code
stringlengths
31
1.05M
apis
list
extract_api
stringlengths
97
1.91M
# This code is part of Qiskit. # # (C) Copyright IBM 2018, 2020. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """ iris dataset """ import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler, MinMaxScaler from sklearn.decomposition import PCA from qiskit.aqua import MissingOptionalLibraryError def iris(training_size, test_size, n, plot_data=False): """ returns iris dataset """ class_labels = [r'A', r'B', r'C'] data, target = datasets.load_iris(return_X_y=True) sample_train, sample_test, label_train, label_test = \ train_test_split(data, target, test_size=1, random_state=42) # Now we standardize for gaussian around 0 with unit variance std_scale = StandardScaler().fit(sample_train) sample_train = std_scale.transform(sample_train) sample_test = std_scale.transform(sample_test) # Now reduce number of features to number of qubits pca = PCA(n_components=n).fit(sample_train) sample_train = pca.transform(sample_train) sample_test = pca.transform(sample_test) # Scale to the range (-1,+1) samples = np.append(sample_train, sample_test, axis=0) minmax_scale = MinMaxScaler((-1, 1)).fit(samples) sample_train = minmax_scale.transform(sample_train) sample_test = minmax_scale.transform(sample_test) # Pick training size number of samples from each distro training_input = {key: (sample_train[label_train == k, :])[:training_size] for k, key in enumerate(class_labels)} test_input = {key: (sample_test[label_test == k, :])[:test_size] for k, key in enumerate(class_labels)} if plot_data: try: import matplotlib.pyplot as plt except ImportError as ex: raise MissingOptionalLibraryError( libname='Matplotlib', name='iris', pip_install='pip install matplotlib') from ex for k in range(0, 3): plt.scatter(sample_train[label_train == k, 0][:training_size], sample_train[label_train == k, 1][:training_size]) plt.title("Iris dataset") plt.show() return sample_train, training_input, test_input, class_labels
[ "sklearn.datasets.load_iris", "sklearn.model_selection.train_test_split", "sklearn.decomposition.PCA", "numpy.append", "sklearn.preprocessing.StandardScaler", "matplotlib.pyplot.scatter", "qiskit.aqua.MissingOptionalLibraryError", "matplotlib.pyplot.title", "sklearn.preprocessing.MinMaxScaler", "matplotlib.pyplot.show" ]
[((908, 943), 'sklearn.datasets.load_iris', 'datasets.load_iris', ([], {'return_X_y': '(True)'}), '(return_X_y=True)\n', (926, 943), False, 'from sklearn import datasets\n'), ((1011, 1071), 'sklearn.model_selection.train_test_split', 'train_test_split', (['data', 'target'], {'test_size': '(1)', 'random_state': '(42)'}), '(data, target, test_size=1, random_state=42)\n', (1027, 1071), False, 'from sklearn.model_selection import train_test_split\n'), ((1539, 1583), 'numpy.append', 'np.append', (['sample_train', 'sample_test'], {'axis': '(0)'}), '(sample_train, sample_test, axis=0)\n', (1548, 1583), True, 'import numpy as np\n'), ((2550, 2575), 'matplotlib.pyplot.title', 'plt.title', (['"""Iris dataset"""'], {}), "('Iris dataset')\n", (2559, 2575), True, 'import matplotlib.pyplot as plt\n'), ((2584, 2594), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (2592, 2594), True, 'import matplotlib.pyplot as plt\n'), ((1155, 1171), 'sklearn.preprocessing.StandardScaler', 'StandardScaler', ([], {}), '()\n', (1169, 1171), False, 'from sklearn.preprocessing import StandardScaler, MinMaxScaler\n'), ((1361, 1380), 'sklearn.decomposition.PCA', 'PCA', ([], {'n_components': 'n'}), '(n_components=n)\n', (1364, 1380), False, 'from sklearn.decomposition import PCA\n'), ((1603, 1624), 'sklearn.preprocessing.MinMaxScaler', 'MinMaxScaler', (['(-1, 1)'], {}), '((-1, 1))\n', (1615, 1624), False, 'from sklearn.preprocessing import StandardScaler, MinMaxScaler\n'), ((2403, 2521), 'matplotlib.pyplot.scatter', 'plt.scatter', (['sample_train[label_train == k, 0][:training_size]', 'sample_train[label_train == k, 1][:training_size]'], {}), '(sample_train[label_train == k, 0][:training_size], sample_train\n [label_train == k, 1][:training_size])\n', (2414, 2521), True, 'import matplotlib.pyplot as plt\n'), ((2203, 2308), 'qiskit.aqua.MissingOptionalLibraryError', 'MissingOptionalLibraryError', ([], {'libname': '"""Matplotlib"""', 'name': '"""iris"""', 'pip_install': '"""pip install matplotlib"""'}), "(libname='Matplotlib', name='iris', pip_install=\n 'pip install matplotlib')\n", (2230, 2308), False, 'from qiskit.aqua import MissingOptionalLibraryError\n')]
import os import sys import random import datetime import gym from gym import spaces import numpy as np from env.IDM import IDM from env.Road import Road from env.Vehicle import Vehicle import math # add sumo/tools into python environment if 'SUMO_HOME' in os.environ: tools = os.path.join(os.environ['SUMO_HOME'], 'tools') sys.path.append(tools) print('success') else: sys.exit("please declare environment variable 'SUMO_HOME'") import traci ###################################################################### # simulation environments class LaneChangeEnv(gym.Env): def __init__(self, id=None, traffic=1, gui=False, seed=None): # todo check traffic flow density if traffic == 0: # average 9 vehicles self.cfg = 'C:/Users/<NAME>/Desktop/map/ramp3/mapFree.sumo.cfg' elif traffic == 2: # average 19 vehicles self.cfg = 'C:/Users/<NAME>/Desktop/map/ramp3/mapDense.sumo.cfg' else: # average 14 vehicles self.cfg = 'C:/Users/<NAME>/Desktop/map/ramp3/map.sumo.cfg' # arguments must be string, if float/int, must be converted to str(float/int), instead of '3.0' self.sumoBinary = "/usr/local/Cellar/sumo/1.2.0/bin/sumo" self.sumoCmd = ['-c', self.cfg, # '--lanechange.duration', str(3), # using 'Simple Continuous lane-change model' '--lateral-resolution', str(0.8), # using 'Sublane-Model' '--step-length', str(0.1), '--default.action-step-length', str(0.1)] # randomness if seed is None: self.sumoCmd += ['--random'] else: self.sumoCmd += ['--seed', str(seed)] # gui if gui is True: self.sumoBinary += '-gui' self.sumoCmd = [self.sumoBinary] + self.sumoCmd + ['--quit-on-end', str(True), '--start', str(True)] else: self.sumoCmd = [self.sumoBinary] + self.sumoCmd traci.start(self.sumoCmd) self.rd = Road() self.timestep = 0 self.dt = traci.simulation.getDeltaT() self.randomseed = None self.sumoseed = None self.veh_dict = {} self.vehID_tuple_all = () self.egoID = id self.ego = None # self.tgtLane = tgtlane self.is_success = False self.collision_num = 0 self.lateral_action = 2 # self.observation = [[0, 0, 0], # ego lane position and speed # [0, 0, 0], # leader # [0, 0, 0], # target lane leader # [0, 0, 0]] # target lane follower self.observation = np.empty(20) self.reward = None # (float) : amount of reward returned after previous action self.done = True # (bool): whether the episode has ended, in which case further step() calls will return undefined results self.info = { 'resetFlag': 0} # (dict): contains auxiliary diagnostic information (helpful for debugging, and sometimes learning) self.action_space = spaces.Discrete(6) self.observation_space = spaces.Box(low=-np.inf, high=np.inf, shape=(20,)) def update_veh_dict(self, veh_id_tuple): for veh_id in veh_id_tuple: if veh_id not in self.veh_dict.keys(): self.veh_dict[veh_id] = Vehicle(veh_id, self.rd) for veh_id in list(self.veh_dict.keys()): if veh_id not in veh_id_tuple: self.veh_dict.pop(veh_id) for veh_id in list(self.veh_dict.keys()): self.veh_dict[veh_id].update_info(self.rd, self.veh_dict) def _updateObservationSingle(self, name, veh): """ :param name: 0:ego; 1:leader; 2:target leader; 3:target follower :param id: vehicle id corresponding to name :return: """ if veh is not None: self.observation[name * 4 + 0] = veh.lanePos self.observation[name * 4 + 1] = veh.speed self.observation[name * 4 + 2] = veh.pos_lat self.observation[name * 4 + 3] = veh.acce else: self.observation[name * 4 + 0] = self.observation[0] + 300. self.observation[name * 4 + 1] = self.observation[1] self.observation[name * 4 + 2] = 4.8 self.observation[name * 4 + 3] = 0 # todo check if rational def updateObservation(self): self.observation[0] = self.ego.lanePos self.observation[1] = self.ego.speed self.observation[2] = self.ego.pos_lat self.observation[3] = self.ego.acce self._updateObservationSingle(1, self.ego.orig_leader) self._updateObservationSingle(2, self.ego.orig_follower) self._updateObservationSingle(3, self.ego.trgt_leader) self._updateObservationSingle(4, self.ego.trgt_follower) # self.observation = np.array(self.observation).flatten() # print(self.observation.shape) def updateReward(self): return -self.ego.dis2tgtLane def updateReward2(self): wc1 = 1 wc2 = 1 wt = 1 ws = 1 we = 1 # reward related to comfort r_comf = wc1 * self.ego.acce ** 2 + wc2 * self.ego.delta_acce ** 2 # reward related to efficiency r_time = - wt * self.timestep r_speed = ws * (self.ego.speed - self.ego_speedLimit) r_effi = we * self.ego.dis2tgtLane / self.ego.dis2entrance r_effi_all = r_time + r_speed + r_effi # reward related to safety w_lateral = 1 w_longi = 1 if self.ego.leaderID is not None: # compute longitudinal time gap delta_V = self.veh_dict[self.ego.leaderID].speed - self.ego.speed delta_A = self.veh_dict[self.ego.leaderID].acce - self.ego.acce if delta_A == 0: TTC = - abs(self.ego.leaderDis)/delta_V else: TTC = -delta_V - math.sqrt(delta_V**2 + 2*delta_A * self.ego.leaderDis) TTC = TTC/delta_A if self.lateral_action != 1 and 0 < TTC < 2: r_long_c = - math.exp(-2*TTC+5) else: r_long_c = 0 if self.lateral_action == 0: #abort lane change alpha = abs(self.ego.pos_lat - self.veh_dict[self.ego.leaderID].pos_lat) / 3.2 assert 0 <= alpha <= 1.1 r_lat_c = -math.exp(-4*alpha+5) else: r_lat_c = 0 if self.ego.targetLeaderID is not None: # compute longitudinal time gap delta_V2 = self.veh_dict[self.ego.targetLeaderID].speed - self.ego.speed delta_A2 = self.veh_dict[self.ego.targetLeaderID].acce - self.ego.acce delta_D2 = self.veh_dict[self.ego.targetLeaderID].lanePos - self.ego.lanePos if delta_A2 == 0: TTC2 = - abs(delta_D2) / delta_V2 else: TTC2 = -delta_V2 - math.sqrt(delta_V2 ** 2 + 2 * delta_A2 * delta_D2) TTC2 = TTC2 / delta_A2 if self.lateral_action == 1 and 0 < TTC2 < 2: r_long_t = - math.exp(-2 * TTC2 + 5) else: r_long_t = 0 if self.lateral_action == 1: # lane change alpha = abs(self.ego.pos_lat - self.veh_dict[self.ego.targetLeaderID].pos_lat) / 3.2 assert 0 <= alpha <= 1.1 r_lat_t = -math.exp(-4*alpha+5) else: r_lat_t = 0 r_safe = w_lateral * (r_lat_c + r_lat_t) + w_longi * (r_long_c+ r_long_t) # # if self.ego.leaderID is not None: # # ('lateralPos2leader', abs(self.ego.pos_lat - self.veh_dict[self.ego.leaderID].pos_lat)) # alpha = abs(self.ego.pos_lat - self.veh_dict[self.ego.leaderID].pos_lat) / 3.2 # assert 0 <= alpha <= 1.1 # r_safe_leader = w_lateral * alpha + w_longi * (1 - alpha) * abs(self.ego.leaderDis) # else: # r_safe_leader = 0 # if self.ego.targetLeaderID is not None: # # print('lateralPos2tgtleader', abs(self.ego.pos_lat - self.veh_dict[self.ego.targetLeaderID].pos_lat)) # alpha = abs(self.ego.pos_lat - self.veh_dict[self.ego.targetLeaderID].pos_lat) / 3.2 # # print('alpha', alpha) # assert 0 <= alpha <= 1.1 # # r_safe_tgtleader = w_lateral * alpha + w_longi * (1 - alpha) * abs( # self.ego.lanePos - self.veh_dict[self.ego.targetLeaderID].lanePos) # else: # r_safe_tgtleader = 0 # # # r_safe = r_safe_leader + r_safe_tgtleader # total reward r_total = r_comf + r_effi_all + r_safe return r_total def is_done(self): # lane change successfully executed, episode ends, reset env # todo modify if self.is_success: self.done = True # print('reset on: successfully lane change, dis2targetlane:', # self.ego.dis2tgtLane) # too close to ramp entrance if self.ego.dis2entrance < 10.0: self.done = True # print('reset on: too close to ramp entrance, dis2targetlane:', # self.ego.dis2tgtLane) # ego vehicle out of env if self.egoID not in self.vehID_tuple_all: self.done = True # print('reset on: self.ego not in env:', self.egoID not in self.vehID_tuple_all) # collision occurs self.collision_num = traci.simulation.getCollidingVehiclesNumber() if self.collision_num > 0: self.done = True # print('reset on: self.collision_num:', self.collision_num) def preStep(self): traci.simulationStep() self.vehID_tuple_all = traci.edge.getLastStepVehicleIDs(self.rd.entranceEdgeID) self.update_veh_dict(self.vehID_tuple_all) def step(self, action=2): """Run one timestep of the environment's dynamics. When end of episode is reached, call `reset()` outside env!! to reset this environment's state. Accepts an action and returns a tuple (observation, reward, done, info). Args: action (object): longitudinal0: action[0] = 1: accelerate action[0] = -1: decelerate action[0] = 0: use SUMO default action[0] = others: acce = 0.0 longitudinal1: action[0] = 0: follow original lane leader action[0] = 1: follow closer leader longitudinal2: action[0] = 0: follow original lane leader action[0] = 1: follow target lane leader **important**: orginal/target lane leader will not change despite the lateral position of the ego may change lateral: action[1] = 1: lane change action[1] = 0: abort lane change, change back to original lane action[1] = 2: keep in current lateral position Returns: described in __init__ """ action_longi = action // 3 action_lateral = action % 3 self.lateral_action = action_lateral # action_longi = action[0] # action_lateral = action[1] assert self.done is False, 'self.done is not False' assert action is not None, 'action is None' assert self.egoID in self.vehID_tuple_all, 'vehicle not in env' self.timestep += 1 # lateral control------------------------- # episode in progress; 0:change back to original line; 1:lane change to target lane; 2:keep current # lane change to target lane if not self.is_success: if action_lateral == 1: # and abs(self.ego.pos_lat - (0.5+self.ego.targetLane)*self.rd.laneWidth) > 0.01: self.is_success = self.ego.changeLane(True, self.ego.trgt_laneIndex, self.rd) # print('posLat', self.ego.pos_lat, 'lane', self.ego.curr_laneIndex, 'rdWdith', self.rd.laneWidth) # print('right', -(self.ego.pos_lat - 0.5*self.rd.laneWidth)) # abort lane change, change back to ego's original lane if action_lateral == 0: # and abs(self.ego.pos_lat - (0.5+self.ego.origLane)*self.rd.laneWidth) > 0.01: self.is_success = self.ego.changeLane(True, self.ego.orig_laneIndex, self.rd) # print('left', 1.5 * self.rd.laneWidth - self.ego.pos_lat) # keep current lateral position if action_lateral == 2: self.is_success = self.ego.changeLane(True, -1, self.rd) # longitudinal control2--------------------- acceNext = self.ego.updateLongitudinalSpeedIDM(action_longi) # print(acceNext) vNext = self.ego.speed + acceNext * 0.1 traci.vehicle.setSpeed(self.egoID, vNext) # update info------------------------------ traci.simulationStep() self.vehID_tuple_all = traci.edge.getLastStepVehicleIDs(self.rd.entranceEdgeID) self.update_veh_dict(self.vehID_tuple_all) # check if episode ends self.is_done() if self.done is True: self.info['resetFlag'] = True return self.observation, 0.0, self.done, self.info else: self.updateObservation() self.reward = self.updateReward() return self.observation, self.reward, self.done, self.info def seed(self, seed=None): if seed is None: self.randomseed = datetime.datetime.now().microsecond else: self.randomseed = seed random.seed(self.randomseed) def reset(self, egoid, tlane=0, tfc=1, is_gui=True, sumoseed=None, randomseed=None): """ reset env :param id: ego vehicle id :param tfc: int. 0:light; 1:medium; 2:dense :return: initial observation """ self.seed(randomseed) if sumoseed is None: self.sumoseed = self.randomseed traci.close() self.__init__(id=egoid, traffic=tfc, gui=is_gui, seed=self.sumoseed) # continue step until ego appears in env if self.egoID is not None: while self.egoID not in self.veh_dict.keys(): # must ensure safety in preStpe self.preStep() if self.timestep > 5000: raise Exception('cannot find ego after 5000 timesteps') assert self.egoID in self.vehID_tuple_all, "cannot start training while ego is not in env" self.done = False self.ego = self.veh_dict[self.egoID] self.ego.trgt_laneIndex = tlane self.ego.is_ego = 1 # set ego vehicle speed mode traci.vehicle.setSpeedMode(self.ego.veh_id, 0) self.ego_speedFactor = traci.vehicle.getSpeedFactor(egoid) self.ego_speedLimit = self.ego_speedFactor * traci.lane.getMaxSpeed(traci.vehicle.getLaneID(self.egoID)) self.ego.idm_obj = IDM() self.ego.idm_obj.__init__(self.ego_speedLimit) self.ego.update_info(self.rd, self.veh_dict) self.updateObservation() return self.observation return def close(self): traci.close()
[ "math.sqrt", "env.IDM.IDM", "traci.vehicle.getSpeedFactor", "sys.exit", "env.Vehicle.Vehicle", "math.exp", "sys.path.append", "traci.simulation.getDeltaT", "numpy.empty", "traci.vehicle.setSpeed", "traci.vehicle.getLaneID", "env.Road.Road", "traci.vehicle.setSpeedMode", "gym.spaces.Discrete", "traci.simulationStep", "traci.close", "traci.simulation.getCollidingVehiclesNumber", "traci.edge.getLastStepVehicleIDs", "traci.start", "os.path.join", "random.seed", "gym.spaces.Box", "datetime.datetime.now" ]
[((282, 328), 'os.path.join', 'os.path.join', (["os.environ['SUMO_HOME']", '"""tools"""'], {}), "(os.environ['SUMO_HOME'], 'tools')\n", (294, 328), False, 'import os\n'), ((333, 355), 'sys.path.append', 'sys.path.append', (['tools'], {}), '(tools)\n', (348, 355), False, 'import sys\n'), ((387, 446), 'sys.exit', 'sys.exit', (['"""please declare environment variable \'SUMO_HOME\'"""'], {}), '("please declare environment variable \'SUMO_HOME\'")\n', (395, 446), False, 'import sys\n'), ((2097, 2122), 'traci.start', 'traci.start', (['self.sumoCmd'], {}), '(self.sumoCmd)\n', (2108, 2122), False, 'import traci\n'), ((2142, 2148), 'env.Road.Road', 'Road', ([], {}), '()\n', (2146, 2148), False, 'from env.Road import Road\n'), ((2193, 2221), 'traci.simulation.getDeltaT', 'traci.simulation.getDeltaT', ([], {}), '()\n', (2219, 2221), False, 'import traci\n'), ((2800, 2812), 'numpy.empty', 'np.empty', (['(20)'], {}), '(20)\n', (2808, 2812), True, 'import numpy as np\n'), ((3213, 3231), 'gym.spaces.Discrete', 'spaces.Discrete', (['(6)'], {}), '(6)\n', (3228, 3231), False, 'from gym import spaces\n'), ((3265, 3314), 'gym.spaces.Box', 'spaces.Box', ([], {'low': '(-np.inf)', 'high': 'np.inf', 'shape': '(20,)'}), '(low=-np.inf, high=np.inf, shape=(20,))\n', (3275, 3314), False, 'from gym import spaces\n'), ((9695, 9740), 'traci.simulation.getCollidingVehiclesNumber', 'traci.simulation.getCollidingVehiclesNumber', ([], {}), '()\n', (9738, 9740), False, 'import traci\n'), ((9910, 9932), 'traci.simulationStep', 'traci.simulationStep', ([], {}), '()\n', (9930, 9932), False, 'import traci\n'), ((9964, 10020), 'traci.edge.getLastStepVehicleIDs', 'traci.edge.getLastStepVehicleIDs', (['self.rd.entranceEdgeID'], {}), '(self.rd.entranceEdgeID)\n', (9996, 10020), False, 'import traci\n'), ((13256, 13297), 'traci.vehicle.setSpeed', 'traci.vehicle.setSpeed', (['self.egoID', 'vNext'], {}), '(self.egoID, vNext)\n', (13278, 13297), False, 'import traci\n'), ((13359, 13381), 'traci.simulationStep', 'traci.simulationStep', ([], {}), '()\n', (13379, 13381), False, 'import traci\n'), ((13413, 13469), 'traci.edge.getLastStepVehicleIDs', 'traci.edge.getLastStepVehicleIDs', (['self.rd.entranceEdgeID'], {}), '(self.rd.entranceEdgeID)\n', (13445, 13469), False, 'import traci\n'), ((14059, 14087), 'random.seed', 'random.seed', (['self.randomseed'], {}), '(self.randomseed)\n', (14070, 14087), False, 'import random\n'), ((14455, 14468), 'traci.close', 'traci.close', ([], {}), '()\n', (14466, 14468), False, 'import traci\n'), ((15703, 15716), 'traci.close', 'traci.close', ([], {}), '()\n', (15714, 15716), False, 'import traci\n'), ((15196, 15242), 'traci.vehicle.setSpeedMode', 'traci.vehicle.setSpeedMode', (['self.ego.veh_id', '(0)'], {}), '(self.ego.veh_id, 0)\n', (15222, 15242), False, 'import traci\n'), ((15278, 15313), 'traci.vehicle.getSpeedFactor', 'traci.vehicle.getSpeedFactor', (['egoid'], {}), '(egoid)\n', (15306, 15313), False, 'import traci\n'), ((15463, 15468), 'env.IDM.IDM', 'IDM', ([], {}), '()\n', (15466, 15468), False, 'from env.IDM import IDM\n'), ((3488, 3512), 'env.Vehicle.Vehicle', 'Vehicle', (['veh_id', 'self.rd'], {}), '(veh_id, self.rd)\n', (3495, 3512), False, 'from env.Vehicle import Vehicle\n'), ((13966, 13989), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (13987, 13989), False, 'import datetime\n'), ((6097, 6155), 'math.sqrt', 'math.sqrt', (['(delta_V ** 2 + 2 * delta_A * self.ego.leaderDis)'], {}), '(delta_V ** 2 + 2 * delta_A * self.ego.leaderDis)\n', (6106, 6155), False, 'import math\n'), ((6274, 6296), 'math.exp', 'math.exp', (['(-2 * TTC + 5)'], {}), '(-2 * TTC + 5)\n', (6282, 6296), False, 'import math\n'), ((6564, 6588), 'math.exp', 'math.exp', (['(-4 * alpha + 5)'], {}), '(-4 * alpha + 5)\n', (6572, 6588), False, 'import math\n'), ((7117, 7167), 'math.sqrt', 'math.sqrt', (['(delta_V2 ** 2 + 2 * delta_A2 * delta_D2)'], {}), '(delta_V2 ** 2 + 2 * delta_A2 * delta_D2)\n', (7126, 7167), False, 'import math\n'), ((7295, 7318), 'math.exp', 'math.exp', (['(-2 * TTC2 + 5)'], {}), '(-2 * TTC2 + 5)\n', (7303, 7318), False, 'import math\n'), ((7591, 7615), 'math.exp', 'math.exp', (['(-4 * alpha + 5)'], {}), '(-4 * alpha + 5)\n', (7599, 7615), False, 'import math\n'), ((15394, 15429), 'traci.vehicle.getLaneID', 'traci.vehicle.getLaneID', (['self.egoID'], {}), '(self.egoID)\n', (15417, 15429), False, 'import traci\n')]
#!/usr/bin/env python3 from __future__ import absolute_import, division, print_function import curses import sys from collections import deque from datetime import datetime import numpy as np import rospy from diagnostic_msgs.msg import DiagnosticArray, DiagnosticStatus from geometry_msgs.msg import PoseStamped from mavros_msgs.msg import ExtendedState, PositionTarget, State # StatusText from scipy.spatial.transform import Rotation as R from sensor_msgs.msg import BatteryState, Image, NavSatFix GPS_FIX_DICT = { 0: ('No GPS', curses.COLOR_RED), 1: ('No fix', curses.COLOR_RED), 2: ('2D lock', curses.COLOR_BLUE), 3: ('3D lock', curses.COLOR_BLUE), 4: ('DGPS', curses.COLOR_MAGENTA), 5: ('RTK float', curses.COLOR_YELLOW), 6: ('RTK fix', curses.COLOR_GREEN) } def get_color(color): return curses.color_pair(color) def frequency_from_messages(messages): durations = [] for i in range(len(messages) - 1): duration = messages[i + 1].header.stamp - messages[i].header.stamp durations.append(duration.to_sec()) frequency = 1 / np.mean(durations) if np.isnan(frequency): return 0 return frequency class StatusNode: def __init__(self, screen): rospy.init_node('status_node', argv=sys.argv) self.rate = rospy.get_param('~rate', default=1.0) # Curses setup self.screen = curses.initscr() self.rows, self.cols = self.screen.getmaxyx() height_status = 15 self.status = curses.newwin(height_status, self.cols, 1, 2) # self.console = curses.newwin(self.rows - height_status, self.cols, 12, 2) self.lines = 0 self.text = '' self.screen.keypad(True) curses.curs_set(False) # Hide cursor colors = [curses.COLOR_BLACK, curses.COLOR_BLUE, curses.COLOR_CYAN, curses.COLOR_GREEN, curses.COLOR_MAGENTA, curses.COLOR_RED, curses.COLOR_WHITE, curses.COLOR_YELLOW] # Curses color setup curses.use_default_colors() for color in colors: curses.init_pair(color, color, -1) # Default variables self.status_battery_perc = None self.state = State() self.state_sub = rospy.Subscriber('mavros/state', State, callback=self.state_callback, queue_size=1) self.battery = BatteryState() self.battery_sub = rospy.Subscriber('mavros/battery', BatteryState, callback=self.battery_callback, queue_size=1) self.extended = ExtendedState() self.extended_sub = rospy.Subscriber('mavros/extended_state', ExtendedState, callback=self.extended_callback, queue_size=1) # self.statustext = StatusText() # self.statustext_sub = rospy.Subscriber('mavros/statustext/recv', StatusText, # callback=self.statustext_callback, # queue_size=1) self.gps = NavSatFix() self.gps_sub = rospy.Subscriber('mavros/global_position/raw/fix', NavSatFix, callback=self.gps_callback, queue_size=1) self.local_pose = PoseStamped() self.local_pose_sub = rospy.Subscriber('mavros/local_position/pose', PoseStamped, callback=self.local_pose_callback, queue_size=1) self.global_pose = PoseStamped() self.global_pose_sub = rospy.Subscriber('global_position/pose', PoseStamped, callback=self.global_pose_callback, queue_size=1) self.diagnostics = DiagnosticArray() self.diagnostic_gps = DiagnosticStatus() self.diagnostics_sub = rospy.Subscriber('/diagnostics', DiagnosticArray, callback=self.diagnostics_callback, queue_size=1) self.setpoint = PositionTarget() self.setpoint_sub = rospy.Subscriber('mavros/setpoint_raw/local', PositionTarget, callback=self.setpoint_callback, queue_size=1) self.cameras = ['front', 'right', 'back', 'left'] self.image_subscribers = [] self.images = {c: deque(maxlen=10) for c in self.cameras} for camera in self.cameras: topic = f'camera_{camera}/image_raw' subscriber = rospy.Subscriber(topic, Image, callback=self.image_callback, callback_args=camera, queue_size=1, buff_size=2 ** 24) self.image_subscribers.append(subscriber) def battery_callback(self, battery_msg): if battery_msg.location == 'id0': self.battery = battery_msg def state_callback(self, state_msg): self.state = state_msg def extended_callback(self, extended_msg): self.extended = extended_msg def diagnostics_callback(self, diagnostics_msg): for status in diagnostics_msg.status: if 'GPS' in status.name: self.diagnostic_gps = status def gps_callback(self, gps_msg): self.gps = gps_msg def local_pose_callback(self, pose_msg): self.local_pose = pose_msg def global_pose_callback(self, pose_msg): self.global_pose = pose_msg def setpoint_callback(self, setpoint_msg): self.setpoint = setpoint_msg def image_callback(self, image_msg, camera): self.images[camera].append(image_msg) def statustext_callback(self, statustext_msg): screen = self.console time_str = datetime.now().strftime('%Y-%m-%d %H:%M:%S') # time_str = datetime.datetime.fromtimestamp(unix_time) text = statustext_msg.text severity = statustext_msg.severity msg = statustext_msg severity_red = [msg.EMERGENCY, msg.ALERT, msg.CRITICAL, msg.ERROR] severity_yellow = [msg.WARNING, msg.NOTICE] severity_neutral = [msg.INFO, msg.DEBUG] color = curses.COLOR_CYAN if severity in severity_red: color = curses.COLOR_RED elif severity in severity_yellow: color = curses.COLOR_YELLOW elif severity in severity_neutral: color = curses.COLOR_WHITE self.text = f'{time_str}: {text} ({color})' # screen.addstr(self.lines, 0, log, get_color(color)) self.lines += 1 screen.refresh() def print_status(self): screen = self.status screen.clear() # rospy.loginfo(status) # print(status) x_tab = 0 x_indent = 14 row = 0 # Battery battery_percentage = int(self.battery.percentage * 100) color = curses.COLOR_CYAN if battery_percentage > 50: color = curses.COLOR_GREEN elif battery_percentage > 25: color = curses.COLOR_YELLOW elif battery_percentage > 0: color = curses.COLOR_RED status_battery = str(battery_percentage) + '%' screen.addstr(row, x_tab, 'Battery: ') screen.addstr(row, x_indent, status_battery, get_color(color)) row += 1 # Armed if self.state.armed: color = curses.COLOR_RED status_armed = 'Yes' else: color = curses.COLOR_GREEN status_armed = 'No' screen.addstr(row, x_tab, 'Armed: ') screen.addstr(row, x_indent, status_armed, get_color(color)) row += 1 # Mode color = curses.COLOR_CYAN mode = self.state.mode if mode.startswith('AUTO'): mode = mode.split('.')[-1] mode = mode.capitalize() if mode == 'Offboard': color = curses.COLOR_RED else: color = curses.COLOR_BLUE if mode == '': mode = 'None' elif mode == 'Posctl': mode = 'Position' elif mode == 'Rtl': mode = 'Return' status_mode = '{}'.format(mode) screen.addstr(row, x_tab, 'Mode: ') screen.addstr(row, x_indent, status_mode, get_color(color)) row += 1 # Extended status if self.extended.landed_state == self.extended.LANDED_STATE_IN_AIR: status_extended = 'Air' color = curses.COLOR_RED elif self.extended.landed_state == self.extended.LANDED_STATE_LANDING: status_extended = 'Landed' color = curses.COLOR_GREEN elif self.extended.landed_state == self.extended.LANDED_STATE_ON_GROUND: status_extended = 'Ground' color = curses.COLOR_GREEN elif self.extended.landed_state == self.extended.LANDED_STATE_TAKEOFF: status_extended = 'Takeoff' color = curses.COLOR_RED elif self.extended.landed_state == self.extended.LANDED_STATE_UNDEFINED: status_extended = 'Undefined' color = curses.COLOR_CYAN screen.addstr(row, x_tab, 'State: ') screen.addstr(row, x_indent, status_extended, get_color(color)) row += 1 # GPS info satellites = 0 fix_type, color = GPS_FIX_DICT[0] for value in self.diagnostic_gps.values: if value.key == 'Satellites visible': satellites = value.value elif value.key == 'Fix type': fix_type, color = GPS_FIX_DICT[int(value.value)] screen.addstr(row, x_tab, 'GPS info: ') screen.addstr(row, x_indent, f'{fix_type} ({satellites} sat)', get_color(color)) row += 2 # GPS pos latitude = self.gps.latitude longitude = self.gps.longitude altitude = round(self.gps.altitude, 2) status_gps = f'{latitude:.7f} {longitude:.7f} {altitude:.2f} (LLA)' screen.addstr(row, x_tab, 'GPS pos: ') screen.addstr(row, x_indent, status_gps) row += 1 # Local pose p = self.local_pose.pose.position q = self.local_pose.pose.orientation quaternion = [q.x, q.y, q.z, q.w] try: rot = R.from_quat(quaternion) except ValueError: rot = R.from_euler('zyx', [0.0, 0.0, 0.0]) yaw, pitch, roll = rot.as_euler('zyx', degrees=True) x, y, z = round(p.x, 2), round(p.y, 2), round(p.z, 2) yaw, pitch, roll = int(yaw), int(pitch), int(roll) screen.addstr(row, x_tab, 'Local pos: ') screen.addstr(row, x_indent, f'{x:.2f} {y:.2f} {z:.2f} (XYZ) {roll} {pitch} {yaw} (RPY)') row += 1 # Global pose p = self.global_pose.pose.position q = self.global_pose.pose.orientation quaternion = [q.x, q.y, q.z, q.w] try: rot = R.from_quat(quaternion) except ValueError: rot = R.from_euler('zyx', [0.0, 0.0, 0.0]) yaw, pitch, roll = rot.as_euler('zyx', degrees=True) x, y, z = round(p.x, 2), round(p.y, 2), round(p.z, 2) yaw, pitch, roll = int(yaw), int(pitch), int(roll) screen.addstr(row, x_tab, 'Global pos: ') screen.addstr(row, x_indent, f'{x:.2f} {y:.2f} {z:.2f} (XYZ) {roll} {pitch} {yaw} (RPY)') row += 1 # Setpoint v = self.setpoint.velocity vx, vy, vz = round(v.x, 2), round(v.y, 2), round(v.z, 2) yaw = int(np.rad2deg(self.setpoint.yaw)) screen.addstr(row, x_tab, 'Setpoint: ') screen.addstr(row, x_indent, f'{vx:.2f} {vy:.2f} {vz:.2f} (XYZ) {yaw} (Y)') row += 1 # Cameras freqs = {c: 0 for c in self.cameras} for cam, messages in self.images.items(): freqs[cam] = frequency_from_messages(messages) ff, fr, fb, fl = [int(round(v)) for k, v in freqs.items()] screen.addstr(row, x_tab, 'Cameras: ') screen.addstr(row, x_indent, f'{ff} {fr} {fb} {fl} (front right back left [Hz])') row += 1 screen.refresh() self.screen.refresh() def run(self): rate = rospy.Rate(self.rate) try: while not rospy.is_shutdown(): self.print_status() rate.sleep() except rospy.ROSInterruptException: curses.nocbreak() self.screen.keypad(False) curses.echo() def curses_main(screen): StatusNode(screen).run() def main(): try: curses.wrapper(curses_main) except rospy.ROSInterruptException: pass if __name__ == '__main__': main()
[ "rospy.init_node", "mavros_msgs.msg.State", "curses.curs_set", "rospy.Rate", "curses.nocbreak", "numpy.mean", "collections.deque", "scipy.spatial.transform.Rotation.from_euler", "sensor_msgs.msg.NavSatFix", "curses.init_pair", "rospy.Subscriber", "numpy.rad2deg", "curses.color_pair", "curses.wrapper", "mavros_msgs.msg.PositionTarget", "diagnostic_msgs.msg.DiagnosticStatus", "rospy.get_param", "sensor_msgs.msg.BatteryState", "curses.use_default_colors", "diagnostic_msgs.msg.DiagnosticArray", "numpy.isnan", "curses.newwin", "curses.initscr", "mavros_msgs.msg.ExtendedState", "curses.echo", "rospy.is_shutdown", "scipy.spatial.transform.Rotation.from_quat", "datetime.datetime.now", "geometry_msgs.msg.PoseStamped" ]
[((831, 855), 'curses.color_pair', 'curses.color_pair', (['color'], {}), '(color)\n', (848, 855), False, 'import curses\n'), ((1120, 1139), 'numpy.isnan', 'np.isnan', (['frequency'], {}), '(frequency)\n', (1128, 1139), True, 'import numpy as np\n'), ((1094, 1112), 'numpy.mean', 'np.mean', (['durations'], {}), '(durations)\n', (1101, 1112), True, 'import numpy as np\n'), ((1241, 1286), 'rospy.init_node', 'rospy.init_node', (['"""status_node"""'], {'argv': 'sys.argv'}), "('status_node', argv=sys.argv)\n", (1256, 1286), False, 'import rospy\n'), ((1308, 1345), 'rospy.get_param', 'rospy.get_param', (['"""~rate"""'], {'default': '(1.0)'}), "('~rate', default=1.0)\n", (1323, 1345), False, 'import rospy\n'), ((1392, 1408), 'curses.initscr', 'curses.initscr', ([], {}), '()\n', (1406, 1408), False, 'import curses\n'), ((1514, 1559), 'curses.newwin', 'curses.newwin', (['height_status', 'self.cols', '(1)', '(2)'], {}), '(height_status, self.cols, 1, 2)\n', (1527, 1559), False, 'import curses\n'), ((1732, 1754), 'curses.curs_set', 'curses.curs_set', (['(False)'], {}), '(False)\n', (1747, 1754), False, 'import curses\n'), ((2022, 2049), 'curses.use_default_colors', 'curses.use_default_colors', ([], {}), '()\n', (2047, 2049), False, 'import curses\n'), ((2217, 2224), 'mavros_msgs.msg.State', 'State', ([], {}), '()\n', (2222, 2224), False, 'from mavros_msgs.msg import ExtendedState, PositionTarget, State\n'), ((2250, 2337), 'rospy.Subscriber', 'rospy.Subscriber', (['"""mavros/state"""', 'State'], {'callback': 'self.state_callback', 'queue_size': '(1)'}), "('mavros/state', State, callback=self.state_callback,\n queue_size=1)\n", (2266, 2337), False, 'import rospy\n'), ((2442, 2456), 'sensor_msgs.msg.BatteryState', 'BatteryState', ([], {}), '()\n', (2454, 2456), False, 'from sensor_msgs.msg import BatteryState, Image, NavSatFix\n'), ((2484, 2583), 'rospy.Subscriber', 'rospy.Subscriber', (['"""mavros/battery"""', 'BatteryState'], {'callback': 'self.battery_callback', 'queue_size': '(1)'}), "('mavros/battery', BatteryState, callback=self.\n battery_callback, queue_size=1)\n", (2500, 2583), False, 'import rospy\n'), ((2692, 2707), 'mavros_msgs.msg.ExtendedState', 'ExtendedState', ([], {}), '()\n', (2705, 2707), False, 'from mavros_msgs.msg import ExtendedState, PositionTarget, State\n'), ((2736, 2844), 'rospy.Subscriber', 'rospy.Subscriber', (['"""mavros/extended_state"""', 'ExtendedState'], {'callback': 'self.extended_callback', 'queue_size': '(1)'}), "('mavros/extended_state', ExtendedState, callback=self.\n extended_callback, queue_size=1)\n", (2752, 2844), False, 'import rospy\n'), ((3226, 3237), 'sensor_msgs.msg.NavSatFix', 'NavSatFix', ([], {}), '()\n', (3235, 3237), False, 'from sensor_msgs.msg import BatteryState, Image, NavSatFix\n'), ((3261, 3369), 'rospy.Subscriber', 'rospy.Subscriber', (['"""mavros/global_position/raw/fix"""', 'NavSatFix'], {'callback': 'self.gps_callback', 'queue_size': '(1)'}), "('mavros/global_position/raw/fix', NavSatFix, callback=self\n .gps_callback, queue_size=1)\n", (3277, 3369), False, 'import rospy\n'), ((3472, 3485), 'geometry_msgs.msg.PoseStamped', 'PoseStamped', ([], {}), '()\n', (3483, 3485), False, 'from geometry_msgs.msg import PoseStamped\n'), ((3516, 3629), 'rospy.Subscriber', 'rospy.Subscriber', (['"""mavros/local_position/pose"""', 'PoseStamped'], {'callback': 'self.local_pose_callback', 'queue_size': '(1)'}), "('mavros/local_position/pose', PoseStamped, callback=self.\n local_pose_callback, queue_size=1)\n", (3532, 3629), False, 'import rospy\n'), ((3747, 3760), 'geometry_msgs.msg.PoseStamped', 'PoseStamped', ([], {}), '()\n', (3758, 3760), False, 'from geometry_msgs.msg import PoseStamped\n'), ((3792, 3900), 'rospy.Subscriber', 'rospy.Subscriber', (['"""global_position/pose"""', 'PoseStamped'], {'callback': 'self.global_pose_callback', 'queue_size': '(1)'}), "('global_position/pose', PoseStamped, callback=self.\n global_pose_callback, queue_size=1)\n", (3808, 3900), False, 'import rospy\n'), ((4020, 4037), 'diagnostic_msgs.msg.DiagnosticArray', 'DiagnosticArray', ([], {}), '()\n', (4035, 4037), False, 'from diagnostic_msgs.msg import DiagnosticArray, DiagnosticStatus\n'), ((4068, 4086), 'diagnostic_msgs.msg.DiagnosticStatus', 'DiagnosticStatus', ([], {}), '()\n', (4084, 4086), False, 'from diagnostic_msgs.msg import DiagnosticArray, DiagnosticStatus\n'), ((4118, 4222), 'rospy.Subscriber', 'rospy.Subscriber', (['"""/diagnostics"""', 'DiagnosticArray'], {'callback': 'self.diagnostics_callback', 'queue_size': '(1)'}), "('/diagnostics', DiagnosticArray, callback=self.\n diagnostics_callback, queue_size=1)\n", (4134, 4222), False, 'import rospy\n'), ((4339, 4355), 'mavros_msgs.msg.PositionTarget', 'PositionTarget', ([], {}), '()\n', (4353, 4355), False, 'from mavros_msgs.msg import ExtendedState, PositionTarget, State\n'), ((4384, 4497), 'rospy.Subscriber', 'rospy.Subscriber', (['"""mavros/setpoint_raw/local"""', 'PositionTarget'], {'callback': 'self.setpoint_callback', 'queue_size': '(1)'}), "('mavros/setpoint_raw/local', PositionTarget, callback=self\n .setpoint_callback, queue_size=1)\n", (4400, 4497), False, 'import rospy\n'), ((12475, 12496), 'rospy.Rate', 'rospy.Rate', (['self.rate'], {}), '(self.rate)\n', (12485, 12496), False, 'import rospy\n'), ((12843, 12870), 'curses.wrapper', 'curses.wrapper', (['curses_main'], {}), '(curses_main)\n', (12857, 12870), False, 'import curses\n'), ((2091, 2125), 'curses.init_pair', 'curses.init_pair', (['color', 'color', '(-1)'], {}), '(color, color, -1)\n', (2107, 2125), False, 'import curses\n'), ((4704, 4720), 'collections.deque', 'deque', ([], {'maxlen': '(10)'}), '(maxlen=10)\n', (4709, 4720), False, 'from collections import deque\n'), ((4854, 4974), 'rospy.Subscriber', 'rospy.Subscriber', (['topic', 'Image'], {'callback': 'self.image_callback', 'callback_args': 'camera', 'queue_size': '(1)', 'buff_size': '(2 ** 24)'}), '(topic, Image, callback=self.image_callback, callback_args=\n camera, queue_size=1, buff_size=2 ** 24)\n', (4870, 4974), False, 'import rospy\n'), ((10572, 10595), 'scipy.spatial.transform.Rotation.from_quat', 'R.from_quat', (['quaternion'], {}), '(quaternion)\n', (10583, 10595), True, 'from scipy.spatial.transform import Rotation as R\n'), ((11212, 11235), 'scipy.spatial.transform.Rotation.from_quat', 'R.from_quat', (['quaternion'], {}), '(quaternion)\n', (11223, 11235), True, 'from scipy.spatial.transform import Rotation as R\n'), ((11806, 11835), 'numpy.rad2deg', 'np.rad2deg', (['self.setpoint.yaw'], {}), '(self.setpoint.yaw)\n', (11816, 11835), True, 'import numpy as np\n'), ((6087, 6101), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (6099, 6101), False, 'from datetime import datetime\n'), ((10641, 10677), 'scipy.spatial.transform.Rotation.from_euler', 'R.from_euler', (['"""zyx"""', '[0.0, 0.0, 0.0]'], {}), "('zyx', [0.0, 0.0, 0.0])\n", (10653, 10677), True, 'from scipy.spatial.transform import Rotation as R\n'), ((11281, 11317), 'scipy.spatial.transform.Rotation.from_euler', 'R.from_euler', (['"""zyx"""', '[0.0, 0.0, 0.0]'], {}), "('zyx', [0.0, 0.0, 0.0])\n", (11293, 11317), True, 'from scipy.spatial.transform import Rotation as R\n'), ((12532, 12551), 'rospy.is_shutdown', 'rospy.is_shutdown', ([], {}), '()\n', (12549, 12551), False, 'import rospy\n'), ((12674, 12691), 'curses.nocbreak', 'curses.nocbreak', ([], {}), '()\n', (12689, 12691), False, 'import curses\n'), ((12742, 12755), 'curses.echo', 'curses.echo', ([], {}), '()\n', (12753, 12755), False, 'import curses\n')]
try: import importlib.resources as pkg_resources except ImportError: # Try backported to PY<37 `importlib_resources`. import importlib_resources as pkg_resources from . import images from gym import Env, spaces from time import time import numpy as np from copy import copy import colorsys import pygame from pygame.transform import scale class MinesweeperEnv(Env): def __init__(self, grid_shape=(10, 15), bombs_density=0.1, n_bombs=None, impact_size=3, max_time=999, chicken=False): self.grid_shape = grid_shape self.grid_size = np.prod(grid_shape) self.n_bombs = max(1, int(bombs_density * self.grid_size)) if n_bombs is None else n_bombs self.n_bombs = min(self.grid_size - 1, self.n_bombs) self.flaged_bombs = 0 self.flaged_empty = 0 self.max_time = max_time if impact_size % 2 == 0: raise ValueError('Impact_size must be an odd number !') self.impact_size = impact_size # Define constants self.HIDDEN = 0 self.REVEAL = 1 self.FLAG = 2 self.BOMB = self.impact_size ** 2 # Setting up gym Env conventions nvec_observation = (self.BOMB + 2) * np.ones(self.grid_shape) self.observation_space = spaces.MultiDiscrete(nvec_observation) nvec_action = np.array(self.grid_shape + (2,)) self.action_space = spaces.MultiDiscrete(nvec_action) # Initalize state self.state = np.zeros(self.grid_shape + (2,), dtype=np.uint8) ## Setup bombs places idx = np.indices(self.grid_shape).reshape(2, -1) bombs_ids = np.random.choice(range(self.grid_size), size=self.n_bombs, replace=False) self.bombs_positions = idx[0][bombs_ids], idx[1][bombs_ids] ## Place numbers self.semi_impact_size = (self.impact_size-1)//2 bomb_impact = np.ones((self.impact_size, self.impact_size), dtype=np.uint8) for bombs_id in bombs_ids: bomb_x, bomb_y = idx[0][bombs_id], idx[1][bombs_id] x_min, x_max, dx_min, dx_max = self.clip_index(bomb_x, 0) y_min, y_max, dy_min, dy_max = self.clip_index(bomb_y, 1) bomb_region = self.state[x_min:x_max, y_min:y_max, 0] bomb_region += bomb_impact[dx_min:dx_max, dy_min:dy_max] ## Place bombs self.state[self.bombs_positions + (0,)] = self.BOMB self.start_time = time() self.time_left = int(time() - self.start_time) # Setup rendering self.pygame_is_init = False self.chicken = chicken self.done = False self.score = 0 def get_observation(self): observation = copy(self.state[:, :, 1]) revealed = observation == 1 flaged = observation == 2 observation += self.impact_size ** 2 + 1 observation[revealed] = copy(self.state[:, :, 0][revealed]) observation[flaged] -= 1 return observation def reveal_around(self, coords, reward, done, without_loss=False): if not done: x_min, x_max, _, _ = self.clip_index(coords[0], 0) y_min, y_max, _, _ = self.clip_index(coords[1], 1) region = self.state[x_min:x_max, y_min:y_max, :] unseen_around = np.sum(region[..., 1] == 0) if unseen_around == 0: if not without_loss: reward -= 0.001 return flags_around = np.sum(region[..., 1] == 2) if flags_around == self.state[coords + (0,)]: unrevealed_zeros_around = np.logical_and(region[..., 0] == 0, region[..., 1] == self.HIDDEN) if np.any(unrevealed_zeros_around): zeros_coords = np.argwhere(unrevealed_zeros_around) for zero in zeros_coords: coord = (x_min + zero[0], y_min + zero[1]) self.state[coord + (1,)] = 1 self.reveal_around(coord, reward, done, without_loss=True) self.state[x_min:x_max, y_min:y_max, 1][self.state[x_min:x_max, y_min:y_max, 1] != self.FLAG] = 1 unflagged_bombs_around = np.logical_and(region[..., 0] == self.BOMB, region[..., 1] != self.FLAG) if np.any(unflagged_bombs_around): self.done = True reward, done = -1, True else: if not without_loss: reward -= 0.001 def clip_index(self, x, axis): max_idx = self.grid_shape[axis] x_min, x_max = max(0, x-self.semi_impact_size), min(max_idx, x + self.semi_impact_size + 1) dx_min, dx_max = x_min - (x - self.semi_impact_size), x_max - (x + self.semi_impact_size + 1) + self.impact_size return x_min, x_max, dx_min, dx_max def step(self, action): coords = action[:2] action_type = action[2] + 1 # 0 -> 1 = reveal; 1 -> 2 = toggle_flag case_state = self.state[coords + (1,)] case_content = self.state[coords + (0,)] NO_BOMBS_AROUND = 0 reward, done = 0, False self.time_left = self.max_time - time() + self.start_time if self.time_left <= 0: score = -(self.n_bombs - self.flaged_bombs + self.flaged_empty)/self.n_bombs reward, done = score, True return self.get_observation(), reward, done, {'passed':False} if action_type == self.REVEAL: if case_state == self.HIDDEN: self.state[coords + (1,)] = action_type if case_content == self.BOMB: if self.pygame_is_init: self.done = True reward, done = -1, True return self.get_observation(), reward, done, {'passed':False} elif case_content == NO_BOMBS_AROUND: self.reveal_around(coords, reward, done) elif case_state == self.REVEAL: self.reveal_around(coords, reward, done) reward -= 0.01 else: reward -= 0.001 self.score += reward return self.get_observation(), reward, done, {'passed':True} elif action_type == self.FLAG: if case_state == self.REVEAL: reward -= 0.001 else: flaging = 1 if case_state == self.FLAG: flaging = -1 self.state[coords + (1,)] = self.HIDDEN else: self.state[coords + (1,)] = self.FLAG if case_content == self.BOMB: self.flaged_bombs += flaging else: self.flaged_empty += flaging if self.flaged_bombs == self.n_bombs and self.flaged_empty == 0: reward, done = 2 + self.time_left/self.max_time, True if np.any(np.logical_and(self.state[..., 0]==9, self.state[..., 1]==1)) or self.done: reward, done = -1 + self.time_left/self.max_time + (self.flaged_bombs - self.flaged_empty)/self.n_bombs, True self.score += reward return self.get_observation(), reward, done, {'passed':False} def reset(self): self.__init__(self.grid_shape, n_bombs=self.n_bombs, impact_size=self.impact_size, max_time=self.max_time, chicken=self.chicken) return self.get_observation() def render(self): if not self.pygame_is_init: self._init_pygame() self.pygame_is_init = True for event in pygame.event.get(): if event.type == pygame.QUIT: # pylint: disable=E1101 pygame.quit() # pylint: disable=E1101 # Plot background pygame.draw.rect(self.window, (60, 56, 53), (0, 0, self.height, self.width)) # Plot grid for index, state in np.ndenumerate(self.state[..., 1]): self._plot_block(index, state) # Plot infos ## Score score_text = self.score_font.render("SCORE", 1, (255, 10, 10)) score = self.score_font.render(str(round(self.score, 4)), 1, (255, 10, 10)) self.window.blit(score_text, (0.1*self.header_size, 0.75*self.width)) self.window.blit(score, (0.1*self.header_size, 0.8*self.width)) ## Time left time_text = self.num_font.render("TIME", 1, (255, 10, 10)) self.time_left = self.max_time - time() + self.start_time time_left = self.num_font.render(str(int(self.time_left+1)), 1, (255, 10, 10)) self.window.blit(time_text, (0.1*self.header_size, 0.03*self.width)) self.window.blit(time_left, (0.1*self.header_size, 0.1*self.width)) ## Bombs left bombs_text = self.num_font.render("BOMBS", 1, (255, 255, 10)) left_text = self.num_font.render("LEFT", 1, (255, 255, 10)) potential_bombs_left = self.n_bombs - self.flaged_bombs - self.flaged_empty potential_bombs_left = self.num_font.render(str(int(potential_bombs_left)), 1, (255, 255, 10)) self.window.blit(bombs_text, (0.1*self.header_size, 0.4*self.width)) self.window.blit(left_text, (0.1*self.header_size, 0.45*self.width)) self.window.blit(potential_bombs_left, (0.1*self.header_size, 0.5*self.width)) pygame.display.flip() pygame.time.wait(10) if self.done: pygame.time.wait(3000) @staticmethod def _get_color(n, max_n): BLUE_HUE = 0.6 RED_HUE = 0.0 HUE = RED_HUE + (BLUE_HUE - RED_HUE) * ((max_n - n) / max_n)**3 color = 255 * np.array(colorsys.hsv_to_rgb(HUE, 1, 0.7)) return color def _plot_block(self, index, state): position = tuple(self.origin + self.scale_factor * self.BLOCK_SIZE * np.array((index[1], index[0]))) label = None if state == self.HIDDEN and not self.done: img_key = 'hidden' elif state == self.FLAG: if not self.done: img_key = 'flag' else: content = self.state[index][0] if content == self.BOMB: img_key = 'disabled_mine' if not self.chicken else 'disabled_chicken' else: img_key = 'misplaced_flag' else: content = self.state[index][0] if content == self.BOMB: if state == self.HIDDEN: img_key = 'mine' if not self.chicken else 'chicken' else: img_key = 'exploded_mine' if not self.chicken else 'exploded_chicken' else: img_key = 'revealed' label = self.num_font.render(str(content), 1, self._get_color(content, self.BOMB)) self.window.blit(self.images[img_key], position) if label: self.window.blit(label, position + self.font_offset - (content > 9) * self.decimal_font_offset) def _init_pygame(self): pygame.init() # pylint: disable=E1101 # Open Pygame window self.scale_factor = 2 * min(12 / self.grid_shape[0], 25 / self.grid_shape[1]) self.BLOCK_SIZE = 32 self.header_size = self.scale_factor * 100 self.origin = np.array([self.header_size, 0]) self.width = int(self.scale_factor * self.BLOCK_SIZE * self.grid_shape[0]) self.height = int(self.scale_factor * self.BLOCK_SIZE * self.grid_shape[1] + self.header_size) self.window = pygame.display.set_mode((self.height, self.width)) # Setup font for numbers num_font_size = 20 self.num_font = pygame.font.SysFont("monospace", int(self.scale_factor * num_font_size)) self.font_offset = self.scale_factor * self.BLOCK_SIZE * np.array([0.325, 0.15]) self.decimal_font_offset = self.scale_factor * self.BLOCK_SIZE * np.array([0.225, 0]) self.score_font = pygame.font.SysFont("monospace", int(self.scale_factor * 12)) # Load images def scale_image(img, scale_factor=self.scale_factor): return scale(img, (int(scale_factor*img.get_width()), int(scale_factor*img.get_height()))) images_names = ['hidden', 'revealed', 'flag', 'misplaced_flag'] if self.chicken: images_names += ['chicken', 'exploded_chicken', 'disabled_chicken'] else: images_names += ['mine', 'exploded_mine', 'disabled_mine'] self.images = {} for img_name in images_names: with pkg_resources.path(images, img_name + '.png') as path: img = pygame.image.load(str(path)).convert() self.images[img_name] = scale_image(img)
[ "numpy.prod", "pygame.init", "pygame.quit", "colorsys.hsv_to_rgb", "numpy.array", "copy.copy", "importlib_resources.path", "pygame.display.set_mode", "pygame.display.flip", "numpy.ndenumerate", "pygame.draw.rect", "numpy.ones", "gym.spaces.MultiDiscrete", "numpy.indices", "numpy.any", "time.time", "numpy.logical_and", "pygame.event.get", "pygame.time.wait", "numpy.sum", "numpy.zeros", "numpy.argwhere" ]
[((567, 586), 'numpy.prod', 'np.prod', (['grid_shape'], {}), '(grid_shape)\n', (574, 586), True, 'import numpy as np\n'), ((1274, 1312), 'gym.spaces.MultiDiscrete', 'spaces.MultiDiscrete', (['nvec_observation'], {}), '(nvec_observation)\n', (1294, 1312), False, 'from gym import Env, spaces\n'), ((1336, 1368), 'numpy.array', 'np.array', (['(self.grid_shape + (2,))'], {}), '(self.grid_shape + (2,))\n', (1344, 1368), True, 'import numpy as np\n'), ((1397, 1430), 'gym.spaces.MultiDiscrete', 'spaces.MultiDiscrete', (['nvec_action'], {}), '(nvec_action)\n', (1417, 1430), False, 'from gym import Env, spaces\n'), ((1479, 1527), 'numpy.zeros', 'np.zeros', (['(self.grid_shape + (2,))'], {'dtype': 'np.uint8'}), '(self.grid_shape + (2,), dtype=np.uint8)\n', (1487, 1527), True, 'import numpy as np\n'), ((1882, 1943), 'numpy.ones', 'np.ones', (['(self.impact_size, self.impact_size)'], {'dtype': 'np.uint8'}), '((self.impact_size, self.impact_size), dtype=np.uint8)\n', (1889, 1943), True, 'import numpy as np\n'), ((2428, 2434), 'time.time', 'time', ([], {}), '()\n', (2432, 2434), False, 'from time import time\n'), ((2687, 2712), 'copy.copy', 'copy', (['self.state[:, :, 1]'], {}), '(self.state[:, :, 1])\n', (2691, 2712), False, 'from copy import copy\n'), ((2866, 2901), 'copy.copy', 'copy', (['self.state[:, :, 0][revealed]'], {}), '(self.state[:, :, 0][revealed])\n', (2870, 2901), False, 'from copy import copy\n'), ((7579, 7597), 'pygame.event.get', 'pygame.event.get', ([], {}), '()\n', (7595, 7597), False, 'import pygame\n'), ((7762, 7838), 'pygame.draw.rect', 'pygame.draw.rect', (['self.window', '(60, 56, 53)', '(0, 0, self.height, self.width)'], {}), '(self.window, (60, 56, 53), (0, 0, self.height, self.width))\n', (7778, 7838), False, 'import pygame\n'), ((7888, 7922), 'numpy.ndenumerate', 'np.ndenumerate', (['self.state[..., 1]'], {}), '(self.state[..., 1])\n', (7902, 7922), True, 'import numpy as np\n'), ((9316, 9337), 'pygame.display.flip', 'pygame.display.flip', ([], {}), '()\n', (9335, 9337), False, 'import pygame\n'), ((9346, 9366), 'pygame.time.wait', 'pygame.time.wait', (['(10)'], {}), '(10)\n', (9362, 9366), False, 'import pygame\n'), ((10977, 10990), 'pygame.init', 'pygame.init', ([], {}), '()\n', (10988, 10990), False, 'import pygame\n'), ((11233, 11264), 'numpy.array', 'np.array', (['[self.header_size, 0]'], {}), '([self.header_size, 0])\n', (11241, 11264), True, 'import numpy as np\n'), ((11474, 11524), 'pygame.display.set_mode', 'pygame.display.set_mode', (['(self.height, self.width)'], {}), '((self.height, self.width))\n', (11497, 11524), False, 'import pygame\n'), ((1216, 1240), 'numpy.ones', 'np.ones', (['self.grid_shape'], {}), '(self.grid_shape)\n', (1223, 1240), True, 'import numpy as np\n'), ((3272, 3299), 'numpy.sum', 'np.sum', (['(region[..., 1] == 0)'], {}), '(region[..., 1] == 0)\n', (3278, 3299), True, 'import numpy as np\n'), ((3460, 3487), 'numpy.sum', 'np.sum', (['(region[..., 1] == 2)'], {}), '(region[..., 1] == 2)\n', (3466, 3487), True, 'import numpy as np\n'), ((9401, 9423), 'pygame.time.wait', 'pygame.time.wait', (['(3000)'], {}), '(3000)\n', (9417, 9423), False, 'import pygame\n'), ((11748, 11771), 'numpy.array', 'np.array', (['[0.325, 0.15]'], {}), '([0.325, 0.15])\n', (11756, 11771), True, 'import numpy as np\n'), ((11845, 11865), 'numpy.array', 'np.array', (['[0.225, 0]'], {}), '([0.225, 0])\n', (11853, 11865), True, 'import numpy as np\n'), ((1573, 1600), 'numpy.indices', 'np.indices', (['self.grid_shape'], {}), '(self.grid_shape)\n', (1583, 1600), True, 'import numpy as np\n'), ((2464, 2470), 'time.time', 'time', ([], {}), '()\n', (2468, 2470), False, 'from time import time\n'), ((3588, 3654), 'numpy.logical_and', 'np.logical_and', (['(region[..., 0] == 0)', '(region[..., 1] == self.HIDDEN)'], {}), '(region[..., 0] == 0, region[..., 1] == self.HIDDEN)\n', (3602, 3654), True, 'import numpy as np\n'), ((3674, 3705), 'numpy.any', 'np.any', (['unrevealed_zeros_around'], {}), '(unrevealed_zeros_around)\n', (3680, 3705), True, 'import numpy as np\n'), ((4183, 4255), 'numpy.logical_and', 'np.logical_and', (['(region[..., 0] == self.BOMB)', '(region[..., 1] != self.FLAG)'], {}), '(region[..., 0] == self.BOMB, region[..., 1] != self.FLAG)\n', (4197, 4255), True, 'import numpy as np\n'), ((4275, 4305), 'numpy.any', 'np.any', (['unflagged_bombs_around'], {}), '(unflagged_bombs_around)\n', (4281, 4305), True, 'import numpy as np\n'), ((5152, 5158), 'time.time', 'time', ([], {}), '()\n', (5156, 5158), False, 'from time import time\n'), ((6920, 6984), 'numpy.logical_and', 'np.logical_and', (['(self.state[..., 0] == 9)', '(self.state[..., 1] == 1)'], {}), '(self.state[..., 0] == 9, self.state[..., 1] == 1)\n', (6934, 6984), True, 'import numpy as np\n'), ((7681, 7694), 'pygame.quit', 'pygame.quit', ([], {}), '()\n', (7692, 7694), False, 'import pygame\n'), ((8451, 8457), 'time.time', 'time', ([], {}), '()\n', (8455, 8457), False, 'from time import time\n'), ((9625, 9657), 'colorsys.hsv_to_rgb', 'colorsys.hsv_to_rgb', (['HUE', '(1)', '(0.7)'], {}), '(HUE, 1, 0.7)\n', (9644, 9657), False, 'import colorsys\n'), ((12495, 12540), 'importlib_resources.path', 'pkg_resources.path', (['images', "(img_name + '.png')"], {}), "(images, img_name + '.png')\n", (12513, 12540), True, 'import importlib_resources as pkg_resources\n'), ((3742, 3778), 'numpy.argwhere', 'np.argwhere', (['unrevealed_zeros_around'], {}), '(unrevealed_zeros_around)\n', (3753, 3778), True, 'import numpy as np\n'), ((9799, 9829), 'numpy.array', 'np.array', (['(index[1], index[0])'], {}), '((index[1], index[0]))\n', (9807, 9829), True, 'import numpy as np\n')]
import numpy as np import cv2 import os import json import glob from PIL import Image, ImageDraw plate_diameter = 25 #cm plate_depth = 1.5 #cm plate_thickness = 0.2 #cm def Max(x, y): if (x >= y): return x else: return y def polygons_to_mask(img_shape, polygons): mask = np.zeros(img_shape, dtype=np.uint8) mask = Image.fromarray(mask) xy = list(map(tuple, polygons)) ImageDraw.Draw(mask).polygon(xy=xy, outline=1, fill=1) mask = np.array(mask, dtype=bool) return mask def mask2box(mask): index = np.argwhere(mask == 1) rows = index[:, 0] clos = index[:, 1] left_top_r = np.min(rows) left_top_c = np.min(clos) right_bottom_r = np.max(rows) right_bottom_c = np.max(clos) return [left_top_c, left_top_r, right_bottom_c, right_bottom_r] def get_bbox(points, h, w): polygons = points mask = polygons_to_mask([h,w], polygons) return mask2box(mask) def get_scale(points, img, lowest): bbox = get_bbox(points, img.shape[0], img.shape[1]) diameter = (bbox[2]-bbox[0]+1+bbox[3]-bbox[1]+1)/2 len_per_pix = plate_diameter/float(diameter) avg = 0 k = 0 for point in points: avg += img[point[1]][point[0]] k += 1 avg = avg/float(k) depth = lowest - avg depth_per_pix = plate_depth/depth return len_per_pix, depth_per_pix def cal_volume(points, img, len_per_pix, depth_per_pix, lowest): volume = 0.0 bbox = get_bbox(points, img.shape[0], img.shape[1]) points = np.array(points) shape = points.shape points = points.reshape(shape[0], 1, shape[1]) for i in range(bbox[0], bbox[2]+1): for j in range(bbox[1], bbox[3]+1): if (cv2.pointPolygonTest(points, (i,j), False) >= 0): volume += Max(0, (lowest - img[j][i]) * depth_per_pix - plate_thickness) * len_per_pix * len_per_pix return volume def get_volume(img, json_path): lowest = np.max(img) vol_dict = {} #print(lowest) len_per_pix = 0.0 depth_per_pix = 0.0 with open(json_path, 'r') as json_file: data = json.load(json_file) for shape in data['shapes']: if (shape['label'] == "plate"): len_per_pix, depth_per_pix = get_scale(shape['points'], img, lowest) #print(len_per_pix, depth_per_pix) break for shape in data['shapes']: label = shape['label'] if (label == "plate"): continue points = shape['points'] volume = cal_volume(points, img, len_per_pix, depth_per_pix, lowest) if (label in vol_dict): vol_dict[label] += volume else: vol_dict[label] = volume return vol_dict img = cv2.imread("out.png",0) print(get_volume(img,"test.json"))
[ "PIL.Image.fromarray", "cv2.pointPolygonTest", "numpy.max", "numpy.array", "numpy.zeros", "numpy.argwhere", "PIL.ImageDraw.Draw", "numpy.min", "json.load", "cv2.imread" ]
[((2774, 2798), 'cv2.imread', 'cv2.imread', (['"""out.png"""', '(0)'], {}), "('out.png', 0)\n", (2784, 2798), False, 'import cv2\n'), ((302, 337), 'numpy.zeros', 'np.zeros', (['img_shape'], {'dtype': 'np.uint8'}), '(img_shape, dtype=np.uint8)\n', (310, 337), True, 'import numpy as np\n'), ((349, 370), 'PIL.Image.fromarray', 'Image.fromarray', (['mask'], {}), '(mask)\n', (364, 370), False, 'from PIL import Image, ImageDraw\n'), ((477, 503), 'numpy.array', 'np.array', (['mask'], {'dtype': 'bool'}), '(mask, dtype=bool)\n', (485, 503), True, 'import numpy as np\n'), ((554, 576), 'numpy.argwhere', 'np.argwhere', (['(mask == 1)'], {}), '(mask == 1)\n', (565, 576), True, 'import numpy as np\n'), ((640, 652), 'numpy.min', 'np.min', (['rows'], {}), '(rows)\n', (646, 652), True, 'import numpy as np\n'), ((670, 682), 'numpy.min', 'np.min', (['clos'], {}), '(clos)\n', (676, 682), True, 'import numpy as np\n'), ((704, 716), 'numpy.max', 'np.max', (['rows'], {}), '(rows)\n', (710, 716), True, 'import numpy as np\n'), ((738, 750), 'numpy.max', 'np.max', (['clos'], {}), '(clos)\n', (744, 750), True, 'import numpy as np\n'), ((1520, 1536), 'numpy.array', 'np.array', (['points'], {}), '(points)\n', (1528, 1536), True, 'import numpy as np\n'), ((1945, 1956), 'numpy.max', 'np.max', (['img'], {}), '(img)\n', (1951, 1956), True, 'import numpy as np\n'), ((2099, 2119), 'json.load', 'json.load', (['json_file'], {}), '(json_file)\n', (2108, 2119), False, 'import json\n'), ((411, 431), 'PIL.ImageDraw.Draw', 'ImageDraw.Draw', (['mask'], {}), '(mask)\n', (425, 431), False, 'from PIL import Image, ImageDraw\n'), ((1713, 1756), 'cv2.pointPolygonTest', 'cv2.pointPolygonTest', (['points', '(i, j)', '(False)'], {}), '(points, (i, j), False)\n', (1733, 1756), False, 'import cv2\n')]
from __future__ import absolute_import from __future__ import division from __future__ import print_function import cntk as C import numpy as np from .common import floatx, epsilon, image_dim_ordering, image_data_format from collections import defaultdict from contextlib import contextmanager import warnings C.set_global_option('align_axis', 1) b_any = any dev = C.device.use_default_device() if dev.type() == 0: warnings.warn( 'CNTK backend warning: GPU is not detected. ' 'CNTK\'s CPU version is not fully optimized,' 'please run with GPU to get better performance.') # A learning phase is a bool tensor used to run Keras models in # either train mode (learning_phase == 1) or test mode (learning_phase == 0). # LEARNING_PHASE_PLACEHOLDER is the placeholder for dynamic learning phase _LEARNING_PHASE_PLACEHOLDER = C.constant(shape=(), dtype=np.float32, value=1.0, name='_keras_learning_phase') # static learning phase flag, if it is not 0 or 1, we will go with dynamic learning phase tensor. _LEARNING_PHASE = -1 _UID_PREFIXES = defaultdict(int) # cntk doesn't support gradient as symbolic op, to hook up with keras model, # we will create gradient as a constant placeholder, here use this global # map to keep the mapping from grad placeholder to parameter grad_parameter_dict = {} NAME_SCOPE_STACK = [] @contextmanager def name_scope(name): global NAME_SCOPE_STACK NAME_SCOPE_STACK.append(name) yield NAME_SCOPE_STACK.pop() def get_uid(prefix=''): _UID_PREFIXES[prefix] += 1 return _UID_PREFIXES[prefix] def learning_phase(): # If _LEARNING_PHASE is not 0 or 1, return dynamic learning phase tensor return _LEARNING_PHASE if _LEARNING_PHASE in {0, 1} else _LEARNING_PHASE_PLACEHOLDER def set_learning_phase(value): global _LEARNING_PHASE if value not in {0, 1}: raise ValueError('CNTK Backend: Set learning phase ' 'with value %s is not supported, ' 'expected 0 or 1.' % value) _LEARNING_PHASE = value def clear_session(): """Reset learning phase flag for cntk backend. """ global _LEARNING_PHASE global _LEARNING_PHASE_PLACEHOLDER _LEARNING_PHASE = -1 _LEARNING_PHASE_PLACEHOLDER.value = np.asarray(1.0) def in_train_phase(x, alt, training=None): global _LEARNING_PHASE if training is None: training = learning_phase() uses_learning_phase = True else: uses_learning_phase = False # CNTK currently don't support cond op, so here we use # element_select approach as workaround. It may have # perf issue, will resolve it later with cntk cond op. if callable(x) and isinstance(x, C.cntk_py.Function) is False: x = x() if callable(alt) and isinstance(alt, C.cntk_py.Function) is False: alt = alt() if training is True: x._uses_learning_phase = uses_learning_phase return x else: # if _LEARNING_PHASE is static if isinstance(training, int) or isinstance(training, bool): result = x if training == 1 or training is True else alt else: result = C.element_select(training, x, alt) result._uses_learning_phase = uses_learning_phase return result def in_test_phase(x, alt, training=None): return in_train_phase(alt, x, training=training) def _convert_string_dtype(dtype): # cntk only support float32 and float64 if dtype == 'float32': return np.float32 elif dtype == 'float64': return np.float64 else: # cntk only running with float, # try to cast to float to run the model return np.float32 def _convert_dtype_string(dtype): if dtype == np.float32: return 'float32' elif dtype == np.float64: return 'float64' else: raise ValueError('CNTK Backend: Unsupported dtype: %s. ' 'CNTK only supports float32 and ' 'float64.' % dtype) def variable(value, dtype=None, name=None, constraint=None): """Instantiates a variable and returns it. # Arguments value: Numpy array, initial value of the tensor. dtype: Tensor type. name: Optional name string for the tensor. constraint: Optional projection function to be applied to the variable after an optimizer update. # Returns A variable instance (with Keras metadata included). """ if dtype is None: dtype = floatx() if name is None: name = '' if isinstance( value, C.variables.Constant) or isinstance( value, C.variables.Parameter): value = value.value # we don't support init parameter with symbolic op, so eval it first as # workaround if isinstance(value, C.cntk_py.Function): value = eval(value) shape = value.shape if hasattr(value, 'shape') else () if hasattr(value, 'dtype') and value.dtype != dtype and len(shape) > 0: value = value.astype(dtype) # TODO: remove the conversion when cntk supports int32, int64 # https://docs.microsoft.com/en-us/python/api/cntk.variables.parameter dtype = 'float32' if 'int' in str(dtype) else dtype v = C.parameter(shape=shape, init=value, dtype=dtype, name=_prepare_name(name, 'variable')) v._keras_shape = v.shape v._uses_learning_phase = False v.constraint = constraint return v def bias_add(x, bias, data_format=None): if data_format is None: data_format = image_data_format() if data_format not in {'channels_first', 'channels_last'}: raise ValueError('Unknown data_format ' + str(data_format)) dims = len(x.shape) if dims > 0 and x.shape[0] == C.InferredDimension: dims -= 1 bias_dims = len(bias.shape) if bias_dims != 1 and bias_dims != dims: raise ValueError('Unexpected bias dimensions %d, ' 'expected 1 or %d dimensions' % (bias_dims, dims)) if dims == 4: if data_format == 'channels_first': if bias_dims == 1: shape = (bias.shape[0], 1, 1, 1) else: shape = (bias.shape[3],) + bias.shape[:3] elif data_format == 'channels_last': if bias_dims == 1: shape = (1, 1, 1, bias.shape[0]) else: shape = bias.shape elif dims == 3: if data_format == 'channels_first': if bias_dims == 1: shape = (bias.shape[0], 1, 1) else: shape = (bias.shape[2],) + bias.shape[:2] elif data_format == 'channels_last': if bias_dims == 1: shape = (1, 1, bias.shape[0]) else: shape = bias.shape elif dims == 2: if data_format == 'channels_first': if bias_dims == 1: shape = (bias.shape[0], 1) else: shape = (bias.shape[1],) + bias.shape[:1] elif data_format == 'channels_last': if bias_dims == 1: shape = (1, bias.shape[0]) else: shape = bias.shape else: shape = bias.shape return x + reshape(bias, shape) def eval(x): if isinstance(x, C.cntk_py.Function): return x.eval() elif isinstance(x, C.variables.Constant) or isinstance(x, C.variables.Parameter): return x.value else: raise ValueError('CNTK Backend: `eval` method on ' '`%s` type is not supported. ' 'CNTK only supports `eval` with ' '`Function`, `Constant` or ' '`Parameter`.' % type(x)) def placeholder( shape=None, ndim=None, dtype=None, sparse=False, name=None, dynamic_axis_num=1): if dtype is None: dtype = floatx() if not shape: if ndim: shape = tuple([None for _ in range(ndim)]) dynamic_dimension = C.FreeDimension if _get_cntk_version() >= 2.2 else C.InferredDimension cntk_shape = [dynamic_dimension if s is None else s for s in shape] cntk_shape = tuple(cntk_shape) if dynamic_axis_num > len(cntk_shape): raise ValueError('CNTK backend: creating placeholder with ' '%d dimension is not supported, at least ' '%d dimensions are needed.' % (len(cntk_shape, dynamic_axis_num))) if name is None: name = '' cntk_shape = cntk_shape[dynamic_axis_num:] x = C.input( shape=cntk_shape, dtype=_convert_string_dtype(dtype), is_sparse=sparse, name=name) x._keras_shape = shape x._uses_learning_phase = False x._cntk_placeholder = True return x def is_placeholder(x): """Returns whether `x` is a placeholder. # Arguments x: A candidate placeholder. # Returns Boolean. """ return hasattr(x, '_cntk_placeholder') and x._cntk_placeholder def is_keras_tensor(x): if not is_tensor(x): raise ValueError('Unexpectedly found an instance of type `' + str(type(x)) + '`. ' 'Expected a symbolic tensor instance.') return hasattr(x, '_keras_history') def is_tensor(x): return isinstance(x, (C.variables.Constant, C.variables.Variable, C.variables.Parameter, C.ops.functions.Function)) def shape(x): shape = list(int_shape(x)) num_dynamic = _get_dynamic_axis_num(x) non_dyn_shape = [] for i in range(len(x.shape)): if shape[i + num_dynamic] is None: non_dyn_shape.append(x.shape[i]) else: non_dyn_shape.append(shape[i + num_dynamic]) return shape[:num_dynamic] + non_dyn_shape def is_sparse(tensor): return tensor.is_sparse def int_shape(x): if hasattr(x, '_keras_shape'): return x._keras_shape shape = x.shape if hasattr(x, 'dynamic_axes'): dynamic_shape = [None for a in x.dynamic_axes] shape = tuple(dynamic_shape) + shape return shape def ndim(x): shape = int_shape(x) return len(shape) def _prepare_name(name, default): prefix = '_'.join(NAME_SCOPE_STACK) if name is None or name == '': return prefix + '/' + default return prefix + '/' + name def constant(value, dtype=None, shape=None, name=None): if dtype is None: dtype = floatx() if shape is None: shape = () np_value = value * np.ones(shape) const = C.constant(np_value, dtype=dtype, name=_prepare_name(name, 'constant')) const._keras_shape = const.shape const._uses_learning_phase = False return const def random_binomial(shape, p=0.0, dtype=None, seed=None): # use numpy workaround now if seed is None: # ensure that randomness is conditioned by the Numpy RNG seed = np.random.randint(10e7) np.random.seed(seed) if dtype is None: dtype = np.float32 else: dtype = _convert_string_dtype(dtype) size = 1 for _ in shape: if _ is None: raise ValueError('CNTK Backend: randomness op with ' 'dynamic shape is not supported now. ' 'Please provide fixed dimension ' 'instead of `None`.') size *= _ binomial = np.random.binomial(1, p, size).astype(dtype).reshape(shape) return variable(value=binomial, dtype=dtype) def random_uniform(shape, minval=0.0, maxval=1.0, dtype=None, seed=None): for _ in shape: if _ is None: raise ValueError('CNTK Backend: randomness op with ' 'dynamic shape is not supported now. ' 'Please provide fixed dimension ' 'instead of `None`.') return random_uniform_variable(shape, minval, maxval, dtype, seed) def random_uniform_variable(shape, low, high, dtype=None, name=None, seed=None): if dtype is None: dtype = floatx() if seed is None: # ensure that randomness is conditioned by the Numpy RNG seed = np.random.randint(10e3) if dtype is None: dtype = np.float32 else: dtype = _convert_string_dtype(dtype) if name is None: name = '' scale = (high - low) / 2 p = C.parameter( shape, init=C.initializer.uniform( scale, seed=seed), dtype=dtype, name=name) return variable(value=p.value + low + scale) def random_normal_variable( shape, mean, scale, dtype=None, name=None, seed=None): if dtype is None: dtype = floatx() if seed is None: # ensure that randomness is conditioned by the Numpy RNG seed = np.random.randint(10e7) if dtype is None: dtype = np.float32 else: dtype = _convert_string_dtype(dtype) if name is None: name = '' return C.parameter( shape=shape, init=C.initializer.normal( scale=scale, seed=seed), dtype=dtype, name=name) def random_normal(shape, mean=0.0, stddev=1.0, dtype=None, seed=None): if dtype is None: dtype = floatx() for _ in shape: if _ is None: raise ValueError('CNTK Backend: randomness op with ' 'dynamic shape is not supported now. ' 'Please provide fixed dimension ' 'instead of `None`.') # how to apply mean and stddev return random_normal_variable(shape=shape, mean=mean, scale=1.0, seed=seed) def truncated_normal(shape, mean=0.0, stddev=1.0, dtype=None, seed=None): if seed is None: seed = np.random.randint(1, 10e6) if dtype is None: dtype = np.float32 else: dtype = _convert_string_dtype(dtype) return C.parameter( shape, init=C.initializer.truncated_normal( stddev, seed=seed), dtype=dtype) def dtype(x): return _convert_dtype_string(x.dtype) def zeros(shape, dtype=None, name=None): if dtype is None: dtype = floatx() ctype = _convert_string_dtype(dtype) return variable(value=np.zeros(shape, ctype), dtype=dtype, name=name) def ones(shape, dtype=None, name=None): if dtype is None: dtype = floatx() ctype = _convert_string_dtype(dtype) return variable(value=np.ones(shape, ctype), dtype=dtype, name=name) def eye(size, dtype=None, name=None): if dtype is None: dtype = floatx() return variable(np.eye(size), dtype, name) def zeros_like(x, dtype=None, name=None): return x * 0 def ones_like(x, dtype=None, name=None): return zeros_like(x) + 1 def count_params(x): for _ in x.shape: if _ == C.InferredDimension or _ == C.FreeDimension: raise ValueError('CNTK backend: `count_params` with dynamic ' 'shape is not supported. Please provide ' 'fixed dimension instead of `None`.') return np.prod(int_shape(x)) def cast(x, dtype): # cntk calculate everything in float, so don't need case from bool / int return x def dot(x, y): if len(x.shape) > 2 or len(y.shape) > 2: y_shape = int_shape(y) if len(y_shape) > 2: permutation = [len(y_shape) - 2] permutation += list(range(len(y_shape) - 2)) permutation += [len(y_shape) - 1] y = C.transpose(y, perm=permutation) return C.times(x, y, len(y_shape) - 1) else: return C.times(x, y) def batch_dot(x, y, axes=None): x_shape = int_shape(x) y_shape = int_shape(y) if isinstance(axes, int): axes = (axes, axes) if axes is None: # behaves like tf.batch_matmul as default axes = [len(x_shape) - 1, len(y_shape) - 2] if b_any([isinstance(a, (list, tuple)) for a in axes]): raise ValueError('Multiple target dimensions are not supported. ' + 'Expected: None, int, (int, int), ' + 'Provided: ' + str(axes)) if len(x_shape) == 2 and len(y_shape) == 2: if axes[0] == axes[1]: result = sum(x * y, axis=axes[0], keepdims=True) return result if axes[0] == 1 else transpose(result) else: return sum(x * transpose(y), axis=axes[0], keepdims=True) else: if len(y_shape) == 2: y = expand_dims(y) normalized_axis = [] normalized_axis.append(_normalize_axis(axes[0], x)[0]) normalized_axis.append(_normalize_axis(axes[1], y)[0]) # transpose i = normalized_axis[0] while i < len(x.shape) - 1: x = C.swapaxes(x, i, i + 1) i += 1 i = normalized_axis[1] while i > 0: y = C.swapaxes(y, i, i - 1) i -= 1 result = C.times(x, y, output_rank=(len(y.shape) - 1) if len(y.shape) > 1 else 1) if len(y_shape) == 2: result = squeeze(result, -1) return result def transpose(x): return C.swapaxes(x, 0, 1) def gather(reference, indices): # There is a bug in cntk gather op which may cause crash. # We have made a fix but not catched in CNTK 2.1 release. # Will update with gather op in next release if _get_cntk_version() >= 2.2: return C.ops.gather(reference, indices) else: num_classes = reference.shape[0] one_hot_matrix = C.ops.one_hot(indices, num_classes) return C.times(one_hot_matrix, reference, output_rank=len(reference.shape) - 1) def _remove_dims(x, axis, keepdims=False): if keepdims is False and isinstance(axis, list): # sequence axis is removed by default, so don't need reshape on it reduce_axes = [] for a in axis: if isinstance(a, C.Axis) is False: reduce_axes.append(a) return _reshape_dummy_dim(x, reduce_axes) else: if isinstance(axis, list): has_seq = False for a in axis: if isinstance(a, C.Axis): has_seq = True break if has_seq: nones = _get_dynamic_axis_num(x) x = expand_dims(x, nones) return x def max(x, axis=None, keepdims=False): axis = _normalize_axis(axis, x) output = _reduce_on_axis(x, axis, 'reduce_max') return _remove_dims(output, axis, keepdims) def min(x, axis=None, keepdims=False): axis = _normalize_axis(axis, x) output = _reduce_on_axis(x, axis, 'reduce_min') return _remove_dims(output, axis, keepdims) def sum(x, axis=None, keepdims=False): axis = _normalize_axis(axis, x) output = _reduce_on_axis(x, axis, 'reduce_sum') return _remove_dims(output, axis, keepdims) def prod(x, axis=None, keepdims=False): axis = _normalize_axis(axis, x) output = _reduce_on_axis(x, axis, 'reduce_prod') return _remove_dims(output, axis, keepdims) def logsumexp(x, axis=None, keepdims=False): return log(sum(exp(x), axis=axis, keepdims=keepdims)) def var(x, axis=None, keepdims=False): m = mean(x, axis, keepdims=True) devs_squared = C.square(x - m) return mean(devs_squared, axis=axis, keepdims=keepdims) def std(x, axis=None, keepdims=False): return C.sqrt(var(x, axis=axis, keepdims=keepdims)) def expand_dims(x, axis=-1): shape = list(int_shape(x)) nones = _get_dynamic_axis_num(x) index = axis if axis >= 0 else len(shape) + 1 shape.insert(index, 1) new_shape = shape[nones:] new_shape = tuple( [C.InferredDimension if _ is None else _ for _ in new_shape]) result = C.reshape(x, new_shape) if index < nones: result._keras_shape = shape return result def squeeze(x, axis): if isinstance(axis, tuple): axis = list(axis) if not isinstance(axis, list): axis = [axis] shape = list(int_shape(x)) _axis = [] for _ in axis: if isinstance(_, int): _axis.append(_ if _ >= 0 else _ + len(shape)) if len(_axis) == 0: return x nones = _get_dynamic_axis_num(x) for _ in sorted(_axis, reverse=True): del shape[_] new_shape = shape[nones:] new_shape = tuple([C.InferredDimension if _ == C.FreeDimension else _ for _ in new_shape]) return C.reshape(x, new_shape) def tile(x, n): if isinstance(n, int): n = (n,) elif isinstance(n, list): n = tuple(n) shape = int_shape(x) num_dynamic_axis = _get_dynamic_axis_num(x) # Padding the axis if len(n) < len(shape): n = tuple([1 for _ in range(len(shape) - len(n))]) + n if len(n) != len(shape): raise NotImplementedError i = num_dynamic_axis for i, rep in enumerate(n): if i >= num_dynamic_axis and shape[i] is not None: tmp = [x] * rep x = C.splice(*tmp, axis=i - num_dynamic_axis) i += 1 return x def _normalize_axis(axis, x): shape = int_shape(x) ndim = len(shape) nones = _get_dynamic_axis_num(x) if nones > ndim: raise ValueError('CNTK Backend: tensor with keras shape: `%s` has ' '%d cntk dynamic axis, this is not expected, please ' 'double check the keras shape history.' % (str(shape), nones)) # Current cntk does not support shape like (1, batch). so using the workaround # here to mapping the correct axis. Will remove this tricky after we add support # in native cntk op cntk_axis = [] dynamic_axis_index = 0 for i in range(ndim): if shape[i] is None and dynamic_axis_index < nones: cntk_axis.append(x.dynamic_axes[dynamic_axis_index]) dynamic_axis_index += 1 else: cntk_axis.append(i - dynamic_axis_index) if dynamic_axis_index < nones: i = 0 while dynamic_axis_index < nones: cntk_axis[i] = x.dynamic_axes[dynamic_axis_index] i += 1 dynamic_axis_index += 1 while i < len(cntk_axis): cntk_axis[i] -= nones i += 1 if isinstance(axis, tuple): _axis = list(axis) elif isinstance(axis, int): _axis = [axis] elif isinstance(axis, list): _axis = list(axis) else: _axis = axis if isinstance(_axis, list): for i, a in enumerate(_axis): if a is not None and a < 0: _axis[i] = (a % ndim) if _axis[i] is not None: _axis[i] = cntk_axis[_axis[i]] else: if _axis is None: _axis = C.Axis.all_axes() return _axis def _reshape_dummy_dim(x, axis): shape = list(x.shape) _axis = [_ + len(shape) if _ < 0 else _ for _ in axis] if shape.count(C.InferredDimension) > 1 or shape.count(C.FreeDimension) > 1: result = x for index in sorted(_axis, reverse=True): result = C.reshape(result, shape=(), begin_axis=index, end_axis=index + 1) return result else: for index in sorted(_axis, reverse=True): del shape[index] shape = [C.InferredDimension if _ == C.FreeDimension else _ for _ in shape] return C.reshape(x, shape) def mean(x, axis=None, keepdims=False): axis = _normalize_axis(axis, x) output = _reduce_on_axis(x, axis, 'reduce_mean') return _remove_dims(output, axis, keepdims) def any(x, axis=None, keepdims=False): reduce_result = sum(x, axis, keepdims=keepdims) any_matrix = C.element_select( reduce_result, ones_like(reduce_result), zeros_like(reduce_result)) if len(reduce_result.shape) == 0 and _get_dynamic_axis_num(x) == 0: return C.reduce_sum(any_matrix) else: return any_matrix def all(x, axis=None, keepdims=False): reduce_result = prod(x, axis, keepdims=keepdims) all_matrix = C.element_select( reduce_result, ones_like(reduce_result), zeros_like(reduce_result)) if len(reduce_result.shape) == 0 and _get_dynamic_axis_num(x) == 0: return C.reduce_sum(all_matrix) else: return all_matrix def classification_error(target, output, axis=-1): return C.ops.reduce_mean( C.equal( argmax( output, axis=-1), argmax( target, axis=-1)), axis=C.Axis.all_axes()) def argmax(x, axis=-1): axis = [axis] axis = _normalize_axis(axis, x) output = C.ops.argmax(x, axis=axis[0]) return _reshape_dummy_dim(output, axis) def argmin(x, axis=-1): axis = [axis] axis = _normalize_axis(axis, x) output = C.ops.argmin(x, axis=axis[0]) return _reshape_dummy_dim(output, axis) def square(x): return C.square(x) def abs(x): return C.abs(x) def sqrt(x): return C.sqrt(x) def exp(x): return C.exp(x) def log(x): return C.log(x) def round(x): return C.round(x) def sigmoid(x): return C.sigmoid(x) def sign(x): return x / C.abs(x) def pow(x, a): return C.pow(x, a) def clip(x, min_value, max_value): if max_value is not None and max_value < min_value: max_value = min_value if max_value is None: max_value = np.inf if min_value is None: min_value = -np.inf return C.clip(x, min_value, max_value) def binary_crossentropy(target, output, from_logits=False): if from_logits: output = C.sigmoid(output) output = C.clip(output, epsilon(), 1.0 - epsilon()) output = -target * C.log(output) - (1.0 - target) * C.log(1.0 - output) return output def get_variable_shape(x): return int_shape(x) def update(x, new_x): return C.assign(x, new_x) def moving_average_update(variable, value, momentum): return C.assign(variable, variable * momentum + value * (1. - momentum)) def update_add(x, increment): result = x + increment return C.assign(x, result) def gradients(loss, variables): # cntk does not support gradients as symbolic op, # to hook up with keras model # we will return a constant as place holder, the cntk learner will apply # the gradient during training. global grad_parameter_dict if isinstance(variables, list) is False: variables = [variables] grads = [] for v in variables: g = C.constant(0, shape=v.shape, name='keras_grad_placeholder') grads.append(g) grad_parameter_dict[g] = v return grads def equal(x, y): return C.equal(x, y) def not_equal(x, y): return C.not_equal(x, y) def greater(x, y): return C.greater(x, y) def greater_equal(x, y): return C.greater_equal(x, y) def less(x, y): return C.less(x, y) def less_equal(x, y): return C.less_equal(x, y) def maximum(x, y): return C.element_max(x, y) def minimum(x, y): return C.element_min(x, y) def sin(x): return C.sin(x) def cos(x): return C.cos(x) def normalize_batch_in_training(x, gamma, beta, reduction_axes, epsilon=1e-3): if gamma is None: if beta is None: gamma = ones_like(x) else: gamma = ones_like(beta) if beta is None: if gamma is None: beta = zeros_like(x) else: beta = zeros_like(gamma) mean, variant = _moments(x, _normalize_axis(reduction_axes, x)) if sorted(reduction_axes) == list(range(ndim(x)))[:-1]: normalized = batch_normalization( x, mean, variant, beta, gamma, epsilon) else: # need broadcasting target_shape = [] x_shape = int_shape(x) # skip the batch axis for axis in range(1, ndim(x)): if axis in reduction_axes: target_shape.append(1) if ndim(gamma) > axis: gamma = C.reduce_mean(gamma, axis - 1) beta = C.reduce_mean(beta, axis - 1) else: target_shape.append(x_shape[axis]) broadcast_mean = C.reshape(mean, target_shape) broadcast_var = C.reshape(variant, target_shape) broadcast_gamma = C.reshape(gamma, target_shape) broadcast_beta = C.reshape(beta, target_shape) normalized = batch_normalization( x, broadcast_mean, broadcast_var, broadcast_beta, broadcast_gamma, epsilon) return normalized, mean, variant def _moments(x, axes=None, shift=None, keep_dims=False): _axes = tuple(axes) if shift is None: shift = x # Compute true mean while keeping the dims for proper broadcasting. for axis in _axes: shift = C.reduce_mean(shift, axis=axis) shift = C.stop_gradient(shift) shifted_mean = C.minus(x, shift) for axis in _axes: shifted_mean = C.reduce_mean(shifted_mean, axis=axis) variance_mean = C.square(C.minus(x, shift)) for axis in _axes: variance_mean = C.reduce_mean(variance_mean, axis=axis) variance = C.minus(variance_mean, C.square(shifted_mean)) mean = C.plus(shifted_mean, shift) if not keep_dims: mean = squeeze(mean, _axes) variance = squeeze(variance, _axes) return mean, variance def batch_normalization(x, mean, var, beta, gamma, epsilon=1e-3): # The mean / var / beta / gamma may be processed by broadcast # so it may have an extra batch axis with 1, it is not needed # in cntk, need to remove those dummy axis. if ndim(mean) == ndim(x) and shape(mean)[0] == 1: mean = _reshape_dummy_dim(mean, [0]) if ndim(var) == ndim(x) and shape(var)[0] == 1: var = _reshape_dummy_dim(var, [0]) if gamma is None: gamma = ones_like(var) elif ndim(gamma) == ndim(x) and shape(gamma)[0] == 1: gamma = _reshape_dummy_dim(gamma, [0]) if beta is None: beta = zeros_like(mean) elif ndim(beta) == ndim(x) and shape(beta)[0] == 1: beta = _reshape_dummy_dim(beta, [0]) return (x - mean) / (C.sqrt(var) + epsilon) * gamma + beta def concatenate(tensors, axis=-1): if len(tensors) == 0: return None axis = [axis] axis = _normalize_axis(axis, tensors[0]) return C.splice(*tensors, axis=axis[0]) def flatten(x): return reshape(x, (-1,)) def reshape(x, shape): shape = tuple([C.InferredDimension if _ == C.FreeDimension else _ for _ in shape]) if isinstance(x, C.variables.Parameter): return C.reshape(x, shape) else: num_dynamic_axis = _get_dynamic_axis_num(x) if num_dynamic_axis == 1 and len(shape) > 0 and shape[0] == -1: # collapse axis with batch axis if b_any(_ == C.InferredDimension for _ in x.shape) or b_any( _ == C.FreeDimension for _ in x.shape): warnings.warn( 'Warning: CNTK backend does not support ' 'collapse of batch axis with inferred dimension. ' 'The reshape did not take place.') return x return _reshape_batch(x, shape) else: # no collapse, then first need to padding the shape if num_dynamic_axis >= len(shape): i = 0 while i < len(shape): if shape[i] is None or shape[i] == -1: i += 1 else: break shape = tuple([-1 for _ in range(num_dynamic_axis - i)]) + shape new_shape = list(shape) new_shape = new_shape[num_dynamic_axis:] new_shape = [C.InferredDimension if _ is None else _ for _ in new_shape] return C.reshape(x, new_shape) def permute_dimensions(x, pattern): dims = len(int_shape(x)) num_dynamic_axis = _get_dynamic_axis_num(x) if isinstance(pattern, list): current_layout = [i for i in range(dims)] else: current_layout = tuple([i for i in range(dims)]) if num_dynamic_axis > 0 and pattern[:num_dynamic_axis] != current_layout[:num_dynamic_axis]: raise ValueError('CNTK backend: the permute pattern %s ' 'requested permute on dynamic axis, ' 'which is not supported. Please do permute ' 'on static axis.' % pattern) axis = list(pattern) axis = axis[num_dynamic_axis:] axis = _normalize_axis(axis, x) return C.transpose(x, axis) def resize_images(x, height_factor, width_factor, data_format): if data_format == 'channels_first': output = repeat_elements(x, height_factor, axis=2) output = repeat_elements(output, width_factor, axis=3) return output elif data_format == 'channels_last': output = repeat_elements(x, height_factor, axis=1) output = repeat_elements(output, width_factor, axis=2) return output else: raise ValueError('CNTK Backend: Invalid data_format:', data_format) def resize_volumes(x, depth_factor, height_factor, width_factor, data_format): if data_format == 'channels_first': output = repeat_elements(x, depth_factor, axis=2) output = repeat_elements(output, height_factor, axis=3) output = repeat_elements(output, width_factor, axis=4) return output elif data_format == 'channels_last': output = repeat_elements(x, depth_factor, axis=1) output = repeat_elements(output, height_factor, axis=2) output = repeat_elements(output, width_factor, axis=3) return output else: raise ValueError('CNTK Backend: Invalid data_format:', data_format) def repeat_elements(x, rep, axis): axis = _normalize_axis(axis, x) axis = axis[0] slices = [] shape = x.shape i = 0 while i < shape[axis]: tmp = C.ops.slice(x, axis, i, i + 1) for _ in range(rep): slices.append(tmp) i += 1 return C.splice(*slices, axis=axis) def repeat(x, n): # this is a workaround for recurrent layer # if n is inferred dimension, # we can't figure out how to repeat it in cntk now # return the same x to take cntk broadcast feature # to make the recurrent layer work. # need to be fixed in GA. if n is C.InferredDimension or n is C.FreeDimension: return x index = 1 - _get_dynamic_axis_num(x) if index < 0 or index > 1: raise NotImplementedError new_shape = list(x.shape) new_shape.insert(index, 1) new_shape = tuple(new_shape) x = C.reshape(x, new_shape) temp = [x] * n return C.splice(*temp, axis=index) def tanh(x): return C.tanh(x) def _static_rnn(step_function, inputs, initial_states, go_backwards=False, mask=None, constants=None, unroll=False, input_length=None): shape = int_shape(inputs) dims = len(shape) uses_learning_phase = False if dims < 3: raise ValueError('Input should be at least 3D.') # if the second axis is static axis, CNTK will do unroll by default if shape[1] is None: raise ValueError('CNTK Backend: the input of static rnn ' 'has shape `%s`, the second axis ' 'is not static. If you want to run ' 'rnn with non-static axis, please try ' 'dynamic rnn with sequence axis.' % shape) if constants is None: constants = [] if mask is not None: mask_shape = int_shape(mask) if len(mask_shape) == dims - 1: mask = expand_dims(mask) nones = _get_dynamic_axis_num(inputs) states = tuple(initial_states) outputs = [] time_axis = 1 - nones if nones > 0 else 1 if go_backwards: i = shape[1] - 1 while i >= 0: current = C.ops.slice(inputs, time_axis, i, i + 1) # remove dummy dimension current = squeeze(current, time_axis) output, new_states = step_function( current, tuple(states) + tuple(constants)) if getattr(output, '_uses_learning_phase', False): uses_learning_phase = True if mask is not None: mask_slice = C.ops.slice(mask, time_axis, i, i + 1) mask_slice = squeeze(mask_slice, time_axis) if len(outputs) == 0: prev_output = zeros_like(output) else: prev_output = outputs[-1] output = C.ops.element_select(mask_slice, output, prev_output) return_states = [] for s, n_s in zip(states, new_states): return_states.append( C.ops.element_select( mask_slice, n_s, s)) new_states = return_states outputs.append(output) states = new_states i -= 1 else: i = 0 while i < shape[1]: current = C.ops.slice(inputs, time_axis, i, i + 1) # remove dummy dimension current = squeeze(current, 1) output, new_states = step_function( current, tuple(states) + tuple(constants)) if getattr(output, '_uses_learning_phase', False): uses_learning_phase = True if mask is not None: mask_slice = C.ops.slice(mask, time_axis, i, i + 1) mask_slice = squeeze(mask_slice, 1) if len(outputs) == 0: prev_output = zeros_like(output) else: prev_output = outputs[-1] output = C.ops.element_select(mask_slice, output, prev_output) return_states = [] for s, n_s in zip(states, new_states): return_states.append( C.ops.element_select( mask_slice, n_s, s)) new_states = return_states outputs.append(output) states = new_states[:len(states)] i += 1 i = 1 # add the time_step axis back final_output = expand_dims(outputs[0], 1) last_output = outputs[0] while i < len(outputs): # add the time_step axis back output_slice = expand_dims(outputs[i], 1) final_output = C.splice(final_output, output_slice, axis=time_axis) last_output = outputs[i] i += 1 last_output._uses_learning_phase = uses_learning_phase return last_output, final_output, states def rnn(step_function, inputs, initial_states, go_backwards=False, mask=None, constants=None, unroll=False, input_length=None): shape = int_shape(inputs) dims = len(shape) global uses_learning_phase uses_learning_phase = False if dims < 3: raise ValueError('CNTK Backend: the input of rnn has only rank %d ' 'Need at least rank 3 to run RNN.' % dims) if _get_dynamic_axis_num(inputs) == 0 or unroll: return _static_rnn( step_function, inputs, initial_states, go_backwards, mask, constants, unroll, input_length) if constants is None: constants = [] num_time_step = shape[1] if num_time_step is None and not has_seq_axis(inputs): num_time_step = inputs.shape[0] initial = [] for s in initial_states: if _get_dynamic_axis_num(s) == 0: if hasattr(C, 'to_batch'): initial.append(C.to_batch(s)) else: initial.append(C.user_function(ConvertToBatch(s))) else: initial.append(s) need_convert = not has_seq_axis(inputs) if go_backwards and need_convert is False: raise NotImplementedError('CNTK Backend: `go_backwards` is not supported with ' 'variable-length sequences. Please specify a ' 'static length for your sequences.') rnn_inputs = inputs if need_convert: if go_backwards: rnn_inputs = reverse(rnn_inputs, 1) rnn_inputs = C.to_sequence(rnn_inputs) rnn_constants = [] for constant in constants: if isinstance(constant, list): new_c = [] for c in constant: if _get_dynamic_axis_num(c) == 1: new_c.append(C.sequence.broadcast_as(c, rnn_inputs)) else: new_c.append(c) rnn_constants.append(new_c) else: if _get_dynamic_axis_num(constant) == 1: rnn_constants.append(C.sequence.broadcast_as(constant, rnn_inputs)) else: rnn_constants.append(constant) else: rnn_constants = constants if mask is not None and not has_seq_axis(mask): if go_backwards: mask = reverse(mask, 1) if len(int_shape(mask)) == 2: mask = expand_dims(mask) mask = C.to_sequence_like(mask, rnn_inputs) states = tuple(initial) with C.default_options(axis_offset=1): def _recurrence(x, states, m): # create place holder place_holders = [C.placeholder(dynamic_axes=x.dynamic_axes) for _ in states] past_values = [] for s, p in zip(states, place_holders): past_values.append(C.sequence.past_value(p, s)) new_output, new_states = step_function( x, tuple(past_values) + tuple(rnn_constants)) if getattr(new_output, '_uses_learning_phase', False): global uses_learning_phase uses_learning_phase = True if m is not None: new_states = [C.element_select(m, n, s) for n, s in zip(new_states, past_values)] n_s = [] for o, p in zip(new_states, place_holders): n_s.append(o.replace_placeholders({p: o.output})) if len(n_s) > 0: new_output = n_s[0] return new_output, n_s final_output, final_states = _recurrence(rnn_inputs, states, mask) last_output = C.sequence.last(final_output) last_states = [C.sequence.last(s) for s in final_states] if need_convert: final_output = C.sequence.unpack(final_output, 0, no_mask_output=True) if num_time_step is not None and num_time_step is not C.FreeDimension: final_output = _reshape_sequence(final_output, num_time_step) f_stats = [] for l_s, i_s in zip(last_states, initial_states): if _get_dynamic_axis_num(i_s) == 0 and _get_dynamic_axis_num(l_s) == 1: if hasattr(C, 'unpack_batch'): f_stats.append(C.unpack_batch(l_s)) else: f_stats.append(C.user_function(ConvertToStatic(l_s, batch_size=i_s.shape[0]))) else: f_stats.append(l_s) last_output._uses_learning_phase = uses_learning_phase return last_output, final_output, f_stats def has_seq_axis(x): return hasattr(x, 'dynamic_axes') and len(x.dynamic_axes) > 1 def l2_normalize(x, axis=None): axis = [axis] axis = _normalize_axis(axis, x) norm = C.sqrt(C.reduce_sum(C.square(x), axis=axis[0])) return x / norm def hard_sigmoid(x): x = (0.2 * x) + 0.5 x = C.clip(x, 0.0, 1.0) return x def conv1d(x, kernel, strides=1, padding='valid', data_format=None, dilation_rate=1): if data_format is None: data_format = image_data_format() if data_format not in {'channels_first', 'channels_last'}: raise ValueError('Unknown data_format ' + str(data_format)) if padding == 'causal': # causal (dilated) convolution: left_pad = dilation_rate * (kernel.shape[0] - 1) x = temporal_padding(x, (left_pad, 0)) padding = 'valid' if data_format == 'channels_last': x = C.swapaxes(x, 0, 1) kernel = C.swapaxes(kernel, 0, 2) padding = _preprocess_border_mode(padding) strides = [strides] x = C.convolution( kernel, x, strides=tuple(strides), auto_padding=[ False, padding]) if data_format == 'channels_last': x = C.swapaxes(x, 0, 1) return x def conv2d(x, kernel, strides=(1, 1), padding='valid', data_format=None, dilation_rate=(1, 1)): if data_format is None: data_format = image_data_format() if data_format not in {'channels_first', 'channels_last'}: raise ValueError('Unknown data_format ' + str(data_format)) x = _preprocess_conv2d_input(x, data_format) kernel = _preprocess_conv2d_kernel(kernel, data_format) padding = _preprocess_border_mode(padding) if dilation_rate == (1, 1): strides = (1,) + strides x = C.convolution( kernel, x, strides, auto_padding=[ False, padding, padding]) else: assert dilation_rate[0] == dilation_rate[1] assert strides == (1, 1), 'Invalid strides for dilated convolution' x = C.convolution( kernel, x, strides=dilation_rate[0], auto_padding=[ False, padding, padding]) return _postprocess_conv2d_output(x, data_format) def separable_conv1d(x, depthwise_kernel, pointwise_kernel, strides=1, padding='valid', data_format=None, dilation_rate=1): raise NotImplementedError def separable_conv2d(x, depthwise_kernel, pointwise_kernel, strides=(1, 1), padding='valid', data_format=None, dilation_rate=(1, 1)): if data_format is None: data_format = image_data_format() if data_format not in {'channels_first', 'channels_last'}: raise ValueError('Unknown data_format ' + str(data_format)) x = _preprocess_conv2d_input(x, data_format) depthwise_kernel = _preprocess_conv2d_kernel(depthwise_kernel, data_format) depthwise_kernel = C.reshape(C.transpose(depthwise_kernel, (1, 0, 2, 3)), (-1, 1) + depthwise_kernel.shape[2:]) pointwise_kernel = _preprocess_conv2d_kernel(pointwise_kernel, data_format) padding = _preprocess_border_mode(padding) if dilation_rate == (1, 1): strides = (1,) + strides x = C.convolution(depthwise_kernel, x, strides=strides, auto_padding=[False, padding, padding], groups=x.shape[0]) x = C.convolution(pointwise_kernel, x, strides=(1, 1, 1), auto_padding=[False]) else: if dilation_rate[0] != dilation_rate[1]: raise ValueError('CNTK Backend: non-square dilation_rate is ' 'not supported.') if strides != (1, 1): raise ValueError('Invalid strides for dilated convolution') x = C.convolution(depthwise_kernel, x, strides=dilation_rate[0], auto_padding=[False, padding, padding]) x = C.convolution(pointwise_kernel, x, strides=(1, 1, 1), auto_padding=[False]) return _postprocess_conv2d_output(x, data_format) def depthwise_conv2d(x, depthwise_kernel, strides=(1, 1), padding='valid', data_format=None, dilation_rate=(1, 1)): if data_format is None: data_format = image_data_format() if data_format not in {'channels_first', 'channels_last'}: raise ValueError('Unknown data_format ' + str(data_format)) x = _preprocess_conv2d_input(x, data_format) depthwise_kernel = _preprocess_conv2d_kernel(depthwise_kernel, data_format) depthwise_kernel = C.reshape(C.transpose(depthwise_kernel, (1, 0, 2, 3)), (-1, 1) + depthwise_kernel.shape[2:]) padding = _preprocess_border_mode(padding) if dilation_rate == (1, 1): strides = (1,) + strides x = C.convolution(depthwise_kernel, x, strides=strides, auto_padding=[False, padding, padding], groups=x.shape[0]) else: if dilation_rate[0] != dilation_rate[1]: raise ValueError('CNTK Backend: non-square dilation_rate is ' 'not supported.') if strides != (1, 1): raise ValueError('Invalid strides for dilated convolution') x = C.convolution(depthwise_kernel, x, strides=dilation_rate[0], auto_padding=[False, padding, padding], groups=x.shape[0]) return _postprocess_conv2d_output(x, data_format) def conv3d(x, kernel, strides=(1, 1, 1), padding='valid', data_format=None, dilation_rate=(1, 1, 1)): if data_format is None: data_format = image_data_format() if data_format not in {'channels_first', 'channels_last'}: raise ValueError('Unknown data_format ' + str(data_format)) x = _preprocess_conv3d_input(x, data_format) kernel = _preprocess_conv3d_kernel(kernel, data_format) padding = _preprocess_border_mode(padding) strides = strides + (strides[0],) x = C.convolution( kernel, x, strides, auto_padding=[ False, padding, padding, padding]) return _postprocess_conv3d_output(x, data_format) def conv3d_transpose(x, kernel, output_shape, strides=(1, 1, 1), padding='valid', data_format=None): if data_format is None: data_format = image_data_format() if data_format not in {'channels_first', 'channels_last'}: raise ValueError('Unknown data_format ' + str(data_format)) x = _preprocess_conv3d_input(x, data_format) kernel = _preprocess_conv3d_kernel(kernel, data_format) padding = _preprocess_border_mode(padding) strides = (1,) + strides # cntk output_shape does not include batch axis output_shape = output_shape[1:] # in keras2, need handle output shape in different format if data_format == 'channels_last': shape = list(output_shape) shape[0] = output_shape[3] shape[1] = output_shape[0] shape[2] = output_shape[1] shape[3] = output_shape[2] output_shape = tuple(shape) x = C.convolution_transpose( kernel, x, strides, auto_padding=[ False, padding, padding, padding], output_shape=output_shape) return _postprocess_conv3d_output(x, data_format) def pool2d(x, pool_size, strides=(1, 1), padding='valid', data_format=None, pool_mode='max'): if data_format is None: data_format = image_data_format() if data_format not in {'channels_first', 'channels_last'}: raise ValueError('Unknown data_format ' + str(data_format)) padding = _preprocess_border_mode(padding) strides = strides pool_size = pool_size x = _preprocess_conv2d_input(x, data_format) if pool_mode == 'max': x = C.pooling( x, C.MAX_POOLING, pool_size, strides, auto_padding=[padding]) elif pool_mode == 'avg': x = C.pooling( x, C.AVG_POOLING, pool_size, strides, auto_padding=[padding]) else: raise ValueError('Invalid pooling mode: ' + str(pool_mode)) return _postprocess_conv2d_output(x, data_format) def pool3d(x, pool_size, strides=(1, 1, 1), padding='valid', data_format=None, pool_mode='max'): if data_format is None: data_format = image_data_format() if data_format not in {'channels_first', 'channels_last'}: raise ValueError('Unknown data_format ' + str(data_format)) padding = _preprocess_border_mode(padding) x = _preprocess_conv3d_input(x, data_format) if pool_mode == 'max': x = C.pooling( x, C.MAX_POOLING, pool_size, strides, auto_padding=[padding]) elif pool_mode == 'avg': x = C.pooling( x, C.AVG_POOLING, pool_size, strides, auto_padding=[padding]) else: raise ValueError('Invalid pooling mode: ' + str(pool_mode)) return _postprocess_conv3d_output(x, data_format) def relu(x, alpha=0., max_value=None): if alpha != 0.: negative_part = C.relu(-x) x = C.relu(x) if max_value is not None: x = C.clip(x, 0.0, max_value) if alpha != 0.: x -= alpha * negative_part return x def dropout(x, level, noise_shape=None, seed=None): if level < 0. or level >= 1: raise ValueError('CNTK Backend: Invalid dropout level %s, ' 'must be in interval [0, 1].' % level) return C.dropout(x, level) def batch_flatten(x): # cntk's batch axis is not in shape, # so just flatten all the dim in x.shape dim = np.prod(x.shape) x = C.reshape(x, (-1,)) x._keras_shape = (None, dim) return x def softmax(x, axis=-1): return C.softmax(x, axis=axis) def softplus(x): return C.softplus(x) def softsign(x): return x / (1 + C.abs(x)) def categorical_crossentropy(target, output, from_logits=False): if from_logits: result = C.cross_entropy_with_softmax(output, target) # cntk's result shape is (batch, 1), while keras expect (batch, ) return C.reshape(result, ()) else: # scale preds so that the class probas of each sample sum to 1 output /= C.reduce_sum(output, axis=-1) # avoid numerical instability with epsilon clipping output = C.clip(output, epsilon(), 1.0 - epsilon()) return -sum(target * C.log(output), axis=-1) def sparse_categorical_crossentropy(target, output, from_logits=False): target = C.one_hot(target, output.shape[-1]) target = C.reshape(target, output.shape) return categorical_crossentropy(target, output, from_logits) class Function(object): def __init__(self, inputs, outputs, updates=[], **kwargs): self.placeholders = inputs self.trainer = None self.unrelated_updates = None self.updates = updates if len(updates) > 0: assert len(outputs) > 0 self.loss = outputs[0] # need group update by gradient place holder u_ops = [] unrelated_updates = [] for update in updates: if isinstance(update, tuple): if len(update) != 2: raise NotImplementedError else: u = C.assign(update[0], update[1]) else: u = update if len(u.arguments) == 0: u_ops.append(u) else: unrelated_updates.append(u) update_func = C.combine([u.output for u in u_ops]) grads = update_func.find_all_with_name('keras_grad_placeholder') u_list = [] p_list = [] for g in grads: if g in grad_parameter_dict: p_list.append(grad_parameter_dict[g]) u_list.append(g) else: raise ValueError( 'CNTK backend: when constructing trainer, ' 'found gradient node `%s` which is not ' 'related to any parameters in the model. ' 'Please double check how the gradient node ' 'is constructed.' % g) if len(u_list) > 0: learner = C.cntk_py.universal_learner(p_list, u_list, update_func) criterion = ( outputs[0], outputs[1]) if len(outputs) > 1 else ( outputs[0], ) self.trainer = C.trainer.Trainer( outputs[0], criterion, [learner]) self.trainer_output = tuple([f.output for f in criterion]) elif len(u_ops) > 0: unrelated_updates.extend(u_ops) if len(unrelated_updates) > 0: self.unrelated_updates = C.combine([_.output for _ in unrelated_updates]) if self.trainer is None: self.metrics_outputs = [f.output for f in outputs] self.metrics_func = C.combine(self.metrics_outputs) # cntk only could handle loss and 1 metric in trainer, for metrics more # than 2, need manual eval elif len(outputs) > 2: self.metrics_outputs = [f.output for f in outputs[2:]] self.metrics_func = C.combine(self.metrics_outputs) else: self.metrics_func = None @staticmethod def _is_input_shape_compatible(input, placeholder): if hasattr(input, 'shape') and hasattr(placeholder, 'shape'): num_dynamic = get_num_dynamic_axis(placeholder) input_shape = input.shape[num_dynamic:] placeholder_shape = placeholder.shape for i, p in zip(input_shape, placeholder_shape): if i != p and p != C.InferredDimension and p != C.FreeDimension: return False return True def __call__(self, inputs): global _LEARNING_PHASE_PLACEHOLDER global _LEARNING_PHASE assert isinstance(inputs, (list, tuple)) feed_dict = {} for tensor, value in zip(self.placeholders, inputs): # cntk only support calculate on float, do auto cast here if (hasattr(value, 'dtype') and value.dtype != np.float32 and value.dtype != np.float64): value = value.astype(np.float32) if tensor == _LEARNING_PHASE_PLACEHOLDER: _LEARNING_PHASE_PLACEHOLDER.value = np.asarray(value) else: # in current version cntk can't support input with variable # length. Will support it in next release. if not self._is_input_shape_compatible(value, tensor): raise ValueError('CNTK backend: The placeholder has been resolved ' 'to shape `%s`, but input shape is `%s`. Currently ' 'CNTK can not take variable length inputs. Please ' 'pass inputs that have a static shape.' % (str(tensor.shape), str(value.shape))) feed_dict[tensor] = value updated = [] if self.trainer is not None: input_dict = {} for argument in self.loss.arguments: if argument in feed_dict: input_dict[argument] = feed_dict[argument] else: raise ValueError( 'CNTK backend: argument %s is not found in inputs. ' 'Please double check the model and inputs in ' '`train_function`.' % argument.name) result = self.trainer.train_minibatch( input_dict, self.trainer_output) assert(len(result) == 2) outputs = result[1] for o in self.trainer_output: updated.append(outputs[o]) if self.metrics_func is not None: input_dict = {} for argument in self.metrics_func.arguments: if argument in feed_dict: input_dict[argument] = feed_dict[argument] else: raise ValueError('CNTK backend: metrics argument %s ' 'is not found in inputs. Please double ' 'check the model and inputs.' % argument.name) # Some ops (like dropout) won't be applied during "eval" in cntk. # They only evaluated in training phase. To make it work, call # "forward" method to let cntk know we want to evaluate them.from # But the assign ops won't be executed under this mode, that's why # we need this check. if (self.unrelated_updates is None and (_LEARNING_PHASE_PLACEHOLDER.value == 1.0 or _LEARNING_PHASE == 1)): _, output_values = self.metrics_func.forward( input_dict, self.metrics_func.outputs, (self.metrics_func.outputs[0],), as_numpy=False) else: output_values = self.metrics_func.eval(input_dict, as_numpy=False) if isinstance(output_values, dict): for o in self.metrics_outputs: value = output_values[o] v = value.asarray() updated.append(v) else: v = output_values.asarray() for o in self.metrics_outputs: updated.append(v) if self.unrelated_updates is not None: input_dict = {} for argument in self.unrelated_updates.arguments: if argument in feed_dict: input_dict[argument] = feed_dict[argument] else: raise ValueError( 'CNTK backend: assign ops argument %s ' 'is not found in inputs. Please double ' 'check the model and inputs.' % argument.name) self.unrelated_updates.eval(input_dict, as_numpy=False) return updated def function(inputs, outputs, updates=[], **kwargs): return Function(inputs, outputs, updates=updates, **kwargs) def temporal_padding(x, padding=(1, 1)): assert len(padding) == 2 num_dynamic_axis = _get_dynamic_axis_num(x) base_shape = x.shape if num_dynamic_axis > 0: assert len(base_shape) == 2 if hasattr(C, 'pad'): x = C.pad(x, pattern=[padding, (0, 0)]) else: x = _padding(x, padding, 0) else: assert len(base_shape) == 3 if hasattr(C, 'pad'): x = C.pad(x, pattern=[(0, 0), padding, (0, 0)]) else: x = _padding(x, padding, 1) return x def _padding(x, pattern, axis): base_shape = x.shape if b_any([dim < 0 for dim in base_shape]): raise ValueError('CNTK Backend: padding input tensor with ' 'shape `%s` contains non-specified dimension, ' 'which is not supported. Please give fixed ' 'dimension to enable padding.' % base_shape) if pattern[0] > 0: prefix_shape = list(base_shape) prefix_shape[axis] = pattern[0] prefix_shape = tuple(prefix_shape) x = C.splice(C.constant(value=0, shape=prefix_shape), x, axis=axis) base_shape = x.shape if pattern[1] > 0: postfix_shape = list(base_shape) postfix_shape[axis] = pattern[1] postfix_shape = tuple(postfix_shape) x = C.splice(x, C.constant(value=0, shape=postfix_shape), axis=axis) return x def spatial_2d_padding(x, padding=((1, 1), (1, 1)), data_format=None): assert len(padding) == 2 assert len(padding[0]) == 2 assert len(padding[1]) == 2 if data_format is None: data_format = image_data_format() if data_format not in {'channels_first', 'channels_last'}: raise ValueError('Unknown data_format ' + str(data_format)) num_dynamic_axis = _get_dynamic_axis_num(x) base_shape = x.shape if data_format == 'channels_first': if num_dynamic_axis > 0: assert len(base_shape) == 3 if hasattr(C, 'pad'): x = C.pad(x, pattern=[[0, 0], list(padding[0]), list(padding[1])]) else: x = _padding(x, padding[0], 1) x = _padding(x, padding[1], 2) else: assert len(base_shape) == 4 if hasattr(C, 'pad'): x = C.pad(x, pattern=[[0, 0], [0, 0], list(padding[0]), list(padding[1])]) else: x = _padding(x, padding[0], 2) x = _padding(x, padding[1], 3) else: if num_dynamic_axis > 0: assert len(base_shape) == 3 if hasattr(C, 'pad'): x = C.pad(x, pattern=[list(padding[0]), list(padding[1]), [0, 0]]) else: x = _padding(x, padding[0], 0) x = _padding(x, padding[1], 1) else: assert len(base_shape) == 4 if hasattr(C, 'pad'): x = C.pad(x, pattern=[[0, 0], list(padding[0]), list(padding[1]), [0, 0]]) else: x = _padding(x, padding[0], 1) x = _padding(x, padding[1], 2) return x def spatial_3d_padding(x, padding=((1, 1), (1, 1), (1, 1)), data_format=None): assert len(padding) == 3 assert len(padding[0]) == 2 assert len(padding[1]) == 2 assert len(padding[2]) == 2 if data_format is None: data_format = image_data_format() if data_format not in {'channels_first', 'channels_last'}: raise ValueError('Unknown data_format ' + str(data_format)) num_dynamic_axis = _get_dynamic_axis_num(x) base_shape = x.shape if data_format == 'channels_first': if num_dynamic_axis > 0: assert len(base_shape) == 4 if hasattr(C, 'pad'): x = C.pad(x, pattern=[[0, 0], list(padding[0]), list(padding[1]), list(padding[2])]) else: x = _padding(x, padding[0], 1) x = _padding(x, padding[1], 2) x = _padding(x, padding[2], 3) else: assert len(base_shape) == 5 if hasattr(C, 'pad'): x = C.pad(x, pattern=[[0, 0], [0, 0], list(padding[0]), list(padding[1]), list(padding[2])]) else: x = _padding(x, padding[0], 2) x = _padding(x, padding[1], 3) x = _padding(x, padding[2], 4) else: if num_dynamic_axis > 0: assert len(base_shape) == 4 if hasattr(C, 'pad'): x = C.pad(x, pattern=[list(padding[0]), list(padding[1]), list(padding[2]), [0, 0]]) else: x = _padding(x, padding[0], 0) x = _padding(x, padding[1], 1) x = _padding(x, padding[2], 2) else: assert len(base_shape) == 5 if hasattr(C, 'pad'): x = C.pad(x, pattern=[[0, 0], list(padding[0]), list(padding[1]), list(padding[2]), [0, 0]]) else: x = _padding(x, padding[0], 1) x = _padding(x, padding[1], 2) x = _padding(x, padding[2], 3) return x def one_hot(indices, num_classes): return C.one_hot(indices, num_classes) def get_value(x): if isinstance( x, C.variables.Parameter) or isinstance( x, C.variables.Constant): return x.value else: return eval(x) def batch_get_value(xs): result = [] for x in xs: if (isinstance(x, C.variables.Parameter) or isinstance(x, C.variables.Constant)): result.append(x.value) else: result.append(eval(x)) return result def set_value(x, value): if (isinstance(x, C.variables.Parameter) or isinstance(x, C.variables.Constant)): if isinstance(value, (float, int)): value = np.full(x.shape, value, dtype=floatx()) x.value = value else: raise NotImplementedError def print_tensor(x, message=''): return C.user_function( LambdaFunc(x, when=lambda x: True, execute=lambda x: print(message))) def batch_set_value(tuples): for t in tuples: x = t[0] value = t[1] if isinstance(value, np.ndarray) is False: value = np.asarray(value) if isinstance(x, C.variables.Parameter): x.value = value else: raise NotImplementedError def stop_gradient(variables): if isinstance(variables, (list, tuple)): return map(C.stop_gradient, variables) else: return C.stop_gradient(variables) def switch(condition, then_expression, else_expression): ndim_cond = ndim(condition) ndim_expr = ndim(then_expression) if ndim_cond > ndim_expr: raise ValueError('Rank of condition should be less' ' than or equal to rank of then and' ' else expressions. ndim(condition)=' + str(ndim_cond) + ', ndim(then_expression)' '=' + str(ndim_expr)) elif ndim_cond < ndim_expr: shape_expr = int_shape(then_expression) ndim_diff = ndim_expr - ndim_cond for i in range(ndim_diff): condition = expand_dims(condition) condition = tile(condition, shape_expr[ndim_cond + i]) return C.element_select(condition, then_expression, else_expression) def elu(x, alpha=1.): res = C.elu(x) if alpha == 1: return res else: return C.element_select(C.greater(x, 0), res, alpha * res) def in_top_k(predictions, targets, k): _targets = C.one_hot(targets, predictions.shape[-1]) result = C.classification_error(predictions, _targets, topN=k) return 1 - C.reshape(result, shape=()) def conv2d_transpose(x, kernel, output_shape, strides=(1, 1), padding='valid', data_format=None): if data_format is None: data_format = image_data_format() if data_format not in {'channels_first', 'channels_last'}: raise ValueError('Unknown data_format ' + str(data_format)) x = _preprocess_conv2d_input(x, data_format) kernel = _preprocess_conv2d_kernel(kernel, data_format) padding = _preprocess_border_mode(padding) strides = (1,) + strides # cntk output_shape does not include batch axis output_shape = output_shape[1:] # in keras2, need handle output shape in different format if data_format == 'channels_last': shape = list(output_shape) shape[0] = output_shape[2] shape[1] = output_shape[0] shape[2] = output_shape[1] output_shape = tuple(shape) x = C.convolution_transpose( kernel, x, strides, auto_padding=[ False, padding, padding], output_shape=output_shape) return _postprocess_conv2d_output(x, data_format) def identity(x, name=None): if name is None: name = '%s_alias' % x.name return C.alias(x, name=name) def _preprocess_conv2d_input(x, data_format): if data_format == 'channels_last': # TF uses the last dimension as channel dimension, # instead of the 2nd one. # TH input shape: (samples, input_depth, rows, cols) # TF input shape: (samples, rows, cols, input_depth) x = C.transpose(x, (2, 0, 1)) return x def _preprocess_conv2d_kernel(kernel, data_format): # As of Keras 2.0.0, all kernels are normalized # on the format `(rows, cols, input_depth, depth)`, # independently of `data_format`. # CNTK expects `(depth, input_depth, rows, cols)`. kernel = C.transpose(kernel, (3, 2, 0, 1)) return kernel def _preprocess_border_mode(padding): if padding == 'same': padding = True elif padding == 'valid': padding = False else: raise ValueError('Invalid border mode: ' + str(padding)) return padding def _postprocess_conv2d_output(x, data_format): if data_format == 'channels_last': x = C.transpose(x, (1, 2, 0)) return x def _preprocess_conv3d_input(x, data_format): if data_format == 'channels_last': # TF uses the last dimension as channel dimension, # instead of the 2nd one. # TH input shape: (samples, input_depth, conv_dim1, conv_dim2, conv_dim3) # TF input shape: (samples, conv_dim1, conv_dim2, conv_dim3, # input_depth) x = C.transpose(x, (3, 0, 1, 2)) return x def _preprocess_conv3d_kernel(kernel, dim_ordering): kernel = C.transpose(kernel, (4, 3, 0, 1, 2)) return kernel def _postprocess_conv3d_output(x, dim_ordering): if dim_ordering == 'channels_last': x = C.transpose(x, (1, 2, 3, 0)) return x def _get_dynamic_axis_num(x): if hasattr(x, 'dynamic_axes'): return len(x.dynamic_axes) else: return 0 def _contain_seqence_axis(x): if _get_dynamic_axis_num(x) > 1: return x.dynamic_axes[1] == C.Axis.default_dynamic_axis() else: return False def get_num_dynamic_axis(x): return _get_dynamic_axis_num(x) def _reduce_on_axis(x, axis, reduce_fun_name): if isinstance(axis, list): for a in axis: if isinstance(a, C.Axis) \ and a != C.Axis.default_batch_axis() \ and hasattr(C.sequence, reduce_fun_name): x = getattr(C.sequence, reduce_fun_name)(x, a) else: x = getattr(C, reduce_fun_name)(x, a) else: x = getattr(C, reduce_fun_name)(x, axis) return x def _reshape_sequence(x, time_step): tmp_shape = list(int_shape(x)) tmp_shape[1] = time_step return reshape(x, tmp_shape) def local_conv1d(inputs, kernel, kernel_size, strides, data_format=None): if data_format is None: data_format = image_data_format() if data_format not in {'channels_first', 'channels_last'}: raise ValueError('Unknown data_format ' + str(data_format)) stride = strides[0] kernel_shape = int_shape(kernel) output_length, feature_dim, filters = kernel_shape xs = [] for i in range(output_length): slice_length = slice(i * stride, i * stride + kernel_size[0]) xs.append(reshape(inputs[:, slice_length, :], (-1, 1, feature_dim))) x_aggregate = concatenate(xs, axis=1) # transpose kernel to output_filters first, to apply broadcast weight = permute_dimensions(kernel, (2, 0, 1)) # Shape: (batch, filters, output_length, input_length * kernel_size) output = x_aggregate * weight # Shape: (batch, filters, output_length) output = sum(output, axis=3) # Shape: (batch, output_length, filters) return permute_dimensions(output, (0, 2, 1)) def local_conv2d(inputs, kernel, kernel_size, strides, output_shape, data_format=None): if data_format is None: data_format = image_data_format() if data_format not in {'channels_first', 'channels_last'}: raise ValueError('Unknown data_format ' + str(data_format)) stride_row, stride_col = strides output_row, output_col = output_shape kernel_shape = int_shape(kernel) _, feature_dim, filters = kernel_shape xs = [] for i in range(output_row): for j in range(output_col): slice_row = slice(i * stride_row, i * stride_row + kernel_size[0]) slice_col = slice(j * stride_col, j * stride_col + kernel_size[1]) if data_format == 'channels_first': xs.append(reshape(inputs[:, :, slice_row, slice_col], (-1, 1, feature_dim))) else: xs.append(reshape(inputs[:, slice_row, slice_col, :], (-1, 1, feature_dim))) x_aggregate = concatenate(xs, axis=1) # transpose kernel to put filters first weight = permute_dimensions(kernel, (2, 0, 1)) # shape: batch, filters, output_length, input_length * kernel_size output = x_aggregate * weight # shape: batch, filters, output_length output = sum(output, axis=3) # shape: batch, filters, row, col output = reshape(output, (-1, filters, output_row, output_col)) if data_format == 'channels_last': # shape: batch, row, col, filters output = permute_dimensions(output, (0, 2, 3, 1)) return output def reverse(x, axes): if isinstance(axes, int): axes = [axes] cntk_axes = _normalize_axis(axes, x) begin_index = [0 for _ in cntk_axes] end_index = [0 for _ in cntk_axes] strides = [-1 for _ in cntk_axes] return C.slice(x, cntk_axes, begin_index, end_index, strides) def _reshape_batch(x, shape): # there is a bug in cntk 2.1's unpack_batch implementation if hasattr(C, 'unpack_batch') and _get_cntk_version() >= 2.2: const_a = C.unpack_batch(x) const_a = C.reshape(const_a, shape) return C.to_batch(const_a) else: return C.user_function(ReshapeBatch(x, shape[1:])) def _get_cntk_version(): version = C.__version__ if version.endswith('+'): version = version[:-1] # for hot fix, ignore all the . except the first one. if len(version) > 2 and version[1] == '.': version = version[:2] + version[2:].replace('.', '') try: return float(version) except: warnings.warn( 'CNTK backend warning: CNTK version not detected. ' 'Will using CNTK 2.0 GA as default.') return float(2.0) class ReshapeBatch(C.ops.functions.UserFunction): def __init__(self, input, shape, name='reshape_with_batch'): super(ReshapeBatch, self).__init__([input], as_numpy=False, name=name) self.from_shape = input.shape self.target_shape = shape def infer_outputs(self): batch_axis = C.Axis.default_batch_axis() return [ C.output_variable( self.target_shape, self.inputs[0].dtype, [batch_axis])] def forward(self, arguments, device=None, outputs_to_retain=None): num_element = arguments.shape()[0] * np.prod(np.asarray(self.from_shape)) num_static_element = np.prod(np.asarray(self.target_shape)) num_batch = int(num_element / num_static_element) result = arguments.data().as_shape((num_batch,) + self.target_shape) return None, C.cntk_py.Value(result) def backward(self, state, root_gradients): grad_array_view = root_gradients.data() num_element = root_gradients.shape()[0] * np.prod(np.asarray(self.target_shape)) num_static_element = np.prod(np.asarray(self.from_shape)) num_old_batch = int(num_element / num_static_element) return C.cntk_py.Value( grad_array_view.as_shape( (num_old_batch,) + self.from_shape)) class ConvertToBatch(C.ops.functions.UserFunction): """Converts input first axis to CNTK batch axis. We may introduce this operation in CNTK native implementation later. # Arguments inputs: a cntk variable (parameter/constant) name: name of this node """ def __init__(self, input, name='convert_to_batch'): super(ConvertToBatch, self).__init__([input], as_numpy=False, name=name) def infer_outputs(self): batch_axis = C.Axis.default_batch_axis() return [ C.output_variable( self.inputs[0].shape[1:], self.inputs[0].dtype, [batch_axis])] def forward(self, arguments, device=None, outputs_to_retain=None): return None, C.cntk_py.Value(arguments.data()) def backward(self, state, root_gradients): return C.cntk_py.Value(root_gradients.data()) class ConvertToStatic(C.ops.functions.UserFunction): """Converts input first axis to CNTK static axis. We may introduce this operation in CNTK native implementation later. # Arguments inputs: a cntk tensor which has batch axis batch_size: size of batch axis. name: name of this node. """ def __init__(self, input, batch_size, name='convert_to_static'): super(ConvertToStatic, self).__init__([input], as_numpy=False, name=name) self.target_shape = (batch_size,) + input.shape def infer_outputs(self): return [ C.output_variable( self.target_shape, self.inputs[0].dtype, [])] def forward(self, arguments, device=None, outputs_to_retain=None): return None, C.cntk_py.Value(arguments.data()) def backward(self, state, root_gradients): return C.cntk_py.Value(root_gradients.data()) class LambdaFunc(C.ops.functions.UserFunction): def __init__(self, arg, when=lambda arg: True, execute=lambda arg: print(arg), name=''): self.when = when self.execute = execute super(LambdaFunc, self).__init__([arg], name=name) def infer_outputs(self): return [ C.output_variable( self.inputs[0].shape, self.inputs[0].dtype, self.inputs[0].dynamic_axes)] def forward(self, argument, device=None, outputs_to_retain=None): if self.when(argument): self.execute(argument) return None, argument def backward(self, state, root_gradients): return root_gradients
[ "cntk.cntk_py.Value", "cntk.constant", "cntk.element_select", "numpy.random.binomial", "cntk.assign", "cntk.swapaxes", "cntk.relu", "cntk.pooling", "cntk.initializer.normal", "cntk.log", "numpy.random.seed", "warnings.warn", "cntk.less_equal", "cntk.sin", "cntk.one_hot", "cntk.sequence.broadcast_as", "cntk.times", "cntk.minus", "cntk.round", "cntk.ops.argmin", "numpy.random.randint", "cntk.dropout", "cntk.splice", "cntk.classification_error", "cntk.ops.slice", "cntk.placeholder", "cntk.sqrt", "cntk.Axis.all_axes", "cntk.unpack_batch", "numpy.ones", "cntk.softmax", "cntk.abs", "cntk.transpose", "cntk.alias", "cntk.convolution_transpose", "cntk.sequence.last", "cntk.sequence.past_value", "cntk.equal", "cntk.elu", "cntk.to_sequence", "cntk.ops.one_hot", "cntk.less", "cntk.softplus", "cntk.plus", "numpy.prod", "cntk.set_global_option", "cntk.Axis.default_dynamic_axis", "cntk.greater", "cntk.cntk_py.universal_learner", "cntk.output_variable", "cntk.cross_entropy_with_softmax", "cntk.to_sequence_like", "cntk.reshape", "cntk.clip", "cntk.element_min", "cntk.ops.element_select", "cntk.stop_gradient", "cntk.tanh", "cntk.combine", "cntk.pow", "cntk.slice", "cntk.cos", "cntk.to_batch", "cntk.exp", "cntk.square", "cntk.element_max", "cntk.sequence.unpack", "cntk.ops.gather", "cntk.sigmoid", "cntk.ops.argmax", "numpy.zeros", "cntk.device.use_default_device", "cntk.default_options", "cntk.greater_equal", "cntk.convolution", "numpy.asarray", "numpy.eye", "cntk.initializer.uniform", "cntk.initializer.truncated_normal", "cntk.reduce_mean", "cntk.Axis.default_batch_axis", "cntk.trainer.Trainer", "cntk.not_equal", "cntk.reduce_sum", "cntk.pad", "collections.defaultdict" ]
[((313, 349), 'cntk.set_global_option', 'C.set_global_option', (['"""align_axis"""', '(1)'], {}), "('align_axis', 1)\n", (332, 349), True, 'import cntk as C\n'), ((371, 400), 'cntk.device.use_default_device', 'C.device.use_default_device', ([], {}), '()\n', (398, 400), True, 'import cntk as C\n'), ((854, 933), 'cntk.constant', 'C.constant', ([], {'shape': '()', 'dtype': 'np.float32', 'value': '(1.0)', 'name': '"""_keras_learning_phase"""'}), "(shape=(), dtype=np.float32, value=1.0, name='_keras_learning_phase')\n", (864, 933), True, 'import cntk as C\n'), ((1069, 1085), 'collections.defaultdict', 'defaultdict', (['int'], {}), '(int)\n', (1080, 1085), False, 'from collections import defaultdict\n'), ((425, 583), 'warnings.warn', 'warnings.warn', (['"""CNTK backend warning: GPU is not detected. CNTK\'s CPU version is not fully optimized,please run with GPU to get better performance."""'], {}), '(\n "CNTK backend warning: GPU is not detected. CNTK\'s CPU version is not fully optimized,please run with GPU to get better performance."\n )\n', (438, 583), False, 'import warnings\n'), ((2269, 2284), 'numpy.asarray', 'np.asarray', (['(1.0)'], {}), '(1.0)\n', (2279, 2284), True, 'import numpy as np\n'), ((17501, 17520), 'cntk.swapaxes', 'C.swapaxes', (['x', '(0)', '(1)'], {}), '(x, 0, 1)\n', (17511, 17520), True, 'import cntk as C\n'), ((19618, 19633), 'cntk.square', 'C.square', (['(x - m)'], {}), '(x - m)\n', (19626, 19633), True, 'import cntk as C\n'), ((20103, 20126), 'cntk.reshape', 'C.reshape', (['x', 'new_shape'], {}), '(x, new_shape)\n', (20112, 20126), True, 'import cntk as C\n'), ((20778, 20801), 'cntk.reshape', 'C.reshape', (['x', 'new_shape'], {}), '(x, new_shape)\n', (20787, 20801), True, 'import cntk as C\n'), ((25068, 25097), 'cntk.ops.argmax', 'C.ops.argmax', (['x'], {'axis': 'axis[0]'}), '(x, axis=axis[0])\n', (25080, 25097), True, 'import cntk as C\n'), ((25235, 25264), 'cntk.ops.argmin', 'C.ops.argmin', (['x'], {'axis': 'axis[0]'}), '(x, axis=axis[0])\n', (25247, 25264), True, 'import cntk as C\n'), ((25337, 25348), 'cntk.square', 'C.square', (['x'], {}), '(x)\n', (25345, 25348), True, 'import cntk as C\n'), ((25374, 25382), 'cntk.abs', 'C.abs', (['x'], {}), '(x)\n', (25379, 25382), True, 'import cntk as C\n'), ((25409, 25418), 'cntk.sqrt', 'C.sqrt', (['x'], {}), '(x)\n', (25415, 25418), True, 'import cntk as C\n'), ((25444, 25452), 'cntk.exp', 'C.exp', (['x'], {}), '(x)\n', (25449, 25452), True, 'import cntk as C\n'), ((25478, 25486), 'cntk.log', 'C.log', (['x'], {}), '(x)\n', (25483, 25486), True, 'import cntk as C\n'), ((25514, 25524), 'cntk.round', 'C.round', (['x'], {}), '(x)\n', (25521, 25524), True, 'import cntk as C\n'), ((25554, 25566), 'cntk.sigmoid', 'C.sigmoid', (['x'], {}), '(x)\n', (25563, 25566), True, 'import cntk as C\n'), ((25634, 25645), 'cntk.pow', 'C.pow', (['x', 'a'], {}), '(x, a)\n', (25639, 25645), True, 'import cntk as C\n'), ((25887, 25918), 'cntk.clip', 'C.clip', (['x', 'min_value', 'max_value'], {}), '(x, min_value, max_value)\n', (25893, 25918), True, 'import cntk as C\n'), ((26274, 26292), 'cntk.assign', 'C.assign', (['x', 'new_x'], {}), '(x, new_x)\n', (26282, 26292), True, 'import cntk as C\n'), ((26360, 26426), 'cntk.assign', 'C.assign', (['variable', '(variable * momentum + value * (1.0 - momentum))'], {}), '(variable, variable * momentum + value * (1.0 - momentum))\n', (26368, 26426), True, 'import cntk as C\n'), ((26496, 26515), 'cntk.assign', 'C.assign', (['x', 'result'], {}), '(x, result)\n', (26504, 26515), True, 'import cntk as C\n'), ((27076, 27089), 'cntk.equal', 'C.equal', (['x', 'y'], {}), '(x, y)\n', (27083, 27089), True, 'import cntk as C\n'), ((27124, 27141), 'cntk.not_equal', 'C.not_equal', (['x', 'y'], {}), '(x, y)\n', (27135, 27141), True, 'import cntk as C\n'), ((27174, 27189), 'cntk.greater', 'C.greater', (['x', 'y'], {}), '(x, y)\n', (27183, 27189), True, 'import cntk as C\n'), ((27228, 27249), 'cntk.greater_equal', 'C.greater_equal', (['x', 'y'], {}), '(x, y)\n', (27243, 27249), True, 'import cntk as C\n'), ((27279, 27291), 'cntk.less', 'C.less', (['x', 'y'], {}), '(x, y)\n', (27285, 27291), True, 'import cntk as C\n'), ((27327, 27345), 'cntk.less_equal', 'C.less_equal', (['x', 'y'], {}), '(x, y)\n', (27339, 27345), True, 'import cntk as C\n'), ((27378, 27397), 'cntk.element_max', 'C.element_max', (['x', 'y'], {}), '(x, y)\n', (27391, 27397), True, 'import cntk as C\n'), ((27430, 27449), 'cntk.element_min', 'C.element_min', (['x', 'y'], {}), '(x, y)\n', (27443, 27449), True, 'import cntk as C\n'), ((27475, 27483), 'cntk.sin', 'C.sin', (['x'], {}), '(x)\n', (27480, 27483), True, 'import cntk as C\n'), ((27509, 27517), 'cntk.cos', 'C.cos', (['x'], {}), '(x)\n', (27514, 27517), True, 'import cntk as C\n'), ((29326, 29348), 'cntk.stop_gradient', 'C.stop_gradient', (['shift'], {}), '(shift)\n', (29341, 29348), True, 'import cntk as C\n'), ((29368, 29385), 'cntk.minus', 'C.minus', (['x', 'shift'], {}), '(x, shift)\n', (29375, 29385), True, 'import cntk as C\n'), ((29681, 29708), 'cntk.plus', 'C.plus', (['shifted_mean', 'shift'], {}), '(shifted_mean, shift)\n', (29687, 29708), True, 'import cntk as C\n'), ((30817, 30849), 'cntk.splice', 'C.splice', (['*tensors'], {'axis': 'axis[0]'}), '(*tensors, axis=axis[0])\n', (30825, 30849), True, 'import cntk as C\n'), ((33044, 33064), 'cntk.transpose', 'C.transpose', (['x', 'axis'], {}), '(x, axis)\n', (33055, 33064), True, 'import cntk as C\n'), ((34544, 34572), 'cntk.splice', 'C.splice', (['*slices'], {'axis': 'axis'}), '(*slices, axis=axis)\n', (34552, 34572), True, 'import cntk as C\n'), ((35137, 35160), 'cntk.reshape', 'C.reshape', (['x', 'new_shape'], {}), '(x, new_shape)\n', (35146, 35160), True, 'import cntk as C\n'), ((35191, 35218), 'cntk.splice', 'C.splice', (['*temp'], {'axis': 'index'}), '(*temp, axis=index)\n', (35199, 35218), True, 'import cntk as C\n'), ((35245, 35254), 'cntk.tanh', 'C.tanh', (['x'], {}), '(x)\n', (35251, 35254), True, 'import cntk as C\n'), ((44060, 44079), 'cntk.clip', 'C.clip', (['x', '(0.0)', '(1.0)'], {}), '(x, 0.0, 1.0)\n', (44066, 44079), True, 'import cntk as C\n'), ((50105, 50191), 'cntk.convolution', 'C.convolution', (['kernel', 'x', 'strides'], {'auto_padding': '[False, padding, padding, padding]'}), '(kernel, x, strides, auto_padding=[False, padding, padding,\n padding])\n', (50118, 50191), True, 'import cntk as C\n'), ((51244, 51367), 'cntk.convolution_transpose', 'C.convolution_transpose', (['kernel', 'x', 'strides'], {'auto_padding': '[False, padding, padding, padding]', 'output_shape': 'output_shape'}), '(kernel, x, strides, auto_padding=[False, padding,\n padding, padding], output_shape=output_shape)\n', (51267, 51367), True, 'import cntk as C\n'), ((53443, 53452), 'cntk.relu', 'C.relu', (['x'], {}), '(x)\n', (53449, 53452), True, 'import cntk as C\n'), ((53819, 53838), 'cntk.dropout', 'C.dropout', (['x', 'level'], {}), '(x, level)\n', (53828, 53838), True, 'import cntk as C\n'), ((53959, 53975), 'numpy.prod', 'np.prod', (['x.shape'], {}), '(x.shape)\n', (53966, 53975), True, 'import numpy as np\n'), ((53984, 54003), 'cntk.reshape', 'C.reshape', (['x', '(-1,)'], {}), '(x, (-1,))\n', (53993, 54003), True, 'import cntk as C\n'), ((54088, 54111), 'cntk.softmax', 'C.softmax', (['x'], {'axis': 'axis'}), '(x, axis=axis)\n', (54097, 54111), True, 'import cntk as C\n'), ((54142, 54155), 'cntk.softplus', 'C.softplus', (['x'], {}), '(x)\n', (54152, 54155), True, 'import cntk as C\n'), ((54854, 54889), 'cntk.one_hot', 'C.one_hot', (['target', 'output.shape[-1]'], {}), '(target, output.shape[-1])\n', (54863, 54889), True, 'import cntk as C\n'), ((54903, 54934), 'cntk.reshape', 'C.reshape', (['target', 'output.shape'], {}), '(target, output.shape)\n', (54912, 54934), True, 'import cntk as C\n'), ((67909, 67940), 'cntk.one_hot', 'C.one_hot', (['indices', 'num_classes'], {}), '(indices, num_classes)\n', (67918, 67940), True, 'import cntk as C\n'), ((70112, 70173), 'cntk.element_select', 'C.element_select', (['condition', 'then_expression', 'else_expression'], {}), '(condition, then_expression, else_expression)\n', (70128, 70173), True, 'import cntk as C\n'), ((70264, 70272), 'cntk.elu', 'C.elu', (['x'], {}), '(x)\n', (70269, 70272), True, 'import cntk as C\n'), ((70444, 70485), 'cntk.one_hot', 'C.one_hot', (['targets', 'predictions.shape[-1]'], {}), '(targets, predictions.shape[-1])\n', (70453, 70485), True, 'import cntk as C\n'), ((70499, 70552), 'cntk.classification_error', 'C.classification_error', (['predictions', '_targets'], {'topN': 'k'}), '(predictions, _targets, topN=k)\n', (70521, 70552), True, 'import cntk as C\n'), ((71478, 71592), 'cntk.convolution_transpose', 'C.convolution_transpose', (['kernel', 'x', 'strides'], {'auto_padding': '[False, padding, padding]', 'output_shape': 'output_shape'}), '(kernel, x, strides, auto_padding=[False, padding,\n padding], output_shape=output_shape)\n', (71501, 71592), True, 'import cntk as C\n'), ((71818, 71839), 'cntk.alias', 'C.alias', (['x'], {'name': 'name'}), '(x, name=name)\n', (71825, 71839), True, 'import cntk as C\n'), ((72461, 72494), 'cntk.transpose', 'C.transpose', (['kernel', '(3, 2, 0, 1)'], {}), '(kernel, (3, 2, 0, 1))\n', (72472, 72494), True, 'import cntk as C\n'), ((73365, 73401), 'cntk.transpose', 'C.transpose', (['kernel', '(4, 3, 0, 1, 2)'], {}), '(kernel, (4, 3, 0, 1, 2))\n', (73376, 73401), True, 'import cntk as C\n'), ((77621, 77675), 'cntk.slice', 'C.slice', (['x', 'cntk_axes', 'begin_index', 'end_index', 'strides'], {}), '(x, cntk_axes, begin_index, end_index, strides)\n', (77628, 77675), True, 'import cntk as C\n'), ((10726, 10740), 'numpy.ones', 'np.ones', (['shape'], {}), '(shape)\n', (10733, 10740), True, 'import numpy as np\n'), ((11156, 11186), 'numpy.random.randint', 'np.random.randint', (['(100000000.0)'], {}), '(100000000.0)\n', (11173, 11186), True, 'import numpy as np\n'), ((11188, 11208), 'numpy.random.seed', 'np.random.seed', (['seed'], {}), '(seed)\n', (11202, 11208), True, 'import numpy as np\n'), ((12455, 12481), 'numpy.random.randint', 'np.random.randint', (['(10000.0)'], {}), '(10000.0)\n', (12472, 12481), True, 'import numpy as np\n'), ((13139, 13169), 'numpy.random.randint', 'np.random.randint', (['(100000000.0)'], {}), '(100000000.0)\n', (13156, 13169), True, 'import numpy as np\n'), ((14113, 14145), 'numpy.random.randint', 'np.random.randint', (['(1)', '(10000000.0)'], {}), '(1, 10000000.0)\n', (14130, 14145), True, 'import numpy as np\n'), ((14939, 14951), 'numpy.eye', 'np.eye', (['size'], {}), '(size)\n', (14945, 14951), True, 'import numpy as np\n'), ((15954, 15967), 'cntk.times', 'C.times', (['x', 'y'], {}), '(x, y)\n', (15961, 15967), True, 'import cntk as C\n'), ((17778, 17810), 'cntk.ops.gather', 'C.ops.gather', (['reference', 'indices'], {}), '(reference, indices)\n', (17790, 17810), True, 'import cntk as C\n'), ((17887, 17922), 'cntk.ops.one_hot', 'C.ops.one_hot', (['indices', 'num_classes'], {}), '(indices, num_classes)\n', (17900, 17922), True, 'import cntk as C\n'), ((23765, 23784), 'cntk.reshape', 'C.reshape', (['x', 'shape'], {}), '(x, shape)\n', (23774, 23784), True, 'import cntk as C\n'), ((24272, 24296), 'cntk.reduce_sum', 'C.reduce_sum', (['any_matrix'], {}), '(any_matrix)\n', (24284, 24296), True, 'import cntk as C\n'), ((24641, 24665), 'cntk.reduce_sum', 'C.reduce_sum', (['all_matrix'], {}), '(all_matrix)\n', (24653, 24665), True, 'import cntk as C\n'), ((25597, 25605), 'cntk.abs', 'C.abs', (['x'], {}), '(x)\n', (25602, 25605), True, 'import cntk as C\n'), ((26018, 26035), 'cntk.sigmoid', 'C.sigmoid', (['output'], {}), '(output)\n', (26027, 26035), True, 'import cntk as C\n'), ((26910, 26969), 'cntk.constant', 'C.constant', (['(0)'], {'shape': 'v.shape', 'name': '"""keras_grad_placeholder"""'}), "(0, shape=v.shape, name='keras_grad_placeholder')\n", (26920, 26969), True, 'import cntk as C\n'), ((28608, 28637), 'cntk.reshape', 'C.reshape', (['mean', 'target_shape'], {}), '(mean, target_shape)\n', (28617, 28637), True, 'import cntk as C\n'), ((28662, 28694), 'cntk.reshape', 'C.reshape', (['variant', 'target_shape'], {}), '(variant, target_shape)\n', (28671, 28694), True, 'import cntk as C\n'), ((28721, 28751), 'cntk.reshape', 'C.reshape', (['gamma', 'target_shape'], {}), '(gamma, target_shape)\n', (28730, 28751), True, 'import cntk as C\n'), ((28777, 28806), 'cntk.reshape', 'C.reshape', (['beta', 'target_shape'], {}), '(beta, target_shape)\n', (28786, 28806), True, 'import cntk as C\n'), ((29432, 29470), 'cntk.reduce_mean', 'C.reduce_mean', (['shifted_mean'], {'axis': 'axis'}), '(shifted_mean, axis=axis)\n', (29445, 29470), True, 'import cntk as C\n'), ((29501, 29518), 'cntk.minus', 'C.minus', (['x', 'shift'], {}), '(x, shift)\n', (29508, 29518), True, 'import cntk as C\n'), ((29567, 29606), 'cntk.reduce_mean', 'C.reduce_mean', (['variance_mean'], {'axis': 'axis'}), '(variance_mean, axis=axis)\n', (29580, 29606), True, 'import cntk as C\n'), ((29646, 29668), 'cntk.square', 'C.square', (['shifted_mean'], {}), '(shifted_mean)\n', (29654, 29668), True, 'import cntk as C\n'), ((31069, 31088), 'cntk.reshape', 'C.reshape', (['x', 'shape'], {}), '(x, shape)\n', (31078, 31088), True, 'import cntk as C\n'), ((34427, 34457), 'cntk.ops.slice', 'C.ops.slice', (['x', 'axis', 'i', '(i + 1)'], {}), '(x, axis, i, i + 1)\n', (34438, 34457), True, 'import cntk as C\n'), ((38958, 39010), 'cntk.splice', 'C.splice', (['final_output', 'output_slice'], {'axis': 'time_axis'}), '(final_output, output_slice, axis=time_axis)\n', (38966, 39010), True, 'import cntk as C\n'), ((40814, 40839), 'cntk.to_sequence', 'C.to_sequence', (['rnn_inputs'], {}), '(rnn_inputs)\n', (40827, 40839), True, 'import cntk as C\n'), ((41733, 41769), 'cntk.to_sequence_like', 'C.to_sequence_like', (['mask', 'rnn_inputs'], {}), '(mask, rnn_inputs)\n', (41751, 41769), True, 'import cntk as C\n'), ((41809, 41841), 'cntk.default_options', 'C.default_options', ([], {'axis_offset': '(1)'}), '(axis_offset=1)\n', (41826, 41841), True, 'import cntk as C\n'), ((42888, 42917), 'cntk.sequence.last', 'C.sequence.last', (['final_output'], {}), '(final_output)\n', (42903, 42917), True, 'import cntk as C\n'), ((43028, 43083), 'cntk.sequence.unpack', 'C.sequence.unpack', (['final_output', '(0)'], {'no_mask_output': '(True)'}), '(final_output, 0, no_mask_output=True)\n', (43045, 43083), True, 'import cntk as C\n'), ((44644, 44663), 'cntk.swapaxes', 'C.swapaxes', (['x', '(0)', '(1)'], {}), '(x, 0, 1)\n', (44654, 44663), True, 'import cntk as C\n'), ((44681, 44705), 'cntk.swapaxes', 'C.swapaxes', (['kernel', '(0)', '(2)'], {}), '(kernel, 0, 2)\n', (44691, 44705), True, 'import cntk as C\n'), ((44976, 44995), 'cntk.swapaxes', 'C.swapaxes', (['x', '(0)', '(1)'], {}), '(x, 0, 1)\n', (44986, 44995), True, 'import cntk as C\n'), ((45553, 45626), 'cntk.convolution', 'C.convolution', (['kernel', 'x', 'strides'], {'auto_padding': '[False, padding, padding]'}), '(kernel, x, strides, auto_padding=[False, padding, padding])\n', (45566, 45626), True, 'import cntk as C\n'), ((45875, 45969), 'cntk.convolution', 'C.convolution', (['kernel', 'x'], {'strides': 'dilation_rate[0]', 'auto_padding': '[False, padding, padding]'}), '(kernel, x, strides=dilation_rate[0], auto_padding=[False,\n padding, padding])\n', (45888, 45969), True, 'import cntk as C\n'), ((46816, 46859), 'cntk.transpose', 'C.transpose', (['depthwise_kernel', '(1, 0, 2, 3)'], {}), '(depthwise_kernel, (1, 0, 2, 3))\n', (46827, 46859), True, 'import cntk as C\n'), ((47137, 47251), 'cntk.convolution', 'C.convolution', (['depthwise_kernel', 'x'], {'strides': 'strides', 'auto_padding': '[False, padding, padding]', 'groups': 'x.shape[0]'}), '(depthwise_kernel, x, strides=strides, auto_padding=[False,\n padding, padding], groups=x.shape[0])\n', (47150, 47251), True, 'import cntk as C\n'), ((47338, 47413), 'cntk.convolution', 'C.convolution', (['pointwise_kernel', 'x'], {'strides': '(1, 1, 1)', 'auto_padding': '[False]'}), '(pointwise_kernel, x, strides=(1, 1, 1), auto_padding=[False])\n', (47351, 47413), True, 'import cntk as C\n'), ((47760, 47865), 'cntk.convolution', 'C.convolution', (['depthwise_kernel', 'x'], {'strides': 'dilation_rate[0]', 'auto_padding': '[False, padding, padding]'}), '(depthwise_kernel, x, strides=dilation_rate[0], auto_padding=[\n False, padding, padding])\n', (47773, 47865), True, 'import cntk as C\n'), ((47925, 48000), 'cntk.convolution', 'C.convolution', (['pointwise_kernel', 'x'], {'strides': '(1, 1, 1)', 'auto_padding': '[False]'}), '(pointwise_kernel, x, strides=(1, 1, 1), auto_padding=[False])\n', (47938, 48000), True, 'import cntk as C\n'), ((48610, 48653), 'cntk.transpose', 'C.transpose', (['depthwise_kernel', '(1, 0, 2, 3)'], {}), '(depthwise_kernel, (1, 0, 2, 3))\n', (48621, 48653), True, 'import cntk as C\n'), ((48850, 48964), 'cntk.convolution', 'C.convolution', (['depthwise_kernel', 'x'], {'strides': 'strides', 'auto_padding': '[False, padding, padding]', 'groups': 'x.shape[0]'}), '(depthwise_kernel, x, strides=strides, auto_padding=[False,\n padding, padding], groups=x.shape[0])\n', (48863, 48964), True, 'import cntk as C\n'), ((49333, 49457), 'cntk.convolution', 'C.convolution', (['depthwise_kernel', 'x'], {'strides': 'dilation_rate[0]', 'auto_padding': '[False, padding, padding]', 'groups': 'x.shape[0]'}), '(depthwise_kernel, x, strides=dilation_rate[0], auto_padding=[\n False, padding, padding], groups=x.shape[0])\n', (49346, 49457), True, 'import cntk as C\n'), ((52011, 52082), 'cntk.pooling', 'C.pooling', (['x', 'C.MAX_POOLING', 'pool_size', 'strides'], {'auto_padding': '[padding]'}), '(x, C.MAX_POOLING, pool_size, strides, auto_padding=[padding])\n', (52020, 52082), True, 'import cntk as C\n'), ((52899, 52970), 'cntk.pooling', 'C.pooling', (['x', 'C.MAX_POOLING', 'pool_size', 'strides'], {'auto_padding': '[padding]'}), '(x, C.MAX_POOLING, pool_size, strides, auto_padding=[padding])\n', (52908, 52970), True, 'import cntk as C\n'), ((53424, 53434), 'cntk.relu', 'C.relu', (['(-x)'], {}), '(-x)\n', (53430, 53434), True, 'import cntk as C\n'), ((53495, 53520), 'cntk.clip', 'C.clip', (['x', '(0.0)', 'max_value'], {}), '(x, 0.0, max_value)\n', (53501, 53520), True, 'import cntk as C\n'), ((54309, 54353), 'cntk.cross_entropy_with_softmax', 'C.cross_entropy_with_softmax', (['output', 'target'], {}), '(output, target)\n', (54337, 54353), True, 'import cntk as C\n'), ((54443, 54464), 'cntk.reshape', 'C.reshape', (['result', '()'], {}), '(result, ())\n', (54452, 54464), True, 'import cntk as C\n'), ((54564, 54593), 'cntk.reduce_sum', 'C.reduce_sum', (['output'], {'axis': '(-1)'}), '(output, axis=-1)\n', (54576, 54593), True, 'import cntk as C\n'), ((69342, 69368), 'cntk.stop_gradient', 'C.stop_gradient', (['variables'], {}), '(variables)\n', (69357, 69368), True, 'import cntk as C\n'), ((70568, 70595), 'cntk.reshape', 'C.reshape', (['result'], {'shape': '()'}), '(result, shape=())\n', (70577, 70595), True, 'import cntk as C\n'), ((72154, 72179), 'cntk.transpose', 'C.transpose', (['x', '(2, 0, 1)'], {}), '(x, (2, 0, 1))\n', (72165, 72179), True, 'import cntk as C\n'), ((72850, 72875), 'cntk.transpose', 'C.transpose', (['x', '(1, 2, 0)'], {}), '(x, (1, 2, 0))\n', (72861, 72875), True, 'import cntk as C\n'), ((73255, 73283), 'cntk.transpose', 'C.transpose', (['x', '(3, 0, 1, 2)'], {}), '(x, (3, 0, 1, 2))\n', (73266, 73283), True, 'import cntk as C\n'), ((73523, 73551), 'cntk.transpose', 'C.transpose', (['x', '(1, 2, 3, 0)'], {}), '(x, (1, 2, 3, 0))\n', (73534, 73551), True, 'import cntk as C\n'), ((77855, 77872), 'cntk.unpack_batch', 'C.unpack_batch', (['x'], {}), '(x)\n', (77869, 77872), True, 'import cntk as C\n'), ((77891, 77916), 'cntk.reshape', 'C.reshape', (['const_a', 'shape'], {}), '(const_a, shape)\n', (77900, 77916), True, 'import cntk as C\n'), ((77932, 77951), 'cntk.to_batch', 'C.to_batch', (['const_a'], {}), '(const_a)\n', (77942, 77951), True, 'import cntk as C\n'), ((78836, 78863), 'cntk.Axis.default_batch_axis', 'C.Axis.default_batch_axis', ([], {}), '()\n', (78861, 78863), True, 'import cntk as C\n'), ((80338, 80365), 'cntk.Axis.default_batch_axis', 'C.Axis.default_batch_axis', ([], {}), '()\n', (80363, 80365), True, 'import cntk as C\n'), ((3166, 3200), 'cntk.element_select', 'C.element_select', (['training', 'x', 'alt'], {}), '(training, x, alt)\n', (3182, 3200), True, 'import cntk as C\n'), ((12703, 12742), 'cntk.initializer.uniform', 'C.initializer.uniform', (['scale'], {'seed': 'seed'}), '(scale, seed=seed)\n', (12724, 12742), True, 'import cntk as C\n'), ((13366, 13410), 'cntk.initializer.normal', 'C.initializer.normal', ([], {'scale': 'scale', 'seed': 'seed'}), '(scale=scale, seed=seed)\n', (13386, 13410), True, 'import cntk as C\n'), ((14289, 14338), 'cntk.initializer.truncated_normal', 'C.initializer.truncated_normal', (['stddev'], {'seed': 'seed'}), '(stddev, seed=seed)\n', (14319, 14338), True, 'import cntk as C\n'), ((14581, 14603), 'numpy.zeros', 'np.zeros', (['shape', 'ctype'], {}), '(shape, ctype)\n', (14589, 14603), True, 'import numpy as np\n'), ((14785, 14806), 'numpy.ones', 'np.ones', (['shape', 'ctype'], {}), '(shape, ctype)\n', (14792, 14806), True, 'import numpy as np\n'), ((15849, 15881), 'cntk.transpose', 'C.transpose', (['y'], {'perm': 'permutation'}), '(y, perm=permutation)\n', (15860, 15881), True, 'import cntk as C\n'), ((17108, 17131), 'cntk.swapaxes', 'C.swapaxes', (['x', 'i', '(i + 1)'], {}), '(x, i, i + 1)\n', (17118, 17131), True, 'import cntk as C\n'), ((17219, 17242), 'cntk.swapaxes', 'C.swapaxes', (['y', 'i', '(i - 1)'], {}), '(y, i, i - 1)\n', (17229, 17242), True, 'import cntk as C\n'), ((21328, 21369), 'cntk.splice', 'C.splice', (['*tmp'], {'axis': '(i - num_dynamic_axis)'}), '(*tmp, axis=i - num_dynamic_axis)\n', (21336, 21369), True, 'import cntk as C\n'), ((23066, 23083), 'cntk.Axis.all_axes', 'C.Axis.all_axes', ([], {}), '()\n', (23081, 23083), True, 'import cntk as C\n'), ((23395, 23460), 'cntk.reshape', 'C.reshape', (['result'], {'shape': '()', 'begin_axis': 'index', 'end_axis': '(index + 1)'}), '(result, shape=(), begin_axis=index, end_axis=index + 1)\n', (23404, 23460), True, 'import cntk as C\n'), ((24956, 24973), 'cntk.Axis.all_axes', 'C.Axis.all_axes', ([], {}), '()\n', (24971, 24973), True, 'import cntk as C\n'), ((26115, 26128), 'cntk.log', 'C.log', (['output'], {}), '(output)\n', (26120, 26128), True, 'import cntk as C\n'), ((26148, 26167), 'cntk.log', 'C.log', (['(1.0 - output)'], {}), '(1.0 - output)\n', (26153, 26167), True, 'import cntk as C\n'), ((29281, 29312), 'cntk.reduce_mean', 'C.reduce_mean', (['shift'], {'axis': 'axis'}), '(shift, axis=axis)\n', (29294, 29312), True, 'import cntk as C\n'), ((32296, 32319), 'cntk.reshape', 'C.reshape', (['x', 'new_shape'], {}), '(x, new_shape)\n', (32305, 32319), True, 'import cntk as C\n'), ((36429, 36469), 'cntk.ops.slice', 'C.ops.slice', (['inputs', 'time_axis', 'i', '(i + 1)'], {}), '(inputs, time_axis, i, i + 1)\n', (36440, 36469), True, 'import cntk as C\n'), ((37602, 37642), 'cntk.ops.slice', 'C.ops.slice', (['inputs', 'time_axis', 'i', '(i + 1)'], {}), '(inputs, time_axis, i, i + 1)\n', (37613, 37642), True, 'import cntk as C\n'), ((42941, 42959), 'cntk.sequence.last', 'C.sequence.last', (['s'], {}), '(s)\n', (42956, 42959), True, 'import cntk as C\n'), ((43957, 43968), 'cntk.square', 'C.square', (['x'], {}), '(x)\n', (43965, 43968), True, 'import cntk as C\n'), ((52185, 52256), 'cntk.pooling', 'C.pooling', (['x', 'C.AVG_POOLING', 'pool_size', 'strides'], {'auto_padding': '[padding]'}), '(x, C.AVG_POOLING, pool_size, strides, auto_padding=[padding])\n', (52194, 52256), True, 'import cntk as C\n'), ((53073, 53144), 'cntk.pooling', 'C.pooling', (['x', 'C.AVG_POOLING', 'pool_size', 'strides'], {'auto_padding': '[padding]'}), '(x, C.AVG_POOLING, pool_size, strides, auto_padding=[padding])\n', (53082, 53144), True, 'import cntk as C\n'), ((54195, 54203), 'cntk.abs', 'C.abs', (['x'], {}), '(x)\n', (54200, 54203), True, 'import cntk as C\n'), ((55923, 55959), 'cntk.combine', 'C.combine', (['[u.output for u in u_ops]'], {}), '([u.output for u in u_ops])\n', (55932, 55959), True, 'import cntk as C\n'), ((57442, 57473), 'cntk.combine', 'C.combine', (['self.metrics_outputs'], {}), '(self.metrics_outputs)\n', (57451, 57473), True, 'import cntk as C\n'), ((63010, 63045), 'cntk.pad', 'C.pad', (['x'], {'pattern': '[padding, (0, 0)]'}), '(x, pattern=[padding, (0, 0)])\n', (63015, 63045), True, 'import cntk as C\n'), ((63192, 63235), 'cntk.pad', 'C.pad', (['x'], {'pattern': '[(0, 0), padding, (0, 0)]'}), '(x, pattern=[(0, 0), padding, (0, 0)])\n', (63197, 63235), True, 'import cntk as C\n'), ((63857, 63896), 'cntk.constant', 'C.constant', ([], {'value': '(0)', 'shape': 'prefix_shape'}), '(value=0, shape=prefix_shape)\n', (63867, 63896), True, 'import cntk as C\n'), ((64115, 64155), 'cntk.constant', 'C.constant', ([], {'value': '(0)', 'shape': 'postfix_shape'}), '(value=0, shape=postfix_shape)\n', (64125, 64155), True, 'import cntk as C\n'), ((69046, 69063), 'numpy.asarray', 'np.asarray', (['value'], {}), '(value)\n', (69056, 69063), True, 'import numpy as np\n'), ((70353, 70368), 'cntk.greater', 'C.greater', (['x', '(0)'], {}), '(x, 0)\n', (70362, 70368), True, 'import cntk as C\n'), ((73799, 73828), 'cntk.Axis.default_dynamic_axis', 'C.Axis.default_dynamic_axis', ([], {}), '()\n', (73826, 73828), True, 'import cntk as C\n'), ((78362, 78472), 'warnings.warn', 'warnings.warn', (['"""CNTK backend warning: CNTK version not detected. Will using CNTK 2.0 GA as default."""'], {}), "(\n 'CNTK backend warning: CNTK version not detected. Will using CNTK 2.0 GA as default.'\n )\n", (78375, 78472), False, 'import warnings\n'), ((78893, 78965), 'cntk.output_variable', 'C.output_variable', (['self.target_shape', 'self.inputs[0].dtype', '[batch_axis]'], {}), '(self.target_shape, self.inputs[0].dtype, [batch_axis])\n', (78910, 78965), True, 'import cntk as C\n'), ((79207, 79236), 'numpy.asarray', 'np.asarray', (['self.target_shape'], {}), '(self.target_shape)\n', (79217, 79236), True, 'import numpy as np\n'), ((79394, 79417), 'cntk.cntk_py.Value', 'C.cntk_py.Value', (['result'], {}), '(result)\n', (79409, 79417), True, 'import cntk as C\n'), ((79640, 79667), 'numpy.asarray', 'np.asarray', (['self.from_shape'], {}), '(self.from_shape)\n', (79650, 79667), True, 'import numpy as np\n'), ((80395, 80474), 'cntk.output_variable', 'C.output_variable', (['self.inputs[0].shape[1:]', 'self.inputs[0].dtype', '[batch_axis]'], {}), '(self.inputs[0].shape[1:], self.inputs[0].dtype, [batch_axis])\n', (80412, 80474), True, 'import cntk as C\n'), ((81357, 81419), 'cntk.output_variable', 'C.output_variable', (['self.target_shape', 'self.inputs[0].dtype', '[]'], {}), '(self.target_shape, self.inputs[0].dtype, [])\n', (81374, 81419), True, 'import cntk as C\n'), ((82085, 82180), 'cntk.output_variable', 'C.output_variable', (['self.inputs[0].shape', 'self.inputs[0].dtype', 'self.inputs[0].dynamic_axes'], {}), '(self.inputs[0].shape, self.inputs[0].dtype, self.inputs[0\n ].dynamic_axes)\n', (82102, 82180), True, 'import cntk as C\n'), ((31418, 31563), 'warnings.warn', 'warnings.warn', (['"""Warning: CNTK backend does not support collapse of batch axis with inferred dimension. The reshape did not take place."""'], {}), "(\n 'Warning: CNTK backend does not support collapse of batch axis with inferred dimension. The reshape did not take place.'\n )\n", (31431, 31563), False, 'import warnings\n'), ((36834, 36872), 'cntk.ops.slice', 'C.ops.slice', (['mask', 'time_axis', 'i', '(i + 1)'], {}), '(mask, time_axis, i, i + 1)\n', (36845, 36872), True, 'import cntk as C\n'), ((37117, 37170), 'cntk.ops.element_select', 'C.ops.element_select', (['mask_slice', 'output', 'prev_output'], {}), '(mask_slice, output, prev_output)\n', (37137, 37170), True, 'import cntk as C\n'), ((37999, 38037), 'cntk.ops.slice', 'C.ops.slice', (['mask', 'time_axis', 'i', '(i + 1)'], {}), '(mask, time_axis, i, i + 1)\n', (38010, 38037), True, 'import cntk as C\n'), ((38274, 38327), 'cntk.ops.element_select', 'C.ops.element_select', (['mask_slice', 'output', 'prev_output'], {}), '(mask_slice, output, prev_output)\n', (38294, 38327), True, 'import cntk as C\n'), ((41945, 41987), 'cntk.placeholder', 'C.placeholder', ([], {'dynamic_axes': 'x.dynamic_axes'}), '(dynamic_axes=x.dynamic_axes)\n', (41958, 41987), True, 'import cntk as C\n'), ((56690, 56746), 'cntk.cntk_py.universal_learner', 'C.cntk_py.universal_learner', (['p_list', 'u_list', 'update_func'], {}), '(p_list, u_list, update_func)\n', (56717, 56746), True, 'import cntk as C\n'), ((56950, 57001), 'cntk.trainer.Trainer', 'C.trainer.Trainer', (['outputs[0]', 'criterion', '[learner]'], {}), '(outputs[0], criterion, [learner])\n', (56967, 57001), True, 'import cntk as C\n'), ((57264, 57312), 'cntk.combine', 'C.combine', (['[_.output for _ in unrelated_updates]'], {}), '([_.output for _ in unrelated_updates])\n', (57273, 57312), True, 'import cntk as C\n'), ((57719, 57750), 'cntk.combine', 'C.combine', (['self.metrics_outputs'], {}), '(self.metrics_outputs)\n', (57728, 57750), True, 'import cntk as C\n'), ((58902, 58919), 'numpy.asarray', 'np.asarray', (['value'], {}), '(value)\n', (58912, 58919), True, 'import numpy as np\n'), ((79141, 79168), 'numpy.asarray', 'np.asarray', (['self.from_shape'], {}), '(self.from_shape)\n', (79151, 79168), True, 'import numpy as np\n'), ((79572, 79601), 'numpy.asarray', 'np.asarray', (['self.target_shape'], {}), '(self.target_shape)\n', (79582, 79601), True, 'import numpy as np\n'), ((11650, 11680), 'numpy.random.binomial', 'np.random.binomial', (['(1)', 'p', 'size'], {}), '(1, p, size)\n', (11668, 11680), True, 'import numpy as np\n'), ((28425, 28455), 'cntk.reduce_mean', 'C.reduce_mean', (['gamma', '(axis - 1)'], {}), '(gamma, axis - 1)\n', (28438, 28455), True, 'import cntk as C\n'), ((28483, 28512), 'cntk.reduce_mean', 'C.reduce_mean', (['beta', '(axis - 1)'], {}), '(beta, axis - 1)\n', (28496, 28512), True, 'import cntk as C\n'), ((30621, 30632), 'cntk.sqrt', 'C.sqrt', (['var'], {}), '(var)\n', (30627, 30632), True, 'import cntk as C\n'), ((40197, 40210), 'cntk.to_batch', 'C.to_batch', (['s'], {}), '(s)\n', (40207, 40210), True, 'import cntk as C\n'), ((42121, 42148), 'cntk.sequence.past_value', 'C.sequence.past_value', (['p', 's'], {}), '(p, s)\n', (42142, 42148), True, 'import cntk as C\n'), ((42479, 42504), 'cntk.element_select', 'C.element_select', (['m', 'n', 's'], {}), '(m, n, s)\n', (42495, 42504), True, 'import cntk as C\n'), ((43463, 43482), 'cntk.unpack_batch', 'C.unpack_batch', (['l_s'], {}), '(l_s)\n', (43477, 43482), True, 'import cntk as C\n'), ((54743, 54756), 'cntk.log', 'C.log', (['output'], {}), '(output)\n', (54748, 54756), True, 'import cntk as C\n'), ((74098, 74125), 'cntk.Axis.default_batch_axis', 'C.Axis.default_batch_axis', ([], {}), '()\n', (74123, 74125), True, 'import cntk as C\n'), ((37328, 37368), 'cntk.ops.element_select', 'C.ops.element_select', (['mask_slice', 'n_s', 's'], {}), '(mask_slice, n_s, s)\n', (37348, 37368), True, 'import cntk as C\n'), ((38485, 38525), 'cntk.ops.element_select', 'C.ops.element_select', (['mask_slice', 'n_s', 's'], {}), '(mask_slice, n_s, s)\n', (38505, 38525), True, 'import cntk as C\n'), ((41365, 41410), 'cntk.sequence.broadcast_as', 'C.sequence.broadcast_as', (['constant', 'rnn_inputs'], {}), '(constant, rnn_inputs)\n', (41388, 41410), True, 'import cntk as C\n'), ((55663, 55693), 'cntk.assign', 'C.assign', (['update[0]', 'update[1]'], {}), '(update[0], update[1])\n', (55671, 55693), True, 'import cntk as C\n'), ((41099, 41137), 'cntk.sequence.broadcast_as', 'C.sequence.broadcast_as', (['c', 'rnn_inputs'], {}), '(c, rnn_inputs)\n', (41122, 41137), True, 'import cntk as C\n')]
import torch import torch.nn as nn import numpy as np import math class ForwardKinematics: def __init__(self, args, edges): self.topology = [-1] * (len(edges) + 1) self.rotation_map = [] for i, edge in enumerate(edges): self.topology[edge[1]] = edge[0] self.rotation_map.append(edge[1]) self.world = args.fk_world self.pos_repr = args.pos_repr self.quater = args.rotation == 'quaternion' def forward_from_raw(self, raw, offset, world=None, quater=None): if world is None: world = self.world if quater is None: quater = self.quater if self.pos_repr == '3d': position = raw[:, -3:, :] rotation = raw[:, :-3, :] elif self.pos_repr == '4d': raise Exception('Not support') if quater: rotation = rotation.reshape((rotation.shape[0], -1, 4, rotation.shape[-1])) identity = torch.tensor((1, 0, 0, 0), dtype=torch.float, device=raw.device) else: rotation = rotation.reshape((rotation.shape[0], -1, 3, rotation.shape[-1])) identity = torch.zeros((3, ), dtype=torch.float, device=raw.device) identity = identity.reshape((1, 1, -1, 1)) new_shape = list(rotation.shape) new_shape[1] += 1 new_shape[2] = 1 rotation_final = identity.repeat(new_shape) for i, j in enumerate(self.rotation_map): rotation_final[:, j, :, :] = rotation[:, i, :, :] return self.forward(rotation_final, position, offset, world=world, quater=quater) ''' rotation should have shape batch_size * Joint_num * (3/4) * Time position should have shape batch_size * 3 * Time offset should have shape batch_size * Joint_num * 3 output have shape batch_size * Time * Joint_num * 3 ''' def forward(self, rotation: torch.Tensor, position: torch.Tensor, offset: torch.Tensor, order='xyz', quater=False, world=True): if not quater and rotation.shape[-2] != 3: raise Exception('Unexpected shape of rotation') if quater and rotation.shape[-2] != 4: raise Exception('Unexpected shape of rotation') rotation = rotation.permute(0, 3, 1, 2) position = position.permute(0, 2, 1) result = torch.empty(rotation.shape[:-1] + (3, ), device=position.device) norm = torch.norm(rotation, dim=-1, keepdim=True) #norm[norm < 1e-10] = 1 rotation = rotation / norm if quater: transform = self.transform_from_quaternion(rotation) else: transform = self.transform_from_euler(rotation, order) offset = offset.reshape((-1, 1, offset.shape[-2], offset.shape[-1], 1)) result[..., 0, :] = position for i, pi in enumerate(self.topology): if pi == -1: assert i == 0 continue transform[..., i, :, :] = torch.matmul(transform[..., pi, :, :], transform[..., i, :, :]) result[..., i, :] = torch.matmul(transform[..., i, :, :], offset[..., i, :, :]).squeeze() if world: result[..., i, :] += result[..., pi, :] return result def from_local_to_world(self, res: torch.Tensor): res = res.clone() for i, pi in enumerate(self.topology): if pi == 0 or pi == -1: continue res[..., i, :] += res[..., pi, :] return res @staticmethod def transform_from_euler(rotation, order): rotation = rotation / 180 * math.pi transform = torch.matmul(ForwardKinematics.transform_from_axis(rotation[..., 1], order[1]), ForwardKinematics.transform_from_axis(rotation[..., 2], order[2])) transform = torch.matmul(ForwardKinematics.transform_from_axis(rotation[..., 0], order[0]), transform) return transform @staticmethod def transform_from_axis(euler, axis): transform = torch.empty(euler.shape[0:3] + (3, 3), device=euler.device) cos = torch.cos(euler) sin = torch.sin(euler) cord = ord(axis) - ord('x') transform[..., cord, :] = transform[..., :, cord] = 0 transform[..., cord, cord] = 1 if axis == 'x': transform[..., 1, 1] = transform[..., 2, 2] = cos transform[..., 1, 2] = -sin transform[..., 2, 1] = sin if axis == 'y': transform[..., 0, 0] = transform[..., 2, 2] = cos transform[..., 0, 2] = sin transform[..., 2, 0] = -sin if axis == 'z': transform[..., 0, 0] = transform[..., 1, 1] = cos transform[..., 0, 1] = -sin transform[..., 1, 0] = sin return transform @staticmethod def transform_from_quaternion(quater: torch.Tensor): qw = quater[..., 0] qx = quater[..., 1] qy = quater[..., 2] qz = quater[..., 3] x2 = qx + qx y2 = qy + qy z2 = qz + qz xx = qx * x2 yy = qy * y2 wx = qw * x2 xy = qx * y2 yz = qy * z2 wy = qw * y2 xz = qx * z2 zz = qz * z2 wz = qw * z2 m = torch.empty(quater.shape[:-1] + (3, 3), device=quater.device) m[..., 0, 0] = 1.0 - (yy + zz) m[..., 0, 1] = xy - wz m[..., 0, 2] = xz + wy m[..., 1, 0] = xy + wz m[..., 1, 1] = 1.0 - (xx + zz) m[..., 1, 2] = yz - wx m[..., 2, 0] = xz - wy m[..., 2, 1] = yz + wx m[..., 2, 2] = 1.0 - (xx + yy) return m class InverseKinematics: def __init__(self, rotations: torch.Tensor, positions: torch.Tensor, offset, parents, constrains): self.rotations = rotations self.rotations.requires_grad_(True) self.position = positions self.position.requires_grad_(True) self.parents = parents self.offset = offset self.constrains = constrains self.optimizer = torch.optim.Adam([self.position, self.rotations], lr=1e-3, betas=(0.9, 0.999)) self.crit = nn.MSELoss() def step(self): self.optimizer.zero_grad() glb = self.forward(self.rotations, self.position, self.offset, order='', quater=True, world=True) loss = self.crit(glb, self.constrains) loss.backward() self.optimizer.step() self.glb = glb return loss.item() def tloss(self, time): return self.crit(self.glb[time, :], self.constrains[time, :]) def all_loss(self): res = [self.tloss(t).detach().numpy() for t in range(self.constrains.shape[0])] return np.array(res) ''' rotation should have shape batch_size * Joint_num * (3/4) * Time position should have shape batch_size * 3 * Time offset should have shape batch_size * Joint_num * 3 output have shape batch_size * Time * Joint_num * 3 ''' def forward(self, rotation: torch.Tensor, position: torch.Tensor, offset: torch.Tensor, order='xyz', quater=False, world=True): ''' if not quater and rotation.shape[-2] != 3: raise Exception('Unexpected shape of rotation') if quater and rotation.shape[-2] != 4: raise Exception('Unexpected shape of rotation') rotation = rotation.permute(0, 3, 1, 2) position = position.permute(0, 2, 1) ''' result = torch.empty(rotation.shape[:-1] + (3,), device=position.device) norm = torch.norm(rotation, dim=-1, keepdim=True) rotation = rotation / norm if quater: transform = self.transform_from_quaternion(rotation) else: transform = self.transform_from_euler(rotation, order) offset = offset.reshape((-1, 1, offset.shape[-2], offset.shape[-1], 1)) result[..., 0, :] = position for i, pi in enumerate(self.parents): if pi == -1: assert i == 0 continue result[..., i, :] = torch.matmul(transform[..., pi, :, :], offset[..., i, :, :]).squeeze() transform[..., i, :, :] = torch.matmul(transform[..., pi, :, :], transform[..., i, :, :]) if world: result[..., i, :] += result[..., pi, :] return result @staticmethod def transform_from_euler(rotation, order): rotation = rotation / 180 * math.pi transform = torch.matmul(ForwardKinematics.transform_from_axis(rotation[..., 1], order[1]), ForwardKinematics.transform_from_axis(rotation[..., 2], order[2])) transform = torch.matmul(ForwardKinematics.transform_from_axis(rotation[..., 0], order[0]), transform) return transform @staticmethod def transform_from_axis(euler, axis): transform = torch.empty(euler.shape[0:3] + (3, 3), device=euler.device) cos = torch.cos(euler) sin = torch.sin(euler) cord = ord(axis) - ord('x') transform[..., cord, :] = transform[..., :, cord] = 0 transform[..., cord, cord] = 1 if axis == 'x': transform[..., 1, 1] = transform[..., 2, 2] = cos transform[..., 1, 2] = -sin transform[..., 2, 1] = sin if axis == 'y': transform[..., 0, 0] = transform[..., 2, 2] = cos transform[..., 0, 2] = sin transform[..., 2, 0] = -sin if axis == 'z': transform[..., 0, 0] = transform[..., 1, 1] = cos transform[..., 0, 1] = -sin transform[..., 1, 0] = sin return transform @staticmethod def transform_from_quaternion(quater: torch.Tensor): qw = quater[..., 0] qx = quater[..., 1] qy = quater[..., 2] qz = quater[..., 3] x2 = qx + qx y2 = qy + qy z2 = qz + qz xx = qx * x2 yy = qy * y2 wx = qw * x2 xy = qx * y2 yz = qy * z2 wy = qw * y2 xz = qx * z2 zz = qz * z2 wz = qw * z2 m = torch.empty(quater.shape[:-1] + (3, 3), device=quater.device) m[..., 0, 0] = 1.0 - (yy + zz) m[..., 0, 1] = xy - wz m[..., 0, 2] = xz + wy m[..., 1, 0] = xy + wz m[..., 1, 1] = 1.0 - (xx + zz) m[..., 1, 2] = yz - wx m[..., 2, 0] = xz - wy m[..., 2, 1] = yz + wx m[..., 2, 2] = 1.0 - (xx + yy) return m
[ "torch.optim.Adam", "torch.sin", "torch.nn.MSELoss", "torch.norm", "torch.cos", "numpy.array", "torch.tensor", "torch.matmul", "torch.empty", "torch.zeros" ]
[((2281, 2344), 'torch.empty', 'torch.empty', (['(rotation.shape[:-1] + (3,))'], {'device': 'position.device'}), '(rotation.shape[:-1] + (3,), device=position.device)\n', (2292, 2344), False, 'import torch\n'), ((2363, 2405), 'torch.norm', 'torch.norm', (['rotation'], {'dim': '(-1)', 'keepdim': '(True)'}), '(rotation, dim=-1, keepdim=True)\n', (2373, 2405), False, 'import torch\n'), ((3956, 4015), 'torch.empty', 'torch.empty', (['(euler.shape[0:3] + (3, 3))'], {'device': 'euler.device'}), '(euler.shape[0:3] + (3, 3), device=euler.device)\n', (3967, 4015), False, 'import torch\n'), ((4030, 4046), 'torch.cos', 'torch.cos', (['euler'], {}), '(euler)\n', (4039, 4046), False, 'import torch\n'), ((4061, 4077), 'torch.sin', 'torch.sin', (['euler'], {}), '(euler)\n', (4070, 4077), False, 'import torch\n'), ((5192, 5253), 'torch.empty', 'torch.empty', (['(quater.shape[:-1] + (3, 3))'], {'device': 'quater.device'}), '(quater.shape[:-1] + (3, 3), device=quater.device)\n', (5203, 5253), False, 'import torch\n'), ((5985, 6064), 'torch.optim.Adam', 'torch.optim.Adam', (['[self.position, self.rotations]'], {'lr': '(0.001)', 'betas': '(0.9, 0.999)'}), '([self.position, self.rotations], lr=0.001, betas=(0.9, 0.999))\n', (6001, 6064), False, 'import torch\n'), ((6084, 6096), 'torch.nn.MSELoss', 'nn.MSELoss', ([], {}), '()\n', (6094, 6096), True, 'import torch.nn as nn\n'), ((6636, 6649), 'numpy.array', 'np.array', (['res'], {}), '(res)\n', (6644, 6649), True, 'import numpy as np\n'), ((7394, 7457), 'torch.empty', 'torch.empty', (['(rotation.shape[:-1] + (3,))'], {'device': 'position.device'}), '(rotation.shape[:-1] + (3,), device=position.device)\n', (7405, 7457), False, 'import torch\n'), ((7474, 7516), 'torch.norm', 'torch.norm', (['rotation'], {'dim': '(-1)', 'keepdim': '(True)'}), '(rotation, dim=-1, keepdim=True)\n', (7484, 7516), False, 'import torch\n'), ((8780, 8839), 'torch.empty', 'torch.empty', (['(euler.shape[0:3] + (3, 3))'], {'device': 'euler.device'}), '(euler.shape[0:3] + (3, 3), device=euler.device)\n', (8791, 8839), False, 'import torch\n'), ((8854, 8870), 'torch.cos', 'torch.cos', (['euler'], {}), '(euler)\n', (8863, 8870), False, 'import torch\n'), ((8885, 8901), 'torch.sin', 'torch.sin', (['euler'], {}), '(euler)\n', (8894, 8901), False, 'import torch\n'), ((10016, 10077), 'torch.empty', 'torch.empty', (['(quater.shape[:-1] + (3, 3))'], {'device': 'quater.device'}), '(quater.shape[:-1] + (3, 3), device=quater.device)\n', (10027, 10077), False, 'import torch\n'), ((950, 1014), 'torch.tensor', 'torch.tensor', (['(1, 0, 0, 0)'], {'dtype': 'torch.float', 'device': 'raw.device'}), '((1, 0, 0, 0), dtype=torch.float, device=raw.device)\n', (962, 1014), False, 'import torch\n'), ((1140, 1195), 'torch.zeros', 'torch.zeros', (['(3,)'], {'dtype': 'torch.float', 'device': 'raw.device'}), '((3,), dtype=torch.float, device=raw.device)\n', (1151, 1195), False, 'import torch\n'), ((2925, 2988), 'torch.matmul', 'torch.matmul', (['transform[..., pi, :, :]', 'transform[..., i, :, :]'], {}), '(transform[..., pi, :, :], transform[..., i, :, :])\n', (2937, 2988), False, 'import torch\n'), ((8105, 8168), 'torch.matmul', 'torch.matmul', (['transform[..., pi, :, :]', 'transform[..., i, :, :]'], {}), '(transform[..., pi, :, :], transform[..., i, :, :])\n', (8117, 8168), False, 'import torch\n'), ((3021, 3080), 'torch.matmul', 'torch.matmul', (['transform[..., i, :, :]', 'offset[..., i, :, :]'], {}), '(transform[..., i, :, :], offset[..., i, :, :])\n', (3033, 3080), False, 'import torch\n'), ((7996, 8056), 'torch.matmul', 'torch.matmul', (['transform[..., pi, :, :]', 'offset[..., i, :, :]'], {}), '(transform[..., pi, :, :], offset[..., i, :, :])\n', (8008, 8056), False, 'import torch\n')]
import time import h5py import hdbscan import numpy as np import torch from sklearn.cluster import MeanShift from pytorch3dunet.datasets.hdf5 import SliceBuilder from pytorch3dunet.unet3d.utils import get_logger from pytorch3dunet.unet3d.utils import unpad logger = get_logger('UNet3DPredictor') class _AbstractPredictor: def __init__(self, model, loader, output_file, config, **kwargs): self.model = model self.loader = loader self.output_file = output_file self.config = config self.predictor_config = kwargs @staticmethod def _volume_shape(dataset): # TODO: support multiple internal datasets raw = dataset.raws[0] if raw.ndim == 3: return raw.shape else: return raw.shape[1:] @staticmethod def _get_output_dataset_names(number_of_datasets, prefix='predictions'): if number_of_datasets == 1: return [prefix] else: return [f'{prefix}{i}' for i in range(number_of_datasets)] def predict(self): raise NotImplementedError class StandardPredictor(_AbstractPredictor): """ Applies the model on the given dataset and saves the result in the `output_file` in the H5 format. Predictions from the network are kept in memory. If the results from the network don't fit in into RAM use `LazyPredictor` instead. The output dataset names inside the H5 is given by `des_dataset_name` config argument. If the argument is not present in the config 'predictions{n}' is used as a default dataset name, where `n` denotes the number of the output head from the network. Args: model (Unet3D): trained 3D UNet model used for prediction data_loader (torch.utils.data.DataLoader): input data loader output_file (str): path to the output H5 file config (dict): global config dict """ def __init__(self, model, loader, output_file, config, **kwargs): super().__init__(model, loader, output_file, config, **kwargs) def predict(self): out_channels = self.config['model'].get('out_channels') if out_channels is None: out_channels = self.config['model']['dt_out_channels'] prediction_channel = self.config.get('prediction_channel', None) if prediction_channel is not None: logger.info(f"Using only channel '{prediction_channel}' from the network output") device = self.config['device'] output_heads = self.config['model'].get('output_heads', 1) logger.info(f'Running prediction on {len(self.loader)} batches...') # dimensionality of the the output predictions volume_shape = self._volume_shape(self.loader.dataset) if prediction_channel is None: prediction_maps_shape = (out_channels,) + volume_shape else: # single channel prediction map prediction_maps_shape = (1,) + volume_shape logger.info(f'The shape of the output prediction maps (CDHW): {prediction_maps_shape}') avoid_block_artifacts = self.predictor_config.get('avoid_block_artifacts', True) logger.info(f'Avoid block artifacts: {avoid_block_artifacts}') # create destination H5 file h5_output_file = h5py.File(self.output_file, 'w') # allocate prediction and normalization arrays logger.info('Allocating prediction and normalization arrays...') prediction_maps, normalization_masks = self._allocate_prediction_maps(prediction_maps_shape, output_heads, h5_output_file) # Sets the module in evaluation mode explicitly (necessary for batchnorm/dropout layers if present) self.model.eval() # Set the `testing=true` flag otherwise the final Softmax/Sigmoid won't be applied! self.model.testing = True # Run predictions on the entire input dataset with torch.no_grad(): for batch, indices in self.loader: # send batch to device batch = batch.to(device) # forward pass predictions = self.model(batch) # wrap predictions into a list if there is only one output head from the network if output_heads == 1: predictions = [predictions] # for each output head for prediction, prediction_map, normalization_mask in zip(predictions, prediction_maps, normalization_masks): # convert to numpy array prediction = prediction.cpu().numpy() # for each batch sample for pred, index in zip(prediction, indices): # save patch index: (C,D,H,W) if prediction_channel is None: channel_slice = slice(0, out_channels) else: channel_slice = slice(0, 1) index = (channel_slice,) + index if prediction_channel is not None: # use only the 'prediction_channel' logger.info(f"Using channel '{prediction_channel}'...") pred = np.expand_dims(pred[prediction_channel], axis=0) logger.info(f'Saving predictions for slice:{index}...') if avoid_block_artifacts: # unpad in order to avoid block artifacts in the output probability maps u_prediction, u_index = unpad(pred, index, volume_shape) # accumulate probabilities into the output prediction array prediction_map[u_index] += u_prediction # count voxel visits for normalization normalization_mask[u_index] += 1 else: # accumulate probabilities into the output prediction array prediction_map[index] += pred # count voxel visits for normalization normalization_mask[index] += 1 # save results to self._save_results(prediction_maps, normalization_masks, output_heads, h5_output_file, self.loader.dataset) # close the output H5 file h5_output_file.close() def _allocate_prediction_maps(self, output_shape, output_heads, output_file): # initialize the output prediction arrays prediction_maps = [np.zeros(output_shape, dtype='float32') for _ in range(output_heads)] # initialize normalization mask in order to average out probabilities of overlapping patches normalization_masks = [np.zeros(output_shape, dtype='uint8') for _ in range(output_heads)] return prediction_maps, normalization_masks def _save_results(self, prediction_maps, normalization_masks, output_heads, output_file, dataset): # save probability maps prediction_datasets = self._get_output_dataset_names(output_heads, prefix='predictions') for prediction_map, normalization_mask, prediction_dataset in zip(prediction_maps, normalization_masks, prediction_datasets): prediction_map = prediction_map / normalization_mask if dataset.mirror_padding: pad_width = dataset.pad_width logger.info(f'Dataset loaded with mirror padding, pad_width: {pad_width}. Cropping before saving...') prediction_map = prediction_map[:, pad_width:-pad_width, pad_width:-pad_width, pad_width:-pad_width] logger.info(f'Saving predictions to: {output_file}/{prediction_dataset}...') output_file.create_dataset(prediction_dataset, data=prediction_map, compression="gzip") class LazyPredictor(StandardPredictor): """ Applies the model on the given dataset and saves the result in the `output_file` in the H5 format. Predicted patches are directly saved into the H5 and they won't be stored in memory. Since this predictor is slower than the `StandardPredictor` it should only be used when the predicted volume does not fit into RAM. The output dataset names inside the H5 is given by `des_dataset_name` config argument. If the argument is not present in the config 'predictions{n}' is used as a default dataset name, where `n` denotes the number of the output head from the network. Args: model (Unet3D): trained 3D UNet model used for prediction data_loader (torch.utils.data.DataLoader): input data loader output_file (str): path to the output H5 file config (dict): global config dict """ def __init__(self, model, loader, output_file, config, **kwargs): super().__init__(model, loader, output_file, config, **kwargs) def _allocate_prediction_maps(self, output_shape, output_heads, output_file): # allocate datasets for probability maps prediction_datasets = self._get_output_dataset_names(output_heads, prefix='predictions') prediction_maps = [ output_file.create_dataset(dataset_name, shape=output_shape, dtype='float32', chunks=True, compression='gzip') for dataset_name in prediction_datasets] # allocate datasets for normalization masks normalization_datasets = self._get_output_dataset_names(output_heads, prefix='normalization') normalization_masks = [ output_file.create_dataset(dataset_name, shape=output_shape, dtype='uint8', chunks=True, compression='gzip') for dataset_name in normalization_datasets] return prediction_maps, normalization_masks def _save_results(self, prediction_maps, normalization_masks, output_heads, output_file, dataset): if dataset.mirror_padding: logger.warn( f'Mirror padding unsupported in LazyPredictor. Output predictions will be padded with pad_width: {dataset.pad_width}') prediction_datasets = self._get_output_dataset_names(output_heads, prefix='predictions') normalization_datasets = self._get_output_dataset_names(output_heads, prefix='normalization') # normalize the prediction_maps inside the H5 for prediction_map, normalization_mask, prediction_dataset, normalization_dataset in zip(prediction_maps, normalization_masks, prediction_datasets, normalization_datasets): # split the volume into 4 parts and load each into the memory separately logger.info(f'Normalizing {prediction_dataset}...') z, y, x = prediction_map.shape[1:] # take slices which are 1/27 of the original volume patch_shape = (z // 3, y // 3, x // 3) for index in SliceBuilder._build_slices(prediction_map, patch_shape=patch_shape, stride_shape=patch_shape): logger.info(f'Normalizing slice: {index}') prediction_map[index] /= normalization_mask[index] # make sure to reset the slice that has been visited already in order to avoid 'double' normalization # when the patches overlap with each other normalization_mask[index] = 1 logger.info(f'Deleting {normalization_dataset}...') del output_file[normalization_dataset] class EmbeddingsPredictor(_AbstractPredictor): """ Applies the embedding model on the given dataset and saves the result in the `output_file` in the H5 format. The resulting volume is the segmentation itself (not the embedding vectors) obtained by clustering embeddings with HDBSCAN or MeanShift algorithm patch by patch and then stitching the patches together. """ def __init__(self, model, loader, output_file, config, clustering, iou_threshold=0.7, noise_label=-1, **kwargs): super().__init__(model, loader, output_file, config, **kwargs) self.iou_threshold = iou_threshold self.noise_label = noise_label self.clustering = clustering assert clustering in ['hdbscan', 'meanshift'], 'Only HDBSCAN and MeanShift are supported' logger.info(f'IoU threshold: {iou_threshold}') self.clustering_name = clustering self.clustering = self._get_clustering(clustering, kwargs) def predict(self): device = self.config['device'] output_heads = self.config['model'].get('output_heads', 1) logger.info(f'Running prediction on {len(self.loader)} patches...') # dimensionality of the the output segmentation volume_shape = self._volume_shape(self.loader.dataset) logger.info(f'The shape of the output segmentation (DHW): {volume_shape}') logger.info('Allocating segmentation array...') # initialize the output prediction arrays output_segmentations = [np.zeros(volume_shape, dtype='int32') for _ in range(output_heads)] # initialize visited_voxels arrays visited_voxels_arrays = [np.zeros(volume_shape, dtype='uint8') for _ in range(output_heads)] # Sets the module in evaluation mode explicitly self.model.eval() self.model.testing = True # Run predictions on the entire input dataset with torch.no_grad(): for batch, indices in self.loader: # logger.info(f'Predicting embeddings for slice:{index}') # send batch to device batch = batch.to(device) # forward pass embeddings = self.model(batch) # wrap predictions into a list if there is only one output head from the network if output_heads == 1: embeddings = [embeddings] for prediction, output_segmentation, visited_voxels_array in zip(embeddings, output_segmentations, visited_voxels_arrays): # convert to numpy array prediction = prediction.cpu().numpy() # iterate sequentially because of the current simple stitching that we're using for pred, index in zip(prediction, indices): # convert embeddings to segmentation with hdbscan clustering segmentation = self._embeddings_to_segmentation(pred) # stitch patches self._merge_segmentation(segmentation, index, output_segmentation, visited_voxels_array) # save results with h5py.File(self.output_file, 'w') as output_file: prediction_datasets = self._get_output_dataset_names(output_heads, prefix=f'segmentation/{self.clustering_name}') for output_segmentation, prediction_dataset in zip(output_segmentations, prediction_datasets): logger.info(f'Saving predictions to: {output_file}/{prediction_dataset}...') output_file.create_dataset(prediction_dataset, data=output_segmentation, compression="gzip") def _embeddings_to_segmentation(self, embeddings): """ Cluster embeddings vectors with HDBSCAN and return the segmented volume. Args: embeddings (ndarray): 4D (CDHW) embeddings tensor Returns: 3D (DHW) segmentation """ # shape of the output segmentation output_shape = embeddings.shape[1:] # reshape (C, D, H, W) -> (C, D * H * W) and transpose -> (D * H * W, C) flattened_embeddings = embeddings.reshape(embeddings.shape[0], -1).transpose() logger.info('Clustering embeddings...') # perform clustering and reshape in order to get the segmentation volume start = time.time() clusters = self.clustering.fit_predict(flattened_embeddings).reshape(output_shape) logger.info( f'Number of clusters found by {self.clustering}: {np.max(clusters)}. Duration: {time.time() - start} sec.') return clusters def _merge_segmentation(self, segmentation, index, output_segmentation, visited_voxels_array): """ Given the `segmentation` patch, its `index` in the `output_segmentation` array and the array visited voxels merge the segmented patch (`segmentation`) into the `output_segmentation` Args: segmentation (ndarray): segmented patch index (tuple): position of the patch inside `output_segmentation` volume output_segmentation (ndarray): current state of the output segmentation visited_voxels_array (ndarray): array of voxels visited so far (same size as `output_segmentation`); visited voxels will be marked by a number greater than 0 """ index = tuple(index) # get new unassigned label max_label = np.max(output_segmentation) + 1 # make sure there are no clashes between current segmentation patch and the output_segmentation # but keep the noise label noise_mask = segmentation == self.noise_label segmentation += int(max_label) segmentation[noise_mask] = self.noise_label # get the overlap mask in the current patch overlap_mask = visited_voxels_array[index] > 0 # get the new labels inside the overlap_mask new_labels = np.unique(segmentation[overlap_mask]) merged_labels = self._merge_labels(output_segmentation[index], new_labels, segmentation) # relabel new segmentation with the merged labels for current_label, new_label in merged_labels: segmentation[segmentation == new_label] = current_label # update the output_segmentation output_segmentation[index] = segmentation # visit the patch visited_voxels_array[index] += 1 def _merge_labels(self, current_segmentation, new_labels, new_segmentation): def _most_frequent_label(labels): unique, counts = np.unique(labels, return_counts=True) ind = np.argmax(counts) return unique[ind] result = [] # iterate over new_labels and merge regions if the IoU exceeds a given threshold for new_label in new_labels: # skip 'noise' label assigned by hdbscan if new_label == self.noise_label: continue new_label_mask = new_segmentation == new_label # get only the most frequent overlapping label most_frequent_label = _most_frequent_label(current_segmentation[new_label_mask]) # skip 'noise' label if most_frequent_label == self.noise_label: continue current_label_mask = current_segmentation == most_frequent_label # compute Jaccard index iou = np.bitwise_and(new_label_mask, current_label_mask).sum() / np.bitwise_or(new_label_mask, current_label_mask).sum() if iou > self.iou_threshold: # merge labels result.append((most_frequent_label, new_label)) return result def _get_clustering(self, clustering_alg, kwargs): logger.info(f'Using {clustering_alg} for clustering') if clustering_alg == 'hdbscan': min_cluster_size = kwargs.get('min_cluster_size', 50) min_samples = kwargs.get('min_samples', None), metric = kwargs.get('metric', 'euclidean') cluster_selection_method = kwargs.get('cluster_selection_method', 'eom') logger.info(f'HDBSCAN params: min_cluster_size: {min_cluster_size}, min_samples: {min_samples}') return hdbscan.HDBSCAN(min_cluster_size=min_cluster_size, min_samples=min_samples, metric=metric, cluster_selection_method=cluster_selection_method) else: bandwidth = kwargs['bandwidth'] logger.info(f'MeanShift params: bandwidth: {bandwidth}, bin_seeding: True') # use fast MeanShift with bin seeding return MeanShift(bandwidth=bandwidth, bin_seeding=True)
[ "numpy.bitwise_or", "numpy.unique", "sklearn.cluster.MeanShift", "pytorch3dunet.unet3d.utils.unpad", "pytorch3dunet.datasets.hdf5.SliceBuilder._build_slices", "numpy.argmax", "h5py.File", "pytorch3dunet.unet3d.utils.get_logger", "numpy.max", "numpy.zeros", "numpy.bitwise_and", "numpy.expand_dims", "torch.no_grad", "time.time", "hdbscan.HDBSCAN" ]
[((269, 298), 'pytorch3dunet.unet3d.utils.get_logger', 'get_logger', (['"""UNet3DPredictor"""'], {}), "('UNet3DPredictor')\n", (279, 298), False, 'from pytorch3dunet.unet3d.utils import get_logger\n'), ((3293, 3325), 'h5py.File', 'h5py.File', (['self.output_file', '"""w"""'], {}), "(self.output_file, 'w')\n", (3302, 3325), False, 'import h5py\n'), ((16480, 16491), 'time.time', 'time.time', ([], {}), '()\n', (16489, 16491), False, 'import time\n'), ((18073, 18110), 'numpy.unique', 'np.unique', (['segmentation[overlap_mask]'], {}), '(segmentation[overlap_mask])\n', (18082, 18110), True, 'import numpy as np\n'), ((3991, 4006), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (4004, 4006), False, 'import torch\n'), ((6737, 6776), 'numpy.zeros', 'np.zeros', (['output_shape'], {'dtype': '"""float32"""'}), "(output_shape, dtype='float32')\n", (6745, 6776), True, 'import numpy as np\n'), ((6939, 6976), 'numpy.zeros', 'np.zeros', (['output_shape'], {'dtype': '"""uint8"""'}), "(output_shape, dtype='uint8')\n", (6947, 6976), True, 'import numpy as np\n'), ((11449, 11546), 'pytorch3dunet.datasets.hdf5.SliceBuilder._build_slices', 'SliceBuilder._build_slices', (['prediction_map'], {'patch_shape': 'patch_shape', 'stride_shape': 'patch_shape'}), '(prediction_map, patch_shape=patch_shape,\n stride_shape=patch_shape)\n', (11475, 11546), False, 'from pytorch3dunet.datasets.hdf5 import SliceBuilder\n'), ((13521, 13558), 'numpy.zeros', 'np.zeros', (['volume_shape'], {'dtype': '"""int32"""'}), "(volume_shape, dtype='int32')\n", (13529, 13558), True, 'import numpy as np\n'), ((13665, 13702), 'numpy.zeros', 'np.zeros', (['volume_shape'], {'dtype': '"""uint8"""'}), "(volume_shape, dtype='uint8')\n", (13673, 13702), True, 'import numpy as np\n'), ((13917, 13932), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (13930, 13932), False, 'import torch\n'), ((15241, 15273), 'h5py.File', 'h5py.File', (['self.output_file', '"""w"""'], {}), "(self.output_file, 'w')\n", (15250, 15273), False, 'import h5py\n'), ((17576, 17603), 'numpy.max', 'np.max', (['output_segmentation'], {}), '(output_segmentation)\n', (17582, 17603), True, 'import numpy as np\n'), ((18700, 18737), 'numpy.unique', 'np.unique', (['labels'], {'return_counts': '(True)'}), '(labels, return_counts=True)\n', (18709, 18737), True, 'import numpy as np\n'), ((18756, 18773), 'numpy.argmax', 'np.argmax', (['counts'], {}), '(counts)\n', (18765, 18773), True, 'import numpy as np\n'), ((20450, 20595), 'hdbscan.HDBSCAN', 'hdbscan.HDBSCAN', ([], {'min_cluster_size': 'min_cluster_size', 'min_samples': 'min_samples', 'metric': 'metric', 'cluster_selection_method': 'cluster_selection_method'}), '(min_cluster_size=min_cluster_size, min_samples=min_samples,\n metric=metric, cluster_selection_method=cluster_selection_method)\n', (20465, 20595), False, 'import hdbscan\n'), ((20842, 20890), 'sklearn.cluster.MeanShift', 'MeanShift', ([], {'bandwidth': 'bandwidth', 'bin_seeding': '(True)'}), '(bandwidth=bandwidth, bin_seeding=True)\n', (20851, 20890), False, 'from sklearn.cluster import MeanShift\n'), ((16666, 16682), 'numpy.max', 'np.max', (['clusters'], {}), '(clusters)\n', (16672, 16682), True, 'import numpy as np\n'), ((16696, 16707), 'time.time', 'time.time', ([], {}), '()\n', (16705, 16707), False, 'import time\n'), ((19532, 19582), 'numpy.bitwise_and', 'np.bitwise_and', (['new_label_mask', 'current_label_mask'], {}), '(new_label_mask, current_label_mask)\n', (19546, 19582), True, 'import numpy as np\n'), ((19591, 19640), 'numpy.bitwise_or', 'np.bitwise_or', (['new_label_mask', 'current_label_mask'], {}), '(new_label_mask, current_label_mask)\n', (19604, 19640), True, 'import numpy as np\n'), ((5415, 5463), 'numpy.expand_dims', 'np.expand_dims', (['pred[prediction_channel]'], {'axis': '(0)'}), '(pred[prediction_channel], axis=0)\n', (5429, 5463), True, 'import numpy as np\n'), ((5749, 5781), 'pytorch3dunet.unet3d.utils.unpad', 'unpad', (['pred', 'index', 'volume_shape'], {}), '(pred, index, volume_shape)\n', (5754, 5781), False, 'from pytorch3dunet.unet3d.utils import unpad\n')]
""" Random Variables. This module implements random variables. Random variables are the main in- and outputs of probabilistic numerical methods. """ from typing import Any, Callable, Dict, Generic, Optional, Tuple, TypeVar, Union import numpy as np from probnum import utils as _utils from probnum.type import ( ArrayLikeGetitemArgType, DTypeArgType, FloatArgType, RandomStateArgType, RandomStateType, ShapeArgType, ShapeType, ) try: # functools.cached_property is only available in Python >=3.8 from functools import cached_property except ImportError: from cached_property import cached_property _ValueType = TypeVar("ValueType") class RandomVariable(Generic[_ValueType]): """ Random variables are the main objects used by probabilistic numerical methods. Every probabilistic numerical method takes a random variable encoding the prior distribution as input and outputs a random variable whose distribution encodes the uncertainty arising from finite computation. The generic signature of a probabilistic numerical method is: ``output_rv = probnum_method(input_rv, method_params)`` In practice, most random variables used by methods in ProbNum have Dirac or Gaussian measure. Instances of :class:`RandomVariable` can be added, multiplied, etc. with arrays and linear operators. This may change their ``distribution`` and not necessarily all previously available methods are retained. The internals of :class:`RandomVariable` objects are assumed to be constant over their whole lifecycle. This is due to the caches used to make certain computations more efficient. As a consequence, altering the internal state of a :class:`RandomVariable` (e.g. its mean, cov, sampling function, etc.) will result in undefined behavior. In particular, this should be kept in mind when subclassing :class:`RandomVariable` or any of its descendants. Parameters ---------- shape : Shape of realizations of this random variable. dtype : Data type of realizations of this random variable. If ``object`` will be converted to ``numpy.dtype``. as_value_type : Function which can be used to transform user-supplied arguments, interpreted as realizations of this random variable, to an easy-to-process, normalized format. Will be called internally to transform the argument of functions like ``in_support``, ``cdf`` and ``logcdf``, ``pmf`` and ``logpmf`` (in :class:`DiscreteRandomVariable`), ``pdf`` and ``logpdf`` (in :class:`ContinuousRandomVariable`), and potentially by similar functions in subclasses. For instance, this method is useful if (``log``)``cdf`` and (``log``)``pdf`` both only work on :class:`np.float_` arguments, but we still want the user to be able to pass Python :class:`float`. Then ``as_value_type`` should be set to something like ``lambda x: np.float64(x)``. See Also -------- asrandvar : Transform into a :class:`RandomVariable`. Examples -------- """ # pylint: disable=too-many-instance-attributes,too-many-public-methods def __init__( self, shape: ShapeArgType, dtype: DTypeArgType, random_state: RandomStateArgType = None, parameters: Optional[Dict[str, Any]] = None, sample: Optional[Callable[[ShapeType], _ValueType]] = None, in_support: Optional[Callable[[_ValueType], bool]] = None, cdf: Optional[Callable[[_ValueType], np.float_]] = None, logcdf: Optional[Callable[[_ValueType], np.float_]] = None, quantile: Optional[Callable[[FloatArgType], _ValueType]] = None, mode: Optional[Callable[[], _ValueType]] = None, median: Optional[Callable[[], _ValueType]] = None, mean: Optional[Callable[[], _ValueType]] = None, cov: Optional[Callable[[], _ValueType]] = None, var: Optional[Callable[[], _ValueType]] = None, std: Optional[Callable[[], _ValueType]] = None, entropy: Optional[Callable[[], np.float_]] = None, as_value_type: Optional[Callable[[Any], _ValueType]] = None, ): # pylint: disable=too-many-arguments,too-many-locals """Create a new random variable.""" self.__shape = _utils.as_shape(shape) # Data Types self.__dtype = np.dtype(dtype) self.__median_dtype = RandomVariable.infer_median_dtype(self.__dtype) self.__moment_dtype = RandomVariable.infer_moment_dtype(self.__dtype) self._random_state = _utils.as_random_state(random_state) # Probability distribution of the random variable self.__parameters = parameters.copy() if parameters is not None else {} self.__sample = sample self.__in_support = in_support self.__cdf = cdf self.__logcdf = logcdf self.__quantile = quantile # Properties of the random variable self.__mode = mode self.__median = median self.__mean = mean self.__cov = cov self.__var = var self.__std = std self.__entropy = entropy # Utilities self.__as_value_type = as_value_type def __repr__(self) -> str: return f"<{self.shape} {self.__class__.__name__} with dtype={self.dtype}>" @property def shape(self) -> ShapeType: """Shape of realizations of the random variable.""" return self.__shape @cached_property def ndim(self) -> int: return len(self.__shape) @cached_property def size(self) -> int: return int(np.prod(self.__shape)) @property def dtype(self) -> np.dtype: """Data type of (elements of) a realization of this random variable.""" return self.__dtype @property def median_dtype(self) -> np.dtype: """The dtype of the :attr:`median`. It will be set to the dtype arising from the multiplication of values with dtypes :attr:`dtype` and :class:`np.float_`. This is motivated by the fact that, even for discrete random variables, e.g. integer-valued random variables, the :attr:`median` might lie in between two values in which case these values are averaged. For example, a uniform random variable on :math:`\\{ 1, 2, 3, 4 \\}` will have a median of :math:`2.5`. """ return self.__median_dtype @property def moment_dtype(self) -> np.dtype: """The dtype of any (function of a) moment of the random variable, e.g. its :attr:`mean`, :attr:`cov`, :attr:`var`, or :attr:`std`. It will be set to the dtype arising from the multiplication of values with dtypes :attr:`dtype` and :class:`np.float_`. This is motivated by the mathematical definition of a moment as a sum or an integral over products of probabilities and values of the random variable, which are represented as using the dtypes :class:`np.float_` and :attr:`dtype`, respectively. """ return self.__moment_dtype @property def random_state(self) -> RandomStateType: """Random state of the random variable. This attribute defines the RandomState object to use for drawing realizations from this random variable. If None (or np.random), the global np.random state is used. If integer, it is used to seed the local :class:`~numpy.random.RandomState` instance. """ return self._random_state @random_state.setter def random_state(self, seed: RandomStateArgType): """Get or set the RandomState object of the underlying distribution. This can be either None or an existing RandomState object. If None (or np.random), use the RandomState singleton used by np.random. If already a RandomState instance, use it. If an int, use a new RandomState instance seeded with seed. """ self._random_state = _utils.as_random_state(seed) @property def parameters(self) -> Dict[str, Any]: """ Parameters of the probability distribution. The parameters of the distribution such as mean, variance, et cetera stored in a ``dict``. """ return self.__parameters.copy() @cached_property def mode(self) -> _ValueType: """ Mode of the random variable. Returns ------- mode : float The mode of the random variable. """ if self.__mode is None: raise NotImplementedError mode = self.__mode() RandomVariable._check_property_value( "mode", mode, shape=self.__shape, dtype=self.__dtype, ) # Make immutable if isinstance(mode, np.ndarray): mode.setflags(write=False) return mode @cached_property def median(self) -> _ValueType: """ Median of the random variable. To learn about the dtype of the median, see :attr:`median_dtype`. Returns ------- median : float The median of the distribution. """ if self.__shape != (): raise NotImplementedError( "The median is only defined for scalar random variables." ) median = self.__median() RandomVariable._check_property_value( "median", median, shape=self.__shape, dtype=self.__median_dtype, ) # Make immutable if isinstance(median, np.ndarray): median.setflags(write=False) return median @cached_property def mean(self) -> _ValueType: """ Mean :math:`\\mathbb{E}(X)` of the distribution. To learn about the dtype of the mean, see :attr:`moment_dtype`. Returns ------- mean : array-like The mean of the distribution. """ if self.__mean is None: raise NotImplementedError mean = self.__mean() RandomVariable._check_property_value( "mean", mean, shape=self.__shape, dtype=self.__moment_dtype, ) # Make immutable if isinstance(mean, np.ndarray): mean.setflags(write=False) return mean @cached_property def cov(self) -> _ValueType: """ Covariance :math:`\\operatorname{Cov}(X) = \\mathbb{E}((X-\\mathbb{E}(X))(X-\\mathbb{E}(X))^\\top)` of the random variable. To learn about the dtype of the covariance, see :attr:`moment_dtype`. Returns ------- cov : array-like The kernels of the random variable. """ # pylint: disable=line-too-long if self.__cov is None: raise NotImplementedError cov = self.__cov() RandomVariable._check_property_value( "covariance", cov, shape=(self.size, self.size) if self.ndim > 0 else (), dtype=self.__moment_dtype, ) # Make immutable if isinstance(cov, np.ndarray): cov.setflags(write=False) return cov @cached_property def var(self) -> _ValueType: """ Variance :math:`\\operatorname{Var}(X) = \\mathbb{E}((X-\\mathbb{E}(X))^2)` of the distribution. To learn about the dtype of the variance, see :attr:`moment_dtype`. Returns ------- var : array-like The variance of the distribution. """ if self.__var is None: try: var = np.diag(self.cov).reshape(self.__shape).copy() except NotImplementedError as exc: raise NotImplementedError from exc else: var = self.__var() RandomVariable._check_property_value( "variance", var, shape=self.__shape, dtype=self.__moment_dtype, ) # Make immutable if isinstance(var, np.ndarray): var.setflags(write=False) return var @cached_property def std(self) -> _ValueType: """ Standard deviation of the distribution. To learn about the dtype of the standard deviation, see :attr:`moment_dtype`. Returns ------- std : array-like The standard deviation of the distribution. """ if self.__std is None: try: std = np.sqrt(self.var) except NotImplementedError as exc: raise NotImplementedError from exc else: std = self.__std() RandomVariable._check_property_value( "standard deviation", std, shape=self.__shape, dtype=self.__moment_dtype, ) # Make immutable if isinstance(std, np.ndarray): std.setflags(write=False) return std @cached_property def entropy(self) -> np.float_: if self.__entropy is None: raise NotImplementedError entropy = self.__entropy() entropy = RandomVariable._ensure_numpy_float( "entropy", entropy, force_scalar=True ) return entropy def in_support(self, x: _ValueType) -> bool: if self.__in_support is None: raise NotImplementedError in_support = self.__in_support(self._as_value_type(x)) if not isinstance(in_support, bool): raise ValueError( f"The function `in_support` must return a `bool`, but its return value " f"is of type `{type(x)}`." ) return in_support def sample(self, size: ShapeArgType = ()) -> _ValueType: """ Draw realizations from a random variable. Parameters ---------- size : tuple Size of the drawn sample of realizations. Returns ------- sample : array-like Sample of realizations with the given ``size`` and the inherent ``shape``. """ if self.__sample is None: raise NotImplementedError("No sampling method provided.") return self.__sample(size=_utils.as_shape(size)) def cdf(self, x: _ValueType) -> np.float_: """ Cumulative distribution function. Parameters ---------- x : array-like Evaluation points of the cumulative distribution function. The shape of this argument should be :code:`(..., S1, ..., SN)`, where :code:`(S1, ..., SN)` is the :attr:`shape` of the random variable. The cdf evaluation will be broadcast over all additional dimensions. Returns ------- q : array-like Value of the cumulative density function at the given points. """ if self.__cdf is not None: return RandomVariable._ensure_numpy_float( "cdf", self.__cdf(self._as_value_type(x)) ) elif self.__logcdf is not None: cdf = np.exp(self.logcdf(self._as_value_type(x))) assert isinstance(cdf, np.float_) return cdf else: raise NotImplementedError( f"Neither the `cdf` nor the `logcdf` of the random variable object " f"with type `{type(self).__name__}` is implemented." ) def logcdf(self, x: _ValueType) -> np.float_: """ Log-cumulative distribution function. Parameters ---------- x : array-like Evaluation points of the cumulative distribution function. The shape of this argument should be :code:`(..., S1, ..., SN)`, where :code:`(S1, ..., SN)` is the :attr:`shape` of the random variable. The logcdf evaluation will be broadcast over all additional dimensions. Returns ------- q : array-like Value of the log-cumulative density function at the given points. """ if self.__logcdf is not None: return RandomVariable._ensure_numpy_float( "logcdf", self.__logcdf(self._as_value_type(x)) ) elif self.__cdf is not None: logcdf = np.log(self.__cdf(x)) assert isinstance(logcdf, np.float_) return logcdf else: raise NotImplementedError( f"Neither the `logcdf` nor the `cdf` of the random variable object " f"with type `{type(self).__name__}` is implemented." ) def quantile(self, p: FloatArgType) -> _ValueType: """Quantile function. The quantile function :math:`Q \\colon [0, 1] \\to \\mathbb{R}` of a random variable :math:`X` is defined as :math:`Q(p) = \\inf\\{ x \\in \\mathbb{R} \\colon p \\le F_X(x) \\}`, where :math:`F_X \\colon \\mathbb{R} \\to [0, 1]` is the :meth:`cdf` of the random variable. From the definition it follows that the quantile function always returns values of the same dtype as the random variable. For instance, for a discrete distribution over the integers, the returned quantiles will also be integers. This means that, in general, :math:`Q(0.5)` is not equal to the :attr:`median` as it is defined in this class. See https://en.wikipedia.org/wiki/Quantile_function for more details and examples. """ if self.__shape != (): raise NotImplementedError( "The quantile function is only defined for scalar random variables." ) if self.__quantile is None: raise NotImplementedError try: p = _utils.as_numpy_scalar(p, dtype=np.floating) except TypeError as exc: raise TypeError( "The given argument `p` can not be cast to a `np.floating` object." ) from exc quantile = self.__quantile(p) if quantile.shape != self.__shape: raise ValueError( f"The quantile function should return values of the same shape as the " f"random variable, i.e. {self.__shape}, but it returned a value with " f"{quantile.shape}." ) if quantile.dtype != self.__dtype: raise ValueError( f"The quantile function should return values of the same dtype as the " f"random variable, i.e. `{self.__dtype.name}`, but it returned a value " f"with dtype `{quantile.dtype.name}`." ) return quantile def __getitem__(self, key: ArrayLikeGetitemArgType) -> "RandomVariable": return RandomVariable( shape=np.empty(shape=self.shape)[key].shape, dtype=self.dtype, random_state=_utils.derive_random_seed(self.random_state), sample=lambda size: self.sample(size)[key], mode=lambda: self.mode[key], mean=lambda: self.mean[key], var=lambda: self.var[key], std=lambda: self.std[key], entropy=lambda: self.entropy, as_value_type=self.__as_value_type, ) def reshape(self, newshape: ShapeArgType) -> "RandomVariable": """ Give a new shape to a random variable. Parameters ---------- newshape : int or tuple of ints New shape for the random variable. It must be compatible with the original shape. Returns ------- reshaped_rv : ``self`` with the new dimensions of ``shape``. """ newshape = _utils.as_shape(newshape) return RandomVariable( shape=newshape, dtype=self.dtype, random_state=_utils.derive_random_seed(self.random_state), sample=lambda size: self.sample(size).reshape(size + newshape), mode=lambda: self.mode.reshape(newshape), median=lambda: self.median.reshape(newshape), mean=lambda: self.mean.reshape(newshape), cov=lambda: self.cov, var=lambda: self.var.reshape(newshape), std=lambda: self.std.reshape(newshape), entropy=lambda: self.entropy, as_value_type=self.__as_value_type, ) def transpose(self, *axes: int) -> "RandomVariable": """ Transpose the random variable. Parameters ---------- axes : None, tuple of ints, or n ints See documentation of numpy.ndarray.transpose. Returns ------- transposed_rv : The transposed random variable. """ return RandomVariable( shape=np.empty(shape=self.shape).transpose(*axes).shape, dtype=self.dtype, random_state=_utils.derive_random_seed(self.random_state), sample=lambda size: self.sample(size).transpose(*axes), mode=lambda: self.mode.transpose(*axes), median=lambda: self.median.transpose(*axes), mean=lambda: self.mean.transpose(*axes), cov=lambda: self.cov, var=lambda: self.var.transpose(*axes), std=lambda: self.std.transpose(*axes), entropy=lambda: self.entropy, as_value_type=self.__as_value_type, ) T = property(transpose) # Unary arithmetic operations def __neg__(self) -> "RandomVariable": return RandomVariable( shape=self.shape, dtype=self.dtype, random_state=_utils.derive_random_seed(self.random_state), sample=lambda size: -self.sample(size=size), in_support=lambda x: self.in_support(-x), mode=lambda: -self.mode, median=lambda: -self.median, mean=lambda: -self.mean, cov=lambda: self.cov, var=lambda: self.var, std=lambda: self.std, as_value_type=self.__as_value_type, ) def __pos__(self) -> "RandomVariable": return RandomVariable( shape=self.shape, dtype=self.dtype, random_state=_utils.derive_random_seed(self.random_state), sample=lambda size: +self.sample(size=size), in_support=lambda x: self.in_support(+x), mode=lambda: +self.mode, median=lambda: +self.median, mean=lambda: +self.mean, cov=lambda: self.cov, var=lambda: self.var, std=lambda: self.std, as_value_type=self.__as_value_type, ) def __abs__(self) -> "RandomVariable": return RandomVariable( shape=self.shape, dtype=self.dtype, random_state=_utils.derive_random_seed(self.random_state), sample=lambda size: abs(self.sample(size=size)), ) # Binary arithmetic operations __array_ufunc__ = None """ This prevents numpy from calling elementwise arithmetic operations allowing expressions like: y = np.array([1, 1]) + RV to call the arithmetic operations defined by RandomVariable instead of elementwise. Thus no array of RandomVariables but a RandomVariable with the correct shape is returned. """ def __add__(self, other: Any) -> "RandomVariable": # pylint: disable=import-outside-toplevel,cyclic-import from ._arithmetic import add return add(self, other) def __radd__(self, other: Any) -> "RandomVariable": # pylint: disable=import-outside-toplevel,cyclic-import from ._arithmetic import add return add(other, self) def __sub__(self, other: Any) -> "RandomVariable": # pylint: disable=import-outside-toplevel,cyclic-import from ._arithmetic import sub return sub(self, other) def __rsub__(self, other: Any) -> "RandomVariable": # pylint: disable=import-outside-toplevel,cyclic-import from ._arithmetic import sub return sub(other, self) def __mul__(self, other: Any) -> "RandomVariable": # pylint: disable=import-outside-toplevel,cyclic-import from ._arithmetic import mul return mul(self, other) def __rmul__(self, other: Any) -> "RandomVariable": # pylint: disable=import-outside-toplevel,cyclic-import from ._arithmetic import mul return mul(other, self) def __matmul__(self, other: Any) -> "RandomVariable": # pylint: disable=import-outside-toplevel,cyclic-import from ._arithmetic import matmul return matmul(self, other) def __rmatmul__(self, other: Any) -> "RandomVariable": # pylint: disable=import-outside-toplevel,cyclic-import from ._arithmetic import matmul return matmul(other, self) def __truediv__(self, other: Any) -> "RandomVariable": # pylint: disable=import-outside-toplevel,cyclic-import from ._arithmetic import truediv return truediv(self, other) def __rtruediv__(self, other: Any) -> "RandomVariable": # pylint: disable=import-outside-toplevel,cyclic-import from ._arithmetic import truediv return truediv(other, self) def __floordiv__(self, other: Any) -> "RandomVariable": # pylint: disable=import-outside-toplevel,cyclic-import from ._arithmetic import floordiv return floordiv(self, other) def __rfloordiv__(self, other: Any) -> "RandomVariable": # pylint: disable=import-outside-toplevel,cyclic-import from ._arithmetic import floordiv return floordiv(other, self) def __mod__(self, other: Any) -> "RandomVariable": # pylint: disable=import-outside-toplevel,cyclic-import from ._arithmetic import mod return mod(self, other) def __rmod__(self, other: Any) -> "RandomVariable": # pylint: disable=import-outside-toplevel,cyclic-import from ._arithmetic import mod return mod(other, self) def __divmod__(self, other: Any) -> "RandomVariable": # pylint: disable=import-outside-toplevel,cyclic-import from ._arithmetic import divmod_ return divmod_(self, other) def __rdivmod__(self, other: Any) -> "RandomVariable": # pylint: disable=import-outside-toplevel,cyclic-import from ._arithmetic import divmod_ return divmod_(other, self) def __pow__(self, other: Any) -> "RandomVariable": # pylint: disable=import-outside-toplevel,cyclic-import from ._arithmetic import pow_ return pow_(self, other) def __rpow__(self, other: Any) -> "RandomVariable": # pylint: disable=import-outside-toplevel,cyclic-import from ._arithmetic import pow_ return pow_(other, self) @staticmethod def infer_median_dtype(value_dtype: DTypeArgType) -> np.dtype: return RandomVariable.infer_moment_dtype(value_dtype) @staticmethod def infer_moment_dtype(value_dtype: DTypeArgType) -> np.dtype: return np.promote_types(value_dtype, np.float_) def _as_value_type(self, x: Any) -> _ValueType: if self.__as_value_type is not None: return self.__as_value_type(x) return x @staticmethod def _check_property_value( name: str, value: Any, shape: Optional[Tuple[int, ...]] = None, dtype: Optional[np.dtype] = None, ): if shape is not None: if value.shape != shape: raise ValueError( f"The {name} of the random variable does not have the correct " f"shape. Expected {shape} but got {value.shape}." ) if dtype is not None: if not np.issubdtype(value.dtype, dtype): raise ValueError( f"The {name} of the random variable does not have the correct " f"dtype. Expected {dtype.name} but got {value.dtype.name}." ) @classmethod def _ensure_numpy_float( cls, name: str, value: Any, force_scalar: bool = False ) -> Union[np.float_, np.ndarray]: if np.isscalar(value): if not isinstance(value, np.float_): try: value = _utils.as_numpy_scalar(value, dtype=np.float_) except TypeError as err: raise TypeError( f"The function `{name}` specified via the constructor of " f"`{cls.__name__}` must return a scalar value that can be " f"converted to a `np.float_`, which is not possible for " f"{value} of type {type(value)}." ) from err elif not force_scalar: try: value = np.asarray(value, dtype=np.float_) except TypeError as err: raise TypeError( f"The function `{name}` specified via the constructor of " f"`{cls.__name__}` must return a value that can be converted " f"to a `np.ndarray` of type `np.float_`, which is not possible " f"for {value} of type {type(value)}." ) from err else: raise TypeError( f"The function `{name}` specified via the constructor of " f"`{cls.__name__}` must return a scalar value, but {value} of type " f"{type(value)} is not scalar." ) assert isinstance(value, (np.float_, np.ndarray)) return value class DiscreteRandomVariable(RandomVariable[_ValueType]): def __init__( self, shape: ShapeArgType, dtype: DTypeArgType, random_state: Optional[RandomStateType] = None, parameters: Optional[Dict[str, Any]] = None, sample: Optional[Callable[[ShapeArgType], _ValueType]] = None, in_support: Optional[Callable[[_ValueType], bool]] = None, pmf: Optional[Callable[[_ValueType], np.float_]] = None, logpmf: Optional[Callable[[_ValueType], np.float_]] = None, cdf: Optional[Callable[[_ValueType], np.float_]] = None, logcdf: Optional[Callable[[_ValueType], np.float_]] = None, quantile: Optional[Callable[[FloatArgType], _ValueType]] = None, mode: Optional[Callable[[], _ValueType]] = None, median: Optional[Callable[[], _ValueType]] = None, mean: Optional[Callable[[], _ValueType]] = None, cov: Optional[Callable[[], _ValueType]] = None, var: Optional[Callable[[], _ValueType]] = None, std: Optional[Callable[[], _ValueType]] = None, entropy: Optional[Callable[[], np.float_]] = None, ): # Probability mass function self.__pmf = pmf self.__logpmf = logpmf super().__init__( shape=shape, dtype=dtype, random_state=random_state, parameters=parameters, sample=sample, in_support=in_support, cdf=cdf, logcdf=logcdf, quantile=quantile, mode=mode, median=median, mean=mean, cov=cov, var=var, std=std, entropy=entropy, ) def pmf(self, x: _ValueType) -> np.float_: if self.__pmf is not None: return DiscreteRandomVariable._ensure_numpy_float("pmf", self.__pmf(x)) elif self.__logpmf is not None: pmf = np.exp(self.__logpmf(x)) assert isinstance(pmf, np.float_) return pmf else: raise NotImplementedError( f"Neither the `pmf` nor the `logpmf` of the discrete random variable " f"object with type `{type(self).__name__}` is implemented." ) def logpmf(self, x: _ValueType) -> np.float_: if self.__logpmf is not None: return DiscreteRandomVariable._ensure_numpy_float( "logpmf", self.__logpmf(self._as_value_type(x)) ) elif self.__pmf is not None: logpmf = np.log(self.__pmf(self._as_value_type(x))) assert isinstance(logpmf, np.float_) return logpmf else: raise NotImplementedError( f"Neither the `logpmf` nor the `pmf` of the discrete random variable " f"object with type `{type(self).__name__}` is implemented." ) class ContinuousRandomVariable(RandomVariable[_ValueType]): def __init__( self, shape: ShapeArgType, dtype: DTypeArgType, random_state: Optional[RandomStateType] = None, parameters: Optional[Dict[str, Any]] = None, sample: Optional[Callable[[ShapeArgType], _ValueType]] = None, in_support: Optional[Callable[[_ValueType], bool]] = None, pdf: Optional[Callable[[_ValueType], np.float_]] = None, logpdf: Optional[Callable[[_ValueType], np.float_]] = None, cdf: Optional[Callable[[_ValueType], np.float_]] = None, logcdf: Optional[Callable[[_ValueType], np.float_]] = None, quantile: Optional[Callable[[FloatArgType], _ValueType]] = None, mode: Optional[Callable[[], _ValueType]] = None, median: Optional[Callable[[], _ValueType]] = None, mean: Optional[Callable[[], _ValueType]] = None, cov: Optional[Callable[[], _ValueType]] = None, var: Optional[Callable[[], _ValueType]] = None, std: Optional[Callable[[], _ValueType]] = None, entropy: Optional[Callable[[], np.float_]] = None, ): # Probability density function self.__pdf = pdf self.__logpdf = logpdf super().__init__( shape=shape, dtype=dtype, random_state=random_state, parameters=parameters, sample=sample, in_support=in_support, cdf=cdf, logcdf=logcdf, quantile=quantile, mode=mode, median=median, mean=mean, cov=cov, var=var, std=std, entropy=entropy, ) def pdf(self, x: _ValueType) -> np.float_: """ Probability density or mass function. Following the predominant convention in mathematics, we express pdfs with respect to the Lebesgue measure unless stated otherwise. Parameters ---------- x : array-like Evaluation points of the probability density / mass function. The shape of this argument should be :code:`(..., S1, ..., SN)`, where :code:`(S1, ..., SN)` is the :attr:`shape` of the random variable. The pdf evaluation will be broadcast over all additional dimensions. Returns ------- p : array-like Value of the probability density / mass function at the given points. """ if self.__pdf is not None: return ContinuousRandomVariable._ensure_numpy_float( "pdf", self.__pdf(self._as_value_type(x)) ) if self.__logpdf is not None: pdf = np.exp(self.__logpdf(self._as_value_type(x))) assert isinstance(pdf, np.float_) return pdf raise NotImplementedError( f"Neither the `pdf` nor the `logpdf` of the continuous random variable " f"object with type `{type(self).__name__}` is implemented." ) def logpdf(self, x: _ValueType) -> np.float_: """ Natural logarithm of the probability density function. Parameters ---------- x : array-like Evaluation points of the log-probability density/mass function. The shape of this argument should be :code:`(..., S1, ..., SN)`, where :code:`(S1, ..., SN)` is the :attr:`shape` of the random variable. The logpdf evaluation will be broadcast over all additional dimensions. Returns ------- logp : array-like Value of the log-probability density / mass function at the given points. """ if self.__logpdf is not None: return ContinuousRandomVariable._ensure_numpy_float( "logpdf", self.__logpdf(self._as_value_type(x)) ) elif self.__pdf is not None: logpdf = np.log(self.__pdf(self._as_value_type(x))) assert isinstance(logpdf, np.float_) return logpdf else: raise NotImplementedError( f"Neither the `logpdf` nor the `pdf` of the continuous random variable " f"object with type `{type(self).__name__}` is implemented." )
[ "numpy.prod", "probnum.utils.as_shape", "numpy.sqrt", "numpy.isscalar", "numpy.promote_types", "probnum.utils.as_random_state", "numpy.asarray", "probnum.utils.as_numpy_scalar", "numpy.diag", "numpy.issubdtype", "numpy.empty", "probnum.utils.derive_random_seed", "numpy.dtype", "typing.TypeVar" ]
[((658, 678), 'typing.TypeVar', 'TypeVar', (['"""ValueType"""'], {}), "('ValueType')\n", (665, 678), False, 'from typing import Any, Callable, Dict, Generic, Optional, Tuple, TypeVar, Union\n'), ((4355, 4377), 'probnum.utils.as_shape', '_utils.as_shape', (['shape'], {}), '(shape)\n', (4370, 4377), True, 'from probnum import utils as _utils\n'), ((4423, 4438), 'numpy.dtype', 'np.dtype', (['dtype'], {}), '(dtype)\n', (4431, 4438), True, 'import numpy as np\n'), ((4625, 4661), 'probnum.utils.as_random_state', '_utils.as_random_state', (['random_state'], {}), '(random_state)\n', (4647, 4661), True, 'from probnum import utils as _utils\n'), ((8030, 8058), 'probnum.utils.as_random_state', '_utils.as_random_state', (['seed'], {}), '(seed)\n', (8052, 8058), True, 'from probnum import utils as _utils\n'), ((19830, 19855), 'probnum.utils.as_shape', '_utils.as_shape', (['newshape'], {}), '(newshape)\n', (19845, 19855), True, 'from probnum import utils as _utils\n'), ((27213, 27253), 'numpy.promote_types', 'np.promote_types', (['value_dtype', 'np.float_'], {}), '(value_dtype, np.float_)\n', (27229, 27253), True, 'import numpy as np\n'), ((28334, 28352), 'numpy.isscalar', 'np.isscalar', (['value'], {}), '(value)\n', (28345, 28352), True, 'import numpy as np\n'), ((5670, 5691), 'numpy.prod', 'np.prod', (['self.__shape'], {}), '(self.__shape)\n', (5677, 5691), True, 'import numpy as np\n'), ((17904, 17948), 'probnum.utils.as_numpy_scalar', '_utils.as_numpy_scalar', (['p'], {'dtype': 'np.floating'}), '(p, dtype=np.floating)\n', (17926, 17948), True, 'from probnum import utils as _utils\n'), ((12628, 12645), 'numpy.sqrt', 'np.sqrt', (['self.var'], {}), '(self.var)\n', (12635, 12645), True, 'import numpy as np\n'), ((14374, 14395), 'probnum.utils.as_shape', '_utils.as_shape', (['size'], {}), '(size)\n', (14389, 14395), True, 'from probnum import utils as _utils\n'), ((19023, 19067), 'probnum.utils.derive_random_seed', '_utils.derive_random_seed', (['self.random_state'], {}), '(self.random_state)\n', (19048, 19067), True, 'from probnum import utils as _utils\n'), ((19971, 20015), 'probnum.utils.derive_random_seed', '_utils.derive_random_seed', (['self.random_state'], {}), '(self.random_state)\n', (19996, 20015), True, 'from probnum import utils as _utils\n'), ((21005, 21049), 'probnum.utils.derive_random_seed', '_utils.derive_random_seed', (['self.random_state'], {}), '(self.random_state)\n', (21030, 21049), True, 'from probnum import utils as _utils\n'), ((21742, 21786), 'probnum.utils.derive_random_seed', '_utils.derive_random_seed', (['self.random_state'], {}), '(self.random_state)\n', (21767, 21786), True, 'from probnum import utils as _utils\n'), ((22334, 22378), 'probnum.utils.derive_random_seed', '_utils.derive_random_seed', (['self.random_state'], {}), '(self.random_state)\n', (22359, 22378), True, 'from probnum import utils as _utils\n'), ((22926, 22970), 'probnum.utils.derive_random_seed', '_utils.derive_random_seed', (['self.random_state'], {}), '(self.random_state)\n', (22951, 22970), True, 'from probnum import utils as _utils\n'), ((27923, 27956), 'numpy.issubdtype', 'np.issubdtype', (['value.dtype', 'dtype'], {}), '(value.dtype, dtype)\n', (27936, 27956), True, 'import numpy as np\n'), ((28452, 28498), 'probnum.utils.as_numpy_scalar', '_utils.as_numpy_scalar', (['value'], {'dtype': 'np.float_'}), '(value, dtype=np.float_)\n', (28474, 28498), True, 'from probnum import utils as _utils\n'), ((28987, 29021), 'numpy.asarray', 'np.asarray', (['value'], {'dtype': 'np.float_'}), '(value, dtype=np.float_)\n', (28997, 29021), True, 'import numpy as np\n'), ((18929, 18955), 'numpy.empty', 'np.empty', ([], {'shape': 'self.shape'}), '(shape=self.shape)\n', (18937, 18955), True, 'import numpy as np\n'), ((20899, 20925), 'numpy.empty', 'np.empty', ([], {'shape': 'self.shape'}), '(shape=self.shape)\n', (20907, 20925), True, 'import numpy as np\n'), ((11747, 11764), 'numpy.diag', 'np.diag', (['self.cov'], {}), '(self.cov)\n', (11754, 11764), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- """ Created on Thu Nov 28 12:10:11 2019 @author: Omer """ ## File handler ## This file was initially intended purely to generate the matrices for the near earth code found in: https://public.ccsds.org/Pubs/131x1o2e2s.pdf ## The values from the above pdf were copied manually to a txt file, and it is the purpose of this file to parse it. ## The emphasis here is on correctness, I currently do not see a reason to generalise this file, since matrices will be saved in either json or some matrix friendly format. import numpy as np from scipy.linalg import circulant #import matplotlib.pyplot as plt import scipy.io import common import hashlib import os projectDir = os.environ.get('LDPC') if projectDir == None: import pathlib projectDir = pathlib.Path(__file__).parent.absolute() ## <NAME>: added on 01/12/2020, need to make sure this doesn't break anything. import sys sys.path.insert(1, projectDir) FILE_HANDLER_INT_DATA_TYPE = np.int32 GENERAL_CODE_MATRIX_DATA_TYPE = np.int32 NIBBLE_CONVERTER = np.array([8, 4, 2, 1], dtype = GENERAL_CODE_MATRIX_DATA_TYPE) def nibbleToHex(inputArray): n = NIBBLE_CONVERTER.dot(inputArray) if n == 10: h = 'A' elif n== 11: h = 'B' elif n== 12: h = 'C' elif n== 13: h = 'D' elif n== 14: h = 'E' elif n== 15: h = 'F' else: h = str(n) return h def binaryArraytoHex(inputArray): d1 = len(inputArray) assert (d1 % 4 == 0) outputArray = np.zeros(d1//4, dtype = str) outputString = '' for j in range(d1//4): nibble = inputArray[4 * j : 4 * j + 4] h = nibbleToHex(nibble) outputArray[j] = h outputString = outputString + h return outputArray, outputString def hexStringToBinaryArray(hexString): outputBinary = np.array([], dtype = GENERAL_CODE_MATRIX_DATA_TYPE) for i in hexString: if i == '0': nibble = np.array([0,0,0,0], dtype = GENERAL_CODE_MATRIX_DATA_TYPE) elif i == '1': nibble = np.array([0,0,0,1], dtype = GENERAL_CODE_MATRIX_DATA_TYPE) elif i == '2': nibble = np.array([0,0,1,0], dtype = GENERAL_CODE_MATRIX_DATA_TYPE) elif i == '3': nibble = np.array([0,0,1,1], dtype = GENERAL_CODE_MATRIX_DATA_TYPE) elif i == '4': nibble = np.array([0,1,0,0], dtype = GENERAL_CODE_MATRIX_DATA_TYPE) elif i == '5': nibble = np.array([0,1,0,1], dtype = GENERAL_CODE_MATRIX_DATA_TYPE) elif i == '6': nibble = np.array([0,1,1,0], dtype = GENERAL_CODE_MATRIX_DATA_TYPE) elif i == '7': nibble = np.array([0,1,1,1], dtype = GENERAL_CODE_MATRIX_DATA_TYPE) elif i == '8': nibble = np.array([1,0,0,0], dtype = GENERAL_CODE_MATRIX_DATA_TYPE) elif i == '9': nibble = np.array([1,0,0,1], dtype = GENERAL_CODE_MATRIX_DATA_TYPE) elif i == 'A': nibble = np.array([1,0,1,0], dtype = GENERAL_CODE_MATRIX_DATA_TYPE) elif i == 'B': nibble = np.array([1,0,1,1], dtype = GENERAL_CODE_MATRIX_DATA_TYPE) elif i == 'C': nibble = np.array([1,1,0,0], dtype = GENERAL_CODE_MATRIX_DATA_TYPE) elif i == 'D': nibble = np.array([1,1,0,1], dtype = GENERAL_CODE_MATRIX_DATA_TYPE) elif i == 'E': nibble = np.array([1,1,1,0], dtype = GENERAL_CODE_MATRIX_DATA_TYPE) elif i == 'F': nibble = np.array([1,1,1,1], dtype = GENERAL_CODE_MATRIX_DATA_TYPE) else: #print('Error, 0-9 or A-F') pass nibble = np.array([], dtype = GENERAL_CODE_MATRIX_DATA_TYPE) outputBinary = np.hstack((outputBinary, nibble)) return outputBinary def hexToCirculant(hexStr, circulantSize): binaryArray = hexStringToBinaryArray(hexStr) if len(binaryArray) < circulantSize: binaryArray = np.hstack(np.zeros(circulantSize-len(binaryArray), dtype = GENERAL_CODE_MATRIX_DATA_TYPE)) else: binaryArray = binaryArray[1:] circulantMatrix = circulant(binaryArray) circulantMatrix = circulantMatrix.T return circulantMatrix def hotLocationsToCirculant(locationList, circulantSize): generatingVector = np.zeros(circulantSize, dtype = GENERAL_CODE_MATRIX_DATA_TYPE) generatingVector[locationList] = 1 newCirculant = circulant(generatingVector) newCirculant = newCirculant.T return newCirculant def readMatrixFromFile(fileName, dim0, dim1, circulantSize, isRow = True, isHex = True, isGenerator = True ): # This function assumes that each line in the file contains the non zero locations of the first row of a circulant. # Each line in the file then defines a circulant, and the order in which they are defined is top to bottom left to right, i.e.: # line 0 defines circulant 0,0 with open(fileName) as fid: lines = fid.readlines() if isGenerator: for i in range((dim0 // circulantSize) ): bLeft = hexToCirculant(lines[2 * i], circulantSize) bRight = hexToCirculant(lines[2 * i + 1], circulantSize) newBlock = np.hstack((bLeft, bRight)) if i == 0: accumulatedBlock = newBlock else: accumulatedBlock = np.vstack((accumulatedBlock, newBlock)) newMatrix = np.hstack((np.eye(dim0, dtype = GENERAL_CODE_MATRIX_DATA_TYPE), accumulatedBlock)) else: for i in range((dim1 // circulantSize)): locationList1 = list(lines[ i].rstrip('\n').split(',')) locationList1 = list(map(int, locationList1)) upBlock = hotLocationsToCirculant(locationList1, circulantSize) if i == 0: accumulatedUpBlock1 = upBlock else: accumulatedUpBlock1 = np.hstack((accumulatedUpBlock1, upBlock)) for i in range((dim1 // circulantSize)): locationList = list(lines[(dim1 // circulantSize) + i].rstrip('\n').split(',')) locationList = list(map(int, locationList)) newBlock = hotLocationsToCirculant(locationList, circulantSize) if i == 0: accumulatedBlock2 = newBlock else: accumulatedBlock2 = np.hstack((accumulatedBlock2, newBlock)) newMatrix = np.vstack((accumulatedUpBlock1, accumulatedBlock2)) return newMatrix def binaryMatrixToHexString(binaryMatrix, circulantSize): leftPadding = np.array(4 - (circulantSize % 4)) m,n = binaryMatrix.shape #print(m) #print(n) assert( m % circulantSize == 0) assert (n % circulantSize == 0) M = m // circulantSize N = n // circulantSize hexName = '' for r in range(M): for k in range(N): nextLine = np.hstack((leftPadding, binaryMatrix[ r * circulantSize , k * circulantSize : (k + 1) * circulantSize])) hexArray, hexString = binaryArraytoHex(nextLine) hexName = hexName + hexString return hexName def saveCodeInstance(parityMatrix, circulantSize, codewordSize, evaluationData = None, path = None, evaluationTime = 0, numberOfNonZero = 0, fileName = None): print("*** in saveCodeInstance ...") m, n = parityMatrix.shape M = m // circulantSize N = n // circulantSize if fileName == None: fileName = binaryMatrixToHexString(parityMatrix, circulantSize) fileNameSHA224 = str(circulantSize) + '_' + str(M) + '_' + str(N) + '_' + str(hashlib.sha224(str(fileName).encode('utf-8')).hexdigest()) fileNameWithPath = path + fileNameSHA224 else: fileNameWithPath = path + fileName print("*** " + fileName) workspaceDict = {} workspaceDict['parityMatrix'] = parityMatrix workspaceDict['fileName'] = fileName if evaluationData != None: scatterSNR, scatterBER, scatterITR, snrAxis, averageSnrAxis, berData, averageNumberOfIterations = evaluationData.getStatsV2() workspaceDict['snrData'] = scatterSNR workspaceDict['berData'] = scatterBER workspaceDict['itrData'] = scatterITR workspaceDict['averageSnrAxis'] = averageSnrAxis workspaceDict['averageNumberOfIterations'] = averageNumberOfIterations workspaceDict['evaluationTime'] = evaluationTime workspaceDict['nonZero'] = numberOfNonZero scipy.io.savemat((fileNameWithPath + '.mat'), workspaceDict) #evaluationData.plotStats(codewordSize, fileNameWithPath) print("*** Finishing saveCodeInstance !") return fileName def testFileHandler(): nearEarthGenerator = readMatrixFromFile(projectDir + '/codeMatrices/nearEarthGenerator.txt', 7154, 8176, 511, True, True, True) nearEarthParity = readMatrixFromFile(projectDir + '/codeMatrices/nearEarthParity.txt', 1022, 8176, 511, True, False, False) return 'OK' def plotResults(path, makeMat = False): i = 10 evaluationFaildAt = np.zeros(4, dtype = FILE_HANDLER_INT_DATA_TYPE) evalTimes = [] numberOfIterationsAtHigh = [] for root, dirs, files in os.walk(path): for file in files: if str(file).endswith('.mat'): i = i + 1 mat = scipy.io.loadmat(str(os.path.join(root, file))) snrAxis = mat['snrAxis'] snrActual = mat['averageSnrAxis'] if len(snrAxis) < 3: evaluationFaildAt[len(snrAxis)] = evaluationFaildAt[len(snrAxis)] + 1 berAxis = mat['berData'] if ('evaluationTime' in mat.keys()): evalTimes.append(mat['evaluationTime']) averageNumberOfIterations = mat['averageNumberOfIterations'] numberOfIterationsAtHigh.append(averageNumberOfIterations[-1]) common.plotSNRvsBER(snrActual, berAxis, fileName = None, inputLabel = '', figureNumber = i, figureName = str(file)) else: pass return evalTimes, evaluationFaildAt, numberOfIterationsAtHigh #plt.imshow(nearEarthParity) #nearEarthParity = readMatrixFromFile('/home/oss22/swift/swift/codeMatrices/nearEarthParity.txt', 1022, 8176, 511, True, False, False) #import networkx as nx #from networkx.algorithms import bipartite #B = nx.Graph() #B.add_nodes_from(range(1022), bipartite=0) #B.add_nodes_from(range(1022, 7156 + 1022), bipartite=1) # Add edges only between nodes of opposite node sets #for i in range(8176): # for j in range(1022): # if nearEarthParity[j,i] != 0: # B.add_edges_from([(j, 7156 + i)]) #X, Y = bipartite.sets(B) #pos = dict() #pos.update( (n, (1, i)) for i, n in enumerate(X) ) #pos.update( (n, (2, i)) for i, n in enumerate(Y) ) #nx.draw(B, pos=pos) #plt.show()
[ "numpy.eye", "sys.path.insert", "numpy.hstack", "pathlib.Path", "os.environ.get", "os.path.join", "numpy.array", "numpy.zeros", "scipy.linalg.circulant", "numpy.vstack", "os.walk" ]
[((694, 716), 'os.environ.get', 'os.environ.get', (['"""LDPC"""'], {}), "('LDPC')\n", (708, 716), False, 'import os\n'), ((907, 937), 'sys.path.insert', 'sys.path.insert', (['(1)', 'projectDir'], {}), '(1, projectDir)\n', (922, 937), False, 'import sys\n'), ((1038, 1097), 'numpy.array', 'np.array', (['[8, 4, 2, 1]'], {'dtype': 'GENERAL_CODE_MATRIX_DATA_TYPE'}), '([8, 4, 2, 1], dtype=GENERAL_CODE_MATRIX_DATA_TYPE)\n', (1046, 1097), True, 'import numpy as np\n'), ((1524, 1552), 'numpy.zeros', 'np.zeros', (['(d1 // 4)'], {'dtype': 'str'}), '(d1 // 4, dtype=str)\n', (1532, 1552), True, 'import numpy as np\n'), ((1848, 1897), 'numpy.array', 'np.array', (['[]'], {'dtype': 'GENERAL_CODE_MATRIX_DATA_TYPE'}), '([], dtype=GENERAL_CODE_MATRIX_DATA_TYPE)\n', (1856, 1897), True, 'import numpy as np\n'), ((4356, 4378), 'scipy.linalg.circulant', 'circulant', (['binaryArray'], {}), '(binaryArray)\n', (4365, 4378), False, 'from scipy.linalg import circulant\n'), ((4528, 4588), 'numpy.zeros', 'np.zeros', (['circulantSize'], {'dtype': 'GENERAL_CODE_MATRIX_DATA_TYPE'}), '(circulantSize, dtype=GENERAL_CODE_MATRIX_DATA_TYPE)\n', (4536, 4588), True, 'import numpy as np\n'), ((4649, 4676), 'scipy.linalg.circulant', 'circulant', (['generatingVector'], {}), '(generatingVector)\n', (4658, 4676), False, 'from scipy.linalg import circulant\n'), ((6792, 6823), 'numpy.array', 'np.array', (['(4 - circulantSize % 4)'], {}), '(4 - circulantSize % 4)\n', (6800, 6823), True, 'import numpy as np\n'), ((9217, 9262), 'numpy.zeros', 'np.zeros', (['(4)'], {'dtype': 'FILE_HANDLER_INT_DATA_TYPE'}), '(4, dtype=FILE_HANDLER_INT_DATA_TYPE)\n', (9225, 9262), True, 'import numpy as np\n'), ((9347, 9360), 'os.walk', 'os.walk', (['path'], {}), '(path)\n', (9354, 9360), False, 'import os\n'), ((3963, 3996), 'numpy.hstack', 'np.hstack', (['(outputBinary, nibble)'], {}), '((outputBinary, nibble))\n', (3972, 3996), True, 'import numpy as np\n'), ((6625, 6676), 'numpy.vstack', 'np.vstack', (['(accumulatedUpBlock1, accumulatedBlock2)'], {}), '((accumulatedUpBlock1, accumulatedBlock2))\n', (6634, 6676), True, 'import numpy as np\n'), ((1967, 2026), 'numpy.array', 'np.array', (['[0, 0, 0, 0]'], {'dtype': 'GENERAL_CODE_MATRIX_DATA_TYPE'}), '([0, 0, 0, 0], dtype=GENERAL_CODE_MATRIX_DATA_TYPE)\n', (1975, 2026), True, 'import numpy as np\n'), ((5433, 5459), 'numpy.hstack', 'np.hstack', (['(bLeft, bRight)'], {}), '((bLeft, bRight))\n', (5442, 5459), True, 'import numpy as np\n'), ((7104, 7209), 'numpy.hstack', 'np.hstack', (['(leftPadding, binaryMatrix[r * circulantSize, k * circulantSize:(k + 1) *\n circulantSize])'], {}), '((leftPadding, binaryMatrix[r * circulantSize, k * circulantSize:(\n k + 1) * circulantSize]))\n', (7113, 7209), True, 'import numpy as np\n'), ((776, 798), 'pathlib.Path', 'pathlib.Path', (['__file__'], {}), '(__file__)\n', (788, 798), False, 'import pathlib\n'), ((2072, 2131), 'numpy.array', 'np.array', (['[0, 0, 0, 1]'], {'dtype': 'GENERAL_CODE_MATRIX_DATA_TYPE'}), '([0, 0, 0, 1], dtype=GENERAL_CODE_MATRIX_DATA_TYPE)\n', (2080, 2131), True, 'import numpy as np\n'), ((5580, 5619), 'numpy.vstack', 'np.vstack', (['(accumulatedBlock, newBlock)'], {}), '((accumulatedBlock, newBlock))\n', (5589, 5619), True, 'import numpy as np\n'), ((5651, 5700), 'numpy.eye', 'np.eye', (['dim0'], {'dtype': 'GENERAL_CODE_MATRIX_DATA_TYPE'}), '(dim0, dtype=GENERAL_CODE_MATRIX_DATA_TYPE)\n', (5657, 5700), True, 'import numpy as np\n'), ((6118, 6159), 'numpy.hstack', 'np.hstack', (['(accumulatedUpBlock1, upBlock)'], {}), '((accumulatedUpBlock1, upBlock))\n', (6127, 6159), True, 'import numpy as np\n'), ((6564, 6604), 'numpy.hstack', 'np.hstack', (['(accumulatedBlock2, newBlock)'], {}), '((accumulatedBlock2, newBlock))\n', (6573, 6604), True, 'import numpy as np\n'), ((2190, 2249), 'numpy.array', 'np.array', (['[0, 0, 1, 0]'], {'dtype': 'GENERAL_CODE_MATRIX_DATA_TYPE'}), '([0, 0, 1, 0], dtype=GENERAL_CODE_MATRIX_DATA_TYPE)\n', (2198, 2249), True, 'import numpy as np\n'), ((2308, 2367), 'numpy.array', 'np.array', (['[0, 0, 1, 1]'], {'dtype': 'GENERAL_CODE_MATRIX_DATA_TYPE'}), '([0, 0, 1, 1], dtype=GENERAL_CODE_MATRIX_DATA_TYPE)\n', (2316, 2367), True, 'import numpy as np\n'), ((9501, 9525), 'os.path.join', 'os.path.join', (['root', 'file'], {}), '(root, file)\n', (9513, 9525), False, 'import os\n'), ((2426, 2485), 'numpy.array', 'np.array', (['[0, 1, 0, 0]'], {'dtype': 'GENERAL_CODE_MATRIX_DATA_TYPE'}), '([0, 1, 0, 0], dtype=GENERAL_CODE_MATRIX_DATA_TYPE)\n', (2434, 2485), True, 'import numpy as np\n'), ((2544, 2603), 'numpy.array', 'np.array', (['[0, 1, 0, 1]'], {'dtype': 'GENERAL_CODE_MATRIX_DATA_TYPE'}), '([0, 1, 0, 1], dtype=GENERAL_CODE_MATRIX_DATA_TYPE)\n', (2552, 2603), True, 'import numpy as np\n'), ((2662, 2721), 'numpy.array', 'np.array', (['[0, 1, 1, 0]'], {'dtype': 'GENERAL_CODE_MATRIX_DATA_TYPE'}), '([0, 1, 1, 0], dtype=GENERAL_CODE_MATRIX_DATA_TYPE)\n', (2670, 2721), True, 'import numpy as np\n'), ((2780, 2839), 'numpy.array', 'np.array', (['[0, 1, 1, 1]'], {'dtype': 'GENERAL_CODE_MATRIX_DATA_TYPE'}), '([0, 1, 1, 1], dtype=GENERAL_CODE_MATRIX_DATA_TYPE)\n', (2788, 2839), True, 'import numpy as np\n'), ((2898, 2957), 'numpy.array', 'np.array', (['[1, 0, 0, 0]'], {'dtype': 'GENERAL_CODE_MATRIX_DATA_TYPE'}), '([1, 0, 0, 0], dtype=GENERAL_CODE_MATRIX_DATA_TYPE)\n', (2906, 2957), True, 'import numpy as np\n'), ((3016, 3075), 'numpy.array', 'np.array', (['[1, 0, 0, 1]'], {'dtype': 'GENERAL_CODE_MATRIX_DATA_TYPE'}), '([1, 0, 0, 1], dtype=GENERAL_CODE_MATRIX_DATA_TYPE)\n', (3024, 3075), True, 'import numpy as np\n'), ((3134, 3193), 'numpy.array', 'np.array', (['[1, 0, 1, 0]'], {'dtype': 'GENERAL_CODE_MATRIX_DATA_TYPE'}), '([1, 0, 1, 0], dtype=GENERAL_CODE_MATRIX_DATA_TYPE)\n', (3142, 3193), True, 'import numpy as np\n'), ((3252, 3311), 'numpy.array', 'np.array', (['[1, 0, 1, 1]'], {'dtype': 'GENERAL_CODE_MATRIX_DATA_TYPE'}), '([1, 0, 1, 1], dtype=GENERAL_CODE_MATRIX_DATA_TYPE)\n', (3260, 3311), True, 'import numpy as np\n'), ((3370, 3429), 'numpy.array', 'np.array', (['[1, 1, 0, 0]'], {'dtype': 'GENERAL_CODE_MATRIX_DATA_TYPE'}), '([1, 1, 0, 0], dtype=GENERAL_CODE_MATRIX_DATA_TYPE)\n', (3378, 3429), True, 'import numpy as np\n'), ((3488, 3547), 'numpy.array', 'np.array', (['[1, 1, 0, 1]'], {'dtype': 'GENERAL_CODE_MATRIX_DATA_TYPE'}), '([1, 1, 0, 1], dtype=GENERAL_CODE_MATRIX_DATA_TYPE)\n', (3496, 3547), True, 'import numpy as np\n'), ((3606, 3665), 'numpy.array', 'np.array', (['[1, 1, 1, 0]'], {'dtype': 'GENERAL_CODE_MATRIX_DATA_TYPE'}), '([1, 1, 1, 0], dtype=GENERAL_CODE_MATRIX_DATA_TYPE)\n', (3614, 3665), True, 'import numpy as np\n'), ((3724, 3783), 'numpy.array', 'np.array', (['[1, 1, 1, 1]'], {'dtype': 'GENERAL_CODE_MATRIX_DATA_TYPE'}), '([1, 1, 1, 1], dtype=GENERAL_CODE_MATRIX_DATA_TYPE)\n', (3732, 3783), True, 'import numpy as np\n'), ((3888, 3937), 'numpy.array', 'np.array', (['[]'], {'dtype': 'GENERAL_CODE_MATRIX_DATA_TYPE'}), '([], dtype=GENERAL_CODE_MATRIX_DATA_TYPE)\n', (3896, 3937), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- """ Showcases *ICTCP* *colour encoding* computations. """ import numpy as np import colour from colour.utilities import message_box message_box('"ICTCP" Colour Encoding Computations') RGB = np.array([0.45620519, 0.03081071, 0.04091952]) message_box(('Converting from "ITU-R BT.2020" colourspace to "ICTCP" colour ' 'encoding given "RGB" values:\n' '\n\t{0}'.format(RGB))) print(colour.RGB_to_ICTCP(RGB)) print('\n') ICTCP = np.array([0.07351364, 0.00475253, 0.09351596]) message_box(('Converting from "ICTCP" colour encoding to "ITU-R BT.2020" ' 'colourspace given "ICTCP" values:\n' '\n\t{0}'.format(ICTCP))) print(colour.ICTCP_to_RGB(ICTCP))
[ "colour.ICTCP_to_RGB", "colour.utilities.message_box", "numpy.array", "colour.RGB_to_ICTCP" ]
[((159, 210), 'colour.utilities.message_box', 'message_box', (['""""ICTCP" Colour Encoding Computations"""'], {}), '(\'"ICTCP" Colour Encoding Computations\')\n', (170, 210), False, 'from colour.utilities import message_box\n'), ((218, 264), 'numpy.array', 'np.array', (['[0.45620519, 0.03081071, 0.04091952]'], {}), '([0.45620519, 0.03081071, 0.04091952])\n', (226, 264), True, 'import numpy as np\n'), ((480, 526), 'numpy.array', 'np.array', (['[0.07351364, 0.00475253, 0.09351596]'], {}), '([0.07351364, 0.00475253, 0.09351596])\n', (488, 526), True, 'import numpy as np\n'), ((432, 456), 'colour.RGB_to_ICTCP', 'colour.RGB_to_ICTCP', (['RGB'], {}), '(RGB)\n', (451, 456), False, 'import colour\n'), ((698, 724), 'colour.ICTCP_to_RGB', 'colour.ICTCP_to_RGB', (['ICTCP'], {}), '(ICTCP)\n', (717, 724), False, 'import colour\n')]
""" Copyright (c) 2019 Intel Corporation Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import numpy as np from ..config import PathField, BoolField from ..representation import ClassificationAnnotation from ..utils import read_csv, check_file_existence, read_json from .format_converter import BaseFormatConverter, ConverterReturn try: from PIL import Image except ImportError: Image = None class MNISTCSVFormatConverter(BaseFormatConverter): """ MNIST CSV dataset converter. All annotation converters should be derived from BaseFormatConverter class. """ # register name for this converter # this name will be used for converter class look up __provider__ = 'mnist_csv' annotation_types = (ClassificationAnnotation, ) @classmethod def parameters(cls): configuration_parameters = super().parameters() configuration_parameters.update({ 'annotation_file': PathField(description="Path to csv file which contain dataset."), 'convert_images': BoolField( optional=True, default=False, description="Allows to convert images from pickle file to user specified directory." ), 'converted_images_dir': PathField( optional=True, is_directory=True, check_exists=False, description="Path to converted images location." ), 'dataset_meta_file': PathField( description='path to json file with dataset meta (e.g. label_map, color_encoding)', optional=True ) }) return configuration_parameters def configure(self): """ This method is responsible for obtaining the necessary parameters for converting from the command line or config. """ self.test_csv_file = self.get_value_from_config('annotation_file') self.converted_images_dir = self.get_value_from_config('converted_images_dir') self.convert_images = self.get_value_from_config('convert_images') if self.convert_images and not self.converted_images_dir: self.converted_images_dir = self.test_csv_file.parent / 'converted_images' if not self.converted_images_dir.exists(): self.converted_images_dir.mkdir(parents=True) if self.convert_images and Image is None: raise ValueError( "conversion mnist images requires Pillow installation, please install it before usage" ) self.dataset_meta = self.get_value_from_config('dataset_meta_file') def convert(self, check_content=False, progress_callback=None, progress_interval=100, **kwargs): """ This method is executed automatically when convert.py is started. All arguments are automatically got from command line arguments or config file in method configure Returns: annotations: list of annotation representation objects. meta: dictionary with additional dataset level metadata. """ annotations = [] check_images = check_content and not self.convert_images meta = self.generate_meta() labels_to_id = meta['label_map'] content_errors = None if check_content: self.converted_images_dir = self.converted_images_dir or self.test_csv_file.parent / 'converted_images' if self.converted_images_dir and check_content: if not self.converted_images_dir.exists(): content_errors = ['{}: does not exist'.format(self.converted_images_dir)] check_images = False # read original dataset annotation annotation_table = read_csv(self.test_csv_file) num_iterations = len(annotation_table) for index, annotation in enumerate(annotation_table): identifier = '{}.png'.format(index) label = labels_to_id.get(annotation['label'], int(annotation['label'])) if self.convert_images: image = Image.fromarray(self.convert_image(annotation)) image = image.convert("L") image.save(str(self.converted_images_dir / identifier)) annotations.append(ClassificationAnnotation(identifier, label)) if check_images: if not check_file_existence(self.converted_images_dir / identifier): # add error to errors list if file not found content_errors.append('{}: does not exist'.format(self.converted_images_dir / identifier)) if progress_callback is not None and index % progress_interval == 0: progress_callback(index / num_iterations * 100) return ConverterReturn(annotations, meta, content_errors) @staticmethod def convert_image(features): image = np.zeros((28, 28)) column_template = '{}x{}' for x in range(28): for y in range(28): pixel = int(features[column_template.format(x+1, y+1)]) image[x, y] = pixel return image def generate_meta(self): if not self.dataset_meta: return {'label_map': {str(i): i for i in range(10)}} dataset_meta = read_json(self.dataset_meta) label_map = dataset_meta.get('label_map') if 'labels' in dataset_meta: label_map = dict(enumerate(dataset_meta['labels'])) dataset_meta['label_map'] = label_map or {str(i): i for i in range(10)} return dataset_meta
[ "numpy.zeros" ]
[((5319, 5337), 'numpy.zeros', 'np.zeros', (['(28, 28)'], {}), '((28, 28))\n', (5327, 5337), True, 'import numpy as np\n')]
import numpy as np import sys import os from PIL import Image from visu.helper_functions import save_image from scipy.spatial.transform import Rotation as R from helper import re_quat import copy import torch import numpy as np import k3d class Visualizer(): def __init__(self, p_visu, writer=None): if p_visu[-1] != '/': p_visu = p_visu + '/' self.p_visu = p_visu self.writer = writer if not os.path.exists(self.p_visu): os.makedirs(self.p_visu) def plot_estimated_pose(self, tag, epoch, img, points, trans=[[0, 0, 0]], rot_mat=[[1, 0, 0], [0, 1, 0], [0, 0, 1]], cam_cx=0, cam_cy=0, cam_fx=0, cam_fy=0, store=False, jupyter=False, w=2): """ tag := tensorboard tag epoch := tensorboard epoche store := ture -> stores the image to standard path path := != None creats the path and store to it path/tag.png img:= original_image, [widht,height,RGB] points:= points of the object model [length,x,y,z] trans: [1,3] rot: [3,3] """ img_d = copy.deepcopy(img) points = np.dot(points, rot_mat.T) points = np.add(points, trans[0, :]) for i in range(0, points.shape[0]): p_x = points[i, 0] p_y = points[i, 1] p_z = points[i, 2] u = int(((p_x / p_z) * cam_fx) + cam_cx) v = int(((p_y / p_z) * cam_fy) + cam_cy) try: img_d[v - w:v + w + 1, u - w:u + w + 1, 0] = 0 img_d[v - w:v + w + 1, u - w:u + w + 1, 1] = 255 img_d[v - w:v + w + 1, u - w:u + w + 1, 0] = 0 except: #print("out of bounce") pass if jupyter: display(Image.fromarray(img_d)) if store: #store_ar = (img_d* 255).round().astype(np.uint8) #print("IMAGE D:" ,img_d,img_d.shape ) save_image(img_d, tag=str(epoch) + tag, p_store=self.p_visu) if self.writer is not None: self.writer.add_image(tag, img_d.astype( np.uint8), global_step=epoch, dataformats='HWC') def plot_bounding_box(self, tag, epoch, img, rmin=0, rmax=0, cmin=0, cmax=0, str_width=2, store=False, jupyter=False, b=None): """ tag := tensorboard tag epoch := tensorboard epoche store := ture -> stores the image to standard path path := != None creats the path and store to it path/tag.png img:= original_image, [widht,height,RGB] """ if isinstance(b, dict): rmin = b['rmin'] rmax = b['rmax'] cmin = b['cmin'] cmax = b['cmax'] # ToDo check Input data img_d = np.array(copy.deepcopy(img)) c = [0, 0, 255] rmin_mi = max(0, rmin - str_width) rmin_ma = min(img_d.shape[0], rmin + str_width) rmax_mi = max(0, rmax - str_width) rmax_ma = min(img_d.shape[0], rmax + str_width) cmin_mi = max(0, cmin - str_width) cmin_ma = min(img_d.shape[1], cmin + str_width) cmax_mi = max(0, cmax - str_width) cmax_ma = min(img_d.shape[1], cmax + str_width) img_d[rmin_mi:rmin_ma, cmin:cmax, :] = c img_d[rmax_mi:rmax_ma, cmin:cmax, :] = c img_d[rmin:rmax, cmin_mi:cmin_ma, :] = c img_d[rmin:rmax, cmax_mi:cmax_ma, :] = c print("STORE", store) img_d = img_d.astype(np.uint8) if store: #store_ar = (img_d* 255).round().astype(np.uint8) save_image(img_d, tag=str(epoch) + tag, p_store=self.p_visu) if jupyter: display(Image.fromarray(img_d)) if self.writer is not None: self.writer.add_image(tag, img_d.astype( np.uint8), global_step=epoch, dataformats='HWC') def plot_pcd(x, point_size=0.005, c='g'): """ x: point_nr,3 """ if c == 'b': k = 245 elif c == 'g': k = 25811000 elif c == 'r': k = 11801000 elif c == 'black': k = 2580 else: k = 2580 colors = np.ones(x.shape[0]) * k plot = k3d.plot(name='points') plt_points = k3d.points(x, colors.astype(np.uint32), point_size=point_size) plot += plt_points plt_points.shader = '3d' plot.display() def plot_two_pcd(x, y, point_size=0.005, c1='g', c2='r'): if c1 == 'b': k = 245 elif c1 == 'g': k = 25811000 elif c1 == 'r': k = 11801000 elif c1 == 'black': k = 2580 else: k = 2580 if c2 == 'b': k2 = 245 elif c2 == 'g': k2 = 25811000 elif c2 == 'r': k2 = 11801000 elif c2 == 'black': k2 = 2580 else: k2 = 2580 col1 = np.ones(x.shape[0]) * k col2 = np.ones(y.shape[0]) * k2 plot = k3d.plot(name='points') plt_points = k3d.points(x, col1.astype(np.uint32), point_size=point_size) plot += plt_points plt_points = k3d.points(y, col2.astype(np.uint32), point_size=point_size) plot += plt_points plt_points.shader = '3d' plot.display() class SequenceVisualizer(): def __init__(self, seq_data, images_path, output_path=None): self.seq_data = seq_data self.images_path = images_path self.output_path = output_path def plot_points_on_image(self, seq_no, frame_no, jupyter=False, store=False, pose_type='filtered'): seq_data = self.seq_data images_path = self.images_path output_path = self.output_path frame = seq_data[seq_no][frame_no] unique_desig = frame['dl_dict']['unique_desig'][0] if pose_type == 'ground_truth': # ground truth t = frame['dl_dict']['gt_trans'].reshape(1, 3) rot_quat = re_quat(copy.deepcopy( frame['dl_dict']['gt_rot_wxyz'][0]), 'wxyz') rot = R.from_quat(rot_quat).as_matrix() elif pose_type == 'filtered': # filter pred t = np.array(frame['filter_pred']['t']).reshape(1, 3) rot_quat = re_quat(copy.deepcopy( frame['filter_pred']['r_wxyz']), 'wxyz') rot = R.from_quat(rot_quat).as_matrix() elif pose_type == 'final_pred_obs': # final pred t = np.array(frame['final_pred_obs']['t']).reshape(1, 3) rot_quat = re_quat(copy.deepcopy( frame['final_pred_obs']['r_wxyz']), 'wxyz') rot = R.from_quat(rot_quat).as_matrix() else: raise Exception('Pose type not implemented.') w = 2 if type(unique_desig) != str: im = np.array(Image.open( images_path + unique_desig[0] + '-color.png')) # ycb else: im = np.array(Image.open( images_path + unique_desig + '.png')) # laval img_d = copy.deepcopy(im) dl_dict = frame['dl_dict'] points = copy.deepcopy( seq_data[seq_no][0]['dl_dict']['model_points'][0, :, :]) points = np.dot(points, rot.T) points = np.add(points, t[0, :]) cam_cx = dl_dict['cam_cal'][0][0] cam_cy = dl_dict['cam_cal'][0][1] cam_fx = dl_dict['cam_cal'][0][2] cam_fy = dl_dict['cam_cal'][0][3] for i in range(0, points.shape[0]): p_x = points[i, 0] p_y = points[i, 1] p_z = points[i, 2] u = int(((p_x / p_z) * cam_fx) + cam_cx) v = int(((p_y / p_z) * cam_fy) + cam_cy) try: img_d[v - w:v + w + 1, u - w:u + w + 1, 0] = 0 img_d[v - w:v + w + 1, u - w:u + w + 1, 1] = 255 img_d[v - w:v + w + 1, u - w:u + w + 1, 0] = 0 except: #print("out of bounds") pass img_disp = Image.fromarray(img_d) if jupyter: display(img_disp) if store: outpath = output_path + \ '{}_{}_{}.png'.format(pose_type, seq_no, frame_no) img_disp.save(outpath, "PNG", compress_level=1) print("Saved image to {}".format(outpath)) def save_sequence(self, seq_no, pose_type='filtered', name=''): for fn in range(len(self.seq_data)): self.plot_points_on_image(seq_no, fn, False, True, pose_type) if name: video_name = '{}_{}_{}'.format(name, pose_type, seq_no) else: video_name = '{}_{}'.format(pose_type, seq_no) cmd = "cd {} && ffmpeg -r 10 -i ./filtered_{}_%d.png -vcodec mpeg4 -y {}.mp4".format( self.output_path, seq_no, video_name) os.system(cmd)
[ "k3d.plot", "PIL.Image.fromarray", "os.path.exists", "PIL.Image.open", "numpy.ones", "numpy.add", "os.makedirs", "scipy.spatial.transform.Rotation.from_quat", "numpy.array", "numpy.dot", "copy.deepcopy", "os.system" ]
[((4150, 4173), 'k3d.plot', 'k3d.plot', ([], {'name': '"""points"""'}), "(name='points')\n", (4158, 4173), False, 'import k3d\n'), ((4842, 4865), 'k3d.plot', 'k3d.plot', ([], {'name': '"""points"""'}), "(name='points')\n", (4850, 4865), False, 'import k3d\n'), ((1091, 1109), 'copy.deepcopy', 'copy.deepcopy', (['img'], {}), '(img)\n', (1104, 1109), False, 'import copy\n'), ((1127, 1152), 'numpy.dot', 'np.dot', (['points', 'rot_mat.T'], {}), '(points, rot_mat.T)\n', (1133, 1152), True, 'import numpy as np\n'), ((1170, 1197), 'numpy.add', 'np.add', (['points', 'trans[0, :]'], {}), '(points, trans[0, :])\n', (1176, 1197), True, 'import numpy as np\n'), ((4115, 4134), 'numpy.ones', 'np.ones', (['x.shape[0]'], {}), '(x.shape[0])\n', (4122, 4134), True, 'import numpy as np\n'), ((4771, 4790), 'numpy.ones', 'np.ones', (['x.shape[0]'], {}), '(x.shape[0])\n', (4778, 4790), True, 'import numpy as np\n'), ((4806, 4825), 'numpy.ones', 'np.ones', (['y.shape[0]'], {}), '(y.shape[0])\n', (4813, 4825), True, 'import numpy as np\n'), ((6871, 6888), 'copy.deepcopy', 'copy.deepcopy', (['im'], {}), '(im)\n', (6884, 6888), False, 'import copy\n'), ((6942, 7012), 'copy.deepcopy', 'copy.deepcopy', (["seq_data[seq_no][0]['dl_dict']['model_points'][0, :, :]"], {}), "(seq_data[seq_no][0]['dl_dict']['model_points'][0, :, :])\n", (6955, 7012), False, 'import copy\n'), ((7043, 7064), 'numpy.dot', 'np.dot', (['points', 'rot.T'], {}), '(points, rot.T)\n', (7049, 7064), True, 'import numpy as np\n'), ((7082, 7105), 'numpy.add', 'np.add', (['points', 't[0, :]'], {}), '(points, t[0, :])\n', (7088, 7105), True, 'import numpy as np\n'), ((7827, 7849), 'PIL.Image.fromarray', 'Image.fromarray', (['img_d'], {}), '(img_d)\n', (7842, 7849), False, 'from PIL import Image\n'), ((8637, 8651), 'os.system', 'os.system', (['cmd'], {}), '(cmd)\n', (8646, 8651), False, 'import os\n'), ((444, 471), 'os.path.exists', 'os.path.exists', (['self.p_visu'], {}), '(self.p_visu)\n', (458, 471), False, 'import os\n'), ((485, 509), 'os.makedirs', 'os.makedirs', (['self.p_visu'], {}), '(self.p_visu)\n', (496, 509), False, 'import os\n'), ((2763, 2781), 'copy.deepcopy', 'copy.deepcopy', (['img'], {}), '(img)\n', (2776, 2781), False, 'import copy\n'), ((1771, 1793), 'PIL.Image.fromarray', 'Image.fromarray', (['img_d'], {}), '(img_d)\n', (1786, 1793), False, 'from PIL import Image\n'), ((3666, 3688), 'PIL.Image.fromarray', 'Image.fromarray', (['img_d'], {}), '(img_d)\n', (3681, 3688), False, 'from PIL import Image\n'), ((5798, 5847), 'copy.deepcopy', 'copy.deepcopy', (["frame['dl_dict']['gt_rot_wxyz'][0]"], {}), "(frame['dl_dict']['gt_rot_wxyz'][0])\n", (5811, 5847), False, 'import copy\n'), ((6658, 6714), 'PIL.Image.open', 'Image.open', (["(images_path + unique_desig[0] + '-color.png')"], {}), "(images_path + unique_desig[0] + '-color.png')\n", (6668, 6714), False, 'from PIL import Image\n'), ((6780, 6827), 'PIL.Image.open', 'Image.open', (["(images_path + unique_desig + '.png')"], {}), "(images_path + unique_desig + '.png')\n", (6790, 6827), False, 'from PIL import Image\n'), ((5892, 5913), 'scipy.spatial.transform.Rotation.from_quat', 'R.from_quat', (['rot_quat'], {}), '(rot_quat)\n', (5903, 5913), True, 'from scipy.spatial.transform import Rotation as R\n'), ((6087, 6132), 'copy.deepcopy', 'copy.deepcopy', (["frame['filter_pred']['r_wxyz']"], {}), "(frame['filter_pred']['r_wxyz'])\n", (6100, 6132), False, 'import copy\n'), ((6006, 6041), 'numpy.array', 'np.array', (["frame['filter_pred']['t']"], {}), "(frame['filter_pred']['t'])\n", (6014, 6041), True, 'import numpy as np\n'), ((6177, 6198), 'scipy.spatial.transform.Rotation.from_quat', 'R.from_quat', (['rot_quat'], {}), '(rot_quat)\n', (6188, 6198), True, 'from scipy.spatial.transform import Rotation as R\n'), ((6380, 6428), 'copy.deepcopy', 'copy.deepcopy', (["frame['final_pred_obs']['r_wxyz']"], {}), "(frame['final_pred_obs']['r_wxyz'])\n", (6393, 6428), False, 'import copy\n'), ((6296, 6334), 'numpy.array', 'np.array', (["frame['final_pred_obs']['t']"], {}), "(frame['final_pred_obs']['t'])\n", (6304, 6334), True, 'import numpy as np\n'), ((6473, 6494), 'scipy.spatial.transform.Rotation.from_quat', 'R.from_quat', (['rot_quat'], {}), '(rot_quat)\n', (6484, 6494), True, 'from scipy.spatial.transform import Rotation as R\n')]
import os from PIL import Image import cv2 from os import listdir from os.path import join import matplotlib.pyplot as plt import matplotlib from matplotlib.colors import LogNorm from io_utils.io_common import create_folder from viz_utils.constants import PlotMode, BackgroundType import pylab import numpy as np import cmocean import shapely import cartopy.crs as ccrs import cartopy.feature as cfeature import cartopy def select_colormap(field_name): ''' Based on the name if the field it chooses a colormap from cmocean Args: field_name: Returns: ''' if np.any([field_name.find(x) != -1 for x in ('ssh', 'srfhgt', 'adt','surf_el')]): # cmaps_fields.append(cmocean.cm.deep_r) return cmocean.cm.curl elif np.any([field_name.find(x) != -1 for x in ('temp', 'sst', 'temperature')]): return cmocean.cm.thermal elif np.any([field_name.find(x) != -1 for x in ('vorticity', 'vort')]): return cmocean.cm.curl elif np.any([field_name.find(x) != -1 for x in ('salin', 'sss', 'sal')]): return cmocean.cm.haline elif field_name.find('error') != -1: return cmocean.cm.diff elif field_name.find('binary') != -1: return cmocean.cm.oxy elif np.any([field_name.find(x) != -1 for x in ('u_', 'v_', 'u-vel.', 'v-vel.','velocity')]): return cmocean.cm.speed class EOAImageVisualizer: """This class makes plenty of plots assuming we are plotting Geospatial data (maps). It is made to read xarrays, numpy arrays, and numpy arrays in dictionaries vizobj = new EOAImageVisualizer(disp_images=True, output_folder='output', lats=[lats],lons=[lons]) """ _COLORS = ['y', 'r', 'c', 'b', 'g', 'w', 'k', 'y', 'r', 'c', 'b', 'g', 'w', 'k'] _figsize = 8 _font_size = 30 _units = '' _max_imgs_per_row = 4 _mincbar = np.nan # User can set a min and max colorbar values to 'force' same color bar to all plots _maxcbar = np.nan _flip_data = True _eoas_pyutils_path = './eoas_pyutils'# This is the path where the eoas_utils folder is stored with respect to the main project _contourf = False # When plotting non-regular grids and need precision _background = BackgroundType.BLUE_MARBLE_LR # Select the background to use _auto_colormap = True # Selects the colormap based on the name of the field _show_var_names = False # Includes the name of the field name in the titles _additional_polygons = [] # MUST BE SHAPELY GEOMETRIES In case we want to include additional polygons in the plots (all of them) # If you want to add a streamplot of a vector field. It must be a dictionary with keys x,y,u,v # and optional density, color, cmap, arrowsize, arrowstyle, minlength _vector_field = None _norm = None # Use to normalize the colormap. For example with LogNorm # vizobj = EOAImageVisualizer(disp_images=True, output_folder='output', # lats=[lats],lons=[lons]) def __init__(self, disp_images=True, output_folder='output', lats=[-90,90], lons =[-180,180], projection=ccrs.PlateCarree(), **kwargs): # All the arguments that are passed to the constructor of the class MUST have its name on it. self._disp_images = disp_images self._output_folder = output_folder self._projection = projection bbox = self.getExtent(lats, lons) self._extent = bbox self._lats = lats self._lons = lons self._fig_prop = (bbox[1]-bbox[0])/(bbox[3]-bbox[2]) self._contour_labels = False for arg_name, arg_value in kwargs.items(): self.__dict__["_" + arg_name] = arg_value print(self.__dict__["_" + arg_name]) def __getattr__(self, attr): '''Generic getter for all the properties of the class''' return self.__dict__["_" + attr] def __setattr__(self, attr, value): '''Generic setter for all the properties of the class''' self.__dict__["_" + attr] = value def add_colorbar(self, fig, im, ax, show_color_bar, label=""): # https://matplotlib.org/api/_as_gen/matplotlib.pyplot.colorbar.html if show_color_bar: font_size_cbar = self._font_size * .5 # TODO how to make this automatic and works always cbar = fig.colorbar(im, ax=ax, shrink=.7) cbar.ax.tick_params(labelsize=font_size_cbar) if label != "": cbar.set_label(label, fontsize=font_size_cbar*1.2) else: cbar.set_label(self._units, fontsize=font_size_cbar*1.2) def plot_slice_eoa(self, c_img, ax, cmap='gray', mode=PlotMode.RASTER, mincbar=np.nan, maxcbar=np.nan) -> None: """ Plots a 2D img for EOA data. :param c_img: 2D array :param ax: geoaxes :return: """ c_ax = ax if self._flip_data: origin = 'lower' else: origin = 'upper' if self._background == BackgroundType.CARTO_DEF: c_ax.stock_img() else: if self._background == BackgroundType.BLUE_MARBLE_LR: img = plt.imread(join(self._eoas_pyutils_path,'viz_utils/imgs/bluemarble.png')) if self._background == BackgroundType.BLUE_MARBLE_HR: img = plt.imread(join(self._eoas_pyutils_path,'viz_utils/imgs/bluemarble_5400x2700.jpg')) if self._background == BackgroundType.TOPO: img = plt.imread(join(self._eoas_pyutils_path,'viz_utils/imgs/etopo.png')) if self._background == BackgroundType.BATHYMETRY: img = plt.imread(join(self._eoas_pyutils_path,'viz_utils/imgs/bathymetry_3600x1800.jpg')) c_ax.imshow(img, origin='upper', extent=(-180,180,-90,90), transform=ccrs.PlateCarree()) if mode == PlotMode.RASTER or mode == PlotMode.MERGED: if self._contourf: im = c_ax.contourf(self._lons, self._lats, c_img, num_colors=255, cmap='inferno', extent=self._extent) else: if np.isnan(mincbar): im = c_ax.imshow(c_img, extent=self._extent, origin=origin, cmap=cmap, transform=self._projection, norm=self._norm) else: im = c_ax.imshow(c_img, extent=self._extent, origin=origin, cmap=cmap, vmin=mincbar, vmax=maxcbar, transform=self._projection, norm=self._norm) if mode == PlotMode.CONTOUR or mode == PlotMode.MERGED: c_ax.set_extent(self.getExtent(list(self._lats), list(self._lons))) if mode == PlotMode.CONTOUR: im = c_ax.contour(c_img, extent=self._extent, transform=self._projection) if mode == PlotMode.MERGED: if self._contour_labels: c_ax.contour(c_img, self._contour_labels, colors='r', extent=self._extent, transform=self._projection) else: c_ax.contour(c_img, extent=self._extent, transform=self._projection) if len(self._additional_polygons) > 0: pol_lats = [] pol_lons = [] for c_polygon in self._additional_polygons: if isinstance(c_polygon, shapely.geometry.linestring.LineString): x,y = c_polygon.xy elif isinstance(c_polygon, shapely.geometry.polygon.Polygon): x, y = c_polygon.exterior.xy pol_lats += y pol_lons += x c_ax.plot(x,y, transform=self._projection, c='r') # Adds a threshold to the plot to see the polygons c_ax.set_extent(self.getExtent(list(self._lats) + pol_lats, list(self._lons) + pol_lons, 0.5)) if self._vector_field != None: try: u = self._vector_field['u'] v = self._vector_field['v'] x = self._vector_field['x'] y = self._vector_field['y'] vec_keys = self._vector_field.keys() c = 'r' density = 1 linewidth = 3 vec_cmap = cmocean.cm.solar if 'color' in vec_keys: c = self._vector_field['color'] if 'density' in vec_keys: density = self._vector_field['density'] if 'linewidth' in vec_keys: linewidth = self._vector_field['linewidth'] if 'cmap' in vec_keys: vec_cmap = self._vector_field['cmap'] c_ax.set_extent(self.getExtent(list(self._lats), list(self._lons))) c_ax.streamplot(x, y, u, v, transform=self._projection, density=density, color=c, cmap=vec_cmap, linewidth=linewidth) except Exception as e: print(F"Couldn't add vector field e:{e}") gl = c_ax.gridlines(draw_labels=True, color='grey', alpha=0.5, linestyle='--') # gl.xlabel_style = {'size': self._font_size/2, 'color': '#aaaaaa', 'weight':'bold'} font_coords = {'size': self._font_size*.6} gl.xlabel_style = font_coords gl.ylabel_style = font_coords gl.top_labels = False gl.right_labels = False return im def get_proper_size(self, rows, cols): """ Obtains the proper size for a figure. :param rows: how many rows will the figure have :param cols: how many colswill the figure have :param prop: Proportion is the proportion to use w/h :return: """ if rows == 1: return self._figsize * cols * self._fig_prop, self._figsize else: return self._figsize * cols * self._fig_prop, self._figsize * rows def _close_figure(self): """Depending on what is disp_images, the figures are displayed or just closed""" if self._disp_images: plt.show() else: plt.close() def getExtent(self, lats, lons, expand_ext=0.0): ''' Obtains the bbox of the coordinates. If included threshold then increases the bbox in all directions with that thres Args: lats: lons: inc_threshold: Returns: ''' minLat = np.amin(lats) - expand_ext maxLat = np.amax(lats) + expand_ext minLon = np.amin(lons) - expand_ext maxLon = np.amax(lons) + expand_ext bbox = (minLon, maxLon, minLat, maxLat) return bbox def xr_summary(self, ds): """ Prints a summary of the netcdf (global attributes, variables, etc) :param ds: :return: """ print("\n========== Global attributes =========") for name in ds.attrs: print(F"{name} = {getattr(ds, name)}") print("\n========== Dimensions =========") for name in ds.dims: print(F"{name}: {ds[name].shape}") print("\n========== Coordinates =========") for name in ds.coords: print(F"{name}: {ds[name].shape}") print("\n========== Variables =========") for cur_variable_name in ds.variables: cur_var = ds[cur_variable_name] print(F"{cur_variable_name}: {cur_var.dims} {cur_var.shape}") def nc_summary(self, ds): """ Prints a summary of the netcdf (global attributes, variables, etc) :param ds: :return: """ print("\n========== Global attributes =========") for name in ds.ncattrs(): print(F"{name} = {getattr(ds, name)}") print("\n========== Variables =========") netCDFvars = ds.variables for cur_variable_name in netCDFvars.keys(): cur_var = ds.variables[cur_variable_name] print(F"Dimensions for {cur_variable_name}: {cur_var.dimensions} {cur_var.shape}") def add_roads(self, ax): # Names come from: https://www.naturalearthdata.com/features/ # -- Add states roads = cfeature.NaturalEarthFeature( category='cultural', name='roads', scale='10m', facecolor='none') ax.add_feature(roads, edgecolor='black') return ax def add_states(self, ax): # Names come from: https://www.naturalearthdata.com/features/ # -- Add states states_provinces = cfeature.NaturalEarthFeature( category='cultural', name='admin_1_states_provinces_lines', scale='50m', facecolor='none') ax.add_feature(states_provinces, edgecolor='gray') return ax def plot_scatter_data(self, lats=None, lons=None, bbox=None, s=1, c='blue', cmap='plasma', title=''): ''' This function plots points in a map :param bbox: :return: ''' if bbox is None: bbox = (-180, 180, -90, 90) if lats is None: lats = self.lats if lons is None: lons = self.lons fig, ax = plt.subplots(1, 1, figsize=(self._figsize, self._figsize), subplot_kw={'projection': ccrs.PlateCarree()}) ax.set_extent(bbox) # If we do not set this, it will cropp it to the limits of the locations ax.gridlines() im = ax.scatter(lons, lats, s=s, c=c, cmap=cmap) fig.colorbar(im, ax=ax, shrink=0.7) ax.coastlines() plt.title(title) plt.show() def plot_3d_data_npdict(self, np_variables:list, var_names:list, z_levels= [], title='', file_name_prefix='', cmap=None, z_names = [], show_color_bar=True, plot_mode=PlotMode.RASTER, mincbar=np.nan, maxcbar=np.nan): """ Plots multiple z_levels for multiple fields. It uses rows for each depth, and columns for each variable """ create_folder(self._output_folder) orig_cmap = cmap # If the user do not requires any z-leve, then all are plotted if len(z_levels) == 0: z_levels = range(np_variables[var_names[0]].shape[0]) cols = np.min((self._max_imgs_per_row, len(var_names))) if cols == len(var_names): rows = len(z_levels) else: rows = int(len(z_levels) * np.ceil(len(var_names)/cols)) fig, _axs = plt.subplots(rows, cols, figsize=self.get_proper_size(rows, cols), subplot_kw={'projection': self._projection}) for c_zlevel, c_slice in enumerate(z_levels): # Iterates over the z-levels # Verify the index of the z_levels are the original ones. if len(z_names) != 0: c_slice_txt = z_names[c_slice] else: c_slice_txt = c_slice c_mincbar = np.nan c_maxcbar = np.nan for idx_var, c_var in enumerate(var_names): # Iterate over the fields if rows*cols == 1: # Single figure ax = _axs else: ax = _axs.flatten()[c_zlevel*len(var_names) + idx_var] # Here we chose the min and max colorbars for each field if not(np.all(np.isnan(mincbar))): if type(mincbar) is list: c_mincbar = mincbar[idx_var] else: c_mincbar = mincbar if not(np.all(np.isnan(maxcbar))): if type(mincbar) is list: c_maxcbar = maxcbar[idx_var] else: c_maxcbar = maxcbar # By default we select the colorbar from the name of the variable if self._auto_colormap and orig_cmap is None: cmap = select_colormap(c_var) else: # If there is an array of colormaps we select the one for this field if type(orig_cmap) is list: cmap = orig_cmap[idx_var] else: # If it is just one cmap, then we use it for all the fields cmap = orig_cmap im = self.plot_slice_eoa(np_variables[c_var][c_slice,:,:], ax, cmap=cmap, mode=plot_mode, mincbar=c_mincbar, maxcbar=c_maxcbar) if self._show_var_names: c_title = F'{var_names[idx_var]} {title}' else: c_title = F'{title}' if len(z_levels) > 1: c_title += F"Z - level: {c_slice_txt}" ax.set_title(c_title, fontsize=self._font_size) self.add_colorbar(fig, im, ax, show_color_bar) plt.tight_layout(pad=.5) file_name = F'{file_name_prefix}' pylab.savefig(join(self._output_folder, F'{file_name}.png'), bbox_inches='tight') self._close_figure() def plot_2d_data_xr(self, np_variables:list, var_names:list, title='', file_name_prefix='', cmap='viridis', show_color_bar=True, plot_mode=PlotMode.RASTER, mincbar=np.nan, maxcbar=np.nan): ''' Wrapper function to receive raw 2D numpy data. It calls the 'main' function for 3D plotting :param np_variables: :param var_names: :param title: :param file_name_prefix: :param cmap: :param flip_data: :param rot_90: :param show_color_bar: :param plot_mode: :param mincbar: :param maxcbar: :return: ''' npdict_3d = {} for i, field_name in enumerate(var_names): npdict_3d[field_name] = np.expand_dims(np_variables[field_name], axis=0) self.plot_3d_data_npdict(npdict_3d, var_names, z_levels=[0], title=title, file_name_prefix=file_name_prefix, cmap=cmap, z_names = [], show_color_bar=show_color_bar, plot_mode=plot_mode, mincbar=mincbar, maxcbar=maxcbar) def plot_2d_data_np(self, np_variables:list, var_names:list, title='', file_name_prefix='', cmap=None, flip_data=False, rot_90=False, show_color_bar=True, plot_mode=PlotMode.RASTER, mincbar=np.nan, maxcbar=np.nan): ''' Wrapper function to receive raw 2D numpy data. It calls the 'main' function for 3D plotting :param np_variables: Numpy variables. They can be with shape [fields, x, y] or just a single field with shape [x,y] :param var_names: :param title: :param file_name_prefix: :param cmap: :param flip_data: :param rot_90: :param show_color_bar: :param plot_mode: :param mincbar: :param maxcbar: :return: ''' npdict_3d = {} for i, field_name in enumerate(var_names): if len(np_variables.shape) == 3: c_np_data = np_variables[i, :, :] else: c_np_data = np_variables # Single field if rot_90: c_np_data = np.rot90(c_np_data) if flip_data: c_np_data = np.flip(np.flip(c_np_data), axis=1) npdict_3d[field_name] = np.expand_dims(c_np_data, axis=0) self.plot_3d_data_npdict(npdict_3d, var_names, z_levels=[0], title=title, file_name_prefix=file_name_prefix, cmap=cmap, z_names = [], show_color_bar=show_color_bar, plot_mode=plot_mode, mincbar=mincbar, maxcbar=maxcbar) def make_video_from_images(self, input_folder, output_file, fps=24): files = listdir(input_folder) files.sort() print(F"Generating video file: {output_file}") out_video = -1 for i, file_name in enumerate(files[0:36]): if i % 10 == 0: print(F"Adding file # {i}: {file_name}") c_file = join(input_folder, file_name) im = Image.open(c_file) np_im = np.asarray(im)[:, :, :3] if i == 0: video_size = (np_im.shape[1], np_im.shape[0]) out_video = cv2.VideoWriter(output_file, cv2.VideoWriter_fourcc(*'mp4v'), fps, video_size, True) out_video.write(np_im[:, :, ::-1]) out_video.release() cv2.destroyAllWindows() print("Done! yeah babe!")
[ "io_utils.io_common.create_folder", "cv2.destroyAllWindows", "numpy.rot90", "numpy.flip", "os.listdir", "numpy.asarray", "matplotlib.pyplot.close", "cv2.VideoWriter_fourcc", "numpy.amin", "cartopy.crs.PlateCarree", "numpy.isnan", "matplotlib.pyplot.title", "matplotlib.pyplot.show", "PIL.Image.open", "os.path.join", "matplotlib.pyplot.tight_layout", "numpy.expand_dims", "numpy.amax", "cartopy.feature.NaturalEarthFeature" ]
[((3165, 3183), 'cartopy.crs.PlateCarree', 'ccrs.PlateCarree', ([], {}), '()\n', (3181, 3183), True, 'import cartopy.crs as ccrs\n'), ((12073, 12171), 'cartopy.feature.NaturalEarthFeature', 'cfeature.NaturalEarthFeature', ([], {'category': '"""cultural"""', 'name': '"""roads"""', 'scale': '"""10m"""', 'facecolor': '"""none"""'}), "(category='cultural', name='roads', scale='10m',\n facecolor='none')\n", (12101, 12171), True, 'import cartopy.feature as cfeature\n'), ((12437, 12561), 'cartopy.feature.NaturalEarthFeature', 'cfeature.NaturalEarthFeature', ([], {'category': '"""cultural"""', 'name': '"""admin_1_states_provinces_lines"""', 'scale': '"""50m"""', 'facecolor': '"""none"""'}), "(category='cultural', name=\n 'admin_1_states_provinces_lines', scale='50m', facecolor='none')\n", (12465, 12561), True, 'import cartopy.feature as cfeature\n'), ((13453, 13469), 'matplotlib.pyplot.title', 'plt.title', (['title'], {}), '(title)\n', (13462, 13469), True, 'import matplotlib.pyplot as plt\n'), ((13478, 13488), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (13486, 13488), True, 'import matplotlib.pyplot as plt\n'), ((13914, 13948), 'io_utils.io_common.create_folder', 'create_folder', (['self._output_folder'], {}), '(self._output_folder)\n', (13927, 13948), False, 'from io_utils.io_common import create_folder\n'), ((16832, 16857), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {'pad': '(0.5)'}), '(pad=0.5)\n', (16848, 16857), True, 'import matplotlib.pyplot as plt\n'), ((19744, 19765), 'os.listdir', 'listdir', (['input_folder'], {}), '(input_folder)\n', (19751, 19765), False, 'from os import listdir\n'), ((20417, 20440), 'cv2.destroyAllWindows', 'cv2.destroyAllWindows', ([], {}), '()\n', (20438, 20440), False, 'import cv2\n'), ((9968, 9978), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (9976, 9978), True, 'import matplotlib.pyplot as plt\n'), ((10005, 10016), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (10014, 10016), True, 'import matplotlib.pyplot as plt\n'), ((10333, 10346), 'numpy.amin', 'np.amin', (['lats'], {}), '(lats)\n', (10340, 10346), True, 'import numpy as np\n'), ((10377, 10390), 'numpy.amax', 'np.amax', (['lats'], {}), '(lats)\n', (10384, 10390), True, 'import numpy as np\n'), ((10421, 10434), 'numpy.amin', 'np.amin', (['lons'], {}), '(lons)\n', (10428, 10434), True, 'import numpy as np\n'), ((10465, 10478), 'numpy.amax', 'np.amax', (['lons'], {}), '(lons)\n', (10472, 10478), True, 'import numpy as np\n'), ((16921, 16966), 'os.path.join', 'join', (['self._output_folder', 'f"""{file_name}.png"""'], {}), "(self._output_folder, f'{file_name}.png')\n", (16925, 16966), False, 'from os.path import join\n'), ((17777, 17825), 'numpy.expand_dims', 'np.expand_dims', (['np_variables[field_name]'], {'axis': '(0)'}), '(np_variables[field_name], axis=0)\n', (17791, 17825), True, 'import numpy as np\n'), ((19343, 19376), 'numpy.expand_dims', 'np.expand_dims', (['c_np_data'], {'axis': '(0)'}), '(c_np_data, axis=0)\n', (19357, 19376), True, 'import numpy as np\n'), ((20024, 20053), 'os.path.join', 'join', (['input_folder', 'file_name'], {}), '(input_folder, file_name)\n', (20028, 20053), False, 'from os.path import join\n'), ((20071, 20089), 'PIL.Image.open', 'Image.open', (['c_file'], {}), '(c_file)\n', (20081, 20089), False, 'from PIL import Image\n'), ((6138, 6155), 'numpy.isnan', 'np.isnan', (['mincbar'], {}), '(mincbar)\n', (6146, 6155), True, 'import numpy as np\n'), ((19197, 19216), 'numpy.rot90', 'np.rot90', (['c_np_data'], {}), '(c_np_data)\n', (19205, 19216), True, 'import numpy as np\n'), ((20110, 20124), 'numpy.asarray', 'np.asarray', (['im'], {}), '(im)\n', (20120, 20124), True, 'import numpy as np\n'), ((5236, 5298), 'os.path.join', 'join', (['self._eoas_pyutils_path', '"""viz_utils/imgs/bluemarble.png"""'], {}), "(self._eoas_pyutils_path, 'viz_utils/imgs/bluemarble.png')\n", (5240, 5298), False, 'from os.path import join\n'), ((5398, 5470), 'os.path.join', 'join', (['self._eoas_pyutils_path', '"""viz_utils/imgs/bluemarble_5400x2700.jpg"""'], {}), "(self._eoas_pyutils_path, 'viz_utils/imgs/bluemarble_5400x2700.jpg')\n", (5402, 5470), False, 'from os.path import join\n'), ((5560, 5617), 'os.path.join', 'join', (['self._eoas_pyutils_path', '"""viz_utils/imgs/etopo.png"""'], {}), "(self._eoas_pyutils_path, 'viz_utils/imgs/etopo.png')\n", (5564, 5617), False, 'from os.path import join\n'), ((5713, 5785), 'os.path.join', 'join', (['self._eoas_pyutils_path', '"""viz_utils/imgs/bathymetry_3600x1800.jpg"""'], {}), "(self._eoas_pyutils_path, 'viz_utils/imgs/bathymetry_3600x1800.jpg')\n", (5717, 5785), False, 'from os.path import join\n'), ((5867, 5885), 'cartopy.crs.PlateCarree', 'ccrs.PlateCarree', ([], {}), '()\n', (5883, 5885), True, 'import cartopy.crs as ccrs\n'), ((13174, 13192), 'cartopy.crs.PlateCarree', 'ccrs.PlateCarree', ([], {}), '()\n', (13190, 13192), True, 'import cartopy.crs as ccrs\n'), ((19279, 19297), 'numpy.flip', 'np.flip', (['c_np_data'], {}), '(c_np_data)\n', (19286, 19297), True, 'import numpy as np\n'), ((20277, 20308), 'cv2.VideoWriter_fourcc', 'cv2.VideoWriter_fourcc', (["*'mp4v'"], {}), "(*'mp4v')\n", (20299, 20308), False, 'import cv2\n'), ((15278, 15295), 'numpy.isnan', 'np.isnan', (['mincbar'], {}), '(mincbar)\n', (15286, 15295), True, 'import numpy as np\n'), ((15498, 15515), 'numpy.isnan', 'np.isnan', (['maxcbar'], {}), '(maxcbar)\n', (15506, 15515), True, 'import numpy as np\n')]
from os import listdir from os.path import isfile, join from path import Path import numpy as np import cv2 # Dataset path target_path = Path('target/') annotation_images_path = Path('dataset/ade20k/annotations/training/').abspath() dataset = [ f for f in listdir(annotation_images_path) if isfile(join(annotation_images_path,f))] images = np.empty(len(dataset), dtype = object) count = 1 # Iterate all Training Images for n in range(0, len(dataset)): # Read image images[n] = cv2.imread(join(annotation_images_path,dataset[n])) # Convert it to array array = np.asarray(images[n],dtype=np.int8) # Conditions when the value equal less than 1, change it to 255. # If it is >= 1, increment it by -1 arr = np.where(array < 1, 255, array -1) #Saved it to another file if count < 10: cv2.imwrite(target_path +'ADE_train_0000000'+ str(count) + ".png", arr) elif count < 100 and count > 9: cv2.imwrite(target_path +'ADE_train_000000'+ str(count) + ".png", arr) elif count < 1000 and count > 99: cv2.imwrite(target_path +'ADE_train_00000'+ str(count) + ".png", arr) elif count < 10000 and count > 999: cv2.imwrite(target_path +'ADE_train_0000'+ str(count) + ".png", arr) else: cv2.imwrite(target_path +'ADE_train_000'+ str(count) + ".png", arr) print(str(count) + ".png is printed") count += 1
[ "os.listdir", "numpy.where", "numpy.asarray", "os.path.join", "path.Path" ]
[((138, 153), 'path.Path', 'Path', (['"""target/"""'], {}), "('target/')\n", (142, 153), False, 'from path import Path\n'), ((577, 613), 'numpy.asarray', 'np.asarray', (['images[n]'], {'dtype': 'np.int8'}), '(images[n], dtype=np.int8)\n', (587, 613), True, 'import numpy as np\n'), ((734, 769), 'numpy.where', 'np.where', (['(array < 1)', '(255)', '(array - 1)'], {}), '(array < 1, 255, array - 1)\n', (742, 769), True, 'import numpy as np\n'), ((179, 223), 'path.Path', 'Path', (['"""dataset/ade20k/annotations/training/"""'], {}), "('dataset/ade20k/annotations/training/')\n", (183, 223), False, 'from path import Path\n'), ((257, 288), 'os.listdir', 'listdir', (['annotation_images_path'], {}), '(annotation_images_path)\n', (264, 288), False, 'from os import listdir\n'), ((497, 537), 'os.path.join', 'join', (['annotation_images_path', 'dataset[n]'], {}), '(annotation_images_path, dataset[n])\n', (501, 537), False, 'from os.path import isfile, join\n'), ((299, 330), 'os.path.join', 'join', (['annotation_images_path', 'f'], {}), '(annotation_images_path, f)\n', (303, 330), False, 'from os.path import isfile, join\n')]
import os import numpy as np import cv2 import albumentations from PIL import Image from torch.utils.data import Dataset from taming.data.sflckr import SegmentationBase # for examples included in repo class Examples(SegmentationBase): def __init__(self, size=256, random_crop=False, interpolation="bicubic"): super().__init__(data_csv="data/ade20k_examples.txt", data_root="data/ade20k_images", segmentation_root="data/ade20k_segmentations", size=size, random_crop=random_crop, interpolation=interpolation, n_labels=151, shift_segmentation=False) # With semantic map and scene label class ADE20kBase(Dataset): def __init__(self, config=None, size=None, random_crop=False, interpolation="bicubic", crop_size=None): self.split = self.get_split() self.n_labels = 151 # unknown + 150 self.data_csv = {"train": "data/ade20k_train.txt", "validation": "data/ade20k_test.txt"}[self.split] self.data_root = "./data/ade20k_root" with open(os.path.join(self.data_root, "sceneCategories.txt"), "r") as f: self.scene_categories = f.read().splitlines() self.scene_categories = dict(line.split() for line in self.scene_categories) with open(self.data_csv, "r") as f: self.image_paths = f.read().splitlines() self._length = len(self.image_paths) ss = self.split if ss=='train': ss='training' self.labels = { "relative_file_path_": [l for l in self.image_paths], "file_path_": [os.path.join(self.data_root, "images",ss, l) for l in self.image_paths], "relative_segmentation_path_": [l.replace(".jpg", ".png") for l in self.image_paths], "segmentation_path_": [os.path.join(self.data_root, "annotations",ss, l.replace(".jpg", ".png")) for l in self.image_paths], "scene_category": [self.scene_categories[l.replace(".jpg", "")] for l in self.image_paths], } size = None if size is not None and size<=0 else size self.size = size if crop_size is None: self.crop_size = size if size is not None else None else: self.crop_size = crop_size if self.size is not None: self.interpolation = interpolation self.interpolation = { "nearest": cv2.INTER_NEAREST, "bilinear": cv2.INTER_LINEAR, "bicubic": cv2.INTER_CUBIC, "area": cv2.INTER_AREA, "lanczos": cv2.INTER_LANCZOS4}[self.interpolation] self.image_rescaler = albumentations.SmallestMaxSize(max_size=self.size, interpolation=self.interpolation) self.segmentation_rescaler = albumentations.SmallestMaxSize(max_size=self.size, interpolation=cv2.INTER_NEAREST) if crop_size is not None: self.center_crop = not random_crop if self.center_crop: self.cropper = albumentations.CenterCrop(height=self.crop_size, width=self.crop_size) else: self.cropper = albumentations.RandomCrop(height=self.crop_size, width=self.crop_size) self.preprocessor = self.cropper def __len__(self): return self._length def __getitem__(self, i): example = dict((k, self.labels[k][i]) for k in self.labels) image = Image.open(example["file_path_"]) if not image.mode == "RGB": image = image.convert("RGB") image = np.array(image).astype(np.uint8) if self.size is not None: image = self.image_rescaler(image=image)["image"] segmentation = Image.open(example["segmentation_path_"]) segmentation = np.array(segmentation).astype(np.uint8) if self.size is not None: segmentation = self.segmentation_rescaler(image=segmentation)["image"] if self.size is not None: processed = self.preprocessor(image=image, mask=segmentation) else: processed = {"image": image, "mask": segmentation} example["image"] = (processed["image"]/127.5 - 1.0).astype(np.float32) segmentation = processed["mask"] onehot = np.eye(self.n_labels)[segmentation] example["segmentation"] = onehot return example class ADE20kTrain(ADE20kBase): # default to random_crop=True def __init__(self, config=None, size=None, random_crop=True, interpolation="bicubic", crop_size=None): super().__init__(config=config, size=size, random_crop=random_crop, interpolation=interpolation, crop_size=crop_size) def get_split(self): return "train" class ADE20kValidation(ADE20kBase): def get_split(self): return "validation" if __name__ == "__main__": dset = ADE20kValidation() ex = dset[0] for k in ["image", "scene_category", "segmentation"]: print(type(ex[k])) try: print(ex[k].shape) except: print(ex[k])
[ "numpy.eye", "PIL.Image.open", "os.path.join", "albumentations.RandomCrop", "numpy.array", "albumentations.CenterCrop", "albumentations.SmallestMaxSize" ]
[((3811, 3844), 'PIL.Image.open', 'Image.open', (["example['file_path_']"], {}), "(example['file_path_'])\n", (3821, 3844), False, 'from PIL import Image\n'), ((4090, 4131), 'PIL.Image.open', 'Image.open', (["example['segmentation_path_']"], {}), "(example['segmentation_path_'])\n", (4100, 4131), False, 'from PIL import Image\n'), ((2915, 3004), 'albumentations.SmallestMaxSize', 'albumentations.SmallestMaxSize', ([], {'max_size': 'self.size', 'interpolation': 'self.interpolation'}), '(max_size=self.size, interpolation=self.\n interpolation)\n', (2945, 3004), False, 'import albumentations\n'), ((3106, 3194), 'albumentations.SmallestMaxSize', 'albumentations.SmallestMaxSize', ([], {'max_size': 'self.size', 'interpolation': 'cv2.INTER_NEAREST'}), '(max_size=self.size, interpolation=cv2.\n INTER_NEAREST)\n', (3136, 3194), False, 'import albumentations\n'), ((4634, 4655), 'numpy.eye', 'np.eye', (['self.n_labels'], {}), '(self.n_labels)\n', (4640, 4655), True, 'import numpy as np\n'), ((1140, 1191), 'os.path.join', 'os.path.join', (['self.data_root', '"""sceneCategories.txt"""'], {}), "(self.data_root, 'sceneCategories.txt')\n", (1152, 1191), False, 'import os\n'), ((1680, 1725), 'os.path.join', 'os.path.join', (['self.data_root', '"""images"""', 'ss', 'l'], {}), "(self.data_root, 'images', ss, l)\n", (1692, 1725), False, 'import os\n'), ((3408, 3478), 'albumentations.CenterCrop', 'albumentations.CenterCrop', ([], {'height': 'self.crop_size', 'width': 'self.crop_size'}), '(height=self.crop_size, width=self.crop_size)\n', (3433, 3478), False, 'import albumentations\n'), ((3528, 3598), 'albumentations.RandomCrop', 'albumentations.RandomCrop', ([], {'height': 'self.crop_size', 'width': 'self.crop_size'}), '(height=self.crop_size, width=self.crop_size)\n', (3553, 3598), False, 'import albumentations\n'), ((3938, 3953), 'numpy.array', 'np.array', (['image'], {}), '(image)\n', (3946, 3953), True, 'import numpy as np\n'), ((4155, 4177), 'numpy.array', 'np.array', (['segmentation'], {}), '(segmentation)\n', (4163, 4177), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- import argparse import os import shutil import time import numpy as np import random from collections import OrderedDict import torch import torch.backends.cudnn as cudnn from callbacks import AverageMeter from data_utils.causal_data_loader_frames import VideoFolder from utils import save_results from tqdm import tqdm parser = argparse.ArgumentParser(description='Counterfactual CAR') # Path, dataset and log related arguments parser.add_argument('--root_frames', type=str, default='/mnt/data1/home/sunpengzhan/sth-sth-v2/', help='path to the folder with frames') parser.add_argument('--json_data_train', type=str, default='../data/dataset_splits/compositional/train.json', help='path to the json file with train video meta data') parser.add_argument('--json_data_val', type=str, default='../data/dataset_splits/compositional/validation.json', help='path to the json file with validation video meta data') parser.add_argument('--json_file_labels', type=str, default='../data/dataset_splits/compositional/labels.json', help='path to the json file with ground truth labels') parser.add_argument('--dataset', default='smth_smth', help='which dataset to train') parser.add_argument('--logname', default='my_method', help='name of the experiment for checkpoints and logs') parser.add_argument('--print_freq', '-p', default=20, type=int, metavar='N', help='print frequency (default: 20)') parser.add_argument('--ckpt', default='./ckpt', help='folder to output checkpoints') parser.add_argument('--resume_vision', default='', type=str, metavar='PATH', help='path to latest checkpoint (default: none)') parser.add_argument('--resume_coord', default='', type=str, metavar='PATH', help='path to latest checkpoint (default: none)') parser.add_argument('--resume_fusion', default='', type=str, metavar='PATH', help='path to latest checkpoint (default: none)') # model, image&feature dim and training related arguments parser.add_argument('--model_vision', default='rgb_roi') parser.add_argument('--model_coord', default='interaction') parser.add_argument('--model_fusion', default='concat_fusion') parser.add_argument('--fusion_function', default='fused_sum', type=str, help='function for fusing activations from each branch') parser.add_argument('--img_feature_dim', default=512, type=int, metavar='N', help='intermediate feature dimension for image-based features') parser.add_argument('--coord_feature_dim', default=512, type=int, metavar='N', help='intermediate feature dimension for coord-based features') parser.add_argument('--size', default=224, type=int, metavar='N', help='primary image input size') parser.add_argument('--num_boxes', default=4, type=int, help='num of boxes for each image') parser.add_argument('--num_frames', default=16, type=int, help='num of frames for the model') parser.add_argument('--num_classes', default=174, type=int, help='num of class in the model') parser.add_argument('--epochs', default=30, type=int, metavar='N', help='number of total epochs to run') parser.add_argument('--start_epoch', default=None, type=int, metavar='N', help='manual epoch number (useful on restarts)') parser.add_argument('--batch_size', '-b', default=16, type=int, metavar='N', help='mini-batch size') parser.add_argument('--lr', '--learning-rate', default=0.01, type=float, metavar='LR', help='initial learning rate') parser.add_argument('--lr_steps', default=[24, 35, 45], type=float, nargs="+", metavar='LRSteps', help='epochs to decay learning rate by 10') parser.add_argument('--momentum', default=0.9, type=float, metavar='M', help='momentum') parser.add_argument('--weight_decay', '--wd', default=0.0001, type=float, metavar='W', help='weight decay (default: 1e-4)') parser.add_argument('--clip_gradient', '-cg', default=5, type=float, metavar='W', help='gradient norm clipping (default: 5)') parser.add_argument('--search_stride', type=int, default=5, help='test performance every n strides') # train mode, hardware setting and others related arguments parser.add_argument('-j', '--workers', default=4, type=int, metavar='N', help='number of data loading workers (default: 4)') parser.add_argument('-e', '--evaluate', dest='evaluate', action='store_true', help='evaluate model on validation set') parser.add_argument('--cf_inference_group', action='store_true', help='counterfactual inference model on validation set') parser.add_argument('--parallel', default=True, type=bool, help='whether or not train with multi GPUs') parser.add_argument('--gpu_index', type=str, default='0, 1, 2, 3', help='the index of gpu you want to use') best_loss = 1000000 def main(): global args, best_loss args = parser.parse_args() os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_index print(args) # create vision model if args.model_vision == 'global_i3d': from model.model_lib import VideoGlobalModel as RGBModel print('global_i3d loaded!!') elif args.model_vision == 'rgb_roi': from model.model_lib import BboxVisualModel as RGBModel print('rgb_roi loaded!!') else: print("no such a vision model!") # create coord model if args.model_coord == 'interaction': from model.model_lib import BboxInteractionLatentModel as BboxModel print('interaction loaded!!') else: print("no such a coordinate model!") # create fusion model if args.model_fusion == 'concat_fusion': from model.model_lib import ConcatFusionModel as FusionModel print('concat_fusion loaded!!') else: print('no such a fusion model!') # load model branch vision_model = RGBModel(args) coord_model = BboxModel(args) fusion_model = FusionModel(args) # create the fusion function for the activation of three branches if args.fusion_function == 'fused_sum': from fusion_function import logsigsum as fusion_func print('fused_sum loaded!!') elif args.fusion_function == 'naive_sum': from fusion_function import naivesum as fusion_func print('naive_sum loaded!!') else: print('no such a fusion function!') fusion_function = fusion_func() if args.parallel: vision_model = torch.nn.DataParallel(vision_model).cuda() coord_model = torch.nn.DataParallel(coord_model).cuda() fusion_model = torch.nn.DataParallel(fusion_model).cuda() else: vision_model = vision_model.cuda() coord_model = coord_model.cuda() fusion_model = fusion_model.cuda() # optionally resume vision model from a checkpoint if args.resume_vision: assert os.path.isfile(args.resume_vision), "No checkpoint found at '{}'".format(args.resume_vision) print("=> loading checkpoint '{}'".format(args.resume_vision)) checkpoint = torch.load(args.resume_vision) if args.start_epoch is None: args.start_epoch = checkpoint['epoch'] best_loss = checkpoint['best_loss'] vision_model.load_state_dict(checkpoint['state_dict']) print("=> loaded checkpoint '{}' (epoch {})" .format(args.resume_vision, checkpoint['epoch'])) # optionally resume coord model from a checkpoint if args.resume_coord: assert os.path.isfile(args.resume_coord), "No checkpoint found at '{}'".format(args.resume_coord) print("=> loading checkpoint '{}'".format(args.resume_coord)) checkpoint = torch.load(args.resume_coord) if args.start_epoch is None: args.start_epoch = checkpoint['epoch'] best_loss = checkpoint['best_loss'] coord_model.load_state_dict(checkpoint['state_dict']) print("=> loaded checkpoint '{}' (epoch {})" .format(args.resume_coord, checkpoint['epoch'])) if args.resume_fusion: assert os.path.isfile(args.resume_fusion), "No checkpoint found at '{}'".format(args.resume_fusion) print("=> loading checkpoint '{}'".format(args.resume_fusion)) checkpoint = torch.load(args.resume_fusion) if args.start_epoch is None: args.start_epoch = checkpoint['epoch'] best_loss = checkpoint['best_loss'] fusion_model.load_state_dict(checkpoint['state_dict']) print("=> loaded checkpoint '{}' (epoch {})" .format(args.resume_fusion, checkpoint['epoch'])) if args.start_epoch is None: args.start_epoch = 0 cudnn.benchmark = True # create training and validation dataset dataset_train = VideoFolder(root=args.root_frames, num_boxes=args.num_boxes, file_input=args.json_data_train, file_labels=args.json_file_labels, frames_duration=args.num_frames, args=args, is_val=False, if_augment=True, ) dataset_val = VideoFolder(root=args.root_frames, num_boxes=args.num_boxes, file_input=args.json_data_val, file_labels=args.json_file_labels, frames_duration=args.num_frames, args=args, is_val=True, if_augment=True, ) # create training and validation loader train_loader = torch.utils.data.DataLoader( dataset_train, batch_size=args.batch_size, shuffle=True, num_workers=args.workers, drop_last=True, pin_memory=True ) val_loader = torch.utils.data.DataLoader( dataset_val, drop_last=True, batch_size=args.batch_size, shuffle=False, num_workers=args.workers, pin_memory=False ) model_list = [vision_model, coord_model, fusion_model] optimizer_vision = torch.optim.SGD(filter(lambda p: p.requires_grad, vision_model.parameters()), momentum=args.momentum, lr=args.lr, weight_decay=args.weight_decay) optimizer_coord = torch.optim.SGD(filter(lambda p: p.requires_grad, coord_model.parameters()), momentum=args.momentum, lr=args.lr, weight_decay=args.weight_decay) optimizer_fusion = torch.optim.SGD(filter(lambda p: p.requires_grad, fusion_model.parameters()), momentum=args.momentum, lr=args.lr, weight_decay=args.weight_decay) optimizer_list = [optimizer_vision, optimizer_coord, optimizer_fusion] criterion = torch.nn.CrossEntropyLoss() search_list = np.linspace(0.0, 1.0, 11) # factual inference (vanilla test stage) if args.evaluate: validate(val_loader, model_list, fusion_function, criterion, class_to_idx=dataset_val.classes_dict) return # Counterfactual inference by trying a list of hyperparameter if args.cf_inference_group: cf_inference_group(val_loader, model_list, fusion_function, search_list, class_to_idx=dataset_val.classes_dict) return print('training begin...') for epoch in tqdm(range(args.start_epoch, args.epochs)): adjust_learning_rate(optimizer_vision, epoch, args.lr_steps, 'vision') adjust_learning_rate(optimizer_coord, epoch, args.lr_steps, 'coord') adjust_learning_rate(optimizer_fusion, epoch, args.lr_steps, 'fusion') # train for one epoch train(train_loader, model_list, fusion_function, optimizer_list, epoch, criterion) if (epoch+1) >= 30 and (epoch + 1) % args.search_stride == 0: loss = validate(val_loader, model_list, fusion_function, criterion, epoch=epoch, class_to_idx=dataset_val.classes_dict) else: loss = 100 # remember best loss and save checkpoint is_best = loss < best_loss best_loss = min(loss, best_loss) save_checkpoint( { 'epoch': epoch + 1, 'state_dict': vision_model.state_dict(), 'best_loss': best_loss, }, is_best, os.path.join(args.ckpt, '{}_{}'.format(args.model_vision, args.logname))) save_checkpoint( { 'epoch': epoch + 1, 'state_dict': coord_model.state_dict(), 'best_loss': best_loss, }, is_best, os.path.join(args.ckpt, '{}_{}'.format(args.model_coord, args.logname))) save_checkpoint( { 'epoch': epoch + 1, 'state_dict': fusion_model.state_dict(), 'best_loss': best_loss, }, is_best, os.path.join(args.ckpt, '{}_{}'.format(args.model_fusion, args.logname))) def train(train_loader, model_list, fusion_function, optimizer_list, epoch, criterion): global args batch_time = AverageMeter() data_time = AverageMeter() losses = AverageMeter() acc_top1 = AverageMeter() acc_top5 = AverageMeter() # load three model branches [vision_model, coord_model, fusion_model] = model_list # load four optimizers, including the one designed for uniform assumption [optimizer_vision, optimizer_coord, optimizer_fusion] = optimizer_list # switch to train mode vision_model.train() coord_model.train() fusion_model.train() end = time.time() for i, (global_img_tensors, box_tensors, box_categories, video_label) in enumerate(train_loader): data_time.update(time.time() - end) # obtain the activation and vision features from vision branch output_vision, feature_vision = vision_model(global_img_tensors.cuda(), box_categories, box_tensors.cuda(), video_label) output_vision = output_vision.view((-1, len(train_loader.dataset.classes))) # obtain the activation and coordinate features from coordinate branch output_coord, feature_coord = coord_model(global_img_tensors, box_categories.cuda(), box_tensors.cuda(), video_label) output_coord = output_coord.view((-1, len(train_loader.dataset.classes))) # detach the computation graph, avoid the gradient confusion feature_vision_detached = feature_vision.detach() feature_coord_detached = feature_coord.detach() # obtain the activation of fusion branch output_fusion = fusion_model(feature_vision_detached.cuda(), feature_coord_detached.cuda()) output_fusion = output_fusion.view((-1, len(train_loader.dataset.classes))) output_factual = fusion_function(output_vision, output_coord, output_fusion) # loss_fusion is the loss of output_fusion(fused, obtained from the fusion_function) loss_vision = criterion(output_vision, video_label.long().cuda()) loss_coord = criterion(output_coord, video_label.long().cuda()) loss_fusion = criterion(output_fusion, video_label.long().cuda()) loss_factual = criterion(output_factual, video_label.long().cuda()) # Measure the accuracy of the sum of three branch activation results acc1, acc5 = accuracy(output_factual.cpu(), video_label, topk=(1, 5)) # record the accuracy and loss losses.update(loss_factual.item(), global_img_tensors.size(0)) acc_top1.update(acc1.item(), global_img_tensors.size(0)) acc_top5.update(acc5.item(), global_img_tensors.size(0)) # refresh the optimizer optimizer_vision.zero_grad() optimizer_coord.zero_grad() optimizer_fusion.zero_grad() loss = loss_vision + loss_coord + loss_factual loss.backward() if args.clip_gradient is not None: torch.nn.utils.clip_grad_norm_(vision_model.parameters(), args.clip_gradient) # update the parameter optimizer_vision.step() optimizer_coord.step() optimizer_fusion.step() batch_time.update(time.time() - end) end = time.time() if i % args.print_freq == 0: print('Epoch: [{0}][{1}/{2}]\t' 'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' 'Data {data_time.val:.3f} ({data_time.avg:.3f})\t' 'Loss {loss.val:.4f} ({loss.avg:.4f})\t' 'Acc1 {acc_top1.val:.1f} ({acc_top1.avg:.1f})\t' 'Acc5 {acc_top5.val:.1f} ({acc_top5.avg:.1f})'.format( epoch, i, len(train_loader), batch_time=batch_time, data_time=data_time, loss=losses, acc_top1=acc_top1, acc_top5=acc_top5)) def validate(val_loader, model_list, fusion_function, criterion, epoch=None, class_to_idx=None): batch_time = AverageMeter() losses = AverageMeter() acc_top1 = AverageMeter() acc_top5 = AverageMeter() logits_matrix = [] targets_list = [] # unpack three models [vision_model, coord_model, fusion_model] = model_list # switch to evaluate mode vision_model.eval() coord_model.eval() fusion_model.eval() end = time.time() for i, (global_img_tensors, box_tensors, box_categories, video_label) in enumerate(val_loader): # compute output with torch.no_grad(): output_vision, feature_vision = vision_model(global_img_tensors.cuda(), box_categories, box_tensors.cuda(), video_label) output_vision = output_vision.view((-1, len(val_loader.dataset.classes))) output_coord, feature_coord = coord_model(global_img_tensors, box_categories.cuda(), box_tensors.cuda(), video_label) output_coord = output_coord.view((-1, len(val_loader.dataset.classes))) # detach the computation graph, avoid the gradient confusion feature_vision_detached = feature_vision.detach() feature_coord_detached = feature_coord.detach() # obtain the activation of fusion branch output_fusion = fusion_model(feature_vision_detached.cuda(), feature_coord_detached.cuda()) output_fusion = output_fusion.view((-1, len(val_loader.dataset.classes))) # fuse three outputs output_factual = fusion_function(output_vision, output_coord, output_fusion) # warning: loss_fusion is the loss of output_fusion(fused, obtained from the fusion_function) loss_vision = criterion(output_vision, video_label.long().cuda()) loss_coord = criterion(output_coord, video_label.long().cuda()) loss_fusion = criterion(output_factual, video_label.long().cuda()) # statistic result from fusion_branch or value after fusion function output = output_factual loss = loss_vision acc1, acc5 = accuracy(output.cpu(), video_label, topk=(1, 5)) if args.evaluate: logits_matrix.append(output.cpu().data.numpy()) targets_list.append(video_label.cpu().numpy()) # measure accuracy and record loss losses.update(loss.item(), global_img_tensors.size(0)) acc_top1.update(acc1.item(), global_img_tensors.size(0)) acc_top5.update(acc5.item(), global_img_tensors.size(0)) # measure elapsed time batch_time.update(time.time() - end) end = time.time() if i % args.print_freq == 0 or i + 1 == len(val_loader): print('Test: [{0}/{1}]\t' 'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' 'Loss {loss.val:.4f} ({loss.avg:.4f})\t' 'Acc1 {acc_top1.val:.1f} ({acc_top1.avg:.1f})\t' 'Acc5 {acc_top5.val:.1f} ({acc_top5.avg:.1f})\t'.format( i, len(val_loader), batch_time=batch_time, loss=losses, acc_top1=acc_top1, acc_top5=acc_top5, )) if args.evaluate: logits_matrix = np.concatenate(logits_matrix) targets_list = np.concatenate(targets_list) save_results(logits_matrix, targets_list, class_to_idx, args) return losses.avg def cf_inference_group(val_loader, model_list, fusion_function, search_list, class_to_idx=None): batch_time = AverageMeter() search_length = len(search_list) search_dict = {} for i in range(search_length): search_dict['acc_1_alpha_{}'.format(round(search_list[i], 1))] = AverageMeter() search_dict['acc_5_alpha_{}'.format(round(search_list[i], 1))] = AverageMeter() [vision_model, coord_model, fusion_model] = model_list # switch to evaluate mode vision_model.eval() coord_model.eval() fusion_model.eval() end = time.time() for i, (global_img_tensors, box_tensors, box_categories, video_label) in enumerate(val_loader): # compute output with torch.no_grad(): # factual inference output_vision, feature_vision = vision_model(global_img_tensors.cuda(), box_categories, box_tensors.cuda(), video_label) output_vision = output_vision.view((-1, len(val_loader.dataset.classes))) output_coord, feature_coord = coord_model(global_img_tensors, box_categories.cuda(), box_tensors.cuda(), video_label) output_coord = output_coord.view((-1, len(val_loader.dataset.classes))) # obtain the activation of fusion branch output_fusion = fusion_model(feature_vision.cuda(), feature_coord.cuda()) output_fusion = output_fusion.view((-1, len(val_loader.dataset.classes))) # fuse three outputs output_factual = fusion_function(output_vision, output_coord, output_fusion) # counterfactual inference output_vision_subtrahend = output_vision output_counterfactual = fusion_function(output_vision_subtrahend, torch.tensor(0.0), torch.tensor(0.0)) for j in range(search_length): weight = search_list[j] output_debiased = output_factual - output_counterfactual * weight acc1, acc5 = accuracy(output_debiased.cpu(), video_label, topk=(1, 5)) search_dict['acc_1_alpha_{}'.format(round(search_list[j], 1))].update(acc1.item(), global_img_tensors.size(0)) search_dict['acc_5_alpha_{}'.format(round(search_list[j], 1))].update(acc5.item(), global_img_tensors.size(0)) # measure elapsed time batch_time.update(time.time() - end) end = time.time() if i % args.print_freq == 0 or i + 1 == len(val_loader): print('Cf-Inference: [{0}/{1}]\t' 'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' 'Acc1_0.0 {acc_top1_00.val:.1f} ({acc_top1_00.avg:.1f})\t' 'Acc1_0.2 {acc_top1_02.val:.1f} ({acc_top1_02.avg:.1f})\t' 'Acc1_0.5 {acc_top1_05.val:.1f} ({acc_top1_05.avg:.1f})\t' 'Acc1_0.8 {acc_top1_08.val:.1f} ({acc_top1_08.avg:.1f})\t' 'Acc1_1.0 {acc_top1_10.val:.1f} ({acc_top1_10.avg:.1f})'.format( i, len(val_loader), batch_time=batch_time, acc_top1_00=search_dict['acc_1_alpha_0.0'], acc_top1_02=search_dict['acc_1_alpha_0.2'], acc_top1_05=search_dict['acc_1_alpha_0.5'], acc_top1_08=search_dict['acc_1_alpha_0.8'], acc_top1_10=search_dict['acc_1_alpha_1.0'])) for k in range(search_length): print(search_list[k], search_dict['acc_1_alpha_{}'.format(round(search_list[k], 1))].avg, search_dict['acc_5_alpha_{}'.format(round(search_list[k], 1))].avg) return def save_checkpoint(state, is_best, filename): torch.save(state, filename + '_latest.pth.tar') if is_best: shutil.copyfile(filename + '_latest.pth.tar', filename + '_best.pth.tar') def adjust_learning_rate(optimizer, epoch, lr_steps, branch_name=None): """Sets the learning rate to the initial LR decayed by 10""" decay = 0.1 ** (sum(epoch >= np.array(lr_steps))) lr = args.lr * decay if branch_name == 'vision': for param_group in optimizer.param_groups: param_group['lr'] = lr * 0.8 elif branch_name == 'coord': for param_group in optimizer.param_groups: param_group['lr'] = lr elif branch_name == 'fusion': for param_group in optimizer.param_groups: param_group['lr'] = lr else: for param_group in optimizer.param_groups: param_group['lr'] = lr def accuracy(output, target, topk=(1,)): """Computes the accuracy over the k top predictions for the specified values of k""" with torch.no_grad(): maxk = max(topk) batch_size = target.size(0) _, pred = output.topk(maxk, 1, True, True) pred = pred.t() correct = pred.eq(target.view(1, -1).expand_as(pred)) res = [] for k in topk: correct_k = correct[:k].contiguous().view(-1).float().sum(0, keepdim=True) res.append(correct_k.mul_(100.0 / batch_size)) return res if __name__ == '__main__': main()
[ "torch.nn.CrossEntropyLoss", "utils.save_results", "numpy.array", "model.model_lib.BboxInteractionLatentModel", "argparse.ArgumentParser", "model.model_lib.BboxVisualModel", "numpy.linspace", "numpy.concatenate", "model.model_lib.ConcatFusionModel", "callbacks.AverageMeter", "os.path.isfile", "shutil.copyfile", "torch.save", "time.time", "torch.load", "fusion_function.naivesum", "torch.nn.DataParallel", "torch.tensor", "data_utils.causal_data_loader_frames.VideoFolder", "torch.utils.data.DataLoader", "torch.no_grad" ]
[((371, 428), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Counterfactual CAR"""'}), "(description='Counterfactual CAR')\n", (394, 428), False, 'import argparse\n'), ((6328, 6342), 'model.model_lib.BboxVisualModel', 'RGBModel', (['args'], {}), '(args)\n', (6336, 6342), True, 'from model.model_lib import BboxVisualModel as RGBModel\n'), ((6362, 6377), 'model.model_lib.BboxInteractionLatentModel', 'BboxModel', (['args'], {}), '(args)\n', (6371, 6377), True, 'from model.model_lib import BboxInteractionLatentModel as BboxModel\n'), ((6398, 6415), 'model.model_lib.ConcatFusionModel', 'FusionModel', (['args'], {}), '(args)\n', (6409, 6415), True, 'from model.model_lib import ConcatFusionModel as FusionModel\n'), ((6859, 6872), 'fusion_function.naivesum', 'fusion_func', ([], {}), '()\n', (6870, 6872), True, 'from fusion_function import naivesum as fusion_func\n'), ((9249, 9461), 'data_utils.causal_data_loader_frames.VideoFolder', 'VideoFolder', ([], {'root': 'args.root_frames', 'num_boxes': 'args.num_boxes', 'file_input': 'args.json_data_train', 'file_labels': 'args.json_file_labels', 'frames_duration': 'args.num_frames', 'args': 'args', 'is_val': '(False)', 'if_augment': '(True)'}), '(root=args.root_frames, num_boxes=args.num_boxes, file_input=\n args.json_data_train, file_labels=args.json_file_labels,\n frames_duration=args.num_frames, args=args, is_val=False, if_augment=True)\n', (9260, 9461), False, 'from data_utils.causal_data_loader_frames import VideoFolder\n'), ((9738, 9948), 'data_utils.causal_data_loader_frames.VideoFolder', 'VideoFolder', ([], {'root': 'args.root_frames', 'num_boxes': 'args.num_boxes', 'file_input': 'args.json_data_val', 'file_labels': 'args.json_file_labels', 'frames_duration': 'args.num_frames', 'args': 'args', 'is_val': '(True)', 'if_augment': '(True)'}), '(root=args.root_frames, num_boxes=args.num_boxes, file_input=\n args.json_data_val, file_labels=args.json_file_labels, frames_duration=\n args.num_frames, args=args, is_val=True, if_augment=True)\n', (9749, 9948), False, 'from data_utils.causal_data_loader_frames import VideoFolder\n'), ((10256, 10403), 'torch.utils.data.DataLoader', 'torch.utils.data.DataLoader', (['dataset_train'], {'batch_size': 'args.batch_size', 'shuffle': '(True)', 'num_workers': 'args.workers', 'drop_last': '(True)', 'pin_memory': '(True)'}), '(dataset_train, batch_size=args.batch_size,\n shuffle=True, num_workers=args.workers, drop_last=True, pin_memory=True)\n', (10283, 10403), False, 'import torch\n'), ((10461, 10609), 'torch.utils.data.DataLoader', 'torch.utils.data.DataLoader', (['dataset_val'], {'drop_last': '(True)', 'batch_size': 'args.batch_size', 'shuffle': '(False)', 'num_workers': 'args.workers', 'pin_memory': '(False)'}), '(dataset_val, drop_last=True, batch_size=args.\n batch_size, shuffle=False, num_workers=args.workers, pin_memory=False)\n', (10488, 10609), False, 'import torch\n'), ((11422, 11449), 'torch.nn.CrossEntropyLoss', 'torch.nn.CrossEntropyLoss', ([], {}), '()\n', (11447, 11449), False, 'import torch\n'), ((11469, 11494), 'numpy.linspace', 'np.linspace', (['(0.0)', '(1.0)', '(11)'], {}), '(0.0, 1.0, 11)\n', (11480, 11494), True, 'import numpy as np\n'), ((13865, 13879), 'callbacks.AverageMeter', 'AverageMeter', ([], {}), '()\n', (13877, 13879), False, 'from callbacks import AverageMeter\n'), ((13897, 13911), 'callbacks.AverageMeter', 'AverageMeter', ([], {}), '()\n', (13909, 13911), False, 'from callbacks import AverageMeter\n'), ((13928, 13942), 'callbacks.AverageMeter', 'AverageMeter', ([], {}), '()\n', (13940, 13942), False, 'from callbacks import AverageMeter\n'), ((13961, 13975), 'callbacks.AverageMeter', 'AverageMeter', ([], {}), '()\n', (13973, 13975), False, 'from callbacks import AverageMeter\n'), ((13992, 14006), 'callbacks.AverageMeter', 'AverageMeter', ([], {}), '()\n', (14004, 14006), False, 'from callbacks import AverageMeter\n'), ((14379, 14390), 'time.time', 'time.time', ([], {}), '()\n', (14388, 14390), False, 'import time\n'), ((17766, 17780), 'callbacks.AverageMeter', 'AverageMeter', ([], {}), '()\n', (17778, 17780), False, 'from callbacks import AverageMeter\n'), ((17795, 17809), 'callbacks.AverageMeter', 'AverageMeter', ([], {}), '()\n', (17807, 17809), False, 'from callbacks import AverageMeter\n'), ((17826, 17840), 'callbacks.AverageMeter', 'AverageMeter', ([], {}), '()\n', (17838, 17840), False, 'from callbacks import AverageMeter\n'), ((17857, 17871), 'callbacks.AverageMeter', 'AverageMeter', ([], {}), '()\n', (17869, 17871), False, 'from callbacks import AverageMeter\n'), ((18128, 18139), 'time.time', 'time.time', ([], {}), '()\n', (18137, 18139), False, 'import time\n'), ((21275, 21289), 'callbacks.AverageMeter', 'AverageMeter', ([], {}), '()\n', (21287, 21289), False, 'from callbacks import AverageMeter\n'), ((21746, 21757), 'time.time', 'time.time', ([], {}), '()\n', (21755, 21757), False, 'import time\n'), ((24887, 24934), 'torch.save', 'torch.save', (['state', "(filename + '_latest.pth.tar')"], {}), "(state, filename + '_latest.pth.tar')\n", (24897, 24934), False, 'import torch\n'), ((7340, 7374), 'os.path.isfile', 'os.path.isfile', (['args.resume_vision'], {}), '(args.resume_vision)\n', (7354, 7374), False, 'import os\n'), ((7527, 7557), 'torch.load', 'torch.load', (['args.resume_vision'], {}), '(args.resume_vision)\n', (7537, 7557), False, 'import torch\n'), ((7974, 8007), 'os.path.isfile', 'os.path.isfile', (['args.resume_coord'], {}), '(args.resume_coord)\n', (7988, 8007), False, 'import os\n'), ((8158, 8187), 'torch.load', 'torch.load', (['args.resume_coord'], {}), '(args.resume_coord)\n', (8168, 8187), False, 'import torch\n'), ((8548, 8582), 'os.path.isfile', 'os.path.isfile', (['args.resume_fusion'], {}), '(args.resume_fusion)\n', (8562, 8582), False, 'import os\n'), ((8735, 8765), 'torch.load', 'torch.load', (['args.resume_fusion'], {}), '(args.resume_fusion)\n', (8745, 8765), False, 'import torch\n'), ((17006, 17017), 'time.time', 'time.time', ([], {}), '()\n', (17015, 17017), False, 'import time\n'), ((20387, 20398), 'time.time', 'time.time', ([], {}), '()\n', (20396, 20398), False, 'import time\n'), ((20976, 21005), 'numpy.concatenate', 'np.concatenate', (['logits_matrix'], {}), '(logits_matrix)\n', (20990, 21005), True, 'import numpy as np\n'), ((21030, 21058), 'numpy.concatenate', 'np.concatenate', (['targets_list'], {}), '(targets_list)\n', (21044, 21058), True, 'import numpy as np\n'), ((21068, 21129), 'utils.save_results', 'save_results', (['logits_matrix', 'targets_list', 'class_to_idx', 'args'], {}), '(logits_matrix, targets_list, class_to_idx, args)\n', (21080, 21129), False, 'from utils import save_results\n'), ((21460, 21474), 'callbacks.AverageMeter', 'AverageMeter', ([], {}), '()\n', (21472, 21474), False, 'from callbacks import AverageMeter\n'), ((21549, 21563), 'callbacks.AverageMeter', 'AverageMeter', ([], {}), '()\n', (21561, 21563), False, 'from callbacks import AverageMeter\n'), ((23686, 23697), 'time.time', 'time.time', ([], {}), '()\n', (23695, 23697), False, 'import time\n'), ((24961, 25034), 'shutil.copyfile', 'shutil.copyfile', (["(filename + '_latest.pth.tar')", "(filename + '_best.pth.tar')"], {}), "(filename + '_latest.pth.tar', filename + '_best.pth.tar')\n", (24976, 25034), False, 'import shutil\n'), ((25878, 25893), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (25891, 25893), False, 'import torch\n'), ((18281, 18296), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (18294, 18296), False, 'import torch\n'), ((21899, 21914), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (21912, 21914), False, 'import torch\n'), ((6922, 6957), 'torch.nn.DataParallel', 'torch.nn.DataParallel', (['vision_model'], {}), '(vision_model)\n', (6943, 6957), False, 'import torch\n'), ((6988, 7022), 'torch.nn.DataParallel', 'torch.nn.DataParallel', (['coord_model'], {}), '(coord_model)\n', (7009, 7022), False, 'import torch\n'), ((7054, 7089), 'torch.nn.DataParallel', 'torch.nn.DataParallel', (['fusion_model'], {}), '(fusion_model)\n', (7075, 7089), False, 'import torch\n'), ((14522, 14533), 'time.time', 'time.time', ([], {}), '()\n', (14531, 14533), False, 'import time\n'), ((16972, 16983), 'time.time', 'time.time', ([], {}), '()\n', (16981, 16983), False, 'import time\n'), ((20353, 20364), 'time.time', 'time.time', ([], {}), '()\n', (20362, 20364), False, 'import time\n'), ((23037, 23054), 'torch.tensor', 'torch.tensor', (['(0.0)'], {}), '(0.0)\n', (23049, 23054), False, 'import torch\n'), ((23056, 23073), 'torch.tensor', 'torch.tensor', (['(0.0)'], {}), '(0.0)\n', (23068, 23073), False, 'import torch\n'), ((23652, 23663), 'time.time', 'time.time', ([], {}), '()\n', (23661, 23663), False, 'import time\n'), ((25214, 25232), 'numpy.array', 'np.array', (['lr_steps'], {}), '(lr_steps)\n', (25222, 25232), True, 'import numpy as np\n')]
import os import sys import click import pickle import sncosmo import numpy as np from astropy.table import Table DATA_PATH = '/home/samdixon/jla_light_curves/' def modify_error(lc, error_floor=0.): """Add an error floor of `error_floor` times the maximum flux of the band to each observation """ data = sncosmo.photdata.photometric_data(lc).normalized(zp=25., zpsys='ab') new_lc = {'time': data.time, 'band': data.band, 'flux': data.flux, 'fluxerr': data.fluxerr, 'zp': data.zp, 'zpsys': data.zpsys} for band in set(data.band): band_cut = data.band==band max_flux_in_band = np.max(data.flux[band_cut]) new_lc['fluxerr'][band_cut] = np.sqrt((error_floor*max_flux_in_band)**2+data.fluxerr[band_cut]**2) new_lc = Table(new_lc, meta=lc.meta) return new_lc def fit_lc_and_save(lc, model_name, save_dir, no_mc): name = lc.meta['SN'] model = sncosmo.Model(source=model_name, effects=[sncosmo.CCM89Dust()], effect_names=['mw'], effect_frames=['obs']) if type(name) is float: name = int(name) z = lc.meta['Z_HELIO'] mwebv = lc.meta['MWEBV'] bounds = {} try: t0 = float(lc.meta['DayMax'].split()[0]) bounds['t0'] = (t0-5, t0+5) except KeyError: try: t0 = np.mean(lc['Date']) bounds['t0'] = (min(lc['Date'])-20, max(lc['Date'])) except KeyError: t0 = np.mean(lc['time']) bounds['t0'] = (min(lc['time'])-20, max(lc['time'])) bounds['z'] = ((1-1e-4)*z, (1+1e-4)*z) for param_name in model.source.param_names[1:]: bounds[param_name] = (-50, 50) modelcov = model_name=='salt2' model.set(z=z, t0=t0, mwebv=mwebv) phase_range = (-15, 45) if model_name=='salt2' else (-10, 40) wave_range = (3000, 7000) if model_name=='salt2' else None save_path = os.path.join(save_dir, '{}.pkl'.format(name)) try: minuit_result, minuit_fit_model = sncosmo.fit_lc(lc, model, model.param_names[:-2], bounds=bounds, phase_range=phase_range, wave_range=wave_range, warn=False, modelcov=modelcov) if not no_mc: emcee_result, emcee_fit_model = sncosmo.mcmc_lc(sncosmo.select_data(lc, minuit_result['data_mask']), minuit_fit_model, model.param_names[:-2], guess_t0=False, bounds=bounds, warn=False, nwalkers=40, modelcov=modelcov) pickle.dump(emcee_result, open(save_path, 'wb')) else: pickle.dump(minuit_result, open(save_path, 'wb')) except: print('Fit to {} failed'.format(name)) sys.stdout.flush() def main(): model_name, start, finish, err_floor, no_mc = sys.argv[1:] start = int(start) finish = int(finish) err_floor = float(err_floor) no_mc = bool(int(no_mc)) if no_mc: save_dir = '/home/samdixon/host_unity/fitting/results_mw_reddening/jla_{}_{:02d}'.format(model_name, int(err_floor*100)) else: save_dir = '/home/samdixon/host_unity/fitting/results_mw_reddening_mcmc/jla_{}_{:02d}'.format(model_name, int(err_floor*100)) if not os.path.isdir(save_dir): os.makedirs(save_dir) lcs = [] for f in os.listdir(DATA_PATH)[int(start):int(finish)]: if f[:2] == 'lc': lc = sncosmo.read_lc(os.path.join(DATA_PATH, f), format='salt2', expand_bands=True, read_covmat=True) lc = modify_error(lc, err_floor) name = lc.meta['SN'] if type(name) is float: name = int(name) load_path = os.path.join(save_dir, '{}.pkl'.format(name)) try: pickle.load(open(load_path, 'rb')) print('{}: loaded'.format(name)) sys.stdout.flush() except IOError: print('Fitting {}'.format(name)) sys.stdout.flush() fit_lc_and_save(lc, model_name, save_dir, no_mc) else: continue if __name__=='__main__': main()
[ "numpy.mean", "sncosmo.fit_lc", "numpy.sqrt", "os.listdir", "astropy.table.Table", "os.makedirs", "os.path.join", "numpy.max", "os.path.isdir", "sncosmo.select_data", "sncosmo.CCM89Dust", "sys.stdout.flush", "sncosmo.photdata.photometric_data" ]
[((841, 868), 'astropy.table.Table', 'Table', (['new_lc'], {'meta': 'lc.meta'}), '(new_lc, meta=lc.meta)\n', (846, 868), False, 'from astropy.table import Table\n'), ((693, 720), 'numpy.max', 'np.max', (['data.flux[band_cut]'], {}), '(data.flux[band_cut])\n', (699, 720), True, 'import numpy as np\n'), ((759, 835), 'numpy.sqrt', 'np.sqrt', (['((error_floor * max_flux_in_band) ** 2 + data.fluxerr[band_cut] ** 2)'], {}), '((error_floor * max_flux_in_band) ** 2 + data.fluxerr[band_cut] ** 2)\n', (766, 835), True, 'import numpy as np\n'), ((2109, 2261), 'sncosmo.fit_lc', 'sncosmo.fit_lc', (['lc', 'model', 'model.param_names[:-2]'], {'bounds': 'bounds', 'phase_range': 'phase_range', 'wave_range': 'wave_range', 'warn': '(False)', 'modelcov': 'modelcov'}), '(lc, model, model.param_names[:-2], bounds=bounds,\n phase_range=phase_range, wave_range=wave_range, warn=False, modelcov=\n modelcov)\n', (2123, 2261), False, 'import sncosmo\n'), ((3760, 3783), 'os.path.isdir', 'os.path.isdir', (['save_dir'], {}), '(save_dir)\n', (3773, 3783), False, 'import os\n'), ((3793, 3814), 'os.makedirs', 'os.makedirs', (['save_dir'], {}), '(save_dir)\n', (3804, 3814), False, 'import os\n'), ((3842, 3863), 'os.listdir', 'os.listdir', (['DATA_PATH'], {}), '(DATA_PATH)\n', (3852, 3863), False, 'import os\n'), ((328, 365), 'sncosmo.photdata.photometric_data', 'sncosmo.photdata.photometric_data', (['lc'], {}), '(lc)\n', (361, 365), False, 'import sncosmo\n'), ((3243, 3261), 'sys.stdout.flush', 'sys.stdout.flush', ([], {}), '()\n', (3259, 3261), False, 'import sys\n'), ((1059, 1078), 'sncosmo.CCM89Dust', 'sncosmo.CCM89Dust', ([], {}), '()\n', (1076, 1078), False, 'import sncosmo\n'), ((1447, 1466), 'numpy.mean', 'np.mean', (["lc['Date']"], {}), "(lc['Date'])\n", (1454, 1466), True, 'import numpy as np\n'), ((2449, 2500), 'sncosmo.select_data', 'sncosmo.select_data', (['lc', "minuit_result['data_mask']"], {}), "(lc, minuit_result['data_mask'])\n", (2468, 2500), False, 'import sncosmo\n'), ((3948, 3974), 'os.path.join', 'os.path.join', (['DATA_PATH', 'f'], {}), '(DATA_PATH, f)\n', (3960, 3974), False, 'import os\n'), ((4379, 4397), 'sys.stdout.flush', 'sys.stdout.flush', ([], {}), '()\n', (4395, 4397), False, 'import sys\n'), ((1574, 1593), 'numpy.mean', 'np.mean', (["lc['time']"], {}), "(lc['time'])\n", (1581, 1593), True, 'import numpy as np\n'), ((4491, 4509), 'sys.stdout.flush', 'sys.stdout.flush', ([], {}), '()\n', (4507, 4509), False, 'import sys\n')]
""" Unit tests for the system interface.""" import unittest from six import assertRaisesRegex from six.moves import cStringIO import numpy as np from openmdao.api import Problem, Group, IndepVarComp, ExecComp from openmdao.test_suite.components.options_feature_vector import VectorDoublingComp from openmdao.utils.assert_utils import assert_rel_error, assert_warning class TestSystem(unittest.TestCase): def test_vector_context_managers(self): g1 = Group() g1.add_subsystem('Indep', IndepVarComp('a', 5.0), promotes=['a']) g2 = g1.add_subsystem('G2', Group(), promotes=['*']) g2.add_subsystem('C1', ExecComp('b=2*a'), promotes=['a', 'b']) model = Group() model.add_subsystem('G1', g1, promotes=['b']) model.add_subsystem('Sink', ExecComp('c=2*b'), promotes=['b']) p = Problem(model=model) p.set_solver_print(level=0) # Test pre-setup errors with self.assertRaises(Exception) as cm: inputs, outputs, residuals = model.get_nonlinear_vectors() self.assertEqual(str(cm.exception), "Group: Cannot get vectors because setup has not yet been called.") with self.assertRaises(Exception) as cm: d_inputs, d_outputs, d_residuals = model.get_linear_vectors('vec') self.assertEqual(str(cm.exception), "Group: Cannot get vectors because setup has not yet been called.") p.setup() p.run_model() # Test inputs with original values inputs, outputs, residuals = model.get_nonlinear_vectors() self.assertEqual(inputs['G1.G2.C1.a'], 5.) inputs, outputs, residuals = g1.get_nonlinear_vectors() self.assertEqual(inputs['G2.C1.a'], 5.) # Test inputs after setting a new value inputs, outputs, residuals = g2.get_nonlinear_vectors() inputs['C1.a'] = -1. inputs, outputs, residuals = model.get_nonlinear_vectors() self.assertEqual(inputs['G1.G2.C1.a'], -1.) inputs, outputs, residuals = g1.get_nonlinear_vectors() self.assertEqual(inputs['G2.C1.a'], -1.) # Test outputs with original values inputs, outputs, residuals = model.get_nonlinear_vectors() self.assertEqual(outputs['G1.G2.C1.b'], 10.) inputs, outputs, residuals = g2.get_nonlinear_vectors() # Test outputs after setting a new value inputs, outputs, residuals = model.get_nonlinear_vectors() outputs['G1.G2.C1.b'] = 123. self.assertEqual(outputs['G1.G2.C1.b'], 123.) inputs, outputs, residuals = g2.get_nonlinear_vectors() outputs['C1.b'] = 789. self.assertEqual(outputs['C1.b'], 789.) # Test residuals inputs, outputs, residuals = model.get_nonlinear_vectors() residuals['G1.G2.C1.b'] = 99.0 self.assertEqual(residuals['G1.G2.C1.b'], 99.0) # Test linear d_inputs, d_outputs, d_residuals = model.get_linear_vectors('linear') d_outputs['G1.G2.C1.b'] = 10. self.assertEqual(d_outputs['G1.G2.C1.b'], 10.) # Test linear with invalid vec_name with self.assertRaises(Exception) as cm: d_inputs, d_outputs, d_residuals = model.get_linear_vectors('bad_name') self.assertEqual(str(cm.exception), "Group (<model>): There is no linear vector named %s" % 'bad_name') def test_set_checks_shape(self): indep = IndepVarComp() indep.add_output('a') indep.add_output('x', shape=(5, 1)) g1 = Group() g1.add_subsystem('Indep', indep, promotes=['a', 'x']) g2 = g1.add_subsystem('G2', Group(), promotes=['*']) g2.add_subsystem('C1', ExecComp('b=2*a'), promotes=['a', 'b']) g2.add_subsystem('C2', ExecComp('y=2*x', x=np.zeros((5, 1)), y=np.zeros((5, 1))), promotes=['x', 'y']) model = Group() model.add_subsystem('G1', g1, promotes=['b', 'y']) model.add_subsystem('Sink', ExecComp(('c=2*b', 'z=2*y'), y=np.zeros((5, 1)), z=np.zeros((5, 1))), promotes=['b', 'y']) p = Problem(model=model) p.setup() p.set_solver_print(level=0) p.run_model() msg = "Incompatible shape for '.*': Expected (.*) but got (.*)" num_val = -10 arr_val = -10*np.ones((5, 1)) bad_val = -10*np.ones((10)) inputs, outputs, residuals = g2.get_nonlinear_vectors() # # set input # # assign array to scalar with assertRaisesRegex(self, ValueError, msg): inputs['C1.a'] = arr_val # assign scalar to array inputs['C2.x'] = num_val assert_rel_error(self, inputs['C2.x'], arr_val, 1e-10) # assign array to array inputs['C2.x'] = arr_val assert_rel_error(self, inputs['C2.x'], arr_val, 1e-10) # assign bad array shape to array with assertRaisesRegex(self, ValueError, msg): inputs['C2.x'] = bad_val # assign list to array inputs['C2.x'] = arr_val.tolist() assert_rel_error(self, inputs['C2.x'], arr_val, 1e-10) # assign bad list shape to array with assertRaisesRegex(self, ValueError, msg): inputs['C2.x'] = bad_val.tolist() # # set output # # assign array to scalar with assertRaisesRegex(self, ValueError, msg): outputs['C1.b'] = arr_val # assign scalar to array outputs['C2.y'] = num_val assert_rel_error(self, outputs['C2.y'], arr_val, 1e-10) # assign array to array outputs['C2.y'] = arr_val assert_rel_error(self, outputs['C2.y'], arr_val, 1e-10) # assign bad array shape to array with assertRaisesRegex(self, ValueError, msg): outputs['C2.y'] = bad_val # assign list to array outputs['C2.y'] = arr_val.tolist() assert_rel_error(self, outputs['C2.y'], arr_val, 1e-10) # assign bad list shape to array with assertRaisesRegex(self, ValueError, msg): outputs['C2.y'] = bad_val.tolist() # # set residual # # assign array to scalar with assertRaisesRegex(self, ValueError, msg): residuals['C1.b'] = arr_val # assign scalar to array residuals['C2.y'] = num_val assert_rel_error(self, residuals['C2.y'], arr_val, 1e-10) # assign array to array residuals['C2.y'] = arr_val assert_rel_error(self, residuals['C2.y'], arr_val, 1e-10) # assign bad array shape to array with assertRaisesRegex(self, ValueError, msg): residuals['C2.y'] = bad_val # assign list to array residuals['C2.y'] = arr_val.tolist() assert_rel_error(self, residuals['C2.y'], arr_val, 1e-10) # assign bad list shape to array with assertRaisesRegex(self, ValueError, msg): residuals['C2.y'] = bad_val.tolist() def test_deprecated_solver_names(self): class DummySolver(): pass model = Group() # check nl_solver setter & getter msg = "The 'nl_solver' attribute provides backwards compatibility " \ "with OpenMDAO 1.x ; use 'nonlinear_solver' instead." with assert_warning(DeprecationWarning, msg): model.nl_solver = DummySolver() with assert_warning(DeprecationWarning, msg): solver = model.nl_solver self.assertTrue(isinstance(solver, DummySolver)) # check ln_solver setter & getter msg = "The 'ln_solver' attribute provides backwards compatibility " \ "with OpenMDAO 1.x ; use 'linear_solver' instead." with assert_warning(DeprecationWarning, msg): model.ln_solver = DummySolver() with assert_warning(DeprecationWarning, msg): solver = model.ln_solver self.assertTrue(isinstance(solver, DummySolver)) def test_deprecated_metadata(self): prob = Problem() prob.model.add_subsystem('inputs', IndepVarComp('x', shape=3)) prob.model.add_subsystem('double', VectorDoublingComp()) msg = "The 'metadata' attribute provides backwards compatibility " \ "with earlier version of OpenMDAO; use 'options' instead." with assert_warning(DeprecationWarning, msg): prob.model.double.metadata['size'] = 3 prob.model.connect('inputs.x', 'double.x') prob.setup() prob['inputs.x'] = [1., 2., 3.] prob.run_model() assert_rel_error(self, prob['double.y'], [2., 4., 6.]) def test_list_inputs_output_with_includes_excludes(self): from openmdao.test_suite.scripts.circuit_analysis import Resistor, Diode, Node, Circuit p = Problem() model = p.model model.add_subsystem('ground', IndepVarComp('V', 0., units='V')) model.add_subsystem('source', IndepVarComp('I', 0.1, units='A')) model.add_subsystem('circuit', Circuit()) model.connect('source.I', 'circuit.I_in') model.connect('ground.V', 'circuit.Vg') p.setup() p.run_model() # Inputs with no includes or excludes inputs = model.list_inputs(out_stream=None) self.assertEqual( len(inputs), 11) # Inputs with includes inputs = model.list_inputs(includes=['*V_out*'], out_stream=None) self.assertEqual( len(inputs), 3) # Inputs with includes matching a promoted name inputs = model.list_inputs(includes=['*Vg*'], out_stream=None) self.assertEqual( len(inputs), 2) # Inputs with excludes inputs = model.list_inputs(excludes=['*V_out*'], out_stream=None) self.assertEqual( len(inputs), 8) # Inputs with excludes matching a promoted name inputs = model.list_inputs(excludes=['*Vg*'], out_stream=None) self.assertEqual( len(inputs), 9) # Inputs with includes and excludes inputs = model.list_inputs(includes=['*V_out*'], excludes=['*Vg*'], out_stream=None) self.assertEqual( len(inputs), 1) # Outputs with no includes or excludes. Explicit only outputs = model.list_outputs(implicit=False, out_stream=None) self.assertEqual( len(outputs), 5) # Outputs with includes. Explicit only outputs = model.list_outputs(includes=['*I'], implicit=False, out_stream=None) self.assertEqual( len(outputs), 4) # Outputs with excludes. Explicit only outputs = model.list_outputs(excludes=['circuit*'], implicit=False, out_stream=None) self.assertEqual( len(outputs), 2) if __name__ == "__main__": unittest.main()
[ "openmdao.utils.assert_utils.assert_rel_error", "openmdao.api.ExecComp", "numpy.ones", "openmdao.utils.assert_utils.assert_warning", "openmdao.test_suite.scripts.circuit_analysis.Circuit", "openmdao.api.IndepVarComp", "openmdao.api.Group", "numpy.zeros", "six.assertRaisesRegex", "unittest.main", "openmdao.api.Problem", "openmdao.test_suite.components.options_feature_vector.VectorDoublingComp" ]
[((10995, 11010), 'unittest.main', 'unittest.main', ([], {}), '()\n', (11008, 11010), False, 'import unittest\n'), ((467, 474), 'openmdao.api.Group', 'Group', ([], {}), '()\n', (472, 474), False, 'from openmdao.api import Problem, Group, IndepVarComp, ExecComp\n'), ((698, 705), 'openmdao.api.Group', 'Group', ([], {}), '()\n', (703, 705), False, 'from openmdao.api import Problem, Group, IndepVarComp, ExecComp\n'), ((844, 864), 'openmdao.api.Problem', 'Problem', ([], {'model': 'model'}), '(model=model)\n', (851, 864), False, 'from openmdao.api import Problem, Group, IndepVarComp, ExecComp\n'), ((3482, 3496), 'openmdao.api.IndepVarComp', 'IndepVarComp', ([], {}), '()\n', (3494, 3496), False, 'from openmdao.api import Problem, Group, IndepVarComp, ExecComp\n'), ((3585, 3592), 'openmdao.api.Group', 'Group', ([], {}), '()\n', (3590, 3592), False, 'from openmdao.api import Problem, Group, IndepVarComp, ExecComp\n'), ((4036, 4043), 'openmdao.api.Group', 'Group', ([], {}), '()\n', (4041, 4043), False, 'from openmdao.api import Problem, Group, IndepVarComp, ExecComp\n'), ((4378, 4398), 'openmdao.api.Problem', 'Problem', ([], {'model': 'model'}), '(model=model)\n', (4385, 4398), False, 'from openmdao.api import Problem, Group, IndepVarComp, ExecComp\n'), ((4952, 5006), 'openmdao.utils.assert_utils.assert_rel_error', 'assert_rel_error', (['self', "inputs['C2.x']", 'arr_val', '(1e-10)'], {}), "(self, inputs['C2.x'], arr_val, 1e-10)\n", (4968, 5006), False, 'from openmdao.utils.assert_utils import assert_rel_error, assert_warning\n'), ((5081, 5135), 'openmdao.utils.assert_utils.assert_rel_error', 'assert_rel_error', (['self', "inputs['C2.x']", 'arr_val', '(1e-10)'], {}), "(self, inputs['C2.x'], arr_val, 1e-10)\n", (5097, 5135), False, 'from openmdao.utils.assert_utils import assert_rel_error, assert_warning\n'), ((5353, 5407), 'openmdao.utils.assert_utils.assert_rel_error', 'assert_rel_error', (['self', "inputs['C2.x']", 'arr_val', '(1e-10)'], {}), "(self, inputs['C2.x'], arr_val, 1e-10)\n", (5369, 5407), False, 'from openmdao.utils.assert_utils import assert_rel_error, assert_warning\n'), ((5796, 5851), 'openmdao.utils.assert_utils.assert_rel_error', 'assert_rel_error', (['self', "outputs['C2.y']", 'arr_val', '(1e-10)'], {}), "(self, outputs['C2.y'], arr_val, 1e-10)\n", (5812, 5851), False, 'from openmdao.utils.assert_utils import assert_rel_error, assert_warning\n'), ((5927, 5982), 'openmdao.utils.assert_utils.assert_rel_error', 'assert_rel_error', (['self', "outputs['C2.y']", 'arr_val', '(1e-10)'], {}), "(self, outputs['C2.y'], arr_val, 1e-10)\n", (5943, 5982), False, 'from openmdao.utils.assert_utils import assert_rel_error, assert_warning\n'), ((6202, 6257), 'openmdao.utils.assert_utils.assert_rel_error', 'assert_rel_error', (['self', "outputs['C2.y']", 'arr_val', '(1e-10)'], {}), "(self, outputs['C2.y'], arr_val, 1e-10)\n", (6218, 6257), False, 'from openmdao.utils.assert_utils import assert_rel_error, assert_warning\n'), ((6653, 6710), 'openmdao.utils.assert_utils.assert_rel_error', 'assert_rel_error', (['self', "residuals['C2.y']", 'arr_val', '(1e-10)'], {}), "(self, residuals['C2.y'], arr_val, 1e-10)\n", (6669, 6710), False, 'from openmdao.utils.assert_utils import assert_rel_error, assert_warning\n'), ((6788, 6845), 'openmdao.utils.assert_utils.assert_rel_error', 'assert_rel_error', (['self', "residuals['C2.y']", 'arr_val', '(1e-10)'], {}), "(self, residuals['C2.y'], arr_val, 1e-10)\n", (6804, 6845), False, 'from openmdao.utils.assert_utils import assert_rel_error, assert_warning\n'), ((7069, 7126), 'openmdao.utils.assert_utils.assert_rel_error', 'assert_rel_error', (['self', "residuals['C2.y']", 'arr_val', '(1e-10)'], {}), "(self, residuals['C2.y'], arr_val, 1e-10)\n", (7085, 7126), False, 'from openmdao.utils.assert_utils import assert_rel_error, assert_warning\n'), ((7381, 7388), 'openmdao.api.Group', 'Group', ([], {}), '()\n', (7386, 7388), False, 'from openmdao.api import Problem, Group, IndepVarComp, ExecComp\n'), ((8318, 8327), 'openmdao.api.Problem', 'Problem', ([], {}), '()\n', (8325, 8327), False, 'from openmdao.api import Problem, Group, IndepVarComp, ExecComp\n'), ((8869, 8926), 'openmdao.utils.assert_utils.assert_rel_error', 'assert_rel_error', (['self', "prob['double.y']", '[2.0, 4.0, 6.0]'], {}), "(self, prob['double.y'], [2.0, 4.0, 6.0])\n", (8885, 8926), False, 'from openmdao.utils.assert_utils import assert_rel_error, assert_warning\n'), ((9096, 9105), 'openmdao.api.Problem', 'Problem', ([], {}), '()\n', (9103, 9105), False, 'from openmdao.api import Problem, Group, IndepVarComp, ExecComp\n'), ((509, 531), 'openmdao.api.IndepVarComp', 'IndepVarComp', (['"""a"""', '(5.0)'], {}), "('a', 5.0)\n", (521, 531), False, 'from openmdao.api import Problem, Group, IndepVarComp, ExecComp\n'), ((585, 592), 'openmdao.api.Group', 'Group', ([], {}), '()\n', (590, 592), False, 'from openmdao.api import Problem, Group, IndepVarComp, ExecComp\n'), ((641, 658), 'openmdao.api.ExecComp', 'ExecComp', (['"""b=2*a"""'], {}), "('b=2*a')\n", (649, 658), False, 'from openmdao.api import Problem, Group, IndepVarComp, ExecComp\n'), ((796, 813), 'openmdao.api.ExecComp', 'ExecComp', (['"""c=2*b"""'], {}), "('c=2*b')\n", (804, 813), False, 'from openmdao.api import Problem, Group, IndepVarComp, ExecComp\n'), ((3692, 3699), 'openmdao.api.Group', 'Group', ([], {}), '()\n', (3697, 3699), False, 'from openmdao.api import Problem, Group, IndepVarComp, ExecComp\n'), ((3748, 3765), 'openmdao.api.ExecComp', 'ExecComp', (['"""b=2*a"""'], {}), "('b=2*a')\n", (3756, 3765), False, 'from openmdao.api import Problem, Group, IndepVarComp, ExecComp\n'), ((4594, 4609), 'numpy.ones', 'np.ones', (['(5, 1)'], {}), '((5, 1))\n', (4601, 4609), True, 'import numpy as np\n'), ((4632, 4643), 'numpy.ones', 'np.ones', (['(10)'], {}), '(10)\n', (4639, 4643), True, 'import numpy as np\n'), ((4798, 4838), 'six.assertRaisesRegex', 'assertRaisesRegex', (['self', 'ValueError', 'msg'], {}), '(self, ValueError, msg)\n', (4815, 4838), False, 'from six import assertRaisesRegex\n'), ((5192, 5232), 'six.assertRaisesRegex', 'assertRaisesRegex', (['self', 'ValueError', 'msg'], {}), '(self, ValueError, msg)\n', (5209, 5232), False, 'from six import assertRaisesRegex\n'), ((5463, 5503), 'six.assertRaisesRegex', 'assertRaisesRegex', (['self', 'ValueError', 'msg'], {}), '(self, ValueError, msg)\n', (5480, 5503), False, 'from six import assertRaisesRegex\n'), ((5640, 5680), 'six.assertRaisesRegex', 'assertRaisesRegex', (['self', 'ValueError', 'msg'], {}), '(self, ValueError, msg)\n', (5657, 5680), False, 'from six import assertRaisesRegex\n'), ((6039, 6079), 'six.assertRaisesRegex', 'assertRaisesRegex', (['self', 'ValueError', 'msg'], {}), '(self, ValueError, msg)\n', (6056, 6079), False, 'from six import assertRaisesRegex\n'), ((6313, 6353), 'six.assertRaisesRegex', 'assertRaisesRegex', (['self', 'ValueError', 'msg'], {}), '(self, ValueError, msg)\n', (6330, 6353), False, 'from six import assertRaisesRegex\n'), ((6493, 6533), 'six.assertRaisesRegex', 'assertRaisesRegex', (['self', 'ValueError', 'msg'], {}), '(self, ValueError, msg)\n', (6510, 6533), False, 'from six import assertRaisesRegex\n'), ((6902, 6942), 'six.assertRaisesRegex', 'assertRaisesRegex', (['self', 'ValueError', 'msg'], {}), '(self, ValueError, msg)\n', (6919, 6942), False, 'from six import assertRaisesRegex\n'), ((7182, 7222), 'six.assertRaisesRegex', 'assertRaisesRegex', (['self', 'ValueError', 'msg'], {}), '(self, ValueError, msg)\n', (7199, 7222), False, 'from six import assertRaisesRegex\n'), ((7592, 7631), 'openmdao.utils.assert_utils.assert_warning', 'assert_warning', (['DeprecationWarning', 'msg'], {}), '(DeprecationWarning, msg)\n', (7606, 7631), False, 'from openmdao.utils.assert_utils import assert_rel_error, assert_warning\n'), ((7691, 7730), 'openmdao.utils.assert_utils.assert_warning', 'assert_warning', (['DeprecationWarning', 'msg'], {}), '(DeprecationWarning, msg)\n', (7705, 7730), False, 'from openmdao.utils.assert_utils import assert_rel_error, assert_warning\n'), ((8027, 8066), 'openmdao.utils.assert_utils.assert_warning', 'assert_warning', (['DeprecationWarning', 'msg'], {}), '(DeprecationWarning, msg)\n', (8041, 8066), False, 'from openmdao.utils.assert_utils import assert_rel_error, assert_warning\n'), ((8126, 8165), 'openmdao.utils.assert_utils.assert_warning', 'assert_warning', (['DeprecationWarning', 'msg'], {}), '(DeprecationWarning, msg)\n', (8140, 8165), False, 'from openmdao.utils.assert_utils import assert_rel_error, assert_warning\n'), ((8371, 8397), 'openmdao.api.IndepVarComp', 'IndepVarComp', (['"""x"""'], {'shape': '(3)'}), "('x', shape=3)\n", (8383, 8397), False, 'from openmdao.api import Problem, Group, IndepVarComp, ExecComp\n'), ((8442, 8462), 'openmdao.test_suite.components.options_feature_vector.VectorDoublingComp', 'VectorDoublingComp', ([], {}), '()\n', (8460, 8462), False, 'from openmdao.test_suite.components.options_feature_vector import VectorDoublingComp\n'), ((8629, 8668), 'openmdao.utils.assert_utils.assert_warning', 'assert_warning', (['DeprecationWarning', 'msg'], {}), '(DeprecationWarning, msg)\n', (8643, 8668), False, 'from openmdao.utils.assert_utils import assert_rel_error, assert_warning\n'), ((9169, 9202), 'openmdao.api.IndepVarComp', 'IndepVarComp', (['"""V"""', '(0.0)'], {'units': '"""V"""'}), "('V', 0.0, units='V')\n", (9181, 9202), False, 'from openmdao.api import Problem, Group, IndepVarComp, ExecComp\n'), ((9241, 9274), 'openmdao.api.IndepVarComp', 'IndepVarComp', (['"""I"""', '(0.1)'], {'units': '"""A"""'}), "('I', 0.1, units='A')\n", (9253, 9274), False, 'from openmdao.api import Problem, Group, IndepVarComp, ExecComp\n'), ((9315, 9324), 'openmdao.test_suite.scripts.circuit_analysis.Circuit', 'Circuit', ([], {}), '()\n', (9322, 9324), False, 'from openmdao.test_suite.scripts.circuit_analysis import Resistor, Diode, Node, Circuit\n'), ((3879, 3895), 'numpy.zeros', 'np.zeros', (['(5, 1)'], {}), '((5, 1))\n', (3887, 3895), True, 'import numpy as np\n'), ((3939, 3955), 'numpy.zeros', 'np.zeros', (['(5, 1)'], {}), '((5, 1))\n', (3947, 3955), True, 'import numpy as np\n'), ((4215, 4231), 'numpy.zeros', 'np.zeros', (['(5, 1)'], {}), '((5, 1))\n', (4223, 4231), True, 'import numpy as np\n'), ((4280, 4296), 'numpy.zeros', 'np.zeros', (['(5, 1)'], {}), '((5, 1))\n', (4288, 4296), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- """ Script to execute example covarying MMGP regression forecasting model with full Krhh. Inputs: Data training and test sets (dictionary pickle) Data for example: - normalised solar data for 25 sites for 15 minute forecast - N_train = 4200, N_test = 2276, P = 25, D = 51 - Xtr[:, :50] 2 recent lagged observations for each site in order - Xtr[:, 50] time index - link inputs is a 25x2 array (link inputs repeated for every group) with normalised lat,long for each site in order Model Options: - Sparse or full x-function covariance prior Krhh (set bool SPARSE_PRIOR) - Diagonal or Kronecker-structured variational posterior covariance Sr (set bool DIAG_POST) - Sparse or full posterior covariance (when Kronecker posterior; set bool SPARSE_POST) Current Settings (sparse covarying mmgp model with sparse Kronecker posterior): DIAG_POST = False SPARSE_PRIOR = False # set True for equivalent sparse scmmgp model SPARSE_POST = True Note on specifying group structure for F: Grouping occurs via block_struct, a nested list of grouping order Where functions [i] are independent i.e. in own block, set link_kernel[i] = link_inputs[i] = 1.0 See model class preamble and example below for further details. """ import os import numpy as np import pickle import pandas as pd import traceback import time import sklearn.cluster import csv import sys import mmgp from mmgp import likelihoods from mmgp import kernels import tensorflow as tf from mmgp import datasets from mmgp import losses from mmgp import util dpath = '/experiments/datasets/' dfile = 'p25_inputsdict.pickle' dlinkfile = 'p25_linkinputsarray.pickle' outdir = '/experiments/results/p25_nonsparse_cmmgp/' try: os.makedirs(outdir) except FileExistsError: pass def get_inputs(): """ inputsdict contains {'Yte': Yte, 'Ytr': Ytr, 'Xtr': Xtr, 'Xte': Xte} where values are np.arrays np. arrays are truncated to evenly split into batches of size = batchsize returns inputsdict, Xtr_link (ndarray, shape = [P, D_link_features]) """ with open(os.path.join(dpath, dfile), 'rb') as f: d_all = pickle.load(f) with open(os.path.join(dpath, dlinkfile), 'rb') as f: d_link = pickle.load(f) return d_all, d_link def init_z(train_inputs, num_inducing): # Initialize inducing points using clustering. mini_batch = sklearn.cluster.MiniBatchKMeans(num_inducing) cluster_indices = mini_batch.fit_predict(train_inputs) inducing_locations = mini_batch.cluster_centers_ return inducing_locations FLAGS = util.util.get_flags() BATCH_SIZE = FLAGS.batch_size LEARNING_RATE = FLAGS.learning_rate DISPLAY_STEP = FLAGS.display_step EPOCHS = FLAGS.n_epochs NUM_SAMPLES = FLAGS.mc_train PRED_SAMPLES = FLAGS.mc_test NUM_INDUCING = FLAGS.n_inducing NUM_COMPONENTS = FLAGS.num_components IS_ARD = FLAGS.is_ard TOL = FLAGS.opt_tol VAR_STEPS = FLAGS.var_steps DIAG_POST = False SPARSE_PRIOR = False SPARSE_POST = True # option for non-diag post MAXTIME = 1200 print("settings done") # define GPRN P and Q output_dim = 25 #P node_dim = 25 #Q lag_dim = 2 save_nlpds = False # If True saves samples of nlpds for n,p,s # extract dataset d, d_link = get_inputs() Ytr, Yte, Xtr, Xte = d['Ytr'], d['Yte'], d['Xtr'], d['Xte'] data = datasets.DataSet(Xtr.astype(np.float32), Ytr.astype(np.float32), shuffle=False) test = datasets.DataSet(Xte.astype(np.float32), Yte.astype(np.float32), shuffle=False) print("dataset created") # model config block rows (where P=Q): block all w.1, w.2 etc, leave f independent # order of block_struct is rows, node functions # lists required: block_struct, link_inputs, kern_link, kern #block_struct nested list of grouping order weight_struct = [[] for _ in range(output_dim)] for i in range(output_dim): row = list(range(i, i+output_dim*(node_dim-1)+1, output_dim)) row_0 = row.pop(i) # bring diag to pivot position weight_struct[i] = [row_0] + row nodes = [[x] for x in list(range(output_dim * node_dim, output_dim * node_dim + output_dim))] block_struct = weight_struct + nodes # create link inputs (link inputs used repeatedly but can have link input per group) # permute to bring diagonal to first position link_inputs = [[] for _ in range(output_dim)] for i in range(output_dim): idx = list(range(d_link.shape[0])) link_inputs[i] = d_link[[idx.pop(i)] + idx, :] link_inputs = link_inputs + [1.0 for i in range(output_dim)] # for full W row blocks, independent nodes # create 'between' kernel list klink_rows = [kernels.CompositeKernel('mul',[kernels.RadialBasis(2, std_dev=2.0, lengthscale=1.0, white=0.01, input_scaling = IS_ARD), kernels.CompactSlice(2, active_dims=[0,1], lengthscale = 2.0, input_scaling = IS_ARD)] ) for i in range(output_dim) ] klink_f = [1.0 for i in range(node_dim)] kernlink = klink_rows + klink_f # create 'within' kernel # kern lag_active_dims_s = [ [] for _ in range(output_dim)] for i in range(output_dim): lag_active_dims_s[i] = list(range(lag_dim*i, lag_dim*(i+1))) k_rows = [kernels.CompositeKernel('mul',[kernels.RadialBasisSlice(lag_dim, active_dims=lag_active_dims_s[i], std_dev = 1.0, white = 0.01, input_scaling = IS_ARD), kernels.PeriodicSliceFixed(1, active_dims=[Xtr.shape[1]-1], lengthscale=0.5, std_dev=1.0, period = 144) ]) for i in range(output_dim)] k_f = [kernels.RadialBasisSlice(lag_dim, active_dims=lag_active_dims_s[i], std_dev = 1.0, white = 0.01, input_scaling = IS_ARD) for i in range(output_dim)] kern = k_rows + k_f print('len link_inputs ',len(link_inputs)) print('len kernlink ',len(kernlink)) print('len kern ', len(kern)) print('no. groups = ', len(block_struct), 'no. latent functions =', len([i for b in block_struct for i in b])) print('number latent functions', node_dim*(output_dim+1)) likelihood = likelihoods.CovaryingRegressionNetwork(output_dim, node_dim, std_dev = 0.2) # p, q, lik_noise print("likelihood and kernels set") Z = init_z(data.X, NUM_INDUCING) print('inducing points set') m = mmgp.ExplicitSCMMGP(output_dim, likelihood, kern, kernlink, block_struct, Z, link_inputs, num_components=NUM_COMPONENTS, diag_post=DIAG_POST, sparse_prior=SPARSE_PRIOR, sparse_post=SPARSE_POST, num_samples=NUM_SAMPLES, predict_samples=PRED_SAMPLES) print("model set") # initialise losses and logging error_rate = losses.RootMeanSqError(data.Dout) os.chdir(outdir) with open("log_results.csv", 'w', newline='') as f: csv.writer(f).writerow(['epoch', 'fit_runtime', 'nelbo', error_rate.get_name(),'generalised_nlpd']) with open("log_params.csv", 'w', newline='') as f: csv.writer(f).writerow(['epoch', 'raw_kernel_params', 'raw_kernlink_params', 'raw_likelihood_params', 'raw_weights']) with open("log_comp_time.csv", 'w', newline='') as f: csv.writer(f).writerow(['epoch', 'batch_time', 'nelbo_time', 'pred_time', 'gen_nlpd_time', error_rate.get_name()+'_time']) # optimise o = tf.train.AdamOptimizer(LEARNING_RATE, beta1=0.9,beta2=0.99) print("start time = ", time.strftime('%X %x %Z')) m.fit(data, o, var_steps = VAR_STEPS, epochs = EPOCHS, batch_size = BATCH_SIZE, display_step=DISPLAY_STEP, test = test, loss = error_rate, tolerance = TOL, max_time=MAXTIME ) print("optimisation complete") # export final predicted values and loss metrics ypred = m.predict(test.X, batch_size = BATCH_SIZE) #same batchsize used for convenience np.savetxt("predictions.csv", np.concatenate(ypred, axis=1), delimiter=",") if save_nlpds == True: nlpd_samples, nlpd_meanvar = m.nlpd_samples(test.X, test.Y, batch_size = BATCH_SIZE) try: np.savetxt("nlpd_meanvar.csv", nlpd_meanvar, delimiter=",") # N x 2P as for predictions except: print('nlpd_meanvar export fail') try: np.savetxt("nlpd_samples.csv", nlpd_samples, delimiter=",") # NP x S (NxS concat for P tasks) except: print('nlpd_samples export fail') print("Final " + error_rate.get_name() + "=" + "%.4f" % error_rate.eval(test.Y, ypred[0])) print("Final " + "generalised_nlpd" + "=" + "%.4f" % m.nlpd_general(test.X, test.Y, batch_size = BATCH_SIZE)) error_rate_end = [losses.MeanAbsError(data.Dout)] # any extra accuracy measures at end of routine print("Final ", [e.get_name() for e in error_rate_end]) print([e.eval(test.Y, ypred[0]) for e in error_rate_end]) predvar = [np.mean(np.mean(ypred[1]))] print("Final predvar ", predvar) with open("final_losses.csv", 'w', newline='') as f: csv.writer(f).writerows([[e.get_name() for e in error_rate_end] + ['pred_var'], [e.eval(test.Y, ypred[0]) for e in error_rate_end] + predvar]) print("finish time = " + time.strftime('%X %x %Z'))
[ "mmgp.ExplicitSCMMGP", "mmgp.losses.MeanAbsError", "numpy.mean", "mmgp.kernels.PeriodicSliceFixed", "mmgp.util.util.get_flags", "numpy.concatenate", "tensorflow.train.AdamOptimizer", "mmgp.kernels.RadialBasisSlice", "csv.writer", "pickle.load", "numpy.savetxt", "mmgp.kernels.CompactSlice", "mmgp.likelihoods.CovaryingRegressionNetwork", "os.makedirs", "time.strftime", "os.path.join", "os.chdir", "mmgp.kernels.RadialBasis", "mmgp.losses.RootMeanSqError" ]
[((2670, 2691), 'mmgp.util.util.get_flags', 'util.util.get_flags', ([], {}), '()\n', (2689, 2691), False, 'from mmgp import util\n'), ((6258, 6331), 'mmgp.likelihoods.CovaryingRegressionNetwork', 'likelihoods.CovaryingRegressionNetwork', (['output_dim', 'node_dim'], {'std_dev': '(0.2)'}), '(output_dim, node_dim, std_dev=0.2)\n', (6296, 6331), False, 'from mmgp import likelihoods\n'), ((6459, 6720), 'mmgp.ExplicitSCMMGP', 'mmgp.ExplicitSCMMGP', (['output_dim', 'likelihood', 'kern', 'kernlink', 'block_struct', 'Z', 'link_inputs'], {'num_components': 'NUM_COMPONENTS', 'diag_post': 'DIAG_POST', 'sparse_prior': 'SPARSE_PRIOR', 'sparse_post': 'SPARSE_POST', 'num_samples': 'NUM_SAMPLES', 'predict_samples': 'PRED_SAMPLES'}), '(output_dim, likelihood, kern, kernlink, block_struct, Z,\n link_inputs, num_components=NUM_COMPONENTS, diag_post=DIAG_POST,\n sparse_prior=SPARSE_PRIOR, sparse_post=SPARSE_POST, num_samples=\n NUM_SAMPLES, predict_samples=PRED_SAMPLES)\n', (6478, 6720), False, 'import mmgp\n'), ((6789, 6822), 'mmgp.losses.RootMeanSqError', 'losses.RootMeanSqError', (['data.Dout'], {}), '(data.Dout)\n', (6811, 6822), False, 'from mmgp import losses\n'), ((6826, 6842), 'os.chdir', 'os.chdir', (['outdir'], {}), '(outdir)\n', (6834, 6842), False, 'import os\n'), ((7378, 7438), 'tensorflow.train.AdamOptimizer', 'tf.train.AdamOptimizer', (['LEARNING_RATE'], {'beta1': '(0.9)', 'beta2': '(0.99)'}), '(LEARNING_RATE, beta1=0.9, beta2=0.99)\n', (7400, 7438), True, 'import tensorflow as tf\n'), ((1792, 1811), 'os.makedirs', 'os.makedirs', (['outdir'], {}), '(outdir)\n', (1803, 1811), False, 'import os\n'), ((5777, 5896), 'mmgp.kernels.RadialBasisSlice', 'kernels.RadialBasisSlice', (['lag_dim'], {'active_dims': 'lag_active_dims_s[i]', 'std_dev': '(1.0)', 'white': '(0.01)', 'input_scaling': 'IS_ARD'}), '(lag_dim, active_dims=lag_active_dims_s[i], std_dev\n =1.0, white=0.01, input_scaling=IS_ARD)\n', (5801, 5896), False, 'from mmgp import kernels\n'), ((7462, 7487), 'time.strftime', 'time.strftime', (['"""%X %x %Z"""'], {}), "('%X %x %Z')\n", (7475, 7487), False, 'import time\n'), ((7883, 7912), 'numpy.concatenate', 'np.concatenate', (['ypred'], {'axis': '(1)'}), '(ypred, axis=1)\n', (7897, 7912), True, 'import numpy as np\n'), ((8603, 8633), 'mmgp.losses.MeanAbsError', 'losses.MeanAbsError', (['data.Dout'], {}), '(data.Dout)\n', (8622, 8633), False, 'from mmgp import losses\n'), ((2214, 2228), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (2225, 2228), False, 'import pickle\n'), ((2308, 2322), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (2319, 2322), False, 'import pickle\n'), ((8064, 8123), 'numpy.savetxt', 'np.savetxt', (['"""nlpd_meanvar.csv"""', 'nlpd_meanvar'], {'delimiter': '""","""'}), "('nlpd_meanvar.csv', nlpd_meanvar, delimiter=',')\n", (8074, 8123), True, 'import numpy as np\n'), ((8228, 8287), 'numpy.savetxt', 'np.savetxt', (['"""nlpd_samples.csv"""', 'nlpd_samples'], {'delimiter': '""","""'}), "('nlpd_samples.csv', nlpd_samples, delimiter=',')\n", (8238, 8287), True, 'import numpy as np\n'), ((8819, 8836), 'numpy.mean', 'np.mean', (['ypred[1]'], {}), '(ypred[1])\n', (8826, 8836), True, 'import numpy as np\n'), ((9134, 9159), 'time.strftime', 'time.strftime', (['"""%X %x %Z"""'], {}), "('%X %x %Z')\n", (9147, 9159), False, 'import time\n'), ((2157, 2183), 'os.path.join', 'os.path.join', (['dpath', 'dfile'], {}), '(dpath, dfile)\n', (2169, 2183), False, 'import os\n'), ((2246, 2276), 'os.path.join', 'os.path.join', (['dpath', 'dlinkfile'], {}), '(dpath, dlinkfile)\n', (2258, 2276), False, 'import os\n'), ((4725, 4815), 'mmgp.kernels.RadialBasis', 'kernels.RadialBasis', (['(2)'], {'std_dev': '(2.0)', 'lengthscale': '(1.0)', 'white': '(0.01)', 'input_scaling': 'IS_ARD'}), '(2, std_dev=2.0, lengthscale=1.0, white=0.01,\n input_scaling=IS_ARD)\n', (4744, 4815), False, 'from mmgp import kernels\n'), ((4860, 4947), 'mmgp.kernels.CompactSlice', 'kernels.CompactSlice', (['(2)'], {'active_dims': '[0, 1]', 'lengthscale': '(2.0)', 'input_scaling': 'IS_ARD'}), '(2, active_dims=[0, 1], lengthscale=2.0, input_scaling=\n IS_ARD)\n', (4880, 4947), False, 'from mmgp import kernels\n'), ((5332, 5451), 'mmgp.kernels.RadialBasisSlice', 'kernels.RadialBasisSlice', (['lag_dim'], {'active_dims': 'lag_active_dims_s[i]', 'std_dev': '(1.0)', 'white': '(0.01)', 'input_scaling': 'IS_ARD'}), '(lag_dim, active_dims=lag_active_dims_s[i], std_dev\n =1.0, white=0.01, input_scaling=IS_ARD)\n', (5356, 5451), False, 'from mmgp import kernels\n'), ((5544, 5652), 'mmgp.kernels.PeriodicSliceFixed', 'kernels.PeriodicSliceFixed', (['(1)'], {'active_dims': '[Xtr.shape[1] - 1]', 'lengthscale': '(0.5)', 'std_dev': '(1.0)', 'period': '(144)'}), '(1, active_dims=[Xtr.shape[1] - 1], lengthscale=\n 0.5, std_dev=1.0, period=144)\n', (5570, 5652), False, 'from mmgp import kernels\n'), ((6901, 6914), 'csv.writer', 'csv.writer', (['f'], {}), '(f)\n', (6911, 6914), False, 'import csv\n'), ((7058, 7071), 'csv.writer', 'csv.writer', (['f'], {}), '(f)\n', (7068, 7071), False, 'import csv\n'), ((7236, 7249), 'csv.writer', 'csv.writer', (['f'], {}), '(f)\n', (7246, 7249), False, 'import csv\n'), ((8934, 8947), 'csv.writer', 'csv.writer', (['f'], {}), '(f)\n', (8944, 8947), False, 'import csv\n')]
#!/usr/bin/env python3 import sys import os import logging import numpy as np import pandas as pd import dateutil def tempF2C(x): return (x-32.0)*5.0/9.0 def tempC2F(x): return (x*9.0/5.0)+32.0 def load_temperature_hdf5(temps_fn, local_time_offset, basedir=None, start_year=None, truncate_to_full_day=False): ## Load temperature # temps_fn = "{}_AT_cleaned.h5".format(station_callsign) logging.info("Using saved temperatures file '{}'".format(temps_fn)) if basedir is not None: temps_fn = os.path.join(basedir, temps_fn) tempdf = pd.read_hdf(temps_fn, 'table') tmp = local_time_offset.split(':') tmp = int(tmp[0])*3600+int(tmp[1])*60 sitetz = dateutil.tz.tzoffset(local_time_offset, tmp) tempdf.index = tempdf.index.tz_convert(sitetz) if truncate_to_full_day: x = tempdf.index[-1] if x.hour != 23: x = x-pd.Timedelta(days=1) tmp = '{:04d}-{:02d}-{:02d}'.format(x.year, x.month, x.day) tempdf = tempdf.loc[:tmp] if start_year is not None: tempdf = tempdf.loc['{}-01-01'.format(start_year):] logging.info("Temperature data date range used: {} through {}".format(tempdf.index[0], tempdf.index[-1])) return tempdf def load_temperature_csv(fn, local_time_offset=None): t = pd.read_csv(fn, index_col=0) if local_time_offset is not None: tmp = local_time_offset.split(':') tmp = int(tmp[0])*3600+int(tmp[1])*60 sitetz = dateutil.tz.tzoffset(local_time_offset, tmp) #t.index = pd.to_datetime(t.index).tz_localize('UTC').tz_convert(sitetz) # @TCC this fails if csv contains datetimes with TZ t.index = pd.to_datetime(t.index) try: t.index = t.index.tz_localize('UTC') except TypeError: pass t.index = t.index.tz_convert(sitetz) return t # Function which computes BM (single sine method) degree day generation from temperature data def compute_BMDD_Fs(tmin, tmax, base_temp, dd_gen): # Used internally def _compute_daily_BM_DD(mint, maxt, avet, base_temp): """Use standard Baskerville-Ermin (single sine) degree-day method to compute the degree-day values for each a single day. """ if avet is None: avet = (mint+maxt)/2.0 # simple midpoint (like in the refs) dd = np.nan # value which we're computing # Step 1: Adjust for observation time; not relevant # Step 2: GDD = 0 if max < base (curve all below base) if maxt < base_temp: dd = 0 # Step 3: Calc mean temp for day; already done previously # Step 4: min > base; then whole curve counts elif mint >= base_temp: dd = avet - base_temp # Step 5: else use curve minus part below base else: W = (maxt-mint)/2.0 tmp = (base_temp-avet) / W if tmp < -1: print('WARNING: (base_temp-avet)/W = {} : should be [-1:1]'.format(tmp)) tmp = -1 if tmp > 1: print('WARNING: (base_temp-avet)/W = {} : should be [-1:1]'.format(tmp)) tmp = 1 A = np.arcsin(tmp) dd = ((W*np.cos(A))-((base_temp-avet)*((np.pi/2.0)-A)))/np.pi return dd # compute the degree-days for each day in the temperature input (from tmin and tmax vectors) dd = pd.concat([tmin,tmax], axis=1) dd.columns = ['tmin', 'tmax'] dd['DD'] = dd.apply(lambda x: _compute_daily_BM_DD(x[0], x[1], (x[0]+x[1])/2.0, base_temp), axis=1) # compute the degree-days for each day in the temperature input (from a daily groupby) # grp = t.groupby(pd.TimeGrouper('D')) # dd = grp.agg(lambda x: _compute_daily_BM_DD(np.min(x), np.max(x), None, base_temp)) # dd.columns = ['DD'] # Find the point where cumulative sums of degree days cross the threshold cDD = dd['DD'].cumsum(skipna=True) for cumdd_threshold,label in [[1*dd_gen,'F1'], [2*dd_gen,'F2'], [3*dd_gen,'F3']]: dtmp = np.zeros(len(dd['DD']))*np.nan tmp = np.searchsorted(cDD, cDD+(cumdd_threshold)-dd['DD'], side='left').astype(float) tmp[tmp>=len(tmp)] = np.nan #dd[label+'_idx'] = tmp # convert those indexes into end times e = pd.Series(index=dd.index, dtype='float64')#, dtype='datetime64[ns]') #e[~np.isnan(tmp)] = dd.index[tmp[~np.isnan(tmp)].astype(int)] # @TCC previous code e.loc[~np.isnan(tmp)] = dd.index[tmp[~np.isnan(tmp)].astype(int)] e.loc[np.isnan(tmp)] = np.nan dd[label+'_end'] = e # and duration... #dd[label] = (e-dd.index+pd.Timedelta(days=1)).apply(lambda x: np.nan if pd.isnull(x) else x.days) # @TCC previous code dd[label] = (pd.to_datetime(e)-dd.index+pd.Timedelta(days=1)).apply(lambda x: np.nan if pd.isnull(x) else x.days) #dd.loc[np.isnan(tmp), label] = np.nan print("DD dataframe min values\n", dd.min()) return dd def compute_year_over_year_norm(in_dataframe, start, end, norm_start=None, norm_end=None, freq='daily', interp_method='linear', norm_method='mean'): """ Parameters ---------- start: convertable to Datetime start range of dates to output end: convertable to Datetime end range of dates to output norm_start : convertable to Datetime or None `None` will use in_dataframe.index[0] norm_end : convertable to Datetime or None if given (not None), output range does not include `norm_end` (it is half-open) `None` will use in_dataframe.index[-1] freq : {'daily', 'hourly'} interp_method : str or None `None` will skip resample and interpolation, so `in_dataframe` must already be daily or hourly (depending on `freq`)! norm_method : {'mean', 'median'} """ if freq == 'hourly': hrs = 24 hrs_freq = '1h' elif freq == 'daily': hrs = 1 hrs_freq = '24h' else: raise ValueError("Invalid `freq` argument value: {}".format(freq)) if norm_start is None: norm_start = in_dataframe.index[0] if norm_end is None: norm_end = in_dataframe.index[-1] else: norm_end = pd.to_datetime([norm_end])[0] - pd.Timedelta('1 second') print('Computing using range:', norm_start, 'to', norm_end) if interp_method is None: # skip resample+interpolation (assumes in_dataframe is daily!) t = in_dataframe.loc[norm_start:norm_end] else: # resample and interpolate to get hourly t = in_dataframe.resample(hrs_freq).interpolate(method=interp_method).loc[norm_start:norm_end] if norm_method == 'mean': norm = t.groupby([t.index.month, t.index.day, t.index.hour]).mean().sort_index() elif norm_method == 'median': norm = t.groupby([t.index.month, t.index.day, t.index.hour]).median().sort_index() else: assert False, "Error: Unknown norm_method '{}'".format(norm_method) # now replicate and trim to the desired output range start = pd.to_datetime(start) end = pd.to_datetime(end) # need a non-leapyear and leapyear version norm_ly = norm.copy() if norm.shape[0] == 366*hrs: norm = norm.drop((2,29,)) else: # norm doesn't include any leapyear data assert norm.shape[0] == 365*hrs # make Feb 29 the mean of Feb 28 and Mar 1 foo = (norm.loc[(2,28,)] + norm.loc[(3,1,)]) / 2.0 foo.index = pd.MultiIndex.from_product( ([2],[29],list(range(hrs))) ) norm_ly = pd.concat((norm_ly,foo)).sort_index() norm_ly.sort_index(inplace=True) # probably not needed # build up a 'long normal' (lnorm) dataframe year by year by appending the norm or norm_ly lnorm = None for yr in np.arange(start.year, end.year+1): #print(yr) idx = pd.date_range(start='{}-{:02d}-{:02d} {:02d}:00:00'.format(yr,*norm.index[0]), end= '{}-{:02d}-{:02d} {:02d}:00:00'.format(yr,*norm.index[-1]), freq=hrs_freq) if idx.shape[0] == 366*hrs: foo = norm_ly.copy() else: assert norm.shape[0] == 365*hrs foo = norm.copy() foo.index = idx if lnorm is None: lnorm = foo else: lnorm = lnorm.append(foo) return lnorm.loc[start:end]
[ "pandas.Series", "pandas.isnull", "pandas.read_csv", "numpy.arange", "numpy.searchsorted", "pandas.Timedelta", "os.path.join", "numpy.arcsin", "dateutil.tz.tzoffset", "pandas.read_hdf", "numpy.isnan", "numpy.cos", "pandas.concat", "pandas.to_datetime" ]
[((562, 592), 'pandas.read_hdf', 'pd.read_hdf', (['temps_fn', '"""table"""'], {}), "(temps_fn, 'table')\n", (573, 592), True, 'import pandas as pd\n'), ((688, 732), 'dateutil.tz.tzoffset', 'dateutil.tz.tzoffset', (['local_time_offset', 'tmp'], {}), '(local_time_offset, tmp)\n', (708, 732), False, 'import dateutil\n'), ((1300, 1328), 'pandas.read_csv', 'pd.read_csv', (['fn'], {'index_col': '(0)'}), '(fn, index_col=0)\n', (1311, 1328), True, 'import pandas as pd\n'), ((3385, 3416), 'pandas.concat', 'pd.concat', (['[tmin, tmax]'], {'axis': '(1)'}), '([tmin, tmax], axis=1)\n', (3394, 3416), True, 'import pandas as pd\n'), ((7182, 7203), 'pandas.to_datetime', 'pd.to_datetime', (['start'], {}), '(start)\n', (7196, 7203), True, 'import pandas as pd\n'), ((7214, 7233), 'pandas.to_datetime', 'pd.to_datetime', (['end'], {}), '(end)\n', (7228, 7233), True, 'import pandas as pd\n'), ((7900, 7935), 'numpy.arange', 'np.arange', (['start.year', '(end.year + 1)'], {}), '(start.year, end.year + 1)\n', (7909, 7935), True, 'import numpy as np\n'), ((517, 548), 'os.path.join', 'os.path.join', (['basedir', 'temps_fn'], {}), '(basedir, temps_fn)\n', (529, 548), False, 'import os\n'), ((1473, 1517), 'dateutil.tz.tzoffset', 'dateutil.tz.tzoffset', (['local_time_offset', 'tmp'], {}), '(local_time_offset, tmp)\n', (1493, 1517), False, 'import dateutil\n'), ((1669, 1692), 'pandas.to_datetime', 'pd.to_datetime', (['t.index'], {}), '(t.index)\n', (1683, 1692), True, 'import pandas as pd\n'), ((4275, 4317), 'pandas.Series', 'pd.Series', ([], {'index': 'dd.index', 'dtype': '"""float64"""'}), "(index=dd.index, dtype='float64')\n", (4284, 4317), True, 'import pandas as pd\n'), ((4525, 4538), 'numpy.isnan', 'np.isnan', (['tmp'], {}), '(tmp)\n', (4533, 4538), True, 'import numpy as np\n'), ((6393, 6417), 'pandas.Timedelta', 'pd.Timedelta', (['"""1 second"""'], {}), "('1 second')\n", (6405, 6417), True, 'import pandas as pd\n'), ((886, 906), 'pandas.Timedelta', 'pd.Timedelta', ([], {'days': '(1)'}), '(days=1)\n', (898, 906), True, 'import pandas as pd\n'), ((3171, 3185), 'numpy.arcsin', 'np.arcsin', (['tmp'], {}), '(tmp)\n', (3180, 3185), True, 'import numpy as np\n'), ((4068, 4135), 'numpy.searchsorted', 'np.searchsorted', (['cDD', "(cDD + cumdd_threshold - dd['DD'])"], {'side': '"""left"""'}), "(cDD, cDD + cumdd_threshold - dd['DD'], side='left')\n", (4083, 4135), True, 'import numpy as np\n'), ((4452, 4465), 'numpy.isnan', 'np.isnan', (['tmp'], {}), '(tmp)\n', (4460, 4465), True, 'import numpy as np\n'), ((6361, 6387), 'pandas.to_datetime', 'pd.to_datetime', (['[norm_end]'], {}), '([norm_end])\n', (6375, 6387), True, 'import pandas as pd\n'), ((7672, 7697), 'pandas.concat', 'pd.concat', (['(norm_ly, foo)'], {}), '((norm_ly, foo))\n', (7681, 7697), True, 'import pandas as pd\n'), ((4780, 4800), 'pandas.Timedelta', 'pd.Timedelta', ([], {'days': '(1)'}), '(days=1)\n', (4792, 4800), True, 'import pandas as pd\n'), ((4828, 4840), 'pandas.isnull', 'pd.isnull', (['x'], {}), '(x)\n', (4837, 4840), True, 'import pandas as pd\n'), ((4753, 4770), 'pandas.to_datetime', 'pd.to_datetime', (['e'], {}), '(e)\n', (4767, 4770), True, 'import pandas as pd\n'), ((3207, 3216), 'numpy.cos', 'np.cos', (['A'], {}), '(A)\n', (3213, 3216), True, 'import numpy as np\n'), ((4483, 4496), 'numpy.isnan', 'np.isnan', (['tmp'], {}), '(tmp)\n', (4491, 4496), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- # # Copyright © Spyder Project Contributors # Licensed under the terms of the MIT License # (see spyder/__init__.py for details) """ NumPy Array Editor Dialog based on Qt """ # pylint: disable=C0103 # pylint: disable=R0903 # pylint: disable=R0911 # pylint: disable=R0201 # Standard library imports from __future__ import print_function # Third party imports from qtpy.compat import from_qvariant, to_qvariant from qtpy.QtCore import (QAbstractTableModel, QItemSelection, QLocale, QItemSelectionRange, QModelIndex, Qt, Slot) from qtpy.QtGui import QColor, QCursor, QDoubleValidator, QKeySequence from qtpy.QtWidgets import (QAbstractItemDelegate, QApplication, QCheckBox, QComboBox, QDialog, QDialogButtonBox, QGridLayout, QHBoxLayout, QInputDialog, QItemDelegate, QLabel, QLineEdit, QMenu, QMessageBox, QPushButton, QSpinBox, QStackedWidget, QTableView, QVBoxLayout, QWidget) import numpy as np # Local imports from spyder.config.base import _ from spyder.config.fonts import DEFAULT_SMALL_DELTA from spyder.config.gui import get_font, config_shortcut from spyder.py3compat import (io, is_binary_string, is_string, is_text_string, PY3, to_binary_string, to_text_string) from spyder.utils import icon_manager as ima from spyder.utils.qthelpers import add_actions, create_action, keybinding # Note: string and unicode data types will be formatted with '%s' (see below) SUPPORTED_FORMATS = { 'single': '%.6g', 'double': '%.6g', 'float_': '%.6g', 'longfloat': '%.6g', 'float16': '%.6g', 'float32': '%.6g', 'float64': '%.6g', 'float96': '%.6g', 'float128': '%.6g', 'csingle': '%r', 'complex_': '%r', 'clongfloat': '%r', 'complex64': '%r', 'complex128': '%r', 'complex192': '%r', 'complex256': '%r', 'byte': '%d', 'bytes8': '%s', 'short': '%d', 'intc': '%d', 'int_': '%d', 'longlong': '%d', 'intp': '%d', 'int8': '%d', 'int16': '%d', 'int32': '%d', 'int64': '%d', 'ubyte': '%d', 'ushort': '%d', 'uintc': '%d', 'uint': '%d', 'ulonglong': '%d', 'uintp': '%d', 'uint8': '%d', 'uint16': '%d', 'uint32': '%d', 'uint64': '%d', 'bool_': '%r', 'bool8': '%r', 'bool': '%r', } LARGE_SIZE = 5e5 LARGE_NROWS = 1e5 LARGE_COLS = 60 #============================================================================== # Utility functions #============================================================================== def is_float(dtype): """Return True if datatype dtype is a float kind""" return ('float' in dtype.name) or dtype.name in ['single', 'double'] def is_number(dtype): """Return True is datatype dtype is a number kind""" return is_float(dtype) or ('int' in dtype.name) or ('long' in dtype.name) \ or ('short' in dtype.name) def get_idx_rect(index_list): """Extract the boundaries from a list of indexes""" rows, cols = list(zip(*[(i.row(), i.column()) for i in index_list])) return ( min(rows), max(rows), min(cols), max(cols) ) #============================================================================== # Main classes #============================================================================== class ArrayModel(QAbstractTableModel): """Array Editor Table Model""" ROWS_TO_LOAD = 500 COLS_TO_LOAD = 40 def __init__(self, data, format="%.6g", xlabels=None, ylabels=None, readonly=False, parent=None): QAbstractTableModel.__init__(self) self.dialog = parent self.changes = {} self.xlabels = xlabels self.ylabels = ylabels self.readonly = readonly self.test_array = np.array([0], dtype=data.dtype) # for complex numbers, shading will be based on absolute value # but for all other types it will be the real part if data.dtype in (np.complex64, np.complex128): self.color_func = np.abs else: self.color_func = np.real # Backgroundcolor settings huerange = [.66, .99] # Hue self.sat = .7 # Saturation self.val = 1. # Value self.alp = .6 # Alpha-channel self._data = data self._format = format self.total_rows = self._data.shape[0] self.total_cols = self._data.shape[1] size = self.total_rows * self.total_cols try: self.vmin = np.nanmin(self.color_func(data)) self.vmax = np.nanmax(self.color_func(data)) if self.vmax == self.vmin: self.vmin -= 1 self.hue0 = huerange[0] self.dhue = huerange[1]-huerange[0] self.bgcolor_enabled = True except (TypeError, ValueError): self.vmin = None self.vmax = None self.hue0 = None self.dhue = None self.bgcolor_enabled = False # Use paging when the total size, number of rows or number of # columns is too large if size > LARGE_SIZE: self.rows_loaded = self.ROWS_TO_LOAD self.cols_loaded = self.COLS_TO_LOAD else: if self.total_rows > LARGE_NROWS: self.rows_loaded = self.ROWS_TO_LOAD else: self.rows_loaded = self.total_rows if self.total_cols > LARGE_COLS: self.cols_loaded = self.COLS_TO_LOAD else: self.cols_loaded = self.total_cols def get_format(self): """Return current format""" # Avoid accessing the private attribute _format from outside return self._format def get_data(self): """Return data""" return self._data def set_format(self, format): """Change display format""" self._format = format self.reset() def columnCount(self, qindex=QModelIndex()): """Array column number""" if self.total_cols <= self.cols_loaded: return self.total_cols else: return self.cols_loaded def rowCount(self, qindex=QModelIndex()): """Array row number""" if self.total_rows <= self.rows_loaded: return self.total_rows else: return self.rows_loaded def can_fetch_more(self, rows=False, columns=False): if rows: if self.total_rows > self.rows_loaded: return True else: return False if columns: if self.total_cols > self.cols_loaded: return True else: return False def fetch_more(self, rows=False, columns=False): if self.can_fetch_more(rows=rows): reminder = self.total_rows - self.rows_loaded items_to_fetch = min(reminder, self.ROWS_TO_LOAD) self.beginInsertRows(QModelIndex(), self.rows_loaded, self.rows_loaded + items_to_fetch - 1) self.rows_loaded += items_to_fetch self.endInsertRows() if self.can_fetch_more(columns=columns): reminder = self.total_cols - self.cols_loaded items_to_fetch = min(reminder, self.COLS_TO_LOAD) self.beginInsertColumns(QModelIndex(), self.cols_loaded, self.cols_loaded + items_to_fetch - 1) self.cols_loaded += items_to_fetch self.endInsertColumns() def bgcolor(self, state): """Toggle backgroundcolor""" self.bgcolor_enabled = state > 0 self.reset() def get_value(self, index): i = index.row() j = index.column() if len(self._data.shape) == 1: value = self._data[j] else: value = self._data[i, j] return self.changes.get((i, j), value) def data(self, index, role=Qt.DisplayRole): """Cell content""" if not index.isValid(): return to_qvariant() value = self.get_value(index) if is_binary_string(value): try: value = to_text_string(value, 'utf8') except: pass if role == Qt.DisplayRole: if value is np.ma.masked: return '' else: try: return to_qvariant(self._format % value) except TypeError: self.readonly = True return repr(value) elif role == Qt.TextAlignmentRole: return to_qvariant(int(Qt.AlignCenter|Qt.AlignVCenter)) elif role == Qt.BackgroundColorRole and self.bgcolor_enabled \ and value is not np.ma.masked: try: hue = (self.hue0 + self.dhue * (float(self.vmax) - self.color_func(value)) / (float(self.vmax) - self.vmin)) hue = float(np.abs(hue)) color = QColor.fromHsvF(hue, self.sat, self.val, self.alp) return to_qvariant(color) except TypeError: return to_qvariant() elif role == Qt.FontRole: return to_qvariant(get_font(font_size_delta=DEFAULT_SMALL_DELTA)) return to_qvariant() def setData(self, index, value, role=Qt.EditRole): """Cell content change""" if not index.isValid() or self.readonly: return False i = index.row() j = index.column() value = from_qvariant(value, str) dtype = self._data.dtype.name if dtype == "bool": try: val = bool(float(value)) except ValueError: val = value.lower() == "true" elif dtype.startswith("string") or dtype.startswith("bytes"): val = to_binary_string(value, 'utf8') elif dtype.startswith("unicode") or dtype.startswith("str"): val = to_text_string(value) else: if value.lower().startswith('e') or value.lower().endswith('e'): return False try: val = complex(value) if not val.imag: val = val.real except ValueError as e: QMessageBox.critical(self.dialog, "Error", "Value error: %s" % str(e)) return False try: self.test_array[0] = val # will raise an Exception eventually except OverflowError as e: print("OverflowError: " + str(e)) # spyder: test-skip QMessageBox.critical(self.dialog, "Error", "Overflow error: %s" % str(e)) return False # Add change to self.changes self.changes[(i, j)] = val self.dataChanged.emit(index, index) if not is_string(val): if val > self.vmax: self.vmax = val if val < self.vmin: self.vmin = val return True def flags(self, index): """Set editable flag""" if not index.isValid(): return Qt.ItemIsEnabled return Qt.ItemFlags(QAbstractTableModel.flags(self, index)| Qt.ItemIsEditable) def headerData(self, section, orientation, role=Qt.DisplayRole): """Set header data""" if role != Qt.DisplayRole: return to_qvariant() labels = self.xlabels if orientation == Qt.Horizontal else self.ylabels if labels is None: return to_qvariant(int(section)) else: return to_qvariant(labels[section]) def reset(self): self.beginResetModel() self.endResetModel() class ArrayDelegate(QItemDelegate): """Array Editor Item Delegate""" def __init__(self, dtype, parent=None): QItemDelegate.__init__(self, parent) self.dtype = dtype def createEditor(self, parent, option, index): """Create editor widget""" model = index.model() value = model.get_value(index) if model._data.dtype.name == "bool": value = not value model.setData(index, to_qvariant(value)) return elif value is not np.ma.masked: editor = QLineEdit(parent) editor.setFont(get_font(font_size_delta=DEFAULT_SMALL_DELTA)) editor.setAlignment(Qt.AlignCenter) if is_number(self.dtype): validator = QDoubleValidator(editor) validator.setLocale(QLocale('C')) editor.setValidator(validator) editor.returnPressed.connect(self.commitAndCloseEditor) return editor def commitAndCloseEditor(self): """Commit and close editor""" editor = self.sender() # Avoid a segfault with PyQt5. Variable value won't be changed # but at least Spyder won't crash. It seems generated by a bug in sip. try: self.commitData.emit(editor) except AttributeError: pass self.closeEditor.emit(editor, QAbstractItemDelegate.NoHint) def setEditorData(self, editor, index): """Set editor widget's data""" text = from_qvariant(index.model().data(index, Qt.DisplayRole), str) editor.setText(text) #TODO: Implement "Paste" (from clipboard) feature class ArrayView(QTableView): """Array view class""" def __init__(self, parent, model, dtype, shape): QTableView.__init__(self, parent) self.setModel(model) self.setItemDelegate(ArrayDelegate(dtype, self)) total_width = 0 for k in range(shape[1]): total_width += self.columnWidth(k) self.viewport().resize(min(total_width, 1024), self.height()) self.shape = shape self.menu = self.setup_menu() config_shortcut(self.copy, context='variable_explorer', name='copy', parent=self) self.horizontalScrollBar().valueChanged.connect( lambda val: self.load_more_data(val, columns=True)) self.verticalScrollBar().valueChanged.connect( lambda val: self.load_more_data(val, rows=True)) def load_more_data(self, value, rows=False, columns=False): try: old_selection = self.selectionModel().selection() old_rows_loaded = old_cols_loaded = None if rows and value == self.verticalScrollBar().maximum(): old_rows_loaded = self.model().rows_loaded self.model().fetch_more(rows=rows) if columns and value == self.horizontalScrollBar().maximum(): old_cols_loaded = self.model().cols_loaded self.model().fetch_more(columns=columns) if old_rows_loaded is not None or old_cols_loaded is not None: # if we've changed anything, update selection new_selection = QItemSelection() for part in old_selection: top = part.top() bottom = part.bottom() if (old_rows_loaded is not None and top == 0 and bottom == (old_rows_loaded-1)): # complete column selected (so expand it to match # updated range) bottom = self.model().rows_loaded-1 left = part.left() right = part.right() if (old_cols_loaded is not None and left == 0 and right == (old_cols_loaded-1)): # compete row selected (so expand it to match updated # range) right = self.model().cols_loaded-1 top_left = self.model().index(top, left) bottom_right = self.model().index(bottom, right) part = QItemSelectionRange(top_left, bottom_right) new_selection.append(part) self.selectionModel().select (new_selection, self.selectionModel().ClearAndSelect) except NameError: # Needed to handle a NameError while fetching data when closing # See isue 7880 pass def resize_to_contents(self): """Resize cells to contents""" QApplication.setOverrideCursor(QCursor(Qt.WaitCursor)) self.resizeColumnsToContents() self.model().fetch_more(columns=True) self.resizeColumnsToContents() QApplication.restoreOverrideCursor() def setup_menu(self): """Setup context menu""" self.copy_action = create_action(self, _('Copy'), shortcut=keybinding('Copy'), icon=ima.icon('editcopy'), triggered=self.copy, context=Qt.WidgetShortcut) menu = QMenu(self) add_actions(menu, [self.copy_action, ]) return menu def contextMenuEvent(self, event): """Reimplement Qt method""" self.menu.popup(event.globalPos()) event.accept() def keyPressEvent(self, event): """Reimplement Qt method""" if event == QKeySequence.Copy: self.copy() else: QTableView.keyPressEvent(self, event) def _sel_to_text(self, cell_range): """Copy an array portion to a unicode string""" if not cell_range: return row_min, row_max, col_min, col_max = get_idx_rect(cell_range) if col_min == 0 and col_max == (self.model().cols_loaded-1): # we've selected a whole column. It isn't possible to # select only the first part of a column without loading more, # so we can treat it as intentional and copy the whole thing col_max = self.model().total_cols-1 if row_min == 0 and row_max == (self.model().rows_loaded-1): row_max = self.model().total_rows-1 _data = self.model().get_data() if PY3: output = io.BytesIO() else: output = io.StringIO() try: np.savetxt(output, _data[row_min:row_max+1, col_min:col_max+1], delimiter='\t', fmt=self.model().get_format()) except: QMessageBox.warning(self, _("Warning"), _("It was not possible to copy values for " "this array")) return contents = output.getvalue().decode('utf-8') output.close() return contents @Slot() def copy(self): """Copy text to clipboard""" cliptxt = self._sel_to_text( self.selectedIndexes() ) clipboard = QApplication.clipboard() clipboard.setText(cliptxt) class ArrayEditorWidget(QWidget): def __init__(self, parent, data, readonly=False, xlabels=None, ylabels=None): QWidget.__init__(self, parent) self.data = data self.old_data_shape = None if len(self.data.shape) == 1: self.old_data_shape = self.data.shape self.data.shape = (self.data.shape[0], 1) elif len(self.data.shape) == 0: self.old_data_shape = self.data.shape self.data.shape = (1, 1) format = SUPPORTED_FORMATS.get(data.dtype.name, '%s') self.model = ArrayModel(self.data, format=format, xlabels=xlabels, ylabels=ylabels, readonly=readonly, parent=self) self.view = ArrayView(self, self.model, data.dtype, data.shape) btn_layout = QHBoxLayout() btn_layout.setAlignment(Qt.AlignLeft) btn = QPushButton(_( "Format")) # disable format button for int type btn.setEnabled(is_float(data.dtype)) btn_layout.addWidget(btn) btn.clicked.connect(self.change_format) btn = QPushButton(_( "Resize")) btn_layout.addWidget(btn) btn.clicked.connect(self.view.resize_to_contents) bgcolor = QCheckBox(_( 'Background color')) bgcolor.setChecked(self.model.bgcolor_enabled) bgcolor.setEnabled(self.model.bgcolor_enabled) bgcolor.stateChanged.connect(self.model.bgcolor) btn_layout.addWidget(bgcolor) layout = QVBoxLayout() layout.addWidget(self.view) layout.addLayout(btn_layout) self.setLayout(layout) def accept_changes(self): """Accept changes""" for (i, j), value in list(self.model.changes.items()): self.data[i, j] = value if self.old_data_shape is not None: self.data.shape = self.old_data_shape def reject_changes(self): """Reject changes""" if self.old_data_shape is not None: self.data.shape = self.old_data_shape def change_format(self): """Change display format""" format, valid = QInputDialog.getText(self, _( 'Format'), _( "Float formatting"), QLineEdit.Normal, self.model.get_format()) if valid: format = str(format) try: format % 1.1 except: QMessageBox.critical(self, _("Error"), _("Format (%s) is incorrect") % format) return self.model.set_format(format) class ArrayEditor(QDialog): """Array Editor Dialog""" def __init__(self, parent=None): QDialog.__init__(self, parent) # Destroying the C++ object right after closing the dialog box, # otherwise it may be garbage-collected in another QThread # (e.g. the editor's analysis thread in Spyder), thus leading to # a segmentation fault on UNIX or an application crash on Windows self.setAttribute(Qt.WA_DeleteOnClose) self.data = None self.arraywidget = None self.stack = None self.layout = None self.btn_save_and_close = None self.btn_close = None # Values for 3d array editor self.dim_indexes = [{}, {}, {}] self.last_dim = 0 # Adjust this for changing the startup dimension def setup_and_check(self, data, title='', readonly=False, xlabels=None, ylabels=None): """ Setup ArrayEditor: return False if data is not supported, True otherwise """ self.data = data readonly = readonly or not self.data.flags.writeable is_record_array = data.dtype.names is not None is_masked_array = isinstance(data, np.ma.MaskedArray) if data.ndim > 3: self.error(_("Arrays with more than 3 dimensions are not " "supported")) return False if xlabels is not None and len(xlabels) != self.data.shape[1]: self.error(_("The 'xlabels' argument length do no match array " "column number")) return False if ylabels is not None and len(ylabels) != self.data.shape[0]: self.error(_("The 'ylabels' argument length do no match array row " "number")) return False if not is_record_array: dtn = data.dtype.name if dtn not in SUPPORTED_FORMATS and not dtn.startswith('str') \ and not dtn.startswith('unicode'): arr = _("%s arrays") % data.dtype.name self.error(_("%s are currently not supported") % arr) return False self.layout = QGridLayout() self.setLayout(self.layout) self.setWindowIcon(ima.icon('arredit')) if title: title = to_text_string(title) + " - " + _("NumPy array") else: title = _("Array editor") if readonly: title += ' (' + _('read only') + ')' self.setWindowTitle(title) self.resize(600, 500) # Stack widget self.stack = QStackedWidget(self) if is_record_array: for name in data.dtype.names: self.stack.addWidget(ArrayEditorWidget(self, data[name], readonly, xlabels, ylabels)) elif is_masked_array: self.stack.addWidget(ArrayEditorWidget(self, data, readonly, xlabels, ylabels)) self.stack.addWidget(ArrayEditorWidget(self, data.data, readonly, xlabels, ylabels)) self.stack.addWidget(ArrayEditorWidget(self, data.mask, readonly, xlabels, ylabels)) elif data.ndim == 3: pass else: self.stack.addWidget(ArrayEditorWidget(self, data, readonly, xlabels, ylabels)) self.arraywidget = self.stack.currentWidget() if self.arraywidget: self.arraywidget.model.dataChanged.connect( self.save_and_close_enable) self.stack.currentChanged.connect(self.current_widget_changed) self.layout.addWidget(self.stack, 1, 0) # Buttons configuration btn_layout = QHBoxLayout() if is_record_array or is_masked_array or data.ndim == 3: if is_record_array: btn_layout.addWidget(QLabel(_("Record array fields:"))) names = [] for name in data.dtype.names: field = data.dtype.fields[name] text = name if len(field) >= 3: title = field[2] if not is_text_string(title): title = repr(title) text += ' - '+title names.append(text) else: names = [_('Masked data'), _('Data'), _('Mask')] if data.ndim == 3: # QSpinBox self.index_spin = QSpinBox(self, keyboardTracking=False) self.index_spin.valueChanged.connect(self.change_active_widget) # QComboBox names = [str(i) for i in range(3)] ra_combo = QComboBox(self) ra_combo.addItems(names) ra_combo.currentIndexChanged.connect(self.current_dim_changed) # Adding the widgets to layout label = QLabel(_("Axis:")) btn_layout.addWidget(label) btn_layout.addWidget(ra_combo) self.shape_label = QLabel() btn_layout.addWidget(self.shape_label) label = QLabel(_("Index:")) btn_layout.addWidget(label) btn_layout.addWidget(self.index_spin) self.slicing_label = QLabel() btn_layout.addWidget(self.slicing_label) # set the widget to display when launched self.current_dim_changed(self.last_dim) else: ra_combo = QComboBox(self) ra_combo.currentIndexChanged.connect(self.stack.setCurrentIndex) ra_combo.addItems(names) btn_layout.addWidget(ra_combo) if is_masked_array: label = QLabel(_("<u>Warning</u>: changes are applied separately")) label.setToolTip(_("For performance reasons, changes applied "\ "to masked array won't be reflected in "\ "array's data (and vice-versa).")) btn_layout.addWidget(label) btn_layout.addStretch() if not readonly: self.btn_save_and_close = QPushButton(_('Save and Close')) self.btn_save_and_close.setDisabled(True) self.btn_save_and_close.clicked.connect(self.accept) btn_layout.addWidget(self.btn_save_and_close) self.btn_close = QPushButton(_('Close')) self.btn_close.setAutoDefault(True) self.btn_close.setDefault(True) self.btn_close.clicked.connect(self.reject) btn_layout.addWidget(self.btn_close) self.layout.addLayout(btn_layout, 2, 0) self.setMinimumSize(400, 300) # Make the dialog act as a window self.setWindowFlags(Qt.Window) return True @Slot(QModelIndex, QModelIndex) def save_and_close_enable(self, left_top, bottom_right): """Handle the data change event to enable the save and close button.""" if self.btn_save_and_close: self.btn_save_and_close.setEnabled(True) self.btn_save_and_close.setAutoDefault(True) self.btn_save_and_close.setDefault(True) def current_widget_changed(self, index): self.arraywidget = self.stack.widget(index) self.arraywidget.model.dataChanged.connect(self.save_and_close_enable) def change_active_widget(self, index): """ This is implemented for handling negative values in index for 3d arrays, to give the same behavior as slicing """ string_index = [':']*3 string_index[self.last_dim] = '<font color=red>%i</font>' self.slicing_label.setText((r"Slicing: [" + ", ".join(string_index) + "]") % index) if index < 0: data_index = self.data.shape[self.last_dim] + index else: data_index = index slice_index = [slice(None)]*3 slice_index[self.last_dim] = data_index stack_index = self.dim_indexes[self.last_dim].get(data_index) if stack_index is None: stack_index = self.stack.count() try: self.stack.addWidget(ArrayEditorWidget( self, self.data[tuple(slice_index)])) except IndexError: # Handle arrays of size 0 in one axis self.stack.addWidget(ArrayEditorWidget(self, self.data)) self.dim_indexes[self.last_dim][data_index] = stack_index self.stack.update() self.stack.setCurrentIndex(stack_index) def current_dim_changed(self, index): """ This change the active axis the array editor is plotting over in 3D """ self.last_dim = index string_size = ['%i']*3 string_size[index] = '<font color=red>%i</font>' self.shape_label.setText(('Shape: (' + ', '.join(string_size) + ') ') % self.data.shape) if self.index_spin.value() != 0: self.index_spin.setValue(0) else: # this is done since if the value is currently 0 it does not emit # currentIndexChanged(int) self.change_active_widget(0) self.index_spin.setRange(-self.data.shape[index], self.data.shape[index]-1) @Slot() def accept(self): """Reimplement Qt method""" for index in range(self.stack.count()): self.stack.widget(index).accept_changes() QDialog.accept(self) def get_value(self): """Return modified array -- this is *not* a copy""" # It is import to avoid accessing Qt C++ object as it has probably # already been destroyed, due to the Qt.WA_DeleteOnClose attribute return self.data def error(self, message): """An error occured, closing the dialog box""" QMessageBox.critical(self, _("Array editor"), message) self.setAttribute(Qt.WA_DeleteOnClose) self.reject() @Slot() def reject(self): """Reimplement Qt method""" if self.arraywidget is not None: for index in range(self.stack.count()): self.stack.widget(index).reject_changes() QDialog.reject(self)
[ "qtpy.QtWidgets.QComboBox", "spyder.utils.qthelpers.add_actions", "qtpy.QtWidgets.QGridLayout", "spyder.py3compat.to_text_string", "spyder.utils.qthelpers.keybinding", "numpy.array", "spyder.py3compat.to_binary_string", "qtpy.QtWidgets.QDialog.accept", "spyder.py3compat.is_binary_string", "spyder.py3compat.is_string", "spyder.config.base._", "qtpy.QtWidgets.QTableView.keyPressEvent", "qtpy.QtWidgets.QSpinBox", "qtpy.compat.to_qvariant", "qtpy.QtWidgets.QVBoxLayout", "qtpy.QtCore.QAbstractTableModel.__init__", "qtpy.QtCore.Slot", "spyder.py3compat.io.BytesIO", "spyder.config.gui.get_font", "qtpy.QtWidgets.QWidget.__init__", "numpy.abs", "qtpy.QtWidgets.QMenu", "spyder.config.gui.config_shortcut", "qtpy.QtWidgets.QTableView.__init__", "qtpy.QtCore.QAbstractTableModel.flags", "qtpy.QtCore.QItemSelection", "qtpy.compat.from_qvariant", "qtpy.QtWidgets.QApplication.clipboard", "qtpy.QtCore.QLocale", "qtpy.QtWidgets.QStackedWidget", "spyder.utils.icon_manager.icon", "qtpy.QtWidgets.QHBoxLayout", "qtpy.QtCore.QModelIndex", "spyder.py3compat.io.StringIO", "spyder.py3compat.is_text_string", "qtpy.QtGui.QColor.fromHsvF", "qtpy.QtGui.QDoubleValidator", "qtpy.QtWidgets.QItemDelegate.__init__", "qtpy.QtWidgets.QLabel", "qtpy.QtGui.QCursor", "qtpy.QtWidgets.QDialog.reject", "qtpy.QtWidgets.QApplication.restoreOverrideCursor", "qtpy.QtWidgets.QLineEdit", "qtpy.QtWidgets.QDialog.__init__", "qtpy.QtCore.QItemSelectionRange" ]
[((20131, 20137), 'qtpy.QtCore.Slot', 'Slot', ([], {}), '()\n', (20135, 20137), False, 'from qtpy.QtCore import QAbstractTableModel, QItemSelection, QLocale, QItemSelectionRange, QModelIndex, Qt, Slot\n'), ((30224, 30254), 'qtpy.QtCore.Slot', 'Slot', (['QModelIndex', 'QModelIndex'], {}), '(QModelIndex, QModelIndex)\n', (30228, 30254), False, 'from qtpy.QtCore import QAbstractTableModel, QItemSelection, QLocale, QItemSelectionRange, QModelIndex, Qt, Slot\n'), ((32813, 32819), 'qtpy.QtCore.Slot', 'Slot', ([], {}), '()\n', (32817, 32819), False, 'from qtpy.QtCore import QAbstractTableModel, QItemSelection, QLocale, QItemSelectionRange, QModelIndex, Qt, Slot\n'), ((33513, 33519), 'qtpy.QtCore.Slot', 'Slot', ([], {}), '()\n', (33517, 33519), False, 'from qtpy.QtCore import QAbstractTableModel, QItemSelection, QLocale, QItemSelectionRange, QModelIndex, Qt, Slot\n'), ((4530, 4564), 'qtpy.QtCore.QAbstractTableModel.__init__', 'QAbstractTableModel.__init__', (['self'], {}), '(self)\n', (4558, 4564), False, 'from qtpy.QtCore import QAbstractTableModel, QItemSelection, QLocale, QItemSelectionRange, QModelIndex, Qt, Slot\n'), ((4749, 4780), 'numpy.array', 'np.array', (['[0]'], {'dtype': 'data.dtype'}), '([0], dtype=data.dtype)\n', (4757, 4780), True, 'import numpy as np\n'), ((6988, 7001), 'qtpy.QtCore.QModelIndex', 'QModelIndex', ([], {}), '()\n', (6999, 7001), False, 'from qtpy.QtCore import QAbstractTableModel, QItemSelection, QLocale, QItemSelectionRange, QModelIndex, Qt, Slot\n'), ((7209, 7222), 'qtpy.QtCore.QModelIndex', 'QModelIndex', ([], {}), '()\n', (7220, 7222), False, 'from qtpy.QtCore import QAbstractTableModel, QItemSelection, QLocale, QItemSelectionRange, QModelIndex, Qt, Slot\n'), ((9196, 9219), 'spyder.py3compat.is_binary_string', 'is_binary_string', (['value'], {}), '(value)\n', (9212, 9219), False, 'from spyder.py3compat import io, is_binary_string, is_string, is_text_string, PY3, to_binary_string, to_text_string\n'), ((10438, 10451), 'qtpy.compat.to_qvariant', 'to_qvariant', ([], {}), '()\n', (10449, 10451), False, 'from qtpy.compat import from_qvariant, to_qvariant\n'), ((10691, 10716), 'qtpy.compat.from_qvariant', 'from_qvariant', (['value', 'str'], {}), '(value, str)\n', (10704, 10716), False, 'from qtpy.compat import from_qvariant, to_qvariant\n'), ((13108, 13144), 'qtpy.QtWidgets.QItemDelegate.__init__', 'QItemDelegate.__init__', (['self', 'parent'], {}), '(self, parent)\n', (13130, 13144), False, 'from qtpy.QtWidgets import QAbstractItemDelegate, QApplication, QCheckBox, QComboBox, QDialog, QDialogButtonBox, QGridLayout, QHBoxLayout, QInputDialog, QItemDelegate, QLabel, QLineEdit, QMenu, QMessageBox, QPushButton, QSpinBox, QStackedWidget, QTableView, QVBoxLayout, QWidget\n'), ((14786, 14819), 'qtpy.QtWidgets.QTableView.__init__', 'QTableView.__init__', (['self', 'parent'], {}), '(self, parent)\n', (14805, 14819), False, 'from qtpy.QtWidgets import QAbstractItemDelegate, QApplication, QCheckBox, QComboBox, QDialog, QDialogButtonBox, QGridLayout, QHBoxLayout, QInputDialog, QItemDelegate, QLabel, QLineEdit, QMenu, QMessageBox, QPushButton, QSpinBox, QStackedWidget, QTableView, QVBoxLayout, QWidget\n'), ((15165, 15251), 'spyder.config.gui.config_shortcut', 'config_shortcut', (['self.copy'], {'context': '"""variable_explorer"""', 'name': '"""copy"""', 'parent': 'self'}), "(self.copy, context='variable_explorer', name='copy', parent\n =self)\n", (15180, 15251), False, 'from spyder.config.gui import get_font, config_shortcut\n'), ((17938, 17974), 'qtpy.QtWidgets.QApplication.restoreOverrideCursor', 'QApplication.restoreOverrideCursor', ([], {}), '()\n', (17972, 17974), False, 'from qtpy.QtWidgets import QAbstractItemDelegate, QApplication, QCheckBox, QComboBox, QDialog, QDialogButtonBox, QGridLayout, QHBoxLayout, QInputDialog, QItemDelegate, QLabel, QLineEdit, QMenu, QMessageBox, QPushButton, QSpinBox, QStackedWidget, QTableView, QVBoxLayout, QWidget\n'), ((18385, 18396), 'qtpy.QtWidgets.QMenu', 'QMenu', (['self'], {}), '(self)\n', (18390, 18396), False, 'from qtpy.QtWidgets import QAbstractItemDelegate, QApplication, QCheckBox, QComboBox, QDialog, QDialogButtonBox, QGridLayout, QHBoxLayout, QInputDialog, QItemDelegate, QLabel, QLineEdit, QMenu, QMessageBox, QPushButton, QSpinBox, QStackedWidget, QTableView, QVBoxLayout, QWidget\n'), ((18406, 18443), 'spyder.utils.qthelpers.add_actions', 'add_actions', (['menu', '[self.copy_action]'], {}), '(menu, [self.copy_action])\n', (18417, 18443), False, 'from spyder.utils.qthelpers import add_actions, create_action, keybinding\n'), ((20281, 20305), 'qtpy.QtWidgets.QApplication.clipboard', 'QApplication.clipboard', ([], {}), '()\n', (20303, 20305), False, 'from qtpy.QtWidgets import QAbstractItemDelegate, QApplication, QCheckBox, QComboBox, QDialog, QDialogButtonBox, QGridLayout, QHBoxLayout, QInputDialog, QItemDelegate, QLabel, QLineEdit, QMenu, QMessageBox, QPushButton, QSpinBox, QStackedWidget, QTableView, QVBoxLayout, QWidget\n'), ((20493, 20523), 'qtpy.QtWidgets.QWidget.__init__', 'QWidget.__init__', (['self', 'parent'], {}), '(self, parent)\n', (20509, 20523), False, 'from qtpy.QtWidgets import QAbstractItemDelegate, QApplication, QCheckBox, QComboBox, QDialog, QDialogButtonBox, QGridLayout, QHBoxLayout, QInputDialog, QItemDelegate, QLabel, QLineEdit, QMenu, QMessageBox, QPushButton, QSpinBox, QStackedWidget, QTableView, QVBoxLayout, QWidget\n'), ((21181, 21194), 'qtpy.QtWidgets.QHBoxLayout', 'QHBoxLayout', ([], {}), '()\n', (21192, 21194), False, 'from qtpy.QtWidgets import QAbstractItemDelegate, QApplication, QCheckBox, QComboBox, QDialog, QDialogButtonBox, QGridLayout, QHBoxLayout, QInputDialog, QItemDelegate, QLabel, QLineEdit, QMenu, QMessageBox, QPushButton, QSpinBox, QStackedWidget, QTableView, QVBoxLayout, QWidget\n'), ((21876, 21889), 'qtpy.QtWidgets.QVBoxLayout', 'QVBoxLayout', ([], {}), '()\n', (21887, 21889), False, 'from qtpy.QtWidgets import QAbstractItemDelegate, QApplication, QCheckBox, QComboBox, QDialog, QDialogButtonBox, QGridLayout, QHBoxLayout, QInputDialog, QItemDelegate, QLabel, QLineEdit, QMenu, QMessageBox, QPushButton, QSpinBox, QStackedWidget, QTableView, QVBoxLayout, QWidget\n'), ((23120, 23150), 'qtpy.QtWidgets.QDialog.__init__', 'QDialog.__init__', (['self', 'parent'], {}), '(self, parent)\n', (23136, 23150), False, 'from qtpy.QtWidgets import QAbstractItemDelegate, QApplication, QCheckBox, QComboBox, QDialog, QDialogButtonBox, QGridLayout, QHBoxLayout, QInputDialog, QItemDelegate, QLabel, QLineEdit, QMenu, QMessageBox, QPushButton, QSpinBox, QStackedWidget, QTableView, QVBoxLayout, QWidget\n'), ((25257, 25270), 'qtpy.QtWidgets.QGridLayout', 'QGridLayout', ([], {}), '()\n', (25268, 25270), False, 'from qtpy.QtWidgets import QAbstractItemDelegate, QApplication, QCheckBox, QComboBox, QDialog, QDialogButtonBox, QGridLayout, QHBoxLayout, QInputDialog, QItemDelegate, QLabel, QLineEdit, QMenu, QMessageBox, QPushButton, QSpinBox, QStackedWidget, QTableView, QVBoxLayout, QWidget\n'), ((25687, 25707), 'qtpy.QtWidgets.QStackedWidget', 'QStackedWidget', (['self'], {}), '(self)\n', (25701, 25707), False, 'from qtpy.QtWidgets import QAbstractItemDelegate, QApplication, QCheckBox, QComboBox, QDialog, QDialogButtonBox, QGridLayout, QHBoxLayout, QInputDialog, QItemDelegate, QLabel, QLineEdit, QMenu, QMessageBox, QPushButton, QSpinBox, QStackedWidget, QTableView, QVBoxLayout, QWidget\n'), ((27020, 27033), 'qtpy.QtWidgets.QHBoxLayout', 'QHBoxLayout', ([], {}), '()\n', (27031, 27033), False, 'from qtpy.QtWidgets import QAbstractItemDelegate, QApplication, QCheckBox, QComboBox, QDialog, QDialogButtonBox, QGridLayout, QHBoxLayout, QInputDialog, QItemDelegate, QLabel, QLineEdit, QMenu, QMessageBox, QPushButton, QSpinBox, QStackedWidget, QTableView, QVBoxLayout, QWidget\n'), ((32993, 33013), 'qtpy.QtWidgets.QDialog.accept', 'QDialog.accept', (['self'], {}), '(self)\n', (33007, 33013), False, 'from qtpy.QtWidgets import QAbstractItemDelegate, QApplication, QCheckBox, QComboBox, QDialog, QDialogButtonBox, QGridLayout, QHBoxLayout, QInputDialog, QItemDelegate, QLabel, QLineEdit, QMenu, QMessageBox, QPushButton, QSpinBox, QStackedWidget, QTableView, QVBoxLayout, QWidget\n'), ((33743, 33763), 'qtpy.QtWidgets.QDialog.reject', 'QDialog.reject', (['self'], {}), '(self)\n', (33757, 33763), False, 'from qtpy.QtWidgets import QAbstractItemDelegate, QApplication, QCheckBox, QComboBox, QDialog, QDialogButtonBox, QGridLayout, QHBoxLayout, QInputDialog, QItemDelegate, QLabel, QLineEdit, QMenu, QMessageBox, QPushButton, QSpinBox, QStackedWidget, QTableView, QVBoxLayout, QWidget\n'), ((9131, 9144), 'qtpy.compat.to_qvariant', 'to_qvariant', ([], {}), '()\n', (9142, 9144), False, 'from qtpy.compat import from_qvariant, to_qvariant\n'), ((12077, 12091), 'spyder.py3compat.is_string', 'is_string', (['val'], {}), '(val)\n', (12086, 12091), False, 'from spyder.py3compat import io, is_binary_string, is_string, is_text_string, PY3, to_binary_string, to_text_string\n'), ((12656, 12669), 'qtpy.compat.to_qvariant', 'to_qvariant', ([], {}), '()\n', (12667, 12669), False, 'from qtpy.compat import from_qvariant, to_qvariant\n'), ((12860, 12888), 'qtpy.compat.to_qvariant', 'to_qvariant', (['labels[section]'], {}), '(labels[section])\n', (12871, 12888), False, 'from qtpy.compat import from_qvariant, to_qvariant\n'), ((17778, 17800), 'qtpy.QtGui.QCursor', 'QCursor', (['Qt.WaitCursor'], {}), '(Qt.WaitCursor)\n', (17785, 17800), False, 'from qtpy.QtGui import QColor, QCursor, QDoubleValidator, QKeySequence\n'), ((18086, 18095), 'spyder.config.base._', '_', (['"""Copy"""'], {}), "('Copy')\n", (18087, 18095), False, 'from spyder.config.base import _\n'), ((18783, 18820), 'qtpy.QtWidgets.QTableView.keyPressEvent', 'QTableView.keyPressEvent', (['self', 'event'], {}), '(self, event)\n', (18807, 18820), False, 'from qtpy.QtWidgets import QAbstractItemDelegate, QApplication, QCheckBox, QComboBox, QDialog, QDialogButtonBox, QGridLayout, QHBoxLayout, QInputDialog, QItemDelegate, QLabel, QLineEdit, QMenu, QMessageBox, QPushButton, QSpinBox, QStackedWidget, QTableView, QVBoxLayout, QWidget\n'), ((19577, 19589), 'spyder.py3compat.io.BytesIO', 'io.BytesIO', ([], {}), '()\n', (19587, 19589), False, 'from spyder.py3compat import io, is_binary_string, is_string, is_text_string, PY3, to_binary_string, to_text_string\n'), ((19627, 19640), 'spyder.py3compat.io.StringIO', 'io.StringIO', ([], {}), '()\n', (19638, 19640), False, 'from spyder.py3compat import io, is_binary_string, is_string, is_text_string, PY3, to_binary_string, to_text_string\n'), ((21269, 21280), 'spyder.config.base._', '_', (['"""Format"""'], {}), "('Format')\n", (21270, 21280), False, 'from spyder.config.base import _\n'), ((21486, 21497), 'spyder.config.base._', '_', (['"""Resize"""'], {}), "('Resize')\n", (21487, 21497), False, 'from spyder.config.base import _\n'), ((21623, 21644), 'spyder.config.base._', '_', (['"""Background color"""'], {}), "('Background color')\n", (21624, 21644), False, 'from spyder.config.base import _\n'), ((22537, 22548), 'spyder.config.base._', '_', (['"""Format"""'], {}), "('Format')\n", (22538, 22548), False, 'from spyder.config.base import _\n'), ((22585, 22606), 'spyder.config.base._', '_', (['"""Float formatting"""'], {}), "('Float formatting')\n", (22586, 22606), False, 'from spyder.config.base import _\n'), ((25336, 25355), 'spyder.utils.icon_manager.icon', 'ima.icon', (['"""arredit"""'], {}), "('arredit')\n", (25344, 25355), True, 'from spyder.utils import icon_manager as ima\n'), ((25482, 25499), 'spyder.config.base._', '_', (['"""Array editor"""'], {}), "('Array editor')\n", (25483, 25499), False, 'from spyder.config.base import _\n'), ((29821, 29831), 'spyder.config.base._', '_', (['"""Close"""'], {}), "('Close')\n", (29822, 29831), False, 'from spyder.config.base import _\n'), ((33406, 33423), 'spyder.config.base._', '_', (['"""Array editor"""'], {}), "('Array editor')\n", (33407, 33423), False, 'from spyder.config.base import _\n'), ((8009, 8022), 'qtpy.QtCore.QModelIndex', 'QModelIndex', ([], {}), '()\n', (8020, 8022), False, 'from qtpy.QtCore import QAbstractTableModel, QItemSelection, QLocale, QItemSelectionRange, QModelIndex, Qt, Slot\n'), ((8406, 8419), 'qtpy.QtCore.QModelIndex', 'QModelIndex', ([], {}), '()\n', (8417, 8419), False, 'from qtpy.QtCore import QAbstractTableModel, QItemSelection, QLocale, QItemSelectionRange, QModelIndex, Qt, Slot\n'), ((9264, 9293), 'spyder.py3compat.to_text_string', 'to_text_string', (['value', '"""utf8"""'], {}), "(value, 'utf8')\n", (9278, 9293), False, 'from spyder.py3compat import io, is_binary_string, is_string, is_text_string, PY3, to_binary_string, to_text_string\n'), ((11014, 11045), 'spyder.py3compat.to_binary_string', 'to_binary_string', (['value', '"""utf8"""'], {}), "(value, 'utf8')\n", (11030, 11045), False, 'from spyder.py3compat import io, is_binary_string, is_string, is_text_string, PY3, to_binary_string, to_text_string\n'), ((12409, 12447), 'qtpy.QtCore.QAbstractTableModel.flags', 'QAbstractTableModel.flags', (['self', 'index'], {}), '(self, index)\n', (12434, 12447), False, 'from qtpy.QtCore import QAbstractTableModel, QItemSelection, QLocale, QItemSelectionRange, QModelIndex, Qt, Slot\n'), ((13445, 13463), 'qtpy.compat.to_qvariant', 'to_qvariant', (['value'], {}), '(value)\n', (13456, 13463), False, 'from qtpy.compat import from_qvariant, to_qvariant\n'), ((13548, 13565), 'qtpy.QtWidgets.QLineEdit', 'QLineEdit', (['parent'], {}), '(parent)\n', (13557, 13565), False, 'from qtpy.QtWidgets import QAbstractItemDelegate, QApplication, QCheckBox, QComboBox, QDialog, QDialogButtonBox, QGridLayout, QHBoxLayout, QInputDialog, QItemDelegate, QLabel, QLineEdit, QMenu, QMessageBox, QPushButton, QSpinBox, QStackedWidget, QTableView, QVBoxLayout, QWidget\n'), ((16301, 16317), 'qtpy.QtCore.QItemSelection', 'QItemSelection', ([], {}), '()\n', (16315, 16317), False, 'from qtpy.QtCore import QAbstractTableModel, QItemSelection, QLocale, QItemSelectionRange, QModelIndex, Qt, Slot\n'), ((18148, 18166), 'spyder.utils.qthelpers.keybinding', 'keybinding', (['"""Copy"""'], {}), "('Copy')\n", (18158, 18166), False, 'from spyder.utils.qthelpers import add_actions, create_action, keybinding\n'), ((18215, 18235), 'spyder.utils.icon_manager.icon', 'ima.icon', (['"""editcopy"""'], {}), "('editcopy')\n", (18223, 18235), True, 'from spyder.utils import icon_manager as ima\n'), ((24330, 24387), 'spyder.config.base._', '_', (['"""Arrays with more than 3 dimensions are not supported"""'], {}), "('Arrays with more than 3 dimensions are not supported')\n", (24331, 24387), False, 'from spyder.config.base import _\n'), ((24540, 24606), 'spyder.config.base._', '_', (['"""The \'xlabels\' argument length do no match array column number"""'], {}), '("The \'xlabels\' argument length do no match array column number")\n', (24541, 24606), False, 'from spyder.config.base import _\n'), ((24759, 24822), 'spyder.config.base._', '_', (['"""The \'ylabels\' argument length do no match array row number"""'], {}), '("The \'ylabels\' argument length do no match array row number")\n', (24760, 24822), False, 'from spyder.config.base import _\n'), ((25429, 25445), 'spyder.config.base._', '_', (['"""NumPy array"""'], {}), "('NumPy array')\n", (25430, 25445), False, 'from spyder.config.base import _\n'), ((27819, 27857), 'qtpy.QtWidgets.QSpinBox', 'QSpinBox', (['self'], {'keyboardTracking': '(False)'}), '(self, keyboardTracking=False)\n', (27827, 27857), False, 'from qtpy.QtWidgets import QAbstractItemDelegate, QApplication, QCheckBox, QComboBox, QDialog, QDialogButtonBox, QGridLayout, QHBoxLayout, QInputDialog, QItemDelegate, QLabel, QLineEdit, QMenu, QMessageBox, QPushButton, QSpinBox, QStackedWidget, QTableView, QVBoxLayout, QWidget\n'), ((28048, 28063), 'qtpy.QtWidgets.QComboBox', 'QComboBox', (['self'], {}), '(self)\n', (28057, 28063), False, 'from qtpy.QtWidgets import QAbstractItemDelegate, QApplication, QCheckBox, QComboBox, QDialog, QDialogButtonBox, QGridLayout, QHBoxLayout, QInputDialog, QItemDelegate, QLabel, QLineEdit, QMenu, QMessageBox, QPushButton, QSpinBox, QStackedWidget, QTableView, QVBoxLayout, QWidget\n'), ((28407, 28415), 'qtpy.QtWidgets.QLabel', 'QLabel', ([], {}), '()\n', (28413, 28415), False, 'from qtpy.QtWidgets import QAbstractItemDelegate, QApplication, QCheckBox, QComboBox, QDialog, QDialogButtonBox, QGridLayout, QHBoxLayout, QInputDialog, QItemDelegate, QLabel, QLineEdit, QMenu, QMessageBox, QPushButton, QSpinBox, QStackedWidget, QTableView, QVBoxLayout, QWidget\n'), ((28655, 28663), 'qtpy.QtWidgets.QLabel', 'QLabel', ([], {}), '()\n', (28661, 28663), False, 'from qtpy.QtWidgets import QAbstractItemDelegate, QApplication, QCheckBox, QComboBox, QDialog, QDialogButtonBox, QGridLayout, QHBoxLayout, QInputDialog, QItemDelegate, QLabel, QLineEdit, QMenu, QMessageBox, QPushButton, QSpinBox, QStackedWidget, QTableView, QVBoxLayout, QWidget\n'), ((28885, 28900), 'qtpy.QtWidgets.QComboBox', 'QComboBox', (['self'], {}), '(self)\n', (28894, 28900), False, 'from qtpy.QtWidgets import QAbstractItemDelegate, QApplication, QCheckBox, QComboBox, QDialog, QDialogButtonBox, QGridLayout, QHBoxLayout, QInputDialog, QItemDelegate, QLabel, QLineEdit, QMenu, QMessageBox, QPushButton, QSpinBox, QStackedWidget, QTableView, QVBoxLayout, QWidget\n'), ((29580, 29599), 'spyder.config.base._', '_', (['"""Save and Close"""'], {}), "('Save and Close')\n", (29581, 29599), False, 'from spyder.config.base import _\n'), ((9508, 9541), 'qtpy.compat.to_qvariant', 'to_qvariant', (['(self._format % value)'], {}), '(self._format % value)\n', (9519, 9541), False, 'from qtpy.compat import from_qvariant, to_qvariant\n'), ((11135, 11156), 'spyder.py3compat.to_text_string', 'to_text_string', (['value'], {}), '(value)\n', (11149, 11156), False, 'from spyder.py3compat import io, is_binary_string, is_string, is_text_string, PY3, to_binary_string, to_text_string\n'), ((13594, 13639), 'spyder.config.gui.get_font', 'get_font', ([], {'font_size_delta': 'DEFAULT_SMALL_DELTA'}), '(font_size_delta=DEFAULT_SMALL_DELTA)\n', (13602, 13639), False, 'from spyder.config.gui import get_font, config_shortcut\n'), ((13758, 13782), 'qtpy.QtGui.QDoubleValidator', 'QDoubleValidator', (['editor'], {}), '(editor)\n', (13774, 13782), False, 'from qtpy.QtGui import QColor, QCursor, QDoubleValidator, QKeySequence\n'), ((17299, 17342), 'qtpy.QtCore.QItemSelectionRange', 'QItemSelectionRange', (['top_left', 'bottom_right'], {}), '(top_left, bottom_right)\n', (17318, 17342), False, 'from qtpy.QtCore import QAbstractTableModel, QItemSelection, QLocale, QItemSelectionRange, QModelIndex, Qt, Slot\n'), ((19859, 19871), 'spyder.config.base._', '_', (['"""Warning"""'], {}), "('Warning')\n", (19860, 19871), False, 'from spyder.config.base import _\n'), ((19906, 19960), 'spyder.config.base._', '_', (['"""It was not possible to copy values for this array"""'], {}), "('It was not possible to copy values for this array')\n", (19907, 19960), False, 'from spyder.config.base import _\n'), ((25098, 25112), 'spyder.config.base._', '_', (['"""%s arrays"""'], {}), "('%s arrays')\n", (25099, 25112), False, 'from spyder.config.base import _\n'), ((25397, 25418), 'spyder.py3compat.to_text_string', 'to_text_string', (['title'], {}), '(title)\n', (25411, 25418), False, 'from spyder.py3compat import io, is_binary_string, is_string, is_text_string, PY3, to_binary_string, to_text_string\n'), ((25551, 25565), 'spyder.config.base._', '_', (['"""read only"""'], {}), "('read only')\n", (25552, 25565), False, 'from spyder.config.base import _\n'), ((27684, 27700), 'spyder.config.base._', '_', (['"""Masked data"""'], {}), "('Masked data')\n", (27685, 27700), False, 'from spyder.config.base import _\n'), ((27702, 27711), 'spyder.config.base._', '_', (['"""Data"""'], {}), "('Data')\n", (27703, 27711), False, 'from spyder.config.base import _\n'), ((27713, 27722), 'spyder.config.base._', '_', (['"""Mask"""'], {}), "('Mask')\n", (27714, 27722), False, 'from spyder.config.base import _\n'), ((28266, 28276), 'spyder.config.base._', '_', (['"""Axis:"""'], {}), "('Axis:')\n", (28267, 28276), False, 'from spyder.config.base import _\n'), ((28504, 28515), 'spyder.config.base._', '_', (['"""Index:"""'], {}), "('Index:')\n", (28505, 28515), False, 'from spyder.config.base import _\n'), ((29138, 29189), 'spyder.config.base._', '_', (['"""<u>Warning</u>: changes are applied separately"""'], {}), "('<u>Warning</u>: changes are applied separately')\n", (29139, 29189), False, 'from spyder.config.base import _\n'), ((29225, 29344), 'spyder.config.base._', '_', (['"""For performance reasons, changes applied to masked array won\'t be reflected in array\'s data (and vice-versa)."""'], {}), '("For performance reasons, changes applied to masked array won\'t be reflected in array\'s data (and vice-versa)."\n )\n', (29226, 29344), False, 'from spyder.config.base import _\n'), ((10145, 10195), 'qtpy.QtGui.QColor.fromHsvF', 'QColor.fromHsvF', (['hue', 'self.sat', 'self.val', 'self.alp'], {}), '(hue, self.sat, self.val, self.alp)\n', (10160, 10195), False, 'from qtpy.QtGui import QColor, QCursor, QDoubleValidator, QKeySequence\n'), ((10220, 10238), 'qtpy.compat.to_qvariant', 'to_qvariant', (['color'], {}), '(color)\n', (10231, 10238), False, 'from qtpy.compat import from_qvariant, to_qvariant\n'), ((13820, 13832), 'qtpy.QtCore.QLocale', 'QLocale', (['"""C"""'], {}), "('C')\n", (13827, 13832), False, 'from qtpy.QtCore import QAbstractTableModel, QItemSelection, QLocale, QItemSelectionRange, QModelIndex, Qt, Slot\n'), ((22852, 22862), 'spyder.config.base._', '_', (['"""Error"""'], {}), "('Error')\n", (22853, 22862), False, 'from spyder.config.base import _\n'), ((25159, 25194), 'spyder.config.base._', '_', (['"""%s are currently not supported"""'], {}), "('%s are currently not supported')\n", (25160, 25194), False, 'from spyder.config.base import _\n'), ((27178, 27203), 'spyder.config.base._', '_', (['"""Record array fields:"""'], {}), "('Record array fields:')\n", (27179, 27203), False, 'from spyder.config.base import _\n'), ((10107, 10118), 'numpy.abs', 'np.abs', (['hue'], {}), '(hue)\n', (10113, 10118), True, 'import numpy as np\n'), ((10294, 10307), 'qtpy.compat.to_qvariant', 'to_qvariant', ([], {}), '()\n', (10305, 10307), False, 'from qtpy.compat import from_qvariant, to_qvariant\n'), ((10375, 10420), 'spyder.config.gui.get_font', 'get_font', ([], {'font_size_delta': 'DEFAULT_SMALL_DELTA'}), '(font_size_delta=DEFAULT_SMALL_DELTA)\n', (10383, 10420), False, 'from spyder.config.gui import get_font, config_shortcut\n'), ((22902, 22931), 'spyder.config.base._', '_', (['"""Format (%s) is incorrect"""'], {}), "('Format (%s) is incorrect')\n", (22903, 22931), False, 'from spyder.config.base import _\n'), ((27482, 27503), 'spyder.py3compat.is_text_string', 'is_text_string', (['title'], {}), '(title)\n', (27496, 27503), False, 'from spyder.py3compat import io, is_binary_string, is_string, is_text_string, PY3, to_binary_string, to_text_string\n')]
""" Defines the PolygonPlot class. """ from __future__ import with_statement # Major library imports import numpy as np # Enthought library imports. from enable.api import LineStyle, black_color_trait, \ transparent_color_trait from kiva.agg import points_in_polygon from traits.api import Enum, Float, Tuple, Property, cached_property, \ on_trait_change # Local imports. from base_xy_plot import BaseXYPlot class PolygonPlot(BaseXYPlot): """ Plots a polygon in dataspace. Assuming that the index and value mappers are linear mappers, and that "index" corresponds to X-coordinates and "value" corresponds to Y-coordinates, the points are arranged in a counter-clockwise fashion. The polygon is closed automatically, so there is no need to reproduce the first point as the last point. Nonlinear mappers are possible, but the results may be unexpected. Only the data-space points are mapped in a nonlinear fashion. Straight lines connecting them in a linear screen-space become curved in a nonlinear screen-space; however, the drawing still contains straight lines in screen-space. If you don't want the edge of the polygon to be drawn, set **edge_color** to transparent; don't try to do this by setting **edge_width** to 0. In some drawing systems, such as PostScript, a line width of 0 means to make the line as small as possible while still putting ink on the page. """ # The color of the line on the edge of the polygon. edge_color = black_color_trait # The thickness of the edge of the polygon. edge_width = Float(1.0) # The line dash style for the edge of the polygon. edge_style = LineStyle # The color of the face of the polygon. face_color = transparent_color_trait # Override the hittest_type trait inherited from BaseXYPlot hittest_type = Enum("poly", "point", "line") # The RGBA tuple for rendering edges. It is always a tuple of length 4. # It has the same RGB values as edge_color_, and its alpha value is the # alpha value of self.edge_color multiplied by self.alpha. effective_edge_color = Property(Tuple, depends_on=['edge_color', 'alpha']) # The RGBA tuple for rendering the face. It is always a tuple of length 4. # It has the same RGB values as face_color_, and its alpha value is the # alpha value of self.face_color multiplied by self.alpha. effective_face_color = Property(Tuple, depends_on=['face_color', 'alpha']) #---------------------------------------------------------------------- # Private 'BaseXYPlot' interface #---------------------------------------------------------------------- def _gather_points(self): """ Collects the data points that are within the bounds of the plot and caches them. """ if self._cache_valid: return index = self.index.get_data() value = self.value.get_data() if not self.index or not self.value: return if len(index) == 0 or len(value) == 0 or len(index) != len(value): self._cached_data_pts = [] self._cache_valid = True return points = np.transpose(np.array((index,value))) self._cached_data_pts = points self._cache_valid = True def _render(self, gc, points): """ Renders an Nx2 array of screen-space points as a polygon. """ with gc: gc.clip_to_rect(self.x, self.y, self.width, self.height) gc.set_stroke_color(self.effective_edge_color) gc.set_line_width(self.edge_width) gc.set_line_dash(self.edge_style_) gc.set_fill_color(self.effective_face_color) gc.lines(points) gc.close_path() gc.draw_path() def _render_icon(self, gc, x, y, width, height): """ Renders a representation of this plot as an icon into the box defined by the parameters. Used by the legend. """ with gc: gc.set_stroke_color(self.effective_edge_color) gc.set_line_width(self.edge_width) gc.set_fill_color(self.effective_face_color) if hasattr(self, 'line_style_'): gc.set_line_dash(self.line_style_) gc.draw_rect((x,y,width,height)) return def hittest(self, screen_pt, threshold=7.0, return_distance=False): """ Performs point-in-polygon testing or point/line proximity testing. If self.hittest_type is "line" or "point", then behaves like the parent class BaseXYPlot.hittest(). If self.hittest_type is "poly", then returns True if the given point is inside the polygon, and False otherwise. """ if self.hittest_type in ("line", "point"): return BaseXYPlot.hittest(self, screen_pt, threshold, return_distance) data_pt = self.map_data(screen_pt, all_values=True) index = self.index.get_data() value = self.value.get_data() poly = np.vstack((index,value)).T if points_in_polygon([data_pt], poly)[0] == 1: return True else: return False #------------------------------------------------------------------------ # Event handlers #------------------------------------------------------------------------ @on_trait_change('edge_color, edge_width, edge_style, face_color, alpha') def _attributes_changed(self): self.invalidate_draw() self.request_redraw() #------------------------------------------------------------------------ # Property getters #------------------------------------------------------------------------ @cached_property def _get_effective_edge_color(self): if len(self.edge_color_) == 4: edge_alpha = self.edge_color_[-1] else: edge_alpha = 1.0 c = self.edge_color_[:3] + (edge_alpha * self.alpha,) return c @cached_property def _get_effective_face_color(self): if len(self.face_color_) == 4: face_alpha = self.face_color_[-1] else: face_alpha = 1.0 c = self.face_color_[:3] + (face_alpha * self.alpha,) return c
[ "traits.api.Enum", "traits.api.on_trait_change", "traits.api.Property", "kiva.agg.points_in_polygon", "base_xy_plot.BaseXYPlot.hittest", "numpy.array", "numpy.vstack", "traits.api.Float" ]
[((1659, 1669), 'traits.api.Float', 'Float', (['(1.0)'], {}), '(1.0)\n', (1664, 1669), False, 'from traits.api import Enum, Float, Tuple, Property, cached_property, on_trait_change\n'), ((1923, 1952), 'traits.api.Enum', 'Enum', (['"""poly"""', '"""point"""', '"""line"""'], {}), "('poly', 'point', 'line')\n", (1927, 1952), False, 'from traits.api import Enum, Float, Tuple, Property, cached_property, on_trait_change\n'), ((2202, 2253), 'traits.api.Property', 'Property', (['Tuple'], {'depends_on': "['edge_color', 'alpha']"}), "(Tuple, depends_on=['edge_color', 'alpha'])\n", (2210, 2253), False, 'from traits.api import Enum, Float, Tuple, Property, cached_property, on_trait_change\n'), ((2508, 2559), 'traits.api.Property', 'Property', (['Tuple'], {'depends_on': "['face_color', 'alpha']"}), "(Tuple, depends_on=['face_color', 'alpha'])\n", (2516, 2559), False, 'from traits.api import Enum, Float, Tuple, Property, cached_property, on_trait_change\n'), ((5451, 5523), 'traits.api.on_trait_change', 'on_trait_change', (['"""edge_color, edge_width, edge_style, face_color, alpha"""'], {}), "('edge_color, edge_width, edge_style, face_color, alpha')\n", (5466, 5523), False, 'from traits.api import Enum, Float, Tuple, Property, cached_property, on_trait_change\n'), ((3287, 3311), 'numpy.array', 'np.array', (['(index, value)'], {}), '((index, value))\n', (3295, 3311), True, 'import numpy as np\n'), ((4906, 4969), 'base_xy_plot.BaseXYPlot.hittest', 'BaseXYPlot.hittest', (['self', 'screen_pt', 'threshold', 'return_distance'], {}), '(self, screen_pt, threshold, return_distance)\n', (4924, 4969), False, 'from base_xy_plot import BaseXYPlot\n'), ((5122, 5147), 'numpy.vstack', 'np.vstack', (['(index, value)'], {}), '((index, value))\n', (5131, 5147), True, 'import numpy as np\n'), ((5160, 5194), 'kiva.agg.points_in_polygon', 'points_in_polygon', (['[data_pt]', 'poly'], {}), '([data_pt], poly)\n', (5177, 5194), False, 'from kiva.agg import points_in_polygon\n')]
import os import os.path as osp import numpy as np from joblib import Parallel, delayed from tensorflow.keras.utils import get_file from tqdm import tqdm from spektral.data import Dataset, Graph from spektral.utils import label_to_one_hot, sparse from spektral.utils.io import load_csv, load_sdf ATOM_TYPES = [1, 6, 7, 8, 9] BOND_TYPES = [1, 2, 3, 4] class QM9(Dataset): """ The QM9 chemical data set of small molecules. In this dataset, nodes represent atoms and edges represent chemical bonds. There are 5 possible atom types (H, C, N, O, F) and 4 bond types (single, double, triple, aromatic). Node features represent the chemical properties of each atom and include: - The atomic number, one-hot encoded; - The atom's position in the X, Y, and Z dimensions; - The atomic charge; - The mass difference from the monoisotope; The edge features represent the type of chemical bond between two atoms, one-hot encoded. Each graph has an 19-dimensional label for regression. **Arguments** - `amount`: int, load this many molecules instead of the full dataset (useful for debugging). - `n_jobs`: number of CPU cores to use for reading the data (-1, to use all available cores). """ url = "https://deepchemdata.s3-us-west-1.amazonaws.com/datasets/gdb9.tar.gz" def __init__(self, amount=None, n_jobs=1, **kwargs): self.amount = amount self.n_jobs = n_jobs super().__init__(**kwargs) def download(self): get_file( "qm9.tar.gz", self.url, extract=True, cache_dir=self.path, cache_subdir=self.path, ) os.remove(osp.join(self.path, "qm9.tar.gz")) def read(self): print("Loading QM9 dataset.") sdf_file = osp.join(self.path, "gdb9.sdf") data = load_sdf(sdf_file, amount=self.amount) # Internal SDF format def read_mol(mol): x = np.array([atom_to_feature(atom) for atom in mol["atoms"]]) a, e = mol_to_adj(mol) return x, a, e data = Parallel(n_jobs=self.n_jobs)( delayed(read_mol)(mol) for mol in tqdm(data, ncols=80) ) x_list, a_list, e_list = list(zip(*data)) # Load labels labels_file = osp.join(self.path, "gdb9.sdf.csv") labels = load_csv(labels_file) labels = labels.set_index("mol_id").values if self.amount is not None: labels = labels[: self.amount] return [ Graph(x=x, a=a, e=e, y=y) for x, a, e, y in zip(x_list, a_list, e_list, labels) ] def atom_to_feature(atom): atomic_num = label_to_one_hot(atom["atomic_num"], ATOM_TYPES) coords = atom["coords"] charge = atom["charge"] iso = atom["iso"] return np.concatenate((atomic_num, coords, [charge, iso]), -1) def mol_to_adj(mol): row, col, edge_features = [], [], [] for bond in mol["bonds"]: start, end = bond["start_atom"], bond["end_atom"] row += [start, end] col += [end, start] edge_features += [bond["type"]] * 2 a, e = sparse.edge_index_to_matrix( edge_index=np.array((row, col)).T, edge_weight=np.ones_like(row), edge_features=label_to_one_hot(edge_features, BOND_TYPES), ) return a, e
[ "spektral.utils.io.load_sdf", "spektral.utils.label_to_one_hot", "numpy.ones_like", "spektral.utils.io.load_csv", "tqdm.tqdm", "os.path.join", "joblib.Parallel", "numpy.array", "tensorflow.keras.utils.get_file", "numpy.concatenate", "joblib.delayed", "spektral.data.Graph" ]
[((2701, 2749), 'spektral.utils.label_to_one_hot', 'label_to_one_hot', (["atom['atomic_num']", 'ATOM_TYPES'], {}), "(atom['atomic_num'], ATOM_TYPES)\n", (2717, 2749), False, 'from spektral.utils import label_to_one_hot, sparse\n'), ((2840, 2895), 'numpy.concatenate', 'np.concatenate', (['(atomic_num, coords, [charge, iso])', '(-1)'], {}), '((atomic_num, coords, [charge, iso]), -1)\n', (2854, 2895), True, 'import numpy as np\n'), ((1532, 1627), 'tensorflow.keras.utils.get_file', 'get_file', (['"""qm9.tar.gz"""', 'self.url'], {'extract': '(True)', 'cache_dir': 'self.path', 'cache_subdir': 'self.path'}), "('qm9.tar.gz', self.url, extract=True, cache_dir=self.path,\n cache_subdir=self.path)\n", (1540, 1627), False, 'from tensorflow.keras.utils import get_file\n'), ((1826, 1857), 'os.path.join', 'osp.join', (['self.path', '"""gdb9.sdf"""'], {}), "(self.path, 'gdb9.sdf')\n", (1834, 1857), True, 'import os.path as osp\n'), ((1873, 1911), 'spektral.utils.io.load_sdf', 'load_sdf', (['sdf_file'], {'amount': 'self.amount'}), '(sdf_file, amount=self.amount)\n', (1881, 1911), False, 'from spektral.utils.io import load_csv, load_sdf\n'), ((2318, 2353), 'os.path.join', 'osp.join', (['self.path', '"""gdb9.sdf.csv"""'], {}), "(self.path, 'gdb9.sdf.csv')\n", (2326, 2353), True, 'import os.path as osp\n'), ((2371, 2392), 'spektral.utils.io.load_csv', 'load_csv', (['labels_file'], {}), '(labels_file)\n', (2379, 2392), False, 'from spektral.utils.io import load_csv, load_sdf\n'), ((1713, 1746), 'os.path.join', 'osp.join', (['self.path', '"""qm9.tar.gz"""'], {}), "(self.path, 'qm9.tar.gz')\n", (1721, 1746), True, 'import os.path as osp\n'), ((2116, 2144), 'joblib.Parallel', 'Parallel', ([], {'n_jobs': 'self.n_jobs'}), '(n_jobs=self.n_jobs)\n', (2124, 2144), False, 'from joblib import Parallel, delayed\n'), ((2553, 2578), 'spektral.data.Graph', 'Graph', ([], {'x': 'x', 'a': 'a', 'e': 'e', 'y': 'y'}), '(x=x, a=a, e=e, y=y)\n', (2558, 2578), False, 'from spektral.data import Dataset, Graph\n'), ((3252, 3269), 'numpy.ones_like', 'np.ones_like', (['row'], {}), '(row)\n', (3264, 3269), True, 'import numpy as np\n'), ((3293, 3336), 'spektral.utils.label_to_one_hot', 'label_to_one_hot', (['edge_features', 'BOND_TYPES'], {}), '(edge_features, BOND_TYPES)\n', (3309, 3336), False, 'from spektral.utils import label_to_one_hot, sparse\n'), ((3208, 3228), 'numpy.array', 'np.array', (['(row, col)'], {}), '((row, col))\n', (3216, 3228), True, 'import numpy as np\n'), ((2158, 2175), 'joblib.delayed', 'delayed', (['read_mol'], {}), '(read_mol)\n', (2165, 2175), False, 'from joblib import Parallel, delayed\n'), ((2192, 2212), 'tqdm.tqdm', 'tqdm', (['data'], {'ncols': '(80)'}), '(data, ncols=80)\n', (2196, 2212), False, 'from tqdm import tqdm\n')]
import numpy as np board = np.zeros(shape=(9, 9)) count = 0 def solve(): global count count += 1 if count % 1000 == 0: print('\rCurrent number of computations made:', count, end='') freePos = find() if freePos is None: return True i = freePos[0] j = freePos[1] for w in range(1, 10): if possible(w, freePos): board[i][j] = w if solve(): return True board[i][j] = 0 return False def find(): for i in range(9): for j in range(9): if board[i][j] == 0: return [i, j] return None def possible(value, position): # position = (i, j) tuple i = position[0] j = position[1] # checks row and column for repeat value if (value in board[:, j]) or (value in board[i]): return False # reset to i,j - top left square i = (i // 3) * 3 j = (j // 3) * 3 # check all squares in square for n in range(i, i + 3): for m in range(j, j + 3): if board[n][m] == value: return False return True def change(position): # position = (i, j) tuple i = position[0] j = position[1] for w in range(1, 10): if w not in board[:, j] and w not in board[i]: board[i][j] = w return True return False def initialize(): print("Please enter the values on the board starting from left to right, top to bottom, 0 for blank") integerChunk = input("Numbers: ") pos = 0 for i in range(9): for j in range(9): board[i][j] = int(integerChunk[pos]) pos += 1 def displayBoard(): for i in range(3): for j in range(9): if board[i][j] == 0: print(" ", end="") else: print("%d " % board[i][j], end="") if (j == 2) or (j == 5): print("| ", end="") if j == 8: print("") print("- - - - - - - - - - -") for i in range(3, 6): for j in range(9): if board[i][j] == 0: print(" ", end="") else: print("%d " % board[i][j], end="") if (j == 2) or (j == 5): print("| ", end="") if j == 8: print("") print("- - - - - - - - - - -") for i in range(6, 9): for j in range(9): if board[i][j] == 0: print(" ", end="") else: print("%d " % board[i][j], end="") if (j == 2) or (j == 5): print("| ", end="") if j == 8: print("") def main(): initialize() print("Is this the correct board? Press enter to continue or 'q' to exit program.") displayBoard() response = input() if response == "q": exit() print("---------------SOLVING---------------\n") solve() print("\r\rSOLUTION") displayBoard() print("\nTotal number of computations:", count) if __name__ == "__main__": main()
[ "numpy.zeros" ]
[((28, 50), 'numpy.zeros', 'np.zeros', ([], {'shape': '(9, 9)'}), '(shape=(9, 9))\n', (36, 50), True, 'import numpy as np\n')]
from multiprocessing import Pool import EnvEq as ee import numpy as np import itertools as it import os #parsing input into numpy arrays from input import * y0=np.array([y0_Tpos,y0_Tpro,y0_Tneg,y0_o2,y0_test]) p=np.array([p_o2,p_test]) mu=np.array([[mu_o2Tpos,mu_o2Tpro,mu_o2Tneg],[mu_testTpos,mu_testTpro,0]]) lam=np.array([lam_o2,lam_test]) t_D=np.array([t_DTpos,t_DTpro,t_DTneg]) r=np.array([r_Tpos,r_Tpro,r_Tneg]) delta=np.array([delta_Tpos,delta_Tpro,delta_Tneg]) rho=np.array([rho_Tpos,rho_Tpro,rho_Tneg]) lim=np.array([[[l_lim_o2Tpos,u_lim_o2Tpos],[l_lim_o2Tpro,u_lim_o2Tpro],[l_lim_o2Tneg,u_lim_o2Tneg]],[[l_lim_testTpos,u_lim_testTpos],[l_lim_testTpro,u_lim_testTpro],[0,0]]],dtype=np.float64) #make directories for saving raw_outputs try: os.makedirs("../../raw_output/EnvEq/"+f_name) except: pass #iterator over these o2_lim_arr=np.empty([0,2]) for ulim_Tpro in np.arange(0.1,1,0.2): for ulim_Tneg in np.arange(0.1,1,0.2): o2_lim_arr=np.append(o2_lim_arr,[[ulim_Tpro,ulim_Tneg]],axis=0) def solve_parm(u_lim_o2): #calls the solve_eq function with all default inputs other than o2_lim f_name_i=f_name+"{:.1f}".format(u_lim_o2[0])+"-"+"{:.1f}".format(u_lim_o2[1]) lim[0,1,1]=u_lim_o2[0] lim[0,2,1]=u_lim_o2[1] ee.solve_eq(t_max,dt,y0,p,mu,lam,r,K,delta,rho,lim,f_name_i) if __name__ == '__main__': pool = Pool(4) pool.map(solve_parm,o2_lim_arr) #iterate over the o2_lims pool.close() pool.join()
[ "EnvEq.solve_eq", "os.makedirs", "numpy.append", "numpy.array", "numpy.empty", "multiprocessing.Pool", "numpy.arange" ]
[((161, 214), 'numpy.array', 'np.array', (['[y0_Tpos, y0_Tpro, y0_Tneg, y0_o2, y0_test]'], {}), '([y0_Tpos, y0_Tpro, y0_Tneg, y0_o2, y0_test])\n', (169, 214), True, 'import numpy as np\n'), ((213, 237), 'numpy.array', 'np.array', (['[p_o2, p_test]'], {}), '([p_o2, p_test])\n', (221, 237), True, 'import numpy as np\n'), ((240, 316), 'numpy.array', 'np.array', (['[[mu_o2Tpos, mu_o2Tpro, mu_o2Tneg], [mu_testTpos, mu_testTpro, 0]]'], {}), '([[mu_o2Tpos, mu_o2Tpro, mu_o2Tneg], [mu_testTpos, mu_testTpro, 0]])\n', (248, 316), True, 'import numpy as np\n'), ((316, 344), 'numpy.array', 'np.array', (['[lam_o2, lam_test]'], {}), '([lam_o2, lam_test])\n', (324, 344), True, 'import numpy as np\n'), ((348, 385), 'numpy.array', 'np.array', (['[t_DTpos, t_DTpro, t_DTneg]'], {}), '([t_DTpos, t_DTpro, t_DTneg])\n', (356, 385), True, 'import numpy as np\n'), ((386, 420), 'numpy.array', 'np.array', (['[r_Tpos, r_Tpro, r_Tneg]'], {}), '([r_Tpos, r_Tpro, r_Tneg])\n', (394, 420), True, 'import numpy as np\n'), ((425, 471), 'numpy.array', 'np.array', (['[delta_Tpos, delta_Tpro, delta_Tneg]'], {}), '([delta_Tpos, delta_Tpro, delta_Tneg])\n', (433, 471), True, 'import numpy as np\n'), ((474, 514), 'numpy.array', 'np.array', (['[rho_Tpos, rho_Tpro, rho_Tneg]'], {}), '([rho_Tpos, rho_Tpro, rho_Tneg])\n', (482, 514), True, 'import numpy as np\n'), ((517, 725), 'numpy.array', 'np.array', (['[[[l_lim_o2Tpos, u_lim_o2Tpos], [l_lim_o2Tpro, u_lim_o2Tpro], [l_lim_o2Tneg,\n u_lim_o2Tneg]], [[l_lim_testTpos, u_lim_testTpos], [l_lim_testTpro,\n u_lim_testTpro], [0, 0]]]'], {'dtype': 'np.float64'}), '([[[l_lim_o2Tpos, u_lim_o2Tpos], [l_lim_o2Tpro, u_lim_o2Tpro], [\n l_lim_o2Tneg, u_lim_o2Tneg]], [[l_lim_testTpos, u_lim_testTpos], [\n l_lim_testTpro, u_lim_testTpro], [0, 0]]], dtype=np.float64)\n', (525, 725), True, 'import numpy as np\n'), ((852, 868), 'numpy.empty', 'np.empty', (['[0, 2]'], {}), '([0, 2])\n', (860, 868), True, 'import numpy as np\n'), ((885, 907), 'numpy.arange', 'np.arange', (['(0.1)', '(1)', '(0.2)'], {}), '(0.1, 1, 0.2)\n', (894, 907), True, 'import numpy as np\n'), ((755, 802), 'os.makedirs', 'os.makedirs', (["('../../raw_output/EnvEq/' + f_name)"], {}), "('../../raw_output/EnvEq/' + f_name)\n", (766, 802), False, 'import os\n'), ((928, 950), 'numpy.arange', 'np.arange', (['(0.1)', '(1)', '(0.2)'], {}), '(0.1, 1, 0.2)\n', (937, 950), True, 'import numpy as np\n'), ((1261, 1332), 'EnvEq.solve_eq', 'ee.solve_eq', (['t_max', 'dt', 'y0', 'p', 'mu', 'lam', 'r', 'K', 'delta', 'rho', 'lim', 'f_name_i'], {}), '(t_max, dt, y0, p, mu, lam, r, K, delta, rho, lim, f_name_i)\n', (1272, 1332), True, 'import EnvEq as ee\n'), ((1361, 1368), 'multiprocessing.Pool', 'Pool', (['(4)'], {}), '(4)\n', (1365, 1368), False, 'from multiprocessing import Pool\n'), ((969, 1024), 'numpy.append', 'np.append', (['o2_lim_arr', '[[ulim_Tpro, ulim_Tneg]]'], {'axis': '(0)'}), '(o2_lim_arr, [[ulim_Tpro, ulim_Tneg]], axis=0)\n', (978, 1024), True, 'import numpy as np\n')]
import numpy as np import xml.etree.ElementTree as ET class Geom(object): def __init__(self, geom): self.xml = geom self.params = [] def get_params(self): return self.params.copy() def set_params(self, new_params): self.params = new_params def update_point(self, p, new_params): pass def update_xml(self): pass def update(self, new_params): self.set_params(new_params) self.update_xml() def get_smallest_z(self): pass def get_param_limits(self): pass def get_param_names(self): pass def get_volume(self): pass class Sphere(Geom): min_radius = .05 max_radius = .4 def __init__(self, geom): self.xml = geom self.params = [float(self.xml.get('size'))] # radius self.center = np.array([float(x) for x in self.xml.get('pos').split()]) def update_point(self, p, new_params): return ((p - self.center) * new_params[0] / self.params[0]) + self.center def update_xml(self): self.xml.set('size', str(self.params[0])) def get_smallest_z(self): return self.center[2] - self.params[0] def get_param_limits(self): return [[self.min_radius], [self.max_radius]] def get_param_names(self): return ['radius'] def get_volume(self): return 4./3. * np.pi * self.params[0] ** 3 class Capsule(Geom): min_length = 0.175 max_length = 0.8 min_radius = 0.035 max_radius = 0.085 def __init__(self, geom): self.xml = geom fromto = [float(x) for x in self.xml.get('fromto').split()] self.p1 = np.array(fromto[:3]) self.p2 = np.array(fromto[3:]) length = np.sqrt(np.sum((self.p2 - self.p1) ** 2)) radius = float(self.xml.get('size')) self.params = [length, radius] self.axis = (self.p2 - self.p1) / length def update_point(self, p, new_params): lfac = p.dot(self.axis) * self.axis rfac = p - lfac return p + lfac * (-1.0 + new_params[0] / self.params[0])# + rfac * (new_params[1] / self.params[1]) def update_xml(self): self.xml.set('fromto', ' '.join([str(x) for x in np.concatenate([self.p1, self.p2])])) self.xml.set('size', str(self.params[1])) # radius def set_params(self, new_params): p1 = self.update_point(self.p1, new_params) p2 = self.update_point(self.p2, new_params) # update only after computing p1, p2 self.p1 = p1 self.p2 = p2 super().set_params(new_params) def get_smallest_z(self): return min(self.p1[2], self.p2[2]) - self.params[1] def get_param_limits(self): return [[self.min_length, self.min_radius], [self.max_length, self.max_radius]] def get_param_names(self): return ['length','radius'] def get_volume(self): return 4./3. * np.pi * self.params[1]**3 + self.params[0] * np.pi * self.params[1]**2 class Body: geoms = {'sphere': Sphere, 'capsule': Capsule} # dictionary of legal geometry types def __init__(self, body, worldbody=False): self.xml = body self.worldbody = worldbody geom_xml = body.find('geom') # assume only one geometry per body self.geom = self.geoms[geom_xml.get('type')](geom_xml) self.joints = [j for j in body.findall('joint') if 'ignore' not in j.get('name')] self.parts = [Body(b) for b in body.findall('body')] pos = [b.get('pos') for b in body.findall('body')] self.part_positions = [np.array([float(x) for x in p.split()]) for p in pos] pos = [j.get('pos') for j in self.joints] self.joint_positions = [np.array([float(x) for x in p.split()]) for p in pos] self.n = len(self.geom.get_params()) self.n_all_params = len(self.get_params()) self.zmin = float(self.xml.get("pos").split()[2]) - self.get_height() def get_height(self): max_height = -self.geom.get_smallest_z() for body, pos in zip(self.parts, self.part_positions): max_height = max(max_height, body.get_height() - pos[2]) return max_height def update_initial_position(self): pos = self.xml.get("pos").split() pos[2] = str(self.get_height() + self.zmin) self.xml.set("pos", ' '.join(pos)) def update_xml(self): for body, pos in zip(self.parts, self.part_positions): body.xml.set('pos', ' '.join([str(x) for x in pos])) for joint, pos in zip(self.joints, self.joint_positions): joint.set('pos', ' '.join([str(x) for x in pos])) def set_body_positions(self, new_params): for i, pos in enumerate(self.part_positions): self.part_positions[i] = self.geom.update_point(pos, new_params) for i, pos in enumerate(self.joint_positions): self.joint_positions[i] = self.geom.update_point(pos, new_params) def update(self, new_params): self.set_body_positions(new_params) self.geom.update(new_params) self.update_xml() def get_params(self): params = self.geom.get_params() for body in self.parts: params += body.get_params() return params def get_param_limits(self): limits = self.geom.get_param_limits() for body in self.parts: body_limits = body.get_param_limits() limits[0] += body_limits[0] limits[1] += body_limits[1] return limits def get_param_names(self): name = self.xml.get('name') param_names = [name + '-' + p for p in self.geom.get_param_names()] for body in self.parts: param_names += body.get_param_names() return param_names def update_params(self, new_params): if self.worldbody: assert len(new_params) == self.n_all_params, "Wrong number of parameters" self.update(new_params[:self.n]) remaining_params = new_params[self.n:] for body in self.parts: remaining_params = body.update_params(remaining_params) if self.worldbody: self.update_initial_position() else: return remaining_params def get_body_names(self): names = [self.xml.get('name')] for body in self.parts: names += body.get_names() return names def get_joints(self): joints = {} for body,pos in zip(self.parts, self.part_positions): for j in body.joints: joints[j.get('name')] = (self.xml.get('name'), body.xml.get('name'), self.geom, body.geom, pos) joints.update(body.get_joints()) return joints def get_volumes(self): volumes = {} if len(self.joints) > 0: for j in self.joints: v1 = self.geom.get_volume() v2 = sum([b.geom.get_volume() for b in self.parts]) volumes[j.get('name')] = np.array((v1, v2)) for body in self.parts: volumes.update(body.get_volumes()) return volumes class MuJoCoXmlRobot: def __init__(self, model_xml): self.model_xml = model_xml self.tree = ET.parse(self.model_xml) worldbody = self.tree.getroot().find('worldbody') self.body = Body(worldbody.find('body'), worldbody=True) def get_params(self): return self.body.get_params() def get_param_limits(self): return self.body.get_param_limits() def get_param_names(self): return self.body.get_param_names() def get_height(self): return self.body.get_height() def get_joints(self): return self.body.get_joints() def get_volumes(self): return self.body.get_volumes() def update(self, params, xml_file=None): if xml_file is None: xml_file = self.model_xml self.body.update_params(list(params)) self.tree.write(xml_file) if __name__ == '__main__': robot = MuJoCoXmlRobot('mujoco_assets/hopper.xml') params = list(1.0 * np.array(robot.get_params())) robot.update(params, 'mujoco_assets/hopper_test.xml') assert robot.get_params() == params #assert robot.get_height() == 1.31 print(robot.get_param_limits()) print(robot.get_param_names()) robot = MuJoCoXmlRobot('mujoco_assets/walker2d.xml') params = [.4,.04,.5,.05,.55,.055,.6,.06,.5,.05,.55,.055,.6,.06] robot.update(params, 'mujoco_assets/walker2d_test.xml') assert robot.get_params() == params assert robot.get_height() == 1.31 print(robot.get_param_limits()) print(robot.get_param_names()) robot = MuJoCoXmlRobot('mujoco_assets/ant.xml') params = [.2, .2,.06,.2,.06,.4,.06, .2,.06,.2,.06,.4,.06, .2,.06,.2,.06,.4,.06, .2,.06,.2,.06,.4,.06] robot.update(params, 'mujoco_assets/ant_test.xml') assert robot.get_params() == params assert robot.get_height() == .2 print(robot.get_param_limits()) print(robot.get_param_names()) robot = MuJoCoXmlRobot('mujoco_assets/humanoid.xml') params = list(.8 * np.array(robot.get_params())) robot.update(params, 'mujoco_assets/humanoid_test.xml') assert robot.get_params() == params print(robot.get_height()) #assert robot.get_height() == .6085 print(robot.get_param_limits()) print(robot.get_param_names()) import gym, roboschool env = gym.make("RoboschoolHopper-v1") env.unwrapped.model_xml = 'mujoco_assets/hopper_test.xml' env.reset() #env.render() import os from scipy.misc import imsave import subprocess as sp outdir = 'xml_vid' os.makedirs(outdir, exist_ok=True) i = 0 for _ in range(10): env.reset() for _ in range(100): env.step(env.action_space.sample()) rgb = env.render('rgb_array') imsave(os.path.join(outdir, '{:05d}.png'.format(i)), rgb) i+=1 sp.call(['ffmpeg', '-r', '60', '-f', 'image2', '-i', os.path.join(outdir, '%05d.png'), '-vcodec', 'libx264', '-pix_fmt', 'yuv420p', os.path.join(outdir, 'out.mp4')]) env.close()
[ "xml.etree.ElementTree.parse", "os.makedirs", "os.path.join", "numpy.sum", "numpy.array", "numpy.concatenate", "gym.make" ]
[((9394, 9425), 'gym.make', 'gym.make', (['"""RoboschoolHopper-v1"""'], {}), "('RoboschoolHopper-v1')\n", (9402, 9425), False, 'import gym, roboschool\n'), ((9625, 9659), 'os.makedirs', 'os.makedirs', (['outdir'], {'exist_ok': '(True)'}), '(outdir, exist_ok=True)\n', (9636, 9659), False, 'import os\n'), ((1671, 1691), 'numpy.array', 'np.array', (['fromto[:3]'], {}), '(fromto[:3])\n', (1679, 1691), True, 'import numpy as np\n'), ((1710, 1730), 'numpy.array', 'np.array', (['fromto[3:]'], {}), '(fromto[3:])\n', (1718, 1730), True, 'import numpy as np\n'), ((7208, 7232), 'xml.etree.ElementTree.parse', 'ET.parse', (['self.model_xml'], {}), '(self.model_xml)\n', (7216, 7232), True, 'import xml.etree.ElementTree as ET\n'), ((1756, 1788), 'numpy.sum', 'np.sum', (['((self.p2 - self.p1) ** 2)'], {}), '((self.p2 - self.p1) ** 2)\n', (1762, 1788), True, 'import numpy as np\n'), ((9977, 10009), 'os.path.join', 'os.path.join', (['outdir', '"""%05d.png"""'], {}), "(outdir, '%05d.png')\n", (9989, 10009), False, 'import os\n'), ((10056, 10087), 'os.path.join', 'os.path.join', (['outdir', '"""out.mp4"""'], {}), "(outdir, 'out.mp4')\n", (10068, 10087), False, 'import os\n'), ((6973, 6991), 'numpy.array', 'np.array', (['(v1, v2)'], {}), '((v1, v2))\n', (6981, 6991), True, 'import numpy as np\n'), ((2228, 2262), 'numpy.concatenate', 'np.concatenate', (['[self.p1, self.p2]'], {}), '([self.p1, self.p2])\n', (2242, 2262), True, 'import numpy as np\n')]
# Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Test the Python API and shell binary of the tensorflowjs pip package.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import glob import json import os import shutil import subprocess import sys import tempfile import unittest import numpy as np import tensorflow as tf from tensorflow import keras from tensorflow.python.eager import def_function from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import tensor_spec from tensorflow.python.ops import variables from tensorflow.python.training.tracking import tracking from tensorflow.python.saved_model.save import save import tensorflow_hub as hub import tensorflowjs as tfjs def _createKerasModel(layer_name_prefix, h5_path=None): """Create a Keras model for testing. Args: layer_name_prefix: A prefix string for layer names. This helps avoid clashes in layer names between different test methods. h5_path: Optional string path for a HDF5 (.h5) file to save the model in. Returns: An instance of keras.Model. """ input_tensor = keras.layers.Input((3, )) dense1 = keras.layers.Dense( 4, use_bias=True, kernel_initializer='ones', bias_initializer='zeros', name=layer_name_prefix + '1')(input_tensor) output = keras.layers.Dense( 2, use_bias=False, kernel_initializer='ones', name=layer_name_prefix + '2')(dense1) model = keras.models.Model(inputs=[input_tensor], outputs=[output]) if h5_path: model.save(h5_path) return model def _createTensorFlowSavedModelV1(name_scope, save_path): """Create a TensorFlow SavedModel for testing. Args: name_scope: Name scope to create the model under. This helps avoid op and variable name clashes between different test methods. save_path: The directory path in which to save the model. """ graph = tf.Graph() with graph.as_default(): with tf.compat.v1.name_scope(name_scope): x = tf.compat.v1.constant([[37.0, -23.0], [1.0, 4.0]]) w = tf.compat.v1.get_variable('w', shape=[2, 2]) y = tf.compat.v1.matmul(x, w) output = tf.compat.v1.nn.softmax(y) init_op = w.initializer # Create a builder. builder = tf.compat.v1.saved_model.builder.SavedModelBuilder(save_path) with tf.compat.v1.Session() as sess: # Run the initializer on `w`. sess.run(init_op) builder.add_meta_graph_and_variables( sess, [tf.compat.v1.saved_model.tag_constants.SERVING], signature_def_map={ "serving_default": tf.compat.v1.saved_model.signature_def_utils.predict_signature_def( inputs={"x": x}, outputs={"output": output}) }, assets_collection=None) builder.save() def _createTensorFlowSavedModel(name_scope, save_path): """Create a TensorFlow SavedModel for testing. Args: name_scope: Name scope to create the model under. This helps avoid op and variable name clashes between different test methods. save_path: The directory path in which to save the model. """ input_data = constant_op.constant(1., shape=[1]) root = tracking.AutoTrackable() root.v1 = variables.Variable(3.) root.v2 = variables.Variable(2.) root.f = def_function.function(lambda x: root.v1 * root.v2 * x) to_save = root.f.get_concrete_function(input_data) save(root, save_path, to_save) def _create_hub_module(save_path): """Create a TensorFlow Hub module for testing. Args: save_path: The directory path in which to save the model. """ # Module function that doubles its input. def double_module_fn(): w = tf.Variable([2.0, 4.0]) x = tf.compat.v1.placeholder(dtype=tf.float32) hub.add_signature(inputs=x, outputs=x*w) graph = tf.Graph() with graph.as_default(): spec = hub.create_module_spec(double_module_fn) m = hub.Module(spec) # Export the module. with tf.compat.v1.Session(graph=graph) as sess: sess.run(tf.compat.v1.global_variables_initializer()) m.export(save_path, sess) class APIAndShellTest(tf.test.TestCase): """Tests for the Python API of the pip package.""" @classmethod def setUpClass(cls): cls.class_tmp_dir = tempfile.mkdtemp() cls.tf_saved_model_dir = os.path.join(cls.class_tmp_dir, 'tf_saved_model') cls.tf_saved_model_v1_dir = os.path.join( cls.class_tmp_dir, 'tf_saved_model_v1') _createTensorFlowSavedModel('a', cls.tf_saved_model_dir) _createTensorFlowSavedModelV1('b', cls.tf_saved_model_v1_dir) cls.tf_hub_module_dir = os.path.join(cls.class_tmp_dir, 'tf_hub_module') _create_hub_module(cls.tf_hub_module_dir) @classmethod def tearDownClass(cls): shutil.rmtree(cls.class_tmp_dir) def setUp(self): # Make sure this file is not being run from the source directory, to # avoid picking up source files. if os.path.isdir( os.path.join(os.path.dirname(__file__), 'tensorflowjs')): self.fail('Do not run this test from the Python source directory. ' 'This file is intended to be run on pip install.') self._tmp_dir = tempfile.mkdtemp() super(APIAndShellTest, self).setUp() def tearDown(self): if os.path.isdir(self._tmp_dir): shutil.rmtree(self._tmp_dir) super(APIAndShellTest, self).tearDown() def testVersionString(self): self.assertEqual(2, tfjs.__version__.count('.')) def testSaveKerasModel(self): with self.test_session(): # First create a toy keras model. model = _createKerasModel('MergedDense') tfjs.converters.save_keras_model(model, self._tmp_dir) # Briefly check the model topology. with open(os.path.join(self._tmp_dir, 'model.json')) as f: json_content = json.load(f) model_json = json_content['modelTopology'] self.assertIsInstance(model_json['model_config'], dict) self.assertIsInstance(model_json['model_config']['config'], dict) self.assertIn('layers', model_json['model_config']['config']) weights_manifest = json_content['weightsManifest'] self.assertIsInstance(weights_manifest, list) # Briefly check the weights manifest. weight_shapes = dict() weight_dtypes = dict() for manifest_item in weights_manifest: for weight in manifest_item['weights']: weight_name = weight['name'] weight_shapes[weight_name] = weight['shape'] weight_dtypes[weight_name] = weight['dtype'] self.assertEqual( sorted(list(weight_shapes.keys())), sorted([ 'MergedDense1/kernel', 'MergedDense1/bias', 'MergedDense2/kernel' ])) self.assertEqual(weight_shapes['MergedDense1/kernel'], [3, 4]) self.assertEqual(weight_shapes['MergedDense1/bias'], [4]) self.assertEqual(weight_shapes['MergedDense2/kernel'], [4, 2]) self.assertEqual(weight_dtypes['MergedDense1/kernel'], 'float32') self.assertEqual(weight_dtypes['MergedDense1/bias'], 'float32') self.assertEqual(weight_dtypes['MergedDense2/kernel'], 'float32') def testLoadKerasModel(self): # Use separate tf.Graph and tf.compat.v1.Session contexts to prevent name collision. with tf.Graph().as_default(), tf.compat.v1.Session(): # First create a toy keras model. model1 = _createKerasModel('MergedDense') tfjs.converters.save_keras_model(model1, self._tmp_dir) model1_weight_values = model1.get_weights() with tf.Graph().as_default(), tf.compat.v1.Session(): # Load the model from saved artifacts. model2 = tfjs.converters.load_keras_model( os.path.join(self._tmp_dir, 'model.json')) # Compare the loaded model with the original one. model2_weight_values = model2.get_weights() self.assertEqual(len(model1_weight_values), len(model2_weight_values)) for model1_weight_value, model2_weight_value in zip( model1_weight_values, model2_weight_values): self.assertAllClose(model1_weight_value, model2_weight_value) # Check the content of the output directory. self.assertTrue(glob.glob(os.path.join(self._tmp_dir, 'group*-*'))) def testInvalidInputFormatRaisesError(self): process = subprocess.Popen( [ 'tensorflowjs_converter', '--input_format', 'nonsensical_format', self._tmp_dir, self._tmp_dir ], stdout=subprocess.PIPE, stderr=subprocess.PIPE) _, stderr = process.communicate() self.assertGreater(process.returncode, 0) self.assertIn(b'--input_format', tf.compat.as_bytes(stderr)) def testMissingInputPathRaisesError(self): process = subprocess.Popen( [ 'tensorflowjs_converter' ], stdout=subprocess.PIPE, stderr=subprocess.PIPE) _, stderr = process.communicate() self.assertGreater(process.returncode, 0) self.assertIn(b'input_path', tf.compat.as_bytes(stderr)) def testKerasH5ConversionWorksFromCLI(self): with tf.Graph().as_default(), tf.compat.v1.Session(): # First create a toy keras model. os.makedirs(os.path.join(self._tmp_dir, 'keras_h5')) h5_path = os.path.join(self._tmp_dir, 'keras_h5', 'model.h5') _createKerasModel('MergedDenseForCLI', h5_path) process = subprocess.Popen([ 'tensorflowjs_converter', '--input_format', 'keras', h5_path, self._tmp_dir ]) process.communicate() self.assertEqual(0, process.returncode) # Briefly check the model topology. with open(os.path.join(self._tmp_dir, 'model.json'), 'rt') as f: json_content = json.load(f) model_json = json_content['modelTopology'] self.assertIsInstance(model_json['model_config'], dict) self.assertIsInstance(model_json['model_config']['config'], dict) self.assertIn('layers', model_json['model_config']['config']) weights_manifest = json_content['weightsManifest'] self.assertIsInstance(weights_manifest, list) # Briefly check the weights manifest. weight_shapes = dict() weight_dtypes = dict() for manifest_item in weights_manifest: for weight in manifest_item['weights']: weight_name = weight['name'] weight_shapes[weight_name] = weight['shape'] weight_dtypes[weight_name] = weight['dtype'] self.assertEqual( sorted(list(weight_shapes.keys())), sorted([ 'MergedDenseForCLI1/kernel', 'MergedDenseForCLI1/bias', 'MergedDenseForCLI2/kernel' ])) self.assertEqual(weight_shapes['MergedDenseForCLI1/kernel'], [3, 4]) self.assertEqual(weight_shapes['MergedDenseForCLI1/bias'], [4]) self.assertEqual(weight_shapes['MergedDenseForCLI2/kernel'], [4, 2]) self.assertEqual(weight_dtypes['MergedDenseForCLI1/kernel'], 'float32') self.assertEqual(weight_dtypes['MergedDenseForCLI1/bias'], 'float32') self.assertEqual(weight_dtypes['MergedDenseForCLI2/kernel'], 'float32') # Verify that there is only one weight group due to the default # non-split_weights_by_layer behavior. The model is a small one, which # does not exceed the 4-MB shard size limit. Therefore, there should # be only one weight file. self.assertEqual( 1, len(glob.glob(os.path.join(self._tmp_dir, 'group*')))) def testKerasH5ConversionSplitWeightsByLayerWorksFromCLI(self): with tf.Graph().as_default(), tf.compat.v1.Session(): # First create a toy keras model. os.makedirs(os.path.join(self._tmp_dir, 'keras_h5')) h5_path = os.path.join(self._tmp_dir, 'keras_h5', 'model.h5') _createKerasModel('MergedDenseForCLI', h5_path) process = subprocess.Popen([ 'tensorflowjs_converter', '--input_format', 'keras', '--split_weights_by_layer', h5_path, self._tmp_dir ]) process.communicate() self.assertEqual(0, process.returncode) # Briefly check the model topology. with open(os.path.join(self._tmp_dir, 'model.json'), 'rt') as f: json_content = json.load(f) model_json = json_content['modelTopology'] self.assertIsInstance(model_json['model_config'], dict) self.assertIsInstance(model_json['model_config']['config'], dict) self.assertIn('layers', model_json['model_config']['config']) weights_manifest = json_content['weightsManifest'] self.assertIsInstance(weights_manifest, list) # Briefly check the weights manifest. weight_shapes = dict() weight_dtypes = dict() for manifest_item in weights_manifest: for weight in manifest_item['weights']: weight_name = weight['name'] weight_shapes[weight_name] = weight['shape'] weight_dtypes[weight_name] = weight['dtype'] self.assertEqual( sorted(list(weight_shapes.keys())), sorted([ 'MergedDenseForCLI1/kernel', 'MergedDenseForCLI1/bias', 'MergedDenseForCLI2/kernel' ])) self.assertEqual(weight_shapes['MergedDenseForCLI1/kernel'], [3, 4]) self.assertEqual(weight_shapes['MergedDenseForCLI1/bias'], [4]) self.assertEqual(weight_shapes['MergedDenseForCLI2/kernel'], [4, 2]) self.assertEqual(weight_dtypes['MergedDenseForCLI1/kernel'], 'float32') self.assertEqual(weight_dtypes['MergedDenseForCLI1/bias'], 'float32') self.assertEqual(weight_dtypes['MergedDenseForCLI2/kernel'], 'float32') # Verify that there are two weight groups due to the optional flag # --split_weights_by_layer behavior. The model is a small one. None of # the layers should have weight sizes exceeding the 4-MB shard size # limit. self.assertEqual( 2, len(glob.glob(os.path.join(self._tmp_dir, 'group*')))) def testKerasH5ConversionWithSignatureNameErrors(self): process = subprocess.Popen( [ 'tensorflowjs_converter', '--input_format', 'keras', '--signature_name', 'bar', os.path.join(self._tmp_dir, 'foo.h5'), os.path.join(self._tmp_dir, 'output') ], stdout=subprocess.PIPE, stderr=subprocess.PIPE) _, stderr = process.communicate() self.assertGreater(process.returncode, 0) self.assertIn( b'The --signature_name flag is applicable only to', tf.compat.as_bytes(stderr)) def testConvertTFSavedModelV1WithCommandLineWorks(self): output_dir = os.path.join(self._tmp_dir) process = subprocess.Popen([ 'tensorflowjs_converter', '--input_format', 'tf_saved_model', '--output_format', 'tfjs_graph_model', self.tf_saved_model_v1_dir, output_dir ]) process.communicate() self.assertEqual(0, process.returncode) weights = [{ 'paths': ['group1-shard1of1.bin'], 'weights': [{'dtype': 'float32', 'name': 'w', 'shape': [2, 2]}]}] # Load the saved weights as a JSON string. output_json = json.load( open(os.path.join(output_dir, 'model.json'), 'rt')) self.assertEqual(output_json['weightsManifest'], weights) # Check the content of the output directory. self.assertTrue(glob.glob(os.path.join(output_dir, 'group*-*'))) def testConvertTFHubModuleWithCommandLineWorks(self): output_dir = os.path.join(self._tmp_dir) process = subprocess.Popen([ 'tensorflowjs_converter', '--input_format', 'tf_hub', self.tf_hub_module_dir, output_dir ]) process.communicate() self.assertEqual(0, process.returncode) weights = [{ 'paths': ['group1-shard1of1.bin'], 'weights': [{ 'shape': [2], 'name': 'module/Variable', 'dtype': 'float32' }] }] # Load the saved weights as a JSON string. output_json = json.load( open(os.path.join(output_dir, 'model.json'), 'rt')) self.assertEqual(output_json['weightsManifest'], weights) # Check the content of the output directory. self.assertTrue(glob.glob(os.path.join(output_dir, 'group*-*'))) def testConvertTFSavedModelWithCommandLineWorks(self): output_dir = os.path.join(self._tmp_dir) process = subprocess.Popen([ 'tensorflowjs_converter', '--input_format', 'tf_saved_model', '--output_format', 'tfjs_graph_model', self.tf_saved_model_dir, output_dir ]) process.communicate() self.assertEqual(0, process.returncode) weights = [{ 'paths': ['group1-shard1of1.bin'], 'weights': [{ 'dtype': 'float32', 'shape': [], 'name': 'StatefulPartitionedCall/mul' }] }] # Load the saved weights as a JSON string. output_json = json.load( open(os.path.join(output_dir, 'model.json'), 'rt')) weights_manifest = output_json['weightsManifest'] self.assertEqual(len(weights_manifest), len(weights)) if sys.version_info[0] < 3: self.assertItemsEqual(weights_manifest[0]['paths'], weights[0]['paths']) self.assertItemsEqual(weights_manifest[0]['weights'], weights[0]['weights']) else: self.assertCountEqual(weights_manifest[0]['paths'], weights[0]['paths']) self.assertCountEqual(weights_manifest[0]['weights'], weights[0]['weights']) # Check the content of the output directory. self.assertTrue(glob.glob(os.path.join(output_dir, 'group*-*'))) def testConvertTFHubModuleWithCommandLineWorks(self): output_dir = os.path.join(self._tmp_dir) process = subprocess.Popen([ 'tensorflowjs_converter', '--input_format', 'tf_hub', self.tf_hub_module_dir, output_dir ]) process.communicate() self.assertEqual(0, process.returncode) weights = [{ 'paths': ['group1-shard1of1.bin'], 'weights': [{ 'shape': [2], 'name': 'module/Variable', 'dtype': 'float32' }] }] # Load the saved weights as a JSON string. output_json = json.load( open(os.path.join(output_dir, 'model.json'), 'rt')) self.assertEqual(output_json['weightsManifest'], weights) # Check the content of the output directory. self.assertTrue(glob.glob(os.path.join(output_dir, 'group*-*'))) def testConvertTensorflowjsArtifactsToKerasH5(self): # 1. Create a toy keras model and save it as an HDF5 file. os.makedirs(os.path.join(self._tmp_dir, 'keras_h5')) h5_path = os.path.join(self._tmp_dir, 'keras_h5', 'model.h5') with tf.Graph().as_default(), tf.compat.v1.Session(): model = _createKerasModel('MergedDenseForCLI', h5_path) model_json = model.to_json() # 2. Convert the HDF5 file to tensorflowjs format. process = subprocess.Popen([ 'tensorflowjs_converter', '--input_format', 'keras', h5_path, self._tmp_dir ]) process.communicate() self.assertEqual(0, process.returncode) # 3. Convert the tensorflowjs artifacts back to HDF5. new_h5_path = os.path.join(self._tmp_dir, 'model_2.h5') process = subprocess.Popen([ 'tensorflowjs_converter', '--input_format', 'tfjs_layers_model', '--output_format', 'keras', os.path.join(self._tmp_dir, 'model.json'), new_h5_path]) process.communicate() self.assertEqual(0, process.returncode) # 4. Load the model back from the new HDF5 file and compare with the # original model. with tf.Graph().as_default(), tf.compat.v1.Session(): model_2 = keras.models.load_model(new_h5_path) model_2_json = model_2.to_json() self.assertEqual(model_json, model_2_json) def testLoadTensorflowjsArtifactsAsKerasModel(self): # 1. Create a toy keras model and save it as an HDF5 file. os.makedirs(os.path.join(self._tmp_dir, 'keras_h5')) h5_path = os.path.join(self._tmp_dir, 'keras_h5', 'model.h5') with tf.Graph().as_default(), tf.compat.v1.Session(): model = _createKerasModel('MergedDenseForCLI', h5_path) model_json = model.to_json() # 2. Convert the HDF5 file to tensorflowjs format. process = subprocess.Popen([ 'tensorflowjs_converter', '--input_format', 'keras', h5_path, self._tmp_dir ]) process.communicate() self.assertEqual(0, process.returncode) # 3. Load the tensorflowjs artifacts as a keras.Model instance. with tf.Graph().as_default(), tf.compat.v1.Session(): model_2 = tfjs.converters.load_keras_model( os.path.join(self._tmp_dir, 'model.json')) model_2_json = model_2.to_json() self.assertEqual(model_json, model_2_json) def testVersion(self): process = subprocess.Popen( ['tensorflowjs_converter', '--version'], stdout=subprocess.PIPE, stderr=subprocess.PIPE) stdout, _ = process.communicate() self.assertEqual(0, process.returncode) self.assertIn( tf.compat.as_bytes('tensorflowjs %s' % tfjs.__version__), tf.compat.as_bytes(stdout)) process = subprocess.Popen( ['tensorflowjs_converter', '-v'], stdout=subprocess.PIPE, stderr=subprocess.PIPE) stdout, _ = process.communicate() self.assertEqual(0, process.returncode) self.assertIn( tf.compat.as_bytes('tensorflowjs %s' % tfjs.__version__), tf.compat.as_bytes(stdout)) class ConvertTfKerasSavedModelTest(tf.test.TestCase): def setUp(self): super(ConvertTfKerasSavedModelTest, self).setUp() self._tmp_dir = tempfile.mkdtemp() def tearDown(self): if os.path.isdir(self._tmp_dir): shutil.rmtree(self._tmp_dir) super(ConvertTfKerasSavedModelTest, self).tearDown() def _createSimpleSequentialModel(self): model = keras.Sequential() model.add(keras.layers.Reshape([2, 3], input_shape=[6])) model.add(keras.layers.LSTM(10)) model.add(keras.layers.Dense(1, activation='sigmoid')) return model def _createNestedSequentialModel(self): model = keras.Sequential() model.add(keras.layers.Dense(6, input_shape=[10], activation='relu')) model.add(self._createSimpleSequentialModel()) return model def _createFunctionalModelWithWeights(self): input1 = keras.Input(shape=[8]) input2 = keras.Input(shape=[10]) y = keras.layers.Concatenate()([input1, input2]) y = keras.layers.Dense(4, activation='softmax')(y) model = keras.Model([input1, input2], y) return model def testConvertTfKerasNestedSequentialSavedModelIntoTfjsFormat(self): with tf.Graph().as_default(), tf.compat.v1.Session(): x = np.random.randn(8, 10) # 1. Run the model.predict(), store the result. Then saved the model # as a SavedModel. model = self._createNestedSequentialModel() y = model.predict(x) keras.experimental.export_saved_model(model, self._tmp_dir) # 2. Convert the keras saved model to tfjs format. tfjs_output_dir = os.path.join(self._tmp_dir, 'tfjs') # Implicit value of --output_format: tfjs_layers_model process = subprocess.Popen([ 'tensorflowjs_converter', '--input_format', 'keras_saved_model', self._tmp_dir, tfjs_output_dir ]) process.communicate() self.assertEqual(0, process.returncode) model_json_path = os.path.join(tfjs_output_dir, 'model.json') self.assertTrue(os.path.isfile(model_json_path)) # 3. Convert the tfjs model to keras h5 format. new_h5_path = os.path.join(self._tmp_dir, 'new_h5.h5') process = subprocess.Popen([ 'tensorflowjs_converter', '--input_format', 'tfjs_layers_model', '--output_format', 'keras', model_json_path, new_h5_path]) process.communicate() self.assertEqual(0, process.returncode) self.assertTrue(os.path.isfile(new_h5_path)) # 4. Load the model back and assert on the equality of the predict # results. model_prime = keras.models.load_model(new_h5_path) new_y = model_prime.predict(x) self.assertAllClose(y, new_y) def testConvertTfKerasFunctionalSavedModelIntoTfjsFormat(self): with tf.Graph().as_default(), tf.compat.v1.Session(): x1 = np.random.randn(4, 8) x2 = np.random.randn(4, 10) # 1. Run the model.predict(), store the result. Then saved the model # as a SavedModel. model = self._createFunctionalModelWithWeights() y = model.predict([x1, x2]) keras.experimental.export_saved_model(model, self._tmp_dir) # 2. Convert the keras saved model to tfjs format. tfjs_output_dir = os.path.join(self._tmp_dir, 'tfjs') # Use explicit --output_format value: tfjs_layers_model process = subprocess.Popen([ 'tensorflowjs_converter', '--input_format', 'keras_saved_model', '--output_format', 'tfjs_layers_model', self._tmp_dir, tfjs_output_dir ]) process.communicate() self.assertEqual(0, process.returncode) model_json_path = os.path.join(tfjs_output_dir, 'model.json') self.assertTrue(os.path.isfile(model_json_path)) # 3. Convert the tfjs model to keras h5 format. new_h5_path = os.path.join(self._tmp_dir, 'new_h5.h5') process = subprocess.Popen([ 'tensorflowjs_converter', '--input_format', 'tfjs_layers_model', '--output_format', 'keras', model_json_path, new_h5_path]) process.communicate() self.assertEqual(0, process.returncode) self.assertTrue(os.path.isfile(new_h5_path)) # 4. Load the model back and assert on the equality of the predict # results. model_prime = keras.models.load_model(new_h5_path) new_y = model_prime.predict([x1, x2]) self.assertAllClose(y, new_y) def testUsingIncorrectKerasSavedModelRaisesError(self): with tf.Graph().as_default(), tf.compat.v1.Session(): x = np.random.randn(8, 10) # 1. Run the model.predict(), store the result. Then saved the model # as a SavedModel. model = self._createNestedSequentialModel() y = model.predict(x) keras.experimental.export_saved_model(model, self._tmp_dir) # 2. Convert the keras saved model to tfjs format. tfjs_output_dir = os.path.join(self._tmp_dir, 'tfjs') # Use incorrect --input_format value: keras process = subprocess.Popen( [ 'tensorflowjs_converter', '--input_format', 'keras', self._tmp_dir, tfjs_output_dir ], stdout=subprocess.PIPE, stderr=subprocess.PIPE) _, stderr = process.communicate() self.assertIn( b'Expected path to point to an HDF5 file, ' b'but it points to a directory', tf.compat.as_bytes(stderr)) def testConvertTfjsLayersModelIntoShardedWeights(self): with tf.Graph().as_default(), tf.compat.v1.Session(): x = np.random.randn(8, 10) # 1. Run the model.predict(), store the result. Then saved the model # as a SavedModel. model = self._createNestedSequentialModel() y = model.predict(x) weights = model.get_weights() total_weight_bytes = sum(np.size(w) for w in weights) * 4 keras.experimental.export_saved_model(model, self._tmp_dir) # 2. Convert the keras saved model to tfjs_layers_model format. tfjs_output_dir = os.path.join(self._tmp_dir, 'tfjs') # Implicit value of --output_format: tfjs_layers_model process = subprocess.Popen([ 'tensorflowjs_converter', '--input_format', 'keras_saved_model', self._tmp_dir, tfjs_output_dir ]) process.communicate() self.assertEqual(0, process.returncode) # 3. Convert the tfjs_layers_model to another tfjs_layers_model, # with sharded weights. weight_shard_size_bytes = int(total_weight_bytes * 0.3) # Due to the shard size, there ought to be 4 shards after conversion. sharded_model_dir = os.path.join(self._tmp_dir, 'tfjs_sharded') process = subprocess.Popen([ 'tensorflowjs_converter', '--input_format', 'tfjs_layers_model', '--output_format', 'tfjs_layers_model', '--weight_shard_size_bytes', str(weight_shard_size_bytes), os.path.join(tfjs_output_dir, 'model.json'), sharded_model_dir ]) process.communicate() self.assertEqual(0, process.returncode) # 4. Check the sharded weight files and their sizes. weight_files = sorted( glob.glob(os.path.join(sharded_model_dir, 'group*.bin'))) self.assertEqual(len(weight_files), 4) weight_file_sizes = [os.path.getsize(f) for f in weight_files] self.assertEqual(sum(weight_file_sizes), total_weight_bytes) self.assertEqual(weight_file_sizes[0], weight_file_sizes[1]) self.assertEqual(weight_file_sizes[0], weight_file_sizes[2]) self.assertLess(weight_file_sizes[3], weight_file_sizes[0]) # 5. Convert the sharded tfjs_layers_model back into a keras h5 file. new_h5_path = os.path.join(self._tmp_dir, 'new_h5.h5') process = subprocess.Popen([ 'tensorflowjs_converter', '--input_format', 'tfjs_layers_model', os.path.join(sharded_model_dir, 'model.json'), new_h5_path ]) process.communicate() self.assertEqual(0, process.returncode) with tf.Graph().as_default(), tf.compat.v1.Session(): # 6. Load the keras model and check the predict() output is close to # before. new_model = keras.models.load_model(new_h5_path) new_y = new_model.predict(x) self.assertAllClose(new_y, y) def testConvertTfjsLayersModelWithQuantization(self): with tf.Graph().as_default(), tf.compat.v1.Session(): x = np.random.randn(8, 10) # 1. Run the model.predict(), store the result. Then saved the model # as a SavedModel. model = self._createNestedSequentialModel() y = model.predict(x) weights = model.get_weights() total_weight_bytes = sum(np.size(w) for w in weights) * 4 keras.experimental.export_saved_model(model, self._tmp_dir) # 2. Convert the keras saved model to tfjs_layers_model format. tfjs_output_dir = os.path.join(self._tmp_dir, 'tfjs') # Implicit value of --output_format: tfjs_layers_model process = subprocess.Popen([ 'tensorflowjs_converter', '--input_format', 'keras_saved_model', self._tmp_dir, tfjs_output_dir ]) process.communicate() self.assertEqual(0, process.returncode) # 3. Convert the tfjs_layers_model to another tfjs_layers_model, # with uint16 quantization. weight_shard_size_bytes = int(total_weight_bytes * 0.3) # Due to the shard size, there ought to be 4 shards after conversion. sharded_model_dir = os.path.join(self._tmp_dir, 'tfjs_sharded') process = subprocess.Popen([ 'tensorflowjs_converter', '--input_format', 'tfjs_layers_model', '--output_format', 'tfjs_layers_model', '--quantization_bytes', '2', os.path.join(tfjs_output_dir, 'model.json'), sharded_model_dir ]) process.communicate() self.assertEqual(0, process.returncode) # 4. Check the quantized weight file and its size. weight_files = sorted( glob.glob(os.path.join(sharded_model_dir, 'group*.bin'))) self.assertEqual(len(weight_files), 1) weight_file_size = os.path.getsize(weight_files[0]) # The size of the weight file should reflect the uint16 quantization. self.assertEqual(weight_file_size, total_weight_bytes // 2) def testConvertTfjsLayersModelToTfjsGraphModel(self): x = np.random.randn(8, 10) # 1. Create a model for testing. model = keras.Sequential() model.add(keras.layers.Dense(10, activation='relu', input_shape=[4])) model.add(keras.layers.Dense(1, activation='sigmoid')) h5_path = os.path.join(self._tmp_dir, 'model.h5') model.save(h5_path) # 2. Convert the keras saved model to tfjs_layers_model format. layers_model_output_dir = os.path.join(self._tmp_dir, 'tfjs_layers') # Implicit value of --output_format: tfjs_layers_model process = subprocess.Popen([ 'tensorflowjs_converter', '--input_format', 'keras', h5_path, layers_model_output_dir ]) process.communicate() self.assertEqual(0, process.returncode) # 3. Convert the tfjs_layers_model to another tfjs_graph_model. graph_model_dir = os.path.join(self._tmp_dir, 'tfjs_graph') process = subprocess.Popen([ 'tensorflowjs_converter', '--input_format', 'tfjs_layers_model', '--output_format', 'tfjs_graph_model', os.path.join(layers_model_output_dir, 'model.json'), graph_model_dir ]) process.communicate() self.assertEqual(0, process.returncode) # 4. Check the model.json and weight file and its size. self.assertTrue(os.path.isfile(os.path.join(graph_model_dir, 'model.json'))) weight_files = sorted( glob.glob(os.path.join(graph_model_dir, 'group*.bin'))) self.assertEqual(len(weight_files), 1) if __name__ == '__main__': tf.test.main()
[ "tensorflow.python.eager.def_function.function", "tensorflow.keras.layers.Dense", "tensorflow.keras.models.load_model", "tensorflow.keras.experimental.export_saved_model", "tensorflow.compat.as_bytes", "tensorflow.python.ops.variables.Variable", "tensorflow.compat.v1.Session", "tensorflow.compat.v1.global_variables_initializer", "tensorflow.compat.v1.placeholder", "tensorflow.keras.layers.Input", "tensorflow.Graph", "tensorflow.compat.v1.saved_model.builder.SavedModelBuilder", "tensorflow.keras.layers.Reshape", "tensorflow.keras.Sequential", "tensorflow_hub.create_module_spec", "tensorflow.python.training.tracking.tracking.AutoTrackable", "tensorflow.python.saved_model.save.save", "subprocess.Popen", "tensorflow.compat.v1.saved_model.signature_def_utils.predict_signature_def", "os.path.isdir", "tensorflow.keras.models.Model", "tensorflow.compat.v1.nn.softmax", "os.path.getsize", "tensorflow_hub.Module", "tensorflow.Variable", "numpy.size", "tensorflowjs.converters.save_keras_model", "os.path.isfile", "tensorflow.keras.layers.LSTM", "os.path.dirname", "tempfile.mkdtemp", "tensorflow.compat.v1.constant", "tensorflow.keras.Input", "numpy.random.randn", "tensorflow.compat.v1.name_scope", "tensorflow.compat.v1.matmul", "tensorflow.compat.v1.get_variable", "tensorflow.keras.layers.Concatenate", "os.path.join", "tensorflow.python.framework.constant_op.constant", "tensorflowjs.__version__.count", "tensorflow.test.main", "json.load", "shutil.rmtree", "tensorflow.keras.Model", "tensorflow_hub.add_signature" ]
[((1826, 1850), 'tensorflow.keras.layers.Input', 'keras.layers.Input', (['(3,)'], {}), '((3,))\n', (1844, 1850), False, 'from tensorflow import keras\n'), ((2177, 2236), 'tensorflow.keras.models.Model', 'keras.models.Model', ([], {'inputs': '[input_tensor]', 'outputs': '[output]'}), '(inputs=[input_tensor], outputs=[output])\n', (2195, 2236), False, 'from tensorflow import keras\n'), ((2622, 2632), 'tensorflow.Graph', 'tf.Graph', ([], {}), '()\n', (2630, 2632), True, 'import tensorflow as tf\n'), ((3916, 3952), 'tensorflow.python.framework.constant_op.constant', 'constant_op.constant', (['(1.0)'], {'shape': '[1]'}), '(1.0, shape=[1])\n', (3936, 3952), False, 'from tensorflow.python.framework import constant_op\n'), ((3961, 3985), 'tensorflow.python.training.tracking.tracking.AutoTrackable', 'tracking.AutoTrackable', ([], {}), '()\n', (3983, 3985), False, 'from tensorflow.python.training.tracking import tracking\n'), ((3998, 4021), 'tensorflow.python.ops.variables.Variable', 'variables.Variable', (['(3.0)'], {}), '(3.0)\n', (4016, 4021), False, 'from tensorflow.python.ops import variables\n'), ((4033, 4056), 'tensorflow.python.ops.variables.Variable', 'variables.Variable', (['(2.0)'], {}), '(2.0)\n', (4051, 4056), False, 'from tensorflow.python.ops import variables\n'), ((4067, 4121), 'tensorflow.python.eager.def_function.function', 'def_function.function', (['(lambda x: root.v1 * root.v2 * x)'], {}), '(lambda x: root.v1 * root.v2 * x)\n', (4088, 4121), False, 'from tensorflow.python.eager import def_function\n'), ((4178, 4208), 'tensorflow.python.saved_model.save.save', 'save', (['root', 'save_path', 'to_save'], {}), '(root, save_path, to_save)\n', (4182, 4208), False, 'from tensorflow.python.saved_model.save import save\n'), ((4580, 4590), 'tensorflow.Graph', 'tf.Graph', ([], {}), '()\n', (4588, 4590), True, 'import tensorflow as tf\n'), ((33845, 33859), 'tensorflow.test.main', 'tf.test.main', ([], {}), '()\n', (33857, 33859), True, 'import tensorflow as tf\n'), ((1863, 1986), 'tensorflow.keras.layers.Dense', 'keras.layers.Dense', (['(4)'], {'use_bias': '(True)', 'kernel_initializer': '"""ones"""', 'bias_initializer': '"""zeros"""', 'name': "(layer_name_prefix + '1')"}), "(4, use_bias=True, kernel_initializer='ones',\n bias_initializer='zeros', name=layer_name_prefix + '1')\n", (1881, 1986), False, 'from tensorflow import keras\n'), ((2039, 2138), 'tensorflow.keras.layers.Dense', 'keras.layers.Dense', (['(2)'], {'use_bias': '(False)', 'kernel_initializer': '"""ones"""', 'name': "(layer_name_prefix + '2')"}), "(2, use_bias=False, kernel_initializer='ones', name=\n layer_name_prefix + '2')\n", (2057, 2138), False, 'from tensorflow import keras\n'), ((4450, 4473), 'tensorflow.Variable', 'tf.Variable', (['[2.0, 4.0]'], {}), '([2.0, 4.0])\n', (4461, 4473), True, 'import tensorflow as tf\n'), ((4482, 4524), 'tensorflow.compat.v1.placeholder', 'tf.compat.v1.placeholder', ([], {'dtype': 'tf.float32'}), '(dtype=tf.float32)\n', (4506, 4524), True, 'import tensorflow as tf\n'), ((4529, 4571), 'tensorflow_hub.add_signature', 'hub.add_signature', ([], {'inputs': 'x', 'outputs': '(x * w)'}), '(inputs=x, outputs=x * w)\n', (4546, 4571), True, 'import tensorflow_hub as hub\n'), ((4629, 4669), 'tensorflow_hub.create_module_spec', 'hub.create_module_spec', (['double_module_fn'], {}), '(double_module_fn)\n', (4651, 4669), True, 'import tensorflow_hub as hub\n'), ((4678, 4694), 'tensorflow_hub.Module', 'hub.Module', (['spec'], {}), '(spec)\n', (4688, 4694), True, 'import tensorflow_hub as hub\n'), ((4725, 4758), 'tensorflow.compat.v1.Session', 'tf.compat.v1.Session', ([], {'graph': 'graph'}), '(graph=graph)\n', (4745, 4758), True, 'import tensorflow as tf\n'), ((5014, 5032), 'tempfile.mkdtemp', 'tempfile.mkdtemp', ([], {}), '()\n', (5030, 5032), False, 'import tempfile\n'), ((5062, 5111), 'os.path.join', 'os.path.join', (['cls.class_tmp_dir', '"""tf_saved_model"""'], {}), "(cls.class_tmp_dir, 'tf_saved_model')\n", (5074, 5111), False, 'import os\n'), ((5144, 5196), 'os.path.join', 'os.path.join', (['cls.class_tmp_dir', '"""tf_saved_model_v1"""'], {}), "(cls.class_tmp_dir, 'tf_saved_model_v1')\n", (5156, 5196), False, 'import os\n'), ((5369, 5417), 'os.path.join', 'os.path.join', (['cls.class_tmp_dir', '"""tf_hub_module"""'], {}), "(cls.class_tmp_dir, 'tf_hub_module')\n", (5381, 5417), False, 'import os\n'), ((5510, 5542), 'shutil.rmtree', 'shutil.rmtree', (['cls.class_tmp_dir'], {}), '(cls.class_tmp_dir)\n', (5523, 5542), False, 'import shutil\n'), ((5923, 5941), 'tempfile.mkdtemp', 'tempfile.mkdtemp', ([], {}), '()\n', (5939, 5941), False, 'import tempfile\n'), ((6013, 6041), 'os.path.isdir', 'os.path.isdir', (['self._tmp_dir'], {}), '(self._tmp_dir)\n', (6026, 6041), False, 'import os\n'), ((9021, 9192), 'subprocess.Popen', 'subprocess.Popen', (["['tensorflowjs_converter', '--input_format', 'nonsensical_format', self.\n _tmp_dir, self._tmp_dir]"], {'stdout': 'subprocess.PIPE', 'stderr': 'subprocess.PIPE'}), "(['tensorflowjs_converter', '--input_format',\n 'nonsensical_format', self._tmp_dir, self._tmp_dir], stdout=subprocess.\n PIPE, stderr=subprocess.PIPE)\n", (9037, 9192), False, 'import subprocess\n'), ((9452, 9549), 'subprocess.Popen', 'subprocess.Popen', (["['tensorflowjs_converter']"], {'stdout': 'subprocess.PIPE', 'stderr': 'subprocess.PIPE'}), "(['tensorflowjs_converter'], stdout=subprocess.PIPE, stderr\n =subprocess.PIPE)\n", (9468, 9549), False, 'import subprocess\n'), ((15253, 15280), 'os.path.join', 'os.path.join', (['self._tmp_dir'], {}), '(self._tmp_dir)\n', (15265, 15280), False, 'import os\n'), ((15295, 15463), 'subprocess.Popen', 'subprocess.Popen', (["['tensorflowjs_converter', '--input_format', 'tf_saved_model',\n '--output_format', 'tfjs_graph_model', self.tf_saved_model_v1_dir,\n output_dir]"], {}), "(['tensorflowjs_converter', '--input_format',\n 'tf_saved_model', '--output_format', 'tfjs_graph_model', self.\n tf_saved_model_v1_dir, output_dir])\n", (15311, 15463), False, 'import subprocess\n'), ((16083, 16110), 'os.path.join', 'os.path.join', (['self._tmp_dir'], {}), '(self._tmp_dir)\n', (16095, 16110), False, 'import os\n'), ((16125, 16237), 'subprocess.Popen', 'subprocess.Popen', (["['tensorflowjs_converter', '--input_format', 'tf_hub', self.\n tf_hub_module_dir, output_dir]"], {}), "(['tensorflowjs_converter', '--input_format', 'tf_hub',\n self.tf_hub_module_dir, output_dir])\n", (16141, 16237), False, 'import subprocess\n'), ((16915, 16942), 'os.path.join', 'os.path.join', (['self._tmp_dir'], {}), '(self._tmp_dir)\n', (16927, 16942), False, 'import os\n'), ((16957, 17122), 'subprocess.Popen', 'subprocess.Popen', (["['tensorflowjs_converter', '--input_format', 'tf_saved_model',\n '--output_format', 'tfjs_graph_model', self.tf_saved_model_dir, output_dir]"], {}), "(['tensorflowjs_converter', '--input_format',\n 'tf_saved_model', '--output_format', 'tfjs_graph_model', self.\n tf_saved_model_dir, output_dir])\n", (16973, 17122), False, 'import subprocess\n'), ((18336, 18363), 'os.path.join', 'os.path.join', (['self._tmp_dir'], {}), '(self._tmp_dir)\n', (18348, 18363), False, 'import os\n'), ((18378, 18490), 'subprocess.Popen', 'subprocess.Popen', (["['tensorflowjs_converter', '--input_format', 'tf_hub', self.\n tf_hub_module_dir, output_dir]"], {}), "(['tensorflowjs_converter', '--input_format', 'tf_hub',\n self.tf_hub_module_dir, output_dir])\n", (18394, 18490), False, 'import subprocess\n'), ((19283, 19334), 'os.path.join', 'os.path.join', (['self._tmp_dir', '"""keras_h5"""', '"""model.h5"""'], {}), "(self._tmp_dir, 'keras_h5', 'model.h5')\n", (19295, 19334), False, 'import os\n'), ((19560, 19659), 'subprocess.Popen', 'subprocess.Popen', (["['tensorflowjs_converter', '--input_format', 'keras', h5_path, self._tmp_dir]"], {}), "(['tensorflowjs_converter', '--input_format', 'keras',\n h5_path, self._tmp_dir])\n", (19576, 19659), False, 'import subprocess\n'), ((19825, 19866), 'os.path.join', 'os.path.join', (['self._tmp_dir', '"""model_2.h5"""'], {}), "(self._tmp_dir, 'model_2.h5')\n", (19837, 19866), False, 'import os\n'), ((20632, 20683), 'os.path.join', 'os.path.join', (['self._tmp_dir', '"""keras_h5"""', '"""model.h5"""'], {}), "(self._tmp_dir, 'keras_h5', 'model.h5')\n", (20644, 20683), False, 'import os\n'), ((20909, 21008), 'subprocess.Popen', 'subprocess.Popen', (["['tensorflowjs_converter', '--input_format', 'keras', h5_path, self._tmp_dir]"], {}), "(['tensorflowjs_converter', '--input_format', 'keras',\n h5_path, self._tmp_dir])\n", (20925, 21008), False, 'import subprocess\n'), ((21455, 21565), 'subprocess.Popen', 'subprocess.Popen', (["['tensorflowjs_converter', '--version']"], {'stdout': 'subprocess.PIPE', 'stderr': 'subprocess.PIPE'}), "(['tensorflowjs_converter', '--version'], stdout=subprocess\n .PIPE, stderr=subprocess.PIPE)\n", (21471, 21565), False, 'import subprocess\n'), ((21804, 21906), 'subprocess.Popen', 'subprocess.Popen', (["['tensorflowjs_converter', '-v']"], {'stdout': 'subprocess.PIPE', 'stderr': 'subprocess.PIPE'}), "(['tensorflowjs_converter', '-v'], stdout=subprocess.PIPE,\n stderr=subprocess.PIPE)\n", (21820, 21906), False, 'import subprocess\n'), ((22281, 22299), 'tempfile.mkdtemp', 'tempfile.mkdtemp', ([], {}), '()\n', (22297, 22299), False, 'import tempfile\n'), ((22330, 22358), 'os.path.isdir', 'os.path.isdir', (['self._tmp_dir'], {}), '(self._tmp_dir)\n', (22343, 22358), False, 'import os\n'), ((22507, 22525), 'tensorflow.keras.Sequential', 'keras.Sequential', ([], {}), '()\n', (22523, 22525), False, 'from tensorflow import keras\n'), ((22755, 22773), 'tensorflow.keras.Sequential', 'keras.Sequential', ([], {}), '()\n', (22771, 22773), False, 'from tensorflow import keras\n'), ((22977, 22999), 'tensorflow.keras.Input', 'keras.Input', ([], {'shape': '[8]'}), '(shape=[8])\n', (22988, 22999), False, 'from tensorflow import keras\n'), ((23013, 23036), 'tensorflow.keras.Input', 'keras.Input', ([], {'shape': '[10]'}), '(shape=[10])\n', (23024, 23036), False, 'from tensorflow import keras\n'), ((23157, 23189), 'tensorflow.keras.Model', 'keras.Model', (['[input1, input2]', 'y'], {}), '([input1, input2], y)\n', (23168, 23189), False, 'from tensorflow import keras\n'), ((32381, 32403), 'numpy.random.randn', 'np.random.randn', (['(8)', '(10)'], {}), '(8, 10)\n', (32396, 32403), True, 'import numpy as np\n'), ((32454, 32472), 'tensorflow.keras.Sequential', 'keras.Sequential', ([], {}), '()\n', (32470, 32472), False, 'from tensorflow import keras\n'), ((32621, 32660), 'os.path.join', 'os.path.join', (['self._tmp_dir', '"""model.h5"""'], {}), "(self._tmp_dir, 'model.h5')\n", (32633, 32660), False, 'import os\n'), ((32784, 32826), 'os.path.join', 'os.path.join', (['self._tmp_dir', '"""tfjs_layers"""'], {}), "(self._tmp_dir, 'tfjs_layers')\n", (32796, 32826), False, 'import os\n'), ((32900, 33009), 'subprocess.Popen', 'subprocess.Popen', (["['tensorflowjs_converter', '--input_format', 'keras', h5_path,\n layers_model_output_dir]"], {}), "(['tensorflowjs_converter', '--input_format', 'keras',\n h5_path, layers_model_output_dir])\n", (32916, 33009), False, 'import subprocess\n'), ((33189, 33230), 'os.path.join', 'os.path.join', (['self._tmp_dir', '"""tfjs_graph"""'], {}), "(self._tmp_dir, 'tfjs_graph')\n", (33201, 33230), False, 'import os\n'), ((2669, 2704), 'tensorflow.compat.v1.name_scope', 'tf.compat.v1.name_scope', (['name_scope'], {}), '(name_scope)\n', (2692, 2704), True, 'import tensorflow as tf\n'), ((2716, 2766), 'tensorflow.compat.v1.constant', 'tf.compat.v1.constant', (['[[37.0, -23.0], [1.0, 4.0]]'], {}), '([[37.0, -23.0], [1.0, 4.0]])\n', (2737, 2766), True, 'import tensorflow as tf\n'), ((2777, 2821), 'tensorflow.compat.v1.get_variable', 'tf.compat.v1.get_variable', (['"""w"""'], {'shape': '[2, 2]'}), "('w', shape=[2, 2])\n", (2802, 2821), True, 'import tensorflow as tf\n'), ((2832, 2857), 'tensorflow.compat.v1.matmul', 'tf.compat.v1.matmul', (['x', 'w'], {}), '(x, w)\n', (2851, 2857), True, 'import tensorflow as tf\n'), ((2873, 2899), 'tensorflow.compat.v1.nn.softmax', 'tf.compat.v1.nn.softmax', (['y'], {}), '(y)\n', (2896, 2899), True, 'import tensorflow as tf\n'), ((2973, 3034), 'tensorflow.compat.v1.saved_model.builder.SavedModelBuilder', 'tf.compat.v1.saved_model.builder.SavedModelBuilder', (['save_path'], {}), '(save_path)\n', (3023, 3034), True, 'import tensorflow as tf\n'), ((4781, 4824), 'tensorflow.compat.v1.global_variables_initializer', 'tf.compat.v1.global_variables_initializer', ([], {}), '()\n', (4822, 4824), True, 'import tensorflow as tf\n'), ((6049, 6077), 'shutil.rmtree', 'shutil.rmtree', (['self._tmp_dir'], {}), '(self._tmp_dir)\n', (6062, 6077), False, 'import shutil\n'), ((6178, 6205), 'tensorflowjs.__version__.count', 'tfjs.__version__.count', (['"""."""'], {}), "('.')\n", (6200, 6205), True, 'import tensorflowjs as tfjs\n'), ((6364, 6418), 'tensorflowjs.converters.save_keras_model', 'tfjs.converters.save_keras_model', (['model', 'self._tmp_dir'], {}), '(model, self._tmp_dir)\n', (6396, 6418), True, 'import tensorflowjs as tfjs\n'), ((8039, 8061), 'tensorflow.compat.v1.Session', 'tf.compat.v1.Session', ([], {}), '()\n', (8059, 8061), True, 'import tensorflow as tf\n'), ((8157, 8212), 'tensorflowjs.converters.save_keras_model', 'tfjs.converters.save_keras_model', (['model1', 'self._tmp_dir'], {}), '(model1, self._tmp_dir)\n', (8189, 8212), True, 'import tensorflowjs as tfjs\n'), ((8298, 8320), 'tensorflow.compat.v1.Session', 'tf.compat.v1.Session', ([], {}), '()\n', (8318, 8320), True, 'import tensorflow as tf\n'), ((9364, 9390), 'tensorflow.compat.as_bytes', 'tf.compat.as_bytes', (['stderr'], {}), '(stderr)\n', (9382, 9390), True, 'import tensorflow as tf\n'), ((9709, 9735), 'tensorflow.compat.as_bytes', 'tf.compat.as_bytes', (['stderr'], {}), '(stderr)\n', (9727, 9735), True, 'import tensorflow as tf\n'), ((9819, 9841), 'tensorflow.compat.v1.Session', 'tf.compat.v1.Session', ([], {}), '()\n', (9839, 9841), True, 'import tensorflow as tf\n'), ((9958, 10009), 'os.path.join', 'os.path.join', (['self._tmp_dir', '"""keras_h5"""', '"""model.h5"""'], {}), "(self._tmp_dir, 'keras_h5', 'model.h5')\n", (9970, 10009), False, 'import os\n'), ((10081, 10180), 'subprocess.Popen', 'subprocess.Popen', (["['tensorflowjs_converter', '--input_format', 'keras', h5_path, self._tmp_dir]"], {}), "(['tensorflowjs_converter', '--input_format', 'keras',\n h5_path, self._tmp_dir])\n", (10097, 10180), False, 'import subprocess\n'), ((12252, 12274), 'tensorflow.compat.v1.Session', 'tf.compat.v1.Session', ([], {}), '()\n', (12272, 12274), True, 'import tensorflow as tf\n'), ((12391, 12442), 'os.path.join', 'os.path.join', (['self._tmp_dir', '"""keras_h5"""', '"""model.h5"""'], {}), "(self._tmp_dir, 'keras_h5', 'model.h5')\n", (12403, 12442), False, 'import os\n'), ((12514, 12641), 'subprocess.Popen', 'subprocess.Popen', (["['tensorflowjs_converter', '--input_format', 'keras',\n '--split_weights_by_layer', h5_path, self._tmp_dir]"], {}), "(['tensorflowjs_converter', '--input_format', 'keras',\n '--split_weights_by_layer', h5_path, self._tmp_dir])\n", (12530, 12641), False, 'import subprocess\n'), ((15148, 15174), 'tensorflow.compat.as_bytes', 'tf.compat.as_bytes', (['stderr'], {}), '(stderr)\n', (15166, 15174), True, 'import tensorflow as tf\n'), ((19228, 19267), 'os.path.join', 'os.path.join', (['self._tmp_dir', '"""keras_h5"""'], {}), "(self._tmp_dir, 'keras_h5')\n", (19240, 19267), False, 'import os\n'), ((19369, 19391), 'tensorflow.compat.v1.Session', 'tf.compat.v1.Session', ([], {}), '()\n', (19389, 19391), True, 'import tensorflow as tf\n'), ((20277, 20299), 'tensorflow.compat.v1.Session', 'tf.compat.v1.Session', ([], {}), '()\n', (20297, 20299), True, 'import tensorflow as tf\n'), ((20317, 20353), 'tensorflow.keras.models.load_model', 'keras.models.load_model', (['new_h5_path'], {}), '(new_h5_path)\n', (20340, 20353), False, 'from tensorflow import keras\n'), ((20577, 20616), 'os.path.join', 'os.path.join', (['self._tmp_dir', '"""keras_h5"""'], {}), "(self._tmp_dir, 'keras_h5')\n", (20589, 20616), False, 'import os\n'), ((20718, 20740), 'tensorflow.compat.v1.Session', 'tf.compat.v1.Session', ([], {}), '()\n', (20738, 20740), True, 'import tensorflow as tf\n'), ((21200, 21222), 'tensorflow.compat.v1.Session', 'tf.compat.v1.Session', ([], {}), '()\n', (21220, 21222), True, 'import tensorflow as tf\n'), ((21695, 21751), 'tensorflow.compat.as_bytes', 'tf.compat.as_bytes', (["('tensorflowjs %s' % tfjs.__version__)"], {}), "('tensorflowjs %s' % tfjs.__version__)\n", (21713, 21751), True, 'import tensorflow as tf\n'), ((21761, 21787), 'tensorflow.compat.as_bytes', 'tf.compat.as_bytes', (['stdout'], {}), '(stdout)\n', (21779, 21787), True, 'import tensorflow as tf\n'), ((22037, 22093), 'tensorflow.compat.as_bytes', 'tf.compat.as_bytes', (["('tensorflowjs %s' % tfjs.__version__)"], {}), "('tensorflowjs %s' % tfjs.__version__)\n", (22055, 22093), True, 'import tensorflow as tf\n'), ((22103, 22129), 'tensorflow.compat.as_bytes', 'tf.compat.as_bytes', (['stdout'], {}), '(stdout)\n', (22121, 22129), True, 'import tensorflow as tf\n'), ((22366, 22394), 'shutil.rmtree', 'shutil.rmtree', (['self._tmp_dir'], {}), '(self._tmp_dir)\n', (22379, 22394), False, 'import shutil\n'), ((22540, 22585), 'tensorflow.keras.layers.Reshape', 'keras.layers.Reshape', (['[2, 3]'], {'input_shape': '[6]'}), '([2, 3], input_shape=[6])\n', (22560, 22585), False, 'from tensorflow import keras\n'), ((22601, 22622), 'tensorflow.keras.layers.LSTM', 'keras.layers.LSTM', (['(10)'], {}), '(10)\n', (22618, 22622), False, 'from tensorflow import keras\n'), ((22638, 22681), 'tensorflow.keras.layers.Dense', 'keras.layers.Dense', (['(1)'], {'activation': '"""sigmoid"""'}), "(1, activation='sigmoid')\n", (22656, 22681), False, 'from tensorflow import keras\n'), ((22788, 22846), 'tensorflow.keras.layers.Dense', 'keras.layers.Dense', (['(6)'], {'input_shape': '[10]', 'activation': '"""relu"""'}), "(6, input_shape=[10], activation='relu')\n", (22806, 22846), False, 'from tensorflow import keras\n'), ((23045, 23071), 'tensorflow.keras.layers.Concatenate', 'keras.layers.Concatenate', ([], {}), '()\n', (23069, 23071), False, 'from tensorflow import keras\n'), ((23098, 23141), 'tensorflow.keras.layers.Dense', 'keras.layers.Dense', (['(4)'], {'activation': '"""softmax"""'}), "(4, activation='softmax')\n", (23116, 23141), False, 'from tensorflow import keras\n'), ((23314, 23336), 'tensorflow.compat.v1.Session', 'tf.compat.v1.Session', ([], {}), '()\n', (23334, 23336), True, 'import tensorflow as tf\n'), ((23348, 23370), 'numpy.random.randn', 'np.random.randn', (['(8)', '(10)'], {}), '(8, 10)\n', (23363, 23370), True, 'import numpy as np\n'), ((23559, 23618), 'tensorflow.keras.experimental.export_saved_model', 'keras.experimental.export_saved_model', (['model', 'self._tmp_dir'], {}), '(model, self._tmp_dir)\n', (23596, 23618), False, 'from tensorflow import keras\n'), ((23701, 23736), 'os.path.join', 'os.path.join', (['self._tmp_dir', '"""tfjs"""'], {}), "(self._tmp_dir, 'tfjs')\n", (23713, 23736), False, 'import os\n'), ((23814, 23933), 'subprocess.Popen', 'subprocess.Popen', (["['tensorflowjs_converter', '--input_format', 'keras_saved_model', self.\n _tmp_dir, tfjs_output_dir]"], {}), "(['tensorflowjs_converter', '--input_format',\n 'keras_saved_model', self._tmp_dir, tfjs_output_dir])\n", (23830, 23933), False, 'import subprocess\n'), ((24057, 24100), 'os.path.join', 'os.path.join', (['tfjs_output_dir', '"""model.json"""'], {}), "(tfjs_output_dir, 'model.json')\n", (24069, 24100), False, 'import os\n'), ((24231, 24271), 'os.path.join', 'os.path.join', (['self._tmp_dir', '"""new_h5.h5"""'], {}), "(self._tmp_dir, 'new_h5.h5')\n", (24243, 24271), False, 'import os\n'), ((24288, 24437), 'subprocess.Popen', 'subprocess.Popen', (["['tensorflowjs_converter', '--input_format', 'tfjs_layers_model',\n '--output_format', 'keras', model_json_path, new_h5_path]"], {}), "(['tensorflowjs_converter', '--input_format',\n 'tfjs_layers_model', '--output_format', 'keras', model_json_path,\n new_h5_path])\n", (24304, 24437), False, 'import subprocess\n'), ((24691, 24727), 'tensorflow.keras.models.load_model', 'keras.models.load_model', (['new_h5_path'], {}), '(new_h5_path)\n', (24714, 24727), False, 'from tensorflow import keras\n'), ((24902, 24924), 'tensorflow.compat.v1.Session', 'tf.compat.v1.Session', ([], {}), '()\n', (24922, 24924), True, 'import tensorflow as tf\n'), ((24937, 24958), 'numpy.random.randn', 'np.random.randn', (['(4)', '(8)'], {}), '(4, 8)\n', (24952, 24958), True, 'import numpy as np\n'), ((24970, 24992), 'numpy.random.randn', 'np.random.randn', (['(4)', '(10)'], {}), '(4, 10)\n', (24985, 24992), True, 'import numpy as np\n'), ((25193, 25252), 'tensorflow.keras.experimental.export_saved_model', 'keras.experimental.export_saved_model', (['model', 'self._tmp_dir'], {}), '(model, self._tmp_dir)\n', (25230, 25252), False, 'from tensorflow import keras\n'), ((25335, 25370), 'os.path.join', 'os.path.join', (['self._tmp_dir', '"""tfjs"""'], {}), "(self._tmp_dir, 'tfjs')\n", (25347, 25370), False, 'import os\n'), ((25449, 25613), 'subprocess.Popen', 'subprocess.Popen', (["['tensorflowjs_converter', '--input_format', 'keras_saved_model',\n '--output_format', 'tfjs_layers_model', self._tmp_dir, tfjs_output_dir]"], {}), "(['tensorflowjs_converter', '--input_format',\n 'keras_saved_model', '--output_format', 'tfjs_layers_model', self.\n _tmp_dir, tfjs_output_dir])\n", (25465, 25613), False, 'import subprocess\n'), ((25742, 25785), 'os.path.join', 'os.path.join', (['tfjs_output_dir', '"""model.json"""'], {}), "(tfjs_output_dir, 'model.json')\n", (25754, 25785), False, 'import os\n'), ((25916, 25956), 'os.path.join', 'os.path.join', (['self._tmp_dir', '"""new_h5.h5"""'], {}), "(self._tmp_dir, 'new_h5.h5')\n", (25928, 25956), False, 'import os\n'), ((25973, 26122), 'subprocess.Popen', 'subprocess.Popen', (["['tensorflowjs_converter', '--input_format', 'tfjs_layers_model',\n '--output_format', 'keras', model_json_path, new_h5_path]"], {}), "(['tensorflowjs_converter', '--input_format',\n 'tfjs_layers_model', '--output_format', 'keras', model_json_path,\n new_h5_path])\n", (25989, 26122), False, 'import subprocess\n'), ((26376, 26412), 'tensorflow.keras.models.load_model', 'keras.models.load_model', (['new_h5_path'], {}), '(new_h5_path)\n', (26399, 26412), False, 'from tensorflow import keras\n'), ((26586, 26608), 'tensorflow.compat.v1.Session', 'tf.compat.v1.Session', ([], {}), '()\n', (26606, 26608), True, 'import tensorflow as tf\n'), ((26620, 26642), 'numpy.random.randn', 'np.random.randn', (['(8)', '(10)'], {}), '(8, 10)\n', (26635, 26642), True, 'import numpy as np\n'), ((26831, 26890), 'tensorflow.keras.experimental.export_saved_model', 'keras.experimental.export_saved_model', (['model', 'self._tmp_dir'], {}), '(model, self._tmp_dir)\n', (26868, 26890), False, 'from tensorflow import keras\n'), ((26973, 27008), 'os.path.join', 'os.path.join', (['self._tmp_dir', '"""tfjs"""'], {}), "(self._tmp_dir, 'tfjs')\n", (26985, 27008), False, 'import os\n'), ((27075, 27236), 'subprocess.Popen', 'subprocess.Popen', (["['tensorflowjs_converter', '--input_format', 'keras', self._tmp_dir,\n tfjs_output_dir]"], {'stdout': 'subprocess.PIPE', 'stderr': 'subprocess.PIPE'}), "(['tensorflowjs_converter', '--input_format', 'keras', self\n ._tmp_dir, tfjs_output_dir], stdout=subprocess.PIPE, stderr=subprocess.PIPE\n )\n", (27091, 27236), False, 'import subprocess\n'), ((27573, 27595), 'tensorflow.compat.v1.Session', 'tf.compat.v1.Session', ([], {}), '()\n', (27593, 27595), True, 'import tensorflow as tf\n'), ((27607, 27629), 'numpy.random.randn', 'np.random.randn', (['(8)', '(10)'], {}), '(8, 10)\n', (27622, 27629), True, 'import numpy as np\n'), ((27919, 27978), 'tensorflow.keras.experimental.export_saved_model', 'keras.experimental.export_saved_model', (['model', 'self._tmp_dir'], {}), '(model, self._tmp_dir)\n', (27956, 27978), False, 'from tensorflow import keras\n'), ((28074, 28109), 'os.path.join', 'os.path.join', (['self._tmp_dir', '"""tfjs"""'], {}), "(self._tmp_dir, 'tfjs')\n", (28086, 28109), False, 'import os\n'), ((28187, 28306), 'subprocess.Popen', 'subprocess.Popen', (["['tensorflowjs_converter', '--input_format', 'keras_saved_model', self.\n _tmp_dir, tfjs_output_dir]"], {}), "(['tensorflowjs_converter', '--input_format',\n 'keras_saved_model', self._tmp_dir, tfjs_output_dir])\n", (28203, 28306), False, 'import subprocess\n'), ((28674, 28717), 'os.path.join', 'os.path.join', (['self._tmp_dir', '"""tfjs_sharded"""'], {}), "(self._tmp_dir, 'tfjs_sharded')\n", (28686, 28717), False, 'import os\n'), ((29738, 29778), 'os.path.join', 'os.path.join', (['self._tmp_dir', '"""new_h5.h5"""'], {}), "(self._tmp_dir, 'new_h5.h5')\n", (29750, 29778), False, 'import os\n'), ((30076, 30098), 'tensorflow.compat.v1.Session', 'tf.compat.v1.Session', ([], {}), '()\n', (30096, 30098), True, 'import tensorflow as tf\n'), ((30212, 30248), 'tensorflow.keras.models.load_model', 'keras.models.load_model', (['new_h5_path'], {}), '(new_h5_path)\n', (30235, 30248), False, 'from tensorflow import keras\n'), ((30411, 30433), 'tensorflow.compat.v1.Session', 'tf.compat.v1.Session', ([], {}), '()\n', (30431, 30433), True, 'import tensorflow as tf\n'), ((30445, 30467), 'numpy.random.randn', 'np.random.randn', (['(8)', '(10)'], {}), '(8, 10)\n', (30460, 30467), True, 'import numpy as np\n'), ((30757, 30816), 'tensorflow.keras.experimental.export_saved_model', 'keras.experimental.export_saved_model', (['model', 'self._tmp_dir'], {}), '(model, self._tmp_dir)\n', (30794, 30816), False, 'from tensorflow import keras\n'), ((30912, 30947), 'os.path.join', 'os.path.join', (['self._tmp_dir', '"""tfjs"""'], {}), "(self._tmp_dir, 'tfjs')\n", (30924, 30947), False, 'import os\n'), ((31025, 31144), 'subprocess.Popen', 'subprocess.Popen', (["['tensorflowjs_converter', '--input_format', 'keras_saved_model', self.\n _tmp_dir, tfjs_output_dir]"], {}), "(['tensorflowjs_converter', '--input_format',\n 'keras_saved_model', self._tmp_dir, tfjs_output_dir])\n", (31041, 31144), False, 'import subprocess\n'), ((31516, 31559), 'os.path.join', 'os.path.join', (['self._tmp_dir', '"""tfjs_sharded"""'], {}), "(self._tmp_dir, 'tfjs_sharded')\n", (31528, 31559), False, 'import os\n'), ((32140, 32172), 'os.path.getsize', 'os.path.getsize', (['weight_files[0]'], {}), '(weight_files[0])\n', (32155, 32172), False, 'import os\n'), ((32487, 32545), 'tensorflow.keras.layers.Dense', 'keras.layers.Dense', (['(10)'], {'activation': '"""relu"""', 'input_shape': '[4]'}), "(10, activation='relu', input_shape=[4])\n", (32505, 32545), False, 'from tensorflow import keras\n'), ((32561, 32604), 'tensorflow.keras.layers.Dense', 'keras.layers.Dense', (['(1)'], {'activation': '"""sigmoid"""'}), "(1, activation='sigmoid')\n", (32579, 32604), False, 'from tensorflow import keras\n'), ((3047, 3069), 'tensorflow.compat.v1.Session', 'tf.compat.v1.Session', ([], {}), '()\n', (3067, 3069), True, 'import tensorflow as tf\n'), ((5716, 5741), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (5731, 5741), False, 'import os\n'), ((6550, 6562), 'json.load', 'json.load', (['f'], {}), '(f)\n', (6559, 6562), False, 'import json\n'), ((8426, 8467), 'os.path.join', 'os.path.join', (['self._tmp_dir', '"""model.json"""'], {}), "(self._tmp_dir, 'model.json')\n", (8438, 8467), False, 'import os\n'), ((8917, 8956), 'os.path.join', 'os.path.join', (['self._tmp_dir', '"""group*-*"""'], {}), "(self._tmp_dir, 'group*-*')\n", (8929, 8956), False, 'import os\n'), ((9901, 9940), 'os.path.join', 'os.path.join', (['self._tmp_dir', '"""keras_h5"""'], {}), "(self._tmp_dir, 'keras_h5')\n", (9913, 9940), False, 'import os\n'), ((10416, 10428), 'json.load', 'json.load', (['f'], {}), '(f)\n', (10425, 10428), False, 'import json\n'), ((12334, 12373), 'os.path.join', 'os.path.join', (['self._tmp_dir', '"""keras_h5"""'], {}), "(self._tmp_dir, 'keras_h5')\n", (12346, 12373), False, 'import os\n'), ((12877, 12889), 'json.load', 'json.load', (['f'], {}), '(f)\n', (12886, 12889), False, 'import json\n'), ((14813, 14850), 'os.path.join', 'os.path.join', (['self._tmp_dir', '"""foo.h5"""'], {}), "(self._tmp_dir, 'foo.h5')\n", (14825, 14850), False, 'import os\n'), ((14864, 14901), 'os.path.join', 'os.path.join', (['self._tmp_dir', '"""output"""'], {}), "(self._tmp_dir, 'output')\n", (14876, 14901), False, 'import os\n'), ((15780, 15818), 'os.path.join', 'os.path.join', (['output_dir', '"""model.json"""'], {}), "(output_dir, 'model.json')\n", (15792, 15818), False, 'import os\n'), ((15969, 16005), 'os.path.join', 'os.path.join', (['output_dir', '"""group*-*"""'], {}), "(output_dir, 'group*-*')\n", (15981, 16005), False, 'import os\n'), ((16612, 16650), 'os.path.join', 'os.path.join', (['output_dir', '"""model.json"""'], {}), "(output_dir, 'model.json')\n", (16624, 16650), False, 'import os\n'), ((16801, 16837), 'os.path.join', 'os.path.join', (['output_dir', '"""group*-*"""'], {}), "(output_dir, 'group*-*')\n", (16813, 16837), False, 'import os\n'), ((17506, 17544), 'os.path.join', 'os.path.join', (['output_dir', '"""model.json"""'], {}), "(output_dir, 'model.json')\n", (17518, 17544), False, 'import os\n'), ((18223, 18259), 'os.path.join', 'os.path.join', (['output_dir', '"""group*-*"""'], {}), "(output_dir, 'group*-*')\n", (18235, 18259), False, 'import os\n'), ((18865, 18903), 'os.path.join', 'os.path.join', (['output_dir', '"""model.json"""'], {}), "(output_dir, 'model.json')\n", (18877, 18903), False, 'import os\n'), ((19054, 19090), 'os.path.join', 'os.path.join', (['output_dir', '"""group*-*"""'], {}), "(output_dir, 'group*-*')\n", (19066, 19090), False, 'import os\n'), ((20017, 20058), 'os.path.join', 'os.path.join', (['self._tmp_dir', '"""model.json"""'], {}), "(self._tmp_dir, 'model.json')\n", (20029, 20058), False, 'import os\n'), ((21284, 21325), 'os.path.join', 'os.path.join', (['self._tmp_dir', '"""model.json"""'], {}), "(self._tmp_dir, 'model.json')\n", (21296, 21325), False, 'import os\n'), ((24123, 24154), 'os.path.isfile', 'os.path.isfile', (['model_json_path'], {}), '(model_json_path)\n', (24137, 24154), False, 'import os\n'), ((24548, 24575), 'os.path.isfile', 'os.path.isfile', (['new_h5_path'], {}), '(new_h5_path)\n', (24562, 24575), False, 'import os\n'), ((25808, 25839), 'os.path.isfile', 'os.path.isfile', (['model_json_path'], {}), '(model_json_path)\n', (25822, 25839), False, 'import os\n'), ((26233, 26260), 'os.path.isfile', 'os.path.isfile', (['new_h5_path'], {}), '(new_h5_path)\n', (26247, 26260), False, 'import os\n'), ((27452, 27478), 'tensorflow.compat.as_bytes', 'tf.compat.as_bytes', (['stderr'], {}), '(stderr)\n', (27470, 27478), True, 'import tensorflow as tf\n'), ((29332, 29350), 'os.path.getsize', 'os.path.getsize', (['f'], {}), '(f)\n', (29347, 29350), False, 'import os\n'), ((33392, 33443), 'os.path.join', 'os.path.join', (['layers_model_output_dir', '"""model.json"""'], {}), "(layers_model_output_dir, 'model.json')\n", (33404, 33443), False, 'import os\n'), ((33634, 33677), 'os.path.join', 'os.path.join', (['graph_model_dir', '"""model.json"""'], {}), "(graph_model_dir, 'model.json')\n", (33646, 33677), False, 'import os\n'), ((33725, 33768), 'os.path.join', 'os.path.join', (['graph_model_dir', '"""group*.bin"""'], {}), "(graph_model_dir, 'group*.bin')\n", (33737, 33768), False, 'import os\n'), ((6478, 6519), 'os.path.join', 'os.path.join', (['self._tmp_dir', '"""model.json"""'], {}), "(self._tmp_dir, 'model.json')\n", (6490, 6519), False, 'import os\n'), ((8014, 8024), 'tensorflow.Graph', 'tf.Graph', ([], {}), '()\n', (8022, 8024), True, 'import tensorflow as tf\n'), ((8273, 8283), 'tensorflow.Graph', 'tf.Graph', ([], {}), '()\n', (8281, 8283), True, 'import tensorflow as tf\n'), ((9794, 9804), 'tensorflow.Graph', 'tf.Graph', ([], {}), '()\n', (9802, 9804), True, 'import tensorflow as tf\n'), ((10338, 10379), 'os.path.join', 'os.path.join', (['self._tmp_dir', '"""model.json"""'], {}), "(self._tmp_dir, 'model.json')\n", (10350, 10379), False, 'import os\n'), ((12227, 12237), 'tensorflow.Graph', 'tf.Graph', ([], {}), '()\n', (12235, 12237), True, 'import tensorflow as tf\n'), ((12799, 12840), 'os.path.join', 'os.path.join', (['self._tmp_dir', '"""model.json"""'], {}), "(self._tmp_dir, 'model.json')\n", (12811, 12840), False, 'import os\n'), ((19344, 19354), 'tensorflow.Graph', 'tf.Graph', ([], {}), '()\n', (19352, 19354), True, 'import tensorflow as tf\n'), ((20252, 20262), 'tensorflow.Graph', 'tf.Graph', ([], {}), '()\n', (20260, 20262), True, 'import tensorflow as tf\n'), ((20693, 20703), 'tensorflow.Graph', 'tf.Graph', ([], {}), '()\n', (20701, 20703), True, 'import tensorflow as tf\n'), ((21175, 21185), 'tensorflow.Graph', 'tf.Graph', ([], {}), '()\n', (21183, 21185), True, 'import tensorflow as tf\n'), ((23289, 23299), 'tensorflow.Graph', 'tf.Graph', ([], {}), '()\n', (23297, 23299), True, 'import tensorflow as tf\n'), ((24877, 24887), 'tensorflow.Graph', 'tf.Graph', ([], {}), '()\n', (24885, 24887), True, 'import tensorflow as tf\n'), ((26561, 26571), 'tensorflow.Graph', 'tf.Graph', ([], {}), '()\n', (26569, 26571), True, 'import tensorflow as tf\n'), ((27548, 27558), 'tensorflow.Graph', 'tf.Graph', ([], {}), '()\n', (27556, 27558), True, 'import tensorflow as tf\n'), ((28957, 29000), 'os.path.join', 'os.path.join', (['tfjs_output_dir', '"""model.json"""'], {}), "(tfjs_output_dir, 'model.json')\n", (28969, 29000), False, 'import os\n'), ((29212, 29257), 'os.path.join', 'os.path.join', (['sharded_model_dir', '"""group*.bin"""'], {}), "(sharded_model_dir, 'group*.bin')\n", (29224, 29257), False, 'import os\n'), ((29899, 29944), 'os.path.join', 'os.path.join', (['sharded_model_dir', '"""model.json"""'], {}), "(sharded_model_dir, 'model.json')\n", (29911, 29944), False, 'import os\n'), ((30051, 30061), 'tensorflow.Graph', 'tf.Graph', ([], {}), '()\n', (30059, 30061), True, 'import tensorflow as tf\n'), ((30386, 30396), 'tensorflow.Graph', 'tf.Graph', ([], {}), '()\n', (30394, 30396), True, 'import tensorflow as tf\n'), ((31769, 31812), 'os.path.join', 'os.path.join', (['tfjs_output_dir', '"""model.json"""'], {}), "(tfjs_output_dir, 'model.json')\n", (31781, 31812), False, 'import os\n'), ((32022, 32067), 'os.path.join', 'os.path.join', (['sharded_model_dir', '"""group*.bin"""'], {}), "(sharded_model_dir, 'group*.bin')\n", (32034, 32067), False, 'import os\n'), ((12110, 12147), 'os.path.join', 'os.path.join', (['self._tmp_dir', '"""group*"""'], {}), "(self._tmp_dir, 'group*')\n", (12122, 12147), False, 'import os\n'), ((14555, 14592), 'os.path.join', 'os.path.join', (['self._tmp_dir', '"""group*"""'], {}), "(self._tmp_dir, 'group*')\n", (14567, 14592), False, 'import os\n'), ((27879, 27889), 'numpy.size', 'np.size', (['w'], {}), '(w)\n', (27886, 27889), True, 'import numpy as np\n'), ((30717, 30727), 'numpy.size', 'np.size', (['w'], {}), '(w)\n', (30724, 30727), True, 'import numpy as np\n'), ((3345, 3461), 'tensorflow.compat.v1.saved_model.signature_def_utils.predict_signature_def', 'tf.compat.v1.saved_model.signature_def_utils.predict_signature_def', ([], {'inputs': "{'x': x}", 'outputs': "{'output': output}"}), "(inputs={\n 'x': x}, outputs={'output': output})\n", (3411, 3461), True, 'import tensorflow as tf\n')]
import numpy as np import matplotlib import matplotlib.pyplot as plt import sys sys.path.append("../") from quelea import * nx = 217 ny = 133 x0 = 0 x1 = 30 # lambdas y0 = 0 y1 = 20 # lambdas xs = np.linspace(x0, x1, nx) ys = np.linspace(y0, y1, ny) # 2d array of (x, y, z, t) coords = np.array( [ [x, y, 0, 0] for x in xs for y in ys ] ) # for map_fields function this should be converted from 2D to 1D array coords = coords.reshape((4 * nx * ny,)) ftype = 1 # plane wave a0 = 1 # normalized field amplitude omega = 1 # frequency fparam = [a0, 1, 0, 0, 0, 1, 0, 0, omega] # parameters of the plane wave ex, ey, ez, bx, by, bz = map_fields(coords, ftype, fparam) # now convert to 2d arrays ex = ex.reshape((nx, ny)) ey = ey.reshape((nx, ny)) ez = ez.reshape((nx, ny)) bx = bx.reshape((nx, ny)) by = by.reshape((nx, ny)) bz = bz.reshape((nx, ny)) ex = ex.transpose() ey = ey.transpose() ez = ez.transpose() bx = bx.transpose() by = by.transpose() bz = bz.transpose() plt.imshow(ey, cmap = 'RdYlBu', origin = 'lower', extent = [x0, x1, y0, y1]) plt.colorbar() plt.clim(-a0, a0) plt.savefig("map_fields.pdf")
[ "matplotlib.pyplot.imshow", "matplotlib.pyplot.clim", "matplotlib.pyplot.savefig", "matplotlib.pyplot.colorbar", "numpy.array", "numpy.linspace", "sys.path.append" ]
[((81, 103), 'sys.path.append', 'sys.path.append', (['"""../"""'], {}), "('../')\n", (96, 103), False, 'import sys\n'), ((201, 224), 'numpy.linspace', 'np.linspace', (['x0', 'x1', 'nx'], {}), '(x0, x1, nx)\n', (212, 224), True, 'import numpy as np\n'), ((230, 253), 'numpy.linspace', 'np.linspace', (['y0', 'y1', 'ny'], {}), '(y0, y1, ny)\n', (241, 253), True, 'import numpy as np\n'), ((291, 339), 'numpy.array', 'np.array', (['[[x, y, 0, 0] for x in xs for y in ys]'], {}), '([[x, y, 0, 0] for x in xs for y in ys])\n', (299, 339), True, 'import numpy as np\n'), ((974, 1044), 'matplotlib.pyplot.imshow', 'plt.imshow', (['ey'], {'cmap': '"""RdYlBu"""', 'origin': '"""lower"""', 'extent': '[x0, x1, y0, y1]'}), "(ey, cmap='RdYlBu', origin='lower', extent=[x0, x1, y0, y1])\n", (984, 1044), True, 'import matplotlib.pyplot as plt\n'), ((1051, 1065), 'matplotlib.pyplot.colorbar', 'plt.colorbar', ([], {}), '()\n', (1063, 1065), True, 'import matplotlib.pyplot as plt\n'), ((1066, 1083), 'matplotlib.pyplot.clim', 'plt.clim', (['(-a0)', 'a0'], {}), '(-a0, a0)\n', (1074, 1083), True, 'import matplotlib.pyplot as plt\n'), ((1085, 1114), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""map_fields.pdf"""'], {}), "('map_fields.pdf')\n", (1096, 1114), True, 'import matplotlib.pyplot as plt\n')]
import h5py import numpy as np np.set_printoptions(threshold=np.nan) from shutil import copyfile copyfile("dummy_lutnet.h5", "pretrained_bin.h5") # create pretrained.h5 using datastructure from dummy.h5 bl = h5py.File("baseline_pruned.h5", 'r') #dummy = h5py.File("dummy.h5", 'r') pretrained = h5py.File("pretrained_bin.h5", 'r+') # dense layer 1 bl_w1 = bl["model_weights"]["binary_dense_1"]["binary_dense_1"]["Variable_1:0"] bl_pruning_mask = bl["model_weights"]["binary_dense_1"]["binary_dense_1"]["pruning_mask:0"] bl_gamma = bl["model_weights"]["binary_dense_1"]["binary_dense_1"]["Variable:0"] zero_fill = np.zeros(np.shape(np.array(bl_w1))) pret_w1 = pretrained["model_weights"]["binary_dense_1"]["binary_dense_1"]["Variable_1:0"] pret_pruning_mask = pretrained["model_weights"]["binary_dense_1"]["binary_dense_1"]["pruning_mask:0"] p_gamma = pretrained["model_weights"]["binary_dense_1"]["binary_dense_1"]["Variable:0"] pret_w1[...] = np.array(bl_w1) p_gamma[...] = np.array(bl_gamma) pret_pruning_mask[...] = np.array(bl_pruning_mask) print(np.sum(np.array(bl_pruning_mask)), np.prod(np.shape(np.array(bl_pruning_mask)))) # dense layer 2 bl_w1 = bl["model_weights"]["binary_dense_2"]["binary_dense_2"]["Variable_1:0"] bl_rand_map_0 = bl["model_weights"]["binary_dense_2"]["binary_dense_2"]["rand_map_0:0"] bl_pruning_mask = bl["model_weights"]["binary_dense_2"]["binary_dense_2"]["pruning_mask:0"] bl_gamma = bl["model_weights"]["binary_dense_2"]["binary_dense_2"]["Variable:0"] bl_means = bl["model_weights"]["residual_sign_1"]["residual_sign_1"]["means:0"] pret_rand_map_0 = pretrained["model_weights"]["binary_dense_2"]["binary_dense_2"]["rand_map_0:0"] pret_rand_map_1 = pretrained["model_weights"]["binary_dense_2"]["binary_dense_2"]["rand_map_1:0"] pret_rand_map_2 = pretrained["model_weights"]["binary_dense_2"]["binary_dense_2"]["rand_map_2:0"] pret_pruning_mask = pretrained["model_weights"]["binary_dense_2"]["binary_dense_2"]["pruning_mask:0"] p_gamma = pretrained["model_weights"]["binary_dense_2"]["binary_dense_2"]["Variable:0"] pret_means = pretrained["model_weights"]["residual_sign_1"]["residual_sign_1"]["means:0"] pret_c1 = pretrained["model_weights"]["binary_dense_2"]["binary_dense_2"]["Variable_1:0"] pret_c2 = pretrained["model_weights"]["binary_dense_2"]["binary_dense_2"]["Variable_2:0"] pret_c3 = pretrained["model_weights"]["binary_dense_2"]["binary_dense_2"]["Variable_3:0"] pret_c4 = pretrained["model_weights"]["binary_dense_2"]["binary_dense_2"]["Variable_4:0"] pret_c5 = pretrained["model_weights"]["binary_dense_2"]["binary_dense_2"]["Variable_5:0"] pret_c6 = pretrained["model_weights"]["binary_dense_2"]["binary_dense_2"]["Variable_6:0"] pret_c7 = pretrained["model_weights"]["binary_dense_2"]["binary_dense_2"]["Variable_7:0"] pret_c8 = pretrained["model_weights"]["binary_dense_2"]["binary_dense_2"]["Variable_8:0"] pret_c9 = pretrained["model_weights"]["binary_dense_2"]["binary_dense_2"]["Variable_9:0"] pret_c10= pretrained["model_weights"]["binary_dense_2"]["binary_dense_2"]["Variable_10:0"] pret_c11= pretrained["model_weights"]["binary_dense_2"]["binary_dense_2"]["Variable_11:0"] pret_c12= pretrained["model_weights"]["binary_dense_2"]["binary_dense_2"]["Variable_12:0"] pret_c13= pretrained["model_weights"]["binary_dense_2"]["binary_dense_2"]["Variable_13:0"] pret_c14= pretrained["model_weights"]["binary_dense_2"]["binary_dense_2"]["Variable_14:0"] pret_c15= pretrained["model_weights"]["binary_dense_2"]["binary_dense_2"]["Variable_15:0"] pret_c16= pretrained["model_weights"]["binary_dense_2"]["binary_dense_2"]["Variable_16:0"] pret_c17= pretrained["model_weights"]["binary_dense_2"]["binary_dense_2"]["Variable_17:0"] pret_c18= pretrained["model_weights"]["binary_dense_2"]["binary_dense_2"]["Variable_18:0"] pret_c19= pretrained["model_weights"]["binary_dense_2"]["binary_dense_2"]["Variable_19:0"] pret_c20= pretrained["model_weights"]["binary_dense_2"]["binary_dense_2"]["Variable_20:0"] pret_c21= pretrained["model_weights"]["binary_dense_2"]["binary_dense_2"]["Variable_21:0"] pret_c22= pretrained["model_weights"]["binary_dense_2"]["binary_dense_2"]["Variable_22:0"] pret_c23= pretrained["model_weights"]["binary_dense_2"]["binary_dense_2"]["Variable_23:0"] pret_c24= pretrained["model_weights"]["binary_dense_2"]["binary_dense_2"]["Variable_24:0"] pret_c25= pretrained["model_weights"]["binary_dense_2"]["binary_dense_2"]["Variable_25:0"] pret_c26= pretrained["model_weights"]["binary_dense_2"]["binary_dense_2"]["Variable_26:0"] pret_c27= pretrained["model_weights"]["binary_dense_2"]["binary_dense_2"]["Variable_27:0"] pret_c28= pretrained["model_weights"]["binary_dense_2"]["binary_dense_2"]["Variable_28:0"] pret_c29= pretrained["model_weights"]["binary_dense_2"]["binary_dense_2"]["Variable_29:0"] pret_c30= pretrained["model_weights"]["binary_dense_2"]["binary_dense_2"]["Variable_30:0"] pret_c31= pretrained["model_weights"]["binary_dense_2"]["binary_dense_2"]["Variable_31:0"] pret_c32= pretrained["model_weights"]["binary_dense_2"]["binary_dense_2"]["Variable_32:0"] pret_w1 = pretrained["model_weights"]["binary_dense_2"]["binary_dense_2"]["Variable_33:0"] pret_rand_map_exp_0 = pretrained["model_weights"]["binary_dense_2"]["binary_dense_2"]["rand_map_exp_0:0"] pret_rand_map_exp_1 = pretrained["model_weights"]["binary_dense_2"]["binary_dense_2"]["rand_map_exp_1:0"] pret_rand_map_exp_2 = pretrained["model_weights"]["binary_dense_2"]["binary_dense_2"]["rand_map_exp_2:0"] weight_shape = np.shape(bl_w1) tile_shape = np.shape(pret_c1) zero_fill = np.zeros(tile_shape) one_fill = np.ones(tile_shape) neg_one_fill = -np.ones(tile_shape) # randomisation and pruning recovery bl_w1_unroll = np.array(bl_w1) bl_w1 = np.array(bl_w1) rand_map_0 = np.arange(tile_shape[0]) np.random.shuffle(rand_map_0) rand_map_1 = np.arange(tile_shape[0]) np.random.shuffle(rand_map_1) rand_map_2 = np.arange(tile_shape[0]) np.random.shuffle(rand_map_2) pruning_mask = np.array(bl_pruning_mask).astype(bool) init_mask = np.logical_not(pruning_mask[rand_map_0]) pruning_mask_recover = np.logical_and(pruning_mask, init_mask)[np.argsort(rand_map_0)] pruning_mask = np.logical_or(pruning_mask, pruning_mask_recover) init_mask = np.reshape(init_mask, tile_shape) # expand randomisation map across tiles rand_map_0_expand = np.tile(rand_map_0,[weight_shape[0]/tile_shape[0]]) rand_map_1_expand = np.tile(rand_map_1,[weight_shape[0]/tile_shape[0]]) rand_map_2_expand = np.tile(rand_map_2,[weight_shape[0]/tile_shape[0]]) for i in range(weight_shape[0]): rand_map_0_expand[i] = rand_map_0_expand[i] + (tile_shape[0]*(weight_shape[0]/tile_shape[0]-1)) * (rand_map_0_expand[i]/tile_shape[0]) + tile_shape[0]*(i%weight_shape[0]/tile_shape[0]) rand_map_1_expand[i] = rand_map_1_expand[i] + (tile_shape[0]*(weight_shape[0]/tile_shape[0]-1)) * (rand_map_1_expand[i]/tile_shape[0]) + tile_shape[0]*(i%weight_shape[0]/tile_shape[0]) rand_map_2_expand[i] = rand_map_2_expand[i] + (tile_shape[0]*(weight_shape[0]/tile_shape[0]-1)) * (rand_map_2_expand[i]/tile_shape[0]) + tile_shape[0]*(i%weight_shape[0]/tile_shape[0]) bl_w1_rand_0 = bl_w1_unroll[rand_map_0_expand] bl_w1_rand_0 = np.reshape(bl_w1_rand_0, weight_shape) w1 = bl_w1 # connect1 only c1 = one_fill c2 = neg_one_fill c3 = one_fill c4 = neg_one_fill c5 = one_fill c6 = neg_one_fill c7 = one_fill c8 = neg_one_fill c9 = one_fill c10 = neg_one_fill c11 = one_fill c12 = neg_one_fill c13 = one_fill c14 = neg_one_fill c15 = one_fill c16 = neg_one_fill c17 = neg_one_fill c18 = one_fill c19 = neg_one_fill c20 = one_fill c21 = neg_one_fill c22 = one_fill c23 = neg_one_fill c24 = one_fill c25 = neg_one_fill c26 = one_fill c27 = neg_one_fill c28 = one_fill c29 = neg_one_fill c30 = one_fill c31 = neg_one_fill c32 = one_fill pret_w1 [...] = w1 pret_c1 [...] = c1 pret_c2 [...] = c2 pret_c3 [...] = c3 pret_c4 [...] = c4 pret_c5 [...] = c5 pret_c6 [...] = c6 pret_c7 [...] = c7 pret_c8 [...] = c8 pret_c9 [...] = c9 pret_c10[...] = c10 pret_c11[...] = c11 pret_c12[...] = c12 pret_c13[...] = c13 pret_c14[...] = c14 pret_c15[...] = c15 pret_c16[...] = c16 pret_c17[...] = c17 pret_c18[...] = c18 pret_c19[...] = c19 pret_c20[...] = c20 pret_c21[...] = c21 pret_c22[...] = c22 pret_c23[...] = c23 pret_c24[...] = c24 pret_c25[...] = c25 pret_c26[...] = c26 pret_c27[...] = c27 pret_c28[...] = c28 pret_c29[...] = c29 pret_c30[...] = c30 pret_c31[...] = c31 pret_c32[...] = c32 pret_rand_map_0[...] = np.reshape(rand_map_0, (-1,1)).astype(float) pret_rand_map_1[...] = np.reshape(rand_map_1, (-1,1)).astype(float) pret_rand_map_2[...] = np.reshape(rand_map_2, (-1,1)).astype(float) p_gamma[...] = np.array(bl_gamma) pret_means[...] = np.array(bl_means) pret_pruning_mask[...] = np.array(bl_pruning_mask) rand_map_0_expand = np.reshape(rand_map_0_expand, [-1,1]).astype(float) pret_rand_map_exp_0[...] = rand_map_0_expand rand_map_1_expand = np.reshape(rand_map_1_expand, [-1,1]).astype(float) pret_rand_map_exp_1[...] = rand_map_1_expand rand_map_2_expand = np.reshape(rand_map_2_expand, [-1,1]).astype(float) pret_rand_map_exp_2[...] = rand_map_2_expand print(np.sum(np.array(bl_pruning_mask)), np.prod(np.shape(np.array(bl_pruning_mask)))) # dense layer 3 bl_w1 = bl["model_weights"]["binary_dense_3"]["binary_dense_3"]["Variable_1:0"] bl_rand_map_0 = bl["model_weights"]["binary_dense_3"]["binary_dense_3"]["rand_map_0:0"] bl_pruning_mask = bl["model_weights"]["binary_dense_3"]["binary_dense_3"]["pruning_mask:0"] bl_gamma = bl["model_weights"]["binary_dense_3"]["binary_dense_3"]["Variable:0"] bl_means = bl["model_weights"]["residual_sign_2"]["residual_sign_2"]["means:0"] pret_rand_map_0 = pretrained["model_weights"]["binary_dense_3"]["binary_dense_3"]["rand_map_0:0"] pret_rand_map_1 = pretrained["model_weights"]["binary_dense_3"]["binary_dense_3"]["rand_map_1:0"] pret_rand_map_2 = pretrained["model_weights"]["binary_dense_3"]["binary_dense_3"]["rand_map_2:0"] pret_pruning_mask = pretrained["model_weights"]["binary_dense_3"]["binary_dense_3"]["pruning_mask:0"] p_gamma = pretrained["model_weights"]["binary_dense_3"]["binary_dense_3"]["Variable:0"] pret_means = pretrained["model_weights"]["residual_sign_2"]["residual_sign_2"]["means:0"] pret_c1 = pretrained["model_weights"]["binary_dense_3"]["binary_dense_3"]["Variable_1:0"] pret_c2 = pretrained["model_weights"]["binary_dense_3"]["binary_dense_3"]["Variable_2:0"] pret_c3 = pretrained["model_weights"]["binary_dense_3"]["binary_dense_3"]["Variable_3:0"] pret_c4 = pretrained["model_weights"]["binary_dense_3"]["binary_dense_3"]["Variable_4:0"] pret_c5 = pretrained["model_weights"]["binary_dense_3"]["binary_dense_3"]["Variable_5:0"] pret_c6 = pretrained["model_weights"]["binary_dense_3"]["binary_dense_3"]["Variable_6:0"] pret_c7 = pretrained["model_weights"]["binary_dense_3"]["binary_dense_3"]["Variable_7:0"] pret_c8 = pretrained["model_weights"]["binary_dense_3"]["binary_dense_3"]["Variable_8:0"] pret_c9 = pretrained["model_weights"]["binary_dense_3"]["binary_dense_3"]["Variable_9:0"] pret_c10= pretrained["model_weights"]["binary_dense_3"]["binary_dense_3"]["Variable_10:0"] pret_c11= pretrained["model_weights"]["binary_dense_3"]["binary_dense_3"]["Variable_11:0"] pret_c12= pretrained["model_weights"]["binary_dense_3"]["binary_dense_3"]["Variable_12:0"] pret_c13= pretrained["model_weights"]["binary_dense_3"]["binary_dense_3"]["Variable_13:0"] pret_c14= pretrained["model_weights"]["binary_dense_3"]["binary_dense_3"]["Variable_14:0"] pret_c15= pretrained["model_weights"]["binary_dense_3"]["binary_dense_3"]["Variable_15:0"] pret_c16= pretrained["model_weights"]["binary_dense_3"]["binary_dense_3"]["Variable_16:0"] pret_c17= pretrained["model_weights"]["binary_dense_3"]["binary_dense_3"]["Variable_17:0"] pret_c18= pretrained["model_weights"]["binary_dense_3"]["binary_dense_3"]["Variable_18:0"] pret_c19= pretrained["model_weights"]["binary_dense_3"]["binary_dense_3"]["Variable_19:0"] pret_c20= pretrained["model_weights"]["binary_dense_3"]["binary_dense_3"]["Variable_20:0"] pret_c21= pretrained["model_weights"]["binary_dense_3"]["binary_dense_3"]["Variable_21:0"] pret_c22= pretrained["model_weights"]["binary_dense_3"]["binary_dense_3"]["Variable_22:0"] pret_c23= pretrained["model_weights"]["binary_dense_3"]["binary_dense_3"]["Variable_23:0"] pret_c24= pretrained["model_weights"]["binary_dense_3"]["binary_dense_3"]["Variable_24:0"] pret_c25= pretrained["model_weights"]["binary_dense_3"]["binary_dense_3"]["Variable_25:0"] pret_c26= pretrained["model_weights"]["binary_dense_3"]["binary_dense_3"]["Variable_26:0"] pret_c27= pretrained["model_weights"]["binary_dense_3"]["binary_dense_3"]["Variable_27:0"] pret_c28= pretrained["model_weights"]["binary_dense_3"]["binary_dense_3"]["Variable_28:0"] pret_c29= pretrained["model_weights"]["binary_dense_3"]["binary_dense_3"]["Variable_29:0"] pret_c30= pretrained["model_weights"]["binary_dense_3"]["binary_dense_3"]["Variable_30:0"] pret_c31= pretrained["model_weights"]["binary_dense_3"]["binary_dense_3"]["Variable_31:0"] pret_c32= pretrained["model_weights"]["binary_dense_3"]["binary_dense_3"]["Variable_32:0"] pret_w1 = pretrained["model_weights"]["binary_dense_3"]["binary_dense_3"]["Variable_33:0"] pret_rand_map_exp_0 = pretrained["model_weights"]["binary_dense_3"]["binary_dense_3"]["rand_map_exp_0:0"] pret_rand_map_exp_1 = pretrained["model_weights"]["binary_dense_3"]["binary_dense_3"]["rand_map_exp_1:0"] pret_rand_map_exp_2 = pretrained["model_weights"]["binary_dense_3"]["binary_dense_3"]["rand_map_exp_2:0"] weight_shape = np.shape(bl_w1) tile_shape = np.shape(pret_c1) zero_fill = np.zeros(tile_shape) one_fill = np.ones(tile_shape) neg_one_fill = -np.ones(tile_shape) # randomisation and pruning recovery bl_w1_unroll = np.array(bl_w1) bl_w1 = np.array(bl_w1) rand_map_0 = np.arange(tile_shape[0]) np.random.shuffle(rand_map_0) rand_map_1 = np.arange(tile_shape[0]) np.random.shuffle(rand_map_1) rand_map_2 = np.arange(tile_shape[0]) np.random.shuffle(rand_map_2) pruning_mask = np.array(bl_pruning_mask).astype(bool) init_mask = np.logical_not(pruning_mask[rand_map_0]) pruning_mask_recover = np.logical_and(pruning_mask, init_mask)[np.argsort(rand_map_0)] pruning_mask = np.logical_or(pruning_mask, pruning_mask_recover) init_mask = np.reshape(init_mask, tile_shape) # expand randomisation map across tiles rand_map_0_expand = np.tile(rand_map_0,[weight_shape[0]/tile_shape[0]]) rand_map_1_expand = np.tile(rand_map_1,[weight_shape[0]/tile_shape[0]]) rand_map_2_expand = np.tile(rand_map_2,[weight_shape[0]/tile_shape[0]]) for i in range(weight_shape[0]): rand_map_0_expand[i] = rand_map_0_expand[i] + (tile_shape[0]*(weight_shape[0]/tile_shape[0]-1)) * (rand_map_0_expand[i]/tile_shape[0]) + tile_shape[0]*(i%weight_shape[0]/tile_shape[0]) rand_map_1_expand[i] = rand_map_1_expand[i] + (tile_shape[0]*(weight_shape[0]/tile_shape[0]-1)) * (rand_map_1_expand[i]/tile_shape[0]) + tile_shape[0]*(i%weight_shape[0]/tile_shape[0]) rand_map_2_expand[i] = rand_map_2_expand[i] + (tile_shape[0]*(weight_shape[0]/tile_shape[0]-1)) * (rand_map_2_expand[i]/tile_shape[0]) + tile_shape[0]*(i%weight_shape[0]/tile_shape[0]) bl_w1_rand_0 = bl_w1_unroll[rand_map_0_expand] bl_w1_rand_0 = np.reshape(bl_w1_rand_0, weight_shape) w1 = bl_w1 # connect1 only c1 = one_fill c2 = neg_one_fill c3 = one_fill c4 = neg_one_fill c5 = one_fill c6 = neg_one_fill c7 = one_fill c8 = neg_one_fill c9 = one_fill c10 = neg_one_fill c11 = one_fill c12 = neg_one_fill c13 = one_fill c14 = neg_one_fill c15 = one_fill c16 = neg_one_fill c17 = neg_one_fill c18 = one_fill c19 = neg_one_fill c20 = one_fill c21 = neg_one_fill c22 = one_fill c23 = neg_one_fill c24 = one_fill c25 = neg_one_fill c26 = one_fill c27 = neg_one_fill c28 = one_fill c29 = neg_one_fill c30 = one_fill c31 = neg_one_fill c32 = one_fill pret_w1 [...] = w1 pret_c1 [...] = c1 pret_c2 [...] = c2 pret_c3 [...] = c3 pret_c4 [...] = c4 pret_c5 [...] = c5 pret_c6 [...] = c6 pret_c7 [...] = c7 pret_c8 [...] = c8 pret_c9 [...] = c9 pret_c10[...] = c10 pret_c11[...] = c11 pret_c12[...] = c12 pret_c13[...] = c13 pret_c14[...] = c14 pret_c15[...] = c15 pret_c16[...] = c16 pret_c17[...] = c17 pret_c18[...] = c18 pret_c19[...] = c19 pret_c20[...] = c20 pret_c21[...] = c21 pret_c22[...] = c22 pret_c23[...] = c23 pret_c24[...] = c24 pret_c25[...] = c25 pret_c26[...] = c26 pret_c27[...] = c27 pret_c28[...] = c28 pret_c29[...] = c29 pret_c30[...] = c30 pret_c31[...] = c31 pret_c32[...] = c32 pret_rand_map_0[...] = np.reshape(rand_map_0, (-1,1)).astype(float) pret_rand_map_1[...] = np.reshape(rand_map_1, (-1,1)).astype(float) pret_rand_map_2[...] = np.reshape(rand_map_2, (-1,1)).astype(float) p_gamma[...] = np.array(bl_gamma) pret_means[...] = np.array(bl_means) pret_pruning_mask[...] = np.array(bl_pruning_mask) rand_map_0_expand = np.reshape(rand_map_0_expand, [-1,1]).astype(float) pret_rand_map_exp_0[...] = rand_map_0_expand rand_map_1_expand = np.reshape(rand_map_1_expand, [-1,1]).astype(float) pret_rand_map_exp_1[...] = rand_map_1_expand rand_map_2_expand = np.reshape(rand_map_2_expand, [-1,1]).astype(float) pret_rand_map_exp_2[...] = rand_map_2_expand print(np.sum(np.array(bl_pruning_mask)), np.prod(np.shape(np.array(bl_pruning_mask)))) # dense layer 4 bl_w1 = bl["model_weights"]["binary_dense_4"]["binary_dense_4"]["Variable_1:0"] bl_rand_map_0 = bl["model_weights"]["binary_dense_4"]["binary_dense_4"]["rand_map_0:0"] bl_pruning_mask = bl["model_weights"]["binary_dense_4"]["binary_dense_4"]["pruning_mask:0"] bl_gamma = bl["model_weights"]["binary_dense_4"]["binary_dense_4"]["Variable:0"] bl_means = bl["model_weights"]["residual_sign_3"]["residual_sign_3"]["means:0"] pret_rand_map_0 = pretrained["model_weights"]["binary_dense_4"]["binary_dense_4"]["rand_map_0:0"] pret_rand_map_1 = pretrained["model_weights"]["binary_dense_4"]["binary_dense_4"]["rand_map_1:0"] pret_rand_map_2 = pretrained["model_weights"]["binary_dense_4"]["binary_dense_4"]["rand_map_2:0"] pret_pruning_mask = pretrained["model_weights"]["binary_dense_4"]["binary_dense_4"]["pruning_mask:0"] p_gamma = pretrained["model_weights"]["binary_dense_4"]["binary_dense_4"]["Variable:0"] pret_means = pretrained["model_weights"]["residual_sign_3"]["residual_sign_3"]["means:0"] pret_c1 = pretrained["model_weights"]["binary_dense_4"]["binary_dense_4"]["Variable_1:0"] pret_c2 = pretrained["model_weights"]["binary_dense_4"]["binary_dense_4"]["Variable_2:0"] pret_c3 = pretrained["model_weights"]["binary_dense_4"]["binary_dense_4"]["Variable_3:0"] pret_c4 = pretrained["model_weights"]["binary_dense_4"]["binary_dense_4"]["Variable_4:0"] pret_c5 = pretrained["model_weights"]["binary_dense_4"]["binary_dense_4"]["Variable_5:0"] pret_c6 = pretrained["model_weights"]["binary_dense_4"]["binary_dense_4"]["Variable_6:0"] pret_c7 = pretrained["model_weights"]["binary_dense_4"]["binary_dense_4"]["Variable_7:0"] pret_c8 = pretrained["model_weights"]["binary_dense_4"]["binary_dense_4"]["Variable_8:0"] pret_c9 = pretrained["model_weights"]["binary_dense_4"]["binary_dense_4"]["Variable_9:0"] pret_c10= pretrained["model_weights"]["binary_dense_4"]["binary_dense_4"]["Variable_10:0"] pret_c11= pretrained["model_weights"]["binary_dense_4"]["binary_dense_4"]["Variable_11:0"] pret_c12= pretrained["model_weights"]["binary_dense_4"]["binary_dense_4"]["Variable_12:0"] pret_c13= pretrained["model_weights"]["binary_dense_4"]["binary_dense_4"]["Variable_13:0"] pret_c14= pretrained["model_weights"]["binary_dense_4"]["binary_dense_4"]["Variable_14:0"] pret_c15= pretrained["model_weights"]["binary_dense_4"]["binary_dense_4"]["Variable_15:0"] pret_c16= pretrained["model_weights"]["binary_dense_4"]["binary_dense_4"]["Variable_16:0"] pret_c17= pretrained["model_weights"]["binary_dense_4"]["binary_dense_4"]["Variable_17:0"] pret_c18= pretrained["model_weights"]["binary_dense_4"]["binary_dense_4"]["Variable_18:0"] pret_c19= pretrained["model_weights"]["binary_dense_4"]["binary_dense_4"]["Variable_19:0"] pret_c20= pretrained["model_weights"]["binary_dense_4"]["binary_dense_4"]["Variable_20:0"] pret_c21= pretrained["model_weights"]["binary_dense_4"]["binary_dense_4"]["Variable_21:0"] pret_c22= pretrained["model_weights"]["binary_dense_4"]["binary_dense_4"]["Variable_22:0"] pret_c23= pretrained["model_weights"]["binary_dense_4"]["binary_dense_4"]["Variable_23:0"] pret_c24= pretrained["model_weights"]["binary_dense_4"]["binary_dense_4"]["Variable_24:0"] pret_c25= pretrained["model_weights"]["binary_dense_4"]["binary_dense_4"]["Variable_25:0"] pret_c26= pretrained["model_weights"]["binary_dense_4"]["binary_dense_4"]["Variable_26:0"] pret_c27= pretrained["model_weights"]["binary_dense_4"]["binary_dense_4"]["Variable_27:0"] pret_c28= pretrained["model_weights"]["binary_dense_4"]["binary_dense_4"]["Variable_28:0"] pret_c29= pretrained["model_weights"]["binary_dense_4"]["binary_dense_4"]["Variable_29:0"] pret_c30= pretrained["model_weights"]["binary_dense_4"]["binary_dense_4"]["Variable_30:0"] pret_c31= pretrained["model_weights"]["binary_dense_4"]["binary_dense_4"]["Variable_31:0"] pret_c32= pretrained["model_weights"]["binary_dense_4"]["binary_dense_4"]["Variable_32:0"] pret_w1 = pretrained["model_weights"]["binary_dense_4"]["binary_dense_4"]["Variable_33:0"] pret_rand_map_exp_0 = pretrained["model_weights"]["binary_dense_4"]["binary_dense_4"]["rand_map_exp_0:0"] pret_rand_map_exp_1 = pretrained["model_weights"]["binary_dense_4"]["binary_dense_4"]["rand_map_exp_1:0"] pret_rand_map_exp_2 = pretrained["model_weights"]["binary_dense_4"]["binary_dense_4"]["rand_map_exp_2:0"] weight_shape = np.shape(bl_w1) tile_shape = np.shape(pret_c1) zero_fill = np.zeros(tile_shape) one_fill = np.ones(tile_shape) neg_one_fill = -np.ones(tile_shape) # randomisation and pruning recovery bl_w1_unroll = np.array(bl_w1) bl_w1 = np.array(bl_w1) rand_map_0 = np.arange(tile_shape[0]) np.random.shuffle(rand_map_0) rand_map_1 = np.arange(tile_shape[0]) np.random.shuffle(rand_map_1) rand_map_2 = np.arange(tile_shape[0]) np.random.shuffle(rand_map_2) pruning_mask = np.array(bl_pruning_mask).astype(bool) init_mask = np.logical_not(pruning_mask[rand_map_0]) pruning_mask_recover = np.logical_and(pruning_mask, init_mask)[np.argsort(rand_map_0)] pruning_mask = np.logical_or(pruning_mask, pruning_mask_recover) init_mask = np.reshape(init_mask, tile_shape) # expand randomisation map across tiles rand_map_0_expand = np.tile(rand_map_0,[weight_shape[0]/tile_shape[0]]) rand_map_1_expand = np.tile(rand_map_1,[weight_shape[0]/tile_shape[0]]) rand_map_2_expand = np.tile(rand_map_2,[weight_shape[0]/tile_shape[0]]) for i in range(weight_shape[0]): rand_map_0_expand[i] = rand_map_0_expand[i] + (tile_shape[0]*(weight_shape[0]/tile_shape[0]-1)) * (rand_map_0_expand[i]/tile_shape[0]) + tile_shape[0]*(i%weight_shape[0]/tile_shape[0]) rand_map_1_expand[i] = rand_map_1_expand[i] + (tile_shape[0]*(weight_shape[0]/tile_shape[0]-1)) * (rand_map_1_expand[i]/tile_shape[0]) + tile_shape[0]*(i%weight_shape[0]/tile_shape[0]) rand_map_2_expand[i] = rand_map_2_expand[i] + (tile_shape[0]*(weight_shape[0]/tile_shape[0]-1)) * (rand_map_2_expand[i]/tile_shape[0]) + tile_shape[0]*(i%weight_shape[0]/tile_shape[0]) bl_w1_rand_0 = bl_w1_unroll[rand_map_0_expand] bl_w1_rand_0 = np.reshape(bl_w1_rand_0, weight_shape) w1 = bl_w1 # connect1 only c1 = one_fill c2 = neg_one_fill c3 = one_fill c4 = neg_one_fill c5 = one_fill c6 = neg_one_fill c7 = one_fill c8 = neg_one_fill c9 = one_fill c10 = neg_one_fill c11 = one_fill c12 = neg_one_fill c13 = one_fill c14 = neg_one_fill c15 = one_fill c16 = neg_one_fill c17 = neg_one_fill c18 = one_fill c19 = neg_one_fill c20 = one_fill c21 = neg_one_fill c22 = one_fill c23 = neg_one_fill c24 = one_fill c25 = neg_one_fill c26 = one_fill c27 = neg_one_fill c28 = one_fill c29 = neg_one_fill c30 = one_fill c31 = neg_one_fill c32 = one_fill pret_w1 [...] = w1 pret_c1 [...] = c1 pret_c2 [...] = c2 pret_c3 [...] = c3 pret_c4 [...] = c4 pret_c5 [...] = c5 pret_c6 [...] = c6 pret_c7 [...] = c7 pret_c8 [...] = c8 pret_c9 [...] = c9 pret_c10[...] = c10 pret_c11[...] = c11 pret_c12[...] = c12 pret_c13[...] = c13 pret_c14[...] = c14 pret_c15[...] = c15 pret_c16[...] = c16 pret_c17[...] = c17 pret_c18[...] = c18 pret_c19[...] = c19 pret_c20[...] = c20 pret_c21[...] = c21 pret_c22[...] = c22 pret_c23[...] = c23 pret_c24[...] = c24 pret_c25[...] = c25 pret_c26[...] = c26 pret_c27[...] = c27 pret_c28[...] = c28 pret_c29[...] = c29 pret_c30[...] = c30 pret_c31[...] = c31 pret_c32[...] = c32 pret_rand_map_0[...] = np.reshape(rand_map_0, (-1,1)).astype(float) pret_rand_map_1[...] = np.reshape(rand_map_1, (-1,1)).astype(float) pret_rand_map_2[...] = np.reshape(rand_map_2, (-1,1)).astype(float) p_gamma[...] = np.array(bl_gamma) pret_means[...] = np.array(bl_means) pret_pruning_mask[...] = np.array(bl_pruning_mask) rand_map_0_expand = np.reshape(rand_map_0_expand, [-1,1]).astype(float) pret_rand_map_exp_0[...] = rand_map_0_expand rand_map_1_expand = np.reshape(rand_map_1_expand, [-1,1]).astype(float) pret_rand_map_exp_1[...] = rand_map_1_expand rand_map_2_expand = np.reshape(rand_map_2_expand, [-1,1]).astype(float) pret_rand_map_exp_2[...] = rand_map_2_expand print(np.sum(np.array(bl_pruning_mask)), np.prod(np.shape(np.array(bl_pruning_mask)))) # dense layer 5 bl_w1 = bl["model_weights"]["binary_dense_5"]["binary_dense_5"]["Variable_1:0"] bl_rand_map_0 = bl["model_weights"]["binary_dense_5"]["binary_dense_5"]["rand_map_0:0"] bl_pruning_mask = bl["model_weights"]["binary_dense_5"]["binary_dense_5"]["pruning_mask:0"] bl_gamma = bl["model_weights"]["binary_dense_5"]["binary_dense_5"]["Variable:0"] bl_means = bl["model_weights"]["residual_sign_4"]["residual_sign_4"]["means:0"] pret_rand_map_0 = pretrained["model_weights"]["binary_dense_5"]["binary_dense_5"]["rand_map_0:0"] pret_rand_map_1 = pretrained["model_weights"]["binary_dense_5"]["binary_dense_5"]["rand_map_1:0"] pret_rand_map_2 = pretrained["model_weights"]["binary_dense_5"]["binary_dense_5"]["rand_map_2:0"] pret_pruning_mask = pretrained["model_weights"]["binary_dense_5"]["binary_dense_5"]["pruning_mask:0"] p_gamma = pretrained["model_weights"]["binary_dense_5"]["binary_dense_5"]["Variable:0"] pret_means = pretrained["model_weights"]["residual_sign_4"]["residual_sign_4"]["means:0"] pret_c1 = pretrained["model_weights"]["binary_dense_5"]["binary_dense_5"]["Variable_1:0"] pret_c2 = pretrained["model_weights"]["binary_dense_5"]["binary_dense_5"]["Variable_2:0"] pret_c3 = pretrained["model_weights"]["binary_dense_5"]["binary_dense_5"]["Variable_3:0"] pret_c4 = pretrained["model_weights"]["binary_dense_5"]["binary_dense_5"]["Variable_4:0"] pret_c5 = pretrained["model_weights"]["binary_dense_5"]["binary_dense_5"]["Variable_5:0"] pret_c6 = pretrained["model_weights"]["binary_dense_5"]["binary_dense_5"]["Variable_6:0"] pret_c7 = pretrained["model_weights"]["binary_dense_5"]["binary_dense_5"]["Variable_7:0"] pret_c8 = pretrained["model_weights"]["binary_dense_5"]["binary_dense_5"]["Variable_8:0"] pret_c9 = pretrained["model_weights"]["binary_dense_5"]["binary_dense_5"]["Variable_9:0"] pret_c10= pretrained["model_weights"]["binary_dense_5"]["binary_dense_5"]["Variable_10:0"] pret_c11= pretrained["model_weights"]["binary_dense_5"]["binary_dense_5"]["Variable_11:0"] pret_c12= pretrained["model_weights"]["binary_dense_5"]["binary_dense_5"]["Variable_12:0"] pret_c13= pretrained["model_weights"]["binary_dense_5"]["binary_dense_5"]["Variable_13:0"] pret_c14= pretrained["model_weights"]["binary_dense_5"]["binary_dense_5"]["Variable_14:0"] pret_c15= pretrained["model_weights"]["binary_dense_5"]["binary_dense_5"]["Variable_15:0"] pret_c16= pretrained["model_weights"]["binary_dense_5"]["binary_dense_5"]["Variable_16:0"] pret_c17= pretrained["model_weights"]["binary_dense_5"]["binary_dense_5"]["Variable_17:0"] pret_c18= pretrained["model_weights"]["binary_dense_5"]["binary_dense_5"]["Variable_18:0"] pret_c19= pretrained["model_weights"]["binary_dense_5"]["binary_dense_5"]["Variable_19:0"] pret_c20= pretrained["model_weights"]["binary_dense_5"]["binary_dense_5"]["Variable_20:0"] pret_c21= pretrained["model_weights"]["binary_dense_5"]["binary_dense_5"]["Variable_21:0"] pret_c22= pretrained["model_weights"]["binary_dense_5"]["binary_dense_5"]["Variable_22:0"] pret_c23= pretrained["model_weights"]["binary_dense_5"]["binary_dense_5"]["Variable_23:0"] pret_c24= pretrained["model_weights"]["binary_dense_5"]["binary_dense_5"]["Variable_24:0"] pret_c25= pretrained["model_weights"]["binary_dense_5"]["binary_dense_5"]["Variable_25:0"] pret_c26= pretrained["model_weights"]["binary_dense_5"]["binary_dense_5"]["Variable_26:0"] pret_c27= pretrained["model_weights"]["binary_dense_5"]["binary_dense_5"]["Variable_27:0"] pret_c28= pretrained["model_weights"]["binary_dense_5"]["binary_dense_5"]["Variable_28:0"] pret_c29= pretrained["model_weights"]["binary_dense_5"]["binary_dense_5"]["Variable_29:0"] pret_c30= pretrained["model_weights"]["binary_dense_5"]["binary_dense_5"]["Variable_30:0"] pret_c31= pretrained["model_weights"]["binary_dense_5"]["binary_dense_5"]["Variable_31:0"] pret_c32= pretrained["model_weights"]["binary_dense_5"]["binary_dense_5"]["Variable_32:0"] pret_w1 = pretrained["model_weights"]["binary_dense_5"]["binary_dense_5"]["Variable_33:0"] pret_rand_map_exp_0 = pretrained["model_weights"]["binary_dense_5"]["binary_dense_5"]["rand_map_exp_0:0"] pret_rand_map_exp_1 = pretrained["model_weights"]["binary_dense_5"]["binary_dense_5"]["rand_map_exp_1:0"] pret_rand_map_exp_2 = pretrained["model_weights"]["binary_dense_5"]["binary_dense_5"]["rand_map_exp_2:0"] weight_shape = np.shape(bl_w1) tile_shape = np.shape(pret_c1) zero_fill = np.zeros(tile_shape) one_fill = np.ones(tile_shape) neg_one_fill = -np.ones(tile_shape) # randomisation and pruning recovery bl_w1_unroll = np.array(bl_w1) bl_w1 = np.array(bl_w1) rand_map_0 = np.arange(tile_shape[0]) np.random.shuffle(rand_map_0) rand_map_1 = np.arange(tile_shape[0]) np.random.shuffle(rand_map_1) rand_map_2 = np.arange(tile_shape[0]) np.random.shuffle(rand_map_2) pruning_mask = np.array(bl_pruning_mask).astype(bool) init_mask = np.logical_not(pruning_mask[rand_map_0]) pruning_mask_recover = np.logical_and(pruning_mask, init_mask)[np.argsort(rand_map_0)] pruning_mask = np.logical_or(pruning_mask, pruning_mask_recover) init_mask = np.reshape(init_mask, tile_shape) # expand randomisation map across tiles rand_map_0_expand = np.tile(rand_map_0,[weight_shape[0]/tile_shape[0]]) rand_map_1_expand = np.tile(rand_map_1,[weight_shape[0]/tile_shape[0]]) rand_map_2_expand = np.tile(rand_map_2,[weight_shape[0]/tile_shape[0]]) for i in range(weight_shape[0]): rand_map_0_expand[i] = rand_map_0_expand[i] + (tile_shape[0]*(weight_shape[0]/tile_shape[0]-1)) * (rand_map_0_expand[i]/tile_shape[0]) + tile_shape[0]*(i%weight_shape[0]/tile_shape[0]) rand_map_1_expand[i] = rand_map_1_expand[i] + (tile_shape[0]*(weight_shape[0]/tile_shape[0]-1)) * (rand_map_1_expand[i]/tile_shape[0]) + tile_shape[0]*(i%weight_shape[0]/tile_shape[0]) rand_map_2_expand[i] = rand_map_2_expand[i] + (tile_shape[0]*(weight_shape[0]/tile_shape[0]-1)) * (rand_map_2_expand[i]/tile_shape[0]) + tile_shape[0]*(i%weight_shape[0]/tile_shape[0]) bl_w1_rand_0 = bl_w1_unroll[rand_map_0_expand] bl_w1_rand_0 = np.reshape(bl_w1_rand_0, weight_shape) w1 = bl_w1 # connect1 only c1 = one_fill c2 = neg_one_fill c3 = one_fill c4 = neg_one_fill c5 = one_fill c6 = neg_one_fill c7 = one_fill c8 = neg_one_fill c9 = one_fill c10 = neg_one_fill c11 = one_fill c12 = neg_one_fill c13 = one_fill c14 = neg_one_fill c15 = one_fill c16 = neg_one_fill c17 = neg_one_fill c18 = one_fill c19 = neg_one_fill c20 = one_fill c21 = neg_one_fill c22 = one_fill c23 = neg_one_fill c24 = one_fill c25 = neg_one_fill c26 = one_fill c27 = neg_one_fill c28 = one_fill c29 = neg_one_fill c30 = one_fill c31 = neg_one_fill c32 = one_fill pret_w1 [...] = w1 pret_c1 [...] = c1 pret_c2 [...] = c2 pret_c3 [...] = c3 pret_c4 [...] = c4 pret_c5 [...] = c5 pret_c6 [...] = c6 pret_c7 [...] = c7 pret_c8 [...] = c8 pret_c9 [...] = c9 pret_c10[...] = c10 pret_c11[...] = c11 pret_c12[...] = c12 pret_c13[...] = c13 pret_c14[...] = c14 pret_c15[...] = c15 pret_c16[...] = c16 pret_c17[...] = c17 pret_c18[...] = c18 pret_c19[...] = c19 pret_c20[...] = c20 pret_c21[...] = c21 pret_c22[...] = c22 pret_c23[...] = c23 pret_c24[...] = c24 pret_c25[...] = c25 pret_c26[...] = c26 pret_c27[...] = c27 pret_c28[...] = c28 pret_c29[...] = c29 pret_c30[...] = c30 pret_c31[...] = c31 pret_c32[...] = c32 pret_rand_map_0[...] = np.reshape(rand_map_0, (-1,1)).astype(float) pret_rand_map_1[...] = np.reshape(rand_map_1, (-1,1)).astype(float) pret_rand_map_2[...] = np.reshape(rand_map_2, (-1,1)).astype(float) p_gamma[...] = np.array(bl_gamma) pret_means[...] = np.array(bl_means) pret_pruning_mask[...] = np.array(bl_pruning_mask) rand_map_0_expand = np.reshape(rand_map_0_expand, [-1,1]).astype(float) pret_rand_map_exp_0[...] = rand_map_0_expand rand_map_1_expand = np.reshape(rand_map_1_expand, [-1,1]).astype(float) pret_rand_map_exp_1[...] = rand_map_1_expand rand_map_2_expand = np.reshape(rand_map_2_expand, [-1,1]).astype(float) pret_rand_map_exp_2[...] = rand_map_2_expand print(np.sum(np.array(bl_pruning_mask)), np.prod(np.shape(np.array(bl_pruning_mask)))) # bn 1 bl_beta = bl["model_weights"]["batch_normalization_1"]["batch_normalization_1"]["beta:0"] bl_gamma = bl["model_weights"]["batch_normalization_1"]["batch_normalization_1"]["gamma:0"] bl_moving_mean = bl["model_weights"]["batch_normalization_1"]["batch_normalization_1"]["moving_mean:0"] bl_moving_variance = bl["model_weights"]["batch_normalization_1"]["batch_normalization_1"]["moving_variance:0"] p_beta = pretrained["model_weights"]["batch_normalization_1"]["batch_normalization_1"]["beta:0"] p_gamma = pretrained["model_weights"]["batch_normalization_1"]["batch_normalization_1"]["gamma:0"] p_moving_mean = pretrained["model_weights"]["batch_normalization_1"]["batch_normalization_1"]["moving_mean:0"] p_moving_variance = pretrained["model_weights"]["batch_normalization_1"]["batch_normalization_1"]["moving_variance:0"] p_beta[...] = np.array(bl_beta) p_gamma[...] = np.array(bl_gamma) p_moving_mean[...] = np.array(bl_moving_mean) p_moving_variance[...] = np.array(bl_moving_variance) # bn 2 bl_beta = bl["model_weights"]["batch_normalization_2"]["batch_normalization_2"]["beta:0"] bl_gamma = bl["model_weights"]["batch_normalization_2"]["batch_normalization_2"]["gamma:0"] bl_moving_mean = bl["model_weights"]["batch_normalization_2"]["batch_normalization_2"]["moving_mean:0"] bl_moving_variance = bl["model_weights"]["batch_normalization_2"]["batch_normalization_2"]["moving_variance:0"] p_beta = pretrained["model_weights"]["batch_normalization_2"]["batch_normalization_2"]["beta:0"] p_gamma = pretrained["model_weights"]["batch_normalization_2"]["batch_normalization_2"]["gamma:0"] p_moving_mean = pretrained["model_weights"]["batch_normalization_2"]["batch_normalization_2"]["moving_mean:0"] p_moving_variance = pretrained["model_weights"]["batch_normalization_2"]["batch_normalization_2"]["moving_variance:0"] p_beta[...] = np.array(bl_beta) p_gamma[...] = np.array(bl_gamma) p_moving_mean[...] = np.array(bl_moving_mean) p_moving_variance[...] = np.array(bl_moving_variance) # bn 3 bl_beta = bl["model_weights"]["batch_normalization_3"]["batch_normalization_3"]["beta:0"] bl_gamma = bl["model_weights"]["batch_normalization_3"]["batch_normalization_3"]["gamma:0"] bl_moving_mean = bl["model_weights"]["batch_normalization_3"]["batch_normalization_3"]["moving_mean:0"] bl_moving_variance = bl["model_weights"]["batch_normalization_3"]["batch_normalization_3"]["moving_variance:0"] p_beta = pretrained["model_weights"]["batch_normalization_3"]["batch_normalization_3"]["beta:0"] p_gamma = pretrained["model_weights"]["batch_normalization_3"]["batch_normalization_3"]["gamma:0"] p_moving_mean = pretrained["model_weights"]["batch_normalization_3"]["batch_normalization_3"]["moving_mean:0"] p_moving_variance = pretrained["model_weights"]["batch_normalization_3"]["batch_normalization_3"]["moving_variance:0"] p_beta[...] = np.array(bl_beta) p_gamma[...] = np.array(bl_gamma) p_moving_mean[...] = np.array(bl_moving_mean) p_moving_variance[...] = np.array(bl_moving_variance) # bn 4 bl_beta = bl["model_weights"]["batch_normalization_4"]["batch_normalization_4"]["beta:0"] bl_gamma = bl["model_weights"]["batch_normalization_4"]["batch_normalization_4"]["gamma:0"] bl_moving_mean = bl["model_weights"]["batch_normalization_4"]["batch_normalization_4"]["moving_mean:0"] bl_moving_variance = bl["model_weights"]["batch_normalization_4"]["batch_normalization_4"]["moving_variance:0"] p_beta = pretrained["model_weights"]["batch_normalization_4"]["batch_normalization_4"]["beta:0"] p_gamma = pretrained["model_weights"]["batch_normalization_4"]["batch_normalization_4"]["gamma:0"] p_moving_mean = pretrained["model_weights"]["batch_normalization_4"]["batch_normalization_4"]["moving_mean:0"] p_moving_variance = pretrained["model_weights"]["batch_normalization_4"]["batch_normalization_4"]["moving_variance:0"] p_beta[...] = np.array(bl_beta) p_gamma[...] = np.array(bl_gamma) p_moving_mean[...] = np.array(bl_moving_mean) p_moving_variance[...] = np.array(bl_moving_variance) # bn 5 bl_beta = bl["model_weights"]["batch_normalization_5"]["batch_normalization_5"]["beta:0"] bl_gamma = bl["model_weights"]["batch_normalization_5"]["batch_normalization_5"]["gamma:0"] bl_moving_mean = bl["model_weights"]["batch_normalization_5"]["batch_normalization_5"]["moving_mean:0"] bl_moving_variance = bl["model_weights"]["batch_normalization_5"]["batch_normalization_5"]["moving_variance:0"] p_beta = pretrained["model_weights"]["batch_normalization_5"]["batch_normalization_5"]["beta:0"] p_gamma = pretrained["model_weights"]["batch_normalization_5"]["batch_normalization_5"]["gamma:0"] p_moving_mean = pretrained["model_weights"]["batch_normalization_5"]["batch_normalization_5"]["moving_mean:0"] p_moving_variance = pretrained["model_weights"]["batch_normalization_5"]["batch_normalization_5"]["moving_variance:0"] p_beta[...] = np.array(bl_beta) p_gamma[...] = np.array(bl_gamma) p_moving_mean[...] = np.array(bl_moving_mean) p_moving_variance[...] = np.array(bl_moving_variance) pretrained.close()
[ "numpy.tile", "numpy.random.shuffle", "numpy.reshape", "numpy.ones", "numpy.logical_and", "numpy.logical_not", "numpy.logical_or", "h5py.File", "numpy.argsort", "numpy.array", "shutil.copyfile", "numpy.zeros", "numpy.shape", "numpy.arange", "numpy.set_printoptions" ]
[((31, 68), 'numpy.set_printoptions', 'np.set_printoptions', ([], {'threshold': 'np.nan'}), '(threshold=np.nan)\n', (50, 68), True, 'import numpy as np\n'), ((99, 147), 'shutil.copyfile', 'copyfile', (['"""dummy_lutnet.h5"""', '"""pretrained_bin.h5"""'], {}), "('dummy_lutnet.h5', 'pretrained_bin.h5')\n", (107, 147), False, 'from shutil import copyfile\n'), ((211, 247), 'h5py.File', 'h5py.File', (['"""baseline_pruned.h5"""', '"""r"""'], {}), "('baseline_pruned.h5', 'r')\n", (220, 247), False, 'import h5py\n'), ((297, 333), 'h5py.File', 'h5py.File', (['"""pretrained_bin.h5"""', '"""r+"""'], {}), "('pretrained_bin.h5', 'r+')\n", (306, 333), False, 'import h5py\n'), ((949, 964), 'numpy.array', 'np.array', (['bl_w1'], {}), '(bl_w1)\n', (957, 964), True, 'import numpy as np\n'), ((980, 998), 'numpy.array', 'np.array', (['bl_gamma'], {}), '(bl_gamma)\n', (988, 998), True, 'import numpy as np\n'), ((1024, 1049), 'numpy.array', 'np.array', (['bl_pruning_mask'], {}), '(bl_pruning_mask)\n', (1032, 1049), True, 'import numpy as np\n'), ((5514, 5529), 'numpy.shape', 'np.shape', (['bl_w1'], {}), '(bl_w1)\n', (5522, 5529), True, 'import numpy as np\n'), ((5543, 5560), 'numpy.shape', 'np.shape', (['pret_c1'], {}), '(pret_c1)\n', (5551, 5560), True, 'import numpy as np\n'), ((5573, 5593), 'numpy.zeros', 'np.zeros', (['tile_shape'], {}), '(tile_shape)\n', (5581, 5593), True, 'import numpy as np\n'), ((5605, 5624), 'numpy.ones', 'np.ones', (['tile_shape'], {}), '(tile_shape)\n', (5612, 5624), True, 'import numpy as np\n'), ((5714, 5729), 'numpy.array', 'np.array', (['bl_w1'], {}), '(bl_w1)\n', (5722, 5729), True, 'import numpy as np\n'), ((5738, 5753), 'numpy.array', 'np.array', (['bl_w1'], {}), '(bl_w1)\n', (5746, 5753), True, 'import numpy as np\n'), ((5768, 5792), 'numpy.arange', 'np.arange', (['tile_shape[0]'], {}), '(tile_shape[0])\n', (5777, 5792), True, 'import numpy as np\n'), ((5793, 5822), 'numpy.random.shuffle', 'np.random.shuffle', (['rand_map_0'], {}), '(rand_map_0)\n', (5810, 5822), True, 'import numpy as np\n'), ((5836, 5860), 'numpy.arange', 'np.arange', (['tile_shape[0]'], {}), '(tile_shape[0])\n', (5845, 5860), True, 'import numpy as np\n'), ((5861, 5890), 'numpy.random.shuffle', 'np.random.shuffle', (['rand_map_1'], {}), '(rand_map_1)\n', (5878, 5890), True, 'import numpy as np\n'), ((5904, 5928), 'numpy.arange', 'np.arange', (['tile_shape[0]'], {}), '(tile_shape[0])\n', (5913, 5928), True, 'import numpy as np\n'), ((5929, 5958), 'numpy.random.shuffle', 'np.random.shuffle', (['rand_map_2'], {}), '(rand_map_2)\n', (5946, 5958), True, 'import numpy as np\n'), ((6026, 6066), 'numpy.logical_not', 'np.logical_not', (['pruning_mask[rand_map_0]'], {}), '(pruning_mask[rand_map_0])\n', (6040, 6066), True, 'import numpy as np\n'), ((6169, 6218), 'numpy.logical_or', 'np.logical_or', (['pruning_mask', 'pruning_mask_recover'], {}), '(pruning_mask, pruning_mask_recover)\n', (6182, 6218), True, 'import numpy as np\n'), ((6231, 6264), 'numpy.reshape', 'np.reshape', (['init_mask', 'tile_shape'], {}), '(init_mask, tile_shape)\n', (6241, 6264), True, 'import numpy as np\n'), ((6327, 6381), 'numpy.tile', 'np.tile', (['rand_map_0', '[weight_shape[0] / tile_shape[0]]'], {}), '(rand_map_0, [weight_shape[0] / tile_shape[0]])\n', (6334, 6381), True, 'import numpy as np\n'), ((6399, 6453), 'numpy.tile', 'np.tile', (['rand_map_1', '[weight_shape[0] / tile_shape[0]]'], {}), '(rand_map_1, [weight_shape[0] / tile_shape[0]])\n', (6406, 6453), True, 'import numpy as np\n'), ((6471, 6525), 'numpy.tile', 'np.tile', (['rand_map_2', '[weight_shape[0] / tile_shape[0]]'], {}), '(rand_map_2, [weight_shape[0] / tile_shape[0]])\n', (6478, 6525), True, 'import numpy as np\n'), ((7198, 7236), 'numpy.reshape', 'np.reshape', (['bl_w1_rand_0', 'weight_shape'], {}), '(bl_w1_rand_0, weight_shape)\n', (7208, 7236), True, 'import numpy as np\n'), ((8681, 8699), 'numpy.array', 'np.array', (['bl_gamma'], {}), '(bl_gamma)\n', (8689, 8699), True, 'import numpy as np\n'), ((8718, 8736), 'numpy.array', 'np.array', (['bl_means'], {}), '(bl_means)\n', (8726, 8736), True, 'import numpy as np\n'), ((8762, 8787), 'numpy.array', 'np.array', (['bl_pruning_mask'], {}), '(bl_pruning_mask)\n', (8770, 8787), True, 'import numpy as np\n'), ((13604, 13619), 'numpy.shape', 'np.shape', (['bl_w1'], {}), '(bl_w1)\n', (13612, 13619), True, 'import numpy as np\n'), ((13633, 13650), 'numpy.shape', 'np.shape', (['pret_c1'], {}), '(pret_c1)\n', (13641, 13650), True, 'import numpy as np\n'), ((13663, 13683), 'numpy.zeros', 'np.zeros', (['tile_shape'], {}), '(tile_shape)\n', (13671, 13683), True, 'import numpy as np\n'), ((13695, 13714), 'numpy.ones', 'np.ones', (['tile_shape'], {}), '(tile_shape)\n', (13702, 13714), True, 'import numpy as np\n'), ((13804, 13819), 'numpy.array', 'np.array', (['bl_w1'], {}), '(bl_w1)\n', (13812, 13819), True, 'import numpy as np\n'), ((13828, 13843), 'numpy.array', 'np.array', (['bl_w1'], {}), '(bl_w1)\n', (13836, 13843), True, 'import numpy as np\n'), ((13858, 13882), 'numpy.arange', 'np.arange', (['tile_shape[0]'], {}), '(tile_shape[0])\n', (13867, 13882), True, 'import numpy as np\n'), ((13883, 13912), 'numpy.random.shuffle', 'np.random.shuffle', (['rand_map_0'], {}), '(rand_map_0)\n', (13900, 13912), True, 'import numpy as np\n'), ((13926, 13950), 'numpy.arange', 'np.arange', (['tile_shape[0]'], {}), '(tile_shape[0])\n', (13935, 13950), True, 'import numpy as np\n'), ((13951, 13980), 'numpy.random.shuffle', 'np.random.shuffle', (['rand_map_1'], {}), '(rand_map_1)\n', (13968, 13980), True, 'import numpy as np\n'), ((13994, 14018), 'numpy.arange', 'np.arange', (['tile_shape[0]'], {}), '(tile_shape[0])\n', (14003, 14018), True, 'import numpy as np\n'), ((14019, 14048), 'numpy.random.shuffle', 'np.random.shuffle', (['rand_map_2'], {}), '(rand_map_2)\n', (14036, 14048), True, 'import numpy as np\n'), ((14116, 14156), 'numpy.logical_not', 'np.logical_not', (['pruning_mask[rand_map_0]'], {}), '(pruning_mask[rand_map_0])\n', (14130, 14156), True, 'import numpy as np\n'), ((14259, 14308), 'numpy.logical_or', 'np.logical_or', (['pruning_mask', 'pruning_mask_recover'], {}), '(pruning_mask, pruning_mask_recover)\n', (14272, 14308), True, 'import numpy as np\n'), ((14321, 14354), 'numpy.reshape', 'np.reshape', (['init_mask', 'tile_shape'], {}), '(init_mask, tile_shape)\n', (14331, 14354), True, 'import numpy as np\n'), ((14417, 14471), 'numpy.tile', 'np.tile', (['rand_map_0', '[weight_shape[0] / tile_shape[0]]'], {}), '(rand_map_0, [weight_shape[0] / tile_shape[0]])\n', (14424, 14471), True, 'import numpy as np\n'), ((14489, 14543), 'numpy.tile', 'np.tile', (['rand_map_1', '[weight_shape[0] / tile_shape[0]]'], {}), '(rand_map_1, [weight_shape[0] / tile_shape[0]])\n', (14496, 14543), True, 'import numpy as np\n'), ((14561, 14615), 'numpy.tile', 'np.tile', (['rand_map_2', '[weight_shape[0] / tile_shape[0]]'], {}), '(rand_map_2, [weight_shape[0] / tile_shape[0]])\n', (14568, 14615), True, 'import numpy as np\n'), ((15288, 15326), 'numpy.reshape', 'np.reshape', (['bl_w1_rand_0', 'weight_shape'], {}), '(bl_w1_rand_0, weight_shape)\n', (15298, 15326), True, 'import numpy as np\n'), ((16771, 16789), 'numpy.array', 'np.array', (['bl_gamma'], {}), '(bl_gamma)\n', (16779, 16789), True, 'import numpy as np\n'), ((16808, 16826), 'numpy.array', 'np.array', (['bl_means'], {}), '(bl_means)\n', (16816, 16826), True, 'import numpy as np\n'), ((16852, 16877), 'numpy.array', 'np.array', (['bl_pruning_mask'], {}), '(bl_pruning_mask)\n', (16860, 16877), True, 'import numpy as np\n'), ((21694, 21709), 'numpy.shape', 'np.shape', (['bl_w1'], {}), '(bl_w1)\n', (21702, 21709), True, 'import numpy as np\n'), ((21723, 21740), 'numpy.shape', 'np.shape', (['pret_c1'], {}), '(pret_c1)\n', (21731, 21740), True, 'import numpy as np\n'), ((21753, 21773), 'numpy.zeros', 'np.zeros', (['tile_shape'], {}), '(tile_shape)\n', (21761, 21773), True, 'import numpy as np\n'), ((21785, 21804), 'numpy.ones', 'np.ones', (['tile_shape'], {}), '(tile_shape)\n', (21792, 21804), True, 'import numpy as np\n'), ((21894, 21909), 'numpy.array', 'np.array', (['bl_w1'], {}), '(bl_w1)\n', (21902, 21909), True, 'import numpy as np\n'), ((21918, 21933), 'numpy.array', 'np.array', (['bl_w1'], {}), '(bl_w1)\n', (21926, 21933), True, 'import numpy as np\n'), ((21948, 21972), 'numpy.arange', 'np.arange', (['tile_shape[0]'], {}), '(tile_shape[0])\n', (21957, 21972), True, 'import numpy as np\n'), ((21973, 22002), 'numpy.random.shuffle', 'np.random.shuffle', (['rand_map_0'], {}), '(rand_map_0)\n', (21990, 22002), True, 'import numpy as np\n'), ((22016, 22040), 'numpy.arange', 'np.arange', (['tile_shape[0]'], {}), '(tile_shape[0])\n', (22025, 22040), True, 'import numpy as np\n'), ((22041, 22070), 'numpy.random.shuffle', 'np.random.shuffle', (['rand_map_1'], {}), '(rand_map_1)\n', (22058, 22070), True, 'import numpy as np\n'), ((22084, 22108), 'numpy.arange', 'np.arange', (['tile_shape[0]'], {}), '(tile_shape[0])\n', (22093, 22108), True, 'import numpy as np\n'), ((22109, 22138), 'numpy.random.shuffle', 'np.random.shuffle', (['rand_map_2'], {}), '(rand_map_2)\n', (22126, 22138), True, 'import numpy as np\n'), ((22206, 22246), 'numpy.logical_not', 'np.logical_not', (['pruning_mask[rand_map_0]'], {}), '(pruning_mask[rand_map_0])\n', (22220, 22246), True, 'import numpy as np\n'), ((22349, 22398), 'numpy.logical_or', 'np.logical_or', (['pruning_mask', 'pruning_mask_recover'], {}), '(pruning_mask, pruning_mask_recover)\n', (22362, 22398), True, 'import numpy as np\n'), ((22411, 22444), 'numpy.reshape', 'np.reshape', (['init_mask', 'tile_shape'], {}), '(init_mask, tile_shape)\n', (22421, 22444), True, 'import numpy as np\n'), ((22507, 22561), 'numpy.tile', 'np.tile', (['rand_map_0', '[weight_shape[0] / tile_shape[0]]'], {}), '(rand_map_0, [weight_shape[0] / tile_shape[0]])\n', (22514, 22561), True, 'import numpy as np\n'), ((22579, 22633), 'numpy.tile', 'np.tile', (['rand_map_1', '[weight_shape[0] / tile_shape[0]]'], {}), '(rand_map_1, [weight_shape[0] / tile_shape[0]])\n', (22586, 22633), True, 'import numpy as np\n'), ((22651, 22705), 'numpy.tile', 'np.tile', (['rand_map_2', '[weight_shape[0] / tile_shape[0]]'], {}), '(rand_map_2, [weight_shape[0] / tile_shape[0]])\n', (22658, 22705), True, 'import numpy as np\n'), ((23378, 23416), 'numpy.reshape', 'np.reshape', (['bl_w1_rand_0', 'weight_shape'], {}), '(bl_w1_rand_0, weight_shape)\n', (23388, 23416), True, 'import numpy as np\n'), ((24861, 24879), 'numpy.array', 'np.array', (['bl_gamma'], {}), '(bl_gamma)\n', (24869, 24879), True, 'import numpy as np\n'), ((24898, 24916), 'numpy.array', 'np.array', (['bl_means'], {}), '(bl_means)\n', (24906, 24916), True, 'import numpy as np\n'), ((24942, 24967), 'numpy.array', 'np.array', (['bl_pruning_mask'], {}), '(bl_pruning_mask)\n', (24950, 24967), True, 'import numpy as np\n'), ((29784, 29799), 'numpy.shape', 'np.shape', (['bl_w1'], {}), '(bl_w1)\n', (29792, 29799), True, 'import numpy as np\n'), ((29813, 29830), 'numpy.shape', 'np.shape', (['pret_c1'], {}), '(pret_c1)\n', (29821, 29830), True, 'import numpy as np\n'), ((29843, 29863), 'numpy.zeros', 'np.zeros', (['tile_shape'], {}), '(tile_shape)\n', (29851, 29863), True, 'import numpy as np\n'), ((29875, 29894), 'numpy.ones', 'np.ones', (['tile_shape'], {}), '(tile_shape)\n', (29882, 29894), True, 'import numpy as np\n'), ((29984, 29999), 'numpy.array', 'np.array', (['bl_w1'], {}), '(bl_w1)\n', (29992, 29999), True, 'import numpy as np\n'), ((30008, 30023), 'numpy.array', 'np.array', (['bl_w1'], {}), '(bl_w1)\n', (30016, 30023), True, 'import numpy as np\n'), ((30038, 30062), 'numpy.arange', 'np.arange', (['tile_shape[0]'], {}), '(tile_shape[0])\n', (30047, 30062), True, 'import numpy as np\n'), ((30063, 30092), 'numpy.random.shuffle', 'np.random.shuffle', (['rand_map_0'], {}), '(rand_map_0)\n', (30080, 30092), True, 'import numpy as np\n'), ((30106, 30130), 'numpy.arange', 'np.arange', (['tile_shape[0]'], {}), '(tile_shape[0])\n', (30115, 30130), True, 'import numpy as np\n'), ((30131, 30160), 'numpy.random.shuffle', 'np.random.shuffle', (['rand_map_1'], {}), '(rand_map_1)\n', (30148, 30160), True, 'import numpy as np\n'), ((30174, 30198), 'numpy.arange', 'np.arange', (['tile_shape[0]'], {}), '(tile_shape[0])\n', (30183, 30198), True, 'import numpy as np\n'), ((30199, 30228), 'numpy.random.shuffle', 'np.random.shuffle', (['rand_map_2'], {}), '(rand_map_2)\n', (30216, 30228), True, 'import numpy as np\n'), ((30296, 30336), 'numpy.logical_not', 'np.logical_not', (['pruning_mask[rand_map_0]'], {}), '(pruning_mask[rand_map_0])\n', (30310, 30336), True, 'import numpy as np\n'), ((30439, 30488), 'numpy.logical_or', 'np.logical_or', (['pruning_mask', 'pruning_mask_recover'], {}), '(pruning_mask, pruning_mask_recover)\n', (30452, 30488), True, 'import numpy as np\n'), ((30501, 30534), 'numpy.reshape', 'np.reshape', (['init_mask', 'tile_shape'], {}), '(init_mask, tile_shape)\n', (30511, 30534), True, 'import numpy as np\n'), ((30597, 30651), 'numpy.tile', 'np.tile', (['rand_map_0', '[weight_shape[0] / tile_shape[0]]'], {}), '(rand_map_0, [weight_shape[0] / tile_shape[0]])\n', (30604, 30651), True, 'import numpy as np\n'), ((30669, 30723), 'numpy.tile', 'np.tile', (['rand_map_1', '[weight_shape[0] / tile_shape[0]]'], {}), '(rand_map_1, [weight_shape[0] / tile_shape[0]])\n', (30676, 30723), True, 'import numpy as np\n'), ((30741, 30795), 'numpy.tile', 'np.tile', (['rand_map_2', '[weight_shape[0] / tile_shape[0]]'], {}), '(rand_map_2, [weight_shape[0] / tile_shape[0]])\n', (30748, 30795), True, 'import numpy as np\n'), ((31468, 31506), 'numpy.reshape', 'np.reshape', (['bl_w1_rand_0', 'weight_shape'], {}), '(bl_w1_rand_0, weight_shape)\n', (31478, 31506), True, 'import numpy as np\n'), ((32951, 32969), 'numpy.array', 'np.array', (['bl_gamma'], {}), '(bl_gamma)\n', (32959, 32969), True, 'import numpy as np\n'), ((32988, 33006), 'numpy.array', 'np.array', (['bl_means'], {}), '(bl_means)\n', (32996, 33006), True, 'import numpy as np\n'), ((33032, 33057), 'numpy.array', 'np.array', (['bl_pruning_mask'], {}), '(bl_pruning_mask)\n', (33040, 33057), True, 'import numpy as np\n'), ((34347, 34364), 'numpy.array', 'np.array', (['bl_beta'], {}), '(bl_beta)\n', (34355, 34364), True, 'import numpy as np\n'), ((34380, 34398), 'numpy.array', 'np.array', (['bl_gamma'], {}), '(bl_gamma)\n', (34388, 34398), True, 'import numpy as np\n'), ((34420, 34444), 'numpy.array', 'np.array', (['bl_moving_mean'], {}), '(bl_moving_mean)\n', (34428, 34444), True, 'import numpy as np\n'), ((34470, 34498), 'numpy.array', 'np.array', (['bl_moving_variance'], {}), '(bl_moving_variance)\n', (34478, 34498), True, 'import numpy as np\n'), ((35347, 35364), 'numpy.array', 'np.array', (['bl_beta'], {}), '(bl_beta)\n', (35355, 35364), True, 'import numpy as np\n'), ((35380, 35398), 'numpy.array', 'np.array', (['bl_gamma'], {}), '(bl_gamma)\n', (35388, 35398), True, 'import numpy as np\n'), ((35420, 35444), 'numpy.array', 'np.array', (['bl_moving_mean'], {}), '(bl_moving_mean)\n', (35428, 35444), True, 'import numpy as np\n'), ((35470, 35498), 'numpy.array', 'np.array', (['bl_moving_variance'], {}), '(bl_moving_variance)\n', (35478, 35498), True, 'import numpy as np\n'), ((36347, 36364), 'numpy.array', 'np.array', (['bl_beta'], {}), '(bl_beta)\n', (36355, 36364), True, 'import numpy as np\n'), ((36380, 36398), 'numpy.array', 'np.array', (['bl_gamma'], {}), '(bl_gamma)\n', (36388, 36398), True, 'import numpy as np\n'), ((36420, 36444), 'numpy.array', 'np.array', (['bl_moving_mean'], {}), '(bl_moving_mean)\n', (36428, 36444), True, 'import numpy as np\n'), ((36470, 36498), 'numpy.array', 'np.array', (['bl_moving_variance'], {}), '(bl_moving_variance)\n', (36478, 36498), True, 'import numpy as np\n'), ((37347, 37364), 'numpy.array', 'np.array', (['bl_beta'], {}), '(bl_beta)\n', (37355, 37364), True, 'import numpy as np\n'), ((37380, 37398), 'numpy.array', 'np.array', (['bl_gamma'], {}), '(bl_gamma)\n', (37388, 37398), True, 'import numpy as np\n'), ((37420, 37444), 'numpy.array', 'np.array', (['bl_moving_mean'], {}), '(bl_moving_mean)\n', (37428, 37444), True, 'import numpy as np\n'), ((37470, 37498), 'numpy.array', 'np.array', (['bl_moving_variance'], {}), '(bl_moving_variance)\n', (37478, 37498), True, 'import numpy as np\n'), ((38347, 38364), 'numpy.array', 'np.array', (['bl_beta'], {}), '(bl_beta)\n', (38355, 38364), True, 'import numpy as np\n'), ((38380, 38398), 'numpy.array', 'np.array', (['bl_gamma'], {}), '(bl_gamma)\n', (38388, 38398), True, 'import numpy as np\n'), ((38420, 38444), 'numpy.array', 'np.array', (['bl_moving_mean'], {}), '(bl_moving_mean)\n', (38428, 38444), True, 'import numpy as np\n'), ((38470, 38498), 'numpy.array', 'np.array', (['bl_moving_variance'], {}), '(bl_moving_variance)\n', (38478, 38498), True, 'import numpy as np\n'), ((5641, 5660), 'numpy.ones', 'np.ones', (['tile_shape'], {}), '(tile_shape)\n', (5648, 5660), True, 'import numpy as np\n'), ((6090, 6129), 'numpy.logical_and', 'np.logical_and', (['pruning_mask', 'init_mask'], {}), '(pruning_mask, init_mask)\n', (6104, 6129), True, 'import numpy as np\n'), ((6130, 6152), 'numpy.argsort', 'np.argsort', (['rand_map_0'], {}), '(rand_map_0)\n', (6140, 6152), True, 'import numpy as np\n'), ((13731, 13750), 'numpy.ones', 'np.ones', (['tile_shape'], {}), '(tile_shape)\n', (13738, 13750), True, 'import numpy as np\n'), ((14180, 14219), 'numpy.logical_and', 'np.logical_and', (['pruning_mask', 'init_mask'], {}), '(pruning_mask, init_mask)\n', (14194, 14219), True, 'import numpy as np\n'), ((14220, 14242), 'numpy.argsort', 'np.argsort', (['rand_map_0'], {}), '(rand_map_0)\n', (14230, 14242), True, 'import numpy as np\n'), ((21821, 21840), 'numpy.ones', 'np.ones', (['tile_shape'], {}), '(tile_shape)\n', (21828, 21840), True, 'import numpy as np\n'), ((22270, 22309), 'numpy.logical_and', 'np.logical_and', (['pruning_mask', 'init_mask'], {}), '(pruning_mask, init_mask)\n', (22284, 22309), True, 'import numpy as np\n'), ((22310, 22332), 'numpy.argsort', 'np.argsort', (['rand_map_0'], {}), '(rand_map_0)\n', (22320, 22332), True, 'import numpy as np\n'), ((29911, 29930), 'numpy.ones', 'np.ones', (['tile_shape'], {}), '(tile_shape)\n', (29918, 29930), True, 'import numpy as np\n'), ((30360, 30399), 'numpy.logical_and', 'np.logical_and', (['pruning_mask', 'init_mask'], {}), '(pruning_mask, init_mask)\n', (30374, 30399), True, 'import numpy as np\n'), ((30400, 30422), 'numpy.argsort', 'np.argsort', (['rand_map_0'], {}), '(rand_map_0)\n', (30410, 30422), True, 'import numpy as np\n'), ((635, 650), 'numpy.array', 'np.array', (['bl_w1'], {}), '(bl_w1)\n', (643, 650), True, 'import numpy as np\n'), ((1064, 1089), 'numpy.array', 'np.array', (['bl_pruning_mask'], {}), '(bl_pruning_mask)\n', (1072, 1089), True, 'import numpy as np\n'), ((5975, 6000), 'numpy.array', 'np.array', (['bl_pruning_mask'], {}), '(bl_pruning_mask)\n', (5983, 6000), True, 'import numpy as np\n'), ((8485, 8516), 'numpy.reshape', 'np.reshape', (['rand_map_0', '(-1, 1)'], {}), '(rand_map_0, (-1, 1))\n', (8495, 8516), True, 'import numpy as np\n'), ((8553, 8584), 'numpy.reshape', 'np.reshape', (['rand_map_1', '(-1, 1)'], {}), '(rand_map_1, (-1, 1))\n', (8563, 8584), True, 'import numpy as np\n'), ((8621, 8652), 'numpy.reshape', 'np.reshape', (['rand_map_2', '(-1, 1)'], {}), '(rand_map_2, (-1, 1))\n', (8631, 8652), True, 'import numpy as np\n'), ((8809, 8847), 'numpy.reshape', 'np.reshape', (['rand_map_0_expand', '[-1, 1]'], {}), '(rand_map_0_expand, [-1, 1])\n', (8819, 8847), True, 'import numpy as np\n'), ((8926, 8964), 'numpy.reshape', 'np.reshape', (['rand_map_1_expand', '[-1, 1]'], {}), '(rand_map_1_expand, [-1, 1])\n', (8936, 8964), True, 'import numpy as np\n'), ((9043, 9081), 'numpy.reshape', 'np.reshape', (['rand_map_2_expand', '[-1, 1]'], {}), '(rand_map_2_expand, [-1, 1])\n', (9053, 9081), True, 'import numpy as np\n'), ((9154, 9179), 'numpy.array', 'np.array', (['bl_pruning_mask'], {}), '(bl_pruning_mask)\n', (9162, 9179), True, 'import numpy as np\n'), ((14065, 14090), 'numpy.array', 'np.array', (['bl_pruning_mask'], {}), '(bl_pruning_mask)\n', (14073, 14090), True, 'import numpy as np\n'), ((16575, 16606), 'numpy.reshape', 'np.reshape', (['rand_map_0', '(-1, 1)'], {}), '(rand_map_0, (-1, 1))\n', (16585, 16606), True, 'import numpy as np\n'), ((16643, 16674), 'numpy.reshape', 'np.reshape', (['rand_map_1', '(-1, 1)'], {}), '(rand_map_1, (-1, 1))\n', (16653, 16674), True, 'import numpy as np\n'), ((16711, 16742), 'numpy.reshape', 'np.reshape', (['rand_map_2', '(-1, 1)'], {}), '(rand_map_2, (-1, 1))\n', (16721, 16742), True, 'import numpy as np\n'), ((16899, 16937), 'numpy.reshape', 'np.reshape', (['rand_map_0_expand', '[-1, 1]'], {}), '(rand_map_0_expand, [-1, 1])\n', (16909, 16937), True, 'import numpy as np\n'), ((17016, 17054), 'numpy.reshape', 'np.reshape', (['rand_map_1_expand', '[-1, 1]'], {}), '(rand_map_1_expand, [-1, 1])\n', (17026, 17054), True, 'import numpy as np\n'), ((17133, 17171), 'numpy.reshape', 'np.reshape', (['rand_map_2_expand', '[-1, 1]'], {}), '(rand_map_2_expand, [-1, 1])\n', (17143, 17171), True, 'import numpy as np\n'), ((17244, 17269), 'numpy.array', 'np.array', (['bl_pruning_mask'], {}), '(bl_pruning_mask)\n', (17252, 17269), True, 'import numpy as np\n'), ((22155, 22180), 'numpy.array', 'np.array', (['bl_pruning_mask'], {}), '(bl_pruning_mask)\n', (22163, 22180), True, 'import numpy as np\n'), ((24665, 24696), 'numpy.reshape', 'np.reshape', (['rand_map_0', '(-1, 1)'], {}), '(rand_map_0, (-1, 1))\n', (24675, 24696), True, 'import numpy as np\n'), ((24733, 24764), 'numpy.reshape', 'np.reshape', (['rand_map_1', '(-1, 1)'], {}), '(rand_map_1, (-1, 1))\n', (24743, 24764), True, 'import numpy as np\n'), ((24801, 24832), 'numpy.reshape', 'np.reshape', (['rand_map_2', '(-1, 1)'], {}), '(rand_map_2, (-1, 1))\n', (24811, 24832), True, 'import numpy as np\n'), ((24989, 25027), 'numpy.reshape', 'np.reshape', (['rand_map_0_expand', '[-1, 1]'], {}), '(rand_map_0_expand, [-1, 1])\n', (24999, 25027), True, 'import numpy as np\n'), ((25106, 25144), 'numpy.reshape', 'np.reshape', (['rand_map_1_expand', '[-1, 1]'], {}), '(rand_map_1_expand, [-1, 1])\n', (25116, 25144), True, 'import numpy as np\n'), ((25223, 25261), 'numpy.reshape', 'np.reshape', (['rand_map_2_expand', '[-1, 1]'], {}), '(rand_map_2_expand, [-1, 1])\n', (25233, 25261), True, 'import numpy as np\n'), ((25334, 25359), 'numpy.array', 'np.array', (['bl_pruning_mask'], {}), '(bl_pruning_mask)\n', (25342, 25359), True, 'import numpy as np\n'), ((30245, 30270), 'numpy.array', 'np.array', (['bl_pruning_mask'], {}), '(bl_pruning_mask)\n', (30253, 30270), True, 'import numpy as np\n'), ((32755, 32786), 'numpy.reshape', 'np.reshape', (['rand_map_0', '(-1, 1)'], {}), '(rand_map_0, (-1, 1))\n', (32765, 32786), True, 'import numpy as np\n'), ((32823, 32854), 'numpy.reshape', 'np.reshape', (['rand_map_1', '(-1, 1)'], {}), '(rand_map_1, (-1, 1))\n', (32833, 32854), True, 'import numpy as np\n'), ((32891, 32922), 'numpy.reshape', 'np.reshape', (['rand_map_2', '(-1, 1)'], {}), '(rand_map_2, (-1, 1))\n', (32901, 32922), True, 'import numpy as np\n'), ((33079, 33117), 'numpy.reshape', 'np.reshape', (['rand_map_0_expand', '[-1, 1]'], {}), '(rand_map_0_expand, [-1, 1])\n', (33089, 33117), True, 'import numpy as np\n'), ((33196, 33234), 'numpy.reshape', 'np.reshape', (['rand_map_1_expand', '[-1, 1]'], {}), '(rand_map_1_expand, [-1, 1])\n', (33206, 33234), True, 'import numpy as np\n'), ((33313, 33351), 'numpy.reshape', 'np.reshape', (['rand_map_2_expand', '[-1, 1]'], {}), '(rand_map_2_expand, [-1, 1])\n', (33323, 33351), True, 'import numpy as np\n'), ((33424, 33449), 'numpy.array', 'np.array', (['bl_pruning_mask'], {}), '(bl_pruning_mask)\n', (33432, 33449), True, 'import numpy as np\n'), ((1109, 1134), 'numpy.array', 'np.array', (['bl_pruning_mask'], {}), '(bl_pruning_mask)\n', (1117, 1134), True, 'import numpy as np\n'), ((9199, 9224), 'numpy.array', 'np.array', (['bl_pruning_mask'], {}), '(bl_pruning_mask)\n', (9207, 9224), True, 'import numpy as np\n'), ((17289, 17314), 'numpy.array', 'np.array', (['bl_pruning_mask'], {}), '(bl_pruning_mask)\n', (17297, 17314), True, 'import numpy as np\n'), ((25379, 25404), 'numpy.array', 'np.array', (['bl_pruning_mask'], {}), '(bl_pruning_mask)\n', (25387, 25404), True, 'import numpy as np\n'), ((33469, 33494), 'numpy.array', 'np.array', (['bl_pruning_mask'], {}), '(bl_pruning_mask)\n', (33477, 33494), True, 'import numpy as np\n')]
import pandas as pd import numpy as np from src.si.util.util import label_gen __all__ = ['Dataset'] class Dataset: def __init__(self, X=None, Y=None, xnames: list = None, yname: str = None): """ Tabular Dataset""" if X is None: raise Exception("Trying to instanciate a DataSet without any data") self.X = X self.Y = Y self.xnames = xnames if xnames else label_gen(X.shape[1]) self.yname = yname if yname else 'Y' @classmethod def from_data(cls, filename, sep=",", labeled=True): """Creates a DataSet from a data file. :param filename: The filename :type filename: str :param sep: attributes separator, defaults to "," :type sep: str, optional :return: A DataSet object :rtype: DataSet """ data = np.genfromtxt(filename, delimiter=sep) if labeled: X = data[:, 0:-1] Y = data[:, -1] else: X = data Y = None return cls(X, Y) @classmethod def from_dataframe(cls, df, ylabel=None): """Creates a DataSet from a pandas dataframe. :param df: [description] :type df: [type] :param ylabel: [description], defaults to None :type ylabel: [type], optional :return: [description] :rtype: [type] """ if ylabel and ylabel in df.columns: X = df.loc[:, df.columns != ylabel].to_numpy() #transforma num array de numpy Y = df.loc[:, ylabel].to_numpy() # xnames = df.columns.tolist().remove(ylabel) yname = ylabel xnames = df.columns.tolist() for name in xnames: if name == yname: xnames.remove(yname) else: X = df.to_numpy() Y = None xnames = df.columns.tolist() yname = None return cls(X, Y, xnames, yname) def __len__(self): """Returns the number of data points.""" return self.X.shape[0] def hasLabel(self): """Returns True if the dataset constains labels (a dependent variable)""" return self.Y is not None def getNumFeatures(self): """Returns the number of features""" return self.X.shape[1] def getNumClasses(self): """Returns the number of label classes or 0 if the dataset has no dependent variable.""" return len(np.unique(self.Y)) if self.hasLabel() else 0 def writeDataset(self, filename, sep=","): """Saves the dataset to a file :param filename: The output file path :type filename: str :param sep: The fields separator, defaults to "," :type sep: str, optional """ fullds = np.hstack((self.X, self.Y.reshape(len(self.Y), 1))) np.savetxt(filename, fullds, delimiter=sep) def toDataframe(self): """ Converts the dataset into a pandas DataFrame""" if self.hasLabel(): df = pd.DataFrame(np.hstack((self.X, self.Y.reshape(len(self.Y), 1))), columns=self.xnames[:]+[self.yname]) #columns=np.hstack((self.xnames, self.yname))) else: df = pd.DataFrame(self.X.copy(), columns=self.xnames[:]) return df def getXy(self): return self.X, self.Y def summary(dataset, format='df'): """ Returns the statistics of a dataset(mean, std, max, min) :param dataset: A Dataset object :type dataset: si.data.Dataset :param format: Output format ('df':DataFrame, 'dict':dictionary ), defaults to 'df' :type format: str, optional """ if format not in ["df", "dict"]: raise Exception("Invalid format. Choose between 'df' and 'dict'.") if dataset.hasLabel(): data = np.hstack((dataset.X, dataset.Y.reshape(len(dataset.Y), 1))) #data = np.hstack([dataset.X, np.reshape(dataset.Y, (-1, 1))]) columns = dataset.xnames[:] + [dataset.yname] else: data = dataset.X columns = dataset.xnames[:] stats = {} if type(dataset.Y[0]) is str: for i in range(data.shape[1]-1): #ve colunas _means = np.mean(data[:, i], axis=0) _vars = np.var(data[:, i], axis=0) _maxs = np.max(data[:, i], axis=0) _mins = np.min(data[:, i], axis=0) stat = {"mean": _means, "var": _vars, "max": _maxs, "min": _mins } stats[columns[i]] = stat else: for i in range(data.shape[1]): # ve colunas _means = np.mean(data[:, i], axis=0) _vars = np.var(data[:, i], axis=0) _maxs = np.max(data[:, i], axis=0) _mins = np.min(data[:, i], axis=0) stat = {"mean": _means, "var": _vars, "max": _maxs, "min": _mins } stats[columns[i]] = stat # _means = np.mean(data, axis=0) # _vars = np.var(data, axis=0) # _maxs = np.max(data, axis=0) # _mins = np.min(data, axis=0) # stats = {} # for i in range(data.shape[1]): # stat = {"mean": _means[i], # "var": _vars[i], # "max": _maxs[i], # "min": _mins[i] # } # stats[columns[i]] = stat if format == "dict": return stats else: return pd.DataFrame(stats)
[ "src.si.util.util.label_gen", "numpy.mean", "numpy.unique", "numpy.max", "numpy.savetxt", "numpy.min", "pandas.DataFrame", "numpy.genfromtxt", "numpy.var" ]
[((878, 916), 'numpy.genfromtxt', 'np.genfromtxt', (['filename'], {'delimiter': 'sep'}), '(filename, delimiter=sep)\n', (891, 916), True, 'import numpy as np\n'), ((2885, 2928), 'numpy.savetxt', 'np.savetxt', (['filename', 'fullds'], {'delimiter': 'sep'}), '(filename, fullds, delimiter=sep)\n', (2895, 2928), True, 'import numpy as np\n'), ((5482, 5501), 'pandas.DataFrame', 'pd.DataFrame', (['stats'], {}), '(stats)\n', (5494, 5501), True, 'import pandas as pd\n'), ((446, 467), 'src.si.util.util.label_gen', 'label_gen', (['X.shape[1]'], {}), '(X.shape[1])\n', (455, 467), False, 'from src.si.util.util import label_gen\n'), ((4202, 4229), 'numpy.mean', 'np.mean', (['data[:, i]'], {'axis': '(0)'}), '(data[:, i], axis=0)\n', (4209, 4229), True, 'import numpy as np\n'), ((4250, 4276), 'numpy.var', 'np.var', (['data[:, i]'], {'axis': '(0)'}), '(data[:, i], axis=0)\n', (4256, 4276), True, 'import numpy as np\n'), ((4297, 4323), 'numpy.max', 'np.max', (['data[:, i]'], {'axis': '(0)'}), '(data[:, i], axis=0)\n', (4303, 4323), True, 'import numpy as np\n'), ((4344, 4370), 'numpy.min', 'np.min', (['data[:, i]'], {'axis': '(0)'}), '(data[:, i], axis=0)\n', (4350, 4370), True, 'import numpy as np\n'), ((4652, 4679), 'numpy.mean', 'np.mean', (['data[:, i]'], {'axis': '(0)'}), '(data[:, i], axis=0)\n', (4659, 4679), True, 'import numpy as np\n'), ((4700, 4726), 'numpy.var', 'np.var', (['data[:, i]'], {'axis': '(0)'}), '(data[:, i], axis=0)\n', (4706, 4726), True, 'import numpy as np\n'), ((4747, 4773), 'numpy.max', 'np.max', (['data[:, i]'], {'axis': '(0)'}), '(data[:, i], axis=0)\n', (4753, 4773), True, 'import numpy as np\n'), ((4794, 4820), 'numpy.min', 'np.min', (['data[:, i]'], {'axis': '(0)'}), '(data[:, i], axis=0)\n', (4800, 4820), True, 'import numpy as np\n'), ((2497, 2514), 'numpy.unique', 'np.unique', (['self.Y'], {}), '(self.Y)\n', (2506, 2514), True, 'import numpy as np\n')]
from __future__ import absolute_import, division, print_function import logging import sys logging.basicConfig( stream=sys.stdout, level=logging.DEBUG, format='%(asctime)s %(name)s-%(levelname)s: %(message)s', datefmt='%Y-%m-%d %H:%M:%S') import numpy as np import utils logger = logging.getLogger("indexconverter") class IndexConverter(object): def __init__(self, ndim, ngrid): self.ndim = ndim self.ngrid = ngrid self._modulus = [(ngrid - 1) ** (ndim - j - 1) for j in range(ndim)] self._zerodim = np.zeros((self.ndim,)) self.nbins = int(np.rint((ngrid - 1) ** ndim)) def convert_to_vector(self, grid): if grid.shape[0] != self.ngrid - 1: raise Exception("Wrong dimension of grid. Expect length fo %s got %s" % (self.ngrid - 1, grid.shape[0])) vector = np.empty((self.nbins,)) for bin_idx in range(self.nbins): vector[bin_idx] = grid[tuple(self.convert_to_grid_idx(bin_idx))] return vector def convert_to_grid(self, vector): grid_shape = tuple(np.zeros(self.ndim).astype(int) + (self.ngrid - 1)) if len(vector.shape) > 1: grids = np.empty((len(vector),) + grid_shape) for idx, v in enumerate(vector): grids[idx] = self.convert_to_grid(v) return grids else: grid = np.zeros(grid_shape) for idx in range(len(vector)): grid[tuple(self.convert_to_grid_idx(idx))] = vector[idx] return grid def convert_to_grid_idx(self, bin_idx): if bin_idx >= self.nbins or bin_idx < 0: print(self.nbins, self.ndim, self.nbins ** self.ndim) raise Exception("Invalid index %s. You are probably outside the grid..." % bin_idx) grid_idx = ((self._zerodim + bin_idx) / self._modulus) % (self.ngrid - 1) return grid_idx.astype(int) def convert_to_bin_idx(self, grid_idx): bin_idx = utils.rint(np.sum(grid_idx * self._modulus)) if bin_idx >= self.nbins or bin_idx < 0: raise Exception( "Invalid bin index %s. You are probably outside the grid. Size:%s" % (bin_idx, self.nbins)) return bin_idx
[ "logging.basicConfig", "logging.getLogger", "numpy.sum", "numpy.zeros", "numpy.empty", "numpy.rint" ]
[((93, 249), 'logging.basicConfig', 'logging.basicConfig', ([], {'stream': 'sys.stdout', 'level': 'logging.DEBUG', 'format': '"""%(asctime)s %(name)s-%(levelname)s: %(message)s"""', 'datefmt': '"""%Y-%m-%d %H:%M:%S"""'}), "(stream=sys.stdout, level=logging.DEBUG, format=\n '%(asctime)s %(name)s-%(levelname)s: %(message)s', datefmt=\n '%Y-%m-%d %H:%M:%S')\n", (112, 249), False, 'import logging\n'), ((298, 333), 'logging.getLogger', 'logging.getLogger', (['"""indexconverter"""'], {}), "('indexconverter')\n", (315, 333), False, 'import logging\n'), ((556, 578), 'numpy.zeros', 'np.zeros', (['(self.ndim,)'], {}), '((self.ndim,))\n', (564, 578), True, 'import numpy as np\n'), ((852, 875), 'numpy.empty', 'np.empty', (['(self.nbins,)'], {}), '((self.nbins,))\n', (860, 875), True, 'import numpy as np\n'), ((604, 632), 'numpy.rint', 'np.rint', (['((ngrid - 1) ** ndim)'], {}), '((ngrid - 1) ** ndim)\n', (611, 632), True, 'import numpy as np\n'), ((1384, 1404), 'numpy.zeros', 'np.zeros', (['grid_shape'], {}), '(grid_shape)\n', (1392, 1404), True, 'import numpy as np\n'), ((1993, 2025), 'numpy.sum', 'np.sum', (['(grid_idx * self._modulus)'], {}), '(grid_idx * self._modulus)\n', (1999, 2025), True, 'import numpy as np\n'), ((1084, 1103), 'numpy.zeros', 'np.zeros', (['self.ndim'], {}), '(self.ndim)\n', (1092, 1103), True, 'import numpy as np\n')]
# Copyright 2020 The Cirq Developers # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import FrozenSet, Callable, List, Sequence, Any, Union, Dict import numpy as np import networkx as nx import cirq from cirq import _compat, GridQubit, LineQubit from cirq.ops import NamedQubit from cirq_pasqal import ThreeDQubit, TwoDQubit, PasqalGateset @cirq.value.value_equality class PasqalDevice(cirq.devices.Device): """A generic Pasqal device. The most general of Pasqal devices, enforcing only restrictions expected to be shared by all future devices. Serves as the parent class of all Pasqal devices, but can also be used on its own for hosting a nearly unconstrained device. When used as a circuit's device, the qubits have to be of the type cirq.NamedQubit and assumed to be all connected, the idea behind it being that after submission, all optimization and transpilation necessary for its execution on the specified device are handled internally by Pasqal. """ def __init__(self, qubits: Sequence[cirq.Qid]) -> None: """Initializes a device with some qubits. Args: qubits (NamedQubit): Qubits on the device, exclusively unrelated to a physical position. Raises: TypeError: If the wrong qubit type is provided. ValueError: If the number of qubits is greater than the devices maximum. """ if len(qubits) > 0: q_type = type(qubits[0]) for q in qubits: if not isinstance(q, self.supported_qubit_type): raise TypeError( 'Unsupported qubit type: {!r}. This device ' 'supports qubit types: {}'.format(q, self.supported_qubit_type) ) if not type(q) is q_type: raise TypeError("All qubits must be of same type.") if len(qubits) > self.maximum_qubit_number: raise ValueError( 'Too many qubits. {} accepts at most {} ' 'qubits.'.format(type(self), self.maximum_qubit_number) ) self.gateset = PasqalGateset() self.qubits = qubits self._metadata = cirq.DeviceMetadata( qubits, nx.from_edgelist([(a, b) for a in qubits for b in qubits if a != b]) ) # pylint: enable=missing-raises-doc @property def supported_qubit_type(self): return (NamedQubit,) @property def maximum_qubit_number(self): return 100 @property def metadata(self): return self._metadata @_compat.deprecated(fix='Use metadata.qubit_set() if applicable.', deadline='v0.15') def qubit_set(self) -> FrozenSet[cirq.Qid]: return frozenset(self.qubits) def qubit_list(self): return [qubit for qubit in self.qubits] def is_pasqal_device_op(self, op: cirq.Operation) -> bool: if not isinstance(op, cirq.Operation): raise ValueError('Got unknown operation:', op) return op in self.gateset def validate_operation(self, operation: cirq.Operation): """Raises an error if the given operation is invalid on this device. Args: operation: The operation to validate. Raises: ValueError: If the operation is not valid. NotImplementedError: If the operation is a measurement with an invert mask. """ if not isinstance(operation, cirq.GateOperation): raise ValueError("Unsupported operation") if not self.is_pasqal_device_op(operation): raise ValueError(f'{operation.gate!r} is not a supported gate') for qub in operation.qubits: if not isinstance(qub, self.supported_qubit_type): raise ValueError( '{} is not a valid qubit for gate {!r}. This ' 'device accepts gates on qubits of type: ' '{}'.format(qub, operation.gate, self.supported_qubit_type) ) if qub not in self.metadata.qubit_set: raise ValueError(f'{qub} is not part of the device.') if isinstance(operation.gate, cirq.MeasurementGate): if operation.gate.invert_mask != (): raise NotImplementedError( "Measurements on Pasqal devices don't support invert_mask." ) def validate_circuit(self, circuit: 'cirq.AbstractCircuit') -> None: """Raises an error if the given circuit is invalid on this device. A circuit is invalid if any of its moments are invalid or if there is a non-empty moment after a moment with a measurement. Args: circuit: The circuit to validate Raises: ValueError: If the given circuit can't be run on this device """ super().validate_circuit(circuit) # Measurements must be in the last non-empty moment has_measurement_occurred = False for moment in circuit: if has_measurement_occurred: if len(moment.operations) > 0: raise ValueError("Non-empty moment after measurement") for operation in moment.operations: if isinstance(operation.gate, cirq.MeasurementGate): has_measurement_occurred = True def __repr__(self): return f'pasqal.PasqalDevice(qubits={sorted(self.qubits)!r})' def _value_equality_values_(self): return self.qubits def _json_dict_(self): return cirq.protocols.obj_to_dict_helper(self, ['qubits']) class PasqalVirtualDevice(PasqalDevice): """A Pasqal virtual device with qubits in 3d. A virtual representation of a Pasqal device, enforcing the constraints typically found in a physical device. The qubits can be positioned in 3d space, although 2d layouts will be supported sooner and are thus recommended. Only accepts qubits with physical placement. """ def __init__( self, control_radius: float, qubits: Sequence[Union[ThreeDQubit, GridQubit, LineQubit]] ) -> None: """Initializes a device with some qubits. Args: control_radius: the maximum distance between qubits for a controlled gate. Distance is measured in units of the coordinates passed into the qubit constructor. qubits: Qubits on the device, identified by their x, y, z position. Must be of type ThreeDQubit, TwoDQubit, LineQubit or GridQubit. Raises: ValueError: if the wrong qubit type is provided or if invalid parameter is provided for control_radius.""" super().__init__(qubits) if not control_radius >= 0: raise ValueError('Control_radius needs to be a non-negative float.') if len(self.qubits) > 1: if control_radius > 3.0 * self.minimal_distance(): raise ValueError( 'Control_radius cannot be larger than 3 times' ' the minimal distance between qubits.' ) self.control_radius = control_radius self.gateset = PasqalGateset(include_additional_controlled_ops=False) self.controlled_gateset = cirq.Gateset(cirq.AnyIntegerPowerGateFamily(cirq.CZPowGate)) @property def supported_qubit_type(self): return (ThreeDQubit, TwoDQubit, GridQubit, LineQubit) def validate_operation(self, operation: cirq.Operation): """Raises an error if the given operation is invalid on this device. Args: operation: the operation to validate Raises: ValueError: If the operation is not valid """ super().validate_operation(operation) # Verify that a controlled gate operation is valid if operation in self.controlled_gateset: for p in operation.qubits: for q in operation.qubits: if self.distance(p, q) > self.control_radius: raise ValueError(f"Qubits {p!r}, {q!r} are too far away") def validate_moment(self, moment: cirq.Moment): """Raises an error if the given moment is invalid on this device. Args: moment: The moment to validate. Raises: ValueError: If the given moment is invalid. """ super().validate_moment(moment) if len(moment) > 1: for operation in moment: if not isinstance(operation.gate, cirq.MeasurementGate): raise ValueError("Cannot do simultaneous gates. Use cirq.InsertStrategy.NEW.") def minimal_distance(self) -> float: """Returns the minimal distance between two qubits in qubits. Args: qubits: qubit involved in the distance computation Raises: ValueError: If the device has only one qubit Returns: The minimal distance between qubits, in spacial coordinate units. """ if len(self.qubits) <= 1: raise ValueError("Two qubits to compute a minimal distance.") return min([self.distance(q1, q2) for q1 in self.qubits for q2 in self.qubits if q1 != q2]) def distance(self, p: Any, q: Any) -> float: """Returns the distance between two qubits. Args: p: qubit involved in the distance computation q: qubit involved in the distance computation Raises: ValueError: If p or q not part of the device Returns: The distance between qubits p and q. """ all_qubits = self.qubit_list() if p not in all_qubits or q not in all_qubits: raise ValueError("Qubit not part of the device.") if isinstance(p, GridQubit): return np.sqrt((p.row - q.row) ** 2 + (p.col - q.col) ** 2) if isinstance(p, LineQubit): return abs(p.x - q.x) return np.sqrt((p.x - q.x) ** 2 + (p.y - q.y) ** 2 + (p.z - q.z) ** 2) def __repr__(self): return ('pasqal.PasqalVirtualDevice(control_radius={!r}, qubits={!r})').format( self.control_radius, sorted(self.qubits) ) def _value_equality_values_(self) -> Any: return (self.control_radius, self.qubits) def _json_dict_(self) -> Dict[str, Any]: return cirq.protocols.obj_to_dict_helper(self, ['control_radius', 'qubits']) @_compat.deprecated_class( deadline='v0.16', fix='Use cirq.optimize_for_target_gateset(circuit, gateset=PasqalGateset()).' ) class PasqalConverter(cirq.neutral_atoms.ConvertToNeutralAtomGates): """A gate converter for compatibility with Pasqal processors. Modified version of ConvertToNeutralAtomGates, where a new 'convert' method 'pasqal_convert' takes the 'keep' function as an input. """ def pasqal_convert( self, op: cirq.Operation, keep: Callable[[cirq.Operation], bool] ) -> List[cirq.Operation]: def on_stuck_raise(bad): return TypeError( "Don't know how to work with {!r}. " "It isn't a native PasqalDevice operation, " "a 1 or 2 qubit gate with a known unitary, " "or composite.".format(bad) ) return cirq.protocols.decompose( op, keep=keep, intercepting_decomposer=self._convert_one, on_stuck_raise=None if self.ignore_failures else on_stuck_raise, )
[ "numpy.sqrt", "cirq.protocols.decompose", "cirq.AnyIntegerPowerGateFamily", "cirq._compat.deprecated", "networkx.from_edgelist", "cirq._compat.deprecated_class", "cirq.protocols.obj_to_dict_helper", "cirq_pasqal.PasqalGateset" ]
[((10990, 11116), 'cirq._compat.deprecated_class', '_compat.deprecated_class', ([], {'deadline': '"""v0.16"""', 'fix': '"""Use cirq.optimize_for_target_gateset(circuit, gateset=PasqalGateset())."""'}), "(deadline='v0.16', fix=\n 'Use cirq.optimize_for_target_gateset(circuit, gateset=PasqalGateset()).')\n", (11014, 11116), False, 'from cirq import _compat, GridQubit, LineQubit\n'), ((3091, 3179), 'cirq._compat.deprecated', '_compat.deprecated', ([], {'fix': '"""Use metadata.qubit_set() if applicable."""', 'deadline': '"""v0.15"""'}), "(fix='Use metadata.qubit_set() if applicable.', deadline=\n 'v0.15')\n", (3109, 3179), False, 'from cirq import _compat, GridQubit, LineQubit\n'), ((2636, 2651), 'cirq_pasqal.PasqalGateset', 'PasqalGateset', ([], {}), '()\n', (2649, 2651), False, 'from cirq_pasqal import ThreeDQubit, TwoDQubit, PasqalGateset\n'), ((6074, 6125), 'cirq.protocols.obj_to_dict_helper', 'cirq.protocols.obj_to_dict_helper', (['self', "['qubits']"], {}), "(self, ['qubits'])\n", (6107, 6125), False, 'import cirq\n'), ((7717, 7771), 'cirq_pasqal.PasqalGateset', 'PasqalGateset', ([], {'include_additional_controlled_ops': '(False)'}), '(include_additional_controlled_ops=False)\n', (7730, 7771), False, 'from cirq_pasqal import ThreeDQubit, TwoDQubit, PasqalGateset\n'), ((10519, 10582), 'numpy.sqrt', 'np.sqrt', (['((p.x - q.x) ** 2 + (p.y - q.y) ** 2 + (p.z - q.z) ** 2)'], {}), '((p.x - q.x) ** 2 + (p.y - q.y) ** 2 + (p.z - q.z) ** 2)\n', (10526, 10582), True, 'import numpy as np\n'), ((10917, 10986), 'cirq.protocols.obj_to_dict_helper', 'cirq.protocols.obj_to_dict_helper', (['self', "['control_radius', 'qubits']"], {}), "(self, ['control_radius', 'qubits'])\n", (10950, 10986), False, 'import cirq\n'), ((11843, 11999), 'cirq.protocols.decompose', 'cirq.protocols.decompose', (['op'], {'keep': 'keep', 'intercepting_decomposer': 'self._convert_one', 'on_stuck_raise': '(None if self.ignore_failures else on_stuck_raise)'}), '(op, keep=keep, intercepting_decomposer=self.\n _convert_one, on_stuck_raise=None if self.ignore_failures else\n on_stuck_raise)\n', (11867, 11999), False, 'import cirq\n'), ((2747, 2815), 'networkx.from_edgelist', 'nx.from_edgelist', (['[(a, b) for a in qubits for b in qubits if a != b]'], {}), '([(a, b) for a in qubits for b in qubits if a != b])\n', (2763, 2815), True, 'import networkx as nx\n'), ((7819, 7865), 'cirq.AnyIntegerPowerGateFamily', 'cirq.AnyIntegerPowerGateFamily', (['cirq.CZPowGate'], {}), '(cirq.CZPowGate)\n', (7849, 7865), False, 'import cirq\n'), ((10378, 10430), 'numpy.sqrt', 'np.sqrt', (['((p.row - q.row) ** 2 + (p.col - q.col) ** 2)'], {}), '((p.row - q.row) ** 2 + (p.col - q.col) ** 2)\n', (10385, 10430), True, 'import numpy as np\n')]
import base64 import io import dash import dash_core_components as dcc import dash_html_components as html import dash_bootstrap_components as dbc from dash.dependencies import Input, Output import numpy as np import tensorflow as tf from PIL import Image from constants import CLASSES import yaml with open('app.yaml') as yaml_data : params = yaml.safe_load(yaml_data) IMAGE_WIDTH = params['IMAGE_WIDTH'] IMAGE_HEIGHT = params['IMAGE_HEIGHT'] PATH_MODEL = params['PATH_MODEL'] # Load DNN model classifier = tf.keras.models.load_model(PATH_MODEL) def classify_image(image, model, image_box=None): """Classify image by model Parameters ---------- content: image content model: tf/keras classifier Returns ------- class id returned by model classifier """ images_list = [] image = image.resize((IMAGE_WIDTH, IMAGE_HEIGHT), box=image_box) # box argument clips image to (x1, y1, x2, y2) image = np.array(image) images_list.append(image) return model.predict_classes(np.array(images_list)) app = dash.Dash('Traffic Signs Recognition', external_stylesheets=[dbc.themes.BOOTSTRAP]) pre_style = { 'whiteSpace': 'pre-wrap', 'wordBreak': 'break-all', 'whiteSpace': 'normal' } # Define application layout navbar = dbc.NavbarSimple( children=[ dbc.DropdownMenu( children=[ dbc.DropdownMenuItem('Réseau de Neurones', header=True), dbc.DropdownMenuItem('SVM', href="#"), ], nav=True, in_navbar=True, label='Modèle', ), ], brand="Menu", brand_href="#", color= "#d90054", dark=True ) cards = html.Div( [ dbc.Card( dbc.CardBody( [ html.H5("Présentation", className="card-title"), html.P( [ 'Cette application à pour but de réaliser des modèles capables de classer des panneaux de signalisation allemand à partir d\'une image. L\'application fonctionne de la manière suivante : vous déposer une image à l\'emplacement indiqué et la prédiction du modèle apparait immédiatement en dessous. En haut à droite vous pouvez sélectionner le modèle que vous voulez tester.', ], className='card-text', ), ] ), className='w-75 mb-3', color='#f1cbd1', outline='Black', style={ 'margin-top': '75px', 'margin-left': '185px'}, ), ] ) app.layout = html.Div([ html.Div([navbar]), html.Div(cards), dcc.Upload( id='bouton-chargement', children=html.Div([ 'Cliquer-déposer ou ', html.A('sélectionner une image') ]), style={ 'width': '50%', 'height': '60px', 'lineHeight': '60px', 'borderWidth': '1px', 'borderStyle': 'dashed', 'borderRadius': '5px', 'textAlign': 'center', 'margin-top': '75px', 'margin-left': '370px', } ), html.Div(id='mon-image'), html.Div(id='ma-zone-resultat') ]) @app.callback(Output('mon-image', 'children'), [Input('bouton-chargement', 'contents')]) def update_output(contents): if contents is not None: content_type, content_string = contents.split(',') if 'image' in content_type: image = Image.open(io.BytesIO(base64.b64decode(content_string))) predicted_class = classify_image(image, classifier)[0] return html.Div([ html.Hr(style={'margin-top': '75px'}), html.Img(src=contents, style={'margin-left': '750px'}), html.H4('Classe prédite : {}'.format(CLASSES[predicted_class]), style={'textAlign': 'center'}), html.Hr(), #html.Div('Raw Content'), #html.Pre(contents, style=pre_style) ]) else: try: # Décodage de l'image transmise en base 64 (cas des fichiers ppm) # fichier base 64 --> image PIL image = Image.open(io.BytesIO(base64.b64decode(content_string))) # image PIL --> conversion PNG --> buffer mémoire buffer = io.BytesIO() image.save(buffer, format='PNG') # buffer mémoire --> image base 64 buffer.seek(0) img_bytes = buffer.read() content_string = base64.b64encode(img_bytes).decode('ascii') # Appel du modèle de classification predicted_class = classify_image(image, classifier)[0] # Affichage de l'image return html.Div([ html.Hr(style={'margin-top': '75px'}), html.Img(src='data:image/png;base64,' + content_string, style={'margin-left': '750px'}), html.H4('Classe prédite : {}'.format(CLASSES[predicted_class]), style={'textAlign': 'center'}), html.Hr(), ]) except: return html.Div([ html.Hr(), html.Div('Uniquement des images svp : {}'.format(content_type)), html.Hr(), html.Div('Raw Content'), html.Pre(contents, style=pre_style) ]) # Manage interactions with callbacks @app.callback( Output(component_id='ma-zone-resultat', component_property='children'), [Input(component_id='mon-champ-texte', component_property='value')] ) def update_output_div(input_value): return html.H3('Valeur saisie ici "{}"'.format(input_value)) # Start the application if __name__ == '__main__': app.run_server(debug=True)
[ "dash_bootstrap_components.DropdownMenuItem", "dash.dependencies.Output", "base64.b64encode", "io.BytesIO", "dash_html_components.H5", "base64.b64decode", "dash.dependencies.Input", "dash_html_components.Pre", "yaml.safe_load", "numpy.array", "dash_html_components.Div", "tensorflow.keras.models.load_model", "dash_html_components.Img", "dash_html_components.Hr", "dash_html_components.P", "dash.Dash", "dash_html_components.A" ]
[((524, 562), 'tensorflow.keras.models.load_model', 'tf.keras.models.load_model', (['PATH_MODEL'], {}), '(PATH_MODEL)\n', (550, 562), True, 'import tensorflow as tf\n'), ((1083, 1171), 'dash.Dash', 'dash.Dash', (['"""Traffic Signs Recognition"""'], {'external_stylesheets': '[dbc.themes.BOOTSTRAP]'}), "('Traffic Signs Recognition', external_stylesheets=[dbc.themes.\n BOOTSTRAP])\n", (1092, 1171), False, 'import dash\n'), ((353, 378), 'yaml.safe_load', 'yaml.safe_load', (['yaml_data'], {}), '(yaml_data)\n', (367, 378), False, 'import yaml\n'), ((974, 989), 'numpy.array', 'np.array', (['image'], {}), '(image)\n', (982, 989), True, 'import numpy as np\n'), ((3345, 3376), 'dash.dependencies.Output', 'Output', (['"""mon-image"""', '"""children"""'], {}), "('mon-image', 'children')\n", (3351, 3376), False, 'from dash.dependencies import Input, Output\n'), ((5671, 5741), 'dash.dependencies.Output', 'Output', ([], {'component_id': '"""ma-zone-resultat"""', 'component_property': '"""children"""'}), "(component_id='ma-zone-resultat', component_property='children')\n", (5677, 5741), False, 'from dash.dependencies import Input, Output\n'), ((1052, 1073), 'numpy.array', 'np.array', (['images_list'], {}), '(images_list)\n', (1060, 1073), True, 'import numpy as np\n'), ((2702, 2720), 'dash_html_components.Div', 'html.Div', (['[navbar]'], {}), '([navbar])\n', (2710, 2720), True, 'import dash_html_components as html\n'), ((2731, 2746), 'dash_html_components.Div', 'html.Div', (['cards'], {}), '(cards)\n', (2739, 2746), True, 'import dash_html_components as html\n'), ((3265, 3289), 'dash_html_components.Div', 'html.Div', ([], {'id': '"""mon-image"""'}), "(id='mon-image')\n", (3273, 3289), True, 'import dash_html_components as html\n'), ((3295, 3326), 'dash_html_components.Div', 'html.Div', ([], {'id': '"""ma-zone-resultat"""'}), "(id='ma-zone-resultat')\n", (3303, 3326), True, 'import dash_html_components as html\n'), ((3393, 3431), 'dash.dependencies.Input', 'Input', (['"""bouton-chargement"""', '"""contents"""'], {}), "('bouton-chargement', 'contents')\n", (3398, 3431), False, 'from dash.dependencies import Input, Output\n'), ((5748, 5813), 'dash.dependencies.Input', 'Input', ([], {'component_id': '"""mon-champ-texte"""', 'component_property': '"""value"""'}), "(component_id='mon-champ-texte', component_property='value')\n", (5753, 5813), False, 'from dash.dependencies import Input, Output\n'), ((4471, 4483), 'io.BytesIO', 'io.BytesIO', ([], {}), '()\n', (4481, 4483), False, 'import io\n'), ((1819, 1866), 'dash_html_components.H5', 'html.H5', (['"""Présentation"""'], {'className': '"""card-title"""'}), "('Présentation', className='card-title')\n", (1826, 1866), True, 'import dash_html_components as html\n'), ((1888, 2301), 'dash_html_components.P', 'html.P', (['["Cette application à pour but de réaliser des modèles capables de classer des panneaux de signalisation allemand à partir d\'une image. L\'application fonctionne de la manière suivante : vous déposer une image à l\'emplacement indiqué et la prédiction du modèle apparait immédiatement en dessous. En haut à droite vous pouvez sélectionner le modèle que vous voulez tester."\n ]'], {'className': '"""card-text"""'}), '([\n "Cette application à pour but de réaliser des modèles capables de classer des panneaux de signalisation allemand à partir d\'une image. L\'application fonctionne de la manière suivante : vous déposer une image à l\'emplacement indiqué et la prédiction du modèle apparait immédiatement en dessous. En haut à droite vous pouvez sélectionner le modèle que vous voulez tester."\n ], className=\'card-text\')\n', (1894, 2301), True, 'import dash_html_components as html\n'), ((3629, 3661), 'base64.b64decode', 'base64.b64decode', (['content_string'], {}), '(content_string)\n', (3645, 3661), False, 'import base64\n'), ((3777, 3814), 'dash_html_components.Hr', 'html.Hr', ([], {'style': "{'margin-top': '75px'}"}), "(style={'margin-top': '75px'})\n", (3784, 3814), True, 'import dash_html_components as html\n'), ((3832, 3886), 'dash_html_components.Img', 'html.Img', ([], {'src': 'contents', 'style': "{'margin-left': '750px'}"}), "(src=contents, style={'margin-left': '750px'})\n", (3840, 3886), True, 'import dash_html_components as html\n'), ((4016, 4025), 'dash_html_components.Hr', 'html.Hr', ([], {}), '()\n', (4023, 4025), True, 'import dash_html_components as html\n'), ((1411, 1466), 'dash_bootstrap_components.DropdownMenuItem', 'dbc.DropdownMenuItem', (['"""Réseau de Neurones"""'], {'header': '(True)'}), "('Réseau de Neurones', header=True)\n", (1431, 1466), True, 'import dash_bootstrap_components as dbc\n'), ((1484, 1521), 'dash_bootstrap_components.DropdownMenuItem', 'dbc.DropdownMenuItem', (['"""SVM"""'], {'href': '"""#"""'}), "('SVM', href='#')\n", (1504, 1521), True, 'import dash_bootstrap_components as dbc\n'), ((2879, 2911), 'dash_html_components.A', 'html.A', (['"""sélectionner une image"""'], {}), "('sélectionner une image')\n", (2885, 2911), True, 'import dash_html_components as html\n'), ((4344, 4376), 'base64.b64decode', 'base64.b64decode', (['content_string'], {}), '(content_string)\n', (4360, 4376), False, 'import base64\n'), ((4690, 4717), 'base64.b64encode', 'base64.b64encode', (['img_bytes'], {}), '(img_bytes)\n', (4706, 4717), False, 'import base64\n'), ((4950, 4987), 'dash_html_components.Hr', 'html.Hr', ([], {'style': "{'margin-top': '75px'}"}), "(style={'margin-top': '75px'})\n", (4957, 4987), True, 'import dash_html_components as html\n'), ((5009, 5101), 'dash_html_components.Img', 'html.Img', ([], {'src': "('data:image/png;base64,' + content_string)", 'style': "{'margin-left': '750px'}"}), "(src='data:image/png;base64,' + content_string, style={\n 'margin-left': '750px'})\n", (5017, 5101), True, 'import dash_html_components as html\n'), ((5234, 5243), 'dash_html_components.Hr', 'html.Hr', ([], {}), '()\n', (5241, 5243), True, 'import dash_html_components as html\n'), ((5338, 5347), 'dash_html_components.Hr', 'html.Hr', ([], {}), '()\n', (5345, 5347), True, 'import dash_html_components as html\n'), ((5454, 5463), 'dash_html_components.Hr', 'html.Hr', ([], {}), '()\n', (5461, 5463), True, 'import dash_html_components as html\n'), ((5501, 5524), 'dash_html_components.Div', 'html.Div', (['"""Raw Content"""'], {}), "('Raw Content')\n", (5509, 5524), True, 'import dash_html_components as html\n'), ((5546, 5581), 'dash_html_components.Pre', 'html.Pre', (['contents'], {'style': 'pre_style'}), '(contents, style=pre_style)\n', (5554, 5581), True, 'import dash_html_components as html\n')]
import gym.envs.mujoco.hopper as hopper import numpy as np class HopperEnv(hopper.HopperEnv): def _get_obs(self): return np.concatenate([ self.sim.data.qpos.flat[1:], self.sim.data.qvel.flat, ]) def reset_obs(self, obs): state = np.insert(obs, 0, 0.) qpos = state[:self.model.nq] qvel = state[self.model.nq:] self.set_state(qpos, qvel) return self._get_obs()
[ "numpy.insert", "numpy.concatenate" ]
[((135, 205), 'numpy.concatenate', 'np.concatenate', (['[self.sim.data.qpos.flat[1:], self.sim.data.qvel.flat]'], {}), '([self.sim.data.qpos.flat[1:], self.sim.data.qvel.flat])\n', (149, 205), True, 'import numpy as np\n'), ((288, 310), 'numpy.insert', 'np.insert', (['obs', '(0)', '(0.0)'], {}), '(obs, 0, 0.0)\n', (297, 310), True, 'import numpy as np\n')]
# Copyright (c) 2016-present, Facebook, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ############################################################################## from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import numpy as np from caffe2.python import core, workspace from caffe2.python.test_util import TestCase, rand_array class TestPartitionOps(TestCase): def test_configs(self): # (main dims, partitions, main type, [list of (extra dims, type)]) configs = [ ((10, ), 3), ((4, ), 10), ((10, 10), 4), ((100, ), 2), ((5, ), 1), ((1, ), 1), ((2, 10), 2), ] suffixes = [ [], [((2, 2), np.float32)], [((3, ), np.int64), ((2, ), np.float32)], ] return [ (main_dims, parts, main_type, extra, pack) for main_dims, parts in configs for main_type in [np.int32, np.int64] for extra in suffixes for pack in [False, True] ] def testPartition(self): for main_dims, parts, main_type, extra_ins, pack in self.test_configs(): ins = ['in' + str(i) for i in range(1 + len(extra_ins))] outs = [ 'in{}_p{}'.format(j, i) for i in range(parts) for j in range(1 + len(extra_ins)) ] op = core.CreateOperator( 'Partition', ins, outs, pack_first_input=(1 if pack else 0)) x = [] for i, (dims, t) in enumerate([((), main_type)] + extra_ins): if t in [np.float32, np.float64]: d = rand_array(*(main_dims + dims)) else: d = np.random.randint(-100, 100, (main_dims + dims)) d = d.astype(t) workspace.FeedBlob(ins[i], d) x.append(d) def sharding(x): # numpy has proper modulo op that yields non-negative results shards = (x[0] % parts).reshape([-1]) out = [] for i in range(parts): for ind, v in enumerate(x): suffix_shape = v.shape[len(x[0].shape):] accum = [] data = v.reshape((-1, ) + suffix_shape) if pack and ind == 0: data = data // parts for j, s in enumerate(shards): if s == i: accum.append(data[j]) def join(a): if not a: return np.empty(shape=(0, ) + suffix_shape) return np.stack(a) out.append(join(accum)) return out workspace.RunOperatorOnce(op) ref = sharding(x) print(x) print(ref) for name, expected in zip(outs, ref): np.testing.assert_array_equal( expected, workspace.FetchBlob(name) ) # test inverse operation (GatherByKey) if len(main_dims) == 1: # currently only 1D key tensor supported for i in range(len(extra_ins)): expected_out = ins[i + 1] gather_ins = [ins[0]] + [ outs[len(ins) * p + i + 1] for p in range(parts)] actual_out = expected_out + '_actual' op = core.CreateOperator( 'GatherByKey', gather_ins, actual_out) workspace.RunOperatorOnce(op) expected = workspace.FetchBlob(expected_out) actual = workspace.FetchBlob(actual_out) np.testing.assert_array_equal(expected, actual) def testLengthsPartition(self): for main_dims, parts, main_type, extra_ins, pack in self.test_configs(): # For LengthsSharding only 1-D tensors supported as a first input if len(main_dims) > 1: continue ins = ['in' + str(i) for i in range(2 + len(extra_ins))] outs = [ 'in{}_p{}'.format(j, i) for i in range(parts) for j in range(2 + len(extra_ins)) ] op = core.CreateOperator( 'LengthsPartition', ins, outs, pack_first_input=(1 if pack else 0) ) x = [] for i, (dims, t) in enumerate([((), main_type)] + extra_ins): if t in [np.float32, np.float64]: d = rand_array(*(main_dims + dims)) else: d = np.random.randint(-100, 100, (main_dims + dims)) d = d.astype(t) workspace.FeedBlob(ins[i + 1], d) x.append(d) # Randomly generate length tensor as well elements = np.random.randint(2, 10) lengths = [] total_length = 0 for _ in range(elements - 1): lengths.append(np.random.randint(main_dims[0] - total_length)) total_length += lengths[-1] lengths.append(main_dims[0] - total_length) workspace.FeedBlob(ins[0], np.array(lengths, dtype=np.int32)) def sharding(x): # numpy has proper modulo op that yields non-negative results shards = (x[0] % parts).reshape([-1]) out = [] for i in range(parts): idx = 0 sharded_lengths = np.zeros(elements) for ind, length in enumerate(lengths): for _ in range(length): if shards[idx] == i: sharded_lengths[ind] += 1 idx += 1 out.append(sharded_lengths) for ind, v in enumerate(x): suffix_shape = v.shape[len(x[0].shape):] accum = [] data = v.reshape((-1, ) + suffix_shape) if pack and ind == 0: data = data // parts for j, s in enumerate(shards): if s == i: accum.append(data[j]) def join(a): if not a: return np.empty(shape=(0, ) + suffix_shape) return np.stack(a) out.append(join(accum)) return out workspace.RunOperatorOnce(op) ref = sharding(x) for name, expected in zip(outs, ref): np.testing.assert_array_equal( expected, workspace.FetchBlob(name) ) if __name__ == "__main__": import unittest unittest.main()
[ "caffe2.python.test_util.rand_array", "caffe2.python.workspace.RunOperatorOnce", "caffe2.python.workspace.FetchBlob", "numpy.array", "numpy.random.randint", "numpy.zeros", "numpy.stack", "numpy.empty", "caffe2.python.core.CreateOperator", "unittest.main", "numpy.testing.assert_array_equal", "caffe2.python.workspace.FeedBlob" ]
[((7638, 7653), 'unittest.main', 'unittest.main', ([], {}), '()\n', (7651, 7653), False, 'import unittest\n'), ((2004, 2082), 'caffe2.python.core.CreateOperator', 'core.CreateOperator', (['"""Partition"""', 'ins', 'outs'], {'pack_first_input': '(1 if pack else 0)'}), "('Partition', ins, outs, pack_first_input=1 if pack else 0)\n", (2023, 2082), False, 'from caffe2.python import core, workspace\n'), ((3473, 3502), 'caffe2.python.workspace.RunOperatorOnce', 'workspace.RunOperatorOnce', (['op'], {}), '(op)\n', (3498, 3502), False, 'from caffe2.python import core, workspace\n'), ((5009, 5098), 'caffe2.python.core.CreateOperator', 'core.CreateOperator', (['"""LengthsPartition"""', 'ins', 'outs'], {'pack_first_input': '(1 if pack else 0)'}), "('LengthsPartition', ins, outs, pack_first_input=1 if\n pack else 0)\n", (5028, 5098), False, 'from caffe2.python import core, workspace\n'), ((5625, 5649), 'numpy.random.randint', 'np.random.randint', (['(2)', '(10)'], {}), '(2, 10)\n', (5642, 5649), True, 'import numpy as np\n'), ((7355, 7384), 'caffe2.python.workspace.RunOperatorOnce', 'workspace.RunOperatorOnce', (['op'], {}), '(op)\n', (7380, 7384), False, 'from caffe2.python import core, workspace\n'), ((2444, 2473), 'caffe2.python.workspace.FeedBlob', 'workspace.FeedBlob', (['ins[i]', 'd'], {}), '(ins[i], d)\n', (2462, 2473), False, 'from caffe2.python import core, workspace\n'), ((5485, 5518), 'caffe2.python.workspace.FeedBlob', 'workspace.FeedBlob', (['ins[i + 1]', 'd'], {}), '(ins[i + 1], d)\n', (5503, 5518), False, 'from caffe2.python import core, workspace\n'), ((5964, 5997), 'numpy.array', 'np.array', (['lengths'], {'dtype': 'np.int32'}), '(lengths, dtype=np.int32)\n', (5972, 5997), True, 'import numpy as np\n'), ((2269, 2300), 'caffe2.python.test_util.rand_array', 'rand_array', (['*(main_dims + dims)'], {}), '(*(main_dims + dims))\n', (2279, 2300), False, 'from caffe2.python.test_util import TestCase, rand_array\n'), ((2347, 2393), 'numpy.random.randint', 'np.random.randint', (['(-100)', '(100)', '(main_dims + dims)'], {}), '(-100, 100, main_dims + dims)\n', (2364, 2393), True, 'import numpy as np\n'), ((3704, 3729), 'caffe2.python.workspace.FetchBlob', 'workspace.FetchBlob', (['name'], {}), '(name)\n', (3723, 3729), False, 'from caffe2.python import core, workspace\n'), ((4190, 4248), 'caffe2.python.core.CreateOperator', 'core.CreateOperator', (['"""GatherByKey"""', 'gather_ins', 'actual_out'], {}), "('GatherByKey', gather_ins, actual_out)\n", (4209, 4248), False, 'from caffe2.python import core, workspace\n'), ((4294, 4323), 'caffe2.python.workspace.RunOperatorOnce', 'workspace.RunOperatorOnce', (['op'], {}), '(op)\n', (4319, 4323), False, 'from caffe2.python import core, workspace\n'), ((4355, 4388), 'caffe2.python.workspace.FetchBlob', 'workspace.FetchBlob', (['expected_out'], {}), '(expected_out)\n', (4374, 4388), False, 'from caffe2.python import core, workspace\n'), ((4418, 4449), 'caffe2.python.workspace.FetchBlob', 'workspace.FetchBlob', (['actual_out'], {}), '(actual_out)\n', (4437, 4449), False, 'from caffe2.python import core, workspace\n'), ((4470, 4517), 'numpy.testing.assert_array_equal', 'np.testing.assert_array_equal', (['expected', 'actual'], {}), '(expected, actual)\n', (4499, 4517), True, 'import numpy as np\n'), ((5310, 5341), 'caffe2.python.test_util.rand_array', 'rand_array', (['*(main_dims + dims)'], {}), '(*(main_dims + dims))\n', (5320, 5341), False, 'from caffe2.python.test_util import TestCase, rand_array\n'), ((5388, 5434), 'numpy.random.randint', 'np.random.randint', (['(-100)', '(100)', '(main_dims + dims)'], {}), '(-100, 100, main_dims + dims)\n', (5405, 5434), True, 'import numpy as np\n'), ((5777, 5823), 'numpy.random.randint', 'np.random.randint', (['(main_dims[0] - total_length)'], {}), '(main_dims[0] - total_length)\n', (5794, 5823), True, 'import numpy as np\n'), ((6291, 6309), 'numpy.zeros', 'np.zeros', (['elements'], {}), '(elements)\n', (6299, 6309), True, 'import numpy as np\n'), ((7542, 7567), 'caffe2.python.workspace.FetchBlob', 'workspace.FetchBlob', (['name'], {}), '(name)\n', (7561, 7567), False, 'from caffe2.python import core, workspace\n'), ((3372, 3383), 'numpy.stack', 'np.stack', (['a'], {}), '(a)\n', (3380, 3383), True, 'import numpy as np\n'), ((7254, 7265), 'numpy.stack', 'np.stack', (['a'], {}), '(a)\n', (7262, 7265), True, 'import numpy as np\n'), ((3300, 3335), 'numpy.empty', 'np.empty', ([], {'shape': '((0,) + suffix_shape)'}), '(shape=(0,) + suffix_shape)\n', (3308, 3335), True, 'import numpy as np\n'), ((7182, 7217), 'numpy.empty', 'np.empty', ([], {'shape': '((0,) + suffix_shape)'}), '(shape=(0,) + suffix_shape)\n', (7190, 7217), True, 'import numpy as np\n')]
#!/usr/bin/env python3 -u # -*- coding: utf-8 -*- __author__ = ["<NAME>"] __all__ = ["_StatsModelsAdapter"] import numpy as np import pandas as pd from sktime.forecasting.base._base import DEFAULT_ALPHA from sktime.forecasting.base._sktime import _OptionalForecastingHorizonMixin from sktime.forecasting.base._sktime import _SktimeForecaster class _StatsModelsAdapter(_OptionalForecastingHorizonMixin, _SktimeForecaster): """Base class for interfacing statsmodels forecasting algorithms""" _fitted_param_names = () def __init__(self): self._forecaster = None self._fitted_forecaster = None super(_StatsModelsAdapter, self).__init__() def fit(self, y, X=None, fh=None): """Fit to training data. Parameters ---------- y : pd.Series Target time series to which to fit the forecaster. fh : int, list or np.array, optional (default=None) The forecasters horizon with the steps ahead to to predict. X : pd.DataFrame, optional (default=None) Exogenous variables are ignored Returns ------- self : returns an instance of self. """ # statsmodels does not support the pd.Int64Index as required, # so we coerce them here to pd.RangeIndex if isinstance(y, pd.Series) and type(y.index) == pd.Int64Index: y, X = _coerce_int_to_range_index(y, X) self._set_y_X(y, X) self._set_fh(fh) self._fit_forecaster(y, X) self._is_fitted = True return self def _fit_forecaster(self, y_train, X_train=None): """Internal fit""" raise NotImplementedError("abstract method") def _predict(self, fh, X=None, return_pred_int=False, alpha=DEFAULT_ALPHA): """ Make forecasts. Parameters ---------- fh : ForecastingHorizon The forecasters horizon with the steps ahead to to predict. Default is one-step ahead forecast, i.e. np.array([1]) X : pd.DataFrame, optional (default=None) Exogenous variables are ignored. return_pred_int : bool, optional (default=False) alpha : int or list, optional (default=0.95) Returns ------- y_pred : pd.Series Returns series of predicted values. """ if return_pred_int: raise NotImplementedError() # statsmodels requires zero-based indexing starting at the # beginning of the training series when passing integers start, end = fh.to_absolute_int(self._y.index[0], self.cutoff)[[0, -1]] y_pred = self._fitted_forecaster.predict(start, end) # statsmodels forecasts all periods from start to end of forecasting # horizon, but only return given time points in forecasting horizon return y_pred.loc[fh.to_absolute(self.cutoff).to_pandas()] def get_fitted_params(self): """Get fitted parameters Returns ------- fitted_params : dict """ self.check_is_fitted() return { name: self._fitted_forecaster.params.get(name) for name in self._get_fitted_param_names() } def _get_fitted_param_names(self): """Get names of fitted parameters""" return self._fitted_param_names def _coerce_int_to_range_index(y, X=None): new_index = pd.RangeIndex(y.index[0], y.index[-1] + 1) try: np.testing.assert_array_equal(y.index, new_index) except AssertionError: raise ValueError( "Coercion of pd.Int64Index to pd.RangeIndex " "failed. Please provide `y_train` with a " "pd.RangeIndex." ) y.index = new_index if X is not None: X.index = new_index return y, X
[ "numpy.testing.assert_array_equal", "pandas.RangeIndex" ]
[((3433, 3475), 'pandas.RangeIndex', 'pd.RangeIndex', (['y.index[0]', '(y.index[-1] + 1)'], {}), '(y.index[0], y.index[-1] + 1)\n', (3446, 3475), True, 'import pandas as pd\n'), ((3493, 3542), 'numpy.testing.assert_array_equal', 'np.testing.assert_array_equal', (['y.index', 'new_index'], {}), '(y.index, new_index)\n', (3522, 3542), True, 'import numpy as np\n')]
import numpy as np import scipy.sparse __all__ = ['save_npz', 'load_npz'] # Make loading safe vs. malicious input PICKLE_KWARGS = dict(allow_pickle=False) def save_npz(file, matrix, compressed=True): """ Save a sparse matrix to a file using ``.npz`` format. Parameters ---------- file : str or file-like object Either the file name (string) or an open file (file-like object) where the data will be saved. If file is a string, the ``.npz`` extension will be appended to the file name if it is not already there. matrix: spmatrix (format: ``csc``, ``csr``, ``bsr``, ``dia`` or coo``) The sparse matrix to save. compressed : bool, optional Allow compressing the file. Default: True See Also -------- scipy.sparse.load_npz: Load a sparse matrix from a file using ``.npz`` format. numpy.savez: Save several arrays into a ``.npz`` archive. numpy.savez_compressed : Save several arrays into a compressed ``.npz`` archive. Examples -------- Store sparse matrix to disk, and load it again: >>> import scipy.sparse >>> sparse_matrix = scipy.sparse.csc_matrix(np.array([[0, 0, 3], [4, 0, 0]])) >>> sparse_matrix <2x3 sparse matrix of type '<class 'numpy.int64'>' with 2 stored elements in Compressed Sparse Column format> >>> sparse_matrix.todense() matrix([[0, 0, 3], [4, 0, 0]], dtype=int64) >>> scipy.sparse.save_npz('/tmp/sparse_matrix.npz', sparse_matrix) >>> sparse_matrix = scipy.sparse.load_npz('/tmp/sparse_matrix.npz') >>> sparse_matrix <2x3 sparse matrix of type '<class 'numpy.int64'>' with 2 stored elements in Compressed Sparse Column format> >>> sparse_matrix.todense() matrix([[0, 0, 3], [4, 0, 0]], dtype=int64) """ arrays_dict = {} if matrix.format in ('csc', 'csr', 'bsr'): arrays_dict.update(indices=matrix.indices, indptr=matrix.indptr) elif matrix.format == 'dia': arrays_dict.update(offsets=matrix.offsets) elif matrix.format == 'coo': arrays_dict.update(row=matrix.row, col=matrix.col) else: raise NotImplementedError('Save is not implemented for sparse matrix of format {}.'.format(matrix.format)) arrays_dict.update( format=matrix.format.encode('ascii'), shape=matrix.shape, data=matrix.data ) if compressed: np.savez_compressed(file, **arrays_dict) else: np.savez(file, **arrays_dict) def load_npz(file): """ Load a sparse matrix from a file using ``.npz`` format. Parameters ---------- file : str or file-like object Either the file name (string) or an open file (file-like object) where the data will be loaded. Returns ------- result : csc_matrix, csr_matrix, bsr_matrix, dia_matrix or coo_matrix A sparse matrix containing the loaded data. Raises ------ OSError If the input file does not exist or cannot be read. See Also -------- scipy.sparse.save_npz: Save a sparse matrix to a file using ``.npz`` format. numpy.load: Load several arrays from a ``.npz`` archive. Examples -------- Store sparse matrix to disk, and load it again: >>> import scipy.sparse >>> sparse_matrix = scipy.sparse.csc_matrix(np.array([[0, 0, 3], [4, 0, 0]])) >>> sparse_matrix <2x3 sparse matrix of type '<class 'numpy.int64'>' with 2 stored elements in Compressed Sparse Column format> >>> sparse_matrix.todense() matrix([[0, 0, 3], [4, 0, 0]], dtype=int64) >>> scipy.sparse.save_npz('/tmp/sparse_matrix.npz', sparse_matrix) >>> sparse_matrix = scipy.sparse.load_npz('/tmp/sparse_matrix.npz') >>> sparse_matrix <2x3 sparse matrix of type '<class 'numpy.int64'>' with 2 stored elements in Compressed Sparse Column format> >>> sparse_matrix.todense() matrix([[0, 0, 3], [4, 0, 0]], dtype=int64) """ with np.load(file, **PICKLE_KWARGS) as loaded: try: matrix_format = loaded['format'] except KeyError as e: raise ValueError('The file {} does not contain a sparse matrix.'.format(file)) from e matrix_format = matrix_format.item() if not isinstance(matrix_format, str): # Play safe with Python 2 vs 3 backward compatibility; # files saved with SciPy < 1.0.0 may contain unicode or bytes. matrix_format = matrix_format.decode('ascii') try: cls = getattr(scipy.sparse, '{}_matrix'.format(matrix_format)) except AttributeError as e: raise ValueError('Unknown matrix format "{}"'.format(matrix_format)) from e if matrix_format in ('csc', 'csr', 'bsr'): return cls((loaded['data'], loaded['indices'], loaded['indptr']), shape=loaded['shape']) elif matrix_format == 'dia': return cls((loaded['data'], loaded['offsets']), shape=loaded['shape']) elif matrix_format == 'coo': return cls((loaded['data'], (loaded['row'], loaded['col'])), shape=loaded['shape']) else: raise NotImplementedError('Load is not implemented for ' 'sparse matrix of format {}.'.format(matrix_format))
[ "numpy.savez_compressed", "numpy.load", "numpy.savez" ]
[((2426, 2466), 'numpy.savez_compressed', 'np.savez_compressed', (['file'], {}), '(file, **arrays_dict)\n', (2445, 2466), True, 'import numpy as np\n'), ((2485, 2514), 'numpy.savez', 'np.savez', (['file'], {}), '(file, **arrays_dict)\n', (2493, 2514), True, 'import numpy as np\n'), ((4018, 4048), 'numpy.load', 'np.load', (['file'], {}), '(file, **PICKLE_KWARGS)\n', (4025, 4048), True, 'import numpy as np\n')]
''' This code is based on https://github.com/jrieke/shape-detection/ ''' import matplotlib.pyplot as plt import matplotlib import numpy as np import tensorflow as tf import datetime class JriekeBboxDataset: def generate(self): print('Generating...') self.WIDTH = 8 self.HEIGHT = 8 num_imgs = 50000 min_object_size = 1 max_object_size = 4 num_objects = 1 self.bboxes = np.zeros((num_imgs, num_objects, 4)) self.imgs = np.zeros((num_imgs, self.WIDTH, self.HEIGHT)) # set background to 0 for i_img in range(num_imgs): for i_object in range(num_objects): w, h = np.random.randint(min_object_size, max_object_size, size=2) x = np.random.randint(0, self.WIDTH - w) y = np.random.randint(0, self.HEIGHT - h) self.imgs[i_img, y:y+h, x:x+w] = 1. # set rectangle to 1 self.bboxes[i_img, i_object] = [x, y, w, h] print("Shapes: imgs ", self.imgs.shape, " bboxes ", self.bboxes.shape) #why this? # X = (self.imgs.reshape(num_imgs, -1) - np.mean(self.imgs)) / np.std(self.imgs) X = self.imgs y = self.bboxes.reshape(num_imgs, -1) / self.WIDTH # Split training and test. i = int(0.8 * num_imgs) train_X = X[:i] #80% for training test_X = X[i:] train_y = y[:i] test_y = y[i:] self.test_imgs = self.imgs[i:] self.test_bboxes = self.bboxes[i:] return train_X, train_y, test_X, test_y def check_dataset_image_compability(self, test_X_sample, test_imgs_sample): fig = plt.figure(figsize=(12, 3)) fig.suptitle('check if the generated imgs match to the test_X slice image') fig.subplots_adjust(top=0.85) plt.subplot(1, 2, 1) plt.gca().set_title('Returned by the dataset class: used for training') plt.imshow(test_X_sample, cmap='Greys', interpolation='none', origin='lower', extent=[0, self.WIDTH, 0, self.HEIGHT]) plt.subplot(1, 2, 2) plt.gca().set_title('Global image holder: used for plotting.') plt.imshow(test_imgs_sample, cmap='Greys', interpolation='none', origin='lower', extent=[0, self.WIDTH, 0, self.HEIGHT]) plt.show() print('compare:',TMP,test_imgs_sample) def IOU(self,bbox1, bbox2): '''Calculate overlap between two bounding boxes [x, y, w, h] as the area of intersection over the area of unity''' x1, y1, w1, h1 = bbox1[0], bbox1[1], bbox1[2], bbox1[3] x2, y2, w2, h2 = bbox2[0], bbox2[1], bbox2[2], bbox2[3] w_I = min(x1 + w1, x2 + w2) - max(x1, x2) h_I = min(y1 + h1, y2 + h2) - max(y1, y2) if w_I <= 0 or h_I <= 0: # no overlap return 0. I = w_I * h_I U = w1 * h1 + w2 * h2 - I return I / U def convertDefaultAnnotToCoord(self, annot): ''' annot -> [x, y, w, h] ''' w = annot[2] * self.WIDTH h = annot[3] * self.HEIGHT x = annot[0] * self.HEIGHT y = annot[1] * self.HEIGHT return [x,y,w,h] def convertYoloAnnotToCoord(self, yolo_annot): ''' yolo_annot -> [x, y, w, h] ''' w = yolo_annot[2] * self.WIDTH h = yolo_annot[3] * self.HEIGHT x = (yolo_annot[0] * self.WIDTH) - (w/2) y = (yolo_annot[1] * self.HEIGHT) - (h/2) return [x,y,w,h] def show_generated(self, i=0): fig = plt.figure() fig.subplots_adjust(top=0.85) fig.suptitle('Generated image sample + GT') plt.imshow(self.imgs[i], cmap='Greys', interpolation='none', origin='lower', extent=[0, self.WIDTH, 0, self.HEIGHT]) for bbox in self.bboxes[i]: plt.gca().add_patch(matplotlib.patches.Rectangle((bbox[0], bbox[1]), bbox[2], bbox[3], ec='r', fc='none')) plt.gca().legend(['GT']) plt.show() def plot_rectangle(self, img, bbox): fig = plt.figure() fig.suptitle('Plotting rectangle.') fig.subplots_adjust(top=0.85) plt.subplot(1, 1, 1) plt.imshow(img, cmap='Greys', interpolation='none', origin='lower', extent=[0, self.WIDTH, 0, self.HEIGHT]) plt.gca().add_patch(matplotlib.patches.Rectangle((bbox[0], bbox[1]), bbox[2], bbox[3], ec='r', fc='none')) plt.show() def check_dataset_image_compability(self, test_X_sample, test_imgs_sample): fig = plt.figure(figsize=(12, 3)) fig.suptitle('check if the generated imgs match to the test_X slice image') fig.subplots_adjust(top=0.85) plt.subplot(1, 2, 1) plt.gca().set_title('Returned by the dataset class: used for training') plt.imshow(test_X_sample, cmap='Greys', interpolation='none', origin='lower', extent=[0, self.WIDTH, 0, self.HEIGHT]) plt.subplot(1, 2, 2) plt.gca().set_title('Global image holder: used for plotting.') plt.imshow(test_imgs_sample, cmap='Greys', interpolation='none', origin='lower', extent=[0, self.WIDTH, 0, self.HEIGHT]) plt.show() print('compare:',test_X_sample,test_imgs_sample) def show_predicted(self, pred_bboxes): # Show a few images and predicted bounding boxes from the test dataset. fig = plt.figure(figsize=(12, 3)) fig.subplots_adjust(top=0.85) fig.suptitle('Prediction demonstration. Random samples.') legend_plotted = False for i_subplot in range(1, 11): plt.subplot(1, 10, i_subplot) i = np.random.randint(len(pred_bboxes)) plt.imshow(self.test_imgs[i], cmap='Greys', interpolation='none', origin='lower', extent=[0, self.WIDTH, 0, self.HEIGHT]) for pred_bbox, exp_bbox in zip(pred_bboxes[i], self.test_bboxes[i]): # print('before convertion: pred',pred_bbox, 'gt',exp_bbox) pred_bbox = self.convertDefaultAnnotToCoord(pred_bbox) # exp_bbox = self.convertDefaultAnnotToCoord(exp_bbox) print('after convertion: pred',pred_bbox, 'gt',exp_bbox) plt.gca().add_patch(matplotlib.patches.Rectangle((pred_bbox[0], pred_bbox[1]), pred_bbox[2], pred_bbox[3], ec='r', fc='none')) #gt plt.gca().add_patch(matplotlib.patches.Rectangle((exp_bbox[0], exp_bbox[1]), exp_bbox[2], exp_bbox[3], ec='b', fc='none')) plt.annotate('IOU: {:.2f}'.format(self.IOU(pred_bbox, exp_bbox)), (pred_bbox[0], pred_bbox[1]+pred_bbox[3]+0.2), color='r') if not legend_plotted: legend_plotted = True plt.gca().legend(['Pred','GT'],loc='upper center', bbox_to_anchor=(0.5, -0.5), fancybox=True) plt.show() # plt.savefig('plots/bw-single-rectangle_prediction_{0:%Y-%m-%d%H:%M:%S}.png'.format(datetime.datetime.now()), dpi=300)
[ "matplotlib.pyplot.imshow", "matplotlib.patches.Rectangle", "matplotlib.pyplot.gca", "numpy.zeros", "matplotlib.pyplot.figure", "numpy.random.randint", "matplotlib.pyplot.subplot", "matplotlib.pyplot.show" ]
[((440, 476), 'numpy.zeros', 'np.zeros', (['(num_imgs, num_objects, 4)'], {}), '((num_imgs, num_objects, 4))\n', (448, 476), True, 'import numpy as np\n'), ((497, 542), 'numpy.zeros', 'np.zeros', (['(num_imgs, self.WIDTH, self.HEIGHT)'], {}), '((num_imgs, self.WIDTH, self.HEIGHT))\n', (505, 542), True, 'import numpy as np\n'), ((1662, 1689), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(12, 3)'}), '(figsize=(12, 3))\n', (1672, 1689), True, 'import matplotlib.pyplot as plt\n'), ((1821, 1841), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(1)', '(2)', '(1)'], {}), '(1, 2, 1)\n', (1832, 1841), True, 'import matplotlib.pyplot as plt\n'), ((1930, 2052), 'matplotlib.pyplot.imshow', 'plt.imshow', (['test_X_sample'], {'cmap': '"""Greys"""', 'interpolation': '"""none"""', 'origin': '"""lower"""', 'extent': '[0, self.WIDTH, 0, self.HEIGHT]'}), "(test_X_sample, cmap='Greys', interpolation='none', origin=\n 'lower', extent=[0, self.WIDTH, 0, self.HEIGHT])\n", (1940, 2052), True, 'import matplotlib.pyplot as plt\n'), ((2057, 2077), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(1)', '(2)', '(2)'], {}), '(1, 2, 2)\n', (2068, 2077), True, 'import matplotlib.pyplot as plt\n'), ((2157, 2282), 'matplotlib.pyplot.imshow', 'plt.imshow', (['test_imgs_sample'], {'cmap': '"""Greys"""', 'interpolation': '"""none"""', 'origin': '"""lower"""', 'extent': '[0, self.WIDTH, 0, self.HEIGHT]'}), "(test_imgs_sample, cmap='Greys', interpolation='none', origin=\n 'lower', extent=[0, self.WIDTH, 0, self.HEIGHT])\n", (2167, 2282), True, 'import matplotlib.pyplot as plt\n'), ((2286, 2296), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (2294, 2296), True, 'import matplotlib.pyplot as plt\n'), ((3515, 3527), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (3525, 3527), True, 'import matplotlib.pyplot as plt\n'), ((3626, 3746), 'matplotlib.pyplot.imshow', 'plt.imshow', (['self.imgs[i]'], {'cmap': '"""Greys"""', 'interpolation': '"""none"""', 'origin': '"""lower"""', 'extent': '[0, self.WIDTH, 0, self.HEIGHT]'}), "(self.imgs[i], cmap='Greys', interpolation='none', origin='lower',\n extent=[0, self.WIDTH, 0, self.HEIGHT])\n", (3636, 3746), True, 'import matplotlib.pyplot as plt\n'), ((3943, 3953), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (3951, 3953), True, 'import matplotlib.pyplot as plt\n'), ((4011, 4023), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (4021, 4023), True, 'import matplotlib.pyplot as plt\n'), ((4115, 4135), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(1)', '(1)', '(1)'], {}), '(1, 1, 1)\n', (4126, 4135), True, 'import matplotlib.pyplot as plt\n'), ((4144, 4256), 'matplotlib.pyplot.imshow', 'plt.imshow', (['img'], {'cmap': '"""Greys"""', 'interpolation': '"""none"""', 'origin': '"""lower"""', 'extent': '[0, self.WIDTH, 0, self.HEIGHT]'}), "(img, cmap='Greys', interpolation='none', origin='lower', extent=\n [0, self.WIDTH, 0, self.HEIGHT])\n", (4154, 4256), True, 'import matplotlib.pyplot as plt\n'), ((4375, 4385), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (4383, 4385), True, 'import matplotlib.pyplot as plt\n'), ((4481, 4508), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(12, 3)'}), '(figsize=(12, 3))\n', (4491, 4508), True, 'import matplotlib.pyplot as plt\n'), ((4640, 4660), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(1)', '(2)', '(1)'], {}), '(1, 2, 1)\n', (4651, 4660), True, 'import matplotlib.pyplot as plt\n'), ((4749, 4871), 'matplotlib.pyplot.imshow', 'plt.imshow', (['test_X_sample'], {'cmap': '"""Greys"""', 'interpolation': '"""none"""', 'origin': '"""lower"""', 'extent': '[0, self.WIDTH, 0, self.HEIGHT]'}), "(test_X_sample, cmap='Greys', interpolation='none', origin=\n 'lower', extent=[0, self.WIDTH, 0, self.HEIGHT])\n", (4759, 4871), True, 'import matplotlib.pyplot as plt\n'), ((4876, 4896), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(1)', '(2)', '(2)'], {}), '(1, 2, 2)\n', (4887, 4896), True, 'import matplotlib.pyplot as plt\n'), ((4976, 5101), 'matplotlib.pyplot.imshow', 'plt.imshow', (['test_imgs_sample'], {'cmap': '"""Greys"""', 'interpolation': '"""none"""', 'origin': '"""lower"""', 'extent': '[0, self.WIDTH, 0, self.HEIGHT]'}), "(test_imgs_sample, cmap='Greys', interpolation='none', origin=\n 'lower', extent=[0, self.WIDTH, 0, self.HEIGHT])\n", (4986, 5101), True, 'import matplotlib.pyplot as plt\n'), ((5105, 5115), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (5113, 5115), True, 'import matplotlib.pyplot as plt\n'), ((5312, 5339), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(12, 3)'}), '(figsize=(12, 3))\n', (5322, 5339), True, 'import matplotlib.pyplot as plt\n'), ((6760, 6770), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (6768, 6770), True, 'import matplotlib.pyplot as plt\n'), ((4280, 4369), 'matplotlib.patches.Rectangle', 'matplotlib.patches.Rectangle', (['(bbox[0], bbox[1])', 'bbox[2]', 'bbox[3]'], {'ec': '"""r"""', 'fc': '"""none"""'}), "((bbox[0], bbox[1]), bbox[2], bbox[3], ec='r',\n fc='none')\n", (4308, 4369), False, 'import matplotlib\n'), ((5527, 5556), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(1)', '(10)', 'i_subplot'], {}), '(1, 10, i_subplot)\n', (5538, 5556), True, 'import matplotlib.pyplot as plt\n'), ((5621, 5747), 'matplotlib.pyplot.imshow', 'plt.imshow', (['self.test_imgs[i]'], {'cmap': '"""Greys"""', 'interpolation': '"""none"""', 'origin': '"""lower"""', 'extent': '[0, self.WIDTH, 0, self.HEIGHT]'}), "(self.test_imgs[i], cmap='Greys', interpolation='none', origin=\n 'lower', extent=[0, self.WIDTH, 0, self.HEIGHT])\n", (5631, 5747), True, 'import matplotlib.pyplot as plt\n'), ((676, 735), 'numpy.random.randint', 'np.random.randint', (['min_object_size', 'max_object_size'], {'size': '(2)'}), '(min_object_size, max_object_size, size=2)\n', (693, 735), True, 'import numpy as np\n'), ((756, 792), 'numpy.random.randint', 'np.random.randint', (['(0)', '(self.WIDTH - w)'], {}), '(0, self.WIDTH - w)\n', (773, 792), True, 'import numpy as np\n'), ((813, 850), 'numpy.random.randint', 'np.random.randint', (['(0)', '(self.HEIGHT - h)'], {}), '(0, self.HEIGHT - h)\n', (830, 850), True, 'import numpy as np\n'), ((1850, 1859), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (1857, 1859), True, 'import matplotlib.pyplot as plt\n'), ((2086, 2095), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (2093, 2095), True, 'import matplotlib.pyplot as plt\n'), ((3811, 3900), 'matplotlib.patches.Rectangle', 'matplotlib.patches.Rectangle', (['(bbox[0], bbox[1])', 'bbox[2]', 'bbox[3]'], {'ec': '"""r"""', 'fc': '"""none"""'}), "((bbox[0], bbox[1]), bbox[2], bbox[3], ec='r',\n fc='none')\n", (3839, 3900), False, 'import matplotlib\n'), ((4260, 4269), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (4267, 4269), True, 'import matplotlib.pyplot as plt\n'), ((4669, 4678), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (4676, 4678), True, 'import matplotlib.pyplot as plt\n'), ((4905, 4914), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (4912, 4914), True, 'import matplotlib.pyplot as plt\n'), ((3791, 3800), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (3798, 3800), True, 'import matplotlib.pyplot as plt\n'), ((3910, 3919), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (3917, 3919), True, 'import matplotlib.pyplot as plt\n'), ((6151, 6260), 'matplotlib.patches.Rectangle', 'matplotlib.patches.Rectangle', (['(pred_bbox[0], pred_bbox[1])', 'pred_bbox[2]', 'pred_bbox[3]'], {'ec': '"""r"""', 'fc': '"""none"""'}), "((pred_bbox[0], pred_bbox[1]), pred_bbox[2],\n pred_bbox[3], ec='r', fc='none')\n", (6179, 6260), False, 'import matplotlib\n'), ((6314, 6419), 'matplotlib.patches.Rectangle', 'matplotlib.patches.Rectangle', (['(exp_bbox[0], exp_bbox[1])', 'exp_bbox[2]', 'exp_bbox[3]'], {'ec': '"""b"""', 'fc': '"""none"""'}), "((exp_bbox[0], exp_bbox[1]), exp_bbox[2],\n exp_bbox[3], ec='b', fc='none')\n", (6342, 6419), False, 'import matplotlib\n'), ((6131, 6140), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (6138, 6140), True, 'import matplotlib.pyplot as plt\n'), ((6294, 6303), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (6301, 6303), True, 'import matplotlib.pyplot as plt\n'), ((6658, 6667), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (6665, 6667), True, 'import matplotlib.pyplot as plt\n')]
#!/usr/bin/env python # Copyright 2017 Calico LLC # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # https://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ========================================================================= from __future__ import print_function from optparse import OptionParser import copy, os, pdb, random, shutil, subprocess, time import h5py import matplotlib matplotlib.use('PDF') import matplotlib.pyplot as plt import numpy as np import pandas as pd from scipy.stats import spearmanr import seaborn as sns from sklearn import preprocessing import tensorflow as tf import basenji ''' basenji_motifs.py Collect statistics and make plots to explore the first convolution layer of the given model using the given sequences. ''' weblogo_opts = '-X NO -Y NO --errorbars NO --fineprint ""' weblogo_opts += ' -C "#CB2026" A A' weblogo_opts += ' -C "#34459C" C C' weblogo_opts += ' -C "#FBB116" G G' weblogo_opts += ' -C "#0C8040" T T' ################################################################################ # main ################################################################################ def main(): usage = 'usage: %prog [options] <params_file> <model_file> <data_file>' parser = OptionParser(usage) parser.add_option( '-a', dest='act_t', default=0.5, type='float', help= 'Activation threshold (as proportion of max) to consider for PWM [Default: %default]' ) parser.add_option( '-d', dest='model_hdf5_file', default=None, help='Pre-computed model output as HDF5.') parser.add_option('-o', dest='out_dir', default='.') parser.add_option( '-m', dest='meme_db', default='%s/data/motifs/Homo_sapiens.meme' % os.environ['BASENJIDIR'], help='MEME database used to annotate motifs') parser.add_option( '-p', dest='plot_heats', default=False, action='store_true', help= 'Plot heat maps describing filter activations in the test sequences [Default: %default]' ) parser.add_option( '-s', dest='sample', default=None, type='int', help='Sample sequences from the test set [Default:%default]') parser.add_option( '-t', dest='trim_filters', default=False, action='store_true', help='Trim uninformative positions off the filter ends [Default: %default]' ) (options, args) = parser.parse_args() if len(args) != 3: parser.error( 'Must provide Basenji parameters and model files and test data in HDF5' ' format.' ) else: params_file = args[0] model_file = args[1] data_file = args[2] if not os.path.isdir(options.out_dir): os.mkdir(options.out_dir) ################################################################# # load data data_open = h5py.File(data_file) test_seqs1 = data_open['test_in'] test_targets = data_open['test_out'] try: target_names = list(data_open['target_labels']) except KeyError: target_names = ['t%d' % ti for ti in range(test_targets.shape[1])] if options.sample is not None: # choose sampled indexes sample_i = sorted(random.sample(range(test_seqs1.shape[0]), options.sample)) # filter test_seqs1 = test_seqs1[sample_i] test_targets = test_targets[sample_i] # convert to letters test_seqs = basenji.dna_io.hot1_dna(test_seqs1) ################################################################# # model parameters and placeholders job = basenji.dna_io.read_job_params(params_file) job['seq_length'] = test_seqs1.shape[1] job['seq_depth'] = test_seqs1.shape[2] job['num_targets'] = test_targets.shape[2] job['target_pool'] = int(np.array(data_open.get('pool_width', 1))) t0 = time.time() dr = basenji.seqnn.SeqNN() dr.build(job) print('Model building time %ds' % (time.time() - t0)) # adjust for fourier job['fourier'] = 'train_out_imag' in data_open if job['fourier']: test_targets_imag = data_open['test_out_imag'] if options.valid: test_targets_imag = data_open['valid_out_imag'] ################################################################# # predict # initialize batcher if job['fourier']: batcher_test = basenji.batcher.BatcherF( test_seqs1, test_targets, test_targets_imag, batch_size=dr.batch_size, pool_width=job['target_pool']) else: batcher_test = basenji.batcher.Batcher( test_seqs1, test_targets, batch_size=dr.batch_size, pool_width=job['target_pool']) # initialize saver saver = tf.train.Saver() with tf.Session() as sess: # load variables into session saver.restore(sess, model_file) # get weights filter_weights = sess.run(dr.filter_weights[0]) filter_weights = np.transpose(np.squeeze(filter_weights), [2, 1, 0]) print(filter_weights.shape) # test t0 = time.time() layer_filter_outs, _ = dr.hidden(sess, batcher_test, layers=[0]) filter_outs = layer_filter_outs[0] print(filter_outs.shape) # store useful variables num_filters = filter_weights.shape[0] filter_size = filter_weights.shape[2] ################################################################# # individual filter plots ################################################################# # also save information contents filters_ic = [] meme_out = meme_intro('%s/filters_meme.txt' % options.out_dir, test_seqs) for f in range(num_filters): print('Filter %d' % f) # plot filter parameters as a heatmap plot_filter_heat(filter_weights[f, :, :], '%s/filter%d_heat.pdf' % (options.out_dir, f)) # write possum motif file filter_possum(filter_weights[f, :, :], 'filter%d' % f, '%s/filter%d_possum.txt' % (options.out_dir, f), options.trim_filters) # plot weblogo of high scoring outputs plot_filter_logo( filter_outs[:, :, f], filter_size, test_seqs, '%s/filter%d_logo' % (options.out_dir, f), maxpct_t=options.act_t) # make a PWM for the filter filter_pwm, nsites = make_filter_pwm('%s/filter%d_logo.fa' % (options.out_dir, f)) if nsites < 10: # no information filters_ic.append(0) else: # compute and save information content filters_ic.append(info_content(filter_pwm)) # add to the meme motif file meme_add(meme_out, f, filter_pwm, nsites, options.trim_filters) meme_out.close() ################################################################# # annotate filters ################################################################# # run tomtom subprocess.call( 'tomtom -dist pearson -thresh 0.1 -oc %s/tomtom %s/filters_meme.txt %s' % (options.out_dir, options.out_dir, options.meme_db), shell=True) # read in annotations filter_names = name_filters( num_filters, '%s/tomtom/tomtom.txt' % options.out_dir, options.meme_db) ################################################################# # print a table of information ################################################################# table_out = open('%s/table.txt' % options.out_dir, 'w') # print header for later panda reading header_cols = ('', 'consensus', 'annotation', 'ic', 'mean', 'std') print('%3s %19s %10s %5s %6s %6s' % header_cols, file=table_out) for f in range(num_filters): # collapse to a consensus motif consensus = filter_motif(filter_weights[f, :, :]) # grab annotation annotation = '.' name_pieces = filter_names[f].split('_') if len(name_pieces) > 1: annotation = name_pieces[1] # plot density of filter output scores fmean, fstd = plot_score_density( np.ravel(filter_outs[:, :, f]), '%s/filter%d_dens.pdf' % (options.out_dir, f)) row_cols = (f, consensus, annotation, filters_ic[f], fmean, fstd) print('%-3d %19s %10s %5.2f %6.4f %6.4f' % row_cols, file=table_out) table_out.close() ################################################################# # global filter plots ################################################################# if options.plot_heats: # plot filter-sequence heatmap plot_filter_seq_heat(filter_outs, '%s/filter_seqs.pdf' % options.out_dir) # plot filter-segment heatmap plot_filter_seg_heat(filter_outs, '%s/filter_segs.pdf' % options.out_dir) plot_filter_seg_heat( filter_outs, '%s/filter_segs_raw.pdf' % options.out_dir, whiten=False) # plot filter-target correlation heatmap plot_target_corr(filter_outs, seq_targets, filter_names, target_names, '%s/filter_target_cors_mean.pdf' % options.out_dir, 'mean') plot_target_corr(filter_outs, seq_targets, filter_names, target_names, '%s/filter_target_cors_max.pdf' % options.out_dir, 'max') def get_motif_proteins(meme_db_file): """ Hash motif_id's to protein names using the MEME DB file """ motif_protein = {} for line in open(meme_db_file): a = line.split() if len(a) > 0 and a[0] == 'MOTIF': if a[2][0] == '(': motif_protein[a[1]] = a[2][1:a[2].find(')')] else: motif_protein[a[1]] = a[2] return motif_protein def info_content(pwm, transpose=False, bg_gc=0.415): """ Compute PWM information content. In the original analysis, I used a bg_gc=0.5. For any future analysis, I ought to switch to the true hg19 value of 0.415. """ pseudoc = 1e-9 if transpose: pwm = np.transpose(pwm) bg_pwm = [1 - bg_gc, bg_gc, bg_gc, 1 - bg_gc] ic = 0 for i in range(pwm.shape[0]): for j in range(4): # ic += 0.5 + pwm[i][j]*np.log2(pseudoc+pwm[i][j]) ic += -bg_pwm[j] * np.log2( bg_pwm[j]) + pwm[i][j] * np.log2(pseudoc + pwm[i][j]) return ic def make_filter_pwm(filter_fasta): """ Make a PWM for this filter from its top hits """ nts = {'A': 0, 'C': 1, 'G': 2, 'T': 3} pwm_counts = [] nsites = 4 # pseudocounts for line in open(filter_fasta): if line[0] != '>': seq = line.rstrip() nsites += 1 if len(pwm_counts) == 0: # initialize with the length for i in range(len(seq)): pwm_counts.append(np.array([1.0] * 4)) # count for i in range(len(seq)): try: pwm_counts[i][nts[seq[i]]] += 1 except KeyError: pwm_counts[i] += np.array([0.25] * 4) # normalize pwm_freqs = [] for i in range(len(pwm_counts)): pwm_freqs.append([pwm_counts[i][j] / float(nsites) for j in range(4)]) return np.array(pwm_freqs), nsites - 4 def meme_add(meme_out, f, filter_pwm, nsites, trim_filters=False): """ Print a filter to the growing MEME file Attrs: meme_out : open file f (int) : filter index # filter_pwm (array) : filter PWM array nsites (int) : number of filter sites """ if not trim_filters: ic_start = 0 ic_end = filter_pwm.shape[0] - 1 else: ic_t = 0.2 # trim PWM of uninformative prefix ic_start = 0 while ic_start < filter_pwm.shape[0] and info_content( filter_pwm[ic_start:ic_start + 1]) < ic_t: ic_start += 1 # trim PWM of uninformative suffix ic_end = filter_pwm.shape[0] - 1 while ic_end >= 0 and info_content(filter_pwm[ic_end:ic_end + 1]) < ic_t: ic_end -= 1 if ic_start < ic_end: print('MOTIF filter%d' % f, file=meme_out) print( 'letter-probability matrix: alength= 4 w= %d nsites= %d' % (ic_end - ic_start + 1, nsites), file=meme_out) for i in range(ic_start, ic_end + 1): print('%.4f %.4f %.4f %.4f' % tuple(filter_pwm[i]), file=meme_out) print('', file=meme_out) def meme_intro(meme_file, seqs): """ Open MEME motif format file and print intro Attrs: meme_file (str) : filename seqs [str] : list of strings for obtaining background freqs Returns: mem_out : open MEME file """ nts = {'A': 0, 'C': 1, 'G': 2, 'T': 3} # count nt_counts = [1] * 4 for i in range(len(seqs)): for nt in seqs[i]: try: nt_counts[nts[nt]] += 1 except KeyError: pass # normalize nt_sum = float(sum(nt_counts)) nt_freqs = [nt_counts[i] / nt_sum for i in range(4)] # open file for writing meme_out = open(meme_file, 'w') # print intro material print('MEME version 4', file=meme_out) print('', file=meme_out) print('ALPHABET= ACGT', file=meme_out) print('', file=meme_out) print('Background letter frequencies:', file=meme_out) print('A %.4f C %.4f G %.4f T %.4f' % tuple(nt_freqs), file=meme_out) print('', file=meme_out) return meme_out def name_filters(num_filters, tomtom_file, meme_db_file): """ Name the filters using Tomtom matches. Attrs: num_filters (int) : total number of filters tomtom_file (str) : filename of Tomtom output table. meme_db_file (str) : filename of MEME db Returns: filter_names [str] : """ # name by number filter_names = ['f%d' % fi for fi in range(num_filters)] # name by protein if tomtom_file is not None and meme_db_file is not None: motif_protein = get_motif_proteins(meme_db_file) # hash motifs and q-value's by filter filter_motifs = {} tt_in = open(tomtom_file) tt_in.readline() for line in tt_in: a = line.split() fi = int(a[0][6:]) motif_id = a[1] qval = float(a[5]) filter_motifs.setdefault(fi, []).append((qval, motif_id)) tt_in.close() # assign filter's best match for fi in filter_motifs: top_motif = sorted(filter_motifs[fi])[0][1] filter_names[fi] += '_%s' % motif_protein[top_motif] return np.array(filter_names) ################################################################################ # plot_target_corr # # Plot a clustered heatmap of correlations between filter activations and # targets. # # Input # filter_outs: # filter_names: # target_names: # out_pdf: ################################################################################ def plot_target_corr(filter_outs, seq_targets, filter_names, target_names, out_pdf, seq_op='mean'): num_seqs = filter_outs.shape[0] num_targets = len(target_names) if seq_op == 'mean': filter_outs_seq = filter_outs.mean(axis=2) else: filter_outs_seq = filter_outs.max(axis=2) # std is sequence by filter. filter_seqs_std = filter_outs_seq.std(axis=0) filter_outs_seq = filter_outs_seq[:, filter_seqs_std > 0] filter_names_live = filter_names[filter_seqs_std > 0] filter_target_cors = np.zeros((len(filter_names_live), num_targets)) for fi in range(len(filter_names_live)): for ti in range(num_targets): cor, p = spearmanr(filter_outs_seq[:, fi], seq_targets[:num_seqs, ti]) filter_target_cors[fi, ti] = cor cor_df = pd.DataFrame( filter_target_cors, index=filter_names_live, columns=target_names) sns.set(font_scale=0.3) plt.figure() sns.clustermap(cor_df, cmap='BrBG', center=0, figsize=(8, 10)) plt.savefig(out_pdf) plt.close() ################################################################################ # plot_filter_seq_heat # # Plot a clustered heatmap of filter activations in # # Input # param_matrix: np.array of the filter's parameter matrix # out_pdf: ################################################################################ def plot_filter_seq_heat(filter_outs, out_pdf, whiten=True, drop_dead=True): # compute filter output means per sequence filter_seqs = filter_outs.mean(axis=2) # whiten if whiten: filter_seqs = preprocessing.scale(filter_seqs) # transpose filter_seqs = np.transpose(filter_seqs) if drop_dead: filter_stds = filter_seqs.std(axis=1) filter_seqs = filter_seqs[filter_stds > 0] # downsample sequences seqs_i = np.random.randint(0, filter_seqs.shape[1], 500) hmin = np.percentile(filter_seqs[:, seqs_i], 0.1) hmax = np.percentile(filter_seqs[:, seqs_i], 99.9) sns.set(font_scale=0.3) plt.figure() sns.clustermap( filter_seqs[:, seqs_i], row_cluster=True, col_cluster=True, linewidths=0, xticklabels=False, vmin=hmin, vmax=hmax) plt.savefig(out_pdf) #out_png = out_pdf[:-2] + 'ng' #plt.savefig(out_png, dpi=300) plt.close() ################################################################################ # plot_filter_seq_heat # # Plot a clustered heatmap of filter activations in sequence segments. # # Mean doesn't work well for the smaller segments for some reason, but taking # the max looks OK. Still, similar motifs don't cluster quite as well as you # might expect. # # Input # filter_outs ################################################################################ def plot_filter_seg_heat(filter_outs, out_pdf, whiten=True, drop_dead=True): b = filter_outs.shape[0] f = filter_outs.shape[1] l = filter_outs.shape[2] s = 5 while l / float(s) - (l / s) > 0: s += 1 print('%d segments of length %d' % (s, l / s)) # split into multiple segments filter_outs_seg = np.reshape(filter_outs, (b, f, s, l / s)) # mean across the segments filter_outs_mean = filter_outs_seg.max(axis=3) # break each segment into a new instance filter_seqs = np.reshape(np.swapaxes(filter_outs_mean, 2, 1), (s * b, f)) # whiten if whiten: filter_seqs = preprocessing.scale(filter_seqs) # transpose filter_seqs = np.transpose(filter_seqs) if drop_dead: filter_stds = filter_seqs.std(axis=1) filter_seqs = filter_seqs[filter_stds > 0] # downsample sequences seqs_i = np.random.randint(0, filter_seqs.shape[1], 500) hmin = np.percentile(filter_seqs[:, seqs_i], 0.1) hmax = np.percentile(filter_seqs[:, seqs_i], 99.9) sns.set(font_scale=0.3) if whiten: dist = 'euclidean' else: dist = 'cosine' plt.figure() sns.clustermap( filter_seqs[:, seqs_i], metric=dist, row_cluster=True, col_cluster=True, linewidths=0, xticklabels=False, vmin=hmin, vmax=hmax) plt.savefig(out_pdf) #out_png = out_pdf[:-2] + 'ng' #plt.savefig(out_png, dpi=300) plt.close() ################################################################################ # filter_motif # # Collapse the filter parameter matrix to a single DNA motif. # # Input # param_matrix: np.array of the filter's parameter matrix # out_pdf: ################################################################################ def filter_motif(param_matrix): nts = 'ACGT' motif_list = [] for v in range(param_matrix.shape[1]): max_n = 0 for n in range(1, 4): if param_matrix[n, v] > param_matrix[max_n, v]: max_n = n if param_matrix[max_n, v] > 0: motif_list.append(nts[max_n]) else: motif_list.append('N') return ''.join(motif_list) ################################################################################ # filter_possum # # Write a Possum-style motif # # Input # param_matrix: np.array of the filter's parameter matrix # out_pdf: ################################################################################ def filter_possum(param_matrix, motif_id, possum_file, trim_filters=False, mult=200): # possible trim trim_start = 0 trim_end = param_matrix.shape[1] - 1 trim_t = 0.3 if trim_filters: # trim PWM of uninformative prefix while trim_start < param_matrix.shape[1] and np.max( param_matrix[:, trim_start]) - np.min( param_matrix[:, trim_start]) < trim_t: trim_start += 1 # trim PWM of uninformative suffix while trim_end >= 0 and np.max(param_matrix[:, trim_end]) - np.min( param_matrix[:, trim_end]) < trim_t: trim_end -= 1 if trim_start < trim_end: possum_out = open(possum_file, 'w') print('BEGIN GROUP', file=possum_out) print('BEGIN FLOAT', file=possum_out) print('ID %s' % motif_id, file=possum_out) print('AP DNA', file=possum_out) print('LE %d' % (trim_end + 1 - trim_start), file=possum_out) for ci in range(trim_start, trim_end + 1): print( 'MA %s' % ' '.join(['%.2f' % (mult * n) for n in param_matrix[:, ci]]), file=possum_out) print('END', file=possum_out) print('END', file=possum_out) possum_out.close() ################################################################################ # plot_filter_heat # # Plot a heatmap of the filter's parameters. # # Input # param_matrix: np.array of the filter's parameter matrix # out_pdf: ################################################################################ def plot_filter_heat(param_matrix, out_pdf): param_range = abs(param_matrix).max() sns.set(font_scale=2) plt.figure(figsize=(param_matrix.shape[1], 4)) sns.heatmap( param_matrix, cmap='PRGn', linewidths=0.2, vmin=-param_range, vmax=param_range) ax = plt.gca() ax.set_xticklabels(range(1, param_matrix.shape[1] + 1)) ax.set_yticklabels('TGCA', rotation='horizontal') # , size=10) plt.savefig(out_pdf) plt.close() ################################################################################ # plot_filter_logo # # Plot a weblogo of the filter's occurrences # # Input # param_matrix: np.array of the filter's parameter matrix # out_pdf: ################################################################################ def plot_filter_logo(filter_outs, filter_size, seqs, out_prefix, raw_t=0, maxpct_t=None): if maxpct_t: all_outs = np.ravel(filter_outs) all_outs_mean = all_outs.mean() all_outs_norm = all_outs - all_outs_mean raw_t = maxpct_t * all_outs_norm.max() + all_outs_mean left_pad = (filter_size - 1) // 2 right_pad = filter_size - left_pad # print fasta file of positive outputs filter_fasta_out = open('%s.fa' % out_prefix, 'w') filter_count = 0 for i in range(filter_outs.shape[0]): for j in range(filter_outs.shape[1]): if filter_outs[i, j] > raw_t: # construct kmer kmer = '' # determine boundaries, considering padding fstart = j - left_pad fend = fstart + filter_size # if it starts in left_pad if fstart < 0: kmer += 'N' * (-fstart) fstart = 0 # add primary sequence kmer += seqs[i][fstart:fend] # if it ends in right_pad if fend > len(seqs[i]): kmer += 'N' * (fend - len(seqs[i])) # output print('>%d_%d' % (i, j), file=filter_fasta_out) print(kmer, file=filter_fasta_out) filter_count += 1 filter_fasta_out.close() # make weblogo if filter_count > 0: weblogo_cmd = 'weblogo %s < %s.fa > %s.eps' % (weblogo_opts, out_prefix, out_prefix) subprocess.call(weblogo_cmd, shell=True) ################################################################################ # plot_score_density # # Plot the score density and print to the stats table. # # Input # param_matrix: np.array of the filter's parameter matrix # out_pdf: ################################################################################ def plot_score_density(f_scores, out_pdf): sns.set(font_scale=1.3) plt.figure() sns.distplot(f_scores, kde=False) plt.xlabel('ReLU output') plt.savefig(out_pdf) plt.close() return f_scores.mean(), f_scores.std() ################################################################################ # __main__ ################################################################################ if __name__ == '__main__': main() # pdb.runcall(main)
[ "basenji.seqnn.SeqNN", "numpy.array", "basenji.dna_io.read_job_params", "basenji.batcher.BatcherF", "seaborn.set", "numpy.reshape", "seaborn.distplot", "matplotlib.pyplot.xlabel", "basenji.batcher.Batcher", "tensorflow.Session", "numpy.max", "matplotlib.pyplot.close", "os.path.isdir", "basenji.dna_io.hot1_dna", "subprocess.call", "os.mkdir", "numpy.min", "pandas.DataFrame", "scipy.stats.spearmanr", "matplotlib.pyplot.savefig", "matplotlib.use", "seaborn.clustermap", "matplotlib.pyplot.gca", "seaborn.heatmap", "h5py.File", "numpy.squeeze", "numpy.log2", "numpy.transpose", "time.time", "sklearn.preprocessing.scale", "tensorflow.train.Saver", "optparse.OptionParser", "numpy.swapaxes", "matplotlib.pyplot.figure", "numpy.random.randint", "numpy.ravel", "numpy.percentile" ]
[((829, 850), 'matplotlib.use', 'matplotlib.use', (['"""PDF"""'], {}), "('PDF')\n", (843, 850), False, 'import matplotlib\n'), ((1670, 1689), 'optparse.OptionParser', 'OptionParser', (['usage'], {}), '(usage)\n', (1682, 1689), False, 'from optparse import OptionParser\n'), ((3270, 3290), 'h5py.File', 'h5py.File', (['data_file'], {}), '(data_file)\n', (3279, 3290), False, 'import h5py\n'), ((3793, 3828), 'basenji.dna_io.hot1_dna', 'basenji.dna_io.hot1_dna', (['test_seqs1'], {}), '(test_seqs1)\n', (3816, 3828), False, 'import basenji\n'), ((3945, 3988), 'basenji.dna_io.read_job_params', 'basenji.dna_io.read_job_params', (['params_file'], {}), '(params_file)\n', (3975, 3988), False, 'import basenji\n'), ((4195, 4206), 'time.time', 'time.time', ([], {}), '()\n', (4204, 4206), False, 'import copy, os, pdb, random, shutil, subprocess, time\n'), ((4214, 4235), 'basenji.seqnn.SeqNN', 'basenji.seqnn.SeqNN', ([], {}), '()\n', (4233, 4235), False, 'import basenji\n'), ((5041, 5057), 'tensorflow.train.Saver', 'tf.train.Saver', ([], {}), '()\n', (5055, 5057), True, 'import tensorflow as tf\n'), ((7204, 7367), 'subprocess.call', 'subprocess.call', (["('tomtom -dist pearson -thresh 0.1 -oc %s/tomtom %s/filters_meme.txt %s' %\n (options.out_dir, options.out_dir, options.meme_db))"], {'shell': '(True)'}), "(\n 'tomtom -dist pearson -thresh 0.1 -oc %s/tomtom %s/filters_meme.txt %s' %\n (options.out_dir, options.out_dir, options.meme_db), shell=True)\n", (7219, 7367), False, 'import copy, os, pdb, random, shutil, subprocess, time\n'), ((14271, 14293), 'numpy.array', 'np.array', (['filter_names'], {}), '(filter_names)\n', (14279, 14293), True, 'import numpy as np\n'), ((15402, 15481), 'pandas.DataFrame', 'pd.DataFrame', (['filter_target_cors'], {'index': 'filter_names_live', 'columns': 'target_names'}), '(filter_target_cors, index=filter_names_live, columns=target_names)\n', (15414, 15481), True, 'import pandas as pd\n'), ((15492, 15515), 'seaborn.set', 'sns.set', ([], {'font_scale': '(0.3)'}), '(font_scale=0.3)\n', (15499, 15515), True, 'import seaborn as sns\n'), ((15518, 15530), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (15528, 15530), True, 'import matplotlib.pyplot as plt\n'), ((15533, 15595), 'seaborn.clustermap', 'sns.clustermap', (['cor_df'], {'cmap': '"""BrBG"""', 'center': '(0)', 'figsize': '(8, 10)'}), "(cor_df, cmap='BrBG', center=0, figsize=(8, 10))\n", (15547, 15595), True, 'import seaborn as sns\n'), ((15598, 15618), 'matplotlib.pyplot.savefig', 'plt.savefig', (['out_pdf'], {}), '(out_pdf)\n', (15609, 15618), True, 'import matplotlib.pyplot as plt\n'), ((15621, 15632), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (15630, 15632), True, 'import matplotlib.pyplot as plt\n'), ((16225, 16250), 'numpy.transpose', 'np.transpose', (['filter_seqs'], {}), '(filter_seqs)\n', (16237, 16250), True, 'import numpy as np\n'), ((16394, 16441), 'numpy.random.randint', 'np.random.randint', (['(0)', 'filter_seqs.shape[1]', '(500)'], {}), '(0, filter_seqs.shape[1], 500)\n', (16411, 16441), True, 'import numpy as np\n'), ((16452, 16494), 'numpy.percentile', 'np.percentile', (['filter_seqs[:, seqs_i]', '(0.1)'], {}), '(filter_seqs[:, seqs_i], 0.1)\n', (16465, 16494), True, 'import numpy as np\n'), ((16504, 16547), 'numpy.percentile', 'np.percentile', (['filter_seqs[:, seqs_i]', '(99.9)'], {}), '(filter_seqs[:, seqs_i], 99.9)\n', (16517, 16547), True, 'import numpy as np\n'), ((16551, 16574), 'seaborn.set', 'sns.set', ([], {'font_scale': '(0.3)'}), '(font_scale=0.3)\n', (16558, 16574), True, 'import seaborn as sns\n'), ((16578, 16590), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (16588, 16590), True, 'import matplotlib.pyplot as plt\n'), ((16593, 16726), 'seaborn.clustermap', 'sns.clustermap', (['filter_seqs[:, seqs_i]'], {'row_cluster': '(True)', 'col_cluster': '(True)', 'linewidths': '(0)', 'xticklabels': '(False)', 'vmin': 'hmin', 'vmax': 'hmax'}), '(filter_seqs[:, seqs_i], row_cluster=True, col_cluster=True,\n linewidths=0, xticklabels=False, vmin=hmin, vmax=hmax)\n', (16607, 16726), True, 'import seaborn as sns\n'), ((16768, 16788), 'matplotlib.pyplot.savefig', 'plt.savefig', (['out_pdf'], {}), '(out_pdf)\n', (16779, 16788), True, 'import matplotlib.pyplot as plt\n'), ((16857, 16868), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (16866, 16868), True, 'import matplotlib.pyplot as plt\n'), ((17644, 17685), 'numpy.reshape', 'np.reshape', (['filter_outs', '(b, f, s, l / s)'], {}), '(filter_outs, (b, f, s, l / s))\n', (17654, 17685), True, 'import numpy as np\n'), ((17992, 18017), 'numpy.transpose', 'np.transpose', (['filter_seqs'], {}), '(filter_seqs)\n', (18004, 18017), True, 'import numpy as np\n'), ((18161, 18208), 'numpy.random.randint', 'np.random.randint', (['(0)', 'filter_seqs.shape[1]', '(500)'], {}), '(0, filter_seqs.shape[1], 500)\n', (18178, 18208), True, 'import numpy as np\n'), ((18219, 18261), 'numpy.percentile', 'np.percentile', (['filter_seqs[:, seqs_i]', '(0.1)'], {}), '(filter_seqs[:, seqs_i], 0.1)\n', (18232, 18261), True, 'import numpy as np\n'), ((18271, 18314), 'numpy.percentile', 'np.percentile', (['filter_seqs[:, seqs_i]', '(99.9)'], {}), '(filter_seqs[:, seqs_i], 99.9)\n', (18284, 18314), True, 'import numpy as np\n'), ((18318, 18341), 'seaborn.set', 'sns.set', ([], {'font_scale': '(0.3)'}), '(font_scale=0.3)\n', (18325, 18341), True, 'import seaborn as sns\n'), ((18409, 18421), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (18419, 18421), True, 'import matplotlib.pyplot as plt\n'), ((18424, 18570), 'seaborn.clustermap', 'sns.clustermap', (['filter_seqs[:, seqs_i]'], {'metric': 'dist', 'row_cluster': '(True)', 'col_cluster': '(True)', 'linewidths': '(0)', 'xticklabels': '(False)', 'vmin': 'hmin', 'vmax': 'hmax'}), '(filter_seqs[:, seqs_i], metric=dist, row_cluster=True,\n col_cluster=True, linewidths=0, xticklabels=False, vmin=hmin, vmax=hmax)\n', (18438, 18570), True, 'import seaborn as sns\n'), ((18618, 18638), 'matplotlib.pyplot.savefig', 'plt.savefig', (['out_pdf'], {}), '(out_pdf)\n', (18629, 18638), True, 'import matplotlib.pyplot as plt\n'), ((18707, 18718), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (18716, 18718), True, 'import matplotlib.pyplot as plt\n'), ((21275, 21296), 'seaborn.set', 'sns.set', ([], {'font_scale': '(2)'}), '(font_scale=2)\n', (21282, 21296), True, 'import seaborn as sns\n'), ((21299, 21345), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(param_matrix.shape[1], 4)'}), '(figsize=(param_matrix.shape[1], 4))\n', (21309, 21345), True, 'import matplotlib.pyplot as plt\n'), ((21348, 21443), 'seaborn.heatmap', 'sns.heatmap', (['param_matrix'], {'cmap': '"""PRGn"""', 'linewidths': '(0.2)', 'vmin': '(-param_range)', 'vmax': 'param_range'}), "(param_matrix, cmap='PRGn', linewidths=0.2, vmin=-param_range,\n vmax=param_range)\n", (21359, 21443), True, 'import seaborn as sns\n'), ((21478, 21487), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (21485, 21487), True, 'import matplotlib.pyplot as plt\n'), ((21614, 21634), 'matplotlib.pyplot.savefig', 'plt.savefig', (['out_pdf'], {}), '(out_pdf)\n', (21625, 21634), True, 'import matplotlib.pyplot as plt\n'), ((21637, 21648), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (21646, 21648), True, 'import matplotlib.pyplot as plt\n'), ((23772, 23795), 'seaborn.set', 'sns.set', ([], {'font_scale': '(1.3)'}), '(font_scale=1.3)\n', (23779, 23795), True, 'import seaborn as sns\n'), ((23798, 23810), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (23808, 23810), True, 'import matplotlib.pyplot as plt\n'), ((23813, 23846), 'seaborn.distplot', 'sns.distplot', (['f_scores'], {'kde': '(False)'}), '(f_scores, kde=False)\n', (23825, 23846), True, 'import seaborn as sns\n'), ((23849, 23874), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""ReLU output"""'], {}), "('ReLU output')\n", (23859, 23874), True, 'import matplotlib.pyplot as plt\n'), ((23877, 23897), 'matplotlib.pyplot.savefig', 'plt.savefig', (['out_pdf'], {}), '(out_pdf)\n', (23888, 23897), True, 'import matplotlib.pyplot as plt\n'), ((23900, 23911), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (23909, 23911), True, 'import matplotlib.pyplot as plt\n'), ((3110, 3140), 'os.path.isdir', 'os.path.isdir', (['options.out_dir'], {}), '(options.out_dir)\n', (3123, 3140), False, 'import copy, os, pdb, random, shutil, subprocess, time\n'), ((3146, 3171), 'os.mkdir', 'os.mkdir', (['options.out_dir'], {}), '(options.out_dir)\n', (3154, 3171), False, 'import copy, os, pdb, random, shutil, subprocess, time\n'), ((4674, 4804), 'basenji.batcher.BatcherF', 'basenji.batcher.BatcherF', (['test_seqs1', 'test_targets', 'test_targets_imag'], {'batch_size': 'dr.batch_size', 'pool_width': "job['target_pool']"}), "(test_seqs1, test_targets, test_targets_imag,\n batch_size=dr.batch_size, pool_width=job['target_pool'])\n", (4698, 4804), False, 'import basenji\n'), ((4869, 4979), 'basenji.batcher.Batcher', 'basenji.batcher.Batcher', (['test_seqs1', 'test_targets'], {'batch_size': 'dr.batch_size', 'pool_width': "job['target_pool']"}), "(test_seqs1, test_targets, batch_size=dr.batch_size,\n pool_width=job['target_pool'])\n", (4892, 4979), False, 'import basenji\n'), ((5066, 5078), 'tensorflow.Session', 'tf.Session', ([], {}), '()\n', (5076, 5078), True, 'import tensorflow as tf\n'), ((5355, 5366), 'time.time', 'time.time', ([], {}), '()\n', (5364, 5366), False, 'import copy, os, pdb, random, shutil, subprocess, time\n'), ((10067, 10084), 'numpy.transpose', 'np.transpose', (['pwm'], {}), '(pwm)\n', (10079, 10084), True, 'import numpy as np\n'), ((11127, 11146), 'numpy.array', 'np.array', (['pwm_freqs'], {}), '(pwm_freqs)\n', (11135, 11146), True, 'import numpy as np\n'), ((16161, 16193), 'sklearn.preprocessing.scale', 'preprocessing.scale', (['filter_seqs'], {}), '(filter_seqs)\n', (16180, 16193), False, 'from sklearn import preprocessing\n'), ((17836, 17871), 'numpy.swapaxes', 'np.swapaxes', (['filter_outs_mean', '(2)', '(1)'], {}), '(filter_outs_mean, 2, 1)\n', (17847, 17871), True, 'import numpy as np\n'), ((17928, 17960), 'sklearn.preprocessing.scale', 'preprocessing.scale', (['filter_seqs'], {}), '(filter_seqs)\n', (17947, 17960), False, 'from sklearn import preprocessing\n'), ((22080, 22101), 'numpy.ravel', 'np.ravel', (['filter_outs'], {}), '(filter_outs)\n', (22088, 22101), True, 'import numpy as np\n'), ((23363, 23403), 'subprocess.call', 'subprocess.call', (['weblogo_cmd'], {'shell': '(True)'}), '(weblogo_cmd, shell=True)\n', (23378, 23403), False, 'import copy, os, pdb, random, shutil, subprocess, time\n'), ((5263, 5289), 'numpy.squeeze', 'np.squeeze', (['filter_weights'], {}), '(filter_weights)\n', (5273, 5289), True, 'import numpy as np\n'), ((8287, 8317), 'numpy.ravel', 'np.ravel', (['filter_outs[:, :, f]'], {}), '(filter_outs[:, :, f])\n', (8295, 8317), True, 'import numpy as np\n'), ((15289, 15350), 'scipy.stats.spearmanr', 'spearmanr', (['filter_outs_seq[:, fi]', 'seq_targets[:num_seqs, ti]'], {}), '(filter_outs_seq[:, fi], seq_targets[:num_seqs, ti])\n', (15298, 15350), False, 'from scipy.stats import spearmanr\n'), ((4289, 4300), 'time.time', 'time.time', ([], {}), '()\n', (4298, 4300), False, 'import copy, os, pdb, random, shutil, subprocess, time\n'), ((10281, 10299), 'numpy.log2', 'np.log2', (['bg_pwm[j]'], {}), '(bg_pwm[j])\n', (10288, 10299), True, 'import numpy as np\n'), ((10325, 10353), 'numpy.log2', 'np.log2', (['(pseudoc + pwm[i][j])'], {}), '(pseudoc + pwm[i][j])\n', (10332, 10353), True, 'import numpy as np\n'), ((19977, 20012), 'numpy.max', 'np.max', (['param_matrix[:, trim_start]'], {}), '(param_matrix[:, trim_start])\n', (19983, 20012), True, 'import numpy as np\n'), ((20024, 20059), 'numpy.min', 'np.min', (['param_matrix[:, trim_start]'], {}), '(param_matrix[:, trim_start])\n', (20030, 20059), True, 'import numpy as np\n'), ((20173, 20206), 'numpy.max', 'np.max', (['param_matrix[:, trim_end]'], {}), '(param_matrix[:, trim_end])\n', (20179, 20206), True, 'import numpy as np\n'), ((20209, 20242), 'numpy.min', 'np.min', (['param_matrix[:, trim_end]'], {}), '(param_matrix[:, trim_end])\n', (20215, 20242), True, 'import numpy as np\n'), ((10779, 10798), 'numpy.array', 'np.array', (['([1.0] * 4)'], {}), '([1.0] * 4)\n', (10787, 10798), True, 'import numpy as np\n'), ((10954, 10974), 'numpy.array', 'np.array', (['([0.25] * 4)'], {}), '([0.25] * 4)\n', (10962, 10974), True, 'import numpy as np\n')]
""" Functions for testing independence of several distributions. The functions in this module provide methods for testing if the samples generated from two random vectors are independent. """ import numpy as np import scipy.stats from . import _dcor_internals, _hypothesis from ._dcor import u_distance_correlation_sqr from ._utils import _random_state_init, _transform_to_2d def distance_covariance_test( x, y, *, num_resamples=0, exponent=1, random_state=None, n_jobs=1, ): """ Test of distance covariance independence. Compute the test of independence based on the distance covariance, for two random vectors. The test is a permutation test where the null hypothesis is that the two random vectors are independent. Parameters ---------- x: array_like First random vector. The columns correspond with the individual random variables while the rows are individual instances of the random vector. y: array_like Second random vector. The columns correspond with the individual random variables while the rows are individual instances of the random vector. exponent: float Exponent of the Euclidean distance, in the range :math:`(0, 2)`. Equivalently, it is twice the Hurst parameter of fractional Brownian motion. num_resamples: int Number of permutations resamples to take in the permutation test. random_state: {None, int, array_like, numpy.random.RandomState} Random state to generate the permutations. Returns ------- HypothesisTest Results of the hypothesis test. See Also -------- distance_covariance Examples -------- >>> import numpy as np >>> import dcor >>> a = np.array([[1, 2, 3, 4], ... [5, 6, 7, 8], ... [9, 10, 11, 12], ... [13, 14, 15, 16]]) >>> b = np.array([[1, 0, 0, 1], ... [0, 1, 1, 1], ... [1, 1, 1, 1], ... [1, 1, 0, 1]]) >>> dcor.independence.distance_covariance_test(a, a) HypothesisTest(p_value=1.0, statistic=208.0) >>> dcor.independence.distance_covariance_test(a, b) ... # doctest: +ELLIPSIS HypothesisTest(p_value=1.0, statistic=11.75323056...) >>> dcor.independence.distance_covariance_test(b, b) HypothesisTest(p_value=1.0, statistic=1.3604610...) >>> dcor.independence.distance_covariance_test(a, b, ... num_resamples=5, random_state=0) HypothesisTest(p_value=0.5, statistic=11.7532305...) >>> dcor.independence.distance_covariance_test(a, b, ... num_resamples=5, random_state=13) HypothesisTest(p_value=0.3333333..., statistic=11.7532305...) >>> dcor.independence.distance_covariance_test(a, a, ... num_resamples=7, random_state=0) HypothesisTest(p_value=0.125, statistic=208.0) """ x = _transform_to_2d(x) y = _transform_to_2d(y) _dcor_internals._check_same_n_elements(x, y) random_state = _random_state_init(random_state) # Compute U-centered matrices u_x = _dcor_internals._distance_matrix_generic( x, centering=_dcor_internals.double_centered, exponent=exponent) u_y = _dcor_internals._distance_matrix_generic( y, centering=_dcor_internals.double_centered, exponent=exponent) # Use the dcov statistic def statistic_function(distance_matrix): return u_x.shape[0] * _dcor_internals.mean_product( distance_matrix, u_y) return _hypothesis._permutation_test_with_sym_matrix( u_x, statistic_function=statistic_function, num_resamples=num_resamples, random_state=random_state, n_jobs=n_jobs) def partial_distance_covariance_test( x, y, z, *, num_resamples=0, exponent=1, random_state=None, n_jobs=1, ): """ Test of partial distance covariance independence. Compute the test of independence based on the partial distance covariance, for two random vectors conditioned on a third. The test is a permutation test where the null hypothesis is that the first two random vectors are independent given the third one. Parameters ---------- x: array_like First random vector. The columns correspond with the individual random variables while the rows are individual instances of the random vector. y: array_like Second random vector. The columns correspond with the individual random variables while the rows are individual instances of the random vector. z: array_like Observed random vector. The columns correspond with the individual random variables while the rows are individual instances of the random vector. num_resamples: int Number of permutations resamples to take in the permutation test. random_state: {None, int, array_like, numpy.random.RandomState} Random state to generate the permutations. Returns ------- HypothesisTest Results of the hypothesis test. See Also -------- partial_distance_covariance Examples -------- >>> import numpy as np >>> import dcor >>> a = np.array([[1, 2, 3, 4], ... [5, 6, 7, 8], ... [9, 10, 11, 12], ... [13, 14, 15, 16]]) >>> b = np.array([[1, 0, 0, 1], ... [0, 1, 1, 1], ... [1, 1, 1, 1], ... [1, 1, 0, 1]]) >>> c = np.array([[1000, 0, 0, 1000], ... [0, 1000, 1000, 1000], ... [1000, 1000, 1000, 1000], ... [1000, 1000, 0, 1000]]) >>> dcor.independence.partial_distance_covariance_test(a, a, b) ... # doctest: +ELLIPSIS HypothesisTest(p_value=1.0, statistic=142.6664416...) >>> dcor.independence.partial_distance_covariance_test(a, b, c) ... # doctest: +ELLIPSIS HypothesisTest(p_value=1.0, statistic=7.2690070...e-15) >>> dcor.independence.partial_distance_covariance_test(b, b, c) ... # doctest: +ELLIPSIS HypothesisTest(p_value=1.0, statistic=2.2533380...e-30) >>> dcor.independence.partial_distance_covariance_test(a, b, c, ... num_resamples=5, random_state=0) HypothesisTest(p_value=0.1666666..., statistic=7.2690070...e-15) >>> dcor.independence.partial_distance_covariance_test(a, b, c, ... num_resamples=5, random_state=13) HypothesisTest(p_value=0.1666666..., statistic=7.2690070...e-15) >>> dcor.independence.partial_distance_covariance_test(a, c, b, ... num_resamples=7, random_state=0) HypothesisTest(p_value=1.0, statistic=-7.5701764...e-12) """ random_state = _random_state_init(random_state) # Compute U-centered matrices u_x = _dcor_internals._u_distance_matrix(x, exponent=exponent) u_y = _dcor_internals._u_distance_matrix(y, exponent=exponent) u_z = _dcor_internals._u_distance_matrix(z, exponent=exponent) # Compute projections proj = _dcor_internals.u_complementary_projection(u_z) p_xz = proj(u_x) p_yz = proj(u_y) # Use the pdcor statistic def statistic_function(distance_matrix): return u_x.shape[0] * _dcor_internals.u_product( distance_matrix, p_yz) return _hypothesis._permutation_test_with_sym_matrix( p_xz, statistic_function=statistic_function, num_resamples=num_resamples, random_state=random_state, n_jobs=n_jobs) def distance_correlation_t_statistic(x, y): """ Transformation of the bias corrected version of distance correlation used in :func:`distance_correlation_t_test`. Parameters ---------- x: array_like First random vector. The columns correspond with the individual random variables while the rows are individual instances of the random vector. y: array_like Second random vector. The columns correspond with the individual random variables while the rows are individual instances of the random vector. Returns ------- numpy scalar T statistic. See Also -------- distance_correlation_t_test Examples -------- >>> import numpy as np >>> import dcor >>> a = np.array([[1, 2, 3, 4], ... [5, 6, 7, 8], ... [9, 10, 11, 12], ... [13, 14, 15, 16]]) >>> b = np.array([[1, 0, 0, 1], ... [0, 1, 1, 1], ... [1, 1, 1, 1], ... [1, 1, 0, 1]]) >>> with np.errstate(divide='ignore'): ... dcor.independence.distance_correlation_t_statistic(a, a) inf >>> dcor.independence.distance_correlation_t_statistic(a, b) ... # doctest: +ELLIPSIS -0.4430164... >>> with np.errstate(divide='ignore'): ... dcor.independence.distance_correlation_t_statistic(b, b) inf """ bcdcor = u_distance_correlation_sqr(x, y) n = x.shape[0] v = n * (n - 3) / 2 return np.sqrt(v - 1) * bcdcor / np.sqrt(1 - bcdcor**2) def distance_correlation_t_test(x, y): """ Test of independence for high dimension based on convergence to a Student t distribution. The null hypothesis is that the two random vectors are independent. Parameters ---------- x: array_like First random vector. The columns correspond with the individual random variables while the rows are individual instances of the random vector. y: array_like Second random vector. The columns correspond with the individual random variables while the rows are individual instances of the random vector. Returns ------- HypothesisTest Results of the hypothesis test. See Also -------- distance_correlation_t_statistic Examples -------- >>> import numpy as np >>> import dcor >>> a = np.array([[1, 2, 3, 4], ... [5, 6, 7, 8], ... [9, 10, 11, 12], ... [13, 14, 15, 16]]) >>> b = np.array([[1, 0, 0, 1], ... [0, 1, 1, 1], ... [1, 1, 1, 1], ... [1, 1, 0, 1]]) >>> with np.errstate(divide='ignore'): ... dcor.independence.distance_correlation_t_test(a, a) ... # doctest: +ELLIPSIS HypothesisTest(p_value=0.0, statistic=inf) >>> dcor.independence.distance_correlation_t_test(a, b) ... # doctest: +ELLIPSIS HypothesisTest(p_value=0.6327451..., statistic=-0.4430164...) >>> with np.errstate(divide='ignore'): ... dcor.independence.distance_correlation_t_test(b, b) ... # doctest: +ELLIPSIS HypothesisTest(p_value=0.0, statistic=inf) """ t_test = distance_correlation_t_statistic(x, y) n = x.shape[0] v = n * (n - 3) / 2 df = v - 1 p_value = 1 - scipy.stats.t.cdf(t_test, df=df) return _hypothesis.HypothesisTest(p_value=p_value, statistic=t_test)
[ "numpy.sqrt" ]
[((9268, 9292), 'numpy.sqrt', 'np.sqrt', (['(1 - bcdcor ** 2)'], {}), '(1 - bcdcor ** 2)\n', (9275, 9292), True, 'import numpy as np\n'), ((9242, 9256), 'numpy.sqrt', 'np.sqrt', (['(v - 1)'], {}), '(v - 1)\n', (9249, 9256), True, 'import numpy as np\n')]
#coding=utf-8 #性别识别 import cv2 from keras.models import load_model import numpy as np import chineseText img = cv2.imread("img/gather.png") face_classifier = cv2.CascadeClassifier( "d:\Python36\Lib\site-packages\opencv-master\data\haarcascades\haarcascade_frontalface_default.xml" ) gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) faces = face_classifier.detectMultiScale( gray, scaleFactor=1.2, minNeighbors=3, minSize=(140, 140)) gender_classifier = load_model( "classifier/gender_models/simple_CNN.81-0.96.hdf5") gender_labels = {0: '女', 1: '男'} color = (255, 255, 255) for (x, y, w, h) in faces: face = img[(y - 60):(y + h + 60), (x - 30):(x + w + 30)] face = cv2.resize(face, (48, 48)) face = np.expand_dims(face, 0) face = face / 255.0 gender_label_arg = np.argmax(gender_classifier.predict(face)) gender = gender_labels[gender_label_arg] cv2.rectangle(img, (x, y), (x + h, y + w), color, 2) img = chineseText.cv2ImgAddText(img, gender, x + h, y, color, 30) cv2.imshow("Image", img) cv2.waitKey(0) cv2.destroyAllWindows()
[ "cv2.rectangle", "keras.models.load_model", "cv2.imshow", "cv2.waitKey", "cv2.destroyAllWindows", "cv2.cvtColor", "numpy.expand_dims", "cv2.CascadeClassifier", "cv2.resize", "cv2.imread", "chineseText.cv2ImgAddText" ]
[((113, 141), 'cv2.imread', 'cv2.imread', (['"""img/gather.png"""'], {}), "('img/gather.png')\n", (123, 141), False, 'import cv2\n'), ((160, 299), 'cv2.CascadeClassifier', 'cv2.CascadeClassifier', (['"""d:\\\\Python36\\\\Lib\\\\site-packages\\\\opencv-master\\\\data\\\\haarcascades\\\\haarcascade_frontalface_default.xml"""'], {}), "(\n 'd:\\\\Python36\\\\Lib\\\\site-packages\\\\opencv-master\\\\data\\\\haarcascades\\\\haarcascade_frontalface_default.xml'\n )\n", (181, 299), False, 'import cv2\n'), ((296, 333), 'cv2.cvtColor', 'cv2.cvtColor', (['img', 'cv2.COLOR_BGR2GRAY'], {}), '(img, cv2.COLOR_BGR2GRAY)\n', (308, 333), False, 'import cv2\n'), ((460, 522), 'keras.models.load_model', 'load_model', (['"""classifier/gender_models/simple_CNN.81-0.96.hdf5"""'], {}), "('classifier/gender_models/simple_CNN.81-0.96.hdf5')\n", (470, 522), False, 'from keras.models import load_model\n'), ((1010, 1034), 'cv2.imshow', 'cv2.imshow', (['"""Image"""', 'img'], {}), "('Image', img)\n", (1020, 1034), False, 'import cv2\n'), ((1035, 1049), 'cv2.waitKey', 'cv2.waitKey', (['(0)'], {}), '(0)\n', (1046, 1049), False, 'import cv2\n'), ((1050, 1073), 'cv2.destroyAllWindows', 'cv2.destroyAllWindows', ([], {}), '()\n', (1071, 1073), False, 'import cv2\n'), ((685, 711), 'cv2.resize', 'cv2.resize', (['face', '(48, 48)'], {}), '(face, (48, 48))\n', (695, 711), False, 'import cv2\n'), ((723, 746), 'numpy.expand_dims', 'np.expand_dims', (['face', '(0)'], {}), '(face, 0)\n', (737, 746), True, 'import numpy as np\n'), ((886, 938), 'cv2.rectangle', 'cv2.rectangle', (['img', '(x, y)', '(x + h, y + w)', 'color', '(2)'], {}), '(img, (x, y), (x + h, y + w), color, 2)\n', (899, 938), False, 'import cv2\n'), ((949, 1008), 'chineseText.cv2ImgAddText', 'chineseText.cv2ImgAddText', (['img', 'gender', '(x + h)', 'y', 'color', '(30)'], {}), '(img, gender, x + h, y, color, 30)\n', (974, 1008), False, 'import chineseText\n')]
""" Project for Udacity Danaodgree in Deep Reinforcement Learning This script train an agent to navigate (and collect bananas!) in a large, square world. A reward of +1 is provided for collecting a yellow banana, and a reward of -1 is provided for collecting a blue banana. Thus, the goal of your agent is to collect as many yellow bananas as possible while avoiding blue bananas. The state space has 37 dimensions and contains the agent's velocity, along with ray-based perception of objects around the agent's forward direction. Given this information, the agent has to learn how to best select actions. Four discrete actions are available, corresponding to: 0 - move forward. 1 - move backward. 2 - turn left. 3 - turn right. The task is episodic, and in order to solve the environment, your agent must get an average score of +13 over 100 consecutive episodes. """ from unityagents import UnityEnvironment import numpy as np from collections import deque from dqn_agent import Agent import torch device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") """ Unity environment configuration Mac: "path/to/Banana.app" Windows (x86): "path/to/Banana_Windows_x86/Banana.exe" Windows (x86_64): "path/to/Banana_Windows_x86_64/Banana.exe" Linux (x86): "path/to/Banana_Linux/Banana.x86" Linux (x86_64): "path/to/Banana_Linux/Banana.x86_64" Linux (x86, headless): "path/to/Banana_Linux_NoVis/Banana.x86" Linux (x86_64, headless): "path/to/Banana_Linux_NoVis/Banana.x86_64" """ # start Unity environment env = UnityEnvironment(file_name="Banana.app") # get the default brain brain_name = env.brain_names[0] brain = env.brains[brain_name] env_info = env.reset(train_mode=False)[brain_name] action_size = brain.vector_action_space_size state_size = len(env_info.vector_observations[0]) # initialize agent agent = Agent(state_size=state_size, action_size=action_size, seed=0, device=device) def train(n_episodes=2000, eps_start=1.0, eps_end=0.05, eps_decay=0.99): """Deep Q-Learning. Params ====== n_episodes (int): maximum number of training episodes eps_start (float): starting value of epsilon, for epsilon-greedy action selection eps_end (float): minimum value of epsilon eps_decay (float): multiplicative factor (per episode) for decreasing epsilon """ scores = [] # list containing scores from each episode scores_window = deque(maxlen=100) # last 100 scores eps = eps_start # initialize epsilon for i_episode in range(1, n_episodes+1): # reset environment env_info = env.reset(train_mode=True)[brain_name] # get initial state state = env_info.vector_observations[0] # set initial score score = 0 while True: action = agent.act(state, eps) env_info = env.step(action)[brain_name] next_state, reward, done = env_info.vector_observations[0], env_info.rewards[0], env_info.local_done[0] agent.step(state, action, reward, next_state, done) state = next_state score += reward if done: break scores_window.append(score) # save most recent score scores.append(score) # save most recent score eps = max(eps_end, eps_decay*eps) # decrease epsilon print('\rEpisode {}\tAverage Score: {:.2f}'.format(i_episode, np.mean(scores_window)), end="") if i_episode % 100 == 0: print('\rEpisode {}\tAverage Score: {:.2f}'.format(i_episode, np.mean(scores_window))) if np.mean(scores_window)>=14: print('\nEnvironment solved in {:d} episodes!\tAverage Score: {:.2f}'.format(i_episode-100, np.mean(scores_window))) torch.save(agent.qnetwork_local.state_dict(), 'checkpoint.pth') break return scores train()
[ "numpy.mean", "collections.deque", "dqn_agent.Agent", "unityagents.UnityEnvironment", "torch.cuda.is_available" ]
[((1524, 1564), 'unityagents.UnityEnvironment', 'UnityEnvironment', ([], {'file_name': '"""Banana.app"""'}), "(file_name='Banana.app')\n", (1540, 1564), False, 'from unityagents import UnityEnvironment\n'), ((1829, 1905), 'dqn_agent.Agent', 'Agent', ([], {'state_size': 'state_size', 'action_size': 'action_size', 'seed': '(0)', 'device': 'device'}), '(state_size=state_size, action_size=action_size, seed=0, device=device)\n', (1834, 1905), False, 'from dqn_agent import Agent\n'), ((2429, 2446), 'collections.deque', 'deque', ([], {'maxlen': '(100)'}), '(maxlen=100)\n', (2434, 2446), False, 'from collections import deque\n'), ((1038, 1063), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (1061, 1063), False, 'import torch\n'), ((3653, 3675), 'numpy.mean', 'np.mean', (['scores_window'], {}), '(scores_window)\n', (3660, 3675), True, 'import numpy as np\n'), ((3477, 3499), 'numpy.mean', 'np.mean', (['scores_window'], {}), '(scores_window)\n', (3484, 3499), True, 'import numpy as np\n'), ((3617, 3639), 'numpy.mean', 'np.mean', (['scores_window'], {}), '(scores_window)\n', (3624, 3639), True, 'import numpy as np\n'), ((3785, 3807), 'numpy.mean', 'np.mean', (['scores_window'], {}), '(scores_window)\n', (3792, 3807), True, 'import numpy as np\n')]
# coding=utf-8 # Copyright 2021 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # python3 """Train seq-to-seq model on random supervised training tasks.""" # pytype: disable=wrong-arg-count # pytype: disable=attribute-error import collections import functools import json import os import random import sys import time from absl import app from absl import flags from absl import logging from flax import jax_utils from flax import linen as nn from flax import optim from flax.metrics import tensorboard from flax.training import checkpoints from flax.training import common_utils import jax import jax.numpy as jnp import numpy as np import tensorflow.compat.v2 as tf from latent_programmer import decode from latent_programmer import models as base_models from latent_programmer.decomposition_transformer_attention import decomposition_models as models from latent_programmer.decomposition_transformer_attention import input_pipeline from latent_programmer.tasks.robust_fill import dsl from latent_programmer.tasks.robust_fill import tokens as dsl_tokens sys.path.append('../../') gfile = tf.io.gfile FLAGS = flags.FLAGS flags.DEFINE_integer('seed', 0, 'Fixed random seed for training.') flags.DEFINE_float('lr', 1e-3, 'Learning rate.') flags.DEFINE_float('weight_decay', 1e-1, 'Decay factor for AdamW-style weight decay.') flags.DEFINE_integer('embedding_dim', 256, 'Embedding dimension.') flags.DEFINE_integer('hidden_dim', 512, 'Hidden dimension.') flags.DEFINE_integer('num_heads', 4, 'Number of layers.') flags.DEFINE_integer('num_layers', 3, 'Number of Transformer heads.') flags.DEFINE_boolean('slow_decode', True, 'Use slow decoding for prediction?') flags.DEFINE_string('dataset_filepattern', None, 'Filepattern for TFRecord dataset.') flags.DEFINE_integer('per_device_batch_size', 16, 'Number of program tasks in a batch.') flags.DEFINE_integer('num_strings_per_task', 4, 'Number of input/output strings per task.') flags.DEFINE_integer('max_program_length', 100, 'Maximum number of tokens in program.') flags.DEFINE_integer('max_characters', 120, 'Maximum number of characters in input/output strings.') flags.DEFINE_string('save_dir', None, 'Directory to save results to.') flags.DEFINE_integer('num_train_steps', 2000000, 'Number of training steps.') flags.DEFINE_integer('num_eval_steps', 10, 'Number of evaluation steps.') flags.DEFINE_integer('log_freq', 1000, 'Number of steps between training logs.') flags.DEFINE_integer('eval_freq', 2000, 'Number of steps between eval.') flags.DEFINE_integer('predict_freq', 50000, 'Number of steps between prediction (beam search).') flags.DEFINE_integer('checkpoint_freq', 50000, 'Number of steps between checkpoint saves.') flags.DEFINE_integer('finetune_start_step', -1, 'Step the initial checkpoint should start at for ' 'finetuning, or -1 if not finetuning.') flags.DEFINE_bool('restore_checkpoints', True, 'Whether to restore from existing model checkpoints.') flags.DEFINE_string('attention_mask_type', 'bos_full_attention', 'The kind of attention mask to use. Options are: baseline, ' 'bos_to_bos, bos_full_attention') flags.DEFINE_bool('use_relative_attention', True, 'Whether to use relative positonal embeddings.') flags.DEFINE_bool('bos_special_attention', False, 'Whether to use special relative attention computation for ' 'BOS tokens.') _internal = False if not _internal: flags.DEFINE_string('xm_parameters', None, 'String specifying hyperparamter search.') def create_learning_rate_scheduler( base_learning_rate=0.5, factors='constant * linear_warmup * rsqrt_normalized_decay', warmup_steps=16000, decay_factor=0.5, steps_per_decay=50000, steps_per_cycle=100000): """Creates learning rate schedule. Interprets factors in the factors string which can consist of: * constant: interpreted as the constant value, * linear_warmup: interpreted as linear warmup until warmup_steps, * rsqrt_decay: divide by square root of max(step, warmup_steps) * decay_every: Every k steps decay the learning rate by decay_factor. * cosine_decay: Cyclic cosine decay, uses steps_per_cycle parameter. Args: base_learning_rate: float, the starting constant for the lr schedule. factors: a string with factors separated by '*' that defines the schedule. warmup_steps: how many steps to warm up for in the warmup schedule. decay_factor: The amount to decay the learning rate by. steps_per_decay: How often to decay the learning rate. steps_per_cycle: Steps per cycle when using cosine decay. Returns: A function learning_rate(step): float -> {'learning_rate': float}, the step-dependent lr. """ factors = [n.strip() for n in factors.split('*')] def step_fn(step): """Step to learning rate function.""" ret = 1.0 for name in factors: if name == 'constant': ret *= base_learning_rate elif name == 'linear_warmup': ret *= jnp.minimum(1.0, step / warmup_steps) elif name == 'rsqrt_decay': ret /= jnp.sqrt(jnp.maximum(1.0, step - warmup_steps)) elif name == 'rsqrt_normalized_decay': ret *= jnp.sqrt(warmup_steps) ret /= jnp.sqrt(jnp.maximum(step, warmup_steps)) elif name == 'decay_every': ret *= (decay_factor**(step // steps_per_decay)) elif name == 'cosine_decay': progress = jnp.maximum(0.0, (step - warmup_steps) / float(steps_per_cycle)) ret *= jnp.maximum(0.0, 0.5 * (1.0 + jnp.cos(jnp.pi * (progress % 1.0)))) else: raise ValueError('Unknown factor %s.' % name) return jnp.asarray(ret, dtype=jnp.float32) return step_fn def compute_weighted_cross_entropy(logits, targets, weights=None): """Compute weighted cross entropy and entropy for log probs and targets. Args: logits: `[batch, length, num_classes]` float array. targets: categorical targets `[batch, length]` int array. weights: None or array of shape [batch, length, 1] Returns: Tuple of scalar loss and batch normalizing factor. """ if logits.ndim != targets.ndim + 1: raise ValueError('Incorrect shapes. Got shape %s logits and %s targets' % (str(logits.shape), str(targets.shape))) onehot_targets = common_utils.onehot(targets, logits.shape[-1]) loss = -jnp.sum(onehot_targets * nn.log_softmax(logits), axis=-1) normalizing_factor = jnp.prod(jnp.asarray(targets.shape)) if weights is not None: loss = loss * weights normalizing_factor = weights.sum() return loss.sum(), normalizing_factor def compute_weighted_accuracy(logits, targets, weights=None): """Compute weighted accuracy for log probs and targets. Args: logits: `[batch, length, num_classes]` float array. targets: categorical targets `[batch, length]` int array. weights: None or array of shape [batch, length, 1] Returns: Tuple of scalar accuracy and batch normalizing factor. """ if logits.ndim != targets.ndim + 1: raise ValueError('Incorrect shapes. Got shape %s logits and %s targets' % (str(logits.shape), str(targets.shape))) acc = jnp.equal(jnp.argmax(logits, axis=-1), targets) normalizing_factor = jnp.prod(jnp.asarray(targets.shape)) if weights is not None: acc = acc * weights normalizing_factor = weights.sum() return acc.sum(), normalizing_factor def compute_metrics(logits, targets, weights): """Compute summary metrics.""" loss, weight_sum = compute_weighted_cross_entropy(logits, targets, weights) acc, _ = compute_weighted_accuracy(logits, targets, weights) metrics = { 'loss': loss, 'accuracy': acc, 'denominator': weight_sum, } metrics = jax.lax.psum(metrics, 'batch') return metrics # Train / eval / decode step functions. # ----------------------------------------------------------------------------- def train_step(optimizer, inputs, outputs, programs, learning_rate_fn, config, dropout_rng): """Train on batch of program tasks.""" # We handle PRNG splitting inside the top pmap, rather # than handling it outside in the training loop - doing the # latter can add some stalls to the devices. dropout_rng, new_dropout_rng = jax.random.split(dropout_rng) weights = jnp.where(programs > 0, 1, 0).astype(jnp.float32) def loss_fn(params): """Loss function used for training.""" logits = models.DecomposeAttentionTransformer(config).apply( {'params': params}, inputs, outputs, programs, rngs={'dropout': dropout_rng}) loss, weight_sum = compute_weighted_cross_entropy(logits, programs, weights) mean_loss = loss / weight_sum return mean_loss, logits step = optimizer.state.step lr = learning_rate_fn(step) grad_fn = jax.value_and_grad(loss_fn, has_aux=True) (_, logits), grad = grad_fn(optimizer.target) grad = jax.lax.pmean(grad, 'batch') new_optimizer = optimizer.apply_gradient(grad, learning_rate=lr) # Get metrics. metrics = compute_metrics(logits, programs, weights) metrics['learning_rate'] = lr return new_optimizer, metrics, new_dropout_rng def eval_step(params, inputs, outputs, programs, eos_token, config): """Collect metrics for evaluation during training.""" weights = jnp.where( jnp.logical_and(programs > 0, jnp.logical_and(programs != config.base_config.bos_token, programs != eos_token)), 1, 0).astype(jnp.float32) logits = models.DecomposeAttentionTransformer(config).apply( {'params': params}, inputs, outputs, programs) return compute_metrics(logits, programs, weights) def initialize_cache(inputs, outputs, programs, max_decode_len, config): """Initialize a cache for a given input shape and max decode length.""" target_shape = (programs.shape[0], max_decode_len) dtype = config.base_config.dtype initial_variables = models.DecomposeAttentionTransformer(config).init( jax.random.PRNGKey(0), jnp.ones(inputs.shape, dtype), jnp.ones(outputs.shape, dtype), jnp.ones(target_shape, dtype)) return initial_variables['cache'] def predict_step(params, inputs, outputs, cache, beam_size, eos_token, max_decode_len, config, slow_decode=True): """Predict translation with fast decoding beam search on a batch.""" # Prepare transformer fast-decoder call for beam search: for beam search, we # need to set up our decoder model to handle a batch size equal to # batch_size * beam_size, where each batch item's data is expanded in-place # rather than tiled. flat_encoded = decode.flat_batch_beam_expand( models.DecomposeAttentionTransformer(config).apply( {'params': params}, inputs, outputs, method=models.DecomposeAttentionTransformer.encode), beam_size) encoded_padding_mask = jnp.where(outputs > 0, 1, 0).astype(jnp.float32) flat_encoded_padding_mask = decode.flat_batch_beam_expand( encoded_padding_mask, beam_size) if slow_decode: def tokens_ids_to_logits(flat_ids): """Token slice to logits from decoder model.""" # --> [batch * beam, 1, vocab] flat_logits = models.DecomposeAttentionTransformer(config=config).apply( {'params': params}, flat_ids, flat_encoded, flat_encoded_padding_mask, method=models.DecomposeAttentionTransformer.decode) return flat_logits else: def tokens_ids_to_logits(flat_ids, flat_cache): """Token slice to logits from decoder model.""" # --> [batch * beam, 1, vocab] flat_logits, new_vars = models.DecomposeAttentionTransformer( config=config).apply( {'params': params, 'cache': flat_cache}, flat_ids, flat_encoded, flat_encoded_padding_mask, mutable=['cache'], method=models.DecomposeAttentionTransformer.decode) new_flat_cache = new_vars['cache'] # Remove singleton sequence-length dimension: # [batch * beam, 1, vocab] --> [batch * beam, vocab] flat_logits = flat_logits.squeeze(axis=1) return flat_logits, new_flat_cache # Using the above-defined single-step decoder function, run a # beam search over possible sequences given input encoding. beam_seqs, _ = decode.beam_search( inputs, cache, tokens_ids_to_logits, beam_size=beam_size, alpha=0.6, bos_token=config.base_config.bos_token, eos_token=eos_token, max_decode_len=max_decode_len, slow_decode=slow_decode) # Beam search returns [n_batch, n_beam, n_length] with beam dimension # sorted in increasing order of log-probability. return beam_seqs # Util functions for prediction # ----------------------------------------------------------------------------- def pad_examples(x, desired_batch_size): """Expand batch to desired size by repeating last slice.""" batch_pad = desired_batch_size - x.shape[0] tile_dims = [1] * len(x.shape) tile_dims[0] = batch_pad return np.concatenate([x, np.tile(x[-1], tile_dims)], axis=0) def tohost(x): """Collect batches from all devices to host and flatten batch dimensions.""" n_device, n_batch, *remaining_dims = x.shape return x.reshape((n_device * n_batch,) + tuple(remaining_dims)) def per_host_sum_pmap(in_tree): """Execute psum on in_tree's leaves over one device per host.""" host2devices = collections.defaultdict(list) for d in jax.devices(): host2devices[d.host_id].append(d) devices = [host2devices[k][0] for k in host2devices] host_psum = jax.pmap(lambda x: jax.lax.psum(x, 'i'), 'i', devices=devices) def pre_pmap(xs): return jax.tree_map(lambda x: jnp.broadcast_to(x, (1,) + x.shape), xs) def post_pmap(xs): return jax.tree_map(lambda x: x[0], xs) return post_pmap(host_psum(pre_pmap(in_tree))) def eval_predicted(predicted, inputs, outputs, parse_beam_fn): """Evaluate predicted program beams.""" best_p, best_score = None, -1 # predicted shape [beam_size, length] for beam in predicted[::-1]: try: p = parse_beam_fn(beam) p_outs = [p(inp) for inp in inputs] score = np.sum([p_out == out for p_out, out in zip(p_outs, outputs)]) if score > best_score: best_p, best_score = p, score except: # pylint: disable=bare-except pass if best_score >= len(inputs): # Found solution. break return best_p, best_score def shorten(key): splits = key.split('_') return ''.join(s[0] for s in splits) def main(_): tf.enable_v2_behavior() tf.random.set_seed(FLAGS.seed) np.random.seed(FLAGS.seed) random.seed(FLAGS.seed) # BOS special attention only makes sense if we are using relative attention # and it's not the baseline. if FLAGS.bos_special_attention and (not FLAGS.use_relative_attention or FLAGS.attention_mask_type == 'baseline'): raise ValueError( "bos_special_attention doesn't work when use_relative_attention={} and " 'attention_mask_type={}'.format(FLAGS.use_relative_attention, FLAGS.attention_mask_type)) if not gfile.isdir(FLAGS.save_dir): gfile.makedirs(FLAGS.save_dir) hparam_str_dict = dict(seed=FLAGS.seed, lr=FLAGS.lr) # Get hyperparmaters if FLAGS.xm_parameters: for key, value in json.loads(FLAGS.xm_parameters).items(): if key not in hparam_str_dict: hparam_str_dict[key] = value hparam_str = ','.join(['%s=%s' % (shorten(k), str(hparam_str_dict[k])) for k in sorted(hparam_str_dict.keys())]) # Number of local devices for this host. n_devices = jax.local_device_count() if jax.host_id() == 0: summary_writer = tensorboard.SummaryWriter( os.path.join(FLAGS.save_dir, 'tb', hparam_str)) batch_size = FLAGS.per_device_batch_size * n_devices io_shape = (FLAGS.per_device_batch_size, FLAGS.num_strings_per_task, FLAGS.max_characters) program_shape = (FLAGS.per_device_batch_size, FLAGS.max_program_length) # Setup DSL # --------------------------------------------------------------------------- # Build token tables. id_char_table = {i+1: char for (i, char) in enumerate(dsl.CHARACTER)} char_id_table = {char: id for id, char in id_char_table.items()} id_token_table, token_id_table = dsl_tokens.build_token_tables() io_vocab_size = len(char_id_table) + 1 # For padding. program_vocab_size = len(token_id_table) + 1 bos_token = token_id_table[dsl.BOS] eos_token = token_id_table[dsl.EOS] # Parse io and program token sequences (for eval). def decode_io(inputs, outputs): """Decode io examples tokens.""" def decode_str(s): """Decode string tokens.""" return ''.join([id_char_table[c_id] for c_id in s if c_id > 0]) inps, outs = [], [] for inp, out in zip(inputs, outputs): inps.append(decode_str(inp)) outs.append(decode_str(out)) return inps, outs def decode_program(program): """Decode program tokens.""" program = program[:np.argmax(program == eos_token) + 1].astype(np.int32) program = program[program != bos_token] try: return dsl.decode_program(program.tolist(), id_token_table) except: # pylint: disable=bare-except return None # Program does not compile. # Load Dataset # --------------------------------------------------------------------------- logging.info('Initializing dataset.') if not FLAGS.dataset_filepattern: raise ValueError('Must specify filepattern to dataset.') # Training dataset. logging.info('Loading dataset from %s', FLAGS.dataset_filepattern) padded_shapes = (io_shape[1:], io_shape[1:], program_shape[1:]) logging.info('padded_shapes: %s', padded_shapes) dataset = input_pipeline.create_dataset_from_tf_record( FLAGS.dataset_filepattern, token_id_table, char_id_table) dataset = dataset.padded_batch( batch_size, padded_shapes=padded_shapes, drop_remainder=True) # Split evaluation and training. eval_ds = dataset.take(FLAGS.num_eval_steps) # Decrease batch of predict dataset to handle beam search. predict_ds = eval_ds.unbatch().padded_batch( int(np.ceil(batch_size / 10)), padded_shapes=padded_shapes) train_ds = dataset.skip(FLAGS.num_eval_steps).repeat() train_iter = train_ds.as_numpy_iterator() # Build Model and Optimizer # --------------------------------------------------------------------------- use_dropout = False base_config = base_models.TransformerConfig( vocab_size=io_vocab_size, output_vocab_size=program_vocab_size, shift=True, emb_dim=FLAGS.embedding_dim, num_heads=FLAGS.num_heads, num_layers=FLAGS.num_layers, qkv_dim=FLAGS.embedding_dim, mlp_dim=FLAGS.hidden_dim, max_len=max(FLAGS.max_characters, FLAGS.max_program_length), use_relative_attention=FLAGS.use_relative_attention, deterministic=not use_dropout, decode=False, bos_token=bos_token) train_config = models.DecomposeAttentionTransformerConfig( base_config=base_config, attention_mask_type=FLAGS.attention_mask_type, bos_special_attention=FLAGS.bos_special_attention) eval_config = models.DecomposeAttentionTransformerConfig( base_config=base_config.replace(deterministic=not use_dropout), attention_mask_type=FLAGS.attention_mask_type, bos_special_attention=FLAGS.bos_special_attention) predict_config = models.DecomposeAttentionTransformerConfig( base_config=base_config.replace( shift=False, deterministic=not use_dropout, decode=not FLAGS.slow_decode), attention_mask_type=FLAGS.attention_mask_type, bos_special_attention=FLAGS.bos_special_attention) rng = jax.random.PRNGKey(FLAGS.seed) rng = jax.random.fold_in(rng, jax.host_id()) rng, init_rng = jax.random.split(rng) m = models.DecomposeAttentionTransformer(eval_config) initial_variables = jax.jit(m.init)( {'params': init_rng, 'dropout': init_rng}, jnp.ones(io_shape, jnp.float32), jnp.ones(io_shape, jnp.float32), jnp.ones(program_shape, jnp.float32)) optimizer_def = optim.Adam( FLAGS.lr, beta1=0.9, beta2=0.98, eps=1e-9, weight_decay=FLAGS.weight_decay) optimizer = optimizer_def.create(initial_variables['params']) del initial_variables # Don't keep a copy of the initial model. start_step = 0 if FLAGS.restore_checkpoints: # Restore unreplicated optimizer + model state from last checkpoint. optimizer = checkpoints.restore_checkpoint( os.path.join(FLAGS.save_dir, 'checkpoints', hparam_str), optimizer) # Grab last step. start_step = int(optimizer.state.step) logging.info('Found model checkpointed at step %d.', start_step) if FLAGS.finetune_start_step > 0: logging.info('Checking that start_step (%s) == finetune_start_step (%s)', start_step, FLAGS.finetune_start_step) assert start_step == FLAGS.finetune_start_step # Replicate optimizer. optimizer = jax_utils.replicate(optimizer) # TODO(jxihong): Implement fast decoding. assert FLAGS.slow_decode, 'Fast decoding is not implemented yet.' if FLAGS.finetune_start_step <= 0: learning_rate_fn = create_learning_rate_scheduler( base_learning_rate=FLAGS.lr) else: # Constant LR for finetuning. learning_rate_fn = create_learning_rate_scheduler( base_learning_rate=FLAGS.lr, factors='constant') p_train_step = jax.pmap( functools.partial( train_step, learning_rate_fn=learning_rate_fn, config=train_config), axis_name='batch') p_eval_step = jax.pmap( functools.partial(eval_step, eos_token=eos_token, config=eval_config), axis_name='batch') p_init_cache = jax.pmap( functools.partial( initialize_cache, max_decode_len=FLAGS.max_program_length, config=predict_config), axis_name='batch') p_pred_step = jax.pmap( functools.partial( predict_step, eos_token=eos_token, max_decode_len=FLAGS.max_program_length, config=predict_config, slow_decode=FLAGS.slow_decode), axis_name='batch', static_broadcasted_argnums=(4,)) # Main Train Loop # --------------------------------------------------------------------------- dropout_rng = jax.random.split(rng, jax.local_device_count()) del rng metrics_all = [] tick = time.time() for step in range(start_step, FLAGS.num_train_steps): inputs, outputs, programs = common_utils.shard(next(train_iter)) optimizer, metrics, dropout_rng = p_train_step( optimizer, inputs, outputs, programs, dropout_rng=dropout_rng) metrics_all.append(metrics) is_last_step = step == FLAGS.num_train_steps - 1 # Save a Checkpoint if (step % FLAGS.checkpoint_freq == 0 and step > 0) or is_last_step: if jax.host_id() == 0: # Save unreplicated optimizer + model state. checkpoints.save_checkpoint( os.path.join(FLAGS.save_dir, 'checkpoints', hparam_str), jax_utils.unreplicate(optimizer), step) # Periodic metric handling. # Training Metrics if (step and step % FLAGS.log_freq == 0) or is_last_step: logging.info('Gathering training metrics.') metrics_all = common_utils.get_metrics(metrics_all) lr = metrics_all.pop('learning_rate').mean() metrics_sums = jax.tree_map(jnp.sum, metrics_all) denominator = metrics_sums.pop('denominator') summary = jax.tree_map( lambda x: x / denominator, # pylint: disable=cell-var-from-loop metrics_sums) summary['learning_rate'] = lr # Calculate (clipped) perplexity after averaging log-perplexities: summary['perplexity'] = jnp.clip(jnp.exp(summary['loss']), a_max=1.0e4) if jax.host_id() == 0: logging.info('Train in step: %d, loss: %.4f', step, summary['loss']) tock = time.time() steps_per_sec = FLAGS.log_freq / (tock - tick) tick = tock summary_writer.scalar('train/steps per second', steps_per_sec, step) for key, val in summary.items(): summary_writer.scalar('train/' + key, val, step) summary_writer.flush() # Reset metric accumulation for next evaluation cycle. metrics_all = [] # Evaluation Metrics if (step and step % FLAGS.eval_freq == 0) or is_last_step: logging.info('Gathering evaluation metrics.') t_evaluation_start = time.time() eval_metrics = [] for batches in eval_ds.as_numpy_iterator(): inputs, outputs, programs = common_utils.shard(batches) metrics = p_eval_step(optimizer.target, inputs, outputs, programs) eval_metrics.append(metrics) eval_metrics = common_utils.get_metrics(eval_metrics) eval_metrics_sums = jax.tree_map(jnp.sum, eval_metrics) eval_denominator = eval_metrics_sums.pop('denominator') eval_summary = jax.tree_map( lambda x: x / eval_denominator, # pylint: disable=cell-var-from-loop eval_metrics_sums) if jax.host_id() == 0: logging.info('Evaluation time: %.4f s step %d, loss: %.4f.', time.time()-t_evaluation_start, step, eval_summary['loss']) for key, val in eval_summary.items(): summary_writer.scalar('eval/' + key, val, step) summary_writer.flush() # Beam search metrics. if (step and step % FLAGS.predict_freq == 0) or is_last_step: logging.info('Gathering beam search metrics.') for beam_size in [1, 5, 10, 20, 50]: t_inference_start = time.time() pred_acc = 0 pred_denominator = 0 ios, targets, predictions, top_of_beams = [], [], [], [] for batches in predict_ds.as_numpy_iterator(): pred_batch = batches # Handle final odd-sized batch by padding instead of dropping it. cur_pred_batch_size = pred_batch[0].shape[0] if cur_pred_batch_size % n_devices: padded_size = int( np.ceil(cur_pred_batch_size / n_devices) * n_devices) # pylint: disable=cell-var-from-loop pred_batch = jax.tree_map( lambda x: pad_examples(x, padded_size), pred_batch) inputs, outputs, programs = common_utils.shard(pred_batch) cache = (p_init_cache(inputs, outputs, programs) if not FLAGS.slow_decode else None) predicted = p_pred_step(optimizer.target, inputs, outputs, cache, beam_size) predicted = tohost(predicted) inputs, outputs, programs = map(tohost, (inputs, outputs, programs)) pred_denominator += programs.shape[0] for i, beams in enumerate(predicted): inps, outs = decode_io(inputs[i], outputs[i]) p, p_score = eval_predicted( beams, inps, outs, parse_beam_fn=decode_program) if p_score >= len(inps): pred_acc += 1 ios.append(' ; '.join(map(str, zip(inps, outs)))) targets.append(decode_program(programs[i]).to_string()) try: predictions.append(p.to_string()) except: # pylint: disable=bare-except predictions.append('Did not compile') logging.info('ios: %s', ios[-1]) logging.info('target: %s', targets[-1]) beams_log = [] for beam in beams: try: beams_log.append(decode_program(beam).to_string()) except: # pylint: disable=bare-except beams_log.append('Did not compile') logging.info('predicted beam: %s', '\n'.join(beams_log)) top_of_beam = [] for index, beam in enumerate(beams[:-5:-1]): try: decoded_program = decode_program(beam).to_string() except: # pylint: disable=bare-except decoded_program = 'Did not compile' top_of_beam.append('index: {}, decoded: {}, tokens: {}'.format( index, decoded_program, beam)) top_of_beams.append('\n\n'.join(top_of_beam)) all_pred_acc, all_pred_denominator = per_host_sum_pmap( jax.tree_map(np.array, (pred_acc, pred_denominator))) # Record beam search results as text summaries. message = [] for n in np.random.choice(np.arange(len(predictions)), 8): text = (f'ios: {ios[n]}\n\ntarget: {targets[n]}\n\n' f'predicted: {predictions[n]}\n\n' f'top of beam:\n\n{top_of_beams[n]}\n\n') message.append(text) # Write to tensorboard. if jax.host_id() == 0: slow_or_fast = 'slow' if FLAGS.slow_decode else 'fast' logging.info( 'Prediction time, %s (beam %d): %.4f s, step %d, score %.4f', slow_or_fast, beam_size, time.time() - t_inference_start, step, all_pred_acc / all_pred_denominator) summary_writer.scalar( 'predict-{}/score-{}'.format(slow_or_fast, beam_size), all_pred_acc / all_pred_denominator, step) summary_writer.text('samples-{}'.format(beam_size), '\n------\n'.join(message), step) summary_writer.flush() if __name__ == '__main__': app.run(main)
[ "flax.training.common_utils.shard", "flax.optim.Adam", "tensorflow.compat.v2.random.set_seed", "latent_programmer.tasks.robust_fill.tokens.build_token_tables", "absl.logging.info", "jax.tree_map", "latent_programmer.decode.beam_search", "flax.training.common_utils.onehot", "jax.jit", "sys.path.append", "absl.flags.DEFINE_float", "jax.random.split", "jax.random.PRNGKey", "absl.flags.DEFINE_boolean", "absl.app.run", "jax.numpy.asarray", "flax.jax_utils.replicate", "flax.jax_utils.unreplicate", "numpy.random.seed", "jax.value_and_grad", "numpy.tile", "numpy.ceil", "json.loads", "jax.lax.psum", "jax.numpy.where", "jax.numpy.cos", "jax.local_device_count", "jax.devices", "jax.numpy.broadcast_to", "latent_programmer.decomposition_transformer_attention.decomposition_models.DecomposeAttentionTransformer", "numpy.argmax", "jax.lax.pmean", "jax.numpy.ones", "flax.training.common_utils.get_metrics", "absl.flags.DEFINE_string", "time.time", "jax.host_id", "tensorflow.compat.v2.enable_v2_behavior", "latent_programmer.decomposition_transformer_attention.input_pipeline.create_dataset_from_tf_record", "latent_programmer.decomposition_transformer_attention.decomposition_models.DecomposeAttentionTransformerConfig", "jax.numpy.minimum", "jax.numpy.logical_and", "absl.flags.DEFINE_bool", "absl.flags.DEFINE_integer", "jax.numpy.sqrt", "os.path.join", "jax.numpy.exp", "random.seed", "jax.numpy.maximum", "collections.defaultdict", "latent_programmer.decode.flat_batch_beam_expand", "functools.partial", "flax.linen.log_softmax", "jax.numpy.argmax" ]
[((1590, 1615), 'sys.path.append', 'sys.path.append', (['"""../../"""'], {}), "('../../')\n", (1605, 1615), False, 'import sys\n'), ((1658, 1724), 'absl.flags.DEFINE_integer', 'flags.DEFINE_integer', (['"""seed"""', '(0)', '"""Fixed random seed for training."""'], {}), "('seed', 0, 'Fixed random seed for training.')\n", (1678, 1724), False, 'from absl import flags\n'), ((1725, 1774), 'absl.flags.DEFINE_float', 'flags.DEFINE_float', (['"""lr"""', '(0.001)', '"""Learning rate."""'], {}), "('lr', 0.001, 'Learning rate.')\n", (1743, 1774), False, 'from absl import flags\n'), ((1774, 1863), 'absl.flags.DEFINE_float', 'flags.DEFINE_float', (['"""weight_decay"""', '(0.1)', '"""Decay factor for AdamW-style weight decay."""'], {}), "('weight_decay', 0.1,\n 'Decay factor for AdamW-style weight decay.')\n", (1792, 1863), False, 'from absl import flags\n'), ((1880, 1946), 'absl.flags.DEFINE_integer', 'flags.DEFINE_integer', (['"""embedding_dim"""', '(256)', '"""Embedding dimension."""'], {}), "('embedding_dim', 256, 'Embedding dimension.')\n", (1900, 1946), False, 'from absl import flags\n'), ((1947, 2007), 'absl.flags.DEFINE_integer', 'flags.DEFINE_integer', (['"""hidden_dim"""', '(512)', '"""Hidden dimension."""'], {}), "('hidden_dim', 512, 'Hidden dimension.')\n", (1967, 2007), False, 'from absl import flags\n'), ((2008, 2065), 'absl.flags.DEFINE_integer', 'flags.DEFINE_integer', (['"""num_heads"""', '(4)', '"""Number of layers."""'], {}), "('num_heads', 4, 'Number of layers.')\n", (2028, 2065), False, 'from absl import flags\n'), ((2066, 2135), 'absl.flags.DEFINE_integer', 'flags.DEFINE_integer', (['"""num_layers"""', '(3)', '"""Number of Transformer heads."""'], {}), "('num_layers', 3, 'Number of Transformer heads.')\n", (2086, 2135), False, 'from absl import flags\n'), ((2136, 2214), 'absl.flags.DEFINE_boolean', 'flags.DEFINE_boolean', (['"""slow_decode"""', '(True)', '"""Use slow decoding for prediction?"""'], {}), "('slow_decode', True, 'Use slow decoding for prediction?')\n", (2156, 2214), False, 'from absl import flags\n'), ((2216, 2305), 'absl.flags.DEFINE_string', 'flags.DEFINE_string', (['"""dataset_filepattern"""', 'None', '"""Filepattern for TFRecord dataset."""'], {}), "('dataset_filepattern', None,\n 'Filepattern for TFRecord dataset.')\n", (2235, 2305), False, 'from absl import flags\n'), ((2322, 2414), 'absl.flags.DEFINE_integer', 'flags.DEFINE_integer', (['"""per_device_batch_size"""', '(16)', '"""Number of program tasks in a batch."""'], {}), "('per_device_batch_size', 16,\n 'Number of program tasks in a batch.')\n", (2342, 2414), False, 'from absl import flags\n'), ((2432, 2527), 'absl.flags.DEFINE_integer', 'flags.DEFINE_integer', (['"""num_strings_per_task"""', '(4)', '"""Number of input/output strings per task."""'], {}), "('num_strings_per_task', 4,\n 'Number of input/output strings per task.')\n", (2452, 2527), False, 'from absl import flags\n'), ((2545, 2636), 'absl.flags.DEFINE_integer', 'flags.DEFINE_integer', (['"""max_program_length"""', '(100)', '"""Maximum number of tokens in program."""'], {}), "('max_program_length', 100,\n 'Maximum number of tokens in program.')\n", (2565, 2636), False, 'from absl import flags\n'), ((2654, 2758), 'absl.flags.DEFINE_integer', 'flags.DEFINE_integer', (['"""max_characters"""', '(120)', '"""Maximum number of characters in input/output strings."""'], {}), "('max_characters', 120,\n 'Maximum number of characters in input/output strings.')\n", (2674, 2758), False, 'from absl import flags\n'), ((2777, 2847), 'absl.flags.DEFINE_string', 'flags.DEFINE_string', (['"""save_dir"""', 'None', '"""Directory to save results to."""'], {}), "('save_dir', None, 'Directory to save results to.')\n", (2796, 2847), False, 'from absl import flags\n'), ((2848, 2925), 'absl.flags.DEFINE_integer', 'flags.DEFINE_integer', (['"""num_train_steps"""', '(2000000)', '"""Number of training steps."""'], {}), "('num_train_steps', 2000000, 'Number of training steps.')\n", (2868, 2925), False, 'from absl import flags\n'), ((2926, 2999), 'absl.flags.DEFINE_integer', 'flags.DEFINE_integer', (['"""num_eval_steps"""', '(10)', '"""Number of evaluation steps."""'], {}), "('num_eval_steps', 10, 'Number of evaluation steps.')\n", (2946, 2999), False, 'from absl import flags\n'), ((3000, 3085), 'absl.flags.DEFINE_integer', 'flags.DEFINE_integer', (['"""log_freq"""', '(1000)', '"""Number of steps between training logs."""'], {}), "('log_freq', 1000, 'Number of steps between training logs.'\n )\n", (3020, 3085), False, 'from absl import flags\n'), ((3081, 3153), 'absl.flags.DEFINE_integer', 'flags.DEFINE_integer', (['"""eval_freq"""', '(2000)', '"""Number of steps between eval."""'], {}), "('eval_freq', 2000, 'Number of steps between eval.')\n", (3101, 3153), False, 'from absl import flags\n'), ((3154, 3254), 'absl.flags.DEFINE_integer', 'flags.DEFINE_integer', (['"""predict_freq"""', '(50000)', '"""Number of steps between prediction (beam search)."""'], {}), "('predict_freq', 50000,\n 'Number of steps between prediction (beam search).')\n", (3174, 3254), False, 'from absl import flags\n'), ((3272, 3367), 'absl.flags.DEFINE_integer', 'flags.DEFINE_integer', (['"""checkpoint_freq"""', '(50000)', '"""Number of steps between checkpoint saves."""'], {}), "('checkpoint_freq', 50000,\n 'Number of steps between checkpoint saves.')\n", (3292, 3367), False, 'from absl import flags\n'), ((3385, 3529), 'absl.flags.DEFINE_integer', 'flags.DEFINE_integer', (['"""finetune_start_step"""', '(-1)', '"""Step the initial checkpoint should start at for finetuning, or -1 if not finetuning."""'], {}), "('finetune_start_step', -1,\n 'Step the initial checkpoint should start at for finetuning, or -1 if not finetuning.'\n )\n", (3405, 3529), False, 'from absl import flags\n'), ((3566, 3671), 'absl.flags.DEFINE_bool', 'flags.DEFINE_bool', (['"""restore_checkpoints"""', '(True)', '"""Whether to restore from existing model checkpoints."""'], {}), "('restore_checkpoints', True,\n 'Whether to restore from existing model checkpoints.')\n", (3583, 3671), False, 'from absl import flags\n'), ((3687, 3852), 'absl.flags.DEFINE_string', 'flags.DEFINE_string', (['"""attention_mask_type"""', '"""bos_full_attention"""', '"""The kind of attention mask to use. Options are: baseline, bos_to_bos, bos_full_attention"""'], {}), "('attention_mask_type', 'bos_full_attention',\n 'The kind of attention mask to use. Options are: baseline, bos_to_bos, bos_full_attention'\n )\n", (3706, 3852), False, 'from absl import flags\n'), ((3888, 3990), 'absl.flags.DEFINE_bool', 'flags.DEFINE_bool', (['"""use_relative_attention"""', '(True)', '"""Whether to use relative positonal embeddings."""'], {}), "('use_relative_attention', True,\n 'Whether to use relative positonal embeddings.')\n", (3905, 3990), False, 'from absl import flags\n'), ((4005, 4131), 'absl.flags.DEFINE_bool', 'flags.DEFINE_bool', (['"""bos_special_attention"""', '(False)', '"""Whether to use special relative attention computation for BOS tokens."""'], {}), "('bos_special_attention', False,\n 'Whether to use special relative attention computation for BOS tokens.')\n", (4022, 4131), False, 'from absl import flags\n'), ((4207, 4296), 'absl.flags.DEFINE_string', 'flags.DEFINE_string', (['"""xm_parameters"""', 'None', '"""String specifying hyperparamter search."""'], {}), "('xm_parameters', None,\n 'String specifying hyperparamter search.')\n", (4226, 4296), False, 'from absl import flags\n'), ((7127, 7173), 'flax.training.common_utils.onehot', 'common_utils.onehot', (['targets', 'logits.shape[-1]'], {}), '(targets, logits.shape[-1])\n', (7146, 7173), False, 'from flax.training import common_utils\n'), ((8564, 8594), 'jax.lax.psum', 'jax.lax.psum', (['metrics', '"""batch"""'], {}), "(metrics, 'batch')\n", (8576, 8594), False, 'import jax\n'), ((9159, 9188), 'jax.random.split', 'jax.random.split', (['dropout_rng'], {}), '(dropout_rng)\n', (9175, 9188), False, 'import jax\n'), ((9719, 9760), 'jax.value_and_grad', 'jax.value_and_grad', (['loss_fn'], {'has_aux': '(True)'}), '(loss_fn, has_aux=True)\n', (9737, 9760), False, 'import jax\n'), ((9818, 9846), 'jax.lax.pmean', 'jax.lax.pmean', (['grad', '"""batch"""'], {}), "(grad, 'batch')\n", (9831, 9846), False, 'import jax\n'), ((12015, 12077), 'latent_programmer.decode.flat_batch_beam_expand', 'decode.flat_batch_beam_expand', (['encoded_padding_mask', 'beam_size'], {}), '(encoded_padding_mask, beam_size)\n', (12044, 12077), False, 'from latent_programmer import decode\n'), ((13395, 13607), 'latent_programmer.decode.beam_search', 'decode.beam_search', (['inputs', 'cache', 'tokens_ids_to_logits'], {'beam_size': 'beam_size', 'alpha': '(0.6)', 'bos_token': 'config.base_config.bos_token', 'eos_token': 'eos_token', 'max_decode_len': 'max_decode_len', 'slow_decode': 'slow_decode'}), '(inputs, cache, tokens_ids_to_logits, beam_size=beam_size,\n alpha=0.6, bos_token=config.base_config.bos_token, eos_token=eos_token,\n max_decode_len=max_decode_len, slow_decode=slow_decode)\n', (13413, 13607), False, 'from latent_programmer import decode\n'), ((14514, 14543), 'collections.defaultdict', 'collections.defaultdict', (['list'], {}), '(list)\n', (14537, 14543), False, 'import collections\n'), ((14555, 14568), 'jax.devices', 'jax.devices', ([], {}), '()\n', (14566, 14568), False, 'import jax\n'), ((15633, 15656), 'tensorflow.compat.v2.enable_v2_behavior', 'tf.enable_v2_behavior', ([], {}), '()\n', (15654, 15656), True, 'import tensorflow.compat.v2 as tf\n'), ((15660, 15690), 'tensorflow.compat.v2.random.set_seed', 'tf.random.set_seed', (['FLAGS.seed'], {}), '(FLAGS.seed)\n', (15678, 15690), True, 'import tensorflow.compat.v2 as tf\n'), ((15693, 15719), 'numpy.random.seed', 'np.random.seed', (['FLAGS.seed'], {}), '(FLAGS.seed)\n', (15707, 15719), True, 'import numpy as np\n'), ((15722, 15745), 'random.seed', 'random.seed', (['FLAGS.seed'], {}), '(FLAGS.seed)\n', (15733, 15745), False, 'import random\n'), ((16766, 16790), 'jax.local_device_count', 'jax.local_device_count', ([], {}), '()\n', (16788, 16790), False, 'import jax\n'), ((17466, 17497), 'latent_programmer.tasks.robust_fill.tokens.build_token_tables', 'dsl_tokens.build_token_tables', ([], {}), '()\n', (17495, 17497), True, 'from latent_programmer.tasks.robust_fill import tokens as dsl_tokens\n'), ((18542, 18579), 'absl.logging.info', 'logging.info', (['"""Initializing dataset."""'], {}), "('Initializing dataset.')\n", (18554, 18579), False, 'from absl import logging\n'), ((18702, 18768), 'absl.logging.info', 'logging.info', (['"""Loading dataset from %s"""', 'FLAGS.dataset_filepattern'], {}), "('Loading dataset from %s', FLAGS.dataset_filepattern)\n", (18714, 18768), False, 'from absl import logging\n'), ((18837, 18885), 'absl.logging.info', 'logging.info', (['"""padded_shapes: %s"""', 'padded_shapes'], {}), "('padded_shapes: %s', padded_shapes)\n", (18849, 18885), False, 'from absl import logging\n'), ((18898, 19004), 'latent_programmer.decomposition_transformer_attention.input_pipeline.create_dataset_from_tf_record', 'input_pipeline.create_dataset_from_tf_record', (['FLAGS.dataset_filepattern', 'token_id_table', 'char_id_table'], {}), '(FLAGS.dataset_filepattern,\n token_id_table, char_id_table)\n', (18942, 19004), False, 'from latent_programmer.decomposition_transformer_attention import input_pipeline\n'), ((20156, 20330), 'latent_programmer.decomposition_transformer_attention.decomposition_models.DecomposeAttentionTransformerConfig', 'models.DecomposeAttentionTransformerConfig', ([], {'base_config': 'base_config', 'attention_mask_type': 'FLAGS.attention_mask_type', 'bos_special_attention': 'FLAGS.bos_special_attention'}), '(base_config=base_config,\n attention_mask_type=FLAGS.attention_mask_type, bos_special_attention=\n FLAGS.bos_special_attention)\n', (20198, 20330), True, 'from latent_programmer.decomposition_transformer_attention import decomposition_models as models\n'), ((20897, 20927), 'jax.random.PRNGKey', 'jax.random.PRNGKey', (['FLAGS.seed'], {}), '(FLAGS.seed)\n', (20915, 20927), False, 'import jax\n'), ((20993, 21014), 'jax.random.split', 'jax.random.split', (['rng'], {}), '(rng)\n', (21009, 21014), False, 'import jax\n'), ((21022, 21071), 'latent_programmer.decomposition_transformer_attention.decomposition_models.DecomposeAttentionTransformer', 'models.DecomposeAttentionTransformer', (['eval_config'], {}), '(eval_config)\n', (21058, 21071), True, 'from latent_programmer.decomposition_transformer_attention import decomposition_models as models\n'), ((21301, 21393), 'flax.optim.Adam', 'optim.Adam', (['FLAGS.lr'], {'beta1': '(0.9)', 'beta2': '(0.98)', 'eps': '(1e-09)', 'weight_decay': 'FLAGS.weight_decay'}), '(FLAGS.lr, beta1=0.9, beta2=0.98, eps=1e-09, weight_decay=FLAGS.\n weight_decay)\n', (21311, 21393), False, 'from flax import optim\n'), ((22201, 22231), 'flax.jax_utils.replicate', 'jax_utils.replicate', (['optimizer'], {}), '(optimizer)\n', (22220, 22231), False, 'from flax import jax_utils\n'), ((23679, 23690), 'time.time', 'time.time', ([], {}), '()\n', (23688, 23690), False, 'import time\n'), ((30635, 30648), 'absl.app.run', 'app.run', (['main'], {}), '(main)\n', (30642, 30648), False, 'from absl import app\n'), ((6479, 6514), 'jax.numpy.asarray', 'jnp.asarray', (['ret'], {'dtype': 'jnp.float32'}), '(ret, dtype=jnp.float32)\n', (6490, 6514), True, 'import jax.numpy as jnp\n'), ((7274, 7300), 'jax.numpy.asarray', 'jnp.asarray', (['targets.shape'], {}), '(targets.shape)\n', (7285, 7300), True, 'import jax.numpy as jnp\n'), ((8008, 8035), 'jax.numpy.argmax', 'jnp.argmax', (['logits'], {'axis': '(-1)'}), '(logits, axis=-1)\n', (8018, 8035), True, 'import jax.numpy as jnp\n'), ((8078, 8104), 'jax.numpy.asarray', 'jnp.asarray', (['targets.shape'], {}), '(targets.shape)\n', (8089, 8104), True, 'import jax.numpy as jnp\n'), ((10914, 10935), 'jax.random.PRNGKey', 'jax.random.PRNGKey', (['(0)'], {}), '(0)\n', (10932, 10935), False, 'import jax\n'), ((10943, 10972), 'jax.numpy.ones', 'jnp.ones', (['inputs.shape', 'dtype'], {}), '(inputs.shape, dtype)\n', (10951, 10972), True, 'import jax.numpy as jnp\n'), ((10980, 11010), 'jax.numpy.ones', 'jnp.ones', (['outputs.shape', 'dtype'], {}), '(outputs.shape, dtype)\n', (10988, 11010), True, 'import jax.numpy as jnp\n'), ((11018, 11047), 'jax.numpy.ones', 'jnp.ones', (['target_shape', 'dtype'], {}), '(target_shape, dtype)\n', (11026, 11047), True, 'import jax.numpy as jnp\n'), ((14867, 14899), 'jax.tree_map', 'jax.tree_map', (['(lambda x: x[0])', 'xs'], {}), '(lambda x: x[0], xs)\n', (14879, 14899), False, 'import jax\n'), ((16797, 16810), 'jax.host_id', 'jax.host_id', ([], {}), '()\n', (16808, 16810), False, 'import jax\n'), ((20960, 20973), 'jax.host_id', 'jax.host_id', ([], {}), '()\n', (20971, 20973), False, 'import jax\n'), ((21094, 21109), 'jax.jit', 'jax.jit', (['m.init'], {}), '(m.init)\n', (21101, 21109), False, 'import jax\n'), ((21166, 21197), 'jax.numpy.ones', 'jnp.ones', (['io_shape', 'jnp.float32'], {}), '(io_shape, jnp.float32)\n', (21174, 21197), True, 'import jax.numpy as jnp\n'), ((21205, 21236), 'jax.numpy.ones', 'jnp.ones', (['io_shape', 'jnp.float32'], {}), '(io_shape, jnp.float32)\n', (21213, 21236), True, 'import jax.numpy as jnp\n'), ((21244, 21280), 'jax.numpy.ones', 'jnp.ones', (['program_shape', 'jnp.float32'], {}), '(program_shape, jnp.float32)\n', (21252, 21280), True, 'import jax.numpy as jnp\n'), ((21867, 21931), 'absl.logging.info', 'logging.info', (['"""Found model checkpointed at step %d."""', 'start_step'], {}), "('Found model checkpointed at step %d.', start_step)\n", (21879, 21931), False, 'from absl import logging\n'), ((22670, 22760), 'functools.partial', 'functools.partial', (['train_step'], {'learning_rate_fn': 'learning_rate_fn', 'config': 'train_config'}), '(train_step, learning_rate_fn=learning_rate_fn, config=\n train_config)\n', (22687, 22760), False, 'import functools\n'), ((22845, 22914), 'functools.partial', 'functools.partial', (['eval_step'], {'eos_token': 'eos_token', 'config': 'eval_config'}), '(eval_step, eos_token=eos_token, config=eval_config)\n', (22862, 22914), False, 'import functools\n'), ((23022, 23125), 'functools.partial', 'functools.partial', (['initialize_cache'], {'max_decode_len': 'FLAGS.max_program_length', 'config': 'predict_config'}), '(initialize_cache, max_decode_len=FLAGS.max_program_length,\n config=predict_config)\n', (23039, 23125), False, 'import functools\n'), ((23211, 23363), 'functools.partial', 'functools.partial', (['predict_step'], {'eos_token': 'eos_token', 'max_decode_len': 'FLAGS.max_program_length', 'config': 'predict_config', 'slow_decode': 'FLAGS.slow_decode'}), '(predict_step, eos_token=eos_token, max_decode_len=FLAGS.\n max_program_length, config=predict_config, slow_decode=FLAGS.slow_decode)\n', (23228, 23363), False, 'import functools\n'), ((23614, 23638), 'jax.local_device_count', 'jax.local_device_count', ([], {}), '()\n', (23636, 23638), False, 'import jax\n'), ((9202, 9231), 'jax.numpy.where', 'jnp.where', (['(programs > 0)', '(1)', '(0)'], {}), '(programs > 0, 1, 0)\n', (9211, 9231), True, 'import jax.numpy as jnp\n'), ((10440, 10484), 'latent_programmer.decomposition_transformer_attention.decomposition_models.DecomposeAttentionTransformer', 'models.DecomposeAttentionTransformer', (['config'], {}), '(config)\n', (10476, 10484), True, 'from latent_programmer.decomposition_transformer_attention import decomposition_models as models\n'), ((10857, 10901), 'latent_programmer.decomposition_transformer_attention.decomposition_models.DecomposeAttentionTransformer', 'models.DecomposeAttentionTransformer', (['config'], {}), '(config)\n', (10893, 10901), True, 'from latent_programmer.decomposition_transformer_attention import decomposition_models as models\n'), ((11936, 11964), 'jax.numpy.where', 'jnp.where', (['(outputs > 0)', '(1)', '(0)'], {}), '(outputs > 0, 1, 0)\n', (11945, 11964), True, 'import jax.numpy as jnp\n'), ((14151, 14176), 'numpy.tile', 'np.tile', (['x[-1]', 'tile_dims'], {}), '(x[-1], tile_dims)\n', (14158, 14176), True, 'import numpy as np\n'), ((14696, 14716), 'jax.lax.psum', 'jax.lax.psum', (['x', '"""i"""'], {}), "(x, 'i')\n", (14708, 14716), False, 'import jax\n'), ((16873, 16919), 'os.path.join', 'os.path.join', (['FLAGS.save_dir', '"""tb"""', 'hparam_str'], {}), "(FLAGS.save_dir, 'tb', hparam_str)\n", (16885, 16919), False, 'import os\n'), ((19322, 19346), 'numpy.ceil', 'np.ceil', (['(batch_size / 10)'], {}), '(batch_size / 10)\n', (19329, 19346), True, 'import numpy as np\n'), ((21730, 21785), 'os.path.join', 'os.path.join', (['FLAGS.save_dir', '"""checkpoints"""', 'hparam_str'], {}), "(FLAGS.save_dir, 'checkpoints', hparam_str)\n", (21742, 21785), False, 'import os\n'), ((21976, 22092), 'absl.logging.info', 'logging.info', (['"""Checking that start_step (%s) == finetune_start_step (%s)"""', 'start_step', 'FLAGS.finetune_start_step'], {}), "('Checking that start_step (%s) == finetune_start_step (%s)',\n start_step, FLAGS.finetune_start_step)\n", (21988, 22092), False, 'from absl import logging\n'), ((24500, 24543), 'absl.logging.info', 'logging.info', (['"""Gathering training metrics."""'], {}), "('Gathering training metrics.')\n", (24512, 24543), False, 'from absl import logging\n'), ((24564, 24601), 'flax.training.common_utils.get_metrics', 'common_utils.get_metrics', (['metrics_all'], {}), '(metrics_all)\n', (24588, 24601), False, 'from flax.training import common_utils\n'), ((24674, 24708), 'jax.tree_map', 'jax.tree_map', (['jnp.sum', 'metrics_all'], {}), '(jnp.sum, metrics_all)\n', (24686, 24708), False, 'import jax\n'), ((24777, 24830), 'jax.tree_map', 'jax.tree_map', (['(lambda x: x / denominator)', 'metrics_sums'], {}), '(lambda x: x / denominator, metrics_sums)\n', (24789, 24830), False, 'import jax\n'), ((25673, 25718), 'absl.logging.info', 'logging.info', (['"""Gathering evaluation metrics."""'], {}), "('Gathering evaluation metrics.')\n", (25685, 25718), False, 'from absl import logging\n'), ((25746, 25757), 'time.time', 'time.time', ([], {}), '()\n', (25755, 25757), False, 'import time\n'), ((26031, 26069), 'flax.training.common_utils.get_metrics', 'common_utils.get_metrics', (['eval_metrics'], {}), '(eval_metrics)\n', (26055, 26069), False, 'from flax.training import common_utils\n'), ((26096, 26131), 'jax.tree_map', 'jax.tree_map', (['jnp.sum', 'eval_metrics'], {}), '(jnp.sum, eval_metrics)\n', (26108, 26131), False, 'import jax\n'), ((26215, 26278), 'jax.tree_map', 'jax.tree_map', (['(lambda x: x / eval_denominator)', 'eval_metrics_sums'], {}), '(lambda x: x / eval_denominator, eval_metrics_sums)\n', (26227, 26278), False, 'import jax\n'), ((26753, 26799), 'absl.logging.info', 'logging.info', (['"""Gathering beam search metrics."""'], {}), "('Gathering beam search metrics.')\n", (26765, 26799), False, 'from absl import logging\n'), ((7209, 7231), 'flax.linen.log_softmax', 'nn.log_softmax', (['logits'], {}), '(logits)\n', (7223, 7231), True, 'from flax import linen as nn\n'), ((9332, 9376), 'latent_programmer.decomposition_transformer_attention.decomposition_models.DecomposeAttentionTransformer', 'models.DecomposeAttentionTransformer', (['config'], {}), '(config)\n', (9368, 9376), True, 'from latent_programmer.decomposition_transformer_attention import decomposition_models as models\n'), ((11711, 11755), 'latent_programmer.decomposition_transformer_attention.decomposition_models.DecomposeAttentionTransformer', 'models.DecomposeAttentionTransformer', (['config'], {}), '(config)\n', (11747, 11755), True, 'from latent_programmer.decomposition_transformer_attention import decomposition_models as models\n'), ((14794, 14829), 'jax.numpy.broadcast_to', 'jnp.broadcast_to', (['x', '((1,) + x.shape)'], {}), '(x, (1,) + x.shape)\n', (14810, 14829), True, 'import jax.numpy as jnp\n'), ((16452, 16483), 'json.loads', 'json.loads', (['FLAGS.xm_parameters'], {}), '(FLAGS.xm_parameters)\n', (16462, 16483), False, 'import json\n'), ((24132, 24145), 'jax.host_id', 'jax.host_id', ([], {}), '()\n', (24143, 24145), False, 'import jax\n'), ((25038, 25062), 'jax.numpy.exp', 'jnp.exp', (["summary['loss']"], {}), "(summary['loss'])\n", (25045, 25062), True, 'import jax.numpy as jnp\n'), ((25087, 25100), 'jax.host_id', 'jax.host_id', ([], {}), '()\n', (25098, 25100), False, 'import jax\n'), ((25115, 25183), 'absl.logging.info', 'logging.info', (['"""Train in step: %d, loss: %.4f"""', 'step', "summary['loss']"], {}), "('Train in step: %d, loss: %.4f', step, summary['loss'])\n", (25127, 25183), False, 'from absl import logging\n'), ((25199, 25210), 'time.time', 'time.time', ([], {}), '()\n', (25208, 25210), False, 'import time\n'), ((25868, 25895), 'flax.training.common_utils.shard', 'common_utils.shard', (['batches'], {}), '(batches)\n', (25886, 25895), False, 'from flax.training import common_utils\n'), ((26348, 26361), 'jax.host_id', 'jax.host_id', ([], {}), '()\n', (26359, 26361), False, 'import jax\n'), ((26871, 26882), 'time.time', 'time.time', ([], {}), '()\n', (26880, 26882), False, 'import time\n'), ((5777, 5814), 'jax.numpy.minimum', 'jnp.minimum', (['(1.0)', '(step / warmup_steps)'], {}), '(1.0, step / warmup_steps)\n', (5788, 5814), True, 'import jax.numpy as jnp\n'), ((10276, 10361), 'jax.numpy.logical_and', 'jnp.logical_and', (['(programs != config.base_config.bos_token)', '(programs != eos_token)'], {}), '(programs != config.base_config.bos_token, programs != eos_token\n )\n', (10291, 10361), True, 'import jax.numpy as jnp\n'), ((12255, 12306), 'latent_programmer.decomposition_transformer_attention.decomposition_models.DecomposeAttentionTransformer', 'models.DecomposeAttentionTransformer', ([], {'config': 'config'}), '(config=config)\n', (12291, 12306), True, 'from latent_programmer.decomposition_transformer_attention import decomposition_models as models\n'), ((12693, 12744), 'latent_programmer.decomposition_transformer_attention.decomposition_models.DecomposeAttentionTransformer', 'models.DecomposeAttentionTransformer', ([], {'config': 'config'}), '(config=config)\n', (12729, 12744), True, 'from latent_programmer.decomposition_transformer_attention import decomposition_models as models\n'), ((24254, 24309), 'os.path.join', 'os.path.join', (['FLAGS.save_dir', '"""checkpoints"""', 'hparam_str'], {}), "(FLAGS.save_dir, 'checkpoints', hparam_str)\n", (24266, 24309), False, 'import os\n'), ((24323, 24355), 'flax.jax_utils.unreplicate', 'jax_utils.unreplicate', (['optimizer'], {}), '(optimizer)\n', (24344, 24355), False, 'from flax import jax_utils\n'), ((27557, 27587), 'flax.training.common_utils.shard', 'common_utils.shard', (['pred_batch'], {}), '(pred_batch)\n', (27575, 27587), False, 'from flax.training import common_utils\n'), ((29522, 29574), 'jax.tree_map', 'jax.tree_map', (['np.array', '(pred_acc, pred_denominator)'], {}), '(np.array, (pred_acc, pred_denominator))\n', (29534, 29574), False, 'import jax\n'), ((29972, 29985), 'jax.host_id', 'jax.host_id', ([], {}), '()\n', (29983, 29985), False, 'import jax\n'), ((26458, 26469), 'time.time', 'time.time', ([], {}), '()\n', (26467, 26469), False, 'import time\n'), ((28579, 28611), 'absl.logging.info', 'logging.info', (['"""ios: %s"""', 'ios[-1]'], {}), "('ios: %s', ios[-1])\n", (28591, 28611), False, 'from absl import logging\n'), ((28624, 28663), 'absl.logging.info', 'logging.info', (['"""target: %s"""', 'targets[-1]'], {}), "('target: %s', targets[-1])\n", (28636, 28663), False, 'from absl import logging\n'), ((5873, 5910), 'jax.numpy.maximum', 'jnp.maximum', (['(1.0)', '(step - warmup_steps)'], {}), '(1.0, step - warmup_steps)\n', (5884, 5910), True, 'import jax.numpy as jnp\n'), ((5972, 5994), 'jax.numpy.sqrt', 'jnp.sqrt', (['warmup_steps'], {}), '(warmup_steps)\n', (5980, 5994), True, 'import jax.numpy as jnp\n'), ((18178, 18209), 'numpy.argmax', 'np.argmax', (['(program == eos_token)'], {}), '(program == eos_token)\n', (18187, 18209), True, 'import numpy as np\n'), ((30196, 30207), 'time.time', 'time.time', ([], {}), '()\n', (30205, 30207), False, 'import time\n'), ((6019, 6050), 'jax.numpy.maximum', 'jnp.maximum', (['step', 'warmup_steps'], {}), '(step, warmup_steps)\n', (6030, 6050), True, 'import jax.numpy as jnp\n'), ((27309, 27349), 'numpy.ceil', 'np.ceil', (['(cur_pred_batch_size / n_devices)'], {}), '(cur_pred_batch_size / n_devices)\n', (27316, 27349), True, 'import numpy as np\n'), ((6365, 6399), 'jax.numpy.cos', 'jnp.cos', (['(jnp.pi * (progress % 1.0))'], {}), '(jnp.pi * (progress % 1.0))\n', (6372, 6399), True, 'import jax.numpy as jnp\n')]
import matplotlib.pyplot as plt import numpy as np import pandas as pd import click import numba def prepare_data(data_pd, parameter): lon_set = set(data_pd["lon"]) lat_set = set(data_pd["lat"]) dep_set = set(data_pd["dep"]) lon_list = sorted(lon_set) lat_list = sorted(lat_set) dep_list = sorted(dep_set) lon_mesh, lat_mesh, dep_mesh = np.meshgrid( lon_list, lat_list, dep_list, indexing="ij") dx, dy, dz = np.shape(lon_mesh) value_mesh = np.zeros_like(lon_mesh) x_mesh = np.zeros_like(lon_mesh) y_mesh = np.zeros_like(lon_mesh) z_mesh = np.zeros_like(lon_mesh) r_mesh = np.zeros_like(lon_mesh) for i in range(dx): for j in range(dy): for k in range(dz): x_mesh[i, j, k], y_mesh[i, j, k], z_mesh[i, j, k], r_mesh[i, j, k] = lld2xyzr( lat_mesh[i, j, k], lon_mesh[i, j, k], dep_mesh[i, j, k]) for index, row in data_pd.iterrows(): i = int(round((row.lon-lon_list[0])/(lon_list[1]-lon_list[0]), 0)) j = int(round((row.lat-lat_list[0])/(lat_list[1]-lat_list[0]), 0)) k = int(round((row.dep-dep_list[0])/(dep_list[1]-dep_list[0]), 0)) value_mesh[i, j, k] = row[parameter] return x_mesh, y_mesh, z_mesh, value_mesh def get_value(data_pd, lat, lon, dep, parameter): return data_pd.loc[(data_pd.lat == lat) & (data_pd.lon == lon) & (data_pd.dep == dep)][parameter].values[0] @numba.njit() def lld2xyzr(lat, lon, dep): R_EARTH_KM = 6371.0 r = (R_EARTH_KM-dep)/R_EARTH_KM theta = 90-lat phi = lon z = r*cosd(theta) h = r*sind(theta) x = h*cosd(phi) y = h*sind(phi) return (x, y, z, r) @numba.njit() def cosd(x): return np.cos(np.deg2rad(x)) @numba.njit() def sind(x): return np.sin(np.deg2rad(x)) # def get_value_func(x_mesh, y_mesh, z_mesh, value_mesh): # value_func = RegularGridInterpolator( # (x_mesh, y_mesh, z_mesh), value_mesh, method="nearest") # return value_func @numba.njit() def interp_value(lat, lon, dep, x_mesh, y_mesh, z_mesh, value_mesh): x, y, z, _ = lld2xyzr(lat, lon, dep) distance2 = (x_mesh-x)**2+(y_mesh-y)**2+(z_mesh-z)**2 mindistance2 = np.min(distance2) coors = np.where(distance2 == mindistance2) value = value_mesh[coors[0][0], coors[1][0], coors[2][0]] return value def generate_vertical_profile_grids(lon_list, lat_list, dep_list, hnpts, vnpts): lons = np.linspace(lon_list[0], lon_list[1], hnpts) lats = np.linspace(lat_list[0], lat_list[1], hnpts) deps = np.linspace(dep_list[0], dep_list[1], vnpts) return lons, lats, deps @click.command() @click.option('--lon1', required=True, type=float, help="lon1") @click.option('--lon2', required=True, type=float, help="lon2") @click.option('--lat1', required=True, type=float, help="lat1") @click.option('--lat2', required=True, type=float, help="lat2") @click.option('--dep1', required=True, type=float, help="dep1") @click.option('--dep2', required=True, type=float, help="dep2") @click.option('--data', required=True, type=str, help="the pickle file") @click.option('--parameter', required=True, type=str, help="physicial parameter to plot") @click.option('--hnpts', required=True, type=int, help="horizontal npts") @click.option('--vnpts', required=True, type=int, help="vertical npts") def main(lon1, lon2, lat1, lat2, dep1, dep2, data, parameter, hnpts, vnpts): lon_list = [lon1, lon2] lat_list = [lat1, lat2] dep_list = [dep1, dep2] data_pd_raw = pd.read_pickle(data) # data_pd is too big minlon = min(lon1, lon2) maxlon = max(lon1, lon2) minlat = min(lat1, lat2) maxlat = max(lat1, lat2) mindep = min(dep1, dep2) maxdep = max(dep1, dep2) data_pd = data_pd_raw.loc[(data_pd_raw.lat <= maxlat) & ( data_pd_raw.lat >= minlat) & (data_pd_raw.lon < maxlon) & (data_pd_raw.lon > minlon) & (data_pd_raw.dep >= mindep) & (data_pd_raw.dep <= maxdep)] x_mesh, y_mesh, z_mesh, value_mesh = prepare_data(data_pd, parameter) lons_plot, lats_plot, deps_plot = generate_vertical_profile_grids( lon_list, lat_list, dep_list, hnpts, vnpts) values = np.zeros((hnpts, vnpts)) for ih in range(hnpts): for iv in range(vnpts): values[ih, iv] = interp_value( lats_plot[ih], lons_plot[ih], deps_plot[iv], x_mesh, y_mesh, z_mesh, value_mesh) # print(lats_plot[ih], lons_plot[ih], deps_plot[iv], values[ih, iv]) # plotting part plt.figure() mesh_plot_lat, mesh_plot_dep = np.meshgrid( lats_plot, deps_plot, indexing="ij") # get vmin and vmax vmin_round = round(np.min(values), 2) if(vmin_round < np.min(values)): vmin = vmin_round else: vmin = vmin_round-0.01 vmax_round = round(np.max(values), 2) if(vmax_round > np.max(values)): vmax = vmax_round else: vmax = vmax_round+0.01 print(vmin, vmax, np.max(values), np.min(values), vmin_round, vmax_round) plt.contourf(mesh_plot_lat, mesh_plot_dep, values, 101, cmap=plt.cm.seismic_r) v = np.arange(vmin, vmax, 0.01) plt.colorbar(ticks=v, label="perturbation") plt.gca().invert_yaxis() plt.xlabel( f"latitude(°) between (lon: {lon1}°, lat: {lat1}°) and (lon: {lon2}°, lat: {lat2}°)") plt.ylabel("depth(km)") plt.show() if __name__ == "__main__": main()
[ "matplotlib.pyplot.ylabel", "numpy.arange", "pandas.read_pickle", "matplotlib.pyplot.contourf", "click.option", "numpy.where", "matplotlib.pyplot.xlabel", "numpy.max", "numpy.linspace", "numpy.min", "numpy.meshgrid", "click.command", "matplotlib.pyplot.gca", "numba.njit", "numpy.deg2rad", "numpy.shape", "matplotlib.pyplot.show", "matplotlib.pyplot.colorbar", "numpy.zeros", "matplotlib.pyplot.figure", "numpy.zeros_like" ]
[((1443, 1455), 'numba.njit', 'numba.njit', ([], {}), '()\n', (1453, 1455), False, 'import numba\n'), ((1691, 1703), 'numba.njit', 'numba.njit', ([], {}), '()\n', (1701, 1703), False, 'import numba\n'), ((1753, 1765), 'numba.njit', 'numba.njit', ([], {}), '()\n', (1763, 1765), False, 'import numba\n'), ((2009, 2021), 'numba.njit', 'numba.njit', ([], {}), '()\n', (2019, 2021), False, 'import numba\n'), ((2636, 2651), 'click.command', 'click.command', ([], {}), '()\n', (2649, 2651), False, 'import click\n'), ((2653, 2715), 'click.option', 'click.option', (['"""--lon1"""'], {'required': '(True)', 'type': 'float', 'help': '"""lon1"""'}), "('--lon1', required=True, type=float, help='lon1')\n", (2665, 2715), False, 'import click\n'), ((2717, 2779), 'click.option', 'click.option', (['"""--lon2"""'], {'required': '(True)', 'type': 'float', 'help': '"""lon2"""'}), "('--lon2', required=True, type=float, help='lon2')\n", (2729, 2779), False, 'import click\n'), ((2781, 2843), 'click.option', 'click.option', (['"""--lat1"""'], {'required': '(True)', 'type': 'float', 'help': '"""lat1"""'}), "('--lat1', required=True, type=float, help='lat1')\n", (2793, 2843), False, 'import click\n'), ((2845, 2907), 'click.option', 'click.option', (['"""--lat2"""'], {'required': '(True)', 'type': 'float', 'help': '"""lat2"""'}), "('--lat2', required=True, type=float, help='lat2')\n", (2857, 2907), False, 'import click\n'), ((2909, 2971), 'click.option', 'click.option', (['"""--dep1"""'], {'required': '(True)', 'type': 'float', 'help': '"""dep1"""'}), "('--dep1', required=True, type=float, help='dep1')\n", (2921, 2971), False, 'import click\n'), ((2973, 3035), 'click.option', 'click.option', (['"""--dep2"""'], {'required': '(True)', 'type': 'float', 'help': '"""dep2"""'}), "('--dep2', required=True, type=float, help='dep2')\n", (2985, 3035), False, 'import click\n'), ((3037, 3108), 'click.option', 'click.option', (['"""--data"""'], {'required': '(True)', 'type': 'str', 'help': '"""the pickle file"""'}), "('--data', required=True, type=str, help='the pickle file')\n", (3049, 3108), False, 'import click\n'), ((3110, 3203), 'click.option', 'click.option', (['"""--parameter"""'], {'required': '(True)', 'type': 'str', 'help': '"""physicial parameter to plot"""'}), "('--parameter', required=True, type=str, help=\n 'physicial parameter to plot')\n", (3122, 3203), False, 'import click\n'), ((3200, 3272), 'click.option', 'click.option', (['"""--hnpts"""'], {'required': '(True)', 'type': 'int', 'help': '"""horizontal npts"""'}), "('--hnpts', required=True, type=int, help='horizontal npts')\n", (3212, 3272), False, 'import click\n'), ((3274, 3344), 'click.option', 'click.option', (['"""--vnpts"""'], {'required': '(True)', 'type': 'int', 'help': '"""vertical npts"""'}), "('--vnpts', required=True, type=int, help='vertical npts')\n", (3286, 3344), False, 'import click\n'), ((369, 425), 'numpy.meshgrid', 'np.meshgrid', (['lon_list', 'lat_list', 'dep_list'], {'indexing': '"""ij"""'}), "(lon_list, lat_list, dep_list, indexing='ij')\n", (380, 425), True, 'import numpy as np\n'), ((452, 470), 'numpy.shape', 'np.shape', (['lon_mesh'], {}), '(lon_mesh)\n', (460, 470), True, 'import numpy as np\n'), ((488, 511), 'numpy.zeros_like', 'np.zeros_like', (['lon_mesh'], {}), '(lon_mesh)\n', (501, 511), True, 'import numpy as np\n'), ((525, 548), 'numpy.zeros_like', 'np.zeros_like', (['lon_mesh'], {}), '(lon_mesh)\n', (538, 548), True, 'import numpy as np\n'), ((562, 585), 'numpy.zeros_like', 'np.zeros_like', (['lon_mesh'], {}), '(lon_mesh)\n', (575, 585), True, 'import numpy as np\n'), ((599, 622), 'numpy.zeros_like', 'np.zeros_like', (['lon_mesh'], {}), '(lon_mesh)\n', (612, 622), True, 'import numpy as np\n'), ((636, 659), 'numpy.zeros_like', 'np.zeros_like', (['lon_mesh'], {}), '(lon_mesh)\n', (649, 659), True, 'import numpy as np\n'), ((2209, 2226), 'numpy.min', 'np.min', (['distance2'], {}), '(distance2)\n', (2215, 2226), True, 'import numpy as np\n'), ((2239, 2274), 'numpy.where', 'np.where', (['(distance2 == mindistance2)'], {}), '(distance2 == mindistance2)\n', (2247, 2274), True, 'import numpy as np\n'), ((2448, 2492), 'numpy.linspace', 'np.linspace', (['lon_list[0]', 'lon_list[1]', 'hnpts'], {}), '(lon_list[0], lon_list[1], hnpts)\n', (2459, 2492), True, 'import numpy as np\n'), ((2504, 2548), 'numpy.linspace', 'np.linspace', (['lat_list[0]', 'lat_list[1]', 'hnpts'], {}), '(lat_list[0], lat_list[1], hnpts)\n', (2515, 2548), True, 'import numpy as np\n'), ((2560, 2604), 'numpy.linspace', 'np.linspace', (['dep_list[0]', 'dep_list[1]', 'vnpts'], {}), '(dep_list[0], dep_list[1], vnpts)\n', (2571, 2604), True, 'import numpy as np\n'), ((3524, 3544), 'pandas.read_pickle', 'pd.read_pickle', (['data'], {}), '(data)\n', (3538, 3544), True, 'import pandas as pd\n'), ((4172, 4196), 'numpy.zeros', 'np.zeros', (['(hnpts, vnpts)'], {}), '((hnpts, vnpts))\n', (4180, 4196), True, 'import numpy as np\n'), ((4503, 4515), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (4513, 4515), True, 'import matplotlib.pyplot as plt\n'), ((4551, 4599), 'numpy.meshgrid', 'np.meshgrid', (['lats_plot', 'deps_plot'], {'indexing': '"""ij"""'}), "(lats_plot, deps_plot, indexing='ij')\n", (4562, 4599), True, 'import numpy as np\n'), ((5009, 5087), 'matplotlib.pyplot.contourf', 'plt.contourf', (['mesh_plot_lat', 'mesh_plot_dep', 'values', '(101)'], {'cmap': 'plt.cm.seismic_r'}), '(mesh_plot_lat, mesh_plot_dep, values, 101, cmap=plt.cm.seismic_r)\n', (5021, 5087), True, 'import matplotlib.pyplot as plt\n'), ((5114, 5141), 'numpy.arange', 'np.arange', (['vmin', 'vmax', '(0.01)'], {}), '(vmin, vmax, 0.01)\n', (5123, 5141), True, 'import numpy as np\n'), ((5146, 5189), 'matplotlib.pyplot.colorbar', 'plt.colorbar', ([], {'ticks': 'v', 'label': '"""perturbation"""'}), "(ticks=v, label='perturbation')\n", (5158, 5189), True, 'import matplotlib.pyplot as plt\n'), ((5223, 5329), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['f"""latitude(°) between (lon: {lon1}°, lat: {lat1}°) and (lon: {lon2}°, lat: {lat2}°)"""'], {}), "(\n f'latitude(°) between (lon: {lon1}°, lat: {lat1}°) and (lon: {lon2}°, lat: {lat2}°)'\n )\n", (5233, 5329), True, 'import matplotlib.pyplot as plt\n'), ((5333, 5356), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""depth(km)"""'], {}), "('depth(km)')\n", (5343, 5356), True, 'import matplotlib.pyplot as plt\n'), ((5361, 5371), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (5369, 5371), True, 'import matplotlib.pyplot as plt\n'), ((1735, 1748), 'numpy.deg2rad', 'np.deg2rad', (['x'], {}), '(x)\n', (1745, 1748), True, 'import numpy as np\n'), ((1797, 1810), 'numpy.deg2rad', 'np.deg2rad', (['x'], {}), '(x)\n', (1807, 1810), True, 'import numpy as np\n'), ((4658, 4672), 'numpy.min', 'np.min', (['values'], {}), '(values)\n', (4664, 4672), True, 'import numpy as np\n'), ((4697, 4711), 'numpy.min', 'np.min', (['values'], {}), '(values)\n', (4703, 4711), True, 'import numpy as np\n'), ((4804, 4818), 'numpy.max', 'np.max', (['values'], {}), '(values)\n', (4810, 4818), True, 'import numpy as np\n'), ((4843, 4857), 'numpy.max', 'np.max', (['values'], {}), '(values)\n', (4849, 4857), True, 'import numpy as np\n'), ((4949, 4963), 'numpy.max', 'np.max', (['values'], {}), '(values)\n', (4955, 4963), True, 'import numpy as np\n'), ((4965, 4979), 'numpy.min', 'np.min', (['values'], {}), '(values)\n', (4971, 4979), True, 'import numpy as np\n'), ((5194, 5203), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (5201, 5203), True, 'import matplotlib.pyplot as plt\n')]
from typing import Tuple import numpy as np import rasterio.warp from opensfm import features from .orthophoto_manager import OrthoPhotoManager from .view import View class OrthoPhotoView(View): def __init__( self, main_ui, path: str, init_lat: float, init_lon: float, is_geo_reference: bool = False, ): """[summary] Args: main_ui (GUI.Gui) path (str): path containing geotiffs """ self.image_manager = OrthoPhotoManager(path, 100.0) self.images_in_list = self.image_manager.image_keys self.zoom_window_size_px = 500 self.is_geo_reference = is_geo_reference self.size = 50 # TODO add widget for zoom level super(OrthoPhotoView, self).__init__(main_ui, False) self.refocus(init_lat, init_lon) self.populate_image_list() if self.images_in_list: self.bring_new_image(self.images_in_list[0]) self.set_title() def get_image(self, new_image): crop, image_window, geot = self.image_manager.read_image_around_latlon( new_image, self.center_lat, self.center_lon, self.size ) self.image_window = image_window self.geot = geot return crop def get_candidate_images(self): return self.image_manager.get_candidate_images( self.center_lat, self.center_lon, self.size ) def pixel_to_latlon(self, x: float, y: float): """ From pixels (in the viewing window) to latlon """ if not self.is_geo_reference: return None # Pixel to whatever crs the image is in # pyre-fixme[16]: `OrthoPhotoView` has no attribute `geot`. x, y = self.geot.xy(y, x) # And then to WSG84 (lat/lon) lons, lats = rasterio.warp.transform(self.geot.crs, "EPSG:4326", [x], [y]) return lats[0], lons[0] def gcp_to_pixel_coordinates(self, x: float, y: float) -> Tuple[float, float]: """ Transforms from normalized coordinates (in the whole geotiff) to pixels (in the viewing window) """ h, w = self.image_manager.get_image_size(self.current_image) px = features.denormalized_image_coordinates(np.array([[x, y]]), w, h)[0] # pyre-fixme[16]: `OrthoPhotoView` has no attribute `image_window`. x = px[0] - self.image_window.col_off y = px[1] - self.image_window.row_off # pyre-fixme[7]: Expected `Tuple[float, float]` but got `List[typing.Any]`. return [x, y] def pixel_to_gcp_coordinates(self, x: float, y: float) -> Tuple[float, float]: """ Transforms from pixels (in the viewing window) to normalized coordinates (in the whole geotiff) """ # pyre-fixme[16]: `OrthoPhotoView` has no attribute `image_window`. x += self.image_window.col_off y += self.image_window.row_off h, w = self.image_manager.get_image_size(self.current_image) coords = features.normalized_image_coordinates(np.array([[x, y]]), w, h)[0] return coords.tolist() def refocus(self, lat, lon): self.center_lat = lat self.center_lon = lon self.populate_image_list() if self.images_in_list: if self.current_image not in self.images_in_list: self.bring_new_image(self.images_in_list[0]) else: self.bring_new_image(self.current_image) self.set_title() def bring_new_image(self, new_image): super(OrthoPhotoView, self).bring_new_image(new_image, force=True) xlim = self.ax.get_xlim() ylim = self.ax.get_ylim() artists = self.ax.plot(np.mean(xlim), np.mean(ylim), "rx") self.plt_artists.extend(artists) self.canvas.draw_idle() def set_title(self): lat, lon = self.center_lat, self.center_lon if self.images_in_list: t = "Images covering lat:{:.4f}, lon:{:.4f}".format(lat, lon) shot = self.current_image seq_ix = self.images_in_list.index(shot) title = f"{t} [{seq_ix+1}/{len(self.images_in_list)}]: {shot}" else: title = f"No orthophotos around {lat}, {lon}" self.current_image = None self.ax.clear() self.ax.axis("off") self.canvas.draw_idle() self.window.title(title)
[ "numpy.mean", "numpy.array" ]
[((3748, 3761), 'numpy.mean', 'np.mean', (['xlim'], {}), '(xlim)\n', (3755, 3761), True, 'import numpy as np\n'), ((3763, 3776), 'numpy.mean', 'np.mean', (['ylim'], {}), '(ylim)\n', (3770, 3776), True, 'import numpy as np\n'), ((2286, 2304), 'numpy.array', 'np.array', (['[[x, y]]'], {}), '([[x, y]])\n', (2294, 2304), True, 'import numpy as np\n'), ((3087, 3105), 'numpy.array', 'np.array', (['[[x, y]]'], {}), '([[x, y]])\n', (3095, 3105), True, 'import numpy as np\n')]
import numpy as np import matplotlib.pyplot as plt import matplotlib.cm as cm import random class JuliaSet: def __init__(self): """ Constructor of the JuliaSet class :param size: size in pixels (for both width and height) :param dpi: dots per inch (default 300) """ # Initialize image related parameters self.size = 256 self.dpi = 300 self.norm = True self.mirror = False # Initialize process related parameters self.escrad = 3 self.niter = 250 def param(self, **kwargs): """ Get parameters from input dictionary and set attributes. :param kwargs: a dictionary in the form `{'arg1':value, ..., 'argN': value}` """ # Check if kwargs in not empty if kwargs is not None: # Image related parameters if 'size' in kwargs: self.size = kwargs.pop('size', 256) if 'dpi' in kwargs: self.dpi = kwargs.pop('dpi', 300) if 'norm' in kwargs: self.norm = kwargs.pop('norm', True) if 'mirror' in kwargs: self.mirror = kwargs.pop('mirror', False) # Process related parameters if 'escrad' in kwargs: self.escrad = kwargs.pop('escrad', 3) if 'niter' in kwargs: self.niter = kwargs.pop('niter', 250) # If kwargs is not empty there is some invalid keywords if kwargs: print("{} are invalid keyword arguments!".format(kwargs.keys())) def run(self, show=False, fname='juilaset-output'): """ Run the Julia set generator :param mirror: if True the julia is mirrored horizontally and vertically; each mirror is concatenate with the original to produce a new image :param norm: if true the Julia set is normalized by its absolute maximum value. :param show: if show is `False` th eoutput image will be written as a PNG file named `fname` :param fname: Name of the output PNG file to write on disk """ # Get a complex value among a list of best Julia sets cpxNum = self.getComplexValue() # Get the target area # For more randomness, the target area is a random # subset of a wide one defined with x[-1.5, 1.5] and # y[-1.5, 1.5] xrng, yrng = self.getTargetArea() # Process julia = self.processJulia(cpxNum, xrng, yrng) # Normalization if(self.norm): julia /= np.amax(np.abs(julia)) # Mirroring if(self.mirror): # Horizontal mirroring and concatenate juliamirror = np.flip(julia, axis=1) julia = np.concatenate((julia, juliamirror), axis=1) # Vertical mirroring and concatenate juliamirror = np.flip(julia, axis=0) julia = np.concatenate((julia, juliamirror), axis=0) # Plot the output with a random colormap using matplotlib self.plotJuliaSet(julia, show=show, fname=fname) def getComplexValue(self): """ Random choice in a list of best complex values for Julia sets (real, imag). :return cpxNum: a semi-random complex value """ # Define the list of best complex values cpxList = [ (-0.10, 0.650), (0.00, 0.80), (0.370, 0.100), (0.355, 0.355), (-0.54, 0.54), (0.340, -0.05), (0.37, 0.10), (0.355, 0.355) ] # Randomly choose one cpxTmp = random.choice(cpxList) # Manipulate the base value slightly to make it a little more unique cpxNum = self.twearkComplex(cpxTmp) return cpxNum def twearkComplex(self, cpxTmp): """ Manipulate the base value slightly to make it a little more unique. :param cpxTmp: complex value to modify :param cpxNum: a slightly manipulate version of the input """ # Get the signs for the imaginary parts isign = random.randrange(-1, 1, 2) # Get a value variation for for real and imaginary parts # The possible variation range is fixed at +/- 2% to stay # In the neightborhood of the initial value rsigma = random.uniform(0.98, 1.02) isigma = random.uniform(0.98, 1.02) # Apply modification and return the new complex value realPart = cpxTmp[0] * rsigma imagPart = cpxTmp[1] * isigma * isign return complex(realPart, imagPart) def getTargetArea(self): """ For more randomness, the target area is a random subset of a wide one defined with x[-1.5, 1.5] and y[-1.5, 1.5] :return xrng, yrng: tuples containing (xmin, xmax) and (ymin, ymax) """ # Randomly choose the center of the target area # Possible values are in [-1.0, 1.0] to stay in an # area where there are always pieces of fractals xctr = random.uniform(-1.0,1.0) yctr = random.uniform(-1.0,1.0) # Extend around the center xrng = (xctr-0.5, xctr+0.5) yrng = (yctr-0.5, yctr+0.5) return xrng, yrng def processJulia(self, cpxNum, xrng, yrng): """ Calculate the Julia set for the given input parameters. :param cpxNum: complex value acting as a seed for the Julia set :param xrng: range of values (min, max) for the x-axis :param yrng: range of values (min, max) for the y-axis :param escrad: escape radius :param niter: maximum number of iterations """ # Initialize numpy array of dimensions (size, size) with zeros julia = np.ones((self.size, self.size), dtype=np.float32) # Calculate the width (equal to height) of the image since the # image is defined as a square width = xrng[1] - xrng[0] # xmax - xmin = ymax - ymin # Randomly choose the sign of the shade #ssign = random.randrange(-1, 1, 2) ssign = -1. # Loop over x range for ix in range(self.size): # Get the pixel position in the complex plane # For the real part realPart = float(ix) / self.size * width + xrng[0] # Loop over y range for iy in range(self.size): # Get the pixel position in the complex plane # For the imaginary part imagPart = float(iy) / self.size * width + yrng[0] # Build the complex cpxTmp = complex(realPart, imagPart) # Initialize iteration counter it = 0 # Loop over iterations while(np.abs(cpxTmp) <= self.escrad**2 and it < self.niter): # Quadratic polynomial cpxTmp = cpxTmp**2 + cpxNum # Increment iteration counter it += 1 # Calculate the shade (a cool thing find somewhere on the net) shade = 1. - np.sqrt(it/self.niter) # Fill the outpout array julia[ix][iy] = ssign * shade return julia def plotJuliaSet(self, julia, fname='juilaset-output', show=False): """ Plot the output Julia set and show it in matplotlib window or write it on disk as a png file. :param julia: the Julia set :param show: if show is `False` th eoutput image will be written as a PNG file named `fname` :param fname: Name of the output PNG file to write on disk """ # List of beautiful colormap for Julia sets cmapList = [ cm.Blues, cm.Greens, cm.Purples, cm.hot, cm.inferno, cm.binary, cm.rainbow, cm.twilight_shifted, cm.plasma ] # Randomly chose one colormap cmapName = random.choice(cmapList) # Plot the image with a gaussian interpolation fig = plt.gcf() fig.set_size_inches(3., 3.) plt.imshow(julia, interpolation='gaussian', cmap=cmapName) # Disable axis plt.axis('off') if(show): plt.show() else: # Write on disk fig.savefig(fname+".png", dpi=self.dpi, pad_inches=0.05, bbox_inches='tight') def julia(**kwargs): """ temp """ # Initialize Julia Set instance juliaInstance = JuliaSet() # If kwargs not empty update the attributes if kwargs is not None: juliaInstance.param(**kwargs) return juliaInstance if __name__ == "__main__": # execute only if run as a script genJuliaSet = JuliaSet() genJuliaSet.param() genJuliaSet.run()
[ "matplotlib.pyplot.imshow", "numpy.flip", "random.uniform", "random.choice", "numpy.abs", "numpy.ones", "numpy.sqrt", "random.randrange", "matplotlib.pyplot.gcf", "numpy.concatenate", "matplotlib.pyplot.axis", "matplotlib.pyplot.show" ]
[((3661, 3683), 'random.choice', 'random.choice', (['cpxList'], {}), '(cpxList)\n', (3674, 3683), False, 'import random\n'), ((4146, 4172), 'random.randrange', 'random.randrange', (['(-1)', '(1)', '(2)'], {}), '(-1, 1, 2)\n', (4162, 4172), False, 'import random\n'), ((4374, 4400), 'random.uniform', 'random.uniform', (['(0.98)', '(1.02)'], {}), '(0.98, 1.02)\n', (4388, 4400), False, 'import random\n'), ((4418, 4444), 'random.uniform', 'random.uniform', (['(0.98)', '(1.02)'], {}), '(0.98, 1.02)\n', (4432, 4444), False, 'import random\n'), ((5105, 5130), 'random.uniform', 'random.uniform', (['(-1.0)', '(1.0)'], {}), '(-1.0, 1.0)\n', (5119, 5130), False, 'import random\n'), ((5145, 5170), 'random.uniform', 'random.uniform', (['(-1.0)', '(1.0)'], {}), '(-1.0, 1.0)\n', (5159, 5170), False, 'import random\n'), ((5817, 5866), 'numpy.ones', 'np.ones', (['(self.size, self.size)'], {'dtype': 'np.float32'}), '((self.size, self.size), dtype=np.float32)\n', (5824, 5866), True, 'import numpy as np\n'), ((8018, 8041), 'random.choice', 'random.choice', (['cmapList'], {}), '(cmapList)\n', (8031, 8041), False, 'import random\n'), ((8112, 8121), 'matplotlib.pyplot.gcf', 'plt.gcf', ([], {}), '()\n', (8119, 8121), True, 'import matplotlib.pyplot as plt\n'), ((8166, 8224), 'matplotlib.pyplot.imshow', 'plt.imshow', (['julia'], {'interpolation': '"""gaussian"""', 'cmap': 'cmapName'}), "(julia, interpolation='gaussian', cmap=cmapName)\n", (8176, 8224), True, 'import matplotlib.pyplot as plt\n'), ((8265, 8280), 'matplotlib.pyplot.axis', 'plt.axis', (['"""off"""'], {}), "('off')\n", (8273, 8280), True, 'import matplotlib.pyplot as plt\n'), ((2795, 2817), 'numpy.flip', 'np.flip', (['julia'], {'axis': '(1)'}), '(julia, axis=1)\n', (2802, 2817), True, 'import numpy as np\n'), ((2838, 2882), 'numpy.concatenate', 'np.concatenate', (['(julia, juliamirror)'], {'axis': '(1)'}), '((julia, juliamirror), axis=1)\n', (2852, 2882), True, 'import numpy as np\n'), ((2958, 2980), 'numpy.flip', 'np.flip', (['julia'], {'axis': '(0)'}), '(julia, axis=0)\n', (2965, 2980), True, 'import numpy as np\n'), ((3001, 3045), 'numpy.concatenate', 'np.concatenate', (['(julia, juliamirror)'], {'axis': '(0)'}), '((julia, juliamirror), axis=0)\n', (3015, 3045), True, 'import numpy as np\n'), ((8312, 8322), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (8320, 8322), True, 'import matplotlib.pyplot as plt\n'), ((2657, 2670), 'numpy.abs', 'np.abs', (['julia'], {}), '(julia)\n', (2663, 2670), True, 'import numpy as np\n'), ((7187, 7211), 'numpy.sqrt', 'np.sqrt', (['(it / self.niter)'], {}), '(it / self.niter)\n', (7194, 7211), True, 'import numpy as np\n'), ((6838, 6852), 'numpy.abs', 'np.abs', (['cpxTmp'], {}), '(cpxTmp)\n', (6844, 6852), True, 'import numpy as np\n')]
import numpy as np from keras import backend as K import os import sys K.set_image_dim_ordering('tf') def patch_path(path): return os.path.join(os.path.dirname(__file__), path) def main(): sys.path.append(patch_path('..')) data_dir_path = patch_path('very_large_data') model_dir_path = patch_path('models/UCF-101') from keras_video_classifier.library.convolutional import CnnVideoClassifier from keras_video_classifier.library.utility.ucf.UCF101_loader import load_ucf, scan_ucf_with_labels config_file_path = CnnVideoClassifier.get_config_file_path(model_dir_path) weight_file_path = CnnVideoClassifier.get_weight_file_path(model_dir_path) np.random.seed(42) load_ucf(data_dir_path) predictor = CnnVideoClassifier() predictor.load_model(config_file_path, weight_file_path) videos = scan_ucf_with_labels(data_dir_path, [label for (label, label_index) in predictor.labels.items()]) video_file_path_list = np.array([file_path for file_path in videos.keys()]) np.random.shuffle(video_file_path_list) for video_file_path in video_file_path_list: label = videos[video_file_path] predicted_label = predictor.predict(video_file_path) print('predicted: ' + predicted_label + ' actual: ' + label) if __name__ == '__main__': main()
[ "keras_video_classifier.library.utility.ucf.UCF101_loader.load_ucf", "numpy.random.shuffle", "os.path.dirname", "keras_video_classifier.library.convolutional.CnnVideoClassifier.get_weight_file_path", "numpy.random.seed", "keras_video_classifier.library.convolutional.CnnVideoClassifier.get_config_file_path", "keras.backend.set_image_dim_ordering", "keras_video_classifier.library.convolutional.CnnVideoClassifier" ]
[((72, 102), 'keras.backend.set_image_dim_ordering', 'K.set_image_dim_ordering', (['"""tf"""'], {}), "('tf')\n", (96, 102), True, 'from keras import backend as K\n'), ((545, 600), 'keras_video_classifier.library.convolutional.CnnVideoClassifier.get_config_file_path', 'CnnVideoClassifier.get_config_file_path', (['model_dir_path'], {}), '(model_dir_path)\n', (584, 600), False, 'from keras_video_classifier.library.convolutional import CnnVideoClassifier\n'), ((624, 679), 'keras_video_classifier.library.convolutional.CnnVideoClassifier.get_weight_file_path', 'CnnVideoClassifier.get_weight_file_path', (['model_dir_path'], {}), '(model_dir_path)\n', (663, 679), False, 'from keras_video_classifier.library.convolutional import CnnVideoClassifier\n'), ((685, 703), 'numpy.random.seed', 'np.random.seed', (['(42)'], {}), '(42)\n', (699, 703), True, 'import numpy as np\n'), ((709, 732), 'keras_video_classifier.library.utility.ucf.UCF101_loader.load_ucf', 'load_ucf', (['data_dir_path'], {}), '(data_dir_path)\n', (717, 732), False, 'from keras_video_classifier.library.utility.ucf.UCF101_loader import load_ucf, scan_ucf_with_labels\n'), ((750, 770), 'keras_video_classifier.library.convolutional.CnnVideoClassifier', 'CnnVideoClassifier', ([], {}), '()\n', (768, 770), False, 'from keras_video_classifier.library.convolutional import CnnVideoClassifier\n'), ((1029, 1068), 'numpy.random.shuffle', 'np.random.shuffle', (['video_file_path_list'], {}), '(video_file_path_list)\n', (1046, 1068), True, 'import numpy as np\n'), ((151, 176), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (166, 176), False, 'import os\n')]
''' ------------------------------------- Assignment 2 - EE2703 (Jan-May 2020) Done by <NAME> (EE18B122) Created on 18/01/20 Last Modified on 04/02/20 ------------------------------------- ''' # importing necessary libraries import sys import cmath import numpy as np import pandas as pd # To improve readability CIRCUIT_START = ".circuit" CIRCUIT_END = ".end" RESISTOR = "R" CAPACITOR = "C" INDUCTOR = "L" IVS = "V" ICS = "I" VCVS = "E" VCCS = "G" CCVS = "H" CCCS = "F" PI = np.pi # Classes for each circuit component class resistor: def __init__(self, name, n1, n2, val): self.name = name self.value = enggToMath(val) self.node1 = n1 self.node2 = n2 class inductor: def __init__(self, name, n1, n2, val): self.name = name self.value = enggToMath(val) self.node1 = n1 self.node2 = n2 class capacitor: def __init__(self, name, n1, n2, val): self.name = name self.value = enggToMath(val) self.node1 = n1 self.node2 = n2 class voltageSource: def __init__(self, name, n1, n2, val, phase=0): self.name = name self.value = enggToMath(val) self.node1 = n1 self.node2 = n2 self.phase = float(phase) class currentSource: def __init__(self, name, n1, n2, val, phase=0): self.name = name self.value = enggToMath(val) self.node1 = n1 self.node2 = n2 self.phase = float(phase) class vcvs: def __init__(self, name, n1, n2, n3, n4, val): self.name = name self.value = enggToMath(val) self.node1 = n1 self.node2 = n2 self.node3 = n3 self.node4 = n4 class vccs: def __init__(self, name, n1, n2, n3, n4, val): self.name = name self.value = enggToMath(val) self.node1 = n1 self.node2 = n2 self.node3 = n3 self.node4 = n4 class ccvs: def __init__(self, name, n1, n2, vName, val): self.name = name self.value = enggToMath(val) self.node1 = n1 self.node2 = n2 self.vSource = vName class cccs: def __init__(self, name, n1, n2, vName, val): self.name = name self.value = enggToMath(val) self.node1 = n1 self.node2 = n2 self.vSource = vName # Convert a number in engineer's format to math def enggToMath(enggNumber): try: return float(enggNumber) except: lenEnggNumber = len(enggNumber) # Kilo if enggNumber[lenEnggNumber-1] == 'k': base = int(enggNumber[0:lenEnggNumber-1]) return base*1e3 # Milli elif enggNumber[lenEnggNumber-1] == 'm': base = int(enggNumber[0:lenEnggNumber-1]) return base*1e-3 # Micro elif enggNumber[lenEnggNumber-1] == 'u': base = int(enggNumber[0:lenEnggNumber-1]) return base*1e-6 # Nano elif enggNumber[lenEnggNumber-1] == 'n': base = int(enggNumber[0:lenEnggNumber-1]) return base*1e-9 # Mega elif enggNumber[lenEnggNumber-1] == 'M': base = int(enggNumber[0:lenEnggNumber-1]) return base*1e6 else: sys.exit("Please check the component values given. Supported engineer units are: M, k, m, u, n\nYou can also enter values in exponential format (eg. 1e3 = 1000).") if __name__ == "__main__": # checking number of command line arguments if len(sys.argv)!=2 : sys.exit("Invalid number of arguments!") else: try: circuitFile = sys.argv[1] circuitFreq = 1e-100 circuitComponents = { RESISTOR: [], CAPACITOR: [], INDUCTOR: [], IVS: [], ICS: [], VCVS: [], VCCS: [], CCVS: [], CCCS: [] } circuitNodes = [] # checking if given netlist file is of correct type if (not circuitFile.endswith(".netlist")): print("Wrong file type!") else: netlistFileLines = [] with open (circuitFile, "r") as f: for line in f.readlines(): netlistFileLines.append(line.split('#')[0].split('\n')[0]) # Getting frequency, if any if(line[:3] == '.ac'): circuitFreq = float(line.split()[2]) # Setting Angular Frequency w w = 2*PI*circuitFreq try: # Finding the location of the identifiers identifier1 = netlistFileLines.index(CIRCUIT_START) identifier2 = netlistFileLines.index(CIRCUIT_END) circuitBody = netlistFileLines[identifier1+1:identifier2] for line in circuitBody: # Extracting the data from the line lineTokens = line.split() # Appending new nodes to a list try: if lineTokens[1] not in circuitNodes: circuitNodes.append(lineTokens[1]) if lineTokens[2] not in circuitNodes: circuitNodes.append(lineTokens[2]) except IndexError: continue # Resistor if lineTokens[0][0] == RESISTOR: circuitComponents[RESISTOR].append(resistor(lineTokens[0], lineTokens[1], lineTokens[2], lineTokens[3])) # Capacitor elif lineTokens[0][0] == CAPACITOR: circuitComponents[CAPACITOR].append(capacitor(lineTokens[0], lineTokens[1], lineTokens[2], lineTokens[3])) # Inductor elif lineTokens[0][0] == INDUCTOR: circuitComponents[INDUCTOR].append(inductor(lineTokens[0], lineTokens[1], lineTokens[2], lineTokens[3])) # Voltage Source elif lineTokens[0][0] == IVS: if len(lineTokens) == 5: # DC Source circuitComponents[IVS].append(voltageSource(lineTokens[0], lineTokens[1], lineTokens[2], float(lineTokens[4]))) elif len(lineTokens) == 6: # AC Source if circuitFreq == 1e-100: sys.exit("Frequency of AC Source not specified!!") circuitComponents[IVS].append(voltageSource(lineTokens[0], lineTokens[1], lineTokens[2], float(lineTokens[4])/2, lineTokens[5])) # Current Source elif lineTokens[0][0] == ICS: if len(lineTokens) == 5: # DC Source circuitComponents[ICS].append(currentSource(lineTokens[0], lineTokens[1], lineTokens[2], float(lineTokens[4]))) elif len(lineTokens) == 6: # AC Source if circuitFreq == 1e-100: sys.exit("Frequency of AC Source not specified!!") circuitComponents[ICS].append(currentSource(lineTokens[0], lineTokens[1], lineTokens[2], float(lineTokens[4])/2, lineTokens[5])) # VCVS elif lineTokens[0][0] == VCVS: circuitComponents[VCVS].append(vcvs(lineTokens[0], lineTokens[1], lineTokens[2], lineTokens[3], lineTokens[4], lineTokens[5])) # VCCS elif lineTokens[0][0] == VCCS: circuitComponents[VCCS].append(vcvs(lineTokens[0], lineTokens[1], lineTokens[2], lineTokens[3], lineTokens[4], lineTokens[5])) # CCVS elif lineTokens[0][0] == CCVS: circuitComponents[CCVS].append(ccvs(lineTokens[0], lineTokens[1], lineTokens[2], lineTokens[3], lineTokens[4])) # CCCS elif lineTokens[0][0] == CCCS: circuitComponents[CCCS].append(cccs(lineTokens[0], lineTokens[1], lineTokens[2], lineTokens[3], lineTokens[4])) # Erroneous Component Name else: sys.exit("Wrong Component Given. ABORT!") try: circuitNodes.remove('GND') circuitNodes = ['GND'] + circuitNodes except: sys.exit("No ground node specified in the circuit!!") # Creating a dictionary with node names and their numbers (to reduce the time taken by later parts of the program) nodeNumbers = {circuitNodes[i]:i for i in range(len(circuitNodes))} numNodes = len(circuitNodes) numVS = len(circuitComponents[IVS])+len(circuitComponents[VCVS])+len(circuitComponents[CCVS]) # Creating Matrices M and b matrixM = np.zeros((numNodes+numVS, numNodes+numVS), np.complex) matrixB = np.zeros((numNodes+numVS,), np.complex) # GND Equation matrixM[0][0] = 1.0 # Resistor Equations for r in circuitComponents[RESISTOR]: if r.node1 != 'GND': matrixM[nodeNumbers[r.node1]][nodeNumbers[r.node1]] += 1/r.value matrixM[nodeNumbers[r.node1]][nodeNumbers[r.node2]] -= 1/r.value if r.node2 != 'GND': matrixM[nodeNumbers[r.node2]][nodeNumbers[r.node1]] -= 1/r.value matrixM[nodeNumbers[r.node2]][nodeNumbers[r.node2]] += 1/r.value # Capacitor Equations for c in circuitComponents[CAPACITOR]: if c.node1 != 'GND': matrixM[nodeNumbers[c.node1]][nodeNumbers[c.node1]] += complex(0, w*c.value) matrixM[nodeNumbers[c.node1]][nodeNumbers[c.node2]] -= complex(0, w*c.value) if c.node2 != 'GND': matrixM[nodeNumbers[c.node2]][nodeNumbers[c.node1]] -= complex(0, w*c.value) matrixM[nodeNumbers[c.node2]][nodeNumbers[c.node2]] += complex(0, w*c.value) # Inductor Equations for l in circuitComponents[INDUCTOR]: if l.node1 != 'GND': matrixM[nodeNumbers[l.node1]][nodeNumbers[l.node1]] += complex(0, -1.0/(w*l.value)) matrixM[nodeNumbers[l.node1]][nodeNumbers[l.node2]] -= complex(0, -1.0/(w*l.value)) if l.node2 != 'GND': matrixM[nodeNumbers[l.node2]][nodeNumbers[l.node1]] -= complex(0, -1.0/(w*l.value)) matrixM[nodeNumbers[l.node2]][nodeNumbers[l.node2]] += complex(0, -1.0/(w*l.value)) # Voltage Source Equations for i in range(len(circuitComponents[IVS])): # Equation accounting for current through the source if circuitComponents[IVS][i].node1 != 'GND': matrixM[nodeNumbers[circuitComponents[IVS][i].node1]][numNodes+i] = 1.0 if circuitComponents[IVS][i].node2 != 'GND': matrixM[nodeNumbers[circuitComponents[IVS][i].node2]][numNodes+i] = -1.0 # Auxiliary Equations matrixM[numNodes+i][nodeNumbers[circuitComponents[IVS][i].node1]] = -1.0 matrixM[numNodes+i][nodeNumbers[circuitComponents[IVS][i].node2]] = +1.0 matrixB[numNodes+i] = cmath.rect(circuitComponents[IVS][i].value, circuitComponents[IVS][i].phase*PI/180) # Current Source Equations for i in circuitComponents[ICS]: if i.node1 != 'GND': matrixB[nodeNumbers[i.node1]] = -1*i.value if i.node2 != 'GND': matrixB[nodeNumbers[i.node2]] = i.value # VCVS Equations for i in range(len(circuitComponents[VCVS])): # Equation accounting for current through the source if circuitComponents[VCVS][i].node1 != 'GND': matrixM[nodeNumbers[circuitComponents[VCVS][i].node1]][numNodes+len(circuitComponents[IVS])+i] = 1.0 if circuitComponents[VCVS][i].node2 != 'GND': matrixM[nodeNumbers[circuitComponents[VCVS][i].node2]][numNodes+len(circuitComponents[IVS])+i] = -1.0 matrixM[numNodes+len(circuitComponents[IVS])+i][nodeNumbers[circuitComponents[VCVS][i].node1]] = 1.0 matrixM[numNodes+len(circuitComponents[IVS])+i][nodeNumbers[circuitComponents[VCVS][i].node2]] = -1.0 matrixM[numNodes+len(circuitComponents[IVS])+i][nodeNumbers[circuitComponents[VCVS][i].node3]] = -1.0*circuitComponents[VCVS][i].value matrixM[numNodes+len(circuitComponents[IVS])+i][nodeNumbers[circuitComponents[VCVS][i].node4]] = 1.0*circuitComponents[VCVS][i].value # CCVS Equations for i in range(len(circuitComponents[CCVS])): # Equation accounting for current through the source if circuitComponents[VCVS][i].node1 != 'GND': matrixM[nodeNumbers[circuitComponents[CCVS][i].node1]][numNodes+len(circuitComponents[IVS])+len(circuitComponents[VCVS])+i] = 1.0 if circuitComponents[VCVS][i].node2 != 'GND': matrixM[nodeNumbers[circuitComponents[VCVS][i].node2]][numNodes+len(circuitComponents[IVS])+len(circuitComponents[VCVS])+i] = -1.0 matrixM[numNodes+len(circuitComponents[IVS])+len(circuitComponents[VCVS])+i][nodeNumbers[circuitComponents[CCVS][i].node1]] = 1.0 matrixM[numNodes+len(circuitComponents[IVS])+len(circuitComponents[VCVS])+i][nodeNumbers[circuitComponents[CCVS][i].node2]] = -1.0 matrixM[numNodes+len(circuitComponents[IVS])+len(circuitComponents[VCVS])+i][numNodes+len(circuitComponents[IVS])+len(circuitComponents[VCVS])+i] = -1.0*circuitComponents[CCVS][i].value # VCCS Equations for vccs in circuitComponents[VCCS]: if vccs.node1 != 'GND': matrixM[nodeNumbers[vccs.node1]][nodeNumbers[vccs.node4]]+=vccs.value matrixM[nodeNumbers[vccs.node1]][nodeNumbers[vccs.node3]]-=vccs.value if vccs.node2 != 'GND': matrixM[nodeNumbers[vccs.node2]][nodeNumbers[vccs.node4]]-=vccs.value matrixM[nodeNumbers[vccs.node3]][nodeNumbers[vccs.node3]]+=vccs.value # CCCS Equations for cccs in circuitComponents[CCCS]: def getIndexIVS(vName): for i in range(len(circuitComponents[IVS])): if circuitComponents[IVS][i].name == vName: return i if cccs.node1 != 'GND': matrixM[nodeNumbers[cccs.node1]][numNodes+getIndexIVS(cccs.vSource)]-=cccs.value if cccs.node2 != 'GND': matrixM[nodeNumbers[cccs.node2]][numNodes+getIndexIVS(cccs.vSource)]+=cccs.value try: x = np.linalg.solve(matrixM, matrixB) circuitCurrents = [] # Formatting Output Data for v in circuitComponents[IVS]: circuitCurrents.append("current in "+v.name) for v in circuitComponents[VCVS]: circuitCurrents.append("current in "+v.name) for v in circuitComponents[CCVS]: circuitCurrents.append("current in "+v.name) # Printing output in table format print(pd.DataFrame(x, circuitNodes+circuitCurrents, columns=['Voltage / Current'])) print("The values given above are AMPLITUDE values and NOT RMS values.") except np.linalg.LinAlgError: sys.exit("Singular Matrix Formed! Please check if you have entered the circuit definition correctly!") except ValueError: sys.exit("Netlist does not abide to given format!") except FileNotFoundError: sys.exit("Given file does not exist!")
[ "numpy.linalg.solve", "cmath.rect", "numpy.zeros", "sys.exit", "pandas.DataFrame" ]
[((3524, 3564), 'sys.exit', 'sys.exit', (['"""Invalid number of arguments!"""'], {}), "('Invalid number of arguments!')\n", (3532, 3564), False, 'import sys\n'), ((17150, 17188), 'sys.exit', 'sys.exit', (['"""Given file does not exist!"""'], {}), "('Given file does not exist!')\n", (17158, 17188), False, 'import sys\n'), ((9213, 9271), 'numpy.zeros', 'np.zeros', (['(numNodes + numVS, numNodes + numVS)', 'np.complex'], {}), '((numNodes + numVS, numNodes + numVS), np.complex)\n', (9221, 9271), True, 'import numpy as np\n'), ((9298, 9339), 'numpy.zeros', 'np.zeros', (['(numNodes + numVS,)', 'np.complex'], {}), '((numNodes + numVS,), np.complex)\n', (9306, 9339), True, 'import numpy as np\n'), ((12036, 12127), 'cmath.rect', 'cmath.rect', (['circuitComponents[IVS][i].value', '(circuitComponents[IVS][i].phase * PI / 180)'], {}), '(circuitComponents[IVS][i].value, circuitComponents[IVS][i].phase *\n PI / 180)\n', (12046, 12127), False, 'import cmath\n'), ((16037, 16070), 'numpy.linalg.solve', 'np.linalg.solve', (['matrixM', 'matrixB'], {}), '(matrixM, matrixB)\n', (16052, 16070), True, 'import numpy as np\n'), ((17052, 17103), 'sys.exit', 'sys.exit', (['"""Netlist does not abide to given format!"""'], {}), "('Netlist does not abide to given format!')\n", (17060, 17103), False, 'import sys\n'), ((8695, 8748), 'sys.exit', 'sys.exit', (['"""No ground node specified in the circuit!!"""'], {}), "('No ground node specified in the circuit!!')\n", (8703, 8748), False, 'import sys\n'), ((16645, 16723), 'pandas.DataFrame', 'pd.DataFrame', (['x', '(circuitNodes + circuitCurrents)'], {'columns': "['Voltage / Current']"}), "(x, circuitNodes + circuitCurrents, columns=['Voltage / Current'])\n", (16657, 16723), True, 'import pandas as pd\n'), ((16894, 17006), 'sys.exit', 'sys.exit', (['"""Singular Matrix Formed! Please check if you have entered the circuit definition correctly!"""'], {}), "(\n 'Singular Matrix Formed! Please check if you have entered the circuit definition correctly!'\n )\n", (16902, 17006), False, 'import sys\n'), ((3250, 3426), 'sys.exit', 'sys.exit', (['"""Please check the component values given. Supported engineer units are: M, k, m, u, n\nYou can also enter values in exponential format (eg. 1e3 = 1000)."""'], {}), '(\n """Please check the component values given. Supported engineer units are: M, k, m, u, n\nYou can also enter values in exponential format (eg. 1e3 = 1000)."""\n )\n', (3258, 3426), False, 'import sys\n'), ((6531, 6581), 'sys.exit', 'sys.exit', (['"""Frequency of AC Source not specified!!"""'], {}), "('Frequency of AC Source not specified!!')\n", (6539, 6581), False, 'import sys\n'), ((7208, 7258), 'sys.exit', 'sys.exit', (['"""Frequency of AC Source not specified!!"""'], {}), "('Frequency of AC Source not specified!!')\n", (7216, 7258), False, 'import sys\n'), ((8463, 8504), 'sys.exit', 'sys.exit', (['"""Wrong Component Given. ABORT!"""'], {}), "('Wrong Component Given. ABORT!')\n", (8471, 8504), False, 'import sys\n')]
# coding=utf-8 # Copyright 2020 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """This file contains a class which acts as a wrapper around the PPR algorithm. This class has the following functionality: 1. Load the KB graph, 2. Given list of seed entities, get topk entities from PPR. 3. Get unique facts between all extracted entities. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import tensorflow as tf from fat.fat_bert_nq.ppr.apr_algo import csr_personalized_pagerank from fat.fat_bert_nq.ppr.apr_algo import csr_topk_fact_extractor from fat.fat_bert_nq.ppr.kb_csr_io import CsrData flags = tf.flags FLAGS = flags.FLAGS flags.DEFINE_bool( 'verbose_logging', False, 'If true, all of the warnings related to data processing will be printed. ' 'A number of warnings are expected for a normal NQ evaluation.') class ApproximatePageRank(object): """APR main lib which is used to wrap functions around ppr algo.""" def __init__(self): self.data = CsrData() self.data.load_csr_data( full_wiki=FLAGS.full_wiki, files_dir=FLAGS.apr_files_dir) def get_topk_extracted_ent(self, seeds, alpha, topk): """Extract topk entities given seeds. Args: seeds: An Ex1 vector with weight on every seed entity alpha: probability for PPR topk: max top entities to extract Returns: extracted_ents: list of selected entities extracted_scores: list of scores of selected entities """ ppr_scores = csr_personalized_pagerank(seeds, self.data.adj_mat_t_csr, alpha) sorted_idx = np.argsort(ppr_scores)[::-1] extracted_ents = sorted_idx[:topk] extracted_scores = ppr_scores[sorted_idx[:topk]] # Check for really low values # Get idx of First value < 1e-6, limit extracted ents till there zero_idx = np.where(ppr_scores[extracted_ents] < 1e-6)[0] if zero_idx.shape[0] > 0: extracted_ents = extracted_ents[:zero_idx[0]] return extracted_ents, extracted_scores def get_facts(self, entities, topk, alpha, seed_weighting=True): """Get subgraph describing a neighbourhood around given entities. Args: entities: A list of Wikidata entities topk: Max entities to extract from PPR alpha: Node probability for PPR seed_weighting: Boolean for performing weighting seeds by freq in passage Returns: unique_facts: A list of unique facts around the seeds. """ if FLAGS.verbose_logging: tf.logging.info('Getting subgraph') entity_ids = [ int(self.data.ent2id[x]) for x in entities if x in self.data.ent2id ] if FLAGS.verbose_logging: tf.logging.info( str([self.data.entity_names['e'][str(x)]['name'] for x in entity_ids ])) freq_dict = {x: entity_ids.count(x) for x in entity_ids} seed = np.zeros((self.data.adj_mat.shape[0], 1)) if not seed_weighting: seed[entity_ids] = 1. / len(set(entity_ids)) else: for x, y in freq_dict.items(): seed[x] = y seed = seed / seed.sum() extracted_ents, extracted_scores = self.get_topk_extracted_ent( seed, alpha, topk) if FLAGS.verbose_logging: tf.logging.info('Extracted ents: ') tf.logging.info( str([ self.data.entity_names['e'][str(x)]['name'] for x in extracted_ents ])) facts = csr_topk_fact_extractor(self.data.adj_mat_t_csr, self.data.rel_dict, freq_dict, self.data.entity_names, extracted_ents, extracted_scores) if FLAGS.verbose_logging: tf.logging.info('Extracted facts: ') tf.logging.info(str(facts)) # Extract 1 unique fact per pair of entities (fact with highest score) # Sort by scores unique_facts = {} for (sub, obj, rel, score) in facts: fwd_dir = (sub, obj) rev_dir = (obj, sub) if fwd_dir in unique_facts and score > unique_facts[fwd_dir][1]: unique_facts[fwd_dir] = (rel, score) elif rev_dir in unique_facts and score > unique_facts[rev_dir][1]: unique_facts[fwd_dir] = (rel, score) del unique_facts[rev_dir] # Remove existing entity pair else: unique_facts[(sub, obj)] = (rel, score) unique_facts = list(unique_facts.items()) return unique_facts
[ "fat.fat_bert_nq.ppr.kb_csr_io.CsrData", "numpy.where", "tensorflow.logging.info", "numpy.argsort", "numpy.zeros", "fat.fat_bert_nq.ppr.apr_algo.csr_personalized_pagerank", "fat.fat_bert_nq.ppr.apr_algo.csr_topk_fact_extractor" ]
[((1590, 1599), 'fat.fat_bert_nq.ppr.kb_csr_io.CsrData', 'CsrData', ([], {}), '()\n', (1597, 1599), False, 'from fat.fat_bert_nq.ppr.kb_csr_io import CsrData\n'), ((2084, 2148), 'fat.fat_bert_nq.ppr.apr_algo.csr_personalized_pagerank', 'csr_personalized_pagerank', (['seeds', 'self.data.adj_mat_t_csr', 'alpha'], {}), '(seeds, self.data.adj_mat_t_csr, alpha)\n', (2109, 2148), False, 'from fat.fat_bert_nq.ppr.apr_algo import csr_personalized_pagerank\n'), ((3459, 3500), 'numpy.zeros', 'np.zeros', (['(self.data.adj_mat.shape[0], 1)'], {}), '((self.data.adj_mat.shape[0], 1))\n', (3467, 3500), True, 'import numpy as np\n'), ((4007, 4148), 'fat.fat_bert_nq.ppr.apr_algo.csr_topk_fact_extractor', 'csr_topk_fact_extractor', (['self.data.adj_mat_t_csr', 'self.data.rel_dict', 'freq_dict', 'self.data.entity_names', 'extracted_ents', 'extracted_scores'], {}), '(self.data.adj_mat_t_csr, self.data.rel_dict,\n freq_dict, self.data.entity_names, extracted_ents, extracted_scores)\n', (4030, 4148), False, 'from fat.fat_bert_nq.ppr.apr_algo import csr_topk_fact_extractor\n'), ((2209, 2231), 'numpy.argsort', 'np.argsort', (['ppr_scores'], {}), '(ppr_scores)\n', (2219, 2231), True, 'import numpy as np\n'), ((2449, 2493), 'numpy.where', 'np.where', (['(ppr_scores[extracted_ents] < 1e-06)'], {}), '(ppr_scores[extracted_ents] < 1e-06)\n', (2457, 2493), True, 'import numpy as np\n'), ((3099, 3134), 'tensorflow.logging.info', 'tf.logging.info', (['"""Getting subgraph"""'], {}), "('Getting subgraph')\n", (3114, 3134), True, 'import tensorflow as tf\n'), ((3809, 3844), 'tensorflow.logging.info', 'tf.logging.info', (['"""Extracted ents: """'], {}), "('Extracted ents: ')\n", (3824, 3844), True, 'import tensorflow as tf\n'), ((4253, 4289), 'tensorflow.logging.info', 'tf.logging.info', (['"""Extracted facts: """'], {}), "('Extracted facts: ')\n", (4268, 4289), True, 'import tensorflow as tf\n')]
import warnings from collections import OrderedDict from distutils.version import LooseVersion from functools import partial from inspect import isclass from typing import Callable, Optional, Dict, Union import numpy as np import torch import tqdm from torch import Tensor, nn from torch.nn import functional as F from adv_lib.distances.lp_norms import l0_distances, l1_distances, l2_distances, linf_distances from adv_lib.utils import ForwardCounter, BackwardCounter, predict_inputs def generate_random_targets(labels: Tensor, num_classes: int) -> Tensor: """ Generates one random target in (num_classes - 1) possibilities for each label that is different from the original label. Parameters ---------- labels: Tensor Original labels. Generated targets will be different from labels. num_classes: int Number of classes to generate the random targets from. Returns ------- targets: Tensor Random target for each label. Has the same shape as labels. """ random = torch.rand(len(labels), num_classes, device=labels.device, dtype=torch.float) random.scatter_(1, labels.unsqueeze(-1), 0) return random.argmax(1) def get_all_targets(labels: Tensor, num_classes: int): """ Generates all possible targets that are different from the original labels. Parameters ---------- labels: Tensor Original labels. Generated targets will be different from labels. num_classes: int Number of classes to generate the random targets from. Returns ------- targets: Tensor Random targets for each label. shape: (len(labels), num_classes - 1). """ all_possible_targets = torch.zeros(len(labels), num_classes - 1, dtype=torch.long) all_classes = set(range(num_classes)) for i in range(len(labels)): this_label = labels[i].item() other_labels = list(all_classes.difference({this_label})) all_possible_targets[i] = torch.tensor(other_labels) return all_possible_targets def run_attack(model: nn.Module, inputs: Tensor, labels: Tensor, attack: Callable, targets: Optional[Tensor] = None, batch_size: Optional[int] = None) -> dict: device = next(model.parameters()).device to_device = lambda tensor: tensor.to(device) targeted, adv_labels = False, labels if targets is not None: targeted, adv_labels = True, targets batch_size = batch_size or len(inputs) # run attack only on non already adversarial samples already_adv = [] chunks = [tensor.split(batch_size) for tensor in [inputs, adv_labels]] for (inputs_chunk, label_chunk) in zip(*chunks): batch_chunk_d, label_chunk_d = [to_device(tensor) for tensor in [inputs_chunk, label_chunk]] preds = model(batch_chunk_d).argmax(1) is_adv = (preds == label_chunk_d) if targeted else (preds != label_chunk_d) already_adv.append(is_adv.cpu()) not_adv = ~torch.cat(already_adv, 0) start, end = torch.cuda.Event(enable_timing=True), torch.cuda.Event(enable_timing=True) forward_counter, backward_counter = ForwardCounter(), BackwardCounter() model.register_forward_pre_hook(forward_counter) if LooseVersion(torch.__version__) >= LooseVersion('1.8'): model.register_full_backward_hook(backward_counter) else: model.register_backward_hook(backward_counter) average_forwards, average_backwards = [], [] # number of forward and backward calls per sample advs_chunks = [] chunks = [tensor.split(batch_size) for tensor in [inputs[not_adv], adv_labels[not_adv]]] total_time = 0 for (inputs_chunk, label_chunk) in tqdm.tqdm(zip(*chunks), ncols=80, total=len(chunks[0])): batch_chunk_d, label_chunk_d = [to_device(tensor.clone()) for tensor in [inputs_chunk, label_chunk]] start.record() advs_chunk_d = attack(model, batch_chunk_d, label_chunk_d, targeted=targeted) # performance monitoring end.record() torch.cuda.synchronize() total_time += (start.elapsed_time(end)) / 1000 # times for cuda Events are in milliseconds average_forwards.append(forward_counter.num_samples_called / len(batch_chunk_d)) average_backwards.append(backward_counter.num_samples_called / len(batch_chunk_d)) forward_counter.reset(), backward_counter.reset() advs_chunks.append(advs_chunk_d.cpu()) if isinstance(attack, partial) and (callback := attack.keywords.get('callback')) is not None: callback.reset_windows() adv_inputs = inputs.clone() adv_inputs[not_adv] = torch.cat(advs_chunks, 0) data = { 'inputs': inputs, 'labels': labels, 'targets': adv_labels if targeted else None, 'adv_inputs': adv_inputs, 'time': total_time, 'num_forwards': sum(average_forwards) / len(chunks[0]), 'num_backwards': sum(average_backwards) / len(chunks[0]), } return data _default_metrics = OrderedDict([ ('linf', linf_distances), ('l0', l0_distances), ('l1', l1_distances), ('l2', l2_distances), ]) def compute_attack_metrics(model: nn.Module, attack_data: Dict[str, Union[Tensor, float]], batch_size: Optional[int] = None, metrics: Dict[str, Callable] = _default_metrics) -> Dict[str, Union[Tensor, float]]: inputs, labels, targets, adv_inputs = map(attack_data.get, ['inputs', 'labels', 'targets', 'adv_inputs']) if adv_inputs.min() < 0 or adv_inputs.max() > 1: warnings.warn('Values of produced adversarials are not in the [0, 1] range -> Clipping to [0, 1].') adv_inputs.clamp_(min=0, max=1) device = next(model.parameters()).device to_device = lambda tensor: tensor.to(device) batch_size = batch_size or len(inputs) chunks = [tensor.split(batch_size) for tensor in [inputs, labels, adv_inputs]] all_predictions = [[] for _ in range(6)] distances = {k: [] for k in metrics.keys()} metrics = {k: v().to(device) if (isclass(v.func) if isinstance(v, partial) else False) else v for k, v in metrics.items()} append = lambda list, data: list.append(data.cpu()) for inputs_chunk, labels_chunk, adv_chunk in zip(*chunks): inputs_chunk, adv_chunk = map(to_device, [inputs_chunk, adv_chunk]) clean_preds, adv_preds = [predict_inputs(model, chunk.to(device)) for chunk in [inputs_chunk, adv_chunk]] list(map(append, all_predictions, [*clean_preds, *adv_preds])) for metric, metric_func in metrics.items(): distances[metric].append(metric_func(adv_chunk, inputs_chunk).detach().cpu()) logits, probs, preds, logits_adv, probs_adv, preds_adv = [torch.cat(l) for l in all_predictions] for metric in metrics.keys(): distances[metric] = torch.cat(distances[metric], 0) accuracy_orig = (preds == labels).float().mean().item() if targets is not None: success = (preds_adv == targets) labels = targets else: success = (preds_adv != labels) prob_orig = probs.gather(1, labels.unsqueeze(1)).squeeze(1) prob_adv = probs_adv.gather(1, labels.unsqueeze(1)).squeeze(1) labels_infhot = torch.zeros_like(logits_adv).scatter_(1, labels.unsqueeze(1), float('inf')) real = logits_adv.gather(1, labels.unsqueeze(1)).squeeze(1) other = (logits_adv - labels_infhot).max(1).values diff_vs_max_adv = (real - other) nll = F.cross_entropy(logits, labels, reduction='none') nll_adv = F.cross_entropy(logits_adv, labels, reduction='none') data = { 'time': attack_data['time'], 'num_forwards': attack_data['num_forwards'], 'num_backwards': attack_data['num_backwards'], 'targeted': targets is not None, 'preds': preds, 'adv_preds': preds_adv, 'accuracy_orig': accuracy_orig, 'success': success, 'probs_orig': prob_orig, 'probs_adv': prob_adv, 'logit_diff_adv': diff_vs_max_adv, 'nll': nll, 'nll_adv': nll_adv, 'distances': distances, } return data def print_metrics(metrics: dict) -> None: np.set_printoptions(formatter={'float': '{:0.3f}'.format}, threshold=16, edgeitems=3, linewidth=120) # To print arrays with less precision print('Original accuracy: {:.2%}'.format(metrics['accuracy_orig'])) print('Attack done in: {:.2f}s with {:.4g} forwards and {:.4g} backwards.'.format( metrics['time'], metrics['num_forwards'], metrics['num_backwards'])) success = metrics['success'].numpy() fail = bool(success.mean() != 1) print('Attack success: {:.2%}'.format(success.mean()) + fail * ' - {}'.format(success)) for distance, values in metrics['distances'].items(): data = values.numpy() print('{}: {} - Average: {:.3f} - Median: {:.3f}'.format(distance, data, data.mean(), np.median(data)) + fail * ' | Avg over success: {:.3f}'.format(data[success].mean())) attack_type = 'targets' if metrics['targeted'] else 'correct' print('Logit({} class) - max_Logit(other classes): {} - Average: {:.2f}'.format( attack_type, metrics['logit_diff_adv'].numpy(), metrics['logit_diff_adv'].numpy().mean())) print('NLL of target/pred class: {:.3f}'.format(metrics['nll_adv'].numpy().mean()))
[ "torch.cuda.Event", "collections.OrderedDict", "numpy.median", "inspect.isclass", "torch.cuda.synchronize", "torch.tensor", "torch.zeros_like", "adv_lib.utils.ForwardCounter", "torch.nn.functional.cross_entropy", "adv_lib.utils.BackwardCounter", "distutils.version.LooseVersion", "warnings.warn", "torch.cat", "numpy.set_printoptions" ]
[((5060, 5169), 'collections.OrderedDict', 'OrderedDict', (["[('linf', linf_distances), ('l0', l0_distances), ('l1', l1_distances), (\n 'l2', l2_distances)]"], {}), "([('linf', linf_distances), ('l0', l0_distances), ('l1',\n l1_distances), ('l2', l2_distances)])\n", (5071, 5169), False, 'from collections import OrderedDict\n'), ((4679, 4704), 'torch.cat', 'torch.cat', (['advs_chunks', '(0)'], {}), '(advs_chunks, 0)\n', (4688, 4704), False, 'import torch\n'), ((7563, 7612), 'torch.nn.functional.cross_entropy', 'F.cross_entropy', (['logits', 'labels'], {'reduction': '"""none"""'}), "(logits, labels, reduction='none')\n", (7578, 7612), True, 'from torch.nn import functional as F\n'), ((7627, 7680), 'torch.nn.functional.cross_entropy', 'F.cross_entropy', (['logits_adv', 'labels'], {'reduction': '"""none"""'}), "(logits_adv, labels, reduction='none')\n", (7642, 7680), True, 'from torch.nn import functional as F\n'), ((8263, 8367), 'numpy.set_printoptions', 'np.set_printoptions', ([], {'formatter': "{'float': '{:0.3f}'.format}", 'threshold': '(16)', 'edgeitems': '(3)', 'linewidth': '(120)'}), "(formatter={'float': '{:0.3f}'.format}, threshold=16,\n edgeitems=3, linewidth=120)\n", (8282, 8367), True, 'import numpy as np\n'), ((1980, 2006), 'torch.tensor', 'torch.tensor', (['other_labels'], {}), '(other_labels)\n', (1992, 2006), False, 'import torch\n'), ((3023, 3048), 'torch.cat', 'torch.cat', (['already_adv', '(0)'], {}), '(already_adv, 0)\n', (3032, 3048), False, 'import torch\n'), ((3067, 3103), 'torch.cuda.Event', 'torch.cuda.Event', ([], {'enable_timing': '(True)'}), '(enable_timing=True)\n', (3083, 3103), False, 'import torch\n'), ((3105, 3141), 'torch.cuda.Event', 'torch.cuda.Event', ([], {'enable_timing': '(True)'}), '(enable_timing=True)\n', (3121, 3141), False, 'import torch\n'), ((3182, 3198), 'adv_lib.utils.ForwardCounter', 'ForwardCounter', ([], {}), '()\n', (3196, 3198), False, 'from adv_lib.utils import ForwardCounter, BackwardCounter, predict_inputs\n'), ((3200, 3217), 'adv_lib.utils.BackwardCounter', 'BackwardCounter', ([], {}), '()\n', (3215, 3217), False, 'from adv_lib.utils import ForwardCounter, BackwardCounter, predict_inputs\n'), ((3278, 3309), 'distutils.version.LooseVersion', 'LooseVersion', (['torch.__version__'], {}), '(torch.__version__)\n', (3290, 3309), False, 'from distutils.version import LooseVersion\n'), ((3313, 3332), 'distutils.version.LooseVersion', 'LooseVersion', (['"""1.8"""'], {}), "('1.8')\n", (3325, 3332), False, 'from distutils.version import LooseVersion\n'), ((4070, 4094), 'torch.cuda.synchronize', 'torch.cuda.synchronize', ([], {}), '()\n', (4092, 4094), False, 'import torch\n'), ((5649, 5758), 'warnings.warn', 'warnings.warn', (['"""Values of produced adversarials are not in the [0, 1] range -> Clipping to [0, 1]."""'], {}), "(\n 'Values of produced adversarials are not in the [0, 1] range -> Clipping to [0, 1].'\n )\n", (5662, 5758), False, 'import warnings\n'), ((6831, 6843), 'torch.cat', 'torch.cat', (['l'], {}), '(l)\n', (6840, 6843), False, 'import torch\n'), ((6932, 6963), 'torch.cat', 'torch.cat', (['distances[metric]', '(0)'], {}), '(distances[metric], 0)\n', (6941, 6963), False, 'import torch\n'), ((7321, 7349), 'torch.zeros_like', 'torch.zeros_like', (['logits_adv'], {}), '(logits_adv)\n', (7337, 7349), False, 'import torch\n'), ((6140, 6155), 'inspect.isclass', 'isclass', (['v.func'], {}), '(v.func)\n', (6147, 6155), False, 'from inspect import isclass\n'), ((9015, 9030), 'numpy.median', 'np.median', (['data'], {}), '(data)\n', (9024, 9030), True, 'import numpy as np\n')]
# coding: utf-8 # Copyright (c) Pymatgen Development Team. # Distributed under the terms of the MIT License. """ Module for graph representations of crystals. """ import copy import logging import os.path import subprocess import warnings from collections import defaultdict, namedtuple from itertools import combinations from operator import itemgetter import networkx as nx import networkx.algorithms.isomorphism as iso import numpy as np from monty.json import MSONable from monty.os.path import which from networkx.drawing.nx_agraph import write_dot from networkx.readwrite import json_graph from scipy.spatial import KDTree from scipy.stats import describe from pymatgen.core import Lattice, Molecule, PeriodicSite, Structure from pymatgen.core.structure import FunctionalGroups from pymatgen.util.coord import lattice_points_in_supercell from pymatgen.vis.structure_vtk import EL_COLORS try: import igraph IGRAPH_AVAILABLE = True except ImportError: IGRAPH_AVAILABLE = False logger = logging.getLogger(__name__) logger.setLevel(logging.INFO) __author__ = "<NAME>, <NAME>, <NAME>" __version__ = "0.1" __maintainer__ = "<NAME>" __email__ = "<EMAIL>" __status__ = "Production" __date__ = "August 2017" ConnectedSite = namedtuple("ConnectedSite", "site, jimage, index, weight, dist") def _compare(g1, g2, i1, i2): """ Helper function called by isomorphic to ensure comparison of node identities. """ return g1.vs[i1]["species"] == g2.vs[i2]["species"] def _igraph_from_nxgraph(graph): """ Helper function that converts a networkx graph object into an igraph graph object. """ nodes = graph.nodes(data=True) new_igraph = igraph.Graph() for node in nodes: new_igraph.add_vertex(name=str(node[0]), species=node[1]["specie"], coords=node[1]["coords"]) new_igraph.add_edges([(str(edge[0]), str(edge[1])) for edge in graph.edges()]) return new_igraph def _isomorphic(frag1, frag2): """ Internal function to check if two graph objects are isomorphic, using igraph if if is available and networkx if it is not. """ f1_nodes = frag1.nodes(data=True) f2_nodes = frag2.nodes(data=True) if len(f1_nodes) != len(f2_nodes): return False f2_edges = frag2.edges() if len(f2_edges) != len(f2_edges): return False f1_comp_dict = {} f2_comp_dict = {} for node in f1_nodes: if node[1]["specie"] not in f1_comp_dict: f1_comp_dict[node[1]["specie"]] = 1 else: f1_comp_dict[node[1]["specie"]] += 1 for node in f2_nodes: if node[1]["specie"] not in f2_comp_dict: f2_comp_dict[node[1]["specie"]] = 1 else: f2_comp_dict[node[1]["specie"]] += 1 if f1_comp_dict != f2_comp_dict: return False if IGRAPH_AVAILABLE: ifrag1 = _igraph_from_nxgraph(frag1) ifrag2 = _igraph_from_nxgraph(frag2) return ifrag1.isomorphic_vf2(ifrag2, node_compat_fn=_compare) nm = iso.categorical_node_match("specie", "ERROR") return nx.is_isomorphic(frag1.to_undirected(), frag2.to_undirected(), node_match=nm) class StructureGraph(MSONable): """ This is a class for annotating a Structure with bond information, stored in the form of a graph. A "bond" does not necessarily have to be a chemical bond, but can store any kind of information that connects two Sites. """ def __init__(self, structure, graph_data=None): """ If constructing this class manually, use the `with_empty_graph` method or `with_local_env_strategy` method (using an algorithm provided by the `local_env` module, such as O'Keeffe). This class that contains connection information: relationships between sites represented by a Graph structure, and an associated structure object. This class uses the NetworkX package to store and operate on the graph itself, but contains a lot of helper methods to make associating a graph with a given crystallographic structure easier. Use cases for this include storing bonding information, NMR J-couplings, Heisenberg exchange parameters, etc. For periodic graphs, class stores information on the graph edges of what lattice image the edge belongs to. :param structure: a Structure object :param graph_data: dict containing graph information in dict format (not intended to be constructed manually, see as_dict method for format) """ if isinstance(structure, StructureGraph): # just make a copy from input graph_data = structure.as_dict()["graphs"] self.structure = structure self.graph = nx.readwrite.json_graph.adjacency_graph(graph_data) # tidy up edge attr dicts, reading to/from json duplicates # information for u, v, k, d in self.graph.edges(keys=True, data=True): if "id" in d: del d["id"] if "key" in d: del d["key"] # ensure images are tuples (conversion to lists happens # when serializing back from json), it's important images # are hashable/immutable if "to_jimage" in d: d["to_jimage"] = tuple(d["to_jimage"]) if "from_jimage" in d: d["from_jimage"] = tuple(d["from_jimage"]) @classmethod def with_empty_graph(cls, structure, name="bonds", edge_weight_name=None, edge_weight_units=None): """ Constructor for StructureGraph, returns a StructureGraph object with an empty graph (no edges, only nodes defined that correspond to Sites in Structure). :param structure (Structure): :param name (str): name of graph, e.g. "bonds" :param edge_weight_name (str): name of edge weights, e.g. "bond_length" or "exchange_constant" :param edge_weight_units (str): name of edge weight units e.g. "Å" or "eV" :return (StructureGraph): """ if edge_weight_name and (edge_weight_units is None): raise ValueError( "Please specify units associated " "with your edge weights. Can be " "empty string if arbitrary or " "dimensionless." ) # construct graph with one node per site # graph attributes don't change behavior of graph, # they're just for book-keeping graph = nx.MultiDiGraph( edge_weight_name=edge_weight_name, edge_weight_units=edge_weight_units, name=name, ) graph.add_nodes_from(range(len(structure))) graph_data = json_graph.adjacency_data(graph) return cls(structure, graph_data=graph_data) @staticmethod def with_edges(structure, edges): """ Constructor for MoleculeGraph, using pre-existing or pre-defined edges with optional edge parameters. :param molecule: Molecule object :param edges: dict representing the bonds of the functional group (format: {(from_index, to_index, from_image, to_image): props}, where props is a dictionary of properties, including weight. Props should be None if no additional properties are to be specified. :return: sg, a StructureGraph """ sg = StructureGraph.with_empty_graph(structure, name="bonds", edge_weight_name="weight", edge_weight_units="") for edge, props in edges.items(): try: from_index = edge[0] to_index = edge[1] from_image = edge[2] to_image = edge[3] except TypeError: raise ValueError("Edges must be given as (from_index, to_index," " from_image, to_image) tuples") if props is not None: if "weight" in props.keys(): weight = props["weight"] del props["weight"] else: weight = None if len(props.items()) == 0: props = None else: weight = None nodes = sg.graph.nodes if not (from_index in nodes and to_index in nodes): raise ValueError( "Edges cannot be added if nodes are not" " present in the graph. Please check your" " indices." ) sg.add_edge( from_index, to_index, from_jimage=from_image, to_jimage=to_image, weight=weight, edge_properties=props, ) sg.set_node_attributes() return sg @staticmethod def with_local_env_strategy(structure, strategy, weights=False): """ Constructor for StructureGraph, using a strategy from :Class: `pymatgen.analysis.local_env`. :param structure: Structure object :param strategy: an instance of a :Class: `pymatgen.analysis.local_env.NearNeighbors` object :param weights: if True, use weights from local_env class (consult relevant class for their meaning) :return: """ if not strategy.structures_allowed: raise ValueError( "Chosen strategy is not designed for use with structures! " "Please choose another strategy." ) sg = StructureGraph.with_empty_graph(structure, name="bonds") for n, neighbors in enumerate(strategy.get_all_nn_info(structure)): for neighbor in neighbors: # local_env will always try to add two edges # for any one bond, one from site u to site v # and another form site v to site u: this is # harmless, so warn_duplicates=False sg.add_edge( from_index=n, from_jimage=(0, 0, 0), to_index=neighbor["site_index"], to_jimage=neighbor["image"], weight=neighbor["weight"] if weights else None, warn_duplicates=False, ) return sg @property def name(self): """ :return: Name of graph """ return self.graph.graph["name"] @property def edge_weight_name(self): """ :return: Name of the edge weight property of graph """ return self.graph.graph["edge_weight_name"] @property def edge_weight_unit(self): """ :return: Units of the edge weight property of graph """ return self.graph.graph["edge_weight_units"] def add_edge( self, from_index, to_index, from_jimage=(0, 0, 0), to_jimage=None, weight=None, warn_duplicates=True, edge_properties=None, ): """ Add edge to graph. Since physically a 'bond' (or other connection between sites) doesn't have a direction, from_index, from_jimage can be swapped with to_index, to_jimage. However, images will always always be shifted so that from_index < to_index and from_jimage becomes (0, 0, 0). :param from_index: index of site connecting from :param to_index: index of site connecting to :param from_jimage (tuple of ints): lattice vector of periodic image, e.g. (1, 0, 0) for periodic image in +x direction :param to_jimage (tuple of ints): lattice vector of image :param weight (float): e.g. bond length :param warn_duplicates (bool): if True, will warn if trying to add duplicate edges (duplicate edges will not be added in either case) :param edge_properties (dict): any other information to store on graph edges, similar to Structure's site_properties :return: """ # this is not necessary for the class to work, but # just makes it neater if to_index < from_index: to_index, from_index = from_index, to_index to_jimage, from_jimage = from_jimage, to_jimage # constrain all from_jimages to be (0, 0, 0), # initial version of this class worked even if # from_jimage != (0, 0, 0), but making this # assumption simplifies logic later if not np.array_equal(from_jimage, (0, 0, 0)): shift = from_jimage from_jimage = np.subtract(from_jimage, shift) to_jimage = np.subtract(to_jimage, shift) # automatic detection of to_jimage if user doesn't specify # will try and detect all equivalent images and add multiple # edges if appropriate if to_jimage is None: # assume we want the closest site warnings.warn("Please specify to_jimage to be unambiguous, " "trying to automatically detect.") dist, to_jimage = self.structure[from_index].distance_and_image(self.structure[to_index]) if dist == 0: # this will happen when from_index == to_index, # typically in primitive single-atom lattices images = [1, 0, 0], [0, 1, 0], [0, 0, 1] dists = [] for image in images: dists.append( self.structure[from_index].distance_and_image(self.structure[from_index], jimage=image)[0] ) dist = min(dists) equiv_sites = self.structure.get_neighbors_in_shell( self.structure[from_index].coords, dist, dist * 0.01, include_index=True ) for nnsite in equiv_sites: to_jimage = np.subtract(nnsite.frac_coords, self.structure[from_index].frac_coords) to_jimage = np.round(to_jimage).astype(int) self.add_edge( from_index=from_index, from_jimage=(0, 0, 0), to_jimage=to_jimage, to_index=nnsite.index, ) return # sanitize types from_jimage, to_jimage = ( tuple(map(int, from_jimage)), tuple(map(int, to_jimage)), ) from_index, to_index = int(from_index), int(to_index) # check we're not trying to add a duplicate edge # there should only ever be at most one edge # between a given (site, jimage) pair and another # (site, jimage) pair existing_edge_data = self.graph.get_edge_data(from_index, to_index) if existing_edge_data: for key, d in existing_edge_data.items(): if d["to_jimage"] == to_jimage: if warn_duplicates: warnings.warn( "Trying to add an edge that already exists from " "site {} to site {} in {}.".format(from_index, to_index, to_jimage) ) return # generic container for additional edge properties, # similar to site properties edge_properties = edge_properties or {} if weight: self.graph.add_edge(from_index, to_index, to_jimage=to_jimage, weight=weight, **edge_properties) else: self.graph.add_edge(from_index, to_index, to_jimage=to_jimage, **edge_properties) def insert_node( self, i, species, coords, coords_are_cartesian=False, validate_proximity=False, site_properties=None, edges=None, ): """ A wrapper around Molecule.insert(), which also incorporates the new site into the MoleculeGraph. :param i: Index at which to insert the new site :param species: Species for the new site :param coords: 3x1 array representing coordinates of the new site :param coords_are_cartesian: Whether coordinates are cartesian. Defaults to False. :param validate_proximity: For Molecule.insert(); if True (default False), distance will be checked to ensure that site can be safely added. :param site_properties: Site properties for Molecule :param edges: List of dicts representing edges to be added to the MoleculeGraph. These edges must include the index of the new site i, and all indices used for these edges should reflect the MoleculeGraph AFTER the insertion, NOT before. Each dict should at least have a "to_index" and "from_index" key, and can also have a "weight" and a "properties" key. :return: """ self.structure.insert( i, species, coords, coords_are_cartesian=coords_are_cartesian, validate_proximity=validate_proximity, properties=site_properties, ) mapping = {} for j in range(len(self.structure) - 1): if j < i: mapping[j] = j else: mapping[j] = j + 1 nx.relabel_nodes(self.graph, mapping, copy=False) self.graph.add_node(i) self.set_node_attributes() if edges is not None: for edge in edges: try: self.add_edge( edge["from_index"], edge["to_index"], from_jimage=(0, 0, 0), to_jimage=edge["to_jimage"], weight=edge.get("weight", None), edge_properties=edge.get("properties", None), ) except KeyError: raise RuntimeError("Some edges are invalid.") def set_node_attributes(self): """ Gives each node a "specie" and a "coords" attribute, updated with the current species and coordinates. :return: """ species = {} coords = {} properties = {} for node in self.graph.nodes(): species[node] = self.structure[node].specie.symbol coords[node] = self.structure[node].coords properties[node] = self.structure[node].properties nx.set_node_attributes(self.graph, species, "specie") nx.set_node_attributes(self.graph, coords, "coords") nx.set_node_attributes(self.graph, properties, "properties") def alter_edge( self, from_index, to_index, to_jimage=None, new_weight=None, new_edge_properties=None, ): """ Alters either the weight or the edge_properties of an edge in the StructureGraph. :param from_index: int :param to_index: int :param to_jimage: tuple :param new_weight: alter_edge does not require that weight be altered. As such, by default, this is None. If weight is to be changed, it should be a float. :param new_edge_properties: alter_edge does not require that edge_properties be altered. As such, by default, this is None. If any edge properties are to be changed, it should be a dictionary of edge properties to be changed. :return: """ existing_edges = self.graph.get_edge_data(from_index, to_index) # ensure that edge exists before attempting to change it if not existing_edges: raise ValueError( "Edge between {} and {} cannot be altered;\ no edge exists between those sites.".format( from_index, to_index ) ) if to_jimage is None: edge_index = 0 else: for i, properties in existing_edges.items(): if properties["to_jimage"] == to_jimage: edge_index = i if new_weight is not None: self.graph[from_index][to_index][edge_index]["weight"] = new_weight if new_edge_properties is not None: for prop in list(new_edge_properties.keys()): self.graph[from_index][to_index][edge_index][prop] = new_edge_properties[prop] def break_edge(self, from_index, to_index, to_jimage=None, allow_reverse=False): """ Remove an edge from the StructureGraph. If no image is given, this method will fail. :param from_index: int :param to_index: int :param to_jimage: tuple :param allow_reverse: If allow_reverse is True, then break_edge will attempt to break both (from_index, to_index) and, failing that, will attempt to break (to_index, from_index). :return: """ # ensure that edge exists before attempting to remove it existing_edges = self.graph.get_edge_data(from_index, to_index) existing_reverse = None if to_jimage is None: raise ValueError("Image must be supplied, to avoid ambiguity.") if existing_edges: for i, properties in existing_edges.items(): if properties["to_jimage"] == to_jimage: edge_index = i self.graph.remove_edge(from_index, to_index, edge_index) else: if allow_reverse: existing_reverse = self.graph.get_edge_data(to_index, from_index) if existing_reverse: for i, properties in existing_reverse.items(): if properties["to_jimage"] == to_jimage: edge_index = i self.graph.remove_edge(to_index, from_index, edge_index) else: raise ValueError( "Edge cannot be broken between {} and {};\ no edge exists between those sites.".format( from_index, to_index ) ) def remove_nodes(self, indices): """ A wrapper for Molecule.remove_sites(). :param indices: list of indices in the current Molecule (and graph) to be removed. :return: """ self.structure.remove_sites(indices) self.graph.remove_nodes_from(indices) mapping = {} for correct, current in enumerate(sorted(self.graph.nodes)): mapping[current] = correct nx.relabel_nodes(self.graph, mapping, copy=False) self.set_node_attributes() def substitute_group( self, index, func_grp, strategy, bond_order=1, graph_dict=None, strategy_params=None, ): """ Builds off of Structure.substitute to replace an atom in self.structure with a functional group. This method also amends self.graph to incorporate the new functional group. NOTE: Care must be taken to ensure that the functional group that is substituted will not place atoms to close to each other, or violate the dimensions of the Lattice. :param index: Index of atom to substitute. :param func_grp: Substituent molecule. There are two options: 1. Providing an actual Molecule as the input. The first atom must be a DummySpecies X, indicating the position of nearest neighbor. The second atom must be the next nearest atom. For example, for a methyl group substitution, func_grp should be X-CH3, where X is the first site and C is the second site. What the code will do is to remove the index site, and connect the nearest neighbor to the C atom in CH3. The X-C bond indicates the directionality to connect the atoms. 2. A string name. The molecule will be obtained from the relevant template in func_groups.json. :param strategy: Class from pymatgen.analysis.local_env. :param bond_order: A specified bond order to calculate the bond length between the attached functional group and the nearest neighbor site. Defaults to 1. :param graph_dict: Dictionary representing the bonds of the functional group (format: {(u, v): props}, where props is a dictionary of properties, including weight. If None, then the algorithm will attempt to automatically determine bonds using one of a list of strategies defined in pymatgen.analysis.local_env. :param strategy_params: dictionary of keyword arguments for strategy. If None, default parameters will be used. :return: """ def map_indices(grp): grp_map = {} # Get indices now occupied by functional group # Subtracting 1 because the dummy atom X should not count atoms = len(grp) - 1 offset = len(self.structure) - atoms for i in range(atoms): grp_map[i] = i + offset return grp_map if isinstance(func_grp, Molecule): func_grp = copy.deepcopy(func_grp) else: try: func_grp = copy.deepcopy(FunctionalGroups[func_grp]) except Exception: raise RuntimeError("Can't find functional group in list. " "Provide explicit coordinate instead") self.structure.substitute(index, func_grp, bond_order=bond_order) mapping = map_indices(func_grp) # Remove dummy atom "X" func_grp.remove_species("X") if graph_dict is not None: for (u, v) in graph_dict.keys(): edge_props = graph_dict[(u, v)] if "to_jimage" in edge_props.keys(): to_jimage = edge_props["to_jimage"] del edge_props["to_jimage"] else: # By default, assume that all edges should stay remain # inside the initial image to_jimage = (0, 0, 0) if "weight" in edge_props.keys(): weight = edge_props["weight"] del edge_props["weight"] self.add_edge( mapping[u], mapping[v], to_jimage=to_jimage, weight=weight, edge_properties=edge_props, ) else: if strategy_params is None: strategy_params = {} strat = strategy(**strategy_params) for site in mapping.values(): neighbors = strat.get_nn_info(self.structure, site) for neighbor in neighbors: self.add_edge( from_index=site, from_jimage=(0, 0, 0), to_index=neighbor["site_index"], to_jimage=neighbor["image"], weight=neighbor["weight"], warn_duplicates=False, ) def get_connected_sites(self, n, jimage=(0, 0, 0)): """ Returns a named tuple of neighbors of site n: periodic_site, jimage, index, weight. Index is the index of the corresponding site in the original structure, weight can be None if not defined. :param n: index of Site in Structure :param jimage: lattice vector of site :return: list of ConnectedSite tuples, sorted by closest first """ connected_sites = set() connected_site_images = set() out_edges = [(u, v, d, "out") for u, v, d in self.graph.out_edges(n, data=True)] in_edges = [(u, v, d, "in") for u, v, d in self.graph.in_edges(n, data=True)] for u, v, d, dir in out_edges + in_edges: to_jimage = d["to_jimage"] if dir == "in": u, v = v, u to_jimage = np.multiply(-1, to_jimage) to_jimage = tuple(map(int, np.add(to_jimage, jimage))) site_d = self.structure[v].as_dict() site_d["abc"] = np.add(site_d["abc"], to_jimage).tolist() site = PeriodicSite.from_dict(site_d) # from_site if jimage arg != (0, 0, 0) relative_jimage = np.subtract(to_jimage, jimage) dist = self.structure[u].distance(self.structure[v], jimage=relative_jimage) weight = d.get("weight", None) if (v, to_jimage) not in connected_site_images: connected_site = ConnectedSite(site=site, jimage=to_jimage, index=v, weight=weight, dist=dist) connected_sites.add(connected_site) connected_site_images.add((v, to_jimage)) # return list sorted by closest sites first connected_sites = list(connected_sites) connected_sites.sort(key=lambda x: x.dist) return connected_sites def get_coordination_of_site(self, n): """ Returns the number of neighbors of site n. In graph terms, simply returns degree of node corresponding to site n. :param n: index of site :return (int): """ number_of_self_loops = sum([1 for n, v in self.graph.edges(n) if n == v]) return self.graph.degree(n) - number_of_self_loops def draw_graph_to_file( self, filename="graph", diff=None, hide_unconnected_nodes=False, hide_image_edges=True, edge_colors=False, node_labels=False, weight_labels=False, image_labels=False, color_scheme="VESTA", keep_dot=False, algo="fdp", ): """ Draws graph using GraphViz. The networkx graph object itself can also be drawn with networkx's in-built graph drawing methods, but note that this might give misleading results for multigraphs (edges are super-imposed on each other). If visualization is difficult to interpret, `hide_image_edges` can help, especially in larger graphs. :param filename: filename to output, will detect filetype from extension (any graphviz filetype supported, such as pdf or png) :param diff (StructureGraph): an additional graph to compare with, will color edges red that do not exist in diff and edges green that are in diff graph but not in the reference graph :param hide_unconnected_nodes: if True, hide unconnected nodes :param hide_image_edges: if True, do not draw edges that go through periodic boundaries :param edge_colors (bool): if True, use node colors to color edges :param node_labels (bool): if True, label nodes with species and site index :param weight_labels (bool): if True, label edges with weights :param image_labels (bool): if True, label edges with their periodic images (usually only used for debugging, edges to periodic images always appear as dashed lines) :param color_scheme (str): "VESTA" or "JMOL" :param keep_dot (bool): keep GraphViz .dot file for later visualization :param algo: any graphviz algo, "neato" (for simple graphs) or "fdp" (for more crowded graphs) usually give good outputs :return: """ if not which(algo): raise RuntimeError("StructureGraph graph drawing requires " "GraphViz binaries to be in the path.") # Developer note: NetworkX also has methods for drawing # graphs using matplotlib, these also work here. However, # a dedicated tool like GraphViz allows for much easier # control over graph appearance and also correctly displays # mutli-graphs (matplotlib can superimpose multiple edges). g = self.graph.copy() g.graph = {"nodesep": 10.0, "dpi": 300, "overlap": "false"} # add display options for nodes for n in g.nodes(): # get label by species name label = "{}({})".format(str(self.structure[n].specie), n) if node_labels else "" # use standard color scheme for nodes c = EL_COLORS[color_scheme].get(str(self.structure[n].specie.symbol), [0, 0, 0]) # get contrasting font color # magic numbers account for perceived luminescence # https://stackoverflow.com/questions/1855884/determine-font-color-based-on-background-color fontcolor = "#000000" if 1 - (c[0] * 0.299 + c[1] * 0.587 + c[2] * 0.114) / 255 < 0.5 else "#ffffff" # convert color to hex string color = "#{:02x}{:02x}{:02x}".format(c[0], c[1], c[2]) g.add_node( n, fillcolor=color, fontcolor=fontcolor, label=label, fontname="Helvetica-bold", style="filled", shape="circle", ) edges_to_delete = [] # add display options for edges for u, v, k, d in g.edges(keys=True, data=True): # retrieve from/to images, set as origin if not defined to_image = d["to_jimage"] # set edge style d["style"] = "solid" if to_image != (0, 0, 0): d["style"] = "dashed" if hide_image_edges: edges_to_delete.append((u, v, k)) # don't show edge directions d["arrowhead"] = "none" # only add labels for images that are not the origin if image_labels: d["headlabel"] = "" if to_image == (0, 0, 0) else "to {}".format((to_image)) d["arrowhead"] = "normal" if d["headlabel"] else "none" # optionally color edges using node colors color_u = g.nodes[u]["fillcolor"] color_v = g.nodes[v]["fillcolor"] d["color_uv"] = "{};0.5:{};0.5".format(color_u, color_v) if edge_colors else "#000000" # optionally add weights to graph if weight_labels: units = g.graph.get("edge_weight_units", "") if d.get("weight"): d["label"] = "{:.2f} {}".format(d["weight"], units) # update edge with our new style attributes g.edges[u, v, k].update(d) # optionally remove periodic image edges, # these can be confusing due to periodic boundaries if hide_image_edges: for edge_to_delete in edges_to_delete: g.remove_edge(*edge_to_delete) # optionally hide unconnected nodes, # these can appear when removing periodic edges if hide_unconnected_nodes: g = g.subgraph([n for n in g.degree() if g.degree()[n] != 0]) # optionally highlight differences with another graph if diff: diff = self.diff(diff, strict=True) green_edges = [] red_edges = [] for u, v, k, d in g.edges(keys=True, data=True): if (u, v, d["to_jimage"]) in diff["self"]: # edge has been deleted red_edges.append((u, v, k)) elif (u, v, d["to_jimage"]) in diff["other"]: # edge has been added green_edges.append((u, v, k)) for u, v, k in green_edges: g.edges[u, v, k].update({"color_uv": "#00ff00"}) for u, v, k in red_edges: g.edges[u, v, k].update({"color_uv": "#ff0000"}) basename, extension = os.path.splitext(filename) extension = extension[1:] write_dot(g, basename + ".dot") with open(filename, "w") as f: args = [algo, "-T", extension, basename + ".dot"] rs = subprocess.Popen(args, stdout=f, stdin=subprocess.PIPE, close_fds=True) rs.communicate() if rs.returncode != 0: raise RuntimeError("{} exited with return code {}.".format(algo, rs.returncode)) if not keep_dot: os.remove(basename + ".dot") @property def types_and_weights_of_connections(self): """ Extract a dictionary summarizing the types and weights of edges in the graph. :return: A dictionary with keys specifying the species involved in a connection in alphabetical order (e.g. string 'Fe-O') and values which are a list of weights for those connections (e.g. bond lengths). """ def get_label(u, v): u_label = self.structure[u].species_string v_label = self.structure[v].species_string return "-".join(sorted((u_label, v_label))) types = defaultdict(list) for u, v, d in self.graph.edges(data=True): label = get_label(u, v) types[label].append(d["weight"]) return dict(types) @property def weight_statistics(self): """ Extract a statistical summary of edge weights present in the graph. :return: A dict with an 'all_weights' list, 'minimum', 'maximum', 'median', 'mean', 'std_dev' """ all_weights = [d.get("weight", None) for u, v, d in self.graph.edges(data=True)] stats = describe(all_weights, nan_policy="omit") return { "all_weights": all_weights, "min": stats.minmax[0], "max": stats.minmax[1], "mean": stats.mean, "variance": stats.variance, } def types_of_coordination_environments(self, anonymous=False): """ Extract information on the different co-ordination environments present in the graph. :param anonymous: if anonymous, will replace specie names with A, B, C, etc. :return: a list of co-ordination environments, e.g. ['Mo-S(6)', 'S-Mo(3)'] """ motifs = set() for idx, site in enumerate(self.structure): centre_sp = site.species_string connected_sites = self.get_connected_sites(idx) connected_species = [connected_site.site.species_string for connected_site in connected_sites] labels = [] for sp in set(connected_species): count = connected_species.count(sp) labels.append((count, sp)) labels = sorted(labels, reverse=True) if anonymous: mapping = {centre_sp: "A"} available_letters = [chr(66 + i) for i in range(25)] for label in labels: sp = label[1] if sp not in mapping: mapping[sp] = available_letters.pop(0) centre_sp = "A" labels = [(label[0], mapping[label[1]]) for label in labels] labels = ["{}({})".format(label[1], label[0]) for label in labels] motif = "{}-{}".format(centre_sp, ",".join(labels)) motifs.add(motif) return sorted(list(motifs)) def as_dict(self): """ As in :Class: `pymatgen.core.Structure` except with using `to_dict_of_dicts` from NetworkX to store graph information. """ d = { "@module": self.__class__.__module__, "@class": self.__class__.__name__, "structure": self.structure.as_dict(), "graphs": json_graph.adjacency_data(self.graph), } return d @classmethod def from_dict(cls, d): """ As in :Class: `pymatgen.core.Structure` except restoring graphs using `from_dict_of_dicts` from NetworkX to restore graph information. """ s = Structure.from_dict(d["structure"]) return cls(s, d["graphs"]) def __mul__(self, scaling_matrix): """ Replicates the graph, creating a supercell, intelligently joining together edges that lie on periodic boundaries. In principle, any operations on the expanded graph could also be done on the original graph, but a larger graph can be easier to visualize and reason about. :param scaling_matrix: same as Structure.__mul__ :return: """ # Developer note: a different approach was also trialed, using # a simple Graph (instead of MultiDiGraph), with node indices # representing both site index and periodic image. Here, the # number of nodes != number of sites in the Structure. This # approach has many benefits, but made it more difficult to # keep the graph in sync with its corresponding Structure. # Broadly, it would be easier to multiply the Structure # *before* generating the StructureGraph, but this isn't # possible when generating the graph using critic2 from # charge density. # Multiplication works by looking for the expected position # of an image node, and seeing if that node exists in the # supercell. If it does, the edge is updated. This is more # computationally expensive than just keeping track of the # which new lattice images present, but should hopefully be # easier to extend to a general 3x3 scaling matrix. # code adapted from Structure.__mul__ scale_matrix = np.array(scaling_matrix, np.int16) if scale_matrix.shape != (3, 3): scale_matrix = np.array(scale_matrix * np.eye(3), np.int16) else: # TODO: test __mul__ with full 3x3 scaling matrices raise NotImplementedError("Not tested with 3x3 scaling matrices yet.") new_lattice = Lattice(np.dot(scale_matrix, self.structure.lattice.matrix)) f_lat = lattice_points_in_supercell(scale_matrix) c_lat = new_lattice.get_cartesian_coords(f_lat) new_sites = [] new_graphs = [] for v in c_lat: # create a map of nodes from original graph to its image mapping = {n: n + len(new_sites) for n in range(len(self.structure))} for idx, site in enumerate(self.structure): s = PeriodicSite( site.species, site.coords + v, new_lattice, properties=site.properties, coords_are_cartesian=True, to_unit_cell=False, ) new_sites.append(s) new_graphs.append(nx.relabel_nodes(self.graph, mapping, copy=True)) new_structure = Structure.from_sites(new_sites) # merge all graphs into one big graph new_g = nx.MultiDiGraph() for new_graph in new_graphs: new_g = nx.union(new_g, new_graph) edges_to_remove = [] # tuple of (u, v, k) edges_to_add = [] # tuple of (u, v, attr_dict) # list of new edges inside supercell # for duplicate checking edges_inside_supercell = [{u, v} for u, v, d in new_g.edges(data=True) if d["to_jimage"] == (0, 0, 0)] new_periodic_images = [] orig_lattice = self.structure.lattice # use k-d tree to match given position to an # existing Site in Structure kd_tree = KDTree(new_structure.cart_coords) # tolerance in Å for sites to be considered equal # this could probably be a lot smaller tol = 0.05 for u, v, k, d in new_g.edges(keys=True, data=True): to_jimage = d["to_jimage"] # for node v # reduce unnecessary checking if to_jimage != (0, 0, 0): # get index in original site n_u = u % len(self.structure) n_v = v % len(self.structure) # get fractional co-ordinates of where atoms defined # by edge are expected to be, relative to original # lattice (keeping original lattice has # significant benefits) v_image_frac = np.add(self.structure[n_v].frac_coords, to_jimage) u_frac = self.structure[n_u].frac_coords # using the position of node u as a reference, # get relative Cartesian co-ordinates of where # atoms defined by edge are expected to be v_image_cart = orig_lattice.get_cartesian_coords(v_image_frac) u_cart = orig_lattice.get_cartesian_coords(u_frac) v_rel = np.subtract(v_image_cart, u_cart) # now retrieve position of node v in # new supercell, and get asgolute Cartesian # co-ordinates of where atoms defined by edge # are expected to be v_expec = new_structure[u].coords + v_rel # now search in new structure for these atoms # query returns (distance, index) v_present = kd_tree.query(v_expec) v_present = v_present[1] if v_present[0] <= tol else None # check if image sites now present in supercell # and if so, delete old edge that went through # periodic boundary if v_present is not None: new_u = u new_v = v_present new_d = d.copy() # node now inside supercell new_d["to_jimage"] = (0, 0, 0) edges_to_remove.append((u, v, k)) # make sure we don't try to add duplicate edges # will remove two edges for everyone one we add if {new_u, new_v} not in edges_inside_supercell: # normalize direction if new_v < new_u: new_u, new_v = new_v, new_u edges_inside_supercell.append({new_u, new_v}) edges_to_add.append((new_u, new_v, new_d)) else: # want to find new_v such that we have # full periodic boundary conditions # so that nodes on one side of supercell # are connected to nodes on opposite side v_expec_frac = new_structure.lattice.get_fractional_coords(v_expec) # find new to_jimage # use np.around to fix issues with finite precision leading to incorrect image v_expec_image = np.around(v_expec_frac, decimals=3) v_expec_image = v_expec_image - v_expec_image % 1 v_expec_frac = np.subtract(v_expec_frac, v_expec_image) v_expec = new_structure.lattice.get_cartesian_coords(v_expec_frac) v_present = kd_tree.query(v_expec) v_present = v_present[1] if v_present[0] <= tol else None if v_present is not None: new_u = u new_v = v_present new_d = d.copy() new_to_jimage = tuple(map(int, v_expec_image)) # normalize direction if new_v < new_u: new_u, new_v = new_v, new_u new_to_jimage = tuple(np.multiply(-1, d["to_jimage"]).astype(int)) new_d["to_jimage"] = new_to_jimage edges_to_remove.append((u, v, k)) if (new_u, new_v, new_to_jimage) not in new_periodic_images: edges_to_add.append((new_u, new_v, new_d)) new_periodic_images.append((new_u, new_v, new_to_jimage)) logger.debug("Removing {} edges, adding {} new edges.".format(len(edges_to_remove), len(edges_to_add))) # add/delete marked edges for edges_to_remove in edges_to_remove: new_g.remove_edge(*edges_to_remove) for (u, v, d) in edges_to_add: new_g.add_edge(u, v, **d) # return new instance of StructureGraph with supercell d = { "@module": self.__class__.__module__, "@class": self.__class__.__name__, "structure": new_structure.as_dict(), "graphs": json_graph.adjacency_data(new_g), } sg = StructureGraph.from_dict(d) return sg def __rmul__(self, other): return self.__mul__(other) @classmethod def _edges_to_string(cls, g): header = "from to to_image " header_line = "---- ---- ------------" edge_weight_name = g.graph["edge_weight_name"] if edge_weight_name: print_weights = ["weight"] edge_label = g.graph["edge_weight_name"] edge_weight_units = g.graph["edge_weight_units"] if edge_weight_units: edge_label += " ({})".format(edge_weight_units) header += " {}".format(edge_label) header_line += " {}".format("-" * max([18, len(edge_label)])) else: print_weights = False s = header + "\n" + header_line + "\n" edges = list(g.edges(data=True)) # sort edges for consistent ordering edges.sort(key=itemgetter(0, 1)) if print_weights: for u, v, data in edges: s += "{:4} {:4} {:12} {:.3e}\n".format( u, v, str(data.get("to_jimage", (0, 0, 0))), data.get("weight", 0) ) else: for u, v, data in edges: s += "{:4} {:4} {:12}\n".format(u, v, str(data.get("to_jimage", (0, 0, 0)))) return s def __str__(self): s = "Structure Graph" s += "\nStructure: \n{}".format(self.structure.__str__()) s += "\nGraph: {}\n".format(self.name) s += self._edges_to_string(self.graph) return s def __repr__(self): s = "Structure Graph" s += "\nStructure: \n{}".format(self.structure.__repr__()) s += "\nGraph: {}\n".format(self.name) s += self._edges_to_string(self.graph) return s def __len__(self): """ :return: length of Structure / number of nodes in graph """ return len(self.structure) def sort(self, key=None, reverse=False): """ Same as Structure.sort(), also remaps nodes in graph. :param key: :param reverse: :return: """ old_structure = self.structure.copy() # sort Structure self.structure._sites = sorted(self.structure._sites, key=key, reverse=reverse) # apply Structure ordering to graph mapping = {idx: self.structure.index(site) for idx, site in enumerate(old_structure)} self.graph = nx.relabel_nodes(self.graph, mapping, copy=True) # normalize directions of edges edges_to_remove = [] edges_to_add = [] for u, v, k, d in self.graph.edges(keys=True, data=True): if v < u: new_v, new_u, new_d = u, v, d.copy() new_d["to_jimage"] = tuple(np.multiply(-1, d["to_jimage"]).astype(int)) edges_to_remove.append((u, v, k)) edges_to_add.append((new_u, new_v, new_d)) # add/delete marked edges for edges_to_remove in edges_to_remove: self.graph.remove_edge(*edges_to_remove) for (u, v, d) in edges_to_add: self.graph.add_edge(u, v, **d) def __copy__(self): return StructureGraph.from_dict(self.as_dict()) def __eq__(self, other): """ Two StructureGraphs are equal if they have equal Structures, and have the same edges between Sites. Edge weights can be different and StructureGraphs can still be considered equal. :param other: StructureGraph :return (bool): """ # sort for consistent node indices # PeriodicSite should have a proper __hash__() value, # using its frac_coords as a convenient key mapping = {tuple(site.frac_coords): self.structure.index(site) for site in other.structure} other_sorted = other.__copy__() other_sorted.sort(key=lambda site: mapping[tuple(site.frac_coords)]) edges = {(u, v, d["to_jimage"]) for u, v, d in self.graph.edges(keys=False, data=True)} edges_other = {(u, v, d["to_jimage"]) for u, v, d in other_sorted.graph.edges(keys=False, data=True)} return (edges == edges_other) and (self.structure == other_sorted.structure) def diff(self, other, strict=True): """ Compares two StructureGraphs. Returns dict with keys 'self', 'other', 'both' with edges that are present in only one StructureGraph ('self' and 'other'), and edges that are present in both. The Jaccard distance is a simple measure of the dissimilarity between two StructureGraphs (ignoring edge weights), and is defined by 1 - (size of the intersection / size of the union) of the sets of edges. This is returned with key 'dist'. Important note: all node indices are in terms of the StructureGraph this method is called from, not the 'other' StructureGraph: there is no guarantee the node indices will be the same if the underlying Structures are ordered differently. :param other: StructureGraph :param strict: if False, will compare bonds from different Structures, with node indices replaced by Species strings, will not count number of occurrences of bonds :return: """ if self.structure != other.structure and strict: return ValueError("Meaningless to compare StructureGraphs if " "corresponding Structures are different.") if strict: # sort for consistent node indices # PeriodicSite should have a proper __hash__() value, # using its frac_coords as a convenient key mapping = {tuple(site.frac_coords): self.structure.index(site) for site in other.structure} other_sorted = other.__copy__() other_sorted.sort(key=lambda site: mapping[tuple(site.frac_coords)]) edges = {(u, v, d["to_jimage"]) for u, v, d in self.graph.edges(keys=False, data=True)} edges_other = {(u, v, d["to_jimage"]) for u, v, d in other_sorted.graph.edges(keys=False, data=True)} else: edges = { (str(self.structure[u].specie), str(self.structure[v].specie)) for u, v, d in self.graph.edges(keys=False, data=True) } edges_other = { (str(other.structure[u].specie), str(other.structure[v].specie)) for u, v, d in other.graph.edges(keys=False, data=True) } if len(edges) == 0 and len(edges_other) == 0: jaccard_dist = 0 # by definition else: jaccard_dist = 1 - len(edges.intersection(edges_other)) / len(edges.union(edges_other)) return { "self": edges - edges_other, "other": edges_other - edges, "both": edges.intersection(edges_other), "dist": jaccard_dist, } def get_subgraphs_as_molecules(self, use_weights=False): """ Retrieve subgraphs as molecules, useful for extracting molecules from periodic crystals. Will only return unique molecules, not any duplicates present in the crystal (a duplicate defined as an isomorphic subgraph). :param use_weights (bool): If True, only treat subgraphs as isomorphic if edges have the same weights. Typically, this means molecules will need to have the same bond lengths to be defined as duplicates, otherwise bond lengths can differ. This is a fairly robust approach, but will treat e.g. enantiomers as being duplicates. :return: list of unique Molecules in Structure """ # creating a supercell is an easy way to extract # molecules (and not, e.g., layers of a 2D crystal) # without adding extra logic if getattr(self, "_supercell_sg", None) is None: self._supercell_sg = supercell_sg = self * (3, 3, 3) # make undirected to find connected subgraphs supercell_sg.graph = nx.Graph(supercell_sg.graph) # find subgraphs all_subgraphs = [supercell_sg.graph.subgraph(c) for c in nx.connected_components(supercell_sg.graph)] # discount subgraphs that lie across *supercell* boundaries # these will subgraphs representing crystals molecule_subgraphs = [] for subgraph in all_subgraphs: intersects_boundary = any(d["to_jimage"] != (0, 0, 0) for u, v, d in subgraph.edges(data=True)) if not intersects_boundary: molecule_subgraphs.append(nx.MultiDiGraph(subgraph)) # add specie names to graph to be able to test for isomorphism for subgraph in molecule_subgraphs: for n in subgraph: subgraph.add_node(n, specie=str(supercell_sg.structure[n].specie)) # now define how we test for isomorphism def node_match(n1, n2): return n1["specie"] == n2["specie"] def edge_match(e1, e2): if use_weights: return e1["weight"] == e2["weight"] return True # prune duplicate subgraphs unique_subgraphs = [] for subgraph in molecule_subgraphs: already_present = [ nx.is_isomorphic(subgraph, g, node_match=node_match, edge_match=edge_match) for g in unique_subgraphs ] if not any(already_present): unique_subgraphs.append(subgraph) # get Molecule objects for each subgraph molecules = [] for subgraph in unique_subgraphs: coords = [supercell_sg.structure[n].coords for n in subgraph.nodes()] species = [supercell_sg.structure[n].specie for n in subgraph.nodes()] molecule = Molecule(species, coords) # shift so origin is at center of mass molecule = molecule.get_centered_molecule() molecules.append(molecule) return molecules class MolGraphSplitError(Exception): """ Raised when a molecule graph is failed to split into two disconnected subgraphs """ pass class MoleculeGraph(MSONable): """ This is a class for annotating a Molecule with bond information, stored in the form of a graph. A "bond" does not necessarily have to be a chemical bond, but can store any kind of information that connects two Sites. """ def __init__(self, molecule, graph_data=None): """ If constructing this class manually, use the `with_empty_graph` method or `with_local_env_strategy` method (using an algorithm provided by the `local_env` module, such as O'Keeffe). This class that contains connection information: relationships between sites represented by a Graph structure, and an associated structure object. This class uses the NetworkX package to store and operate on the graph itself, but contains a lot of helper methods to make associating a graph with a given molecule easier. Use cases for this include storing bonding information, NMR J-couplings, Heisenberg exchange parameters, etc. :param molecule: Molecule object :param graph_data: dict containing graph information in dict format (not intended to be constructed manually, see as_dict method for format) """ if isinstance(molecule, MoleculeGraph): # just make a copy from input graph_data = molecule.as_dict()["graphs"] self.molecule = molecule self.graph = nx.readwrite.json_graph.adjacency_graph(graph_data) # tidy up edge attr dicts, reading to/from json duplicates # information for u, v, k, d in self.graph.edges(keys=True, data=True): if "id" in d: del d["id"] if "key" in d: del d["key"] # ensure images are tuples (conversion to lists happens # when serializing back from json), it's important images # are hashable/immutable if "to_jimage" in d: d["to_jimage"] = tuple(d["to_jimage"]) if "from_jimage" in d: d["from_jimage"] = tuple(d["from_jimage"]) self.set_node_attributes() @classmethod def with_empty_graph(cls, molecule, name="bonds", edge_weight_name=None, edge_weight_units=None): """ Constructor for MoleculeGraph, returns a MoleculeGraph object with an empty graph (no edges, only nodes defined that correspond to Sites in Molecule). :param molecule (Molecule): :param name (str): name of graph, e.g. "bonds" :param edge_weight_name (str): name of edge weights, e.g. "bond_length" or "exchange_constant" :param edge_weight_units (str): name of edge weight units e.g. "Å" or "eV" :return (MoleculeGraph): """ if edge_weight_name and (edge_weight_units is None): raise ValueError( "Please specify units associated " "with your edge weights. Can be " "empty string if arbitrary or " "dimensionless." ) # construct graph with one node per site # graph attributes don't change behavior of graph, # they're just for book-keeping graph = nx.MultiDiGraph( edge_weight_name=edge_weight_name, edge_weight_units=edge_weight_units, name=name, ) graph.add_nodes_from(range(len(molecule))) graph_data = json_graph.adjacency_data(graph) return cls(molecule, graph_data=graph_data) @staticmethod def with_edges(molecule, edges): """ Constructor for MoleculeGraph, using pre-existing or pre-defined edges with optional edge parameters. :param molecule: Molecule object :param edges: dict representing the bonds of the functional group (format: {(u, v): props}, where props is a dictionary of properties, including weight. Props should be None if no additional properties are to be specified. :return: mg, a MoleculeGraph """ mg = MoleculeGraph.with_empty_graph(molecule, name="bonds", edge_weight_name="weight", edge_weight_units="") for edge, props in edges.items(): try: from_index = edge[0] to_index = edge[1] except TypeError: raise ValueError("Edges must be given as (from_index, to_index)" "tuples") if props is not None: if "weight" in props.keys(): weight = props["weight"] del props["weight"] else: weight = None if len(props.items()) == 0: props = None else: weight = None nodes = mg.graph.nodes if not (from_index in nodes and to_index in nodes): raise ValueError( "Edges cannot be added if nodes are not" " present in the graph. Please check your" " indices." ) mg.add_edge(from_index, to_index, weight=weight, edge_properties=props) mg.set_node_attributes() return mg @staticmethod def with_local_env_strategy(molecule, strategy): """ Constructor for MoleculeGraph, using a strategy from :Class: `pymatgen.analysis.local_env`. :param molecule: Molecule object :param strategy: an instance of a :Class: `pymatgen.analysis.local_env.NearNeighbors` object :return: mg, a MoleculeGraph """ if not strategy.molecules_allowed: raise ValueError( "Chosen strategy is not designed for use with molecules! " "Please choose another strategy." ) extend_structure = strategy.extend_structure_molecules mg = MoleculeGraph.with_empty_graph(molecule, name="bonds", edge_weight_name="weight", edge_weight_units="") # NearNeighbor classes only (generally) work with structures # molecules have to be boxed first coords = molecule.cart_coords if extend_structure: a = max(coords[:, 0]) - min(coords[:, 0]) + 100 b = max(coords[:, 1]) - min(coords[:, 1]) + 100 c = max(coords[:, 2]) - min(coords[:, 2]) + 100 structure = molecule.get_boxed_structure(a, b, c, no_cross=True, reorder=False) else: structure = None for n in range(len(molecule)): if structure is None: neighbors = strategy.get_nn_info(molecule, n) else: neighbors = strategy.get_nn_info(structure, n) for neighbor in neighbors: # all bonds in molecules should not cross # (artificial) periodic boundaries if not np.array_equal(neighbor["image"], [0, 0, 0]): continue if n > neighbor["site_index"]: from_index = neighbor["site_index"] to_index = n else: from_index = n to_index = neighbor["site_index"] mg.add_edge( from_index=from_index, to_index=to_index, weight=neighbor["weight"], warn_duplicates=False, ) duplicates = [] for edge in mg.graph.edges: if edge[2] != 0: duplicates.append(edge) for duplicate in duplicates: mg.graph.remove_edge(duplicate[0], duplicate[1], key=duplicate[2]) mg.set_node_attributes() return mg @property def name(self): """ :return: Name of graph """ return self.graph.graph["name"] @property def edge_weight_name(self): """ :return: Name of the edge weight property of graph """ return self.graph.graph["edge_weight_name"] @property def edge_weight_unit(self): """ :return: Units of the edge weight property of graph """ return self.graph.graph["edge_weight_units"] def add_edge( self, from_index, to_index, weight=None, warn_duplicates=True, edge_properties=None, ): """ Add edge to graph. Since physically a 'bond' (or other connection between sites) doesn't have a direction, from_index, from_jimage can be swapped with to_index, to_jimage. However, images will always always be shifted so that from_index < to_index and from_jimage becomes (0, 0, 0). :param from_index: index of site connecting from :param to_index: index of site connecting to :param weight (float): e.g. bond length :param warn_duplicates (bool): if True, will warn if trying to add duplicate edges (duplicate edges will not be added in either case) :param edge_properties (dict): any other information to store on graph edges, similar to Structure's site_properties :return: """ # this is not necessary for the class to work, but # just makes it neater if to_index < from_index: to_index, from_index = from_index, to_index # sanitize types from_index, to_index = int(from_index), int(to_index) # check we're not trying to add a duplicate edge # there should only ever be at most one edge # between two sites existing_edge_data = self.graph.get_edge_data(from_index, to_index) if existing_edge_data and warn_duplicates: warnings.warn( "Trying to add an edge that already exists from " "site {} to site {}.".format(from_index, to_index) ) return # generic container for additional edge properties, # similar to site properties edge_properties = edge_properties or {} if weight: self.graph.add_edge(from_index, to_index, weight=weight, **edge_properties) else: self.graph.add_edge(from_index, to_index, **edge_properties) def insert_node( self, i, species, coords, validate_proximity=False, site_properties=None, edges=None, ): """ A wrapper around Molecule.insert(), which also incorporates the new site into the MoleculeGraph. :param i: Index at which to insert the new site :param species: Species for the new site :param coords: 3x1 array representing coordinates of the new site :param validate_proximity: For Molecule.insert(); if True (default False), distance will be checked to ensure that site can be safely added. :param site_properties: Site properties for Molecule :param edges: List of dicts representing edges to be added to the MoleculeGraph. These edges must include the index of the new site i, and all indices used for these edges should reflect the MoleculeGraph AFTER the insertion, NOT before. Each dict should at least have a "to_index" and "from_index" key, and can also have a "weight" and a "properties" key. :return: """ self.molecule.insert( i, species, coords, validate_proximity=validate_proximity, properties=site_properties, ) mapping = {} for j in range(len(self.molecule) - 1): if j < i: mapping[j] = j else: mapping[j] = j + 1 nx.relabel_nodes(self.graph, mapping, copy=False) self.graph.add_node(i) self.set_node_attributes() if edges is not None: for edge in edges: try: self.add_edge( edge["from_index"], edge["to_index"], weight=edge.get("weight", None), edge_properties=edge.get("properties", None), ) except KeyError: raise RuntimeError("Some edges are invalid.") def set_node_attributes(self): """ Replicates molecule site properties (specie, coords, etc.) in the MoleculeGraph. :return: """ species = {} coords = {} properties = {} for node in self.graph.nodes(): species[node] = self.molecule[node].specie.symbol coords[node] = self.molecule[node].coords properties[node] = self.molecule[node].properties nx.set_node_attributes(self.graph, species, "specie") nx.set_node_attributes(self.graph, coords, "coords") nx.set_node_attributes(self.graph, properties, "properties") def alter_edge(self, from_index, to_index, new_weight=None, new_edge_properties=None): """ Alters either the weight or the edge_properties of an edge in the MoleculeGraph. :param from_index: int :param to_index: int :param new_weight: alter_edge does not require that weight be altered. As such, by default, this is None. If weight is to be changed, it should be a float. :param new_edge_properties: alter_edge does not require that edge_properties be altered. As such, by default, this is None. If any edge properties are to be changed, it should be a dictionary of edge properties to be changed. :return: """ existing_edge = self.graph.get_edge_data(from_index, to_index) # ensure that edge exists before attempting to change it if not existing_edge: raise ValueError( "Edge between {} and {} cannot be altered;\ no edge exists between those sites.".format( from_index, to_index ) ) # Third index should always be 0 because there should only be one edge between any two nodes if new_weight is not None: self.graph[from_index][to_index][0]["weight"] = new_weight if new_edge_properties is not None: for prop in list(new_edge_properties.keys()): self.graph[from_index][to_index][0][prop] = new_edge_properties[prop] def break_edge(self, from_index, to_index, allow_reverse=False): """ Remove an edge from the MoleculeGraph :param from_index: int :param to_index: int :param allow_reverse: If allow_reverse is True, then break_edge will attempt to break both (from_index, to_index) and, failing that, will attempt to break (to_index, from_index). :return: """ # ensure that edge exists before attempting to remove it existing_edge = self.graph.get_edge_data(from_index, to_index) existing_reverse = None if existing_edge: self.graph.remove_edge(from_index, to_index) else: if allow_reverse: existing_reverse = self.graph.get_edge_data(to_index, from_index) if existing_reverse: self.graph.remove_edge(to_index, from_index) else: raise ValueError( "Edge cannot be broken between {} and {};\ no edge exists between those sites.".format( from_index, to_index ) ) def remove_nodes(self, indices): """ A wrapper for Molecule.remove_sites(). :param indices: list of indices in the current Molecule (and graph) to be removed. :return: """ self.molecule.remove_sites(indices) self.graph.remove_nodes_from(indices) mapping = {} for correct, current in enumerate(sorted(self.graph.nodes)): mapping[current] = correct nx.relabel_nodes(self.graph, mapping, copy=False) self.set_node_attributes() def get_disconnected_fragments(self): """ Determine if the MoleculeGraph is connected. If it is not, separate the MoleculeGraph into different MoleculeGraphs, where each resulting MoleculeGraph is a disconnected subgraph of the original. Currently, this function naively assigns the charge of the total molecule to a single submolecule. A later effort will be to actually accurately assign charge. NOTE: This function does not modify the original MoleculeGraph. It creates a copy, modifies that, and returns two or more new MoleculeGraph objects. :return: list of MoleculeGraphs """ if nx.is_weakly_connected(self.graph): return [copy.deepcopy(self)] original = copy.deepcopy(self) sub_mols = list() # Had to use nx.weakly_connected_components because of deprecation # of nx.weakly_connected_component_subgraphs subgraphs = [original.graph.subgraph(c) for c in nx.weakly_connected_components(original.graph)] for subg in subgraphs: nodes = sorted(list(subg.nodes)) # Molecule indices are essentially list-based, so node indices # must be remapped, incrementing from 0 mapping = {} for i, n in enumerate(nodes): mapping[n] = i # just give charge to whatever subgraph has node with index 0 # TODO: actually figure out how to distribute charge if 0 in nodes: charge = self.molecule.charge else: charge = 0 # relabel nodes in graph to match mapping new_graph = nx.relabel_nodes(subg, mapping) species = nx.get_node_attributes(new_graph, "specie") coords = nx.get_node_attributes(new_graph, "coords") raw_props = nx.get_node_attributes(new_graph, "properties") properties = {} for prop_set in raw_props.values(): for prop in prop_set.keys(): if prop in properties: properties[prop].append(prop_set[prop]) else: properties[prop] = [prop_set[prop]] # Site properties must be present for all atoms in the molecule # in order to be used for Molecule instantiation for k, v in properties.items(): if len(v) != len(species): del properties[k] new_mol = Molecule(species, coords, charge=charge, site_properties=properties) graph_data = json_graph.adjacency_data(new_graph) # create new MoleculeGraph sub_mols.append(MoleculeGraph(new_mol, graph_data=graph_data)) return sub_mols def split_molecule_subgraphs(self, bonds, allow_reverse=False, alterations=None): """ Split MoleculeGraph into two or more MoleculeGraphs by breaking a set of bonds. This function uses MoleculeGraph.break_edge repeatedly to create disjoint graphs (two or more separate molecules). This function does not only alter the graph information, but also changes the underlying Molecules. If the bonds parameter does not include sufficient bonds to separate two molecule fragments, then this function will fail. Currently, this function naively assigns the charge of the total molecule to a single submolecule. A later effort will be to actually accurately assign charge. NOTE: This function does not modify the original MoleculeGraph. It creates a copy, modifies that, and returns two or more new MoleculeGraph objects. :param bonds: list of tuples (from_index, to_index) representing bonds to be broken to split the MoleculeGraph. :param alterations: a dict {(from_index, to_index): alt}, where alt is a dictionary including weight and/or edge properties to be changed following the split. :param allow_reverse: If allow_reverse is True, then break_edge will attempt to break both (from_index, to_index) and, failing that, will attempt to break (to_index, from_index). :return: list of MoleculeGraphs """ self.set_node_attributes() original = copy.deepcopy(self) for bond in bonds: original.break_edge(bond[0], bond[1], allow_reverse=allow_reverse) if nx.is_weakly_connected(original.graph): raise MolGraphSplitError( "Cannot split molecule; \ MoleculeGraph is still connected." ) # alter any bonds before partition, to avoid remapping if alterations is not None: for (u, v) in alterations.keys(): if "weight" in alterations[(u, v)]: weight = alterations[(u, v)]["weight"] del alterations[(u, v)]["weight"] edge_properties = alterations[(u, v)] if len(alterations[(u, v)]) != 0 else None original.alter_edge(u, v, new_weight=weight, new_edge_properties=edge_properties) else: original.alter_edge(u, v, new_edge_properties=alterations[(u, v)]) return original.get_disconnected_fragments() def build_unique_fragments(self): """ Find all possible fragment combinations of the MoleculeGraphs (in other words, all connected induced subgraphs) :return: """ self.set_node_attributes() graph = self.graph.to_undirected() # find all possible fragments, aka connected induced subgraphs frag_dict = {} for ii in range(1, len(self.molecule)): for combination in combinations(graph.nodes, ii): mycomp = [] for idx in combination: mycomp.append(str(self.molecule[idx].specie)) mycomp = "".join(sorted(mycomp)) subgraph = nx.subgraph(graph, combination) if nx.is_connected(subgraph): mykey = mycomp + str(len(subgraph.edges())) if mykey not in frag_dict: frag_dict[mykey] = [copy.deepcopy(subgraph)] else: frag_dict[mykey].append(copy.deepcopy(subgraph)) # narrow to all unique fragments using graph isomorphism unique_frag_dict = {} for key in frag_dict: unique_frags = [] for frag in frag_dict[key]: found = False for f in unique_frags: if _isomorphic(frag, f): found = True break if not found: unique_frags.append(frag) unique_frag_dict[key] = copy.deepcopy(unique_frags) # convert back to molecule graphs unique_mol_graph_dict = {} for key in unique_frag_dict: unique_mol_graph_list = [] for fragment in unique_frag_dict[key]: mapping = {e: i for i, e in enumerate(sorted(fragment.nodes))} remapped = nx.relabel_nodes(fragment, mapping) species = nx.get_node_attributes(remapped, "specie") coords = nx.get_node_attributes(remapped, "coords") edges = {} for from_index, to_index, key in remapped.edges: edge_props = fragment.get_edge_data(from_index, to_index, key=key) edges[(from_index, to_index)] = edge_props unique_mol_graph_list.append( self.with_edges( Molecule(species=species, coords=coords, charge=self.molecule.charge), edges, ) ) frag_key = ( str(unique_mol_graph_list[0].molecule.composition.alphabetical_formula) + " E" + str(len(unique_mol_graph_list[0].graph.edges())) ) unique_mol_graph_dict[frag_key] = copy.deepcopy(unique_mol_graph_list) return unique_mol_graph_dict def substitute_group( self, index, func_grp, strategy, bond_order=1, graph_dict=None, strategy_params=None, ): """ Builds off of Molecule.substitute to replace an atom in self.molecule with a functional group. This method also amends self.graph to incorporate the new functional group. NOTE: using a MoleculeGraph will generally produce a different graph compared with using a Molecule or str (when not using graph_dict). :param index: Index of atom to substitute. :param func_grp: Substituent molecule. There are three options: 1. Providing an actual molecule as the input. The first atom must be a DummySpecies X, indicating the position of nearest neighbor. The second atom must be the next nearest atom. For example, for a methyl group substitution, func_grp should be X-CH3, where X is the first site and C is the second site. What the code will do is to remove the index site, and connect the nearest neighbor to the C atom in CH3. The X-C bond indicates the directionality to connect the atoms. 2. A string name. The molecule will be obtained from the relevant template in func_groups.json. 3. A MoleculeGraph object. :param strategy: Class from pymatgen.analysis.local_env. :param bond_order: A specified bond order to calculate the bond length between the attached functional group and the nearest neighbor site. Defaults to 1. :param graph_dict: Dictionary representing the bonds of the functional group (format: {(u, v): props}, where props is a dictionary of properties, including weight. If None, then the algorithm will attempt to automatically determine bonds using one of a list of strategies defined in pymatgen.analysis.local_env. :param strategy_params: dictionary of keyword arguments for strategy. If None, default parameters will be used. :return: """ def map_indices(grp): grp_map = {} # Get indices now occupied by functional group # Subtracting 1 because the dummy atom X should not count atoms = len(grp) - 1 offset = len(self.molecule) - atoms for i in range(atoms): grp_map[i] = i + offset return grp_map # Work is simplified if a graph is already in place if isinstance(func_grp, MoleculeGraph): self.molecule.substitute(index, func_grp.molecule, bond_order=bond_order) mapping = map_indices(func_grp.molecule) for (u, v) in list(func_grp.graph.edges()): edge_props = func_grp.graph.get_edge_data(u, v)[0] weight = None if "weight" in edge_props.keys(): weight = edge_props["weight"] del edge_props["weight"] self.add_edge(mapping[u], mapping[v], weight=weight, edge_properties=edge_props) else: if isinstance(func_grp, Molecule): func_grp = copy.deepcopy(func_grp) else: try: func_grp = copy.deepcopy(FunctionalGroups[func_grp]) except Exception: raise RuntimeError("Can't find functional group in list. " "Provide explicit coordinate instead") self.molecule.substitute(index, func_grp, bond_order=bond_order) mapping = map_indices(func_grp) # Remove dummy atom "X" func_grp.remove_species("X") if graph_dict is not None: for (u, v) in graph_dict.keys(): edge_props = graph_dict[(u, v)] if "weight" in edge_props.keys(): weight = edge_props["weight"] del edge_props["weight"] self.add_edge( mapping[u], mapping[v], weight=weight, edge_properties=edge_props, ) else: if strategy_params is None: strategy_params = {} strat = strategy(**strategy_params) graph = self.with_local_env_strategy(func_grp, strat) for (u, v) in list(graph.graph.edges()): edge_props = graph.graph.get_edge_data(u, v)[0] weight = None if "weight" in edge_props.keys(): weight = edge_props["weight"] del edge_props["weight"] if 0 not in list(graph.graph.nodes()): # If graph indices have different indexing u, v = (u - 1), (v - 1) self.add_edge( mapping[u], mapping[v], weight=weight, edge_properties=edge_props, ) def replace_group( self, index, func_grp, strategy, bond_order=1, graph_dict=None, strategy_params=None, ): """ Builds off of Molecule.substitute and MoleculeGraph.substitute_group to replace a functional group in self.molecule with a functional group. This method also amends self.graph to incorporate the new functional group. TODO: Figure out how to replace into a ring structure. :param index: Index of atom to substitute. :param func_grp: Substituent molecule. There are three options: 1. Providing an actual molecule as the input. The first atom must be a DummySpecies X, indicating the position of nearest neighbor. The second atom must be the next nearest atom. For example, for a methyl group substitution, func_grp should be X-CH3, where X is the first site and C is the second site. What the code will do is to remove the index site, and connect the nearest neighbor to the C atom in CH3. The X-C bond indicates the directionality to connect the atoms. 2. A string name. The molecule will be obtained from the relevant template in func_groups.json. 3. A MoleculeGraph object. :param strategy: Class from pymatgen.analysis.local_env. :param bond_order: A specified bond order to calculate the bond length between the attached functional group and the nearest neighbor site. Defaults to 1. :param graph_dict: Dictionary representing the bonds of the functional group (format: {(u, v): props}, where props is a dictionary of properties, including weight. If None, then the algorithm will attempt to automatically determine bonds using one of a list of strategies defined in pymatgen.analysis.local_env. :param strategy_params: dictionary of keyword arguments for strategy. If None, default parameters will be used. :return: """ self.set_node_attributes() neighbors = self.get_connected_sites(index) # If the atom at index is terminal if len(neighbors) == 1: self.substitute_group( index, func_grp, strategy, bond_order=bond_order, graph_dict=graph_dict, strategy_params=strategy_params, ) else: rings = self.find_rings(including=[index]) if len(rings) != 0: raise RuntimeError( "Currently functional group replacement" "cannot occur at an atom within a ring" "structure." ) to_remove = set() sizes = dict() disconnected = self.graph.to_undirected() disconnected.remove_node(index) for neighbor in neighbors: sizes[neighbor[2]] = len(nx.descendants(disconnected, neighbor[2])) keep = max(sizes, key=lambda x: sizes[x]) for i in sizes.keys(): if i != keep: to_remove.add(i) self.remove_nodes(list(to_remove)) self.substitute_group( index, func_grp, strategy, bond_order=bond_order, graph_dict=graph_dict, strategy_params=strategy_params, ) def find_rings(self, including=None): """ Find ring structures in the MoleculeGraph. :param including: list of site indices. If including is not None, then find_rings will only return those rings including the specified sites. By default, this parameter is None, and all rings will be returned. :return: dict {index:cycle}. Each entry will be a ring (cycle, in graph theory terms) including the index found in the Molecule. If there is no cycle including an index, the value will be an empty list. """ # Copies self.graph such that all edges (u, v) matched by edges (v, u) undirected = self.graph.to_undirected() directed = undirected.to_directed() cycles_nodes = [] cycles_edges = [] # Remove all two-edge cycles all_cycles = [c for c in nx.simple_cycles(directed) if len(c) > 2] # Using to_directed() will mean that each cycle always appears twice # So, we must also remove duplicates unique_sorted = [] unique_cycles = [] for cycle in all_cycles: if sorted(cycle) not in unique_sorted: unique_sorted.append(sorted(cycle)) unique_cycles.append(cycle) if including is None: cycles_nodes = unique_cycles else: for i in including: for cycle in unique_cycles: if i in cycle and cycle not in cycles_nodes: cycles_nodes.append(cycle) for cycle in cycles_nodes: edges = [] for i, e in enumerate(cycle): edges.append((cycle[i - 1], e)) cycles_edges.append(edges) return cycles_edges def get_connected_sites(self, n): """ Returns a named tuple of neighbors of site n: periodic_site, jimage, index, weight. Index is the index of the corresponding site in the original structure, weight can be None if not defined. :param n: index of Site in Molecule :param jimage: lattice vector of site :return: list of ConnectedSite tuples, sorted by closest first """ connected_sites = set() out_edges = list(self.graph.out_edges(n, data=True)) in_edges = list(self.graph.in_edges(n, data=True)) for u, v, d in out_edges + in_edges: weight = d.get("weight", None) if v == n: site = self.molecule[u] dist = self.molecule[v].distance(self.molecule[u]) connected_site = ConnectedSite(site=site, jimage=(0, 0, 0), index=u, weight=weight, dist=dist) else: site = self.molecule[v] dist = self.molecule[u].distance(self.molecule[v]) connected_site = ConnectedSite(site=site, jimage=(0, 0, 0), index=v, weight=weight, dist=dist) connected_sites.add(connected_site) # return list sorted by closest sites first connected_sites = list(connected_sites) connected_sites.sort(key=lambda x: x.dist) return connected_sites def get_coordination_of_site(self, n): """ Returns the number of neighbors of site n. In graph terms, simply returns degree of node corresponding to site n. :param n: index of site :return (int): """ number_of_self_loops = sum([1 for n, v in self.graph.edges(n) if n == v]) return self.graph.degree(n) - number_of_self_loops def draw_graph_to_file( self, filename="graph", diff=None, hide_unconnected_nodes=False, hide_image_edges=True, edge_colors=False, node_labels=False, weight_labels=False, image_labels=False, color_scheme="VESTA", keep_dot=False, algo="fdp", ): """ Draws graph using GraphViz. The networkx graph object itself can also be drawn with networkx's in-built graph drawing methods, but note that this might give misleading results for multigraphs (edges are super-imposed on each other). If visualization is difficult to interpret, `hide_image_edges` can help, especially in larger graphs. :param filename: filename to output, will detect filetype from extension (any graphviz filetype supported, such as pdf or png) :param diff (StructureGraph): an additional graph to compare with, will color edges red that do not exist in diff and edges green that are in diff graph but not in the reference graph :param hide_unconnected_nodes: if True, hide unconnected nodes :param hide_image_edges: if True, do not draw edges that go through periodic boundaries :param edge_colors (bool): if True, use node colors to color edges :param node_labels (bool): if True, label nodes with species and site index :param weight_labels (bool): if True, label edges with weights :param image_labels (bool): if True, label edges with their periodic images (usually only used for debugging, edges to periodic images always appear as dashed lines) :param color_scheme (str): "VESTA" or "JMOL" :param keep_dot (bool): keep GraphViz .dot file for later visualization :param algo: any graphviz algo, "neato" (for simple graphs) or "fdp" (for more crowded graphs) usually give good outputs :return: """ if not which(algo): raise RuntimeError("StructureGraph graph drawing requires " "GraphViz binaries to be in the path.") # Developer note: NetworkX also has methods for drawing # graphs using matplotlib, these also work here. However, # a dedicated tool like GraphViz allows for much easier # control over graph appearance and also correctly displays # mutli-graphs (matplotlib can superimpose multiple edges). g = self.graph.copy() g.graph = {"nodesep": 10.0, "dpi": 300, "overlap": "false"} # add display options for nodes for n in g.nodes(): # get label by species name label = "{}({})".format(str(self.molecule[n].specie), n) if node_labels else "" # use standard color scheme for nodes c = EL_COLORS[color_scheme].get(str(self.molecule[n].specie.symbol), [0, 0, 0]) # get contrasting font color # magic numbers account for perceived luminescence # https://stackoverflow.com/questions/1855884/determine-font-color-based-on-background-color fontcolor = "#000000" if 1 - (c[0] * 0.299 + c[1] * 0.587 + c[2] * 0.114) / 255 < 0.5 else "#ffffff" # convert color to hex string color = "#{:02x}{:02x}{:02x}".format(c[0], c[1], c[2]) g.add_node( n, fillcolor=color, fontcolor=fontcolor, label=label, fontname="Helvetica-bold", style="filled", shape="circle", ) edges_to_delete = [] # add display options for edges for u, v, k, d in g.edges(keys=True, data=True): # retrieve from/to images, set as origin if not defined if "to_image" in d: to_image = d["to_jimage"] else: to_image = (0, 0, 0) # set edge style d["style"] = "solid" if to_image != (0, 0, 0): d["style"] = "dashed" if hide_image_edges: edges_to_delete.append((u, v, k)) # don't show edge directions d["arrowhead"] = "none" # only add labels for images that are not the origin if image_labels: d["headlabel"] = "" if to_image == (0, 0, 0) else "to {}".format((to_image)) d["arrowhead"] = "normal" if d["headlabel"] else "none" # optionally color edges using node colors color_u = g.node[u]["fillcolor"] color_v = g.node[v]["fillcolor"] d["color_uv"] = "{};0.5:{};0.5".format(color_u, color_v) if edge_colors else "#000000" # optionally add weights to graph if weight_labels: units = g.graph.get("edge_weight_units", "") if d.get("weight"): d["label"] = "{:.2f} {}".format(d["weight"], units) # update edge with our new style attributes g.edges[u, v, k].update(d) # optionally remove periodic image edges, # these can be confusing due to periodic boundaries if hide_image_edges: for edge_to_delete in edges_to_delete: g.remove_edge(*edge_to_delete) # optionally hide unconnected nodes, # these can appear when removing periodic edges if hide_unconnected_nodes: g = g.subgraph([n for n in g.degree() if g.degree()[n] != 0]) # optionally highlight differences with another graph if diff: diff = self.diff(diff, strict=True) green_edges = [] red_edges = [] for u, v, k, d in g.edges(keys=True, data=True): if (u, v, d["to_jimage"]) in diff["self"]: # edge has been deleted red_edges.append((u, v, k)) elif (u, v, d["to_jimage"]) in diff["other"]: # edge has been added green_edges.append((u, v, k)) for u, v, k in green_edges: g.edges[u, v, k].update({"color_uv": "#00ff00"}) for u, v, k in red_edges: g.edges[u, v, k].update({"color_uv": "#ff0000"}) basename, extension = os.path.splitext(filename) extension = extension[1:] write_dot(g, basename + ".dot") with open(filename, "w") as f: args = [algo, "-T", extension, basename + ".dot"] rs = subprocess.Popen(args, stdout=f, stdin=subprocess.PIPE, close_fds=True) rs.communicate() if rs.returncode != 0: raise RuntimeError("{} exited with return code {}.".format(algo, rs.returncode)) if not keep_dot: os.remove(basename + ".dot") def as_dict(self): """ As in :Class: `pymatgen.core.Molecule` except with using `to_dict_of_dicts` from NetworkX to store graph information. """ d = { "@module": self.__class__.__module__, "@class": self.__class__.__name__, "molecule": self.molecule.as_dict(), "graphs": json_graph.adjacency_data(self.graph), } return d @classmethod def from_dict(cls, d): """ As in :Class: `pymatgen.core.Molecule` except restoring graphs using `from_dict_of_dicts` from NetworkX to restore graph information. """ m = Molecule.from_dict(d["molecule"]) return cls(m, d["graphs"]) @classmethod def _edges_to_string(cls, g): header = "from to to_image " header_line = "---- ---- ------------" edge_weight_name = g.graph["edge_weight_name"] if edge_weight_name: print_weights = ["weight"] edge_label = g.graph["edge_weight_name"] edge_weight_units = g.graph["edge_weight_units"] if edge_weight_units: edge_label += " ({})".format(edge_weight_units) header += " {}".format(edge_label) header_line += " {}".format("-" * max([18, len(edge_label)])) else: print_weights = False s = header + "\n" + header_line + "\n" edges = list(g.edges(data=True)) # sort edges for consistent ordering edges.sort(key=itemgetter(0, 1)) if print_weights: for u, v, data in edges: s += "{:4} {:4} {:12} {:.3e}\n".format( u, v, str(data.get("to_jimage", (0, 0, 0))), data.get("weight", 0) ) else: for u, v, data in edges: s += "{:4} {:4} {:12}\n".format(u, v, str(data.get("to_jimage", (0, 0, 0)))) return s def __str__(self): s = "Molecule Graph" s += "\nMolecule: \n{}".format(self.molecule.__str__()) s += "\nGraph: {}\n".format(self.name) s += self._edges_to_string(self.graph) return s def __repr__(self): s = "Molecule Graph" s += "\nMolecule: \n{}".format(self.molecule.__repr__()) s += "\nGraph: {}\n".format(self.name) s += self._edges_to_string(self.graph) return s def __len__(self): """ :return: length of Molecule / number of nodes in graph """ return len(self.molecule) def sort(self, key=None, reverse=False): """ Same as Molecule.sort(), also remaps nodes in graph. :param key: :param reverse: :return: """ old_molecule = self.molecule.copy() # sort Molecule self.molecule._sites = sorted(self.molecule._sites, key=key, reverse=reverse) # apply Molecule ordering to graph mapping = {idx: self.molecule.index(site) for idx, site in enumerate(old_molecule)} self.graph = nx.relabel_nodes(self.graph, mapping, copy=True) # normalize directions of edges edges_to_remove = [] edges_to_add = [] for u, v, k, d in self.graph.edges(keys=True, data=True): if v < u: new_v, new_u, new_d = u, v, d.copy() new_d["to_jimage"] = (0, 0, 0) edges_to_remove.append((u, v, k)) edges_to_add.append((new_u, new_v, new_d)) # add/delete marked edges for edges_to_remove in edges_to_remove: self.graph.remove_edge(*edges_to_remove) for (u, v, d) in edges_to_add: self.graph.add_edge(u, v, **d) def __copy__(self): return MoleculeGraph.from_dict(self.as_dict()) def __eq__(self, other): """ Two MoleculeGraphs are equal if they have equal Molecules, and have the same edges between Sites. Edge weights can be different and MoleculeGraphs can still be considered equal. :param other: MoleculeGraph :return (bool): """ # sort for consistent node indices # PeriodicSite should have a proper __hash__() value, # using its frac_coords as a convenient key try: mapping = {tuple(site.coords): self.molecule.index(site) for site in other.molecule} except ValueError: return False other_sorted = other.__copy__() other_sorted.sort(key=lambda site: mapping[tuple(site.coords)]) edges = {(u, v) for u, v, d in self.graph.edges(keys=False, data=True)} edges_other = {(u, v) for u, v, d in other_sorted.graph.edges(keys=False, data=True)} return (edges == edges_other) and (self.molecule == other_sorted.molecule) def isomorphic_to(self, other): """ Checks if the graphs of two MoleculeGraphs are isomorphic to one another. In order to prevent problems with misdirected edges, both graphs are converted into undirected nx.Graph objects. :param other: MoleculeGraph object to be compared. :return: bool """ if len(self.molecule) != len(other.molecule): return False if self.molecule.composition.alphabetical_formula != other.molecule.composition.alphabetical_formula: return False if len(self.graph.edges()) != len(other.graph.edges()): return False return _isomorphic(self.graph, other.graph) def diff(self, other, strict=True): """ Compares two MoleculeGraphs. Returns dict with keys 'self', 'other', 'both' with edges that are present in only one MoleculeGraph ('self' and 'other'), and edges that are present in both. The Jaccard distance is a simple measure of the dissimilarity between two MoleculeGraphs (ignoring edge weights), and is defined by 1 - (size of the intersection / size of the union) of the sets of edges. This is returned with key 'dist'. Important note: all node indices are in terms of the MoleculeGraph this method is called from, not the 'other' MoleculeGraph: there is no guarantee the node indices will be the same if the underlying Molecules are ordered differently. :param other: MoleculeGraph :param strict: if False, will compare bonds from different Molecules, with node indices replaced by Species strings, will not count number of occurrences of bonds :return: """ if self.molecule != other.molecule and strict: return ValueError("Meaningless to compare MoleculeGraphs if " "corresponding Molecules are different.") if strict: # sort for consistent node indices # PeriodicSite should have a proper __hash__() value, # using its frac_coords as a convenient key mapping = {tuple(site.frac_coords): self.molecule.index(site) for site in other.molecule} other_sorted = other.__copy__() other_sorted.sort(key=lambda site: mapping[tuple(site.frac_coords)]) edges = {(u, v, d.get("to_jimage", (0, 0, 0))) for u, v, d in self.graph.edges(keys=False, data=True)} edges_other = { (u, v, d.get("to_jimage", (0, 0, 0))) for u, v, d in other_sorted.graph.edges(keys=False, data=True) } else: edges = { (str(self.molecule[u].specie), str(self.molecule[v].specie)) for u, v, d in self.graph.edges(keys=False, data=True) } edges_other = { (str(other.structure[u].specie), str(other.structure[v].specie)) for u, v, d in other.graph.edges(keys=False, data=True) } if len(edges) == 0 and len(edges_other) == 0: jaccard_dist = 0 # by definition else: jaccard_dist = 1 - len(edges.intersection(edges_other)) / len(edges.union(edges_other)) return { "self": edges - edges_other, "other": edges_other - edges, "both": edges.intersection(edges_other), "dist": jaccard_dist, }
[ "logging.getLogger", "networkx.readwrite.json_graph.adjacency_graph", "pymatgen.util.coord.lattice_points_in_supercell", "scipy.spatial.KDTree", "pymatgen.core.PeriodicSite", "numpy.array", "networkx.weakly_connected_components", "copy.deepcopy", "operator.itemgetter", "igraph.Graph", "networkx.relabel_nodes", "numpy.multiply", "networkx.algorithms.isomorphism.categorical_node_match", "subprocess.Popen", "networkx.is_connected", "numpy.subtract", "networkx.simple_cycles", "numpy.dot", "networkx.union", "warnings.warn", "networkx.is_weakly_connected", "pymatgen.core.Molecule", "numpy.round", "networkx.readwrite.json_graph.adjacency_data", "networkx.MultiDiGraph", "collections.namedtuple", "numpy.eye", "numpy.add", "pymatgen.core.PeriodicSite.from_dict", "networkx.connected_components", "pymatgen.core.Molecule.from_dict", "networkx.subgraph", "pymatgen.core.Structure.from_dict", "numpy.around", "networkx.descendants", "networkx.is_isomorphic", "monty.os.path.which", "scipy.stats.describe", "networkx.Graph", "itertools.combinations", "collections.defaultdict", "networkx.set_node_attributes", "numpy.array_equal", "networkx.get_node_attributes", "networkx.drawing.nx_agraph.write_dot", "pymatgen.core.Structure.from_sites" ]
[((1010, 1037), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (1027, 1037), False, 'import logging\n'), ((1243, 1307), 'collections.namedtuple', 'namedtuple', (['"""ConnectedSite"""', '"""site, jimage, index, weight, dist"""'], {}), "('ConnectedSite', 'site, jimage, index, weight, dist')\n", (1253, 1307), False, 'from collections import defaultdict, namedtuple\n'), ((1684, 1698), 'igraph.Graph', 'igraph.Graph', ([], {}), '()\n', (1696, 1698), False, 'import igraph\n'), ((3004, 3049), 'networkx.algorithms.isomorphism.categorical_node_match', 'iso.categorical_node_match', (['"""specie"""', '"""ERROR"""'], {}), "('specie', 'ERROR')\n", (3030, 3049), True, 'import networkx.algorithms.isomorphism as iso\n'), ((4776, 4827), 'networkx.readwrite.json_graph.adjacency_graph', 'nx.readwrite.json_graph.adjacency_graph', (['graph_data'], {}), '(graph_data)\n', (4815, 4827), True, 'import networkx as nx\n'), ((6565, 6668), 'networkx.MultiDiGraph', 'nx.MultiDiGraph', ([], {'edge_weight_name': 'edge_weight_name', 'edge_weight_units': 'edge_weight_units', 'name': 'name'}), '(edge_weight_name=edge_weight_name, edge_weight_units=\n edge_weight_units, name=name)\n', (6580, 6668), True, 'import networkx as nx\n'), ((6785, 6817), 'networkx.readwrite.json_graph.adjacency_data', 'json_graph.adjacency_data', (['graph'], {}), '(graph)\n', (6810, 6817), False, 'from networkx.readwrite import json_graph\n'), ((17318, 17367), 'networkx.relabel_nodes', 'nx.relabel_nodes', (['self.graph', 'mapping'], {'copy': '(False)'}), '(self.graph, mapping, copy=False)\n', (17334, 17367), True, 'import networkx as nx\n'), ((18480, 18533), 'networkx.set_node_attributes', 'nx.set_node_attributes', (['self.graph', 'species', '"""specie"""'], {}), "(self.graph, species, 'specie')\n", (18502, 18533), True, 'import networkx as nx\n'), ((18542, 18594), 'networkx.set_node_attributes', 'nx.set_node_attributes', (['self.graph', 'coords', '"""coords"""'], {}), "(self.graph, coords, 'coords')\n", (18564, 18594), True, 'import networkx as nx\n'), ((18603, 18663), 'networkx.set_node_attributes', 'nx.set_node_attributes', (['self.graph', 'properties', '"""properties"""'], {}), "(self.graph, properties, 'properties')\n", (18625, 18663), True, 'import networkx as nx\n'), ((22658, 22707), 'networkx.relabel_nodes', 'nx.relabel_nodes', (['self.graph', 'mapping'], {'copy': '(False)'}), '(self.graph, mapping, copy=False)\n', (22674, 22707), True, 'import networkx as nx\n'), ((36080, 36111), 'networkx.drawing.nx_agraph.write_dot', 'write_dot', (['g', "(basename + '.dot')"], {}), "(g, basename + '.dot')\n", (36089, 36111), False, 'from networkx.drawing.nx_agraph import write_dot\n'), ((37176, 37193), 'collections.defaultdict', 'defaultdict', (['list'], {}), '(list)\n', (37187, 37193), False, 'from collections import defaultdict, namedtuple\n'), ((37732, 37772), 'scipy.stats.describe', 'describe', (['all_weights'], {'nan_policy': '"""omit"""'}), "(all_weights, nan_policy='omit')\n", (37740, 37772), False, 'from scipy.stats import describe\n'), ((40196, 40231), 'pymatgen.core.Structure.from_dict', 'Structure.from_dict', (["d['structure']"], {}), "(d['structure'])\n", (40215, 40231), False, 'from pymatgen.core import Lattice, Molecule, PeriodicSite, Structure\n'), ((41833, 41867), 'numpy.array', 'np.array', (['scaling_matrix', 'np.int16'], {}), '(scaling_matrix, np.int16)\n', (41841, 41867), True, 'import numpy as np\n'), ((42242, 42283), 'pymatgen.util.coord.lattice_points_in_supercell', 'lattice_points_in_supercell', (['scale_matrix'], {}), '(scale_matrix)\n', (42269, 42283), False, 'from pymatgen.util.coord import lattice_points_in_supercell\n'), ((43056, 43087), 'pymatgen.core.Structure.from_sites', 'Structure.from_sites', (['new_sites'], {}), '(new_sites)\n', (43076, 43087), False, 'from pymatgen.core import Lattice, Molecule, PeriodicSite, Structure\n'), ((43151, 43168), 'networkx.MultiDiGraph', 'nx.MultiDiGraph', ([], {}), '()\n', (43166, 43168), True, 'import networkx as nx\n'), ((43740, 43773), 'scipy.spatial.KDTree', 'KDTree', (['new_structure.cart_coords'], {}), '(new_structure.cart_coords)\n', (43746, 43773), False, 'from scipy.spatial import KDTree\n'), ((51317, 51365), 'networkx.relabel_nodes', 'nx.relabel_nodes', (['self.graph', 'mapping'], {'copy': '(True)'}), '(self.graph, mapping, copy=True)\n', (51333, 51365), True, 'import networkx as nx\n'), ((56983, 57011), 'networkx.Graph', 'nx.Graph', (['supercell_sg.graph'], {}), '(supercell_sg.graph)\n', (56991, 57011), True, 'import networkx as nx\n'), ((60558, 60609), 'networkx.readwrite.json_graph.adjacency_graph', 'nx.readwrite.json_graph.adjacency_graph', (['graph_data'], {}), '(graph_data)\n', (60597, 60609), True, 'import networkx as nx\n'), ((62376, 62479), 'networkx.MultiDiGraph', 'nx.MultiDiGraph', ([], {'edge_weight_name': 'edge_weight_name', 'edge_weight_units': 'edge_weight_units', 'name': 'name'}), '(edge_weight_name=edge_weight_name, edge_weight_units=\n edge_weight_units, name=name)\n', (62391, 62479), True, 'import networkx as nx\n'), ((62595, 62627), 'networkx.readwrite.json_graph.adjacency_data', 'json_graph.adjacency_data', (['graph'], {}), '(graph)\n', (62620, 62627), False, 'from networkx.readwrite import json_graph\n'), ((70932, 70981), 'networkx.relabel_nodes', 'nx.relabel_nodes', (['self.graph', 'mapping'], {'copy': '(False)'}), '(self.graph, mapping, copy=False)\n', (70948, 70981), True, 'import networkx as nx\n'), ((71969, 72022), 'networkx.set_node_attributes', 'nx.set_node_attributes', (['self.graph', 'species', '"""specie"""'], {}), "(self.graph, species, 'specie')\n", (71991, 72022), True, 'import networkx as nx\n'), ((72031, 72083), 'networkx.set_node_attributes', 'nx.set_node_attributes', (['self.graph', 'coords', '"""coords"""'], {}), "(self.graph, coords, 'coords')\n", (72053, 72083), True, 'import networkx as nx\n'), ((72092, 72152), 'networkx.set_node_attributes', 'nx.set_node_attributes', (['self.graph', 'properties', '"""properties"""'], {}), "(self.graph, properties, 'properties')\n", (72114, 72152), True, 'import networkx as nx\n'), ((75360, 75409), 'networkx.relabel_nodes', 'nx.relabel_nodes', (['self.graph', 'mapping'], {'copy': '(False)'}), '(self.graph, mapping, copy=False)\n', (75376, 75409), True, 'import networkx as nx\n'), ((76149, 76183), 'networkx.is_weakly_connected', 'nx.is_weakly_connected', (['self.graph'], {}), '(self.graph)\n', (76171, 76183), True, 'import networkx as nx\n'), ((76246, 76265), 'copy.deepcopy', 'copy.deepcopy', (['self'], {}), '(self)\n', (76259, 76265), False, 'import copy\n'), ((79878, 79897), 'copy.deepcopy', 'copy.deepcopy', (['self'], {}), '(self)\n', (79891, 79897), False, 'import copy\n'), ((80017, 80055), 'networkx.is_weakly_connected', 'nx.is_weakly_connected', (['original.graph'], {}), '(original.graph)\n', (80039, 80055), True, 'import networkx as nx\n'), ((102849, 102880), 'networkx.drawing.nx_agraph.write_dot', 'write_dot', (['g', "(basename + '.dot')"], {}), "(g, basename + '.dot')\n", (102858, 102880), False, 'from networkx.drawing.nx_agraph import write_dot\n'), ((103980, 104013), 'pymatgen.core.Molecule.from_dict', 'Molecule.from_dict', (["d['molecule']"], {}), "(d['molecule'])\n", (103998, 104013), False, 'from pymatgen.core import Lattice, Molecule, PeriodicSite, Structure\n'), ((106378, 106426), 'networkx.relabel_nodes', 'nx.relabel_nodes', (['self.graph', 'mapping'], {'copy': '(True)'}), '(self.graph, mapping, copy=True)\n', (106394, 106426), True, 'import networkx as nx\n'), ((12553, 12591), 'numpy.array_equal', 'np.array_equal', (['from_jimage', '(0, 0, 0)'], {}), '(from_jimage, (0, 0, 0))\n', (12567, 12591), True, 'import numpy as np\n'), ((12651, 12682), 'numpy.subtract', 'np.subtract', (['from_jimage', 'shift'], {}), '(from_jimage, shift)\n', (12662, 12682), True, 'import numpy as np\n'), ((12707, 12736), 'numpy.subtract', 'np.subtract', (['to_jimage', 'shift'], {}), '(to_jimage, shift)\n', (12718, 12736), True, 'import numpy as np\n'), ((12993, 13095), 'warnings.warn', 'warnings.warn', (['"""Please specify to_jimage to be unambiguous, trying to automatically detect."""'], {}), "(\n 'Please specify to_jimage to be unambiguous, trying to automatically detect.'\n )\n", (13006, 13095), False, 'import warnings\n'), ((25401, 25424), 'copy.deepcopy', 'copy.deepcopy', (['func_grp'], {}), '(func_grp)\n', (25414, 25424), False, 'import copy\n'), ((28499, 28529), 'pymatgen.core.PeriodicSite.from_dict', 'PeriodicSite.from_dict', (['site_d'], {}), '(site_d)\n', (28521, 28529), False, 'from pymatgen.core import Lattice, Molecule, PeriodicSite, Structure\n'), ((28612, 28642), 'numpy.subtract', 'np.subtract', (['to_jimage', 'jimage'], {}), '(to_jimage, jimage)\n', (28623, 28642), True, 'import numpy as np\n'), ((31781, 31792), 'monty.os.path.which', 'which', (['algo'], {}), '(algo)\n', (31786, 31792), False, 'from monty.os.path import which\n'), ((36232, 36303), 'subprocess.Popen', 'subprocess.Popen', (['args'], {'stdout': 'f', 'stdin': 'subprocess.PIPE', 'close_fds': '(True)'}), '(args, stdout=f, stdin=subprocess.PIPE, close_fds=True)\n', (36248, 36303), False, 'import subprocess\n'), ((39889, 39926), 'networkx.readwrite.json_graph.adjacency_data', 'json_graph.adjacency_data', (['self.graph'], {}), '(self.graph)\n', (39914, 39926), False, 'from networkx.readwrite import json_graph\n'), ((42172, 42223), 'numpy.dot', 'np.dot', (['scale_matrix', 'self.structure.lattice.matrix'], {}), '(scale_matrix, self.structure.lattice.matrix)\n', (42178, 42223), True, 'import numpy as np\n'), ((43226, 43252), 'networkx.union', 'nx.union', (['new_g', 'new_graph'], {}), '(new_g, new_graph)\n', (43234, 43252), True, 'import networkx as nx\n'), ((48799, 48831), 'networkx.readwrite.json_graph.adjacency_data', 'json_graph.adjacency_data', (['new_g'], {}), '(new_g)\n', (48824, 48831), False, 'from networkx.readwrite import json_graph\n'), ((58727, 58752), 'pymatgen.core.Molecule', 'Molecule', (['species', 'coords'], {}), '(species, coords)\n', (58735, 58752), False, 'from pymatgen.core import Lattice, Molecule, PeriodicSite, Structure\n'), ((77167, 77198), 'networkx.relabel_nodes', 'nx.relabel_nodes', (['subg', 'mapping'], {}), '(subg, mapping)\n', (77183, 77198), True, 'import networkx as nx\n'), ((77222, 77265), 'networkx.get_node_attributes', 'nx.get_node_attributes', (['new_graph', '"""specie"""'], {}), "(new_graph, 'specie')\n", (77244, 77265), True, 'import networkx as nx\n'), ((77287, 77330), 'networkx.get_node_attributes', 'nx.get_node_attributes', (['new_graph', '"""coords"""'], {}), "(new_graph, 'coords')\n", (77309, 77330), True, 'import networkx as nx\n'), ((77355, 77402), 'networkx.get_node_attributes', 'nx.get_node_attributes', (['new_graph', '"""properties"""'], {}), "(new_graph, 'properties')\n", (77377, 77402), True, 'import networkx as nx\n'), ((78004, 78072), 'pymatgen.core.Molecule', 'Molecule', (['species', 'coords'], {'charge': 'charge', 'site_properties': 'properties'}), '(species, coords, charge=charge, site_properties=properties)\n', (78012, 78072), False, 'from pymatgen.core import Lattice, Molecule, PeriodicSite, Structure\n'), ((78098, 78134), 'networkx.readwrite.json_graph.adjacency_data', 'json_graph.adjacency_data', (['new_graph'], {}), '(new_graph)\n', (78123, 78134), False, 'from networkx.readwrite import json_graph\n'), ((81357, 81386), 'itertools.combinations', 'combinations', (['graph.nodes', 'ii'], {}), '(graph.nodes, ii)\n', (81369, 81386), False, 'from itertools import combinations\n'), ((82444, 82471), 'copy.deepcopy', 'copy.deepcopy', (['unique_frags'], {}), '(unique_frags)\n', (82457, 82471), False, 'import copy\n'), ((83716, 83752), 'copy.deepcopy', 'copy.deepcopy', (['unique_mol_graph_list'], {}), '(unique_mol_graph_list)\n', (83729, 83752), False, 'import copy\n'), ((98463, 98474), 'monty.os.path.which', 'which', (['algo'], {}), '(algo)\n', (98468, 98474), False, 'from monty.os.path import which\n'), ((103001, 103072), 'subprocess.Popen', 'subprocess.Popen', (['args'], {'stdout': 'f', 'stdin': 'subprocess.PIPE', 'close_fds': '(True)'}), '(args, stdout=f, stdin=subprocess.PIPE, close_fds=True)\n', (103017, 103072), False, 'import subprocess\n'), ((103674, 103711), 'networkx.readwrite.json_graph.adjacency_data', 'json_graph.adjacency_data', (['self.graph'], {}), '(self.graph)\n', (103699, 103711), False, 'from networkx.readwrite import json_graph\n'), ((13904, 13975), 'numpy.subtract', 'np.subtract', (['nnsite.frac_coords', 'self.structure[from_index].frac_coords'], {}), '(nnsite.frac_coords, self.structure[from_index].frac_coords)\n', (13915, 13975), True, 'import numpy as np\n'), ((25483, 25524), 'copy.deepcopy', 'copy.deepcopy', (['FunctionalGroups[func_grp]'], {}), '(FunctionalGroups[func_grp])\n', (25496, 25524), False, 'import copy\n'), ((28266, 28292), 'numpy.multiply', 'np.multiply', (['(-1)', 'to_jimage'], {}), '(-1, to_jimage)\n', (28277, 28292), True, 'import numpy as np\n'), ((42642, 42778), 'pymatgen.core.PeriodicSite', 'PeriodicSite', (['site.species', '(site.coords + v)', 'new_lattice'], {'properties': 'site.properties', 'coords_are_cartesian': '(True)', 'to_unit_cell': '(False)'}), '(site.species, site.coords + v, new_lattice, properties=site.\n properties, coords_are_cartesian=True, to_unit_cell=False)\n', (42654, 42778), False, 'from pymatgen.core import Lattice, Molecule, PeriodicSite, Structure\n'), ((42981, 43029), 'networkx.relabel_nodes', 'nx.relabel_nodes', (['self.graph', 'mapping'], {'copy': '(True)'}), '(self.graph, mapping, copy=True)\n', (42997, 43029), True, 'import networkx as nx\n'), ((44499, 44549), 'numpy.add', 'np.add', (['self.structure[n_v].frac_coords', 'to_jimage'], {}), '(self.structure[n_v].frac_coords, to_jimage)\n', (44505, 44549), True, 'import numpy as np\n'), ((44963, 44996), 'numpy.subtract', 'np.subtract', (['v_image_cart', 'u_cart'], {}), '(v_image_cart, u_cart)\n', (44974, 44996), True, 'import numpy as np\n'), ((49782, 49798), 'operator.itemgetter', 'itemgetter', (['(0)', '(1)'], {}), '(0, 1)\n', (49792, 49798), False, 'from operator import itemgetter\n'), ((57103, 57146), 'networkx.connected_components', 'nx.connected_components', (['supercell_sg.graph'], {}), '(supercell_sg.graph)\n', (57126, 57146), True, 'import networkx as nx\n'), ((58215, 58290), 'networkx.is_isomorphic', 'nx.is_isomorphic', (['subgraph', 'g'], {'node_match': 'node_match', 'edge_match': 'edge_match'}), '(subgraph, g, node_match=node_match, edge_match=edge_match)\n', (58231, 58290), True, 'import networkx as nx\n'), ((76205, 76224), 'copy.deepcopy', 'copy.deepcopy', (['self'], {}), '(self)\n', (76218, 76224), False, 'import copy\n'), ((76478, 76524), 'networkx.weakly_connected_components', 'nx.weakly_connected_components', (['original.graph'], {}), '(original.graph)\n', (76508, 76524), True, 'import networkx as nx\n'), ((81598, 81629), 'networkx.subgraph', 'nx.subgraph', (['graph', 'combination'], {}), '(graph, combination)\n', (81609, 81629), True, 'import networkx as nx\n'), ((81649, 81674), 'networkx.is_connected', 'nx.is_connected', (['subgraph'], {}), '(subgraph)\n', (81664, 81674), True, 'import networkx as nx\n'), ((82783, 82818), 'networkx.relabel_nodes', 'nx.relabel_nodes', (['fragment', 'mapping'], {}), '(fragment, mapping)\n', (82799, 82818), True, 'import networkx as nx\n'), ((82846, 82888), 'networkx.get_node_attributes', 'nx.get_node_attributes', (['remapped', '"""specie"""'], {}), "(remapped, 'specie')\n", (82868, 82888), True, 'import networkx as nx\n'), ((82914, 82956), 'networkx.get_node_attributes', 'nx.get_node_attributes', (['remapped', '"""coords"""'], {}), "(remapped, 'coords')\n", (82936, 82956), True, 'import networkx as nx\n'), ((87142, 87165), 'copy.deepcopy', 'copy.deepcopy', (['func_grp'], {}), '(func_grp)\n', (87155, 87165), False, 'import copy\n'), ((93607, 93633), 'networkx.simple_cycles', 'nx.simple_cycles', (['directed'], {}), '(directed)\n', (93623, 93633), True, 'import networkx as nx\n'), ((104860, 104876), 'operator.itemgetter', 'itemgetter', (['(0)', '(1)'], {}), '(0, 1)\n', (104870, 104876), False, 'from operator import itemgetter\n'), ((28333, 28358), 'numpy.add', 'np.add', (['to_jimage', 'jimage'], {}), '(to_jimage, jimage)\n', (28339, 28358), True, 'import numpy as np\n'), ((28438, 28470), 'numpy.add', 'np.add', (["site_d['abc']", 'to_jimage'], {}), "(site_d['abc'], to_jimage)\n", (28444, 28470), True, 'import numpy as np\n'), ((41960, 41969), 'numpy.eye', 'np.eye', (['(3)'], {}), '(3)\n', (41966, 41969), True, 'import numpy as np\n'), ((46990, 47025), 'numpy.around', 'np.around', (['v_expec_frac'], {'decimals': '(3)'}), '(v_expec_frac, decimals=3)\n', (46999, 47025), True, 'import numpy as np\n'), ((47132, 47172), 'numpy.subtract', 'np.subtract', (['v_expec_frac', 'v_expec_image'], {}), '(v_expec_frac, v_expec_image)\n', (47143, 47172), True, 'import numpy as np\n'), ((57531, 57556), 'networkx.MultiDiGraph', 'nx.MultiDiGraph', (['subgraph'], {}), '(subgraph)\n', (57546, 57556), True, 'import networkx as nx\n'), ((66010, 66054), 'numpy.array_equal', 'np.array_equal', (["neighbor['image']", '[0, 0, 0]'], {}), "(neighbor['image'], [0, 0, 0])\n", (66024, 66054), True, 'import numpy as np\n'), ((87236, 87277), 'copy.deepcopy', 'copy.deepcopy', (['FunctionalGroups[func_grp]'], {}), '(FunctionalGroups[func_grp])\n', (87249, 87277), False, 'import copy\n'), ((92180, 92221), 'networkx.descendants', 'nx.descendants', (['disconnected', 'neighbor[2]'], {}), '(disconnected, neighbor[2])\n', (92194, 92221), True, 'import networkx as nx\n'), ((14004, 14023), 'numpy.round', 'np.round', (['to_jimage'], {}), '(to_jimage)\n', (14012, 14023), True, 'import numpy as np\n'), ((83310, 83379), 'pymatgen.core.Molecule', 'Molecule', ([], {'species': 'species', 'coords': 'coords', 'charge': 'self.molecule.charge'}), '(species=species, coords=coords, charge=self.molecule.charge)\n', (83318, 83379), False, 'from pymatgen.core import Lattice, Molecule, PeriodicSite, Structure\n'), ((51646, 51677), 'numpy.multiply', 'np.multiply', (['(-1)', "d['to_jimage']"], {}), "(-1, d['to_jimage'])\n", (51657, 51677), True, 'import numpy as np\n'), ((81831, 81854), 'copy.deepcopy', 'copy.deepcopy', (['subgraph'], {}), '(subgraph)\n', (81844, 81854), False, 'import copy\n'), ((81930, 81953), 'copy.deepcopy', 'copy.deepcopy', (['subgraph'], {}), '(subgraph)\n', (81943, 81953), False, 'import copy\n'), ((47824, 47855), 'numpy.multiply', 'np.multiply', (['(-1)', "d['to_jimage']"], {}), "(-1, d['to_jimage'])\n", (47835, 47855), True, 'import numpy as np\n')]
# coding: utf-8 # Copyright (c) Pymatgen Development Team. # Distributed under the terms of the MIT License. """ This module define a WulffShape class to generate the Wulff shape from a lattice, a list of indices and their corresponding surface energies, and the total area and volume of the wulff shape,the weighted surface energy, the anisotropy and shape_factor can also be calculated. In support of plotting from a given view in terms of miller index. The lattice is from the conventional unit cell, and (hkil) for hexagonal lattices. If you use this code extensively, consider citing the following: <NAME>.; <NAME>.; <NAME>.; <NAME>.; <NAME>.; <NAME>. (2016). Surface energies of elemental crystals. Scientific Data. """ from pymatgen.core.structure import Structure from pymatgen.util.coord import get_angle import numpy as np import scipy as sp from scipy.spatial import ConvexHull import logging import warnings __author__ = '<NAME>, <NAME>, <NAME>' __copyright__ = 'Copyright 2013, The Materials Virtual Lab' __version__ = '0.1' __maintainer__ = '<NAME>' __email__ = '<EMAIL>' __date__ = 'May 5 2016' logger = logging.getLogger(__name__) def hkl_tuple_to_str(hkl): """ Prepare for display on plots "(hkl)" for surfaces Agrs: hkl: in the form of [h, k, l] or (h, k, l) """ str_format = '($' for x in hkl: if x < 0: str_format += '\\overline{' + str(-x) + '}' else: str_format += str(x) str_format += '$)' return str_format def get_tri_area(pts): """ Given a list of coords for 3 points, Compute the area of this triangle. Args: pts: [a, b, c] three points """ a, b, c = pts[0], pts[1], pts[2] v1 = np.array(b) - np.array(a) v2 = np.array(c) - np.array(a) area_tri = abs(sp.linalg.norm(sp.cross(v1, v2)) / 2) return area_tri class WulffFacet: """ Helper container for each Wulff plane. """ def __init__(self, normal, e_surf, normal_pt, dual_pt, index, m_ind_orig, miller): """ :param normal: :param e_surf: :param normal_pt: :param dual_pt: :param index: :param m_ind_orig: :param miller: """ self.normal = normal self.e_surf = e_surf self.normal_pt = normal_pt self.dual_pt = dual_pt self.index = index self.m_ind_orig = m_ind_orig self.miller = miller self.points = [] self.outer_lines = [] class WulffShape: """ Generate Wulff Shape from list of miller index and surface energies, with given conventional unit cell. surface energy (Jm^2) is the length of normal. Wulff shape is the convex hull. Based on: http://scipy.github.io/devdocs/generated/scipy.spatial.ConvexHull.html Process: 1. get wulff simplices 2. label with color 3. get wulff_area and other properties .. attribute:: debug (bool) .. attribute:: alpha transparency .. attribute:: color_set .. attribute:: grid_off (bool) .. attribute:: axis_off (bool) .. attribute:: show_area .. attribute:: off_color color of facets off wulff .. attribute:: structure Structure object, input conventional unit cell (with H ) from lattice .. attribute:: miller_list list of input miller index, for hcp in the form of hkil .. attribute:: hkl_list modify hkill to hkl, in the same order with input_miller .. attribute:: e_surf_list list of input surface energies, in the same order with input_miller .. attribute:: lattice Lattice object, the input lattice for the conventional unit cell .. attribute:: facets [WulffFacet] for all facets considering symm .. attribute:: dual_cv_simp simplices from the dual convex hull (dual_pt) .. attribute:: wulff_pt_list .. attribute:: wulff_cv_simp simplices from the convex hull of wulff_pt_list .. attribute:: on_wulff list for all input_miller, True is on wulff. .. attribute:: color_area list for all input_miller, total area on wulff, off_wulff = 0. .. attribute:: miller_area ($hkl$): area for all input_miller """ def __init__(self, lattice, miller_list, e_surf_list, symprec=1e-5): """ Args: lattice: Lattice object of the conventional unit cell miller_list ([(hkl), ...]: list of hkl or hkil for hcp e_surf_list ([float]): list of corresponding surface energies symprec (float): for recp_operation, default is 1e-5. """ if any([se < 0 for se in e_surf_list]): warnings.warn("Unphysical (negative) surface energy detected.") self.color_ind = list(range(len(miller_list))) self.input_miller_fig = [hkl_tuple_to_str(x) for x in miller_list] # store input data self.structure = Structure(lattice, ["H"], [[0, 0, 0]]) self.miller_list = tuple([tuple(x) for x in miller_list]) self.hkl_list = tuple([(x[0], x[1], x[-1]) for x in miller_list]) self.e_surf_list = tuple(e_surf_list) self.lattice = lattice self.symprec = symprec # 2. get all the data for wulff construction # get all the surface normal from get_all_miller_e() self.facets = self._get_all_miller_e() logger.debug(len(self.facets)) # 3. consider the dual condition dual_pts = [x.dual_pt for x in self.facets] dual_convex = ConvexHull(dual_pts) dual_cv_simp = dual_convex.simplices # simplices (ndarray of ints, shape (nfacet, ndim)) # list of [i, j, k] , ndim = 3 # i, j, k: ind for normal_e_m # recalculate the dual of dual, get the wulff shape. # conner <-> surface # get cross point from the simplices of the dual convex hull wulff_pt_list = [self._get_cross_pt_dual_simp(dual_simp) for dual_simp in dual_cv_simp] wulff_convex = ConvexHull(wulff_pt_list) wulff_cv_simp = wulff_convex.simplices logger.debug(", ".join([str(len(x)) for x in wulff_cv_simp])) # store simplices and convex self.dual_cv_simp = dual_cv_simp self.wulff_pt_list = wulff_pt_list self.wulff_cv_simp = wulff_cv_simp self.wulff_convex = wulff_convex self.on_wulff, self.color_area = self._get_simpx_plane() miller_area = [] for m, in_mill_fig in enumerate(self.input_miller_fig): miller_area.append( in_mill_fig + ' : ' + str(round(self.color_area[m], 4))) self.miller_area = miller_area def _get_all_miller_e(self): """ from self: get miller_list(unique_miller), e_surf_list and symmetry operations(symmops) according to lattice apply symmops to get all the miller index, then get normal, get all the facets functions for wulff shape calculation: |normal| = 1, e_surf is plane's distance to (0, 0, 0), normal[0]x + normal[1]y + normal[2]z = e_surf return: [WulffFacet] """ all_hkl = [] color_ind = self.color_ind planes = [] recp = self.structure.lattice.reciprocal_lattice_crystallographic recp_symmops = self.lattice.get_recp_symmetry_operation(self.symprec) for i, (hkl, energy) in enumerate(zip(self.hkl_list, self.e_surf_list)): for op in recp_symmops: miller = tuple([int(x) for x in op.operate(hkl)]) if miller not in all_hkl: all_hkl.append(miller) normal = recp.get_cartesian_coords(miller) normal /= sp.linalg.norm(normal) normal_pt = [x * energy for x in normal] dual_pt = [x / energy for x in normal] color_plane = color_ind[divmod(i, len(color_ind))[1]] planes.append(WulffFacet(normal, energy, normal_pt, dual_pt, color_plane, i, hkl)) # sort by e_surf planes.sort(key=lambda x: x.e_surf) return planes def _get_cross_pt_dual_simp(self, dual_simp): """ |normal| = 1, e_surf is plane's distance to (0, 0, 0), plane function: normal[0]x + normal[1]y + normal[2]z = e_surf from self: normal_e_m to get the plane functions dual_simp: (i, j, k) simplices from the dual convex hull i, j, k: plane index(same order in normal_e_m) """ matrix_surfs = [self.facets[dual_simp[i]].normal for i in range(3)] matrix_e = [self.facets[dual_simp[i]].e_surf for i in range(3)] cross_pt = sp.dot(sp.linalg.inv(matrix_surfs), matrix_e) return cross_pt def _get_simpx_plane(self): """ Locate the plane for simpx of on wulff_cv, by comparing the center of the simpx triangle with the plane functions. """ on_wulff = [False] * len(self.miller_list) surface_area = [0.0] * len(self.miller_list) for simpx in self.wulff_cv_simp: pts = [self.wulff_pt_list[simpx[i]] for i in range(3)] center = np.sum(pts, 0) / 3.0 # check whether the center of the simplices is on one plane for plane in self.facets: abs_diff = abs(np.dot(plane.normal, center) - plane.e_surf) if abs_diff < 1e-5: on_wulff[plane.index] = True surface_area[plane.index] += get_tri_area(pts) plane.points.append(pts) plane.outer_lines.append([simpx[0], simpx[1]]) plane.outer_lines.append([simpx[1], simpx[2]]) plane.outer_lines.append([simpx[0], simpx[2]]) # already find the plane, move to the next simplices break for plane in self.facets: plane.outer_lines.sort() plane.outer_lines = [line for line in plane.outer_lines if plane.outer_lines.count(line) != 2] return on_wulff, surface_area def _get_colors(self, color_set, alpha, off_color, custom_colors={}): """ assign colors according to the surface energies of on_wulff facets. return: (color_list, color_proxy, color_proxy_on_wulff, miller_on_wulff, e_surf_on_wulff_list) """ import matplotlib as mpl import matplotlib.pyplot as plt color_list = [off_color] * len(self.hkl_list) color_proxy_on_wulff = [] miller_on_wulff = [] e_surf_on_wulff = [(i, e_surf) for i, e_surf in enumerate(self.e_surf_list) if self.on_wulff[i]] c_map = plt.get_cmap(color_set) e_surf_on_wulff.sort(key=lambda x: x[1], reverse=False) e_surf_on_wulff_list = [x[1] for x in e_surf_on_wulff] if len(e_surf_on_wulff) > 1: cnorm = mpl.colors.Normalize(vmin=min(e_surf_on_wulff_list), vmax=max(e_surf_on_wulff_list)) else: # if there is only one hkl on wulff, choose the color of the median cnorm = mpl.colors.Normalize(vmin=min(e_surf_on_wulff_list) - 0.1, vmax=max(e_surf_on_wulff_list) + 0.1) scalar_map = mpl.cm.ScalarMappable(norm=cnorm, cmap=c_map) for i, e_surf in e_surf_on_wulff: color_list[i] = scalar_map.to_rgba(e_surf, alpha=alpha) if tuple(self.miller_list[i]) in custom_colors.keys(): color_list[i] = custom_colors[tuple(self.miller_list[i])] color_proxy_on_wulff.append( plt.Rectangle((2, 2), 1, 1, fc=color_list[i], alpha=alpha)) miller_on_wulff.append(self.input_miller_fig[i]) scalar_map.set_array([x[1] for x in e_surf_on_wulff]) color_proxy = [plt.Rectangle((2, 2), 1, 1, fc=x, alpha=alpha) for x in color_list] return color_list, color_proxy, color_proxy_on_wulff, miller_on_wulff, e_surf_on_wulff_list def show(self, *args, **kwargs): r""" Show the Wulff plot. Args: *args: Passed to get_plot. **kwargs: Passed to get_plot. """ self.get_plot(*args, **kwargs).show() def get_line_in_facet(self, facet): """ Returns the sorted pts in a facet used to draw a line """ lines = list(facet.outer_lines) pt = [] prev = None while len(lines) > 0: if prev is None: l = lines.pop(0) else: for i, l in enumerate(lines): if prev in l: l = lines.pop(i) if l[1] == prev: l.reverse() break # make sure the lines are connected one by one. # find the way covering all pts and facets pt.append(self.wulff_pt_list[l[0]].tolist()) pt.append(self.wulff_pt_list[l[1]].tolist()) prev = l[1] return pt def get_plot(self, color_set='PuBu', grid_off=True, axis_off=True, show_area=False, alpha=1, off_color='red', direction=None, bar_pos=(0.75, 0.15, 0.05, 0.65), bar_on=False, units_in_JPERM2=True, legend_on=True, aspect_ratio=(8, 8), custom_colors={}): """ Get the Wulff shape plot. Args: color_set: default is 'PuBu' grid_off (bool): default is True axis_off (bool): default is Ture show_area (bool): default is False alpha (float): chosen from 0 to 1 (float), default is 1 off_color: Default color for facets not present on the Wulff shape. direction: default is (1, 1, 1) bar_pos: default is [0.75, 0.15, 0.05, 0.65] bar_on (bool): default is False legend_on (bool): default is True aspect_ratio: default is (8, 8) custom_colors ({(h,k,l}: [r,g,b,alpha}): Customize color of each facet with a dictionary. The key is the corresponding Miller index and value is the color. Undefined facets will use default color site. Note: If you decide to set your own colors, it probably won't make any sense to have the color bar on. Return: (matplotlib.pyplot) """ import matplotlib as mpl import matplotlib.pyplot as plt import mpl_toolkits.mplot3d as mpl3 color_list, color_proxy, color_proxy_on_wulff, miller_on_wulff, e_surf_on_wulff = self._get_colors( color_set, alpha, off_color, custom_colors=custom_colors) if not direction: # If direction is not specified, use the miller indices of # maximum area. direction = max(self.area_fraction_dict.items(), key=lambda x: x[1])[0] fig = plt.figure() fig.set_size_inches(aspect_ratio[0], aspect_ratio[1]) azim, elev = self._get_azimuth_elev([direction[0], direction[1], direction[-1]]) wulff_pt_list = self.wulff_pt_list ax = mpl3.Axes3D(fig, azim=azim, elev=elev) for plane in self.facets: # check whether [pts] is empty if len(plane.points) < 1: # empty, plane is not on_wulff. continue # assign the color for on_wulff facets according to its # index and the color_list for on_wulff plane_color = color_list[plane.index] pt = self.get_line_in_facet(plane) # plot from the sorted pts from [simpx] tri = mpl3.art3d.Poly3DCollection([pt]) tri.set_color(plane_color) tri.set_edgecolor("#808080") ax.add_collection3d(tri) # set ranges of x, y, z # find the largest distance between on_wulff pts and the origin, # to ensure complete and consistent display for all directions r_range = max([np.linalg.norm(x) for x in wulff_pt_list]) ax.set_xlim([-r_range * 1.1, r_range * 1.1]) ax.set_ylim([-r_range * 1.1, r_range * 1.1]) ax.set_zlim([-r_range * 1.1, r_range * 1.1]) # add legend if legend_on: color_proxy = color_proxy if show_area: ax.legend(color_proxy, self.miller_area, loc='upper left', bbox_to_anchor=(0, 1), fancybox=True, shadow=False) else: ax.legend(color_proxy_on_wulff, miller_on_wulff, loc='upper center', bbox_to_anchor=(0.5, 1), ncol=3, fancybox=True, shadow=False) ax.set_xlabel('x') ax.set_ylabel('y') ax.set_zlabel('z') # Add colorbar if bar_on: cmap = plt.get_cmap(color_set) cmap.set_over('0.25') cmap.set_under('0.75') bounds = [round(e, 2) for e in e_surf_on_wulff] bounds.append(1.2 * bounds[-1]) norm = mpl.colors.BoundaryNorm(bounds, cmap.N) # display surface energies ax1 = fig.add_axes(bar_pos) cbar = mpl.colorbar.ColorbarBase( ax1, cmap=cmap, norm=norm, boundaries=[0] + bounds + [10], extend='both', ticks=bounds[:-1], spacing='proportional', orientation='vertical') units = "$J/m^2$" if units_in_JPERM2 else r"$eV/\AA^2$" cbar.set_label('Surface Energies (%s)' % (units), fontsize=100) if grid_off: ax.grid('off') if axis_off: ax.axis('off') return plt def _get_azimuth_elev(self, miller_index): """ Args: miller_index: viewing direction Returns: azim, elev for plotting """ if miller_index == (0, 0, 1) or miller_index == (0, 0, 0, 1): return 0, 90 else: cart = self.lattice.get_cartesian_coords(miller_index) azim = get_angle([cart[0], cart[1], 0], (1, 0, 0)) v = [cart[0], cart[1], 0] elev = get_angle(cart, v) return azim, elev @property def volume(self): """ Volume of the Wulff shape """ return self.wulff_convex.volume @property def miller_area_dict(self): """ Returns {hkl: area_hkl on wulff} """ return dict(zip(self.miller_list, self.color_area)) @property def miller_energy_dict(self): """ Returns {hkl: surface energy_hkl} """ return dict(zip(self.miller_list, self.e_surf_list)) @property def surface_area(self): """ Total surface area of Wulff shape. """ return sum(self.miller_area_dict.values()) @property def weighted_surface_energy(self): """ Returns: sum(surface_energy_hkl * area_hkl)/ sum(area_hkl) """ return self.total_surface_energy / self.surface_area @property def area_fraction_dict(self): """ Returns: (dict): {hkl: area_hkl/total area on wulff} """ return {hkl: self.miller_area_dict[hkl] / self.surface_area for hkl in self.miller_area_dict.keys()} @property def anisotropy(self): """ Returns: (float) Coefficient of Variation from weighted surface energy The ideal sphere is 0. """ square_diff_energy = 0 weighted_energy = self.weighted_surface_energy area_frac_dict = self.area_fraction_dict miller_energy_dict = self.miller_energy_dict for hkl in miller_energy_dict.keys(): square_diff_energy += (miller_energy_dict[hkl] - weighted_energy) \ ** 2 * area_frac_dict[hkl] return np.sqrt(square_diff_energy) / weighted_energy @property def shape_factor(self): """ This is useful for determining the critical nucleus size. A large shape factor indicates great anisotropy. See <NAME>., <NAME>. & <NAME>. Kinetics of Materials. (<NAME>, 2005), p.461 Returns: (float) Shape factor. """ return self.surface_area / (self.volume ** (2 / 3)) @property def effective_radius(self): """ Radius of the Wulffshape when the Wulffshape is approximated as a sphere. Returns: (float) radius. """ return ((3 / 4) * (self.volume / np.pi)) ** (1 / 3) @property def total_surface_energy(self): """ Total surface energy of the Wulff shape. Returns: (float) sum(surface_energy_hkl * area_hkl) """ tot_surface_energy = 0 for hkl in self.miller_energy_dict.keys(): tot_surface_energy += self.miller_energy_dict[hkl] * \ self.miller_area_dict[hkl] return tot_surface_energy @property def tot_corner_sites(self): """ Returns the number of vertices in the convex hull. Useful for identifying catalytically active sites. """ return len(self.wulff_convex.vertices) @property def tot_edges(self): """ Returns the number of edges in the convex hull. Useful for identifying catalytically active sites. """ all_edges = [] for facet in self.facets: edges = [] pt = self.get_line_in_facet(facet) lines = [] for i, p in enumerate(pt): if i == len(pt) / 2: break lines.append(tuple(sorted(tuple([tuple(pt[i * 2]), tuple(pt[i * 2 + 1])])))) for i, p in enumerate(lines): if p not in all_edges: edges.append(p) all_edges.extend(edges) return len(all_edges)
[ "logging.getLogger", "numpy.sqrt", "pymatgen.core.structure.Structure", "matplotlib.colorbar.ColorbarBase", "numpy.array", "numpy.linalg.norm", "scipy.cross", "mpl_toolkits.mplot3d.art3d.Poly3DCollection", "numpy.dot", "matplotlib.cm.ScalarMappable", "matplotlib.pyplot.Rectangle", "warnings.warn", "scipy.spatial.ConvexHull", "scipy.linalg.inv", "mpl_toolkits.mplot3d.Axes3D", "matplotlib.pyplot.get_cmap", "pymatgen.util.coord.get_angle", "numpy.sum", "matplotlib.pyplot.figure", "scipy.linalg.norm", "matplotlib.colors.BoundaryNorm" ]
[((1126, 1153), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (1143, 1153), False, 'import logging\n'), ((1738, 1749), 'numpy.array', 'np.array', (['b'], {}), '(b)\n', (1746, 1749), True, 'import numpy as np\n'), ((1752, 1763), 'numpy.array', 'np.array', (['a'], {}), '(a)\n', (1760, 1763), True, 'import numpy as np\n'), ((1773, 1784), 'numpy.array', 'np.array', (['c'], {}), '(c)\n', (1781, 1784), True, 'import numpy as np\n'), ((1787, 1798), 'numpy.array', 'np.array', (['a'], {}), '(a)\n', (1795, 1798), True, 'import numpy as np\n'), ((4997, 5035), 'pymatgen.core.structure.Structure', 'Structure', (['lattice', "['H']", '[[0, 0, 0]]'], {}), "(lattice, ['H'], [[0, 0, 0]])\n", (5006, 5035), False, 'from pymatgen.core.structure import Structure\n'), ((5601, 5621), 'scipy.spatial.ConvexHull', 'ConvexHull', (['dual_pts'], {}), '(dual_pts)\n', (5611, 5621), False, 'from scipy.spatial import ConvexHull\n'), ((6108, 6133), 'scipy.spatial.ConvexHull', 'ConvexHull', (['wulff_pt_list'], {}), '(wulff_pt_list)\n', (6118, 6133), False, 'from scipy.spatial import ConvexHull\n'), ((11053, 11076), 'matplotlib.pyplot.get_cmap', 'plt.get_cmap', (['color_set'], {}), '(color_set)\n', (11065, 11076), True, 'import matplotlib.pyplot as plt\n'), ((11660, 11705), 'matplotlib.cm.ScalarMappable', 'mpl.cm.ScalarMappable', ([], {'norm': 'cnorm', 'cmap': 'c_map'}), '(norm=cnorm, cmap=c_map)\n', (11681, 11705), True, 'import matplotlib as mpl\n'), ((15385, 15397), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (15395, 15397), True, 'import matplotlib.pyplot as plt\n'), ((15652, 15690), 'mpl_toolkits.mplot3d.Axes3D', 'mpl3.Axes3D', (['fig'], {'azim': 'azim', 'elev': 'elev'}), '(fig, azim=azim, elev=elev)\n', (15663, 15690), True, 'import mpl_toolkits.mplot3d as mpl3\n'), ((4749, 4812), 'warnings.warn', 'warnings.warn', (['"""Unphysical (negative) surface energy detected."""'], {}), "('Unphysical (negative) surface energy detected.')\n", (4762, 4812), False, 'import warnings\n'), ((8946, 8973), 'scipy.linalg.inv', 'sp.linalg.inv', (['matrix_surfs'], {}), '(matrix_surfs)\n', (8959, 8973), True, 'import scipy as sp\n'), ((12221, 12267), 'matplotlib.pyplot.Rectangle', 'plt.Rectangle', (['(2, 2)', '(1)', '(1)'], {'fc': 'x', 'alpha': 'alpha'}), '((2, 2), 1, 1, fc=x, alpha=alpha)\n', (12234, 12267), True, 'import matplotlib.pyplot as plt\n'), ((16167, 16200), 'mpl_toolkits.mplot3d.art3d.Poly3DCollection', 'mpl3.art3d.Poly3DCollection', (['[pt]'], {}), '([pt])\n', (16194, 16200), True, 'import mpl_toolkits.mplot3d as mpl3\n'), ((17366, 17389), 'matplotlib.pyplot.get_cmap', 'plt.get_cmap', (['color_set'], {}), '(color_set)\n', (17378, 17389), True, 'import matplotlib.pyplot as plt\n'), ((17582, 17621), 'matplotlib.colors.BoundaryNorm', 'mpl.colors.BoundaryNorm', (['bounds', 'cmap.N'], {}), '(bounds, cmap.N)\n', (17605, 17621), True, 'import matplotlib as mpl\n'), ((17720, 17894), 'matplotlib.colorbar.ColorbarBase', 'mpl.colorbar.ColorbarBase', (['ax1'], {'cmap': 'cmap', 'norm': 'norm', 'boundaries': '([0] + bounds + [10])', 'extend': '"""both"""', 'ticks': 'bounds[:-1]', 'spacing': '"""proportional"""', 'orientation': '"""vertical"""'}), "(ax1, cmap=cmap, norm=norm, boundaries=[0] +\n bounds + [10], extend='both', ticks=bounds[:-1], spacing='proportional',\n orientation='vertical')\n", (17745, 17894), True, 'import matplotlib as mpl\n'), ((18575, 18618), 'pymatgen.util.coord.get_angle', 'get_angle', (['[cart[0], cart[1], 0]', '(1, 0, 0)'], {}), '([cart[0], cart[1], 0], (1, 0, 0))\n', (18584, 18618), False, 'from pymatgen.util.coord import get_angle\n'), ((18676, 18694), 'pymatgen.util.coord.get_angle', 'get_angle', (['cart', 'v'], {}), '(cart, v)\n', (18685, 18694), False, 'from pymatgen.util.coord import get_angle\n'), ((20440, 20467), 'numpy.sqrt', 'np.sqrt', (['square_diff_energy'], {}), '(square_diff_energy)\n', (20447, 20467), True, 'import numpy as np\n'), ((1833, 1849), 'scipy.cross', 'sp.cross', (['v1', 'v2'], {}), '(v1, v2)\n', (1841, 1849), True, 'import scipy as sp\n'), ((9430, 9444), 'numpy.sum', 'np.sum', (['pts', '(0)'], {}), '(pts, 0)\n', (9436, 9444), True, 'import numpy as np\n'), ((12015, 12073), 'matplotlib.pyplot.Rectangle', 'plt.Rectangle', (['(2, 2)', '(1)', '(1)'], {'fc': 'color_list[i]', 'alpha': 'alpha'}), '((2, 2), 1, 1, fc=color_list[i], alpha=alpha)\n', (12028, 12073), True, 'import matplotlib.pyplot as plt\n'), ((16518, 16535), 'numpy.linalg.norm', 'np.linalg.norm', (['x'], {}), '(x)\n', (16532, 16535), True, 'import numpy as np\n'), ((7893, 7915), 'scipy.linalg.norm', 'sp.linalg.norm', (['normal'], {}), '(normal)\n', (7907, 7915), True, 'import scipy as sp\n'), ((9592, 9620), 'numpy.dot', 'np.dot', (['plane.normal', 'center'], {}), '(plane.normal, center)\n', (9598, 9620), True, 'import numpy as np\n')]
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # Copyright (c) 2018, <NAME>. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch - TF 2.0 general utilities.""" import logging import os import re import numpy logger = logging.getLogger(__name__) def convert_tf_weight_name_to_pt_weight_name(tf_name, start_prefix_to_remove=""): """ Convert a TF 2.0 model variable name in a pytorch model weight name. Conventions for TF2.0 scopes -> PyTorch attribute names conversions: - '$1___$2' is replaced by $2 (can be used to duplicate or remove layers in TF2.0 vs PyTorch) - '_._' is replaced by a new level separation (can be used to convert TF2.0 lists in PyTorch nn.ModulesList) return tuple with: - pytorch model weight name - transpose: boolean indicating weither TF2.0 and PyTorch weights matrices are transposed with regards to each other """ tf_name = tf_name.replace(":0", "") # device ids tf_name = re.sub( r"/[^/]*___([^/]*)/", r"/\1/", tf_name ) # '$1___$2' is replaced by $2 (can be used to duplicate or remove layers in TF2.0 vs PyTorch) tf_name = tf_name.replace( "_._", "/" ) # '_._' is replaced by a level separation (can be used to convert TF2.0 lists in PyTorch nn.ModulesList) tf_name = re.sub(r"//+", "/", tf_name) # Remove empty levels at the end tf_name = tf_name.split("/") # Convert from TF2.0 '/' separators to PyTorch '.' separators tf_name = tf_name[1:] # Remove level zero # When should we transpose the weights transpose = bool(tf_name[-1] == "kernel" or "emb_projs" in tf_name or "out_projs" in tf_name) # Convert standard TF2.0 names in PyTorch names if tf_name[-1] == "kernel" or tf_name[-1] == "embeddings" or tf_name[-1] == "gamma": tf_name[-1] = "weight" if tf_name[-1] == "beta": tf_name[-1] = "bias" # Remove prefix if needed tf_name = ".".join(tf_name) if start_prefix_to_remove: tf_name = tf_name.replace(start_prefix_to_remove, "", 1) return tf_name, transpose ##################### # PyTorch => TF 2.0 # ##################### def load_pytorch_checkpoint_in_tf2_model(tf_model, pytorch_checkpoint_path, tf_inputs=None, allow_missing_keys=False): """ Load pytorch checkpoints in a TF 2.0 model """ try: import tensorflow as tf # noqa: F401 import torch # noqa: F401 except ImportError: logger.error( "Loading a PyTorch model in TensorFlow, requires both PyTorch and TensorFlow to be installed. Please see " "https://pytorch.org/ and https://www.tensorflow.org/install/ for installation instructions." ) raise pt_path = os.path.abspath(pytorch_checkpoint_path) logger.info("Loading PyTorch weights from {}".format(pt_path)) pt_state_dict = torch.load(pt_path, map_location="cpu") logger.info("PyTorch checkpoint contains {:,} parameters".format(sum(t.numel() for t in pt_state_dict.values()))) return load_pytorch_weights_in_tf2_model( tf_model, pt_state_dict, tf_inputs=tf_inputs, allow_missing_keys=allow_missing_keys ) def load_pytorch_model_in_tf2_model(tf_model, pt_model, tf_inputs=None, allow_missing_keys=False): """ Load pytorch checkpoints in a TF 2.0 model """ pt_state_dict = pt_model.state_dict() return load_pytorch_weights_in_tf2_model( tf_model, pt_state_dict, tf_inputs=tf_inputs, allow_missing_keys=allow_missing_keys ) def load_pytorch_weights_in_tf2_model(tf_model, pt_state_dict, tf_inputs=None, allow_missing_keys=False): """ Load pytorch state_dict in a TF 2.0 model. """ try: import torch # noqa: F401 import tensorflow as tf # noqa: F401 from tensorflow.python.keras import backend as K except ImportError: logger.error( "Loading a PyTorch model in TensorFlow, requires both PyTorch and TensorFlow to be installed. Please see " "https://pytorch.org/ and https://www.tensorflow.org/install/ for installation instructions." ) raise if tf_inputs is None: tf_inputs = tf_model.dummy_inputs if tf_inputs is not None: tf_model(tf_inputs, training=False) # Make sure model is built # Adapt state dict - TODO remove this and update the AWS weights files instead # Convert old format to new format if needed from a PyTorch state_dict old_keys = [] new_keys = [] for key in pt_state_dict.keys(): new_key = None if "gamma" in key: new_key = key.replace("gamma", "weight") if "beta" in key: new_key = key.replace("beta", "bias") if new_key: old_keys.append(key) new_keys.append(new_key) for old_key, new_key in zip(old_keys, new_keys): pt_state_dict[new_key] = pt_state_dict.pop(old_key) # Make sure we are able to load PyTorch base models as well as derived models (with heads) # TF models always have a prefix, some of PyTorch models (base ones) don't start_prefix_to_remove = "" if not any(s.startswith(tf_model.base_model_prefix) for s in pt_state_dict.keys()): start_prefix_to_remove = tf_model.base_model_prefix + "." symbolic_weights = tf_model.trainable_weights + tf_model.non_trainable_weights tf_loaded_numel = 0 weight_value_tuples = [] all_pytorch_weights = set(list(pt_state_dict.keys())) for symbolic_weight in symbolic_weights: sw_name = symbolic_weight.name name, transpose = convert_tf_weight_name_to_pt_weight_name( sw_name, start_prefix_to_remove=start_prefix_to_remove ) # Find associated numpy array in pytorch model state dict if name not in pt_state_dict: if allow_missing_keys: continue raise AttributeError("{} not found in PyTorch model".format(name)) array = pt_state_dict[name].numpy() if transpose: array = numpy.transpose(array) if len(symbolic_weight.shape) < len(array.shape): array = numpy.squeeze(array) elif len(symbolic_weight.shape) > len(array.shape): array = numpy.expand_dims(array, axis=0) try: assert list(symbolic_weight.shape) == list(array.shape) except AssertionError as e: e.args += (symbolic_weight.shape, array.shape) raise e tf_loaded_numel += array.size # logger.warning("Initialize TF weight {}".format(symbolic_weight.name)) weight_value_tuples.append((symbolic_weight, array)) all_pytorch_weights.discard(name) K.batch_set_value(weight_value_tuples) if tf_inputs is not None: tf_model(tf_inputs, training=False) # Make sure restore ops are run logger.info("Loaded {:,} parameters in the TF 2.0 model.".format(tf_loaded_numel)) logger.info("Weights or buffers not loaded from PyTorch model: {}".format(all_pytorch_weights)) return tf_model ##################### # TF 2.0 => PyTorch # ##################### def load_tf2_checkpoint_in_pytorch_model(pt_model, tf_checkpoint_path, tf_inputs=None, allow_missing_keys=False): """ Load TF 2.0 HDF5 checkpoint in a PyTorch model We use HDF5 to easily do transfer learning (see https://github.com/tensorflow/tensorflow/blob/ee16fcac960ae660e0e4496658a366e2f745e1f0/tensorflow/python/keras/engine/network.py#L1352-L1357). """ try: import tensorflow as tf # noqa: F401 import torch # noqa: F401 except ImportError: logger.error( "Loading a TensorFlow model in PyTorch, requires both PyTorch and TensorFlow to be installed. Please see " "https://pytorch.org/ and https://www.tensorflow.org/install/ for installation instructions." ) raise import transformers logger.info("Loading TensorFlow weights from {}".format(tf_checkpoint_path)) # Instantiate and load the associated TF 2.0 model tf_model_class_name = "TF" + pt_model.__class__.__name__ # Add "TF" at the beggining tf_model_class = getattr(transformers, tf_model_class_name) tf_model = tf_model_class(pt_model.config) if tf_inputs is None: tf_inputs = tf_model.dummy_inputs if tf_inputs is not None: tf_model(tf_inputs, training=False) # Make sure model is built tf_model.load_weights(tf_checkpoint_path, by_name=True) return load_tf2_model_in_pytorch_model(pt_model, tf_model, allow_missing_keys=allow_missing_keys) def load_tf2_model_in_pytorch_model(pt_model, tf_model, allow_missing_keys=False): """ Load TF 2.0 model in a pytorch model """ weights = tf_model.weights return load_tf2_weights_in_pytorch_model(pt_model, weights, allow_missing_keys=allow_missing_keys) def load_tf2_weights_in_pytorch_model(pt_model, tf_weights, allow_missing_keys=False): """ Load TF2.0 symbolic weights in a PyTorch model """ try: import tensorflow as tf # noqa: F401 import torch # noqa: F401 except ImportError: logger.error( "Loading a TensorFlow model in PyTorch, requires both PyTorch and TensorFlow to be installed. Please see " "https://pytorch.org/ and https://www.tensorflow.org/install/ for installation instructions." ) raise new_pt_params_dict = {} current_pt_params_dict = dict(pt_model.named_parameters()) # Make sure we are able to load PyTorch base models as well as derived models (with heads) # TF models always have a prefix, some of PyTorch models (base ones) don't start_prefix_to_remove = "" if not any(s.startswith(pt_model.base_model_prefix) for s in current_pt_params_dict.keys()): start_prefix_to_remove = pt_model.base_model_prefix + "." # Build a map from potential PyTorch weight names to TF 2.0 Variables tf_weights_map = {} for tf_weight in tf_weights: pt_name, transpose = convert_tf_weight_name_to_pt_weight_name( tf_weight.name, start_prefix_to_remove=start_prefix_to_remove ) tf_weights_map[pt_name] = (tf_weight.numpy(), transpose) all_tf_weights = set(list(tf_weights_map.keys())) loaded_pt_weights_data_ptr = {} missing_keys_pt = [] for pt_weight_name, pt_weight in current_pt_params_dict.items(): # Handle PyTorch shared weight ()not duplicated in TF 2.0 if pt_weight.data_ptr() in loaded_pt_weights_data_ptr: new_pt_params_dict[pt_weight_name] = loaded_pt_weights_data_ptr[pt_weight.data_ptr()] continue # Find associated numpy array in pytorch model state dict if pt_weight_name not in tf_weights_map: if allow_missing_keys: missing_keys_pt.append(pt_weight_name) continue raise AttributeError("{} not found in TF 2.0 model".format(pt_weight_name)) array, transpose = tf_weights_map[pt_weight_name] if transpose: array = numpy.transpose(array) if len(pt_weight.shape) < len(array.shape): array = numpy.squeeze(array) elif len(pt_weight.shape) > len(array.shape): array = numpy.expand_dims(array, axis=0) try: assert list(pt_weight.shape) == list(array.shape) except AssertionError as e: e.args += (pt_weight.shape, array.shape) raise e # logger.warning("Initialize PyTorch weight {}".format(pt_weight_name)) new_pt_params_dict[pt_weight_name] = torch.from_numpy(array) loaded_pt_weights_data_ptr[pt_weight.data_ptr()] = torch.from_numpy(array) all_tf_weights.discard(pt_weight_name) missing_keys, unexpected_keys = pt_model.load_state_dict(new_pt_params_dict, strict=False) missing_keys += missing_keys_pt if len(missing_keys) > 0: logger.info( "Weights of {} not initialized from TF 2.0 model: {}".format(pt_model.__class__.__name__, missing_keys) ) if len(unexpected_keys) > 0: logger.info( "Weights from TF 2.0 model not used in {}: {}".format(pt_model.__class__.__name__, unexpected_keys) ) logger.info("Weights or buffers not loaded from TF 2.0 model: {}".format(all_tf_weights)) return pt_model
[ "logging.getLogger", "tensorflow.python.keras.backend.batch_set_value", "torch.load", "torch.from_numpy", "numpy.squeeze", "numpy.expand_dims", "os.path.abspath", "re.sub", "numpy.transpose" ]
[((802, 829), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (819, 829), False, 'import logging\n'), ((1569, 1614), 're.sub', 're.sub', (['"""/[^/]*___([^/]*)/"""', '"""/\\\\1/"""', 'tf_name'], {}), "('/[^/]*___([^/]*)/', '/\\\\1/', tf_name)\n", (1575, 1614), False, 'import re\n'), ((1901, 1928), 're.sub', 're.sub', (['"""//+"""', '"""/"""', 'tf_name'], {}), "('//+', '/', tf_name)\n", (1907, 1928), False, 'import re\n'), ((3319, 3359), 'os.path.abspath', 'os.path.abspath', (['pytorch_checkpoint_path'], {}), '(pytorch_checkpoint_path)\n', (3334, 3359), False, 'import os\n'), ((3448, 3487), 'torch.load', 'torch.load', (['pt_path'], {'map_location': '"""cpu"""'}), "(pt_path, map_location='cpu')\n", (3458, 3487), False, 'import torch\n'), ((7272, 7310), 'tensorflow.python.keras.backend.batch_set_value', 'K.batch_set_value', (['weight_value_tuples'], {}), '(weight_value_tuples)\n', (7289, 7310), True, 'from tensorflow.python.keras import backend as K\n'), ((12182, 12205), 'torch.from_numpy', 'torch.from_numpy', (['array'], {}), '(array)\n', (12198, 12205), False, 'import torch\n'), ((12265, 12288), 'torch.from_numpy', 'torch.from_numpy', (['array'], {}), '(array)\n', (12281, 12288), False, 'import torch\n'), ((6610, 6632), 'numpy.transpose', 'numpy.transpose', (['array'], {}), '(array)\n', (6625, 6632), False, 'import numpy\n'), ((6712, 6732), 'numpy.squeeze', 'numpy.squeeze', (['array'], {}), '(array)\n', (6725, 6732), False, 'import numpy\n'), ((11646, 11668), 'numpy.transpose', 'numpy.transpose', (['array'], {}), '(array)\n', (11661, 11668), False, 'import numpy\n'), ((11742, 11762), 'numpy.squeeze', 'numpy.squeeze', (['array'], {}), '(array)\n', (11755, 11762), False, 'import numpy\n'), ((6813, 6845), 'numpy.expand_dims', 'numpy.expand_dims', (['array'], {'axis': '(0)'}), '(array, axis=0)\n', (6830, 6845), False, 'import numpy\n'), ((11837, 11869), 'numpy.expand_dims', 'numpy.expand_dims', (['array'], {'axis': '(0)'}), '(array, axis=0)\n', (11854, 11869), False, 'import numpy\n')]
import attr from firedrake import * import numpy as np import matplotlib.pyplot as plt import matplotlib from scipy.linalg import svd from scipy.sparse.linalg import svds from scipy.sparse import csr_matrix from slepc4py import SLEPc import pandas as pd from tqdm import tqdm import os matplotlib.use('Agg') @attr.s class ConditionNumberResult(object): form = attr.ib() assembled_form = attr.ib() condition_number = attr.ib() sparse_operator = attr.ib() number_of_dofs = attr.ib() nnz = attr.ib() is_operator_symmetric = attr.ib() bcs = attr.ib(default=list()) def plot_matrix(assembled_form, **kwargs): """Provides a plot of a matrix.""" fig, ax = plt.subplots(1, 1) petsc_mat = assembled_form.M.handle size = petsc_mat.getSize() Mnp = csr_matrix(petsc_mat.getValuesCSR()[::-1], shape=size) Mnp.eliminate_zeros() Mnp = Mnp.toarray() # Eliminate rows and columns filled with zero entries Mnp = Mnp[~(Mnp==0).all(1)] idx = np.argwhere(np.all(Mnp[..., :] == 0, axis=0)) Mnp = np.delete(Mnp, idx, axis=1) Am = np.ma.masked_values(Mnp, 0, rtol=1e-13) # Plot the matrix plot = ax.matshow(Am, **kwargs) # Remove axis ticks and values ax.tick_params(length=0) ax.set_xticklabels([]) ax.set_yticklabels([]) return plot def plot_matrix_mixed(assembled_form, **kwargs): """Provides a plot of a mixed matrix.""" fig, ax = plt.subplots(1, 1) petsc_mat = assembled_form.M.handle f0_size = assembled_form.M[0, 0].handle.getSize() size = petsc_mat.getSize() Mnp = csr_matrix(petsc_mat.getValuesCSR()[::-1], shape=size) Mnp.eliminate_zeros() Mnp = Mnp.toarray() # Eliminate rows and columns filled with zero entries Mnp = Mnp[~(Mnp==0).all(1)] idx = np.argwhere(np.all(Mnp[..., :] == 0, axis=0)) Mnp = np.delete(Mnp, idx, axis=1) Am = np.ma.masked_values(Mnp, 0, rtol=1e-13) # Plot the matrix plot = ax.matshow(Am, **kwargs) # Remove axis ticks and values ax.tick_params(length=0) ax.set_xticklabels([]) ax.set_yticklabels([]) ax.axhline(y=f0_size[0] - 0.5, color="k") ax.axvline(x=f0_size[0] - 0.5, color="k") return plot def plot_matrix_primal_hybrid_full(a_form, bcs=[], **kwargs): """Provides a plot of a full hybrid-mixed matrix.""" fig, ax = plt.subplots(1, 1) assembled_form = assemble(a_form, bcs=bcs, mat_type="aij") petsc_mat = assembled_form.M.handle f0_size = assembled_form.M[0, 0].handle.getSize() size = petsc_mat.getSize() Mnp = csr_matrix(petsc_mat.getValuesCSR()[::-1], shape=size) Mnp.eliminate_zeros() Mnp = Mnp.toarray() # Eliminate rows and columns filled with zero entries Mnp = Mnp[~(Mnp==0).all(1)] idx = np.argwhere(np.all(Mnp[..., :] == 0, axis=0)) Mnp = np.delete(Mnp, idx, axis=1) Am = np.ma.masked_values(Mnp, 0, rtol=1e-13) # Plot the matrix plot = ax.matshow(Am, **kwargs) # Remove axis ticks and values ax.tick_params(length=0) ax.set_xticklabels([]) ax.set_yticklabels([]) ax.axhline(y=f0_size[0] - 0.5, color="k") ax.axvline(x=f0_size[0] - 0.5, color="k") return plot def plot_matrix_mixed_hybrid_full(a_form, bcs=[], **kwargs): """Provides a plot of a full hybrid-mixed matrix.""" fig, ax = plt.subplots(1, 1) assembled_form = assemble(a_form, bcs=bcs, mat_type="aij") petsc_mat = assembled_form.M.handle f0_size = assembled_form.M[0, 0].handle.getSize() f1_size = assembled_form.M[1, 1].handle.getSize() size = petsc_mat.getSize() Mnp = csr_matrix(petsc_mat.getValuesCSR()[::-1], shape=size) Mnp.eliminate_zeros() Mnp = Mnp.toarray() # Eliminate rows and columns filled with zero entries Mnp = Mnp[~(Mnp==0).all(1)] idx = np.argwhere(np.all(Mnp[..., :] == 0, axis=0)) Mnp = np.delete(Mnp, idx, axis=1) Am = np.ma.masked_values(Mnp, 0, rtol=1e-13) # Plot the matrix plot = ax.matshow(Am, **kwargs) # Remove axis ticks and values ax.tick_params(length=0) ax.set_xticklabels([]) ax.set_yticklabels([]) ax.axhline(y=f0_size[0] - 0.5, color="k") ax.axvline(x=f0_size[0] - 0.5, color="k") ax.axhline(y=f0_size[0] + f1_size[0] - 0.5, color="k") ax.axvline(x=f0_size[0] + f1_size[0] - 0.5, color="k") return plot def plot_matrix_hybrid_multiplier(a_form, trace_index=2, bcs=[], **kwargs): """Provides a plot of a condensed hybrid-mixed matrix for single scale problems.""" fig, ax = plt.subplots(1, 1) _A = Tensor(a_form) A = _A.blocks idx = trace_index S = A[idx, idx] - A[idx, :idx] * A[:idx, :idx].inv * A[:idx, idx] Smat = assemble(S, bcs=bcs) petsc_mat = Smat.M.handle size = petsc_mat.getSize() Mnp = csr_matrix(petsc_mat.getValuesCSR()[::-1], shape=size) Mnp.eliminate_zeros() Mnp = Mnp.toarray() # Eliminate rows and columns filled with zero entries Mnp = Mnp[~(Mnp==0).all(1)] idx = np.argwhere(np.all(Mnp[..., :] == 0, axis=0)) Mnp = np.delete(Mnp, idx, axis=1) Am = np.ma.masked_values(Mnp, 0, rtol=1e-13) # Plot the matrix plot = ax.matshow(Am, **kwargs) # Below there is the spy alternative # plot = plt.spy(Am, **kwargs) # Remove axis ticks and values ax.tick_params(length=0) ax.set_xticklabels([]) ax.set_yticklabels([]) return plot def filter_real_part_in_array(array: np.ndarray, imag_threshold: float = 1e-5) -> np.ndarray: """Utility function to filter real part in a numpy array. :param array: Array with real and complex numbers. :param imag_threshold: Threshold to cut off imaginary part in complex number. :return: Filtered array with only real numbers. """ real_part_array = array.real[abs(array.imag) < 1e-5] return real_part_array def calculate_condition_number( A, num_of_factors, backend: str = "scipy", use_sparse: bool = False, zero_tol: float = 1e-5 ): backend = backend.lower() if backend == "scipy": size = A.getSize() Mnp = csr_matrix(A.getValuesCSR()[::-1], shape=size) Mnp.eliminate_zeros() if use_sparse: singular_values = svds( A=Mnp, k=num_of_factors, which="LM", maxiter=5000, return_singular_vectors=False, solver="lobpcg" ) else: M = Mnp.toarray() singular_values = svd(M, compute_uv=False, check_finite=False) singular_values = singular_values[singular_values > zero_tol] condition_number = singular_values.max() / singular_values.min() elif backend == "slepc": S = SLEPc.SVD() S.create() S.setOperator(A) S.setType(SLEPc.SVD.Type.LAPACK) S.setDimensions(nsv=num_of_factors) S.setTolerances(max_it=5000) S.setWhichSingularTriplets(SLEPc.SVD.Which.LARGEST) S.solve() num_converged_values = S.getConverged() singular_values_list = list() if num_converged_values > 0: for i in range(num_converged_values): singular_value = S.getValue(i) singular_values_list.append(singular_value) else: raise RuntimeError("SLEPc SVD has not converged.") singular_values = np.array(singular_values_list) singular_values = singular_values[singular_values > zero_tol] condition_number = singular_values.max() / singular_values.min() else: raise NotImplementedError("The required method for condition number estimation is currently unavailable.") return condition_number def solve_poisson_cg(mesh, degree=1, use_quads=False): # Function space declaration V = FunctionSpace(mesh, "CG", degree) # Trial and test functions u = TrialFunction(V) v = TestFunction(V) # Dirichlet BCs bcs = DirichletBC(V, 0.0, "on_boundary") # Variational form a = inner(grad(u), grad(v)) * dx A = assemble(a, bcs=bcs, mat_type="aij") petsc_mat = A.M.handle is_symmetric = petsc_mat.isSymmetric(tol=1e-8) size = petsc_mat.getSize() Mnp = csr_matrix(petsc_mat.getValuesCSR()[::-1], shape=size) Mnp.eliminate_zeros() nnz = Mnp.nnz number_of_dofs = V.dim() num_of_factors = int(number_of_dofs) - 1 condition_number = calculate_condition_number(petsc_mat, num_of_factors) result = ConditionNumberResult( form=a, assembled_form=A, condition_number=condition_number, sparse_operator=Mnp, number_of_dofs=number_of_dofs, nnz=nnz, is_operator_symmetric=is_symmetric ) return result def solve_poisson_ls(mesh, degree=1): # Function space declaration pressure_family = 'CG' velocity_family = 'CG' U = VectorFunctionSpace(mesh, velocity_family, degree) V = FunctionSpace(mesh, pressure_family, degree) W = U * V # Trial and test functions u, p = TrialFunctions(W) v, q = TestFunctions(W) # Mesh entities h = CellDiameter(mesh) x, y = SpatialCoordinate(mesh) # Exact solution p_exact = sin(2 * pi * x) * sin(2 * pi * y) exact_solution = Function(V).interpolate(p_exact) exact_solution.rename("Exact pressure", "label") sigma_e = Function(U, name='Exact velocity') sigma_e.project(-grad(p_exact)) # Dirichlet BCs bcs = DirichletBC(W[0], sigma_e, "on_boundary") # Stabilization parameters delta_1 = Constant(1) delta_2 = Constant(1) delta_3 = Constant(1) # Least-squares terms a = delta_1 * inner(u + grad(p), v + grad(q)) * dx a += delta_2 * div(u) * div(v) * dx a += delta_3 * inner(curl(u), curl(v)) * dx A = assemble(a, bcs=bcs, mat_type="aij") petsc_mat = A.M.handle is_symmetric = petsc_mat.isSymmetric(tol=1e-8) size = petsc_mat.getSize() Mnp = csr_matrix(petsc_mat.getValuesCSR()[::-1], shape=size) Mnp.eliminate_zeros() nnz = Mnp.nnz number_of_dofs = W.dim() num_of_factors = int(number_of_dofs) - 1 condition_number = calculate_condition_number(petsc_mat, num_of_factors) result = ConditionNumberResult( form=a, assembled_form=A, condition_number=condition_number, sparse_operator=Mnp, number_of_dofs=number_of_dofs, nnz=nnz, is_operator_symmetric=is_symmetric ) return result def solve_poisson_cgls(mesh, degree=1): # Function space declaration pressure_family = 'CG' velocity_family = 'CG' U = VectorFunctionSpace(mesh, velocity_family, degree) V = FunctionSpace(mesh, pressure_family, degree) W = U * V # Trial and test functions u, p = TrialFunctions(W) v, q = TestFunctions(W) # Mesh entities n = FacetNormal(mesh) h = CellDiameter(mesh) x, y = SpatialCoordinate(mesh) # Exact solution p_exact = sin(2 * pi * x) * sin(2 * pi * y) exact_solution = Function(V).interpolate(p_exact) exact_solution.rename("Exact pressure", "label") sigma_e = Function(U, name='Exact velocity') sigma_e.project(-grad(p_exact)) # Dirichlet BCs bcs = DirichletBC(W[0], sigma_e, "on_boundary") # Mixed classical terms a = (dot(u, v) - div(v) * p - q * div(u)) * dx # Stabilizing terms a += -0.5 * inner((u + grad(p)), v + grad(q)) * dx # a += 0.5 * h * h * div(u) * div(v) * dx # a += 0.5 * h * h * inner(curl(u), curl(v)) * dx # L += 0.5 * h * h * f * div(v) * dx a += 0.5 * div(u) * div(v) * dx a += 0.5 * inner(curl(u), curl(v)) * dx A = assemble(a, bcs=bcs, mat_type="aij") petsc_mat = A.M.handle is_symmetric = petsc_mat.isSymmetric(tol=1e-8) size = petsc_mat.getSize() Mnp = csr_matrix(petsc_mat.getValuesCSR()[::-1], shape=size) Mnp.eliminate_zeros() nnz = Mnp.nnz number_of_dofs = W.dim() num_of_factors = int(number_of_dofs) - 1 condition_number = calculate_condition_number(petsc_mat, num_of_factors) result = ConditionNumberResult( form=a, assembled_form=A, condition_number=condition_number, sparse_operator=Mnp, number_of_dofs=number_of_dofs, nnz=nnz, is_operator_symmetric=is_symmetric ) return result def solve_poisson_vms(mesh, degree=1): # Function space declaration pressure_family = 'CG' velocity_family = 'CG' U = VectorFunctionSpace(mesh, velocity_family, degree) V = FunctionSpace(mesh, pressure_family, degree) W = U * V # Trial and test functions u, p = TrialFunctions(W) v, q = TestFunctions(W) # Mesh entities n = FacetNormal(mesh) h = CellDiameter(mesh) x, y = SpatialCoordinate(mesh) # Exact solution p_exact = sin(2 * pi * x) * sin(2 * pi * y) exact_solution = Function(V).interpolate(p_exact) exact_solution.rename("Exact pressure", "label") sigma_e = Function(U, name='Exact velocity') sigma_e.project(-grad(p_exact)) # Dirichlet BCs bcs = DirichletBC(W[0], sigma_e, "on_boundary") # Mixed classical terms a = (dot(u, v) - div(v) * p + q * div(u)) * dx # Stabilizing terms a += 0.5 * inner(u + grad(p), grad(q) - v) * dx # a += 0.5 * h * h * div(u) * div(v) * dx # a += 0.5 * h * h * inner(curl(u), curl(v)) * dx # L += 0.5 * h * h * f * div(v) * dx # a += 0.5 * div(u) * div(v) * dx # a += 0.5 * inner(curl(u), curl(v)) * dx # L += 0.5 * f * div(v) * dx A = assemble(a, bcs=bcs, mat_type="aij") petsc_mat = A.M.handle is_symmetric = petsc_mat.isSymmetric(tol=1e-8) size = petsc_mat.getSize() Mnp = csr_matrix(petsc_mat.getValuesCSR()[::-1], shape=size) Mnp.eliminate_zeros() nnz = Mnp.nnz number_of_dofs = W.dim() num_of_factors = int(number_of_dofs) - 1 condition_number = calculate_condition_number(petsc_mat, num_of_factors) result = ConditionNumberResult( form=a, assembled_form=A, condition_number=condition_number, sparse_operator=Mnp, number_of_dofs=number_of_dofs, nnz=nnz, is_operator_symmetric=is_symmetric ) return result def solve_poisson_mixed_RT(mesh, degree=1): # Function space declaration use_quads = str(mesh.ufl_cell()) == "quadrilateral" if use_quads: hdiv_family = 'RTCF' pressure_family = 'DQ' else: hdiv_family = 'RT' pressure_family = 'DG' U = FunctionSpace(mesh, hdiv_family, degree + 1) V = FunctionSpace(mesh, pressure_family, degree) W = U * V # Trial and test functions u, p = TrialFunctions(W) v, q = TestFunctions(W) # Mesh entities x, y = SpatialCoordinate(mesh) # Exact solution p_exact = sin(2 * pi * x) * sin(2 * pi * y) exact_solution = Function(V).interpolate(p_exact) exact_solution.rename("Exact pressure", "label") sigma_e = Function(U, name='Exact velocity') sigma_e.project(-grad(p_exact)) # Dirichlet BCs bcs = DirichletBC(W[0], sigma_e, "on_boundary") # Mixed classical terms a = (dot(u, v) - div(v) * p + q * div(u)) * dx A = assemble(a, bcs=bcs, mat_type="aij") petsc_mat = A.M.handle is_symmetric = petsc_mat.isSymmetric(tol=1e-8) size = petsc_mat.getSize() Mnp = csr_matrix(petsc_mat.getValuesCSR()[::-1], shape=size) Mnp.eliminate_zeros() nnz = Mnp.nnz number_of_dofs = W.dim() num_of_factors = int(number_of_dofs) - 1 condition_number = calculate_condition_number(petsc_mat, num_of_factors) result = ConditionNumberResult( form=a, assembled_form=A, condition_number=condition_number, sparse_operator=Mnp, number_of_dofs=number_of_dofs, nnz=nnz, is_operator_symmetric=is_symmetric ) return result def solve_poisson_dgls(mesh, degree=1): # Function space declaration use_quads = str(mesh.ufl_cell()) == "quadrilateral" pressure_family = 'DQ' if use_quads else 'DG' velocity_family = 'DQ' if use_quads else 'DG' U = VectorFunctionSpace(mesh, velocity_family, degree) V = FunctionSpace(mesh, pressure_family, degree) W = U * V # Trial and test functions u, p = TrialFunctions(W) v, q = TestFunctions(W) # Mesh entities n = FacetNormal(mesh) h = CellDiameter(mesh) x, y = SpatialCoordinate(mesh) # Exact solution p_exact = sin(2 * pi * x) * sin(2 * pi * y) exact_solution = Function(V).interpolate(p_exact) exact_solution.rename("Exact pressure", "label") sigma_e = Function(U, name='Exact velocity') sigma_e.project(-grad(p_exact)) # Dirichlet BCs # bcs = DirichletBC(W[0], sigma_e, "on_boundary", method="geometric") # Average cell size and mesh dependent stabilization h_avg = (h("+") + h("-")) / 2.0 # Jump stabilizing parameters based on Badia-Codina stabilized dG method L0 = 1 eta_p = L0 * h # method B in the Badia-Codina paper # eta_p = 1 # eta_p = L0 * L0 # method D in the Badia-Codina paper eta_u = h / L0 # method B in the Badia-Codina paper # eta_u = 1 # Nitsche's penalizing term beta_0 = Constant(1.0) beta = beta_0 / h # Mixed classical terms a = (dot(u, v) - div(v) * p - q * div(u)) * dx # DG terms a += jump(v, n) * avg(p) * dS - avg(q) * jump(u, n) * dS # Edge stabilizing terms # ** Badia-Codina based a += (avg(eta_p) / h_avg) * (jump(u, n) * jump(v, n)) * dS a += (avg(eta_u) / h_avg) * dot(jump(p, n), jump(q, n)) * dS # ** Mesh independent terms # a += jump(u, n) * jump(v, n) * dS # a += dot(jump(p, n), jump(q, n)) * dS # Volumetric stabilizing terms # a += 0.5 * h * h * div(u) * div(v) * dx # a += 0.5 * h * h * inner(curl(u), curl(v)) * dx # L += 0.5 * h * h * f * div(v) * dx # a += -0.5 * inner(u + grad(p), v + grad(q)) * dx # a += 0.5 * div(u) * div(v) * dx # a += 0.5 * inner(curl(u), curl(v)) * dx # ** Badia-Codina based a += -eta_u * inner(u + grad(p), v + grad(q)) * dx a += eta_p * div(u) * div(v) * dx a += eta_p * inner(curl(u), curl(v)) * dx # Weakly imposed boundary conditions a += dot(v, n) * p * ds - q * dot(u, n) * ds a += beta * p * q * ds # may decrease convergente rates # ** The terms below are based on ASGS Badia-Codina (2010), it is not a classical Nitsche's method a += (eta_p / h) * dot(u, n) * dot(v, n) * ds a += (eta_u / h) * dot(p * n, q * n) * ds A = assemble(a, mat_type="aij") petsc_mat = A.M.handle is_symmetric = petsc_mat.isSymmetric(tol=1e-8) size = petsc_mat.getSize() Mnp = csr_matrix(petsc_mat.getValuesCSR()[::-1], shape=size) Mnp.eliminate_zeros() nnz = Mnp.nnz number_of_dofs = W.dim() num_of_factors = int(number_of_dofs) - 1 condition_number = calculate_condition_number(petsc_mat, num_of_factors) result = ConditionNumberResult( form=a, assembled_form=A, condition_number=condition_number, sparse_operator=Mnp, number_of_dofs=number_of_dofs, nnz=nnz, is_operator_symmetric=is_symmetric ) return result def solve_poisson_dvms(mesh, degree=1): # Function space declaration use_quads = str(mesh.ufl_cell()) == "quadrilateral" pressure_family = 'DQ' if use_quads else 'DG' velocity_family = 'DQ' if use_quads else 'DG' U = VectorFunctionSpace(mesh, velocity_family, degree) V = FunctionSpace(mesh, pressure_family, degree) W = U * V # Trial and test functions u, p = TrialFunctions(W) v, q = TestFunctions(W) # Mesh entities n = FacetNormal(mesh) h = CellDiameter(mesh) x, y = SpatialCoordinate(mesh) # Exact solution p_exact = sin(2 * pi * x) * sin(2 * pi * y) exact_solution = Function(V).interpolate(p_exact) exact_solution.rename("Exact pressure", "label") sigma_e = Function(U, name='Exact velocity') sigma_e.project(-grad(p_exact)) # Dirichlet BCs # bcs = DirichletBC(W[0], sigma_e, "on_boundary", method="geometric") # Average cell size and mesh dependent stabilization h_avg = (h("+") + h("-")) / 2.0 # Jump stabilizing parameters based on Badia-Codina stabilized dG method L0 = 1 eta_p = L0 * h # method B in the Badia-Codina paper # eta_p = L0 * L0 # method D in the Badia-Codina paper eta_u = h / L0 # method B in the Badia-Codina paper # Mixed classical terms a = (dot(u, v) - div(v) * p + q * div(u)) * dx # DG terms a += jump(v, n) * avg(p) * dS - avg(q) * jump(u, n) * dS # Edge stabilizing terms # ** Badia-Codina based a += (avg(eta_p) / h_avg) * (jump(u, n) * jump(v, n)) * dS a += (avg(eta_u) / h_avg) * dot(jump(p, n), jump(q, n)) * dS # ** Mesh independent (original) # a += jump(u, n) * jump(v, n) * dS # not considered in the original paper # a += dot(jump(p, n), jump(q, n)) * dS # Volumetric stabilizing terms # a += 0.5 * inner(u + grad(p), grad(q) - v) * dx # a += 0.5 * h * h * div(u) * div(v) * dx # a += 0.5 * h * h * inner(curl(u), curl(v)) * dx # L += 0.5 * h * h * f * div(v) * dx # a += 0.5 * div(u) * div(v) * dx # a += 0.5 * inner(curl(u), curl(v)) * dx # L += 0.5 * f * div(v) * dx # ** Badia-Codina based a += eta_u * inner(u + grad(p), grad(q) - v) * dx a += eta_p * div(u) * div(v) * dx # Weakly imposed boundary conditions a += dot(v, n) * p * ds - q * dot(u, n) * ds # ** The terms below are based on ASGS Badia-Codina (2010), it is not a classical Nitsche's method a += (eta_p / h) * dot(u, n) * dot(v, n) * ds a += (eta_u / h) * dot(p * n, q * n) * ds # may decrease convergente rates # ** Classical Nitsche # a += beta * p * q * ds # may decrease convergente rates (Nitsche) A = assemble(a, mat_type="aij") petsc_mat = A.M.handle is_symmetric = petsc_mat.isSymmetric(tol=1e-8) size = petsc_mat.getSize() Mnp = csr_matrix(petsc_mat.getValuesCSR()[::-1], shape=size) Mnp.eliminate_zeros() nnz = Mnp.nnz number_of_dofs = W.dim() num_of_factors = int(number_of_dofs) - 1 condition_number = calculate_condition_number(petsc_mat, num_of_factors) result = ConditionNumberResult( form=a, assembled_form=A, condition_number=condition_number, sparse_operator=Mnp, number_of_dofs=number_of_dofs, nnz=nnz, is_operator_symmetric=is_symmetric ) return result def solve_poisson_sipg(mesh, degree=1): # Function space declaration use_quads = str(mesh.ufl_cell()) == "quadrilateral" pressure_family = 'DQ' if use_quads else 'DG' V = FunctionSpace(mesh, pressure_family, degree) # Trial and test functions p = TrialFunction(V) q = TestFunction(V) # Mesh entities n = FacetNormal(mesh) h = CellDiameter(mesh) x, y = SpatialCoordinate(mesh) # Exact solution p_exact = sin(2 * pi * x) * sin(2 * pi * y) exact_solution = Function(V).interpolate(p_exact) exact_solution.rename("Exact pressure", "label") # Forcing function f_expression = div(-grad(p_exact)) f = Function(V).interpolate(f_expression) # Edge stabilizing parameter beta0 = Constant(1e1) beta = beta0 / h # Symmetry term. Choose if the method is SIPG (-1) or NIPG (1) s = Constant(-1) # Classical volumetric terms a = inner(grad(p), grad(q)) * dx L = f * q * dx # DG edge terms a += s * dot(jump(p, n), avg(grad(q))) * dS - dot(avg(grad(p)), jump(q, n)) * dS # Edge stabilizing terms a += beta("+") * dot(jump(p, n), jump(q, n)) * dS # Weak boundary conditions a += s * dot(p * n, grad(q)) * ds - dot(grad(p), q * n) * ds a += beta * p * q * ds A = assemble(a, mat_type="aij") petsc_mat = A.M.handle is_symmetric = petsc_mat.isSymmetric(tol=1e-8) size = petsc_mat.getSize() Mnp = csr_matrix(petsc_mat.getValuesCSR()[::-1], shape=size) Mnp.eliminate_zeros() nnz = Mnp.nnz number_of_dofs = V.dim() num_of_factors = int(number_of_dofs) - 1 condition_number = calculate_condition_number(petsc_mat, num_of_factors) result = ConditionNumberResult( form=a, assembled_form=A, condition_number=condition_number, sparse_operator=Mnp, number_of_dofs=number_of_dofs, nnz=nnz, is_operator_symmetric=is_symmetric ) return result def solve_poisson_dls(mesh, degree=1): # Function space declaration use_quads = str(mesh.ufl_cell()) == "quadrilateral" pressure_family = 'DQ' if use_quads else 'DG' velocity_family = 'DQ' if use_quads else 'DG' U = VectorFunctionSpace(mesh, velocity_family, degree) V = FunctionSpace(mesh, pressure_family, degree) W = U * V # Trial and test functions u, p = TrialFunctions(W) v, q = TestFunctions(W) # Mesh entities n = FacetNormal(mesh) h = CellDiameter(mesh) x, y = SpatialCoordinate(mesh) # Exact solution p_exact = sin(2 * pi * x) * sin(2 * pi * y) exact_solution = Function(V).interpolate(p_exact) exact_solution.rename("Exact pressure", "label") sigma_e = Function(U, name='Exact velocity') sigma_e.project(-grad(p_exact)) # Dirichlet BCs # bcs = DirichletBC(W[0], sigma_e, "on_boundary", method="geometric") # Average cell size and mesh dependent stabilization h_avg = (h("+") + h("-")) / 2.0 # Jump stabilizing parameters based on Badia-Codina stabilized dG method # L0 = 1 # eta_p = L0 * h_avg # method B in the Badia-Codina paper eta_p = 1 # eta_p = L0 * L0 # method D in the Badia-Codina paper # eta_u = h_avg / L0 # method B in the Badia-Codina paper eta_u = 1 # eta_u_bc = h / L0 # method B in the Badia-Codina paper eta_u_bc = 1 # Least-Squares weights delta = Constant(1.0) # delta = h delta_0 = delta delta_1 = delta delta_2 = delta delta_3 = 1 / h delta_4 = 1 / h # Least-squares terms a = delta_0 * inner(u + grad(p), v + grad(q)) * dx a += delta_1 * div(u) * div(v) * dx a += delta_2 * inner(curl(u), curl(v)) * dx # Edge stabilizing terms # ** Badia-Codina based (better results) ** a += eta_u * avg(delta_3) * (jump(u, n) * jump(v, n)) * dS a += eta_p * avg(delta_4) * dot(jump(p, n), jump(q, n)) * dS a += eta_u_bc * delta_3 * p * q * ds # may decrease convergente rates a += eta_u_bc * delta_4 * dot(u, n) * dot(v, n) * ds # ** Mesh independent ** # a += jump(u, n) * jump(v, n) * dS # a += dot(jump(p, n), jump(q, n)) * dS # a += p * q * ds A = assemble(a, mat_type="aij") petsc_mat = A.M.handle is_symmetric = petsc_mat.isSymmetric(tol=1e-12) size = petsc_mat.getSize() Mnp = csr_matrix(petsc_mat.getValuesCSR()[::-1], shape=size) Mnp.eliminate_zeros() nnz = Mnp.nnz number_of_dofs = W.dim() num_of_factors = int(number_of_dofs) - 1 condition_number = calculate_condition_number(petsc_mat, num_of_factors) result = ConditionNumberResult( form=a, assembled_form=A, condition_number=condition_number, sparse_operator=Mnp, number_of_dofs=number_of_dofs, nnz=nnz, is_operator_symmetric=is_symmetric ) return result def solve_poisson_sdhm( mesh, degree=1, is_multiplier_continuous=False ): # Function space declaration use_quads = str(mesh.ufl_cell()) == "quadrilateral" pressure_family = 'DQ' if use_quads else 'DG' velocity_family = 'DQ' if use_quads else 'DG' trace_family = "HDiv Trace" U = VectorFunctionSpace(mesh, velocity_family, degree) V = FunctionSpace(mesh, pressure_family, degree) if is_multiplier_continuous: LagrangeElement = FiniteElement("Lagrange", mesh.ufl_cell(), degree) C0TraceElement = LagrangeElement["facet"] T = FunctionSpace(mesh, C0TraceElement) else: T = FunctionSpace(mesh, trace_family, degree) W = U * V * T # Trial and test functions # solution = Function(W) # u, p, lambda_h = split(solution) u, p, lambda_h = TrialFunctions(W) v, q, mu_h = TestFunctions(W) # Mesh entities n = FacetNormal(mesh) h = CellDiameter(mesh) x, y = SpatialCoordinate(mesh) # Exact solution p_exact = sin(2 * pi * x) * sin(2 * pi * y) exact_solution = Function(V).interpolate(p_exact) exact_solution.rename("Exact pressure", "label") sigma_e = Function(U, name='Exact velocity') sigma_e.project(-grad(p_exact)) # Forcing function f_expression = div(-grad(p_exact)) f = Function(V).interpolate(f_expression) # BCs u_projected = sigma_e p_boundaries = p_exact bcs = DirichletBC(W.sub(2), p_exact, "on_boundary") # Hybridization parameter beta_0 = Constant(1.0e-18) # beta = beta_0 / h beta = beta_0 # Stabilization parameters delta_0 = Constant(-1) delta_1 = Constant(-0.5) * h * h delta_2 = Constant(0.5) * h * h delta_3 = Constant(0.5) * h * h # Mixed classical terms a = (dot(u, v) - div(v) * p + delta_0 * q * div(u)) * dx L = delta_0 * f * q * dx # Stabilizing terms a += delta_1 * inner(u + grad(p), v + grad(q)) * dx a += delta_2 * div(u) * div(v) * dx a += delta_3 * inner(curl(u), curl(v)) * dx L += delta_2 * f * div(v) * dx # Hybridization terms a += lambda_h("+") * dot(v, n)("+") * dS + mu_h("+") * dot(u, n)("+") * dS a += beta("+") * (lambda_h("+") - p("+")) * (mu_h("+") - q("+")) * dS # Weakly imposed BC a += (p_boundaries * dot(v, n) + mu_h * (dot(u, n) - dot(u_projected, n))) * ds a += beta * (lambda_h - p_boundaries) * mu_h * ds F = a - L a_form = lhs(F) _A = Tensor(a_form) A = _A.blocks S = A[2, 2] - A[2, :2] * A[:2, :2].inv * A[:2, 2] Smat = assemble(S, bcs=bcs) petsc_mat = Smat.M.handle is_symmetric = petsc_mat.isSymmetric(tol=1e-8) size = petsc_mat.getSize() Mnp = csr_matrix(petsc_mat.getValuesCSR()[::-1], shape=size) Mnp.eliminate_zeros() nnz = Mnp.nnz number_of_dofs = Mnp.shape[0] num_of_factors = int(number_of_dofs) - 1 condition_number = calculate_condition_number(petsc_mat, num_of_factors) result = ConditionNumberResult( form=a, assembled_form=Smat, condition_number=condition_number, sparse_operator=Mnp, number_of_dofs=number_of_dofs, nnz=nnz, is_operator_symmetric=is_symmetric, bcs=bcs ) return result def solve_poisson_hdg( mesh, degree=1, is_multiplier_continuous=False ): # Function space declaration use_quads = str(mesh.ufl_cell()) == "quadrilateral" pressure_family = 'DQ' if use_quads else 'DG' velocity_family = 'DQ' if use_quads else 'DG' trace_family = "HDiv Trace" U = VectorFunctionSpace(mesh, velocity_family, degree) V = FunctionSpace(mesh, pressure_family, degree) if is_multiplier_continuous: LagrangeElement = FiniteElement("Lagrange", mesh.ufl_cell(), degree) C0TraceElement = LagrangeElement["facet"] T = FunctionSpace(mesh, C0TraceElement) else: T = FunctionSpace(mesh, trace_family, degree) W = U * V * T # Trial and test functions # solution = Function(W) # u, p, lambda_h = split(solution) u, p, lambda_h = TrialFunctions(W) v, q, mu_h = TestFunctions(W) # Mesh entities n = FacetNormal(mesh) h = CellDiameter(mesh) x, y = SpatialCoordinate(mesh) # Exact solution p_exact = sin(2 * pi * x) * sin(2 * pi * y) exact_solution = Function(V).interpolate(p_exact) exact_solution.rename("Exact pressure", "label") sigma_e = Function(U, name='Exact velocity') sigma_e.project(-grad(p_exact)) # Forcing function f_expression = div(-grad(p_exact)) f = Function(V).interpolate(f_expression) # Dirichlet BCs bc_multiplier = DirichletBC(W.sub(2), p_exact, "on_boundary") # Hybridization parameter beta_0 = Constant(1.0e0) beta = beta_0 / h # beta = beta_0 # Numerical flux trace u_hat = u + beta * (p - lambda_h) * n # HDG classical form a = (dot(u, v) - div(v) * p) * dx + lambda_h("+") * jump(v, n) * dS a += -dot(u, grad(q)) * dx + jump(u_hat, n) * q("+") * dS L = f * q * dx # Transmission condition a += jump(u_hat, n) * mu_h("+") * dS # Weakly imposed BC a += lambda_h * dot(v, n) * ds a += dot(u_hat, n) * q * ds F = a - L a_form = lhs(F) _A = Tensor(a_form) A = _A.blocks S = A[2, 2] - A[2, :2] * A[:2, :2].inv * A[:2, 2] Smat = assemble(S, bcs=bc_multiplier) petsc_mat = Smat.M.handle is_symmetric = petsc_mat.isSymmetric(tol=1e-8) size = petsc_mat.getSize() Mnp = csr_matrix(petsc_mat.getValuesCSR()[::-1], shape=size) Mnp.eliminate_zeros() nnz = Mnp.nnz number_of_dofs = Mnp.shape[0] num_of_factors = int(number_of_dofs) - 1 condition_number = calculate_condition_number(petsc_mat, num_of_factors) result = ConditionNumberResult( form=a, assembled_form=Smat, condition_number=condition_number, sparse_operator=Mnp, number_of_dofs=number_of_dofs, nnz=nnz, is_operator_symmetric=is_symmetric, bcs=bc_multiplier ) return result def solve_poisson_cgh( mesh, degree=1, is_multiplier_continuous=False ): # Function space declaration use_quads = str(mesh.ufl_cell()) == "quadrilateral" pressure_family = 'DQ' if use_quads else 'DG' trace_family = "HDiv Trace" V = FunctionSpace(mesh, pressure_family, degree) if is_multiplier_continuous: LagrangeElement = FiniteElement("Lagrange", mesh.ufl_cell(), degree) C0TraceElement = LagrangeElement["facet"] T = FunctionSpace(mesh, C0TraceElement) else: T = FunctionSpace(mesh, trace_family, degree) W = V * T # Trial and test functions # solution = Function(W) # u, p, lambda_h = split(solution) p, lambda_h = TrialFunctions(W) q, mu_h = TestFunctions(W) # Mesh entities n = FacetNormal(mesh) h = CellDiameter(mesh) x, y = SpatialCoordinate(mesh) # Exact solution p_exact = sin(2 * pi * x) * sin(2 * pi * y) exact_solution = Function(V).interpolate(p_exact) exact_solution.rename("Exact pressure", "label") # Forcing function f_expression = div(-grad(p_exact)) f = Function(V).interpolate(f_expression) # Dirichlet BCs bc_multiplier = DirichletBC(W.sub(1), p_exact, "on_boundary") # Hybridization parameter beta_0 = Constant(1.0e0) beta = beta_0 / h # beta = beta_0 # Numerical flux trace u = -grad(p) u_hat = u + beta * (p - lambda_h) * n # HDG classical form a = -dot(u, grad(q)) * dx + jump(u_hat, n) * q("+") * dS L = f * q * dx # Transmission condition a += jump(u_hat, n) * mu_h("+") * dS # Weakly imposed BC a += dot(u_hat, n) * q * ds F = a - L a_form = lhs(F) _A = Tensor(a_form) A = _A.blocks S = A[1, 1] - A[1, :1] * A[:1, :1].inv * A[:1, 1] Smat = assemble(S, bcs=bc_multiplier) petsc_mat = Smat.M.handle is_symmetric = petsc_mat.isSymmetric(tol=1e-8) size = petsc_mat.getSize() Mnp = csr_matrix(petsc_mat.getValuesCSR()[::-1], shape=size) Mnp.eliminate_zeros() nnz = Mnp.nnz number_of_dofs = Mnp.shape[0] num_of_factors = int(number_of_dofs) - 1 condition_number = calculate_condition_number(petsc_mat, num_of_factors) result = ConditionNumberResult( form=a, assembled_form=Smat, condition_number=condition_number, sparse_operator=Mnp, number_of_dofs=number_of_dofs, nnz=nnz, is_operator_symmetric=is_symmetric, bcs=bc_multiplier ) return result def solve_poisson_ldgc( mesh, degree=1, is_multiplier_continuous=True ): # Function space declaration use_quads = str(mesh.ufl_cell()) == "quadrilateral" primal_family = "DQ" if use_quads else "DG" V = FunctionSpace(mesh, primal_family, degree) if is_multiplier_continuous: LagrangeElement = FiniteElement("Lagrange", mesh.ufl_cell(), degree) C0TraceElement = LagrangeElement["facet"] T = FunctionSpace(mesh, C0TraceElement) else: trace_family = "HDiv Trace" T = FunctionSpace(mesh, trace_family, degree) W = V * T # Trial and test functions # solution = Function(W) # u, p, lambda_h = split(solution) p, lambda_h = TrialFunctions(W) q, mu_h = TestFunctions(W) # Mesh entities n = FacetNormal(mesh) h = CellDiameter(mesh) x, y = SpatialCoordinate(mesh) # Exact solution p_exact = sin(2 * pi * x) * sin(2 * pi * y) exact_solution = Function(V).interpolate(p_exact) exact_solution.rename("Exact pressure", "label") # Forcing function f_expression = div(-grad(p_exact)) f = Function(V).interpolate(f_expression) # Dirichlet BCs p_boundaries = Constant(0.0) bc_multiplier = DirichletBC(W.sub(1), p_exact, "on_boundary") # Hybridization parameter s = Constant(-1.0) beta = Constant(32.0) h = CellDiameter(mesh) h_avg = avg(h) # Classical term a = dot(grad(p), grad(q)) * dx L = f * q * dx # Hybridization terms a += s * dot(grad(q), n)("+") * (p("+") - lambda_h("+")) * dS a += -dot(grad(p), n)("+") * (q("+") - mu_h("+")) * dS a += (beta / h_avg) * (p("+") - lambda_h("+")) * (q("+") - mu_h("+")) * dS # Boundary terms # a += -dot(vel_projected, n) * v * ds # How to set this bc?? # a += (beta / h) * (p- p_boundaries) * q * ds # is this necessary? L += s * dot(grad(q), n) * p_boundaries * ds F = a - L a_form = lhs(F) _A = Tensor(a_form) A = _A.blocks S = A[1, 1] - A[1, :1] * A[:1, :1].inv * A[:1, 1] Smat = assemble(S, bcs=bc_multiplier) petsc_mat = Smat.M.handle is_symmetric = petsc_mat.isSymmetric(tol=1e-8) size = petsc_mat.getSize() Mnp = csr_matrix(petsc_mat.getValuesCSR()[::-1], shape=size) Mnp.eliminate_zeros() nnz = Mnp.nnz number_of_dofs = Mnp.shape[0] num_of_factors = int(number_of_dofs) - 1 condition_number = calculate_condition_number(petsc_mat, num_of_factors) result = ConditionNumberResult( form=a, assembled_form=Smat, condition_number=condition_number, sparse_operator=Mnp, number_of_dofs=number_of_dofs, nnz=nnz, is_operator_symmetric=is_symmetric, bcs=bc_multiplier ) return result def solve_poisson_lsh( mesh, degree=1, is_multiplier_continuous=False ): # Function space declaration use_quads = str(mesh.ufl_cell()) == "quadrilateral" pressure_family = 'DQ' if use_quads else 'DG' velocity_family = 'DQ' if use_quads else 'DG' U = VectorFunctionSpace(mesh, velocity_family, degree) V = FunctionSpace(mesh, pressure_family, degree) if is_multiplier_continuous: LagrangeElement = FiniteElement("Lagrange", mesh.ufl_cell(), degree) C0TraceElement = LagrangeElement["facet"] T = FunctionSpace(mesh, C0TraceElement) else: trace_family = "HDiv Trace" T = FunctionSpace(mesh, trace_family, degree) W = U * V * T # Trial and test functions # solution = Function(W) # u, p, lambda_h = split(solution) u, p, lambda_h = TrialFunctions(W) v, q, mu_h = TestFunctions(W) # Mesh entities n = FacetNormal(mesh) h = CellDiameter(mesh) x, y = SpatialCoordinate(mesh) # Exact solution p_exact = sin(2 * pi * x) * sin(2 * pi * y) exact_solution = Function(V).interpolate(p_exact) exact_solution.rename("Exact pressure", "label") sigma_e = Function(U, name='Exact velocity') sigma_e.project(-grad(p_exact)) # BCs bcs = DirichletBC(W.sub(2), p_exact, "on_boundary") # Hybridization parameter beta_0 = Constant(1.0) beta = beta_0 / h beta_avg = beta_0 / h("+") # Stabilizing parameter # delta_0 = Constant(1) # delta_1 = Constant(1) # delta_2 = Constant(1) # delta_3 = Constant(1) # delta_4 = Constant(1) # delta_5 = Constant(1) # LARGE_NUMBER = Constant(1e0) delta = h * h # delta = Constant(1) # delta = h delta_0 = delta delta_1 = delta delta_2 = delta delta_3 = delta delta_4 = delta # delta_4 = LARGE_NUMBER / h delta_5 = delta # Numerical flux trace u_hat = u + beta * (p - lambda_h) * n v_hat = v + beta * (q - mu_h) * n # Flux least-squares # a = ( # (inner(u, v) - q * div(u) - p * div(v) + inner(grad(p), grad(q))) # * delta_1 # * dx # ) # # These terms below are unsymmetric # a += delta_1 * jump(u_hat, n=n) * q("+") * dS # a += delta_1("+") * dot(u_hat, n) * q * ds # # a += delta_1 * dot(u, n) * q * ds # # L = -delta_1 * dot(u_projected, n) * q * ds # a += delta_1("+") * lambda_h("+") * jump(v, n=n) * dS # a += delta_1 * lambda_h * dot(v, n) * ds # # L = delta_1 * p_exact * dot(v, n) * ds # Flux Least-squares as in DG a = delta_0 * inner(u + grad(p), v + grad(q)) * dx # Classical mixed Darcy eq. first-order terms as stabilizing terms a += delta_1 * (dot(u, v) - div(v) * p) * dx a += delta_1("+") * lambda_h("+") * jump(v, n=n) * dS a += delta_1 * lambda_h * dot(v, n) * ds # Mass balance least-square a += delta_2 * div(u) * div(v) * dx # L = delta_2 * f * div(v) * dx # Irrotational least-squares a += delta_3 * inner(curl(u), curl(v)) * dx # Hybridization terms a += mu_h("+") * jump(u_hat, n=n) * dS a += delta_4("+") * (p("+") - lambda_h("+")) * (q("+") - mu_h("+")) * dS # a += delta_4 * (p - lambda_h) * (q - mu_h) * ds # a += delta_5 * (dot(u, n)("+") - dot(u_hat, n)("+")) * (dot(v, n)("+") - dot(v_hat, n)("+")) * dS # a += delta_5 * (dot(u, n) - dot(u_hat, n)) * (dot(v, n) - dot(v_hat, n)) * ds # Weakly imposed BC from hybridization # a += mu_h * (lambda_h - p_boundaries) * ds # a += mu_h * lambda_h * ds # ### # a += ( # (mu_h - q) * (lambda_h - p_boundaries) * ds # ) # maybe this is not a good way to impose BC, but this necessary _A = Tensor(a) A = _A.blocks S = A[2, 2] - A[2, :2] * A[:2, :2].inv * A[:2, 2] Smat = assemble(S, bcs=bcs) petsc_mat = Smat.M.handle is_symmetric = petsc_mat.isSymmetric(tol=1e-8) size = petsc_mat.getSize() Mnp = csr_matrix(petsc_mat.getValuesCSR()[::-1], shape=size) Mnp.eliminate_zeros() nnz = Mnp.nnz number_of_dofs = Mnp.shape[0] num_of_factors = int(number_of_dofs) - 1 condition_number = calculate_condition_number(petsc_mat, num_of_factors) result = ConditionNumberResult( form=a, assembled_form=Smat, condition_number=condition_number, sparse_operator=Mnp, number_of_dofs=number_of_dofs, nnz=nnz, is_operator_symmetric=is_symmetric, bcs=bcs ) return result def hp_refinement_cond_number_calculation( solver, min_degree=1, max_degree=4, numel_xy=(5, 10, 15, 20, 25), quadrilateral=True, name="", **kwargs ): results_dict = { "Element": list(), "Number of Elements": list(), "Degree": list(), "Symmetric": list(), "nnz": list(), "dofs": list(), "h": list(), "Condition Number": list(), } element_kind = "Quad" if quadrilateral else "Tri" pbar = tqdm(range(min_degree, max_degree)) for degree in pbar: for n in numel_xy: pbar.set_description(f"Processing {name} - degree = {degree} - N = {n}") mesh = UnitSquareMesh(n, n, quadrilateral=quadrilateral) result = solver(mesh, degree=degree) current_cell_size = mesh.cell_sizes.dat.data_ro.min() if not quadrilateral else 1 / n results_dict["Element"].append(element_kind) results_dict["Number of Elements"].append(n * n) results_dict["Degree"].append(degree) results_dict["Symmetric"].append(result.is_operator_symmetric) results_dict["nnz"].append(result.nnz) results_dict["dofs"].append(result.number_of_dofs) results_dict["h"].append(current_cell_size) results_dict["Condition Number"].append(result.condition_number) os.makedirs("./cond_number_results/results_%s" % name, exist_ok=True) df_cond_number = pd.DataFrame(data=results_dict) path_to_save_results = "./cond_number_results/results_%s/cond_numbers.csv" % name df_cond_number.to_csv(path_to_save_results) return df_cond_number # Solver options solvers_options = { # "cg": solve_poisson_cg, # "cgls": solve_poisson_cgls, # "dgls": solve_poisson_dgls, # "sdhm": solve_poisson_sdhm, # "ls": solve_poisson_ls, # "dls": solve_poisson_dls, "lsh": solve_poisson_lsh, # "vms": solve_poisson_vms, # "dvms": solve_poisson_dvms, # "mixed_RT": solve_poisson_mixed_RT, # "hdg": solve_poisson_hdg, # "cgh": solve_poisson_cgh, # "ldgc": solve_poisson_ldgc, # "sipg": solve_poisson_sipg, } degree = 1 last_degree = 1 for current_solver in solvers_options: # Setting the output file name name = f"{current_solver}" # Selecting the solver and its kwargs solver = solvers_options[current_solver] # Performing the convergence study hp_refinement_cond_number_calculation( solver, min_degree=degree, max_degree=degree + last_degree, quadrilateral=True, name=name ) # N = 5 # mesh = UnitSquareMesh(N, N, quadrilateral=True) # result = solve_poisson_lsh(mesh, degree=1) # print(f'Is symmetric? {result.is_operator_symmetric}') # print(f'nnz: {result.nnz}') # print(f'DoFs: {result.number_of_dofs}') # print(f'Condition Number: {result.condition_number}') # # Plotting the resulting matrix # matplotlib.use('TkAgg') # import copy # my_cmap = copy.copy(plt.cm.get_cmap("winter")) # my_cmap.set_bad(color="lightgray") # # plot_matrix_primal_hybrid_full(result.form, result.bcs, cmap=my_cmap) # # plot_matrix_mixed_hybrid_full(result.form, result.bcs, cmap=my_cmap) # plot_matrix_hybrid_multiplier(result.form, trace_index=2, bcs=result.bcs, cmap=my_cmap) # # plot_matrix(result.assembled_form, cmap=my_cmap) # # plot_matrix_mixed(result.assembled_form, cmap=my_cmap) # plt.tight_layout() # plt.savefig("sparse_pattern.png") # plt.show()
[ "numpy.ma.masked_values", "slepc4py.SLEPc.SVD", "os.makedirs", "matplotlib.use", "numpy.delete", "numpy.array", "scipy.sparse.linalg.svds", "scipy.linalg.svd", "pandas.DataFrame", "numpy.all", "matplotlib.pyplot.subplots", "attr.ib" ]
[((287, 308), 'matplotlib.use', 'matplotlib.use', (['"""Agg"""'], {}), "('Agg')\n", (301, 308), False, 'import matplotlib\n'), ((367, 376), 'attr.ib', 'attr.ib', ([], {}), '()\n', (374, 376), False, 'import attr\n'), ((398, 407), 'attr.ib', 'attr.ib', ([], {}), '()\n', (405, 407), False, 'import attr\n'), ((431, 440), 'attr.ib', 'attr.ib', ([], {}), '()\n', (438, 440), False, 'import attr\n'), ((463, 472), 'attr.ib', 'attr.ib', ([], {}), '()\n', (470, 472), False, 'import attr\n'), ((494, 503), 'attr.ib', 'attr.ib', ([], {}), '()\n', (501, 503), False, 'import attr\n'), ((514, 523), 'attr.ib', 'attr.ib', ([], {}), '()\n', (521, 523), False, 'import attr\n'), ((552, 561), 'attr.ib', 'attr.ib', ([], {}), '()\n', (559, 561), False, 'import attr\n'), ((698, 716), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(1)', '(1)'], {}), '(1, 1)\n', (710, 716), True, 'import matplotlib.pyplot as plt\n'), ((1061, 1088), 'numpy.delete', 'np.delete', (['Mnp', 'idx'], {'axis': '(1)'}), '(Mnp, idx, axis=1)\n', (1070, 1088), True, 'import numpy as np\n'), ((1098, 1137), 'numpy.ma.masked_values', 'np.ma.masked_values', (['Mnp', '(0)'], {'rtol': '(1e-13)'}), '(Mnp, 0, rtol=1e-13)\n', (1117, 1137), True, 'import numpy as np\n'), ((1443, 1461), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(1)', '(1)'], {}), '(1, 1)\n', (1455, 1461), True, 'import matplotlib.pyplot as plt\n'), ((1861, 1888), 'numpy.delete', 'np.delete', (['Mnp', 'idx'], {'axis': '(1)'}), '(Mnp, idx, axis=1)\n', (1870, 1888), True, 'import numpy as np\n'), ((1898, 1937), 'numpy.ma.masked_values', 'np.ma.masked_values', (['Mnp', '(0)'], {'rtol': '(1e-13)'}), '(Mnp, 0, rtol=1e-13)\n', (1917, 1937), True, 'import numpy as np\n'), ((2361, 2379), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(1)', '(1)'], {}), '(1, 1)\n', (2373, 2379), True, 'import matplotlib.pyplot as plt\n'), ((2843, 2870), 'numpy.delete', 'np.delete', (['Mnp', 'idx'], {'axis': '(1)'}), '(Mnp, idx, axis=1)\n', (2852, 2870), True, 'import numpy as np\n'), ((2880, 2919), 'numpy.ma.masked_values', 'np.ma.masked_values', (['Mnp', '(0)'], {'rtol': '(1e-13)'}), '(Mnp, 0, rtol=1e-13)\n', (2899, 2919), True, 'import numpy as np\n'), ((3342, 3360), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(1)', '(1)'], {}), '(1, 1)\n', (3354, 3360), True, 'import matplotlib.pyplot as plt\n'), ((3878, 3905), 'numpy.delete', 'np.delete', (['Mnp', 'idx'], {'axis': '(1)'}), '(Mnp, idx, axis=1)\n', (3887, 3905), True, 'import numpy as np\n'), ((3915, 3954), 'numpy.ma.masked_values', 'np.ma.masked_values', (['Mnp', '(0)'], {'rtol': '(1e-13)'}), '(Mnp, 0, rtol=1e-13)\n', (3934, 3954), True, 'import numpy as np\n'), ((4541, 4559), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(1)', '(1)'], {}), '(1, 1)\n', (4553, 4559), True, 'import matplotlib.pyplot as plt\n'), ((5061, 5088), 'numpy.delete', 'np.delete', (['Mnp', 'idx'], {'axis': '(1)'}), '(Mnp, idx, axis=1)\n', (5070, 5088), True, 'import numpy as np\n'), ((5098, 5137), 'numpy.ma.masked_values', 'np.ma.masked_values', (['Mnp', '(0)'], {'rtol': '(1e-13)'}), '(Mnp, 0, rtol=1e-13)\n', (5117, 5137), True, 'import numpy as np\n'), ((44728, 44797), 'os.makedirs', 'os.makedirs', (["('./cond_number_results/results_%s' % name)"], {'exist_ok': '(True)'}), "('./cond_number_results/results_%s' % name, exist_ok=True)\n", (44739, 44797), False, 'import os\n'), ((44819, 44850), 'pandas.DataFrame', 'pd.DataFrame', ([], {'data': 'results_dict'}), '(data=results_dict)\n', (44831, 44850), True, 'import pandas as pd\n'), ((1017, 1049), 'numpy.all', 'np.all', (['(Mnp[..., :] == 0)'], {'axis': '(0)'}), '(Mnp[..., :] == 0, axis=0)\n', (1023, 1049), True, 'import numpy as np\n'), ((1817, 1849), 'numpy.all', 'np.all', (['(Mnp[..., :] == 0)'], {'axis': '(0)'}), '(Mnp[..., :] == 0, axis=0)\n', (1823, 1849), True, 'import numpy as np\n'), ((2799, 2831), 'numpy.all', 'np.all', (['(Mnp[..., :] == 0)'], {'axis': '(0)'}), '(Mnp[..., :] == 0, axis=0)\n', (2805, 2831), True, 'import numpy as np\n'), ((3834, 3866), 'numpy.all', 'np.all', (['(Mnp[..., :] == 0)'], {'axis': '(0)'}), '(Mnp[..., :] == 0, axis=0)\n', (3840, 3866), True, 'import numpy as np\n'), ((5017, 5049), 'numpy.all', 'np.all', (['(Mnp[..., :] == 0)'], {'axis': '(0)'}), '(Mnp[..., :] == 0, axis=0)\n', (5023, 5049), True, 'import numpy as np\n'), ((6257, 6364), 'scipy.sparse.linalg.svds', 'svds', ([], {'A': 'Mnp', 'k': 'num_of_factors', 'which': '"""LM"""', 'maxiter': '(5000)', 'return_singular_vectors': '(False)', 'solver': '"""lobpcg"""'}), "(A=Mnp, k=num_of_factors, which='LM', maxiter=5000,\n return_singular_vectors=False, solver='lobpcg')\n", (6261, 6364), False, 'from scipy.sparse.linalg import svds\n'), ((6550, 6594), 'scipy.linalg.svd', 'svd', (['M'], {'compute_uv': '(False)', 'check_finite': '(False)'}), '(M, compute_uv=False, check_finite=False)\n', (6553, 6594), False, 'from scipy.linalg import svd\n'), ((6781, 6792), 'slepc4py.SLEPc.SVD', 'SLEPc.SVD', ([], {}), '()\n', (6790, 6792), False, 'from slepc4py import SLEPc\n'), ((7422, 7452), 'numpy.array', 'np.array', (['singular_values_list'], {}), '(singular_values_list)\n', (7430, 7452), True, 'import numpy as np\n')]
import numpy as np from yt.geometry.selection_routines import GridSelector from yt.utilities.io_handler import BaseIOHandler from yt.utilities.logger import ytLogger as mylog from yt.utilities.on_demand_imports import _h5py as h5py _convert_mass = ("particle_mass", "mass") _particle_position_names = {} class IOHandlerPackedHDF5(BaseIOHandler): _dataset_type = "enzo_packed_3d" _base = slice(None) _field_dtype = "float64" def _read_field_names(self, grid): if grid.filename is None: return [] f = h5py.File(grid.filename, mode="r") try: group = f["/Grid%08i" % grid.id] except KeyError: group = f fields = [] dtypes = set() add_io = "io" in grid.ds.particle_types add_dm = "DarkMatter" in grid.ds.particle_types for name, v in group.items(): # NOTE: This won't work with 1D datasets or references. # For all versions of Enzo I know about, we can assume all floats # are of the same size. So, let's grab one. if not hasattr(v, "shape") or v.dtype == "O": continue elif len(v.dims) == 1: if grid.ds.dimensionality == 1: fields.append(("enzo", str(name))) elif add_io: fields.append(("io", str(name))) elif add_dm: fields.append(("DarkMatter", str(name))) else: fields.append(("enzo", str(name))) dtypes.add(v.dtype) if len(dtypes) == 1: # Now, if everything we saw was the same dtype, we can go ahead and # set it here. We do this because it is a HUGE savings for 32 bit # floats, since our numpy copying/casting is way faster than # h5py's, for some reason I don't understand. This does *not* need # to be correct -- it will get fixed later -- it just needs to be # okay for now. self._field_dtype = list(dtypes)[0] f.close() return fields @property def _read_exception(self): return (KeyError,) def _read_particle_coords(self, chunks, ptf): yield from self._read_particle_fields(chunks, ptf, None) def _read_particle_fields(self, chunks, ptf, selector): chunks = list(chunks) for chunk in chunks: # These should be organized by grid filename f = None for g in chunk.objs: if g.filename is None: continue if f is None: # print("Opening (read) %s" % g.filename) f = h5py.File(g.filename, mode="r") nap = sum(g.NumberOfActiveParticles.values()) if g.NumberOfParticles == 0 and nap == 0: continue ds = f.get("/Grid%08i" % g.id) for ptype, field_list in sorted(ptf.items()): if ptype == "io": if g.NumberOfParticles == 0: continue pds = ds elif ptype == "DarkMatter": if g.NumberOfActiveParticles[ptype] == 0: continue pds = ds elif not g.NumberOfActiveParticles[ptype]: continue else: for pname in ["Active Particles", "Particles"]: pds = ds.get(f"{pname}/{ptype}") if pds is not None: break else: raise RuntimeError( "Could not find active particle group in data." ) pn = _particle_position_names.get(ptype, r"particle_position_%s") x, y, z = ( np.asarray(pds.get(pn % ax)[()], dtype="=f8") for ax in "xyz" ) if selector is None: # This only ever happens if the call is made from # _read_particle_coords. yield ptype, (x, y, z) continue mask = selector.select_points(x, y, z, 0.0) if mask is None: continue for field in field_list: data = np.asarray(pds.get(field)[()], "=f8") if field in _convert_mass: data *= g.dds.prod(dtype="f8") yield (ptype, field), data[mask] if f: f.close() def io_iter(self, chunks, fields): h5_dtype = self._field_dtype for chunk in chunks: fid = None filename = -1 for obj in chunk.objs: if obj.filename is None: continue if obj.filename != filename: # Note one really important thing here: even if we do # implement LRU caching in the _read_obj_field function, # we'll still be doing file opening and whatnot. This is a # problem, but one we can return to. if fid is not None: fid.close() fid = h5py.h5f.open( obj.filename.encode("latin-1"), h5py.h5f.ACC_RDONLY ) filename = obj.filename for field in fields: nodal_flag = self.ds.field_info[field].nodal_flag dims = obj.ActiveDimensions[::-1] + nodal_flag[::-1] data = np.empty(dims, dtype=h5_dtype) yield field, obj, self._read_obj_field(obj, field, (fid, data)) if fid is not None: fid.close() def _read_obj_field(self, obj, field, fid_data): if fid_data is None: fid_data = (None, None) fid, data = fid_data if fid is None: close = True fid = h5py.h5f.open(obj.filename.encode("latin-1"), h5py.h5f.ACC_RDONLY) else: close = False if data is None: data = np.empty(obj.ActiveDimensions[::-1], dtype=self._field_dtype) ftype, fname = field try: node = "/Grid%08i/%s" % (obj.id, fname) dg = h5py.h5d.open(fid, node.encode("latin-1")) except KeyError: if fname == "Dark_Matter_Density": data[:] = 0 return data.T raise dg.read(h5py.h5s.ALL, h5py.h5s.ALL, data) # I don't know why, but on some installations of h5py this works, but # on others, nope. Doesn't seem to be a version thing. # dg.close() if close: fid.close() return data.T class IOHandlerPackedHDF5GhostZones(IOHandlerPackedHDF5): _dataset_type = "enzo_packed_3d_gz" def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) NGZ = self.ds.parameters.get("NumberOfGhostZones", 3) self._base = (slice(NGZ, -NGZ), slice(NGZ, -NGZ), slice(NGZ, -NGZ)) def _read_obj_field(self, *args, **kwargs): return super()._read_obj_field(*args, **kwargs)[self._base] class IOHandlerInMemory(BaseIOHandler): _dataset_type = "enzo_inline" def __init__(self, ds, ghost_zones=3): self.ds = ds import enzo self.enzo = enzo self.grids_in_memory = enzo.grid_data self.old_grids_in_memory = enzo.old_grid_data self.my_slice = ( slice(ghost_zones, -ghost_zones), slice(ghost_zones, -ghost_zones), slice(ghost_zones, -ghost_zones), ) BaseIOHandler.__init__(self, ds) def _read_field_names(self, grid): fields = [] add_io = "io" in grid.ds.particle_types for name, v in self.grids_in_memory[grid.id].items(): # NOTE: This won't work with 1D datasets or references. if not hasattr(v, "shape") or v.dtype == "O": continue elif v.ndim == 1: if grid.ds.dimensionality == 1: fields.append(("enzo", str(name))) elif add_io: fields.append(("io", str(name))) else: fields.append(("enzo", str(name))) return fields def _read_fluid_selection(self, chunks, selector, fields, size): rv = {} # Now we have to do something unpleasant chunks = list(chunks) if isinstance(selector, GridSelector): if not (len(chunks) == len(chunks[0].objs) == 1): raise RuntimeError g = chunks[0].objs[0] for ftype, fname in fields: rv[(ftype, fname)] = self.grids_in_memory[g.id][fname].swapaxes(0, 2) return rv if size is None: size = sum(g.count(selector) for chunk in chunks for g in chunk.objs) for field in fields: ftype, fname = field fsize = size rv[field] = np.empty(fsize, dtype="float64") ng = sum(len(c.objs) for c in chunks) mylog.debug( "Reading %s cells of %s fields in %s grids", size, [f2 for f1, f2 in fields], ng, ) ind = 0 for chunk in chunks: for g in chunk.objs: # We want a *hard error* here. # if g.id not in self.grids_in_memory: continue for field in fields: ftype, fname = field data_view = self.grids_in_memory[g.id][fname][ self.my_slice ].swapaxes(0, 2) nd = g.select(selector, data_view, rv[field], ind) ind += nd assert ind == fsize return rv def _read_particle_coords(self, chunks, ptf): chunks = list(chunks) for chunk in chunks: # These should be organized by grid filename for g in chunk.objs: if g.id not in self.grids_in_memory: continue nap = sum(g.NumberOfActiveParticles.values()) if g.NumberOfParticles == 0 and nap == 0: continue for ptype in sorted(ptf): x, y, z = ( self.grids_in_memory[g.id]["particle_position_x"], self.grids_in_memory[g.id]["particle_position_y"], self.grids_in_memory[g.id]["particle_position_z"], ) yield ptype, (x, y, z) def _read_particle_fields(self, chunks, ptf, selector): chunks = list(chunks) for chunk in chunks: # These should be organized by grid filename for g in chunk.objs: if g.id not in self.grids_in_memory: continue nap = sum(g.NumberOfActiveParticles.values()) if g.NumberOfParticles == 0 and nap == 0: continue for ptype, field_list in sorted(ptf.items()): x, y, z = ( self.grids_in_memory[g.id]["particle_position_x"], self.grids_in_memory[g.id]["particle_position_y"], self.grids_in_memory[g.id]["particle_position_z"], ) mask = selector.select_points(x, y, z, 0.0) if mask is None: continue for field in field_list: data = self.grids_in_memory[g.id][field] if field in _convert_mass: data = data * g.dds.prod(dtype="f8") yield (ptype, field), data[mask] class IOHandlerPacked2D(IOHandlerPackedHDF5): _dataset_type = "enzo_packed_2d" _particle_reader = False def _read_data_set(self, grid, field): f = h5py.File(grid.filename, mode="r") ds = f["/Grid%08i/%s" % (grid.id, field)][:] f.close() return ds.transpose()[:, :, None] def _read_fluid_selection(self, chunks, selector, fields, size): rv = {} # Now we have to do something unpleasant chunks = list(chunks) if isinstance(selector, GridSelector): if not (len(chunks) == len(chunks[0].objs) == 1): raise RuntimeError g = chunks[0].objs[0] f = h5py.File(g.filename, mode="r") gds = f.get("/Grid%08i" % g.id) for ftype, fname in fields: rv[(ftype, fname)] = np.atleast_3d(gds.get(fname)[()].transpose()) f.close() return rv if size is None: size = sum(g.count(selector) for chunk in chunks for g in chunk.objs) for field in fields: ftype, fname = field fsize = size rv[field] = np.empty(fsize, dtype="float64") ng = sum(len(c.objs) for c in chunks) mylog.debug( "Reading %s cells of %s fields in %s grids", size, [f2 for f1, f2 in fields], ng, ) ind = 0 for chunk in chunks: f = None for g in chunk.objs: if f is None: # print("Opening (count) %s" % g.filename) f = h5py.File(g.filename, mode="r") gds = f.get("/Grid%08i" % g.id) if gds is None: gds = f for field in fields: ftype, fname = field ds = np.atleast_3d(gds.get(fname)[()].transpose()) nd = g.select(selector, ds, rv[field], ind) # caches ind += nd f.close() return rv class IOHandlerPacked1D(IOHandlerPackedHDF5): _dataset_type = "enzo_packed_1d" _particle_reader = False def _read_data_set(self, grid, field): f = h5py.File(grid.filename, mode="r") ds = f["/Grid%08i/%s" % (grid.id, field)][:] f.close() return ds.transpose()[:, None, None]
[ "yt.utilities.on_demand_imports._h5py.File", "yt.utilities.io_handler.BaseIOHandler.__init__", "numpy.empty", "yt.utilities.logger.ytLogger.debug" ]
[((550, 584), 'yt.utilities.on_demand_imports._h5py.File', 'h5py.File', (['grid.filename'], {'mode': '"""r"""'}), "(grid.filename, mode='r')\n", (559, 584), True, 'from yt.utilities.on_demand_imports import _h5py as h5py\n'), ((7940, 7972), 'yt.utilities.io_handler.BaseIOHandler.__init__', 'BaseIOHandler.__init__', (['self', 'ds'], {}), '(self, ds)\n', (7962, 7972), False, 'from yt.utilities.io_handler import BaseIOHandler\n'), ((9396, 9493), 'yt.utilities.logger.ytLogger.debug', 'mylog.debug', (['"""Reading %s cells of %s fields in %s grids"""', 'size', '[f2 for f1, f2 in fields]', 'ng'], {}), "('Reading %s cells of %s fields in %s grids', size, [f2 for f1,\n f2 in fields], ng)\n", (9407, 9493), True, 'from yt.utilities.logger import ytLogger as mylog\n'), ((12245, 12279), 'yt.utilities.on_demand_imports._h5py.File', 'h5py.File', (['grid.filename'], {'mode': '"""r"""'}), "(grid.filename, mode='r')\n", (12254, 12279), True, 'from yt.utilities.on_demand_imports import _h5py as h5py\n'), ((13300, 13397), 'yt.utilities.logger.ytLogger.debug', 'mylog.debug', (['"""Reading %s cells of %s fields in %s grids"""', 'size', '[f2 for f1, f2 in fields]', 'ng'], {}), "('Reading %s cells of %s fields in %s grids', size, [f2 for f1,\n f2 in fields], ng)\n", (13311, 13397), True, 'from yt.utilities.logger import ytLogger as mylog\n'), ((14269, 14303), 'yt.utilities.on_demand_imports._h5py.File', 'h5py.File', (['grid.filename'], {'mode': '"""r"""'}), "(grid.filename, mode='r')\n", (14278, 14303), True, 'from yt.utilities.on_demand_imports import _h5py as h5py\n'), ((6390, 6451), 'numpy.empty', 'np.empty', (['obj.ActiveDimensions[::-1]'], {'dtype': 'self._field_dtype'}), '(obj.ActiveDimensions[::-1], dtype=self._field_dtype)\n', (6398, 6451), True, 'import numpy as np\n'), ((9309, 9341), 'numpy.empty', 'np.empty', (['fsize'], {'dtype': '"""float64"""'}), "(fsize, dtype='float64')\n", (9317, 9341), True, 'import numpy as np\n'), ((12752, 12783), 'yt.utilities.on_demand_imports._h5py.File', 'h5py.File', (['g.filename'], {'mode': '"""r"""'}), "(g.filename, mode='r')\n", (12761, 12783), True, 'from yt.utilities.on_demand_imports import _h5py as h5py\n'), ((13213, 13245), 'numpy.empty', 'np.empty', (['fsize'], {'dtype': '"""float64"""'}), "(fsize, dtype='float64')\n", (13221, 13245), True, 'import numpy as np\n'), ((2705, 2736), 'yt.utilities.on_demand_imports._h5py.File', 'h5py.File', (['g.filename'], {'mode': '"""r"""'}), "(g.filename, mode='r')\n", (2714, 2736), True, 'from yt.utilities.on_demand_imports import _h5py as h5py\n'), ((5857, 5887), 'numpy.empty', 'np.empty', (['dims'], {'dtype': 'h5_dtype'}), '(dims, dtype=h5_dtype)\n', (5865, 5887), True, 'import numpy as np\n'), ((13669, 13700), 'yt.utilities.on_demand_imports._h5py.File', 'h5py.File', (['g.filename'], {'mode': '"""r"""'}), "(g.filename, mode='r')\n", (13678, 13700), True, 'from yt.utilities.on_demand_imports import _h5py as h5py\n')]
import matplotlib.pyplot as plt import random import pickle from skimage.transform import rotate from scipy import ndimage from skimage.util import img_as_ubyte from joblib import Parallel, delayed from sklearn.ensemble.forest import _generate_unsampled_indices from sklearn.ensemble.forest import _generate_sample_indices import numpy as np from sklearn.ensemble import BaggingClassifier from sklearn.tree import DecisionTreeClassifier from itertools import product import keras from keras import layers from joblib import Parallel, delayed from multiprocessing import Pool import tensorflow as tf from numba import cuda import sys sys.path.append("../../proglearn/") from progressive_learner import ProgressiveLearner from deciders import SimpleArgmaxAverage from transformers import TreeClassificationTransformer, NeuralClassificationTransformer from voters import TreeClassificationVoter, KNNClassificationVoter def cross_val_data(data_x, data_y, total_cls=10): x = data_x.copy() y = data_y.copy() idx = [np.where(data_y == u)[0] for u in np.unique(data_y)] for i in range(total_cls): indx = idx[i]#np.roll(idx[i],(cv-1)*100) random.shuffle(indx) if i==0: train_x1 = x[indx[0:250],:] train_x2 = x[indx[250:500],:] train_y1 = y[indx[0:250]] train_y2 = y[indx[250:500]] test_x = x[indx[500:600],:] test_y = y[indx[500:600]] else: train_x1 = np.concatenate((train_x1, x[indx[0:250],:]), axis=0) train_x2 = np.concatenate((train_x2, x[indx[250:500],:]), axis=0) train_y1 = np.concatenate((train_y1, y[indx[0:250]]), axis=0) train_y2 = np.concatenate((train_y2, y[indx[250:500]]), axis=0) test_x = np.concatenate((test_x, x[indx[500:600],:]), axis=0) test_y = np.concatenate((test_y, y[indx[500:600]]), axis=0) return train_x1, train_y1, train_x2, train_y2, test_x, test_y def LF_experiment(data_x, data_y, angle, model, granularity, reps=1, ntrees=29, acorn=None): if acorn is not None: np.random.seed(acorn) errors = np.zeros(2) for rep in range(reps): print("Starting Rep {} of Angle {}".format(rep, angle)) train_x1, train_y1, train_x2, train_y2, test_x, test_y = cross_val_data(data_x, data_y, total_cls=10) #change data angle for second task tmp_data = train_x2.copy() _tmp_ = np.zeros((32,32,3), dtype=int) total_data = tmp_data.shape[0] for i in range(total_data): tmp_ = image_aug(tmp_data[i],angle) tmp_data[i] = tmp_ if model == "uf": train_x1 = train_x1.reshape((train_x1.shape[0], train_x1.shape[1] * train_x1.shape[2] * train_x1.shape[3])) tmp_data = tmp_data.reshape((tmp_data.shape[0], tmp_data.shape[1] * tmp_data.shape[2] * tmp_data.shape[3])) test_x = test_x.reshape((test_x.shape[0], test_x.shape[1] * test_x.shape[2] * test_x.shape[3])) with tf.device('/gpu:'+str(int(angle // granularity) % 4)): default_transformer_class = NeuralClassificationTransformer network = keras.Sequential() network.add(layers.Conv2D(filters=16, kernel_size=(3, 3), activation='relu', input_shape=np.shape(train_x1)[1:])) network.add(layers.BatchNormalization()) network.add(layers.Conv2D(filters=32, kernel_size=(3, 3), strides = 2, padding = "same", activation='relu')) network.add(layers.BatchNormalization()) network.add(layers.Conv2D(filters=64, kernel_size=(3, 3), strides = 2, padding = "same", activation='relu')) network.add(layers.BatchNormalization()) network.add(layers.Conv2D(filters=128, kernel_size=(3, 3), strides = 2, padding = "same", activation='relu')) network.add(layers.BatchNormalization()) network.add(layers.Conv2D(filters=254, kernel_size=(3, 3), strides = 2, padding = "same", activation='relu')) network.add(layers.Flatten()) network.add(layers.BatchNormalization()) network.add(layers.Dense(2000, activation='relu')) network.add(layers.BatchNormalization()) network.add(layers.Dense(2000, activation='relu')) network.add(layers.BatchNormalization()) network.add(layers.Dense(units=10, activation = 'softmax')) default_transformer_kwargs = {"network" : network, "euclidean_layer_idx" : -2, "num_classes" : 10, "optimizer" : keras.optimizers.Adam(3e-4) } default_voter_class = KNNClassificationVoter default_voter_kwargs = {"k" : int(np.log2(len(train_x1)))} default_decider_class = SimpleArgmaxAverage progressive_learner = ProgressiveLearner(default_transformer_class = default_transformer_class, default_transformer_kwargs = default_transformer_kwargs, default_voter_class = default_voter_class, default_voter_kwargs = default_voter_kwargs, default_decider_class = default_decider_class) progressive_learner.add_task( X = train_x1, y = train_y1, transformer_voter_decider_split = [0.67, 0.33, 0], decider_kwargs = {"classes" : np.unique(train_y1)} ) progressive_learner.add_transformer( X = tmp_data, y = train_y2, transformer_data_proportion = 1, backward_task_ids = [0] ) llf_task1=progressive_learner.predict(test_x, task_id=0) llf_single_task=progressive_learner.predict(test_x, task_id=0, transformer_ids=[0]) errors[1] = errors[1]+(1 - np.mean(llf_task1 == test_y)) errors[0] = errors[0]+(1 - np.mean(llf_single_task == test_y)) errors = errors/reps print("Errors For Angle {}: {}".format(angle, errors)) with open('rotation_results/angle_'+str(angle)+'_'+model+'.pickle', 'wb') as f: pickle.dump(errors, f, protocol = 2) def image_aug(pic, angle, centroid_x=23, centroid_y=23, win=16, scale=1.45): im_sz = int(np.floor(pic.shape[0]*scale)) pic_ = np.uint8(np.zeros((im_sz,im_sz,3),dtype=int)) pic_[:,:,0] = ndimage.zoom(pic[:,:,0],scale) pic_[:,:,1] = ndimage.zoom(pic[:,:,1],scale) pic_[:,:,2] = ndimage.zoom(pic[:,:,2],scale) image_aug = rotate(pic_, angle, resize=False) #print(image_aug.shape) image_aug_ = image_aug[centroid_x-win:centroid_x+win,centroid_y-win:centroid_y+win,:] return img_as_ubyte(image_aug_) ### MAIN HYPERPARAMS ### model = "dnn" granularity = 2 reps = 4 ######################## (X_train, y_train), (X_test, y_test) = keras.datasets.cifar100.load_data() data_x = np.concatenate([X_train, X_test]) data_y = np.concatenate([y_train, y_test]) data_y = data_y[:, 0] def perform_angle(angle): LF_experiment(data_x, data_y, angle, model, granularity, reps=reps, ntrees=16, acorn=1) if model == "dnn": for angle_adder in range(30, 180, granularity * 4): angles = angle_adder + np.arange(0, granularity * 4, granularity) with Pool(4) as p: p.map(perform_angle, angles) elif model == "uf": angles = np.arange(30,180,2) Parallel(n_jobs=-1)(delayed(LF_experiment)(data_x, data_y, angle, model, granularity, reps=20, ntrees=16, acorn=1) for angle in angles)
[ "keras.layers.Conv2D", "keras.layers.Dense", "sys.path.append", "scipy.ndimage.zoom", "numpy.arange", "keras.Sequential", "numpy.mean", "skimage.transform.rotate", "numpy.where", "keras.datasets.cifar100.load_data", "skimage.util.img_as_ubyte", "numpy.random.seed", "numpy.concatenate", "keras.optimizers.Adam", "random.shuffle", "keras.layers.Flatten", "numpy.floor", "progressive_learner.ProgressiveLearner", "keras.layers.BatchNormalization", "numpy.shape", "pickle.dump", "numpy.unique", "joblib.Parallel", "numpy.zeros", "multiprocessing.Pool", "joblib.delayed" ]
[((638, 673), 'sys.path.append', 'sys.path.append', (['"""../../proglearn/"""'], {}), "('../../proglearn/')\n", (653, 673), False, 'import sys\n'), ((7056, 7091), 'keras.datasets.cifar100.load_data', 'keras.datasets.cifar100.load_data', ([], {}), '()\n', (7089, 7091), False, 'import keras\n'), ((7101, 7134), 'numpy.concatenate', 'np.concatenate', (['[X_train, X_test]'], {}), '([X_train, X_test])\n', (7115, 7134), True, 'import numpy as np\n'), ((7144, 7177), 'numpy.concatenate', 'np.concatenate', (['[y_train, y_test]'], {}), '([y_train, y_test])\n', (7158, 7177), True, 'import numpy as np\n'), ((2145, 2156), 'numpy.zeros', 'np.zeros', (['(2)'], {}), '(2)\n', (2153, 2156), True, 'import numpy as np\n'), ((6589, 6622), 'scipy.ndimage.zoom', 'ndimage.zoom', (['pic[:, :, 0]', 'scale'], {}), '(pic[:, :, 0], scale)\n', (6601, 6622), False, 'from scipy import ndimage\n'), ((6639, 6672), 'scipy.ndimage.zoom', 'ndimage.zoom', (['pic[:, :, 1]', 'scale'], {}), '(pic[:, :, 1], scale)\n', (6651, 6672), False, 'from scipy import ndimage\n'), ((6688, 6721), 'scipy.ndimage.zoom', 'ndimage.zoom', (['pic[:, :, 2]', 'scale'], {}), '(pic[:, :, 2], scale)\n', (6700, 6721), False, 'from scipy import ndimage\n'), ((6736, 6769), 'skimage.transform.rotate', 'rotate', (['pic_', 'angle'], {'resize': '(False)'}), '(pic_, angle, resize=False)\n', (6742, 6769), False, 'from skimage.transform import rotate\n'), ((6900, 6924), 'skimage.util.img_as_ubyte', 'img_as_ubyte', (['image_aug_'], {}), '(image_aug_)\n', (6912, 6924), False, 'from skimage.util import img_as_ubyte\n'), ((1170, 1190), 'random.shuffle', 'random.shuffle', (['indx'], {}), '(indx)\n', (1184, 1190), False, 'import random\n'), ((2109, 2130), 'numpy.random.seed', 'np.random.seed', (['acorn'], {}), '(acorn)\n', (2123, 2130), True, 'import numpy as np\n'), ((2456, 2488), 'numpy.zeros', 'np.zeros', (['(32, 32, 3)'], {'dtype': 'int'}), '((32, 32, 3), dtype=int)\n', (2464, 2488), True, 'import numpy as np\n'), ((6352, 6386), 'pickle.dump', 'pickle.dump', (['errors', 'f'], {'protocol': '(2)'}), '(errors, f, protocol=2)\n', (6363, 6386), False, 'import pickle\n'), ((6483, 6513), 'numpy.floor', 'np.floor', (['(pic.shape[0] * scale)'], {}), '(pic.shape[0] * scale)\n', (6491, 6513), True, 'import numpy as np\n'), ((6533, 6571), 'numpy.zeros', 'np.zeros', (['(im_sz, im_sz, 3)'], {'dtype': 'int'}), '((im_sz, im_sz, 3), dtype=int)\n', (6541, 6571), True, 'import numpy as np\n'), ((7570, 7591), 'numpy.arange', 'np.arange', (['(30)', '(180)', '(2)'], {}), '(30, 180, 2)\n', (7579, 7591), True, 'import numpy as np\n'), ((1027, 1048), 'numpy.where', 'np.where', (['(data_y == u)'], {}), '(data_y == u)\n', (1035, 1048), True, 'import numpy as np\n'), ((1061, 1078), 'numpy.unique', 'np.unique', (['data_y'], {}), '(data_y)\n', (1070, 1078), True, 'import numpy as np\n'), ((1485, 1538), 'numpy.concatenate', 'np.concatenate', (['(train_x1, x[indx[0:250], :])'], {'axis': '(0)'}), '((train_x1, x[indx[0:250], :]), axis=0)\n', (1499, 1538), True, 'import numpy as np\n'), ((1561, 1616), 'numpy.concatenate', 'np.concatenate', (['(train_x2, x[indx[250:500], :])'], {'axis': '(0)'}), '((train_x2, x[indx[250:500], :]), axis=0)\n', (1575, 1616), True, 'import numpy as np\n'), ((1639, 1689), 'numpy.concatenate', 'np.concatenate', (['(train_y1, y[indx[0:250]])'], {'axis': '(0)'}), '((train_y1, y[indx[0:250]]), axis=0)\n', (1653, 1689), True, 'import numpy as np\n'), ((1713, 1765), 'numpy.concatenate', 'np.concatenate', (['(train_y2, y[indx[250:500]])'], {'axis': '(0)'}), '((train_y2, y[indx[250:500]]), axis=0)\n', (1727, 1765), True, 'import numpy as np\n'), ((1788, 1841), 'numpy.concatenate', 'np.concatenate', (['(test_x, x[indx[500:600], :])'], {'axis': '(0)'}), '((test_x, x[indx[500:600], :]), axis=0)\n', (1802, 1841), True, 'import numpy as np\n'), ((1862, 1912), 'numpy.concatenate', 'np.concatenate', (['(test_y, y[indx[500:600]])'], {'axis': '(0)'}), '((test_y, y[indx[500:600]]), axis=0)\n', (1876, 1912), True, 'import numpy as np\n'), ((3182, 3200), 'keras.Sequential', 'keras.Sequential', ([], {}), '()\n', (3198, 3200), False, 'import keras\n'), ((4969, 5237), 'progressive_learner.ProgressiveLearner', 'ProgressiveLearner', ([], {'default_transformer_class': 'default_transformer_class', 'default_transformer_kwargs': 'default_transformer_kwargs', 'default_voter_class': 'default_voter_class', 'default_voter_kwargs': 'default_voter_kwargs', 'default_decider_class': 'default_decider_class'}), '(default_transformer_class=default_transformer_class,\n default_transformer_kwargs=default_transformer_kwargs,\n default_voter_class=default_voter_class, default_voter_kwargs=\n default_voter_kwargs, default_decider_class=default_decider_class)\n', (4987, 5237), False, 'from progressive_learner import ProgressiveLearner\n'), ((7426, 7468), 'numpy.arange', 'np.arange', (['(0)', '(granularity * 4)', 'granularity'], {}), '(0, granularity * 4, granularity)\n', (7435, 7468), True, 'import numpy as np\n'), ((7482, 7489), 'multiprocessing.Pool', 'Pool', (['(4)'], {}), '(4)\n', (7486, 7489), False, 'from multiprocessing import Pool\n'), ((7594, 7613), 'joblib.Parallel', 'Parallel', ([], {'n_jobs': '(-1)'}), '(n_jobs=-1)\n', (7602, 7613), False, 'from joblib import Parallel, delayed\n'), ((3351, 3378), 'keras.layers.BatchNormalization', 'layers.BatchNormalization', ([], {}), '()\n', (3376, 3378), False, 'from keras import layers\n'), ((3404, 3499), 'keras.layers.Conv2D', 'layers.Conv2D', ([], {'filters': '(32)', 'kernel_size': '(3, 3)', 'strides': '(2)', 'padding': '"""same"""', 'activation': '"""relu"""'}), "(filters=32, kernel_size=(3, 3), strides=2, padding='same',\n activation='relu')\n", (3417, 3499), False, 'from keras import layers\n'), ((3525, 3552), 'keras.layers.BatchNormalization', 'layers.BatchNormalization', ([], {}), '()\n', (3550, 3552), False, 'from keras import layers\n'), ((3578, 3673), 'keras.layers.Conv2D', 'layers.Conv2D', ([], {'filters': '(64)', 'kernel_size': '(3, 3)', 'strides': '(2)', 'padding': '"""same"""', 'activation': '"""relu"""'}), "(filters=64, kernel_size=(3, 3), strides=2, padding='same',\n activation='relu')\n", (3591, 3673), False, 'from keras import layers\n'), ((3699, 3726), 'keras.layers.BatchNormalization', 'layers.BatchNormalization', ([], {}), '()\n', (3724, 3726), False, 'from keras import layers\n'), ((3752, 3848), 'keras.layers.Conv2D', 'layers.Conv2D', ([], {'filters': '(128)', 'kernel_size': '(3, 3)', 'strides': '(2)', 'padding': '"""same"""', 'activation': '"""relu"""'}), "(filters=128, kernel_size=(3, 3), strides=2, padding='same',\n activation='relu')\n", (3765, 3848), False, 'from keras import layers\n'), ((3874, 3901), 'keras.layers.BatchNormalization', 'layers.BatchNormalization', ([], {}), '()\n', (3899, 3901), False, 'from keras import layers\n'), ((3927, 4023), 'keras.layers.Conv2D', 'layers.Conv2D', ([], {'filters': '(254)', 'kernel_size': '(3, 3)', 'strides': '(2)', 'padding': '"""same"""', 'activation': '"""relu"""'}), "(filters=254, kernel_size=(3, 3), strides=2, padding='same',\n activation='relu')\n", (3940, 4023), False, 'from keras import layers\n'), ((4050, 4066), 'keras.layers.Flatten', 'layers.Flatten', ([], {}), '()\n', (4064, 4066), False, 'from keras import layers\n'), ((4092, 4119), 'keras.layers.BatchNormalization', 'layers.BatchNormalization', ([], {}), '()\n', (4117, 4119), False, 'from keras import layers\n'), ((4145, 4182), 'keras.layers.Dense', 'layers.Dense', (['(2000)'], {'activation': '"""relu"""'}), "(2000, activation='relu')\n", (4157, 4182), False, 'from keras import layers\n'), ((4208, 4235), 'keras.layers.BatchNormalization', 'layers.BatchNormalization', ([], {}), '()\n', (4233, 4235), False, 'from keras import layers\n'), ((4261, 4298), 'keras.layers.Dense', 'layers.Dense', (['(2000)'], {'activation': '"""relu"""'}), "(2000, activation='relu')\n", (4273, 4298), False, 'from keras import layers\n'), ((4324, 4351), 'keras.layers.BatchNormalization', 'layers.BatchNormalization', ([], {}), '()\n', (4349, 4351), False, 'from keras import layers\n'), ((4377, 4421), 'keras.layers.Dense', 'layers.Dense', ([], {'units': '(10)', 'activation': '"""softmax"""'}), "(units=10, activation='softmax')\n", (4389, 4421), False, 'from keras import layers\n'), ((4677, 4706), 'keras.optimizers.Adam', 'keras.optimizers.Adam', (['(0.0003)'], {}), '(0.0003)\n', (4698, 4706), False, 'import keras\n'), ((6070, 6098), 'numpy.mean', 'np.mean', (['(llf_task1 == test_y)'], {}), '(llf_task1 == test_y)\n', (6077, 6098), True, 'import numpy as np\n'), ((6139, 6173), 'numpy.mean', 'np.mean', (['(llf_single_task == test_y)'], {}), '(llf_single_task == test_y)\n', (6146, 6173), True, 'import numpy as np\n'), ((7614, 7636), 'joblib.delayed', 'delayed', (['LF_experiment'], {}), '(LF_experiment)\n', (7621, 7636), False, 'from joblib import Parallel, delayed\n'), ((5615, 5634), 'numpy.unique', 'np.unique', (['train_y1'], {}), '(train_y1)\n', (5624, 5634), True, 'import numpy as np\n'), ((3302, 3320), 'numpy.shape', 'np.shape', (['train_x1'], {}), '(train_x1)\n', (3310, 3320), True, 'import numpy as np\n')]
# <NAME> # S = 1/2, I = 1/2 # Spin 1/2 electron coupled to spin 1/2 nuclei import numpy as np from scipy.linalg import expm from matplotlib.pylab import * from matplotlib import cm sigma_x = 0.5*np.r_[[[0, 1],[1, 0]]] sigma_y = 0.5*np.r_[[[0,-1j],[1j, 0]]] sigma_z = 0.5*np.r_[[[1, 0],[0, -1]]] Identity = np.eye(2) Sx = np.kron(sigma_x, Identity) Sy = np.kron(sigma_y, Identity) Sz = np.kron(sigma_z, Identity) Ix = np.kron(Identity, sigma_x) Iy = np.kron(Identity, sigma_y) Iz = np.kron(Identity, sigma_z) SxIx = np.kron(sigma_x,sigma_z) SxIx2 = np.dot(Sx,Iz) print(SxIx) print(SxIx2) print(np.allclose(SxIx,SxIx2)) omega_S = 1.76e11 # rad / (s * T) omega_I = 267.522e6 # rad / (s * T) Aiso = 2*np.pi * 50.e6 # Isotropic Hyperfine coupling rad / s B0 = 0.35# T H = omega_S/(2.*np.pi)*B0*Sz + omega_I/(2.*np.pi)*B0*Iz + Aiso * np.dot(Sz,Iz) #H = omega_S/(2.*np.pi)*B0*Sz + omega_I/(2.*np.pi)*B0*Iz + Aiso * (np.dot(Sx,Ix) + np.dot(Sy,Iy) + np.dot(Sz,Iz)) print('Hamiltonian:') print(H) out = np.linalg.eig(H) E = out[0] print(E) E12 = E[0] - E[1] E34 = E[2] - E[3] E13 = E[0] - E[2] E24 = E[1] - E[3] print(E12) print(E34) print(E13) print(E24) print('Nuclear') print('%0.05f MHz'%(E12 / 1e6)) print('%0.05f MHz'%(E34 / 1e6)) print('Electron') print('%0.05f GHz'%(E13 / 1e9)) print('%0.05f GHz'%(E24 / 1e9)) matshow(abs(H), cmap = cm.jet) title('Hamiltonian') show()
[ "numpy.eye", "numpy.allclose", "numpy.linalg.eig", "numpy.kron", "numpy.dot" ]
[((308, 317), 'numpy.eye', 'np.eye', (['(2)'], {}), '(2)\n', (314, 317), True, 'import numpy as np\n'), ((325, 351), 'numpy.kron', 'np.kron', (['sigma_x', 'Identity'], {}), '(sigma_x, Identity)\n', (332, 351), True, 'import numpy as np\n'), ((357, 383), 'numpy.kron', 'np.kron', (['sigma_y', 'Identity'], {}), '(sigma_y, Identity)\n', (364, 383), True, 'import numpy as np\n'), ((389, 415), 'numpy.kron', 'np.kron', (['sigma_z', 'Identity'], {}), '(sigma_z, Identity)\n', (396, 415), True, 'import numpy as np\n'), ((422, 448), 'numpy.kron', 'np.kron', (['Identity', 'sigma_x'], {}), '(Identity, sigma_x)\n', (429, 448), True, 'import numpy as np\n'), ((454, 480), 'numpy.kron', 'np.kron', (['Identity', 'sigma_y'], {}), '(Identity, sigma_y)\n', (461, 480), True, 'import numpy as np\n'), ((486, 512), 'numpy.kron', 'np.kron', (['Identity', 'sigma_z'], {}), '(Identity, sigma_z)\n', (493, 512), True, 'import numpy as np\n'), ((521, 546), 'numpy.kron', 'np.kron', (['sigma_x', 'sigma_z'], {}), '(sigma_x, sigma_z)\n', (528, 546), True, 'import numpy as np\n'), ((555, 569), 'numpy.dot', 'np.dot', (['Sx', 'Iz'], {}), '(Sx, Iz)\n', (561, 569), True, 'import numpy as np\n'), ((1004, 1020), 'numpy.linalg.eig', 'np.linalg.eig', (['H'], {}), '(H)\n', (1017, 1020), True, 'import numpy as np\n'), ((601, 625), 'numpy.allclose', 'np.allclose', (['SxIx', 'SxIx2'], {}), '(SxIx, SxIx2)\n', (612, 625), True, 'import numpy as np\n'), ((838, 852), 'numpy.dot', 'np.dot', (['Sz', 'Iz'], {}), '(Sz, Iz)\n', (844, 852), True, 'import numpy as np\n')]
''' Created on Mar 6, 2018 @author: cef hp functions for workign with dictionaries ''' import logging, os, sys, math, copy, inspect from collections import OrderedDict from weakref import WeakValueDictionary as wdict import numpy as np import hp.basic mod_logger = logging.getLogger(__name__) #creates a child logger of the root def dict_2_logr(dict, logger= mod_logger): #log each value of the dictionary to fille logger = logger.getChild('dict_2_logr') msg = '\n' for key, value in dict.iteritems(): msg = msg + ' key: %s\n value: %s \n'%(key, value) logger.debug(msg) def key_list(d, #return the intersection of the dict.keys() and the key_list key_list, logger = mod_logger): logger = logger.getChild('key_list') #=========================================================================== # pre check #=========================================================================== bool_list = hp.basic.bool_list_in_list(d.keys(), key_list) if not bool_list.any(): raise IOError #check if any are not found #=========================================================================== # build the found values #=========================================================================== values_fnd_list = [] for key, value in d.iteritems(): if key in key_list: values_fnd_list.append(value) return values_fnd_list def build_nones_dict(key_list, logger=mod_logger): #add 'None' values to the passed keys val_list = np.full((1, len(key_list)), None) dict = dict(zip(key_list, val_list)) return dict def merge_two_dicts(x, y): if x is None: return y if y is None: return x z = x.copy() # start with x's keys and values z.update(y) # modifies z with y's keys and values & returns None return z def value_by_ksearch(ksearch_str, d, #get the entry that matches the search str logger=mod_logger, *search_args): #=========================================================================== # take a shot at a perfect match #=========================================================================== try: return d[ksearch_str] except: #find a match for this key k_fnd = hp.basic.list_search(d.keys(), ksearch_str, *search_args) if k_fnd is None: logger = logger.getChild('value_by_ksearch') logger.debug('could not find \'%s\' in %i dict keys. returning None'%(ksearch_str, len(d))) return None else: return d[k_fnd] def merge(dl, dr, #intelligent dictionary merging set_type = 'intersect', method = 'exact', container = dict(), logger = mod_logger, *search_args): if set_type == 'union': if method == 'exact': d_merge = merge_two_dicts(dl, dr, logger=logger) else: raise IOError #todo elif set_type == 'intersect': d_merge = subset(dl, dr.keys(), set_type = set_type, method=method, container=container, logger=logger, *search_args) else: raise IOError logger.debug('got d_merge %i'%len(d_merge)) return container(d_merge) def subset_pfx(d_big, prefix, logger=mod_logger): #=========================================================================== # shortcuts #=========================================================================== if len(d_big) == 0: return dict() #=========================================================================== # defaults #=========================================================================== logger = logger.getChild('subset_pfx') d = copy.copy(d_big) fnd_d = dict() for k, v in d.iteritems(): if k.startswith(prefix): fnd_d[k] = v logger.debug('found %i entries with prefix \'%s\' \n'%(len(fnd_d), prefix)) return fnd_d def subset(d_big, l, #get a dictionary subset using standard user inputs #ordered = False, using containers instead set_type = 'sub', method = 'exact', container = dict, logger = mod_logger, *search_args): """ #=========================================================================== # INPUTS #=========================================================================== l: list of keys (within d_big) on which to erturn the sutset set_type: how to treat the set intersect: returna dictionary with only the common keys sub: raise a flag if not every item in 'l' is found in d_big.keys() method: what type of key search to perform (re.function) search: look for a key in the dictionary that contains the list entry. returned d is keyed by the list """ logger = logger.getChild('subset') #=========================================================================== # setup[] #========================================================================== d = container() """ #dictionary setup if ordered: d = OrderedDict() else: d = dict()""" #input list setup if isinstance(l, list): pass elif isinstance(l, basestring): l = [l] elif l is None: return d else: raise IOError nofnd_l = [] #=========================================================================== # determine subset by kwarg #=========================================================================== for k in l: try: #attempt teh direct match d[k] = d_big[k] except: #=================================================================== # try again using search functions #=================================================================== try: if method == 'search': #search and return this value v = value_by_ksearch(k, d_big, logger=logger, *search_args) if not v is None: d[k] = v continue #not sure this is needed else: raise ValueError else: raise ValueError #=================================================================== # nothing found. proceed based on set_type #=================================================================== except: logger.debug('unable to find \'%s\' in the dict with method \'%s\''%(k, method)) if set_type == 'sub': boolar = hp.basic.bool_list_in_list(d_big.keys(), l) if not np.all(boolar): logger.error('%i entries in list not found in big_d'%(len(l) - boolar.sum())) raise IOError elif set_type == 'intersect': nofnd_l.append(k) else: raise IOError #=========================================================================== # wrap up #=========================================================================== if len(nofnd_l) >0: logger.debug('%i of %i list entries DO NOT intersect: %s'%(len(nofnd_l), len(l), nofnd_l)) if set_type == 'sub': raise IOError #=========================================================================== # check #=========================================================================== if len(d) == 0: logger.warning('0 common values between d(%i) and l(%i)'%(len(d), len(l))) logger.debug('returning d with %i entries: %s \n'%(len(d), d.keys())) return container(d) #=============================================================================== # def subset(d_big, l, #get a dictionary subset using standard user inputs # ordered = False, set_type = 'sub', search = 'search', # logger = mod_logger): # """ # #=========================================================================== # # INPUTS # #=========================================================================== # l: list of keys (within d_big) on which to erturn the sutset # # set_type: how to treat the set # intersect: returna dictionary with only the common keys # sub: raise a flag if not every item in 'l' is found in d_big.keys() # # search: what type of key search to perform (re.function) # """ # logger = logger.getChild('subset') # # #=========================================================================== # # setup[] # #========================================================================== # #dictionary setup # if ordered: d = OrderedDict() # else: d = dict() # # #input list setup # if isinstance(l, list): pass # elif isinstance(l, basestring): l = [l] # elif l is None: return None # else: raise IOError # # #=========================================================================== # # determine subset by kwarg # #=========================================================================== # if set_type == 'sub': # try: # for k in l: # d[k] = d_big[k] # # except: # boolar = hp.basic.bool_list_in_list(d_big.keys(), l) # # if not np.all(boolar): # logger.error('%i entries in list not found in big_d'%(len(l) - boolar.sum())) # # raise IOError # # if len(d) == 0: raise IOError # # elif set_type == 'intersect': # nofnd_l = [] # for k in l: # try: # d[k] = d_big[k] # except: # nofnd_l.append(k) # # if len(nofnd_l) >0: # logger.debug('%i of %i list entries DO NOT intersect: %s'%(len(nofnd_l), len(l), nofnd_l)) # # #=========================================================================== # # check # #=========================================================================== # if len(d) == 0: logger.warning('0 common values between d(%i) and l(%i)'% # (len(d), len(l))) # # return d #=============================================================================== class deepcopier(): tries = 0 #keep track of the loop def __init__(self,obj, logger=mod_logger): self.logger = logger.getChild('deepcopier') self.copy_o = obj def tryit(self, obj=None): #make as deep a copy as possible if obj is None: obj = self.copy_o #=========================================================================== # simple try #=========================================================================== try: copy_o = copy.deepcopy(obj) return copy_o except: self.logger.debug('failed first attempt') self.tries += 1 #======================================================================= # sophisiticated try #======================================================================= self.logger.debug('copy attempt %i'%self.tries) if self.tries > 10: return self.copy_o #try for each element of the dict if isinstance(obj, dict): new_d = dict() for key, value in obj.iteritems(): try: new_d[key] = self.tryit(obj = value) except: new_d[key] = copy.copy(obj) self.logger.debug('returning new_d with %i entries: %s'%(len(new_d), new_d.keys())) else: raise IOError return new_d from collections import OrderedDict class MyOrderedDict(OrderedDict): """ as there is no builtin method to add to the head of an ordered dict, here we add a method https://stackoverflow.com/questions/16664874/how-can-i-add-an-element-at-the-top-of-an-ordereddict-in-python """ def prepend(self, key, value, dict_setitem=dict.__setitem__): """add entry to the front of myself""" root = self._OrderedDict__root first = root[1] if key in self: link = self._OrderedDict__map[key] link_prev, link_next, _ = link link_prev[1] = link_next link_next[0] = link_prev link[0] = root link[1] = first root[1] = first[0] = link else: root[1] = first[0] = self._OrderedDict__map[key] = [root, first, key] dict_setitem(self, key, value)
[ "logging.getLogger", "numpy.all", "copy.copy", "copy.deepcopy" ]
[((291, 318), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (308, 318), False, 'import logging, os, sys, math, copy, inspect\n'), ((4046, 4062), 'copy.copy', 'copy.copy', (['d_big'], {}), '(d_big)\n', (4055, 4062), False, 'import logging, os, sys, math, copy, inspect\n'), ((11902, 11920), 'copy.deepcopy', 'copy.deepcopy', (['obj'], {}), '(obj)\n', (11915, 11920), False, 'import logging, os, sys, math, copy, inspect\n'), ((12697, 12711), 'copy.copy', 'copy.copy', (['obj'], {}), '(obj)\n', (12706, 12711), False, 'import logging, os, sys, math, copy, inspect\n'), ((7354, 7368), 'numpy.all', 'np.all', (['boolar'], {}), '(boolar)\n', (7360, 7368), True, 'import numpy as np\n')]
import pytest import numpy as np from numpy.testing import assert_allclose from keras import backend as K from keras import activations def get_standard_values(): ''' These are just a set of floats used for testing the activation functions, and are useful in multiple tests. ''' return np.array([[0, 0.1, 0.5, 0.9, 1.0]], dtype=K.floatx()) def test_softmax(): ''' Test using a reference implementation of softmax ''' def softmax(values): m = np.max(values) e = np.exp(values - m) return e / np.sum(e) x = K.placeholder(ndim=2) f = K.function([x], [activations.softmax(x)]) test_values = get_standard_values() result = f([test_values])[0] expected = softmax(test_values) assert_allclose(result, expected, rtol=1e-05) def test_time_distributed_softmax(): x = K.placeholder(shape=(1, 1, 5)) f = K.function([x], [activations.softmax(x)]) test_values = get_standard_values() test_values = np.reshape(test_values, (1, 1, np.size(test_values))) f([test_values])[0] def test_softplus(): ''' Test using a reference softplus implementation ''' def softplus(x): return np.log(np.ones_like(x) + np.exp(x)) x = K.placeholder(ndim=2) f = K.function([x], [activations.softplus(x)]) test_values = get_standard_values() result = f([test_values])[0] expected = softplus(test_values) assert_allclose(result, expected, rtol=1e-05) def test_softsign(): ''' Test using a reference softsign implementation ''' def softsign(x): return np.divide(x, np.ones_like(x) + np.absolute(x)) x = K.placeholder(ndim=2) f = K.function([x], [activations.softsign(x)]) test_values = get_standard_values() result = f([test_values])[0] expected = softsign(test_values) assert_allclose(result, expected, rtol=1e-05) def test_sigmoid(): ''' Test using a numerically stable reference sigmoid implementation ''' def ref_sigmoid(x): if x >= 0: return 1 / (1 + np.exp(-x)) else: z = np.exp(x) return z / (1 + z) sigmoid = np.vectorize(ref_sigmoid) x = K.placeholder(ndim=2) f = K.function([x], [activations.sigmoid(x)]) test_values = get_standard_values() result = f([test_values])[0] expected = sigmoid(test_values) assert_allclose(result, expected, rtol=1e-05) def test_hard_sigmoid(): ''' Test using a reference hard sigmoid implementation ''' def ref_hard_sigmoid(x): ''' Reference hard sigmoid with slope and shift values from theano, see https://github.com/Theano/Theano/blob/master/theano/tensor/nnet/sigm.py ''' x = (x * 0.2) + 0.5 z = 0.0 if x <= 0 else (1.0 if x >= 1 else x) return z hard_sigmoid = np.vectorize(ref_hard_sigmoid) x = K.placeholder(ndim=2) f = K.function([x], [activations.hard_sigmoid(x)]) test_values = get_standard_values() result = f([test_values])[0] expected = hard_sigmoid(test_values) assert_allclose(result, expected, rtol=1e-05) def test_relu(): ''' Relu implementation doesn't depend on the value being a theano variable. Testing ints, floats and theano tensors. ''' x = K.placeholder(ndim=2) f = K.function([x], [activations.relu(x)]) test_values = get_standard_values() result = f([test_values])[0] # because no negatives in test values assert_allclose(result, test_values, rtol=1e-05) def test_elu(): x = K.placeholder(ndim=2) f = K.function([x], [activations.elu(x, 0.5)]) test_values = get_standard_values() result = f([test_values])[0] # because no negatives in test values assert_allclose(result, test_values, rtol=1e-05) negative_values = np.array([[-1, -2]], dtype=K.floatx()) result = f([negative_values])[0] true_result = (np.exp(negative_values) - 1) / 2 assert_allclose(result, true_result) def test_tanh(): test_values = get_standard_values() x = K.placeholder(ndim=2) exp = activations.tanh(x) f = K.function([x], [exp]) result = f([test_values])[0] expected = np.tanh(test_values) assert_allclose(result, expected, rtol=1e-05) def test_linear(): ''' This function does no input validation, it just returns the thing that was passed in. ''' xs = [1, 5, True, None, 'foo'] for x in xs: assert(x == activations.linear(x)) if __name__ == '__main__': pytest.main([__file__])
[ "keras.activations.linear", "keras.backend.floatx", "keras.activations.hard_sigmoid", "numpy.testing.assert_allclose", "keras.backend.placeholder", "numpy.tanh", "pytest.main", "numpy.max", "numpy.exp", "keras.activations.softmax", "keras.activations.sigmoid", "numpy.size", "keras.activations.softsign", "numpy.vectorize", "numpy.ones_like", "keras.activations.relu", "numpy.absolute", "keras.activations.softplus", "keras.activations.tanh", "numpy.sum", "keras.activations.elu", "keras.backend.function" ]
[((575, 596), 'keras.backend.placeholder', 'K.placeholder', ([], {'ndim': '(2)'}), '(ndim=2)\n', (588, 596), True, 'from keras import backend as K\n'), ((761, 806), 'numpy.testing.assert_allclose', 'assert_allclose', (['result', 'expected'], {'rtol': '(1e-05)'}), '(result, expected, rtol=1e-05)\n', (776, 806), False, 'from numpy.testing import assert_allclose\n'), ((854, 884), 'keras.backend.placeholder', 'K.placeholder', ([], {'shape': '(1, 1, 5)'}), '(shape=(1, 1, 5))\n', (867, 884), True, 'from keras import backend as K\n'), ((1242, 1263), 'keras.backend.placeholder', 'K.placeholder', ([], {'ndim': '(2)'}), '(ndim=2)\n', (1255, 1263), True, 'from keras import backend as K\n'), ((1430, 1475), 'numpy.testing.assert_allclose', 'assert_allclose', (['result', 'expected'], {'rtol': '(1e-05)'}), '(result, expected, rtol=1e-05)\n', (1445, 1475), False, 'from numpy.testing import assert_allclose\n'), ((1658, 1679), 'keras.backend.placeholder', 'K.placeholder', ([], {'ndim': '(2)'}), '(ndim=2)\n', (1671, 1679), True, 'from keras import backend as K\n'), ((1846, 1891), 'numpy.testing.assert_allclose', 'assert_allclose', (['result', 'expected'], {'rtol': '(1e-05)'}), '(result, expected, rtol=1e-05)\n', (1861, 1891), False, 'from numpy.testing import assert_allclose\n'), ((2167, 2192), 'numpy.vectorize', 'np.vectorize', (['ref_sigmoid'], {}), '(ref_sigmoid)\n', (2179, 2192), True, 'import numpy as np\n'), ((2202, 2223), 'keras.backend.placeholder', 'K.placeholder', ([], {'ndim': '(2)'}), '(ndim=2)\n', (2215, 2223), True, 'from keras import backend as K\n'), ((2388, 2433), 'numpy.testing.assert_allclose', 'assert_allclose', (['result', 'expected'], {'rtol': '(1e-05)'}), '(result, expected, rtol=1e-05)\n', (2403, 2433), False, 'from numpy.testing import assert_allclose\n'), ((2859, 2889), 'numpy.vectorize', 'np.vectorize', (['ref_hard_sigmoid'], {}), '(ref_hard_sigmoid)\n', (2871, 2889), True, 'import numpy as np\n'), ((2899, 2920), 'keras.backend.placeholder', 'K.placeholder', ([], {'ndim': '(2)'}), '(ndim=2)\n', (2912, 2920), True, 'from keras import backend as K\n'), ((3095, 3140), 'numpy.testing.assert_allclose', 'assert_allclose', (['result', 'expected'], {'rtol': '(1e-05)'}), '(result, expected, rtol=1e-05)\n', (3110, 3140), False, 'from numpy.testing import assert_allclose\n'), ((3306, 3327), 'keras.backend.placeholder', 'K.placeholder', ([], {'ndim': '(2)'}), '(ndim=2)\n', (3319, 3327), True, 'from keras import backend as K\n'), ((3496, 3544), 'numpy.testing.assert_allclose', 'assert_allclose', (['result', 'test_values'], {'rtol': '(1e-05)'}), '(result, test_values, rtol=1e-05)\n', (3511, 3544), False, 'from numpy.testing import assert_allclose\n'), ((3571, 3592), 'keras.backend.placeholder', 'K.placeholder', ([], {'ndim': '(2)'}), '(ndim=2)\n', (3584, 3592), True, 'from keras import backend as K\n'), ((3765, 3813), 'numpy.testing.assert_allclose', 'assert_allclose', (['result', 'test_values'], {'rtol': '(1e-05)'}), '(result, test_values, rtol=1e-05)\n', (3780, 3813), False, 'from numpy.testing import assert_allclose\n'), ((3970, 4006), 'numpy.testing.assert_allclose', 'assert_allclose', (['result', 'true_result'], {}), '(result, true_result)\n', (3985, 4006), False, 'from numpy.testing import assert_allclose\n'), ((4075, 4096), 'keras.backend.placeholder', 'K.placeholder', ([], {'ndim': '(2)'}), '(ndim=2)\n', (4088, 4096), True, 'from keras import backend as K\n'), ((4107, 4126), 'keras.activations.tanh', 'activations.tanh', (['x'], {}), '(x)\n', (4123, 4126), False, 'from keras import activations\n'), ((4135, 4157), 'keras.backend.function', 'K.function', (['[x]', '[exp]'], {}), '([x], [exp])\n', (4145, 4157), True, 'from keras import backend as K\n'), ((4207, 4227), 'numpy.tanh', 'np.tanh', (['test_values'], {}), '(test_values)\n', (4214, 4227), True, 'import numpy as np\n'), ((4232, 4277), 'numpy.testing.assert_allclose', 'assert_allclose', (['result', 'expected'], {'rtol': '(1e-05)'}), '(result, expected, rtol=1e-05)\n', (4247, 4277), False, 'from numpy.testing import assert_allclose\n'), ((4537, 4560), 'pytest.main', 'pytest.main', (['[__file__]'], {}), '([__file__])\n', (4548, 4560), False, 'import pytest\n'), ((491, 505), 'numpy.max', 'np.max', (['values'], {}), '(values)\n', (497, 505), True, 'import numpy as np\n'), ((518, 536), 'numpy.exp', 'np.exp', (['(values - m)'], {}), '(values - m)\n', (524, 536), True, 'import numpy as np\n'), ((351, 361), 'keras.backend.floatx', 'K.floatx', ([], {}), '()\n', (359, 361), True, 'from keras import backend as K\n'), ((556, 565), 'numpy.sum', 'np.sum', (['e'], {}), '(e)\n', (562, 565), True, 'import numpy as np\n'), ((622, 644), 'keras.activations.softmax', 'activations.softmax', (['x'], {}), '(x)\n', (641, 644), False, 'from keras import activations\n'), ((910, 932), 'keras.activations.softmax', 'activations.softmax', (['x'], {}), '(x)\n', (929, 932), False, 'from keras import activations\n'), ((1024, 1044), 'numpy.size', 'np.size', (['test_values'], {}), '(test_values)\n', (1031, 1044), True, 'import numpy as np\n'), ((1289, 1312), 'keras.activations.softplus', 'activations.softplus', (['x'], {}), '(x)\n', (1309, 1312), False, 'from keras import activations\n'), ((1705, 1728), 'keras.activations.softsign', 'activations.softsign', (['x'], {}), '(x)\n', (1725, 1728), False, 'from keras import activations\n'), ((2112, 2121), 'numpy.exp', 'np.exp', (['x'], {}), '(x)\n', (2118, 2121), True, 'import numpy as np\n'), ((2249, 2271), 'keras.activations.sigmoid', 'activations.sigmoid', (['x'], {}), '(x)\n', (2268, 2271), False, 'from keras import activations\n'), ((2946, 2973), 'keras.activations.hard_sigmoid', 'activations.hard_sigmoid', (['x'], {}), '(x)\n', (2970, 2973), False, 'from keras import activations\n'), ((3353, 3372), 'keras.activations.relu', 'activations.relu', (['x'], {}), '(x)\n', (3369, 3372), False, 'from keras import activations\n'), ((3618, 3641), 'keras.activations.elu', 'activations.elu', (['x', '(0.5)'], {}), '(x, 0.5)\n', (3633, 3641), False, 'from keras import activations\n'), ((3864, 3874), 'keras.backend.floatx', 'K.floatx', ([], {}), '()\n', (3872, 3874), True, 'from keras import backend as K\n'), ((3932, 3955), 'numpy.exp', 'np.exp', (['negative_values'], {}), '(negative_values)\n', (3938, 3955), True, 'import numpy as np\n'), ((4481, 4502), 'keras.activations.linear', 'activations.linear', (['x'], {}), '(x)\n', (4499, 4502), False, 'from keras import activations\n'), ((1204, 1219), 'numpy.ones_like', 'np.ones_like', (['x'], {}), '(x)\n', (1216, 1219), True, 'import numpy as np\n'), ((1222, 1231), 'numpy.exp', 'np.exp', (['x'], {}), '(x)\n', (1228, 1231), True, 'import numpy as np\n'), ((1615, 1630), 'numpy.ones_like', 'np.ones_like', (['x'], {}), '(x)\n', (1627, 1630), True, 'import numpy as np\n'), ((1633, 1647), 'numpy.absolute', 'np.absolute', (['x'], {}), '(x)\n', (1644, 1647), True, 'import numpy as np\n'), ((2070, 2080), 'numpy.exp', 'np.exp', (['(-x)'], {}), '(-x)\n', (2076, 2080), True, 'import numpy as np\n')]
############################################################################## # # Copyright (c) 2003-2020 by The University of Queensland # http://www.uq.edu.au # # Primary Business: Queensland, Australia # Licensed under the Apache License, version 2.0 # http://www.apache.org/licenses/LICENSE-2.0 # # Development until 2012 by Earth Systems Science Computational Center (ESSCC) # Development 2012-2013 by School of Earth Sciences # Development from 2014 by Centre for Geoscience Computing (GeoComp) # Development from 2019 by School of Earth and Environmental Sciences # ############################################################################## from __future__ import print_function, division __copyright__="""Copyright (c) 2003-2020 by The University of Queensland http://www.uq.edu.au Primary Business: Queensland, Australia""" __license__="""Licensed under the Apache License, version 2.0 http://www.apache.org/licenses/LICENSE-2.0""" __url__="https://launchpad.net/escript-finley" """ transformations :var __author__: name of author :var __copyright__: copyrights :var __license__: licence agreement :var __url__: url entry point on documentation :var __version__: version :var __date__: date of the version :var DEG: unit of degree :var RAD: unit of radiant """ __author__="<NAME>, <EMAIL>" import numpy import math _TYPE=numpy.float64 DEG=math.pi/180. RAD=1. class Transformation(object): """ General class to define an affine transformation *x->Ax+b*. """ def __init__(self): """ Creates a linear transformation. """ pass def __call__(self,x=numpy.zeros((3,))): """ Applies transformation to ``x``. """ raise NotImplementeError() class Translation(Transformation): """ Defines a translation *x->x+b*. """ def __init__(self,b=numpy.zeros((3,),dtype=_TYPE)): """ Creates the linear transformation *x->x+b*. """ super(Translation, self).__init__() self.__b=numpy.array(b,_TYPE) def __call__(self,x=numpy.zeros((3,))): """ Applies translation to ``x``. """ return numpy.array(x,_TYPE)+self.__b class Rotatation(Transformation): """ Defines a rotation. """ def __init__(self,axis=numpy.ones((3,),dtype=_TYPE),point=numpy.zeros((3,),dtype=_TYPE),angle=0.*RAD): """ Creates a rotation using an axis and a point on the axis. """ self.__axis=numpy.array(axis,dtype=_TYPE) self.__point=numpy.array(point,dtype=_TYPE) lax=numpy.dot(self.__axis,self.__axis) if not lax>0: raise ValueError("points must be distinct.") self.__axis/=math.sqrt(lax) self.__angle=float(angle) def __call__(self,x=numpy.zeros((3,))): """ Applies the rotation to ``x``. """ x=numpy.array(x,_TYPE) z=x-self.__point z0=numpy.dot(z,self.__axis) z_per=z-z0*self.__axis lz_per=numpy.dot(z_per,z_per) if lz_per>0: axis1=z_per/math.sqrt(lz_per) axis2=_cross(axis1,self.__axis) lax2=numpy.dot(axis2,axis2) if lax2>0: axis2/=math.sqrt(lax2) return z0*self.__axis+math.sqrt(lz_per)*(math.cos(self.__angle)*axis1-math.sin(self.__angle)*axis2)+self.__point else: return x else: return x def _cross(x, y): """ Returns the cross product of ``x`` and ``y``. """ return numpy.array([x[1] * y[2] - x[2] * y[1], x[2] * y[0] - x[0] * y[2], x[0] * y[1] - x[1] * y[0]], _TYPE) class Dilation(Transformation): """ Defines a dilation. """ def __init__(self,factor=1.,center=numpy.zeros((3,),dtype=_TYPE)): """ Creates a dilation with a center and a given expansion/contraction factor. """ if not abs(factor)>0: raise ValueError("factor must be non-zero.") self.__factor=factor self.__center=numpy.array(center,dtype=_TYPE) def __call__(self,x=numpy.zeros((3,))): """ Applies dilation to ``x``. """ x=numpy.array(x,_TYPE) return self.__factor*(x-self.__center)+self.__center class Reflection(Transformation): """ Defines a reflection on a plane. """ def __init__(self,normal=numpy.ones((3,),dtype=_TYPE),offset=0.): """ Defines a reflection on a plane defined in normal form. """ self.__normal=numpy.array(normal,dtype=_TYPE) ln=math.sqrt(numpy.dot(self.__normal,self.__normal)) if not ln>0.: raise ValueError("normal must have positive length.") self.__normal/=ln if isinstance(offset,float) or isinstance(offset,int): self.__offset=offset/ln else: self.__offset=numpy.dot(numpy.array(offset,dtype=_TYPE),self.__normal) def __call__(self,x=numpy.zeros((3,))): """ Applies reflection to ``x``. """ x=numpy.array(x,_TYPE) return x - 2*(numpy.dot(x,self.__normal)-self.__offset)*self.__normal
[ "numpy.ones", "math.sqrt", "math.cos", "numpy.array", "numpy.dot", "numpy.zeros", "math.sin" ]
[((3470, 3576), 'numpy.array', 'numpy.array', (['[x[1] * y[2] - x[2] * y[1], x[2] * y[0] - x[0] * y[2], x[0] * y[1] - x[1] *\n y[0]]', '_TYPE'], {}), '([x[1] * y[2] - x[2] * y[1], x[2] * y[0] - x[0] * y[2], x[0] * y\n [1] - x[1] * y[0]], _TYPE)\n', (3481, 3576), False, 'import numpy\n'), ((1609, 1626), 'numpy.zeros', 'numpy.zeros', (['(3,)'], {}), '((3,))\n', (1620, 1626), False, 'import numpy\n'), ((1837, 1867), 'numpy.zeros', 'numpy.zeros', (['(3,)'], {'dtype': '_TYPE'}), '((3,), dtype=_TYPE)\n', (1848, 1867), False, 'import numpy\n'), ((2001, 2022), 'numpy.array', 'numpy.array', (['b', '_TYPE'], {}), '(b, _TYPE)\n', (2012, 2022), False, 'import numpy\n'), ((2047, 2064), 'numpy.zeros', 'numpy.zeros', (['(3,)'], {}), '((3,))\n', (2058, 2064), False, 'import numpy\n'), ((2272, 2301), 'numpy.ones', 'numpy.ones', (['(3,)'], {'dtype': '_TYPE'}), '((3,), dtype=_TYPE)\n', (2282, 2301), False, 'import numpy\n'), ((2307, 2337), 'numpy.zeros', 'numpy.zeros', (['(3,)'], {'dtype': '_TYPE'}), '((3,), dtype=_TYPE)\n', (2318, 2337), False, 'import numpy\n'), ((2458, 2488), 'numpy.array', 'numpy.array', (['axis'], {'dtype': '_TYPE'}), '(axis, dtype=_TYPE)\n', (2469, 2488), False, 'import numpy\n'), ((2508, 2539), 'numpy.array', 'numpy.array', (['point'], {'dtype': '_TYPE'}), '(point, dtype=_TYPE)\n', (2519, 2539), False, 'import numpy\n'), ((2550, 2585), 'numpy.dot', 'numpy.dot', (['self.__axis', 'self.__axis'], {}), '(self.__axis, self.__axis)\n', (2559, 2585), False, 'import numpy\n'), ((2681, 2695), 'math.sqrt', 'math.sqrt', (['lax'], {}), '(lax)\n', (2690, 2695), False, 'import math\n'), ((2754, 2771), 'numpy.zeros', 'numpy.zeros', (['(3,)'], {}), '((3,))\n', (2765, 2771), False, 'import numpy\n'), ((2843, 2864), 'numpy.array', 'numpy.array', (['x', '_TYPE'], {}), '(x, _TYPE)\n', (2854, 2864), False, 'import numpy\n'), ((2898, 2923), 'numpy.dot', 'numpy.dot', (['z', 'self.__axis'], {}), '(z, self.__axis)\n', (2907, 2923), False, 'import numpy\n'), ((2967, 2990), 'numpy.dot', 'numpy.dot', (['z_per', 'z_per'], {}), '(z_per, z_per)\n', (2976, 2990), False, 'import numpy\n'), ((3684, 3714), 'numpy.zeros', 'numpy.zeros', (['(3,)'], {'dtype': '_TYPE'}), '((3,), dtype=_TYPE)\n', (3695, 3714), False, 'import numpy\n'), ((3960, 3992), 'numpy.array', 'numpy.array', (['center'], {'dtype': '_TYPE'}), '(center, dtype=_TYPE)\n', (3971, 3992), False, 'import numpy\n'), ((4017, 4034), 'numpy.zeros', 'numpy.zeros', (['(3,)'], {}), '((3,))\n', (4028, 4034), False, 'import numpy\n'), ((4102, 4123), 'numpy.array', 'numpy.array', (['x', '_TYPE'], {}), '(x, _TYPE)\n', (4113, 4123), False, 'import numpy\n'), ((4300, 4329), 'numpy.ones', 'numpy.ones', (['(3,)'], {'dtype': '_TYPE'}), '((3,), dtype=_TYPE)\n', (4310, 4329), False, 'import numpy\n'), ((4447, 4479), 'numpy.array', 'numpy.array', (['normal'], {'dtype': '_TYPE'}), '(normal, dtype=_TYPE)\n', (4458, 4479), False, 'import numpy\n'), ((4864, 4881), 'numpy.zeros', 'numpy.zeros', (['(3,)'], {}), '((3,))\n', (4875, 4881), False, 'import numpy\n'), ((4951, 4972), 'numpy.array', 'numpy.array', (['x', '_TYPE'], {}), '(x, _TYPE)\n', (4962, 4972), False, 'import numpy\n'), ((2140, 2161), 'numpy.array', 'numpy.array', (['x', '_TYPE'], {}), '(x, _TYPE)\n', (2151, 2161), False, 'import numpy\n'), ((3104, 3127), 'numpy.dot', 'numpy.dot', (['axis2', 'axis2'], {}), '(axis2, axis2)\n', (3113, 3127), False, 'import numpy\n'), ((4499, 4538), 'numpy.dot', 'numpy.dot', (['self.__normal', 'self.__normal'], {}), '(self.__normal, self.__normal)\n', (4508, 4538), False, 'import numpy\n'), ((3031, 3048), 'math.sqrt', 'math.sqrt', (['lz_per'], {}), '(lz_per)\n', (3040, 3048), False, 'import math\n'), ((3166, 3181), 'math.sqrt', 'math.sqrt', (['lax2'], {}), '(lax2)\n', (3175, 3181), False, 'import math\n'), ((4792, 4824), 'numpy.array', 'numpy.array', (['offset'], {'dtype': '_TYPE'}), '(offset, dtype=_TYPE)\n', (4803, 4824), False, 'import numpy\n'), ((4993, 5020), 'numpy.dot', 'numpy.dot', (['x', 'self.__normal'], {}), '(x, self.__normal)\n', (5002, 5020), False, 'import numpy\n'), ((3216, 3233), 'math.sqrt', 'math.sqrt', (['lz_per'], {}), '(lz_per)\n', (3225, 3233), False, 'import math\n'), ((3235, 3257), 'math.cos', 'math.cos', (['self.__angle'], {}), '(self.__angle)\n', (3243, 3257), False, 'import math\n'), ((3264, 3286), 'math.sin', 'math.sin', (['self.__angle'], {}), '(self.__angle)\n', (3272, 3286), False, 'import math\n')]
#!/usr/bin/env python # -*- coding: utf-8 -*- """ This script run neural network model on a camera live stream """ import argparse import cv2 import numpy as np import os import time import sys COMMANDS = {0: "move_forward", 1: "go_down", 2: "rot_10_deg", 3: "go_up", 4: "take_off", 5: "land", 6: "idle"} def send_command(anafi, command_id): """ Function to send commands to an Anafi drone in function of the command id """ if command_id not in COMMANDS: raise f"Command id not in COMMANDS choices: {command_id}" print("The following command will be sent: ", COMMANDS[command_id]) if COMMANDS[command_id] == "move_forward": anafi.move_relative(dx=1, dy=0, dz=0, dradians=0) if COMMANDS[command_id] == "go_down": anafi.move_relative(dx=0, dy=0, dz=-0.5, dradians=0) if COMMANDS[command_id] == "rot_10_deg": anafi.move_relative(dx=0, dy=0, dz=0, dradians=0.785) if COMMANDS[command_id] == "go_up": anafi.move_relative(dx=0, dy=0, dz=0.5, dradians=0) if COMMANDS[command_id] == "take_off": anafi.safe_takeoff(5) if COMMANDS[command_id] == "land": anafi.safe_land(5) return def main(): parser = argparse.ArgumentParser() parser.add_argument( "-p", "--weight_path", required=True, type=str, help="Path to load weights for the model." ) parser.add_argument( "-a", "--pyparrot_path", required=True, type=str, help="Path to pyparrot module downloaded from amymcgovern on github." ) parser.add_argument( "-w", "--img_width", required=False, default=28, type=int, help="Image width." ) parser.add_argument( "-n", "--num_classes", required=False, default=7, type=int, help="Number of classes." ) parser.add_argument( "-c", "--crop", required=False, default=None, type=str, help="Crop image, format: MinWidth,MaxWidth,MinHeight,MaxHeight.\ Set -1 for the unchanged ones" ) parser.add_argument( "-r", "--resize", required=False, default=None, type=str, help="Resize shape, format: height,width" ) parser.add_argument( "-b", "--binarize", required=False, default=None, type=str, help="To binarize images, format for thresholding: min,max" ) parser.add_argument( "-g", "--gray", required=False, action="store_true", help="To save 1-channel images" ) parser.add_argument( "-e", "--erode", required=False, default=None, type=str, help="Erode option, format: kernel_size,iteration" ) parser.add_argument( "-d", "--dilate", required=False, default=None, type=str, help="Dilate option, format: kernel_size,iteration" ) parser.add_argument( "-m", "--camid", required=False, default=0, type=int, help="Camera ID, default is 0" ) parser.add_argument( "-t", "--tensorflow", required=False, action="store_true", help="To specify if Tensorflow model is used." ) parser.add_argument( "-z", "--number_of_confimation", required=False, default=3, type=int, help="Minimum number of identical commands before sending to drone." ) args = parser.parse_args() """ Drone connection """ sys.path.append(args.pyparrot_path) from pyparrot.Anafi import Anafi print("Connecting to drone...") anafi = Anafi(drone_type="Anafi", ip_address="192.168.42.1") success = anafi.connect(10) print(success) print("Sleeping few seconds...") anafi.smart_sleep(3) """ Load model """ print("Loading model...") input_size = args.img_width**2 num_class = args.num_classes hidden_size = 128 if args.tensorflow: import tensorflow as tf model = tf.keras.models.load_model(args.weight_path) else: script_path = os.path.realpath(__file__) sys.path.append(os.path.dirname(script_path) + "/../") from homemade_framework import framework as NN model = NN.Sequential([NN.Linear(input_size, hidden_size), NN.LeakyReLU(), NN.BatchNorm(), NN.Linear(hidden_size, hidden_size), NN.LeakyReLU(), NN.BatchNorm(), NN.Linear(hidden_size, num_class), NN.Softmax()], NN.LossMSE()) model.load(args.weight_path) """ Webcam process """ print("Start webcam...") cam = cv2.VideoCapture(args.camid) ret, frame = cam.read() min_height, max_height = 0, frame.shape[0] min_width, max_width = 0, frame.shape[1] print("Cam resolution: {}x{}".format(max_width, max_height)) if args.crop is not None: res = [int(x) for x in args.crop.split(',')] if res[0] != -1: min_width = res[0] if res[1] != -1: max_width = res[1] if res[2] != -1: min_height = res[2] if res[3] != -1: max_height = res[3] print("Image cropped to minWidth:maxWidth, minHeight:maxHeight: {}:{}\ , {},{}".format(min_width, max_width, min_height, max_height)) pause = False imgs = [] while True: ret, frame = cam.read() if not ret: print("failed to grab frame") break if args.crop is not None: frame = frame[min_height:max_height, min_width:max_width] cv2.imshow("Original image", frame) k = cv2.waitKey(1) if k % 256 == 27: # ESC pressed print("Escape hit, closing...") break elif k % 256 == ord('p'): # p pressed if pause: pause = False else: pause = True if not pause: if args.gray: frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) if args.binarize: frame = cv2.medianBlur(frame, 5) min_thresh, max_thresh = [int(x) for x in args.binarize.split(',')] ret, frame = cv2.threshold(frame, min_thresh, max_thresh, cv2.THRESH_BINARY) if args.erode is not None: k_size, iteration = [int(x) for x in args.erode.split(',')] kernel = np.ones((k_size, k_size), np.uint8) frame = cv2.erode(frame, kernel, iterations=int(iteration)) if args.dilate is not None: k_size, iteration = [int(x) for x in args.dilate.split(',')] kernel = np.ones((k_size, k_size), np.uint8) frame = cv2.dilate(frame, kernel, iterations=int(iteration)) if args.resize: height, width = [int(size) for size in args.resize.split(',')] frame = cv2.resize(frame, (height, width), interpolation=cv2.INTER_AREA) image = np.asarray(frame)/255. cv2.imshow("Input image for the model", frame) image = image.reshape([np.prod(image.shape)]) if len(imgs) < args.number_of_confimation: imgs.append(image) else: if args.tensorflow: results = np.argmax(model(np.asarray(imgs)), axis=1) else: results = NN.get_inferences(model, np.asarray(imgs)) print("Model's output on buffer: ", results) if np.unique(results).size == 1 and\ COMMANDS[results[0]] != "idle": send_command(anafi, results[0]) imgs = [] imgs = imgs[1:] imgs.append(image) time.sleep(0.3) cam.release() cv2.destroyAllWindows() if __name__ == '__main__': main()
[ "numpy.prod", "time.sleep", "cv2.imshow", "homemade_framework.framework.LossMSE", "homemade_framework.framework.Softmax", "cv2.destroyAllWindows", "tensorflow.keras.models.load_model", "sys.path.append", "homemade_framework.framework.LeakyReLU", "argparse.ArgumentParser", "cv2.threshold", "numpy.asarray", "cv2.medianBlur", "homemade_framework.framework.Linear", "cv2.waitKey", "numpy.ones", "pyparrot.Anafi.Anafi", "os.path.dirname", "cv2.cvtColor", "cv2.resize", "numpy.unique", "homemade_framework.framework.BatchNorm", "os.path.realpath", "cv2.VideoCapture" ]
[((1221, 1246), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (1244, 1246), False, 'import argparse\n'), ((3712, 3747), 'sys.path.append', 'sys.path.append', (['args.pyparrot_path'], {}), '(args.pyparrot_path)\n', (3727, 3747), False, 'import sys\n'), ((3833, 3885), 'pyparrot.Anafi.Anafi', 'Anafi', ([], {'drone_type': '"""Anafi"""', 'ip_address': '"""192.168.42.1"""'}), "(drone_type='Anafi', ip_address='192.168.42.1')\n", (3838, 3885), False, 'from pyparrot.Anafi import Anafi\n'), ((4945, 4973), 'cv2.VideoCapture', 'cv2.VideoCapture', (['args.camid'], {}), '(args.camid)\n', (4961, 4973), False, 'import cv2\n'), ((8269, 8292), 'cv2.destroyAllWindows', 'cv2.destroyAllWindows', ([], {}), '()\n', (8290, 8292), False, 'import cv2\n'), ((4224, 4268), 'tensorflow.keras.models.load_model', 'tf.keras.models.load_model', (['args.weight_path'], {}), '(args.weight_path)\n', (4250, 4268), True, 'import tensorflow as tf\n'), ((4301, 4327), 'os.path.realpath', 'os.path.realpath', (['__file__'], {}), '(__file__)\n', (4317, 4327), False, 'import os\n'), ((5898, 5933), 'cv2.imshow', 'cv2.imshow', (['"""Original image"""', 'frame'], {}), "('Original image', frame)\n", (5908, 5933), False, 'import cv2\n'), ((5947, 5961), 'cv2.waitKey', 'cv2.waitKey', (['(1)'], {}), '(1)\n', (5958, 5961), False, 'import cv2\n'), ((4819, 4831), 'homemade_framework.framework.LossMSE', 'NN.LossMSE', ([], {}), '()\n', (4829, 4831), True, 'from homemade_framework import framework as NN\n'), ((7482, 7528), 'cv2.imshow', 'cv2.imshow', (['"""Input image for the model"""', 'frame'], {}), "('Input image for the model', frame)\n", (7492, 7528), False, 'import cv2\n'), ((8230, 8245), 'time.sleep', 'time.sleep', (['(0.3)'], {}), '(0.3)\n', (8240, 8245), False, 'import time\n'), ((4352, 4380), 'os.path.dirname', 'os.path.dirname', (['script_path'], {}), '(script_path)\n', (4367, 4380), False, 'import os\n'), ((4477, 4511), 'homemade_framework.framework.Linear', 'NN.Linear', (['input_size', 'hidden_size'], {}), '(input_size, hidden_size)\n', (4486, 4511), True, 'from homemade_framework import framework as NN\n'), ((4544, 4558), 'homemade_framework.framework.LeakyReLU', 'NN.LeakyReLU', ([], {}), '()\n', (4556, 4558), True, 'from homemade_framework import framework as NN\n'), ((4560, 4574), 'homemade_framework.framework.BatchNorm', 'NN.BatchNorm', ([], {}), '()\n', (4572, 4574), True, 'from homemade_framework import framework as NN\n'), ((4607, 4642), 'homemade_framework.framework.Linear', 'NN.Linear', (['hidden_size', 'hidden_size'], {}), '(hidden_size, hidden_size)\n', (4616, 4642), True, 'from homemade_framework import framework as NN\n'), ((4675, 4689), 'homemade_framework.framework.LeakyReLU', 'NN.LeakyReLU', ([], {}), '()\n', (4687, 4689), True, 'from homemade_framework import framework as NN\n'), ((4691, 4705), 'homemade_framework.framework.BatchNorm', 'NN.BatchNorm', ([], {}), '()\n', (4703, 4705), True, 'from homemade_framework import framework as NN\n'), ((4738, 4771), 'homemade_framework.framework.Linear', 'NN.Linear', (['hidden_size', 'num_class'], {}), '(hidden_size, num_class)\n', (4747, 4771), True, 'from homemade_framework import framework as NN\n'), ((4804, 4816), 'homemade_framework.framework.Softmax', 'NN.Softmax', ([], {}), '()\n', (4814, 4816), True, 'from homemade_framework import framework as NN\n'), ((6306, 6345), 'cv2.cvtColor', 'cv2.cvtColor', (['frame', 'cv2.COLOR_BGR2GRAY'], {}), '(frame, cv2.COLOR_BGR2GRAY)\n', (6318, 6345), False, 'import cv2\n'), ((6400, 6424), 'cv2.medianBlur', 'cv2.medianBlur', (['frame', '(5)'], {}), '(frame, 5)\n', (6414, 6424), False, 'import cv2\n'), ((6580, 6643), 'cv2.threshold', 'cv2.threshold', (['frame', 'min_thresh', 'max_thresh', 'cv2.THRESH_BINARY'], {}), '(frame, min_thresh, max_thresh, cv2.THRESH_BINARY)\n', (6593, 6643), False, 'import cv2\n'), ((6827, 6862), 'numpy.ones', 'np.ones', (['(k_size, k_size)', 'np.uint8'], {}), '((k_size, k_size), np.uint8)\n', (6834, 6862), True, 'import numpy as np\n'), ((7081, 7116), 'numpy.ones', 'np.ones', (['(k_size, k_size)', 'np.uint8'], {}), '((k_size, k_size), np.uint8)\n', (7088, 7116), True, 'import numpy as np\n'), ((7326, 7390), 'cv2.resize', 'cv2.resize', (['frame', '(height, width)'], {'interpolation': 'cv2.INTER_AREA'}), '(frame, (height, width), interpolation=cv2.INTER_AREA)\n', (7336, 7390), False, 'import cv2\n'), ((7447, 7464), 'numpy.asarray', 'np.asarray', (['frame'], {}), '(frame)\n', (7457, 7464), True, 'import numpy as np\n'), ((7564, 7584), 'numpy.prod', 'np.prod', (['image.shape'], {}), '(image.shape)\n', (7571, 7584), True, 'import numpy as np\n'), ((7881, 7897), 'numpy.asarray', 'np.asarray', (['imgs'], {}), '(imgs)\n', (7891, 7897), True, 'import numpy as np\n'), ((7777, 7793), 'numpy.asarray', 'np.asarray', (['imgs'], {}), '(imgs)\n', (7787, 7793), True, 'import numpy as np\n'), ((7979, 7997), 'numpy.unique', 'np.unique', (['results'], {}), '(results)\n', (7988, 7997), True, 'import numpy as np\n')]
import numpy as np from hypernet.src.general import const from hypernet.src.general import utils from hypernet.src.thermophysicalModels.reactionThermo.mixture import Basic class MultiComponent(Basic): # Initialization ########################################################################### def __init__( self, specieThermos, *args, **kwargs ): super(MultiComponent, self).__init__(specieThermos) # Methods ########################################################################### # Mixture properties ------------------------------------------------------ def update(self, XY, var='Y'): # Update mass/molar fractions for name, value in XY.items(): value = utils.check_XY(utils.convert_to_array(value)) setattr(self.spTh[name].specie, var, value) # Update mixture/species properties self.M = self.M_(var=var) if var == 'Y': self.Xi_() elif var == 'X': self.Yi_() self.R = self.R_() # Mixture properties ------------------------------------------------------ # Mass def M_(self, var='Y'): # [kg/mol] if var == 'Y': M = [spTh.specie.Y / spTh.specie.M for spTh in self.spTh.values()] return 1./np.sum(np.concatenate(M)) elif var == 'X': M = [spTh.specie.X * spTh.specie.M for spTh in self.spTh.values()] return np.sum(np.concatenate(M)) # Specific gas constant def R_(self): R = [spTh.specie.Y * spTh.specie.R for spTh in self.spTh.values()] return np.sum(np.concatenate(R)) # Pressure def p_(self, rho, T): return rho*self.R*T # Density def rho_(self, p, T): return p/(self.R*T) # Number density def n_(self, rho): self.ni_(rho=rho, var='Y') n = [spTh.specie.n for spTh in self.spTh.values()] return np.sum(np.concatenate(n)) # Enthalpy/Energy def he_(self): # [J/kg] he = [spTh.specie.Y * spTh.thermo.he for spTh in self.spTh.values()] return np.sum(np.concatenate(he)) def cpv_(self): # [J/(kg K)] cpv = [spTh.specie.Y * spTh.thermo.cpv for spTh in self.spTh.values()] return np.sum(np.concatenate(cpv)) def dcpvdT_(self): # [J/kg] dcpvdT = [ spTh.specie.Y * spTh.thermo.dcpvdT for spTh in self.spTh.values() ] return np.sum(np.concatenate(dcpvdT)) def dhedY_(self, dY): # [J/kg] dhedY = [ np.sum(dY[name] * spTh.thermo.he) \ for name, spTh in self.spTh.items() ] return np.sum(dhedY) # Species properties ------------------------------------------------------ def Yi_(self): for spTh_ in self.spTh.values(): sp = spTh_.specie sp.Y = sp.X * sp.M / self.M def Xi_(self): for spTh_ in self.spTh.values(): sp = spTh_.specie sp.X = sp.Y * self.M / sp.M def ni_(self, rho=None, n=None, var='Y'): for spTh_ in self.spTh.values(): sp = spTh_.specie if var == 'Y': sp.n = sp.Y * rho / sp.M * const.UNA elif var == 'X': sp.n = sp.X * n def rhoi_(self, rho=None, n=None, var='Y'): for spTh_ in self.spTh.values(): sp = spTh_.specie if var == 'Y': sp.rho = sp.Y * rho elif var == 'X': sp.rho = sp.X * n * sp.M / const.UNA
[ "hypernet.src.general.utils.convert_to_array", "numpy.sum", "numpy.concatenate" ]
[((2710, 2723), 'numpy.sum', 'np.sum', (['dhedY'], {}), '(dhedY)\n', (2716, 2723), True, 'import numpy as np\n'), ((1649, 1666), 'numpy.concatenate', 'np.concatenate', (['R'], {}), '(R)\n', (1663, 1666), True, 'import numpy as np\n'), ((1968, 1985), 'numpy.concatenate', 'np.concatenate', (['n'], {}), '(n)\n', (1982, 1985), True, 'import numpy as np\n'), ((2145, 2163), 'numpy.concatenate', 'np.concatenate', (['he'], {}), '(he)\n', (2159, 2163), True, 'import numpy as np\n'), ((2308, 2327), 'numpy.concatenate', 'np.concatenate', (['cpv'], {}), '(cpv)\n', (2322, 2327), True, 'import numpy as np\n'), ((2499, 2521), 'numpy.concatenate', 'np.concatenate', (['dcpvdT'], {}), '(dcpvdT)\n', (2513, 2521), True, 'import numpy as np\n'), ((2597, 2630), 'numpy.sum', 'np.sum', (['(dY[name] * spTh.thermo.he)'], {}), '(dY[name] * spTh.thermo.he)\n', (2603, 2630), True, 'import numpy as np\n'), ((782, 811), 'hypernet.src.general.utils.convert_to_array', 'utils.convert_to_array', (['value'], {}), '(value)\n', (804, 811), False, 'from hypernet.src.general import utils\n'), ((1337, 1354), 'numpy.concatenate', 'np.concatenate', (['M'], {}), '(M)\n', (1351, 1354), True, 'import numpy as np\n'), ((1486, 1503), 'numpy.concatenate', 'np.concatenate', (['M'], {}), '(M)\n', (1500, 1503), True, 'import numpy as np\n')]
from __future__ import print_function from scipy.linalg import block_diag from scipy.stats import norm as ndist from scipy.interpolate import interp1d import collections import numpy as np from numpy import log from numpy.linalg import norm, qr, inv, eig import pandas as pd import regreg.api as rr from .randomization import randomization from ..base import restricted_estimator from ..algorithms.barrier_affine import solve_barrier_affine_py as solver from ..distributions.discrete_family import discrete_family class group_lasso(object): def __init__(self, loglike, groups, weights, ridge_term, randomizer, use_lasso=True, # should lasso solver be used where applicable - defaults to True perturb=None): _check_groups(groups) # make sure groups looks sensible # log likelihood : quadratic loss self.loglike = loglike self.nfeature = self.loglike.shape[0] # ridge parameter self.ridge_term = ridge_term # group lasso penalty (from regreg) # use regular lasso penalty if all groups are size 1 if use_lasso and groups.size == np.unique(groups).size: # need to provide weights an an np.array rather than a dictionary weights_np = np.array([w[1] for w in sorted(weights.items())]) self.penalty = rr.weighted_l1norm(weights=weights_np, lagrange=1.) else: self.penalty = rr.group_lasso(groups, weights=weights, lagrange=1.) # store groups as a class variable since the non-group lasso doesn't self.groups = groups self._initial_omega = perturb # gaussian randomization self.randomizer = randomizer def fit(self, solve_args={'tol': 1.e-12, 'min_its': 50}, perturb=None): # solve the randomized version of group lasso (self.initial_soln, self.initial_subgrad) = self._solve_randomized_problem(perturb=perturb, solve_args=solve_args) # initialize variables active_groups = [] # active group labels active_dirs = {} # dictionary: keys are group labels, values are unit-norm coefficients unpenalized = [] # selected groups with no penalty overall = np.ones(self.nfeature, np.bool) # mask of active features ordered_groups = [] # active group labels sorted by label ordered_opt = [] # gamma's ordered by group labels ordered_vars = [] # indices "ordered" by sorting group labels tol = 1.e-20 _, self.randomizer_prec = self.randomizer.cov_prec # now we are collecting the directions and norms of the active groups for g in sorted(np.unique(self.groups)): # g is group label group_mask = self.groups == g soln = self.initial_soln # do not need to keep setting this if norm(soln[group_mask]) > tol * norm(soln): # is group g appreciably nonzero ordered_groups.append(g) # variables in active group ordered_vars.extend(np.flatnonzero(group_mask)) if self.penalty.weights[g] == 0: unpenalized.append(g) else: active_groups.append(g) active_dirs[g] = soln[group_mask] / norm(soln[group_mask]) ordered_opt.append(norm(soln[group_mask])) else: overall[group_mask] = False self.selection_variable = {'directions': active_dirs, 'active_groups': active_groups} # kind of redundant with keys of active_dirs self._ordered_groups = ordered_groups # exception if no groups are selected if len(self.selection_variable['active_groups']) == 0: return np.sign(soln), soln # otherwise continue as before self.observed_opt_state = np.hstack(ordered_opt) # gammas as array _beta_unpenalized = restricted_estimator(self.loglike, # refit OLS on E overall, solve_args=solve_args) beta_bar = np.zeros(self.nfeature) beta_bar[overall] = _beta_unpenalized # refit OLS beta with zeros self._beta_full = beta_bar X, y = self.loglike.data W = self._W = self.loglike.saturated_loss.hessian(X.dot(beta_bar)) # all 1's for LS opt_linearNoU = np.dot(X.T, X[:, ordered_vars] * W[:, np.newaxis]) for i, var in enumerate(ordered_vars): opt_linearNoU[var, i] += self.ridge_term opt_offset = self.initial_subgrad self.observed_score_state = -opt_linearNoU.dot(_beta_unpenalized) self.observed_score_state[~overall] += self.loglike.smooth_objective(beta_bar, 'grad')[~overall] active_signs = np.sign(self.initial_soln) active = np.flatnonzero(active_signs) self.active = active def compute_Vg(ug): pg = ug.size # figure out size of g'th group if pg > 1: Z = np.column_stack((ug, np.eye(pg, pg - 1))) Q, _ = qr(Z) Vg = Q[:, 1:] # drop the first column else: Vg = np.zeros((1, 0)) # if the group is size one, the orthogonal complement is empty return Vg def compute_Lg(g): pg = active_dirs[g].size Lg = self.penalty.weights[g] * np.eye(pg) return Lg sorted_active_dirs = collections.OrderedDict(sorted(active_dirs.items())) Vs = [compute_Vg(ug) for ug in sorted_active_dirs.values()] V = block_diag(*Vs) # unpack the list Ls = [compute_Lg(g) for g in sorted_active_dirs] L = block_diag(*Ls) # unpack the list XE = X[:, ordered_vars] # changed to ordered_vars Q = XE.T.dot(self._W[:, None] * XE) QI = inv(Q) C = V.T.dot(QI).dot(L).dot(V) self.XE = XE self.Q = Q self.QI = QI self.C = C U = block_diag(*[ug for ug in sorted_active_dirs.values()]).T self.opt_linear = opt_linearNoU.dot(U) self.active_dirs = active_dirs self.opt_offset = opt_offset self.ordered_vars = ordered_vars self.linear_part = -np.eye(self.observed_opt_state.shape[0]) self.offset = np.zeros(self.observed_opt_state.shape[0]) return active_signs, soln def _solve_randomized_problem(self, perturb=None, solve_args={'tol': 1.e-15, 'min_its': 100}): # take a new perturbation if supplied if perturb is not None: self._initial_omega = perturb if self._initial_omega is None: self._initial_omega = self.randomizer.sample() quad = rr.identity_quadratic(self.ridge_term, 0, -self._initial_omega, 0) problem = rr.simple_problem(self.loglike, self.penalty) # if all groups are size 1, set up lasso penalty and run usual lasso solver... (see existing code)... initial_soln = problem.solve(quad, **solve_args) initial_subgrad = -(self.loglike.smooth_objective(initial_soln, 'grad') + quad.objective(initial_soln, 'grad')) return initial_soln, initial_subgrad @staticmethod def gaussian(X, Y, groups, weights, sigma=1., quadratic=None, ridge_term=0., perturb=None, use_lasso=True, # should lasso solver be used when applicable - defaults to True randomizer_scale=None): loglike = rr.glm.gaussian(X, Y, coef=1. / sigma ** 2, quadratic=quadratic) n, p = X.shape mean_diag = np.mean((X ** 2).sum(0)) if ridge_term is None: ridge_term = np.std(Y) * np.sqrt(mean_diag) / np.sqrt(n - 1) if randomizer_scale is None: randomizer_scale = np.sqrt(mean_diag) * 0.5 * np.std(Y) * np.sqrt(n / (n - 1.)) randomizer = randomization.isotropic_gaussian((p,), randomizer_scale) return group_lasso(loglike, groups, weights, ridge_term, randomizer, use_lasso, perturb) def _setup_implied_gaussian(self): _, prec = self.randomizer.cov_prec if np.asarray(prec).shape in [(), (0,)]: cond_precision = self.opt_linear.T.dot(self.opt_linear) * prec cond_cov = inv(cond_precision) logdens_linear = cond_cov.dot(self.opt_linear.T) * prec else: cond_precision = self.opt_linear.T.dot(prec.dot(self.opt_linear)) cond_cov = inv(cond_precision) logdens_linear = cond_cov.dot(self.opt_linear.T).dot(prec) cond_mean = -logdens_linear.dot(self.observed_score_state + self.opt_offset) self.cond_mean = cond_mean self.cond_cov = cond_cov self.cond_precision = cond_precision self.logdens_linear = logdens_linear return cond_mean, cond_cov, cond_precision, logdens_linear def selective_MLE(self, solve_args={'tol': 1.e-12}, level=0.9, useJacobian=True, dispersion=None): """Do selective_MLE for group_lasso Note: this masks the selective_MLE inherited from query because that is not adapted for the group_lasso. Also, assumes you have already run the fit method since this uses results from that method. Parameters ---------- observed_target: from selected_targets target_cov: from selected_targets target_cov_score: from selected_targets init_soln: (opt_state) initial (observed) value of optimization variables cond_mean: conditional mean of optimization variables (model on _setup_implied_gaussian) cond_cov: conditional variance of optimization variables (model on _setup_implied_gaussian) logdens_linear: (model on _setup_implied_gaussian) linear_part: like A_scaling (from lasso) offset: like b_scaling (from lasso) solve_args: passed on to solver level: level of confidence intervals useC: whether to use python or C solver JacobianPieces: (use self.C defined in fitting) """ self._setup_implied_gaussian() # Calculate useful quantities (observed_target, target_cov, target_score_cov, alternatives) = self.selected_targets(dispersion) init_soln = self.observed_opt_state # just the gammas cond_mean = self.cond_mean cond_cov = self.cond_cov logdens_linear = self.logdens_linear linear_part = self.linear_part offset = self.offset if np.asarray(observed_target).shape in [(), (0,)]: raise ValueError('no target specified') observed_target = np.atleast_1d(observed_target) prec_target = inv(target_cov) prec_opt = self.cond_precision score_offset = self.observed_score_state + self.opt_offset # target_lin determines how the conditional mean of optimization variables # vary with target # logdens_linear determines how the argument of the optimization density # depends on the score, not how the mean depends on score, hence the minus sign target_linear = target_score_cov.T.dot(prec_target) target_offset = score_offset - target_linear.dot(observed_target) target_lin = - logdens_linear.dot(target_linear) target_off = cond_mean - target_lin.dot(observed_target) if np.asarray(self.randomizer_prec).shape in [(), (0,)]: _P = target_linear.T.dot(target_offset) * self.randomizer_prec _prec = prec_target + (target_linear.T.dot(target_linear) * self.randomizer_prec) - target_lin.T.dot( prec_opt).dot( target_lin) else: _P = target_linear.T.dot(self.randomizer_prec).dot(target_offset) _prec = prec_target + (target_linear.T.dot(self.randomizer_prec).dot(target_linear)) - target_lin.T.dot( prec_opt).dot(target_lin) C = target_cov.dot(_P - target_lin.T.dot(prec_opt).dot(target_off)) conjugate_arg = prec_opt.dot(cond_mean) val, soln, hess = solve_barrier_affine_jacobian_py(conjugate_arg, prec_opt, init_soln, linear_part, offset, self.C, self.active_dirs, useJacobian, **solve_args) final_estimator = target_cov.dot(_prec).dot(observed_target) \ + target_cov.dot(target_lin.T.dot(prec_opt.dot(cond_mean - soln))) + C unbiased_estimator = target_cov.dot(_prec).dot(observed_target) + target_cov.dot( _P - target_lin.T.dot(prec_opt).dot(target_off)) L = target_lin.T.dot(prec_opt) observed_info_natural = _prec + L.dot(target_lin) - L.dot(hess.dot(L.T)) observed_info_mean = target_cov.dot(observed_info_natural.dot(target_cov)) Z_scores = final_estimator / np.sqrt(np.diag(observed_info_mean)) pvalues = ndist.cdf(Z_scores) pvalues = 2 * np.minimum(pvalues, 1 - pvalues) alpha = 1 - level quantile = ndist.ppf(1 - alpha / 2.) intervals = np.vstack([final_estimator - quantile * np.sqrt(np.diag(observed_info_mean)), final_estimator + quantile * np.sqrt(np.diag(observed_info_mean))]).T log_ref = val + conjugate_arg.T.dot(cond_cov).dot(conjugate_arg) / 2. result = pd.DataFrame({'MLE': final_estimator, 'SE': np.sqrt(np.diag(observed_info_mean)), 'Zvalue': Z_scores, 'pvalue': pvalues, 'lower_confidence': intervals[:, 0], 'upper_confidence': intervals[:, 1], 'unbiased': unbiased_estimator}) return result, observed_info_mean, log_ref def selected_targets(self, dispersion=None, solve_args={'tol': 1.e-12, 'min_its': 50}): X, y = self.loglike.data n, p = X.shape XE = self.XE Q = self.Q observed_target = restricted_estimator(self.loglike, self.ordered_vars, solve_args=solve_args) _score_linear = -XE.T.dot(self._W[:, None] * X).T alternatives = ['twosided'] * len(self.active) if dispersion is None: # use Pearson's X^2 dispersion = ((y - self.loglike.saturated_loss.mean_function( XE.dot(observed_target))) ** 2 / self._W).sum() / (n - XE.shape[1]) cov_target = self.QI * dispersion crosscov_target_score = _score_linear.dot(self.QI).T * dispersion return (observed_target, cov_target, crosscov_target_score, alternatives) class approximate_grid_inference(object): def __init__(self, query, dispersion, solve_args={'tol': 1.e-12}, useIP=True): """ Produce p-values and confidence intervals for targets of model including selected features Parameters ---------- query : `gaussian_query` A Gaussian query which has information to describe implied Gaussian. observed_target : ndarray Observed estimate of target. target_cov : ndarray Estimated covaraince of target. target_score_cov : ndarray Estimated covariance of target and score of randomized query. solve_args : dict, optional Arguments passed to solver. """ self.solve_args = solve_args result, inverse_info = query.selective_MLE(dispersion=dispersion)[:2] self.linear_part = query.linear_part self.offset = query.offset self.logdens_linear = query.logdens_linear self.cond_mean = query.cond_mean self.prec_opt = np.linalg.inv(query.cond_cov) self.cond_cov = query.cond_cov self.C = query.C self.active_dirs = query.active_dirs (observed_target, target_cov, target_score_cov, alternatives) = query.selected_targets(dispersion) self.observed_target = observed_target self.target_score_cov = target_score_cov self.target_cov = target_cov self.init_soln = query.observed_opt_state self.randomizer_prec = query.randomizer_prec self.score_offset = query.observed_score_state + query.opt_offset self.ntarget = ntarget = target_cov.shape[0] _scale = 4 * np.sqrt(np.diag(inverse_info)) if useIP == False: ngrid = 1000 self.stat_grid = np.zeros((ntarget, ngrid)) for j in range(ntarget): self.stat_grid[j, :] = np.linspace(observed_target[j] - 1.5 * _scale[j], observed_target[j] + 1.5 * _scale[j], num=ngrid) else: ngrid = 100 self.stat_grid = np.zeros((ntarget, ngrid)) for j in range(ntarget): self.stat_grid[j, :] = np.linspace(observed_target[j] - 1.5 * _scale[j], observed_target[j] + 1.5 * _scale[j], num=ngrid) self.opt_linear = query.opt_linear self.useIP = useIP def summary(self, alternatives=None, parameter=None, level=0.9): """ Produce p-values and confidence intervals for targets of model including selected features Parameters ---------- alternatives : [str], optional Sequence of strings describing the alternatives, should be values of ['twosided', 'less', 'greater'] parameter : np.array Hypothesized value for parameter -- defaults to 0. level : float Confidence level. """ if parameter is not None: pivots = self._approx_pivots(parameter, alternatives=alternatives) else: pivots = None pvalues = self._approx_pivots(np.zeros_like(self.observed_target), alternatives=alternatives) lower, upper = self._approx_intervals(level=level) result = pd.DataFrame({'target': self.observed_target, 'pvalue': pvalues, 'lower_confidence': lower, 'upper_confidence': upper}) if not np.all(parameter == 0): result.insert(4, 'pivot', pivots) result.insert(5, 'parameter', parameter) return result def log_reference(self, observed_target, target_cov, target_score_cov, grid): """ Approximate the log of the reference density on a grid. """ if np.asarray(observed_target).shape in [(), (0,)]: raise ValueError('no target specified') prec_target = np.linalg.inv(target_cov) target_lin = - self.logdens_linear.dot(target_score_cov.T.dot(prec_target)) ref_hat = [] for k in range(grid.shape[0]): # in the usual D = N + Gamma theta.hat, # target_lin is "something" times Gamma, # where "something" comes from implied Gaussian # cond_mean is "something" times D # Gamma is target_score_cov.T.dot(prec_target) num_opt = self.prec_opt.shape[0] num_con = self.linear_part.shape[0] cond_mean_grid = (target_lin.dot(np.atleast_1d(grid[k] - observed_target)) + self.cond_mean) #direction for decomposing o eta = -self.prec_opt.dot(self.logdens_linear.dot(target_score_cov.T)) implied_mean = np.asscalar(eta.T.dot(cond_mean_grid)) implied_cov = np.asscalar(eta.T.dot(self.cond_cov).dot(eta)) implied_prec = 1./implied_cov _A = self.cond_cov.dot(eta) * implied_prec R = np.identity(num_opt) - _A.dot(eta.T) A = self.linear_part.dot(_A).reshape((-1,)) b = self.offset-self.linear_part.dot(R).dot(self.init_soln) conjugate_arg = implied_mean * implied_prec val, soln, _ = solver(np.asarray([conjugate_arg]), np.reshape(implied_prec, (1,1)), eta.T.dot(self.init_soln), A.reshape((A.shape[0],1)), b, **self.solve_args) gamma_ = _A.dot(soln) + R.dot(self.init_soln) log_jacob = jacobian_grad_hess(gamma_, self.C, self.active_dirs) ref_hat.append(-val - ((conjugate_arg ** 2) * implied_cov)/ 2. + log_jacob[0]) return np.asarray(ref_hat) def _construct_families(self): self._construct_density() self._families = [] for m in range(self.ntarget): p = self.target_score_cov.shape[1] observed_target_uni = (self.observed_target[m]).reshape((1,)) target_cov_uni = (np.diag(self.target_cov)[m]).reshape((1, 1)) target_score_cov_uni = self.target_score_cov[m, :].reshape((1, p)) var_target = 1. / ((self.precs[m])[0, 0]) log_ref = self.log_reference(observed_target_uni, target_cov_uni, target_score_cov_uni, self.stat_grid[m]) if self.useIP == False: logW = (log_ref - 0.5 * (self.stat_grid[m] - self.observed_target[m]) ** 2 / var_target) logW -= logW.max() self._families.append(discrete_family(self.stat_grid[m], np.exp(logW))) else: approx_fn = interp1d(self.stat_grid[m], log_ref, kind='quadratic', bounds_error=False, fill_value='extrapolate') grid = np.linspace(self.stat_grid[m].min(), self.stat_grid[m].max(), 1000) logW = (approx_fn(grid) - 0.5 * (grid - self.observed_target[m]) ** 2 / var_target) logW -= logW.max() self._families.append(discrete_family(grid, np.exp(logW))) def _approx_pivots(self, mean_parameter, alternatives=None): if not hasattr(self, "_families"): self._construct_families() if alternatives is None: alternatives = ['twosided'] * self.ntarget pivot = [] for m in range(self.ntarget): family = self._families[m] var_target = 1. / ((self.precs[m])[0, 0]) mean = self.S[m].dot(mean_parameter[m].reshape((1,))) + self.r[m] _cdf = family.cdf((mean[0] - self.observed_target[m]) / var_target, x=self.observed_target[m]) print("variable completed ", m) if alternatives[m] == 'twosided': pivot.append(2 * min(_cdf, 1 - _cdf)) elif alternatives[m] == 'greater': pivot.append(1 - _cdf) elif alternatives[m] == 'less': pivot.append(_cdf) else: raise ValueError('alternative should be in ["twosided", "less", "greater"]') return pivot def _approx_intervals(self, level=0.9): if not hasattr(self, "_families"): self._construct_families() lower, upper = [], [] for m in range(self.ntarget): # construction of intervals from families follows `selectinf.learning.core` family = self._families[m] observed_target = self.observed_target[m] l, u = family.equal_tailed_interval(observed_target, alpha=1 - level) var_target = 1. / ((self.precs[m])[0, 0]) lower.append(l * var_target + observed_target) upper.append(u * var_target + observed_target) return np.asarray(lower), np.asarray(upper) ### Private method def _construct_density(self): precs = {} S = {} r = {} p = self.target_score_cov.shape[1] for m in range(self.ntarget): observed_target_uni = (self.observed_target[m]).reshape((1,)) target_cov_uni = (np.diag(self.target_cov)[m]).reshape((1, 1)) prec_target = 1. / target_cov_uni target_score_cov_uni = self.target_score_cov[m, :].reshape((1, p)) target_linear = target_score_cov_uni.T.dot(prec_target) target_offset = (self.score_offset - target_linear.dot(observed_target_uni)).reshape( (target_linear.shape[0],)) target_lin = -self.logdens_linear.dot(target_linear) target_off = (self.cond_mean - target_lin.dot(observed_target_uni)).reshape((target_lin.shape[0],)) _prec = prec_target + (target_linear.T.dot(target_linear) * self.randomizer_prec) - target_lin.T.dot( self.prec_opt).dot(target_lin) _P = target_linear.T.dot(target_offset) * self.randomizer_prec _r = (1. / _prec).dot(target_lin.T.dot(self.prec_opt).dot(target_off) - _P) _S = np.linalg.inv(_prec).dot(prec_target) S[m] = _S r[m] = _r precs[m] = _prec self.precs = precs self.S = S self.r = r def solve_barrier_affine_jacobian_py(conjugate_arg, precision, feasible_point, con_linear, con_offset, C, active_dirs, useJacobian=True, step=1, nstep=2000, min_its=500, tol=1.e-12): """ This needs to be updated to actually use the Jacobian information (in self.C) arguments conjugate_arg: \\bar{\\Sigma}^{-1} \bar{\\mu} precision: \\bar{\\Sigma}^{-1} feasible_point: gamma's from fitting con_linear: linear part of affine constraint used for barrier function con_offset: offset part of affine constraint used for barrier function C: V^T Q^{-1} \\Lambda V active_dirs: """ scaling = np.sqrt(np.diag(con_linear.dot(precision).dot(con_linear.T))) if feasible_point is None: feasible_point = 1. / scaling def objective(gs): p1 = -gs.T.dot(conjugate_arg) p2 = gs.T.dot(precision).dot(gs) / 2. if useJacobian: p3 = - jacobian_grad_hess(gs, C, active_dirs)[0] else: p3 = 0 p4 = log(1. + 1. / ((con_offset - con_linear.dot(gs)) / scaling)).sum() return p1 + p2 + p3 + p4 def grad(gs): p1 = -conjugate_arg + precision.dot(gs) p2 = -con_linear.T.dot(1. / (scaling + con_offset - con_linear.dot(gs))) if useJacobian: p3 = - jacobian_grad_hess(gs, C, active_dirs)[1] else: p3 = 0 p4 = 1. / (con_offset - con_linear.dot(gs)) return p1 + p2 + p3 + p4 def barrier_hessian(gs): # contribution of barrier and jacobian to hessian p1 = con_linear.T.dot(np.diag(-1. / ((scaling + con_offset - con_linear.dot(gs)) ** 2.) + 1. / ((con_offset - con_linear.dot(gs)) ** 2.))).dot(con_linear) if useJacobian: p2 = - jacobian_grad_hess(gs, C, active_dirs)[2] else: p2 = 0 return p1 + p2 current = feasible_point current_value = np.inf for itercount in range(nstep): cur_grad = grad(current) # make sure proposal is feasible count = 0 while True: count += 1 proposal = current - step * cur_grad if np.all(con_offset - con_linear.dot(proposal) > 0): break step *= 0.5 if count >= 40: raise ValueError('not finding a feasible point') # make sure proposal is a descent count = 0 while True: count += 1 proposal = current - step * cur_grad proposed_value = objective(proposal) if proposed_value <= current_value: break step *= 0.5 if count >= 20: if not (np.isnan(proposed_value) or np.isnan(current_value)): break else: raise ValueError('value is NaN: %f, %f' % (proposed_value, current_value)) # stop if relative decrease is small if np.fabs(current_value - proposed_value) < tol * np.fabs(current_value) and itercount >= min_its: current = proposal current_value = proposed_value break current = proposal current_value = proposed_value if itercount % 4 == 0: step *= 2 hess = inv(precision + barrier_hessian(current)) return current_value, current, hess # Jacobian calculations def calc_GammaMinus(gamma, active_dirs): """Calculate Gamma^minus (as a function of gamma vector, active directions) """ to_diag = [[g] * (ug.size - 1) for (g, ug) in zip(gamma, active_dirs.values())] return block_diag(*[i for gp in to_diag for i in gp]) def jacobian_grad_hess(gamma, C, active_dirs): """ Calculate the log-Jacobian (scalar), gradient (gamma.size vector) and hessian (gamma.size square matrix) """ if C.shape == (0, 0): # when all groups are size one, C will be an empty array return 0, 0, 0 else: GammaMinus = calc_GammaMinus(gamma, active_dirs) # eigendecomposition #evalues, evectors = eig(GammaMinus + C) # log Jacobian #J = log(evalues).sum() J = np.log(np.linalg.det(GammaMinus + C)) # inverse #GpC_inv = evectors.dot(np.diag(1 / evalues).dot(evectors.T)) GpC_inv = np.linalg.inv(GammaMinus + C) # summing matrix (gamma.size by C.shape[0]) S = block_diag(*[np.ones((1, ug.size - 1)) for ug in active_dirs.values()]) # gradient grad_J = S.dot(GpC_inv.diagonal()) # hessian hess_J = -S.dot(np.multiply(GpC_inv, GpC_inv.T).dot(S.T)) return J, grad_J, hess_J def _check_groups(groups): """Make sure that the user-specific groups are ok There are a number of assumptions that group_lasso makes about how groups are specified. Specifically, we assume that `groups` is a 1-d array_like of integers that are sorted in increasing order, start at 0, and have no gaps (e.g., if there is a group 2 and a group 4, there must also be at least one feature in group 3). This function checks the user-specified group scheme and raises an exception if it finds any problems. Sorting feature groups is potentially tedious for the user and in future we might do this for them. """ # check array_like agroups = np.array(groups) # check dimension if len(agroups.shape) != 1: raise ValueError("Groups are not a 1D array_like") # check sorted if np.any(agroups[:-1] > agroups[1:]) < 0: raise ValueError("Groups are not sorted") # check integers if not np.issubdtype(agroups.dtype, np.integer): raise TypeError("Groups are not integers") # check starts with 0 if not np.amin(agroups) == 0: raise ValueError("First group is not 0") # check for no skipped groups if not np.all(np.diff(np.unique(agroups)) == 1): raise ValueError("Some group is skipped")
[ "regreg.api.simple_problem", "numpy.sqrt", "numpy.hstack", "scipy.interpolate.interp1d", "numpy.array", "numpy.linalg.norm", "scipy.stats.norm.cdf", "numpy.multiply", "numpy.linalg.qr", "numpy.reshape", "regreg.api.identity_quadratic", "regreg.api.group_lasso", "numpy.flatnonzero", "numpy.asarray", "regreg.api.weighted_l1norm", "numpy.exp", "numpy.issubdtype", "numpy.dot", "regreg.api.glm.gaussian", "numpy.linspace", "pandas.DataFrame", "numpy.identity", "numpy.eye", "numpy.all", "numpy.ones", "numpy.amin", "scipy.stats.norm.ppf", "numpy.any", "numpy.isnan", "numpy.sign", "numpy.std", "numpy.atleast_1d", "numpy.fabs", "numpy.unique", "numpy.minimum", "numpy.linalg.det", "numpy.diag", "numpy.zeros", "numpy.linalg.inv", "scipy.linalg.block_diag", "numpy.zeros_like" ]
[((31360, 31406), 'scipy.linalg.block_diag', 'block_diag', (['*[i for gp in to_diag for i in gp]'], {}), '(*[i for gp in to_diag for i in gp])\n', (31370, 31406), False, 'from scipy.linalg import block_diag\n'), ((33085, 33101), 'numpy.array', 'np.array', (['groups'], {}), '(groups)\n', (33093, 33101), True, 'import numpy as np\n'), ((2537, 2568), 'numpy.ones', 'np.ones', (['self.nfeature', 'np.bool'], {}), '(self.nfeature, np.bool)\n', (2544, 2568), True, 'import numpy as np\n'), ((4189, 4211), 'numpy.hstack', 'np.hstack', (['ordered_opt'], {}), '(ordered_opt)\n', (4198, 4211), True, 'import numpy as np\n'), ((4463, 4486), 'numpy.zeros', 'np.zeros', (['self.nfeature'], {}), '(self.nfeature)\n', (4471, 4486), True, 'import numpy as np\n'), ((4748, 4798), 'numpy.dot', 'np.dot', (['X.T', '(X[:, ordered_vars] * W[:, np.newaxis])'], {}), '(X.T, X[:, ordered_vars] * W[:, np.newaxis])\n', (4754, 4798), True, 'import numpy as np\n'), ((5147, 5173), 'numpy.sign', 'np.sign', (['self.initial_soln'], {}), '(self.initial_soln)\n', (5154, 5173), True, 'import numpy as np\n'), ((5191, 5219), 'numpy.flatnonzero', 'np.flatnonzero', (['active_signs'], {}), '(active_signs)\n', (5205, 5219), True, 'import numpy as np\n'), ((5952, 5967), 'scipy.linalg.block_diag', 'block_diag', (['*Vs'], {}), '(*Vs)\n', (5962, 5967), False, 'from scipy.linalg import block_diag\n'), ((6056, 6071), 'scipy.linalg.block_diag', 'block_diag', (['*Ls'], {}), '(*Ls)\n', (6066, 6071), False, 'from scipy.linalg import block_diag\n'), ((6207, 6213), 'numpy.linalg.inv', 'inv', (['Q'], {}), '(Q)\n', (6210, 6213), False, 'from numpy.linalg import norm, qr, inv, eig\n'), ((6661, 6703), 'numpy.zeros', 'np.zeros', (['self.observed_opt_state.shape[0]'], {}), '(self.observed_opt_state.shape[0])\n', (6669, 6703), True, 'import numpy as np\n'), ((7143, 7209), 'regreg.api.identity_quadratic', 'rr.identity_quadratic', (['self.ridge_term', '(0)', '(-self._initial_omega)', '(0)'], {}), '(self.ridge_term, 0, -self._initial_omega, 0)\n', (7164, 7209), True, 'import regreg.api as rr\n'), ((7340, 7385), 'regreg.api.simple_problem', 'rr.simple_problem', (['self.loglike', 'self.penalty'], {}), '(self.loglike, self.penalty)\n', (7357, 7385), True, 'import regreg.api as rr\n'), ((8199, 8264), 'regreg.api.glm.gaussian', 'rr.glm.gaussian', (['X', 'Y'], {'coef': '(1.0 / sigma ** 2)', 'quadratic': 'quadratic'}), '(X, Y, coef=1.0 / sigma ** 2, quadratic=quadratic)\n', (8214, 8264), True, 'import regreg.api as rr\n'), ((11580, 11610), 'numpy.atleast_1d', 'np.atleast_1d', (['observed_target'], {}), '(observed_target)\n', (11593, 11610), True, 'import numpy as np\n'), ((11633, 11648), 'numpy.linalg.inv', 'inv', (['target_cov'], {}), '(target_cov)\n', (11636, 11648), False, 'from numpy.linalg import norm, qr, inv, eig\n'), ((14248, 14267), 'scipy.stats.norm.cdf', 'ndist.cdf', (['Z_scores'], {}), '(Z_scores)\n', (14257, 14267), True, 'from scipy.stats import norm as ndist\n'), ((14370, 14396), 'scipy.stats.norm.ppf', 'ndist.ppf', (['(1 - alpha / 2.0)'], {}), '(1 - alpha / 2.0)\n', (14379, 14396), True, 'from scipy.stats import norm as ndist\n'), ((17277, 17306), 'numpy.linalg.inv', 'np.linalg.inv', (['query.cond_cov'], {}), '(query.cond_cov)\n', (17290, 17306), True, 'import numpy as np\n'), ((19777, 19900), 'pandas.DataFrame', 'pd.DataFrame', (["{'target': self.observed_target, 'pvalue': pvalues, 'lower_confidence':\n lower, 'upper_confidence': upper}"], {}), "({'target': self.observed_target, 'pvalue': pvalues,\n 'lower_confidence': lower, 'upper_confidence': upper})\n", (19789, 19900), True, 'import pandas as pd\n'), ((20548, 20573), 'numpy.linalg.inv', 'np.linalg.inv', (['target_cov'], {}), '(target_cov)\n', (20561, 20573), True, 'import numpy as np\n'), ((22410, 22429), 'numpy.asarray', 'np.asarray', (['ref_hat'], {}), '(ref_hat)\n', (22420, 22429), True, 'import numpy as np\n'), ((32043, 32072), 'numpy.linalg.inv', 'np.linalg.inv', (['(GammaMinus + C)'], {}), '(GammaMinus + C)\n', (32056, 32072), True, 'import numpy as np\n'), ((33243, 33277), 'numpy.any', 'np.any', (['(agroups[:-1] > agroups[1:])'], {}), '(agroups[:-1] > agroups[1:])\n', (33249, 33277), True, 'import numpy as np\n'), ((33366, 33406), 'numpy.issubdtype', 'np.issubdtype', (['agroups.dtype', 'np.integer'], {}), '(agroups.dtype, np.integer)\n', (33379, 33406), True, 'import numpy as np\n'), ((1435, 1487), 'regreg.api.weighted_l1norm', 'rr.weighted_l1norm', ([], {'weights': 'weights_np', 'lagrange': '(1.0)'}), '(weights=weights_np, lagrange=1.0)\n', (1453, 1487), True, 'import regreg.api as rr\n'), ((1574, 1627), 'regreg.api.group_lasso', 'rr.group_lasso', (['groups'], {'weights': 'weights', 'lagrange': '(1.0)'}), '(groups, weights=weights, lagrange=1.0)\n', (1588, 1627), True, 'import regreg.api as rr\n'), ((2979, 3001), 'numpy.unique', 'np.unique', (['self.groups'], {}), '(self.groups)\n', (2988, 3001), True, 'import numpy as np\n'), ((6598, 6638), 'numpy.eye', 'np.eye', (['self.observed_opt_state.shape[0]'], {}), '(self.observed_opt_state.shape[0])\n', (6604, 6638), True, 'import numpy as np\n'), ((9138, 9157), 'numpy.linalg.inv', 'inv', (['cond_precision'], {}), '(cond_precision)\n', (9141, 9157), False, 'from numpy.linalg import norm, qr, inv, eig\n'), ((9341, 9360), 'numpy.linalg.inv', 'inv', (['cond_precision'], {}), '(cond_precision)\n', (9344, 9360), False, 'from numpy.linalg import norm, qr, inv, eig\n'), ((14291, 14323), 'numpy.minimum', 'np.minimum', (['pvalues', '(1 - pvalues)'], {}), '(pvalues, 1 - pvalues)\n', (14301, 14323), True, 'import numpy as np\n'), ((18024, 18050), 'numpy.zeros', 'np.zeros', (['(ntarget, ngrid)'], {}), '((ntarget, ngrid))\n', (18032, 18050), True, 'import numpy as np\n'), ((18395, 18421), 'numpy.zeros', 'np.zeros', (['(ntarget, ngrid)'], {}), '((ntarget, ngrid))\n', (18403, 18421), True, 'import numpy as np\n'), ((19598, 19633), 'numpy.zeros_like', 'np.zeros_like', (['self.observed_target'], {}), '(self.observed_target)\n', (19611, 19633), True, 'import numpy as np\n'), ((20006, 20028), 'numpy.all', 'np.all', (['(parameter == 0)'], {}), '(parameter == 0)\n', (20012, 20028), True, 'import numpy as np\n'), ((25922, 25939), 'numpy.asarray', 'np.asarray', (['lower'], {}), '(lower)\n', (25932, 25939), True, 'import numpy as np\n'), ((25941, 25958), 'numpy.asarray', 'np.asarray', (['upper'], {}), '(upper)\n', (25951, 25958), True, 'import numpy as np\n'), ((31905, 31934), 'numpy.linalg.det', 'np.linalg.det', (['(GammaMinus + C)'], {}), '(GammaMinus + C)\n', (31918, 31934), True, 'import numpy as np\n'), ((33497, 33513), 'numpy.amin', 'np.amin', (['agroups'], {}), '(agroups)\n', (33504, 33513), True, 'import numpy as np\n'), ((3156, 3178), 'numpy.linalg.norm', 'norm', (['soln[group_mask]'], {}), '(soln[group_mask])\n', (3160, 3178), False, 'from numpy.linalg import norm, qr, inv, eig\n'), ((4095, 4108), 'numpy.sign', 'np.sign', (['soln'], {}), '(soln)\n', (4102, 4108), True, 'import numpy as np\n'), ((5444, 5449), 'numpy.linalg.qr', 'qr', (['Z'], {}), '(Z)\n', (5446, 5449), False, 'from numpy.linalg import norm, qr, inv, eig\n'), ((5544, 5560), 'numpy.zeros', 'np.zeros', (['(1, 0)'], {}), '((1, 0))\n', (5552, 5560), True, 'import numpy as np\n'), ((5755, 5765), 'numpy.eye', 'np.eye', (['pg'], {}), '(pg)\n', (5761, 5765), True, 'import numpy as np\n'), ((8422, 8436), 'numpy.sqrt', 'np.sqrt', (['(n - 1)'], {}), '(n - 1)\n', (8429, 8436), True, 'import numpy as np\n'), ((8545, 8567), 'numpy.sqrt', 'np.sqrt', (['(n / (n - 1.0))'], {}), '(n / (n - 1.0))\n', (8552, 8567), True, 'import numpy as np\n'), ((9002, 9018), 'numpy.asarray', 'np.asarray', (['prec'], {}), '(prec)\n', (9012, 9018), True, 'import numpy as np\n'), ((11452, 11479), 'numpy.asarray', 'np.asarray', (['observed_target'], {}), '(observed_target)\n', (11462, 11479), True, 'import numpy as np\n'), ((12307, 12339), 'numpy.asarray', 'np.asarray', (['self.randomizer_prec'], {}), '(self.randomizer_prec)\n', (12317, 12339), True, 'import numpy as np\n'), ((14200, 14227), 'numpy.diag', 'np.diag', (['observed_info_mean'], {}), '(observed_info_mean)\n', (14207, 14227), True, 'import numpy as np\n'), ((17919, 17940), 'numpy.diag', 'np.diag', (['inverse_info'], {}), '(inverse_info)\n', (17926, 17940), True, 'import numpy as np\n'), ((18127, 18229), 'numpy.linspace', 'np.linspace', (['(observed_target[j] - 1.5 * _scale[j])', '(observed_target[j] + 1.5 * _scale[j])'], {'num': 'ngrid'}), '(observed_target[j] - 1.5 * _scale[j], observed_target[j] + 1.5 *\n _scale[j], num=ngrid)\n', (18138, 18229), True, 'import numpy as np\n'), ((18498, 18600), 'numpy.linspace', 'np.linspace', (['(observed_target[j] - 1.5 * _scale[j])', '(observed_target[j] + 1.5 * _scale[j])'], {'num': 'ngrid'}), '(observed_target[j] - 1.5 * _scale[j], observed_target[j] + 1.5 *\n _scale[j], num=ngrid)\n', (18509, 18600), True, 'import numpy as np\n'), ((20424, 20451), 'numpy.asarray', 'np.asarray', (['observed_target'], {}), '(observed_target)\n', (20434, 20451), True, 'import numpy as np\n'), ((21600, 21620), 'numpy.identity', 'np.identity', (['num_opt'], {}), '(num_opt)\n', (21611, 21620), True, 'import numpy as np\n'), ((21858, 21885), 'numpy.asarray', 'np.asarray', (['[conjugate_arg]'], {}), '([conjugate_arg])\n', (21868, 21885), True, 'import numpy as np\n'), ((21921, 21953), 'numpy.reshape', 'np.reshape', (['implied_prec', '(1, 1)'], {}), '(implied_prec, (1, 1))\n', (21931, 21953), True, 'import numpy as np\n'), ((23507, 23611), 'scipy.interpolate.interp1d', 'interp1d', (['self.stat_grid[m]', 'log_ref'], {'kind': '"""quadratic"""', 'bounds_error': '(False)', 'fill_value': '"""extrapolate"""'}), "(self.stat_grid[m], log_ref, kind='quadratic', bounds_error=False,\n fill_value='extrapolate')\n", (23515, 23611), False, 'from scipy.interpolate import interp1d\n'), ((30706, 30745), 'numpy.fabs', 'np.fabs', (['(current_value - proposed_value)'], {}), '(current_value - proposed_value)\n', (30713, 30745), True, 'import numpy as np\n'), ((1231, 1248), 'numpy.unique', 'np.unique', (['groups'], {}), '(groups)\n', (1240, 1248), True, 'import numpy as np\n'), ((3187, 3197), 'numpy.linalg.norm', 'norm', (['soln'], {}), '(soln)\n', (3191, 3197), False, 'from numpy.linalg import norm, qr, inv, eig\n'), ((3355, 3381), 'numpy.flatnonzero', 'np.flatnonzero', (['group_mask'], {}), '(group_mask)\n', (3369, 3381), True, 'import numpy as np\n'), ((3657, 3679), 'numpy.linalg.norm', 'norm', (['soln[group_mask]'], {}), '(soln[group_mask])\n', (3661, 3679), False, 'from numpy.linalg import norm, qr, inv, eig\n'), ((8389, 8398), 'numpy.std', 'np.std', (['Y'], {}), '(Y)\n', (8395, 8398), True, 'import numpy as np\n'), ((8401, 8419), 'numpy.sqrt', 'np.sqrt', (['mean_diag'], {}), '(mean_diag)\n', (8408, 8419), True, 'import numpy as np\n'), ((8533, 8542), 'numpy.std', 'np.std', (['Y'], {}), '(Y)\n', (8539, 8542), True, 'import numpy as np\n'), ((14838, 14865), 'numpy.diag', 'np.diag', (['observed_info_mean'], {}), '(observed_info_mean)\n', (14845, 14865), True, 'import numpy as np\n'), ((21131, 21171), 'numpy.atleast_1d', 'np.atleast_1d', (['(grid[k] - observed_target)'], {}), '(grid[k] - observed_target)\n', (21144, 21171), True, 'import numpy as np\n'), ((27155, 27175), 'numpy.linalg.inv', 'np.linalg.inv', (['_prec'], {}), '(_prec)\n', (27168, 27175), True, 'import numpy as np\n'), ((30754, 30776), 'numpy.fabs', 'np.fabs', (['current_value'], {}), '(current_value)\n', (30761, 30776), True, 'import numpy as np\n'), ((32151, 32176), 'numpy.ones', 'np.ones', (['(1, ug.size - 1)'], {}), '((1, ug.size - 1))\n', (32158, 32176), True, 'import numpy as np\n'), ((33630, 33648), 'numpy.unique', 'np.unique', (['agroups'], {}), '(agroups)\n', (33639, 33648), True, 'import numpy as np\n'), ((3598, 3620), 'numpy.linalg.norm', 'norm', (['soln[group_mask]'], {}), '(soln[group_mask])\n', (3602, 3620), False, 'from numpy.linalg import norm, qr, inv, eig\n'), ((5400, 5418), 'numpy.eye', 'np.eye', (['pg', '(pg - 1)'], {}), '(pg, pg - 1)\n', (5406, 5418), True, 'import numpy as np\n'), ((8506, 8524), 'numpy.sqrt', 'np.sqrt', (['mean_diag'], {}), '(mean_diag)\n', (8513, 8524), True, 'import numpy as np\n'), ((22721, 22745), 'numpy.diag', 'np.diag', (['self.target_cov'], {}), '(self.target_cov)\n', (22728, 22745), True, 'import numpy as np\n'), ((23446, 23458), 'numpy.exp', 'np.exp', (['logW'], {}), '(logW)\n', (23452, 23458), True, 'import numpy as np\n'), ((24122, 24134), 'numpy.exp', 'np.exp', (['logW'], {}), '(logW)\n', (24128, 24134), True, 'import numpy as np\n'), ((26254, 26278), 'numpy.diag', 'np.diag', (['self.target_cov'], {}), '(self.target_cov)\n', (26261, 26278), True, 'import numpy as np\n'), ((30451, 30475), 'numpy.isnan', 'np.isnan', (['proposed_value'], {}), '(proposed_value)\n', (30459, 30475), True, 'import numpy as np\n'), ((30479, 30502), 'numpy.isnan', 'np.isnan', (['current_value'], {}), '(current_value)\n', (30487, 30502), True, 'import numpy as np\n'), ((32316, 32347), 'numpy.multiply', 'np.multiply', (['GpC_inv', 'GpC_inv.T'], {}), '(GpC_inv, GpC_inv.T)\n', (32327, 32347), True, 'import numpy as np\n'), ((14496, 14523), 'numpy.diag', 'np.diag', (['observed_info_mean'], {}), '(observed_info_mean)\n', (14503, 14523), True, 'import numpy as np\n'), ((14625, 14652), 'numpy.diag', 'np.diag', (['observed_info_mean'], {}), '(observed_info_mean)\n', (14632, 14652), True, 'import numpy as np\n')]
import BoltzmannMachine as bm import QHO as qho import numpy as np import datetime # Visualization imports from IPython.display import clear_output from PIL import Image import matplotlib.pyplot as plt import matplotlib matplotlib.rcParams['figure.dpi']=300 def sigmoid(x): return .5 * (1 + np.tanh(x / 2.)) # Set the quantum gas with N particles, a limit of 10 for the # quantum numbers and default temperature and frequency N = 10*10 gas = qho.QHOGas(N=N) n_max = 10 training_size = 100000 # the amount of hidden units was set by trial and error hidden_units = 70 # the recipe suggests to set the batchsize to 10, though it can range # from 10 to 100 batchsize = 10 # the recipe suggests a learning rate that makes the weight updates about # 1e-3 times the weights (to within an order of magnitude) eta = 0.005 # the amount of steps was set by trial and error nsteps = 300000 # define the validation set to be used in training_visualization validation_set = gas.generate(amount=20) def training_visualization(machine, current_step, total_steps, eta, a, b, w, da, db, dw): # Every now and then (every 50k steps), let us know that the training # is still running if current_step%50000 == 0: print("{:08d} / {:08d}".format(current_step, total_steps), end=" \r") # After 'checkpoint_steps', show the suggested plots checkpoint_steps = 10000 if current_step%checkpoint_steps == 0 or current_step == total_steps-1: print(f"Showing at step {current_step}.") # Produce a sample starting from the validation set after 100 steps v_prime = machine.generate(validation_set, 100, a=a, b=b, w=w) # print useful plots for training plot_training(validation_set, v_prime, eta, a, b, w, da, db, dw) def plot_training(v, v_prime, eta, a, b, w, da, db, dw): clear_output(wait=True) # Show how the weights light up for the state v hMean = sigmoid(np.dot(v, w) + b) image = Image.fromarray(hMean * 256).show() # Create the grid for all the other plots we want plt.rcParams.update({'font.size': 2}) # plot histogram of initial vs generated n = np.arange(0,10) generated_quantum_numbers = np.rint(v_prime*10) plt.hist( generated_quantum_numbers.flatten(), bins=np.arange(0,10), density=True, label="Sampled" ) plt.plot( n, gas.p_n(n), label="Theor." ) plt.xlabel('n') plt.ylabel('P(n)') plt.legend() # plot histogram of visible, hidden, weights fig = plt.figure(constrained_layout=True) gs = fig.add_gridspec(ncols=3, nrows=2) def plotit(axis, values, title): axis.hist(values) axis.set_title(f"{title}: mm = {np.mean(np.fabs(values))}") plotit(fig.add_subplot(gs[0,0]), a, 'a') plotit(fig.add_subplot(gs[0,1]), w.flatten(), 'w') plotit(fig.add_subplot(gs[0,2]), b, 'b') # plot histogram of d_visible, d_hidden, d_weights plotit(fig.add_subplot(gs[1,0]), eta*da, 'da') plotit(fig.add_subplot(gs[1,1]), eta*dw.flatten(), 'dw') plotit(fig.add_subplot(gs[1,2]), eta*db, 'db') # show free energies of the average of samples x = lambda vv : b + np.dot(vv, w) free_training = -np.dot(v, a) - np.sum( np.log(1 + np.exp(x(v))), axis=1) free_valdation = -np.dot(v_prime, a) - np.sum( np.log(1 + np.exp(x(v_prime))), axis=1) print(f"\nF_training={np.average(free_training)} vs F_validation={np.average(free_valdation)}\n") # Show. # CAUTION! This will freeze the execution plt.show() # Init the boltzmann machine and train it while visualizing the suggested plots training_set = gas.generate(amount=training_size, n_max=n_max) m = bm.BoltzmannMachine(num_hidden=hidden_units) a,b,w = m.train(training_set, batchsize=batchsize, eta=eta, nsteps=nsteps, do_while_training=None) # Store in a file run_id = int(datetime.datetime.now().timestamp()) np.savetxt(f"a_{run_id}.csv", a, delimiter=',') np.savetxt(f"b_{run_id}.csv", b, delimiter=',') np.savetxt(f"w_{run_id}.csv", w, delimiter=',')
[ "numpy.fabs", "QHO.QHOGas", "PIL.Image.fromarray", "matplotlib.pyplot.ylabel", "numpy.average", "matplotlib.pyplot.legend", "matplotlib.pyplot.xlabel", "numpy.tanh", "IPython.display.clear_output", "matplotlib.pyplot.rcParams.update", "matplotlib.pyplot.figure", "numpy.dot", "BoltzmannMachine.BoltzmannMachine", "numpy.rint", "numpy.savetxt", "datetime.datetime.now", "numpy.arange", "matplotlib.pyplot.show" ]
[((447, 462), 'QHO.QHOGas', 'qho.QHOGas', ([], {'N': 'N'}), '(N=N)\n', (457, 462), True, 'import QHO as qho\n'), ((3637, 3681), 'BoltzmannMachine.BoltzmannMachine', 'bm.BoltzmannMachine', ([], {'num_hidden': 'hidden_units'}), '(num_hidden=hidden_units)\n', (3656, 3681), True, 'import BoltzmannMachine as bm\n'), ((3849, 3896), 'numpy.savetxt', 'np.savetxt', (['f"""a_{run_id}.csv"""', 'a'], {'delimiter': '""","""'}), "(f'a_{run_id}.csv', a, delimiter=',')\n", (3859, 3896), True, 'import numpy as np\n'), ((3897, 3944), 'numpy.savetxt', 'np.savetxt', (['f"""b_{run_id}.csv"""', 'b'], {'delimiter': '""","""'}), "(f'b_{run_id}.csv', b, delimiter=',')\n", (3907, 3944), True, 'import numpy as np\n'), ((3945, 3992), 'numpy.savetxt', 'np.savetxt', (['f"""w_{run_id}.csv"""', 'w'], {'delimiter': '""","""'}), "(f'w_{run_id}.csv', w, delimiter=',')\n", (3955, 3992), True, 'import numpy as np\n'), ((1829, 1852), 'IPython.display.clear_output', 'clear_output', ([], {'wait': '(True)'}), '(wait=True)\n', (1841, 1852), False, 'from IPython.display import clear_output\n'), ((2050, 2087), 'matplotlib.pyplot.rcParams.update', 'plt.rcParams.update', (["{'font.size': 2}"], {}), "({'font.size': 2})\n", (2069, 2087), True, 'import matplotlib.pyplot as plt\n'), ((2142, 2158), 'numpy.arange', 'np.arange', (['(0)', '(10)'], {}), '(0, 10)\n', (2151, 2158), True, 'import numpy as np\n'), ((2190, 2211), 'numpy.rint', 'np.rint', (['(v_prime * 10)'], {}), '(v_prime * 10)\n', (2197, 2211), True, 'import numpy as np\n'), ((2365, 2380), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""n"""'], {}), "('n')\n", (2375, 2380), True, 'import matplotlib.pyplot as plt\n'), ((2385, 2403), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""P(n)"""'], {}), "('P(n)')\n", (2395, 2403), True, 'import matplotlib.pyplot as plt\n'), ((2408, 2420), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (2418, 2420), True, 'import matplotlib.pyplot as plt\n'), ((2481, 2516), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'constrained_layout': '(True)'}), '(constrained_layout=True)\n', (2491, 2516), True, 'import matplotlib.pyplot as plt\n'), ((3478, 3488), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (3486, 3488), True, 'import matplotlib.pyplot as plt\n'), ((295, 311), 'numpy.tanh', 'np.tanh', (['(x / 2.0)'], {}), '(x / 2.0)\n', (302, 311), True, 'import numpy as np\n'), ((1925, 1937), 'numpy.dot', 'np.dot', (['v', 'w'], {}), '(v, w)\n', (1931, 1937), True, 'import numpy as np\n'), ((1955, 1983), 'PIL.Image.fromarray', 'Image.fromarray', (['(hMean * 256)'], {}), '(hMean * 256)\n', (1970, 1983), False, 'from PIL import Image\n'), ((2266, 2282), 'numpy.arange', 'np.arange', (['(0)', '(10)'], {}), '(0, 10)\n', (2275, 2282), True, 'import numpy as np\n'), ((3130, 3143), 'numpy.dot', 'np.dot', (['vv', 'w'], {}), '(vv, w)\n', (3136, 3143), True, 'import numpy as np\n'), ((3166, 3178), 'numpy.dot', 'np.dot', (['v', 'a'], {}), '(v, a)\n', (3172, 3178), True, 'import numpy as np\n'), ((3245, 3263), 'numpy.dot', 'np.dot', (['v_prime', 'a'], {}), '(v_prime, a)\n', (3251, 3263), True, 'import numpy as np\n'), ((3812, 3835), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (3833, 3835), False, 'import datetime\n'), ((3340, 3365), 'numpy.average', 'np.average', (['free_training'], {}), '(free_training)\n', (3350, 3365), True, 'import numpy as np\n'), ((3384, 3410), 'numpy.average', 'np.average', (['free_valdation'], {}), '(free_valdation)\n', (3394, 3410), True, 'import numpy as np\n'), ((2672, 2687), 'numpy.fabs', 'np.fabs', (['values'], {}), '(values)\n', (2679, 2687), True, 'import numpy as np\n')]
#! /usr/bin/env python3 # Copyright 2020 Tier IV, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import math import sys from autoware_planning_msgs.msg import StopReasonArray from case_converter import pascal2snake from geometry_msgs.msg import PoseStamped import numpy as np import rclpy from rclpy.node import Node from rtree import index from self_pose_listener import SelfPoseListener class StopReason2PoseNode(Node): def __init__(self, options): super().__init__("stop_reason2pose_node") self._options = options self._sub_pose = self.create_subscription( StopReasonArray, self._options.topic_name, self._on_stop_reasons, 1 ) self._pub_pose_map = {} self._idx_map = {} self._pose_map = {} self._self_pose_listener = SelfPoseListener() self.timer = self.create_timer((1.0 / 100), self._self_pose_listener.get_current_pose) def _on_stop_reasons(self, msg): for stop_reason in msg.stop_reasons: snake_case_stop_reason = pascal2snake(stop_reason.reason) if len(stop_reason.stop_factors) == 0: self.get_logger().warn("stop_factor is null") return for stop_factor in stop_reason.stop_factors: pose = PoseStamped() pose.header = msg.header pose.pose = stop_factor.stop_pose # Get nearest pose th_dist = 1.0 nearest_pose_id = self._get_nearest_pose_id( snake_case_stop_reason, pose.pose, th_dist ) if nearest_pose_id: self._update_pose(snake_case_stop_reason, pose.pose, nearest_pose_id) pose_id = nearest_pose_id else: pose_id = self._register_pose(snake_case_stop_reason, pose.pose) pose_topic_name = "{snake_case_stop_reason}_{pose_id}".format(**locals()) topic_ns = "/autoware_debug_tools/stop_reason2pose/" if pose_topic_name not in self._pub_pose_map: self._pub_pose_map[pose_topic_name] = self.create_publisher( PoseStamped, topic_ns + pose_topic_name, 1 ) self._pub_pose_map[pose_topic_name].publish(pose) # Publish nearest stop_reason without number nearest_pose = PoseStamped() nearest_pose.header = msg.header nearest_pose.pose = self._get_nearest_pose_in_array( stop_reason, self._self_pose_listener.self_pose ) if nearest_pose.pose: if snake_case_stop_reason not in self._pub_pose_map: topic_ns = "/autoware_debug_tools/stop_reason2pose/" self._pub_pose_map[snake_case_stop_reason] = self.create_publisher( PoseStamped, topic_ns + snake_case_stop_reason, 1 ) self._pub_pose_map[snake_case_stop_reason].publish(nearest_pose) def _get_nearest_pose_in_array(self, stop_reason, self_pose): poses = [stop_factor.stop_pose for stop_factor in stop_reason.stop_factors] if not poses: return None distances = map(lambda p: StopReason2PoseNode.calc_distance2d(p, self_pose), poses) nearest_idx = np.argmin(distances) return poses[nearest_idx] def _find_nearest_pose_id(self, name, pose): if name not in self._idx_map: self._idx_map[name] = index.Index() return self._idx_map[name].nearest(StopReason2PoseNode.pose2boundingbox(pose), 1) def _get_nearest_pose_id(self, name, pose, th_dist): nearest_pose_ids = list(self._find_nearest_pose_id(name, pose)) if not nearest_pose_ids: return None nearest_pose_id = nearest_pose_ids[0] nearest_pose = self._get_pose(name, nearest_pose_id) if not nearest_pose: return None dist = StopReason2PoseNode.calc_distance2d(pose, nearest_pose) if dist > th_dist: return None return nearest_pose_id def _get_pose(self, name, pose_id): if name not in self._pose_map: return None return self._pose_map[name][pose_id] def _update_pose(self, name, pose, pose_id): self._pose_map[name][id] = pose self._idx_map[name].insert(pose_id, StopReason2PoseNode.pose2boundingbox(pose)) def _register_pose(self, name, pose): if name not in self._pose_map: self._pose_map[name] = {} pose_id = len(self._pose_map[name]) + 1 self._pose_map[name][pose_id] = pose self._idx_map[name].insert(pose_id, StopReason2PoseNode.pose2boundingbox(pose)) return pose_id @staticmethod def calc_distance2d(pose1, pose2): p1 = pose1.position p2 = pose2.position return math.hypot(p1.x - p2.x, p1.y - p2.y) @staticmethod def pose2boundingbox(pose): return [pose.position.x, pose.position.y, pose.position.x, pose.position.y] def main(args): rclpy.init() parser = argparse.ArgumentParser() parser.add_argument("topic_name", type=str) ns = parser.parse_args(args) stop_reason2pose_node = StopReason2PoseNode(ns) rclpy.spin(stop_reason2pose_node) stop_reason2pose_node.destroy_node() rclpy.shutdown() if __name__ == "__main__": main(sys.argv[1:])
[ "rclpy.spin", "case_converter.pascal2snake", "argparse.ArgumentParser", "self_pose_listener.SelfPoseListener", "geometry_msgs.msg.PoseStamped", "rtree.index.Index", "math.hypot", "numpy.argmin", "rclpy.init", "rclpy.shutdown" ]
[((5663, 5675), 'rclpy.init', 'rclpy.init', ([], {}), '()\n', (5673, 5675), False, 'import rclpy\n'), ((5690, 5715), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (5713, 5715), False, 'import argparse\n'), ((5854, 5887), 'rclpy.spin', 'rclpy.spin', (['stop_reason2pose_node'], {}), '(stop_reason2pose_node)\n', (5864, 5887), False, 'import rclpy\n'), ((5933, 5949), 'rclpy.shutdown', 'rclpy.shutdown', ([], {}), '()\n', (5947, 5949), False, 'import rclpy\n'), ((1325, 1343), 'self_pose_listener.SelfPoseListener', 'SelfPoseListener', ([], {}), '()\n', (1341, 1343), False, 'from self_pose_listener import SelfPoseListener\n'), ((3901, 3921), 'numpy.argmin', 'np.argmin', (['distances'], {}), '(distances)\n', (3910, 3921), True, 'import numpy as np\n'), ((5469, 5505), 'math.hypot', 'math.hypot', (['(p1.x - p2.x)', '(p1.y - p2.y)'], {}), '(p1.x - p2.x, p1.y - p2.y)\n', (5479, 5505), False, 'import math\n'), ((1559, 1591), 'case_converter.pascal2snake', 'pascal2snake', (['stop_reason.reason'], {}), '(stop_reason.reason)\n', (1571, 1591), False, 'from case_converter import pascal2snake\n'), ((2945, 2958), 'geometry_msgs.msg.PoseStamped', 'PoseStamped', ([], {}), '()\n', (2956, 2958), False, 'from geometry_msgs.msg import PoseStamped\n'), ((4079, 4092), 'rtree.index.Index', 'index.Index', ([], {}), '()\n', (4090, 4092), False, 'from rtree import index\n'), ((1810, 1823), 'geometry_msgs.msg.PoseStamped', 'PoseStamped', ([], {}), '()\n', (1821, 1823), False, 'from geometry_msgs.msg import PoseStamped\n')]
import mtrain import numpy as np import pandas as pd import random def simulate_games(num_players=4, domino_size=12, num_games=250, collect_data=True, debug=False, players=["Random", "Greedy", "Probability", "Neural"], file_name="PlayData/data4_12_250"): """ Runs the mexican train game repeatedly with different combinations of players to generate data to be used in testing and training the neural net. If collect_data is on, the play data is retrieved and stored into a .xlsx file for later use The format for the file name for this is as follows: PlayData/data + num_players + _ + domino_size + _ + num_games + .xlsx This spreadsheet is to be used when training the neural net. This script has no required parameters, and will run the game with the default params if unchanged. If collect_data is on, the players are selected randomly each game from: ["Random", "Greedy", "Probability"] If collect_data is off, the players are selected in order from the parameter players. When collect_data is off: len(players) must equal num_players Returns a tuple of lists: (score_averages, win_percentage) corresponding to the players """ #Sets column names for building dataframe later on column_names = ["round_number", "turn_number", "player_number", "play", "t_num", "hand", "unknown", "potential_plays", "points"] #Depending on mode of use, sets players and checks validity of player values modes = [] if collect_data: modes = ["Random", "Greedy", "Probability"] else: if not len(players) == num_players: raise RuntimeError("len(players) must equal num_players when collect_data is off") modes = players #Simulates num_games of games scores = np.ndarray((num_players, num_games)) wins = np.ndarray((num_players, num_games)) full_data = pd.DataFrame(columns=column_names) current_index = 0 for game_num in range(0, num_games): #Randomize players if in collect_data mode game_modes = [] if collect_data: for select in range(0, num_players): game_modes.append(random.choice(modes)) else: game_modes = modes #Run game with parameters results = mtrain.mexicantrain(num_players, domino_size, debug=debug, modes=game_modes, data_collection=collect_data, data_index=current_index, file_name=file_name) #If collecting data, data is stored into the dataframe if collect_data: current_index = results[2].index[-1] + 1 full_data = pd.concat([full_data, results[2]]) #Scores and wins are recorded into their respective arrays for player_num in range(0, num_players): scores[player_num, game_num] = results[0][player_num] if results[1] == player_num: wins[player_num, game_num] = 1 else: wins[player_num, game_num] = 0 #Calculates performance of the players score_averages = np.ndarray((num_players)) win_percentage = np.ndarray((num_players)) for player_num in range(0, num_players): score_averages[player_num] = np.mean(scores[player_num, :]) win_percentage[player_num] = np.mean(wins[player_num, :]) #If collecting data, prints data to a .xlsx file if collect_data: filename = "PlayData/data" + str(num_players) + "_" + str(domino_size) + "_" + str(num_games) + ".xlsx" writer = pd.ExcelWriter(filename) full_data.to_excel(writer, "Sheet1") writer.save() #Prints results and returns them as well if debug: print(score_averages) if debug: print(win_percentage) return score_averages, win_percentage
[ "numpy.mean", "random.choice", "numpy.ndarray", "pandas.concat", "pandas.DataFrame", "pandas.ExcelWriter", "mtrain.mexicantrain" ]
[((1844, 1880), 'numpy.ndarray', 'np.ndarray', (['(num_players, num_games)'], {}), '((num_players, num_games))\n', (1854, 1880), True, 'import numpy as np\n'), ((1892, 1928), 'numpy.ndarray', 'np.ndarray', (['(num_players, num_games)'], {}), '((num_players, num_games))\n', (1902, 1928), True, 'import numpy as np\n'), ((1945, 1979), 'pandas.DataFrame', 'pd.DataFrame', ([], {'columns': 'column_names'}), '(columns=column_names)\n', (1957, 1979), True, 'import pandas as pd\n'), ((3240, 3263), 'numpy.ndarray', 'np.ndarray', (['num_players'], {}), '(num_players)\n', (3250, 3263), True, 'import numpy as np\n'), ((3287, 3310), 'numpy.ndarray', 'np.ndarray', (['num_players'], {}), '(num_players)\n', (3297, 3310), True, 'import numpy as np\n'), ((2355, 2517), 'mtrain.mexicantrain', 'mtrain.mexicantrain', (['num_players', 'domino_size'], {'debug': 'debug', 'modes': 'game_modes', 'data_collection': 'collect_data', 'data_index': 'current_index', 'file_name': 'file_name'}), '(num_players, domino_size, debug=debug, modes=game_modes,\n data_collection=collect_data, data_index=current_index, file_name=file_name\n )\n', (2374, 2517), False, 'import mtrain\n'), ((3395, 3425), 'numpy.mean', 'np.mean', (['scores[player_num, :]'], {}), '(scores[player_num, :])\n', (3402, 3425), True, 'import numpy as np\n'), ((3463, 3491), 'numpy.mean', 'np.mean', (['wins[player_num, :]'], {}), '(wins[player_num, :])\n', (3470, 3491), True, 'import numpy as np\n'), ((3696, 3720), 'pandas.ExcelWriter', 'pd.ExcelWriter', (['filename'], {}), '(filename)\n', (3710, 3720), True, 'import pandas as pd\n'), ((2796, 2830), 'pandas.concat', 'pd.concat', (['[full_data, results[2]]'], {}), '([full_data, results[2]])\n', (2805, 2830), True, 'import pandas as pd\n'), ((2227, 2247), 'random.choice', 'random.choice', (['modes'], {}), '(modes)\n', (2240, 2247), False, 'import random\n')]
############################################################################## # # Below code is inspired on # https://github.com/facebookresearch/detectron2/blob/master/detectron2/data/datasets/pascal_voc.py # -------------------------------------------------------- # Detectron2 # Licensed under the Apache 2.0 license. # -------------------------------------------------------- from fvcore.common.file_io import PathManager import os import numpy as np import xml.etree.ElementTree as ET from detectron2.structures import BoxMode from detectron2.data import DatasetCatalog, MetadataCatalog __all__ = ["register_licenseplates_voc"] CLASS_NAMES = [ "license_plate", ] def load_voc_instances(dirname: str, split: str): """ Load licenseplates VOC detection annotations to Detectron2 format. Args: dirname: Contain "annotations", "images" split (str): one of "train", "test" """ with PathManager.open(os.path.join(dirname, split + ".txt")) as f: fileids = np.loadtxt(f, dtype=np.str) dicts = [] for fileid in fileids: anno_file = os.path.join(dirname, "annotations", fileid + ".xml") jpeg_file = os.path.join(dirname, "images", fileid + ".jpg") tree = ET.parse(anno_file) r = { "file_name": jpeg_file, "image_id": fileid, "height": int(tree.findall("./size/height")[0].text), "width": int(tree.findall("./size/width")[0].text), } instances = [] for obj in tree.findall("object"): cls = obj.find("name").text bbox = obj.find("bndbox") bbox = [float(bbox.find(x).text) for x in ["xmin", "ymin", "xmax", "ymax"]] instances.append( {"category_id": CLASS_NAMES.index(cls), "bbox": bbox, "bbox_mode": BoxMode.XYXY_ABS} ) r["annotations"] = instances dicts.append(r) return dicts def register_licenseplates_voc(name, dirname, split): DatasetCatalog.register(name, lambda: load_voc_instances(dirname, split)) MetadataCatalog.get(name).set(thing_classes=CLASS_NAMES, dirname=dirname, split=split) if __name__ == "__main__": import random import cv2 from detectron2.utils.visualizer import Visualizer import argparse # Parse command line arguments ap = argparse.ArgumentParser() ap.add_argument("--split", default="train") ap.add_argument("--samples", type=int, default=10) ap.add_argument("--scale", type=float, default=1.0) args = ap.parse_args() dataset_name = f"licenseplates_{args.split}" register_licenseplates_voc(dataset_name, "datasets/licenseplates", args.split) dataset_dicts = DatasetCatalog.get(dataset_name) for d in random.sample(dataset_dicts, args.samples): img = cv2.imread(d["file_name"]) visualizer = Visualizer(img[:, :, ::-1], metadata=MetadataCatalog.get(dataset_name), scale=args.scale) vis = visualizer.draw_dataset_dict(d) cv2.imshow(dataset_name, vis.get_image()[:, :, ::-1]) # Exit? Press ESC if cv2.waitKey(0) & 0xFF == 27: break cv2.destroyAllWindows()
[ "random.sample", "xml.etree.ElementTree.parse", "argparse.ArgumentParser", "os.path.join", "cv2.waitKey", "cv2.destroyAllWindows", "detectron2.data.MetadataCatalog.get", "numpy.loadtxt", "cv2.imread", "detectron2.data.DatasetCatalog.get" ]
[((2443, 2468), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (2466, 2468), False, 'import argparse\n'), ((2808, 2840), 'detectron2.data.DatasetCatalog.get', 'DatasetCatalog.get', (['dataset_name'], {}), '(dataset_name)\n', (2826, 2840), False, 'from detectron2.data import DatasetCatalog, MetadataCatalog\n'), ((2854, 2896), 'random.sample', 'random.sample', (['dataset_dicts', 'args.samples'], {}), '(dataset_dicts, args.samples)\n', (2867, 2896), False, 'import random\n'), ((3312, 3335), 'cv2.destroyAllWindows', 'cv2.destroyAllWindows', ([], {}), '()\n', (3333, 3335), False, 'import cv2\n'), ((1011, 1038), 'numpy.loadtxt', 'np.loadtxt', (['f'], {'dtype': 'np.str'}), '(f, dtype=np.str)\n', (1021, 1038), True, 'import numpy as np\n'), ((1102, 1155), 'os.path.join', 'os.path.join', (['dirname', '"""annotations"""', "(fileid + '.xml')"], {}), "(dirname, 'annotations', fileid + '.xml')\n", (1114, 1155), False, 'import os\n'), ((1176, 1224), 'os.path.join', 'os.path.join', (['dirname', '"""images"""', "(fileid + '.jpg')"], {}), "(dirname, 'images', fileid + '.jpg')\n", (1188, 1224), False, 'import os\n'), ((1241, 1260), 'xml.etree.ElementTree.parse', 'ET.parse', (['anno_file'], {}), '(anno_file)\n', (1249, 1260), True, 'import xml.etree.ElementTree as ET\n'), ((2912, 2938), 'cv2.imread', 'cv2.imread', (["d['file_name']"], {}), "(d['file_name'])\n", (2922, 2938), False, 'import cv2\n'), ((948, 985), 'os.path.join', 'os.path.join', (['dirname', "(split + '.txt')"], {}), "(dirname, split + '.txt')\n", (960, 985), False, 'import os\n'), ((2106, 2131), 'detectron2.data.MetadataCatalog.get', 'MetadataCatalog.get', (['name'], {}), '(name)\n', (2125, 2131), False, 'from detectron2.data import DatasetCatalog, MetadataCatalog\n'), ((3029, 3062), 'detectron2.data.MetadataCatalog.get', 'MetadataCatalog.get', (['dataset_name'], {}), '(dataset_name)\n', (3048, 3062), False, 'from detectron2.data import DatasetCatalog, MetadataCatalog\n'), ((3260, 3274), 'cv2.waitKey', 'cv2.waitKey', (['(0)'], {}), '(0)\n', (3271, 3274), False, 'import cv2\n')]
""" kissim.cli.encode Encode structures (generate fingerprints) from CLI arguments. """ import numpy as np from kissim.api import encode from kissim.cli.utils import configure_logger def encode_from_cli(args): """ Encode structures. Parameters ---------- args : argsparse.Namespace CLI arguments. """ configure_logger(args.output) structure_klifs_ids = _parse_structure_klifs_ids(args.input) encode(structure_klifs_ids, args.output, args.local, args.ncores) def _parse_structure_klifs_ids(args_input): """ Parse structure KLIFS IDs. Parameters ---------- args_input : list of str Either path to txt file with structure KLIFS ID (one ID per row) or one or more structure KLIFS IDs. Returns ------- list of int List of structure KLIFS IDs. """ if len(args_input) == 1: try: structure_klifs_ids = [int(args_input[0])] except ValueError: structure_klifs_ids = np.genfromtxt(fname=args_input[0], dtype=int).tolist() else: structure_klifs_ids = [int(i) for i in args_input] return structure_klifs_ids
[ "kissim.cli.utils.configure_logger", "kissim.api.encode", "numpy.genfromtxt" ]
[((344, 373), 'kissim.cli.utils.configure_logger', 'configure_logger', (['args.output'], {}), '(args.output)\n', (360, 373), False, 'from kissim.cli.utils import configure_logger\n'), ((443, 508), 'kissim.api.encode', 'encode', (['structure_klifs_ids', 'args.output', 'args.local', 'args.ncores'], {}), '(structure_klifs_ids, args.output, args.local, args.ncores)\n', (449, 508), False, 'from kissim.api import encode\n'), ((1016, 1061), 'numpy.genfromtxt', 'np.genfromtxt', ([], {'fname': 'args_input[0]', 'dtype': 'int'}), '(fname=args_input[0], dtype=int)\n', (1029, 1061), True, 'import numpy as np\n')]
import numpy as np from util import * def naiveDistanceProfile(tsA, idx, m, tsB = None): """Return the distance profile of query against ts. Use the naive all pairs comparison algorithm. >>> np.round(naiveDistanceProfile(np.array([0.0, 1.0, -1.0, 0.0]), 0, 4, np.array([-1, 1, 0, 0, -1, 1])), 3) array([[ 2. , 2.828, 2. ], [ 0. , 0. , 0. ]]) """ selfJoin = False if tsB is None: selfJoin = True tsB = tsA query = tsA[idx : (idx + m)] distanceProfile = [] n = len(tsB) for i in range(n - m + 1): distanceProfile.append(zNormalizedEuclideanDistance(query, tsB[i : i + m])) if selfJoin: trivialMatchRange = (max(0, idxToProcess - m / 2), min(idxToProcess + m / 2 + 1, len(tsB))) distanceProfile[trivialMatchRange[0] : trivialMatchRange[1]] = np.inf return (distanceProfile, np.full(n - m + 1, idx, dtype = float)) def stampDistanceProfile(tsA, idx, m, tsB = None): """ >>> np.round(stampDistanceProfile(np.array([0.0, 1.0, -1.0, 0.0]), 0, 4, np.array([-1, 1, 0, 0, -1, 1])), 3) array([[ 2. , 2.828, 2. ], [ 0. , 0. , 0. ]]) """ selfJoin = False if tsB is None: selfJoin = True tsB = tsA query = tsA[idx : (idx + m)] n = len(tsB) distanceProfile = mass(query, tsB) if selfJoin: trivialMatchRange = (max(0, idxToProcess - m / 2), min(idxToProcess + m / 2 + 1, len(tsB))) distanceProfile[trivialMatchRange[0] : trivialMatchRange[1]] = np.inf return (distanceProfile, np.full(n - m + 1, idx, dtype = float)) if __name__ == "__main__": import doctest doctest.testmod()
[ "numpy.full", "doctest.testmod" ]
[((1672, 1689), 'doctest.testmod', 'doctest.testmod', ([], {}), '()\n', (1687, 1689), False, 'import doctest\n'), ((887, 923), 'numpy.full', 'np.full', (['(n - m + 1)', 'idx'], {'dtype': 'float'}), '(n - m + 1, idx, dtype=float)\n', (894, 923), True, 'import numpy as np\n'), ((1581, 1617), 'numpy.full', 'np.full', (['(n - m + 1)', 'idx'], {'dtype': 'float'}), '(n - m + 1, idx, dtype=float)\n', (1588, 1617), True, 'import numpy as np\n')]
from itertools import product from unittest.mock import patch import pytest import numpy as np import pandas as pd from pandas.util.testing import assert_frame_equal from sm.engine.annotation.fdr import FDR, run_fdr_ranking from sm.engine.formula_parser import format_modifiers FDR_CONFIG = {'decoy_sample_size': 2} @patch('sm.engine.annotation.fdr.DECOY_ADDUCTS', ['+He', '+Li']) def test_fdr_decoy_adduct_selection_saves_corr(): fdr = FDR( fdr_config=FDR_CONFIG, chem_mods=[], neutral_losses=[], target_adducts=['+H', '+K', '[M]+'], analysis_version=1, ) exp_target_decoy_df = pd.DataFrame( [ ('H2O', '+H', '+He'), ('H2O', '+H', '+Li'), ('H2O', '+K', '+He'), ('H2O', '+K', '+Li'), ('H2O', '', '+He'), ('H2O', '', '+Li'), ], columns=['formula', 'tm', 'dm'], ) fdr.decoy_adducts_selection(target_formulas=['H2O']) assert_frame_equal( fdr.td_df.sort_values(by=['formula', 'tm', 'dm']).reset_index(drop=True), exp_target_decoy_df.sort_values(by=['formula', 'tm', 'dm']).reset_index(drop=True), ) @pytest.mark.parametrize('analysis_version,expected_fdrs', [(1, [0.2, 0.8]), (3, [1 / 4, 2 / 3])]) def test_estimate_fdr_returns_correct_df(analysis_version, expected_fdrs): fdr = FDR( fdr_config=FDR_CONFIG, chem_mods=[], neutral_losses=[], target_adducts=['+H'], analysis_version=analysis_version, ) fdr.fdr_levels = [0.2, 0.8] fdr.td_df = pd.DataFrame( [['H2O', '+H', '+Cu'], ['H2O', '+H', '+Co'], ['C2H2', '+H', '+Ag'], ['C2H2', '+H', '+Ar']], columns=['formula', 'tm', 'dm'], ) msm_df = pd.DataFrame( [ ['H2O', '+H', 0.85], ['C2H2', '+H', 0.5], ['H2O', '+Cu', 0.5], ['H2O', '+Co', 0.5], ['C2H2', '+Ag', 0.75], ['C2H2', '+Ar', 0.0], ], columns=['formula', 'modifier', 'msm'], ) exp_sf_df = pd.DataFrame( [ ['H2O', '+H', 0.85], ['C2H2', '+H', 0.5], ], columns=['formula', 'modifier', 'msm'], ).assign(fdr=expected_fdrs) assert_frame_equal(fdr.estimate_fdr(msm_df, None), exp_sf_df) def test_estimate_fdr_digitize_works(): fdr_config = {**FDR_CONFIG, 'decoy_sample_size': 1} fdr = FDR( fdr_config=fdr_config, chem_mods=[], neutral_losses=[], target_adducts=['+H'], analysis_version=1, ) fdr.fdr_levels = [0.4, 0.8] fdr.td_df = pd.DataFrame( [['C1', '+H', '+Cu'], ['C2', '+H', '+Ag'], ['C3', '+H', '+Cl'], ['C4', '+H', '+Co']], columns=['formula', 'tm', 'dm'], ) msm_df = pd.DataFrame( [ ['C1', '+H', 1.0], ['C2', '+H', 0.75], ['C3', '+H', 0.5], ['C4', '+H', 0.25], ['C1', '+Cu', 0.75], ['C2', '+Ag', 0.3], ['C3', '+Cl', 0.25], ['C4', '+Co', 0.1], ], columns=['formula', 'modifier', 'msm'], ) exp_sf_df = pd.DataFrame( [ ['C1', '+H', 1.0, 0.4], ['C2', '+H', 0.75, 0.4], ['C3', '+H', 0.5, 0.4], ['C4', '+H', 0.25, 0.8], ], columns=['formula', 'modifier', 'msm', 'fdr'], ) assert_frame_equal(fdr.estimate_fdr(msm_df, None), exp_sf_df) def test_ions(): formulas = ['H2O', 'C5H2OH'] target_adducts = ['+H', '+Na'] decoy_sample_size = 5 fdr_config = {**FDR_CONFIG, 'decoy_sample_size': decoy_sample_size} fdr = FDR( fdr_config=fdr_config, chem_mods=[], neutral_losses=[], target_adducts=target_adducts, analysis_version=1, ) fdr.decoy_adducts_selection(target_formulas=['H2O', 'C5H2OH']) ions = fdr.ion_tuples() assert type(ions) == list # total number varies because different (formula, modifier) pairs may receive the same (formula, decoy_modifier) pair assert ( len(formulas) * decoy_sample_size + len(formulas) * len(target_adducts) < len(ions) <= len(formulas) * len(target_adducts) * decoy_sample_size + len(formulas) * len(target_adducts) ) target_ions = [(formula, adduct) for formula, adduct in product(formulas, target_adducts)] assert set(target_ions).issubset(set(map(tuple, ions))) def test_chem_mods_and_neutral_losses(): formulas = ['H2O', 'C5H2OH'] chem_mods = ['-H+C'] neutral_losses = ['-O', '-C'] target_adducts = ['+H', '+Na', '[M]+'] target_modifiers = [ format_modifiers(cm, nl, ta) for cm, nl, ta in product(['', *chem_mods], ['', *neutral_losses], target_adducts) ] decoy_sample_size = 5 fdr_config = {**FDR_CONFIG, 'decoy_sample_size': decoy_sample_size} fdr = FDR( fdr_config=fdr_config, chem_mods=chem_mods, neutral_losses=neutral_losses, target_adducts=target_adducts, analysis_version=1, ) fdr.decoy_adducts_selection(target_formulas=['H2O', 'C5H2OH']) ions = fdr.ion_tuples() assert type(ions) == list # total number varies because different (formula, modifier) pairs may receive the same (formula, decoy_modifier) pair min_count = len(formulas) * len(target_modifiers) max_count = len(formulas) * len(target_modifiers) * (1 + decoy_sample_size) assert min_count < len(ions) <= max_count target_ions = list(product(formulas, target_modifiers)) assert set(target_ions).issubset(set(map(tuple, ions))) def test_run_fdr_ranking(): target_scores = pd.Series([1.0, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.0]) decoy_scores = pd.Series([0.8, 0.55, 0.2, 0.1]) n_targets = pd.Series([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]) n_decoys = pd.Series([0, 0, 1, 1, 1, 2, 2, 2, 3, 4, 4]) expected_fdr = n_decoys / n_targets expected_fdr_ros = (n_decoys + 1) / (n_targets + 1) expected_fdr_mono = pd.Series( [0 / 2, 0 / 2, 1 / 5, 1 / 5, 1 / 5, 2 / 8, 2 / 8, 2 / 8, 3 / 9, 4 / 11, 4 / 11] ) fdr = run_fdr_ranking(target_scores, decoy_scores, 1, False, False) fdr_ros = run_fdr_ranking(target_scores, decoy_scores, 1, True, False) fdr_mono = run_fdr_ranking(target_scores, decoy_scores, 1, False, True) assert np.isclose(fdr, expected_fdr).all() assert np.isclose(fdr_ros, expected_fdr_ros).all() assert np.isclose(fdr_mono, expected_fdr_mono).all()
[ "pandas.Series", "numpy.isclose", "sm.engine.annotation.fdr.FDR", "sm.engine.formula_parser.format_modifiers", "itertools.product", "sm.engine.annotation.fdr.run_fdr_ranking", "pytest.mark.parametrize", "pandas.DataFrame", "unittest.mock.patch" ]
[((322, 385), 'unittest.mock.patch', 'patch', (['"""sm.engine.annotation.fdr.DECOY_ADDUCTS"""', "['+He', '+Li']"], {}), "('sm.engine.annotation.fdr.DECOY_ADDUCTS', ['+He', '+Li'])\n", (327, 385), False, 'from unittest.mock import patch\n'), ((1185, 1286), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""analysis_version,expected_fdrs"""', '[(1, [0.2, 0.8]), (3, [1 / 4, 2 / 3])]'], {}), "('analysis_version,expected_fdrs', [(1, [0.2, 0.8]),\n (3, [1 / 4, 2 / 3])])\n", (1208, 1286), False, 'import pytest\n'), ((446, 567), 'sm.engine.annotation.fdr.FDR', 'FDR', ([], {'fdr_config': 'FDR_CONFIG', 'chem_mods': '[]', 'neutral_losses': '[]', 'target_adducts': "['+H', '+K', '[M]+']", 'analysis_version': '(1)'}), "(fdr_config=FDR_CONFIG, chem_mods=[], neutral_losses=[], target_adducts=\n ['+H', '+K', '[M]+'], analysis_version=1)\n", (449, 567), False, 'from sm.engine.annotation.fdr import FDR, run_fdr_ranking\n'), ((637, 820), 'pandas.DataFrame', 'pd.DataFrame', (["[('H2O', '+H', '+He'), ('H2O', '+H', '+Li'), ('H2O', '+K', '+He'), ('H2O',\n '+K', '+Li'), ('H2O', '', '+He'), ('H2O', '', '+Li')]"], {'columns': "['formula', 'tm', 'dm']"}), "([('H2O', '+H', '+He'), ('H2O', '+H', '+Li'), ('H2O', '+K',\n '+He'), ('H2O', '+K', '+Li'), ('H2O', '', '+He'), ('H2O', '', '+Li')],\n columns=['formula', 'tm', 'dm'])\n", (649, 820), True, 'import pandas as pd\n'), ((1368, 1490), 'sm.engine.annotation.fdr.FDR', 'FDR', ([], {'fdr_config': 'FDR_CONFIG', 'chem_mods': '[]', 'neutral_losses': '[]', 'target_adducts': "['+H']", 'analysis_version': 'analysis_version'}), "(fdr_config=FDR_CONFIG, chem_mods=[], neutral_losses=[], target_adducts=\n ['+H'], analysis_version=analysis_version)\n", (1371, 1490), False, 'from sm.engine.annotation.fdr import FDR, run_fdr_ranking\n'), ((1581, 1722), 'pandas.DataFrame', 'pd.DataFrame', (["[['H2O', '+H', '+Cu'], ['H2O', '+H', '+Co'], ['C2H2', '+H', '+Ag'], ['C2H2',\n '+H', '+Ar']]"], {'columns': "['formula', 'tm', 'dm']"}), "([['H2O', '+H', '+Cu'], ['H2O', '+H', '+Co'], ['C2H2', '+H',\n '+Ag'], ['C2H2', '+H', '+Ar']], columns=['formula', 'tm', 'dm'])\n", (1593, 1722), True, 'import pandas as pd\n'), ((1756, 1947), 'pandas.DataFrame', 'pd.DataFrame', (["[['H2O', '+H', 0.85], ['C2H2', '+H', 0.5], ['H2O', '+Cu', 0.5], ['H2O',\n '+Co', 0.5], ['C2H2', '+Ag', 0.75], ['C2H2', '+Ar', 0.0]]"], {'columns': "['formula', 'modifier', 'msm']"}), "([['H2O', '+H', 0.85], ['C2H2', '+H', 0.5], ['H2O', '+Cu', 0.5],\n ['H2O', '+Co', 0.5], ['C2H2', '+Ag', 0.75], ['C2H2', '+Ar', 0.0]],\n columns=['formula', 'modifier', 'msm'])\n", (1768, 1947), True, 'import pandas as pd\n'), ((2418, 2525), 'sm.engine.annotation.fdr.FDR', 'FDR', ([], {'fdr_config': 'fdr_config', 'chem_mods': '[]', 'neutral_losses': '[]', 'target_adducts': "['+H']", 'analysis_version': '(1)'}), "(fdr_config=fdr_config, chem_mods=[], neutral_losses=[], target_adducts=\n ['+H'], analysis_version=1)\n", (2421, 2525), False, 'from sm.engine.annotation.fdr import FDR, run_fdr_ranking\n'), ((2616, 2751), 'pandas.DataFrame', 'pd.DataFrame', (["[['C1', '+H', '+Cu'], ['C2', '+H', '+Ag'], ['C3', '+H', '+Cl'], ['C4', '+H',\n '+Co']]"], {'columns': "['formula', 'tm', 'dm']"}), "([['C1', '+H', '+Cu'], ['C2', '+H', '+Ag'], ['C3', '+H', '+Cl'],\n ['C4', '+H', '+Co']], columns=['formula', 'tm', 'dm'])\n", (2628, 2751), True, 'import pandas as pd\n'), ((2785, 3008), 'pandas.DataFrame', 'pd.DataFrame', (["[['C1', '+H', 1.0], ['C2', '+H', 0.75], ['C3', '+H', 0.5], ['C4', '+H', \n 0.25], ['C1', '+Cu', 0.75], ['C2', '+Ag', 0.3], ['C3', '+Cl', 0.25], [\n 'C4', '+Co', 0.1]]"], {'columns': "['formula', 'modifier', 'msm']"}), "([['C1', '+H', 1.0], ['C2', '+H', 0.75], ['C3', '+H', 0.5], [\n 'C4', '+H', 0.25], ['C1', '+Cu', 0.75], ['C2', '+Ag', 0.3], ['C3',\n '+Cl', 0.25], ['C4', '+Co', 0.1]], columns=['formula', 'modifier', 'msm'])\n", (2797, 3008), True, 'import pandas as pd\n'), ((3146, 3313), 'pandas.DataFrame', 'pd.DataFrame', (["[['C1', '+H', 1.0, 0.4], ['C2', '+H', 0.75, 0.4], ['C3', '+H', 0.5, 0.4], [\n 'C4', '+H', 0.25, 0.8]]"], {'columns': "['formula', 'modifier', 'msm', 'fdr']"}), "([['C1', '+H', 1.0, 0.4], ['C2', '+H', 0.75, 0.4], ['C3', '+H',\n 0.5, 0.4], ['C4', '+H', 0.25, 0.8]], columns=['formula', 'modifier',\n 'msm', 'fdr'])\n", (3158, 3313), True, 'import pandas as pd\n'), ((3651, 3766), 'sm.engine.annotation.fdr.FDR', 'FDR', ([], {'fdr_config': 'fdr_config', 'chem_mods': '[]', 'neutral_losses': '[]', 'target_adducts': 'target_adducts', 'analysis_version': '(1)'}), '(fdr_config=fdr_config, chem_mods=[], neutral_losses=[], target_adducts=\n target_adducts, analysis_version=1)\n', (3654, 3766), False, 'from sm.engine.annotation.fdr import FDR, run_fdr_ranking\n'), ((4890, 5024), 'sm.engine.annotation.fdr.FDR', 'FDR', ([], {'fdr_config': 'fdr_config', 'chem_mods': 'chem_mods', 'neutral_losses': 'neutral_losses', 'target_adducts': 'target_adducts', 'analysis_version': '(1)'}), '(fdr_config=fdr_config, chem_mods=chem_mods, neutral_losses=\n neutral_losses, target_adducts=target_adducts, analysis_version=1)\n', (4893, 5024), False, 'from sm.engine.annotation.fdr import FDR, run_fdr_ranking\n'), ((5665, 5731), 'pandas.Series', 'pd.Series', (['[1.0, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.0]'], {}), '([1.0, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.0])\n', (5674, 5731), True, 'import pandas as pd\n'), ((5751, 5783), 'pandas.Series', 'pd.Series', (['[0.8, 0.55, 0.2, 0.1]'], {}), '([0.8, 0.55, 0.2, 0.1])\n', (5760, 5783), True, 'import pandas as pd\n'), ((5800, 5846), 'pandas.Series', 'pd.Series', (['[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]'], {}), '([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11])\n', (5809, 5846), True, 'import pandas as pd\n'), ((5862, 5906), 'pandas.Series', 'pd.Series', (['[0, 0, 1, 1, 1, 2, 2, 2, 3, 4, 4]'], {}), '([0, 0, 1, 1, 1, 2, 2, 2, 3, 4, 4])\n', (5871, 5906), True, 'import pandas as pd\n'), ((6027, 6121), 'pandas.Series', 'pd.Series', (['[0 / 2, 0 / 2, 1 / 5, 1 / 5, 1 / 5, 2 / 8, 2 / 8, 2 / 8, 3 / 9, 4 / 11, 4 / 11]'], {}), '([0 / 2, 0 / 2, 1 / 5, 1 / 5, 1 / 5, 2 / 8, 2 / 8, 2 / 8, 3 / 9, 4 /\n 11, 4 / 11])\n', (6036, 6121), True, 'import pandas as pd\n'), ((6143, 6204), 'sm.engine.annotation.fdr.run_fdr_ranking', 'run_fdr_ranking', (['target_scores', 'decoy_scores', '(1)', '(False)', '(False)'], {}), '(target_scores, decoy_scores, 1, False, False)\n', (6158, 6204), False, 'from sm.engine.annotation.fdr import FDR, run_fdr_ranking\n'), ((6219, 6279), 'sm.engine.annotation.fdr.run_fdr_ranking', 'run_fdr_ranking', (['target_scores', 'decoy_scores', '(1)', '(True)', '(False)'], {}), '(target_scores, decoy_scores, 1, True, False)\n', (6234, 6279), False, 'from sm.engine.annotation.fdr import FDR, run_fdr_ranking\n'), ((6295, 6355), 'sm.engine.annotation.fdr.run_fdr_ranking', 'run_fdr_ranking', (['target_scores', 'decoy_scores', '(1)', '(False)', '(True)'], {}), '(target_scores, decoy_scores, 1, False, True)\n', (6310, 6355), False, 'from sm.engine.annotation.fdr import FDR, run_fdr_ranking\n'), ((4655, 4683), 'sm.engine.formula_parser.format_modifiers', 'format_modifiers', (['cm', 'nl', 'ta'], {}), '(cm, nl, ta)\n', (4671, 4683), False, 'from sm.engine.formula_parser import format_modifiers\n'), ((5518, 5553), 'itertools.product', 'product', (['formulas', 'target_modifiers'], {}), '(formulas, target_modifiers)\n', (5525, 5553), False, 'from itertools import product\n'), ((2062, 2162), 'pandas.DataFrame', 'pd.DataFrame', (["[['H2O', '+H', 0.85], ['C2H2', '+H', 0.5]]"], {'columns': "['formula', 'modifier', 'msm']"}), "([['H2O', '+H', 0.85], ['C2H2', '+H', 0.5]], columns=['formula',\n 'modifier', 'msm'])\n", (2074, 2162), True, 'import pandas as pd\n'), ((4349, 4382), 'itertools.product', 'product', (['formulas', 'target_adducts'], {}), '(formulas, target_adducts)\n', (4356, 4382), False, 'from itertools import product\n'), ((4710, 4774), 'itertools.product', 'product', (["['', *chem_mods]", "['', *neutral_losses]", 'target_adducts'], {}), "(['', *chem_mods], ['', *neutral_losses], target_adducts)\n", (4717, 4774), False, 'from itertools import product\n'), ((6368, 6397), 'numpy.isclose', 'np.isclose', (['fdr', 'expected_fdr'], {}), '(fdr, expected_fdr)\n', (6378, 6397), True, 'import numpy as np\n'), ((6415, 6452), 'numpy.isclose', 'np.isclose', (['fdr_ros', 'expected_fdr_ros'], {}), '(fdr_ros, expected_fdr_ros)\n', (6425, 6452), True, 'import numpy as np\n'), ((6470, 6509), 'numpy.isclose', 'np.isclose', (['fdr_mono', 'expected_fdr_mono'], {}), '(fdr_mono, expected_fdr_mono)\n', (6480, 6509), True, 'import numpy as np\n')]
from __future__ import (division) from pomegranate import * from pomegranate.io import DataGenerator from pomegranate.io import DataFrameGenerator from nose.tools import with_setup from nose.tools import assert_almost_equal from nose.tools import assert_equal from nose.tools import assert_not_equal from nose.tools import assert_less_equal from nose.tools import assert_raises from nose.tools import assert_true from numpy.testing import assert_array_almost_equal import pandas import random import pickle import numpy as np nan = numpy.nan def setup_multivariate_gaussian(): mu, cov = [0, 0, 0], numpy.eye(3) d1 = MultivariateGaussianDistribution(mu, cov) mu, cov = [2, 2, 2], numpy.eye(3) d2 = MultivariateGaussianDistribution(mu, cov) global model model = BayesClassifier([d1, d2]) global X X = numpy.array([[ 0.3, 0.5, 0.1], [ 0.8, 1.4, 0.5], [ 1.4, 2.6, 1.8], [ 4.2, 3.3, 3.7], [ 2.6, 3.6, 3.3], [ 3.1, 2.2, 1.7], [ 1.8, 2.2, 1.8], [-1.2, -1.8, -1.5], [-1.8, 0.3, 0.5], [ 0.7, -1.3, -0.1]]) global y y = [0, 0, 0, 1, 1, 1, 1, 0, 0, 0] global X_nan X_nan = numpy.array([[ 0.3, nan, 0.1], [ nan, 1.4, nan], [ 1.4, 2.6, nan], [ nan, nan, nan], [ nan, 3.6, 3.3], [ 3.1, nan, 1.7], [ nan, nan, 1.8], [-1.2, -1.8, -1.5], [ nan, 0.3, 0.5], [ nan, -1.3, nan]]) def setup_multivariate_mixed(): mu, cov = [0, 0, 0], numpy.eye(3) d1 = MultivariateGaussianDistribution(mu, cov) d21 = ExponentialDistribution(5) d22 = LogNormalDistribution(0.2, 0.8) d23 = PoissonDistribution(3) d2 = IndependentComponentsDistribution([d21, d22, d23]) global model model = BayesClassifier([d1, d2]) global X X = numpy.array([[ 0.3, 0.5, 0.1], [ 0.8, 1.4, 0.5], [ 1.4, 2.6, 1.8], [ 4.2, 3.3, 3.7], [ 2.6, 3.6, 3.3], [ 3.1, 2.2, 1.7], [ 1.8, 2.2, 1.8], [ 1.2, 1.8, 1.5], [ 1.8, 0.3, 0.5], [ 0.7, 1.3, 0.1]]) global y y = [0, 0, 0, 1, 1, 1, 1, 0, 0, 0] global X_nan X_nan = numpy.array([[ 0.3, nan, 0.1], [ nan, 1.4, nan], [ 1.4, 2.6, nan], [ nan, nan, nan], [ nan, 3.6, 3.3], [ 3.1, nan, 1.7], [ nan, nan, 1.8], [ 1.2, 1.8, 1.5], [ nan, 0.3, 0.5], [ nan, 1.3, nan]]) def setup_hmm(): global model global hmm1 global hmm2 global hmm3 rigged = State( DiscreteDistribution({ 'H': 0.8, 'T': 0.2 }) ) unrigged = State( DiscreteDistribution({ 'H': 0.5, 'T':0.5 }) ) hmm1 = HiddenMarkovModel() hmm1.start = rigged hmm1.add_transition(rigged, rigged, 1) hmm1.bake() hmm2 = HiddenMarkovModel() hmm2.start = unrigged hmm2.add_transition(unrigged, unrigged, 1) hmm2.bake() hmm3 = HiddenMarkovModel() hmm3.add_transition(hmm3.start, unrigged, 0.5) hmm3.add_transition(hmm3.start, rigged, 0.5) hmm3.add_transition(rigged, rigged, 0.5) hmm3.add_transition(rigged, unrigged, 0.5) hmm3.add_transition(unrigged, rigged, 0.5) hmm3.add_transition(unrigged, unrigged, 0.5) hmm3.bake() model = BayesClassifier([hmm1, hmm2, hmm3]) def setup_multivariate(): pass def teardown(): pass @with_setup(setup_multivariate_gaussian, teardown) def test_bc_multivariate_gaussian_initialization(): assert_equal(model.d, 3) assert_equal(model.n, 2) assert_equal(model.is_vl_, False) @with_setup(setup_multivariate_mixed, teardown) def test_bc_multivariate_mixed_initialization(): assert_equal(model.d, 3) assert_equal(model.n, 2) assert_equal(model.is_vl_, False) @with_setup(setup_multivariate_gaussian, teardown) def test_bc_multivariate_gaussian_predict_log_proba(): y_hat = model.predict_log_proba(X) y = [[ -1.48842547e-02, -4.21488425e+00], [ -4.37487950e-01, -1.03748795e+00], [ -5.60369104e+00, -3.69104343e-03], [ -1.64000001e+01, -7.54345812e-08], [ -1.30000023e+01, -2.26032685e-06], [ -8.00033541e+00, -3.35406373e-04], [ -5.60369104e+00, -3.69104343e-03], [ -3.05902274e-07, -1.50000003e+01], [ -3.35406373e-04, -8.00033541e+00], [ -6.11066022e-04, -7.40061107e+00]] assert_array_almost_equal(y, y_hat) @with_setup(setup_multivariate_mixed, teardown) def test_bc_multivariate_mixed_predict_log_proba(): y_hat = model.predict_log_proba(X) y = [[ -5.03107596e-01, -9.27980626e-01], [ -1.86355320e-01, -1.77183117e+00], [ -5.58542088e-01, -8.48731256e-01], [ -7.67315597e-01, -6.24101927e-01], [ -2.32860808e+00, -1.02510436e-01], [ -3.06641866e-03, -5.78877778e+00], [ -9.85292840e-02, -2.36626165e+00], [ -2.61764180e-01, -1.46833995e+00], [ -2.01640009e-03, -6.20744952e+00], [ -1.47371167e-01, -1.98758175e+00]] assert_array_almost_equal(y, y_hat) @with_setup(setup_multivariate_gaussian, teardown) def test_bc_multivariate_gaussian_nan_predict_log_proba(): y_hat = model.predict_log_proba(X_nan) y = [[ -3.99533332e-02, -3.23995333e+00], [ -1.17110067e+00, -3.71100666e-01], [ -4.01814993e+00, -1.81499279e-02], [ -6.93147181e-01, -6.93147181e-01], [ -9.80005545e+00, -5.54500620e-05], [ -5.60369104e+00, -3.69104343e-03], [ -1.78390074e+00, -1.83900741e-01], [ -3.05902274e-07, -1.50000003e+01], [ -8.68361522e-02, -2.48683615e+00], [ -1.00016521e-02, -4.61000165e+00]] assert_array_almost_equal(y, y_hat) @with_setup(setup_multivariate_mixed, teardown) def test_bc_multivariate_mixed_nan_predict_log_proba(): y_hat = model.predict_log_proba(X_nan) y = [[ -3.57980882e-01, -1.20093223e+00], [ -1.20735130e+00, -3.55230506e-01], [ -2.43174286e-01, -1.53310132e+00], [ -6.93147181e-01, -6.93147181e-01], [ -9.31781101e+00, -8.98143220e-05], [ -6.29755079e-04, -7.37049444e+00], [ -1.31307006e+00, -3.13332194e-01], [ -2.61764180e-01, -1.46833995e+00], [ -2.29725479e-01, -1.58353505e+00], [ -1.17299253e+00, -3.70251760e-01]] assert_array_almost_equal(y, y_hat) @with_setup(setup_multivariate_gaussian, teardown) def test_bc_multivariate_gaussian_predict_log_proba_parallel(): y_hat = model.predict_log_proba(X, n_jobs=2) y = [[ -1.48842547e-02, -4.21488425e+00], [ -4.37487950e-01, -1.03748795e+00], [ -5.60369104e+00, -3.69104343e-03], [ -1.64000001e+01, -7.54345812e-08], [ -1.30000023e+01, -2.26032685e-06], [ -8.00033541e+00, -3.35406373e-04], [ -5.60369104e+00, -3.69104343e-03], [ -3.05902274e-07, -1.50000003e+01], [ -3.35406373e-04, -8.00033541e+00], [ -6.11066022e-04, -7.40061107e+00]] assert_array_almost_equal(y, y_hat) @with_setup(setup_multivariate_mixed, teardown) def test_bc_multivariate_mixed_predict_log_proba_parallel(): y_hat = model.predict_log_proba(X, n_jobs=2) y = [[ -5.03107596e-01, -9.27980626e-01], [ -1.86355320e-01, -1.77183117e+00], [ -5.58542088e-01, -8.48731256e-01], [ -7.67315597e-01, -6.24101927e-01], [ -2.32860808e+00, -1.02510436e-01], [ -3.06641866e-03, -5.78877778e+00], [ -9.85292840e-02, -2.36626165e+00], [ -2.61764180e-01, -1.46833995e+00], [ -2.01640009e-03, -6.20744952e+00], [ -1.47371167e-01, -1.98758175e+00]] assert_array_almost_equal(y, y_hat) @with_setup(setup_multivariate_gaussian, teardown) def test_bc_multivariate_gaussian_predict_proba(): y_hat = model.predict_proba(X) y = [[ 9.85225968e-01, 1.47740317e-02], [ 6.45656306e-01, 3.54343694e-01], [ 3.68423990e-03, 9.96315760e-01], [ 7.54345778e-08, 9.99999925e-01], [ 2.26032430e-06, 9.99997740e-01], [ 3.35350130e-04, 9.99664650e-01], [ 3.68423990e-03, 9.96315760e-01], [ 9.99999694e-01, 3.05902227e-07], [ 9.99664650e-01, 3.35350130e-04], [ 9.99389121e-01, 6.10879359e-04]] assert_array_almost_equal(y, y_hat) @with_setup(setup_multivariate_mixed, teardown) def test_bc_multivariate_mixed_predict_proba(): y_hat = model.predict_proba(X) y = [[ 0.60464873, 0.39535127], [ 0.82997863, 0.17002137], [ 0.57204244, 0.42795756], [ 0.46425765, 0.53574235], [ 0.09743127, 0.90256873], [ 0.99693828, 0.00306172], [ 0.90616916, 0.09383084], [ 0.76969251, 0.23030749], [ 0.99798563, 0.00201437], [ 0.86297361, 0.13702639]] assert_array_almost_equal(y, y_hat) @with_setup(setup_multivariate_gaussian, teardown) def test_bc_multivariate_gaussian_nan_predict_proba(): y_hat = model.predict_proba(X_nan) y = [[ 9.60834277e-01, 3.91657228e-02], [ 3.10025519e-01, 6.89974481e-01], [ 1.79862100e-02, 9.82013790e-01], [ 5.00000000e-01, 5.00000000e-01], [ 5.54485247e-05, 9.99944551e-01], [ 3.68423990e-03, 9.96315760e-01], [ 1.67981615e-01, 8.32018385e-01], [ 9.99999694e-01, 3.05902227e-07], [ 9.16827304e-01, 8.31726965e-02], [ 9.90048198e-01, 9.95180187e-03]] assert_array_almost_equal(y, y_hat) @with_setup(setup_multivariate_mixed, teardown) def test_bc_multivariate_mixed_nan_predict_proba(): y_hat = model.predict_proba(X_nan) y = [[ 6.99086440e-01, 3.00913560e-01], [ 2.98988163e-01, 7.01011837e-01], [ 7.84134838e-01, 2.15865162e-01], [ 5.00000000e-01, 5.00000000e-01], [ 8.98102888e-05, 9.99910190e-01], [ 9.99370443e-01, 6.29556825e-04], [ 2.68992964e-01, 7.31007036e-01], [ 7.69692511e-01, 2.30307489e-01], [ 7.94751748e-01, 2.05248252e-01], [ 3.09439547e-01, 6.90560453e-01]] assert_array_almost_equal(y, y_hat) @with_setup(setup_multivariate_gaussian, teardown) def test_bc_multivariate_gaussian_predict_proba_parallel(): y_hat = model.predict_proba(X, n_jobs=2) y = [[ 9.85225968e-01, 1.47740317e-02], [ 6.45656306e-01, 3.54343694e-01], [ 3.68423990e-03, 9.96315760e-01], [ 7.54345778e-08, 9.99999925e-01], [ 2.26032430e-06, 9.99997740e-01], [ 3.35350130e-04, 9.99664650e-01], [ 3.68423990e-03, 9.96315760e-01], [ 9.99999694e-01, 3.05902227e-07], [ 9.99664650e-01, 3.35350130e-04], [ 9.99389121e-01, 6.10879359e-04]] assert_array_almost_equal(y, y_hat) @with_setup(setup_multivariate_mixed, teardown) def test_bc_multivariate_mixed_predict_proba_parallel(): y_hat = model.predict_proba(X, n_jobs=2) y = [[ 0.60464873, 0.39535127], [ 0.82997863, 0.17002137], [ 0.57204244, 0.42795756], [ 0.46425765, 0.53574235], [ 0.09743127, 0.90256873], [ 0.99693828, 0.00306172], [ 0.90616916, 0.09383084], [ 0.76969251, 0.23030749], [ 0.99798563, 0.00201437], [ 0.86297361, 0.13702639]] assert_array_almost_equal(y, y_hat) @with_setup(setup_multivariate_gaussian, teardown) def test_bc_multivariate_gaussian_predict(): y_hat = model.predict(X) y = [0, 0, 1, 1, 1, 1, 1, 0, 0, 0] assert_array_almost_equal(y, y_hat) @with_setup(setup_multivariate_mixed, teardown) def test_bc_multivariate_mixed_predict(): y_hat = model.predict(X) y = [0, 0, 0, 1, 1, 0, 0, 0, 0, 0] assert_array_almost_equal(y, y_hat) @with_setup(setup_multivariate_gaussian, teardown) def test_bc_multivariate_gaussian_nan_predict(): y_hat = model.predict(X_nan) y = [0, 1, 1, 0, 1, 1, 1, 0, 0, 0] assert_array_almost_equal(y, y_hat) @with_setup(setup_multivariate_mixed, teardown) def test_bc_multivariate_mixed_nan_predict(): y_hat = model.predict(X_nan) y = [0, 1, 0, 0, 1, 0, 1, 0, 0, 1] assert_array_almost_equal(y, y_hat) @with_setup(setup_multivariate_gaussian, teardown) def test_bc_multivariate_gaussian_predict_parallel(): y_hat = model.predict(X, n_jobs=2) y = [0, 0, 1, 1, 1, 1, 1, 0, 0, 0] assert_array_almost_equal(y, y_hat) @with_setup(setup_multivariate_mixed, teardown) def test_bc_multivariate_mixed_predict_parallel(): y_hat = model.predict(X, n_jobs=2) y = [0, 0, 0, 1, 1, 0, 0, 0, 0, 0] assert_array_almost_equal(y, y_hat) @with_setup(setup_multivariate_gaussian, teardown) def test_bc_multivariate_gaussian_fit_parallel(): model.fit(X, y, n_jobs=2) mu1 = model.distributions[0].parameters[0] cov1 = model.distributions[0].parameters[1] mu1_t = [0.03333333, 0.28333333, 0.21666666] cov1_t = [[1.3088888, 0.9272222, 0.6227777], [0.9272222, 2.2513888, 1.3402777], [0.6227777, 1.3402777, 0.9547222]] mu2 = model.distributions[1].parameters[0] cov2 = model.distributions[1].parameters[1] mu2_t = [2.925, 2.825, 2.625] cov2_t = [[0.75687499, 0.23687499, 0.4793750], [0.23687499, 0.40187499, 0.5318749], [0.47937500, 0.53187499, 0.7868750]] assert_array_almost_equal(mu1, mu1_t) assert_array_almost_equal(cov1, cov1_t) assert_array_almost_equal(mu2, mu2_t) assert_array_almost_equal(cov2, cov2_t) @with_setup(setup_multivariate_mixed, teardown) def test_bc_multivariate_mixed_fit_parallel(): model.fit(X, y, n_jobs=2) mu1 = model.distributions[0].parameters[0] cov1 = model.distributions[0].parameters[1] mu1_t = [1.033333, 1.3166667, 0.75] cov1_t = [[0.242222, 0.0594444, 0.178333], [0.059444, 0.5980555, 0.414166], [0.178333, 0.4141666, 0.439166]] d21 = model.distributions[1].distributions[0] d22 = model.distributions[1].distributions[1] d23 = model.distributions[1].distributions[2] assert_array_almost_equal(mu1, mu1_t) assert_array_almost_equal(cov1, cov1_t) assert_array_almost_equal(d21.parameters, [0.34188034]) assert_array_almost_equal(d22.parameters, [1.01294275, 0.22658346]) assert_array_almost_equal(d23.parameters, [2.625]) @with_setup(setup_multivariate_gaussian, teardown) def test_bc_multivariate_gaussian_from_samples(): model = BayesClassifier.from_samples(MultivariateGaussianDistribution, X, y) mu1 = model.distributions[0].parameters[0] cov1 = model.distributions[0].parameters[1] mu1_t = [0.03333333, 0.2833333, 0.21666666] cov1_t = [[1.308888888, 0.9272222222, 0.6227777777], [0.927222222, 2.251388888, 1.340277777], [0.622777777, 1.340277777, 0.9547222222]] mu2 = model.distributions[1].parameters[0] cov2 = model.distributions[1].parameters[1] mu2_t = [2.925, 2.825, 2.625] cov2_t = [[0.75687500, 0.23687499, 0.47937500], [0.23687499, 0.40187499, 0.53187499], [0.47937500, 0.53187499, 0.78687500]] assert_array_almost_equal(mu1, mu1_t) assert_array_almost_equal(cov1, cov1_t) assert_array_almost_equal(mu2, mu2_t) assert_array_almost_equal(cov2, cov2_t) @with_setup(setup_multivariate_gaussian, teardown) def test_bc_multivariate_gaussian_pickle(): model2 = pickle.loads(pickle.dumps(model)) assert_true(isinstance(model2, BayesClassifier)) assert_true(isinstance(model2.distributions[0], MultivariateGaussianDistribution)) assert_true(isinstance(model2.distributions[1], MultivariateGaussianDistribution)) assert_array_almost_equal(model.weights, model2.weights) @with_setup(setup_multivariate_mixed, teardown) def test_bc_multivariate_mixed_pickle(): model2 = pickle.loads(pickle.dumps(model)) assert_true(isinstance(model2, BayesClassifier)) assert_true(isinstance(model2.distributions[0], MultivariateGaussianDistribution)) assert_true(isinstance(model2.distributions[1], IndependentComponentsDistribution)) assert_array_almost_equal(model.weights, model2.weights) @with_setup(setup_multivariate_gaussian, teardown) def test_bc_multivariate_gaussian_to_json(): model2 = BayesClassifier.from_json(model.to_json()) assert_true(isinstance(model2, BayesClassifier)) assert_true(isinstance(model2.distributions[0], MultivariateGaussianDistribution)) assert_true(isinstance(model2.distributions[1], MultivariateGaussianDistribution)) assert_array_almost_equal(model.weights, model2.weights) @with_setup(setup_multivariate_mixed, teardown) def test_bc_multivariate_mixed_to_json(): model2 = BayesClassifier.from_json(model.to_json()) assert_true(isinstance(model2, BayesClassifier)) assert_true(isinstance(model2.distributions[0], MultivariateGaussianDistribution)) assert_true(isinstance(model2.distributions[1], IndependentComponentsDistribution)) assert_array_almost_equal(model.weights, model2.weights) @with_setup(setup_multivariate_gaussian, teardown) def test_bc_multivariate_gaussian_robust_from_json(): model2 = from_json(model.to_json()) assert_true(isinstance(model2, BayesClassifier)) assert_true(isinstance(model2.distributions[0], MultivariateGaussianDistribution)) assert_true(isinstance(model2.distributions[1], MultivariateGaussianDistribution)) assert_array_almost_equal(model.weights, model2.weights) @with_setup(setup_multivariate_mixed, teardown) def test_bc_multivariate_mixed_robust_from_json(): model2 = from_json(model.to_json()) assert_true(isinstance(model2, BayesClassifier)) assert_true(isinstance(model2.distributions[0], MultivariateGaussianDistribution)) assert_true(isinstance(model2.distributions[1], IndependentComponentsDistribution)) assert_array_almost_equal(model.weights, model2.weights) @with_setup(setup_hmm, teardown) def test_model(): assert_almost_equal(hmm1.log_probability(list('H')), -0.2231435513142097 ) assert_almost_equal(hmm1.log_probability(list('T')), -1.6094379124341003 ) assert_almost_equal(hmm1.log_probability(list('HHHH')), -0.8925742052568388 ) assert_almost_equal(hmm1.log_probability(list('THHH')), -2.2788685663767296 ) assert_almost_equal(hmm1.log_probability(list('TTTT')), -6.437751649736401 ) assert_almost_equal(hmm2.log_probability(list('H')), -0.6931471805599453 ) assert_almost_equal(hmm2.log_probability(list('T')), -0.6931471805599453 ) assert_almost_equal(hmm2.log_probability(list('HHHH')), -2.772588722239781 ) assert_almost_equal(hmm2.log_probability(list('THHH')), -2.772588722239781 ) assert_almost_equal(hmm2.log_probability(list('TTTT')), -2.772588722239781 ) assert_almost_equal(hmm3.log_probability(list('H')), -0.43078291609245417) assert_almost_equal(hmm3.log_probability(list('T')), -1.0498221244986776) assert_almost_equal(hmm3.log_probability(list('HHHH')), -1.7231316643698167) assert_almost_equal(hmm3.log_probability(list('THHH')), -2.3421708727760397) assert_almost_equal(hmm3.log_probability(list('TTTT')), -4.1992884979947105) assert_almost_equal(hmm3.log_probability(list('THTHTHTHTHTH')), -8.883630243546788) assert_almost_equal(hmm3.log_probability(list('THTHHHHHTHTH')), -7.645551826734343) assert_equal(model.d, 1) @with_setup(setup_hmm, teardown) def test_hmm_log_proba(): logs = model.predict_log_proba(np.array([list('H'), list('THHH'), list('TTTT'), list('THTHTHTHTHTH'), list('THTHHHHHTHTH')])) assert_almost_equal(logs[0][0], -0.89097292388986515) assert_almost_equal(logs[0][1], -1.3609765531356006) assert_almost_equal(logs[0][2], -1.0986122886681096) assert_almost_equal(logs[1][0], -0.93570553121744293) assert_almost_equal(logs[1][1], -1.429425687080494) assert_almost_equal(logs[1][2], -0.9990078376167526) assert_almost_equal(logs[2][0], -3.9007882563128864) assert_almost_equal(logs[2][1], -0.23562532881626597) assert_almost_equal(logs[2][2], -1.6623251045711958) assert_almost_equal(logs[3][0], -3.1703366478831185) assert_almost_equal(logs[3][1], -0.49261403211260379) assert_almost_equal(logs[3][2], -1.058478108940049) assert_almost_equal(logs[4][0], -1.3058441172130273) assert_almost_equal(logs[4][1], -1.4007102236822906) assert_almost_equal(logs[4][2], -0.7284958836972919) @with_setup(setup_hmm, teardown) def test_hmm_proba(): probs = model.predict_proba(np.array([list('H'), list('THHH'), list('TTTT'), list('THTHTHTHTHTH'), list('THTHHHHHTHTH')])) assert_almost_equal(probs[0][0], 0.41025641025641024) assert_almost_equal(probs[0][1], 0.25641025641025639) assert_almost_equal(probs[0][2], 0.33333333333333331) assert_almost_equal(probs[1][0], 0.39230898163446098) assert_almost_equal(probs[1][1], 0.23944639992337707) assert_almost_equal(probs[1][2], 0.36824461844216183) assert_almost_equal(probs[2][0], 0.020225961918306088) assert_almost_equal(probs[2][1], 0.79007663743383105) assert_almost_equal(probs[2][2], 0.18969740064786292) assert_almost_equal(probs[3][0], 0.041989459861032523) assert_almost_equal(probs[3][1], 0.61102706038265642) assert_almost_equal(probs[3][2], 0.346983479756311) assert_almost_equal(probs[4][0], 0.27094373022369794) assert_almost_equal(probs[4][1], 0.24642188711704707) assert_almost_equal(probs[4][2], 0.48263438265925512) @with_setup(setup_hmm, teardown) def test_hmm_prediction(): predicts = model.predict(np.array([list('H'), list('THHH'), list('TTTT'), list('THTHTHTHTHTH'), list('THTHHHHHTHTH')])) assert_equal(predicts[0], 0) assert_equal(predicts[1], 0) assert_equal(predicts[2], 1) assert_equal(predicts[3], 1) assert_equal(predicts[4], 2) @with_setup(setup_multivariate_gaussian, teardown) def test_io_log_probability(): X2 = DataGenerator(X) X3 = DataFrameGenerator(pandas.DataFrame(X)) logp1 = model.log_probability(X) logp2 = model.log_probability(X2) logp3 = model.log_probability(X3) assert_array_almost_equal(logp1, logp2) assert_array_almost_equal(logp1, logp3) @with_setup(setup_multivariate_gaussian, teardown) def test_io_predict(): X2 = DataGenerator(X) X3 = DataFrameGenerator(pandas.DataFrame(X)) y_hat1 = model.predict(X) y_hat2 = model.predict(X2) y_hat3 = model.predict(X3) assert_array_almost_equal(y_hat1, y_hat2) assert_array_almost_equal(y_hat1, y_hat3) @with_setup(setup_multivariate_gaussian, teardown) def test_io_predict_proba(): X2 = DataGenerator(X) X3 = DataFrameGenerator(pandas.DataFrame(X)) y_hat1 = model.predict_proba(X) y_hat2 = model.predict_proba(X2) y_hat3 = model.predict_proba(X3) assert_array_almost_equal(y_hat1, y_hat2) assert_array_almost_equal(y_hat1, y_hat3) @with_setup(setup_multivariate_gaussian, teardown) def test_io_predict_log_proba(): X2 = DataGenerator(X) X3 = DataFrameGenerator(pandas.DataFrame(X)) y_hat1 = model.predict_log_proba(X) y_hat2 = model.predict_log_proba(X2) y_hat3 = model.predict_log_proba(X3) assert_array_almost_equal(y_hat1, y_hat2) assert_array_almost_equal(y_hat1, y_hat3) def test_io_fit(): X = numpy.random.randn(100, 5) + 0.5 weights = numpy.abs(numpy.random.randn(100)) y = numpy.random.randint(2, size=100) data_generator = DataGenerator(X, weights, y) mu1 = numpy.array([0, 0, 0, 0, 0]) mu2 = numpy.array([1, 1, 1, 1, 1]) cov = numpy.eye(5) d1 = MultivariateGaussianDistribution(mu1, cov) d2 = MultivariateGaussianDistribution(mu2, cov) bc1 = BayesClassifier([d1, d2]) bc1.fit(X, y, weights) d1 = MultivariateGaussianDistribution(mu1, cov) d2 = MultivariateGaussianDistribution(mu2, cov) bc2 = BayesClassifier([d1, d2]) bc2.fit(data_generator) logp1 = bc1.log_probability(X) logp2 = bc2.log_probability(X) assert_array_almost_equal(logp1, logp2) def test_io_from_samples(): X = numpy.random.randn(100, 5) + 0.5 weights = numpy.abs(numpy.random.randn(100)) y = numpy.random.randint(2, size=100) data_generator = DataGenerator(X, weights, y) d = MultivariateGaussianDistribution bc1 = BayesClassifier.from_samples(d, X=X, y=y, weights=weights) bc2 = BayesClassifier.from_samples(d, X=data_generator) logp1 = bc1.log_probability(X) logp2 = bc2.log_probability(X) assert_array_almost_equal(logp1, logp2)
[ "numpy.testing.assert_array_almost_equal", "nose.tools.assert_almost_equal", "nose.tools.with_setup", "pomegranate.io.DataGenerator", "pickle.dumps", "pandas.DataFrame", "nose.tools.assert_equal" ]
[((3258, 3307), 'nose.tools.with_setup', 'with_setup', (['setup_multivariate_gaussian', 'teardown'], {}), '(setup_multivariate_gaussian, teardown)\n', (3268, 3307), False, 'from nose.tools import with_setup\n'), ((3449, 3495), 'nose.tools.with_setup', 'with_setup', (['setup_multivariate_mixed', 'teardown'], {}), '(setup_multivariate_mixed, teardown)\n', (3459, 3495), False, 'from nose.tools import with_setup\n'), ((3635, 3684), 'nose.tools.with_setup', 'with_setup', (['setup_multivariate_gaussian', 'teardown'], {}), '(setup_multivariate_gaussian, teardown)\n', (3645, 3684), False, 'from nose.tools import with_setup\n'), ((4230, 4276), 'nose.tools.with_setup', 'with_setup', (['setup_multivariate_mixed', 'teardown'], {}), '(setup_multivariate_mixed, teardown)\n', (4240, 4276), False, 'from nose.tools import with_setup\n'), ((4819, 4868), 'nose.tools.with_setup', 'with_setup', (['setup_multivariate_gaussian', 'teardown'], {}), '(setup_multivariate_gaussian, teardown)\n', (4829, 4868), False, 'from nose.tools import with_setup\n'), ((5422, 5468), 'nose.tools.with_setup', 'with_setup', (['setup_multivariate_mixed', 'teardown'], {}), '(setup_multivariate_mixed, teardown)\n', (5432, 5468), False, 'from nose.tools import with_setup\n'), ((6019, 6068), 'nose.tools.with_setup', 'with_setup', (['setup_multivariate_gaussian', 'teardown'], {}), '(setup_multivariate_gaussian, teardown)\n', (6029, 6068), False, 'from nose.tools import with_setup\n'), ((6633, 6679), 'nose.tools.with_setup', 'with_setup', (['setup_multivariate_mixed', 'teardown'], {}), '(setup_multivariate_mixed, teardown)\n', (6643, 6679), False, 'from nose.tools import with_setup\n'), ((7241, 7290), 'nose.tools.with_setup', 'with_setup', (['setup_multivariate_gaussian', 'teardown'], {}), '(setup_multivariate_gaussian, teardown)\n', (7251, 7290), False, 'from nose.tools import with_setup\n'), ((7828, 7874), 'nose.tools.with_setup', 'with_setup', (['setup_multivariate_mixed', 'teardown'], {}), '(setup_multivariate_mixed, teardown)\n', (7838, 7874), False, 'from nose.tools import with_setup\n'), ((8309, 8358), 'nose.tools.with_setup', 'with_setup', (['setup_multivariate_gaussian', 'teardown'], {}), '(setup_multivariate_gaussian, teardown)\n', (8319, 8358), False, 'from nose.tools import with_setup\n'), ((8904, 8950), 'nose.tools.with_setup', 'with_setup', (['setup_multivariate_mixed', 'teardown'], {}), '(setup_multivariate_mixed, teardown)\n', (8914, 8950), False, 'from nose.tools import with_setup\n'), ((9493, 9542), 'nose.tools.with_setup', 'with_setup', (['setup_multivariate_gaussian', 'teardown'], {}), '(setup_multivariate_gaussian, teardown)\n', (9503, 9542), False, 'from nose.tools import with_setup\n'), ((10099, 10145), 'nose.tools.with_setup', 'with_setup', (['setup_multivariate_mixed', 'teardown'], {}), '(setup_multivariate_mixed, teardown)\n', (10109, 10145), False, 'from nose.tools import with_setup\n'), ((10599, 10648), 'nose.tools.with_setup', 'with_setup', (['setup_multivariate_gaussian', 'teardown'], {}), '(setup_multivariate_gaussian, teardown)\n', (10609, 10648), False, 'from nose.tools import with_setup\n'), ((10797, 10843), 'nose.tools.with_setup', 'with_setup', (['setup_multivariate_mixed', 'teardown'], {}), '(setup_multivariate_mixed, teardown)\n', (10807, 10843), False, 'from nose.tools import with_setup\n'), ((10989, 11038), 'nose.tools.with_setup', 'with_setup', (['setup_multivariate_gaussian', 'teardown'], {}), '(setup_multivariate_gaussian, teardown)\n', (10999, 11038), False, 'from nose.tools import with_setup\n'), ((11195, 11241), 'nose.tools.with_setup', 'with_setup', (['setup_multivariate_mixed', 'teardown'], {}), '(setup_multivariate_mixed, teardown)\n', (11205, 11241), False, 'from nose.tools import with_setup\n'), ((11395, 11444), 'nose.tools.with_setup', 'with_setup', (['setup_multivariate_gaussian', 'teardown'], {}), '(setup_multivariate_gaussian, teardown)\n', (11405, 11444), False, 'from nose.tools import with_setup\n'), ((11612, 11658), 'nose.tools.with_setup', 'with_setup', (['setup_multivariate_mixed', 'teardown'], {}), '(setup_multivariate_mixed, teardown)\n', (11622, 11658), False, 'from nose.tools import with_setup\n'), ((11823, 11872), 'nose.tools.with_setup', 'with_setup', (['setup_multivariate_gaussian', 'teardown'], {}), '(setup_multivariate_gaussian, teardown)\n', (11833, 11872), False, 'from nose.tools import with_setup\n'), ((12630, 12676), 'nose.tools.with_setup', 'with_setup', (['setup_multivariate_mixed', 'teardown'], {}), '(setup_multivariate_mixed, teardown)\n', (12640, 12676), False, 'from nose.tools import with_setup\n'), ((13402, 13451), 'nose.tools.with_setup', 'with_setup', (['setup_multivariate_gaussian', 'teardown'], {}), '(setup_multivariate_gaussian, teardown)\n', (13412, 13451), False, 'from nose.tools import with_setup\n'), ((14282, 14331), 'nose.tools.with_setup', 'with_setup', (['setup_multivariate_gaussian', 'teardown'], {}), '(setup_multivariate_gaussian, teardown)\n', (14292, 14331), False, 'from nose.tools import with_setup\n'), ((14700, 14746), 'nose.tools.with_setup', 'with_setup', (['setup_multivariate_mixed', 'teardown'], {}), '(setup_multivariate_mixed, teardown)\n', (14710, 14746), False, 'from nose.tools import with_setup\n'), ((15113, 15162), 'nose.tools.with_setup', 'with_setup', (['setup_multivariate_gaussian', 'teardown'], {}), '(setup_multivariate_gaussian, teardown)\n', (15123, 15162), False, 'from nose.tools import with_setup\n'), ((15541, 15587), 'nose.tools.with_setup', 'with_setup', (['setup_multivariate_mixed', 'teardown'], {}), '(setup_multivariate_mixed, teardown)\n', (15551, 15587), False, 'from nose.tools import with_setup\n'), ((15964, 16013), 'nose.tools.with_setup', 'with_setup', (['setup_multivariate_gaussian', 'teardown'], {}), '(setup_multivariate_gaussian, teardown)\n', (15974, 16013), False, 'from nose.tools import with_setup\n'), ((16385, 16431), 'nose.tools.with_setup', 'with_setup', (['setup_multivariate_mixed', 'teardown'], {}), '(setup_multivariate_mixed, teardown)\n', (16395, 16431), False, 'from nose.tools import with_setup\n'), ((16801, 16832), 'nose.tools.with_setup', 'with_setup', (['setup_hmm', 'teardown'], {}), '(setup_hmm, teardown)\n', (16811, 16832), False, 'from nose.tools import with_setup\n'), ((18212, 18243), 'nose.tools.with_setup', 'with_setup', (['setup_hmm', 'teardown'], {}), '(setup_hmm, teardown)\n', (18222, 18243), False, 'from nose.tools import with_setup\n'), ((19217, 19248), 'nose.tools.with_setup', 'with_setup', (['setup_hmm', 'teardown'], {}), '(setup_hmm, teardown)\n', (19227, 19248), False, 'from nose.tools import with_setup\n'), ((20228, 20259), 'nose.tools.with_setup', 'with_setup', (['setup_hmm', 'teardown'], {}), '(setup_hmm, teardown)\n', (20238, 20259), False, 'from nose.tools import with_setup\n'), ((20561, 20610), 'nose.tools.with_setup', 'with_setup', (['setup_multivariate_gaussian', 'teardown'], {}), '(setup_multivariate_gaussian, teardown)\n', (20571, 20610), False, 'from nose.tools import with_setup\n'), ((20901, 20950), 'nose.tools.with_setup', 'with_setup', (['setup_multivariate_gaussian', 'teardown'], {}), '(setup_multivariate_gaussian, teardown)\n', (20911, 20950), False, 'from nose.tools import with_setup\n'), ((21216, 21265), 'nose.tools.with_setup', 'with_setup', (['setup_multivariate_gaussian', 'teardown'], {}), '(setup_multivariate_gaussian, teardown)\n', (21226, 21265), False, 'from nose.tools import with_setup\n'), ((21555, 21604), 'nose.tools.with_setup', 'with_setup', (['setup_multivariate_gaussian', 'teardown'], {}), '(setup_multivariate_gaussian, teardown)\n', (21565, 21604), False, 'from nose.tools import with_setup\n'), ((3361, 3385), 'nose.tools.assert_equal', 'assert_equal', (['model.d', '(3)'], {}), '(model.d, 3)\n', (3373, 3385), False, 'from nose.tools import assert_equal\n'), ((3387, 3411), 'nose.tools.assert_equal', 'assert_equal', (['model.n', '(2)'], {}), '(model.n, 2)\n', (3399, 3411), False, 'from nose.tools import assert_equal\n'), ((3413, 3446), 'nose.tools.assert_equal', 'assert_equal', (['model.is_vl_', '(False)'], {}), '(model.is_vl_, False)\n', (3425, 3446), False, 'from nose.tools import assert_equal\n'), ((3546, 3570), 'nose.tools.assert_equal', 'assert_equal', (['model.d', '(3)'], {}), '(model.d, 3)\n', (3558, 3570), False, 'from nose.tools import assert_equal\n'), ((3572, 3596), 'nose.tools.assert_equal', 'assert_equal', (['model.n', '(2)'], {}), '(model.n, 2)\n', (3584, 3596), False, 'from nose.tools import assert_equal\n'), ((3598, 3631), 'nose.tools.assert_equal', 'assert_equal', (['model.is_vl_', '(False)'], {}), '(model.is_vl_, False)\n', (3610, 3631), False, 'from nose.tools import assert_equal\n'), ((4191, 4226), 'numpy.testing.assert_array_almost_equal', 'assert_array_almost_equal', (['y', 'y_hat'], {}), '(y, y_hat)\n', (4216, 4226), False, 'from numpy.testing import assert_array_almost_equal\n'), ((4780, 4815), 'numpy.testing.assert_array_almost_equal', 'assert_array_almost_equal', (['y', 'y_hat'], {}), '(y, y_hat)\n', (4805, 4815), False, 'from numpy.testing import assert_array_almost_equal\n'), ((5383, 5418), 'numpy.testing.assert_array_almost_equal', 'assert_array_almost_equal', (['y', 'y_hat'], {}), '(y, y_hat)\n', (5408, 5418), False, 'from numpy.testing import assert_array_almost_equal\n'), ((5980, 6015), 'numpy.testing.assert_array_almost_equal', 'assert_array_almost_equal', (['y', 'y_hat'], {}), '(y, y_hat)\n', (6005, 6015), False, 'from numpy.testing import assert_array_almost_equal\n'), ((6594, 6629), 'numpy.testing.assert_array_almost_equal', 'assert_array_almost_equal', (['y', 'y_hat'], {}), '(y, y_hat)\n', (6619, 6629), False, 'from numpy.testing import assert_array_almost_equal\n'), ((7202, 7237), 'numpy.testing.assert_array_almost_equal', 'assert_array_almost_equal', (['y', 'y_hat'], {}), '(y, y_hat)\n', (7227, 7237), False, 'from numpy.testing import assert_array_almost_equal\n'), ((7789, 7824), 'numpy.testing.assert_array_almost_equal', 'assert_array_almost_equal', (['y', 'y_hat'], {}), '(y, y_hat)\n', (7814, 7824), False, 'from numpy.testing import assert_array_almost_equal\n'), ((8270, 8305), 'numpy.testing.assert_array_almost_equal', 'assert_array_almost_equal', (['y', 'y_hat'], {}), '(y, y_hat)\n', (8295, 8305), False, 'from numpy.testing import assert_array_almost_equal\n'), ((8865, 8900), 'numpy.testing.assert_array_almost_equal', 'assert_array_almost_equal', (['y', 'y_hat'], {}), '(y, y_hat)\n', (8890, 8900), False, 'from numpy.testing import assert_array_almost_equal\n'), ((9454, 9489), 'numpy.testing.assert_array_almost_equal', 'assert_array_almost_equal', (['y', 'y_hat'], {}), '(y, y_hat)\n', (9479, 9489), False, 'from numpy.testing import assert_array_almost_equal\n'), ((10060, 10095), 'numpy.testing.assert_array_almost_equal', 'assert_array_almost_equal', (['y', 'y_hat'], {}), '(y, y_hat)\n', (10085, 10095), False, 'from numpy.testing import assert_array_almost_equal\n'), ((10560, 10595), 'numpy.testing.assert_array_almost_equal', 'assert_array_almost_equal', (['y', 'y_hat'], {}), '(y, y_hat)\n', (10585, 10595), False, 'from numpy.testing import assert_array_almost_equal\n'), ((10758, 10793), 'numpy.testing.assert_array_almost_equal', 'assert_array_almost_equal', (['y', 'y_hat'], {}), '(y, y_hat)\n', (10783, 10793), False, 'from numpy.testing import assert_array_almost_equal\n'), ((10950, 10985), 'numpy.testing.assert_array_almost_equal', 'assert_array_almost_equal', (['y', 'y_hat'], {}), '(y, y_hat)\n', (10975, 10985), False, 'from numpy.testing import assert_array_almost_equal\n'), ((11156, 11191), 'numpy.testing.assert_array_almost_equal', 'assert_array_almost_equal', (['y', 'y_hat'], {}), '(y, y_hat)\n', (11181, 11191), False, 'from numpy.testing import assert_array_almost_equal\n'), ((11356, 11391), 'numpy.testing.assert_array_almost_equal', 'assert_array_almost_equal', (['y', 'y_hat'], {}), '(y, y_hat)\n', (11381, 11391), False, 'from numpy.testing import assert_array_almost_equal\n'), ((11573, 11608), 'numpy.testing.assert_array_almost_equal', 'assert_array_almost_equal', (['y', 'y_hat'], {}), '(y, y_hat)\n', (11598, 11608), False, 'from numpy.testing import assert_array_almost_equal\n'), ((11784, 11819), 'numpy.testing.assert_array_almost_equal', 'assert_array_almost_equal', (['y', 'y_hat'], {}), '(y, y_hat)\n', (11809, 11819), False, 'from numpy.testing import assert_array_almost_equal\n'), ((12468, 12505), 'numpy.testing.assert_array_almost_equal', 'assert_array_almost_equal', (['mu1', 'mu1_t'], {}), '(mu1, mu1_t)\n', (12493, 12505), False, 'from numpy.testing import assert_array_almost_equal\n'), ((12507, 12546), 'numpy.testing.assert_array_almost_equal', 'assert_array_almost_equal', (['cov1', 'cov1_t'], {}), '(cov1, cov1_t)\n', (12532, 12546), False, 'from numpy.testing import assert_array_almost_equal\n'), ((12548, 12585), 'numpy.testing.assert_array_almost_equal', 'assert_array_almost_equal', (['mu2', 'mu2_t'], {}), '(mu2, mu2_t)\n', (12573, 12585), False, 'from numpy.testing import assert_array_almost_equal\n'), ((12587, 12626), 'numpy.testing.assert_array_almost_equal', 'assert_array_almost_equal', (['cov2', 'cov2_t'], {}), '(cov2, cov2_t)\n', (12612, 12626), False, 'from numpy.testing import assert_array_almost_equal\n'), ((13142, 13179), 'numpy.testing.assert_array_almost_equal', 'assert_array_almost_equal', (['mu1', 'mu1_t'], {}), '(mu1, mu1_t)\n', (13167, 13179), False, 'from numpy.testing import assert_array_almost_equal\n'), ((13181, 13220), 'numpy.testing.assert_array_almost_equal', 'assert_array_almost_equal', (['cov1', 'cov1_t'], {}), '(cov1, cov1_t)\n', (13206, 13220), False, 'from numpy.testing import assert_array_almost_equal\n'), ((13222, 13277), 'numpy.testing.assert_array_almost_equal', 'assert_array_almost_equal', (['d21.parameters', '[0.34188034]'], {}), '(d21.parameters, [0.34188034])\n', (13247, 13277), False, 'from numpy.testing import assert_array_almost_equal\n'), ((13279, 13346), 'numpy.testing.assert_array_almost_equal', 'assert_array_almost_equal', (['d22.parameters', '[1.01294275, 0.22658346]'], {}), '(d22.parameters, [1.01294275, 0.22658346])\n', (13304, 13346), False, 'from numpy.testing import assert_array_almost_equal\n'), ((13348, 13398), 'numpy.testing.assert_array_almost_equal', 'assert_array_almost_equal', (['d23.parameters', '[2.625]'], {}), '(d23.parameters, [2.625])\n', (13373, 13398), False, 'from numpy.testing import assert_array_almost_equal\n'), ((14120, 14157), 'numpy.testing.assert_array_almost_equal', 'assert_array_almost_equal', (['mu1', 'mu1_t'], {}), '(mu1, mu1_t)\n', (14145, 14157), False, 'from numpy.testing import assert_array_almost_equal\n'), ((14159, 14198), 'numpy.testing.assert_array_almost_equal', 'assert_array_almost_equal', (['cov1', 'cov1_t'], {}), '(cov1, cov1_t)\n', (14184, 14198), False, 'from numpy.testing import assert_array_almost_equal\n'), ((14200, 14237), 'numpy.testing.assert_array_almost_equal', 'assert_array_almost_equal', (['mu2', 'mu2_t'], {}), '(mu2, mu2_t)\n', (14225, 14237), False, 'from numpy.testing import assert_array_almost_equal\n'), ((14239, 14278), 'numpy.testing.assert_array_almost_equal', 'assert_array_almost_equal', (['cov2', 'cov2_t'], {}), '(cov2, cov2_t)\n', (14264, 14278), False, 'from numpy.testing import assert_array_almost_equal\n'), ((14640, 14696), 'numpy.testing.assert_array_almost_equal', 'assert_array_almost_equal', (['model.weights', 'model2.weights'], {}), '(model.weights, model2.weights)\n', (14665, 14696), False, 'from numpy.testing import assert_array_almost_equal\n'), ((15053, 15109), 'numpy.testing.assert_array_almost_equal', 'assert_array_almost_equal', (['model.weights', 'model2.weights'], {}), '(model.weights, model2.weights)\n', (15078, 15109), False, 'from numpy.testing import assert_array_almost_equal\n'), ((15481, 15537), 'numpy.testing.assert_array_almost_equal', 'assert_array_almost_equal', (['model.weights', 'model2.weights'], {}), '(model.weights, model2.weights)\n', (15506, 15537), False, 'from numpy.testing import assert_array_almost_equal\n'), ((15904, 15960), 'numpy.testing.assert_array_almost_equal', 'assert_array_almost_equal', (['model.weights', 'model2.weights'], {}), '(model.weights, model2.weights)\n', (15929, 15960), False, 'from numpy.testing import assert_array_almost_equal\n'), ((16325, 16381), 'numpy.testing.assert_array_almost_equal', 'assert_array_almost_equal', (['model.weights', 'model2.weights'], {}), '(model.weights, model2.weights)\n', (16350, 16381), False, 'from numpy.testing import assert_array_almost_equal\n'), ((16741, 16797), 'numpy.testing.assert_array_almost_equal', 'assert_array_almost_equal', (['model.weights', 'model2.weights'], {}), '(model.weights, model2.weights)\n', (16766, 16797), False, 'from numpy.testing import assert_array_almost_equal\n'), ((18184, 18208), 'nose.tools.assert_equal', 'assert_equal', (['model.d', '(1)'], {}), '(model.d, 1)\n', (18196, 18208), False, 'from nose.tools import assert_equal\n'), ((18399, 18451), 'nose.tools.assert_almost_equal', 'assert_almost_equal', (['logs[0][0]', '(-0.8909729238898652)'], {}), '(logs[0][0], -0.8909729238898652)\n', (18418, 18451), False, 'from nose.tools import assert_almost_equal\n'), ((18454, 18506), 'nose.tools.assert_almost_equal', 'assert_almost_equal', (['logs[0][1]', '(-1.3609765531356006)'], {}), '(logs[0][1], -1.3609765531356006)\n', (18473, 18506), False, 'from nose.tools import assert_almost_equal\n'), ((18508, 18560), 'nose.tools.assert_almost_equal', 'assert_almost_equal', (['logs[0][2]', '(-1.0986122886681096)'], {}), '(logs[0][2], -1.0986122886681096)\n', (18527, 18560), False, 'from nose.tools import assert_almost_equal\n'), ((18563, 18615), 'nose.tools.assert_almost_equal', 'assert_almost_equal', (['logs[1][0]', '(-0.9357055312174429)'], {}), '(logs[1][0], -0.9357055312174429)\n', (18582, 18615), False, 'from nose.tools import assert_almost_equal\n'), ((18618, 18669), 'nose.tools.assert_almost_equal', 'assert_almost_equal', (['logs[1][1]', '(-1.429425687080494)'], {}), '(logs[1][1], -1.429425687080494)\n', (18637, 18669), False, 'from nose.tools import assert_almost_equal\n'), ((18671, 18723), 'nose.tools.assert_almost_equal', 'assert_almost_equal', (['logs[1][2]', '(-0.9990078376167526)'], {}), '(logs[1][2], -0.9990078376167526)\n', (18690, 18723), False, 'from nose.tools import assert_almost_equal\n'), ((18726, 18778), 'nose.tools.assert_almost_equal', 'assert_almost_equal', (['logs[2][0]', '(-3.9007882563128864)'], {}), '(logs[2][0], -3.9007882563128864)\n', (18745, 18778), False, 'from nose.tools import assert_almost_equal\n'), ((18780, 18833), 'nose.tools.assert_almost_equal', 'assert_almost_equal', (['logs[2][1]', '(-0.23562532881626597)'], {}), '(logs[2][1], -0.23562532881626597)\n', (18799, 18833), False, 'from nose.tools import assert_almost_equal\n'), ((18835, 18887), 'nose.tools.assert_almost_equal', 'assert_almost_equal', (['logs[2][2]', '(-1.6623251045711958)'], {}), '(logs[2][2], -1.6623251045711958)\n', (18854, 18887), False, 'from nose.tools import assert_almost_equal\n'), ((18890, 18942), 'nose.tools.assert_almost_equal', 'assert_almost_equal', (['logs[3][0]', '(-3.1703366478831185)'], {}), '(logs[3][0], -3.1703366478831185)\n', (18909, 18942), False, 'from nose.tools import assert_almost_equal\n'), ((18944, 18996), 'nose.tools.assert_almost_equal', 'assert_almost_equal', (['logs[3][1]', '(-0.4926140321126038)'], {}), '(logs[3][1], -0.4926140321126038)\n', (18963, 18996), False, 'from nose.tools import assert_almost_equal\n'), ((18999, 19050), 'nose.tools.assert_almost_equal', 'assert_almost_equal', (['logs[3][2]', '(-1.058478108940049)'], {}), '(logs[3][2], -1.058478108940049)\n', (19018, 19050), False, 'from nose.tools import assert_almost_equal\n'), ((19053, 19105), 'nose.tools.assert_almost_equal', 'assert_almost_equal', (['logs[4][0]', '(-1.3058441172130273)'], {}), '(logs[4][0], -1.3058441172130273)\n', (19072, 19105), False, 'from nose.tools import assert_almost_equal\n'), ((19107, 19159), 'nose.tools.assert_almost_equal', 'assert_almost_equal', (['logs[4][1]', '(-1.4007102236822906)'], {}), '(logs[4][1], -1.4007102236822906)\n', (19126, 19159), False, 'from nose.tools import assert_almost_equal\n'), ((19161, 19213), 'nose.tools.assert_almost_equal', 'assert_almost_equal', (['logs[4][2]', '(-0.7284958836972919)'], {}), '(logs[4][2], -0.7284958836972919)\n', (19180, 19213), False, 'from nose.tools import assert_almost_equal\n'), ((19397, 19450), 'nose.tools.assert_almost_equal', 'assert_almost_equal', (['probs[0][0]', '(0.41025641025641024)'], {}), '(probs[0][0], 0.41025641025641024)\n', (19416, 19450), False, 'from nose.tools import assert_almost_equal\n'), ((19452, 19504), 'nose.tools.assert_almost_equal', 'assert_almost_equal', (['probs[0][1]', '(0.2564102564102564)'], {}), '(probs[0][1], 0.2564102564102564)\n', (19471, 19504), False, 'from nose.tools import assert_almost_equal\n'), ((19507, 19559), 'nose.tools.assert_almost_equal', 'assert_almost_equal', (['probs[0][2]', '(0.3333333333333333)'], {}), '(probs[0][2], 0.3333333333333333)\n', (19526, 19559), False, 'from nose.tools import assert_almost_equal\n'), ((19563, 19614), 'nose.tools.assert_almost_equal', 'assert_almost_equal', (['probs[1][0]', '(0.392308981634461)'], {}), '(probs[1][0], 0.392308981634461)\n', (19582, 19614), False, 'from nose.tools import assert_almost_equal\n'), ((19618, 19671), 'nose.tools.assert_almost_equal', 'assert_almost_equal', (['probs[1][1]', '(0.23944639992337707)'], {}), '(probs[1][1], 0.23944639992337707)\n', (19637, 19671), False, 'from nose.tools import assert_almost_equal\n'), ((19673, 19726), 'nose.tools.assert_almost_equal', 'assert_almost_equal', (['probs[1][2]', '(0.36824461844216183)'], {}), '(probs[1][2], 0.36824461844216183)\n', (19692, 19726), False, 'from nose.tools import assert_almost_equal\n'), ((19729, 19783), 'nose.tools.assert_almost_equal', 'assert_almost_equal', (['probs[2][0]', '(0.020225961918306088)'], {}), '(probs[2][0], 0.020225961918306088)\n', (19748, 19783), False, 'from nose.tools import assert_almost_equal\n'), ((19785, 19836), 'nose.tools.assert_almost_equal', 'assert_almost_equal', (['probs[2][1]', '(0.790076637433831)'], {}), '(probs[2][1], 0.790076637433831)\n', (19804, 19836), False, 'from nose.tools import assert_almost_equal\n'), ((19840, 19893), 'nose.tools.assert_almost_equal', 'assert_almost_equal', (['probs[2][2]', '(0.18969740064786292)'], {}), '(probs[2][2], 0.18969740064786292)\n', (19859, 19893), False, 'from nose.tools import assert_almost_equal\n'), ((19896, 19949), 'nose.tools.assert_almost_equal', 'assert_almost_equal', (['probs[3][0]', '(0.04198945986103252)'], {}), '(probs[3][0], 0.04198945986103252)\n', (19915, 19949), False, 'from nose.tools import assert_almost_equal\n'), ((19952, 20004), 'nose.tools.assert_almost_equal', 'assert_almost_equal', (['probs[3][1]', '(0.6110270603826564)'], {}), '(probs[3][1], 0.6110270603826564)\n', (19971, 20004), False, 'from nose.tools import assert_almost_equal\n'), ((20007, 20058), 'nose.tools.assert_almost_equal', 'assert_almost_equal', (['probs[3][2]', '(0.346983479756311)'], {}), '(probs[3][2], 0.346983479756311)\n', (20026, 20058), False, 'from nose.tools import assert_almost_equal\n'), ((20061, 20114), 'nose.tools.assert_almost_equal', 'assert_almost_equal', (['probs[4][0]', '(0.27094373022369794)'], {}), '(probs[4][0], 0.27094373022369794)\n', (20080, 20114), False, 'from nose.tools import assert_almost_equal\n'), ((20116, 20169), 'nose.tools.assert_almost_equal', 'assert_almost_equal', (['probs[4][1]', '(0.24642188711704707)'], {}), '(probs[4][1], 0.24642188711704707)\n', (20135, 20169), False, 'from nose.tools import assert_almost_equal\n'), ((20171, 20223), 'nose.tools.assert_almost_equal', 'assert_almost_equal', (['probs[4][2]', '(0.4826343826592551)'], {}), '(probs[4][2], 0.4826343826592551)\n', (20190, 20223), False, 'from nose.tools import assert_almost_equal\n'), ((20410, 20438), 'nose.tools.assert_equal', 'assert_equal', (['predicts[0]', '(0)'], {}), '(predicts[0], 0)\n', (20422, 20438), False, 'from nose.tools import assert_equal\n'), ((20440, 20468), 'nose.tools.assert_equal', 'assert_equal', (['predicts[1]', '(0)'], {}), '(predicts[1], 0)\n', (20452, 20468), False, 'from nose.tools import assert_equal\n'), ((20470, 20498), 'nose.tools.assert_equal', 'assert_equal', (['predicts[2]', '(1)'], {}), '(predicts[2], 1)\n', (20482, 20498), False, 'from nose.tools import assert_equal\n'), ((20500, 20528), 'nose.tools.assert_equal', 'assert_equal', (['predicts[3]', '(1)'], {}), '(predicts[3], 1)\n', (20512, 20528), False, 'from nose.tools import assert_equal\n'), ((20530, 20558), 'nose.tools.assert_equal', 'assert_equal', (['predicts[4]', '(2)'], {}), '(predicts[4], 2)\n', (20542, 20558), False, 'from nose.tools import assert_equal\n'), ((20648, 20664), 'pomegranate.io.DataGenerator', 'DataGenerator', (['X'], {}), '(X)\n', (20661, 20664), False, 'from pomegranate.io import DataGenerator\n'), ((20818, 20857), 'numpy.testing.assert_array_almost_equal', 'assert_array_almost_equal', (['logp1', 'logp2'], {}), '(logp1, logp2)\n', (20843, 20857), False, 'from numpy.testing import assert_array_almost_equal\n'), ((20859, 20898), 'numpy.testing.assert_array_almost_equal', 'assert_array_almost_equal', (['logp1', 'logp3'], {}), '(logp1, logp3)\n', (20884, 20898), False, 'from numpy.testing import assert_array_almost_equal\n'), ((20980, 20996), 'pomegranate.io.DataGenerator', 'DataGenerator', (['X'], {}), '(X)\n', (20993, 20996), False, 'from pomegranate.io import DataGenerator\n'), ((21129, 21170), 'numpy.testing.assert_array_almost_equal', 'assert_array_almost_equal', (['y_hat1', 'y_hat2'], {}), '(y_hat1, y_hat2)\n', (21154, 21170), False, 'from numpy.testing import assert_array_almost_equal\n'), ((21172, 21213), 'numpy.testing.assert_array_almost_equal', 'assert_array_almost_equal', (['y_hat1', 'y_hat3'], {}), '(y_hat1, y_hat3)\n', (21197, 21213), False, 'from numpy.testing import assert_array_almost_equal\n'), ((21301, 21317), 'pomegranate.io.DataGenerator', 'DataGenerator', (['X'], {}), '(X)\n', (21314, 21317), False, 'from pomegranate.io import DataGenerator\n'), ((21468, 21509), 'numpy.testing.assert_array_almost_equal', 'assert_array_almost_equal', (['y_hat1', 'y_hat2'], {}), '(y_hat1, y_hat2)\n', (21493, 21509), False, 'from numpy.testing import assert_array_almost_equal\n'), ((21511, 21552), 'numpy.testing.assert_array_almost_equal', 'assert_array_almost_equal', (['y_hat1', 'y_hat3'], {}), '(y_hat1, y_hat3)\n', (21536, 21552), False, 'from numpy.testing import assert_array_almost_equal\n'), ((21644, 21660), 'pomegranate.io.DataGenerator', 'DataGenerator', (['X'], {}), '(X)\n', (21657, 21660), False, 'from pomegranate.io import DataGenerator\n'), ((21823, 21864), 'numpy.testing.assert_array_almost_equal', 'assert_array_almost_equal', (['y_hat1', 'y_hat2'], {}), '(y_hat1, y_hat2)\n', (21848, 21864), False, 'from numpy.testing import assert_array_almost_equal\n'), ((21866, 21907), 'numpy.testing.assert_array_almost_equal', 'assert_array_almost_equal', (['y_hat1', 'y_hat3'], {}), '(y_hat1, y_hat3)\n', (21891, 21907), False, 'from numpy.testing import assert_array_almost_equal\n'), ((22069, 22097), 'pomegranate.io.DataGenerator', 'DataGenerator', (['X', 'weights', 'y'], {}), '(X, weights, y)\n', (22082, 22097), False, 'from pomegranate.io import DataGenerator\n'), ((22571, 22610), 'numpy.testing.assert_array_almost_equal', 'assert_array_almost_equal', (['logp1', 'logp2'], {}), '(logp1, logp2)\n', (22596, 22610), False, 'from numpy.testing import assert_array_almost_equal\n'), ((22781, 22809), 'pomegranate.io.DataGenerator', 'DataGenerator', (['X', 'weights', 'y'], {}), '(X, weights, y)\n', (22794, 22809), False, 'from pomegranate.io import DataGenerator\n'), ((23040, 23079), 'numpy.testing.assert_array_almost_equal', 'assert_array_almost_equal', (['logp1', 'logp2'], {}), '(logp1, logp2)\n', (23065, 23079), False, 'from numpy.testing import assert_array_almost_equal\n'), ((14399, 14418), 'pickle.dumps', 'pickle.dumps', (['model'], {}), '(model)\n', (14411, 14418), False, 'import pickle\n'), ((14811, 14830), 'pickle.dumps', 'pickle.dumps', (['model'], {}), '(model)\n', (14823, 14830), False, 'import pickle\n'), ((20690, 20709), 'pandas.DataFrame', 'pandas.DataFrame', (['X'], {}), '(X)\n', (20706, 20709), False, 'import pandas\n'), ((21022, 21041), 'pandas.DataFrame', 'pandas.DataFrame', (['X'], {}), '(X)\n', (21038, 21041), False, 'import pandas\n'), ((21343, 21362), 'pandas.DataFrame', 'pandas.DataFrame', (['X'], {}), '(X)\n', (21359, 21362), False, 'import pandas\n'), ((21686, 21705), 'pandas.DataFrame', 'pandas.DataFrame', (['X'], {}), '(X)\n', (21702, 21705), False, 'import pandas\n')]
#!/usr/bin/env python2 # -*- coding: utf-8 -*- """ Created on Mon Mar 5 05:47:03 2018 @author: zg """ import numpy as np #from scipy import io import scipy.io #import pickle from sklearn.model_selection import StratifiedKFold #import sklearn from scipy.sparse import spdiags from scipy.spatial import distance #import matplotlib.pyplot as plt from sklearn.ensemble import BaggingClassifier from sklearn import svm #from sklearn import metrics from sklearn.metrics import roc_auc_score from sklearn import tree import copy import numpy.matlib from sklearn.exceptions import NotFittedError #import FuzzyRwrBagging as frb #from joblib import Parallel, delayed #import multiprocessing def RWR(A, nSteps, laziness, p0 = None): ''' % the random walk algorithm. % A is the input net matrix, with the diag to be 0. % nSteps: how many steps to walk % laziness: the probablity to go back. % p0: the initial probability. usually it is a zero matrix with the diag to % be 1. % % for example, A could be: % A = [0,2,2,0,0,0,0;... % 2,0,1,1,0,0,0;... % 2,1,0,0,1,0,0;... % 0,1,0,0,0,1,1;... % 0,0,1,0,0,0,0;... % 0,0,0,1,0,0,1;... % 0,0,0,1,0,1,0] % % if nSteps is 1000 and laziness is 0.3, p0 is default, the result is: % [0.449, 0.207, 0.220, 0.064, 0.154, 0.034, 0.034;... % 0.207, 0.425, 0.167, 0.132, 0.117, 0.071, 0.071;... % 0.220, 0.167, 0.463, 0.052, 0.324, 0.028, 0.028;... % 0.048, 0.099, 0.039, 0.431, 0.027, 0.232, 0.232;... % 0.038, 0.029, 0.081, 0.009, 0.356, 0.004, 0.004;... % 0.017, 0.035, 0.014, 0.154, 0.009, 0.425, 0.203;... % 0.017, 0.035, 0.014, 0.154, 0.009, 0.203, 0.425] % % Each column represents the propability for each node. each element in the % column means the probability to go to that node. % This algorithm will converge. For example, for the above matrix, nSteps = % 100, 1000 or 10000, will give the same result. ''' n = len(A) if p0 == None: p0 = np.eye(n) ''' % In the example above, spdiags(sum(A)'.^(-1), 0, n, n) will be % 0.2500 0 0 0 0 0 0 % 0 0.2500 0 0 0 0 0 % 0 0 0.2500 0 0 0 0 % 0 0 0 0.3333 0 0 0 % 0 0 0 0 1.0000 0 0 % 0 0 0 0 0 0.5000 0 % 0 0 0 0 0 0 0.5000 % W will be: % 0 0.5000 0.5000 0 0 0 0 % 0.5000 0 0.2500 0.3333 0 0 0 % 0.5000 0.2500 0 0 1.0000 0 0 % 0 0.2500 0 0 0 0.5000 0.5000 % 0 0 0.2500 0 0 0 0 % 0 0 0 0.3333 0 0 0.5000 % 0 0 0 0.3333 0 0.5000 0 ''' #W = A * spdiags(sum(A)'.^(-1), 0, n, n); #W = spdiags(np.power(sum(np.float64(A)) , -1).T , 0, n, n).toarray() W = A.dot( spdiags(np.power(sum(np.float64(A)) , -1)[np.newaxis], \ 0, n, n).toarray() ) p = p0 pl2norm = np.inf unchanged = 0 for i in range(1, nSteps+1): if i % 100 == 0: print(' done rwr ' + str(i-1) ) pnew = (1-laziness) * W.dot(p) + laziness * p0 l2norm = max(np.sqrt(sum((pnew - p) ** 2) ) ) p = pnew if l2norm < np.finfo(float).eps: break else: if l2norm == pl2norm: unchanged = unchanged +1 if unchanged > 10: break else: unchanged = 0 pl2norm = l2norm return p # test RWR() ''' A = np.array([[0,2,2,0,0,0,0],\ [2,0,1,1,0,0,0],\ [2,1,0,0,1,0,0],\ [0,1,0,0,0,1,1],\ [0,0,1,0,0,0,0],\ [0,0,0,1,0,0,1],\ [0,0,0,1,0,1,0]]) nSteps = 1000 lazi = 0.3 RWR(A, nSteps, lazi, None) ''' # test #dst = distance.euclidean(A) # corrent, the same as in Matlab def f_sim_2_aRankNet(sim, k=3): ''' % Convert the similarity matrix to a network graph where each node % has k edges to other nodes (aRank). ''' # delete the diagnal values. # sim = sim-diag(diag(sim) ); np.fill_diagonal(sim, 0) # [~, I] = sort(sim-diag(diag(sim) ) ); I = np.argsort(sim, kind='mergesort') + 1 # [~, I2] = sort(I); I2 = (np.argsort(I, kind='mergesort').T + 1).T # for every column, just keep the top k edges. #aRankNet = (I2 >length(sim)-k); aRankNet = I2 > (len(sim) - k) # make it a diagonal matrix # aRankNet = max(aRankNet, aRankNet'); aRankNet = np.logical_or(aRankNet, aRankNet.T) # remove the diagonal 1s. # aRankNet = aRankNet-diag(diag(aRankNet) ); np.fill_diagonal(aRankNet, False) return aRankNet # test #sim = np.array([[0, 0.5566, 0.6448, 0.3289], \ # [0.5566, 0, -0.0842, -0.0170], \ # [0.6448, -0.0842, 0, 0.8405], \ # [0.3289, -0.0170, 0.8405, 0]]) # #f_sim_2_aRankNet(sim,1) #f_sim_2_aRankNet(sim,2) #f_sim_2_aRankNet(sim,3) # #array([[False, True, True, False], # [ True, False, False, False], # [ True, False, False, True], # [False, False, True, False]]) # #array([[False, True, True, True], # [ True, False, False, False], # [ True, False, False, True], # [ True, False, True, False]]) # #array([[False, True, True, True], # [ True, False, False, True], # [ True, False, False, True], # [ True, True, True, False]]) def f_find_centers_rwMat(rw_mat, k): ''' % on the rw_mat matrix, find some nodes as the centroids for soft % clustering. If we just random pickup some nodes as centroids, that is % not good for fuzzy clusters. % k is the number of centroids. ''' ixs = [] # 1. find the most connected center node as the first centroid. a = np.sum(rw_mat, axis=1) # axis=1 for rows; 0 for col # % most connected node. ix = np.argmax(a) ixs.append(ix) # % 2. iteratively find the rest nodes for i in range(1, k): tmp = rw_mat[:, ixs] b = np.sum(tmp, axis=1) b[ixs] = np.inf # % find the farthest node ix = np.argmin(b) ixs.append(ix) return ixs # test #tmp = f_find_centers_rwMat(rw_mat, 10) def getCutoff(rw_mat, avgNeighborsSize): tmp = rw_mat.flatten('F') a = np.flip(np.sort(tmp), 0) len1 = len(rw_mat) #cutoffs = [] all_neibs = int( avgNeighborsSize * len1 ) print( all_neibs) ct = a[all_neibs] return ct #test #>>> a = np.array([[1,2], [3,4]]) #>>> a.flatten() #array([1, 2, 3, 4]) #>>> a.flatten('F') #array([1, 3, 2, 4]) ''' a = np.array( range(0,100) ) b = np.matlib.repmat(a, 100, 1) ct = getCutoff(b, 70) ''' def f_len_of_each_ele(c1): #% Assume c1 is a 1-dimension cell array, and each element is a 1d double #% array. This function counts the length of each double array. lens = np.zeros(len(c1)) for i in range(0, len(c1)): lens[i] = len(c1[i]) return lens def f_eu_dist(X): ''' calculate the euclidean distance between instances ''' sim = np.zeros(( len(X), len(X) )) for i in range(0, len(X)): for j in range(i+1, len(X)): tmp = distance.euclidean(X[i], X[j]) sim[i][j] = tmp sim[j][i] = tmp sim = -sim np.fill_diagonal(sim, 0) return sim #test #sim = f_eu_dist(X) def f_eu_dist2(X1, X2): ''' calculate the euclidean distance between instances from two datasets ''' sim = np.zeros(( len(X1), len(X2) )) for i in range(0, len(X1) ): for j in range(0, len(X2) ): tmp = distance.euclidean(X1[i], X2[j]) sim[i][j] = tmp sim = -sim return sim #test #sim = f_eu_dist2(X_tr, X_te) def f_fuzzy_rwr_clusters(X, k=100, each_clus_sz=None): # X: data # k: number of clusters ''' The return variable clus stores the instance indices for each cluster. However, this data structure is not easy to find for a instance, which are the clusters it belongs to, thus we also need to convert clus to a true-false matrix. ''' if each_clus_sz == None: # on average, how many clusters does one inst belongs to. #overlap_factor = 2; # the estimated size of each cluster. default is half the number of # instances. each_clus_sz=len(X)/3 print('RWR-based fuzzy clustering starts...') print(' NO. clusters = '+str(k)+'; avg. cluster size = '+str(each_clus_sz) ) # sim = squareform(pdist(X)); # sim = -sim; sim = np.zeros((len(X), len(X) ) ) for i in range(0, len(X)): for j in range(i+1, len(X)): tmp = distance.euclidean(X[i], X[j]) sim[i][j] = tmp sim[j][i] = tmp sim = -sim print(' done calculating the Euclidean distance matrix') # --------------------------------------------------------------- aRank_k_neighbors = np.ceil(np.log10(len(sim)) ) ori_graph = f_sim_2_aRankNet(sim, aRank_k_neighbors) print(' done calculating the A-rank KNN graph') # % -------- RWR -------- nSteps = 1000 lazi = 0.3 rw = RWR(ori_graph, nSteps, lazi) # remove probability of returning start node np.fill_diagonal(rw, 0) rw_mat = rw print(' done RWR') # --------------------------------------------------------------- ixs_centers = f_find_centers_rwMat(rw_mat, k) ct = getCutoff(rw_mat, each_clus_sz) rw_net = rw_mat > ct # % set the diagnal to 1 np.fill_diagonal(rw_net, True) clus = [] for i in range(0, k): tmp = np.argwhere(rw_net[:, ixs_centers[i] ] ).flatten() clus.append(tmp) # --------------------------------------------------------------- # % sort the clusters lens = f_len_of_each_ele(clus) ix = np.argsort(lens)[::-1] clus_ordered = [clus[i] for i in ix] print(' center inst. index of each cluster: ') ixs_centers = np.array(ixs_centers) print(ixs_centers[ix]) print(' size of each cluster: ') print(lens[ix]) print(' done RWR clustering') return clus_ordered #test #clus = f_fuzzy_rwr_clusters(X, 100) # pass def f_clus_to_tfs(clus, n_inst): #% convert the cluster information from cell array to mat. But for each #% instance, the rank of clusters information will be lost - you won't know #% what is the top 1/2/3 cluster it belongs to. #% #% clus e.g: #% 1x5 cell #% 1x195 double 1x193 double 1x169 double 1x161 double 1x62 double #% #% tfs e.g: #% 295x5 double #% 1 0 0 0 0 #% 1 1 1 1 0 #% 1 1 1 0 0 #% 1 1 0 0 0 #% 1 1 1 1 0 #% ... #% 1 1 1 1 1 #% 1 0 0 0 0 #% 1 1 1 0 0 tfs = np.zeros((n_inst, len(clus)), dtype=bool) for i in range(0, len(clus)): tfs[clus[i], i] = True return tfs # test #tfs = f_clus_to_tfs(clus, len(X)) # pass def f_tfs_2_instClus(tfs): ''' convert the boolean table representation of clustering result to for each instance, what clusters it belongs to. ''' inst_clus = [] for i in range(0, len(tfs)): row = list( np.where(tfs[i, :] ) [0] ) inst_clus.append(row) return inst_clus # test #inst_clus = f_tfs_2_instClus(tfs) #def f_bg_svm_tr_te(X_tr, y_tr, X_te, y_te): # #bagging = BaggingClassifier(base_estimator = svm.LinearSVC(), \ # bagging = BaggingClassifier(base_estimator = tree.DecisionTreeClassifier(), \ # random_state=None, n_estimators = 100 ) # bagging.fit(X_tr, y_tr) # # y_pred = bagging.predict_proba(X_te) # y_pred = y_pred[:, 1].flatten() # # auc = roc_auc_score(y_te.flatten(), y_pred) # # return [y_pred, auc] # test ''' X_tr = X y_tr = y X_te = X y_te = y [y_pred, auc] = f_bg_svm_tr_te(X_tr, y_tr, X_te, y_te) ''' #def f_bg_tr_te(X_tr, y_tr, X_te, y_te, BaseBagging): # ''' # corresponds to f_weka_bg_svm_tr_te() in Matlab version # ''' # #bagging = BaggingClassifier(base_estimator = svm.LinearSVC(), \ # bagging = BaggingClassifier(BaseBagging, \ # random_state=None, n_estimators = 100 ) # bagging.fit(X_tr, y_tr) # # y_pred = bagging.predict_proba(X_te) # y_pred = y_pred[:, 1].flatten() # # auc = roc_auc_score(y_te.flatten(), y_pred) # # return [y_pred, auc] def f_tr(X_tr, y_tr, model): model_inner = copy.deepcopy(model) model_inner.fit(X_tr, y_tr) return model_inner def f_te(X_te, model): y_pred = model.predict_proba(X_te) y_pred = y_pred[:, 1].flatten() return y_pred def f_tr_te(X_tr, y_tr, X_te, model): ''' corresponds to f_weka_bg_svm_tr_te() in Matlab version ''' #bagging = BaggingClassifier(base_estimator = svm.LinearSVC(), \ #bagging = BaggingClassifier(BaseBagging, \ # random_state=None, n_estimators = 100 ) model_inner = copy.deepcopy(model) model_inner.fit(X_tr, y_tr) y_pred = model_inner.predict_proba(X_te) y_pred = y_pred[:, 1].flatten() #auc = roc_auc_score(y_te.flatten(), y_pred) return y_pred def f_k_fo(X, y, model, k_fold=10): ''' corresponds to f_weka_bg_svm_arff_k_fo_3_parfor() in Matlab version ''' y = y.flatten() y_pred = np.zeros(y.size) skf = StratifiedKFold(n_splits=k_fold, random_state=None, shuffle=True) skf.get_n_splits(X, y) for train_index, test_index in skf.split(X, y): #print("TRAIN: ", train_index, " TEST: ", test_index) X_tr, X_te = X[train_index], X[test_index] #y_tr, y_te = y[train_index], y[test_index] y_tr = y[train_index] if np.unique(y_tr).size == 1: y_pred_fo = np.zeros( len(test_index) ) #print len(X_te) #print len(test_index) #print y_pred_fo y_pred_fo.fill(np.unique(y_tr)[0] ) #print y_pred_fo else: y_pred_fo = f_tr_te(X_tr, y_tr, X_te, model) y_pred[test_index] = y_pred_fo #auc = roc_auc_score(y.flatten(), y_pred) return y_pred # test #pa = '/Volumes/Macintosh_HD/Users/zg/bio/3_ensembF/3_scripts/2017_4_4/' ##X = scipy.io.loadmat(pa+'/data/data_all_pickle/30/data.mat')['X'] # 30:breast cancer ##y = scipy.io.loadmat(pa+'/data/data_all_pickle/30/data.mat')['y'] #X = scipy.io.loadmat(pa+'/data/data_all_pickle/11/data.mat')['X'] # 11:mesothelioma #y = scipy.io.loadmat(pa+'/data/data_all_pickle/11/data.mat')['y'] # #model = BaggingClassifier(base_estimator = tree.DecisionTreeClassifier(), \ # random_state=None, n_estimators = 100 ) #y_pred = f_k_fo(X, y, model, k_fold=10) # #print roc_auc_score(y.flatten(), y_pred) # the easy dataset mesothelioma get 1.0 CV result. # breast cancer get 0.599 # all results are correct. def f_quantileNorm(templete, target): ''' Templete is the standard, change the target to the values in the templete. Target may have a very different range than the templete. templete and target should be 1d n by 1 array. f_my_quantileNorm() ''' ix_target = np.argsort(target, kind='mergesort') ix_templete = np.argsort(templete, kind='mergesort') target[ix_target] = templete[ix_templete] new = target return new # test #templete = X[:, 0] #target = X[:, 1] #new = f_quantileNorm(templete, target) #def f_bg_k_fo_3(X, y, k_fold=10): # ''' # corresponds to f_weka_bgSvm_arff_k_fo_3_parfor() in Matlab version # corresponds to f_k_fo() # ''' # y_pred = np.zeros((y.size, 1)) # # skf = StratifiedKFold(n_splits=k_fold) # skf.get_n_splits(X, y) # # for train_index, test_index in skf.split(X, y): # #print("TRAIN:", train_index, "TEST:", test_index) # X_tr, X_te = X[train_index], X[test_index] # y_tr, y_te = y[train_index], y[test_index] def f_use_each_clus_forWhole(X, y, clus, y_pred_whole, model, fo_inner): ''' % using each cluster data to predict the whole instances, while self % prediction using 10-fold CV. corresponds to f_use_each_clus_forWhole_bg_svm() in Matlab version ''' n_clusters = len(clus) y_pred_multi = np.zeros((y.size, n_clusters) ) models = [] for j in range(0, n_clusters): # for each cluster Xj = X[clus[j].flatten(), :] yj = y[clus[j].flatten() ] model_a_clust = copy.deepcopy(model) print(' Cluster '+str(j)+' started...') #if len(yj) > 10: if len(yj) > 15 and np.unique(yj).size != 1: # ------------------ for self ------------------ #if np.unique(yj).size == 1: # y_pred = np.zeros(yj.size) # y_pred.fill(np.unique(yj)[0]) #else: try: y_pred = f_k_fo(Xj, yj, model, fo_inner) # quantileNorm templete = y_pred_whole[clus[j].flatten()] target = y_pred y_pred = f_quantileNorm(templete, target) # copy the normed prediction to the whole data. y_pred_multi[clus[j].flatten(), j] = y_pred print(' c-'+str(j)+' done predicting local instances') # ------------------ for other ----------------- ix_other = set(range(0, y.size)) - set(clus[j].flatten()) ix_other = list(ix_other) #print ix_other X_other = X[ix_other , :] #y_other = y[ix_other ] # predict #y_pred = f_tr_te(Xj, yj, X_other, model) #if np.unique(yj).size != 1: model_a_clust.fit(Xj, yj) y_pred = model_a_clust.predict_proba(X_other) y_pred = y_pred[:, 1].flatten() # quantileNorm templete = y_pred_whole[ix_other] target = y_pred y_pred = f_quantileNorm(templete, target) #else: # y_pred = np.zeros(X_other.size) # y_pred.fill(np.unique(yj)[0]) # copy to the whole array y_pred_multi[ix_other, j] = y_pred print(' c-'+str(j)+' done predicting remote instances') except ValueError as e: print(e) print(' skip this cluster') y_pred = np.zeros(y.size) y_pred.fill(np.nan) y_pred_multi[:, j] = y_pred else: if len(yj) <= 15: print (' '+str(len(yj))+' insts in cluster, <= 15, skip...') y_pred = np.zeros(y.size) y_pred.fill(np.nan) y_pred_multi[:, j] = y_pred if np.unique(yj).size == 1: print (' warning, #unique class label(s) == 1') y_pred = np.zeros(y.size) y_pred.fill(np.unique(yj)[0]) y_pred_multi[:, j] = y_pred model_a_clust = np.unique(yj)[0] models.append(model_a_clust) return [y_pred_multi, models] # test #[y_pred_multi, models] = f_use_each_clus_forWhole(X, y, clus, y_pred_whole, model) #def f_dec_tab_4_bg_svm(X, y, clus): # ''' # Calculate the decision table # % This version changed from the cluster-cluster dec_mat to instance-cluster # % dec_mat. This solution will avoid the case that if one cluster decision # % is wrong leading entrie cluster prediction is wrong, which is the reason # % of instability. However, we cannot use a systematic evaluation criteria # % such as AUC, I will try using the predicted prob at first. # # % This version 3 adds the support for fuzzy clustering - one instance may # % belongs to more than one cluster. # % This updated version also outputs the predicted values of y. # % support more than 3 clusters # % normalization take place in y_pred_self and y_pred_other, thus do not # % need normalization when predict y_pred_ICE. # % ixsp is another cluster form. # # corresponds to f_dec_tab_4_bg_svm() in Matlab version # ''' # #n_clusters = len(clus) # ## dec_mat stores the prediction error. # #pred_mat=np.zeros((y.size, n_clusters+1)) #the extra col is for whole pred # # # ## k_fold of inner cross-validation # #fo_inner = 10 # # --------------------------- WHOLE ------------------------- # # # --------------------------- SELF ------------------------- def f_err_mat(X, y, clus, model): ''' Calculate the decision table corresponds to f_dec_tab_4_bg_svm() in Matlab version ''' n_clusters = len(clus) # err_mat stores the prediction error. pred_prob_mat=np.zeros((y.size, n_clusters+1)) #the extra col is for whole pred # col 0 to col n_clusters-1 store the predictions by each cluster # the last col stores the pred by whole data #models = [] # k_fold of inner cross-validation fo_inner = 5 # --------------------------- WHOLE ------------------------- # Predict each cluster using the whole data. model_whole = copy.deepcopy(model) y_pred_whole = f_k_fo(X, y, model_whole, fo_inner) model_whole.fit(X, y) # fit a model using all data rather than only a fold pred_prob_mat[:, n_clusters] = y_pred_whole print (' Done evaluation using whole instances') print (' Start to evaluate each cluster ') # --------------------------- SELF ------------------------- # predict the whole instances using each cluster data, while self # prediction using 10-fold CV. [y_pred_multi, models] = f_use_each_clus_forWhole(X, y, clus, \ y_pred_whole, model, fo_inner) print (' Done evaluation using each cluster') models.append(model_whole) pred_prob_mat[:, 0:n_clusters] = y_pred_multi # make a tmp array a stores y tmp = np.matlib.repmat(y.reshape((y.size, 1)), 1, n_clusters+1) err_mat = abs(pred_prob_mat - tmp ) print (' Done calculating error table and fitting ICE models') return [err_mat, models] """ #mat = scipy.io.loadmat('/Volumes/Macintosh_HD/Users/zg/bio/3_ensembF/'+\ # '3_scripts/2017_4_4/data/names.mat')['names'] #mat = io.loadmat('/Users/zg/Desktop/a.mat')['names'] #test pa = '/Volumes/Macintosh_HD/Users/zg/bio/3_ensembF/3_scripts/2017_4_4/' X = scipy.io.loadmat(pa+'/data/data_all_pickle/30/data.mat')['X'] # 30:breast cancer y = scipy.io.loadmat(pa+'/data/data_all_pickle/30/data.mat')['y'] #X = scipy.io.loadmat(pa+'/data/data_all_pickle/11/data.mat')['X'] # 11:mesothelioma #y = scipy.io.loadmat(pa+'/data/data_all_pickle/11/data.mat')['y'] n_clus = 3 clus = f_fuzzy_rwr_clusters(X, n_clus) tfs = f_clus_to_tfs(clus, len(X)) y = y.astype(float) #model = BaggingClassifier(base_estimator = tree.DecisionTreeClassifier(), \ #model = BaggingClassifier(base_estimator = svm.LinearSVR(), \ #model = BaggingClassifier(base_estimator = svm.LinearSVC(), \ model = BaggingClassifier(base_estimator = svm.SVC(kernel='linear'), \ random_state=None, n_estimators = 100 ) [err_mat, models] = f_err_mat(X, y, clus, model) """ def f_err_2_decMat(err_mat, tfs, adv_whole=0.4, adv_self=0.5): ''' Convert the err table to decision table. ''' dec_mat = np.zeros(( len(err_mat), err_mat[0].size-1 ), dtype=bool) # dec_ixs: for each instance, which clusters should be used. dec_ixs = [] inst_clus = f_tfs_2_instClus(tfs) for i in range(0, len(err_mat)): # Matlab code: #dec_row = dec_mat(cur_nb_ix, :); #dec_row(:, end ) = dec_row(:, end ) - adv_whole; #dec_row(:, clus_id) = dec_row(:, clus_id) - adv_self; row = np.copy( err_mat[i, :] ) #print row row[-1] = row[-1] - adv_whole inst_i_clus = inst_clus[i] if len(inst_i_clus) > 0: row[inst_i_clus] = row[inst_i_clus] - adv_self #print row ix_good_clus = list( np.where( row < row[-1] ) [0] ) #print ix_good_clus if len(ix_good_clus) > 0: dec_mat[i, ix_good_clus] = True dec_ixs.append(ix_good_clus) else: dec_ixs.append([]) return [dec_mat, dec_ixs] #[dec_mat, dec_ixs] = f_err_2_decMat(err_mat, tfs) def f_ICE_tr_te_all_clus(X_tr, X_te, clus, models, doNorm=True): ''' Use the training data to predict the testing data. Use whole training data to predict Use each cluster of training data to predict the testing data. ''' y_pred_all = np.zeros(( len(X_te), len(clus) + 1 )) # the first col is the prediction using the whole data model_whole = models[-1] y_pred_all[:, 0] = f_te(X_te, model_whole) #y_pred_all[:, 0] = f_tr_te(X_tr, y_tr, X_te, model) #print 'whole model good ' # start from the second col, the result is by each cluster for i in range(0, len(clus)): #Xi = X_tr[clus[i].flatten(), :] #yi = y_tr[clus[i].flatten() ] model_i = models[i] #model_a_clust = copy.deepcopy(model) try: y_pred_te = f_te(X_te, model_i) except : if model_i == 0: y_pred_te = np.zeros(len(X_te)) elif model_i == 1: y_pred_te = np.ones(len(X_te)) else: y_pred_te = np.zeros(len(X_te)) y_pred_te.fill(np.nan) #except NotFittedError as e: # print(repr(e)) # y_pred_te = np.zeros(len(X_te)) # y_pred_te.fill(np.nan) #print 'model '+str(i)+' good ' #y_pred_te = f_tr_te(Xi, yi, X_te, model) if doNorm == True: templete = y_pred_all[:, 0] target = y_pred_te y_pred = f_quantileNorm(templete, target) else: y_pred = y_pred_te y_pred_all[:, i+1] = y_pred return y_pred_all # test #y_pred_all = f_ICE_tr_te_all_clus(X, X, clus, model) def f_ICE_fit(X_tr, y_tr, n_clus, model, w=0.4, s=0.5): ''' ''' # rwr based fuzzy clustering clus = f_fuzzy_rwr_clusters(X_tr, n_clus) #print clus[0] tfs = f_clus_to_tfs(clus, len(X_tr)) # train models and calculate the error-dicision tables y_tr = y_tr.astype(float) #model = BaggingClassifier(base_estimator = svm.SVC(kernel='linear'), \ # random_state=None, n_estimators = 100 ) [err_mat, models] = f_err_mat(X_tr, y_tr, clus, model) [dec_mat, dec_ixs] = f_err_2_decMat(err_mat, tfs, w, s) print (' Done calucating decision table') return [clus, models, dec_ixs] #def_deal_miss_v_1(d): ''' deal with missing values by replacing them by mean. ''' def f_ICE_fit_2(X_tr, y_tr, n_clus, model, w=0.4, s=0.5): ''' This version use the err mat to re-clustering ''' # rwr based fuzzy clustering clus = f_fuzzy_rwr_clusters(X_tr, n_clus) #print clus[0] tfs = f_clus_to_tfs(clus, len(X_tr)) # train models and calculate the error-dicision tables y_tr = y_tr.astype(float) #model = BaggingClassifier(base_estimator = svm.SVC(kernel='linear'), \ # random_state=None, n_estimators = 100 ) [err_mat, models] = f_err_mat(X_tr, y_tr, clus, model) # ******************** re-clustering ******************** n_iter = 2 for i in range(0, n_iter): clus = f_fuzzy_rwr_clusters(err_mat, n_clus) tfs = f_clus_to_tfs(clus, len(X_tr)) [err_mat, models] = f_err_mat(X_tr, y_tr, clus, model) # ******************************************************* [dec_mat, dec_ixs] = f_err_2_decMat(err_mat, tfs, w, s) print (' Done calucating decision table') return [clus, models, dec_ixs] def f_ICE_pred(X_tr, y_tr, X_te, clus, dec_ixs, models,N=5,alpha=1,beta=1): ''' clus and inst_clus contains the same information that clus is the instances ids for each cluster, while inst_clus stores that for each instance, which cluster(s) it belongs to. dec_ixs stores the good cluster(s) for each instance, which may include even a remote cluster. each instance in dec_ixs does not contain the whole set of instances. ''' # the first col is the prediction using the whole data # start from the second col, the result is by each cluster y_pred_all = f_ICE_tr_te_all_clus(X_tr, X_te, clus, models) y_pred_ICE = np.zeros( len(X_te) ) neighbour_mat = f_eu_dist2(X_tr, X_te) # ---------- for each testing instance ---------- #n_partials = np.zeros( len(X_te) ) #n_wholes = np.zeros( len(X_te) ) for j in range(0, len(X_te) ): # for each testing instance # find the top 10 neighbors for each test instance neighbour_col = neighbour_mat[:, j].flatten() ix = np.argsort(neighbour_col ) ix = ix[::-1] ix_top_neighbors = ix[0:N] #print 'testing inst ' + str(j) #print ' ix of top neighbors:' #print ix_top_neighbors # ---------- find all neighbors' picks ---------- clus_ids_to_use = [] nei_labels = [] for cur_nb in range(0, N): # for each neighbour # find each neighbour's pick cur_nb_ix = ix_top_neighbors[cur_nb] clus_id_to_use = list( dec_ixs[cur_nb_ix] ) clus_ids_to_use = clus_ids_to_use + clus_id_to_use # also find neighbor's label. maybe will be used later as KNN pred # instead of using whole to pred. nei_labels = nei_labels + list( y_tr[cur_nb_ix] ) #print ' clus_ids_to_use:' #print clus_ids_to_use # cluster id + 1 to make the ix fit the col id in y_pred_all a = clus_ids_to_use a = list( np.array(a) + 1 ) clus_ids_to_use = a # number of partial models used n_partial = len(clus_ids_to_use) # number of whole models used, based on parameters alpha, beta and N. n_whole = int( round( alpha*n_partial + beta*N ) ) clus_ids_to_use = clus_ids_to_use + [0] * n_whole #print ' clus_ids_to_use:' #print clus_ids_to_use #print nei_labels y_pred_ICE[j] = np.nanmean(y_pred_all[j, clus_ids_to_use]) print ('Done predicting testing instances.') return y_pred_ICE # test # pa = '/Volumes/Macintosh_HD/Users/zg/bio/3_ensembF/3_scripts/2017_4_4/' # pa = '/Users/zg/Dropbox/bio/ICE_2018/' # pa = './' pa = 'C:/Users/zg/Dropbox/bio/ICE_2018/' n_clus = 100 w = 0.4 s = 0.5 N = 5 alpha = 1 beta = 1 k_fold = 10 aucs_ICE = [] aucs_whole = [] # f_res = pa + 'data/res_ICE_bg_svm_1_iter.txt' #f_res = pa + 'data/res_ICE_bg_svm_py.txt' f_res = pa + 'data/res_ICE_SVM_py.txt' f = open(f_res, 'w') #for j in range(1, 50): for j in range(1, 49): try: X = scipy.io.loadmat(pa+'data/data_all/'+str(j)+'/data.mat')['X'] # 30:breast cancer y = scipy.io.loadmat(pa+'data/data_all/'+str(j)+'/data.mat')['y'] #X = scipy.io.loadmat(pa+'/data/data_all_pickle/30/data.mat')['X'] # 30:breast cancer #y = scipy.io.loadmat(pa+'/data/data_all_pickle/30/data.mat')['y'] #X = scipy.io.loadmat(pa+'/data/data_all_pickle/37/data.mat')['X'] # 37:congress #y = scipy.io.loadmat(pa+'/data/data_all_pickle/37/data.mat')['y'] #imgplot = plt.imshow(ori_graph, interpolation='nearest', aspect='auto') #plt.show() #sim = np.corrcoef(X) #np.fill_diagonal(sim, 0) #n_clus = 100 #model = BaggingClassifier(base_estimator = svm.SVC(kernel='linear'), \ # random_state=None, n_estimators = 100 ) model = svm.SVC(kernel='linear', probability = True) skf = StratifiedKFold(n_splits=k_fold) skf.get_n_splits(X, y) y_preds_ICE = np.zeros( y.size ) y_preds_whole = np.zeros( y.size ) fold_i = 1 for train_index, test_index in skf.split(X, y): # print("TRAIN:", train_index, "TEST:", test_index) X_tr, X_te = X[train_index], X[test_index] y_tr, y_te = y[train_index], y[test_index] [clus, models, dec_ixs] = f_ICE_fit(X_tr, y_tr, n_clus, model, w, s) #[clus, models, dec_ixs] = f_ICE_fit_2(X_tr, y_tr, n_clus, model, w, s) y_pred_ICE = f_ICE_pred(X_tr, y_tr, X_te, clus, dec_ixs, models,N,alpha,beta) y_preds_ICE[test_index] = y_pred_ICE y_pred_whole = f_tr_te(X_tr, y_tr, X_te, model) y_preds_whole[test_index] = y_pred_whole print( j) print( 'fold ' + str(fold_i) + ' finished') fold_i = fold_i + 1 auc_ICE = roc_auc_score(y.flatten(), y_preds_ICE.flatten() ) auc_whole = roc_auc_score(y.flatten(), y_preds_whole.flatten() ) print (auc_ICE, auc_whole) aucs_ICE.append(auc_ICE) aucs_whole.append(auc_whole) f.write(str(j) + '\t' + str(auc_ICE) + ' \t ' + str(auc_whole) + '\n') except: continue
[ "sklearn.model_selection.StratifiedKFold", "numpy.array", "numpy.argsort", "numpy.nanmean", "copy.deepcopy", "numpy.where", "numpy.float64", "numpy.sort", "numpy.argmin", "numpy.eye", "numpy.argmax", "numpy.fill_diagonal", "numpy.finfo", "sklearn.svm.SVC", "numpy.copy", "numpy.unique", "numpy.logical_or", "numpy.sum", "numpy.zeros", "numpy.argwhere", "scipy.spatial.distance.euclidean" ]
[((4652, 4676), 'numpy.fill_diagonal', 'np.fill_diagonal', (['sim', '(0)'], {}), '(sim, 0)\n', (4668, 4676), True, 'import numpy as np\n'), ((5076, 5111), 'numpy.logical_or', 'np.logical_or', (['aRankNet', 'aRankNet.T'], {}), '(aRankNet, aRankNet.T)\n', (5089, 5111), True, 'import numpy as np\n'), ((5200, 5233), 'numpy.fill_diagonal', 'np.fill_diagonal', (['aRankNet', '(False)'], {}), '(aRankNet, False)\n', (5216, 5233), True, 'import numpy as np\n'), ((6446, 6468), 'numpy.sum', 'np.sum', (['rw_mat'], {'axis': '(1)'}), '(rw_mat, axis=1)\n', (6452, 6468), True, 'import numpy as np\n'), ((6536, 6548), 'numpy.argmax', 'np.argmax', (['a'], {}), '(a)\n', (6545, 6548), True, 'import numpy as np\n'), ((7966, 7990), 'numpy.fill_diagonal', 'np.fill_diagonal', (['sim', '(0)'], {}), '(sim, 0)\n', (7982, 7990), True, 'import numpy as np\n'), ((9931, 9954), 'numpy.fill_diagonal', 'np.fill_diagonal', (['rw', '(0)'], {}), '(rw, 0)\n', (9947, 9954), True, 'import numpy as np\n'), ((10224, 10254), 'numpy.fill_diagonal', 'np.fill_diagonal', (['rw_net', '(True)'], {}), '(rw_net, True)\n', (10240, 10254), True, 'import numpy as np\n'), ((10679, 10700), 'numpy.array', 'np.array', (['ixs_centers'], {}), '(ixs_centers)\n', (10687, 10700), True, 'import numpy as np\n'), ((13295, 13315), 'copy.deepcopy', 'copy.deepcopy', (['model'], {}), '(model)\n', (13308, 13315), False, 'import copy\n'), ((13802, 13822), 'copy.deepcopy', 'copy.deepcopy', (['model'], {}), '(model)\n', (13815, 13822), False, 'import copy\n'), ((14187, 14203), 'numpy.zeros', 'np.zeros', (['y.size'], {}), '(y.size)\n', (14195, 14203), True, 'import numpy as np\n'), ((14219, 14284), 'sklearn.model_selection.StratifiedKFold', 'StratifiedKFold', ([], {'n_splits': 'k_fold', 'random_state': 'None', 'shuffle': '(True)'}), '(n_splits=k_fold, random_state=None, shuffle=True)\n', (14234, 14284), False, 'from sklearn.model_selection import StratifiedKFold\n'), ((16031, 16067), 'numpy.argsort', 'np.argsort', (['target'], {'kind': '"""mergesort"""'}), "(target, kind='mergesort')\n", (16041, 16067), True, 'import numpy as np\n'), ((16086, 16124), 'numpy.argsort', 'np.argsort', (['templete'], {'kind': '"""mergesort"""'}), "(templete, kind='mergesort')\n", (16096, 16124), True, 'import numpy as np\n'), ((17127, 17157), 'numpy.zeros', 'np.zeros', (['(y.size, n_clusters)'], {}), '((y.size, n_clusters))\n', (17135, 17157), True, 'import numpy as np\n'), ((21893, 21927), 'numpy.zeros', 'np.zeros', (['(y.size, n_clusters + 1)'], {}), '((y.size, n_clusters + 1))\n', (21901, 21927), True, 'import numpy as np\n'), ((22300, 22320), 'copy.deepcopy', 'copy.deepcopy', (['model'], {}), '(model)\n', (22313, 22320), False, 'import copy\n'), ((2091, 2100), 'numpy.eye', 'np.eye', (['n'], {}), '(n)\n', (2097, 2100), True, 'import numpy as np\n'), ((4734, 4767), 'numpy.argsort', 'np.argsort', (['sim'], {'kind': '"""mergesort"""'}), "(sim, kind='mergesort')\n", (4744, 4767), True, 'import numpy as np\n'), ((6683, 6702), 'numpy.sum', 'np.sum', (['tmp'], {'axis': '(1)'}), '(tmp, axis=1)\n', (6689, 6702), True, 'import numpy as np\n'), ((6784, 6796), 'numpy.argmin', 'np.argmin', (['b'], {}), '(b)\n', (6793, 6796), True, 'import numpy as np\n'), ((6971, 6983), 'numpy.sort', 'np.sort', (['tmp'], {}), '(tmp)\n', (6978, 6983), True, 'import numpy as np\n'), ((10535, 10551), 'numpy.argsort', 'np.argsort', (['lens'], {}), '(lens)\n', (10545, 10551), True, 'import numpy as np\n'), ((17338, 17358), 'copy.deepcopy', 'copy.deepcopy', (['model'], {}), '(model)\n', (17351, 17358), False, 'import copy\n'), ((24935, 24957), 'numpy.copy', 'np.copy', (['err_mat[i, :]'], {}), '(err_mat[i, :])\n', (24942, 24957), True, 'import numpy as np\n'), ((30166, 30191), 'numpy.argsort', 'np.argsort', (['neighbour_col'], {}), '(neighbour_col)\n', (30176, 30191), True, 'import numpy as np\n'), ((31645, 31687), 'numpy.nanmean', 'np.nanmean', (['y_pred_all[j, clus_ids_to_use]'], {}), '(y_pred_all[j, clus_ids_to_use])\n', (31655, 31687), True, 'import numpy as np\n'), ((33134, 33176), 'sklearn.svm.SVC', 'svm.SVC', ([], {'kernel': '"""linear"""', 'probability': '(True)'}), "(kernel='linear', probability=True)\n", (33141, 33176), False, 'from sklearn import svm\n'), ((33202, 33234), 'sklearn.model_selection.StratifiedKFold', 'StratifiedKFold', ([], {'n_splits': 'k_fold'}), '(n_splits=k_fold)\n', (33217, 33234), False, 'from sklearn.model_selection import StratifiedKFold\n'), ((33297, 33313), 'numpy.zeros', 'np.zeros', (['y.size'], {}), '(y.size)\n', (33305, 33313), True, 'import numpy as np\n'), ((33340, 33356), 'numpy.zeros', 'np.zeros', (['y.size'], {}), '(y.size)\n', (33348, 33356), True, 'import numpy as np\n'), ((7860, 7890), 'scipy.spatial.distance.euclidean', 'distance.euclidean', (['X[i]', 'X[j]'], {}), '(X[i], X[j])\n', (7878, 7890), False, 'from scipy.spatial import distance\n'), ((8283, 8315), 'scipy.spatial.distance.euclidean', 'distance.euclidean', (['X1[i]', 'X2[j]'], {}), '(X1[i], X2[j])\n', (8301, 8315), False, 'from scipy.spatial import distance\n'), ((9365, 9395), 'scipy.spatial.distance.euclidean', 'distance.euclidean', (['X[i]', 'X[j]'], {}), '(X[i], X[j])\n', (9383, 9395), False, 'from scipy.spatial import distance\n'), ((3839, 3854), 'numpy.finfo', 'np.finfo', (['float'], {}), '(float)\n', (3847, 3854), True, 'import numpy as np\n'), ((4812, 4843), 'numpy.argsort', 'np.argsort', (['I'], {'kind': '"""mergesort"""'}), "(I, kind='mergesort')\n", (4822, 4843), True, 'import numpy as np\n'), ((10314, 10352), 'numpy.argwhere', 'np.argwhere', (['rw_net[:, ixs_centers[i]]'], {}), '(rw_net[:, ixs_centers[i]])\n', (10325, 10352), True, 'import numpy as np\n'), ((12060, 12079), 'numpy.where', 'np.where', (['tfs[i, :]'], {}), '(tfs[i, :])\n', (12068, 12079), True, 'import numpy as np\n'), ((14585, 14600), 'numpy.unique', 'np.unique', (['y_tr'], {}), '(y_tr)\n', (14594, 14600), True, 'import numpy as np\n'), ((19729, 19745), 'numpy.zeros', 'np.zeros', (['y.size'], {}), '(y.size)\n', (19737, 19745), True, 'import numpy as np\n'), ((19969, 19985), 'numpy.zeros', 'np.zeros', (['y.size'], {}), '(y.size)\n', (19977, 19985), True, 'import numpy as np\n'), ((25210, 25233), 'numpy.where', 'np.where', (['(row < row[-1])'], {}), '(row < row[-1])\n', (25218, 25233), True, 'import numpy as np\n'), ((31185, 31196), 'numpy.array', 'np.array', (['a'], {}), '(a)\n', (31193, 31196), True, 'import numpy as np\n'), ((14784, 14799), 'numpy.unique', 'np.unique', (['y_tr'], {}), '(y_tr)\n', (14793, 14799), True, 'import numpy as np\n'), ((17472, 17485), 'numpy.unique', 'np.unique', (['yj'], {}), '(yj)\n', (17481, 17485), True, 'import numpy as np\n'), ((19468, 19484), 'numpy.zeros', 'np.zeros', (['y.size'], {}), '(y.size)\n', (19476, 19484), True, 'import numpy as np\n'), ((19854, 19867), 'numpy.unique', 'np.unique', (['yj'], {}), '(yj)\n', (19863, 19867), True, 'import numpy as np\n'), ((20126, 20139), 'numpy.unique', 'np.unique', (['yj'], {}), '(yj)\n', (20135, 20139), True, 'import numpy as np\n'), ((20014, 20027), 'numpy.unique', 'np.unique', (['yj'], {}), '(yj)\n', (20023, 20027), True, 'import numpy as np\n'), ((3443, 3456), 'numpy.float64', 'np.float64', (['A'], {}), '(A)\n', (3453, 3456), True, 'import numpy as np\n')]
######################### ######################### # Need to account for limit in input period ######################### ######################### # Baseline M67 long script -- NO crowding # New script copied from quest - want to take p and ecc from each population (all, obs, rec) and put them into separate file # Doing this so we don't have to run analyse each time # Can write separate script for p-ecc plots # Quest paths in this version of script import pandas as pd import numpy as np import os from astropy.coordinates import SkyCoord from astropy import units, constants from astropy.modeling import models, fitting import scipy.stats from scipy.integrate import quad #for Quest import matplotlib matplotlib.use('Agg') doIndividualPlots = True from matplotlib import pyplot as plt def file_len(fname): i = 0 with open(fname) as f: for i, l in enumerate(f): pass return i + 1 def getPhs(sigma, m1=1*units.solMass, m2=1*units.solMass, m3=0.5*units.solMass): Phs = np.pi*constants.G/np.sqrt(2.)*(m1*m2/m3)**(3./2.)*(m1 + m2)**(-0.5)*sigma**(-3.) return Phs.decompose().to(units.day) #similar to field, but limiting by the hard-soft boundary def fitRagfb(): x = [0.05, 0.1, 1, 8, 15] #estimates of midpoints in bins, and using this: https://sites.uni.edu/morgans/astro/course/Notes/section2/spectralmasses.html y = [0.20, 0.35, 0.50, 0.70, 0.75] init = models.PowerLaw1D(amplitude=0.5, x_0=1, alpha=-1.) fitter = fitting.LevMarLSQFitter() fit = fitter(init, x, y) return fit def RagNormal(x, cdf = False): mean = 5.03 std = 2.28 if (cdf): return scipy.stats.norm.cdf(x,mean,std) return scipy.stats.norm.pdf(x,mean,std) def saveHist(histAll, histObs, histRec, bin_edges, xtitle, fname, filters = ['u_', 'g_', 'r_', 'i_', 'z_', 'y_','all']): c1 = '#5687A6' #Dali Blue (Andrew's AAS Poster) c2 = '#A62B1F' #Dai Red c3 = '#BF8A26' #Dali Beige fig,ax1 = plt.subplots(figsize=(8,6), sharex=True)#can change to include cdf with ax1, ax2 histAll = np.insert(histAll,0,0) histObs = np.insert(histObs,0,0) for f in filters: histRec[f] = np.insert(histRec[f],0,0) #PDF ax1.step(bin_edges, histAll/np.sum(histAll), color=c1) ax1.step(bin_edges, histObs/np.sum(histObs), color=c2) for f in filters: lw = 1 if (f == 'all'): lw = 0.5 ax1.step(bin_edges, histRec[f]/np.sum(histRec[f]), color=c3, linewidth=lw) ax1.set_ylabel('PDF') ax1.set_yscale('log') ax1.set_title('Globular Clusters - Baseline', fontsize = 16) ax1.set_xlabel(xtitle) #CDF #cdfAll = [] #cdfObs = [] #cdfRec = dict() #for f in filters: # cdfRec[f] = [] # for i in range(len(histAll)): # cdfAll.append(np.sum(histAll[:i])/np.sum(histAll)) # for i in range(len(histObs)): # cdfObs.append(np.sum(histObs[:i])/np.sum(histObs)) # for f in filters: # for i in range(len(histRec[f])): # cdfRec[f].append(np.sum(histRec[f][:i])/np.sum(histRec[f])) #ax2.step(bin_edges, cdfAll, color=c1) #ax2.step(bin_edges, cdfObs, color=c2) #for f in filters: # lw = 1 # if (f == 'all'): # lw = 0.5 # ax2.step(bin_edges, cdfRec[f], color=c3, linewidth=lw) #ax2.set_ylabel('CDF') #ax2.set_xlabel(xtitle) fig.subplots_adjust(hspace=0) fig.savefig('./plots/' + fname+'.pdf',format='pdf', bbox_inches = 'tight') #write to a text file with open('./eblsst_files/' + fname+'.csv','w') as fl: outline = 'binEdges,histAll,histObs' for f in filters: outline += ','+f+'histRec' outline += '\n' fl.write(outline) for i in range(len(bin_edges)): outline = str(bin_edges[i])+','+str(histAll[i])+','+str(histObs[i]) for f in filters: outline += ','+str(histRec[f][i]) outline += '\n' fl.write(outline) if __name__ == "__main__": filters = ['u_', 'g_', 'r_', 'i_', 'z_', 'y_', 'all'] #get the Raghavan binary fraction fit fbFit= fitRagfb() print(fbFit) #to normalize intAll, err = quad(RagNormal, -20, 20) intCut, err = quad(RagNormal, -20, np.log10(365*10.)) intNorm = intCut/intAll #cutoff in percent error for "recovered" Pcut = 0.1 #assumed mean stellar mass mMean = 0.5 #minimum number of lines to consider in file Nlim = 3 if (doIndividualPlots): fmass, axmass = plt.subplots() fqrat, axqrat = plt.subplots() fecc, axecc = plt.subplots() flper, axlper = plt.subplots() fdist, axdist = plt.subplots() fmag, axmag = plt.subplots() frad, axrad = plt.subplots() #bins for all the histograms Nbins = 25 mbins = np.arange(0,10, 0.1, dtype='float') qbins = np.arange(0,1, 0.1, dtype='float') ebins = np.arange(0, 1.05, 0.05, dtype='float') lpbins = np.arange(-2, 10, 0.5, dtype='float') dbins = np.arange(0, 40, 1, dtype='float') magbins = np.arange(11, 25, 1, dtype='float') rbins = np.arange(0, 100, 0.2, dtype='float') #blanks for the histograms #All m1hAll = np.zeros_like(mbins)[1:] qhAll = np.zeros_like(qbins)[1:] ehAll = np.zeros_like(ebins)[1:] lphAll = np.zeros_like(lpbins)[1:] dhAll = np.zeros_like(dbins)[1:] maghAll = np.zeros_like(magbins)[1:] rhAll = np.zeros_like(rbins)[1:] #Observable m1hObs = np.zeros_like(mbins)[1:] qhObs = np.zeros_like(qbins)[1:] ehObs = np.zeros_like(ebins)[1:] lphObs = np.zeros_like(lpbins)[1:] dhObs = np.zeros_like(dbins)[1:] maghObs = np.zeros_like(magbins)[1:] rhObs = np.zeros_like(rbins)[1:] #Recovered m1hRec = dict() qhRec = dict() ehRec = dict() lphRec = dict() dhRec = dict() maghRec = dict() rhRec = dict() for f in filters: m1hRec[f] = np.zeros_like(mbins)[1:] qhRec[f] = np.zeros_like(qbins)[1:] ehRec[f] = np.zeros_like(ebins)[1:] lphRec[f] = np.zeros_like(lpbins)[1:] dhRec[f] = np.zeros_like(dbins)[1:] maghRec[f] = np.zeros_like(magbins)[1:] rhRec[f] = np.zeros_like(rbins)[1:] RA = [] Dec = [] recFrac = [] recN = [] rawN = [] obsN = [] fileN = [] fileObsN = [] fileRecN = [] allNPrsa = [] obsNPrsa = [] recNPrsa = [] # Lists for period and eccentricity for Andrew's circularization plots eccAll = [] eccObs = [] eccRec = [] pAll = [] pObs = [] pRec = [] # Using prsa dataframes for these lists because of period cutoff at 1000 days # Dataframes to write to files later; 3 files for each sub-population - append everything to these peccAll = pd.DataFrame(columns = ['e', 'p']) peccObs = pd.DataFrame(columns = ['e', 'p']) peccRec = pd.DataFrame(columns = ['e', 'p']) #Read in all the data and make the histograms d = "./input_files/" files = os.listdir(d) IDs = [] for i, f in enumerate(files): print(round(i/len(files),4), f) fl = file_len(d+f) if (fl >= 4): #read in the header header = pd.read_csv(d+f, nrows=1) ###################### #NEED TO ACCOUNT FOR THE BINARY FRACTION when combining histograms ##################### Nmult = header['clusterMass'][0]/mMean #Nmult = 1. RA.append(header['OpSimRA']) Dec.append(header['OpSimDec']) #read in rest of the file data = pd.read_csv(d+f, header = 2).fillna(-999) rF = 0. rN = 0. Nrec = 0. Nobs = 0. raN = 0. obN = 0. fiN = 0. fioN = 0. firN = 0. NallPrsa = 0. NobsPrsa = 0. NrecPrsa = 0. Nall = len(data.index)/intNorm ###is this correct? (and the only place I need to normalize?) prsa = data.loc[(data['appMagMean_r'] <= 19.5) & (data['appMagMean_r'] > 15.8) & (data['p'] < 1000) & (data['p'] > 0.5)] # Appending for Andrew eccAll.append(prsa['e'].values) pAll.append(prsa['p'].values) NallPrsa = len(prsa.index) if (Nall >= Nlim): #create histograms #All m1hAll0, m1b = np.histogram(data["m1"], bins=mbins) qhAll0, qb = np.histogram(data["m2"]/data["m1"], bins=qbins) ehAll0, eb = np.histogram(data["e"], bins=ebins) lphAll0, lpb = np.histogram(np.ma.log10(data["p"].values).filled(-999), bins=lpbins) dhAll0, db = np.histogram(data["d"], bins=dbins) maghAll0, magb = np.histogram(data["appMagMean_r"], bins=magbins) rhAll0, rb = np.histogram(data["r2"]/data["r1"], bins=rbins) if (doIndividualPlots): axmass.step(m1b[0:-1], m1hAll0/np.sum(m1hAll0), color='black', alpha=0.1) axqrat.step(qb[0:-1], qhAll0/np.sum(qhAll0), color='black', alpha=0.1) axecc.step(eb[0:-1], ehAll0/np.sum(ehAll0), color='black', alpha=0.1) axlper.step(lpb[0:-1], lphAll0/np.sum(lphAll0), color='black', alpha=0.1) axdist.step(db[0:-1], dhAll0/np.sum(dhAll0), color='black', alpha=0.1) axmag.step(magb[0:-1], maghAll0/np.sum(maghAll0), color='black', alpha=0.1) axrad.step(rb[0:-1], rhAll0/np.sum(rhAll0), color='black', alpha=0.1) #account for the binary fraction, as a function of mass dm1 = np.diff(m1b) m1val = m1b[:-1] + dm1/2. fb = np.sum(m1hAll0/len(data.index)*fbFit(m1val)) #account for the hard-soft boundary Phs = getPhs(header['clusterVdisp'].iloc[0]*units.km/units.s).to(units.day).value fb *= RagNormal(np.log10(Phs), cdf = True) print("fb, Phs = ", fb, Phs) Nmult *= fb m1hAll += m1hAll0/Nall*Nmult qhAll += qhAll0/Nall*Nmult ehAll += ehAll0/Nall*Nmult lphAll += lphAll0/Nall*Nmult dhAll += dhAll0/Nall*Nmult maghAll += maghAll0/Nall*Nmult rhAll += rhAll0/Nall*Nmult #Obs obs = data.loc[data['LSM_PERIOD'] != -999] Nobs = len(obs.index) prsaObs = data.loc[(data['appMagMean_r'] <= 19.5) & (data['appMagMean_r'] > 15.8) & (data['p'] < 1000) & (data['p'] >0.5) & (data['LSM_PERIOD'] != -999)] NobsPrsa = len(prsaObs.index) # Appending for Andrew's files eccObs.append(prsaObs['e'].values) pObs.append(prsaObs['p'].values) if (Nobs >= Nlim): m1hObs0, m1b = np.histogram(obs["m1"], bins=mbins) qhObs0, qb = np.histogram(obs["m2"]/obs["m1"], bins=qbins) ehObs0, eb = np.histogram(obs["e"], bins=ebins) lphObs0, lpb = np.histogram(np.ma.log10(obs["p"].values).filled(-999), bins=lpbins) dhObs0, db = np.histogram(obs["d"], bins=dbins) maghObs0, magb = np.histogram(obs["appMagMean_r"], bins=magbins) rhObs0, rb = np.histogram(obs["r2"]/obs["r1"], bins=rbins) m1hObs += m1hObs0/Nall*Nmult qhObs += qhObs0/Nall*Nmult ehObs += ehObs0/Nall*Nmult lphObs += lphObs0/Nall*Nmult dhObs += dhObs0/Nall*Nmult maghObs += maghObs0/Nall*Nmult rhObs += rhObs0/Nall*Nmult #Rec recCombined = pd.DataFrame() prsaRecCombined = pd.DataFrame() for filt in filters: key = filt+'LSS_PERIOD' if (filt == 'all'): key = 'LSM_PERIOD' fullP = abs(data[key] - data['p'])/data['p'] halfP = abs(data[key] - 0.5*data['p'])/(0.5*data['p']) twiceP = abs(data[key] - 2.*data['p'])/(2.*data['p']) rec = data.loc[(data[key] != -999) & ( (fullP < Pcut) | (halfP < Pcut) | (twiceP < Pcut))] prsaRec = data.loc[(data['appMagMean_r'] <= 19.5) & (data['appMagMean_r'] >15.8) & (data['p'] < 1000) & (data['p'] >0.5) & (data['LSM_PERIOD'] != -999) & ( (fullP < Pcut) | (halfP < Pcut) | (twiceP < Pcut))] Nrec = len(rec.index) #I'd like to account for all filters here to have more accurate numbers recCombined = recCombined.append(rec) prsaRecCombined = prsaRecCombined.append(prsaRec) # Going to use prsaRecCombined for ecc-p plots to account for all filters eccRec.append(prsaRec['e'].values) pRec.append(prsaRec['p'].values) if (filt == 'all'): recCombined.drop_duplicates(inplace=True) prsaRecCombined.drop_duplicates(inplace=True) if (Nrec >= Nlim): m1hRec0, m1b = np.histogram(rec["m1"], bins=mbins) qhRec0, qb = np.histogram(rec["m2"]/rec["m1"], bins=qbins) ehRec0, eb = np.histogram(rec["e"], bins=ebins) lphRec0, lpb = np.histogram(np.ma.log10(rec["p"].values).filled(-999), bins=lpbins) dhRec0, db = np.histogram(rec["d"], bins=dbins) maghRec0, magb = np.histogram(rec["appMagMean_r"], bins=magbins) rhRec0, rb = np.histogram(rec["r2"]/rec["r1"], bins=rbins) m1hRec[filt] += m1hRec0/Nall*Nmult qhRec[filt] += qhRec0/Nall*Nmult ehRec[filt] += ehRec0/Nall*Nmult lphRec[filt] += lphRec0/Nall*Nmult dhRec[filt] += dhRec0/Nall*Nmult maghRec[filt] += maghRec0/Nall*Nmult rhRec[filt] += rhRec0/Nall*Nmult #for the mollweide if (filt == 'all'): Nrec = len(recCombined.index) rF = Nrec/Nall rN = Nrec/Nall*Nmult raN = Nmult obN = Nobs/Nall*Nmult fiN = Nall fioN = Nobs firN = Nrec NrecPrsa = len(prsaRecCombined.index) NrecPrsa = NrecPrsa/Nall*Nmult NobsPrsa = NobsPrsa/Nall*Nmult NallPrsa = NallPrsa/Nall*Nmult recFrac.append(rF) recN.append(rN) rawN.append(raN) obsN.append(obN) fileN.append(fiN) fileObsN.append(fioN) fileRecN.append(firN) allNPrsa.append(NallPrsa) obsNPrsa.append(NobsPrsa) recNPrsa.append(NrecPrsa) #print(np.sum(lphRec), np.sum(recN), np.sum(lphRec)/np.sum(recN), np.sum(lphRec0), Nrec, np.sum(lphRec0)/Nrec, np.sum(lphObs), np.sum(obsN), np.sum(lphObs)/np.sum(obsN)) # Concatenating p and ecc lists eccAll = np.concatenate(eccAll) eccObs = np.concatenate(eccObs) eccRec = np.concatenate(eccRec) pAll = np.concatenate(pAll) pObs = np.concatenate(pObs) pRec = np.concatenate(pRec) # print('Ecc lists:', eccAll, eccObs, eccRec) # print('P lists:', pAll, pObs, pRec) # Appending lists with all the p/ecc values to our dataframes # All dataframe peccAll['e'] = eccAll peccAll['p'] = pAll # Observable dataframe peccObs['e'] = eccObs peccObs['p'] = pObs # Recovered dataframe peccRec['e'] = eccRec peccRec['p'] = pRec # print('Final Dataframes:', peccAll, peccObs, peccRec) # print(peccRec.columns) # 3 letter code corresponds to scenario (OC/GC, baseline/colossus, crowding/no crowding) peccAll.to_csv('./pecc/all-M67BN-ecc-p.csv', header = ['e', 'p']) peccObs.to_csv('./pecc/obs-M67BN-ecc-p.csv', header = ['e', 'p']) peccRec.to_csv('./pecc/rec-M67BN-ecc-p.csv', header = ['e', 'p']) #plot and save the histograms saveHist(m1hAll, m1hObs, m1hRec, m1b, 'm1 (Msolar)', 'EBLSST_m1hist') saveHist(qhAll, qhObs, qhRec, qb, 'q (m2/m1)', 'EBLSST_qhist') saveHist(ehAll, ehObs, ehRec, eb, 'e', 'EBLSST_ehist') saveHist(lphAll, lphObs, lphRec, lpb, 'log(P [days])', 'EBLSST_lphist') saveHist(dhAll, dhObs, dhRec, db, 'd (kpc)', 'EBLSST_dhist') saveHist(maghAll, maghObs, maghRec, magb, 'mag', 'EBLSST_maghist') saveHist(rhAll, rhObs, rhRec, rb, 'r2/r1', 'EBLSST_rhist') #make the mollweide coords = SkyCoord(RA, Dec, unit=(units.degree, units.degree),frame='icrs') lGal = coords.galactic.l.wrap_at(180.*units.degree).degree bGal = coords.galactic.b.wrap_at(180.*units.degree).degree RAwrap = coords.ra.wrap_at(180.*units.degree).degree Decwrap = coords.dec.wrap_at(180.*units.degree).degree f, ax = plt.subplots(subplot_kw={'projection': "mollweide"}, figsize=(8,5)) ax.grid(True) #ax.set_xlabel(r"$l$",fontsize=16) #ax.set_ylabel(r"$b$",fontsize=16) #mlw = ax.scatter(lGal.ravel()*np.pi/180., bGal.ravel()*np.pi/180., c=np.log10(np.array(recFrac)*100.), cmap='viridis_r', s = 4) ax.set_xlabel("RA",fontsize=16) ax.set_ylabel("Dec",fontsize=16) mlw = ax.scatter(np.array(RAwrap).ravel()*np.pi/180., np.array(Decwrap).ravel()*np.pi/180., c=np.array(recFrac)*100., cmap='viridis_r', s = 4) cbar = f.colorbar(mlw, shrink=0.7) cbar.set_label(r'% recovered') f.savefig('./plots/' + 'mollweide_pct.pdf',format='pdf', bbox_inches = 'tight') f, ax = plt.subplots(subplot_kw={'projection': "mollweide"}, figsize=(8,5)) ax.grid(True) #ax.set_xlabel(r"$l$",fontsize=16) #ax.set_ylabel(r"$b$",fontsize=16) #mlw = ax.scatter(lGal.ravel()*np.pi/180., bGal.ravel()*np.pi/180., c=np.log10(np.array(recN)), cmap='viridis_r', s = 4) ax.set_xlabel("RA",fontsize=16) ax.set_ylabel("Dec",fontsize=16) mlw = ax.scatter(np.array(RAwrap).ravel()*np.pi/180., np.array(Decwrap).ravel()*np.pi/180., c=np.log10(np.array(recN)), cmap='viridis_r', s = 4) cbar = f.colorbar(mlw, shrink=0.7) cbar.set_label(r'log10(N) recovered') f.savefig('./plots/' + 'mollweide_N.pdf',format='pdf', bbox_inches = 'tight') if (doIndividualPlots): fmass.savefig('./plots/' + 'massPDFall.pdf',format='pdf', bbox_inches = 'tight') fqrat.savefig('./plots/' + 'qPDFall.pdf',format='pdf', bbox_inches = 'tight') fecc.savefig('./plots/' + 'eccPDFall.pdf',format='pdf', bbox_inches = 'tight') flper.savefig('./plots/' + 'lperPDFall.pdf',format='pdf', bbox_inches = 'tight') fdist.savefig('./plots/' + 'distPDFall.pdf',format='pdf', bbox_inches = 'tight') fmag.savefig('./plots/' + 'magPDFall.pdf',format='pdf', bbox_inches = 'tight') frad.savefig('./plots/' + 'radPDFall.pdf',format='pdf', bbox_inches = 'tight') print("###################") print("number of binaries in input files (raw, log):",np.sum(fileN), np.log10(np.sum(fileN))) print("number of binaries in tested with gatspy (raw, log):",np.sum(fileObsN), np.log10(np.sum(fileObsN))) print("number of binaries in recovered with gatspy (raw, log):",np.sum(fileRecN), np.log10(np.sum(fileRecN))) print("recovered/observable*100 with gatspy:",np.sum(fileRecN)/np.sum(fileObsN)*100.) print("###################") print("total in sample (raw, log):",np.sum(rawN), np.log10(np.sum(rawN))) print("total observable (raw, log):",np.sum(obsN), np.log10(np.sum(obsN))) print("total recovered (raw, log):",np.sum(recN), np.log10(np.sum(recN))) print("recovered/observable*100:",np.sum(recN)/np.sum(obsN)*100.) print("###################") print("total in Prsa 15.8<r<19.5 P<1000d sample (raw, log):",np.sum(allNPrsa), np.log10(np.sum(allNPrsa))) print("total observable in Prsa 15.8<r<19.5 P<1000d sample (raw, log):",np.sum(obsNPrsa), np.log10(np.sum(obsNPrsa))) print("total recovered in Prsa 15.8<r<19.5 P<1000d sample (raw, log):",np.sum(recNPrsa), np.log10(np.sum(recNPrsa))) print("Prsa 15.8<r<19.5 P<1000d rec/obs*100:",np.sum(recNPrsa)/np.sum(obsNPrsa)*100.)
[ "numpy.log10", "numpy.sqrt", "pandas.read_csv", "numpy.array", "numpy.arange", "numpy.histogram", "astropy.modeling.models.PowerLaw1D", "os.listdir", "numpy.diff", "numpy.concatenate", "pandas.DataFrame", "matplotlib.use", "scipy.integrate.quad", "astropy.modeling.fitting.LevMarLSQFitter", "numpy.insert", "astropy.coordinates.SkyCoord", "numpy.sum", "numpy.ma.log10", "numpy.zeros_like", "matplotlib.pyplot.subplots" ]
[((710, 731), 'matplotlib.use', 'matplotlib.use', (['"""Agg"""'], {}), "('Agg')\n", (724, 731), False, 'import matplotlib\n'), ((1380, 1431), 'astropy.modeling.models.PowerLaw1D', 'models.PowerLaw1D', ([], {'amplitude': '(0.5)', 'x_0': '(1)', 'alpha': '(-1.0)'}), '(amplitude=0.5, x_0=1, alpha=-1.0)\n', (1397, 1431), False, 'from astropy.modeling import models, fitting\n'), ((1441, 1466), 'astropy.modeling.fitting.LevMarLSQFitter', 'fitting.LevMarLSQFitter', ([], {}), '()\n', (1464, 1466), False, 'from astropy.modeling import models, fitting\n'), ((1895, 1936), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {'figsize': '(8, 6)', 'sharex': '(True)'}), '(figsize=(8, 6), sharex=True)\n', (1907, 1936), True, 'from matplotlib import pyplot as plt\n'), ((1988, 2012), 'numpy.insert', 'np.insert', (['histAll', '(0)', '(0)'], {}), '(histAll, 0, 0)\n', (1997, 2012), True, 'import numpy as np\n'), ((2022, 2046), 'numpy.insert', 'np.insert', (['histObs', '(0)', '(0)'], {}), '(histObs, 0, 0)\n', (2031, 2046), True, 'import numpy as np\n'), ((3834, 3858), 'scipy.integrate.quad', 'quad', (['RagNormal', '(-20)', '(20)'], {}), '(RagNormal, -20, 20)\n', (3838, 3858), False, 'from scipy.integrate import quad\n'), ((4396, 4432), 'numpy.arange', 'np.arange', (['(0)', '(10)', '(0.1)'], {'dtype': '"""float"""'}), "(0, 10, 0.1, dtype='float')\n", (4405, 4432), True, 'import numpy as np\n'), ((4441, 4476), 'numpy.arange', 'np.arange', (['(0)', '(1)', '(0.1)'], {'dtype': '"""float"""'}), "(0, 1, 0.1, dtype='float')\n", (4450, 4476), True, 'import numpy as np\n'), ((4485, 4524), 'numpy.arange', 'np.arange', (['(0)', '(1.05)', '(0.05)'], {'dtype': '"""float"""'}), "(0, 1.05, 0.05, dtype='float')\n", (4494, 4524), True, 'import numpy as np\n'), ((4535, 4572), 'numpy.arange', 'np.arange', (['(-2)', '(10)', '(0.5)'], {'dtype': '"""float"""'}), "(-2, 10, 0.5, dtype='float')\n", (4544, 4572), True, 'import numpy as np\n'), ((4582, 4616), 'numpy.arange', 'np.arange', (['(0)', '(40)', '(1)'], {'dtype': '"""float"""'}), "(0, 40, 1, dtype='float')\n", (4591, 4616), True, 'import numpy as np\n'), ((4628, 4663), 'numpy.arange', 'np.arange', (['(11)', '(25)', '(1)'], {'dtype': '"""float"""'}), "(11, 25, 1, dtype='float')\n", (4637, 4663), True, 'import numpy as np\n'), ((4673, 4710), 'numpy.arange', 'np.arange', (['(0)', '(100)', '(0.2)'], {'dtype': '"""float"""'}), "(0, 100, 0.2, dtype='float')\n", (4682, 4710), True, 'import numpy as np\n'), ((6161, 6193), 'pandas.DataFrame', 'pd.DataFrame', ([], {'columns': "['e', 'p']"}), "(columns=['e', 'p'])\n", (6173, 6193), True, 'import pandas as pd\n'), ((6207, 6239), 'pandas.DataFrame', 'pd.DataFrame', ([], {'columns': "['e', 'p']"}), "(columns=['e', 'p'])\n", (6219, 6239), True, 'import pandas as pd\n'), ((6253, 6285), 'pandas.DataFrame', 'pd.DataFrame', ([], {'columns': "['e', 'p']"}), "(columns=['e', 'p'])\n", (6265, 6285), True, 'import pandas as pd\n'), ((6367, 6380), 'os.listdir', 'os.listdir', (['d'], {}), '(d)\n', (6377, 6380), False, 'import os\n'), ((13000, 13022), 'numpy.concatenate', 'np.concatenate', (['eccAll'], {}), '(eccAll)\n', (13014, 13022), True, 'import numpy as np\n'), ((13033, 13055), 'numpy.concatenate', 'np.concatenate', (['eccObs'], {}), '(eccObs)\n', (13047, 13055), True, 'import numpy as np\n'), ((13066, 13088), 'numpy.concatenate', 'np.concatenate', (['eccRec'], {}), '(eccRec)\n', (13080, 13088), True, 'import numpy as np\n'), ((13098, 13118), 'numpy.concatenate', 'np.concatenate', (['pAll'], {}), '(pAll)\n', (13112, 13118), True, 'import numpy as np\n'), ((13127, 13147), 'numpy.concatenate', 'np.concatenate', (['pObs'], {}), '(pObs)\n', (13141, 13147), True, 'import numpy as np\n'), ((13156, 13176), 'numpy.concatenate', 'np.concatenate', (['pRec'], {}), '(pRec)\n', (13170, 13176), True, 'import numpy as np\n'), ((14422, 14488), 'astropy.coordinates.SkyCoord', 'SkyCoord', (['RA', 'Dec'], {'unit': '(units.degree, units.degree)', 'frame': '"""icrs"""'}), "(RA, Dec, unit=(units.degree, units.degree), frame='icrs')\n", (14430, 14488), False, 'from astropy.coordinates import SkyCoord\n'), ((14729, 14797), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {'subplot_kw': "{'projection': 'mollweide'}", 'figsize': '(8, 5)'}), "(subplot_kw={'projection': 'mollweide'}, figsize=(8, 5))\n", (14741, 14797), True, 'from matplotlib import pyplot as plt\n'), ((15385, 15453), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {'subplot_kw': "{'projection': 'mollweide'}", 'figsize': '(8, 5)'}), "(subplot_kw={'projection': 'mollweide'}, figsize=(8, 5))\n", (15397, 15453), True, 'from matplotlib import pyplot as plt\n'), ((2079, 2106), 'numpy.insert', 'np.insert', (['histRec[f]', '(0)', '(0)'], {}), '(histRec[f], 0, 0)\n', (2088, 2106), True, 'import numpy as np\n'), ((3895, 3915), 'numpy.log10', 'np.log10', (['(365 * 10.0)'], {}), '(365 * 10.0)\n', (3903, 3915), True, 'import numpy as np\n'), ((4137, 4151), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (4149, 4151), True, 'from matplotlib import pyplot as plt\n'), ((4170, 4184), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (4182, 4184), True, 'from matplotlib import pyplot as plt\n'), ((4201, 4215), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (4213, 4215), True, 'from matplotlib import pyplot as plt\n'), ((4234, 4248), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (4246, 4248), True, 'from matplotlib import pyplot as plt\n'), ((4267, 4281), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (4279, 4281), True, 'from matplotlib import pyplot as plt\n'), ((4298, 4312), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (4310, 4312), True, 'from matplotlib import pyplot as plt\n'), ((4329, 4343), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (4341, 4343), True, 'from matplotlib import pyplot as plt\n'), ((4756, 4776), 'numpy.zeros_like', 'np.zeros_like', (['mbins'], {}), '(mbins)\n', (4769, 4776), True, 'import numpy as np\n'), ((4790, 4810), 'numpy.zeros_like', 'np.zeros_like', (['qbins'], {}), '(qbins)\n', (4803, 4810), True, 'import numpy as np\n'), ((4824, 4844), 'numpy.zeros_like', 'np.zeros_like', (['ebins'], {}), '(ebins)\n', (4837, 4844), True, 'import numpy as np\n'), ((4859, 4880), 'numpy.zeros_like', 'np.zeros_like', (['lpbins'], {}), '(lpbins)\n', (4872, 4880), True, 'import numpy as np\n'), ((4894, 4914), 'numpy.zeros_like', 'np.zeros_like', (['dbins'], {}), '(dbins)\n', (4907, 4914), True, 'import numpy as np\n'), ((4930, 4952), 'numpy.zeros_like', 'np.zeros_like', (['magbins'], {}), '(magbins)\n', (4943, 4952), True, 'import numpy as np\n'), ((4966, 4986), 'numpy.zeros_like', 'np.zeros_like', (['rbins'], {}), '(rbins)\n', (4979, 4986), True, 'import numpy as np\n'), ((5014, 5034), 'numpy.zeros_like', 'np.zeros_like', (['mbins'], {}), '(mbins)\n', (5027, 5034), True, 'import numpy as np\n'), ((5048, 5068), 'numpy.zeros_like', 'np.zeros_like', (['qbins'], {}), '(qbins)\n', (5061, 5068), True, 'import numpy as np\n'), ((5082, 5102), 'numpy.zeros_like', 'np.zeros_like', (['ebins'], {}), '(ebins)\n', (5095, 5102), True, 'import numpy as np\n'), ((5117, 5138), 'numpy.zeros_like', 'np.zeros_like', (['lpbins'], {}), '(lpbins)\n', (5130, 5138), True, 'import numpy as np\n'), ((5152, 5172), 'numpy.zeros_like', 'np.zeros_like', (['dbins'], {}), '(dbins)\n', (5165, 5172), True, 'import numpy as np\n'), ((5188, 5210), 'numpy.zeros_like', 'np.zeros_like', (['magbins'], {}), '(magbins)\n', (5201, 5210), True, 'import numpy as np\n'), ((5224, 5244), 'numpy.zeros_like', 'np.zeros_like', (['rbins'], {}), '(rbins)\n', (5237, 5244), True, 'import numpy as np\n'), ((16721, 16734), 'numpy.sum', 'np.sum', (['fileN'], {}), '(fileN)\n', (16727, 16734), True, 'import numpy as np\n'), ((16823, 16839), 'numpy.sum', 'np.sum', (['fileObsN'], {}), '(fileObsN)\n', (16829, 16839), True, 'import numpy as np\n'), ((16934, 16950), 'numpy.sum', 'np.sum', (['fileRecN'], {}), '(fileRecN)\n', (16940, 16950), True, 'import numpy as np\n'), ((17134, 17146), 'numpy.sum', 'np.sum', (['rawN'], {}), '(rawN)\n', (17140, 17146), True, 'import numpy as np\n'), ((17210, 17222), 'numpy.sum', 'np.sum', (['obsN'], {}), '(obsN)\n', (17216, 17222), True, 'import numpy as np\n'), ((17285, 17297), 'numpy.sum', 'np.sum', (['recN'], {}), '(recN)\n', (17291, 17297), True, 'import numpy as np\n'), ((17482, 17498), 'numpy.sum', 'np.sum', (['allNPrsa'], {}), '(allNPrsa)\n', (17488, 17498), True, 'import numpy as np\n'), ((17601, 17617), 'numpy.sum', 'np.sum', (['obsNPrsa'], {}), '(obsNPrsa)\n', (17607, 17617), True, 'import numpy as np\n'), ((17719, 17735), 'numpy.sum', 'np.sum', (['recNPrsa'], {}), '(recNPrsa)\n', (17725, 17735), True, 'import numpy as np\n'), ((2141, 2156), 'numpy.sum', 'np.sum', (['histAll'], {}), '(histAll)\n', (2147, 2156), True, 'import numpy as np\n'), ((2197, 2212), 'numpy.sum', 'np.sum', (['histObs'], {}), '(histObs)\n', (2203, 2212), True, 'import numpy as np\n'), ((2315, 2333), 'numpy.sum', 'np.sum', (['histRec[f]'], {}), '(histRec[f])\n', (2321, 2333), True, 'import numpy as np\n'), ((5410, 5430), 'numpy.zeros_like', 'np.zeros_like', (['mbins'], {}), '(mbins)\n', (5423, 5430), True, 'import numpy as np\n'), ((5448, 5468), 'numpy.zeros_like', 'np.zeros_like', (['qbins'], {}), '(qbins)\n', (5461, 5468), True, 'import numpy as np\n'), ((5486, 5506), 'numpy.zeros_like', 'np.zeros_like', (['ebins'], {}), '(ebins)\n', (5499, 5506), True, 'import numpy as np\n'), ((5525, 5546), 'numpy.zeros_like', 'np.zeros_like', (['lpbins'], {}), '(lpbins)\n', (5538, 5546), True, 'import numpy as np\n'), ((5564, 5584), 'numpy.zeros_like', 'np.zeros_like', (['dbins'], {}), '(dbins)\n', (5577, 5584), True, 'import numpy as np\n'), ((5604, 5626), 'numpy.zeros_like', 'np.zeros_like', (['magbins'], {}), '(magbins)\n', (5617, 5626), True, 'import numpy as np\n'), ((5644, 5664), 'numpy.zeros_like', 'np.zeros_like', (['rbins'], {}), '(rbins)\n', (5657, 5664), True, 'import numpy as np\n'), ((6528, 6555), 'pandas.read_csv', 'pd.read_csv', (['(d + f)'], {'nrows': '(1)'}), '(d + f, nrows=1)\n', (6539, 6555), True, 'import pandas as pd\n'), ((16745, 16758), 'numpy.sum', 'np.sum', (['fileN'], {}), '(fileN)\n', (16751, 16758), True, 'import numpy as np\n'), ((16850, 16866), 'numpy.sum', 'np.sum', (['fileObsN'], {}), '(fileObsN)\n', (16856, 16866), True, 'import numpy as np\n'), ((16961, 16977), 'numpy.sum', 'np.sum', (['fileRecN'], {}), '(fileRecN)\n', (16967, 16977), True, 'import numpy as np\n'), ((17157, 17169), 'numpy.sum', 'np.sum', (['rawN'], {}), '(rawN)\n', (17163, 17169), True, 'import numpy as np\n'), ((17233, 17245), 'numpy.sum', 'np.sum', (['obsN'], {}), '(obsN)\n', (17239, 17245), True, 'import numpy as np\n'), ((17308, 17320), 'numpy.sum', 'np.sum', (['recN'], {}), '(recN)\n', (17314, 17320), True, 'import numpy as np\n'), ((17509, 17525), 'numpy.sum', 'np.sum', (['allNPrsa'], {}), '(allNPrsa)\n', (17515, 17525), True, 'import numpy as np\n'), ((17628, 17644), 'numpy.sum', 'np.sum', (['obsNPrsa'], {}), '(obsNPrsa)\n', (17634, 17644), True, 'import numpy as np\n'), ((17746, 17762), 'numpy.sum', 'np.sum', (['recNPrsa'], {}), '(recNPrsa)\n', (17752, 17762), True, 'import numpy as np\n'), ((7455, 7491), 'numpy.histogram', 'np.histogram', (["data['m1']"], {'bins': 'mbins'}), "(data['m1'], bins=mbins)\n", (7467, 7491), True, 'import numpy as np\n'), ((7509, 7558), 'numpy.histogram', 'np.histogram', (["(data['m2'] / data['m1'])"], {'bins': 'qbins'}), "(data['m2'] / data['m1'], bins=qbins)\n", (7521, 7558), True, 'import numpy as np\n'), ((7574, 7609), 'numpy.histogram', 'np.histogram', (["data['e']"], {'bins': 'ebins'}), "(data['e'], bins=ebins)\n", (7586, 7609), True, 'import numpy as np\n'), ((7716, 7751), 'numpy.histogram', 'np.histogram', (["data['d']"], {'bins': 'dbins'}), "(data['d'], bins=dbins)\n", (7728, 7751), True, 'import numpy as np\n'), ((7773, 7821), 'numpy.histogram', 'np.histogram', (["data['appMagMean_r']"], {'bins': 'magbins'}), "(data['appMagMean_r'], bins=magbins)\n", (7785, 7821), True, 'import numpy as np\n'), ((7839, 7888), 'numpy.histogram', 'np.histogram', (["(data['r2'] / data['r1'])"], {'bins': 'rbins'}), "(data['r2'] / data['r1'], bins=rbins)\n", (7851, 7888), True, 'import numpy as np\n'), ((8528, 8540), 'numpy.diff', 'np.diff', (['m1b'], {}), '(m1b)\n', (8535, 8540), True, 'import numpy as np\n'), ((15176, 15193), 'numpy.array', 'np.array', (['recFrac'], {}), '(recFrac)\n', (15184, 15193), True, 'import numpy as np\n'), ((15833, 15847), 'numpy.array', 'np.array', (['recN'], {}), '(recN)\n', (15841, 15847), True, 'import numpy as np\n'), ((17027, 17043), 'numpy.sum', 'np.sum', (['fileRecN'], {}), '(fileRecN)\n', (17033, 17043), True, 'import numpy as np\n'), ((17044, 17060), 'numpy.sum', 'np.sum', (['fileObsN'], {}), '(fileObsN)\n', (17050, 17060), True, 'import numpy as np\n'), ((17358, 17370), 'numpy.sum', 'np.sum', (['recN'], {}), '(recN)\n', (17364, 17370), True, 'import numpy as np\n'), ((17371, 17383), 'numpy.sum', 'np.sum', (['obsN'], {}), '(obsN)\n', (17377, 17383), True, 'import numpy as np\n'), ((17812, 17828), 'numpy.sum', 'np.sum', (['recNPrsa'], {}), '(recNPrsa)\n', (17818, 17828), True, 'import numpy as np\n'), ((17829, 17845), 'numpy.sum', 'np.sum', (['obsNPrsa'], {}), '(obsNPrsa)\n', (17835, 17845), True, 'import numpy as np\n'), ((1005, 1017), 'numpy.sqrt', 'np.sqrt', (['(2.0)'], {}), '(2.0)\n', (1012, 1017), True, 'import numpy as np\n'), ((6833, 6861), 'pandas.read_csv', 'pd.read_csv', (['(d + f)'], {'header': '(2)'}), '(d + f, header=2)\n', (6844, 6861), True, 'import pandas as pd\n'), ((8771, 8784), 'numpy.log10', 'np.log10', (['Phs'], {}), '(Phs)\n', (8779, 8784), True, 'import numpy as np\n'), ((9512, 9547), 'numpy.histogram', 'np.histogram', (["obs['m1']"], {'bins': 'mbins'}), "(obs['m1'], bins=mbins)\n", (9524, 9547), True, 'import numpy as np\n'), ((9566, 9613), 'numpy.histogram', 'np.histogram', (["(obs['m2'] / obs['m1'])"], {'bins': 'qbins'}), "(obs['m2'] / obs['m1'], bins=qbins)\n", (9578, 9613), True, 'import numpy as np\n'), ((9630, 9664), 'numpy.histogram', 'np.histogram', (["obs['e']"], {'bins': 'ebins'}), "(obs['e'], bins=ebins)\n", (9642, 9664), True, 'import numpy as np\n'), ((9772, 9806), 'numpy.histogram', 'np.histogram', (["obs['d']"], {'bins': 'dbins'}), "(obs['d'], bins=dbins)\n", (9784, 9806), True, 'import numpy as np\n'), ((9829, 9876), 'numpy.histogram', 'np.histogram', (["obs['appMagMean_r']"], {'bins': 'magbins'}), "(obs['appMagMean_r'], bins=magbins)\n", (9841, 9876), True, 'import numpy as np\n'), ((9895, 9942), 'numpy.histogram', 'np.histogram', (["(obs['r2'] / obs['r1'])"], {'bins': 'rbins'}), "(obs['r2'] / obs['r1'], bins=rbins)\n", (9907, 9942), True, 'import numpy as np\n'), ((10203, 10217), 'pandas.DataFrame', 'pd.DataFrame', ([], {}), '()\n', (10215, 10217), True, 'import pandas as pd\n'), ((10241, 10255), 'pandas.DataFrame', 'pd.DataFrame', ([], {}), '()\n', (10253, 10255), True, 'import pandas as pd\n'), ((15099, 15115), 'numpy.array', 'np.array', (['RAwrap'], {}), '(RAwrap)\n', (15107, 15115), True, 'import numpy as np\n'), ((15136, 15153), 'numpy.array', 'np.array', (['Decwrap'], {}), '(Decwrap)\n', (15144, 15153), True, 'import numpy as np\n'), ((15747, 15763), 'numpy.array', 'np.array', (['RAwrap'], {}), '(RAwrap)\n', (15755, 15763), True, 'import numpy as np\n'), ((15784, 15801), 'numpy.array', 'np.array', (['Decwrap'], {}), '(Decwrap)\n', (15792, 15801), True, 'import numpy as np\n'), ((7642, 7671), 'numpy.ma.log10', 'np.ma.log10', (["data['p'].values"], {}), "(data['p'].values)\n", (7653, 7671), True, 'import numpy as np\n'), ((7952, 7967), 'numpy.sum', 'np.sum', (['m1hAll0'], {}), '(m1hAll0)\n', (7958, 7967), True, 'import numpy as np\n'), ((8029, 8043), 'numpy.sum', 'np.sum', (['qhAll0'], {}), '(qhAll0)\n', (8035, 8043), True, 'import numpy as np\n'), ((8104, 8118), 'numpy.sum', 'np.sum', (['ehAll0'], {}), '(ehAll0)\n', (8110, 8118), True, 'import numpy as np\n'), ((8182, 8197), 'numpy.sum', 'np.sum', (['lphAll0'], {}), '(lphAll0)\n', (8188, 8197), True, 'import numpy as np\n'), ((8259, 8273), 'numpy.sum', 'np.sum', (['dhAll0'], {}), '(dhAll0)\n', (8265, 8273), True, 'import numpy as np\n'), ((8338, 8354), 'numpy.sum', 'np.sum', (['maghAll0'], {}), '(maghAll0)\n', (8344, 8354), True, 'import numpy as np\n'), ((8415, 8429), 'numpy.sum', 'np.sum', (['rhAll0'], {}), '(rhAll0)\n', (8421, 8429), True, 'import numpy as np\n'), ((11393, 11428), 'numpy.histogram', 'np.histogram', (["rec['m1']"], {'bins': 'mbins'}), "(rec['m1'], bins=mbins)\n", (11405, 11428), True, 'import numpy as np\n'), ((11449, 11496), 'numpy.histogram', 'np.histogram', (["(rec['m2'] / rec['m1'])"], {'bins': 'qbins'}), "(rec['m2'] / rec['m1'], bins=qbins)\n", (11461, 11496), True, 'import numpy as np\n'), ((11515, 11549), 'numpy.histogram', 'np.histogram', (["rec['e']"], {'bins': 'ebins'}), "(rec['e'], bins=ebins)\n", (11527, 11549), True, 'import numpy as np\n'), ((11661, 11695), 'numpy.histogram', 'np.histogram', (["rec['d']"], {'bins': 'dbins'}), "(rec['d'], bins=dbins)\n", (11673, 11695), True, 'import numpy as np\n'), ((11720, 11767), 'numpy.histogram', 'np.histogram', (["rec['appMagMean_r']"], {'bins': 'magbins'}), "(rec['appMagMean_r'], bins=magbins)\n", (11732, 11767), True, 'import numpy as np\n'), ((11788, 11835), 'numpy.histogram', 'np.histogram', (["(rec['r2'] / rec['r1'])"], {'bins': 'rbins'}), "(rec['r2'] / rec['r1'], bins=rbins)\n", (11800, 11835), True, 'import numpy as np\n'), ((9698, 9726), 'numpy.ma.log10', 'np.ma.log10', (["obs['p'].values"], {}), "(obs['p'].values)\n", (9709, 9726), True, 'import numpy as np\n'), ((11585, 11613), 'numpy.ma.log10', 'np.ma.log10', (["rec['p'].values"], {}), "(rec['p'].values)\n", (11596, 11613), True, 'import numpy as np\n')]
import numpy as np from itertools import product from typing import List from src.config import ConfigChess from src.chess.board import Board from src.chess.move import Move def get_all_possible_moves() -> List[Move]: all_possible_moves = set() array = np.zeros((ConfigChess.board_size, ConfigChess.board_size)).astype("int8") for i, j, piece in product( range(ConfigChess.board_size), range(ConfigChess.board_size), ["Q", "N"] ): array[i][j] = Board.piece_symbol_to_int(piece) all_possible_moves.update( set(map(lambda move: Move(uci=move.uci()), Board(array=array).legal_moves)) ) array[i][j] = 0 # underpromotion moves array[1, :] = Board.piece_symbol_to_int("P") all_possible_moves.update( set(map(lambda move: Move(uci=move.uci()), Board(array=array).legal_moves)) ) array[0, :] = Board.piece_symbol_to_int("p") all_possible_moves.update( set(map(lambda move: Move(uci=move.uci()), Board(array=array).legal_moves)) ) # no need to add castling moves: they have already be added with queen moves under UCI notation return sorted(list(all_possible_moves))
[ "numpy.zeros", "src.chess.board.Board.piece_symbol_to_int", "src.chess.board.Board" ]
[((715, 745), 'src.chess.board.Board.piece_symbol_to_int', 'Board.piece_symbol_to_int', (['"""P"""'], {}), "('P')\n", (740, 745), False, 'from src.chess.board import Board\n'), ((885, 915), 'src.chess.board.Board.piece_symbol_to_int', 'Board.piece_symbol_to_int', (['"""p"""'], {}), "('p')\n", (910, 915), False, 'from src.chess.board import Board\n'), ((480, 512), 'src.chess.board.Board.piece_symbol_to_int', 'Board.piece_symbol_to_int', (['piece'], {}), '(piece)\n', (505, 512), False, 'from src.chess.board import Board\n'), ((264, 322), 'numpy.zeros', 'np.zeros', (['(ConfigChess.board_size, ConfigChess.board_size)'], {}), '((ConfigChess.board_size, ConfigChess.board_size))\n', (272, 322), True, 'import numpy as np\n'), ((828, 846), 'src.chess.board.Board', 'Board', ([], {'array': 'array'}), '(array=array)\n', (833, 846), False, 'from src.chess.board import Board\n'), ((998, 1016), 'src.chess.board.Board', 'Board', ([], {'array': 'array'}), '(array=array)\n', (1003, 1016), False, 'from src.chess.board import Board\n'), ((603, 621), 'src.chess.board.Board', 'Board', ([], {'array': 'array'}), '(array=array)\n', (608, 621), False, 'from src.chess.board import Board\n')]
# Copyright 2020 - 2021 MONAI Consortium # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from typing import Tuple import numpy as np import torch from ignite.engine import Engine from monai.handlers import SurfaceDistance def create_spherical_seg_3d( radius: float = 20.0, centre: Tuple[int, int, int] = (49, 49, 49), im_shape: Tuple[int, int, int] = (99, 99, 99) ) -> np.ndarray: """ Return a 3D image with a sphere inside. Voxel values will be 1 inside the sphere, and 0 elsewhere. Args: radius: radius of sphere (in terms of number of voxels, can be partial) centre: location of sphere centre. im_shape: shape of image to create See also: :py:meth:`~create_test_image_3d` """ # Create image image = np.zeros(im_shape, dtype=np.int32) spy, spx, spz = np.ogrid[ -centre[0] : im_shape[0] - centre[0], -centre[1] : im_shape[1] - centre[1], -centre[2] : im_shape[2] - centre[2] ] circle = (spx * spx + spy * spy + spz * spz) <= radius * radius image[circle] = 1 image[~circle] = 0 return image sampler_sphere = torch.Tensor(create_spherical_seg_3d(radius=20, centre=(20, 20, 20))).unsqueeze(0).unsqueeze(0) # test input a list of channel-first tensor sampler_sphere_gt = [torch.Tensor(create_spherical_seg_3d(radius=20, centre=(10, 20, 20))).unsqueeze(0)] sampler_sphere_zeros = torch.zeros_like(sampler_sphere) TEST_SAMPLE_1 = [sampler_sphere, sampler_sphere_gt] TEST_SAMPLE_2 = [sampler_sphere_gt, sampler_sphere_gt] TEST_SAMPLE_3 = [sampler_sphere_zeros, sampler_sphere_gt] TEST_SAMPLE_4 = [sampler_sphere_zeros, sampler_sphere_zeros] class TestHandlerSurfaceDistance(unittest.TestCase): # TODO test multi node Surface Distance def test_compute(self): sur_metric = SurfaceDistance(include_background=True) def _val_func(engine, batch): pass engine = Engine(_val_func) sur_metric.attach(engine, "surface_distance") y_pred, y = TEST_SAMPLE_1 sur_metric.update([y_pred, y]) self.assertAlmostEqual(sur_metric.compute(), 4.17133, places=4) y_pred, y = TEST_SAMPLE_2 sur_metric.update([y_pred, y]) self.assertAlmostEqual(sur_metric.compute(), 2.08566, places=4) y_pred, y = TEST_SAMPLE_3 sur_metric.update([y_pred, y]) self.assertAlmostEqual(sur_metric.compute(), float("inf")) y_pred, y = TEST_SAMPLE_4 sur_metric.update([y_pred, y]) self.assertAlmostEqual(sur_metric.compute(), float("inf")) def test_shape_mismatch(self): sur_metric = SurfaceDistance(include_background=True) with self.assertRaises((AssertionError, ValueError)): y_pred = TEST_SAMPLE_1[0] y = torch.ones((1, 1, 10, 10, 10)) sur_metric.update([y_pred, y]) if __name__ == "__main__": unittest.main()
[ "monai.handlers.SurfaceDistance", "ignite.engine.Engine", "numpy.zeros", "unittest.main", "torch.zeros_like", "torch.ones" ]
[((1895, 1927), 'torch.zeros_like', 'torch.zeros_like', (['sampler_sphere'], {}), '(sampler_sphere)\n', (1911, 1927), False, 'import torch\n'), ((1285, 1319), 'numpy.zeros', 'np.zeros', (['im_shape'], {'dtype': 'np.int32'}), '(im_shape, dtype=np.int32)\n', (1293, 1319), True, 'import numpy as np\n'), ((3383, 3398), 'unittest.main', 'unittest.main', ([], {}), '()\n', (3396, 3398), False, 'import unittest\n'), ((2304, 2344), 'monai.handlers.SurfaceDistance', 'SurfaceDistance', ([], {'include_background': '(True)'}), '(include_background=True)\n', (2319, 2344), False, 'from monai.handlers import SurfaceDistance\n'), ((2419, 2436), 'ignite.engine.Engine', 'Engine', (['_val_func'], {}), '(_val_func)\n', (2425, 2436), False, 'from ignite.engine import Engine\n'), ((3119, 3159), 'monai.handlers.SurfaceDistance', 'SurfaceDistance', ([], {'include_background': '(True)'}), '(include_background=True)\n', (3134, 3159), False, 'from monai.handlers import SurfaceDistance\n'), ((3276, 3306), 'torch.ones', 'torch.ones', (['(1, 1, 10, 10, 10)'], {}), '((1, 1, 10, 10, 10))\n', (3286, 3306), False, 'import torch\n')]
#!/usr/bin/env python3 import sys import logging import yaml import pandas as pd import numpy as np from collections import defaultdict from sklearn.model_selection import train_test_split from sklearn.ensemble import IsolationForest from sklearn.impute import SimpleImputer from anoflows.hpo import find_best_flows from data_loading import load_data logging.getLogger().setLevel(logging.INFO) if len(sys.argv) == 1: logging.error("YAML data specification missing from the command line arguments") exit(1) spec_file = sys.argv[1] df, spec = load_data(spec_file) max_rows = min(len(df), spec.get("max_rows", 40000)) novelty_detection = spec.get("novelty", True) normal_classes = spec["normal_classes"] precision = defaultdict(list) for rounds in range(spec.get("rounds", 1)): # random sampling df = df.sample(n=max_rows, replace=False) label_col = spec["label_column"] y = df[label_col].values other = df.drop(label_col, inplace=False, axis=1) X = other.values # imputing X = SimpleImputer(copy=False).fit_transform(X) # train/test split X_train, X_test, y_train, y_test = \ train_test_split(X, y, shuffle=False, test_size=0.5) if novelty_detection: keep = np.where(np.isin(y_train, normal_classes))[0] X_train = X_train[keep, :] y_train = y_train[keep] # training #flows, loss = find_best_flows(X_train, device='cpu', n_trials=1) from anoflows.anoflow_bagging import AnoFlowBagging flows = AnoFlowBagging() flows.fit(X_train) iforest = IsolationForest().fit(X_train) # prediction pred = { "anoflows": flows.likelihood(X_test), "iforest": iforest.decision_function(X_test) } # evaluation y_true = np.where(np.isin(y_test, spec["anomaly_classes"]))[0] ref = np.zeros(len(y_test)) ref[y_true] = 1 k = len(y_true) for name, y_pred in pred.items(): anomaly_indices = y_pred.argsort()[:k] prec = ref[anomaly_indices].sum() / k logging.info("%s: %.1f%% (%d anomalies / %d rows)" % (name, 100*prec, k, len(y_test))) precision[name].append(prec) logging.info("* SUMMARY %s", spec_file) for name, prec in precision.items(): prec = 100 * np.array(prec) mean = np.mean(prec) std = np.std(prec) logging.info("%s; mean=%.1f%% std=%.1f%%" % (name, mean, std))
[ "logging.getLogger", "numpy.mean", "anoflows.anoflow_bagging.AnoFlowBagging", "sklearn.model_selection.train_test_split", "sklearn.ensemble.IsolationForest", "logging.info", "numpy.isin", "numpy.array", "collections.defaultdict", "sklearn.impute.SimpleImputer", "numpy.std", "logging.error", "data_loading.load_data" ]
[((556, 576), 'data_loading.load_data', 'load_data', (['spec_file'], {}), '(spec_file)\n', (565, 576), False, 'from data_loading import load_data\n'), ((729, 746), 'collections.defaultdict', 'defaultdict', (['list'], {}), '(list)\n', (740, 746), False, 'from collections import defaultdict\n'), ((2144, 2183), 'logging.info', 'logging.info', (['"""* SUMMARY %s"""', 'spec_file'], {}), "('* SUMMARY %s', spec_file)\n", (2156, 2183), False, 'import logging\n'), ((427, 512), 'logging.error', 'logging.error', (['"""YAML data specification missing from the command line arguments"""'], {}), "('YAML data specification missing from the command line arguments'\n )\n", (440, 512), False, 'import logging\n'), ((1141, 1193), 'sklearn.model_selection.train_test_split', 'train_test_split', (['X', 'y'], {'shuffle': '(False)', 'test_size': '(0.5)'}), '(X, y, shuffle=False, test_size=0.5)\n', (1157, 1193), False, 'from sklearn.model_selection import train_test_split\n'), ((1502, 1518), 'anoflows.anoflow_bagging.AnoFlowBagging', 'AnoFlowBagging', ([], {}), '()\n', (1516, 1518), False, 'from anoflows.anoflow_bagging import AnoFlowBagging\n'), ((2264, 2277), 'numpy.mean', 'np.mean', (['prec'], {}), '(prec)\n', (2271, 2277), True, 'import numpy as np\n'), ((2288, 2300), 'numpy.std', 'np.std', (['prec'], {}), '(prec)\n', (2294, 2300), True, 'import numpy as np\n'), ((2305, 2367), 'logging.info', 'logging.info', (["('%s; mean=%.1f%% std=%.1f%%' % (name, mean, std))"], {}), "('%s; mean=%.1f%% std=%.1f%%' % (name, mean, std))\n", (2317, 2367), False, 'import logging\n'), ((356, 375), 'logging.getLogger', 'logging.getLogger', ([], {}), '()\n', (373, 375), False, 'import logging\n'), ((2238, 2252), 'numpy.array', 'np.array', (['prec'], {}), '(prec)\n', (2246, 2252), True, 'import numpy as np\n'), ((1025, 1050), 'sklearn.impute.SimpleImputer', 'SimpleImputer', ([], {'copy': '(False)'}), '(copy=False)\n', (1038, 1050), False, 'from sklearn.impute import SimpleImputer\n'), ((1556, 1573), 'sklearn.ensemble.IsolationForest', 'IsolationForest', ([], {}), '()\n', (1571, 1573), False, 'from sklearn.ensemble import IsolationForest\n'), ((1763, 1803), 'numpy.isin', 'np.isin', (['y_test', "spec['anomaly_classes']"], {}), "(y_test, spec['anomaly_classes'])\n", (1770, 1803), True, 'import numpy as np\n'), ((1244, 1276), 'numpy.isin', 'np.isin', (['y_train', 'normal_classes'], {}), '(y_train, normal_classes)\n', (1251, 1276), True, 'import numpy as np\n')]
"""Helper functions to tests.""" import numpy as np def norm(vs: np.array) -> float: """Compute the norm of a vector.""" return np.sqrt(np.dot(vs, vs)) def create_random_matrix(size: int) -> np.array: """Create a numpy random matrix.""" return np.random.normal(size=size ** 2).reshape(size, size) def create_symmetic_matrix(size: int) -> np.array: """Create a numpy symmetric matrix.""" xs = create_random_matrix(size) return xs + xs.T def check_eigenpairs( matrix: np.ndarray, eigenvalues: np.ndarray, eigenvectors: np.ndarray) -> bool: """Check that the eigenvalue equation holds.""" for i, value in enumerate(eigenvalues): residue = np.dot( matrix, eigenvectors[:, i]) - value * eigenvectors[:, i] assert norm(residue) < 1e-8
[ "numpy.random.normal", "numpy.dot" ]
[((147, 161), 'numpy.dot', 'np.dot', (['vs', 'vs'], {}), '(vs, vs)\n', (153, 161), True, 'import numpy as np\n'), ((265, 297), 'numpy.random.normal', 'np.random.normal', ([], {'size': '(size ** 2)'}), '(size=size ** 2)\n', (281, 297), True, 'import numpy as np\n'), ((705, 739), 'numpy.dot', 'np.dot', (['matrix', 'eigenvectors[:, i]'], {}), '(matrix, eigenvectors[:, i])\n', (711, 739), True, 'import numpy as np\n')]
#pylint:disable=no-member import cv2 as cv import numpy as np img = cv.imread('/Users/webileapp/Desktop/niharika_files/projects/opencv_course_master/Resources/Photos/cats.jpg') cv.imshow('Cats', img) # blank = np.zeros(img.shape[:2], dtype='uint8') cv.imshow('Blank', blank) gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY) cv.imshow('Gray', gray) # blur = cv.GaussianBlur(gray, (5,5), cv.BORDER_DEFAULT) cv.imshow('Blur', blur) canny = cv.Canny(blur, 125, 175) cv.imshow('Canny Edges', canny) # ret, thresh = cv.threshold(gray, 125, 255, cv.THRESH_BINARY) cv.imshow('Thresh', thresh) # contours, hierarchies = cv.findContours(canny, cv.RETR_LIST, cv.CHAIN_APPROX_SIMPLE) print(f'{len(contours)} contour(s) found!') # cv.drawContours(blank, contours, -1, (200,120,100), 1) cv.imshow('Contours Drawn', blank) cv.waitKey(0)
[ "cv2.drawContours", "cv2.threshold", "cv2.Canny", "cv2.imshow", "numpy.zeros", "cv2.waitKey", "cv2.cvtColor", "cv2.findContours", "cv2.GaussianBlur", "cv2.imread" ]
[((70, 188), 'cv2.imread', 'cv.imread', (['"""/Users/webileapp/Desktop/niharika_files/projects/opencv_course_master/Resources/Photos/cats.jpg"""'], {}), "(\n '/Users/webileapp/Desktop/niharika_files/projects/opencv_course_master/Resources/Photos/cats.jpg'\n )\n", (79, 188), True, 'import cv2 as cv\n'), ((179, 201), 'cv2.imshow', 'cv.imshow', (['"""Cats"""', 'img'], {}), "('Cats', img)\n", (188, 201), True, 'import cv2 as cv\n'), ((212, 250), 'numpy.zeros', 'np.zeros', (['img.shape[:2]'], {'dtype': '"""uint8"""'}), "(img.shape[:2], dtype='uint8')\n", (220, 250), True, 'import numpy as np\n'), ((251, 276), 'cv2.imshow', 'cv.imshow', (['"""Blank"""', 'blank'], {}), "('Blank', blank)\n", (260, 276), True, 'import cv2 as cv\n'), ((285, 320), 'cv2.cvtColor', 'cv.cvtColor', (['img', 'cv.COLOR_BGR2GRAY'], {}), '(img, cv.COLOR_BGR2GRAY)\n', (296, 320), True, 'import cv2 as cv\n'), ((321, 344), 'cv2.imshow', 'cv.imshow', (['"""Gray"""', 'gray'], {}), "('Gray', gray)\n", (330, 344), True, 'import cv2 as cv\n'), ((354, 402), 'cv2.GaussianBlur', 'cv.GaussianBlur', (['gray', '(5, 5)', 'cv.BORDER_DEFAULT'], {}), '(gray, (5, 5), cv.BORDER_DEFAULT)\n', (369, 402), True, 'import cv2 as cv\n'), ((402, 425), 'cv2.imshow', 'cv.imshow', (['"""Blur"""', 'blur'], {}), "('Blur', blur)\n", (411, 425), True, 'import cv2 as cv\n'), ((435, 459), 'cv2.Canny', 'cv.Canny', (['blur', '(125)', '(175)'], {}), '(blur, 125, 175)\n', (443, 459), True, 'import cv2 as cv\n'), ((460, 491), 'cv2.imshow', 'cv.imshow', (['"""Canny Edges"""', 'canny'], {}), "('Canny Edges', canny)\n", (469, 491), True, 'import cv2 as cv\n'), ((508, 554), 'cv2.threshold', 'cv.threshold', (['gray', '(125)', '(255)', 'cv.THRESH_BINARY'], {}), '(gray, 125, 255, cv.THRESH_BINARY)\n', (520, 554), True, 'import cv2 as cv\n'), ((555, 582), 'cv2.imshow', 'cv.imshow', (['"""Thresh"""', 'thresh'], {}), "('Thresh', thresh)\n", (564, 582), True, 'import cv2 as cv\n'), ((609, 669), 'cv2.findContours', 'cv.findContours', (['canny', 'cv.RETR_LIST', 'cv.CHAIN_APPROX_SIMPLE'], {}), '(canny, cv.RETR_LIST, cv.CHAIN_APPROX_SIMPLE)\n', (624, 669), True, 'import cv2 as cv\n'), ((716, 772), 'cv2.drawContours', 'cv.drawContours', (['blank', 'contours', '(-1)', '(200, 120, 100)', '(1)'], {}), '(blank, contours, -1, (200, 120, 100), 1)\n', (731, 772), True, 'import cv2 as cv\n'), ((771, 805), 'cv2.imshow', 'cv.imshow', (['"""Contours Drawn"""', 'blank'], {}), "('Contours Drawn', blank)\n", (780, 805), True, 'import cv2 as cv\n'), ((807, 820), 'cv2.waitKey', 'cv.waitKey', (['(0)'], {}), '(0)\n', (817, 820), True, 'import cv2 as cv\n')]
"""Read, write, create Brainvoyager VMR file format.""" import struct import numpy as np from bvbabel.utils import (read_variable_length_string, write_variable_length_string) # ============================================================================= def read_vmr(filename): """Read Brainvoyager VMR file. Parameters ---------- filename : string Path to file. Returns ------- header : dictionary Pre-data and post-data headers. data : 3D numpy.array Image data. """ header = dict() with open(filename, 'rb') as f: # --------------------------------------------------------------------- # VMR Pre-Data Header # --------------------------------------------------------------------- # NOTE(Developer Guide 2.6): VMR files contain anatomical 3D data sets, # typically containing the whole brain (head) of subjects. The # intensity values are stored as a series of bytes. See the V16 format # for a version storing each intensity value with two bytes (short # integers). The VMR format contains a small header followed by the # actual data followed by a second, more extensive, header. The current # version of VMR files is "4", which is only slightly different from # version 3 (as indicated below). Version 3 added offset values to # format 2 in order to represent large data sets efficiently, e.g. in # the context of advanced segmentation processing. Compared to the # original file version "1", file versions 2 and higher contain # additional header information after the actual data ("post-data # header"). This allows to read VMR data sets with minimal header # checking if the extended information is not needed. The information # in the post-data header contains position information (if available) # and stores a series of spatial transformations, which might have been # performed to the original data set ("history record"). The # post-header data can be probably ignored for custom routines, but is # important in BrainVoyager QX for spatial transformation and # coregistration routines as well as for proper visualization. # Expected binary data: unsigned short int (2 bytes) data, = struct.unpack('<H', f.read(2)) header["File version"] = data data, = struct.unpack('<H', f.read(2)) header["DimX"] = data data, = struct.unpack('<H', f.read(2)) header["DimY"] = data data, = struct.unpack('<H', f.read(2)) header["DimZ"] = data # --------------------------------------------------------------------- # VMR Data # --------------------------------------------------------------------- # NOTE(Developer Guide 2.6): Each data element (intensity value) is # represented in 1 byte. The data is organized in three loops: # DimZ # DimY # DimX # # The axes terminology follows the internal BrainVoyager (BV) format. # The mapping to Talairach axes is as follows: # BV (X front -> back) [axis 2 after np.reshape] = Y in Tal space # BV (Y top -> bottom) [axis 1 after np.reshape] = Z in Tal space # BV (Z left -> right) [axis 0 after np.reshape] = X in Tal space # Expected binary data: unsigned char (1 byte) data_img = np.zeros((header["DimZ"] * header["DimY"] * header["DimX"]), dtype="<B") for i in range(data_img.size): data_img[i], = struct.unpack('<B', f.read(1)) data_img = np.reshape( data_img, (header["DimZ"], header["DimY"], header["DimX"])) data_img = np.transpose(data_img, (0, 2, 1)) # BV to Tal data_img = data_img[::-1, ::-1, ::-1] # Flip BV axes # --------------------------------------------------------------------- # VMR Post-Data Header # --------------------------------------------------------------------- # NOTE(Developer Guide 2.6): The first four entries of the post-data # header are new since file version "3" and contain offset values for # each dimension as well as a value indicating the size of a cube with # iso-dimensions to which the data set will be internally "expanded" # for certain operations. The axes labels are in terms of # BrainVoyager's internal format. These four entries are followed by # scan position information from the original file headers, e.g. from # DICOM files. The coordinate axes labels in these entries are not in # terms of BrainVoyager's internal conventions but follow the DICOM # standard. Then follows eventually a section listing spatial # transformations which have been eventually performed to create the # current VMR (e.g. ACPC transformation). Finally, additional # information further descries the data set, including the assumed # left-right convention, the reference space (e.g. Talairach after # normalization) and voxel resolution. if header["File version"] >= 3: # NOTE(Developer Guide 2.6): These four entries have been added in # file version "3" with BrainVoyager QX 1.7. All other entries are # identical to file version "2". # Expected binary data: short int (2 bytes) data, = struct.unpack('<h', f.read(2)) header["OffsetX"] = data data, = struct.unpack('<h', f.read(2)) header["OffsetY"] = data data, = struct.unpack('<h', f.read(2)) header["OffsetZ"] = data data, = struct.unpack('<h', f.read(2)) header["FramingCubeDim"] = data # Expected binary data: int (4 bytes) data, = struct.unpack('<i', f.read(4)) header["PosInfosVerified"] = data data, = struct.unpack('<i', f.read(4)) header["CoordinateSystem"] = data # Expected binary data: float (4 bytes) data, = struct.unpack('<f', f.read(4)) header["Slice1CenterX"] = data # First slice center X coordinate data, = struct.unpack('<f', f.read(4)) header["Slice1CenterY"] = data # First slice center Y coordinate data, = struct.unpack('<f', f.read(4)) header["Slice1CenterZ"] = data # First slice center Z coordinate data, = struct.unpack('<f', f.read(4)) header["SliceNCenterX"] = data # Last slice center X coordinate data, = struct.unpack('<f', f.read(4)) header["SliceNCenterY"] = data # Last slice center Y coordinate data, = struct.unpack('<f', f.read(4)) header["SliceNCenterZ"] = data # Last slice center Z coordinate data, = struct.unpack('<f', f.read(4)) header["RowDirX"] = data # Slice row direction vector X component data, = struct.unpack('<f', f.read(4)) header["RowDirY"] = data # Slice row direction vector Y component data, = struct.unpack('<f', f.read(4)) header["RowDirZ"] = data # Slice row direction vector Z component data, = struct.unpack('<f', f.read(4)) header["ColDirX"] = data # Slice column direction vector X component data, = struct.unpack('<f', f.read(4)) header["ColDirY"] = data # Slice column direction vector Y component data, = struct.unpack('<f', f.read(4)) header["ColDirZ"] = data # Slice column direction vector Z component # Expected binary data: int (4 bytes) data, = struct.unpack('<i', f.read(4)) header["NRows"] = data # Nr of rows of slice image matrix data, = struct.unpack('<i', f.read(4)) header["NCols"] = data # Nr of columns of slice image matrix # Expected binary data: float (4 bytes) data, = struct.unpack('<f', f.read(4)) header["FoVRows"] = data # Field of view extent in row direction [mm] data, = struct.unpack('<f', f.read(4)) header["FoVCols"] = data # Field of view extent in column dir. [mm] data, = struct.unpack('<f', f.read(4)) header["SliceThickness"] = data # Slice thickness [mm] data, = struct.unpack('<f', f.read(4)) header["GapThickness"] = data # Gap thickness [mm] # Expected binary data: int (4 bytes) data, = struct.unpack('<i', f.read(4)) header["NrOfPastSpatialTransformations"] = data if header["NrOfPastSpatialTransformations"] != 0: # NOTE(Developer Guide 2.6): For each past transformation, the # information specified in the following table is stored. The # "type of transformation" is a value determining how many # subsequent values define the transformation: # "1": Rigid body+scale (3 translation, 3 rotation, 3 scale) # "2": Affine transformation (16 values, 4x4 matrix) # "4": Talairach transformation # "5": Un-Talairach transformation (1 - 5 -> BV axes) header["PastTransformation"] = [] for i in range(header["NrOfPastSpatialTransformations"]): header["PastTransformation"].append(dict()) # Expected binary data: variable-length string data = read_variable_length_string(f) header["PastTransformation"][i]["Name"] = data # Expected binary data: int (4 bytes) data, = struct.unpack('<i', f.read(4)) header["PastTransformation"][i]["Type"] = data # Expected binary data: variable-length string data = read_variable_length_string(f) header["PastTransformation"][i]["SourceFileName"] = data # Expected binary data: int (4 bytes) data, = struct.unpack('<i', f.read(4)) header["PastTransformation"][i]["NrOfValues"] = data # Store transformation values as a list trans_values = [] for j in range(header["PastTransformation"][i]["NrOfValues"]): # Expected binary data: float (4 bytes) data, = struct.unpack('<f', f.read(4)) trans_values.append(data) header["PastTransformation"][i]["Values"] = trans_values # Expected binary data: char (1 byte) data, = struct.unpack('<B', f.read(1)) header["LeftRightConvention"] = data # modified in v4 data, = struct.unpack('<B', f.read(1)) header["ReferenceSpaceVMR"] = data # new in v4 # Expected binary data: float (4 bytes) data, = struct.unpack('<f', f.read(4)) header["VoxelSizeX"] = data # Voxel resolution along X axis data, = struct.unpack('<f', f.read(4)) header["VoxelSizeY"] = data # Voxel resolution along Y axis data, = struct.unpack('<f', f.read(4)) header["VoxelSizeZ"] = data # Voxel resolution along Z axis # Expected binary data: char (1 byte) data, = struct.unpack('<B', f.read(1)) header["VoxelResolutionVerified"] = data data, = struct.unpack('<B', f.read(1)) header["VoxelResolutionInTALmm"] = data # Expected binary data: int (4 bytes) data, = struct.unpack('<i', f.read(4)) header["VMROrigV16MinValue"] = data # 16-bit data min intensity data, = struct.unpack('<i', f.read(4)) header["VMROrigV16MeanValue"] = data # 16-bit data mean intensity data, = struct.unpack('<i', f.read(4)) header["VMROrigV16MaxValue"] = data # 16-bit data max intensity return header, data_img # ============================================================================= def write_vmr(filename, header, data_img): """Protocol to write Brainvoyager VMR file. Parameters ---------- filename : string Output filename. header : dictionary Header of VMR file. data_img : numpy.array, 3D Image. """ with open(filename, 'wb') as f: # --------------------------------------------------------------------- # VMR Pre-Data Header # --------------------------------------------------------------------- # Expected binary data: unsigned short int (2 bytes) data = header["File version"] f.write(struct.pack('<H', data)) data = header["DimX"] f.write(struct.pack('<H', data)) data = header["DimY"] f.write(struct.pack('<H', data)) data = header["DimZ"] f.write(struct.pack('<H', data)) # --------------------------------------------------------------------- # VMR Data # --------------------------------------------------------------------- # Convert axes from Nifti standard back to BV standard data_img = data_img[::-1, ::-1, ::-1] # Flip BV axes data_img = np.transpose(data_img, (0, 2, 1)) # BV to Tal # Expected binary data: unsigned char (1 byte) data_img = data_img.flatten() for i in range(data_img.size): f.write(struct.pack('<B', data_img[i])) # --------------------------------------------------------------------- # VMR Post-Data Header # --------------------------------------------------------------------- if header["File version"] >= 3: # Expected binary data: short int (2 bytes) data = header["OffsetX"] f.write(struct.pack('<h', data)) data = header["OffsetY"] f.write(struct.pack('<h', data)) data = header["OffsetZ"] f.write(struct.pack('<h', data)) data = header["FramingCubeDim"] f.write(struct.pack('<h', data)) # Expected binary data: int (4 bytes) data = header["PosInfosVerified"] f.write(struct.pack('<i', data)) data = header["CoordinateSystem"] f.write(struct.pack('<i', data)) # Expected binary data: float (4 bytes) data = header["Slice1CenterX"] f.write(struct.pack('<f', data)) data = header["Slice1CenterY"] f.write(struct.pack('<f', data)) data = header["Slice1CenterZ"] f.write(struct.pack('<f', data)) data = header["SliceNCenterX"] f.write(struct.pack('<f', data)) data = header["SliceNCenterY"] f.write(struct.pack('<f', data)) data = header["SliceNCenterZ"] f.write(struct.pack('<f', data)) data = header["RowDirX"] f.write(struct.pack('<f', data)) data = header["RowDirY"] f.write(struct.pack('<f', data)) data = header["RowDirZ"] f.write(struct.pack('<f', data)) data = header["ColDirX"] f.write(struct.pack('<f', data)) data = header["ColDirY"] f.write(struct.pack('<f', data)) data = header["ColDirZ"] f.write(struct.pack('<f', data)) # Expected binary data: int (4 bytes) data = header["NRows"] f.write(struct.pack('<i', data)) data = header["NCols"] f.write(struct.pack('<i', data)) # Expected binary data: float (4 bytes) data = header["FoVRows"] f.write(struct.pack('<f', data)) data = header["FoVCols"] f.write(struct.pack('<f', data)) data = header["SliceThickness"] f.write(struct.pack('<f', data)) data = header["GapThickness"] f.write(struct.pack('<f', data)) # Expected binary data: int (4 bytes) data = header["NrOfPastSpatialTransformations"] f.write(struct.pack('<i', data)) if header["NrOfPastSpatialTransformations"] != 0: for i in range(header["NrOfPastSpatialTransformations"]): # Expected binary data: variable-length string data = header["PastTransformation"][i]["Name"] write_variable_length_string(f, data) # Expected binary data: int (4 bytes) data = header["PastTransformation"][i]["Type"] f.write(struct.pack('<i', data)) # Expected binary data: variable-length string data = header["PastTransformation"][i]["SourceFileName"] write_variable_length_string(f, data) # Expected binary data: int (4 bytes) data = header["PastTransformation"][i]["NrOfValues"] f.write(struct.pack('<i', data)) # Transformation values are stored as a list trans_values = header["PastTransformation"][i]["Values"] for j in range(header["PastTransformation"][i]["NrOfValues"]): # Expected binary data: float (4 bytes) f.write(struct.pack('<f', trans_values[j])) # Expected binary data: char (1 byte) data = header["LeftRightConvention"] f.write(struct.pack('<B', data)) data = header["ReferenceSpaceVMR"] f.write(struct.pack('<B', data)) # Expected binary data: float (4 bytes) data = header["VoxelSizeX"] f.write(struct.pack('<f', data)) data = header["VoxelSizeY"] f.write(struct.pack('<f', data)) data = header["VoxelSizeZ"] f.write(struct.pack('<f', data)) # Expected binary data: char (1 byte) data = header["VoxelResolutionVerified"] f.write(struct.pack('<B', data)) data = header["VoxelResolutionInTALmm"] f.write(struct.pack('<B', data)) # Expected binary data: int (4 bytes) data = header["VMROrigV16MinValue"] f.write(struct.pack('<i', data)) data = header["VMROrigV16MeanValue"] f.write(struct.pack('<i', data)) data = header["VMROrigV16MaxValue"] f.write(struct.pack('<i', data)) return print("VMR saved.")
[ "bvbabel.utils.write_variable_length_string", "numpy.reshape", "struct.pack", "numpy.zeros", "numpy.transpose", "bvbabel.utils.read_variable_length_string" ]
[((3535, 3605), 'numpy.zeros', 'np.zeros', (["(header['DimZ'] * header['DimY'] * header['DimX'])"], {'dtype': '"""<B"""'}), "(header['DimZ'] * header['DimY'] * header['DimX'], dtype='<B')\n", (3543, 3605), True, 'import numpy as np\n'), ((3752, 3822), 'numpy.reshape', 'np.reshape', (['data_img', "(header['DimZ'], header['DimY'], header['DimX'])"], {}), "(data_img, (header['DimZ'], header['DimY'], header['DimX']))\n", (3762, 3822), True, 'import numpy as np\n'), ((3856, 3889), 'numpy.transpose', 'np.transpose', (['data_img', '(0, 2, 1)'], {}), '(data_img, (0, 2, 1))\n', (3868, 3889), True, 'import numpy as np\n'), ((13096, 13129), 'numpy.transpose', 'np.transpose', (['data_img', '(0, 2, 1)'], {}), '(data_img, (0, 2, 1))\n', (13108, 13129), True, 'import numpy as np\n'), ((12534, 12557), 'struct.pack', 'struct.pack', (['"""<H"""', 'data'], {}), "('<H', data)\n", (12545, 12557), False, 'import struct\n'), ((12605, 12628), 'struct.pack', 'struct.pack', (['"""<H"""', 'data'], {}), "('<H', data)\n", (12616, 12628), False, 'import struct\n'), ((12676, 12699), 'struct.pack', 'struct.pack', (['"""<H"""', 'data'], {}), "('<H', data)\n", (12687, 12699), False, 'import struct\n'), ((12747, 12770), 'struct.pack', 'struct.pack', (['"""<H"""', 'data'], {}), "('<H', data)\n", (12758, 12770), False, 'import struct\n'), ((14056, 14079), 'struct.pack', 'struct.pack', (['"""<i"""', 'data'], {}), "('<i', data)\n", (14067, 14079), False, 'import struct\n'), ((14139, 14162), 'struct.pack', 'struct.pack', (['"""<i"""', 'data'], {}), "('<i', data)\n", (14150, 14162), False, 'import struct\n'), ((14268, 14291), 'struct.pack', 'struct.pack', (['"""<f"""', 'data'], {}), "('<f', data)\n", (14279, 14291), False, 'import struct\n'), ((14348, 14371), 'struct.pack', 'struct.pack', (['"""<f"""', 'data'], {}), "('<f', data)\n", (14359, 14371), False, 'import struct\n'), ((14428, 14451), 'struct.pack', 'struct.pack', (['"""<f"""', 'data'], {}), "('<f', data)\n", (14439, 14451), False, 'import struct\n'), ((14508, 14531), 'struct.pack', 'struct.pack', (['"""<f"""', 'data'], {}), "('<f', data)\n", (14519, 14531), False, 'import struct\n'), ((14588, 14611), 'struct.pack', 'struct.pack', (['"""<f"""', 'data'], {}), "('<f', data)\n", (14599, 14611), False, 'import struct\n'), ((14668, 14691), 'struct.pack', 'struct.pack', (['"""<f"""', 'data'], {}), "('<f', data)\n", (14679, 14691), False, 'import struct\n'), ((14742, 14765), 'struct.pack', 'struct.pack', (['"""<f"""', 'data'], {}), "('<f', data)\n", (14753, 14765), False, 'import struct\n'), ((14816, 14839), 'struct.pack', 'struct.pack', (['"""<f"""', 'data'], {}), "('<f', data)\n", (14827, 14839), False, 'import struct\n'), ((14890, 14913), 'struct.pack', 'struct.pack', (['"""<f"""', 'data'], {}), "('<f', data)\n", (14901, 14913), False, 'import struct\n'), ((14964, 14987), 'struct.pack', 'struct.pack', (['"""<f"""', 'data'], {}), "('<f', data)\n", (14975, 14987), False, 'import struct\n'), ((15038, 15061), 'struct.pack', 'struct.pack', (['"""<f"""', 'data'], {}), "('<f', data)\n", (15049, 15061), False, 'import struct\n'), ((15112, 15135), 'struct.pack', 'struct.pack', (['"""<f"""', 'data'], {}), "('<f', data)\n", (15123, 15135), False, 'import struct\n'), ((15231, 15254), 'struct.pack', 'struct.pack', (['"""<i"""', 'data'], {}), "('<i', data)\n", (15242, 15254), False, 'import struct\n'), ((15303, 15326), 'struct.pack', 'struct.pack', (['"""<i"""', 'data'], {}), "('<i', data)\n", (15314, 15326), False, 'import struct\n'), ((15426, 15449), 'struct.pack', 'struct.pack', (['"""<f"""', 'data'], {}), "('<f', data)\n", (15437, 15449), False, 'import struct\n'), ((15500, 15523), 'struct.pack', 'struct.pack', (['"""<f"""', 'data'], {}), "('<f', data)\n", (15511, 15523), False, 'import struct\n'), ((15581, 15604), 'struct.pack', 'struct.pack', (['"""<f"""', 'data'], {}), "('<f', data)\n", (15592, 15604), False, 'import struct\n'), ((15660, 15683), 'struct.pack', 'struct.pack', (['"""<f"""', 'data'], {}), "('<f', data)\n", (15671, 15683), False, 'import struct\n'), ((15804, 15827), 'struct.pack', 'struct.pack', (['"""<i"""', 'data'], {}), "('<i', data)\n", (15815, 15827), False, 'import struct\n'), ((17115, 17138), 'struct.pack', 'struct.pack', (['"""<B"""', 'data'], {}), "('<B', data)\n", (17126, 17138), False, 'import struct\n'), ((17199, 17222), 'struct.pack', 'struct.pack', (['"""<B"""', 'data'], {}), "('<B', data)\n", (17210, 17222), False, 'import struct\n'), ((17325, 17348), 'struct.pack', 'struct.pack', (['"""<f"""', 'data'], {}), "('<f', data)\n", (17336, 17348), False, 'import struct\n'), ((17402, 17425), 'struct.pack', 'struct.pack', (['"""<f"""', 'data'], {}), "('<f', data)\n", (17413, 17425), False, 'import struct\n'), ((17479, 17502), 'struct.pack', 'struct.pack', (['"""<f"""', 'data'], {}), "('<f', data)\n", (17490, 17502), False, 'import struct\n'), ((17616, 17639), 'struct.pack', 'struct.pack', (['"""<B"""', 'data'], {}), "('<B', data)\n", (17627, 17639), False, 'import struct\n'), ((17705, 17728), 'struct.pack', 'struct.pack', (['"""<B"""', 'data'], {}), "('<B', data)\n", (17716, 17728), False, 'import struct\n'), ((17837, 17860), 'struct.pack', 'struct.pack', (['"""<i"""', 'data'], {}), "('<i', data)\n", (17848, 17860), False, 'import struct\n'), ((17923, 17946), 'struct.pack', 'struct.pack', (['"""<i"""', 'data'], {}), "('<i', data)\n", (17934, 17946), False, 'import struct\n'), ((18008, 18031), 'struct.pack', 'struct.pack', (['"""<i"""', 'data'], {}), "('<i', data)\n", (18019, 18031), False, 'import struct\n'), ((9457, 9487), 'bvbabel.utils.read_variable_length_string', 'read_variable_length_string', (['f'], {}), '(f)\n', (9484, 9487), False, 'from bvbabel.utils import read_variable_length_string, write_variable_length_string\n'), ((9811, 9841), 'bvbabel.utils.read_variable_length_string', 'read_variable_length_string', (['f'], {}), '(f)\n', (9838, 9841), False, 'from bvbabel.utils import read_variable_length_string, write_variable_length_string\n'), ((13296, 13326), 'struct.pack', 'struct.pack', (['"""<B"""', 'data_img[i]'], {}), "('<B', data_img[i])\n", (13307, 13326), False, 'import struct\n'), ((13673, 13696), 'struct.pack', 'struct.pack', (['"""<h"""', 'data'], {}), "('<h', data)\n", (13684, 13696), False, 'import struct\n'), ((13755, 13778), 'struct.pack', 'struct.pack', (['"""<h"""', 'data'], {}), "('<h', data)\n", (13766, 13778), False, 'import struct\n'), ((13837, 13860), 'struct.pack', 'struct.pack', (['"""<h"""', 'data'], {}), "('<h', data)\n", (13848, 13860), False, 'import struct\n'), ((13926, 13949), 'struct.pack', 'struct.pack', (['"""<h"""', 'data'], {}), "('<h', data)\n", (13937, 13949), False, 'import struct\n'), ((16100, 16137), 'bvbabel.utils.write_variable_length_string', 'write_variable_length_string', (['f', 'data'], {}), '(f, data)\n', (16128, 16137), False, 'from bvbabel.utils import read_variable_length_string, write_variable_length_string\n'), ((16458, 16495), 'bvbabel.utils.write_variable_length_string', 'write_variable_length_string', (['f', 'data'], {}), '(f, data)\n', (16486, 16495), False, 'from bvbabel.utils import read_variable_length_string, write_variable_length_string\n'), ((16280, 16303), 'struct.pack', 'struct.pack', (['"""<i"""', 'data'], {}), "('<i', data)\n", (16291, 16303), False, 'import struct\n'), ((16644, 16667), 'struct.pack', 'struct.pack', (['"""<i"""', 'data'], {}), "('<i', data)\n", (16655, 16667), False, 'import struct\n'), ((16971, 17005), 'struct.pack', 'struct.pack', (['"""<f"""', 'trans_values[j]'], {}), "('<f', trans_values[j])\n", (16982, 17005), False, 'import struct\n')]
from dataset.baseset import BaseSet import random, cv2 import numpy as np class iNaturalist(BaseSet): def __init__(self, mode='train', cfg=None, transform=None): super(iNaturalist, self).__init__(mode, cfg, transform) random.seed(0) self.class_dict = self._get_class_dict() def __getitem__(self, index): if self.cfg.TRAIN.SAMPLER.TYPE == "weighted sampler" and self.mode == 'train': assert self.cfg.TRAIN.SAMPLER.WEIGHTED_SAMPLER.TYPE in ["balance", 'square', 'progressive'] if self.cfg.TRAIN.SAMPLER.WEIGHTED_SAMPLER.TYPE == "balance": sample_class = random.randint(0, self.num_classes - 1) elif self.cfg.TRAIN.SAMPLER.WEIGHTED_SAMPLER.TYPE == "square": sample_class = np.random.choice(np.arange(self.num_classes), p=self.square_p) else: sample_class = np.random.choice(np.arange(self.num_classes), p=self.progress_p) sample_indexes = self.class_dict[sample_class] index = random.choice(sample_indexes) now_info = self.data[index] img = self._get_image(now_info) image = self.transform(img) meta = dict() image_label = now_info['category_id'] # 0-index return image, image_label, meta
[ "random.choice", "random.randint", "random.seed", "numpy.arange" ]
[((248, 262), 'random.seed', 'random.seed', (['(0)'], {}), '(0)\n', (259, 262), False, 'import random, cv2\n'), ((1059, 1088), 'random.choice', 'random.choice', (['sample_indexes'], {}), '(sample_indexes)\n', (1072, 1088), False, 'import random, cv2\n'), ((651, 690), 'random.randint', 'random.randint', (['(0)', '(self.num_classes - 1)'], {}), '(0, self.num_classes - 1)\n', (665, 690), False, 'import random, cv2\n'), ((816, 843), 'numpy.arange', 'np.arange', (['self.num_classes'], {}), '(self.num_classes)\n', (825, 843), True, 'import numpy as np\n'), ((930, 957), 'numpy.arange', 'np.arange', (['self.num_classes'], {}), '(self.num_classes)\n', (939, 957), True, 'import numpy as np\n')]
import inspect from typing import List, Union, Set, Any import numpy as np from fruits.cache import Cache, CoquantileCache from fruits.scope import force_input_shape, FitTransform from fruits.core.callback import AbstractCallback from fruits.signature.iss import SignatureCalculator, CachePlan from fruits.words.word import Word from fruits.sieving.abstract import FeatureSieve from fruits.preparation.abstract import DataPreparateur class Fruit: """Feature Extractor using iterated sums. A Fruit consists of a number of :class:`~fruits.core.fruit.FruitBranch` objects. At the end of the pipeline, each branch returns their own features and they will be concatenated by this class. A simple example (using two branches): .. code-block:: python fruit = fruits.Fruit("My Fruit") # optional: add preparateurs for preprocessing fruit.add(fruits.preparation.INC) # add words for iterated sums calculation fruit.add(fruits.words.creation.simplewords_by_weight(4)) # choose sieves fruit.add(fruits.sieving.PPV(0.5)) fruit.add(fruits.sieving.END) # add a new branch without INC fruit.fork() fruit.add(fruits.words.creation.simplewords_by_weight(4)) fruit.add(fruits.sieving.PPV(0.5)) fruit.add(fruits.sieving.END) # configure the fruit fruit.configure(mode="extended") # fit the fruit on a time series dataset fruit.fit(X_train) # transform the dataset X_train_transformed = fruit.transform(X_train) X_test_tranformed = fruit.transform(X_test) # use the transformed results (features) in a classifier ... The ``fruit`` above will result in ``2*8*2=32`` features per time series. """ def __init__(self, name: str = ""): self.name: str = name # list of FruitBranches self._branches: List[FruitBranch] = [] # pointer for the current branch index self._cbi: int = 0 self._fitted: bool = False @property def name(self) -> str: """Simple identifier for the Fruit object.""" return self._name @name.setter def name(self, name: str): self._name = name def fork(self, branch: "FruitBranch" = None): """Adds a new branch to the pipeline. If none is given, an empty FruitBranch will be created and switched to. :type branch: FruitBranch, optional """ if branch is None: branch = FruitBranch() self._branches.append(branch) self._cbi = len(self._branches) - 1 self._fitted = False def branch(self, index: int = None): """Returns the currently selected branch or the branch with the given index. :rtype: FruitBranch """ if index is None: return self._branches[self._cbi] return self._branches[index] def branches(self) -> list: """Returns all branches of this Fruit object. :rtype: list """ return self._branches def switch_branch(self, index: int): """Switches to the branch with the given index. :param index: Integer in ``[0, 1, ..., len(self.branches())-1]`` :type index: int """ if not (0 <= index < len(self._branches)): raise IndexError("Index has to be in [0, len(self.branches()))") self._cbi = index def add(self, *objects: Union[FitTransform, Word, type]): """Adds one or multiple object(s) to the currently selected branch. :param objects: One or more objects of the following types: - :class:`~fruits.preparation.abstract.DataPreparateur` - :class:`~fruits.words.word.Word` - :class:`~fruits.sieving.abstract.FeatureSieve` :type objects: Union[FitTransform, Word] """ if len(self._branches) == 0: self.fork() self._branches[self._cbi].add(*objects) self._fitted = False def nfeatures(self) -> int: """Returns the total number of features of all branches combined. :rtype: int """ return sum([branch.nfeatures() for branch in self._branches]) def configure(self, **kwargs: Any): """Makes changes to the default configuration of a all branches if arguments differ from ``None``. :param kwargs: For possible options, have a look at :meth:`fruits.core.fruit.FruitBranch.configure`. :type kwargs: Any """ for branch in self._branches: branch.configure(**kwargs) def fit(self, X: np.ndarray): """Fits all branches to the given data. :param X: (Multidimensional) time series dataset as an array of three dimensions. Have a look at :meth:`~fruits.scope.force_input_shape`. :type X: np.ndarray """ for branch in self._branches: branch.fit(X) self._fitted = True def transform(self, X: np.ndarray, callbacks: List[AbstractCallback] = []) -> np.ndarray: """Returns a two dimensional array of all features from all branches this Fruit object contains. :param X: (Multidimensional) time series dataset as an array of three dimensions. Have a look at :meth:`~fruits.scope.force_input_shape`. :type X: np.ndarray :param callbacks: List of callbacks. To write your own callback, override the class :class:`~fruits.core.callback.AbstractCallback`., defaults to None :type callbacks: List[AbstractCallback], optional :rtype: np.ndarray :raises: RuntimeError if Fruit.fit wasn't called """ if not self._fitted: raise RuntimeError("Missing call of self.fit") result = np.zeros((X.shape[0], self.nfeatures())) index = 0 for branch in self._branches: for callback in callbacks: callback.on_next_branch() k = branch.nfeatures() result[:, index:index+k] = branch.transform(X, callbacks) index += k result = np.nan_to_num(result, copy=False, nan=0.0) return result def fit_transform(self, X: np.ndarray) -> np.ndarray: """Fits all branches to the given dataset and returns the transformed results of X from all branches. :param X: (Multidimensional) time series dataset :type X: np.ndarray :returns: Two dimensional feature array :rtype: np.ndarray """ self.fit(X) return self.transform(X) def summary(self) -> str: """Returns a summary of this object. The summary contains a summary for each FruitBranch in this Fruit object. :rtype: str """ summary = "{:=^80}".format(f"Summary of fruits.Fruit: '{self.name}'") summary += f"\nBranches: {len(self.branches())}" summary += f"\nFeatures: {self.nfeatures()}" for branch in self.branches(): summary += "\n\n" + branch.summary() summary += "\n{:=^80}".format(f"End of Summary") return summary def copy(self) -> "Fruit": """Creates a shallow copy of this Fruit object. This also creates shallow copies of all branches in this object. :rtype: Fruit """ copy_ = Fruit(self.name+" (Copy)") for branch in self._branches: copy_.fork(branch.copy()) return copy_ def deepcopy(self) -> "Fruit": """Creates a deep copy of this Fruit object. This also creates deep copies of all branches in this object. :rtype: Fruit """ copy_ = Fruit(self.name+" (Copy)") for branch in self._branches: copy_.fork(branch.deepcopy()) return copy_ class FruitBranch: """One branch of a Fruit object. A FruitBranch object extracts values from time series data that are somehow representative of the input data. The user can customize any of the following three steps. - Preparing data: Apply functions at the start of the extraction procedure. There are many so called :class:`~fruits.preparation.abstract.DataPreparateur` objects in fruits available for preprocessing. The preparateurs will be applied sequentially to the input data. - Calculating Iterated Sums: The preprocessed data is now used to calculate the iterated sums signature for different :class:`~fruits.words.word.Word` objects the user can specify. - Extracting Features: Each :class:`~fruits.sieving.abstract.FeatureSieve` added to the branch will be fitted on the iterated sums from the previous step. The branch then returns an array of numbers (the transformed results from those sieves), i.e. the features for each time series. """ def __init__(self): # lists of used classes for data processing self._preparateurs: list = [] self._words: list = [] self._sieves: list = [] # calculator options used in the ISS calculation self._calculator_options: dict = {"batch_size": 1, "mode": "single"} # list with inner lists containing sieves # all sieves in one list are trained on one specific output # of an ISS-result self._sieves_extended: list = [] # configurations for fitting self._fitted: bool = False self._fit_sample_size: Union[float, int] = 1 # cache that is calculated at fitting and also used in the # transformation process self._cache: Cache def configure(self, mode: str = None, batch_size: int = None, fit_sample_size: Union[float, int] = None): """Makes changes to the default configuration of a fruit branch if arguments differ from ``None``. :param mode: See :meth:`fruits.signature.iss.SignatureCalculator.transform`, defaults to None :type mode: str, optional :param batch_size: See :meth:`~ruits.signature.iss.SignatureCalculator.transform`, defaults to None :type batch_size: int, optional :param fit_sample_size: Size of the random time series sample that is used for fitting. This is represented as a float which will be multiplied by ``X.shape[0]`` or ``1`` for one random time series., defaults to 1 :type fit_sample_size: Union[float, int] """ if mode is not None: self._calculator_options["mode"] = mode if batch_size is not None: self._calculator_options["batch_size"] = batch_size if fit_sample_size is not None: self._fit_sample_size = fit_sample_size def add_preparateur(self, preparateur: DataPreparateur): """Adds a preparateur to the branch. :type preparateur: DataPreparateur """ if not isinstance(preparateur, DataPreparateur): raise TypeError self._preparateurs.append(preparateur) self._fitted = False def get_preparateurs(self) -> List[DataPreparateur]: """Returns a list of all preparateurs added to the branch. :rtype: List[DataPreparateur] """ return self._preparateurs def clear_preparateurs(self): """Removes all preparateurs that were added to this branch.""" self._preparateurs = [] self._fitted = False def add_word(self, word: Word): """Adds a word to the branch. :type word: Word """ if not isinstance(word, Word): raise TypeError self._words.append(word) self._fitted = False def get_words(self) -> List[Word]: """Returns a list of all words in the branch. :rtype: List[Word] """ return self._words def clear_words(self): """Removes all words that were added to this branch.""" self._words = [] self._sieves_extended = [] self._fitted = False def add_sieve(self, sieve: FeatureSieve): """Appends a new feature sieve to the FruitBranch. :type sieve: FeatureSieve """ if not isinstance(sieve, FeatureSieve): raise TypeError self._sieves.append(sieve) self._fitted = False def get_sieves(self) -> List[FeatureSieve]: """Returns a list of all feature sieves added to the branch. :rtype: List[FeatureSieve] """ return self._sieves def clear_sieves(self): """Removes all feature sieves that were added to this branch.""" self._sieves = [] self._sieve_prerequisites = None self._sieves_extended = [] self._fitted = False def add(self, *objects: Union[FitTransform, Word, type]): """Adds one or multiple object(s) to the branch. :type objects: One or more objects of the following types: - :class:`~fruits.preparation.abstract.DataPreparateur` - :class:`~fruits.words.word.Word` - :class:`~fruits.sieving.abstract.FeatureSieve` """ objects_flattened = np.array(objects, dtype=object).flatten() for obj in objects_flattened: if inspect.isclass(obj): obj = obj() if isinstance(obj, DataPreparateur): self.add_preparateur(obj) elif isinstance(obj, Word): self.add_word(obj) elif isinstance(obj, FeatureSieve): self.add_sieve(obj) else: raise TypeError("Cannot add variable of type"+str(type(obj))) def clear(self): """Clears all settings, configurations and calculated results the branch has. After the branch is cleared, it has the same settings as a newly created FruitBranch object. """ self.clear_preparateurs() self.clear_words() self.clear_sieves() self._calculator_options = {"batch_size": 1, "mode": "single"} def nfeatures(self) -> int: """Returns the total number of features the current configuration produces. :rtype: int """ if self._calculator_options["mode"] == "extended": return ( sum([s.nfeatures() for s in self._sieves]) * CachePlan(self._words).n_iterated_sums( list(range(len(self._words))) ) ) else: return ( sum([s.nfeatures() for s in self._sieves]) * len(self._words) ) def _compile(self): # checks if the FruitBranch is configured correctly and ready # for fitting if not self._words: raise RuntimeError("No words specified for ISS calculation") if not self._sieves: raise RuntimeError("No FeatureSieve objects specified") def _collect_cache_keys(self) -> Set[str]: # collects cache keys of all FitTransformers in the branch keys: Set[str] = set() for prep in self._preparateurs: prep_keys = prep._get_cache_keys() if 'coquantile' in prep_keys: keys = keys.union(prep_keys['coquantile']) for sieve in self._sieves: sieve_keys = sieve._get_cache_keys() if 'coquantile' in sieve_keys: keys = keys.union(sieve_keys['coquantile']) return keys def _get_cache(self, X: np.ndarray): # returns the already processed cache needed in this branch self._cache = CoquantileCache() self._cache.process(X, list(self._collect_cache_keys())) def _select_fit_sample(self, X: np.ndarray) -> np.ndarray: # returns a sample of the data used for fitting if (isinstance(self._fit_sample_size, int) and self._fit_sample_size == 1): ind = np.random.randint(0, X.shape[0]) return X[ind:ind+1, :, :] else: s = int(self._fit_sample_size * X.shape[0]) if s < 1: s = 1 indices = np.random.choice(X.shape[0], size=s, replace=False) return X[indices, :, :] def fit(self, X: np.ndarray): """Fits the branch to the given dataset. What this action explicitly does depends on the FruitBranch configuration. :param X: (Multidimensional) time series dataset as an array of three dimensions. Have a look at :meth:`~fruits.scope.force_input_shape`. :type X: np.ndarray """ self._compile() self._get_cache(X) prepared_data = self._select_fit_sample(X) for prep in self._preparateurs: prep.fit(prepared_data) prepared_data = prep.transform(prepared_data, cache=self._cache) self._sieves_extended = [] iss_calculations = SignatureCalculator().transform( prepared_data, words=self._words, **self._calculator_options )[0] for iterated_data in iss_calculations: iterated_data = iterated_data.reshape(iterated_data.shape[0] * iterated_data.shape[1], iterated_data.shape[2]) sieves_copy = [sieve.copy() for sieve in self._sieves] for sieve in sieves_copy: sieve.fit(iterated_data[:, :]) self._sieves_extended.append(sieves_copy) self._fitted = True def transform(self, X: np.ndarray, callbacks: List[AbstractCallback] = []) -> np.ndarray: """Transforms the given time series dataset. The results are the calculated features for the different time series. :param X: (Multidimensional) time series dataset as an array of three dimensions. Have a look at :meth:`~fruits.scope.force_input_shape`. :type X: np.ndarray :param callbacks: List of callbacks. To write your own callback, override the class :class:`~fruits.core.callback.AbstractCallback`., defaults to [] :type callbacks: List[AbstractCallback], optional :rtype: np.ndarray :raises: RuntimeError if ``self.fit`` wasn't called """ if not self._fitted: raise RuntimeError("Missing call of self.fit") self._get_cache(X) prepared_data = force_input_shape(X) for prep in self._preparateurs: prepared_data = prep.transform(prepared_data, cache=self._cache) for callback in callbacks: callback.on_preparateur(prepared_data) for callback in callbacks: callback.on_preparation_end(prepared_data) sieved_data = np.zeros((prepared_data.shape[0], self.nfeatures())) k = 0 iss_calculations = SignatureCalculator().transform( prepared_data, words=self._words, **self._calculator_options )[0] for i, iterated_data in enumerate(iss_calculations): for callback in callbacks: callback.on_iterated_sum(iterated_data) for sieve in self._sieves_extended[i]: nf = sieve.nfeatures() new_features = nf * iterated_data.shape[1] for it in range(iterated_data.shape[1]): sieved_data[:, k+it*nf:k+(it+1)*nf] = sieve.transform( iterated_data[:, it, :], cache=self._cache, ) for callback in callbacks: callback.on_sieve(sieved_data[k:k+new_features]) k += new_features for callback in callbacks: callback.on_sieving_end(sieved_data) return sieved_data def fit_transform(self, X: np.ndarray) -> np.ndarray: """This function does the same that calling ``self.fit(X)`` and ``self.transform(X)`` consecutively does. :param X: (Multidimensional) time series dataset as an array of three dimensions. Have a look at `:meth:`~fruits.scope.force_input_shape`. :type X: np.ndarray :returns: Array of features. :rtype: np.ndarray """ self.fit(X) return self.transform(X) def summary(self) -> str: """Returns a summary of this object. The summary contains all added preparateurs, words and sieves. :rtype: str """ summary = "{:-^80}".format("fruits.FruitBranch") summary += f"\nNumber of features: {self.nfeatures()}" summary += f"\n\nPreparateurs ({len(self._preparateurs)}): " if len(self._preparateurs) == 0: summary += "-" else: summary += "\n\t+ " + \ "\n\t+ ".join([str(x) for x in self._preparateurs]) summary += f"\nIterators ({len(self._words)}): " if len(self._words) == 0: summary += "-" elif len(self._words) > 10: summary += "\n\t+ " + \ "\n\t+ ".join([str(x) for x in self._words[:9]]) summary += "\n\t..." else: summary += "\n\t+ " + \ "\n\t+ ".join([str(x) for x in self._words]) summary += f"\nSieves ({len(self._sieves)}): " if len(self._sieves) == 0: summary += "-" else: for x in self._sieves: lines = x.summary().split("\n") summary += "\n\t+ " + lines[0] summary += "\n\t " summary += "\n\t ".join(lines[1:]) return summary def copy(self) -> "FruitBranch": """Returns a shallow copy of this FruitBranch object. :returns: Copy of the branch with same settings but all calculations done erased. :rtype: FruitBranch """ copy_ = FruitBranch() for preparateur in self._preparateurs: copy_.add(preparateur) for iterator in self._words: copy_.add(iterator) for sieve in self._sieves: copy_.add(sieve) return copy_ def deepcopy(self) -> "FruitBranch": """Returns a deep copy of this FruitBranch object. :returns: Deepcopy of the branch with same settings but all calculations done erased. :rtype: FruitBranch """ copy_ = FruitBranch() for preparateur in self._preparateurs: copy_.add(preparateur.copy()) for iterator in self._words: copy_.add(iterator.copy()) for sieve in self._sieves: copy_.add(sieve.copy()) copy_._calculator_options = self._calculator_options.copy() return copy_
[ "fruits.signature.iss.CachePlan", "numpy.random.choice", "fruits.signature.iss.SignatureCalculator", "numpy.array", "numpy.random.randint", "fruits.scope.force_input_shape", "inspect.isclass", "fruits.cache.CoquantileCache", "numpy.nan_to_num" ]
[((6257, 6299), 'numpy.nan_to_num', 'np.nan_to_num', (['result'], {'copy': '(False)', 'nan': '(0.0)'}), '(result, copy=False, nan=0.0)\n', (6270, 6299), True, 'import numpy as np\n'), ((15954, 15971), 'fruits.cache.CoquantileCache', 'CoquantileCache', ([], {}), '()\n', (15969, 15971), False, 'from fruits.cache import Cache, CoquantileCache\n'), ((18848, 18868), 'fruits.scope.force_input_shape', 'force_input_shape', (['X'], {}), '(X)\n', (18865, 18868), False, 'from fruits.scope import force_input_shape, FitTransform\n'), ((13590, 13610), 'inspect.isclass', 'inspect.isclass', (['obj'], {}), '(obj)\n', (13605, 13610), False, 'import inspect\n'), ((16275, 16307), 'numpy.random.randint', 'np.random.randint', (['(0)', 'X.shape[0]'], {}), '(0, X.shape[0])\n', (16292, 16307), True, 'import numpy as np\n'), ((16482, 16533), 'numpy.random.choice', 'np.random.choice', (['X.shape[0]'], {'size': 's', 'replace': '(False)'}), '(X.shape[0], size=s, replace=False)\n', (16498, 16533), True, 'import numpy as np\n'), ((13495, 13526), 'numpy.array', 'np.array', (['objects'], {'dtype': 'object'}), '(objects, dtype=object)\n', (13503, 13526), True, 'import numpy as np\n'), ((17267, 17288), 'fruits.signature.iss.SignatureCalculator', 'SignatureCalculator', ([], {}), '()\n', (17286, 17288), False, 'from fruits.signature.iss import SignatureCalculator, CachePlan\n'), ((19319, 19340), 'fruits.signature.iss.SignatureCalculator', 'SignatureCalculator', ([], {}), '()\n', (19338, 19340), False, 'from fruits.signature.iss import SignatureCalculator, CachePlan\n'), ((14699, 14721), 'fruits.signature.iss.CachePlan', 'CachePlan', (['self._words'], {}), '(self._words)\n', (14708, 14721), False, 'from fruits.signature.iss import SignatureCalculator, CachePlan\n')]
import numpy as np from sklearn.metrics import fbeta_score, roc_curve, auc, confusion_matrix from sklearn.decomposition import PCA from sklearn import random_projection from sklearn import svm from sklearn.ensemble import IsolationForest import matplotlib.pyplot as plt from keras.layers import Dense, Input, Dropout from keras.models import Model from keras import regularizers from keras.models import Sequential from keras.optimizers import Adam from keras.regularizers import l2 from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import AdaBoostClassifier import xgboost as xgb def one_class_svm(x_train, x_test, x_attacks, svm_results): # SVM Hyper-parameters nus = [0.01] gammas = ['auto'] dimensions = [int(i*x_test.shape[1]) for i in [0.25, 0.35, 0.5, 0.75, 0.9, 1]] dimensions = list(filter(lambda x: x > 0, dimensions)) for n in dimensions: x_reduced_pca, test_reduced_pca, attack_reduced_pca = reduce_dimensionality(n, x_train, x_test, 'PCA', attack=x_attacks) for nu in nus: for gamma in gammas: # Fit classifier with PCA reduced data classifier = svm.OneClassSVM(kernel='rbf', gamma=gamma, nu=nu, cache_size=7000) classifier.fit(x_reduced_pca) fb, area, tnr, tpr_train, tpr_test = unsupervised_evaluation(classifier, x_reduced_pca, test_reduced_pca, attack_reduced_pca) svm_results = svm_results.append({'nu': nu, 'gamma': gamma, 'n_components': n, 'TPR_train': tpr_train, 'TPR_test': tpr_test, 'TNR': tnr, 'model': 'svm', 'auc': area, 'f_beta': fb, 'projection': 'PCA'}, ignore_index=True) # Fit classifier with RP reduced data classifier = svm.OneClassSVM(kernel='rbf', gamma=gamma, nu=nu, cache_size=7000) classifier.fit(x_train) fb, area, tnr, tpr_train, tpr_test = unsupervised_evaluation(classifier, x_train, x_test, x_attacks) svm_results = svm_results.append({'nu': nu, 'gamma': gamma, 'n_components': x_test.shape[1], 'TPR_train': tpr_train, 'TPR_test': tpr_test, 'TNR': tnr, 'model': 'svm', 'auc': area, 'f_beta': fb, 'projection': 'None'}, ignore_index=True) return svm_results def isolation_forest(x_train, x_test, x_attacks, isolation_results): # Isolation Forest Hyper-parameters estimators = [200, 100] contaminations = [0.01] dimensions = [int(i*x_test.shape[1]) for i in [0.25, 0.5, 0.9, 1]] dimensions = list(filter(lambda x: x > 0, dimensions)) for n in dimensions: x_reduced_pca, test_reduced_pca, attack_reduced_pca = reduce_dimensionality(n, x_train, x_test, 'PCA', attack=x_attacks) x_reduced_rp, test_reduced_rp, attack_reduced_rp = reduce_dimensionality(n, x_train, x_test, 'RP', attack=x_attacks) max_features = list(range(1, n + 1, 4)) for estimator in estimators: for contamination in contaminations: for max_feature in max_features: classifier = IsolationForest(n_estimators=estimator, contamination=contamination, max_features=max_feature, n_jobs=7) classifier.fit(x_reduced_pca) fb, area, tnr, tpr_train, tpr_test = unsupervised_evaluation(classifier, x_reduced_pca, test_reduced_pca, attack_reduced_pca) isolation_results = isolation_results.append({'estimators': estimator, 'contamination': contamination, 'n_components': n, 'max_features': max_feature, 'TPR_train': tpr_train, 'TPR_test': tpr_test, 'TNR': tnr, 'model': 'isolation_forest', 'auc': area, 'f_beta': fb, 'projection': 'PCA'}, ignore_index=True) classifier = IsolationForest(n_estimators=estimator, contamination=contamination, max_features=max_feature, n_jobs=7) classifier.fit(x_reduced_rp) fb, area, tnr, tpr_train, tpr_test = unsupervised_evaluation(classifier, x_reduced_rp, test_reduced_rp, attack_reduced_rp) isolation_results = isolation_results.append({'estimators': estimator, 'contamination': contamination, 'n_components': n, 'max_features': max_feature, 'TPR_train': tpr_train, 'TPR_test': tpr_test, 'TNR': tnr, 'model': 'isolation_forest', 'auc': area, 'f_beta': fb, 'projection': 'RP'}, ignore_index=True) return isolation_results def autoencoder(x_train, x_test, x_attacks, ae_svm_results): latent_dim = 3 input_vector = Input(shape=(x_train.shape[1],)) encoded = Dense(latent_dim, activation='relu')(input_vector) decoded = Dense(x_train.shape[1], activity_regularizer=regularizers.l1(10e-5))(encoded) autoencoder = Model(input_vector, decoded) encoder = Model(input_vector, encoded) autoencoder.compile(optimizer=Adam(lr=0.001), loss='mse') network_history = autoencoder.fit(x_train, x_train, shuffle=True, batch_size=16, epochs=10, validation_data=(x_test, x_test), verbose=True) plot_history(network_history, 'AE history') print('Mean loss on train: {}'.format(autoencoder.evaluate(x_train, x_train, batch_size=8, verbose=False))) print('Mean loss on test: {}'.format(autoencoder.evaluate(x_test, x_test, batch_size=8, verbose=False))) print('Mean loss on attacks: {}'.format(autoencoder.evaluate(x_attacks, x_attacks, batch_size=8, verbose=False))) x_train_red = encoder.predict(x_train, batch_size=8) x_test_red = encoder.predict(x_test, batch_size=8) x_attacks_red = encoder.predict(x_attacks, batch_size=8) nus = [0.01] gammas = [x_train_red.shape[1], 2*x_train_red.shape[1], x_train_red.shape[1]/2, 'auto'] for nu in nus: for gamma in gammas: classifier = svm.OneClassSVM(kernel='rbf', gamma=gamma, nu=nu, cache_size=7000) classifier.fit(x_train_red) fb, area, tnr, tpr_train, tpr_test = unsupervised_evaluation(classifier, x_train_red, x_test_red, x_attacks_red) ae_svm_results = ae_svm_results.append({'nu': nu, 'gamma': gamma, 'n_components': latent_dim, 'TPR_train': tpr_train, 'TPR_test': tpr_test, 'TNR': tnr, 'model': 'ae-svm', 'auc': area, 'f_beta': fb}, ignore_index=True) return ae_svm_results def unsupervised_evaluation(classifier, train_set, test_set, attack_set, beta=20): y_pred_train = classifier.predict(train_set) y_pred_test = classifier.predict(test_set) y_pred_outliers = classifier.predict(attack_set) n_accurate_train = y_pred_train[y_pred_train == 1].size n_accurate_test = y_pred_test[y_pred_test == 1].size n_accurate_outliers = y_pred_outliers[y_pred_outliers == -1].size fpr, tpr, _ = roc_curve(np.concatenate([np.ones(y_pred_test.shape[0]), -1*np.ones(y_pred_outliers.shape[0])]), np.concatenate([y_pred_test, y_pred_outliers]), pos_label=1) fb = fbeta_score(np.concatenate([np.ones(y_pred_test.shape[0]), -1*np.ones(y_pred_outliers.shape[0])]), np.concatenate([y_pred_test, y_pred_outliers]), beta=beta, pos_label=1) tnr = n_accurate_outliers/attack_set.shape[0] tpr_test = n_accurate_test/test_set.shape[0] tpr_train = n_accurate_train/train_set.shape[0] area = auc(fpr, tpr) return fb, area, tnr, tpr_train, tpr_test def neural_network(x_train, y_train, x_test, y_test): model = Sequential() model.add(Dense(128, input_shape=(x_train.shape[1],), activation='relu', kernel_regularizer=l2(0.01))) model.add(Dropout(0.1)) model.add(Dense(64, activation='relu', kernel_regularizer=l2(0.01))) model.add(Dropout(0.2)) model.add(Dense(128, kernel_initializer='glorot_uniform', activation='sigmoid')) model.add(Dropout(0.4)) model.add(Dense(64, kernel_initializer='glorot_uniform', activation='tanh')) model.add(Dropout(0.5)) model.add(Dense(32, kernel_initializer='glorot_uniform', activation='tanh')) model.add(Dropout(0.4)) model.add(Dense(128, kernel_initializer='glorot_uniform', activation='tanh')) model.add(Dropout(0.3)) model.add(Dense(1, kernel_initializer='normal', activation='sigmoid')) model.compile(loss='binary_crossentropy', optimizer='sgd', metrics=['accuracy']) network_history = model.fit(x_train, y_train, batch_size=128, epochs=10, verbose=0, validation_data=(x_test, y_test)) plot_history_with_acc(network_history) return model def random_forest(x_train, y_train, x_test, y_test, random_forest_results): # Random forest Hyper-parameters estimators = [150, 200] dimensions = [int(i*x_test.shape[1]) for i in [1]] for estimator in estimators: for n in dimensions: x_reduced_pca, test_reduced_pca = reduce_dimensionality(n, x_train, x_test, 'PCA') x_reduced_rp, test_reduced_rp = reduce_dimensionality(n, x_train, x_test, 'RP') classifier = RandomForestClassifier(n_estimators=estimator, n_jobs=7) classifier.fit(x_reduced_pca, y_train) fb, area, tnr, tpr = supervised_evaluation(classifier, test_reduced_pca, y_test) random_forest_results = random_forest_results.append({'estimators': estimator, 'n_components': n, 'TPR': tpr, 'TNR': tnr, 'model': 'random_forest', 'auc': area, 'f_beta': fb, 'projection': 'PCA'}, ignore_index=True) classifier = RandomForestClassifier(n_estimators=estimator, n_jobs=7) classifier.fit(x_reduced_rp, y_train) fb, area, tnr, tpr = supervised_evaluation(classifier, test_reduced_rp, y_test) random_forest_results = random_forest_results.append({'estimators': estimator, 'n_components': n, 'TPR': tpr, 'TNR': tnr, 'model': 'random_forest', 'auc': area, 'f_beta': fb, 'projection': 'RP'}, ignore_index=True) classifier = RandomForestClassifier(n_estimators=estimator, n_jobs=7) classifier.fit(x_train, y_train) fb, area, tnr, tpr = supervised_evaluation(classifier, x_test, y_test) random_forest_results = random_forest_results.append({'estimators': estimator, 'n_components': x_test.shape[1], 'TPR': tpr, 'TNR': tnr, 'model': 'random_forest', 'auc': area, 'f_beta': fb, 'projection': 'None'}, ignore_index=True) return random_forest_results def ada_boost(x_train, y_train, x_test, y_test, ada_boost_results): # AdaBoost Hyper-parameters learning_rates = [0.55] dimensions = [int(i*x_test.shape[1]) for i in [1]] for n in dimensions: x_reduced_pca, test_reduced_pca = reduce_dimensionality(n, x_train, x_test, 'PCA') x_reduced_rp, test_reduced_rp = reduce_dimensionality(n, x_train, x_test, 'RP') for lr in learning_rates: classifier = AdaBoostClassifier(learning_rate=lr) classifier.fit(x_reduced_pca, y_train) fb, area, tnr, tpr = supervised_evaluation(classifier, test_reduced_pca, y_test) ada_boost_results = ada_boost_results.append({'LR': lr, 'n_components': n, 'TPR': tpr, 'TNR': tnr, 'model': 'ada_boost', 'auc': area, 'f_beta': fb, 'projection': 'PCA'}, ignore_index=True) classifier = AdaBoostClassifier(learning_rate=lr) classifier.fit(x_reduced_rp, y_train) fb, area, tnr, tpr = supervised_evaluation(classifier, test_reduced_rp, y_test) ada_boost_results = ada_boost_results.append({'LR': lr, 'n_components': n, 'TPR': tpr, 'TNR': tnr, 'model': 'ada_boost', 'auc': area, 'f_beta': fb, 'projection': 'RP'}, ignore_index=True) return ada_boost_results def svm_classifier(x_train, y_train, x_test, y_test, svm_results): # SVC Hyper-parameters dimensions = [int(i*x_test.shape[1]) for i in [1]] for n in dimensions: x_reduced_pca, test_reduced_pca = reduce_dimensionality(n, x_train, x_test, 'PCA') x_reduced_rp, test_reduced_rp = reduce_dimensionality(n, x_train, x_test, 'RP') classifier = svm.SVC(gamma='auto', cache_size=7000) classifier.fit(x_reduced_pca, y_train) fb, area, tnr, tpr = supervised_evaluation(classifier, test_reduced_pca, y_test) svm_results = svm_results.append({ 'n_components': n, 'TPR': tpr, 'TNR': tnr, 'model': 'svm', 'auc': area, 'f_beta': fb, 'projection': 'PCA'}, ignore_index=True) classifier = svm.SVC(gamma='auto', cache_size=7000) classifier.fit(x_reduced_rp, y_train) fb, area, tnr, tpr = supervised_evaluation(classifier, test_reduced_rp, y_test) svm_results = svm_results.append({ 'n_components': n, 'TPR': tpr, 'TNR': tnr, 'model': 'svm', 'auc': area, 'f_beta': fb, 'projection': 'RP'}, ignore_index=True) return svm_results def xg_boost(x_train, y_train, x_test, y_test, xg_boost_results): # XGBoost Hyper-parameters dimensions = [int(i*x_test.shape[1]) for i in [1]] for n in dimensions: x_reduced_pca, test_reduced_pca = reduce_dimensionality(n, x_train, x_test, 'PCA') x_reduced_rp, test_reduced_rp = reduce_dimensionality(n, x_train, x_test, 'RP') classifier = xgb.XGBClassifier() grid = {'max_depth': 10} classifier.set_params(**grid) classifier.fit(x_reduced_pca, y_train) fb, area, tnr, tpr = supervised_evaluation(classifier, test_reduced_pca, y_test) xg_boost_results = xg_boost_results.append({ 'n_components': n, 'TPR': tpr, 'TNR': tnr, 'model': 'xgboost', 'auc': area, 'f_beta': fb, 'projection': 'PCA'}, ignore_index=True) classifier = xgb.XGBClassifier() grid = {'max_depth': 10} classifier.set_params(**grid) classifier.fit(x_reduced_rp, y_train) fb, area, tnr, tpr = supervised_evaluation(classifier, test_reduced_rp, y_test) xg_boost_results = xg_boost_results.append({ 'n_components': n, 'TPR': tpr, 'TNR': tnr, 'model': 'xgboost', 'auc': area, 'f_beta': fb, 'projection': 'RP'}, ignore_index=True) classifier = xgb.XGBClassifier() grid = {'max_depth': 10} classifier.set_params(**grid) classifier.fit(x_train, y_train) fb, area, tnr, tpr = supervised_evaluation(classifier, x_test, y_test) xg_boost_results = xg_boost_results.append({ 'n_components': x_test.shape[1], 'TPR': tpr, 'TNR': tnr, 'model': 'xgboost', 'auc': area, 'f_beta': fb, 'projection': 'None'}, ignore_index=True) return xg_boost_results def supervised_evaluation(classifier, x_test, y_test, beta=20, nn=False): if not nn: y_pred = classifier.predict(x_test) confusion_matrix(y_test, y_pred) fpr, tpr, _ = roc_curve(y_test, y_pred) fb = fbeta_score(y_test, y_pred, beta=beta, pos_label=1) area = auc(fpr, tpr) tpr = tpr[1] tnr = 1 - fpr[1] return fb, area, tnr, tpr def plot_roc(classifier, test, attacks, title): y_pred_test = classifier.predict(test) y_pred_outliers = classifier.predict(attacks) fpr, tpr, _ = roc_curve(np.concatenate([np.ones(y_pred_test.shape[0]), -1*np.ones(y_pred_outliers.shape[0])]), np.concatenate([y_pred_test, y_pred_outliers]), pos_label=1) roc_auc = auc(fpr, tpr) plt.figure() lw = 2 plt.plot(fpr, tpr, color='darkorange', lw=lw, label='ROC curve (area = %0.2f)' % roc_auc) plt.plot([0, 1], [0, 1], color='navy', lw=lw, linestyle='--') plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.05]) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title('Receiver operating characteristic: {}'.format(title)) plt.legend(loc='lower right') plt.show() def plot_roc_supervised(classifier, x_test, y_test, title, nn=False): y_pred = classifier.predict(x_test) fpr, tpr, _ = roc_curve(y_test, y_pred) if nn: y_pred = [round(x[0]) for x in y_pred] print(confusion_matrix(y_test, y_pred)) roc_auc = auc(fpr, tpr) plt.figure() lw = 2 plt.plot(fpr, tpr, color='darkorange', lw=lw, label='ROC curve (area = %0.2f)' % roc_auc) plt.plot([0, 1], [0, 1], color='navy', lw=lw, linestyle='--') plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.05]) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title('Receiver operating characteristic {}'.format(title)) plt.legend(loc='lower right') plt.show() def plot_history(network_history, title): plt.figure(figsize=(10, 5)) plt.title(title) plt.xlabel('Epochs') plt.ylabel('Loss') plt.semilogy(network_history.history['loss']) plt.semilogy(network_history.history['val_loss']) plt.legend(['Training', 'Validation']) plt.show() def plot_history_with_acc(network_history, title='Loss and Accuracy'): plt.figure(figsize=(15, 10)) plt.subplot(211) plt.title(title) plt.xlabel('Epochs') plt.ylabel('Loss') plt.semilogy(network_history.history['loss']) plt.semilogy(network_history.history['val_loss']) plt.legend(['Training', 'Validation']) plt.subplot(212) plt.xlabel('Epochs') plt.ylabel('Accuracy') plt.plot(network_history.history['acc']) plt.plot(network_history.history['val_acc']) plt.legend(['Training', 'Validation'], loc='lower right') plt.show() def reduce_dimensionality(n_components, train, test, method, attack=None): if method == 'PCA': matrix = PCA(n_components=n_components) elif method == 'RP': matrix = random_projection.SparseRandomProjection(n_components=n_components, random_state=7) else: print('unknown projection method, choose either RP or PCA') return None train = matrix.fit_transform(train) test = matrix.transform(test) if attack is None: return train, test attack = matrix.transform(attack) return train, test, attack
[ "matplotlib.pyplot.ylabel", "sklearn.metrics.auc", "sklearn.ensemble.AdaBoostClassifier", "sklearn.metrics.roc_curve", "keras.layers.Dense", "matplotlib.pyplot.semilogy", "sklearn.decomposition.PCA", "sklearn.random_projection.SparseRandomProjection", "matplotlib.pyplot.xlabel", "matplotlib.pyplot.plot", "keras.models.Model", "numpy.concatenate", "matplotlib.pyplot.ylim", "sklearn.svm.OneClassSVM", "keras.regularizers.l1", "sklearn.metrics.confusion_matrix", "keras.optimizers.Adam", "numpy.ones", "sklearn.ensemble.RandomForestClassifier", "keras.models.Sequential", "sklearn.metrics.fbeta_score", "keras.regularizers.l2", "matplotlib.pyplot.title", "matplotlib.pyplot.xlim", "keras.layers.Dropout", "matplotlib.pyplot.legend", "xgboost.XGBClassifier", "matplotlib.pyplot.show", "sklearn.svm.SVC", "sklearn.ensemble.IsolationForest", "keras.layers.Input", "matplotlib.pyplot.figure", "matplotlib.pyplot.subplot" ]
[((6712, 6744), 'keras.layers.Input', 'Input', ([], {'shape': '(x_train.shape[1],)'}), '(shape=(x_train.shape[1],))\n', (6717, 6744), False, 'from keras.layers import Dense, Input, Dropout\n'), ((6920, 6948), 'keras.models.Model', 'Model', (['input_vector', 'decoded'], {}), '(input_vector, decoded)\n', (6925, 6948), False, 'from keras.models import Model\n'), ((6963, 6991), 'keras.models.Model', 'Model', (['input_vector', 'encoded'], {}), '(input_vector, encoded)\n', (6968, 6991), False, 'from keras.models import Model\n'), ((9640, 9653), 'sklearn.metrics.auc', 'auc', (['fpr', 'tpr'], {}), '(fpr, tpr)\n', (9643, 9653), False, 'from sklearn.metrics import fbeta_score, roc_curve, auc, confusion_matrix\n'), ((9768, 9780), 'keras.models.Sequential', 'Sequential', ([], {}), '()\n', (9778, 9780), False, 'from keras.models import Sequential\n'), ((19241, 19260), 'xgboost.XGBClassifier', 'xgb.XGBClassifier', ([], {}), '()\n', (19258, 19260), True, 'import xgboost as xgb\n'), ((20524, 20537), 'sklearn.metrics.auc', 'auc', (['fpr', 'tpr'], {}), '(fpr, tpr)\n', (20527, 20537), False, 'from sklearn.metrics import fbeta_score, roc_curve, auc, confusion_matrix\n'), ((20542, 20554), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (20552, 20554), True, 'import matplotlib.pyplot as plt\n'), ((20570, 20664), 'matplotlib.pyplot.plot', 'plt.plot', (['fpr', 'tpr'], {'color': '"""darkorange"""', 'lw': 'lw', 'label': "('ROC curve (area = %0.2f)' % roc_auc)"}), "(fpr, tpr, color='darkorange', lw=lw, label=\n 'ROC curve (area = %0.2f)' % roc_auc)\n", (20578, 20664), True, 'import matplotlib.pyplot as plt\n'), ((20677, 20738), 'matplotlib.pyplot.plot', 'plt.plot', (['[0, 1]', '[0, 1]'], {'color': '"""navy"""', 'lw': 'lw', 'linestyle': '"""--"""'}), "([0, 1], [0, 1], color='navy', lw=lw, linestyle='--')\n", (20685, 20738), True, 'import matplotlib.pyplot as plt\n'), ((20743, 20763), 'matplotlib.pyplot.xlim', 'plt.xlim', (['[0.0, 1.0]'], {}), '([0.0, 1.0])\n', (20751, 20763), True, 'import matplotlib.pyplot as plt\n'), ((20768, 20789), 'matplotlib.pyplot.ylim', 'plt.ylim', (['[0.0, 1.05]'], {}), '([0.0, 1.05])\n', (20776, 20789), True, 'import matplotlib.pyplot as plt\n'), ((20794, 20827), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""False Positive Rate"""'], {}), "('False Positive Rate')\n", (20804, 20827), True, 'import matplotlib.pyplot as plt\n'), ((20832, 20864), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""True Positive Rate"""'], {}), "('True Positive Rate')\n", (20842, 20864), True, 'import matplotlib.pyplot as plt\n'), ((20938, 20967), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'loc': '"""lower right"""'}), "(loc='lower right')\n", (20948, 20967), True, 'import matplotlib.pyplot as plt\n'), ((20972, 20982), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (20980, 20982), True, 'import matplotlib.pyplot as plt\n'), ((21114, 21139), 'sklearn.metrics.roc_curve', 'roc_curve', (['y_test', 'y_pred'], {}), '(y_test, y_pred)\n', (21123, 21139), False, 'from sklearn.metrics import fbeta_score, roc_curve, auc, confusion_matrix\n'), ((21258, 21271), 'sklearn.metrics.auc', 'auc', (['fpr', 'tpr'], {}), '(fpr, tpr)\n', (21261, 21271), False, 'from sklearn.metrics import fbeta_score, roc_curve, auc, confusion_matrix\n'), ((21276, 21288), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (21286, 21288), True, 'import matplotlib.pyplot as plt\n'), ((21304, 21398), 'matplotlib.pyplot.plot', 'plt.plot', (['fpr', 'tpr'], {'color': '"""darkorange"""', 'lw': 'lw', 'label': "('ROC curve (area = %0.2f)' % roc_auc)"}), "(fpr, tpr, color='darkorange', lw=lw, label=\n 'ROC curve (area = %0.2f)' % roc_auc)\n", (21312, 21398), True, 'import matplotlib.pyplot as plt\n'), ((21411, 21472), 'matplotlib.pyplot.plot', 'plt.plot', (['[0, 1]', '[0, 1]'], {'color': '"""navy"""', 'lw': 'lw', 'linestyle': '"""--"""'}), "([0, 1], [0, 1], color='navy', lw=lw, linestyle='--')\n", (21419, 21472), True, 'import matplotlib.pyplot as plt\n'), ((21477, 21497), 'matplotlib.pyplot.xlim', 'plt.xlim', (['[0.0, 1.0]'], {}), '([0.0, 1.0])\n', (21485, 21497), True, 'import matplotlib.pyplot as plt\n'), ((21502, 21523), 'matplotlib.pyplot.ylim', 'plt.ylim', (['[0.0, 1.05]'], {}), '([0.0, 1.05])\n', (21510, 21523), True, 'import matplotlib.pyplot as plt\n'), ((21528, 21561), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""False Positive Rate"""'], {}), "('False Positive Rate')\n", (21538, 21561), True, 'import matplotlib.pyplot as plt\n'), ((21566, 21598), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""True Positive Rate"""'], {}), "('True Positive Rate')\n", (21576, 21598), True, 'import matplotlib.pyplot as plt\n'), ((21671, 21700), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'loc': '"""lower right"""'}), "(loc='lower right')\n", (21681, 21700), True, 'import matplotlib.pyplot as plt\n'), ((21705, 21715), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (21713, 21715), True, 'import matplotlib.pyplot as plt\n'), ((21764, 21791), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(10, 5)'}), '(figsize=(10, 5))\n', (21774, 21791), True, 'import matplotlib.pyplot as plt\n'), ((21796, 21812), 'matplotlib.pyplot.title', 'plt.title', (['title'], {}), '(title)\n', (21805, 21812), True, 'import matplotlib.pyplot as plt\n'), ((21817, 21837), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Epochs"""'], {}), "('Epochs')\n", (21827, 21837), True, 'import matplotlib.pyplot as plt\n'), ((21842, 21860), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Loss"""'], {}), "('Loss')\n", (21852, 21860), True, 'import matplotlib.pyplot as plt\n'), ((21865, 21910), 'matplotlib.pyplot.semilogy', 'plt.semilogy', (["network_history.history['loss']"], {}), "(network_history.history['loss'])\n", (21877, 21910), True, 'import matplotlib.pyplot as plt\n'), ((21915, 21964), 'matplotlib.pyplot.semilogy', 'plt.semilogy', (["network_history.history['val_loss']"], {}), "(network_history.history['val_loss'])\n", (21927, 21964), True, 'import matplotlib.pyplot as plt\n'), ((21969, 22007), 'matplotlib.pyplot.legend', 'plt.legend', (["['Training', 'Validation']"], {}), "(['Training', 'Validation'])\n", (21979, 22007), True, 'import matplotlib.pyplot as plt\n'), ((22012, 22022), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (22020, 22022), True, 'import matplotlib.pyplot as plt\n'), ((22100, 22128), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(15, 10)'}), '(figsize=(15, 10))\n', (22110, 22128), True, 'import matplotlib.pyplot as plt\n'), ((22133, 22149), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(211)'], {}), '(211)\n', (22144, 22149), True, 'import matplotlib.pyplot as plt\n'), ((22154, 22170), 'matplotlib.pyplot.title', 'plt.title', (['title'], {}), '(title)\n', (22163, 22170), True, 'import matplotlib.pyplot as plt\n'), ((22175, 22195), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Epochs"""'], {}), "('Epochs')\n", (22185, 22195), True, 'import matplotlib.pyplot as plt\n'), ((22200, 22218), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Loss"""'], {}), "('Loss')\n", (22210, 22218), True, 'import matplotlib.pyplot as plt\n'), ((22223, 22268), 'matplotlib.pyplot.semilogy', 'plt.semilogy', (["network_history.history['loss']"], {}), "(network_history.history['loss'])\n", (22235, 22268), True, 'import matplotlib.pyplot as plt\n'), ((22273, 22322), 'matplotlib.pyplot.semilogy', 'plt.semilogy', (["network_history.history['val_loss']"], {}), "(network_history.history['val_loss'])\n", (22285, 22322), True, 'import matplotlib.pyplot as plt\n'), ((22327, 22365), 'matplotlib.pyplot.legend', 'plt.legend', (["['Training', 'Validation']"], {}), "(['Training', 'Validation'])\n", (22337, 22365), True, 'import matplotlib.pyplot as plt\n'), ((22371, 22387), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(212)'], {}), '(212)\n', (22382, 22387), True, 'import matplotlib.pyplot as plt\n'), ((22392, 22412), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Epochs"""'], {}), "('Epochs')\n", (22402, 22412), True, 'import matplotlib.pyplot as plt\n'), ((22417, 22439), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Accuracy"""'], {}), "('Accuracy')\n", (22427, 22439), True, 'import matplotlib.pyplot as plt\n'), ((22444, 22484), 'matplotlib.pyplot.plot', 'plt.plot', (["network_history.history['acc']"], {}), "(network_history.history['acc'])\n", (22452, 22484), True, 'import matplotlib.pyplot as plt\n'), ((22489, 22533), 'matplotlib.pyplot.plot', 'plt.plot', (["network_history.history['val_acc']"], {}), "(network_history.history['val_acc'])\n", (22497, 22533), True, 'import matplotlib.pyplot as plt\n'), ((22538, 22595), 'matplotlib.pyplot.legend', 'plt.legend', (["['Training', 'Validation']"], {'loc': '"""lower right"""'}), "(['Training', 'Validation'], loc='lower right')\n", (22548, 22595), True, 'import matplotlib.pyplot as plt\n'), ((22600, 22610), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (22608, 22610), True, 'import matplotlib.pyplot as plt\n'), ((6759, 6795), 'keras.layers.Dense', 'Dense', (['latent_dim'], {'activation': '"""relu"""'}), "(latent_dim, activation='relu')\n", (6764, 6795), False, 'from keras.layers import Dense, Input, Dropout\n'), ((9214, 9260), 'numpy.concatenate', 'np.concatenate', (['[y_pred_test, y_pred_outliers]'], {}), '([y_pred_test, y_pred_outliers])\n', (9228, 9260), True, 'import numpy as np\n'), ((9404, 9450), 'numpy.concatenate', 'np.concatenate', (['[y_pred_test, y_pred_outliers]'], {}), '([y_pred_test, y_pred_outliers])\n', (9418, 9450), True, 'import numpy as np\n'), ((9903, 9915), 'keras.layers.Dropout', 'Dropout', (['(0.1)'], {}), '(0.1)\n', (9910, 9915), False, 'from keras.layers import Dense, Input, Dropout\n'), ((10005, 10017), 'keras.layers.Dropout', 'Dropout', (['(0.2)'], {}), '(0.2)\n', (10012, 10017), False, 'from keras.layers import Dense, Input, Dropout\n'), ((10034, 10103), 'keras.layers.Dense', 'Dense', (['(128)'], {'kernel_initializer': '"""glorot_uniform"""', 'activation': '"""sigmoid"""'}), "(128, kernel_initializer='glorot_uniform', activation='sigmoid')\n", (10039, 10103), False, 'from keras.layers import Dense, Input, Dropout\n'), ((10119, 10131), 'keras.layers.Dropout', 'Dropout', (['(0.4)'], {}), '(0.4)\n', (10126, 10131), False, 'from keras.layers import Dense, Input, Dropout\n'), ((10148, 10213), 'keras.layers.Dense', 'Dense', (['(64)'], {'kernel_initializer': '"""glorot_uniform"""', 'activation': '"""tanh"""'}), "(64, kernel_initializer='glorot_uniform', activation='tanh')\n", (10153, 10213), False, 'from keras.layers import Dense, Input, Dropout\n'), ((10229, 10241), 'keras.layers.Dropout', 'Dropout', (['(0.5)'], {}), '(0.5)\n', (10236, 10241), False, 'from keras.layers import Dense, Input, Dropout\n'), ((10258, 10323), 'keras.layers.Dense', 'Dense', (['(32)'], {'kernel_initializer': '"""glorot_uniform"""', 'activation': '"""tanh"""'}), "(32, kernel_initializer='glorot_uniform', activation='tanh')\n", (10263, 10323), False, 'from keras.layers import Dense, Input, Dropout\n'), ((10339, 10351), 'keras.layers.Dropout', 'Dropout', (['(0.4)'], {}), '(0.4)\n', (10346, 10351), False, 'from keras.layers import Dense, Input, Dropout\n'), ((10368, 10434), 'keras.layers.Dense', 'Dense', (['(128)'], {'kernel_initializer': '"""glorot_uniform"""', 'activation': '"""tanh"""'}), "(128, kernel_initializer='glorot_uniform', activation='tanh')\n", (10373, 10434), False, 'from keras.layers import Dense, Input, Dropout\n'), ((10450, 10462), 'keras.layers.Dropout', 'Dropout', (['(0.3)'], {}), '(0.3)\n', (10457, 10462), False, 'from keras.layers import Dense, Input, Dropout\n'), ((10479, 10538), 'keras.layers.Dense', 'Dense', (['(1)'], {'kernel_initializer': '"""normal"""', 'activation': '"""sigmoid"""'}), "(1, kernel_initializer='normal', activation='sigmoid')\n", (10484, 10538), False, 'from keras.layers import Dense, Input, Dropout\n'), ((16503, 16541), 'sklearn.svm.SVC', 'svm.SVC', ([], {'gamma': '"""auto"""', 'cache_size': '(7000)'}), "(gamma='auto', cache_size=7000)\n", (16510, 16541), False, 'from sklearn import svm\n'), ((17166, 17204), 'sklearn.svm.SVC', 'svm.SVC', ([], {'gamma': '"""auto"""', 'cache_size': '(7000)'}), "(gamma='auto', cache_size=7000)\n", (17173, 17204), False, 'from sklearn import svm\n'), ((18210, 18229), 'xgboost.XGBClassifier', 'xgb.XGBClassifier', ([], {}), '()\n', (18227, 18229), True, 'import xgboost as xgb\n'), ((18729, 18748), 'xgboost.XGBClassifier', 'xgb.XGBClassifier', ([], {}), '()\n', (18746, 18748), True, 'import xgboost as xgb\n'), ((19862, 19894), 'sklearn.metrics.confusion_matrix', 'confusion_matrix', (['y_test', 'y_pred'], {}), '(y_test, y_pred)\n', (19878, 19894), False, 'from sklearn.metrics import fbeta_score, roc_curve, auc, confusion_matrix\n'), ((19917, 19942), 'sklearn.metrics.roc_curve', 'roc_curve', (['y_test', 'y_pred'], {}), '(y_test, y_pred)\n', (19926, 19942), False, 'from sklearn.metrics import fbeta_score, roc_curve, auc, confusion_matrix\n'), ((19956, 20007), 'sklearn.metrics.fbeta_score', 'fbeta_score', (['y_test', 'y_pred'], {'beta': 'beta', 'pos_label': '(1)'}), '(y_test, y_pred, beta=beta, pos_label=1)\n', (19967, 20007), False, 'from sklearn.metrics import fbeta_score, roc_curve, auc, confusion_matrix\n'), ((20023, 20036), 'sklearn.metrics.auc', 'auc', (['fpr', 'tpr'], {}), '(fpr, tpr)\n', (20026, 20036), False, 'from sklearn.metrics import fbeta_score, roc_curve, auc, confusion_matrix\n'), ((20449, 20495), 'numpy.concatenate', 'np.concatenate', (['[y_pred_test, y_pred_outliers]'], {}), '([y_pred_test, y_pred_outliers])\n', (20463, 20495), True, 'import numpy as np\n'), ((21209, 21241), 'sklearn.metrics.confusion_matrix', 'confusion_matrix', (['y_test', 'y_pred'], {}), '(y_test, y_pred)\n', (21225, 21241), False, 'from sklearn.metrics import fbeta_score, roc_curve, auc, confusion_matrix\n'), ((22729, 22759), 'sklearn.decomposition.PCA', 'PCA', ([], {'n_components': 'n_components'}), '(n_components=n_components)\n', (22732, 22759), False, 'from sklearn.decomposition import PCA\n'), ((7026, 7040), 'keras.optimizers.Adam', 'Adam', ([], {'lr': '(0.001)'}), '(lr=0.001)\n', (7030, 7040), False, 'from keras.optimizers import Adam\n'), ((7980, 8046), 'sklearn.svm.OneClassSVM', 'svm.OneClassSVM', ([], {'kernel': '"""rbf"""', 'gamma': 'gamma', 'nu': 'nu', 'cache_size': '(7000)'}), "(kernel='rbf', gamma=gamma, nu=nu, cache_size=7000)\n", (7995, 8046), False, 'from sklearn import svm\n'), ((11317, 11373), 'sklearn.ensemble.RandomForestClassifier', 'RandomForestClassifier', ([], {'n_estimators': 'estimator', 'n_jobs': '(7)'}), '(n_estimators=estimator, n_jobs=7)\n', (11339, 11373), False, 'from sklearn.ensemble import RandomForestClassifier\n'), ((12236, 12292), 'sklearn.ensemble.RandomForestClassifier', 'RandomForestClassifier', ([], {'n_estimators': 'estimator', 'n_jobs': '(7)'}), '(n_estimators=estimator, n_jobs=7)\n', (12258, 12292), False, 'from sklearn.ensemble import RandomForestClassifier\n'), ((13152, 13208), 'sklearn.ensemble.RandomForestClassifier', 'RandomForestClassifier', ([], {'n_estimators': 'estimator', 'n_jobs': '(7)'}), '(n_estimators=estimator, n_jobs=7)\n', (13174, 13208), False, 'from sklearn.ensemble import RandomForestClassifier\n'), ((14491, 14527), 'sklearn.ensemble.AdaBoostClassifier', 'AdaBoostClassifier', ([], {'learning_rate': 'lr'}), '(learning_rate=lr)\n', (14509, 14527), False, 'from sklearn.ensemble import AdaBoostClassifier\n'), ((15307, 15343), 'sklearn.ensemble.AdaBoostClassifier', 'AdaBoostClassifier', ([], {'learning_rate': 'lr'}), '(learning_rate=lr)\n', (15325, 15343), False, 'from sklearn.ensemble import AdaBoostClassifier\n'), ((22802, 22889), 'sklearn.random_projection.SparseRandomProjection', 'random_projection.SparseRandomProjection', ([], {'n_components': 'n_components', 'random_state': '(7)'}), '(n_components=n_components,\n random_state=7)\n', (22842, 22889), False, 'from sklearn import random_projection\n'), ((1260, 1326), 'sklearn.svm.OneClassSVM', 'svm.OneClassSVM', ([], {'kernel': '"""rbf"""', 'gamma': 'gamma', 'nu': 'nu', 'cache_size': '(7000)'}), "(kernel='rbf', gamma=gamma, nu=nu, cache_size=7000)\n", (1275, 1326), False, 'from sklearn import svm\n'), ((2091, 2157), 'sklearn.svm.OneClassSVM', 'svm.OneClassSVM', ([], {'kernel': '"""rbf"""', 'gamma': 'gamma', 'nu': 'nu', 'cache_size': '(7000)'}), "(kernel='rbf', gamma=gamma, nu=nu, cache_size=7000)\n", (2106, 2157), False, 'from sklearn import svm\n'), ((6869, 6892), 'keras.regularizers.l1', 'regularizers.l1', (['(0.0001)'], {}), '(0.0001)\n', (6884, 6892), False, 'from keras import regularizers\n'), ((9115, 9144), 'numpy.ones', 'np.ones', (['y_pred_test.shape[0]'], {}), '(y_pred_test.shape[0])\n', (9122, 9144), True, 'import numpy as np\n'), ((9312, 9341), 'numpy.ones', 'np.ones', (['y_pred_test.shape[0]'], {}), '(y_pred_test.shape[0])\n', (9319, 9341), True, 'import numpy as np\n'), ((9878, 9886), 'keras.regularizers.l2', 'l2', (['(0.01)'], {}), '(0.01)\n', (9880, 9886), False, 'from keras.regularizers import l2\n'), ((9980, 9988), 'keras.regularizers.l2', 'l2', (['(0.01)'], {}), '(0.01)\n', (9982, 9988), False, 'from keras.regularizers import l2\n'), ((20306, 20335), 'numpy.ones', 'np.ones', (['y_pred_test.shape[0]'], {}), '(y_pred_test.shape[0])\n', (20313, 20335), True, 'import numpy as np\n'), ((3784, 3892), 'sklearn.ensemble.IsolationForest', 'IsolationForest', ([], {'n_estimators': 'estimator', 'contamination': 'contamination', 'max_features': 'max_feature', 'n_jobs': '(7)'}), '(n_estimators=estimator, contamination=contamination,\n max_features=max_feature, n_jobs=7)\n', (3799, 3892), False, 'from sklearn.ensemble import IsolationForest\n'), ((5203, 5311), 'sklearn.ensemble.IsolationForest', 'IsolationForest', ([], {'n_estimators': 'estimator', 'contamination': 'contamination', 'max_features': 'max_feature', 'n_jobs': '(7)'}), '(n_estimators=estimator, contamination=contamination,\n max_features=max_feature, n_jobs=7)\n', (5218, 5311), False, 'from sklearn.ensemble import IsolationForest\n'), ((9149, 9182), 'numpy.ones', 'np.ones', (['y_pred_outliers.shape[0]'], {}), '(y_pred_outliers.shape[0])\n', (9156, 9182), True, 'import numpy as np\n'), ((9346, 9379), 'numpy.ones', 'np.ones', (['y_pred_outliers.shape[0]'], {}), '(y_pred_outliers.shape[0])\n', (9353, 9379), True, 'import numpy as np\n'), ((20384, 20417), 'numpy.ones', 'np.ones', (['y_pred_outliers.shape[0]'], {}), '(y_pred_outliers.shape[0])\n', (20391, 20417), True, 'import numpy as np\n')]
# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """ Testing Invert op in DE """ import numpy as np import mindspore.dataset as ds import mindspore.dataset.transforms.py_transforms import mindspore.dataset.vision.py_transforms as F import mindspore.dataset.vision.c_transforms as C from mindspore import log as logger from util import visualize_list, save_and_check_md5, diff_mse DATA_DIR = "../data/dataset/testImageNetData/train/" GENERATE_GOLDEN = False def test_invert_py(plot=False): """ Test Invert python op """ logger.info("Test Invert Python op") # Original Images data_set = ds.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False) transforms_original = mindspore.dataset.transforms.py_transforms.Compose([F.Decode(), F.Resize((224, 224)), F.ToTensor()]) ds_original = data_set.map(operations=transforms_original, input_columns="image") ds_original = ds_original.batch(512) for idx, (image, _) in enumerate(ds_original): if idx == 0: images_original = np.transpose(image.asnumpy(), (0, 2, 3, 1)) else: images_original = np.append(images_original, np.transpose(image.asnumpy(), (0, 2, 3, 1)), axis=0) # Color Inverted Images data_set = ds.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False) transforms_invert = mindspore.dataset.transforms.py_transforms.Compose([F.Decode(), F.Resize((224, 224)), F.Invert(), F.ToTensor()]) ds_invert = data_set.map(operations=transforms_invert, input_columns="image") ds_invert = ds_invert.batch(512) for idx, (image, _) in enumerate(ds_invert): if idx == 0: images_invert = np.transpose(image.asnumpy(), (0, 2, 3, 1)) else: images_invert = np.append(images_invert, np.transpose(image.asnumpy(), (0, 2, 3, 1)), axis=0) num_samples = images_original.shape[0] mse = np.zeros(num_samples) for i in range(num_samples): mse[i] = np.mean((images_invert[i] - images_original[i]) ** 2) logger.info("MSE= {}".format(str(np.mean(mse)))) if plot: visualize_list(images_original, images_invert) def test_invert_c(plot=False): """ Test Invert Cpp op """ logger.info("Test Invert cpp op") # Original Images data_set = ds.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False) transforms_original = [C.Decode(), C.Resize(size=[224, 224])] ds_original = data_set.map(operations=transforms_original, input_columns="image") ds_original = ds_original.batch(512) for idx, (image, _) in enumerate(ds_original): if idx == 0: images_original = image.asnumpy() else: images_original = np.append(images_original, image.asnumpy(), axis=0) # Invert Images data_set = ds.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False) transform_invert = [C.Decode(), C.Resize(size=[224, 224]), C.Invert()] ds_invert = data_set.map(operations=transform_invert, input_columns="image") ds_invert = ds_invert.batch(512) for idx, (image, _) in enumerate(ds_invert): if idx == 0: images_invert = image.asnumpy() else: images_invert = np.append(images_invert, image.asnumpy(), axis=0) if plot: visualize_list(images_original, images_invert) num_samples = images_original.shape[0] mse = np.zeros(num_samples) for i in range(num_samples): mse[i] = diff_mse(images_invert[i], images_original[i]) logger.info("MSE= {}".format(str(np.mean(mse)))) def test_invert_py_c(plot=False): """ Test Invert Cpp op and python op """ logger.info("Test Invert cpp and python op") # Invert Images in cpp data_set = ds.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False) data_set = data_set.map(operations=[C.Decode(), C.Resize((224, 224))], input_columns=["image"]) ds_c_invert = data_set.map(operations=C.Invert(), input_columns="image") ds_c_invert = ds_c_invert.batch(512) for idx, (image, _) in enumerate(ds_c_invert): if idx == 0: images_c_invert = image.asnumpy() else: images_c_invert = np.append(images_c_invert, image.asnumpy(), axis=0) # invert images in python data_set = ds.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False) data_set = data_set.map(operations=[C.Decode(), C.Resize((224, 224))], input_columns=["image"]) transforms_p_invert = mindspore.dataset.transforms.py_transforms.Compose([lambda img: img.astype(np.uint8), F.ToPIL(), F.Invert(), np.array]) ds_p_invert = data_set.map(operations=transforms_p_invert, input_columns="image") ds_p_invert = ds_p_invert.batch(512) for idx, (image, _) in enumerate(ds_p_invert): if idx == 0: images_p_invert = image.asnumpy() else: images_p_invert = np.append(images_p_invert, image.asnumpy(), axis=0) num_samples = images_c_invert.shape[0] mse = np.zeros(num_samples) for i in range(num_samples): mse[i] = diff_mse(images_p_invert[i], images_c_invert[i]) logger.info("MSE= {}".format(str(np.mean(mse)))) if plot: visualize_list(images_c_invert, images_p_invert, visualize_mode=2) def test_invert_one_channel(): """ Test Invert cpp op with one channel image """ logger.info("Test Invert C Op With One Channel Images") c_op = C.Invert() try: data_set = ds.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False) data_set = data_set.map(operations=[C.Decode(), C.Resize((224, 224)), lambda img: np.array(img[:, :, 0])], input_columns=["image"]) data_set.map(operations=c_op, input_columns="image") except RuntimeError as e: logger.info("Got an exception in DE: {}".format(str(e))) assert "The shape" in str(e) def test_invert_md5_py(): """ Test Invert python op with md5 check """ logger.info("Test Invert python op with md5 check") # Generate dataset data_set = ds.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False) transforms_invert = mindspore.dataset.transforms.py_transforms.Compose([F.Decode(), F.Invert(), F.ToTensor()]) data = data_set.map(operations=transforms_invert, input_columns="image") # Compare with expected md5 from images filename = "invert_01_result_py.npz" save_and_check_md5(data, filename, generate_golden=GENERATE_GOLDEN) def test_invert_md5_c(): """ Test Invert cpp op with md5 check """ logger.info("Test Invert cpp op with md5 check") # Generate dataset data_set = ds.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False) transforms_invert = [C.Decode(), C.Resize(size=[224, 224]), C.Invert(), F.ToTensor()] data = data_set.map(operations=transforms_invert, input_columns="image") # Compare with expected md5 from images filename = "invert_01_result_c.npz" save_and_check_md5(data, filename, generate_golden=GENERATE_GOLDEN) if __name__ == "__main__": test_invert_py(plot=False) test_invert_c(plot=False) test_invert_py_c(plot=False) test_invert_one_channel() test_invert_md5_py() test_invert_md5_c()
[ "mindspore.log.info", "util.save_and_check_md5", "numpy.mean", "util.diff_mse", "mindspore.dataset.vision.py_transforms.Resize", "mindspore.dataset.vision.py_transforms.ToPIL", "util.visualize_list", "mindspore.dataset.vision.c_transforms.Resize", "mindspore.dataset.vision.py_transforms.Invert", "mindspore.dataset.vision.c_transforms.Invert", "mindspore.dataset.vision.py_transforms.Decode", "numpy.array", "numpy.zeros", "mindspore.dataset.ImageFolderDataset", "mindspore.dataset.vision.c_transforms.Decode", "mindspore.dataset.vision.py_transforms.ToTensor" ]
[((1160, 1196), 'mindspore.log.info', 'logger.info', (['"""Test Invert Python op"""'], {}), "('Test Invert Python op')\n", (1171, 1196), True, 'from mindspore import log as logger\n'), ((1235, 1293), 'mindspore.dataset.ImageFolderDataset', 'ds.ImageFolderDataset', ([], {'dataset_dir': 'DATA_DIR', 'shuffle': '(False)'}), '(dataset_dir=DATA_DIR, shuffle=False)\n', (1256, 1293), True, 'import mindspore.dataset as ds\n'), ((2102, 2160), 'mindspore.dataset.ImageFolderDataset', 'ds.ImageFolderDataset', ([], {'dataset_dir': 'DATA_DIR', 'shuffle': '(False)'}), '(dataset_dir=DATA_DIR, shuffle=False)\n', (2123, 2160), True, 'import mindspore.dataset as ds\n'), ((3041, 3062), 'numpy.zeros', 'np.zeros', (['num_samples'], {}), '(num_samples)\n', (3049, 3062), True, 'import numpy as np\n'), ((3365, 3398), 'mindspore.log.info', 'logger.info', (['"""Test Invert cpp op"""'], {}), "('Test Invert cpp op')\n", (3376, 3398), True, 'from mindspore import log as logger\n'), ((3437, 3495), 'mindspore.dataset.ImageFolderDataset', 'ds.ImageFolderDataset', ([], {'dataset_dir': 'DATA_DIR', 'shuffle': '(False)'}), '(dataset_dir=DATA_DIR, shuffle=False)\n', (3458, 3495), True, 'import mindspore.dataset as ds\n'), ((4023, 4081), 'mindspore.dataset.ImageFolderDataset', 'ds.ImageFolderDataset', ([], {'dataset_dir': 'DATA_DIR', 'shuffle': '(False)'}), '(dataset_dir=DATA_DIR, shuffle=False)\n', (4044, 4081), True, 'import mindspore.dataset as ds\n'), ((4707, 4728), 'numpy.zeros', 'np.zeros', (['num_samples'], {}), '(num_samples)\n', (4715, 4728), True, 'import numpy as np\n'), ((4972, 5016), 'mindspore.log.info', 'logger.info', (['"""Test Invert cpp and python op"""'], {}), "('Test Invert cpp and python op')\n", (4983, 5016), True, 'from mindspore import log as logger\n'), ((5060, 5118), 'mindspore.dataset.ImageFolderDataset', 'ds.ImageFolderDataset', ([], {'dataset_dir': 'DATA_DIR', 'shuffle': '(False)'}), '(dataset_dir=DATA_DIR, shuffle=False)\n', (5081, 5118), True, 'import mindspore.dataset as ds\n'), ((5680, 5738), 'mindspore.dataset.ImageFolderDataset', 'ds.ImageFolderDataset', ([], {'dataset_dir': 'DATA_DIR', 'shuffle': '(False)'}), '(dataset_dir=DATA_DIR, shuffle=False)\n', (5701, 5738), True, 'import mindspore.dataset as ds\n'), ((6698, 6719), 'numpy.zeros', 'np.zeros', (['num_samples'], {}), '(num_samples)\n', (6706, 6719), True, 'import numpy as np\n'), ((7062, 7117), 'mindspore.log.info', 'logger.info', (['"""Test Invert C Op With One Channel Images"""'], {}), "('Test Invert C Op With One Channel Images')\n", (7073, 7117), True, 'from mindspore import log as logger\n'), ((7130, 7140), 'mindspore.dataset.vision.c_transforms.Invert', 'C.Invert', ([], {}), '()\n', (7138, 7140), True, 'import mindspore.dataset.vision.c_transforms as C\n'), ((7697, 7748), 'mindspore.log.info', 'logger.info', (['"""Test Invert python op with md5 check"""'], {}), "('Test Invert python op with md5 check')\n", (7708, 7748), True, 'from mindspore import log as logger\n'), ((7788, 7846), 'mindspore.dataset.ImageFolderDataset', 'ds.ImageFolderDataset', ([], {'dataset_dir': 'DATA_DIR', 'shuffle': '(False)'}), '(dataset_dir=DATA_DIR, shuffle=False)\n', (7809, 7846), True, 'import mindspore.dataset as ds\n'), ((8282, 8349), 'util.save_and_check_md5', 'save_and_check_md5', (['data', 'filename'], {'generate_golden': 'GENERATE_GOLDEN'}), '(data, filename, generate_golden=GENERATE_GOLDEN)\n', (8300, 8349), False, 'from util import visualize_list, save_and_check_md5, diff_mse\n'), ((8435, 8483), 'mindspore.log.info', 'logger.info', (['"""Test Invert cpp op with md5 check"""'], {}), "('Test Invert cpp op with md5 check')\n", (8446, 8483), True, 'from mindspore import log as logger\n'), ((8523, 8581), 'mindspore.dataset.ImageFolderDataset', 'ds.ImageFolderDataset', ([], {'dataset_dir': 'DATA_DIR', 'shuffle': '(False)'}), '(dataset_dir=DATA_DIR, shuffle=False)\n', (8544, 8581), True, 'import mindspore.dataset as ds\n'), ((8914, 8981), 'util.save_and_check_md5', 'save_and_check_md5', (['data', 'filename'], {'generate_golden': 'GENERATE_GOLDEN'}), '(data, filename, generate_golden=GENERATE_GOLDEN)\n', (8932, 8981), False, 'from util import visualize_list, save_and_check_md5, diff_mse\n'), ((3113, 3166), 'numpy.mean', 'np.mean', (['((images_invert[i] - images_original[i]) ** 2)'], {}), '((images_invert[i] - images_original[i]) ** 2)\n', (3120, 3166), True, 'import numpy as np\n'), ((3242, 3288), 'util.visualize_list', 'visualize_list', (['images_original', 'images_invert'], {}), '(images_original, images_invert)\n', (3256, 3288), False, 'from util import visualize_list, save_and_check_md5, diff_mse\n'), ((3524, 3534), 'mindspore.dataset.vision.c_transforms.Decode', 'C.Decode', ([], {}), '()\n', (3532, 3534), True, 'import mindspore.dataset.vision.c_transforms as C\n'), ((3536, 3561), 'mindspore.dataset.vision.c_transforms.Resize', 'C.Resize', ([], {'size': '[224, 224]'}), '(size=[224, 224])\n', (3544, 3561), True, 'import mindspore.dataset.vision.c_transforms as C\n'), ((4107, 4117), 'mindspore.dataset.vision.c_transforms.Decode', 'C.Decode', ([], {}), '()\n', (4115, 4117), True, 'import mindspore.dataset.vision.c_transforms as C\n'), ((4119, 4144), 'mindspore.dataset.vision.c_transforms.Resize', 'C.Resize', ([], {'size': '[224, 224]'}), '(size=[224, 224])\n', (4127, 4144), True, 'import mindspore.dataset.vision.c_transforms as C\n'), ((4170, 4180), 'mindspore.dataset.vision.c_transforms.Invert', 'C.Invert', ([], {}), '()\n', (4178, 4180), True, 'import mindspore.dataset.vision.c_transforms as C\n'), ((4606, 4652), 'util.visualize_list', 'visualize_list', (['images_original', 'images_invert'], {}), '(images_original, images_invert)\n', (4620, 4652), False, 'from util import visualize_list, save_and_check_md5, diff_mse\n'), ((4779, 4825), 'util.diff_mse', 'diff_mse', (['images_invert[i]', 'images_original[i]'], {}), '(images_invert[i], images_original[i])\n', (4787, 4825), False, 'from util import visualize_list, save_and_check_md5, diff_mse\n'), ((6770, 6818), 'util.diff_mse', 'diff_mse', (['images_p_invert[i]', 'images_c_invert[i]'], {}), '(images_p_invert[i], images_c_invert[i])\n', (6778, 6818), False, 'from util import visualize_list, save_and_check_md5, diff_mse\n'), ((6894, 6960), 'util.visualize_list', 'visualize_list', (['images_c_invert', 'images_p_invert'], {'visualize_mode': '(2)'}), '(images_c_invert, images_p_invert, visualize_mode=2)\n', (6908, 6960), False, 'from util import visualize_list, save_and_check_md5, diff_mse\n'), ((7170, 7228), 'mindspore.dataset.ImageFolderDataset', 'ds.ImageFolderDataset', ([], {'dataset_dir': 'DATA_DIR', 'shuffle': '(False)'}), '(dataset_dir=DATA_DIR, shuffle=False)\n', (7191, 7228), True, 'import mindspore.dataset as ds\n'), ((8608, 8618), 'mindspore.dataset.vision.c_transforms.Decode', 'C.Decode', ([], {}), '()\n', (8616, 8618), True, 'import mindspore.dataset.vision.c_transforms as C\n'), ((8645, 8670), 'mindspore.dataset.vision.c_transforms.Resize', 'C.Resize', ([], {'size': '[224, 224]'}), '(size=[224, 224])\n', (8653, 8670), True, 'import mindspore.dataset.vision.c_transforms as C\n'), ((8697, 8707), 'mindspore.dataset.vision.c_transforms.Invert', 'C.Invert', ([], {}), '()\n', (8705, 8707), True, 'import mindspore.dataset.vision.c_transforms as C\n'), ((8734, 8746), 'mindspore.dataset.vision.py_transforms.ToTensor', 'F.ToTensor', ([], {}), '()\n', (8744, 8746), True, 'import mindspore.dataset.vision.py_transforms as F\n'), ((1373, 1383), 'mindspore.dataset.vision.py_transforms.Decode', 'F.Decode', ([], {}), '()\n', (1381, 1383), True, 'import mindspore.dataset.vision.py_transforms as F\n'), ((1463, 1483), 'mindspore.dataset.vision.py_transforms.Resize', 'F.Resize', (['(224, 224)'], {}), '((224, 224))\n', (1471, 1483), True, 'import mindspore.dataset.vision.py_transforms as F\n'), ((1563, 1575), 'mindspore.dataset.vision.py_transforms.ToTensor', 'F.ToTensor', ([], {}), '()\n', (1573, 1575), True, 'import mindspore.dataset.vision.py_transforms as F\n'), ((2238, 2248), 'mindspore.dataset.vision.py_transforms.Decode', 'F.Decode', ([], {}), '()\n', (2246, 2248), True, 'import mindspore.dataset.vision.py_transforms as F\n'), ((2326, 2346), 'mindspore.dataset.vision.py_transforms.Resize', 'F.Resize', (['(224, 224)'], {}), '((224, 224))\n', (2334, 2346), True, 'import mindspore.dataset.vision.py_transforms as F\n'), ((2424, 2434), 'mindspore.dataset.vision.py_transforms.Invert', 'F.Invert', ([], {}), '()\n', (2432, 2434), True, 'import mindspore.dataset.vision.py_transforms as F\n'), ((2512, 2524), 'mindspore.dataset.vision.py_transforms.ToTensor', 'F.ToTensor', ([], {}), '()\n', (2522, 2524), True, 'import mindspore.dataset.vision.py_transforms as F\n'), ((5262, 5272), 'mindspore.dataset.vision.c_transforms.Invert', 'C.Invert', ([], {}), '()\n', (5270, 5272), True, 'import mindspore.dataset.vision.c_transforms as C\n'), ((6030, 6039), 'mindspore.dataset.vision.py_transforms.ToPIL', 'F.ToPIL', ([], {}), '()\n', (6037, 6039), True, 'import mindspore.dataset.vision.py_transforms as F\n'), ((6119, 6129), 'mindspore.dataset.vision.py_transforms.Invert', 'F.Invert', ([], {}), '()\n', (6127, 6129), True, 'import mindspore.dataset.vision.py_transforms as F\n'), ((7924, 7934), 'mindspore.dataset.vision.py_transforms.Decode', 'F.Decode', ([], {}), '()\n', (7932, 7934), True, 'import mindspore.dataset.vision.py_transforms as F\n'), ((8012, 8022), 'mindspore.dataset.vision.py_transforms.Invert', 'F.Invert', ([], {}), '()\n', (8020, 8022), True, 'import mindspore.dataset.vision.py_transforms as F\n'), ((8100, 8112), 'mindspore.dataset.vision.py_transforms.ToTensor', 'F.ToTensor', ([], {}), '()\n', (8110, 8112), True, 'import mindspore.dataset.vision.py_transforms as F\n'), ((3204, 3216), 'numpy.mean', 'np.mean', (['mse'], {}), '(mse)\n', (3211, 3216), True, 'import numpy as np\n'), ((4863, 4875), 'numpy.mean', 'np.mean', (['mse'], {}), '(mse)\n', (4870, 4875), True, 'import numpy as np\n'), ((5159, 5169), 'mindspore.dataset.vision.c_transforms.Decode', 'C.Decode', ([], {}), '()\n', (5167, 5169), True, 'import mindspore.dataset.vision.c_transforms as C\n'), ((5171, 5191), 'mindspore.dataset.vision.c_transforms.Resize', 'C.Resize', (['(224, 224)'], {}), '((224, 224))\n', (5179, 5191), True, 'import mindspore.dataset.vision.c_transforms as C\n'), ((5779, 5789), 'mindspore.dataset.vision.c_transforms.Decode', 'C.Decode', ([], {}), '()\n', (5787, 5789), True, 'import mindspore.dataset.vision.c_transforms as C\n'), ((5791, 5811), 'mindspore.dataset.vision.c_transforms.Resize', 'C.Resize', (['(224, 224)'], {}), '((224, 224))\n', (5799, 5811), True, 'import mindspore.dataset.vision.c_transforms as C\n'), ((6856, 6868), 'numpy.mean', 'np.mean', (['mse'], {}), '(mse)\n', (6863, 6868), True, 'import numpy as np\n'), ((7273, 7283), 'mindspore.dataset.vision.c_transforms.Decode', 'C.Decode', ([], {}), '()\n', (7281, 7283), True, 'import mindspore.dataset.vision.c_transforms as C\n'), ((7285, 7305), 'mindspore.dataset.vision.c_transforms.Resize', 'C.Resize', (['(224, 224)'], {}), '((224, 224))\n', (7293, 7305), True, 'import mindspore.dataset.vision.c_transforms as C\n'), ((7363, 7385), 'numpy.array', 'np.array', (['img[:, :, 0]'], {}), '(img[:, :, 0])\n', (7371, 7385), True, 'import numpy as np\n')]
import numpy g = open('/home/srallaba/mgc/transposed/arctic_a0404.mgc','w') x = numpy.loadtxt('/home/srallaba/mgc_spaces/arctic_a0404.mgc') numpy.savetxt(g, numpy.transpose(x)) g.close()
[ "numpy.loadtxt", "numpy.transpose" ]
[((82, 141), 'numpy.loadtxt', 'numpy.loadtxt', (['"""/home/srallaba/mgc_spaces/arctic_a0404.mgc"""'], {}), "('/home/srallaba/mgc_spaces/arctic_a0404.mgc')\n", (95, 141), False, 'import numpy\n'), ((159, 177), 'numpy.transpose', 'numpy.transpose', (['x'], {}), '(x)\n', (174, 177), False, 'import numpy\n')]
"""Miscellaneous utility functions.""" from functools import reduce from PIL import Image import numpy as np from matplotlib.colors import rgb_to_hsv, hsv_to_rgb def compose(*funcs): """Compose arbitrarily many functions, evaluated left to right. Reference: https://mathieularose.com/function-composition-in-python/ """ # return lambda x: reduce(lambda v, f: f(v), funcs, x) if funcs: return reduce(lambda f, g: lambda *a, **kw: g(f(*a, **kw)), funcs) else: raise ValueError('Composition of empty sequence not supported.') def letterbox_image(image, size): '''resize image with unchanged aspect ratio using padding''' iw, ih = image.size w, h = size scale = min(w/iw, h/ih) nw = int(iw*scale) nh = int(ih*scale) image = image.resize((nw,nh), Image.BICUBIC) new_image = Image.new('RGB', size, (128,128,128)) new_image.paste(image, ((w-nw)//2, (h-nh)//2)) return new_image def rand(a=0, b=1): return np.random.rand()*(b-a) + a def get_random_data(annotation_line, input_shape, random=True, max_boxes=20, jitter=.3, hue=.1, sat=1.5, val=1.5, proc_img=True): '''random preprocessing for real-time data augmentation''' line = annotation_line.split() image = Image.open(line[0]) iw, ih = image.size h, w = input_shape box = np.array([np.array(list(map(int,box.split(',')))) for box in line[1:]]) if not random: # resize image scale = min(w/iw, h/ih) nw = int(iw*scale) nh = int(ih*scale) dx = (w-nw)//2 dy = (h-nh)//2 image_data=0 if proc_img: image = image.resize((nw,nh), Image.BICUBIC) new_image = Image.new('RGB', (w,h), (128,128,128)) new_image.paste(image, (dx, dy)) image_data = np.array(new_image)/255. # correct boxes box_data = np.zeros((max_boxes,5)) if len(box)>0: np.random.shuffle(box) if len(box)>max_boxes: box = box[:max_boxes] box[:, [0,2]] = box[:, [0,2]]*scale + dx box[:, [1,3]] = box[:, [1,3]]*scale + dy box_data[:len(box)] = box return image_data, box_data # resize image new_ar = w/h * rand(1-jitter,1+jitter)/rand(1-jitter,1+jitter) scale = rand(.25, 2) if new_ar < 1: nh = int(scale*h) nw = int(nh*new_ar) else: nw = int(scale*w) nh = int(nw/new_ar) image = image.resize((nw,nh), Image.BICUBIC) # place image dx = int(rand(0, w-nw)) dy = int(rand(0, h-nh)) new_image = Image.new('RGB', (w,h), (128,128,128)) new_image.paste(image, (dx, dy)) image = new_image # flip image or not flip = rand()<.5 if flip: image = image.transpose(Image.FLIP_LEFT_RIGHT) # distort image hue = rand(-hue, hue) sat = rand(1, sat) if rand()<.5 else 1/rand(1, sat) val = rand(1, val) if rand()<.5 else 1/rand(1, val) x = rgb_to_hsv(np.array(image)/255.) x[..., 0] += hue x[..., 0][x[..., 0]>1] -= 1 x[..., 0][x[..., 0]<0] += 1 x[..., 1] *= sat x[..., 2] *= val x[x>1] = 1 x[x<0] = 0 image_data = hsv_to_rgb(x) # numpy array, 0 to 1 # correct boxes box_data = np.zeros((max_boxes,5)) if len(box)>0: np.random.shuffle(box) box[:, [0,2]] = box[:, [0,2]]*nw/iw + dx box[:, [1,3]] = box[:, [1,3]]*nh/ih + dy if flip: box[:, [0,2]] = w - box[:, [2,0]] box[:, 0:2][box[:, 0:2]<0] = 0 box[:, 2][box[:, 2]>w] = w box[:, 3][box[:, 3]>h] = h box_w = box[:, 2] - box[:, 0] box_h = box[:, 3] - box[:, 1] box = box[np.logical_and(box_w>1, box_h>1)] # discard invalid box if len(box)>max_boxes: box = box[:max_boxes] box_data[:len(box)] = box return image_data, box_data def get_random_data2(annotation_line, input_shape, random=True, max_boxes=20, jitter=.3, hue=.1, sat=1.5, val=1.5, proc_img=True): '''random preprocessing for real-time data augmentation''' line = annotation_line.split() image = Image.open(line[0]) w, h = image.size #13 14 dx, dy = input_shape box = np.array([np.array(list(map(int,box.split(',')))) for box in line[1:]]) x_min = w x_max = 0 y_min = h y_max = 0 for bbox in box: x_min = min(x_min, bbox[0]) y_min = min(y_min, bbox[1]) x_max = max(x_max, bbox[2]) y_max = max(y_max, bbox[3]) name = bbox[4] # 包含所有目标框的最小框到各个边的距离 d_to_left = x_min d_to_right = w - x_max d_to_top = y_min d_to_bottom = h - y_max # 随机扩展这个最小范围 crop_x_min = int(x_min - rand(0, d_to_left)) crop_y_min = int(y_min - rand(0, d_to_top)) crop_x_max = int(x_max + rand(0, d_to_right)) crop_y_max = int(y_max + rand(0, d_to_bottom)) # 确保不出界 crop_x_min = max(0, crop_x_min) crop_y_min = max(0, crop_y_min) crop_x_max = min(w, crop_x_max) crop_y_max = min(h, crop_y_max) cropped = image.crop((crop_x_min, crop_y_min, crop_x_max, crop_y_max)) # (left, upper, right, lower) new_image = Image.new('RGB', (w,h), (128,128,128)) new_image.paste(cropped, (dx, dy)) image_data = np.array(new_image)/255. box_data = np.zeros((max_boxes,5)) if len(box)>0: np.random.shuffle(box) if len(box)>max_boxes: box = box[:max_boxes] box[:,0] = box[:,0]-crop_y_min box[:,1] = box[:,1]-crop_y_min box[:,2] = box[:,2]-crop_x_min box[:,3] = box[:,3]-crop_y_min box_data[:len(box)] = box return image_data, box_data def get_random_data2(annotation_line, input_shape, max_boxes=20, jitter=.3, hue=.1, sat=1.5, val=1.5, proc_img=True): line = annotation_line.split() img = cv2.imread(line[0]) h_img, w_img, _ = img.shape w, h = input_shape box = np.array([np.array(list(map(int,box.split(',')))) for box in line[1:]]) max_bbox = np.concatenate([np.min(box[:, 0:2], axis=0), np.max(box[:, 2:4], axis=0)], axis=-1)# 取得所有bbox中的最大bbox #包含所有目標框的最大框到各個邊的距離 max_l_trans = max_bbox[0] max_u_trans = max_bbox[1] max_r_trans = w_img - max_bbox[2] max_d_trans = h_img - max_bbox[3] #隨機擴展框最大範圍 crop_xmin = max(0, int(max_bbox[0] - random.uniform(0, max_l_trans)*2)) crop_ymin = max(0, int(max_bbox[1] - random.uniform(0, max_u_trans)*2)) crop_xmax = max(w_img, int(max_bbox[2] + random.uniform(0, max_r_trans)*2)) crop_ymax = max(h_img, int(max_bbox[3] + random.uniform(0, max_d_trans)*2)) img = img[crop_ymin : crop_ymax, crop_xmin : crop_xmax] #進行裁剪 image = Image.fromarray(cv2.cvtColor(img,cv2.COLOR_BGR2RGB)) #因為目前圖片格式是cv2,因此要轉換為PIL格式做貼上的語法 new_image = Image.new('RGB', (w,h), (128,128,128)) #產出一個(416,416)的灰色圖片 new_image.paste(image, (0, 0)) #將轉為PIL格式的圖片 貼到灰色圖片中 img2 = cv2.cvtColor(np.asarray(new_image),cv2.COLOR_RGB2BGR) #再將格式轉回cv2 box_data = np.zeros((max_boxes,5)) #box最多有max_boxes個,即shap->(20,5) #將剪裁後位移的框與原始框進行相減,避免變換之後的值過大或過小,並去除異常的box if len(box)>0: np.random.shuffle(box) if len(box)>max_boxes: box = box[:max_boxes] box[:, [0, 2]] = box[:, [0, 2]] - crop_xmin box[:, [1, 3]] = box[:, [1, 3]] - crop_ymin box[:, 2][box[:, 2]>w] = w box[:, 3][box[:, 3]>h] = h box_w = box[:, 2] - box[:, 0] box_h = box[:, 3] - box[:, 1] box = box[np.logical_and(box_w>1, box_h>1)] # discard invalid box if len(box)>max_boxes: box = box[:max_boxes] box_data[:len(box)] = box #標框線 # light_blue = (255,200,100) # for boxs in box: # cv2.rectangle(img2,(boxs[0],boxs[1]),(boxs[2],boxs[3]),light_blue,2) # writename=os.path.basename(line[0]) #取檔名 # cv2.imshow('My Image', img2) # cv2.waitKey(0) return img2, box_data
[ "PIL.Image.open", "numpy.random.rand", "numpy.logical_and", "PIL.Image.new", "numpy.asarray", "numpy.max", "numpy.array", "numpy.zeros", "matplotlib.colors.hsv_to_rgb", "numpy.min", "numpy.random.shuffle" ]
[((847, 886), 'PIL.Image.new', 'Image.new', (['"""RGB"""', 'size', '(128, 128, 128)'], {}), "('RGB', size, (128, 128, 128))\n", (856, 886), False, 'from PIL import Image\n'), ((1257, 1276), 'PIL.Image.open', 'Image.open', (['line[0]'], {}), '(line[0])\n', (1267, 1276), False, 'from PIL import Image\n'), ((2591, 2632), 'PIL.Image.new', 'Image.new', (['"""RGB"""', '(w, h)', '(128, 128, 128)'], {}), "('RGB', (w, h), (128, 128, 128))\n", (2600, 2632), False, 'from PIL import Image\n'), ((3169, 3182), 'matplotlib.colors.hsv_to_rgb', 'hsv_to_rgb', (['x'], {}), '(x)\n', (3179, 3182), False, 'from matplotlib.colors import rgb_to_hsv, hsv_to_rgb\n'), ((3241, 3265), 'numpy.zeros', 'np.zeros', (['(max_boxes, 5)'], {}), '((max_boxes, 5))\n', (3249, 3265), True, 'import numpy as np\n'), ((4090, 4109), 'PIL.Image.open', 'Image.open', (['line[0]'], {}), '(line[0])\n', (4100, 4109), False, 'from PIL import Image\n'), ((5109, 5150), 'PIL.Image.new', 'Image.new', (['"""RGB"""', '(w, h)', '(128, 128, 128)'], {}), "('RGB', (w, h), (128, 128, 128))\n", (5118, 5150), False, 'from PIL import Image\n'), ((5245, 5269), 'numpy.zeros', 'np.zeros', (['(max_boxes, 5)'], {}), '((max_boxes, 5))\n', (5253, 5269), True, 'import numpy as np\n'), ((6714, 6755), 'PIL.Image.new', 'Image.new', (['"""RGB"""', '(w, h)', '(128, 128, 128)'], {}), "('RGB', (w, h), (128, 128, 128))\n", (6723, 6755), False, 'from PIL import Image\n'), ((6921, 6945), 'numpy.zeros', 'np.zeros', (['(max_boxes, 5)'], {}), '((max_boxes, 5))\n', (6929, 6945), True, 'import numpy as np\n'), ((1882, 1906), 'numpy.zeros', 'np.zeros', (['(max_boxes, 5)'], {}), '((max_boxes, 5))\n', (1890, 1906), True, 'import numpy as np\n'), ((3292, 3314), 'numpy.random.shuffle', 'np.random.shuffle', (['box'], {}), '(box)\n', (3309, 3314), True, 'import numpy as np\n'), ((5204, 5223), 'numpy.array', 'np.array', (['new_image'], {}), '(new_image)\n', (5212, 5223), True, 'import numpy as np\n'), ((5296, 5318), 'numpy.random.shuffle', 'np.random.shuffle', (['box'], {}), '(box)\n', (5313, 5318), True, 'import numpy as np\n'), ((6853, 6874), 'numpy.asarray', 'np.asarray', (['new_image'], {}), '(new_image)\n', (6863, 6874), True, 'import numpy as np\n'), ((7052, 7074), 'numpy.random.shuffle', 'np.random.shuffle', (['box'], {}), '(box)\n', (7069, 7074), True, 'import numpy as np\n'), ((989, 1005), 'numpy.random.rand', 'np.random.rand', ([], {}), '()\n', (1003, 1005), True, 'import numpy as np\n'), ((1704, 1745), 'PIL.Image.new', 'Image.new', (['"""RGB"""', '(w, h)', '(128, 128, 128)'], {}), "('RGB', (w, h), (128, 128, 128))\n", (1713, 1745), False, 'from PIL import Image\n'), ((1941, 1963), 'numpy.random.shuffle', 'np.random.shuffle', (['box'], {}), '(box)\n', (1958, 1963), True, 'import numpy as np\n'), ((2973, 2988), 'numpy.array', 'np.array', (['image'], {}), '(image)\n', (2981, 2988), True, 'import numpy as np\n'), ((3667, 3703), 'numpy.logical_and', 'np.logical_and', (['(box_w > 1)', '(box_h > 1)'], {}), '(box_w > 1, box_h > 1)\n', (3681, 3703), True, 'import numpy as np\n'), ((5954, 5981), 'numpy.min', 'np.min', (['box[:, 0:2]'], {'axis': '(0)'}), '(box[:, 0:2], axis=0)\n', (5960, 5981), True, 'import numpy as np\n'), ((5983, 6010), 'numpy.max', 'np.max', (['box[:, 2:4]'], {'axis': '(0)'}), '(box[:, 2:4], axis=0)\n', (5989, 6010), True, 'import numpy as np\n'), ((7397, 7433), 'numpy.logical_and', 'np.logical_and', (['(box_w > 1)', '(box_h > 1)'], {}), '(box_w > 1, box_h > 1)\n', (7411, 7433), True, 'import numpy as np\n'), ((1813, 1832), 'numpy.array', 'np.array', (['new_image'], {}), '(new_image)\n', (1821, 1832), True, 'import numpy as np\n')]
""" A class hierarchy relating to fields of all kinds. """ from __future__ import print_function, division import numpy as np from ciabatta.meta import make_repr_str from fealty import lattice, field_numerics, walled_field_numerics class Space(object): def __init__(self, L, dim): self.L = L self.dim = dim @property def L_half(self): return self.L / 2.0 @property def A(self): return self.L ** self.dim def iterate(self, *args, **kwargs): pass def __repr__(self): fs = [('L', self.L), ('dim', self.dim)] return make_repr_str(self, fs) class Field(Space): def __init__(self, L, dim, dx): Space.__init__(self, L, dim) self.M = int(round(self.L / dx)) @property def dx(self): return self.L / self.M @property def A_i(self): return self.M ** self.dim @property def dA(self): return self.dx ** self.dim def density_field(self, r): return density(r, self.L, self.dx) def r_to_i(self, r): return lattice.r_to_i(r, self.L, self.dx) def i_to_r(self, i): return lattice.i_to_r(i, self.L, self.dx) def __repr__(self): fs = [('L', self.L), ('dim', self.dim), ('dx', self.dx)] return make_repr_str(self, fs) class Scalar(Field): def __init__(self, L, dim, dx, a_0=0.0): Field.__init__(self, L, dim, dx) self.a = np.ones(self.dim * (self.M,), dtype=np.float) * a_0 def grad(self): return _grad(self.a, self.dx) def grad_i(self, r): return _grad_i(self.a, self.r_to_i(r), self.dx) def laplacian(self): return _laplace(self.a, self.dx) def __repr__(self): fs = [('L', self.L), ('dim', self.dim), ('dx', self.dx), ('a_0', self.a_0)] return make_repr_str(self, fs) class Diffusing(Scalar): def __init__(self, L, dim, dx, D, dt, a_0=0.0): Scalar.__init__(self, L, dim, dx, a_0=a_0) self.D = D self.dt = dt if self.D > self.dx ** 2 / (2.0 * self.dim * self.dt): raise Exception('Unstable diffusion constant') def iterate(self): self.a += self.D * self.laplacian() * self.dt def __repr__(self): fs = [('L', self.L), ('dim', self.dim), ('dx', self.dx), ('D', self.D), ('dt', self.dt), ('a_0', self.a_0)] return make_repr_str(self, fs) class WalledScalar(Scalar): def __init__(self, L, dim, dx, walls, a_0=0.0): Scalar.__init__(self, L, dim, dx, a_0=a_0) self.walls = walls # Make field zero-valued where obstructed self.a *= np.logical_not(self.walls) def grad(self): return _walled_grad(self.a, self.dx, self.walls) def grad_i(self, r): return _walled_grad_i(self.a, self.r_to_i(r), self.dx, self.walls) def laplacian(self): return _walled_laplace(self.a, self.dx, self.walls) def __repr__(self): fs = [('L', self.L), ('dim', self.dim), ('dx', self.dx), ('walls', self.walls), ('a_0', self.a_0)] return make_repr_str(self, fs) # Note, inheritance order matters to get walled grad & laplacian call # (see diamond problem on wikipedia and how python handles it) class WalledDiffusing(WalledScalar, Diffusing): def __init__(self, L, dim, dx, walls, D, dt, a_0=0.0): Diffusing.__init__(self, L, dim, dx, D, dt, a_0=a_0) WalledScalar.__init__(self, L, dim, dx, walls, a_0=a_0) def __repr__(self): fs = [('L', self.L), ('dim', self.dim), ('dx', self.dx), ('walls', self.walls), ('D', self.D), ('dt', self.dt), ('a_0', self.a_0)] return make_repr_str(self, fs) def density(r, L, dx): assert r.ndim == 2 M = int(round(L / dx)) dx = L / M inds = lattice.r_to_i(r, L, dx) f = np.zeros(r.shape[1] * (M,), dtype=np.int) if f.ndim == 1: field_numerics.density_1d(inds, f) elif f.ndim == 2: field_numerics.density_2d(inds, f) elif f.ndim == 3: field_numerics.density_3d(inds, f) else: raise Exception('Density calc not implemented in this dimension') return f / dx ** r.shape[1] def _laplace(field, dx): assert dx > 0.0 laplace = np.empty_like(field) if field.ndim == 1: field_numerics.laplace_1d(field, laplace, dx) elif field.ndim == 2: field_numerics.laplace_2d(field, laplace, dx) elif field.ndim == 3: field_numerics.laplace_3d(field, laplace, dx) else: raise Exception('Laplacian not implemented in this dimension') return laplace def _grad_i(field, inds, dx): assert dx > 0.0 assert inds.ndim == 2 assert field.ndim == inds.shape[1] grad_i = np.empty(inds.shape, dtype=field.dtype) if field.ndim == 1: field_numerics.grad_i_1d(field, inds, grad_i, dx) elif field.ndim == 2: field_numerics.grad_i_2d(field, inds, grad_i, dx) elif field.ndim == 3: field_numerics.grad_i_3d(field, grad_i, dx) else: raise Exception("Grad_i not implemented in this dimension") return grad_i def _grad(field, dx): assert dx > 0.0 grad = np.empty(field.shape + (field.ndim,), dtype=field.dtype) if field.ndim == 1: field_numerics.grad_1d(field, grad, dx) elif field.ndim == 2: field_numerics.grad_2d(field, grad, dx) elif field.ndim == 3: field_numerics.grad_3d(field, grad, dx) else: raise Exception('Grad not implemented in this dimension') return grad def _div(field, dx): assert dx > 0.0 div = np.empty(field.shape[:-1], dtype=field.dtype) if field.ndim == 2: field_numerics.div_1d(field, div, dx) elif field.ndim == 3: field_numerics.div_2d(field, div, dx) elif field.ndim == 4: field_numerics.div_3d(field, div, dx) else: raise Exception('Divergence not implemented in this dimension') return div def _walled_grad(field, dx, walls): assert field.shape == walls.shape assert dx > 0.0 grad = np.empty(field.shape + (field.ndim,), dtype=field.dtype) if field.ndim == 1: walled_field_numerics.grad_1d(field, grad, dx, walls) elif field.ndim == 2: walled_field_numerics.grad_2d(field, grad, dx, walls) elif field.ndim == 3: walled_field_numerics.grad_3d(field, grad, dx, walls) else: raise Exception("Walled grad not implemented in this dimension") return grad def _walled_grad_i(field, inds, dx, walls): assert field.shape == walls.shape assert dx > 0.0 assert inds.ndim == 2 assert field.ndim == inds.shape[1] grad_i = np.empty(inds.shape, dtype=field.dtype) if field.ndim == 1: walled_field_numerics.grad_i_1d(field, inds, grad_i, dx, walls) elif field.ndim == 2: walled_field_numerics.grad_i_2d(field, inds, grad_i, dx, walls) elif field.ndim == 3: walled_field_numerics.grad_i_3d(field, inds, grad_i, dx, walls) else: raise Exception("Walled Grad_i not implemented in this dimension") return grad_i def _walled_laplace(field, dx, walls): assert field.shape == walls.shape assert dx > 0.0 laplace = np.empty_like(field) if field.ndim == 1: walled_field_numerics.laplace_1d(field, laplace, dx, walls) elif field.ndim == 2: walled_field_numerics.laplace_2d(field, laplace, dx, walls) elif field.ndim == 3: walled_field_numerics.laplace_3d(field, laplace, dx, walls) else: raise Exception('Laplacian not implemented in this dimension') return laplace
[ "numpy.logical_not", "fealty.field_numerics.density_3d", "fealty.walled_field_numerics.grad_3d", "fealty.field_numerics.div_1d", "fealty.lattice.i_to_r", "ciabatta.meta.make_repr_str", "fealty.walled_field_numerics.grad_i_1d", "fealty.field_numerics.grad_i_1d", "numpy.empty", "fealty.walled_field_numerics.laplace_2d", "fealty.field_numerics.laplace_2d", "fealty.field_numerics.div_2d", "fealty.field_numerics.grad_3d", "numpy.ones", "fealty.walled_field_numerics.grad_i_2d", "fealty.field_numerics.laplace_1d", "fealty.field_numerics.density_2d", "fealty.field_numerics.div_3d", "fealty.walled_field_numerics.grad_2d", "fealty.field_numerics.grad_2d", "fealty.lattice.r_to_i", "fealty.walled_field_numerics.grad_1d", "fealty.field_numerics.grad_i_3d", "fealty.field_numerics.density_1d", "fealty.walled_field_numerics.grad_i_3d", "fealty.walled_field_numerics.laplace_3d", "fealty.field_numerics.grad_1d", "fealty.field_numerics.grad_i_2d", "numpy.zeros", "numpy.empty_like", "fealty.field_numerics.laplace_3d", "fealty.walled_field_numerics.laplace_1d" ]
[((3872, 3896), 'fealty.lattice.r_to_i', 'lattice.r_to_i', (['r', 'L', 'dx'], {}), '(r, L, dx)\n', (3886, 3896), False, 'from fealty import lattice, field_numerics, walled_field_numerics\n'), ((3905, 3946), 'numpy.zeros', 'np.zeros', (['(r.shape[1] * (M,))'], {'dtype': 'np.int'}), '(r.shape[1] * (M,), dtype=np.int)\n', (3913, 3946), True, 'import numpy as np\n'), ((4317, 4337), 'numpy.empty_like', 'np.empty_like', (['field'], {}), '(field)\n', (4330, 4337), True, 'import numpy as np\n'), ((4806, 4845), 'numpy.empty', 'np.empty', (['inds.shape'], {'dtype': 'field.dtype'}), '(inds.shape, dtype=field.dtype)\n', (4814, 4845), True, 'import numpy as np\n'), ((5241, 5297), 'numpy.empty', 'np.empty', (['(field.shape + (field.ndim,))'], {'dtype': 'field.dtype'}), '(field.shape + (field.ndim,), dtype=field.dtype)\n', (5249, 5297), True, 'import numpy as np\n'), ((5663, 5708), 'numpy.empty', 'np.empty', (['field.shape[:-1]'], {'dtype': 'field.dtype'}), '(field.shape[:-1], dtype=field.dtype)\n', (5671, 5708), True, 'import numpy as np\n'), ((6127, 6183), 'numpy.empty', 'np.empty', (['(field.shape + (field.ndim,))'], {'dtype': 'field.dtype'}), '(field.shape + (field.ndim,), dtype=field.dtype)\n', (6135, 6183), True, 'import numpy as np\n'), ((6727, 6766), 'numpy.empty', 'np.empty', (['inds.shape'], {'dtype': 'field.dtype'}), '(inds.shape, dtype=field.dtype)\n', (6735, 6766), True, 'import numpy as np\n'), ((7275, 7295), 'numpy.empty_like', 'np.empty_like', (['field'], {}), '(field)\n', (7288, 7295), True, 'import numpy as np\n'), ((603, 626), 'ciabatta.meta.make_repr_str', 'make_repr_str', (['self', 'fs'], {}), '(self, fs)\n', (616, 626), False, 'from ciabatta.meta import make_repr_str\n'), ((1081, 1115), 'fealty.lattice.r_to_i', 'lattice.r_to_i', (['r', 'self.L', 'self.dx'], {}), '(r, self.L, self.dx)\n', (1095, 1115), False, 'from fealty import lattice, field_numerics, walled_field_numerics\n'), ((1157, 1191), 'fealty.lattice.i_to_r', 'lattice.i_to_r', (['i', 'self.L', 'self.dx'], {}), '(i, self.L, self.dx)\n', (1171, 1191), False, 'from fealty import lattice, field_numerics, walled_field_numerics\n'), ((1297, 1320), 'ciabatta.meta.make_repr_str', 'make_repr_str', (['self', 'fs'], {}), '(self, fs)\n', (1310, 1320), False, 'from ciabatta.meta import make_repr_str\n'), ((1846, 1869), 'ciabatta.meta.make_repr_str', 'make_repr_str', (['self', 'fs'], {}), '(self, fs)\n', (1859, 1869), False, 'from ciabatta.meta import make_repr_str\n'), ((2412, 2435), 'ciabatta.meta.make_repr_str', 'make_repr_str', (['self', 'fs'], {}), '(self, fs)\n', (2425, 2435), False, 'from ciabatta.meta import make_repr_str\n'), ((2665, 2691), 'numpy.logical_not', 'np.logical_not', (['self.walls'], {}), '(self.walls)\n', (2679, 2691), True, 'import numpy as np\n'), ((3148, 3171), 'ciabatta.meta.make_repr_str', 'make_repr_str', (['self', 'fs'], {}), '(self, fs)\n', (3161, 3171), False, 'from ciabatta.meta import make_repr_str\n'), ((3747, 3770), 'ciabatta.meta.make_repr_str', 'make_repr_str', (['self', 'fs'], {}), '(self, fs)\n', (3760, 3770), False, 'from ciabatta.meta import make_repr_str\n'), ((3975, 4009), 'fealty.field_numerics.density_1d', 'field_numerics.density_1d', (['inds', 'f'], {}), '(inds, f)\n', (4000, 4009), False, 'from fealty import lattice, field_numerics, walled_field_numerics\n'), ((4370, 4415), 'fealty.field_numerics.laplace_1d', 'field_numerics.laplace_1d', (['field', 'laplace', 'dx'], {}), '(field, laplace, dx)\n', (4395, 4415), False, 'from fealty import lattice, field_numerics, walled_field_numerics\n'), ((4878, 4927), 'fealty.field_numerics.grad_i_1d', 'field_numerics.grad_i_1d', (['field', 'inds', 'grad_i', 'dx'], {}), '(field, inds, grad_i, dx)\n', (4902, 4927), False, 'from fealty import lattice, field_numerics, walled_field_numerics\n'), ((5330, 5369), 'fealty.field_numerics.grad_1d', 'field_numerics.grad_1d', (['field', 'grad', 'dx'], {}), '(field, grad, dx)\n', (5352, 5369), False, 'from fealty import lattice, field_numerics, walled_field_numerics\n'), ((5741, 5778), 'fealty.field_numerics.div_1d', 'field_numerics.div_1d', (['field', 'div', 'dx'], {}), '(field, div, dx)\n', (5762, 5778), False, 'from fealty import lattice, field_numerics, walled_field_numerics\n'), ((6216, 6269), 'fealty.walled_field_numerics.grad_1d', 'walled_field_numerics.grad_1d', (['field', 'grad', 'dx', 'walls'], {}), '(field, grad, dx, walls)\n', (6245, 6269), False, 'from fealty import lattice, field_numerics, walled_field_numerics\n'), ((6799, 6862), 'fealty.walled_field_numerics.grad_i_1d', 'walled_field_numerics.grad_i_1d', (['field', 'inds', 'grad_i', 'dx', 'walls'], {}), '(field, inds, grad_i, dx, walls)\n', (6830, 6862), False, 'from fealty import lattice, field_numerics, walled_field_numerics\n'), ((7328, 7387), 'fealty.walled_field_numerics.laplace_1d', 'walled_field_numerics.laplace_1d', (['field', 'laplace', 'dx', 'walls'], {}), '(field, laplace, dx, walls)\n', (7360, 7387), False, 'from fealty import lattice, field_numerics, walled_field_numerics\n'), ((1448, 1493), 'numpy.ones', 'np.ones', (['(self.dim * (self.M,))'], {'dtype': 'np.float'}), '(self.dim * (self.M,), dtype=np.float)\n', (1455, 1493), True, 'import numpy as np\n'), ((4040, 4074), 'fealty.field_numerics.density_2d', 'field_numerics.density_2d', (['inds', 'f'], {}), '(inds, f)\n', (4065, 4074), False, 'from fealty import lattice, field_numerics, walled_field_numerics\n'), ((4450, 4495), 'fealty.field_numerics.laplace_2d', 'field_numerics.laplace_2d', (['field', 'laplace', 'dx'], {}), '(field, laplace, dx)\n', (4475, 4495), False, 'from fealty import lattice, field_numerics, walled_field_numerics\n'), ((4962, 5011), 'fealty.field_numerics.grad_i_2d', 'field_numerics.grad_i_2d', (['field', 'inds', 'grad_i', 'dx'], {}), '(field, inds, grad_i, dx)\n', (4986, 5011), False, 'from fealty import lattice, field_numerics, walled_field_numerics\n'), ((5404, 5443), 'fealty.field_numerics.grad_2d', 'field_numerics.grad_2d', (['field', 'grad', 'dx'], {}), '(field, grad, dx)\n', (5426, 5443), False, 'from fealty import lattice, field_numerics, walled_field_numerics\n'), ((5813, 5850), 'fealty.field_numerics.div_2d', 'field_numerics.div_2d', (['field', 'div', 'dx'], {}), '(field, div, dx)\n', (5834, 5850), False, 'from fealty import lattice, field_numerics, walled_field_numerics\n'), ((6304, 6357), 'fealty.walled_field_numerics.grad_2d', 'walled_field_numerics.grad_2d', (['field', 'grad', 'dx', 'walls'], {}), '(field, grad, dx, walls)\n', (6333, 6357), False, 'from fealty import lattice, field_numerics, walled_field_numerics\n'), ((6897, 6960), 'fealty.walled_field_numerics.grad_i_2d', 'walled_field_numerics.grad_i_2d', (['field', 'inds', 'grad_i', 'dx', 'walls'], {}), '(field, inds, grad_i, dx, walls)\n', (6928, 6960), False, 'from fealty import lattice, field_numerics, walled_field_numerics\n'), ((7422, 7481), 'fealty.walled_field_numerics.laplace_2d', 'walled_field_numerics.laplace_2d', (['field', 'laplace', 'dx', 'walls'], {}), '(field, laplace, dx, walls)\n', (7454, 7481), False, 'from fealty import lattice, field_numerics, walled_field_numerics\n'), ((4105, 4139), 'fealty.field_numerics.density_3d', 'field_numerics.density_3d', (['inds', 'f'], {}), '(inds, f)\n', (4130, 4139), False, 'from fealty import lattice, field_numerics, walled_field_numerics\n'), ((4530, 4575), 'fealty.field_numerics.laplace_3d', 'field_numerics.laplace_3d', (['field', 'laplace', 'dx'], {}), '(field, laplace, dx)\n', (4555, 4575), False, 'from fealty import lattice, field_numerics, walled_field_numerics\n'), ((5046, 5089), 'fealty.field_numerics.grad_i_3d', 'field_numerics.grad_i_3d', (['field', 'grad_i', 'dx'], {}), '(field, grad_i, dx)\n', (5070, 5089), False, 'from fealty import lattice, field_numerics, walled_field_numerics\n'), ((5478, 5517), 'fealty.field_numerics.grad_3d', 'field_numerics.grad_3d', (['field', 'grad', 'dx'], {}), '(field, grad, dx)\n', (5500, 5517), False, 'from fealty import lattice, field_numerics, walled_field_numerics\n'), ((5885, 5922), 'fealty.field_numerics.div_3d', 'field_numerics.div_3d', (['field', 'div', 'dx'], {}), '(field, div, dx)\n', (5906, 5922), False, 'from fealty import lattice, field_numerics, walled_field_numerics\n'), ((6392, 6445), 'fealty.walled_field_numerics.grad_3d', 'walled_field_numerics.grad_3d', (['field', 'grad', 'dx', 'walls'], {}), '(field, grad, dx, walls)\n', (6421, 6445), False, 'from fealty import lattice, field_numerics, walled_field_numerics\n'), ((6995, 7058), 'fealty.walled_field_numerics.grad_i_3d', 'walled_field_numerics.grad_i_3d', (['field', 'inds', 'grad_i', 'dx', 'walls'], {}), '(field, inds, grad_i, dx, walls)\n', (7026, 7058), False, 'from fealty import lattice, field_numerics, walled_field_numerics\n'), ((7516, 7575), 'fealty.walled_field_numerics.laplace_3d', 'walled_field_numerics.laplace_3d', (['field', 'laplace', 'dx', 'walls'], {}), '(field, laplace, dx, walls)\n', (7548, 7575), False, 'from fealty import lattice, field_numerics, walled_field_numerics\n')]
# -*- coding: future_fstrings -*- # # Copyright 2019 <NAME>, <NAME>, <NAME>, # <NAME>, <NAME>, <NAME>, <NAME>, # <NAME>, <NAME>, <NAME>, <NAME>, # <NAME>, <NAME>, <NAME>, <NAME>, <NAME> # # This file is part of acados. # # The 2-Clause BSD License # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE.; # import sys, os, json import numpy as np from ctypes import * from casadi import CasadiMeta, Function, SX from copy import deepcopy from .generate_c_code_explicit_ode import generate_c_code_explicit_ode from .generate_c_code_implicit_ode import generate_c_code_implicit_ode from .generate_c_code_gnsf import generate_c_code_gnsf from .generate_c_code_constraint import generate_c_code_constraint from .generate_c_code_nls_cost import generate_c_code_nls_cost from .generate_c_code_external_cost import generate_c_code_external_cost from .acados_ocp import AcadosOcp from .acados_model import acados_model_strip_casadi_symbolics from .utils import is_column, is_empty, casadi_length, render_template, acados_class2dict,\ format_class_dict, ocp_check_against_layout, np_array_to_list, make_model_consistent,\ set_up_imported_gnsf_model def make_ocp_dims_consistent(acados_ocp): dims = acados_ocp.dims cost = acados_ocp.cost constraints = acados_ocp.constraints model = acados_ocp.model opts = acados_ocp.solver_options # nx if is_column(model.x): dims.nx = casadi_length(model.x) else: raise Exception('model.x should be column vector!') # nu if is_empty(model.u): dims.nu = 0 else: dims.nu = casadi_length(model.u) # nz if is_empty(model.z): dims.nz = 0 else: dims.nz = casadi_length(model.z) # np if is_empty(model.p): dims.np = 0 else: dims.np = casadi_length(model.p) if acados_ocp.parameter_values.shape[0] != dims.np: raise Exception('inconsistent dimension np, regarding model.p and parameter_values.') ## cost # path if cost.cost_type == 'LINEAR_LS': ny = cost.W.shape[0] if cost.Vx.shape[0] != ny or cost.Vu.shape[0] != ny: raise Exception('inconsistent dimension ny, regarding W, Vx, Vu.' + \ f'\nGot W[{cost.W.shape}], Vx[{cost.Vx.shape}], Vu[{cost.Vu.shape}]\n') if dims.nz != 0 and cost.Vz.shape[0] != ny: raise Exception('inconsistent dimension ny, regarding W, Vx, Vu, Vz.' + \ f'\nGot W[{cost.W.shape}], Vx[{cost.Vx.shape}], Vu[{cost.Vu.shape}], Vz[{cost.Vz.shape}]\n') if cost.Vx.shape[1] != dims.nx and ny != 0: raise Exception('inconsistent dimension: Vx should have nx columns.') if cost.Vu.shape[1] != dims.nu and ny != 0: raise Exception('inconsistent dimension: Vu should have nu columns.') if cost.yref.shape[0] != ny: raise Exception('inconsistent dimension: regarding W, yref.' + \ f'\nGot W[{cost.W.shape}], yref[{cost.yref.shape}]\n') dims.ny = ny elif cost.cost_type == 'NONLINEAR_LS': ny = cost.W.shape[0] if is_empty(model.cost_y_expr) and ny != 0: raise Exception('inconsistent dimension ny: regarding W, cost_y_expr.') elif casadi_length(model.cost_y_expr) != ny: raise Exception('inconsistent dimension ny: regarding W, cost_y_expr.') if cost.yref.shape[0] != ny: raise Exception('inconsistent dimension: regarding W, yref.' + \ f'\nGot W[{cost.W.shape}], yref[{cost.yref.shape}]\n') dims.ny = ny # terminal if cost.cost_type_e == 'LINEAR_LS': ny_e = cost.W_e.shape[0] if cost.Vx_e.shape[0] != ny_e: raise Exception('inconsistent dimension ny_e: regarding W_e, cost_y_expr_e.' + \ f'\nGot W_e[{cost.W_e.shape}], Vx_e[{cost.Vx_e.shape}]') if cost.Vx_e.shape[1] != dims.nx and ny_e != 0: raise Exception('inconsistent dimension: Vx_e should have nx columns.') if cost.yref_e.shape[0] != ny_e: raise Exception('inconsistent dimension: regarding W_e, yref_e.') dims.ny_e = ny_e elif cost.cost_type_e == 'NONLINEAR_LS': ny_e = cost.W_e.shape[0] if is_empty(model.cost_y_expr_e) and ny_e != 0: raise Exception('inconsistent dimension ny_e: regarding W_e, cost_y_expr_e.') elif casadi_length(model.cost_y_expr_e) != ny_e: raise Exception('inconsistent dimension ny_e: regarding W_e, cost_y_expr_e.') if cost.yref_e.shape[0] != ny_e: raise Exception('inconsistent dimension: regarding W_e, yref_e.') dims.ny_e = ny_e ## constraints # initial if (constraints.lbx_0 == [] and constraints.ubx_0 == []): dims.nbx_0 = 0 else: this_shape = constraints.lbx_0.shape other_shape = constraints.ubx_0.shape if not this_shape == other_shape: raise Exception('lbx_0, ubx_0 have different shapes!') if not is_column(constraints.lbx_0): raise Exception('lbx_0, ubx_0 must be column vectors!') dims.nbx_0 = constraints.lbx_0.size if all(constraints.lbx_0 == constraints.ubx_0): dims.nbxe_0 = dims.nbx_0 # path nbx = constraints.idxbx.shape[0] if constraints.ubx.shape[0] != nbx or constraints.lbx.shape[0] != nbx: raise Exception('inconsistent dimension nbx, regarding idxbx, ubx, lbx.') else: dims.nbx = nbx nbu = constraints.idxbu.shape[0] if constraints.ubu.shape[0] != nbu or constraints.lbu.shape[0] != nbu: raise Exception('inconsistent dimension nbu, regarding idxbu, ubu, lbu.') else: dims.nbu = nbu ng = constraints.lg.shape[0] if constraints.ug.shape[0] != ng or constraints.C.shape[0] != ng \ or constraints.D.shape[0] != ng: raise Exception('inconsistent dimension ng, regarding lg, ug, C, D.') else: dims.ng = ng if not is_empty(model.con_h_expr): nh = casadi_length(model.con_h_expr) else: nh = 0 if constraints.uh.shape[0] != nh or constraints.lh.shape[0] != nh: raise Exception('inconsistent dimension nh, regarding lh, uh, con_h_expr.') else: dims.nh = nh if is_empty(model.con_phi_expr): dims.nphi = 0 dims.nr = 0 else: dims.nphi = casadi_length(model.con_phi_expr) if is_empty(model.con_r_expr): raise Exception('convex over nonlinear constraints: con_r_expr but con_phi_expr is nonempty') else: dims.nr = casadi_length(model.con_r_expr) # terminal nbx_e = constraints.idxbx_e.shape[0] if constraints.ubx_e.shape[0] != nbx_e or constraints.lbx_e.shape[0] != nbx_e: raise Exception('inconsistent dimension nbx_e, regarding idxbx_e, ubx_e, lbx_e.') else: dims.nbx_e = nbx_e ng_e = constraints.lg_e.shape[0] if constraints.ug_e.shape[0] != ng_e or constraints.C_e.shape[0] != ng_e: raise Exception('inconsistent dimension ng_e, regarding_e lg_e, ug_e, C_e.') else: dims.ng_e = ng_e if not is_empty(model.con_h_expr_e): nh_e = casadi_length(model.con_h_expr_e) else: nh_e = 0 if constraints.uh_e.shape[0] != nh_e or constraints.lh_e.shape[0] != nh_e: raise Exception('inconsistent dimension nh_e, regarding lh_e, uh_e, con_h_expr_e.') else: dims.nh_e = nh_e if is_empty(model.con_phi_expr_e): dims.nphi_e = 0 dims.nr_e = 0 else: dims.nphi_e = casadi_length(model.con_phi_expr_e) if is_empty(model.con_r_expr_e): raise Exception('convex over nonlinear constraints: con_r_expr_e but con_phi_expr_e is nonempty') else: dims.nr_e = casadi_length(model.con_r_expr_e) # Slack dimensions nsbx = constraints.idxsbx.shape[0] if is_empty(constraints.lsbx): constraints.lsbx = np.zeros((nsbx,)) elif constraints.lsbx.shape[0] != nsbx: raise Exception('inconsistent dimension nsbx, regarding idxsbx, lsbx.') if is_empty(constraints.usbx): constraints.usbx = np.zeros((nsbx,)) elif constraints.usbx.shape[0] != nsbx: raise Exception('inconsistent dimension nsbx, regarding idxsbx, usbx.') dims.nsbx = nsbx nsbu = constraints.idxsbu.shape[0] if is_empty(constraints.lsbu): constraints.lsbu = np.zeros((nsbu,)) elif constraints.lsbu.shape[0] != nsbu: raise Exception('inconsistent dimension nsbu, regarding idxsbu, lsbu.') if is_empty(constraints.usbu): constraints.usbu = np.zeros((nsbu,)) elif constraints.usbu.shape[0] != nsbu: raise Exception('inconsistent dimension nsbu, regarding idxsbu, usbu.') dims.nsbu = nsbu nsh = constraints.idxsh.shape[0] if is_empty(constraints.lsh): constraints.lsh = np.zeros((nsh,)) elif constraints.lsh.shape[0] != nsh: raise Exception('inconsistent dimension nsh, regarding idxsh, lsh.') if is_empty(constraints.ush): constraints.ush = np.zeros((nsh,)) elif constraints.ush.shape[0] != nsh: raise Exception('inconsistent dimension nsh, regarding idxsh, ush.') dims.nsh = nsh nsphi = constraints.idxsphi.shape[0] if is_empty(constraints.lsphi): constraints.lsphi = np.zeros((nsphi,)) elif constraints.lsphi.shape[0] != nsphi: raise Exception('inconsistent dimension nsphi, regarding idxsphi, lsphi.') if is_empty(constraints.usphi): constraints.usphi = np.zeros((nsphi,)) elif constraints.usphi.shape[0] != nsphi: raise Exception('inconsistent dimension nsphi, regarding idxsphi, usphi.') dims.nsphi = nsphi nsg = constraints.idxsg.shape[0] if is_empty(constraints.lsg): constraints.lsg = np.zeros((nsg,)) elif constraints.lsg.shape[0] != nsg: raise Exception('inconsistent dimension nsg, regarding idxsg, lsg.') if is_empty(constraints.usg): constraints.usg = np.zeros((nsg,)) elif constraints.usg.shape[0] != nsg: raise Exception('inconsistent dimension nsg, regarding idxsg, usg.') dims.nsg = nsg ns = nsbx + nsbu + nsh + nsg + nsphi wrong_field = "" if cost.Zl.shape[0] != ns: wrong_field = "Zl" dim = cost.Zl.shape[0] elif cost.Zu.shape[0] != ns: wrong_field = "Zu" dim = cost.Zu.shape[0] elif cost.zl.shape[0] != ns: wrong_field = "zl" dim = cost.zl.shape[0] elif cost.zu.shape[0] != ns: wrong_field = "zu" dim = cost.zu.shape[0] if wrong_field != "": raise Exception(f'Inconsistent size for field {wrong_field}, with dimension {dim}, \n\t'\ + f'Detected ns = {ns} = nsbx + nsbu + nsg + nsh + nsphi.\n\t'\ + f'With nsbx = {nsbx}, nsbu = {nsbu}, nsg = {nsg}, nsh = {nsh}, nsphi = {nsphi}') dims.ns = ns nsbx_e = constraints.idxsbx_e.shape[0] if is_empty(constraints.lsbx_e): constraints.lsbx_e = np.zeros((nsbx_e,)) elif constraints.lsbx_e.shape[0] != nsbx_e: raise Exception('inconsistent dimension nsbx_e, regarding idxsbx_e, lsbx_e.') if is_empty(constraints.usbx_e): constraints.usbx_e = np.zeros((nsbx_e,)) elif constraints.usbx_e.shape[0] != nsbx_e: raise Exception('inconsistent dimension nsbx_e, regarding idxsbx_e, usbx_e.') dims.nsbx_e = nsbx_e nsh_e = constraints.idxsh_e.shape[0] if is_empty(constraints.lsh_e): constraints.lsh_e = np.zeros((nsh_e,)) elif constraints.lsh_e.shape[0] != nsh_e: raise Exception('inconsistent dimension nsh_e, regarding idxsh_e, lsh_e.') if is_empty(constraints.ush_e): constraints.ush_e = np.zeros((nsh_e,)) elif constraints.ush_e.shape[0] != nsh_e: raise Exception('inconsistent dimension nsh_e, regarding idxsh_e, ush_e.') dims.nsh_e = nsh_e nsg_e = constraints.idxsg_e.shape[0] if is_empty(constraints.lsg_e): constraints.lsg_e = np.zeros((nsg_e,)) elif constraints.lsg_e.shape[0] != nsg_e: raise Exception('inconsistent dimension nsg_e, regarding idxsg_e, lsg_e.') if is_empty(constraints.usg_e): constraints.usg_e = np.zeros((nsg_e,)) elif constraints.usg_e.shape[0] != nsg_e: raise Exception('inconsistent dimension nsg_e, regarding idxsg_e, usg_e.') dims.nsg_e = nsg_e nsphi_e = constraints.idxsphi_e.shape[0] if is_empty(constraints.lsphi_e): constraints.lsphi_e = np.zeros((nsphi_e,)) elif constraints.lsphi_e.shape[0] != nsphi_e: raise Exception('inconsistent dimension nsphi_e, regarding idxsphi_e, lsphi_e.') if is_empty(constraints.usphi_e): constraints.usphi_e = np.zeros((nsphi_e,)) elif constraints.usphi_e.shape[0] != nsphi_e: raise Exception('inconsistent dimension nsphi_e, regarding idxsphi_e, usphi_e.') dims.nsphi_e = nsphi_e # terminal ns_e = nsbx_e + nsh_e + nsg_e + nsphi_e wrong_field = "" if cost.Zl_e.shape[0] != ns_e: wrong_field = "Zl_e" dim = cost.Zl_e.shape[0] elif cost.Zu_e.shape[0] != ns_e: wrong_field = "Zu_e" dim = cost.Zu_e.shape[0] elif cost.zl_e.shape[0] != ns_e: wrong_field = "zl_e" dim = cost.zl_e.shape[0] elif cost.zu_e.shape[0] != ns_e: wrong_field = "zu_e" dim = cost.zu_e.shape[0] if wrong_field != "": raise Exception(f'Inconsistent size for field {wrong_field}, with dimension {dim}, \n\t'\ + f'Detected ns_e = {ns_e} = nsbx_e + nsg_e + nsh_e + nsphi_e.\n\t'\ + f'With nsbx_e = {nsbx_e}, nsg_e = {nsg_e}, nsh_e = {nsh_e}, nsphi_e = {nsphi_e}') dims.ns_e = ns_e # discretization if is_empty(opts.time_steps) and is_empty(opts.shooting_nodes): # uniform discretization opts.time_steps = opts.tf / dims.N * np.ones((dims.N,)) elif not is_empty(opts.shooting_nodes): if np.shape(opts.shooting_nodes)[0] != dims.N+1: raise Exception('inconsistent dimension N, regarding shooting_nodes.') time_steps = np.zeros((dims.N,)) for i in range(dims.N): time_steps[i] = opts.shooting_nodes[i+1] - opts.shooting_nodes[i] opts.time_steps = time_steps elif (not is_empty(opts.time_steps)) and (not is_empty(opts.shooting_nodes)): Exception('Please provide either time_steps or shooting_nodes for nonuniform discretization') tf = np.sum(opts.time_steps) if (tf - opts.tf) / tf > 1e-15: raise Exception(f'Inconsistent discretization: {opts.tf}'\ f' = tf != sum(opts.time_steps) = {tf}.') def get_ocp_nlp_layout(): current_module = sys.modules[__name__] acados_path = os.path.dirname(current_module.__file__) with open(acados_path + '/acados_layout.json', 'r') as f: ocp_nlp_layout = json.load(f) return ocp_nlp_layout def ocp_formulation_json_dump(acados_ocp, json_file='acados_ocp_nlp.json'): # Load acados_ocp_nlp structure description ocp_layout = get_ocp_nlp_layout() # Copy input ocp object dictionary ocp_nlp_dict = dict(deepcopy(acados_ocp).__dict__) # TODO: maybe make one funciton with formatting for acados_struct, v in ocp_layout.items(): # skip non dict attributes if not isinstance(v, dict): continue # setattr(ocp_nlp, acados_struct, dict(getattr(acados_ocp, acados_struct).__dict__)) # Copy ocp object attributes dictionaries ocp_nlp_dict[acados_struct]=dict(getattr(acados_ocp, acados_struct).__dict__) ocp_nlp_dict = format_class_dict(ocp_nlp_dict) # strip symbolics ocp_nlp_dict['model'] = acados_model_strip_casadi_symbolics(ocp_nlp_dict['model']) # strip shooting_nodes ocp_nlp_dict['solver_options'].pop('shooting_nodes', None) dims_dict = acados_class2dict(acados_ocp.dims) ocp_check_against_layout(ocp_nlp_dict, dims_dict) with open(json_file, 'w') as f: json.dump(ocp_nlp_dict, f, default=np_array_to_list, indent=4, sort_keys=True) def ocp_formulation_json_load(json_file='acados_ocp_nlp.json'): # Load acados_ocp_nlp structure description ocp_layout = get_ocp_nlp_layout() with open(json_file, 'r') as f: ocp_nlp_json = json.load(f) ocp_nlp_dict = json2dict(ocp_nlp_json, ocp_nlp_json['dims']) # Instantiate AcadosOcp object acados_ocp = AcadosOcp() # load class dict acados_ocp.__dict__ = ocp_nlp_dict # laod class attributes dict, dims, constraints, etc for acados_struct, v in ocp_layout.items(): # skip non dict attributes if not isinstance(v, dict): continue acados_attribute = getattr(acados_ocp, acados_struct) acados_attribute.__dict__ = ocp_nlp_dict[acados_struct] setattr(acados_ocp, acados_struct, acados_attribute) return acados_ocp def ocp_generate_external_functions(acados_ocp, model): model = make_model_consistent(model) if acados_ocp.solver_options.integrator_type == 'ERK': # explicit model -- generate C code generate_c_code_explicit_ode(model) elif acados_ocp.solver_options.integrator_type == 'IRK': # implicit model -- generate C code opts = dict(generate_hess=1) generate_c_code_implicit_ode(model, opts) elif acados_ocp.solver_options.integrator_type == 'GNSF': generate_c_code_gnsf(model) else: raise Exception("ocp_generate_external_functions: unknown integrator type.") if acados_ocp.solver_options.hessian_approx == 'EXACT': opts = dict(generate_hess=1) else: opts = dict(generate_hess=0) if acados_ocp.dims.nphi > 0 or acados_ocp.dims.nh > 0: generate_c_code_constraint(model, model.name, False, opts) if acados_ocp.dims.nphi_e > 0 or acados_ocp.dims.nh_e > 0: generate_c_code_constraint(model, model.name, True, opts) # dummy matrices if not acados_ocp.cost.cost_type == 'LINEAR_LS': acados_ocp.cost.Vx = np.zeros((acados_ocp.dims.ny, acados_ocp.dims.nx)) acados_ocp.cost.Vu = np.zeros((acados_ocp.dims.ny, acados_ocp.dims.nu)) if not acados_ocp.cost.cost_type_e == 'LINEAR_LS': acados_ocp.cost.Vx_e = np.zeros((acados_ocp.dims.ny_e, acados_ocp.dims.nx)) if acados_ocp.cost.cost_type == 'NONLINEAR_LS': generate_c_code_nls_cost(model, model.name, False) elif acados_ocp.cost.cost_type == 'EXTERNAL': generate_c_code_external_cost(model, False) if acados_ocp.cost.cost_type_e == 'NONLINEAR_LS': generate_c_code_nls_cost(model, model.name, True) elif acados_ocp.cost.cost_type_e == 'EXTERNAL': generate_c_code_external_cost(model, True) def ocp_render_templates(acados_ocp, json_file): name = acados_ocp.model.name # setting up loader and environment json_path = '{cwd}/{json_file}'.format( cwd=os.getcwd(), json_file=json_file) if not os.path.exists(json_path): raise Exception('{} not found!'.format(json_path)) template_dir = 'c_generated_code/' ## Render templates in_file = 'main.in.c' out_file = 'main_{}.c'.format(name) render_template(in_file, out_file, template_dir, json_path) in_file = 'acados_solver.in.c' out_file = 'acados_solver_{}.c'.format(name) render_template(in_file, out_file, template_dir, json_path) in_file = 'acados_solver.in.h' out_file = 'acados_solver_{}.h'.format(name) render_template(in_file, out_file, template_dir, json_path) in_file = 'Makefile.in' out_file = 'Makefile' render_template(in_file, out_file, template_dir, json_path) in_file = 'acados_solver_sfun.in.c' out_file = 'acados_solver_sfunction_{}.c'.format(name) render_template(in_file, out_file, template_dir, json_path) in_file = 'make_sfun.in.m' out_file = 'make_sfun.m' render_template(in_file, out_file, template_dir, json_path) in_file = 'acados_sim_solver.in.c' out_file = 'acados_sim_solver_{}.c'.format(name) render_template(in_file, out_file, template_dir, json_path) in_file = 'acados_sim_solver.in.h' out_file = 'acados_sim_solver_{}.h'.format(name) render_template(in_file, out_file, template_dir, json_path) ## folder model template_dir = 'c_generated_code/{}_model/'.format(name) in_file = 'model.in.h' out_file = '{}_model.h'.format(name) render_template(in_file, out_file, template_dir, json_path) # constraints on convex over nonlinear function if acados_ocp.constraints.constr_type == 'BGP' and acados_ocp.dims.nphi > 0: # constraints on outer function template_dir = 'c_generated_code/{}_constraints/'.format(name) in_file = 'phi_constraint.in.h' out_file = '{}_phi_constraint.h'.format(name) render_template(in_file, out_file, template_dir, json_path) # terminal constraints on convex over nonlinear function if acados_ocp.constraints.constr_type_e == 'BGP' and acados_ocp.dims.nphi_e > 0: # terminal constraints on outer function template_dir = 'c_generated_code/{}_constraints/'.format(name) in_file = 'phi_e_constraint.in.h' out_file = '{}_phi_e_constraint.h'.format(name) render_template(in_file, out_file, template_dir, json_path) # nonlinear constraints if acados_ocp.constraints.constr_type == 'BGH' and acados_ocp.dims.nh > 0: template_dir = 'c_generated_code/{}_constraints/'.format(name) in_file = 'h_constraint.in.h' out_file = '{}_h_constraint.h'.format(name) render_template(in_file, out_file, template_dir, json_path) # terminal nonlinear constraints if acados_ocp.constraints.constr_type_e == 'BGH' and acados_ocp.dims.nh_e > 0: template_dir = 'c_generated_code/{}_constraints/'.format(name) in_file = 'h_e_constraint.in.h' out_file = '{}_h_e_constraint.h'.format(name) render_template(in_file, out_file, template_dir, json_path) # nonlinear cost function if acados_ocp.cost.cost_type == 'NONLINEAR_LS': template_dir = 'c_generated_code/{}_cost/'.format(name) in_file = 'cost_y_fun.in.h' out_file = '{}_cost_y_fun.h'.format(name) render_template(in_file, out_file, template_dir, json_path) # terminal nonlinear cost function if acados_ocp.cost.cost_type_e == 'NONLINEAR_LS': template_dir = 'c_generated_code/{}_cost/'.format(name) in_file = 'cost_y_e_fun.in.h' out_file = '{}_cost_y_e_fun.h'.format(name) render_template(in_file, out_file, template_dir, json_path) # external cost if acados_ocp.cost.cost_type == 'EXTERNAL': template_dir = 'c_generated_code/{}_cost/'.format(name) in_file = 'external_cost.in.h' out_file = '{}_external_cost.h'.format(name) render_template(in_file, out_file, template_dir, json_path) # external cost - terminal if acados_ocp.cost.cost_type_e == 'EXTERNAL': template_dir = 'c_generated_code/{}_cost/'.format(name) in_file = 'external_cost_e.in.h' out_file = '{}_external_cost_e.h'.format(name) render_template(in_file, out_file, template_dir, json_path) class AcadosOcpSolver: """ class to interact with the acados ocp solver C object """ def __init__(self, acados_ocp, json_file='acados_ocp_nlp.json'): self.solver_created = False model = acados_ocp.model # make dims consistent make_ocp_dims_consistent(acados_ocp) if acados_ocp.solver_options.integrator_type == 'GNSF': set_up_imported_gnsf_model(acados_ocp) # set integrator time automatically acados_ocp.solver_options.Tsim = acados_ocp.solver_options.time_steps[0] # generate external functions ocp_generate_external_functions(acados_ocp, model) # dump to json ocp_formulation_json_dump(acados_ocp, json_file) # render templates ocp_render_templates(acados_ocp, json_file) ## Compile solver os.chdir('c_generated_code') os.system('make clean_ocp_shared_lib') os.system('make ocp_shared_lib') os.chdir('..') self.shared_lib_name = 'c_generated_code/libacados_ocp_solver_' + model.name + '.so' # get self.shared_lib = CDLL(self.shared_lib_name) self.shared_lib.acados_create() self.solver_created = True self.shared_lib.acados_get_nlp_opts.restype = c_void_p self.nlp_opts = self.shared_lib.acados_get_nlp_opts() self.shared_lib.acados_get_nlp_dims.restype = c_void_p self.nlp_dims = self.shared_lib.acados_get_nlp_dims() self.shared_lib.acados_get_nlp_config.restype = c_void_p self.nlp_config = self.shared_lib.acados_get_nlp_config() self.shared_lib.acados_get_nlp_out.restype = c_void_p self.nlp_out = self.shared_lib.acados_get_nlp_out() self.shared_lib.acados_get_nlp_in.restype = c_void_p self.nlp_in = self.shared_lib.acados_get_nlp_in() self.shared_lib.acados_get_nlp_solver.restype = c_void_p self.nlp_solver = self.shared_lib.acados_get_nlp_solver() self.acados_ocp = acados_ocp def solve(self): """ solve the ocp with current input """ status = self.shared_lib.acados_solve() return status def get(self, stage_, field_): """ get the last solution of the solver: :param stage: integer corresponding to shooting node :param field_: string in ['x', 'u', 'z', 'pi', 'lam', 't', 'sl', 'su',] .. note:: regarding lam, t: \n the inequalities are internally organized in the following order: \n [ lbu lbx lg lh lphi ubu ubx ug uh uphi; \n lsbu lsbx lsg lsh lsphi usbu usbx usg ush usphi] .. note:: pi: multipliers for dynamics equality constraints \n lam: multipliers for inequalities \n t: slack variables corresponding to evaluation of all inequalities (at the solution) \n sl: slack variables of soft lower inequality constraints \n su: slack variables of soft upper inequality constraints \n """ out_fields = ['x', 'u', 'z', 'pi', 'lam', 't'] mem_fields = ['sl', 'su'] field = field_ field = field.encode('utf-8') if (field_ not in out_fields + mem_fields): raise Exception('AcadosOcpSolver.get(): {} is an invalid argument.\ \n Possible values are {}. Exiting.'.format(field_, out_fields + mem_fields)) self.shared_lib.ocp_nlp_dims_get_from_attr.argtypes = \ [c_void_p, c_void_p, c_void_p, c_int, c_char_p] self.shared_lib.ocp_nlp_dims_get_from_attr.restype = c_int dims = self.shared_lib.ocp_nlp_dims_get_from_attr(self.nlp_config, \ self.nlp_dims, self.nlp_out, stage_, field) out = np.ascontiguousarray(np.zeros((dims,)), dtype=np.float64) out_data = cast(out.ctypes.data, POINTER(c_double)) if (field_ in out_fields): self.shared_lib.ocp_nlp_out_get.argtypes = \ [c_void_p, c_void_p, c_void_p, c_int, c_char_p, c_void_p] self.shared_lib.ocp_nlp_out_get(self.nlp_config, \ self.nlp_dims, self.nlp_out, stage_, field, out_data) elif field_ in mem_fields: self.shared_lib.ocp_nlp_get_at_stage.argtypes = \ [c_void_p, c_void_p, c_void_p, c_int, c_char_p, c_void_p] self.shared_lib.ocp_nlp_get_at_stage(self.nlp_config, \ self.nlp_dims, self.nlp_solver, stage_, field, out_data) return out def print_statistics(self): stat = self.get_stats("statistics") if self.acados_ocp.solver_options.nlp_solver_type == 'SQP': print('\niter\tres_stat\tres_eq\t\tres_ineq\tres_comp\tqp_stat\tqp_iter') if stat.shape[0]>7: print('\tqp_res_stat\tqp_res_eq\tqp_res_ineq\tqp_res_comp') for jj in range(stat.shape[1]): print('{:d}\t{:e}\t{:e}\t{:e}\t{:e}\t{:d}\t{:d}'.format( \ int(stat[0][jj]), stat[1][jj], stat[2][jj], \ stat[3][jj], stat[4][jj], int(stat[5][jj]), int(stat[6][jj]))) if stat.shape[0]>7: print('\t{:e}\t{:e}\t{:e}\t{:e}'.format( \ stat[7][jj], stat[8][jj], stat[9][jj], stat[10][jj])) print('\n') elif self.acados_ocp.solver_options.nlp_solver_type == 'SQP_RTI': print('\niter\tqp_stat\tqp_iter') if stat.shape[0]>3: print('\tqp_res_stat\tqp_res_eq\tqp_res_ineq\tqp_res_comp') for jj in range(stat.shape[1]): print('{:d}\t{:d}\t{:d}'.format( int(stat[0][jj]), int(stat[1][jj]), int(stat[2][jj]))) if stat.shape[0]>3: print('\t{:e}\t{:e}\t{:e}\t{:e}'.format( \ stat[3][jj], stat[4][jj], stat[5][jj], stat[6][jj])) print('\n') return def get_stats(self, field_): """ get the information of the last solver call: :param field_: string in ['statistics', 'time_tot', 'time_lin', 'time_sim', 'time_sim_ad', 'time_sim_la', 'time_qp', 'time_qp_solver_call', 'time_reg', 'sqp_iter'] """ fields = ['time_tot', # total cpu time previous call 'time_lin', # cpu time for linearization 'time_sim', # cpu time for integrator 'time_sim_ad', # cpu time for integrator contribution of external function calls 'time_sim_la', # cpu time for integrator contribution of linear algebra 'time_qp', # cpu time qp solution 'time_qp_solver_call', # cpu time inside qp solver (without converting the QP) 'time_qp_xcond', 'time_reg', # cpu time regularization 'sqp_iter', # number of SQP iterations 'statistics', # table with info about last iteration 'stat_m', 'stat_n', ] field = field_ field = field.encode('utf-8') if (field_ not in fields): raise Exception('AcadosOcpSolver.get_stats(): {} is not a valid argument.\ \n Possible values are {}. Exiting.'.format(fields, fields)) if field_ in ['sqp_iter', 'stat_m', 'stat_n']: out = np.ascontiguousarray(np.zeros((1,)), dtype=np.int64) out_data = cast(out.ctypes.data, POINTER(c_int64)) elif field_ == 'statistics': sqp_iter = self.get_stats("sqp_iter") stat_m = self.get_stats("stat_m") stat_n = self.get_stats("stat_n") min_size = min([stat_m, sqp_iter+1]) out = np.ascontiguousarray( np.zeros( (stat_n[0]+1, min_size[0]) ), dtype=np.float64) out_data = cast(out.ctypes.data, POINTER(c_double)) else: out = np.ascontiguousarray(np.zeros((1,)), dtype=np.float64) out_data = cast(out.ctypes.data, POINTER(c_double)) self.shared_lib.ocp_nlp_get.argtypes = [c_void_p, c_void_p, c_char_p, c_void_p] self.shared_lib.ocp_nlp_get(self.nlp_config, self.nlp_solver, field, out_data) return out # Note: this function should not be used anymore, better use cost_set, constraints_set def set(self, stage_, field_, value_): cost_fields = ['y_ref', 'yref'] constraints_fields = ['lbx', 'ubx', 'lbu', 'ubu'] out_fields = ['x', 'u', 'pi', 'lam', 't'] # cast value_ to avoid conversion issues value_ = value_.astype(float) field = field_ field = field.encode('utf-8') stage = c_int(stage_) # treat parameters separately if field_ is 'p': self.shared_lib.acados_update_params.argtypes = [c_int, POINTER(c_double)] self.shared_lib.acados_update_params.restype = c_int value_data = cast(value_.ctypes.data, POINTER(c_double)) self.shared_lib.acados_update_params(stage, value_data, value_.shape[0]) else: if field_ not in constraints_fields + cost_fields + out_fields: raise Exception("AcadosOcpSolver.set(): {} is not a valid argument.\ \nPossible values are {}. Exiting.".format(field, \ constraints_fields + cost_fields + out_fields + ['p'])) self.shared_lib.ocp_nlp_dims_get_from_attr.argtypes = \ [c_void_p, c_void_p, c_void_p, c_int, c_char_p] self.shared_lib.ocp_nlp_dims_get_from_attr.restype = c_int dims = self.shared_lib.ocp_nlp_dims_get_from_attr(self.nlp_config, \ self.nlp_dims, self.nlp_out, stage_, field) if value_.shape[0] != dims: msg = 'AcadosOcpSolver.set(): mismatching dimension for field "{}" '.format(field_) msg += 'with dimension {} (you have {})'.format(dims, value_.shape[0]) raise Exception(msg) value_data = cast(value_.ctypes.data, POINTER(c_double)) value_data_p = cast((value_data), c_void_p) if field_ in constraints_fields: self.shared_lib.ocp_nlp_constraints_model_set.argtypes = \ [c_void_p, c_void_p, c_void_p, c_int, c_char_p, c_void_p] self.shared_lib.ocp_nlp_constraints_model_set(self.nlp_config, \ self.nlp_dims, self.nlp_in, stage, field, value_data_p) elif field_ in cost_fields: self.shared_lib.ocp_nlp_cost_model_set.argtypes = \ [c_void_p, c_void_p, c_void_p, c_int, c_char_p, c_void_p] self.shared_lib.ocp_nlp_cost_model_set(self.nlp_config, \ self.nlp_dims, self.nlp_in, stage, field, value_data_p) elif field_ in out_fields: self.shared_lib.ocp_nlp_out_set.argtypes = \ [c_void_p, c_void_p, c_void_p, c_int, c_char_p, c_void_p] self.shared_lib.ocp_nlp_out_set(self.nlp_config, \ self.nlp_dims, self.nlp_out, stage, field, value_data_p) return def cost_set(self, stage_, field_, value_): """ set numerical data in the cost module of the solver: :param stage_: integer corresponding to shooting node :param field_: string, e.g. 'yref', 'W', 'ext_cost_num_hess' :param value_: of appropriate size """ # cast value_ to avoid conversion issues value_ = value_.astype(float) field = field_ field = field.encode('utf-8') stage = c_int(stage_) self.shared_lib.ocp_nlp_cost_dims_get_from_attr.argtypes = \ [c_void_p, c_void_p, c_void_p, c_int, c_char_p, POINTER(c_int)] self.shared_lib.ocp_nlp_cost_dims_get_from_attr.restype = c_int dims = np.ascontiguousarray(np.zeros((2,)), dtype=np.intc) dims_data = cast(dims.ctypes.data, POINTER(c_int)) self.shared_lib.ocp_nlp_cost_dims_get_from_attr(self.nlp_config, \ self.nlp_dims, self.nlp_out, stage_, field, dims_data) value_shape = value_.shape if len(value_shape) == 1: value_shape = (value_shape[0], 0) if value_shape != tuple(dims): raise Exception('AcadosOcpSolver.cost_set(): mismatching dimension', \ ' for field "{}" with dimension {} (you have {})'.format( \ field_, tuple(dims), value_shape)) value_data = cast(value_.ctypes.data, POINTER(c_double)) value_data_p = cast((value_data), c_void_p) self.shared_lib.ocp_nlp_cost_model_set.argtypes = \ [c_void_p, c_void_p, c_void_p, c_int, c_char_p, c_void_p] self.shared_lib.ocp_nlp_cost_model_set(self.nlp_config, \ self.nlp_dims, self.nlp_in, stage, field, value_data_p) return def constraints_set(self, stage_, field_, value_): """ set numerical data in the constraint module of the solver: Parameters: :param stage_: integer corresponding to shooting node :param field_: string, e.g. 'lbx' :param value_: of appropriate size """ # cast value_ to avoid conversion issues value_ = value_.astype(float) field = field_ field = field.encode('utf-8') stage = c_int(stage_) self.shared_lib.ocp_nlp_constraint_dims_get_from_attr.argtypes = \ [c_void_p, c_void_p, c_void_p, c_int, c_char_p, POINTER(c_int)] self.shared_lib.ocp_nlp_constraint_dims_get_from_attr.restype = c_int dims = np.ascontiguousarray(np.zeros((2,)), dtype=np.intc) dims_data = cast(dims.ctypes.data, POINTER(c_int)) self.shared_lib.ocp_nlp_constraint_dims_get_from_attr(self.nlp_config, \ self.nlp_dims, self.nlp_out, stage_, field, dims_data) value_shape = value_.shape if len(value_shape) == 1: value_shape = (value_shape[0], 0) if value_shape != tuple(dims): raise Exception('AcadosOcpSolver.constraints_set(): mismatching dimension' \ ' for field "{}" with dimension {} (you have {})'.format(field_, tuple(dims), value_shape)) value_data = cast(value_.ctypes.data, POINTER(c_double)) value_data_p = cast((value_data), c_void_p) self.shared_lib.ocp_nlp_constraints_model_set.argtypes = \ [c_void_p, c_void_p, c_void_p, c_int, c_char_p, c_void_p] self.shared_lib.ocp_nlp_constraints_model_set(self.nlp_config, \ self.nlp_dims, self.nlp_in, stage, field, value_data_p) return def options_set(self, field_, value_): """ set options of the solver: Parameters: :param field_: string, e.g. 'print_level', 'rti_phase', 'initialize_t_slacks', 'step_length' :param value_: of type int, float """ int_fields = ['print_level', 'rti_phase', 'initialize_t_slacks'] double_fields = ['step_length'] string_fields = ['globalization'] if field_ in int_fields: if not isinstance(value_, int): raise Exception('solver option {} must be of type int. You have {}.'.format(field_, type(value_))) else: value_ctypes = c_int(value_) elif field_ in double_fields: if not isinstance(value_, float): raise Exception('solver option {} must be of type float. You have {}.'.format(field_, type(value_))) else: value_ctypes = c_double(value_) elif field_ in string_fields: if not isinstance(value_, str): raise Exception('solver option {} must be of type str. You have {}.'.format(field_, type(value_))) else: value_ctypes = value_.encode('utf-8') if field_ == 'rti_phase': if value_ < 0 or value_ > 2: raise Exception('AcadosOcpSolver.solve(): argument \'rti_phase\' can ' 'take only values 0, 1, 2 for SQP-RTI-type solvers') if self.acados_ocp.solver_options.nlp_solver_type != 'SQP_RTI' and value_ > 0: raise Exception('AcadosOcpSolver.solve(): argument \'rti_phase\' can ' 'take only value 0 for SQP-type solvers') field = field_ field = field.encode('utf-8') if field_ in string_fields: self.shared_lib.ocp_nlp_solver_opts_set.argtypes = \ [c_void_p, c_void_p, c_char_p, c_char_p] self.shared_lib.ocp_nlp_solver_opts_set(self.nlp_config, \ self.nlp_opts, field, value_ctypes) else: self.shared_lib.ocp_nlp_solver_opts_set.argtypes = \ [c_void_p, c_void_p, c_char_p, c_void_p] self.shared_lib.ocp_nlp_solver_opts_set(self.nlp_config, \ self.nlp_opts, field, byref(value_ctypes)) return def __del__(self): if self.solver_created: self.shared_lib.acados_free() del self.shared_lib # NOTE: DLL cannot be easily unloaded!!! # see https://stackoverflow.com/questions/359498/how-can-i-unload-a-dll-using-ctypes-in-python # while isLoaded(self.shared_lib_name): # dlclose(handle)
[ "os.path.exists", "numpy.ones", "os.getcwd", "os.chdir", "os.path.dirname", "numpy.sum", "numpy.zeros", "copy.deepcopy", "json.load", "os.system", "numpy.shape", "json.dump" ]
[((15748, 15771), 'numpy.sum', 'np.sum', (['opts.time_steps'], {}), '(opts.time_steps)\n', (15754, 15771), True, 'import numpy as np\n'), ((16019, 16059), 'os.path.dirname', 'os.path.dirname', (['current_module.__file__'], {}), '(current_module.__file__)\n', (16034, 16059), False, 'import sys, os, json\n'), ((9215, 9232), 'numpy.zeros', 'np.zeros', (['(nsbx,)'], {}), '((nsbx,))\n', (9223, 9232), True, 'import numpy as np\n'), ((9419, 9436), 'numpy.zeros', 'np.zeros', (['(nsbx,)'], {}), '((nsbx,))\n', (9427, 9436), True, 'import numpy as np\n'), ((9684, 9701), 'numpy.zeros', 'np.zeros', (['(nsbu,)'], {}), '((nsbu,))\n', (9692, 9701), True, 'import numpy as np\n'), ((9888, 9905), 'numpy.zeros', 'np.zeros', (['(nsbu,)'], {}), '((nsbu,))\n', (9896, 9905), True, 'import numpy as np\n'), ((10149, 10165), 'numpy.zeros', 'np.zeros', (['(nsh,)'], {}), '((nsh,))\n', (10157, 10165), True, 'import numpy as np\n'), ((10345, 10361), 'numpy.zeros', 'np.zeros', (['(nsh,)'], {}), '((nsh,))\n', (10353, 10361), True, 'import numpy as np\n'), ((10606, 10624), 'numpy.zeros', 'np.zeros', (['(nsphi,)'], {}), '((nsphi,))\n', (10614, 10624), True, 'import numpy as np\n'), ((10818, 10836), 'numpy.zeros', 'np.zeros', (['(nsphi,)'], {}), '((nsphi,))\n', (10826, 10836), True, 'import numpy as np\n'), ((11087, 11103), 'numpy.zeros', 'np.zeros', (['(nsg,)'], {}), '((nsg,))\n', (11095, 11103), True, 'import numpy as np\n'), ((11283, 11299), 'numpy.zeros', 'np.zeros', (['(nsg,)'], {}), '((nsg,))\n', (11291, 11299), True, 'import numpy as np\n'), ((12287, 12306), 'numpy.zeros', 'np.zeros', (['(nsbx_e,)'], {}), '((nsbx_e,))\n', (12295, 12306), True, 'import numpy as np\n'), ((12507, 12526), 'numpy.zeros', 'np.zeros', (['(nsbx_e,)'], {}), '((nsbx_e,))\n', (12515, 12526), True, 'import numpy as np\n'), ((12792, 12810), 'numpy.zeros', 'np.zeros', (['(nsh_e,)'], {}), '((nsh_e,))\n', (12800, 12810), True, 'import numpy as np\n'), ((13004, 13022), 'numpy.zeros', 'np.zeros', (['(nsh_e,)'], {}), '((nsh_e,))\n', (13012, 13022), True, 'import numpy as np\n'), ((13281, 13299), 'numpy.zeros', 'np.zeros', (['(nsg_e,)'], {}), '((nsg_e,))\n', (13289, 13299), True, 'import numpy as np\n'), ((13493, 13511), 'numpy.zeros', 'np.zeros', (['(nsg_e,)'], {}), '((nsg_e,))\n', (13501, 13511), True, 'import numpy as np\n'), ((13778, 13798), 'numpy.zeros', 'np.zeros', (['(nsphi_e,)'], {}), '((nsphi_e,))\n', (13786, 13798), True, 'import numpy as np\n'), ((14006, 14026), 'numpy.zeros', 'np.zeros', (['(nsphi_e,)'], {}), '((nsphi_e,))\n', (14014, 14026), True, 'import numpy as np\n'), ((16147, 16159), 'json.load', 'json.load', (['f'], {}), '(f)\n', (16156, 16159), False, 'import sys, os, json\n'), ((17261, 17339), 'json.dump', 'json.dump', (['ocp_nlp_dict', 'f'], {'default': 'np_array_to_list', 'indent': '(4)', 'sort_keys': '(True)'}), '(ocp_nlp_dict, f, default=np_array_to_list, indent=4, sort_keys=True)\n', (17270, 17339), False, 'import sys, os, json\n'), ((17553, 17565), 'json.load', 'json.load', (['f'], {}), '(f)\n', (17562, 17565), False, 'import sys, os, json\n'), ((19295, 19345), 'numpy.zeros', 'np.zeros', (['(acados_ocp.dims.ny, acados_ocp.dims.nx)'], {}), '((acados_ocp.dims.ny, acados_ocp.dims.nx))\n', (19303, 19345), True, 'import numpy as np\n'), ((19375, 19425), 'numpy.zeros', 'np.zeros', (['(acados_ocp.dims.ny, acados_ocp.dims.nu)'], {}), '((acados_ocp.dims.ny, acados_ocp.dims.nu))\n', (19383, 19425), True, 'import numpy as np\n'), ((19512, 19564), 'numpy.zeros', 'np.zeros', (['(acados_ocp.dims.ny_e, acados_ocp.dims.nx)'], {}), '((acados_ocp.dims.ny_e, acados_ocp.dims.nx))\n', (19520, 19564), True, 'import numpy as np\n'), ((20232, 20257), 'os.path.exists', 'os.path.exists', (['json_path'], {}), '(json_path)\n', (20246, 20257), False, 'import sys, os, json\n'), ((25354, 25382), 'os.chdir', 'os.chdir', (['"""c_generated_code"""'], {}), "('c_generated_code')\n", (25362, 25382), False, 'import sys, os, json\n'), ((25391, 25429), 'os.system', 'os.system', (['"""make clean_ocp_shared_lib"""'], {}), "('make clean_ocp_shared_lib')\n", (25400, 25429), False, 'import sys, os, json\n'), ((25438, 25470), 'os.system', 'os.system', (['"""make ocp_shared_lib"""'], {}), "('make ocp_shared_lib')\n", (25447, 25470), False, 'import sys, os, json\n'), ((25479, 25493), 'os.chdir', 'os.chdir', (['""".."""'], {}), "('..')\n", (25487, 25493), False, 'import sys, os, json\n'), ((15160, 15178), 'numpy.ones', 'np.ones', (['(dims.N,)'], {}), '((dims.N,))\n', (15167, 15178), True, 'import numpy as np\n'), ((15386, 15405), 'numpy.zeros', 'np.zeros', (['(dims.N,)'], {}), '((dims.N,))\n', (15394, 15405), True, 'import numpy as np\n'), ((16414, 16434), 'copy.deepcopy', 'deepcopy', (['acados_ocp'], {}), '(acados_ocp)\n', (16422, 16434), False, 'from copy import deepcopy\n'), ((20178, 20189), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (20187, 20189), False, 'import sys, os, json\n'), ((28362, 28379), 'numpy.zeros', 'np.zeros', (['(dims,)'], {}), '((dims,))\n', (28370, 28379), True, 'import numpy as np\n'), ((36504, 36518), 'numpy.zeros', 'np.zeros', (['(2,)'], {}), '((2,))\n', (36512, 36518), True, 'import numpy as np\n'), ((38275, 38289), 'numpy.zeros', 'np.zeros', (['(2,)'], {}), '((2,))\n', (38283, 38289), True, 'import numpy as np\n'), ((31963, 31977), 'numpy.zeros', 'np.zeros', (['(1,)'], {}), '((1,))\n', (31971, 31977), True, 'import numpy as np\n'), ((15235, 15264), 'numpy.shape', 'np.shape', (['opts.shooting_nodes'], {}), '(opts.shooting_nodes)\n', (15243, 15264), True, 'import numpy as np\n'), ((32353, 32391), 'numpy.zeros', 'np.zeros', (['(stat_n[0] + 1, min_size[0])'], {}), '((stat_n[0] + 1, min_size[0]))\n', (32361, 32391), True, 'import numpy as np\n'), ((32529, 32543), 'numpy.zeros', 'np.zeros', (['(1,)'], {}), '((1,))\n', (32537, 32543), True, 'import numpy as np\n')]
""" Module containing all the spectrogram classes """ # 0.2.0 import torch import torch.nn as nn from torch.nn.functional import conv1d, conv2d, fold import numpy as np from time import time from nnAudio.librosa_functions import * from nnAudio.utils import * sz_float = 4 # size of a float epsilon = 10e-8 # fudge factor for normalization ### --------------------------- Spectrogram Classes ---------------------------### class STFT(torch.nn.Module): """This function is to calculate the short-time Fourier transform (STFT) of the input signal. Input signal should be in either of the following shapes.\n 1. ``(len_audio)``\n 2. ``(num_audio, len_audio)``\n 3. ``(num_audio, 1, len_audio)`` The correct shape will be inferred automatically if the input follows these 3 shapes. Most of the arguments follow the convention from librosa. This class inherits from ``torch.nn.Module``, therefore, the usage is same as ``torch.nn.Module``. Parameters ---------- n_fft : int The window size. Default value is 2048. freq_bins : int Number of frequency bins. Default is ``None``, which means ``n_fft//2+1`` bins. hop_length : int The hop (or stride) size. Default value is ``None`` which is equivalent to ``n_fft//4``. window : str The windowing function for STFT. It uses ``scipy.signal.get_window``, please refer to scipy documentation for possible windowing functions. The default value is 'hann'. freq_scale : 'linear', 'log', or 'no' Determine the spacing between each frequency bin. When `linear` or `log` is used, the bin spacing can be controlled by ``fmin`` and ``fmax``. If 'no' is used, the bin will start at 0Hz and end at Nyquist frequency with linear spacing. center : bool Putting the STFT keneral at the center of the time-step or not. If ``False``, the time index is the beginning of the STFT kernel, if ``True``, the time index is the center of the STFT kernel. Default value if ``True``. pad_mode : str The padding method. Default value is 'reflect'. inverse : bool To activate the iSTFT module or not. By default, it is False to save GPU memory. fmin : int The starting frequency for the lowest frequency bin. If freq_scale is ``no``, this argument does nothing. fmax : int The ending frequency for the highest frequency bin. If freq_scale is ``no``, this argument does nothing. sr : int The sampling rate for the input audio. It is used to calucate the correct ``fmin`` and ``fmax``. Setting the correct sampling rate is very important for calculating the correct frequency. trainable : bool Determine if the STFT kenrels are trainable or not. If ``True``, the gradients for STFT kernels will also be caluclated and the STFT kernels will be updated during model training. Default value is ``False`` output_format : str Control the spectrogram output type, either ``Magnitude``, ``Complex``, or ``Phase``. The output_format can also be changed during the ``forward`` method. verbose : bool If ``True``, it shows layer information. If ``False``, it suppresses all prints device : str Choose which device to initialize this layer. Default value is 'cpu' Returns ------- spectrogram : torch.tensor It returns a tensor of spectrograms. ``shape = (num_samples, freq_bins,time_steps)`` if ``output_format='Magnitude'``; ``shape = (num_samples, freq_bins,time_steps, 2)`` if ``output_format='Complex' or 'Phase'``; Examples -------- >>> spec_layer = Spectrogram.STFT() >>> specs = spec_layer(x) """ def __init__(self, n_fft=2048, win_length=None, freq_bins=None, hop_length=None, window='hann', freq_scale='no', center=True, pad_mode='reflect', iSTFT=False, fmin=50, fmax=6000, sr=22050, trainable=False, output_format="Complex", verbose=True): super().__init__() # Trying to make the default setting same as librosa if win_length==None: win_length = n_fft if hop_length==None: hop_length = int(win_length // 4) self.output_format = output_format self.trainable = trainable self.stride = hop_length self.center = center self.pad_mode = pad_mode self.n_fft = n_fft self.freq_bins = freq_bins self.trainable = trainable self.pad_amount = self.n_fft // 2 self.window = window self.win_length = win_length self.iSTFT = iSTFT self.trainable = trainable start = time() # Create filter windows for stft kernel_sin, kernel_cos, self.bins2freq, self.bin_list, window_mask = create_fourier_kernels(n_fft, win_length=win_length, freq_bins=freq_bins, window=window, freq_scale=freq_scale, fmin=fmin, fmax=fmax, sr=sr, verbose=verbose) kernel_sin = torch.tensor(kernel_sin, dtype=torch.float) kernel_cos = torch.tensor(kernel_cos, dtype=torch.float) # In this way, the inverse kernel and the forward kernel do not share the same memory... kernel_sin_inv = torch.cat((kernel_sin, -kernel_sin[1:-1].flip(0)), 0) kernel_cos_inv = torch.cat((kernel_cos, kernel_cos[1:-1].flip(0)), 0) if iSTFT: self.register_buffer('kernel_sin_inv', kernel_sin_inv.unsqueeze(-1)) self.register_buffer('kernel_cos_inv', kernel_cos_inv.unsqueeze(-1)) # Making all these variables nn.Parameter, so that the model can be used with nn.Parallel # self.kernel_sin = torch.nn.Parameter(self.kernel_sin, requires_grad=self.trainable) # self.kernel_cos = torch.nn.Parameter(self.kernel_cos, requires_grad=self.trainable) # Applying window functions to the Fourier kernels window_mask = torch.tensor(window_mask) wsin = kernel_sin * window_mask wcos = kernel_cos * window_mask if self.trainable==False: self.register_buffer('wsin', wsin) self.register_buffer('wcos', wcos) if self.trainable==True: wsin = torch.nn.Parameter(wsin, requires_grad=self.trainable) wcos = torch.nn.Parameter(wcos, requires_grad=self.trainable) self.register_parameter('wsin', wsin) self.register_parameter('wcos', wcos) # Prepare the shape of window mask so that it can be used later in inverse self.register_buffer('window_mask', window_mask.unsqueeze(0).unsqueeze(-1)) if verbose==True: print("STFT kernels created, time used = {:.4f} seconds".format(time()-start)) else: pass def forward(self, x, output_format=None): """ Convert a batch of waveforms to spectrograms. Parameters ---------- x : torch tensor Input signal should be in either of the following shapes.\n 1. ``(len_audio)``\n 2. ``(num_audio, len_audio)``\n 3. ``(num_audio, 1, len_audio)`` It will be automatically broadcast to the right shape output_format : str Control the type of spectrogram to be return. Can be either ``Magnitude`` or ``Complex`` or ``Phase``. Default value is ``Complex``. """ output_format = output_format or self.output_format self.num_samples = x.shape[-1] x = broadcast_dim(x) if self.center: if self.pad_mode == 'constant': padding = nn.ConstantPad1d(self.pad_amount, 0) elif self.pad_mode == 'reflect': if self.num_samples < self.pad_amount: raise AssertionError("Signal length shorter than reflect padding length (n_fft // 2).") padding = nn.ReflectionPad1d(self.pad_amount) x = padding(x) spec_imag = conv1d(x, self.wsin, stride=self.stride) spec_real = conv1d(x, self.wcos, stride=self.stride) # Doing STFT by using conv1d # remove redundant parts spec_real = spec_real[:, :self.freq_bins, :] spec_imag = spec_imag[:, :self.freq_bins, :] if output_format=='Magnitude': spec = spec_real.pow(2) + spec_imag.pow(2) if self.trainable==True: return torch.sqrt(spec+1e-8) # prevent Nan gradient when sqrt(0) due to output=0 else: return torch.sqrt(spec) elif output_format=='Complex': return torch.stack((spec_real,-spec_imag), -1) # Remember the minus sign for imaginary part elif output_format=='Phase': return torch.atan2(-spec_imag+0.0,spec_real) # +0.0 removes -0.0 elements, which leads to error in calculating phase def inverse(self, X, onesided=True, length=None, refresh_win=True): """ This function is same as the :func:`~nnAudio.Spectrogram.iSTFT` class, which is to convert spectrograms back to waveforms. It only works for the complex value spectrograms. If you have the magnitude spectrograms, please use :func:`~nnAudio.Spectrogram.Griffin_Lim`. Parameters ---------- onesided : bool If your spectrograms only have ``n_fft//2+1`` frequency bins, please use ``onesided=True``, else use ``onesided=False`` length : int To make sure the inverse STFT has the same output length of the original waveform, please set `length` as your intended waveform length. By default, ``length=None``, which will remove ``n_fft//2`` samples from the start and the end of the output. refresh_win : bool Recalculating the window sum square. If you have an input with fixed number of timesteps, you can increase the speed by setting ``refresh_win=False``. Else please keep ``refresh_win=True`` """ if (hasattr(self, 'kernel_sin_inv') != True) or (hasattr(self, 'kernel_cos_inv') != True): raise NameError("Please activate the iSTFT module by setting `iSTFT=True` if you want to use `inverse`") assert X.dim()==4 , "Inverse iSTFT only works for complex number," \ "make sure our tensor is in the shape of (batch, freq_bins, timesteps, 2)."\ "\nIf you have a magnitude spectrogram, please consider using Griffin-Lim." if onesided: X = extend_fbins(X) # extend freq X_real, X_imag = X[:, :, :, 0], X[:, :, :, 1] # broadcast dimensions to support 2D convolution X_real_bc = X_real.unsqueeze(1) X_imag_bc = X_imag.unsqueeze(1) a1 = conv2d(X_real_bc, self.kernel_cos_inv, stride=(1,1)) b2 = conv2d(X_imag_bc, self.kernel_sin_inv, stride=(1,1)) # compute real and imag part. signal lies in the real part real = a1 - b2 real = real.squeeze(-2)*self.window_mask # Normalize the amplitude with n_fft real /= (self.n_fft) # Overlap and Add algorithm to connect all the frames real = overlap_add(real, self.stride) # Prepare the window sumsqure for division # Only need to create this window once to save time # Unless the input spectrograms have different time steps if hasattr(self, 'w_sum')==False or refresh_win==True: self.w_sum = torch_window_sumsquare(self.window_mask.flatten(), X.shape[2], self.stride, self.n_fft).flatten() self.nonzero_indices = (self.w_sum>1e-10) else: pass real[:, self.nonzero_indices] = real[:,self.nonzero_indices].div(self.w_sum[self.nonzero_indices]) # Remove padding if length is None: if self.center: real = real[:, self.pad_amount:-self.pad_amount] else: if self.center: real = real[:, self.pad_amount:self.pad_amount + length] else: real = real[:, :length] return real def extra_repr(self) -> str: return 'n_fft={}, Fourier Kernel size={}, iSTFT={}, trainable={}'.format( self.n_fft, (*self.wsin.shape,), self.iSTFT, self.trainable ) class MelSpectrogram(torch.nn.Module): """This function is to calculate the Melspectrogram of the input signal. Input signal should be in either of the following shapes.\n 1. ``(len_audio)``\n 2. ``(num_audio, len_audio)``\n 3. ``(num_audio, 1, len_audio)`` The correct shape will be inferred automatically if the input follows these 3 shapes. Most of the arguments follow the convention from librosa. This class inherits from ``torch.nn.Module``, therefore, the usage is same as ``torch.nn.Module``. Parameters ---------- sr : int The sampling rate for the input audio. It is used to calculate the correct ``fmin`` and ``fmax``. Setting the correct sampling rate is very important for calculating the correct frequency. n_fft : int The window size for the STFT. Default value is 2048 n_mels : int The number of Mel filter banks. The filter banks maps the n_fft to mel bins. Default value is 128. hop_length : int The hop (or stride) size. Default value is 512. window : str The windowing function for STFT. It uses ``scipy.signal.get_window``, please refer to scipy documentation for possible windowing functions. The default value is 'hann'. center : bool Putting the STFT keneral at the center of the time-step or not. If ``False``, the time index is the beginning of the STFT kernel, if ``True``, the time index is the center of the STFT kernel. Default value if ``True``. pad_mode : str The padding method. Default value is 'reflect'. htk : bool When ``False`` is used, the Mel scale is quasi-logarithmic. When ``True`` is used, the Mel scale is logarithmic. The default value is ``False``. fmin : int The starting frequency for the lowest Mel filter bank. fmax : int The ending frequency for the highest Mel filter bank. trainable_mel : bool Determine if the Mel filter banks are trainable or not. If ``True``, the gradients for Mel filter banks will also be calculated and the Mel filter banks will be updated during model training. Default value is ``False``. trainable_STFT : bool Determine if the STFT kenrels are trainable or not. If ``True``, the gradients for STFT kernels will also be caluclated and the STFT kernels will be updated during model training. Default value is ``False``. verbose : bool If ``True``, it shows layer information. If ``False``, it suppresses all prints. device : str Choose which device to initialize this layer. Default value is 'cpu'. Returns ------- spectrogram : torch.tensor It returns a tensor of spectrograms. shape = ``(num_samples, freq_bins,time_steps)``. Examples -------- >>> spec_layer = Spectrogram.MelSpectrogram() >>> specs = spec_layer(x) """ def __init__(self, sr=22050, n_fft=2048, n_mels=128, hop_length=512, window='hann', center=True, pad_mode='reflect', power=2.0, htk=False, fmin=0.0, fmax=None, norm=1, trainable_mel=False, trainable_STFT=False, verbose=True, **kwargs): super().__init__() self.stride = hop_length self.center = center self.pad_mode = pad_mode self.n_fft = n_fft self.power = power self.trainable_mel = trainable_mel self.trainable_STFT = trainable_STFT self.verbose = verbose # Preparing for the stft layer. No need for center self.stft = STFT(n_fft=n_fft, freq_bins=None, hop_length=hop_length, window=window, freq_scale='no', center=center, pad_mode=pad_mode, sr=sr, trainable=trainable_STFT, output_format="Magnitude", verbose=verbose, **kwargs) # Create filter windows for stft start = time() # Creating kernel for mel spectrogram start = time() mel_basis = mel(sr, n_fft, n_mels, fmin, fmax, htk=htk, norm=norm) mel_basis = torch.tensor(mel_basis) if verbose==True: print("STFT filter created, time used = {:.4f} seconds".format(time()-start)) print("Mel filter created, time used = {:.4f} seconds".format(time()-start)) else: pass if trainable_mel: # Making everything nn.Parameter, so that this model can support nn.DataParallel mel_basis = torch.nn.Parameter(mel_basis, requires_grad=trainable_mel) self.register_parameter('mel_basis', mel_basis) else: self.register_buffer('mel_basis', mel_basis) # if trainable_mel==True: # self.mel_basis = torch.nn.Parameter(self.mel_basis) # if trainable_STFT==True: # self.wsin = torch.nn.Parameter(self.wsin) # self.wcos = torch.nn.Parameter(self.wcos) def forward(self, x): """ Convert a batch of waveforms to Mel spectrograms. Parameters ---------- x : torch tensor Input signal should be in either of the following shapes.\n 1. ``(len_audio)``\n 2. ``(num_audio, len_audio)``\n 3. ``(num_audio, 1, len_audio)`` It will be automatically broadcast to the right shape """ x = broadcast_dim(x) spec = self.stft(x, output_format='Magnitude')**self.power melspec = torch.matmul(self.mel_basis, spec) return melspec def extra_repr(self) -> str: return 'Mel filter banks size = {}, trainable_mel={}'.format( (*self.mel_basis.shape,), self.trainable_mel, self.trainable_STFT ) def to_stft(self, melspec, max_steps=1000, loss_threshold=1e-8, grad_threshold=1e-7, random_start=False, sgd_kwargs=None, eps=1e-12, return_extras=False, verbose=None): """ Best-attempt spectrogram inversion """ def loss_fn(pred, target): pred = pred.unsqueeze(1) if pred.ndim == 3 else pred target = target.unsqueeze(1) if target.ndim == 3 else target loss = (pred - target).pow(2).sum(-2).mean() return loss verbose = verbose or self.verbose # SGD arguments default_sgd_kwargs = dict(lr=1e3, momentum=0.9) if sgd_kwargs: default_sgd_kwargs.update(sgd_kwargs) sgd_kwargs = default_sgd_kwargs mel_basis = self.mel_basis.detach() shape = melspec.shape batch_size, n_mels, time = shape[0], shape[-2], shape[-1] _, n_freq = mel_basis.shape melspec = melspec.detach().view(-1, n_mels, time) if random_start: pred_stft_shape = (batch_size, n_freq, time) pred_stft = torch.zeros(*pred_stft_shape, dtype=torch.float32, device=mel_basis.device).normal_().clamp_(eps) else: pred_stft = (torch.pinverse(mel_basis) @ melspec).clamp(eps) pred_stft = nn.Parameter(pred_stft, requires_grad=True) sgd_kwargs["lr"] = sgd_kwargs["lr"] * batch_size optimizer = torch.optim.SGD([pred_stft], **sgd_kwargs) losses = [] for i in range(max_steps): optimizer.zero_grad() pred_mel = mel_basis @ pred_stft loss = loss_fn(pred_mel, melspec) losses.append(loss.item()) loss.backward() optimizer.step() # Check conditions if not loss.isfinite(): raise OverflowError("Overflow encountered in Mel -> STFT optimization") if loss_threshold and loss < loss_threshold: if verbose: print(f"Target error of {loss_threshold} reached. Stopping optimization.") break if grad_threshold and pred_stft.grad.max() < grad_threshold: if verbose: print(f"Target max gradient of {grad_threshold} reached. Stopping optimization.") break pred_stft = pred_stft.detach().clamp(eps) ** 0.5 pred_stft = pred_stft.view((*shape[:-2], n_freq, time)) if return_extras: return pred_stft, pred_mel.detach(), losses return pred_stft def inverse(self, melspec, mel_inversion_params=None, stft_inversion_params=None): default_mel_inversion_params = {} default_stft_inversion_params = {} mel_inversion_params = mel_inversion_params or {} stft_inversion_params = stft_inversion_params or {} if mel_inversion_params: mel_inversion_params = {**default_mel_inversion_params, **mel_inversion_params} if stft_inversion_params: stft_inversion_params = {**default_stft_inversion_params, **stft_inversion_params} recon_stft = self.to_stft(melspec, **mel_inversion_params) recon_audio = self.stft.inverse(recon_stft, **stft_inversion_params) return recon_audio class MFCC(torch.nn.Module): """This function is to calculate the Mel-frequency cepstral coefficients (MFCCs) of the input signal. This algorithm first extracts Mel spectrograms from the audio clips, then the discrete cosine transform is calcuated to obtain the final MFCCs. Therefore, the Mel spectrogram part can be made trainable using ``trainable_mel`` and ``trainable_STFT``. It only support type-II DCT at the moment. Input signal should be in either of the following shapes.\n 1. ``(len_audio)``\n 2. ``(num_audio, len_audio)``\n 3. ``(num_audio, 1, len_audio)`` The correct shape will be inferred autommatically if the input follows these 3 shapes. Most of the arguments follow the convention from librosa. This class inherits from ``torch.nn.Module``, therefore, the usage is same as ``torch.nn.Module``. Parameters ---------- sr : int The sampling rate for the input audio. It is used to calculate the correct ``fmin`` and ``fmax``. Setting the correct sampling rate is very important for calculating the correct frequency. n_mfcc : int The number of Mel-frequency cepstral coefficients norm : string The default value is 'ortho'. Normalization for DCT basis **kwargs Other arguments for Melspectrogram such as n_fft, n_mels, hop_length, and window Returns ------- MFCCs : torch.tensor It returns a tensor of MFCCs. shape = ``(num_samples, n_mfcc, time_steps)``. Examples -------- >>> spec_layer = Spectrogram.MFCC() >>> mfcc = spec_layer(x) """ def __init__(self, sr=22050, n_mfcc=20, norm='ortho', verbose=True, ref=1.0, amin=1e-10, top_db=80.0, **kwargs): super().__init__() self.melspec_layer = MelSpectrogram(sr=sr, verbose=verbose, **kwargs) self.m_mfcc = n_mfcc # attributes that will be used for _power_to_db if amin <= 0: raise ParameterError('amin must be strictly positive') amin = torch.tensor([amin]) ref = torch.abs(torch.tensor([ref])) self.register_buffer('amin', amin) self.register_buffer('ref', ref) self.top_db = top_db self.n_mfcc = n_mfcc def _power_to_db(self, S): ''' Refer to https://librosa.github.io/librosa/_modules/librosa/core/spectrum.html#power_to_db for the original implmentation. ''' log_spec = 10.0 * torch.log10(torch.max(S, self.amin)) log_spec -= 10.0 * torch.log10(torch.max(self.amin, self.ref)) if self.top_db is not None: if self.top_db < 0: raise ParameterError('top_db must be non-negative') # make the dim same as log_spec so that it can be broadcasted batch_wise_max = log_spec.flatten(1).max(1)[0].unsqueeze(1).unsqueeze(1) log_spec = torch.max(log_spec, batch_wise_max - self.top_db) return log_spec def _dct(self, x, norm=None): ''' Refer to https://github.com/zh217/torch-dct for the original implmentation. ''' x = x.permute(0,2,1) # make freq the last axis, since dct applies to the frequency axis x_shape = x.shape N = x_shape[-1] v = torch.cat([x[:, :, ::2], x[:, :, 1::2].flip([2])], dim=2) Vc = torch.rfft(v, 1, onesided=False) # TODO: Can make the W_r and W_i trainable here k = - torch.arange(N, dtype=x.dtype, device=x.device)[None, :] * np.pi / (2 * N) W_r = torch.cos(k) W_i = torch.sin(k) V = Vc[:, :, :, 0] * W_r - Vc[:, :, :, 1] * W_i if norm == 'ortho': V[:, :, 0] /= np.sqrt(N) * 2 V[:, :, 1:] /= np.sqrt(N / 2) * 2 V = 2 * V return V.permute(0,2,1) # swapping back the time axis and freq axis def forward(self, x): """ Convert a batch of waveforms to MFCC. Parameters ---------- x : torch tensor Input signal should be in either of the following shapes.\n 1. ``(len_audio)``\n 2. ``(num_audio, len_audio)``\n 3. ``(num_audio, 1, len_audio)`` It will be automatically broadcast to the right shape """ x = self.melspec_layer(x) x = self._power_to_db(x) x = self._dct(x, norm='ortho')[:,:self.m_mfcc,:] return x def extra_repr(self) -> str: return 'n_mfcc = {}'.format( (self.n_mfcc) ) class CQT1992(torch.nn.Module): """ This alogrithm uses the method proposed in [1]. Please refer to :func:`~nnAudio.Spectrogram.CQT1992v2` for a more computational and memory efficient version. [1] Brown, <NAME>. and <NAME>. “An efficient algorithm for the calculation of a constant Q transform.” (1992). This function is to calculate the CQT of the input signal. Input signal should be in either of the following shapes.\n 1. ``(len_audio)``\n 2. ``(num_audio, len_audio)``\n 3. ``(num_audio, 1, len_audio)`` The correct shape will be inferred autommatically if the input follows these 3 shapes. Most of the arguments follow the convention from librosa. This class inherits from ``torch.nn.Module``, therefore, the usage is same as ``torch.nn.Module``. Parameters ---------- sr : int The sampling rate for the input audio. It is used to calucate the correct ``fmin`` and ``fmax``. Setting the correct sampling rate is very important for calculating the correct frequency. hop_length : int The hop (or stride) size. Default value is 512. fmin : float The frequency for the lowest CQT bin. Default is 32.70Hz, which coresponds to the note C0. fmax : float The frequency for the highest CQT bin. Default is ``None``, therefore the higest CQT bin is inferred from the ``n_bins`` and ``bins_per_octave``. If ``fmax`` is not ``None``, then the argument ``n_bins`` will be ignored and ``n_bins`` will be calculated automatically. Default is ``None`` n_bins : int The total numbers of CQT bins. Default is 84. Will be ignored if ``fmax`` is not ``None``. bins_per_octave : int Number of bins per octave. Default is 12. trainable_STFT : bool Determine if the time to frequency domain transformation kernel for the input audio is trainable or not. Default is ``False`` trainable_CQT : bool Determine if the frequency domain CQT kernel is trainable or not. Default is ``False`` norm : int Normalization for the CQT kernels. ``1`` means L1 normalization, and ``2`` means L2 normalization. Default is ``1``, which is same as the normalization used in librosa. window : str The windowing function for CQT. It uses ``scipy.signal.get_window``, please refer to scipy documentation for possible windowing functions. The default value is 'hann'. center : bool Putting the CQT keneral at the center of the time-step or not. If ``False``, the time index is the beginning of the CQT kernel, if ``True``, the time index is the center of the CQT kernel. Default value if ``True``. pad_mode : str The padding method. Default value is 'reflect'. trainable : bool Determine if the CQT kernels are trainable or not. If ``True``, the gradients for CQT kernels will also be caluclated and the CQT kernels will be updated during model training. Default value is ``False``. output_format : str Determine the return type. ``Magnitude`` will return the magnitude of the STFT result, shape = ``(num_samples, freq_bins,time_steps)``; ``Complex`` will return the STFT result in complex number, shape = ``(num_samples, freq_bins,time_steps, 2)``; ``Phase`` will return the phase of the STFT reuslt, shape = ``(num_samples, freq_bins,time_steps, 2)``. The complex number is stored as ``(real, imag)`` in the last axis. Default value is 'Magnitude'. verbose : bool If ``True``, it shows layer information. If ``False``, it suppresses all prints Returns ------- spectrogram : torch.tensor It returns a tensor of spectrograms. shape = ``(num_samples, freq_bins,time_steps)`` if ``output_format='Magnitude'``; shape = ``(num_samples, freq_bins,time_steps, 2)`` if ``output_format='Complex' or 'Phase'``; Examples -------- >>> spec_layer = Spectrogram.CQT1992v2() >>> specs = spec_layer(x) """ def __init__(self, sr=22050, hop_length=512, fmin=220, fmax=None, n_bins=84, trainable_STFT=False, trainable_CQT=False, bins_per_octave=12, output_format='Complex', norm=1, window='hann', center=True, pad_mode='reflect'): super().__init__() # norm arg is not functioning self.hop_length = hop_length self.center = center self.pad_mode = pad_mode self.norm = norm self.output_format = output_format # creating kernels for CQT Q = 1/(2**(1/bins_per_octave)-1) print("Creating CQT kernels ...", end='\r') start = time() cqt_kernels, self.kernel_width, lenghts = create_cqt_kernels(Q, sr, fmin, n_bins, bins_per_octave, norm, window, fmax) self.register_buffer('lenghts', lenghts) cqt_kernels = fft(cqt_kernels)[:,:self.kernel_width//2+1] print("CQT kernels created, time used = {:.4f} seconds".format(time()-start)) # creating kernels for stft # self.cqt_kernels_real*=lenghts.unsqueeze(1)/self.kernel_width # Trying to normalize as librosa # self.cqt_kernels_imag*=lenghts.unsqueeze(1)/self.kernel_width print("Creating STFT kernels ...", end='\r') start = time() kernel_sin, kernel_cos, self.bins2freq, _, window = create_fourier_kernels(self.kernel_width, window='ones', freq_scale='no') # Converting kernels from numpy arrays to torch tensors wsin = torch.tensor(kernel_sin * window) wcos = torch.tensor(kernel_cos * window) cqt_kernels_real = torch.tensor(cqt_kernels.real.astype(np.float32)) cqt_kernels_imag = torch.tensor(cqt_kernels.imag.astype(np.float32)) if trainable_STFT: wsin = torch.nn.Parameter(wsin, requires_grad=trainable_kernels) wcos = torch.nn.Parameter(wcos, requires_grad=trainable_kernels) self.register_parameter('wsin', wsin) self.register_parameter('wcos', wcos) else: self.register_buffer('wsin', wsin) self.register_buffer('wcos', wcos) if trainable_CQT: cqt_kernels_real = torch.nn.Parameter(cqt_kernels_real, requires_grad=trainable_kernels) cqt_kernels_imag = torch.nn.Parameter(cqt_kernels_imag, requires_grad=trainable_kernels) self.register_parameter('cqt_kernels_real', cqt_kernels_real) self.register_parameter('cqt_kernels_imag', cqt_kernels_imag) else: self.register_buffer('cqt_kernels_real', cqt_kernels_real) self.register_buffer('cqt_kernels_imag', cqt_kernels_imag) print("STFT kernels created, time used = {:.4f} seconds".format(time()-start)) def forward(self, x, output_format=None): """ Convert a batch of waveforms to CQT spectrograms. Parameters ---------- x : torch tensor Input signal should be in either of the following shapes.\n 1. ``(len_audio)``\n 2. ``(num_audio, len_audio)``\n 3. ``(num_audio, 1, len_audio)`` It will be automatically broadcast to the right shape """ output_format = output_format or self.output_format x = broadcast_dim(x) if self.center: if self.pad_mode == 'constant': padding = nn.ConstantPad1d(self.kernel_width//2, 0) elif self.pad_mode == 'reflect': padding = nn.ReflectionPad1d(self.kernel_width//2) x = padding(x) # STFT fourier_real = conv1d(x, self.wcos, stride=self.hop_length) fourier_imag = conv1d(x, self.wsin, stride=self.hop_length) # CQT CQT_real, CQT_imag = complex_mul((self.cqt_kernels_real, self.cqt_kernels_imag), (fourier_real, fourier_imag)) CQT = torch.stack((CQT_real,-CQT_imag),-1) if self.norm: CQT = CQT/self.kernel_width*torch.sqrt(self.lenghts.view(-1,1,1)) else: CQT = CQT*torch.sqrt(self.lenghts.view(-1,1,1)) if output_format=='Magnitude': # Getting CQT Amplitude return torch.sqrt(CQT.pow(2).sum(-1)) elif output_format=='Complex': return CQT elif output_format=='Phase': phase_real = torch.cos(torch.atan2(CQT_imag,CQT_real)) phase_imag = torch.sin(torch.atan2(CQT_imag,CQT_real)) return torch.stack((phase_real,phase_imag), -1) def extra_repr(self) -> str: return 'STFT kernel size = {}, CQT kernel size = {}'.format( (*self.wcos.shape,), (*self.cqt_kernels_real.shape,) ) class CQT2010(torch.nn.Module): """ This algorithm is using the resampling method proposed in [1]. Instead of convoluting the STFT results with a gigantic CQT kernel covering the full frequency spectrum, we make a small CQT kernel covering only the top octave. Then we keep downsampling the input audio by a factor of 2 to convoluting it with the small CQT kernel. Everytime the input audio is downsampled, the CQT relative to the downsampled input is equavalent to the next lower octave. The kernel creation process is still same as the 1992 algorithm. Therefore, we can reuse the code from the 1992 alogrithm [2] [1] <NAME>. “CONSTANT-Q TRANSFORM TOOLBOX FOR MUSIC PROCESSING.” (2010). [2] Brown, <NAME>. and <NAME>. “An efficient algorithm for the calculation of a constant Q transform.” (1992). early downsampling factor is to downsample the input audio to reduce the CQT kernel size. The result with and without early downsampling are more or less the same except in the very low frequency region where freq < 40Hz. """ def __init__(self, sr=22050, hop_length=512, fmin=32.70, fmax=None, n_bins=84, bins_per_octave=12, norm=True, basis_norm=1, window='hann', pad_mode='reflect', trainable_STFT=False, trainable_CQT=False, output_format='Complex', earlydownsample=True, verbose=True): super().__init__() self.norm = norm # Now norm is used to normalize the final CQT result by dividing n_fft # basis_norm is for normalizing basis self.hop_length = hop_length self.pad_mode = pad_mode self.n_bins = n_bins self.output_format = output_format self.earlydownsample = earlydownsample # TODO: activate early downsampling later if possible # This will be used to calculate filter_cutoff and creating CQT kernels Q = 1/(2**(1/bins_per_octave)-1) # Creating lowpass filter and make it a torch tensor if verbose==True: print("Creating low pass filter ...", end='\r') start = time() lowpass_filter = torch.tensor(create_lowpass_filter( band_center = 0.5, kernelLength=256, transitionBandwidth=0.001 ) ) # Broadcast the tensor to the shape that fits conv1d self.register_buffer('lowpass_filter', lowpass_filter[None,None,:]) if verbose==True: print("Low pass filter created, time used = {:.4f} seconds".format(time()-start)) # Calculate num of filter requires for the kernel # n_octaves determines how many resampling requires for the CQT n_filters = min(bins_per_octave, n_bins) self.n_octaves = int(np.ceil(float(n_bins) / bins_per_octave)) # print("n_octaves = ", self.n_octaves) # Calculate the lowest frequency bin for the top octave kernel self.fmin_t = fmin*2**(self.n_octaves-1) remainder = n_bins % bins_per_octave # print("remainder = ", remainder) if remainder==0: # Calculate the top bin frequency fmax_t = self.fmin_t*2**((bins_per_octave-1)/bins_per_octave) else: # Calculate the top bin frequency fmax_t = self.fmin_t*2**((remainder-1)/bins_per_octave) self.fmin_t = fmax_t/2**(1-1/bins_per_octave) # Adjusting the top minium bins if fmax_t > sr/2: raise ValueError('The top bin {}Hz has exceeded the Nyquist frequency, \ please reduce the n_bins'.format(fmax_t)) if self.earlydownsample == True: # Do early downsampling if this argument is True if verbose==True: print("Creating early downsampling filter ...", end='\r') start = time() sr, self.hop_length, self.downsample_factor, early_downsample_filter, \ self.earlydownsample = get_early_downsample_params(sr, hop_length, fmax_t, Q, self.n_octaves, verbose) self.register_buffer('early_downsample_filter', early_downsample_filter) if verbose==True: print("Early downsampling filter created, \ time used = {:.4f} seconds".format(time()-start)) else: self.downsample_factor=1. # Preparing CQT kernels if verbose==True: print("Creating CQT kernels ...", end='\r') start = time() # print("Q = {}, fmin_t = {}, n_filters = {}".format(Q, self.fmin_t, n_filters)) basis, self.n_fft, _ = create_cqt_kernels(Q, sr, self.fmin_t, n_filters, bins_per_octave, norm=basis_norm, topbin_check=False) # This is for the normalization in the end freqs = fmin * 2.0 ** (np.r_[0:n_bins] / np.float(bins_per_octave)) lenghts = np.ceil(Q * sr / freqs) lenghts = torch.tensor(lenghts).float() self.register_buffer('lenghts', lenghts) self.basis=basis fft_basis = fft(basis)[:,:self.n_fft//2+1] # Convert CQT kenral from time domain to freq domain # These cqt_kernel is already in the frequency domain cqt_kernels_real = torch.tensor(fft_basis.real.astype(np.float32)) cqt_kernels_imag = torch.tensor(fft_basis.imag.astype(np.float32)) if verbose==True: print("CQT kernels created, time used = {:.4f} seconds".format(time()-start)) # print("Getting cqt kernel done, n_fft = ",self.n_fft) # Preparing kernels for Short-Time Fourier Transform (STFT) # We set the frequency range in the CQT filter instead of here. if verbose==True: print("Creating STFT kernels ...", end='\r') start = time() kernel_sin, kernel_cos, self.bins2freq, _, window = create_fourier_kernels(self.n_fft, window='ones', freq_scale='no') wsin = kernel_sin * window wcos = kernel_cos * window wsin = torch.tensor(wsin) wcos = torch.tensor(wcos) if verbose==True: print("STFT kernels created, time used = {:.4f} seconds".format(time()-start)) if trainable_STFT: wsin = torch.nn.Parameter(wsin, requires_grad=trainable_kernels) wcos = torch.nn.Parameter(wcos, requires_grad=trainable_kernels) self.register_parameter('wsin', wsin) self.register_parameter('wcos', wcos) else: self.register_buffer('wsin', wsin) self.register_buffer('wcos', wcos) if trainable_CQT: cqt_kernels_real = torch.nn.Parameter(cqt_kernels_real, requires_grad=trainable_kernels) cqt_kernels_imag = torch.nn.Parameter(cqt_kernels_imag, requires_grad=trainable_kernels) self.register_parameter('cqt_kernels_real', cqt_kernels_real) self.register_parameter('cqt_kernels_imag', cqt_kernels_imag) else: self.register_buffer('cqt_kernels_real', cqt_kernels_real) self.register_buffer('cqt_kernels_imag', cqt_kernels_imag) # If center==True, the STFT window will be put in the middle, and paddings at the beginning # and ending are required. if self.pad_mode == 'constant': self.padding = nn.ConstantPad1d(self.n_fft//2, 0) elif self.pad_mode == 'reflect': self.padding = nn.ReflectionPad1d(self.n_fft//2) def forward(self,x, output_format=None): """ Convert a batch of waveforms to CQT spectrograms. Parameters ---------- x : torch tensor Input signal should be in either of the following shapes.\n 1. ``(len_audio)``\n 2. ``(num_audio, len_audio)``\n 3. ``(num_audio, 1, len_audio)`` It will be automatically broadcast to the right shape """ output_format = output_format or self.output_format x = broadcast_dim(x) if self.earlydownsample==True: x = downsampling_by_n(x, self.early_downsample_filter, self.downsample_factor) hop = self.hop_length CQT = get_cqt_complex(x, self.wcos, self.wsin, hop, self.padding) # Getting the top octave CQT x_down = x # Preparing a new variable for downsampling for i in range(self.n_octaves-1): hop = hop//2 x_down = downsampling_by_2(x_down, self.lowpass_filter) CQT1 = get_cqt_complex(x_down, self.wcos, self.wsin, hop, self.padding) CQT = torch.cat((CQT1, CQT),1) CQT = CQT[:,-self.n_bins:,:] # Removing unwanted top bins if self.norm: CQT = CQT/self.n_fft*torch.sqrt(self.lenghts.view(-1,1,1)) else: CQT = CQT*torch.sqrt(self.lenghts.view(-1,1,1)) # Normalizing the output with the downsampling factor, 2**(self.n_octaves-1) # is make it same mag as 1992 CQT = CQT*self.downsample_factor if output_format=='Magnitude': # Getting CQT Amplitude return torch.sqrt(CQT.pow(2).sum(-1)) elif output_format=='Complex': return CQT elif output_format=='Phase': phase_real = torch.cos(torch.atan2(CQT[:,:,:,1],CQT[:,:,:,0])) phase_imag = torch.sin(torch.atan2(CQT[:,:,:,1],CQT[:,:,:,0])) return torch.stack((phase_real,phase_imag), -1) def extra_repr(self) -> str: return 'STFT kernel size = {}, CQT kernel size = {}'.format( (*self.wcos.shape,), (*self.cqt_kernels_real.shape,) ) class CQT1992v2(torch.nn.Module): """This function is to calculate the CQT of the input signal. Input signal should be in either of the following shapes.\n 1. ``(len_audio)``\n 2. ``(num_audio, len_audio)``\n 3. ``(num_audio, 1, len_audio)`` The correct shape will be inferred autommatically if the input follows these 3 shapes. Most of the arguments follow the convention from librosa. This class inherits from ``torch.nn.Module``, therefore, the usage is same as ``torch.nn.Module``. This alogrithm uses the method proposed in [1]. I slightly modify it so that it runs faster than the original 1992 algorithm, that is why I call it version 2. [1] Brown, <NAME>. and <NAME>. “An efficient algorithm for the calculation of a constant Q transform.” (1992). Parameters ---------- sr : int The sampling rate for the input audio. It is used to calucate the correct ``fmin`` and ``fmax``. Setting the correct sampling rate is very important for calculating the correct frequency. hop_length : int The hop (or stride) size. Default value is 512. fmin : float The frequency for the lowest CQT bin. Default is 32.70Hz, which coresponds to the note C0. fmax : float The frequency for the highest CQT bin. Default is ``None``, therefore the higest CQT bin is inferred from the ``n_bins`` and ``bins_per_octave``. If ``fmax`` is not ``None``, then the argument ``n_bins`` will be ignored and ``n_bins`` will be calculated automatically. Default is ``None`` n_bins : int The total numbers of CQT bins. Default is 84. Will be ignored if ``fmax`` is not ``None``. bins_per_octave : int Number of bins per octave. Default is 12. norm : int Normalization for the CQT kernels. ``1`` means L1 normalization, and ``2`` means L2 normalization. Default is ``1``, which is same as the normalization used in librosa. window : str The windowing function for CQT. It uses ``scipy.signal.get_window``, please refer to scipy documentation for possible windowing functions. The default value is 'hann'. center : bool Putting the CQT keneral at the center of the time-step or not. If ``False``, the time index is the beginning of the CQT kernel, if ``True``, the time index is the center of the CQT kernel. Default value if ``True``. pad_mode : str The padding method. Default value is 'reflect'. trainable : bool Determine if the CQT kernels are trainable or not. If ``True``, the gradients for CQT kernels will also be caluclated and the CQT kernels will be updated during model training. Default value is ``False``. output_format : str Determine the return type. ``Magnitude`` will return the magnitude of the STFT result, shape = ``(num_samples, freq_bins,time_steps)``; ``Complex`` will return the STFT result in complex number, shape = ``(num_samples, freq_bins,time_steps, 2)``; ``Phase`` will return the phase of the STFT reuslt, shape = ``(num_samples, freq_bins,time_steps, 2)``. The complex number is stored as ``(real, imag)`` in the last axis. Default value is 'Magnitude'. verbose : bool If ``True``, it shows layer information. If ``False``, it suppresses all prints Returns ------- spectrogram : torch.tensor It returns a tensor of spectrograms. shape = ``(num_samples, freq_bins,time_steps)`` if ``output_format='Magnitude'``; shape = ``(num_samples, freq_bins,time_steps, 2)`` if ``output_format='Complex' or 'Phase'``; Examples -------- >>> spec_layer = Spectrogram.CQT1992v2() >>> specs = spec_layer(x) """ def __init__(self, sr=22050, hop_length=512, fmin=32.70, fmax=None, n_bins=84, bins_per_octave=12, norm=1, window='hann', center=True, pad_mode='reflect', trainable=False, output_format='Magnitude', verbose=True): super().__init__() # norm arg is not functioning self.trainable = trainable self.hop_length = hop_length self.center = center self.pad_mode = pad_mode self.output_format = output_format # creating kernels for CQT Q = 1/(2**(1/bins_per_octave)-1) if verbose==True: print("Creating CQT kernels ...", end='\r') start = time() cqt_kernels, self.kernel_width, lenghts = create_cqt_kernels(Q, sr, fmin, n_bins, bins_per_octave, norm, window, fmax) self.register_buffer('lenghts', lenghts) cqt_kernels_real = torch.tensor(cqt_kernels.real).unsqueeze(1) cqt_kernels_imag = torch.tensor(cqt_kernels.imag).unsqueeze(1) if trainable: cqt_kernels_real = torch.nn.Parameter(cqt_kernels_real, requires_grad=trainable_kernels) cqt_kernels_imag = torch.nn.Parameter(cqt_kernels_imag, requires_grad=trainable_kernels) self.register_parameter('cqt_kernels_real', cqt_kernels_real) self.register_parameter('cqt_kernels_imag', cqt_kernels_imag) else: self.register_buffer('cqt_kernels_real', cqt_kernels_real) self.register_buffer('cqt_kernels_imag', cqt_kernels_imag) if verbose==True: print("CQT kernels created, time used = {:.4f} seconds".format(time()-start)) def forward(self,x, output_format=None): """ Convert a batch of waveforms to CQT spectrograms. Parameters ---------- x : torch tensor Input signal should be in either of the following shapes.\n 1. ``(len_audio)``\n 2. ``(num_audio, len_audio)``\n 3. ``(num_audio, 1, len_audio)`` It will be automatically broadcast to the right shape """ output_format = output_format or self.output_format x = broadcast_dim(x) if self.center: if self.pad_mode == 'constant': padding = nn.ConstantPad1d(self.kernel_width//2, 0) elif self.pad_mode == 'reflect': padding = nn.ReflectionPad1d(self.kernel_width//2) x = padding(x) # CQT CQT_real = conv1d(x, self.cqt_kernels_real, stride=self.hop_length) * \ torch.sqrt(self.lenghts.view(-1,1)) CQT_imag = -conv1d(x, self.cqt_kernels_imag, stride=self.hop_length) * \ torch.sqrt(self.lenghts.view(-1,1)) if output_format=='Magnitude': if self.trainable==False: # Getting CQT Amplitude CQT = torch.sqrt(CQT_real.pow(2)+CQT_imag.pow(2)) else: CQT = torch.sqrt(CQT_real.pow(2)+CQT_imag.pow(2)+1e-8) return CQT elif output_format=='Complex': return torch.stack((CQT_real,CQT_imag),-1) elif output_format=='Phase': phase_real = torch.cos(torch.atan2(CQT_imag,CQT_real)) phase_imag = torch.sin(torch.atan2(CQT_imag,CQT_real)) return torch.stack((phase_real,phase_imag), -1) def forward_manual(self,x): """ Method for debugging """ x = broadcast_dim(x) if self.center: if self.pad_mode == 'constant': padding = nn.ConstantPad1d(self.kernel_width//2, 0) elif self.pad_mode == 'reflect': padding = nn.ReflectionPad1d(self.kernel_width//2) x = padding(x) # CQT CQT_real = conv1d(x, self.cqt_kernels_real, stride=self.hop_length) CQT_imag = conv1d(x, self.cqt_kernels_imag, stride=self.hop_length) # Getting CQT Amplitude CQT = torch.sqrt(CQT_real.pow(2)+CQT_imag.pow(2)) return CQT*torch.sqrt(self.lenghts.view(-1,1)) class CQT2010v2(torch.nn.Module): """This function is to calculate the CQT of the input signal. Input signal should be in either of the following shapes.\n 1. ``(len_audio)``\n 2. ``(num_audio, len_audio)``\n 3. ``(num_audio, 1, len_audio)`` The correct shape will be inferred autommatically if the input follows these 3 shapes. Most of the arguments follow the convention from librosa. This class inherits from ``torch.nn.Module``, therefore, the usage is same as ``torch.nn.Module``. This alogrithm uses the resampling method proposed in [1]. Instead of convoluting the STFT results with a gigantic CQT kernel covering the full frequency spectrum, we make a small CQT kernel covering only the top octave. Then we keep downsampling the input audio by a factor of 2 to convoluting it with the small CQT kernel. Everytime the input audio is downsampled, the CQT relative to the downsampled input is equivalent to the next lower octave. The kernel creation process is still same as the 1992 algorithm. Therefore, we can reuse the code from the 1992 alogrithm [2] [1] Schörkhuber, Christian. “CONSTANT-Q TRANSFORM TOOLBOX FOR MUSIC PROCESSING.” (2010). [2] Brown, <NAME>. and <NAME>. “An efficient algorithm for the calculation of a constant Q transform.” (1992). Early downsampling factor is to downsample the input audio to reduce the CQT kernel size. The result with and without early downsampling are more or less the same except in the very low frequency region where freq < 40Hz. Parameters ---------- sr : int The sampling rate for the input audio. It is used to calucate the correct ``fmin`` and ``fmax``. Setting the correct sampling rate is very important for calculating the correct frequency. hop_length : int The hop (or stride) size. Default value is 512. fmin : float The frequency for the lowest CQT bin. Default is 32.70Hz, which coresponds to the note C0. fmax : float The frequency for the highest CQT bin. Default is ``None``, therefore the higest CQT bin is inferred from the ``n_bins`` and ``bins_per_octave``. If ``fmax`` is not ``None``, then the argument ``n_bins`` will be ignored and ``n_bins`` will be calculated automatically. Default is ``None`` n_bins : int The total numbers of CQT bins. Default is 84. Will be ignored if ``fmax`` is not ``None``. bins_per_octave : int Number of bins per octave. Default is 12. norm : bool Normalization for the CQT result. basis_norm : int Normalization for the CQT kernels. ``1`` means L1 normalization, and ``2`` means L2 normalization. Default is ``1``, which is same as the normalization used in librosa. window : str The windowing function for CQT. It uses ``scipy.signal.get_window``, please refer to scipy documentation for possible windowing functions. The default value is 'hann' pad_mode : str The padding method. Default value is 'reflect'. trainable : bool Determine if the CQT kernels are trainable or not. If ``True``, the gradients for CQT kernels will also be caluclated and the CQT kernels will be updated during model training. Default value is ``False`` output_format : str Determine the return type. 'Magnitude' will return the magnitude of the STFT result, shape = ``(num_samples, freq_bins, time_steps)``; 'Complex' will return the STFT result in complex number, shape = ``(num_samples, freq_bins, time_steps, 2)``; 'Phase' will return the phase of the STFT reuslt, shape = ``(num_samples, freq_bins,time_steps, 2)``. The complex number is stored as ``(real, imag)`` in the last axis. Default value is 'Magnitude'. verbose : bool If ``True``, it shows layer information. If ``False``, it suppresses all prints. device : str Choose which device to initialize this layer. Default value is 'cpu'. Returns ------- spectrogram : torch.tensor It returns a tensor of spectrograms. shape = ``(num_samples, freq_bins,time_steps)`` if ``output_format='Magnitude'``; shape = ``(num_samples, freq_bins,time_steps, 2)`` if ``output_format='Complex' or 'Phase'``; Examples -------- >>> spec_layer = Spectrogram.CQT2010v2() >>> specs = spec_layer(x) """ # To DO: # need to deal with the filter and other tensors def __init__(self, sr=22050, hop_length=512, fmin=32.70, fmax=None, n_bins=84, bins_per_octave=12, norm=True, basis_norm=1, window='hann', pad_mode='reflect', earlydownsample=True, trainable=False, output_format='Magnitude', verbose=True): super().__init__() self.norm = norm # Now norm is used to normalize the final CQT result by dividing n_fft # basis_norm is for normalizing basis self.hop_length = hop_length self.pad_mode = pad_mode self.n_bins = n_bins self.earlydownsample = earlydownsample # We will activate early downsampling later if possible self.trainable = trainable self.output_format = output_format # It will be used to calculate filter_cutoff and creating CQT kernels Q = 1/(2**(1/bins_per_octave)-1) # Creating lowpass filter and make it a torch tensor if verbose==True: print("Creating low pass filter ...", end='\r') start = time() # self.lowpass_filter = torch.tensor( # create_lowpass_filter( # band_center = 0.50, # kernelLength=256, # transitionBandwidth=0.001)) lowpass_filter = torch.tensor(create_lowpass_filter( band_center = 0.50, kernelLength=256, transitionBandwidth=0.001) ) # Broadcast the tensor to the shape that fits conv1d self.register_buffer('lowpass_filter', lowpass_filter[None,None,:]) if verbose==True: print("Low pass filter created, time used = {:.4f} seconds".format(time()-start)) # Caluate num of filter requires for the kernel # n_octaves determines how many resampling requires for the CQT n_filters = min(bins_per_octave, n_bins) self.n_octaves = int(np.ceil(float(n_bins) / bins_per_octave)) if verbose==True: print("num_octave = ", self.n_octaves) # Calculate the lowest frequency bin for the top octave kernel self.fmin_t = fmin*2**(self.n_octaves-1) remainder = n_bins % bins_per_octave # print("remainder = ", remainder) if remainder==0: # Calculate the top bin frequency fmax_t = self.fmin_t*2**((bins_per_octave-1)/bins_per_octave) else: # Calculate the top bin frequency fmax_t = self.fmin_t*2**((remainder-1)/bins_per_octave) self.fmin_t = fmax_t/2**(1-1/bins_per_octave) # Adjusting the top minium bins if fmax_t > sr/2: raise ValueError('The top bin {}Hz has exceeded the Nyquist frequency, \ please reduce the n_bins'.format(fmax_t)) if self.earlydownsample == True: # Do early downsampling if this argument is True if verbose==True: print("Creating early downsampling filter ...", end='\r') start = time() sr, self.hop_length, self.downsample_factor, early_downsample_filter, \ self.earlydownsample = get_early_downsample_params(sr, hop_length, fmax_t, Q, self.n_octaves, verbose) self.register_buffer('early_downsample_filter', early_downsample_filter) if verbose==True: print("Early downsampling filter created, \ time used = {:.4f} seconds".format(time()-start)) else: self.downsample_factor=1. # Preparing CQT kernels if verbose==True: print("Creating CQT kernels ...", end='\r') start = time() basis, self.n_fft, lenghts = create_cqt_kernels(Q, sr, self.fmin_t, n_filters, bins_per_octave, norm=basis_norm, topbin_check=False) # For normalization in the end freqs = fmin * 2.0 ** (np.r_[0:n_bins] / np.float(bins_per_octave)) lenghts = np.ceil(Q * sr / freqs) lenghts = torch.tensor(lenghts).float() self.register_buffer('lenghts', lenghts) self.basis = basis # These cqt_kernel is already in the frequency domain cqt_kernels_real = torch.tensor(basis.real.astype(np.float32)).unsqueeze(1) cqt_kernels_imag = torch.tensor(basis.imag.astype(np.float32)).unsqueeze(1) if trainable: cqt_kernels_real = torch.nn.Parameter(cqt_kernels_real, requires_grad=trainable_kernels) cqt_kernels_imag = torch.nn.Parameter(cqt_kernels_imag, requires_grad=trainable_kernels) self.register_parameter('cqt_kernels_real', cqt_kernels_real) self.register_parameter('cqt_kernels_imag', cqt_kernels_imag) else: self.register_buffer('cqt_kernels_real', cqt_kernels_real) self.register_buffer('cqt_kernels_imag', cqt_kernels_imag) if verbose==True: print("CQT kernels created, time used = {:.4f} seconds".format(time()-start)) # print("Getting cqt kernel done, n_fft = ",self.n_fft) # If center==True, the STFT window will be put in the middle, and paddings at the beginning # and ending are required. if self.pad_mode == 'constant': self.padding = nn.ConstantPad1d(self.n_fft//2, 0) elif self.pad_mode == 'reflect': self.padding = nn.ReflectionPad1d(self.n_fft//2) def forward(self,x,output_format=None): """ Convert a batch of waveforms to CQT spectrograms. Parameters ---------- x : torch tensor Input signal should be in either of the following shapes.\n 1. ``(len_audio)``\n 2. ``(num_audio, len_audio)``\n 3. ``(num_audio, 1, len_audio)`` It will be automatically broadcast to the right shape """ output_format = output_format or self.output_format x = broadcast_dim(x) if self.earlydownsample==True: x = downsampling_by_n(x, self.early_downsample_filter, self.downsample_factor) hop = self.hop_length CQT = get_cqt_complex(x, self.cqt_kernels_real, self.cqt_kernels_imag, hop, self.padding) # Getting the top octave CQT x_down = x # Preparing a new variable for downsampling for i in range(self.n_octaves-1): hop = hop//2 x_down = downsampling_by_2(x_down, self.lowpass_filter) CQT1 = get_cqt_complex(x_down, self.cqt_kernels_real, self.cqt_kernels_imag, hop, self.padding) CQT = torch.cat((CQT1, CQT),1) CQT = CQT[:,-self.n_bins:,:] # Removing unwanted bottom bins # print("downsample_factor = ",self.downsample_factor) # print(CQT.shape) # print(self.lenghts.view(-1,1).shape) # Normalizing the output with the downsampling factor, 2**(self.n_octaves-1) is make it # same mag as 1992 CQT = CQT*self.downsample_factor # Normalize again to get same result as librosa CQT = CQT*torch.sqrt(self.lenghts.view(-1,1,1)) if output_format=='Magnitude': if self.trainable==False: # Getting CQT Amplitude return torch.sqrt(CQT.pow(2).sum(-1)) else: return torch.sqrt(CQT.pow(2).sum(-1)+1e-8) elif output_format=='Complex': return CQT elif output_format=='Phase': phase_real = torch.cos(torch.atan2(CQT[:,:,:,1],CQT[:,:,:,0])) phase_imag = torch.sin(torch.atan2(CQT[:,:,:,1],CQT[:,:,:,0])) return torch.stack((phase_real,phase_imag), -1) class CQT(CQT1992v2): """An abbreviation for :func:`~nnAudio.Spectrogram.CQT1992v2`. Please refer to the :func:`~nnAudio.Spectrogram.CQT1992v2` documentation""" pass # The section below is for developing purpose # Please don't use the following classes # class DFT(torch.nn.Module): """ Experimental feature before `torch.fft` was made avaliable. The inverse function only works for 1 single frame. i.e. input shape = (batch, n_fft, 1) """ def __init__(self, n_fft=2048, freq_bins=None, hop_length=512, window='hann', freq_scale='no', center=True, pad_mode='reflect', fmin=50, fmax=6000, sr=22050): super().__init__() self.stride = hop_length self.center = center self.pad_mode = pad_mode self.n_fft = n_fft # Create filter windows for stft wsin, wcos, self.bins2freq = create_fourier_kernels(n_fft=n_fft, freq_bins=n_fft, window=window, freq_scale=freq_scale, fmin=fmin, fmax=fmax, sr=sr) self.wsin = torch.tensor(wsin, dtype=torch.float) self.wcos = torch.tensor(wcos, dtype=torch.float) def forward(self,x): """ Convert a batch of waveforms to spectrums. Parameters ---------- x : torch tensor Input signal should be in either of the following shapes.\n 1. ``(len_audio)``\n 2. ``(num_audio, len_audio)``\n 3. ``(num_audio, 1, len_audio)`` It will be automatically broadcast to the right shape """ x = broadcast_dim(x) if self.center: if self.pad_mode == 'constant': padding = nn.ConstantPad1d(self.n_fft//2, 0) elif self.pad_mode == 'reflect': padding = nn.ReflectionPad1d(self.n_fft//2) x = padding(x) imag = conv1d(x, self.wsin, stride=self.stride) real = conv1d(x, self.wcos, stride=self.stride) return (real, -imag) def inverse(self,x_real,x_imag): """ Convert a batch of waveforms to CQT spectrograms. Parameters ---------- x_real : torch tensor Real part of the signal. x_imag : torch tensor Imaginary part of the signal. """ x_real = broadcast_dim(x_real) x_imag = broadcast_dim(x_imag) x_real.transpose_(1,2) # Prepare the right shape to do inverse x_imag.transpose_(1,2) # Prepare the right shape to do inverse # if self.center: # if self.pad_mode == 'constant': # padding = nn.ConstantPad1d(self.n_fft//2, 0) # elif self.pad_mode == 'reflect': # padding = nn.ReflectionPad1d(self.n_fft//2) # x_real = padding(x_real) # x_imag = padding(x_imag) # Watch out for the positive and negative signs # ifft = e^(+2\pi*j)*X # ifft(X_real) = (a1, a2) # ifft(X_imag)*1j = (b1, b2)*1j # = (-b2, b1) a1 = conv1d(x_real, self.wcos, stride=self.stride) a2 = conv1d(x_real, self.wsin, stride=self.stride) b1 = conv1d(x_imag, self.wcos, stride=self.stride) b2 = conv1d(x_imag, self.wsin, stride=self.stride) imag = a2+b1 real = a1-b2 return (real/self.n_fft, imag/self.n_fft) class iSTFT(torch.nn.Module): """This class is to convert spectrograms back to waveforms. It only works for the complex value spectrograms. If you have the magnitude spectrograms, please use :func:`~nnAudio.Spectrogram.Griffin_Lim`. The parameters (e.g. n_fft, window) need to be the same as the STFT in order to obtain the correct inverse. If trainability is not required, it is recommended to use the ``inverse`` method under the ``STFT`` class to save GPU/RAM memory. When ``trainable=True`` and ``freq_scale!='no'``, there is no guarantee that the inverse is perfect, please use with extra care. Parameters ---------- n_fft : int The window size. Default value is 2048. freq_bins : int Number of frequency bins. Default is ``None``, which means ``n_fft//2+1`` bins Please make sure the value is the same as the forward STFT. hop_length : int The hop (or stride) size. Default value is ``None`` which is equivalent to ``n_fft//4``. Please make sure the value is the same as the forward STFT. window : str The windowing function for iSTFT. It uses ``scipy.signal.get_window``, please refer to scipy documentation for possible windowing functions. The default value is 'hann'. Please make sure the value is the same as the forward STFT. freq_scale : 'linear', 'log', or 'no' Determine the spacing between each frequency bin. When `linear` or `log` is used, the bin spacing can be controlled by ``fmin`` and ``fmax``. If 'no' is used, the bin will start at 0Hz and end at Nyquist frequency with linear spacing. Please make sure the value is the same as the forward STFT. center : bool Putting the iSTFT keneral at the center of the time-step or not. If ``False``, the time index is the beginning of the iSTFT kernel, if ``True``, the time index is the center of the iSTFT kernel. Default value if ``True``. Please make sure the value is the same as the forward STFT. fmin : int The starting frequency for the lowest frequency bin. If freq_scale is ``no``, this argument does nothing. Please make sure the value is the same as the forward STFT. fmax : int The ending frequency for the highest frequency bin. If freq_scale is ``no``, this argument does nothing. Please make sure the value is the same as the forward STFT. sr : int The sampling rate for the input audio. It is used to calucate the correct ``fmin`` and ``fmax``. Setting the correct sampling rate is very important for calculating the correct frequency. trainable_kernels : bool Determine if the STFT kenrels are trainable or not. If ``True``, the gradients for STFT kernels will also be caluclated and the STFT kernels will be updated during model training. Default value is ``False``. trainable_window : bool Determine if the window function is trainable or not. Default value is ``False``. verbose : bool If ``True``, it shows layer information. If ``False``, it suppresses all prints. device : str Choose which device to initialize this layer. Default value is 'cpu'. Returns ------- spectrogram : torch.tensor It returns a batch of waveforms. Examples -------- >>> spec_layer = Spectrogram.iSTFT() >>> specs = spec_layer(x) """ def __init__(self, n_fft=2048, win_length=None, freq_bins=None, hop_length=None, window='hann', freq_scale='no', center=True, fmin=50, fmax=6000, sr=22050, trainable_kernels=False, trainable_window=False, verbose=True, refresh_win=True): super().__init__() # Trying to make the default setting same as librosa if win_length==None: win_length = n_fft if hop_length==None: hop_length = int(win_length // 4) self.n_fft = n_fft self.win_length = win_length self.stride = hop_length self.center = center self.pad_amount = self.n_fft // 2 self.refresh_win = refresh_win start = time() # Create the window function and prepare the shape for batch-wise-time-wise multiplication # Create filter windows for inverse kernel_sin, kernel_cos, _, _, window_mask = create_fourier_kernels(n_fft, win_length=win_length, freq_bins=n_fft, window=window, freq_scale=freq_scale, fmin=fmin, fmax=fmax, sr=sr, verbose=False) window_mask = get_window(window,int(win_length), fftbins=True) # For inverse, the Fourier kernels do not need to be windowed window_mask = torch.tensor(window_mask).unsqueeze(0).unsqueeze(-1) # kernel_sin and kernel_cos have the shape (freq_bins, 1, n_fft, 1) to support 2D Conv kernel_sin = torch.tensor(kernel_sin, dtype=torch.float).unsqueeze(-1) kernel_cos = torch.tensor(kernel_cos, dtype=torch.float).unsqueeze(-1) # Decide if the Fourier kernels are trainable if trainable_kernels: # Making all these variables trainable kernel_sin = torch.nn.Parameter(kernel_sin, requires_grad=trainable_kernels) kernel_cos = torch.nn.Parameter(kernel_cos, requires_grad=trainable_kernels) self.register_parameter('kernel_sin', kernel_sin) self.register_parameter('kernel_cos', kernel_cos) else: self.register_buffer('kernel_sin', kernel_sin) self.register_buffer('kernel_cos', kernel_cos) # Decide if the window function is trainable if trainable_window: window_mask = torch.nn.Parameter(window_mask, requires_grad=trainable_window) self.register_parameter('window_mask', window_mask) else: self.register_buffer('window_mask', window_mask) if verbose==True: print("iSTFT kernels created, time used = {:.4f} seconds".format(time()-start)) else: pass def forward(self, X, onesided=False, length=None, refresh_win=None): """ If your spectrograms only have ``n_fft//2+1`` frequency bins, please use ``onesided=True``, else use ``onesided=False`` To make sure the inverse STFT has the same output length of the original waveform, please set `length` as your intended waveform length. By default, ``length=None``, which will remove ``n_fft//2`` samples from the start and the end of the output. If your input spectrograms X are of the same length, please use ``refresh_win=None`` to increase computational speed. """ if refresh_win==None: refresh_win=self.refresh_win assert X.dim()==4 , "Inverse iSTFT only works for complex number," \ "make sure our tensor is in the shape of (batch, freq_bins, timesteps, 2)" # If the input spectrogram contains only half of the n_fft # Use extend_fbins function to get back another half if onesided: X = extend_fbins(X) # extend freq X_real, X_imag = X[:, :, :, 0], X[:, :, :, 1] # broadcast dimensions to support 2D convolution X_real_bc = X_real.unsqueeze(1) X_imag_bc = X_imag.unsqueeze(1) a1 = conv2d(X_real_bc, self.kernel_cos, stride=(1,1)) b2 = conv2d(X_imag_bc, self.kernel_sin, stride=(1,1)) # compute real and imag part. signal lies in the real part real = a1 - b2 real = real.squeeze(-2)*self.window_mask # Normalize the amplitude with n_fft real /= (self.n_fft) # Overlap and Add algorithm to connect all the frames real = overlap_add(real, self.stride) # Prepare the window sumsqure for division # Only need to create this window once to save time # Unless the input spectrograms have different time steps if hasattr(self, 'w_sum')==False or refresh_win==True: self.w_sum = torch_window_sumsquare(self.window_mask.flatten(), X.shape[2], self.stride, self.n_fft).flatten() self.nonzero_indices = (self.w_sum>1e-10) else: pass real[:, self.nonzero_indices] = real[:,self.nonzero_indices].div(self.w_sum[self.nonzero_indices]) # Remove padding if length is None: if self.center: real = real[:, self.pad_amount:-self.pad_amount] else: if self.center: real = real[:, self.pad_amount:self.pad_amount + length] else: real = real[:, :length] return real class Griffin_Lim(torch.nn.Module): """ Converting Magnitude spectrograms back to waveforms based on the "fast Griffin-Lim"[1]. This Griffin Lim is a direct clone from librosa.griffinlim. [1] <NAME>., <NAME>., & <NAME>. “A fast Griffin-Lim algorithm,” IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (pp. 1-4), Oct. 2013. Parameters ---------- n_fft : int The window size. Default value is 2048. n_iter=32 : int The number of iterations for Griffin-Lim. The default value is ``32`` hop_length : int The hop (or stride) size. Default value is ``None`` which is equivalent to ``n_fft//4``. Please make sure the value is the same as the forward STFT. window : str The windowing function for iSTFT. It uses ``scipy.signal.get_window``, please refer to scipy documentation for possible windowing functions. The default value is 'hann'. Please make sure the value is the same as the forward STFT. center : bool Putting the iSTFT keneral at the center of the time-step or not. If ``False``, the time index is the beginning of the iSTFT kernel, if ``True``, the time index is the center of the iSTFT kernel. Default value if ``True``. Please make sure the value is the same as the forward STFT. momentum : float The momentum for the update rule. The default value is ``0.99``. device : str Choose which device to initialize this layer. Default value is 'cpu' """ def __init__(self, n_fft, n_iter=32, hop_length=None, win_length=None, window='hann', center=True, pad_mode='reflect', momentum=0.99, device='cpu'): super().__init__() self.n_fft = n_fft self.win_length = win_length self.n_iter = n_iter self.center = center self.pad_mode = pad_mode self.momentum = momentum self.device = device if win_length==None: self.win_length=n_fft else: self.win_length=win_length if hop_length==None: self.hop_length = n_fft//4 else: self.hop_length = hop_length # Creating window function for stft and istft later self.w = torch.tensor(get_window(window, int(self.win_length), fftbins=True), device=device).float() def forward(self, S): """ Convert a batch of magnitude spectrograms to waveforms. Parameters ---------- S : torch tensor Spectrogram of the shape ``(batch, n_fft//2+1, timesteps)`` """ assert S.dim()==3 , "Please make sure your input is in the shape of (batch, freq_bins, timesteps)" # Initializing Random Phase rand_phase = torch.randn(*S.shape, device=self.device) angles = torch.empty((*S.shape,2), device=self.device) angles[:, :,:,0] = torch.cos(2 * np.pi * rand_phase) angles[:,:,:,1] = torch.sin(2 * np.pi * rand_phase) # Initializing the rebuilt magnitude spectrogram rebuilt = torch.zeros(*angles.shape, device=self.device) for _ in range(self.n_iter): tprev = rebuilt # Saving previous rebuilt magnitude spec # spec2wav conversion # print(f'win_length={self.win_length}\tw={self.w.shape}') inverse = torch.istft(S.unsqueeze(-1) * angles, self.n_fft, self.hop_length, win_length=self.win_length, window=self.w, center=self.center) # wav2spec conversion rebuilt = torch.stft(inverse, self.n_fft, self.hop_length, win_length=self.win_length, window=self.w, pad_mode=self.pad_mode) # Phase update rule angles[:,:,:] = rebuilt[:,:,:] - (self.momentum / (1 + self.momentum)) * tprev[:,:,:] # Phase normalization angles = angles.div(torch.sqrt(angles.pow(2).sum(-1)).unsqueeze(-1) + 1e-16) # normalizing the phase # Using the final phase to reconstruct the waveforms inverse = torch.istft(S.unsqueeze(-1) * angles, self.n_fft, self.hop_length, win_length=self.win_length, window=self.w, center=self.center) return inverse
[ "torch.nn.functional.conv2d", "numpy.sqrt", "torch.nn.functional.conv1d", "torch.sin", "torch.max", "torch.sqrt", "torch.cos", "torch.arange", "torch.nn.ReflectionPad1d", "torch.nn.ConstantPad1d", "torch.rfft", "torch.matmul", "torch.pinverse", "torch.randn", "torch.optim.SGD", "numpy.ceil", "torch.stft", "torch.empty", "time.time", "torch.cat", "numpy.float", "torch.stack", "torch.atan2", "torch.tensor", "torch.nn.Parameter", "torch.zeros" ]
[((4751, 4757), 'time.time', 'time', ([], {}), '()\n', (4755, 4757), False, 'from time import time\n'), ((5660, 5703), 'torch.tensor', 'torch.tensor', (['kernel_sin'], {'dtype': 'torch.float'}), '(kernel_sin, dtype=torch.float)\n', (5672, 5703), False, 'import torch\n'), ((5725, 5768), 'torch.tensor', 'torch.tensor', (['kernel_cos'], {'dtype': 'torch.float'}), '(kernel_cos, dtype=torch.float)\n', (5737, 5768), False, 'import torch\n'), ((6576, 6601), 'torch.tensor', 'torch.tensor', (['window_mask'], {}), '(window_mask)\n', (6588, 6601), False, 'import torch\n'), ((8628, 8668), 'torch.nn.functional.conv1d', 'conv1d', (['x', 'self.wsin'], {'stride': 'self.stride'}), '(x, self.wsin, stride=self.stride)\n', (8634, 8668), False, 'from torch.nn.functional import conv1d, conv2d, fold\n'), ((8689, 8729), 'torch.nn.functional.conv1d', 'conv1d', (['x', 'self.wcos'], {'stride': 'self.stride'}), '(x, self.wcos, stride=self.stride)\n', (8695, 8729), False, 'from torch.nn.functional import conv1d, conv2d, fold\n'), ((11428, 11481), 'torch.nn.functional.conv2d', 'conv2d', (['X_real_bc', 'self.kernel_cos_inv'], {'stride': '(1, 1)'}), '(X_real_bc, self.kernel_cos_inv, stride=(1, 1))\n', (11434, 11481), False, 'from torch.nn.functional import conv1d, conv2d, fold\n'), ((11494, 11547), 'torch.nn.functional.conv2d', 'conv2d', (['X_imag_bc', 'self.kernel_sin_inv'], {'stride': '(1, 1)'}), '(X_imag_bc, self.kernel_sin_inv, stride=(1, 1))\n', (11500, 11547), False, 'from torch.nn.functional import conv1d, conv2d, fold\n'), ((16903, 16909), 'time.time', 'time', ([], {}), '()\n', (16907, 16909), False, 'from time import time\n'), ((16973, 16979), 'time.time', 'time', ([], {}), '()\n', (16977, 16979), False, 'from time import time\n'), ((17075, 17098), 'torch.tensor', 'torch.tensor', (['mel_basis'], {}), '(mel_basis)\n', (17087, 17098), False, 'import torch\n'), ((18463, 18497), 'torch.matmul', 'torch.matmul', (['self.mel_basis', 'spec'], {}), '(self.mel_basis, spec)\n', (18475, 18497), False, 'import torch\n'), ((19991, 20034), 'torch.nn.Parameter', 'nn.Parameter', (['pred_stft'], {'requires_grad': '(True)'}), '(pred_stft, requires_grad=True)\n', (20003, 20034), True, 'import torch.nn as nn\n'), ((20113, 20155), 'torch.optim.SGD', 'torch.optim.SGD', (['[pred_stft]'], {}), '([pred_stft], **sgd_kwargs)\n', (20128, 20155), False, 'import torch\n'), ((23995, 24015), 'torch.tensor', 'torch.tensor', (['[amin]'], {}), '([amin])\n', (24007, 24015), False, 'import torch\n'), ((25300, 25332), 'torch.rfft', 'torch.rfft', (['v', '(1)'], {'onesided': '(False)'}), '(v, 1, onesided=False)\n', (25310, 25332), False, 'import torch\n'), ((25493, 25505), 'torch.cos', 'torch.cos', (['k'], {}), '(k)\n', (25502, 25505), False, 'import torch\n'), ((25520, 25532), 'torch.sin', 'torch.sin', (['k'], {}), '(k)\n', (25529, 25532), False, 'import torch\n'), ((31204, 31210), 'time.time', 'time', ([], {}), '()\n', (31208, 31210), False, 'from time import time\n'), ((32272, 32278), 'time.time', 'time', ([], {}), '()\n', (32276, 32278), False, 'from time import time\n'), ((32619, 32652), 'torch.tensor', 'torch.tensor', (['(kernel_sin * window)'], {}), '(kernel_sin * window)\n', (32631, 32652), False, 'import torch\n'), ((32668, 32701), 'torch.tensor', 'torch.tensor', (['(kernel_cos * window)'], {}), '(kernel_cos * window)\n', (32680, 32701), False, 'import torch\n'), ((34726, 34770), 'torch.nn.functional.conv1d', 'conv1d', (['x', 'self.wcos'], {'stride': 'self.hop_length'}), '(x, self.wcos, stride=self.hop_length)\n', (34732, 34770), False, 'from torch.nn.functional import conv1d, conv2d, fold\n'), ((34794, 34838), 'torch.nn.functional.conv1d', 'conv1d', (['x', 'self.wsin'], {'stride': 'self.hop_length'}), '(x, self.wsin, stride=self.hop_length)\n', (34800, 34838), False, 'from torch.nn.functional import conv1d, conv2d, fold\n'), ((35029, 35067), 'torch.stack', 'torch.stack', (['(CQT_real, -CQT_imag)', '(-1)'], {}), '((CQT_real, -CQT_imag), -1)\n', (35040, 35067), False, 'import torch\n'), ((37939, 37945), 'time.time', 'time', ([], {}), '()\n', (37943, 37945), False, 'from time import time\n'), ((40885, 40891), 'time.time', 'time', ([], {}), '()\n', (40889, 40891), False, 'from time import time\n'), ((41562, 41585), 'numpy.ceil', 'np.ceil', (['(Q * sr / freqs)'], {}), '(Q * sr / freqs)\n', (41569, 41585), True, 'import numpy as np\n'), ((42451, 42457), 'time.time', 'time', ([], {}), '()\n', (42455, 42457), False, 'from time import time\n'), ((42671, 42689), 'torch.tensor', 'torch.tensor', (['wsin'], {}), '(wsin)\n', (42683, 42689), False, 'import torch\n'), ((42705, 42723), 'torch.tensor', 'torch.tensor', (['wcos'], {}), '(wcos)\n', (42717, 42723), False, 'import torch\n'), ((50717, 50723), 'time.time', 'time', ([], {}), '()\n', (50721, 50723), False, 'from time import time\n'), ((54329, 54385), 'torch.nn.functional.conv1d', 'conv1d', (['x', 'self.cqt_kernels_real'], {'stride': 'self.hop_length'}), '(x, self.cqt_kernels_real, stride=self.hop_length)\n', (54335, 54385), False, 'from torch.nn.functional import conv1d, conv2d, fold\n'), ((54405, 54461), 'torch.nn.functional.conv1d', 'conv1d', (['x', 'self.cqt_kernels_imag'], {'stride': 'self.hop_length'}), '(x, self.cqt_kernels_imag, stride=self.hop_length)\n', (54411, 54461), False, 'from torch.nn.functional import conv1d, conv2d, fold\n'), ((60134, 60140), 'time.time', 'time', ([], {}), '()\n', (60138, 60140), False, 'from time import time\n'), ((63381, 63387), 'time.time', 'time', ([], {}), '()\n', (63385, 63387), False, 'from time import time\n'), ((64029, 64052), 'numpy.ceil', 'np.ceil', (['(Q * sr / freqs)'], {}), '(Q * sr / freqs)\n', (64036, 64052), True, 'import numpy as np\n'), ((69081, 69118), 'torch.tensor', 'torch.tensor', (['wsin'], {'dtype': 'torch.float'}), '(wsin, dtype=torch.float)\n', (69093, 69118), False, 'import torch\n'), ((69139, 69176), 'torch.tensor', 'torch.tensor', (['wcos'], {'dtype': 'torch.float'}), '(wcos, dtype=torch.float)\n', (69151, 69176), False, 'import torch\n'), ((69909, 69949), 'torch.nn.functional.conv1d', 'conv1d', (['x', 'self.wsin'], {'stride': 'self.stride'}), '(x, self.wsin, stride=self.stride)\n', (69915, 69949), False, 'from torch.nn.functional import conv1d, conv2d, fold\n'), ((69965, 70005), 'torch.nn.functional.conv1d', 'conv1d', (['x', 'self.wcos'], {'stride': 'self.stride'}), '(x, self.wcos, stride=self.stride)\n', (69971, 70005), False, 'from torch.nn.functional import conv1d, conv2d, fold\n'), ((71093, 71138), 'torch.nn.functional.conv1d', 'conv1d', (['x_real', 'self.wcos'], {'stride': 'self.stride'}), '(x_real, self.wcos, stride=self.stride)\n', (71099, 71138), False, 'from torch.nn.functional import conv1d, conv2d, fold\n'), ((71152, 71197), 'torch.nn.functional.conv1d', 'conv1d', (['x_real', 'self.wsin'], {'stride': 'self.stride'}), '(x_real, self.wsin, stride=self.stride)\n', (71158, 71197), False, 'from torch.nn.functional import conv1d, conv2d, fold\n'), ((71211, 71256), 'torch.nn.functional.conv1d', 'conv1d', (['x_imag', 'self.wcos'], {'stride': 'self.stride'}), '(x_imag, self.wcos, stride=self.stride)\n', (71217, 71256), False, 'from torch.nn.functional import conv1d, conv2d, fold\n'), ((71270, 71315), 'torch.nn.functional.conv1d', 'conv1d', (['x_imag', 'self.wsin'], {'stride': 'self.stride'}), '(x_imag, self.wsin, stride=self.stride)\n', (71276, 71315), False, 'from torch.nn.functional import conv1d, conv2d, fold\n'), ((75587, 75593), 'time.time', 'time', ([], {}), '()\n', (75591, 75593), False, 'from time import time\n'), ((79208, 79257), 'torch.nn.functional.conv2d', 'conv2d', (['X_real_bc', 'self.kernel_cos'], {'stride': '(1, 1)'}), '(X_real_bc, self.kernel_cos, stride=(1, 1))\n', (79214, 79257), False, 'from torch.nn.functional import conv1d, conv2d, fold\n'), ((79270, 79319), 'torch.nn.functional.conv2d', 'conv2d', (['X_imag_bc', 'self.kernel_sin'], {'stride': '(1, 1)'}), '(X_imag_bc, self.kernel_sin, stride=(1, 1))\n', (79276, 79319), False, 'from torch.nn.functional import conv1d, conv2d, fold\n'), ((83586, 83627), 'torch.randn', 'torch.randn', (['*S.shape'], {'device': 'self.device'}), '(*S.shape, device=self.device)\n', (83597, 83627), False, 'import torch\n'), ((83645, 83691), 'torch.empty', 'torch.empty', (['(*S.shape, 2)'], {'device': 'self.device'}), '((*S.shape, 2), device=self.device)\n', (83656, 83691), False, 'import torch\n'), ((83718, 83751), 'torch.cos', 'torch.cos', (['(2 * np.pi * rand_phase)'], {}), '(2 * np.pi * rand_phase)\n', (83727, 83751), False, 'import torch\n'), ((83778, 83811), 'torch.sin', 'torch.sin', (['(2 * np.pi * rand_phase)'], {}), '(2 * np.pi * rand_phase)\n', (83787, 83811), False, 'import torch\n'), ((83888, 83934), 'torch.zeros', 'torch.zeros', (['*angles.shape'], {'device': 'self.device'}), '(*angles.shape, device=self.device)\n', (83899, 83934), False, 'import torch\n'), ((6864, 6918), 'torch.nn.Parameter', 'torch.nn.Parameter', (['wsin'], {'requires_grad': 'self.trainable'}), '(wsin, requires_grad=self.trainable)\n', (6882, 6918), False, 'import torch\n'), ((6938, 6992), 'torch.nn.Parameter', 'torch.nn.Parameter', (['wcos'], {'requires_grad': 'self.trainable'}), '(wcos, requires_grad=self.trainable)\n', (6956, 6992), False, 'import torch\n'), ((17476, 17534), 'torch.nn.Parameter', 'torch.nn.Parameter', (['mel_basis'], {'requires_grad': 'trainable_mel'}), '(mel_basis, requires_grad=trainable_mel)\n', (17494, 17534), False, 'import torch\n'), ((24040, 24059), 'torch.tensor', 'torch.tensor', (['[ref]'], {}), '([ref])\n', (24052, 24059), False, 'import torch\n'), ((24852, 24901), 'torch.max', 'torch.max', (['log_spec', '(batch_wise_max - self.top_db)'], {}), '(log_spec, batch_wise_max - self.top_db)\n', (24861, 24901), False, 'import torch\n'), ((32904, 32961), 'torch.nn.Parameter', 'torch.nn.Parameter', (['wsin'], {'requires_grad': 'trainable_kernels'}), '(wsin, requires_grad=trainable_kernels)\n', (32922, 32961), False, 'import torch\n'), ((32981, 33038), 'torch.nn.Parameter', 'torch.nn.Parameter', (['wcos'], {'requires_grad': 'trainable_kernels'}), '(wcos, requires_grad=trainable_kernels)\n', (32999, 33038), False, 'import torch\n'), ((33305, 33374), 'torch.nn.Parameter', 'torch.nn.Parameter', (['cqt_kernels_real'], {'requires_grad': 'trainable_kernels'}), '(cqt_kernels_real, requires_grad=trainable_kernels)\n', (33323, 33374), False, 'import torch\n'), ((33406, 33475), 'torch.nn.Parameter', 'torch.nn.Parameter', (['cqt_kernels_imag'], {'requires_grad': 'trainable_kernels'}), '(cqt_kernels_imag, requires_grad=trainable_kernels)\n', (33424, 33475), False, 'import torch\n'), ((39877, 39883), 'time.time', 'time', ([], {}), '()\n', (39881, 39883), False, 'from time import time\n'), ((42889, 42946), 'torch.nn.Parameter', 'torch.nn.Parameter', (['wsin'], {'requires_grad': 'trainable_kernels'}), '(wsin, requires_grad=trainable_kernels)\n', (42907, 42946), False, 'import torch\n'), ((42966, 43023), 'torch.nn.Parameter', 'torch.nn.Parameter', (['wcos'], {'requires_grad': 'trainable_kernels'}), '(wcos, requires_grad=trainable_kernels)\n', (42984, 43023), False, 'import torch\n'), ((43290, 43359), 'torch.nn.Parameter', 'torch.nn.Parameter', (['cqt_kernels_real'], {'requires_grad': 'trainable_kernels'}), '(cqt_kernels_real, requires_grad=trainable_kernels)\n', (43308, 43359), False, 'import torch\n'), ((43391, 43460), 'torch.nn.Parameter', 'torch.nn.Parameter', (['cqt_kernels_imag'], {'requires_grad': 'trainable_kernels'}), '(cqt_kernels_imag, requires_grad=trainable_kernels)\n', (43409, 43460), False, 'import torch\n'), ((43968, 44004), 'torch.nn.ConstantPad1d', 'nn.ConstantPad1d', (['(self.n_fft // 2)', '(0)'], {}), '(self.n_fft // 2, 0)\n', (43984, 44004), True, 'import torch.nn as nn\n'), ((45215, 45240), 'torch.cat', 'torch.cat', (['(CQT1, CQT)', '(1)'], {}), '((CQT1, CQT), 1)\n', (45224, 45240), False, 'import torch\n'), ((51581, 51650), 'torch.nn.Parameter', 'torch.nn.Parameter', (['cqt_kernels_real'], {'requires_grad': 'trainable_kernels'}), '(cqt_kernels_real, requires_grad=trainable_kernels)\n', (51599, 51650), False, 'import torch\n'), ((51682, 51751), 'torch.nn.Parameter', 'torch.nn.Parameter', (['cqt_kernels_imag'], {'requires_grad': 'trainable_kernels'}), '(cqt_kernels_imag, requires_grad=trainable_kernels)\n', (51700, 51751), False, 'import torch\n'), ((53026, 53082), 'torch.nn.functional.conv1d', 'conv1d', (['x', 'self.cqt_kernels_real'], {'stride': 'self.hop_length'}), '(x, self.cqt_kernels_real, stride=self.hop_length)\n', (53032, 53082), False, 'from torch.nn.functional import conv1d, conv2d, fold\n'), ((62378, 62384), 'time.time', 'time', ([], {}), '()\n', (62382, 62384), False, 'from time import time\n'), ((64462, 64531), 'torch.nn.Parameter', 'torch.nn.Parameter', (['cqt_kernels_real'], {'requires_grad': 'trainable_kernels'}), '(cqt_kernels_real, requires_grad=trainable_kernels)\n', (64480, 64531), False, 'import torch\n'), ((64563, 64632), 'torch.nn.Parameter', 'torch.nn.Parameter', (['cqt_kernels_imag'], {'requires_grad': 'trainable_kernels'}), '(cqt_kernels_imag, requires_grad=trainable_kernels)\n', (64581, 64632), False, 'import torch\n'), ((65322, 65358), 'torch.nn.ConstantPad1d', 'nn.ConstantPad1d', (['(self.n_fft // 2)', '(0)'], {}), '(self.n_fft // 2, 0)\n', (65338, 65358), True, 'import torch.nn as nn\n'), ((66616, 66641), 'torch.cat', 'torch.cat', (['(CQT1, CQT)', '(1)'], {}), '((CQT1, CQT), 1)\n', (66625, 66641), False, 'import torch\n'), ((77039, 77102), 'torch.nn.Parameter', 'torch.nn.Parameter', (['kernel_sin'], {'requires_grad': 'trainable_kernels'}), '(kernel_sin, requires_grad=trainable_kernels)\n', (77057, 77102), False, 'import torch\n'), ((77128, 77191), 'torch.nn.Parameter', 'torch.nn.Parameter', (['kernel_cos'], {'requires_grad': 'trainable_kernels'}), '(kernel_cos, requires_grad=trainable_kernels)\n', (77146, 77191), False, 'import torch\n'), ((77558, 77621), 'torch.nn.Parameter', 'torch.nn.Parameter', (['window_mask'], {'requires_grad': 'trainable_window'}), '(window_mask, requires_grad=trainable_window)\n', (77576, 77621), False, 'import torch\n'), ((84526, 84645), 'torch.stft', 'torch.stft', (['inverse', 'self.n_fft', 'self.hop_length'], {'win_length': 'self.win_length', 'window': 'self.w', 'pad_mode': 'self.pad_mode'}), '(inverse, self.n_fft, self.hop_length, win_length=self.win_length,\n window=self.w, pad_mode=self.pad_mode)\n', (84536, 84645), False, 'import torch\n'), ((8272, 8308), 'torch.nn.ConstantPad1d', 'nn.ConstantPad1d', (['self.pad_amount', '(0)'], {}), '(self.pad_amount, 0)\n', (8288, 8308), True, 'import torch.nn as nn\n'), ((9055, 9079), 'torch.sqrt', 'torch.sqrt', (['(spec + 1e-08)'], {}), '(spec + 1e-08)\n', (9065, 9079), False, 'import torch\n'), ((9171, 9187), 'torch.sqrt', 'torch.sqrt', (['spec'], {}), '(spec)\n', (9181, 9187), False, 'import torch\n'), ((9247, 9287), 'torch.stack', 'torch.stack', (['(spec_real, -spec_imag)', '(-1)'], {}), '((spec_real, -spec_imag), -1)\n', (9258, 9287), False, 'import torch\n'), ((24437, 24460), 'torch.max', 'torch.max', (['S', 'self.amin'], {}), '(S, self.amin)\n', (24446, 24460), False, 'import torch\n'), ((24501, 24531), 'torch.max', 'torch.max', (['self.amin', 'self.ref'], {}), '(self.amin, self.ref)\n', (24510, 24531), False, 'import torch\n'), ((25645, 25655), 'numpy.sqrt', 'np.sqrt', (['N'], {}), '(N)\n', (25652, 25655), True, 'import numpy as np\n'), ((25687, 25701), 'numpy.sqrt', 'np.sqrt', (['(N / 2)'], {}), '(N / 2)\n', (25694, 25701), True, 'import numpy as np\n'), ((34505, 34548), 'torch.nn.ConstantPad1d', 'nn.ConstantPad1d', (['(self.kernel_width // 2)', '(0)'], {}), '(self.kernel_width // 2, 0)\n', (34521, 34548), True, 'import torch.nn as nn\n'), ((41604, 41625), 'torch.tensor', 'torch.tensor', (['lenghts'], {}), '(lenghts)\n', (41616, 41625), False, 'import torch\n'), ((44071, 44106), 'torch.nn.ReflectionPad1d', 'nn.ReflectionPad1d', (['(self.n_fft // 2)'], {}), '(self.n_fft // 2)\n', (44089, 44106), True, 'import torch.nn as nn\n'), ((51412, 51442), 'torch.tensor', 'torch.tensor', (['cqt_kernels.real'], {}), '(cqt_kernels.real)\n', (51424, 51442), False, 'import torch\n'), ((51483, 51513), 'torch.tensor', 'torch.tensor', (['cqt_kernels.imag'], {}), '(cqt_kernels.imag)\n', (51495, 51513), False, 'import torch\n'), ((52810, 52853), 'torch.nn.ConstantPad1d', 'nn.ConstantPad1d', (['(self.kernel_width // 2)', '(0)'], {}), '(self.kernel_width // 2, 0)\n', (52826, 52853), True, 'import torch.nn as nn\n'), ((53163, 53219), 'torch.nn.functional.conv1d', 'conv1d', (['x', 'self.cqt_kernels_imag'], {'stride': 'self.hop_length'}), '(x, self.cqt_kernels_imag, stride=self.hop_length)\n', (53169, 53219), False, 'from torch.nn.functional import conv1d, conv2d, fold\n'), ((53635, 53672), 'torch.stack', 'torch.stack', (['(CQT_real, CQT_imag)', '(-1)'], {}), '((CQT_real, CQT_imag), -1)\n', (53646, 53672), False, 'import torch\n'), ((54113, 54156), 'torch.nn.ConstantPad1d', 'nn.ConstantPad1d', (['(self.kernel_width // 2)', '(0)'], {}), '(self.kernel_width // 2, 0)\n', (54129, 54156), True, 'import torch.nn as nn\n'), ((64071, 64092), 'torch.tensor', 'torch.tensor', (['lenghts'], {}), '(lenghts)\n', (64083, 64092), False, 'import torch\n'), ((65425, 65460), 'torch.nn.ReflectionPad1d', 'nn.ReflectionPad1d', (['(self.n_fft // 2)'], {}), '(self.n_fft // 2)\n', (65443, 65460), True, 'import torch.nn as nn\n'), ((69725, 69761), 'torch.nn.ConstantPad1d', 'nn.ConstantPad1d', (['(self.n_fft // 2)', '(0)'], {}), '(self.n_fft // 2, 0)\n', (69741, 69761), True, 'import torch.nn as nn\n'), ((76741, 76784), 'torch.tensor', 'torch.tensor', (['kernel_sin'], {'dtype': 'torch.float'}), '(kernel_sin, dtype=torch.float)\n', (76753, 76784), False, 'import torch\n'), ((76820, 76863), 'torch.tensor', 'torch.tensor', (['kernel_cos'], {'dtype': 'torch.float'}), '(kernel_cos, dtype=torch.float)\n', (76832, 76863), False, 'import torch\n'), ((8544, 8579), 'torch.nn.ReflectionPad1d', 'nn.ReflectionPad1d', (['self.pad_amount'], {}), '(self.pad_amount)\n', (8562, 8579), True, 'import torch.nn as nn\n'), ((9390, 9430), 'torch.atan2', 'torch.atan2', (['(-spec_imag + 0.0)', 'spec_real'], {}), '(-spec_imag + 0.0, spec_real)\n', (9401, 9430), False, 'import torch\n'), ((31973, 31979), 'time.time', 'time', ([], {}), '()\n', (31977, 31979), False, 'from time import time\n'), ((33853, 33859), 'time.time', 'time', ([], {}), '()\n', (33857, 33859), False, 'from time import time\n'), ((34618, 34660), 'torch.nn.ReflectionPad1d', 'nn.ReflectionPad1d', (['(self.kernel_width // 2)'], {}), '(self.kernel_width // 2)\n', (34636, 34660), True, 'import torch.nn as nn\n'), ((35621, 35662), 'torch.stack', 'torch.stack', (['(phase_real, phase_imag)', '(-1)'], {}), '((phase_real, phase_imag), -1)\n', (35632, 35662), False, 'import torch\n'), ((41517, 41542), 'numpy.float', 'np.float', (['bins_per_octave'], {}), '(bins_per_octave)\n', (41525, 41542), True, 'import numpy as np\n'), ((46038, 46079), 'torch.stack', 'torch.stack', (['(phase_real, phase_imag)', '(-1)'], {}), '((phase_real, phase_imag), -1)\n', (46049, 46079), False, 'import torch\n'), ((52923, 52965), 'torch.nn.ReflectionPad1d', 'nn.ReflectionPad1d', (['(self.kernel_width // 2)'], {}), '(self.kernel_width // 2)\n', (52941, 52965), True, 'import torch.nn as nn\n'), ((53862, 53903), 'torch.stack', 'torch.stack', (['(phase_real, phase_imag)', '(-1)'], {}), '((phase_real, phase_imag), -1)\n', (53873, 53903), False, 'import torch\n'), ((54226, 54268), 'torch.nn.ReflectionPad1d', 'nn.ReflectionPad1d', (['(self.kernel_width // 2)'], {}), '(self.kernel_width // 2)\n', (54244, 54268), True, 'import torch.nn as nn\n'), ((63984, 64009), 'numpy.float', 'np.float', (['bins_per_octave'], {}), '(bins_per_octave)\n', (63992, 64009), True, 'import numpy as np\n'), ((67645, 67686), 'torch.stack', 'torch.stack', (['(phase_real, phase_imag)', '(-1)'], {}), '((phase_real, phase_imag), -1)\n', (67656, 67686), False, 'import torch\n'), ((69831, 69866), 'torch.nn.ReflectionPad1d', 'nn.ReflectionPad1d', (['(self.n_fft // 2)'], {}), '(self.n_fft // 2)\n', (69849, 69866), True, 'import torch.nn as nn\n'), ((7367, 7373), 'time.time', 'time', ([], {}), '()\n', (7371, 7373), False, 'from time import time\n'), ((17201, 17207), 'time.time', 'time', ([], {}), '()\n', (17205, 17207), False, 'from time import time\n'), ((17290, 17296), 'time.time', 'time', ([], {}), '()\n', (17294, 17296), False, 'from time import time\n'), ((19923, 19948), 'torch.pinverse', 'torch.pinverse', (['mel_basis'], {}), '(mel_basis)\n', (19937, 19948), False, 'import torch\n'), ((25404, 25451), 'torch.arange', 'torch.arange', (['N'], {'dtype': 'x.dtype', 'device': 'x.device'}), '(N, dtype=x.dtype, device=x.device)\n', (25416, 25451), False, 'import torch\n'), ((35503, 35534), 'torch.atan2', 'torch.atan2', (['CQT_imag', 'CQT_real'], {}), '(CQT_imag, CQT_real)\n', (35514, 35534), False, 'import torch\n'), ((35570, 35601), 'torch.atan2', 'torch.atan2', (['CQT_imag', 'CQT_real'], {}), '(CQT_imag, CQT_real)\n', (35581, 35601), False, 'import torch\n'), ((38595, 38601), 'time.time', 'time', ([], {}), '()\n', (38599, 38601), False, 'from time import time\n'), ((42130, 42136), 'time.time', 'time', ([], {}), '()\n', (42134, 42136), False, 'from time import time\n'), ((42827, 42833), 'time.time', 'time', ([], {}), '()\n', (42831, 42833), False, 'from time import time\n'), ((45904, 45949), 'torch.atan2', 'torch.atan2', (['CQT[:, :, :, 1]', 'CQT[:, :, :, 0]'], {}), '(CQT[:, :, :, 1], CQT[:, :, :, 0])\n', (45915, 45949), False, 'import torch\n'), ((45979, 46024), 'torch.atan2', 'torch.atan2', (['CQT[:, :, :, 1]', 'CQT[:, :, :, 0]'], {}), '(CQT[:, :, :, 1], CQT[:, :, :, 0])\n', (45990, 46024), False, 'import torch\n'), ((52158, 52164), 'time.time', 'time', ([], {}), '()\n', (52162, 52164), False, 'from time import time\n'), ((53744, 53775), 'torch.atan2', 'torch.atan2', (['CQT_imag', 'CQT_real'], {}), '(CQT_imag, CQT_real)\n', (53755, 53775), False, 'import torch\n'), ((53811, 53842), 'torch.atan2', 'torch.atan2', (['CQT_imag', 'CQT_real'], {}), '(CQT_imag, CQT_real)\n', (53822, 53842), False, 'import torch\n'), ((61071, 61077), 'time.time', 'time', ([], {}), '()\n', (61075, 61077), False, 'from time import time\n'), ((65040, 65046), 'time.time', 'time', ([], {}), '()\n', (65044, 65046), False, 'from time import time\n'), ((67511, 67556), 'torch.atan2', 'torch.atan2', (['CQT[:, :, :, 1]', 'CQT[:, :, :, 0]'], {}), '(CQT[:, :, :, 1], CQT[:, :, :, 0])\n', (67522, 67556), False, 'import torch\n'), ((67586, 67631), 'torch.atan2', 'torch.atan2', (['CQT[:, :, :, 1]', 'CQT[:, :, :, 0]'], {}), '(CQT[:, :, :, 1], CQT[:, :, :, 0])\n', (67597, 67631), False, 'import torch\n'), ((76571, 76596), 'torch.tensor', 'torch.tensor', (['window_mask'], {}), '(window_mask)\n', (76583, 76596), False, 'import torch\n'), ((77866, 77872), 'time.time', 'time', ([], {}), '()\n', (77870, 77872), False, 'from time import time\n'), ((19786, 19861), 'torch.zeros', 'torch.zeros', (['*pred_stft_shape'], {'dtype': 'torch.float32', 'device': 'mel_basis.device'}), '(*pred_stft_shape, dtype=torch.float32, device=mel_basis.device)\n', (19797, 19861), False, 'import torch\n'), ((40686, 40692), 'time.time', 'time', ([], {}), '()\n', (40690, 40692), False, 'from time import time\n'), ((63183, 63189), 'time.time', 'time', ([], {}), '()\n', (63187, 63189), False, 'from time import time\n')]
""" Represent a triangulated surface using a 3D boolean grid""" import logging import numpy as np from rpl.tools.ray_tracing.bsp_tree_poly import BSP_Element from rpl.tools.geometry import geom_utils import data_io class BSP_Grid(object): def __init__(self, node_array, tris, allocate_step=100000): """ Store the triangles with an enumeration so that even when they are subdivided their identity is not lost. """ tri_nums = np.arange(len(tris), dtype=np.int32).reshape((len(tris), 1)) minus_ones = -np.ones((len(tris), 6), dtype=np.int32) self.tris = np.hstack((tris, minus_ones, tri_nums)) self.allocate_step = allocate_step self.node_array = node_array # Reference to the full list of nodes self._resize() self.next_free = len(node_array) self.split_cache = np.zeros(len(self.tris), dtype=np.int32) def _resize(self): """ Increase node array size by the allocate_step amount. """ self.array_size = len(self.node_array) + self.allocate_step self.node_array = np.concatenate((self.node_array, np.zeros((self.allocate_step, 3)))) def add_node(self, node): """ Adds a new node to the end of the node array (expanding if required). Returns the index of the newly added node. """ if self.next_free == self.array_size: self._resize() self.node_array[self.next_free] = node self.next_free += 1 return self.next_free - 1 def prepare_add(self, num_add_nodes): """ Make sure that ``num_add_nodes`` can be added later without needing a resize. Useful if adding nodes from within cython where resizing is tricky. """ if self.next_free + num_add_nodes >= self.array_size: self._resize() return self.next_free def make_grid(veh_surfs, settings): """ Make coordinates of voxelated grid based on overall list of vehicle surfaces """ ## Find overall bounding box x_min, x_max = 1e30, -1e30 y_min, y_max = 1e30, -1e30 z_min, z_max = 1e30, -1e30 for key, veh_surf in veh_surfs.items(): x_min, x_max = min(x_min, np.min(veh_surf["x"])), max(x_max, np.max(veh_surf["x"])) y_min, y_max = min(y_min, np.min(veh_surf["y"])), max(y_max, np.max(veh_surf["y"])) z_min, z_max = min(z_min, np.min(veh_surf["z"])), max(z_max, np.max(veh_surf["z"])) x_min, x_max = x_min - settings["voxel_size"], x_max + settings["voxel_size"] y_min, y_max = y_min - settings["voxel_size"], y_max + settings["voxel_size"] z_min, z_max = z_min - settings["voxel_size"], z_max + settings["voxel_size"] ########################################### # Create the uniformly spaced grid points x_grid = np.arange(x_min, x_max + settings["voxel_size"], settings["voxel_size"]) y_grid = np.arange(y_min, y_max + settings["voxel_size"], settings["voxel_size"]) z_grid = np.arange(z_min, z_max + settings["voxel_size"], settings["voxel_size"]) return x_grid, y_grid, z_grid def convert_geom(veh_surf, tr_mat): """ Rotate nodes using provided transformation matrix; convert xyz node dict to nodes array """ veh_surf["nodes"] = np.vstack((veh_surf["x"], veh_surf["y"], veh_surf["z"])).T veh_surf['nodes'] = np.dot(veh_surf['nodes'], tr_mat[:3, :3]) veh_surf["x"] = veh_surf['nodes'][:, 0] veh_surf["y"] = veh_surf['nodes'][:, 1] veh_surf["z"] = veh_surf['nodes'][:, 2] return veh_surf def find_occupied_voxels(surf, surf_mask, voxel_data): """ Voxels with any triangle from ``surf`` are considered occupied and or'ed with ``group_mask``. If the supplied ``occupied_voxels`` is None a voxel array is created and returned. """ nodes = surf["nodes"] tris = surf["tris"] x_pts, y_pts, z_pts = [voxel_data[k] for k in ("x_grid", "y_grid", "z_grid")] vox_size = voxel_data["vox_size"] ## Find the local extents of this part min_x, max_x = np.min(surf["x"]) - vox_size, np.max(surf["x"]) + vox_size min_y, max_y = np.min(surf["y"]) - vox_size, np.max(surf["y"]) + vox_size min_z, max_z = np.min(surf["z"]) - vox_size, np.max(surf["z"]) + vox_size b_tree = BSP_Grid(nodes, tris) # Create BSP tree elements- we're not using a tree, but we are using some of the functions b_x_root = BSP_Element(b_tree.tris, b_tree) size_i, size_j, size_k = len(x_pts), len(y_pts), len(z_pts) ## Create the occupied voxels if none were supplied if voxel_data["value"] is None: voxel_data["value"] = np.zeros((size_i - 1, size_j - 1, size_k - 1), dtype=np.uint32) occupied_voxels = voxel_data["value"] ## The [1:] is because to make n voxels in a given direction we need n-1 splits for i, x_pos in enumerate(x_pts[1:]): if x_pos < min_x: continue if x_pos > max_x: break b_above_x, b_below_x = b_x_root.split_at(0, x_pos) b_y_root = b_below_x for j, y_pos in enumerate(y_pts[1:]): if b_y_root is None: break if y_pos < min_y: continue if y_pos > max_y: break b_above_y, b_below_y = b_y_root.split_at(1, y_pos) b_z_root = b_below_y for k, z_pos in enumerate(z_pts[1:]): if b_z_root is None: break if z_pos < min_z: continue if z_pos > max_z: break b_above_z, b_below_z = b_z_root.split_at(2, z_pos) if not (b_below_z and (len(b_below_z.tris) == 0)): ## There is at least part of triangle here so mark as occupied occupied_voxels[i, j, k] |= surf_mask b_z_root = b_above_z b_y_root = b_above_y b_x_root = b_above_x return voxel_data ############# # Main code def main(vehicle_comp_coords, tr_mat, voxel_masks, settings): """ Perform voxelization for all vehicle geometries in a list of parts. Combine on a uniform grid. """ for key, veh_surf in vehicle_comp_coords.items(): # Convert coordinates and find overall best bounding box veh_surf = convert_geom(veh_surf, tr_mat) x_grid, y_grid, z_grid = make_grid(vehicle_comp_coords, settings) voxel_data = {"x_grid": x_grid, "y_grid": y_grid, "z_grid": z_grid, "vox_size": settings["voxel_size"], "csys_trans": tr_mat, "value": None} for key, veh_surf in vehicle_comp_coords.items(): # Build up the voxel_data logging.debug("Sampling component: {}".format(key)) ## Default mask is 1 for anything not in an identified set surf_mask = 1 for mask, geo_set in voxel_masks.items(): if veh_surf['part_class'] in geo_set: surf_mask |= mask voxel_data = find_occupied_voxels(veh_surf, surf_mask, voxel_data) return voxel_data if __name__ == "__main__": from rpl.tools.api import test_bench_api as tb_api SETTINGS = tb_api.load_settings("settings.js") DOORS = {'Hatch_Assembly_Rear_Ramp', 'Hatch_Assembly_Personnel_Door'} HATCHES = {'Hatch_Assembly_Driver_Commander', 'Hatch_Assembly_Cargo'} HULLS = {"Hull_Assembly_Parametric", 'Hull_Assembly_Example_With_Connector'} MANIKINS = {"Manikin"} # Special labels applied to specific types of voxels VOXEL_LABELS = {2: HULLS, 4: DOORS, 8: HATCHES, 16: MANIKINS} vehicle_surfs = tb_api.load_geometry(tb_api.get_all_geom_set() - MANIKINS, single_file=False) # Modify node coords so object aligns with cartesian axes of occ voxel grid, +z=up # Vector to rotate around is cross product of current z axis and sfc normal veh_up = np.array([0., 1., 0.]) rot_around = np.cross(veh_up, np.array([0, 0, 1])) rot_ang = -np.arccos(veh_up[2]) tr_mat = geom_utils.rotation_about_vector(rot_around, rot_ang) # voxel_data = main(vehicle_surfs, tr_mat, VOXEL_LABELS, SETTINGS) vox_veh_folder = r"voxelated_models/vehicles/{}/{}".format(SETTINGS["run_id"], SETTINGS["voxel_size"]) vox_veh_file = "voxels_{}_vox{}_hacked".format(SETTINGS["run_id"], SETTINGS["voxel_size"]) try: voxel_data = data_io.load_array(vox_veh_folder, vox_veh_file, True) except: voxel_data = main(vehicle_surfs, tr_mat, VOXEL_LABELS, SETTINGS) from mayavi import mlab xo, yo, zo = np.where(voxel_data["value"] == 1) plot_vehicle = mlab.points3d(voxel_data["x_grid"][xo], voxel_data["y_grid"][yo], voxel_data["z_grid"][zo], color=(0.9, 0.9, 0.9), scale_mode="none", scale_factor=voxel_data["vox_size"], mode='cube', opacity=1) xo, yo, zo = np.where(voxel_data["value"] & 2) plot_vehicle = mlab.points3d(voxel_data["x_grid"][xo], voxel_data["y_grid"][yo], voxel_data["z_grid"][zo], color=(1, 1, 1), scale_mode="none", scale_factor=voxel_data["vox_size"], mode='cube', opacity=0.05) xo, yo, zo = np.where(voxel_data["value"] & 4) plot_vehicle = mlab.points3d(voxel_data["x_grid"][xo], voxel_data["y_grid"][yo], voxel_data["z_grid"][zo], color=(1.0, 0.5, 0.5), scale_mode="none", scale_factor=voxel_data["vox_size"], mode='cube', opacity=1) xo, yo, zo = np.where(voxel_data["value"] & 8) plot_vehicle = mlab.points3d(voxel_data["x_grid"][xo], voxel_data["y_grid"][yo], voxel_data["z_grid"][zo], color=(0.6, 0.6, 1.0), scale_mode="none", scale_factor=voxel_data["vox_size"], mode='cube', opacity=1) # No manikins included, no need to plot them # xo, yo, zo = np.where(voxel_data["value"] & 16) # plot_vehicle = mlab.points3d(voxel_data["x_grid"][xo], # voxel_data["y_grid"][yo], # voxel_data["z_grid"][zo], # color=(0.5, 1.0, 0.8), # scale_mode="none", scale_factor=voxel_data["vox_size"], # mode='cube', opacity=1.0) mlab.show() # Save the voxelated model of the vehicle (sans door and other excluded parts) data_io.save_multi_array(vox_veh_folder, vox_veh_file, voxel_data)
[ "mayavi.mlab.points3d", "numpy.arccos", "data_io.save_multi_array", "mayavi.mlab.show", "rpl.tools.geometry.geom_utils.rotation_about_vector", "numpy.where", "numpy.hstack", "numpy.min", "numpy.max", "rpl.tools.ray_tracing.bsp_tree_poly.BSP_Element", "numpy.array", "numpy.dot", "numpy.zeros", "numpy.vstack", "rpl.tools.api.test_bench_api.load_settings", "data_io.load_array", "rpl.tools.api.test_bench_api.get_all_geom_set", "numpy.arange" ]
[((2930, 3002), 'numpy.arange', 'np.arange', (['x_min', "(x_max + settings['voxel_size'])", "settings['voxel_size']"], {}), "(x_min, x_max + settings['voxel_size'], settings['voxel_size'])\n", (2939, 3002), True, 'import numpy as np\n'), ((3017, 3089), 'numpy.arange', 'np.arange', (['y_min', "(y_max + settings['voxel_size'])", "settings['voxel_size']"], {}), "(y_min, y_max + settings['voxel_size'], settings['voxel_size'])\n", (3026, 3089), True, 'import numpy as np\n'), ((3104, 3176), 'numpy.arange', 'np.arange', (['z_min', "(z_max + settings['voxel_size'])", "settings['voxel_size']"], {}), "(z_min, z_max + settings['voxel_size'], settings['voxel_size'])\n", (3113, 3176), True, 'import numpy as np\n'), ((3475, 3516), 'numpy.dot', 'np.dot', (["veh_surf['nodes']", 'tr_mat[:3, :3]'], {}), "(veh_surf['nodes'], tr_mat[:3, :3])\n", (3481, 3516), True, 'import numpy as np\n'), ((4565, 4597), 'rpl.tools.ray_tracing.bsp_tree_poly.BSP_Element', 'BSP_Element', (['b_tree.tris', 'b_tree'], {}), '(b_tree.tris, b_tree)\n', (4576, 4597), False, 'from rpl.tools.ray_tracing.bsp_tree_poly import BSP_Element\n'), ((7387, 7422), 'rpl.tools.api.test_bench_api.load_settings', 'tb_api.load_settings', (['"""settings.js"""'], {}), "('settings.js')\n", (7407, 7422), True, 'from rpl.tools.api import test_bench_api as tb_api\n'), ((8159, 8184), 'numpy.array', 'np.array', (['[0.0, 1.0, 0.0]'], {}), '([0.0, 1.0, 0.0])\n', (8167, 8184), True, 'import numpy as np\n'), ((8289, 8342), 'rpl.tools.geometry.geom_utils.rotation_about_vector', 'geom_utils.rotation_about_vector', (['rot_around', 'rot_ang'], {}), '(rot_around, rot_ang)\n', (8321, 8342), False, 'from rpl.tools.geometry import geom_utils\n'), ((8967, 9001), 'numpy.where', 'np.where', (["(voxel_data['value'] == 1)"], {}), "(voxel_data['value'] == 1)\n", (8975, 9001), True, 'import numpy as np\n'), ((9022, 9224), 'mayavi.mlab.points3d', 'mlab.points3d', (["voxel_data['x_grid'][xo]", "voxel_data['y_grid'][yo]", "voxel_data['z_grid'][zo]"], {'color': '(0.9, 0.9, 0.9)', 'scale_mode': '"""none"""', 'scale_factor': "voxel_data['vox_size']", 'mode': '"""cube"""', 'opacity': '(1)'}), "(voxel_data['x_grid'][xo], voxel_data['y_grid'][yo],\n voxel_data['z_grid'][zo], color=(0.9, 0.9, 0.9), scale_mode='none',\n scale_factor=voxel_data['vox_size'], mode='cube', opacity=1)\n", (9035, 9224), False, 'from mayavi import mlab\n'), ((9407, 9440), 'numpy.where', 'np.where', (["(voxel_data['value'] & 2)"], {}), "(voxel_data['value'] & 2)\n", (9415, 9440), True, 'import numpy as np\n'), ((9461, 9660), 'mayavi.mlab.points3d', 'mlab.points3d', (["voxel_data['x_grid'][xo]", "voxel_data['y_grid'][yo]", "voxel_data['z_grid'][zo]"], {'color': '(1, 1, 1)', 'scale_mode': '"""none"""', 'scale_factor': "voxel_data['vox_size']", 'mode': '"""cube"""', 'opacity': '(0.05)'}), "(voxel_data['x_grid'][xo], voxel_data['y_grid'][yo],\n voxel_data['z_grid'][zo], color=(1, 1, 1), scale_mode='none',\n scale_factor=voxel_data['vox_size'], mode='cube', opacity=0.05)\n", (9474, 9660), False, 'from mayavi import mlab\n'), ((9843, 9876), 'numpy.where', 'np.where', (["(voxel_data['value'] & 4)"], {}), "(voxel_data['value'] & 4)\n", (9851, 9876), True, 'import numpy as np\n'), ((9897, 10099), 'mayavi.mlab.points3d', 'mlab.points3d', (["voxel_data['x_grid'][xo]", "voxel_data['y_grid'][yo]", "voxel_data['z_grid'][zo]"], {'color': '(1.0, 0.5, 0.5)', 'scale_mode': '"""none"""', 'scale_factor': "voxel_data['vox_size']", 'mode': '"""cube"""', 'opacity': '(1)'}), "(voxel_data['x_grid'][xo], voxel_data['y_grid'][yo],\n voxel_data['z_grid'][zo], color=(1.0, 0.5, 0.5), scale_mode='none',\n scale_factor=voxel_data['vox_size'], mode='cube', opacity=1)\n", (9910, 10099), False, 'from mayavi import mlab\n'), ((10282, 10315), 'numpy.where', 'np.where', (["(voxel_data['value'] & 8)"], {}), "(voxel_data['value'] & 8)\n", (10290, 10315), True, 'import numpy as np\n'), ((10336, 10538), 'mayavi.mlab.points3d', 'mlab.points3d', (["voxel_data['x_grid'][xo]", "voxel_data['y_grid'][yo]", "voxel_data['z_grid'][zo]"], {'color': '(0.6, 0.6, 1.0)', 'scale_mode': '"""none"""', 'scale_factor': "voxel_data['vox_size']", 'mode': '"""cube"""', 'opacity': '(1)'}), "(voxel_data['x_grid'][xo], voxel_data['y_grid'][yo],\n voxel_data['z_grid'][zo], color=(0.6, 0.6, 1.0), scale_mode='none',\n scale_factor=voxel_data['vox_size'], mode='cube', opacity=1)\n", (10349, 10538), False, 'from mayavi import mlab\n'), ((11212, 11223), 'mayavi.mlab.show', 'mlab.show', ([], {}), '()\n', (11221, 11223), False, 'from mayavi import mlab\n'), ((11315, 11381), 'data_io.save_multi_array', 'data_io.save_multi_array', (['vox_veh_folder', 'vox_veh_file', 'voxel_data'], {}), '(vox_veh_folder, vox_veh_file, voxel_data)\n', (11339, 11381), False, 'import data_io\n'), ((635, 674), 'numpy.hstack', 'np.hstack', (['(tris, minus_ones, tri_nums)'], {}), '((tris, minus_ones, tri_nums))\n', (644, 674), True, 'import numpy as np\n'), ((3391, 3447), 'numpy.vstack', 'np.vstack', (["(veh_surf['x'], veh_surf['y'], veh_surf['z'])"], {}), "((veh_surf['x'], veh_surf['y'], veh_surf['z']))\n", (3400, 3447), True, 'import numpy as np\n'), ((4792, 4855), 'numpy.zeros', 'np.zeros', (['(size_i - 1, size_j - 1, size_k - 1)'], {'dtype': 'np.uint32'}), '((size_i - 1, size_j - 1, size_k - 1), dtype=np.uint32)\n', (4800, 4855), True, 'import numpy as np\n'), ((8217, 8236), 'numpy.array', 'np.array', (['[0, 0, 1]'], {}), '([0, 0, 1])\n', (8225, 8236), True, 'import numpy as np\n'), ((8254, 8274), 'numpy.arccos', 'np.arccos', (['veh_up[2]'], {}), '(veh_up[2])\n', (8263, 8274), True, 'import numpy as np\n'), ((8772, 8826), 'data_io.load_array', 'data_io.load_array', (['vox_veh_folder', 'vox_veh_file', '(True)'], {}), '(vox_veh_folder, vox_veh_file, True)\n', (8790, 8826), False, 'import data_io\n'), ((4192, 4209), 'numpy.min', 'np.min', (["surf['x']"], {}), "(surf['x'])\n", (4198, 4209), True, 'import numpy as np\n'), ((4222, 4239), 'numpy.max', 'np.max', (["surf['x']"], {}), "(surf['x'])\n", (4228, 4239), True, 'import numpy as np\n'), ((4271, 4288), 'numpy.min', 'np.min', (["surf['y']"], {}), "(surf['y'])\n", (4277, 4288), True, 'import numpy as np\n'), ((4301, 4318), 'numpy.max', 'np.max', (["surf['y']"], {}), "(surf['y'])\n", (4307, 4318), True, 'import numpy as np\n'), ((4350, 4367), 'numpy.min', 'np.min', (["surf['z']"], {}), "(surf['z'])\n", (4356, 4367), True, 'import numpy as np\n'), ((4380, 4397), 'numpy.max', 'np.max', (["surf['z']"], {}), "(surf['z'])\n", (4386, 4397), True, 'import numpy as np\n'), ((7917, 7942), 'rpl.tools.api.test_bench_api.get_all_geom_set', 'tb_api.get_all_geom_set', ([], {}), '()\n', (7940, 7942), True, 'from rpl.tools.api import test_bench_api as tb_api\n'), ((1187, 1220), 'numpy.zeros', 'np.zeros', (['(self.allocate_step, 3)'], {}), '((self.allocate_step, 3))\n', (1195, 1220), True, 'import numpy as np\n'), ((2320, 2341), 'numpy.min', 'np.min', (["veh_surf['x']"], {}), "(veh_surf['x'])\n", (2326, 2341), True, 'import numpy as np\n'), ((2355, 2376), 'numpy.max', 'np.max', (["veh_surf['x']"], {}), "(veh_surf['x'])\n", (2361, 2376), True, 'import numpy as np\n'), ((2413, 2434), 'numpy.min', 'np.min', (["veh_surf['y']"], {}), "(veh_surf['y'])\n", (2419, 2434), True, 'import numpy as np\n'), ((2448, 2469), 'numpy.max', 'np.max', (["veh_surf['y']"], {}), "(veh_surf['y'])\n", (2454, 2469), True, 'import numpy as np\n'), ((2506, 2527), 'numpy.min', 'np.min', (["veh_surf['z']"], {}), "(veh_surf['z'])\n", (2512, 2527), True, 'import numpy as np\n'), ((2541, 2562), 'numpy.max', 'np.max', (["veh_surf['z']"], {}), "(veh_surf['z'])\n", (2547, 2562), True, 'import numpy as np\n')]
from colicoords.synthetic_data import add_readout_noise, draw_poisson from colicoords import load import numpy as np import mahotas as mh from tqdm import tqdm import os import tifffile def chunk_list(l, sizes): prev = 0 for s in sizes: result = l[prev:prev+s] prev += s yield result def generate_images(cell_list, num_images, cell_per_img, cell_per_img_std, shape): nums = np.round(np.random.normal(cell_per_img, cell_per_img_std, num_images)).astype(int) nums = nums[nums > 0] assert sum(nums) < len(cell_list), 'Not enough cells' chunked = [chunk for chunk in tqdm(chunk_list(cell_list, nums))] dicts = [generate_image(cells, shape) for cells in tqdm(chunked)] out_dict = {} for i, d in enumerate(dicts): for k, v in d.items(): if 'storm' in k: v['frame'] = i + 1 if k in out_dict: out_dict[k] = np.append(out_dict[k], v) else: out_dict[k] = v else: if k in out_dict: out_dict[k][i] = v else: out_dict[k] = np.zeros((num_images, *shape)) out_dict[k][i] = v return out_dict def generate_image(cells, shape, max_dist=5): thetas = 360 * np.random.rand(len(cells)) data_list = [cell.data.rotate(theta) for cell, theta in zip(cells, thetas)] assert all([data.names == data_list[0].names for data in data_list]), 'All cells must have the same data elements' out_dict = {name: np.zeros(shape) for name, dclass in zip(data_list[0].names, data_list[0].dclasses) if dclass != 'storm'} for i, data in enumerate(data_list): valid_position = False while not valid_position: pos_x = int(np.round(shape[1] * np.random.rand())) pos_y = int(np.round(shape[0] * np.random.rand())) min1 = pos_y - int(np.floor(data.shape[0])) max1 = min1 + data.shape[0] min2 = pos_x - int(np.floor(data.shape[1])) max2 = min2 + data.shape[1] # Crop the data for when the cell is on the border of the image d_min1 = np.max([0 - min1, 0]) d_max1 = np.min([data.shape[0] + (shape[0] - pos_y), data.shape[0]]) d_min2 = np.max([0 - min2, 0]) d_max2 = np.min([data.shape[1] + (shape[1] - pos_x), data.shape[1]]) data_cropped = data[d_min1:d_max1, d_min2:d_max2] # Limit image position to the edges of the image min1 = np.max([min1, 0]) max1 = np.min([max1, shape[0]]) min2 = np.max([min2, 0]) max2 = np.min([max2, shape[1]]) temp_binary = np.zeros(shape) temp_binary[min1:max1, min2:max2] = data_cropped.binary_img out_binary = (out_dict['binary'] > 0).astype(int) distance_map = mh.distance(1 - out_binary, metric='euclidean') if np.any(distance_map[temp_binary.astype(bool)] < max_dist): continue valid_position = True for name in data.names: data_elem = data_cropped.data_dict[name] if data_elem.dclass == 'storm': data_elem['x'] += min2 data_elem['y'] += min1 xmax, ymax = shape[1], shape[0] bools = (data_elem['x'] < 0) + (data_elem['x'] > xmax) + (data_elem['y'] < 0) + (data_elem['y'] > ymax) data_out = data_elem[~bools].copy() if name in out_dict: out_dict[name] = np.append(out_dict[name], data_out) else: out_dict[name] = data_out continue elif data_elem.dclass == 'binary': out_dict[name][min1:max1, min2:max2] += ((i+1)*data_elem) else: out_dict[name][min1:max1, min2:max2] += data_elem return out_dict def gen_image_from_storm(storm_table, shape, sigma=1.54, sigma_std=0.3): xmax = shape[1] ymax = shape[0] step = 1 xi = np.arange(step / 2, xmax, step) yi = np.arange(step / 2, ymax, step) x_coords = np.repeat(xi, len(yi)).reshape(len(xi), len(yi)).T y_coords = np.repeat(yi, len(xi)).reshape(len(yi), len(xi)) x, y = storm_table['x'], storm_table['y'] img = np.zeros_like(x_coords) intensities = storm_table['intensity'] sigma = sigma * np.ones_like(x) if not sigma_std else np.random.normal(sigma, sigma_std, size=len(x)) for _sigma, _int, _x, _y in zip(sigma, intensities, x, y): img += _int * np.exp(-(((_x - x_coords) / _sigma) ** 2 + ((_y - y_coords) / _sigma) ** 2) / 2) return img def gen_im(data_dir): """Generate microscopy images from a list of cell objects by placing them randomly oriented in the image.""" cell_list = load(os.path.join(data_dir, 'cell_obj', 'cells_final_selected.hdf5')) out_dict = generate_images(cell_list, 1000, 10, 3, (512, 512)) if not os.path.exists(os.path.join(data_dir, 'images')): os.mkdir(os.path.join(data_dir, 'images')) np.save(os.path.join(data_dir, 'images', 'binary.npy'), out_dict['binary']) np.save(os.path.join(data_dir, 'images', 'brightfield.npy'), out_dict['brightfield']) np.save(os.path.join(data_dir, 'images', 'foci_inner.npy'), out_dict['foci_inner']) np.save(os.path.join(data_dir, 'images', 'foci_outer.npy'), out_dict['foci_outer']) np.save(os.path.join(data_dir, 'images', 'storm_inner.npy'), out_dict['storm_inner']) np.save(os.path.join(data_dir, 'images', 'storm_outer.npy'), out_dict['storm_outer']) tifffile.imsave(os.path.join(data_dir, 'images', 'binary.tif'), out_dict['binary']) tifffile.imsave(os.path.join(data_dir, 'images', 'brightfield.tif'), out_dict['brightfield']) tifffile.imsave(os.path.join(data_dir, 'images', 'foci_inner.tif'), out_dict['foci_inner']) tifffile.imsave(os.path.join(data_dir, 'images', 'foci_outer.tif'), out_dict['foci_outer']) np.savetxt(os.path.join(data_dir, 'images', 'storm_inner.txt'), out_dict['storm_inner']) np.savetxt(os.path.join(data_dir, 'images', 'storm_outer.txt'), out_dict['storm_inner']) def noise_bf(data_dir): """add poissonian and readout noise to brightfield images""" noise = 20 img_stack = np.load(os.path.join(data_dir, 'images', 'brightfield.npy')) for photons in [10000, 1000, 500]: ratio = 1.0453 # ratio between 'background' (no cells) and cell wall img = (photons*(ratio-1))*img_stack + photons img = draw_poisson(img) img = add_readout_noise(img, noise) tifffile.imsave(os.path.join(data_dir, 'images', 'bf_noise_{}_photons.tif'.format(photons)), img) np.save(os.path.join(data_dir, 'images', 'bf_noise_{}_photons.npy'.format(photons)), img) if __name__ == '__main__': np.random.seed(42) data_dir = r'.' if not os.path.exists(os.path.join(data_dir, 'images')): os.mkdir(os.path.join(data_dir, 'images')) gen_im(data_dir) noise_bf(data_dir)
[ "numpy.random.normal", "numpy.ones_like", "mahotas.distance", "colicoords.synthetic_data.draw_poisson", "numpy.random.rand", "tqdm.tqdm", "os.path.join", "numpy.floor", "numpy.max", "numpy.exp", "numpy.append", "numpy.zeros", "colicoords.synthetic_data.add_readout_noise", "numpy.random.seed", "numpy.min", "numpy.zeros_like", "numpy.arange" ]
[((4100, 4131), 'numpy.arange', 'np.arange', (['(step / 2)', 'xmax', 'step'], {}), '(step / 2, xmax, step)\n', (4109, 4131), True, 'import numpy as np\n'), ((4141, 4172), 'numpy.arange', 'np.arange', (['(step / 2)', 'ymax', 'step'], {}), '(step / 2, ymax, step)\n', (4150, 4172), True, 'import numpy as np\n'), ((4361, 4384), 'numpy.zeros_like', 'np.zeros_like', (['x_coords'], {}), '(x_coords)\n', (4374, 4384), True, 'import numpy as np\n'), ((6879, 6897), 'numpy.random.seed', 'np.random.seed', (['(42)'], {}), '(42)\n', (6893, 6897), True, 'import numpy as np\n'), ((1573, 1588), 'numpy.zeros', 'np.zeros', (['shape'], {}), '(shape)\n', (1581, 1588), True, 'import numpy as np\n'), ((4874, 4937), 'os.path.join', 'os.path.join', (['data_dir', '"""cell_obj"""', '"""cells_final_selected.hdf5"""'], {}), "(data_dir, 'cell_obj', 'cells_final_selected.hdf5')\n", (4886, 4937), False, 'import os\n'), ((5133, 5179), 'os.path.join', 'os.path.join', (['data_dir', '"""images"""', '"""binary.npy"""'], {}), "(data_dir, 'images', 'binary.npy')\n", (5145, 5179), False, 'import os\n'), ((5213, 5264), 'os.path.join', 'os.path.join', (['data_dir', '"""images"""', '"""brightfield.npy"""'], {}), "(data_dir, 'images', 'brightfield.npy')\n", (5225, 5264), False, 'import os\n'), ((5303, 5353), 'os.path.join', 'os.path.join', (['data_dir', '"""images"""', '"""foci_inner.npy"""'], {}), "(data_dir, 'images', 'foci_inner.npy')\n", (5315, 5353), False, 'import os\n'), ((5391, 5441), 'os.path.join', 'os.path.join', (['data_dir', '"""images"""', '"""foci_outer.npy"""'], {}), "(data_dir, 'images', 'foci_outer.npy')\n", (5403, 5441), False, 'import os\n'), ((5479, 5530), 'os.path.join', 'os.path.join', (['data_dir', '"""images"""', '"""storm_inner.npy"""'], {}), "(data_dir, 'images', 'storm_inner.npy')\n", (5491, 5530), False, 'import os\n'), ((5569, 5620), 'os.path.join', 'os.path.join', (['data_dir', '"""images"""', '"""storm_outer.npy"""'], {}), "(data_dir, 'images', 'storm_outer.npy')\n", (5581, 5620), False, 'import os\n'), ((5668, 5714), 'os.path.join', 'os.path.join', (['data_dir', '"""images"""', '"""binary.tif"""'], {}), "(data_dir, 'images', 'binary.tif')\n", (5680, 5714), False, 'import os\n'), ((5756, 5807), 'os.path.join', 'os.path.join', (['data_dir', '"""images"""', '"""brightfield.tif"""'], {}), "(data_dir, 'images', 'brightfield.tif')\n", (5768, 5807), False, 'import os\n'), ((5854, 5904), 'os.path.join', 'os.path.join', (['data_dir', '"""images"""', '"""foci_inner.tif"""'], {}), "(data_dir, 'images', 'foci_inner.tif')\n", (5866, 5904), False, 'import os\n'), ((5950, 6000), 'os.path.join', 'os.path.join', (['data_dir', '"""images"""', '"""foci_outer.tif"""'], {}), "(data_dir, 'images', 'foci_outer.tif')\n", (5962, 6000), False, 'import os\n'), ((6041, 6092), 'os.path.join', 'os.path.join', (['data_dir', '"""images"""', '"""storm_inner.txt"""'], {}), "(data_dir, 'images', 'storm_inner.txt')\n", (6053, 6092), False, 'import os\n'), ((6134, 6185), 'os.path.join', 'os.path.join', (['data_dir', '"""images"""', '"""storm_outer.txt"""'], {}), "(data_dir, 'images', 'storm_outer.txt')\n", (6146, 6185), False, 'import os\n'), ((6342, 6393), 'os.path.join', 'os.path.join', (['data_dir', '"""images"""', '"""brightfield.npy"""'], {}), "(data_dir, 'images', 'brightfield.npy')\n", (6354, 6393), False, 'import os\n'), ((6580, 6597), 'colicoords.synthetic_data.draw_poisson', 'draw_poisson', (['img'], {}), '(img)\n', (6592, 6597), False, 'from colicoords.synthetic_data import add_readout_noise, draw_poisson\n'), ((6612, 6641), 'colicoords.synthetic_data.add_readout_noise', 'add_readout_noise', (['img', 'noise'], {}), '(img, noise)\n', (6629, 6641), False, 'from colicoords.synthetic_data import add_readout_noise, draw_poisson\n'), ((706, 719), 'tqdm.tqdm', 'tqdm', (['chunked'], {}), '(chunked)\n', (710, 719), False, 'from tqdm import tqdm\n'), ((2202, 2223), 'numpy.max', 'np.max', (['[0 - min1, 0]'], {}), '([0 - min1, 0])\n', (2208, 2223), True, 'import numpy as np\n'), ((2245, 2304), 'numpy.min', 'np.min', (['[data.shape[0] + (shape[0] - pos_y), data.shape[0]]'], {}), '([data.shape[0] + (shape[0] - pos_y), data.shape[0]])\n', (2251, 2304), True, 'import numpy as np\n'), ((2327, 2348), 'numpy.max', 'np.max', (['[0 - min2, 0]'], {}), '([0 - min2, 0])\n', (2333, 2348), True, 'import numpy as np\n'), ((2370, 2429), 'numpy.min', 'np.min', (['[data.shape[1] + (shape[1] - pos_x), data.shape[1]]'], {}), '([data.shape[1] + (shape[1] - pos_x), data.shape[1]])\n', (2376, 2429), True, 'import numpy as np\n'), ((2574, 2591), 'numpy.max', 'np.max', (['[min1, 0]'], {}), '([min1, 0])\n', (2580, 2591), True, 'import numpy as np\n'), ((2611, 2635), 'numpy.min', 'np.min', (['[max1, shape[0]]'], {}), '([max1, shape[0]])\n', (2617, 2635), True, 'import numpy as np\n'), ((2655, 2672), 'numpy.max', 'np.max', (['[min2, 0]'], {}), '([min2, 0])\n', (2661, 2672), True, 'import numpy as np\n'), ((2692, 2716), 'numpy.min', 'np.min', (['[max2, shape[1]]'], {}), '([max2, shape[1]])\n', (2698, 2716), True, 'import numpy as np\n'), ((2744, 2759), 'numpy.zeros', 'np.zeros', (['shape'], {}), '(shape)\n', (2752, 2759), True, 'import numpy as np\n'), ((2921, 2968), 'mahotas.distance', 'mh.distance', (['(1 - out_binary)'], {'metric': '"""euclidean"""'}), "(1 - out_binary, metric='euclidean')\n", (2932, 2968), True, 'import mahotas as mh\n'), ((4448, 4463), 'numpy.ones_like', 'np.ones_like', (['x'], {}), '(x)\n', (4460, 4463), True, 'import numpy as np\n'), ((4619, 4704), 'numpy.exp', 'np.exp', (['(-(((_x - x_coords) / _sigma) ** 2 + ((_y - y_coords) / _sigma) ** 2) / 2)'], {}), '(-(((_x - x_coords) / _sigma) ** 2 + ((_y - y_coords) / _sigma) ** 2) / 2\n )\n', (4625, 4704), True, 'import numpy as np\n'), ((5034, 5066), 'os.path.join', 'os.path.join', (['data_dir', '"""images"""'], {}), "(data_dir, 'images')\n", (5046, 5066), False, 'import os\n'), ((5086, 5118), 'os.path.join', 'os.path.join', (['data_dir', '"""images"""'], {}), "(data_dir, 'images')\n", (5098, 5118), False, 'import os\n'), ((6944, 6976), 'os.path.join', 'os.path.join', (['data_dir', '"""images"""'], {}), "(data_dir, 'images')\n", (6956, 6976), False, 'import os\n'), ((6996, 7028), 'os.path.join', 'os.path.join', (['data_dir', '"""images"""'], {}), "(data_dir, 'images')\n", (7008, 7028), False, 'import os\n'), ((423, 483), 'numpy.random.normal', 'np.random.normal', (['cell_per_img', 'cell_per_img_std', 'num_images'], {}), '(cell_per_img, cell_per_img_std, num_images)\n', (439, 483), True, 'import numpy as np\n'), ((936, 961), 'numpy.append', 'np.append', (['out_dict[k]', 'v'], {}), '(out_dict[k], v)\n', (945, 961), True, 'import numpy as np\n'), ((1167, 1197), 'numpy.zeros', 'np.zeros', (['(num_images, *shape)'], {}), '((num_images, *shape))\n', (1175, 1197), True, 'import numpy as np\n'), ((1942, 1965), 'numpy.floor', 'np.floor', (['data.shape[0]'], {}), '(data.shape[0])\n', (1950, 1965), True, 'import numpy as np\n'), ((2039, 2062), 'numpy.floor', 'np.floor', (['data.shape[1]'], {}), '(data.shape[1])\n', (2047, 2062), True, 'import numpy as np\n'), ((3607, 3642), 'numpy.append', 'np.append', (['out_dict[name]', 'data_out'], {}), '(out_dict[name], data_out)\n', (3616, 3642), True, 'import numpy as np\n'), ((1828, 1844), 'numpy.random.rand', 'np.random.rand', ([], {}), '()\n', (1842, 1844), True, 'import numpy as np\n'), ((1891, 1907), 'numpy.random.rand', 'np.random.rand', ([], {}), '()\n', (1905, 1907), True, 'import numpy as np\n')]
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import cv2 import numpy as np def flow_to_img(flow, normalize=True): """Convert flow to viewable image, using color hue to encode flow vector orientation, and color saturation to encode vector length. This is similar to the OpenCV tutorial on dense optical flow, except that they map vector length to the value plane of the HSV color model, instead of the saturation plane, as we do here. Args: flow: optical flow normalize: Normalize flow to 0..255 Returns: img: viewable representation of the dense optical flow in RGB format Ref: https://github.com/philferriere/tfoptflow/blob/33e8a701e34c8ce061f17297d40619afbd459ade/tfoptflow/optflow.py """ hsv = np.zeros((flow.shape[0], flow.shape[1], 3), dtype=np.uint8) flow_magnitude, flow_angle = cv2.cartToPolar(flow[..., 0].astype(np.float32), flow[..., 1].astype(np.float32)) # A couple times, we've gotten NaNs out of the above... nans = np.isnan(flow_magnitude) if np.any(nans): nans = np.where(nans) flow_magnitude[nans] = 0. # Normalize hsv[..., 0] = flow_angle * 180 / np.pi / 2 if normalize is True: hsv[..., 1] = cv2.normalize(flow_magnitude, None, 0, 255, cv2.NORM_MINMAX) else: hsv[..., 1] = flow_magnitude hsv[..., 2] = 255 img = cv2.cvtColor(hsv, cv2.COLOR_HSV2RGB) return img
[ "cv2.normalize", "numpy.where", "numpy.any", "numpy.zeros", "numpy.isnan", "cv2.cvtColor" ]
[((764, 823), 'numpy.zeros', 'np.zeros', (['(flow.shape[0], flow.shape[1], 3)'], {'dtype': 'np.uint8'}), '((flow.shape[0], flow.shape[1], 3), dtype=np.uint8)\n', (772, 823), True, 'import numpy as np\n'), ((1011, 1035), 'numpy.isnan', 'np.isnan', (['flow_magnitude'], {}), '(flow_magnitude)\n', (1019, 1035), True, 'import numpy as np\n'), ((1043, 1055), 'numpy.any', 'np.any', (['nans'], {}), '(nans)\n', (1049, 1055), True, 'import numpy as np\n'), ((1373, 1409), 'cv2.cvtColor', 'cv2.cvtColor', (['hsv', 'cv2.COLOR_HSV2RGB'], {}), '(hsv, cv2.COLOR_HSV2RGB)\n', (1385, 1409), False, 'import cv2\n'), ((1072, 1086), 'numpy.where', 'np.where', (['nans'], {}), '(nans)\n', (1080, 1086), True, 'import numpy as np\n'), ((1233, 1293), 'cv2.normalize', 'cv2.normalize', (['flow_magnitude', 'None', '(0)', '(255)', 'cv2.NORM_MINMAX'], {}), '(flow_magnitude, None, 0, 255, cv2.NORM_MINMAX)\n', (1246, 1293), False, 'import cv2\n')]
#!/usr/bin/env python import chainer from algs import trpo from env_makers import EnvMaker from models import GaussianMLPPolicy, MLPBaseline from utils import SnapshotSaver import numpy as np import os import logger log_dir = "data/local/trpo-pendulum" np.random.seed(42) # Clean up existing logs os.system("rm -rf {}".format(log_dir)) with logger.session(log_dir): env_maker = EnvMaker('Pendulum-v0') env = env_maker.make() policy = GaussianMLPPolicy( observation_space=env.observation_space, action_space=env.action_space, env_spec=env.spec, hidden_sizes=(64, 64), hidden_nonlinearity=chainer.functions.tanh, ) baseline = MLPBaseline( observation_space=env.observation_space, action_space=env.action_space, env_spec=env.spec, hidden_sizes=(64, 64), hidden_nonlinearity=chainer.functions.tanh, ) trpo( env=env, env_maker=env_maker, n_envs=16, policy=policy, baseline=baseline, batch_size=10000, n_iters=100, snapshot_saver=SnapshotSaver(log_dir), )
[ "models.GaussianMLPPolicy", "env_makers.EnvMaker", "models.MLPBaseline", "numpy.random.seed", "logger.session", "utils.SnapshotSaver" ]
[((256, 274), 'numpy.random.seed', 'np.random.seed', (['(42)'], {}), '(42)\n', (270, 274), True, 'import numpy as np\n'), ((346, 369), 'logger.session', 'logger.session', (['log_dir'], {}), '(log_dir)\n', (360, 369), False, 'import logger\n'), ((387, 410), 'env_makers.EnvMaker', 'EnvMaker', (['"""Pendulum-v0"""'], {}), "('Pendulum-v0')\n", (395, 410), False, 'from env_makers import EnvMaker\n'), ((451, 635), 'models.GaussianMLPPolicy', 'GaussianMLPPolicy', ([], {'observation_space': 'env.observation_space', 'action_space': 'env.action_space', 'env_spec': 'env.spec', 'hidden_sizes': '(64, 64)', 'hidden_nonlinearity': 'chainer.functions.tanh'}), '(observation_space=env.observation_space, action_space=env\n .action_space, env_spec=env.spec, hidden_sizes=(64, 64),\n hidden_nonlinearity=chainer.functions.tanh)\n', (468, 635), False, 'from models import GaussianMLPPolicy, MLPBaseline\n'), ((689, 867), 'models.MLPBaseline', 'MLPBaseline', ([], {'observation_space': 'env.observation_space', 'action_space': 'env.action_space', 'env_spec': 'env.spec', 'hidden_sizes': '(64, 64)', 'hidden_nonlinearity': 'chainer.functions.tanh'}), '(observation_space=env.observation_space, action_space=env.\n action_space, env_spec=env.spec, hidden_sizes=(64, 64),\n hidden_nonlinearity=chainer.functions.tanh)\n', (700, 867), False, 'from models import GaussianMLPPolicy, MLPBaseline\n'), ((1101, 1123), 'utils.SnapshotSaver', 'SnapshotSaver', (['log_dir'], {}), '(log_dir)\n', (1114, 1123), False, 'from utils import SnapshotSaver\n')]
import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt import matplotlib.collections as mcoll from matplotlib.ticker import MaxNLocator plt.style.use('seaborn-darkgrid') class BaseTraj: def __init__(self, model, X): self.model = model assert len(X.shape) == 2, f"X should be 2-d, instead got shape {X.shape}" self.X = X self.means = self.model.means_.copy() self.states = self.model.predict(X) self.n_states = len(np.unique(self.states)) self.trans = self.model.transmat_.copy() def rho_dt_bins(self, rho, theta, dt, bins=12): """ Bin rho values and dwell time on polar coordinates. :param rho: :param theta: :param dt: :param bins: :return: """ bins = np.linspace(-np.pi, np.pi, bins+1) bin_means = (bins[:-1] + bins[1:]) / 2 bin_ix = np.digitize(theta, bins) bin_rd = [rho[(bin_ix == i) & (rho > 0)].mean() if len(rho[(bin_ix == i) & (rho > 0)]) > 0 else 0 for i in range(1, len(bins))] bin_dt = [dt[(bin_ix == i) & (dt > 0)].sum() if len(dt[(bin_ix == i) & (dt > 0)]) > 0 else 0 for i in range(1, len(bins))] return bin_means, bin_rd, bin_dt def transition_vectors(self): """ Transition vectors between states on polar coordinates. :return: """ mu_x, mu_y = self.means[:, 0], self.means[:, 1] mu_x_dist = mu_x - mu_x[:, np.newaxis] mu_y_dist = mu_y - mu_y[:, np.newaxis] dist_vect = np.column_stack((mu_x_dist.flatten(), mu_y_dist.flatten())) trans_rho, trans_theta = self.cart2pol(dist_vect) trans_rho = (trans_rho.reshape((self.n_states, self.n_states)) * self.design_transition()).flatten() return trans_rho, trans_theta def design_transition(self, thresh=0.1): design_trans = self.trans diag_ix = np.diag_indices(len(design_trans)) design_trans[diag_ix] = 0 design_trans[design_trans < thresh] = 0 design_trans[design_trans >= thresh] = 1 return design_trans def norm_trans_time(self): """ Normalized transition time. :return: """ unique, counts = np.unique(self.states, return_counts=True) sort_ix = unique.argsort() counts = counts[sort_ix] # normalize by transition probability dt = (counts * self.design_transition()).flatten() return dt / dt.sum() def norm_state_time(self): """ Normalized state time. :return: """ unique, counts = np.unique(self.states, return_counts=True) sort_ix = unique.argsort() counts = counts[sort_ix] return counts / counts.sum() @staticmethod def cart2pol(arr): """ Cartesion space to polar space. Args: arr (numpy.array): Array of shape [n_state x dims] """ x, y = arr[:, 0], arr[:, 1] rho = np.sqrt(x ** 2 + y ** 2) theta = np.arctan2(y, x) return rho, theta class PhenoSign(BaseTraj): """Phenotypic Signature class.""" def __init__(self, model, X): super(PhenoSign, self).__init__(model, X) self.bin_means, self.signature = self.get_signature() def get_signature(self): """ Calculate phenotypic signature for a given model. :return: bin_means, array of shape [4 x n_bins] with 1. state radial distances 2. state dwell times 3. transition distances 3. transition dwell times """ # states mu_rho, mu_theta = self.cart2pol(self.means) state_dt = self.norm_state_time() bin_means_1, state_rd_bins, state_dt_bins = self.rho_dt_bins(mu_rho, mu_theta, state_dt) # transitions trans_rho, trans_theta = self.transition_vectors() trans_dt = self.norm_trans_time() bin_means_2, trans_rd_bins, trans_dt_bins = self.rho_dt_bins(trans_rho, trans_theta, trans_dt) assert (bin_means_1 == bin_means_2).all(), "state and transition vectors are binned differently and can" \ "not be concatenated." return bin_means_1, np.vstack((state_rd_bins, state_dt_bins, trans_rd_bins, trans_dt_bins)) class Saphire(PhenoSign): """Implementation of the SAPHIRE algorithm for plotting Hidden Markov Models. <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, <NAME>. Time series modeling of live-cell shape dynamics for image-based phenotypic profiling. Integr Biol (Camb). 2016;8(1):73-90. """ def __init__(self, model, X): super(Saphire, self).__init__(model, X) def plot_traj(self, projection='cartesian', ymax=None): """ Plot cell trajectory. Args: projection (str): cartesian or polar. ymax (int) """ avail_proj = ['cartesian', 'polar'] projection = projection.lower() assert projection in avail_proj, f"projection unknown: {projection}" if projection == 'cartesian': projection = None cmap = plt.get_cmap('binary') cmap = truncate_colormap(cmap, minval=0.2) if projection == 'polar': y, x = self.cart2pol(self.X) y_mu, x_mu = self.cart2pol(self.means) else: x, y = self.X[:, 0], self.X[:, 1] x_mu, y_mu = self.means[:, 0], self.means[:, 1] fig, ax = plt.subplots(figsize=(5, 5), subplot_kw={'projection': projection}) ax.scatter(x, y, c=self.states, cmap='Set1', zorder=2) traj = ax.scatter(x_mu, y_mu, c=np.unique(self.states), cmap='Set1', s=200, zorder=2, edgecolor='black', alpha=0.6) legend = ax.legend(*traj.legend_elements(), loc="upper right", bbox_to_anchor=(1.2, 0.94), title="States") ax.add_artist(legend) if ymax is not None: ax.set_ylim(0, ymax) ax.yaxis.set_major_locator(MaxNLocator(integer=True)) colorline(x, y, cmap=cmap, zorder=1) norm = mpl.colors.Normalize(vmin=0, vmax=48) cax = fig.add_axes([0.94, 0.15, 0.05, 0.3]) fig.colorbar(mpl.cm.ScalarMappable(norm=norm, cmap=cmap), cax=cax, orientation='vertical', label='Time') plt.show() return fig, ax def plot_states(self, ymax=None): """ Plot cell states. """ bin_rd, bin_dt = self.signature[0, :], self.signature[1, :] fig, ax = plt.subplots(figsize=(5, 5), subplot_kw={'projection': 'polar'}) cmap = plt.get_cmap("Oranges") N = 12 width = (2 * np.pi) / N ax.bar(self.bin_means, bin_rd, width=width, color=cmap(bin_dt)) if ymax is not None: ax.set_ylim(0, ymax) ax.yaxis.set_major_locator(MaxNLocator(integer=True)) norm = mpl.colors.Normalize(vmin=0, vmax=1) cax = fig.add_axes([0.94, 0.15, 0.05, 0.3]) fig.colorbar(mpl.cm.ScalarMappable(norm=norm, cmap=cmap), cax=cax, orientation='vertical', label='Increasing state dwell time', ticks=[0, 0.5, 1]) return fig, ax def plot_transition(self, ymax=None): """ Plot transition between cell states. """ bin_rd, bin_dt = self.signature[2, :], self.signature[3, :] fig, ax = plt.subplots(figsize=(5, 5), subplot_kw={'projection': 'polar'}) cmap = plt.get_cmap("Blues") N = 12 width = (2 * np.pi) / N ax.bar(self.bin_means, bin_rd, width=width, color=cmap(bin_dt)) if ymax is not None: ax.set_ylim(0, ymax) ax.yaxis.set_major_locator(MaxNLocator(integer=True)) norm = mpl.colors.Normalize(vmin=0, vmax=1) cax = fig.add_axes([0.94, 0.15, 0.05, 0.3]) fig.colorbar(mpl.cm.ScalarMappable(norm=norm, cmap=cmap), cax=cax, orientation='vertical', label='Increasing transition dwell time', ticks=[0, 0.5, 1]) return fig, ax def colorline(x, y, z=None, cmap=plt.get_cmap('copper'), norm=plt.Normalize(0.0, 1.0), linewidth=3, alpha=1.0, zorder=1): """ Plot a colored line with coordinates x and y Optionally specify colors in the array z Optionally specify a colormap, a norm function and a line width """ # Default colors equally spaced on [0,1]: if z is None: z = np.linspace(0.0, 1.0, len(x)) # Special case if a single number: if not hasattr(z, "__iter__"): # to check for numerical input -- this is a hack z = np.array([z]) z = np.asarray(z) segments = make_segments(x, y) lc = mcoll.LineCollection(segments, array=z, cmap=cmap, norm=norm, linewidth=linewidth, alpha=alpha, zorder=zorder) ax = plt.gca() ax.add_collection(lc) return lc def make_segments(x, y): """ Create list of line segments from x and y coordinates, in the correct format for LineCollection: an array of the form numlines x (points per line) x 2 (x and y) array """ points = np.array([x, y]).T.reshape(-1, 1, 2) segments = np.concatenate([points[:-1], points[1:]], axis=1) return segments def truncate_colormap(cmap, minval=0.0, maxval=1.0, n=100): ''' https://stackoverflow.com/a/18926541 ''' if isinstance(cmap, str): cmap = plt.get_cmap(cmap) new_cmap = mpl.colors.LinearSegmentedColormap.from_list( 'trunc({n},{a:.2f},{b:.2f})'.format(n=cmap.name, a=minval, b=maxval), cmap(np.linspace(minval, maxval, n))) return new_cmap
[ "numpy.sqrt", "matplotlib.collections.LineCollection", "numpy.array", "matplotlib.ticker.MaxNLocator", "numpy.arctan2", "matplotlib.pyplot.Normalize", "numpy.asarray", "matplotlib.pyplot.style.use", "numpy.linspace", "matplotlib.cm.ScalarMappable", "numpy.vstack", "numpy.concatenate", "numpy.digitize", "matplotlib.pyplot.gca", "matplotlib.colors.Normalize", "matplotlib.pyplot.show", "matplotlib.pyplot.get_cmap", "numpy.unique", "matplotlib.pyplot.subplots" ]
[((158, 191), 'matplotlib.pyplot.style.use', 'plt.style.use', (['"""seaborn-darkgrid"""'], {}), "('seaborn-darkgrid')\n", (171, 191), True, 'import matplotlib.pyplot as plt\n'), ((8329, 8351), 'matplotlib.pyplot.get_cmap', 'plt.get_cmap', (['"""copper"""'], {}), "('copper')\n", (8341, 8351), True, 'import matplotlib.pyplot as plt\n'), ((8358, 8381), 'matplotlib.pyplot.Normalize', 'plt.Normalize', (['(0.0)', '(1.0)'], {}), '(0.0, 1.0)\n', (8371, 8381), True, 'import matplotlib.pyplot as plt\n'), ((8871, 8884), 'numpy.asarray', 'np.asarray', (['z'], {}), '(z)\n', (8881, 8884), True, 'import numpy as np\n'), ((8930, 9045), 'matplotlib.collections.LineCollection', 'mcoll.LineCollection', (['segments'], {'array': 'z', 'cmap': 'cmap', 'norm': 'norm', 'linewidth': 'linewidth', 'alpha': 'alpha', 'zorder': 'zorder'}), '(segments, array=z, cmap=cmap, norm=norm, linewidth=\n linewidth, alpha=alpha, zorder=zorder)\n', (8950, 9045), True, 'import matplotlib.collections as mcoll\n'), ((9081, 9090), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (9088, 9090), True, 'import matplotlib.pyplot as plt\n'), ((9420, 9469), 'numpy.concatenate', 'np.concatenate', (['[points[:-1], points[1:]]'], {'axis': '(1)'}), '([points[:-1], points[1:]], axis=1)\n', (9434, 9469), True, 'import numpy as np\n'), ((815, 851), 'numpy.linspace', 'np.linspace', (['(-np.pi)', 'np.pi', '(bins + 1)'], {}), '(-np.pi, np.pi, bins + 1)\n', (826, 851), True, 'import numpy as np\n'), ((914, 938), 'numpy.digitize', 'np.digitize', (['theta', 'bins'], {}), '(theta, bins)\n', (925, 938), True, 'import numpy as np\n'), ((2323, 2365), 'numpy.unique', 'np.unique', (['self.states'], {'return_counts': '(True)'}), '(self.states, return_counts=True)\n', (2332, 2365), True, 'import numpy as np\n'), ((2699, 2741), 'numpy.unique', 'np.unique', (['self.states'], {'return_counts': '(True)'}), '(self.states, return_counts=True)\n', (2708, 2741), True, 'import numpy as np\n'), ((3077, 3101), 'numpy.sqrt', 'np.sqrt', (['(x ** 2 + y ** 2)'], {}), '(x ** 2 + y ** 2)\n', (3084, 3101), True, 'import numpy as np\n'), ((3118, 3134), 'numpy.arctan2', 'np.arctan2', (['y', 'x'], {}), '(y, x)\n', (3128, 3134), True, 'import numpy as np\n'), ((5254, 5276), 'matplotlib.pyplot.get_cmap', 'plt.get_cmap', (['"""binary"""'], {}), "('binary')\n", (5266, 5276), True, 'import matplotlib.pyplot as plt\n'), ((5594, 5661), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {'figsize': '(5, 5)', 'subplot_kw': "{'projection': projection}"}), "(figsize=(5, 5), subplot_kw={'projection': projection})\n", (5606, 5661), True, 'import matplotlib.pyplot as plt\n'), ((6303, 6340), 'matplotlib.colors.Normalize', 'mpl.colors.Normalize', ([], {'vmin': '(0)', 'vmax': '(48)'}), '(vmin=0, vmax=48)\n', (6323, 6340), True, 'import matplotlib as mpl\n'), ((6535, 6545), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (6543, 6545), True, 'import matplotlib.pyplot as plt\n'), ((6747, 6811), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {'figsize': '(5, 5)', 'subplot_kw': "{'projection': 'polar'}"}), "(figsize=(5, 5), subplot_kw={'projection': 'polar'})\n", (6759, 6811), True, 'import matplotlib.pyplot as plt\n'), ((6827, 6850), 'matplotlib.pyplot.get_cmap', 'plt.get_cmap', (['"""Oranges"""'], {}), "('Oranges')\n", (6839, 6850), True, 'import matplotlib.pyplot as plt\n'), ((7109, 7145), 'matplotlib.colors.Normalize', 'mpl.colors.Normalize', ([], {'vmin': '(0)', 'vmax': '(1)'}), '(vmin=0, vmax=1)\n', (7129, 7145), True, 'import matplotlib as mpl\n'), ((7619, 7683), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {'figsize': '(5, 5)', 'subplot_kw': "{'projection': 'polar'}"}), "(figsize=(5, 5), subplot_kw={'projection': 'polar'})\n", (7631, 7683), True, 'import matplotlib.pyplot as plt\n'), ((7699, 7720), 'matplotlib.pyplot.get_cmap', 'plt.get_cmap', (['"""Blues"""'], {}), "('Blues')\n", (7711, 7720), True, 'import matplotlib.pyplot as plt\n'), ((7979, 8015), 'matplotlib.colors.Normalize', 'mpl.colors.Normalize', ([], {'vmin': '(0)', 'vmax': '(1)'}), '(vmin=0, vmax=1)\n', (7999, 8015), True, 'import matplotlib as mpl\n'), ((8848, 8861), 'numpy.array', 'np.array', (['[z]'], {}), '([z])\n', (8856, 8861), True, 'import numpy as np\n'), ((9654, 9672), 'matplotlib.pyplot.get_cmap', 'plt.get_cmap', (['cmap'], {}), '(cmap)\n', (9666, 9672), True, 'import matplotlib.pyplot as plt\n'), ((490, 512), 'numpy.unique', 'np.unique', (['self.states'], {}), '(self.states)\n', (499, 512), True, 'import numpy as np\n'), ((4349, 4420), 'numpy.vstack', 'np.vstack', (['(state_rd_bins, state_dt_bins, trans_rd_bins, trans_dt_bins)'], {}), '((state_rd_bins, state_dt_bins, trans_rd_bins, trans_dt_bins))\n', (4358, 4420), True, 'import numpy as np\n'), ((6216, 6241), 'matplotlib.ticker.MaxNLocator', 'MaxNLocator', ([], {'integer': '(True)'}), '(integer=True)\n', (6227, 6241), False, 'from matplotlib.ticker import MaxNLocator\n'), ((6414, 6457), 'matplotlib.cm.ScalarMappable', 'mpl.cm.ScalarMappable', ([], {'norm': 'norm', 'cmap': 'cmap'}), '(norm=norm, cmap=cmap)\n', (6435, 6457), True, 'import matplotlib as mpl\n'), ((7067, 7092), 'matplotlib.ticker.MaxNLocator', 'MaxNLocator', ([], {'integer': '(True)'}), '(integer=True)\n', (7078, 7092), False, 'from matplotlib.ticker import MaxNLocator\n'), ((7219, 7262), 'matplotlib.cm.ScalarMappable', 'mpl.cm.ScalarMappable', ([], {'norm': 'norm', 'cmap': 'cmap'}), '(norm=norm, cmap=cmap)\n', (7240, 7262), True, 'import matplotlib as mpl\n'), ((7937, 7962), 'matplotlib.ticker.MaxNLocator', 'MaxNLocator', ([], {'integer': '(True)'}), '(integer=True)\n', (7948, 7962), False, 'from matplotlib.ticker import MaxNLocator\n'), ((8089, 8132), 'matplotlib.cm.ScalarMappable', 'mpl.cm.ScalarMappable', ([], {'norm': 'norm', 'cmap': 'cmap'}), '(norm=norm, cmap=cmap)\n', (8110, 8132), True, 'import matplotlib as mpl\n'), ((9825, 9855), 'numpy.linspace', 'np.linspace', (['minval', 'maxval', 'n'], {}), '(minval, maxval, n)\n', (9836, 9855), True, 'import numpy as np\n'), ((5810, 5832), 'numpy.unique', 'np.unique', (['self.states'], {}), '(self.states)\n', (5819, 5832), True, 'import numpy as np\n'), ((9368, 9384), 'numpy.array', 'np.array', (['[x, y]'], {}), '([x, y])\n', (9376, 9384), True, 'import numpy as np\n')]
import cv2 from cv2 import * import numpy as np from matplotlib import pyplot as plt ###############################SIFT MATCH Function################################# def SIFTMATCH(img1,img2): # Initiate SIFT detector sift = cv2.xfeatures2d.SIFT_create() # find the keypoints and descriptors with SIFT kp1, des1 = sift.detectAndCompute(img1,None) kp2, des2 = sift.detectAndCompute(img2,None) FLANN_INDEX_KDTREE = 0 index_params = dict(algorithm = FLANN_INDEX_KDTREE, trees = 5) search_params = dict(checks = 50) flann = cv2.FlannBasedMatcher(index_params, search_params) matches = flann.knnMatch(des1,des2,k=2) # store all the good matches as per Lowe's ratio test. good = [] for m,n in matches: if m.distance < 0.7*n.distance: good.append(m) if len(good)>MIN_MATCH_COUNT: src_pts = np.float32([ kp1[m.queryIdx].pt for m in good ]).reshape(-1,1,2) dst_pts = np.float32([ kp2[m.trainIdx].pt for m in good ]).reshape(-1,1,2) M, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC,5.0) matchesMask = mask.ravel().tolist() h,w = img1.shape pts = np.float32([ [0,0],[0,h-1],[w-1,h-1],[w-1,0] ]).reshape(-1,1,2) dst = cv2.perspectiveTransform(pts,M) img2 = cv2.polylines(img2,[np.int32(dst)],True,255,3, cv2.LINE_AA) else: print("Not enough matches are found - %d/%d" % (len(good),MIN_MATCH_COUNT)) matchesMask = None draw_params = dict(matchColor = (0,255,0), # draw matches in green color singlePointColor = None, matchesMask = matchesMask, # draw only inliers flags = 2) img3 = cv2.drawMatches(img1,kp1,img2,kp2,good,None,**draw_params) cv2.moveWindow('output', 150,150) # Move it to (40,30) cv2.imshow('output',img3) cv2.waitKey(0) #The function waits for specified milliseconds for any keyboard event cv2.destroyAllWindows() #cv2.destroyAllWindows() simply destroys all the windows we created ################################################################################################### #################################Function######################### def CercleDetection(img1): # Read Image raw_image = cv2.imread(img1) # Bilateral filtering forms a very good way to preserve edges. It is a non-linear filter and helps reduce noise # The parameters used are: the image, window size for averaging the neighbour, sigmaColor(Sigma value in the color space. bilateral_filtered_image = cv2.bilateralFilter(raw_image, 5, 175, 175) # Canny edge detector to detect edges in the image It takes 3 parameters: image, lower threshold and upper threshold. edge_detected_image = cv2.Canny(bilateral_filtered_image, 75, 200) # Find Contours _, contours, hierarchy = cv2.findContours(edge_detected_image, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) contour_list = [] for contour in contours: approx = cv2.approxPolyDP(contour,0.01*cv2.arcLength(contour,True),True) area = cv2.contourArea(contour) if ((len(approx) > 8) & (len(approx) < 23) & (area > 50000) ): contour_list.append(contour) print("area %.3f"%(area)) M = cv2.moments(contour) # calculate x,y coordinate of center if M["m00"] != 0: cX = int(M["m10"] / M["m00"]) cY = int(M["m01"] / M["m00"]) else: cX, cY = 0, 0 cv2.circle(raw_image, (cX, cY), 5, (255, 255, 255), -1) cv2.putText(raw_image, "centroid", (cX - 25, cY - 25),cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 2) # Draw Contours of circles cv2.drawContours(raw_image, contour_list, -1, (0, 255, 0), 3) # Display Images cv2.imshow("Objects Detected",raw_image) cv2.waitKey(0) cv2.destroyAllWindows() return cX,cY ############################################################ ###########################MAIN############################# MIN_MATCH_COUNT = 10 e1 = cv2.getTickCount() # # initialize the camera # cam = VideoCapture(0) # 0 -> index of camera # s, img1 = cam.read() # ret = cam.set(3,1920); # ret = cam.set(4,1080); # if s: # frame captured without any errors # cv2.namedWindow("output", cv2.WINDOW_NORMAL) # cv2.imshow("cam-test",img1) # waitKey(0) # destroyWindow("cam-test") # imwrite("Scene.jpg",img1) #save image # del(cam) # Scene image in Grayscale # imgray = cv2.cvtColor(img1,cv2.COLOR_BGR2GRAY) imgray = cv2.imread('Scene.jpg', 0) # queryImage # Reference Piece Image img1 = cv2.imread('img3.jpg',0) # queryImage # SIFT Algorithm fore Object Detection SIFTMATCH(img1, imgray) # image de reference cX, cY = CercleDetection('img3.jpg') print('cX = %.3f , cY =%.3f' % (cX, cY)) # Image Webcam cX2, cY2 = CercleDetection('img3.jpg') print('cX2 = %.3f , cY2 =%.3f' % (cX2, cY2)) deltaX = (cX2-cX) deltaY = -(CY2-cY) # Write X and Y values to File file = open("values.txt", "w") file.write("%.3f \n" % deltaX) file.write("%.3f \n" % deltaY) file.close() #Calculate time of execution e2 = cv2.getTickCount() time = (e2 - e1)/ cv2.getTickFrequency() print('time needed to execute') print(time)
[ "numpy.int32", "cv2.imshow", "cv2.destroyAllWindows", "cv2.xfeatures2d.SIFT_create", "cv2.moveWindow", "cv2.arcLength", "cv2.contourArea", "cv2.perspectiveTransform", "cv2.waitKey", "cv2.getTickFrequency", "cv2.drawContours", "cv2.findHomography", "cv2.putText", "cv2.circle", "cv2.moments", "cv2.Canny", "cv2.imread", "cv2.bilateralFilter", "cv2.getTickCount", "cv2.FlannBasedMatcher", "cv2.findContours", "cv2.drawMatches", "numpy.float32" ]
[((4277, 4295), 'cv2.getTickCount', 'cv2.getTickCount', ([], {}), '()\n', (4293, 4295), False, 'import cv2\n'), ((4792, 4818), 'cv2.imread', 'cv2.imread', (['"""Scene.jpg"""', '(0)'], {}), "('Scene.jpg', 0)\n", (4802, 4818), False, 'import cv2\n'), ((4869, 4894), 'cv2.imread', 'cv2.imread', (['"""img3.jpg"""', '(0)'], {}), "('img3.jpg', 0)\n", (4879, 4894), False, 'import cv2\n'), ((5432, 5450), 'cv2.getTickCount', 'cv2.getTickCount', ([], {}), '()\n', (5448, 5450), False, 'import cv2\n'), ((252, 281), 'cv2.xfeatures2d.SIFT_create', 'cv2.xfeatures2d.SIFT_create', ([], {}), '()\n', (279, 281), False, 'import cv2\n'), ((588, 638), 'cv2.FlannBasedMatcher', 'cv2.FlannBasedMatcher', (['index_params', 'search_params'], {}), '(index_params, search_params)\n', (609, 638), False, 'import cv2\n'), ((1808, 1872), 'cv2.drawMatches', 'cv2.drawMatches', (['img1', 'kp1', 'img2', 'kp2', 'good', 'None'], {}), '(img1, kp1, img2, kp2, good, None, **draw_params)\n', (1823, 1872), False, 'import cv2\n'), ((1876, 1910), 'cv2.moveWindow', 'cv2.moveWindow', (['"""output"""', '(150)', '(150)'], {}), "('output', 150, 150)\n", (1890, 1910), False, 'import cv2\n'), ((1937, 1963), 'cv2.imshow', 'cv2.imshow', (['"""output"""', 'img3'], {}), "('output', img3)\n", (1947, 1963), False, 'import cv2\n'), ((1968, 1982), 'cv2.waitKey', 'cv2.waitKey', (['(0)'], {}), '(0)\n', (1979, 1982), False, 'import cv2\n'), ((2062, 2085), 'cv2.destroyAllWindows', 'cv2.destroyAllWindows', ([], {}), '()\n', (2083, 2085), False, 'import cv2\n'), ((2394, 2410), 'cv2.imread', 'cv2.imread', (['img1'], {}), '(img1)\n', (2404, 2410), False, 'import cv2\n'), ((2691, 2734), 'cv2.bilateralFilter', 'cv2.bilateralFilter', (['raw_image', '(5)', '(175)', '(175)'], {}), '(raw_image, 5, 175, 175)\n', (2710, 2734), False, 'import cv2\n'), ((2887, 2931), 'cv2.Canny', 'cv2.Canny', (['bilateral_filtered_image', '(75)', '(200)'], {}), '(bilateral_filtered_image, 75, 200)\n', (2896, 2931), False, 'import cv2\n'), ((2987, 3064), 'cv2.findContours', 'cv2.findContours', (['edge_detected_image', 'cv2.RETR_TREE', 'cv2.CHAIN_APPROX_SIMPLE'], {}), '(edge_detected_image, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)\n', (3003, 3064), False, 'import cv2\n'), ((3906, 3967), 'cv2.drawContours', 'cv2.drawContours', (['raw_image', 'contour_list', '(-1)', '(0, 255, 0)', '(3)'], {}), '(raw_image, contour_list, -1, (0, 255, 0), 3)\n', (3922, 3967), False, 'import cv2\n'), ((4000, 4041), 'cv2.imshow', 'cv2.imshow', (['"""Objects Detected"""', 'raw_image'], {}), "('Objects Detected', raw_image)\n", (4010, 4041), False, 'import cv2\n'), ((4046, 4060), 'cv2.waitKey', 'cv2.waitKey', (['(0)'], {}), '(0)\n', (4057, 4060), False, 'import cv2\n'), ((4066, 4089), 'cv2.destroyAllWindows', 'cv2.destroyAllWindows', ([], {}), '()\n', (4087, 4089), False, 'import cv2\n'), ((5470, 5492), 'cv2.getTickFrequency', 'cv2.getTickFrequency', ([], {}), '()\n', (5490, 5492), False, 'import cv2\n'), ((1085, 1138), 'cv2.findHomography', 'cv2.findHomography', (['src_pts', 'dst_pts', 'cv2.RANSAC', '(5.0)'], {}), '(src_pts, dst_pts, cv2.RANSAC, 5.0)\n', (1103, 1138), False, 'import cv2\n'), ((1305, 1337), 'cv2.perspectiveTransform', 'cv2.perspectiveTransform', (['pts', 'M'], {}), '(pts, M)\n', (1329, 1337), False, 'import cv2\n'), ((3218, 3242), 'cv2.contourArea', 'cv2.contourArea', (['contour'], {}), '(contour)\n', (3233, 3242), False, 'import cv2\n'), ((3413, 3433), 'cv2.moments', 'cv2.moments', (['contour'], {}), '(contour)\n', (3424, 3433), False, 'import cv2\n'), ((3663, 3718), 'cv2.circle', 'cv2.circle', (['raw_image', '(cX, cY)', '(5)', '(255, 255, 255)', '(-1)'], {}), '(raw_image, (cX, cY), 5, (255, 255, 255), -1)\n', (3673, 3718), False, 'import cv2\n'), ((3732, 3842), 'cv2.putText', 'cv2.putText', (['raw_image', '"""centroid"""', '(cX - 25, cY - 25)', 'cv2.FONT_HERSHEY_SIMPLEX', '(0.5)', '(255, 255, 255)', '(2)'], {}), "(raw_image, 'centroid', (cX - 25, cY - 25), cv2.\n FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 2)\n", (3743, 3842), False, 'import cv2\n'), ((915, 961), 'numpy.float32', 'np.float32', (['[kp1[m.queryIdx].pt for m in good]'], {}), '([kp1[m.queryIdx].pt for m in good])\n', (925, 961), True, 'import numpy as np\n'), ((999, 1045), 'numpy.float32', 'np.float32', (['[kp2[m.trainIdx].pt for m in good]'], {}), '([kp2[m.trainIdx].pt for m in good])\n', (1009, 1045), True, 'import numpy as np\n'), ((1226, 1286), 'numpy.float32', 'np.float32', (['[[0, 0], [0, h - 1], [w - 1, h - 1], [w - 1, 0]]'], {}), '([[0, 0], [0, h - 1], [w - 1, h - 1], [w - 1, 0]])\n', (1236, 1286), True, 'import numpy as np\n'), ((1375, 1388), 'numpy.int32', 'np.int32', (['dst'], {}), '(dst)\n', (1383, 1388), True, 'import numpy as np\n'), ((3168, 3196), 'cv2.arcLength', 'cv2.arcLength', (['contour', '(True)'], {}), '(contour, True)\n', (3181, 3196), False, 'import cv2\n')]
import dash from dash.exceptions import PreventUpdate import dash_core_components as dcc import dash_html_components as html from dash.dependencies import Input, Output, State import dash_bootstrap_components as dbc import dash_table import plotly.express as ex import plotly.graph_objects as go import pandas as pd import numpy as np data = pd.read_csv("./data/Phone_dataset_new.csv", header=0) details = pd.read_csv("./data/Phone_details.csv", header=0) names = details.loc[0] data = data.rename(columns=names) details = details.rename(columns=names) maxi = details.loc[1].astype(int) details_on_card = details.loc[2].astype(int) details_on_card = details.columns[details_on_card == 1] fitness_columns = { "Memory": -1, "RAM": -1, "Camera (MP)": -1, "Price (Euros)": 1, } fitness_data = data[fitness_columns] * maxi[fitness_columns].values external_stylesheets = ["https://codepen.io/chriddyp/pen/bWLwgP.css"] app = dash.Dash( __name__, external_stylesheets=[dbc.themes.LITERA], eager_loading=True, suppress_callback_exceptions=True, ) app.layout = html.Div( children=[ # .container class is fixed, .container.scalable is scalable dbc.Row( [ dbc.Col( html.H1( children="What is your optimal phone?", className="text-center mt-4", ) ) ] ), dbc.Row( [ dbc.Col( children=[ # Top card with details(?) dbc.Card( children=[ dbc.CardBody( [ html.H4( "Researcher's Night Event", className="card-title text-center", ), html.P( ( "This app uses decision support tools to " "quickly and easily find phones which reflect " "the user's desires. Input your preferences " "below. The box on top right shows the phone " "which matches the preferences the best. " "The box on bottom right provides some " "close alternatives." ), className="card-text", ), ] ) ], className="mr-3 ml-3 mb-2 mt-2", ), dbc.Form( [ dbc.FormGroup( children=[ dbc.Label( "Choose desired operating system", html_for="os-choice", ), dbc.RadioItems( options=[ { "label": "Android", "value": "Android", }, {"label": "iOS", "value": "IOS"}, { "label": "No preference", "value": "both", }, ], id="os-choice", value="both", inline=True, # className="text-center mt-4", ), ], className="mr-3 ml-3 mb-2 mt-2", ), dbc.FormGroup( children=[ dbc.Label( "Choose desired Memory capacity (GB)", html_for="memory-choice", ), dcc.Slider( id="memory-choice", min=16, max=256, step=None, included=False, value=256, marks={ 16: "16", 32: "32", 64: "64", 128: "128", 256: "256", }, # className="text-center mt-5", ), ], className="mr-3 ml-3 mb-2 mt-2", ), dbc.FormGroup( children=[ dbc.Label( "Choose desired RAM capacity (GB)", html_for="ram-choice", ), dcc.Slider( id="ram-choice", min=2, max=12, step=1, value=12, included=False, marks={ 2: "2", 3: "3", 4: "4", 5: "5", 6: "6", 7: "7", 8: "8", 9: "9", 10: "10", 11: "11", 12: "12", }, className="text-center mt-5", ), ], className="mr-3 ml-3 mb-2 mt-2", ), dbc.FormGroup( children=[ dbc.Label( "Choose desired camera resolution (MP)", html_for="cam-choice", ), dcc.Slider( id="cam-choice", min=0, max=130, step=1, included=False, value=70, marks={ 0: "0", 10: "10", 30: "30", 50: "50", 70: "70", 90: "90", 110: "110", 130: "130", }, className="text-center mt-5", ), ], className="mr-3 ml-3 mb-2 mt-2", ), dbc.FormGroup( children=[ dbc.Label( "Choose desired budget (Euros)", html_for="cost-choice", ), dcc.Slider( id="cost-choice", min=0, max=1400, step=1, included=False, value=100, marks={ 0: "0", 200: "200", 400: "400", 600: "600", 800: "800", 1000: "1000", 1200: "1200", 1400: "1400", }, className="text-center mt-5", ), ], className="mr-3 ml-3 mb-2 mt-2", ), ], style={"maxHeight": "560px", "overflow": "auto"}, ), ], width={"size": 5, "offset": 1}, ), dbc.Col( children=[ dbc.Card( children=[ dbc.CardHeader("The best phone for you is:"), dbc.CardBody(id="results"), ], className="mb-4", ), dbc.Card( children=[ dbc.CardHeader("Other great phones:"), dbc.CardBody( id="other-results", children=( [ html.P( html.Span( f"{i}. ", id=f"other-results-list-{i}", ) ) for i in range(2, 6) ] + [ dbc.Tooltip( id=f"other-results-tooltip-{i}", target=f"other-results-list-{i}", placement="right", style={ "maxWidth": 700, "background-color": "white", "color": "white", "border-style": "solid", "border-color": "black", }, ) for i in range(2, 6) ] ), ), ], className="mt-4", ), html.Div(id="tooltips"), ], width={"size": 5, "offset": 0}, className="mb-2 mt-2", ), ] ), dbc.Row([html.Div(id="callback-dump")]), ], ) @app.callback( [ Output("results", "children"), *[Output(f"other-results-list-{i}", "children") for i in range(2, 6)], *[Output(f"other-results-tooltip-{i}", "children") for i in range(2, 6)], ], [ Input(f"{attr}-choice", "value") for attr in ["os", "memory", "ram", "cam", "cost"] ], ) def results(*choices): if choices[0] == "both": choice_data = data elif choices[0] == "IOS": choice_data = data[[True if "IOS" in st else False for st in data["OS"]]] if choices[0] == "Android": choice_data = data[[True if "Android" in st else False for st in data["OS"]]] relevant_data = choice_data[ ["Memory", "RAM", "Camera (MP)", "Price (Euros)",] ].reset_index(drop=True) card_data = choice_data[details_on_card].reset_index(drop=True) maxi = np.asarray([-1, -1, -1, 1]) relevant_data = relevant_data * maxi ideal = relevant_data.min().values nadir = relevant_data.max().values aspirations = choices[1:] * maxi distance = (aspirations - relevant_data) / (ideal - nadir) distance = distance.max(axis=1) distance_order = np.argsort(distance) best = table_from_data(card_data.loc[distance_order.values[0]], choices[1:]) total_number = len(distance_order) if total_number >= 4: others, tooltips = other_options(card_data.loc[distance_order.values[1:5]]) else: others, tooltips = other_options( card_data.loc[distance_order.values[1:total_number]] ) others = others + [f"{i}. -" for i in range(len(others) + 2, 6)] tooltips = tooltips + [None for i in range(len(tooltips) + 2, 6)] return (best, *others, *tooltips) """@app.callback(Output("tooltips", "children"), [Input("callback-dump", "children")]) def tooltips(tooldict): num = len(tooldict["ids"]) content = [] for i in range(num): content.append(dbc.Tooltip(tooldict["tables"][i], target=tooldict["ids"][i])) return content""" def table_from_data(data, choices): # print(choices) to_compare = ["Memory", "RAM", "Camera (MP)", "Price (Euros)"] # print(data[to_compare].values) diff = (data[to_compare].values - choices) * [1, 1, 1, -1] colors = [None, None, None] + ["green" if x >= 0 else "red" for x in diff] # print(np.sign(diff)) return dbc.Table( [ html.Tbody( [ html.Tr( [ html.Th(col), html.Td([str(data[col]),],), html.Td([html.Span(" ▉", style={"color": c,},)],), ] ) for (col, c) in zip(data.index, colors) ] ) ] ) def table_from_data_horizontal(data): header = [html.Thead(html.Tr([html.Th(col) for col in data.index]))] body = [html.Tbody([html.Tr([html.Td(data[col]) for col in data.index])])] return dbc.Table(header + body) def other_options(data): contents = [] tables = [] ids = [] i = 2 for index, row in data.iterrows(): contents.append(f"{i}. {row['Model']}") tables.append(table_from_data_horizontal(row)) i = i + 1 return contents, tables if __name__ == "__main__": app.run_server(debug=False)
[ "pandas.read_csv", "dash.dependencies.Input", "numpy.argsort", "dash_html_components.Td", "dash_bootstrap_components.Label", "dash_html_components.Div", "dash.Dash", "dash_bootstrap_components.Tooltip", "dash.dependencies.Output", "dash_html_components.Span", "numpy.asarray", "dash_bootstrap_components.Table", "dash_html_components.Th", "dash_bootstrap_components.RadioItems", "dash_html_components.H1", "dash_core_components.Slider", "dash_html_components.P", "dash_html_components.H4", "dash_bootstrap_components.CardHeader", "dash_bootstrap_components.CardBody" ]
[((345, 398), 'pandas.read_csv', 'pd.read_csv', (['"""./data/Phone_dataset_new.csv"""'], {'header': '(0)'}), "('./data/Phone_dataset_new.csv', header=0)\n", (356, 398), True, 'import pandas as pd\n'), ((409, 458), 'pandas.read_csv', 'pd.read_csv', (['"""./data/Phone_details.csv"""'], {'header': '(0)'}), "('./data/Phone_details.csv', header=0)\n", (420, 458), True, 'import pandas as pd\n'), ((947, 1068), 'dash.Dash', 'dash.Dash', (['__name__'], {'external_stylesheets': '[dbc.themes.LITERA]', 'eager_loading': '(True)', 'suppress_callback_exceptions': '(True)'}), '(__name__, external_stylesheets=[dbc.themes.LITERA], eager_loading\n =True, suppress_callback_exceptions=True)\n', (956, 1068), False, 'import dash\n'), ((14486, 14513), 'numpy.asarray', 'np.asarray', (['[-1, -1, -1, 1]'], {}), '([-1, -1, -1, 1])\n', (14496, 14513), True, 'import numpy as np\n'), ((14790, 14810), 'numpy.argsort', 'np.argsort', (['distance'], {}), '(distance)\n', (14800, 14810), True, 'import numpy as np\n'), ((16645, 16669), 'dash_bootstrap_components.Table', 'dbc.Table', (['(header + body)'], {}), '(header + body)\n', (16654, 16669), True, 'import dash_bootstrap_components as dbc\n'), ((13663, 13692), 'dash.dependencies.Output', 'Output', (['"""results"""', '"""children"""'], {}), "('results', 'children')\n", (13669, 13692), False, 'from dash.dependencies import Input, Output, State\n'), ((13876, 13908), 'dash.dependencies.Input', 'Input', (['f"""{attr}-choice"""', '"""value"""'], {}), "(f'{attr}-choice', 'value')\n", (13881, 13908), False, 'from dash.dependencies import Input, Output, State\n'), ((13704, 13749), 'dash.dependencies.Output', 'Output', (['f"""other-results-list-{i}"""', '"""children"""'], {}), "(f'other-results-list-{i}', 'children')\n", (13710, 13749), False, 'from dash.dependencies import Input, Output, State\n'), ((13783, 13831), 'dash.dependencies.Output', 'Output', (['f"""other-results-tooltip-{i}"""', '"""children"""'], {}), "(f'other-results-tooltip-{i}', 'children')\n", (13789, 13831), False, 'from dash.dependencies import Input, Output, State\n'), ((13591, 13619), 'dash_html_components.Div', 'html.Div', ([], {'id': '"""callback-dump"""'}), "(id='callback-dump')\n", (13599, 13619), True, 'import dash_html_components as html\n'), ((16516, 16528), 'dash_html_components.Th', 'html.Th', (['col'], {}), '(col)\n', (16523, 16528), True, 'import dash_html_components as html\n'), ((1268, 1345), 'dash_html_components.H1', 'html.H1', ([], {'children': '"""What is your optimal phone?"""', 'className': '"""text-center mt-4"""'}), "(children='What is your optimal phone?', className='text-center mt-4')\n", (1275, 1345), True, 'import dash_html_components as html\n'), ((16588, 16606), 'dash_html_components.Td', 'html.Td', (['data[col]'], {}), '(data[col])\n', (16595, 16606), True, 'import dash_html_components as html\n'), ((16136, 16148), 'dash_html_components.Th', 'html.Th', (['col'], {}), '(col)\n', (16143, 16148), True, 'import dash_html_components as html\n'), ((13387, 13410), 'dash_html_components.Div', 'html.Div', ([], {'id': '"""tooltips"""'}), "(id='tooltips')\n", (13395, 13410), True, 'import dash_html_components as html\n'), ((16244, 16279), 'dash_html_components.Span', 'html.Span', (['""" ▉"""'], {'style': "{'color': c}"}), "(' ▉', style={'color': c})\n", (16253, 16279), True, 'import dash_html_components as html\n'), ((11217, 11261), 'dash_bootstrap_components.CardHeader', 'dbc.CardHeader', (['"""The best phone for you is:"""'], {}), "('The best phone for you is:')\n", (11231, 11261), True, 'import dash_bootstrap_components as dbc\n'), ((11295, 11321), 'dash_bootstrap_components.CardBody', 'dbc.CardBody', ([], {'id': '"""results"""'}), "(id='results')\n", (11307, 11321), True, 'import dash_bootstrap_components as dbc\n'), ((11532, 11569), 'dash_bootstrap_components.CardHeader', 'dbc.CardHeader', (['"""Other great phones:"""'], {}), "('Other great phones:')\n", (11546, 11569), True, 'import dash_bootstrap_components as dbc\n'), ((1795, 1866), 'dash_html_components.H4', 'html.H4', (['"""Researcher\'s Night Event"""'], {'className': '"""card-title text-center"""'}), '("Researcher\'s Night Event", className=\'card-title text-center\')\n', (1802, 1866), True, 'import dash_html_components as html\n'), ((2039, 2351), 'dash_html_components.P', 'html.P', (['"""This app uses decision support tools to quickly and easily find phones which reflect the user\'s desires. Input your preferences below. The box on top right shows the phone which matches the preferences the best. The box on bottom right provides some close alternatives."""'], {'className': '"""card-text"""'}), '(\n "This app uses decision support tools to quickly and easily find phones which reflect the user\'s desires. Input your preferences below. The box on top right shows the phone which matches the preferences the best. The box on bottom right provides some close alternatives."\n , className=\'card-text\')\n', (2045, 2351), True, 'import dash_html_components as html\n'), ((3265, 3331), 'dash_bootstrap_components.Label', 'dbc.Label', (['"""Choose desired operating system"""'], {'html_for': '"""os-choice"""'}), "('Choose desired operating system', html_for='os-choice')\n", (3274, 3331), True, 'import dash_bootstrap_components as dbc\n'), ((3504, 3700), 'dash_bootstrap_components.RadioItems', 'dbc.RadioItems', ([], {'options': "[{'label': 'Android', 'value': 'Android'}, {'label': 'iOS', 'value': 'IOS'},\n {'label': 'No preference', 'value': 'both'}]", 'id': '"""os-choice"""', 'value': '"""both"""', 'inline': '(True)'}), "(options=[{'label': 'Android', 'value': 'Android'}, {'label':\n 'iOS', 'value': 'IOS'}, {'label': 'No preference', 'value': 'both'}],\n id='os-choice', value='both', inline=True)\n", (3518, 3700), True, 'import dash_bootstrap_components as dbc\n'), ((4767, 4841), 'dash_bootstrap_components.Label', 'dbc.Label', (['"""Choose desired Memory capacity (GB)"""'], {'html_for': '"""memory-choice"""'}), "('Choose desired Memory capacity (GB)', html_for='memory-choice')\n", (4776, 4841), True, 'import dash_bootstrap_components as dbc\n'), ((5014, 5180), 'dash_core_components.Slider', 'dcc.Slider', ([], {'id': '"""memory-choice"""', 'min': '(16)', 'max': '(256)', 'step': 'None', 'included': '(False)', 'value': '(256)', 'marks': "{(16): '16', (32): '32', (64): '64', (128): '128', (256): '256'}"}), "(id='memory-choice', min=16, max=256, step=None, included=False,\n value=256, marks={(16): '16', (32): '32', (64): '64', (128): '128', (\n 256): '256'})\n", (5024, 5180), True, 'import dash_core_components as dcc\n'), ((6154, 6222), 'dash_bootstrap_components.Label', 'dbc.Label', (['"""Choose desired RAM capacity (GB)"""'], {'html_for': '"""ram-choice"""'}), "('Choose desired RAM capacity (GB)', html_for='ram-choice')\n", (6163, 6222), True, 'import dash_bootstrap_components as dbc\n'), ((6395, 6638), 'dash_core_components.Slider', 'dcc.Slider', ([], {'id': '"""ram-choice"""', 'min': '(2)', 'max': '(12)', 'step': '(1)', 'value': '(12)', 'included': '(False)', 'marks': "{(2): '2', (3): '3', (4): '4', (5): '5', (6): '6', (7): '7', (8): '8', (9):\n '9', (10): '10', (11): '11', (12): '12'}", 'className': '"""text-center mt-5"""'}), "(id='ram-choice', min=2, max=12, step=1, value=12, included=False,\n marks={(2): '2', (3): '3', (4): '4', (5): '5', (6): '6', (7): '7', (8):\n '8', (9): '9', (10): '10', (11): '11', (12): '12'}, className=\n 'text-center mt-5')\n", (6405, 6638), True, 'import dash_core_components as dcc\n'), ((7852, 7925), 'dash_bootstrap_components.Label', 'dbc.Label', (['"""Choose desired camera resolution (MP)"""'], {'html_for': '"""cam-choice"""'}), "('Choose desired camera resolution (MP)', html_for='cam-choice')\n", (7861, 7925), True, 'import dash_bootstrap_components as dbc\n'), ((8098, 8321), 'dash_core_components.Slider', 'dcc.Slider', ([], {'id': '"""cam-choice"""', 'min': '(0)', 'max': '(130)', 'step': '(1)', 'included': '(False)', 'value': '(70)', 'marks': "{(0): '0', (10): '10', (30): '30', (50): '50', (70): '70', (90): '90', (110\n ): '110', (130): '130'}", 'className': '"""text-center mt-5"""'}), "(id='cam-choice', min=0, max=130, step=1, included=False, value=\n 70, marks={(0): '0', (10): '10', (30): '30', (50): '50', (70): '70', (\n 90): '90', (110): '110', (130): '130'}, className='text-center mt-5')\n", (8108, 8321), True, 'import dash_core_components as dcc\n'), ((9400, 9466), 'dash_bootstrap_components.Label', 'dbc.Label', (['"""Choose desired budget (Euros)"""'], {'html_for': '"""cost-choice"""'}), "('Choose desired budget (Euros)', html_for='cost-choice')\n", (9409, 9466), True, 'import dash_bootstrap_components as dbc\n'), ((9639, 9885), 'dash_core_components.Slider', 'dcc.Slider', ([], {'id': '"""cost-choice"""', 'min': '(0)', 'max': '(1400)', 'step': '(1)', 'included': '(False)', 'value': '(100)', 'marks': "{(0): '0', (200): '200', (400): '400', (600): '600', (800): '800', (1000):\n '1000', (1200): '1200', (1400): '1400'}", 'className': '"""text-center mt-5"""'}), "(id='cost-choice', min=0, max=1400, step=1, included=False, value\n =100, marks={(0): '0', (200): '200', (400): '400', (600): '600', (800):\n '800', (1000): '1000', (1200): '1200', (1400): '1400'}, className=\n 'text-center mt-5')\n", (9649, 9885), True, 'import dash_core_components as dcc\n'), ((12308, 12540), 'dash_bootstrap_components.Tooltip', 'dbc.Tooltip', ([], {'id': 'f"""other-results-tooltip-{i}"""', 'target': 'f"""other-results-list-{i}"""', 'placement': '"""right"""', 'style': "{'maxWidth': 700, 'background-color': 'white', 'color': 'white',\n 'border-style': 'solid', 'border-color': 'black'}"}), "(id=f'other-results-tooltip-{i}', target=\n f'other-results-list-{i}', placement='right', style={'maxWidth': 700,\n 'background-color': 'white', 'color': 'white', 'border-style': 'solid',\n 'border-color': 'black'})\n", (12319, 12540), True, 'import dash_bootstrap_components as dbc\n'), ((11862, 11911), 'dash_html_components.Span', 'html.Span', (['f"""{i}. """'], {'id': 'f"""other-results-list-{i}"""'}), "(f'{i}. ', id=f'other-results-list-{i}')\n", (11871, 11911), True, 'import dash_html_components as html\n')]
# %% [markdown] # # Testing python-som with audio dataset # %% [markdown] # # Imports # %% import matplotlib.pyplot as plt # import librosa as lr # import librosa.display as lrdisp import numpy as np import pandas as pd import pickle import seaborn as sns import sklearn.preprocessing from python_som import SOM FILE_PREFIX = 'som64_u_grupo1' # %% [markdown] # # Loading dataset # %% df = pd.read_csv('features_means.csv', index_col=0, verbose=True) df.index = pd.to_datetime(df.index) df['rac'] = False df.loc['2020-09-22':, 'rac'] = True # type: ignore df.sort_index(inplace=True) # %% [markdown] # ## Checking for and dropping duplicates # %% # Resetting index for duplicate analysis df.reset_index(inplace=True) print("Duplicates by filename:", df.duplicated(subset=['file_name']).value_counts(), sep='\n') df.drop_duplicates(subset=['file_name'], inplace=True) print("Duplicates by (datetime, ala, grupo):", df.duplicated(subset=['datetime', 'ala', 'grupo']).value_counts(), sep='\n') df.drop_duplicates(subset=['datetime', 'ala', 'grupo'], inplace=True) # Rebuilding dataframe index df.set_index('datetime', inplace=True) # %% # Filtering dataset by 'group' df = df[df['grupo'] == 1] # %% # Dropping tail of dataset for class balancing # tail_size = abs( # len(df[df['rac'].astype(int) == 1]) - len(df[df['rac'].astype(int) == 0])) # df.drop(df.tail(tail_size).index, inplace=True) # %% [markdown] # ## Visualizing distribution of sample dates # %% df_tmp = pd.DataFrame(df['file_name'].resample('1D').count()) df_tmp['count'] = df_tmp['file_name'] del df_tmp['file_name'] df_tmp['rac'] = False df_tmp.loc['2020-09-22':, 'rac'] = True # type: ignore plt.figure(figsize=(10, 10)) sns.set(style="whitegrid", palette=sns.color_palette("muted", n_colors=6, desat=1.0)) sns.barplot(y=df_tmp.index, x=df_tmp['count'], hue=df_tmp['rac']) plt.draw() df_tmp = pd.DataFrame(df['file_name'].resample('1H').count()) df_tmp['count'] = df_tmp['file_name'] del df_tmp['file_name'] df_tmp['rac'] = False df_tmp.loc['2020-09-22':, 'rac'] = True # type: ignore df_tmp = df_tmp.reset_index() df_tmp['hour'] = df_tmp['datetime'].dt.hour plt.figure(figsize=(10, 10)) sns.set(style="whitegrid", palette=sns.color_palette("muted", n_colors=6, desat=1.0)) sns.barplot(y=df_tmp['hour'], x=df_tmp['count'], hue=df_tmp['rac'], orient='h') plt.draw() # %% df_melt = pd.melt(df, value_vars=['rac'], value_name='ractopamine') plt.figure(figsize=(10, 10)) sns.set(style="whitegrid", palette=sns.color_palette("muted", n_colors=6, desat=1.0)) ax = sns.countplot(data=df_melt, x='ractopamine', hue='ractopamine') for p in ax.patches: ax.annotate(f'\n{p.get_height()}', (p.get_x() + 0.2, p.get_height()), ha='center', va='top', color='white', size=18) plt.draw() # %% # using sklearn's MinMaxScaler scaler = sklearn.preprocessing.MinMaxScaler(feature_range=(0, 1)) df_train = df.iloc[:, 3:-1].copy() df_train = scaler.fit_transform(df_train) # %% # Defining first element of SOM shape # Second element will be assigned based on the ratio between the # first two principal components of the train dataset som_x: int = 64 try: with open(f'./{FILE_PREFIX}.obj', 'rb') as f: som = pickle.load(f) except FileNotFoundError: som = SOM(x=som_x, y=None, input_len=df_train.shape[1], learning_rate=0.5, neighborhood_radius=1.0, neighborhood_function='gaussian', cyclic_x=True, cyclic_y=True, data=df_train) # Training SOM som.weight_initialization(mode='linear', data=df_train) som.train(data=df_train, mode='random', verbose=True) with open(f'./{FILE_PREFIX}.obj', 'wb') as f: pickle.dump(som, f) # %% som_x, som_y = som.get_shape() print('SOM shape:', (som_x, som_y)) # %% # Visualizing distance matrix and activation matrix umatrix = som.distance_matrix() fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(16, 9)) sns.heatmap(umatrix.T, cmap='bone_r', ax=ax1, robust=True) sns.heatmap(som.activation_matrix(data=df_train).T, cmap='mako', ax=ax2, robust=True) ax1.invert_yaxis() ax2.invert_yaxis() fig.savefig(f'./output_{FILE_PREFIX}/{FILE_PREFIX}_umatrix_activation.png', bbox_inches='tight', transparent=True) plt.draw() # %% # Visualizing distance matrix anc activation matrix separately fig = plt.figure(figsize=(16, 9)) ax = sns.heatmap(umatrix.T, cmap='bone_r', robust=True) ax.invert_yaxis() fig.savefig(f'./output_{FILE_PREFIX}/{FILE_PREFIX}_umatrix.png', bbox_inches='tight', transparent=True) fig = plt.figure(figsize=(16, 9)) ax = sns.heatmap(som.activation_matrix(data=df_train).T, cmap='mako', robust=True) ax.invert_yaxis() fig.savefig(f'./output_{FILE_PREFIX}/{FILE_PREFIX}_activation_matrix.png', bbox_inches='tight', transparent=True) # %% [markdown] # ## Visualizing distribution of features # %% for column in df.iloc[:, 3:-1].columns: hmap = som.get_weights()[:, :, df.iloc[:, 3:-1].columns.get_loc(column)].T fig = plt.figure(figsize=(16, 9)) ax = sns.heatmap(hmap, robust=True, cmap='BrBG') ax.invert_yaxis() fig.savefig(f'./output_{FILE_PREFIX}/{FILE_PREFIX}_{column}.png', bbox_inches='tight', transparent=True) plt.close(fig=fig) # %% [markdown] # ## Visualizing distribution of audios by metadata (day, hour, ...) # Each node is colorized according to its most frequent label # %% df['days'] = df.index.date df['days'] = (df['days'] - df['days'][0]) df['days'] = df['days'].apply(lambda x: x.days) df['hour'] = df.index.hour # %% # Visualizing 'rac' distribution class_assignments = som.label_map(np.array(df_train), np.array(df['rac'])) hmap = np.zeros((som_x, som_y)) for i, j in sorted(class_assignments.keys()): try: hmap[i][j] = class_assignments[(i, j)].most_common()[0][0] + 1 except Exception: continue hmap = hmap.T fig = plt.figure(figsize=(16, 9)) ax = sns.heatmap(hmap, cmap=sns.color_palette(palette=["#000000", "blue", "orange"], n_colors=3), cbar_kws={'ticks': [0, 1, 2]}) ax.invert_yaxis() fig.savefig(f'./output_{FILE_PREFIX}/{FILE_PREFIX}_rac.png', bbox_inches='tight', transparent=True) plt.show() # %% # Visualizing by 'grupo' print(df.groupby('grupo')['rac'].count()) column = 'grupo' class_assignments = som.label_map(np.array(df_train), np.array(df[column])) hmap = np.zeros((som_x, som_y)) for i, j in sorted(class_assignments.keys()): try: hmap[i][j] = class_assignments[(i, j)].most_common()[0][0] except Exception: hmap[i][j] = 0 hmap = hmap.T fig = plt.figure(figsize=(16, 9)) ax = sns.heatmap(hmap, cmap=sns.color_palette(palette=["#000000", "blue", "orange"], n_colors=3), cbar_kws={'ticks': [0, 1, 2]}) ax.invert_yaxis() fig.savefig(f'./output_{FILE_PREFIX}/{FILE_PREFIX}_{column}.png', bbox_inches='tight', transparent=True) plt.show() # %% # Visualizing by 'days' print(df.groupby('days')['rac'].count()) column = 'days' class_assignments = som.label_map(np.array(df_train), np.array(df[column])) hmap = np.zeros((som_x, som_y)) for i, j in sorted(class_assignments.keys()): try: hmap[i][j] = class_assignments[(i, j)].most_common()[0][0] except Exception: hmap[i][j] = -1 hmap = hmap.T fig = plt.figure(figsize=(16, 9)) ax = sns.heatmap(hmap, cmap='viridis') ax.invert_yaxis() fig.savefig(f'./output_{FILE_PREFIX}/{FILE_PREFIX}_{column}.png', bbox_inches='tight', transparent=True) plt.show() # %% # Visualizing by 'hour' print(df.groupby('hour')['rac'].count()) column = 'hour' class_assignments = som.label_map(np.array(df_train), np.array(df[column])) hmap = np.zeros((som_x, som_y)) for i, j in sorted(class_assignments.keys()): try: hmap[i][j] = class_assignments[(i, j)].most_common()[0][0] except Exception: hmap[i][j] = -1 hmap = hmap.T fig = plt.figure(figsize=(16, 9)) ax = sns.heatmap(hmap, cmap=sns.diverging_palette(150, 250, s=100, l=20, sep=1, n=26, center='light'), center=12) ax.invert_yaxis() fig.savefig(f'./output_{FILE_PREFIX}/{FILE_PREFIX}_{column}.png', bbox_inches='tight', transparent=True) plt.show() # %%
[ "pickle.dump", "pandas.read_csv", "seaborn.color_palette", "seaborn.diverging_palette", "pickle.load", "seaborn.heatmap", "matplotlib.pyplot.close", "numpy.array", "matplotlib.pyplot.figure", "numpy.zeros", "python_som.SOM", "seaborn.barplot", "seaborn.countplot", "matplotlib.pyplot.draw", "pandas.melt", "matplotlib.pyplot.subplots", "pandas.to_datetime", "matplotlib.pyplot.show" ]
[((395, 455), 'pandas.read_csv', 'pd.read_csv', (['"""features_means.csv"""'], {'index_col': '(0)', 'verbose': '(True)'}), "('features_means.csv', index_col=0, verbose=True)\n", (406, 455), True, 'import pandas as pd\n'), ((467, 491), 'pandas.to_datetime', 'pd.to_datetime', (['df.index'], {}), '(df.index)\n', (481, 491), True, 'import pandas as pd\n'), ((1699, 1727), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(10, 10)'}), '(figsize=(10, 10))\n', (1709, 1727), True, 'import matplotlib.pyplot as plt\n'), ((1822, 1887), 'seaborn.barplot', 'sns.barplot', ([], {'y': 'df_tmp.index', 'x': "df_tmp['count']", 'hue': "df_tmp['rac']"}), "(y=df_tmp.index, x=df_tmp['count'], hue=df_tmp['rac'])\n", (1833, 1887), True, 'import seaborn as sns\n'), ((1888, 1898), 'matplotlib.pyplot.draw', 'plt.draw', ([], {}), '()\n', (1896, 1898), True, 'import matplotlib.pyplot as plt\n'), ((2177, 2205), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(10, 10)'}), '(figsize=(10, 10))\n', (2187, 2205), True, 'import matplotlib.pyplot as plt\n'), ((2300, 2379), 'seaborn.barplot', 'sns.barplot', ([], {'y': "df_tmp['hour']", 'x': "df_tmp['count']", 'hue': "df_tmp['rac']", 'orient': '"""h"""'}), "(y=df_tmp['hour'], x=df_tmp['count'], hue=df_tmp['rac'], orient='h')\n", (2311, 2379), True, 'import seaborn as sns\n'), ((2380, 2390), 'matplotlib.pyplot.draw', 'plt.draw', ([], {}), '()\n', (2388, 2390), True, 'import matplotlib.pyplot as plt\n'), ((2407, 2464), 'pandas.melt', 'pd.melt', (['df'], {'value_vars': "['rac']", 'value_name': '"""ractopamine"""'}), "(df, value_vars=['rac'], value_name='ractopamine')\n", (2414, 2464), True, 'import pandas as pd\n'), ((2465, 2493), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(10, 10)'}), '(figsize=(10, 10))\n', (2475, 2493), True, 'import matplotlib.pyplot as plt\n'), ((2593, 2656), 'seaborn.countplot', 'sns.countplot', ([], {'data': 'df_melt', 'x': '"""ractopamine"""', 'hue': '"""ractopamine"""'}), "(data=df_melt, x='ractopamine', hue='ractopamine')\n", (2606, 2656), True, 'import seaborn as sns\n'), ((2865, 2875), 'matplotlib.pyplot.draw', 'plt.draw', ([], {}), '()\n', (2873, 2875), True, 'import matplotlib.pyplot as plt\n'), ((4037, 4072), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(1)', '(2)'], {'figsize': '(16, 9)'}), '(1, 2, figsize=(16, 9))\n', (4049, 4072), True, 'import matplotlib.pyplot as plt\n'), ((4073, 4131), 'seaborn.heatmap', 'sns.heatmap', (['umatrix.T'], {'cmap': '"""bone_r"""', 'ax': 'ax1', 'robust': '(True)'}), "(umatrix.T, cmap='bone_r', ax=ax1, robust=True)\n", (4084, 4131), True, 'import seaborn as sns\n'), ((4431, 4441), 'matplotlib.pyplot.draw', 'plt.draw', ([], {}), '()\n', (4439, 4441), True, 'import matplotlib.pyplot as plt\n'), ((4517, 4544), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(16, 9)'}), '(figsize=(16, 9))\n', (4527, 4544), True, 'import matplotlib.pyplot as plt\n'), ((4550, 4600), 'seaborn.heatmap', 'sns.heatmap', (['umatrix.T'], {'cmap': '"""bone_r"""', 'robust': '(True)'}), "(umatrix.T, cmap='bone_r', robust=True)\n", (4561, 4600), True, 'import seaborn as sns\n'), ((4754, 4781), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(16, 9)'}), '(figsize=(16, 9))\n', (4764, 4781), True, 'import matplotlib.pyplot as plt\n'), ((5935, 5959), 'numpy.zeros', 'np.zeros', (['(som_x, som_y)'], {}), '((som_x, som_y))\n', (5943, 5959), True, 'import numpy as np\n'), ((6145, 6172), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(16, 9)'}), '(figsize=(16, 9))\n', (6155, 6172), True, 'import matplotlib.pyplot as plt\n'), ((6518, 6528), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (6526, 6528), True, 'import matplotlib.pyplot as plt\n'), ((6702, 6726), 'numpy.zeros', 'np.zeros', (['(som_x, som_y)'], {}), '((som_x, som_y))\n', (6710, 6726), True, 'import numpy as np\n'), ((6914, 6941), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(16, 9)'}), '(figsize=(16, 9))\n', (6924, 6941), True, 'import matplotlib.pyplot as plt\n'), ((7292, 7302), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (7300, 7302), True, 'import matplotlib.pyplot as plt\n'), ((7473, 7497), 'numpy.zeros', 'np.zeros', (['(som_x, som_y)'], {}), '((som_x, som_y))\n', (7481, 7497), True, 'import numpy as np\n'), ((7686, 7713), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(16, 9)'}), '(figsize=(16, 9))\n', (7696, 7713), True, 'import matplotlib.pyplot as plt\n'), ((7719, 7752), 'seaborn.heatmap', 'sns.heatmap', (['hmap'], {'cmap': '"""viridis"""'}), "(hmap, cmap='viridis')\n", (7730, 7752), True, 'import seaborn as sns\n'), ((7900, 7910), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (7908, 7910), True, 'import matplotlib.pyplot as plt\n'), ((8081, 8105), 'numpy.zeros', 'np.zeros', (['(som_x, som_y)'], {}), '((som_x, som_y))\n', (8089, 8105), True, 'import numpy as np\n'), ((8294, 8321), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(16, 9)'}), '(figsize=(16, 9))\n', (8304, 8321), True, 'import matplotlib.pyplot as plt\n'), ((8881, 8891), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (8889, 8891), True, 'import matplotlib.pyplot as plt\n'), ((5249, 5276), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(16, 9)'}), '(figsize=(16, 9))\n', (5259, 5276), True, 'import matplotlib.pyplot as plt\n'), ((5286, 5329), 'seaborn.heatmap', 'sns.heatmap', (['hmap'], {'robust': '(True)', 'cmap': '"""BrBG"""'}), "(hmap, robust=True, cmap='BrBG')\n", (5297, 5329), True, 'import seaborn as sns\n'), ((5497, 5515), 'matplotlib.pyplot.close', 'plt.close', ([], {'fig': 'fig'}), '(fig=fig)\n', (5506, 5515), True, 'import matplotlib.pyplot as plt\n'), ((5887, 5905), 'numpy.array', 'np.array', (['df_train'], {}), '(df_train)\n', (5895, 5905), True, 'import numpy as np\n'), ((5907, 5926), 'numpy.array', 'np.array', (["df['rac']"], {}), "(df['rac'])\n", (5915, 5926), True, 'import numpy as np\n'), ((6653, 6671), 'numpy.array', 'np.array', (['df_train'], {}), '(df_train)\n', (6661, 6671), True, 'import numpy as np\n'), ((6673, 6693), 'numpy.array', 'np.array', (['df[column]'], {}), '(df[column])\n', (6681, 6693), True, 'import numpy as np\n'), ((7424, 7442), 'numpy.array', 'np.array', (['df_train'], {}), '(df_train)\n', (7432, 7442), True, 'import numpy as np\n'), ((7444, 7464), 'numpy.array', 'np.array', (['df[column]'], {}), '(df[column])\n', (7452, 7464), True, 'import numpy as np\n'), ((8032, 8050), 'numpy.array', 'np.array', (['df_train'], {}), '(df_train)\n', (8040, 8050), True, 'import numpy as np\n'), ((8052, 8072), 'numpy.array', 'np.array', (['df[column]'], {}), '(df[column])\n', (8060, 8072), True, 'import numpy as np\n'), ((1771, 1820), 'seaborn.color_palette', 'sns.color_palette', (['"""muted"""'], {'n_colors': '(6)', 'desat': '(1.0)'}), "('muted', n_colors=6, desat=1.0)\n", (1788, 1820), True, 'import seaborn as sns\n'), ((2249, 2298), 'seaborn.color_palette', 'sns.color_palette', (['"""muted"""'], {'n_colors': '(6)', 'desat': '(1.0)'}), "('muted', n_colors=6, desat=1.0)\n", (2266, 2298), True, 'import seaborn as sns\n'), ((2537, 2586), 'seaborn.color_palette', 'sns.color_palette', (['"""muted"""'], {'n_colors': '(6)', 'desat': '(1.0)'}), "('muted', n_colors=6, desat=1.0)\n", (2554, 2586), True, 'import seaborn as sns\n'), ((3305, 3319), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (3316, 3319), False, 'import pickle\n'), ((3356, 3537), 'python_som.SOM', 'SOM', ([], {'x': 'som_x', 'y': 'None', 'input_len': 'df_train.shape[1]', 'learning_rate': '(0.5)', 'neighborhood_radius': '(1.0)', 'neighborhood_function': '"""gaussian"""', 'cyclic_x': '(True)', 'cyclic_y': '(True)', 'data': 'df_train'}), "(x=som_x, y=None, input_len=df_train.shape[1], learning_rate=0.5,\n neighborhood_radius=1.0, neighborhood_function='gaussian', cyclic_x=\n True, cyclic_y=True, data=df_train)\n", (3359, 3537), False, 'from python_som import SOM\n'), ((6218, 6286), 'seaborn.color_palette', 'sns.color_palette', ([], {'palette': "['#000000', 'blue', 'orange']", 'n_colors': '(3)'}), "(palette=['#000000', 'blue', 'orange'], n_colors=3)\n", (6235, 6286), True, 'import seaborn as sns\n'), ((6987, 7055), 'seaborn.color_palette', 'sns.color_palette', ([], {'palette': "['#000000', 'blue', 'orange']", 'n_colors': '(3)'}), "(palette=['#000000', 'blue', 'orange'], n_colors=3)\n", (7004, 7055), True, 'import seaborn as sns\n'), ((8367, 8440), 'seaborn.diverging_palette', 'sns.diverging_palette', (['(150)', '(250)'], {'s': '(100)', 'l': '(20)', 'sep': '(1)', 'n': '(26)', 'center': '"""light"""'}), "(150, 250, s=100, l=20, sep=1, n=26, center='light')\n", (8388, 8440), True, 'import seaborn as sns\n'), ((3836, 3855), 'pickle.dump', 'pickle.dump', (['som', 'f'], {}), '(som, f)\n', (3847, 3855), False, 'import pickle\n')]
# -*- coding: utf-8 -*- """ ------------------------------------------------- Description : Author : cmy date: 2020/1/2 ------------------------------------------------- """ import datetime import heapq import numpy as np import tensorflow as tf import time from metrics import ndcg_at_k from train import get_user_record from DMF import DMF import os os.environ["CUDA_VISIBLE_DEVICES"] = "1" config = tf.ConfigProto() config.gpu_options.per_process_gpu_memory_fraction = 0.5 # maximun alloc gpu50% of MEM config.gpu_options.allow_growth = True #allocate dynamically def train(args, data, show_loss, show_topk, log_dir): n_user, n_item = data[0], data[1] train_data, eval_data, test_data = data[2], data[3], data[4] model = DMF(args, n_user, n_item) user_num = 100 k_list = [1, 2, 5, 10, 20, 50, 100] train_record = get_user_record(train_data, True) test_record = get_user_record(test_data, False) user_list = list(set(train_record.keys()) & set(test_record.keys())) if len(user_list) > user_num: user_list = np.random.choice(user_list, size=user_num, replace=False) item_set = set(list(range(n_item))) with tf.Session(config=config) as sess,\ open(log_dir + 'result_' + str(args.epochs) + '_' + str(args.lr) + '_' + str(int(time.time())) + '.txt', 'w') as f_result: sess.run(tf.global_variables_initializer()) for step in range(args.epochs): f_result.write('**************************epoch_i:' + str(step) + '********************' + '\n') # RS training np.random.shuffle(train_data) start = 0 batch_i = 0 while start < train_data.shape[0]: _, loss = model.train_dmf(sess, get_feed_dict_for_dmf(model, train_data, start, start + args.batch_size, 0.5)) start += args.batch_size if show_loss: if (step * (len(train_data) // args.batch_size) + batch_i) % 20 == 0: time_str = datetime.datetime.now().isoformat() print('{}: Epoch {:>3} Batch {:>4}/{} train_loss = {:.3f}'.format( time_str, step, batch_i, (len(train_data) // args.batch_size), loss)) # print(loss) batch_i += 1 # CTR evaluation # train_auc, train_acc = model.eval(sess, get_feed_dict_for_dmf(model, train_data, 0, train_data.shape[0])) eval_auc, eval_acc = model.eval(sess, get_feed_dict_for_dmf(model, eval_data, 0, eval_data.shape[0])) test_auc, test_acc = model.eval(sess, get_feed_dict_for_dmf(model, test_data, 0, test_data.shape[0])) # eval_str = 'epoch %d train auc: %.4f acc: %.4f eval auc: %.4f acc: %.4f test auc: %.4f acc: %.4f' \ # % (step, train_auc, train_acc, eval_auc, eval_acc, test_auc, test_acc) eval_str = 'epoch %d eval auc: %.4f acc: %.4f test auc: %.4f acc: %.4f' \ % (step, eval_auc, eval_acc, test_auc, test_acc) print(eval_str) f_result.write(eval_str + '\n') # top-K evaluation if show_topk: topk_str = '' precision, recall, f1, hr, ndcg = topk_eval( sess, model, user_list, train_record, test_record, item_set, k_list) print('precision: ', end='') topk_str += 'precision: ' for i in precision: print('%.4f\t' % i, end='') topk_str += '%.4f\t' % i print() print('recall: ', end='') topk_str += '\n' + 'recall: ' for i in recall: print('%.4f\t' % i, end='') topk_str += '%.4f\t' % i print() print('f1: ', end='') topk_str += '\n' + 'f1: ' for i in f1: print('%.4f\t' % i, end='') topk_str += '%.4f\t' % i print() print('hr: ', end='') topk_str += '\n' + 'hr: ' for i in hr: print('%.4f\t' % i, end='') topk_str += '%.4f\t' % i print() print('ndcg: ', end='') topk_str += '\n' + 'ndcg: ' for i in ndcg: print('%.4f\t' % i, end='') topk_str += '%.4f\t' % i print() f_result.write(topk_str + '\n') def get_feed_dict_for_dmf(model, data, start, end, keep_drop=0.0): feed_dict = {model.user_indices: data[start:end, 0], model.item_indices: data[start:end, 1], model.labels: data[start:end, 2], model.keep_drop: keep_drop} return feed_dict def topk_eval(sess, model, user_list, train_record, test_record, item_set, k_list): precision_list = {k: [] for k in k_list} recall_list = {k: [] for k in k_list} hr_list = {k: [] for k in k_list} ndcg_list = {k: [] for k in k_list} total_test = 0 for user in user_list: test_item_list = list(item_set - train_record[user]) item_score_map = dict() items, scores = model.get_scores(sess, {model.user_indices: [user] * len(test_item_list), model.item_indices: test_item_list, model.keep_drop: 0.0}) for item, score in zip(items, scores): item_score_map[item] = score item_score_pair_sorted = sorted(item_score_map.items(), key=lambda x: x[1], reverse=True) item_sorted = [i[0] for i in item_score_pair_sorted] K_max_item_score = heapq.nlargest(k_list[-1], item_score_map, key=item_score_map.get) r = [] for i in K_max_item_score: if i in test_record[user]: r.append(1) else: r.append(0) for k in k_list: hit_num = len(set(item_sorted[:k]) & test_record[user]) precision_list[k].append(hit_num / k) recall_list[k].append(hit_num / len(test_record[user])) hr_list[k].append(hit_num) ndcg_list[k].append(ndcg_at_k(r, k)) total_test += len(test_record[user]) precision = [np.mean(precision_list[k]) for k in k_list] recall = [np.mean(recall_list[k]) for k in k_list] f1 = [2 / (1 / precision[i] + 1 / recall[i]) for i in range(len(k_list))] hr = [np.sum(hr_list[k]) / total_test for k in k_list] ndcg = [np.mean(ndcg_list[k]) for k in k_list] return precision, recall, f1, hr, ndcg
[ "numpy.mean", "train.get_user_record", "numpy.random.choice", "metrics.ndcg_at_k", "tensorflow.Session", "tensorflow.global_variables_initializer", "heapq.nlargest", "numpy.sum", "datetime.datetime.now", "DMF.DMF", "tensorflow.ConfigProto", "time.time", "numpy.random.shuffle" ]
[((429, 445), 'tensorflow.ConfigProto', 'tf.ConfigProto', ([], {}), '()\n', (443, 445), True, 'import tensorflow as tf\n'), ((766, 791), 'DMF.DMF', 'DMF', (['args', 'n_user', 'n_item'], {}), '(args, n_user, n_item)\n', (769, 791), False, 'from DMF import DMF\n'), ((870, 903), 'train.get_user_record', 'get_user_record', (['train_data', '(True)'], {}), '(train_data, True)\n', (885, 903), False, 'from train import get_user_record\n'), ((922, 955), 'train.get_user_record', 'get_user_record', (['test_data', '(False)'], {}), '(test_data, False)\n', (937, 955), False, 'from train import get_user_record\n'), ((1083, 1140), 'numpy.random.choice', 'np.random.choice', (['user_list'], {'size': 'user_num', 'replace': '(False)'}), '(user_list, size=user_num, replace=False)\n', (1099, 1140), True, 'import numpy as np\n'), ((1191, 1216), 'tensorflow.Session', 'tf.Session', ([], {'config': 'config'}), '(config=config)\n', (1201, 1216), True, 'import tensorflow as tf\n'), ((5904, 5970), 'heapq.nlargest', 'heapq.nlargest', (['k_list[-1]', 'item_score_map'], {'key': 'item_score_map.get'}), '(k_list[-1], item_score_map, key=item_score_map.get)\n', (5918, 5970), False, 'import heapq\n'), ((6499, 6525), 'numpy.mean', 'np.mean', (['precision_list[k]'], {}), '(precision_list[k])\n', (6506, 6525), True, 'import numpy as np\n'), ((6557, 6580), 'numpy.mean', 'np.mean', (['recall_list[k]'], {}), '(recall_list[k])\n', (6564, 6580), True, 'import numpy as np\n'), ((6747, 6768), 'numpy.mean', 'np.mean', (['ndcg_list[k]'], {}), '(ndcg_list[k])\n', (6754, 6768), True, 'import numpy as np\n'), ((1375, 1408), 'tensorflow.global_variables_initializer', 'tf.global_variables_initializer', ([], {}), '()\n', (1406, 1408), True, 'import tensorflow as tf\n'), ((1597, 1626), 'numpy.random.shuffle', 'np.random.shuffle', (['train_data'], {}), '(train_data)\n', (1614, 1626), True, 'import numpy as np\n'), ((6686, 6704), 'numpy.sum', 'np.sum', (['hr_list[k]'], {}), '(hr_list[k])\n', (6692, 6704), True, 'import numpy as np\n'), ((6418, 6433), 'metrics.ndcg_at_k', 'ndcg_at_k', (['r', 'k'], {}), '(r, k)\n', (6427, 6433), False, 'from metrics import ndcg_at_k\n'), ((1316, 1327), 'time.time', 'time.time', ([], {}), '()\n', (1325, 1327), False, 'import time\n'), ((2043, 2066), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (2064, 2066), False, 'import datetime\n')]
# -*- coding: utf-8 -*- """ Sony Colourspaces ================= Defines the *Sony* colourspaces: - :attr:`colour.models.RGB_COLOURSPACE_S_GAMUT`. - :attr:`colour.models.RGB_COLOURSPACE_S_GAMUT3`. - :attr:`colour.models.RGB_COLOURSPACE_S_GAMUT3_CINE`. - :attr:`colour.models.RGB_COLOURSPACE_VENICE_S_GAMUT3`. - :attr:`colour.models.RGB_COLOURSPACE_VENICE_S_GAMUT3_CINE`. Notes ----- - The *Venice S-Gamut3* and *Venice S-Gamut3.Cine* primaries and whitepoint were derived with the following `Google Colab Notebook \ <https://colab.research.google.com/drive/1ZGTij7jT8eZRMPUkyWlv_x5ix5Q5twMB>`__. References ---------- - :cite:`Gaggioni` : <NAME>., <NAME>., <NAME>., <NAME>., <NAME>., & <NAME>. (n.d.). S-Log: A new LUT for digital production mastering and interchange applications (Vol. 709, pp. 1-13). http://pro.sony.com/bbsccms/assets/files/mkt/cinema/solutions/slog_manual.pdf - :cite:`SonyCorporation` : Sony Corporation. (n.d.). S-Log Whitepaper (pp. 1-17). http://www.theodoropoulos.info/attachments/076_on%20S-Log.pdf - :cite:`SonyCorporationd` : Sony Corporation. (n.d.). Technical Summary for S-Gamut3.Cine/S-Log3 and S-Gamut3/S-Log3 (pp. 1-7). http://community.sony.com/sony/attachments/sony/\ large-sensor-camera-F5-F55/12359/2/\ TechnicalSummary_for_S-Gamut3Cine_S-Gamut3_S-Log3_V1_00.pdf - :cite:`SonyCorporatione` : Sony Corporation. (n.d.). S-Gamut3_S-Gamut3Cine_Matrix.xlsx. https://community.sony.com/sony/attachments/sony/\ large-sensor-camera-F5-F55/12359/3/S-Gamut3_S-Gamut3Cine_Matrix.xlsx - :cite:`SonyElectronicsCorporation2020` : Sony Electronics Corporation. (2020). IDT.Sony.Venice_SLog3_SGamut3.ctl. https://github.com/ampas/\ aces-dev/blob/710ecbe52c87ce9f4a1e02c8ddf7ea0d6b611cc8/transforms/ctl/idt/\ vendorSupplied/sony/IDT.Sony.Venice_SLog3_SGamut3.ctl - :cite:`SonyElectronicsCorporation2020a` : Sony Electronics Corporation. (2020). IDT.Sony.Venice_SLog3_SGamut3Cine.ctl. https://github.com/ampas/\ aces-dev/blob/710ecbe52c87ce9f4a1e02c8ddf7ea0d6b611cc8/transforms/ctl/idt/\ vendorSupplied/sony/IDT.Sony.Venice_SLog3_SGamut3Cine.ctl """ from __future__ import division, unicode_literals import numpy as np from colour.colorimetry import CCS_ILLUMINANTS from colour.models.rgb import (RGB_Colourspace, log_encoding_SLog2, log_decoding_SLog2, log_encoding_SLog3, log_decoding_SLog3, normalised_primary_matrix) __author__ = 'Colour Developers' __copyright__ = 'Copyright (C) 2013-2020 - Colour Developers' __license__ = 'New BSD License - https://opensource.org/licenses/BSD-3-Clause' __maintainer__ = 'Colour Developers' __email__ = '<EMAIL>' __status__ = 'Production' __all__ = [ 'PRIMARIES_S_GAMUT', 'WHITEPOINT_NAME_S_GAMUT', 'CCS_WHITEPOINT_S_GAMUT', 'MATRIX_S_GAMUT_TO_XYZ', 'MATRIX_XYZ_TO_S_GAMUT', 'RGB_COLOURSPACE_S_GAMUT', 'PRIMARIES_S_GAMUT3', 'WHITEPOINT_NAME_S_GAMUT3', 'CCS_WHITEPOINT_S_GAMUT3', 'MATRIX_S_GAMUT3_TO_XYZ', 'MATRIX_XYZ_TO_S_GAMUT3', 'RGB_COLOURSPACE_S_GAMUT3', 'PRIMARIES_S_GAMUT3_CINE', 'WHITEPOINT_NAME_S_GAMUT3_CINE', 'CCS_WHITEPOINT_S_GAMUT3_CINE', 'MATRIX_S_GAMUT3_CINE_TO_XYZ', 'MATRIX_XYZ_TO_S_GAMUT3_CINE', 'RGB_COLOURSPACE_S_GAMUT3_CINE', 'PRIMARIES_VENICE_S_GAMUT3', 'WHITEPOINT_NAME_VENICE_S_GAMUT3', 'CCS_WHITEPOINT_VENICE_S_GAMUT3', 'MATRIX_VENICE_S_GAMUT3_TO_XYZ', 'MATRIX_XYZ_TO_VENICE_S_GAMUT3', 'RGB_COLOURSPACE_VENICE_S_GAMUT3', 'PRIMARIES_VENICE_S_GAMUT3_CINE', 'WHITEPOINT_NAME_VENICE_S_GAMUT3_CINE', 'CCS_WHITEPOINT_VENICE_S_GAMUT3_CINE', 'MATRIX_VENICE_S_GAMUT3_CINE_TO_XYZ', 'MATRIX_XYZ_TO_VENICE_S_GAMUT3_CINE', 'RGB_COLOURSPACE_VENICE_S_GAMUT3_CINE' ] PRIMARIES_S_GAMUT = np.array([ [0.7300, 0.2800], [0.1400, 0.8550], [0.1000, -0.0500], ]) """ *S-Gamut* colourspace primaries. PRIMARIES_S_GAMUT : ndarray, (3, 2) """ WHITEPOINT_NAME_S_GAMUT = 'D65' """ *S-Gamut* colourspace whitepoint name. WHITEPOINT_NAME_S_GAMUT : unicode """ CCS_WHITEPOINT_S_GAMUT = (CCS_ILLUMINANTS[ 'CIE 1931 2 Degree Standard Observer'][WHITEPOINT_NAME_S_GAMUT]) """ *S-Gamut* colourspace whitepoint chromaticity coordinates. CCS_WHITEPOINT_S_GAMUT : ndarray """ MATRIX_S_GAMUT_TO_XYZ = np.array([ [0.7064827132, 0.1288010498, 0.1151721641], [0.2709796708, 0.7866064112, -0.0575860820], [-0.0096778454, 0.0046000375, 1.0941355587], ]) """ *S-Gamut* colourspace to *CIE XYZ* tristimulus values matrix. MATRIX_S_GAMUT_TO_XYZ : array_like, (3, 3) """ MATRIX_XYZ_TO_S_GAMUT = np.array([ [1.5073998991, -0.2458221374, -0.1716116808], [-0.5181517271, 1.3553912409, 0.1258786682], [0.0155116982, -0.0078727714, 0.9119163656], ]) """ *CIE XYZ* tristimulus values to *S-Gamut* colourspace matrix. MATRIX_XYZ_TO_S_GAMUT : array_like, (3, 3) """ RGB_COLOURSPACE_S_GAMUT = RGB_Colourspace( 'S-Gamut', PRIMARIES_S_GAMUT, CCS_WHITEPOINT_S_GAMUT, WHITEPOINT_NAME_S_GAMUT, MATRIX_S_GAMUT_TO_XYZ, MATRIX_XYZ_TO_S_GAMUT, log_encoding_SLog2, log_decoding_SLog2, ) RGB_COLOURSPACE_S_GAMUT.__doc__ = """ *S-Gamut* colourspace. References ---------- :cite:`Gaggioni`, :cite:`SonyCorporation` RGB_COLOURSPACE_S_GAMUT : RGB_Colourspace """ PRIMARIES_S_GAMUT3 = PRIMARIES_S_GAMUT """ *S-Gamut3* colourspace primaries. PRIMARIES_S_GAMUT3 : ndarray, (3, 2) """ WHITEPOINT_NAME_S_GAMUT3 = WHITEPOINT_NAME_S_GAMUT """ *S-Gamut3* colourspace whitepoint name. WHITEPOINT_NAME_S_GAMUT3 : unicode """ CCS_WHITEPOINT_S_GAMUT3 = CCS_WHITEPOINT_S_GAMUT """ *S-Gamut3* colourspace whitepoint chromaticity coordinates. CCS_WHITEPOINT_S_GAMUT3 : ndarray """ MATRIX_S_GAMUT3_TO_XYZ = MATRIX_S_GAMUT_TO_XYZ """ *S-Gamut3* colourspace to *CIE XYZ* tristimulus values matrix. MATRIX_S_GAMUT3_TO_XYZ : array_like, (3, 3) """ MATRIX_XYZ_TO_S_GAMUT3 = MATRIX_XYZ_TO_S_GAMUT """ *CIE XYZ* tristimulus values to *S-Gamut3* colourspace matrix. MATRIX_XYZ_TO_S_GAMUT3 : array_like, (3, 3) """ RGB_COLOURSPACE_S_GAMUT3 = RGB_Colourspace( 'S-Gamut3', PRIMARIES_S_GAMUT3, CCS_WHITEPOINT_S_GAMUT3, WHITEPOINT_NAME_S_GAMUT3, MATRIX_S_GAMUT3_TO_XYZ, MATRIX_XYZ_TO_S_GAMUT3, log_encoding_SLog3, log_decoding_SLog3, ) RGB_COLOURSPACE_S_GAMUT3.__doc__ = """ *S-Gamut3* colourspace. References ---------- :cite:`SonyCorporationd` RGB_COLOURSPACE_S_GAMUT3 : RGB_Colourspace """ PRIMARIES_S_GAMUT3_CINE = np.array([ [0.76600, 0.27500], [0.22500, 0.80000], [0.08900, -0.08700], ]) """ *S-Gamut3.Cine* colourspace primaries. PRIMARIES_S_GAMUT3_CINE : ndarray, (3, 2) """ WHITEPOINT_NAME_S_GAMUT3_CINE = WHITEPOINT_NAME_S_GAMUT """ *S-Gamut3.Cine* colourspace whitepoint name. WHITEPOINT_NAME_S_GAMUT3_CINE : unicode """ CCS_WHITEPOINT_S_GAMUT3_CINE = CCS_WHITEPOINT_S_GAMUT """ *S-Gamut3.Cine* colourspace whitepoint chromaticity coordinates. CCS_WHITEPOINT_S_GAMUT3_CINE : ndarray """ MATRIX_S_GAMUT3_CINE_TO_XYZ = np.array([ [0.5990839208, 0.2489255161, 0.1024464902], [0.2150758201, 0.8850685017, -0.1001443219], [-0.0320658495, -0.0276583907, 1.1487819910], ]) """ *S-Gamut3.Cine* colourspace to *CIE XYZ* tristimulus values matrix. MATRIX_S_GAMUT3_CINE_TO_XYZ : array_like, (3, 3) """ MATRIX_XYZ_TO_S_GAMUT3_CINE = np.array([ [1.8467789693, -0.5259861230, -0.2105452114], [-0.4441532629, 1.2594429028, 0.1493999729], [0.0408554212, 0.0156408893, 0.8682072487], ]) """ *CIE XYZ* tristimulus values to *S-Gamut3.Cine* colourspace matrix. MATRIX_XYZ_TO_S_GAMUT3_CINE : array_like, (3, 3) """ RGB_COLOURSPACE_S_GAMUT3_CINE = RGB_Colourspace( 'S-Gamut3.Cine', PRIMARIES_S_GAMUT3_CINE, CCS_WHITEPOINT_S_GAMUT3_CINE, WHITEPOINT_NAME_S_GAMUT3_CINE, MATRIX_S_GAMUT3_CINE_TO_XYZ, MATRIX_XYZ_TO_S_GAMUT3_CINE, log_encoding_SLog3, log_decoding_SLog3, ) RGB_COLOURSPACE_S_GAMUT3_CINE.__doc__ = """ *S-Gamut3.Cine* colourspace. References ---------- :cite:`SonyCorporatione` RGB_COLOURSPACE_S_GAMUT3_CINE : RGB_Colourspace """ PRIMARIES_VENICE_S_GAMUT3 = np.array([ [0.740464264304292, 0.279364374750660], [0.089241145423286, 0.893809528608105], [0.110488236673827, -0.052579333080476], ]) """ *Venice S-Gamut3* colourspace primaries. PRIMARIES_VENICE_S_GAMUT3 : ndarray, (3, 2) """ WHITEPOINT_NAME_VENICE_S_GAMUT3 = WHITEPOINT_NAME_S_GAMUT """ *Venice S-Gamut3* colourspace whitepoint name. WHITEPOINT_NAME_VENICE_S_GAMUT3 : unicode """ CCS_WHITEPOINT_VENICE_S_GAMUT3 = CCS_WHITEPOINT_S_GAMUT """ *Venice S-Gamut3* colourspace whitepoint chromaticity coordinates. CCS_WHITEPOINT_VENICE_S_GAMUT3 : ndarray """ MATRIX_VENICE_S_GAMUT3_TO_XYZ = normalised_primary_matrix( PRIMARIES_VENICE_S_GAMUT3, CCS_WHITEPOINT_VENICE_S_GAMUT3) """ *Venice S-Gamut3* colourspace to *CIE XYZ* tristimulus values matrix. MATRIX_VENICE_S_GAMUT3_TO_XYZ : array_like, (3, 3) """ MATRIX_XYZ_TO_VENICE_S_GAMUT3 = np.linalg.inv(MATRIX_VENICE_S_GAMUT3_TO_XYZ) """ *CIE XYZ* tristimulus values to *Venice S-Gamut3* colourspace matrix. MATRIX_XYZ_TO_VENICE_S_GAMUT3 : array_like, (3, 3) """ RGB_COLOURSPACE_VENICE_S_GAMUT3 = RGB_Colourspace( 'Venice S-Gamut3', PRIMARIES_VENICE_S_GAMUT3, CCS_WHITEPOINT_VENICE_S_GAMUT3, WHITEPOINT_NAME_VENICE_S_GAMUT3, MATRIX_VENICE_S_GAMUT3_TO_XYZ, MATRIX_XYZ_TO_VENICE_S_GAMUT3, log_encoding_SLog3, log_decoding_SLog3, ) RGB_COLOURSPACE_VENICE_S_GAMUT3.__doc__ = """ *Venice S-Gamut3* colourspace. References ---------- :cite:`SonyElectronicsCorporation2020` RGB_COLOURSPACE_VENICE_S_GAMUT3 : RGB_Colourspace """ PRIMARIES_VENICE_S_GAMUT3_CINE = np.array([ [0.775901871567345, 0.274502392854799], [0.188682902773355, 0.828684937020288], [0.101337382499301, -0.089187517306263], ]) """ *Venice S-Gamut3.Cine* colourspace primaries. PRIMARIES_VENICE_S_GAMUT3_CINE : ndarray, (3, 2) """ WHITEPOINT_NAME_VENICE_S_GAMUT3_CINE = WHITEPOINT_NAME_S_GAMUT """ *Venice S-Gamut3.Cine* colourspace whitepoint name. WHITEPOINT_NAME_VENICE_S_GAMUT3_CINE : unicode """ CCS_WHITEPOINT_VENICE_S_GAMUT3_CINE = CCS_WHITEPOINT_S_GAMUT """ *Venice S-Gamut3.Cine* colourspace whitepoint chromaticity coordinates. CCS_WHITEPOINT_VENICE_S_GAMUT3_CINE : ndarray """ MATRIX_VENICE_S_GAMUT3_CINE_TO_XYZ = normalised_primary_matrix( PRIMARIES_VENICE_S_GAMUT3_CINE, CCS_WHITEPOINT_VENICE_S_GAMUT3_CINE) """ *Venice S-Gamut3.Cine* colourspace to *CIE XYZ* tristimulus values matrix. MATRIX_VENICE_S_GAMUT3_CINE_TO_XYZ : array_like, (3, 3) """ MATRIX_XYZ_TO_VENICE_S_GAMUT3_CINE = np.linalg.inv( MATRIX_VENICE_S_GAMUT3_CINE_TO_XYZ) """ *CIE XYZ* tristimulus values to *Venice S-Gamut3.Cine* colourspace matrix. MATRIX_XYZ_TO_VENICE_S_GAMUT3_CINE : array_like, (3, 3) """ RGB_COLOURSPACE_VENICE_S_GAMUT3_CINE = RGB_Colourspace( 'Venice S-Gamut3.Cine', PRIMARIES_VENICE_S_GAMUT3_CINE, CCS_WHITEPOINT_VENICE_S_GAMUT3_CINE, WHITEPOINT_NAME_VENICE_S_GAMUT3_CINE, MATRIX_VENICE_S_GAMUT3_CINE_TO_XYZ, MATRIX_XYZ_TO_VENICE_S_GAMUT3_CINE, log_encoding_SLog3, log_decoding_SLog3, ) RGB_COLOURSPACE_VENICE_S_GAMUT3_CINE.__doc__ = """ *Venice S-Gamut3.Cine* colourspace. References ---------- :cite:`SonyElectronicsCorporation2020a` RGB_COLOURSPACE_VENICE_S_GAMUT3_CINE : RGB_Colourspace """
[ "numpy.array", "colour.models.rgb.normalised_primary_matrix", "colour.models.rgb.RGB_Colourspace", "numpy.linalg.inv" ]
[((3760, 3813), 'numpy.array', 'np.array', (['[[0.73, 0.28], [0.14, 0.855], [0.1, -0.05]]'], {}), '([[0.73, 0.28], [0.14, 0.855], [0.1, -0.05]])\n', (3768, 3813), True, 'import numpy as np\n'), ((4273, 4421), 'numpy.array', 'np.array', (['[[0.7064827132, 0.1288010498, 0.1151721641], [0.2709796708, 0.7866064112, -\n 0.057586082], [-0.0096778454, 0.0046000375, 1.0941355587]]'], {}), '([[0.7064827132, 0.1288010498, 0.1151721641], [0.2709796708, \n 0.7866064112, -0.057586082], [-0.0096778454, 0.0046000375, 1.0941355587]])\n', (4281, 4421), True, 'import numpy as np\n'), ((4572, 4723), 'numpy.array', 'np.array', (['[[1.5073998991, -0.2458221374, -0.1716116808], [-0.5181517271, 1.3553912409,\n 0.1258786682], [0.0155116982, -0.0078727714, 0.9119163656]]'], {}), '([[1.5073998991, -0.2458221374, -0.1716116808], [-0.5181517271, \n 1.3553912409, 0.1258786682], [0.0155116982, -0.0078727714, 0.9119163656]])\n', (4580, 4723), True, 'import numpy as np\n'), ((4875, 5063), 'colour.models.rgb.RGB_Colourspace', 'RGB_Colourspace', (['"""S-Gamut"""', 'PRIMARIES_S_GAMUT', 'CCS_WHITEPOINT_S_GAMUT', 'WHITEPOINT_NAME_S_GAMUT', 'MATRIX_S_GAMUT_TO_XYZ', 'MATRIX_XYZ_TO_S_GAMUT', 'log_encoding_SLog2', 'log_decoding_SLog2'], {}), "('S-Gamut', PRIMARIES_S_GAMUT, CCS_WHITEPOINT_S_GAMUT,\n WHITEPOINT_NAME_S_GAMUT, MATRIX_S_GAMUT_TO_XYZ, MATRIX_XYZ_TO_S_GAMUT,\n log_encoding_SLog2, log_decoding_SLog2)\n", (4890, 5063), False, 'from colour.models.rgb import RGB_Colourspace, log_encoding_SLog2, log_decoding_SLog2, log_encoding_SLog3, log_decoding_SLog3, normalised_primary_matrix\n'), ((6029, 6223), 'colour.models.rgb.RGB_Colourspace', 'RGB_Colourspace', (['"""S-Gamut3"""', 'PRIMARIES_S_GAMUT3', 'CCS_WHITEPOINT_S_GAMUT3', 'WHITEPOINT_NAME_S_GAMUT3', 'MATRIX_S_GAMUT3_TO_XYZ', 'MATRIX_XYZ_TO_S_GAMUT3', 'log_encoding_SLog3', 'log_decoding_SLog3'], {}), "('S-Gamut3', PRIMARIES_S_GAMUT3, CCS_WHITEPOINT_S_GAMUT3,\n WHITEPOINT_NAME_S_GAMUT3, MATRIX_S_GAMUT3_TO_XYZ,\n MATRIX_XYZ_TO_S_GAMUT3, log_encoding_SLog3, log_decoding_SLog3)\n", (6044, 6223), False, 'from colour.models.rgb import RGB_Colourspace, log_encoding_SLog2, log_decoding_SLog2, log_encoding_SLog3, log_decoding_SLog3, normalised_primary_matrix\n'), ((6437, 6494), 'numpy.array', 'np.array', (['[[0.766, 0.275], [0.225, 0.8], [0.089, -0.087]]'], {}), '([[0.766, 0.275], [0.225, 0.8], [0.089, -0.087]])\n', (6445, 6494), True, 'import numpy as np\n'), ((6964, 7113), 'numpy.array', 'np.array', (['[[0.5990839208, 0.2489255161, 0.1024464902], [0.2150758201, 0.8850685017, -\n 0.1001443219], [-0.0320658495, -0.0276583907, 1.148781991]]'], {}), '([[0.5990839208, 0.2489255161, 0.1024464902], [0.2150758201, \n 0.8850685017, -0.1001443219], [-0.0320658495, -0.0276583907, 1.148781991]])\n', (6972, 7113), True, 'import numpy as np\n'), ((7282, 7431), 'numpy.array', 'np.array', (['[[1.8467789693, -0.525986123, -0.2105452114], [-0.4441532629, 1.2594429028,\n 0.1493999729], [0.0408554212, 0.0156408893, 0.8682072487]]'], {}), '([[1.8467789693, -0.525986123, -0.2105452114], [-0.4441532629, \n 1.2594429028, 0.1493999729], [0.0408554212, 0.0156408893, 0.8682072487]])\n', (7290, 7431), True, 'import numpy as np\n'), ((7602, 7830), 'colour.models.rgb.RGB_Colourspace', 'RGB_Colourspace', (['"""S-Gamut3.Cine"""', 'PRIMARIES_S_GAMUT3_CINE', 'CCS_WHITEPOINT_S_GAMUT3_CINE', 'WHITEPOINT_NAME_S_GAMUT3_CINE', 'MATRIX_S_GAMUT3_CINE_TO_XYZ', 'MATRIX_XYZ_TO_S_GAMUT3_CINE', 'log_encoding_SLog3', 'log_decoding_SLog3'], {}), "('S-Gamut3.Cine', PRIMARIES_S_GAMUT3_CINE,\n CCS_WHITEPOINT_S_GAMUT3_CINE, WHITEPOINT_NAME_S_GAMUT3_CINE,\n MATRIX_S_GAMUT3_CINE_TO_XYZ, MATRIX_XYZ_TO_S_GAMUT3_CINE,\n log_encoding_SLog3, log_decoding_SLog3)\n", (7617, 7830), False, 'from colour.models.rgb import RGB_Colourspace, log_encoding_SLog2, log_decoding_SLog2, log_encoding_SLog3, log_decoding_SLog3, normalised_primary_matrix\n'), ((8057, 8192), 'numpy.array', 'np.array', (['[[0.740464264304292, 0.27936437475066], [0.089241145423286, \n 0.893809528608105], [0.110488236673827, -0.052579333080476]]'], {}), '([[0.740464264304292, 0.27936437475066], [0.089241145423286, \n 0.893809528608105], [0.110488236673827, -0.052579333080476]])\n', (8065, 8192), True, 'import numpy as np\n'), ((8662, 8750), 'colour.models.rgb.normalised_primary_matrix', 'normalised_primary_matrix', (['PRIMARIES_VENICE_S_GAMUT3', 'CCS_WHITEPOINT_VENICE_S_GAMUT3'], {}), '(PRIMARIES_VENICE_S_GAMUT3,\n CCS_WHITEPOINT_VENICE_S_GAMUT3)\n', (8687, 8750), False, 'from colour.models.rgb import RGB_Colourspace, log_encoding_SLog2, log_decoding_SLog2, log_encoding_SLog3, log_decoding_SLog3, normalised_primary_matrix\n'), ((8915, 8959), 'numpy.linalg.inv', 'np.linalg.inv', (['MATRIX_VENICE_S_GAMUT3_TO_XYZ'], {}), '(MATRIX_VENICE_S_GAMUT3_TO_XYZ)\n', (8928, 8959), True, 'import numpy as np\n'), ((9125, 9365), 'colour.models.rgb.RGB_Colourspace', 'RGB_Colourspace', (['"""Venice S-Gamut3"""', 'PRIMARIES_VENICE_S_GAMUT3', 'CCS_WHITEPOINT_VENICE_S_GAMUT3', 'WHITEPOINT_NAME_VENICE_S_GAMUT3', 'MATRIX_VENICE_S_GAMUT3_TO_XYZ', 'MATRIX_XYZ_TO_VENICE_S_GAMUT3', 'log_encoding_SLog3', 'log_decoding_SLog3'], {}), "('Venice S-Gamut3', PRIMARIES_VENICE_S_GAMUT3,\n CCS_WHITEPOINT_VENICE_S_GAMUT3, WHITEPOINT_NAME_VENICE_S_GAMUT3,\n MATRIX_VENICE_S_GAMUT3_TO_XYZ, MATRIX_XYZ_TO_VENICE_S_GAMUT3,\n log_encoding_SLog3, log_decoding_SLog3)\n", (9140, 9365), False, 'from colour.models.rgb import RGB_Colourspace, log_encoding_SLog2, log_decoding_SLog2, log_encoding_SLog3, log_decoding_SLog3, normalised_primary_matrix\n'), ((9617, 9753), 'numpy.array', 'np.array', (['[[0.775901871567345, 0.274502392854799], [0.188682902773355, \n 0.828684937020288], [0.101337382499301, -0.089187517306263]]'], {}), '([[0.775901871567345, 0.274502392854799], [0.188682902773355, \n 0.828684937020288], [0.101337382499301, -0.089187517306263]])\n', (9625, 9753), True, 'import numpy as np\n'), ((10267, 10365), 'colour.models.rgb.normalised_primary_matrix', 'normalised_primary_matrix', (['PRIMARIES_VENICE_S_GAMUT3_CINE', 'CCS_WHITEPOINT_VENICE_S_GAMUT3_CINE'], {}), '(PRIMARIES_VENICE_S_GAMUT3_CINE,\n CCS_WHITEPOINT_VENICE_S_GAMUT3_CINE)\n', (10292, 10365), False, 'from colour.models.rgb import RGB_Colourspace, log_encoding_SLog2, log_decoding_SLog2, log_encoding_SLog3, log_decoding_SLog3, normalised_primary_matrix\n'), ((10545, 10594), 'numpy.linalg.inv', 'np.linalg.inv', (['MATRIX_VENICE_S_GAMUT3_CINE_TO_XYZ'], {}), '(MATRIX_VENICE_S_GAMUT3_CINE_TO_XYZ)\n', (10558, 10594), True, 'import numpy as np\n'), ((10780, 11054), 'colour.models.rgb.RGB_Colourspace', 'RGB_Colourspace', (['"""Venice S-Gamut3.Cine"""', 'PRIMARIES_VENICE_S_GAMUT3_CINE', 'CCS_WHITEPOINT_VENICE_S_GAMUT3_CINE', 'WHITEPOINT_NAME_VENICE_S_GAMUT3_CINE', 'MATRIX_VENICE_S_GAMUT3_CINE_TO_XYZ', 'MATRIX_XYZ_TO_VENICE_S_GAMUT3_CINE', 'log_encoding_SLog3', 'log_decoding_SLog3'], {}), "('Venice S-Gamut3.Cine', PRIMARIES_VENICE_S_GAMUT3_CINE,\n CCS_WHITEPOINT_VENICE_S_GAMUT3_CINE,\n WHITEPOINT_NAME_VENICE_S_GAMUT3_CINE,\n MATRIX_VENICE_S_GAMUT3_CINE_TO_XYZ, MATRIX_XYZ_TO_VENICE_S_GAMUT3_CINE,\n log_encoding_SLog3, log_decoding_SLog3)\n", (10795, 11054), False, 'from colour.models.rgb import RGB_Colourspace, log_encoding_SLog2, log_decoding_SLog2, log_encoding_SLog3, log_decoding_SLog3, normalised_primary_matrix\n')]
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. import logging import os import pprint import unittest import numpy as np # pyre-fixme[21]: Could not find module `pytest`. import pytest import torch from parameterized import parameterized from reagent.core.types import RewardOptions from reagent.gym.agents.agent import Agent from reagent.gym.agents.post_step import train_with_replay_buffer_post_step from reagent.gym.envs.union import Env__Union from reagent.gym.runners.gymrunner import evaluate_for_n_episodes, run_episode from reagent.gym.utils import build_normalizer, fill_replay_buffer from reagent.model_managers.model_manager import ModelManager from reagent.model_managers.union import ModelManager__Union from reagent.replay_memory.circular_replay_buffer import ReplayBuffer from reagent.tensorboardX import summary_writer_context from reagent.test.base.horizon_test_base import HorizonTestBase from torch.utils.tensorboard import SummaryWriter try: # Use internal runner or OSS otherwise from reagent.runners.fb.fb_batch_runner import FbBatchRunner as BatchRunner except ImportError: from reagent.runners.oss_batch_runner import OssBatchRunner as BatchRunner # for seeding the environment SEED = 0 logger = logging.getLogger(__name__) logger.setLevel(logging.INFO) """ Put on-policy gym tests here in the format (test name, path to yaml config). Format path to be: "configs/<env_name>/<model_name>_<env_name>_online.yaml." NOTE: These tests should ideally finish quickly (within 10 minutes) since they are unit tests which are run many times. """ GYM_TESTS = [ ("Discrete DQN Cartpole", "configs/cartpole/discrete_dqn_cartpole_online.yaml"), ("Discrete C51 Cartpole", "configs/cartpole/discrete_c51_cartpole_online.yaml"), ("Discrete QR Cartpole", "configs/cartpole/discrete_qr_cartpole_online.yaml"), ( "Discrete DQN Open Gridworld", "configs/open_gridworld/discrete_dqn_open_gridworld.yaml", ), ("SAC Pendulum", "configs/pendulum/sac_pendulum_online.yaml"), ("TD3 Pendulum", "configs/pendulum/td3_pendulum_online.yaml"), ("Parametric DQN Cartpole", "configs/cartpole/parametric_dqn_cartpole_online.yaml"), ( "Parametric SARSA Cartpole", "configs/cartpole/parametric_sarsa_cartpole_online.yaml", ), ( "Sparse DQN Changing Arms", "configs/sparse/discrete_dqn_changing_arms_online.yaml", ), ("SlateQ RecSim", "configs/recsim/slate_q_recsim_online.yaml"), ("PossibleActionsMask DQN", "configs/functionality/dqn_possible_actions_mask.yaml"), ] curr_dir = os.path.dirname(__file__) class TestGym(HorizonTestBase): # pyre-fixme[16]: Module `parameterized` has no attribute `expand`. @parameterized.expand(GYM_TESTS) def test_gym_cpu(self, name: str, config_path: str): logger.info(f"Starting {name} on CPU") self.run_from_config( run_test=run_test, config_path=os.path.join(curr_dir, config_path), use_gpu=False, ) logger.info(f"{name} passes!") # pyre-fixme[16]: Module `parameterized` has no attribute `expand`. @parameterized.expand(GYM_TESTS) @pytest.mark.serial # pyre-fixme[56]: Argument `not torch.cuda.is_available()` to decorator factory # `unittest.skipIf` could not be resolved in a global scope. @unittest.skipIf(not torch.cuda.is_available(), "CUDA not available") def test_gym_gpu(self, name: str, config_path: str): logger.info(f"Starting {name} on GPU") self.run_from_config( run_test=run_test, config_path=os.path.join(curr_dir, config_path), use_gpu=True, ) logger.info(f"{name} passes!") def run_test( env: Env__Union, model: ModelManager__Union, replay_memory_size: int, train_every_ts: int, train_after_ts: int, num_train_episodes: int, passing_score_bar: float, num_eval_episodes: int, use_gpu: bool, ): env = env.value env.seed(SEED) env.action_space.seed(SEED) normalization = build_normalizer(env) logger.info(f"Normalization is: \n{pprint.pformat(normalization)}") manager: ModelManager = model.value runner = BatchRunner(use_gpu, manager, RewardOptions(), normalization) trainer = runner.initialize_trainer() reporter = manager.get_reporter() trainer.reporter = reporter training_policy = manager.create_policy(trainer) replay_buffer = ReplayBuffer( replay_capacity=replay_memory_size, batch_size=trainer.minibatch_size ) device = torch.device("cuda") if use_gpu else torch.device("cpu") # first fill the replay buffer to burn_in train_after_ts = max(train_after_ts, trainer.minibatch_size) fill_replay_buffer( env=env, replay_buffer=replay_buffer, desired_size=train_after_ts ) post_step = train_with_replay_buffer_post_step( replay_buffer=replay_buffer, env=env, trainer=trainer, training_freq=train_every_ts, batch_size=trainer.minibatch_size, device=device, ) agent = Agent.create_for_env( env, policy=training_policy, post_transition_callback=post_step, device=device ) writer = SummaryWriter() with summary_writer_context(writer): train_rewards = [] for i in range(num_train_episodes): trajectory = run_episode( env=env, agent=agent, mdp_id=i, max_steps=env.max_steps ) ep_reward = trajectory.calculate_cumulative_reward() train_rewards.append(ep_reward) logger.info( f"Finished training episode {i} (len {len(trajectory)})" f" with reward {ep_reward}." ) logger.info("============Train rewards=============") logger.info(train_rewards) logger.info(f"average: {np.mean(train_rewards)};\tmax: {np.max(train_rewards)}") # Check whether the max score passed the score bar; we explore during training # the return could be bad (leading to flakiness in C51 and QRDQN). assert np.max(train_rewards) >= passing_score_bar, ( f"max reward ({np.max(train_rewards)})after training for " f"{len(train_rewards)} episodes is less than < {passing_score_bar}.\n" ) serving_policy = manager.create_serving_policy(normalization, trainer) agent = Agent.create_for_env_with_serving_policy(env, serving_policy) eval_rewards = evaluate_for_n_episodes( n=num_eval_episodes, env=env, agent=agent, max_steps=env.max_steps ).squeeze(1) logger.info("============Eval rewards==============") logger.info(eval_rewards) mean_eval = np.mean(eval_rewards) logger.info(f"average: {mean_eval};\tmax: {np.max(eval_rewards)}") assert ( mean_eval >= passing_score_bar ), f"Eval reward is {mean_eval}, less than < {passing_score_bar}.\n" if __name__ == "__main__": unittest.main()
[ "logging.getLogger", "reagent.gym.utils.build_normalizer", "reagent.gym.utils.fill_replay_buffer", "torch.cuda.is_available", "reagent.replay_memory.circular_replay_buffer.ReplayBuffer", "unittest.main", "torch.utils.tensorboard.SummaryWriter", "numpy.mean", "reagent.tensorboardX.summary_writer_context", "parameterized.parameterized.expand", "reagent.core.types.RewardOptions", "numpy.max", "reagent.gym.agents.agent.Agent.create_for_env", "reagent.gym.agents.agent.Agent.create_for_env_with_serving_policy", "pprint.pformat", "os.path.dirname", "reagent.gym.agents.post_step.train_with_replay_buffer_post_step", "torch.device", "reagent.gym.runners.gymrunner.evaluate_for_n_episodes", "reagent.gym.runners.gymrunner.run_episode", "os.path.join" ]
[((1286, 1313), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (1303, 1313), False, 'import logging\n'), ((2639, 2664), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (2654, 2664), False, 'import os\n'), ((2776, 2807), 'parameterized.parameterized.expand', 'parameterized.expand', (['GYM_TESTS'], {}), '(GYM_TESTS)\n', (2796, 2807), False, 'from parameterized import parameterized\n'), ((3188, 3219), 'parameterized.parameterized.expand', 'parameterized.expand', (['GYM_TESTS'], {}), '(GYM_TESTS)\n', (3208, 3219), False, 'from parameterized import parameterized\n'), ((4117, 4138), 'reagent.gym.utils.build_normalizer', 'build_normalizer', (['env'], {}), '(env)\n', (4133, 4138), False, 'from reagent.gym.utils import build_normalizer, fill_replay_buffer\n'), ((4513, 4601), 'reagent.replay_memory.circular_replay_buffer.ReplayBuffer', 'ReplayBuffer', ([], {'replay_capacity': 'replay_memory_size', 'batch_size': 'trainer.minibatch_size'}), '(replay_capacity=replay_memory_size, batch_size=trainer.\n minibatch_size)\n', (4525, 4601), False, 'from reagent.replay_memory.circular_replay_buffer import ReplayBuffer\n'), ((4797, 4887), 'reagent.gym.utils.fill_replay_buffer', 'fill_replay_buffer', ([], {'env': 'env', 'replay_buffer': 'replay_buffer', 'desired_size': 'train_after_ts'}), '(env=env, replay_buffer=replay_buffer, desired_size=\n train_after_ts)\n', (4815, 4887), False, 'from reagent.gym.utils import build_normalizer, fill_replay_buffer\n'), ((4914, 5092), 'reagent.gym.agents.post_step.train_with_replay_buffer_post_step', 'train_with_replay_buffer_post_step', ([], {'replay_buffer': 'replay_buffer', 'env': 'env', 'trainer': 'trainer', 'training_freq': 'train_every_ts', 'batch_size': 'trainer.minibatch_size', 'device': 'device'}), '(replay_buffer=replay_buffer, env=env,\n trainer=trainer, training_freq=train_every_ts, batch_size=trainer.\n minibatch_size, device=device)\n', (4948, 5092), False, 'from reagent.gym.agents.post_step import train_with_replay_buffer_post_step\n'), ((5152, 5257), 'reagent.gym.agents.agent.Agent.create_for_env', 'Agent.create_for_env', (['env'], {'policy': 'training_policy', 'post_transition_callback': 'post_step', 'device': 'device'}), '(env, policy=training_policy, post_transition_callback=\n post_step, device=device)\n', (5172, 5257), False, 'from reagent.gym.agents.agent import Agent\n'), ((5281, 5296), 'torch.utils.tensorboard.SummaryWriter', 'SummaryWriter', ([], {}), '()\n', (5294, 5296), False, 'from torch.utils.tensorboard import SummaryWriter\n'), ((6426, 6487), 'reagent.gym.agents.agent.Agent.create_for_env_with_serving_policy', 'Agent.create_for_env_with_serving_policy', (['env', 'serving_policy'], {}), '(env, serving_policy)\n', (6466, 6487), False, 'from reagent.gym.agents.agent import Agent\n'), ((6730, 6751), 'numpy.mean', 'np.mean', (['eval_rewards'], {}), '(eval_rewards)\n', (6737, 6751), True, 'import numpy as np\n'), ((6981, 6996), 'unittest.main', 'unittest.main', ([], {}), '()\n', (6994, 6996), False, 'import unittest\n'), ((4295, 4310), 'reagent.core.types.RewardOptions', 'RewardOptions', ([], {}), '()\n', (4308, 4310), False, 'from reagent.core.types import RewardOptions\n'), ((4625, 4645), 'torch.device', 'torch.device', (['"""cuda"""'], {}), "('cuda')\n", (4637, 4645), False, 'import torch\n'), ((4662, 4681), 'torch.device', 'torch.device', (['"""cpu"""'], {}), "('cpu')\n", (4674, 4681), False, 'import torch\n'), ((5306, 5336), 'reagent.tensorboardX.summary_writer_context', 'summary_writer_context', (['writer'], {}), '(writer)\n', (5328, 5336), False, 'from reagent.tensorboardX import summary_writer_context\n'), ((6140, 6161), 'numpy.max', 'np.max', (['train_rewards'], {}), '(train_rewards)\n', (6146, 6161), True, 'import numpy as np\n'), ((3419, 3444), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (3442, 3444), False, 'import torch\n'), ((5434, 5502), 'reagent.gym.runners.gymrunner.run_episode', 'run_episode', ([], {'env': 'env', 'agent': 'agent', 'mdp_id': 'i', 'max_steps': 'env.max_steps'}), '(env=env, agent=agent, mdp_id=i, max_steps=env.max_steps)\n', (5445, 5502), False, 'from reagent.gym.runners.gymrunner import evaluate_for_n_episodes, run_episode\n'), ((6209, 6230), 'numpy.max', 'np.max', (['train_rewards'], {}), '(train_rewards)\n', (6215, 6230), True, 'import numpy as np\n'), ((6508, 6603), 'reagent.gym.runners.gymrunner.evaluate_for_n_episodes', 'evaluate_for_n_episodes', ([], {'n': 'num_eval_episodes', 'env': 'env', 'agent': 'agent', 'max_steps': 'env.max_steps'}), '(n=num_eval_episodes, env=env, agent=agent,\n max_steps=env.max_steps)\n', (6531, 6603), False, 'from reagent.gym.runners.gymrunner import evaluate_for_n_episodes, run_episode\n'), ((2997, 3032), 'os.path.join', 'os.path.join', (['curr_dir', 'config_path'], {}), '(curr_dir, config_path)\n', (3009, 3032), False, 'import os\n'), ((3657, 3692), 'os.path.join', 'os.path.join', (['curr_dir', 'config_path'], {}), '(curr_dir, config_path)\n', (3669, 3692), False, 'import os\n'), ((4178, 4207), 'pprint.pformat', 'pprint.pformat', (['normalization'], {}), '(normalization)\n', (4192, 4207), False, 'import pprint\n'), ((5917, 5939), 'numpy.mean', 'np.mean', (['train_rewards'], {}), '(train_rewards)\n', (5924, 5939), True, 'import numpy as np\n'), ((5949, 5970), 'numpy.max', 'np.max', (['train_rewards'], {}), '(train_rewards)\n', (5955, 5970), True, 'import numpy as np\n'), ((6799, 6819), 'numpy.max', 'np.max', (['eval_rewards'], {}), '(eval_rewards)\n', (6805, 6819), True, 'import numpy as np\n')]