Dataset Viewer
Auto-converted to Parquet
code
stringlengths
31
1.05M
apis
sequence
extract_api
stringlengths
97
1.91M
# # Copyright (c) 2021 The GPflux Contributors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import abc import numpy as np import pytest import tensorflow as tf import tensorflow_probability as tfp from gpflow.kullback_leiblers import gauss_kl from gpflux.encoders import DirectlyParameterizedNormalDiag from gpflux.layers import LatentVariableLayer, LayerWithObservations, TrackableLayer tf.keras.backend.set_floatx("float64") ############ # Utilities ############ def _zero_one_normal_prior(w_dim): """ N(0, I) prior """ return tfp.distributions.MultivariateNormalDiag(loc=np.zeros(w_dim), scale_diag=np.ones(w_dim)) def get_distributions_with_w_dim(): distributions = [] for d in [1, 5]: mean = np.zeros(d) scale_tri_l = np.eye(d) mvn = tfp.distributions.MultivariateNormalTriL(mean, scale_tri_l) std = np.ones(d) mvn_diag = tfp.distributions.MultivariateNormalDiag(mean, std) distributions.append((mvn, d)) distributions.append((mvn_diag, d)) return distributions ############ # Tests ############ @pytest.mark.parametrize("distribution, w_dim", get_distributions_with_w_dim()) def test_local_kls(distribution, w_dim): lv = LatentVariableLayer(encoder=None, prior=distribution) # test kl is 0 when posteriors == priors posterior = distribution assert lv._local_kls(posterior) == 0 # test kl > 0 when posteriors != priors batch_size = 10 params = distribution.parameters posterior_params = { k: [v + 0.5 for _ in range(batch_size)] for k, v in params.items() if isinstance(v, np.ndarray) } posterior = lv.distribution_class(**posterior_params) local_kls = lv._local_kls(posterior) assert np.all(local_kls > 0) assert local_kls.shape == (batch_size,) @pytest.mark.parametrize("w_dim", [1, 5]) def test_local_kl_gpflow_consistency(w_dim): num_data = 400 means = np.random.randn(num_data, w_dim) encoder = DirectlyParameterizedNormalDiag(num_data, w_dim, means) lv = LatentVariableLayer(encoder=encoder, prior=_zero_one_normal_prior(w_dim)) posteriors = lv._inference_posteriors( [np.random.randn(num_data, 3), np.random.randn(num_data, 2)] ) q_mu = posteriors.parameters["loc"] q_sqrt = posteriors.parameters["scale_diag"] gpflow_local_kls = gauss_kl(q_mu, q_sqrt) tfp_local_kls = tf.reduce_sum(lv._local_kls(posteriors)) np.testing.assert_allclose(tfp_local_kls, gpflow_local_kls, rtol=1e-10) class ArrayMatcher: def __init__(self, expected): self.expected = expected def __eq__(self, actual): return np.allclose(actual, self.expected, equal_nan=True) @pytest.mark.parametrize("w_dim", [1, 5]) def test_latent_variable_layer_losses(mocker, w_dim): num_data, x_dim, y_dim = 43, 3, 1 prior_shape = (w_dim,) posteriors_shape = (num_data, w_dim) prior = tfp.distributions.MultivariateNormalDiag( loc=np.random.randn(*prior_shape), scale_diag=np.random.randn(*prior_shape) ** 2, ) posteriors = tfp.distributions.MultivariateNormalDiag( loc=np.random.randn(*posteriors_shape), scale_diag=np.random.randn(*posteriors_shape) ** 2, ) encoder = mocker.Mock(return_value=(posteriors.loc, posteriors.scale.diag)) lv = LatentVariableLayer(encoder=encoder, prior=prior) inputs = np.full((num_data, x_dim), np.nan) targets = np.full((num_data, y_dim), np.nan) observations = [inputs, targets] encoder_inputs = np.concatenate(observations, axis=-1) _ = lv(inputs) encoder.assert_not_called() assert lv.losses == [0.0] _ = lv(inputs, observations=observations, training=True) # assert_called_once_with uses == for comparison which fails on arrays encoder.assert_called_once_with(ArrayMatcher(encoder_inputs), training=True) expected_loss = [tf.reduce_mean(posteriors.kl_divergence(prior))] np.testing.assert_equal(lv.losses, expected_loss) # also checks shapes match @pytest.mark.parametrize("w_dim", [1, 5]) @pytest.mark.parametrize("seed2", [None, 42]) def test_latent_variable_layer_samples(mocker, test_data, w_dim, seed2): seed = 123 inputs, targets = test_data num_data, x_dim = inputs.shape prior_shape = (w_dim,) posteriors_shape = (num_data, w_dim) prior = tfp.distributions.MultivariateNormalDiag( loc=np.random.randn(*prior_shape), scale_diag=np.random.randn(*prior_shape) ** 2, ) posteriors = tfp.distributions.MultivariateNormalDiag( loc=np.random.randn(*posteriors_shape), scale_diag=np.random.randn(*posteriors_shape) ** 2, ) encoder = mocker.Mock(return_value=(posteriors.loc, posteriors.scale.diag)) lv = LatentVariableLayer(prior=prior, encoder=encoder) tf.random.set_seed(seed) sample_prior = lv(inputs, seed=seed2) tf.random.set_seed(seed) prior_expected = np.concatenate([inputs, prior.sample(num_data, seed=seed2)], axis=-1) np.testing.assert_array_equal(sample_prior, prior_expected) tf.random.set_seed(seed) sample_posterior = lv(inputs, observations=[inputs, targets], training=True, seed=seed2) tf.random.set_seed(seed) posterior_expected = np.concatenate([inputs, posteriors.sample(seed=seed2)], axis=-1) np.testing.assert_array_equal(sample_posterior, posterior_expected) def test_no_tensorflow_metaclass_overwritten(): """ LayerWithObservations is a subclass of tf.keras.layers.Layer (via TrackableLayer); this test ensures that TrackableLayer does not have a metaclass, and hence by adding the ABCMeta to LayerWithObservations we are not accidentally removing some required TensorFlow magic metaclass. """ assert LayerWithObservations.__bases__ == (TrackableLayer,) assert type(TrackableLayer) is type assert type(LayerWithObservations) is abc.ABCMeta
[ "numpy.testing.assert_equal", "tensorflow_probability.distributions.MultivariateNormalDiag", "tensorflow_probability.distributions.MultivariateNormalTriL", "numpy.testing.assert_allclose", "numpy.concatenate", "numpy.testing.assert_array_equal", "numpy.eye", "numpy.allclose", "gpflux.encoders.DirectlyParameterizedNormalDiag", "numpy.ones", "tensorflow.keras.backend.set_floatx", "numpy.random.randn", "gpflux.layers.LatentVariableLayer", "tensorflow.random.set_seed", "gpflow.kullback_leiblers.gauss_kl", "pytest.mark.parametrize", "numpy.zeros", "numpy.full", "numpy.all" ]
[((897, 935), 'tensorflow.keras.backend.set_floatx', 'tf.keras.backend.set_floatx', (['"""float64"""'], {}), "('float64')\n", (924, 935), True, 'import tensorflow as tf\n'), ((2330, 2370), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""w_dim"""', '[1, 5]'], {}), "('w_dim', [1, 5])\n", (2353, 2370), False, 'import pytest\n'), ((3216, 3256), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""w_dim"""', '[1, 5]'], {}), "('w_dim', [1, 5])\n", (3239, 3256), False, 'import pytest\n'), ((4542, 4582), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""w_dim"""', '[1, 5]'], {}), "('w_dim', [1, 5])\n", (4565, 4582), False, 'import pytest\n'), ((4584, 4628), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""seed2"""', '[None, 42]'], {}), "('seed2', [None, 42])\n", (4607, 4628), False, 'import pytest\n'), ((1728, 1781), 'gpflux.layers.LatentVariableLayer', 'LatentVariableLayer', ([], {'encoder': 'None', 'prior': 'distribution'}), '(encoder=None, prior=distribution)\n', (1747, 1781), False, 'from gpflux.layers import LatentVariableLayer, LayerWithObservations, TrackableLayer\n'), ((2261, 2282), 'numpy.all', 'np.all', (['(local_kls > 0)'], {}), '(local_kls > 0)\n', (2267, 2282), True, 'import numpy as np\n'), ((2447, 2479), 'numpy.random.randn', 'np.random.randn', (['num_data', 'w_dim'], {}), '(num_data, w_dim)\n', (2462, 2479), True, 'import numpy as np\n'), ((2494, 2549), 'gpflux.encoders.DirectlyParameterizedNormalDiag', 'DirectlyParameterizedNormalDiag', (['num_data', 'w_dim', 'means'], {}), '(num_data, w_dim, means)\n', (2525, 2549), False, 'from gpflux.encoders import DirectlyParameterizedNormalDiag\n'), ((2866, 2888), 'gpflow.kullback_leiblers.gauss_kl', 'gauss_kl', (['q_mu', 'q_sqrt'], {}), '(q_mu, q_sqrt)\n', (2874, 2888), False, 'from gpflow.kullback_leiblers import gauss_kl\n'), ((2955, 3026), 'numpy.testing.assert_allclose', 'np.testing.assert_allclose', (['tfp_local_kls', 'gpflow_local_kls'], {'rtol': '(1e-10)'}), '(tfp_local_kls, gpflow_local_kls, rtol=1e-10)\n', (2981, 3026), True, 'import numpy as np\n'), ((3841, 3890), 'gpflux.layers.LatentVariableLayer', 'LatentVariableLayer', ([], {'encoder': 'encoder', 'prior': 'prior'}), '(encoder=encoder, prior=prior)\n', (3860, 3890), False, 'from gpflux.layers import LatentVariableLayer, LayerWithObservations, TrackableLayer\n'), ((3905, 3939), 'numpy.full', 'np.full', (['(num_data, x_dim)', 'np.nan'], {}), '((num_data, x_dim), np.nan)\n', (3912, 3939), True, 'import numpy as np\n'), ((3954, 3988), 'numpy.full', 'np.full', (['(num_data, y_dim)', 'np.nan'], {}), '((num_data, y_dim), np.nan)\n', (3961, 3988), True, 'import numpy as np\n'), ((4047, 4084), 'numpy.concatenate', 'np.concatenate', (['observations'], {'axis': '(-1)'}), '(observations, axis=-1)\n', (4061, 4084), True, 'import numpy as np\n'), ((4461, 4510), 'numpy.testing.assert_equal', 'np.testing.assert_equal', (['lv.losses', 'expected_loss'], {}), '(lv.losses, expected_loss)\n', (4484, 4510), True, 'import numpy as np\n'), ((5277, 5326), 'gpflux.layers.LatentVariableLayer', 'LatentVariableLayer', ([], {'prior': 'prior', 'encoder': 'encoder'}), '(prior=prior, encoder=encoder)\n', (5296, 5326), False, 'from gpflux.layers import LatentVariableLayer, LayerWithObservations, TrackableLayer\n'), ((5332, 5356), 'tensorflow.random.set_seed', 'tf.random.set_seed', (['seed'], {}), '(seed)\n', (5350, 5356), True, 'import tensorflow as tf\n'), ((5403, 5427), 'tensorflow.random.set_seed', 'tf.random.set_seed', (['seed'], {}), '(seed)\n', (5421, 5427), True, 'import tensorflow as tf\n'), ((5523, 5582), 'numpy.testing.assert_array_equal', 'np.testing.assert_array_equal', (['sample_prior', 'prior_expected'], {}), '(sample_prior, prior_expected)\n', (5552, 5582), True, 'import numpy as np\n'), ((5588, 5612), 'tensorflow.random.set_seed', 'tf.random.set_seed', (['seed'], {}), '(seed)\n', (5606, 5612), True, 'import tensorflow as tf\n'), ((5710, 5734), 'tensorflow.random.set_seed', 'tf.random.set_seed', (['seed'], {}), '(seed)\n', (5728, 5734), True, 'import tensorflow as tf\n'), ((5829, 5896), 'numpy.testing.assert_array_equal', 'np.testing.assert_array_equal', (['sample_posterior', 'posterior_expected'], {}), '(sample_posterior, posterior_expected)\n', (5858, 5896), True, 'import numpy as np\n'), ((1236, 1247), 'numpy.zeros', 'np.zeros', (['d'], {}), '(d)\n', (1244, 1247), True, 'import numpy as np\n'), ((1270, 1279), 'numpy.eye', 'np.eye', (['d'], {}), '(d)\n', (1276, 1279), True, 'import numpy as np\n'), ((1294, 1353), 'tensorflow_probability.distributions.MultivariateNormalTriL', 'tfp.distributions.MultivariateNormalTriL', (['mean', 'scale_tri_l'], {}), '(mean, scale_tri_l)\n', (1334, 1353), True, 'import tensorflow_probability as tfp\n'), ((1369, 1379), 'numpy.ones', 'np.ones', (['d'], {}), '(d)\n', (1376, 1379), True, 'import numpy as np\n'), ((1399, 1450), 'tensorflow_probability.distributions.MultivariateNormalDiag', 'tfp.distributions.MultivariateNormalDiag', (['mean', 'std'], {}), '(mean, std)\n', (1439, 1450), True, 'import tensorflow_probability as tfp\n'), ((3162, 3212), 'numpy.allclose', 'np.allclose', (['actual', 'self.expected'], {'equal_nan': '(True)'}), '(actual, self.expected, equal_nan=True)\n', (3173, 3212), True, 'import numpy as np\n'), ((1094, 1109), 'numpy.zeros', 'np.zeros', (['w_dim'], {}), '(w_dim)\n', (1102, 1109), True, 'import numpy as np\n'), ((1122, 1136), 'numpy.ones', 'np.ones', (['w_dim'], {}), '(w_dim)\n', (1129, 1136), True, 'import numpy as np\n'), ((2686, 2714), 'numpy.random.randn', 'np.random.randn', (['num_data', '(3)'], {}), '(num_data, 3)\n', (2701, 2714), True, 'import numpy as np\n'), ((2716, 2744), 'numpy.random.randn', 'np.random.randn', (['num_data', '(2)'], {}), '(num_data, 2)\n', (2731, 2744), True, 'import numpy as np\n'), ((3485, 3514), 'numpy.random.randn', 'np.random.randn', (['*prior_shape'], {}), '(*prior_shape)\n', (3500, 3514), True, 'import numpy as np\n'), ((3648, 3682), 'numpy.random.randn', 'np.random.randn', (['*posteriors_shape'], {}), '(*posteriors_shape)\n', (3663, 3682), True, 'import numpy as np\n'), ((4921, 4950), 'numpy.random.randn', 'np.random.randn', (['*prior_shape'], {}), '(*prior_shape)\n', (4936, 4950), True, 'import numpy as np\n'), ((5084, 5118), 'numpy.random.randn', 'np.random.randn', (['*posteriors_shape'], {}), '(*posteriors_shape)\n', (5099, 5118), True, 'import numpy as np\n'), ((3535, 3564), 'numpy.random.randn', 'np.random.randn', (['*prior_shape'], {}), '(*prior_shape)\n', (3550, 3564), True, 'import numpy as np\n'), ((3703, 3737), 'numpy.random.randn', 'np.random.randn', (['*posteriors_shape'], {}), '(*posteriors_shape)\n', (3718, 3737), True, 'import numpy as np\n'), ((4971, 5000), 'numpy.random.randn', 'np.random.randn', (['*prior_shape'], {}), '(*prior_shape)\n', (4986, 5000), True, 'import numpy as np\n'), ((5139, 5173), 'numpy.random.randn', 'np.random.randn', (['*posteriors_shape'], {}), '(*posteriors_shape)\n', (5154, 5173), True, 'import numpy as np\n')]
""" This script will modulate the blinky lights using the following algorithm: 1) uses user-provided location to obtain row of pixel data from bathy image 2) samples a 'number of LEDs' number of pixels from that row 3) shifts the sampled row data to center it at the location specified by user 4) displays resulting pixels on Blinky Tape 5) shifts next row by a given latitude, also specified by user 6) sleeps for user-specified period of time Uses the following arguments: -l/--location: tuple Location of the user in tuple(lat, lon). This represents the center of the LED strip. Defaults to (0, 0) -u/--update-interval: int Update interval of the script, in minutes. Defaults to 10. -p/--port: str Serial port of the BlinkyLight (e.g., 'ttyAMA0', 'COM3'). Defaults to 'COM5'. -d/--delta_latitude: int Vertical change in latitude every update rate. May be 0, but this will result in a never-changing LEDs. -i/--image: str Name of the PNG image that contains the color coded pathymetric data. The file current named mapserv.png was obtained using the following API: https://www.gebco.net/data_and_products/gebco_web_services/web_map_service/mapserv?request=getmap&service=wms&BBOX=-90,-180,90,180&format=image/png&height=600&width=1200&crs=EPSG:4326&layers=GEBCO_LATEST_SUB_ICE_TOPO&version=1.3.0 In lieu of providing command line arguments, you may alternatively edit the defaults in bath_config.json. NOTE: runs via: runfile('/BlinkyTape_Python/bathymetry_blink/bathymetry_blink.py', wdir='/BlinkyTape_Python/') (C) 2021 <NAME> (https://joeycodes.dev) MIT Licensed """ import optparse import json from blinkytape import BlinkyTape from time import sleep from PIL import Image import numpy as np import sys MAX_ERRORS = 3 num_errors = 0 # Obtain default parameters with open("./bathymetry_blink/bathy_config.json") as f: config = json.load(f) # Default Blinky Tape port on Raspberry Pi is /dev/ttyACM0 parser = optparse.OptionParser() parser.add_option("-p", "--port", dest="portname", help="serial port (ex: /dev/ttyACM0)", default=config["port"]) parser.add_option("-l", "--location", dest="location", help="Location of the center of the LED strip (ex: 70,-110)", default=config["location"]) parser.add_option("-u", "--update-rate", dest="update_rate", help="How often to update elevation profile (mins) (ex: 5)", default=config["update_rate"]) parser.add_option("-d", "--delta-latitude", dest="delta_latitude", help="Change in latitude during update (ex: 5)", default=config["delta_latitude"]) parser.add_option("-n", "--num-leds", dest="num_leds", help="Number of LEDs in strip (ex: 60)", default=config["num_leds"]) parser.add_option("-i", "--image", dest="image_name", help="Name of the map/bathymetry image (ex: ./mapserv.png)", default=config["image"]) (options, args) = parser.parse_args() if args: print("Unknown parameters: " + args) # grab the values provided by user (or defaults) port = options.portname loc = options.location rate = options.update_rate delta = options.delta_latitude n_leds = options.num_leds i_name = options.image_name # Some visual indication that it works, for headless setups (green tape) bt = BlinkyTape(port, n_leds) bt.displayColor(0, 100, 0) bt.show() sleep(2) while True: try: # first, load image im = Image.open(i_name) # Can be many different formats. cols, rows = im.size a = np.asarray(im) # of shape (rows, cols, channels) # map loc latitude to 0-based index latitude_index = min(rows - 1, max(0, (int)(((loc[0] - -90) / (90 - -90)) * (rows - 0) + 0))) longitude_index = min(cols - 1, max(0, (int)(((loc[1] - -180) / (180 - -180)) * (cols - 0) + 0))) # update the location of the next row of elevation data to take loc[0] += delta loc[0] = ((loc[0] + 90) % 180) - 90 # wraps to next pole if overflow print("Lat index: " + str(latitude_index)) print("Lon index: " + str(longitude_index)) print("Next latitude: " + str(loc[0])) # grab the applicable pixel indices indices = [(int)(x*(cols/n_leds)) for x in range(n_leds)] # sample that row of pixel data output_pixels = np.take(a[latitude_index], indices, axis=0) # rotate the row to center around the specified longitude output_pixels = np.roll(output_pixels, longitude_index, axis=0) # send all pixel data to bt for pixel in output_pixels: print("Sending r: {}, g: {}, b: {}".format(*pixel)) bt.sendPixel(*pixel) # finally, show the image bt.show() # delete variables for memory management del a del im # Tape resets to stored pattern after a few seconds of inactivity sleep(rate * 60) # Wait specified number of minutes # sleep(10) # Wait specified number of minutes except KeyboardInterrupt: print("Keyboard interrupt, ending program.") sys.exit() except RuntimeError as e: print("Encountered runtime error: " + e.args[0]) # flush any incomplete data bt.show() num_errors += 1 if num_errors > MAX_ERRORS: sys.exit("Error count exceeds that allowed.")
[ "PIL.Image.open", "numpy.roll", "numpy.asarray", "optparse.OptionParser", "time.sleep", "numpy.take", "blinkytape.BlinkyTape", "sys.exit", "json.load" ]
[((1945, 1968), 'optparse.OptionParser', 'optparse.OptionParser', ([], {}), '()\n', (1966, 1968), False, 'import optparse\n'), ((3304, 3328), 'blinkytape.BlinkyTape', 'BlinkyTape', (['port', 'n_leds'], {}), '(port, n_leds)\n', (3314, 3328), False, 'from blinkytape import BlinkyTape\n'), ((3366, 3374), 'time.sleep', 'sleep', (['(2)'], {}), '(2)\n', (3371, 3374), False, 'from time import sleep\n'), ((1863, 1875), 'json.load', 'json.load', (['f'], {}), '(f)\n', (1872, 1875), False, 'import json\n'), ((3438, 3456), 'PIL.Image.open', 'Image.open', (['i_name'], {}), '(i_name)\n', (3448, 3456), False, 'from PIL import Image\n'), ((3532, 3546), 'numpy.asarray', 'np.asarray', (['im'], {}), '(im)\n', (3542, 3546), True, 'import numpy as np\n'), ((4371, 4414), 'numpy.take', 'np.take', (['a[latitude_index]', 'indices'], {'axis': '(0)'}), '(a[latitude_index], indices, axis=0)\n', (4378, 4414), True, 'import numpy as np\n'), ((4514, 4561), 'numpy.roll', 'np.roll', (['output_pixels', 'longitude_index'], {'axis': '(0)'}), '(output_pixels, longitude_index, axis=0)\n', (4521, 4561), True, 'import numpy as np\n'), ((4971, 4987), 'time.sleep', 'sleep', (['(rate * 60)'], {}), '(rate * 60)\n', (4976, 4987), False, 'from time import sleep\n'), ((5172, 5182), 'sys.exit', 'sys.exit', ([], {}), '()\n', (5180, 5182), False, 'import sys\n'), ((5423, 5468), 'sys.exit', 'sys.exit', (['"""Error count exceeds that allowed."""'], {}), "('Error count exceeds that allowed.')\n", (5431, 5468), False, 'import sys\n')]
""" Basic usage =========== This example presents the basic usage of brokenaxes """ import matplotlib.pyplot as plt from brokenaxes import brokenaxes import numpy as np fig = plt.figure(figsize=(5,2)) bax = brokenaxes(xlims=((0, .1), (.4, .7)), ylims=((-1, .7), (.79, 1)), hspace=.05) x = np.linspace(0, 1, 100) bax.plot(x, np.sin(10 * x), label='sin') bax.plot(x, np.cos(10 * x), label='cos') bax.legend(loc=3) bax.set_xlabel('time') bax.set_ylabel('value')
[ "matplotlib.pyplot.figure", "brokenaxes.brokenaxes", "numpy.linspace", "numpy.cos", "numpy.sin" ]
[((180, 206), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(5, 2)'}), '(figsize=(5, 2))\n', (190, 206), True, 'import matplotlib.pyplot as plt\n'), ((212, 299), 'brokenaxes.brokenaxes', 'brokenaxes', ([], {'xlims': '((0, 0.1), (0.4, 0.7))', 'ylims': '((-1, 0.7), (0.79, 1))', 'hspace': '(0.05)'}), '(xlims=((0, 0.1), (0.4, 0.7)), ylims=((-1, 0.7), (0.79, 1)),\n hspace=0.05)\n', (222, 299), False, 'from brokenaxes import brokenaxes\n'), ((294, 316), 'numpy.linspace', 'np.linspace', (['(0)', '(1)', '(100)'], {}), '(0, 1, 100)\n', (305, 316), True, 'import numpy as np\n'), ((329, 343), 'numpy.sin', 'np.sin', (['(10 * x)'], {}), '(10 * x)\n', (335, 343), True, 'import numpy as np\n'), ((370, 384), 'numpy.cos', 'np.cos', (['(10 * x)'], {}), '(10 * x)\n', (376, 384), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- # This code is part of Qiskit. # # (C) Copyright IBM 2017, 2021. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. #from math import * from math import sin, cos from qiskit_metal import draw, Dict from qiskit_metal.qlibrary.core.base import QComponent import numpy as np #from ... import config #if not config.is_building_docs(): # from qiskit_metal import is_true class TransmonInterdigitated(QComponent): """ The base "TransmonInterdigitated" inherits the "QComponent" class. This creates a transmon pocket with two large pads connected by a Josephson junction. Both pads have four interdigitated "fingers" which increase the capacitance of the structure. There are three coupling capacitor pads with qpins defined; these can be connected to other structures in a design using CPWs. Default Options: * pad_width: '1000um' -- width of the large rectanglular pads on either side of the junction * pad_height: '300um' -- height of the large rectanglular pads on either side of the junction * finger_width: '50um' -- width of the "finger" on either side of the junction * finger_height: '100um' -- height of the "finger" on the side of the junction * finger_space: '50um' -- height of the Josephson Junction (equivalently; space between two fingers) * pad_pos_x: '0um' -- the internal coordinate defining the center of the bottom rectangular pad * pad_pos_y: '0um' -- the internal coordinate defining the center of the bottom rectangular pad * comb_width: '50um' -- the width of the four interdigitated combs connected to either pad * comb_space_vert: '50um' -- the space between the edge of a comb and the edge of the opposite rectangular pad * comb_space_hor: '50um' -- the space between adjacent interdigitated comb structures * jj_width: '20um' -- the width of the Josephson Junction located between the two fingers of the device * cc_space: '50um' -- the space between the lower rectangular pad and the coupling capacitor below it * cc_width: '100um' -- the width of the coupling capacitor located below the bottom rectangular pad * cc_height: '100um' -- the height of the coupling capacitor located below the bottom rectangular pad * cc_topleft_space: '50um' -- the space between the upper rectangular pad and the top left coupling capacitor * cc_topleft_width: '100um' -- the width of the top left coupling capacitor pad * cc_topleft_height: '100um' -- the height of the top left coupling capacitor pad * cc_topright_space: '50um' -- the space between the upper rectangular pad and the top right coupling capacitor * cc_topright_width: '100um' -- the width of the top right coupling capacitor pad * cc_topright_height: '100um' -- the height of the top right coupling capacitor pad * position_x: '0um' -- the x-coordinate defining the center of the transmon pocket on the chip * position_y: '0um' -- the y-coordinate defining the center of the transmon pocket on the chip * rotation: '0.0' -- the angle at which the entire structure is rotated * rotation_top_pad: '180' -- internal coordinate defining the angle of rotation between top and bottom pads * layer: '1' -- all objcets are drawn assuming they are part of the same layer on a the chip """ # Default drawing options default_options = Dict(pad_width='1000um', pad_height='300um', finger_width='50um', finger_height='100um', finger_space='50um', pad_pos_x='0um', pad_pos_y='0um', comb_width='50um', comb_space_vert='50um', comb_space_hor='50um', jj_width='20um', cc_space='50um', cc_width='100um', cc_height='100um', cc_topleft_space='50um', cc_topleft_width='100um', cc_topleft_height='100um', cc_topright_space='50um', cc_topright_width='100um', cc_topright_height='100um', position_x='0um', position_y='0um', rotation='0.0', rotation_top_pad='180', layer='1') """Default drawing options""" # Name prefix of component, if user doesn't provide name component_metadata = Dict(short_name='component') """Component metadata""" def make(self): """Convert self.options into QGeometry.""" p = self.parse_options() # Parse the string options into numbers # draw the lower pad as a rectangle pad_lower = draw.rectangle(p.pad_width, p.pad_height, p.pad_pos_x, p.pad_pos_y) # draw the lower finger as a rectangle finger_lower = draw.rectangle( p.finger_width, p.finger_height, p.pad_pos_x, p.pad_pos_y + 0.49999 * (p.pad_height) + 0.49999 * (p.finger_height)) # draw the Josephson Junction rect_jj = draw.rectangle( p.jj_width, p.finger_space, p.pad_pos_x, 0.5 * (p.pad_height) + p.finger_height + 0.5 * (p.finger_space)) # draw the first comb to the right of the lower finger as a rectangle comb1_lower = draw.rectangle( p.comb_width, (2 * p.finger_height + p.finger_space - p.comb_space_vert), (0.5 * p.finger_width + p.comb_space_hor + 0.5 * p.comb_width), (0.5 * p.pad_height + 0.5 * (p.pad_pos_y + 0.5 * (p.pad_height) + 0.5 * (p.finger_height)))) # draw the second comb to the right of the lower finger by translating the first comb comb2_lower = draw.translate(comb1_lower, 2.0 * (p.comb_space_hor + p.comb_width), 0.0) # draw the first comb to the left of the lower finger comb3_lower = draw.rectangle( p.comb_width, (2 * p.finger_height + p.finger_space - p.comb_space_vert), (-0.5 * p.finger_width - 2.0 * p.comb_space_hor - 1.5 * p.comb_width), (0.5 * p.pad_height + 0.5 * (p.pad_pos_y + 0.5 * (p.pad_height) + 0.5 * (p.finger_height)))) # draw the second comb to the left of the lower finger comb4_lower = draw.translate(comb3_lower, -2.0 * (p.comb_space_hor + p.comb_width), 0.0) coupling_capacitor = draw.rectangle( p.cc_width, p.cc_height, p.pad_pos_x, p.pad_pos_y - 0.5 * (p.pad_height) - p.cc_space - 0.5 * p.cc_height) cc_topleft = draw.rectangle( p.cc_topleft_width, p.cc_topleft_height, p.pad_pos_x - 0.5 * p.pad_width + 0.5 * p.cc_topleft_width, p.pad_pos_y + 1.5 * p.pad_height + 2.0 * p.finger_height + p.finger_space + p.cc_topleft_space + 0.5 * p.cc_topleft_height) cc_topright = draw.translate( cc_topleft, p.pad_width - 0.5 * p.cc_topleft_width - 0.5 * p.cc_topright_width, 0.0) # merge the bottom elements bottom = draw.union(pad_lower, finger_lower, comb1_lower, comb2_lower, comb3_lower, comb4_lower) # create the top portion of the comb by translating and rotating # the bottom portion of the comb top = draw.translate(bottom, 0.0, p.pad_height + p.finger_space) top = draw.rotate(top, p.rotation_top_pad) # merge everything into a single design design = draw.union(bottom, top, rect_jj, coupling_capacitor, cc_topleft, cc_topright) # draw the transmon pocket bounding box pocket = draw.rectangle(1.5 * p.pad_width, 5.0 * p.pad_height) # the origin is originally set to the middle of the lower pad. # Let's move it to the center of the JJ. design = draw.translate( design, 0.0, -0.5 * p.pad_height - p.finger_height - 0.5 * p.finger_space) # now translate the final structure according to the user input design = draw.rotate(design, p.rotation, origin=(0, 0)) design = draw.translate(design, p.position_x, p.position_y) pocket = draw.rotate(pocket, p.rotation, origin=(0, 0)) pocket = draw.translate(pocket, p.position_x, p.position_y) geom = {'design': design} geom_pocket = {'pocket': pocket} self.add_qgeometry('poly', geom, layer=p.layer, subtract=False) self.add_qgeometry('poly', geom_pocket, layer=p.layer, subtract=True) ################################################################### # Add Qpin connections for coupling capacitors # define a function that both rotates and translates the # qpin coordinates def qpin_rotate_translate(x): """ This function rotates the coordinates of the three qpins according to the user inputs for "position_x", "position_y" and "rotation". """ y = list(x) z = [0.0, 0.0] z[0] = y[0] * cos(p.rotation * 3.14159 / 180) - y[1] * sin( p.rotation * 3.14159 / 180) z[1] = y[0] * sin(p.rotation * 3.14159 / 180) + y[1] * cos( p.rotation * 3.14159 / 180) z[0] = z[0] + p.position_x z[1] = z[1] + p.position_y x = (z[0], z[1]) return x # Add Qpin connections for the bottom coupling capacitor qp1a = (0.0, -0.5 * p.pad_height - p.finger_height - 0.5 * p.finger_space) qp1b = (0.0, -0.5 * p.pad_height - p.cc_space - p.cc_height - 0.5 * p.pad_height - p.finger_height - 0.5 * p.finger_space) # rotate and translate the qpin coordinates qp1a = qpin_rotate_translate(qp1a) qp1b = qpin_rotate_translate(qp1b) self.add_pin('pin1', points=np.array([qp1a, qp1b]), width=0.01, input_as_norm=True) # Add Qpin connections for top left coupling capacitor qp2a = (p.pad_pos_x - 0.5 * p.pad_width + 0.5 * p.cc_topleft_width, p.pad_pos_y + 1.5 * p.pad_height + 2.0 * p.finger_height + p.finger_space + p.cc_topleft_space + 0.5 * p.cc_topleft_height - 0.5 * p.pad_height - p.finger_height - 0.5 * p.finger_space) qp2b = (p.pad_pos_x - 0.5 * p.pad_width, p.pad_pos_y + 1.5 * p.pad_height + 2.0 * p.finger_height + p.finger_space + p.cc_topleft_space + 0.5 * p.cc_topleft_height - 0.5 * p.pad_height - p.finger_height - 0.5 * p.finger_space) qp2a = qpin_rotate_translate(qp2a) qp2b = qpin_rotate_translate(qp2b) self.add_pin('pin2', points=np.array([qp2a, qp2b]), width=0.01, input_as_norm=True) # Add Qpin connections for top right coupling capacitor qp3a = (p.pad_pos_x + 0.5 * p.pad_width - 0.5 * p.cc_topleft_width, p.pad_pos_y + 1.5 * p.pad_height + 2.0 * p.finger_height + p.finger_space + p.cc_topleft_space + 0.5 * p.cc_topleft_height - 0.5 * p.pad_height - p.finger_height - 0.5 * p.finger_space) qp3b = (p.pad_pos_x + 0.5 * p.pad_width, p.pad_pos_y + 1.5 * p.pad_height + 2.0 * p.finger_height + p.finger_space + p.cc_topleft_space + 0.5 * p.cc_topleft_height - 0.5 * p.pad_height - p.finger_height - 0.5 * p.finger_space) qp3a = qpin_rotate_translate(qp3a) qp3b = qpin_rotate_translate(qp3b) self.add_pin('pin3', points=np.array([qp3a, qp3b]), width=0.01, input_as_norm=True)
[ "qiskit_metal.draw.union", "math.cos", "qiskit_metal.Dict", "numpy.array", "qiskit_metal.draw.rectangle", "qiskit_metal.draw.translate", "qiskit_metal.draw.rotate", "math.sin" ]
[((4010, 4566), 'qiskit_metal.Dict', 'Dict', ([], {'pad_width': '"""1000um"""', 'pad_height': '"""300um"""', 'finger_width': '"""50um"""', 'finger_height': '"""100um"""', 'finger_space': '"""50um"""', 'pad_pos_x': '"""0um"""', 'pad_pos_y': '"""0um"""', 'comb_width': '"""50um"""', 'comb_space_vert': '"""50um"""', 'comb_space_hor': '"""50um"""', 'jj_width': '"""20um"""', 'cc_space': '"""50um"""', 'cc_width': '"""100um"""', 'cc_height': '"""100um"""', 'cc_topleft_space': '"""50um"""', 'cc_topleft_width': '"""100um"""', 'cc_topleft_height': '"""100um"""', 'cc_topright_space': '"""50um"""', 'cc_topright_width': '"""100um"""', 'cc_topright_height': '"""100um"""', 'position_x': '"""0um"""', 'position_y': '"""0um"""', 'rotation': '"""0.0"""', 'rotation_top_pad': '"""180"""', 'layer': '"""1"""'}), "(pad_width='1000um', pad_height='300um', finger_width='50um',\n finger_height='100um', finger_space='50um', pad_pos_x='0um', pad_pos_y=\n '0um', comb_width='50um', comb_space_vert='50um', comb_space_hor='50um',\n jj_width='20um', cc_space='50um', cc_width='100um', cc_height='100um',\n cc_topleft_space='50um', cc_topleft_width='100um', cc_topleft_height=\n '100um', cc_topright_space='50um', cc_topright_width='100um',\n cc_topright_height='100um', position_x='0um', position_y='0um',\n rotation='0.0', rotation_top_pad='180', layer='1')\n", (4014, 4566), False, 'from qiskit_metal import draw, Dict\n'), ((5306, 5334), 'qiskit_metal.Dict', 'Dict', ([], {'short_name': '"""component"""'}), "(short_name='component')\n", (5310, 5334), False, 'from qiskit_metal import draw, Dict\n'), ((5576, 5643), 'qiskit_metal.draw.rectangle', 'draw.rectangle', (['p.pad_width', 'p.pad_height', 'p.pad_pos_x', 'p.pad_pos_y'], {}), '(p.pad_width, p.pad_height, p.pad_pos_x, p.pad_pos_y)\n', (5590, 5643), False, 'from qiskit_metal import draw, Dict\n'), ((5750, 5881), 'qiskit_metal.draw.rectangle', 'draw.rectangle', (['p.finger_width', 'p.finger_height', 'p.pad_pos_x', '(p.pad_pos_y + 0.49999 * p.pad_height + 0.49999 * p.finger_height)'], {}), '(p.finger_width, p.finger_height, p.pad_pos_x, p.pad_pos_y + \n 0.49999 * p.pad_height + 0.49999 * p.finger_height)\n', (5764, 5881), False, 'from qiskit_metal import draw, Dict\n'), ((5963, 6083), 'qiskit_metal.draw.rectangle', 'draw.rectangle', (['p.jj_width', 'p.finger_space', 'p.pad_pos_x', '(0.5 * p.pad_height + p.finger_height + 0.5 * p.finger_space)'], {}), '(p.jj_width, p.finger_space, p.pad_pos_x, 0.5 * p.pad_height +\n p.finger_height + 0.5 * p.finger_space)\n', (5977, 6083), False, 'from qiskit_metal import draw, Dict\n'), ((6210, 6460), 'qiskit_metal.draw.rectangle', 'draw.rectangle', (['p.comb_width', '(2 * p.finger_height + p.finger_space - p.comb_space_vert)', '(0.5 * p.finger_width + p.comb_space_hor + 0.5 * p.comb_width)', '(0.5 * p.pad_height + 0.5 * (p.pad_pos_y + 0.5 * p.pad_height + 0.5 * p.\n finger_height))'], {}), '(p.comb_width, 2 * p.finger_height + p.finger_space - p.\n comb_space_vert, 0.5 * p.finger_width + p.comb_space_hor + 0.5 * p.\n comb_width, 0.5 * p.pad_height + 0.5 * (p.pad_pos_y + 0.5 * p.\n pad_height + 0.5 * p.finger_height))\n', (6224, 6460), False, 'from qiskit_metal import draw, Dict\n'), ((6635, 6708), 'qiskit_metal.draw.translate', 'draw.translate', (['comb1_lower', '(2.0 * (p.comb_space_hor + p.comb_width))', '(0.0)'], {}), '(comb1_lower, 2.0 * (p.comb_space_hor + p.comb_width), 0.0)\n', (6649, 6708), False, 'from qiskit_metal import draw, Dict\n'), ((6868, 7124), 'qiskit_metal.draw.rectangle', 'draw.rectangle', (['p.comb_width', '(2 * p.finger_height + p.finger_space - p.comb_space_vert)', '(-0.5 * p.finger_width - 2.0 * p.comb_space_hor - 1.5 * p.comb_width)', '(0.5 * p.pad_height + 0.5 * (p.pad_pos_y + 0.5 * p.pad_height + 0.5 * p.\n finger_height))'], {}), '(p.comb_width, 2 * p.finger_height + p.finger_space - p.\n comb_space_vert, -0.5 * p.finger_width - 2.0 * p.comb_space_hor - 1.5 *\n p.comb_width, 0.5 * p.pad_height + 0.5 * (p.pad_pos_y + 0.5 * p.\n pad_height + 0.5 * p.finger_height))\n', (6882, 7124), False, 'from qiskit_metal import draw, Dict\n'), ((7282, 7356), 'qiskit_metal.draw.translate', 'draw.translate', (['comb3_lower', '(-2.0 * (p.comb_space_hor + p.comb_width))', '(0.0)'], {}), '(comb3_lower, -2.0 * (p.comb_space_hor + p.comb_width), 0.0)\n', (7296, 7356), False, 'from qiskit_metal import draw, Dict\n'), ((7461, 7585), 'qiskit_metal.draw.rectangle', 'draw.rectangle', (['p.cc_width', 'p.cc_height', 'p.pad_pos_x', '(p.pad_pos_y - 0.5 * p.pad_height - p.cc_space - 0.5 * p.cc_height)'], {}), '(p.cc_width, p.cc_height, p.pad_pos_x, p.pad_pos_y - 0.5 * p.\n pad_height - p.cc_space - 0.5 * p.cc_height)\n', (7475, 7585), False, 'from qiskit_metal import draw, Dict\n'), ((7630, 7883), 'qiskit_metal.draw.rectangle', 'draw.rectangle', (['p.cc_topleft_width', 'p.cc_topleft_height', '(p.pad_pos_x - 0.5 * p.pad_width + 0.5 * p.cc_topleft_width)', '(p.pad_pos_y + 1.5 * p.pad_height + 2.0 * p.finger_height + p.finger_space +\n p.cc_topleft_space + 0.5 * p.cc_topleft_height)'], {}), '(p.cc_topleft_width, p.cc_topleft_height, p.pad_pos_x - 0.5 *\n p.pad_width + 0.5 * p.cc_topleft_width, p.pad_pos_y + 1.5 * p.\n pad_height + 2.0 * p.finger_height + p.finger_space + p.\n cc_topleft_space + 0.5 * p.cc_topleft_height)\n', (7644, 7883), False, 'from qiskit_metal import draw, Dict\n'), ((7942, 8046), 'qiskit_metal.draw.translate', 'draw.translate', (['cc_topleft', '(p.pad_width - 0.5 * p.cc_topleft_width - 0.5 * p.cc_topright_width)', '(0.0)'], {}), '(cc_topleft, p.pad_width - 0.5 * p.cc_topleft_width - 0.5 * p\n .cc_topright_width, 0.0)\n', (7956, 8046), False, 'from qiskit_metal import draw, Dict\n'), ((8133, 8224), 'qiskit_metal.draw.union', 'draw.union', (['pad_lower', 'finger_lower', 'comb1_lower', 'comb2_lower', 'comb3_lower', 'comb4_lower'], {}), '(pad_lower, finger_lower, comb1_lower, comb2_lower, comb3_lower,\n comb4_lower)\n', (8143, 8224), False, 'from qiskit_metal import draw, Dict\n'), ((8378, 8436), 'qiskit_metal.draw.translate', 'draw.translate', (['bottom', '(0.0)', '(p.pad_height + p.finger_space)'], {}), '(bottom, 0.0, p.pad_height + p.finger_space)\n', (8392, 8436), False, 'from qiskit_metal import draw, Dict\n'), ((8451, 8487), 'qiskit_metal.draw.rotate', 'draw.rotate', (['top', 'p.rotation_top_pad'], {}), '(top, p.rotation_top_pad)\n', (8462, 8487), False, 'from qiskit_metal import draw, Dict\n'), ((8554, 8631), 'qiskit_metal.draw.union', 'draw.union', (['bottom', 'top', 'rect_jj', 'coupling_capacitor', 'cc_topleft', 'cc_topright'], {}), '(bottom, top, rect_jj, coupling_capacitor, cc_topleft, cc_topright)\n', (8564, 8631), False, 'from qiskit_metal import draw, Dict\n'), ((8726, 8779), 'qiskit_metal.draw.rectangle', 'draw.rectangle', (['(1.5 * p.pad_width)', '(5.0 * p.pad_height)'], {}), '(1.5 * p.pad_width, 5.0 * p.pad_height)\n', (8740, 8779), False, 'from qiskit_metal import draw, Dict\n'), ((8918, 9012), 'qiskit_metal.draw.translate', 'draw.translate', (['design', '(0.0)', '(-0.5 * p.pad_height - p.finger_height - 0.5 * p.finger_space)'], {}), '(design, 0.0, -0.5 * p.pad_height - p.finger_height - 0.5 * p\n .finger_space)\n', (8932, 9012), False, 'from qiskit_metal import draw, Dict\n'), ((9123, 9169), 'qiskit_metal.draw.rotate', 'draw.rotate', (['design', 'p.rotation'], {'origin': '(0, 0)'}), '(design, p.rotation, origin=(0, 0))\n', (9134, 9169), False, 'from qiskit_metal import draw, Dict\n'), ((9187, 9237), 'qiskit_metal.draw.translate', 'draw.translate', (['design', 'p.position_x', 'p.position_y'], {}), '(design, p.position_x, p.position_y)\n', (9201, 9237), False, 'from qiskit_metal import draw, Dict\n'), ((9256, 9302), 'qiskit_metal.draw.rotate', 'draw.rotate', (['pocket', 'p.rotation'], {'origin': '(0, 0)'}), '(pocket, p.rotation, origin=(0, 0))\n', (9267, 9302), False, 'from qiskit_metal import draw, Dict\n'), ((9320, 9370), 'qiskit_metal.draw.translate', 'draw.translate', (['pocket', 'p.position_x', 'p.position_y'], {}), '(pocket, p.position_x, p.position_y)\n', (9334, 9370), False, 'from qiskit_metal import draw, Dict\n'), ((10971, 10993), 'numpy.array', 'np.array', (['[qp1a, qp1b]'], {}), '([qp1a, qp1b])\n', (10979, 10993), True, 'import numpy as np\n'), ((11888, 11910), 'numpy.array', 'np.array', (['[qp2a, qp2b]'], {}), '([qp2a, qp2b])\n', (11896, 11910), True, 'import numpy as np\n'), ((12806, 12828), 'numpy.array', 'np.array', (['[qp3a, qp3b]'], {}), '([qp3a, qp3b])\n', (12814, 12828), True, 'import numpy as np\n'), ((10127, 10158), 'math.cos', 'cos', (['(p.rotation * 3.14159 / 180)'], {}), '(p.rotation * 3.14159 / 180)\n', (10130, 10158), False, 'from math import sin, cos\n'), ((10168, 10199), 'math.sin', 'sin', (['(p.rotation * 3.14159 / 180)'], {}), '(p.rotation * 3.14159 / 180)\n', (10171, 10199), False, 'from math import sin, cos\n'), ((10243, 10274), 'math.sin', 'sin', (['(p.rotation * 3.14159 / 180)'], {}), '(p.rotation * 3.14159 / 180)\n', (10246, 10274), False, 'from math import sin, cos\n'), ((10284, 10315), 'math.cos', 'cos', (['(p.rotation * 3.14159 / 180)'], {}), '(p.rotation * 3.14159 / 180)\n', (10287, 10315), False, 'from math import sin, cos\n')]
import inspect import numpy as np from pandas._libs import reduction as libreduction from pandas.util._decorators import cache_readonly from pandas.core.dtypes.common import ( is_dict_like, is_extension_array_dtype, is_list_like, is_sequence, ) from pandas.core.dtypes.generic import ABCSeries def frame_apply( obj, func, axis=0, raw=False, result_type=None, ignore_failures=False, args=None, kwds=None, ): """ construct and return a row or column based frame apply object """ axis = obj._get_axis_number(axis) if axis == 0: klass = FrameRowApply elif axis == 1: klass = FrameColumnApply return klass( obj, func, raw=raw, result_type=result_type, ignore_failures=ignore_failures, args=args, kwds=kwds, ) class FrameApply: def __init__(self, obj, func, raw, result_type, ignore_failures, args, kwds): self.obj = obj self.raw = raw self.ignore_failures = ignore_failures self.args = args or () self.kwds = kwds or {} if result_type not in [None, "reduce", "broadcast", "expand"]: raise ValueError( "invalid value for result_type, must be one " "of {None, 'reduce', 'broadcast', 'expand'}" ) self.result_type = result_type # curry if needed if (kwds or args) and not isinstance(func, (np.ufunc, str)): def f(x): return func(x, *args, **kwds) else: f = func self.f = f # results self.result = None self.res_index = None self.res_columns = None @property def columns(self): return self.obj.columns @property def index(self): return self.obj.index @cache_readonly def values(self): return self.obj.values @cache_readonly def dtypes(self): return self.obj.dtypes @property def agg_axis(self): return self.obj._get_agg_axis(self.axis) def get_result(self): """ compute the results """ # dispatch to agg if is_list_like(self.f) or is_dict_like(self.f): return self.obj.aggregate(self.f, axis=self.axis, *self.args, **self.kwds) # all empty if len(self.columns) == 0 and len(self.index) == 0: return self.apply_empty_result() # string dispatch if isinstance(self.f, str): # Support for `frame.transform('method')` # Some methods (shift, etc.) require the axis argument, others # don't, so inspect and insert if necessary. func = getattr(self.obj, self.f) sig = inspect.getfullargspec(func) if "axis" in sig.args: self.kwds["axis"] = self.axis return func(*self.args, **self.kwds) # ufunc elif isinstance(self.f, np.ufunc): with np.errstate(all="ignore"): results = self.obj._data.apply("apply", func=self.f) return self.obj._constructor( data=results, index=self.index, columns=self.columns, copy=False ) # broadcasting if self.result_type == "broadcast": return self.apply_broadcast() # one axis empty elif not all(self.obj.shape): return self.apply_empty_result() # raw elif self.raw and not self.obj._is_mixed_type: return self.apply_raw() return self.apply_standard() def apply_empty_result(self): """ we have an empty result; at least 1 axis is 0 we will try to apply the function to an empty series in order to see if this is a reduction function """ # we are not asked to reduce or infer reduction # so just return a copy of the existing object if self.result_type not in ["reduce", None]: return self.obj.copy() # we may need to infer should_reduce = self.result_type == "reduce" from pandas import Series if not should_reduce: try: r = self.f(Series([])) except Exception: pass else: should_reduce = not isinstance(r, Series) if should_reduce: if len(self.agg_axis): r = self.f(Series([])) else: r = np.nan return self.obj._constructor_sliced(r, index=self.agg_axis) else: return self.obj.copy() def apply_raw(self): """ apply to the values as a numpy array """ try: result = libreduction.compute_reduction(self.values, self.f, axis=self.axis) except ValueError as err: if "Function does not reduce" not in str(err): # catch only ValueError raised intentionally in libreduction raise result = np.apply_along_axis(self.f, self.axis, self.values) # TODO: mixed type case if result.ndim == 2: return self.obj._constructor(result, index=self.index, columns=self.columns) else: return self.obj._constructor_sliced(result, index=self.agg_axis) def apply_broadcast(self, target): result_values = np.empty_like(target.values) # axis which we want to compare compliance result_compare = target.shape[0] for i, col in enumerate(target.columns): res = self.f(target[col]) ares = np.asarray(res).ndim # must be a scalar or 1d if ares > 1: raise ValueError("too many dims to broadcast") elif ares == 1: # must match return dim if result_compare != len(res): raise ValueError("cannot broadcast result") result_values[:, i] = res # we *always* preserve the original index / columns result = self.obj._constructor( result_values, index=target.index, columns=target.columns ) return result def apply_standard(self): # try to reduce first (by default) # this only matters if the reduction in values is of different dtype # e.g. if we want to apply to a SparseFrame, then can't directly reduce # we cannot reduce using non-numpy dtypes, # as demonstrated in gh-12244 if ( self.result_type in ["reduce", None] and not self.dtypes.apply(is_extension_array_dtype).any() # Disallow complex_internals since libreduction shortcut # cannot handle MultiIndex and not self.agg_axis._has_complex_internals ): values = self.values index = self.obj._get_axis(self.axis) labels = self.agg_axis empty_arr = np.empty(len(index), dtype=values.dtype) # Preserve subclass for e.g. test_subclassed_apply dummy = self.obj._constructor_sliced( empty_arr, index=index, dtype=values.dtype ) try: result = libreduction.compute_reduction( values, self.f, axis=self.axis, dummy=dummy, labels=labels ) except ValueError as err: if "Function does not reduce" not in str(err): # catch only ValueError raised intentionally in libreduction raise except TypeError: # e.g. test_apply_ignore_failures we just ignore if not self.ignore_failures: raise except ZeroDivisionError: # reached via numexpr; fall back to python implementation pass else: return self.obj._constructor_sliced(result, index=labels) # compute the result using the series generator self.apply_series_generator() # wrap results return self.wrap_results() def apply_series_generator(self): series_gen = self.series_generator res_index = self.result_index i = None keys = [] results = {} if self.ignore_failures: successes = [] for i, v in enumerate(series_gen): try: results[i] = self.f(v) except Exception: pass else: keys.append(v.name) successes.append(i) # so will work with MultiIndex if len(successes) < len(res_index): res_index = res_index.take(successes) else: for i, v in enumerate(series_gen): results[i] = self.f(v) keys.append(v.name) self.results = results self.res_index = res_index self.res_columns = self.result_columns def wrap_results(self): results = self.results # see if we can infer the results if len(results) > 0 and 0 in results and is_sequence(results[0]): return self.wrap_results_for_axis() # dict of scalars result = self.obj._constructor_sliced(results) result.index = self.res_index return result class FrameRowApply(FrameApply): axis = 0 def apply_broadcast(self): return super().apply_broadcast(self.obj) @property def series_generator(self): return (self.obj._ixs(i, axis=1) for i in range(len(self.columns))) @property def result_index(self): return self.columns @property def result_columns(self): return self.index def wrap_results_for_axis(self): """ return the results for the rows """ results = self.results result = self.obj._constructor(data=results) if not isinstance(results[0], ABCSeries): if len(result.index) == len(self.res_columns): result.index = self.res_columns if len(result.columns) == len(self.res_index): result.columns = self.res_index return result class FrameColumnApply(FrameApply): axis = 1 def apply_broadcast(self): result = super().apply_broadcast(self.obj.T) return result.T @property def series_generator(self): constructor = self.obj._constructor_sliced return ( constructor(arr, index=self.columns, name=name) for i, (arr, name) in enumerate(zip(self.values, self.index)) ) @property def result_index(self): return self.index @property def result_columns(self): return self.columns def wrap_results_for_axis(self): """ return the results for the columns """ results = self.results # we have requested to expand if self.result_type == "expand": result = self.infer_to_same_shape() # we have a non-series and don't want inference elif not isinstance(results[0], ABCSeries): from pandas import Series result = Series(results) result.index = self.res_index # we may want to infer results else: result = self.infer_to_same_shape() return result def infer_to_same_shape(self): """ infer the results to the same shape as the input object """ results = self.results result = self.obj._constructor(data=results) result = result.T # set the index result.index = self.res_index # infer dtypes result = result.infer_objects() return result
[ "pandas.core.dtypes.common.is_list_like", "pandas._libs.reduction.compute_reduction", "pandas.Series", "pandas.core.dtypes.common.is_sequence", "numpy.asarray", "inspect.getfullargspec", "numpy.errstate", "numpy.apply_along_axis", "numpy.empty_like", "pandas.core.dtypes.common.is_dict_like" ]
[((5381, 5409), 'numpy.empty_like', 'np.empty_like', (['target.values'], {}), '(target.values)\n', (5394, 5409), True, 'import numpy as np\n'), ((2193, 2213), 'pandas.core.dtypes.common.is_list_like', 'is_list_like', (['self.f'], {}), '(self.f)\n', (2205, 2213), False, 'from pandas.core.dtypes.common import is_dict_like, is_extension_array_dtype, is_list_like, is_sequence\n'), ((2217, 2237), 'pandas.core.dtypes.common.is_dict_like', 'is_dict_like', (['self.f'], {}), '(self.f)\n', (2229, 2237), False, 'from pandas.core.dtypes.common import is_dict_like, is_extension_array_dtype, is_list_like, is_sequence\n'), ((2764, 2792), 'inspect.getfullargspec', 'inspect.getfullargspec', (['func'], {}), '(func)\n', (2786, 2792), False, 'import inspect\n'), ((4742, 4809), 'pandas._libs.reduction.compute_reduction', 'libreduction.compute_reduction', (['self.values', 'self.f'], {'axis': 'self.axis'}), '(self.values, self.f, axis=self.axis)\n', (4772, 4809), True, 'from pandas._libs import reduction as libreduction\n'), ((9164, 9187), 'pandas.core.dtypes.common.is_sequence', 'is_sequence', (['results[0]'], {}), '(results[0])\n', (9175, 9187), False, 'from pandas.core.dtypes.common import is_dict_like, is_extension_array_dtype, is_list_like, is_sequence\n'), ((5023, 5074), 'numpy.apply_along_axis', 'np.apply_along_axis', (['self.f', 'self.axis', 'self.values'], {}), '(self.f, self.axis, self.values)\n', (5042, 5074), True, 'import numpy as np\n'), ((5610, 5625), 'numpy.asarray', 'np.asarray', (['res'], {}), '(res)\n', (5620, 5625), True, 'import numpy as np\n'), ((7224, 7318), 'pandas._libs.reduction.compute_reduction', 'libreduction.compute_reduction', (['values', 'self.f'], {'axis': 'self.axis', 'dummy': 'dummy', 'labels': 'labels'}), '(values, self.f, axis=self.axis, dummy=dummy,\n labels=labels)\n', (7254, 7318), True, 'from pandas._libs import reduction as libreduction\n'), ((11205, 11220), 'pandas.Series', 'Series', (['results'], {}), '(results)\n', (11211, 11220), False, 'from pandas import Series\n'), ((3000, 3025), 'numpy.errstate', 'np.errstate', ([], {'all': '"""ignore"""'}), "(all='ignore')\n", (3011, 3025), True, 'import numpy as np\n'), ((4222, 4232), 'pandas.Series', 'Series', (['[]'], {}), '([])\n', (4228, 4232), False, 'from pandas import Series\n'), ((4450, 4460), 'pandas.Series', 'Series', (['[]'], {}), '([])\n', (4456, 4460), False, 'from pandas import Series\n')]
# Copyright (c) Pymatgen Development Team. # Distributed under the terms of the MIT License. """ Test for the piezo tensor class """ __author__ = "<NAME>" __version__ = "0.1" __maintainer__ = "<NAME>" __email__ = "<EMAIL>" __status__ = "Development" __date__ = "4/1/16" import os import unittest import numpy as np from pymatgen.analysis.piezo import PiezoTensor from pymatgen.util.testing import PymatgenTest class PiezoTest(PymatgenTest): def setUp(self): self.piezo_struc = self.get_structure("BaNiO3") self.voigt_matrix = np.array( [ [0.0, 0.0, 0.0, 0.0, 0.03839, 0.0], [0.0, 0.0, 0.0, 0.03839, 0.0, 0.0], [6.89822, 6.89822, 27.46280, 0.0, 0.0, 0.0], ] ) self.vasp_matrix = np.array( [ [0.0, 0.0, 0.0, 0.0, 0.0, 0.03839], [0.0, 0.0, 0.0, 0.0, 0.03839, 0.0, 0.0], [6.89822, 6.89822, 27.46280, 0.0, 0.0, 0.0], ] ) self.full_tensor_array = [ [[0.0, 0.0, 0.03839], [0.0, 0.0, 0.0], [0.03839, 0.0, 0.0]], [[0.0, 0.0, 0.0], [0.0, 0.0, 0.03839], [0.0, 0.03839, 0.0]], [[6.89822, 0.0, 0.0], [0.0, 6.89822, 0.0], [0.0, 0.0, 27.4628]], ] def test_new(self): pt = PiezoTensor(self.full_tensor_array) self.assertArrayAlmostEqual(pt, self.full_tensor_array) bad_dim_array = np.zeros((3, 3)) self.assertRaises(ValueError, PiezoTensor, bad_dim_array) def test_from_voigt(self): bad_voigt = np.zeros((3, 7)) pt = PiezoTensor.from_voigt(self.voigt_matrix) self.assertArrayEqual(pt, self.full_tensor_array) self.assertRaises(ValueError, PiezoTensor.from_voigt, bad_voigt) self.assertArrayEqual(self.voigt_matrix, pt.voigt) def test_from_vasp_voigt(self): bad_voigt = np.zeros((3, 7)) pt = PiezoTensor.from_vasp_voigt(self.vasp_matrix) self.assertArrayEqual(pt, self.full_tensor_array) self.assertRaises(ValueError, PiezoTensor.from_voigt, bad_voigt) self.assertArrayEqual(self.voigt_matrix, pt.voigt) if __name__ == "__main__": unittest.main()
[ "pymatgen.analysis.piezo.PiezoTensor.from_vasp_voigt", "pymatgen.analysis.piezo.PiezoTensor", "numpy.array", "numpy.zeros", "pymatgen.analysis.piezo.PiezoTensor.from_voigt", "unittest.main" ]
[((2195, 2210), 'unittest.main', 'unittest.main', ([], {}), '()\n', (2208, 2210), False, 'import unittest\n'), ((554, 684), 'numpy.array', 'np.array', (['[[0.0, 0.0, 0.0, 0.0, 0.03839, 0.0], [0.0, 0.0, 0.0, 0.03839, 0.0, 0.0], [\n 6.89822, 6.89822, 27.4628, 0.0, 0.0, 0.0]]'], {}), '([[0.0, 0.0, 0.0, 0.0, 0.03839, 0.0], [0.0, 0.0, 0.0, 0.03839, 0.0,\n 0.0], [6.89822, 6.89822, 27.4628, 0.0, 0.0, 0.0]])\n', (562, 684), True, 'import numpy as np\n'), ((794, 929), 'numpy.array', 'np.array', (['[[0.0, 0.0, 0.0, 0.0, 0.0, 0.03839], [0.0, 0.0, 0.0, 0.0, 0.03839, 0.0, 0.0\n ], [6.89822, 6.89822, 27.4628, 0.0, 0.0, 0.0]]'], {}), '([[0.0, 0.0, 0.0, 0.0, 0.0, 0.03839], [0.0, 0.0, 0.0, 0.0, 0.03839,\n 0.0, 0.0], [6.89822, 6.89822, 27.4628, 0.0, 0.0, 0.0]])\n', (802, 929), True, 'import numpy as np\n'), ((1318, 1353), 'pymatgen.analysis.piezo.PiezoTensor', 'PiezoTensor', (['self.full_tensor_array'], {}), '(self.full_tensor_array)\n', (1329, 1353), False, 'from pymatgen.analysis.piezo import PiezoTensor\n'), ((1442, 1458), 'numpy.zeros', 'np.zeros', (['(3, 3)'], {}), '((3, 3))\n', (1450, 1458), True, 'import numpy as np\n'), ((1577, 1593), 'numpy.zeros', 'np.zeros', (['(3, 7)'], {}), '((3, 7))\n', (1585, 1593), True, 'import numpy as np\n'), ((1607, 1648), 'pymatgen.analysis.piezo.PiezoTensor.from_voigt', 'PiezoTensor.from_voigt', (['self.voigt_matrix'], {}), '(self.voigt_matrix)\n', (1629, 1648), False, 'from pymatgen.analysis.piezo import PiezoTensor\n'), ((1896, 1912), 'numpy.zeros', 'np.zeros', (['(3, 7)'], {}), '((3, 7))\n', (1904, 1912), True, 'import numpy as np\n'), ((1926, 1971), 'pymatgen.analysis.piezo.PiezoTensor.from_vasp_voigt', 'PiezoTensor.from_vasp_voigt', (['self.vasp_matrix'], {}), '(self.vasp_matrix)\n', (1953, 1971), False, 'from pymatgen.analysis.piezo import PiezoTensor\n')]
import argparse import json import numpy as np import pandas as pd import os from sklearn.linear_model import LogisticRegression from sklearn.model_selection import train_test_split from sklearn.metrics import classification_report,f1_score from keras.models import Sequential from keras.layers import Dense, Dropout from keras import backend as K from keras.utils.vis_utils import plot_model from sklearn.externals import joblib import time def f1(y_true, y_pred): def recall(y_true, y_pred): """Recall metric. Only computes a batch-wise average of recall. Computes the recall, a metric for multi-label classification of how many relevant items are selected. """ true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1))) possible_positives = K.sum(K.round(K.clip(y_true, 0, 1))) recall = true_positives / (possible_positives + K.epsilon()) return recall def precision(y_true, y_pred): """Precision metric. Only computes a batch-wise average of precision. Computes the precision, a metric for multi-label classification of how many selected items are relevant. """ true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1))) predicted_positives = K.sum(K.round(K.clip(y_pred, 0, 1))) precision = true_positives / (predicted_positives + K.epsilon()) return precision precision = precision(y_true, y_pred) recall = recall(y_true, y_pred) return 2*((precision*recall)/(precision+recall+K.epsilon())) def get_embeddings(sentences_list,layer_json): ''' :param sentences_list: the path o the sentences.txt :param layer_json: the path of the json file that contains the embeddings of the sentences :return: Dictionary with key each sentence of the sentences_list and as value the embedding ''' sentences = dict()#dict with key the index of each line of the sentences_list.txt and as value the sentence embeddings = dict()##dict with key the index of each sentence and as value the its embedding sentence_emb = dict()#key:sentence,value:its embedding with open(sentences_list,'r') as file: for index,line in enumerate(file): sentences[index] = line.strip() with open(layer_json, 'r',encoding='utf-8') as f: for line in f: embeddings[json.loads(line)['linex_index']] = np.asarray(json.loads(line)['features']) for key,value in sentences.items(): sentence_emb[value] = embeddings[key] return sentence_emb def train_classifier(sentences_list,layer_json,dataset_csv,filename): ''' :param sentences_list: the path o the sentences.txt :param layer_json: the path of the json file that contains the embeddings of the sentences :param dataset_csv: the path of the dataset :param filename: The path of the pickle file that the model will be stored :return: ''' dataset = pd.read_csv(dataset_csv) bert_dict = get_embeddings(sentences_list,layer_json) length = list() sentence_emb = list() previous_emb = list() next_list = list() section_list = list() label = list() errors = 0 for row in dataset.iterrows(): sentence = row[1][0].strip() previous = row[1][1].strip() nexts = row[1][2].strip() section = row[1][3].strip() if sentence in bert_dict: sentence_emb.append(bert_dict[sentence]) else: sentence_emb.append(np.zeros(768)) print(sentence) errors += 1 if previous in bert_dict: previous_emb.append(bert_dict[previous]) else: previous_emb.append(np.zeros(768)) if nexts in bert_dict: next_list.append(bert_dict[nexts]) else: next_list.append(np.zeros(768)) if section in bert_dict: section_list.append(bert_dict[section]) else: section_list.append(np.zeros(768)) length.append(row[1][4]) label.append(row[1][5]) sentence_emb = np.asarray(sentence_emb) print(sentence_emb.shape) next_emb = np.asarray(next_list) print(next_emb.shape) previous_emb = np.asarray(previous_emb) print(previous_emb.shape) section_emb = np.asarray(section_list) print(sentence_emb.shape) length = np.asarray(length) print(length.shape) label = np.asarray(label) print(errors) features = np.concatenate([sentence_emb, previous_emb, next_emb,section_emb], axis=1) features = np.column_stack([features, length]) # np.append(features,length,axis=1) print(features.shape) X_train, X_val, y_train, y_val = train_test_split(features, label, test_size=0.33, random_state=42) log = LogisticRegression(random_state=0, solver='newton-cg', max_iter=1000, C=0.1) log.fit(X_train, y_train) #save the model _ = joblib.dump(log, filename, compress=9) predictions = log.predict(X_val) print("###########################################") print("Results using embeddings from the",layer_json,"file") print(classification_report(y_val, predictions)) print("F1 score using Logistic Regression:",f1_score(y_val, predictions)) print("###########################################") #train a DNN f1_results = list() for i in range(3): model = Sequential() model.add(Dense(64, activation='relu', trainable=True)) model.add(Dense(128, activation='relu', trainable=True)) model.add(Dropout(0.30)) model.add(Dense(64, activation='relu', trainable=True)) model.add(Dropout(0.25)) model.add(Dense(64, activation='relu', trainable=True)) model.add(Dropout(0.35)) model.add(Dense(1, activation='sigmoid')) # compile network model.compile(loss='binary_crossentropy', optimizer='sgd', metrics=[f1]) # fit network model.fit(X_train, y_train, epochs=100, batch_size=64) loss, f_1 = model.evaluate(X_val, y_val, verbose=1) print('\nTest F1: %f' % (f_1 * 100)) f1_results.append(f_1) model = None print("###########################################") print("Results using embeddings from the", layer_json, "file") # evaluate print(np.mean(f1_results)) print("###########################################") def parameter_tuning_LR(sentences_list,layer_json,dataset_csv): ''' :param sentences_list: the path o the sentences.txt :param layer_json: the path of the json file that contains the embeddings of the sentences :param dataset_csv: the path of the dataset :return: ''' dataset = pd.read_csv(dataset_csv) bert_dict = get_embeddings(sentences_list,layer_json) length = list() sentence_emb = list() previous_emb = list() next_list = list() section_list = list() label = list() errors = 0 for row in dataset.iterrows(): sentence = row[1][0].strip() previous = row[1][1].strip() nexts = row[1][2].strip() section = row[1][3].strip() if sentence in bert_dict: sentence_emb.append(bert_dict[sentence]) else: sentence_emb.append(np.zeros(768)) print(sentence) errors += 1 if previous in bert_dict: previous_emb.append(bert_dict[previous]) else: previous_emb.append(np.zeros(768)) if nexts in bert_dict: next_list.append(bert_dict[nexts]) else: next_list.append(np.zeros(768)) if section in bert_dict: section_list.append(bert_dict[section]) else: section_list.append(np.zeros(768)) length.append(row[1][4]) label.append(row[1][5]) sentence_emb = np.asarray(sentence_emb) print(sentence_emb.shape) next_emb = np.asarray(next_list) print(next_emb.shape) previous_emb = np.asarray(previous_emb) print(previous_emb.shape) section_emb = np.asarray(section_list) print(sentence_emb.shape) length = np.asarray(length) print(length.shape) label = np.asarray(label) print(errors) features = np.concatenate([sentence_emb, previous_emb, next_emb,section_emb], axis=1) features = np.column_stack([features, length]) print(features.shape) X_train, X_val, y_train, y_val = train_test_split(features, label, test_size=0.33, random_state=42) C = [0.1,1,2,5,10] solver = ['newton-cg','saga','sag'] best_params = dict() best_score = 0.0 for c in C: for s in solver: start = time.time() log = LogisticRegression(random_state=0, solver=s, max_iter=1000, C=c) log.fit(X_train, y_train) predictions = log.predict(X_val) print("###########################################") print("LR with C =",c,'and solver = ',s) print("Results using embeddings from the", layer_json, "file") print(classification_report(y_val, predictions)) f1 = f1_score(y_val, predictions) if f1 > best_score: best_score = f1 best_params['c'] = c best_params['solver'] = s print("F1 score using Logistic Regression:",f1) print("###########################################") end = time.time() running_time = end - start print("Running time:"+str(running_time)) def visualize_DNN(file_to_save): ''' Save the DNN architecture to a png file. Better use the Visulize_DNN.ipynd :param file_to_save: the png file that the architecture of the DNN will be saved. :return: None ''' model = Sequential() model.add(Dense(64, activation='relu', trainable=True)) model.add(Dense(128, activation='relu', trainable=True)) model.add(Dropout(0.30)) model.add(Dense(64, activation='relu', trainable=True)) model.add(Dropout(0.25)) model.add(Dense(64, activation='relu', trainable=True)) model.add(Dropout(0.35)) model.add(Dense(1, activation='sigmoid')) plot_model(model, to_file=file_to_save, show_shapes=True) def save_model(sentences_list,layer_json,dataset_csv,pkl): dataset = pd.read_csv(dataset_csv) bert_dict = get_embeddings(sentences_list, layer_json) length = list() sentence_emb = list() previous_emb = list() next_list = list() section_list = list() label = list() errors = 0 for row in dataset.iterrows(): sentence = row[1][0].strip() previous = row[1][1].strip() nexts = row[1][2].strip() section = row[1][3].strip() if sentence in bert_dict: sentence_emb.append(bert_dict[sentence]) else: sentence_emb.append(np.zeros(768)) print(sentence) errors += 1 if previous in bert_dict: previous_emb.append(bert_dict[previous]) else: previous_emb.append(np.zeros(768)) if nexts in bert_dict: next_list.append(bert_dict[nexts]) else: next_list.append(np.zeros(768)) if section in bert_dict: section_list.append(bert_dict[section]) else: section_list.append(np.zeros(768)) length.append(row[1][4]) label.append(row[1][5]) sentence_emb = np.asarray(sentence_emb) print(sentence_emb.shape) next_emb = np.asarray(next_list) print(next_emb.shape) previous_emb = np.asarray(previous_emb) print(previous_emb.shape) section_emb = np.asarray(section_list) print(sentence_emb.shape) length = np.asarray(length) print(length.shape) label = np.asarray(label) print(errors) features = np.concatenate([sentence_emb, previous_emb, next_emb, section_emb], axis=1) features = np.column_stack([features, length]) print(features.shape) log = LogisticRegression(random_state=0, solver='saga', max_iter=1000, C=1) log.fit(features, label) _ = joblib.dump(log, pkl, compress=9) if __name__ == '__main__': #save_model('sentences_list.txt','Fudan_output_layer_-1.json','train_sentences1.csv','summarizer1.pkl') ap = argparse.ArgumentParser() ap.add_argument("-s", "--sentences", required=True, help="sentences list") ap.add_argument("-o", "--output", required=True, help="output") ap.add_argument("-ts", "--train set", required=True, help="path to train set") ap.add_argument("-sp", "--summarizer path", required=True, help="path to save summarizer") args = vars(ap.parse_args()) layer = train_classifier(args['sentences'], args['output'], args['train set'],args['summarizer path']) #layer_1 = train_classifier('sentences_list.txt', 'new_output_layer_-1.json', 'train_sentences1.csv','fine_tune_BERT_sentence_classification1.pkl') #layer_2 = train_classifier('sentences_list.txt','new_output_layer_-2.json','train_sentences1.csv','fine_tune_BERT_sentence_classification2.pkl') #layer_3 = train_classifier('sentences_list.txt','new_output_layer_-3.json','train_sentences1.csv','fine_tune_BERT_sentence_classification3.pkl') #layer_4 = train_classifier('sentences_list.txt','new_output_layer_-4.json','train_sentences1.csv','fine_tune_BERT_sentence_classification4.pkl') #tuning = parameter_tuning_LR('sentences_list.txt','new_output_layer_-1.json','train_sentences1.csv') #layer_1 = train_classifier('sentences_list.txt','output_layer_-1.json','train_sentences1.csv','fine_tune_BERT_sentence_classification.pkl') #layer_2 = train_classifier('sentences_list.txt','output_layer_-2.json','train_sentences1.csv','fine_tune_BERT_sentence_classification.pkl') #layer_3 = train_classifier('sentences_list.txt','output_layer_-3.json','train_sentences1.csv','fine_tune_BERT_sentence_classification.pkl') #layer_4 = train_classifier('sentences_list.txt','output_layer_-4.json','train_sentences1.csv','fine_tune_BERT_sentence_classification.pkl')
[ "pandas.read_csv", "sklearn.metrics.classification_report", "keras.utils.vis_utils.plot_model", "numpy.column_stack", "keras.layers.Dense", "numpy.mean", "argparse.ArgumentParser", "keras.backend.clip", "numpy.asarray", "numpy.concatenate", "keras.backend.epsilon", "json.loads", "sklearn.model_selection.train_test_split", "keras.models.Sequential", "sklearn.externals.joblib.dump", "time.time", "keras.layers.Dropout", "sklearn.metrics.f1_score", "sklearn.linear_model.LogisticRegression", "numpy.zeros" ]
[((2973, 2997), 'pandas.read_csv', 'pd.read_csv', (['dataset_csv'], {}), '(dataset_csv)\n', (2984, 2997), True, 'import pandas as pd\n'), ((4112, 4136), 'numpy.asarray', 'np.asarray', (['sentence_emb'], {}), '(sentence_emb)\n', (4122, 4136), True, 'import numpy as np\n'), ((4182, 4203), 'numpy.asarray', 'np.asarray', (['next_list'], {}), '(next_list)\n', (4192, 4203), True, 'import numpy as np\n'), ((4249, 4273), 'numpy.asarray', 'np.asarray', (['previous_emb'], {}), '(previous_emb)\n', (4259, 4273), True, 'import numpy as np\n'), ((4322, 4346), 'numpy.asarray', 'np.asarray', (['section_list'], {}), '(section_list)\n', (4332, 4346), True, 'import numpy as np\n'), ((4390, 4408), 'numpy.asarray', 'np.asarray', (['length'], {}), '(length)\n', (4400, 4408), True, 'import numpy as np\n'), ((4445, 4462), 'numpy.asarray', 'np.asarray', (['label'], {}), '(label)\n', (4455, 4462), True, 'import numpy as np\n'), ((4496, 4571), 'numpy.concatenate', 'np.concatenate', (['[sentence_emb, previous_emb, next_emb, section_emb]'], {'axis': '(1)'}), '([sentence_emb, previous_emb, next_emb, section_emb], axis=1)\n', (4510, 4571), True, 'import numpy as np\n'), ((4586, 4621), 'numpy.column_stack', 'np.column_stack', (['[features, length]'], {}), '([features, length])\n', (4601, 4621), True, 'import numpy as np\n'), ((4723, 4789), 'sklearn.model_selection.train_test_split', 'train_test_split', (['features', 'label'], {'test_size': '(0.33)', 'random_state': '(42)'}), '(features, label, test_size=0.33, random_state=42)\n', (4739, 4789), False, 'from sklearn.model_selection import train_test_split\n'), ((4801, 4877), 'sklearn.linear_model.LogisticRegression', 'LogisticRegression', ([], {'random_state': '(0)', 'solver': '"""newton-cg"""', 'max_iter': '(1000)', 'C': '(0.1)'}), "(random_state=0, solver='newton-cg', max_iter=1000, C=0.1)\n", (4819, 4877), False, 'from sklearn.linear_model import LogisticRegression\n'), ((4937, 4975), 'sklearn.externals.joblib.dump', 'joblib.dump', (['log', 'filename'], {'compress': '(9)'}), '(log, filename, compress=9)\n', (4948, 4975), False, 'from sklearn.externals import joblib\n'), ((6715, 6739), 'pandas.read_csv', 'pd.read_csv', (['dataset_csv'], {}), '(dataset_csv)\n', (6726, 6739), True, 'import pandas as pd\n'), ((7854, 7878), 'numpy.asarray', 'np.asarray', (['sentence_emb'], {}), '(sentence_emb)\n', (7864, 7878), True, 'import numpy as np\n'), ((7924, 7945), 'numpy.asarray', 'np.asarray', (['next_list'], {}), '(next_list)\n', (7934, 7945), True, 'import numpy as np\n'), ((7991, 8015), 'numpy.asarray', 'np.asarray', (['previous_emb'], {}), '(previous_emb)\n', (8001, 8015), True, 'import numpy as np\n'), ((8064, 8088), 'numpy.asarray', 'np.asarray', (['section_list'], {}), '(section_list)\n', (8074, 8088), True, 'import numpy as np\n'), ((8132, 8150), 'numpy.asarray', 'np.asarray', (['length'], {}), '(length)\n', (8142, 8150), True, 'import numpy as np\n'), ((8187, 8204), 'numpy.asarray', 'np.asarray', (['label'], {}), '(label)\n', (8197, 8204), True, 'import numpy as np\n'), ((8238, 8313), 'numpy.concatenate', 'np.concatenate', (['[sentence_emb, previous_emb, next_emb, section_emb]'], {'axis': '(1)'}), '([sentence_emb, previous_emb, next_emb, section_emb], axis=1)\n', (8252, 8313), True, 'import numpy as np\n'), ((8328, 8363), 'numpy.column_stack', 'np.column_stack', (['[features, length]'], {}), '([features, length])\n', (8343, 8363), True, 'import numpy as np\n'), ((8428, 8494), 'sklearn.model_selection.train_test_split', 'train_test_split', (['features', 'label'], {'test_size': '(0.33)', 'random_state': '(42)'}), '(features, label, test_size=0.33, random_state=42)\n', (8444, 8494), False, 'from sklearn.model_selection import train_test_split\n'), ((9783, 9795), 'keras.models.Sequential', 'Sequential', ([], {}), '()\n', (9793, 9795), False, 'from keras.models import Sequential\n'), ((10175, 10232), 'keras.utils.vis_utils.plot_model', 'plot_model', (['model'], {'to_file': 'file_to_save', 'show_shapes': '(True)'}), '(model, to_file=file_to_save, show_shapes=True)\n', (10185, 10232), False, 'from keras.utils.vis_utils import plot_model\n'), ((10309, 10333), 'pandas.read_csv', 'pd.read_csv', (['dataset_csv'], {}), '(dataset_csv)\n', (10320, 10333), True, 'import pandas as pd\n'), ((11448, 11472), 'numpy.asarray', 'np.asarray', (['sentence_emb'], {}), '(sentence_emb)\n', (11458, 11472), True, 'import numpy as np\n'), ((11518, 11539), 'numpy.asarray', 'np.asarray', (['next_list'], {}), '(next_list)\n', (11528, 11539), True, 'import numpy as np\n'), ((11585, 11609), 'numpy.asarray', 'np.asarray', (['previous_emb'], {}), '(previous_emb)\n', (11595, 11609), True, 'import numpy as np\n'), ((11658, 11682), 'numpy.asarray', 'np.asarray', (['section_list'], {}), '(section_list)\n', (11668, 11682), True, 'import numpy as np\n'), ((11726, 11744), 'numpy.asarray', 'np.asarray', (['length'], {}), '(length)\n', (11736, 11744), True, 'import numpy as np\n'), ((11781, 11798), 'numpy.asarray', 'np.asarray', (['label'], {}), '(label)\n', (11791, 11798), True, 'import numpy as np\n'), ((11832, 11907), 'numpy.concatenate', 'np.concatenate', (['[sentence_emb, previous_emb, next_emb, section_emb]'], {'axis': '(1)'}), '([sentence_emb, previous_emb, next_emb, section_emb], axis=1)\n', (11846, 11907), True, 'import numpy as np\n'), ((11923, 11958), 'numpy.column_stack', 'np.column_stack', (['[features, length]'], {}), '([features, length])\n', (11938, 11958), True, 'import numpy as np\n'), ((11996, 12065), 'sklearn.linear_model.LogisticRegression', 'LogisticRegression', ([], {'random_state': '(0)', 'solver': '"""saga"""', 'max_iter': '(1000)', 'C': '(1)'}), "(random_state=0, solver='saga', max_iter=1000, C=1)\n", (12014, 12065), False, 'from sklearn.linear_model import LogisticRegression\n'), ((12104, 12137), 'sklearn.externals.joblib.dump', 'joblib.dump', (['log', 'pkl'], {'compress': '(9)'}), '(log, pkl, compress=9)\n', (12115, 12137), False, 'from sklearn.externals import joblib\n'), ((12286, 12311), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (12309, 12311), False, 'import argparse\n'), ((5146, 5187), 'sklearn.metrics.classification_report', 'classification_report', (['y_val', 'predictions'], {}), '(y_val, predictions)\n', (5167, 5187), False, 'from sklearn.metrics import classification_report, f1_score\n'), ((5237, 5265), 'sklearn.metrics.f1_score', 'f1_score', (['y_val', 'predictions'], {}), '(y_val, predictions)\n', (5245, 5265), False, 'from sklearn.metrics import classification_report, f1_score\n'), ((5406, 5418), 'keras.models.Sequential', 'Sequential', ([], {}), '()\n', (5416, 5418), False, 'from keras.models import Sequential\n'), ((6327, 6346), 'numpy.mean', 'np.mean', (['f1_results'], {}), '(f1_results)\n', (6334, 6346), True, 'import numpy as np\n'), ((9810, 9854), 'keras.layers.Dense', 'Dense', (['(64)'], {'activation': '"""relu"""', 'trainable': '(True)'}), "(64, activation='relu', trainable=True)\n", (9815, 9854), False, 'from keras.layers import Dense, Dropout\n'), ((9870, 9915), 'keras.layers.Dense', 'Dense', (['(128)'], {'activation': '"""relu"""', 'trainable': '(True)'}), "(128, activation='relu', trainable=True)\n", (9875, 9915), False, 'from keras.layers import Dense, Dropout\n'), ((9931, 9943), 'keras.layers.Dropout', 'Dropout', (['(0.3)'], {}), '(0.3)\n', (9938, 9943), False, 'from keras.layers import Dense, Dropout\n'), ((9960, 10004), 'keras.layers.Dense', 'Dense', (['(64)'], {'activation': '"""relu"""', 'trainable': '(True)'}), "(64, activation='relu', trainable=True)\n", (9965, 10004), False, 'from keras.layers import Dense, Dropout\n'), ((10020, 10033), 'keras.layers.Dropout', 'Dropout', (['(0.25)'], {}), '(0.25)\n', (10027, 10033), False, 'from keras.layers import Dense, Dropout\n'), ((10049, 10093), 'keras.layers.Dense', 'Dense', (['(64)'], {'activation': '"""relu"""', 'trainable': '(True)'}), "(64, activation='relu', trainable=True)\n", (10054, 10093), False, 'from keras.layers import Dense, Dropout\n'), ((10109, 10122), 'keras.layers.Dropout', 'Dropout', (['(0.35)'], {}), '(0.35)\n', (10116, 10122), False, 'from keras.layers import Dense, Dropout\n'), ((10138, 10168), 'keras.layers.Dense', 'Dense', (['(1)'], {'activation': '"""sigmoid"""'}), "(1, activation='sigmoid')\n", (10143, 10168), False, 'from keras.layers import Dense, Dropout\n'), ((5437, 5481), 'keras.layers.Dense', 'Dense', (['(64)'], {'activation': '"""relu"""', 'trainable': '(True)'}), "(64, activation='relu', trainable=True)\n", (5442, 5481), False, 'from keras.layers import Dense, Dropout\n'), ((5501, 5546), 'keras.layers.Dense', 'Dense', (['(128)'], {'activation': '"""relu"""', 'trainable': '(True)'}), "(128, activation='relu', trainable=True)\n", (5506, 5546), False, 'from keras.layers import Dense, Dropout\n'), ((5566, 5578), 'keras.layers.Dropout', 'Dropout', (['(0.3)'], {}), '(0.3)\n', (5573, 5578), False, 'from keras.layers import Dense, Dropout\n'), ((5599, 5643), 'keras.layers.Dense', 'Dense', (['(64)'], {'activation': '"""relu"""', 'trainable': '(True)'}), "(64, activation='relu', trainable=True)\n", (5604, 5643), False, 'from keras.layers import Dense, Dropout\n'), ((5663, 5676), 'keras.layers.Dropout', 'Dropout', (['(0.25)'], {}), '(0.25)\n', (5670, 5676), False, 'from keras.layers import Dense, Dropout\n'), ((5696, 5740), 'keras.layers.Dense', 'Dense', (['(64)'], {'activation': '"""relu"""', 'trainable': '(True)'}), "(64, activation='relu', trainable=True)\n", (5701, 5740), False, 'from keras.layers import Dense, Dropout\n'), ((5760, 5773), 'keras.layers.Dropout', 'Dropout', (['(0.35)'], {}), '(0.35)\n', (5767, 5773), False, 'from keras.layers import Dense, Dropout\n'), ((5793, 5823), 'keras.layers.Dense', 'Dense', (['(1)'], {'activation': '"""sigmoid"""'}), "(1, activation='sigmoid')\n", (5798, 5823), False, 'from keras.layers import Dense, Dropout\n'), ((8666, 8677), 'time.time', 'time.time', ([], {}), '()\n', (8675, 8677), False, 'import time\n'), ((8696, 8760), 'sklearn.linear_model.LogisticRegression', 'LogisticRegression', ([], {'random_state': '(0)', 'solver': 's', 'max_iter': '(1000)', 'C': 'c'}), '(random_state=0, solver=s, max_iter=1000, C=c)\n', (8714, 8760), False, 'from sklearn.linear_model import LogisticRegression\n'), ((9116, 9144), 'sklearn.metrics.f1_score', 'f1_score', (['y_val', 'predictions'], {}), '(y_val, predictions)\n', (9124, 9144), False, 'from sklearn.metrics import classification_report, f1_score\n'), ((9431, 9442), 'time.time', 'time.time', ([], {}), '()\n', (9440, 9442), False, 'import time\n'), ((751, 780), 'keras.backend.clip', 'K.clip', (['(y_true * y_pred)', '(0)', '(1)'], {}), '(y_true * y_pred, 0, 1)\n', (757, 780), True, 'from keras import backend as K\n'), ((826, 846), 'keras.backend.clip', 'K.clip', (['y_true', '(0)', '(1)'], {}), '(y_true, 0, 1)\n', (832, 846), True, 'from keras import backend as K\n'), ((905, 916), 'keras.backend.epsilon', 'K.epsilon', ([], {}), '()\n', (914, 916), True, 'from keras import backend as K\n'), ((1236, 1265), 'keras.backend.clip', 'K.clip', (['(y_true * y_pred)', '(0)', '(1)'], {}), '(y_true * y_pred, 0, 1)\n', (1242, 1265), True, 'from keras import backend as K\n'), ((1312, 1332), 'keras.backend.clip', 'K.clip', (['y_pred', '(0)', '(1)'], {}), '(y_pred, 0, 1)\n', (1318, 1332), True, 'from keras import backend as K\n'), ((1395, 1406), 'keras.backend.epsilon', 'K.epsilon', ([], {}), '()\n', (1404, 1406), True, 'from keras import backend as K\n'), ((1562, 1573), 'keras.backend.epsilon', 'K.epsilon', ([], {}), '()\n', (1571, 1573), True, 'from keras import backend as K\n'), ((3526, 3539), 'numpy.zeros', 'np.zeros', (['(768)'], {}), '(768)\n', (3534, 3539), True, 'import numpy as np\n'), ((3727, 3740), 'numpy.zeros', 'np.zeros', (['(768)'], {}), '(768)\n', (3735, 3740), True, 'import numpy as np\n'), ((3864, 3877), 'numpy.zeros', 'np.zeros', (['(768)'], {}), '(768)\n', (3872, 3877), True, 'import numpy as np\n'), ((4011, 4024), 'numpy.zeros', 'np.zeros', (['(768)'], {}), '(768)\n', (4019, 4024), True, 'import numpy as np\n'), ((7268, 7281), 'numpy.zeros', 'np.zeros', (['(768)'], {}), '(768)\n', (7276, 7281), True, 'import numpy as np\n'), ((7469, 7482), 'numpy.zeros', 'np.zeros', (['(768)'], {}), '(768)\n', (7477, 7482), True, 'import numpy as np\n'), ((7606, 7619), 'numpy.zeros', 'np.zeros', (['(768)'], {}), '(768)\n', (7614, 7619), True, 'import numpy as np\n'), ((7753, 7766), 'numpy.zeros', 'np.zeros', (['(768)'], {}), '(768)\n', (7761, 7766), True, 'import numpy as np\n'), ((9056, 9097), 'sklearn.metrics.classification_report', 'classification_report', (['y_val', 'predictions'], {}), '(y_val, predictions)\n', (9077, 9097), False, 'from sklearn.metrics import classification_report, f1_score\n'), ((10862, 10875), 'numpy.zeros', 'np.zeros', (['(768)'], {}), '(768)\n', (10870, 10875), True, 'import numpy as np\n'), ((11063, 11076), 'numpy.zeros', 'np.zeros', (['(768)'], {}), '(768)\n', (11071, 11076), True, 'import numpy as np\n'), ((11200, 11213), 'numpy.zeros', 'np.zeros', (['(768)'], {}), '(768)\n', (11208, 11213), True, 'import numpy as np\n'), ((11347, 11360), 'numpy.zeros', 'np.zeros', (['(768)'], {}), '(768)\n', (11355, 11360), True, 'import numpy as np\n'), ((2388, 2404), 'json.loads', 'json.loads', (['line'], {}), '(line)\n', (2398, 2404), False, 'import json\n'), ((2434, 2450), 'json.loads', 'json.loads', (['line'], {}), '(line)\n', (2444, 2450), False, 'import json\n')]
''' ------------------------------------------------------------------------------------------------- This code accompanies the paper titled "Human injury-based safety decision of automated vehicles" Author: <NAME>, <NAME>, <NAME>, <NAME> Corresponding author: <NAME> (<EMAIL>) ------------------------------------------------------------------------------------------------- ''' import torch import numpy as np from torch import nn from torch.nn.utils import weight_norm __author__ = "<NAME>" def Collision_cond(veh_striking_list, V1_v, V2_v, delta_angle, veh_param): ''' Estimate the collision condition. ''' (veh_l, veh_w, veh_cgf, veh_cgs, veh_k, veh_m) = veh_param delta_angle_2 = np.arccos(np.abs(np.cos(delta_angle))) if -1e-6 < delta_angle_2 < 1e-6: delta_angle_2 = 1e-6 delta_v1_list = [] delta_v2_list = [] # Estimate the collision condition (delat-v) according to the principal impact direction. for veh_striking in veh_striking_list: if veh_striking[0] == 1: veh_ca = np.arctan(veh_cgf[0] / veh_cgs[0]) veh_a2 = np.abs(veh_cgs[1] - veh_striking[3]) veh_RDS = np.abs(V1_v * np.cos(delta_angle) - V2_v) veh_a1 = np.abs(np.sqrt(veh_cgf[0] ** 2 + veh_cgs[0] ** 2) * np.cos(veh_ca + delta_angle_2)) if (veh_striking[1]+1) in [16, 1, 2, 3, 17, 20, 21] and (veh_striking[2]+1) in [16, 1, 2, 3, 17, 20, 21]: veh_e = 2 / veh_RDS else: veh_e = 0.5 / veh_RDS elif veh_striking[0] == 2: veh_ca = np.arctan(veh_cgf[0] / veh_cgs[0]) veh_a2 = np.abs(veh_cgf[1] - veh_striking[3]) veh_a1 = np.abs(np.sqrt(veh_cgf[0] ** 2 + veh_cgs[0] ** 2) * np.cos(delta_angle_2 - veh_ca + np.pi / 2)) veh_RDS = V1_v * np.sin(delta_angle_2) veh_e = 1.5 / veh_RDS elif veh_striking[0] == 3: veh_ca = np.arctan(veh_cgf[1] / veh_cgs[1]) veh_a1 = np.abs(veh_cgs[0] - veh_striking[3]) veh_RDS = np.abs(V2_v * np.cos(delta_angle) - V1_v) veh_a2 = np.abs(np.sqrt(veh_cgf[1] ** 2 + veh_cgs[1] ** 2) * np.cos(veh_ca + delta_angle_2)) if (veh_striking[1]+1) in [16, 1, 2, 3, 17, 20, 21] and (veh_striking[2]+1) in [16, 1, 2, 3, 17, 20, 21]: veh_e = 2 / veh_RDS else: veh_e = 0.5 / veh_RDS elif veh_striking[0] == 4: veh_ca = np.arctan(veh_cgf[1] / veh_cgs[1]) veh_a1 = np.abs(veh_cgf[0] - veh_striking[3]) veh_a2 = np.abs(np.sqrt(veh_cgf[1] ** 2 + veh_cgs[1] ** 2) * np.cos(delta_angle_2 - veh_ca + np.pi / 2)) veh_RDS = V2_v * np.sin(delta_angle_2) veh_e = 1.5 / veh_RDS # Obtain delta-v based on the plane 2-DOF rigid-body collision model with momentum conservation. veh_y1 = veh_k[0] ** 2 / (veh_a1 ** 2 + veh_k[0] ** 2) veh_y2 = veh_k[1] ** 2 / (veh_a2 ** 2 + veh_k[1] ** 2) delta_v1 = (1 + veh_e) * veh_m[1] * veh_y1 * veh_y2 * veh_RDS / (veh_m[0] * veh_y1 + veh_m[1] * veh_y2) delta_v2 = (1 + veh_e) * veh_m[0] * veh_y1 * veh_y2 * veh_RDS / (veh_m[0] * veh_y1 + veh_m[1] * veh_y2) delta_v1_list.append(delta_v1) delta_v2_list.append(delta_v2) delta_v1_ = max(delta_v1_list) delta_v2_ = max(delta_v2_list) index = delta_v1_list.index(max(delta_v1_list)) return delta_v1_, delta_v2_, index
[ "numpy.abs", "numpy.sqrt", "numpy.cos", "numpy.sin", "numpy.arctan" ]
[((723, 742), 'numpy.cos', 'np.cos', (['delta_angle'], {}), '(delta_angle)\n', (729, 742), True, 'import numpy as np\n'), ((1050, 1084), 'numpy.arctan', 'np.arctan', (['(veh_cgf[0] / veh_cgs[0])'], {}), '(veh_cgf[0] / veh_cgs[0])\n', (1059, 1084), True, 'import numpy as np\n'), ((1106, 1142), 'numpy.abs', 'np.abs', (['(veh_cgs[1] - veh_striking[3])'], {}), '(veh_cgs[1] - veh_striking[3])\n', (1112, 1142), True, 'import numpy as np\n'), ((1579, 1613), 'numpy.arctan', 'np.arctan', (['(veh_cgf[0] / veh_cgs[0])'], {}), '(veh_cgf[0] / veh_cgs[0])\n', (1588, 1613), True, 'import numpy as np\n'), ((1635, 1671), 'numpy.abs', 'np.abs', (['(veh_cgf[1] - veh_striking[3])'], {}), '(veh_cgf[1] - veh_striking[3])\n', (1641, 1671), True, 'import numpy as np\n'), ((1235, 1277), 'numpy.sqrt', 'np.sqrt', (['(veh_cgf[0] ** 2 + veh_cgs[0] ** 2)'], {}), '(veh_cgf[0] ** 2 + veh_cgs[0] ** 2)\n', (1242, 1277), True, 'import numpy as np\n'), ((1280, 1310), 'numpy.cos', 'np.cos', (['(veh_ca + delta_angle_2)'], {}), '(veh_ca + delta_angle_2)\n', (1286, 1310), True, 'import numpy as np\n'), ((1818, 1839), 'numpy.sin', 'np.sin', (['delta_angle_2'], {}), '(delta_angle_2)\n', (1824, 1839), True, 'import numpy as np\n'), ((1931, 1965), 'numpy.arctan', 'np.arctan', (['(veh_cgf[1] / veh_cgs[1])'], {}), '(veh_cgf[1] / veh_cgs[1])\n', (1940, 1965), True, 'import numpy as np\n'), ((1987, 2023), 'numpy.abs', 'np.abs', (['(veh_cgs[0] - veh_striking[3])'], {}), '(veh_cgs[0] - veh_striking[3])\n', (1993, 2023), True, 'import numpy as np\n'), ((1179, 1198), 'numpy.cos', 'np.cos', (['delta_angle'], {}), '(delta_angle)\n', (1185, 1198), True, 'import numpy as np\n'), ((1700, 1742), 'numpy.sqrt', 'np.sqrt', (['(veh_cgf[0] ** 2 + veh_cgs[0] ** 2)'], {}), '(veh_cgf[0] ** 2 + veh_cgs[0] ** 2)\n', (1707, 1742), True, 'import numpy as np\n'), ((1745, 1787), 'numpy.cos', 'np.cos', (['(delta_angle_2 - veh_ca + np.pi / 2)'], {}), '(delta_angle_2 - veh_ca + np.pi / 2)\n', (1751, 1787), True, 'import numpy as np\n'), ((2460, 2494), 'numpy.arctan', 'np.arctan', (['(veh_cgf[1] / veh_cgs[1])'], {}), '(veh_cgf[1] / veh_cgs[1])\n', (2469, 2494), True, 'import numpy as np\n'), ((2516, 2552), 'numpy.abs', 'np.abs', (['(veh_cgf[0] - veh_striking[3])'], {}), '(veh_cgf[0] - veh_striking[3])\n', (2522, 2552), True, 'import numpy as np\n'), ((2116, 2158), 'numpy.sqrt', 'np.sqrt', (['(veh_cgf[1] ** 2 + veh_cgs[1] ** 2)'], {}), '(veh_cgf[1] ** 2 + veh_cgs[1] ** 2)\n', (2123, 2158), True, 'import numpy as np\n'), ((2161, 2191), 'numpy.cos', 'np.cos', (['(veh_ca + delta_angle_2)'], {}), '(veh_ca + delta_angle_2)\n', (2167, 2191), True, 'import numpy as np\n'), ((2699, 2720), 'numpy.sin', 'np.sin', (['delta_angle_2'], {}), '(delta_angle_2)\n', (2705, 2720), True, 'import numpy as np\n'), ((2060, 2079), 'numpy.cos', 'np.cos', (['delta_angle'], {}), '(delta_angle)\n', (2066, 2079), True, 'import numpy as np\n'), ((2581, 2623), 'numpy.sqrt', 'np.sqrt', (['(veh_cgf[1] ** 2 + veh_cgs[1] ** 2)'], {}), '(veh_cgf[1] ** 2 + veh_cgs[1] ** 2)\n', (2588, 2623), True, 'import numpy as np\n'), ((2626, 2668), 'numpy.cos', 'np.cos', (['(delta_angle_2 - veh_ca + np.pi / 2)'], {}), '(delta_angle_2 - veh_ca + np.pi / 2)\n', (2632, 2668), True, 'import numpy as np\n')]
"\"\"\"Test the search module\"\"\"\n\nfrom collections.abc import Iterable, Sized\nfrom io import S(...TRUNCATED)
["sklearn.utils._testing.assert_warns_message","sklearn.model_selection.GridSearchCV","sklearn.model(...TRUNCATED)
"[((4079, 4125), 'numpy.array', 'np.array', (['[[-1, -1], [-2, -1], [1, 1], [2, 1]]'], {}), '([[-1, (...TRUNCATED)
"# -*- encoding:utf-8 -*-\n# @Time : 2021/1/3 15:15\n# @Author : gfjiang\nimport os.path as osp\(...TRUNCATED)
["math.sqrt","cvtools.imwrite","mmdet.ops.nms","matplotlib.pyplot.imshow","os.path.exists","cvtools.(...TRUNCATED)
"[((643, 671), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(32, 32)'}), '(figsize=(3(...TRUNCATED)
End of preview. Expand in Data Studio
README.md exists but content is empty.
Downloads last month
10