10742), False, 'import petsc4py\n'), ((15477, 15513), 'os.path.join', 'os.path.join', (['output_dir', '"""sol0.dat"""'], {}), "(output_dir, 'sol0.dat')\n", (15489, 15513), False, 'import os, sys, shutil, tempfile\n'), ((20747, 20784), 'numpy.zeros', 'nm.zeros', (['(nn[ir],)'], {'dtype': 'nm.float64'}), '((nn[ir],), dtype=nm.float64)\n', (20755, 20784), True, 'import numpy as nm\n'), ((20808, 20845), 'numpy.zeros', 'nm.zeros', (['(nn[ir],)'], {'dtype': 'nm.float64'}), '((nn[ir],), dtype=nm.float64)\n', (20816, 20845), True, 'import numpy as nm\n'), ((23503, 23528), 'scipy.sparse.csc_matrix', 'scs.csc_matrix', (["mtx['11']"], {}), "(mtx['11'])\n", (23517, 23528), True, 'import scipy.sparse as scs\n'), ((23803, 23842), 'scipy.sparse.csc_matrix', 'scs.csc_matrix', (["(mtx['22'] - spC * invAB)"], {}), "(mtx['22'] - spC * invAB)\n", (23817, 23842), True, 'import scipy.sparse as scs\n'), ((23878, 23901), 'numpy.dot', 'nm.dot', (['invAB', "res['2']"], {}), "(invAB, res['2'])\n", (23884, 23901), True, 'import numpy as nm\n'), ((25539, 25567), 'numpy.max', 'nm.max', (['[last_indx, ii.stop]'], {}), '([last_indx, ii.stop])\n', (25545, 25567), True, 'import numpy as nm\n'), ((26216, 26252), 'sfepy.base.base.output.set_output_prefix', 'output.set_output_prefix', (['sub_prefix'], {}), '(sub_prefix)\n', (26240, 26252), False, 'from sfepy.base.base import output, get_default, assert_, try_imports, Struct\n'), ((26320, 26386), 'sfepy.base.conf.ProblemConf.from_file', 'ProblemConf.from_file', (['ifname', 'required', 'other'], {'define_args': 'kwargs'}), '(ifname, required, other, define_args=kwargs)\n', (26341, 26386), False, 'from sfepy.base.conf import ProblemConf, get_standard_keywords\n'), ((26447, 26492), 'sfepy.discrete.Problem.from_conf', 'Problem.from_conf', (['confi'], {'init_equations': '(True)'}), '(confi, init_equations=True)\n', (26464, 26492), False, 'from sfepy.discrete import Problem\n'), ((26511, 26541), 'sfepy.discrete.state.State', 'State', (['pbi.equations.variables'], {}), '(pbi.equations.variables)\n', (26516, 26541), False, 'from sfepy.discrete.state import State\n'), ((26752, 26791), 'sfepy.base.base.output.set_output_prefix', 'output.set_output_prefix', (['master_prefix'], {}), '(master_prefix)\n', (26776, 26791), False, 'from sfepy.base.base import output, get_default, assert_, try_imports, Struct\n'), ((28469, 28485), 'scipy.spatial.cKDTree', 'KDTree', (['coors[0]'], {}), '(coors[0])\n', (28475, 28485), True, 'from scipy.spatial import cKDTree as KDTree\n'), ((28896, 28934), 'numpy.zeros', 'nm.zeros', (['(nnd * dpn,)'], {'dtype': 'nm.int32'}), '((nnd * dpn,), dtype=nm.int32)\n', (28904, 28934), True, 'import numpy as nm\n'), ((29373, 29401), 'numpy.arange', 'nm.arange', (['gr.start', 'gr.stop'], {}), '(gr.start, gr.stop)\n', (29382, 29401), True, 'import numpy as nm\n'), ((29450, 29478), 'numpy.arange', 'nm.arange', (['gc.start', 'gc.stop'], {}), '(gc.start, gc.stop)\n', (29459, 29478), True, 'import numpy as nm\n'), ((29634, 29657), 'numpy.hstack', 'nm.hstack', (['[Ar, idxrow]'], {}), '([Ar, idxrow])\n', (29643, 29657), True, 'import numpy as nm\n'), ((29675, 29708), 'numpy.hstack', 'nm.hstack', (['[Ac, gc[lrow.indices]]'], {}), '([Ac, gc[lrow.indices]])\n', (29684, 29708), True, 'import numpy as nm\n'), ((29726, 29752), 'numpy.hstack', 'nm.hstack', (['[Ad, lrow.data]'], {}), '([Ad, lrow.data])\n', (29735, 29752), True, 'import numpy as nm\n'), ((30050, 30077), 'numpy.max', 'nm.max', (['[max_indx, ii.stop]'], {}), '([max_indx, ii.stop])\n', (30056, 30077), True, 'import numpy as nm\n'), ((30720, 30748), 'numpy.arange', 'nm.arange', (['jv.start', 'jv.stop'], {}), '(jv.start, jv.stop)\n', (30729, 30748), True, 'import numpy as nm\n'), ((33838, 33877), 'numpy.zeros', 'nm.zeros', (['(max_indx,)'], {'dtype': 'res0.dtype'}), '((max_indx,), dtype=res0.dtype)\n', (33846, 33877), True, 'import numpy as nm\n'), ((5735, 5795), 'sfepy.base.base.output', 'output', (["('scipy solver %s does not exist!' % self.conf.method)"], {}), "('scipy solver %s does not exist!' % self.conf.method)\n", (5741, 5795), False, 'from sfepy.base.base import output, get_default, assert_, try_imports, Struct\n'), ((5810, 5836), 'sfepy.base.base.output', 'output', (['"""using cg instead"""'], {}), "('using cg instead')\n", (5816, 5836), False, 'from sfepy.base.base import output, get_default, assert_, try_imports, Struct\n'), ((8297, 8350), 'sfepy.base.base.output', 'output', (["('pyamg.%s does not exist!' % self.conf.method)"], {}), "('pyamg.%s does not exist!' % self.conf.method)\n", (8303, 8350), False, 'from sfepy.base.base import output, get_default, assert_, try_imports, Struct\n'), ((8365, 8422), 'sfepy.base.base.output', 'output', (['"""using pyamg.smoothed_aggregation_solver instead"""'], {}), "('using pyamg.smoothed_aggregation_solver instead')\n", (8371, 8422), False, 'from sfepy.base.base import output, get_default, assert_, try_imports, Struct\n'), ((10983, 10994), 'petsc4py.PETSc.KSP', 'PETSc.KSP', ([], {}), '()\n', (10992, 10994), False, 'from petsc4py import PETSc\n'), ((21066, 21110), 'numpy.zeros', 'nm.zeros', (['(nn[ir], nn[ic])'], {'dtype': 'nm.float64'}), '((nn[ir], nn[ic]), dtype=nm.float64)\n', (21074, 21110), True, 'import numpy as nm\n'), ((29128, 29154), 'numpy.where', 'nm.where', (['(eq_map_2.eq >= 0)'], {}), '(eq_map_2.eq >= 0)\n', (29136, 29154), True, 'import numpy as nm\n'), ((29577, 29606), 'numpy.ones', 'nm.ones', (['(m,)'], {'dtype': 'nm.int32'}), '((m,), dtype=nm.int32)\n', (29584, 29606), True, 'import numpy as nm\n'), ((33438, 33486), 'scipy.sparse.coo_matrix', 'sps.coo_matrix', (['(aux_data, (aux_rows, aux_cols))'], {}), '((aux_data, (aux_rows, aux_cols)))\n', (33452, 33486), True, 'import scipy.sparse as sps\n'), ((33790, 33817), 'numpy.max', 'nm.max', (['[max_indx, ii.stop]'], {}), '([max_indx, ii.stop])\n', (33796, 33817), True, 'import numpy as nm\n'), ((2968, 3015), 'sfepy.base.base.output', 'output', (['"""umfpack not available, using superlu!"""'], {}), "('umfpack not available, using superlu!')\n", (2974, 3015), False, 'from sfepy.base.base import output, get_default, assert_, try_imports, Struct\n'), ((16460, 16472), 'time.clock', 'time.clock', ([], {}), '()\n', (16470, 16472), False, 'import time\n'), ((17729, 17741), 'time.clock', 'time.clock', ([], {}), '()\n', (17739, 17741), False, 'import time\n'), ((19845, 19859), 'numpy.isnan', 'nm.isnan', (['vec0'], {}), '(vec0)\n', (19853, 19859), True, 'import numpy as nm\n'), ((20417, 20443), 'numpy.where', 'nm.where', (['(idx0 == idxrange)'], {}), '(idx0 == idxrange)\n', (20425, 20443), True, 'import numpy as nm\n'), ((28265, 28285), 'numpy.where', 'nm.where', (['(dc > 1e-09)'], {}), '(dc > 1e-09)\n', (28273, 28285), True, 'import numpy as nm\n'), ((32807, 32835), 'numpy.arange', 'nm.arange', (['jv.start', 'jv.stop'], {}), '(jv.start, jv.stop)\n', (32816, 32835), True, 'import numpy as nm\n'), ((6892, 6905), 'numpy.sign', 'nm.sign', (['info'], {}), '(info)\n', (6899, 6905), True, 'import numpy as nm\n'), ((28166, 28188), 'numpy.max', 'nm.max', (['fcoors'], {'axis': '(0)'}), '(fcoors, axis=0)\n', (28172, 28188), True, 'import numpy as nm\n'), ((28220, 28242), 'numpy.min', 'nm.min', (['fcoors'], {'axis': '(0)'}), '(fcoors, axis=0)\n', (28226, 28242), True, 'import numpy as nm\n'), ((31044, 31074), 'numpy.ones', 'nm.ones', (['(nn,)'], {'dtype': 'nm.int32'}), '((nn,), dtype=nm.int32)\n', (31051, 31074), True, 'import numpy as nm\n'), ((33352, 33382), 'numpy.ones', 'nm.ones', (['(nn,)'], {'dtype': 'nm.int32'}), '((nn,), dtype=nm.int32)\n', (33359, 33382), True, 'import numpy as nm\n')]
"""add verified result to application Revision ID: d8a156ffaeae Revises: <KEY> Create Date: 2022-03-30 16:00:13.195216 """ from alembic import op import sqlalchemy as sa import sqlmodel # revision identifiers, used by Alembic. revision = "d8a156ffaeae" down_revision = "<KEY>" branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.add_column( "job_applicant", sa.Column("verified", sqlmodel.sql.sqltypes.AutoString(), nullable=True), ) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_column("job_applicant", "verified") # ### end Alembic commands ###
[ "sqlmodel.sql.sqltypes.AutoString" ]
[((659, 702), 'alembic.op.drop_column', 'op.drop_column', (['"""job_applicant"""', '"""verified"""'], {}), "('job_applicant', 'verified')\n", (673, 702), False, 'from alembic import op\n'), ((477, 511), 'sqlmodel.sql.sqltypes.AutoString', 'sqlmodel.sql.sqltypes.AutoString', ([], {}), '()\n', (509, 511), False, 'import sqlmodel\n')]
"""All database connection information is defined here""" from sqlmodel import SQLModel, create_engine from sqlalchemy.engine import Engine from sqlalchemy import event DB_FILE = "devices.db" sqlite_url = f"sqlite:///{DB_FILE}" connect_args = {"check_same_thread": False} engine = create_engine( sqlite_url, connect_args=connect_args, echo=True ) # set echo=True to view output # From SQLAlchemy docs to allow foreign Key support # https://docs.sqlalchemy.org/en/14/dialects/sqlite.html#foreign-key-support @event.listens_for(Engine, "connect") def set_sqlite_pragma(dbapi_connection, connection_record): """Used to enable foreign keys in sqlite""" cursor = dbapi_connection.cursor() cursor.execute("PRAGMA foreign_keys=ON") cursor.close() def create_db_and_tables(): """Used to create and initialize DB""" SQLModel.metadata.create_all(engine)
[ "sqlmodel.SQLModel.metadata.create_all", "sqlmodel.create_engine" ]
[((284, 347), 'sqlmodel.create_engine', 'create_engine', (['sqlite_url'], {'connect_args': 'connect_args', 'echo': '(True)'}), '(sqlite_url, connect_args=connect_args, echo=True)\n', (297, 347), False, 'from sqlmodel import SQLModel, create_engine\n'), ((518, 554), 'sqlalchemy.event.listens_for', 'event.listens_for', (['Engine', '"""connect"""'], {}), "(Engine, 'connect')\n", (535, 554), False, 'from sqlalchemy import event\n'), ((843, 879), 'sqlmodel.SQLModel.metadata.create_all', 'SQLModel.metadata.create_all', (['engine'], {}), '(engine)\n', (871, 879), False, 'from sqlmodel import SQLModel, create_engine\n')]
from datetime import datetime from typing import List, Optional from sqlmodel import Column, DateTime, Field, Relationship, SQLModel class ObserverBase(SQLModel): phone: str email: str class Config: anystr_strip_whitespace = True anystr_lower = True class Observer(ObserverBase, table=True): id: Optional[int] = Field(default=None, primary_key=True) measurements: List["Measurement"] = Relationship( back_populates="observer", sa_relationship_kwargs={"cascade": "all,delete"} ) class ObserverCreate(ObserverBase): pass class ObserverRead(ObserverBase): id: int class MeasurementBase(SQLModel): temperaturescale: str temperature: int organizationid: int siteid: int date_time: Optional[datetime] = Field( sa_column=Column(DateTime, default=datetime.utcnow) ) observer_id: Optional[int] = Field(default=None, foreign_key="observer.id") class Config: anystr_strip_whitespace = True anystr_lower = True class Measurement(MeasurementBase, table=True): id: Optional[int] = Field(default=None, primary_key=True) observer: Optional[Observer] = Relationship(back_populates="measurements") class MeasurementCreate(MeasurementBase): pass class MeasurementRead(MeasurementBase): id: int
[ "sqlmodel.Field", "sqlmodel.Column", "sqlmodel.Relationship" ]
[((350, 387), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'primary_key': '(True)'}), '(default=None, primary_key=True)\n', (355, 387), False, 'from sqlmodel import Column, DateTime, Field, Relationship, SQLModel\n'), ((428, 521), 'sqlmodel.Relationship', 'Relationship', ([], {'back_populates': '"""observer"""', 'sa_relationship_kwargs': "{'cascade': 'all,delete'}"}), "(back_populates='observer', sa_relationship_kwargs={'cascade':\n 'all,delete'})\n", (440, 521), False, 'from sqlmodel import Column, DateTime, Field, Relationship, SQLModel\n'), ((891, 937), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'foreign_key': '"""observer.id"""'}), "(default=None, foreign_key='observer.id')\n", (896, 937), False, 'from sqlmodel import Column, DateTime, Field, Relationship, SQLModel\n'), ((1098, 1135), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'primary_key': '(True)'}), '(default=None, primary_key=True)\n', (1103, 1135), False, 'from sqlmodel import Column, DateTime, Field, Relationship, SQLModel\n'), ((1171, 1214), 'sqlmodel.Relationship', 'Relationship', ([], {'back_populates': '"""measurements"""'}), "(back_populates='measurements')\n", (1183, 1214), False, 'from sqlmodel import Column, DateTime, Field, Relationship, SQLModel\n'), ((810, 851), 'sqlmodel.Column', 'Column', (['DateTime'], {'default': 'datetime.utcnow'}), '(DateTime, default=datetime.utcnow)\n', (816, 851), False, 'from sqlmodel import Column, DateTime, Field, Relationship, SQLModel\n')]
from sqlmodel import SQLModel, Field from typing import Optional, List from pydantic import validator # --- model --- class User(SQLModel, table=True): id: Optional[int] = Field(None, primary_key=True) username: str password: str # --- serializers --- class UserOut(SQLModel): username: str class UserIn(SQLModel): username: str password: str confirm_password: str # @validator(confirm_password) # def validate_password(cls, v, values): # if v and v != values['password']: # raise ValueError("aaaa") # return v UserList = List[UserOut]
[ "sqlmodel.Field" ]
[((178, 207), 'sqlmodel.Field', 'Field', (['None'], {'primary_key': '(True)'}), '(None, primary_key=True)\n', (183, 207), False, 'from sqlmodel import SQLModel, Field\n')]
#%% import numpy as np from sfepy.discrete.fem import Mesh, FEDomain, Field mesh_path = 'C:/Users/lzy71/miniconda3/envs/lego/lib/site-packages/sfepy/meshes/2d/rectangle_tri.mesh' #%% mesh = Mesh.from_file(mesh_path) domain = FEDomain('domain', mesh) min_x, max_x = domain.get_mesh_bounding_box()[:, 0] eps = 1e-8 * (max_x - min_x) omega = domain.create_region('Omega', 'all') # %% from sfepy.discrete import ( FieldVariable, Material, Integral, Function, Equation, Equations, Problem ) field = Field.from_args('fu', np.float64, 'vector', omega, approx_order=2) u = FieldVariable('u', 'unknown', field) v = FieldVariable('v', 'test', field, primary_var_name='u') # %% from sfepy.mechanics.matcoefs import stiffness_from_lame m = Material('m', D=stiffness_from_lame(dim=2, lam=1.0, mu=1.0)) f = Material('f', val=[[0.02], [0.01]]) integral = Integral('i', order=3) # %% from sfepy.terms import Term t1 = Term.new('dw_lin_elastic(m.D, v, u)', integral, omega, m=m, v=v, u=u) t2 = Term.new('dw_volume_lvf(f.val, v)', integral, omega, f=f, v=v) eq = Equation('balance', t1 + t2) eqs = Equations([eq]) #%% pb = Problem('elasticity', equations=eqs)
[ "sfepy.discrete.Material", "sfepy.discrete.FieldVariable", "sfepy.discrete.fem.Mesh.from_file", "sfepy.terms.Term.new", "sfepy.discrete.Equations", "sfepy.discrete.Integral", "sfepy.mechanics.matcoefs.stiffness_from_lame", "sfepy.discrete.Equation", "sfepy.discrete.fem.Field.from_args", "sfepy.discrete.fem.FEDomain", "sfepy.discrete.Problem" ]
[((192, 217), 'sfepy.discrete.fem.Mesh.from_file', 'Mesh.from_file', (['mesh_path'], {}), '(mesh_path)\n', (206, 217), False, 'from sfepy.discrete.fem import Mesh, FEDomain, Field\n'), ((227, 251), 'sfepy.discrete.fem.FEDomain', 'FEDomain', (['"""domain"""', 'mesh'], {}), "('domain', mesh)\n", (235, 251), False, 'from sfepy.discrete.fem import Mesh, FEDomain, Field\n'), ((511, 577), 'sfepy.discrete.fem.Field.from_args', 'Field.from_args', (['"""fu"""', 'np.float64', '"""vector"""', 'omega'], {'approx_order': '(2)'}), "('fu', np.float64, 'vector', omega, approx_order=2)\n", (526, 577), False, 'from sfepy.discrete.fem import Mesh, FEDomain, Field\n'), ((582, 618), 'sfepy.discrete.FieldVariable', 'FieldVariable', (['"""u"""', '"""unknown"""', 'field'], {}), "('u', 'unknown', field)\n", (595, 618), False, 'from sfepy.discrete import FieldVariable, Material, Integral, Function, Equation, Equations, Problem\n'), ((623, 678), 'sfepy.discrete.FieldVariable', 'FieldVariable', (['"""v"""', '"""test"""', 'field'], {'primary_var_name': '"""u"""'}), "('v', 'test', field, primary_var_name='u')\n", (636, 678), False, 'from sfepy.discrete import FieldVariable, Material, Integral, Function, Equation, Equations, Problem\n'), ((812, 847), 'sfepy.discrete.Material', 'Material', (['"""f"""'], {'val': '[[0.02], [0.01]]'}), "('f', val=[[0.02], [0.01]])\n", (820, 847), False, 'from sfepy.discrete import FieldVariable, Material, Integral, Function, Equation, Equations, Problem\n'), ((860, 882), 'sfepy.discrete.Integral', 'Integral', (['"""i"""'], {'order': '(3)'}), "('i', order=3)\n", (868, 882), False, 'from sfepy.discrete import FieldVariable, Material, Integral, Function, Equation, Equations, Problem\n'), ((924, 993), 'sfepy.terms.Term.new', 'Term.new', (['"""dw_lin_elastic(m.D, v, u)"""', 'integral', 'omega'], {'m': 'm', 'v': 'v', 'u': 'u'}), "('dw_lin_elastic(m.D, v, u)', integral, omega, m=m, v=v, u=u)\n", (932, 993), False, 'from sfepy.terms import Term\n'), ((1005, 1067), 'sfepy.terms.Term.new', 'Term.new', (['"""dw_volume_lvf(f.val, v)"""', 'integral', 'omega'], {'f': 'f', 'v': 'v'}), "('dw_volume_lvf(f.val, v)', integral, omega, f=f, v=v)\n", (1013, 1067), False, 'from sfepy.terms import Term\n'), ((1079, 1107), 'sfepy.discrete.Equation', 'Equation', (['"""balance"""', '(t1 + t2)'], {}), "('balance', t1 + t2)\n", (1087, 1107), False, 'from sfepy.discrete import FieldVariable, Material, Integral, Function, Equation, Equations, Problem\n'), ((1114, 1129), 'sfepy.discrete.Equations', 'Equations', (['[eq]'], {}), '([eq])\n', (1123, 1129), False, 'from sfepy.discrete import FieldVariable, Material, Integral, Function, Equation, Equations, Problem\n'), ((1140, 1176), 'sfepy.discrete.Problem', 'Problem', (['"""elasticity"""'], {'equations': 'eqs'}), "('elasticity', equations=eqs)\n", (1147, 1176), False, 'from sfepy.discrete import FieldVariable, Material, Integral, Function, Equation, Equations, Problem\n'), ((763, 806), 'sfepy.mechanics.matcoefs.stiffness_from_lame', 'stiffness_from_lame', ([], {'dim': '(2)', 'lam': '(1.0)', 'mu': '(1.0)'}), '(dim=2, lam=1.0, mu=1.0)\n', (782, 806), False, 'from sfepy.mechanics.matcoefs import stiffness_from_lame\n')]
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import numpy as np import pytest import megengine.functional as F from megengine import tensor def test_cross_entropy_with_logits(): data = tensor([[0, 50], [0, -150]]).astype(np.float32) label = tensor([1, 0]).astype(np.int32) loss = F.nn.cross_entropy(data, label) np.testing.assert_allclose(loss.numpy(), 0.0) label = tensor([0, 1]).astype(np.int32) loss = F.nn.cross_entropy(data, label) np.testing.assert_allclose(loss.numpy(), 100) label = np.array([1, 0]) loss = F.nn.cross_entropy(data, label) np.testing.assert_allclose(loss.numpy(), 0.0) def test_cross_entropy(): def softmax(x): x = np.exp(x) x /= x.sum(1, keepdims=True) return x def ref(x, y): return np.mean([-np.log(x[i, y[i]]) for i in range(len(y))]) x = (np.random.rand(5, 10) - 0.5) * 4 y = np.random.randint(10, size=(5,)) for i in range(len(x)): x[i, y[i]] += np.random.rand() * 2 x = softmax(x) l_ref = ref(x, y) l = F.nn.cross_entropy(tensor(x, "float32"), tensor(y, "int32"), with_logits=False) np.testing.assert_allclose(l.numpy(), l_ref) def test_cross_entropy_reduction(): logits = np.random.randn(16, 10) label = np.random.randint(10, size=[16]) logits = tensor(logits, dtype="float32") label = tensor(label, dtype="int32") perm = np.random.permutation(16) logits_perm = tensor(logits[perm], dtype="float32") label_perm = tensor(label[perm], dtype="int32") loss = F.nn.cross_entropy(logits, label, reduction="none") loss_perm = F.nn.cross_entropy(logits_perm, label_perm, reduction="none") np.testing.assert_allclose(loss.numpy()[perm], loss_perm.numpy()) loss_sum = F.nn.cross_entropy(logits, label, reduction="sum") np.testing.assert_allclose(loss.numpy().sum(), loss_sum.numpy(), rtol=2e-7) loss_mean = F.nn.cross_entropy(logits, label, reduction="mean") np.testing.assert_allclose(loss_mean.numpy(), loss_sum.numpy() / 16) loss_ls = F.nn.cross_entropy(logits, label, reduction="mean", label_smooth=0.1) loss_ls_none_reduce = F.nn.cross_entropy( logits, label, reduction="none", label_smooth=0.1 ) np.testing.assert_allclose( loss_ls.numpy(), loss_ls_none_reduce.numpy().mean(), rtol=2e-7 ) with pytest.raises(ValueError): F.nn.cross_entropy(logits, label, reduction="MEAN") with pytest.raises(ValueError): F.nn.cross_entropy(logits, label, reduction="max") def ctc_nll_naive_npy( pred, pred_lengths, label, label_lengths, blank=0, reduction="mean", time_major=False, ): """naive :func:`ctc_nll` using numpy arrays. Used for testing and helping our user to understand how CTC works. Only ``LABEL_COMPACT`` mode is supported.""" pred = np.asarray(pred, dtype=np.float32) pred_lengths = np.asarray(pred_lengths, dtype=np.int8) label = np.asarray(label, dtype=np.int32) label_lengths = np.asarray(label_lengths, dtype=np.int32) if time_major: pred = np.transpose(pred, (1, 0, 2)) # pred in (N, T, P) format batch_size, time_len, nr_class = pred.shape assert pred_lengths.shape == (batch_size,) and pred_lengths.max() <= pred.shape[1] assert label_lengths.shape == (batch_size,) assert label.shape == (label_lengths.sum(),) and label.max() < nr_class ret = np.empty((batch_size,), dtype=np.float32) label_start = 0 for i in range(batch_size): label_end = label_start + label_lengths[i] ret[i] = _ctc_npy_single_seq( pred[i][: pred_lengths[i]], label[label_start:label_end], blank ) label_start = label_end if reduction == "mean": return (ret / label_lengths).mean() elif reduction == "sum": return ret.sum() elif reduction == "none": return ret else: raise ValueError("{} is not a valid value for reduction".format(reduction)) def _ctc_npy_single_seq(pred, label, blank): def safelog(x): eps = np.finfo(x.dtype).tiny return np.log(np.maximum(x, eps)) def log_sum_exp(x, y): x, y = np.maximum(x, y), np.minimum(x, y) return x + np.log1p(np.exp(y - x)) assert np.abs(pred.sum(axis=1) - 1).max() <= 1e-3 len_pred, alphabet_size = pred.shape (len_label,) = label.shape len_ex_label = len_label * 2 + 1 ex_label = (np.zeros(len_ex_label)).astype(np.int32) + blank ex_label[1::2] = label prob = np.zeros(len_ex_label, dtype=np.float32) prob[0] = pred[0][ex_label[0]] prob[1] = pred[0][ex_label[1]] prob = safelog(prob) # compute on log scale ex_label_pmask = ex_label[2:] != ex_label[:-2] for t in range(1, len_pred): # enter loop: prob[i] = log(p(pred[:t+1], label[:i+1])) new_prob = prob.copy() new_prob[1:] = log_sum_exp(new_prob[1:], prob[:-1]) new_prob[2:] = ( new_prob[2:] * (1 - ex_label_pmask) + log_sum_exp(new_prob[2:], prob[:-2]) * ex_label_pmask ) new_prob += safelog(pred[t, ex_label]) prob = new_prob return -log_sum_exp(prob[-1], prob[-2]) def test_ctc_loss(): def test_func(T, C, N): input = np.random.randn(T, N, C) input = F.softmax(tensor(input), axis=-1).numpy() input_lengths = np.ones(N, dtype=np.int32) * T target_lengths = np.random.randint(low=1, high=T + 1, size=(N,), dtype=np.int32) target = np.random.randint( low=1, high=C, size=(sum(target_lengths)), dtype=np.int32 ) input_mge = tensor(input) input_lengths_mge = tensor(input_lengths) target_mge = tensor(target) target_lengths_mge = tensor(target_lengths) blank = np.random.randint(C) for method in ["mean", "sum", "none"]: np_out = ctc_nll_naive_npy( input, input_lengths, target, target_lengths, blank=blank, reduction=method, time_major=True, ) mge_out = F.nn.ctc_loss( input_mge, input_lengths_mge, target_mge, target_lengths_mge, blank=blank, reduction=method, ) np.testing.assert_allclose(mge_out.numpy(), np_out, rtol=2e-6) cases = [[1, 2, 1], [100, 50, 200], [100, 5, 1]] for case in cases: test_func(*case)
[ "megengine.functional.nn.cross_entropy", "megengine.functional.nn.ctc_loss", "megengine.tensor" ]
[((627, 658), 'megengine.functional.nn.cross_entropy', 'F.nn.cross_entropy', (['data', 'label'], {}), '(data, label)\n', (645, 658), True, 'import megengine.functional as F\n'), ((764, 795), 'megengine.functional.nn.cross_entropy', 'F.nn.cross_entropy', (['data', 'label'], {}), '(data, label)\n', (782, 795), True, 'import megengine.functional as F\n'), ((859, 875), 'numpy.array', 'np.array', (['[1, 0]'], {}), '([1, 0])\n', (867, 875), True, 'import numpy as np\n'), ((887, 918), 'megengine.functional.nn.cross_entropy', 'F.nn.cross_entropy', (['data', 'label'], {}), '(data, label)\n', (905, 918), True, 'import megengine.functional as F\n'), ((1233, 1265), 'numpy.random.randint', 'np.random.randint', (['(10)'], {'size': '(5,)'}), '(10, size=(5,))\n', (1250, 1265), True, 'import numpy as np\n'), ((1566, 1589), 'numpy.random.randn', 'np.random.randn', (['(16)', '(10)'], {}), '(16, 10)\n', (1581, 1589), True, 'import numpy as np\n'), ((1602, 1634), 'numpy.random.randint', 'np.random.randint', (['(10)'], {'size': '[16]'}), '(10, size=[16])\n', (1619, 1634), True, 'import numpy as np\n'), ((1648, 1679), 'megengine.tensor', 'tensor', (['logits'], {'dtype': '"""float32"""'}), "(logits, dtype='float32')\n", (1654, 1679), False, 'from megengine import tensor\n'), ((1692, 1720), 'megengine.tensor', 'tensor', (['label'], {'dtype': '"""int32"""'}), "(label, dtype='int32')\n", (1698, 1720), False, 'from megengine import tensor\n'), ((1733, 1758), 'numpy.random.permutation', 'np.random.permutation', (['(16)'], {}), '(16)\n', (1754, 1758), True, 'import numpy as np\n'), ((1777, 1814), 'megengine.tensor', 'tensor', (['logits[perm]'], {'dtype': '"""float32"""'}), "(logits[perm], dtype='float32')\n", (1783, 1814), False, 'from megengine import tensor\n'), ((1832, 1866), 'megengine.tensor', 'tensor', (['label[perm]'], {'dtype': '"""int32"""'}), "(label[perm], dtype='int32')\n", (1838, 1866), False, 'from megengine import tensor\n'), ((1879, 1930), 'megengine.functional.nn.cross_entropy', 'F.nn.cross_entropy', (['logits', 'label'], {'reduction': '"""none"""'}), "(logits, label, reduction='none')\n", (1897, 1930), True, 'import megengine.functional as F\n'), ((1947, 2008), 'megengine.functional.nn.cross_entropy', 'F.nn.cross_entropy', (['logits_perm', 'label_perm'], {'reduction': '"""none"""'}), "(logits_perm, label_perm, reduction='none')\n", (1965, 2008), True, 'import megengine.functional as F\n'), ((2095, 2145), 'megengine.functional.nn.cross_entropy', 'F.nn.cross_entropy', (['logits', 'label'], {'reduction': '"""sum"""'}), "(logits, label, reduction='sum')\n", (2113, 2145), True, 'import megengine.functional as F\n'), ((2243, 2294), 'megengine.functional.nn.cross_entropy', 'F.nn.cross_entropy', (['logits', 'label'], {'reduction': '"""mean"""'}), "(logits, label, reduction='mean')\n", (2261, 2294), True, 'import megengine.functional as F\n'), ((2383, 2452), 'megengine.functional.nn.cross_entropy', 'F.nn.cross_entropy', (['logits', 'label'], {'reduction': '"""mean"""', 'label_smooth': '(0.1)'}), "(logits, label, reduction='mean', label_smooth=0.1)\n", (2401, 2452), True, 'import megengine.functional as F\n'), ((2479, 2548), 'megengine.functional.nn.cross_entropy', 'F.nn.cross_entropy', (['logits', 'label'], {'reduction': '"""none"""', 'label_smooth': '(0.1)'}), "(logits, label, reduction='none', label_smooth=0.1)\n", (2497, 2548), True, 'import megengine.functional as F\n'), ((3189, 3223), 'numpy.asarray', 'np.asarray', (['pred'], {'dtype': 'np.float32'}), '(pred, dtype=np.float32)\n', (3199, 3223), True, 'import numpy as np\n'), ((3243, 3282), 'numpy.asarray', 'np.asarray', (['pred_lengths'], {'dtype': 'np.int8'}), '(pred_lengths, dtype=np.int8)\n', (3253, 3282), True, 'import numpy as np\n'), ((3295, 3328), 'numpy.asarray', 'np.asarray', (['label'], {'dtype': 'np.int32'}), '(label, dtype=np.int32)\n', (3305, 3328), True, 'import numpy as np\n'), ((3349, 3390), 'numpy.asarray', 'np.asarray', (['label_lengths'], {'dtype': 'np.int32'}), '(label_lengths, dtype=np.int32)\n', (3359, 3390), True, 'import numpy as np\n'), ((3758, 3799), 'numpy.empty', 'np.empty', (['(batch_size,)'], {'dtype': 'np.float32'}), '((batch_size,), dtype=np.float32)\n', (3766, 3799), True, 'import numpy as np\n'), ((4865, 4905), 'numpy.zeros', 'np.zeros', (['len_ex_label'], {'dtype': 'np.float32'}), '(len_ex_label, dtype=np.float32)\n', (4873, 4905), True, 'import numpy as np\n'), ((1029, 1038), 'numpy.exp', 'np.exp', (['x'], {}), '(x)\n', (1035, 1038), True, 'import numpy as np\n'), ((1405, 1425), 'megengine.tensor', 'tensor', (['x', '"""float32"""'], {}), "(x, 'float32')\n", (1411, 1425), False, 'from megengine import tensor\n'), ((1427, 1445), 'megengine.tensor', 'tensor', (['y', '"""int32"""'], {}), "(y, 'int32')\n", (1433, 1445), False, 'from megengine import tensor\n'), ((2682, 2707), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (2695, 2707), False, 'import pytest\n'), ((2717, 2768), 'megengine.functional.nn.cross_entropy', 'F.nn.cross_entropy', (['logits', 'label'], {'reduction': '"""MEAN"""'}), "(logits, label, reduction='MEAN')\n", (2735, 2768), True, 'import megengine.functional as F\n'), ((2779, 2804), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (2792, 2804), False, 'import pytest\n'), ((2814, 2864), 'megengine.functional.nn.cross_entropy', 'F.nn.cross_entropy', (['logits', 'label'], {'reduction': '"""max"""'}), "(logits, label, reduction='max')\n", (2832, 2864), True, 'import megengine.functional as F\n'), ((3426, 3455), 'numpy.transpose', 'np.transpose', (['pred', '(1, 0, 2)'], {}), '(pred, (1, 0, 2))\n', (3438, 3455), True, 'import numpy as np\n'), ((5599, 5623), 'numpy.random.randn', 'np.random.randn', (['T', 'N', 'C'], {}), '(T, N, C)\n', (5614, 5623), True, 'import numpy as np\n'), ((5762, 5825), 'numpy.random.randint', 'np.random.randint', ([], {'low': '(1)', 'high': '(T + 1)', 'size': '(N,)', 'dtype': 'np.int32'}), '(low=1, high=T + 1, size=(N,), dtype=np.int32)\n', (5779, 5825), True, 'import numpy as np\n'), ((5963, 5976), 'megengine.tensor', 'tensor', (['input'], {}), '(input)\n', (5969, 5976), False, 'from megengine import tensor\n'), ((6005, 6026), 'megengine.tensor', 'tensor', (['input_lengths'], {}), '(input_lengths)\n', (6011, 6026), False, 'from megengine import tensor\n'), ((6049, 6063), 'megengine.tensor', 'tensor', (['target'], {}), '(target)\n', (6055, 6063), False, 'from megengine import tensor\n'), ((6093, 6115), 'megengine.tensor', 'tensor', (['target_lengths'], {}), '(target_lengths)\n', (6099, 6115), False, 'from megengine import tensor\n'), ((6133, 6153), 'numpy.random.randint', 'np.random.randint', (['C'], {}), '(C)\n', (6150, 6153), True, 'import numpy as np\n'), ((524, 552), 'megengine.tensor', 'tensor', (['[[0, 50], [0, -150]]'], {}), '([[0, 50], [0, -150]])\n', (530, 552), False, 'from megengine import tensor\n'), ((584, 598), 'megengine.tensor', 'tensor', (['[1, 0]'], {}), '([1, 0])\n', (590, 598), False, 'from megengine import tensor\n'), ((721, 735), 'megengine.tensor', 'tensor', (['[0, 1]'], {}), '([0, 1])\n', (727, 735), False, 'from megengine import tensor\n'), ((1192, 1213), 'numpy.random.rand', 'np.random.rand', (['(5)', '(10)'], {}), '(5, 10)\n', (1206, 1213), True, 'import numpy as np\n'), ((1316, 1332), 'numpy.random.rand', 'np.random.rand', ([], {}), '()\n', (1330, 1332), True, 'import numpy as np\n'), ((4410, 4427), 'numpy.finfo', 'np.finfo', (['x.dtype'], {}), '(x.dtype)\n', (4418, 4427), True, 'import numpy as np\n'), ((4455, 4473), 'numpy.maximum', 'np.maximum', (['x', 'eps'], {}), '(x, eps)\n', (4465, 4473), True, 'import numpy as np\n'), ((4518, 4534), 'numpy.maximum', 'np.maximum', (['x', 'y'], {}), '(x, y)\n', (4528, 4534), True, 'import numpy as np\n'), ((4536, 4552), 'numpy.minimum', 'np.minimum', (['x', 'y'], {}), '(x, y)\n', (4546, 4552), True, 'import numpy as np\n'), ((5706, 5732), 'numpy.ones', 'np.ones', (['N'], {'dtype': 'np.int32'}), '(N, dtype=np.int32)\n', (5713, 5732), True, 'import numpy as np\n'), ((6483, 6593), 'megengine.functional.nn.ctc_loss', 'F.nn.ctc_loss', (['input_mge', 'input_lengths_mge', 'target_mge', 'target_lengths_mge'], {'blank': 'blank', 'reduction': 'method'}), '(input_mge, input_lengths_mge, target_mge, target_lengths_mge,\n blank=blank, reduction=method)\n', (6496, 6593), True, 'import megengine.functional as F\n'), ((4581, 4594), 'numpy.exp', 'np.exp', (['(y - x)'], {}), '(y - x)\n', (4587, 4594), True, 'import numpy as np\n'), ((4777, 4799), 'numpy.zeros', 'np.zeros', (['len_ex_label'], {}), '(len_ex_label)\n', (4785, 4799), True, 'import numpy as np\n'), ((1138, 1156), 'numpy.log', 'np.log', (['x[i, y[i]]'], {}), '(x[i, y[i]])\n', (1144, 1156), True, 'import numpy as np\n'), ((5650, 5663), 'megengine.tensor', 'tensor', (['input'], {}), '(input)\n', (5656, 5663), False, 'from megengine import tensor\n')]
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import numpy as np import megengine as mge import megengine.functional as F import megengine.module as M from megengine.core import tensor def test_mge_81(): np.random.seed(0) N, D = 3, 4 x = mge.Parameter(value=np.random.normal(size=(N, D)).astype(np.float32)) y = mge.Parameter(value=np.random.normal(size=(N, D)).astype(np.float32)) z = mge.Parameter(value=np.random.normal(size=(N, D)).astype(np.float32)) a = x * y b = a + z c = F.sum(b) grad_x = F.grad(c, x, use_virtual_grad=False) grad_y = F.grad(c, y, use_virtual_grad=False) grad_z = F.grad(c, z, use_virtual_grad=False) print(grad_x.numpy()) print(grad_y.numpy()) print(grad_z.numpy()) m = M.BatchNorm2d(4) input = tensor(np.zeros((64, 4, 32, 32), dtype=np.float32)) _ = m(input) m = M.BatchNorm2d(4, affine=False) _ = m(input)
[ "megengine.functional.sum", "megengine.functional.grad", "megengine.module.BatchNorm2d" ]
[((542, 559), 'numpy.random.seed', 'np.random.seed', (['(0)'], {}), '(0)\n', (556, 559), True, 'import numpy as np\n'), ((846, 854), 'megengine.functional.sum', 'F.sum', (['b'], {}), '(b)\n', (851, 854), True, 'import megengine.functional as F\n'), ((868, 904), 'megengine.functional.grad', 'F.grad', (['c', 'x'], {'use_virtual_grad': '(False)'}), '(c, x, use_virtual_grad=False)\n', (874, 904), True, 'import megengine.functional as F\n'), ((918, 954), 'megengine.functional.grad', 'F.grad', (['c', 'y'], {'use_virtual_grad': '(False)'}), '(c, y, use_virtual_grad=False)\n', (924, 954), True, 'import megengine.functional as F\n'), ((968, 1004), 'megengine.functional.grad', 'F.grad', (['c', 'z'], {'use_virtual_grad': '(False)'}), '(c, z, use_virtual_grad=False)\n', (974, 1004), True, 'import megengine.functional as F\n'), ((1091, 1107), 'megengine.module.BatchNorm2d', 'M.BatchNorm2d', (['(4)'], {}), '(4)\n', (1104, 1107), True, 'import megengine.module as M\n'), ((1197, 1227), 'megengine.module.BatchNorm2d', 'M.BatchNorm2d', (['(4)'], {'affine': '(False)'}), '(4, affine=False)\n', (1210, 1227), True, 'import megengine.module as M\n'), ((1127, 1170), 'numpy.zeros', 'np.zeros', (['(64, 4, 32, 32)'], {'dtype': 'np.float32'}), '((64, 4, 32, 32), dtype=np.float32)\n', (1135, 1170), True, 'import numpy as np\n'), ((604, 633), 'numpy.random.normal', 'np.random.normal', ([], {'size': '(N, D)'}), '(size=(N, D))\n', (620, 633), True, 'import numpy as np\n'), ((682, 711), 'numpy.random.normal', 'np.random.normal', ([], {'size': '(N, D)'}), '(size=(N, D))\n', (698, 711), True, 'import numpy as np\n'), ((760, 789), 'numpy.random.normal', 'np.random.normal', ([], {'size': '(N, D)'}), '(size=(N, D))\n', (776, 789), True, 'import numpy as np\n')]
import numpy as np import megengine as mge import megengine.autodiff as ad import megengine.optimizer as optimizer from megengine import Parameter, tensor from megengine.core.tensor.raw_tensor import RawTensor from megengine.module import Module class Simple(Module): def __init__(self): super().__init__() self.a = Parameter(1.23, dtype=np.float32) def forward(self, x): x = x * self.a return x def test_save_load(): net = Simple() optim = optimizer.SGD(net.parameters(), lr=1.0, momentum=0.9) optim.clear_grad() gm = ad.GradManager().attach(net.parameters()) data = tensor([2.34]) with gm: loss = net(data) gm.backward(loss) optim.step() model_name = "simple.pkl" print("save to {}".format(model_name)) mge.save( { "name": "simple", "state_dict": net.state_dict(), "opt_state": optim.state_dict(), }, model_name, ) # Load param to cpu checkpoint = mge.load(model_name, map_location="cpu0") device_save = mge.get_default_device() mge.set_default_device("cpu0") net = Simple() net.load_state_dict(checkpoint["state_dict"]) optim = optimizer.SGD(net.parameters(), lr=1.0, momentum=0.9) optim.load_state_dict(checkpoint["opt_state"]) print("load done") with gm: loss = net([1.23]) gm.backward(loss) optim.step() # Restore device mge.set_default_device(device_save)
[ "megengine.get_default_device", "megengine.load", "megengine.tensor", "megengine.set_default_device", "megengine.autodiff.GradManager", "megengine.Parameter" ]
[((636, 650), 'megengine.tensor', 'tensor', (['[2.34]'], {}), '([2.34])\n', (642, 650), False, 'from megengine import Parameter, tensor\n'), ((1031, 1072), 'megengine.load', 'mge.load', (['model_name'], {'map_location': '"""cpu0"""'}), "(model_name, map_location='cpu0')\n", (1039, 1072), True, 'import megengine as mge\n'), ((1091, 1115), 'megengine.get_default_device', 'mge.get_default_device', ([], {}), '()\n', (1113, 1115), True, 'import megengine as mge\n'), ((1120, 1150), 'megengine.set_default_device', 'mge.set_default_device', (['"""cpu0"""'], {}), "('cpu0')\n", (1142, 1150), True, 'import megengine as mge\n'), ((1470, 1505), 'megengine.set_default_device', 'mge.set_default_device', (['device_save'], {}), '(device_save)\n', (1492, 1505), True, 'import megengine as mge\n'), ((339, 372), 'megengine.Parameter', 'Parameter', (['(1.23)'], {'dtype': 'np.float32'}), '(1.23, dtype=np.float32)\n', (348, 372), False, 'from megengine import Parameter, tensor\n'), ((582, 598), 'megengine.autodiff.GradManager', 'ad.GradManager', ([], {}), '()\n', (596, 598), True, 'import megengine.autodiff as ad\n')]
from datetime import datetime from os import getenv from typing import Optional from fastapi import FastAPI import strawberry from strawberry.asgi import GraphQL from sqlmodel import create_engine, SQLModel from api.models import PostQL from api.crud import create_post, get_posts ENGINE = create_engine(getenv("DATABASE_URL")) @strawberry.type class Query: @strawberry.field def post(self, slug: Optional[str] = None) -> list[PostQL]: return get_posts(ENGINE, slug) @strawberry.type class Mutation: @strawberry.field def add_post(self, slug: str, title: str, content: str, published: bool) -> PostQL: return create_post( ENGINE, PostQL( slug=slug, title=title, content=content, published=published, published_at=datetime.now(), ), ) schema = strawberry.Schema(query=Query, mutation=Mutation) SQLModel.metadata.create_all(ENGINE) graphql_app = GraphQL(schema) app = FastAPI() app.add_route("/graphql", graphql_app) app.add_websocket_route("/graphql", graphql_app)
[ "sqlmodel.SQLModel.metadata.create_all" ]
[((908, 957), 'strawberry.Schema', 'strawberry.Schema', ([], {'query': 'Query', 'mutation': 'Mutation'}), '(query=Query, mutation=Mutation)\n', (925, 957), False, 'import strawberry\n'), ((959, 995), 'sqlmodel.SQLModel.metadata.create_all', 'SQLModel.metadata.create_all', (['ENGINE'], {}), '(ENGINE)\n', (987, 995), False, 'from sqlmodel import create_engine, SQLModel\n'), ((1011, 1026), 'strawberry.asgi.GraphQL', 'GraphQL', (['schema'], {}), '(schema)\n', (1018, 1026), False, 'from strawberry.asgi import GraphQL\n'), ((1034, 1043), 'fastapi.FastAPI', 'FastAPI', ([], {}), '()\n', (1041, 1043), False, 'from fastapi import FastAPI\n'), ((307, 329), 'os.getenv', 'getenv', (['"""DATABASE_URL"""'], {}), "('DATABASE_URL')\n", (313, 329), False, 'from os import getenv\n'), ((464, 487), 'api.crud.get_posts', 'get_posts', (['ENGINE', 'slug'], {}), '(ENGINE, slug)\n', (473, 487), False, 'from api.crud import create_post, get_posts\n'), ((856, 870), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (868, 870), False, 'from datetime import datetime\n')]
from popol.db.sqlmodel import models from sqlmodel import Field class Account(models.Model, table=True): username: str = Field(max_length=255, nullable=False) password: str = Field(max_length=255, nullable=False) class Counter(models.Model, table=True): value: int
[ "sqlmodel.Field" ]
[((127, 164), 'sqlmodel.Field', 'Field', ([], {'max_length': '(255)', 'nullable': '(False)'}), '(max_length=255, nullable=False)\n', (132, 164), False, 'from sqlmodel import Field\n'), ((185, 222), 'sqlmodel.Field', 'Field', ([], {'max_length': '(255)', 'nullable': '(False)'}), '(max_length=255, nullable=False)\n', (190, 222), False, 'from sqlmodel import Field\n')]
#!/usr/bin/env python r""" This example shows the use of the `dw_tl_he_genyeoh` hyperelastic term, whose contribution to the deformation energy density per unit reference volume is given by .. math:: W = K \, \left( \overline I_1 - 3 \right)^{p} where :math:`\overline I_1` is the first main invariant of the deviatoric part of the right Cauchy-Green deformation tensor :math:`\ull{C}` and `K` and `p` are its parameters. This term may be used to implement the generalized Yeoh hyperelastic material model [1] by adding three such terms: .. math:: W = K_1 \, \left( \overline I_1 - 3 \right)^{m} +K_2 \, \left( \overline I_1 - 3 \right)^{p} +K_3 \, \left( \overline I_1 - 3 \right)^{q} where the coefficients :math:`K_1, K_2, K_3` and exponents :math:`m, p, q` are material parameters. Only a single term is used in this example for the sake of simplicity. Components of the second Piola-Kirchhoff stress are in the case of an incompressible material .. math:: S_{ij} = 2 \, \pdiff{W}{C_{ij}} - p \, F^{-1}_{ik} \, F^{-T}_{kj} \;, where :math:`p` is the hydrostatic pressure. The large deformation is described using the total Lagrangian formulation in this example. The incompressibility is treated by mixed displacement-pressure formulation. The weak formulation is: Find the displacement field :math:`\ul{u}` and pressure field :math:`p` such that: .. math:: \intl{\Omega\suz}{} \ull{S}\eff(\ul{u}, p) : \ull{E}(\ul{v}) \difd{V} = 0 \;, \quad \forall \ul{v} \;, \intl{\Omega\suz}{} q\, (J(\ul{u})-1) \difd{V} = 0 \;, \quad \forall q \;. The following formula holds for the axial true (Cauchy) stress in the case of uniaxial stress: .. math:: \sigma(\lambda) = \frac{2}{3} \, m \, K_1 \, \left( \lambda^2 + \frac{2}{\lambda} - 3 \right)^{m-1} \, \left( \lambda - \frac{1}{\lambda^2} \right) \;, where :math:`\lambda = l/l_0` is the prescribed stretch (:math:`l_0` and :math:`l` being the original and deformed specimen length respectively). The boundary conditions are set so that a state of uniaxial stress is achieved, i.e. appropriate components of displacement are fixed on the "Left", "Bottom", and "Near" faces and a monotonously increasing displacement is prescribed on the "Right" face. This prescribed displacement is then used to calculate :math:`\lambda` and to convert the second Piola-Kirchhoff stress to the true (Cauchy) stress. Note on material parameters --------------------------- The three-term generalized Yeoh model is meant to be used for modelling of filled rubbers. The following choice of parameters is suggested [1] based on experimental data and stability considerations: :math:`K_1 > 0`, :math:`K_2 < 0`, :math:`K_3 > 0`, :math:`0.7 < m < 1`, :math:`m < p < q`. Usage Examples -------------- Default options:: $ python examples/large_deformation/gen_yeoh_tl_up_interactive.py To show a comparison of stress against the analytic formula:: $ python examples/large_deformation/gen_yeoh_tl_up_interactive.py -p Using different mesh fineness:: $ python examples/large_deformation/gen_yeoh_tl_up_interactive.py \ --shape "5, 5, 5" Different dimensions of the computational domain:: $ python examples/large_deformation/gen_yeoh_tl_up_interactive.py \ --dims "2, 1, 3" Different length of time interval and/or number of time steps:: $ python examples/large_deformation/gen_yeoh_tl_up_interactive.py \ -t 0,15,21 Use higher approximation order (the ``-t`` option to decrease the time step is required for convergence here):: $ python examples/large_deformation/gen_yeoh_tl_up_interactive.py \ --order 2 -t 0,2,21 Change material parameters:: $ python examples/large_deformation/gen_yeoh_tl_up_interactive.py -m 2,1 View the results using ``resview.py`` ------------------------------------- Show pressure on deformed mesh (use PgDn/PgUp to jump forward/back):: $ python resview.py --fields=p:f1:wu:p1 domain.??.vtk Show the axial component of stress (second Piola-Kirchhoff):: $ python resview.py --fields=stress:c0 domain.??.vtk [1] <NAME>, <NAME>, <NAME>, <NAME>. Busfield. Aconstitutive Model For Both Lowand High Strain Nonlinearities In Highly Filled Elastomers And Implementation With User-Defined Material Subroutines In Abaqus. Rubber Chemistry And Technology, Vol. 92, No. 4, Pp. 653-686 (2019) """ from __future__ import print_function, absolute_import import argparse import sys SFEPY_DIR = '.' sys.path.append(SFEPY_DIR) import matplotlib.pyplot as plt import numpy as np from sfepy.base.base import IndexedStruct, Struct from sfepy.discrete import ( FieldVariable, Material, Integral, Function, Equation, Equations, Problem) from sfepy.discrete.conditions import Conditions, EssentialBC from sfepy.discrete.fem import FEDomain, Field from sfepy.homogenization.utils import define_box_regions from sfepy.mesh.mesh_generators import gen_block_mesh from sfepy.solvers.ls import ScipyDirect from sfepy.solvers.nls import Newton from sfepy.solvers.ts_solvers import SimpleTimeSteppingSolver from sfepy.terms import Term DIMENSION = 3 def get_displacement(ts, coors, bc=None, problem=None): """ Define the time-dependent displacement. """ out = 1. * ts.time * coors[:, 0] return out def _get_analytic_stress(stretches, coef, exp): out = np.array([ 2 * coef * exp * (stretch**2 + 2 / stretch - 3)**(exp - 1) * (stretch - stretch**-2) if (stretch**2 + 2 / stretch > 3) else 0. for stretch in stretches]) return out def plot_graphs( material_parameters, global_stress, global_displacement, undeformed_length): """ Plot a comparison of the nominal stress computed by the FEM and using the analytic formula. Parameters ---------- material_parameters : list or tuple of float The K_1 coefficient and exponent m. global_displacement The total displacement for each time step, from the FEM. global_stress The true (Cauchy) stress for each time step, from the FEM. undeformed_length : float The length of the undeformed specimen. """ coef, exp = material_parameters stretch = 1 + np.array(global_displacement) / undeformed_length # axial stress values stress_fem_2pk = np.array([sig for sig in global_stress]) stress_fem = stress_fem_2pk * stretch stress_analytic = _get_analytic_stress(stretch, coef, exp) fig, (ax_stress, ax_difference) = plt.subplots(nrows=2, sharex=True) ax_stress.plot(stretch, stress_fem, '.-', label='FEM') ax_stress.plot(stretch, stress_analytic, '--', label='analytic') ax_difference.plot(stretch, stress_fem - stress_analytic, '.-') ax_stress.legend(loc='best').set_draggable(True) ax_stress.set_ylabel(r'nominal stress $\mathrm{[Pa]}$') ax_stress.grid() ax_difference.set_ylabel(r'difference in nominal stress $\mathrm{[Pa]}$') ax_difference.set_xlabel(r'stretch $\mathrm{[-]}$') ax_difference.grid() plt.tight_layout() plt.show() def stress_strain( out, problem, _state, order=1, global_stress=None, global_displacement=None, **_): """ Compute the stress and the strain and add them to the output. Parameters ---------- out : dict Holds the results of the finite element computation. problem : sfepy.discrete.Problem order : int The approximation order of the displacement field. global_displacement Total displacement for each time step, current value will be appended. global_stress The true (Cauchy) stress for each time step, current value will be appended. Returns ------- out : dict """ strain = problem.evaluate( 'dw_tl_he_genyeoh.%d.Omega(m1.par, v, u)' % (2*order), mode='el_avg', term_mode='strain', copy_materials=False) out['green_strain'] = Struct( name='output_data', mode='cell', data=strain, dofs=None) stress_1 = problem.evaluate( 'dw_tl_he_genyeoh.%d.Omega(m1.par, v, u)' % (2*order), mode='el_avg', term_mode='stress', copy_materials=False) stress_p = problem.evaluate( 'dw_tl_bulk_pressure.%d.Omega(v, u, p)' % (2*order), mode='el_avg', term_mode='stress', copy_materials=False) stress = stress_1 + stress_p out['stress'] = Struct( name='output_data', mode='cell', data=stress, dofs=None) global_stress.append(stress[0, 0, 0, 0]) global_displacement.append(get_displacement( problem.ts, np.array([[1., 0, 0]]))[0]) return out def main(cli_args): dims = parse_argument_list(cli_args.dims, float) shape = parse_argument_list(cli_args.shape, int) centre = parse_argument_list(cli_args.centre, float) material_parameters = parse_argument_list(cli_args.material_parameters, float) order = cli_args.order ts_vals = cli_args.ts.split(',') ts = { 't0' : float(ts_vals[0]), 't1' : float(ts_vals[1]), 'n_step' : int(ts_vals[2])} do_plot = cli_args.plot ### Mesh and regions ### mesh = gen_block_mesh( dims, shape, centre, name='block', verbose=False) domain = FEDomain('domain', mesh) omega = domain.create_region('Omega', 'all') lbn, rtf = domain.get_mesh_bounding_box() box_regions = define_box_regions(3, lbn, rtf) regions = dict([ [r, domain.create_region(r, box_regions[r][0], box_regions[r][1])] for r in box_regions]) ### Fields ### scalar_field = Field.from_args( 'fu', np.float64, 'scalar', omega, approx_order=order-1) vector_field = Field.from_args( 'fv', np.float64, 'vector', omega, approx_order=order) u = FieldVariable('u', 'unknown', vector_field, history=1) v = FieldVariable('v', 'test', vector_field, primary_var_name='u') p = FieldVariable('p', 'unknown', scalar_field, history=1) q = FieldVariable('q', 'test', scalar_field, primary_var_name='p') ### Material ### coefficient, exponent = material_parameters m_1 = Material( 'm1', par=[coefficient, exponent], ) ### Boundary conditions ### x_sym = EssentialBC('x_sym', regions['Left'], {'u.0' : 0.0}) y_sym = EssentialBC('y_sym', regions['Near'], {'u.1' : 0.0}) z_sym = EssentialBC('z_sym', regions['Bottom'], {'u.2' : 0.0}) disp_fun = Function('disp_fun', get_displacement) displacement = EssentialBC( 'displacement', regions['Right'], {'u.0' : disp_fun}) ebcs = Conditions([x_sym, y_sym, z_sym, displacement]) ### Terms and equations ### integral = Integral('i', order=2*order+1) term_1 = Term.new( 'dw_tl_he_genyeoh(m1.par, v, u)', integral, omega, m1=m_1, v=v, u=u) term_pressure = Term.new( 'dw_tl_bulk_pressure(v, u, p)', integral, omega, v=v, u=u, p=p) term_volume_change = Term.new( 'dw_tl_volume(q, u)', integral, omega, q=q, u=u, term_mode='volume') term_volume = Term.new( 'dw_volume_integrate(q)', integral, omega, q=q) eq_balance = Equation('balance', term_1 + term_pressure) eq_volume = Equation('volume', term_volume_change - term_volume) equations = Equations([eq_balance, eq_volume]) ### Solvers ### ls = ScipyDirect({}) nls_status = IndexedStruct() nls = Newton( {'i_max' : 20}, lin_solver=ls, status=nls_status ) ### Problem ### pb = Problem('hyper', equations=equations) pb.set_bcs(ebcs=ebcs) pb.set_ics(ics=Conditions([])) tss = SimpleTimeSteppingSolver(ts, nls=nls, context=pb) pb.set_solver(tss) ### Solution ### axial_stress = [] axial_displacement = [] def stress_strain_fun(*args, **kwargs): return stress_strain( *args, order=order, global_stress=axial_stress, global_displacement=axial_displacement, **kwargs) pb.solve(save_results=True, post_process_hook=stress_strain_fun) if do_plot: plot_graphs( material_parameters, axial_stress, axial_displacement, undeformed_length=dims[0]) def parse_argument_list(cli_arg, type_fun=None, value_separator=','): """ Split the command-line argument into a list of items of given type. Parameters ---------- cli_arg : str type_fun : function A function to be called on each substring of `cli_arg`; default: str. value_separator : str """ if type_fun is None: type_fun = str out = [type_fun(value) for value in cli_arg.split(value_separator)] return out def parse_args(): """Parse command line arguments.""" parser = argparse.ArgumentParser( description=__doc__, formatter_class=argparse.RawDescriptionHelpFormatter) parser.add_argument( '--order', type=int, default=1, help='The approximation order of the ' 'displacement field [default: %(default)s]') parser.add_argument( '-m', '--material-parameters', default='0.5, 0.9', help='Material parameters - coefficient and exponent - of a single ' 'term of the generalized Yeoh hyperelastic model. ' '[default: %(default)s]') parser.add_argument( '--dims', default="1.0, 1.0, 1.0", help='Dimensions of the block [default: %(default)s]') parser.add_argument( '--shape', default='2, 2, 2', help='Shape (counts of nodes in x, y, z) of the block [default: ' '%(default)s]') parser.add_argument( '--centre', default='0.5, 0.5, 0.5', help='Centre of the block [default: %(default)s]') parser.add_argument( '-p', '--plot', action='store_true', default=False, help='Whether to plot a comparison with analytical formula.') parser.add_argument( '-t', '--ts', type=str, default='0.0,2.0,11', help='Start time, end time, and number of time steps [default: ' '"%(default)s"]') return parser.parse_args() if __name__ == '__main__': args = parse_args() main(args)
[ "sfepy.mesh.mesh_generators.gen_block_mesh", "sfepy.solvers.ts_solvers.SimpleTimeSteppingSolver", "sfepy.homogenization.utils.define_box_regions", "sfepy.solvers.nls.Newton", "sfepy.discrete.Problem", "sfepy.discrete.Integral", "sfepy.discrete.fem.Field.from_args", "sfepy.base.base.Struct", "sfepy.discrete.fem.FEDomain", "sfepy.discrete.conditions.EssentialBC", "sfepy.solvers.ls.ScipyDirect", "sfepy.discrete.conditions.Conditions", "sfepy.base.base.IndexedStruct", "sfepy.discrete.Equation", "sfepy.terms.Term.new", "sfepy.discrete.FieldVariable", "sfepy.discrete.Material", "sfepy.discrete.Function", "sfepy.discrete.Equations" ]
[((4494, 4520), 'sys.path.append', 'sys.path.append', (['SFEPY_DIR'], {}), '(SFEPY_DIR)\n', (4509, 4520), False, 'import sys\n'), ((5366, 5546), 'numpy.array', 'np.array', (['[(2 * coef * exp * (stretch ** 2 + 2 / stretch - 3) ** (exp - 1) * (stretch -\n stretch ** -2) if stretch ** 2 + 2 / stretch > 3 else 0.0) for stretch in\n stretches]'], {}), '([(2 * coef * exp * (stretch ** 2 + 2 / stretch - 3) ** (exp - 1) *\n (stretch - stretch ** -2) if stretch ** 2 + 2 / stretch > 3 else 0.0) for\n stretch in stretches])\n', (5374, 5546), True, 'import numpy as np\n'), ((6333, 6373), 'numpy.array', 'np.array', (['[sig for sig in global_stress]'], {}), '([sig for sig in global_stress])\n', (6341, 6373), True, 'import numpy as np\n'), ((6518, 6552), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {'nrows': '(2)', 'sharex': '(True)'}), '(nrows=2, sharex=True)\n', (6530, 6552), True, 'import matplotlib.pyplot as plt\n'), ((7050, 7068), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (7066, 7068), True, 'import matplotlib.pyplot as plt\n'), ((7073, 7083), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (7081, 7083), True, 'import matplotlib.pyplot as plt\n'), ((7944, 8007), 'sfepy.base.base.Struct', 'Struct', ([], {'name': '"""output_data"""', 'mode': '"""cell"""', 'data': 'strain', 'dofs': 'None'}), "(name='output_data', mode='cell', data=strain, dofs=None)\n", (7950, 8007), False, 'from sfepy.base.base import IndexedStruct, Struct\n'), ((8392, 8455), 'sfepy.base.base.Struct', 'Struct', ([], {'name': '"""output_data"""', 'mode': '"""cell"""', 'data': 'stress', 'dofs': 'None'}), "(name='output_data', mode='cell', data=stress, dofs=None)\n", (8398, 8455), False, 'from sfepy.base.base import IndexedStruct, Struct\n'), ((9179, 9243), 'sfepy.mesh.mesh_generators.gen_block_mesh', 'gen_block_mesh', (['dims', 'shape', 'centre'], {'name': '"""block"""', 'verbose': '(False)'}), "(dims, shape, centre, name='block', verbose=False)\n", (9193, 9243), False, 'from sfepy.mesh.mesh_generators import gen_block_mesh\n'), ((9266, 9290), 'sfepy.discrete.fem.FEDomain', 'FEDomain', (['"""domain"""', 'mesh'], {}), "('domain', mesh)\n", (9274, 9290), False, 'from sfepy.discrete.fem import FEDomain, Field\n'), ((9406, 9437), 'sfepy.homogenization.utils.define_box_regions', 'define_box_regions', (['(3)', 'lbn', 'rtf'], {}), '(3, lbn, rtf)\n', (9424, 9437), False, 'from sfepy.homogenization.utils import define_box_regions\n'), ((9604, 9678), 'sfepy.discrete.fem.Field.from_args', 'Field.from_args', (['"""fu"""', 'np.float64', '"""scalar"""', 'omega'], {'approx_order': '(order - 1)'}), "('fu', np.float64, 'scalar', omega, approx_order=order - 1)\n", (9619, 9678), False, 'from sfepy.discrete.fem import FEDomain, Field\n'), ((9705, 9775), 'sfepy.discrete.fem.Field.from_args', 'Field.from_args', (['"""fv"""', 'np.float64', '"""vector"""', 'omega'], {'approx_order': 'order'}), "('fv', np.float64, 'vector', omega, approx_order=order)\n", (9720, 9775), False, 'from sfepy.discrete.fem import FEDomain, Field\n'), ((9794, 9848), 'sfepy.discrete.FieldVariable', 'FieldVariable', (['"""u"""', '"""unknown"""', 'vector_field'], {'history': '(1)'}), "('u', 'unknown', vector_field, history=1)\n", (9807, 9848), False, 'from sfepy.discrete import FieldVariable, Material, Integral, Function, Equation, Equations, Problem\n'), ((9857, 9919), 'sfepy.discrete.FieldVariable', 'FieldVariable', (['"""v"""', '"""test"""', 'vector_field'], {'primary_var_name': '"""u"""'}), "('v', 'test', vector_field, primary_var_name='u')\n", (9870, 9919), False, 'from sfepy.discrete import FieldVariable, Material, Integral, Function, Equation, Equations, Problem\n'), ((9928, 9982), 'sfepy.discrete.FieldVariable', 'FieldVariable', (['"""p"""', '"""unknown"""', 'scalar_field'], {'history': '(1)'}), "('p', 'unknown', scalar_field, history=1)\n", (9941, 9982), False, 'from sfepy.discrete import FieldVariable, Material, Integral, Function, Equation, Equations, Problem\n'), ((9991, 10053), 'sfepy.discrete.FieldVariable', 'FieldVariable', (['"""q"""', '"""test"""', 'scalar_field'], {'primary_var_name': '"""p"""'}), "('q', 'test', scalar_field, primary_var_name='p')\n", (10004, 10053), False, 'from sfepy.discrete import FieldVariable, Material, Integral, Function, Equation, Equations, Problem\n'), ((10135, 10178), 'sfepy.discrete.Material', 'Material', (['"""m1"""'], {'par': '[coefficient, exponent]'}), "('m1', par=[coefficient, exponent])\n", (10143, 10178), False, 'from sfepy.discrete import FieldVariable, Material, Integral, Function, Equation, Equations, Problem\n'), ((10239, 10290), 'sfepy.discrete.conditions.EssentialBC', 'EssentialBC', (['"""x_sym"""', "regions['Left']", "{'u.0': 0.0}"], {}), "('x_sym', regions['Left'], {'u.0': 0.0})\n", (10250, 10290), False, 'from sfepy.discrete.conditions import Conditions, EssentialBC\n'), ((10304, 10355), 'sfepy.discrete.conditions.EssentialBC', 'EssentialBC', (['"""y_sym"""', "regions['Near']", "{'u.1': 0.0}"], {}), "('y_sym', regions['Near'], {'u.1': 0.0})\n", (10315, 10355), False, 'from sfepy.discrete.conditions import Conditions, EssentialBC\n'), ((10369, 10422), 'sfepy.discrete.conditions.EssentialBC', 'EssentialBC', (['"""z_sym"""', "regions['Bottom']", "{'u.2': 0.0}"], {}), "('z_sym', regions['Bottom'], {'u.2': 0.0})\n", (10380, 10422), False, 'from sfepy.discrete.conditions import Conditions, EssentialBC\n'), ((10439, 10477), 'sfepy.discrete.Function', 'Function', (['"""disp_fun"""', 'get_displacement'], {}), "('disp_fun', get_displacement)\n", (10447, 10477), False, 'from sfepy.discrete import FieldVariable, Material, Integral, Function, Equation, Equations, Problem\n'), ((10497, 10561), 'sfepy.discrete.conditions.EssentialBC', 'EssentialBC', (['"""displacement"""', "regions['Right']", "{'u.0': disp_fun}"], {}), "('displacement', regions['Right'], {'u.0': disp_fun})\n", (10508, 10561), False, 'from sfepy.discrete.conditions import Conditions, EssentialBC\n'), ((10583, 10630), 'sfepy.discrete.conditions.Conditions', 'Conditions', (['[x_sym, y_sym, z_sym, displacement]'], {}), '([x_sym, y_sym, z_sym, displacement])\n', (10593, 10630), False, 'from sfepy.discrete.conditions import Conditions, EssentialBC\n'), ((10679, 10713), 'sfepy.discrete.Integral', 'Integral', (['"""i"""'], {'order': '(2 * order + 1)'}), "('i', order=2 * order + 1)\n", (10687, 10713), False, 'from sfepy.discrete import FieldVariable, Material, Integral, Function, Equation, Equations, Problem\n'), ((10724, 10801), 'sfepy.terms.Term.new', 'Term.new', (['"""dw_tl_he_genyeoh(m1.par, v, u)"""', 'integral', 'omega'], {'m1': 'm_1', 'v': 'v', 'u': 'u'}), "('dw_tl_he_genyeoh(m1.par, v, u)', integral, omega, m1=m_1, v=v, u=u)\n", (10732, 10801), False, 'from sfepy.terms import Term\n'), ((10839, 10911), 'sfepy.terms.Term.new', 'Term.new', (['"""dw_tl_bulk_pressure(v, u, p)"""', 'integral', 'omega'], {'v': 'v', 'u': 'u', 'p': 'p'}), "('dw_tl_bulk_pressure(v, u, p)', integral, omega, v=v, u=u, p=p)\n", (10847, 10911), False, 'from sfepy.terms import Term\n'), ((10955, 11032), 'sfepy.terms.Term.new', 'Term.new', (['"""dw_tl_volume(q, u)"""', 'integral', 'omega'], {'q': 'q', 'u': 'u', 'term_mode': '"""volume"""'}), "('dw_tl_volume(q, u)', integral, omega, q=q, u=u, term_mode='volume')\n", (10963, 11032), False, 'from sfepy.terms import Term\n'), ((11068, 11124), 'sfepy.terms.Term.new', 'Term.new', (['"""dw_volume_integrate(q)"""', 'integral', 'omega'], {'q': 'q'}), "('dw_volume_integrate(q)', integral, omega, q=q)\n", (11076, 11124), False, 'from sfepy.terms import Term\n'), ((11160, 11203), 'sfepy.discrete.Equation', 'Equation', (['"""balance"""', '(term_1 + term_pressure)'], {}), "('balance', term_1 + term_pressure)\n", (11168, 11203), False, 'from sfepy.discrete import FieldVariable, Material, Integral, Function, Equation, Equations, Problem\n'), ((11220, 11272), 'sfepy.discrete.Equation', 'Equation', (['"""volume"""', '(term_volume_change - term_volume)'], {}), "('volume', term_volume_change - term_volume)\n", (11228, 11272), False, 'from sfepy.discrete import FieldVariable, Material, Integral, Function, Equation, Equations, Problem\n'), ((11289, 11323), 'sfepy.discrete.Equations', 'Equations', (['[eq_balance, eq_volume]'], {}), '([eq_balance, eq_volume])\n', (11298, 11323), False, 'from sfepy.discrete import FieldVariable, Material, Integral, Function, Equation, Equations, Problem\n'), ((11354, 11369), 'sfepy.solvers.ls.ScipyDirect', 'ScipyDirect', (['{}'], {}), '({})\n', (11365, 11369), False, 'from sfepy.solvers.ls import ScipyDirect\n'), ((11387, 11402), 'sfepy.base.base.IndexedStruct', 'IndexedStruct', ([], {}), '()\n', (11400, 11402), False, 'from sfepy.base.base import IndexedStruct, Struct\n'), ((11413, 11468), 'sfepy.solvers.nls.Newton', 'Newton', (["{'i_max': 20}"], {'lin_solver': 'ls', 'status': 'nls_status'}), "({'i_max': 20}, lin_solver=ls, status=nls_status)\n", (11419, 11468), False, 'from sfepy.solvers.nls import Newton\n'), ((11522, 11559), 'sfepy.discrete.Problem', 'Problem', (['"""hyper"""'], {'equations': 'equations'}), "('hyper', equations=equations)\n", (11529, 11559), False, 'from sfepy.discrete import FieldVariable, Material, Integral, Function, Equation, Equations, Problem\n'), ((11631, 11680), 'sfepy.solvers.ts_solvers.SimpleTimeSteppingSolver', 'SimpleTimeSteppingSolver', (['ts'], {'nls': 'nls', 'context': 'pb'}), '(ts, nls=nls, context=pb)\n', (11655, 11680), False, 'from sfepy.solvers.ts_solvers import SimpleTimeSteppingSolver\n'), ((12729, 12832), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '__doc__', 'formatter_class': 'argparse.RawDescriptionHelpFormatter'}), '(description=__doc__, formatter_class=argparse.\n RawDescriptionHelpFormatter)\n', (12752, 12832), False, 'import argparse\n'), ((6235, 6264), 'numpy.array', 'np.array', (['global_displacement'], {}), '(global_displacement)\n', (6243, 6264), True, 'import numpy as np\n'), ((11605, 11619), 'sfepy.discrete.conditions.Conditions', 'Conditions', (['[]'], {}), '([])\n', (11615, 11619), False, 'from sfepy.discrete.conditions import Conditions, EssentialBC\n'), ((8580, 8603), 'numpy.array', 'np.array', (['[[1.0, 0, 0]]'], {}), '([[1.0, 0, 0]])\n', (8588, 8603), True, 'import numpy as np\n')]
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # Copyright (c) 2020 <NAME> # This file has been modified by Megvii ("Megvii Modifications"). # All Megvii Modifications are Copyright (c) 2014-2021 Megvii Inc. All rights reserved. """EfficientNet Series EfficientNet: `"EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks" <https://arxiv.org/abs/1905.11946>`_ References: https://github.com/facebookresearch/pycls/blob/main/pycls/models/effnet.py https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/efficientnet.py https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/mobilenetv3.py """ import math from numbers import Real from typing import Any, Callable, Mapping, Sequence, Union import megengine.hub as hub import megengine.module as M from basecls.layers import ( SE, DropPath, activation, build_head, conv2d, init_weights, make_divisible, norm2d, ) from basecls.utils import recursive_update, registers from .mbnet import MBConv from .resnet import AnyStage, SimpleStem __all__ = ["FuseMBConv", "EffNet"] class FuseMBConv(M.Module): """Fusing the proj conv1x1 and depthwise conv into a conv2d. Args: w_in: input width. w_out: output width. stride: stride of conv. kernel: kernel of conv. exp_r: expansion ratio. se_r: SE ratio. has_skip: whether apply skip connection. drop_path_prob: drop path probability. norm_name: normalization function. act_name: activation function. """ def __init__( self, w_in: int, w_out: int, stride: int, kernel: int, exp_r: float, se_r: float, has_skip: bool, drop_path_prob: float, norm_name: str, act_name: str, **kwargs, ): super().__init__() # Expansion w_mid = w_in w_exp = int(w_in * exp_r) if exp_r != 1.0: self.exp = conv2d(w_in, w_exp, kernel, stride=stride) self.exp_bn = norm2d(norm_name, w_exp) self.exp_act = activation(act_name) w_mid = w_exp # SE if se_r > 0.0: w_se = int(w_in * se_r) self.se = SE(w_mid, w_se, act_name) # PWConv self.proj = conv2d( w_mid, w_out, 1 if exp_r != 1.0 else kernel, stride=1 if exp_r != 1.0 else stride ) self.proj_bn = norm2d(norm_name, w_out) self.has_proj_act = exp_r == 1.0 if self.has_proj_act: self.proj_act = activation(act_name) # Skip self.has_skip = has_skip and w_in == w_out and stride == 1 if self.has_skip: self.drop_path = DropPath(drop_path_prob) def forward(self, x): x_p = x if getattr(self, "exp", None) is not None: x = self.exp(x) x = self.exp_bn(x) x = self.exp_act(x) if getattr(self, "se", None) is not None: x = self.se(x) x = self.proj(x) x = self.proj_bn(x) if self.has_proj_act: x = self.proj_act(x) if self.has_skip: x = self.drop_path(x) x = x + x_p return x @registers.models.register() class EffNet(M.Module): """EfficientNet model. Args: stem_w: stem width. block_name: block name. depths: depth for each stage (number of blocks in the stage). widths: width for each stage (width of each block in the stage). strides: strides for each stage (applies to the first block of each stage). kernels: kernel sizes for each stage. exp_rs: expansion ratios for MBConv blocks in each stage. se_r: Squeeze-and-Excitation (SE) ratio. Default: ``0.25`` drop_path_prob: drop path probability. Default: ``0.0`` depth_mult: depth multiplier. Default: ``1.0`` width_mult: width multiplier. Default: ``1.0`` omit_mult: omit multiplier for stem width, head width, the first stage depth and the last stage depth, enabled in EfficientNet-Lite. Default: ``False`` norm_name: normalization function. Default: ``"BN"`` act_name: activation function. Default: ``"silu"`` head: head args. Default: ``None`` """ def __init__( self, stem_w: int, block_name: Union[Union[str, Callable], Sequence[Union[str, Callable]]], depths: Sequence[int], widths: Sequence[int], strides: Sequence[int], kernels: Sequence[int], exp_rs: Union[float, Sequence[Union[float, Sequence[float]]]] = 1.0, se_rs: Union[float, Sequence[Union[float, Sequence[float]]]] = 0.0, drop_path_prob: float = 0.0, depth_mult: float = 1.0, width_mult: float = 1.0, omit_mult: bool = False, norm_name: str = "BN", act_name: str = "silu", head: Mapping[str, Any] = None, ): super().__init__() depths = [ d if omit_mult and i in (0, len(depths) - 1) else math.ceil(d * depth_mult) for i, d in enumerate(depths) ] self.depths = depths stem_w = stem_w if omit_mult else make_divisible(stem_w * width_mult, round_limit=0.9) self.stem = SimpleStem(3, stem_w, norm_name, act_name) if isinstance(block_name, (str, Callable)): block_name = [block_name] * len(depths) block_func = [self.get_block_func(bn) for bn in block_name] widths = [make_divisible(w * width_mult, round_limit=0.9) for w in widths] if isinstance(exp_rs, Real): exp_rs = [exp_rs] * len(depths) if isinstance(se_rs, Real): se_rs = [se_rs] * len(depths) drop_path_prob_iter = (i / sum(depths) * drop_path_prob for i in range(sum(depths))) drop_path_probs = [[next(drop_path_prob_iter) for _ in range(d)] for d in depths] model_args = [depths, widths, strides, block_func, kernels, exp_rs, se_rs, drop_path_probs] prev_w = stem_w for i, (d, w, s, bf, k, exp_r, se_r, dp_p) in enumerate(zip(*model_args)): stage = AnyStage( prev_w, w, s, d, bf, kernel=k, exp_r=exp_r, se_r=se_r, se_from_exp=False, se_act_name=act_name, se_approx=False, se_rd_fn=int, has_proj_act=False, has_skip=True, drop_path_prob=dp_p, norm_name=norm_name, act_name=act_name, ) setattr(self, f"s{i + 1}", stage) prev_w = w if head: if head.get("width", 0) > 0 and not omit_mult: head["width"] = make_divisible(head["width"] * width_mult, round_limit=0.9) self.head = build_head(prev_w, head, norm_name, act_name) self.apply(init_weights) def forward(self, x): x = self.stem(x) for i in range(len(self.depths)): stage = getattr(self, f"s{i + 1}") x = stage(x) if getattr(self, "head", None) is not None: x = self.head(x) return x @staticmethod def get_block_func(name: Union[str, Callable]): """Retrieves the block function by name.""" if callable(name): return name if isinstance(name, str): block_funcs = { "FuseMBConv": FuseMBConv, "MBConv": MBConv, } if name in block_funcs.keys(): return block_funcs[name] raise ValueError(f"Block '{name}' not supported") def _build_effnet(**kwargs): model_args = dict( stem_w=32, block_name=MBConv, depths=[1, 2, 2, 3, 3, 4, 1], widths=[16, 24, 40, 80, 112, 192, 320], strides=[1, 2, 2, 2, 1, 2, 1], kernels=[3, 3, 5, 3, 5, 5, 3], exp_rs=[1, 6, 6, 6, 6, 6, 6], se_rs=0.25, drop_path_prob=0.2, head=dict(name="ClsHead", width=1280, dropout_prob=0.2), ) recursive_update(model_args, kwargs) return EffNet(**model_args) def _build_effnet_lite(**kwargs): model_args = dict(se_rs=0.0, omit_mult=True, act_name="relu6") recursive_update(model_args, kwargs) return _build_effnet(**model_args) def _build_effnetv2(**kwargs): model_args = dict( stem_w=32, block_name=[FuseMBConv, FuseMBConv, FuseMBConv, MBConv, MBConv, MBConv], depths=[1, 2, 2, 3, 5, 8], widths=[16, 32, 48, 96, 112, 192], strides=[1, 2, 2, 2, 1, 2], kernels=[3, 3, 3, 3, 3, 3], exp_rs=[1, 4, 4, 4, 6, 6], se_rs=[0, 0, 0, 0.25, 0.25, 0.25], ) recursive_update(model_args, kwargs) return _build_effnet(**model_args) @registers.models.register() @hub.pretrained( "https://data.megengine.org.cn/research/basecls/models/effnet/effnet_b0/effnet_b0.pkl" ) def effnet_b0(**kwargs): model_args = dict(depth_mult=1.0, width_mult=1.0) recursive_update(model_args, kwargs) return _build_effnet(**model_args) @registers.models.register() @hub.pretrained( "https://data.megengine.org.cn/research/basecls/models/effnet/effnet_b1/effnet_b1.pkl" ) def effnet_b1(**kwargs): model_args = dict(depth_mult=1.1, width_mult=1.0) recursive_update(model_args, kwargs) return _build_effnet(**model_args) @registers.models.register() @hub.pretrained( "https://data.megengine.org.cn/research/basecls/models/effnet/effnet_b2/effnet_b2.pkl" ) def effnet_b2(**kwargs): model_args = dict(depth_mult=1.2, width_mult=1.1, head=dict(dropout_prob=0.3)) recursive_update(model_args, kwargs) return _build_effnet(**model_args) @registers.models.register() @hub.pretrained( "https://data.megengine.org.cn/research/basecls/models/effnet/effnet_b3/effnet_b3.pkl" ) def effnet_b3(**kwargs): model_args = dict(depth_mult=1.4, width_mult=1.2, head=dict(dropout_prob=0.3)) recursive_update(model_args, kwargs) return _build_effnet(**model_args) @registers.models.register() @hub.pretrained( "https://data.megengine.org.cn/research/basecls/models/effnet/effnet_b4/effnet_b4.pkl" ) def effnet_b4(**kwargs): model_args = dict(depth_mult=1.8, width_mult=1.4, head=dict(dropout_prob=0.4)) recursive_update(model_args, kwargs) return _build_effnet(**model_args) @registers.models.register() @hub.pretrained( "https://data.megengine.org.cn/research/basecls/models/effnet/effnet_b5/effnet_b5.pkl" ) def effnet_b5(**kwargs): model_args = dict(depth_mult=2.2, width_mult=1.6, head=dict(dropout_prob=0.4)) recursive_update(model_args, kwargs) return _build_effnet(**model_args) @registers.models.register() @hub.pretrained( "https://data.megengine.org.cn/research/basecls/models/effnet/effnet_b6/effnet_b6.pkl" ) def effnet_b6(**kwargs): model_args = dict(depth_mult=2.6, width_mult=1.8, head=dict(dropout_prob=0.5)) recursive_update(model_args, kwargs) return _build_effnet(**model_args) @registers.models.register() @hub.pretrained( "https://data.megengine.org.cn/research/basecls/models/effnet/effnet_b7/effnet_b7.pkl" ) def effnet_b7(**kwargs): model_args = dict(depth_mult=3.1, width_mult=2.0, head=dict(dropout_prob=0.5)) recursive_update(model_args, kwargs) return _build_effnet(**model_args) @registers.models.register() @hub.pretrained( "https://data.megengine.org.cn/research/basecls/models/effnet/effnet_b8/effnet_b8.pkl" ) def effnet_b8(**kwargs): model_args = dict(depth_mult=3.6, width_mult=2.2, head=dict(dropout_prob=0.5)) recursive_update(model_args, kwargs) return _build_effnet(**model_args) @registers.models.register() @hub.pretrained( "https://data.megengine.org.cn/research/basecls/models/effnet/effnet_l2/effnet_l2.pkl" ) def effnet_l2(**kwargs): model_args = dict(depth_mult=5.3, width_mult=4.3, head=dict(dropout_prob=0.5)) recursive_update(model_args, kwargs) return _build_effnet(**model_args) @registers.models.register() @hub.pretrained( "https://data.megengine.org.cn/research/basecls/models/effnet/effnet_b0_lite/effnet_b0_lite.pkl" ) def effnet_b0_lite(**kwargs): model_args = dict(depth_mult=1.0, width_mult=1.0) recursive_update(model_args, kwargs) return _build_effnet_lite(**model_args) @registers.models.register() @hub.pretrained( "https://data.megengine.org.cn/research/basecls/models/effnet/effnet_b1_lite/effnet_b1_lite.pkl" ) def effnet_b1_lite(**kwargs): model_args = dict(depth_mult=1.1, width_mult=1.0) recursive_update(model_args, kwargs) return _build_effnet_lite(**model_args) @registers.models.register() @hub.pretrained( "https://data.megengine.org.cn/research/basecls/models/effnet/effnet_b2_lite/effnet_b2_lite.pkl" ) def effnet_b2_lite(**kwargs): model_args = dict(depth_mult=1.2, width_mult=1.1, head=dict(dropout_prob=0.3)) recursive_update(model_args, kwargs) return _build_effnet_lite(**model_args) @registers.models.register() @hub.pretrained( "https://data.megengine.org.cn/research/basecls/models/effnet/effnet_b3_lite/effnet_b3_lite.pkl" ) def effnet_b3_lite(**kwargs): model_args = dict(depth_mult=1.4, width_mult=1.2, head=dict(dropout_prob=0.3)) recursive_update(model_args, kwargs) return _build_effnet_lite(**model_args) @registers.models.register() @hub.pretrained( "https://data.megengine.org.cn/research/basecls/models/effnet/effnet_b4_lite/effnet_b4_lite.pkl" ) def effnet_b4_lite(**kwargs): model_args = dict(depth_mult=1.8, width_mult=1.4, head=dict(dropout_prob=0.3)) recursive_update(model_args, kwargs) return _build_effnet_lite(**model_args) @registers.models.register() @hub.pretrained( "https://data.megengine.org.cn/research/basecls/models/effnet/effnetv2_b0/effnetv2_b0.pkl" ) def effnetv2_b0(**kwargs): model_args = dict(depth_mult=1.0, width_mult=1.0) recursive_update(model_args, kwargs) return _build_effnetv2(**model_args) @registers.models.register() @hub.pretrained( "https://data.megengine.org.cn/research/basecls/models/effnet/effnetv2_b1/effnetv2_b1.pkl" ) def effnetv2_b1(**kwargs): model_args = dict(depth_mult=1.1, width_mult=1.0) recursive_update(model_args, kwargs) return _build_effnetv2(**model_args) @registers.models.register() @hub.pretrained( "https://data.megengine.org.cn/research/basecls/models/effnet/effnetv2_b2/effnetv2_b2.pkl" ) def effnetv2_b2(**kwargs): model_args = dict(depth_mult=1.2, width_mult=1.1, head=dict(dropout_prob=0.3)) recursive_update(model_args, kwargs) return _build_effnetv2(**model_args) @registers.models.register() @hub.pretrained( "https://data.megengine.org.cn/research/basecls/models/effnet/effnetv2_b3/effnetv2_b3.pkl" ) def effnetv2_b3(**kwargs): model_args = dict(depth_mult=1.4, width_mult=1.2, head=dict(dropout_prob=0.3)) recursive_update(model_args, kwargs) return _build_effnetv2(**model_args) @registers.models.register() @hub.pretrained( "https://data.megengine.org.cn/research/basecls/models/effnet/effnetv2_s/effnetv2_s.pkl" ) def effnetv2_s(**kwargs): model_args = dict(stem_w=24, depths=[2, 4, 4, 6, 9, 15], widths=[24, 48, 64, 128, 160, 256]) recursive_update(model_args, kwargs) return _build_effnetv2(**model_args) @registers.models.register() @hub.pretrained( "https://data.megengine.org.cn/research/basecls/models/effnet/effnetv2_m/effnetv2_m.pkl" ) def effnetv2_m(**kwargs): model_args = dict( stem_w=24, block_name=[FuseMBConv, FuseMBConv, FuseMBConv, MBConv, MBConv, MBConv, MBConv], depths=[3, 5, 5, 7, 14, 18, 5], widths=[24, 48, 80, 160, 176, 304, 512], strides=[1, 2, 2, 2, 1, 2, 1], kernels=[3, 3, 3, 3, 3, 3, 3], exp_rs=[1, 4, 4, 4, 6, 6, 6], se_rs=[0, 0, 0, 0.25, 0.25, 0.25, 0.25], head=dict(dropout_prob=0.3), ) recursive_update(model_args, kwargs) return _build_effnetv2(**model_args) @registers.models.register() @hub.pretrained( "https://data.megengine.org.cn/research/basecls/models/effnet/effnetv2_l/effnetv2_l.pkl" ) def effnetv2_l(**kwargs): model_args = dict( stem_w=32, block_name=[FuseMBConv, FuseMBConv, FuseMBConv, MBConv, MBConv, MBConv, MBConv], depths=[4, 7, 7, 10, 19, 25, 7], widths=[32, 64, 96, 192, 224, 384, 640], strides=[1, 2, 2, 2, 1, 2, 1], kernels=[3, 3, 3, 3, 3, 3, 3], exp_rs=[1, 4, 4, 4, 6, 6, 6], se_rs=[0, 0, 0, 0.25, 0.25, 0.25, 0.25], head=dict(dropout_prob=0.4), ) recursive_update(model_args, kwargs) return _build_effnetv2(**model_args)
[ "megengine.hub.pretrained" ]
[((3301, 3328), 'basecls.utils.registers.models.register', 'registers.models.register', ([], {}), '()\n', (3326, 3328), False, 'from basecls.utils import recursive_update, registers\n'), ((8976, 9003), 'basecls.utils.registers.models.register', 'registers.models.register', ([], {}), '()\n', (9001, 9003), False, 'from basecls.utils import recursive_update, registers\n'), ((9005, 9117), 'megengine.hub.pretrained', 'hub.pretrained', (['"""https://data.megengine.org.cn/research/basecls/models/effnet/effnet_b0/effnet_b0.pkl"""'], {}), "(\n 'https://data.megengine.org.cn/research/basecls/models/effnet/effnet_b0/effnet_b0.pkl'\n )\n", (9019, 9117), True, 'import megengine.hub as hub\n'), ((9276, 9303), 'basecls.utils.registers.models.register', 'registers.models.register', ([], {}), '()\n', (9301, 9303), False, 'from basecls.utils import recursive_update, registers\n'), ((9305, 9417), 'megengine.hub.pretrained', 'hub.pretrained', (['"""https://data.megengine.org.cn/research/basecls/models/effnet/effnet_b1/effnet_b1.pkl"""'], {}), "(\n 'https://data.megengine.org.cn/research/basecls/models/effnet/effnet_b1/effnet_b1.pkl'\n )\n", (9319, 9417), True, 'import megengine.hub as hub\n'), ((9576, 9603), 'basecls.utils.registers.models.register', 'registers.models.register', ([], {}), '()\n', (9601, 9603), False, 'from basecls.utils import recursive_update, registers\n'), ((9605, 9717), 'megengine.hub.pretrained', 'hub.pretrained', (['"""https://data.megengine.org.cn/research/basecls/models/effnet/effnet_b2/effnet_b2.pkl"""'], {}), "(\n 'https://data.megengine.org.cn/research/basecls/models/effnet/effnet_b2/effnet_b2.pkl'\n )\n", (9619, 9717), True, 'import megengine.hub as hub\n'), ((9905, 9932), 'basecls.utils.registers.models.register', 'registers.models.register', ([], {}), '()\n', (9930, 9932), False, 'from basecls.utils import recursive_update, registers\n'), ((9934, 10046), 'megengine.hub.pretrained', 'hub.pretrained', (['"""https://data.megengine.org.cn/research/basecls/models/effnet/effnet_b3/effnet_b3.pkl"""'], {}), "(\n 'https://data.megengine.org.cn/research/basecls/models/effnet/effnet_b3/effnet_b3.pkl'\n )\n", (9948, 10046), True, 'import megengine.hub as hub\n'), ((10234, 10261), 'basecls.utils.registers.models.register', 'registers.models.register', ([], {}), '()\n', (10259, 10261), False, 'from basecls.utils import recursive_update, registers\n'), ((10263, 10375), 'megengine.hub.pretrained', 'hub.pretrained', (['"""https://data.megengine.org.cn/research/basecls/models/effnet/effnet_b4/effnet_b4.pkl"""'], {}), "(\n 'https://data.megengine.org.cn/research/basecls/models/effnet/effnet_b4/effnet_b4.pkl'\n )\n", (10277, 10375), True, 'import megengine.hub as hub\n'), ((10563, 10590), 'basecls.utils.registers.models.register', 'registers.models.register', ([], {}), '()\n', (10588, 10590), False, 'from basecls.utils import recursive_update, registers\n'), ((10592, 10704), 'megengine.hub.pretrained', 'hub.pretrained', (['"""https://data.megengine.org.cn/research/basecls/models/effnet/effnet_b5/effnet_b5.pkl"""'], {}), "(\n 'https://data.megengine.org.cn/research/basecls/models/effnet/effnet_b5/effnet_b5.pkl'\n )\n", (10606, 10704), True, 'import megengine.hub as hub\n'), ((10892, 10919), 'basecls.utils.registers.models.register', 'registers.models.register', ([], {}), '()\n', (10917, 10919), False, 'from basecls.utils import recursive_update, registers\n'), ((10921, 11033), 'megengine.hub.pretrained', 'hub.pretrained', (['"""https://data.megengine.org.cn/research/basecls/models/effnet/effnet_b6/effnet_b6.pkl"""'], {}), "(\n 'https://data.megengine.org.cn/research/basecls/models/effnet/effnet_b6/effnet_b6.pkl'\n )\n", (10935, 11033), True, 'import megengine.hub as hub\n'), ((11221, 11248), 'basecls.utils.registers.models.register', 'registers.models.register', ([], {}), '()\n', (11246, 11248), False, 'from basecls.utils import recursive_update, registers\n'), ((11250, 11362), 'megengine.hub.pretrained', 'hub.pretrained', (['"""https://data.megengine.org.cn/research/basecls/models/effnet/effnet_b7/effnet_b7.pkl"""'], {}), "(\n 'https://data.megengine.org.cn/research/basecls/models/effnet/effnet_b7/effnet_b7.pkl'\n )\n", (11264, 11362), True, 'import megengine.hub as hub\n'), ((11550, 11577), 'basecls.utils.registers.models.register', 'registers.models.register', ([], {}), '()\n', (11575, 11577), False, 'from basecls.utils import recursive_update, registers\n'), ((11579, 11691), 'megengine.hub.pretrained', 'hub.pretrained', (['"""https://data.megengine.org.cn/research/basecls/models/effnet/effnet_b8/effnet_b8.pkl"""'], {}), "(\n 'https://data.megengine.org.cn/research/basecls/models/effnet/effnet_b8/effnet_b8.pkl'\n )\n", (11593, 11691), True, 'import megengine.hub as hub\n'), ((11879, 11906), 'basecls.utils.registers.models.register', 'registers.models.register', ([], {}), '()\n', (11904, 11906), False, 'from basecls.utils import recursive_update, registers\n'), ((11908, 12020), 'megengine.hub.pretrained', 'hub.pretrained', (['"""https://data.megengine.org.cn/research/basecls/models/effnet/effnet_l2/effnet_l2.pkl"""'], {}), "(\n 'https://data.megengine.org.cn/research/basecls/models/effnet/effnet_l2/effnet_l2.pkl'\n )\n", (11922, 12020), True, 'import megengine.hub as hub\n'), ((12208, 12235), 'basecls.utils.registers.models.register', 'registers.models.register', ([], {}), '()\n', (12233, 12235), False, 'from basecls.utils import recursive_update, registers\n'), ((12237, 12359), 'megengine.hub.pretrained', 'hub.pretrained', (['"""https://data.megengine.org.cn/research/basecls/models/effnet/effnet_b0_lite/effnet_b0_lite.pkl"""'], {}), "(\n 'https://data.megengine.org.cn/research/basecls/models/effnet/effnet_b0_lite/effnet_b0_lite.pkl'\n )\n", (12251, 12359), True, 'import megengine.hub as hub\n'), ((12528, 12555), 'basecls.utils.registers.models.register', 'registers.models.register', ([], {}), '()\n', (12553, 12555), False, 'from basecls.utils import recursive_update, registers\n'), ((12557, 12679), 'megengine.hub.pretrained', 'hub.pretrained', (['"""https://data.megengine.org.cn/research/basecls/models/effnet/effnet_b1_lite/effnet_b1_lite.pkl"""'], {}), "(\n 'https://data.megengine.org.cn/research/basecls/models/effnet/effnet_b1_lite/effnet_b1_lite.pkl'\n )\n", (12571, 12679), True, 'import megengine.hub as hub\n'), ((12848, 12875), 'basecls.utils.registers.models.register', 'registers.models.register', ([], {}), '()\n', (12873, 12875), False, 'from basecls.utils import recursive_update, registers\n'), ((12877, 12999), 'megengine.hub.pretrained', 'hub.pretrained', (['"""https://data.megengine.org.cn/research/basecls/models/effnet/effnet_b2_lite/effnet_b2_lite.pkl"""'], {}), "(\n 'https://data.megengine.org.cn/research/basecls/models/effnet/effnet_b2_lite/effnet_b2_lite.pkl'\n )\n", (12891, 12999), True, 'import megengine.hub as hub\n'), ((13197, 13224), 'basecls.utils.registers.models.register', 'registers.models.register', ([], {}), '()\n', (13222, 13224), False, 'from basecls.utils import recursive_update, registers\n'), ((13226, 13348), 'megengine.hub.pretrained', 'hub.pretrained', (['"""https://data.megengine.org.cn/research/basecls/models/effnet/effnet_b3_lite/effnet_b3_lite.pkl"""'], {}), "(\n 'https://data.megengine.org.cn/research/basecls/models/effnet/effnet_b3_lite/effnet_b3_lite.pkl'\n )\n", (13240, 13348), True, 'import megengine.hub as hub\n'), ((13546, 13573), 'basecls.utils.registers.models.register', 'registers.models.register', ([], {}), '()\n', (13571, 13573), False, 'from basecls.utils import recursive_update, registers\n'), ((13575, 13697), 'megengine.hub.pretrained', 'hub.pretrained', (['"""https://data.megengine.org.cn/research/basecls/models/effnet/effnet_b4_lite/effnet_b4_lite.pkl"""'], {}), "(\n 'https://data.megengine.org.cn/research/basecls/models/effnet/effnet_b4_lite/effnet_b4_lite.pkl'\n )\n", (13589, 13697), True, 'import megengine.hub as hub\n'), ((13895, 13922), 'basecls.utils.registers.models.register', 'registers.models.register', ([], {}), '()\n', (13920, 13922), False, 'from basecls.utils import recursive_update, registers\n'), ((13924, 14040), 'megengine.hub.pretrained', 'hub.pretrained', (['"""https://data.megengine.org.cn/research/basecls/models/effnet/effnetv2_b0/effnetv2_b0.pkl"""'], {}), "(\n 'https://data.megengine.org.cn/research/basecls/models/effnet/effnetv2_b0/effnetv2_b0.pkl'\n )\n", (13938, 14040), True, 'import megengine.hub as hub\n'), ((14203, 14230), 'basecls.utils.registers.models.register', 'registers.models.register', ([], {}), '()\n', (14228, 14230), False, 'from basecls.utils import recursive_update, registers\n'), ((14232, 14348), 'megengine.hub.pretrained', 'hub.pretrained', (['"""https://data.megengine.org.cn/research/basecls/models/effnet/effnetv2_b1/effnetv2_b1.pkl"""'], {}), "(\n 'https://data.megengine.org.cn/research/basecls/models/effnet/effnetv2_b1/effnetv2_b1.pkl'\n )\n", (14246, 14348), True, 'import megengine.hub as hub\n'), ((14511, 14538), 'basecls.utils.registers.models.register', 'registers.models.register', ([], {}), '()\n', (14536, 14538), False, 'from basecls.utils import recursive_update, registers\n'), ((14540, 14656), 'megengine.hub.pretrained', 'hub.pretrained', (['"""https://data.megengine.org.cn/research/basecls/models/effnet/effnetv2_b2/effnetv2_b2.pkl"""'], {}), "(\n 'https://data.megengine.org.cn/research/basecls/models/effnet/effnetv2_b2/effnetv2_b2.pkl'\n )\n", (14554, 14656), True, 'import megengine.hub as hub\n'), ((14848, 14875), 'basecls.utils.registers.models.register', 'registers.models.register', ([], {}), '()\n', (14873, 14875), False, 'from basecls.utils import recursive_update, registers\n'), ((14877, 14993), 'megengine.hub.pretrained', 'hub.pretrained', (['"""https://data.megengine.org.cn/research/basecls/models/effnet/effnetv2_b3/effnetv2_b3.pkl"""'], {}), "(\n 'https://data.megengine.org.cn/research/basecls/models/effnet/effnetv2_b3/effnetv2_b3.pkl'\n )\n", (14891, 14993), True, 'import megengine.hub as hub\n'), ((15185, 15212), 'basecls.utils.registers.models.register', 'registers.models.register', ([], {}), '()\n', (15210, 15212), False, 'from basecls.utils import recursive_update, registers\n'), ((15214, 15328), 'megengine.hub.pretrained', 'hub.pretrained', (['"""https://data.megengine.org.cn/research/basecls/models/effnet/effnetv2_s/effnetv2_s.pkl"""'], {}), "(\n 'https://data.megengine.org.cn/research/basecls/models/effnet/effnetv2_s/effnetv2_s.pkl'\n )\n", (15228, 15328), True, 'import megengine.hub as hub\n'), ((15533, 15560), 'basecls.utils.registers.models.register', 'registers.models.register', ([], {}), '()\n', (15558, 15560), False, 'from basecls.utils import recursive_update, registers\n'), ((15562, 15676), 'megengine.hub.pretrained', 'hub.pretrained', (['"""https://data.megengine.org.cn/research/basecls/models/effnet/effnetv2_m/effnetv2_m.pkl"""'], {}), "(\n 'https://data.megengine.org.cn/research/basecls/models/effnet/effnetv2_m/effnetv2_m.pkl'\n )\n", (15576, 15676), True, 'import megengine.hub as hub\n'), ((16212, 16239), 'basecls.utils.registers.models.register', 'registers.models.register', ([], {}), '()\n', (16237, 16239), False, 'from basecls.utils import recursive_update, registers\n'), ((16241, 16355), 'megengine.hub.pretrained', 'hub.pretrained', (['"""https://data.megengine.org.cn/research/basecls/models/effnet/effnetv2_l/effnetv2_l.pkl"""'], {}), "(\n 'https://data.megengine.org.cn/research/basecls/models/effnet/effnetv2_l/effnetv2_l.pkl'\n )\n", (16255, 16355), True, 'import megengine.hub as hub\n'), ((8251, 8287), 'basecls.utils.recursive_update', 'recursive_update', (['model_args', 'kwargs'], {}), '(model_args, kwargs)\n', (8267, 8287), False, 'from basecls.utils import recursive_update, registers\n'), ((8427, 8463), 'basecls.utils.recursive_update', 'recursive_update', (['model_args', 'kwargs'], {}), '(model_args, kwargs)\n', (8443, 8463), False, 'from basecls.utils import recursive_update, registers\n'), ((8897, 8933), 'basecls.utils.recursive_update', 'recursive_update', (['model_args', 'kwargs'], {}), '(model_args, kwargs)\n', (8913, 8933), False, 'from basecls.utils import recursive_update, registers\n'), ((9197, 9233), 'basecls.utils.recursive_update', 'recursive_update', (['model_args', 'kwargs'], {}), '(model_args, kwargs)\n', (9213, 9233), False, 'from basecls.utils import recursive_update, registers\n'), ((9497, 9533), 'basecls.utils.recursive_update', 'recursive_update', (['model_args', 'kwargs'], {}), '(model_args, kwargs)\n', (9513, 9533), False, 'from basecls.utils import recursive_update, registers\n'), ((9826, 9862), 'basecls.utils.recursive_update', 'recursive_update', (['model_args', 'kwargs'], {}), '(model_args, kwargs)\n', (9842, 9862), False, 'from basecls.utils import recursive_update, registers\n'), ((10155, 10191), 'basecls.utils.recursive_update', 'recursive_update', (['model_args', 'kwargs'], {}), '(model_args, kwargs)\n', (10171, 10191), False, 'from basecls.utils import recursive_update, registers\n'), ((10484, 10520), 'basecls.utils.recursive_update', 'recursive_update', (['model_args', 'kwargs'], {}), '(model_args, kwargs)\n', (10500, 10520), False, 'from basecls.utils import recursive_update, registers\n'), ((10813, 10849), 'basecls.utils.recursive_update', 'recursive_update', (['model_args', 'kwargs'], {}), '(model_args, kwargs)\n', (10829, 10849), False, 'from basecls.utils import recursive_update, registers\n'), ((11142, 11178), 'basecls.utils.recursive_update', 'recursive_update', (['model_args', 'kwargs'], {}), '(model_args, kwargs)\n', (11158, 11178), False, 'from basecls.utils import recursive_update, registers\n'), ((11471, 11507), 'basecls.utils.recursive_update', 'recursive_update', (['model_args', 'kwargs'], {}), '(model_args, kwargs)\n', (11487, 11507), False, 'from basecls.utils import recursive_update, registers\n'), ((11800, 11836), 'basecls.utils.recursive_update', 'recursive_update', (['model_args', 'kwargs'], {}), '(model_args, kwargs)\n', (11816, 11836), False, 'from basecls.utils import recursive_update, registers\n'), ((12129, 12165), 'basecls.utils.recursive_update', 'recursive_update', (['model_args', 'kwargs'], {}), '(model_args, kwargs)\n', (12145, 12165), False, 'from basecls.utils import recursive_update, registers\n'), ((12444, 12480), 'basecls.utils.recursive_update', 'recursive_update', (['model_args', 'kwargs'], {}), '(model_args, kwargs)\n', (12460, 12480), False, 'from basecls.utils import recursive_update, registers\n'), ((12764, 12800), 'basecls.utils.recursive_update', 'recursive_update', (['model_args', 'kwargs'], {}), '(model_args, kwargs)\n', (12780, 12800), False, 'from basecls.utils import recursive_update, registers\n'), ((13113, 13149), 'basecls.utils.recursive_update', 'recursive_update', (['model_args', 'kwargs'], {}), '(model_args, kwargs)\n', (13129, 13149), False, 'from basecls.utils import recursive_update, registers\n'), ((13462, 13498), 'basecls.utils.recursive_update', 'recursive_update', (['model_args', 'kwargs'], {}), '(model_args, kwargs)\n', (13478, 13498), False, 'from basecls.utils import recursive_update, registers\n'), ((13811, 13847), 'basecls.utils.recursive_update', 'recursive_update', (['model_args', 'kwargs'], {}), '(model_args, kwargs)\n', (13827, 13847), False, 'from basecls.utils import recursive_update, registers\n'), ((14122, 14158), 'basecls.utils.recursive_update', 'recursive_update', (['model_args', 'kwargs'], {}), '(model_args, kwargs)\n', (14138, 14158), False, 'from basecls.utils import recursive_update, registers\n'), ((14430, 14466), 'basecls.utils.recursive_update', 'recursive_update', (['model_args', 'kwargs'], {}), '(model_args, kwargs)\n', (14446, 14466), False, 'from basecls.utils import recursive_update, registers\n'), ((14767, 14803), 'basecls.utils.recursive_update', 'recursive_update', (['model_args', 'kwargs'], {}), '(model_args, kwargs)\n', (14783, 14803), False, 'from basecls.utils import recursive_update, registers\n'), ((15104, 15140), 'basecls.utils.recursive_update', 'recursive_update', (['model_args', 'kwargs'], {}), '(model_args, kwargs)\n', (15120, 15140), False, 'from basecls.utils import recursive_update, registers\n'), ((15452, 15488), 'basecls.utils.recursive_update', 'recursive_update', (['model_args', 'kwargs'], {}), '(model_args, kwargs)\n', (15468, 15488), False, 'from basecls.utils import recursive_update, registers\n'), ((16131, 16167), 'basecls.utils.recursive_update', 'recursive_update', (['model_args', 'kwargs'], {}), '(model_args, kwargs)\n', (16147, 16167), False, 'from basecls.utils import recursive_update, registers\n'), ((16811, 16847), 'basecls.utils.recursive_update', 'recursive_update', (['model_args', 'kwargs'], {}), '(model_args, kwargs)\n', (16827, 16847), False, 'from basecls.utils import recursive_update, registers\n'), ((2377, 2471), 'basecls.layers.conv2d', 'conv2d', (['w_mid', 'w_out', '(1 if exp_r != 1.0 else kernel)'], {'stride': '(1 if exp_r != 1.0 else stride)'}), '(w_mid, w_out, 1 if exp_r != 1.0 else kernel, stride=1 if exp_r != \n 1.0 else stride)\n', (2383, 2471), False, 'from basecls.layers import SE, DropPath, activation, build_head, conv2d, init_weights, make_divisible, norm2d\n'), ((2512, 2536), 'basecls.layers.norm2d', 'norm2d', (['norm_name', 'w_out'], {}), '(norm_name, w_out)\n', (2518, 2536), False, 'from basecls.layers import SE, DropPath, activation, build_head, conv2d, init_weights, make_divisible, norm2d\n'), ((2052, 2094), 'basecls.layers.conv2d', 'conv2d', (['w_in', 'w_exp', 'kernel'], {'stride': 'stride'}), '(w_in, w_exp, kernel, stride=stride)\n', (2058, 2094), False, 'from basecls.layers import SE, DropPath, activation, build_head, conv2d, init_weights, make_divisible, norm2d\n'), ((2121, 2145), 'basecls.layers.norm2d', 'norm2d', (['norm_name', 'w_exp'], {}), '(norm_name, w_exp)\n', (2127, 2145), False, 'from basecls.layers import SE, DropPath, activation, build_head, conv2d, init_weights, make_divisible, norm2d\n'), ((2173, 2193), 'basecls.layers.activation', 'activation', (['act_name'], {}), '(act_name)\n', (2183, 2193), False, 'from basecls.layers import SE, DropPath, activation, build_head, conv2d, init_weights, make_divisible, norm2d\n'), ((2314, 2339), 'basecls.layers.SE', 'SE', (['w_mid', 'w_se', 'act_name'], {}), '(w_mid, w_se, act_name)\n', (2316, 2339), False, 'from basecls.layers import SE, DropPath, activation, build_head, conv2d, init_weights, make_divisible, norm2d\n'), ((2636, 2656), 'basecls.layers.activation', 'activation', (['act_name'], {}), '(act_name)\n', (2646, 2656), False, 'from basecls.layers import SE, DropPath, activation, build_head, conv2d, init_weights, make_divisible, norm2d\n'), ((2794, 2818), 'basecls.layers.DropPath', 'DropPath', (['drop_path_prob'], {}), '(drop_path_prob)\n', (2802, 2818), False, 'from basecls.layers import SE, DropPath, activation, build_head, conv2d, init_weights, make_divisible, norm2d\n'), ((5292, 5344), 'basecls.layers.make_divisible', 'make_divisible', (['(stem_w * width_mult)'], {'round_limit': '(0.9)'}), '(stem_w * width_mult, round_limit=0.9)\n', (5306, 5344), False, 'from basecls.layers import SE, DropPath, activation, build_head, conv2d, init_weights, make_divisible, norm2d\n'), ((5599, 5646), 'basecls.layers.make_divisible', 'make_divisible', (['(w * width_mult)'], {'round_limit': '(0.9)'}), '(w * width_mult, round_limit=0.9)\n', (5613, 5646), False, 'from basecls.layers import SE, DropPath, activation, build_head, conv2d, init_weights, make_divisible, norm2d\n'), ((7014, 7059), 'basecls.layers.build_head', 'build_head', (['prev_w', 'head', 'norm_name', 'act_name'], {}), '(prev_w, head, norm_name, act_name)\n', (7024, 7059), False, 'from basecls.layers import SE, DropPath, activation, build_head, conv2d, init_weights, make_divisible, norm2d\n'), ((5142, 5167), 'math.ceil', 'math.ceil', (['(d * depth_mult)'], {}), '(d * depth_mult)\n', (5151, 5167), False, 'import math\n'), ((6930, 6989), 'basecls.layers.make_divisible', 'make_divisible', (["(head['width'] * width_mult)"], {'round_limit': '(0.9)'}), "(head['width'] * width_mult, round_limit=0.9)\n", (6944, 6989), False, 'from basecls.layers import SE, DropPath, activation, build_head, conv2d, init_weights, make_divisible, norm2d\n')]
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # pylint: disable=too-many-lines from typing import Optional, Tuple, Union import megengine._internal as mgb from megengine._internal import CompGraph, CompNode from ..core import Tensor, wrap_io_tensor from ..core.graph import _use_default_if_none from ..jit import barrier, mark_impure from ..random import uniform from ..utils.types import _pair, _pair_nonzero from .debug_param import get_conv_execution_strategy from .tensor import concat from .utils import _decide_comp_node_and_comp_graph @wrap_io_tensor def linear(inp: Tensor, weight: Tensor, bias: Optional[Tensor] = None) -> Tensor: """Applies a linear transformation to the input. Refer to :class:`~.Linear` for more information. """ orig_shape = inp.shape inp = inp.reshape(-1, orig_shape[-1]) ret = mgb.opr.matrix_mul(inp, weight, transposeB=True) ret = ret.reshape(orig_shape[:-1], weight.shape[0]) if bias is not None: ret += bias return ret @wrap_io_tensor def conv2d( inp: Tensor, weight: Tensor, bias: Optional[Tensor] = None, stride: Union[int, Tuple[int, int]] = 1, padding: Union[int, Tuple[int, int]] = 0, dilation: Union[int, Tuple[int, int]] = 1, groups: int = 1, conv_mode="CROSS_CORRELATION", compute_mode="DEFAULT", ) -> Tensor: """2D convolution operation. :param inp: The feature map of the convolution operation :param weight: The convolution kernel :param bias: The bias added to the result of convolution (if given) :param stride: Stride of the 2D convolution operation. Default: 1 :param padding: Size of the paddings added to the input on both sides of its spatial dimensions. Only zero-padding is supported. Default: 0 :param dilation: Dilation of the 2D convolution operation. Default: 1 :param groups: number of groups to divide input and output channels into, so as to perform a "grouped convolution". When ``groups`` is not 1, ``in_channels`` and ``out_channels`` must be divisible by ``groups``, and the shape of weight should be ``(groups, out_channel // groups, in_channels // groups, height, width)``. :type conv_mode: string or :class:`mgb.opr_param_defs.Convolution.Mode` :param conv_mode: Supports 'CROSS_CORRELATION' or 'CONVOLUTION'. Default: 'CROSS_CORRELATION'. :type compute_mode: string or :class:`mgb.opr_param_defs.Convolution.ComputeMode` :param compute_mode: When set to 'DEFAULT', no special requirements will be placed on the precision of intermediate results. When set to 'FLOAT32', Float32 would be used for accumulator and intermediate result, but only effective when input and output are of Float16 dtype. Refer to :class:`~.Conv2d` for more information. """ ph, pw = _pair(padding) sh, sw = _pair_nonzero(stride) dh, dw = _pair_nonzero(dilation) Sparse = mgb.opr_param_defs.Convolution.Sparse sparse_type = Sparse.DENSE if groups == 1 else Sparse.GROUP res = mgb.opr.convolution( inp, weight, pad_h=ph, pad_w=pw, stride_h=sh, stride_w=sw, dilate_h=dh, dilate_w=dw, format="NCHW", strategy=get_conv_execution_strategy(), mode=conv_mode, compute_mode=compute_mode, sparse=sparse_type, ) if bias is not None: res += bias return res @wrap_io_tensor def conv_transpose2d( inp: Tensor, weight: Tensor, bias: Optional[Tensor] = None, stride: Union[int, Tuple[int, int]] = 1, padding: Union[int, Tuple[int, int]] = 0, dilation: Union[int, Tuple[int, int]] = 1, groups: int = 1, conv_mode="CROSS_CORRELATION", compute_mode="DEFAULT", ) -> Tensor: """2D transposed convolution operation. :param inp: The feature map of the convolution operation :param weight: The convolution kernel :param bias: The bias added to the result of convolution (if given) :param stride: Stride of the 2D convolution operation. Default: 1 :param padding: Size of the paddings added to the input on both sides of its spatial dimensions. Only zero-padding is supported. Default: 0 :param dilation: Dilation of the 2D convolution operation. Default: 1 :param groups: number of groups to divide input and output channels into, so as to perform a "grouped convolution". When ``groups`` is not 1, ``in_channels`` and ``out_channels`` must be divisible by ``groups``, and the shape of weight should be ``(groups, out_channel // groups, in_channels // groups, height, width)``. Default: 1 :type conv_mode: string or :class:`mgb.opr_param_defs.Convolution.Mode` :param conv_mode: Supports 'CROSS_CORRELATION' or 'CONVOLUTION'. Default: 'CROSS_CORRELATION'. :type compute_mode: string or :class:`mgb.opr_param_defs.Convolution.ComputeMode` :param compute_mode: When set to 'DEFAULT', no special requirements will be placed on the precision of intermediate results. When set to 'FLOAT32', Float32 would be used for accumulator and intermediate result, but only effective when input and output are of Float16 dtype. Refer to :class:`~.ConvTranspose2d` for more information. """ ph, pw = _pair(padding) sh, sw = _pair_nonzero(stride) dh, dw = _pair_nonzero(dilation) Sparse = mgb.opr_param_defs.Convolution.Sparse sparse_type = Sparse.DENSE if groups == 1 else Sparse.GROUP res = mgb.opr.deconvolution( inp, weight, pad_h=ph, pad_w=pw, stride_h=sh, stride_w=sw, dilate_h=dh, dilate_w=dw, format="NCHW", strategy=get_conv_execution_strategy(), mode=conv_mode, compute_mode=compute_mode, sparse=sparse_type, ) if bias is not None: res += bias return res @wrap_io_tensor def max_pool2d( inp: Tensor, kernel_size: Union[int, Tuple[int, int]], stride: Optional[Union[int, Tuple[int, int]]] = None, padding: Union[int, Tuple[int, int]] = 0, ) -> Tensor: """Applies a 2D max pooling over an input. :param inp: The input tensor. :param kernel_size: The size of the window. :param stride: The stride of the window. If not provided, its value is set to ``kernel_size``. Default: None :param padding: Implicit zero padding to be added on both sides. Default: 0 Refer to :class:`~.MaxPool2d` for more information. """ kh, kw = _pair_nonzero(kernel_size) sh, sw = _pair_nonzero(stride or kernel_size) ph, pw = _pair(padding) mode = mgb.opr_param_defs.Pooling.Mode.MAX return mgb.opr.pooling( inp, mode=mode, format="NCHW", stride_h=sh, stride_w=sw, pad_h=ph, pad_w=pw, window_h=kh, window_w=kw, ) @wrap_io_tensor def avg_pool2d( inp: Tensor, kernel_size: Union[int, Tuple[int, int]], stride: Optional[Union[int, Tuple[int, int]]] = None, padding: Union[int, Tuple[int, int]] = 0, ) -> Tensor: """ Applies a 2D average pooling over an input. :param inp: The input tensor. :param kernel_size: The size of the window. :param stride: The stride of the window. If not provided, its value is set to ``kernel_size``. Default: None :param padding: Implicit zero padding to be added on both sides. Default: 0 Refer to :class:`~.AvgPool2d` for more information. """ kh, kw = _pair_nonzero(kernel_size) sh, sw = _pair_nonzero(stride or kernel_size) ph, pw = _pair(padding) mode = mgb.opr_param_defs.Pooling.Mode.AVERAGE return mgb.opr.pooling( inp, mode=mode, format="NCHW", stride_h=sh, stride_w=sw, pad_h=ph, pad_w=pw, window_h=kh, window_w=kw, ) @wrap_io_tensor def prelu(inp: Tensor, weight: Tensor) -> Tensor: r""" Applies the element-wise PReLU function. Refer to :class:`~.PReLU` for more information. """ return mgb.opr.elemwise(inp, 0, mode="MAX") + weight * mgb.opr.elemwise( inp, 0, mode="MIN" ) @wrap_io_tensor def leaky_relu(inp: Tensor, negative_slope: float = 0.01) -> Tensor: r""" Applies the element-wise leaky_relu function Refer to :class:`~.LeakyReLU` for more information. """ return mgb.opr.elemwise(inp, 0, mode="MAX") + negative_slope * mgb.opr.elemwise( inp, 0, mode="MIN" ) @wrap_io_tensor def flatten(inp: Tensor, start_axis: int = 0, end_axis: int = -1) -> Tensor: r""" Reshapes the tensor by flattening the sub-tensor from dimension ``start_axis`` to dimension ``end_axis``. :param inp: The input tensor. :param start_axis: The start dimension that the sub-tensor to be flattened. Default: 0 :param end_axis: The end dimension that the sub-tensor to be flattened. Default: -1 Examples: .. testcode:: import numpy as np from megengine import tensor import megengine.functional as F inp_shape = (2, 2, 3, 3) inp = tensor( np.arange(36, dtype=np.int32).reshape(inp_shape), ) oup = F.flatten(inp, 2) print(inp.numpy().shape) print(oup.numpy().shape) Outputs: .. testoutput:: (2, 2, 3, 3) (2, 2, 9) """ target_shape = tuple(inp.shape[i] for i in range(start_axis)) + (-1,) if end_axis != -1: target_shape += (inp.shape[end_axis + 1 :],) return inp.reshape(*target_shape) def _get_softmax_axis(ndim: int) -> int: if ndim in (0, 1, 3): return 0 return 1 @wrap_io_tensor def softmax(inp: Tensor, axis: Optional[int] = None) -> Tensor: r""" Applies a softmax function. Softmax is defined as: .. math:: \text{Softmax}(x_{i}) = \frac{\exp(x_i)}{\sum_j \exp(x_j)} It is applied to all elements along axis, and will re-scale them so that the elements lie in the range `[0, 1]` and sum to 1. See :class:`~megengine.module.activation.Softmax` for more details. :param inp: The input tensor. :param axis: An axis along which softmax will be applied. By default, softmax will apply along the highest ranked axis. """ if axis is None: axis = _get_softmax_axis(len(inp.imm_shape)) offset = mgb.opr.zero_grad(inp.max(axis=axis, keepdims=True)) inp = inp - offset down = mgb.opr.elem.exp(inp).sum(axis=axis, keepdims=True) return mgb.opr.elem.exp(inp) / down @wrap_io_tensor def batch_norm2d( inp: Tensor, running_mean: Tensor, running_var: Tensor, weight: Optional[Tensor] = None, bias: Optional[Tensor] = None, training: bool = False, momentum: float = 0.9, eps: float = 1e-5, ) -> Tensor: """Applies batch normalization to the input. :param inp: input tensor. :param running_mean: tensor to store running mean. :param running_var: tensor to store running variance. :param weight: scaling tensor in the learnable affine parameters. See :math:`\gamma` in :class:`~.BatchNorm2d` :param bias: bias tensor in the learnable affine parameters. See :math:`\beta` in :class:`~.BatchNorm2d` :param training: a boolean value to indicate whether batch norm is performed in traning mode. Default: ``False`` :param momentum: the value used for the ``running_mean`` and ``running_var`` computation. Default: 0.9 :param eps: a value added to the denominator for numerical stability. Default: 1e-5. Refer to :class:`~.BatchNorm2d` and :class:`~.BatchNorm1d` for more information. """ inp = mgb.opr.mark_no_broadcast_elemwise(inp) _channels = inp.imm_shape[1] _ndim = len(inp.imm_shape) _param_shape = (1, _channels) + (1,) * (_ndim - 2) assert _ndim == 4, "only 4D tensor supported" if weight is not None: weight = weight.reshape(*_param_shape) else: weight = mgb.make_immutable(*_use_default_if_none(None, None), 1.0).broadcast( *_param_shape ) if bias is not None: bias = bias.reshape(*_param_shape) else: bias = mgb.make_immutable(*_use_default_if_none(None, None), 0.0).broadcast( *_param_shape ) FwdMode = mgb.opr_param_defs.BN.FwdMode fwdmode = FwdMode.TRAINING if training else FwdMode.INFERENCE avg_factor = 1 - momentum if running_mean is not None and running_var is not None: if training: inp = barrier(inp) output = mgb.opr.batch_norm( inp, weight, bias, running_mean, running_var, param_dim="DIM_1C11", fwd_mode=fwdmode, epsilon=eps, avg_factor=avg_factor, )[-1] if training: mark_impure(output) else: output = mgb.opr.batch_norm_no_statistic( inp, weight, bias, param_dim="DIM_1C11", fwd_mode=fwdmode, epsilon=eps, avg_factor=avg_factor, )[-1] return output def one_hot(inp: Tensor, num_classes: int = -1) -> Tensor: r""" Perform one-hot encoding for the input tensor. :param inp: input tensor :param num_classes: number of classes denotes the last dimension of the output tensor Examples: .. testcode:: import numpy as np from megengine import tensor import megengine.functional as F inp = tensor(np.arange(1, 4, dtype=np.int32)) out = F.one_hot(inp) print(out.numpy()) Outputs: .. testoutput:: [[0 1 0 0] [0 0 1 0] [0 0 0 1]] """ comp_node, comp_graph = _decide_comp_node_and_comp_graph(inp) if num_classes == -1: num_classes = inp.max() + 1 zeros = mgb.make_immutable(value=0, comp_node=comp_node, comp_graph=comp_graph) zeros_symvar = zeros.broadcast(inp.shapeof(), num_classes) ones = mgb.make_immutable(value=1, comp_node=comp_node, comp_graph=comp_graph) ones_symvar = ones.broadcast(inp.shapeof(), 1) return Tensor( mgb.opr.indexing_set_one_hot( zeros_symvar, axis=len(inp.shapeof()), index=inp, value=ones_symvar ) ) @wrap_io_tensor def warp_perspective( inp: Tensor, M: Tensor, dsize: Union[Tuple[int, int], int, Tensor], border_mode: str = "REPLICATE", border_val: float = 0.0, interp_mode: str = "LINEAR", ): r""" Applies perspective transformation to batched 2D images. The input images are transformed to the output images by the transformation matrix: .. math:: \text{output}(n, c, h, w) = \text{input} \left( n, c, \frac{M_{00}h + M_{01}w + M_{02}}{M_{20}h + M_{21}w + M_{22}}, \frac{M_{10}h + M_{11}w + M_{12}}{M_{20}h + M_{21}w + M_{22}} \right) :param inp: input image :param M: (batch, 3, 3) transformation matrix :param dsize: (h, w) size of the output image :param border_mode: pixel extrapolation method. Default: ``"REPLICATE"`` :param border_val: value used in case of a constant border. Default: ``0`` :param interp_mode: interpolation methods. Default: ``"LINEAR"`` Examples: .. testcode:: import numpy as np from megengine import tensor import megengine.functional as F inp_shape = (1, 1, 4, 4) inp = tensor(np.arange(16, dtype=np.float32).reshape(inp_shape)) M_shape = (1, 3, 3) # M defines a translation: dst(1, 1, h, w) = rst(1, 1, h+1, w+1) M = tensor(np.array([[1., 0., 1.], [0., 1., 1.], [0., 0., 1.]], dtype=np.float32).reshape(M_shape)) out = F.warp_perspective(inp, M, (2, 2)) print(out.numpy()) Outputs: .. testoutput:: [[[[ 5. 6.] [ 9. 10.]]]] """ return mgb.opr.warp_perspective( inp, M, dsize, bmode=border_mode, border_val=border_val, imode=interp_mode, format="NCHW", ) @wrap_io_tensor def eye( n: int, m: Optional[int] = None, *, dtype=None, device: Optional[CompNode] = None, comp_graph: Optional[CompGraph] = None ) -> Tensor: """ Fills the 2-dimensional input :class:`SymbolVar` with the identity matrix. :param n: The number of rows :param m: The number of columns, default to None :param dtype: The data type, default to None :param device: Compute node of the matrix, defaults to None :param comp_graph: Compute graph of the matrix, defaults to None :return: The eye matrix Examples: .. testcode:: import numpy as np import megengine.functional as F data_shape = (4, 6) n, m = data_shape out = F.eye(n, m, dtype=np.float32) print(out.numpy()) Outputs: .. testoutput:: [[1. 0. 0. 0. 0. 0.] [0. 1. 0. 0. 0. 0.] [0. 0. 1. 0. 0. 0.] [0. 0. 0. 1. 0. 0.]] """ device, comp_graph = _use_default_if_none(device, comp_graph) if m is None: m = n return mgb.opr.eye((n, m), dtype=dtype, comp_node=device, comp_graph=comp_graph) @wrap_io_tensor def matrix_mul(inp1: Tensor, inp2: Tensor) -> Tensor: """ Performs a matrix multiplication of the matrices ``inp1`` and ``inp2`` :param inp1: The first matrix to be multiplied (a, b) :param inp2: The second matrix to be multiplied (b, c) :return: The output tensor (a, c) Examples: .. testcode:: import numpy as np from megengine import tensor import megengine.functional as F shape_1 = (2, 3) shape_2 = (3, 4) data1 = tensor(np.arange(0, 6, dtype=np.float32).reshape(2, 3)) data2 = tensor(np.arange(0, 6, dtype=np.float32).reshape(3, 2)) out = F.matrix_mul(data1, data2) print(out.numpy()) Outputs: .. testoutput:: [[10. 13.] [28. 40.]] """ return mgb.opr.matrix_mul(inp1, inp2) @wrap_io_tensor def batched_matrix_mul(inp1: Tensor, inp2: Tensor) -> Tensor: """ Performs a batched multiplication of th batched matrices ``inp1`` and ``inp2`` :param inp1: The first batch matrix to be multiplied (n, a, b) :param inp2: The second batch matrix to be multiplied (n, b, c) :return: The output batch (n, a, c) Examples: .. testcode:: import numpy as np from megengine import tensor import megengine.functional as F batch_size = 3 shape_1 = (batch_size, 2, 3) shape_2 = (batch_size, 3, 4) data1 = tensor( np.arange(0, batch_size * 6, dtype=np.float32).reshape(batch_size, 2, 3)) data2 = tensor( np.arange(0, batch_size * 12, dtype=np.float32).reshape(batch_size, 3, 4)) out = F.batched_matrix_mul(data1, data2) print(out.numpy()) Outputs: .. testoutput:: [[[ 20. 23. 26. 29.] [ 56. 68. 80. 92.]] [[ 344. 365. 386. 407.] [ 488. 518. 548. 578.]] [[1100. 1139. 1178. 1217.] [1352. 1400. 1448. 1496.]]] """ return mgb.opr.batched_matrix_mul(inp1, inp2) @wrap_io_tensor def interpolate( inp: Tensor, size: Optional[Union[int, Tuple[int, int]]] = None, scale_factor: Optional[Union[float, Tuple[float, float]]] = None, mode: str = "BILINEAR", align_corners: bool = None, ) -> Tensor: r""" Down/up samples the input tensor to either the given :attr:`size` or the given :attr:`scale_factor` :param inp: input tensor :param size: size of the output tensor. Default: ``None`` :param scale_factor: scaling factor of the output tensor. Default: ``None`` :param mode: interpolation methods, acceptable values are: 'bilinear'(default), 'linear', 'nearest' (todo), 'cubic' (todo), 'area' (todo) Examples: .. testcode:: import numpy as np from megengine import tensor import megengine.functional as F from megengine.test import assertTensorClose inp = tensor(np.arange(1, 5, dtype=np.float32).reshape(1, 1, 2, 2)) out = F.interpolate(inp, [4, 4], align_corners=False) print(out.numpy()) out2 = F.interpolate(inp, scale_factor=2.) assertTensorClose(out.numpy(), out2.numpy()) Outputs: .. testoutput:: [[[[1. 1.25 1.75 2. ] [1.5 1.75 2.25 2.5 ] [2.5 2.75 3.25 3.5 ] [3. 3.25 3.75 4. ]]]] """ mode = mode.upper() if mode not in ["BILINEAR", "LINEAR"]: raise ValueError("interpolate only support bilinear mode") if mode not in ["BILINEAR", "LINEAR"]: if align_corners is not None: raise ValueError( "align_corners option can only be set in the bilinear/linear interpolating mode" ) else: if align_corners is None: align_corners = False if mode == "LINEAR": inp = mgb.opr.add_axis(inp, 3) if len(inp.imm_shape) != 4: raise ValueError("shape of input tensor must correspond to the operartion mode") if size is None: if scale_factor is None: raise ValueError("scale_factor must not be None when size is None") if isinstance(scale_factor, (float, int)): scale_factor = float(scale_factor) if mode == "LINEAR": scale_factor = (scale_factor, float(1)) else: scale_factor = (scale_factor, scale_factor) else: if mode == "LINEAR": raise ValueError( "under LINEAR mode, scale_factor can only be single value" ) assert len(scale_factor) == 2, "shape of scale_factor must be equal to (2, )" assert isinstance(scale_factor[0], float) and isinstance( scale_factor[1], float ), "scale_factor must be float type" dsize = tuple( mgb.opr.elemwise(inp.shape[i + 2] * scale_factor[i], mode="FLOOR") for i in range(2) ) dsize = mgb.opr.concat([dsize[0], dsize[1]], axis=0) else: if scale_factor is not None: raise ValueError("scale_factor must be None when size is provided") if isinstance(size, int): size = (size, 1) else: if mode == "LINEAR": raise ValueError("under LINEAR mode, size can only be single value") dsize = size oh, ow = dsize[0], dsize[1] ih, iw = inp.shape[2], inp.shape[3] if align_corners: hscale = (ih - 1.0) / (oh - 1.0) wscale = 1.0 * iw / ow if mode != "LINEAR": wscale = (iw - 1.0) / (ow - 1.0) row0 = mgb.opr.concat([wscale, [0, 0]], axis=0).reshape(1, 3) row1 = mgb.opr.concat([[0], hscale, [0]], axis=0).reshape(1, 3) weight = mgb.opr.concat([row0, row1, [[0, 0, 1]]], axis=0).reshape(1, 3, 3) weight = mgb.opr.broadcast(weight, (inp.shape[0], 3, 3)) else: hscale = 1.0 * ih / oh wscale = 1.0 * iw / ow row0 = mgb.opr.concat([wscale, [0], 0.5 * wscale - 0.5], axis=0).reshape(1, 3) row1 = mgb.opr.concat([[0], hscale, 0.5 * hscale - 0.5], axis=0).reshape(1, 3) weight = mgb.opr.concat([row0, row1, [[0, 0, 1]]], axis=0).reshape(1, 3, 3) weight = mgb.opr.broadcast(weight, (inp.shape[0], 3, 3)) ret = mgb.opr.warp_perspective(inp, weight, dsize, imode="LINEAR", format="NCHW") if mode == "LINEAR": ret = mgb.opr.reshape(ret, ret.shape[0:3]) return ret @wrap_io_tensor def dropout(inp: Tensor, drop_prob: float, rescale: bool = True) -> Tensor: """ Returns a new tensor where each of the elements are randomly set to zero with probability P = ``drop_prob``. Optionally rescale the output tensor. :param inp: The input tensor :param drop_prob: The probability to drop (set to zero) a single element :param rescale: The default behavior of ``dropout`` during training is to rescale the output, then it can be replaced by an :class:`~.Identity` during inference, default to True. :return: The output tensor Examples: .. testcode:: import numpy as np import megengine as mge import megengine.functional as F from megengine import tensor data = tensor(np.ones(10, dtype=np.float32)) out = F.dropout(data, 1./3.) print(out.numpy()) Outputs: .. testoutput:: :options: +SKIP [1.5 1.5 0. 1.5 1.5 1.5 1.5 1.5 1.5 1.5] """ assert 0 <= drop_prob < 1 rv = uniform(inp.shape) mask = rv > drop_prob inp *= mask.astype(inp.dtype) if rescale: inp *= 1 / (1 - drop_prob) return inp @wrap_io_tensor def identity(inp: Tensor) -> Tensor: """applies an identity transform to the input tensor. :param inp: The input tensor """ return mgb.opr.identity(inp) @wrap_io_tensor def embedding( input: Tensor, weight: Tensor, padding_idx: Optional[int] = None, max_norm: Optional[float] = None, norm_type: Optional[float] = None, ): """ Applies lookup table for embedding. :param input: the tensor with indices. :param weight: the learnable weights which embedding from. :param padding_idx: should be set to None, not support now. :param max_norm: should be set to None, not support now. :param norm_type: should be set to None, not support now. Refer to :class:`~.Embedding` for more information. """ if padding_idx is not None: raise ValueError("Not support padding_idx Now!") if max_norm is not None or norm_type is not None: raise ValueError("Not support weight normlization Now!") return mgb.opr.advanced_indexing(weight)[input.reshape(-1), :].reshape( input.shape, weight.shape[-1] ) @wrap_io_tensor def roi_pooling( input: Tensor, rois: Tensor, output_shape: Union[int, tuple, list], mode: str = "max", scale: float = 1.0, ) -> Tensor: """ Apply roi pooling on input feature :param input: tensor that represents the input feature, (N, C, H, W) images :param rois: (K, 5) boxes. First column is the index into N. The other 4 columns are xyxy :param output_shape: (height, width) of output rois feature :param mode: "max" or "average", use max/average align just like max/average pooling. Default: ``"max"`` :param scale: scale the input boxes by this number. Default: 1.0 :return: (K, C, output_shape[0], output_shape[1]) feature of rois """ assert mode in ["max", "average"], "only max/average mode is supported" if isinstance(output_shape, int): output_shape = (output_shape, output_shape) return mgb.opr.roi_pooling( input, rois, output_shape, mode=mode.upper(), scale=scale ) @wrap_io_tensor def roi_align( input: Tensor, rois: Tensor, output_shape: Union[int, tuple, list], mode: str = "average", spatial_scale: float = 1.0, sample_points: Union[int, tuple, list] = 2, aligned: bool = True, ) -> Tensor: """ Apply roi align on input feature :param input: tensor that represents the input feature, (N, C, H, W) images :param rois: (N, 5) boxes. First column is the index into N. The other 4 columns are xyxy :param output_shape: (height, width) shape of output rois feature. :param mode: "max" or "average", use max/average align just like max/average pooling. Default: ``"average"`` :param spatial_scale: scale the input boxes by this number. Default: 1.0 :param sample_points: number of inputs samples to take for each output sample. 0 to take samples densely. Default: 2 :param aligned: wheather align the input feature, with `aligned=True`, we first appropriately scale the ROI and then shift it by -0.5. Default: True """ assert mode in ["max", "average"], "only max/average mode is supported" if isinstance(output_shape, int): output_shape = (output_shape, output_shape) pooled_height, pooled_width = output_shape if isinstance(sample_points, int): sample_points = (sample_points, sample_points) sample_height, sample_width = sample_points offset = 0.5 if aligned else 0.0 return mgb.opr.roi_align( input, rois, mode=mode.upper(), spatial_scale=spatial_scale, offset=offset, pooled_height=pooled_height, pooled_width=pooled_width, sample_height=sample_height, sample_width=sample_width, ) @wrap_io_tensor def assert_equal( get: Tensor, expect: Tensor, max_err: float = 1e-4, verbose: bool = False ) -> Tensor: r""" Asserts that ``get`` equals to ``expect``, and returns value of ``expect``. :param get: tensor to be checked. :param expect: tensor with expected values. :param max_err: tolerance that two float values are asserted equal. Default: 1e-4 :param verbose: whether to print details if two tensors are not equal. Default: False Examples: .. testcode:: import megengine.functional as F from megengine import tensor get = tensor([1.0, 2.0]) max_err = 0.1 expect = get + max_err / 2.0 val = F.assert_equal(expect, get, max_err=max_err) print(val.numpy()) Outputs: .. testoutput:: [1.05 2.05] """ return mgb.opr.assert_equal(get, expect, maxerr=max_err, verbose=verbose) @wrap_io_tensor def indexing_one_hot( src: Tensor, index: Tensor, axis: int = 1, keepdims=False ) -> Tensor: r""" One-hot indexing for some axis. :param src: input data tensor. :param index: index tensor. :param axis: the axis on src for which values in index index. Default: 1 :param keepdims: whether not to remove the axis in result. Default: ``False`` Examples: .. testcode:: import megengine.functional as F from megengine import tensor src = tensor([[1.0, 2.0]]) index = tensor([0]) val = F.indexing_one_hot(src, index) print(val.numpy()) .. testoutput:: [1.] """ return mgb.opr.indexing_one_hot(src, axis, index, keepdims=keepdims)
[ "megengine._internal.opr.elem.exp", "megengine._internal.opr.pooling", "megengine._internal.opr.add_axis", "megengine._internal.opr.assert_equal", "megengine._internal.opr.elemwise", "megengine._internal.opr.reshape", "megengine._internal.opr.indexing_one_hot", "megengine._internal.opr.batch_norm", "megengine._internal.opr.advanced_indexing", "megengine._internal.opr.concat", "megengine._internal.opr.warp_perspective", "megengine._internal.make_immutable", "megengine._internal.opr.mark_no_broadcast_elemwise", "megengine._internal.opr.identity", "megengine._internal.opr.batched_matrix_mul", "megengine._internal.opr.batch_norm_no_statistic", "megengine._internal.opr.eye", "megengine._internal.opr.matrix_mul", "megengine._internal.opr.broadcast" ]
[((1169, 1217), 'megengine._internal.opr.matrix_mul', 'mgb.opr.matrix_mul', (['inp', 'weight'], {'transposeB': '(True)'}), '(inp, weight, transposeB=True)\n', (1187, 1217), True, 'import megengine._internal as mgb\n'), ((7082, 7204), 'megengine._internal.opr.pooling', 'mgb.opr.pooling', (['inp'], {'mode': 'mode', 'format': '"""NCHW"""', 'stride_h': 'sh', 'stride_w': 'sw', 'pad_h': 'ph', 'pad_w': 'pw', 'window_h': 'kh', 'window_w': 'kw'}), "(inp, mode=mode, format='NCHW', stride_h=sh, stride_w=sw,\n pad_h=ph, pad_w=pw, window_h=kh, window_w=kw)\n", (7097, 7204), True, 'import megengine._internal as mgb\n'), ((8075, 8197), 'megengine._internal.opr.pooling', 'mgb.opr.pooling', (['inp'], {'mode': 'mode', 'format': '"""NCHW"""', 'stride_h': 'sh', 'stride_w': 'sw', 'pad_h': 'ph', 'pad_w': 'pw', 'window_h': 'kh', 'window_w': 'kw'}), "(inp, mode=mode, format='NCHW', stride_h=sh, stride_w=sw,\n pad_h=ph, pad_w=pw, window_h=kh, window_w=kw)\n", (8090, 8197), True, 'import megengine._internal as mgb\n'), ((12094, 12133), 'megengine._internal.opr.mark_no_broadcast_elemwise', 'mgb.opr.mark_no_broadcast_elemwise', (['inp'], {}), '(inp)\n', (12128, 12133), True, 'import megengine._internal as mgb\n'), ((14310, 14381), 'megengine._internal.make_immutable', 'mgb.make_immutable', ([], {'value': '(0)', 'comp_node': 'comp_node', 'comp_graph': 'comp_graph'}), '(value=0, comp_node=comp_node, comp_graph=comp_graph)\n', (14328, 14381), True, 'import megengine._internal as mgb\n'), ((14457, 14528), 'megengine._internal.make_immutable', 'mgb.make_immutable', ([], {'value': '(1)', 'comp_node': 'comp_node', 'comp_graph': 'comp_graph'}), '(value=1, comp_node=comp_node, comp_graph=comp_graph)\n', (14475, 14528), True, 'import megengine._internal as mgb\n'), ((16421, 16541), 'megengine._internal.opr.warp_perspective', 'mgb.opr.warp_perspective', (['inp', 'M', 'dsize'], {'bmode': 'border_mode', 'border_val': 'border_val', 'imode': 'interp_mode', 'format': '"""NCHW"""'}), "(inp, M, dsize, bmode=border_mode, border_val=\n border_val, imode=interp_mode, format='NCHW')\n", (16445, 16541), True, 'import megengine._internal as mgb\n'), ((17671, 17744), 'megengine._internal.opr.eye', 'mgb.opr.eye', (['(n, m)'], {'dtype': 'dtype', 'comp_node': 'device', 'comp_graph': 'comp_graph'}), '((n, m), dtype=dtype, comp_node=device, comp_graph=comp_graph)\n', (17682, 17744), True, 'import megengine._internal as mgb\n'), ((18554, 18584), 'megengine._internal.opr.matrix_mul', 'mgb.opr.matrix_mul', (['inp1', 'inp2'], {}), '(inp1, inp2)\n', (18572, 18584), True, 'import megengine._internal as mgb\n'), ((19745, 19783), 'megengine._internal.opr.batched_matrix_mul', 'mgb.opr.batched_matrix_mul', (['inp1', 'inp2'], {}), '(inp1, inp2)\n', (19771, 19783), True, 'import megengine._internal as mgb\n'), ((24039, 24114), 'megengine._internal.opr.warp_perspective', 'mgb.opr.warp_perspective', (['inp', 'weight', 'dsize'], {'imode': '"""LINEAR"""', 'format': '"""NCHW"""'}), "(inp, weight, dsize, imode='LINEAR', format='NCHW')\n", (24063, 24114), True, 'import megengine._internal as mgb\n'), ((25556, 25577), 'megengine._internal.opr.identity', 'mgb.opr.identity', (['inp'], {}), '(inp)\n', (25572, 25577), True, 'import megengine._internal as mgb\n'), ((30069, 30135), 'megengine._internal.opr.assert_equal', 'mgb.opr.assert_equal', (['get', 'expect'], {'maxerr': 'max_err', 'verbose': 'verbose'}), '(get, expect, maxerr=max_err, verbose=verbose)\n', (30089, 30135), True, 'import megengine._internal as mgb\n'), ((30828, 30889), 'megengine._internal.opr.indexing_one_hot', 'mgb.opr.indexing_one_hot', (['src', 'axis', 'index'], {'keepdims': 'keepdims'}), '(src, axis, index, keepdims=keepdims)\n', (30852, 30889), True, 'import megengine._internal as mgb\n'), ((8468, 8504), 'megengine._internal.opr.elemwise', 'mgb.opr.elemwise', (['inp', '(0)'], {'mode': '"""MAX"""'}), "(inp, 0, mode='MAX')\n", (8484, 8504), True, 'import megengine._internal as mgb\n'), ((8789, 8825), 'megengine._internal.opr.elemwise', 'mgb.opr.elemwise', (['inp', '(0)'], {'mode': '"""MAX"""'}), "(inp, 0, mode='MAX')\n", (8805, 8825), True, 'import megengine._internal as mgb\n'), ((10915, 10936), 'megengine._internal.opr.elem.exp', 'mgb.opr.elem.exp', (['inp'], {}), '(inp)\n', (10931, 10936), True, 'import megengine._internal as mgb\n'), ((21594, 21618), 'megengine._internal.opr.add_axis', 'mgb.opr.add_axis', (['inp', '(3)'], {}), '(inp, 3)\n', (21610, 21618), True, 'import megengine._internal as mgb\n'), ((22711, 22755), 'megengine._internal.opr.concat', 'mgb.opr.concat', (['[dsize[0], dsize[1]]'], {'axis': '(0)'}), '([dsize[0], dsize[1]], axis=0)\n', (22725, 22755), True, 'import megengine._internal as mgb\n'), ((23585, 23632), 'megengine._internal.opr.broadcast', 'mgb.opr.broadcast', (['weight', '(inp.shape[0], 3, 3)'], {}), '(weight, (inp.shape[0], 3, 3))\n', (23602, 23632), True, 'import megengine._internal as mgb\n'), ((23980, 24027), 'megengine._internal.opr.broadcast', 'mgb.opr.broadcast', (['weight', '(inp.shape[0], 3, 3)'], {}), '(weight, (inp.shape[0], 3, 3))\n', (23997, 24027), True, 'import megengine._internal as mgb\n'), ((24154, 24190), 'megengine._internal.opr.reshape', 'mgb.opr.reshape', (['ret', 'ret.shape[0:3]'], {}), '(ret, ret.shape[0:3])\n', (24169, 24190), True, 'import megengine._internal as mgb\n'), ((8516, 8552), 'megengine._internal.opr.elemwise', 'mgb.opr.elemwise', (['inp', '(0)'], {'mode': '"""MIN"""'}), "(inp, 0, mode='MIN')\n", (8532, 8552), True, 'import megengine._internal as mgb\n'), ((8845, 8881), 'megengine._internal.opr.elemwise', 'mgb.opr.elemwise', (['inp', '(0)'], {'mode': '"""MIN"""'}), "(inp, 0, mode='MIN')\n", (8861, 8881), True, 'import megengine._internal as mgb\n'), ((10852, 10873), 'megengine._internal.opr.elem.exp', 'mgb.opr.elem.exp', (['inp'], {}), '(inp)\n', (10868, 10873), True, 'import megengine._internal as mgb\n'), ((12985, 13130), 'megengine._internal.opr.batch_norm', 'mgb.opr.batch_norm', (['inp', 'weight', 'bias', 'running_mean', 'running_var'], {'param_dim': '"""DIM_1C11"""', 'fwd_mode': 'fwdmode', 'epsilon': 'eps', 'avg_factor': 'avg_factor'}), "(inp, weight, bias, running_mean, running_var, param_dim=\n 'DIM_1C11', fwd_mode=fwdmode, epsilon=eps, avg_factor=avg_factor)\n", (13003, 13130), True, 'import megengine._internal as mgb\n'), ((13329, 13459), 'megengine._internal.opr.batch_norm_no_statistic', 'mgb.opr.batch_norm_no_statistic', (['inp', 'weight', 'bias'], {'param_dim': '"""DIM_1C11"""', 'fwd_mode': 'fwdmode', 'epsilon': 'eps', 'avg_factor': 'avg_factor'}), "(inp, weight, bias, param_dim='DIM_1C11',\n fwd_mode=fwdmode, epsilon=eps, avg_factor=avg_factor)\n", (13360, 13459), True, 'import megengine._internal as mgb\n'), ((22588, 22654), 'megengine._internal.opr.elemwise', 'mgb.opr.elemwise', (['(inp.shape[i + 2] * scale_factor[i])'], {'mode': '"""FLOOR"""'}), "(inp.shape[i + 2] * scale_factor[i], mode='FLOOR')\n", (22604, 22654), True, 'import megengine._internal as mgb\n'), ((23357, 23397), 'megengine._internal.opr.concat', 'mgb.opr.concat', (['[wscale, [0, 0]]'], {'axis': '(0)'}), '([wscale, [0, 0]], axis=0)\n', (23371, 23397), True, 'import megengine._internal as mgb\n'), ((23427, 23469), 'megengine._internal.opr.concat', 'mgb.opr.concat', (['[[0], hscale, [0]]'], {'axis': '(0)'}), '([[0], hscale, [0]], axis=0)\n', (23441, 23469), True, 'import megengine._internal as mgb\n'), ((23501, 23550), 'megengine._internal.opr.concat', 'mgb.opr.concat', (['[row0, row1, [[0, 0, 1]]]'], {'axis': '(0)'}), '([row0, row1, [[0, 0, 1]]], axis=0)\n', (23515, 23550), True, 'import megengine._internal as mgb\n'), ((23720, 23777), 'megengine._internal.opr.concat', 'mgb.opr.concat', (['[wscale, [0], 0.5 * wscale - 0.5]'], {'axis': '(0)'}), '([wscale, [0], 0.5 * wscale - 0.5], axis=0)\n', (23734, 23777), True, 'import megengine._internal as mgb\n'), ((23807, 23864), 'megengine._internal.opr.concat', 'mgb.opr.concat', (['[[0], hscale, 0.5 * hscale - 0.5]'], {'axis': '(0)'}), '([[0], hscale, 0.5 * hscale - 0.5], axis=0)\n', (23821, 23864), True, 'import megengine._internal as mgb\n'), ((23896, 23945), 'megengine._internal.opr.concat', 'mgb.opr.concat', (['[row0, row1, [[0, 0, 1]]]'], {'axis': '(0)'}), '([row0, row1, [[0, 0, 1]]], axis=0)\n', (23910, 23945), True, 'import megengine._internal as mgb\n'), ((26397, 26430), 'megengine._internal.opr.advanced_indexing', 'mgb.opr.advanced_indexing', (['weight'], {}), '(weight)\n', (26422, 26430), True, 'import megengine._internal as mgb\n')]
from fastapi import APIRouter, Depends, HTTPException, Query, Path from sqlmodel import Session, select from sqlalchemy.exc import IntegrityError from typing import List, Any import datetime as dt from app.src.common.utils import profiling_api from app.src.models.product import ( Product, ProductRead, ProductCreate, ProductUpdate, ProductReadwithTypeAndTags, ) from app.src.db.engine import get_session from app.src.api.endpoints.product_type import get_producttype_or_404 from app.src.api.endpoints.tags import get_tag_or_404, get_tag_by_name_or_404 from app.src.common.security import get_current_user from app.src.models.app_user import AppUser from app.src.models.tag import Tag from app.src.logger import logger router = APIRouter() async def get_product_or_404( *, session: Session = Depends(get_session), product_id: int = Path(..., ge=1), current_user: AppUser = Depends(get_current_user), ): start_time = dt.datetime.now() try: db_product = session.get(Product, product_id) if db_product: return { "db_product": db_product, "username": current_user.username, "start_time": start_time, } else: logger.error("Product not found") logger.exception("Product not found") raise HTTPException(status_code=404, detail="Product not found") except KeyError: logger.error("Product not found") logger.exception("KeyError: Product not found") raise HTTPException(status_code=400, detail="Product not found") @router.get("/", response_model=List[ProductReadwithTypeAndTags]) async def read_all_products( session: Session = Depends(get_session), offset: int = 0, limit: int = Query(default=100, lte=100), current_user: AppUser = Depends(get_current_user), ) -> Any: """ Retrieve all products """ start_time = dt.datetime.now() products = session.exec(select(Product).offset(offset).limit(limit)).all() profiling_api("Product:get:all", start_time, current_user.username) return products @router.get("/{product_id}", response_model=ProductReadwithTypeAndTags) async def read_product( *, product_id: int, db_product: Product = Depends(get_product_or_404) ): """ Get the product type by id """ # Le righe commentate sotto, sostituite dalla nuova Depends # Nota: il parametro product_id a get_product_or_404 è preso dal path # p = session.get(Product, product_id) # if not p: # raise HTTPException( # status_code=404, # detail="Product type not found" # ) profiling_api( f"Product:read:by_id:{product_id}", db_product["start_time"], db_product["username"], ) return db_product["db_product"] @router.post("/", response_model=ProductRead) async def create_product( *, session: Session = Depends(get_session), product: ProductCreate, current_user: AppUser = Depends(get_current_user), ) -> Any: """ Create a new single product """ start_time = dt.datetime.now() # Controllo esistenza product type _ = await get_producttype_or_404(producttype_id=product.type_id, session=session) # Controllo integrità o altri errori try: db_product = Product.from_orm(product) session.add(db_product) session.commit() profiling_api("Product:insert:single", start_time, current_user.username) except IntegrityError: logger.error("Impossible to create product with same name") logger.exception("Integrity Error: Impossible to create product with same name") raise HTTPException( status_code=404, detail="Impossible to create product with same name" ) session.refresh(db_product) return db_product @router.patch("/update/{product_id}", response_model=ProductRead) async def update_product_by_id( *, product_id: int, session: Session = Depends(get_session), product: ProductUpdate, db_product: Product = Depends(get_product_or_404), ): """ Modify and existing product by id """ # Le righe commentate sotto, sostituite dalla nuova Depends # Nota: il parametro product_id a get_product_or_404 è preso dal path # db_product = session.get(Product, product_id) # if not db_product: # raise HTTPException(status_code=404, detail="Product not found") existing_product = db_product["db_product"] pr_data = product.dict(exclude_unset=True) for key, value in pr_data.items(): setattr(existing_product, key, value) session.add(existing_product) session.commit() session.refresh(existing_product) profiling_api( f"Product:update:by_id:{product_id}", db_product["start_time"], db_product["username"], ) return existing_product @router.patch("/update/by_name/{product_name}", response_model=ProductRead) async def update_product_by_name( *, session: Session = Depends(get_session), product_name: str, product: ProductUpdate, current_user: AppUser = Depends(get_current_user), ): """ Modify an existing product by name """ start_time = dt.datetime.now() db_product = session.exec(select(Product).where(Product.name == product_name)).one() if not db_product: raise HTTPException( status_code=404, detail="Product not found, impossible to update" ) pr_data = product.dict(exclude_unset=True) # to use the nullable data for key, value in pr_data.items(): setattr(db_product, key, value) session.add(db_product) session.commit() session.refresh(db_product) profiling_api( f"Product:update:by_name:{product_name}", start_time, current_user.username, ) return db_product @router.patch( "/update/{product_id}/add_tag_by_id/{tag_id}", response_model=ProductReadwithTypeAndTags, ) async def update_product_add_tag_by_id( *, product_id: int, session: Session = Depends(get_session), db_product: Product = Depends(get_product_or_404), db_tag: Tag = Depends(get_tag_or_404), ): """ Add tag to product """ existing_product = db_product["db_product"] existing_tag = db_tag["db_tag"] existing_product.tags.append(existing_tag) session.add(existing_product) session.commit() session.refresh(existing_product) profiling_api( f"Product:update:add_tag:by_id:{product_id}", db_product["start_time"], db_product["username"], ) return existing_product @router.patch( "/update/{product_id}/add_tag_by_name/{tag_name}", response_model=ProductReadwithTypeAndTags, ) async def update_product_add_tag_by_name( *, product_id: int, session: Session = Depends(get_session), db_product: Product = Depends(get_product_or_404), db_tag: Tag = Depends(get_tag_by_name_or_404), ): """ Add tag to product """ existing_product = db_product["db_product"] existing_tag = db_tag["db_tag"] existing_product.tags.append(existing_tag) session.add(existing_product) session.commit() session.refresh(existing_product) profiling_api( f"Product:update:add_tag:by_name:{product_id}", db_product["start_time"], db_product["username"], ) return existing_product @router.patch( "/update/{product_id}/remove_tag_by_id/{tag_id}", response_model=ProductReadwithTypeAndTags, ) async def update_product_remove_tag_by_id( *, product_id: int, session: Session = Depends(get_session), db_product: Product = Depends(get_product_or_404), db_tag: Tag = Depends(get_tag_or_404), ): """ Remove tag from product """ existing_product = db_product["db_product"] existing_tag = db_tag["db_tag"] try: existing_product.tags.remove(existing_tag) session.add(existing_product) session.commit() session.refresh(existing_product) profiling_api( f"Product:update:remove_tag:by_id:{product_id}", db_product["start_time"], db_product["username"], ) except Exception as message: logger.error(message) logger.exception(message) raise HTTPException( status_code=404, detail="Impossible to remove the tag: product or tag not existing", ) return existing_product @router.patch( "/update/{product_id}/remove_tag_by_name/{tag_name}", response_model=ProductReadwithTypeAndTags, ) async def update_product_remove_tag_by_name( *, product_id: int, session: Session = Depends(get_session), db_product: Product = Depends(get_product_or_404), db_tag: Tag = Depends(get_tag_by_name_or_404), ): """ Remove tag from product """ existing_db_product = db_product["db_product"] existing_db_tag = db_tag["db_tag"] db_product.tags.remove(existing_db_tag) session.add(existing_db_product) session.commit() session.refresh(existing_db_product) profiling_api( f"Product:update:remove_tag:by_name:{product_id}", db_product["start_time"], db_product["username"], ) return db_product @router.delete("/{product_id}") async def delete_product( *, product_id: int, session: Session = Depends(get_session), db_product: Product = Depends(get_product_or_404), ): """ Delete and remove an existing product by id; it must be >= 1 """ # Le righe commentate sotto, sostituite dalla nuova Depends # Nota: il parametro product_id a get_product_or_404 è preso dal path # product = session.get(Product, product_id) # if not product: # raise HTTPException( # status_code=404, detail="Product not found, impossible to remove" # ) existing_db_product = db_product["db_product"] session.delete(existing_db_product) session.commit() profiling_api( f"Product:update:add_tag:by_id:{product_id}", db_product["start_time"], db_product["username"], ) return {"ok": True}
[ "sqlmodel.select" ]
[((751, 762), 'fastapi.APIRouter', 'APIRouter', ([], {}), '()\n', (760, 762), False, 'from fastapi import APIRouter, Depends, HTTPException, Query, Path\n'), ((825, 845), 'fastapi.Depends', 'Depends', (['get_session'], {}), '(get_session)\n', (832, 845), False, 'from fastapi import APIRouter, Depends, HTTPException, Query, Path\n'), ((869, 884), 'fastapi.Path', 'Path', (['...'], {'ge': '(1)'}), '(..., ge=1)\n', (873, 884), False, 'from fastapi import APIRouter, Depends, HTTPException, Query, Path\n'), ((914, 939), 'fastapi.Depends', 'Depends', (['get_current_user'], {}), '(get_current_user)\n', (921, 939), False, 'from fastapi import APIRouter, Depends, HTTPException, Query, Path\n'), ((961, 978), 'datetime.datetime.now', 'dt.datetime.now', ([], {}), '()\n', (976, 978), True, 'import datetime as dt\n'), ((1734, 1754), 'fastapi.Depends', 'Depends', (['get_session'], {}), '(get_session)\n', (1741, 1754), False, 'from fastapi import APIRouter, Depends, HTTPException, Query, Path\n'), ((1794, 1821), 'fastapi.Query', 'Query', ([], {'default': '(100)', 'lte': '(100)'}), '(default=100, lte=100)\n', (1799, 1821), False, 'from fastapi import APIRouter, Depends, HTTPException, Query, Path\n'), ((1851, 1876), 'fastapi.Depends', 'Depends', (['get_current_user'], {}), '(get_current_user)\n', (1858, 1876), False, 'from fastapi import APIRouter, Depends, HTTPException, Query, Path\n'), ((1947, 1964), 'datetime.datetime.now', 'dt.datetime.now', ([], {}), '()\n', (1962, 1964), True, 'import datetime as dt\n'), ((2048, 2115), 'app.src.common.utils.profiling_api', 'profiling_api', (['"""Product:get:all"""', 'start_time', 'current_user.username'], {}), "('Product:get:all', start_time, current_user.username)\n", (2061, 2115), False, 'from app.src.common.utils import profiling_api\n'), ((2280, 2307), 'fastapi.Depends', 'Depends', (['get_product_or_404'], {}), '(get_product_or_404)\n', (2287, 2307), False, 'from fastapi import APIRouter, Depends, HTTPException, Query, Path\n'), ((2683, 2786), 'app.src.common.utils.profiling_api', 'profiling_api', (['f"""Product:read:by_id:{product_id}"""', "db_product['start_time']", "db_product['username']"], {}), "(f'Product:read:by_id:{product_id}', db_product['start_time'],\n db_product['username'])\n", (2696, 2786), False, 'from app.src.common.utils import profiling_api\n'), ((2954, 2974), 'fastapi.Depends', 'Depends', (['get_session'], {}), '(get_session)\n', (2961, 2974), False, 'from fastapi import APIRouter, Depends, HTTPException, Query, Path\n'), ((3032, 3057), 'fastapi.Depends', 'Depends', (['get_current_user'], {}), '(get_current_user)\n', (3039, 3057), False, 'from fastapi import APIRouter, Depends, HTTPException, Query, Path\n'), ((3134, 3151), 'datetime.datetime.now', 'dt.datetime.now', ([], {}), '()\n', (3149, 3151), True, 'import datetime as dt\n'), ((4023, 4043), 'fastapi.Depends', 'Depends', (['get_session'], {}), '(get_session)\n', (4030, 4043), False, 'from fastapi import APIRouter, Depends, HTTPException, Query, Path\n'), ((4099, 4126), 'fastapi.Depends', 'Depends', (['get_product_or_404'], {}), '(get_product_or_404)\n', (4106, 4126), False, 'from fastapi import APIRouter, Depends, HTTPException, Query, Path\n'), ((4755, 4861), 'app.src.common.utils.profiling_api', 'profiling_api', (['f"""Product:update:by_id:{product_id}"""', "db_product['start_time']", "db_product['username']"], {}), "(f'Product:update:by_id:{product_id}', db_product['start_time'\n ], db_product['username'])\n", (4768, 4861), False, 'from app.src.common.utils import profiling_api\n'), ((5058, 5078), 'fastapi.Depends', 'Depends', (['get_session'], {}), '(get_session)\n', (5065, 5078), False, 'from fastapi import APIRouter, Depends, HTTPException, Query, Path\n'), ((5159, 5184), 'fastapi.Depends', 'Depends', (['get_current_user'], {}), '(get_current_user)\n', (5166, 5184), False, 'from fastapi import APIRouter, Depends, HTTPException, Query, Path\n'), ((5261, 5278), 'datetime.datetime.now', 'dt.datetime.now', ([], {}), '()\n', (5276, 5278), True, 'import datetime as dt\n'), ((5747, 5841), 'app.src.common.utils.profiling_api', 'profiling_api', (['f"""Product:update:by_name:{product_name}"""', 'start_time', 'current_user.username'], {}), "(f'Product:update:by_name:{product_name}', start_time,\n current_user.username)\n", (5760, 5841), False, 'from app.src.common.utils import profiling_api\n'), ((6099, 6119), 'fastapi.Depends', 'Depends', (['get_session'], {}), '(get_session)\n', (6106, 6119), False, 'from fastapi import APIRouter, Depends, HTTPException, Query, Path\n'), ((6147, 6174), 'fastapi.Depends', 'Depends', (['get_product_or_404'], {}), '(get_product_or_404)\n', (6154, 6174), False, 'from fastapi import APIRouter, Depends, HTTPException, Query, Path\n'), ((6194, 6217), 'fastapi.Depends', 'Depends', (['get_tag_or_404'], {}), '(get_tag_or_404)\n', (6201, 6217), False, 'from fastapi import APIRouter, Depends, HTTPException, Query, Path\n'), ((6491, 6605), 'app.src.common.utils.profiling_api', 'profiling_api', (['f"""Product:update:add_tag:by_id:{product_id}"""', "db_product['start_time']", "db_product['username']"], {}), "(f'Product:update:add_tag:by_id:{product_id}', db_product[\n 'start_time'], db_product['username'])\n", (6504, 6605), False, 'from app.src.common.utils import profiling_api\n'), ((6874, 6894), 'fastapi.Depends', 'Depends', (['get_session'], {}), '(get_session)\n', (6881, 6894), False, 'from fastapi import APIRouter, Depends, HTTPException, Query, Path\n'), ((6922, 6949), 'fastapi.Depends', 'Depends', (['get_product_or_404'], {}), '(get_product_or_404)\n', (6929, 6949), False, 'from fastapi import APIRouter, Depends, HTTPException, Query, Path\n'), ((6969, 7000), 'fastapi.Depends', 'Depends', (['get_tag_by_name_or_404'], {}), '(get_tag_by_name_or_404)\n', (6976, 7000), False, 'from fastapi import APIRouter, Depends, HTTPException, Query, Path\n'), ((7274, 7390), 'app.src.common.utils.profiling_api', 'profiling_api', (['f"""Product:update:add_tag:by_name:{product_id}"""', "db_product['start_time']", "db_product['username']"], {}), "(f'Product:update:add_tag:by_name:{product_id}', db_product[\n 'start_time'], db_product['username'])\n", (7287, 7390), False, 'from app.src.common.utils import profiling_api\n'), ((7659, 7679), 'fastapi.Depends', 'Depends', (['get_session'], {}), '(get_session)\n', (7666, 7679), False, 'from fastapi import APIRouter, Depends, HTTPException, Query, Path\n'), ((7707, 7734), 'fastapi.Depends', 'Depends', (['get_product_or_404'], {}), '(get_product_or_404)\n', (7714, 7734), False, 'from fastapi import APIRouter, Depends, HTTPException, Query, Path\n'), ((7754, 7777), 'fastapi.Depends', 'Depends', (['get_tag_or_404'], {}), '(get_tag_or_404)\n', (7761, 7777), False, 'from fastapi import APIRouter, Depends, HTTPException, Query, Path\n'), ((8737, 8757), 'fastapi.Depends', 'Depends', (['get_session'], {}), '(get_session)\n', (8744, 8757), False, 'from fastapi import APIRouter, Depends, HTTPException, Query, Path\n'), ((8785, 8812), 'fastapi.Depends', 'Depends', (['get_product_or_404'], {}), '(get_product_or_404)\n', (8792, 8812), False, 'from fastapi import APIRouter, Depends, HTTPException, Query, Path\n'), ((8832, 8863), 'fastapi.Depends', 'Depends', (['get_tag_by_name_or_404'], {}), '(get_tag_by_name_or_404)\n', (8839, 8863), False, 'from fastapi import APIRouter, Depends, HTTPException, Query, Path\n'), ((9151, 9270), 'app.src.common.utils.profiling_api', 'profiling_api', (['f"""Product:update:remove_tag:by_name:{product_id}"""', "db_product['start_time']", "db_product['username']"], {}), "(f'Product:update:remove_tag:by_name:{product_id}', db_product\n ['start_time'], db_product['username'])\n", (9164, 9270), False, 'from app.src.common.utils import profiling_api\n'), ((9430, 9450), 'fastapi.Depends', 'Depends', (['get_session'], {}), '(get_session)\n', (9437, 9450), False, 'from fastapi import APIRouter, Depends, HTTPException, Query, Path\n'), ((9478, 9505), 'fastapi.Depends', 'Depends', (['get_product_or_404'], {}), '(get_product_or_404)\n', (9485, 9505), False, 'from fastapi import APIRouter, Depends, HTTPException, Query, Path\n'), ((10039, 10153), 'app.src.common.utils.profiling_api', 'profiling_api', (['f"""Product:update:add_tag:by_id:{product_id}"""', "db_product['start_time']", "db_product['username']"], {}), "(f'Product:update:add_tag:by_id:{product_id}', db_product[\n 'start_time'], db_product['username'])\n", (10052, 10153), False, 'from app.src.common.utils import profiling_api\n'), ((3205, 3276), 'app.src.api.endpoints.product_type.get_producttype_or_404', 'get_producttype_or_404', ([], {'producttype_id': 'product.type_id', 'session': 'session'}), '(producttype_id=product.type_id, session=session)\n', (3227, 3276), False, 'from app.src.api.endpoints.product_type import get_producttype_or_404\n'), ((3348, 3373), 'app.src.models.product.Product.from_orm', 'Product.from_orm', (['product'], {}), '(product)\n', (3364, 3373), False, 'from app.src.models.product import Product, ProductRead, ProductCreate, ProductUpdate, ProductReadwithTypeAndTags\n'), ((3439, 3512), 'app.src.common.utils.profiling_api', 'profiling_api', (['"""Product:insert:single"""', 'start_time', 'current_user.username'], {}), "('Product:insert:single', start_time, current_user.username)\n", (3452, 3512), False, 'from app.src.common.utils import profiling_api\n'), ((5405, 5490), 'fastapi.HTTPException', 'HTTPException', ([], {'status_code': '(404)', 'detail': '"""Product not found, impossible to update"""'}), "(status_code=404, detail='Product not found, impossible to update'\n )\n", (5418, 5490), False, 'from fastapi import APIRouter, Depends, HTTPException, Query, Path\n'), ((8084, 8201), 'app.src.common.utils.profiling_api', 'profiling_api', (['f"""Product:update:remove_tag:by_id:{product_id}"""', "db_product['start_time']", "db_product['username']"], {}), "(f'Product:update:remove_tag:by_id:{product_id}', db_product[\n 'start_time'], db_product['username'])\n", (8097, 8201), False, 'from app.src.common.utils import profiling_api\n'), ((1261, 1294), 'app.src.logger.logger.error', 'logger.error', (['"""Product not found"""'], {}), "('Product not found')\n", (1273, 1294), False, 'from app.src.logger import logger\n'), ((1307, 1344), 'app.src.logger.logger.exception', 'logger.exception', (['"""Product not found"""'], {}), "('Product not found')\n", (1323, 1344), False, 'from app.src.logger import logger\n'), ((1363, 1421), 'fastapi.HTTPException', 'HTTPException', ([], {'status_code': '(404)', 'detail': '"""Product not found"""'}), "(status_code=404, detail='Product not found')\n", (1376, 1421), False, 'from fastapi import APIRouter, Depends, HTTPException, Query, Path\n'), ((1451, 1484), 'app.src.logger.logger.error', 'logger.error', (['"""Product not found"""'], {}), "('Product not found')\n", (1463, 1484), False, 'from app.src.logger import logger\n'), ((1493, 1540), 'app.src.logger.logger.exception', 'logger.exception', (['"""KeyError: Product not found"""'], {}), "('KeyError: Product not found')\n", (1509, 1540), False, 'from app.src.logger import logger\n'), ((1555, 1613), 'fastapi.HTTPException', 'HTTPException', ([], {'status_code': '(400)', 'detail': '"""Product not found"""'}), "(status_code=400, detail='Product not found')\n", (1568, 1613), False, 'from fastapi import APIRouter, Depends, HTTPException, Query, Path\n'), ((3548, 3607), 'app.src.logger.logger.error', 'logger.error', (['"""Impossible to create product with same name"""'], {}), "('Impossible to create product with same name')\n", (3560, 3607), False, 'from app.src.logger import logger\n'), ((3616, 3701), 'app.src.logger.logger.exception', 'logger.exception', (['"""Integrity Error: Impossible to create product with same name"""'], {}), "('Integrity Error: Impossible to create product with same name'\n )\n", (3632, 3701), False, 'from app.src.logger import logger\n'), ((3711, 3800), 'fastapi.HTTPException', 'HTTPException', ([], {'status_code': '(404)', 'detail': '"""Impossible to create product with same name"""'}), "(status_code=404, detail=\n 'Impossible to create product with same name')\n", (3724, 3800), False, 'from fastapi import APIRouter, Depends, HTTPException, Query, Path\n'), ((8285, 8306), 'app.src.logger.logger.error', 'logger.error', (['message'], {}), '(message)\n', (8297, 8306), False, 'from app.src.logger import logger\n'), ((8315, 8340), 'app.src.logger.logger.exception', 'logger.exception', (['message'], {}), '(message)\n', (8331, 8340), False, 'from app.src.logger import logger\n'), ((8355, 8458), 'fastapi.HTTPException', 'HTTPException', ([], {'status_code': '(404)', 'detail': '"""Impossible to remove the tag: product or tag not existing"""'}), "(status_code=404, detail=\n 'Impossible to remove the tag: product or tag not existing')\n", (8368, 8458), False, 'from fastapi import APIRouter, Depends, HTTPException, Query, Path\n'), ((5309, 5324), 'sqlmodel.select', 'select', (['Product'], {}), '(Product)\n', (5315, 5324), False, 'from sqlmodel import Session, select\n'), ((1993, 2008), 'sqlmodel.select', 'select', (['Product'], {}), '(Product)\n', (1999, 2008), False, 'from sqlmodel import Session, select\n')]
# Copyright 2021 Modelyst LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from itertools import chain from json import dumps from pathlib import Path from typing import List from uuid import UUID import typer from prettytable import ALL, PrettyTable from sqlalchemy import update from sqlmodel import Session, select import dbgen.cli.styles as styles from dbgen.cli.options import config_option, model_arg_option from dbgen.cli.utils import test_connection, validate_model_str from dbgen.configuration import initialize from dbgen.core.metadata import ModelEntity model_app = typer.Typer(name='model', no_args_is_help=True) @model_app.command('list') def list_models(config_file: Path = config_option, tags: List[str] = typer.Option(None, '-t')): # Notify of config file if config_file: _, meta_conn = initialize(config_file) test_connection(meta_conn) meta_engine = meta_conn.get_engine() tags = tags or [] statement = select( # type: ignore ModelEntity.id, ModelEntity.name, ModelEntity.created_at, ModelEntity.last_run, ModelEntity.tags, ) # type: ignore if tags: statement = statement.where(ModelEntity.tags.op('&&')(tags)) # type: ignore columns = ['id', 'name', 'created_at', 'last_run', 'tags'] table = PrettyTable(field_names=columns, align='l', hrules=ALL) with Session(meta_engine) as session: result = session.exec(statement) for model_id, model_name, created_at, last_run, tags in result: table.add_row((model_id, model_name, created_at, last_run, tags)) styles.theme_typer_print(str(table)) @model_app.command('tag') def tag(model_id: UUID, tags: List[str], config_file: Path = config_option): # Notify of config file if config_file: _, meta_conn = initialize(config_file) test_connection(meta_conn) meta_engine = meta_conn.get_engine() with Session(meta_engine) as session: existing_tags = session.exec(select(ModelEntity.tags).where(ModelEntity.id == model_id)).one_or_none() if existing_tags is None: raise typer.BadParameter(f"Invalid model_id, no model with ID {model_id}") new_tags = set(chain(existing_tags, tags)) session.execute(update(ModelEntity).values(tags=new_tags).where(ModelEntity.id == model_id)) session.commit() @model_app.command('serialize') def model_serialize( model_str: str = model_arg_option, out_file: Path = typer.Option( None, '-o', '--out', help='Path to write the serialized model to in json format' ), config_file: Path = config_option, ): model = validate_model_str(model_str) # Notify of config file if config_file: _, meta_conn = initialize(config_file) test_connection(meta_conn) meta_engine = meta_conn.get_engine() with Session(meta_engine) as session: model_row = model._get_model_row() # Check for existing row and if found grab its created_at created_at = session.exec( select(ModelEntity.created_at).where(ModelEntity.id == model.uuid) ).one_or_none() if created_at is None: session.merge(model_row) session.commit() styles.good_typer_print(f"Loaded model {model.name!r} into the database with ID {model.uuid}") else: styles.good_typer_print(f"Model {model.name!r} already existed with ID {model.uuid}") if out_file: out_file.write_text(dumps(model_row.graph_json)) styles.good_typer_print(f"Wrote serialized graph to {out_file}") @model_app.command('export') def model_export( model_id: UUID, out_file: Path = typer.Option( 'model.json', '-o', '--out', help='Path to write the serialized model to in json format' ), config_file: Path = config_option, ): # Notify of config file if config_file: _, meta_conn = initialize(config_file) test_connection(meta_conn) meta_engine = meta_conn.get_engine() with Session(meta_engine) as session: # Check for existing row and if found grab its created_at graph_json = session.exec( select(ModelEntity.graph_json).where(ModelEntity.id == model_id) ).one_or_none() if not graph_json: raise ValueError(f"Invalid model_id: No model found with model_id {model_id}") out_file.write_text(dumps(graph_json)) styles.good_typer_print(f"Wrote serialized graph to {out_file}")
[ "sqlmodel.Session", "sqlmodel.select" ]
[((1102, 1149), 'typer.Typer', 'typer.Typer', ([], {'name': '"""model"""', 'no_args_is_help': '(True)'}), "(name='model', no_args_is_help=True)\n", (1113, 1149), False, 'import typer\n'), ((1248, 1272), 'typer.Option', 'typer.Option', (['None', '"""-t"""'], {}), "(None, '-t')\n", (1260, 1272), False, 'import typer\n'), ((1375, 1401), 'dbgen.cli.utils.test_connection', 'test_connection', (['meta_conn'], {}), '(meta_conn)\n', (1390, 1401), False, 'from dbgen.cli.utils import test_connection, validate_model_str\n'), ((1481, 1589), 'sqlmodel.select', 'select', (['ModelEntity.id', 'ModelEntity.name', 'ModelEntity.created_at', 'ModelEntity.last_run', 'ModelEntity.tags'], {}), '(ModelEntity.id, ModelEntity.name, ModelEntity.created_at,\n ModelEntity.last_run, ModelEntity.tags)\n', (1487, 1589), False, 'from sqlmodel import Session, select\n'), ((1838, 1893), 'prettytable.PrettyTable', 'PrettyTable', ([], {'field_names': 'columns', 'align': '"""l"""', 'hrules': 'ALL'}), "(field_names=columns, align='l', hrules=ALL)\n", (1849, 1893), False, 'from prettytable import ALL, PrettyTable\n'), ((2372, 2398), 'dbgen.cli.utils.test_connection', 'test_connection', (['meta_conn'], {}), '(meta_conn)\n', (2387, 2398), False, 'from dbgen.cli.utils import test_connection, validate_model_str\n'), ((3008, 3107), 'typer.Option', 'typer.Option', (['None', '"""-o"""', '"""--out"""'], {'help': '"""Path to write the serialized model to in json format"""'}), "(None, '-o', '--out', help=\n 'Path to write the serialized model to in json format')\n", (3020, 3107), False, 'import typer\n'), ((3172, 3201), 'dbgen.cli.utils.validate_model_str', 'validate_model_str', (['model_str'], {}), '(model_str)\n', (3190, 3201), False, 'from dbgen.cli.utils import test_connection, validate_model_str\n'), ((3302, 3328), 'dbgen.cli.utils.test_connection', 'test_connection', (['meta_conn'], {}), '(meta_conn)\n', (3317, 3328), False, 'from dbgen.cli.utils import test_connection, validate_model_str\n'), ((4212, 4319), 'typer.Option', 'typer.Option', (['"""model.json"""', '"""-o"""', '"""--out"""'], {'help': '"""Path to write the serialized model to in json format"""'}), "('model.json', '-o', '--out', help=\n 'Path to write the serialized model to in json format')\n", (4224, 4319), False, 'import typer\n'), ((4472, 4498), 'dbgen.cli.utils.test_connection', 'test_connection', (['meta_conn'], {}), '(meta_conn)\n', (4487, 4498), False, 'from dbgen.cli.utils import test_connection, validate_model_str\n'), ((4951, 5015), 'dbgen.cli.styles.good_typer_print', 'styles.good_typer_print', (['f"""Wrote serialized graph to {out_file}"""'], {}), "(f'Wrote serialized graph to {out_file}')\n", (4974, 5015), True, 'import dbgen.cli.styles as styles\n'), ((1347, 1370), 'dbgen.configuration.initialize', 'initialize', (['config_file'], {}), '(config_file)\n', (1357, 1370), False, 'from dbgen.configuration import initialize\n'), ((1903, 1923), 'sqlmodel.Session', 'Session', (['meta_engine'], {}), '(meta_engine)\n', (1910, 1923), False, 'from sqlmodel import Session, select\n'), ((2344, 2367), 'dbgen.configuration.initialize', 'initialize', (['config_file'], {}), '(config_file)\n', (2354, 2367), False, 'from dbgen.configuration import initialize\n'), ((2450, 2470), 'sqlmodel.Session', 'Session', (['meta_engine'], {}), '(meta_engine)\n', (2457, 2470), False, 'from sqlmodel import Session, select\n'), ((3274, 3297), 'dbgen.configuration.initialize', 'initialize', (['config_file'], {}), '(config_file)\n', (3284, 3297), False, 'from dbgen.configuration import initialize\n'), ((3379, 3399), 'sqlmodel.Session', 'Session', (['meta_engine'], {}), '(meta_engine)\n', (3386, 3399), False, 'from sqlmodel import Session, select\n'), ((4057, 4121), 'dbgen.cli.styles.good_typer_print', 'styles.good_typer_print', (['f"""Wrote serialized graph to {out_file}"""'], {}), "(f'Wrote serialized graph to {out_file}')\n", (4080, 4121), True, 'import dbgen.cli.styles as styles\n'), ((4444, 4467), 'dbgen.configuration.initialize', 'initialize', (['config_file'], {}), '(config_file)\n', (4454, 4467), False, 'from dbgen.configuration import initialize\n'), ((4550, 4570), 'sqlmodel.Session', 'Session', (['meta_engine'], {}), '(meta_engine)\n', (4557, 4570), False, 'from sqlmodel import Session, select\n'), ((4928, 4945), 'json.dumps', 'dumps', (['graph_json'], {}), '(graph_json)\n', (4933, 4945), False, 'from json import dumps\n'), ((2646, 2714), 'typer.BadParameter', 'typer.BadParameter', (['f"""Invalid model_id, no model with ID {model_id}"""'], {}), "(f'Invalid model_id, no model with ID {model_id}')\n", (2664, 2714), False, 'import typer\n'), ((2738, 2764), 'itertools.chain', 'chain', (['existing_tags', 'tags'], {}), '(existing_tags, tags)\n', (2743, 2764), False, 'from itertools import chain\n'), ((3768, 3867), 'dbgen.cli.styles.good_typer_print', 'styles.good_typer_print', (['f"""Loaded model {model.name!r} into the database with ID {model.uuid}"""'], {}), "(\n f'Loaded model {model.name!r} into the database with ID {model.uuid}')\n", (3791, 3867), True, 'import dbgen.cli.styles as styles\n'), ((3889, 3979), 'dbgen.cli.styles.good_typer_print', 'styles.good_typer_print', (['f"""Model {model.name!r} already existed with ID {model.uuid}"""'], {}), "(\n f'Model {model.name!r} already existed with ID {model.uuid}')\n", (3912, 3979), True, 'import dbgen.cli.styles as styles\n'), ((4020, 4047), 'json.dumps', 'dumps', (['model_row.graph_json'], {}), '(model_row.graph_json)\n', (4025, 4047), False, 'from json import dumps\n'), ((1714, 1739), 'dbgen.core.metadata.ModelEntity.tags.op', 'ModelEntity.tags.op', (['"""&&"""'], {}), "('&&')\n", (1733, 1739), False, 'from dbgen.core.metadata import ModelEntity\n'), ((2520, 2544), 'sqlmodel.select', 'select', (['ModelEntity.tags'], {}), '(ModelEntity.tags)\n', (2526, 2544), False, 'from sqlmodel import Session, select\n'), ((2790, 2809), 'sqlalchemy.update', 'update', (['ModelEntity'], {}), '(ModelEntity)\n', (2796, 2809), False, 'from sqlalchemy import update\n'), ((3568, 3598), 'sqlmodel.select', 'select', (['ModelEntity.created_at'], {}), '(ModelEntity.created_at)\n', (3574, 3598), False, 'from sqlmodel import Session, select\n'), ((4696, 4726), 'sqlmodel.select', 'select', (['ModelEntity.graph_json'], {}), '(ModelEntity.graph_json)\n', (4702, 4726), False, 'from sqlmodel import Session, select\n')]
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # pylint: disable=import-error,no-name-in-module,no-member from test.traced_module.test_tflite import _test_convert_result from test.utils import ConvBn2dOpr, ConvBnRelu2dOpr, ConvOpr, ConvRelu2dOpr, LinearOpr import megengine as mge import megengine.module as M import numpy as np from megengine.core.tensor import dtype from megengine.core.tensor.dtype import _builtin_quant_dtypes from megengine.module.quant_dequant import QuantStub from megengine.quantization.quantize import quantize_qat from megengine.quantization.utils import create_qparams from megengine.traced_module.fake_quant import FakeQuantize from .tm_utils import get_traced_module max_error = 1e-4 tmp_file = "test_model" def get_qat_net(inp_dtype, net, num_inp=1, shape=(1, 16, 32, 32)): qat_net = quantize_qat(net) inps = [] for _ in range(num_inp): data1 = mge.tensor(np.random.random(shape)) * 16 data1 = data1.astype(inp_dtype) inp1 = mge.tensor(dtype.convert_from_qint8(data1.numpy())) inp1.qparams.scale = mge.tensor(dtype.get_scale(inp_dtype)) inp1.qparams.dtype_meta = dtype._builtin_quant_dtypes["qint8"] inps.append(inp1) return qat_net, inps def test_qat_conv_qint8(): class QConvOpr(M.Module): def __init__(self): super().__init__() self.normal_conv = M.Conv2d( 3, 30, 3, stride=(2, 3), padding=(3, 1), dilation=(2, 2), ) self.normal_conv.bias = mge.Parameter( np.random.random(self.normal_conv.bias.shape).astype(np.float32) ) def forward(self, x): x = self.normal_conv(x) return x net = QConvOpr() qat_net = quantize_qat(net) inp_dtype = dtype.qint8(16.0 / 128) data = mge.tensor(np.random.random((1, 3, 224, 224))) * 16 data = data.astype(inp_dtype) inp = mge.tensor(dtype.convert_from_qint8(data.numpy())) inp.qparams.scale = mge.tensor(dtype.get_scale(inp_dtype)) inp.qparams.dtype_meta = dtype._builtin_quant_dtypes["qint8"] traced_module, tm_result = get_traced_module(qat_net, inp) print(traced_module.flatten().graph) inp = inp.astype(inp_dtype) out_dtype = traced_module.graph.outputs[0].qparams scale = out_dtype.scale.numpy() _test_convert_result( inp, traced_module, tm_result, scale=scale, require_quantize=True, max_err=max_error, ) def test_qat_convrelu(): net = ConvRelu2dOpr() qat_net = quantize_qat(net) inp_dtype = dtype.qint8(16.0 / 128) data = mge.tensor(np.random.random((1, 3, 224, 224))) * 16 data = data.astype(inp_dtype) inp = mge.tensor(dtype.convert_from_qint8(data.numpy())) inp.qparams.scale = mge.tensor(dtype.get_scale(inp_dtype)) inp.qparams.dtype_meta = dtype._builtin_quant_dtypes["qint8"] traced_module, tm_result = get_traced_module(qat_net, inp) inp = inp.astype(inp_dtype) out_dtype = traced_module.graph.outputs[0].qparams scale = out_dtype.scale.numpy() _test_convert_result( inp, traced_module, tm_result, scale=scale, require_quantize=True, max_err=max_error, ) def test_qat_convbn(): net = ConvBn2dOpr() net.eval() qat_net = quantize_qat(net) inp_dtype = dtype.qint8(16.0 / 128) data = mge.tensor(np.random.random((1, 3, 224, 224))) * 16 data = data.astype(inp_dtype) inp = mge.tensor(dtype.convert_from_qint8(data.numpy())) inp.qparams.scale = mge.tensor(dtype.get_scale(inp_dtype)) inp.qparams.dtype_meta = dtype._builtin_quant_dtypes["qint8"] traced_module, tm_result = get_traced_module(qat_net, inp) inp = inp.astype(inp_dtype) out_dtype = traced_module.graph.outputs[0].qparams scale = out_dtype.scale.numpy() _test_convert_result( inp, traced_module, tm_result, scale=scale, require_quantize=True, max_err=max_error, ) def test_qat_convbnrelu(): net = ConvBnRelu2dOpr() net.eval() qat_net = quantize_qat(net) inp_dtype = dtype.qint8(16.0 / 128) data = mge.tensor(np.random.random((1, 3, 224, 224))) * 16 data = data.astype(inp_dtype) inp = mge.tensor(dtype.convert_from_qint8(data.numpy())) inp.qparams.scale = mge.tensor(dtype.get_scale(inp_dtype)) inp.qparams.dtype_meta = dtype._builtin_quant_dtypes["qint8"] traced_module, tm_result = get_traced_module(qat_net, inp) inp = inp.astype(inp_dtype) out_dtype = traced_module.graph.outputs[0].qparams scale = out_dtype.scale.numpy() _test_convert_result( inp, traced_module, tm_result, scale=scale, require_quantize=True, max_err=max_error, ) def test_deconv_qint8(): net = ConvOpr("tflite_transpose") qat_net = quantize_qat(net) inp_dtype = dtype.qint8(16.0 / 128) data = mge.tensor(np.random.random((1, 3, 64, 64))) * 16 data = data.astype(inp_dtype) inp = mge.tensor(dtype.convert_from_qint8(data.numpy())) inp.qparams.scale = mge.tensor(dtype.get_scale(inp_dtype)) inp.qparams.dtype_meta = dtype._builtin_quant_dtypes["qint8"] traced_module, tm_result = get_traced_module(qat_net, inp) print(traced_module.flatten().graph) inp = inp.astype(inp_dtype) out_dtype = traced_module.graph.outputs[0].qparams scale = out_dtype.scale.numpy() _test_convert_result( inp, traced_module, tm_result, scale=scale, require_quantize=True, max_err=max_error, ) def test_linear(): net = LinearOpr() inp_dtype = dtype.qint8(16.0 / 128.0) qat_net, inps = get_qat_net(inp_dtype, net, shape=(10, 100)) traced_module, tm_result = get_traced_module(qat_net, inps[0]) print(traced_module.flatten().graph) out_dtype = traced_module.graph.outputs[0].qparams scale = out_dtype.scale.numpy() inp = inps[0].astype(inp_dtype) _test_convert_result( inp, traced_module, tm_result, scale=scale, require_quantize=True, max_err=max_error, ) def test_add(): class ElemwiseOpr(M.Module): def __init__(self,): super().__init__() self.data = np.ones((2, 3, 224, 224)).astype(np.float32) self.data1 = np.random.random((1, 3, 1, 1)).astype(np.float32) self.add1 = M.Elemwise("add") self.add2 = M.Elemwise("add") self.add3 = M.Elemwise("add") scale = mge.tensor((16.0 / 128.0)) self.quant_stub = QuantStub() self.quant_stub.act_fake_quant = FakeQuantize( _builtin_quant_dtypes["qint8"] ) self.quant_stub.act_fake_quant.set_qparams( create_qparams( dtype_meta=_builtin_quant_dtypes["qint8"], scale=scale, zero_point=None, ) ) self.quant_stub1 = QuantStub() self.quant_stub1.act_fake_quant = FakeQuantize( _builtin_quant_dtypes["qint8"] ) self.quant_stub1.act_fake_quant.set_qparams( create_qparams( dtype_meta=_builtin_quant_dtypes["qint8"], scale=scale, zero_point=None, ) ) def forward(self, a): n = self.quant_stub(mge.tensor(np.float32(10))) data1 = self.quant_stub1(mge.tensor(self.data1)) x = self.add1(a, n) y = self.add2(a, data1) z = self.add3(x, y) return z net = ElemwiseOpr() inp_dtype = dtype.qint8(16.0 / 128.0) qat_net, inps = get_qat_net(inp_dtype, net, shape=(1, 3, 1, 1)) traced_module, tm_result = get_traced_module(qat_net, inps[0]) print(traced_module.flatten().graph) out_dtype = traced_module.graph.outputs[0].qparams scale = out_dtype.scale.numpy() inp = inps[0].astype(inp_dtype) _test_convert_result( inp, traced_module, tm_result, scale=scale, require_quantize=True, max_err=max_error, )
[ "megengine.quantization.quantize.quantize_qat", "megengine.module.Elemwise", "megengine.traced_module.fake_quant.FakeQuantize", "megengine.tensor", "megengine.quantization.utils.create_qparams", "megengine.core.tensor.dtype.get_scale", "megengine.module.quant_dequant.QuantStub", "megengine.core.tensor.dtype.qint8", "megengine.module.Conv2d" ]
[((1132, 1149), 'megengine.quantization.quantize.quantize_qat', 'quantize_qat', (['net'], {}), '(net)\n', (1144, 1149), False, 'from megengine.quantization.quantize import quantize_qat\n'), ((2064, 2081), 'megengine.quantization.quantize.quantize_qat', 'quantize_qat', (['net'], {}), '(net)\n', (2076, 2081), False, 'from megengine.quantization.quantize import quantize_qat\n'), ((2099, 2122), 'megengine.core.tensor.dtype.qint8', 'dtype.qint8', (['(16.0 / 128)'], {}), '(16.0 / 128)\n', (2110, 2122), False, 'from megengine.core.tensor import dtype\n'), ((2642, 2752), 'test.traced_module.test_tflite._test_convert_result', '_test_convert_result', (['inp', 'traced_module', 'tm_result'], {'scale': 'scale', 'require_quantize': '(True)', 'max_err': 'max_error'}), '(inp, traced_module, tm_result, scale=scale,\n require_quantize=True, max_err=max_error)\n', (2662, 2752), False, 'from test.traced_module.test_tflite import _test_convert_result\n'), ((2841, 2856), 'test.utils.ConvRelu2dOpr', 'ConvRelu2dOpr', ([], {}), '()\n', (2854, 2856), False, 'from test.utils import ConvBn2dOpr, ConvBnRelu2dOpr, ConvOpr, ConvRelu2dOpr, LinearOpr\n'), ((2871, 2888), 'megengine.quantization.quantize.quantize_qat', 'quantize_qat', (['net'], {}), '(net)\n', (2883, 2888), False, 'from megengine.quantization.quantize import quantize_qat\n'), ((2905, 2928), 'megengine.core.tensor.dtype.qint8', 'dtype.qint8', (['(16.0 / 128)'], {}), '(16.0 / 128)\n', (2916, 2928), False, 'from megengine.core.tensor import dtype\n'), ((3407, 3517), 'test.traced_module.test_tflite._test_convert_result', '_test_convert_result', (['inp', 'traced_module', 'tm_result'], {'scale': 'scale', 'require_quantize': '(True)', 'max_err': 'max_error'}), '(inp, traced_module, tm_result, scale=scale,\n require_quantize=True, max_err=max_error)\n', (3427, 3517), False, 'from test.traced_module.test_tflite import _test_convert_result\n'), ((3604, 3617), 'test.utils.ConvBn2dOpr', 'ConvBn2dOpr', ([], {}), '()\n', (3615, 3617), False, 'from test.utils import ConvBn2dOpr, ConvBnRelu2dOpr, ConvOpr, ConvRelu2dOpr, LinearOpr\n'), ((3647, 3664), 'megengine.quantization.quantize.quantize_qat', 'quantize_qat', (['net'], {}), '(net)\n', (3659, 3664), False, 'from megengine.quantization.quantize import quantize_qat\n'), ((3681, 3704), 'megengine.core.tensor.dtype.qint8', 'dtype.qint8', (['(16.0 / 128)'], {}), '(16.0 / 128)\n', (3692, 3704), False, 'from megengine.core.tensor import dtype\n'), ((4183, 4293), 'test.traced_module.test_tflite._test_convert_result', '_test_convert_result', (['inp', 'traced_module', 'tm_result'], {'scale': 'scale', 'require_quantize': '(True)', 'max_err': 'max_error'}), '(inp, traced_module, tm_result, scale=scale,\n require_quantize=True, max_err=max_error)\n', (4203, 4293), False, 'from test.traced_module.test_tflite import _test_convert_result\n'), ((4384, 4401), 'test.utils.ConvBnRelu2dOpr', 'ConvBnRelu2dOpr', ([], {}), '()\n', (4399, 4401), False, 'from test.utils import ConvBn2dOpr, ConvBnRelu2dOpr, ConvOpr, ConvRelu2dOpr, LinearOpr\n'), ((4431, 4448), 'megengine.quantization.quantize.quantize_qat', 'quantize_qat', (['net'], {}), '(net)\n', (4443, 4448), False, 'from megengine.quantization.quantize import quantize_qat\n'), ((4465, 4488), 'megengine.core.tensor.dtype.qint8', 'dtype.qint8', (['(16.0 / 128)'], {}), '(16.0 / 128)\n', (4476, 4488), False, 'from megengine.core.tensor import dtype\n'), ((4967, 5077), 'test.traced_module.test_tflite._test_convert_result', '_test_convert_result', (['inp', 'traced_module', 'tm_result'], {'scale': 'scale', 'require_quantize': '(True)', 'max_err': 'max_error'}), '(inp, traced_module, tm_result, scale=scale,\n require_quantize=True, max_err=max_error)\n', (4987, 5077), False, 'from test.traced_module.test_tflite import _test_convert_result\n'), ((5166, 5193), 'test.utils.ConvOpr', 'ConvOpr', (['"""tflite_transpose"""'], {}), "('tflite_transpose')\n", (5173, 5193), False, 'from test.utils import ConvBn2dOpr, ConvBnRelu2dOpr, ConvOpr, ConvRelu2dOpr, LinearOpr\n'), ((5208, 5225), 'megengine.quantization.quantize.quantize_qat', 'quantize_qat', (['net'], {}), '(net)\n', (5220, 5225), False, 'from megengine.quantization.quantize import quantize_qat\n'), ((5243, 5266), 'megengine.core.tensor.dtype.qint8', 'dtype.qint8', (['(16.0 / 128)'], {}), '(16.0 / 128)\n', (5254, 5266), False, 'from megengine.core.tensor import dtype\n'), ((5784, 5894), 'test.traced_module.test_tflite._test_convert_result', '_test_convert_result', (['inp', 'traced_module', 'tm_result'], {'scale': 'scale', 'require_quantize': '(True)', 'max_err': 'max_error'}), '(inp, traced_module, tm_result, scale=scale,\n require_quantize=True, max_err=max_error)\n', (5804, 5894), False, 'from test.traced_module.test_tflite import _test_convert_result\n'), ((5977, 5988), 'test.utils.LinearOpr', 'LinearOpr', ([], {}), '()\n', (5986, 5988), False, 'from test.utils import ConvBn2dOpr, ConvBnRelu2dOpr, ConvOpr, ConvRelu2dOpr, LinearOpr\n'), ((6005, 6030), 'megengine.core.tensor.dtype.qint8', 'dtype.qint8', (['(16.0 / 128.0)'], {}), '(16.0 / 128.0)\n', (6016, 6030), False, 'from megengine.core.tensor import dtype\n'), ((6335, 6445), 'test.traced_module.test_tflite._test_convert_result', '_test_convert_result', (['inp', 'traced_module', 'tm_result'], {'scale': 'scale', 'require_quantize': '(True)', 'max_err': 'max_error'}), '(inp, traced_module, tm_result, scale=scale,\n require_quantize=True, max_err=max_error)\n', (6355, 6445), False, 'from test.traced_module.test_tflite import _test_convert_result\n'), ((8073, 8098), 'megengine.core.tensor.dtype.qint8', 'dtype.qint8', (['(16.0 / 128.0)'], {}), '(16.0 / 128.0)\n', (8084, 8098), False, 'from megengine.core.tensor import dtype\n'), ((8406, 8516), 'test.traced_module.test_tflite._test_convert_result', '_test_convert_result', (['inp', 'traced_module', 'tm_result'], {'scale': 'scale', 'require_quantize': '(True)', 'max_err': 'max_error'}), '(inp, traced_module, tm_result, scale=scale,\n require_quantize=True, max_err=max_error)\n', (8426, 8516), False, 'from test.traced_module.test_tflite import _test_convert_result\n'), ((2316, 2342), 'megengine.core.tensor.dtype.get_scale', 'dtype.get_scale', (['inp_dtype'], {}), '(inp_dtype)\n', (2331, 2342), False, 'from megengine.core.tensor import dtype\n'), ((3122, 3148), 'megengine.core.tensor.dtype.get_scale', 'dtype.get_scale', (['inp_dtype'], {}), '(inp_dtype)\n', (3137, 3148), False, 'from megengine.core.tensor import dtype\n'), ((3898, 3924), 'megengine.core.tensor.dtype.get_scale', 'dtype.get_scale', (['inp_dtype'], {}), '(inp_dtype)\n', (3913, 3924), False, 'from megengine.core.tensor import dtype\n'), ((4682, 4708), 'megengine.core.tensor.dtype.get_scale', 'dtype.get_scale', (['inp_dtype'], {}), '(inp_dtype)\n', (4697, 4708), False, 'from megengine.core.tensor import dtype\n'), ((5458, 5484), 'megengine.core.tensor.dtype.get_scale', 'dtype.get_scale', (['inp_dtype'], {}), '(inp_dtype)\n', (5473, 5484), False, 'from megengine.core.tensor import dtype\n'), ((1397, 1423), 'megengine.core.tensor.dtype.get_scale', 'dtype.get_scale', (['inp_dtype'], {}), '(inp_dtype)\n', (1412, 1423), False, 'from megengine.core.tensor import dtype\n'), ((1696, 1762), 'megengine.module.Conv2d', 'M.Conv2d', (['(3)', '(30)', '(3)'], {'stride': '(2, 3)', 'padding': '(3, 1)', 'dilation': '(2, 2)'}), '(3, 30, 3, stride=(2, 3), padding=(3, 1), dilation=(2, 2))\n', (1704, 1762), True, 'import megengine.module as M\n'), ((2145, 2179), 'numpy.random.random', 'np.random.random', (['(1, 3, 224, 224)'], {}), '((1, 3, 224, 224))\n', (2161, 2179), True, 'import numpy as np\n'), ((2951, 2985), 'numpy.random.random', 'np.random.random', (['(1, 3, 224, 224)'], {}), '((1, 3, 224, 224))\n', (2967, 2985), True, 'import numpy as np\n'), ((3727, 3761), 'numpy.random.random', 'np.random.random', (['(1, 3, 224, 224)'], {}), '((1, 3, 224, 224))\n', (3743, 3761), True, 'import numpy as np\n'), ((4511, 4545), 'numpy.random.random', 'np.random.random', (['(1, 3, 224, 224)'], {}), '((1, 3, 224, 224))\n', (4527, 4545), True, 'import numpy as np\n'), ((5289, 5321), 'numpy.random.random', 'np.random.random', (['(1, 3, 64, 64)'], {}), '((1, 3, 64, 64))\n', (5305, 5321), True, 'import numpy as np\n'), ((6776, 6793), 'megengine.module.Elemwise', 'M.Elemwise', (['"""add"""'], {}), "('add')\n", (6786, 6793), True, 'import megengine.module as M\n'), ((6818, 6835), 'megengine.module.Elemwise', 'M.Elemwise', (['"""add"""'], {}), "('add')\n", (6828, 6835), True, 'import megengine.module as M\n'), ((6860, 6877), 'megengine.module.Elemwise', 'M.Elemwise', (['"""add"""'], {}), "('add')\n", (6870, 6877), True, 'import megengine.module as M\n'), ((6899, 6923), 'megengine.tensor', 'mge.tensor', (['(16.0 / 128.0)'], {}), '(16.0 / 128.0)\n', (6909, 6923), True, 'import megengine as mge\n'), ((6956, 6967), 'megengine.module.quant_dequant.QuantStub', 'QuantStub', ([], {}), '()\n', (6965, 6967), False, 'from megengine.module.quant_dequant import QuantStub\n'), ((7013, 7057), 'megengine.traced_module.fake_quant.FakeQuantize', 'FakeQuantize', (["_builtin_quant_dtypes['qint8']"], {}), "(_builtin_quant_dtypes['qint8'])\n", (7025, 7057), False, 'from megengine.traced_module.fake_quant import FakeQuantize\n'), ((7372, 7383), 'megengine.module.quant_dequant.QuantStub', 'QuantStub', ([], {}), '()\n', (7381, 7383), False, 'from megengine.module.quant_dequant import QuantStub\n'), ((7430, 7474), 'megengine.traced_module.fake_quant.FakeQuantize', 'FakeQuantize', (["_builtin_quant_dtypes['qint8']"], {}), "(_builtin_quant_dtypes['qint8'])\n", (7442, 7474), False, 'from megengine.traced_module.fake_quant import FakeQuantize\n'), ((1220, 1243), 'numpy.random.random', 'np.random.random', (['shape'], {}), '(shape)\n', (1236, 1243), True, 'import numpy as np\n'), ((7160, 7251), 'megengine.quantization.utils.create_qparams', 'create_qparams', ([], {'dtype_meta': "_builtin_quant_dtypes['qint8']", 'scale': 'scale', 'zero_point': 'None'}), "(dtype_meta=_builtin_quant_dtypes['qint8'], scale=scale,\n zero_point=None)\n", (7174, 7251), False, 'from megengine.quantization.utils import create_qparams\n'), ((7578, 7669), 'megengine.quantization.utils.create_qparams', 'create_qparams', ([], {'dtype_meta': "_builtin_quant_dtypes['qint8']", 'scale': 'scale', 'zero_point': 'None'}), "(dtype_meta=_builtin_quant_dtypes['qint8'], scale=scale,\n zero_point=None)\n", (7592, 7669), False, 'from megengine.quantization.utils import create_qparams\n'), ((7887, 7909), 'megengine.tensor', 'mge.tensor', (['self.data1'], {}), '(self.data1)\n', (7897, 7909), True, 'import megengine as mge\n'), ((6632, 6657), 'numpy.ones', 'np.ones', (['(2, 3, 224, 224)'], {}), '((2, 3, 224, 224))\n', (6639, 6657), True, 'import numpy as np\n'), ((6702, 6732), 'numpy.random.random', 'np.random.random', (['(1, 3, 1, 1)'], {}), '((1, 3, 1, 1))\n', (6718, 6732), True, 'import numpy as np\n'), ((7833, 7847), 'numpy.float32', 'np.float32', (['(10)'], {}), '(10)\n', (7843, 7847), True, 'import numpy as np\n'), ((1861, 1906), 'numpy.random.random', 'np.random.random', (['self.normal_conv.bias.shape'], {}), '(self.normal_conv.bias.shape)\n', (1877, 1906), True, 'import numpy as np\n')]
# mixed formulation # 07.08.2009 #! #! Homogenization: Linear Elasticity #! ================================= #$ \centerline{Example input file, \today} #! Homogenization of heterogeneous linear elastic material - mixed formulation import numpy as nm import sfepy.discrete.fem.periodic as per from sfepy.mechanics.matcoefs import stiffness_from_youngpoisson_mixed, bulk_from_youngpoisson from sfepy.homogenization.utils import define_box_regions, get_box_volume import sfepy.homogenization.coefs_base as cb from sfepy import data_dir from sfepy.base.base import Struct from sfepy.homogenization.recovery import compute_micro_u, compute_stress_strain_u, compute_mac_stress_part, add_stress_p def recovery_le( pb, corrs, macro ): out = {} dim = corrs['corrs_le']['u_00'].shape[1] mic_u = - compute_micro_u( corrs['corrs_le'], macro['strain'], 'u', dim ) mic_p = - compute_micro_u( corrs['corrs_le'], macro['strain'], 'p', dim ) out['u_mic'] = Struct( name = 'output_data', mode = 'vertex', data = mic_u, var_name = 'u', dofs = None ) out['p_mic'] = Struct( name = 'output_data', mode = 'cell', data = mic_p[:,nm.newaxis, :,nm.newaxis], var_name = 'p', dofs = None ) stress_Y, strain_Y = compute_stress_strain_u( pb, 'i', 'Y', 'mat.D', 'u', mic_u ) stress_Y += compute_mac_stress_part( pb, 'i', 'Y', 'mat.D', 'u', macro['strain'] ) add_stress_p( stress_Y, pb, 'i', 'Y', 'p', mic_p ) strain = macro['strain'] + strain_Y out['cauchy_strain'] = Struct( name = 'output_data', mode = 'cell', data = strain, dofs = None ) out['cauchy_stress'] = Struct( name = 'output_data', mode = 'cell', data = stress_Y, dofs = None ) return out #! Mesh #! ---- dim = 3 filename_mesh = data_dir + '/meshes/3d/matrix_fiber.mesh' region_lbn = (0, 0, 0) region_rtf = (1, 1, 1) #! Regions #! ------- #! Regions, edges, ... regions = { 'Y' : 'all', 'Ym' : 'cells of group 1', 'Yc' : 'cells of group 2', } regions.update( define_box_regions( dim, region_lbn, region_rtf ) ) #! Materials #! --------- materials = { 'mat' : ({'D' : {'Ym': stiffness_from_youngpoisson_mixed(dim, 7.0e9, 0.4), 'Yc': stiffness_from_youngpoisson_mixed(dim, 70.0e9, 0.2)}, 'gamma': {'Ym': 1.0/bulk_from_youngpoisson(7.0e9, 0.4), 'Yc': 1.0/bulk_from_youngpoisson(70.0e9, 0.2)}},), } #! Fields #! ------ #! Scalar field for corrector basis functions. fields = { 'corrector_u' : ('real', dim, 'Y', 1), 'corrector_p' : ('real', 1, 'Y', 0), } #! Variables #! --------- #! Unknown and corresponding test variables. Parameter fields #! used for evaluation of homogenized coefficients. variables = { 'u' : ('unknown field', 'corrector_u'), 'v' : ('test field', 'corrector_u', 'u'), 'p' : ('unknown field', 'corrector_p'), 'q' : ('test field', 'corrector_p', 'p'), 'Pi' : ('parameter field', 'corrector_u', 'u'), 'Pi1u' : ('parameter field', 'corrector_u', '(set-to-None)'), 'Pi2u' : ('parameter field', 'corrector_u', '(set-to-None)'), 'Pi1p' : ('parameter field', 'corrector_p', '(set-to-None)'), 'Pi2p' : ('parameter field', 'corrector_p', '(set-to-None)'), } #! Functions functions = { 'match_x_plane' : (per.match_x_plane,), 'match_y_plane' : (per.match_y_plane,), 'match_z_plane' : (per.match_z_plane,), } #! Boundary Conditions #! ------------------- #! Fixed nodes. ebcs = { 'fixed_u' : ('Corners', {'u.all' : 0.0}), } if dim == 3: epbcs = { 'periodic_x' : (['Left', 'Right'], {'u.all' : 'u.all'}, 'match_x_plane'), 'periodic_y' : (['Near', 'Far'], {'u.all' : 'u.all'}, 'match_y_plane'), 'periodic_z' : (['Top', 'Bottom'], {'u.all' : 'u.all'}, 'match_z_plane'), } else: epbcs = { 'periodic_x' : (['Left', 'Right'], {'u.all' : 'u.all'}, 'match_x_plane'), 'periodic_y' : (['Bottom', 'Top'], {'u.all' : 'u.all'}, 'match_y_plane'), } all_periodic = ['periodic_%s' % ii for ii in ['x', 'y', 'z'][:dim] ] #! Integrals #! --------- #! Define the integral type Volume/Surface and quadrature rule. integrals = { 'i' : 2, } #! Options #! ------- #! Various problem-specific options. options = { 'coefs' : 'coefs', 'requirements' : 'requirements', 'ls' : 'ls', # linear solver to use 'volume' : { #'variables' : ['u'], #'expression' : 'd_volume.i.Y( u )', 'value' : get_box_volume( dim, region_lbn, region_rtf ), }, 'output_dir' : 'output', 'coefs_filename' : 'coefs_le_up', 'recovery_hook' : 'recovery_le', } #! Equations #! --------- #! Equations for corrector functions. equation_corrs = { 'balance_of_forces' : """ dw_lin_elastic.i.Y( mat.D, v, u ) - dw_stokes.i.Y( v, p ) = - dw_lin_elastic.i.Y( mat.D, v, Pi )""", 'pressure constraint' : """- dw_stokes.i.Y( u, q ) - dw_volume_dot.i.Y( mat.gamma, q, p ) = + dw_stokes.i.Y( Pi, q )""", } #! Expressions for homogenized linear elastic coefficients. expr_coefs = { 'Q1' : """dw_lin_elastic.i.Y( mat.D, Pi1u, Pi2u )""", 'Q2' : """dw_volume_dot.i.Y( mat.gamma, Pi1p, Pi2p )""", } #! Coefficients #! ------------ #! Definition of homogenized acoustic coefficients. def set_elastic_u(variables, ir, ic, mode, pis, corrs_rs): mode2var = {'row' : 'Pi1u', 'col' : 'Pi2u'} val = pis.states[ir, ic]['u'] + corrs_rs.states[ir, ic]['u'] variables[mode2var[mode]].set_data(val) coefs = { 'elastic_u' : { 'requires' : ['pis', 'corrs_rs'], 'expression' : expr_coefs['Q1'], 'set_variables' : set_elastic_u, 'class' : cb.CoefSymSym, }, 'elastic_p' : { 'requires' : ['corrs_rs'], 'expression' : expr_coefs['Q2'], 'set_variables' : [('Pi1p', 'corrs_rs', 'p'), ('Pi2p', 'corrs_rs', 'p')], 'class' : cb.CoefSymSym, }, 'D' : { 'requires' : ['c.elastic_u', 'c.elastic_p'], 'class' : cb.CoefSum, }, 'filenames' : {}, } requirements = { 'pis' : { 'variables' : ['u'], 'class' : cb.ShapeDimDim, }, 'corrs_rs' : { 'requires' : ['pis'], 'ebcs' : ['fixed_u'], 'epbcs' : all_periodic, 'equations' : equation_corrs, 'set_variables' : [('Pi', 'pis', 'u')], 'class' : cb.CorrDimDim, 'save_name' : 'corrs_le', 'dump_variables' : ['u', 'p'], 'is_linear' : True, }, } #! Solvers #! ------- #! Define linear and nonlinear solver. solvers = { 'ls' : ('ls.scipy_direct', {}), 'newton' : ('nls.newton', { 'i_max' : 1, 'eps_a' : 1e-4, }) }
[ "sfepy.homogenization.utils.get_box_volume", "sfepy.mechanics.matcoefs.stiffness_from_youngpoisson_mixed", "sfepy.homogenization.recovery.compute_stress_strain_u", "sfepy.mechanics.matcoefs.bulk_from_youngpoisson", "sfepy.homogenization.utils.define_box_regions", "sfepy.base.base.Struct", "sfepy.homogenization.recovery.compute_micro_u", "sfepy.homogenization.recovery.compute_mac_stress_part", "sfepy.homogenization.recovery.add_stress_p" ]
[((968, 1046), 'sfepy.base.base.Struct', 'Struct', ([], {'name': '"""output_data"""', 'mode': '"""vertex"""', 'data': 'mic_u', 'var_name': '"""u"""', 'dofs': 'None'}), "(name='output_data', mode='vertex', data=mic_u, var_name='u', dofs=None)\n", (974, 1046), False, 'from sfepy.base.base import Struct\n'), ((1132, 1243), 'sfepy.base.base.Struct', 'Struct', ([], {'name': '"""output_data"""', 'mode': '"""cell"""', 'data': 'mic_p[:, nm.newaxis, :, nm.newaxis]', 'var_name': '"""p"""', 'dofs': 'None'}), "(name='output_data', mode='cell', data=mic_p[:, nm.newaxis, :, nm.\n newaxis], var_name='p', dofs=None)\n", (1138, 1243), False, 'from sfepy.base.base import Struct\n'), ((1384, 1442), 'sfepy.homogenization.recovery.compute_stress_strain_u', 'compute_stress_strain_u', (['pb', '"""i"""', '"""Y"""', '"""mat.D"""', '"""u"""', 'mic_u'], {}), "(pb, 'i', 'Y', 'mat.D', 'u', mic_u)\n", (1407, 1442), False, 'from sfepy.homogenization.recovery import compute_micro_u, compute_stress_strain_u, compute_mac_stress_part, add_stress_p\n'), ((1461, 1529), 'sfepy.homogenization.recovery.compute_mac_stress_part', 'compute_mac_stress_part', (['pb', '"""i"""', '"""Y"""', '"""mat.D"""', '"""u"""', "macro['strain']"], {}), "(pb, 'i', 'Y', 'mat.D', 'u', macro['strain'])\n", (1484, 1529), False, 'from sfepy.homogenization.recovery import compute_micro_u, compute_stress_strain_u, compute_mac_stress_part, add_stress_p\n'), ((1536, 1584), 'sfepy.homogenization.recovery.add_stress_p', 'add_stress_p', (['stress_Y', 'pb', '"""i"""', '"""Y"""', '"""p"""', 'mic_p'], {}), "(stress_Y, pb, 'i', 'Y', 'p', mic_p)\n", (1548, 1584), False, 'from sfepy.homogenization.recovery import compute_micro_u, compute_stress_strain_u, compute_mac_stress_part, add_stress_p\n'), ((1656, 1719), 'sfepy.base.base.Struct', 'Struct', ([], {'name': '"""output_data"""', 'mode': '"""cell"""', 'data': 'strain', 'dofs': 'None'}), "(name='output_data', mode='cell', data=strain, dofs=None)\n", (1662, 1719), False, 'from sfepy.base.base import Struct\n'), ((1827, 1892), 'sfepy.base.base.Struct', 'Struct', ([], {'name': '"""output_data"""', 'mode': '"""cell"""', 'data': 'stress_Y', 'dofs': 'None'}), "(name='output_data', mode='cell', data=stress_Y, dofs=None)\n", (1833, 1892), False, 'from sfepy.base.base import Struct\n'), ((2271, 2318), 'sfepy.homogenization.utils.define_box_regions', 'define_box_regions', (['dim', 'region_lbn', 'region_rtf'], {}), '(dim, region_lbn, region_rtf)\n', (2289, 2318), False, 'from sfepy.homogenization.utils import define_box_regions, get_box_volume\n'), ((806, 867), 'sfepy.homogenization.recovery.compute_micro_u', 'compute_micro_u', (["corrs['corrs_le']", "macro['strain']", '"""u"""', 'dim'], {}), "(corrs['corrs_le'], macro['strain'], 'u', dim)\n", (821, 867), False, 'from sfepy.homogenization.recovery import compute_micro_u, compute_stress_strain_u, compute_mac_stress_part, add_stress_p\n'), ((884, 945), 'sfepy.homogenization.recovery.compute_micro_u', 'compute_micro_u', (["corrs['corrs_le']", "macro['strain']", '"""p"""', 'dim'], {}), "(corrs['corrs_le'], macro['strain'], 'p', dim)\n", (899, 945), False, 'from sfepy.homogenization.recovery import compute_micro_u, compute_stress_strain_u, compute_mac_stress_part, add_stress_p\n'), ((4731, 4774), 'sfepy.homogenization.utils.get_box_volume', 'get_box_volume', (['dim', 'region_lbn', 'region_rtf'], {}), '(dim, region_lbn, region_rtf)\n', (4745, 4774), False, 'from sfepy.homogenization.utils import define_box_regions, get_box_volume\n'), ((2390, 2447), 'sfepy.mechanics.matcoefs.stiffness_from_youngpoisson_mixed', 'stiffness_from_youngpoisson_mixed', (['dim', '(7000000000.0)', '(0.4)'], {}), '(dim, 7000000000.0, 0.4)\n', (2423, 2447), False, 'from sfepy.mechanics.matcoefs import stiffness_from_youngpoisson_mixed, bulk_from_youngpoisson\n'), ((2469, 2527), 'sfepy.mechanics.matcoefs.stiffness_from_youngpoisson_mixed', 'stiffness_from_youngpoisson_mixed', (['dim', '(70000000000.0)', '(0.2)'], {}), '(dim, 70000000000.0, 0.2)\n', (2502, 2527), False, 'from sfepy.mechanics.matcoefs import stiffness_from_youngpoisson_mixed, bulk_from_youngpoisson\n'), ((2557, 2598), 'sfepy.mechanics.matcoefs.bulk_from_youngpoisson', 'bulk_from_youngpoisson', (['(7000000000.0)', '(0.4)'], {}), '(7000000000.0, 0.4)\n', (2579, 2598), False, 'from sfepy.mechanics.matcoefs import stiffness_from_youngpoisson_mixed, bulk_from_youngpoisson\n'), ((2627, 2669), 'sfepy.mechanics.matcoefs.bulk_from_youngpoisson', 'bulk_from_youngpoisson', (['(70000000000.0)', '(0.2)'], {}), '(70000000000.0, 0.2)\n', (2649, 2669), False, 'from sfepy.mechanics.matcoefs import stiffness_from_youngpoisson_mixed, bulk_from_youngpoisson\n')]
from sqlalchemy.orm import Session from sqlmodel import select from sqlalchemy.exc import SQLAlchemyError from typing import Any # import sys # # sys.path.append("..") from app.db import models, pagination,session_scope from app.util import passutil, schemas from app.logs import fastapi_logger from app.crud import get_user,get_user_password class CRUDLogin: def check_username_password(self, email: str, password: str) -> Any: """ Verify Password""" db_user_info = get_user_password(email=email) return passutil.verify_password(str(password), str(db_user_info.password)) def check_active_session(self, session_id: str): """ check for active session """ try: with session_scope() as db: statement = select(models.UsersLoginAttempt).where( models.UsersLoginAttempt.session_id == session_id) results = db.exec(statement) data = results.one() return data except SQLAlchemyError as e: fastapi_logger.exception("check_active_session") return None def login_user(self, user: schemas.UserLogIn, session_id: str) -> Any: """ Login Attempt Record """ try: with session_scope() as db: db_session = models.UsersLoginAttempt( email=user.email, session_id=session_id, ip_address=user.ip_address, browser=user.browser, status="logged_in") db.add(db_session) db.commit() db.refresh(db_session) return db_session except SQLAlchemyError as e: fastapi_logger.exception("login_user") return None def active_user(self, session_id: str) -> Any: """ check for active user""" try: with session_scope() as db: statement = select(models.UsersLoginAttempt).where( models.UsersLoginAttempt.session_id == session_id) results = db.exec(statement) db_session = results.one() db_session.status = "active" db.add(db_session) db.commit() db.refresh(db_session) return db_session except SQLAlchemyError as e: fastapi_logger.exception("active_user") return None def logoff_user(self, session_id: str) -> Any: """ Logging off Record""" try: with session_scope() as db: statement = select(models.UsersLoginAttempt).where( models.UsersLoginAttempt.session_id == session_id) results = db.exec(statement) db_session = results.one() db_session.status = "logged_off" db.add(db_session) db.commit() db.refresh(db_session) return db_session except SQLAlchemyError as e: fastapi_logger.exception("logoff_user") return None crud_login = CRUDLogin()
[ "sqlmodel.select" ]
[((511, 541), 'app.crud.get_user_password', 'get_user_password', ([], {'email': 'email'}), '(email=email)\n', (528, 541), False, 'from app.crud import get_user, get_user_password\n'), ((799, 814), 'app.db.session_scope', 'session_scope', ([], {}), '()\n', (812, 814), False, 'from app.db import models, pagination, session_scope\n'), ((1127, 1175), 'app.logs.fastapi_logger.exception', 'fastapi_logger.exception', (['"""check_active_session"""'], {}), "('check_active_session')\n", (1151, 1175), False, 'from app.logs import fastapi_logger\n'), ((1349, 1364), 'app.db.session_scope', 'session_scope', ([], {}), '()\n', (1362, 1364), False, 'from app.db import models, pagination, session_scope\n'), ((1402, 1541), 'app.db.models.UsersLoginAttempt', 'models.UsersLoginAttempt', ([], {'email': 'user.email', 'session_id': 'session_id', 'ip_address': 'user.ip_address', 'browser': 'user.browser', 'status': '"""logged_in"""'}), "(email=user.email, session_id=session_id,\n ip_address=user.ip_address, browser=user.browser, status='logged_in')\n", (1426, 1541), False, 'from app.db import models, pagination, session_scope\n'), ((1835, 1873), 'app.logs.fastapi_logger.exception', 'fastapi_logger.exception', (['"""login_user"""'], {}), "('login_user')\n", (1859, 1873), False, 'from app.logs import fastapi_logger\n'), ((2023, 2038), 'app.db.session_scope', 'session_scope', ([], {}), '()\n', (2036, 2038), False, 'from app.db import models, pagination, session_scope\n'), ((2516, 2555), 'app.logs.fastapi_logger.exception', 'fastapi_logger.exception', (['"""active_user"""'], {}), "('active_user')\n", (2540, 2555), False, 'from app.logs import fastapi_logger\n'), ((2702, 2717), 'app.db.session_scope', 'session_scope', ([], {}), '()\n', (2715, 2717), False, 'from app.db import models, pagination, session_scope\n'), ((3199, 3238), 'app.logs.fastapi_logger.exception', 'fastapi_logger.exception', (['"""logoff_user"""'], {}), "('logoff_user')\n", (3223, 3238), False, 'from app.logs import fastapi_logger\n'), ((851, 883), 'sqlmodel.select', 'select', (['models.UsersLoginAttempt'], {}), '(models.UsersLoginAttempt)\n', (857, 883), False, 'from sqlmodel import select\n'), ((2075, 2107), 'sqlmodel.select', 'select', (['models.UsersLoginAttempt'], {}), '(models.UsersLoginAttempt)\n', (2081, 2107), False, 'from sqlmodel import select\n'), ((2754, 2786), 'sqlmodel.select', 'select', (['models.UsersLoginAttempt'], {}), '(models.UsersLoginAttempt)\n', (2760, 2786), False, 'from sqlmodel import select\n')]
#!/usr/bin/env python """ Dispersion analysis of a heterogeneous finite scale periodic cell. The periodic cell mesh has to contain two subdomains Y1 (with the cell ids 1), Y2 (with the cell ids 2), so that different material properties can be defined in each of the subdomains (see ``--pars`` option). The command line parameters can be given in any consistent unit set, for example the basic SI units. The ``--unit-multipliers`` option can be used to rescale the input units to ones more suitable to the simulation, for example to prevent having different matrix blocks with large differences of matrix entries magnitudes. The results are then in the rescaled units. Usage Examples -------------- Default material parameters, a square periodic cell with a spherical inclusion, logs also standard pressure dilatation and shear waves, no eigenvectors:: python examples/linear_elasticity/dispersion_analysis.py meshes/2d/special/circle_in_square.mesh --log-std-waves --eigs-only As above, with custom eigenvalue solver parameters, and different number of eigenvalues, mesh size and units used in the calculation:: python examples/linear_elasticity/dispersion_analysis.py meshes/2d/special/circle_in_square.mesh --solver-conf="kind='eig.scipy', method='eigsh', tol=1e-10, maxiter=1000, which='LM', sigma=0" --log-std-waves -n 5 --range=0,640,101 --mode=omega --unit-multipliers=1e-6,1e-2,1e-3 --mesh-size=1e-2 --eigs-only Default material parameters, a square periodic cell with a square inclusion, and a very small mesh to allow comparing the omega and kappa modes (full matrix solver required!):: python examples/linear_elasticity/dispersion_analysis.py meshes/2d/square_2m.mesh --solver-conf="kind='eig.scipy', method='eigh'" --log-std-waves -n 10 --range=0,640,101 --mesh-size=1e-2 --mode=omega --eigs-only --no-legends --unit-multipliers=1e-6,1e-2,1e-3 -o output/omega python examples/linear_elasticity/dispersion_analysis.py meshes/2d/square_2m.mesh --solver-conf="kind='eig.qevp', method='companion', mode='inverted', solver={kind='eig.scipy', method='eig'}" --log-std-waves -n 500 --range=0,4000000,1001 --mesh-size=1e-2 --mode=kappa --eigs-only --no-legends --unit-multipliers=1e-6,1e-2,1e-3 -o output/kappa View/compare the resulting logs:: python script/plot_logs.py output/omega/frequencies.txt --no-legends -g 1 -o mode-omega.png python script/plot_logs.py output/kappa/wave-numbers.txt --no-legends -o mode-kappa.png python script/plot_logs.py output/kappa/wave-numbers.txt --no-legends --swap-axes -o mode-kappa-t.png In contrast to the heterogeneous square periodic cell, a homogeneous square periodic cell (the region Y2 is empty):: python examples/linear_elasticity/dispersion_analysis.py meshes/2d/square_1m.mesh --solver-conf="kind='eig.scipy', method='eigh'" --log-std-waves -n 10 --range=0,640,101 --mesh-size=1e-2 --mode=omega --eigs-only --no-legends --unit-multipliers=1e-6,1e-2,1e-3 -o output/omega-h python script/plot_logs.py output/omega-h/frequencies.txt --no-legends -g 1 -o mode-omega-h.png Use the Brillouin stepper:: python examples/linear_elasticity/dispersion_analysis.py meshes/2d/special/circle_in_square.mesh --log-std-waves -n=60 --eigs-only --no-legends --stepper=brillouin python script/plot_logs.py output/frequencies.txt -g 0 --rc="'font.size':14, 'lines.linewidth' : 3, 'lines.markersize' : 4" -o brillouin-stepper-kappas.png python script/plot_logs.py output/frequencies.txt -g 1 --no-legends --rc="'font.size':14, 'lines.linewidth' : 3, 'lines.markersize' : 4" -o brillouin-stepper-omegas.png Additional arguments can be passed to the problem configuration's :func:`define()` function using the ``--define-kwargs`` option. In this file, only the mesh vertex separation parameter `mesh_eps` can be used:: python examples/linear_elasticity/dispersion_analysis.py meshes/2d/special/circle_in_square.mesh --log-std-waves --eigs-only --define-kwargs="mesh_eps=1e-10" --save-regions """ from __future__ import absolute_import import os import sys sys.path.append('.') import gc from copy import copy from argparse import ArgumentParser, RawDescriptionHelpFormatter import numpy as nm import matplotlib.pyplot as plt from sfepy.base.base import import_file, output, Struct from sfepy.base.conf import dict_from_string, ProblemConf from sfepy.base.ioutils import ensure_path, remove_files_patterns, save_options from sfepy.base.log import Log from sfepy.discrete.fem import MeshIO from sfepy.mechanics.matcoefs import stiffness_from_youngpoisson as stiffness import sfepy.mechanics.matcoefs as mc from sfepy.mechanics.units import apply_unit_multipliers import sfepy.discrete.fem.periodic as per from sfepy.discrete.fem.meshio import convert_complex_output from sfepy.homogenization.utils import define_box_regions from sfepy.discrete import Problem from sfepy.mechanics.tensors import get_von_mises_stress from sfepy.solvers import Solver from sfepy.solvers.ts import get_print_info, TimeStepper from sfepy.linalg.utils import output_array_stats, max_diff_csr def apply_units(pars, unit_multipliers): new_pars = apply_unit_multipliers(pars, ['stress', 'one', 'density', 'stress', 'one' ,'density'], unit_multipliers) return new_pars def compute_von_mises(out, pb, state, extend=False, wmag=None, wdir=None): """ Calculate the von Mises stress. """ stress = pb.evaluate('ev_cauchy_stress.i.Omega(m.D, u)', mode='el_avg') vms = get_von_mises_stress(stress.squeeze()) vms.shape = (vms.shape[0], 1, 1, 1) out['von_mises_stress'] = Struct(name='output_data', mode='cell', data=vms) return out def define(filename_mesh, pars, approx_order, refinement_level, solver_conf, plane='strain', post_process=False, mesh_eps=1e-8): io = MeshIO.any_from_filename(filename_mesh) bbox = io.read_bounding_box() dim = bbox.shape[1] options = { 'absolute_mesh_path' : True, 'refinement_level' : refinement_level, 'allow_empty_regions' : True, 'post_process_hook' : 'compute_von_mises' if post_process else None, } fields = { 'displacement': ('complex', dim, 'Omega', approx_order), } young1, poisson1, density1, young2, poisson2, density2 = pars materials = { 'm' : ({ 'D' : {'Y1' : stiffness(dim, young=young1, poisson=poisson1, plane=plane), 'Y2' : stiffness(dim, young=young2, poisson=poisson2, plane=plane)}, 'density' : {'Y1' : density1, 'Y2' : density2}, },), 'wave' : 'get_wdir', } variables = { 'u' : ('unknown field', 'displacement', 0), 'v' : ('test field', 'displacement', 'u'), } regions = { 'Omega' : 'all', 'Y1': 'cells of group 1', 'Y2': 'cells of group 2', } regions.update(define_box_regions(dim, bbox[0], bbox[1], mesh_eps)) ebcs = { } if dim == 3: epbcs = { 'periodic_x' : (['Left', 'Right'], {'u.all' : 'u.all'}, 'match_x_plane'), 'periodic_y' : (['Near', 'Far'], {'u.all' : 'u.all'}, 'match_y_plane'), 'periodic_z' : (['Top', 'Bottom'], {'u.all' : 'u.all'}, 'match_z_plane'), } else: epbcs = { 'periodic_x' : (['Left', 'Right'], {'u.all' : 'u.all'}, 'match_y_line'), 'periodic_y' : (['Bottom', 'Top'], {'u.all' : 'u.all'}, 'match_x_line'), } per.set_accuracy(mesh_eps) functions = { 'match_x_plane' : (per.match_x_plane,), 'match_y_plane' : (per.match_y_plane,), 'match_z_plane' : (per.match_z_plane,), 'match_x_line' : (per.match_x_line,), 'match_y_line' : (per.match_y_line,), 'get_wdir' : (get_wdir,), } integrals = { 'i' : 2 * approx_order, } equations = { 'K' : 'dw_lin_elastic.i.Omega(m.D, v, u)', 'S' : 'dw_elastic_wave.i.Omega(m.D, wave.vec, v, u)', 'R' : """1j * dw_elastic_wave_cauchy.i.Omega(m.D, wave.vec, u, v) - 1j * dw_elastic_wave_cauchy.i.Omega(m.D, wave.vec, v, u)""", 'M' : 'dw_volume_dot.i.Omega(m.density, v, u)', } solver_0 = solver_conf.copy() solver_0['name'] = 'eig' return locals() def get_wdir(ts, coors, mode=None, equations=None, term=None, problem=None, wdir=None, **kwargs): if mode == 'special': return {'vec' : wdir} def set_wave_dir(pb, wdir): materials = pb.get_materials() wave_mat = materials['wave'] wave_mat.set_extra_args(wdir=wdir) def save_materials(output_dir, pb, options): stiffness = pb.evaluate('ev_volume_integrate_mat.2.Omega(m.D, u)', mode='el_avg', copy_materials=False, verbose=False) young, poisson = mc.youngpoisson_from_stiffness(stiffness, plane=options.plane) density = pb.evaluate('ev_volume_integrate_mat.2.Omega(m.density, u)', mode='el_avg', copy_materials=False, verbose=False) out = {} out['young'] = Struct(name='young', mode='cell', data=young[..., None, None]) out['poisson'] = Struct(name='poisson', mode='cell', data=poisson[..., None, None]) out['density'] = Struct(name='density', mode='cell', data=density) materials_filename = os.path.join(output_dir, 'materials.vtk') pb.save_state(materials_filename, out=out) def get_std_wave_fun(pb, options): stiffness = pb.evaluate('ev_volume_integrate_mat.2.Omega(m.D, u)', mode='el_avg', copy_materials=False, verbose=False) young, poisson = mc.youngpoisson_from_stiffness(stiffness, plane=options.plane) density = pb.evaluate('ev_volume_integrate_mat.2.Omega(m.density, u)', mode='el_avg', copy_materials=False, verbose=False) lam, mu = mc.lame_from_youngpoisson(young, poisson, plane=options.plane) alam = nm.average(lam) amu = nm.average(mu) adensity = nm.average(density) cp = nm.sqrt((alam + 2.0 * amu) / adensity) cs = nm.sqrt(amu / adensity) output('average p-wave speed:', cp) output('average shear wave speed:', cs) log_names = [r'$\omega_p$', r'$\omega_s$'] log_plot_kwargs = [{'ls' : '--', 'color' : 'k'}, {'ls' : '--', 'color' : 'gray'}] if options.mode == 'omega': fun = lambda wmag, wdir: (cp * wmag, cs * wmag) else: fun = lambda wmag, wdir: (wmag / cp, wmag / cs) return fun, log_names, log_plot_kwargs def get_stepper(rng, pb, options): if options.stepper == 'linear': stepper = TimeStepper(rng[0], rng[1], dt=None, n_step=rng[2]) return stepper bbox = pb.domain.mesh.get_bounding_box() bzone = 2.0 * nm.pi / (bbox[1] - bbox[0]) num = rng[2] // 3 class BrillouinStepper(Struct): """ Step over 1. Brillouin zone in xy plane. """ def __init__(self, t0, t1, dt=None, n_step=None, step=None, **kwargs): Struct.__init__(self, t0=t0, t1=t1, dt=dt, n_step=n_step, step=step) self.n_digit, self.format, self.suffix = get_print_info(self.n_step) def __iter__(self): ts = TimeStepper(0, bzone[0], dt=None, n_step=num) for ii, val in ts: yield ii, val, nm.array([1.0, 0.0]) if ii == (num-2): break ts = TimeStepper(0, bzone[1], dt=None, n_step=num) for ii, k1 in ts: wdir = nm.array([bzone[0], k1]) val = nm.linalg.norm(wdir) wdir = wdir / val yield num + ii, val, wdir if ii == (num-2): break wdir = nm.array([bzone[0], bzone[1]]) val = nm.linalg.norm(wdir) wdir = wdir / val ts = TimeStepper(0, 1, dt=None, n_step=num) for ii, _ in ts: yield 2 * num + ii, val * (1.0 - float(ii)/(num-1)), wdir stepper = BrillouinStepper(0, 1, n_step=rng[2]) return stepper def save_eigenvectors(filename, svecs, wmag, wdir, pb): if svecs is None: return variables = pb.get_variables() # Make full eigenvectors (add DOFs fixed by boundary conditions). vecs = nm.empty((variables.di.ptr[-1], svecs.shape[1]), dtype=svecs.dtype) for ii in range(svecs.shape[1]): vecs[:, ii] = variables.make_full_vec(svecs[:, ii]) # Save the eigenvectors. out = {} state = pb.create_state() pp_name = pb.conf.options.get('post_process_hook') pp = getattr(pb.conf.funmod, pp_name if pp_name is not None else '', lambda out, *args, **kwargs: out) for ii in range(svecs.shape[1]): state.set_full(vecs[:, ii]) aux = state.create_output_dict() aux2 = {} pp(aux2, pb, state, wmag=wmag, wdir=wdir) aux.update(convert_complex_output(aux2)) out.update({key + '%03d' % ii : aux[key] for key in aux}) pb.save_state(filename, out=out) def assemble_matrices(define, mod, pars, set_wave_dir, options, wdir=None): """ Assemble the blocks of dispersion eigenvalue problem matrices. """ define_dict = define(filename_mesh=options.mesh_filename, pars=pars, approx_order=options.order, refinement_level=options.refine, solver_conf=options.solver_conf, plane=options.plane, post_process=options.post_process, **options.define_kwargs) conf = ProblemConf.from_dict(define_dict, mod) pb = Problem.from_conf(conf) pb.dispersion_options = options pb.set_output_dir(options.output_dir) dim = pb.domain.shape.dim # Set the normalized wave vector direction to the material(s). if wdir is None: wdir = nm.asarray(options.wave_dir[:dim], dtype=nm.float64) wdir = wdir / nm.linalg.norm(wdir) set_wave_dir(pb, wdir) bbox = pb.domain.mesh.get_bounding_box() size = (bbox[1] - bbox[0]).max() scaling0 = apply_unit_multipliers([1.0], ['length'], options.unit_multipliers)[0] scaling = scaling0 if options.mesh_size is not None: scaling *= options.mesh_size / size output('scaling factor of periodic cell mesh coordinates:', scaling) output('new mesh size with applied unit multipliers:', scaling * size) pb.domain.mesh.coors[:] *= scaling pb.set_mesh_coors(pb.domain.mesh.coors, update_fields=True) bzone = 2.0 * nm.pi / (scaling * size) output('1. Brillouin zone size:', bzone * scaling0) output('1. Brillouin zone size with applied unit multipliers:', bzone) pb.time_update() pb.update_materials() # Assemble the matrices. mtxs = {} for key, eq in pb.equations.iteritems(): mtxs[key] = mtx = pb.mtx_a.copy() mtx = eq.evaluate(mode='weak', dw_mode='matrix', asm_obj=mtx) mtx.eliminate_zeros() output_array_stats(mtx.data, 'nonzeros in %s' % key) output('symmetry checks:') output('%s - %s^T:' % (key, key), max_diff_csr(mtx, mtx.T)) output('%s - %s^H:' % (key, key), max_diff_csr(mtx, mtx.H)) return pb, wdir, bzone, mtxs def setup_n_eigs(options, pb, mtxs): """ Setup the numbers of eigenvalues based on options and numbers of DOFs. """ solver_n_eigs = n_eigs = options.n_eigs n_dof = mtxs['K'].shape[0] if options.mode == 'omega': if options.n_eigs > n_dof: n_eigs = n_dof solver_n_eigs = None else: if options.n_eigs > 2 * n_dof: n_eigs = 2 * n_dof solver_n_eigs = None return solver_n_eigs, n_eigs def build_evp_matrices(mtxs, val, mode, pb): """ Build the matrices of the dispersion eigenvalue problem. """ if mode == 'omega': mtx_a = mtxs['K'] + val**2 * mtxs['S'] + val * mtxs['R'] output('A - A^H:', max_diff_csr(mtx_a, mtx_a.H)) evp_mtxs = (mtx_a, mtxs['M']) else: evp_mtxs = (mtxs['S'], mtxs['R'], mtxs['K'] - val**2 * mtxs['M']) return evp_mtxs def process_evp_results(eigs, svecs, val, wdir, bzone, pb, mtxs, options, std_wave_fun=None): """ Transform eigenvalues to either omegas or kappas, depending on `mode`. Transform eigenvectors, if available, depending on `mode`. Return also the values to log. """ if options.mode == 'omega': omegas = nm.sqrt(eigs) output('eigs, omegas:') for ii, om in enumerate(omegas): output('{:>3}. {: .10e}, {:.10e}'.format(ii, eigs[ii], om)) if options.stepper == 'linear': out = tuple(eigs) + tuple(omegas) else: out = tuple(val * wdir) + tuple(omegas) if std_wave_fun is not None: out = out + std_wave_fun(val, wdir) return omegas, svecs, out else: kappas = eigs.copy() rks = kappas.copy() # Mask modes far from 1. Brillouin zone. max_kappa = 1.2 * bzone kappas[kappas.real > max_kappa] = nm.nan # Mask non-physical modes. kappas[kappas.real < 0] = nm.nan kappas[nm.abs(kappas.imag) > 1e-10] = nm.nan out = tuple(kappas.real) output('raw kappas, masked real part:',) for ii, kr in enumerate(kappas.real): output('{:>3}. {: 23.5e}, {:.10e}'.format(ii, rks[ii], kr)) if svecs is not None: n_dof = mtxs['K'].shape[0] # Select only vectors corresponding to physical modes. ii = nm.isfinite(kappas.real) svecs = svecs[:n_dof, ii] if std_wave_fun is not None: out = out + tuple(ii if ii <= max_kappa else nm.nan for ii in std_wave_fun(val, wdir)) return kappas, svecs, out helps = { 'pars' : 'material parameters in Y1, Y2 subdomains in basic units' ' [default: %(default)s]', 'conf' : 'if given, an alternative problem description file with apply_units() and' ' define() functions [default: %(default)s]', 'define_kwargs' : 'additional keyword arguments passed to define()', 'mesh_size' : 'desired mesh size (max. of bounding box dimensions) in basic units' ' - the input periodic cell mesh is rescaled to this size' ' [default: %(default)s]', 'unit_multipliers' : 'basic unit multipliers (time, length, mass) [default: %(default)s]', 'plane' : 'for 2D problems, plane strain or stress hypothesis selection' ' [default: %(default)s]', 'wave_dir' : 'the wave vector direction (will be normalized)' ' [default: %(default)s]', 'mode' : 'solution mode: omega = solve a generalized EVP for omega,' ' kappa = solve a quadratic generalized EVP for kappa' ' [default: %(default)s]', 'stepper' : 'the range stepper. For "brillouin", only the number' ' of items from --range is used' ' [default: %(default)s]', 'range' : 'the wave vector magnitude / frequency range' ' (like numpy.linspace) depending on the mode option' ' [default: %(default)s]', 'order' : 'displacement field approximation order [default: %(default)s]', 'refine' : 'number of uniform mesh refinements [default: %(default)s]', 'n_eigs' : 'the number of eigenvalues to compute [default: %(default)s]', 'eigs_only' : 'compute only eigenvalues, not eigenvectors', 'post_process' : 'post-process eigenvectors', 'solver_conf' : 'eigenvalue problem solver configuration options' ' [default: %(default)s]', 'save_regions' : 'save defined regions into' ' <output_directory>/regions.vtk', 'save_materials' : 'save material parameters into' ' <output_directory>/materials.vtk', 'log_std_waves' : 'log also standard pressure dilatation and shear waves', 'no_legends' : 'do not show legends in the log plots', 'no_show' : 'do not show the log figure', 'silent' : 'do not print messages to screen', 'clear' : 'clear old solution files from output directory', 'output_dir' : 'output directory [default: %(default)s]', 'mesh_filename' : 'input periodic cell mesh file name [default: %(default)s]', } def main(): # Aluminium and epoxy. default_pars = '70e9,0.35,2.799e3, 3.8e9,0.27,1.142e3' default_solver_conf = ("kind='eig.scipy',method='eigsh',tol=1.0e-5," "maxiter=1000,which='LM',sigma=0.0") parser = ArgumentParser(description=__doc__, formatter_class=RawDescriptionHelpFormatter) parser.add_argument('--pars', metavar='young1,poisson1,density1' ',young2,poisson2,density2', action='store', dest='pars', default=default_pars, help=helps['pars']) parser.add_argument('--conf', metavar='filename', action='store', dest='conf', default=None, help=helps['conf']) parser.add_argument('--define-kwargs', metavar='dict-like', action='store', dest='define_kwargs', default=None, help=helps['define_kwargs']) parser.add_argument('--mesh-size', type=float, metavar='float', action='store', dest='mesh_size', default=None, help=helps['mesh_size']) parser.add_argument('--unit-multipliers', metavar='c_time,c_length,c_mass', action='store', dest='unit_multipliers', default='1.0,1.0,1.0', help=helps['unit_multipliers']) parser.add_argument('--plane', action='store', dest='plane', choices=['strain', 'stress'], default='strain', help=helps['plane']) parser.add_argument('--wave-dir', metavar='float,float[,float]', action='store', dest='wave_dir', default='1.0,0.0,0.0', help=helps['wave_dir']) parser.add_argument('--mode', action='store', dest='mode', choices=['omega', 'kappa'], default='omega', help=helps['mode']) parser.add_argument('--stepper', action='store', dest='stepper', choices=['linear', 'brillouin'], default='linear', help=helps['stepper']) parser.add_argument('--range', metavar='start,stop,count', action='store', dest='range', default='0,6.4,33', help=helps['range']) parser.add_argument('--order', metavar='int', type=int, action='store', dest='order', default=1, help=helps['order']) parser.add_argument('--refine', metavar='int', type=int, action='store', dest='refine', default=0, help=helps['refine']) parser.add_argument('-n', '--n-eigs', metavar='int', type=int, action='store', dest='n_eigs', default=6, help=helps['n_eigs']) group = parser.add_mutually_exclusive_group() group.add_argument('--eigs-only', action='store_true', dest='eigs_only', default=False, help=helps['eigs_only']) group.add_argument('--post-process', action='store_true', dest='post_process', default=False, help=helps['post_process']) parser.add_argument('--solver-conf', metavar='dict-like', action='store', dest='solver_conf', default=default_solver_conf, help=helps['solver_conf']) parser.add_argument('--save-regions', action='store_true', dest='save_regions', default=False, help=helps['save_regions']) parser.add_argument('--save-materials', action='store_true', dest='save_materials', default=False, help=helps['save_materials']) parser.add_argument('--log-std-waves', action='store_true', dest='log_std_waves', default=False, help=helps['log_std_waves']) parser.add_argument('--no-legends', action='store_false', dest='show_legends', default=True, help=helps['no_legends']) parser.add_argument('--no-show', action='store_false', dest='show', default=True, help=helps['no_show']) parser.add_argument('--silent', action='store_true', dest='silent', default=False, help=helps['silent']) parser.add_argument('-c', '--clear', action='store_true', dest='clear', default=False, help=helps['clear']) parser.add_argument('-o', '--output-dir', metavar='path', action='store', dest='output_dir', default='output', help=helps['output_dir']) parser.add_argument('mesh_filename', default='', help=helps['mesh_filename']) options = parser.parse_args() output_dir = options.output_dir output.set_output(filename=os.path.join(output_dir,'output_log.txt'), combined=options.silent == False) if options.conf is not None: mod = import_file(options.conf) else: mod = sys.modules[__name__] apply_units = mod.apply_units define = mod.define set_wave_dir = mod.set_wave_dir setup_n_eigs = mod.setup_n_eigs build_evp_matrices = mod.build_evp_matrices save_materials = mod.save_materials get_std_wave_fun = mod.get_std_wave_fun get_stepper = mod.get_stepper process_evp_results = mod.process_evp_results options.pars = [float(ii) for ii in options.pars.split(',')] options.unit_multipliers = [float(ii) for ii in options.unit_multipliers.split(',')] options.wave_dir = [float(ii) for ii in options.wave_dir.split(',')] aux = options.range.split(',') options.range = [float(aux[0]), float(aux[1]), int(aux[2])] options.solver_conf = dict_from_string(options.solver_conf) options.define_kwargs = dict_from_string(options.define_kwargs) if options.clear: remove_files_patterns(output_dir, ['*.h5', '*.vtk', '*.txt'], ignores=['output_log.txt'], verbose=True) filename = os.path.join(output_dir, 'options.txt') ensure_path(filename) save_options(filename, [('options', vars(options))], quote_command_line=True) pars = apply_units(options.pars, options.unit_multipliers) output('material parameters with applied unit multipliers:') output(pars) if options.mode == 'omega': rng = copy(options.range) rng[:2] = apply_unit_multipliers(options.range[:2], ['wave_number', 'wave_number'], options.unit_multipliers) output('wave number range with applied unit multipliers:', rng) else: if options.stepper == 'brillouin': raise ValueError('Cannot use "brillouin" stepper in kappa mode!') rng = copy(options.range) rng[:2] = apply_unit_multipliers(options.range[:2], ['frequency', 'frequency'], options.unit_multipliers) output('frequency range with applied unit multipliers:', rng) pb, wdir, bzone, mtxs = assemble_matrices(define, mod, pars, set_wave_dir, options) dim = pb.domain.shape.dim if dim != 2: options.plane = 'strain' if options.save_regions: pb.save_regions_as_groups(os.path.join(output_dir, 'regions')) if options.save_materials: save_materials(output_dir, pb, options) conf = pb.solver_confs['eig'] eig_solver = Solver.any_from_conf(conf) n_eigs, options.n_eigs = setup_n_eigs(options, pb, mtxs) get_color = lambda ii: plt.cm.viridis((float(ii) / (options.n_eigs - 1))) plot_kwargs = [{'color' : get_color(ii), 'ls' : '', 'marker' : 'o'} for ii in range(options.n_eigs)] get_color_dim = lambda ii: plt.cm.viridis((float(ii) / (dim-1))) plot_kwargs_dim = [{'color' : get_color_dim(ii), 'ls' : '', 'marker' : 'o'} for ii in range(dim)] log_names = [] log_plot_kwargs = [] if options.log_std_waves: std_wave_fun, log_names, log_plot_kwargs = get_std_wave_fun( pb, options) else: std_wave_fun = None stepper = get_stepper(rng, pb, options) if options.mode == 'omega': eigenshapes_filename = os.path.join(output_dir, 'frequency-eigenshapes-%s.vtk' % stepper.suffix) if options.stepper == 'linear': log = Log([[r'$\lambda_{%d}$' % ii for ii in range(options.n_eigs)], [r'$\omega_{%d}$' % ii for ii in range(options.n_eigs)] + log_names], plot_kwargs=[plot_kwargs, plot_kwargs + log_plot_kwargs], formats=[['{:.5e}'] * options.n_eigs, ['{:.5e}'] * (options.n_eigs + len(log_names))], yscales=['linear', 'linear'], xlabels=[r'$\kappa$', r'$\kappa$'], ylabels=[r'eigenvalues $\lambda_i$', r'frequencies $\omega_i$'], show_legends=options.show_legends, is_plot=options.show, log_filename=os.path.join(output_dir, 'frequencies.txt'), aggregate=1000, sleep=0.1) else: log = Log([[r'$\kappa_{%d}$'% ii for ii in range(dim)], [r'$\omega_{%d}$' % ii for ii in range(options.n_eigs)] + log_names], plot_kwargs=[plot_kwargs_dim, plot_kwargs + log_plot_kwargs], formats=[['{:.5e}'] * dim, ['{:.5e}'] * (options.n_eigs + len(log_names))], yscales=['linear', 'linear'], xlabels=[r'', r''], ylabels=[r'wave vector $\kappa$', r'frequencies $\omega_i$'], show_legends=options.show_legends, is_plot=options.show, log_filename=os.path.join(output_dir, 'frequencies.txt'), aggregate=1000, sleep=0.1) for aux in stepper: if options.stepper == 'linear': iv, wmag = aux else: iv, wmag, wdir = aux output('step %d: wave vector %s' % (iv, wmag * wdir)) if options.stepper == 'brillouin': pb, _, bzone, mtxs = assemble_matrices( define, mod, pars, set_wave_dir, options, wdir=wdir) evp_mtxs = build_evp_matrices(mtxs, wmag, options.mode, pb) if options.eigs_only: eigs = eig_solver(*evp_mtxs, n_eigs=n_eigs, eigenvectors=False) svecs = None else: eigs, svecs = eig_solver(*evp_mtxs, n_eigs=n_eigs, eigenvectors=True) omegas, svecs, out = process_evp_results( eigs, svecs, wmag, wdir, bzone, pb, mtxs, options, std_wave_fun=std_wave_fun ) if options.stepper == 'linear': log(*out, x=[wmag, wmag]) else: log(*out, x=[iv, iv]) save_eigenvectors(eigenshapes_filename % iv, svecs, wmag, wdir, pb) gc.collect() log(save_figure=os.path.join(output_dir, 'frequencies.png')) log(finished=True) else: eigenshapes_filename = os.path.join(output_dir, 'wave-number-eigenshapes-%s.vtk' % stepper.suffix) log = Log([[r'$\kappa_{%d}$' % ii for ii in range(options.n_eigs)] + log_names], plot_kwargs=[plot_kwargs + log_plot_kwargs], formats=[['{:.5e}'] * (options.n_eigs + len(log_names))], yscales=['linear'], xlabels=[r'$\omega$'], ylabels=[r'wave numbers $\kappa_i$'], show_legends=options.show_legends, is_plot=options.show, log_filename=os.path.join(output_dir, 'wave-numbers.txt'), aggregate=1000, sleep=0.1) for io, omega in stepper: output('step %d: frequency %s' % (io, omega)) evp_mtxs = build_evp_matrices(mtxs, omega, options.mode, pb) if options.eigs_only: eigs = eig_solver(*evp_mtxs, n_eigs=n_eigs, eigenvectors=False) svecs = None else: eigs, svecs = eig_solver(*evp_mtxs, n_eigs=n_eigs, eigenvectors=True) kappas, svecs, out = process_evp_results( eigs, svecs, omega, wdir, bzone, pb, mtxs, options, std_wave_fun=std_wave_fun ) log(*out, x=[omega]) save_eigenvectors(eigenshapes_filename % io, svecs, kappas, wdir, pb) gc.collect() log(save_figure=os.path.join(output_dir, 'wave-numbers.png')) log(finished=True) if __name__ == '__main__': main()
[ "sfepy.base.conf.dict_from_string", "sfepy.solvers.ts.TimeStepper", "sfepy.linalg.utils.output_array_stats", "sfepy.base.ioutils.remove_files_patterns", "sfepy.base.base.Struct.__init__", "sfepy.base.ioutils.ensure_path", "sfepy.discrete.fem.periodic.set_accuracy", "sfepy.mechanics.matcoefs.lame_from_youngpoisson", "sfepy.base.base.Struct", "sfepy.base.conf.ProblemConf.from_dict", "sfepy.discrete.fem.meshio.convert_complex_output", "sfepy.base.base.output", "sfepy.discrete.Problem.from_conf", "sfepy.base.base.import_file", "sfepy.solvers.ts.get_print_info", "sfepy.discrete.fem.MeshIO.any_from_filename", "sfepy.linalg.utils.max_diff_csr", "sfepy.solvers.Solver.any_from_conf", "sfepy.mechanics.matcoefs.stiffness_from_youngpoisson", "sfepy.homogenization.utils.define_box_regions", "sfepy.mechanics.matcoefs.youngpoisson_from_stiffness", "sfepy.mechanics.units.apply_unit_multipliers" ]
[((4031, 4051), 'sys.path.append', 'sys.path.append', (['"""."""'], {}), "('.')\n", (4046, 4051), False, 'import sys\n'), ((5102, 5210), 'sfepy.mechanics.units.apply_unit_multipliers', 'apply_unit_multipliers', (['pars', "['stress', 'one', 'density', 'stress', 'one', 'density']", 'unit_multipliers'], {}), "(pars, ['stress', 'one', 'density', 'stress', 'one',\n 'density'], unit_multipliers)\n", (5124, 5210), False, 'from sfepy.mechanics.units import apply_unit_multipliers\n'), ((5666, 5715), 'sfepy.base.base.Struct', 'Struct', ([], {'name': '"""output_data"""', 'mode': '"""cell"""', 'data': 'vms'}), "(name='output_data', mode='cell', data=vms)\n", (5672, 5715), False, 'from sfepy.base.base import import_file, output, Struct\n'), ((5919, 5958), 'sfepy.discrete.fem.MeshIO.any_from_filename', 'MeshIO.any_from_filename', (['filename_mesh'], {}), '(filename_mesh)\n', (5943, 5958), False, 'from sfepy.discrete.fem import MeshIO\n'), ((7812, 7838), 'sfepy.discrete.fem.periodic.set_accuracy', 'per.set_accuracy', (['mesh_eps'], {}), '(mesh_eps)\n', (7828, 7838), True, 'import sfepy.discrete.fem.periodic as per\n'), ((9143, 9205), 'sfepy.mechanics.matcoefs.youngpoisson_from_stiffness', 'mc.youngpoisson_from_stiffness', (['stiffness'], {'plane': 'options.plane'}), '(stiffness, plane=options.plane)\n', (9173, 9205), True, 'import sfepy.mechanics.matcoefs as mc\n'), ((9444, 9506), 'sfepy.base.base.Struct', 'Struct', ([], {'name': '"""young"""', 'mode': '"""cell"""', 'data': 'young[..., None, None]'}), "(name='young', mode='cell', data=young[..., None, None])\n", (9450, 9506), False, 'from sfepy.base.base import import_file, output, Struct\n'), ((9554, 9620), 'sfepy.base.base.Struct', 'Struct', ([], {'name': '"""poisson"""', 'mode': '"""cell"""', 'data': 'poisson[..., None, None]'}), "(name='poisson', mode='cell', data=poisson[..., None, None])\n", (9560, 9620), False, 'from sfepy.base.base import import_file, output, Struct\n'), ((9670, 9719), 'sfepy.base.base.Struct', 'Struct', ([], {'name': '"""density"""', 'mode': '"""cell"""', 'data': 'density'}), "(name='density', mode='cell', data=density)\n", (9676, 9719), False, 'from sfepy.base.base import import_file, output, Struct\n'), ((9745, 9786), 'os.path.join', 'os.path.join', (['output_dir', '"""materials.vtk"""'], {}), "(output_dir, 'materials.vtk')\n", (9757, 9786), False, 'import os\n'), ((10042, 10104), 'sfepy.mechanics.matcoefs.youngpoisson_from_stiffness', 'mc.youngpoisson_from_stiffness', (['stiffness'], {'plane': 'options.plane'}), '(stiffness, plane=options.plane)\n', (10072, 10104), True, 'import sfepy.mechanics.matcoefs as mc\n'), ((10325, 10387), 'sfepy.mechanics.matcoefs.lame_from_youngpoisson', 'mc.lame_from_youngpoisson', (['young', 'poisson'], {'plane': 'options.plane'}), '(young, poisson, plane=options.plane)\n', (10350, 10387), True, 'import sfepy.mechanics.matcoefs as mc\n'), ((10439, 10454), 'numpy.average', 'nm.average', (['lam'], {}), '(lam)\n', (10449, 10454), True, 'import numpy as nm\n'), ((10465, 10479), 'numpy.average', 'nm.average', (['mu'], {}), '(mu)\n', (10475, 10479), True, 'import numpy as nm\n'), ((10495, 10514), 'numpy.average', 'nm.average', (['density'], {}), '(density)\n', (10505, 10514), True, 'import numpy as nm\n'), ((10525, 10563), 'numpy.sqrt', 'nm.sqrt', (['((alam + 2.0 * amu) / adensity)'], {}), '((alam + 2.0 * amu) / adensity)\n', (10532, 10563), True, 'import numpy as nm\n'), ((10573, 10596), 'numpy.sqrt', 'nm.sqrt', (['(amu / adensity)'], {}), '(amu / adensity)\n', (10580, 10596), True, 'import numpy as nm\n'), ((10601, 10636), 'sfepy.base.base.output', 'output', (['"""average p-wave speed:"""', 'cp'], {}), "('average p-wave speed:', cp)\n", (10607, 10636), False, 'from sfepy.base.base import import_file, output, Struct\n'), ((10641, 10680), 'sfepy.base.base.output', 'output', (['"""average shear wave speed:"""', 'cs'], {}), "('average shear wave speed:', cs)\n", (10647, 10680), False, 'from sfepy.base.base import import_file, output, Struct\n'), ((12742, 12809), 'numpy.empty', 'nm.empty', (['(variables.di.ptr[-1], svecs.shape[1])'], {'dtype': 'svecs.dtype'}), '((variables.di.ptr[-1], svecs.shape[1]), dtype=svecs.dtype)\n', (12750, 12809), True, 'import numpy as nm\n'), ((14111, 14150), 'sfepy.base.conf.ProblemConf.from_dict', 'ProblemConf.from_dict', (['define_dict', 'mod'], {}), '(define_dict, mod)\n', (14132, 14150), False, 'from sfepy.base.conf import dict_from_string, ProblemConf\n'), ((14161, 14184), 'sfepy.discrete.Problem.from_conf', 'Problem.from_conf', (['conf'], {}), '(conf)\n', (14178, 14184), False, 'from sfepy.discrete import Problem\n'), ((14836, 14904), 'sfepy.base.base.output', 'output', (['"""scaling factor of periodic cell mesh coordinates:"""', 'scaling'], {}), "('scaling factor of periodic cell mesh coordinates:', scaling)\n", (14842, 14904), False, 'from sfepy.base.base import import_file, output, Struct\n'), ((14909, 14979), 'sfepy.base.base.output', 'output', (['"""new mesh size with applied unit multipliers:"""', '(scaling * size)'], {}), "('new mesh size with applied unit multipliers:', scaling * size)\n", (14915, 14979), False, 'from sfepy.base.base import import_file, output, Struct\n'), ((15131, 15182), 'sfepy.base.base.output', 'output', (['"""1. Brillouin zone size:"""', '(bzone * scaling0)'], {}), "('1. Brillouin zone size:', bzone * scaling0)\n", (15137, 15182), False, 'from sfepy.base.base import import_file, output, Struct\n'), ((15187, 15257), 'sfepy.base.base.output', 'output', (['"""1. Brillouin zone size with applied unit multipliers:"""', 'bzone'], {}), "('1. Brillouin zone size with applied unit multipliers:', bzone)\n", (15193, 15257), False, 'from sfepy.base.base import import_file, output, Struct\n'), ((21060, 21145), 'argparse.ArgumentParser', 'ArgumentParser', ([], {'description': '__doc__', 'formatter_class': 'RawDescriptionHelpFormatter'}), '(description=__doc__, formatter_class=RawDescriptionHelpFormatter\n )\n', (21074, 21145), False, 'from argparse import ArgumentParser, RawDescriptionHelpFormatter\n'), ((26795, 26832), 'sfepy.base.conf.dict_from_string', 'dict_from_string', (['options.solver_conf'], {}), '(options.solver_conf)\n', (26811, 26832), False, 'from sfepy.base.conf import dict_from_string, ProblemConf\n'), ((26861, 26900), 'sfepy.base.conf.dict_from_string', 'dict_from_string', (['options.define_kwargs'], {}), '(options.define_kwargs)\n', (26877, 26900), False, 'from sfepy.base.conf import dict_from_string, ProblemConf\n'), ((27142, 27181), 'os.path.join', 'os.path.join', (['output_dir', '"""options.txt"""'], {}), "(output_dir, 'options.txt')\n", (27154, 27181), False, 'import os\n'), ((27186, 27207), 'sfepy.base.ioutils.ensure_path', 'ensure_path', (['filename'], {}), '(filename)\n', (27197, 27207), False, 'from sfepy.base.ioutils import ensure_path, remove_files_patterns, save_options\n'), ((27375, 27435), 'sfepy.base.base.output', 'output', (['"""material parameters with applied unit multipliers:"""'], {}), "('material parameters with applied unit multipliers:')\n", (27381, 27435), False, 'from sfepy.base.base import import_file, output, Struct\n'), ((27440, 27452), 'sfepy.base.base.output', 'output', (['pars'], {}), '(pars)\n', (27446, 27452), False, 'from sfepy.base.base import import_file, output, Struct\n'), ((28674, 28700), 'sfepy.solvers.Solver.any_from_conf', 'Solver.any_from_conf', (['conf'], {}), '(conf)\n', (28694, 28700), False, 'from sfepy.solvers import Solver\n'), ((7046, 7097), 'sfepy.homogenization.utils.define_box_regions', 'define_box_regions', (['dim', 'bbox[0]', 'bbox[1]', 'mesh_eps'], {}), '(dim, bbox[0], bbox[1], mesh_eps)\n', (7064, 7097), False, 'from sfepy.homogenization.utils import define_box_regions\n'), ((11128, 11179), 'sfepy.solvers.ts.TimeStepper', 'TimeStepper', (['rng[0]', 'rng[1]'], {'dt': 'None', 'n_step': 'rng[2]'}), '(rng[0], rng[1], dt=None, n_step=rng[2])\n', (11139, 11179), False, 'from sfepy.solvers.ts import get_print_info, TimeStepper\n'), ((14397, 14449), 'numpy.asarray', 'nm.asarray', (['options.wave_dir[:dim]'], {'dtype': 'nm.float64'}), '(options.wave_dir[:dim], dtype=nm.float64)\n', (14407, 14449), True, 'import numpy as nm\n'), ((14618, 14685), 'sfepy.mechanics.units.apply_unit_multipliers', 'apply_unit_multipliers', (['[1.0]', "['length']", 'options.unit_multipliers'], {}), "([1.0], ['length'], options.unit_multipliers)\n", (14640, 14685), False, 'from sfepy.mechanics.units import apply_unit_multipliers\n'), ((15545, 15597), 'sfepy.linalg.utils.output_array_stats', 'output_array_stats', (['mtx.data', "('nonzeros in %s' % key)"], {}), "(mtx.data, 'nonzeros in %s' % key)\n", (15563, 15597), False, 'from sfepy.linalg.utils import output_array_stats, max_diff_csr\n'), ((15607, 15633), 'sfepy.base.base.output', 'output', (['"""symmetry checks:"""'], {}), "('symmetry checks:')\n", (15613, 15633), False, 'from sfepy.base.base import import_file, output, Struct\n'), ((17054, 17067), 'numpy.sqrt', 'nm.sqrt', (['eigs'], {}), '(eigs)\n', (17061, 17067), True, 'import numpy as nm\n'), ((17077, 17100), 'sfepy.base.base.output', 'output', (['"""eigs, omegas:"""'], {}), "('eigs, omegas:')\n", (17083, 17100), False, 'from sfepy.base.base import import_file, output, Struct\n'), ((17860, 17899), 'sfepy.base.base.output', 'output', (['"""raw kappas, masked real part:"""'], {}), "('raw kappas, masked real part:')\n", (17866, 17899), False, 'from sfepy.base.base import import_file, output, Struct\n'), ((25966, 25991), 'sfepy.base.base.import_file', 'import_file', (['options.conf'], {}), '(options.conf)\n', (25977, 25991), False, 'from sfepy.base.base import import_file, output, Struct\n'), ((26932, 27040), 'sfepy.base.ioutils.remove_files_patterns', 'remove_files_patterns', (['output_dir', "['*.h5', '*.vtk', '*.txt']"], {'ignores': "['output_log.txt']", 'verbose': '(True)'}), "(output_dir, ['*.h5', '*.vtk', '*.txt'], ignores=[\n 'output_log.txt'], verbose=True)\n", (26953, 27040), False, 'from sfepy.base.ioutils import ensure_path, remove_files_patterns, save_options\n'), ((27500, 27519), 'copy.copy', 'copy', (['options.range'], {}), '(options.range)\n', (27504, 27519), False, 'from copy import copy\n'), ((27538, 27641), 'sfepy.mechanics.units.apply_unit_multipliers', 'apply_unit_multipliers', (['options.range[:2]', "['wave_number', 'wave_number']", 'options.unit_multipliers'], {}), "(options.range[:2], ['wave_number', 'wave_number'],\n options.unit_multipliers)\n", (27560, 27641), False, 'from sfepy.mechanics.units import apply_unit_multipliers\n'), ((27728, 27791), 'sfepy.base.base.output', 'output', (['"""wave number range with applied unit multipliers:"""', 'rng'], {}), "('wave number range with applied unit multipliers:', rng)\n", (27734, 27791), False, 'from sfepy.base.base import import_file, output, Struct\n'), ((27939, 27958), 'copy.copy', 'copy', (['options.range'], {}), '(options.range)\n', (27943, 27958), False, 'from copy import copy\n'), ((27977, 28076), 'sfepy.mechanics.units.apply_unit_multipliers', 'apply_unit_multipliers', (['options.range[:2]', "['frequency', 'frequency']", 'options.unit_multipliers'], {}), "(options.range[:2], ['frequency', 'frequency'],\n options.unit_multipliers)\n", (27999, 28076), False, 'from sfepy.mechanics.units import apply_unit_multipliers\n'), ((28163, 28224), 'sfepy.base.base.output', 'output', (['"""frequency range with applied unit multipliers:"""', 'rng'], {}), "('frequency range with applied unit multipliers:', rng)\n", (28169, 28224), False, 'from sfepy.base.base import import_file, output, Struct\n'), ((29476, 29549), 'os.path.join', 'os.path.join', (['output_dir', "('frequency-eigenshapes-%s.vtk' % stepper.suffix)"], {}), "(output_dir, 'frequency-eigenshapes-%s.vtk' % stepper.suffix)\n", (29488, 29549), False, 'import os\n'), ((32758, 32833), 'os.path.join', 'os.path.join', (['output_dir', "('wave-number-eigenshapes-%s.vtk' % stepper.suffix)"], {}), "(output_dir, 'wave-number-eigenshapes-%s.vtk' % stepper.suffix)\n", (32770, 32833), False, 'import os\n'), ((11520, 11588), 'sfepy.base.base.Struct.__init__', 'Struct.__init__', (['self'], {'t0': 't0', 't1': 't1', 'dt': 'dt', 'n_step': 'n_step', 'step': 'step'}), '(self, t0=t0, t1=t1, dt=dt, n_step=n_step, step=step)\n', (11535, 11588), False, 'from sfepy.base.base import import_file, output, Struct\n'), ((11643, 11670), 'sfepy.solvers.ts.get_print_info', 'get_print_info', (['self.n_step'], {}), '(self.n_step)\n', (11657, 11670), False, 'from sfepy.solvers.ts import get_print_info, TimeStepper\n'), ((11717, 11762), 'sfepy.solvers.ts.TimeStepper', 'TimeStepper', (['(0)', 'bzone[0]'], {'dt': 'None', 'n_step': 'num'}), '(0, bzone[0], dt=None, n_step=num)\n', (11728, 11762), False, 'from sfepy.solvers.ts import get_print_info, TimeStepper\n'), ((11904, 11949), 'sfepy.solvers.ts.TimeStepper', 'TimeStepper', (['(0)', 'bzone[1]'], {'dt': 'None', 'n_step': 'num'}), '(0, bzone[1], dt=None, n_step=num)\n', (11915, 11949), False, 'from sfepy.solvers.ts import get_print_info, TimeStepper\n'), ((12207, 12237), 'numpy.array', 'nm.array', (['[bzone[0], bzone[1]]'], {}), '([bzone[0], bzone[1]])\n', (12215, 12237), True, 'import numpy as nm\n'), ((12256, 12276), 'numpy.linalg.norm', 'nm.linalg.norm', (['wdir'], {}), '(wdir)\n', (12270, 12276), True, 'import numpy as nm\n'), ((12324, 12362), 'sfepy.solvers.ts.TimeStepper', 'TimeStepper', (['(0)', '(1)'], {'dt': 'None', 'n_step': 'num'}), '(0, 1, dt=None, n_step=num)\n', (12335, 12362), False, 'from sfepy.solvers.ts import get_print_info, TimeStepper\n'), ((13382, 13410), 'sfepy.discrete.fem.meshio.convert_complex_output', 'convert_complex_output', (['aux2'], {}), '(aux2)\n', (13404, 13410), False, 'from sfepy.discrete.fem.meshio import convert_complex_output\n'), ((14472, 14492), 'numpy.linalg.norm', 'nm.linalg.norm', (['wdir'], {}), '(wdir)\n', (14486, 14492), True, 'import numpy as nm\n'), ((15676, 15700), 'sfepy.linalg.utils.max_diff_csr', 'max_diff_csr', (['mtx', 'mtx.T'], {}), '(mtx, mtx.T)\n', (15688, 15700), False, 'from sfepy.linalg.utils import output_array_stats, max_diff_csr\n'), ((15744, 15768), 'sfepy.linalg.utils.max_diff_csr', 'max_diff_csr', (['mtx', 'mtx.H'], {}), '(mtx, mtx.H)\n', (15756, 15768), False, 'from sfepy.linalg.utils import output_array_stats, max_diff_csr\n'), ((16522, 16550), 'sfepy.linalg.utils.max_diff_csr', 'max_diff_csr', (['mtx_a', 'mtx_a.H'], {}), '(mtx_a, mtx_a.H)\n', (16534, 16550), False, 'from sfepy.linalg.utils import output_array_stats, max_diff_csr\n'), ((18173, 18197), 'numpy.isfinite', 'nm.isfinite', (['kappas.real'], {}), '(kappas.real)\n', (18184, 18197), True, 'import numpy as nm\n'), ((25819, 25861), 'os.path.join', 'os.path.join', (['output_dir', '"""output_log.txt"""'], {}), "(output_dir, 'output_log.txt')\n", (25831, 25861), False, 'import os\n'), ((28505, 28540), 'os.path.join', 'os.path.join', (['output_dir', '"""regions"""'], {}), "(output_dir, 'regions')\n", (28517, 28540), False, 'import os\n'), ((31563, 31616), 'sfepy.base.base.output', 'output', (["('step %d: wave vector %s' % (iv, wmag * wdir))"], {}), "('step %d: wave vector %s' % (iv, wmag * wdir))\n", (31569, 31616), False, 'from sfepy.base.base import import_file, output, Struct\n'), ((32606, 32618), 'gc.collect', 'gc.collect', ([], {}), '()\n', (32616, 32618), False, 'import gc\n'), ((33566, 33611), 'sfepy.base.base.output', 'output', (["('step %d: frequency %s' % (io, omega))"], {}), "('step %d: frequency %s' % (io, omega))\n", (33572, 33611), False, 'from sfepy.base.base import import_file, output, Struct\n'), ((34348, 34360), 'gc.collect', 'gc.collect', ([], {}), '()\n', (34358, 34360), False, 'import gc\n'), ((12003, 12027), 'numpy.array', 'nm.array', (['[bzone[0], k1]'], {}), '([bzone[0], k1])\n', (12011, 12027), True, 'import numpy as nm\n'), ((12050, 12070), 'numpy.linalg.norm', 'nm.linalg.norm', (['wdir'], {}), '(wdir)\n', (12064, 12070), True, 'import numpy as nm\n'), ((17780, 17799), 'numpy.abs', 'nm.abs', (['kappas.imag'], {}), '(kappas.imag)\n', (17786, 17799), True, 'import numpy as nm\n'), ((32644, 32687), 'os.path.join', 'os.path.join', (['output_dir', '"""frequencies.png"""'], {}), "(output_dir, 'frequencies.png')\n", (32656, 32687), False, 'import os\n'), ((33429, 33473), 'os.path.join', 'os.path.join', (['output_dir', '"""wave-numbers.txt"""'], {}), "(output_dir, 'wave-numbers.txt')\n", (33441, 33473), False, 'import os\n'), ((34386, 34430), 'os.path.join', 'os.path.join', (['output_dir', '"""wave-numbers.png"""'], {}), "(output_dir, 'wave-numbers.png')\n", (34398, 34430), False, 'import os\n'), ((6454, 6513), 'sfepy.mechanics.matcoefs.stiffness_from_youngpoisson', 'stiffness', (['dim'], {'young': 'young1', 'poisson': 'poisson1', 'plane': 'plane'}), '(dim, young=young1, poisson=poisson1, plane=plane)\n', (6463, 6513), True, 'from sfepy.mechanics.matcoefs import stiffness_from_youngpoisson as stiffness\n'), ((6577, 6636), 'sfepy.mechanics.matcoefs.stiffness_from_youngpoisson', 'stiffness', (['dim'], {'young': 'young2', 'poisson': 'poisson2', 'plane': 'plane'}), '(dim, young=young2, poisson=poisson2, plane=plane)\n', (6586, 6636), True, 'from sfepy.mechanics.matcoefs import stiffness_from_youngpoisson as stiffness\n'), ((30413, 30456), 'os.path.join', 'os.path.join', (['output_dir', '"""frequencies.txt"""'], {}), "(output_dir, 'frequencies.txt')\n", (30425, 30456), False, 'import os\n'), ((31296, 31339), 'os.path.join', 'os.path.join', (['output_dir', '"""frequencies.txt"""'], {}), "(output_dir, 'frequencies.txt')\n", (31308, 31339), False, 'import os\n'), ((11825, 11845), 'numpy.array', 'nm.array', (['[1.0, 0.0]'], {}), '([1.0, 0.0])\n', (11833, 11845), True, 'import numpy as nm\n')]
import json from sfm.utils import validate_signature, calc_signature from sfm.dependencies import get_db from sfm.models import WorkItemCreate, Project, CommitCreate, WorkItem, WorkItemUpdate from typing import List, Optional from sqlmodel import Session, select, and_ from fastapi import APIRouter, HTTPException, Depends, Path, Header, Request, Query from opencensus.ext.azure.log_exporter import AzureLogHandler from sfm.config import get_settings from sfm.logger import create_logger from .github_functions import ( webhook_project_processor, deployment_processor, pull_request_processor, populate_past_github, defect_processor, reopened_processor, unlabeled_processor, ) app_settings = get_settings() logger = create_logger(__name__) router = APIRouter() def fetch_github_payload(request): raw = request.body() signature = request.headers.get("X-Hub-Signature-256") proj_auth_token = validate_signature(signature, raw) payload = request.json() event_type = request.headers.get("X-Github-Event") return payload, event_type, proj_auth_token @router.post("/github_webhooks/") # pragma: no cover async def webhook_handler(request: Request, db: Session = Depends(get_db)): """ ## Github Webhook Handler Awaits incoming payload from Github Webhooks and parses the data. Currently, endpoint processes two different event types: "Deployment" and "Pull Request". The payload data is parsed and data needed to calculate the DORA metrics is stored in the db tables. """ if app_settings.GITHUB_WEBHOOK_SECRET in ["", "XXXXXXXXXXX"]: raise HTTPException( status_code=412, detail="Missing github webhook secret. Please specify GITHUB_WEBHOOK_SECRET and try again", ) # if app_settings.ENV != "test": payload, event_type, proj_auth_token = fetch_github_payload(request) # gather common payload object properties if event_type != "push": # push events are the exception to common properties repository = payload.get("repository") else: # TODO: pull in push event information pass if event_type != "repository": project_name = repository.get("name") print("THE PROJECT NAME: ", project_name) project_db = db.exec( select(Project).where(Project.name == project_name) ).first() if not project_db: logger.debug("A matching project was not found in the database") raise HTTPException( status_code=404, detail="Matching project not found in db" ) if event_type == "repository": action = payload.get("action") webhook_project_processor(db, repository, action) elif event_type == "deployment": deployment = payload.get("deployment") deployment_processor(db, deployment, project_db, proj_auth_token) elif event_type == "pull_request": pull_request = payload.get("pull_request") if ( pull_request["head"]["repo"]["default_branch"] == "main" ): # process only pull requests to main pull_request_processor(db, pull_request, project_db, proj_auth_token) elif event_type == "issues": action = payload.get("action") issue = payload.get("issue") if action == "closed": defect_processor(db, issue, project_db, proj_auth_token, closed=True) elif action == "labeled" and "production defect" in [ lbl["name"] for lbl in issue["labels"] ]: defect_processor(db, issue, project_db, proj_auth_token, closed=False) elif action == "reopened": reopened_processor(db, issue, proj_auth_token) elif action == "unlabeled" and "production defect" not in [ lbl["name"] for lbl in issue["labels"] ]: unlabeled_processor(db, issue, proj_auth_token) else: logger.debug("Issues event type passed that is unhandled") else: logger.warning("Event type not handled") return {"code": "event type not handled"} # raise HTTPException(status_code=404, detail="Event type not handled.") return {"code": "success"} @router.get("/github_populate") def populate_past_data( org: str, db: Session = Depends(get_db), include_only_list: Optional[List[str]] = Query(None), ): """ ## Github Backpopulate Queries the GitHub API to populate projects and work items that already exist in specified repos. "include_only_list" is a list of repo names (as strings) that you wish use to populate the database. If "include_only_list" is populated, only projects in this list will be populated """ proj_intended_not_found = populate_past_github(db, org, include_only_list) in_database = db.exec(select(Project)).all() proj_name_in_db = [proj.name for proj in in_database] not_found_projects = [] if include_only_list is not None: for repo in include_only_list: if repo not in proj_name_in_db: not_found_projects.append(repo) if proj_intended_not_found != [] or not_found_projects != []: # pragma: no cover included_projects = [] for proj in include_only_list: if proj not in proj_intended_not_found and proj in proj_name_in_db: included_projects.append(proj) return { "projects_included": included_projects, "projects_not_included": proj_intended_not_found, "project_not_found": not_found_projects, } else: return {"code": "success"}
[ "sqlmodel.select" ]
[((721, 735), 'sfm.config.get_settings', 'get_settings', ([], {}), '()\n', (733, 735), False, 'from sfm.config import get_settings\n'), ((747, 770), 'sfm.logger.create_logger', 'create_logger', (['__name__'], {}), '(__name__)\n', (760, 770), False, 'from sfm.logger import create_logger\n'), ((782, 793), 'fastapi.APIRouter', 'APIRouter', ([], {}), '()\n', (791, 793), False, 'from fastapi import APIRouter, HTTPException, Depends, Path, Header, Request, Query\n'), ((937, 971), 'sfm.utils.validate_signature', 'validate_signature', (['signature', 'raw'], {}), '(signature, raw)\n', (955, 971), False, 'from sfm.utils import validate_signature, calc_signature\n'), ((1221, 1236), 'fastapi.Depends', 'Depends', (['get_db'], {}), '(get_db)\n', (1228, 1236), False, 'from fastapi import APIRouter, HTTPException, Depends, Path, Header, Request, Query\n'), ((4325, 4340), 'fastapi.Depends', 'Depends', (['get_db'], {}), '(get_db)\n', (4332, 4340), False, 'from fastapi import APIRouter, HTTPException, Depends, Path, Header, Request, Query\n'), ((4387, 4398), 'fastapi.Query', 'Query', (['None'], {}), '(None)\n', (4392, 4398), False, 'from fastapi import APIRouter, HTTPException, Depends, Path, Header, Request, Query\n'), ((1636, 1768), 'fastapi.HTTPException', 'HTTPException', ([], {'status_code': '(412)', 'detail': '"""Missing github webhook secret. Please specify GITHUB_WEBHOOK_SECRET and try again"""'}), "(status_code=412, detail=\n 'Missing github webhook secret. Please specify GITHUB_WEBHOOK_SECRET and try again'\n )\n", (1649, 1768), False, 'from fastapi import APIRouter, HTTPException, Depends, Path, Header, Request, Query\n'), ((2513, 2586), 'fastapi.HTTPException', 'HTTPException', ([], {'status_code': '(404)', 'detail': '"""Matching project not found in db"""'}), "(status_code=404, detail='Matching project not found in db')\n", (2526, 2586), False, 'from fastapi import APIRouter, HTTPException, Depends, Path, Header, Request, Query\n'), ((4846, 4861), 'sqlmodel.select', 'select', (['Project'], {}), '(Project)\n', (4852, 4861), False, 'from sqlmodel import Session, select, and_\n'), ((2320, 2335), 'sqlmodel.select', 'select', (['Project'], {}), '(Project)\n', (2326, 2335), False, 'from sqlmodel import Session, select, and_\n')]
from pydantic.types import Optional from sqlmodel import Field, Relationship, SQLModel from api.public.team.models import Team class HeroBase(SQLModel): name: str secret_name: str age: Optional[int] = None team_id: Optional[int] = Field(default=None, foreign_key="team.id") class Config: schema_extra = { "example": { "id": 1, "name": "<NAME>", "secret_name": "<NAME>", "age": 27, "team_id": 1, } } class Hero(HeroBase, table=True): id: Optional[int] = Field(default=None, primary_key=True) team: Optional[Team] = Relationship(back_populates="heroes") class HeroCreate(HeroBase): pass class HeroRead(HeroBase): id: int class HeroUpdate(HeroBase): name: Optional[str] = None secret_name: Optional[str] = None age: Optional[int] = None team_id: Optional[int] = None class Config: schema_extra = { "example": { "name": "<NAME>", "secret_name": "<NAME>", "age": 27, "team_id": 1, } }
[ "sqlmodel.Relationship", "sqlmodel.Field" ]
[((251, 293), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'foreign_key': '"""team.id"""'}), "(default=None, foreign_key='team.id')\n", (256, 293), False, 'from sqlmodel import Field, Relationship, SQLModel\n'), ((604, 641), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'primary_key': '(True)'}), '(default=None, primary_key=True)\n', (609, 641), False, 'from sqlmodel import Field, Relationship, SQLModel\n'), ((670, 707), 'sqlmodel.Relationship', 'Relationship', ([], {'back_populates': '"""heroes"""'}), "(back_populates='heroes')\n", (682, 707), False, 'from sqlmodel import Field, Relationship, SQLModel\n')]
from typing import Optional from sqlmodel import Field, Session, SQLModel, create_engine class Hero(SQLModel, table=True): id: Optional[int] = Field(default=None, primary_key=True) name: str secret_name: str age: Optional[int] = None sqlite_file_name = "database.db" sqlite_url = f"sqlite:///{sqlite_file_name}" engine = create_engine(sqlite_url, echo=True) def create_db_and_tables(): SQLModel.metadata.create_all(engine) def create_heroes(): hero_1 = Hero(name="Deadpond", secret_name="<NAME>") hero_2 = Hero(name="Spider-Boy", secret_name="<NAME>") hero_3 = Hero(name="Rusty-Man", secret_name="<NAME>", age=48) print("Before interacting with the database") print("Hero 1:", hero_1) print("Hero 2:", hero_2) print("Hero 3:", hero_3) with Session(engine) as session: session.add(hero_1) session.add(hero_2) session.add(hero_3) print("After adding to the session") print("Hero 1:", hero_1) print("Hero 2:", hero_2) print("Hero 3:", hero_3) session.commit() print("After committing the session") print("Hero 1:", hero_1) print("Hero 2:", hero_2) print("Hero 3:", hero_3) print("After committing the session, show IDs") print("Hero 1 ID:", hero_1.id) print("Hero 2 ID:", hero_2.id) print("Hero 3 ID:", hero_3.id) print("After committing the session, show names") print("Hero 1 name:", hero_1.name) print("Hero 2 name:", hero_2.name) print("Hero 3 name:", hero_3.name) session.refresh(hero_1) session.refresh(hero_2) session.refresh(hero_3) print("After refreshing the heroes") print("Hero 1:", hero_1) print("Hero 2:", hero_2) print("Hero 3:", hero_3) print("After the session closes") print("Hero 1:", hero_1) print("Hero 2:", hero_2) print("Hero 3:", hero_3) def main(): create_db_and_tables() create_heroes() if __name__ == "__main__": main()
[ "sqlmodel.Session", "sqlmodel.SQLModel.metadata.create_all", "sqlmodel.create_engine", "sqlmodel.Field" ]
[((343, 379), 'sqlmodel.create_engine', 'create_engine', (['sqlite_url'], {'echo': '(True)'}), '(sqlite_url, echo=True)\n', (356, 379), False, 'from sqlmodel import Field, Session, SQLModel, create_engine\n'), ((150, 187), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'primary_key': '(True)'}), '(default=None, primary_key=True)\n', (155, 187), False, 'from sqlmodel import Field, Session, SQLModel, create_engine\n'), ((414, 450), 'sqlmodel.SQLModel.metadata.create_all', 'SQLModel.metadata.create_all', (['engine'], {}), '(engine)\n', (442, 450), False, 'from sqlmodel import Field, Session, SQLModel, create_engine\n'), ((804, 819), 'sqlmodel.Session', 'Session', (['engine'], {}), '(engine)\n', (811, 819), False, 'from sqlmodel import Field, Session, SQLModel, create_engine\n')]
from fastapi.exceptions import HTTPException import pytest from sqlmodel import select, Session from sqlmodel.main import SQLModel from sfm.routes.projects import crud from tests.conftest import hashed_token1, hashed_token2 from sfm.models import Project, ProjectCreate, ProjectUpdate # get_all def test_get_all(db, session: Session): """test that the crud function works as expected""" response = crud.get_all(db) assert response is not None assert response[0].name == "Test Project 1" assert response[0].lead_name == "<NAME>" assert response[0].lead_email == "<EMAIL>" assert response[0].description == "A test project for testing" assert response[0].location == "Strangeville" assert response[0].repo_url == "github.com/starkEnterprises" assert response[0].on_prem is False assert response[0].project_auth_token_hashed == hashed_token1 assert response[1].name == "Test Project 2" assert response[1].lead_name == "<NAME>" assert response[1].lead_email == "<EMAIL>" assert response[1].description == "A second test project for testing" assert response[1].location == "Kohler" assert response[1].repo_url == "github.com/pgaGolf" assert response[1].on_prem is False assert response[1].project_auth_token_hashed == hashed_token2 """ Test that the function raises an error when there are no projects in the table """ session.delete(session.get(Project, 1)) session.delete(session.get(Project, 2)) session.commit() # SQLModel.metadata.drop_all(engine) with pytest.raises(Exception) as ex: crud.get_all(db) assert ex.value.message == "Projects not found" # get_by_id def test_get_by_id(db): """test that the crud function works as expected""" response = crud.get_by_id(db, project_id=1) assert response is not None assert response.name == "Test Project 1" assert response.lead_name == "<NAME>" assert response.lead_email == "<EMAIL>" assert response.description == "A test project for testing" assert response.location == "Strangeville" assert response.repo_url == "github.com/starkEnterprises" assert response.on_prem is False assert response.project_auth_token_hashed == hashed_token1 """ Testing that the crud function raises exception when the project does with matching id does not exist in DB """ with pytest.raises(Exception) as ex: crud.get_by_id(db, project_id=15) assert ex.value.message == "Project not found" # create_project def test_create(db): """Testing that the project works as expected""" project_data = ProjectCreate( **{ "name": "Test Project 3", "lead_name": "<NAME>", "lead_email": "<EMAIL>", "description": "A test project for testing creation", "location": "Bikini Gotham", "repo_url": "github.com/crustyEnterprises", "on_prem": True, } ) response = crud.create_project(db, project_data, admin_key="admin_key") assert len(response) == 2 assert response[0].name == "Test Project 3" assert response[0].lead_name == "<NAME>" assert response[0].lead_email == "<EMAIL>" assert response[0].description == "A test project for testing creation" assert response[0].location == "Bikini Gotham" assert response[0].repo_url == "github.com/crustyEnterprises" assert response[0].on_prem is True assert response[0].project_auth_token_hashed is not None """ Testing that the function raises an error if the project name already exists in the database """ with pytest.raises(Exception) as ex: response = crud.create_project(db, project_data, admin_key="admin_key") assert ex.value.message == "Database entry already exists" """ Testing that the project raises an exception when the admin_key is incorrect """ with pytest.raises(Exception) as ex: crud.create_project(db, project_data, admin_key="Shmadmin_key") assert ex.value.message == "Credentials are incorrect" # delete_project def test_delete_project(db): """Testing that the crud function works as expected""" response = crud.delete_project(db, project_id=1, admin_key="admin_key") assert response is True projects = db.exec(select(Project)).all() for project in projects: assert project.id != 1 """ Testing that the crud function raises an exception when the project with matching id does not exist in the database """ with pytest.raises(Exception) as ex: crud.delete_project(db, project_id=15, admin_key="admin_key") assert ex.value.message == "Project not found" """ Testing that the project raises an exception when the admin_key is incorrect """ with pytest.raises(Exception) as ex: crud.delete_project(db, project_id=1, admin_key="Shmadmin_key") assert ex.value.message == "Credentials are incorrect" # refresh_project_key def test_refresh_project_key(db): """Testing that the crud function works as expected""" response = crud.refresh_project_key(db, project_id=1, admin_key="admin_key") assert response is not False assert response != "Catalyst" # testing that refreshing key did not change project details project_test = db.get(Project, 1) assert project_test.name == "Test Project 1" assert project_test.lead_name == "<NAME>" assert project_test.lead_email == "<EMAIL>" assert project_test.description == "A test project for testing" assert project_test.location == "Strangeville" assert project_test.repo_url == "github.com/starkEnterprises" assert project_test.on_prem is False """ Testing that the crud function raises an exception when the project with matching id does not exist in the database """ with pytest.raises(Exception) as ex: crud.refresh_project_key(db, project_id=15, admin_key="admin_key") assert ex.value.message == "Project not found" """ Testing that the project raises an exception when the admin_key is incorrect """ with pytest.raises(Exception) as ex: crud.refresh_project_key(db, project_id=1, admin_key="Shmadmin_key") assert ex.value.message == "Credentials are incorrect" # update_project def test_update_project(db): """Testing that the project works as expected""" update_dict = { "name": "New Test Project 1", "lead_name": "Strong Squid", "repo_url": "github.com/SquidEnterprises", } # vvv causes unset params to become default (exclude_unset didnt help) updated_project = ProjectUpdate(**update_dict) response = crud.update_project( db, project_id=1, project_data=updated_project, admin_key="admin_key" ) assert response is not None assert response.name == "New Test Project 1" assert response.lead_name == "Strong Squid" assert response.lead_email == "<EMAIL>" assert response.description == "A test project for testing" assert response.location == "Strangeville" assert response.repo_url == "github.com/SquidEnterprises" assert response.on_prem is False assert response.project_auth_token_hashed == hashed_token1 """ Testing that the crud function raises an exception when the project with matching id does not exist in the database """ with pytest.raises(Exception) as ex: crud.update_project( db, project_id=15, project_data="placeholder", admin_key="admin_key", ) assert ex.value.message == "Project not found" """ Testing that the project raises an exception when the admin_key is incorrect """ with pytest.raises(Exception) as ex: crud.update_project( db, project_id=1, project_data="placeholder", admin_key="Shmadmin_key", ) assert ex.value.message == "Credentials are incorrect"
[ "sqlmodel.select" ]
[((409, 425), 'sfm.routes.projects.crud.get_all', 'crud.get_all', (['db'], {}), '(db)\n', (421, 425), False, 'from sfm.routes.projects import crud\n'), ((1792, 1824), 'sfm.routes.projects.crud.get_by_id', 'crud.get_by_id', (['db'], {'project_id': '(1)'}), '(db, project_id=1)\n', (1806, 1824), False, 'from sfm.routes.projects import crud\n'), ((2644, 2891), 'sfm.models.ProjectCreate', 'ProjectCreate', ([], {}), "(**{'name': 'Test Project 3', 'lead_name': '<NAME>',\n 'lead_email': '<EMAIL>', 'description':\n 'A test project for testing creation', 'location': 'Bikini Gotham',\n 'repo_url': 'github.com/crustyEnterprises', 'on_prem': True})\n", (2657, 2891), False, 'from sfm.models import Project, ProjectCreate, ProjectUpdate\n'), ((3005, 3065), 'sfm.routes.projects.crud.create_project', 'crud.create_project', (['db', 'project_data'], {'admin_key': '"""admin_key"""'}), "(db, project_data, admin_key='admin_key')\n", (3024, 3065), False, 'from sfm.routes.projects import crud\n'), ((4236, 4296), 'sfm.routes.projects.crud.delete_project', 'crud.delete_project', (['db'], {'project_id': '(1)', 'admin_key': '"""admin_key"""'}), "(db, project_id=1, admin_key='admin_key')\n", (4255, 4296), False, 'from sfm.routes.projects import crud\n'), ((5148, 5213), 'sfm.routes.projects.crud.refresh_project_key', 'crud.refresh_project_key', (['db'], {'project_id': '(1)', 'admin_key': '"""admin_key"""'}), "(db, project_id=1, admin_key='admin_key')\n", (5172, 5213), False, 'from sfm.routes.projects import crud\n'), ((6699, 6727), 'sfm.models.ProjectUpdate', 'ProjectUpdate', ([], {}), '(**update_dict)\n', (6712, 6727), False, 'from sfm.models import Project, ProjectCreate, ProjectUpdate\n'), ((6743, 6837), 'sfm.routes.projects.crud.update_project', 'crud.update_project', (['db'], {'project_id': '(1)', 'project_data': 'updated_project', 'admin_key': '"""admin_key"""'}), "(db, project_id=1, project_data=updated_project,\n admin_key='admin_key')\n", (6762, 6837), False, 'from sfm.routes.projects import crud\n'), ((1570, 1594), 'pytest.raises', 'pytest.raises', (['Exception'], {}), '(Exception)\n', (1583, 1594), False, 'import pytest\n'), ((1610, 1626), 'sfm.routes.projects.crud.get_all', 'crud.get_all', (['db'], {}), '(db)\n', (1622, 1626), False, 'from sfm.routes.projects import crud\n'), ((2403, 2427), 'pytest.raises', 'pytest.raises', (['Exception'], {}), '(Exception)\n', (2416, 2427), False, 'import pytest\n'), ((2443, 2476), 'sfm.routes.projects.crud.get_by_id', 'crud.get_by_id', (['db'], {'project_id': '(15)'}), '(db, project_id=15)\n', (2457, 2476), False, 'from sfm.routes.projects import crud\n'), ((3657, 3681), 'pytest.raises', 'pytest.raises', (['Exception'], {}), '(Exception)\n', (3670, 3681), False, 'import pytest\n'), ((3708, 3768), 'sfm.routes.projects.crud.create_project', 'crud.create_project', (['db', 'project_data'], {'admin_key': '"""admin_key"""'}), "(db, project_data, admin_key='admin_key')\n", (3727, 3768), False, 'from sfm.routes.projects import crud\n'), ((3947, 3971), 'pytest.raises', 'pytest.raises', (['Exception'], {}), '(Exception)\n', (3960, 3971), False, 'import pytest\n'), ((3987, 4050), 'sfm.routes.projects.crud.create_project', 'crud.create_project', (['db', 'project_data'], {'admin_key': '"""Shmadmin_key"""'}), "(db, project_data, admin_key='Shmadmin_key')\n", (4006, 4050), False, 'from sfm.routes.projects import crud\n'), ((4581, 4605), 'pytest.raises', 'pytest.raises', (['Exception'], {}), '(Exception)\n', (4594, 4605), False, 'import pytest\n'), ((4621, 4682), 'sfm.routes.projects.crud.delete_project', 'crud.delete_project', (['db'], {'project_id': '(15)', 'admin_key': '"""admin_key"""'}), "(db, project_id=15, admin_key='admin_key')\n", (4640, 4682), False, 'from sfm.routes.projects import crud\n'), ((4849, 4873), 'pytest.raises', 'pytest.raises', (['Exception'], {}), '(Exception)\n', (4862, 4873), False, 'import pytest\n'), ((4889, 4952), 'sfm.routes.projects.crud.delete_project', 'crud.delete_project', (['db'], {'project_id': '(1)', 'admin_key': '"""Shmadmin_key"""'}), "(db, project_id=1, admin_key='Shmadmin_key')\n", (4908, 4952), False, 'from sfm.routes.projects import crud\n'), ((5904, 5928), 'pytest.raises', 'pytest.raises', (['Exception'], {}), '(Exception)\n', (5917, 5928), False, 'import pytest\n'), ((5944, 6010), 'sfm.routes.projects.crud.refresh_project_key', 'crud.refresh_project_key', (['db'], {'project_id': '(15)', 'admin_key': '"""admin_key"""'}), "(db, project_id=15, admin_key='admin_key')\n", (5968, 6010), False, 'from sfm.routes.projects import crud\n'), ((6177, 6201), 'pytest.raises', 'pytest.raises', (['Exception'], {}), '(Exception)\n', (6190, 6201), False, 'import pytest\n'), ((6217, 6285), 'sfm.routes.projects.crud.refresh_project_key', 'crud.refresh_project_key', (['db'], {'project_id': '(1)', 'admin_key': '"""Shmadmin_key"""'}), "(db, project_id=1, admin_key='Shmadmin_key')\n", (6241, 6285), False, 'from sfm.routes.projects import crud\n'), ((7445, 7469), 'pytest.raises', 'pytest.raises', (['Exception'], {}), '(Exception)\n', (7458, 7469), False, 'import pytest\n'), ((7485, 7578), 'sfm.routes.projects.crud.update_project', 'crud.update_project', (['db'], {'project_id': '(15)', 'project_data': '"""placeholder"""', 'admin_key': '"""admin_key"""'}), "(db, project_id=15, project_data='placeholder',\n admin_key='admin_key')\n", (7504, 7578), False, 'from sfm.routes.projects import crud\n'), ((7800, 7824), 'pytest.raises', 'pytest.raises', (['Exception'], {}), '(Exception)\n', (7813, 7824), False, 'import pytest\n'), ((7840, 7936), 'sfm.routes.projects.crud.update_project', 'crud.update_project', (['db'], {'project_id': '(1)', 'project_data': '"""placeholder"""', 'admin_key': '"""Shmadmin_key"""'}), "(db, project_id=1, project_data='placeholder', admin_key\n ='Shmadmin_key')\n", (7859, 7936), False, 'from sfm.routes.projects import crud\n'), ((4348, 4363), 'sqlmodel.select', 'select', (['Project'], {}), '(Project)\n', (4354, 4363), False, 'from sqlmodel import select, Session\n')]
from datetime import datetime try: from humps.main import depascalize from sqlalchemy import Column, DateTime from sqlalchemy.orm.decl_api import declared_attr from sqlmodel import Field, SQLModel except ImportError: raise RuntimeError( "SQLModel is not installed. Please install it with `pip install sqlmodel pyhumps`" ) class Model(SQLModel): """ Abstract model providing `id`, `date_created` and `date_updated` fields. And also automatic table naming to `snake_case`. """ id: int = Field(primary_key=True) date_created: datetime = Field(sa_column=Column(DateTime, default=datetime.utcnow)) date_updated: datetime = Field(sa_column=Column(DateTime, onupdate=datetime.utcnow)) @declared_attr def __tablename__(cls): """ Convert Pascal class name style to `snake_case` """ return depascalize(cls.__name__)
[ "sqlmodel.Field" ]
[((542, 565), 'sqlmodel.Field', 'Field', ([], {'primary_key': '(True)'}), '(primary_key=True)\n', (547, 565), False, 'from sqlmodel import Field, SQLModel\n'), ((886, 911), 'humps.main.depascalize', 'depascalize', (['cls.__name__'], {}), '(cls.__name__)\n', (897, 911), False, 'from humps.main import depascalize\n'), ((611, 652), 'sqlalchemy.Column', 'Column', (['DateTime'], {'default': 'datetime.utcnow'}), '(DateTime, default=datetime.utcnow)\n', (617, 652), False, 'from sqlalchemy import Column, DateTime\n'), ((699, 741), 'sqlalchemy.Column', 'Column', (['DateTime'], {'onupdate': 'datetime.utcnow'}), '(DateTime, onupdate=datetime.utcnow)\n', (705, 741), False, 'from sqlalchemy import Column, DateTime\n')]
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import megengine.functional as F import megengine.module as M import official.vision.classification.resnet.model as resnet class ASPP(M.Module): def __init__(self, in_channels, out_channels, dr=1): super().__init__() self.conv1 = M.Sequential( M.Conv2d( in_channels, out_channels, 1, 1, padding=0, dilation=dr, bias=False ), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv2 = M.Sequential( M.Conv2d( in_channels, out_channels, 3, 1, padding=6 * dr, dilation=6 * dr, bias=False, ), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv3 = M.Sequential( M.Conv2d( in_channels, out_channels, 3, 1, padding=12 * dr, dilation=12 * dr, bias=False, ), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv4 = M.Sequential( M.Conv2d( in_channels, out_channels, 3, 1, padding=18 * dr, dilation=18 * dr, bias=False, ), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv_gp = M.Sequential( M.Conv2d(in_channels, out_channels, 1, 1, 0, bias=False), M.BatchNorm2d(out_channels), M.ReLU(), ) self.conv_out = M.Sequential( M.Conv2d(out_channels * 5, out_channels, 1, 1, padding=0, bias=False), M.BatchNorm2d(out_channels), M.ReLU(), ) def forward(self, x): conv1 = self.conv1(x) conv31 = self.conv2(x) conv32 = self.conv3(x) conv33 = self.conv4(x) gp = F.mean(x, [2, 3], True) gp = self.conv_gp(gp) gp = F.nn.interpolate(gp, (x.shape[2], x.shape[3])) out = F.concat([conv1, conv31, conv32, conv33, gp], axis=1) out = self.conv_out(out) return out class DeepLabV3Plus(M.Module): def __init__(self, cfg): super().__init__() self.cfg = cfg self.output_stride = 16 self.sub_output_stride = self.output_stride // 4 self.num_classes = cfg.num_classes self.aspp = ASPP( in_channels=2048, out_channels=256, dr=16 // self.output_stride ) self.dropout = M.Dropout(0.5) self.upstage1 = M.Sequential( M.Conv2d(256, 48, 1, 1, padding=1 // 2, bias=False), M.BatchNorm2d(48), M.ReLU(), ) self.upstage2 = M.Sequential( M.Conv2d(256 + 48, 256, 3, 1, padding=1, bias=False), M.BatchNorm2d(256), M.ReLU(), M.Dropout(0.5), M.Conv2d(256, 256, 3, 1, padding=1, bias=False), M.BatchNorm2d(256), M.ReLU(), M.Dropout(0.1), ) self.conv_out = M.Conv2d(256, self.num_classes, 1, 1, padding=0) for m in self.modules(): if isinstance(m, M.Conv2d): M.init.msra_normal_(m.weight, mode="fan_out", nonlinearity="relu") elif isinstance(m, M.BatchNorm2d): M.init.ones_(m.weight) M.init.zeros_(m.bias) self.backbone = getattr(resnet, cfg.backbone)( replace_stride_with_dilation=[False, False, True], pretrained=cfg.backbone_pretrained, ) del self.backbone.fc def forward(self, x): layers = self.backbone.extract_features(x) up0 = self.aspp(layers["res5"]) up0 = self.dropout(up0) up0 = F.nn.interpolate(up0, scale_factor=self.sub_output_stride) up1 = self.upstage1(layers["res2"]) up1 = F.concat([up0, up1], 1) up2 = self.upstage2(up1) out = self.conv_out(up2) out = F.nn.interpolate(out, scale_factor=4) return out
[ "megengine.module.ReLU", "megengine.module.init.ones_", "megengine.module.init.msra_normal_", "megengine.functional.nn.interpolate", "megengine.module.init.zeros_", "megengine.module.Conv2d", "megengine.functional.mean", "megengine.module.Dropout", "megengine.module.BatchNorm2d", "megengine.functional.concat" ]
[((2386, 2409), 'megengine.functional.mean', 'F.mean', (['x', '[2, 3]', '(True)'], {}), '(x, [2, 3], True)\n', (2392, 2409), True, 'import megengine.functional as F\n'), ((2453, 2499), 'megengine.functional.nn.interpolate', 'F.nn.interpolate', (['gp', '(x.shape[2], x.shape[3])'], {}), '(gp, (x.shape[2], x.shape[3]))\n', (2469, 2499), True, 'import megengine.functional as F\n'), ((2515, 2568), 'megengine.functional.concat', 'F.concat', (['[conv1, conv31, conv32, conv33, gp]'], {'axis': '(1)'}), '([conv1, conv31, conv32, conv33, gp], axis=1)\n', (2523, 2568), True, 'import megengine.functional as F\n'), ((3002, 3016), 'megengine.module.Dropout', 'M.Dropout', (['(0.5)'], {}), '(0.5)\n', (3011, 3016), True, 'import megengine.module as M\n'), ((3548, 3596), 'megengine.module.Conv2d', 'M.Conv2d', (['(256)', 'self.num_classes', '(1)', '(1)'], {'padding': '(0)'}), '(256, self.num_classes, 1, 1, padding=0)\n', (3556, 3596), True, 'import megengine.module as M\n'), ((4249, 4307), 'megengine.functional.nn.interpolate', 'F.nn.interpolate', (['up0'], {'scale_factor': 'self.sub_output_stride'}), '(up0, scale_factor=self.sub_output_stride)\n', (4265, 4307), True, 'import megengine.functional as F\n'), ((4367, 4390), 'megengine.functional.concat', 'F.concat', (['[up0, up1]', '(1)'], {}), '([up0, up1], 1)\n', (4375, 4390), True, 'import megengine.functional as F\n'), ((4473, 4510), 'megengine.functional.nn.interpolate', 'F.nn.interpolate', (['out'], {'scale_factor': '(4)'}), '(out, scale_factor=4)\n', (4489, 4510), True, 'import megengine.functional as F\n'), ((657, 734), 'megengine.module.Conv2d', 'M.Conv2d', (['in_channels', 'out_channels', '(1)', '(1)'], {'padding': '(0)', 'dilation': 'dr', 'bias': '(False)'}), '(in_channels, out_channels, 1, 1, padding=0, dilation=dr, bias=False)\n', (665, 734), True, 'import megengine.module as M\n'), ((778, 805), 'megengine.module.BatchNorm2d', 'M.BatchNorm2d', (['out_channels'], {}), '(out_channels)\n', (791, 805), True, 'import megengine.module as M\n'), ((819, 827), 'megengine.module.ReLU', 'M.ReLU', ([], {}), '()\n', (825, 827), True, 'import megengine.module as M\n'), ((886, 976), 'megengine.module.Conv2d', 'M.Conv2d', (['in_channels', 'out_channels', '(3)', '(1)'], {'padding': '(6 * dr)', 'dilation': '(6 * dr)', 'bias': '(False)'}), '(in_channels, out_channels, 3, 1, padding=6 * dr, dilation=6 * dr,\n bias=False)\n', (894, 976), True, 'import megengine.module as M\n'), ((1113, 1140), 'megengine.module.BatchNorm2d', 'M.BatchNorm2d', (['out_channels'], {}), '(out_channels)\n', (1126, 1140), True, 'import megengine.module as M\n'), ((1154, 1162), 'megengine.module.ReLU', 'M.ReLU', ([], {}), '()\n', (1160, 1162), True, 'import megengine.module as M\n'), ((1221, 1313), 'megengine.module.Conv2d', 'M.Conv2d', (['in_channels', 'out_channels', '(3)', '(1)'], {'padding': '(12 * dr)', 'dilation': '(12 * dr)', 'bias': '(False)'}), '(in_channels, out_channels, 3, 1, padding=12 * dr, dilation=12 * dr,\n bias=False)\n', (1229, 1313), True, 'import megengine.module as M\n'), ((1450, 1477), 'megengine.module.BatchNorm2d', 'M.BatchNorm2d', (['out_channels'], {}), '(out_channels)\n', (1463, 1477), True, 'import megengine.module as M\n'), ((1491, 1499), 'megengine.module.ReLU', 'M.ReLU', ([], {}), '()\n', (1497, 1499), True, 'import megengine.module as M\n'), ((1558, 1650), 'megengine.module.Conv2d', 'M.Conv2d', (['in_channels', 'out_channels', '(3)', '(1)'], {'padding': '(18 * dr)', 'dilation': '(18 * dr)', 'bias': '(False)'}), '(in_channels, out_channels, 3, 1, padding=18 * dr, dilation=18 * dr,\n bias=False)\n', (1566, 1650), True, 'import megengine.module as M\n'), ((1787, 1814), 'megengine.module.BatchNorm2d', 'M.BatchNorm2d', (['out_channels'], {}), '(out_channels)\n', (1800, 1814), True, 'import megengine.module as M\n'), ((1828, 1836), 'megengine.module.ReLU', 'M.ReLU', ([], {}), '()\n', (1834, 1836), True, 'import megengine.module as M\n'), ((1897, 1953), 'megengine.module.Conv2d', 'M.Conv2d', (['in_channels', 'out_channels', '(1)', '(1)', '(0)'], {'bias': '(False)'}), '(in_channels, out_channels, 1, 1, 0, bias=False)\n', (1905, 1953), True, 'import megengine.module as M\n'), ((1967, 1994), 'megengine.module.BatchNorm2d', 'M.BatchNorm2d', (['out_channels'], {}), '(out_channels)\n', (1980, 1994), True, 'import megengine.module as M\n'), ((2008, 2016), 'megengine.module.ReLU', 'M.ReLU', ([], {}), '()\n', (2014, 2016), True, 'import megengine.module as M\n'), ((2078, 2147), 'megengine.module.Conv2d', 'M.Conv2d', (['(out_channels * 5)', 'out_channels', '(1)', '(1)'], {'padding': '(0)', 'bias': '(False)'}), '(out_channels * 5, out_channels, 1, 1, padding=0, bias=False)\n', (2086, 2147), True, 'import megengine.module as M\n'), ((2161, 2188), 'megengine.module.BatchNorm2d', 'M.BatchNorm2d', (['out_channels'], {}), '(out_channels)\n', (2174, 2188), True, 'import megengine.module as M\n'), ((2202, 2210), 'megengine.module.ReLU', 'M.ReLU', ([], {}), '()\n', (2208, 2210), True, 'import megengine.module as M\n'), ((3068, 3119), 'megengine.module.Conv2d', 'M.Conv2d', (['(256)', '(48)', '(1)', '(1)'], {'padding': '(1 // 2)', 'bias': '(False)'}), '(256, 48, 1, 1, padding=1 // 2, bias=False)\n', (3076, 3119), True, 'import megengine.module as M\n'), ((3133, 3150), 'megengine.module.BatchNorm2d', 'M.BatchNorm2d', (['(48)'], {}), '(48)\n', (3146, 3150), True, 'import megengine.module as M\n'), ((3164, 3172), 'megengine.module.ReLU', 'M.ReLU', ([], {}), '()\n', (3170, 3172), True, 'import megengine.module as M\n'), ((3235, 3287), 'megengine.module.Conv2d', 'M.Conv2d', (['(256 + 48)', '(256)', '(3)', '(1)'], {'padding': '(1)', 'bias': '(False)'}), '(256 + 48, 256, 3, 1, padding=1, bias=False)\n', (3243, 3287), True, 'import megengine.module as M\n'), ((3301, 3319), 'megengine.module.BatchNorm2d', 'M.BatchNorm2d', (['(256)'], {}), '(256)\n', (3314, 3319), True, 'import megengine.module as M\n'), ((3333, 3341), 'megengine.module.ReLU', 'M.ReLU', ([], {}), '()\n', (3339, 3341), True, 'import megengine.module as M\n'), ((3355, 3369), 'megengine.module.Dropout', 'M.Dropout', (['(0.5)'], {}), '(0.5)\n', (3364, 3369), True, 'import megengine.module as M\n'), ((3383, 3430), 'megengine.module.Conv2d', 'M.Conv2d', (['(256)', '(256)', '(3)', '(1)'], {'padding': '(1)', 'bias': '(False)'}), '(256, 256, 3, 1, padding=1, bias=False)\n', (3391, 3430), True, 'import megengine.module as M\n'), ((3444, 3462), 'megengine.module.BatchNorm2d', 'M.BatchNorm2d', (['(256)'], {}), '(256)\n', (3457, 3462), True, 'import megengine.module as M\n'), ((3476, 3484), 'megengine.module.ReLU', 'M.ReLU', ([], {}), '()\n', (3482, 3484), True, 'import megengine.module as M\n'), ((3498, 3512), 'megengine.module.Dropout', 'M.Dropout', (['(0.1)'], {}), '(0.1)\n', (3507, 3512), True, 'import megengine.module as M\n'), ((3687, 3753), 'megengine.module.init.msra_normal_', 'M.init.msra_normal_', (['m.weight'], {'mode': '"""fan_out"""', 'nonlinearity': '"""relu"""'}), "(m.weight, mode='fan_out', nonlinearity='relu')\n", (3706, 3753), True, 'import megengine.module as M\n'), ((3817, 3839), 'megengine.module.init.ones_', 'M.init.ones_', (['m.weight'], {}), '(m.weight)\n', (3829, 3839), True, 'import megengine.module as M\n'), ((3856, 3877), 'megengine.module.init.zeros_', 'M.init.zeros_', (['m.bias'], {}), '(m.bias)\n', (3869, 3877), True, 'import megengine.module as M\n')]
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import numpy as np import pytest from helpers import MLP import megengine._internal as mgb import megengine.functional as F from megengine.core import Graph from megengine.module import Linear, Module from megengine.optimizer import SGD from megengine.test import assertTensorClose def test_compile_multi_times_eager(): return # XXX: rewrite or remove this test data = Input("data", shape=(2, 28)) label = Input("label", shape=(2,), dtype=np.int32) mlp = MLP() opt = SGD(mlp.parameters(requires_grad=True), lr=0.01) pred0 = mlp(data) pred = F.softmax(pred0) loss = F.square_loss(pred, label.reshape(2, 1)) opt.zero_grad() grads = opt.backward(loss) opt.step() f0 = compile(pred, None) f1 = compile([pred, loss], grads, copy=False) for _ in range(3): data = np.random.random((2, 28)).astype(np.float32) label = np.random.randint(0, 10, (2,)).astype(np.float32) out0 = f0(data=data) out1 = f1(data=data, label=label) assertTensorClose(out0[0], out1[0]) def test_compile_multi_times_static(): return # XXX: rewrite or remove this test with Graph() as cg: cg.set_option("eager_evaluation", False) data = Input("data", shape=(2, 28)) label = Input("label", shape=(2,), dtype=np.int32) mlp = MLP() opt = SGD(mlp.parameters(requires_grad=True), lr=0.01) pred0 = mlp(data) pred = F.softmax(pred0) loss = F.square_loss(pred, label.reshape(2, 1)) opt.zero_grad() grads = opt.backward(loss) opt.step() f0 = compile(pred, None) f1 = compile([pred, loss], grads, copy=True) data = np.random.random((2, 28)).astype(np.float32) label = np.random.randint(0, 10, (2,)).astype(np.float32) out0 = f0(data=data) out1 = f1(data=data, label=label) assertTensorClose(out0[0], out1[0]) _ = compile([pred, loss], grads, copy=False) with pytest.raises(mgb.MegBrainError): f0(data=data)
[ "megengine.test.assertTensorClose", "megengine.core.Graph", "megengine.functional.softmax" ]
[((853, 858), 'helpers.MLP', 'MLP', ([], {}), '()\n', (856, 858), False, 'from helpers import MLP\n'), ((952, 968), 'megengine.functional.softmax', 'F.softmax', (['pred0'], {}), '(pred0)\n', (961, 968), True, 'import megengine.functional as F\n'), ((1395, 1430), 'megengine.test.assertTensorClose', 'assertTensorClose', (['out0[0]', 'out1[0]'], {}), '(out0[0], out1[0])\n', (1412, 1430), False, 'from megengine.test import assertTensorClose\n'), ((1528, 1535), 'megengine.core.Graph', 'Graph', ([], {}), '()\n', (1533, 1535), False, 'from megengine.core import Graph\n'), ((1710, 1715), 'helpers.MLP', 'MLP', ([], {}), '()\n', (1713, 1715), False, 'from helpers import MLP\n'), ((1821, 1837), 'megengine.functional.softmax', 'F.softmax', (['pred0'], {}), '(pred0)\n', (1830, 1837), True, 'import megengine.functional as F\n'), ((2265, 2300), 'megengine.test.assertTensorClose', 'assertTensorClose', (['out0[0]', 'out1[0]'], {}), '(out0[0], out1[0])\n', (2282, 2300), False, 'from megengine.test import assertTensorClose\n'), ((2368, 2400), 'pytest.raises', 'pytest.raises', (['mgb.MegBrainError'], {}), '(mgb.MegBrainError)\n', (2381, 2400), False, 'import pytest\n'), ((1205, 1230), 'numpy.random.random', 'np.random.random', (['(2, 28)'], {}), '((2, 28))\n', (1221, 1230), True, 'import numpy as np\n'), ((1266, 1296), 'numpy.random.randint', 'np.random.randint', (['(0)', '(10)', '(2,)'], {}), '(0, 10, (2,))\n', (1283, 1296), True, 'import numpy as np\n'), ((2075, 2100), 'numpy.random.random', 'np.random.random', (['(2, 28)'], {}), '((2, 28))\n', (2091, 2100), True, 'import numpy as np\n'), ((2136, 2166), 'numpy.random.randint', 'np.random.randint', (['(0)', '(10)', '(2,)'], {}), '(0, 10, (2,))\n', (2153, 2166), True, 'import numpy as np\n')]
# Creare connessioni tra tabelle M:N (many to many): Product e Tags # https://sqlmodel.tiangolo.com/tutorial/many-to-many/ # e seguito from typing import Optional, List from sqlmodel import Field, SQLModel, Session,\ Relationship, create_engine, select # Tabella di associazione tra Tag e Product class TagProductLink(SQLModel, table=True): tag_id: Optional[int] = Field( default=None, foreign_key="tag.id", primary_key=True ) product_id: Optional[int] = Field( default=None, foreign_key="product.id", primary_key=True ) class Tag(SQLModel, table=True): id: Optional[int] = Field(default=None, primary_key=True) name: str # Relazione many con Product products: List["Product"] =\ Relationship(back_populates="tags", link_model=TagProductLink) class ProductType(SQLModel, table=True): id: Optional[int] = Field(default=None, primary_key=True) name: str class Product(SQLModel, table=True): id: Optional[int] = Field(default=None, primary_key=True) name: str product_type: Optional[int] = Field(default=None, foreign_key="producttype.id") # Relazione many con Tag tags: List["Tag"] =\ Relationship(back_populates="products", link_model=TagProductLink) sqlite_file_name = "database.db" sqlite_url = f"sqlite:///{sqlite_file_name}" engine = create_engine(sqlite_url, echo=True) def create_db_and_tables(): SQLModel.metadata.create_all(engine) def create_entities(): tag_offerta = Tag(name="Offerta") tag_maionese = Tag(name="Con Maionese") tag_no_maionese = Tag(name="Senza Maionese") tipo_panino = ProductType(name="panino") tipo_bibita = ProductType(name="bibita") with Session(engine) as session: session.add(tag_offerta) session.add(tag_maionese) session.add(tag_no_maionese) session.add(tipo_panino) session.add(tipo_bibita) session.commit() session.refresh(tag_offerta) session.refresh(tag_maionese) session.refresh(tag_no_maionese) session.refresh(tipo_panino) session.refresh(tipo_bibita) hamburger = Product( name="hamburger", product_type=tipo_panino.id, tags=[tag_offerta, tag_maionese] ) coke = Product( name="Coca Cola", product_type=tipo_bibita.id, tags=[tag_offerta] ) session.add(hamburger) session.add(coke) session.commit() session.refresh(hamburger) session.refresh(coke) print("Created :", hamburger) print("Created :", coke) def update_burger(): with Session(engine) as session: tag_no_maionese = session.exec( select(Tag).where(Tag.name == "Senza Maionese") ).one() tag_maionese = session.exec( select(Tag).where(Tag.name == "Con Maionese") ).one() hamburger = session.exec( select(Product).where(Product.name == "hamburger") ).one() hamburger.tags.append(tag_no_maionese) hamburger.tags.remove(tag_maionese) session.add(hamburger) session.commit() print("Updated hamburger:", hamburger.tags) print("Updated tags:", tag_maionese.products, tag_no_maionese.products) def select_products(): with Session(engine) as session: statement = select(Product, ProductType).\ where(Product.product_type == ProductType.id) results = session.exec(statement) for product, product_type in results: print("product:", product, "product_type:", product_type, "tags:", product.tags) def main(): create_db_and_tables() create_entities() update_burger() # select_products() if __name__ == "__main__": main()
[ "sqlmodel.SQLModel.metadata.create_all", "sqlmodel.Session", "sqlmodel.Field", "sqlmodel.select", "sqlmodel.create_engine", "sqlmodel.Relationship" ]
[((1400, 1436), 'sqlmodel.create_engine', 'create_engine', (['sqlite_url'], {'echo': '(True)'}), '(sqlite_url, echo=True)\n', (1413, 1436), False, 'from sqlmodel import Field, SQLModel, Session, Relationship, create_engine, select\n'), ((392, 451), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'foreign_key': '"""tag.id"""', 'primary_key': '(True)'}), "(default=None, foreign_key='tag.id', primary_key=True)\n", (397, 451), False, 'from sqlmodel import Field, SQLModel, Session, Relationship, create_engine, select\n'), ((498, 561), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'foreign_key': '"""product.id"""', 'primary_key': '(True)'}), "(default=None, foreign_key='product.id', primary_key=True)\n", (503, 561), False, 'from sqlmodel import Field, SQLModel, Session, Relationship, create_engine, select\n'), ((635, 672), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'primary_key': '(True)'}), '(default=None, primary_key=True)\n', (640, 672), False, 'from sqlmodel import Field, SQLModel, Session, Relationship, create_engine, select\n'), ((761, 823), 'sqlmodel.Relationship', 'Relationship', ([], {'back_populates': '"""tags"""', 'link_model': 'TagProductLink'}), "(back_populates='tags', link_model=TagProductLink)\n", (773, 823), False, 'from sqlmodel import Field, SQLModel, Session, Relationship, create_engine, select\n'), ((891, 928), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'primary_key': '(True)'}), '(default=None, primary_key=True)\n', (896, 928), False, 'from sqlmodel import Field, SQLModel, Session, Relationship, create_engine, select\n'), ((1006, 1043), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'primary_key': '(True)'}), '(default=None, primary_key=True)\n', (1011, 1043), False, 'from sqlmodel import Field, SQLModel, Session, Relationship, create_engine, select\n'), ((1092, 1141), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'foreign_key': '"""producttype.id"""'}), "(default=None, foreign_key='producttype.id')\n", (1097, 1141), False, 'from sqlmodel import Field, SQLModel, Session, Relationship, create_engine, select\n'), ((1244, 1310), 'sqlmodel.Relationship', 'Relationship', ([], {'back_populates': '"""products"""', 'link_model': 'TagProductLink'}), "(back_populates='products', link_model=TagProductLink)\n", (1256, 1310), False, 'from sqlmodel import Field, SQLModel, Session, Relationship, create_engine, select\n'), ((1471, 1507), 'sqlmodel.SQLModel.metadata.create_all', 'SQLModel.metadata.create_all', (['engine'], {}), '(engine)\n', (1499, 1507), False, 'from sqlmodel import Field, SQLModel, Session, Relationship, create_engine, select\n'), ((1763, 1778), 'sqlmodel.Session', 'Session', (['engine'], {}), '(engine)\n', (1770, 1778), False, 'from sqlmodel import Field, SQLModel, Session, Relationship, create_engine, select\n'), ((2717, 2732), 'sqlmodel.Session', 'Session', (['engine'], {}), '(engine)\n', (2724, 2732), False, 'from sqlmodel import Field, SQLModel, Session, Relationship, create_engine, select\n'), ((3398, 3413), 'sqlmodel.Session', 'Session', (['engine'], {}), '(engine)\n', (3405, 3413), False, 'from sqlmodel import Field, SQLModel, Session, Relationship, create_engine, select\n'), ((3446, 3474), 'sqlmodel.select', 'select', (['Product', 'ProductType'], {}), '(Product, ProductType)\n', (3452, 3474), False, 'from sqlmodel import Field, SQLModel, Session, Relationship, create_engine, select\n'), ((2797, 2808), 'sqlmodel.select', 'select', (['Tag'], {}), '(Tag)\n', (2803, 2808), False, 'from sqlmodel import Field, SQLModel, Session, Relationship, create_engine, select\n'), ((2910, 2921), 'sqlmodel.select', 'select', (['Tag'], {}), '(Tag)\n', (2916, 2921), False, 'from sqlmodel import Field, SQLModel, Session, Relationship, create_engine, select\n'), ((3018, 3033), 'sqlmodel.select', 'select', (['Product'], {}), '(Product)\n', (3024, 3033), False, 'from sqlmodel import Field, SQLModel, Session, Relationship, create_engine, select\n')]
"""Add countries Revision ID: <KEY> Revises: 423e059e8b64 Create Date: 2022-02-12 07:51:13.003045+00:00 """ import sqlalchemy as sa import sqlmodel from alembic import op # revision identifiers, used by Alembic. revision = "<KEY>" down_revision = "423e059e8b64" branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.create_table( "countries", sa.Column("id", sa.Integer(), nullable=False), sa.Column("name", sqlmodel.sql.sqltypes.AutoString(), nullable=False), sa.PrimaryKeyConstraint("id"), ) op.add_column("applications", sa.Column("country_id", sa.Integer(), nullable=False)) op.create_foreign_key(None, "applications", "countries", ["country_id"], ["id"]) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_constraint(None, "applications", type_="foreignkey") op.drop_column("applications", "country_id") op.drop_table("countries") # ### end Alembic commands ###
[ "sqlmodel.sql.sqltypes.AutoString" ]
[((701, 786), 'alembic.op.create_foreign_key', 'op.create_foreign_key', (['None', '"""applications"""', '"""countries"""', "['country_id']", "['id']"], {}), "(None, 'applications', 'countries', ['country_id'], ['id']\n )\n", (722, 786), False, 'from alembic import op\n'), ((906, 966), 'alembic.op.drop_constraint', 'op.drop_constraint', (['None', '"""applications"""'], {'type_': '"""foreignkey"""'}), "(None, 'applications', type_='foreignkey')\n", (924, 966), False, 'from alembic import op\n'), ((971, 1015), 'alembic.op.drop_column', 'op.drop_column', (['"""applications"""', '"""country_id"""'], {}), "('applications', 'country_id')\n", (985, 1015), False, 'from alembic import op\n'), ((1020, 1046), 'alembic.op.drop_table', 'op.drop_table', (['"""countries"""'], {}), "('countries')\n", (1033, 1046), False, 'from alembic import op\n'), ((571, 600), 'sqlalchemy.PrimaryKeyConstraint', 'sa.PrimaryKeyConstraint', (['"""id"""'], {}), "('id')\n", (594, 600), True, 'import sqlalchemy as sa\n'), ((453, 465), 'sqlalchemy.Integer', 'sa.Integer', ([], {}), '()\n', (463, 465), True, 'import sqlalchemy as sa\n'), ((510, 544), 'sqlmodel.sql.sqltypes.AutoString', 'sqlmodel.sql.sqltypes.AutoString', ([], {}), '()\n', (542, 544), False, 'import sqlmodel\n'), ((666, 678), 'sqlalchemy.Integer', 'sa.Integer', ([], {}), '()\n', (676, 678), True, 'import sqlalchemy as sa\n')]
from typing import Optional from fastapi import FastAPI from sqlmodel import Session, SQLModel, create_engine from .abstractions import MultipleModels, register_endpoints class HeroBase(SQLModel): name: str secret_name: str age: Optional[int] = None class HeroRead(HeroBase): id: int hero_models = MultipleModels(path="/heroes/", base=HeroBase, response=HeroRead) Hero = hero_models.table # Shim to avoid changing tests. sqlite_file_name = "database.db" sqlite_url = f"sqlite:///{sqlite_file_name}" connect_args = {"check_same_thread": False} engine = create_engine(sqlite_url, echo=True, connect_args=connect_args) def create_db_and_tables(): SQLModel.metadata.create_all(engine) def get_session(): with Session(engine) as session: yield session app = FastAPI() register_endpoints(app, models=hero_models, get_session=get_session)
[ "sqlmodel.SQLModel.metadata.create_all", "sqlmodel.Session", "sqlmodel.create_engine" ]
[((579, 642), 'sqlmodel.create_engine', 'create_engine', (['sqlite_url'], {'echo': '(True)', 'connect_args': 'connect_args'}), '(sqlite_url, echo=True, connect_args=connect_args)\n', (592, 642), False, 'from sqlmodel import Session, SQLModel, create_engine\n'), ((802, 811), 'fastapi.FastAPI', 'FastAPI', ([], {}), '()\n', (809, 811), False, 'from fastapi import FastAPI\n'), ((677, 713), 'sqlmodel.SQLModel.metadata.create_all', 'SQLModel.metadata.create_all', (['engine'], {}), '(engine)\n', (705, 713), False, 'from sqlmodel import Session, SQLModel, create_engine\n'), ((744, 759), 'sqlmodel.Session', 'Session', (['engine'], {}), '(engine)\n', (751, 759), False, 'from sqlmodel import Session, SQLModel, create_engine\n')]
# Copyright 2021 Modelyst LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from random import shuffle from typing import Optional, cast import pytest from sqlalchemy.future import Engine from sqlmodel import Session, func, select import tests.example.entities as entities from dbgen.core.args import Const from dbgen.core.entity import Entity from dbgen.core.func import Import from dbgen.core.generator import Generator from dbgen.core.metadata import RunEntity from dbgen.core.node.load import Load from dbgen.core.node.query import BaseQuery from dbgen.core.node.transforms import PyBlock def transform_func(x): return f"{x}-child" @pytest.fixture(scope='function') def basic_generator() -> Generator: Parent = entities.Parent Child = entities.Child select_stmt = select(Parent.label) query = BaseQuery.from_select_statement(select_stmt) assert isinstance(query.hash, str) pyblock = PyBlock(function=transform_func, inputs=[query["label"]], outputs=["newnames"]) load = Child.load(insert=True, label=pyblock["newnames"], type=Const("child_type")) assert isinstance(load.hash, str) gen = Generator(name="test", extract=query, transforms=[pyblock], loads=[load]) return gen def test_basic_graph_sort(basic_generator: Generator): """Ensure a simple Query->PyBlock->Load is sorted correctly.""" graph = basic_generator._computational_graph() assert len(graph) == 3 sorted_nodes = basic_generator._sort_graph() query, transform, load = sorted_nodes assert isinstance(query, BaseQuery) assert isinstance(transform, PyBlock) assert isinstance(load, Load) def test_basic_graph_in_place(basic_generator: Generator): """Ensure that changes to the output of ._sort_graph() are in place and affect the generator as well.""" query, transform, load = basic_generator._sort_graph() assert isinstance(load, Load) load.run({transform.hash: {"newnames": ("1", "2")}}) assert load._output == basic_generator._sorted_loads()[0]._output assert isinstance(query, BaseQuery) query.outputs.append("test") assert basic_generator.extract == query assert isinstance(transform, PyBlock) import_to_add = Import(lib="numpy", lib_alias="np") transform.env.imports.append(import_to_add) assert basic_generator.transforms[0] == transform assert basic_generator.transforms[0].env.imports == [import_to_add] def test_sorted_loads(): """Shuffle around the loads and make sure sorted_loads still works.""" val = Const("test") gp_load = entities.GrandParent.load(label=val, type=val) u_load = entities.Parent.load(label=val, type=Const("uncle"), grand_parent_id=gp_load) p_load = entities.Parent.load(label=val, type=val, grand_parent_id=gp_load) c_load = entities.Child.load(label=val, type=val, parent_id=p_load, uncle_id=u_load) loads = [gp_load, c_load, p_load, u_load] for _ in range(10): shuffle(loads) gen = Generator(name="test", loads=loads) assert gen._sorted_loads() == [ gp_load, *sorted((u_load, p_load), key=lambda x: x.hash), c_load, ] @pytest.mark.skip def test_no_extractor(sql_engine: Engine, raw_connection): """Shuffle around the loads and make sure sorted_loads still works.""" entities.Parent.metadata.create_all(sql_engine) pyblock = PyBlock(function=transform_func, inputs=[Const("test")], outputs=["newnames"]) p_load = entities.GrandParent.load(insert=True, label=pyblock["newnames"], type=Const("gp_type")) gen = Generator(name="test", transforms=[pyblock], loads=[p_load]) gen.run(sql_engine) with Session(sql_engine) as session: session = cast(Session, session) statement = select(entities.GrandParent).where(entities.GrandParent.label == "test-child") result = session.exec(statement) assert result.one() @pytest.mark.database def test_dumb_extractor(connection, sql_engine, recreate_meta): class User(Entity, table=True): __identifying__ = {"label"} label: Optional[str] new_label: Optional[str] = None User.metadata.create_all(connection) num_users = 100 sess = Session(connection) users = [User(label=f"user_{i}") for i in range(num_users)] user_le = User._get_load_entity() for user in users: user.id = user_le._get_hash(user.dict()) sess.add(user) count = sess.exec(select(func.count(User.id))).one() assert count == num_users connection.commit() statement = select(User.id, User.label) query = BaseQuery.from_select_statement(statement) assert query.length(connection=connection) == num_users pyblock = PyBlock(function=transform_func, inputs=[query["label"]]) u_load = User.load(user=query["id"], new_label=pyblock["out"]) run = RunEntity() sess.add(run) sess.commit() sess.refresh(run) gen = Generator( name="test", extract=query, transforms=[pyblock], loads=[u_load], batch_size=10000, ) connection.commit() gen.run(sql_engine, sql_engine, run_id=run.id, ordering=0)
[ "sqlmodel.func.count", "sqlmodel.select", "sqlmodel.Session" ]
[((1168, 1200), 'pytest.fixture', 'pytest.fixture', ([], {'scope': '"""function"""'}), "(scope='function')\n", (1182, 1200), False, 'import pytest\n'), ((1311, 1331), 'sqlmodel.select', 'select', (['Parent.label'], {}), '(Parent.label)\n', (1317, 1331), False, 'from sqlmodel import Session, func, select\n'), ((1344, 1388), 'dbgen.core.node.query.BaseQuery.from_select_statement', 'BaseQuery.from_select_statement', (['select_stmt'], {}), '(select_stmt)\n', (1375, 1388), False, 'from dbgen.core.node.query import BaseQuery\n'), ((1442, 1521), 'dbgen.core.node.transforms.PyBlock', 'PyBlock', ([], {'function': 'transform_func', 'inputs': "[query['label']]", 'outputs': "['newnames']"}), "(function=transform_func, inputs=[query['label']], outputs=['newnames'])\n", (1449, 1521), False, 'from dbgen.core.node.transforms import PyBlock\n'), ((1659, 1732), 'dbgen.core.generator.Generator', 'Generator', ([], {'name': '"""test"""', 'extract': 'query', 'transforms': '[pyblock]', 'loads': '[load]'}), "(name='test', extract=query, transforms=[pyblock], loads=[load])\n", (1668, 1732), False, 'from dbgen.core.generator import Generator\n'), ((2727, 2762), 'dbgen.core.func.Import', 'Import', ([], {'lib': '"""numpy"""', 'lib_alias': '"""np"""'}), "(lib='numpy', lib_alias='np')\n", (2733, 2762), False, 'from dbgen.core.func import Import\n'), ((3049, 3062), 'dbgen.core.args.Const', 'Const', (['"""test"""'], {}), "('test')\n", (3054, 3062), False, 'from dbgen.core.args import Const\n'), ((3077, 3123), 'tests.example.entities.GrandParent.load', 'entities.GrandParent.load', ([], {'label': 'val', 'type': 'val'}), '(label=val, type=val)\n', (3102, 3123), True, 'import tests.example.entities as entities\n'), ((3228, 3294), 'tests.example.entities.Parent.load', 'entities.Parent.load', ([], {'label': 'val', 'type': 'val', 'grand_parent_id': 'gp_load'}), '(label=val, type=val, grand_parent_id=gp_load)\n', (3248, 3294), True, 'import tests.example.entities as entities\n'), ((3308, 3383), 'tests.example.entities.Child.load', 'entities.Child.load', ([], {'label': 'val', 'type': 'val', 'parent_id': 'p_load', 'uncle_id': 'u_load'}), '(label=val, type=val, parent_id=p_load, uncle_id=u_load)\n', (3327, 3383), True, 'import tests.example.entities as entities\n'), ((3837, 3884), 'tests.example.entities.Parent.metadata.create_all', 'entities.Parent.metadata.create_all', (['sql_engine'], {}), '(sql_engine)\n', (3872, 3884), True, 'import tests.example.entities as entities\n'), ((4090, 4150), 'dbgen.core.generator.Generator', 'Generator', ([], {'name': '"""test"""', 'transforms': '[pyblock]', 'loads': '[p_load]'}), "(name='test', transforms=[pyblock], loads=[p_load])\n", (4099, 4150), False, 'from dbgen.core.generator import Generator\n'), ((4728, 4747), 'sqlmodel.Session', 'Session', (['connection'], {}), '(connection)\n', (4735, 4747), False, 'from sqlmodel import Session, func, select\n'), ((5072, 5099), 'sqlmodel.select', 'select', (['User.id', 'User.label'], {}), '(User.id, User.label)\n', (5078, 5099), False, 'from sqlmodel import Session, func, select\n'), ((5112, 5154), 'dbgen.core.node.query.BaseQuery.from_select_statement', 'BaseQuery.from_select_statement', (['statement'], {}), '(statement)\n', (5143, 5154), False, 'from dbgen.core.node.query import BaseQuery\n'), ((5229, 5286), 'dbgen.core.node.transforms.PyBlock', 'PyBlock', ([], {'function': 'transform_func', 'inputs': "[query['label']]"}), "(function=transform_func, inputs=[query['label']])\n", (5236, 5286), False, 'from dbgen.core.node.transforms import PyBlock\n'), ((5364, 5375), 'dbgen.core.metadata.RunEntity', 'RunEntity', ([], {}), '()\n', (5373, 5375), False, 'from dbgen.core.metadata import RunEntity\n'), ((5444, 5541), 'dbgen.core.generator.Generator', 'Generator', ([], {'name': '"""test"""', 'extract': 'query', 'transforms': '[pyblock]', 'loads': '[u_load]', 'batch_size': '(10000)'}), "(name='test', extract=query, transforms=[pyblock], loads=[u_load],\n batch_size=10000)\n", (5453, 5541), False, 'from dbgen.core.generator import Generator\n'), ((3462, 3476), 'random.shuffle', 'shuffle', (['loads'], {}), '(loads)\n', (3469, 3476), False, 'from random import shuffle\n'), ((3491, 3526), 'dbgen.core.generator.Generator', 'Generator', ([], {'name': '"""test"""', 'loads': 'loads'}), "(name='test', loads=loads)\n", (3500, 3526), False, 'from dbgen.core.generator import Generator\n'), ((4185, 4204), 'sqlmodel.Session', 'Session', (['sql_engine'], {}), '(sql_engine)\n', (4192, 4204), False, 'from sqlmodel import Session, func, select\n'), ((4235, 4257), 'typing.cast', 'cast', (['Session', 'session'], {}), '(Session, session)\n', (4239, 4257), False, 'from typing import Optional, cast\n'), ((1590, 1609), 'dbgen.core.args.Const', 'Const', (['"""child_type"""'], {}), "('child_type')\n", (1595, 1609), False, 'from dbgen.core.args import Const\n'), ((3174, 3188), 'dbgen.core.args.Const', 'Const', (['"""uncle"""'], {}), "('uncle')\n", (3179, 3188), False, 'from dbgen.core.args import Const\n'), ((4062, 4078), 'dbgen.core.args.Const', 'Const', (['"""gp_type"""'], {}), "('gp_type')\n", (4067, 4078), False, 'from dbgen.core.args import Const\n'), ((3940, 3953), 'dbgen.core.args.Const', 'Const', (['"""test"""'], {}), "('test')\n", (3945, 3953), False, 'from dbgen.core.args import Const\n'), ((4278, 4306), 'sqlmodel.select', 'select', (['entities.GrandParent'], {}), '(entities.GrandParent)\n', (4284, 4306), False, 'from sqlmodel import Session, func, select\n'), ((4974, 4993), 'sqlmodel.func.count', 'func.count', (['User.id'], {}), '(User.id)\n', (4984, 4993), False, 'from sqlmodel import Session, func, select\n')]
# 10.07.2007, c # last revision: 25.03.2008 from sfepy import data_dir filename_meshes = ['/meshes/3d/cube_medium_tetra.mesh', '/meshes/3d/cube_medium_tetra.mesh', '/meshes/3d/cube_medium_hexa.mesh'] filename_meshes = [data_dir + name for name in filename_meshes] all_your_bases = [1, 2, 1] filename_mesh = None field_1 = { 'name' : '3_displacement', 'dtype' : 'real', 'shape' : (3,), 'region' : 'Omega', 'approx_order' : None, } def get_pars( dim, full = False ): import numpy as nm sym = (dim + 1) * dim / 2 lam = 1e1 mu = 1e0 o = nm.array( [1.] * dim + [0.] * (sym - dim), dtype = nm.float64 ) oot = nm.outer( o, o ) if full: return lam * oot + mu * nm.diag( o + 1.0 ) else: return lam, mu material_1 = { 'name' : 'solid', 'values' : { 'lam' : get_pars( 3 )[0], 'mu' : get_pars( 3 )[1], 'Dijkl' : get_pars( 3, True ), } } material_2 = { 'name' : 'spring', 'values' : { '.pars' : {'stiffness' : 1e0, 'projection' : None}, } } variable_1 = { 'name' : 'u', 'kind' : 'unknown field', 'field' : '3_displacement', 'order' : 0, } variable_2 = { 'name' : 'v', 'kind' : 'test field', 'field' : '3_displacement', 'dual' : 'u', } region_1000 = { 'name' : 'Omega', 'select' : 'all', } region_1 = { 'name' : 'Bottom', 'select' : 'vertices in (z < -0.499)', 'kind' : 'facet', } region_2 = { 'name' : 'Top', 'select' : 'vertices in (z > 0.499)', 'kind' : 'facet', } ebc_1 = { 'name' : 'Load', 'region' : 'Top', 'dofs' : {'u.2' : 0.1}, } integral_1 = { 'name' : 'i', 'order' : 2, } equations_iso = { 'balance_of_forces' : """dw_lin_elastic_iso.i.Omega( solid.lam, solid.mu, v, u ) = dw_point_lspring.i.Bottom( spring.pars, v, u )""", } equations_general = { 'balance_of_forces' : """dw_lin_elastic.i.Omega( solid.Dijkl, v, u ) = dw_point_lspring.i.Bottom( spring.pars, v, u )""", } solver_0 = { 'name' : 'ls', 'kind' : 'ls.scipy_direct', } solver_1 = { 'name' : 'newton', 'kind' : 'nls.newton', 'i_max' : 1, 'eps_a' : 1e-10, } from sfepy.base.testing import TestCommon ## # 10.07.2007, c class Test( TestCommon ): tests = ['test_get_solution', 'test_linear_terms'] ## # 10.07.2007, c def from_conf( conf, options ): return Test( conf = conf, options = options ) from_conf = staticmethod( from_conf ) ## # c: 25.03.2008, r: 25.03.2008 def test_linear_terms( self ): ok = True for sols in self.solutions: ok = ok and self.compare_vectors( sols[0], sols[1], label1 = 'isotropic', label2 = 'general' ) return ok ## # c: 10.07.2007, r: 25.03.2008 def test_get_solution( self ): from sfepy.applications import solve_pde from sfepy.base.base import IndexedStruct import os.path as op ok = True self.solutions = [] for ii, approx_order in enumerate(all_your_bases): fname = filename_meshes[ii] self.conf.filename_mesh = fname fields = {'field_1' : { 'name' : '3_displacement', 'dtype' : 'real', 'shape' : (3,), 'region' : 'Omega', 'approx_order' : approx_order, } } self.conf.edit('fields', fields) self.report( 'mesh: %s, base: %s' % (fname, approx_order) ) status = IndexedStruct() self.report( 'isotropic' ) self.conf.equations = self.conf.equations_iso problem, state1 = solve_pde(self.conf, nls_status=status, save_results=False) converged = status.condition == 0 ok = ok and converged self.report( 'converged: %s' % converged ) self.report( 'general' ) self.conf.equations = self.conf.equations_general problem, state2 = solve_pde(self.conf, nls_status=status, save_results=False) converged = status.condition == 0 ok = ok and converged self.report( 'converged: %s' % converged ) self.solutions.append((state1(), state2())) name = op.join(self.options.out_dir, '_'.join(('test_elasticity_small_strain', op.splitext(op.basename(fname))[0], '%d' % approx_order)) + '.vtk') problem.save_state(name, state1) ## trunk = op.join( self.options.out_dir, ## op.splitext( op.basename( fname ) )[0] ) ## problem.save_field_meshes( trunk ) ## problem.save_regions( trunk ) return ok
[ "sfepy.base.base.IndexedStruct", "sfepy.applications.solve_pde" ]
[((616, 677), 'numpy.array', 'nm.array', (['([1.0] * dim + [0.0] * (sym - dim))'], {'dtype': 'nm.float64'}), '([1.0] * dim + [0.0] * (sym - dim), dtype=nm.float64)\n', (624, 677), True, 'import numpy as nm\n'), ((690, 704), 'numpy.outer', 'nm.outer', (['o', 'o'], {}), '(o, o)\n', (698, 704), True, 'import numpy as nm\n'), ((3744, 3759), 'sfepy.base.base.IndexedStruct', 'IndexedStruct', ([], {}), '()\n', (3757, 3759), False, 'from sfepy.base.base import IndexedStruct\n'), ((3888, 3947), 'sfepy.applications.solve_pde', 'solve_pde', (['self.conf'], {'nls_status': 'status', 'save_results': '(False)'}), '(self.conf, nls_status=status, save_results=False)\n', (3897, 3947), False, 'from sfepy.applications import solve_pde\n'), ((4253, 4312), 'sfepy.applications.solve_pde', 'solve_pde', (['self.conf'], {'nls_status': 'status', 'save_results': '(False)'}), '(self.conf, nls_status=status, save_results=False)\n', (4262, 4312), False, 'from sfepy.applications import solve_pde\n'), ((752, 768), 'numpy.diag', 'nm.diag', (['(o + 1.0)'], {}), '(o + 1.0)\n', (759, 768), True, 'import numpy as nm\n'), ((4713, 4731), 'os.path.basename', 'op.basename', (['fname'], {}), '(fname)\n', (4724, 4731), True, 'import os.path as op\n')]
# -*- coding: utf-8 -*- # This repo is licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import megengine.functional as F class Matcher: def __init__(self, thresholds, labels, allow_low_quality_matches=False): assert len(thresholds) + 1 == len(labels), "thresholds and labels are not matched" assert all(low <= high for (low, high) in zip(thresholds[:-1], thresholds[1:])) thresholds.append(float("inf")) thresholds.insert(0, -float("inf")) self.thresholds = thresholds self.labels = labels self.allow_low_quality_matches = allow_low_quality_matches def __call__(self, matrix): """ matrix(tensor): A two dim tensor with shape of (N, M). N is number of GT-boxes, while M is the number of anchors in detection. """ assert len(matrix.shape) == 2 max_scores = matrix.max(axis=0) match_indices = F.argmax(matrix, axis=0) # default ignore label: -1 labels = F.full_like(match_indices, -1) for label, low, high in zip(self.labels, self.thresholds[:-1], self.thresholds[1:]): mask = (max_scores >= low) & (max_scores < high) labels[mask] = label if self.allow_low_quality_matches: mask = (matrix == F.max(matrix, axis=1, keepdims=True)).sum(axis=0) > 0 labels[mask] = 1 return match_indices, labels
[ "megengine.functional.max", "megengine.functional.argmax", "megengine.functional.full_like" ]
[((1208, 1232), 'megengine.functional.argmax', 'F.argmax', (['matrix'], {'axis': '(0)'}), '(matrix, axis=0)\n', (1216, 1232), True, 'import megengine.functional as F\n'), ((1286, 1316), 'megengine.functional.full_like', 'F.full_like', (['match_indices', '(-1)'], {}), '(match_indices, -1)\n', (1297, 1316), True, 'import megengine.functional as F\n'), ((1579, 1615), 'megengine.functional.max', 'F.max', (['matrix'], {'axis': '(1)', 'keepdims': '(True)'}), '(matrix, axis=1, keepdims=True)\n', (1584, 1615), True, 'import megengine.functional as F\n')]
#!/usr/bin/env python """ Show terms use in problem description files in the given directory. """ from __future__ import absolute_import import sys import six sys.path.append('.') import os from argparse import ArgumentParser from sfepy.base.base import output, dict_from_keys_init, ordered_iteritems from sfepy.base.conf import ProblemConf, get_standard_keywords from sfepy.base.ioutils import locate_files from sfepy.discrete.equations import parse_definition from sfepy.terms import term_table helps = { 'counts' : 'show terms use counts only', 'unused' : 'show unused terms only', } def main(): parser = ArgumentParser(description=__doc__) parser.add_argument('--version', action='version', version='%(prog)s') parser.add_argument('-c', '--counts', action='store_true', dest='counts', default=False, help=helps['counts']) parser.add_argument('-u', '--unused', action='store_true', dest='unused', default=False, help=helps['unused']) parser.add_argument('directory') options = parser.parse_args() pdf_dir = os.path.realpath(options.directory) required, other = get_standard_keywords() terms_use = dict_from_keys_init(term_table.keys(), set) for filename in locate_files('*.py', pdf_dir): base = filename.replace(pdf_dir, '').lstrip(os.path.sep) output('trying "%s"...' % base) try: conf = ProblemConf.from_file(filename, required, other, verbose=False) except: output('...failed') continue use = conf.options.get('use_equations', 'equations') eqs_conf = getattr(conf, use) for key, eq_conf in six.iteritems(eqs_conf): term_descs = parse_definition(eq_conf) for td in term_descs: terms_use[td.name].add(base) output('...ok') output('...done') if options.unused: output('unused terms:') unused = [name for name in terms_use.keys() if len(terms_use[name]) == 0] for name in sorted(unused): output(' ' + name) output('total: %d' % len(unused)) else: output('terms use:') for name, ex_names in ordered_iteritems(terms_use): output('%s: %d' % (name, len(ex_names))) if not options.counts: for ex_name in sorted(ex_names): output(' ' + ex_name) if __name__ == '__main__': main()
[ "sfepy.terms.term_table.keys", "sfepy.base.conf.ProblemConf.from_file", "sfepy.base.base.ordered_iteritems", "sfepy.base.conf.get_standard_keywords", "sfepy.discrete.equations.parse_definition", "sfepy.base.base.output", "sfepy.base.ioutils.locate_files" ]
[((159, 179), 'sys.path.append', 'sys.path.append', (['"""."""'], {}), "('.')\n", (174, 179), False, 'import sys\n'), ((623, 658), 'argparse.ArgumentParser', 'ArgumentParser', ([], {'description': '__doc__'}), '(description=__doc__)\n', (637, 658), False, 'from argparse import ArgumentParser\n'), ((1146, 1181), 'os.path.realpath', 'os.path.realpath', (['options.directory'], {}), '(options.directory)\n', (1162, 1181), False, 'import os\n'), ((1205, 1228), 'sfepy.base.conf.get_standard_keywords', 'get_standard_keywords', ([], {}), '()\n', (1226, 1228), False, 'from sfepy.base.conf import ProblemConf, get_standard_keywords\n'), ((1311, 1340), 'sfepy.base.ioutils.locate_files', 'locate_files', (['"""*.py"""', 'pdf_dir'], {}), "('*.py', pdf_dir)\n", (1323, 1340), False, 'from sfepy.base.ioutils import locate_files\n'), ((1967, 1984), 'sfepy.base.base.output', 'output', (['"""...done"""'], {}), "('...done')\n", (1973, 1984), False, 'from sfepy.base.base import output, dict_from_keys_init, ordered_iteritems\n'), ((1266, 1283), 'sfepy.terms.term_table.keys', 'term_table.keys', ([], {}), '()\n', (1281, 1283), False, 'from sfepy.terms import term_table\n'), ((1415, 1446), 'sfepy.base.base.output', 'output', (['(\'trying "%s"...\' % base)'], {}), '(\'trying "%s"...\' % base)\n', (1421, 1446), False, 'from sfepy.base.base import output, dict_from_keys_init, ordered_iteritems\n'), ((1783, 1806), 'six.iteritems', 'six.iteritems', (['eqs_conf'], {}), '(eqs_conf)\n', (1796, 1806), False, 'import six\n'), ((1947, 1962), 'sfepy.base.base.output', 'output', (['"""...ok"""'], {}), "('...ok')\n", (1953, 1962), False, 'from sfepy.base.base import output, dict_from_keys_init, ordered_iteritems\n'), ((2017, 2040), 'sfepy.base.base.output', 'output', (['"""unused terms:"""'], {}), "('unused terms:')\n", (2023, 2040), False, 'from sfepy.base.base import output, dict_from_keys_init, ordered_iteritems\n'), ((2272, 2292), 'sfepy.base.base.output', 'output', (['"""terms use:"""'], {}), "('terms use:')\n", (2278, 2292), False, 'from sfepy.base.base import output, dict_from_keys_init, ordered_iteritems\n'), ((2323, 2351), 'sfepy.base.base.ordered_iteritems', 'ordered_iteritems', (['terms_use'], {}), '(terms_use)\n', (2340, 2351), False, 'from sfepy.base.base import output, dict_from_keys_init, ordered_iteritems\n'), ((1480, 1543), 'sfepy.base.conf.ProblemConf.from_file', 'ProblemConf.from_file', (['filename', 'required', 'other'], {'verbose': '(False)'}), '(filename, required, other, verbose=False)\n', (1501, 1543), False, 'from sfepy.base.conf import ProblemConf, get_standard_keywords\n'), ((1833, 1858), 'sfepy.discrete.equations.parse_definition', 'parse_definition', (['eq_conf'], {}), '(eq_conf)\n', (1849, 1858), False, 'from sfepy.discrete.equations import parse_definition\n'), ((2190, 2209), 'sfepy.base.base.output', 'output', (["(' ' + name)"], {}), "(' ' + name)\n", (2196, 2209), False, 'from sfepy.base.base import output, dict_from_keys_init, ordered_iteritems\n'), ((1614, 1633), 'sfepy.base.base.output', 'output', (['"""...failed"""'], {}), "('...failed')\n", (1620, 1633), False, 'from sfepy.base.base import output, dict_from_keys_init, ordered_iteritems\n'), ((2510, 2532), 'sfepy.base.base.output', 'output', (["(' ' + ex_name)"], {}), "(' ' + ex_name)\n", (2516, 2532), False, 'from sfepy.base.base import output, dict_from_keys_init, ordered_iteritems\n')]
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import numpy as np import pytest import megengine as mge import megengine.functional as F from megengine import tensor from megengine.core.autodiff.grad import Function, Grad from megengine.core.tensor.dtype import QuantDtypeMeta from megengine.core.tensor.utils import make_shape_tuple from megengine.quantization.internal_fake_quant import * from megengine.quantization.utils import ( QuantMode, create_qparams, fake_quant_tensor, lsq_forward, tqt_forward, ) class TQT_numpy: def __init__(self, lowerbound, upperbound): super().__init__() self.lowerbound = lowerbound self.upperbound = upperbound def forward(self, inp, scale): t = 2 ** scale # t = F.maximum(t, 1e-4) inp_scaled = inp / t inp_clipped = np.maximum( np.minimum(inp_scaled, self.upperbound), self.lowerbound ) inp_rounded = np.round(inp_clipped) inp_flq = inp_rounded * t self.saved_tensors = (inp_scaled, inp_rounded, t) return inp_flq def backward(self, grad_inp_flq): (inp_scaled, inp_rounded, t) = self.saved_tensors mask_clip = (inp_scaled < -0.5 + self.lowerbound) + ( inp_scaled > self.upperbound + 0.5 ) # mask for accumulating the gradients of |data_scaled|>L mask_quant = np.abs( mask_clip - 1 ) # mask for accumulating the gradients with |data_scaled|<=L grad_quant = ( grad_inp_flq * mask_quant * (inp_rounded - inp_scaled) ) # gradient within |data_scaled|<=L grad_clip = ( grad_inp_flq * mask_clip * inp_rounded ) # gradient with | data_scaled|>L grad_s = grad_clip.sum() + grad_quant.sum() # dL/ds = dL/dt * t * ln(2) grad_s = grad_s * t * np.log(2) grad_inp = grad_inp_flq * mask_quant return grad_inp, grad_s def test_tqt(): g = [] def cb(grad): g.append(grad) x = np.random.randint(-128, 128, size=(1, 2, 3, 4)).astype("float32") s = np.random.rand(1) - 1 g_y = np.ones(shape=(1, 2, 3, 4), dtype="float32") n = TQT_numpy(-127, 127) y_np = n.forward(x, s) g_x_np, g_s_np = n.backward(g_y) x = mge.tensor(x, dtype="float32") s = mge.tensor(s, dtype="float32") g_y = mge.tensor(g_y, dtype="float32") with Grad() as grad: grad.wrt(x, s, callback=cb) y = tqt_forward(-127, 127, x, s) grad(y, g_y) g_x, g_s = g np.testing.assert_allclose(y.numpy(), y_np, rtol=1e-5, atol=1e-5) np.testing.assert_allclose(g_x.numpy(), g_x_np, rtol=1e-5, atol=1e-5) np.testing.assert_allclose(g_s.numpy(), g_s_np, rtol=5e-5, atol=5e-5) def _save_to(self, name="grad"): def callback(grad): setattr(self, name, grad) return callback class Round(Function): def forward(self, x): return F.round(x) def backward(self, output_grads): return output_grads def fake_quant_tensor_gt(inp, scale, zero_point, qmin, qmax): oup = Round()(inp / scale) + zero_point oup = F.minimum(F.maximum(oup, qmin), qmax) oup = (oup - zero_point) * scale return oup def test_fakequant(): qmin = -126 qmax = 129 test_dtype = QuantDtypeMeta("test_qint8", None, "int8", qmin, qmax) def run(zero_point, scale): qparams = create_qparams(QuantMode.ASYMMERTIC, test_dtype, scale, zero_point) inp_data = np.random.uniform(low=-512.0, high=512.0, size=(1, 32, 32, 32)) inp = tensor(inp_data, dtype=np.float32) # test forward oup = fake_quant_tensor(inp, qparams).numpy() oup_gt = fake_quant_tensor_gt(inp, scale, zero_point, qmin, qmax).numpy() assert np.allclose(oup, oup_gt) assert oup.shape == oup_gt.shape # test backward x = tensor(inp_data, dtype=np.float32) with Grad() as grad: grad.wrt(x, callback=_save_to(x)) y = fake_quant_tensor(x, qparams) grad(y, tensor(F.ones_like(x))) x1 = tensor(inp_data, dtype=np.float32) with Grad() as grad: grad.wrt(x1, callback=_save_to(x1)) y1 = fake_quant_tensor_gt(x1, scale, zero_point, qmin, qmax) grad(y1, tensor(F.ones_like(x1))) assert np.allclose(x.grad.numpy(), x1.grad.numpy()) assert make_shape_tuple(x.grad.shape) == make_shape_tuple(x1.grad.shape) # test nan x = F.full((1, 32, 3, 3), np.nan) y = fake_quant_tensor(x, qparams).numpy() assert np.isnan(y).all() zero_point = tensor([1.0], dtype=np.float32) scale = tensor([4.0], dtype=np.float32) run(zero_point, scale) zero_point = tensor(1.0 * np.ones((1, 32, 1, 1)), dtype=np.float32) scale = tensor(4.0 * np.ones((1, 32, 1, 1)), dtype=np.float32) run(zero_point, scale) class LSQ_numpy: def __init__(self, lowerbound, upperbound): super().__init__() self.lowerbound = lowerbound self.upperbound = upperbound def forward(self, inp, scale, zero_point, grad_scale): inp_scaled = inp / scale + zero_point inp_clipped = np.maximum( np.minimum(inp_scaled, self.upperbound), self.lowerbound ) inp_rounded = np.floor(inp_clipped + 0.5) inp_flq = (inp_rounded - zero_point) * scale self.saved_tensors = (inp_scaled, inp_rounded, scale, grad_scale) return inp_flq def backward(self, grad_inp_flq): (inp_scaled, inp_rounded, scale, grad_scale) = self.saved_tensors ind_small = inp_scaled < self.lowerbound ind_big = inp_scaled > self.upperbound ind_middle = np.logical_xor(ind_small, ind_big) ind_middle = np.abs(ind_middle - 1) grad_s = ( ind_small * self.lowerbound + ind_big * self.upperbound + ind_middle * (-inp_scaled + inp_rounded) ) grad_s = grad_s * grad_scale * grad_inp_flq grad_s = grad_s.sum() grad_inp = grad_inp_flq * ind_middle return grad_inp, grad_s def test_lsq(): g = [] def cb(grad): g.append(grad) # FIXME: use random number when LSQ is fixed # x = np.random.randint(-128, 128, size=(1, 2, 3, 4)).astype("float32") # s = np.random.rand(1) x = np.array( [ [ [ [4.0, 38.0, -121.0, 38.0], [15.0, -115.0, -112.0, 24.0], [23.0, -65.0, 109.0, -115.0], ], [ [-66.0, -90.0, -45.0, -101.0], [68.0, -98.0, 108.0, -79.0], [54.0, 63.0, -10.0, -50.0], ], ] ], dtype="float32", ) s = np.array([0.02918224], dtype="float32") eps = np.array([1e-5], dtype="float32") s = np.abs(s) if np.abs(s) > eps else eps zero_point = np.array([1.0], dtype="float32") grad_s = np.array([2.0], dtype="float32") g_y = np.ones(shape=(1, 2, 3, 4), dtype="float32") n = LSQ_numpy(-127, 127) y_np = n.forward(x, s, zero_point, grad_s) g_x_np, g_s_np = n.backward(g_y) x = mge.tensor(x, dtype="float32") s = mge.tensor(s, dtype="float32") zero_point = mge.tensor(zero_point, dtype="float32") grad_s = mge.tensor(grad_s, dtype="float32") g_y = mge.tensor(g_y, dtype="float32") with Grad() as grad: grad.wrt(x, s, callback=cb) y = lsq_forward(-127, 127, x, s, zero_point, grad_s) grad(y, g_y) g_x, g_s = g np.testing.assert_allclose(y.numpy(), y_np, rtol=1e-7, atol=1e-7) np.testing.assert_allclose(g_x.numpy(), g_x_np, rtol=1e-7, atol=1e-7) np.testing.assert_allclose(g_s.numpy(), g_s_np, rtol=5e-7, atol=5e-7)
[ "megengine.quantization.utils.fake_quant_tensor", "megengine.functional.maximum", "megengine.quantization.utils.lsq_forward", "megengine.functional.full", "megengine.core.tensor.utils.make_shape_tuple", "megengine.quantization.utils.create_qparams", "megengine.functional.ones_like", "megengine.core.autodiff.grad.Grad", "megengine.tensor", "megengine.quantization.utils.tqt_forward", "megengine.core.tensor.dtype.QuantDtypeMeta", "megengine.functional.round" ]
[((2467, 2511), 'numpy.ones', 'np.ones', ([], {'shape': '(1, 2, 3, 4)', 'dtype': '"""float32"""'}), "(shape=(1, 2, 3, 4), dtype='float32')\n", (2474, 2511), True, 'import numpy as np\n'), ((2615, 2645), 'megengine.tensor', 'mge.tensor', (['x'], {'dtype': '"""float32"""'}), "(x, dtype='float32')\n", (2625, 2645), True, 'import megengine as mge\n'), ((2654, 2684), 'megengine.tensor', 'mge.tensor', (['s'], {'dtype': '"""float32"""'}), "(s, dtype='float32')\n", (2664, 2684), True, 'import megengine as mge\n'), ((2695, 2727), 'megengine.tensor', 'mge.tensor', (['g_y'], {'dtype': '"""float32"""'}), "(g_y, dtype='float32')\n", (2705, 2727), True, 'import megengine as mge\n'), ((3625, 3679), 'megengine.core.tensor.dtype.QuantDtypeMeta', 'QuantDtypeMeta', (['"""test_qint8"""', 'None', '"""int8"""', 'qmin', 'qmax'], {}), "('test_qint8', None, 'int8', qmin, qmax)\n", (3639, 3679), False, 'from megengine.core.tensor.dtype import QuantDtypeMeta\n'), ((4958, 4989), 'megengine.tensor', 'tensor', (['[1.0]'], {'dtype': 'np.float32'}), '([1.0], dtype=np.float32)\n', (4964, 4989), False, 'from megengine import tensor\n'), ((5002, 5033), 'megengine.tensor', 'tensor', (['[4.0]'], {'dtype': 'np.float32'}), '([4.0], dtype=np.float32)\n', (5008, 5033), False, 'from megengine import tensor\n'), ((6683, 6900), 'numpy.array', 'np.array', (['[[[[4.0, 38.0, -121.0, 38.0], [15.0, -115.0, -112.0, 24.0], [23.0, -65.0, \n 109.0, -115.0]], [[-66.0, -90.0, -45.0, -101.0], [68.0, -98.0, 108.0, -\n 79.0], [54.0, 63.0, -10.0, -50.0]]]]'], {'dtype': '"""float32"""'}), "([[[[4.0, 38.0, -121.0, 38.0], [15.0, -115.0, -112.0, 24.0], [23.0,\n -65.0, 109.0, -115.0]], [[-66.0, -90.0, -45.0, -101.0], [68.0, -98.0, \n 108.0, -79.0], [54.0, 63.0, -10.0, -50.0]]]], dtype='float32')\n", (6691, 6900), True, 'import numpy as np\n'), ((7150, 7189), 'numpy.array', 'np.array', (['[0.02918224]'], {'dtype': '"""float32"""'}), "([0.02918224], dtype='float32')\n", (7158, 7189), True, 'import numpy as np\n'), ((7200, 7234), 'numpy.array', 'np.array', (['[1e-05]'], {'dtype': '"""float32"""'}), "([1e-05], dtype='float32')\n", (7208, 7234), True, 'import numpy as np\n'), ((7297, 7329), 'numpy.array', 'np.array', (['[1.0]'], {'dtype': '"""float32"""'}), "([1.0], dtype='float32')\n", (7305, 7329), True, 'import numpy as np\n'), ((7343, 7375), 'numpy.array', 'np.array', (['[2.0]'], {'dtype': '"""float32"""'}), "([2.0], dtype='float32')\n", (7351, 7375), True, 'import numpy as np\n'), ((7387, 7431), 'numpy.ones', 'np.ones', ([], {'shape': '(1, 2, 3, 4)', 'dtype': '"""float32"""'}), "(shape=(1, 2, 3, 4), dtype='float32')\n", (7394, 7431), True, 'import numpy as np\n'), ((7555, 7585), 'megengine.tensor', 'mge.tensor', (['x'], {'dtype': '"""float32"""'}), "(x, dtype='float32')\n", (7565, 7585), True, 'import megengine as mge\n'), ((7594, 7624), 'megengine.tensor', 'mge.tensor', (['s'], {'dtype': '"""float32"""'}), "(s, dtype='float32')\n", (7604, 7624), True, 'import megengine as mge\n'), ((7642, 7681), 'megengine.tensor', 'mge.tensor', (['zero_point'], {'dtype': '"""float32"""'}), "(zero_point, dtype='float32')\n", (7652, 7681), True, 'import megengine as mge\n'), ((7695, 7730), 'megengine.tensor', 'mge.tensor', (['grad_s'], {'dtype': '"""float32"""'}), "(grad_s, dtype='float32')\n", (7705, 7730), True, 'import megengine as mge\n'), ((7742, 7774), 'megengine.tensor', 'mge.tensor', (['g_y'], {'dtype': '"""float32"""'}), "(g_y, dtype='float32')\n", (7752, 7774), True, 'import megengine as mge\n'), ((1283, 1304), 'numpy.round', 'np.round', (['inp_clipped'], {}), '(inp_clipped)\n', (1291, 1304), True, 'import numpy as np\n'), ((1715, 1736), 'numpy.abs', 'np.abs', (['(mask_clip - 1)'], {}), '(mask_clip - 1)\n', (1721, 1736), True, 'import numpy as np\n'), ((2435, 2452), 'numpy.random.rand', 'np.random.rand', (['(1)'], {}), '(1)\n', (2449, 2452), True, 'import numpy as np\n'), ((2737, 2743), 'megengine.core.autodiff.grad.Grad', 'Grad', ([], {}), '()\n', (2741, 2743), False, 'from megengine.core.autodiff.grad import Function, Grad\n'), ((2801, 2829), 'megengine.quantization.utils.tqt_forward', 'tqt_forward', (['(-127)', '(127)', 'x', 's'], {}), '(-127, 127, x, s)\n', (2812, 2829), False, 'from megengine.quantization.utils import QuantMode, create_qparams, fake_quant_tensor, lsq_forward, tqt_forward\n'), ((3267, 3277), 'megengine.functional.round', 'F.round', (['x'], {}), '(x)\n', (3274, 3277), True, 'import megengine.functional as F\n'), ((3473, 3493), 'megengine.functional.maximum', 'F.maximum', (['oup', 'qmin'], {}), '(oup, qmin)\n', (3482, 3493), True, 'import megengine.functional as F\n'), ((3731, 3798), 'megengine.quantization.utils.create_qparams', 'create_qparams', (['QuantMode.ASYMMERTIC', 'test_dtype', 'scale', 'zero_point'], {}), '(QuantMode.ASYMMERTIC, test_dtype, scale, zero_point)\n', (3745, 3798), False, 'from megengine.quantization.utils import QuantMode, create_qparams, fake_quant_tensor, lsq_forward, tqt_forward\n'), ((3818, 3881), 'numpy.random.uniform', 'np.random.uniform', ([], {'low': '(-512.0)', 'high': '(512.0)', 'size': '(1, 32, 32, 32)'}), '(low=-512.0, high=512.0, size=(1, 32, 32, 32))\n', (3835, 3881), True, 'import numpy as np\n'), ((3896, 3930), 'megengine.tensor', 'tensor', (['inp_data'], {'dtype': 'np.float32'}), '(inp_data, dtype=np.float32)\n', (3902, 3930), False, 'from megengine import tensor\n'), ((4105, 4129), 'numpy.allclose', 'np.allclose', (['oup', 'oup_gt'], {}), '(oup, oup_gt)\n', (4116, 4129), True, 'import numpy as np\n'), ((4208, 4242), 'megengine.tensor', 'tensor', (['inp_data'], {'dtype': 'np.float32'}), '(inp_data, dtype=np.float32)\n', (4214, 4242), False, 'from megengine import tensor\n'), ((4422, 4456), 'megengine.tensor', 'tensor', (['inp_data'], {'dtype': 'np.float32'}), '(inp_data, dtype=np.float32)\n', (4428, 4456), False, 'from megengine import tensor\n'), ((4827, 4856), 'megengine.functional.full', 'F.full', (['(1, 32, 3, 3)', 'np.nan'], {}), '((1, 32, 3, 3), np.nan)\n', (4833, 4856), True, 'import megengine.functional as F\n'), ((5637, 5664), 'numpy.floor', 'np.floor', (['(inp_clipped + 0.5)'], {}), '(inp_clipped + 0.5)\n', (5645, 5664), True, 'import numpy as np\n'), ((6046, 6080), 'numpy.logical_xor', 'np.logical_xor', (['ind_small', 'ind_big'], {}), '(ind_small, ind_big)\n', (6060, 6080), True, 'import numpy as np\n'), ((6102, 6124), 'numpy.abs', 'np.abs', (['(ind_middle - 1)'], {}), '(ind_middle - 1)\n', (6108, 6124), True, 'import numpy as np\n'), ((7242, 7251), 'numpy.abs', 'np.abs', (['s'], {}), '(s)\n', (7248, 7251), True, 'import numpy as np\n'), ((7784, 7790), 'megengine.core.autodiff.grad.Grad', 'Grad', ([], {}), '()\n', (7788, 7790), False, 'from megengine.core.autodiff.grad import Function, Grad\n'), ((7848, 7896), 'megengine.quantization.utils.lsq_forward', 'lsq_forward', (['(-127)', '(127)', 'x', 's', 'zero_point', 'grad_s'], {}), '(-127, 127, x, s, zero_point, grad_s)\n', (7859, 7896), False, 'from megengine.quantization.utils import QuantMode, create_qparams, fake_quant_tensor, lsq_forward, tqt_forward\n'), ((1194, 1233), 'numpy.minimum', 'np.minimum', (['inp_scaled', 'self.upperbound'], {}), '(inp_scaled, self.upperbound)\n', (1204, 1233), True, 'import numpy as np\n'), ((2193, 2202), 'numpy.log', 'np.log', (['(2)'], {}), '(2)\n', (2199, 2202), True, 'import numpy as np\n'), ((2361, 2408), 'numpy.random.randint', 'np.random.randint', (['(-128)', '(128)'], {'size': '(1, 2, 3, 4)'}), '(-128, 128, size=(1, 2, 3, 4))\n', (2378, 2408), True, 'import numpy as np\n'), ((4256, 4262), 'megengine.core.autodiff.grad.Grad', 'Grad', ([], {}), '()\n', (4260, 4262), False, 'from megengine.core.autodiff.grad import Function, Grad\n'), ((4334, 4363), 'megengine.quantization.utils.fake_quant_tensor', 'fake_quant_tensor', (['x', 'qparams'], {}), '(x, qparams)\n', (4351, 4363), False, 'from megengine.quantization.utils import QuantMode, create_qparams, fake_quant_tensor, lsq_forward, tqt_forward\n'), ((4470, 4476), 'megengine.core.autodiff.grad.Grad', 'Grad', ([], {}), '()\n', (4474, 4476), False, 'from megengine.core.autodiff.grad import Function, Grad\n'), ((4729, 4759), 'megengine.core.tensor.utils.make_shape_tuple', 'make_shape_tuple', (['x.grad.shape'], {}), '(x.grad.shape)\n', (4745, 4759), False, 'from megengine.core.tensor.utils import make_shape_tuple\n'), ((4763, 4794), 'megengine.core.tensor.utils.make_shape_tuple', 'make_shape_tuple', (['x1.grad.shape'], {}), '(x1.grad.shape)\n', (4779, 4794), False, 'from megengine.core.tensor.utils import make_shape_tuple\n'), ((5092, 5114), 'numpy.ones', 'np.ones', (['(1, 32, 1, 1)'], {}), '((1, 32, 1, 1))\n', (5099, 5114), True, 'import numpy as np\n'), ((5159, 5181), 'numpy.ones', 'np.ones', (['(1, 32, 1, 1)'], {}), '((1, 32, 1, 1))\n', (5166, 5181), True, 'import numpy as np\n'), ((5548, 5587), 'numpy.minimum', 'np.minimum', (['inp_scaled', 'self.upperbound'], {}), '(inp_scaled, self.upperbound)\n', (5558, 5587), True, 'import numpy as np\n'), ((7255, 7264), 'numpy.abs', 'np.abs', (['s'], {}), '(s)\n', (7261, 7264), True, 'import numpy as np\n'), ((3968, 3999), 'megengine.quantization.utils.fake_quant_tensor', 'fake_quant_tensor', (['inp', 'qparams'], {}), '(inp, qparams)\n', (3985, 3999), False, 'from megengine.quantization.utils import QuantMode, create_qparams, fake_quant_tensor, lsq_forward, tqt_forward\n'), ((4869, 4898), 'megengine.quantization.utils.fake_quant_tensor', 'fake_quant_tensor', (['x', 'qparams'], {}), '(x, qparams)\n', (4886, 4898), False, 'from megengine.quantization.utils import QuantMode, create_qparams, fake_quant_tensor, lsq_forward, tqt_forward\n'), ((4922, 4933), 'numpy.isnan', 'np.isnan', (['y'], {}), '(y)\n', (4930, 4933), True, 'import numpy as np\n'), ((4391, 4405), 'megengine.functional.ones_like', 'F.ones_like', (['x'], {}), '(x)\n', (4402, 4405), True, 'import megengine.functional as F\n'), ((4635, 4650), 'megengine.functional.ones_like', 'F.ones_like', (['x1'], {}), '(x1)\n', (4646, 4650), True, 'import megengine.functional as F\n')]
from enum import Enum from typing import TYPE_CHECKING, Optional, Set from sqlalchemy import Column from sqlalchemy import Enum as SQLEnum from sqlalchemy import ForeignKey, Integer from sqlmodel import Field, Relationship, SQLModel from .application import Status if TYPE_CHECKING: from .message import Message class Group(Enum): EVERYONE = "Everyone" APPLICATION_COMPLETE = "Application - Complete" APPLICATION_INCOMPLETE = "Application - Incomplete" STATUS_ACCEPTED = "Status - Accepted" STATUS_DENIED = "Status - Denied" STATUS_PENDING = "Status - Pending" @staticmethod def completion_states() -> Set["Group"]: return {Group.APPLICATION_COMPLETE, Group.APPLICATION_INCOMPLETE} @staticmethod def statuses() -> Set["Group"]: return {Group.STATUS_ACCEPTED, Group.STATUS_DENIED, Group.STATUS_PENDING} def to_status(self) -> Optional[Status]: if self == Group.STATUS_ACCEPTED: return Status.ACCEPTED elif self == Group.STATUS_DENIED: return Status.REJECTED elif self == Group.STATUS_PENDING: return Status.PENDING else: return None class RecipientBase(SQLModel): group: Group = Field( sa_column=Column( SQLEnum(Group), nullable=False, primary_key=True, ) ) class Recipient(RecipientBase, table=True): __tablename__ = "recipients" message_id: int = Field( sa_column=Column( Integer(), ForeignKey("messages.id", ondelete="CASCADE"), primary_key=True, ) ) message: "Message" = Relationship(back_populates="recipients") class RecipientCreate(RecipientBase): pass class RecipientRead(RecipientBase): pass
[ "sqlmodel.Relationship" ]
[((1659, 1700), 'sqlmodel.Relationship', 'Relationship', ([], {'back_populates': '"""recipients"""'}), "(back_populates='recipients')\n", (1671, 1700), False, 'from sqlmodel import Field, Relationship, SQLModel\n'), ((1281, 1295), 'sqlalchemy.Enum', 'SQLEnum', (['Group'], {}), '(Group)\n', (1288, 1295), True, 'from sqlalchemy import Enum as SQLEnum\n'), ((1518, 1527), 'sqlalchemy.Integer', 'Integer', ([], {}), '()\n', (1525, 1527), False, 'from sqlalchemy import ForeignKey, Integer\n'), ((1541, 1586), 'sqlalchemy.ForeignKey', 'ForeignKey', (['"""messages.id"""'], {'ondelete': '"""CASCADE"""'}), "('messages.id', ondelete='CASCADE')\n", (1551, 1586), False, 'from sqlalchemy import ForeignKey, Integer\n')]
from sqlmodel import SQLModel, Field, JSON, Relationship, VARCHAR from pydantic import BaseModel from datetime import datetime from typing import List, Optional from sqlalchemy import String, Column class ServerCatagoryLink(SQLModel, table=True): server_id: Optional[int] = Field( default=None, foreign_key="server.id", primary_key=True ) catagory_id: Optional[int] = Field( default=None, foreign_key="catagory.id", primary_key=True ) class ServerOrganizationLink(SQLModel, table=True): server_id: Optional[int] = Field( default=None, foreign_key="server.id", primary_key=True ) organization_id: Optional[int] = Field( default=None, foreign_key="organization.id", primary_key=True ) class Catagory(SQLModel, table=True): id: int = Field(primary_key=True) title: str = Field(sa_column=Column("title", String(255), unique=True)) meta_ref: str = Field(sa_column=Column("meta_ref", String(255), unique=True)) color: str servers: List["Server"] = Relationship( back_populates="catagories", link_model=ServerCatagoryLink ) class SaveCatagory(SQLModel): title: str color: str class Organization(SQLModel, table=True): id: int = Field(primary_key=True) title: str = Field(sa_column=Column("title", String(255), unique=True)) parent_id: Optional[int] = Field(foreign_key="organization.id") ref_title: str description: str servers: List["Server"] = Relationship( back_populates="organizations", link_model=ServerOrganizationLink ) class Server(SQLModel, table=True): id: int = Field(primary_key=True) scheme: str = Field(default="http") domain_name: str = Field(sa_column=Column("domain_name", String(255), unique=True)) path: Optional[str] agency: Optional[int] organization: Optional[str] status: str = "LOADING" server_log: List["ServerLog"] = Relationship(back_populates="server") server_reports: List["ServerReport"] = Relationship(back_populates="server") clicks: int = 0 ipaddress: Optional[str] response_time: Optional[int] = None last_checked: Optional[datetime] catagories: List["Catagory"] = Relationship( back_populates="servers", link_model=ServerCatagoryLink ) organizations: List["Organization"] = Relationship( back_populates="servers", link_model=ServerOrganizationLink ) class Config: arbitrary_types_allowed = True class ServerLog(SQLModel, table=True): id: int = Field(primary_key=True) datetime: datetime server_id: Optional[int] = Field(default=None, foreign_key="server.id") server: Optional[Server] = Relationship(back_populates="server_log") response_code: Optional[int] response_time: Optional[int] ipaddress: Optional[str] url: str error: Optional[str] class ServerReport(SQLModel, table=True): id: int = Field(primary_key=True) datetime: datetime server_id: Optional[int] = Field(default=None, foreign_key="server.id") server: Optional[Server] = Relationship(back_populates="server_reports")
[ "sqlmodel.Field", "sqlmodel.Relationship" ]
[((280, 342), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'foreign_key': '"""server.id"""', 'primary_key': '(True)'}), "(default=None, foreign_key='server.id', primary_key=True)\n", (285, 342), False, 'from sqlmodel import SQLModel, Field, JSON, Relationship, VARCHAR\n'), ((390, 454), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'foreign_key': '"""catagory.id"""', 'primary_key': '(True)'}), "(default=None, foreign_key='catagory.id', primary_key=True)\n", (395, 454), False, 'from sqlmodel import SQLModel, Field, JSON, Relationship, VARCHAR\n'), ((554, 616), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'foreign_key': '"""server.id"""', 'primary_key': '(True)'}), "(default=None, foreign_key='server.id', primary_key=True)\n", (559, 616), False, 'from sqlmodel import SQLModel, Field, JSON, Relationship, VARCHAR\n'), ((668, 736), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'foreign_key': '"""organization.id"""', 'primary_key': '(True)'}), "(default=None, foreign_key='organization.id', primary_key=True)\n", (673, 736), False, 'from sqlmodel import SQLModel, Field, JSON, Relationship, VARCHAR\n'), ((805, 828), 'sqlmodel.Field', 'Field', ([], {'primary_key': '(True)'}), '(primary_key=True)\n', (810, 828), False, 'from sqlmodel import SQLModel, Field, JSON, Relationship, VARCHAR\n'), ((1032, 1104), 'sqlmodel.Relationship', 'Relationship', ([], {'back_populates': '"""catagories"""', 'link_model': 'ServerCatagoryLink'}), "(back_populates='catagories', link_model=ServerCatagoryLink)\n", (1044, 1104), False, 'from sqlmodel import SQLModel, Field, JSON, Relationship, VARCHAR\n'), ((1239, 1262), 'sqlmodel.Field', 'Field', ([], {'primary_key': '(True)'}), '(primary_key=True)\n', (1244, 1262), False, 'from sqlmodel import SQLModel, Field, JSON, Relationship, VARCHAR\n'), ((1370, 1406), 'sqlmodel.Field', 'Field', ([], {'foreign_key': '"""organization.id"""'}), "(foreign_key='organization.id')\n", (1375, 1406), False, 'from sqlmodel import SQLModel, Field, JSON, Relationship, VARCHAR\n'), ((1477, 1556), 'sqlmodel.Relationship', 'Relationship', ([], {'back_populates': '"""organizations"""', 'link_model': 'ServerOrganizationLink'}), "(back_populates='organizations', link_model=ServerOrganizationLink)\n", (1489, 1556), False, 'from sqlmodel import SQLModel, Field, JSON, Relationship, VARCHAR\n'), ((1623, 1646), 'sqlmodel.Field', 'Field', ([], {'primary_key': '(True)'}), '(primary_key=True)\n', (1628, 1646), False, 'from sqlmodel import SQLModel, Field, JSON, Relationship, VARCHAR\n'), ((1665, 1686), 'sqlmodel.Field', 'Field', ([], {'default': '"""http"""'}), "(default='http')\n", (1670, 1686), False, 'from sqlmodel import SQLModel, Field, JSON, Relationship, VARCHAR\n'), ((1921, 1958), 'sqlmodel.Relationship', 'Relationship', ([], {'back_populates': '"""server"""'}), "(back_populates='server')\n", (1933, 1958), False, 'from sqlmodel import SQLModel, Field, JSON, Relationship, VARCHAR\n'), ((2002, 2039), 'sqlmodel.Relationship', 'Relationship', ([], {'back_populates': '"""server"""'}), "(back_populates='server')\n", (2014, 2039), False, 'from sqlmodel import SQLModel, Field, JSON, Relationship, VARCHAR\n'), ((2201, 2270), 'sqlmodel.Relationship', 'Relationship', ([], {'back_populates': '"""servers"""', 'link_model': 'ServerCatagoryLink'}), "(back_populates='servers', link_model=ServerCatagoryLink)\n", (2213, 2270), False, 'from sqlmodel import SQLModel, Field, JSON, Relationship, VARCHAR\n'), ((2327, 2400), 'sqlmodel.Relationship', 'Relationship', ([], {'back_populates': '"""servers"""', 'link_model': 'ServerOrganizationLink'}), "(back_populates='servers', link_model=ServerOrganizationLink)\n", (2339, 2400), False, 'from sqlmodel import SQLModel, Field, JSON, Relationship, VARCHAR\n'), ((2528, 2551), 'sqlmodel.Field', 'Field', ([], {'primary_key': '(True)'}), '(primary_key=True)\n', (2533, 2551), False, 'from sqlmodel import SQLModel, Field, JSON, Relationship, VARCHAR\n'), ((2606, 2650), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'foreign_key': '"""server.id"""'}), "(default=None, foreign_key='server.id')\n", (2611, 2650), False, 'from sqlmodel import SQLModel, Field, JSON, Relationship, VARCHAR\n'), ((2682, 2723), 'sqlmodel.Relationship', 'Relationship', ([], {'back_populates': '"""server_log"""'}), "(back_populates='server_log')\n", (2694, 2723), False, 'from sqlmodel import SQLModel, Field, JSON, Relationship, VARCHAR\n'), ((2916, 2939), 'sqlmodel.Field', 'Field', ([], {'primary_key': '(True)'}), '(primary_key=True)\n', (2921, 2939), False, 'from sqlmodel import SQLModel, Field, JSON, Relationship, VARCHAR\n'), ((2994, 3038), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'foreign_key': '"""server.id"""'}), "(default=None, foreign_key='server.id')\n", (2999, 3038), False, 'from sqlmodel import SQLModel, Field, JSON, Relationship, VARCHAR\n'), ((3070, 3115), 'sqlmodel.Relationship', 'Relationship', ([], {'back_populates': '"""server_reports"""'}), "(back_populates='server_reports')\n", (3082, 3115), False, 'from sqlmodel import SQLModel, Field, JSON, Relationship, VARCHAR\n'), ((878, 889), 'sqlalchemy.String', 'String', (['(255)'], {}), '(255)\n', (884, 889), False, 'from sqlalchemy import String, Column\n'), ((960, 971), 'sqlalchemy.String', 'String', (['(255)'], {}), '(255)\n', (966, 971), False, 'from sqlalchemy import String, Column\n'), ((1312, 1323), 'sqlalchemy.String', 'String', (['(255)'], {}), '(255)\n', (1318, 1323), False, 'from sqlalchemy import String, Column\n'), ((1748, 1759), 'sqlalchemy.String', 'String', (['(255)'], {}), '(255)\n', (1754, 1759), False, 'from sqlalchemy import String, Column\n')]
import typing as t if t.TYPE_CHECKING: from .other import DB_AccessToken, DB_APIKey from .discussions import DB_Discussion from datetime import datetime from sqlmodel import SQLModel, Field, Relationship, Column, JSON from ..extensions.tags import DB_Tag, DB_TagUser class DB_User(SQLModel, table=True): __tablename__ = 'users' id: t.Optional[int] = Field(default=None, primary_key=True) """The ID of the user. This is handled by the database.""" username: str = Field(max_length=100, sa_column_kwargs={"unique": True}) """The user's username.""" email: str = Field(max_length=150, sa_column_kwargs={"unique": True}) """The user's E-mail address.""" is_email_confirmed: bool = Field(default=False) """Whether or not the user confirmed their E-mail address.""" password: str = Field(max_length=100) """The user's password (<PASSWORD>).""" avatar_url: t.Optional[str] = Field(max_length=100) """The file name of user's avatar. Avatars are located in the `public/assets/avatars` directory of your forum root.""" preferences: t.Dict[str, bool] = Field(sa_column=Column(JSON), default={"notify_discussionRenamed_alert": True,"notify_postLiked_alert": True,"notify_discussionLocked_alert": True,"notify_postMentioned_alert": True,"notify_postMentioned_email": False,"notify_userMentioned_alert": True,"notify_userMentioned_email": False,"notify_newPost_alert": True, "notify_newPost_email": True, "notify_userSuspended_alert": True, "notify_userUnsuspended_alert": True, "followAfterReply": True, "discloseOnline": True, "indexProfile": True, "locale": None }) """The user's preferences (e. g.: for notifications).""" joined_at: t.Optional[datetime] = Field(default=None) """When did the user join the forum.""" last_seen_at: t.Optional[datetime] = Field(default=None) """When was the user last seen at.""" marked_all_as_read_at: t.Optional[datetime] = Field(default=None) """When did the user mark all discussions as read.""" read_notifications_at: t.Optional[datetime] = Field(default=None) """When did the user read their notifications.""" discussion_count: int = Field(default=0) """The user's discussion count.""" comment_count: int = Field(default=0) """The user's comment (post) count.""" access_tokens: t.List['DB_AccessToken'] = Relationship(back_populates='user') """List of access tokens belonging to this user.""" api_keys: t.List['DB_APIKey'] = Relationship(back_populates='user') """List of API keys that perform actions on behalf of this user.""" discussions: t.List['DB_Discussion'] = Relationship(back_populates='author') """List of discussions that this user made.""" tags: t.List['DB_Tag'] = Relationship(back_populates='users', link_model=DB_TagUser) """Tags that have relationship with this user."""
[ "sqlmodel.Relationship", "sqlmodel.Field", "sqlmodel.Column" ]
[((372, 409), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'primary_key': '(True)'}), '(default=None, primary_key=True)\n', (377, 409), False, 'from sqlmodel import SQLModel, Field, Relationship, Column, JSON\n'), ((494, 550), 'sqlmodel.Field', 'Field', ([], {'max_length': '(100)', 'sa_column_kwargs': "{'unique': True}"}), "(max_length=100, sa_column_kwargs={'unique': True})\n", (499, 550), False, 'from sqlmodel import SQLModel, Field, Relationship, Column, JSON\n'), ((600, 656), 'sqlmodel.Field', 'Field', ([], {'max_length': '(150)', 'sa_column_kwargs': "{'unique': True}"}), "(max_length=150, sa_column_kwargs={'unique': True})\n", (605, 656), False, 'from sqlmodel import SQLModel, Field, Relationship, Column, JSON\n'), ((725, 745), 'sqlmodel.Field', 'Field', ([], {'default': '(False)'}), '(default=False)\n', (730, 745), False, 'from sqlmodel import SQLModel, Field, Relationship, Column, JSON\n'), ((832, 853), 'sqlmodel.Field', 'Field', ([], {'max_length': '(100)'}), '(max_length=100)\n', (837, 853), False, 'from sqlmodel import SQLModel, Field, Relationship, Column, JSON\n'), ((933, 954), 'sqlmodel.Field', 'Field', ([], {'max_length': '(100)'}), '(max_length=100)\n', (938, 954), False, 'from sqlmodel import SQLModel, Field, Relationship, Column, JSON\n'), ((1728, 1747), 'sqlmodel.Field', 'Field', ([], {'default': 'None'}), '(default=None)\n', (1733, 1747), False, 'from sqlmodel import SQLModel, Field, Relationship, Column, JSON\n'), ((1833, 1852), 'sqlmodel.Field', 'Field', ([], {'default': 'None'}), '(default=None)\n', (1838, 1852), False, 'from sqlmodel import SQLModel, Field, Relationship, Column, JSON\n'), ((1945, 1964), 'sqlmodel.Field', 'Field', ([], {'default': 'None'}), '(default=None)\n', (1950, 1964), False, 'from sqlmodel import SQLModel, Field, Relationship, Column, JSON\n'), ((2073, 2092), 'sqlmodel.Field', 'Field', ([], {'default': 'None'}), '(default=None)\n', (2078, 2092), False, 'from sqlmodel import SQLModel, Field, Relationship, Column, JSON\n'), ((2176, 2192), 'sqlmodel.Field', 'Field', ([], {'default': '(0)'}), '(default=0)\n', (2181, 2192), False, 'from sqlmodel import SQLModel, Field, Relationship, Column, JSON\n'), ((2257, 2273), 'sqlmodel.Field', 'Field', ([], {'default': '(0)'}), '(default=0)\n', (2262, 2273), False, 'from sqlmodel import SQLModel, Field, Relationship, Column, JSON\n'), ((2364, 2399), 'sqlmodel.Relationship', 'Relationship', ([], {'back_populates': '"""user"""'}), "(back_populates='user')\n", (2376, 2399), False, 'from sqlmodel import SQLModel, Field, Relationship, Column, JSON\n'), ((2492, 2527), 'sqlmodel.Relationship', 'Relationship', ([], {'back_populates': '"""user"""'}), "(back_populates='user')\n", (2504, 2527), False, 'from sqlmodel import SQLModel, Field, Relationship, Column, JSON\n'), ((2643, 2680), 'sqlmodel.Relationship', 'Relationship', ([], {'back_populates': '"""author"""'}), "(back_populates='author')\n", (2655, 2680), False, 'from sqlmodel import SQLModel, Field, Relationship, Column, JSON\n'), ((2762, 2821), 'sqlmodel.Relationship', 'Relationship', ([], {'back_populates': '"""users"""', 'link_model': 'DB_TagUser'}), "(back_populates='users', link_model=DB_TagUser)\n", (2774, 2821), False, 'from sqlmodel import SQLModel, Field, Relationship, Column, JSON\n'), ((1131, 1143), 'sqlmodel.Column', 'Column', (['JSON'], {}), '(JSON)\n', (1137, 1143), False, 'from sqlmodel import SQLModel, Field, Relationship, Column, JSON\n')]
from datetime import datetime from sqlmodel import Session, SQLModel, create_engine, text import sqlite3 database_loc = "backend/database.sqlite" con_str = f"sqlite:///{database_loc}" engine = create_engine(con_str, echo=True) sqlite3_engine = sqlite3.connect(f"{database_loc}") def get_session(): session = Session(engine) return session def create_db(): SQLModel.metadata.create_all(engine) def execute_sample_sql(session): """Read sample sql database and import it.""" with open("backend/tests/sample.sql") as f: content = f.read() queries = filter(None, content.split(";\n")) queries = [text(query) for query in queries] for query in queries: session.exec(query) session.commit() session.expire_all() session = Session(engine) tags_metadata = [ { "name": "user", "description": "Operations with users", }, { "name": "epic", "description": "operations with epics", }, { "name": "epic_area", "description": "operations with epic areas", }, { "name": "team", "description": "operations with teams", }, { "name": "sponsor", "description": "operations with sponsors", }, { "name": "client", "description": "operations with clients", }, { "name": "forecast", "description": "operations with forecasts", }, { "name": "rate", "description": "operations with rates", }, { "name": "timelog", "description": "operations with timelogs", }, ] def string_to_datetime(date_string): date = datetime.strptime(date_string, "%Y-%m-%d %H:%M") return date def string_to_datetime_hm(date_string): date = datetime.strptime(date_string, "%H:%M") return date def string_to_datetime_GMT(date_string): date = datetime.strptime(date_string, "%a %b %d %Y %H:%M:%S %Z%z") return date def string_to_datetime_work(date_string): date = datetime.strptime(date_string, "%Y-%m-%dT%H:%M:%S.%fZ") return date def datetime_to_string(date_date): date_string = date_date.strftime("%Y-%m-%dT%H:%M:%S.%fZ") return date_string def time_period(time_of_start, time_of_end): starting_time = string_to_datetime_work(time_of_start) ending_time = string_to_datetime_work(time_of_end) working_time = ending_time - starting_time return working_time def date_str_to_date(date: str): date_date = datetime.strptime(date, "%Y-%m-%d").date() return date_date far_date = date_str_to_date("9999-12-31")
[ "sqlmodel.SQLModel.metadata.create_all", "sqlmodel.Session", "sqlmodel.text", "sqlmodel.create_engine" ]
[((195, 228), 'sqlmodel.create_engine', 'create_engine', (['con_str'], {'echo': '(True)'}), '(con_str, echo=True)\n', (208, 228), False, 'from sqlmodel import Session, SQLModel, create_engine, text\n'), ((246, 280), 'sqlite3.connect', 'sqlite3.connect', (['f"""{database_loc}"""'], {}), "(f'{database_loc}')\n", (261, 280), False, 'import sqlite3\n'), ((784, 799), 'sqlmodel.Session', 'Session', (['engine'], {}), '(engine)\n', (791, 799), False, 'from sqlmodel import Session, SQLModel, create_engine, text\n'), ((316, 331), 'sqlmodel.Session', 'Session', (['engine'], {}), '(engine)\n', (323, 331), False, 'from sqlmodel import Session, SQLModel, create_engine, text\n'), ((374, 410), 'sqlmodel.SQLModel.metadata.create_all', 'SQLModel.metadata.create_all', (['engine'], {}), '(engine)\n', (402, 410), False, 'from sqlmodel import Session, SQLModel, create_engine, text\n'), ((1670, 1718), 'datetime.datetime.strptime', 'datetime.strptime', (['date_string', '"""%Y-%m-%d %H:%M"""'], {}), "(date_string, '%Y-%m-%d %H:%M')\n", (1687, 1718), False, 'from datetime import datetime\n'), ((1788, 1827), 'datetime.datetime.strptime', 'datetime.strptime', (['date_string', '"""%H:%M"""'], {}), "(date_string, '%H:%M')\n", (1805, 1827), False, 'from datetime import datetime\n'), ((1898, 1957), 'datetime.datetime.strptime', 'datetime.strptime', (['date_string', '"""%a %b %d %Y %H:%M:%S %Z%z"""'], {}), "(date_string, '%a %b %d %Y %H:%M:%S %Z%z')\n", (1915, 1957), False, 'from datetime import datetime\n'), ((2029, 2084), 'datetime.datetime.strptime', 'datetime.strptime', (['date_string', '"""%Y-%m-%dT%H:%M:%S.%fZ"""'], {}), "(date_string, '%Y-%m-%dT%H:%M:%S.%fZ')\n", (2046, 2084), False, 'from datetime import datetime\n'), ((636, 647), 'sqlmodel.text', 'text', (['query'], {}), '(query)\n', (640, 647), False, 'from sqlmodel import Session, SQLModel, create_engine, text\n'), ((2506, 2541), 'datetime.datetime.strptime', 'datetime.strptime', (['date', '"""%Y-%m-%d"""'], {}), "(date, '%Y-%m-%d')\n", (2523, 2541), False, 'from datetime import datetime\n')]
from __future__ import annotations import inspect from functools import wraps from typing import Any, List, Type, TypeVar from fastapi.encoders import jsonable_encoder from sqlmodel import SQLModel, select from sqlmodel.ext.asyncio.session import AsyncSession Self = TypeVar("Self", bound="Base") class InvalidTable(RuntimeError): """Raised when calling a method coupled to SQLAlchemy operations. It should be called only by SQLModel objects that are tables. """ def is_table(cls: Type[Self]) -> bool: base_is_table = False for base in cls.__bases__: config = getattr(base, "__config__") if config and getattr(config, "table", False): base_is_table = True break return getattr(cls.__config__, "table", False) and not base_is_table def validate_table(func): @wraps(func) def wrapper(self, *args, **kwargs): cls = self if inspect.isclass(self) else self.__class__ if not is_table(cls): raise InvalidTable( f'"{cls.__name__}" is not a table. ' "Add the class parameter `table=True` or don't use with this object." ) return func(self, *args, **kwargs) return wrapper class Base(SQLModel): @classmethod @validate_table async def get( cls: Type[Self], session: AsyncSession, *args: Any, **kwargs: Any ) -> Self: result = await session.execute(select(cls).filter(*args).filter_by(**kwargs)) return result.scalars().first() @classmethod @validate_table async def get_multi( cls: Type[Self], session: AsyncSession, *args, offset: int = 0, limit: int = 100, **kwargs, ) -> List[Self]: result = await session.execute( select(cls).filter(*args).filter_by(**kwargs).offset(offset).limit(limit) ) return result.scalars().all() @classmethod @validate_table async def create(cls: Type[Self], session: AsyncSession, **kwargs: Any) -> Self: db_obj = cls(**kwargs) session.add(db_obj) await session.commit() return db_obj @validate_table async def update(self: Self, session: AsyncSession, **kwargs: Any) -> Self: obj_data = jsonable_encoder(self) for field in obj_data: if field in kwargs: setattr(self, field, kwargs[field]) session.add(self) await session.commit() await session.refresh(self) return self @classmethod @validate_table async def delete( cls: Type[Self], session: AsyncSession, *args: Any, **kwargs: Any ) -> Self: db_obj = await cls.get(session, *args, **kwargs) await session.delete(db_obj) await session.commit() return db_obj
[ "sqlmodel.select" ]
[((270, 299), 'typing.TypeVar', 'TypeVar', (['"""Self"""'], {'bound': '"""Base"""'}), "('Self', bound='Base')\n", (277, 299), False, 'from typing import Any, List, Type, TypeVar\n'), ((836, 847), 'functools.wraps', 'wraps', (['func'], {}), '(func)\n', (841, 847), False, 'from functools import wraps\n'), ((2278, 2300), 'fastapi.encoders.jsonable_encoder', 'jsonable_encoder', (['self'], {}), '(self)\n', (2294, 2300), False, 'from fastapi.encoders import jsonable_encoder\n'), ((910, 931), 'inspect.isclass', 'inspect.isclass', (['self'], {}), '(self)\n', (925, 931), False, 'import inspect\n'), ((1438, 1449), 'sqlmodel.select', 'select', (['cls'], {}), '(cls)\n', (1444, 1449), False, 'from sqlmodel import SQLModel, select\n'), ((1801, 1812), 'sqlmodel.select', 'select', (['cls'], {}), '(cls)\n', (1807, 1812), False, 'from sqlmodel import SQLModel, select\n')]
import megengine as mge import megengine.functional as F from megengine.core import tensor from layers.nms import gpu_nms from config import config from det_opr.bbox_opr import bbox_transform_inv_opr, clip_boxes_opr, \ filter_boxes_opr def find_top_rpn_proposals(is_train, rpn_bbox_offsets_list, rpn_cls_prob_list, all_anchors_list, im_info): prev_nms_top_n = config.train_prev_nms_top_n \ if is_train else config.test_prev_nms_top_n post_nms_top_n = config.train_post_nms_top_n \ if is_train else config.test_post_nms_top_n batch_per_gpu = config.batch_per_gpu if is_train else 1 nms_threshold = config.rpn_nms_threshold box_min_size = config.rpn_min_box_size bbox_normalize_targets = config.rpn_bbox_normalize_targets bbox_normalize_means = config.bbox_normalize_means bbox_normalize_stds = config.bbox_normalize_stds list_size = len(rpn_bbox_offsets_list) return_rois = [] return_probs = [] for bid in range(batch_per_gpu): batch_proposals_list = [] batch_probs_list = [] for l in range(list_size): # get proposals and probs offsets = rpn_bbox_offsets_list[l][bid] \ .dimshuffle(1, 2, 0).reshape(-1, 4) if bbox_normalize_targets: std_opr = tensor(config.bbox_normalize_stds[None, :]) mean_opr = tensor(config.bbox_normalize_means[None, :]) pred_offsets = pred_offsets * std_opr pred_offsets = pred_offsets + mean_opr all_anchors = all_anchors_list[l] proposals = bbox_transform_inv_opr(all_anchors, offsets) if config.anchor_within_border: proposals = clip_boxes_opr(proposals, im_info[bid, :]) probs = rpn_cls_prob_list[l][bid] \ .dimshuffle(1,2,0).reshape(-1, 2) probs = F.softmax(probs)[:, 1] # gather the proposals and probs batch_proposals_list.append(proposals) batch_probs_list.append(probs) batch_proposals = F.concat(batch_proposals_list, axis=0) batch_probs = F.concat(batch_probs_list, axis=0) # filter the zero boxes. batch_keep_mask = filter_boxes_opr( batch_proposals, box_min_size * im_info[bid, 2]) batch_probs = batch_probs * batch_keep_mask # prev_nms_top_n num_proposals = F.minimum(prev_nms_top_n, batch_probs.shapeof()[0]) batch_probs, idx = F.argsort(batch_probs, descending=True) batch_probs = batch_probs[:num_proposals].reshape(-1,1) topk_idx = idx[:num_proposals].reshape(-1) batch_proposals = batch_proposals.ai[topk_idx] batch_rois = F.concat([batch_proposals, batch_probs], axis=1) # For each image, run a total-level NMS, and choose topk results. keep_inds = gpu_nms(batch_rois, nms_threshold, post_nms_top_n) batch_rois = batch_rois.ai[keep_inds] batch_probs = batch_rois[:, -1] # cons the rois batch_inds = mge.ones((batch_rois.shapeof()[0], 1)) * bid batch_rois = F.concat([batch_inds, batch_rois[:, :-1]], axis=1) return_rois.append(batch_rois) return_probs.append(batch_probs) if batch_per_gpu == 1: return batch_rois, batch_probs else: concated_rois = F.concat(return_rois, axis=0) concated_probs = F.concat(return_probs, axis=0) return concated_rois, concated_probs
[ "megengine.functional.argsort", "megengine.functional.concat", "megengine.functional.softmax", "megengine.core.tensor" ]
[((2080, 2118), 'megengine.functional.concat', 'F.concat', (['batch_proposals_list'], {'axis': '(0)'}), '(batch_proposals_list, axis=0)\n', (2088, 2118), True, 'import megengine.functional as F\n'), ((2141, 2175), 'megengine.functional.concat', 'F.concat', (['batch_probs_list'], {'axis': '(0)'}), '(batch_probs_list, axis=0)\n', (2149, 2175), True, 'import megengine.functional as F\n'), ((2235, 2300), 'det_opr.bbox_opr.filter_boxes_opr', 'filter_boxes_opr', (['batch_proposals', '(box_min_size * im_info[bid, 2])'], {}), '(batch_proposals, box_min_size * im_info[bid, 2])\n', (2251, 2300), False, 'from det_opr.bbox_opr import bbox_transform_inv_opr, clip_boxes_opr, filter_boxes_opr\n'), ((2498, 2537), 'megengine.functional.argsort', 'F.argsort', (['batch_probs'], {'descending': '(True)'}), '(batch_probs, descending=True)\n', (2507, 2537), True, 'import megengine.functional as F\n'), ((2729, 2777), 'megengine.functional.concat', 'F.concat', (['[batch_proposals, batch_probs]'], {'axis': '(1)'}), '([batch_proposals, batch_probs], axis=1)\n', (2737, 2777), True, 'import megengine.functional as F\n'), ((2872, 2922), 'layers.nms.gpu_nms', 'gpu_nms', (['batch_rois', 'nms_threshold', 'post_nms_top_n'], {}), '(batch_rois, nms_threshold, post_nms_top_n)\n', (2879, 2922), False, 'from layers.nms import gpu_nms\n'), ((3120, 3170), 'megengine.functional.concat', 'F.concat', (['[batch_inds, batch_rois[:, :-1]]'], {'axis': '(1)'}), '([batch_inds, batch_rois[:, :-1]], axis=1)\n', (3128, 3170), True, 'import megengine.functional as F\n'), ((3352, 3381), 'megengine.functional.concat', 'F.concat', (['return_rois'], {'axis': '(0)'}), '(return_rois, axis=0)\n', (3360, 3381), True, 'import megengine.functional as F\n'), ((3407, 3437), 'megengine.functional.concat', 'F.concat', (['return_probs'], {'axis': '(0)'}), '(return_probs, axis=0)\n', (3415, 3437), True, 'import megengine.functional as F\n'), ((1610, 1654), 'det_opr.bbox_opr.bbox_transform_inv_opr', 'bbox_transform_inv_opr', (['all_anchors', 'offsets'], {}), '(all_anchors, offsets)\n', (1632, 1654), False, 'from det_opr.bbox_opr import bbox_transform_inv_opr, clip_boxes_opr, filter_boxes_opr\n'), ((1315, 1358), 'megengine.core.tensor', 'tensor', (['config.bbox_normalize_stds[None, :]'], {}), '(config.bbox_normalize_stds[None, :])\n', (1321, 1358), False, 'from megengine.core import tensor\n'), ((1386, 1430), 'megengine.core.tensor', 'tensor', (['config.bbox_normalize_means[None, :]'], {}), '(config.bbox_normalize_means[None, :])\n', (1392, 1430), False, 'from megengine.core import tensor\n'), ((1727, 1769), 'det_opr.bbox_opr.clip_boxes_opr', 'clip_boxes_opr', (['proposals', 'im_info[bid, :]'], {}), '(proposals, im_info[bid, :])\n', (1741, 1769), False, 'from det_opr.bbox_opr import bbox_transform_inv_opr, clip_boxes_opr, filter_boxes_opr\n'), ((1892, 1908), 'megengine.functional.softmax', 'F.softmax', (['probs'], {}), '(probs)\n', (1901, 1908), True, 'import megengine.functional as F\n')]
""" Functions to visualize the geometry elements and numbering and orientation of their facets (edges and faces). The standard geometry elements can be plotted by running:: $ python sfepy/postprocess/plot_facets.py """ import numpy as nm import matplotlib.pyplot as plt from sfepy.linalg import (get_perpendiculars, normalize_vectors, make_axis_rotation_matrix) from sfepy.postprocess.plot_dofs import _get_axes, plot_mesh, plot_global_dofs def plot_geometry(ax, gel, show=False): """ Plot a geometry element as a wireframe. """ ax = plot_mesh(ax, gel.coors, [gel.conn], gel.edges, show=False) ax = plot_global_dofs(ax, gel.coors, [gel.conn], show=show) return ax def plot_edges(ax, gel, length, show=False): """ Plot edges of a geometry element as numbered arrows. """ dim = gel.dim ax = _get_axes(ax, dim) l2 = 0.5 * length for ii, edge in enumerate(gel.edges): cc = gel.coors[edge] centre = 0.5 * cc.sum(axis=0) vdir = (cc - centre) normalize_vectors(vdir) cc = l2 * vdir + centre draw_arrow(ax, cc, length=0.3*length, linewidth=3, color='b') if dim == 3: cx, cy, cz = centre ax.text(cx, cy, cz, ii, color='b', fontsize=10, weight='light') else: cx, cy = centre ax.text(cx, cy, ii, color='b', fontsize=10, weight='light') return ax def plot_faces(ax, gel, radius, n_point, show=False): """ Plot faces of a 3D geometry element as numbered oriented arcs. An arc centre corresponds to the first node of a face. It points from the first edge towards the last edge of the face. """ dim = gel.dim ax = _get_axes(ax, dim) if dim < 3: return ax for ii, face in enumerate(gel.faces): cc = gel.coors[face] t1 = cc[1, :] - cc[0, :] t2 = cc[-1, :] - cc[0, :] n = nm.cross(t1, t2) nt1 = nm.linalg.norm(t1) nt2 = nm.linalg.norm(t2) angle = nm.arccos(nm.dot(t1, t2) / (nt1 * nt2)) da = angle / (n_point - 1) mtx = make_axis_rotation_matrix(n, da) rt = cc[0] + radius * t1 / nt1 coors = [rt] for ip in range(n_point - 1): rt = nm.dot(mtx.T, (rt - cc[0])) + cc[0] coors.append(rt) coors = nm.array(coors, dtype=nm.float64) centre = coors.sum(axis=0) / coors.shape[0] draw_arrow(ax, coors, length=0.3*radius, linewidth=3, color='r') if dim == 3: cx, cy, cz = centre ax.text(cx, cy, cz, ii, color='r', fontsize=10, weight='light') else: cx, cy = centre ax.text(cx, cy, ii, color='r', fontsize=10, weight='light') return ax def draw_arrow(ax, coors, angle=20.0, length=0.3, **kwargs): """ Draw a line ended with an arrow head, in 2D or 3D. """ color = kwargs.get('color', 'b') c0 = coors[-2] c1 = coors[-1] vd = c1 - c0 nvd = nm.linalg.norm(vd) vd /= nvd c0 = c1 - length * vd ps = get_perpendiculars(vd) rangle = nm.deg2rad(min(angle, 60.0)) plength = length * nm.arctan(rangle) if coors.shape[1] == 2: from matplotlib.patches import Polygon cx, cy = coors[:, 0], coors[:, 1] ax.plot(cx, cy, **kwargs) p0 = c0 + plength * ps p1 = c0 - plength * ps pol = Polygon([p0, p1, c1], color=color) ax.add_artist(pol) else: import mpl_toolkits.mplot3d as plt3 cx, cy, cz = coors[:, 0], coors[:, 1], coors[:, 2] ax.plot(cx, cy, cz, **kwargs) p00 = c0 + plength * ps[0] p01 = c0 - plength * ps[0] p10 = c0 + plength * ps[1] p11 = c0 - plength * ps[1] arr = plt3.art3d.Poly3DCollection([[p00, p01, c1], [p10, p11, c1]], color=color) ax.add_collection3d(arr) if __name__ == '__main__': from sfepy.discrete.fem.geometry_element import GeometryElement, geometry_data for key, gd in geometry_data.iteritems(): if key == '1_2' : continue gel = GeometryElement(key) ax = plot_geometry(None, gel) ax = plot_edges(ax, gel, length=0.2) ax = plot_faces(ax, gel, radius=0.3, n_point=5) dd = 0.05 ax.set_xlim([-dd, 1.0 + dd]) ax.set_ylim([-dd, 1.0 + dd]) if gel.dim == 3: ax.set_zlim([-dd, 1.0 + dd]) plt.show()
[ "sfepy.linalg.normalize_vectors", "sfepy.discrete.fem.geometry_element.geometry_data.iteritems", "sfepy.linalg.get_perpendiculars", "sfepy.discrete.fem.geometry_element.GeometryElement", "sfepy.postprocess.plot_dofs.plot_global_dofs", "sfepy.postprocess.plot_dofs.plot_mesh", "sfepy.linalg.make_axis_rotation_matrix", "sfepy.postprocess.plot_dofs._get_axes" ]
[((582, 641), 'sfepy.postprocess.plot_dofs.plot_mesh', 'plot_mesh', (['ax', 'gel.coors', '[gel.conn]', 'gel.edges'], {'show': '(False)'}), '(ax, gel.coors, [gel.conn], gel.edges, show=False)\n', (591, 641), False, 'from sfepy.postprocess.plot_dofs import _get_axes, plot_mesh, plot_global_dofs\n'), ((651, 705), 'sfepy.postprocess.plot_dofs.plot_global_dofs', 'plot_global_dofs', (['ax', 'gel.coors', '[gel.conn]'], {'show': 'show'}), '(ax, gel.coors, [gel.conn], show=show)\n', (667, 705), False, 'from sfepy.postprocess.plot_dofs import _get_axes, plot_mesh, plot_global_dofs\n'), ((867, 885), 'sfepy.postprocess.plot_dofs._get_axes', '_get_axes', (['ax', 'dim'], {}), '(ax, dim)\n', (876, 885), False, 'from sfepy.postprocess.plot_dofs import _get_axes, plot_mesh, plot_global_dofs\n'), ((1776, 1794), 'sfepy.postprocess.plot_dofs._get_axes', '_get_axes', (['ax', 'dim'], {}), '(ax, dim)\n', (1785, 1794), False, 'from sfepy.postprocess.plot_dofs import _get_axes, plot_mesh, plot_global_dofs\n'), ((3093, 3111), 'numpy.linalg.norm', 'nm.linalg.norm', (['vd'], {}), '(vd)\n', (3107, 3111), True, 'import numpy as nm\n'), ((3163, 3185), 'sfepy.linalg.get_perpendiculars', 'get_perpendiculars', (['vd'], {}), '(vd)\n', (3181, 3185), False, 'from sfepy.linalg import get_perpendiculars, normalize_vectors, make_axis_rotation_matrix\n'), ((4157, 4182), 'sfepy.discrete.fem.geometry_element.geometry_data.iteritems', 'geometry_data.iteritems', ([], {}), '()\n', (4180, 4182), False, 'from sfepy.discrete.fem.geometry_element import GeometryElement, geometry_data\n'), ((1056, 1079), 'sfepy.linalg.normalize_vectors', 'normalize_vectors', (['vdir'], {}), '(vdir)\n', (1073, 1079), False, 'from sfepy.linalg import get_perpendiculars, normalize_vectors, make_axis_rotation_matrix\n'), ((1974, 1990), 'numpy.cross', 'nm.cross', (['t1', 't2'], {}), '(t1, t2)\n', (1982, 1990), True, 'import numpy as nm\n'), ((2006, 2024), 'numpy.linalg.norm', 'nm.linalg.norm', (['t1'], {}), '(t1)\n', (2020, 2024), True, 'import numpy as nm\n'), ((2039, 2057), 'numpy.linalg.norm', 'nm.linalg.norm', (['t2'], {}), '(t2)\n', (2053, 2057), True, 'import numpy as nm\n'), ((2165, 2197), 'sfepy.linalg.make_axis_rotation_matrix', 'make_axis_rotation_matrix', (['n', 'da'], {}), '(n, da)\n', (2190, 2197), False, 'from sfepy.linalg import get_perpendiculars, normalize_vectors, make_axis_rotation_matrix\n'), ((2396, 2429), 'numpy.array', 'nm.array', (['coors'], {'dtype': 'nm.float64'}), '(coors, dtype=nm.float64)\n', (2404, 2429), True, 'import numpy as nm\n'), ((3252, 3269), 'numpy.arctan', 'nm.arctan', (['rangle'], {}), '(rangle)\n', (3261, 3269), True, 'import numpy as nm\n'), ((3502, 3536), 'matplotlib.patches.Polygon', 'Polygon', (['[p0, p1, c1]'], {'color': 'color'}), '([p0, p1, c1], color=color)\n', (3509, 3536), False, 'from matplotlib.patches import Polygon\n'), ((3875, 3949), 'mpl_toolkits.mplot3d.art3d.Poly3DCollection', 'plt3.art3d.Poly3DCollection', (['[[p00, p01, c1], [p10, p11, c1]]'], {'color': 'color'}), '([[p00, p01, c1], [p10, p11, c1]], color=color)\n', (3902, 3949), True, 'import mpl_toolkits.mplot3d as plt3\n'), ((4234, 4254), 'sfepy.discrete.fem.geometry_element.GeometryElement', 'GeometryElement', (['key'], {}), '(key)\n', (4249, 4254), False, 'from sfepy.discrete.fem.geometry_element import GeometryElement, geometry_data\n'), ((4563, 4573), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (4571, 4573), True, 'import matplotlib.pyplot as plt\n'), ((2084, 2098), 'numpy.dot', 'nm.dot', (['t1', 't2'], {}), '(t1, t2)\n', (2090, 2098), True, 'import numpy as nm\n'), ((2314, 2339), 'numpy.dot', 'nm.dot', (['mtx.T', '(rt - cc[0])'], {}), '(mtx.T, rt - cc[0])\n', (2320, 2339), True, 'import numpy as nm\n')]
import pytest from typing import Generator, Dict from sqlmodel import Session, SQLModel, create_engine from sqlmodel.pool import StaticPool from fastapi.testclient import TestClient from app.models import * from app.main import app from app.api.deps import get_db @pytest.fixture(name="session") def session_fixture() -> Generator: engine = create_engine( "sqlite://", echo=False, connect_args={"check_same_thread": False}, poolclass=StaticPool, ) SQLModel.metadata.create_all(engine) with Session(engine) as session: yield session @pytest.fixture(name="client") def client_fixture(session: Session): def get_db_override(): return session app.dependency_overrides[get_db] = get_db_override client = TestClient(app) yield client app.dependency_overrides.clear() @pytest.fixture(scope="module") def random_product() -> Dict[str, str]: return { "id": 1, "name": "<NAME>", "price": 80, }
[ "sqlmodel.create_engine", "sqlmodel.Session", "sqlmodel.SQLModel.metadata.create_all" ]
[((267, 297), 'pytest.fixture', 'pytest.fixture', ([], {'name': '"""session"""'}), "(name='session')\n", (281, 297), False, 'import pytest\n'), ((593, 622), 'pytest.fixture', 'pytest.fixture', ([], {'name': '"""client"""'}), "(name='client')\n", (607, 622), False, 'import pytest\n'), ((853, 883), 'pytest.fixture', 'pytest.fixture', ([], {'scope': '"""module"""'}), "(scope='module')\n", (867, 883), False, 'import pytest\n'), ((347, 455), 'sqlmodel.create_engine', 'create_engine', (['"""sqlite://"""'], {'echo': '(False)', 'connect_args': "{'check_same_thread': False}", 'poolclass': 'StaticPool'}), "('sqlite://', echo=False, connect_args={'check_same_thread': \n False}, poolclass=StaticPool)\n", (360, 455), False, 'from sqlmodel import Session, SQLModel, create_engine\n'), ((494, 530), 'sqlmodel.SQLModel.metadata.create_all', 'SQLModel.metadata.create_all', (['engine'], {}), '(engine)\n', (522, 530), False, 'from sqlmodel import Session, SQLModel, create_engine\n'), ((780, 795), 'fastapi.testclient.TestClient', 'TestClient', (['app'], {}), '(app)\n', (790, 795), False, 'from fastapi.testclient import TestClient\n'), ((817, 849), 'app.main.app.dependency_overrides.clear', 'app.dependency_overrides.clear', ([], {}), '()\n', (847, 849), False, 'from app.main import app\n'), ((540, 555), 'sqlmodel.Session', 'Session', (['engine'], {}), '(engine)\n', (547, 555), False, 'from sqlmodel import Session, SQLModel, create_engine\n')]
from typing import Optional # (1) from sqlmodel import Field, SQLModel, create_engine # (2) class Hero(SQLModel, table=True): # (3) id: Optional[int] = Field(default=None, primary_key=True) # (4) name: str # (5) secret_name: str # (6) age: Optional[int] = None # (7) sqlite_file_name = "database.db" # (8) sqlite_url = f"sqlite:///{sqlite_file_name}" # (9) engine = create_engine(sqlite_url, echo=True) # (10) def create_db_and_tables(): # (11) SQLModel.metadata.create_all(engine) # (12) if __name__ == "__main__": # (13) create_db_and_tables() # (14)
[ "sqlmodel.create_engine", "sqlmodel.Field", "sqlmodel.SQLModel.metadata.create_all" ]
[((397, 433), 'sqlmodel.create_engine', 'create_engine', (['sqlite_url'], {'echo': '(True)'}), '(sqlite_url, echo=True)\n', (410, 433), False, 'from sqlmodel import Field, SQLModel, create_engine\n'), ((162, 199), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'primary_key': '(True)'}), '(default=None, primary_key=True)\n', (167, 199), False, 'from sqlmodel import Field, SQLModel, create_engine\n'), ((484, 520), 'sqlmodel.SQLModel.metadata.create_all', 'SQLModel.metadata.create_all', (['engine'], {}), '(engine)\n', (512, 520), False, 'from sqlmodel import Field, SQLModel, create_engine\n')]
#!/usr/bin/env python3 # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. import bisect import datetime import math import os import pickle import time from typing import Optional import megengine as mge import megengine.distributed as dist import megengine.module as M from basecore.config import ConfigDict from basecore.engine import BaseHook, BaseTrainer from basecore.utils import ( Checkpoint, MeterBuffer, cached_property, ensure_dir, get_last_call_deltatime, ) from loguru import logger from tensorboardX import SummaryWriter from basecls.layers import compute_precise_bn_stats from basecls.models import sync_model from basecls.utils import default_logging, registers from .tester import ClsTester __all__ = [ "CheckpointHook", "EvalHook", "LoggerHook", "LRSchedulerHook", "PreciseBNHook", "ResumeHook", "TensorboardHook", ] def _create_checkpoint(trainer: BaseTrainer, save_dir: str) -> Checkpoint: """Create a checkpoint for save and resume""" model = trainer.model ema = trainer.ema ckpt_kws = {"ema": ema} if ema is not None else {} optim = trainer.solver.optimizer scaler = trainer.solver.grad_scaler progress = trainer.progress ckpt = Checkpoint( save_dir, model, tag_file=None, optimizer=optim, scaler=scaler, progress=progress, **ckpt_kws, ) return ckpt class CheckpointHook(BaseHook): """Hook for managing checkpoints during training. Effect during ``after_epoch`` and ``after_train`` procedure. Args: save_dir: checkpoint directory. save_every_n_epoch: interval for saving checkpoint. Default: ``1`` """ def __init__(self, save_dir: str = None, save_every_n_epoch: int = 1): super().__init__() ensure_dir(save_dir) self.save_dir = save_dir self.save_every_n_epoch = save_every_n_epoch def after_epoch(self): progress = self.trainer.progress ckpt = _create_checkpoint(self.trainer, self.save_dir) ckpt.save("latest.pkl") if progress.epoch % self.save_every_n_epoch == 0: progress_str = progress.progress_str_list() save_name = "_".join(progress_str[:-1]) + ".pkl" ckpt.save(save_name) logger.info(f"Save checkpoint {save_name} to {self.save_dir}") def after_train(self): # NOTE: usually final ema is not the best so we dont save it mge.save( {"state_dict": self.trainer.model.state_dict()}, os.path.join(self.save_dir, "dumped_model.pkl"), pickle_protocol=pickle.DEFAULT_PROTOCOL, ) class EvalHook(BaseHook): """Hook for evaluating during training. Effect during ``after_epoch`` and ``after_train`` procedure. Args: save_dir: checkpoint directory. eval_every_n_epoch: interval for evaluating. Default: ``1`` """ def __init__(self, save_dir: str = None, eval_every_n_epoch: int = 1): super().__init__() ensure_dir(save_dir) self.save_dir = save_dir self.eval_every_n_epoch = eval_every_n_epoch self.best_acc1 = 0 self.best_ema_acc1 = 0 def after_epoch(self): trainer = self.trainer cfg = trainer.cfg model = trainer.model ema = trainer.ema progress = trainer.progress if progress.epoch % self.eval_every_n_epoch == 0 and progress.epoch != progress.max_epoch: self.test(cfg, model, ema) def after_train(self): trainer = self.trainer cfg = trainer.cfg model = trainer.model ema = trainer.ema # TODO: actually useless maybe when precise_bn is on sync_model(model) if ema is not None: sync_model(ema) self.test(cfg, model, ema) def test(self, cfg: ConfigDict, model: M.Module, ema: Optional[M.Module] = None): dataloader = registers.dataloaders.get(cfg.data.name).build(cfg, False) # FIXME: need atomic user_pop, maybe in MegEngine 1.5? # tester = BaseTester(model, dataloader, AccEvaluator()) tester = ClsTester(cfg, model, dataloader) acc1, _ = tester.test() if acc1 > self.best_acc1: self.best_acc1 = acc1 if dist.get_rank() == 0: mge.save( {"state_dict": model.state_dict(), "acc1": self.best_acc1}, os.path.join(self.save_dir, "best_model.pkl"), pickle_protocol=pickle.DEFAULT_PROTOCOL, ) logger.info( f"Epoch: {self.trainer.progress.epoch}, Test Acc@1: {acc1:.3f}, " f"Best Test Acc@1: {self.best_acc1:.3f}" ) if ema is None: return tester_ema = ClsTester(cfg, ema, dataloader) ema_acc1, _ = tester_ema.test() if ema_acc1 > self.best_ema_acc1: self.best_ema_acc1 = ema_acc1 if dist.get_rank() == 0: mge.save( {"state_dict": ema.state_dict(), "acc1": self.best_ema_acc1}, os.path.join(self.save_dir, "best_ema_model.pkl"), pickle_protocol=pickle.DEFAULT_PROTOCOL, ) logger.info( f"Epoch: {self.trainer.progress.epoch}, EMA Acc@1: {ema_acc1:.3f}, " f"Best EMA Acc@1: {self.best_ema_acc1:.3f}" ) class LoggerHook(BaseHook): """Hook for logging during training. Effect during ``before_train``, ``after_train``, ``before_iter`` and ``after_iter`` procedure. Args: log_every_n_iter: interval for logging. Default: ``20`` """ def __init__(self, log_every_n_iter: int = 20): super().__init__() self.log_every_n_iter = log_every_n_iter self.meter = MeterBuffer(self.log_every_n_iter) def before_train(self): trainer = self.trainer progress = trainer.progress default_logging(trainer.cfg, trainer.model) logger.info(f"Starting training from epoch {progress.epoch}, iteration {progress.iter}") self.start_training_time = time.perf_counter() def after_train(self): total_training_time = time.perf_counter() - self.start_training_time total_time_str = str(datetime.timedelta(seconds=total_training_time)) logger.info( "Total training time: {} ({:.4f} s / iter)".format( total_time_str, self.meter["iters_time"].global_avg ) ) def before_iter(self): self.iter_start_time = time.perf_counter() def after_iter(self): single_iter_time = time.perf_counter() - self.iter_start_time delta_time = get_last_call_deltatime() if delta_time is None: delta_time = single_iter_time self.meter.update( { "iters_time": single_iter_time, # to get global average iter time "eta_iter_time": delta_time, # to get ETA time "extra_time": delta_time - single_iter_time, # to get extra time } ) trainer = self.trainer progress = trainer.progress epoch_id, iter_id = progress.epoch, progress.iter max_epoch, max_iter = progress.max_epoch, progress.max_iter if iter_id % self.log_every_n_iter == 0 or (iter_id == 1 and epoch_id == 1): log_str_list = [] # step info string log_str_list.append(str(progress)) # loss string log_str_list.append(self.get_loss_str(trainer.meter)) # stat string log_str_list.append(self.get_stat_str(trainer.meter)) # other training info like learning rate. log_str_list.append(self.get_train_info_str()) # memory useage. log_str_list.append(self.get_memory_str(trainer.meter)) # time string left_iters = max_iter - iter_id + (max_epoch - epoch_id) * max_iter time_str = self.get_time_str(left_iters) log_str_list.append(time_str) # filter empty strings log_str_list = [s for s in log_str_list if len(s) > 0] log_str = ", ".join(log_str_list) logger.info(log_str) # reset meters in trainer trainer.meter.reset() def get_loss_str(self, meter): """Get loss information during trainging process.""" loss_dict = meter.get_filtered_meter(filter_key="loss") loss_str = ", ".join( [f"{name}:{value.latest:.3f}({value.avg:.3f})" for name, value in loss_dict.items()] ) return loss_str def get_stat_str(self, meter): """Get stat information during trainging process.""" stat_dict = meter.get_filtered_meter(filter_key="stat") stat_str = ", ".join( [f"{name}:{value.latest:.3f}({value.avg:.3f})" for name, value in stat_dict.items()] ) return stat_str def get_memory_str(self, meter): """Get memory information during trainging process.""" def mem_in_Mb(mem_value): return math.ceil(mem_value / 1024 / 1024) mem_dict = meter.get_filtered_meter(filter_key="memory") mem_str = ", ".join( [ f"{name}:{mem_in_Mb(value.latest)}({mem_in_Mb(value.avg)})Mb" for name, value in mem_dict.items() ] ) return mem_str def get_train_info_str(self): """Get training process related information such as learning rate.""" # extra info to display, such as learning rate trainer = self.trainer lr = trainer.solver.optimizer.param_groups[0]["lr"] lr_str = f"lr:{lr:.3e}" loss_scale = trainer.solver.grad_scaler.scale_factor loss_scale_str = f", amp_loss_scale:{loss_scale:.1f}" if trainer.cfg.amp.enabled else "" return lr_str + loss_scale_str def get_time_str(self, left_iters: int) -> str: """Get time related information sucn as data_time, train_time, ETA and so on.""" # time string trainer = self.trainer time_dict = trainer.meter.get_filtered_meter(filter_key="time") train_time_str = ", ".join( [f"{name}:{value.avg:.3f}s" for name, value in time_dict.items()] ) train_time_str += ", extra_time:{:.3f}s, ".format(self.meter["extra_time"].avg) eta_seconds = self.meter["eta_iter_time"].global_avg * left_iters eta_string = "ETA:{}".format(datetime.timedelta(seconds=int(eta_seconds))) time_str = train_time_str + eta_string return time_str class LRSchedulerHook(BaseHook): """Hook for learning rate scheduling during training. Effect during ``before_epoch`` procedure. """ def before_epoch(self): trainer = self.trainer epoch_id = trainer.progress.epoch cfg = trainer.cfg.solver lr_factor = self.get_lr_factor(cfg, epoch_id) if epoch_id <= cfg.warmup_epochs: alpha = (epoch_id - 1) / cfg.warmup_epochs lr_factor *= cfg.warmup_factor * (1 - alpha) + alpha scaled_lr = self.total_lr * lr_factor for param_group in trainer.solver.optimizer.param_groups: param_group["lr"] = scaled_lr def get_lr_factor(self, cfg: ConfigDict, epoch_id: int) -> float: """Calculate learning rate factor. It supports ``"step"``, ``"linear"``, ``"cosine"``, ``"exp"``, and ``"rel_exp"`` schedule. Args: cfg: config for training. epoch_id: current epoch. Returns: Learning rate factor. """ if cfg.lr_schedule == "step": return cfg.lr_decay_factor ** bisect.bisect_left(cfg.lr_decay_steps, epoch_id) elif cfg.lr_schedule == "linear": alpha = 1 - (epoch_id - 1) / cfg.max_epoch return (1 - cfg.lr_min_factor) * alpha + cfg.lr_min_factor elif cfg.lr_schedule == "cosine": alpha = 0.5 * (1 + math.cos(math.pi * (epoch_id - 1) / cfg.max_epoch)) return (1 - cfg.lr_min_factor) * alpha + cfg.lr_min_factor elif cfg.lr_schedule == "exp": return cfg.lr_decay_factor ** (epoch_id - 1) elif cfg.lr_schedule == "rel_exp": if cfg.lr_min_factor <= 0: raise ValueError( "Exponential lr schedule requires lr_min_factor to be greater than 0" ) return cfg.lr_min_factor ** ((epoch_id - 1) / cfg.max_epoch) else: raise NotImplementedError(f"Learning rate schedule '{cfg.lr_schedule}' not supported") @cached_property def total_lr(self) -> float: """Total learning rate.""" cfg = self.trainer.cfg.solver total_lr = cfg.basic_lr * dist.get_world_size() # linear scaling rule return total_lr class PreciseBNHook(BaseHook): """Hook for precising BN during training. Effect during ``after_epoch`` procedure. Args: precise_every_n_epoch: interval for precising BN. Default: ``1`` """ def __init__(self, precise_every_n_epoch: int = 1): super().__init__() self.precise_every_n_epoch = precise_every_n_epoch def before_train(self): if self.precise_every_n_epoch == -1: self.precise_every_n_epoch = self.trainer.progress.max_epoch def after_epoch(self): trainer = self.trainer if ( trainer.progress.epoch % self.precise_every_n_epoch == 0 and trainer.cfg.bn.num_samples_precise > 0 ): logger.info(f"Apply Precising BN at epoch{trainer.progress.epoch}") compute_precise_bn_stats(trainer.cfg, trainer.model, trainer.dataloader) if trainer.ema is not None: logger.info(f"Apply Precising BN for EMA at epoch{trainer.progress.epoch}") compute_precise_bn_stats(trainer.cfg, trainer.ema, trainer.dataloader) class ResumeHook(BaseHook): """Hook for resuming training process. Effect during ``before_train`` procedure. Args: save_dir: checkpoint directory. resume: enable resume or not. Default: ``False`` """ def __init__(self, save_dir: int = None, resume: bool = False): super().__init__() ensure_dir(save_dir) self.save_dir = save_dir self.resume = resume def before_train(self): trainer = self.trainer if self.resume: progress = trainer.progress ckpt = _create_checkpoint(self.trainer, self.save_dir) filename = ckpt.get_checkpoint_file("latest.pkl") logger.info(f"Load checkpoint from {filename}") ckpt.resume(filename) # since ckpt is dumped after every epoch, # resume training requires epoch + 1 and set iter to 1 progress.epoch += 1 progress.iter = 1 class TensorboardHook(BaseHook): """Hook for tensorboard during training. Effect during ``before_train``, ``after_train`` and ``after_iter`` procedure. Args: log_dir: tensorboard directory. log_every_n_iter: interval for logging. Default: ``20`` scalar_type: statistic to record, supports ``"latest"``, ``"avg"``, ``"global_avg"`` and ``"median"``. Default: ``"latest"`` """ def __init__(self, log_dir: str, log_every_n_iter: int = 20, scalar_type: str = "latest"): super().__init__() if scalar_type not in ("latest", "avg", "global_avg", "median"): raise ValueError(f"Tensorboard scalar type '{scalar_type}' not supported") ensure_dir(log_dir) self.log_dir = log_dir self.log_every_n_iter = log_every_n_iter self.scalar_type = scalar_type def before_train(self): self.writer = SummaryWriter(self.log_dir) def after_train(self): self.writer.close() def after_iter(self): trainer = self.trainer epoch_id, iter_id = trainer.progress.epoch, trainer.progress.iter if iter_id % self.log_every_n_iter == 0 or (iter_id == 1 and epoch_id == 1): self.write(context=trainer) def write(self, context): cur_iter = self.calc_iter(context.progress) for key, meter in context.meter.items(): value = getattr(meter, self.scalar_type, meter.latest) for prefix in ("loss", "stat", "time", "memory"): if prefix in key: key = f"{prefix}/{key}" break self.writer.add_scalar(key, value, cur_iter) # write lr into tensorboard lr = context.solver.optimizer.param_groups[0]["lr"] self.writer.add_scalar("lr", lr, cur_iter) # write loss_scale into tensorboard if context.cfg.amp.enabled: loss_scale = context.solver.grad_scaler.scale_factor self.writer.add_scalar("amp_loss_scale", loss_scale, cur_iter) @classmethod def calc_iter(cls, progress): return (progress.epoch - 1) * progress.max_iter + progress.iter - 1
[ "megengine.distributed.get_rank", "megengine.distributed.get_world_size" ]
[((1244, 1353), 'basecore.utils.Checkpoint', 'Checkpoint', (['save_dir', 'model'], {'tag_file': 'None', 'optimizer': 'optim', 'scaler': 'scaler', 'progress': 'progress'}), '(save_dir, model, tag_file=None, optimizer=optim, scaler=scaler,\n progress=progress, **ckpt_kws)\n', (1254, 1353), False, 'from basecore.utils import Checkpoint, MeterBuffer, cached_property, ensure_dir, get_last_call_deltatime\n'), ((1828, 1848), 'basecore.utils.ensure_dir', 'ensure_dir', (['save_dir'], {}), '(save_dir)\n', (1838, 1848), False, 'from basecore.utils import Checkpoint, MeterBuffer, cached_property, ensure_dir, get_last_call_deltatime\n'), ((3059, 3079), 'basecore.utils.ensure_dir', 'ensure_dir', (['save_dir'], {}), '(save_dir)\n', (3069, 3079), False, 'from basecore.utils import Checkpoint, MeterBuffer, cached_property, ensure_dir, get_last_call_deltatime\n'), ((3749, 3766), 'basecls.models.sync_model', 'sync_model', (['model'], {}), '(model)\n', (3759, 3766), False, 'from basecls.models import sync_model\n'), ((4603, 4728), 'loguru.logger.info', 'logger.info', (['f"""Epoch: {self.trainer.progress.epoch}, Test Acc@1: {acc1:.3f}, Best Test Acc@1: {self.best_acc1:.3f}"""'], {}), "(\n f'Epoch: {self.trainer.progress.epoch}, Test Acc@1: {acc1:.3f}, Best Test Acc@1: {self.best_acc1:.3f}'\n )\n", (4614, 4728), False, 'from loguru import logger\n'), ((5284, 5415), 'loguru.logger.info', 'logger.info', (['f"""Epoch: {self.trainer.progress.epoch}, EMA Acc@1: {ema_acc1:.3f}, Best EMA Acc@1: {self.best_ema_acc1:.3f}"""'], {}), "(\n f'Epoch: {self.trainer.progress.epoch}, EMA Acc@1: {ema_acc1:.3f}, Best EMA Acc@1: {self.best_ema_acc1:.3f}'\n )\n", (5295, 5415), False, 'from loguru import logger\n'), ((5848, 5882), 'basecore.utils.MeterBuffer', 'MeterBuffer', (['self.log_every_n_iter'], {}), '(self.log_every_n_iter)\n', (5859, 5882), False, 'from basecore.utils import Checkpoint, MeterBuffer, cached_property, ensure_dir, get_last_call_deltatime\n'), ((5988, 6031), 'basecls.utils.default_logging', 'default_logging', (['trainer.cfg', 'trainer.model'], {}), '(trainer.cfg, trainer.model)\n', (6003, 6031), False, 'from basecls.utils import default_logging, registers\n'), ((6041, 6139), 'loguru.logger.info', 'logger.info', (['f"""Starting training from epoch {progress.epoch}, iteration {progress.iter}"""'], {}), "(\n f'Starting training from epoch {progress.epoch}, iteration {progress.iter}'\n )\n", (6052, 6139), False, 'from loguru import logger\n'), ((6166, 6185), 'time.perf_counter', 'time.perf_counter', ([], {}), '()\n', (6183, 6185), False, 'import time\n'), ((6605, 6624), 'time.perf_counter', 'time.perf_counter', ([], {}), '()\n', (6622, 6624), False, 'import time\n'), ((6744, 6769), 'basecore.utils.get_last_call_deltatime', 'get_last_call_deltatime', ([], {}), '()\n', (6767, 6769), False, 'from basecore.utils import Checkpoint, MeterBuffer, cached_property, ensure_dir, get_last_call_deltatime\n'), ((14390, 14410), 'basecore.utils.ensure_dir', 'ensure_dir', (['save_dir'], {}), '(save_dir)\n', (14400, 14410), False, 'from basecore.utils import Checkpoint, MeterBuffer, cached_property, ensure_dir, get_last_call_deltatime\n'), ((15725, 15744), 'basecore.utils.ensure_dir', 'ensure_dir', (['log_dir'], {}), '(log_dir)\n', (15735, 15744), False, 'from basecore.utils import Checkpoint, MeterBuffer, cached_property, ensure_dir, get_last_call_deltatime\n'), ((15915, 15942), 'tensorboardX.SummaryWriter', 'SummaryWriter', (['self.log_dir'], {}), '(self.log_dir)\n', (15928, 15942), False, 'from tensorboardX import SummaryWriter\n'), ((2320, 2382), 'loguru.logger.info', 'logger.info', (['f"""Save checkpoint {save_name} to {self.save_dir}"""'], {}), "(f'Save checkpoint {save_name} to {self.save_dir}')\n", (2331, 2382), False, 'from loguru import logger\n'), ((2571, 2618), 'os.path.join', 'os.path.join', (['self.save_dir', '"""dumped_model.pkl"""'], {}), "(self.save_dir, 'dumped_model.pkl')\n", (2583, 2618), False, 'import os\n'), ((3807, 3822), 'basecls.models.sync_model', 'sync_model', (['ema'], {}), '(ema)\n', (3817, 3822), False, 'from basecls.models import sync_model\n'), ((6244, 6263), 'time.perf_counter', 'time.perf_counter', ([], {}), '()\n', (6261, 6263), False, 'import time\n'), ((6320, 6367), 'datetime.timedelta', 'datetime.timedelta', ([], {'seconds': 'total_training_time'}), '(seconds=total_training_time)\n', (6338, 6367), False, 'import datetime\n'), ((6679, 6698), 'time.perf_counter', 'time.perf_counter', ([], {}), '()\n', (6696, 6698), False, 'import time\n'), ((8288, 8308), 'loguru.logger.info', 'logger.info', (['log_str'], {}), '(log_str)\n', (8299, 8308), False, 'from loguru import logger\n'), ((9181, 9215), 'math.ceil', 'math.ceil', (['(mem_value / 1024 / 1024)'], {}), '(mem_value / 1024 / 1024)\n', (9190, 9215), False, 'import math\n'), ((12883, 12904), 'megengine.distributed.get_world_size', 'dist.get_world_size', ([], {}), '()\n', (12902, 12904), True, 'import megengine.distributed as dist\n'), ((13678, 13745), 'loguru.logger.info', 'logger.info', (['f"""Apply Precising BN at epoch{trainer.progress.epoch}"""'], {}), "(f'Apply Precising BN at epoch{trainer.progress.epoch}')\n", (13689, 13745), False, 'from loguru import logger\n'), ((13758, 13830), 'basecls.layers.compute_precise_bn_stats', 'compute_precise_bn_stats', (['trainer.cfg', 'trainer.model', 'trainer.dataloader'], {}), '(trainer.cfg, trainer.model, trainer.dataloader)\n', (13782, 13830), False, 'from basecls.layers import compute_precise_bn_stats\n'), ((14738, 14785), 'loguru.logger.info', 'logger.info', (['f"""Load checkpoint from {filename}"""'], {}), "(f'Load checkpoint from {filename}')\n", (14749, 14785), False, 'from loguru import logger\n'), ((3966, 4006), 'basecls.utils.registers.dataloaders.get', 'registers.dataloaders.get', (['cfg.data.name'], {}), '(cfg.data.name)\n', (3991, 4006), False, 'from basecls.utils import default_logging, registers\n'), ((4320, 4335), 'megengine.distributed.get_rank', 'dist.get_rank', ([], {}), '()\n', (4333, 4335), True, 'import megengine.distributed as dist\n'), ((4995, 5010), 'megengine.distributed.get_rank', 'dist.get_rank', ([], {}), '()\n', (5008, 5010), True, 'import megengine.distributed as dist\n'), ((11802, 11850), 'bisect.bisect_left', 'bisect.bisect_left', (['cfg.lr_decay_steps', 'epoch_id'], {}), '(cfg.lr_decay_steps, epoch_id)\n', (11820, 11850), False, 'import bisect\n'), ((13887, 13962), 'loguru.logger.info', 'logger.info', (['f"""Apply Precising BN for EMA at epoch{trainer.progress.epoch}"""'], {}), "(f'Apply Precising BN for EMA at epoch{trainer.progress.epoch}')\n", (13898, 13962), False, 'from loguru import logger\n'), ((13979, 14049), 'basecls.layers.compute_precise_bn_stats', 'compute_precise_bn_stats', (['trainer.cfg', 'trainer.ema', 'trainer.dataloader'], {}), '(trainer.cfg, trainer.ema, trainer.dataloader)\n', (14003, 14049), False, 'from basecls.layers import compute_precise_bn_stats\n'), ((4468, 4513), 'os.path.join', 'os.path.join', (['self.save_dir', '"""best_model.pkl"""'], {}), "(self.save_dir, 'best_model.pkl')\n", (4480, 4513), False, 'import os\n'), ((5145, 5194), 'os.path.join', 'os.path.join', (['self.save_dir', '"""best_ema_model.pkl"""'], {}), "(self.save_dir, 'best_ema_model.pkl')\n", (5157, 5194), False, 'import os\n'), ((12092, 12142), 'math.cos', 'math.cos', (['(math.pi * (epoch_id - 1) / cfg.max_epoch)'], {}), '(math.pi * (epoch_id - 1) / cfg.max_epoch)\n', (12100, 12142), False, 'import math\n')]
#!/usr/bin/env python3 # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. import megengine as mge import megengine.module as M import numpy as np import pytest from basecls.layers import ClsHead, MBV3Head, VGGHead, build_head @pytest.mark.parametrize("w_in", [4]) @pytest.mark.parametrize( "head_args", [ None, dict(name=None), dict(name="ClsHead", w_out=8), dict(name="ClsHead", w_out=8, width=8, norm_name="BN", act_name="relu"), dict(name="ClsHead", w_out=8, width=8, norm_name="BN", act_name="relu", bias=False), dict(name="VGGHead", w_out=8, width=8), dict(name="VGGHead", w_out=8, width=8, dropout_prob=0.5, act_name="relu"), dict(name="MBV3Head", w_out=8, width=8, w_h=16, norm_name="BN", act_name="relu"), dict(name="MBV3Head", w_out=8, width=8, w_h=16, norm_name="BN", act_name="relu", se_r=0.25), dict( name="MBV3Head", w_out=8, width=8, w_h=16, norm_name="BN", act_name="relu", se_r=0.25, bias=False, ), ], ) @pytest.mark.parametrize("norm_name", ["BN"]) @pytest.mark.parametrize("act_name", ["relu"]) def test_build_head(w_in, head_args, norm_name, act_name): m = build_head(w_in, head_args, norm_name, act_name) if head_args is None or head_args.get("name") is None: assert m is None else: assert isinstance(m, M.Module) def test_cls_head(): C = 4 K = 8 x = np.random.rand(2, C, 8, 8).astype("float32") y = ClsHead(C, K)(mge.Tensor(x)).numpy() assert len(y.shape) == 2 and y.shape[1] == K def test_mbv3_head(): C = 4 K = 8 x = np.random.rand(2, C, 8, 8).astype("float32") y = MBV3Head(C, K, 8, 16)(mge.Tensor(x)).numpy() assert len(y.shape) == 2 and y.shape[1] == K def test_vgg_head(): C = 4 K = 8 x = np.random.rand(2, C, 8, 8).astype("float32") y = VGGHead(C, K, 8)(mge.Tensor(x)).numpy() assert len(y.shape) == 2 and y.shape[1] == K
[ "megengine.Tensor" ]
[((238, 274), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""w_in"""', '[4]'], {}), "('w_in', [4])\n", (261, 274), False, 'import pytest\n'), ((1128, 1172), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""norm_name"""', "['BN']"], {}), "('norm_name', ['BN'])\n", (1151, 1172), False, 'import pytest\n'), ((1174, 1219), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""act_name"""', "['relu']"], {}), "('act_name', ['relu'])\n", (1197, 1219), False, 'import pytest\n'), ((1287, 1335), 'basecls.layers.build_head', 'build_head', (['w_in', 'head_args', 'norm_name', 'act_name'], {}), '(w_in, head_args, norm_name, act_name)\n', (1297, 1335), False, 'from basecls.layers import ClsHead, MBV3Head, VGGHead, build_head\n'), ((1521, 1547), 'numpy.random.rand', 'np.random.rand', (['(2)', 'C', '(8)', '(8)'], {}), '(2, C, 8, 8)\n', (1535, 1547), True, 'import numpy as np\n'), ((1713, 1739), 'numpy.random.rand', 'np.random.rand', (['(2)', 'C', '(8)', '(8)'], {}), '(2, C, 8, 8)\n', (1727, 1739), True, 'import numpy as np\n'), ((1912, 1938), 'numpy.random.rand', 'np.random.rand', (['(2)', 'C', '(8)', '(8)'], {}), '(2, C, 8, 8)\n', (1926, 1938), True, 'import numpy as np\n'), ((1574, 1587), 'basecls.layers.ClsHead', 'ClsHead', (['C', 'K'], {}), '(C, K)\n', (1581, 1587), False, 'from basecls.layers import ClsHead, MBV3Head, VGGHead, build_head\n'), ((1588, 1601), 'megengine.Tensor', 'mge.Tensor', (['x'], {}), '(x)\n', (1598, 1601), True, 'import megengine as mge\n'), ((1766, 1787), 'basecls.layers.MBV3Head', 'MBV3Head', (['C', 'K', '(8)', '(16)'], {}), '(C, K, 8, 16)\n', (1774, 1787), False, 'from basecls.layers import ClsHead, MBV3Head, VGGHead, build_head\n'), ((1788, 1801), 'megengine.Tensor', 'mge.Tensor', (['x'], {}), '(x)\n', (1798, 1801), True, 'import megengine as mge\n'), ((1965, 1981), 'basecls.layers.VGGHead', 'VGGHead', (['C', 'K', '(8)'], {}), '(C, K, 8)\n', (1972, 1981), False, 'from basecls.layers import ClsHead, MBV3Head, VGGHead, build_head\n'), ((1982, 1995), 'megengine.Tensor', 'mge.Tensor', (['x'], {}), '(x)\n', (1992, 1995), True, 'import megengine as mge\n')]
#!/usr/bin/env python3 # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. import argparse import importlib import multiprocessing as mp import os import sys import megengine as mge import megengine.distributed as dist from basecore.config import ConfigDict from loguru import logger from basecls.engine import ClsTester from basecls.models import build_model, load_model from basecls.utils import default_logging, registers, set_nccl_env, set_num_threads, setup_logger def make_parser() -> argparse.ArgumentParser: """Build args parser for testing script. Returns: The args parser. """ parser = argparse.ArgumentParser() parser.add_argument("-f", "--file", type=str, help="testing process description file") parser.add_argument("-w", "--weight_file", default=None, type=str, help="weight file") return parser @logger.catch def worker(args: argparse.Namespace): """Worker function for testing script. Args: args: args for testing script. """ logger.info(f"Init process group for gpu{dist.get_rank()} done") sys.path.append(os.path.dirname(args.file)) module_name = os.path.splitext(os.path.basename(args.file))[0] current_network = importlib.import_module(module_name) cfg = current_network.Cfg() if cfg.output_dir is None: cfg.output_dir = f"./logs_{module_name}" cfg.output_dir = os.path.abspath(cfg.output_dir) if args.weight_file: cfg.weights = args.weight_file else: cfg.weights = os.path.join(cfg.output_dir, "latest.pkl") cfg.set_mode("freeze") if dist.get_rank() == 0 and not os.path.exists(cfg.output_dir): os.makedirs(cfg.output_dir) dist.group_barrier() setup_logger(cfg.output_dir, "test_log.txt", to_loguru=True) logger.info(f"args: {args}") if cfg.fastrun: logger.info("Using fastrun mode...") mge.functional.debug_param.set_execution_strategy("PROFILE") tester = build(cfg) tester.test() def build(cfg: ConfigDict): """Build function for testing script. Args: cfg: config for testing. Returns: A tester. """ model = build_model(cfg) load_model(model, cfg.weights) model.eval() default_logging(cfg, model) dataloader = registers.dataloaders.get(cfg.data.name).build(cfg, False) # FIXME: need atomic user_pop, maybe in MegEngine 1.5? # tester = BaseTester(model, dataloader, AccEvaluator()) return ClsTester(cfg, model, dataloader) def main(): """Main function for testing script.""" parser = make_parser() args = parser.parse_args() mp.set_start_method("spawn") set_nccl_env() set_num_threads() if not os.path.exists(args.file): raise ValueError("Description file does not exist") device_count = mge.device.get_device_count("gpu") if device_count == 0: logger.warning("No GPU was found, testing on CPU") worker(args) elif device_count > 1: mp_worker = dist.launcher(worker) mp_worker(args) else: worker(args) if __name__ == "__main__": main()
[ "megengine.distributed.get_rank", "megengine.functional.debug_param.set_execution_strategy", "megengine.device.get_device_count", "megengine.distributed.group_barrier", "megengine.distributed.launcher" ]
[((632, 657), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (655, 657), False, 'import argparse\n'), ((1220, 1256), 'importlib.import_module', 'importlib.import_module', (['module_name'], {}), '(module_name)\n', (1243, 1256), False, 'import importlib\n'), ((1390, 1421), 'os.path.abspath', 'os.path.abspath', (['cfg.output_dir'], {}), '(cfg.output_dir)\n', (1405, 1421), False, 'import os\n'), ((1699, 1719), 'megengine.distributed.group_barrier', 'dist.group_barrier', ([], {}), '()\n', (1717, 1719), True, 'import megengine.distributed as dist\n'), ((1725, 1785), 'basecls.utils.setup_logger', 'setup_logger', (['cfg.output_dir', '"""test_log.txt"""'], {'to_loguru': '(True)'}), "(cfg.output_dir, 'test_log.txt', to_loguru=True)\n", (1737, 1785), False, 'from basecls.utils import default_logging, registers, set_nccl_env, set_num_threads, setup_logger\n'), ((1790, 1818), 'loguru.logger.info', 'logger.info', (['f"""args: {args}"""'], {}), "(f'args: {args}')\n", (1801, 1818), False, 'from loguru import logger\n'), ((2165, 2181), 'basecls.models.build_model', 'build_model', (['cfg'], {}), '(cfg)\n', (2176, 2181), False, 'from basecls.models import build_model, load_model\n'), ((2186, 2216), 'basecls.models.load_model', 'load_model', (['model', 'cfg.weights'], {}), '(model, cfg.weights)\n', (2196, 2216), False, 'from basecls.models import build_model, load_model\n'), ((2239, 2266), 'basecls.utils.default_logging', 'default_logging', (['cfg', 'model'], {}), '(cfg, model)\n', (2254, 2266), False, 'from basecls.utils import default_logging, registers, set_nccl_env, set_num_threads, setup_logger\n'), ((2475, 2508), 'basecls.engine.ClsTester', 'ClsTester', (['cfg', 'model', 'dataloader'], {}), '(cfg, model, dataloader)\n', (2484, 2508), False, 'from basecls.engine import ClsTester\n'), ((2630, 2658), 'multiprocessing.set_start_method', 'mp.set_start_method', (['"""spawn"""'], {}), "('spawn')\n", (2649, 2658), True, 'import multiprocessing as mp\n'), ((2664, 2678), 'basecls.utils.set_nccl_env', 'set_nccl_env', ([], {}), '()\n', (2676, 2678), False, 'from basecls.utils import default_logging, registers, set_nccl_env, set_num_threads, setup_logger\n'), ((2683, 2700), 'basecls.utils.set_num_threads', 'set_num_threads', ([], {}), '()\n', (2698, 2700), False, 'from basecls.utils import default_logging, registers, set_nccl_env, set_num_threads, setup_logger\n'), ((2820, 2854), 'megengine.device.get_device_count', 'mge.device.get_device_count', (['"""gpu"""'], {}), "('gpu')\n", (2847, 2854), True, 'import megengine as mge\n'), ((1103, 1129), 'os.path.dirname', 'os.path.dirname', (['args.file'], {}), '(args.file)\n', (1118, 1129), False, 'import os\n'), ((1519, 1561), 'os.path.join', 'os.path.join', (['cfg.output_dir', '"""latest.pkl"""'], {}), "(cfg.output_dir, 'latest.pkl')\n", (1531, 1561), False, 'import os\n'), ((1667, 1694), 'os.makedirs', 'os.makedirs', (['cfg.output_dir'], {}), '(cfg.output_dir)\n', (1678, 1694), False, 'import os\n'), ((1848, 1884), 'loguru.logger.info', 'logger.info', (['"""Using fastrun mode..."""'], {}), "('Using fastrun mode...')\n", (1859, 1884), False, 'from loguru import logger\n'), ((1893, 1953), 'megengine.functional.debug_param.set_execution_strategy', 'mge.functional.debug_param.set_execution_strategy', (['"""PROFILE"""'], {}), "('PROFILE')\n", (1942, 1953), True, 'import megengine as mge\n'), ((2713, 2738), 'os.path.exists', 'os.path.exists', (['args.file'], {}), '(args.file)\n', (2727, 2738), False, 'import os\n'), ((2890, 2940), 'loguru.logger.warning', 'logger.warning', (['"""No GPU was found, testing on CPU"""'], {}), "('No GPU was found, testing on CPU')\n", (2904, 2940), False, 'from loguru import logger\n'), ((1166, 1193), 'os.path.basename', 'os.path.basename', (['args.file'], {}), '(args.file)\n', (1182, 1193), False, 'import os\n'), ((1598, 1613), 'megengine.distributed.get_rank', 'dist.get_rank', ([], {}), '()\n', (1611, 1613), True, 'import megengine.distributed as dist\n'), ((1627, 1657), 'os.path.exists', 'os.path.exists', (['cfg.output_dir'], {}), '(cfg.output_dir)\n', (1641, 1657), False, 'import os\n'), ((2285, 2325), 'basecls.utils.registers.dataloaders.get', 'registers.dataloaders.get', (['cfg.data.name'], {}), '(cfg.data.name)\n', (2310, 2325), False, 'from basecls.utils import default_logging, registers, set_nccl_env, set_num_threads, setup_logger\n'), ((3009, 3030), 'megengine.distributed.launcher', 'dist.launcher', (['worker'], {}), '(worker)\n', (3022, 3030), True, 'import megengine.distributed as dist\n'), ((1058, 1073), 'megengine.distributed.get_rank', 'dist.get_rank', ([], {}), '()\n', (1071, 1073), True, 'import megengine.distributed as dist\n')]
#!/usr/bin/env python3 # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. import argparse import importlib import os import sys import megengine as mge import megengine.distributed as dist from basecore.config import ConfigDict from loguru import logger from basecls.models import build_model, load_model, sync_model from basecls.utils import registers, set_nccl_env, set_num_threads, setup_logger def default_parser() -> argparse.ArgumentParser: """Build args parser for training script. Returns: The args parser. """ parser = argparse.ArgumentParser() parser.add_argument("-f", "--file", type=str, help="training process description file") parser.add_argument( "--resume", action="store_true", help="resume training from saved checkpoint or not" ) parser.add_argument( "opts", default=None, help="Modify config options using the command-line", nargs=argparse.REMAINDER, ) return parser @logger.catch def worker(args: argparse.Namespace): """Worker function for training script. Args: args: args for training script. """ logger.info(f"Init process group for gpu{dist.get_rank()} done") sys.path.append(os.path.dirname(args.file)) module_name = os.path.splitext(os.path.basename(args.file))[0] current_network = importlib.import_module(module_name) cfg = current_network.Cfg() cfg.merge(args.opts) cfg.resume = args.resume if cfg.output_dir is None: cfg.output_dir = f"./logs_{module_name}" cfg.output_dir = os.path.abspath(cfg.output_dir) cfg.set_mode("freeze") if dist.get_rank() == 0 and not os.path.exists(cfg.output_dir): os.makedirs(cfg.output_dir) dist.group_barrier() # FIXME: will hang in fork mode, however spawn mode meets other issues # try: # from clearml import Task # if dist.get_rank() == 0: # Task.current_task().connect_configuration(cfg) # except Exception as e: # logger.warning(e) setup_logger(cfg.output_dir, "train_log.txt", to_loguru=True) logger.info(f"args: {args}") if cfg.fastrun: logger.info("Using fastrun mode...") mge.functional.debug_param.set_execution_strategy("PROFILE") if cfg.dtr: logger.info("Enabling DTR...") mge.dtr.enable() trainer = build(cfg) trainer.train() def build(cfg: ConfigDict): """Build function for training script. Args: cfg: config for training. Returns: A trainer. """ model = build_model(cfg) if getattr(cfg, "weights", None) is not None: load_model(model, cfg.weights, strict=False) sync_model(model) model.train() logger.info(f"Using augments named {cfg.augments.name}") augments = registers.augments.get(cfg.augments.name).build(cfg) logger.info(f"Using dataloader named {cfg.data.name}") dataloader = registers.dataloaders.get(cfg.data.name).build(cfg, True, augments) logger.info(f"Using solver named {cfg.solver.name}") solver = registers.solvers.get(cfg.solver.name).build(cfg, model) logger.info(f"Using hooks named {cfg.hooks_name}") hooks = registers.hooks.get(cfg.hooks_name).build(cfg) logger.info(f"Using trainer named {cfg.trainer_name}") TrainerClass = registers.trainers.get(cfg.trainer_name) return TrainerClass(cfg, model, dataloader, solver, hooks=hooks) def main(): """Main function for training script.""" parser = default_parser() args = parser.parse_args() set_nccl_env() set_num_threads() # FIXME: will hang in fork mode, however spawn mode meets other issues # try: # import getpass # from clearml import Task # task_name = f"{getpass.getuser()}-{os.path.splitext(os.path.basename(args.file))[0]}" # task = Task.init(project_name="basecls", task_name=task_name) # noqa: F841 # except Exception as e: # logger.warning(e) device_count = mge.device.get_device_count("gpu") launcher = dist.launcher if not os.path.exists(args.file): raise ValueError("Description file does not exist") if device_count == 0: raise ValueError("Number of devices should be greater than 0") elif device_count > 1 or os.environ.get("RLAUNCH_REPLICA_TOTAL", 0) > 1: mp_worker = launcher(worker) mp_worker(args) else: worker(args) if __name__ == "__main__": main()
[ "megengine.functional.debug_param.set_execution_strategy", "megengine.device.get_device_count", "megengine.distributed.group_barrier", "megengine.dtr.enable", "megengine.distributed.get_rank" ]
[((565, 590), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (588, 590), False, 'import argparse\n'), ((1353, 1389), 'importlib.import_module', 'importlib.import_module', (['module_name'], {}), '(module_name)\n', (1376, 1389), False, 'import importlib\n'), ((1577, 1608), 'os.path.abspath', 'os.path.abspath', (['cfg.output_dir'], {}), '(cfg.output_dir)\n', (1592, 1608), False, 'import os\n'), ((1746, 1766), 'megengine.distributed.group_barrier', 'dist.group_barrier', ([], {}), '()\n', (1764, 1766), True, 'import megengine.distributed as dist\n'), ((2048, 2109), 'basecls.utils.setup_logger', 'setup_logger', (['cfg.output_dir', '"""train_log.txt"""'], {'to_loguru': '(True)'}), "(cfg.output_dir, 'train_log.txt', to_loguru=True)\n", (2060, 2109), False, 'from basecls.utils import registers, set_nccl_env, set_num_threads, setup_logger\n'), ((2114, 2142), 'loguru.logger.info', 'logger.info', (['f"""args: {args}"""'], {}), "(f'args: {args}')\n", (2125, 2142), False, 'from loguru import logger\n'), ((2576, 2592), 'basecls.models.build_model', 'build_model', (['cfg'], {}), '(cfg)\n', (2587, 2592), False, 'from basecls.models import build_model, load_model, sync_model\n'), ((2700, 2717), 'basecls.models.sync_model', 'sync_model', (['model'], {}), '(model)\n', (2710, 2717), False, 'from basecls.models import build_model, load_model, sync_model\n'), ((2741, 2797), 'loguru.logger.info', 'logger.info', (['f"""Using augments named {cfg.augments.name}"""'], {}), "(f'Using augments named {cfg.augments.name}')\n", (2752, 2797), False, 'from loguru import logger\n'), ((2870, 2924), 'loguru.logger.info', 'logger.info', (['f"""Using dataloader named {cfg.data.name}"""'], {}), "(f'Using dataloader named {cfg.data.name}')\n", (2881, 2924), False, 'from loguru import logger\n'), ((3014, 3066), 'loguru.logger.info', 'logger.info', (['f"""Using solver named {cfg.solver.name}"""'], {}), "(f'Using solver named {cfg.solver.name}')\n", (3025, 3066), False, 'from loguru import logger\n'), ((3141, 3191), 'loguru.logger.info', 'logger.info', (['f"""Using hooks named {cfg.hooks_name}"""'], {}), "(f'Using hooks named {cfg.hooks_name}')\n", (3152, 3191), False, 'from loguru import logger\n'), ((3256, 3310), 'loguru.logger.info', 'logger.info', (['f"""Using trainer named {cfg.trainer_name}"""'], {}), "(f'Using trainer named {cfg.trainer_name}')\n", (3267, 3310), False, 'from loguru import logger\n'), ((3330, 3370), 'basecls.utils.registers.trainers.get', 'registers.trainers.get', (['cfg.trainer_name'], {}), '(cfg.trainer_name)\n', (3352, 3370), False, 'from basecls.utils import registers, set_nccl_env, set_num_threads, setup_logger\n'), ((3565, 3579), 'basecls.utils.set_nccl_env', 'set_nccl_env', ([], {}), '()\n', (3577, 3579), False, 'from basecls.utils import registers, set_nccl_env, set_num_threads, setup_logger\n'), ((3584, 3601), 'basecls.utils.set_num_threads', 'set_num_threads', ([], {}), '()\n', (3599, 3601), False, 'from basecls.utils import registers, set_nccl_env, set_num_threads, setup_logger\n'), ((4009, 4043), 'megengine.device.get_device_count', 'mge.device.get_device_count', (['"""gpu"""'], {}), "('gpu')\n", (4036, 4043), True, 'import megengine as mge\n'), ((1236, 1262), 'os.path.dirname', 'os.path.dirname', (['args.file'], {}), '(args.file)\n', (1251, 1262), False, 'import os\n'), ((1714, 1741), 'os.makedirs', 'os.makedirs', (['cfg.output_dir'], {}), '(cfg.output_dir)\n', (1725, 1741), False, 'import os\n'), ((2172, 2208), 'loguru.logger.info', 'logger.info', (['"""Using fastrun mode..."""'], {}), "('Using fastrun mode...')\n", (2183, 2208), False, 'from loguru import logger\n'), ((2217, 2277), 'megengine.functional.debug_param.set_execution_strategy', 'mge.functional.debug_param.set_execution_strategy', (['"""PROFILE"""'], {}), "('PROFILE')\n", (2266, 2277), True, 'import megengine as mge\n'), ((2303, 2333), 'loguru.logger.info', 'logger.info', (['"""Enabling DTR..."""'], {}), "('Enabling DTR...')\n", (2314, 2333), False, 'from loguru import logger\n'), ((2342, 2358), 'megengine.dtr.enable', 'mge.dtr.enable', ([], {}), '()\n', (2356, 2358), True, 'import megengine as mge\n'), ((2651, 2695), 'basecls.models.load_model', 'load_model', (['model', 'cfg.weights'], {'strict': '(False)'}), '(model, cfg.weights, strict=False)\n', (2661, 2695), False, 'from basecls.models import build_model, load_model, sync_model\n'), ((4085, 4110), 'os.path.exists', 'os.path.exists', (['args.file'], {}), '(args.file)\n', (4099, 4110), False, 'import os\n'), ((1299, 1326), 'os.path.basename', 'os.path.basename', (['args.file'], {}), '(args.file)\n', (1315, 1326), False, 'import os\n'), ((1645, 1660), 'megengine.distributed.get_rank', 'dist.get_rank', ([], {}), '()\n', (1658, 1660), True, 'import megengine.distributed as dist\n'), ((1674, 1704), 'os.path.exists', 'os.path.exists', (['cfg.output_dir'], {}), '(cfg.output_dir)\n', (1688, 1704), False, 'import os\n'), ((2813, 2854), 'basecls.utils.registers.augments.get', 'registers.augments.get', (['cfg.augments.name'], {}), '(cfg.augments.name)\n', (2835, 2854), False, 'from basecls.utils import registers, set_nccl_env, set_num_threads, setup_logger\n'), ((2942, 2982), 'basecls.utils.registers.dataloaders.get', 'registers.dataloaders.get', (['cfg.data.name'], {}), '(cfg.data.name)\n', (2967, 2982), False, 'from basecls.utils import registers, set_nccl_env, set_num_threads, setup_logger\n'), ((3080, 3118), 'basecls.utils.registers.solvers.get', 'registers.solvers.get', (['cfg.solver.name'], {}), '(cfg.solver.name)\n', (3101, 3118), False, 'from basecls.utils import registers, set_nccl_env, set_num_threads, setup_logger\n'), ((3204, 3239), 'basecls.utils.registers.hooks.get', 'registers.hooks.get', (['cfg.hooks_name'], {}), '(cfg.hooks_name)\n', (3223, 3239), False, 'from basecls.utils import registers, set_nccl_env, set_num_threads, setup_logger\n'), ((1191, 1206), 'megengine.distributed.get_rank', 'dist.get_rank', ([], {}), '()\n', (1204, 1206), True, 'import megengine.distributed as dist\n'), ((4299, 4341), 'os.environ.get', 'os.environ.get', (['"""RLAUNCH_REPLICA_TOTAL"""', '(0)'], {}), "('RLAUNCH_REPLICA_TOTAL', 0)\n", (4313, 4341), False, 'import os\n')]
from typing import Optional, List from sqlmodel import SQLModel, Field, Relationship class SongBase(SQLModel): name: str artist: str year: Optional[int] = None class Song(SongBase, table=True): id: int = Field(primary_key=True) class SongRead(SongBase): id: int class SongCreate(SongBase): pass class Increment(SQLModel, table=True): id: int = Field(primary_key=True) # ############################################################################# class ListingBase(SQLModel): url: str class Listing(ListingBase, table=True): __tablename__ = 'listings' id: int = Field(primary_key=True) images: List["Image"] = Relationship(back_populates="listing", sa_relationship_kwargs={'lazy': 'selectin'}) class ListingRead(ListingBase): id: str # ############################################################################# class ImageBase(SQLModel): url: str size_x: float size_y: float listing_id: Optional[int] = Field(default=None, foreign_key="listings.id") class Image(ImageBase, table=True): __tablename__ = 'images' id: int = Field(primary_key=True) listing: Optional[Listing] = Relationship(back_populates="images", sa_relationship_kwargs={'lazy': 'selectin'}) class ImageRead(ImageBase): id: int class ImageReadWithListings(ImageRead): listing: Optional[Listing] = None class ListingReadWithImages(ListingRead): images: List["ImageRead"] = []
[ "sqlmodel.Relationship", "sqlmodel.Field" ]
[((224, 247), 'sqlmodel.Field', 'Field', ([], {'primary_key': '(True)'}), '(primary_key=True)\n', (229, 247), False, 'from sqlmodel import SQLModel, Field, Relationship\n'), ((379, 402), 'sqlmodel.Field', 'Field', ([], {'primary_key': '(True)'}), '(primary_key=True)\n', (384, 402), False, 'from sqlmodel import SQLModel, Field, Relationship\n'), ((617, 640), 'sqlmodel.Field', 'Field', ([], {'primary_key': '(True)'}), '(primary_key=True)\n', (622, 640), False, 'from sqlmodel import SQLModel, Field, Relationship\n'), ((669, 756), 'sqlmodel.Relationship', 'Relationship', ([], {'back_populates': '"""listing"""', 'sa_relationship_kwargs': "{'lazy': 'selectin'}"}), "(back_populates='listing', sa_relationship_kwargs={'lazy':\n 'selectin'})\n", (681, 756), False, 'from sqlmodel import SQLModel, Field, Relationship\n'), ((997, 1043), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'foreign_key': '"""listings.id"""'}), "(default=None, foreign_key='listings.id')\n", (1002, 1043), False, 'from sqlmodel import SQLModel, Field, Relationship\n'), ((1124, 1147), 'sqlmodel.Field', 'Field', ([], {'primary_key': '(True)'}), '(primary_key=True)\n', (1129, 1147), False, 'from sqlmodel import SQLModel, Field, Relationship\n'), ((1181, 1267), 'sqlmodel.Relationship', 'Relationship', ([], {'back_populates': '"""images"""', 'sa_relationship_kwargs': "{'lazy': 'selectin'}"}), "(back_populates='images', sa_relationship_kwargs={'lazy':\n 'selectin'})\n", (1193, 1267), False, 'from sqlmodel import SQLModel, Field, Relationship\n')]
from collections import OrderedDict import numpy as np import megengine.functional as F import megengine.module as M from megengine import Tensor from megengine.core._imperative_rt.core2 import apply from megengine.core.ops import builtin from megengine.module import Module from megengine.traced_module import TracedModule, enable_expr_checker, trace_module from megengine.traced_module.expr import Apply, CallFunction, Constant class MyModule1(M.Module): def forward(self, x): y = Tensor(x) y += 1 x = x + 2 return x, y class MyModule2(M.Module): def forward(self, x): y = Tensor([1, x, 1]) y += 1 x = x + 2 return x, y class MyModule3(M.Module): def __init__(self): super().__init__() self.modules = [ M.Elemwise("ADD"), M.Elemwise("ADD"), OrderedDict([("a", M.Elemwise("ADD")), ("b", M.Elemwise("ADD"))]), M.Elemwise("RELU"), M.Elemwise("RELU"), ] def forward(self, a, b): x = self.modules[0](a, b) y = self.modules[1](a, b) assert list(self.modules[2].keys()) == ["a", "b"] for _, m in self.modules[2].items(): y = m(x, y) for m in self.modules[3:]: y = m(y) return y class MyModule4(M.Module): def __init__(self): super().__init__() self.add = F.add def forward(self, x, y): return self.add(x, y) def test_trace_module(): enable_expr_checker() x = Tensor(1) m1 = MyModule1() tm1 = trace_module(m1, x) m2 = MyModule2() tm2 = trace_module(m2, x) inp = Tensor(2) gt = m1(inp) output = tm1(inp) for a, b in zip(output, gt): np.testing.assert_equal(a.numpy(), b.numpy()) gt1 = m2(inp) output1 = tm2(inp) for a, b in zip(output1, gt1): np.testing.assert_equal(a.numpy(), b.numpy()) a, b = Tensor(1), Tensor(2) m3 = MyModule3() gt = m3(a, b) tm3 = trace_module(m3, a, b) out = tm3(a, b) np.testing.assert_equal(out.numpy(), gt.numpy()) assert isinstance(tm3.modules.__dict__["0"], M.Elemwise) assert isinstance(tm3.modules.__dict__["2"], TracedModule) assert isinstance(tm3.modules.__dict__["2"].a, M.Elemwise) assert isinstance(tm3.modules.__dict__["3"], M.Elemwise) m4 = MyModule4() tm4 = trace_module(m4, a, b) np.testing.assert_equal(tm4(a, b).numpy(), 3) np.testing.assert_equal(tm4(a, y=b).numpy(), 3) np.testing.assert_equal(tm4(x=a, y=b).numpy(), 3) tm4 = trace_module(m4, a, y=b) np.testing.assert_equal(tm4(a, b).numpy(), 3) np.testing.assert_equal(tm4(a, y=b).numpy(), 3) np.testing.assert_equal(tm4(x=a, y=b).numpy(), 3) tm4 = trace_module(m4, x=a, y=b) np.testing.assert_equal(tm4(a, b).numpy(), 3) np.testing.assert_equal(tm4(a, y=b).numpy(), 3) np.testing.assert_equal(tm4(x=a, y=b).numpy(), 3) tm5 = trace_module(tm4, a, b) np.testing.assert_equal(tm5(a, b).numpy(), 3) np.testing.assert_equal(tm5(a, y=b).numpy(), 3) np.testing.assert_equal(tm5(x=a, y=b).numpy(), 3) tm5 = trace_module(tm4, a, y=b) np.testing.assert_equal(tm5(a, b).numpy(), 3) np.testing.assert_equal(tm5(a, y=b).numpy(), 3) np.testing.assert_equal(tm5(x=a, y=b).numpy(), 3) tm5 = trace_module(tm4, x=a, y=b) np.testing.assert_equal(tm5(a, b).numpy(), 3) np.testing.assert_equal(tm5(a, y=b).numpy(), 3) np.testing.assert_equal(tm5(x=a, y=b).numpy(), 3) assert len(tm4.graph._exprs) == 1 assert isinstance(tm4.graph._exprs[0], CallFunction) class MyModule5(Module): def __init__(self): super().__init__() self.m1 = tm4 def forward(self, x, y): return self.m1(x, y) tm6 = trace_module(MyModule5(), a, b) assert tm6.m1.argspec is None assert tm6.m1._is_top is False def test_trace_module_2(): class Model(M.Module): def __init__(self): super().__init__() def forward(self, x): out = x.shape out = apply(builtin.Elemwise(mode="ADD"), out, Tensor(1)) return out traced_model = trace_module(Model(), Tensor(([1,]))) assert isinstance(traced_model.graph._exprs[0], Apply) and isinstance( traced_model.graph._exprs[0].opdef, builtin.GetVarShape ) assert isinstance(traced_model.graph._exprs[1], Constant) assert isinstance(traced_model.graph._exprs[2], Apply) and isinstance( traced_model.graph._exprs[2].opdef, builtin.Elemwise ) assert int(traced_model(Tensor([1, 2]))[0]) == 3
[ "megengine.traced_module.enable_expr_checker", "megengine.Tensor", "megengine.module.Elemwise", "megengine.core.ops.builtin.Elemwise", "megengine.traced_module.trace_module" ]
[((1514, 1535), 'megengine.traced_module.enable_expr_checker', 'enable_expr_checker', ([], {}), '()\n', (1533, 1535), False, 'from megengine.traced_module import TracedModule, enable_expr_checker, trace_module\n'), ((1544, 1553), 'megengine.Tensor', 'Tensor', (['(1)'], {}), '(1)\n', (1550, 1553), False, 'from megengine import Tensor\n'), ((1585, 1604), 'megengine.traced_module.trace_module', 'trace_module', (['m1', 'x'], {}), '(m1, x)\n', (1597, 1604), False, 'from megengine.traced_module import TracedModule, enable_expr_checker, trace_module\n'), ((1637, 1656), 'megengine.traced_module.trace_module', 'trace_module', (['m2', 'x'], {}), '(m2, x)\n', (1649, 1656), False, 'from megengine.traced_module import TracedModule, enable_expr_checker, trace_module\n'), ((1667, 1676), 'megengine.Tensor', 'Tensor', (['(2)'], {}), '(2)\n', (1673, 1676), False, 'from megengine import Tensor\n'), ((2017, 2039), 'megengine.traced_module.trace_module', 'trace_module', (['m3', 'a', 'b'], {}), '(m3, a, b)\n', (2029, 2039), False, 'from megengine.traced_module import TracedModule, enable_expr_checker, trace_module\n'), ((2393, 2415), 'megengine.traced_module.trace_module', 'trace_module', (['m4', 'a', 'b'], {}), '(m4, a, b)\n', (2405, 2415), False, 'from megengine.traced_module import TracedModule, enable_expr_checker, trace_module\n'), ((2583, 2607), 'megengine.traced_module.trace_module', 'trace_module', (['m4', 'a'], {'y': 'b'}), '(m4, a, y=b)\n', (2595, 2607), False, 'from megengine.traced_module import TracedModule, enable_expr_checker, trace_module\n'), ((2775, 2801), 'megengine.traced_module.trace_module', 'trace_module', (['m4'], {'x': 'a', 'y': 'b'}), '(m4, x=a, y=b)\n', (2787, 2801), False, 'from megengine.traced_module import TracedModule, enable_expr_checker, trace_module\n'), ((2969, 2992), 'megengine.traced_module.trace_module', 'trace_module', (['tm4', 'a', 'b'], {}), '(tm4, a, b)\n', (2981, 2992), False, 'from megengine.traced_module import TracedModule, enable_expr_checker, trace_module\n'), ((3160, 3185), 'megengine.traced_module.trace_module', 'trace_module', (['tm4', 'a'], {'y': 'b'}), '(tm4, a, y=b)\n', (3172, 3185), False, 'from megengine.traced_module import TracedModule, enable_expr_checker, trace_module\n'), ((3353, 3380), 'megengine.traced_module.trace_module', 'trace_module', (['tm4'], {'x': 'a', 'y': 'b'}), '(tm4, x=a, y=b)\n', (3365, 3380), False, 'from megengine.traced_module import TracedModule, enable_expr_checker, trace_module\n'), ((499, 508), 'megengine.Tensor', 'Tensor', (['x'], {}), '(x)\n', (505, 508), False, 'from megengine import Tensor\n'), ((629, 646), 'megengine.Tensor', 'Tensor', (['[1, x, 1]'], {}), '([1, x, 1])\n', (635, 646), False, 'from megengine import Tensor\n'), ((1947, 1956), 'megengine.Tensor', 'Tensor', (['(1)'], {}), '(1)\n', (1953, 1956), False, 'from megengine import Tensor\n'), ((1958, 1967), 'megengine.Tensor', 'Tensor', (['(2)'], {}), '(2)\n', (1964, 1967), False, 'from megengine import Tensor\n'), ((4234, 4245), 'megengine.Tensor', 'Tensor', (['[1]'], {}), '([1])\n', (4240, 4245), False, 'from megengine import Tensor\n'), ((817, 834), 'megengine.module.Elemwise', 'M.Elemwise', (['"""ADD"""'], {}), "('ADD')\n", (827, 834), True, 'import megengine.module as M\n'), ((848, 865), 'megengine.module.Elemwise', 'M.Elemwise', (['"""ADD"""'], {}), "('ADD')\n", (858, 865), True, 'import megengine.module as M\n'), ((958, 976), 'megengine.module.Elemwise', 'M.Elemwise', (['"""RELU"""'], {}), "('RELU')\n", (968, 976), True, 'import megengine.module as M\n'), ((990, 1008), 'megengine.module.Elemwise', 'M.Elemwise', (['"""RELU"""'], {}), "('RELU')\n", (1000, 1008), True, 'import megengine.module as M\n'), ((4123, 4151), 'megengine.core.ops.builtin.Elemwise', 'builtin.Elemwise', ([], {'mode': '"""ADD"""'}), "(mode='ADD')\n", (4139, 4151), False, 'from megengine.core.ops import builtin\n'), ((4158, 4167), 'megengine.Tensor', 'Tensor', (['(1)'], {}), '(1)\n', (4164, 4167), False, 'from megengine import Tensor\n'), ((4628, 4642), 'megengine.Tensor', 'Tensor', (['[1, 2]'], {}), '([1, 2])\n', (4634, 4642), False, 'from megengine import Tensor\n'), ((898, 915), 'megengine.module.Elemwise', 'M.Elemwise', (['"""ADD"""'], {}), "('ADD')\n", (908, 915), True, 'import megengine.module as M\n'), ((924, 941), 'megengine.module.Elemwise', 'M.Elemwise', (['"""ADD"""'], {}), "('ADD')\n", (934, 941), True, 'import megengine.module as M\n')]
""" Utility functions based on igakit. """ import numpy as nm from sfepy.base.base import Struct from sfepy.discrete.fem import Mesh from sfepy.mesh.mesh_generators import get_tensor_product_conn def create_linear_fe_mesh(nurbs, pars=None): """ Convert a NURBS object into a nD-linear tensor product FE mesh. Parameters ---------- nurbs : igakit.nurbs.NURBS instance The NURBS object. pars : sequence of array, optional The values of parameters in each parametric dimension. If not given, the values are set so that the resulting mesh has the same number of vertices as the number of control points/basis functions of the NURBS object. Returns ------- coors : array The coordinates of mesh vertices. conn : array The vertex connectivity array. desc : str The cell kind. """ knots = nurbs.knots shape = nurbs.weights.shape if pars is None: pars = [] for ii, kv in enumerate(knots): par = nm.linspace(kv[0], kv[-1], shape[ii]) pars.append(par) coors = nurbs(*pars) coors.shape = (-1, coors.shape[-1]) conn, desc = get_tensor_product_conn([len(ii) for ii in pars]) if (coors[:, -1] == 0.0).all(): coors = coors[:, :-1] return coors, conn, desc def create_mesh_and_output(nurbs, pars=None, **kwargs): """ Create a nD-linear tensor product FE mesh using :func:`create_linear_fe_mesh()`, evaluate field variables given as keyword arguments in the mesh vertices and create a dictionary of output data usable by Mesh.write(). Parameters ---------- nurbs : igakit.nurbs.NURBS instance The NURBS object. pars : sequence of array, optional The values of parameters in each parametric dimension. If not given, the values are set so that the resulting mesh has the same number of vertices as the number of control points/basis functions of the NURBS object. **kwargs : kwargs The field variables as keyword arguments. Their names serve as keys in the output dictionary. Returns ------- mesh : Mesh instance The finite element mesh. out : dict The output dictionary. """ coors, conn, desc = create_linear_fe_mesh(nurbs, pars) mat_id = nm.zeros(conn.shape[0], dtype=nm.int32) mesh = Mesh.from_data('nurbs', coors, None, [conn], [mat_id], [desc]) out = {} for key, variable in kwargs.iteritems(): if variable.ndim == 2: nc = variable.shape[1] field = variable.reshape(nurbs.weights.shape + (nc,)) else: field = variable.reshape(nurbs.weights.shape) nc = 1 vals = nurbs.evaluate(field, *pars) out[key] = Struct(name='output_data', mode='vertex', data=vals.reshape((-1, nc))) return mesh, out def save_basis(nurbs, pars): """ Save a NURBS object basis on a FE mesh corresponding to the given parametrization in VTK files. Parameters ---------- nurbs : igakit.nurbs.NURBS instance The NURBS object. pars : sequence of array, optional The values of parameters in each parametric dimension. """ coors, conn, desc = create_linear_fe_mesh(nurbs, pars) mat_id = nm.zeros(conn.shape[0], dtype=nm.int32) mesh = Mesh.from_data('nurbs', coors, None, [conn], [mat_id], [desc]) n_dof = nurbs.weights.ravel().shape[0] variable = nm.zeros(n_dof, dtype=nm.float64) field = variable.reshape(nurbs.weights.shape) for ic in xrange(n_dof): variable[ic - 1] = 0.0 variable[ic] = 1.0 vals = nurbs.evaluate(field, *pars).reshape((-1)) out = {} out['bf'] = Struct(name='output_data', mode='vertex', data=vals[:, None]) mesh.write('iga_basis_%03d.vtk' % ic, io='auto', out=out)
[ "sfepy.base.base.Struct", "sfepy.discrete.fem.Mesh.from_data" ]
[((2365, 2404), 'numpy.zeros', 'nm.zeros', (['conn.shape[0]'], {'dtype': 'nm.int32'}), '(conn.shape[0], dtype=nm.int32)\n', (2373, 2404), True, 'import numpy as nm\n'), ((2416, 2478), 'sfepy.discrete.fem.Mesh.from_data', 'Mesh.from_data', (['"""nurbs"""', 'coors', 'None', '[conn]', '[mat_id]', '[desc]'], {}), "('nurbs', coors, None, [conn], [mat_id], [desc])\n", (2430, 2478), False, 'from sfepy.discrete.fem import Mesh\n'), ((3366, 3405), 'numpy.zeros', 'nm.zeros', (['conn.shape[0]'], {'dtype': 'nm.int32'}), '(conn.shape[0], dtype=nm.int32)\n', (3374, 3405), True, 'import numpy as nm\n'), ((3417, 3479), 'sfepy.discrete.fem.Mesh.from_data', 'Mesh.from_data', (['"""nurbs"""', 'coors', 'None', '[conn]', '[mat_id]', '[desc]'], {}), "('nurbs', coors, None, [conn], [mat_id], [desc])\n", (3431, 3479), False, 'from sfepy.discrete.fem import Mesh\n'), ((3539, 3572), 'numpy.zeros', 'nm.zeros', (['n_dof'], {'dtype': 'nm.float64'}), '(n_dof, dtype=nm.float64)\n', (3547, 3572), True, 'import numpy as nm\n'), ((3806, 3867), 'sfepy.base.base.Struct', 'Struct', ([], {'name': '"""output_data"""', 'mode': '"""vertex"""', 'data': 'vals[:, None]'}), "(name='output_data', mode='vertex', data=vals[:, None])\n", (3812, 3867), False, 'from sfepy.base.base import Struct\n'), ((1044, 1081), 'numpy.linspace', 'nm.linspace', (['kv[0]', 'kv[-1]', 'shape[ii]'], {}), '(kv[0], kv[-1], shape[ii])\n', (1055, 1081), True, 'import numpy as nm\n')]
from fastapi.encoders import jsonable_encoder from fastapi.testclient import TestClient from sqlmodel import Session, select from model.item import Item TEST_ITEM = { "name": "aasif126", "sku": "AASI126", "metric": "m", "cost": 2200 } def test_get_items_returns_no_item_when_table_is_empty(client: TestClient): response = client.get("/item/get_all/") assert response.status_code == 200 assert len(response.json()) == 0 def test_get_items_returns_existing_items(client: TestClient, session: Session, item: Item): item_2 = Item(**TEST_ITEM) session.add(item_2) session.commit() session.refresh(item_2) item_ids = [item.id, item_2.id] response = client.get("/item/get_all/") response_ids = list(map(lambda _item: _item['id'], response.json())) assert response.status_code == 200 assert item_ids == response_ids def test_get_items_csv_returns_csv(client: TestClient, session: Session, item: Item): response = client.get("/item/get_all.csv") assert response.status_code == 200 def test_get_items_csv_raises_error_for_when_no_items_present( client: TestClient, session: Session): response = client.get("/item/get_all.csv") assert response.status_code == 404 def test_add_item_returns_inserted_row(client: TestClient, session: Session): response = client.post("/item/", json=TEST_ITEM) assert response.status_code == 200 item = Item(**response.json()) row = session.exec( select(Item).where(Item.id == item.id)).one() assert row == item def test_add_item_returns_error_for_invalid_body( client: TestClient, session: Session ): data = { "name": "aasif125", "sku": "AASI125", } response = client.post("/item/", json=data) assert response.status_code == 422 def test_add_item_returns_error_existing_item( client: TestClient, session: Session, item: Item ): response = client.post("/item/", json=jsonable_encoder(item)) assert response.status_code == 412 def test_edit_item_returns_error_for_invalid_item_id( client: TestClient, session: Session ): response = client.put("/item/1", json=TEST_ITEM) assert response.status_code == 404 def test_edit_item_returns_updated_item( client: TestClient, session: Session, item: Item ): item.cost = 2200 response = client.put("/item/1", data=item.json()) assert response.status_code == 200 assert response.json()['cost'] == item.cost def test_delete_item_returns_error_for_invalid_item_id( client: TestClient, session: Session ): response = client.delete("/item/1") assert response.status_code == 404 def test_delete_item_returns_success( client: TestClient, session: Session, item: Item ): response = client.delete("/item/1") assert response.status_code == 200
[ "sqlmodel.select" ]
[((559, 576), 'model.item.Item', 'Item', ([], {}), '(**TEST_ITEM)\n', (563, 576), False, 'from model.item import Item\n'), ((1989, 2011), 'fastapi.encoders.jsonable_encoder', 'jsonable_encoder', (['item'], {}), '(item)\n', (2005, 2011), False, 'from fastapi.encoders import jsonable_encoder\n'), ((1491, 1503), 'sqlmodel.select', 'select', (['Item'], {}), '(Item)\n', (1497, 1503), False, 'from sqlmodel import Session, select\n')]
import uuid from datetime import datetime, timedelta, timezone from typing import AsyncGenerator import pytest from pydantic import UUID4 from sqlalchemy import exc from sqlalchemy.ext.asyncio import AsyncSession, create_async_engine from sqlalchemy.orm import sessionmaker from sqlmodel import Session, SQLModel, create_engine from fastapi_users_db_sqlmodel import SQLModelUserDatabase, SQLModelUserDatabaseAsync from fastapi_users_db_sqlmodel.access_token import ( SQLModelAccessTokenDatabase, SQLModelAccessTokenDatabaseAsync, SQLModelBaseAccessToken, ) from tests.conftest import UserDB class AccessToken(SQLModelBaseAccessToken, table=True): pass @pytest.fixture def user_id() -> UUID4: return uuid.UUID("a9089e5d-2642-406d-a7c0-cbc641aca0ec") async def init_sync_session(url: str) -> AsyncGenerator[Session, None]: engine = create_engine(url, connect_args={"check_same_thread": False}) SQLModel.metadata.create_all(engine) with Session(engine) as session: yield session SQLModel.metadata.drop_all(engine) async def init_async_session(url: str) -> AsyncGenerator[AsyncSession, None]: engine = create_async_engine(url, connect_args={"check_same_thread": False}) make_session = sessionmaker(engine, class_=AsyncSession, expire_on_commit=False) async with engine.begin() as conn: await conn.run_sync(SQLModel.metadata.create_all) async with make_session() as session: yield session await conn.run_sync(SQLModel.metadata.drop_all) @pytest.fixture( params=[ ( init_sync_session, "sqlite:///./test-sqlmodel-access-token.db", SQLModelAccessTokenDatabase, SQLModelUserDatabase, ), ( init_async_session, "sqlite+aiosqlite:///./test-sqlmodel-access-token.db", SQLModelAccessTokenDatabaseAsync, SQLModelUserDatabaseAsync, ), ], ids=["sync", "async"], ) async def sqlmodel_access_token_db( request, user_id: UUID4 ) -> AsyncGenerator[SQLModelAccessTokenDatabase, None]: create_session = request.param[0] database_url = request.param[1] access_token_database_class = request.param[2] user_database_class = request.param[3] async for session in create_session(database_url): user = UserDB( id=user_id, email="<EMAIL>", hashed_password="<PASSWORD>" ) user_db = user_database_class(UserDB, session) await user_db.create(user) yield access_token_database_class(AccessToken, session) @pytest.mark.asyncio @pytest.mark.db async def test_queries( sqlmodel_access_token_db: SQLModelAccessTokenDatabase[AccessToken], user_id: UUID4, ): access_token = AccessToken(token="TOKEN", user_id=user_id) # Create access_token_db = await sqlmodel_access_token_db.create(access_token) assert access_token_db.token == "TOKEN" assert access_token_db.user_id == user_id # Update access_token_db.created_at = datetime.now(timezone.utc) await sqlmodel_access_token_db.update(access_token_db) # Get by token access_token_by_token = await sqlmodel_access_token_db.get_by_token( access_token_db.token ) assert access_token_by_token is not None # Get by token expired access_token_by_token = await sqlmodel_access_token_db.get_by_token( access_token_db.token, max_age=datetime.now(timezone.utc) + timedelta(hours=1) ) assert access_token_by_token is None # Get by token not expired access_token_by_token = await sqlmodel_access_token_db.get_by_token( access_token_db.token, max_age=datetime.now(timezone.utc) - timedelta(hours=1) ) assert access_token_by_token is not None # Get by token unknown access_token_by_token = await sqlmodel_access_token_db.get_by_token( "NOT_EXISTING_TOKEN" ) assert access_token_by_token is None # Delete token await sqlmodel_access_token_db.delete(access_token_db) deleted_access_token = await sqlmodel_access_token_db.get_by_token( access_token_db.token ) assert deleted_access_token is None @pytest.mark.asyncio @pytest.mark.db async def test_insert_existing_token( sqlmodel_access_token_db: SQLModelAccessTokenDatabase[AccessToken], user_id: UUID4 ): access_token = AccessToken(token="TOKEN", user_id=user_id) await sqlmodel_access_token_db.create(access_token) with pytest.raises(exc.IntegrityError): await sqlmodel_access_token_db.create( AccessToken(token="TOKEN", user_id=user_id) )
[ "sqlmodel.SQLModel.metadata.create_all", "sqlmodel.SQLModel.metadata.drop_all", "sqlmodel.Session", "sqlmodel.create_engine" ]
[((1537, 1859), 'pytest.fixture', 'pytest.fixture', ([], {'params': "[(init_sync_session, 'sqlite:///./test-sqlmodel-access-token.db',\n SQLModelAccessTokenDatabase, SQLModelUserDatabase), (init_async_session,\n 'sqlite+aiosqlite:///./test-sqlmodel-access-token.db',\n SQLModelAccessTokenDatabaseAsync, SQLModelUserDatabaseAsync)]", 'ids': "['sync', 'async']"}), "(params=[(init_sync_session,\n 'sqlite:///./test-sqlmodel-access-token.db',\n SQLModelAccessTokenDatabase, SQLModelUserDatabase), (init_async_session,\n 'sqlite+aiosqlite:///./test-sqlmodel-access-token.db',\n SQLModelAccessTokenDatabaseAsync, SQLModelUserDatabaseAsync)], ids=[\n 'sync', 'async'])\n", (1551, 1859), False, 'import pytest\n'), ((725, 774), 'uuid.UUID', 'uuid.UUID', (['"""a9089e5d-2642-406d-a7c0-cbc641aca0ec"""'], {}), "('a9089e5d-2642-406d-a7c0-cbc641aca0ec')\n", (734, 774), False, 'import uuid\n'), ((862, 923), 'sqlmodel.create_engine', 'create_engine', (['url'], {'connect_args': "{'check_same_thread': False}"}), "(url, connect_args={'check_same_thread': False})\n", (875, 923), False, 'from sqlmodel import Session, SQLModel, create_engine\n'), ((928, 964), 'sqlmodel.SQLModel.metadata.create_all', 'SQLModel.metadata.create_all', (['engine'], {}), '(engine)\n', (956, 964), False, 'from sqlmodel import Session, SQLModel, create_engine\n'), ((1028, 1062), 'sqlmodel.SQLModel.metadata.drop_all', 'SQLModel.metadata.drop_all', (['engine'], {}), '(engine)\n', (1054, 1062), False, 'from sqlmodel import Session, SQLModel, create_engine\n'), ((1156, 1223), 'sqlalchemy.ext.asyncio.create_async_engine', 'create_async_engine', (['url'], {'connect_args': "{'check_same_thread': False}"}), "(url, connect_args={'check_same_thread': False})\n", (1175, 1223), False, 'from sqlalchemy.ext.asyncio import AsyncSession, create_async_engine\n'), ((1243, 1308), 'sqlalchemy.orm.sessionmaker', 'sessionmaker', (['engine'], {'class_': 'AsyncSession', 'expire_on_commit': '(False)'}), '(engine, class_=AsyncSession, expire_on_commit=False)\n', (1255, 1308), False, 'from sqlalchemy.orm import sessionmaker\n'), ((3037, 3063), 'datetime.datetime.now', 'datetime.now', (['timezone.utc'], {}), '(timezone.utc)\n', (3049, 3063), False, 'from datetime import datetime, timedelta, timezone\n'), ((974, 989), 'sqlmodel.Session', 'Session', (['engine'], {}), '(engine)\n', (981, 989), False, 'from sqlmodel import Session, SQLModel, create_engine\n'), ((2349, 2414), 'tests.conftest.UserDB', 'UserDB', ([], {'id': 'user_id', 'email': '"""<EMAIL>"""', 'hashed_password': '"""<PASSWORD>"""'}), "(id=user_id, email='<EMAIL>', hashed_password='<PASSWORD>')\n", (2355, 2414), False, 'from tests.conftest import UserDB\n'), ((4475, 4508), 'pytest.raises', 'pytest.raises', (['exc.IntegrityError'], {}), '(exc.IntegrityError)\n', (4488, 4508), False, 'import pytest\n'), ((3437, 3463), 'datetime.datetime.now', 'datetime.now', (['timezone.utc'], {}), '(timezone.utc)\n', (3449, 3463), False, 'from datetime import datetime, timedelta, timezone\n'), ((3466, 3484), 'datetime.timedelta', 'timedelta', ([], {'hours': '(1)'}), '(hours=1)\n', (3475, 3484), False, 'from datetime import datetime, timedelta, timezone\n'), ((3676, 3702), 'datetime.datetime.now', 'datetime.now', (['timezone.utc'], {}), '(timezone.utc)\n', (3688, 3702), False, 'from datetime import datetime, timedelta, timezone\n'), ((3705, 3723), 'datetime.timedelta', 'timedelta', ([], {'hours': '(1)'}), '(hours=1)\n', (3714, 3723), False, 'from datetime import datetime, timedelta, timezone\n')]
""" DAG related functions. """ import operator from collections import defaultdict from io import StringIO from typing import Any, DefaultDict, Dict, List, Optional, Set import asciidag.graph import asciidag.node from sqlmodel import Session, select from sqloxide import parse_sql from datajunction.constants import DJ_DATABASE_ID from datajunction.models.database import Database from datajunction.models.node import Node from datajunction.sql.parse import find_nodes_by_key from datajunction.typing import ParseTree def render_dag(dependencies: Dict[str, Set[str]], **kwargs: Any) -> str: """ Render the DAG of dependencies. """ out = StringIO() graph = asciidag.graph.Graph(out, **kwargs) asciidag_nodes: Dict[str, asciidag.node.Node] = {} tips = sorted( [build_asciidag(name, dependencies, asciidag_nodes) for name in dependencies], key=lambda n: n.item, ) graph.show_nodes(tips) out.seek(0) return out.getvalue() def build_asciidag( name: str, dependencies: Dict[str, Set[str]], asciidag_nodes: Dict[str, asciidag.node.Node], ) -> asciidag.node.Node: """ Build the nodes for ``asciidag``. """ if name in asciidag_nodes: asciidag_node = asciidag_nodes[name] else: asciidag_node = asciidag.node.Node(name) asciidag_nodes[name] = asciidag_node asciidag_node.parents = sorted( [ build_asciidag(child, dependencies, asciidag_nodes) for child in dependencies[name] ], key=lambda n: n.item, ) return asciidag_node def get_computable_databases( node: Node, columns: Optional[Set[str]] = None, ) -> Set[Database]: """ Return all the databases where a given node can be computed. This takes into consideration the node expression, since some of the columns might not be present in all databases. """ if columns is None: columns = {column.name for column in node.columns} # add all the databases where the node is explicitly materialized tables = [ table for table in node.tables if columns <= {column.name for column in table.columns} ] databases = {table.database for table in tables} # add all the databases that are common between the parents and match all the columns parent_columns = get_referenced_columns_from_sql(node.expression, node.parents) if node.parents: parent_databases = [ get_computable_databases(parent, parent_columns[parent.name]) for parent in node.parents ] databases |= set.intersection(*parent_databases) return databases def get_database_for_nodes( session: Session, nodes: List[Node], node_columns: Dict[str, Set[str]], database_id: Optional[int] = None, ) -> Database: """ Given a list of nodes, return the best database to compute metric. When no nodes are passed, the database with the lowest cost is returned. """ if nodes: databases = set.intersection( *[get_computable_databases(node, node_columns[node.name]) for node in nodes] ) else: databases = session.exec( select(Database).where(Database.id != DJ_DATABASE_ID), ).all() if not databases: raise Exception("No valid database was found") if database_id is not None: for database in databases: if database.id == database_id: return database raise Exception(f"Database ID {database_id} is not valid") return sorted(databases, key=operator.attrgetter("cost"))[0] def get_referenced_columns_from_sql( sql: Optional[str], parents: List[Node], ) -> DefaultDict[str, Set[str]]: """ Given a SQL expression, return the referenced columns. Referenced columns are a dictionary mapping parent name to column name(s). """ if not sql: return defaultdict(set) tree = parse_sql(sql, dialect="ansi") return get_referenced_columns_from_tree(tree, parents) def get_referenced_columns_from_tree( tree: ParseTree, parents: List[Node], ) -> DefaultDict[str, Set[str]]: """ Return the columns referenced in parents given a parse tree. """ referenced_columns: DefaultDict[str, Set[str]] = defaultdict(set) parent_columns = { parent.name: {column.name for column in parent.columns} for parent in parents } # compound identifiers are fully qualified for compound_identifier in find_nodes_by_key(tree, "CompoundIdentifier"): parent = ".".join(part["value"] for part in compound_identifier[:-1]) column = compound_identifier[-1]["value"] referenced_columns[parent].add(column) # for regular identifiers we need to figure out which parent the columns belongs to for identifier in find_nodes_by_key(tree, "Identifier"): column = identifier["value"] candidates = [ parent for parent, columns in parent_columns.items() if column in columns ] if not candidates: raise Exception(f"Column {column} not found in any parent") if len(candidates) > 1: raise Exception(f"Column {column} is ambiguous") parent = candidates[0] referenced_columns[parent].add(column) return referenced_columns def get_dimensions(node: Node) -> List[str]: """ Return the available dimensions in a given node. """ dimensions = [] for parent in node.parents: for column in parent.columns: dimensions.append(f"{parent.name}.{column.name}") if column.dimension: for dimension_column in column.dimension.columns: dimensions.append( f"{column.dimension.name}.{dimension_column.name}", ) return sorted(dimensions)
[ "sqlmodel.select" ]
[((658, 668), 'io.StringIO', 'StringIO', ([], {}), '()\n', (666, 668), False, 'from io import StringIO\n'), ((3980, 4010), 'sqloxide.parse_sql', 'parse_sql', (['sql'], {'dialect': '"""ansi"""'}), "(sql, dialect='ansi')\n", (3989, 4010), False, 'from sqloxide import parse_sql\n'), ((4324, 4340), 'collections.defaultdict', 'defaultdict', (['set'], {}), '(set)\n', (4335, 4340), False, 'from collections import defaultdict\n'), ((4536, 4581), 'datajunction.sql.parse.find_nodes_by_key', 'find_nodes_by_key', (['tree', '"""CompoundIdentifier"""'], {}), "(tree, 'CompoundIdentifier')\n", (4553, 4581), False, 'from datajunction.sql.parse import find_nodes_by_key\n'), ((4869, 4906), 'datajunction.sql.parse.find_nodes_by_key', 'find_nodes_by_key', (['tree', '"""Identifier"""'], {}), "(tree, 'Identifier')\n", (4886, 4906), False, 'from datajunction.sql.parse import find_nodes_by_key\n'), ((3951, 3967), 'collections.defaultdict', 'defaultdict', (['set'], {}), '(set)\n', (3962, 3967), False, 'from collections import defaultdict\n'), ((3612, 3639), 'operator.attrgetter', 'operator.attrgetter', (['"""cost"""'], {}), "('cost')\n", (3631, 3639), False, 'import operator\n'), ((3219, 3235), 'sqlmodel.select', 'select', (['Database'], {}), '(Database)\n', (3225, 3235), False, 'from sqlmodel import Session, select\n')]
""" Notes ----- Important attributes of continuous (order > 0) :class:`Field` and :class:`SurfaceField` instances: - `vertex_remap` : `econn[:, :n_vertex] = vertex_remap[conn]` - `vertex_remap_i` : `conn = vertex_remap_i[econn[:, :n_vertex]]` where `conn` is the mesh vertex connectivity, `econn` is the region-local field connectivity. """ from __future__ import absolute_import import numpy as nm from sfepy.base.base import output, get_default, assert_ from sfepy.base.base import Struct from sfepy.discrete.common.fields import parse_shape, Field from sfepy.discrete.fem.mesh import Mesh from sfepy.discrete.fem.meshio import convert_complex_output from sfepy.discrete.fem.utils import (extend_cell_data, prepare_remap, invert_remap, get_min_value) from sfepy.discrete.fem.mappings import VolumeMapping, SurfaceMapping from sfepy.discrete.fem.poly_spaces import PolySpace from sfepy.discrete.fem.fe_surface import FESurface from sfepy.discrete.integrals import Integral from sfepy.discrete.fem.linearizer import (get_eval_dofs, get_eval_coors, create_output) import six def set_mesh_coors(domain, fields, coors, update_fields=False, actual=False, clear_all=True, extra_dofs=False): if actual: if not hasattr(domain.mesh, 'coors_act'): domain.mesh.coors_act = nm.zeros_like(domain.mesh.coors) domain.mesh.coors_act[:] = coors[:domain.mesh.n_nod] else: domain.cmesh.coors[:] = coors[:domain.mesh.n_nod] if update_fields: for field in six.itervalues(fields): field.set_coors(coors, extra_dofs=extra_dofs) field.clear_mappings(clear_all=clear_all) def eval_nodal_coors(coors, mesh_coors, region, poly_space, geom_poly_space, econn, only_extra=True): """ Compute coordinates of nodes corresponding to `poly_space`, given mesh coordinates and `geom_poly_space`. """ if only_extra: iex = (poly_space.nts[:,0] > 0).nonzero()[0] if iex.shape[0] == 0: return qp_coors = poly_space.node_coors[iex, :] econn = econn[:, iex].copy() else: qp_coors = poly_space.node_coors ## # Evaluate geometry interpolation base functions in (extra) nodes. bf = geom_poly_space.eval_base(qp_coors) bf = bf[:,0,:].copy() ## # Evaluate extra coordinates with 'bf'. cmesh = region.domain.cmesh conn = cmesh.get_incident(0, region.cells, region.tdim) conn.shape = (econn.shape[0], -1) ecoors = nm.dot(bf, mesh_coors[conn]) coors[econn] = nm.swapaxes(ecoors, 0, 1) def _interp_to_faces(vertex_vals, bfs, faces): dim = vertex_vals.shape[1] n_face = faces.shape[0] n_qp = bfs.shape[0] faces_vals = nm.zeros((n_face, n_qp, dim), nm.float64) for ii, face in enumerate(faces): vals = vertex_vals[face,:dim] faces_vals[ii,:,:] = nm.dot(bfs[:,0,:], vals) return(faces_vals) def get_eval_expression(expression, fields, materials, variables, functions=None, mode='eval', term_mode=None, extra_args=None, verbose=True, kwargs=None): """ Get the function for evaluating an expression given a list of elements, and reference element coordinates. """ from sfepy.discrete.evaluate import eval_in_els_and_qp def _eval(iels, coors): val = eval_in_els_and_qp(expression, iels, coors, fields, materials, variables, functions=functions, mode=mode, term_mode=term_mode, extra_args=extra_args, verbose=verbose, kwargs=kwargs) return val[..., 0] return _eval def create_expression_output(expression, name, primary_field_name, fields, materials, variables, functions=None, mode='eval', term_mode=None, extra_args=None, verbose=True, kwargs=None, min_level=0, max_level=1, eps=1e-4): """ Create output mesh and data for the expression using the adaptive linearizer. Parameters ---------- expression : str The expression to evaluate. name : str The name of the data. primary_field_name : str The name of field that defines the element groups and polynomial spaces. fields : dict The dictionary of fields used in `variables`. materials : Materials instance The materials used in the expression. variables : Variables instance The variables used in the expression. functions : Functions instance, optional The user functions for materials etc. mode : one of 'eval', 'el_avg', 'qp' The evaluation mode - 'qp' requests the values in quadrature points, 'el_avg' element averages and 'eval' means integration over each term region. term_mode : str The term call mode - some terms support different call modes and depending on the call mode different values are returned. extra_args : dict, optional Extra arguments to be passed to terms in the expression. verbose : bool If False, reduce verbosity. kwargs : dict, optional The variables (dictionary of (variable name) : (Variable instance)) to be used in the expression. min_level : int The minimum required level of mesh refinement. max_level : int The maximum level of mesh refinement. eps : float The relative tolerance parameter of mesh adaptivity. Returns ------- out : dict The output dictionary. """ field = fields[primary_field_name] vertex_coors = field.coors[:field.n_vertex_dof, :] ps = field.poly_space gps = field.gel.poly_space vertex_conn = field.econn[:, :field.gel.n_vertex] eval_dofs = get_eval_expression(expression, fields, materials, variables, functions=functions, mode=mode, extra_args=extra_args, verbose=verbose, kwargs=kwargs) eval_coors = get_eval_coors(vertex_coors, vertex_conn, gps) (level, coors, conn, vdofs, mat_ids) = create_output(eval_dofs, eval_coors, vertex_conn.shape[0], ps, min_level=min_level, max_level=max_level, eps=eps) mesh = Mesh.from_data('linearized_mesh', coors, None, [conn], [mat_ids], field.domain.mesh.descs) out = {} out[name] = Struct(name='output_data', mode='vertex', data=vdofs, var_name=name, dofs=None, mesh=mesh, level=level) out = convert_complex_output(out) return out class FEField(Field): """ Base class for finite element fields. Notes ----- - interps and hence node_descs are per region (must have single geometry!) Field shape information: - ``shape`` - the shape of the base functions in a point - ``n_components`` - the number of DOFs per FE node - ``val_shape`` - the shape of field value (the product of DOFs and base functions) in a point """ def __init__(self, name, dtype, shape, region, approx_order=1): """ Create a finite element field. Parameters ---------- name : str The field name. dtype : numpy.dtype The field data type: float64 or complex128. shape : int/tuple/str The field shape: 1 or (1,) or 'scalar', space dimension (2, or (2,) or 3 or (3,)) or 'vector', or a tuple. The field shape determines the shape of the FE base functions and is related to the number of components of variables and to the DOF per node count, depending on the field kind. region : Region The region where the field is defined. approx_order : int or tuple The FE approximation order. The tuple form is (order, has_bubble), e.g. (1, True) means order 1 with a bubble function. Notes ----- Assumes one cell type for the whole region! """ shape = parse_shape(shape, region.domain.shape.dim) if not self._check_region(region): raise ValueError('unsuitable region for field %s! (%s)' % (name, region.name)) Struct.__init__(self, name=name, dtype=dtype, shape=shape, region=region) self.domain = self.region.domain self._set_approx_order(approx_order) self._setup_geometry() self._setup_kind() self._setup_shape() self.surface_data = {} self.point_data = {} self.ori = None self._create_interpolant() self._setup_global_base() self.setup_coors() self.clear_mappings(clear_all=True) self.clear_qp_base() self.basis_transform = None self.econn0 = None self.unused_dofs = None self.stored_subs = None def _set_approx_order(self, approx_order): """ Set a uniform approximation order. """ if isinstance(approx_order, tuple): self.approx_order = approx_order[0] self.force_bubble = approx_order[1] else: self.approx_order = approx_order self.force_bubble = False def get_true_order(self): """ Get the true approximation order depending on the reference element geometry. For example, for P1 (linear) approximation the true order is 1, while for Q1 (bilinear) approximation in 2D the true order is 2. """ gel = self.gel if (gel.dim + 1) == gel.n_vertex: order = self.approx_order else: order = gel.dim * self.approx_order if self.force_bubble: bubble_order = gel.dim + 1 order = max(order, bubble_order) return order def is_higher_order(self): """ Return True, if the field's approximation order is greater than one. """ return self.force_bubble or (self.approx_order > 1) def _setup_global_base(self): """ Setup global DOF/base functions, their indices and connectivity of the field. Called methods implemented in subclasses. """ self._setup_facet_orientations() self._init_econn() self.n_vertex_dof, self.vertex_remap = self._setup_vertex_dofs() self.vertex_remap_i = invert_remap(self.vertex_remap) aux = self._setup_edge_dofs() self.n_edge_dof, self.edge_dofs, self.edge_remap = aux aux = self._setup_face_dofs() self.n_face_dof, self.face_dofs, self.face_remap = aux aux = self._setup_bubble_dofs() self.n_bubble_dof, self.bubble_dofs, self.bubble_remap = aux self.n_nod = self.n_vertex_dof + self.n_edge_dof \ + self.n_face_dof + self.n_bubble_dof self._setup_esurface() def _setup_esurface(self): """ Setup extended surface entities (edges in 2D, faces in 3D), i.e. indices of surface entities into the extended connectivity. """ node_desc = self.node_desc gel = self.gel self.efaces = gel.get_surface_entities().copy() nd = node_desc.edge if nd is not None: efs = [] for eof in gel.get_edges_per_face(): efs.append(nm.concatenate([nd[ie] for ie in eof])) efs = nm.array(efs).squeeze() if efs.ndim < 2: efs = efs[:,nm.newaxis] self.efaces = nm.hstack((self.efaces, efs)) efs = node_desc.face if efs is not None: efs = nm.array(efs).squeeze() if efs.ndim < 2: efs = efs[:,nm.newaxis] self.efaces = nm.hstack((self.efaces, efs)) if gel.dim == 3: self.eedges = gel.edges.copy() efs = node_desc.edge if efs is not None: efs = nm.array(efs).squeeze() if efs.ndim < 2: efs = efs[:,nm.newaxis] self.eedges = nm.hstack((self.eedges, efs)) def set_coors(self, coors, extra_dofs=False): """ Set coordinates of field nodes. """ # Mesh vertex nodes. if self.n_vertex_dof: indx = self.vertex_remap_i self.coors[:self.n_vertex_dof] = nm.take(coors, indx.astype(nm.int32), axis=0) n_ex_dof = self.n_bubble_dof + self.n_edge_dof + self.n_face_dof # extra nodes if n_ex_dof: if extra_dofs: if self.n_nod != coors.shape[0]: raise NotImplementedError self.coors[:] = coors else: gps = self.gel.poly_space ps = self.poly_space eval_nodal_coors(self.coors, coors, self.region, ps, gps, self.econn) def setup_coors(self): """ Setup coordinates of field nodes. """ mesh = self.domain.mesh self.coors = nm.empty((self.n_nod, mesh.dim), nm.float64) self.set_coors(mesh.coors) def get_vertices(self): """ Return indices of vertices belonging to the field region. """ return self.vertex_remap_i def _get_facet_dofs(self, rfacets, remap, dofs): facets = remap[rfacets] return dofs[facets[facets >= 0]].ravel() def get_data_shape(self, integral, integration='volume', region_name=None): """ Get element data dimensions. Parameters ---------- integral : Integral instance The integral describing used numerical quadrature. integration : 'volume', 'surface', 'surface_extra', 'point' or 'custom' The term integration type. region_name : str The name of the region of the integral. Returns ------- data_shape : 4 ints The `(n_el, n_qp, dim, n_en)` for volume shape kind, `(n_fa, n_qp, dim, n_fn)` for surface shape kind and `(n_nod, 0, 0, 1)` for point shape kind. Notes ----- - `n_el`, `n_fa` = number of elements/facets - `n_qp` = number of quadrature points per element/facet - `dim` = spatial dimension - `n_en`, `n_fn` = number of element/facet nodes - `n_nod` = number of element nodes """ region = self.domain.regions[region_name] shape = region.shape dim = region.dim if integration in ('surface', 'surface_extra'): sd = self.surface_data[region_name] # This works also for surface fields. key = sd.face_type weights = self.get_qp(key, integral).weights n_qp = weights.shape[0] if integration == 'surface': data_shape = (sd.n_fa, n_qp, dim, sd.n_fp) else: data_shape = (sd.n_fa, n_qp, dim, self.econn.shape[1]) elif integration in ('volume', 'custom'): _, weights = integral.get_qp(self.gel.name) n_qp = weights.shape[0] data_shape = (shape.n_cell, n_qp, dim, self.econn.shape[1]) elif integration == 'point': dofs = self.get_dofs_in_region(region, merge=True) data_shape = (dofs.shape[0], 0, 0, 1) else: raise NotImplementedError('unsupported integration! (%s)' % integration) return data_shape def get_dofs_in_region(self, region, merge=True): """ Return indices of DOFs that belong to the given region and group. """ node_desc = self.node_desc dofs = [] vdofs = nm.empty((0,), dtype=nm.int32) if node_desc.vertex is not None: vdofs = self.vertex_remap[region.vertices] vdofs = vdofs[vdofs >= 0] dofs.append(vdofs) edofs = nm.empty((0,), dtype=nm.int32) if node_desc.edge is not None: edofs = self._get_facet_dofs(region.edges, self.edge_remap, self.edge_dofs) dofs.append(edofs) fdofs = nm.empty((0,), dtype=nm.int32) if node_desc.face is not None: fdofs = self._get_facet_dofs(region.faces, self.face_remap, self.face_dofs) dofs.append(fdofs) bdofs = nm.empty((0,), dtype=nm.int32) if (node_desc.bubble is not None) and region.has_cells(): els = self.bubble_remap[region.cells] bdofs = self.bubble_dofs[els[els >= 0]].ravel() dofs.append(bdofs) if merge: dofs = nm.concatenate(dofs) return dofs def clear_qp_base(self): """ Remove cached quadrature points and base functions. """ self.qp_coors = {} self.bf = {} def get_qp(self, key, integral): """ Get quadrature points and weights corresponding to the given key and integral. The key is 'v' or 's#', where # is the number of face vertices. """ qpkey = (integral.order, key) if qpkey not in self.qp_coors: if (key[0] == 's') and not self.is_surface: dim = self.gel.dim - 1 n_fp = self.gel.surface_facet.n_vertex geometry = '%d_%d' % (dim, n_fp) else: geometry = self.gel.name vals, weights = integral.get_qp(geometry) self.qp_coors[qpkey] = Struct(vals=vals, weights=weights) return self.qp_coors[qpkey] def substitute_dofs(self, subs, restore=False): """ Perform facet DOF substitutions according to `subs`. Modifies `self.econn` in-place and sets `self.econn0`, `self.unused_dofs` and `self.basis_transform`. """ if restore and (self.stored_subs is not None): self.econn0 = self.econn self.econn, self.unused_dofs, basis_transform = self.stored_subs else: if subs is None: self.econn0 = self.econn return else: self.econn0 = self.econn.copy() self._substitute_dofs(subs) self.unused_dofs = nm.setdiff1d(self.econn0, self.econn) basis_transform = self._eval_basis_transform(subs) self.set_basis_transform(basis_transform) def restore_dofs(self, store=False): """ Undoes the effect of :func:`FEField.substitute_dofs()`. """ if self.econn0 is None: raise ValueError('no original DOFs to restore!') if store: self.stored_subs = (self.econn, self.unused_dofs, self.basis_transform) else: self.stored_subs = None self.econn = self.econn0 self.econn0 = None self.unused_dofs = None self.basis_transform = None def set_basis_transform(self, transform): """ Set local element basis transformation. The basis transformation is applied in :func:`FEField.get_base()` and :func:`FEField.create_mapping()`. Parameters ---------- transform : array, shape `(n_cell, n_ep, n_ep)` The array with `(n_ep, n_ep)` transformation matrices for each cell in the field's region, where `n_ep` is the number of element DOFs. """ self.basis_transform = transform def restore_substituted(self, vec): """ Restore values of the unused DOFs using the transpose of the applied basis transformation. """ if (self.econn0 is None) or (self.basis_transform is None): raise ValueError('no original DOF values to restore!!') vec = vec.reshape((self.n_nod, self.n_components)).copy() evec = vec[self.econn] vec[self.econn0] = nm.einsum('cji,cjk->cik', self.basis_transform, evec) return vec.ravel() def get_base(self, key, derivative, integral, iels=None, from_geometry=False, base_only=True): qp = self.get_qp(key, integral) if from_geometry: ps = self.gel.poly_space else: ps = self.poly_space _key = key if not from_geometry else 'g' + key bf_key = (integral.order, _key, derivative) if bf_key not in self.bf: if (iels is not None) and (self.ori is not None): ori = self.ori[iels] else: ori = self.ori self.bf[bf_key] = ps.eval_base(qp.vals, diff=derivative, ori=ori, transform=self.basis_transform) if base_only: return self.bf[bf_key] else: return self.bf[bf_key], qp.weights def create_bqp(self, region_name, integral): gel = self.gel sd = self.surface_data[region_name] bqpkey = (integral.order, sd.bkey) if not bqpkey in self.qp_coors: qp = self.get_qp(sd.face_type, integral) ps_s = self.gel.surface_facet.poly_space bf_s = ps_s.eval_base(qp.vals) coors, faces = gel.coors, gel.get_surface_entities() vals = _interp_to_faces(coors, bf_s, faces) self.qp_coors[bqpkey] = Struct(name='BQP_%s' % sd.bkey, vals=vals, weights=qp.weights) def extend_dofs(self, dofs, fill_value=None): """ Extend DOFs to the whole domain using the `fill_value`, or the smallest value in `dofs` if `fill_value` is None. """ if fill_value is None: if nm.isrealobj(dofs): fill_value = get_min_value(dofs) else: # Complex values - treat real and imaginary parts separately. fill_value = get_min_value(dofs.real) fill_value += 1j * get_min_value(dofs.imag) if self.approx_order != 0: indx = self.get_vertices() n_nod = self.domain.shape.n_nod new_dofs = nm.empty((n_nod, dofs.shape[1]), dtype=self.dtype) new_dofs.fill(fill_value) new_dofs[indx] = dofs[:indx.size] else: new_dofs = extend_cell_data(dofs, self.domain, self.region, val=fill_value) return new_dofs def remove_extra_dofs(self, dofs): """ Remove DOFs defined in higher order nodes (order > 1). """ if self.approx_order != 0: new_dofs = dofs[:self.n_vertex_dof] else: new_dofs = dofs return new_dofs def linearize(self, dofs, min_level=0, max_level=1, eps=1e-4): """ Linearize the solution for post-processing. Parameters ---------- dofs : array, shape (n_nod, n_component) The array of DOFs reshaped so that each column corresponds to one component. min_level : int The minimum required level of mesh refinement. max_level : int The maximum level of mesh refinement. eps : float The relative tolerance parameter of mesh adaptivity. Returns ------- mesh : Mesh instance The adapted, nonconforming, mesh. vdofs : array The DOFs defined in vertices of `mesh`. levels : array of ints The refinement level used for each element group. """ assert_(dofs.ndim == 2) n_nod, dpn = dofs.shape assert_(n_nod == self.n_nod) assert_(dpn == self.shape[0]) vertex_coors = self.coors[:self.n_vertex_dof, :] ps = self.poly_space gps = self.gel.poly_space vertex_conn = self.econn[:, :self.gel.n_vertex] eval_dofs = get_eval_dofs(dofs, self.econn, ps, ori=self.ori) eval_coors = get_eval_coors(vertex_coors, vertex_conn, gps) (level, coors, conn, vdofs, mat_ids) = create_output(eval_dofs, eval_coors, vertex_conn.shape[0], ps, min_level=min_level, max_level=max_level, eps=eps) mesh = Mesh.from_data('linearized_mesh', coors, None, [conn], [mat_ids], self.domain.mesh.descs) return mesh, vdofs, level def get_output_approx_order(self): """ Get the approximation order used in the output file. """ return min(self.approx_order, 1) def create_output(self, dofs, var_name, dof_names=None, key=None, extend=True, fill_value=None, linearization=None): """ Convert the DOFs corresponding to the field to a dictionary of output data usable by Mesh.write(). Parameters ---------- dofs : array, shape (n_nod, n_component) The array of DOFs reshaped so that each column corresponds to one component. var_name : str The variable name corresponding to `dofs`. dof_names : tuple of str The names of DOF components. key : str, optional The key to be used in the output dictionary instead of the variable name. extend : bool Extend the DOF values to cover the whole domain. fill_value : float or complex The value used to fill the missing DOF values if `extend` is True. linearization : Struct or None The linearization configuration for higher order approximations. Returns ------- out : dict The output dictionary. """ linearization = get_default(linearization, Struct(kind='strip')) out = {} if linearization.kind is None: out[key] = Struct(name='output_data', mode='full', data=dofs, var_name=var_name, dofs=dof_names, field_name=self.name) elif linearization.kind == 'strip': if extend: ext = self.extend_dofs(dofs, fill_value) else: ext = self.remove_extra_dofs(dofs) if ext is not None: approx_order = self.get_output_approx_order() if approx_order != 0: # Has vertex data. out[key] = Struct(name='output_data', mode='vertex', data=ext, var_name=var_name, dofs=dof_names) else: ext.shape = (ext.shape[0], 1, ext.shape[1], 1) out[key] = Struct(name='output_data', mode='cell', data=ext, var_name=var_name, dofs=dof_names) else: mesh, vdofs, levels = self.linearize(dofs, linearization.min_level, linearization.max_level, linearization.eps) out[key] = Struct(name='output_data', mode='vertex', data=vdofs, var_name=var_name, dofs=dof_names, mesh=mesh, levels=levels) out = convert_complex_output(out) return out def create_mesh(self, extra_nodes=True): """ Create a mesh from the field region, optionally including the field extra nodes. """ mesh = self.domain.mesh if self.approx_order != 0: if extra_nodes: conn = self.econn else: conn = self.econn[:, :self.gel.n_vertex] conns = [conn] mat_ids = [mesh.cmesh.cell_groups] descs = mesh.descs[:1] if extra_nodes: coors = self.coors else: coors = self.coors[:self.n_vertex_dof] mesh = Mesh.from_data(self.name, coors, None, conns, mat_ids, descs) return mesh def get_evaluate_cache(self, cache=None, share_geometry=False, verbose=False): """ Get the evaluate cache for :func:`Variable.evaluate_at() <sfepy.discrete.variables.Variable.evaluate_at()>`. Parameters ---------- cache : Struct instance, optional Optionally, use the provided instance to store the cache data. share_geometry : bool Set to True to indicate that all the evaluations will work on the same region. Certain data are then computed only for the first probe and cached. verbose : bool If False, reduce verbosity. Returns ------- cache : Struct instance The evaluate cache. """ import time try: from scipy.spatial import cKDTree as KDTree except ImportError: from scipy.spatial import KDTree from sfepy.discrete.fem.geometry_element import create_geometry_elements if cache is None: cache = Struct(name='evaluate_cache') tt = time.clock() if (cache.get('cmesh', None) is None) or not share_geometry: mesh = self.create_mesh(extra_nodes=False) cache.cmesh = cmesh = mesh.cmesh gels = create_geometry_elements() cmesh.set_local_entities(gels) cmesh.setup_entities() cache.centroids = cmesh.get_centroids(cmesh.tdim) if self.gel.name != '3_8': cache.normals0 = cmesh.get_facet_normals() cache.normals1 = None else: cache.normals0 = cmesh.get_facet_normals(0) cache.normals1 = cmesh.get_facet_normals(1) output('cmesh setup: %f s' % (time.clock()-tt), verbose=verbose) tt = time.clock() if (cache.get('kdtree', None) is None) or not share_geometry: cache.kdtree = KDTree(cmesh.coors) output('kdtree: %f s' % (time.clock()-tt), verbose=verbose) return cache def interp_to_qp(self, dofs): """ Interpolate DOFs into quadrature points. The quadrature order is given by the field approximation order. Parameters ---------- dofs : array The array of DOF values of shape `(n_nod, n_component)`. Returns ------- data_qp : array The values interpolated into the quadrature points. integral : Integral The corresponding integral defining the quadrature points. """ integral = Integral('i', order=self.approx_order) bf = self.get_base('v', False, integral) bf = bf[:,0,:].copy() data_qp = nm.dot(bf, dofs[self.econn]) data_qp = nm.swapaxes(data_qp, 0, 1) data_qp.shape = data_qp.shape + (1,) return data_qp, integral def get_coor(self, nods=None): """ Get coordinates of the field nodes. Parameters ---------- nods : array, optional The indices of the required nodes. If not given, the coordinates of all the nodes are returned. """ if nods is None: return self.coors else: return self.coors[nods] def get_connectivity(self, region, integration, is_trace=False): """ Convenience alias to `Field.get_econn()`, that is used in some terms. """ return self.get_econn(integration, region, is_trace=is_trace) def create_mapping(self, region, integral, integration, return_mapping=True): """ Create a new reference mapping. Compute jacobians, element volumes and base function derivatives for Volume-type geometries (volume mappings), and jacobians, normals and base function derivatives for Surface-type geometries (surface mappings). Notes ----- - surface mappings are defined on the surface region - surface mappings require field order to be > 0 """ domain = self.domain coors = domain.get_mesh_coors(actual=True) dconn = domain.get_conn() if integration == 'volume': qp = self.get_qp('v', integral) iels = region.get_cells() geo_ps = self.gel.poly_space ps = self.poly_space bf = self.get_base('v', 0, integral, iels=iels) conn = nm.take(dconn, iels.astype(nm.int32), axis=0) mapping = VolumeMapping(coors, conn, poly_space=geo_ps) vg = mapping.get_mapping(qp.vals, qp.weights, poly_space=ps, ori=self.ori, transform=self.basis_transform) out = vg elif (integration == 'surface') or (integration == 'surface_extra'): assert_(self.approx_order > 0) if self.ori is not None: msg = 'surface integrals do not work yet with the' \ ' hierarchical basis!' raise ValueError(msg) sd = domain.surface_groups[region.name] esd = self.surface_data[region.name] geo_ps = self.gel.poly_space ps = self.poly_space conn = sd.get_connectivity() mapping = SurfaceMapping(coors, conn, poly_space=geo_ps) if not self.is_surface: self.create_bqp(region.name, integral) qp = self.qp_coors[(integral.order, esd.bkey)] abf = ps.eval_base(qp.vals[0], transform=self.basis_transform) bf = abf[..., self.efaces[0]] indx = self.gel.get_surface_entities()[0] # Fix geometry element's 1st facet orientation for gradients. indx = nm.roll(indx, -1)[::-1] mapping.set_basis_indices(indx) sg = mapping.get_mapping(qp.vals[0], qp.weights, poly_space=Struct(n_nod=bf.shape[-1]), mode=integration) if integration == 'surface_extra': sg.alloc_extra_data(self.econn.shape[1]) bf_bg = geo_ps.eval_base(qp.vals, diff=True) ebf_bg = self.get_base(esd.bkey, 1, integral) sg.evaluate_bfbgm(bf_bg, ebf_bg, coors, sd.fis, dconn) else: # Do not use BQP for surface fields. qp = self.get_qp(sd.face_type, integral) bf = ps.eval_base(qp.vals, transform=self.basis_transform) sg = mapping.get_mapping(qp.vals, qp.weights, poly_space=Struct(n_nod=bf.shape[-1]), mode=integration) out = sg elif integration == 'point': out = mapping = None elif integration == 'custom': raise ValueError('cannot create custom mapping!') else: raise ValueError('unknown integration geometry type: %s' % integration) if out is not None: # Store the integral used. out.integral = integral out.qp = qp out.ps = ps # Update base. out.bf[:] = bf if return_mapping: out = (out, mapping) return out class VolumeField(FEField): """ Finite element field base class over volume elements (element dimension equals space dimension). """ def _check_region(self, region): """ Check whether the `region` can be used for the field. Returns ------- ok : bool True if the region is usable for the field. """ ok = True domain = region.domain if region.kind != 'cell': output("bad region kind! (is: %r, should be: 'cell')" % region.kind) ok = False elif (region.kind_tdim != domain.shape.tdim): output('cells with a bad topological dimension! (%d == %d)' % (region.kind_tdim, domain.shape.tdim)) ok = False return ok def _setup_geometry(self): """ Setup the field region geometry. """ cmesh = self.domain.cmesh for key, gel in six.iteritems(self.domain.geom_els): ct = cmesh.cell_types if (ct[self.region.cells] == cmesh.key_to_index[gel.name]).all(): self.gel = gel break else: raise ValueError('region %s of field %s contains multiple' ' reference geometries!' % (self.region.name, self.name)) self.is_surface = False def _create_interpolant(self): name = '%s_%s_%s_%d%s' % (self.gel.name, self.space, self.poly_space_base, self.approx_order, 'B' * self.force_bubble) ps = PolySpace.any_from_args(name, self.gel, self.approx_order, base=self.poly_space_base, force_bubble=self.force_bubble) self.poly_space = ps def _init_econn(self): """ Initialize the extended DOF connectivity. """ n_ep = self.poly_space.n_nod n_cell = self.region.get_n_cells() self.econn = nm.zeros((n_cell, n_ep), nm.int32) def _setup_vertex_dofs(self): """ Setup vertex DOF connectivity. """ if self.node_desc.vertex is None: return 0, None region = self.region cmesh = self.domain.cmesh conn, offsets = cmesh.get_incident(0, region.cells, region.tdim, ret_offsets=True) vertices = nm.unique(conn) remap = prepare_remap(vertices, region.n_v_max) n_dof = vertices.shape[0] aux = nm.unique(nm.diff(offsets)) assert_(len(aux) == 1, 'region with multiple reference geometries!') offset = aux[0] # Remap vertex node connectivity to field-local numbering. aux = conn.reshape((-1, offset)).astype(nm.int32) self.econn[:, :offset] = nm.take(remap, aux) return n_dof, remap def setup_extra_data(self, geometry, info, is_trace): dct = info.dc_type.type if geometry != None: geometry_flag = 'surface' in geometry else: geometry_flag = False if (dct == 'surface') or (geometry_flag): reg = info.get_region() mreg_name = info.get_region_name(can_trace=False) self.domain.create_surface_group(reg) self.setup_surface_data(reg, is_trace, mreg_name) elif dct == 'edge': raise NotImplementedError('dof connectivity type %s' % dct) elif dct == 'point': self.setup_point_data(self, info.region) elif dct not in ('volume', 'scalar', 'custom'): raise ValueError('unknown dof connectivity type! (%s)' % dct) def setup_point_data(self, field, region): if region.name not in self.point_data: conn = field.get_dofs_in_region(region, merge=True) conn.shape += (1,) self.point_data[region.name] = conn def setup_surface_data(self, region, is_trace=False, trace_region=None): """nodes[leconn] == econn""" """nodes are sorted by node number -> same order as region.vertices""" if region.name not in self.surface_data: sd = FESurface('surface_data_%s' % region.name, region, self.efaces, self.econn, self.region) self.surface_data[region.name] = sd if region.name in self.surface_data and is_trace: sd = self.surface_data[region.name] sd.setup_mirror_connectivity(region, trace_region) return self.surface_data[region.name] def get_econn(self, conn_type, region, is_trace=False, integration=None): """ Get extended connectivity of the given type in the given region. """ ct = conn_type.type if isinstance(conn_type, Struct) else conn_type if ct in ('volume', 'custom'): if region.name == self.region.name: conn = self.econn else: tco = integration in ('volume', 'custom') cells = region.get_cells(true_cells_only=tco) ii = self.region.get_cell_indices(cells, true_cells_only=tco) conn = nm.take(self.econn, ii, axis=0) elif ct == 'surface': sd = self.surface_data[region.name] conn = sd.get_connectivity(is_trace=is_trace) elif ct == 'edge': raise NotImplementedError('connectivity type %s' % ct) elif ct == 'point': conn = self.point_data[region.name] else: raise ValueError('unknown connectivity type! (%s)' % ct) return conn def average_qp_to_vertices(self, data_qp, integral): """ Average data given in quadrature points in region elements into region vertices. .. math:: u_n = \sum_e (u_{e,avg} * volume_e) / \sum_e volume_e = \sum_e \int_{volume_e} u / \sum volume_e """ region = self.region n_cells = region.get_n_cells() if n_cells != data_qp.shape[0]: msg = 'incomatible shape! (%d == %d)' % (n_cells, data_qp.shape[0]) raise ValueError(msg) n_vertex = self.n_vertex_dof nc = data_qp.shape[2] nod_vol = nm.zeros((n_vertex,), dtype=nm.float64) data_vertex = nm.zeros((n_vertex, nc), dtype=nm.float64) vg = self.get_mapping(self.region, integral, 'volume')[0] volume = nm.squeeze(vg.volume) iels = self.region.get_cells() data_e = nm.zeros((volume.shape[0], 1, nc, 1), dtype=nm.float64) vg.integrate(data_e, data_qp[iels]) ir = nm.arange(nc, dtype=nm.int32) conn = self.econn[:, :self.gel.n_vertex] for ii, cc in enumerate(conn): # Assumes unique nodes in cc! ind2, ind1 = nm.meshgrid(ir, cc) data_vertex[ind1,ind2] += data_e[iels[ii],0,:,0] nod_vol[cc] += volume[ii] data_vertex /= nod_vol[:,nm.newaxis] return data_vertex class SurfaceField(FEField): """ Finite element field base class over surface (element dimension is one less than space dimension). """ def _check_region(self, region): """ Check whether the `region` can be used for the field. Returns ------- ok : bool True if the region is usable for the field. """ ok1 = ((region.kind_tdim == (region.tdim - 1)) and (region.get_n_cells(True) > 0)) if not ok1: output('bad region topological dimension and kind! (%d, %s)' % (region.tdim, region.kind)) n_ns = region.get_facet_indices().shape[0] - region.get_n_cells(True) ok2 = n_ns == 0 if not ok2: output('%d region facets are not on the domain surface!' % n_ns) return ok1 and ok2 def _setup_geometry(self): """ Setup the field region geometry. """ for key, vgel in six.iteritems(self.domain.geom_els): self.gel = vgel.surface_facet break if self.gel is None: raise ValueError('cells with no surface!') self.is_surface = True def _create_interpolant(self): name = '%s_%s_%s_%d%s' % (self.gel.name, self.space, self.poly_space_base, self.approx_order, 'B' * self.force_bubble) ps = PolySpace.any_from_args(name, self.gel, self.approx_order, base=self.poly_space_base, force_bubble=self.force_bubble) self.poly_space = ps def setup_extra_data(self, geometry, info, is_trace): dct = info.dc_type.type if dct != 'surface': msg = "dof connectivity type must be 'surface'! (%s)" % dct raise ValueError(msg) reg = info.get_region() if reg.name not in self.surface_data: # Defined in setup_vertex_dofs() msg = 'no surface data of surface field! (%s)' % reg.name raise ValueError(msg) if reg.name in self.surface_data and is_trace: sd = self.surface_data[reg.name] mreg_name = info.get_region_name(can_trace=False) sd.setup_mirror_connectivity(reg, mreg_name) def _init_econn(self): """ Initialize the extended DOF connectivity. """ n_ep = self.poly_space.n_nod n_cell = self.region.get_n_cells(is_surface=self.is_surface) self.econn = nm.zeros((n_cell, n_ep), nm.int32) def _setup_vertex_dofs(self): """ Setup vertex DOF connectivity. """ if self.node_desc.vertex is None: return 0, None region = self.region remap = prepare_remap(region.vertices, region.n_v_max) n_dof = region.vertices.shape[0] # Remap vertex node connectivity to field-local numbering. conn, gel = self.domain.get_conn(ret_gel=True) faces = gel.get_surface_entities() aux = FESurface('aux', region, faces, conn) self.econn[:, :aux.n_fp] = aux.leconn self.surface_data[region.name] = aux return n_dof, remap def _setup_bubble_dofs(self): """ Setup bubble DOF connectivity. """ return 0, None, None def get_econn(self, conn_type, region, is_trace=False, integration=None): """ Get extended connectivity of the given type in the given region. """ ct = conn_type.type if isinstance(conn_type, Struct) else conn_type if ct != 'surface': msg = 'connectivity type must be "surface"! (%s)' % ct raise ValueError(msg) sd = self.surface_data[region.name] conn = sd.get_connectivity(local=True, is_trace=is_trace) return conn def average_qp_to_vertices(self, data_qp, integral): """ Average data given in quadrature points in region elements into region vertices. .. math:: u_n = \sum_e (u_{e,avg} * area_e) / \sum_e area_e = \sum_e \int_{area_e} u / \sum area_e """ region = self.region n_cells = region.get_n_cells(True) if n_cells != data_qp.shape[0]: msg = 'incomatible shape! (%d == %d)' % (n_cells, data_qp.shape[0]) raise ValueError(msg) n_vertex = len(region.vertices) nc = data_qp.shape[2] nod_vol = nm.zeros((n_vertex,), dtype=nm.float64) data_vertex = nm.zeros((n_vertex, nc), dtype=nm.float64) sg = self.get_mapping(self.region, integral, 'surface')[0] area = nm.squeeze(sg.volume) n_cells = region.get_n_cells(True) iels = nm.arange(n_cells, dtype=nm.int32) data_e = nm.zeros((area.shape[0], 1, nc, 1), dtype=nm.float64) sg.integrate(data_e, data_qp[iels]) ir = nm.arange(nc, dtype=nm.int32) sd = self.domain.surface_groups[region.name] # Should be vertex connectivity! conn = sd.get_connectivity(local=True) for ii, cc in enumerate(conn): # Assumes unique nodes in cc! ind2, ind1 = nm.meshgrid(ir, cc) data_vertex[ind1,ind2] += data_e[iels[ii],0,:,0] nod_vol[cc] += area[ii] data_vertex /= nod_vol[:,nm.newaxis] return data_vertex class H1Mixin(Struct): """ Methods of fields specific to H1 space. """ def _setup_shape(self): """ Setup the field's shape-related attributes, see :class:`Field`. """ self.n_components = nm.prod(self.shape) self.val_shape = self.shape
[ "sfepy.discrete.fem.mesh.Mesh.from_data", "sfepy.discrete.integrals.Integral", "sfepy.base.base.Struct", "sfepy.discrete.fem.linearizer.get_eval_coors", "sfepy.discrete.fem.meshio.convert_complex_output", "sfepy.discrete.fem.linearizer.create_output", "sfepy.discrete.fem.poly_spaces.PolySpace.any_from_args", "sfepy.discrete.fem.linearizer.get_eval_dofs", "sfepy.discrete.fem.utils.invert_remap", "sfepy.discrete.fem.geometry_element.create_geometry_elements", "sfepy.base.base.Struct.__init__", "sfepy.base.base.output", "sfepy.discrete.common.fields.parse_shape", "sfepy.base.base.assert_", "sfepy.discrete.fem.utils.get_min_value", "sfepy.discrete.fem.utils.extend_cell_data", "sfepy.discrete.fem.mappings.VolumeMapping", "sfepy.discrete.fem.fe_surface.FESurface", "sfepy.discrete.fem.mappings.SurfaceMapping", "sfepy.discrete.fem.utils.prepare_remap", "sfepy.discrete.evaluate.eval_in_els_and_qp" ]
[((2582, 2610), 'numpy.dot', 'nm.dot', (['bf', 'mesh_coors[conn]'], {}), '(bf, mesh_coors[conn])\n', (2588, 2610), True, 'import numpy as nm\n'), ((2630, 2655), 'numpy.swapaxes', 'nm.swapaxes', (['ecoors', '(0)', '(1)'], {}), '(ecoors, 0, 1)\n', (2641, 2655), True, 'import numpy as nm\n'), ((2805, 2846), 'numpy.zeros', 'nm.zeros', (['(n_face, n_qp, dim)', 'nm.float64'], {}), '((n_face, n_qp, dim), nm.float64)\n', (2813, 2846), True, 'import numpy as nm\n'), ((6368, 6414), 'sfepy.discrete.fem.linearizer.get_eval_coors', 'get_eval_coors', (['vertex_coors', 'vertex_conn', 'gps'], {}), '(vertex_coors, vertex_conn, gps)\n', (6382, 6414), False, 'from sfepy.discrete.fem.linearizer import get_eval_dofs, get_eval_coors, create_output\n'), ((6464, 6582), 'sfepy.discrete.fem.linearizer.create_output', 'create_output', (['eval_dofs', 'eval_coors', 'vertex_conn.shape[0]', 'ps'], {'min_level': 'min_level', 'max_level': 'max_level', 'eps': 'eps'}), '(eval_dofs, eval_coors, vertex_conn.shape[0], ps, min_level=\n min_level, max_level=max_level, eps=eps)\n', (6477, 6582), False, 'from sfepy.discrete.fem.linearizer import get_eval_dofs, get_eval_coors, create_output\n'), ((6701, 6796), 'sfepy.discrete.fem.mesh.Mesh.from_data', 'Mesh.from_data', (['"""linearized_mesh"""', 'coors', 'None', '[conn]', '[mat_ids]', 'field.domain.mesh.descs'], {}), "('linearized_mesh', coors, None, [conn], [mat_ids], field.\n domain.mesh.descs)\n", (6715, 6796), False, 'from sfepy.discrete.fem.mesh import Mesh\n'), ((6848, 6956), 'sfepy.base.base.Struct', 'Struct', ([], {'name': '"""output_data"""', 'mode': '"""vertex"""', 'data': 'vdofs', 'var_name': 'name', 'dofs': 'None', 'mesh': 'mesh', 'level': 'level'}), "(name='output_data', mode='vertex', data=vdofs, var_name=name, dofs=\n None, mesh=mesh, level=level)\n", (6854, 6956), False, 'from sfepy.base.base import Struct\n'), ((7009, 7036), 'sfepy.discrete.fem.meshio.convert_complex_output', 'convert_complex_output', (['out'], {}), '(out)\n', (7031, 7036), False, 'from sfepy.discrete.fem.meshio import convert_complex_output\n'), ((1598, 1620), 'six.itervalues', 'six.itervalues', (['fields'], {}), '(fields)\n', (1612, 1620), False, 'import six\n'), ((2952, 2978), 'numpy.dot', 'nm.dot', (['bfs[:, 0, :]', 'vals'], {}), '(bfs[:, 0, :], vals)\n', (2958, 2978), True, 'import numpy as nm\n'), ((3463, 3653), 'sfepy.discrete.evaluate.eval_in_els_and_qp', 'eval_in_els_and_qp', (['expression', 'iels', 'coors', 'fields', 'materials', 'variables'], {'functions': 'functions', 'mode': 'mode', 'term_mode': 'term_mode', 'extra_args': 'extra_args', 'verbose': 'verbose', 'kwargs': 'kwargs'}), '(expression, iels, coors, fields, materials, variables,\n functions=functions, mode=mode, term_mode=term_mode, extra_args=\n extra_args, verbose=verbose, kwargs=kwargs)\n', (3481, 3653), False, 'from sfepy.discrete.evaluate import eval_in_els_and_qp\n'), ((8522, 8565), 'sfepy.discrete.common.fields.parse_shape', 'parse_shape', (['shape', 'region.domain.shape.dim'], {}), '(shape, region.domain.shape.dim)\n', (8533, 8565), False, 'from sfepy.discrete.common.fields import parse_shape, Field\n'), ((8738, 8811), 'sfepy.base.base.Struct.__init__', 'Struct.__init__', (['self'], {'name': 'name', 'dtype': 'dtype', 'shape': 'shape', 'region': 'region'}), '(self, name=name, dtype=dtype, shape=shape, region=region)\n', (8753, 8811), False, 'from sfepy.base.base import Struct\n'), ((10902, 10933), 'sfepy.discrete.fem.utils.invert_remap', 'invert_remap', (['self.vertex_remap'], {}), '(self.vertex_remap)\n', (10914, 10933), False, 'from sfepy.discrete.fem.utils import extend_cell_data, prepare_remap, invert_remap, get_min_value\n'), ((13667, 13711), 'numpy.empty', 'nm.empty', (['(self.n_nod, mesh.dim)', 'nm.float64'], {}), '((self.n_nod, mesh.dim), nm.float64)\n', (13675, 13711), True, 'import numpy as nm\n'), ((16374, 16404), 'numpy.empty', 'nm.empty', (['(0,)'], {'dtype': 'nm.int32'}), '((0,), dtype=nm.int32)\n', (16382, 16404), True, 'import numpy as nm\n'), ((16583, 16613), 'numpy.empty', 'nm.empty', (['(0,)'], {'dtype': 'nm.int32'}), '((0,), dtype=nm.int32)\n', (16591, 16613), True, 'import numpy as nm\n'), ((16867, 16897), 'numpy.empty', 'nm.empty', (['(0,)'], {'dtype': 'nm.int32'}), '((0,), dtype=nm.int32)\n', (16875, 16897), True, 'import numpy as nm\n'), ((17151, 17181), 'numpy.empty', 'nm.empty', (['(0,)'], {'dtype': 'nm.int32'}), '((0,), dtype=nm.int32)\n', (17159, 17181), True, 'import numpy as nm\n'), ((20721, 20774), 'numpy.einsum', 'nm.einsum', (['"""cji,cjk->cik"""', 'self.basis_transform', 'evec'], {}), "('cji,cjk->cik', self.basis_transform, evec)\n", (20730, 20774), True, 'import numpy as nm\n'), ((24365, 24388), 'sfepy.base.base.assert_', 'assert_', (['(dofs.ndim == 2)'], {}), '(dofs.ndim == 2)\n', (24372, 24388), False, 'from sfepy.base.base import output, get_default, assert_\n'), ((24431, 24459), 'sfepy.base.base.assert_', 'assert_', (['(n_nod == self.n_nod)'], {}), '(n_nod == self.n_nod)\n', (24438, 24459), False, 'from sfepy.base.base import output, get_default, assert_\n'), ((24468, 24497), 'sfepy.base.base.assert_', 'assert_', (['(dpn == self.shape[0])'], {}), '(dpn == self.shape[0])\n', (24475, 24497), False, 'from sfepy.base.base import output, get_default, assert_\n'), ((24698, 24747), 'sfepy.discrete.fem.linearizer.get_eval_dofs', 'get_eval_dofs', (['dofs', 'self.econn', 'ps'], {'ori': 'self.ori'}), '(dofs, self.econn, ps, ori=self.ori)\n', (24711, 24747), False, 'from sfepy.discrete.fem.linearizer import get_eval_dofs, get_eval_coors, create_output\n'), ((24769, 24815), 'sfepy.discrete.fem.linearizer.get_eval_coors', 'get_eval_coors', (['vertex_coors', 'vertex_conn', 'gps'], {}), '(vertex_coors, vertex_conn, gps)\n', (24783, 24815), False, 'from sfepy.discrete.fem.linearizer import get_eval_dofs, get_eval_coors, create_output\n'), ((24873, 24991), 'sfepy.discrete.fem.linearizer.create_output', 'create_output', (['eval_dofs', 'eval_coors', 'vertex_conn.shape[0]', 'ps'], {'min_level': 'min_level', 'max_level': 'max_level', 'eps': 'eps'}), '(eval_dofs, eval_coors, vertex_conn.shape[0], ps, min_level=\n min_level, max_level=max_level, eps=eps)\n', (24886, 24991), False, 'from sfepy.discrete.fem.linearizer import get_eval_dofs, get_eval_coors, create_output\n'), ((25126, 25220), 'sfepy.discrete.fem.mesh.Mesh.from_data', 'Mesh.from_data', (['"""linearized_mesh"""', 'coors', 'None', '[conn]', '[mat_ids]', 'self.domain.mesh.descs'], {}), "('linearized_mesh', coors, None, [conn], [mat_ids], self.\n domain.mesh.descs)\n", (25140, 25220), False, 'from sfepy.discrete.fem.mesh import Mesh\n'), ((28285, 28312), 'sfepy.discrete.fem.meshio.convert_complex_output', 'convert_complex_output', (['out'], {}), '(out)\n', (28307, 28312), False, 'from sfepy.discrete.fem.meshio import convert_complex_output\n'), ((30216, 30228), 'time.clock', 'time.clock', ([], {}), '()\n', (30226, 30228), False, 'import time\n'), ((30951, 30963), 'time.clock', 'time.clock', ([], {}), '()\n', (30961, 30963), False, 'import time\n'), ((31721, 31759), 'sfepy.discrete.integrals.Integral', 'Integral', (['"""i"""'], {'order': 'self.approx_order'}), "('i', order=self.approx_order)\n", (31729, 31759), False, 'from sfepy.discrete.integrals import Integral\n'), ((31859, 31887), 'numpy.dot', 'nm.dot', (['bf', 'dofs[self.econn]'], {}), '(bf, dofs[self.econn])\n', (31865, 31887), True, 'import numpy as nm\n'), ((31906, 31932), 'numpy.swapaxes', 'nm.swapaxes', (['data_qp', '(0)', '(1)'], {}), '(data_qp, 0, 1)\n', (31917, 31932), True, 'import numpy as nm\n'), ((37564, 37599), 'six.iteritems', 'six.iteritems', (['self.domain.geom_els'], {}), '(self.domain.geom_els)\n', (37577, 37599), False, 'import six\n'), ((38245, 38367), 'sfepy.discrete.fem.poly_spaces.PolySpace.any_from_args', 'PolySpace.any_from_args', (['name', 'self.gel', 'self.approx_order'], {'base': 'self.poly_space_base', 'force_bubble': 'self.force_bubble'}), '(name, self.gel, self.approx_order, base=self.\n poly_space_base, force_bubble=self.force_bubble)\n', (38268, 38367), False, 'from sfepy.discrete.fem.poly_spaces import PolySpace\n'), ((38669, 38703), 'numpy.zeros', 'nm.zeros', (['(n_cell, n_ep)', 'nm.int32'], {}), '((n_cell, n_ep), nm.int32)\n', (38677, 38703), True, 'import numpy as nm\n'), ((39090, 39105), 'numpy.unique', 'nm.unique', (['conn'], {}), '(conn)\n', (39099, 39105), True, 'import numpy as nm\n'), ((39122, 39161), 'sfepy.discrete.fem.utils.prepare_remap', 'prepare_remap', (['vertices', 'region.n_v_max'], {}), '(vertices, region.n_v_max)\n', (39135, 39161), False, 'from sfepy.discrete.fem.utils import extend_cell_data, prepare_remap, invert_remap, get_min_value\n'), ((39500, 39519), 'numpy.take', 'nm.take', (['remap', 'aux'], {}), '(remap, aux)\n', (39507, 39519), True, 'import numpy as nm\n'), ((42967, 43006), 'numpy.zeros', 'nm.zeros', (['(n_vertex,)'], {'dtype': 'nm.float64'}), '((n_vertex,), dtype=nm.float64)\n', (42975, 43006), True, 'import numpy as nm\n'), ((43029, 43071), 'numpy.zeros', 'nm.zeros', (['(n_vertex, nc)'], {'dtype': 'nm.float64'}), '((n_vertex, nc), dtype=nm.float64)\n', (43037, 43071), True, 'import numpy as nm\n'), ((43157, 43178), 'numpy.squeeze', 'nm.squeeze', (['vg.volume'], {}), '(vg.volume)\n', (43167, 43178), True, 'import numpy as nm\n'), ((43236, 43291), 'numpy.zeros', 'nm.zeros', (['(volume.shape[0], 1, nc, 1)'], {'dtype': 'nm.float64'}), '((volume.shape[0], 1, nc, 1), dtype=nm.float64)\n', (43244, 43291), True, 'import numpy as nm\n'), ((43350, 43379), 'numpy.arange', 'nm.arange', (['nc'], {'dtype': 'nm.int32'}), '(nc, dtype=nm.int32)\n', (43359, 43379), True, 'import numpy as nm\n'), ((44719, 44754), 'six.iteritems', 'six.iteritems', (['self.domain.geom_els'], {}), '(self.domain.geom_els)\n', (44732, 44754), False, 'import six\n'), ((45177, 45299), 'sfepy.discrete.fem.poly_spaces.PolySpace.any_from_args', 'PolySpace.any_from_args', (['name', 'self.gel', 'self.approx_order'], {'base': 'self.poly_space_base', 'force_bubble': 'self.force_bubble'}), '(name, self.gel, self.approx_order, base=self.\n poly_space_base, force_bubble=self.force_bubble)\n', (45200, 45299), False, 'from sfepy.discrete.fem.poly_spaces import PolySpace\n'), ((46303, 46337), 'numpy.zeros', 'nm.zeros', (['(n_cell, n_ep)', 'nm.int32'], {}), '((n_cell, n_ep), nm.int32)\n', (46311, 46337), True, 'import numpy as nm\n'), ((46552, 46598), 'sfepy.discrete.fem.utils.prepare_remap', 'prepare_remap', (['region.vertices', 'region.n_v_max'], {}), '(region.vertices, region.n_v_max)\n', (46565, 46598), False, 'from sfepy.discrete.fem.utils import extend_cell_data, prepare_remap, invert_remap, get_min_value\n'), ((46820, 46857), 'sfepy.discrete.fem.fe_surface.FESurface', 'FESurface', (['"""aux"""', 'region', 'faces', 'conn'], {}), "('aux', region, faces, conn)\n", (46829, 46857), False, 'from sfepy.discrete.fem.fe_surface import FESurface\n'), ((48320, 48359), 'numpy.zeros', 'nm.zeros', (['(n_vertex,)'], {'dtype': 'nm.float64'}), '((n_vertex,), dtype=nm.float64)\n', (48328, 48359), True, 'import numpy as nm\n'), ((48382, 48424), 'numpy.zeros', 'nm.zeros', (['(n_vertex, nc)'], {'dtype': 'nm.float64'}), '((n_vertex, nc), dtype=nm.float64)\n', (48390, 48424), True, 'import numpy as nm\n'), ((48509, 48530), 'numpy.squeeze', 'nm.squeeze', (['sg.volume'], {}), '(sg.volume)\n', (48519, 48530), True, 'import numpy as nm\n'), ((48589, 48623), 'numpy.arange', 'nm.arange', (['n_cells'], {'dtype': 'nm.int32'}), '(n_cells, dtype=nm.int32)\n', (48598, 48623), True, 'import numpy as nm\n'), ((48642, 48695), 'numpy.zeros', 'nm.zeros', (['(area.shape[0], 1, nc, 1)'], {'dtype': 'nm.float64'}), '((area.shape[0], 1, nc, 1), dtype=nm.float64)\n', (48650, 48695), True, 'import numpy as nm\n'), ((48754, 48783), 'numpy.arange', 'nm.arange', (['nc'], {'dtype': 'nm.int32'}), '(nc, dtype=nm.int32)\n', (48763, 48783), True, 'import numpy as nm\n'), ((49460, 49479), 'numpy.prod', 'nm.prod', (['self.shape'], {}), '(self.shape)\n', (49467, 49479), True, 'import numpy as nm\n'), ((1392, 1424), 'numpy.zeros_like', 'nm.zeros_like', (['domain.mesh.coors'], {}), '(domain.mesh.coors)\n', (1405, 1424), True, 'import numpy as nm\n'), ((12042, 12071), 'numpy.hstack', 'nm.hstack', (['(self.efaces, efs)'], {}), '((self.efaces, efs))\n', (12051, 12071), True, 'import numpy as nm\n'), ((12268, 12297), 'numpy.hstack', 'nm.hstack', (['(self.efaces, efs)'], {}), '((self.efaces, efs))\n', (12277, 12297), True, 'import numpy as nm\n'), ((17423, 17443), 'numpy.concatenate', 'nm.concatenate', (['dofs'], {}), '(dofs)\n', (17437, 17443), True, 'import numpy as nm\n'), ((18283, 18317), 'sfepy.base.base.Struct', 'Struct', ([], {'vals': 'vals', 'weights': 'weights'}), '(vals=vals, weights=weights)\n', (18289, 18317), False, 'from sfepy.base.base import Struct\n'), ((19029, 19066), 'numpy.setdiff1d', 'nm.setdiff1d', (['self.econn0', 'self.econn'], {}), '(self.econn0, self.econn)\n', (19041, 19066), True, 'import numpy as nm\n'), ((22147, 22209), 'sfepy.base.base.Struct', 'Struct', ([], {'name': "('BQP_%s' % sd.bkey)", 'vals': 'vals', 'weights': 'qp.weights'}), "(name='BQP_%s' % sd.bkey, vals=vals, weights=qp.weights)\n", (22153, 22209), False, 'from sfepy.base.base import Struct\n'), ((22503, 22521), 'numpy.isrealobj', 'nm.isrealobj', (['dofs'], {}), '(dofs)\n', (22515, 22521), True, 'import numpy as nm\n'), ((22926, 22976), 'numpy.empty', 'nm.empty', (['(n_nod, dofs.shape[1])'], {'dtype': 'self.dtype'}), '((n_nod, dofs.shape[1]), dtype=self.dtype)\n', (22934, 22976), True, 'import numpy as nm\n'), ((23099, 23163), 'sfepy.discrete.fem.utils.extend_cell_data', 'extend_cell_data', (['dofs', 'self.domain', 'self.region'], {'val': 'fill_value'}), '(dofs, self.domain, self.region, val=fill_value)\n', (23115, 23163), False, 'from sfepy.discrete.fem.utils import extend_cell_data, prepare_remap, invert_remap, get_min_value\n'), ((26672, 26692), 'sfepy.base.base.Struct', 'Struct', ([], {'kind': '"""strip"""'}), "(kind='strip')\n", (26678, 26692), False, 'from sfepy.base.base import Struct\n'), ((26774, 26886), 'sfepy.base.base.Struct', 'Struct', ([], {'name': '"""output_data"""', 'mode': '"""full"""', 'data': 'dofs', 'var_name': 'var_name', 'dofs': 'dof_names', 'field_name': 'self.name'}), "(name='output_data', mode='full', data=dofs, var_name=var_name, dofs=\n dof_names, field_name=self.name)\n", (26780, 26886), False, 'from sfepy.base.base import Struct\n'), ((28974, 29035), 'sfepy.discrete.fem.mesh.Mesh.from_data', 'Mesh.from_data', (['self.name', 'coors', 'None', 'conns', 'mat_ids', 'descs'], {}), '(self.name, coors, None, conns, mat_ids, descs)\n', (28988, 29035), False, 'from sfepy.discrete.fem.mesh import Mesh\n'), ((30172, 30201), 'sfepy.base.base.Struct', 'Struct', ([], {'name': '"""evaluate_cache"""'}), "(name='evaluate_cache')\n", (30178, 30201), False, 'from sfepy.base.base import Struct\n'), ((30418, 30444), 'sfepy.discrete.fem.geometry_element.create_geometry_elements', 'create_geometry_elements', ([], {}), '()\n', (30442, 30444), False, 'from sfepy.discrete.fem.geometry_element import create_geometry_elements\n'), ((31061, 31080), 'scipy.spatial.KDTree', 'KDTree', (['cmesh.coors'], {}), '(cmesh.coors)\n', (31067, 31080), False, 'from scipy.spatial import KDTree\n'), ((33670, 33715), 'sfepy.discrete.fem.mappings.VolumeMapping', 'VolumeMapping', (['coors', 'conn'], {'poly_space': 'geo_ps'}), '(coors, conn, poly_space=geo_ps)\n', (33683, 33715), False, 'from sfepy.discrete.fem.mappings import VolumeMapping, SurfaceMapping\n'), ((37069, 37137), 'sfepy.base.base.output', 'output', (['("bad region kind! (is: %r, should be: \'cell\')" % region.kind)'], {}), '("bad region kind! (is: %r, should be: \'cell\')" % region.kind)\n', (37075, 37137), False, 'from sfepy.base.base import output, get_default, assert_\n'), ((39221, 39237), 'numpy.diff', 'nm.diff', (['offsets'], {}), '(offsets)\n', (39228, 39237), True, 'import numpy as nm\n'), ((40842, 40934), 'sfepy.discrete.fem.fe_surface.FESurface', 'FESurface', (["('surface_data_%s' % region.name)", 'region', 'self.efaces', 'self.econn', 'self.region'], {}), "('surface_data_%s' % region.name, region, self.efaces, self.econn,\n self.region)\n", (40851, 40934), False, 'from sfepy.discrete.fem.fe_surface import FESurface\n'), ((43536, 43555), 'numpy.meshgrid', 'nm.meshgrid', (['ir', 'cc'], {}), '(ir, cc)\n', (43547, 43555), True, 'import numpy as nm\n'), ((44259, 44353), 'sfepy.base.base.output', 'output', (["('bad region topological dimension and kind! (%d, %s)' % (region.tdim,\n region.kind))"], {}), "('bad region topological dimension and kind! (%d, %s)' % (region.tdim,\n region.kind))\n", (44265, 44353), False, 'from sfepy.base.base import output, get_default, assert_\n'), ((44504, 44568), 'sfepy.base.base.output', 'output', (["('%d region facets are not on the domain surface!' % n_ns)"], {}), "('%d region facets are not on the domain surface!' % n_ns)\n", (44510, 44568), False, 'from sfepy.base.base import output, get_default, assert_\n'), ((49032, 49051), 'numpy.meshgrid', 'nm.meshgrid', (['ir', 'cc'], {}), '(ir, cc)\n', (49043, 49051), True, 'import numpy as nm\n'), ((12586, 12615), 'numpy.hstack', 'nm.hstack', (['(self.eedges, efs)'], {}), '((self.eedges, efs))\n', (12595, 12615), True, 'import numpy as nm\n'), ((22552, 22571), 'sfepy.discrete.fem.utils.get_min_value', 'get_min_value', (['dofs'], {}), '(dofs)\n', (22565, 22571), False, 'from sfepy.discrete.fem.utils import extend_cell_data, prepare_remap, invert_remap, get_min_value\n'), ((22698, 22722), 'sfepy.discrete.fem.utils.get_min_value', 'get_min_value', (['dofs.real'], {}), '(dofs.real)\n', (22711, 22722), False, 'from sfepy.discrete.fem.utils import extend_cell_data, prepare_remap, invert_remap, get_min_value\n'), ((28095, 28213), 'sfepy.base.base.Struct', 'Struct', ([], {'name': '"""output_data"""', 'mode': '"""vertex"""', 'data': 'vdofs', 'var_name': 'var_name', 'dofs': 'dof_names', 'mesh': 'mesh', 'levels': 'levels'}), "(name='output_data', mode='vertex', data=vdofs, var_name=var_name,\n dofs=dof_names, mesh=mesh, levels=levels)\n", (28101, 28213), False, 'from sfepy.base.base import Struct\n'), ((34021, 34051), 'sfepy.base.base.assert_', 'assert_', (['(self.approx_order > 0)'], {}), '(self.approx_order > 0)\n', (34028, 34051), False, 'from sfepy.base.base import output, get_default, assert_\n'), ((34483, 34529), 'sfepy.discrete.fem.mappings.SurfaceMapping', 'SurfaceMapping', (['coors', 'conn'], {'poly_space': 'geo_ps'}), '(coors, conn, poly_space=geo_ps)\n', (34497, 34529), False, 'from sfepy.discrete.fem.mappings import VolumeMapping, SurfaceMapping\n'), ((37247, 37352), 'sfepy.base.base.output', 'output', (["('cells with a bad topological dimension! (%d == %d)' % (region.kind_tdim,\n domain.shape.tdim))"], {}), "('cells with a bad topological dimension! (%d == %d)' % (region.\n kind_tdim, domain.shape.tdim))\n", (37253, 37352), False, 'from sfepy.base.base import output, get_default, assert_\n'), ((41837, 41868), 'numpy.take', 'nm.take', (['self.econn', 'ii'], {'axis': '(0)'}), '(self.econn, ii, axis=0)\n', (41844, 41868), True, 'import numpy as nm\n'), ((11864, 11902), 'numpy.concatenate', 'nm.concatenate', (['[nd[ie] for ie in eof]'], {}), '([nd[ie] for ie in eof])\n', (11878, 11902), True, 'import numpy as nm\n'), ((11922, 11935), 'numpy.array', 'nm.array', (['efs'], {}), '(efs)\n', (11930, 11935), True, 'import numpy as nm\n'), ((12148, 12161), 'numpy.array', 'nm.array', (['efs'], {}), '(efs)\n', (12156, 12161), True, 'import numpy as nm\n'), ((22758, 22782), 'sfepy.discrete.fem.utils.get_min_value', 'get_min_value', (['dofs.imag'], {}), '(dofs.imag)\n', (22771, 22782), False, 'from sfepy.discrete.fem.utils import extend_cell_data, prepare_remap, invert_remap, get_min_value\n'), ((30902, 30914), 'time.clock', 'time.clock', ([], {}), '()\n', (30912, 30914), False, 'import time\n'), ((31115, 31127), 'time.clock', 'time.clock', ([], {}), '()\n', (31125, 31127), False, 'import time\n'), ((12454, 12467), 'numpy.array', 'nm.array', (['efs'], {}), '(efs)\n', (12462, 12467), True, 'import numpy as nm\n'), ((27341, 27432), 'sfepy.base.base.Struct', 'Struct', ([], {'name': '"""output_data"""', 'mode': '"""vertex"""', 'data': 'ext', 'var_name': 'var_name', 'dofs': 'dof_names'}), "(name='output_data', mode='vertex', data=ext, var_name=var_name, dofs\n =dof_names)\n", (27347, 27432), False, 'from sfepy.base.base import Struct\n'), ((27625, 27714), 'sfepy.base.base.Struct', 'Struct', ([], {'name': '"""output_data"""', 'mode': '"""cell"""', 'data': 'ext', 'var_name': 'var_name', 'dofs': 'dof_names'}), "(name='output_data', mode='cell', data=ext, var_name=var_name, dofs=\n dof_names)\n", (27631, 27714), False, 'from sfepy.base.base import Struct\n'), ((34971, 34988), 'numpy.roll', 'nm.roll', (['indx', '(-1)'], {}), '(indx, -1)\n', (34978, 34988), True, 'import numpy as nm\n'), ((35161, 35187), 'sfepy.base.base.Struct', 'Struct', ([], {'n_nod': 'bf.shape[-1]'}), '(n_nod=bf.shape[-1])\n', (35167, 35187), False, 'from sfepy.base.base import Struct\n'), ((35888, 35914), 'sfepy.base.base.Struct', 'Struct', ([], {'n_nod': 'bf.shape[-1]'}), '(n_nod=bf.shape[-1])\n', (35894, 35914), False, 'from sfepy.base.base import Struct\n')]
from typing import Optional from sqlmodel import Field, SQLModel from pydantic import validator from datetime import datetime import numpy as np class Forecast(SQLModel, table=True): id: Optional[int] = Field(default=None, primary_key=True) user_id: int = Field(foreign_key="app_db.appuser.id") epic_id: int = Field(foreign_key="app_db.epic.id") days: float month: int year: int created_at: datetime updated_at: datetime is_locked: bool __table_args__ = {"schema": "app_db"} @validator("days") def valid_days(cls, days_input): assert days_input in np.arange( 0, 24, 0.1 ), "Work days cannot be greater than 24" return days_input @validator("year") def valid_year(cls, year_input): assert year_input >= datetime.now().year return year_input
[ "sqlmodel.Field" ]
[((210, 247), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'primary_key': '(True)'}), '(default=None, primary_key=True)\n', (215, 247), False, 'from sqlmodel import Field, SQLModel\n'), ((267, 305), 'sqlmodel.Field', 'Field', ([], {'foreign_key': '"""app_db.appuser.id"""'}), "(foreign_key='app_db.appuser.id')\n", (272, 305), False, 'from sqlmodel import Field, SQLModel\n'), ((325, 360), 'sqlmodel.Field', 'Field', ([], {'foreign_key': '"""app_db.epic.id"""'}), "(foreign_key='app_db.epic.id')\n", (330, 360), False, 'from sqlmodel import Field, SQLModel\n'), ((525, 542), 'pydantic.validator', 'validator', (['"""days"""'], {}), "('days')\n", (534, 542), False, 'from pydantic import validator\n'), ((724, 741), 'pydantic.validator', 'validator', (['"""year"""'], {}), "('year')\n", (733, 741), False, 'from pydantic import validator\n'), ((609, 630), 'numpy.arange', 'np.arange', (['(0)', '(24)', '(0.1)'], {}), '(0, 24, 0.1)\n', (618, 630), True, 'import numpy as np\n'), ((808, 822), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (820, 822), False, 'from datetime import datetime\n')]
from typing import Optional import strawberry from sqlmodel import ( SQLModel, Field, create_engine, select, Session ) engine = create_engine('sqlite:///database.db') class Person(SQLModel, table=True): id: Optional[int] = Field(default=None, primary_key=True) nome: str idade: int SQLModel.metadata.create_all(engine) def create_app(nome: str, idade:int): person = Person(nome=nome, idade=idade) with Session(engine) as session: session.add(person) session.commit() session.refresh(person) return person @strawberry.type class Pessoa: id: Optional[int] nome: str idade: int @strawberry.type class Query: @strawberry.field def all_pessoa(self) -> list[Pessoa]: query = select(Person) with Session(engine) as session: result = session.execute(query).scalars().all() return result @strawberry.type class Mutation: create_pessoa: Pessoa = strawberry.field(resolver=create_app) schema = strawberry.Schema(query=Query, mutation=Mutation)
[ "sqlmodel.create_engine", "sqlmodel.Session", "sqlmodel.SQLModel.metadata.create_all", "sqlmodel.Field", "sqlmodel.select" ]
[((150, 188), 'sqlmodel.create_engine', 'create_engine', (['"""sqlite:///database.db"""'], {}), "('sqlite:///database.db')\n", (163, 188), False, 'from sqlmodel import SQLModel, Field, create_engine, select, Session\n'), ((320, 356), 'sqlmodel.SQLModel.metadata.create_all', 'SQLModel.metadata.create_all', (['engine'], {}), '(engine)\n', (348, 356), False, 'from sqlmodel import SQLModel, Field, create_engine, select, Session\n'), ((1026, 1075), 'strawberry.Schema', 'strawberry.Schema', ([], {'query': 'Query', 'mutation': 'Mutation'}), '(query=Query, mutation=Mutation)\n', (1043, 1075), False, 'import strawberry\n'), ((251, 288), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'primary_key': '(True)'}), '(default=None, primary_key=True)\n', (256, 288), False, 'from sqlmodel import SQLModel, Field, create_engine, select, Session\n'), ((978, 1015), 'strawberry.field', 'strawberry.field', ([], {'resolver': 'create_app'}), '(resolver=create_app)\n', (994, 1015), False, 'import strawberry\n'), ((449, 464), 'sqlmodel.Session', 'Session', (['engine'], {}), '(engine)\n', (456, 464), False, 'from sqlmodel import SQLModel, Field, create_engine, select, Session\n'), ((777, 791), 'sqlmodel.select', 'select', (['Person'], {}), '(Person)\n', (783, 791), False, 'from sqlmodel import SQLModel, Field, create_engine, select, Session\n'), ((805, 820), 'sqlmodel.Session', 'Session', (['engine'], {}), '(engine)\n', (812, 820), False, 'from sqlmodel import SQLModel, Field, create_engine, select, Session\n')]
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. from test.utils import ( ActiveOpr, AdaptiveAvgPool2dOpr, BnOpr, BroadcastOpr, ConvBn2dOpr, ConvBnRelu2dOpr, ConvOpr, ConvRelu2dOpr, DropoutOpr, ElemwiseOpr, FConcatOpr, FlattenOpr, LinearBnOpr, LinearOpr, MatrixMulBnOpr, PoolOpr, ReduceOpr, RepeatOpr, ReshapeOpr, SqueezeOpr, SubtensorOpr, TransposeOpr, XORNet, XORNet_LeakyRelu, ) import caffe # pylint: disable=import-error import megengine as mge import megengine.hub import numpy as np import pytest from mgeconvert.converters.tm_to_caffe import tracedmodule_to_caffe from .tm_utils import get_traced_module max_error = 1e-6 tmp_file = "test_module" def _test_convert_result( inputs, trace_module, mge_results, max_err, input_data_type=None, input_scales=None, input_zero_points=None, require_quantize=False, param_fake_quant=False, split_conv_relu=False, fuse_bn=False, input_name="x", convert_backend=1, ): tracedmodule_to_caffe( trace_module, prototxt=tmp_file + ".txt", caffemodel=tmp_file + ".caffemodel", input_data_type=input_data_type, input_scales=input_scales, input_zero_points=input_zero_points, require_quantize=require_quantize, param_fake_quant=param_fake_quant, split_conv_relu=split_conv_relu, fuse_bn=fuse_bn, convert_backend=convert_backend, ) caffe_net = caffe.Net(tmp_file + ".txt", tmp_file + ".caffemodel", caffe.TEST) for i in caffe_net.blobs.keys(): if isinstance(input_name, list): for idx, name in enumerate(input_name): if name.strip() == i.strip(): caffe_net.blobs[i].data[...] = inputs[idx] break else: if input_name in i: caffe_net.blobs[i].data[...] = inputs break out_dict = caffe_net.forward() if isinstance(mge_results, dict): assert len(list(out_dict.keys())) == len(list(mge_results.keys())) for name in mge_results.keys(): assert name._name in out_dict.keys() assert out_dict[name._name].shape == mge_results[name].shape np.testing.assert_allclose( out_dict[name._name], mge_results[name], atol=max_err ) else: caffe_results = list(out_dict.values())[0] assert caffe_results.shape == mge_results.shape np.testing.assert_allclose( caffe_results, mge_results, rtol=max_err, atol=max_err ) @pytest.mark.parametrize("mode", ["normal", "group", "transpose"]) def test_conv2d(mode): net = ConvOpr(mode) tm_module, mge_result = get_traced_module(net, mge.tensor(net.data)) _test_convert_result(net.data, tm_module, mge_result, max_error) def test_convrelu(): net = ConvRelu2dOpr() traced_module, tm_result = get_traced_module(net, mge.tensor(net.data)) _test_convert_result(net.data, traced_module, tm_result, max_error) def test_convbn(): net = ConvBn2dOpr() net.eval() traced_module, tm_result = get_traced_module(net, mge.tensor(net.data)) _test_convert_result(net.data, traced_module, tm_result, max_error) def test_convbnrelu(): net = ConvBnRelu2dOpr() net.eval() traced_module, tm_result = get_traced_module(net, mge.tensor(net.data)) _test_convert_result(net.data, traced_module, tm_result, max_error) def test_linear(): net = LinearOpr() tm_module, mge_result = get_traced_module(net, mge.tensor(net.data)) _test_convert_result(net.data, tm_module, mge_result, max_error) def test_flatten_linear(): net = LinearOpr("flatten") tm_module, mge_result = get_traced_module(net, mge.tensor(net.data1)) _test_convert_result(net.data1, tm_module, mge_result, max_error, convert_backend=4) def test_linear_bn(): net = LinearBnOpr() for _ in range(10): net(mge.tensor(net.data)).numpy() net.eval() tm_module, mge_result = get_traced_module(net, mge.tensor(net.data)) _test_convert_result(net.data, tm_module, mge_result, 1e-4, fuse_bn=True) @pytest.mark.parametrize("mode", [True, False]) def test_matmul_bn(mode): net = MatrixMulBnOpr(mode) for _ in range(10): net(mge.tensor(net.data)).numpy() net.eval() tm_module, mge_result = get_traced_module(net, mge.tensor(net.data)) _test_convert_result(net.data, tm_module, mge_result, 1e-4, fuse_bn=True) def test_squeeze(): net = SqueezeOpr() tm_module, mge_result = get_traced_module(net, mge.tensor(net.data)) _test_convert_result(net.data, tm_module, mge_result, max_error, input_name="a") @pytest.mark.parametrize("mode", ["max", "avg"]) def test_pooling(mode): if megengine.__version__ > "0.6.0" and mode == "avg": return net = PoolOpr(mode) tm_module, mge_result = get_traced_module(net, mge.tensor(net.data)) _test_convert_result(net.data, tm_module, mge_result, max_error) @pytest.mark.parametrize("mode", ["bn1d", "bn2d"]) def test_batchnorm(mode): net = BnOpr(mode) net.eval() data = net.data1 if mode == "bn1d" else net.data2 tm_module, mge_result = get_traced_module(net, mge.tensor(data)) _test_convert_result(data, tm_module, mge_result, max_error) def test_subtensor(): net = SubtensorOpr() tm_module, mge_result = get_traced_module(net, mge.tensor(net.data)) _test_convert_result(net.data, tm_module, mge_result, max_error) def test_transpose(): net = TransposeOpr() tm_module, mge_result = get_traced_module(net, mge.tensor(net.data)) _test_convert_result(net.data, tm_module, mge_result, max_error) def test_concat(): net = FConcatOpr() data = np.random.random((1, 2, 4, 5)).astype(np.float32) list_data = [mge.tensor(data), mge.tensor(data)] tm_module, mge_result = get_traced_module(net, list_data) _test_convert_result( [data, data], tm_module, mge_result, max_error, input_name=["inps_0", "inps_1"] ) def test_reshape(): net = ReshapeOpr() tm_module, mge_result = get_traced_module(net, mge.tensor(net.data)) _test_convert_result(net.data, tm_module, mge_result, max_error) @pytest.mark.parametrize( "mode", ["add", "sub", "mul", "div", "abs", "exp", "log", "max", "pow"] ) def test_elemwise(mode): net = ElemwiseOpr(mode) tm_module, mge_result = get_traced_module(net, mge.tensor(net.data)) _test_convert_result(net.data, tm_module, mge_result, max_error, input_name="a") @pytest.mark.parametrize( "mode", ["add", "sub", "mul", "div", "abs", "exp", "log", "pow"] ) def test_elemwise_broadcast(mode): net = ElemwiseOpr(mode) tm_module, mge_result = get_traced_module( net, mge.tensor(np.array([2.0]).astype("float32")) ) _test_convert_result( np.array([2.0]), tm_module, mge_result, max_error, input_name="a" ) @pytest.mark.parametrize( "mode", [ "relu", "sigmoid", "tanh", "leaky_relu", "softmax", "silu", "relu6", "hsigmoid", "hswish", ], ) def test_active(mode): if megengine.__version__ < "1.5.0" and mode == "silu": return net = ActiveOpr(mode) tm_module, mge_result = get_traced_module(net, mge.tensor(net.data)) _test_convert_result(net.data, tm_module, mge_result, max_error) @pytest.mark.parametrize("mode", ["relu",]) def test_active_inplace(mode): net = ActiveOpr(mode) tm_module, mge_result = get_traced_module(net, mge.tensor(net.data)) _test_convert_result(net.data, tm_module, mge_result, max_error, convert_backend=4) @pytest.mark.parametrize("mode", ["max", "sum", "mean"]) def test_reduce(mode): net = ReduceOpr(mode) tm_module, mge_result = get_traced_module(net, mge.tensor(net.data)) _test_convert_result(net.data, tm_module, mge_result, max_error, input_name="a") def test_broadcast(): net = BroadcastOpr() tm_module, mge_result = get_traced_module(net, mge.tensor(net.data)) _test_convert_result(net.data, tm_module, mge_result, max_error) def test_repeat(): net = RepeatOpr() tm_module, mge_result = get_traced_module(net, mge.tensor(net.data)) _test_convert_result(net.data, tm_module, mge_result, max_error) def test_flatten(): net = FlattenOpr() tm_module, mge_result = get_traced_module(net, mge.tensor(net.data)) _test_convert_result(net.data, tm_module, mge_result, max_error, input_name="inps") def test_dropout(): net = DropoutOpr() tm_module, mge_result = get_traced_module(net, mge.tensor(net.data)) _test_convert_result(net.data, tm_module, mge_result, max_error, input_name="inps") def test_adapetive_avg_pool(): net = AdaptiveAvgPool2dOpr() tm_module, mge_result = get_traced_module(net, mge.tensor(net.data)) _test_convert_result(net.data, tm_module, mge_result, max_error, input_name="inps") @pytest.mark.parametrize( "model", [ "shufflenet_v2_x0_5", "shufflenet_v2_x1_0", "resnet18", "resnet50", "resnet101", "resnext50_32x4d", ], ) def test_model(model): data = ( np.random.randint(0, 255, 3 * 224 * 224) .reshape((1, 3, 224, 224)) .astype(np.float32) ) if megengine.__version__ < "1.1.0": commit_id = "dc2f2cfb228a135747d083517b98aea56e7aab92" else: commit_id = None net = megengine.hub.load( "megengine/models", model, use_cache=False, commit=commit_id, pretrained=True ) net.eval() tm_module, mge_result = get_traced_module(net, mge.tensor(data)) _test_convert_result(data, tm_module, mge_result, 1e-2) def test_xornet(): if megengine.__version__ < "1.1.0": return net = XORNet() net.eval() tm_module, mge_result = get_traced_module(net, mge.tensor(net.data)) _test_convert_result(net.data, tm_module, mge_result, max_error) def test_leakyrelu_model(): if megengine.__version__ < "1.1.0": return net = XORNet_LeakyRelu() net.eval() tm_module, mge_result = get_traced_module(net, mge.tensor(net.data)) _test_convert_result(net.data, tm_module, mge_result, max_error)
[ "megengine.tensor" ]
[((2960, 3025), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""mode"""', "['normal', 'group', 'transpose']"], {}), "('mode', ['normal', 'group', 'transpose'])\n", (2983, 3025), False, 'import pytest\n'), ((4527, 4573), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""mode"""', '[True, False]'], {}), "('mode', [True, False])\n", (4550, 4573), False, 'import pytest\n'), ((5069, 5116), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""mode"""', "['max', 'avg']"], {}), "('mode', ['max', 'avg'])\n", (5092, 5116), False, 'import pytest\n'), ((5383, 5432), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""mode"""', "['bn1d', 'bn2d']"], {}), "('mode', ['bn1d', 'bn2d'])\n", (5406, 5432), False, 'import pytest\n'), ((6596, 6696), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""mode"""', "['add', 'sub', 'mul', 'div', 'abs', 'exp', 'log', 'max', 'pow']"], {}), "('mode', ['add', 'sub', 'mul', 'div', 'abs', 'exp',\n 'log', 'max', 'pow'])\n", (6619, 6696), False, 'import pytest\n'), ((6913, 7006), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""mode"""', "['add', 'sub', 'mul', 'div', 'abs', 'exp', 'log', 'pow']"], {}), "('mode', ['add', 'sub', 'mul', 'div', 'abs', 'exp',\n 'log', 'pow'])\n", (6936, 7006), False, 'import pytest\n'), ((7293, 7421), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""mode"""', "['relu', 'sigmoid', 'tanh', 'leaky_relu', 'softmax', 'silu', 'relu6',\n 'hsigmoid', 'hswish']"], {}), "('mode', ['relu', 'sigmoid', 'tanh', 'leaky_relu',\n 'softmax', 'silu', 'relu6', 'hsigmoid', 'hswish'])\n", (7316, 7421), False, 'import pytest\n'), ((7776, 7817), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""mode"""', "['relu']"], {}), "('mode', ['relu'])\n", (7799, 7817), False, 'import pytest\n'), ((8040, 8095), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""mode"""', "['max', 'sum', 'mean']"], {}), "('mode', ['max', 'sum', 'mean'])\n", (8063, 8095), False, 'import pytest\n'), ((9321, 9463), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""model"""', "['shufflenet_v2_x0_5', 'shufflenet_v2_x1_0', 'resnet18', 'resnet50',\n 'resnet101', 'resnext50_32x4d']"], {}), "('model', ['shufflenet_v2_x0_5',\n 'shufflenet_v2_x1_0', 'resnet18', 'resnet50', 'resnet101',\n 'resnext50_32x4d'])\n", (9344, 9463), False, 'import pytest\n'), ((1375, 1745), 'mgeconvert.converters.tm_to_caffe.tracedmodule_to_caffe', 'tracedmodule_to_caffe', (['trace_module'], {'prototxt': "(tmp_file + '.txt')", 'caffemodel': "(tmp_file + '.caffemodel')", 'input_data_type': 'input_data_type', 'input_scales': 'input_scales', 'input_zero_points': 'input_zero_points', 'require_quantize': 'require_quantize', 'param_fake_quant': 'param_fake_quant', 'split_conv_relu': 'split_conv_relu', 'fuse_bn': 'fuse_bn', 'convert_backend': 'convert_backend'}), "(trace_module, prototxt=tmp_file + '.txt', caffemodel=\n tmp_file + '.caffemodel', input_data_type=input_data_type, input_scales\n =input_scales, input_zero_points=input_zero_points, require_quantize=\n require_quantize, param_fake_quant=param_fake_quant, split_conv_relu=\n split_conv_relu, fuse_bn=fuse_bn, convert_backend=convert_backend)\n", (1396, 1745), False, 'from mgeconvert.converters.tm_to_caffe import tracedmodule_to_caffe\n'), ((1838, 1904), 'caffe.Net', 'caffe.Net', (["(tmp_file + '.txt')", "(tmp_file + '.caffemodel')", 'caffe.TEST'], {}), "(tmp_file + '.txt', tmp_file + '.caffemodel', caffe.TEST)\n", (1847, 1904), False, 'import caffe\n'), ((3059, 3072), 'test.utils.ConvOpr', 'ConvOpr', (['mode'], {}), '(mode)\n', (3066, 3072), False, 'from test.utils import ActiveOpr, AdaptiveAvgPool2dOpr, BnOpr, BroadcastOpr, ConvBn2dOpr, ConvBnRelu2dOpr, ConvOpr, ConvRelu2dOpr, DropoutOpr, ElemwiseOpr, FConcatOpr, FlattenOpr, LinearBnOpr, LinearOpr, MatrixMulBnOpr, PoolOpr, ReduceOpr, RepeatOpr, ReshapeOpr, SqueezeOpr, SubtensorOpr, TransposeOpr, XORNet, XORNet_LeakyRelu\n'), ((3248, 3263), 'test.utils.ConvRelu2dOpr', 'ConvRelu2dOpr', ([], {}), '()\n', (3261, 3263), False, 'from test.utils import ActiveOpr, AdaptiveAvgPool2dOpr, BnOpr, BroadcastOpr, ConvBn2dOpr, ConvBnRelu2dOpr, ConvOpr, ConvRelu2dOpr, DropoutOpr, ElemwiseOpr, FConcatOpr, FlattenOpr, LinearBnOpr, LinearOpr, MatrixMulBnOpr, PoolOpr, ReduceOpr, RepeatOpr, ReshapeOpr, SqueezeOpr, SubtensorOpr, TransposeOpr, XORNet, XORNet_LeakyRelu\n'), ((3443, 3456), 'test.utils.ConvBn2dOpr', 'ConvBn2dOpr', ([], {}), '()\n', (3454, 3456), False, 'from test.utils import ActiveOpr, AdaptiveAvgPool2dOpr, BnOpr, BroadcastOpr, ConvBn2dOpr, ConvBnRelu2dOpr, ConvOpr, ConvRelu2dOpr, DropoutOpr, ElemwiseOpr, FConcatOpr, FlattenOpr, LinearBnOpr, LinearOpr, MatrixMulBnOpr, PoolOpr, ReduceOpr, RepeatOpr, ReshapeOpr, SqueezeOpr, SubtensorOpr, TransposeOpr, XORNet, XORNet_LeakyRelu\n'), ((3655, 3672), 'test.utils.ConvBnRelu2dOpr', 'ConvBnRelu2dOpr', ([], {}), '()\n', (3670, 3672), False, 'from test.utils import ActiveOpr, AdaptiveAvgPool2dOpr, BnOpr, BroadcastOpr, ConvBn2dOpr, ConvBnRelu2dOpr, ConvOpr, ConvRelu2dOpr, DropoutOpr, ElemwiseOpr, FConcatOpr, FlattenOpr, LinearBnOpr, LinearOpr, MatrixMulBnOpr, PoolOpr, ReduceOpr, RepeatOpr, ReshapeOpr, SqueezeOpr, SubtensorOpr, TransposeOpr, XORNet, XORNet_LeakyRelu\n'), ((3867, 3878), 'test.utils.LinearOpr', 'LinearOpr', ([], {}), '()\n', (3876, 3878), False, 'from test.utils import ActiveOpr, AdaptiveAvgPool2dOpr, BnOpr, BroadcastOpr, ConvBn2dOpr, ConvBnRelu2dOpr, ConvOpr, ConvRelu2dOpr, DropoutOpr, ElemwiseOpr, FConcatOpr, FlattenOpr, LinearBnOpr, LinearOpr, MatrixMulBnOpr, PoolOpr, ReduceOpr, RepeatOpr, ReshapeOpr, SqueezeOpr, SubtensorOpr, TransposeOpr, XORNet, XORNet_LeakyRelu\n'), ((4060, 4080), 'test.utils.LinearOpr', 'LinearOpr', (['"""flatten"""'], {}), "('flatten')\n", (4069, 4080), False, 'from test.utils import ActiveOpr, AdaptiveAvgPool2dOpr, BnOpr, BroadcastOpr, ConvBn2dOpr, ConvBnRelu2dOpr, ConvOpr, ConvRelu2dOpr, DropoutOpr, ElemwiseOpr, FConcatOpr, FlattenOpr, LinearBnOpr, LinearOpr, MatrixMulBnOpr, PoolOpr, ReduceOpr, RepeatOpr, ReshapeOpr, SqueezeOpr, SubtensorOpr, TransposeOpr, XORNet, XORNet_LeakyRelu\n'), ((4278, 4291), 'test.utils.LinearBnOpr', 'LinearBnOpr', ([], {}), '()\n', (4289, 4291), False, 'from test.utils import ActiveOpr, AdaptiveAvgPool2dOpr, BnOpr, BroadcastOpr, ConvBn2dOpr, ConvBnRelu2dOpr, ConvOpr, ConvRelu2dOpr, DropoutOpr, ElemwiseOpr, FConcatOpr, FlattenOpr, LinearBnOpr, LinearOpr, MatrixMulBnOpr, PoolOpr, ReduceOpr, RepeatOpr, ReshapeOpr, SqueezeOpr, SubtensorOpr, TransposeOpr, XORNet, XORNet_LeakyRelu\n'), ((4610, 4630), 'test.utils.MatrixMulBnOpr', 'MatrixMulBnOpr', (['mode'], {}), '(mode)\n', (4624, 4630), False, 'from test.utils import ActiveOpr, AdaptiveAvgPool2dOpr, BnOpr, BroadcastOpr, ConvBn2dOpr, ConvBnRelu2dOpr, ConvOpr, ConvRelu2dOpr, DropoutOpr, ElemwiseOpr, FConcatOpr, FlattenOpr, LinearBnOpr, LinearOpr, MatrixMulBnOpr, PoolOpr, ReduceOpr, RepeatOpr, ReshapeOpr, SqueezeOpr, SubtensorOpr, TransposeOpr, XORNet, XORNet_LeakyRelu\n'), ((4895, 4907), 'test.utils.SqueezeOpr', 'SqueezeOpr', ([], {}), '()\n', (4905, 4907), False, 'from test.utils import ActiveOpr, AdaptiveAvgPool2dOpr, BnOpr, BroadcastOpr, ConvBn2dOpr, ConvBnRelu2dOpr, ConvOpr, ConvRelu2dOpr, DropoutOpr, ElemwiseOpr, FConcatOpr, FlattenOpr, LinearBnOpr, LinearOpr, MatrixMulBnOpr, PoolOpr, ReduceOpr, RepeatOpr, ReshapeOpr, SqueezeOpr, SubtensorOpr, TransposeOpr, XORNet, XORNet_LeakyRelu\n'), ((5224, 5237), 'test.utils.PoolOpr', 'PoolOpr', (['mode'], {}), '(mode)\n', (5231, 5237), False, 'from test.utils import ActiveOpr, AdaptiveAvgPool2dOpr, BnOpr, BroadcastOpr, ConvBn2dOpr, ConvBnRelu2dOpr, ConvOpr, ConvRelu2dOpr, DropoutOpr, ElemwiseOpr, FConcatOpr, FlattenOpr, LinearBnOpr, LinearOpr, MatrixMulBnOpr, PoolOpr, ReduceOpr, RepeatOpr, ReshapeOpr, SqueezeOpr, SubtensorOpr, TransposeOpr, XORNet, XORNet_LeakyRelu\n'), ((5469, 5480), 'test.utils.BnOpr', 'BnOpr', (['mode'], {}), '(mode)\n', (5474, 5480), False, 'from test.utils import ActiveOpr, AdaptiveAvgPool2dOpr, BnOpr, BroadcastOpr, ConvBn2dOpr, ConvBnRelu2dOpr, ConvOpr, ConvRelu2dOpr, DropoutOpr, ElemwiseOpr, FConcatOpr, FlattenOpr, LinearBnOpr, LinearOpr, MatrixMulBnOpr, PoolOpr, ReduceOpr, RepeatOpr, ReshapeOpr, SqueezeOpr, SubtensorOpr, TransposeOpr, XORNet, XORNet_LeakyRelu\n'), ((5718, 5732), 'test.utils.SubtensorOpr', 'SubtensorOpr', ([], {}), '()\n', (5730, 5732), False, 'from test.utils import ActiveOpr, AdaptiveAvgPool2dOpr, BnOpr, BroadcastOpr, ConvBn2dOpr, ConvBnRelu2dOpr, ConvOpr, ConvRelu2dOpr, DropoutOpr, ElemwiseOpr, FConcatOpr, FlattenOpr, LinearBnOpr, LinearOpr, MatrixMulBnOpr, PoolOpr, ReduceOpr, RepeatOpr, ReshapeOpr, SqueezeOpr, SubtensorOpr, TransposeOpr, XORNet, XORNet_LeakyRelu\n'), ((5909, 5923), 'test.utils.TransposeOpr', 'TransposeOpr', ([], {}), '()\n', (5921, 5923), False, 'from test.utils import ActiveOpr, AdaptiveAvgPool2dOpr, BnOpr, BroadcastOpr, ConvBn2dOpr, ConvBnRelu2dOpr, ConvOpr, ConvRelu2dOpr, DropoutOpr, ElemwiseOpr, FConcatOpr, FlattenOpr, LinearBnOpr, LinearOpr, MatrixMulBnOpr, PoolOpr, ReduceOpr, RepeatOpr, ReshapeOpr, SqueezeOpr, SubtensorOpr, TransposeOpr, XORNet, XORNet_LeakyRelu\n'), ((6097, 6109), 'test.utils.FConcatOpr', 'FConcatOpr', ([], {}), '()\n', (6107, 6109), False, 'from test.utils import ActiveOpr, AdaptiveAvgPool2dOpr, BnOpr, BroadcastOpr, ConvBn2dOpr, ConvBnRelu2dOpr, ConvOpr, ConvRelu2dOpr, DropoutOpr, ElemwiseOpr, FConcatOpr, FlattenOpr, LinearBnOpr, LinearOpr, MatrixMulBnOpr, PoolOpr, ReduceOpr, RepeatOpr, ReshapeOpr, SqueezeOpr, SubtensorOpr, TransposeOpr, XORNet, XORNet_LeakyRelu\n'), ((6438, 6450), 'test.utils.ReshapeOpr', 'ReshapeOpr', ([], {}), '()\n', (6448, 6450), False, 'from test.utils import ActiveOpr, AdaptiveAvgPool2dOpr, BnOpr, BroadcastOpr, ConvBn2dOpr, ConvBnRelu2dOpr, ConvOpr, ConvRelu2dOpr, DropoutOpr, ElemwiseOpr, FConcatOpr, FlattenOpr, LinearBnOpr, LinearOpr, MatrixMulBnOpr, PoolOpr, ReduceOpr, RepeatOpr, ReshapeOpr, SqueezeOpr, SubtensorOpr, TransposeOpr, XORNet, XORNet_LeakyRelu\n'), ((6734, 6751), 'test.utils.ElemwiseOpr', 'ElemwiseOpr', (['mode'], {}), '(mode)\n', (6745, 6751), False, 'from test.utils import ActiveOpr, AdaptiveAvgPool2dOpr, BnOpr, BroadcastOpr, ConvBn2dOpr, ConvBnRelu2dOpr, ConvOpr, ConvRelu2dOpr, DropoutOpr, ElemwiseOpr, FConcatOpr, FlattenOpr, LinearBnOpr, LinearOpr, MatrixMulBnOpr, PoolOpr, ReduceOpr, RepeatOpr, ReshapeOpr, SqueezeOpr, SubtensorOpr, TransposeOpr, XORNet, XORNet_LeakyRelu\n'), ((7054, 7071), 'test.utils.ElemwiseOpr', 'ElemwiseOpr', (['mode'], {}), '(mode)\n', (7065, 7071), False, 'from test.utils import ActiveOpr, AdaptiveAvgPool2dOpr, BnOpr, BroadcastOpr, ConvBn2dOpr, ConvBnRelu2dOpr, ConvOpr, ConvRelu2dOpr, DropoutOpr, ElemwiseOpr, FConcatOpr, FlattenOpr, LinearBnOpr, LinearOpr, MatrixMulBnOpr, PoolOpr, ReduceOpr, RepeatOpr, ReshapeOpr, SqueezeOpr, SubtensorOpr, TransposeOpr, XORNet, XORNet_LeakyRelu\n'), ((7615, 7630), 'test.utils.ActiveOpr', 'ActiveOpr', (['mode'], {}), '(mode)\n', (7624, 7630), False, 'from test.utils import ActiveOpr, AdaptiveAvgPool2dOpr, BnOpr, BroadcastOpr, ConvBn2dOpr, ConvBnRelu2dOpr, ConvOpr, ConvRelu2dOpr, DropoutOpr, ElemwiseOpr, FConcatOpr, FlattenOpr, LinearBnOpr, LinearOpr, MatrixMulBnOpr, PoolOpr, ReduceOpr, RepeatOpr, ReshapeOpr, SqueezeOpr, SubtensorOpr, TransposeOpr, XORNet, XORNet_LeakyRelu\n'), ((7860, 7875), 'test.utils.ActiveOpr', 'ActiveOpr', (['mode'], {}), '(mode)\n', (7869, 7875), False, 'from test.utils import ActiveOpr, AdaptiveAvgPool2dOpr, BnOpr, BroadcastOpr, ConvBn2dOpr, ConvBnRelu2dOpr, ConvOpr, ConvRelu2dOpr, DropoutOpr, ElemwiseOpr, FConcatOpr, FlattenOpr, LinearBnOpr, LinearOpr, MatrixMulBnOpr, PoolOpr, ReduceOpr, RepeatOpr, ReshapeOpr, SqueezeOpr, SubtensorOpr, TransposeOpr, XORNet, XORNet_LeakyRelu\n'), ((8129, 8144), 'test.utils.ReduceOpr', 'ReduceOpr', (['mode'], {}), '(mode)\n', (8138, 8144), False, 'from test.utils import ActiveOpr, AdaptiveAvgPool2dOpr, BnOpr, BroadcastOpr, ConvBn2dOpr, ConvBnRelu2dOpr, ConvOpr, ConvRelu2dOpr, DropoutOpr, ElemwiseOpr, FConcatOpr, FlattenOpr, LinearBnOpr, LinearOpr, MatrixMulBnOpr, PoolOpr, ReduceOpr, RepeatOpr, ReshapeOpr, SqueezeOpr, SubtensorOpr, TransposeOpr, XORNet, XORNet_LeakyRelu\n'), ((8337, 8351), 'test.utils.BroadcastOpr', 'BroadcastOpr', ([], {}), '()\n', (8349, 8351), False, 'from test.utils import ActiveOpr, AdaptiveAvgPool2dOpr, BnOpr, BroadcastOpr, ConvBn2dOpr, ConvBnRelu2dOpr, ConvOpr, ConvRelu2dOpr, DropoutOpr, ElemwiseOpr, FConcatOpr, FlattenOpr, LinearBnOpr, LinearOpr, MatrixMulBnOpr, PoolOpr, ReduceOpr, RepeatOpr, ReshapeOpr, SqueezeOpr, SubtensorOpr, TransposeOpr, XORNet, XORNet_LeakyRelu\n'), ((8525, 8536), 'test.utils.RepeatOpr', 'RepeatOpr', ([], {}), '()\n', (8534, 8536), False, 'from test.utils import ActiveOpr, AdaptiveAvgPool2dOpr, BnOpr, BroadcastOpr, ConvBn2dOpr, ConvBnRelu2dOpr, ConvOpr, ConvRelu2dOpr, DropoutOpr, ElemwiseOpr, FConcatOpr, FlattenOpr, LinearBnOpr, LinearOpr, MatrixMulBnOpr, PoolOpr, ReduceOpr, RepeatOpr, ReshapeOpr, SqueezeOpr, SubtensorOpr, TransposeOpr, XORNet, XORNet_LeakyRelu\n'), ((8711, 8723), 'test.utils.FlattenOpr', 'FlattenOpr', ([], {}), '()\n', (8721, 8723), False, 'from test.utils import ActiveOpr, AdaptiveAvgPool2dOpr, BnOpr, BroadcastOpr, ConvBn2dOpr, ConvBnRelu2dOpr, ConvOpr, ConvRelu2dOpr, DropoutOpr, ElemwiseOpr, FConcatOpr, FlattenOpr, LinearBnOpr, LinearOpr, MatrixMulBnOpr, PoolOpr, ReduceOpr, RepeatOpr, ReshapeOpr, SqueezeOpr, SubtensorOpr, TransposeOpr, XORNet, XORNet_LeakyRelu\n'), ((8917, 8929), 'test.utils.DropoutOpr', 'DropoutOpr', ([], {}), '()\n', (8927, 8929), False, 'from test.utils import ActiveOpr, AdaptiveAvgPool2dOpr, BnOpr, BroadcastOpr, ConvBn2dOpr, ConvBnRelu2dOpr, ConvOpr, ConvRelu2dOpr, DropoutOpr, ElemwiseOpr, FConcatOpr, FlattenOpr, LinearBnOpr, LinearOpr, MatrixMulBnOpr, PoolOpr, ReduceOpr, RepeatOpr, ReshapeOpr, SqueezeOpr, SubtensorOpr, TransposeOpr, XORNet, XORNet_LeakyRelu\n'), ((9134, 9156), 'test.utils.AdaptiveAvgPool2dOpr', 'AdaptiveAvgPool2dOpr', ([], {}), '()\n', (9154, 9156), False, 'from test.utils import ActiveOpr, AdaptiveAvgPool2dOpr, BnOpr, BroadcastOpr, ConvBn2dOpr, ConvBnRelu2dOpr, ConvOpr, ConvRelu2dOpr, DropoutOpr, ElemwiseOpr, FConcatOpr, FlattenOpr, LinearBnOpr, LinearOpr, MatrixMulBnOpr, PoolOpr, ReduceOpr, RepeatOpr, ReshapeOpr, SqueezeOpr, SubtensorOpr, TransposeOpr, XORNet, XORNet_LeakyRelu\n'), ((10166, 10174), 'test.utils.XORNet', 'XORNet', ([], {}), '()\n', (10172, 10174), False, 'from test.utils import ActiveOpr, AdaptiveAvgPool2dOpr, BnOpr, BroadcastOpr, ConvBn2dOpr, ConvBnRelu2dOpr, ConvOpr, ConvRelu2dOpr, DropoutOpr, ElemwiseOpr, FConcatOpr, FlattenOpr, LinearBnOpr, LinearOpr, MatrixMulBnOpr, PoolOpr, ReduceOpr, RepeatOpr, ReshapeOpr, SqueezeOpr, SubtensorOpr, TransposeOpr, XORNet, XORNet_LeakyRelu\n'), ((10427, 10445), 'test.utils.XORNet_LeakyRelu', 'XORNet_LeakyRelu', ([], {}), '()\n', (10443, 10445), False, 'from test.utils import ActiveOpr, AdaptiveAvgPool2dOpr, BnOpr, BroadcastOpr, ConvBn2dOpr, ConvBnRelu2dOpr, ConvOpr, ConvRelu2dOpr, DropoutOpr, ElemwiseOpr, FConcatOpr, FlattenOpr, LinearBnOpr, LinearOpr, MatrixMulBnOpr, PoolOpr, ReduceOpr, RepeatOpr, ReshapeOpr, SqueezeOpr, SubtensorOpr, TransposeOpr, XORNet, XORNet_LeakyRelu\n'), ((2852, 2939), 'numpy.testing.assert_allclose', 'np.testing.assert_allclose', (['caffe_results', 'mge_results'], {'rtol': 'max_err', 'atol': 'max_err'}), '(caffe_results, mge_results, rtol=max_err, atol=\n max_err)\n', (2878, 2939), True, 'import numpy as np\n'), ((3124, 3144), 'megengine.tensor', 'mge.tensor', (['net.data'], {}), '(net.data)\n', (3134, 3144), True, 'import megengine as mge\n'), ((3318, 3338), 'megengine.tensor', 'mge.tensor', (['net.data'], {}), '(net.data)\n', (3328, 3338), True, 'import megengine as mge\n'), ((3526, 3546), 'megengine.tensor', 'mge.tensor', (['net.data'], {}), '(net.data)\n', (3536, 3546), True, 'import megengine as mge\n'), ((3742, 3762), 'megengine.tensor', 'mge.tensor', (['net.data'], {}), '(net.data)\n', (3752, 3762), True, 'import megengine as mge\n'), ((3930, 3950), 'megengine.tensor', 'mge.tensor', (['net.data'], {}), '(net.data)\n', (3940, 3950), True, 'import megengine as mge\n'), ((4132, 4153), 'megengine.tensor', 'mge.tensor', (['net.data1'], {}), '(net.data1)\n', (4142, 4153), True, 'import megengine as mge\n'), ((4424, 4444), 'megengine.tensor', 'mge.tensor', (['net.data'], {}), '(net.data)\n', (4434, 4444), True, 'import megengine as mge\n'), ((4763, 4783), 'megengine.tensor', 'mge.tensor', (['net.data'], {}), '(net.data)\n', (4773, 4783), True, 'import megengine as mge\n'), ((4959, 4979), 'megengine.tensor', 'mge.tensor', (['net.data'], {}), '(net.data)\n', (4969, 4979), True, 'import megengine as mge\n'), ((5289, 5309), 'megengine.tensor', 'mge.tensor', (['net.data'], {}), '(net.data)\n', (5299, 5309), True, 'import megengine as mge\n'), ((5601, 5617), 'megengine.tensor', 'mge.tensor', (['data'], {}), '(data)\n', (5611, 5617), True, 'import megengine as mge\n'), ((5784, 5804), 'megengine.tensor', 'mge.tensor', (['net.data'], {}), '(net.data)\n', (5794, 5804), True, 'import megengine as mge\n'), ((5975, 5995), 'megengine.tensor', 'mge.tensor', (['net.data'], {}), '(net.data)\n', (5985, 5995), True, 'import megengine as mge\n'), ((6188, 6204), 'megengine.tensor', 'mge.tensor', (['data'], {}), '(data)\n', (6198, 6204), True, 'import megengine as mge\n'), ((6206, 6222), 'megengine.tensor', 'mge.tensor', (['data'], {}), '(data)\n', (6216, 6222), True, 'import megengine as mge\n'), ((6502, 6522), 'megengine.tensor', 'mge.tensor', (['net.data'], {}), '(net.data)\n', (6512, 6522), True, 'import megengine as mge\n'), ((6803, 6823), 'megengine.tensor', 'mge.tensor', (['net.data'], {}), '(net.data)\n', (6813, 6823), True, 'import megengine as mge\n'), ((7218, 7233), 'numpy.array', 'np.array', (['[2.0]'], {}), '([2.0])\n', (7226, 7233), True, 'import numpy as np\n'), ((7682, 7702), 'megengine.tensor', 'mge.tensor', (['net.data'], {}), '(net.data)\n', (7692, 7702), True, 'import megengine as mge\n'), ((7927, 7947), 'megengine.tensor', 'mge.tensor', (['net.data'], {}), '(net.data)\n', (7937, 7947), True, 'import megengine as mge\n'), ((8196, 8216), 'megengine.tensor', 'mge.tensor', (['net.data'], {}), '(net.data)\n', (8206, 8216), True, 'import megengine as mge\n'), ((8403, 8423), 'megengine.tensor', 'mge.tensor', (['net.data'], {}), '(net.data)\n', (8413, 8423), True, 'import megengine as mge\n'), ((8588, 8608), 'megengine.tensor', 'mge.tensor', (['net.data'], {}), '(net.data)\n', (8598, 8608), True, 'import megengine as mge\n'), ((8775, 8795), 'megengine.tensor', 'mge.tensor', (['net.data'], {}), '(net.data)\n', (8785, 8795), True, 'import megengine as mge\n'), ((8981, 9001), 'megengine.tensor', 'mge.tensor', (['net.data'], {}), '(net.data)\n', (8991, 9001), True, 'import megengine as mge\n'), ((9208, 9228), 'megengine.tensor', 'mge.tensor', (['net.data'], {}), '(net.data)\n', (9218, 9228), True, 'import megengine as mge\n'), ((10002, 10018), 'megengine.tensor', 'mge.tensor', (['data'], {}), '(data)\n', (10012, 10018), True, 'import megengine as mge\n'), ((10241, 10261), 'megengine.tensor', 'mge.tensor', (['net.data'], {}), '(net.data)\n', (10251, 10261), True, 'import megengine as mge\n'), ((10512, 10532), 'megengine.tensor', 'mge.tensor', (['net.data'], {}), '(net.data)\n', (10522, 10532), True, 'import megengine as mge\n'), ((2615, 2701), 'numpy.testing.assert_allclose', 'np.testing.assert_allclose', (['out_dict[name._name]', 'mge_results[name]'], {'atol': 'max_err'}), '(out_dict[name._name], mge_results[name], atol=\n max_err)\n', (2641, 2701), True, 'import numpy as np\n'), ((6121, 6151), 'numpy.random.random', 'np.random.random', (['(1, 2, 4, 5)'], {}), '((1, 2, 4, 5))\n', (6137, 6151), True, 'import numpy as np\n'), ((4328, 4348), 'megengine.tensor', 'mge.tensor', (['net.data'], {}), '(net.data)\n', (4338, 4348), True, 'import megengine as mge\n'), ((4667, 4687), 'megengine.tensor', 'mge.tensor', (['net.data'], {}), '(net.data)\n', (4677, 4687), True, 'import megengine as mge\n'), ((7143, 7158), 'numpy.array', 'np.array', (['[2.0]'], {}), '([2.0])\n', (7151, 7158), True, 'import numpy as np\n'), ((9566, 9606), 'numpy.random.randint', 'np.random.randint', (['(0)', '(255)', '(3 * 224 * 224)'], {}), '(0, 255, 3 * 224 * 224)\n', (9583, 9606), True, 'import numpy as np\n')]
import streamlit as st import pandas as pd import argparse import datetime as dt from sqlmodel import create_engine, Session parser = argparse.ArgumentParser(description="A steamlit dashboard for visualising news analytics.") parser.add_argument("--database", type=str, default="sqlite:///database.db") class Dasboard: def __init__(self, database) -> None: self.engine = create_engine(database) self.attr = { "date_range": self.get_date_range(), } self.state = st.session_state self.build() def build(self): # ~~~ Build Sidebar ~~~~~~~~~ st.sidebar.header("Newsreader") with st.form(key="date_picker"): st.sidebar.date_input( "Period From", key="period_from", min_value=self.attr["date_range"][0], max_value=self.attr["date_range"][1], value=self.attr["date_range"][0] ) st.sidebar.date_input( "Period To", key="period_to", min_value=self.attr["date_range"][0], max_value=self.attr["date_range"][1], value=self.attr["date_range"][1] ) # ~~~ Build Main UI ~~~~~~~~~~ st.text_input("Search", key="search_text") st.write(self.state.search_text) st.write([self.state.period_from, self.state.period_to]) st.write(self.get_total_sentiment("00375cd420e37d4084c6668975f91648")) # ~~~ Callbacks ~~~~~~~~~~~ # ~~~ Analytics Operations ~~~~~~ def exec(self, stmt: str, params = {}): with Session(self.engine) as session: return session.exec(stmt, params=params).all() def get_date_range(self): ans = self.exec(""" SELECT MIN(date) as first_date, MAX(date) as last_date FROM document """) return list(map(dt.datetime.fromisoformat, ans[0])) def get_total_sentiment(self, document_id: str): ans = self.exec(""" WITH t1 AS ( SELECT document.id as document_id, paragraph.sentiment as sent, COUNT(*) as paragraphs FROM document JOIN paragraph ON document.id = paragraph.document_id WHERE document.id = :document_id GROUP BY document.id, paragraph.sentiment ) SELECT sent, paragraphs FROM t1 """, params={ "document_id": document_id }) return pd.DataFrame(ans, columns=["lable", "total_paragraphs"]) if __name__ == "__main__": args = parser.parse_args() dashboard = Dasboard(args.database)
[ "sqlmodel.create_engine", "sqlmodel.Session" ]
[((135, 231), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""A steamlit dashboard for visualising news analytics."""'}), "(description=\n 'A steamlit dashboard for visualising news analytics.')\n", (158, 231), False, 'import argparse\n'), ((385, 408), 'sqlmodel.create_engine', 'create_engine', (['database'], {}), '(database)\n', (398, 408), False, 'from sqlmodel import create_engine, Session\n'), ((619, 650), 'streamlit.sidebar.header', 'st.sidebar.header', (['"""Newsreader"""'], {}), "('Newsreader')\n", (636, 650), True, 'import streamlit as st\n'), ((1282, 1324), 'streamlit.text_input', 'st.text_input', (['"""Search"""'], {'key': '"""search_text"""'}), "('Search', key='search_text')\n", (1295, 1324), True, 'import streamlit as st\n'), ((1334, 1366), 'streamlit.write', 'st.write', (['self.state.search_text'], {}), '(self.state.search_text)\n', (1342, 1366), True, 'import streamlit as st\n'), ((1375, 1431), 'streamlit.write', 'st.write', (['[self.state.period_from, self.state.period_to]'], {}), '([self.state.period_from, self.state.period_to])\n', (1383, 1431), True, 'import streamlit as st\n'), ((2549, 2605), 'pandas.DataFrame', 'pd.DataFrame', (['ans'], {'columns': "['lable', 'total_paragraphs']"}), "(ans, columns=['lable', 'total_paragraphs'])\n", (2561, 2605), True, 'import pandas as pd\n'), ((665, 691), 'streamlit.form', 'st.form', ([], {'key': '"""date_picker"""'}), "(key='date_picker')\n", (672, 691), True, 'import streamlit as st\n'), ((705, 880), 'streamlit.sidebar.date_input', 'st.sidebar.date_input', (['"""Period From"""'], {'key': '"""period_from"""', 'min_value': "self.attr['date_range'][0]", 'max_value': "self.attr['date_range'][1]", 'value': "self.attr['date_range'][0]"}), "('Period From', key='period_from', min_value=self.attr\n ['date_range'][0], max_value=self.attr['date_range'][1], value=self.\n attr['date_range'][0])\n", (726, 880), True, 'import streamlit as st\n'), ((977, 1148), 'streamlit.sidebar.date_input', 'st.sidebar.date_input', (['"""Period To"""'], {'key': '"""period_to"""', 'min_value': "self.attr['date_range'][0]", 'max_value': "self.attr['date_range'][1]", 'value': "self.attr['date_range'][1]"}), "('Period To', key='period_to', min_value=self.attr[\n 'date_range'][0], max_value=self.attr['date_range'][1], value=self.attr\n ['date_range'][1])\n", (998, 1148), True, 'import streamlit as st\n'), ((1650, 1670), 'sqlmodel.Session', 'Session', (['self.engine'], {}), '(self.engine)\n', (1657, 1670), False, 'from sqlmodel import create_engine, Session\n')]
""" Explicit time stepping solvers for use with DG FEM """ import numpy as nm import numpy.linalg as nla # sfepy imports from sfepy.base.base import get_default, output from sfepy.solvers import TimeSteppingSolver from sfepy.solvers.solvers import SolverMeta from sfepy.solvers.ts import TimeStepper from sfepy.solvers.ts_solvers import standard_ts_call class DGMultiStageTSS(TimeSteppingSolver): """Explicit time stepping solver with multistage solve_step method""" __metaclass__ = SolverMeta name = "ts.multistaged" _parameters = [ ('t0', 'float', 0.0, False, 'The initial time.'), ('t1', 'float', 1.0, False, 'The final time.'), ('dt', 'float', None, False, 'The time step. Used if `n_step` is not given.'), ('n_step', 'int', 10, False, 'The number of time steps. Has precedence over `dt`.'), # this option is required by TimeSteppingSolver constructor ('quasistatic', 'bool', False, False, """If True, assume a quasistatic time-stepping. Then the non-linear solver is invoked also for the initial time."""), ('limiters', 'dictionary', None, None, "Limiters for DGFields, keys: field name, values: limiter class"), ] def __init__(self, conf, nls=None, context=None, **kwargs): TimeSteppingSolver.__init__(self, conf, nls=nls, context=context, **kwargs) self.ts = TimeStepper.from_conf(self.conf) nd = self.ts.n_digit self.stage_format = '---- ' + \ self.name + ' stage {}: linear system sol error {}'+ \ ' ----' format = '\n\n====== time %%e (step %%%dd of %%%dd) =====' % (nd, nd) self.format = format self.verbose = self.conf.verbose self.post_stage_hook = lambda x: x limiters = {} if self.conf.limiters is not None: limiters = self.conf.limiters # what if we have more fields or limiters? for field_name, limiter in limiters.items(): self.post_stage_hook = limiter(context.fields[field_name], verbose=self.verbose) def solve_step0(self, nls, vec0): res = nls.fun(vec0) err = nm.linalg.norm(res) output('initial residual: %e' % err, verbose=self.verbose) vec = vec0.copy() return vec def solve_step(self, ts, nls, vec, prestep_fun=None, poststep_fun=None, status=None): raise NotImplementedError("Called abstract solver, use subclass.") def output_step_info(self, ts): output(self.format % (ts.time, ts.step + 1, ts.n_step), verbose=self.verbose) @standard_ts_call def __call__(self, vec0=None, nls=None, init_fun=None, prestep_fun=None, poststep_fun=None, status=None): """ Solve the time-dependent problem. """ ts = self.ts nls = get_default(nls, self.nls) vec0 = init_fun(ts, vec0) self.output_step_info(ts) if ts.step == 0: prestep_fun(ts, vec0) vec = self.solve_step0(nls, vec0) poststep_fun(ts, vec) ts.advance() else: vec = vec0 for step, time in ts.iter_from(ts.step): self.output_step_info(ts) prestep_fun(ts, vec) vect = self.solve_step(ts, nls, vec, prestep_fun, poststep_fun, status) poststep_fun(ts, vect) vec = vect return vec class EulerStepSolver(DGMultiStageTSS): """Simple forward euler method""" name = 'ts.euler' __metaclass__ = SolverMeta def solve_step(self, ts, nls, vec_x0, status=None, prestep_fun=None, poststep_fun=None): if ts is None: raise ValueError("Provide TimeStepper to explicit Euler solver") fun = nls.fun fun_grad = nls.fun_grad lin_solver = nls.lin_solver ls_eps_a, ls_eps_r = lin_solver.get_tolerance() eps_a = get_default(ls_eps_a, 1.0) eps_r = get_default(ls_eps_r, 1.0) vec_x = vec_x0.copy() vec_r = fun(vec_x) mtx_a = fun_grad(vec_x) ls_status = {} vec_dx = lin_solver(vec_r, x0=vec_x, eps_a=eps_a, eps_r=eps_r, mtx=mtx_a, status=ls_status) vec_e = mtx_a * vec_dx - vec_r lerr = nla.norm(vec_e) if self.verbose: output(self.name + ' linear system sol error {}'.format(lerr)) output(self.name + ' mtx max {}, min {}, trace {}' .format(mtx_a.max(), mtx_a.min(), nm.sum(mtx_a.diagonal()))) vec_x = vec_x - ts.dt * (vec_dx - vec_x) vec_x = self.post_stage_hook(vec_x) return vec_x class TVDRK3StepSolver(DGMultiStageTSS): r"""3rd order Total Variation Diminishing Runge-Kutta method based on [1]_ .. math:: \begin{aligned} \mathbf{p}^{(1)} &= \mathbf{p}^n - \Delta t \bar{\mathcal{L}}(\mathbf{p}^n),\\ \mathbf{\mathbf{p}}^{(2)} &= \frac{3}{4}\mathbf{p}^n +\frac{1}{4}\mathbf{p}^{(1)} - \frac{1}{4}\Delta t \bar{\mathcal{L}}(\mathbf{p}^{(1)}),\\ \mathbf{p}^{(n+1)} &= \frac{1}{3}\mathbf{p}^n +\frac{2}{3}\mathbf{p}^{(2)} - \frac{2}{3}\Delta t \bar{\mathcal{L}}(\mathbf{p}^{(2)}). \end{aligned} .. [1] <NAME>., & <NAME>. (2002). Total variation diminishing Runge-Kutta schemes. Mathematics of Computation of the American Mathematical Society, 67(221), 73–85. https://doi.org/10.1090/s0025-5718-98-00913-2 """ name = 'ts.tvd_runge_kutta_3' __metaclass__ = SolverMeta def solve_step(self, ts, nls, vec_x0, status=None, prestep_fun=None, poststep_fun=None): if ts is None: raise ValueError("Provide TimeStepper to explicit Runge-Kutta solver") fun = nls.fun fun_grad = nls.fun_grad lin_solver = nls.lin_solver ls_eps_a, ls_eps_r = lin_solver.get_tolerance() eps_a = get_default(ls_eps_a, 1.0) eps_r = get_default(ls_eps_r, 1.0) ls_status = {} # ----1st stage---- vec_x = vec_x0.copy() vec_r = fun(vec_x) mtx_a = fun_grad(vec_x) vec_dx = lin_solver(vec_r, x0=vec_x, eps_a=eps_a, eps_r=eps_r, mtx=mtx_a, status=ls_status) vec_x1 = vec_x - ts.dt * (vec_dx - vec_x) vec_e = mtx_a * vec_dx - vec_r lerr = nla.norm(vec_e) if self.verbose: output(self.stage_format.format(1, lerr)) vec_x1 = self.post_stage_hook(vec_x1) # ----2nd stage---- vec_r = fun(vec_x1) mtx_a = fun_grad(vec_x1) vec_dx = lin_solver(vec_r, x0=vec_x1, eps_a=eps_a, eps_r=eps_r, mtx=mtx_a, status=ls_status) vec_x2 = (3 * vec_x + vec_x1 - ts.dt * (vec_dx - vec_x1)) / 4 vec_e = mtx_a * vec_dx - vec_r lerr = nla.norm(vec_e) if self.verbose: output(self.stage_format.format(2, lerr)) vec_x2 = self.post_stage_hook(vec_x2) # ----3rd stage----- ts.set_substep_time(1. / 2. * ts.dt) prestep_fun(ts, vec_x2) vec_r = fun(vec_x2) mtx_a = fun_grad(vec_x2) vec_dx = lin_solver(vec_r, x0=vec_x2, eps_a=eps_a, eps_r=eps_r, mtx=mtx_a, status=ls_status) vec_x3 = (vec_x + 2 * vec_x2 - 2 * ts.dt * (vec_dx - vec_x2)) / 3 vec_e = mtx_a * vec_dx - vec_r lerr = nla.norm(vec_e) if self.verbose: output(self.stage_format.format(3, lerr)) vec_x3 = self.post_stage_hook(vec_x3) return vec_x3 class RK4StepSolver(DGMultiStageTSS): """Classical 4th order Runge-Kutta method, implemetantions is based on [1]_ .. [1] <NAME>., & <NAME>. (2008). Nodal Discontinuous Galerkin Methods. Journal of Physics A: Mathematical and Theoretical (Vol. 54). New York, NY: Springer New York. http://doi.org/10.1007/978-0-387-72067-8, p. 63 """ name = 'ts.runge_kutta_4' __metaclass__ = SolverMeta stage_updates = ( lambda u, k_, dt: u, lambda u, k1, dt: u + 1. / 2. * dt * k1, lambda u, k2, dt: u + 1. / 2. * dt * k2, lambda u, k3, dt: u + dt * k3 ) def solve_step(self, ts, nls, vec_x0, status=None, prestep_fun=None, poststep_fun=None): if ts is None: raise ValueError("Provide TimeStepper to explicit Runge-Kutta solver") fun = nls.fun fun_grad = nls.fun_grad lin_solver = nls.lin_solver ls_eps_a, ls_eps_r = lin_solver.get_tolerance() eps_a = get_default(ls_eps_a, 1.0) eps_r = get_default(ls_eps_r, 1.0) ls_status = {} dt = ts.dt vec_x = None vec_xs = [] for stage, stage_update in enumerate(self.stage_updates): stage_vec = stage_update(vec_x0, vec_x, dt) vec_r = fun(stage_vec) mtx_a = fun_grad(stage_vec) vec_dx = lin_solver(vec_r, # x0=stage_vec, eps_a=eps_a, eps_r=eps_r, mtx=mtx_a, status=ls_status) vec_e = mtx_a * vec_dx - vec_r lerr = nla.norm(vec_e) if self.verbose: output(self.stage_format.format(stage, lerr)) vec_x = - vec_dx - stage_vec vec_x = self.post_stage_hook(vec_x) vec_xs.append(vec_x) vec_fin = vec_x0 + \ 1. / 6. * ts.dt * (vec_xs[0] + 2 * vec_xs[1] + 2 * vec_xs[2] + vec_xs[3]) vec_fin = self.post_stage_hook(vec_fin) return vec_fin
[ "sfepy.base.base.get_default", "sfepy.solvers.TimeSteppingSolver.__init__", "sfepy.base.base.output", "sfepy.solvers.ts.TimeStepper.from_conf" ]
[((1340, 1415), 'sfepy.solvers.TimeSteppingSolver.__init__', 'TimeSteppingSolver.__init__', (['self', 'conf'], {'nls': 'nls', 'context': 'context'}), '(self, conf, nls=nls, context=context, **kwargs)\n', (1367, 1415), False, 'from sfepy.solvers import TimeSteppingSolver\n'), ((1470, 1502), 'sfepy.solvers.ts.TimeStepper.from_conf', 'TimeStepper.from_conf', (['self.conf'], {}), '(self.conf)\n', (1491, 1502), False, 'from sfepy.solvers.ts import TimeStepper\n'), ((2300, 2319), 'numpy.linalg.norm', 'nm.linalg.norm', (['res'], {}), '(res)\n', (2314, 2319), True, 'import numpy as nm\n'), ((2328, 2386), 'sfepy.base.base.output', 'output', (["('initial residual: %e' % err)"], {'verbose': 'self.verbose'}), "('initial residual: %e' % err, verbose=self.verbose)\n", (2334, 2386), False, 'from sfepy.base.base import get_default, output\n'), ((2663, 2740), 'sfepy.base.base.output', 'output', (['(self.format % (ts.time, ts.step + 1, ts.n_step))'], {'verbose': 'self.verbose'}), '(self.format % (ts.time, ts.step + 1, ts.n_step), verbose=self.verbose)\n', (2669, 2740), False, 'from sfepy.base.base import get_default, output\n'), ((3007, 3033), 'sfepy.base.base.get_default', 'get_default', (['nls', 'self.nls'], {}), '(nls, self.nls)\n', (3018, 3033), False, 'from sfepy.base.base import get_default, output\n'), ((4140, 4166), 'sfepy.base.base.get_default', 'get_default', (['ls_eps_a', '(1.0)'], {}), '(ls_eps_a, 1.0)\n', (4151, 4166), False, 'from sfepy.base.base import get_default, output\n'), ((4183, 4209), 'sfepy.base.base.get_default', 'get_default', (['ls_eps_r', '(1.0)'], {}), '(ls_eps_r, 1.0)\n', (4194, 4209), False, 'from sfepy.base.base import get_default, output\n'), ((4537, 4552), 'numpy.linalg.norm', 'nla.norm', (['vec_e'], {}), '(vec_e)\n', (4545, 4552), True, 'import numpy.linalg as nla\n'), ((6243, 6269), 'sfepy.base.base.get_default', 'get_default', (['ls_eps_a', '(1.0)'], {}), '(ls_eps_a, 1.0)\n', (6254, 6269), False, 'from sfepy.base.base import get_default, output\n'), ((6286, 6312), 'sfepy.base.base.get_default', 'get_default', (['ls_eps_r', '(1.0)'], {}), '(ls_eps_r, 1.0)\n', (6297, 6312), False, 'from sfepy.base.base import get_default, output\n'), ((6717, 6732), 'numpy.linalg.norm', 'nla.norm', (['vec_e'], {}), '(vec_e)\n', (6725, 6732), True, 'import numpy.linalg as nla\n'), ((7232, 7247), 'numpy.linalg.norm', 'nla.norm', (['vec_e'], {}), '(vec_e)\n', (7240, 7247), True, 'import numpy.linalg as nla\n'), ((7829, 7844), 'numpy.linalg.norm', 'nla.norm', (['vec_e'], {}), '(vec_e)\n', (7837, 7844), True, 'import numpy.linalg as nla\n'), ((9001, 9027), 'sfepy.base.base.get_default', 'get_default', (['ls_eps_a', '(1.0)'], {}), '(ls_eps_a, 1.0)\n', (9012, 9027), False, 'from sfepy.base.base import get_default, output\n'), ((9044, 9070), 'sfepy.base.base.get_default', 'get_default', (['ls_eps_r', '(1.0)'], {}), '(ls_eps_r, 1.0)\n', (9055, 9070), False, 'from sfepy.base.base import get_default, output\n'), ((9591, 9606), 'numpy.linalg.norm', 'nla.norm', (['vec_e'], {}), '(vec_e)\n', (9599, 9606), True, 'import numpy.linalg as nla\n')]
import pytest from fastapi.testclient import TestClient from sqlmodel import Session, SQLModel, create_engine from sqlmodel.pool import StaticPool from .main import Hero, app, get_session @pytest.fixture(name="session") def session_fixture(): engine = create_engine( "sqlite://", connect_args={"check_same_thread": False}, poolclass=StaticPool ) SQLModel.metadata.create_all(engine) with Session(engine) as session: yield session @pytest.fixture(name="client") def client_fixture(session: Session): def get_session_override(): return session app.dependency_overrides[get_session] = get_session_override client = TestClient(app) yield client app.dependency_overrides.clear() def test_create_hero(client: TestClient): response = client.post( "/heroes/", json={"name": "Deadpond", "secret_name": "<NAME>"} ) data = response.json() assert response.status_code == 200 assert data["name"] == "Deadpond" assert data["secret_name"] == "<NAME>" assert data["age"] is None assert data["id"] is not None def test_create_hero_incomplete(client: TestClient): # No secret_name response = client.post("/heroes/", json={"name": "Deadpond"}) assert response.status_code == 422 def test_create_hero_invalid(client: TestClient): # secret_name has an invalid type response = client.post( "/heroes/", json={ "name": "Deadpond", "secret_name": {"message": "Do you wanna know my secret identity?"}, }, ) assert response.status_code == 422 def test_read_heroes(session: Session, client: TestClient): hero_1 = Hero(name="Deadpond", secret_name="<NAME>") hero_2 = Hero(name="Rusty-Man", secret_name="<NAME>", age=48) session.add(hero_1) session.add(hero_2) session.commit() response = client.get("/heroes/") data = response.json() assert response.status_code == 200 assert len(data) == 2 assert data[0]["name"] == hero_1.name assert data[0]["secret_name"] == hero_1.secret_name assert data[0]["age"] == hero_1.age assert data[0]["id"] == hero_1.id assert data[1]["name"] == hero_2.name assert data[1]["secret_name"] == hero_2.secret_name assert data[1]["age"] == hero_2.age assert data[1]["id"] == hero_2.id def test_read_hero(session: Session, client: TestClient): hero_1 = Hero(name="Deadpond", secret_name="<NAME>") session.add(hero_1) session.commit() response = client.get(f"/heroes/{hero_1.id}") data = response.json() assert response.status_code == 200 assert data["name"] == hero_1.name assert data["secret_name"] == hero_1.secret_name assert data["age"] == hero_1.age assert data["id"] == hero_1.id def test_update_hero(session: Session, client: TestClient): hero_1 = Hero(name="Deadpond", secret_name="<NAME>") session.add(hero_1) session.commit() response = client.patch(f"/heroes/{hero_1.id}", json={"name": "Deadpuddle"}) data = response.json() assert response.status_code == 200 assert data["name"] == "Deadpuddle" assert data["secret_name"] == "<NAME>" assert data["age"] is None assert data["id"] == hero_1.id def test_delete_hero(session: Session, client: TestClient): hero_1 = Hero(name="Deadpond", secret_name="<NAME>") session.add(hero_1) session.commit() response = client.delete(f"/heroes/{hero_1.id}") hero_in_db = session.get(Hero, hero_1.id) assert response.status_code == 200 assert hero_in_db is None
[ "sqlmodel.SQLModel.metadata.create_all", "sqlmodel.Session", "sqlmodel.create_engine" ]
[((192, 222), 'pytest.fixture', 'pytest.fixture', ([], {'name': '"""session"""'}), "(name='session')\n", (206, 222), False, 'import pytest\n'), ((468, 497), 'pytest.fixture', 'pytest.fixture', ([], {'name': '"""client"""'}), "(name='client')\n", (482, 497), False, 'import pytest\n'), ((259, 354), 'sqlmodel.create_engine', 'create_engine', (['"""sqlite://"""'], {'connect_args': "{'check_same_thread': False}", 'poolclass': 'StaticPool'}), "('sqlite://', connect_args={'check_same_thread': False},\n poolclass=StaticPool)\n", (272, 354), False, 'from sqlmodel import Session, SQLModel, create_engine\n'), ((369, 405), 'sqlmodel.SQLModel.metadata.create_all', 'SQLModel.metadata.create_all', (['engine'], {}), '(engine)\n', (397, 405), False, 'from sqlmodel import Session, SQLModel, create_engine\n'), ((670, 685), 'fastapi.testclient.TestClient', 'TestClient', (['app'], {}), '(app)\n', (680, 685), False, 'from fastapi.testclient import TestClient\n'), ((415, 430), 'sqlmodel.Session', 'Session', (['engine'], {}), '(engine)\n', (422, 430), False, 'from sqlmodel import Session, SQLModel, create_engine\n')]
import types from dataclasses import dataclass from typing import Callable, List, Union from fastapi import Depends, FastAPI, HTTPException, Query from sqlmodel import Field, Session, SQLModel, select # Model generator + container ------------------------------------------------------------- @dataclass class MultipleModels: path: str base: SQLModel response: SQLModel def __post_init__(self): self.creation: SQLModel = self.make_creator_cls() self.table: SQLModel = self.make_table_cls() self.update: SQLModel = self.make_updater_cls() @staticmethod def make_cls_name(base: type, rename_base_to: str) -> str: """For a class name of format ``"ClassBase"``, return a modified name in which the substring ``"Base"`` is replaced with the string passed to ``rename_base_to``. :param base: The base model. It's name must end with the substring ``"Base"``. :param rename_base_to: String to replace `"Base"` with. """ return base.__name__.replace("Base", rename_base_to) def make_creator_cls(self) -> SQLModel: """From a base model, make and return a creation model. As described in https://sqlmodel.tiangolo.com/tutorial/fastapi/multiple-models/#the-herocreate-data-model, the creation model is simply a copy of the base model, with the substring ``"Base"`` in the class name replaced by the substring ``"Create"``. :param base: The base model. """ cls_name = self.make_cls_name(self.base, "Create") return type(cls_name, (self.base,), {}) def make_updater_cls(self) -> SQLModel: """From a base model, make and return an update model. As described in https://sqlmodel.tiangolo.com/tutorial/fastapi/update/#heroupdate-model, the update model is the same as the base model, but with all fields annotated as ``Optional`` and all field defaults set to ``None``. :param base: The base model. Note that unlike in ``make_creator``, this is not the base for inheritance (all updaters inherit directly from ``SQLModel``) but rather is used to derive the output class name, attributes, and type annotations. """ cls_name = self.make_cls_name(self.base, "Update") sig = self.base.__signature__ params = list(sig.parameters) # Pulling type via `__signature__` rather than `__annotation__` because # this accessor drops the `typing.Union[...]` wrapper for optional fields annotations = {p: Union[sig.parameters[p].annotation, None] for p in params} defaults = {p: None for p in params} attrs = {**defaults, "__annotations__": annotations} return type(cls_name, (SQLModel,), attrs) def make_table_cls(self) -> SQLModel: """From a base model, make and return a table model. As described in https://sqlmodel.tiangolo.com/tutorial/fastapi/multiple-models/#the-hero-table-model, the table model is the same as the base model, with the addition of the ``table=True`` class creation keyword and an ``id`` attribute of type ``Optional[int]`` set to a default value of ``Field(default=None, primary_key=True)``. :param base: The base model. """ cls_name = self.make_cls_name(self.base, "") attrs = dict(id=Field(default=None, primary_key=True)) annotations = dict(id=Union[int, None]) attrs.update(dict(__annotations__=annotations)) # We are using `typing.new_class` (vs. `type`) b/c it supports the `table=True` kwarg. # https://twitter.com/simonw/status/1430255521127305216?s=20 # https://docs.python.org/3/reference/datamodel.html#customizing-class-creation return types.new_class( cls_name, (self.base,), dict(table=True), lambda ns: ns.update(attrs) ) # SQLModel database interface functions --------------------------------------------------- def create(*, session: Session, table_cls: SQLModel, model: SQLModel) -> SQLModel: db_model = table_cls.from_orm(model) session.add(db_model) session.commit() session.refresh(db_model) return db_model def read_range(*, session: Session, table_cls: SQLModel, offset: int, limit: int) -> List: return session.exec(select(table_cls).offset(offset).limit(limit)).all() def read_single(*, session: Session, table_cls: SQLModel, id: int): db_model = session.get(table_cls, id) if not db_model: raise HTTPException(status_code=404, detail=f"{table_cls.__name__} not found") return db_model def update(*, session: Session, table_cls: SQLModel, id: int, model: SQLModel) -> SQLModel: db_model = session.get(table_cls, id) if not db_model: raise HTTPException(status_code=404, detail=f"{table_cls.__name__} not found") model_data = model.dict(exclude_unset=True) for key, value in model_data.items(): setattr(db_model, key, value) session.add(db_model) session.commit() session.refresh(db_model) return db_model def delete(*, session: Session, table_cls: SQLModel, id: int) -> dict: db_model = session.get(table_cls, id) if not db_model: raise HTTPException(status_code=404, detail=f"{table_cls.__name__} not found") session.delete(db_model) session.commit() return {"ok": True} # Endpoint registration ------------------------------------------------------------------- @dataclass class RegisterEndpoints: """From a ``MultipleModels`` object, register create, read, update, delete (CRUD) API endpoints. :param api: The ``FastAPI`` instance. :param get_session: A function which yields a context-managed ``sqlmodel.Session`` object. :param models: The ``MultipleModels`` object. :param limit: The bounds for an API read requests. """ api: FastAPI get_session: Callable models: MultipleModels limit: Query = Query(default=100, lte=100) def __post_init__(self): self.register_all() def register_all(self): self.register_create_endpoint() self.register_read_range_endpoint() self.register_read_single_endpoint() self.register_update_endpoint() self.register_delete_endpoint() def register_create_endpoint(self): @self.api.post(self.models.path, response_model=self.models.response) def endpoint(*, session: Session = Depends(self.get_session), model: self.models.creation): return create(session=session, table_cls=self.models.table, model=model) def register_read_range_endpoint(self): @self.api.get(self.models.path, response_model=List[self.models.response]) def endpoint( *, session: Session = Depends(self.get_session), offset: int = 0, limit: int = self.limit, ): return read_range( session=session, table_cls=self.models.table, offset=offset, limit=limit, ) def register_read_single_endpoint(self): @self.api.get(self.models.path + "{id}", response_model=self.models.response) def endpoint(*, session: Session = Depends(self.get_session), id: int): return read_single(session=session, table_cls=self.models.table, id=id) def register_update_endpoint(self): @self.api.patch(self.models.path + "{id}", response_model=self.models.response) def endpoint( *, session: Session = Depends(self.get_session), id: int, model: self.models.update, ): return update(session=session, table_cls=self.models.table, id=id, model=model) def register_delete_endpoint(self): @self.api.delete(self.models.path + "{id}") def endpoint(*, session: Session = Depends(self.get_session), id: int): return delete(session=session, table_cls=self.models.table, id=id) def register_endpoints( api: FastAPI, get_session: Callable, models: MultipleModels, limit: Query = Query(default=100, lte=100) ): _ = RegisterEndpoints(api, get_session, models, limit)
[ "sqlmodel.select", "sqlmodel.Field" ]
[((5955, 5982), 'fastapi.Query', 'Query', ([], {'default': '(100)', 'lte': '(100)'}), '(default=100, lte=100)\n', (5960, 5982), False, 'from fastapi import Depends, FastAPI, HTTPException, Query\n'), ((7999, 8026), 'fastapi.Query', 'Query', ([], {'default': '(100)', 'lte': '(100)'}), '(default=100, lte=100)\n', (8004, 8026), False, 'from fastapi import Depends, FastAPI, HTTPException, Query\n'), ((4522, 4594), 'fastapi.HTTPException', 'HTTPException', ([], {'status_code': '(404)', 'detail': 'f"""{table_cls.__name__} not found"""'}), "(status_code=404, detail=f'{table_cls.__name__} not found')\n", (4535, 4594), False, 'from fastapi import Depends, FastAPI, HTTPException, Query\n'), ((4786, 4858), 'fastapi.HTTPException', 'HTTPException', ([], {'status_code': '(404)', 'detail': 'f"""{table_cls.__name__} not found"""'}), "(status_code=404, detail=f'{table_cls.__name__} not found')\n", (4799, 4858), False, 'from fastapi import Depends, FastAPI, HTTPException, Query\n'), ((5234, 5306), 'fastapi.HTTPException', 'HTTPException', ([], {'status_code': '(404)', 'detail': 'f"""{table_cls.__name__} not found"""'}), "(status_code=404, detail=f'{table_cls.__name__} not found')\n", (5247, 5306), False, 'from fastapi import Depends, FastAPI, HTTPException, Query\n'), ((6441, 6466), 'fastapi.Depends', 'Depends', (['self.get_session'], {}), '(self.get_session)\n', (6448, 6466), False, 'from fastapi import Depends, FastAPI, HTTPException, Query\n'), ((6767, 6792), 'fastapi.Depends', 'Depends', (['self.get_session'], {}), '(self.get_session)\n', (6774, 6792), False, 'from fastapi import Depends, FastAPI, HTTPException, Query\n'), ((7157, 7182), 'fastapi.Depends', 'Depends', (['self.get_session'], {}), '(self.get_session)\n', (7164, 7182), False, 'from fastapi import Depends, FastAPI, HTTPException, Query\n'), ((7463, 7488), 'fastapi.Depends', 'Depends', (['self.get_session'], {}), '(self.get_session)\n', (7470, 7488), False, 'from fastapi import Depends, FastAPI, HTTPException, Query\n'), ((7765, 7790), 'fastapi.Depends', 'Depends', (['self.get_session'], {}), '(self.get_session)\n', (7772, 7790), False, 'from fastapi import Depends, FastAPI, HTTPException, Query\n'), ((3369, 3406), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'primary_key': '(True)'}), '(default=None, primary_key=True)\n', (3374, 3406), False, 'from sqlmodel import Field, Session, SQLModel, select\n'), ((4322, 4339), 'sqlmodel.select', 'select', (['table_cls'], {}), '(table_cls)\n', (4328, 4339), False, 'from sqlmodel import Field, Session, SQLModel, select\n')]
import numpy as nm from sfepy.mechanics.matcoefs import stiffness_from_youngpoisson from sfepy.discrete.fem.meshio import UserMeshIO from sfepy.mesh.mesh_generators import gen_block_mesh from sfepy import data_dir def mesh_hook(mesh, mode): if mode == 'read': mesh = gen_block_mesh([0.0098, 0.0011, 0.1], [5, 3, 17], [0, 0, 0.05], name='specimen', verbose=False) return mesh elif mode == 'write': pass def optimization_hook(pb): cnf = pb.conf out = [] yield pb, out state = out[-1][1].get_parts() coors = pb.domain.cmesh.coors displ = state['u'].reshape((coors.shape[0],3)) # elongation mcoors = coors[cnf.mnodes, 2] mdispl = displ[cnf.mnodes, 2] dl = (mdispl[1] - mdispl[0]) / (mcoors[1] - mcoors[0]) if hasattr(cnf, 'opt_data'): # compute slope of the force-elongation curve cnf.opt_data['k'] = cnf.F / dl yield None def get_mat(coors, mode, pb): if mode == 'qp': # get material data if hasattr(pb.conf, 'opt_data'): # from homogenization D = pb.conf.opt_data['D_homog'] else: # given values D = stiffness_from_youngpoisson(3, 150.0e9, 0.3) nqp = coors.shape[0] return {'D': nm.tile(D, (nqp, 1, 1))} def define(is_opt=False): filename_mesh = UserMeshIO(mesh_hook) mnodes = (107, 113) # nodes for elongation eval. regions = { 'Omega': 'all', 'Bottom': ('vertices in (z < 0.001)', 'facet'), 'Top': ('vertices in (z > 0.099)', 'facet'), } functions = { 'get_mat': (lambda ts, coors, mode=None, problem=None, **kwargs: get_mat(coors, mode, problem),), } S = 1.083500e-05 # specimen cross-section F = 5.0e3 # force materials = { 'solid': 'get_mat', 'load': ({'val': F / S},), } fields = { 'displacement': ('real', 'vector', 'Omega', 1), } variables = { 'u': ('unknown field', 'displacement', 0), 'v': ('test field', 'displacement', 'u'), } ebcs = { 'FixedBottom': ('Bottom', {'u.all': 0.0}), 'FixedTop': ('Top', {'u.0': 0.0, 'u.1': 0.0}), } equations = { 'balance_of_forces' : """dw_lin_elastic.5.Omega(solid.D, v, u) = dw_surface_ltr.5.Top(load.val, v)""", } solvers = { 'ls': ('ls.scipy_direct', {}), 'newton': ('nls.newton', {'eps_a': 1e-6, 'eps_r': 1.e-6, 'check': 0, 'problem': 'nonlinear'}), } options = { 'parametric_hook': 'optimization_hook', 'output_dir' : 'output', } return locals()
[ "sfepy.discrete.fem.meshio.UserMeshIO", "sfepy.mesh.mesh_generators.gen_block_mesh", "sfepy.mechanics.matcoefs.stiffness_from_youngpoisson" ]
[((1406, 1427), 'sfepy.discrete.fem.meshio.UserMeshIO', 'UserMeshIO', (['mesh_hook'], {}), '(mesh_hook)\n', (1416, 1427), False, 'from sfepy.discrete.fem.meshio import UserMeshIO\n'), ((281, 381), 'sfepy.mesh.mesh_generators.gen_block_mesh', 'gen_block_mesh', (['[0.0098, 0.0011, 0.1]', '[5, 3, 17]', '[0, 0, 0.05]'], {'name': '"""specimen"""', 'verbose': '(False)'}), "([0.0098, 0.0011, 0.1], [5, 3, 17], [0, 0, 0.05], name=\n 'specimen', verbose=False)\n", (295, 381), False, 'from sfepy.mesh.mesh_generators import gen_block_mesh\n'), ((1238, 1289), 'sfepy.mechanics.matcoefs.stiffness_from_youngpoisson', 'stiffness_from_youngpoisson', (['(3)', '(150000000000.0)', '(0.3)'], {}), '(3, 150000000000.0, 0.3)\n', (1265, 1289), False, 'from sfepy.mechanics.matcoefs import stiffness_from_youngpoisson\n'), ((1334, 1357), 'numpy.tile', 'nm.tile', (['D', '(nqp, 1, 1)'], {}), '(D, (nqp, 1, 1))\n', (1341, 1357), True, 'import numpy as nm\n')]
import os import pytest import time from fastapi.testclient import TestClient from sqlmodel import Session, create_engine from main import app from database import get_db from settings import Settings from alembic.command import upgrade, downgrade from alembic.config import Config @pytest.fixture(autouse=True) def slow_down_tests(): yield time.sleep(1) @pytest.fixture(scope="session") def apply_migrations(): config = Config("alembic.ini") upgrade(config, "head") yield downgrade(config, "base") @pytest.fixture(name="session") def session_fixture(apply_migrations: None): settings = Settings() engine = create_engine( settings.db_uri_test, connect_args={"check_same_thread": False} ) with Session(engine) as session: yield session @pytest.fixture(name="client") def client_fixture(session: Session): def get_session_override(): return session app.dependency_overrides[get_db] = get_session_override client = TestClient(app) yield client app.dependency_overrides.clear() def pytest_configure(config): """ Allows plugins and conftest files to perform initial configuration. This hook is called for every plugin and initial conftest file after command line options have been parsed. """ pytest.access_token = None def pytest_sessionstart(session): """ Called after the Session object has been created and before performing collection and entering the run test loop. """ def pytest_sessionfinish(session, exitstatus): """ Called after whole test run finished, right before returning the exit status to the system. """ def pytest_unconfigure(config): """ called before test process is exited. """ # Delete DB file db_file = os.path.join('.', 'test.db') if os.path.exists(db_file): os.remove(db_file)
[ "sqlmodel.create_engine", "sqlmodel.Session" ]
[((285, 313), 'pytest.fixture', 'pytest.fixture', ([], {'autouse': '(True)'}), '(autouse=True)\n', (299, 313), False, 'import pytest\n'), ((368, 399), 'pytest.fixture', 'pytest.fixture', ([], {'scope': '"""session"""'}), "(scope='session')\n", (382, 399), False, 'import pytest\n'), ((530, 560), 'pytest.fixture', 'pytest.fixture', ([], {'name': '"""session"""'}), "(name='session')\n", (544, 560), False, 'import pytest\n'), ((800, 829), 'pytest.fixture', 'pytest.fixture', ([], {'name': '"""client"""'}), "(name='client')\n", (814, 829), False, 'import pytest\n'), ((351, 364), 'time.sleep', 'time.sleep', (['(1)'], {}), '(1)\n', (361, 364), False, 'import time\n'), ((437, 458), 'alembic.config.Config', 'Config', (['"""alembic.ini"""'], {}), "('alembic.ini')\n", (443, 458), False, 'from alembic.config import Config\n'), ((463, 486), 'alembic.command.upgrade', 'upgrade', (['config', '"""head"""'], {}), "(config, 'head')\n", (470, 486), False, 'from alembic.command import upgrade, downgrade\n'), ((501, 526), 'alembic.command.downgrade', 'downgrade', (['config', '"""base"""'], {}), "(config, 'base')\n", (510, 526), False, 'from alembic.command import upgrade, downgrade\n'), ((621, 631), 'settings.Settings', 'Settings', ([], {}), '()\n', (629, 631), False, 'from settings import Settings\n'), ((645, 723), 'sqlmodel.create_engine', 'create_engine', (['settings.db_uri_test'], {'connect_args': "{'check_same_thread': False}"}), "(settings.db_uri_test, connect_args={'check_same_thread': False})\n", (658, 723), False, 'from sqlmodel import Session, create_engine\n'), ((996, 1011), 'fastapi.testclient.TestClient', 'TestClient', (['app'], {}), '(app)\n', (1006, 1011), False, 'from fastapi.testclient import TestClient\n'), ((1033, 1065), 'main.app.dependency_overrides.clear', 'app.dependency_overrides.clear', ([], {}), '()\n', (1063, 1065), False, 'from main import app\n'), ((1801, 1829), 'os.path.join', 'os.path.join', (['"""."""', '"""test.db"""'], {}), "('.', 'test.db')\n", (1813, 1829), False, 'import os\n'), ((1837, 1860), 'os.path.exists', 'os.path.exists', (['db_file'], {}), '(db_file)\n', (1851, 1860), False, 'import os\n'), ((747, 762), 'sqlmodel.Session', 'Session', (['engine'], {}), '(engine)\n', (754, 762), False, 'from sqlmodel import Session, create_engine\n'), ((1870, 1888), 'os.remove', 'os.remove', (['db_file'], {}), '(db_file)\n', (1879, 1888), False, 'import os\n')]
from typing import AsyncGenerator, Generator from aiobotocore.client import AioBaseClient from aiobotocore.session import get_session from sqlmodel import Session from sqlmodel.ext.asyncio.session import AsyncSession from ..core.config import settings from ..db.db import engine, engine_async async def get_s3() -> AsyncGenerator[AioBaseClient, None]: session = get_session() async with session.create_client( "s3", region_name=settings.MINIO_REGION_NAME, endpoint_url=settings.MINIO_URL, use_ssl=False, aws_secret_access_key=settings.MINIO_SECRET_KEY, aws_access_key_id=settings.MINIO_ACCESS_KEY, ) as client: yield client async def get_db_async() -> AsyncGenerator[AsyncSession, None]: async with AsyncSession(engine_async) as session: yield session def get_db() -> Generator[Session, None, None]: with Session(engine) as session: yield session
[ "sqlmodel.ext.asyncio.session.AsyncSession", "sqlmodel.Session" ]
[((370, 383), 'aiobotocore.session.get_session', 'get_session', ([], {}), '()\n', (381, 383), False, 'from aiobotocore.session import get_session\n'), ((777, 803), 'sqlmodel.ext.asyncio.session.AsyncSession', 'AsyncSession', (['engine_async'], {}), '(engine_async)\n', (789, 803), False, 'from sqlmodel.ext.asyncio.session import AsyncSession\n'), ((897, 912), 'sqlmodel.Session', 'Session', (['engine'], {}), '(engine)\n', (904, 912), False, 'from sqlmodel import Session\n')]
""" Functions to visualize quadrature points in reference elements. """ import numpy as nm import matplotlib.pyplot as plt from sfepy.base.base import output from sfepy.postprocess.plot_dofs import _get_axes, _to2d from sfepy.postprocess.plot_facets import plot_geometry def _get_qp(geometry, order): from sfepy.discrete import Integral from sfepy.discrete.fem.geometry_element import GeometryElement aux = Integral('aux', order=order) coors, weights = aux.get_qp(geometry) true_order = aux.qps[geometry].order output('geometry:', geometry, 'order:', order, 'num. points:', coors.shape[0], 'true_order:', true_order) output('min. weight:', weights.min()) output('max. weight:', weights.max()) return GeometryElement(geometry), coors, weights def _get_bqp(geometry, order): from sfepy.discrete import Integral from sfepy.discrete.fem.geometry_element import GeometryElement from sfepy.discrete.fem import Mesh, FEDomain, Field gel = GeometryElement(geometry) mesh = Mesh.from_data('aux', gel.coors, None, [gel.conn[None, :]], [[0]], [geometry]) domain = FEDomain('domain', mesh) omega = domain.create_region('Omega', 'all') surf = domain.create_region('Surf', 'vertices of surface', 'facet') field = Field.from_args('f', nm.float64, shape=1, region=omega, approx_order=1) field.setup_surface_data(surf) integral = Integral('aux', order=order) field.create_bqp('Surf', integral) sd = field.surface_data['Surf'] qp = field.qp_coors[(integral.order, sd.bkey)] output('geometry:', geometry, 'order:', order, 'num. points:', qp.vals.shape[1], 'true_order:', integral.qps[gel.surface_facet_name].order) output('min. weight:', qp.weights.min()) output('max. weight:', qp.weights.max()) return (gel, qp.vals.reshape((-1, mesh.dim)), nm.tile(qp.weights, qp.vals.shape[0])) def plot_weighted_points(ax, coors, weights, min_radius=10, max_radius=50, show_colorbar=False): """ Plot points with given coordinates as circles/spheres with radii given by weights. """ dim = coors.shape[1] ax = _get_axes(ax, dim) wmin, wmax = weights.min(), weights.max() if (wmax - wmin) < 1e-12: nweights = weights * max_radius / wmax else: nweights = ((weights - wmin) * (max_radius - min_radius) / (wmax - wmin) + min_radius) coors = _to2d(coors) sc = ax.scatter(*coors.T, s=nweights, c=weights, alpha=1) if show_colorbar: plt.colorbar(sc) return ax def label_points(ax, coors): """ Label points with their indices. """ dim = coors.shape[1] ax = _get_axes(ax, dim) shift = 0.02 * (coors.max(0) - coors.min(0)) ccs = coors + shift for ic, cc in enumerate(ccs): ax.text(*cc, s='%d' % ic, color='b') def plot_quadrature(ax, geometry, order, boundary=False, min_radius=10, max_radius=50, show_colorbar=False, show_labels=False): """ Plot quadrature points for the given geometry and integration order. The points are plotted as circles/spheres with radii given by quadrature weights - the weights are mapped to [`min_radius`, `max_radius`] interval. """ if not boundary: gel, coors, weights = _get_qp(geometry, order) else: gel, coors, weights = _get_bqp(geometry, order) dim = coors.shape[1] ax = _get_axes(ax, dim) plot_geometry(ax, gel) plot_weighted_points(ax, coors, weights, min_radius=min_radius, max_radius=max_radius, show_colorbar=show_colorbar) if show_labels: label_points(ax, coors) return ax, coors, weights
[ "sfepy.postprocess.plot_dofs._to2d", "sfepy.discrete.fem.geometry_element.GeometryElement", "sfepy.base.base.output", "sfepy.postprocess.plot_dofs._get_axes", "sfepy.discrete.fem.Mesh.from_data", "sfepy.discrete.Integral", "sfepy.discrete.fem.Field.from_args", "sfepy.postprocess.plot_facets.plot_geometry", "sfepy.discrete.fem.FEDomain" ]
[((423, 451), 'sfepy.discrete.Integral', 'Integral', (['"""aux"""'], {'order': 'order'}), "('aux', order=order)\n", (431, 451), False, 'from sfepy.discrete import Integral\n'), ((540, 650), 'sfepy.base.base.output', 'output', (['"""geometry:"""', 'geometry', '"""order:"""', 'order', '"""num. points:"""', 'coors.shape[0]', '"""true_order:"""', 'true_order'], {}), "('geometry:', geometry, 'order:', order, 'num. points:', coors.shape[\n 0], 'true_order:', true_order)\n", (546, 650), False, 'from sfepy.base.base import output\n'), ((1003, 1028), 'sfepy.discrete.fem.geometry_element.GeometryElement', 'GeometryElement', (['geometry'], {}), '(geometry)\n', (1018, 1028), False, 'from sfepy.discrete.fem.geometry_element import GeometryElement\n'), ((1041, 1119), 'sfepy.discrete.fem.Mesh.from_data', 'Mesh.from_data', (['"""aux"""', 'gel.coors', 'None', '[gel.conn[None, :]]', '[[0]]', '[geometry]'], {}), "('aux', gel.coors, None, [gel.conn[None, :]], [[0]], [geometry])\n", (1055, 1119), False, 'from sfepy.discrete.fem import Mesh, FEDomain, Field\n'), ((1159, 1183), 'sfepy.discrete.fem.FEDomain', 'FEDomain', (['"""domain"""', 'mesh'], {}), "('domain', mesh)\n", (1167, 1183), False, 'from sfepy.discrete.fem import Mesh, FEDomain, Field\n'), ((1318, 1389), 'sfepy.discrete.fem.Field.from_args', 'Field.from_args', (['"""f"""', 'nm.float64'], {'shape': '(1)', 'region': 'omega', 'approx_order': '(1)'}), "('f', nm.float64, shape=1, region=omega, approx_order=1)\n", (1333, 1389), False, 'from sfepy.discrete.fem import Mesh, FEDomain, Field\n'), ((1469, 1497), 'sfepy.discrete.Integral', 'Integral', (['"""aux"""'], {'order': 'order'}), "('aux', order=order)\n", (1477, 1497), False, 'from sfepy.discrete import Integral\n'), ((1630, 1774), 'sfepy.base.base.output', 'output', (['"""geometry:"""', 'geometry', '"""order:"""', 'order', '"""num. points:"""', 'qp.vals.shape[1]', '"""true_order:"""', 'integral.qps[gel.surface_facet_name].order'], {}), "('geometry:', geometry, 'order:', order, 'num. points:', qp.vals.\n shape[1], 'true_order:', integral.qps[gel.surface_facet_name].order)\n", (1636, 1774), False, 'from sfepy.base.base import output\n'), ((2248, 2266), 'sfepy.postprocess.plot_dofs._get_axes', '_get_axes', (['ax', 'dim'], {}), '(ax, dim)\n', (2257, 2266), False, 'from sfepy.postprocess.plot_dofs import _get_axes, _to2d\n'), ((2530, 2542), 'sfepy.postprocess.plot_dofs._to2d', '_to2d', (['coors'], {}), '(coors)\n', (2535, 2542), False, 'from sfepy.postprocess.plot_dofs import _get_axes, _to2d\n'), ((2785, 2803), 'sfepy.postprocess.plot_dofs._get_axes', '_get_axes', (['ax', 'dim'], {}), '(ax, dim)\n', (2794, 2803), False, 'from sfepy.postprocess.plot_dofs import _get_axes, _to2d\n'), ((3551, 3569), 'sfepy.postprocess.plot_dofs._get_axes', '_get_axes', (['ax', 'dim'], {}), '(ax, dim)\n', (3560, 3569), False, 'from sfepy.postprocess.plot_dofs import _get_axes, _to2d\n'), ((3575, 3597), 'sfepy.postprocess.plot_facets.plot_geometry', 'plot_geometry', (['ax', 'gel'], {}), '(ax, gel)\n', (3588, 3597), False, 'from sfepy.postprocess.plot_facets import plot_geometry\n'), ((753, 778), 'sfepy.discrete.fem.geometry_element.GeometryElement', 'GeometryElement', (['geometry'], {}), '(geometry)\n', (768, 778), False, 'from sfepy.discrete.fem.geometry_element import GeometryElement\n'), ((1945, 1982), 'numpy.tile', 'nm.tile', (['qp.weights', 'qp.vals.shape[0]'], {}), '(qp.weights, qp.vals.shape[0])\n', (1952, 1982), True, 'import numpy as nm\n'), ((2636, 2652), 'matplotlib.pyplot.colorbar', 'plt.colorbar', (['sc'], {}), '(sc)\n', (2648, 2652), True, 'import matplotlib.pyplot as plt\n')]
from fastapi import Depends, Response from fastapi.routing import APIRouter from pydantic import BaseModel # pylint: disable=E0611 from sqlmodel import Session, select from starlette.responses import JSONResponse from fastapi_server.database.database import get_session from fastapi_server.models.user import User login_router = APIRouter() class LoginModel(BaseModel): email: str password: str # TODO: Replace /login endpoint when Response is available in strawberry query info-context @login_router.post('/login') async def login(login_data: LoginModel, session: Session = Depends(get_session)) -> Response: statement = select(User).where(User.email == login_data.email, User.password_hashed == login_data.password) user = session.exec(statement).first() if user is None: raise FileNotFoundError('Email and password do not match') # Set message and cookies in frontend content = {'message': 'Come to the dark side, we have cookies'} response = JSONResponse(content=content) response.set_cookie(key='fakesession', value='fake-cookie-session-value', httponly=True, secure=True, expires=3600) return response
[ "sqlmodel.select" ]
[((332, 343), 'fastapi.routing.APIRouter', 'APIRouter', ([], {}), '()\n', (341, 343), False, 'from fastapi.routing import APIRouter\n'), ((590, 610), 'fastapi.Depends', 'Depends', (['get_session'], {}), '(get_session)\n', (597, 610), False, 'from fastapi import Depends, Response\n'), ((994, 1023), 'starlette.responses.JSONResponse', 'JSONResponse', ([], {'content': 'content'}), '(content=content)\n', (1006, 1023), False, 'from starlette.responses import JSONResponse\n'), ((641, 653), 'sqlmodel.select', 'select', (['User'], {}), '(User)\n', (647, 653), False, 'from sqlmodel import Session, select\n')]
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon Dec 28 09:33:53 2020 @author: dhulls """ from __future__ import print_function from __future__ import absolute_import from argparse import ArgumentParser import numpy as nm import sys sys.path.append('.') from sfepy.base.base import IndexedStruct, Struct from sfepy.discrete import (FieldVariable, Material, Integral, Function, Equation, Equations, Problem) from sfepy.discrete.fem import Mesh, FEDomain, Field from sfepy.terms import Term from sfepy.discrete.conditions import Conditions, EssentialBC, InitialCondition from sfepy.solvers.ls import ScipyDirect from sfepy.solvers.nls import Newton from sfepy.postprocess.viewer import Viewer from sfepy.postprocess.probes_vtk import ProbeFromFile, Probe import numpy as np helps = { 'show' : 'show the results figure', } from sfepy import data_dir parser = ArgumentParser() parser.add_argument('--version', action='version', version='%(prog)s') parser.add_argument('-s', '--show', action="store_true", dest='show', default=False, help=helps['show']) options = parser.parse_args() mesh = Mesh.from_file(data_dir + '/meshes/3d/fluid_mesh.inp') domain = FEDomain('domain', mesh) omega = domain.create_region('Omega', 'all') field_1 = Field.from_args(name='3_velocity', dtype=nm.float64, shape=3, region=omega, approx_order=1) field_2 = Field.from_args(name='pressure', dtype=nm.float64, shape=1, region=omega, approx_order=1) region_0 = domain.create_region(name='Walls1', select='vertices in (y < -0.049)', kind='facet') region_1 = domain.create_region(name='Walls2', select='vertices in (y > 0.049)', kind='facet') region_2 = domain.create_region(name='Inlet', select='vertices in (x < -0.499)', kind='facet') region_3 = domain.create_region(name='Outlet', select='vertices in (x > -0.499)', kind='facet') ebc_1 = EssentialBC(name='Walls1', region=region_0, dofs={'u.[0,1,2]' : 0.0}) ebc_2 = EssentialBC(name='Walls2', region=region_1, dofs={'u.[0,1,2]' : 0.0}) ebc_3 = EssentialBC(name='Inlet', region=region_2, dofs={'u.0' : 1.0, 'u.[1,2]' : 0.0}) ebc_4 = EssentialBC(name='Outlet', region=region_3, dofs={'p':0.0, 'u.[1,2]' : 0.0}) viscosity = Material(name='viscosity', value=1.25e-3) variable_1 = FieldVariable('u', 'unknown', field_1) variable_2 = FieldVariable(name='v', kind='test', field=field_1, primary_var_name='u') variable_3 = FieldVariable(name='p', kind='unknown', field=field_2) variable_4 = FieldVariable(name='q', kind='test', field=field_2, primary_var_name='p') integral_1 = Integral('i1', order=2) integral_2 = Integral('i2', order=3) t1 = Term.new(name='dw_div_grad(viscosity.value, v, u)', integral=integral_2, region=omega, viscosity=viscosity, v=variable_2, u=variable_1) t2 = Term.new(name='dw_convect(v, u)', integral=integral_2, region=omega, v=variable_2, u=variable_1) t3 = Term.new(name='dw_stokes(v, p)', integral=integral_1, region=omega, v=variable_2, p=variable_3) t4 = Term.new(name='dw_stokes(u, q)', integral=integral_1, region=omega, u=variable_1, q=variable_4) eq1 = Equation('balance', t1+t2-t3) eq2 = Equation('incompressibility', t4) eqs = Equations([eq1,eq2]) ls = ScipyDirect({}) nls_status = IndexedStruct() nls = Newton({'i_max' : 20, 'eps_a' : 1e-8, 'eps_r' : 1.0, 'macheps' : 1e-16, 'lin_red' : 1e-2, 'ls_red' : 0.1, 'ls_red_warp' : 0.001, 'ls_on' : 0.99999, 'ls_min' : 1e-5, 'check' : 0, 'delta' : 1e-6}, lin_solver=ls, status=nls_status) pb = Problem('Navier-Stokes', equations=eqs) pb.set_bcs(ebcs=Conditions([ebc_1, ebc_2, ebc_3])) pb.set_solver(nls) status = IndexedStruct() state = pb.solve(status=status, save_results=True) out = state.create_output_dict() pb.save_state('Navier_Stokes.vtk', out=out) view = Viewer('Navier_Stokes.vtk') view(rel_scaling=2, is_scalar_bar=True, is_wireframe=True)
[ "sfepy.discrete.Equations", "sfepy.discrete.conditions.EssentialBC", "sfepy.solvers.ls.ScipyDirect", "sfepy.discrete.Equation", "sfepy.solvers.nls.Newton", "sfepy.discrete.conditions.Conditions", "sfepy.discrete.fem.Mesh.from_file", "sfepy.discrete.Integral", "sfepy.discrete.fem.Field.from_args", "sfepy.terms.Term.new", "sfepy.postprocess.viewer.Viewer", "sfepy.discrete.FieldVariable", "sfepy.base.base.IndexedStruct", "sfepy.discrete.Material", "sfepy.discrete.Problem", "sfepy.discrete.fem.FEDomain" ]
[((253, 273), 'sys.path.append', 'sys.path.append', (['"""."""'], {}), "('.')\n", (268, 273), False, 'import sys\n'), ((912, 928), 'argparse.ArgumentParser', 'ArgumentParser', ([], {}), '()\n', (926, 928), False, 'from argparse import ArgumentParser\n'), ((1183, 1237), 'sfepy.discrete.fem.Mesh.from_file', 'Mesh.from_file', (["(data_dir + '/meshes/3d/fluid_mesh.inp')"], {}), "(data_dir + '/meshes/3d/fluid_mesh.inp')\n", (1197, 1237), False, 'from sfepy.discrete.fem import Mesh, FEDomain, Field\n'), ((1247, 1271), 'sfepy.discrete.fem.FEDomain', 'FEDomain', (['"""domain"""', 'mesh'], {}), "('domain', mesh)\n", (1255, 1271), False, 'from sfepy.discrete.fem import Mesh, FEDomain, Field\n'), ((1328, 1423), 'sfepy.discrete.fem.Field.from_args', 'Field.from_args', ([], {'name': '"""3_velocity"""', 'dtype': 'nm.float64', 'shape': '(3)', 'region': 'omega', 'approx_order': '(1)'}), "(name='3_velocity', dtype=nm.float64, shape=3, region=omega,\n approx_order=1)\n", (1343, 1423), False, 'from sfepy.discrete.fem import Mesh, FEDomain, Field\n'), ((1430, 1523), 'sfepy.discrete.fem.Field.from_args', 'Field.from_args', ([], {'name': '"""pressure"""', 'dtype': 'nm.float64', 'shape': '(1)', 'region': 'omega', 'approx_order': '(1)'}), "(name='pressure', dtype=nm.float64, shape=1, region=omega,\n approx_order=1)\n", (1445, 1523), False, 'from sfepy.discrete.fem import Mesh, FEDomain, Field\n'), ((1912, 1980), 'sfepy.discrete.conditions.EssentialBC', 'EssentialBC', ([], {'name': '"""Walls1"""', 'region': 'region_0', 'dofs': "{'u.[0,1,2]': 0.0}"}), "(name='Walls1', region=region_0, dofs={'u.[0,1,2]': 0.0})\n", (1923, 1980), False, 'from sfepy.discrete.conditions import Conditions, EssentialBC, InitialCondition\n'), ((1990, 2058), 'sfepy.discrete.conditions.EssentialBC', 'EssentialBC', ([], {'name': '"""Walls2"""', 'region': 'region_1', 'dofs': "{'u.[0,1,2]': 0.0}"}), "(name='Walls2', region=region_1, dofs={'u.[0,1,2]': 0.0})\n", (2001, 2058), False, 'from sfepy.discrete.conditions import Conditions, EssentialBC, InitialCondition\n'), ((2068, 2145), 'sfepy.discrete.conditions.EssentialBC', 'EssentialBC', ([], {'name': '"""Inlet"""', 'region': 'region_2', 'dofs': "{'u.0': 1.0, 'u.[1,2]': 0.0}"}), "(name='Inlet', region=region_2, dofs={'u.0': 1.0, 'u.[1,2]': 0.0})\n", (2079, 2145), False, 'from sfepy.discrete.conditions import Conditions, EssentialBC, InitialCondition\n'), ((2156, 2232), 'sfepy.discrete.conditions.EssentialBC', 'EssentialBC', ([], {'name': '"""Outlet"""', 'region': 'region_3', 'dofs': "{'p': 0.0, 'u.[1,2]': 0.0}"}), "(name='Outlet', region=region_3, dofs={'p': 0.0, 'u.[1,2]': 0.0})\n", (2167, 2232), False, 'from sfepy.discrete.conditions import Conditions, EssentialBC, InitialCondition\n'), ((2246, 2287), 'sfepy.discrete.Material', 'Material', ([], {'name': '"""viscosity"""', 'value': '(0.00125)'}), "(name='viscosity', value=0.00125)\n", (2254, 2287), False, 'from sfepy.discrete import FieldVariable, Material, Integral, Function, Equation, Equations, Problem\n'), ((2302, 2340), 'sfepy.discrete.FieldVariable', 'FieldVariable', (['"""u"""', '"""unknown"""', 'field_1'], {}), "('u', 'unknown', field_1)\n", (2315, 2340), False, 'from sfepy.discrete import FieldVariable, Material, Integral, Function, Equation, Equations, Problem\n'), ((2354, 2427), 'sfepy.discrete.FieldVariable', 'FieldVariable', ([], {'name': '"""v"""', 'kind': '"""test"""', 'field': 'field_1', 'primary_var_name': '"""u"""'}), "(name='v', kind='test', field=field_1, primary_var_name='u')\n", (2367, 2427), False, 'from sfepy.discrete import FieldVariable, Material, Integral, Function, Equation, Equations, Problem\n'), ((2441, 2495), 'sfepy.discrete.FieldVariable', 'FieldVariable', ([], {'name': '"""p"""', 'kind': '"""unknown"""', 'field': 'field_2'}), "(name='p', kind='unknown', field=field_2)\n", (2454, 2495), False, 'from sfepy.discrete import FieldVariable, Material, Integral, Function, Equation, Equations, Problem\n'), ((2509, 2582), 'sfepy.discrete.FieldVariable', 'FieldVariable', ([], {'name': '"""q"""', 'kind': '"""test"""', 'field': 'field_2', 'primary_var_name': '"""p"""'}), "(name='q', kind='test', field=field_2, primary_var_name='p')\n", (2522, 2582), False, 'from sfepy.discrete import FieldVariable, Material, Integral, Function, Equation, Equations, Problem\n'), ((2597, 2620), 'sfepy.discrete.Integral', 'Integral', (['"""i1"""'], {'order': '(2)'}), "('i1', order=2)\n", (2605, 2620), False, 'from sfepy.discrete import FieldVariable, Material, Integral, Function, Equation, Equations, Problem\n'), ((2634, 2657), 'sfepy.discrete.Integral', 'Integral', (['"""i2"""'], {'order': '(3)'}), "('i2', order=3)\n", (2642, 2657), False, 'from sfepy.discrete import FieldVariable, Material, Integral, Function, Equation, Equations, Problem\n'), ((2664, 2803), 'sfepy.terms.Term.new', 'Term.new', ([], {'name': '"""dw_div_grad(viscosity.value, v, u)"""', 'integral': 'integral_2', 'region': 'omega', 'viscosity': 'viscosity', 'v': 'variable_2', 'u': 'variable_1'}), "(name='dw_div_grad(viscosity.value, v, u)', integral=integral_2,\n region=omega, viscosity=viscosity, v=variable_2, u=variable_1)\n", (2672, 2803), False, 'from sfepy.terms import Term\n'), ((2819, 2920), 'sfepy.terms.Term.new', 'Term.new', ([], {'name': '"""dw_convect(v, u)"""', 'integral': 'integral_2', 'region': 'omega', 'v': 'variable_2', 'u': 'variable_1'}), "(name='dw_convect(v, u)', integral=integral_2, region=omega, v=\n variable_2, u=variable_1)\n", (2827, 2920), False, 'from sfepy.terms import Term\n'), ((2935, 3035), 'sfepy.terms.Term.new', 'Term.new', ([], {'name': '"""dw_stokes(v, p)"""', 'integral': 'integral_1', 'region': 'omega', 'v': 'variable_2', 'p': 'variable_3'}), "(name='dw_stokes(v, p)', integral=integral_1, region=omega, v=\n variable_2, p=variable_3)\n", (2943, 3035), False, 'from sfepy.terms import Term\n'), ((3050, 3150), 'sfepy.terms.Term.new', 'Term.new', ([], {'name': '"""dw_stokes(u, q)"""', 'integral': 'integral_1', 'region': 'omega', 'u': 'variable_1', 'q': 'variable_4'}), "(name='dw_stokes(u, q)', integral=integral_1, region=omega, u=\n variable_1, q=variable_4)\n", (3058, 3150), False, 'from sfepy.terms import Term\n'), ((3166, 3199), 'sfepy.discrete.Equation', 'Equation', (['"""balance"""', '(t1 + t2 - t3)'], {}), "('balance', t1 + t2 - t3)\n", (3174, 3199), False, 'from sfepy.discrete import FieldVariable, Material, Integral, Function, Equation, Equations, Problem\n'), ((3202, 3235), 'sfepy.discrete.Equation', 'Equation', (['"""incompressibility"""', 't4'], {}), "('incompressibility', t4)\n", (3210, 3235), False, 'from sfepy.discrete import FieldVariable, Material, Integral, Function, Equation, Equations, Problem\n'), ((3242, 3263), 'sfepy.discrete.Equations', 'Equations', (['[eq1, eq2]'], {}), '([eq1, eq2])\n', (3251, 3263), False, 'from sfepy.discrete import FieldVariable, Material, Integral, Function, Equation, Equations, Problem\n'), ((3269, 3284), 'sfepy.solvers.ls.ScipyDirect', 'ScipyDirect', (['{}'], {}), '({})\n', (3280, 3284), False, 'from sfepy.solvers.ls import ScipyDirect\n'), ((3298, 3313), 'sfepy.base.base.IndexedStruct', 'IndexedStruct', ([], {}), '()\n', (3311, 3313), False, 'from sfepy.base.base import IndexedStruct, Struct\n'), ((3320, 3553), 'sfepy.solvers.nls.Newton', 'Newton', (["{'i_max': 20, 'eps_a': 1e-08, 'eps_r': 1.0, 'macheps': 1e-16, 'lin_red': \n 0.01, 'ls_red': 0.1, 'ls_red_warp': 0.001, 'ls_on': 0.99999, 'ls_min': \n 1e-05, 'check': 0, 'delta': 1e-06}"], {'lin_solver': 'ls', 'status': 'nls_status'}), "({'i_max': 20, 'eps_a': 1e-08, 'eps_r': 1.0, 'macheps': 1e-16,\n 'lin_red': 0.01, 'ls_red': 0.1, 'ls_red_warp': 0.001, 'ls_on': 0.99999,\n 'ls_min': 1e-05, 'check': 0, 'delta': 1e-06}, lin_solver=ls, status=\n nls_status)\n", (3326, 3553), False, 'from sfepy.solvers.nls import Newton\n'), ((3554, 3593), 'sfepy.discrete.Problem', 'Problem', (['"""Navier-Stokes"""'], {'equations': 'eqs'}), "('Navier-Stokes', equations=eqs)\n", (3561, 3593), False, 'from sfepy.discrete import FieldVariable, Material, Integral, Function, Equation, Equations, Problem\n'), ((3673, 3688), 'sfepy.base.base.IndexedStruct', 'IndexedStruct', ([], {}), '()\n', (3686, 3688), False, 'from sfepy.base.base import IndexedStruct, Struct\n'), ((3826, 3853), 'sfepy.postprocess.viewer.Viewer', 'Viewer', (['"""Navier_Stokes.vtk"""'], {}), "('Navier_Stokes.vtk')\n", (3832, 3853), False, 'from sfepy.postprocess.viewer import Viewer\n'), ((3610, 3643), 'sfepy.discrete.conditions.Conditions', 'Conditions', (['[ebc_1, ebc_2, ebc_3]'], {}), '([ebc_1, ebc_2, ebc_3])\n', (3620, 3643), False, 'from sfepy.discrete.conditions import Conditions, EssentialBC, InitialCondition\n')]
""" Nonlinear solvers. """ import time import numpy as nm import numpy.linalg as nla from sfepy.base.base import output, get_default, debug, Struct from sfepy.base.log import Log, get_logging_conf from sfepy.solvers.solvers import SolverMeta, NonlinearSolver def check_tangent_matrix(conf, vec_x0, fun, fun_grad): """ Verify the correctness of the tangent matrix as computed by `fun_grad()` by comparing it with its finite difference approximation evaluated by repeatedly calling `fun()` with `vec_x0` items perturbed by a small delta. """ vec_x = vec_x0.copy() delta = conf.delta vec_r = fun(vec_x) # Update state. mtx_a0 = fun_grad(vec_x) mtx_a = mtx_a0.tocsc() mtx_d = mtx_a.copy() mtx_d.data[:] = 0.0 vec_dx = nm.zeros_like(vec_r) for ic in range(vec_dx.shape[0]): vec_dx[ic] = delta xx = vec_x.copy() - vec_dx vec_r1 = fun(xx) vec_dx[ic] = -delta xx = vec_x.copy() - vec_dx vec_r2 = fun(xx) vec_dx[ic] = 0.0; vec = 0.5 * (vec_r2 - vec_r1) / delta ir = mtx_a.indices[mtx_a.indptr[ic]:mtx_a.indptr[ic+1]] mtx_d.data[mtx_a.indptr[ic]:mtx_a.indptr[ic+1]] = vec[ir] vec_r = fun(vec_x) # Restore. tt = time.clock() output(mtx_a, '.. analytical') output(mtx_d, '.. difference') import sfepy.base.plotutils as plu plu.plot_matrix_diff(mtx_d, mtx_a, delta, ['difference', 'analytical'], conf.check) return time.clock() - tt def conv_test(conf, it, err, err0): """ Nonlinear solver convergence test. Parameters ---------- conf : Struct instance The nonlinear solver configuration. it : int The current iteration. err : float The current iteration error. err0 : float The initial error. Returns ------- status : int The convergence status: -1 = no convergence (yet), 0 = solver converged - tolerances were met, 1 = max. number of iterations reached. """ status = -1 if (abs(err0) < conf.macheps): err_r = 0.0 else: err_r = err / err0 output('nls: iter: %d, residual: %e (rel: %e)' % (it, err, err_r)) conv_a = err < conf.eps_a if it > 0: conv_r = err_r < conf.eps_r if conv_a and conv_r: status = 0 elif (conf.get('eps_mode', '') == 'or') and (conv_a or conv_r): status = 0 else: if conv_a: status = 0 if (status == -1) and (it >= conf.i_max): status = 1 return status class Newton(NonlinearSolver): r""" Solves a nonlinear system :math:`f(x) = 0` using the Newton method with backtracking line-search, starting with an initial guess :math:`x^0`. """ name = 'nls.newton' __metaclass__ = SolverMeta _parameters = [ ('i_max', 'int', 1, False, 'The maximum number of iterations.'), ('eps_a', 'float', 1e-10, False, 'The absolute tolerance for the residual, i.e. :math:`||f(x^i)||`.'), ('eps_r', 'float', 1.0, False, """The relative tolerance for the residual, i.e. :math:`||f(x^i)|| / ||f(x^0)||`."""), ('eps_mode', "'and' or 'or'", 'and', False, """The logical operator to use for combining the absolute and relative tolerances."""), ('macheps', 'float', nm.finfo(nm.float64).eps, False, 'The float considered to be machine "zero".'), ('lin_red', 'float', 1.0, False, """The linear system solution error should be smaller than (`eps_a` * `lin_red`), otherwise a warning is printed."""), ('lin_precision', 'float or None', None, False, """If not None, the linear system solution tolerances are set in each nonlinear iteration relative to the current residual norm by the `lin_precision` factor. Ignored for direct linear solvers."""), ('ls_on', 'float', 0.99999, False, """Start the backtracking line-search by reducing the step, if :math:`||f(x^i)|| / ||f(x^{i-1})||` is larger than `ls_on`."""), ('ls_red', '0.0 < float < 1.0', 0.1, False, 'The step reduction factor in case of correct residual assembling.'), ('ls_red_warp', '0.0 < float < 1.0', 0.001, False, """The step reduction factor in case of failed residual assembling (e.g. the "warp violation" error caused by a negative volume element resulting from too large deformations)."""), ('ls_min', '0.0 < float < 1.0', 1e-5, False, 'The minimum step reduction factor.'), ('give_up_warp', 'bool', False, False, 'If True, abort on the "warp violation" error.'), ('check', '0, 1 or 2', 0, False, """If >= 1, check the tangent matrix using finite differences. If 2, plot the resulting sparsity patterns."""), ('delta', 'float', 1e-6, False, r"""If `check >= 1`, the finite difference matrix is taken as :math:`A_{ij} = \frac{f_i(x_j + \delta) - f_i(x_j - \delta)}{2 \delta}`."""), ('log', 'dict or None', None, False, """If not None, log the convergence according to the configuration in the following form: ``{'text' : 'log.txt', 'plot' : 'log.pdf'}``. Each of the dict items can be None."""), ('is_linear', 'bool', False, False, 'If True, the problem is considered to be linear.'), ] def __init__(self, conf, **kwargs): NonlinearSolver.__init__(self, conf, **kwargs) conf = self.conf log = get_logging_conf(conf) conf.log = log = Struct(name='log_conf', **log) conf.is_any_log = (log.text is not None) or (log.plot is not None) if conf.is_any_log: self.log = Log([[r'$||r||$'], ['iteration']], xlabels=['', 'all iterations'], ylabels=[r'$||r||$', 'iteration'], yscales=['log', 'linear'], is_plot=conf.log.plot is not None, log_filename=conf.log.text, formats=[['%.8e'], ['%d']]) else: self.log = None def __call__(self, vec_x0, conf=None, fun=None, fun_grad=None, lin_solver=None, iter_hook=None, status=None): """ Nonlinear system solver call. Solves a nonlinear system :math:`f(x) = 0` using the Newton method with backtracking line-search, starting with an initial guess :math:`x^0`. Parameters ---------- vec_x0 : array The initial guess vector :math:`x_0`. conf : Struct instance, optional The solver configuration parameters, fun : function, optional The function :math:`f(x)` whose zero is sought - the residual. fun_grad : function, optional The gradient of :math:`f(x)` - the tangent matrix. lin_solver : LinearSolver instance, optional The linear solver for each nonlinear iteration. iter_hook : function, optional User-supplied function to call before each iteration. status : dict-like, optional The user-supplied object to hold convergence statistics. Notes ----- * The optional parameters except `iter_hook` and `status` need to be given either here or upon `Newton` construction. * Setting `conf.is_linear == True` means a pre-assembled and possibly pre-solved matrix. This is mostly useful for linear time-dependent problems. """ conf = get_default(conf, self.conf) fun = get_default(fun, self.fun) fun_grad = get_default(fun_grad, self.fun_grad) lin_solver = get_default(lin_solver, self.lin_solver) iter_hook = get_default(iter_hook, self.iter_hook) status = get_default(status, self.status) ls_eps_a, ls_eps_r = lin_solver.get_tolerance() eps_a = get_default(ls_eps_a, 1.0) eps_r = get_default(ls_eps_r, 1.0) lin_red = conf.eps_a * conf.lin_red time_stats = {} vec_x = vec_x0.copy() vec_x_last = vec_x0.copy() vec_dx = None if self.log is not None: self.log.plot_vlines(color='r', linewidth=1.0) err = err0 = -1.0 err_last = -1.0 it = 0 while 1: if iter_hook is not None: iter_hook(self, vec_x, it, err, err0) ls = 1.0 vec_dx0 = vec_dx; while 1: tt = time.clock() try: vec_r = fun(vec_x) except ValueError: if (it == 0) or (ls < conf.ls_min): output('giving up!') raise else: ok = False else: ok = True time_stats['rezidual'] = time.clock() - tt if ok: try: err = nla.norm(vec_r) except: output('infs or nans in the residual:', vec_r) output(nm.isfinite(vec_r).all()) debug() if self.log is not None: self.log(err, it) if it == 0: err0 = err; break if err < (err_last * conf.ls_on): break red = conf.ls_red; output('linesearch: iter %d, (%.5e < %.5e) (new ls: %e)' % (it, err, err_last * conf.ls_on, red * ls)) else: # Failure. if conf.give_up_warp: output('giving up!') break red = conf.ls_red_warp; output('rezidual computation failed for iter %d' ' (new ls: %e)!' % (it, red * ls)) if ls < conf.ls_min: output('linesearch failed, continuing anyway') break ls *= red; vec_dx = ls * vec_dx0; vec_x = vec_x_last.copy() - vec_dx # End residual loop. if self.log is not None: self.log.plot_vlines([1], color='g', linewidth=0.5) err_last = err; vec_x_last = vec_x.copy() condition = conv_test(conf, it, err, err0) if condition >= 0: break if (not ok) and conf.give_up_warp: condition = 2 break tt = time.clock() if not conf.is_linear: mtx_a = fun_grad(vec_x) else: mtx_a = fun_grad('linear') time_stats['matrix'] = time.clock() - tt if conf.check: tt = time.clock() wt = check_tangent_matrix(conf, vec_x, fun, fun_grad) time_stats['check'] = time.clock() - tt - wt if conf.lin_precision is not None: if ls_eps_a is not None: eps_a = max(err * conf.lin_precision, ls_eps_a) elif ls_eps_r is not None: eps_r = max(conf.lin_precision, ls_eps_r) lin_red = max(eps_a, err * eps_r) if conf.verbose: output('solving linear system...') tt = time.clock() vec_dx = lin_solver(vec_r, x0=vec_x, eps_a=eps_a, eps_r=eps_r, mtx=mtx_a) time_stats['solve'] = time.clock() - tt if conf.verbose: output('...done') for kv in time_stats.iteritems(): output('%10s: %7.2f [s]' % kv) vec_e = mtx_a * vec_dx - vec_r lerr = nla.norm(vec_e) if lerr > lin_red: output('warning: linear system solution precision is lower') output('then the value set in solver options! (err = %e < %e)' % (lerr, lin_red)) vec_x -= vec_dx it += 1 if status is not None: status['time_stats'] = time_stats status['err0'] = err0 status['err'] = err status['n_iter'] = it status['condition'] = condition if conf.log.plot is not None: if self.log is not None: self.log(save_figure=conf.log.plot) return vec_x class ScipyBroyden(NonlinearSolver): """ Interface to Broyden and Anderson solvers from ``scipy.optimize``. """ name = 'nls.scipy_broyden_like' __metaclass__ = SolverMeta _parameters = [ ('method', 'str', 'anderson', False, 'The name of the solver in ``scipy.optimize``.'), ('i_max', 'int', 10, False, 'The maximum number of iterations.'), ('alpha', 'float', 0.9, False, 'See ``scipy.optimize``.'), ('M', 'float', 5, False, 'See ``scipy.optimize``.'), ('f_tol', 'float', 1e-6, False, 'See ``scipy.optimize``.'), ('w0', 'float', 0.1, False, 'See ``scipy.optimize``.'), ] def __init__(self, conf, **kwargs): NonlinearSolver.__init__(self, conf, **kwargs) self.set_method(self.conf) def set_method(self, conf): import scipy.optimize as so try: solver = getattr(so, conf.method) except AttributeError: output('scipy solver %s does not exist!' % conf.method) output('using broyden3 instead') solver = so.broyden3 self.solver = solver def __call__(self, vec_x0, conf=None, fun=None, fun_grad=None, lin_solver=None, iter_hook=None, status=None): if conf is not None: self.set_method(conf) else: conf = self.conf fun = get_default(fun, self.fun) status = get_default(status, self.status) tt = time.clock() kwargs = {'iter' : conf.i_max, 'alpha' : conf.alpha, 'verbose' : conf.verbose} if conf.method == 'broyden_generalized': kwargs.update({'M' : conf.M}) elif conf.method in ['anderson', 'anderson2']: kwargs.update({'M' : conf.M, 'w0' : conf.w0}) if conf.method in ['anderson', 'anderson2', 'broyden', 'broyden2' , 'newton_krylov']: kwargs.update({'f_tol' : conf.f_tol }) vec_x = self.solver(fun, vec_x0, **kwargs) vec_x = nm.asarray(vec_x) if status is not None: status['time_stats'] = time.clock() - tt return vec_x class PETScNonlinearSolver(NonlinearSolver): """ Interface to PETSc SNES (Scalable Nonlinear Equations Solvers). The solver supports parallel use with a given MPI communicator (see `comm` argument of :func:`PETScNonlinearSolver.__init__()`). Returns a (global) PETSc solution vector instead of a (local) numpy array, when given a PETSc initial guess vector. For parallel use, the `fun` and `fun_grad` callbacks should be provided by :class:`PETScParallelEvaluator <sfepy.parallel.evaluate.PETScParallelEvaluator>`. """ name = 'nls.petsc' __metaclass__ = SolverMeta _parameters = [ ('method', 'str', 'newtonls', False, 'The SNES type.'), ('i_max', 'int', 10, False, 'The maximum number of iterations.'), ('if_max', 'int', 100, False, 'The maximum number of function evaluations.'), ('eps_a', 'float', 1e-10, False, 'The absolute tolerance for the residual, i.e. :math:`||f(x^i)||`.'), ('eps_r', 'float', 1.0, False, """The relative tolerance for the residual, i.e. :math:`||f(x^i)|| / ||f(x^0)||`."""), ('eps_s', 'float', 0.0, False, """The convergence tolerance in terms of the norm of the change in the solution between steps, i.e. $||delta x|| < \epsilon_s ||x||$"""), ] def __init__(self, conf, pmtx=None, prhs=None, comm=None, **kwargs): if comm is None: try: import petsc4py petsc4py.init([]) except ImportError: msg = 'cannot import petsc4py!' raise ImportError(msg) from petsc4py import PETSc as petsc NonlinearSolver.__init__(self, conf, petsc=petsc, pmtx=pmtx, prhs=prhs, comm=comm, **kwargs) def __call__(self, vec_x0, conf=None, fun=None, fun_grad=None, lin_solver=None, iter_hook=None, status=None, pmtx=None, prhs=None, comm=None): conf = self.conf fun = get_default(fun, self.fun) fun_grad = get_default(fun_grad, self.fun_grad) lin_solver = get_default(lin_solver, self.lin_solver) iter_hook = get_default(iter_hook, self.iter_hook) status = get_default(status, self.status) pmtx = get_default(pmtx, self.pmtx) prhs = get_default(prhs, self.prhs) comm = get_default(comm, self.comm) tt = time.clock() if isinstance(vec_x0, self.petsc.Vec): psol = vec_x0 else: psol = pmtx.getVecLeft() psol[...] = vec_x0 snes = self.petsc.SNES() snes.create(comm) snes.setType(conf.method) ksp = lin_solver.create_ksp() snes.setKSP(ksp) ls_conf = lin_solver.conf ksp.setTolerances(atol=ls_conf.eps_a, rtol=ls_conf.eps_r, divtol=ls_conf.eps_d, max_it=ls_conf.i_max) snes.setFunction(fun, prhs) snes.setJacobian(fun_grad, pmtx) snes.setTolerances(atol=conf.eps_a, rtol=conf.eps_r, stol=conf.eps_s, max_it=conf.i_max) snes.setMaxFunctionEvaluations(conf.if_max) snes.setFromOptions() snes.solve(prhs.duplicate(), psol) if status is not None: status['time_stats'] = time.clock() - tt if isinstance(vec_x0, self.petsc.Vec): sol = psol else: sol = psol[...].copy() return sol
[ "sfepy.base.log.get_logging_conf", "sfepy.base.base.get_default", "sfepy.solvers.solvers.NonlinearSolver.__init__", "sfepy.base.base.Struct", "sfepy.base.plotutils.plot_matrix_diff", "sfepy.base.log.Log", "sfepy.base.base.debug", "sfepy.base.base.output" ]
[((772, 792), 'numpy.zeros_like', 'nm.zeros_like', (['vec_r'], {}), '(vec_r)\n', (785, 792), True, 'import numpy as nm\n'), ((1258, 1270), 'time.clock', 'time.clock', ([], {}), '()\n', (1268, 1270), False, 'import time\n'), ((1275, 1305), 'sfepy.base.base.output', 'output', (['mtx_a', '""".. analytical"""'], {}), "(mtx_a, '.. analytical')\n", (1281, 1305), False, 'from sfepy.base.base import output, get_default, debug, Struct\n'), ((1310, 1340), 'sfepy.base.base.output', 'output', (['mtx_d', '""".. difference"""'], {}), "(mtx_d, '.. difference')\n", (1316, 1340), False, 'from sfepy.base.base import output, get_default, debug, Struct\n'), ((1384, 1471), 'sfepy.base.plotutils.plot_matrix_diff', 'plu.plot_matrix_diff', (['mtx_d', 'mtx_a', 'delta', "['difference', 'analytical']", 'conf.check'], {}), "(mtx_d, mtx_a, delta, ['difference', 'analytical'],\n conf.check)\n", (1404, 1471), True, 'import sfepy.base.plotutils as plu\n'), ((2163, 2229), 'sfepy.base.base.output', 'output', (["('nls: iter: %d, residual: %e (rel: %e)' % (it, err, err_r))"], {}), "('nls: iter: %d, residual: %e (rel: %e)' % (it, err, err_r))\n", (2169, 2229), False, 'from sfepy.base.base import output, get_default, debug, Struct\n'), ((1505, 1517), 'time.clock', 'time.clock', ([], {}), '()\n', (1515, 1517), False, 'import time\n'), ((5580, 5626), 'sfepy.solvers.solvers.NonlinearSolver.__init__', 'NonlinearSolver.__init__', (['self', 'conf'], {}), '(self, conf, **kwargs)\n', (5604, 5626), False, 'from sfepy.solvers.solvers import SolverMeta, NonlinearSolver\n'), ((5668, 5690), 'sfepy.base.log.get_logging_conf', 'get_logging_conf', (['conf'], {}), '(conf)\n', (5684, 5690), False, 'from sfepy.base.log import Log, get_logging_conf\n'), ((5716, 5746), 'sfepy.base.base.Struct', 'Struct', ([], {'name': '"""log_conf"""'}), "(name='log_conf', **log)\n", (5722, 5746), False, 'from sfepy.base.base import output, get_default, debug, Struct\n'), ((7742, 7770), 'sfepy.base.base.get_default', 'get_default', (['conf', 'self.conf'], {}), '(conf, self.conf)\n', (7753, 7770), False, 'from sfepy.base.base import output, get_default, debug, Struct\n'), ((7785, 7811), 'sfepy.base.base.get_default', 'get_default', (['fun', 'self.fun'], {}), '(fun, self.fun)\n', (7796, 7811), False, 'from sfepy.base.base import output, get_default, debug, Struct\n'), ((7831, 7867), 'sfepy.base.base.get_default', 'get_default', (['fun_grad', 'self.fun_grad'], {}), '(fun_grad, self.fun_grad)\n', (7842, 7867), False, 'from sfepy.base.base import output, get_default, debug, Struct\n'), ((7889, 7929), 'sfepy.base.base.get_default', 'get_default', (['lin_solver', 'self.lin_solver'], {}), '(lin_solver, self.lin_solver)\n', (7900, 7929), False, 'from sfepy.base.base import output, get_default, debug, Struct\n'), ((7950, 7988), 'sfepy.base.base.get_default', 'get_default', (['iter_hook', 'self.iter_hook'], {}), '(iter_hook, self.iter_hook)\n', (7961, 7988), False, 'from sfepy.base.base import output, get_default, debug, Struct\n'), ((8006, 8038), 'sfepy.base.base.get_default', 'get_default', (['status', 'self.status'], {}), '(status, self.status)\n', (8017, 8038), False, 'from sfepy.base.base import output, get_default, debug, Struct\n'), ((8112, 8138), 'sfepy.base.base.get_default', 'get_default', (['ls_eps_a', '(1.0)'], {}), '(ls_eps_a, 1.0)\n', (8123, 8138), False, 'from sfepy.base.base import output, get_default, debug, Struct\n'), ((8155, 8181), 'sfepy.base.base.get_default', 'get_default', (['ls_eps_r', '(1.0)'], {}), '(ls_eps_r, 1.0)\n', (8166, 8181), False, 'from sfepy.base.base import output, get_default, debug, Struct\n'), ((13476, 13522), 'sfepy.solvers.solvers.NonlinearSolver.__init__', 'NonlinearSolver.__init__', (['self', 'conf'], {}), '(self, conf, **kwargs)\n', (13500, 13522), False, 'from sfepy.solvers.solvers import SolverMeta, NonlinearSolver\n'), ((14145, 14171), 'sfepy.base.base.get_default', 'get_default', (['fun', 'self.fun'], {}), '(fun, self.fun)\n', (14156, 14171), False, 'from sfepy.base.base import output, get_default, debug, Struct\n'), ((14189, 14221), 'sfepy.base.base.get_default', 'get_default', (['status', 'self.status'], {}), '(status, self.status)\n', (14200, 14221), False, 'from sfepy.base.base import output, get_default, debug, Struct\n'), ((14236, 14248), 'time.clock', 'time.clock', ([], {}), '()\n', (14246, 14248), False, 'import time\n'), ((14820, 14837), 'numpy.asarray', 'nm.asarray', (['vec_x'], {}), '(vec_x)\n', (14830, 14837), True, 'import numpy as nm\n'), ((16672, 16768), 'sfepy.solvers.solvers.NonlinearSolver.__init__', 'NonlinearSolver.__init__', (['self', 'conf'], {'petsc': 'petsc', 'pmtx': 'pmtx', 'prhs': 'prhs', 'comm': 'comm'}), '(self, conf, petsc=petsc, pmtx=pmtx, prhs=prhs,\n comm=comm, **kwargs)\n', (16696, 16768), False, 'from sfepy.solvers.solvers import SolverMeta, NonlinearSolver\n'), ((17019, 17045), 'sfepy.base.base.get_default', 'get_default', (['fun', 'self.fun'], {}), '(fun, self.fun)\n', (17030, 17045), False, 'from sfepy.base.base import output, get_default, debug, Struct\n'), ((17065, 17101), 'sfepy.base.base.get_default', 'get_default', (['fun_grad', 'self.fun_grad'], {}), '(fun_grad, self.fun_grad)\n', (17076, 17101), False, 'from sfepy.base.base import output, get_default, debug, Struct\n'), ((17123, 17163), 'sfepy.base.base.get_default', 'get_default', (['lin_solver', 'self.lin_solver'], {}), '(lin_solver, self.lin_solver)\n', (17134, 17163), False, 'from sfepy.base.base import output, get_default, debug, Struct\n'), ((17184, 17222), 'sfepy.base.base.get_default', 'get_default', (['iter_hook', 'self.iter_hook'], {}), '(iter_hook, self.iter_hook)\n', (17195, 17222), False, 'from sfepy.base.base import output, get_default, debug, Struct\n'), ((17240, 17272), 'sfepy.base.base.get_default', 'get_default', (['status', 'self.status'], {}), '(status, self.status)\n', (17251, 17272), False, 'from sfepy.base.base import output, get_default, debug, Struct\n'), ((17288, 17316), 'sfepy.base.base.get_default', 'get_default', (['pmtx', 'self.pmtx'], {}), '(pmtx, self.pmtx)\n', (17299, 17316), False, 'from sfepy.base.base import output, get_default, debug, Struct\n'), ((17332, 17360), 'sfepy.base.base.get_default', 'get_default', (['prhs', 'self.prhs'], {}), '(prhs, self.prhs)\n', (17343, 17360), False, 'from sfepy.base.base import output, get_default, debug, Struct\n'), ((17376, 17404), 'sfepy.base.base.get_default', 'get_default', (['comm', 'self.comm'], {}), '(comm, self.comm)\n', (17387, 17404), False, 'from sfepy.base.base import output, get_default, debug, Struct\n'), ((17419, 17431), 'time.clock', 'time.clock', ([], {}), '()\n', (17429, 17431), False, 'import time\n'), ((5874, 6101), 'sfepy.base.log.Log', 'Log', (["[['$||r||$'], ['iteration']]"], {'xlabels': "['', 'all iterations']", 'ylabels': "['$||r||$', 'iteration']", 'yscales': "['log', 'linear']", 'is_plot': '(conf.log.plot is not None)', 'log_filename': 'conf.log.text', 'formats': "[['%.8e'], ['%d']]"}), "([['$||r||$'], ['iteration']], xlabels=['', 'all iterations'], ylabels=[\n '$||r||$', 'iteration'], yscales=['log', 'linear'], is_plot=conf.log.\n plot is not None, log_filename=conf.log.text, formats=[['%.8e'], ['%d']])\n", (5877, 6101), False, 'from sfepy.base.log import Log, get_logging_conf\n'), ((10844, 10856), 'time.clock', 'time.clock', ([], {}), '()\n', (10854, 10856), False, 'import time\n'), ((11654, 11666), 'time.clock', 'time.clock', ([], {}), '()\n', (11664, 11666), False, 'import time\n'), ((12058, 12073), 'numpy.linalg.norm', 'nla.norm', (['vec_e'], {}), '(vec_e)\n', (12066, 12073), True, 'import numpy.linalg as nla\n'), ((3415, 3435), 'numpy.finfo', 'nm.finfo', (['nm.float64'], {}), '(nm.float64)\n', (3423, 3435), True, 'import numpy as nm\n'), ((8701, 8713), 'time.clock', 'time.clock', ([], {}), '()\n', (8711, 8713), False, 'import time\n'), ((11030, 11042), 'time.clock', 'time.clock', ([], {}), '()\n', (11040, 11042), False, 'import time\n'), ((11097, 11109), 'time.clock', 'time.clock', ([], {}), '()\n', (11107, 11109), False, 'import time\n'), ((11601, 11635), 'sfepy.base.base.output', 'output', (['"""solving linear system..."""'], {}), "('solving linear system...')\n", (11607, 11635), False, 'from sfepy.base.base import output, get_default, debug, Struct\n'), ((11819, 11831), 'time.clock', 'time.clock', ([], {}), '()\n', (11829, 11831), False, 'import time\n'), ((11883, 11900), 'sfepy.base.base.output', 'output', (['"""...done"""'], {}), "('...done')\n", (11889, 11900), False, 'from sfepy.base.base import output, get_default, debug, Struct\n'), ((11964, 11994), 'sfepy.base.base.output', 'output', (["('%10s: %7.2f [s]' % kv)"], {}), "('%10s: %7.2f [s]' % kv)\n", (11970, 11994), False, 'from sfepy.base.base import output, get_default, debug, Struct\n'), ((12121, 12181), 'sfepy.base.base.output', 'output', (['"""warning: linear system solution precision is lower"""'], {}), "('warning: linear system solution precision is lower')\n", (12127, 12181), False, 'from sfepy.base.base import output, get_default, debug, Struct\n'), ((12198, 12283), 'sfepy.base.base.output', 'output', (["('then the value set in solver options! (err = %e < %e)' % (lerr, lin_red))"], {}), "('then the value set in solver options! (err = %e < %e)' % (lerr,\n lin_red))\n", (12204, 12283), False, 'from sfepy.base.base import output, get_default, debug, Struct\n'), ((13730, 13785), 'sfepy.base.base.output', 'output', (["('scipy solver %s does not exist!' % conf.method)"], {}), "('scipy solver %s does not exist!' % conf.method)\n", (13736, 13785), False, 'from sfepy.base.base import output, get_default, debug, Struct\n'), ((13798, 13830), 'sfepy.base.base.output', 'output', (['"""using broyden3 instead"""'], {}), "('using broyden3 instead')\n", (13804, 13830), False, 'from sfepy.base.base import output, get_default, debug, Struct\n'), ((14905, 14917), 'time.clock', 'time.clock', ([], {}), '()\n', (14915, 14917), False, 'import time\n'), ((16481, 16498), 'petsc4py.init', 'petsc4py.init', (['[]'], {}), '([])\n', (16494, 16498), False, 'import petsc4py\n'), ((18313, 18325), 'time.clock', 'time.clock', ([], {}), '()\n', (18323, 18325), False, 'import time\n'), ((9099, 9111), 'time.clock', 'time.clock', ([], {}), '()\n', (9109, 9111), False, 'import time\n'), ((9705, 9812), 'sfepy.base.base.output', 'output', (["('linesearch: iter %d, (%.5e < %.5e) (new ls: %e)' % (it, err, err_last *\n conf.ls_on, red * ls))"], {}), "('linesearch: iter %d, (%.5e < %.5e) (new ls: %e)' % (it, err, \n err_last * conf.ls_on, red * ls))\n", (9711, 9812), False, 'from sfepy.base.base import output, get_default, debug, Struct\n'), ((10050, 10135), 'sfepy.base.base.output', 'output', (["('rezidual computation failed for iter %d (new ls: %e)!' % (it, red * ls))"], {}), "('rezidual computation failed for iter %d (new ls: %e)!' % (it, red * ls)\n )\n", (10056, 10135), False, 'from sfepy.base.base import output, get_default, debug, Struct\n'), ((10219, 10265), 'sfepy.base.base.output', 'output', (['"""linesearch failed, continuing anyway"""'], {}), "('linesearch failed, continuing anyway')\n", (10225, 10265), False, 'from sfepy.base.base import output, get_default, debug, Struct\n'), ((9195, 9210), 'numpy.linalg.norm', 'nla.norm', (['vec_r'], {}), '(vec_r)\n', (9203, 9210), True, 'import numpy.linalg as nla\n'), ((9934, 9954), 'sfepy.base.base.output', 'output', (['"""giving up!"""'], {}), "('giving up!')\n", (9940, 9954), False, 'from sfepy.base.base import output, get_default, debug, Struct\n'), ((11218, 11230), 'time.clock', 'time.clock', ([], {}), '()\n', (11228, 11230), False, 'import time\n'), ((8891, 8911), 'sfepy.base.base.output', 'output', (['"""giving up!"""'], {}), "('giving up!')\n", (8897, 8911), False, 'from sfepy.base.base import output, get_default, debug, Struct\n'), ((9263, 9309), 'sfepy.base.base.output', 'output', (['"""infs or nans in the residual:"""', 'vec_r'], {}), "('infs or nans in the residual:', vec_r)\n", (9269, 9309), False, 'from sfepy.base.base import output, get_default, debug, Struct\n'), ((9391, 9398), 'sfepy.base.base.debug', 'debug', ([], {}), '()\n', (9396, 9398), False, 'from sfepy.base.base import output, get_default, debug, Struct\n'), ((9341, 9359), 'numpy.isfinite', 'nm.isfinite', (['vec_r'], {}), '(vec_r)\n', (9352, 9359), True, 'import numpy as nm\n')]
from typing import List, Dict from fastapi import APIRouter, Depends, HTTPException, Query from sqlmodel import Session, select from app import models from app.api import deps router = APIRouter() @router.post("/", response_model=models.TeamRead) def create_team( *, session: Session = Depends(deps.get_session), team: models.TeamCreate ) -> models.Team: db_team = models.Team.from_orm(team) session.add(db_team) session.commit() session.refresh(db_team) return db_team @router.get("/", response_model=List[models.TeamRead]) def read_teams( *, session: Session = Depends(deps.get_session), offset: int = 0, limit: int = Query(default=100, lte=100), ) -> List[models.Team]: teams = session.exec(select(models.Team).offset(offset).limit(limit)).all() return teams @router.get("/{team_id}", response_model=models.TeamReadWithHeroes) def read_team( *, team_id: int, session: Session = Depends(deps.get_session) ) -> models.Team: team = session.get(models.Team, team_id) if not team: raise HTTPException(status_code=404, detail="Team not found") return team @router.patch("/{team_id}", response_model=models.TeamRead) def update_team( *, session: Session = Depends(deps.get_session), team_id: int, team: models.TeamUpdate, ) -> models.Team: db_team = session.get(models.Team, team_id) if not db_team: raise HTTPException(status_code=404, detail="Team not found") team_data = team.dict(exclude_unset=True) for key, value in team_data.items(): setattr(db_team, key, value) session.add(db_team) session.commit() session.refresh(db_team) return db_team @router.delete("/teams/{team_id}") def delete_team( *, session: Session = Depends(deps.get_session), team_id: int ) -> Dict[str, bool]: team = session.get(models.Team, team_id) if not team: raise HTTPException(status_code=404, detail="Team not found") session.delete(team) session.commit() return {"ok": True}
[ "sqlmodel.select" ]
[((198, 209), 'fastapi.APIRouter', 'APIRouter', ([], {}), '()\n', (207, 209), False, 'from fastapi import APIRouter, Depends, HTTPException, Query\n'), ((310, 335), 'fastapi.Depends', 'Depends', (['deps.get_session'], {}), '(deps.get_session)\n', (317, 335), False, 'from fastapi import APIRouter, Depends, HTTPException, Query\n'), ((395, 421), 'app.models.Team.from_orm', 'models.Team.from_orm', (['team'], {}), '(team)\n', (415, 421), False, 'from app import models\n'), ((629, 654), 'fastapi.Depends', 'Depends', (['deps.get_session'], {}), '(deps.get_session)\n', (636, 654), False, 'from fastapi import APIRouter, Depends, HTTPException, Query\n'), ((696, 723), 'fastapi.Query', 'Query', ([], {'default': '(100)', 'lte': '(100)'}), '(default=100, lte=100)\n', (701, 723), False, 'from fastapi import APIRouter, Depends, HTTPException, Query\n'), ((979, 1004), 'fastapi.Depends', 'Depends', (['deps.get_session'], {}), '(deps.get_session)\n', (986, 1004), False, 'from fastapi import APIRouter, Depends, HTTPException, Query\n'), ((1291, 1316), 'fastapi.Depends', 'Depends', (['deps.get_session'], {}), '(deps.get_session)\n', (1298, 1316), False, 'from fastapi import APIRouter, Depends, HTTPException, Query\n'), ((1837, 1862), 'fastapi.Depends', 'Depends', (['deps.get_session'], {}), '(deps.get_session)\n', (1844, 1862), False, 'from fastapi import APIRouter, Depends, HTTPException, Query\n'), ((1103, 1158), 'fastapi.HTTPException', 'HTTPException', ([], {'status_code': '(404)', 'detail': '"""Team not found"""'}), "(status_code=404, detail='Team not found')\n", (1116, 1158), False, 'from fastapi import APIRouter, Depends, HTTPException, Query\n'), ((1471, 1526), 'fastapi.HTTPException', 'HTTPException', ([], {'status_code': '(404)', 'detail': '"""Team not found"""'}), "(status_code=404, detail='Team not found')\n", (1484, 1526), False, 'from fastapi import APIRouter, Depends, HTTPException, Query\n'), ((1979, 2034), 'fastapi.HTTPException', 'HTTPException', ([], {'status_code': '(404)', 'detail': '"""Team not found"""'}), "(status_code=404, detail='Team not found')\n", (1992, 2034), False, 'from fastapi import APIRouter, Depends, HTTPException, Query\n'), ((776, 795), 'sqlmodel.select', 'select', (['models.Team'], {}), '(models.Team)\n', (782, 795), False, 'from sqlmodel import Session, select\n')]
from minio import Minio import os from typing import Optional from glob import glob import pathlib from sqlmodel import Field, Session, SQLModel, create_engine def get_images(folder:str="../cls_labeling/public/images"): return glob(str(pathlib.Path(folder,"**","*.jpg")), recursive=True) class Image(SQLModel, table=True): key: Optional[int] = Field(default=None, primary_key=True) image_name: str label: str image_url: str if __name__ == "__main__": engine = create_engine("sqlite:///image.db") client = Minio( "localhost:9001", secure=False, access_key="<KEY>", secret_key="<KEY>" ) bucket_found = client.bucket_exists("image") if not bucket_found: client.make_bucket("image") else: for obj in client.list_objects("image"): client.remove_object("image", obj.object_name) client.remove_bucket("image") client.make_bucket("image") os.remove("./image.db") SQLModel.metadata.create_all(engine) images = [] for i, image in enumerate(get_images()): print(pathlib.Path(image).stem, image) image_name = pathlib.Path(image).stem+'.jpg' client.fput_object( "image", image_name, image ) image_url = f"http://localhost:9001/image/{image_name}" images.append( Image(key=i, image_name=pathlib.Path(image).stem, label="", image_url=image_url) ) with Session(engine) as session: for data in images: session.add(data) session.commit()
[ "sqlmodel.SQLModel.metadata.create_all", "sqlmodel.Session", "sqlmodel.Field", "sqlmodel.create_engine" ]
[((355, 392), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'primary_key': '(True)'}), '(default=None, primary_key=True)\n', (360, 392), False, 'from sqlmodel import Field, Session, SQLModel, create_engine\n'), ((489, 524), 'sqlmodel.create_engine', 'create_engine', (['"""sqlite:///image.db"""'], {}), "('sqlite:///image.db')\n", (502, 524), False, 'from sqlmodel import Field, Session, SQLModel, create_engine\n'), ((538, 615), 'minio.Minio', 'Minio', (['"""localhost:9001"""'], {'secure': '(False)', 'access_key': '"""<KEY>"""', 'secret_key': '"""<KEY>"""'}), "('localhost:9001', secure=False, access_key='<KEY>', secret_key='<KEY>')\n", (543, 615), False, 'from minio import Minio\n'), ((994, 1030), 'sqlmodel.SQLModel.metadata.create_all', 'SQLModel.metadata.create_all', (['engine'], {}), '(engine)\n', (1022, 1030), False, 'from sqlmodel import Field, Session, SQLModel, create_engine\n'), ((965, 988), 'os.remove', 'os.remove', (['"""./image.db"""'], {}), "('./image.db')\n", (974, 988), False, 'import os\n'), ((1473, 1488), 'sqlmodel.Session', 'Session', (['engine'], {}), '(engine)\n', (1480, 1488), False, 'from sqlmodel import Field, Session, SQLModel, create_engine\n'), ((241, 276), 'pathlib.Path', 'pathlib.Path', (['folder', '"""**"""', '"""*.jpg"""'], {}), "(folder, '**', '*.jpg')\n", (253, 276), False, 'import pathlib\n'), ((1108, 1127), 'pathlib.Path', 'pathlib.Path', (['image'], {}), '(image)\n', (1120, 1127), False, 'import pathlib\n'), ((1162, 1181), 'pathlib.Path', 'pathlib.Path', (['image'], {}), '(image)\n', (1174, 1181), False, 'import pathlib\n'), ((1396, 1415), 'pathlib.Path', 'pathlib.Path', (['image'], {}), '(image)\n', (1408, 1415), False, 'import pathlib\n')]
#!/usr/bin/env mdl # This file will seal the nms opr within a better way than lib_nms import ctypes import os import struct import numpy as np import megengine as mge import megengine.functional as F from megengine._internal.craniotome import CraniotomeBase from megengine.core.tensor import wrap_io_tensor _current_path = os.path.dirname(os.path.abspath(__file__)) _so_path = os.path.join(_current_path, "lib_nms.so") try: _so_lib = ctypes.CDLL(_so_path) except Exception: import subprocess mge_path = os.path.join(os.path.dirname(mge.__file__), "_internal", "include") assert os.path.exists(mge_path), "{} file not found".format(mge_path) src_file = os.path.join(_current_path, "gpu_nms", "nms.cu") assert os.path.exists(src_file), "{} file not found".format(src_file) cmd = ( "nvcc -I {} -shared -o {} -Xcompiler '-fno-strict-aliasing -fPIC' {}".format( mge_path, _so_path, src_file ) ) subprocess.check_call(cmd, shell=True) _so_lib = ctypes.CDLL(_so_path) _TYPE_POINTER = ctypes.c_void_p _TYPE_POINTER = ctypes.c_void_p _TYPE_INT = ctypes.c_int32 _TYPE_FLOAT = ctypes.c_float _so_lib.NMSForwardGpu.argtypes = [ _TYPE_POINTER, _TYPE_POINTER, _TYPE_POINTER, _TYPE_POINTER, _TYPE_FLOAT, _TYPE_INT, _TYPE_POINTER, ] _so_lib.NMSForwardGpu.restype = _TYPE_INT _so_lib.CreateHostDevice.restype = _TYPE_POINTER class NMSCran(CraniotomeBase): __nr_inputs__ = 1 __nr_outputs__ = 3 def setup(self, iou_threshold, max_output): self._iou_threshold = iou_threshold self._max_output = max_output # Load the necessary host device self._host_device = _so_lib.CreateHostDevice() def execute(self, inputs, outputs): box_tensor_ptr = inputs[0].pubapi_dev_tensor_ptr output_tensor_ptr = outputs[0].pubapi_dev_tensor_ptr output_num_tensor_ptr = outputs[1].pubapi_dev_tensor_ptr mask_tensor_ptr = outputs[2].pubapi_dev_tensor_ptr _so_lib.NMSForwardGpu( box_tensor_ptr, mask_tensor_ptr, output_tensor_ptr, output_num_tensor_ptr, self._iou_threshold, self._max_output, self._host_device, ) def grad(self, wrt_idx, inputs, outputs, out_grad): return 0 def init_output_dtype(self, input_dtypes): return [np.int32, np.int32, np.int32] def get_serialize_params(self): return ("nms", struct.pack("fi", self._iou_threshold, self._max_output)) def infer_shape(self, inp_shapes): nr_box = inp_shapes[0][0] threadsPerBlock = 64 output_size = nr_box # here we compute the number of int32 used in mask_outputs. # In original version, we compute the bytes only. mask_size = int( nr_box * (nr_box // threadsPerBlock + int((nr_box % threadsPerBlock) > 0)) * 8 / 4 ) return [[output_size], [1], [mask_size]] @wrap_io_tensor def gpu_nms(box, iou_threshold, max_output): keep, num, _ = NMSCran.make(box, iou_threshold=iou_threshold, max_output=max_output) return keep[:num] def batched_nms(boxes, scores, idxs, iou_threshold, num_keep, use_offset=False): if use_offset: boxes_offset = ( mge.tensor([0, 0, 1, 1], device=boxes.device) .reshape(1, 4) .broadcast(boxes.shapeof(0), 4) ) boxes = boxes - boxes_offset max_coordinate = boxes.max() offsets = idxs * (max_coordinate + 1) boxes_for_nms = boxes + offsets.reshape(-1, 1).broadcast(boxes.shapeof(0), 4) boxes_with_scores = F.concat([boxes_for_nms, scores.reshape(-1, 1)], axis=1) keep_inds = gpu_nms(boxes_with_scores, iou_threshold, num_keep) return keep_inds
[ "megengine.tensor" ]
[((380, 421), 'os.path.join', 'os.path.join', (['_current_path', '"""lib_nms.so"""'], {}), "(_current_path, 'lib_nms.so')\n", (392, 421), False, 'import os\n'), ((342, 367), 'os.path.abspath', 'os.path.abspath', (['__file__'], {}), '(__file__)\n', (357, 367), False, 'import os\n'), ((441, 462), 'ctypes.CDLL', 'ctypes.CDLL', (['_so_path'], {}), '(_so_path)\n', (452, 462), False, 'import ctypes\n'), ((597, 621), 'os.path.exists', 'os.path.exists', (['mge_path'], {}), '(mge_path)\n', (611, 621), False, 'import os\n'), ((675, 723), 'os.path.join', 'os.path.join', (['_current_path', '"""gpu_nms"""', '"""nms.cu"""'], {}), "(_current_path, 'gpu_nms', 'nms.cu')\n", (687, 723), False, 'import os\n'), ((735, 759), 'os.path.exists', 'os.path.exists', (['src_file'], {}), '(src_file)\n', (749, 759), False, 'import os\n'), ((958, 996), 'subprocess.check_call', 'subprocess.check_call', (['cmd'], {'shell': '(True)'}), '(cmd, shell=True)\n', (979, 996), False, 'import subprocess\n'), ((1011, 1032), 'ctypes.CDLL', 'ctypes.CDLL', (['_so_path'], {}), '(_so_path)\n', (1022, 1032), False, 'import ctypes\n'), ((531, 560), 'os.path.dirname', 'os.path.dirname', (['mge.__file__'], {}), '(mge.__file__)\n', (546, 560), False, 'import os\n'), ((2486, 2542), 'struct.pack', 'struct.pack', (['"""fi"""', 'self._iou_threshold', 'self._max_output'], {}), "('fi', self._iou_threshold, self._max_output)\n", (2497, 2542), False, 'import struct\n'), ((3330, 3375), 'megengine.tensor', 'mge.tensor', (['[0, 0, 1, 1]'], {'device': 'boxes.device'}), '([0, 0, 1, 1], device=boxes.device)\n', (3340, 3375), True, 'import megengine as mge\n')]
from __future__ import absolute_import import numpy as nm from sfepy.base.base import assert_ from sfepy.linalg import norm_l2_along_axis as norm from sfepy.linalg import dot_sequences, insert_strided_axis from sfepy.discrete.fem.poly_spaces import PolySpace from sfepy.discrete.fem.mappings import VolumeMapping from sfepy.mechanics.tensors import dim2sym from six.moves import range def create_transformation_matrix(coors): """ Create a transposed coordinate transformation matrix, that transforms 3D coordinates of element face nodes so that the transformed nodes are in the `x-y` plane. The rotation is performed w.r.t. the first node of each face. Parameters ---------- coors : array The coordinates of element nodes, shape `(n_el, n_ep, dim)`. Returns ------- mtx_t : array The transposed transformation matrix :math:`T`, i.e. :math:`X_{inplane} = T^T X_{3D}`. Notes ----- :math:`T = [t_1, t_2, n]`, where :math:`t_1`, :math:`t_2`, are unit in-plane (column) vectors and :math:`n` is the unit normal vector, all mutually orthonormal. """ # Local coordinate system. t1 = coors[:, 1, :] - coors[:, 0, :] t2 = coors[:, -1, :] - coors[:, 0, :] n = nm.cross(t1, t2) t2 = nm.cross(n, t1) t1 = t1 / norm(t1)[:, None] t2 = t2 / norm(t2)[:, None] n = n / norm(n)[:, None] # Coordinate transformation matrix (transposed!). mtx_t = nm.concatenate((t1[:, :, None], t2[:, :, None], n[:, :, None]), axis=2) return mtx_t def transform_asm_vectors(out, mtx_t): """ Transform vector assembling contributions to global coordinate system, one node at a time. Parameters ---------- out : array The array of vectors, transformed in-place. mtx_t : array The transposed transformation matrix :math:`T`, see :func:`create_transformation_matrix`. """ n_ep = out.shape[2] // mtx_t.shape[2] for iep in range(n_ep): ir = slice(iep, None, n_ep) fn = out[:, 0, ir, 0] fn[:] = dot_sequences(mtx_t, fn, 'AB') def transform_asm_matrices(out, mtx_t): """ Transform matrix assembling contributions to global coordinate system, one node at a time. Parameters ---------- out : array The array of matrices, transformed in-place. mtx_t : array The transposed transformation matrix :math:`T`, see :func:`create_transformation_matrix`. """ n_ep = out.shape[-1] // mtx_t.shape[-1] for iepr in range(n_ep): ir = slice(iepr, None, n_ep) for iepc in range(n_ep): ic = slice(iepc, None, n_ep) fn = out[:, 0, ir, ic] fn[:] = dot_sequences(dot_sequences(mtx_t, fn, 'AB'), mtx_t, 'ABT') def create_mapping(coors, gel, order): """ Create mapping from transformed (in `x-y` plane) element faces to reference element faces. Parameters ---------- coors : array The transformed coordinates of element nodes, shape `(n_el, n_ep, dim)`. The function verifies that the all `z` components are zero. gel : GeometryElement instance The geometry element corresponding to the faces. order : int The polynomial order of the mapping. Returns ------- mapping : VolumeMapping instance The reference element face mapping. """ # Strip 'z' component (should be 0 now...). assert_(nm.allclose(coors[:, :, -1], 0.0, rtol=1e-12, atol=1e-12)) coors = coors[:, :, :-1].copy() # Mapping from transformed element to reference element. sh = coors.shape seq_coors = coors.reshape((sh[0] * sh[1], sh[2])) seq_conn = nm.arange(seq_coors.shape[0], dtype=nm.int32) seq_conn.shape = sh[:2] mapping = VolumeMapping(seq_coors, seq_conn, gel=gel, order=1) return mapping def describe_geometry(field, region, integral): """ Describe membrane geometry in a given region. Parameters ---------- field : Field instance The field defining the FE approximation. region : Region instance The surface region to describe. integral : Integral instance The integral defining the quadrature points. Returns ------- mtx_t : array The transposed transformation matrix :math:`T`, see :func:`create_transformation_matrix`. membrane_geo : CMapping instance The mapping from transformed elements to a reference elements. """ # Coordinates of element vertices. sg, _ = field.get_mapping(region, integral, 'surface') sd = field.surface_data[region.name] coors = field.coors[sd.econn[:, :sg.n_ep]] # Coordinate transformation matrix (transposed!). mtx_t = create_transformation_matrix(coors) # Transform coordinates to the local coordinate system. coors_loc = dot_sequences((coors - coors[:, 0:1, :]), mtx_t) # Mapping from transformed elements to reference elements. gel = field.gel.surface_facet vm = create_mapping(coors_loc, gel, 1) qp = integral.get_qp(gel.name) ps = PolySpace.any_from_args(None, gel, field.approx_order) membrane_geo = vm.get_mapping(qp[0], qp[1], poly_space=ps) membrane_geo.bf[:] = ps.eval_base(qp[0]) return mtx_t, membrane_geo def describe_deformation(el_disps, bfg): """ Describe deformation of a thin incompressible 2D membrane in 3D space, composed of flat finite element faces. The coordinate system of each element (face), i.e. the membrane mid-surface, should coincide with the `x`, `y` axes of the `x-y` plane. Parameters ---------- el_disps : array The displacements of element nodes, shape `(n_el, n_ep, dim)`. bfg : array The in-plane base function gradients, shape `(n_el, n_qp, dim-1, n_ep)`. Returns ------- mtx_c ; array The in-plane right Cauchy-Green deformation tensor :math:`C_{ij}`, :math:`i, j = 1, 2`. c33 : array The component :math:`C_{33}` computed from the incompressibility condition. mtx_b : array The discrete Green strain variation operator. """ sh = bfg.shape n_ep = sh[3] dim = el_disps.shape[2] sym2 = dim2sym(dim-1) # Repeat el_disps by number of quadrature points. el_disps_qp = insert_strided_axis(el_disps, 1, bfg.shape[1]) # Transformed (in-plane) displacement gradient with # shape (n_el, n_qp, 2 (-> a), 3 (-> i)), du_i/dX_a. du = dot_sequences(bfg, el_disps_qp) # Deformation gradient F w.r.t. in plane coordinates. # F_{ia} = dx_i / dX_a, # a \in {1, 2} (rows), i \in {1, 2, 3} (columns). mtx_f = du + nm.eye(dim - 1, dim, dtype=du.dtype) # Right Cauchy-Green deformation tensor C. # C_{ab} = F_{ka} F_{kb}, a, b \in {1, 2}. mtx_c = dot_sequences(mtx_f, mtx_f, 'ABT') # C_33 from incompressibility. c33 = 1.0 / (mtx_c[..., 0, 0] * mtx_c[..., 1, 1] - mtx_c[..., 0, 1]**2) # Discrete Green strain variation operator. mtx_b = nm.empty((sh[0], sh[1], sym2, dim * n_ep), dtype=nm.float64) mtx_b[..., 0, 0*n_ep:1*n_ep] = bfg[..., 0, :] * mtx_f[..., 0, 0:1] mtx_b[..., 0, 1*n_ep:2*n_ep] = bfg[..., 0, :] * mtx_f[..., 0, 1:2] mtx_b[..., 0, 2*n_ep:3*n_ep] = bfg[..., 0, :] * mtx_f[..., 0, 2:3] mtx_b[..., 1, 0*n_ep:1*n_ep] = bfg[..., 1, :] * mtx_f[..., 1, 0:1] mtx_b[..., 1, 1*n_ep:2*n_ep] = bfg[..., 1, :] * mtx_f[..., 1, 1:2] mtx_b[..., 1, 2*n_ep:3*n_ep] = bfg[..., 1, :] * mtx_f[..., 1, 2:3] mtx_b[..., 2, 0*n_ep:1*n_ep] = bfg[..., 1, :] * mtx_f[..., 0, 0:1] \ + bfg[..., 0, :] * mtx_f[..., 1, 0:1] mtx_b[..., 2, 1*n_ep:2*n_ep] = bfg[..., 0, :] * mtx_f[..., 1, 1:2] \ + bfg[..., 1, :] * mtx_f[..., 0, 1:2] mtx_b[..., 2, 2*n_ep:3*n_ep] = bfg[..., 0, :] * mtx_f[..., 1, 2:3] \ + bfg[..., 1, :] * mtx_f[..., 0, 2:3] return mtx_c, c33, mtx_b def get_tangent_stress_matrix(stress, bfg): """ Get the tangent stress matrix of a thin incompressible 2D membrane in 3D space, given a stress. Parameters ---------- stress : array The components `11, 22, 12` of the second Piola-Kirchhoff stress tensor, shape `(n_el, n_qp, 3, 1)`. bfg : array The in-plane base function gradients, shape `(n_el, n_qp, dim-1, n_ep)`. Returns ------- mtx : array The tangent stress matrix, shape `(n_el, n_qp, dim*n_ep, dim*n_ep)`. """ n_el, n_qp, dim, n_ep = bfg.shape dim += 1 mtx = nm.zeros((n_el, n_qp, dim * n_ep, dim * n_ep), dtype=nm.float64) g1tg1 = dot_sequences(bfg[..., 0:1, :], bfg[..., 0:1, :], 'ATB') g1tg2 = dot_sequences(bfg[..., 0:1, :], bfg[..., 1:2, :], 'ATB') g2tg1 = dot_sequences(bfg[..., 1:2, :], bfg[..., 0:1, :], 'ATB') g2tg2 = dot_sequences(bfg[..., 1:2, :], bfg[..., 1:2, :], 'ATB') aux = stress[..., 0:1, :] * g1tg1 + stress[..., 2:3, :] * g1tg2 \ + stress[..., 2:3, :] * g2tg1 + stress[..., 1:2, :] * g2tg2 mtx[..., 0 * n_ep : 1 * n_ep, 0 * n_ep : 1 * n_ep] = aux mtx[..., 1 * n_ep : 2 * n_ep, 1 * n_ep : 2 * n_ep] = aux mtx[..., 2 * n_ep : 3 * n_ep, 2 * n_ep : 3 * n_ep] = aux return mtx def get_invariants(mtx_c, c33): """ Get the first and second invariants of the right Cauchy-Green deformation tensor describing deformation of an incompressible membrane. Parameters ---------- mtx_c ; array The in-plane right Cauchy-Green deformation tensor :math:`C_{ij}`, :math:`i, j = 1, 2`, shape `(n_el, n_qp, dim-1, dim-1)`. c33 : array The component :math:`C_{33}` computed from the incompressibility condition, shape `(n_el, n_qp)`. Returns ------- i1 : array The first invariant of :math:`C_{ij}`. i2 : array The second invariant of :math:`C_{ij}`. """ i1 = mtx_c[..., 0, 0] + mtx_c[..., 1, 1] + c33 i2 = mtx_c[..., 0, 0] * mtx_c[..., 1,1] \ + mtx_c[..., 1, 1] * c33 \ + mtx_c[..., 0, 0] * c33 \ - mtx_c[..., 0, 1]**2 return i1, i2 def get_green_strain_sym3d(mtx_c, c33): r""" Get the 3D Green strain tensor in symmetric storage. Parameters ---------- mtx_c ; array The in-plane right Cauchy-Green deformation tensor :math:`C_{ij}`, :math:`i, j = 1, 2`, shape `(n_el, n_qp, dim-1, dim-1)`. c33 : array The component :math:`C_{33}` computed from the incompressibility condition, shape `(n_el, n_qp)`. Returns ------- mtx_e : array The membrane Green strain :math:`E_{ij} = \frac{1}{2} (C_{ij}) - \delta_{ij}`, symmetric storage: items (11, 22, 33, 12, 13, 23), shape `(n_el, n_qp, sym, 1)`. """ n_el, n_qp, dm, _ = mtx_c.shape dim = dm + 1 sym = dim2sym(dim) mtx_e = nm.empty((n_el, n_qp, sym, 1), dtype=mtx_c.dtype) mtx_e[..., 0, 0] = 0.5 * (mtx_c[..., 0, 0] - 1.0) mtx_e[..., 1, 0] = 0.5 * (mtx_c[..., 1, 1] - 1.0) mtx_e[..., 2, 0] = 0.5 * (c33 - 1.0) mtx_e[..., 3, 0] = 0.5 * mtx_c[..., 0, 1] mtx_e[..., 4:, 0] = 0.0 return mtx_e
[ "sfepy.linalg.norm_l2_along_axis", "sfepy.discrete.fem.poly_spaces.PolySpace.any_from_args", "sfepy.mechanics.tensors.dim2sym", "sfepy.linalg.insert_strided_axis", "sfepy.linalg.dot_sequences", "sfepy.discrete.fem.mappings.VolumeMapping" ]
[((1263, 1279), 'numpy.cross', 'nm.cross', (['t1', 't2'], {}), '(t1, t2)\n', (1271, 1279), True, 'import numpy as nm\n'), ((1289, 1304), 'numpy.cross', 'nm.cross', (['n', 't1'], {}), '(n, t1)\n', (1297, 1304), True, 'import numpy as nm\n'), ((1466, 1537), 'numpy.concatenate', 'nm.concatenate', (['(t1[:, :, None], t2[:, :, None], n[:, :, None])'], {'axis': '(2)'}), '((t1[:, :, None], t2[:, :, None], n[:, :, None]), axis=2)\n', (1480, 1537), True, 'import numpy as nm\n'), ((2047, 2058), 'six.moves.range', 'range', (['n_ep'], {}), '(n_ep)\n', (2052, 2058), False, 'from six.moves import range\n'), ((2613, 2624), 'six.moves.range', 'range', (['n_ep'], {}), '(n_ep)\n', (2618, 2624), False, 'from six.moves import range\n'), ((3779, 3824), 'numpy.arange', 'nm.arange', (['seq_coors.shape[0]'], {'dtype': 'nm.int32'}), '(seq_coors.shape[0], dtype=nm.int32)\n', (3788, 3824), True, 'import numpy as nm\n'), ((3868, 3920), 'sfepy.discrete.fem.mappings.VolumeMapping', 'VolumeMapping', (['seq_coors', 'seq_conn'], {'gel': 'gel', 'order': '(1)'}), '(seq_coors, seq_conn, gel=gel, order=1)\n', (3881, 3920), False, 'from sfepy.discrete.fem.mappings import VolumeMapping\n'), ((4941, 4987), 'sfepy.linalg.dot_sequences', 'dot_sequences', (['(coors - coors[:, 0:1, :])', 'mtx_t'], {}), '(coors - coors[:, 0:1, :], mtx_t)\n', (4954, 4987), False, 'from sfepy.linalg import dot_sequences, insert_strided_axis\n'), ((5176, 5230), 'sfepy.discrete.fem.poly_spaces.PolySpace.any_from_args', 'PolySpace.any_from_args', (['None', 'gel', 'field.approx_order'], {}), '(None, gel, field.approx_order)\n', (5199, 5230), False, 'from sfepy.discrete.fem.poly_spaces import PolySpace\n'), ((6327, 6343), 'sfepy.mechanics.tensors.dim2sym', 'dim2sym', (['(dim - 1)'], {}), '(dim - 1)\n', (6334, 6343), False, 'from sfepy.mechanics.tensors import dim2sym\n'), ((6415, 6461), 'sfepy.linalg.insert_strided_axis', 'insert_strided_axis', (['el_disps', '(1)', 'bfg.shape[1]'], {}), '(el_disps, 1, bfg.shape[1])\n', (6434, 6461), False, 'from sfepy.linalg import dot_sequences, insert_strided_axis\n'), ((6585, 6616), 'sfepy.linalg.dot_sequences', 'dot_sequences', (['bfg', 'el_disps_qp'], {}), '(bfg, el_disps_qp)\n', (6598, 6616), False, 'from sfepy.linalg import dot_sequences, insert_strided_axis\n'), ((6919, 6953), 'sfepy.linalg.dot_sequences', 'dot_sequences', (['mtx_f', 'mtx_f', '"""ABT"""'], {}), "(mtx_f, mtx_f, 'ABT')\n", (6932, 6953), False, 'from sfepy.linalg import dot_sequences, insert_strided_axis\n'), ((7144, 7204), 'numpy.empty', 'nm.empty', (['(sh[0], sh[1], sym2, dim * n_ep)'], {'dtype': 'nm.float64'}), '((sh[0], sh[1], sym2, dim * n_ep), dtype=nm.float64)\n', (7152, 7204), True, 'import numpy as nm\n'), ((8716, 8780), 'numpy.zeros', 'nm.zeros', (['(n_el, n_qp, dim * n_ep, dim * n_ep)'], {'dtype': 'nm.float64'}), '((n_el, n_qp, dim * n_ep, dim * n_ep), dtype=nm.float64)\n', (8724, 8780), True, 'import numpy as nm\n'), ((8794, 8850), 'sfepy.linalg.dot_sequences', 'dot_sequences', (['bfg[..., 0:1, :]', 'bfg[..., 0:1, :]', '"""ATB"""'], {}), "(bfg[..., 0:1, :], bfg[..., 0:1, :], 'ATB')\n", (8807, 8850), False, 'from sfepy.linalg import dot_sequences, insert_strided_axis\n'), ((8863, 8919), 'sfepy.linalg.dot_sequences', 'dot_sequences', (['bfg[..., 0:1, :]', 'bfg[..., 1:2, :]', '"""ATB"""'], {}), "(bfg[..., 0:1, :], bfg[..., 1:2, :], 'ATB')\n", (8876, 8919), False, 'from sfepy.linalg import dot_sequences, insert_strided_axis\n'), ((8932, 8988), 'sfepy.linalg.dot_sequences', 'dot_sequences', (['bfg[..., 1:2, :]', 'bfg[..., 0:1, :]', '"""ATB"""'], {}), "(bfg[..., 1:2, :], bfg[..., 0:1, :], 'ATB')\n", (8945, 8988), False, 'from sfepy.linalg import dot_sequences, insert_strided_axis\n'), ((9001, 9057), 'sfepy.linalg.dot_sequences', 'dot_sequences', (['bfg[..., 1:2, :]', 'bfg[..., 1:2, :]', '"""ATB"""'], {}), "(bfg[..., 1:2, :], bfg[..., 1:2, :], 'ATB')\n", (9014, 9057), False, 'from sfepy.linalg import dot_sequences, insert_strided_axis\n'), ((11024, 11036), 'sfepy.mechanics.tensors.dim2sym', 'dim2sym', (['dim'], {}), '(dim)\n', (11031, 11036), False, 'from sfepy.mechanics.tensors import dim2sym\n'), ((11050, 11099), 'numpy.empty', 'nm.empty', (['(n_el, n_qp, sym, 1)'], {'dtype': 'mtx_c.dtype'}), '((n_el, n_qp, sym, 1), dtype=mtx_c.dtype)\n', (11058, 11099), True, 'import numpy as nm\n'), ((2142, 2172), 'sfepy.linalg.dot_sequences', 'dot_sequences', (['mtx_t', 'fn', '"""AB"""'], {}), "(mtx_t, fn, 'AB')\n", (2155, 2172), False, 'from sfepy.linalg import dot_sequences, insert_strided_axis\n'), ((2683, 2694), 'six.moves.range', 'range', (['n_ep'], {}), '(n_ep)\n', (2688, 2694), False, 'from six.moves import range\n'), ((3532, 3589), 'numpy.allclose', 'nm.allclose', (['coors[:, :, -1]', '(0.0)'], {'rtol': '(1e-12)', 'atol': '(1e-12)'}), '(coors[:, :, -1], 0.0, rtol=1e-12, atol=1e-12)\n', (3543, 3589), True, 'import numpy as nm\n'), ((6775, 6811), 'numpy.eye', 'nm.eye', (['(dim - 1)', 'dim'], {'dtype': 'du.dtype'}), '(dim - 1, dim, dtype=du.dtype)\n', (6781, 6811), True, 'import numpy as nm\n'), ((1320, 1328), 'sfepy.linalg.norm_l2_along_axis', 'norm', (['t1'], {}), '(t1)\n', (1324, 1328), True, 'from sfepy.linalg import norm_l2_along_axis as norm\n'), ((1352, 1360), 'sfepy.linalg.norm_l2_along_axis', 'norm', (['t2'], {}), '(t2)\n', (1356, 1360), True, 'from sfepy.linalg import norm_l2_along_axis as norm\n'), ((1382, 1389), 'sfepy.linalg.norm_l2_along_axis', 'norm', (['n'], {}), '(n)\n', (1386, 1389), True, 'from sfepy.linalg import norm_l2_along_axis as norm\n'), ((2806, 2836), 'sfepy.linalg.dot_sequences', 'dot_sequences', (['mtx_t', 'fn', '"""AB"""'], {}), "(mtx_t, fn, 'AB')\n", (2819, 2836), False, 'from sfepy.linalg import dot_sequences, insert_strided_axis\n')]
# -*- coding:utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import megengine as mge import megengine.functional as F import megengine.module as M from official.vision.detection import layers class RCNN(M.Module): def __init__(self, cfg): super().__init__() self.cfg = cfg self.box_coder = layers.BoxCoder(cfg.rcnn_reg_mean, cfg.rcnn_reg_std) # roi head self.in_features = cfg.rcnn_in_features self.stride = cfg.rcnn_stride self.pooling_method = cfg.pooling_method self.pooling_size = cfg.pooling_size self.fc1 = M.Linear(256 * self.pooling_size[0] * self.pooling_size[1], 1024) self.fc2 = M.Linear(1024, 1024) for l in [self.fc1, self.fc2]: M.init.normal_(l.weight, std=0.01) M.init.fill_(l.bias, 0) # box predictor self.pred_cls = M.Linear(1024, cfg.num_classes + 1) self.pred_delta = M.Linear(1024, (cfg.num_classes + 1) * 4) M.init.normal_(self.pred_cls.weight, std=0.01) M.init.normal_(self.pred_delta.weight, std=0.001) for l in [self.pred_cls, self.pred_delta]: M.init.fill_(l.bias, 0) def forward(self, fpn_fms, rcnn_rois, im_info=None, gt_boxes=None): rcnn_rois, labels, bbox_targets = self.get_ground_truth( rcnn_rois, im_info, gt_boxes ) fpn_fms = [fpn_fms[x] for x in self.in_features] pool_features = layers.roi_pool( fpn_fms, rcnn_rois, self.stride, self.pooling_size, self.pooling_method, ) flatten_feature = F.flatten(pool_features, start_axis=1) roi_feature = F.relu(self.fc1(flatten_feature)) roi_feature = F.relu(self.fc2(roi_feature)) pred_logits = self.pred_cls(roi_feature) pred_offsets = self.pred_delta(roi_feature) if self.training: # loss for classification loss_rcnn_cls = layers.softmax_loss(pred_logits, labels) # loss for regression pred_offsets = pred_offsets.reshape(-1, self.cfg.num_classes + 1, 4) vlabels = labels.reshape(-1, 1).broadcast((labels.shapeof(0), 4)) pred_offsets = F.indexing_one_hot(pred_offsets, vlabels, axis=1) loss_rcnn_loc = layers.get_smooth_l1_loss( pred_offsets, bbox_targets, labels, self.cfg.rcnn_smooth_l1_beta, norm_type="all", ) loss_dict = {"loss_rcnn_cls": loss_rcnn_cls, "loss_rcnn_loc": loss_rcnn_loc} return loss_dict else: # slice 1 for removing background pred_scores = F.softmax(pred_logits, axis=1)[:, 1:] pred_offsets = pred_offsets[:, 4:].reshape(-1, 4) target_shape = (rcnn_rois.shapeof(0), self.cfg.num_classes, 4) # rois (N, 4) -> (N, 1, 4) -> (N, 80, 4) -> (N * 80, 4) base_rois = ( F.add_axis(rcnn_rois[:, 1:5], 1).broadcast(target_shape).reshape(-1, 4) ) pred_bbox = self.box_coder.decode(base_rois, pred_offsets) return pred_bbox, pred_scores def get_ground_truth(self, rpn_rois, im_info, gt_boxes): if not self.training: return rpn_rois, None, None return_rois = [] return_labels = [] return_bbox_targets = [] # get per image proposals and gt_boxes for bid in range(self.cfg.batch_per_gpu): num_valid_boxes = im_info[bid, 4] gt_boxes_per_img = gt_boxes[bid, :num_valid_boxes, :] batch_inds = mge.ones((gt_boxes_per_img.shapeof(0), 1)) * bid # if config.proposal_append_gt: gt_rois = F.concat([batch_inds, gt_boxes_per_img[:, :4]], axis=1) batch_roi_mask = rpn_rois[:, 0] == bid _, batch_roi_inds = F.cond_take(batch_roi_mask == 1, batch_roi_mask) # all_rois : [batch_id, x1, y1, x2, y2] all_rois = F.concat([rpn_rois.ai[batch_roi_inds], gt_rois]) overlaps_normal, overlaps_ignore = layers.get_iou( all_rois[:, 1:5], gt_boxes_per_img, return_ignore=True, ) max_overlaps_normal = overlaps_normal.max(axis=1) gt_assignment_normal = F.argmax(overlaps_normal, axis=1) max_overlaps_ignore = overlaps_ignore.max(axis=1) gt_assignment_ignore = F.argmax(overlaps_ignore, axis=1) ignore_assign_mask = (max_overlaps_normal < self.cfg.fg_threshold) * ( max_overlaps_ignore > max_overlaps_normal ) max_overlaps = ( max_overlaps_normal * (1 - ignore_assign_mask) + max_overlaps_ignore * ignore_assign_mask ) gt_assignment = ( gt_assignment_normal * (1 - ignore_assign_mask) + gt_assignment_ignore * ignore_assign_mask ) gt_assignment = gt_assignment.astype("int32") labels = gt_boxes_per_img.ai[gt_assignment, 4] # ---------------- get the fg/bg labels for each roi ---------------# fg_mask = (max_overlaps >= self.cfg.fg_threshold) * ( labels != self.cfg.ignore_label ) bg_mask = (max_overlaps < self.cfg.bg_threshold_high) * ( max_overlaps >= self.cfg.bg_threshold_low ) num_fg_rois = self.cfg.num_rois * self.cfg.fg_ratio fg_inds_mask = self._bernoulli_sample_masks(fg_mask, num_fg_rois, 1) num_bg_rois = self.cfg.num_rois - fg_inds_mask.sum() bg_inds_mask = self._bernoulli_sample_masks(bg_mask, num_bg_rois, 1) labels = labels * fg_inds_mask keep_mask = fg_inds_mask + bg_inds_mask _, keep_inds = F.cond_take(keep_mask == 1, keep_mask) # Add next line to avoid memory exceed keep_inds = keep_inds[: F.minimum(self.cfg.num_rois, keep_inds.shapeof(0))] # labels labels = labels.ai[keep_inds].astype("int32") rois = all_rois.ai[keep_inds] target_boxes = gt_boxes_per_img.ai[gt_assignment.ai[keep_inds], :4] bbox_targets = self.box_coder.encode(rois[:, 1:5], target_boxes) bbox_targets = bbox_targets.reshape(-1, 4) return_rois.append(rois) return_labels.append(labels) return_bbox_targets.append(bbox_targets) return ( F.zero_grad(F.concat(return_rois, axis=0)), F.zero_grad(F.concat(return_labels, axis=0)), F.zero_grad(F.concat(return_bbox_targets, axis=0)), ) def _bernoulli_sample_masks(self, masks, num_samples, sample_value): """ Using the bernoulli sampling method""" sample_mask = masks == sample_value num_mask = sample_mask.sum() num_final_samples = F.minimum(num_mask, num_samples) # here, we use the bernoulli probability to sample the anchors sample_prob = num_final_samples / num_mask uniform_rng = mge.random.uniform(sample_mask.shapeof(0)) after_sampled_mask = (uniform_rng <= sample_prob) * sample_mask return after_sampled_mask
[ "megengine.functional.argmax", "megengine.functional.flatten", "megengine.module.init.fill_", "megengine.functional.indexing_one_hot", "megengine.functional.softmax", "megengine.functional.minimum", "megengine.module.init.normal_", "megengine.functional.add_axis", "megengine.module.Linear", "megengine.functional.concat", "megengine.functional.cond_take" ]
[((636, 688), 'official.vision.detection.layers.BoxCoder', 'layers.BoxCoder', (['cfg.rcnn_reg_mean', 'cfg.rcnn_reg_std'], {}), '(cfg.rcnn_reg_mean, cfg.rcnn_reg_std)\n', (651, 688), False, 'from official.vision.detection import layers\n'), ((909, 974), 'megengine.module.Linear', 'M.Linear', (['(256 * self.pooling_size[0] * self.pooling_size[1])', '(1024)'], {}), '(256 * self.pooling_size[0] * self.pooling_size[1], 1024)\n', (917, 974), True, 'import megengine.module as M\n'), ((994, 1014), 'megengine.module.Linear', 'M.Linear', (['(1024)', '(1024)'], {}), '(1024, 1024)\n', (1002, 1014), True, 'import megengine.module as M\n'), ((1186, 1221), 'megengine.module.Linear', 'M.Linear', (['(1024)', '(cfg.num_classes + 1)'], {}), '(1024, cfg.num_classes + 1)\n', (1194, 1221), True, 'import megengine.module as M\n'), ((1248, 1289), 'megengine.module.Linear', 'M.Linear', (['(1024)', '((cfg.num_classes + 1) * 4)'], {}), '(1024, (cfg.num_classes + 1) * 4)\n', (1256, 1289), True, 'import megengine.module as M\n'), ((1298, 1344), 'megengine.module.init.normal_', 'M.init.normal_', (['self.pred_cls.weight'], {'std': '(0.01)'}), '(self.pred_cls.weight, std=0.01)\n', (1312, 1344), True, 'import megengine.module as M\n'), ((1353, 1402), 'megengine.module.init.normal_', 'M.init.normal_', (['self.pred_delta.weight'], {'std': '(0.001)'}), '(self.pred_delta.weight, std=0.001)\n', (1367, 1402), True, 'import megengine.module as M\n'), ((1761, 1854), 'official.vision.detection.layers.roi_pool', 'layers.roi_pool', (['fpn_fms', 'rcnn_rois', 'self.stride', 'self.pooling_size', 'self.pooling_method'], {}), '(fpn_fms, rcnn_rois, self.stride, self.pooling_size, self.\n pooling_method)\n', (1776, 1854), False, 'from official.vision.detection import layers\n'), ((1899, 1937), 'megengine.functional.flatten', 'F.flatten', (['pool_features'], {'start_axis': '(1)'}), '(pool_features, start_axis=1)\n', (1908, 1937), True, 'import megengine.functional as F\n'), ((7226, 7258), 'megengine.functional.minimum', 'F.minimum', (['num_mask', 'num_samples'], {}), '(num_mask, num_samples)\n', (7235, 7258), True, 'import megengine.functional as F\n'), ((1066, 1100), 'megengine.module.init.normal_', 'M.init.normal_', (['l.weight'], {'std': '(0.01)'}), '(l.weight, std=0.01)\n', (1080, 1100), True, 'import megengine.module as M\n'), ((1113, 1136), 'megengine.module.init.fill_', 'M.init.fill_', (['l.bias', '(0)'], {}), '(l.bias, 0)\n', (1125, 1136), True, 'import megengine.module as M\n'), ((1466, 1489), 'megengine.module.init.fill_', 'M.init.fill_', (['l.bias', '(0)'], {}), '(l.bias, 0)\n', (1478, 1489), True, 'import megengine.module as M\n'), ((2240, 2280), 'official.vision.detection.layers.softmax_loss', 'layers.softmax_loss', (['pred_logits', 'labels'], {}), '(pred_logits, labels)\n', (2259, 2280), False, 'from official.vision.detection import layers\n'), ((2502, 2551), 'megengine.functional.indexing_one_hot', 'F.indexing_one_hot', (['pred_offsets', 'vlabels'], {'axis': '(1)'}), '(pred_offsets, vlabels, axis=1)\n', (2520, 2551), True, 'import megengine.functional as F\n'), ((2581, 2694), 'official.vision.detection.layers.get_smooth_l1_loss', 'layers.get_smooth_l1_loss', (['pred_offsets', 'bbox_targets', 'labels', 'self.cfg.rcnn_smooth_l1_beta'], {'norm_type': '"""all"""'}), "(pred_offsets, bbox_targets, labels, self.cfg.\n rcnn_smooth_l1_beta, norm_type='all')\n", (2606, 2694), False, 'from official.vision.detection import layers\n'), ((4041, 4096), 'megengine.functional.concat', 'F.concat', (['[batch_inds, gt_boxes_per_img[:, :4]]'], {'axis': '(1)'}), '([batch_inds, gt_boxes_per_img[:, :4]], axis=1)\n', (4049, 4096), True, 'import megengine.functional as F\n'), ((4180, 4228), 'megengine.functional.cond_take', 'F.cond_take', (['(batch_roi_mask == 1)', 'batch_roi_mask'], {}), '(batch_roi_mask == 1, batch_roi_mask)\n', (4191, 4228), True, 'import megengine.functional as F\n'), ((4304, 4352), 'megengine.functional.concat', 'F.concat', (['[rpn_rois.ai[batch_roi_inds], gt_rois]'], {}), '([rpn_rois.ai[batch_roi_inds], gt_rois])\n', (4312, 4352), True, 'import megengine.functional as F\n'), ((4401, 4471), 'official.vision.detection.layers.get_iou', 'layers.get_iou', (['all_rois[:, 1:5]', 'gt_boxes_per_img'], {'return_ignore': '(True)'}), '(all_rois[:, 1:5], gt_boxes_per_img, return_ignore=True)\n', (4415, 4471), False, 'from official.vision.detection import layers\n'), ((4601, 4634), 'megengine.functional.argmax', 'F.argmax', (['overlaps_normal'], {'axis': '(1)'}), '(overlaps_normal, axis=1)\n', (4609, 4634), True, 'import megengine.functional as F\n'), ((4733, 4766), 'megengine.functional.argmax', 'F.argmax', (['overlaps_ignore'], {'axis': '(1)'}), '(overlaps_ignore, axis=1)\n', (4741, 4766), True, 'import megengine.functional as F\n'), ((6143, 6181), 'megengine.functional.cond_take', 'F.cond_take', (['(keep_mask == 1)', 'keep_mask'], {}), '(keep_mask == 1, keep_mask)\n', (6154, 6181), True, 'import megengine.functional as F\n'), ((2989, 3019), 'megengine.functional.softmax', 'F.softmax', (['pred_logits'], {'axis': '(1)'}), '(pred_logits, axis=1)\n', (2998, 3019), True, 'import megengine.functional as F\n'), ((6828, 6857), 'megengine.functional.concat', 'F.concat', (['return_rois'], {'axis': '(0)'}), '(return_rois, axis=0)\n', (6836, 6857), True, 'import megengine.functional as F\n'), ((6884, 6915), 'megengine.functional.concat', 'F.concat', (['return_labels'], {'axis': '(0)'}), '(return_labels, axis=0)\n', (6892, 6915), True, 'import megengine.functional as F\n'), ((6942, 6979), 'megengine.functional.concat', 'F.concat', (['return_bbox_targets'], {'axis': '(0)'}), '(return_bbox_targets, axis=0)\n', (6950, 6979), True, 'import megengine.functional as F\n'), ((3274, 3306), 'megengine.functional.add_axis', 'F.add_axis', (['rcnn_rois[:, 1:5]', '(1)'], {}), '(rcnn_rois[:, 1:5], 1)\n', (3284, 3306), True, 'import megengine.functional as F\n')]
# -*- coding: utf-8 -*- # This repo is licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import os import pickle import boto3 import megengine as mge from collections import defaultdict from termcolor import colored from common import utils class Manager(): def __init__(self, model, optimizer, params, dataloaders, writer, logger, scheduler): # params status self.model = model self.writer = writer self.logger = logger self.params = params self.optimizer = optimizer self.scheduler = scheduler self.dataloaders = dataloaders # metric_rule should be either Descende or Ascende self.metric_rule = params.metric_rule self.epoch = 0 self.step = 0 # 越低越好 if self.metric_rule == "Descende": self.best_val_score = 100 self.best_test_score = 100 # 越高越好 elif self.metric_rule == "Ascende": self.best_val_score = 0 self.best_test_score = 0 self.cur_val_score = 0 self.cur_test_score = 0 # train status self.train_status = defaultdict(utils.AverageMeter) # val status self.val_status = defaultdict(utils.AverageMeter) # test status self.test_status = defaultdict(utils.AverageMeter) # model status self.loss_status = defaultdict(utils.AverageMeter) # client init self.s3_client = boto3.client('s3', endpoint_url='http://oss.i.brainpp.cn') self.bucket_name = params.bucket_name def update_step(self): self.step += 1 def update_epoch(self): self.epoch += 1 def update_loss_status(self, loss, split, bs=None): if split == "train": for k, v in loss.items(): bs = self.params.train_batch_size self.loss_status[k].update(val=v.item(), num=bs) elif split == "val": for k, v in loss.items(): self.loss_status[k].update(val=v.item(), num=bs) elif split == "test": for k, v in loss.items(): self.loss_status[k].update(val=v.item(), num=bs) else: raise ValueError("Wrong eval type: {}".format(split)) def update_metric_status(self, metrics, split, bs): if split == "val": for k, v in metrics.items(): self.val_status[k].update(val=v.item(), num=bs) self.cur_val_score = self.val_status[self.params.major_metric].avg elif split == "test": for k, v in metrics.items(): self.test_status[k].update(val=v.item(), num=bs) self.cur_test_score = self.test_status[self.params.major_metric].avg else: raise ValueError("Wrong eval type: {}".format(split)) def reset_loss_status(self): for k, v in self.loss_status.items(): self.loss_status[k].reset() def reset_metric_status(self, split): if split == "val": for k, v in self.val_status.items(): self.val_status[k].reset() elif split == "test": for k, v in self.test_status.items(): self.test_status[k].reset() else: raise ValueError("Wrong eval type: {}".format(split)) def print_train_info(self): exp_name = self.params.model_dir.split('/')[-1] print_str = "{} Epoch: {:4d}, lr={:.6f} ".format(exp_name, self.epoch, self.scheduler.get_lr()[0]) print_str += "total loss: %.4f(%.4f)" % (self.loss_status['total'].val, self.loss_status['total'].avg) return print_str def print_metrics(self, split, title="Eval", color="red"): if split == "val": metric_status = self.val_status elif split == "test": metric_status = self.test_status else: raise ValueError("Wrong eval type: {}".format(split)) if split == "val": print_str = " | ".join("{}: {:.4f} - avg: {:.4f}".format(k, v.val, v.avg) for k, v in metric_status.items()) print_str += " | lastest: {:.4f} | pre_best: {:.4f}".format(self.cur_val_score, self.best_val_score) elif split == "test": print_str = " | ".join("{}: {:.4f} - avg: {:.4f}".format(k, v.val, v.avg) for k, v in metric_status.items()) self.logger.info(colored("{} Results: {}".format(title, print_str), color, attrs=["bold"])) def check_best_save_last_checkpoints(self, latest_freq=5): state = { "state_dict": self.model.state_dict(), "optimizer": self.optimizer.state_dict(), "scheduler": self.scheduler.state_dict(), "step": self.step, "epoch": self.epoch, } if "val" in self.dataloaders: state["best_val_score"] = self.best_val_score if "test" in self.dataloaders: state["best_test_score"] = self.best_test_score # save latest checkpoint if self.epoch % latest_freq == 0: latest_ckpt_name = os.path.join(self.params.model_dir, "model_latest.pth") if self.params.save_mode == "local": # print(state) mge.save(state, latest_ckpt_name) elif self.params.save_mode == "oss": save_dict = pickle.dumps(state) resp = self.s3_client.put_object(Bucket=self.bucket_name, Key=latest_ckpt_name, Body=save_dict[0:]) else: raise NotImplementedError self.logger.info("Saved latest checkpoint to: {}".format(latest_ckpt_name)) # save val latest metrics, and check if val is best checkpoints if "val" in self.dataloaders: val_latest_metrics_name = os.path.join(self.params.model_dir, "val_metrics_latest.json") utils.save_dict_to_json(self.val_status, val_latest_metrics_name) # 越低越好 if self.metric_rule == "Descende": is_best = self.cur_val_score < self.best_val_score # 越高越好 elif self.metric_rule == "Ascende": is_best = self.cur_val_score > self.best_val_score else: raise Exception("metric_rule should be either Descende or Ascende") if is_best: # save metrics self.best_val_score = self.cur_val_score best_metrics_name = os.path.join(self.params.model_dir, "val_metrics_best.json") utils.save_dict_to_json(self.val_status, best_metrics_name) self.logger.info("Current is val best, score={:.4f}".format(self.best_val_score)) # save checkpoint best_ckpt_name = os.path.join(self.params.model_dir, "val_model_best.pth") if self.params.save_mode == "local": mge.save(state, best_ckpt_name) elif self.params.save_mode == "oss": save_dict = pickle.dumps(state) resp = self.s3_client.put_object(Bucket=self.bucket_name, Key=best_ckpt_name, Body=save_dict[0:]) else: raise NotImplementedError self.logger.info("Saved val best checkpoint to: {}".format(best_ckpt_name)) # save test latest metrics, and check if test is best checkpoints # if self.dataloaders["test"] is not None: if "test" in self.dataloaders: test_latest_metrics_name = os.path.join(self.params.model_dir, "test_metrics_latest.json") utils.save_dict_to_json(self.test_status, test_latest_metrics_name) # 越低越好 if self.metric_rule == "Descende": is_best = self.cur_test_score < self.best_test_score # 越高越好 elif self.metric_rule == "Ascende": is_best = self.cur_test_score > self.best_test_score else: raise Exception("metric_rule should be either Descende or Ascende") if is_best: # save metrics self.best_test_score = self.cur_test_score best_metrics_name = os.path.join(self.params.model_dir, "test_metrics_best.json") utils.save_dict_to_json(self.test_status, best_metrics_name) self.logger.info("Current is test best, score={:.4f}".format(self.best_test_score)) # save checkpoint best_ckpt_name = os.path.join(self.params.model_dir, "test_model_best.pth") if self.params.save_mode == "local": mge.save(state, best_ckpt_name) elif self.params.save_mode == "oss": save_dict = pickle.dumps(state) resp = self.s3_client.put_object(Bucket=self.bucket_name, Key=best_ckpt_name, Body=save_dict[0:]) else: raise NotImplementedError self.logger.info("Saved test best checkpoint to: {}".format(best_ckpt_name)) def load_checkpoints(self): if self.params.save_mode == "local": state = mge.load(self.params.restore_file) elif self.params.save_mode == "oss": resp = self.s3_client.get_object(Bucket=self.bucket_name, Key=self.params.restore_file[0:]) state = resp["Body"].read() state = pickle.loads(state) else: raise NotImplementedError ckpt_component = [] if "state_dict" in state and self.model is not None: try: self.model.load_state_dict(state["state_dict"]) except Warning("Using custom loading net"): net_dict = self.model.state_dict() if "module" not in list(state["state_dict"].keys())[0]: state_dict = {"module." + k: v for k, v in state["state_dict"].items() if "module." + k in net_dict.keys()} else: state_dict = {k: v for k, v in state["state_dict"].items() if k in net_dict.keys()} net_dict.update(state_dict) self.model.load_state_dict(net_dict, strict=False) ckpt_component.append("net") if not self.params.only_weights: print("reload states from checkpoints!") if "optimizer" in state and self.optimizer is not None: try: self.optimizer.load_state_dict(state["optimizer"]) except Warning("Using custom loading optimizer"): optimizer_dict = self.optimizer.state_dict() state_dict = {k: v for k, v in state["optimizer"].items() if k in optimizer_dict.keys()} optimizer_dict.update(state_dict) self.optimizer.load_state_dict(optimizer_dict) ckpt_component.append("opt") if "scheduler" in state and self.train_status["scheduler"] is not None: try: self.scheduler.load_state_dict(state["scheduler"]) except Warning("Using custom loading scheduler"): scheduler_dict = self.scheduler.state_dict() state_dict = {k: v for k, v in state["scheduler"].items() if k in scheduler_dict.keys()} scheduler_dict.update(state_dict) self.scheduler.load_state_dict(scheduler_dict) ckpt_component.append("sch") if "step" in state: self.step = state["step"] + 1 self.train_status["step"] = state["step"] + 1 ckpt_component.append("step: {}".format(self.train_status["step"])) if "epoch" in state: self.epoch = state["epoch"] + 1 self.train_status["epoch"] = state["epoch"] + 1 ckpt_component.append("epoch: {}".format(self.train_status["epoch"])) if "best_val_score" in state: self.best_val_score = state["best_val_score"] ckpt_component.append("best val score: {:.3g}".format(self.best_val_score)) if "best_test_score" in state: self.best_test_score = state["best_test_score"] ckpt_component.append("best test score: {:.3g}".format(self.best_test_score)) ckpt_component = ", ".join(i for i in ckpt_component) self.logger.info("Loaded models from: {}".format(self.params.restore_file)) self.logger.info("Ckpt load: {}".format(ckpt_component))
[ "megengine.save", "megengine.load" ]
[((1472, 1503), 'collections.defaultdict', 'defaultdict', (['utils.AverageMeter'], {}), '(utils.AverageMeter)\n', (1483, 1503), False, 'from collections import defaultdict\n'), ((1555, 1586), 'collections.defaultdict', 'defaultdict', (['utils.AverageMeter'], {}), '(utils.AverageMeter)\n', (1566, 1586), False, 'from collections import defaultdict\n'), ((1640, 1671), 'collections.defaultdict', 'defaultdict', (['utils.AverageMeter'], {}), '(utils.AverageMeter)\n', (1651, 1671), False, 'from collections import defaultdict\n'), ((1726, 1757), 'collections.defaultdict', 'defaultdict', (['utils.AverageMeter'], {}), '(utils.AverageMeter)\n', (1737, 1757), False, 'from collections import defaultdict\n'), ((1809, 1867), 'boto3.client', 'boto3.client', (['"""s3"""'], {'endpoint_url': '"""http://oss.i.brainpp.cn"""'}), "('s3', endpoint_url='http://oss.i.brainpp.cn')\n", (1821, 1867), False, 'import boto3\n'), ((5498, 5553), 'os.path.join', 'os.path.join', (['self.params.model_dir', '"""model_latest.pth"""'], {}), "(self.params.model_dir, 'model_latest.pth')\n", (5510, 5553), False, 'import os\n'), ((6207, 6269), 'os.path.join', 'os.path.join', (['self.params.model_dir', '"""val_metrics_latest.json"""'], {}), "(self.params.model_dir, 'val_metrics_latest.json')\n", (6219, 6269), False, 'import os\n'), ((6283, 6348), 'common.utils.save_dict_to_json', 'utils.save_dict_to_json', (['self.val_status', 'val_latest_metrics_name'], {}), '(self.val_status, val_latest_metrics_name)\n', (6306, 6348), False, 'from common import utils\n'), ((7951, 8014), 'os.path.join', 'os.path.join', (['self.params.model_dir', '"""test_metrics_latest.json"""'], {}), "(self.params.model_dir, 'test_metrics_latest.json')\n", (7963, 8014), False, 'import os\n'), ((8028, 8095), 'common.utils.save_dict_to_json', 'utils.save_dict_to_json', (['self.test_status', 'test_latest_metrics_name'], {}), '(self.test_status, test_latest_metrics_name)\n', (8051, 8095), False, 'from common import utils\n'), ((9599, 9633), 'megengine.load', 'mge.load', (['self.params.restore_file'], {}), '(self.params.restore_file)\n', (9607, 9633), True, 'import megengine as mge\n'), ((5653, 5686), 'megengine.save', 'mge.save', (['state', 'latest_ckpt_name'], {}), '(state, latest_ckpt_name)\n', (5661, 5686), True, 'import megengine as mge\n'), ((6882, 6942), 'os.path.join', 'os.path.join', (['self.params.model_dir', '"""val_metrics_best.json"""'], {}), "(self.params.model_dir, 'val_metrics_best.json')\n", (6894, 6942), False, 'import os\n'), ((6960, 7019), 'common.utils.save_dict_to_json', 'utils.save_dict_to_json', (['self.val_status', 'best_metrics_name'], {}), '(self.val_status, best_metrics_name)\n', (6983, 7019), False, 'from common import utils\n'), ((7188, 7245), 'os.path.join', 'os.path.join', (['self.params.model_dir', '"""val_model_best.pth"""'], {}), "(self.params.model_dir, 'val_model_best.pth')\n", (7200, 7245), False, 'import os\n'), ((8631, 8692), 'os.path.join', 'os.path.join', (['self.params.model_dir', '"""test_metrics_best.json"""'], {}), "(self.params.model_dir, 'test_metrics_best.json')\n", (8643, 8692), False, 'import os\n'), ((8710, 8770), 'common.utils.save_dict_to_json', 'utils.save_dict_to_json', (['self.test_status', 'best_metrics_name'], {}), '(self.test_status, best_metrics_name)\n', (8733, 8770), False, 'from common import utils\n'), ((8941, 8999), 'os.path.join', 'os.path.join', (['self.params.model_dir', '"""test_model_best.pth"""'], {}), "(self.params.model_dir, 'test_model_best.pth')\n", (8953, 8999), False, 'import os\n'), ((9849, 9868), 'pickle.loads', 'pickle.loads', (['state'], {}), '(state)\n', (9861, 9868), False, 'import pickle\n'), ((5766, 5785), 'pickle.dumps', 'pickle.dumps', (['state'], {}), '(state)\n', (5778, 5785), False, 'import pickle\n'), ((7321, 7352), 'megengine.save', 'mge.save', (['state', 'best_ckpt_name'], {}), '(state, best_ckpt_name)\n', (7329, 7352), True, 'import megengine as mge\n'), ((9075, 9106), 'megengine.save', 'mge.save', (['state', 'best_ckpt_name'], {}), '(state, best_ckpt_name)\n', (9083, 9106), True, 'import megengine as mge\n'), ((7440, 7459), 'pickle.dumps', 'pickle.dumps', (['state'], {}), '(state)\n', (7452, 7459), False, 'import pickle\n'), ((9194, 9213), 'pickle.dumps', 'pickle.dumps', (['state'], {}), '(state)\n', (9206, 9213), False, 'import pickle\n')]
import asyncio import logging import os import time from datetime import datetime from sqlmodel import Session, SQLModel, select from starlette.concurrency import run_in_threadpool from ..datatypes import ArtmuseumTimeLabel from ..scraping.artmuseum import scrap_artmuseum from ..scraping.philharmonia import scrap_philharmonia from .models import ArtmuseumExhibition, PhilharmoniaConcert def refresh_data(engine): """ Scrap all the data sources for up-to-date info. Drop local values and replace them with the new data. We are trying to be an exact mirror of our data sources. The easiest way to achieve this is to regularly throw out all the data we have and scrap up-to-date info. The cost of this approach in performance/resources is neglectable and is much preffered over complications brought by trying to maintain a local copy by continuously patching it up with UPDATEs. (there can be edits in the source info, urls can change, etc. - it's not worth it to consider all such corner cases) """ logging.info("Started scraping up-to-date info.") known_addrs = {} with Session(engine) as session: stmt = select(ArtmuseumExhibition.url, ArtmuseumExhibition.address).where( ArtmuseumExhibition.address != None ) known_addrs = dict(session.exec(stmt).all()) exhibitions = scrap_artmuseum(known_addrs) concerts = scrap_philharmonia() logging.info("Finished scraping up-to-date info.") logging.info("Started updating the database.") with Session(engine) as session: session.query(PhilharmoniaConcert).delete() session.query(ArtmuseumExhibition).delete() session.bulk_save_objects(concerts) session.bulk_save_objects(exhibitions) session.commit() logging.info("Finished updating the database.") async def loop_refreshing_data(engine, update_interval, initial_sleep_time: int = 0): if initial_sleep_time > 0: await asyncio.sleep(initial_sleep_time) while True: await run_in_threadpool(refresh_data, engine) await asyncio.sleep(update_interval) def init_db(engine): update_interval = 60 * 60 * 8 # 8 hours initial_sleep_time = 0 if os.path.isfile(engine.url.database): last_modified = os.path.getmtime(engine.url.database) dt = time.time() - last_modified if dt <= update_interval: initial_sleep_time = update_interval - dt last_update = datetime.fromtimestamp(last_modified).replace(microsecond=0) logging.info( f"Last database update - {last_update}, the next one is scheduled in ...[N]h [N]m.... (at h:m)" ) SQLModel.metadata.create_all(engine) asyncio.create_task( loop_refreshing_data(engine, update_interval, initial_sleep_time) )
[ "sqlmodel.SQLModel.metadata.create_all", "sqlmodel.Session", "sqlmodel.select" ]
[((1043, 1092), 'logging.info', 'logging.info', (['"""Started scraping up-to-date info."""'], {}), "('Started scraping up-to-date info.')\n", (1055, 1092), False, 'import logging\n'), ((1432, 1482), 'logging.info', 'logging.info', (['"""Finished scraping up-to-date info."""'], {}), "('Finished scraping up-to-date info.')\n", (1444, 1482), False, 'import logging\n'), ((1488, 1534), 'logging.info', 'logging.info', (['"""Started updating the database."""'], {}), "('Started updating the database.')\n", (1500, 1534), False, 'import logging\n'), ((1798, 1845), 'logging.info', 'logging.info', (['"""Finished updating the database."""'], {}), "('Finished updating the database.')\n", (1810, 1845), False, 'import logging\n'), ((2231, 2266), 'os.path.isfile', 'os.path.isfile', (['engine.url.database'], {}), '(engine.url.database)\n', (2245, 2266), False, 'import os\n'), ((2705, 2741), 'sqlmodel.SQLModel.metadata.create_all', 'SQLModel.metadata.create_all', (['engine'], {}), '(engine)\n', (2733, 2741), False, 'from sqlmodel import Session, SQLModel, select\n'), ((1123, 1138), 'sqlmodel.Session', 'Session', (['engine'], {}), '(engine)\n', (1130, 1138), False, 'from sqlmodel import Session, SQLModel, select\n'), ((1544, 1559), 'sqlmodel.Session', 'Session', (['engine'], {}), '(engine)\n', (1551, 1559), False, 'from sqlmodel import Session, SQLModel, select\n'), ((2292, 2329), 'os.path.getmtime', 'os.path.getmtime', (['engine.url.database'], {}), '(engine.url.database)\n', (2308, 2329), False, 'import os\n'), ((1979, 2012), 'asyncio.sleep', 'asyncio.sleep', (['initial_sleep_time'], {}), '(initial_sleep_time)\n', (1992, 2012), False, 'import asyncio\n'), ((2043, 2082), 'starlette.concurrency.run_in_threadpool', 'run_in_threadpool', (['refresh_data', 'engine'], {}), '(refresh_data, engine)\n', (2060, 2082), False, 'from starlette.concurrency import run_in_threadpool\n'), ((2097, 2127), 'asyncio.sleep', 'asyncio.sleep', (['update_interval'], {}), '(update_interval)\n', (2110, 2127), False, 'import asyncio\n'), ((2343, 2354), 'time.time', 'time.time', ([], {}), '()\n', (2352, 2354), False, 'import time\n'), ((2560, 2679), 'logging.info', 'logging.info', (['f"""Last database update - {last_update}, the next one is scheduled in ...[N]h [N]m.... (at h:m)"""'], {}), "(\n f'Last database update - {last_update}, the next one is scheduled in ...[N]h [N]m.... (at h:m)'\n )\n", (2572, 2679), False, 'import logging\n'), ((1166, 1226), 'sqlmodel.select', 'select', (['ArtmuseumExhibition.url', 'ArtmuseumExhibition.address'], {}), '(ArtmuseumExhibition.url, ArtmuseumExhibition.address)\n', (1172, 1226), False, 'from sqlmodel import Session, SQLModel, select\n'), ((2487, 2524), 'datetime.datetime.fromtimestamp', 'datetime.fromtimestamp', (['last_modified'], {}), '(last_modified)\n', (2509, 2524), False, 'from datetime import datetime\n')]
from typing import Union from fastapi import FastAPI from pydantic import BaseSettings from ...utils import get_settings try: from sqlalchemy.engine import Engine from sqlalchemy.ext.asyncio import AsyncEngine, create_async_engine from sqlmodel import Session, SQLModel, create_engine from sqlmodel.ext.asyncio.session import AsyncSession except ImportError: raise RuntimeError( "SQLModel is not installed. Please install it with `pip install sqlmodel pyhumps`" ) class Database: """ A class to wrap the sqlalchemy engine and open a connection session to the db. """ def __init__(self, engine: Union[Engine, AsyncEngine], is_async: bool = False): self.engine = engine self.is_async = is_async def open(self) -> Union[Session, AsyncSession]: if self.is_async: return AsyncSession(self.engine) else: return Session(self.engine) def setup(app: FastAPI, settings: BaseSettings = None) -> Database: """ Install the sqlmodel plugin to the app. This will attach 1 attribute to `app.state` i.e: * `db` - `popol.sqlmodel.Database` instance object to open db connection. Args: app: FastAPI app. settings: The settings (can be pydantic.BaseSettings). Returns: Database: The database. """ settings = get_settings(app, settings) prefix = "SQLALCHEMY_" db_uri = getattr(settings, f"{prefix}DATABASE_URI", None) if not db_uri: raise RuntimeError(f"{prefix}DATABASE_URI is not set") async_mode = getattr(settings, f"{prefix}ASYNC_MODE", False) options = getattr(settings, f"{prefix}OPTIONS", {}) if async_mode: engine = create_async_engine(db_uri, **options) else: engine = create_engine(db_uri, **options) db = Database(engine, async_mode) app.state.db = db async def startup(): # reference: https://github.com/tiangolo/sqlmodel/issues/54#issue-981884262 if async_mode: async with engine.begin() as conn: await conn.run_sync(SQLModel.metadata.create_all) else: SQLModel.metadata.create_all(engine) app.add_event_handler("startup", startup) return db
[ "sqlmodel.SQLModel.metadata.create_all", "sqlmodel.Session", "sqlmodel.create_engine", "sqlmodel.ext.asyncio.session.AsyncSession" ]
[((1723, 1761), 'sqlalchemy.ext.asyncio.create_async_engine', 'create_async_engine', (['db_uri'], {}), '(db_uri, **options)\n', (1742, 1761), False, 'from sqlalchemy.ext.asyncio import AsyncEngine, create_async_engine\n'), ((1789, 1821), 'sqlmodel.create_engine', 'create_engine', (['db_uri'], {}), '(db_uri, **options)\n', (1802, 1821), False, 'from sqlmodel import Session, SQLModel, create_engine\n'), ((862, 887), 'sqlmodel.ext.asyncio.session.AsyncSession', 'AsyncSession', (['self.engine'], {}), '(self.engine)\n', (874, 887), False, 'from sqlmodel.ext.asyncio.session import AsyncSession\n'), ((921, 941), 'sqlmodel.Session', 'Session', (['self.engine'], {}), '(self.engine)\n', (928, 941), False, 'from sqlmodel import Session, SQLModel, create_engine\n'), ((2155, 2191), 'sqlmodel.SQLModel.metadata.create_all', 'SQLModel.metadata.create_all', (['engine'], {}), '(engine)\n', (2183, 2191), False, 'from sqlmodel import Session, SQLModel, create_engine\n')]
from http import HTTPStatus from typing import List from fastapi import APIRouter, Depends from sqlalchemy.ext.asyncio import AsyncSession from sqlalchemy.future import select from sqlmodel import select from starlette.responses import Response from icon_governance.db import get_session from icon_governance.models.preps import Prep router = APIRouter() @router.get("/preps") async def get_preps( session: AsyncSession = Depends(get_session), ) -> List[Prep]: """Return list of preps which is limitted to 150 records so no skip.""" result = await session.execute(select(Prep).order_by(Prep.delegated.desc())) preps = result.scalars().all() return preps @router.get("/preps/{address}") async def get_prep( address: str, session: AsyncSession = Depends(get_session), ) -> List[Prep]: """Return a single prep.""" result = await session.execute(select(Prep).where(Prep.address == address)) preps = result.scalars().all() if len(preps) == 0: return Response(status_code=HTTPStatus.NO_CONTENT.value) return preps
[ "sqlmodel.select" ]
[((346, 357), 'fastapi.APIRouter', 'APIRouter', ([], {}), '()\n', (355, 357), False, 'from fastapi import APIRouter, Depends\n'), ((431, 451), 'fastapi.Depends', 'Depends', (['get_session'], {}), '(get_session)\n', (438, 451), False, 'from fastapi import APIRouter, Depends\n'), ((780, 800), 'fastapi.Depends', 'Depends', (['get_session'], {}), '(get_session)\n', (787, 800), False, 'from fastapi import APIRouter, Depends\n'), ((1006, 1055), 'starlette.responses.Response', 'Response', ([], {'status_code': 'HTTPStatus.NO_CONTENT.value'}), '(status_code=HTTPStatus.NO_CONTENT.value)\n', (1014, 1055), False, 'from starlette.responses import Response\n'), ((603, 624), 'icon_governance.models.preps.Prep.delegated.desc', 'Prep.delegated.desc', ([], {}), '()\n', (622, 624), False, 'from icon_governance.models.preps import Prep\n'), ((581, 593), 'sqlmodel.select', 'select', (['Prep'], {}), '(Prep)\n', (587, 593), False, 'from sqlmodel import select\n'), ((886, 898), 'sqlmodel.select', 'select', (['Prep'], {}), '(Prep)\n', (892, 898), False, 'from sqlmodel import select\n')]
""" Utility functions. """ import logging import os from functools import lru_cache from pathlib import Path from typing import Iterator, List, Optional from dotenv import load_dotenv from rich.logging import RichHandler from sqlalchemy.engine import Engine from sqlmodel import Session, SQLModel, create_engine from yarl import URL from datajunction.config import Settings from datajunction.typing import ColumnType def setup_logging(loglevel: str) -> None: """ Setup basic logging. """ level = getattr(logging, loglevel.upper(), None) if not isinstance(level, int): raise ValueError(f"Invalid log level: {loglevel}") logformat = "[%(asctime)s] %(levelname)s: %(name)s: %(message)s" logging.basicConfig( level=level, format=logformat, datefmt="[%X]", handlers=[RichHandler(rich_tracebacks=True)], force=True, ) def get_project_repository() -> Path: """ Return the project repository. This is used for unit tests. """ return Path(__file__).parent.parent.parent @lru_cache def get_settings() -> Settings: """ Return a cached settings object. """ dotenv_file = os.environ.get("DOTENV_FILE", ".env") load_dotenv(dotenv_file) return Settings() def get_engine() -> Engine: """ Create the metadata engine. """ settings = get_settings() engine = create_engine(settings.index) return engine def create_db_and_tables() -> None: """ Create the database and tables. """ engine = get_engine() SQLModel.metadata.create_all(engine) def get_session() -> Iterator[Session]: """ Per-request session. """ engine = get_engine() with Session(engine, autoflush=False) as session: # pragma: no cover yield session def get_name_from_path(repository: Path, path: Path) -> str: """ Compute the name of a node given its path and the repository path. """ # strip anything before the repository relative_path = path.relative_to(repository) if len(relative_path.parts) < 2 or relative_path.parts[0] not in { "nodes", "databases", }: raise Exception(f"Invalid path: {path}") # remove the "nodes" directory from the path relative_path = relative_path.relative_to(relative_path.parts[0]) # remove extension relative_path = relative_path.with_suffix("") # encode percent symbols and periods encoded = ( str(relative_path) .replace("%", "%25") .replace(".", "%2E") .replace(os.path.sep, ".") ) return encoded def get_more_specific_type( current_type: Optional[ColumnType], new_type: ColumnType, ) -> ColumnType: """ Given two types, return the most specific one. Different databases might store the same column as different types. For example, Hive might store timestamps as strings, while Postgres would store the same data as a datetime. >>> get_more_specific_type(ColumnType.STR, ColumnType.DATETIME) <ColumnType.DATETIME: 'DATETIME'> >>> get_more_specific_type(ColumnType.STR, ColumnType.INT) <ColumnType.INT: 'INT'> """ if current_type is None: return new_type hierarchy = [ ColumnType.BYTES, ColumnType.STR, ColumnType.FLOAT, ColumnType.INT, ColumnType.DECIMAL, ColumnType.BOOL, ColumnType.DATETIME, ColumnType.DATE, ColumnType.TIME, ColumnType.TIMEDELTA, ColumnType.LIST, ColumnType.DICT, ] return sorted([current_type, new_type], key=hierarchy.index)[1] def get_issue_url( baseurl: URL = URL("https://github.com/DataJunction/datajunction/issues/new"), title: Optional[str] = None, body: Optional[str] = None, labels: Optional[List[str]] = None, ) -> URL: """ Return the URL to file an issue on GitHub. https://docs.github.com/en/issues/tracking-your-work-with-issues/creating-an-issue#creating-an-issue-from-a-url-query """ query_arguments = { "title": title, "body": body, "labels": ",".join(label.strip() for label in labels) if labels else None, } query_arguments = {k: v for k, v in query_arguments.items() if v is not None} return baseurl % query_arguments
[ "sqlmodel.create_engine", "sqlmodel.Session", "sqlmodel.SQLModel.metadata.create_all" ]
[((1186, 1223), 'os.environ.get', 'os.environ.get', (['"""DOTENV_FILE"""', '""".env"""'], {}), "('DOTENV_FILE', '.env')\n", (1200, 1223), False, 'import os\n'), ((1228, 1252), 'dotenv.load_dotenv', 'load_dotenv', (['dotenv_file'], {}), '(dotenv_file)\n', (1239, 1252), False, 'from dotenv import load_dotenv\n'), ((1264, 1274), 'datajunction.config.Settings', 'Settings', ([], {}), '()\n', (1272, 1274), False, 'from datajunction.config import Settings\n'), ((1396, 1425), 'sqlmodel.create_engine', 'create_engine', (['settings.index'], {}), '(settings.index)\n', (1409, 1425), False, 'from sqlmodel import Session, SQLModel, create_engine\n'), ((1565, 1601), 'sqlmodel.SQLModel.metadata.create_all', 'SQLModel.metadata.create_all', (['engine'], {}), '(engine)\n', (1593, 1601), False, 'from sqlmodel import Session, SQLModel, create_engine\n'), ((3698, 3760), 'yarl.URL', 'URL', (['"""https://github.com/DataJunction/datajunction/issues/new"""'], {}), "('https://github.com/DataJunction/datajunction/issues/new')\n", (3701, 3760), False, 'from yarl import URL\n'), ((1721, 1753), 'sqlmodel.Session', 'Session', (['engine'], {'autoflush': '(False)'}), '(engine, autoflush=False)\n', (1728, 1753), False, 'from sqlmodel import Session, SQLModel, create_engine\n'), ((836, 869), 'rich.logging.RichHandler', 'RichHandler', ([], {'rich_tracebacks': '(True)'}), '(rich_tracebacks=True)\n', (847, 869), False, 'from rich.logging import RichHandler\n'), ((1034, 1048), 'pathlib.Path', 'Path', (['__file__'], {}), '(__file__)\n', (1038, 1048), False, 'from pathlib import Path\n')]
from typing import Any, Dict, List from uuid import UUID from sqlalchemy.orm import selectinload from sqlmodel import select from sqlmodel.ext.asyncio.session import AsyncSession from service.crud.base import CRUDBase, ModelType from service.models.models import Topic, TopicBase, TopicCreate, TopicModel, Word class CRUDTopic(CRUDBase[Topic, TopicCreate, TopicBase]): async def get_model_topics( self, db: AsyncSession, *, model_id: UUID, version: int, with_words: bool = False ) -> List[ModelType]: statement = ( select(self.model) .join(TopicModel) .filter(TopicModel.model_id == model_id, TopicModel.version == version) .order_by(-self.model.count) ) if with_words: statement = statement.options(selectinload(self.model.top_words)) return (await db.execute(statement)).scalars().all() async def save_topics( self, db: AsyncSession, *, topics: List[Dict[str, Any]], model: TopicModel ) -> None: for topic in topics: db_obj = self.model.from_orm( TopicCreate.parse_obj({**topic, "topic_model_id": model.id}) ) db.add(db_obj) for word in topic["top_words"]: db.add(Word.parse_obj({**word, "topic": db_obj})) await db.commit() topic = CRUDTopic(Topic)
[ "sqlmodel.select" ]
[((805, 839), 'sqlalchemy.orm.selectinload', 'selectinload', (['self.model.top_words'], {}), '(self.model.top_words)\n', (817, 839), False, 'from sqlalchemy.orm import selectinload\n'), ((1115, 1175), 'service.models.models.TopicCreate.parse_obj', 'TopicCreate.parse_obj', (["{**topic, 'topic_model_id': model.id}"], {}), "({**topic, 'topic_model_id': model.id})\n", (1136, 1175), False, 'from service.models.models import Topic, TopicBase, TopicCreate, TopicModel, Word\n'), ((1284, 1325), 'service.models.models.Word.parse_obj', 'Word.parse_obj', (["{**word, 'topic': db_obj}"], {}), "({**word, 'topic': db_obj})\n", (1298, 1325), False, 'from service.models.models import Topic, TopicBase, TopicCreate, TopicModel, Word\n'), ((556, 574), 'sqlmodel.select', 'select', (['self.model'], {}), '(self.model)\n', (562, 574), False, 'from sqlmodel import select\n')]
from datetime import date from typing import List from sqlmodel import select from config.config_utils import get_managed_teams_config from src.api.fixtures_client import FixturesClient from src.db.db_manager import NotifierDBManager from src.db.notif_sql_models import Fixture as DBFixture from src.db.notif_sql_models import League as DBLeague from src.db.notif_sql_models import Team as DBTeam from src.entities import Championship, Team from src.utils.fixtures_utils import convert_fixture_response_to_db NOTIFIER_DB_MANAGER = NotifierDBManager() def insert_league(fixture_league: Championship) -> DBLeague: league_statement = select(DBLeague).where(DBLeague.id == fixture_league.league_id) retrieved_league = NOTIFIER_DB_MANAGER.select_records(league_statement) if not len(retrieved_league): league = DBLeague( id=fixture_league.league_id, name=fixture_league.name, logo=fixture_league.logo, country=fixture_league.country, ) NOTIFIER_DB_MANAGER.insert_record(league) retrieved_league = NOTIFIER_DB_MANAGER.select_records(league_statement) return retrieved_league def insert_team(fixture_team: Team) -> DBTeam: team_statement = select(DBTeam).where(DBTeam.id == fixture_team.id) retrieved_team = NOTIFIER_DB_MANAGER.select_records(team_statement) if not len(retrieved_team): team = DBTeam( id=fixture_team.id, name=fixture_team.name, picture=fixture_team.picture, aliases=fixture_team.aliases, ) NOTIFIER_DB_MANAGER.insert_record(team) retrieved_team = NOTIFIER_DB_MANAGER.select_records(team_statement) return retrieved_team def save_fixtures(team_fixtures: List[dict]) -> None: converted_fixtures = [] fix_nr = 1 for fixture in team_fixtures: print(f"Converting & populating fixture {fix_nr}/{len(team_fixtures)}") converted_fixtures.append(convert_fixture_response_to_db(fixture)) fix_nr += 1 db_fixtures = [] for conv_fix in converted_fixtures: retrieved_league = insert_league(conv_fix.championship) retrieved_home_team = insert_team(conv_fix.home_team) retrieved_away_team = insert_team(conv_fix.away_team) fixture_statement = select(DBFixture).where(DBFixture.id == conv_fix.id) retrieved_fixture = NOTIFIER_DB_MANAGER.select_records(fixture_statement) if not len(retrieved_fixture): db_fixture = DBFixture( id=conv_fix.id, utc_date=conv_fix.utc_date, league=retrieved_league.pop().id, round=conv_fix.round, home_team=retrieved_home_team.pop().id, away_team=retrieved_away_team.pop().id, home_score=conv_fix.match_score.home_score, away_score=conv_fix.match_score.away_score, ) else: db_fixture = retrieved_fixture.pop() db_fixture.id = conv_fix.id db_fixture.utc_date = conv_fix.utc_date db_fixture.league = retrieved_league.pop().id db_fixture.round = conv_fix.round db_fixture.home_team = retrieved_home_team.pop().id db_fixture.away_team = retrieved_away_team.pop().id db_fixture.home_score = conv_fix.match_score.home_score db_fixture.away_score = conv_fix.match_score.away_score db_fixtures.append(db_fixture) NOTIFIER_DB_MANAGER.insert_records(db_fixtures) def populate_data(is_initial: bool = False) -> None: managed_teams = get_managed_teams_config() fixtures_client = FixturesClient() current_year = date.today().year last_year = current_year - 1 for team in managed_teams: if is_initial: team_fixtures = fixtures_client.get_fixtures_by(str(last_year), team.id) if "response" in team_fixtures.as_dict: save_fixtures(team_fixtures.as_dict["response"]) team_fixtures = fixtures_client.get_fixtures_by(str(current_year), team.id) if "response" in team_fixtures.as_dict: save_fixtures(team_fixtures.as_dict["response"]) if __name__ == "__main__": fixtures = NOTIFIER_DB_MANAGER.select_records(select(DBFixture)) is_initial = True if not len(fixtures) else False populate_data(is_initial)
[ "sqlmodel.select" ]
[((534, 553), 'src.db.db_manager.NotifierDBManager', 'NotifierDBManager', ([], {}), '()\n', (551, 553), False, 'from src.db.db_manager import NotifierDBManager\n'), ((3634, 3660), 'config.config_utils.get_managed_teams_config', 'get_managed_teams_config', ([], {}), '()\n', (3658, 3660), False, 'from config.config_utils import get_managed_teams_config\n'), ((3683, 3699), 'src.api.fixtures_client.FixturesClient', 'FixturesClient', ([], {}), '()\n', (3697, 3699), False, 'from src.api.fixtures_client import FixturesClient\n'), ((832, 958), 'src.db.notif_sql_models.League', 'DBLeague', ([], {'id': 'fixture_league.league_id', 'name': 'fixture_league.name', 'logo': 'fixture_league.logo', 'country': 'fixture_league.country'}), '(id=fixture_league.league_id, name=fixture_league.name, logo=\n fixture_league.logo, country=fixture_league.country)\n', (840, 958), True, 'from src.db.notif_sql_models import League as DBLeague\n'), ((1413, 1528), 'src.db.notif_sql_models.Team', 'DBTeam', ([], {'id': 'fixture_team.id', 'name': 'fixture_team.name', 'picture': 'fixture_team.picture', 'aliases': 'fixture_team.aliases'}), '(id=fixture_team.id, name=fixture_team.name, picture=fixture_team.\n picture, aliases=fixture_team.aliases)\n', (1419, 1528), True, 'from src.db.notif_sql_models import Team as DBTeam\n'), ((3719, 3731), 'datetime.date.today', 'date.today', ([], {}), '()\n', (3729, 3731), False, 'from datetime import date\n'), ((4300, 4317), 'sqlmodel.select', 'select', (['DBFixture'], {}), '(DBFixture)\n', (4306, 4317), False, 'from sqlmodel import select\n'), ((640, 656), 'sqlmodel.select', 'select', (['DBLeague'], {}), '(DBLeague)\n', (646, 656), False, 'from sqlmodel import select\n'), ((1242, 1256), 'sqlmodel.select', 'select', (['DBTeam'], {}), '(DBTeam)\n', (1248, 1256), False, 'from sqlmodel import select\n'), ((1981, 2020), 'src.utils.fixtures_utils.convert_fixture_response_to_db', 'convert_fixture_response_to_db', (['fixture'], {}), '(fixture)\n', (2011, 2020), False, 'from src.utils.fixtures_utils import convert_fixture_response_to_db\n'), ((2322, 2339), 'sqlmodel.select', 'select', (['DBFixture'], {}), '(DBFixture)\n', (2328, 2339), False, 'from sqlmodel import select\n')]
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import argparse import bisect import os import time import pickle import numpy as np import megengine.amp as amp import megengine as mge import megengine.distributed as dist from megengine.autodiff import GradManager from megengine.data import DataLoader, Infinite, RandomSampler from megengine.data import transform as T from megengine.optimizer import SGD import megengine.jit as jit from tools.utils import ( AverageMeter, DetectionPadCollator, GroupedRandomSampler, PseudoDetectionDataset, get_config_info, import_from_file ) logger = mge.get_logger(__name__) logger.setLevel("INFO") mge.device.set_prealloc_config(1024, 1024, 512 * 1024 * 1024, 2.0) def make_parser(): parser = argparse.ArgumentParser() parser.add_argument( "-a", "--arch", type=str, help="model architecture", ) parser.add_argument( "-n", "--ngpus", default=1, type=int, help="total number of gpus for training", ) parser.add_argument( "-b", "--batch-size", default=2, type=int, help="batchsize for training", ) parser.add_argument( "-s", "--steps", default=100, type=int, help="number of train steps (default: 100)", ) parser.add_argument( "--trace", action='store_true', default=False, help="whether use trace or not (default: False)", ) parser.add_argument( "--preloader", action='store_true', default=False, help="whether use preloader or not (default: False)", ) parser.add_argument( "--symbolic", action='store_true', default=False, help="whether use symbolic trace or not (default: False)", ) parser.add_argument( "-d", "--loader", default=False, action="store_true", help="use pseudo detection dataset loader", ) parser.add_argument( "-p", "--print-freq", default=1, type=int, help="print frequency (default: 1)", ) parser.add_argument( "-m", "--mode", default="normal", type=str, choices=["normal", "mp"], help="Quantization Mode\n" "normal: no quantization, using float32\n" "mp: input type is fp16", ) parser.add_argument("--preload", default=False, action="store_true", help="whether use preload") return parser def main(): parser = make_parser() args = parser.parse_args() # ------------------------ begin training -------------------------- # if args.ngpus > 1: train_func = dist.launcher(worker, n_gpus=args.ngpus) train_func(args) else: worker(args) def worker(args): config_file = { "faster_rcnn": "configs/faster_rcnn_res50_coco_1x_800size.py", "atss": "configs/atss_res50_coco_1x_800size.py", "retinanet": "configs/retinanet_res50_coco_1x_800size.py", }[args.arch] current_network = import_from_file(config_file) model = current_network.Net(current_network.Cfg()) model.train() # if dist.get_rank() == 0: # logger.info(get_config_info(model.cfg)) # logger.info(repr(model)) params_with_grad = [] for name, param in model.named_parameters(): if "bottom_up.conv1" in name and model.cfg.backbone_freeze_at >= 1: continue if "bottom_up.layer1" in name and model.cfg.backbone_freeze_at >= 2: continue params_with_grad.append(param) opt = SGD( params_with_grad, lr=model.cfg.basic_lr * args.batch_size, momentum=model.cfg.momentum, weight_decay=model.cfg.weight_decay * dist.get_world_size(), ) gm = GradManager() if dist.get_world_size() > 1: gm.attach( params_with_grad, callbacks=[dist.make_allreduce_cb("SUM", dist.WORLD)] ) else: gm.attach(params_with_grad) if dist.get_world_size() > 1: dist.bcast_list_(model.parameters(), dist.WORLD) # sync parameters train_loader = None for epoch in range(1): train_one_epoch(model, train_loader, opt, gm, epoch, args) def train_one_epoch(model, data_queue, opt, gm, epoch, args): @amp.autocast(enabled=args.mode == "mp") def train_func(image, im_info, gt_boxes): with gm: loss_dict = model(image=image, im_info=im_info, gt_boxes=gt_boxes) gm.backward(loss_dict["total_loss"]) loss_list = list(loss_dict.values()) opt.step().clear_grad() return loss_list if args.trace: if args.symbolic: train_func = jit.trace(train_func, symbolic=True, sublinear_memory_config=jit.SublinearMemoryConfig(genetic_nr_iter=50), symbolic_shape=True) else: train_func = jit.trace(train_func, symbolic=False, symbolic_shape=False) else: assert args.symbolic==False, "invalid arguments: trace=Trace, symbolic=True" loss_meter = AverageMeter(record_len=model.cfg.num_losses) time_meter = AverageMeter(record_len=2) log_interval = model.cfg.log_interval tot_step = model.cfg.nr_images_epoch // (args.batch_size * dist.get_world_size()) file_dir = os.path.dirname(os.path.abspath(__file__)) data_path = os.path.join(file_dir, 'batch.pkl') # batch_size for batch.pkl is 2 mini_batch = pickle.load(open(data_path, "rb")) if args.batch_size != 2: repeats = (args.batch_size+1) // 2 mini_batch['data'] = np.concatenate([mini_batch['data'],]*repeats)[:args.batch_size] mini_batch['im_info'] = np.concatenate([mini_batch['im_info'],]*repeats)[:args.batch_size] mini_batch['gt_boxes'] = np.concatenate([mini_batch['gt_boxes'],]*repeats)[:args.batch_size] # warm up for step in range(10): if data_queue: mini_batch = next(data_queue) loss_list = train_func( image=mge.tensor(mini_batch["data"]), im_info=mge.tensor(mini_batch["im_info"]), gt_boxes=mge.tensor(mini_batch["gt_boxes"]) ) _ = [loss.numpy() for loss in loss_list] for step in range(args.steps): tik = time.time() if data_queue: mini_batch = next(data_queue) data_tok = time.time() loss_list = train_func( image=mge.tensor(mini_batch["data"]), im_info=mge.tensor(mini_batch["im_info"]), gt_boxes=mge.tensor(mini_batch["gt_boxes"]) ) loss_meter.update([loss.numpy().item() for loss in loss_list]) tok = time.time() time_meter.update([tok - tik, data_tok - tik]) if step % args.print_freq == 0 and dist.get_rank() == 0: print( "Step {}, Loss ({}), Time (tot:{:.3f}, data:{:.3f})".format( step, "".join(["{:.3f} ".format(t) for t in loss_meter.average()]), *time_meter.average(), )) loss_meter.reset() if dist.get_rank() == 0: print("="*20, "summary", "="*20) print(" benchmark: detection") if args.trace: print(" mode: trace(symbolic={})".format("True, sublinear=True" if args.symbolic else "False")) else: print(" mode: imperative") print(" loader: {}".format("" if not args.loader else "--loader")) if args.loader: print(" preload: {}".format("" if not args.preload else "--preload")) print(" arch: {}".format(args.arch)) print("train_mode: {}".format(args.mode)) print(" batchsize: {}".format(args.batch_size)) print(" #GPU: {}".format(args.ngpus)) print(" avg time: {:.3f} seconds".format(time_meter.average()[0])) # pylint: disable=unused-argument def build_dataset(dataset_dir, cfg): return PseudoDetectionDataset(order=["image", "boxes", "boxes_category", "info"]) # pylint: disable=dangerous-default-value def build_sampler(train_dataset, batch_size, aspect_grouping=[1]): def _compute_aspect_ratios(dataset): aspect_ratios = [] for i in range(len(dataset)): info = dataset.get_img_info(i) aspect_ratios.append(info["height"] / info["width"]) return aspect_ratios def _quantize(x, bins): return list(map(lambda y: bisect.bisect_right(sorted(bins), y), x)) if len(aspect_grouping) == 0: return Infinite(RandomSampler(train_dataset, batch_size, drop_last=True)) aspect_ratios = _compute_aspect_ratios(train_dataset) group_ids = _quantize(aspect_ratios, aspect_grouping) return Infinite(GroupedRandomSampler(train_dataset, batch_size, group_ids)) def build_dataloader(batch_size, dataset_dir, cfg, preloader= False): train_dataset = build_dataset(dataset_dir, cfg) train_sampler = build_sampler(train_dataset, batch_size) train_dataloader = DataLoader( train_dataset, sampler=train_sampler, transform=T.Compose( transforms=[ T.ShortestEdgeResize( cfg.train_image_short_size, cfg.train_image_max_size, sample_style="choice", ), T.RandomHorizontalFlip(), T.ToMode(), ], order=["image", "boxes", "boxes_category"], ), collator=DetectionPadCollator(), num_workers=8, preload= preloader, ) return train_dataloader if __name__ == "__main__": main()
[ "megengine.data.transform.ToMode", "megengine.amp.autocast", "megengine.device.set_prealloc_config", "megengine.distributed.get_rank", "megengine.distributed.get_world_size", "megengine.get_logger", "megengine.distributed.make_allreduce_cb", "megengine.data.transform.RandomHorizontalFlip", "megengine.jit.trace", "megengine.jit.SublinearMemoryConfig", "megengine.tensor", "megengine.data.RandomSampler", "megengine.data.transform.ShortestEdgeResize", "megengine.autodiff.GradManager", "megengine.distributed.launcher" ]
[((942, 966), 'megengine.get_logger', 'mge.get_logger', (['__name__'], {}), '(__name__)\n', (956, 966), True, 'import megengine as mge\n'), ((991, 1057), 'megengine.device.set_prealloc_config', 'mge.device.set_prealloc_config', (['(1024)', '(1024)', '(512 * 1024 * 1024)', '(2.0)'], {}), '(1024, 1024, 512 * 1024 * 1024, 2.0)\n', (1021, 1057), True, 'import megengine as mge\n'), ((1092, 1117), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (1115, 1117), False, 'import argparse\n'), ((3265, 3294), 'tools.utils.import_from_file', 'import_from_file', (['config_file'], {}), '(config_file)\n', (3281, 3294), False, 'from tools.utils import AverageMeter, DetectionPadCollator, GroupedRandomSampler, PseudoDetectionDataset, get_config_info, import_from_file\n'), ((4010, 4023), 'megengine.autodiff.GradManager', 'GradManager', ([], {}), '()\n', (4021, 4023), False, 'from megengine.autodiff import GradManager\n'), ((4528, 4567), 'megengine.amp.autocast', 'amp.autocast', ([], {'enabled': "(args.mode == 'mp')"}), "(enabled=args.mode == 'mp')\n", (4540, 4567), True, 'import megengine.amp as amp\n'), ((5277, 5322), 'tools.utils.AverageMeter', 'AverageMeter', ([], {'record_len': 'model.cfg.num_losses'}), '(record_len=model.cfg.num_losses)\n', (5289, 5322), False, 'from tools.utils import AverageMeter, DetectionPadCollator, GroupedRandomSampler, PseudoDetectionDataset, get_config_info, import_from_file\n'), ((5340, 5366), 'tools.utils.AverageMeter', 'AverageMeter', ([], {'record_len': '(2)'}), '(record_len=2)\n', (5352, 5366), False, 'from tools.utils import AverageMeter, DetectionPadCollator, GroupedRandomSampler, PseudoDetectionDataset, get_config_info, import_from_file\n'), ((5571, 5606), 'os.path.join', 'os.path.join', (['file_dir', '"""batch.pkl"""'], {}), "(file_dir, 'batch.pkl')\n", (5583, 5606), False, 'import os\n'), ((8136, 8210), 'tools.utils.PseudoDetectionDataset', 'PseudoDetectionDataset', ([], {'order': "['image', 'boxes', 'boxes_category', 'info']"}), "(order=['image', 'boxes', 'boxes_category', 'info'])\n", (8158, 8210), False, 'from tools.utils import AverageMeter, DetectionPadCollator, GroupedRandomSampler, PseudoDetectionDataset, get_config_info, import_from_file\n'), ((2893, 2933), 'megengine.distributed.launcher', 'dist.launcher', (['worker'], {'n_gpus': 'args.ngpus'}), '(worker, n_gpus=args.ngpus)\n', (2906, 2933), True, 'import megengine.distributed as dist\n'), ((4031, 4052), 'megengine.distributed.get_world_size', 'dist.get_world_size', ([], {}), '()\n', (4050, 4052), True, 'import megengine.distributed as dist\n'), ((4237, 4258), 'megengine.distributed.get_world_size', 'dist.get_world_size', ([], {}), '()\n', (4256, 4258), True, 'import megengine.distributed as dist\n'), ((5528, 5553), 'os.path.abspath', 'os.path.abspath', (['__file__'], {}), '(__file__)\n', (5543, 5553), False, 'import os\n'), ((6466, 6477), 'time.time', 'time.time', ([], {}), '()\n', (6475, 6477), False, 'import time\n'), ((6562, 6573), 'time.time', 'time.time', ([], {}), '()\n', (6571, 6573), False, 'import time\n'), ((6864, 6875), 'time.time', 'time.time', ([], {}), '()\n', (6873, 6875), False, 'import time\n'), ((7287, 7302), 'megengine.distributed.get_rank', 'dist.get_rank', ([], {}), '()\n', (7300, 7302), True, 'import megengine.distributed as dist\n'), ((8924, 8982), 'tools.utils.GroupedRandomSampler', 'GroupedRandomSampler', (['train_dataset', 'batch_size', 'group_ids'], {}), '(train_dataset, batch_size, group_ids)\n', (8944, 8982), False, 'from tools.utils import AverageMeter, DetectionPadCollator, GroupedRandomSampler, PseudoDetectionDataset, get_config_info, import_from_file\n'), ((5104, 5163), 'megengine.jit.trace', 'jit.trace', (['train_func'], {'symbolic': '(False)', 'symbolic_shape': '(False)'}), '(train_func, symbolic=False, symbolic_shape=False)\n', (5113, 5163), True, 'import megengine.jit as jit\n'), ((5473, 5494), 'megengine.distributed.get_world_size', 'dist.get_world_size', ([], {}), '()\n', (5492, 5494), True, 'import megengine.distributed as dist\n'), ((5793, 5839), 'numpy.concatenate', 'np.concatenate', (["([mini_batch['data']] * repeats)"], {}), "([mini_batch['data']] * repeats)\n", (5807, 5839), True, 'import numpy as np\n'), ((5889, 5938), 'numpy.concatenate', 'np.concatenate', (["([mini_batch['im_info']] * repeats)"], {}), "([mini_batch['im_info']] * repeats)\n", (5903, 5938), True, 'import numpy as np\n'), ((5989, 6039), 'numpy.concatenate', 'np.concatenate', (["([mini_batch['gt_boxes']] * repeats)"], {}), "([mini_batch['gt_boxes']] * repeats)\n", (6003, 6039), True, 'import numpy as np\n'), ((8729, 8785), 'megengine.data.RandomSampler', 'RandomSampler', (['train_dataset', 'batch_size'], {'drop_last': '(True)'}), '(train_dataset, batch_size, drop_last=True)\n', (8742, 8785), False, 'from megengine.data import DataLoader, Infinite, RandomSampler\n'), ((9675, 9697), 'tools.utils.DetectionPadCollator', 'DetectionPadCollator', ([], {}), '()\n', (9695, 9697), False, 'from tools.utils import AverageMeter, DetectionPadCollator, GroupedRandomSampler, PseudoDetectionDataset, get_config_info, import_from_file\n'), ((3971, 3992), 'megengine.distributed.get_world_size', 'dist.get_world_size', ([], {}), '()\n', (3990, 3992), True, 'import megengine.distributed as dist\n'), ((6214, 6244), 'megengine.tensor', 'mge.tensor', (["mini_batch['data']"], {}), "(mini_batch['data'])\n", (6224, 6244), True, 'import megengine as mge\n'), ((6266, 6299), 'megengine.tensor', 'mge.tensor', (["mini_batch['im_info']"], {}), "(mini_batch['im_info'])\n", (6276, 6299), True, 'import megengine as mge\n'), ((6322, 6356), 'megengine.tensor', 'mge.tensor', (["mini_batch['gt_boxes']"], {}), "(mini_batch['gt_boxes'])\n", (6332, 6356), True, 'import megengine as mge\n'), ((6625, 6655), 'megengine.tensor', 'mge.tensor', (["mini_batch['data']"], {}), "(mini_batch['data'])\n", (6635, 6655), True, 'import megengine as mge\n'), ((6677, 6710), 'megengine.tensor', 'mge.tensor', (["mini_batch['im_info']"], {}), "(mini_batch['im_info'])\n", (6687, 6710), True, 'import megengine as mge\n'), ((6733, 6767), 'megengine.tensor', 'mge.tensor', (["mini_batch['gt_boxes']"], {}), "(mini_batch['gt_boxes'])\n", (6743, 6767), True, 'import megengine as mge\n'), ((6976, 6991), 'megengine.distributed.get_rank', 'dist.get_rank', ([], {}), '()\n', (6989, 6991), True, 'import megengine.distributed as dist\n'), ((4130, 4171), 'megengine.distributed.make_allreduce_cb', 'dist.make_allreduce_cb', (['"""SUM"""', 'dist.WORLD'], {}), "('SUM', dist.WORLD)\n", (4152, 4171), True, 'import megengine.distributed as dist\n'), ((4997, 5042), 'megengine.jit.SublinearMemoryConfig', 'jit.SublinearMemoryConfig', ([], {'genetic_nr_iter': '(50)'}), '(genetic_nr_iter=50)\n', (5022, 5042), True, 'import megengine.jit as jit\n'), ((9328, 9429), 'megengine.data.transform.ShortestEdgeResize', 'T.ShortestEdgeResize', (['cfg.train_image_short_size', 'cfg.train_image_max_size'], {'sample_style': '"""choice"""'}), "(cfg.train_image_short_size, cfg.train_image_max_size,\n sample_style='choice')\n", (9348, 9429), True, 'from megengine.data import transform as T\n'), ((9522, 9546), 'megengine.data.transform.RandomHorizontalFlip', 'T.RandomHorizontalFlip', ([], {}), '()\n', (9544, 9546), True, 'from megengine.data import transform as T\n'), ((9564, 9574), 'megengine.data.transform.ToMode', 'T.ToMode', ([], {}), '()\n', (9572, 9574), True, 'from megengine.data import transform as T\n')]
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import copy import itertools import os from typing import Callable import numpy as np import pytest import megengine as mge import megengine.module.init as init from megengine.core import tensor from megengine.functional import cross_entropy_with_softmax, relu from megengine.jit import trace from megengine.module import Linear, Module from megengine.optimizer import SGD, Optimizer from megengine.test import assertTensorClose batch_size = 64 data_shape = (batch_size, 2) label_shape = (batch_size,) def minibatch_generator(): while True: inp_data = np.zeros((batch_size, 2)) label = np.zeros(batch_size, dtype=np.int32) for i in range(batch_size): # [x0, x1], sampled from U[-1, 1] inp_data[i, :] = np.random.rand(2) * 2 - 1 label[i] = 0 if np.prod(inp_data[i]) < 0 else 1 yield inp_data.astype(np.float32), label.astype(np.int32) class SimpleNet(Module): def __init__(self): self.mid_layers = 14 self.num_class = 2 super().__init__() self.fc0 = Linear(self.num_class, self.mid_layers, bias=True) fan_in, _ = init.calculate_fan_in_and_fan_out(self.fc0.weight) init.normal_(self.fc0.weight, std=np.sqrt(float(1.0) / fan_in)) init.zeros_(self.fc0.bias) self.fc1 = Linear(self.mid_layers, self.mid_layers, bias=True) fan_in, _ = init.calculate_fan_in_and_fan_out(self.fc1.weight) init.normal_(self.fc1.weight, std=np.sqrt(float(1.0) / fan_in)) init.zeros_(self.fc1.bias) self.fc2 = Linear(self.mid_layers, self.num_class, bias=True) fan_in, _ = init.calculate_fan_in_and_fan_out(self.fc2.weight) init.normal_(self.fc2.weight, std=np.sqrt(float(1.0) / fan_in)) init.zeros_(self.fc2.bias) def forward(self, x): x = self.fc0(x) x = relu(x) # Should use tanh but it's not stable now. x = self.fc1(x) x = relu(x) # Should use tanh but it's not stable now. x = self.fc2(x) return x def generate_eager_step(net: Module, opt_factory: Callable[[Module], Optimizer]): data_inp = tensor(np.zeros(data_shape), dtype=np.float32) label_inp = tensor(np.zeros(label_shape), dtype=np.int32) opt = opt_factory(net) def step(data, label): opt.zero_grad() data_inp.set_value(data) label_inp.set_value(label) pred = net(data_inp) loss = cross_entropy_with_softmax(pred, label_inp) opt.backward(loss) opt.step() return loss.numpy()[0] return step def generate_static_step(net: Module, opt_factory: Callable[[Module], Optimizer]): data = tensor(np.zeros(data_shape), dtype=np.float32) label = tensor(np.zeros(label_shape), dtype=np.int32) opt = opt_factory(net) # Save state to reset parameters later. state = copy.deepcopy(net.state_dict()) # Evaluate network in eager mode once. pred = net(data) loss = cross_entropy_with_softmax(pred, label) opt.zero_grad() grads = opt.backward(loss) f = mge.graph.compile(loss, grads) def step(data, label): opt.zero_grad() out = f(data=data, label=label) opt.step() loss = out[0][0] return loss # Reset parameters. net.load_state_dict(state) return step def generate_trace_step( net: Module, opt_factory: Callable[[Module], Optimizer], enable: bool ): opt = opt_factory(net) @trace def train(data, label): pred = net(data) loss = cross_entropy_with_softmax(pred, label) opt.zero_grad() opt.backward(loss) return loss train.enabled = enable def step(data, label): out = train(data, label) opt.step() loss = out[0][0] return loss return step def assert_network_equvilence(nets): net_state = [net.state_dict() for net in nets] for state in net_state[1:]: assert len(net_state[0]) == len(state) for k, v in net_state[0].items(): for state in net_state[1:]: assert k in state assertTensorClose(v, state[k]) @pytest.mark.slow def test_eager_equvilence(): eager_net = SimpleNet() trace_enable_net = copy.deepcopy(eager_net) trace_disable_net = copy.deepcopy(eager_net) opt_factory = lambda net: SGD( net.parameters(requires_grad=True), lr=0.01, momentum=0.01 ) estep = generate_eager_step(eager_net, opt_factory) te_step = generate_trace_step(trace_enable_net, opt_factory, True) td_step = generate_trace_step(trace_disable_net, opt_factory, False) assert_network_equvilence([eager_net, trace_enable_net, trace_disable_net]) # Use hard code number as limit, may increase if needed. for data, label in itertools.islice(minibatch_generator(), 200): eloss = estep(data, label) te_loss = te_step(data, label) td_loss = td_step(data, label) assertTensorClose(eloss, te_loss) assertTensorClose(eloss, td_loss) assert_network_equvilence( [eager_net, trace_enable_net, trace_disable_net,] )
[ "megengine.test.assertTensorClose", "megengine.graph.compile", "megengine.module.init.calculate_fan_in_and_fan_out", "megengine.module.Linear", "megengine.module.init.zeros_", "megengine.functional.cross_entropy_with_softmax", "megengine.functional.relu" ]
[((3348, 3387), 'megengine.functional.cross_entropy_with_softmax', 'cross_entropy_with_softmax', (['pred', 'label'], {}), '(pred, label)\n', (3374, 3387), False, 'from megengine.functional import cross_entropy_with_softmax, relu\n'), ((3448, 3478), 'megengine.graph.compile', 'mge.graph.compile', (['loss', 'grads'], {}), '(loss, grads)\n', (3465, 3478), True, 'import megengine as mge\n'), ((4617, 4641), 'copy.deepcopy', 'copy.deepcopy', (['eager_net'], {}), '(eager_net)\n', (4630, 4641), False, 'import copy\n'), ((4666, 4690), 'copy.deepcopy', 'copy.deepcopy', (['eager_net'], {}), '(eager_net)\n', (4679, 4690), False, 'import copy\n'), ((946, 971), 'numpy.zeros', 'np.zeros', (['(batch_size, 2)'], {}), '((batch_size, 2))\n', (954, 971), True, 'import numpy as np\n'), ((988, 1024), 'numpy.zeros', 'np.zeros', (['batch_size'], {'dtype': 'np.int32'}), '(batch_size, dtype=np.int32)\n', (996, 1024), True, 'import numpy as np\n'), ((1444, 1494), 'megengine.module.Linear', 'Linear', (['self.num_class', 'self.mid_layers'], {'bias': '(True)'}), '(self.num_class, self.mid_layers, bias=True)\n', (1450, 1494), False, 'from megengine.module import Linear, Module\n'), ((1515, 1565), 'megengine.module.init.calculate_fan_in_and_fan_out', 'init.calculate_fan_in_and_fan_out', (['self.fc0.weight'], {}), '(self.fc0.weight)\n', (1548, 1565), True, 'import megengine.module.init as init\n'), ((1646, 1672), 'megengine.module.init.zeros_', 'init.zeros_', (['self.fc0.bias'], {}), '(self.fc0.bias)\n', (1657, 1672), True, 'import megengine.module.init as init\n'), ((1693, 1744), 'megengine.module.Linear', 'Linear', (['self.mid_layers', 'self.mid_layers'], {'bias': '(True)'}), '(self.mid_layers, self.mid_layers, bias=True)\n', (1699, 1744), False, 'from megengine.module import Linear, Module\n'), ((1765, 1815), 'megengine.module.init.calculate_fan_in_and_fan_out', 'init.calculate_fan_in_and_fan_out', (['self.fc1.weight'], {}), '(self.fc1.weight)\n', (1798, 1815), True, 'import megengine.module.init as init\n'), ((1896, 1922), 'megengine.module.init.zeros_', 'init.zeros_', (['self.fc1.bias'], {}), '(self.fc1.bias)\n', (1907, 1922), True, 'import megengine.module.init as init\n'), ((1943, 1993), 'megengine.module.Linear', 'Linear', (['self.mid_layers', 'self.num_class'], {'bias': '(True)'}), '(self.mid_layers, self.num_class, bias=True)\n', (1949, 1993), False, 'from megengine.module import Linear, Module\n'), ((2014, 2064), 'megengine.module.init.calculate_fan_in_and_fan_out', 'init.calculate_fan_in_and_fan_out', (['self.fc2.weight'], {}), '(self.fc2.weight)\n', (2047, 2064), True, 'import megengine.module.init as init\n'), ((2145, 2171), 'megengine.module.init.zeros_', 'init.zeros_', (['self.fc2.bias'], {}), '(self.fc2.bias)\n', (2156, 2171), True, 'import megengine.module.init as init\n'), ((2235, 2242), 'megengine.functional.relu', 'relu', (['x'], {}), '(x)\n', (2239, 2242), False, 'from megengine.functional import cross_entropy_with_softmax, relu\n'), ((2323, 2330), 'megengine.functional.relu', 'relu', (['x'], {}), '(x)\n', (2327, 2330), False, 'from megengine.functional import cross_entropy_with_softmax, relu\n'), ((2522, 2542), 'numpy.zeros', 'np.zeros', (['data_shape'], {}), '(data_shape)\n', (2530, 2542), True, 'import numpy as np\n'), ((2585, 2606), 'numpy.zeros', 'np.zeros', (['label_shape'], {}), '(label_shape)\n', (2593, 2606), True, 'import numpy as np\n'), ((2816, 2859), 'megengine.functional.cross_entropy_with_softmax', 'cross_entropy_with_softmax', (['pred', 'label_inp'], {}), '(pred, label_inp)\n', (2842, 2859), False, 'from megengine.functional import cross_entropy_with_softmax, relu\n'), ((3058, 3078), 'numpy.zeros', 'np.zeros', (['data_shape'], {}), '(data_shape)\n', (3066, 3078), True, 'import numpy as np\n'), ((3117, 3138), 'numpy.zeros', 'np.zeros', (['label_shape'], {}), '(label_shape)\n', (3125, 3138), True, 'import numpy as np\n'), ((3918, 3957), 'megengine.functional.cross_entropy_with_softmax', 'cross_entropy_with_softmax', (['pred', 'label'], {}), '(pred, label)\n', (3944, 3957), False, 'from megengine.functional import cross_entropy_with_softmax, relu\n'), ((5335, 5368), 'megengine.test.assertTensorClose', 'assertTensorClose', (['eloss', 'te_loss'], {}), '(eloss, te_loss)\n', (5352, 5368), False, 'from megengine.test import assertTensorClose\n'), ((5377, 5410), 'megengine.test.assertTensorClose', 'assertTensorClose', (['eloss', 'td_loss'], {}), '(eloss, td_loss)\n', (5394, 5410), False, 'from megengine.test import assertTensorClose\n'), ((4486, 4516), 'megengine.test.assertTensorClose', 'assertTensorClose', (['v', 'state[k]'], {}), '(v, state[k])\n', (4503, 4516), False, 'from megengine.test import assertTensorClose\n'), ((1137, 1154), 'numpy.random.rand', 'np.random.rand', (['(2)'], {}), '(2)\n', (1151, 1154), True, 'import numpy as np\n'), ((1191, 1211), 'numpy.prod', 'np.prod', (['inp_data[i]'], {}), '(inp_data[i])\n', (1198, 1211), True, 'import numpy as np\n')]
"""Movie models.""" import datetime import typing import pydantic import sqlmodel from app.models import mixins from app.models import validators if typing.TYPE_CHECKING: from app.models.patron import Patron, PatronRead class MovieBase(sqlmodel.SQLModel, mixins.ProposalMixin, mixins.LinksMixin): """Base Movie model.""" title_orig: str title_en: str title_it: str | None release_date: datetime.date | None running_time: pydantic.PositiveInt | None notes: str | None _normalize_title = pydantic.validator("title_orig", "title_en", "title_it", allow_reuse=True)( validators.normalize_title) class Movie(MovieBase, mixins.TimestampsMixin, mixins.BaseMixin, table=True): """Movie database model.""" patron: "Patron" = sqlmodel.Relationship( back_populates="movies", sa_relationship_kwargs={"lazy": "selectin"}) class MovieCreate(MovieBase): """Movie create model.""" class MovieRead(MovieBase): """Movie base model.""" id: pydantic.UUID4 class MovieReadWithPatron(MovieRead): """Movie read model with related patron.""" patron: "PatronRead" = None class MovieUpdate(sqlmodel.SQLModel, mixins.LinksMixin): """Movie update model.""" # TODO: Set default to None when # https://github.com/tiangolo/sqlmodel/issues/230 is resolved. title_orig: str | None = "" title_en: str | None = "" title_it: str | None = "" release_date: datetime.date | None = None running_time: pydantic.PositiveInt | None = None notes: str | None = None _normalize_title = pydantic.validator("title_orig", "title_en", "title_it", allow_reuse=True)( validators.normalize_title)
[ "sqlmodel.Relationship" ]
[((941, 1037), 'sqlmodel.Relationship', 'sqlmodel.Relationship', ([], {'back_populates': '"""movies"""', 'sa_relationship_kwargs': "{'lazy': 'selectin'}"}), "(back_populates='movies', sa_relationship_kwargs={\n 'lazy': 'selectin'})\n", (962, 1037), False, 'import sqlmodel\n'), ((529, 603), 'pydantic.validator', 'pydantic.validator', (['"""title_orig"""', '"""title_en"""', '"""title_it"""'], {'allow_reuse': '(True)'}), "('title_orig', 'title_en', 'title_it', allow_reuse=True)\n", (547, 603), False, 'import pydantic\n'), ((1742, 1816), 'pydantic.validator', 'pydantic.validator', (['"""title_orig"""', '"""title_en"""', '"""title_it"""'], {'allow_reuse': '(True)'}), "('title_orig', 'title_en', 'title_it', allow_reuse=True)\n", (1760, 1816), False, 'import pydantic\n')]
from datetime import datetime from typing import TYPE_CHECKING, Dict, List, Optional from pydantic import root_validator from sqlalchemy import Column from sqlmodel import Field, Relationship, SQLModel from .event_attendance import EventAttendance from .types import TimeStamp if TYPE_CHECKING: from .feedback import Feedback, FeedbackList from .participant import Participant, ParticipantList class EventBase(SQLModel): name: str code: str valid_from: datetime = Field( sa_column=Column( TimeStamp(timezone=True), default=datetime.now, nullable=False, ) ) valid_until: datetime = Field( sa_column=Column( TimeStamp(timezone=True), default=datetime.now, nullable=False, ) ) enabled: bool = Field(default=True, nullable=False) @root_validator() def range_is_positive(cls, values: Dict[str, datetime]): start, end = values.get("valid_from"), values.get("valid_until") if start is None or end is None: return values elif end < start: raise ValueError("validity range cannot be negative") return values class Event(EventBase, table=True): __tablename__ = "events" id: Optional[int] = Field(default=None, primary_key=True, nullable=False) attendees: List["Participant"] = Relationship( back_populates="attended", link_model=EventAttendance, ) feedback: List["Feedback"] = Relationship( back_populates="event", sa_relationship_kwargs={"cascade": "all, delete, delete-orphan"}, ) class EventCreate(SQLModel): name: str valid_from: datetime valid_until: datetime class EventList(SQLModel): id: int name: str code: str enabled: bool class EventRead(EventBase): id: int feedback: List["FeedbackList"] attendees: List["ParticipantList"] class EventUpdate(SQLModel): name: Optional[str] valid_from: Optional[datetime] valid_until: Optional[datetime] enabled: Optional[bool]
[ "sqlmodel.Field", "sqlmodel.Relationship" ]
[((838, 873), 'sqlmodel.Field', 'Field', ([], {'default': '(True)', 'nullable': '(False)'}), '(default=True, nullable=False)\n', (843, 873), False, 'from sqlmodel import Field, Relationship, SQLModel\n'), ((880, 896), 'pydantic.root_validator', 'root_validator', ([], {}), '()\n', (894, 896), False, 'from pydantic import root_validator\n'), ((1305, 1358), 'sqlmodel.Field', 'Field', ([], {'default': 'None', 'primary_key': '(True)', 'nullable': '(False)'}), '(default=None, primary_key=True, nullable=False)\n', (1310, 1358), False, 'from sqlmodel import Field, Relationship, SQLModel\n'), ((1397, 1464), 'sqlmodel.Relationship', 'Relationship', ([], {'back_populates': '"""attended"""', 'link_model': 'EventAttendance'}), "(back_populates='attended', link_model=EventAttendance)\n", (1409, 1464), False, 'from sqlmodel import Field, Relationship, SQLModel\n'), ((1521, 1627), 'sqlmodel.Relationship', 'Relationship', ([], {'back_populates': '"""event"""', 'sa_relationship_kwargs': "{'cascade': 'all, delete, delete-orphan'}"}), "(back_populates='event', sa_relationship_kwargs={'cascade':\n 'all, delete, delete-orphan'})\n", (1533, 1627), False, 'from sqlmodel import Field, Relationship, SQLModel\n')]
"""Initial Revision ID: ec941f1f8242 Revises: <PASSWORD> Create Date: 2021-10-10 18:34:18.294594 """ from alembic import op import sqlalchemy as sa import sqlmodel # revision identifiers, used by Alembic. revision = '<KEY>' down_revision = 'd<PASSWORD>' branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.create_table('plant', sa.Column('id', sa.Integer(), nullable=True), sa.Column('name', sqlmodel.sql.sqltypes.AutoString(), nullable=False), sa.PrimaryKeyConstraint('id') ) op.create_index(op.f('ix_plant_id'), 'plant', ['id'], unique=False) op.create_index(op.f('ix_plant_name'), 'plant', ['name'], unique=False) op.drop_index('ix_hero_age', table_name='hero') op.drop_index('ix_hero_id', table_name='hero') op.drop_index('ix_hero_name', table_name='hero') op.drop_index('ix_hero_secret_name', table_name='hero') op.drop_table('hero') # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.create_table('hero', sa.Column('birth_date', sa.DATETIME(), nullable=True), sa.Column('id', sa.INTEGER(), nullable=True), sa.Column('name', sa.VARCHAR(), nullable=False), sa.Column('secret_name', sa.VARCHAR(), nullable=False), sa.Column('age', sa.INTEGER(), nullable=True), sa.PrimaryKeyConstraint('id') ) op.create_index('ix_hero_secret_name', 'hero', ['secret_name'], unique=False) op.create_index('ix_hero_name', 'hero', ['name'], unique=False) op.create_index('ix_hero_id', 'hero', ['id'], unique=False) op.create_index('ix_hero_age', 'hero', ['age'], unique=False) op.drop_index(op.f('ix_plant_name'), table_name='plant') op.drop_index(op.f('ix_plant_id'), table_name='plant') op.drop_table('plant') # ### end Alembic commands ###
[ "sqlmodel.sql.sqltypes.AutoString" ]
[((726, 773), 'alembic.op.drop_index', 'op.drop_index', (['"""ix_hero_age"""'], {'table_name': '"""hero"""'}), "('ix_hero_age', table_name='hero')\n", (739, 773), False, 'from alembic import op\n'), ((778, 824), 'alembic.op.drop_index', 'op.drop_index', (['"""ix_hero_id"""'], {'table_name': '"""hero"""'}), "('ix_hero_id', table_name='hero')\n", (791, 824), False, 'from alembic import op\n'), ((829, 877), 'alembic.op.drop_index', 'op.drop_index', (['"""ix_hero_name"""'], {'table_name': '"""hero"""'}), "('ix_hero_name', table_name='hero')\n", (842, 877), False, 'from alembic import op\n'), ((882, 937), 'alembic.op.drop_index', 'op.drop_index', (['"""ix_hero_secret_name"""'], {'table_name': '"""hero"""'}), "('ix_hero_secret_name', table_name='hero')\n", (895, 937), False, 'from alembic import op\n'), ((942, 963), 'alembic.op.drop_table', 'op.drop_table', (['"""hero"""'], {}), "('hero')\n", (955, 963), False, 'from alembic import op\n'), ((1429, 1506), 'alembic.op.create_index', 'op.create_index', (['"""ix_hero_secret_name"""', '"""hero"""', "['secret_name']"], {'unique': '(False)'}), "('ix_hero_secret_name', 'hero', ['secret_name'], unique=False)\n", (1444, 1506), False, 'from alembic import op\n'), ((1511, 1574), 'alembic.op.create_index', 'op.create_index', (['"""ix_hero_name"""', '"""hero"""', "['name']"], {'unique': '(False)'}), "('ix_hero_name', 'hero', ['name'], unique=False)\n", (1526, 1574), False, 'from alembic import op\n'), ((1579, 1638), 'alembic.op.create_index', 'op.create_index', (['"""ix_hero_id"""', '"""hero"""', "['id']"], {'unique': '(False)'}), "('ix_hero_id', 'hero', ['id'], unique=False)\n", (1594, 1638), False, 'from alembic import op\n'), ((1643, 1704), 'alembic.op.create_index', 'op.create_index', (['"""ix_hero_age"""', '"""hero"""', "['age']"], {'unique': '(False)'}), "('ix_hero_age', 'hero', ['age'], unique=False)\n", (1658, 1704), False, 'from alembic import op\n'), ((1829, 1851), 'alembic.op.drop_table', 'op.drop_table', (['"""plant"""'], {}), "('plant')\n", (1842, 1851), False, 'from alembic import op\n'), ((538, 567), 'sqlalchemy.PrimaryKeyConstraint', 'sa.PrimaryKeyConstraint', (['"""id"""'], {}), "('id')\n", (561, 567), True, 'import sqlalchemy as sa\n'), ((594, 613), 'alembic.op.f', 'op.f', (['"""ix_plant_id"""'], {}), "('ix_plant_id')\n", (598, 613), False, 'from alembic import op\n'), ((666, 687), 'alembic.op.f', 'op.f', (['"""ix_plant_name"""'], {}), "('ix_plant_name')\n", (670, 687), False, 'from alembic import op\n'), ((1389, 1418), 'sqlalchemy.PrimaryKeyConstraint', 'sa.PrimaryKeyConstraint', (['"""id"""'], {}), "('id')\n", (1412, 1418), True, 'import sqlalchemy as sa\n'), ((1723, 1744), 'alembic.op.f', 'op.f', (['"""ix_plant_name"""'], {}), "('ix_plant_name')\n", (1727, 1744), False, 'from alembic import op\n'), ((1784, 1803), 'alembic.op.f', 'op.f', (['"""ix_plant_id"""'], {}), "('ix_plant_id')\n", (1788, 1803), False, 'from alembic import op\n'), ((429, 441), 'sqlalchemy.Integer', 'sa.Integer', ([], {}), '()\n', (439, 441), True, 'import sqlalchemy as sa\n'), ((481, 515), 'sqlmodel.sql.sqltypes.AutoString', 'sqlmodel.sql.sqltypes.AutoString', ([], {}), '()\n', (513, 515), False, 'import sqlmodel\n'), ((1140, 1153), 'sqlalchemy.DATETIME', 'sa.DATETIME', ([], {}), '()\n', (1151, 1153), True, 'import sqlalchemy as sa\n'), ((1191, 1203), 'sqlalchemy.INTEGER', 'sa.INTEGER', ([], {}), '()\n', (1201, 1203), True, 'import sqlalchemy as sa\n'), ((1243, 1255), 'sqlalchemy.VARCHAR', 'sa.VARCHAR', ([], {}), '()\n', (1253, 1255), True, 'import sqlalchemy as sa\n'), ((1303, 1315), 'sqlalchemy.VARCHAR', 'sa.VARCHAR', ([], {}), '()\n', (1313, 1315), True, 'import sqlalchemy as sa\n'), ((1355, 1367), 'sqlalchemy.INTEGER', 'sa.INTEGER', ([], {}), '()\n', (1365, 1367), True, 'import sqlalchemy as sa\n')]
import functools import numpy as np import pytest import megengine from megengine.autodiff.grad_manager import GradManager from megengine.core.ops.builtin import GetVarShape, Reduce, TypeCvt from megengine.core.tensor.utils import subgraph_fn from megengine.device import CompNode, get_default_device from megengine.jit import trace _assert_allclose = functools.partial(np.testing.assert_allclose, atol=5e-6, rtol=5e-6) @functools.lru_cache(maxsize=None) def _get_batch_norm_fn(dtype, device, channels, ndim, interpret, gopt_level): @subgraph_fn( "BatchNormNd", dtype=dtype, device=device, nr_inputs=4, interpret=interpret, gopt_level=gopt_level, ) def batch_norm_nd(inputs, f, c): input, eps, weight, bias = inputs[0:4] reduce_shape = c( (1, channels) + (1,) * (ndim - 2), dtype="int32", device=device ) input_shape = f(GetVarShape(), input) input_elems = f(Reduce(mode="product", axis=0), input_shape) reduce_elems = f(Reduce(mode="product", axis=0), reduce_shape) reduce_size = f("//", input_elems, reduce_elems) reduce_size = f(TypeCvt(dtype=dtype), reduce_size) channel_x1s = f(Reduce(mode="sum"), input, reduce_shape) channel_x2s = f(Reduce(mode="sum_sqr"), input, reduce_shape) channel_mean = f("/", channel_x1s, reduce_size) channel_var = f( "-", f("/", channel_x2s, reduce_size), f("*", channel_mean, channel_mean), ) invsqrt_channel_var = f("**", f("+", channel_var, eps), c(-0.5)) inv_var_wt = f("*", invsqrt_channel_var, weight) neg_channel_mean = f("-", channel_mean) outvar = f( "fma3", input, inv_var_wt, f("fma3", neg_channel_mean, inv_var_wt, bias), ) return (outvar,), (True,) return batch_norm_nd @pytest.mark.parametrize("device", [get_default_device(), "cpux"]) @pytest.mark.parametrize("batch_size", [1, 8]) @pytest.mark.parametrize("channels", [3]) @pytest.mark.parametrize( "use_trace, symbolic", [(False, None), (True, False), (True, True)] ) @pytest.mark.parametrize("gopt_level", [None, 1, 2]) @pytest.mark.parametrize("dtype", ["float32"]) def test_subgraph(device, batch_size, channels, use_trace, symbolic, gopt_level, dtype): device = CompNode(device) def subgraph_batch_norm(inp, weight, bias, eps, diff): inp = inp.detach() with GradManager().attach(inp) as gm: batch_norm_fn = _get_batch_norm_fn( dtype, device, channels, ndim, interpret=False, gopt_level=gopt_level ) out, *_ = batch_norm_fn(inp, eps, weight, bias) gm.backward(out * 1e3 + 1e3, diff) return out, inp.grad def primitive_batch_norm(inp, weight, bias, eps, diff): inp = inp.detach() with GradManager().attach(inp) as gm: batch_norm_fn = _get_batch_norm_fn( dtype, device, channels, ndim, interpret=True, gopt_level=gopt_level ) (out,) = batch_norm_fn(inp, eps, weight, bias) gm.backward(out * 1e3 + 1e3, diff) return out, inp.grad if use_trace: subgraph_batch_norm = trace(symbolic=symbolic)(subgraph_batch_norm) primitive_batch_norm = trace(symbolic=symbolic)(primitive_batch_norm) def rand_tensor(shape, dtype=dtype, device=device): return megengine.tensor(np.random.random(shape), dtype=dtype, device=device) # skip this test because could not do several reduce sequentially with opr cache return # test shape change for image_shape in [(223, 223), (10, 20)]: ndim = len(image_shape) + 2 input_shape = (batch_size, channels) + image_shape param_shape = (1, channels) + (1,) * len(image_shape) inp = rand_tensor(input_shape) * 1e3 + 1e3 weight = rand_tensor(param_shape) bias = rand_tensor(param_shape) eps = megengine.tensor(1e-5, dtype=dtype, device=device) diff = rand_tensor(input_shape) out1, grad1 = subgraph_batch_norm(inp, weight, bias, eps, diff) out2, grad2 = primitive_batch_norm(inp, weight, bias, eps, diff) _assert_allclose(out1.numpy(), out2.numpy()) _assert_allclose(grad1.numpy(), grad2.numpy()) @functools.lru_cache(maxsize=None) def _get_mul_fn(dtype, device): @subgraph_fn( "Mul", dtype=dtype, device=device, nr_inputs=2, gopt_level=None, jit_fusion=False, custom_grad=True, ) def mul(inputs, f, c): x, y = inputs[0:2] z = f("*", x, y) (dz,) = yield (z,) dx = f("*", dz, y) dy = f("*", dz, x) yield (dx, dy) return mul def test_subgraph_jit_backward(): x_np = np.random.rand(3, 4, 5).astype("float32") x1 = megengine.Tensor(x_np) x2 = megengine.Tensor(x_np) mul = _get_mul_fn(x1.dtype, x1.device) gm = GradManager() gm.attach([x1, x2]) with gm: y1 = x1 * x1 y2 = mul(x2, x2) gm.backward(y1) with gm: y1 = x1 * x1 y2 = mul(x2, x2) gm.backward(y1 + y2) with gm: y1 = x1 * x1 y2 = mul(x2, x2) gm.backward(y2)
[ "megengine.core.ops.builtin.GetVarShape", "megengine.tensor", "megengine.device.CompNode", "megengine.Tensor", "megengine.device.get_default_device", "megengine.jit.trace", "megengine.core.tensor.utils.subgraph_fn", "megengine.autodiff.grad_manager.GradManager", "megengine.core.ops.builtin.Reduce", "megengine.core.ops.builtin.TypeCvt" ]
[((355, 424), 'functools.partial', 'functools.partial', (['np.testing.assert_allclose'], {'atol': '(5e-06)', 'rtol': '(5e-06)'}), '(np.testing.assert_allclose, atol=5e-06, rtol=5e-06)\n', (372, 424), False, 'import functools\n'), ((426, 459), 'functools.lru_cache', 'functools.lru_cache', ([], {'maxsize': 'None'}), '(maxsize=None)\n', (445, 459), False, 'import functools\n'), ((1944, 1989), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""batch_size"""', '[1, 8]'], {}), "('batch_size', [1, 8])\n", (1967, 1989), False, 'import pytest\n'), ((1991, 2031), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""channels"""', '[3]'], {}), "('channels', [3])\n", (2014, 2031), False, 'import pytest\n'), ((2033, 2130), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""use_trace, symbolic"""', '[(False, None), (True, False), (True, True)]'], {}), "('use_trace, symbolic', [(False, None), (True, False\n ), (True, True)])\n", (2056, 2130), False, 'import pytest\n'), ((2133, 2184), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""gopt_level"""', '[None, 1, 2]'], {}), "('gopt_level', [None, 1, 2])\n", (2156, 2184), False, 'import pytest\n'), ((2186, 2231), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""dtype"""', "['float32']"], {}), "('dtype', ['float32'])\n", (2209, 2231), False, 'import pytest\n'), ((4331, 4364), 'functools.lru_cache', 'functools.lru_cache', ([], {'maxsize': 'None'}), '(maxsize=None)\n', (4350, 4364), False, 'import functools\n'), ((543, 658), 'megengine.core.tensor.utils.subgraph_fn', 'subgraph_fn', (['"""BatchNormNd"""'], {'dtype': 'dtype', 'device': 'device', 'nr_inputs': '(4)', 'interpret': 'interpret', 'gopt_level': 'gopt_level'}), "('BatchNormNd', dtype=dtype, device=device, nr_inputs=4,\n interpret=interpret, gopt_level=gopt_level)\n", (554, 658), False, 'from megengine.core.tensor.utils import subgraph_fn\n'), ((2334, 2350), 'megengine.device.CompNode', 'CompNode', (['device'], {}), '(device)\n', (2342, 2350), False, 'from megengine.device import CompNode, get_default_device\n'), ((4402, 4518), 'megengine.core.tensor.utils.subgraph_fn', 'subgraph_fn', (['"""Mul"""'], {'dtype': 'dtype', 'device': 'device', 'nr_inputs': '(2)', 'gopt_level': 'None', 'jit_fusion': '(False)', 'custom_grad': '(True)'}), "('Mul', dtype=dtype, device=device, nr_inputs=2, gopt_level=None,\n jit_fusion=False, custom_grad=True)\n", (4413, 4518), False, 'from megengine.core.tensor.utils import subgraph_fn\n'), ((4875, 4897), 'megengine.Tensor', 'megengine.Tensor', (['x_np'], {}), '(x_np)\n', (4891, 4897), False, 'import megengine\n'), ((4907, 4929), 'megengine.Tensor', 'megengine.Tensor', (['x_np'], {}), '(x_np)\n', (4923, 4929), False, 'import megengine\n'), ((4982, 4995), 'megengine.autodiff.grad_manager.GradManager', 'GradManager', ([], {}), '()\n', (4993, 4995), False, 'from megengine.autodiff.grad_manager import GradManager\n'), ((3981, 4032), 'megengine.tensor', 'megengine.tensor', (['(1e-05)'], {'dtype': 'dtype', 'device': 'device'}), '(1e-05, dtype=dtype, device=device)\n', (3997, 4032), False, 'import megengine\n'), ((1912, 1932), 'megengine.device.get_default_device', 'get_default_device', ([], {}), '()\n', (1930, 1932), False, 'from megengine.device import CompNode, get_default_device\n'), ((930, 943), 'megengine.core.ops.builtin.GetVarShape', 'GetVarShape', ([], {}), '()\n', (941, 943), False, 'from megengine.core.ops.builtin import GetVarShape, Reduce, TypeCvt\n'), ((976, 1006), 'megengine.core.ops.builtin.Reduce', 'Reduce', ([], {'mode': '"""product"""', 'axis': '(0)'}), "(mode='product', axis=0)\n", (982, 1006), False, 'from megengine.core.ops.builtin import GetVarShape, Reduce, TypeCvt\n'), ((1046, 1076), 'megengine.core.ops.builtin.Reduce', 'Reduce', ([], {'mode': '"""product"""', 'axis': '(0)'}), "(mode='product', axis=0)\n", (1052, 1076), False, 'from megengine.core.ops.builtin import GetVarShape, Reduce, TypeCvt\n'), ((1173, 1193), 'megengine.core.ops.builtin.TypeCvt', 'TypeCvt', ([], {'dtype': 'dtype'}), '(dtype=dtype)\n', (1180, 1193), False, 'from megengine.core.ops.builtin import GetVarShape, Reduce, TypeCvt\n'), ((1232, 1250), 'megengine.core.ops.builtin.Reduce', 'Reduce', ([], {'mode': '"""sum"""'}), "(mode='sum')\n", (1238, 1250), False, 'from megengine.core.ops.builtin import GetVarShape, Reduce, TypeCvt\n'), ((1297, 1319), 'megengine.core.ops.builtin.Reduce', 'Reduce', ([], {'mode': '"""sum_sqr"""'}), "(mode='sum_sqr')\n", (1303, 1319), False, 'from megengine.core.ops.builtin import GetVarShape, Reduce, TypeCvt\n'), ((3241, 3265), 'megengine.jit.trace', 'trace', ([], {'symbolic': 'symbolic'}), '(symbolic=symbolic)\n', (3246, 3265), False, 'from megengine.jit import trace\n'), ((3318, 3342), 'megengine.jit.trace', 'trace', ([], {'symbolic': 'symbolic'}), '(symbolic=symbolic)\n', (3323, 3342), False, 'from megengine.jit import trace\n'), ((3454, 3477), 'numpy.random.random', 'np.random.random', (['shape'], {}), '(shape)\n', (3470, 3477), True, 'import numpy as np\n'), ((4824, 4847), 'numpy.random.rand', 'np.random.rand', (['(3)', '(4)', '(5)'], {}), '(3, 4, 5)\n', (4838, 4847), True, 'import numpy as np\n'), ((2451, 2464), 'megengine.autodiff.grad_manager.GradManager', 'GradManager', ([], {}), '()\n', (2462, 2464), False, 'from megengine.autodiff.grad_manager import GradManager\n'), ((2873, 2886), 'megengine.autodiff.grad_manager.GradManager', 'GradManager', ([], {}), '()\n', (2884, 2886), False, 'from megengine.autodiff.grad_manager import GradManager\n')]
""" Linearization of higher order solutions for the purposes of visualization. """ from __future__ import absolute_import import numpy as nm from sfepy.linalg import dot_sequences from sfepy.discrete.fem.refine import refine_reference from six.moves import range def get_eval_dofs(dofs, dof_conn, ps, ori=None): """ Get default function for evaluating field DOFs given a list of elements and reference element coordinates. """ def _eval(iels, rx): edofs = dofs[dof_conn[iels]] if ori is not None: eori = ori[iels] else: eori = None bf = ps.eval_base(rx, ori=eori, force_axis=True)[...,0,:] rvals = dot_sequences(bf, edofs) return rvals return _eval def get_eval_coors(coors, conn, ps): """ Get default function for evaluating physical coordinates given a list of elements and reference element coordinates. """ def _eval(iels, rx): ecoors = coors[conn[iels]] aux = ecoors.transpose((0, 2, 1)) bf = ps.eval_base(rx).squeeze() phys_coors = nm.dot(aux, bf.T).transpose((0, 2, 1)) return phys_coors return _eval def create_output(eval_dofs, eval_coors, n_el, ps, min_level=0, max_level=2, eps=1e-4): """ Create mesh with linear elements that approximates DOFs returned by `eval_dofs()` corresponding to a higher order approximation with a relative precision given by `eps`. The DOFs are evaluated in physical coordinates returned by `eval_coors()`. """ def _get_msd(iels, rx, ree): rvals = eval_dofs(iels, rx) rng = rvals.max() - rvals.min() n_components = rvals.shape[-1] msd = 0.0 for ic in range(n_components): rval = rvals[..., ic] sd = rval[:, ree] # ~ max. second derivative. msd += nm.abs(sd[..., 0] + sd[..., 2] - 2.0 * sd[..., 1]).max(axis=-1) msd /= n_components return msd, rng rx0 = ps.geometry.coors rc0 = ps.geometry.conn[None, :] rx, rc, ree = refine_reference(ps.geometry, 1) factor = rc.shape[0] / rc0.shape[0] iels = nm.arange(n_el) msd, rng = _get_msd(iels, rx, ree) eps_r = rng * eps flag = msd > eps_r iels0 = flag0 = None coors = [] conns = [] vdofs = [] inod = 0 for level in range(max_level + 1): if level < min_level: flag.fill(True) # Force refinement everywhere. elif level == max_level: # Last level - take everything. flag.fill(False) # Deal with finished elements. if flag0 is not None: ii = nm.searchsorted(iels0, iels) expand_flag0 = flag0[ii].repeat(factor, axis=1) else: expand_flag0 = nm.ones_like(flag) ie, ir = nm.where((flag == False) & (expand_flag0 == True)) if len(ie): uie, iies = nm.unique(ie, return_inverse=True) # Each (sub-)element has own coordinates - no shared vertices. xes = eval_coors(iels[uie], rx0) des = eval_dofs(iels[uie], rx0) # Vectorize (how??) or use cython? cc = [] vd = [] for ii, iie in enumerate(iies): ce = rc0[ir[ii]] xe = xes[iie] cc.append(xe[ce]) de = des[iie] vd.append(de[ce]) cc = nm.vstack(cc) vd = nm.vstack(vd) nc = cc.shape[0] np = rc0.shape[1] conn = nm.arange(nc, dtype=nm.int32).reshape((nc // np, np)) coors.append(cc) conns.append(conn + inod) vdofs.append(vd) inod += nc if not flag.any(): break iels0 = iels flag0 = flag # Deal with elements to refine. if level < max_level: eflag = flag.sum(axis=1, dtype=nm.bool) iels = iels[eflag] rc0 = rc rx0 = rx rx, rc, ree = refine_reference(ps.geometry, level + 2) msd, rng = _get_msd(iels, rx, ree) eps_r = rng * eps flag = msd > eps_r all_coors = nm.concatenate(coors, axis=0) conn = nm.concatenate(conns, axis=0) all_vdofs = nm.concatenate(vdofs, axis=0) mat_ids = nm.zeros(conn.shape[0], dtype=nm.int32) return level, all_coors, conn, all_vdofs, mat_ids
[ "sfepy.linalg.dot_sequences", "sfepy.discrete.fem.refine.refine_reference" ]
[((2121, 2153), 'sfepy.discrete.fem.refine.refine_reference', 'refine_reference', (['ps.geometry', '(1)'], {}), '(ps.geometry, 1)\n', (2137, 2153), False, 'from sfepy.discrete.fem.refine import refine_reference\n'), ((2207, 2222), 'numpy.arange', 'nm.arange', (['n_el'], {}), '(n_el)\n', (2216, 2222), True, 'import numpy as nm\n'), ((2410, 2430), 'six.moves.range', 'range', (['(max_level + 1)'], {}), '(max_level + 1)\n', (2415, 2430), False, 'from six.moves import range\n'), ((4269, 4298), 'numpy.concatenate', 'nm.concatenate', (['coors'], {'axis': '(0)'}), '(coors, axis=0)\n', (4283, 4298), True, 'import numpy as nm\n'), ((4310, 4339), 'numpy.concatenate', 'nm.concatenate', (['conns'], {'axis': '(0)'}), '(conns, axis=0)\n', (4324, 4339), True, 'import numpy as nm\n'), ((4356, 4385), 'numpy.concatenate', 'nm.concatenate', (['vdofs'], {'axis': '(0)'}), '(vdofs, axis=0)\n', (4370, 4385), True, 'import numpy as nm\n'), ((4401, 4440), 'numpy.zeros', 'nm.zeros', (['conn.shape[0]'], {'dtype': 'nm.int32'}), '(conn.shape[0], dtype=nm.int32)\n', (4409, 4440), True, 'import numpy as nm\n'), ((687, 711), 'sfepy.linalg.dot_sequences', 'dot_sequences', (['bf', 'edofs'], {}), '(bf, edofs)\n', (700, 711), False, 'from sfepy.linalg import dot_sequences\n'), ((1748, 1767), 'six.moves.range', 'range', (['n_components'], {}), '(n_components)\n', (1753, 1767), False, 'from six.moves import range\n'), ((2883, 2933), 'numpy.where', 'nm.where', (['((flag == False) & (expand_flag0 == True))'], {}), '((flag == False) & (expand_flag0 == True))\n', (2891, 2933), True, 'import numpy as nm\n'), ((2715, 2743), 'numpy.searchsorted', 'nm.searchsorted', (['iels0', 'iels'], {}), '(iels0, iels)\n', (2730, 2743), True, 'import numpy as nm\n'), ((2846, 2864), 'numpy.ones_like', 'nm.ones_like', (['flag'], {}), '(flag)\n', (2858, 2864), True, 'import numpy as nm\n'), ((2978, 3012), 'numpy.unique', 'nm.unique', (['ie'], {'return_inverse': '(True)'}), '(ie, return_inverse=True)\n', (2987, 3012), True, 'import numpy as nm\n'), ((3491, 3504), 'numpy.vstack', 'nm.vstack', (['cc'], {}), '(cc)\n', (3500, 3504), True, 'import numpy as nm\n'), ((3522, 3535), 'numpy.vstack', 'nm.vstack', (['vd'], {}), '(vd)\n', (3531, 3535), True, 'import numpy as nm\n'), ((4102, 4142), 'sfepy.discrete.fem.refine.refine_reference', 'refine_reference', (['ps.geometry', '(level + 2)'], {}), '(ps.geometry, level + 2)\n', (4118, 4142), False, 'from sfepy.discrete.fem.refine import refine_reference\n'), ((1095, 1112), 'numpy.dot', 'nm.dot', (['aux', 'bf.T'], {}), '(aux, bf.T)\n', (1101, 1112), True, 'import numpy as nm\n'), ((1893, 1943), 'numpy.abs', 'nm.abs', (['(sd[..., 0] + sd[..., 2] - 2.0 * sd[..., 1])'], {}), '(sd[..., 0] + sd[..., 2] - 2.0 * sd[..., 1])\n', (1899, 1943), True, 'import numpy as nm\n'), ((3615, 3644), 'numpy.arange', 'nm.arange', (['nc'], {'dtype': 'nm.int32'}), '(nc, dtype=nm.int32)\n', (3624, 3644), True, 'import numpy as nm\n')]
# -*- coding: utf-8 -*- # @Time : 2022/1/2 17:50 # @Author : WhaleFall # @Site : # @File : __init__.py.py # @Software: PyCharm # Flask 应用初始化,工厂函数 from flask import Flask from flask_login import LoginManager from config import config from sqlmodel import create_engine,SQLModel # 实例化一个登录组件 login_manager = LoginManager() login_manager.login_view = 'auth.login' # 登录的蓝图 login_manager.login_message = "请小可爱先登录!" def create_app(config_name): """ 工厂函数,指定一个配置类型 程序入口文件千万不能和 `app` 重名,惨痛教训!! """ app = Flask(__name__) # 实例化 app.config.from_object(config[config_name]) # 从配置类读取配置 config[config_name].init_app(app) # 调用静态方法初始化组件 # 注册组件 login_manager.init_app(app) # 登录组件 # 数据库 from app import models app.config['engine'] = create_engine(config[config_name].SQLALCHEMY_DATABASE_URI, echo=True) # 注册蓝图 from .main import main app.register_blueprint(main) from .dali import dali app.register_blueprint(dali) from .admin import admin app.register_blueprint(admin) return app
[ "sqlmodel.create_engine" ]
[((307, 321), 'flask_login.LoginManager', 'LoginManager', ([], {}), '()\n', (319, 321), False, 'from flask_login import LoginManager\n'), ((518, 533), 'flask.Flask', 'Flask', (['__name__'], {}), '(__name__)\n', (523, 533), False, 'from flask import Flask\n'), ((770, 839), 'sqlmodel.create_engine', 'create_engine', (['config[config_name].SQLALCHEMY_DATABASE_URI'], {'echo': '(True)'}), '(config[config_name].SQLALCHEMY_DATABASE_URI, echo=True)\n', (783, 839), False, 'from sqlmodel import create_engine, SQLModel\n')]