code
stringlengths
31
1.05M
apis
list
extract_api
stringlengths
97
1.91M
import torch import torch.nn as nn import numpy as np class IndexTranslator(object): def __init__(self, state): self.state = state self.px = self.state[:, 0].reshape(-1, 1) self.py = self.state[:, 1].reshape(-1, 1) self.vx = self.state[:, 2].reshape(-1, 1) self.vy = self.state[:, 3].reshape(-1, 1) self.radius = self.state[:, 4].reshape(-1, 1) self.pgx = self.state[:, 5].reshape(-1, 1) self.pgy = self.state[:, 6].reshape(-1, 1) self.v_pref = self.state[:, 7].reshape(-1, 1) self.theta = self.state[:, 8].reshape(-1, 1) self.px1 = self.state[:, 9].reshape(-1, 1) self.py1 = self.state[:, 10].reshape(-1, 1) self.vx1 = self.state[:, 11].reshape(-1, 1) self.vy1 = self.state[:, 12].reshape(-1, 1) self.radius1 = self.state[:, 13].reshape(-1, 1) class ValueNetwork(nn.Module): def __init__(self, state_dim, fc_layers, kinematic, reparametrization=True): super(ValueNetwork, self).__init__() self.reparametrization = reparametrization if reparametrization: state_dim = 15 self.kinematic = kinematic self.value_network = nn.Sequential(nn.Linear(state_dim, fc_layers[0]), nn.ReLU(), nn.Linear(fc_layers[0], fc_layers[1]), nn.ReLU(), nn.Linear(fc_layers[1], fc_layers[2]), nn.ReLU(), nn.Linear(fc_layers[2], 1)) def rotate(self, state, device): # first translate the coordinate then rotate around the origin # 'px', 'py', 'vx', 'vy', 'radius', 'pgx', 'pgy', 'v_pref', 'theta', 'px1', 'py1', 'vx1', 'vy1', 'radius1' # 0 1 2 3 4 5 6 7 8 9 10 11 12 13 state = IndexTranslator(state.cpu().numpy()) dx = state.pgx - state.px dy = state.pgy - state.py rot = np.arctan2(state.pgy-state.py, state.pgx-state.px) dg = np.linalg.norm(np.concatenate([dx, dy], axis=1), axis=1, keepdims=True) v_pref = state.v_pref vx = state.vx * np.cos(rot) + state.vy * np.sin(rot) vy = state.vy * np.cos(rot) - state.vx * np.sin(rot) radius = state.radius if self.kinematic: theta = state.theta - rot else: theta = state.theta vx1 = state.vx1 * np.cos(rot) + state.vy1 * np.sin(rot) vy1 = state.vy1 * np.cos(rot) - state.vx1 * np.sin(rot) px1 = (state.px1 - state.px) * np.cos(rot) + (state.py1 - state.py) * np.sin(rot) py1 = (state.py1 - state.py) * np.cos(rot) - (state.px1 - state.px) * np.sin(rot) radius1 = state.radius1 radius_sum = radius + radius1 cos_theta = np.cos(theta) sin_theta = np.sin(theta) da = np.linalg.norm(np.concatenate([state.px - state.px1, state.py - state.py1], axis=1), axis=1, keepdims=True) new_state = np.concatenate([dg, v_pref, vx, vy, radius, theta, vx1, vy1, px1, py1, radius1, radius_sum, cos_theta, sin_theta, da], axis=1) return torch.Tensor(new_state).to(device) def forward(self, state, device): if self.reparametrization: state = self.rotate(state, device) temp_value_network = self.value_network; value = temp_value_network(state) return value
[ "torch.nn.ReLU", "torch.Tensor", "numpy.arctan2", "numpy.cos", "torch.nn.Linear", "numpy.concatenate", "numpy.sin" ]
[((1990, 2044), 'numpy.arctan2', 'np.arctan2', (['(state.pgy - state.py)', '(state.pgx - state.px)'], {}), '(state.pgy - state.py, state.pgx - state.px)\n', (2000, 2044), True, 'import numpy as np\n'), ((2818, 2831), 'numpy.cos', 'np.cos', (['theta'], {}), '(theta)\n', (2824, 2831), True, 'import numpy as np\n'), ((2852, 2865), 'numpy.sin', 'np.sin', (['theta'], {}), '(theta)\n', (2858, 2865), True, 'import numpy as np\n'), ((3008, 3138), 'numpy.concatenate', 'np.concatenate', (['[dg, v_pref, vx, vy, radius, theta, vx1, vy1, px1, py1, radius1, radius_sum,\n cos_theta, sin_theta, da]'], {'axis': '(1)'}), '([dg, v_pref, vx, vy, radius, theta, vx1, vy1, px1, py1,\n radius1, radius_sum, cos_theta, sin_theta, da], axis=1)\n', (3022, 3138), True, 'import numpy as np\n'), ((1216, 1250), 'torch.nn.Linear', 'nn.Linear', (['state_dim', 'fc_layers[0]'], {}), '(state_dim, fc_layers[0])\n', (1225, 1250), True, 'import torch.nn as nn\n'), ((1252, 1261), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (1259, 1261), True, 'import torch.nn as nn\n'), ((1306, 1343), 'torch.nn.Linear', 'nn.Linear', (['fc_layers[0]', 'fc_layers[1]'], {}), '(fc_layers[0], fc_layers[1])\n', (1315, 1343), True, 'import torch.nn as nn\n'), ((1345, 1354), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (1352, 1354), True, 'import torch.nn as nn\n'), ((1399, 1436), 'torch.nn.Linear', 'nn.Linear', (['fc_layers[1]', 'fc_layers[2]'], {}), '(fc_layers[1], fc_layers[2])\n', (1408, 1436), True, 'import torch.nn as nn\n'), ((1438, 1447), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (1445, 1447), True, 'import torch.nn as nn\n'), ((1492, 1518), 'torch.nn.Linear', 'nn.Linear', (['fc_layers[2]', '(1)'], {}), '(fc_layers[2], 1)\n', (1501, 1518), True, 'import torch.nn as nn\n'), ((2070, 2102), 'numpy.concatenate', 'np.concatenate', (['[dx, dy]'], {'axis': '(1)'}), '([dx, dy], axis=1)\n', (2084, 2102), True, 'import numpy as np\n'), ((2894, 2962), 'numpy.concatenate', 'np.concatenate', (['[state.px - state.px1, state.py - state.py1]'], {'axis': '(1)'}), '([state.px - state.px1, state.py - state.py1], axis=1)\n', (2908, 2962), True, 'import numpy as np\n'), ((2181, 2192), 'numpy.cos', 'np.cos', (['rot'], {}), '(rot)\n', (2187, 2192), True, 'import numpy as np\n'), ((2206, 2217), 'numpy.sin', 'np.sin', (['rot'], {}), '(rot)\n', (2212, 2217), True, 'import numpy as np\n'), ((2242, 2253), 'numpy.cos', 'np.cos', (['rot'], {}), '(rot)\n', (2248, 2253), True, 'import numpy as np\n'), ((2267, 2278), 'numpy.sin', 'np.sin', (['rot'], {}), '(rot)\n', (2273, 2278), True, 'import numpy as np\n'), ((2446, 2457), 'numpy.cos', 'np.cos', (['rot'], {}), '(rot)\n', (2452, 2457), True, 'import numpy as np\n'), ((2472, 2483), 'numpy.sin', 'np.sin', (['rot'], {}), '(rot)\n', (2478, 2483), True, 'import numpy as np\n'), ((2510, 2521), 'numpy.cos', 'np.cos', (['rot'], {}), '(rot)\n', (2516, 2521), True, 'import numpy as np\n'), ((2536, 2547), 'numpy.sin', 'np.sin', (['rot'], {}), '(rot)\n', (2542, 2547), True, 'import numpy as np\n'), ((2587, 2598), 'numpy.cos', 'np.cos', (['rot'], {}), '(rot)\n', (2593, 2598), True, 'import numpy as np\n'), ((2626, 2637), 'numpy.sin', 'np.sin', (['rot'], {}), '(rot)\n', (2632, 2637), True, 'import numpy as np\n'), ((2677, 2688), 'numpy.cos', 'np.cos', (['rot'], {}), '(rot)\n', (2683, 2688), True, 'import numpy as np\n'), ((2716, 2727), 'numpy.sin', 'np.sin', (['rot'], {}), '(rot)\n', (2722, 2727), True, 'import numpy as np\n'), ((3186, 3209), 'torch.Tensor', 'torch.Tensor', (['new_state'], {}), '(new_state)\n', (3198, 3209), False, 'import torch\n')]
from Data import Data import itertools import joblib import numpy as np import pandas as pd import pickle import re import statsmodels.api as sm import sys from sklearn.linear_model import LinearRegression from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor from sklearn.metrics import mean_squared_error from sklearn.model_selection import train_test_split from sklearn.neural_network import MLPClassifier from sklearn import svm from sklearn.preprocessing import OneHotEncoder import os class Predict(object): """This class makes predictions of house prices""" def __init__(self, features = ['tfarea', 'numberrooms', 'propertytype', 'oldnew'], LR=True, RF=False, GB=False, test_prop=0.2, regions=[], seed = 1704, outcome = ['ln_y'], hot_load_models=True, save_models=True, model_append = [''], output_geo=True, merge_lsoa=False, gb_model = GradientBoostingRegressor()): self.model_dir = os.path.join(os.path.abspath(''), 'models') self.data_dir = os.path.join(os.path.abspath(''), 'data') self.features = features self.LR = LR self.RF = RF self.GB = GB self.gb_model = gb_model self.test_prop = test_prop self.regions = regions self.seed = seed self.outcome = outcome self.hot_load_models = hot_load_models self.save_models = save_models self.merge_lsoa = merge_lsoa self.model_append = model_append self.feature_acronyms = [i[0:3] for i in self.features] if self.model_append == ['']: self.model_append = '_'.join(self.regions + self.feature_acronyms) else: self.model_append = '_'.join(self.regions + self.feature_acronyms + self.model_append) self.output_geo = output_geo self.data = Data(regions=self.regions, merge_lsoa = self.merge_lsoa).data self.generate_outcome() self.generate_features() self.train_test_split() self.estimate_model(LR = self.LR, RF = self.RF, GB = self.GB) self.oos_r2() if self.output_geo: self.output_geo_df() def train_test_split(self): self.X_train, self.X_test, self.y_train, self.y_test =\ train_test_split(self.data[self.features], self.data['outcome'], test_size = self.test_prop, random_state = self.seed) print("Training set dimensions: {}".format(self.X_train.shape)) def generate_outcome(self): self.data['y'] = self.data['price'] self.data['ln_y'] = self.data['price'].apply(np.log) self.data['rel_y'] = self.data['priceper'] self.data['outcome'] = self.data[self.outcome] def generate_features(self): """ Generate features to include into the predictions""" # identify categorical versus continuous features self.cat_features =\ list(itertools.compress(self.features, [i == 'object' for i in self.data[self.features].dtypes])) self.other_features=\ list(itertools.compress(self.features, [i != 'object' for i in self.data[self.features].dtypes])) print("Categorical features identified: {}".format(self.cat_features)) print("Continous features identified: {}".format(self.other_features)) # one-hot encode all categorical observations enc = OneHotEncoder(handle_unknown='ignore') enc.fit(self.data[self.cat_features]) self.data[enc.get_feature_names(self.cat_features)] = enc.\ transform(self.data[self.cat_features]).toarray() # new features self.features = list(itertools.chain(*[self.other_features, list(enc.get_feature_names(self.cat_features))])) def estimate_model(self, LR, RF, GB): if LR: self.lr() else: self.lr_predictions = np.nan if RF: self.rf() else: self.rf_predictions = np.nan if GB: self.gb(gb_model = self.gb_model) else: self.gb_predictions = np.nan def output_geo_df(self): assert pd.Series(self.X_test.index).isin(pd.Series(self.data.index)).mean() == 1 assert pd.Series(self.y_test.index).isin(pd.Series(self.data.index)).mean() == 1 geo_output = pd.DataFrame({'true': self.y_test.values, 'lr_pred': self.lr_predictions, 'rf_pred': self.rf_predictions, 'gb_pred': self.gb_predictions, }, index = self.y_test.index) geo_df = self.data[['lsoa11', 'msoa11', 'laua', 'lad11nm', 'gor', 'rgn11nm']] full_geo = pd.merge(geo_output, geo_df, left_index=True, right_index=True) filename = 'geo_output_' + '_'.join(self.regions) + '.csv' print("Writing " + filename) full_geo.to_csv(os.path.join(self.data_dir, 'edit', filename)) def oos_r2(self): TSS = np.square(self.y_test - self.y_test.mean()).sum() ESS_lr = np.square(self.y_test - self.lr_predictions).sum() ESS_rf = np.square(self.y_test - self.rf_predictions).sum() ESS_gb = np.square(self.y_test - self.gb_predictions).sum() self.LR_oos_r2 = (TSS - ESS_lr)/TSS self.RF_oos_r2 = (TSS - ESS_rf)/TSS self.GB_oos_r2 = (TSS - ESS_gb)/TSS def lr(self, predict_linreg=True, verbose=True): """Run a standard OLS""" model_path = os.path.join(self.model_dir, 'LR' + self.model_append + '.sav') # setup model, either hot load or estimate directly if self.hot_load_models: print("Hotloading model") try: self.reg = pickle.load(open(model_path, 'rb')) except FileNotFoundError: print("Could not find saved model for hot loading") sys.exit(1) else: self.reg = LinearRegression() self.reg.fit(self.X_train, self.y_train) # train if self.save_models: print("Saving LR model {}".format(model_path)) pickle.dump(self.reg, open(model_path, 'wb')) self.lr_coeff = self.reg.coef_ self.lr_predictions = self.reg.predict(self.X_test) self.lr_rmse = mean_squared_error(self.lr_predictions, self.y_test) if verbose: print('LR RMSE: {:3f}'.format(self.lr_rmse)) def rf(self, rf=RandomForestRegressor(n_estimators=1000), verbose=True): """ Estimate Random Forest model on the pre-specified feature space, option to perform cross validation on pre-defined paramter grid """ self.rf = rf # setup models model_path = os.path.join(self.model_dir, 'RF' + self.model_append + '.sav') # setup model, either hot load or estimate directly if self.hot_load_models: print("Hotloading model") try: self.rf = pickle.load(open(model_path, 'rb')) except FileNotFoundError: print("Could not find saved model for hot loading") sys.exit(1) else: self.rf.fit(self.X_train.to_numpy(), self.y_train.ravel()) if self.save_models: print("Saving RF model {}".format(model_path)) pickle.dump(self.rf, open(model_path, 'wb')) # estimate RF model on train set and evaluate performance on test set self.rf_predictions = self.rf.predict(self.X_test) self.rf_rmse = mean_squared_error(self.rf_predictions, self.y_test) if verbose: print('RF RMSE: {}'.format(self.rf_rmse)) def gb(self, verbose=True, gb_model = GradientBoostingRegressor()): """ Estimate Gradien Boosting model to pre-specified feature space, option to perform cross validation on pre-defined paramter grid """ # estimate GB model on the train set and evaluate predictive accuracy # setup models model_path = os.path.join(self.model_dir, 'GB' + self.model_append + '.sav') self.gb = gb_model # setup model, either hot load or estimate directly if self.hot_load_models: print("Hotloading model") try: self.gb = pickle.load(open(model_path, 'rb')) except FileNotFoundError: print("Could not find saved model for hot loading") sys.exit(1) else: self.gb.fit(self.X_train.to_numpy(), self.y_train.ravel()) if self.save_models: print("Saving GB model {}".format(model_path)) pickle.dump(self.gb, open(model_path, 'wb')) self.gb_predictions = self.gb.predict(self.X_test) self.gb_rmse = mean_squared_error(self.gb_predictions, self.y_test) if verbose: print('GB RMSE: {}'.format(self.gb_rmse))
[ "Data.Data", "pandas.Series", "sklearn.ensemble.RandomForestRegressor", "itertools.compress", "sklearn.model_selection.train_test_split", "sklearn.preprocessing.OneHotEncoder", "pandas.merge", "os.path.join", "sklearn.metrics.mean_squared_error", "numpy.square", "sys.exit", "pandas.DataFrame", "sklearn.ensemble.GradientBoostingRegressor", "os.path.abspath", "sklearn.linear_model.LinearRegression" ]
[((959, 986), 'sklearn.ensemble.GradientBoostingRegressor', 'GradientBoostingRegressor', ([], {}), '()\n', (984, 986), False, 'from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor\n'), ((2368, 2487), 'sklearn.model_selection.train_test_split', 'train_test_split', (['self.data[self.features]', "self.data['outcome']"], {'test_size': 'self.test_prop', 'random_state': 'self.seed'}), "(self.data[self.features], self.data['outcome'], test_size=\n self.test_prop, random_state=self.seed)\n", (2384, 2487), False, 'from sklearn.model_selection import train_test_split\n'), ((3550, 3588), 'sklearn.preprocessing.OneHotEncoder', 'OneHotEncoder', ([], {'handle_unknown': '"""ignore"""'}), "(handle_unknown='ignore')\n", (3563, 3588), False, 'from sklearn.preprocessing import OneHotEncoder\n'), ((4537, 4709), 'pandas.DataFrame', 'pd.DataFrame', (["{'true': self.y_test.values, 'lr_pred': self.lr_predictions, 'rf_pred':\n self.rf_predictions, 'gb_pred': self.gb_predictions}"], {'index': 'self.y_test.index'}), "({'true': self.y_test.values, 'lr_pred': self.lr_predictions,\n 'rf_pred': self.rf_predictions, 'gb_pred': self.gb_predictions}, index=\n self.y_test.index)\n", (4549, 4709), True, 'import pandas as pd\n'), ((4952, 5015), 'pandas.merge', 'pd.merge', (['geo_output', 'geo_df'], {'left_index': '(True)', 'right_index': '(True)'}), '(geo_output, geo_df, left_index=True, right_index=True)\n', (4960, 5015), True, 'import pandas as pd\n'), ((5758, 5821), 'os.path.join', 'os.path.join', (['self.model_dir', "('LR' + self.model_append + '.sav')"], {}), "(self.model_dir, 'LR' + self.model_append + '.sav')\n", (5770, 5821), False, 'import os\n'), ((6586, 6638), 'sklearn.metrics.mean_squared_error', 'mean_squared_error', (['self.lr_predictions', 'self.y_test'], {}), '(self.lr_predictions, self.y_test)\n', (6604, 6638), False, 'from sklearn.metrics import mean_squared_error\n'), ((6741, 6781), 'sklearn.ensemble.RandomForestRegressor', 'RandomForestRegressor', ([], {'n_estimators': '(1000)'}), '(n_estimators=1000)\n', (6762, 6781), False, 'from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor\n'), ((7043, 7106), 'os.path.join', 'os.path.join', (['self.model_dir', "('RF' + self.model_append + '.sav')"], {}), "(self.model_dir, 'RF' + self.model_append + '.sav')\n", (7055, 7106), False, 'import os\n'), ((7885, 7937), 'sklearn.metrics.mean_squared_error', 'mean_squared_error', (['self.rf_predictions', 'self.y_test'], {}), '(self.rf_predictions, self.y_test)\n', (7903, 7937), False, 'from sklearn.metrics import mean_squared_error\n'), ((8061, 8088), 'sklearn.ensemble.GradientBoostingRegressor', 'GradientBoostingRegressor', ([], {}), '()\n', (8086, 8088), False, 'from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor\n'), ((8391, 8454), 'os.path.join', 'os.path.join', (['self.model_dir', "('GB' + self.model_append + '.sav')"], {}), "(self.model_dir, 'GB' + self.model_append + '.sav')\n", (8403, 8454), False, 'import os\n'), ((9180, 9232), 'sklearn.metrics.mean_squared_error', 'mean_squared_error', (['self.gb_predictions', 'self.y_test'], {}), '(self.gb_predictions, self.y_test)\n', (9198, 9232), False, 'from sklearn.metrics import mean_squared_error\n'), ((1028, 1047), 'os.path.abspath', 'os.path.abspath', (['""""""'], {}), "('')\n", (1043, 1047), False, 'import os\n'), ((1097, 1116), 'os.path.abspath', 'os.path.abspath', (['""""""'], {}), "('')\n", (1112, 1116), False, 'import os\n'), ((1932, 1986), 'Data.Data', 'Data', ([], {'regions': 'self.regions', 'merge_lsoa': 'self.merge_lsoa'}), '(regions=self.regions, merge_lsoa=self.merge_lsoa)\n', (1936, 1986), False, 'from Data import Data\n'), ((3081, 3179), 'itertools.compress', 'itertools.compress', (['self.features', "[(i == 'object') for i in self.data[self.features].dtypes]"], {}), "(self.features, [(i == 'object') for i in self.data[self.\n features].dtypes])\n", (3099, 3179), False, 'import itertools\n'), ((3223, 3321), 'itertools.compress', 'itertools.compress', (['self.features', "[(i != 'object') for i in self.data[self.features].dtypes]"], {}), "(self.features, [(i != 'object') for i in self.data[self.\n features].dtypes])\n", (3241, 3321), False, 'import itertools\n'), ((5157, 5202), 'os.path.join', 'os.path.join', (['self.data_dir', '"""edit"""', 'filename'], {}), "(self.data_dir, 'edit', filename)\n", (5169, 5202), False, 'import os\n'), ((6216, 6234), 'sklearn.linear_model.LinearRegression', 'LinearRegression', ([], {}), '()\n', (6232, 6234), False, 'from sklearn.linear_model import LinearRegression\n'), ((5316, 5360), 'numpy.square', 'np.square', (['(self.y_test - self.lr_predictions)'], {}), '(self.y_test - self.lr_predictions)\n', (5325, 5360), True, 'import numpy as np\n'), ((5385, 5429), 'numpy.square', 'np.square', (['(self.y_test - self.rf_predictions)'], {}), '(self.y_test - self.rf_predictions)\n', (5394, 5429), True, 'import numpy as np\n'), ((5454, 5498), 'numpy.square', 'np.square', (['(self.y_test - self.gb_predictions)'], {}), '(self.y_test - self.gb_predictions)\n', (5463, 5498), True, 'import numpy as np\n'), ((6165, 6176), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (6173, 6176), False, 'import sys\n'), ((7449, 7460), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (7457, 7460), False, 'import sys\n'), ((8835, 8846), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (8843, 8846), False, 'import sys\n'), ((4385, 4411), 'pandas.Series', 'pd.Series', (['self.data.index'], {}), '(self.data.index)\n', (4394, 4411), True, 'import pandas as pd\n'), ((4475, 4501), 'pandas.Series', 'pd.Series', (['self.data.index'], {}), '(self.data.index)\n', (4484, 4501), True, 'import pandas as pd\n'), ((4351, 4379), 'pandas.Series', 'pd.Series', (['self.X_test.index'], {}), '(self.X_test.index)\n', (4360, 4379), True, 'import pandas as pd\n'), ((4441, 4469), 'pandas.Series', 'pd.Series', (['self.y_test.index'], {}), '(self.y_test.index)\n', (4450, 4469), True, 'import pandas as pd\n')]
import cv2 import dlib import numpy as np import pyautogui import imutils import time from imutils import face_utils WHITE_COLOR = (255, 255, 255) YELLOW_COLOR = (0, 255, 255) RED_COLOR = (0, 0, 255) GREEN_COLOR = (0, 255, 0) BLUE_COLOR = (255, 0, 0) BLACK_COLOR = (0, 0, 0) MOUTH_AR_THRESH = 0.6 shape_predictor = "./shape_predictor_68_face_landmarks.dat" detector = dlib.get_frontal_face_detector() predictor = dlib.shape_predictor(shape_predictor) (l_eye_start, l_eye_end) = face_utils.FACIAL_LANDMARKS_IDXS['left_eye'] (r_eye_start, r_eye_end) = face_utils.FACIAL_LANDMARKS_IDXS['right_eye'] (mouth_start, mouth_end) = face_utils.FACIAL_LANDMARKS_IDXS['mouth'] (nose_start, nose_end) = face_utils.FACIAL_LANDMARKS_IDXS['nose'] #webcm vid = cv2.VideoCapture(0) resolution_w = 1366 resolution_h = 768 cam_w = 640 cam_h = 480 mouse_x = 0 mouse_y = 0 unit_w = resolution_w / cam_w unit_h = resolution_h / cam_h padding_x, padding_y = 50, 50 control_padding = 20 #set guide rect rect_start = (cam_w//2-100, cam_h//2-100) rect_end = (cam_w//2+100, cam_h//2+100) process = False counter = 0 cursor_coordinates = () pyautogui.FAILSAFE = False def mouth_aspect_ratio(mouth): # Compute the euclidean distances between the three sets # of vertical mouth landmarks (x, y)-coordinates A = np.linalg.norm(mouth[13] - mouth[19]) B = np.linalg.norm(mouth[14] - mouth[18]) C = np.linalg.norm(mouth[15] - mouth[17]) # Compute the euclidean distance between the horizontal # mouth landmarks (x, y)-coordinates D = np.linalg.norm(mouth[12] - mouth[16]) # Compute the mouth aspect ratio mar = (A + B + C) / (2 * D) # Return the mouth aspect ratio return mar while True: _, frame = vid.read() frame = cv2.flip(frame, 1) frame = imutils.resize(frame, width=cam_w, height=cam_h) gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) # Detect faces rects = detector(gray, 0) # if face detected if len(rects) > 0: rect = rects[0] else: cv2.imshow("Frame", frame) key = cv2.waitKey(1) & 0xFF continue shape = predictor(gray, rect) shape = face_utils.shape_to_np(shape) if(process == True): mouth = shape[mouth_start:mouth_end] nose = shape[nose_start: nose_end] cv2.circle(frame, (nose[3, 0], nose[3, 1]), 5, BLUE_COLOR, 1) cv2.rectangle(frame, rect_start, rect_end, RED_COLOR, 2) cv2.line(frame, (cursor_coordinates[0]-padding_x, cursor_coordinates[1]), (cursor_coordinates[0]+padding_x, cursor_coordinates[1]), YELLOW_COLOR, 2) cv2.line(frame, (cursor_coordinates[0], cursor_coordinates[1]-padding_y), (cursor_coordinates[0], cursor_coordinates[1]+padding_y), YELLOW_COLOR, 2) cv2.imshow("Frame", frame) if nose[3,0] > cursor_coordinates[0]+control_padding: if mouse_x <= 1910: mouse_x += 5 elif nose[3,0] < cursor_coordinates[0]-control_padding: if mouse_x >= 10: mouse_x -= 5 if nose[3,1] > cursor_coordinates[1]+control_padding: if mouse_y <= 1080: mouse_y += 5 elif nose[3,1] < cursor_coordinates[1]-control_padding: if mouse_y >= 10: mouse_y -= 5 #if mouth open click mar = mouth_aspect_ratio(mouth) if(mar>MOUTH_AR_THRESH): pyautogui.click(mouse_x, mouse_y) pyautogui.moveTo(mouse_x, mouse_y) key = cv2.waitKey(1) & 0xFF else: #get eyes left_eye = shape[l_eye_start:l_eye_end] right_eye = shape[r_eye_start:r_eye_end] nose = shape[nose_start: nose_end] # swap left and right temp = left_eye left_eye = right_eye right_eye = temp #is face inside of rectangle if(left_eye[3,0]>rect_start[0] and left_eye[3,0]<rect_end[0] and right_eye[3,0]>rect_start[0] and right_eye[3,0]<rect_end[0] and left_eye[3,1]>rect_start[1] and left_eye[3,1]<rect_end[1] and right_eye[3,1]>rect_start[1] and right_eye[3,1]<rect_end[1]): cv2.putText(frame, str(counter//10), (cam_w//2-100, cam_h//2+100), cv2.FONT_HERSHEY_SIMPLEX, 1, GREEN_COLOR) counter += 1 if(counter/10 > 10): cursor_coordinates = nose[3] process = True else: counter = 0 cv2.rectangle(frame, rect_start, rect_end, WHITE_COLOR, 2) cv2.putText(frame, "Hold your face inside of rectangle for 10 sec", (cam_w//2-100, cam_h//2+200), cv2.FONT_HERSHEY_PLAIN, 1, GREEN_COLOR) cv2.imshow("Frame", frame) key = cv2.waitKey(10) & 0xFF
[ "cv2.rectangle", "cv2.flip", "pyautogui.moveTo", "cv2.line", "dlib.shape_predictor", "cv2.imshow", "cv2.putText", "dlib.get_frontal_face_detector", "imutils.resize", "cv2.circle", "pyautogui.click", "cv2.VideoCapture", "cv2.cvtColor", "numpy.linalg.norm", "imutils.face_utils.shape_to_np", "cv2.waitKey" ]
[((370, 402), 'dlib.get_frontal_face_detector', 'dlib.get_frontal_face_detector', ([], {}), '()\n', (400, 402), False, 'import dlib\n'), ((415, 452), 'dlib.shape_predictor', 'dlib.shape_predictor', (['shape_predictor'], {}), '(shape_predictor)\n', (435, 452), False, 'import dlib\n'), ((748, 767), 'cv2.VideoCapture', 'cv2.VideoCapture', (['(0)'], {}), '(0)\n', (764, 767), False, 'import cv2\n'), ((1297, 1334), 'numpy.linalg.norm', 'np.linalg.norm', (['(mouth[13] - mouth[19])'], {}), '(mouth[13] - mouth[19])\n', (1311, 1334), True, 'import numpy as np\n'), ((1343, 1380), 'numpy.linalg.norm', 'np.linalg.norm', (['(mouth[14] - mouth[18])'], {}), '(mouth[14] - mouth[18])\n', (1357, 1380), True, 'import numpy as np\n'), ((1389, 1426), 'numpy.linalg.norm', 'np.linalg.norm', (['(mouth[15] - mouth[17])'], {}), '(mouth[15] - mouth[17])\n', (1403, 1426), True, 'import numpy as np\n'), ((1537, 1574), 'numpy.linalg.norm', 'np.linalg.norm', (['(mouth[12] - mouth[16])'], {}), '(mouth[12] - mouth[16])\n', (1551, 1574), True, 'import numpy as np\n'), ((1748, 1766), 'cv2.flip', 'cv2.flip', (['frame', '(1)'], {}), '(frame, 1)\n', (1756, 1766), False, 'import cv2\n'), ((1779, 1827), 'imutils.resize', 'imutils.resize', (['frame'], {'width': 'cam_w', 'height': 'cam_h'}), '(frame, width=cam_w, height=cam_h)\n', (1793, 1827), False, 'import imutils\n'), ((1839, 1878), 'cv2.cvtColor', 'cv2.cvtColor', (['frame', 'cv2.COLOR_BGR2GRAY'], {}), '(frame, cv2.COLOR_BGR2GRAY)\n', (1851, 1878), False, 'import cv2\n'), ((2143, 2172), 'imutils.face_utils.shape_to_np', 'face_utils.shape_to_np', (['shape'], {}), '(shape)\n', (2165, 2172), False, 'from imutils import face_utils\n'), ((2016, 2042), 'cv2.imshow', 'cv2.imshow', (['"""Frame"""', 'frame'], {}), "('Frame', frame)\n", (2026, 2042), False, 'import cv2\n'), ((2296, 2357), 'cv2.circle', 'cv2.circle', (['frame', '(nose[3, 0], nose[3, 1])', '(5)', 'BLUE_COLOR', '(1)'], {}), '(frame, (nose[3, 0], nose[3, 1]), 5, BLUE_COLOR, 1)\n', (2306, 2357), False, 'import cv2\n'), ((2366, 2422), 'cv2.rectangle', 'cv2.rectangle', (['frame', 'rect_start', 'rect_end', 'RED_COLOR', '(2)'], {}), '(frame, rect_start, rect_end, RED_COLOR, 2)\n', (2379, 2422), False, 'import cv2\n'), ((2431, 2592), 'cv2.line', 'cv2.line', (['frame', '(cursor_coordinates[0] - padding_x, cursor_coordinates[1])', '(cursor_coordinates[0] + padding_x, cursor_coordinates[1])', 'YELLOW_COLOR', '(2)'], {}), '(frame, (cursor_coordinates[0] - padding_x, cursor_coordinates[1]),\n (cursor_coordinates[0] + padding_x, cursor_coordinates[1]), YELLOW_COLOR, 2\n )\n', (2439, 2592), False, 'import cv2\n'), ((2588, 2749), 'cv2.line', 'cv2.line', (['frame', '(cursor_coordinates[0], cursor_coordinates[1] - padding_y)', '(cursor_coordinates[0], cursor_coordinates[1] + padding_y)', 'YELLOW_COLOR', '(2)'], {}), '(frame, (cursor_coordinates[0], cursor_coordinates[1] - padding_y),\n (cursor_coordinates[0], cursor_coordinates[1] + padding_y), YELLOW_COLOR, 2\n )\n', (2596, 2749), False, 'import cv2\n'), ((2745, 2771), 'cv2.imshow', 'cv2.imshow', (['"""Frame"""', 'frame'], {}), "('Frame', frame)\n", (2755, 2771), False, 'import cv2\n'), ((3422, 3456), 'pyautogui.moveTo', 'pyautogui.moveTo', (['mouse_x', 'mouse_y'], {}), '(mouse_x, mouse_y)\n', (3438, 3456), False, 'import pyautogui\n'), ((4406, 4464), 'cv2.rectangle', 'cv2.rectangle', (['frame', 'rect_start', 'rect_end', 'WHITE_COLOR', '(2)'], {}), '(frame, rect_start, rect_end, WHITE_COLOR, 2)\n', (4419, 4464), False, 'import cv2\n'), ((4473, 4622), 'cv2.putText', 'cv2.putText', (['frame', '"""Hold your face inside of rectangle for 10 sec"""', '(cam_w // 2 - 100, cam_h // 2 + 200)', 'cv2.FONT_HERSHEY_PLAIN', '(1)', 'GREEN_COLOR'], {}), "(frame, 'Hold your face inside of rectangle for 10 sec', (cam_w //\n 2 - 100, cam_h // 2 + 200), cv2.FONT_HERSHEY_PLAIN, 1, GREEN_COLOR)\n", (4484, 4622), False, 'import cv2\n'), ((4619, 4645), 'cv2.imshow', 'cv2.imshow', (['"""Frame"""', 'frame'], {}), "('Frame', frame)\n", (4629, 4645), False, 'import cv2\n'), ((2057, 2071), 'cv2.waitKey', 'cv2.waitKey', (['(1)'], {}), '(1)\n', (2068, 2071), False, 'import cv2\n'), ((3379, 3412), 'pyautogui.click', 'pyautogui.click', (['mouse_x', 'mouse_y'], {}), '(mouse_x, mouse_y)\n', (3394, 3412), False, 'import pyautogui\n'), ((3471, 3485), 'cv2.waitKey', 'cv2.waitKey', (['(1)'], {}), '(1)\n', (3482, 3485), False, 'import cv2\n'), ((4661, 4676), 'cv2.waitKey', 'cv2.waitKey', (['(10)'], {}), '(10)\n', (4672, 4676), False, 'import cv2\n')]
import unittest import numpy as np from chainer import testing from chainercv.transforms import resize_bbox class TestResizeBbox(unittest.TestCase): def test_resize_bbox(self): bbox = np.random.uniform( low=0., high=32., size=(10, 4)) out = resize_bbox(bbox, in_size=(32, 32), out_size=(64, 128)) bbox_expected = bbox.copy() bbox_expected[:, 0] = bbox[:, 0] * 2 bbox_expected[:, 1] = bbox[:, 1] * 4 bbox_expected[:, 2] = bbox[:, 2] * 2 bbox_expected[:, 3] = bbox[:, 3] * 4 np.testing.assert_equal(out, bbox_expected) testing.run_module(__name__, __file__)
[ "chainercv.transforms.resize_bbox", "chainer.testing.run_module", "numpy.testing.assert_equal", "numpy.random.uniform" ]
[((605, 643), 'chainer.testing.run_module', 'testing.run_module', (['__name__', '__file__'], {}), '(__name__, __file__)\n', (623, 643), False, 'from chainer import testing\n'), ((201, 252), 'numpy.random.uniform', 'np.random.uniform', ([], {'low': '(0.0)', 'high': '(32.0)', 'size': '(10, 4)'}), '(low=0.0, high=32.0, size=(10, 4))\n', (218, 252), True, 'import numpy as np\n'), ((279, 334), 'chainercv.transforms.resize_bbox', 'resize_bbox', (['bbox'], {'in_size': '(32, 32)', 'out_size': '(64, 128)'}), '(bbox, in_size=(32, 32), out_size=(64, 128))\n', (290, 334), False, 'from chainercv.transforms import resize_bbox\n'), ((559, 602), 'numpy.testing.assert_equal', 'np.testing.assert_equal', (['out', 'bbox_expected'], {}), '(out, bbox_expected)\n', (582, 602), True, 'import numpy as np\n')]
# This examples shows how to perform collision detection between the end-effector of a robot and a point cloud depicted as a Height Field # Note: this feature requires Meshcat to be installed, this can be done using # pip install --user meshcat import pinocchio as pin import hppfcl as fcl import numpy as np import sys from os.path import dirname, join, abspath from pinocchio.visualize import MeshcatVisualizer # Load the URDF model. # Conversion with str seems to be necessary when executing this file with ipython pinocchio_model_dir = join(dirname(dirname(str(abspath(__file__)))),"models") model_path = join(pinocchio_model_dir,"example-robot-data/robots") mesh_dir = pinocchio_model_dir urdf_filename = "panda.urdf" urdf_model_path = join(join(model_path,"panda_description/urdf"),urdf_filename) model, collision_model, visual_model = pin.buildModelsFromUrdf(urdf_model_path, mesh_dir) # Add point clouds num_points = 5000 points = np.random.rand(3, num_points) point_cloud_placement = pin.SE3.Identity() # Placement of the point cloud wrt the WORLD frame point_cloud_placement.translation = np.array([0.2,0.2,-0.5]) X = points[0,:] Y = points[1,:] Z = points[2,:] nx = 20 x_grid = np.linspace(0.,1.,nx) x_half_pad = 0.5*(x_grid[1] - x_grid[0]) x_bins = np.digitize(X, x_grid + x_half_pad) x_dim = x_grid[-1] - x_grid[0] ny = 20 y_grid = np.linspace(0.,1.,ny) y_half_pad = 0.5*(y_grid[1] - y_grid[0]) y_bins = np.digitize(Y, y_grid + y_half_pad) y_dim = y_grid[-1] - y_grid[0] point_bins = y_bins * nx + x_bins heights = np.zeros((ny, nx)) np.maximum.at(heights.ravel(), point_bins, Z) point_cloud = fcl.BVHModelOBBRSS() point_cloud.beginModel(0, num_points) point_cloud.addVertices(points.T) height_field = fcl.HeightFieldOBBRSS(x_dim, y_dim, heights, min(Z)) height_field_placement = point_cloud_placement * pin.SE3(np.eye(3), 0.5*np.array([x_grid[0] + x_grid[-1], y_grid[0] + y_grid[-1], 0.])) go_point_cloud = pin.GeometryObject("point_cloud",0,point_cloud,point_cloud_placement) go_point_cloud.meshColor = np.ones((4)) collision_model.addGeometryObject(go_point_cloud) visual_model.addGeometryObject(go_point_cloud) go_height_field = pin.GeometryObject("height_field",0,height_field,height_field_placement) go_height_field.meshColor = np.ones((4)) height_field_collision_id = collision_model.addGeometryObject(go_height_field) visual_model.addGeometryObject(go_height_field) # Add colllision pair between the height field and the panda_hand geometry panda_hand_collision_id = collision_model.getGeometryId("panda_hand_0") go_panda_hand = collision_model.geometryObjects[panda_hand_collision_id] go_panda_hand.geometry.buildConvexRepresentation(False) go_panda_hand.geometry = go_panda_hand.geometry.convex # We need to work with the convex hull of the real mesh collision_pair = pin.CollisionPair(height_field_collision_id, panda_hand_collision_id) collision_model.addCollisionPair(collision_pair) viz = MeshcatVisualizer(model, collision_model, visual_model) # Start a new MeshCat server and client. # Note: the server can also be started separately using the "meshcat-server" command in a terminal: # this enables the server to remain active after the current script ends. # # Option open=True pens the visualizer. # Note: the visualizer can also be opened seperately by visiting the provided URL. try: viz.initViewer(open=True) except ImportError as err: print("Error while initializing the viewer. It seems you should install Python meshcat") print(err) sys.exit(0) # Load the robot in the viewer. viz.loadViewerModel() # Display a robot configuration. q0 = pin.neutral(model) viz.display(q0) is_collision = False data = model.createData() collision_data = collision_model.createData() while not is_collision: q = pin.randomConfiguration(model) is_collision = pin.computeCollisions(model, data, collision_model, collision_data, q, True) print("Found a configuration in collision:",q) viz.display(q)
[ "numpy.random.rand", "pinocchio.buildModelsFromUrdf", "numpy.array", "pinocchio.computeCollisions", "sys.exit", "numpy.linspace", "pinocchio.randomConfiguration", "pinocchio.SE3.Identity", "numpy.eye", "numpy.ones", "numpy.digitize", "pinocchio.visualize.MeshcatVisualizer", "pinocchio.CollisionPair", "hppfcl.BVHModelOBBRSS", "pinocchio.GeometryObject", "os.path.join", "pinocchio.neutral", "numpy.zeros", "os.path.abspath" ]
[((613, 667), 'os.path.join', 'join', (['pinocchio_model_dir', '"""example-robot-data/robots"""'], {}), "(pinocchio_model_dir, 'example-robot-data/robots')\n", (617, 667), False, 'from os.path import dirname, join, abspath\n'), ((847, 897), 'pinocchio.buildModelsFromUrdf', 'pin.buildModelsFromUrdf', (['urdf_model_path', 'mesh_dir'], {}), '(urdf_model_path, mesh_dir)\n', (870, 897), True, 'import pinocchio as pin\n'), ((945, 974), 'numpy.random.rand', 'np.random.rand', (['(3)', 'num_points'], {}), '(3, num_points)\n', (959, 974), True, 'import numpy as np\n'), ((999, 1017), 'pinocchio.SE3.Identity', 'pin.SE3.Identity', ([], {}), '()\n', (1015, 1017), True, 'import pinocchio as pin\n'), ((1105, 1131), 'numpy.array', 'np.array', (['[0.2, 0.2, -0.5]'], {}), '([0.2, 0.2, -0.5])\n', (1113, 1131), True, 'import numpy as np\n'), ((1197, 1222), 'numpy.linspace', 'np.linspace', (['(0.0)', '(1.0)', 'nx'], {}), '(0.0, 1.0, nx)\n', (1208, 1222), True, 'import numpy as np\n'), ((1269, 1304), 'numpy.digitize', 'np.digitize', (['X', '(x_grid + x_half_pad)'], {}), '(X, x_grid + x_half_pad)\n', (1280, 1304), True, 'import numpy as np\n'), ((1354, 1379), 'numpy.linspace', 'np.linspace', (['(0.0)', '(1.0)', 'ny'], {}), '(0.0, 1.0, ny)\n', (1365, 1379), True, 'import numpy as np\n'), ((1426, 1461), 'numpy.digitize', 'np.digitize', (['Y', '(y_grid + y_half_pad)'], {}), '(Y, y_grid + y_half_pad)\n', (1437, 1461), True, 'import numpy as np\n'), ((1538, 1556), 'numpy.zeros', 'np.zeros', (['(ny, nx)'], {}), '((ny, nx))\n', (1546, 1556), True, 'import numpy as np\n'), ((1618, 1638), 'hppfcl.BVHModelOBBRSS', 'fcl.BVHModelOBBRSS', ([], {}), '()\n', (1636, 1638), True, 'import hppfcl as fcl\n'), ((1934, 2006), 'pinocchio.GeometryObject', 'pin.GeometryObject', (['"""point_cloud"""', '(0)', 'point_cloud', 'point_cloud_placement'], {}), "('point_cloud', 0, point_cloud, point_cloud_placement)\n", (1952, 2006), True, 'import pinocchio as pin\n'), ((2031, 2041), 'numpy.ones', 'np.ones', (['(4)'], {}), '(4)\n', (2038, 2041), True, 'import numpy as np\n'), ((2160, 2235), 'pinocchio.GeometryObject', 'pin.GeometryObject', (['"""height_field"""', '(0)', 'height_field', 'height_field_placement'], {}), "('height_field', 0, height_field, height_field_placement)\n", (2178, 2235), True, 'import pinocchio as pin\n'), ((2261, 2271), 'numpy.ones', 'np.ones', (['(4)'], {}), '(4)\n', (2268, 2271), True, 'import numpy as np\n'), ((2807, 2876), 'pinocchio.CollisionPair', 'pin.CollisionPair', (['height_field_collision_id', 'panda_hand_collision_id'], {}), '(height_field_collision_id, panda_hand_collision_id)\n', (2824, 2876), True, 'import pinocchio as pin\n'), ((2933, 2988), 'pinocchio.visualize.MeshcatVisualizer', 'MeshcatVisualizer', (['model', 'collision_model', 'visual_model'], {}), '(model, collision_model, visual_model)\n', (2950, 2988), False, 'from pinocchio.visualize import MeshcatVisualizer\n'), ((3610, 3628), 'pinocchio.neutral', 'pin.neutral', (['model'], {}), '(model)\n', (3621, 3628), True, 'import pinocchio as pin\n'), ((750, 792), 'os.path.join', 'join', (['model_path', '"""panda_description/urdf"""'], {}), "(model_path, 'panda_description/urdf')\n", (754, 792), False, 'from os.path import dirname, join, abspath\n'), ((3771, 3801), 'pinocchio.randomConfiguration', 'pin.randomConfiguration', (['model'], {}), '(model)\n', (3794, 3801), True, 'import pinocchio as pin\n'), ((3822, 3898), 'pinocchio.computeCollisions', 'pin.computeCollisions', (['model', 'data', 'collision_model', 'collision_data', 'q', '(True)'], {}), '(model, data, collision_model, collision_data, q, True)\n', (3843, 3898), True, 'import pinocchio as pin\n'), ((1837, 1846), 'numpy.eye', 'np.eye', (['(3)'], {}), '(3)\n', (1843, 1846), True, 'import numpy as np\n'), ((3504, 3515), 'sys.exit', 'sys.exit', (['(0)'], {}), '(0)\n', (3512, 3515), False, 'import sys\n'), ((1852, 1915), 'numpy.array', 'np.array', (['[x_grid[0] + x_grid[-1], y_grid[0] + y_grid[-1], 0.0]'], {}), '([x_grid[0] + x_grid[-1], y_grid[0] + y_grid[-1], 0.0])\n', (1860, 1915), True, 'import numpy as np\n'), ((568, 585), 'os.path.abspath', 'abspath', (['__file__'], {}), '(__file__)\n', (575, 585), False, 'from os.path import dirname, join, abspath\n')]
#!/usr/bin/env python #------------------------------------------------------------ # Purpose: Program to straight line parameters # to data with errors in both coordinates. Compare # the results with SciPy's ODR routine. # Vog, 27 Nov, 2011 #------------------------------------------------------------ import numpy from matplotlib.pyplot import figure, show, rc from numpy.random import normal from kapteyn import kmpfit from scipy.odr import Data, Model, ODR, RealData, odr_stop def model(p, x): # Model is staight line: y = a + b*x a, b = p return a + b*x def residuals(p, data): # Residuals function for effective variance a, b = p x, y, ex, ey = data w = ey*ey + b*b*ex*ex wi = numpy.sqrt(numpy.where(w==0.0, 0.0, 1.0/(w))) d = wi*(y-model(p,x)) return d def residuals2(p, data): # Minimum distance formula with expression for x_model a, b = p x, y, ex, ey = data wx = 1/(ex*ex) wy = 1/(ey*ey) df = b xd = x + (wy*(y-model(p,x))*df)/(wx+wy*df*df) yd = model(p,xd) D = numpy.sqrt( wx*(x-xd)**2+wy*(y-yd)**2 ) return D # Create the data N = 20 a0 = 2; b0 = 1.6 x = numpy.linspace(0.0, 12.0, N) y = model((a0,b0),x) + normal(0.0, 1.5, N) # Mean 0, sigma 1 errx = normal(0.0, 0.4, N) erry = normal(0.0, 0.5, N) beta0 = [0,0] print("\n========== Results SciPy's ODR ============") linear = Model(model) mydata = RealData(x, y, sx=errx, sy=erry) myodr = ODR(mydata, linear, beta0=beta0, maxit=5000) myoutput = myodr.run() print("Fitted parameters: ", myoutput.beta) print("Covariance errors: ", numpy.sqrt(myoutput.cov_beta.diagonal())) print("Standard errors: ", myoutput.sd_beta) print("Minimum (reduced)chi^2: ", myoutput.res_var) beta = myoutput.beta # Prepare fit routine fitobj = kmpfit.Fitter(residuals=residuals, data=(x, y, errx, erry)) try: fitobj.fit(params0=beta0) except Exception as mes: print("Something wrong with fit: ", mes) raise SystemExit print("\n\n======== Results kmpfit: w1 = ey*ey + b*b*ex*ex =========") print("Params: ", fitobj.params) print("Covariance errors: ", fitobj.xerror) print("Standard errors ", fitobj.stderr) print("Chi^2 min: ", fitobj.chi2_min) print("Reduced Chi^2: ", fitobj.rchi2_min) print("Message: ", fitobj.message) fitobj2 = kmpfit.Fitter(residuals=residuals2, data=(x, y, errx, erry)) try: fitobj2.fit(params0=beta0) except Exception as mes: print("Something wrong with fit: ", mes) raise SystemExit print("\n\n======== Results kmpfit: r = ex*ex/(ey*ey), xd = (x-a*r+y*b*r)/(1+r) =========") print("Params: ", fitobj2.params) print("Covariance errors: ", fitobj2.xerror) print("Standard errors ", fitobj2.stderr) print("Chi^2 min: ", fitobj2.chi2_min) print("Reduced Chi^2: ", fitobj2.rchi2_min) print("Message: ", fitobj2.message) t = "\nTHE WILLAMSON APPROACH" print(t, "\n", "="*len(t)) # Step 1: Get a and b for a, b with standard weighted least squares calculation def lingres(xa, ya, w): # Return a, b for the relation y = a + b*x # given data in xa, ya and weights in w sum = w.sum() sumX = (w*xa).sum() sumY = (w*ya).sum() sumX2 = (w*xa*xa).sum() sumY2 = (w*ya*ya).sum() sumXY = (w*xa*ya).sum() delta = sum * sumX2 - sumX * sumX a = (sumX2*sumY - sumX*sumXY) / delta b = (sumXY*sum - sumX*sumY) / delta return a, b w = numpy.where(erry==0.0, 0.0, 1.0/(erry*erry)) a,b = lingres(x, y, w) a_y = a; b_y = b # Williamson initial Parameters ui = errx**2 vi = erry**2 n = 0 cont = True while cont: # Step 2: Use this slope to find weighting for each point wi = (vi+b*b*ui)**-1 # Step 3: Calcu;ate weighted avarages w_sum = wi.sum() x_av = (wi*x).sum() / w_sum x_diff = x - x_av y_av = (wi*y).sum() / w_sum y_diff = y - y_av # Step 4: Calculate the 'improvement' vector zi zi = wi*(vi*x_diff + b*ui*y_diff) b_will = (wi*zi*y_diff).sum()/ (wi*zi*x_diff).sum() cont = abs(b-b_will) > 1e-12 and n < 100 n += 1 b = b_will # Step 5: Repeat steps 2-4 until convergence # Step 6: Calculate 'a' using the averages of a and y a_will = y_av - b_will*x_av # Improved parameters # Step 7: The variances wi = (vi+b_will*b_will*ui)**-1 w_sum = wi.sum() z_av = (wi*zi).sum() / w_sum zi2 = zi - z_av Q =1.0/(wi*(x_diff*y_diff/b_will + 4*zi2*(zi-x_diff))).sum() sigb2 = Q*Q * (wi*wi*(x_diff**2*vi+y_diff**2*ui)).sum() siga2 = 1.0/w_sum + 2*(x_av+2*z_av)*z_av*Q + (x_av+2*z_av)**2*sigb2 siga = numpy.sqrt(siga2) sigb = numpy.sqrt(sigb2) print("Williamson Fitted A, B: ", a_will, b_will) print("Parameter errors: ", siga, sigb) # Some plotting rc('font', size=9) rc('legend', fontsize=8) fig = figure(1) frame = fig.add_subplot(1,1,1, aspect=1, adjustable='datalim') frame.errorbar(x, y, xerr=errx, yerr=erry, fmt='bo') # Plot first fit frame.plot(x, model(beta,x), '-y', lw=4, label="ODR", alpha=0.6) frame.plot(x, model(fitobj.params,x), 'c', ls='--', lw=2, label="kmpfit") frame.plot(x, model(fitobj2.params,x), '#ffaa00', label="kmpfit correct") frame.plot(x, model((a_will,b_will),x), 'g', label="Williamson") frame.plot(x, model((a0,b0),x), '#ab12cc', label="True") frame.set_xlabel("X") frame.set_ylabel("Y") frame.set_title("Weights in both coordinates. Model: $y=a+bx$") frame.grid(True) leg = frame.legend(loc=1) show()
[ "numpy.random.normal", "numpy.sqrt", "numpy.where", "scipy.odr.ODR", "scipy.odr.Model", "numpy.linspace", "scipy.odr.RealData", "matplotlib.pyplot.figure", "kapteyn.kmpfit.Fitter", "matplotlib.pyplot.rc", "matplotlib.pyplot.show" ]
[((1153, 1181), 'numpy.linspace', 'numpy.linspace', (['(0.0)', '(12.0)', 'N'], {}), '(0.0, 12.0, N)\n', (1167, 1181), False, 'import numpy\n'), ((1251, 1270), 'numpy.random.normal', 'normal', (['(0.0)', '(0.4)', 'N'], {}), '(0.0, 0.4, N)\n', (1257, 1270), False, 'from numpy.random import normal\n'), ((1279, 1298), 'numpy.random.normal', 'normal', (['(0.0)', '(0.5)', 'N'], {}), '(0.0, 0.5, N)\n', (1285, 1298), False, 'from numpy.random import normal\n'), ((1379, 1391), 'scipy.odr.Model', 'Model', (['model'], {}), '(model)\n', (1384, 1391), False, 'from scipy.odr import Data, Model, ODR, RealData, odr_stop\n'), ((1401, 1433), 'scipy.odr.RealData', 'RealData', (['x', 'y'], {'sx': 'errx', 'sy': 'erry'}), '(x, y, sx=errx, sy=erry)\n', (1409, 1433), False, 'from scipy.odr import Data, Model, ODR, RealData, odr_stop\n'), ((1442, 1486), 'scipy.odr.ODR', 'ODR', (['mydata', 'linear'], {'beta0': 'beta0', 'maxit': '(5000)'}), '(mydata, linear, beta0=beta0, maxit=5000)\n', (1445, 1486), False, 'from scipy.odr import Data, Model, ODR, RealData, odr_stop\n'), ((1792, 1851), 'kapteyn.kmpfit.Fitter', 'kmpfit.Fitter', ([], {'residuals': 'residuals', 'data': '(x, y, errx, erry)'}), '(residuals=residuals, data=(x, y, errx, erry))\n', (1805, 1851), False, 'from kapteyn import kmpfit\n'), ((2358, 2418), 'kapteyn.kmpfit.Fitter', 'kmpfit.Fitter', ([], {'residuals': 'residuals2', 'data': '(x, y, errx, erry)'}), '(residuals=residuals2, data=(x, y, errx, erry))\n', (2371, 2418), False, 'from kapteyn import kmpfit\n'), ((3483, 3533), 'numpy.where', 'numpy.where', (['(erry == 0.0)', '(0.0)', '(1.0 / (erry * erry))'], {}), '(erry == 0.0, 0.0, 1.0 / (erry * erry))\n', (3494, 3533), False, 'import numpy\n'), ((4593, 4610), 'numpy.sqrt', 'numpy.sqrt', (['siga2'], {}), '(siga2)\n', (4603, 4610), False, 'import numpy\n'), ((4618, 4635), 'numpy.sqrt', 'numpy.sqrt', (['sigb2'], {}), '(sigb2)\n', (4628, 4635), False, 'import numpy\n'), ((4744, 4762), 'matplotlib.pyplot.rc', 'rc', (['"""font"""'], {'size': '(9)'}), "('font', size=9)\n", (4746, 4762), False, 'from matplotlib.pyplot import figure, show, rc\n'), ((4763, 4787), 'matplotlib.pyplot.rc', 'rc', (['"""legend"""'], {'fontsize': '(8)'}), "('legend', fontsize=8)\n", (4765, 4787), False, 'from matplotlib.pyplot import figure, show, rc\n'), ((4794, 4803), 'matplotlib.pyplot.figure', 'figure', (['(1)'], {}), '(1)\n', (4800, 4803), False, 'from matplotlib.pyplot import figure, show, rc\n'), ((5424, 5430), 'matplotlib.pyplot.show', 'show', ([], {}), '()\n', (5428, 5430), False, 'from matplotlib.pyplot import figure, show, rc\n'), ((1053, 1104), 'numpy.sqrt', 'numpy.sqrt', (['(wx * (x - xd) ** 2 + wy * (y - yd) ** 2)'], {}), '(wx * (x - xd) ** 2 + wy * (y - yd) ** 2)\n', (1063, 1104), False, 'import numpy\n'), ((1205, 1224), 'numpy.random.normal', 'normal', (['(0.0)', '(1.5)', 'N'], {}), '(0.0, 1.5, N)\n', (1211, 1224), False, 'from numpy.random import normal\n'), ((740, 775), 'numpy.where', 'numpy.where', (['(w == 0.0)', '(0.0)', '(1.0 / w)'], {}), '(w == 0.0, 0.0, 1.0 / w)\n', (751, 775), False, 'import numpy\n')]
import os import KratosMultiphysics from KratosMultiphysics import Logger Logger.GetDefaultOutput().SetSeverity(Logger.Severity.WARNING) import KratosMultiphysics.KratosUnittest as KratosUnittest import KratosMultiphysics.DEMApplication.DEM_analysis_stage import numpy as np import auxiliary_functions_for_tests this_working_dir_backup = os.getcwd() def GetFilePath(fileName): return os.path.join(os.path.dirname(os.path.realpath(__file__)), fileName) class DEM3D_SearchToleranceMain(KratosMultiphysics.DEMApplication.DEM_analysis_stage.DEMAnalysisStage, KratosUnittest.TestCase): def Initialize(self): super().Initialize() for node in self.spheres_model_part.Nodes: self.initial_normal_vel = node.GetSolutionStepValue(KratosMultiphysics.VELOCITY_Z) @classmethod def GetMainPath(self): return os.path.join(os.path.dirname(os.path.realpath(__file__)), "test_search_tolerance") def GetProblemNameWithPath(self): return os.path.join(self.main_path, self.DEM_parameters["problem_name"].GetString()) def FinalizeSolutionStep(self): super().FinalizeSolutionStep() for node in self.spheres_model_part.Nodes: #reference data with freq=1 searchtolerance=0.0 if node.Id == 2: tol = 1.0e-15 if np.isclose(self.time, 0.02, rtol=0.0, atol=1e-06): y_vel = node.GetSolutionStepValue(KratosMultiphysics.VELOCITY_Y) print(self.time, y_vel) y_vel_ref = -5.86502139707038 self.assertAlmostEqual(y_vel, y_vel_ref, delta=tol) if np.isclose(self.time, 0.115, rtol=0.0, atol=1e-06): y_vel = node.GetSolutionStepValue(KratosMultiphysics.VELOCITY_Y) print(self.time, y_vel) y_vel_ref = -3.3859516373258987 self.assertAlmostEqual(y_vel, y_vel_ref, delta=tol) if np.isclose(self.time, 0.22, rtol=0.0, atol=1e-06): y_vel = node.GetSolutionStepValue(KratosMultiphysics.VELOCITY_Y) print(self.time, y_vel) y_vel_ref = -0.5929799879392164 self.assertAlmostEqual(y_vel, y_vel_ref, delta=tol) def Finalize(self): self.procedures.RemoveFoldersWithResults(str(self.main_path), str(self.problem_name), '') super().Finalize() class DEM3D_SearchTolerance1(DEM3D_SearchToleranceMain): def FinalizeSolutionStep(self): KratosMultiphysics.DEMApplication.DEM_analysis_stage.DEMAnalysisStage.FinalizeSolutionStep(self) for node in self.spheres_model_part.Nodes: if node.Id == 2: tol = 1.0e-15 if np.isclose(self.time, 0.02, rtol=0.0, atol=1e-06): y_vel = node.GetSolutionStepValue(KratosMultiphysics.VELOCITY_Y) print(self.time, y_vel) y_vel_ref = -5.8654458179811835 self.assertAlmostEqual(y_vel, y_vel_ref, delta=tol) if np.isclose(self.time, 0.115, rtol=0.0, atol=1e-06): y_vel = node.GetSolutionStepValue(KratosMultiphysics.VELOCITY_Y) print(self.time, y_vel) y_vel_ref = -3.3861319639727263 self.assertAlmostEqual(y_vel, y_vel_ref, delta=tol) if np.isclose(self.time, 0.22, rtol=0.0, atol=1e-06): y_vel = node.GetSolutionStepValue(KratosMultiphysics.VELOCITY_Y) print(self.time, y_vel) y_vel_ref = -0.594495289987086 self.assertAlmostEqual(y_vel, y_vel_ref, delta=tol) class DEM3D_SearchTolerance2(DEM3D_SearchToleranceMain): def FinalizeSolutionStep(self): KratosMultiphysics.DEMApplication.DEM_analysis_stage.DEMAnalysisStage.FinalizeSolutionStep(self) for node in self.spheres_model_part.Nodes: if node.Id == 2: tol = 1.0e-15 if np.isclose(self.time, 0.02, rtol=0.0, atol=1e-06): y_vel = node.GetSolutionStepValue(KratosMultiphysics.VELOCITY_Y) print(self.time, y_vel) y_vel_ref = -5.865445816566027 self.assertAlmostEqual(y_vel, y_vel_ref, delta=tol) if np.isclose(self.time, 0.115, rtol=0.0, atol=1e-06): y_vel = node.GetSolutionStepValue(KratosMultiphysics.VELOCITY_Y) print(self.time, y_vel) y_vel_ref = -3.386128017385994 self.assertAlmostEqual(y_vel, y_vel_ref, delta=tol) if np.isclose(self.time, 0.22, rtol=0.0, atol=1e-06): y_vel = node.GetSolutionStepValue(KratosMultiphysics.VELOCITY_Y) print(self.time, y_vel) y_vel_ref = -0.5941551772701182 self.assertAlmostEqual(y_vel, y_vel_ref, delta=tol) class DEM3D_SearchTolerance3(DEM3D_SearchToleranceMain): def FinalizeSolutionStep(self): KratosMultiphysics.DEMApplication.DEM_analysis_stage.DEMAnalysisStage.FinalizeSolutionStep(self) for node in self.spheres_model_part.Nodes: if node.Id == 2: tol = 1.0e-15 if np.isclose(self.time, 0.02, rtol=0.0, atol=1e-06): y_vel = node.GetSolutionStepValue(KratosMultiphysics.VELOCITY_Y) print(self.time, y_vel) y_vel_ref = -5.86502139707038 self.assertAlmostEqual(y_vel, y_vel_ref, delta=tol) if np.isclose(self.time, 0.115, rtol=0.0, atol=1e-06): y_vel = node.GetSolutionStepValue(KratosMultiphysics.VELOCITY_Y) print(self.time, y_vel) y_vel_ref = -3.3859516373258987 self.assertAlmostEqual(y_vel, y_vel_ref, delta=tol) if np.isclose(self.time, 0.22, rtol=0.0, atol=1e-06): y_vel = node.GetSolutionStepValue(KratosMultiphysics.VELOCITY_Y) print(self.time, y_vel) y_vel_ref = -0.5929799879392164 self.assertAlmostEqual(y_vel, y_vel_ref, delta=tol) class TestSearchTolerance(KratosUnittest.TestCase): @classmethod def test_SearchA(self): path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "test_search_tolerance") parameters_file_name = os.path.join(path, "ProjectParametersDEM.json") with open(parameters_file_name,'r') as parameter_file: project_parameters = KratosMultiphysics.Parameters(parameter_file.read()) project_parameters["SearchTolerance"].SetDouble(0.0) project_parameters["search_tolerance_against_walls"].SetDouble(0.0) project_parameters["NeighbourSearchFrequency"].SetInt(1) model = KratosMultiphysics.Model() auxiliary_functions_for_tests.CreateAndRunStageInSelectedNumberOfOpenMPThreads(DEM3D_SearchToleranceMain, model, project_parameters, auxiliary_functions_for_tests.GetHardcodedNumberOfThreads()) @classmethod def test_SearchB(self): path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "test_search_tolerance") parameters_file_name = os.path.join(path, "ProjectParametersDEM.json") with open(parameters_file_name,'r') as parameter_file: project_parameters = KratosMultiphysics.Parameters(parameter_file.read()) project_parameters["SearchTolerance"].SetDouble(0.0) project_parameters["search_tolerance_against_walls"].SetDouble(0.0) project_parameters["NeighbourSearchFrequency"].SetInt(10) model = KratosMultiphysics.Model() auxiliary_functions_for_tests.CreateAndRunStageInSelectedNumberOfOpenMPThreads(DEM3D_SearchTolerance1, model, project_parameters, auxiliary_functions_for_tests.GetHardcodedNumberOfThreads()) @classmethod def test_SearchC(self): path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "test_search_tolerance") parameters_file_name = os.path.join(path, "ProjectParametersDEM.json") with open(parameters_file_name,'r') as parameter_file: project_parameters = KratosMultiphysics.Parameters(parameter_file.read()) project_parameters["SearchTolerance"].SetDouble(1e-04) project_parameters["search_tolerance_against_walls"].SetDouble(1e-04) project_parameters["NeighbourSearchFrequency"].SetInt(20) model = KratosMultiphysics.Model() auxiliary_functions_for_tests.CreateAndRunStageInSelectedNumberOfOpenMPThreads(DEM3D_SearchTolerance2, model, project_parameters, auxiliary_functions_for_tests.GetHardcodedNumberOfThreads()) @classmethod def test_SearchD(self): path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "test_search_tolerance") parameters_file_name = os.path.join(path, "ProjectParametersDEM.json") with open(parameters_file_name,'r') as parameter_file: project_parameters = KratosMultiphysics.Parameters(parameter_file.read()) project_parameters["SearchTolerance"].SetDouble(1e-03) project_parameters["search_tolerance_against_walls"].SetDouble(1e-03) project_parameters["NeighbourSearchFrequency"].SetInt(20) model = KratosMultiphysics.Model() auxiliary_functions_for_tests.CreateAndRunStageInSelectedNumberOfOpenMPThreads(DEM3D_SearchTolerance3, model, project_parameters, auxiliary_functions_for_tests.GetHardcodedNumberOfThreads()) if __name__ == "__main__": Logger.GetDefaultOutput().SetSeverity(Logger.Severity.WARNING) KratosUnittest.main()
[ "numpy.isclose", "KratosMultiphysics.DEMApplication.DEM_analysis_stage.DEMAnalysisStage.FinalizeSolutionStep", "KratosMultiphysics.KratosUnittest.main", "os.path.join", "os.getcwd", "os.path.realpath", "KratosMultiphysics.Logger.GetDefaultOutput", "KratosMultiphysics.Model", "auxiliary_functions_for_tests.GetHardcodedNumberOfThreads" ]
[((340, 351), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (349, 351), False, 'import os\n'), ((9710, 9731), 'KratosMultiphysics.KratosUnittest.main', 'KratosUnittest.main', ([], {}), '()\n', (9729, 9731), True, 'import KratosMultiphysics.KratosUnittest as KratosUnittest\n'), ((74, 99), 'KratosMultiphysics.Logger.GetDefaultOutput', 'Logger.GetDefaultOutput', ([], {}), '()\n', (97, 99), False, 'from KratosMultiphysics import Logger\n'), ((2537, 2638), 'KratosMultiphysics.DEMApplication.DEM_analysis_stage.DEMAnalysisStage.FinalizeSolutionStep', 'KratosMultiphysics.DEMApplication.DEM_analysis_stage.DEMAnalysisStage.FinalizeSolutionStep', (['self'], {}), '(\n self)\n', (2627, 2638), False, 'import KratosMultiphysics\n'), ((3818, 3919), 'KratosMultiphysics.DEMApplication.DEM_analysis_stage.DEMAnalysisStage.FinalizeSolutionStep', 'KratosMultiphysics.DEMApplication.DEM_analysis_stage.DEMAnalysisStage.FinalizeSolutionStep', (['self'], {}), '(\n self)\n', (3908, 3919), False, 'import KratosMultiphysics\n'), ((5098, 5199), 'KratosMultiphysics.DEMApplication.DEM_analysis_stage.DEMAnalysisStage.FinalizeSolutionStep', 'KratosMultiphysics.DEMApplication.DEM_analysis_stage.DEMAnalysisStage.FinalizeSolutionStep', (['self'], {}), '(\n self)\n', (5188, 5199), False, 'import KratosMultiphysics\n'), ((6503, 6550), 'os.path.join', 'os.path.join', (['path', '"""ProjectParametersDEM.json"""'], {}), "(path, 'ProjectParametersDEM.json')\n", (6515, 6550), False, 'import os\n'), ((6919, 6945), 'KratosMultiphysics.Model', 'KratosMultiphysics.Model', ([], {}), '()\n', (6943, 6945), False, 'import KratosMultiphysics\n'), ((7323, 7370), 'os.path.join', 'os.path.join', (['path', '"""ProjectParametersDEM.json"""'], {}), "(path, 'ProjectParametersDEM.json')\n", (7335, 7370), False, 'import os\n'), ((7740, 7766), 'KratosMultiphysics.Model', 'KratosMultiphysics.Model', ([], {}), '()\n', (7764, 7766), False, 'import KratosMultiphysics\n'), ((8141, 8188), 'os.path.join', 'os.path.join', (['path', '"""ProjectParametersDEM.json"""'], {}), "(path, 'ProjectParametersDEM.json')\n", (8153, 8188), False, 'import os\n'), ((8562, 8588), 'KratosMultiphysics.Model', 'KratosMultiphysics.Model', ([], {}), '()\n', (8586, 8588), False, 'import KratosMultiphysics\n'), ((8963, 9010), 'os.path.join', 'os.path.join', (['path', '"""ProjectParametersDEM.json"""'], {}), "(path, 'ProjectParametersDEM.json')\n", (8975, 9010), False, 'import os\n'), ((9384, 9410), 'KratosMultiphysics.Model', 'KratosMultiphysics.Model', ([], {}), '()\n', (9408, 9410), False, 'import KratosMultiphysics\n'), ((420, 446), 'os.path.realpath', 'os.path.realpath', (['__file__'], {}), '(__file__)\n', (436, 446), False, 'import os\n'), ((7087, 7146), 'auxiliary_functions_for_tests.GetHardcodedNumberOfThreads', 'auxiliary_functions_for_tests.GetHardcodedNumberOfThreads', ([], {}), '()\n', (7144, 7146), False, 'import auxiliary_functions_for_tests\n'), ((7905, 7964), 'auxiliary_functions_for_tests.GetHardcodedNumberOfThreads', 'auxiliary_functions_for_tests.GetHardcodedNumberOfThreads', ([], {}), '()\n', (7962, 7964), False, 'import auxiliary_functions_for_tests\n'), ((8727, 8786), 'auxiliary_functions_for_tests.GetHardcodedNumberOfThreads', 'auxiliary_functions_for_tests.GetHardcodedNumberOfThreads', ([], {}), '()\n', (8784, 8786), False, 'import auxiliary_functions_for_tests\n'), ((9549, 9608), 'auxiliary_functions_for_tests.GetHardcodedNumberOfThreads', 'auxiliary_functions_for_tests.GetHardcodedNumberOfThreads', ([], {}), '()\n', (9606, 9608), False, 'import auxiliary_functions_for_tests\n'), ((9643, 9668), 'KratosMultiphysics.Logger.GetDefaultOutput', 'Logger.GetDefaultOutput', ([], {}), '()\n', (9666, 9668), False, 'from KratosMultiphysics import Logger\n'), ((881, 907), 'os.path.realpath', 'os.path.realpath', (['__file__'], {}), '(__file__)\n', (897, 907), False, 'import os\n'), ((1332, 1381), 'numpy.isclose', 'np.isclose', (['self.time', '(0.02)'], {'rtol': '(0.0)', 'atol': '(1e-06)'}), '(self.time, 0.02, rtol=0.0, atol=1e-06)\n', (1342, 1381), True, 'import numpy as np\n'), ((1654, 1704), 'numpy.isclose', 'np.isclose', (['self.time', '(0.115)'], {'rtol': '(0.0)', 'atol': '(1e-06)'}), '(self.time, 0.115, rtol=0.0, atol=1e-06)\n', (1664, 1704), True, 'import numpy as np\n'), ((1979, 2028), 'numpy.isclose', 'np.isclose', (['self.time', '(0.22)'], {'rtol': '(0.0)', 'atol': '(1e-06)'}), '(self.time, 0.22, rtol=0.0, atol=1e-06)\n', (1989, 2028), True, 'import numpy as np\n'), ((2763, 2812), 'numpy.isclose', 'np.isclose', (['self.time', '(0.02)'], {'rtol': '(0.0)', 'atol': '(1e-06)'}), '(self.time, 0.02, rtol=0.0, atol=1e-06)\n', (2773, 2812), True, 'import numpy as np\n'), ((3087, 3137), 'numpy.isclose', 'np.isclose', (['self.time', '(0.115)'], {'rtol': '(0.0)', 'atol': '(1e-06)'}), '(self.time, 0.115, rtol=0.0, atol=1e-06)\n', (3097, 3137), True, 'import numpy as np\n'), ((3412, 3461), 'numpy.isclose', 'np.isclose', (['self.time', '(0.22)'], {'rtol': '(0.0)', 'atol': '(1e-06)'}), '(self.time, 0.22, rtol=0.0, atol=1e-06)\n', (3422, 3461), True, 'import numpy as np\n'), ((4044, 4093), 'numpy.isclose', 'np.isclose', (['self.time', '(0.02)'], {'rtol': '(0.0)', 'atol': '(1e-06)'}), '(self.time, 0.02, rtol=0.0, atol=1e-06)\n', (4054, 4093), True, 'import numpy as np\n'), ((4367, 4417), 'numpy.isclose', 'np.isclose', (['self.time', '(0.115)'], {'rtol': '(0.0)', 'atol': '(1e-06)'}), '(self.time, 0.115, rtol=0.0, atol=1e-06)\n', (4377, 4417), True, 'import numpy as np\n'), ((4691, 4740), 'numpy.isclose', 'np.isclose', (['self.time', '(0.22)'], {'rtol': '(0.0)', 'atol': '(1e-06)'}), '(self.time, 0.22, rtol=0.0, atol=1e-06)\n', (4701, 4740), True, 'import numpy as np\n'), ((5324, 5373), 'numpy.isclose', 'np.isclose', (['self.time', '(0.02)'], {'rtol': '(0.0)', 'atol': '(1e-06)'}), '(self.time, 0.02, rtol=0.0, atol=1e-06)\n', (5334, 5373), True, 'import numpy as np\n'), ((5646, 5696), 'numpy.isclose', 'np.isclose', (['self.time', '(0.115)'], {'rtol': '(0.0)', 'atol': '(1e-06)'}), '(self.time, 0.115, rtol=0.0, atol=1e-06)\n', (5656, 5696), True, 'import numpy as np\n'), ((5971, 6020), 'numpy.isclose', 'np.isclose', (['self.time', '(0.22)'], {'rtol': '(0.0)', 'atol': '(1e-06)'}), '(self.time, 0.22, rtol=0.0, atol=1e-06)\n', (5981, 6020), True, 'import numpy as np\n'), ((6418, 6444), 'os.path.realpath', 'os.path.realpath', (['__file__'], {}), '(__file__)\n', (6434, 6444), False, 'import os\n'), ((7238, 7264), 'os.path.realpath', 'os.path.realpath', (['__file__'], {}), '(__file__)\n', (7254, 7264), False, 'import os\n'), ((8056, 8082), 'os.path.realpath', 'os.path.realpath', (['__file__'], {}), '(__file__)\n', (8072, 8082), False, 'import os\n'), ((8878, 8904), 'os.path.realpath', 'os.path.realpath', (['__file__'], {}), '(__file__)\n', (8894, 8904), False, 'import os\n')]
# -*- coding: utf-8 -*- import pywph as pw import pywph_vanilla as pw2 import numpy as np import matplotlib.pyplot as plt M, N = 256, 256 J = 6 L = 4 dn = 0 data_ini = np.load('data/I_1.npy') data = data_ini[:256,:256] datab = data_ini[256:,256:] """ Without normalization """ # Version dev wph_op = pw.WPHOp(M, N, J, L=L, dn=dn, device='cpu') stats = wph_op(data, padding = True).cpu().numpy() print(stats.shape, stats) # Version vanilla wph_op2 = pw2.WPHOp(M, N, J, L=L, dn=dn, device='cpu') stats2 = wph_op2(data, padding = True).cpu().numpy() print(stats2.shape, stats2) # Comparison diff = (stats2-stats) """ With normalization """ # Version dev wph_op = pw.WPHOp(M, N, J, L=L, dn=dn, device='cpu') stats = wph_op(data, padding = True, norm = 'auto').cpu().numpy() print(stats.shape, stats) # Version Vanilla wph_op2 = pw2.WPHOp(M, N, J, L=L, dn=dn, device='cpu') stats2 = wph_op2(data, padding = True, norm = 'auto').cpu().numpy() print(stats2.shape, stats2) plt.figure() plt.plot(np.real(stats)) plt.plot(np.real(stats2)) """ Deuxième passage avec normalisation """ # Version dev statsb = wph_op(datab, padding = True, norm = 'auto').cpu().numpy() print(statsb.shape, statsb) # Version Vanilla statsb2 = wph_op2(datab, padding = True, norm = 'auto').cpu().numpy() print(statsb2.shape, statsb2) plt.figure() plt.plot(np.real(statsb)) plt.plot(np.real(statsb2)) """ With normalization 2d map """ # Version dev wph_op = pw.WPHOp(M, N, J, L=L, dn=dn, device='cpu') stats = wph_op(datab, padding = True, norm = 'auto').cpu().numpy() print(stats.shape, stats) # Version Vanilla wph_op2 = pw2.WPHOp(M, N, J, L=L, dn=dn, device='cpu') stats2 = wph_op2(datab, padding = True, norm = 'auto').cpu().numpy() print(stats2.shape, stats2)
[ "pywph.WPHOp", "numpy.real", "matplotlib.pyplot.figure", "numpy.load", "pywph_vanilla.WPHOp" ]
[((171, 194), 'numpy.load', 'np.load', (['"""data/I_1.npy"""'], {}), "('data/I_1.npy')\n", (178, 194), True, 'import numpy as np\n'), ((306, 349), 'pywph.WPHOp', 'pw.WPHOp', (['M', 'N', 'J'], {'L': 'L', 'dn': 'dn', 'device': '"""cpu"""'}), "(M, N, J, L=L, dn=dn, device='cpu')\n", (314, 349), True, 'import pywph as pw\n'), ((457, 501), 'pywph_vanilla.WPHOp', 'pw2.WPHOp', (['M', 'N', 'J'], {'L': 'L', 'dn': 'dn', 'device': '"""cpu"""'}), "(M, N, J, L=L, dn=dn, device='cpu')\n", (466, 501), True, 'import pywph_vanilla as pw2\n'), ((671, 714), 'pywph.WPHOp', 'pw.WPHOp', (['M', 'N', 'J'], {'L': 'L', 'dn': 'dn', 'device': '"""cpu"""'}), "(M, N, J, L=L, dn=dn, device='cpu')\n", (679, 714), True, 'import pywph as pw\n'), ((836, 880), 'pywph_vanilla.WPHOp', 'pw2.WPHOp', (['M', 'N', 'J'], {'L': 'L', 'dn': 'dn', 'device': '"""cpu"""'}), "(M, N, J, L=L, dn=dn, device='cpu')\n", (845, 880), True, 'import pywph_vanilla as pw2\n'), ((978, 990), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (988, 990), True, 'import matplotlib.pyplot as plt\n'), ((1318, 1330), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (1328, 1330), True, 'import matplotlib.pyplot as plt\n'), ((1443, 1486), 'pywph.WPHOp', 'pw.WPHOp', (['M', 'N', 'J'], {'L': 'L', 'dn': 'dn', 'device': '"""cpu"""'}), "(M, N, J, L=L, dn=dn, device='cpu')\n", (1451, 1486), True, 'import pywph as pw\n'), ((1609, 1653), 'pywph_vanilla.WPHOp', 'pw2.WPHOp', (['M', 'N', 'J'], {'L': 'L', 'dn': 'dn', 'device': '"""cpu"""'}), "(M, N, J, L=L, dn=dn, device='cpu')\n", (1618, 1653), True, 'import pywph_vanilla as pw2\n'), ((1000, 1014), 'numpy.real', 'np.real', (['stats'], {}), '(stats)\n', (1007, 1014), True, 'import numpy as np\n'), ((1025, 1040), 'numpy.real', 'np.real', (['stats2'], {}), '(stats2)\n', (1032, 1040), True, 'import numpy as np\n'), ((1340, 1355), 'numpy.real', 'np.real', (['statsb'], {}), '(statsb)\n', (1347, 1355), True, 'import numpy as np\n'), ((1366, 1382), 'numpy.real', 'np.real', (['statsb2'], {}), '(statsb2)\n', (1373, 1382), True, 'import numpy as np\n')]
import numpy as np import scipy import cv2 def get_pixel_neighbors(height, width): """ Estimate the 4 neighbors of every pixel in an image :param height: image height :param width: image width :return: pixel index - neighbor index lists """ pix_id = [] neighbor_id = [] for i in range(height): for j in range(width): n = [] if i == 0: n = n + [(i + 1) * width + j] elif i == height - 1: n = n + [(i - 1) * width + j] else: n = n + [(i + 1) * width + j, (i - 1) * width + j] if j == 0: n = n + [i * width + j + 1] elif j == width - 1: n = n + [i * width + j - 1] else: n = n + [i * width + j + 1, i * width + j - 1] for k in n: pix_id.append(i*width+j) neighbor_id.append(k) return pix_id, neighbor_id limps = np.array( [[0, 1], [1, 2], [2, 3], [3, 4], [1, 5], [5, 6], [6, 7], [1, 11], [11, 12], [12, 13], [1, 8], [8, 9], [9, 10], [14, 15], [16, 17], [0, 14], [0, 15], [14, 16], [15, 17]]) def get_instance_skeleton_buffer(h, w, poses): output = np.zeros((h, w, 3), dtype=np.float32) - 1 for i in range(len(poses)): keypoints = poses[i] lbl = i for k in range(limps.shape[0]): kp1, kp2 = limps[k, :].astype(int) bone_start = keypoints[kp1, :] bone_end = keypoints[kp2, :] bone_start[0] = np.maximum(np.minimum(bone_start[0], w - 1), 0.) bone_start[1] = np.maximum(np.minimum(bone_start[1], h - 1), 0.) bone_end[0] = np.maximum(np.minimum(bone_end[0], w - 1), 0.) bone_end[1] = np.maximum(np.minimum(bone_end[1], h - 1), 0.) if bone_start[2] > 0.0: output[int(bone_start[1]), int(bone_start[0])] = 1 cv2.circle(output, (int(bone_start[0]), int(bone_start[1])), 2, (lbl, 0, 0), -1) if bone_end[2] > 0.0: output[int(bone_end[1]), int(bone_end[0])] = 1 cv2.circle(output, (int(bone_end[0]), int(bone_end[1])), 2, (lbl, 0, 0), -1) if bone_start[2] > 0.0 and bone_end[2] > 0.0: cv2.line(output, (int(bone_start[0]), int(bone_start[1])), (int(bone_end[0]), int(bone_end[1])), (lbl, 0, 0), 1) return output[:, :, 0] def get_poseimg_for_opt(sel_pose, poseimg, init_mask, n_bg=50): h, w = init_mask.shape[:2] bg_label = 1 output = np.zeros((h, w, 3), dtype=np.float32) - 1 II, JJ = (poseimg > 0).nonzero() Isel, J_sel = (poseimg == sel_pose).nonzero() output[II, JJ] = 0 output[Isel, J_sel] = 2 init_mask[Isel, J_sel] = 1 # Sample also from points in the field init_mask = cv2.dilate(init_mask, np.ones((25, 25), np.uint8), iterations=1) I_bg, J_bg = (init_mask == 0).nonzero() rand_index = np.random.permutation(len(I_bg))[:n_bg] bg_points = np.array([J_bg[rand_index], I_bg[rand_index]]).T for k in range(bg_points.shape[0]): cv2.circle(output, (int(bg_points[k, 0]), int(bg_points[k, 1])), 2, (bg_label, 0, 0), -1) return output[:, :, 0] def draw_poses_for_optimization(sel_pose, keypoints_list, init_mask, n_bg=50): h, w = init_mask.shape[:2] bg_label = 0 output = np.zeros((h, w, 3), dtype=np.float32)-1 for i in range(len(keypoints_list)): keypoints = keypoints_list[i] if i == sel_pose: lbl = 2 else: lbl = 1 for k in range(limps.shape[0]): kp1, kp2 = limps[k, :].astype(int) bone_start = keypoints[kp1, :] bone_end = keypoints[kp2, :] bone_start[0] = np.maximum(np.minimum(bone_start[0], w - 1), 0.) bone_start[1] = np.maximum(np.minimum(bone_start[1], h - 1), 0.) bone_end[0] = np.maximum(np.minimum(bone_end[0], w - 1), 0.) bone_end[1] = np.maximum(np.minimum(bone_end[1], h - 1), 0.) if bone_start[2] > 0.0: output[int(bone_start[1]), int(bone_start[0])] = 1 cv2.circle(output, (int(bone_start[0]), int(bone_start[1])), 2, (lbl, 0, 0), -1) if bone_end[2] > 0.0: output[int(bone_end[1]), int(bone_end[0])] = 1 cv2.circle(output, (int(bone_end[0]), int(bone_end[1])), 2, (lbl, 0, 0), -1) if bone_start[2] > 0.0 and bone_end[2] > 0.0: cv2.line(output, (int(bone_start[0]), int(bone_start[1])), (int(bone_end[0]), int(bone_end[1])), (lbl, 0, 0), 1) # Draw circles for the bg players keypoints # for k in range(bg_keypoints.shape[0]): # cv2.circle(output, (int(bg_keypoints[k, 0]), int(bg_keypoints[k, 1])), 2, (bg_keypoint_lable, 0, 0), -1) # Sample also from points in the field init_mask = cv2.dilate(init_mask, np.ones((5, 5), np.uint8), iterations=1) I_bg, J_bg = (init_mask == 0).nonzero() rand_index = np.random.permutation(len(I_bg))[:n_bg] bg_points = np.array([J_bg[rand_index], I_bg[rand_index]]).T for k in range(bg_points.shape[0]): cv2.circle(output, (int(bg_points[k, 0]), int(bg_points[k, 1])), 2, (bg_label, 0, 0), -1) return output[:, :, 0] def set_U(strokes, h, w, dim): N = h*w y = np.zeros((N, dim)) U = scipy.sparse.lil_matrix((N, N)) for p in range(strokes.shape[0]): i = strokes[p, 1] j = strokes[p, 0] index = int(i * w + j) for ii in range(dim): y[index, ii] = strokes[p, ii+2] U[index, index] = 1 return U, y def set_DW(image, edges=None, sigma1=1000., sigma2=0.01): image = image.astype(float) h, w = image.shape[0:2] N = h * w pixd, neighborid = get_pixel_neighbors(h, w) i, j = np.unravel_index(pixd, (h, w)) ii, jj = np.unravel_index(neighborid, (h, w)) pix_diff = np.squeeze((image[i, j, :] - image[ii, jj, :]) ** 2) if len(pix_diff.shape) == 1: pix_diff = pix_diff[:, np.newaxis] weight0 = np.exp(-(np.sum(pix_diff, axis=1)) / sigma1) weight1 = np.exp(-((edges[i, j]) ** 2) / sigma2) # neighbor_info = np.vstack((pixd, neighborid, weight0)).T M = len(pixd) D = scipy.sparse.lil_matrix((M, N)) W = scipy.sparse.lil_matrix((M, M)) p = np.arange(0, M, 1) D[p, pixd] = 1 D[p, neighborid] = -1 W[p, p] = weight1 return D, W
[ "scipy.sparse.lil_matrix", "numpy.ones", "numpy.minimum", "numpy.squeeze", "numpy.exp", "numpy.array", "numpy.zeros", "numpy.sum", "numpy.unravel_index", "numpy.arange" ]
[((990, 1177), 'numpy.array', 'np.array', (['[[0, 1], [1, 2], [2, 3], [3, 4], [1, 5], [5, 6], [6, 7], [1, 11], [11, 12],\n [12, 13], [1, 8], [8, 9], [9, 10], [14, 15], [16, 17], [0, 14], [0, 15],\n [14, 16], [15, 17]]'], {}), '([[0, 1], [1, 2], [2, 3], [3, 4], [1, 5], [5, 6], [6, 7], [1, 11],\n [11, 12], [12, 13], [1, 8], [8, 9], [9, 10], [14, 15], [16, 17], [0, 14\n ], [0, 15], [14, 16], [15, 17]])\n', (998, 1177), True, 'import numpy as np\n'), ((5362, 5380), 'numpy.zeros', 'np.zeros', (['(N, dim)'], {}), '((N, dim))\n', (5370, 5380), True, 'import numpy as np\n'), ((5390, 5421), 'scipy.sparse.lil_matrix', 'scipy.sparse.lil_matrix', (['(N, N)'], {}), '((N, N))\n', (5413, 5421), False, 'import scipy\n'), ((5858, 5888), 'numpy.unravel_index', 'np.unravel_index', (['pixd', '(h, w)'], {}), '(pixd, (h, w))\n', (5874, 5888), True, 'import numpy as np\n'), ((5902, 5938), 'numpy.unravel_index', 'np.unravel_index', (['neighborid', '(h, w)'], {}), '(neighborid, (h, w))\n', (5918, 5938), True, 'import numpy as np\n'), ((5955, 6007), 'numpy.squeeze', 'np.squeeze', (['((image[i, j, :] - image[ii, jj, :]) ** 2)'], {}), '((image[i, j, :] - image[ii, jj, :]) ** 2)\n', (5965, 6007), True, 'import numpy as np\n'), ((6157, 6191), 'numpy.exp', 'np.exp', (['(-edges[i, j] ** 2 / sigma2)'], {}), '(-edges[i, j] ** 2 / sigma2)\n', (6163, 6191), True, 'import numpy as np\n'), ((6288, 6319), 'scipy.sparse.lil_matrix', 'scipy.sparse.lil_matrix', (['(M, N)'], {}), '((M, N))\n', (6311, 6319), False, 'import scipy\n'), ((6328, 6359), 'scipy.sparse.lil_matrix', 'scipy.sparse.lil_matrix', (['(M, M)'], {}), '((M, M))\n', (6351, 6359), False, 'import scipy\n'), ((6369, 6387), 'numpy.arange', 'np.arange', (['(0)', 'M', '(1)'], {}), '(0, M, 1)\n', (6378, 6387), True, 'import numpy as np\n'), ((1249, 1286), 'numpy.zeros', 'np.zeros', (['(h, w, 3)'], {'dtype': 'np.float32'}), '((h, w, 3), dtype=np.float32)\n', (1257, 1286), True, 'import numpy as np\n'), ((2577, 2614), 'numpy.zeros', 'np.zeros', (['(h, w, 3)'], {'dtype': 'np.float32'}), '((h, w, 3), dtype=np.float32)\n', (2585, 2614), True, 'import numpy as np\n'), ((2871, 2898), 'numpy.ones', 'np.ones', (['(25, 25)', 'np.uint8'], {}), '((25, 25), np.uint8)\n', (2878, 2898), True, 'import numpy as np\n'), ((3032, 3078), 'numpy.array', 'np.array', (['[J_bg[rand_index], I_bg[rand_index]]'], {}), '([J_bg[rand_index], I_bg[rand_index]])\n', (3040, 3078), True, 'import numpy as np\n'), ((3391, 3428), 'numpy.zeros', 'np.zeros', (['(h, w, 3)'], {'dtype': 'np.float32'}), '((h, w, 3), dtype=np.float32)\n', (3399, 3428), True, 'import numpy as np\n'), ((4934, 4959), 'numpy.ones', 'np.ones', (['(5, 5)', 'np.uint8'], {}), '((5, 5), np.uint8)\n', (4941, 4959), True, 'import numpy as np\n'), ((5093, 5139), 'numpy.array', 'np.array', (['[J_bg[rand_index], I_bg[rand_index]]'], {}), '([J_bg[rand_index], I_bg[rand_index]])\n', (5101, 5139), True, 'import numpy as np\n'), ((1579, 1611), 'numpy.minimum', 'np.minimum', (['bone_start[0]', '(w - 1)'], {}), '(bone_start[0], w - 1)\n', (1589, 1611), True, 'import numpy as np\n'), ((1656, 1688), 'numpy.minimum', 'np.minimum', (['bone_start[1]', '(h - 1)'], {}), '(bone_start[1], h - 1)\n', (1666, 1688), True, 'import numpy as np\n'), ((1732, 1762), 'numpy.minimum', 'np.minimum', (['bone_end[0]', '(w - 1)'], {}), '(bone_end[0], w - 1)\n', (1742, 1762), True, 'import numpy as np\n'), ((1805, 1835), 'numpy.minimum', 'np.minimum', (['bone_end[1]', '(h - 1)'], {}), '(bone_end[1], h - 1)\n', (1815, 1835), True, 'import numpy as np\n'), ((3801, 3833), 'numpy.minimum', 'np.minimum', (['bone_start[0]', '(w - 1)'], {}), '(bone_start[0], w - 1)\n', (3811, 3833), True, 'import numpy as np\n'), ((3878, 3910), 'numpy.minimum', 'np.minimum', (['bone_start[1]', '(h - 1)'], {}), '(bone_start[1], h - 1)\n', (3888, 3910), True, 'import numpy as np\n'), ((3954, 3984), 'numpy.minimum', 'np.minimum', (['bone_end[0]', '(w - 1)'], {}), '(bone_end[0], w - 1)\n', (3964, 3984), True, 'import numpy as np\n'), ((4027, 4057), 'numpy.minimum', 'np.minimum', (['bone_end[1]', '(h - 1)'], {}), '(bone_end[1], h - 1)\n', (4037, 4057), True, 'import numpy as np\n'), ((6107, 6131), 'numpy.sum', 'np.sum', (['pix_diff'], {'axis': '(1)'}), '(pix_diff, axis=1)\n', (6113, 6131), True, 'import numpy as np\n')]
import math import torch import numpy as np import pandas as pd import torch.nn as nn def normal_pdf(x): import math return torch.exp(-0.5 * x**2) / math.sqrt(2 * math.pi) def normal_cdf(y, h=0.01, tau=0.5): # Approximation of Q-function given by López-Benítez & Casadevall (2011) # based on a second-order exponential function & Q(x) = 1 - Q(-x): Q_fn = lambda x: torch.exp(-0.4920*x**2 - 0.2887*x - 1.1893) m = len(y) y_prime = (tau - y) / h sum_ = torch.sum(Q_fn(y_prime[y_prime > 0])) \ + torch.sum(1 - Q_fn(torch.abs(y_prime[y_prime < 0]))) \ + 0.5 * len(y_prime[y_prime == 0]) return sum_ / m def Huber_loss(x, delta): if abs(x) < delta: return (x ** 2) / 2 return delta * (x.abs() - delta / 2) def Huber_loss_derivative(x, delta): if x > delta: return delta elif x < -delta: return -delta return x def get_fairness_metrics(Y, Z, Ytilde, n_classes, n_sensitive_attrs): DDP = 0 DEO = 0 for y in range(n_classes): Pr_Ytilde_y = (Ytilde == y).mean() Ytilde_y_given_Y_y = np.logical_and(Ytilde==y, Y==y) for z in range(n_sensitive_attrs): DDP += abs(np.logical_and(Ytilde==y, Z==z).mean() / (Z==z).mean() - Pr_Ytilde_y) DEO += abs(np.logical_and(Ytilde_y_given_Y_y, Z==z).mean() / np.logical_and(Y==y, Z==z).mean() - Ytilde_y_given_Y_y.mean() / (Y==y).mean()) return DDP, DEO class BCELossAccuracy(): def __init__(self): self.loss_function = nn.BCELoss() @staticmethod def accuracy(y_hat, labels): with torch.no_grad(): y_tilde = (y_hat > 0.5).int() accuracy = (y_tilde == labels.int()).float().mean().item() return accuracy def __call__(self, y_hat, labels): loss = self.loss_function(y_hat, labels) accuracy = self.accuracy(y_hat, labels) return loss, accuracy # class CELossAccuracy(): def __init__(self): self.loss_function = nn.CrossEntropyLoss() @staticmethod def accuracy(y_hat, labels): with torch.no_grad(): y_tilde = y_hat.argmax(axis=1) accuracy = (y_tilde == labels).float().mean().item() return accuracy def __call__(self, y_hat, labels): loss = self.loss_function(y_hat, labels) accuracy = self.accuracy(y_hat, labels) return loss, accuracy # class FairnessLoss(): def __init__(self, h, tau, delta, notion, n_classes, n_sensitive_attrs, sensitive_attrs): self.h = h self.tau = tau self.delta = delta self.fairness_notion = notion self.n_classes = n_classes self.n_sensitive_attrs = n_sensitive_attrs self.sensitive_attrs = sensitive_attrs if self.n_classes > 2: self.tau = 0.5 assert self.fairness_notion in ['DP', 'EO'] def DDP_loss(self, y_hat, Z): m = y_hat.shape[0] backward_loss = 0 logging_loss = 0 if self.n_classes == 2: Pr_Ytilde1 = normal_cdf(y_hat.detach(), self.h, self.tau) for z in self.sensitive_attrs: Pr_Ytilde1_Z = normal_cdf(y_hat.detach()[Z==z], self.h, self.tau) m_z = Z[Z==z].shape[0] Prob_diff_Z = Pr_Ytilde1_Z - Pr_Ytilde1 _dummy = \ torch.dot( normal_pdf((self.tau - y_hat.detach()[Z==z]) / self.h).view(-1), y_hat[Z==z].view(-1) ) / (self.h * m_z) -\ torch.dot( normal_pdf((self.tau - y_hat.detach()) / self.h).view(-1), y_hat.view(-1) ) / (self.h * m) _dummy *= Huber_loss_derivative(Prob_diff_Z, self.delta) backward_loss += _dummy logging_loss += Huber_loss(Prob_diff_Z, self.delta) else: idx_set = list(range(self.n_classes)) if self.n_classes > 2 else [0] for y in idx_set: Pr_Ytilde1 = normal_cdf(y_hat[:,y].detach(), self.h, self.tau) for z in self.sensitive_attrs: Pr_Ytilde1_Z = normal_cdf(y_hat[:,y].detach()[Z==z], self.h, self.tau) m_z = Z[Z==z].shape[0] Prob_diff_Z = Pr_Ytilde1_Z - Pr_Ytilde1 _dummy = Huber_loss_derivative(Prob_diff_Z, self.delta) _dummy *= \ torch.dot( normal_pdf((self.tau - y_hat[:,y].detach()[Z==z]) / self.h).view(-1), y_hat[:,y][Z==z].view(-1) ) / (self.h * m_z) -\ torch.dot( normal_pdf((self.tau - y_hat[:,y].detach()) / self.h).view(-1), y_hat[:,y].view(-1) ) / (self.h * m) backward_loss += _dummy logging_loss += Huber_loss(Prob_diff_Z, self.delta).item() return backward_loss, logging_loss def DEO_loss(self, y_hat, Y, Z): backward_loss = 0 logging_loss = 0 if self.n_classes == 2: for y in [0,1]: Pr_Ytilde1_Y = normal_cdf(y_hat[Y==y].detach(), self.h, self.tau) m_y = (Y==y).sum().item() for z in self.sensitive_attrs: Pr_Ytilde1_YZ = normal_cdf(y_hat[torch.logical_and(Y==y, Z==z)].detach(), self.h, self.tau) m_zy = torch.logical_and(Y==y, Z==z).sum().item() Prob_diff_Z = Pr_Ytilde1_YZ - Pr_Ytilde1_Y _dummy = Huber_loss_derivative(Prob_diff_Z, self.delta) _dummy *= \ torch.dot( normal_pdf((self.tau - y_hat[torch.logical_and(Y==y, Z==z)].detach()) / self.h).view(-1), y_hat[torch.logical_and(Y==y, Z==z)].view(-1) ) / (self.h * m_zy) -\ torch.dot( normal_pdf((self.tau - y_hat[Y==y].detach()) / self.h).view(-1), y_hat[Y==y].view(-1) ) / (self.h * m_y) backward_loss += _dummy logging_loss += Huber_loss(Prob_diff_Z, self.delta).item() else: for y in range(self.n_classes): Pr_Ytilde1_Y = normal_cdf(y_hat[:,y][Y==y].detach(), self.h, self.tau) m_y = (Y==y).sum().item() for z in self.sensitive_attrs: Pr_Ytilde1_YZ = normal_cdf(y_hat[:,y][torch.logical_and(Y==y, Z==z)].detach(), self.h, self.tau) m_zy = torch.logical_and(Y==y, Z==z).sum().item() Prob_diff_Z = Pr_Ytilde1_YZ - Pr_Ytilde1_Y _dummy = Huber_loss_derivative(Prob_diff_Z, self.delta) _dummy *= \ torch.dot( normal_pdf((self.tau - y_hat[:,y][torch.logical_and(Y==y, Z==z)].detach()) / self.h).view(-1), y_hat[:,y][torch.logical_and(Y==y, Z==z)].view(-1) ) / (self.h * m_zy) -\ torch.dot( normal_pdf((self.tau - y_hat[:,y][Y==y].detach()) / self.h).view(-1), y_hat[:,y][Y==y].view(-1) ) / (self.h * m_y) backward_loss += _dummy logging_loss += Huber_loss(Prob_diff_Z, self.delta).item() return backward_loss, logging_loss def __call__(self, y_hat, Y, Z): if self.fairness_notion == 'DP': return self.DDP_loss(y_hat, Z) else: return self.DEO_loss(y_hat, Y, Z)
[ "torch.abs", "torch.nn.CrossEntropyLoss", "numpy.logical_and", "math.sqrt", "torch.exp", "torch.nn.BCELoss", "torch.no_grad", "torch.logical_and" ]
[((134, 158), 'torch.exp', 'torch.exp', (['(-0.5 * x ** 2)'], {}), '(-0.5 * x ** 2)\n', (143, 158), False, 'import torch\n'), ((159, 181), 'math.sqrt', 'math.sqrt', (['(2 * math.pi)'], {}), '(2 * math.pi)\n', (168, 181), False, 'import math\n'), ((388, 436), 'torch.exp', 'torch.exp', (['(-0.492 * x ** 2 - 0.2887 * x - 1.1893)'], {}), '(-0.492 * x ** 2 - 0.2887 * x - 1.1893)\n', (397, 436), False, 'import torch\n'), ((1111, 1146), 'numpy.logical_and', 'np.logical_and', (['(Ytilde == y)', '(Y == y)'], {}), '(Ytilde == y, Y == y)\n', (1125, 1146), True, 'import numpy as np\n'), ((1531, 1543), 'torch.nn.BCELoss', 'nn.BCELoss', ([], {}), '()\n', (1541, 1543), True, 'import torch.nn as nn\n'), ((2018, 2039), 'torch.nn.CrossEntropyLoss', 'nn.CrossEntropyLoss', ([], {}), '()\n', (2037, 2039), True, 'import torch.nn as nn\n'), ((1613, 1628), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (1626, 1628), False, 'import torch\n'), ((2109, 2124), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (2122, 2124), False, 'import torch\n'), ((559, 590), 'torch.abs', 'torch.abs', (['y_prime[y_prime < 0]'], {}), '(y_prime[y_prime < 0])\n', (568, 590), False, 'import torch\n'), ((1209, 1244), 'numpy.logical_and', 'np.logical_and', (['(Ytilde == y)', '(Z == z)'], {}), '(Ytilde == y, Z == z)\n', (1223, 1244), True, 'import numpy as np\n'), ((1302, 1344), 'numpy.logical_and', 'np.logical_and', (['Ytilde_y_given_Y_y', '(Z == z)'], {}), '(Ytilde_y_given_Y_y, Z == z)\n', (1316, 1344), True, 'import numpy as np\n'), ((1352, 1382), 'numpy.logical_and', 'np.logical_and', (['(Y == y)', '(Z == z)'], {}), '(Y == y, Z == z)\n', (1366, 1382), True, 'import numpy as np\n'), ((5614, 5647), 'torch.logical_and', 'torch.logical_and', (['(Y == y)', '(Z == z)'], {}), '(Y == y, Z == z)\n', (5631, 5647), False, 'import torch\n'), ((5700, 5733), 'torch.logical_and', 'torch.logical_and', (['(Y == y)', '(Z == z)'], {}), '(Y == y, Z == z)\n', (5717, 5733), False, 'import torch\n'), ((6827, 6860), 'torch.logical_and', 'torch.logical_and', (['(Y == y)', '(Z == z)'], {}), '(Y == y, Z == z)\n', (6844, 6860), False, 'import torch\n'), ((6913, 6946), 'torch.logical_and', 'torch.logical_and', (['(Y == y)', '(Z == z)'], {}), '(Y == y, Z == z)\n', (6930, 6946), False, 'import torch\n'), ((6103, 6136), 'torch.logical_and', 'torch.logical_and', (['(Y == y)', '(Z == z)'], {}), '(Y == y, Z == z)\n', (6120, 6136), False, 'import torch\n'), ((7326, 7359), 'torch.logical_and', 'torch.logical_and', (['(Y == y)', '(Z == z)'], {}), '(Y == y, Z == z)\n', (7343, 7359), False, 'import torch\n'), ((6007, 6040), 'torch.logical_and', 'torch.logical_and', (['(Y == y)', '(Z == z)'], {}), '(Y == y, Z == z)\n', (6024, 6040), False, 'import torch\n'), ((7225, 7258), 'torch.logical_and', 'torch.logical_and', (['(Y == y)', '(Z == z)'], {}), '(Y == y, Z == z)\n', (7242, 7258), False, 'import torch\n')]
import warnings import numpy as np from einsteinpy.integrators import GeodesicIntegrator from .utils import _P, _kerr, _kerrnewman, _sch class Geodesic: """ Base Class for defining Geodesics Working in Geometrized Units (M-Units), with :math:`c = G = M = k_e = 1` """ def __init__( self, metric, metric_params, position, momentum, time_like=True, return_cartesian=True, **kwargs, ): """ Constructor Parameters ---------- metric : str Name of the metric. Currently, these metrics are supported: 1. Schwarzschild 2. Kerr 3. KerrNewman metric_params : array_like Tuple of parameters to pass to the metric E.g., ``(a,)`` for Kerr position : array_like 3-Position 4-Position is initialized by taking ``t = 0.0`` momentum : array_like 3-Momentum 4-Momentum is calculated automatically, considering the value of ``time_like`` time_like : bool, optional Determines type of Geodesic ``True`` for Time-like geodesics ``False`` for Null-like geodesics Defaults to ``True`` return_cartesian : bool, optional Whether to return calculated positions in Cartesian Coordinates This only affects the coordinates. Momenta are dimensionless quantities, and are returned in Spherical Polar Coordinates. Defaults to ``True`` kwargs : dict Keyword parameters for the Geodesic Integrator See 'Other Parameters' below. Other Parameters ---------------- steps : int Number of integration steps Defaults to ``50`` delta : float Initial integration step-size Defaults to ``0.5`` rtol : float Relative Tolerance Defaults to ``1e-2`` atol : float Absolute Tolerance Defaults to ``1e-2`` order : int Integration Order Defaults to ``2`` omega : float Coupling between Hamiltonian Flows Smaller values imply smaller integration error, but too small values can make the equation of motion non-integrable. For non-capture trajectories, ``omega = 1.0`` is recommended. For trajectories, that either lead to a capture or a grazing geodesic, a decreased value of ``0.01`` or less is recommended. Defaults to ``1.0`` suppress_warnings : bool Whether to suppress warnings during simulation Warnings are shown for every step, where numerical errors exceed specified tolerance (controlled by ``rtol`` and ``atol``) Defaults to ``False`` """ # Contravariant Metrics, defined so far _METRICS = { "Schwarzschild": _sch, "Kerr": _kerr, "KerrNewman": _kerrnewman, } if metric not in _METRICS: raise NotImplementedError( f"'{metric}' is unsupported. Currently, these metrics are supported:\ \n1. Schwarzschild\n2. Kerr\n3. KerrNewman" ) self.metric_name = metric self.metric = _METRICS[metric] self.metric_params = metric_params if metric == "Schwarzschild": self.metric_params = (0.0,) self.position = np.array([0.0, *position]) self.momentum = _P( self.metric, metric_params, self.position, momentum, time_like ) self.time_like = time_like self.kind = "Time-like" if time_like else "Null-like" self.coords = "Cartesian" if return_cartesian else "Spherical Polar" self._trajectory = self.calculate_trajectory(**kwargs) def __repr__(self): return f"""Geodesic Object:(\n\ Type : ({self.kind}),\n\ Metric : ({self.metric_name}),\n\ Metric Parameters : ({self.metric_params}),\n\ Initial 4-Position : ({self.position}),\n\ Initial 4-Momentum : ({self.momentum}),\n\ Trajectory = (\n\ {self.trajectory}\n\ ),\n\ Output Position Coordinate System = ({self.coords})\n\ ))""" def __str__(self): return self.__repr__() @property def trajectory(self): """ Returns the trajectory of the test particle """ return self._trajectory def calculate_trajectory(self, **kwargs): """ Calculate trajectory in spacetime Parameters ---------- kwargs : dict Keyword parameters for the Geodesic Integrator See 'Other Parameters' below. Returns ------- ~numpy.ndarray N-element numpy array, containing step count ~numpy.ndarray Shape-(N, 8) numpy array, containing (4-Position, 4-Momentum) for each step Other Parameters ---------------- steps : int Number of integration steps Defaults to ``50`` delta : float Initial integration step-size Defaults to ``0.5`` rtol : float Relative Tolerance Defaults to ``1e-2`` atol : float Absolute Tolerance Defaults to ``1e-2`` order : int Integration Order Defaults to ``2`` omega : float Coupling between Hamiltonian Flows Smaller values imply smaller integration error, but too small values can make the equation of motion non-integrable. For non-capture trajectories, ``omega = 1.0`` is recommended. For trajectories, that either lead to a capture or a grazing geodesic, a decreased value of ``0.01`` or less is recommended. Defaults to ``1.0`` suppress_warnings : bool Whether to suppress warnings during simulation Warnings are shown for every step, where numerical errors exceed specified tolerance (controlled by ``rtol`` and ``atol``) Defaults to ``False`` """ g, g_prms = self.metric, self.metric_params q0, p0 = self.position, self.momentum tl = self.time_like N = kwargs.get("steps", 50) dl = kwargs.get("delta", 0.5) rtol = kwargs.get("rtol", 1e-2) atol = kwargs.get("atol", 1e-2) order = kwargs.get("order", 2) omega = kwargs.get("omega", 1.0) sw = kwargs.get("suppress_warnings", False) steps = np.arange(N) geodint = GeodesicIntegrator( metric=g, metric_params=g_prms, q0=q0, p0=p0, time_like=tl, steps=N, delta=dl, rtol=rtol, atol=atol, order=order, omega=omega, suppress_warnings=sw, ) for i in steps: geodint.step() vecs = np.array(geodint.results, dtype=float) q1 = vecs[:, 0] p1 = vecs[:, 1] results = np.hstack((q1, p1)) # Ignoring # q2 = vecs[:, 2] # p2 = vecs[:, 3] if self.coords == "Cartesian": # Converting to Cartesian from Spherical Polar Coordinates # Note that momenta cannot be converted this way, # due to ambiguities in the signs of v_r and v_th (velocities) t, r, th, ph = q1.T pt, pr, pth, pph = p1.T x = r * np.sin(th) * np.cos(ph) y = r * np.sin(th) * np.sin(ph) z = r * np.cos(th) cart_results = np.vstack((t, x, y, z, pt, pr, pth, pph)).T return steps, cart_results return steps, results class Nulllike(Geodesic): """ Class for defining Null-like Geodesics """ def __init__( self, metric, metric_params, position, momentum, return_cartesian=True, **kwargs ): """ Constructor Parameters ---------- metric : str Name of the metric. Currently, these metrics are supported: 1. Schwarzschild 2. Kerr 3. KerrNewman metric_params : array_like Tuple of parameters to pass to the metric E.g., ``(a,)`` for Kerr position : array_like 3-Position 4-Position is initialized by taking ``t = 0.0`` momentum : array_like 3-Momentum 4-Momentum is calculated automatically, considering the value of ``time_like`` return_cartesian : bool, optional Whether to return calculated positions in Cartesian Coordinates This only affects the coordinates. The momenta dimensionless quantities, and are returned in Spherical Polar Coordinates. Defaults to ``True`` kwargs : dict Keyword parameters for the Geodesic Integrator See 'Other Parameters' below. Other Parameters ---------------- steps : int Number of integration steps Defaults to ``50`` delta : float Initial integration step-size Defaults to ``0.5`` rtol : float Relative Tolerance Defaults to ``1e-2`` atol : float Absolute Tolerance Defaults to ``1e-2`` order : int Integration Order Defaults to ``2`` omega : float Coupling between Hamiltonian Flows Smaller values imply smaller integration error, but too small values can make the equation of motion non-integrable. For non-capture trajectories, ``omega = 1.0`` is recommended. For trajectories, that either lead to a capture or a grazing geodesic, a decreased value of ``0.01`` or less is recommended. Defaults to ``1.0`` suppress_warnings : bool Whether to suppress warnings during simulation Warnings are shown for every step, where numerical errors exceed specified tolerance (controlled by ``rtol`` and ``atol``) Defaults to ``False`` """ super().__init__( metric=metric, metric_params=metric_params, position=position, momentum=momentum, time_like=False, return_cartesian=return_cartesian, **kwargs, ) class Timelike(Geodesic): """ Class for defining Time-like Geodesics """ def __init__( self, metric, metric_params, position, momentum, return_cartesian=True, **kwargs ): """ Constructor Parameters ---------- metric : str Name of the metric. Currently, these metrics are supported: 1. Schwarzschild 2. Kerr 3. KerrNewman metric_params : array_like Tuple of parameters to pass to the metric E.g., ``(a,)`` for Kerr position : array_like 3-Position 4-Position is initialized by taking ``t = 0.0`` momentum : array_like 3-Momentum 4-Momentum is calculated automatically, considering the value of ``time_like`` return_cartesian : bool, optional Whether to return calculated positions in Cartesian Coordinates This only affects the coordinates. The momenta dimensionless quantities, and are returned in Spherical Polar Coordinates. Defaults to ``True`` kwargs : dict Keyword parameters for the Geodesic Integrator See 'Other Parameters' below. Other Parameters ---------------- steps : int Number of integration steps Defaults to ``50`` delta : float Initial integration step-size Defaults to ``0.5`` rtol : float Relative Tolerance Defaults to ``1e-2`` atol : float Absolute Tolerance Defaults to ``1e-2`` order : int Integration Order Defaults to ``2`` omega : float Coupling between Hamiltonian Flows Smaller values imply smaller integration error, but too small values can make the equation of motion non-integrable. For non-capture trajectories, ``omega = 1.0`` is recommended. For trajectories, that either lead to a capture or a grazing geodesic, a decreased value of ``0.01`` or less is recommended. Defaults to ``1.0`` suppress_warnings : bool Whether to suppress warnings during simulation Warnings are shown for every step, where numerical errors exceed specified tolerance (controlled by ``rtol`` and ``atol``) Defaults to ``False`` """ super().__init__( metric=metric, metric_params=metric_params, position=position, momentum=momentum, time_like=True, return_cartesian=return_cartesian, **kwargs, )
[ "numpy.hstack", "einsteinpy.integrators.GeodesicIntegrator", "numpy.array", "numpy.cos", "numpy.vstack", "numpy.sin", "numpy.arange" ]
[((3607, 3633), 'numpy.array', 'np.array', (['[0.0, *position]'], {}), '([0.0, *position])\n', (3615, 3633), True, 'import numpy as np\n'), ((6840, 6852), 'numpy.arange', 'np.arange', (['N'], {}), '(N)\n', (6849, 6852), True, 'import numpy as np\n'), ((6872, 7048), 'einsteinpy.integrators.GeodesicIntegrator', 'GeodesicIntegrator', ([], {'metric': 'g', 'metric_params': 'g_prms', 'q0': 'q0', 'p0': 'p0', 'time_like': 'tl', 'steps': 'N', 'delta': 'dl', 'rtol': 'rtol', 'atol': 'atol', 'order': 'order', 'omega': 'omega', 'suppress_warnings': 'sw'}), '(metric=g, metric_params=g_prms, q0=q0, p0=p0, time_like=\n tl, steps=N, delta=dl, rtol=rtol, atol=atol, order=order, omega=omega,\n suppress_warnings=sw)\n', (6890, 7048), False, 'from einsteinpy.integrators import GeodesicIntegrator\n'), ((7263, 7301), 'numpy.array', 'np.array', (['geodint.results'], {'dtype': 'float'}), '(geodint.results, dtype=float)\n', (7271, 7301), True, 'import numpy as np\n'), ((7369, 7388), 'numpy.hstack', 'np.hstack', (['(q1, p1)'], {}), '((q1, p1))\n', (7378, 7388), True, 'import numpy as np\n'), ((7809, 7819), 'numpy.cos', 'np.cos', (['ph'], {}), '(ph)\n', (7815, 7819), True, 'import numpy as np\n'), ((7853, 7863), 'numpy.sin', 'np.sin', (['ph'], {}), '(ph)\n', (7859, 7863), True, 'import numpy as np\n'), ((7884, 7894), 'numpy.cos', 'np.cos', (['th'], {}), '(th)\n', (7890, 7894), True, 'import numpy as np\n'), ((7923, 7964), 'numpy.vstack', 'np.vstack', (['(t, x, y, z, pt, pr, pth, pph)'], {}), '((t, x, y, z, pt, pr, pth, pph))\n', (7932, 7964), True, 'import numpy as np\n'), ((7796, 7806), 'numpy.sin', 'np.sin', (['th'], {}), '(th)\n', (7802, 7806), True, 'import numpy as np\n'), ((7840, 7850), 'numpy.sin', 'np.sin', (['th'], {}), '(th)\n', (7846, 7850), True, 'import numpy as np\n')]
""" This module defines an abstract base formatter. !!! question "Formats" Refer to the [Formats documentation](../../formats/index.md) to learn about the supported output formats. """ from abc import ABC, abstractmethod import numpy as np from numpy.lib.recfunctions import unstructured_to_structured class BaseFormatter(ABC): """ An abstract base formatter. Attributes: colorize (bool): Whether to color the text. vcolor (Callable): The vectorized implementation of the `color` method. Note: The following methods must be overwritten: - [`color`][picharsso.format.base.BaseFormatter.color] - [`translate`][picharsso.format.base.BaseFormatter.translate] - [`unify`][picharsso.format.base.BaseFormatter.unify] """ def __init__(self, colorize=False): """Initialization method. Args: colorize (Option[bool]): Whether to color the text. """ self.colorize = None BaseFormatter.set(self, colorize=colorize) self.vcolor = np.vectorize(self.color) def __call__(self, text_matrix, image, resample): """Applies formatting and colorization on the `text_matrix` and returns a single string. Args: text_matrix (numpy.ndarray): The subject text matrix, with `shape = (<height>, <width>)`, and `dtype = str`. image (PIL.Image.Image): The subject image. resample (int): The resampling filter. Returns: str: The formatted string of text with color (if specified). """ text_size = text_matrix.shape # Apply any translations. text_matrix = self.translate(text_matrix) # Colorize if necessary if self.colorize: # Pool the colors from the original image by resizing it to the size of the text output. # Using the vectorized `color` method, color each element in the `text_martix`. # The vectorized operation takes a `str` from `text_matrix` # and a `List[int, int, int]` from the pooled colors. text_matrix = self.vcolor( text_matrix, unstructured_to_structured( np.array(image.resize(text_size[::-1], resample=resample)).astype( np.uint8 ) ).astype("O"), ) return self.unify(text_matrix) @staticmethod @abstractmethod def color(text, color): """Applies `color` to a string of `text`. Args: text (str): The subject text. color (Tuple[int, int, int]): The `RGB` value for the color. Returns: str: The colored text. """ @staticmethod @abstractmethod def translate(text_matrix): """Applies translatations to `text_matrix`. Args: text_matrix (numpy.ndarray): The subject text matrix, with `shape = (<height>, <width>)`, and `dtype = str`. Returns: numpy.ndarray: The translated text_matrix. """ @staticmethod @abstractmethod def unify(text_matrix): """Formats a `text_matrix` into a single string. Args: text_matrix (numpy.ndarray): The subject text matrix, with `shape = (<height>, <width>)`, and `dtype = str`. Returns: str: The formatted string of text art. """ def set(self, colorize=None): """Sets attributes of the formatter instance. Args: colorize (Optional[bool]): Sets `colorize`. """ if colorize is not None: self.colorize = colorize __all__ = ["BaseFormatter"]
[ "numpy.vectorize" ]
[((1067, 1091), 'numpy.vectorize', 'np.vectorize', (['self.color'], {}), '(self.color)\n', (1079, 1091), True, 'import numpy as np\n')]
import numpy as np import matplotlib.pylab as plt from math import pi,floor,atan2,atan from scipy.interpolate import splprep, splev plt.rcParams['pdf.fonttype'] = 42 plt.rcParams['ps.fonttype'] = 42 ######################################################################################### ################################## FCT DEFINITION ####################################### ######################################################################################### def readModel(path,time): length = 500 curv = np.transpose(np.loadtxt(path)) x = curv[0] y = curv[1] theta = curv[2] time_model = np.linspace(0,length,len(x)) okay = np.where(np.abs(np.diff(x)) + np.abs(np.diff(y)) > 0) x = x[okay] y = y[okay] tck, u = splprep([x, y], s=0) unew = np.linspace(0,1,length) data = splev(unew, tck) x,y = data[0],data[1] theta = np.interp(time,time_model,theta) delta_y = np.diff(y) delta_x = np.diff(x) th_local = [] for i in range (len(delta_x)): phi = atan2(delta_y[i],delta_x[i]) th_local.append(phi-theta[i]) return (x,y,th_local,theta) def distanceBetweenCurvs(x_real,x_sim,y_real,y_sim): distance = 0 length = len(x_real) distance_fin = np.sqrt((x_sim[-1]-x_real[-1])**2+(y_sim[-1]-y_real[-1])**2) okay = np.where(np.abs(np.diff(x_real)) + np.abs(np.diff(y_real)) > 0) x_real = x_real[okay] y_real = y_real[okay] tck, u = splprep([x_real, y_real], s=0) unew = np.linspace(0,1,length) data = splev(unew, tck) x_real,y_real = data[0],data[1] for i in range (length): distance += np.sqrt((x_sim[i]-x_real[i])**2+(y_sim[i]-y_real[i])**2) # if i%25 == 0: # # print(i, "sim",x_sim[i],y_sim[i]) # # print(np.sqrt((x_sim[i]-x_real[i])**2+(y_sim[i]-y_real[i])**2)) # plt.plot([x_sim[i],x_real[i]], [y_sim[i],y_real[i]], color = 'black', linewidth = 0.5) # # # print(distance) # plt.plot(x_sim,y_sim,color='blue') # plt.plot(x_real,y_real,color='red') # plt.plot(x_sim, y_sim,color='cyan',linestyle=':', marker='o') # plt.plot(x_real, y_real,color='orange',linestyle=':', marker='o') # plt.show() # # print("dist_i :",distance/500) return distance/length,distance_fin def normalizeAngle(angle): new_angle = angle while new_angle > pi: new_angle -= 2*pi while new_angle < -pi: new_angle += 2*pi return new_angle def angularDistanceBetweenCurvs(th_real,th_sim): distance = 0 distance_fin = abs(pi/2-normalizeAngle(th_sim[-1])) for i in range (len(th_real)-1): distance += abs(normalizeAngle(th_real[i])-normalizeAngle(th_sim[i])) # print(abs(th_real[i]-th_sim[i])) # plt.plot([time[i],time[i]], [th_real[i],th_sim[i]], color = 'black', linewidth = 0.5) # plt.plot(time,th_real,linestyle=':', marker='o') # plt.plot(time,th_sim,linestyle=':', marker='o') # print("--------",distance/len(th_real)) # plt.show() return distance/len(th_sim),distance_fin ######################################################################################### ################################## MAIN ################################################# ######################################################################################### direction_list = ['N','E','S','O'] position_list = ['1500','4000','-0615','0615','1515','4015','-0640','0640','1540','4040'] path_human_list = [] for pos in position_list: for direction in direction_list: name_file = direction+pos+".dat" path_human_list.append('data/Human/'+name_file) init_pos_list = [] start_and_end = np.loadtxt("data/Human/StartAndEnd.dat") for i in range(len(start_and_end)): init_pos_list.append([floor(start_and_end[i][0]*1000)/1000,floor(start_and_end[i][1]*1000)/1000]) fin_pos = [0,0,1.57] orientation_list = [1.57,0.0,-1.58,3.14] path_clothoid_list,path_ddp_list = [],[] i = 0 for pos in init_pos_list: # name_file = 'Clothoid_from_'+str(pos[0])+','+str(pos[1])+','+str(orientation_list[i%4])+\ # '_to_'+str(fin_pos[0])+','+str(fin_pos[1])+','+str(fin_pos[2])+'_0.001_pos.dat' # path_clothoid_list.append('data/Clothoid/'+name_file) name_file = 'DdpResult_from_'+str(pos[0])+','+str(pos[1])+','+str(orientation_list[i%4])+\ '_to_'+str(fin_pos[0])+','+str(fin_pos[1])+','+str(fin_pos[2])+'_pos.dat' path_ddp_list.append('data/DdpResult/'+name_file) i += 1 init_pos_list = [] start_and_end = np.loadtxt("data/Human/DataIROS/StartAndEnd.dat") for i in range(len(start_and_end)): init_pos_list.append([floor(start_and_end[i][0]*1000)/1000,floor(start_and_end[i][1]*1000)/1000]) fin_pos = [0,0,1.57] orientation_list = [1.57,0.0,-1.58,3.14] path_clothoid_list= [] i = 0 for pos in init_pos_list: name_file = 'DdpResult_from_'+str(pos[0])+','+str(pos[1])+','+str(orientation_list[i%4])+\ '_to_'+str(fin_pos[0])+','+str(fin_pos[1])+','+str(fin_pos[2])+'_pos.dat' path_clothoid_list.append('data/DdpResult/DataIROS/'+name_file) i += 1 time = np.arange(0,500,1) fig = plt.figure() count = 1 dist_clothoid_list, dist_ddp_list,angular_dist_clothoid_list, angular_dist_ddp_list = [],[],[],[] dist_fin_ddp_list , angular_dist_fin_ddp_list = [],[] dist_subjects_ddp_list , angular_dist_subjects_ddp_list = [],[] for i in range (len(path_human_list)): title = path_human_list[i][11:17] #print(title) #ax = plt.subplot(1,4,count) ax = plt.subplot(4,10,count) #if title == 'E1540.' or title == 'N-0615' or title == 'S4015.' or title == 'O0640.': print(title,i,count) human_data = np.loadtxt(path_human_list[i]) # (x_clothoid,y_clothoid,theta_clothoid) = readModel(path_clothoid_list[i],time) (x_ddp,y_ddp,theta_local_ddp,theta_global_ddp) = readModel(path_ddp_list[i],time) plt.plot(x_ddp,y_ddp,label='OC',color='red',linewidth=1.5) plt.plot(human_data[6],human_data[7],label='Subjects',color='lime',linewidth=0.75,alpha = 0.4) plt.plot(human_data[12],human_data[13],color='lime',linewidth=0.75,alpha = 0.4) plt.plot(human_data[18],human_data[19],color='lime',linewidth=0.75,alpha = 0.4) plt.plot(human_data[24],human_data[25],color='lime',linewidth=0.75,alpha = 0.4) plt.plot(human_data[30],human_data[31],color='lime',linewidth=0.75,alpha = 0.4) plt.plot(human_data[36],human_data[37],color='lime',linewidth=0.75,alpha = 0.4) plt.plot(human_data[42],human_data[43],color='lime',linewidth=0.75,alpha = 0.4) plt.plot(human_data[48],human_data[49],color='lime',linewidth=0.75,alpha = 0.4) plt.plot(human_data[54],human_data[55],color='lime',linewidth=0.75,alpha = 0.4) plt.plot(human_data[60],human_data[61],color='lime',linewidth=0.75,alpha = 0.4) plt.plot(human_data[0],human_data[1],label='Human average',color='green',linewidth=1.5) if np.sum(human_data[5]) != 0: arrow_len = 0.2 for i in range (len(human_data[0])): if i%50 == 0: plt.arrow(human_data[0][i], human_data[1][i], np.cos(human_data[5][i])*arrow_len, np.sin(human_data[5][i])*arrow_len, head_width=.03,color='green') plt.arrow(x_ddp[i], y_ddp[i], np.cos(theta_global_ddp[i])*arrow_len, np.sin(theta_global_ddp[i])*arrow_len, head_width=.03,color='red') plt.arrow(x_ddp[-1], y_ddp[-1], np.cos(theta_global_ddp[-1])*arrow_len, np.sin(theta_global_ddp[-1])*arrow_len, head_width=.03,color='red') # plt.plot(time,v,color='orange') # plt.plot([time[end]]*len(time),np.linspace(0,6,len(time)),color ='black') # plt.plot([time[begin]]*len(time),np.linspace(0,6,len(time)),color ='black') # plt.plot(time,human_data[5],linestyle=':',color ='black') # plt.plot(time,theta_clothoid,color='red') # plt.plot(time,theta_ddp,color='blue') # plt.plot(time,theta_trunc,color='green') # plt.plot(time,human_data[11],color='lime',linewidth=0.75,alpha = 0.4) # plt.plot(time,human_data[17],color='lime',linewidth=0.75,alpha = 0.4) # plt.plot(time,human_data[23],color='lime',linewidth=0.75,alpha = 0.4) # plt.plot(time,human_data[29],color='lime',linewidth=0.75,alpha = 0.4) # plt.plot(time,human_data[35],color='lime',linewidth=0.75,alpha = 0.4) # plt.plot(time,human_data[41],color='lime',linewidth=0.75,alpha = 0.4) # plt.plot(time,human_data[47],color='lime',linewidth=0.75,alpha = 0.4) # plt.plot(time,human_data[53],color='lime',linewidth=0.75,alpha = 0.4) # plt.plot(time,human_data[59],color='lime',linewidth=0.75,alpha = 0.4) # plt.plot(time,human_data[65],color='lime',linewidth=0.75,alpha = 0.4) # dist_clotho = distanceBetweenCurvs(human_data[0],x_clothoid,human_data[1],y_clothoid) dist_ddp,dist_fin_ddp = distanceBetweenCurvs(human_data[0],x_ddp,human_data[1],y_ddp) # dist_clothoid_list.append(dist_clotho) dist_ddp_list.append(dist_ddp) dist_fin_ddp_list.append(dist_fin_ddp) for i in range (10): dist_subjects_ddp_list.append(distanceBetweenCurvs(human_data[6+i*6],x_ddp,human_data[7+i*6],y_ddp)[0]) if np.sum(human_data[5]) != 0: print("yes") # angular_dist_clotho = angularDistanceBetweenCurvs(human_data[5],theta_clothoid) angular_dist_ddp,angular_dist_fin_ddp = angularDistanceBetweenCurvs(human_data[4],theta_local_ddp) else: # angular_dist_clotho = 0 angular_dist_ddp,angular_dist_fin_ddp = 0,0 print("no",title) # angular_dist_clothoid_list.append(angular_dist_clotho) angular_dist_ddp_list.append(angular_dist_ddp) angular_dist_fin_ddp_list.append(angular_dist_fin_ddp) #print(i,path_human_list[i][62:68],dist_clotho,dist_ddp) # plt.legend(fontsize = 'xx-large') # plt.title(title) plt.title("d_xy = " + str(floor(dist_ddp*10000)/10000) + " & d_eta = "+str(floor(angular_dist_ddp*10000)/10000), fontsize=18) # plt.title('clotho :'+str(floor(angular_dist_clotho*100)/100) + \ # ' VS ddp :'+str(floor(angular_dist_ddp*100)/100)) # plt.title('Clothoid-Human d_xy='+str(floor(dist_clotho*100)/100) + \ # ' & d_th='+str(floor(angular_dist_clotho*100)/100)+ \ # ', OC-Human d_xy='+str(floor(dist_ddp*100)/100)+ \ # ' & d_th='+str(floor(angular_dist_ddp*100)/100)) # ax.set_xticklabels([]) # ax.set_yticklabels([]) plt.ylabel("y (m)") plt.xlabel("x (m)") #if count < 4: count += 1 plt.show() # path = "data/dist_clotho.dat" # np.savetxt(path,dist_clothoid_list) path = "data/dist_ddp.dat" np.savetxt(path,dist_ddp_list) path = "data/dist_fin_ddp.dat" np.savetxt(path,dist_fin_ddp_list) # path = "data/angular_dist_clotho.dat" # np.savetxt(path,angular_dist_clothoid_list) path = "data/angular_dist_ddp.dat" np.savetxt(path,angular_dist_ddp_list) path = "data/angular_dist_fin_ddp.dat" np.savetxt(path,angular_dist_fin_ddp_list) path = "data/dist_subjects_ddp.dat" np.savetxt(path,dist_subjects_ddp_list)
[ "numpy.sqrt", "math.floor", "matplotlib.pylab.show", "numpy.sin", "numpy.arange", "matplotlib.pylab.figure", "numpy.diff", "numpy.linspace", "scipy.interpolate.splev", "matplotlib.pylab.plot", "matplotlib.pylab.xlabel", "math.atan2", "numpy.savetxt", "numpy.interp", "numpy.cos", "scipy.interpolate.splprep", "numpy.sum", "matplotlib.pylab.subplot", "numpy.loadtxt", "matplotlib.pylab.ylabel" ]
[((3451, 3491), 'numpy.loadtxt', 'np.loadtxt', (['"""data/Human/StartAndEnd.dat"""'], {}), "('data/Human/StartAndEnd.dat')\n", (3461, 3491), True, 'import numpy as np\n'), ((4257, 4306), 'numpy.loadtxt', 'np.loadtxt', (['"""data/Human/DataIROS/StartAndEnd.dat"""'], {}), "('data/Human/DataIROS/StartAndEnd.dat')\n", (4267, 4306), True, 'import numpy as np\n'), ((4808, 4828), 'numpy.arange', 'np.arange', (['(0)', '(500)', '(1)'], {}), '(0, 500, 1)\n', (4817, 4828), True, 'import numpy as np\n'), ((4834, 4846), 'matplotlib.pylab.figure', 'plt.figure', ([], {}), '()\n', (4844, 4846), True, 'import matplotlib.pylab as plt\n'), ((9839, 9849), 'matplotlib.pylab.show', 'plt.show', ([], {}), '()\n', (9847, 9849), True, 'import matplotlib.pylab as plt\n'), ((9949, 9980), 'numpy.savetxt', 'np.savetxt', (['path', 'dist_ddp_list'], {}), '(path, dist_ddp_list)\n', (9959, 9980), True, 'import numpy as np\n'), ((10012, 10047), 'numpy.savetxt', 'np.savetxt', (['path', 'dist_fin_ddp_list'], {}), '(path, dist_fin_ddp_list)\n', (10022, 10047), True, 'import numpy as np\n'), ((10170, 10209), 'numpy.savetxt', 'np.savetxt', (['path', 'angular_dist_ddp_list'], {}), '(path, angular_dist_ddp_list)\n', (10180, 10209), True, 'import numpy as np\n'), ((10249, 10292), 'numpy.savetxt', 'np.savetxt', (['path', 'angular_dist_fin_ddp_list'], {}), '(path, angular_dist_fin_ddp_list)\n', (10259, 10292), True, 'import numpy as np\n'), ((10329, 10369), 'numpy.savetxt', 'np.savetxt', (['path', 'dist_subjects_ddp_list'], {}), '(path, dist_subjects_ddp_list)\n', (10339, 10369), True, 'import numpy as np\n'), ((736, 756), 'scipy.interpolate.splprep', 'splprep', (['[x, y]'], {'s': '(0)'}), '([x, y], s=0)\n', (743, 756), False, 'from scipy.interpolate import splprep, splev\n'), ((765, 790), 'numpy.linspace', 'np.linspace', (['(0)', '(1)', 'length'], {}), '(0, 1, length)\n', (776, 790), True, 'import numpy as np\n'), ((797, 813), 'scipy.interpolate.splev', 'splev', (['unew', 'tck'], {}), '(unew, tck)\n', (802, 813), False, 'from scipy.interpolate import splprep, splev\n'), ((847, 881), 'numpy.interp', 'np.interp', (['time', 'time_model', 'theta'], {}), '(time, time_model, theta)\n', (856, 881), True, 'import numpy as np\n'), ((892, 902), 'numpy.diff', 'np.diff', (['y'], {}), '(y)\n', (899, 902), True, 'import numpy as np\n'), ((914, 924), 'numpy.diff', 'np.diff', (['x'], {}), '(x)\n', (921, 924), True, 'import numpy as np\n'), ((1178, 1248), 'numpy.sqrt', 'np.sqrt', (['((x_sim[-1] - x_real[-1]) ** 2 + (y_sim[-1] - y_real[-1]) ** 2)'], {}), '((x_sim[-1] - x_real[-1]) ** 2 + (y_sim[-1] - y_real[-1]) ** 2)\n', (1185, 1248), True, 'import numpy as np\n'), ((1369, 1399), 'scipy.interpolate.splprep', 'splprep', (['[x_real, y_real]'], {'s': '(0)'}), '([x_real, y_real], s=0)\n', (1376, 1399), False, 'from scipy.interpolate import splprep, splev\n'), ((1408, 1433), 'numpy.linspace', 'np.linspace', (['(0)', '(1)', 'length'], {}), '(0, 1, length)\n', (1419, 1433), True, 'import numpy as np\n'), ((1440, 1456), 'scipy.interpolate.splev', 'splev', (['unew', 'tck'], {}), '(unew, tck)\n', (1445, 1456), False, 'from scipy.interpolate import splprep, splev\n'), ((5201, 5226), 'matplotlib.pylab.subplot', 'plt.subplot', (['(4)', '(10)', 'count'], {}), '(4, 10, count)\n', (5212, 5226), True, 'import matplotlib.pylab as plt\n'), ((5355, 5385), 'numpy.loadtxt', 'np.loadtxt', (['path_human_list[i]'], {}), '(path_human_list[i])\n', (5365, 5385), True, 'import numpy as np\n'), ((5554, 5616), 'matplotlib.pylab.plot', 'plt.plot', (['x_ddp', 'y_ddp'], {'label': '"""OC"""', 'color': '"""red"""', 'linewidth': '(1.5)'}), "(x_ddp, y_ddp, label='OC', color='red', linewidth=1.5)\n", (5562, 5616), True, 'import matplotlib.pylab as plt\n'), ((5617, 5718), 'matplotlib.pylab.plot', 'plt.plot', (['human_data[6]', 'human_data[7]'], {'label': '"""Subjects"""', 'color': '"""lime"""', 'linewidth': '(0.75)', 'alpha': '(0.4)'}), "(human_data[6], human_data[7], label='Subjects', color='lime',\n linewidth=0.75, alpha=0.4)\n", (5625, 5718), True, 'import matplotlib.pylab as plt\n'), ((5713, 5798), 'matplotlib.pylab.plot', 'plt.plot', (['human_data[12]', 'human_data[13]'], {'color': '"""lime"""', 'linewidth': '(0.75)', 'alpha': '(0.4)'}), "(human_data[12], human_data[13], color='lime', linewidth=0.75,\n alpha=0.4)\n", (5721, 5798), True, 'import matplotlib.pylab as plt\n'), ((5794, 5879), 'matplotlib.pylab.plot', 'plt.plot', (['human_data[18]', 'human_data[19]'], {'color': '"""lime"""', 'linewidth': '(0.75)', 'alpha': '(0.4)'}), "(human_data[18], human_data[19], color='lime', linewidth=0.75,\n alpha=0.4)\n", (5802, 5879), True, 'import matplotlib.pylab as plt\n'), ((5876, 5961), 'matplotlib.pylab.plot', 'plt.plot', (['human_data[24]', 'human_data[25]'], {'color': '"""lime"""', 'linewidth': '(0.75)', 'alpha': '(0.4)'}), "(human_data[24], human_data[25], color='lime', linewidth=0.75,\n alpha=0.4)\n", (5884, 5961), True, 'import matplotlib.pylab as plt\n'), ((5957, 6042), 'matplotlib.pylab.plot', 'plt.plot', (['human_data[30]', 'human_data[31]'], {'color': '"""lime"""', 'linewidth': '(0.75)', 'alpha': '(0.4)'}), "(human_data[30], human_data[31], color='lime', linewidth=0.75,\n alpha=0.4)\n", (5965, 6042), True, 'import matplotlib.pylab as plt\n'), ((6038, 6123), 'matplotlib.pylab.plot', 'plt.plot', (['human_data[36]', 'human_data[37]'], {'color': '"""lime"""', 'linewidth': '(0.75)', 'alpha': '(0.4)'}), "(human_data[36], human_data[37], color='lime', linewidth=0.75,\n alpha=0.4)\n", (6046, 6123), True, 'import matplotlib.pylab as plt\n'), ((6119, 6204), 'matplotlib.pylab.plot', 'plt.plot', (['human_data[42]', 'human_data[43]'], {'color': '"""lime"""', 'linewidth': '(0.75)', 'alpha': '(0.4)'}), "(human_data[42], human_data[43], color='lime', linewidth=0.75,\n alpha=0.4)\n", (6127, 6204), True, 'import matplotlib.pylab as plt\n'), ((6200, 6285), 'matplotlib.pylab.plot', 'plt.plot', (['human_data[48]', 'human_data[49]'], {'color': '"""lime"""', 'linewidth': '(0.75)', 'alpha': '(0.4)'}), "(human_data[48], human_data[49], color='lime', linewidth=0.75,\n alpha=0.4)\n", (6208, 6285), True, 'import matplotlib.pylab as plt\n'), ((6281, 6366), 'matplotlib.pylab.plot', 'plt.plot', (['human_data[54]', 'human_data[55]'], {'color': '"""lime"""', 'linewidth': '(0.75)', 'alpha': '(0.4)'}), "(human_data[54], human_data[55], color='lime', linewidth=0.75,\n alpha=0.4)\n", (6289, 6366), True, 'import matplotlib.pylab as plt\n'), ((6362, 6447), 'matplotlib.pylab.plot', 'plt.plot', (['human_data[60]', 'human_data[61]'], {'color': '"""lime"""', 'linewidth': '(0.75)', 'alpha': '(0.4)'}), "(human_data[60], human_data[61], color='lime', linewidth=0.75,\n alpha=0.4)\n", (6370, 6447), True, 'import matplotlib.pylab as plt\n'), ((6443, 6538), 'matplotlib.pylab.plot', 'plt.plot', (['human_data[0]', 'human_data[1]'], {'label': '"""Human average"""', 'color': '"""green"""', 'linewidth': '(1.5)'}), "(human_data[0], human_data[1], label='Human average', color='green',\n linewidth=1.5)\n", (6451, 6538), True, 'import matplotlib.pylab as plt\n'), ((9769, 9788), 'matplotlib.pylab.ylabel', 'plt.ylabel', (['"""y (m)"""'], {}), "('y (m)')\n", (9779, 9788), True, 'import matplotlib.pylab as plt\n'), ((9790, 9809), 'matplotlib.pylab.xlabel', 'plt.xlabel', (['"""x (m)"""'], {}), "('x (m)')\n", (9800, 9809), True, 'import matplotlib.pylab as plt\n'), ((533, 549), 'numpy.loadtxt', 'np.loadtxt', (['path'], {}), '(path)\n', (543, 549), True, 'import numpy as np\n'), ((981, 1010), 'math.atan2', 'atan2', (['delta_y[i]', 'delta_x[i]'], {}), '(delta_y[i], delta_x[i])\n', (986, 1010), False, 'from math import pi, floor, atan2, atan\n'), ((1531, 1597), 'numpy.sqrt', 'np.sqrt', (['((x_sim[i] - x_real[i]) ** 2 + (y_sim[i] - y_real[i]) ** 2)'], {}), '((x_sim[i] - x_real[i]) ** 2 + (y_sim[i] - y_real[i]) ** 2)\n', (1538, 1597), True, 'import numpy as np\n'), ((6536, 6557), 'numpy.sum', 'np.sum', (['human_data[5]'], {}), '(human_data[5])\n', (6542, 6557), True, 'import numpy as np\n'), ((8618, 8639), 'numpy.sum', 'np.sum', (['human_data[5]'], {}), '(human_data[5])\n', (8624, 8639), True, 'import numpy as np\n'), ((6963, 6991), 'numpy.cos', 'np.cos', (['theta_global_ddp[-1]'], {}), '(theta_global_ddp[-1])\n', (6969, 6991), True, 'import numpy as np\n'), ((7003, 7031), 'numpy.sin', 'np.sin', (['theta_global_ddp[-1]'], {}), '(theta_global_ddp[-1])\n', (7009, 7031), True, 'import numpy as np\n'), ((3551, 3584), 'math.floor', 'floor', (['(start_and_end[i][0] * 1000)'], {}), '(start_and_end[i][0] * 1000)\n', (3556, 3584), False, 'from math import pi, floor, atan2, atan\n'), ((3588, 3621), 'math.floor', 'floor', (['(start_and_end[i][1] * 1000)'], {}), '(start_and_end[i][1] * 1000)\n', (3593, 3621), False, 'from math import pi, floor, atan2, atan\n'), ((4366, 4399), 'math.floor', 'floor', (['(start_and_end[i][0] * 1000)'], {}), '(start_and_end[i][0] * 1000)\n', (4371, 4399), False, 'from math import pi, floor, atan2, atan\n'), ((4403, 4436), 'math.floor', 'floor', (['(start_and_end[i][1] * 1000)'], {}), '(start_and_end[i][1] * 1000)\n', (4408, 4436), False, 'from math import pi, floor, atan2, atan\n'), ((662, 672), 'numpy.diff', 'np.diff', (['x'], {}), '(x)\n', (669, 672), True, 'import numpy as np\n'), ((683, 693), 'numpy.diff', 'np.diff', (['y'], {}), '(y)\n', (690, 693), True, 'import numpy as np\n'), ((1265, 1280), 'numpy.diff', 'np.diff', (['x_real'], {}), '(x_real)\n', (1272, 1280), True, 'import numpy as np\n'), ((1291, 1306), 'numpy.diff', 'np.diff', (['y_real'], {}), '(y_real)\n', (1298, 1306), True, 'import numpy as np\n'), ((9307, 9338), 'math.floor', 'floor', (['(angular_dist_ddp * 10000)'], {}), '(angular_dist_ddp * 10000)\n', (9312, 9338), False, 'from math import pi, floor, atan2, atan\n'), ((6688, 6712), 'numpy.cos', 'np.cos', (['human_data[5][i]'], {}), '(human_data[5][i])\n', (6694, 6712), True, 'import numpy as np\n'), ((6724, 6748), 'numpy.sin', 'np.sin', (['human_data[5][i]'], {}), '(human_data[5][i])\n', (6730, 6748), True, 'import numpy as np\n'), ((6824, 6851), 'numpy.cos', 'np.cos', (['theta_global_ddp[i]'], {}), '(theta_global_ddp[i])\n', (6830, 6851), True, 'import numpy as np\n'), ((6863, 6890), 'numpy.sin', 'np.sin', (['theta_global_ddp[i]'], {}), '(theta_global_ddp[i])\n', (6869, 6890), True, 'import numpy as np\n'), ((9258, 9281), 'math.floor', 'floor', (['(dist_ddp * 10000)'], {}), '(dist_ddp * 10000)\n', (9263, 9281), False, 'from math import pi, floor, atan2, atan\n')]
import os import struct import sys import matplotlib.pyplot as plt import numpy as np import pandas as pd from ply import lex, yacc class EDR: """Reader for experimental data record (EDR) files from the PDS. This object will ingest and store data from the EDR files, to be processed later. It only ingests data into a convenient structure, and de-compresses the science data, no processing occurs. """ def __init__(self, lbl=None): """Create an EDR object. Create an EDR object, read in an EDR file if given. Parameters ---------- lbl: str, optional Path to an EDR label file which must be in the same directory as the corresponding science and geometry files Returns ------- EDR Notes ----- """ if lbl is None: return self.load(lbl) def load(self, lbl): """Load a set of EDR files. Read in the label, science, and geometry EDR files for a given observation. Parameters ---------- lbl: str Path to an EDR label file which must be in the same directory as the corresponding science and geometry files Returns ------- Notes ----- """ # Read label file self.lbld = self.parseLBL(lbl) # Science and aux file names sci = lbl.replace(".lbl", "_f.dat") geo = lbl.replace(".lbl", "_g.dat") # Read science file self.anc, self.ost, self.data = self.parseSci(sci, self.lbld) # Read geometry file self.geo = self.parseGeo(geo, self.lbld) def parseGeo(self, file, lbld): """Read in a geometry data file. Parameters ---------- file: str Path to an geometry data file lbld: dict Dictionary containing data parsed from corresponding label file, created by the parseLBL method Returns ------- Notes ----- """ # Set up geometry data frame rec_t = np.dtype( [ ("SCET_FRAME_WHOLE", ">u4"), ("SCET_FRAME_FRAC", ">u2"), ("GEOMETRY_EPHEMERIS_TIME", ">f8"), ("GEOMETRY_EPOCH", "V23"), ("MARS_SOLAR_LONGITUDE", ">f8"), ("MARS_SUN_DISTANCE", ">f8"), ("ORBIT_NUMBER", ">u4"), ("TARGET_NAME", "V6"), ("TARGET_SC_POSITION_VECTOR", ">f8", 3), ("SPACECRAFT_ALTITUDE", ">f8"), ("SUB_SC_LONGITUDE", ">f8"), ("SUB_SC_LATITUDE", ">f8"), ("TARGET_SC_VELOCITY_VECTOR", ">f8", 3), ("TARGET_SC_RADIAL_VELOCITY", ">f8"), ("TARGET_SC_TANG_VELOCITY", ">f8"), ("LOCAL_TRUE_SOLAR_TIME", ">f8"), ("SOLAR_ZENITH_ANGLE", ">f8"), ("DIPOLE_UNIT_VECTOR", ">f8", 3), ("MONOPOLE_UNIT_VECTOR", ">f8", 3), ] ) geoData = np.fromfile(file, dtype=rec_t) return geoData def decompress(self, trace, exp): sign = (-1) ** (trace >> 7) # Sign bit mantissa = 1+((trace & 0x7F)/(2.0**7)) #mantissa = trace & 0x7F trace = sign * mantissa * (2 ** (exp - 127)) return trace def deagc(self, data, agc): # Take in an array of marsis data # and a vector of AGC settings, # then correct for agc agc = agc & 0x07 # Only last three bits matter agc = agc*4 + 2 # Gain in dB, per Orosei data = data * 10**(agc/20)[np.newaxis, :] return data def parseSci(self, file, lbld): # Set up ancillary data dataframe rec_t = np.dtype( [ ("SCET_STAR_WHOLE", ">u4"), ("SCET_STAR_FRAC", ">u2"), ("OST_LINE_NUMBER", ">u2"), ("OST_LINE", "V12"), ("FRAME_NUMBER", ">u2"), ("ANCILLARY_DATA_HEADER", "V6"), ("FIRST_PRI_OF_FRAME", ">u4"), ("SCET_FRAME_WHOLE", ">u4"), ("SCET_FRAME_FRAC", ">u2"), ("SCET_PERICENTER_WHOLE", ">u4"), ("SCET_PERICENTER_FRAC", ">u2"), ("SCET_PAR_WHOLE", ">u4"), ("SCET_PAR_FRAC", ">u2"), ("H_SCET_PAR", ">f4"), ("VT_SCET_PAR", ">f4"), ("VR_SCET_PAR", ">f4"), ("N_0", ">u4"), ("DELTA_S_MIN", ">f4"), ("NB_MIN", ">u2"), ("M_OCOG", ">f4", 2), ("INDEX_OCOG", ">u2", 2), ("TRK_THRESHOLD", ">f4", 2), ("INI_IND_TRK_THRESHOLD", ">u2", 2), ("LAST_IND_TRK_THRESHOLD", ">u2", 2), ("INI_IND_FSRM", ">u2", 2), ("LAST_IND_FSRM", ">u2", 2), ("SPARE_4", ">u4", 3), ("DELTA_S_SCET_PAR", ">f4"), ("NB_SCET_PAR", ">u2"), ("NA_SCET_PAR", ">u2", 2), ("A2_INI_CM", ">f4", 2), ("A2_OPT", ">f4", 2), ("REF_CA_OPT", ">f4", 2), ("DELTA_T", ">u2", 2), ("SF", ">f4", 2), ("I_C", ">u2", 2), ("AGC_SA_FOR_NEXT_FRAME", ">f4", 2), ("AGC_SA_LEVELS_CURRENT_FRAME", ">u1", 2), ("RX_TRIG_SA_FOR_NEXT_FRAME", ">u2", 2), ("RX_TRIG_SA_PROGR", ">u2", 2), ("INI_IND_OCOG", ">u2"), ("LAST_IND_OCOG", ">u2"), ("OCOG", ">f4", 2), ("A", ">f4", 2), ("C_LOL", ">i2", 2), ("SPARE_5", ">u2", 3), ("MAX_RE_EXP_MINUS1_F1_DIP", ">u1"), ("MAX_IM_EXP_MINUS1_F1_DIP", ">u1"), ("MAX_RE_EXP_ZERO_F1_DIP", ">u1"), ("MAX_IM_EXP_ZERO_F1_DIP", ">u1"), ("MAX_RE_EXP_PLUS1_F1_DIP", ">u1"), ("MAX_IM_EXP_PLUS1_F1_DIP", ">u1"), ("MAX_RE_EXP_MINUS1_F2_DIP", ">u1"), ("MAX_IM_EXP_MINUS1_F2_DIP", ">u1"), ("MAX_RE_EXP_ZERO_F2_DIP", ">u1"), ("MAX_IM_EXP_ZERO_F2_DIP", ">u1"), ("MAX_RE_EXP_PLUS1_F2_DIP", ">u1"), ("MAX_IM_EXP_PLUS1_F2_DIP", ">u1"), ("SPARE_6", ">u1", 8), ("AGC_PIS_PT_VALUE", ">f4", 2), ("AGC_PIS_LEVELS", ">u1", 2), ("K_PIM", ">u1"), ("PIS_MAX_DATA_EXP", ">u1", 2), ("PROCESSING_PRF", ">f4"), ("SPARE_7", ">u1"), ("REAL_ECHO_MINUS1_F1_DIP", ">u1", 512), ("IMAG_ECHO_MINUS1_F1_DIP", ">u1", 512), ("REAL_ECHO_ZERO_F1_DIP", ">u1", 512), ("IMAG_ECHO_ZERO_F1_DIP", ">u1", 512), ("REAL_ECHO_PLUS1_F1_DIP", ">u1", 512), ("IMAG_ECHO_PLUS1_F1_DIP", ">u1", 512), ("REAL_ECHO_MINUS1_F2_DIP", ">u1", 512), ("IMAG_ECHO_MINUS1_F2_DIP", ">u1", 512), ("REAL_ECHO_ZERO_F2_DIP", ">u1", 512), ("IMAG_ECHO_ZERO_F2_DIP", ">u1", 512), ("REAL_ECHO_PLUS1_F2_DIP", ">u1", 512), ("IMAG_ECHO_PLUS1_F2_DIP", ">u1", 512), ("PIS_F1", ">i2", 128), ("PIS_F2", ">i2", 128), ] ) telTab = np.fromfile(file, dtype=rec_t) # Decode OST line bit fields - this is incomplete df = pd.DataFrame() ost = telTab["OST_LINE"] ost = np.array(ost.tolist()) # weird but it works to get from void to bytes_ df["SPARE_0"] = np.vectorize(lambda s: s[0])(ost) df["MODE_DURATION"] = np.vectorize( lambda s: np.frombuffer(s[0:4], dtype=">u4") & 0x00FFFFFF )(ost) df["SPARE_1"] = np.vectorize( lambda s: np.frombuffer(s[4:5], dtype=">u1") & 0xC0 )(ost) df["MODE_SELECTION"] = np.vectorize( lambda s: np.frombuffer(s[4:5], dtype=">u1") >> 2 & 0x0F )(ost) df["DCG_CONFIGURATION_LO"] = np.vectorize( lambda s: np.frombuffer(s[4:5], dtype=">u1") & 0x03 )(ost) df["DCG_CONFIGURATION_HI"] = np.vectorize( lambda s: np.frombuffer(s[5:6], dtype=">u1") >> 6 )(ost) # Decompress data and make radargrams moded = { "SS3_TRK_CMP": [ "MINUS1_F1", "ZERO_F1", "PLUS1_F1", "MINUS1_F2", "ZERO_F2", "PLUS1_F2", ] } mode = lbld["INSTRUMENT_MODE_ID"].replace('"', "") if mode not in moded.keys(): print("Unhandled mode, exiting") print(mode) sys.exit() datad = {} for rg in moded[mode]: block = np.zeros((512, len(telTab)), dtype=np.complex64) for i in range(len(telTab)): expIM = telTab["MAX_IM_EXP_" + rg + "_DIP"][i] expRE = telTab["MAX_RE_EXP_" + rg + "_DIP"][i] trIM = telTab["IMAG_ECHO_" + rg + "_DIP"][i] trRE = telTab["REAL_ECHO_" + rg + "_DIP"][i] trRE = self.decompress(trRE, expRE) trIM = self.decompress(trIM, expIM) trace = trRE + 1j * trIM band = int(rg.split("_")[1][1]) block[:, i] = trace if("F1" in rg): block = self.deagc(block, telTab["AGC_SA_LEVELS_CURRENT_FRAME"][:,0]) elif("F2" in rg): block = self.deagc(block, telTab["AGC_SA_LEVELS_CURRENT_FRAME"][:,1]) datad[rg] = block return telTab, df, datad def buildDict(self, pdata, i): dd = {} while i < len(pdata): key, val = pdata[i] if key == "OBJECT": c = 0 name = val + str(c) while name in dd.keys(): c += 1 name = val + str(c) i, dd[name] = self.buildDict(pdata, i + 1) continue if key == "END_OBJECT": return i + 1, dd dd[key] = val i += 1 return dd def parseLBL(self, lbl): # Parse the label file with lex and yacc # Heavily based on https://github.com/mkelley/pds3 # lexer def ### tokens = [ "DSID", "WORD", "STRING", "COMMENT", "POINTER", "DATE", "INT", "REAL", "UNIT", "END", ] literals = ["(", ")", ",", "=", "{", "}"] def t_DSID(t): r"MEX-M-MARSIS-2-EDR(-EXT[0-9])?-V[0-9].0" # Dataset ID return t def t_WORD(t): r"[A-Z][A-Z0-9:_]+" if t.value == "END": t.type = "END" return t t_STRING = r'"[^"]+"' def t_COMMENT(t): r"/\*.+\*/" pass t_POINTER = r"\^[A-Z0-9_]+" t_DATE = r"[0-9]{4}-[0-9]{2}-[0-9]{2}T[0-9]{2}:[0-9]{2}:[0-9]{2}(.[0-9]{3})?" t_INT = r"[+-]?[0-9]+" t_REAL = r"[+-]?[0-9]+\.[0-9]+([Ee][+-]?[0-9]+)?" t_UNIT = r"<[\w*^\-/]+>" t_ignore = " \t\r\n" def t_error(t): print("Illegal character '%s'" % t.value[0]) t.lexer.skip(1) lexer = lex.lex() # ## parser def ## # def p_label(p): """ label : record | label record | label END""" if len(p) == 2: # record p[0] = [p[1]] elif p[2] == "END": # label END p[0] = p[1] else: # label record p[0] = p[1] + [p[2]] def p_record(p): """record : WORD '=' value | POINTER '=' INT | POINTER '=' STRING | POINTER '=' '(' STRING ',' INT ')'""" p[0] = (p[1], p[3]) def p_value(p): """value : STRING | DATE | WORD | DSID | number | number UNIT | sequence""" # Just chuck the units for now p[0] = p[1] def p_number(p): """number : INT | REAL""" p[0] = p[1] def p_sequence(p): """sequence : '(' value ')' | '(' sequence_values ')' | '{' value '}' | '{' sequence_values '}'""" p[0] = p[2] def p_sequence_values(p): """sequence_values : value ',' | sequence_values value ',' | sequence_values value""" if p[2] == ",": p[0] = [p[1]] else: p[0] = p[1] + [p[2]] def p_error(p): if p: print("Syntax error at '%s'" % p.value) else: print("Syntax error at EOF") parser = yacc.yacc() # ## parse the label ## # fd = open(lbl, "r") data = fd.read() fd.close() result = parser.parse(data, lexer=lexer, debug=False) return self.buildDict(result, 0)
[ "ply.yacc.yacc", "numpy.fromfile", "ply.lex.lex", "sys.exit", "pandas.DataFrame", "numpy.frombuffer", "numpy.dtype", "numpy.vectorize" ]
[((2156, 2818), 'numpy.dtype', 'np.dtype', (["[('SCET_FRAME_WHOLE', '>u4'), ('SCET_FRAME_FRAC', '>u2'), (\n 'GEOMETRY_EPHEMERIS_TIME', '>f8'), ('GEOMETRY_EPOCH', 'V23'), (\n 'MARS_SOLAR_LONGITUDE', '>f8'), ('MARS_SUN_DISTANCE', '>f8'), (\n 'ORBIT_NUMBER', '>u4'), ('TARGET_NAME', 'V6'), (\n 'TARGET_SC_POSITION_VECTOR', '>f8', 3), ('SPACECRAFT_ALTITUDE', '>f8'),\n ('SUB_SC_LONGITUDE', '>f8'), ('SUB_SC_LATITUDE', '>f8'), (\n 'TARGET_SC_VELOCITY_VECTOR', '>f8', 3), ('TARGET_SC_RADIAL_VELOCITY',\n '>f8'), ('TARGET_SC_TANG_VELOCITY', '>f8'), ('LOCAL_TRUE_SOLAR_TIME',\n '>f8'), ('SOLAR_ZENITH_ANGLE', '>f8'), ('DIPOLE_UNIT_VECTOR', '>f8', 3),\n ('MONOPOLE_UNIT_VECTOR', '>f8', 3)]"], {}), "([('SCET_FRAME_WHOLE', '>u4'), ('SCET_FRAME_FRAC', '>u2'), (\n 'GEOMETRY_EPHEMERIS_TIME', '>f8'), ('GEOMETRY_EPOCH', 'V23'), (\n 'MARS_SOLAR_LONGITUDE', '>f8'), ('MARS_SUN_DISTANCE', '>f8'), (\n 'ORBIT_NUMBER', '>u4'), ('TARGET_NAME', 'V6'), (\n 'TARGET_SC_POSITION_VECTOR', '>f8', 3), ('SPACECRAFT_ALTITUDE', '>f8'),\n ('SUB_SC_LONGITUDE', '>f8'), ('SUB_SC_LATITUDE', '>f8'), (\n 'TARGET_SC_VELOCITY_VECTOR', '>f8', 3), ('TARGET_SC_RADIAL_VELOCITY',\n '>f8'), ('TARGET_SC_TANG_VELOCITY', '>f8'), ('LOCAL_TRUE_SOLAR_TIME',\n '>f8'), ('SOLAR_ZENITH_ANGLE', '>f8'), ('DIPOLE_UNIT_VECTOR', '>f8', 3),\n ('MONOPOLE_UNIT_VECTOR', '>f8', 3)])\n", (2164, 2818), True, 'import numpy as np\n'), ((3138, 3168), 'numpy.fromfile', 'np.fromfile', (['file'], {'dtype': 'rec_t'}), '(file, dtype=rec_t)\n', (3149, 3168), True, 'import numpy as np\n'), ((3854, 6393), 'numpy.dtype', 'np.dtype', (["[('SCET_STAR_WHOLE', '>u4'), ('SCET_STAR_FRAC', '>u2'), ('OST_LINE_NUMBER',\n '>u2'), ('OST_LINE', 'V12'), ('FRAME_NUMBER', '>u2'), (\n 'ANCILLARY_DATA_HEADER', 'V6'), ('FIRST_PRI_OF_FRAME', '>u4'), (\n 'SCET_FRAME_WHOLE', '>u4'), ('SCET_FRAME_FRAC', '>u2'), (\n 'SCET_PERICENTER_WHOLE', '>u4'), ('SCET_PERICENTER_FRAC', '>u2'), (\n 'SCET_PAR_WHOLE', '>u4'), ('SCET_PAR_FRAC', '>u2'), ('H_SCET_PAR',\n '>f4'), ('VT_SCET_PAR', '>f4'), ('VR_SCET_PAR', '>f4'), ('N_0', '>u4'),\n ('DELTA_S_MIN', '>f4'), ('NB_MIN', '>u2'), ('M_OCOG', '>f4', 2), (\n 'INDEX_OCOG', '>u2', 2), ('TRK_THRESHOLD', '>f4', 2), (\n 'INI_IND_TRK_THRESHOLD', '>u2', 2), ('LAST_IND_TRK_THRESHOLD', '>u2', 2\n ), ('INI_IND_FSRM', '>u2', 2), ('LAST_IND_FSRM', '>u2', 2), ('SPARE_4',\n '>u4', 3), ('DELTA_S_SCET_PAR', '>f4'), ('NB_SCET_PAR', '>u2'), (\n 'NA_SCET_PAR', '>u2', 2), ('A2_INI_CM', '>f4', 2), ('A2_OPT', '>f4', 2),\n ('REF_CA_OPT', '>f4', 2), ('DELTA_T', '>u2', 2), ('SF', '>f4', 2), (\n 'I_C', '>u2', 2), ('AGC_SA_FOR_NEXT_FRAME', '>f4', 2), (\n 'AGC_SA_LEVELS_CURRENT_FRAME', '>u1', 2), ('RX_TRIG_SA_FOR_NEXT_FRAME',\n '>u2', 2), ('RX_TRIG_SA_PROGR', '>u2', 2), ('INI_IND_OCOG', '>u2'), (\n 'LAST_IND_OCOG', '>u2'), ('OCOG', '>f4', 2), ('A', '>f4', 2), ('C_LOL',\n '>i2', 2), ('SPARE_5', '>u2', 3), ('MAX_RE_EXP_MINUS1_F1_DIP', '>u1'),\n ('MAX_IM_EXP_MINUS1_F1_DIP', '>u1'), ('MAX_RE_EXP_ZERO_F1_DIP', '>u1'),\n ('MAX_IM_EXP_ZERO_F1_DIP', '>u1'), ('MAX_RE_EXP_PLUS1_F1_DIP', '>u1'),\n ('MAX_IM_EXP_PLUS1_F1_DIP', '>u1'), ('MAX_RE_EXP_MINUS1_F2_DIP', '>u1'),\n ('MAX_IM_EXP_MINUS1_F2_DIP', '>u1'), ('MAX_RE_EXP_ZERO_F2_DIP', '>u1'),\n ('MAX_IM_EXP_ZERO_F2_DIP', '>u1'), ('MAX_RE_EXP_PLUS1_F2_DIP', '>u1'),\n ('MAX_IM_EXP_PLUS1_F2_DIP', '>u1'), ('SPARE_6', '>u1', 8), (\n 'AGC_PIS_PT_VALUE', '>f4', 2), ('AGC_PIS_LEVELS', '>u1', 2), ('K_PIM',\n '>u1'), ('PIS_MAX_DATA_EXP', '>u1', 2), ('PROCESSING_PRF', '>f4'), (\n 'SPARE_7', '>u1'), ('REAL_ECHO_MINUS1_F1_DIP', '>u1', 512), (\n 'IMAG_ECHO_MINUS1_F1_DIP', '>u1', 512), ('REAL_ECHO_ZERO_F1_DIP', '>u1',\n 512), ('IMAG_ECHO_ZERO_F1_DIP', '>u1', 512), ('REAL_ECHO_PLUS1_F1_DIP',\n '>u1', 512), ('IMAG_ECHO_PLUS1_F1_DIP', '>u1', 512), (\n 'REAL_ECHO_MINUS1_F2_DIP', '>u1', 512), ('IMAG_ECHO_MINUS1_F2_DIP',\n '>u1', 512), ('REAL_ECHO_ZERO_F2_DIP', '>u1', 512), (\n 'IMAG_ECHO_ZERO_F2_DIP', '>u1', 512), ('REAL_ECHO_PLUS1_F2_DIP', '>u1',\n 512), ('IMAG_ECHO_PLUS1_F2_DIP', '>u1', 512), ('PIS_F1', '>i2', 128), (\n 'PIS_F2', '>i2', 128)]"], {}), "([('SCET_STAR_WHOLE', '>u4'), ('SCET_STAR_FRAC', '>u2'), (\n 'OST_LINE_NUMBER', '>u2'), ('OST_LINE', 'V12'), ('FRAME_NUMBER', '>u2'),\n ('ANCILLARY_DATA_HEADER', 'V6'), ('FIRST_PRI_OF_FRAME', '>u4'), (\n 'SCET_FRAME_WHOLE', '>u4'), ('SCET_FRAME_FRAC', '>u2'), (\n 'SCET_PERICENTER_WHOLE', '>u4'), ('SCET_PERICENTER_FRAC', '>u2'), (\n 'SCET_PAR_WHOLE', '>u4'), ('SCET_PAR_FRAC', '>u2'), ('H_SCET_PAR',\n '>f4'), ('VT_SCET_PAR', '>f4'), ('VR_SCET_PAR', '>f4'), ('N_0', '>u4'),\n ('DELTA_S_MIN', '>f4'), ('NB_MIN', '>u2'), ('M_OCOG', '>f4', 2), (\n 'INDEX_OCOG', '>u2', 2), ('TRK_THRESHOLD', '>f4', 2), (\n 'INI_IND_TRK_THRESHOLD', '>u2', 2), ('LAST_IND_TRK_THRESHOLD', '>u2', 2\n ), ('INI_IND_FSRM', '>u2', 2), ('LAST_IND_FSRM', '>u2', 2), ('SPARE_4',\n '>u4', 3), ('DELTA_S_SCET_PAR', '>f4'), ('NB_SCET_PAR', '>u2'), (\n 'NA_SCET_PAR', '>u2', 2), ('A2_INI_CM', '>f4', 2), ('A2_OPT', '>f4', 2),\n ('REF_CA_OPT', '>f4', 2), ('DELTA_T', '>u2', 2), ('SF', '>f4', 2), (\n 'I_C', '>u2', 2), ('AGC_SA_FOR_NEXT_FRAME', '>f4', 2), (\n 'AGC_SA_LEVELS_CURRENT_FRAME', '>u1', 2), ('RX_TRIG_SA_FOR_NEXT_FRAME',\n '>u2', 2), ('RX_TRIG_SA_PROGR', '>u2', 2), ('INI_IND_OCOG', '>u2'), (\n 'LAST_IND_OCOG', '>u2'), ('OCOG', '>f4', 2), ('A', '>f4', 2), ('C_LOL',\n '>i2', 2), ('SPARE_5', '>u2', 3), ('MAX_RE_EXP_MINUS1_F1_DIP', '>u1'),\n ('MAX_IM_EXP_MINUS1_F1_DIP', '>u1'), ('MAX_RE_EXP_ZERO_F1_DIP', '>u1'),\n ('MAX_IM_EXP_ZERO_F1_DIP', '>u1'), ('MAX_RE_EXP_PLUS1_F1_DIP', '>u1'),\n ('MAX_IM_EXP_PLUS1_F1_DIP', '>u1'), ('MAX_RE_EXP_MINUS1_F2_DIP', '>u1'),\n ('MAX_IM_EXP_MINUS1_F2_DIP', '>u1'), ('MAX_RE_EXP_ZERO_F2_DIP', '>u1'),\n ('MAX_IM_EXP_ZERO_F2_DIP', '>u1'), ('MAX_RE_EXP_PLUS1_F2_DIP', '>u1'),\n ('MAX_IM_EXP_PLUS1_F2_DIP', '>u1'), ('SPARE_6', '>u1', 8), (\n 'AGC_PIS_PT_VALUE', '>f4', 2), ('AGC_PIS_LEVELS', '>u1', 2), ('K_PIM',\n '>u1'), ('PIS_MAX_DATA_EXP', '>u1', 2), ('PROCESSING_PRF', '>f4'), (\n 'SPARE_7', '>u1'), ('REAL_ECHO_MINUS1_F1_DIP', '>u1', 512), (\n 'IMAG_ECHO_MINUS1_F1_DIP', '>u1', 512), ('REAL_ECHO_ZERO_F1_DIP', '>u1',\n 512), ('IMAG_ECHO_ZERO_F1_DIP', '>u1', 512), ('REAL_ECHO_PLUS1_F1_DIP',\n '>u1', 512), ('IMAG_ECHO_PLUS1_F1_DIP', '>u1', 512), (\n 'REAL_ECHO_MINUS1_F2_DIP', '>u1', 512), ('IMAG_ECHO_MINUS1_F2_DIP',\n '>u1', 512), ('REAL_ECHO_ZERO_F2_DIP', '>u1', 512), (\n 'IMAG_ECHO_ZERO_F2_DIP', '>u1', 512), ('REAL_ECHO_PLUS1_F2_DIP', '>u1',\n 512), ('IMAG_ECHO_PLUS1_F2_DIP', '>u1', 512), ('PIS_F1', '>i2', 128), (\n 'PIS_F2', '>i2', 128)])\n", (3862, 6393), True, 'import numpy as np\n'), ((7556, 7586), 'numpy.fromfile', 'np.fromfile', (['file'], {'dtype': 'rec_t'}), '(file, dtype=rec_t)\n', (7567, 7586), True, 'import numpy as np\n'), ((7659, 7673), 'pandas.DataFrame', 'pd.DataFrame', ([], {}), '()\n', (7671, 7673), True, 'import pandas as pd\n'), ((11637, 11646), 'ply.lex.lex', 'lex.lex', ([], {}), '()\n', (11644, 11646), False, 'from ply import lex, yacc\n'), ((13445, 13456), 'ply.yacc.yacc', 'yacc.yacc', ([], {}), '()\n', (13454, 13456), False, 'from ply import lex, yacc\n'), ((7817, 7845), 'numpy.vectorize', 'np.vectorize', (['(lambda s: s[0])'], {}), '(lambda s: s[0])\n', (7829, 7845), True, 'import numpy as np\n'), ((8949, 8959), 'sys.exit', 'sys.exit', ([], {}), '()\n', (8957, 8959), False, 'import sys\n'), ((7917, 7951), 'numpy.frombuffer', 'np.frombuffer', (['s[0:4]'], {'dtype': '""">u4"""'}), "(s[0:4], dtype='>u4')\n", (7930, 7951), True, 'import numpy as np\n'), ((8040, 8074), 'numpy.frombuffer', 'np.frombuffer', (['s[4:5]'], {'dtype': '""">u1"""'}), "(s[4:5], dtype='>u1')\n", (8053, 8074), True, 'import numpy as np\n'), ((8299, 8333), 'numpy.frombuffer', 'np.frombuffer', (['s[4:5]'], {'dtype': '""">u1"""'}), "(s[4:5], dtype='>u1')\n", (8312, 8333), True, 'import numpy as np\n'), ((8429, 8463), 'numpy.frombuffer', 'np.frombuffer', (['s[5:6]'], {'dtype': '""">u1"""'}), "(s[5:6], dtype='>u1')\n", (8442, 8463), True, 'import numpy as np\n'), ((8164, 8198), 'numpy.frombuffer', 'np.frombuffer', (['s[4:5]'], {'dtype': '""">u1"""'}), "(s[4:5], dtype='>u1')\n", (8177, 8198), True, 'import numpy as np\n')]
from typing import Tuple import numpy as np import pandas as pd from sklearn.preprocessing import LabelEncoder def label_encoder(c: str) -> np.ndarray: lc = LabelEncoder() return lc.fit_transform(c) def load_dataset() -> Tuple[pd.DataFrame, pd.DataFrame, pd.DataFrame]: path = "../../input/tabular-playground-series-apr-2021/" train = pd.read_csv(path + "train.csv") test = pd.read_csv(path + "test.csv") pseudo_label = pd.read_csv("../../res/AutoWoE_submission_combo.csv") test["Survived"] = [x for x in pseudo_label.Survived] # Calcule SameFirstName train["FirstName"] = train["Name"].apply(lambda x: x.split(", ")[0]) train["n"] = 1 gb = train.groupby("FirstName") df_names = gb["n"].sum() train["SameFirstName"] = train["FirstName"].apply(lambda x: df_names[x]) test["FirstName"] = test["Name"].apply(lambda x: x.split(", ")[0]) test["n"] = 1 gb = test.groupby("FirstName") df_names = gb["n"].sum() test["SameFirstName"] = test["FirstName"].apply(lambda x: df_names[x]) # To preprocess data = pd.concat([train, test], axis=0) # Before fill missing data["AnyMissing"] = np.where(data.isnull().any(axis=1) == 1, 1, 0) # Family data["FamilySize"] = data["SibSp"] + data["Parch"] + 1 data["IsAlone"] = np.where(data["FamilySize"] <= 1, 1, 0) # Cabin data["Has_Cabin"] = data["Cabin"].apply(lambda x: 0 if type(x) == float else 1) data["Cabin"] = data["Cabin"].fillna("X").map(lambda x: x[0].strip()) cabin_map = {"A": 1, "B": 2, "C": 3, "D": 4, "E": 5, "F": 6, "G": 7, "T": 1, "X": 8} data["Cabin"] = data["Cabin"].str[0].fillna("X").replace(cabin_map) # Embarked # map_Embarked = train.Embarked.mode().item() data["Embarked"] = data["Embarked"].fillna("No") conditions = [ (data["Embarked"] == "S"), (data["Embarked"] == "Q"), (data["Embarked"] == "C"), (data["Embarked"] == "No"), ] choices = [0, 1, 2, -1] data["Embarked"] = np.select(conditions, choices) data["Embarked"] = data["Embarked"].astype(int) # Name data["SecondName"] = data.Name.str.split(", ", 1, expand=True)[1] # to try data["IsFirstNameDublicated"] = np.where(data.FirstName.duplicated(), 1, 0) # Fare data["Fare"] = data["Fare"].fillna(train["Fare"].median()) # train['CategoricalFare'] = pd.qcut(train['Fare'], 4) # [(0.679, 10.04] < (10.04, 24.46] < (24.46, 33.5] < (33.5, 744.66]] # From original Titanic: conditions = [ (data["Fare"] <= 7.91), ((data["Fare"] > 7.91) & (data["Fare"] <= 14.454)), ((data["Fare"] > 14.454) & (data["Fare"] <= 31)), (data["Fare"] > 31), ] choices = [0, 1, 2, 3] data["Fare"] = np.select(conditions, choices) data["Fare"] = data["Fare"].astype(int) # Fix Ticket # data['TicketNum'] = data.Ticket.str.extract(r'(\d+)').\ # astype('float64', copy=False) # to_try data["Ticket"] = ( data.Ticket.str.replace(r"\.", "", regex=True) .str.replace(r"(\d+)", "", regex=True) .str.replace(" ", "", regex=True) .replace(r"^\s*$", "X", regex=True) .fillna("X") ) data["Ticket"] = data["Ticket"].astype("category").cat.codes # to_try # Age conditions = [ ((data.Sex == "female") & (data.Pclass == 1) & (data.Age.isnull())), ((data.Sex == "male") & (data.Pclass == 1) & (data.Age.isnull())), ((data.Sex == "female") & (data.Pclass == 2) & (data.Age.isnull())), ((data.Sex == "male") & (data.Pclass == 2) & (data.Age.isnull())), ((data.Sex == "female") & (data.Pclass == 3) & (data.Age.isnull())), ((data.Sex == "male") & (data.Pclass == 3) & (data.Age.isnull())), ] choices = ( data[["Age", "Pclass", "Sex"]].dropna().groupby(["Pclass", "Sex"]).mean()["Age"] ) data["Age"] = np.select(conditions, choices) conditions = [ (data["Age"].le(16)), (data["Age"].gt(16) & data["Age"].le(32)), (data["Age"].gt(32) & data["Age"].le(48)), (data["Age"].gt(48) & data["Age"].le(64)), (data["Age"].gt(64)), ] choices = [0, 1, 2, 3, 4] data["Age"] = np.select(conditions, choices) # Sex data["Sex"] = np.where(data["Sex"] == "male", 1, 0) # Drop columns data = data.drop(["Name", "n"], axis=1) # Splitting into train and test train = data.iloc[: train.shape[0]] test = data.iloc[train.shape[0] :].drop(columns=["Survived"]) target = "Survived" features_selected = [ "Pclass", "Sex", "Age", "Embarked", "Parch", "SibSp", "Fare", "Cabin", "Ticket", "IsAlone", "SameFirstName", ] X = data.drop(target, axis=1) X = X[features_selected] y = data[target] test = test[features_selected] return X, y, test
[ "sklearn.preprocessing.LabelEncoder", "numpy.select", "pandas.read_csv", "numpy.where", "pandas.concat" ]
[((164, 178), 'sklearn.preprocessing.LabelEncoder', 'LabelEncoder', ([], {}), '()\n', (176, 178), False, 'from sklearn.preprocessing import LabelEncoder\n'), ((356, 387), 'pandas.read_csv', 'pd.read_csv', (["(path + 'train.csv')"], {}), "(path + 'train.csv')\n", (367, 387), True, 'import pandas as pd\n'), ((399, 429), 'pandas.read_csv', 'pd.read_csv', (["(path + 'test.csv')"], {}), "(path + 'test.csv')\n", (410, 429), True, 'import pandas as pd\n'), ((450, 503), 'pandas.read_csv', 'pd.read_csv', (['"""../../res/AutoWoE_submission_combo.csv"""'], {}), "('../../res/AutoWoE_submission_combo.csv')\n", (461, 503), True, 'import pandas as pd\n'), ((1087, 1119), 'pandas.concat', 'pd.concat', (['[train, test]'], {'axis': '(0)'}), '([train, test], axis=0)\n', (1096, 1119), True, 'import pandas as pd\n'), ((1314, 1353), 'numpy.where', 'np.where', (["(data['FamilySize'] <= 1)", '(1)', '(0)'], {}), "(data['FamilySize'] <= 1, 1, 0)\n", (1322, 1353), True, 'import numpy as np\n'), ((2022, 2052), 'numpy.select', 'np.select', (['conditions', 'choices'], {}), '(conditions, choices)\n', (2031, 2052), True, 'import numpy as np\n'), ((2764, 2794), 'numpy.select', 'np.select', (['conditions', 'choices'], {}), '(conditions, choices)\n', (2773, 2794), True, 'import numpy as np\n'), ((3920, 3950), 'numpy.select', 'np.select', (['conditions', 'choices'], {}), '(conditions, choices)\n', (3929, 3950), True, 'import numpy as np\n'), ((4239, 4269), 'numpy.select', 'np.select', (['conditions', 'choices'], {}), '(conditions, choices)\n', (4248, 4269), True, 'import numpy as np\n'), ((4299, 4336), 'numpy.where', 'np.where', (["(data['Sex'] == 'male')", '(1)', '(0)'], {}), "(data['Sex'] == 'male', 1, 0)\n", (4307, 4336), True, 'import numpy as np\n')]
import numpy as np from scipy.stats import chi2 from tqdm import tqdm as tqdm from ...common import ( Gaussian, GaussianDensity, HypothesisReduction, normalize_log_weights, ) from ...configs import SensorModelConfig from ...measurement_models import MeasurementModel from ...motion_models import MotionModel from .base_single_object_tracker import SingleObjectTracker class GaussSumTracker(SingleObjectTracker): def __init__( self, meas_model: MeasurementModel, sensor_model: SensorModelConfig, motion_model: MotionModel, M, merging_threshold, P_G, w_min, *args, **kwargs, ) -> None: self.meas_model = meas_model self.sensor_model = sensor_model self.motion_model = motion_model self.w_min = w_min self.P_G = P_G self.gating_size = chi2.ppf(P_G, df=self.meas_model.d) self.M = M self.merging_threshold = merging_threshold self.hypotheses_weight = None self.multi_hypotheses_bank = None super(GaussSumTracker).__init__() def estimate(self, initial_state: Gaussian, measurements, verbose=False): """Tracks a single object using Gauss sum filtering For each filter recursion iteration implemented next steps: 1) for each hypothesis, create missed detection hypothesis 2) for each hypothesis, perform ellipsoidal gating and only create object detection hypotheses for detections inside the gate 3) normalise hypotheses weights 4) prune hypotheses with small weights and then re-normalise the weights 5) hypothese merging 6) cap the number of the hypotheses and then re-normalise the weights 7) extract object state estimate using the most probably hypothesis estimation 8) for each hypothesis, perform prediction """ prev_state = initial_state estimations = [None for x in range(len(measurements))] self.hypotheses_weight = [np.log(1.0)] self.multi_hypotheses_bank = [initial_state] for timestep, measurements_in_scene in tqdm(enumerate(measurements)): estimations[timestep] = self.estimation_step( predicted_state=prev_state, current_measurements=np.array(measurements_in_scene), ) prev_state = GaussianDensity.predict(state=estimations[timestep], motion_model=self.motion_model) return tuple(estimations) def estimation_step(self, predicted_state: Gaussian, current_measurements: np.ndarray): new_hypotheses, new_weights = [], [] w_theta_factor = np.log(self.sensor_model.P_D / self.sensor_model.intensity_c) w_theta_0 = np.log(1 - self.sensor_model.P_D) # misdetection for _old_idx, (curr_weight, curr_hypothesis) in enumerate( zip(self.hypotheses_weight, self.multi_hypotheses_bank) ): # 1) for each hypothesis, create missed detection hypothesis new_hypotheses.append(curr_hypothesis) new_weights.append(w_theta_0 + curr_weight) # 2) for each hypothesis, perform ellipsoidal gating # and only create object detection hypotheses for detection # inside the gate z_ingate, _ = GaussianDensity.ellipsoidal_gating( curr_hypothesis, current_measurements, self.meas_model, self.gating_size, ) predicted_likelihood = GaussianDensity.predicted_likelihood(curr_hypothesis, z_ingate, self.meas_model) # for each measurement create detection hypotheses for idx, meausurement in z_ingate: new_hypotheses.append(GaussianDensity.update(curr_hypothesis, meausurement, self.meas_model)) new_weights.append(predicted_likelihood[idx] + w_theta_factor) self.hypotheses_weight.extend(new_weights) self.multi_hypotheses_bank.extend(new_hypotheses) assert len(self.hypotheses_weight) == len(self.multi_hypotheses_bank) # 3.normalise hypotheses weights self.hypotheses_weight, _ = normalize_log_weights(self.hypotheses_weight) # 4. Prune hypotheses with small weights and then re-normalise the weights self.hypotheses_weight, self.multi_hypotheses_bank = HypothesisReduction.prune( self.hypotheses_weight, self.multi_hypotheses_bank, threshold=self.w_min ) self.hypotheses_weight, _ = normalize_log_weights(self.hypotheses_weight) # 5. Hypotheses merging and normalize self.hypotheses_weight, self.multi_hypotheses_bank = HypothesisReduction.merge( self.hypotheses_weight, self.multi_hypotheses_bank, threshold=self.merging_threshold, ) self.hypotheses_weight, _ = normalize_log_weights(self.hypotheses_weight) # 6. Cap the number of the hypotheses and then re-normalise the weights self.hypotheses_weight, self.multi_hypotheses_bank = HypothesisReduction.cap( self.hypotheses_weight, self.multi_hypotheses_bank, top_k=self.M ) self.hypotheses_weight, _ = normalize_log_weights(self.hypotheses_weight) # 7. Get object state from the most probable hypothesis if self.multi_hypotheses_bank: current_step_state = self.multi_hypotheses_bank[np.argmax(self.hypotheses_weight)] estimation = current_step_state else: estimation = predicted_state # 8. For each hypotheses do prediction self.updated_states = [ GaussianDensity.predict(hypothesis, self.motion_model) for hypothesis in self.multi_hypotheses_bank ] self.multi_hypotheses_bank = self.updated_states return estimation @property def method(self): return "gauss sum filter"
[ "numpy.log", "numpy.array", "scipy.stats.chi2.ppf", "numpy.argmax" ]
[((887, 922), 'scipy.stats.chi2.ppf', 'chi2.ppf', (['P_G'], {'df': 'self.meas_model.d'}), '(P_G, df=self.meas_model.d)\n', (895, 922), False, 'from scipy.stats import chi2\n'), ((2707, 2768), 'numpy.log', 'np.log', (['(self.sensor_model.P_D / self.sensor_model.intensity_c)'], {}), '(self.sensor_model.P_D / self.sensor_model.intensity_c)\n', (2713, 2768), True, 'import numpy as np\n'), ((2789, 2822), 'numpy.log', 'np.log', (['(1 - self.sensor_model.P_D)'], {}), '(1 - self.sensor_model.P_D)\n', (2795, 2822), True, 'import numpy as np\n'), ((2069, 2080), 'numpy.log', 'np.log', (['(1.0)'], {}), '(1.0)\n', (2075, 2080), True, 'import numpy as np\n'), ((5475, 5508), 'numpy.argmax', 'np.argmax', (['self.hypotheses_weight'], {}), '(self.hypotheses_weight)\n', (5484, 5508), True, 'import numpy as np\n'), ((2353, 2384), 'numpy.array', 'np.array', (['measurements_in_scene'], {}), '(measurements_in_scene)\n', (2361, 2384), True, 'import numpy as np\n')]
import unittest import numpy as np import tensorflow as tf import lib.weighted_layers_v2 as wl from lib.weighted_resblock import MixtureWeight class WeightedConv2DTest(tf.test.TestCase): """WeightedConv2D test class.""" def setUp(self): """Sets default parameters.""" super(WeightedConv2DTest, self).setUp() self.kernel_size = 3 self.activation = 'relu' self.filters = 40 self.input_channel = 20 self.num_templates = 10 self.kernel = np.random.rand(self.num_templates, self.kernel_size, self.kernel_size, self.input_channel, self.filters) self.bias = np.random.rand(self.num_templates, self.filters) self.kernel_init = tf.constant_initializer(self.kernel) self.bias_init = tf.constant_initializer(self.bias) self.padding = 'same' xi_init = tf.random_uniform_initializer(minval=0.0, maxval=1.0) self.xi = MixtureWeight(num_templates=self.num_templates, initializer=xi_init) def _create_default_w_conv(self): """Creates an instance of WeightedConv2D with dedault parameters.""" return wl.WeightedConv2D( filters=self.filters, activation=self.activation, padding=self.padding, kernel_size=self.kernel_size, num_templates=self.num_templates, kernel_initializer=self.kernel_init, bias_initializer=self.bias_init) def _get_default_inputs(self, in_shape): """returns default layer inputs.""" layer_inputs = tf.Variable(np.random.rand(*in_shape), dtype=tf.float32) return [layer_inputs, self.xi(None)[0]] def test_output_shape(self): """checks if the shape of the output tensor is correct.""" w_conv = self._create_default_w_conv() input_shape = (32, 16, 16, self.input_channel) inputs = self._get_default_inputs(input_shape) output = w_conv(inputs) expected_shape = (32, 16, 16, self.filters) self.assertAllEqual(expected_shape, output.shape) def test_output_values(self): """checks if the output tensor is computed correctly.""" w_conv = self._create_default_w_conv() w_conv.activation = None input_shape = (32, 16, 16, self.input_channel) inputs = self._get_default_inputs(input_shape) w_output = w_conv(inputs) # the output of weighted convolution should be same as linear combination of # outputs of regular convolution with template weights in case when no # activation is used. expected_output = tf.zeros_like(w_output) conv = tf.keras.layers.Conv2D(filters=self.filters, activation=None, padding=self.padding, kernel_size=self.kernel_size) conv.build(input_shape) for t in range(self.num_templates): conv.kernel = self.kernel[t] conv.bias = self.bias[t] conv_out = conv(inputs[0]) expected_output += inputs[1][t]*conv_out self.assertAllClose(expected_output, w_output, rtol=1e-05) class WeightedDepthwiseConv2DTest(tf.test.TestCase): """Weighted depthwise convolution test class.""" def setUp(self): """Sets default parameters.""" super(WeightedDepthwiseConv2DTest, self).setUp() self.kernel_size = 3 self.activation = 'relu' self.depth_multiplier = 2 self.input_channel = 20 self.num_templates = 10 self.kernel = np.random.rand(self.num_templates, self.kernel_size, self.kernel_size, self.input_channel, self.depth_multiplier).astype(np.float32) self.bias = np.random.rand( self.num_templates, self.input_channel * self.depth_multiplier).astype(np.float32) self.kernel_init = tf.constant_initializer(self.kernel) self.bias_init = tf.constant_initializer(self.bias) self.padding = 'same' self.xi_initializer = tf.random_uniform_initializer(minval=0.0, maxval=1.0) self.xi = MixtureWeight(num_templates=self.num_templates, initializer=self.xi_initializer) def _create_default_depth_conv(self): """Creates a WeightedDepthwiseConv2D instance with default parameters.""" return wl.WeightedDepthwiseConv2D( depth_multiplier=self.depth_multiplier, activation=self.activation, padding=self.padding, kernel_size=self.kernel_size, num_templates=self.num_templates, bias_initializer=self.bias_init, depthwise_initializer=self.kernel_init) def _get_default_inputs(self, in_shape): """returns default layer inputs.""" layer_inputs = tf.Variable(np.random.rand(*in_shape), dtype=tf.float32) return [layer_inputs, self.xi(None)[0]] def test_output_shape(self): """checks if the shape of the output tensor is correct.""" w_d_conv = self._create_default_depth_conv() input_shape = (32, 64, 64, self.input_channel) inputs = self._get_default_inputs(input_shape) output = w_d_conv(inputs) expected_shape = (32, 64, 64, self.input_channel*self.depth_multiplier) self.assertAllEqual(expected_shape, output.shape) def test_output_value(self): """checks if the value of the output tensor is correct.""" w_d_conv = self._create_default_depth_conv() w_d_conv.activation = None input_shape = (32, 16, 16, self.input_channel) inputs = self._get_default_inputs(input_shape) w_d_output = w_d_conv(inputs) # the output of weighted convolution should be same as linear combination of # outputs of regular convolution with template weights in case when no # activation is used. expected_output = tf.zeros_like(w_d_output) conv = tf.keras.layers.DepthwiseConv2D( depth_multiplier=self.depth_multiplier, activation=None, padding=self.padding, kernel_size=self.kernel_size) conv.build(input_shape) for t in range(self.num_templates): conv.depthwise_kernel = self.kernel[t] conv.bias = self.bias[t] conv_out = conv(inputs[0]) expected_output += inputs[1][t]*conv_out self.assertAllClose(expected_output, w_d_output, rtol=1e-05) class WeightedBatchNormalizationTest(tf.test.TestCase): """"WeightedBatchNormalizationSeparate test class.""" def setUp(self): """Sets default parameters.""" self.num_templates = 10 self.input_channels = 40 self.gamma_template = np.random.rand( self.num_templates, self.input_channels).astype(np.float32) self.beta_template = np.random.rand( self.num_templates, self.input_channels).astype(np.float32) self.beta_init = tf.constant_initializer(self.beta_template) self.gamma_init = tf.constant_initializer(self.gamma_template) self.xi_initializer = tf.random_uniform_initializer(minval=0.0, maxval=1.0) self.xi = MixtureWeight(num_templates=self.num_templates, initializer=self.xi_initializer) def test_output_shape(self): """checks if the output shape is same as input shape.""" input_shape = (256, 16, 16, self.input_channels) inputs = tf.random.normal(input_shape) bn = wl.WeightedBatchNormalizationSeparate( num_templates=self.num_templates, gamma_initializer=self.gamma_init, beta_initializer=self.beta_init) outputs = bn([inputs, self.xi(None)[0]], training=True) self.assertAllEqual(input_shape, outputs.shape) def test_output_moments(self): """checks if the output moments match to the mixture of moments.""" input_shape = (256, 16, 16, self.input_channels) inputs = tf.random.normal(input_shape, mean=2.5, stddev=8.0) bn = wl.WeightedBatchNormalizationSeparate( num_templates=self.num_templates, gamma_initializer=self.gamma_init, beta_initializer=self.beta_init) outputs = bn([inputs, self.xi(None)[0]], training=True) reduction_axes = range(len(input_shape) - 1) mean, var = tf.nn.moments(outputs, reduction_axes) reshaped_mix_w = tf.reshape(self.xi(None), [self.num_templates, 1]) mix_gamma = tf.reduce_sum(reshaped_mix_w * self.gamma_template, axis=0) mix_beta = tf.reduce_sum(reshaped_mix_w * self.beta_template, axis=0) self.assertAllClose(mean, mix_beta, rtol=1e-03) self.assertAllClose(tf.math.sqrt(var), mix_gamma, rtol=1e-03) if __name__ == '__main__': unittest.main(argv=['first-arg-is-ignored'], exit=False)
[ "tensorflow.random.normal", "lib.weighted_layers_v2.WeightedBatchNormalizationSeparate", "lib.weighted_layers_v2.WeightedDepthwiseConv2D", "numpy.random.rand", "tensorflow.keras.layers.Conv2D", "tensorflow.reduce_sum", "tensorflow.nn.moments", "tensorflow.math.sqrt", "tensorflow.zeros_like", "lib.weighted_layers_v2.WeightedConv2D", "tensorflow.constant_initializer", "unittest.main", "lib.weighted_resblock.MixtureWeight", "tensorflow.keras.layers.DepthwiseConv2D", "tensorflow.random_uniform_initializer" ]
[((8216, 8272), 'unittest.main', 'unittest.main', ([], {'argv': "['first-arg-is-ignored']", 'exit': '(False)'}), "(argv=['first-arg-is-ignored'], exit=False)\n", (8229, 8272), False, 'import unittest\n'), ((472, 581), 'numpy.random.rand', 'np.random.rand', (['self.num_templates', 'self.kernel_size', 'self.kernel_size', 'self.input_channel', 'self.filters'], {}), '(self.num_templates, self.kernel_size, self.kernel_size, self\n .input_channel, self.filters)\n', (486, 581), True, 'import numpy as np\n'), ((659, 707), 'numpy.random.rand', 'np.random.rand', (['self.num_templates', 'self.filters'], {}), '(self.num_templates, self.filters)\n', (673, 707), True, 'import numpy as np\n'), ((731, 767), 'tensorflow.constant_initializer', 'tf.constant_initializer', (['self.kernel'], {}), '(self.kernel)\n', (754, 767), True, 'import tensorflow as tf\n'), ((789, 823), 'tensorflow.constant_initializer', 'tf.constant_initializer', (['self.bias'], {}), '(self.bias)\n', (812, 823), True, 'import tensorflow as tf\n'), ((864, 917), 'tensorflow.random_uniform_initializer', 'tf.random_uniform_initializer', ([], {'minval': '(0.0)', 'maxval': '(1.0)'}), '(minval=0.0, maxval=1.0)\n', (893, 917), True, 'import tensorflow as tf\n'), ((932, 1000), 'lib.weighted_resblock.MixtureWeight', 'MixtureWeight', ([], {'num_templates': 'self.num_templates', 'initializer': 'xi_init'}), '(num_templates=self.num_templates, initializer=xi_init)\n', (945, 1000), False, 'from lib.weighted_resblock import MixtureWeight\n'), ((1150, 1388), 'lib.weighted_layers_v2.WeightedConv2D', 'wl.WeightedConv2D', ([], {'filters': 'self.filters', 'activation': 'self.activation', 'padding': 'self.padding', 'kernel_size': 'self.kernel_size', 'num_templates': 'self.num_templates', 'kernel_initializer': 'self.kernel_init', 'bias_initializer': 'self.bias_init'}), '(filters=self.filters, activation=self.activation, padding\n =self.padding, kernel_size=self.kernel_size, num_templates=self.\n num_templates, kernel_initializer=self.kernel_init, bias_initializer=\n self.bias_init)\n', (1167, 1388), True, 'import lib.weighted_layers_v2 as wl\n'), ((2478, 2501), 'tensorflow.zeros_like', 'tf.zeros_like', (['w_output'], {}), '(w_output)\n', (2491, 2501), True, 'import tensorflow as tf\n'), ((2513, 2631), 'tensorflow.keras.layers.Conv2D', 'tf.keras.layers.Conv2D', ([], {'filters': 'self.filters', 'activation': 'None', 'padding': 'self.padding', 'kernel_size': 'self.kernel_size'}), '(filters=self.filters, activation=None, padding=self.\n padding, kernel_size=self.kernel_size)\n', (2535, 2631), True, 'import tensorflow as tf\n'), ((3698, 3734), 'tensorflow.constant_initializer', 'tf.constant_initializer', (['self.kernel'], {}), '(self.kernel)\n', (3721, 3734), True, 'import tensorflow as tf\n'), ((3756, 3790), 'tensorflow.constant_initializer', 'tf.constant_initializer', (['self.bias'], {}), '(self.bias)\n', (3779, 3790), True, 'import tensorflow as tf\n'), ((3843, 3896), 'tensorflow.random_uniform_initializer', 'tf.random_uniform_initializer', ([], {'minval': '(0.0)', 'maxval': '(1.0)'}), '(minval=0.0, maxval=1.0)\n', (3872, 3896), True, 'import tensorflow as tf\n'), ((3911, 3996), 'lib.weighted_resblock.MixtureWeight', 'MixtureWeight', ([], {'num_templates': 'self.num_templates', 'initializer': 'self.xi_initializer'}), '(num_templates=self.num_templates, initializer=self.xi_initializer\n )\n', (3924, 3996), False, 'from lib.weighted_resblock import MixtureWeight\n'), ((4150, 4417), 'lib.weighted_layers_v2.WeightedDepthwiseConv2D', 'wl.WeightedDepthwiseConv2D', ([], {'depth_multiplier': 'self.depth_multiplier', 'activation': 'self.activation', 'padding': 'self.padding', 'kernel_size': 'self.kernel_size', 'num_templates': 'self.num_templates', 'bias_initializer': 'self.bias_init', 'depthwise_initializer': 'self.kernel_init'}), '(depth_multiplier=self.depth_multiplier,\n activation=self.activation, padding=self.padding, kernel_size=self.\n kernel_size, num_templates=self.num_templates, bias_initializer=self.\n bias_init, depthwise_initializer=self.kernel_init)\n', (4176, 4417), True, 'import lib.weighted_layers_v2 as wl\n'), ((5563, 5588), 'tensorflow.zeros_like', 'tf.zeros_like', (['w_d_output'], {}), '(w_d_output)\n', (5576, 5588), True, 'import tensorflow as tf\n'), ((5600, 5744), 'tensorflow.keras.layers.DepthwiseConv2D', 'tf.keras.layers.DepthwiseConv2D', ([], {'depth_multiplier': 'self.depth_multiplier', 'activation': 'None', 'padding': 'self.padding', 'kernel_size': 'self.kernel_size'}), '(depth_multiplier=self.depth_multiplier,\n activation=None, padding=self.padding, kernel_size=self.kernel_size)\n', (5631, 5744), True, 'import tensorflow as tf\n'), ((6511, 6554), 'tensorflow.constant_initializer', 'tf.constant_initializer', (['self.beta_template'], {}), '(self.beta_template)\n', (6534, 6554), True, 'import tensorflow as tf\n'), ((6577, 6621), 'tensorflow.constant_initializer', 'tf.constant_initializer', (['self.gamma_template'], {}), '(self.gamma_template)\n', (6600, 6621), True, 'import tensorflow as tf\n'), ((6648, 6701), 'tensorflow.random_uniform_initializer', 'tf.random_uniform_initializer', ([], {'minval': '(0.0)', 'maxval': '(1.0)'}), '(minval=0.0, maxval=1.0)\n', (6677, 6701), True, 'import tensorflow as tf\n'), ((6716, 6801), 'lib.weighted_resblock.MixtureWeight', 'MixtureWeight', ([], {'num_templates': 'self.num_templates', 'initializer': 'self.xi_initializer'}), '(num_templates=self.num_templates, initializer=self.xi_initializer\n )\n', (6729, 6801), False, 'from lib.weighted_resblock import MixtureWeight\n'), ((6984, 7013), 'tensorflow.random.normal', 'tf.random.normal', (['input_shape'], {}), '(input_shape)\n', (7000, 7013), True, 'import tensorflow as tf\n'), ((7023, 7166), 'lib.weighted_layers_v2.WeightedBatchNormalizationSeparate', 'wl.WeightedBatchNormalizationSeparate', ([], {'num_templates': 'self.num_templates', 'gamma_initializer': 'self.gamma_init', 'beta_initializer': 'self.beta_init'}), '(num_templates=self.num_templates,\n gamma_initializer=self.gamma_init, beta_initializer=self.beta_init)\n', (7060, 7166), True, 'import lib.weighted_layers_v2 as wl\n'), ((7464, 7515), 'tensorflow.random.normal', 'tf.random.normal', (['input_shape'], {'mean': '(2.5)', 'stddev': '(8.0)'}), '(input_shape, mean=2.5, stddev=8.0)\n', (7480, 7515), True, 'import tensorflow as tf\n'), ((7525, 7668), 'lib.weighted_layers_v2.WeightedBatchNormalizationSeparate', 'wl.WeightedBatchNormalizationSeparate', ([], {'num_templates': 'self.num_templates', 'gamma_initializer': 'self.gamma_init', 'beta_initializer': 'self.beta_init'}), '(num_templates=self.num_templates,\n gamma_initializer=self.gamma_init, beta_initializer=self.beta_init)\n', (7562, 7668), True, 'import lib.weighted_layers_v2 as wl\n'), ((7807, 7845), 'tensorflow.nn.moments', 'tf.nn.moments', (['outputs', 'reduction_axes'], {}), '(outputs, reduction_axes)\n', (7820, 7845), True, 'import tensorflow as tf\n'), ((7934, 7993), 'tensorflow.reduce_sum', 'tf.reduce_sum', (['(reshaped_mix_w * self.gamma_template)'], {'axis': '(0)'}), '(reshaped_mix_w * self.gamma_template, axis=0)\n', (7947, 7993), True, 'import tensorflow as tf\n'), ((8009, 8067), 'tensorflow.reduce_sum', 'tf.reduce_sum', (['(reshaped_mix_w * self.beta_template)'], {'axis': '(0)'}), '(reshaped_mix_w * self.beta_template, axis=0)\n', (8022, 8067), True, 'import tensorflow as tf\n'), ((1514, 1539), 'numpy.random.rand', 'np.random.rand', (['*in_shape'], {}), '(*in_shape)\n', (1528, 1539), True, 'import numpy as np\n'), ((4552, 4577), 'numpy.random.rand', 'np.random.rand', (['*in_shape'], {}), '(*in_shape)\n', (4566, 4577), True, 'import numpy as np\n'), ((8144, 8161), 'tensorflow.math.sqrt', 'tf.math.sqrt', (['var'], {}), '(var)\n', (8156, 8161), True, 'import tensorflow as tf\n'), ((3344, 3462), 'numpy.random.rand', 'np.random.rand', (['self.num_templates', 'self.kernel_size', 'self.kernel_size', 'self.input_channel', 'self.depth_multiplier'], {}), '(self.num_templates, self.kernel_size, self.kernel_size, self\n .input_channel, self.depth_multiplier)\n', (3358, 3462), True, 'import numpy as np\n'), ((3559, 3637), 'numpy.random.rand', 'np.random.rand', (['self.num_templates', '(self.input_channel * self.depth_multiplier)'], {}), '(self.num_templates, self.input_channel * self.depth_multiplier)\n', (3573, 3637), True, 'import numpy as np\n'), ((6297, 6352), 'numpy.random.rand', 'np.random.rand', (['self.num_templates', 'self.input_channels'], {}), '(self.num_templates, self.input_channels)\n', (6311, 6352), True, 'import numpy as np\n'), ((6406, 6461), 'numpy.random.rand', 'np.random.rand', (['self.num_templates', 'self.input_channels'], {}), '(self.num_templates, self.input_channels)\n', (6420, 6461), True, 'import numpy as np\n')]
""" http://yutori-datascience.hatenablog.com/entry/2014/12/10/123157 """ from numba import cuda import numpy as np from numba import double from numba.decorators import jit from numba import guvectorize import time import math @jit def pairwise_numba(X,D): M,N=X.shape[0],X.shape[1] for i in range(M): for j in range(M): d=0.0 for k in range(N): tmp=X[i,k]-X[j,k] d+=tmp *tmp D[i,j]=np.sqrt(d) @jit('void(f8[:,:],f8[:,:])') def pairwise_numba_with_type(X,D): M,N=X.shape[0],X.shape[1] for i in range(M): for j in range(M): d=0.0 for k in range(N): tmp=X[i,k]-X[j,k] d+=tmp *tmp D[i,j]=np.sqrt(d) @guvectorize(['void(f8[:, :], f8[:, :])'], '(x, y)->(x, x)') def pairwise_vectorize(X, D): M = X.shape[0] N = X.shape[1] for i in range(M): for j in range(M): d = 0.0 for k in range(N): tmp = X[i, k] - X[j, k] d += tmp * tmp D[i, j] = np.sqrt(d) def pairwise_python(X,D): M,N=X.shape[0],X.shape[1] for i in range(M): for j in range(M): d=0.0 for k in range(N): tmp=X[i,k]-X[j,k] d+=tmp *tmp D[i,j]=np.sqrt(d) @cuda.jit('void(f8[:, :], f8[:, :])') def pairwise_numba_cuda1(X, D): M = X.shape[0] N = X.shape[1] i, j = cuda.grid(2) if i < M and j < M: d = 0.0 for k in range(N): tmp = X[i, k] - X[j, k] d += tmp * tmp D[i, j] = math.sqrt(d) def measure_time(func,X,D): start=time.time() func(X,D) end=time.time() print("elapsed time",end-start) def main(): griddim = (100, 100) blockdim =(16, 16) SIZE=5000 X=np.random.random((SIZE,3)) D=np.empty((SIZE,SIZE)) measure_time(pairwise_python,X,D) measure_time(pairwise_numba,X,D) measure_time(pairwise_numba_with_type,X,D) measure_time(pairwise_vectorize,X, D) start=time.time() pairwise_numba_cuda1[griddim, blockdim](X, D) end=time.time() print("elapsed gpu=",end-start) if __name__ == '__main__': main()
[ "numpy.sqrt", "numpy.random.random", "numba.decorators.jit", "numba.cuda.grid", "math.sqrt", "numba.cuda.jit", "numba.guvectorize", "numpy.empty", "time.time" ]
[((422, 450), 'numba.decorators.jit', 'jit', (['"""void(f8[:,:],f8[:,:])"""'], {}), "('void(f8[:,:],f8[:,:])')\n", (425, 450), False, 'from numba.decorators import jit\n'), ((647, 706), 'numba.guvectorize', 'guvectorize', (["['void(f8[:, :], f8[:, :])']", '"""(x, y)->(x, x)"""'], {}), "(['void(f8[:, :], f8[:, :])'], '(x, y)->(x, x)')\n", (658, 706), False, 'from numba import guvectorize\n'), ((1167, 1203), 'numba.cuda.jit', 'cuda.jit', (['"""void(f8[:, :], f8[:, :])"""'], {}), "('void(f8[:, :], f8[:, :])')\n", (1175, 1203), False, 'from numba import cuda\n'), ((1290, 1302), 'numba.cuda.grid', 'cuda.grid', (['(2)'], {}), '(2)\n', (1299, 1302), False, 'from numba import cuda\n'), ((1518, 1529), 'time.time', 'time.time', ([], {}), '()\n', (1527, 1529), False, 'import time\n'), ((1546, 1557), 'time.time', 'time.time', ([], {}), '()\n', (1555, 1557), False, 'import time\n'), ((1660, 1687), 'numpy.random.random', 'np.random.random', (['(SIZE, 3)'], {}), '((SIZE, 3))\n', (1676, 1687), True, 'import numpy as np\n'), ((1690, 1712), 'numpy.empty', 'np.empty', (['(SIZE, SIZE)'], {}), '((SIZE, SIZE))\n', (1698, 1712), True, 'import numpy as np\n'), ((1873, 1884), 'time.time', 'time.time', ([], {}), '()\n', (1882, 1884), False, 'import time\n'), ((1937, 1948), 'time.time', 'time.time', ([], {}), '()\n', (1946, 1948), False, 'import time\n'), ((1469, 1481), 'math.sqrt', 'math.sqrt', (['d'], {}), '(d)\n', (1478, 1481), False, 'import math\n'), ((409, 419), 'numpy.sqrt', 'np.sqrt', (['d'], {}), '(d)\n', (416, 419), True, 'import numpy as np\n'), ((634, 644), 'numpy.sqrt', 'np.sqrt', (['d'], {}), '(d)\n', (641, 644), True, 'import numpy as np\n'), ((969, 979), 'numpy.sqrt', 'np.sqrt', (['d'], {}), '(d)\n', (976, 979), True, 'import numpy as np\n'), ((1154, 1164), 'numpy.sqrt', 'np.sqrt', (['d'], {}), '(d)\n', (1161, 1164), True, 'import numpy as np\n')]
# Copyright 2020 (c) Aalto University - All Rights Reserved # ELEC-E8125 - Reinforcement Learning Course # AALTO UNIVERSITY # ############################################################# import numpy as np from time import sleep from sailing import SailingGridworld epsilon = 10e-4 # TODO: Use this criteria for Task 3 # Set up the environment env = SailingGridworld(rock_penalty=-2) value_est = np.zeros((env.w, env.h)) env.draw_values(value_est) if __name__ == "__main__": # Reset the environment state = env.reset() # Compute state values and the policy # TODO: Compute the value function and policy (Tasks 1, 2 and 3) value_est, policy = np.zeros((env.w, env.h)), np.zeros((env.w, env.h)) # 15x10 grid gamma = 0.9 # discount factor value number_iterations = 100 actions = [0,1,2,3] value_est_history = [] policy_history = [] for i in range(number_iterations): print("iteration step: ", i) env.clear_text() # remove previously drawn values value_est_copy = value_est.copy() # copy to make sure that values are only taken from current state. In next iteration the upadted value_est will be retrieved policy_copy = policy.copy() value_est_history.append(value_est_copy) policy_history.append(policy_copy) for x in range(env.w): # loop through all states/cell in the environment for y in range(env.h): state_values_of_actions = [] # keep track of calculated state values of each action # calculate new state value for every action and add to list above #for transitions in env.transitions[x,y]: # the four different actions are 1) .LEFT 2) .DOWN 3) .RIGHT 4) .UP - each transition is a list with three tuples (state, reward, done, probability) for action in actions: transitions = env.transitions[x,y,action] state_value_of_action = 0 for transition in transitions: state_next = transition[0] reward = transition[1] done = transition[2] probability = transition[3] if (state_next == None): state_value_of_action += 0 else: state_value_of_action += probability * (reward + gamma * value_est_copy[state_next]) state_values_of_actions.append(state_value_of_action) # update value_est and policy value_est[x][y] = np.max(state_values_of_actions) policy[x][y] = np.argmax(state_values_of_actions) max_diff_val = np.max(abs(abs(value_est) - abs(value_est_copy))) if (max_diff_val < epsilon): print("Converged! Value state converged in iteration: ", i+1) break max_diff_policy = np.max(abs(policy_copy - policy)) if (max_diff_policy < epsilon): print("Converged! Policy converged in iteration: ", i+1) #env.draw_values(value_est) # draw the new calculated values after every iteration #env.draw_actions(policy) #env.render() # Just for my understanding how the data is stored/provided #print(env.transitions[3,3][0]) # gives us one of the four actions #print(env.transitions[3,3][0][0]) # gives us one of the three tuples #print(env.transitions[3, 3][0][0].state) # access entries of tuple #print(env.transitions[3, 3][0][0][3]) #print(env.transitions[6,3]) # Show the values and the policy env.draw_values(value_est) env.draw_actions(policy) env.render() sleep(1) # Save the state values and the policy fnames = "values.npy", "policy.npy" np.save(fnames[0], value_est) np.save(fnames[1], policy) print("Saved state values and policy to", *fnames) # Run a single episode # TODO: Run multiple episodes and compute the discounted returns (Task 4) number_episodes = 1000 discounted_return_history = [] for i in range(number_episodes): done = False counter_discount = 0 discounted_return = 0 while not done: # Select a random action # TODO: Use the policy to take the optimal action (Task 2) action = policy[state] # Step the environment state, reward, done, _ = env.step(action) # calculate discounted reward discounted_return += reward * gamma**counter_discount counter_discount += 1 # Render and sleep #env.render() #sleep(0.5) discounted_return_history.append(discounted_return) state = env.reset() print("discounted return (initial state) - mean: ", np.mean(discounted_return_history)) print("discounted return (initial state) - std: ", np.std(discounted_return_history))
[ "numpy.mean", "numpy.argmax", "time.sleep", "sailing.SailingGridworld", "numpy.max", "numpy.zeros", "numpy.std", "numpy.save" ]
[((356, 389), 'sailing.SailingGridworld', 'SailingGridworld', ([], {'rock_penalty': '(-2)'}), '(rock_penalty=-2)\n', (372, 389), False, 'from sailing import SailingGridworld\n'), ((402, 426), 'numpy.zeros', 'np.zeros', (['(env.w, env.h)'], {}), '((env.w, env.h))\n', (410, 426), True, 'import numpy as np\n'), ((3714, 3722), 'time.sleep', 'sleep', (['(1)'], {}), '(1)\n', (3719, 3722), False, 'from time import sleep\n'), ((3811, 3840), 'numpy.save', 'np.save', (['fnames[0]', 'value_est'], {}), '(fnames[0], value_est)\n', (3818, 3840), True, 'import numpy as np\n'), ((3845, 3871), 'numpy.save', 'np.save', (['fnames[1]', 'policy'], {}), '(fnames[1], policy)\n', (3852, 3871), True, 'import numpy as np\n'), ((671, 695), 'numpy.zeros', 'np.zeros', (['(env.w, env.h)'], {}), '((env.w, env.h))\n', (679, 695), True, 'import numpy as np\n'), ((697, 721), 'numpy.zeros', 'np.zeros', (['(env.w, env.h)'], {}), '((env.w, env.h))\n', (705, 721), True, 'import numpy as np\n'), ((4844, 4878), 'numpy.mean', 'np.mean', (['discounted_return_history'], {}), '(discounted_return_history)\n', (4851, 4878), True, 'import numpy as np\n'), ((4935, 4968), 'numpy.std', 'np.std', (['discounted_return_history'], {}), '(discounted_return_history)\n', (4941, 4968), True, 'import numpy as np\n'), ((2614, 2645), 'numpy.max', 'np.max', (['state_values_of_actions'], {}), '(state_values_of_actions)\n', (2620, 2645), True, 'import numpy as np\n'), ((2677, 2711), 'numpy.argmax', 'np.argmax', (['state_values_of_actions'], {}), '(state_values_of_actions)\n', (2686, 2711), True, 'import numpy as np\n')]
""" Includes two functions which use shortest path policies 1) run_sss_curriculum - trains a PyMARL agent using experiences gathered while following an epsilon greedy shortest path policy. 2) mean_sss_time - returns the mean time taken to complete a map while following an epsilon greedy shortest path policy. """ import datetime import os from os.path import dirname, abspath import time #from sympy import EX import yaml import torch as th from types import SimpleNamespace as SN from utils.logging import Logger, log_mac_weights import numpy as np import random from logging import getLogger, INFO from rapport_topological.navigation import construct_shortest_path_policy from rapport_models.markov.state import State from learners import REGISTRY as le_REGISTRY from runners import REGISTRY as r_REGISTRY from controllers import REGISTRY as mac_REGISTRY from components.episode_buffer import ReplayBuffer from components.transforms import OneHot from src.components.episode_buffer import EpisodeBatch from runners import AsyncEpisodeRunner from main import recursive_dict_update from run import args_sanity_check from torch.utils.tensorboard import SummaryWriter def load_configs(): """ Load configuration dictionaries from default locations """ # Get the defaults from default.yaml with open(os.path.join(os.path.dirname(__file__), "config", "default.yaml"), "r") as f: try: config_dict = yaml.load(f, Loader=yaml.FullLoader) except yaml.YAMLError as exc: assert False, "default.yaml error: {}".format(exc) # Get qmix params from qmix.yaml with open(os.path.join(os.path.dirname(__file__), "config", "algs", "qmix.yaml"), "r") as f: try: alg_dict = yaml.load(f, Loader=yaml.FullLoader) except yaml.YAMLError as exc: assert False, "default.yaml error: {}".format(exc) # Get camas params from camas.yaml with open(os.path.join(os.path.dirname(__file__), "config", "envs", "camas.yaml"), "r") as f: try: env_dict = yaml.load(f, Loader=yaml.FullLoader) except yaml.YAMLError as exc: assert False, "default.yaml error: {}".format(exc) config_dict = recursive_dict_update(config_dict, alg_dict) config_dict = recursive_dict_update(config_dict, env_dict) return config_dict class SSS_Runner(AsyncEpisodeRunner): """ PyMARL Episode Runner for gathering shortest path based experience episodes """ debug = False def __init__(self, args, logger, epsilon_mean=0.15, epsilon_var=0.1): super().__init__(args, logger) self.epsilon_mean = epsilon_mean self.epsilon_var = epsilon_var self.epsilon = self._draw_epsilon() self.env.reset() self.policies = {agent: construct_shortest_path_policy(self.env._tm, self.env._goal_states[agent]) for agent in self.env.agents} def run(self) -> EpisodeBatch: """ Returns an transistions for one episode for an agent acting in an epsilon greedy fashion while following its shortest path. """ if self.debug: print('*** reset environment ***') self.reset() self.epsilon = self._draw_epsilon() terminated = False episode_return = 0 #self.mac.init_hidden(batch_size=self.batch_size) # NOTE not sure what this is obs, reward, done, info = self.env.last() k = 0 while not terminated: k += 1 pre_transition_data = self.env.get_pretran_data() if self.debug: print(f'-- step {k} \nState: {self.env.state()}, Agent: {self.env.agent_selection}, Time: {self.env.sim_time()}') print(f"Pre transition data: {pre_transition_data}") self.batch.update(pre_transition_data, ts=self.t) #actions = self.mac.select_actions(self.batch, t_ep=self.t, t_env=self.t_env, test_mode=False) #print(f'actions {actions}, type {type(actions)}, size {actions.size()}') #print('my selector: ', self.select_actions()) actions = self.select_actions() action = actions[0][self.env.agent_idx()].item() if action == 4: self.env.step(None) # terminated action to update env correctly else: self.env.step(action) obs, reward, done, env_info = self.env.last() if done: if self.debug: print(f'{self.env.agent_selection} done!') if len(self.env.agents) == 1: terminated = True if self.debug: print(f'Actions: {actions}\nReward {reward}, Time {self.env.sim_time()}') episode_return += reward post_transition_data = { "actions": actions, "reward": [(reward,)], "terminated": [[(terminated),]], # NOTE used to be: [(terminated != env_info.get("episode_limit", False),)] # env info here is info from step() } self.batch.update(post_transition_data, ts=self.t) self.t += 1 if self.t == self.episode_limit: terminated = True pre_transition_data = self.env.get_pretran_data() self.batch.update(pre_transition_data, ts=self.t) actions = self.select_actions() self.batch.update({"actions": actions}, ts=self.t) self.t_env += self.t return self.batch def select_actions(self) -> th.Tensor: """ Choose the action to stay on the shorest path or a random action depending on epsilon test. """ acts = th.ones(1, self.args.n_agents, dtype=int)*4 # choose action for agent acting agent = self.env.agent_selection agent_loc = self.env._agent_location[agent] agent_idx = self.env.agent_name_mapping[self.env.agent_selection] if self.debug: print(f'choosing action for {agent}, loc: {agent_loc}, idx: {agent_idx}') if random.uniform(0, 1) > self.epsilon: # exploit camas_act = self.policies[agent]._state_action_map[State({'loc': agent_loc})] if self.debug: print(f'exploiting, camas act {camas_act}') if camas_act is None: action = 4 else: action = self.env.to_gym_action(agent_loc, camas_act) else: # explore avail_actions = self.batch["avail_actions"][:, self.t] action = random.choice([i for i, x in enumerate(avail_actions[0, agent_idx]) if x==1]) if self.debug: print(f'random, action {action}, avail agent acts {avail_actions[0, agent_idx]}') acts[0, agent_idx] = action if self.debug: print(f'acts {acts}') return acts def _draw_epsilon(self): epsilon = np.random.normal(self.epsilon_mean, self.epsilon_var) if epsilon < 0: epsilon = 0 return epsilon def episode_makespan(self): return self.env.sim_time() def run_sss_curriculum(args, logger, num_episodes, cycle_after, max_train_steps, test_makespan_cutoff, test_episodes=20, epsilon_mean=0.25, epsilon_var=0.15, log_freq=10000, agent_weight_log_freq=20000): """Trains a PyMARL method using shortest path experiences and saves the result to the results/model directory Args: num_episodes (int): number of experience episodes to gather max_train_steps (int): number of steps to train the model for test_episodes (int): number of episodes to evaluate the model on once training is complete """ def _gather_data(_num_episodes, _buffer, _sss_runner, _logger, _iteration=0): _start_time = time.time() _logger.console_logger.info(f'...gathering {_num_episodes} of data, iteration: {_iteration}...') ep_rewards = np.zeros(_num_episodes) ep_epsilons = np.zeros(_num_episodes) ep_times = np.zeros(_num_episodes) ep_step_count = np.zeros(_num_episodes) for k in range(_num_episodes): episode_batch = _sss_runner.run() _buffer.insert_episode_batch(episode_batch) ep_rewards[k] = th.sum(episode_batch["reward"]) ep_epsilons[k] = _sss_runner.epsilon ep_times[k] = _sss_runner.episode_makespan() ep_step_count[k] = _sss_runner.t if k % log_freq == 0: _logger.console_logger.info(f'...{k} episodes complete, mean time {np.mean(ep_times)} ({np.std(ep_times)}), mean step count {np.mean(ep_step_count)} ({np.std(ep_step_count)})...') _logger.console_logger.info(f'...mean rewards {np.mean(ep_rewards)} ({np.std(ep_rewards)}), mean epsilon {np.mean(ep_epsilons)} ({np.std(ep_epsilons)})') save_curriculum_data([ep_rewards, ep_epsilons, ep_times, ep_step_count], _iteration) data_gathering_time = time.time() - _start_time _logger.console_logger.info(f'...time to gather {_num_episodes} episodes: {datetime.timedelta(seconds=data_gathering_time)}, mean time {np.mean(ep_times)} ({np.std(ep_times)}), mean step count {np.mean(ep_step_count)} ({np.std(ep_step_count)})...') _logger.console_logger.info(f'...mean rewards {np.mean(ep_rewards)} ({np.std(ep_rewards)}), mean epsilon {np.mean(ep_epsilons)} ({np.std(ep_epsilons)})') def _test_env(_runner, _test_episdoes): """ Test environment using `_runner` Returns: tt: test sim times sc: test step counts gc: test reached goal %'s """ tt, sc, gc = [], [], [] for _ in range(_test_episdoes): _runner.run(test_mode=True) tt.append(_runner.env.sim_time()) sc.append(_runner.env.step_count()) gc.append(_runner.env.agents_at_goal()) return tt, sc, gc def _save_model(_args, _logger, _learner, label): _logger.console_logger.info('...saving model...') _save_path = os.path.join("curriculum", _args.unique_token, str(label)) os.makedirs(_save_path, exist_ok=True) _logger.console_logger.info("Saving models to {}".format(_save_path)) _learner.save_models(_save_path) print(' -- Env args', args.env_args) start_time = time.time() tb_logs_direc = os.path.join(dirname(dirname(abspath(__file__))), "results", "curriculum_tb") tb_exp_direc = os.path.join(tb_logs_direc, "{}").format(args.unique_token) logger.setup_tb(tb_exp_direc) args.log_interval = log_freq args.learner_log_interval = log_freq main_runner = r_REGISTRY[args.runner](args=args, logger=logger) sss_runner = SSS_Runner(args, logger, epsilon_mean=epsilon_mean, epsilon_var=epsilon_var) # Set up schemes and groups env_info = sss_runner.get_env_info() args.n_agents = env_info["n_agents"] args.n_actions = env_info["n_actions"] args.state_shape = env_info["state_shape"] scheme = { "state": {"vshape": env_info["state_shape"]}, "obs": {"vshape": env_info["obs_shape"], "group": "agents"}, "actions": {"vshape": (1,), "group": "agents", "dtype": th.long}, "avail_actions": {"vshape": (env_info["n_actions"],), "group": "agents", "dtype": th.int}, "reward": {"vshape": (1,)}, "terminated": {"vshape": (1,), "dtype": th.uint8}, } groups = { "agents": args.n_agents } preprocess = { "actions": ("actions_onehot", [OneHot(out_dim=args.n_actions)]) } buffer = ReplayBuffer(scheme, groups, args.buffer_size, env_info["episode_limit"] + 1, preprocess=preprocess, device="cpu" if args.buffer_cpu_only else args.device) # Setup multiagent controller here mac = mac_REGISTRY[args.mac](buffer.scheme, groups, args) # Give runners the scheme main_runner.setup(scheme=scheme, groups=groups, preprocess=preprocess, mac=mac) sss_runner.setup(scheme=scheme, groups=groups, preprocess=preprocess, mac=mac) # Learner learner = le_REGISTRY[args.learner](mac, buffer.scheme, logger, args) if args.use_cuda: learner.cuda() ## --- Save config --- config_save_path = os.path.join("curriculum", args.unique_token) os.makedirs(config_save_path, exist_ok=True) with open(os.path.join(config_save_path, "config.yaml"), 'w') as outp: # NOTE this has not been tested yaml.dump(args, outp) ## --- Gather Data --- _gather_data(num_episodes, buffer, sss_runner, logger) ## --- Train Network --- logger.console_logger.info(f'...training network...') for i in range(max_train_steps): episode_sample = buffer.sample(args.batch_size) # Truncate batch to only filled timesteps max_ep_t = episode_sample.max_t_filled() episode_sample = episode_sample[:, :max_ep_t] if episode_sample.device != args.device: episode_sample.to(args.device) learner.train(episode_sample, i, i) if (i % cycle_after == 0) and (i > 0): # Gather new data with freq `cycle_after` _gather_data(num_episodes, buffer, sss_runner, logger, i/cycle_after) if i % log_freq == 0: tt, sc, gc = _test_env(main_runner, test_episodes) logger.log_stat("Test_mean_sim_time", np.mean(tt), i) logger.log_stat("Test_mean_step_count", np.mean(sc), i) logger.log_stat("Test_mean_goal_found", np.mean(gc), i) logger.console_logger.info(f'...logging at step {i}, mean sim time {np.mean(tt)}...') if np.mean(tt) < test_makespan_cutoff: tt, _, _ = _test_env(main_runner, test_episodes) if np.mean(tt) < test_makespan_cutoff: logger.console_logger.info(f'Training passed evaluation at step {i}. Mean makespan: {np.mean(tt)}, cutoff: {test_makespan_cutoff}') break if i % agent_weight_log_freq == 0: log_mac_weights(logger, mac, i) _save_model(args, logger, learner, i) _gather_data(num_episodes, buffer, sss_runner, logger, 1000) # -- Train for 20e3 more steps -- for i in range(20000): episode_sample = buffer.sample(args.batch_size) # Truncate batch to only filled timesteps max_ep_t = episode_sample.max_t_filled() episode_sample = episode_sample[:, :max_ep_t] if episode_sample.device != args.device: episode_sample.to(args.device) learner.train(episode_sample, i, i) if i % log_freq == 0: tt, sc, gc = _test_env(main_runner, test_episodes) logger.log_stat("Test_mean_sim_time", np.mean(tt), i) logger.log_stat("Test_mean_step_count", np.mean(sc), i) logger.log_stat("Test_mean_goal_found", np.mean(gc), i) logger.console_logger.info(f'...logging at step {i}, mean sim time {np.mean(tt)}...') if i % agent_weight_log_freq == 0: log_mac_weights(logger, mac, i) tdelta = time.time()-start_time logger.console_logger.info(f'...time taken for training: {datetime.timedelta(seconds=tdelta)}...') ## --- Evaluate final agent --- logger.console_logger.info(f'...evaluating final agent...') tt, sc, gc = _test_env(main_runner, test_episodes) logger.log_stat("Test_mean_sim_time", np.mean(tt), i) logger.log_stat("Test_mean_step_count", np.mean(sc), i) logger.log_stat("Test_mean_goal_found", np.mean(gc), i) logger.console_logger.info(f'-- evaluation av test time: {np.mean(tt)} ({np.var(tt)}), av step count {np.mean(sc)} ({np.var(sc)}), percentage at goal {np.mean(gc)} ({np.var(gc)}), {len(sc)} episodes') _save_model(args, logger, learner, i+1) def save_curriculum_data(array_to_save, iteration=0): save_path = os.path.join(args.local_results_path, "curriculum", "ep_data", args.unique_token) os.makedirs(save_path, exist_ok=True) np.save('{}/ep_data_{}.npy'.format(save_path, iteration), array_to_save, allow_pickle=True) def mean_sss_time(args, logger, num_episodes, epsilon_mean): """Runs a PyMARL-Camas map using an epsilon greedy shortest path policy Args: num_episodes (int): number of episodes to run for epislon (int): epsilon to use in action selection """ print(' -- Env args', args.env_args) start_time = time.time() sss_runner = SSS_Runner(args, logger, epsilon_mean=epsilon_mean, epsilon_var=0.0) # Set up schemes and groups env_info = sss_runner.get_env_info() args.n_agents = env_info["n_agents"] args.n_actions = env_info["n_actions"] args.state_shape = env_info["state_shape"] scheme = { "state": {"vshape": env_info["state_shape"]}, "obs": {"vshape": env_info["obs_shape"], "group": "agents"}, "actions": {"vshape": (1,), "group": "agents", "dtype": th.long}, "avail_actions": {"vshape": (env_info["n_actions"],), "group": "agents", "dtype": th.int}, "reward": {"vshape": (1,)}, "terminated": {"vshape": (1,), "dtype": th.uint8}, } groups = { "agents": args.n_agents } preprocess = { "actions": ("actions_onehot", [OneHot(out_dim=args.n_actions)]) } buffer = ReplayBuffer(scheme, groups, args.buffer_size, env_info["episode_limit"] + 1, preprocess=preprocess, device="cpu" if args.buffer_cpu_only else args.device) # Setup multiagent controller here mac = mac_REGISTRY[args.mac](buffer.scheme, groups, args) # Give runners the scheme #main_runner.setup(scheme=scheme, groups=groups, preprocess=preprocess, mac=mac) sss_runner.setup(scheme=scheme, groups=groups, preprocess=preprocess, mac=mac) # Learner learner = le_REGISTRY[args.learner](mac, buffer.scheme, logger, args) if args.use_cuda: learner.cuda() logger.console_logger.info(f'...running {num_episodes} episodes...') episode_times = [] step_count = [] rewards = [] for i in range(num_episodes): batch = sss_runner.run() episode_times.append(sss_runner.env.sim_time()) step_count.append(sss_runner.t) rewards.append(th.sum(batch["reward"])) if i % 50 == 0: logger.console_logger.info(f'...{i} episodes complete...') print(f'Mean sim time for {num_episodes} on {args.env_args["map_name"]} and an epsilon of {epsilon_mean}: {np.mean(episode_times)} ({np.var(episode_times)})') print(f'mean step count {np.mean(step_count)} ({np.var(step_count)}), mean reward: {np.mean(rewards)} ({np.var(rewards)})') return np.mean(episode_times), np.mean(step_count) def load_default_params(map_name="bruno"): pass #TODO if __name__ == "__main__": ## *** Curriculum specific variables *** num_episodes = int(5e3) cycle_after = int(2.5e4) train_steps_max = int(5e5) test_episodes = 20 test_makespan_cutoff = 60 console_logger = getLogger() logger = Logger(console_logger) config_dict = load_configs() # NOTE should sanity check args = SN(**config_dict) # gives attribute access to namespace if args.use_cuda: args.use_cuda = th.cuda.is_available() # Check that cuda is valid args.device = "cuda" if args.use_cuda else "cpu" if args.use_cuda: logger.console_logger.info('... Using CUDA...') args.unique_token = "cur<PASSWORD>{}".format(args.name, datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S")) #args.batch_size = 64 logger.console_logger.setLevel(INFO) if args.prioritised_replay: logger.console_logger.warning('Turning PER off') args.prioritised_replay = False # not implemented #mean_sss_time(args, logger, 200, 0.0) if num_episodes > args.buffer_size: args.buffer_size = num_episodes print(f'Buffer size now {args.buffer_size}') run_sss_curriculum(args, logger, num_episodes, cycle_after, train_steps_max, test_makespan_cutoff, test_episodes=test_episodes, log_freq=int(2e4), agent_weight_log_freq=int(4e4))
[ "logging.getLogger", "yaml.load", "main.recursive_dict_update", "rapport_topological.navigation.construct_shortest_path_policy", "torch.cuda.is_available", "torch.sum", "components.transforms.OneHot", "datetime.timedelta", "numpy.mean", "components.episode_buffer.ReplayBuffer", "numpy.random.normal", "random.uniform", "types.SimpleNamespace", "yaml.dump", "utils.logging.log_mac_weights", "os.path.dirname", "numpy.std", "time.time", "rapport_models.markov.state.State", "os.makedirs", "os.path.join", "utils.logging.Logger", "datetime.datetime.now", "numpy.zeros", "os.path.abspath", "numpy.var", "torch.ones" ]
[((2258, 2302), 'main.recursive_dict_update', 'recursive_dict_update', (['config_dict', 'alg_dict'], {}), '(config_dict, alg_dict)\n', (2279, 2302), False, 'from main import recursive_dict_update\n'), ((2321, 2365), 'main.recursive_dict_update', 'recursive_dict_update', (['config_dict', 'env_dict'], {}), '(config_dict, env_dict)\n', (2342, 2365), False, 'from main import recursive_dict_update\n'), ((10781, 10792), 'time.time', 'time.time', ([], {}), '()\n', (10790, 10792), False, 'import time\n'), ((12049, 12213), 'components.episode_buffer.ReplayBuffer', 'ReplayBuffer', (['scheme', 'groups', 'args.buffer_size', "(env_info['episode_limit'] + 1)"], {'preprocess': 'preprocess', 'device': "('cpu' if args.buffer_cpu_only else args.device)"}), "(scheme, groups, args.buffer_size, env_info['episode_limit'] + \n 1, preprocess=preprocess, device='cpu' if args.buffer_cpu_only else\n args.device)\n", (12061, 12213), False, 'from components.episode_buffer import ReplayBuffer\n'), ((12738, 12783), 'os.path.join', 'os.path.join', (['"""curriculum"""', 'args.unique_token'], {}), "('curriculum', args.unique_token)\n", (12750, 12783), False, 'import os\n'), ((12788, 12832), 'os.makedirs', 'os.makedirs', (['config_save_path'], {'exist_ok': '(True)'}), '(config_save_path, exist_ok=True)\n', (12799, 12832), False, 'import os\n'), ((16418, 16504), 'os.path.join', 'os.path.join', (['args.local_results_path', '"""curriculum"""', '"""ep_data"""', 'args.unique_token'], {}), "(args.local_results_path, 'curriculum', 'ep_data', args.\n unique_token)\n", (16430, 16504), False, 'import os\n'), ((16504, 16541), 'os.makedirs', 'os.makedirs', (['save_path'], {'exist_ok': '(True)'}), '(save_path, exist_ok=True)\n', (16515, 16541), False, 'import os\n'), ((16979, 16990), 'time.time', 'time.time', ([], {}), '()\n', (16988, 16990), False, 'import time\n'), ((17872, 18036), 'components.episode_buffer.ReplayBuffer', 'ReplayBuffer', (['scheme', 'groups', 'args.buffer_size', "(env_info['episode_limit'] + 1)"], {'preprocess': 'preprocess', 'device': "('cpu' if args.buffer_cpu_only else args.device)"}), "(scheme, groups, args.buffer_size, env_info['episode_limit'] + \n 1, preprocess=preprocess, device='cpu' if args.buffer_cpu_only else\n args.device)\n", (17884, 18036), False, 'from components.episode_buffer import ReplayBuffer\n'), ((19628, 19639), 'logging.getLogger', 'getLogger', ([], {}), '()\n', (19637, 19639), False, 'from logging import getLogger, INFO\n'), ((19653, 19675), 'utils.logging.Logger', 'Logger', (['console_logger'], {}), '(console_logger)\n', (19659, 19675), False, 'from utils.logging import Logger, log_mac_weights\n'), ((19753, 19770), 'types.SimpleNamespace', 'SN', ([], {}), '(**config_dict)\n', (19755, 19770), True, 'from types import SimpleNamespace as SN\n'), ((7107, 7160), 'numpy.random.normal', 'np.random.normal', (['self.epsilon_mean', 'self.epsilon_var'], {}), '(self.epsilon_mean, self.epsilon_var)\n', (7123, 7160), True, 'import numpy as np\n'), ((8212, 8223), 'time.time', 'time.time', ([], {}), '()\n', (8221, 8223), False, 'import time\n'), ((8350, 8373), 'numpy.zeros', 'np.zeros', (['_num_episodes'], {}), '(_num_episodes)\n', (8358, 8373), True, 'import numpy as np\n'), ((8396, 8419), 'numpy.zeros', 'np.zeros', (['_num_episodes'], {}), '(_num_episodes)\n', (8404, 8419), True, 'import numpy as np\n'), ((8439, 8462), 'numpy.zeros', 'np.zeros', (['_num_episodes'], {}), '(_num_episodes)\n', (8447, 8462), True, 'import numpy as np\n'), ((8487, 8510), 'numpy.zeros', 'np.zeros', (['_num_episodes'], {}), '(_num_episodes)\n', (8495, 8510), True, 'import numpy as np\n'), ((10559, 10597), 'os.makedirs', 'os.makedirs', (['_save_path'], {'exist_ok': '(True)'}), '(_save_path, exist_ok=True)\n', (10570, 10597), False, 'import os\n'), ((12949, 12970), 'yaml.dump', 'yaml.dump', (['args', 'outp'], {}), '(args, outp)\n', (12958, 12970), False, 'import yaml\n'), ((15620, 15631), 'time.time', 'time.time', ([], {}), '()\n', (15629, 15631), False, 'import time\n'), ((15948, 15959), 'numpy.mean', 'np.mean', (['tt'], {}), '(tt)\n', (15955, 15959), True, 'import numpy as np\n'), ((16008, 16019), 'numpy.mean', 'np.mean', (['sc'], {}), '(sc)\n', (16015, 16019), True, 'import numpy as np\n'), ((16068, 16079), 'numpy.mean', 'np.mean', (['gc'], {}), '(gc)\n', (16075, 16079), True, 'import numpy as np\n'), ((19270, 19292), 'numpy.mean', 'np.mean', (['episode_times'], {}), '(episode_times)\n', (19277, 19292), True, 'import numpy as np\n'), ((19294, 19313), 'numpy.mean', 'np.mean', (['step_count'], {}), '(step_count)\n', (19301, 19313), True, 'import numpy as np\n'), ((19856, 19878), 'torch.cuda.is_available', 'th.cuda.is_available', ([], {}), '()\n', (19876, 19878), True, 'import torch as th\n'), ((1444, 1480), 'yaml.load', 'yaml.load', (['f'], {'Loader': 'yaml.FullLoader'}), '(f, Loader=yaml.FullLoader)\n', (1453, 1480), False, 'import yaml\n'), ((1765, 1801), 'yaml.load', 'yaml.load', (['f'], {'Loader': 'yaml.FullLoader'}), '(f, Loader=yaml.FullLoader)\n', (1774, 1801), False, 'import yaml\n'), ((2089, 2125), 'yaml.load', 'yaml.load', (['f'], {'Loader': 'yaml.FullLoader'}), '(f, Loader=yaml.FullLoader)\n', (2098, 2125), False, 'import yaml\n'), ((2860, 2934), 'rapport_topological.navigation.construct_shortest_path_policy', 'construct_shortest_path_policy', (['self.env._tm', 'self.env._goal_states[agent]'], {}), '(self.env._tm, self.env._goal_states[agent])\n', (2890, 2934), False, 'from rapport_topological.navigation import construct_shortest_path_policy\n'), ((5877, 5918), 'torch.ones', 'th.ones', (['(1)', 'self.args.n_agents'], {'dtype': 'int'}), '(1, self.args.n_agents, dtype=int)\n', (5884, 5918), True, 'import torch as th\n'), ((6256, 6276), 'random.uniform', 'random.uniform', (['(0)', '(1)'], {}), '(0, 1)\n', (6270, 6276), False, 'import random\n'), ((8693, 8724), 'torch.sum', 'th.sum', (["episode_batch['reward']"], {}), "(episode_batch['reward'])\n", (8699, 8724), True, 'import torch as th\n'), ((9399, 9410), 'time.time', 'time.time', ([], {}), '()\n', (9408, 9410), False, 'import time\n'), ((10915, 10948), 'os.path.join', 'os.path.join', (['tb_logs_direc', '"""{}"""'], {}), "(tb_logs_direc, '{}')\n", (10927, 10948), False, 'import os\n'), ((12847, 12892), 'os.path.join', 'os.path.join', (['config_save_path', '"""config.yaml"""'], {}), "(config_save_path, 'config.yaml')\n", (12859, 12892), False, 'import os\n'), ((14541, 14572), 'utils.logging.log_mac_weights', 'log_mac_weights', (['logger', 'mac', 'i'], {}), '(logger, mac, i)\n', (14556, 14572), False, 'from utils.logging import Logger, log_mac_weights\n'), ((15570, 15601), 'utils.logging.log_mac_weights', 'log_mac_weights', (['logger', 'mac', 'i'], {}), '(logger, mac, i)\n', (15585, 15601), False, 'from utils.logging import Logger, log_mac_weights\n'), ((18835, 18858), 'torch.sum', 'th.sum', (["batch['reward']"], {}), "(batch['reward'])\n", (18841, 18858), True, 'import torch as th\n'), ((1340, 1365), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (1355, 1365), False, 'import os\n'), ((1659, 1684), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (1674, 1684), False, 'import os\n'), ((1982, 2007), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (1997, 2007), False, 'import os\n'), ((6367, 6392), 'rapport_models.markov.state.State', 'State', (["{'loc': agent_loc}"], {}), "({'loc': agent_loc})\n", (6372, 6392), False, 'from rapport_models.markov.state import State\n'), ((10847, 10864), 'os.path.abspath', 'abspath', (['__file__'], {}), '(__file__)\n', (10854, 10864), False, 'from os.path import dirname, abspath\n'), ((11992, 12022), 'components.transforms.OneHot', 'OneHot', ([], {'out_dim': 'args.n_actions'}), '(out_dim=args.n_actions)\n', (11998, 12022), False, 'from components.transforms import OneHot\n'), ((13865, 13876), 'numpy.mean', 'np.mean', (['tt'], {}), '(tt)\n', (13872, 13876), True, 'import numpy as np\n'), ((13933, 13944), 'numpy.mean', 'np.mean', (['sc'], {}), '(sc)\n', (13940, 13944), True, 'import numpy as np\n'), ((14001, 14012), 'numpy.mean', 'np.mean', (['gc'], {}), '(gc)\n', (14008, 14012), True, 'import numpy as np\n'), ((14143, 14154), 'numpy.mean', 'np.mean', (['tt'], {}), '(tt)\n', (14150, 14154), True, 'import numpy as np\n'), ((15256, 15267), 'numpy.mean', 'np.mean', (['tt'], {}), '(tt)\n', (15263, 15267), True, 'import numpy as np\n'), ((15324, 15335), 'numpy.mean', 'np.mean', (['sc'], {}), '(sc)\n', (15331, 15335), True, 'import numpy as np\n'), ((15392, 15403), 'numpy.mean', 'np.mean', (['gc'], {}), '(gc)\n', (15399, 15403), True, 'import numpy as np\n'), ((15705, 15739), 'datetime.timedelta', 'datetime.timedelta', ([], {'seconds': 'tdelta'}), '(seconds=tdelta)\n', (15723, 15739), False, 'import datetime\n'), ((16146, 16157), 'numpy.mean', 'np.mean', (['tt'], {}), '(tt)\n', (16153, 16157), True, 'import numpy as np\n'), ((16161, 16171), 'numpy.var', 'np.var', (['tt'], {}), '(tt)\n', (16167, 16171), True, 'import numpy as np\n'), ((16190, 16201), 'numpy.mean', 'np.mean', (['sc'], {}), '(sc)\n', (16197, 16201), True, 'import numpy as np\n'), ((16205, 16215), 'numpy.var', 'np.var', (['sc'], {}), '(sc)\n', (16211, 16215), True, 'import numpy as np\n'), ((16239, 16250), 'numpy.mean', 'np.mean', (['gc'], {}), '(gc)\n', (16246, 16250), True, 'import numpy as np\n'), ((16254, 16264), 'numpy.var', 'np.var', (['gc'], {}), '(gc)\n', (16260, 16264), True, 'import numpy as np\n'), ((17815, 17845), 'components.transforms.OneHot', 'OneHot', ([], {'out_dim': 'args.n_actions'}), '(out_dim=args.n_actions)\n', (17821, 17845), False, 'from components.transforms import OneHot\n'), ((19075, 19097), 'numpy.mean', 'np.mean', (['episode_times'], {}), '(episode_times)\n', (19082, 19097), True, 'import numpy as np\n'), ((19101, 19122), 'numpy.var', 'np.var', (['episode_times'], {}), '(episode_times)\n', (19107, 19122), True, 'import numpy as np\n'), ((19156, 19175), 'numpy.mean', 'np.mean', (['step_count'], {}), '(step_count)\n', (19163, 19175), True, 'import numpy as np\n'), ((19179, 19197), 'numpy.var', 'np.var', (['step_count'], {}), '(step_count)\n', (19185, 19197), True, 'import numpy as np\n'), ((19215, 19231), 'numpy.mean', 'np.mean', (['rewards'], {}), '(rewards)\n', (19222, 19231), True, 'import numpy as np\n'), ((19235, 19250), 'numpy.var', 'np.var', (['rewards'], {}), '(rewards)\n', (19241, 19250), True, 'import numpy as np\n'), ((20094, 20117), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (20115, 20117), False, 'import datetime\n'), ((9508, 9555), 'datetime.timedelta', 'datetime.timedelta', ([], {'seconds': 'data_gathering_time'}), '(seconds=data_gathering_time)\n', (9526, 9555), False, 'import datetime\n'), ((9569, 9586), 'numpy.mean', 'np.mean', (['ep_times'], {}), '(ep_times)\n', (9576, 9586), True, 'import numpy as np\n'), ((9590, 9606), 'numpy.std', 'np.std', (['ep_times'], {}), '(ep_times)\n', (9596, 9606), True, 'import numpy as np\n'), ((9627, 9649), 'numpy.mean', 'np.mean', (['ep_step_count'], {}), '(ep_step_count)\n', (9634, 9649), True, 'import numpy as np\n'), ((9653, 9674), 'numpy.std', 'np.std', (['ep_step_count'], {}), '(ep_step_count)\n', (9659, 9674), True, 'import numpy as np\n'), ((9737, 9756), 'numpy.mean', 'np.mean', (['ep_rewards'], {}), '(ep_rewards)\n', (9744, 9756), True, 'import numpy as np\n'), ((9760, 9778), 'numpy.std', 'np.std', (['ep_rewards'], {}), '(ep_rewards)\n', (9766, 9778), True, 'import numpy as np\n'), ((9796, 9816), 'numpy.mean', 'np.mean', (['ep_epsilons'], {}), '(ep_epsilons)\n', (9803, 9816), True, 'import numpy as np\n'), ((9820, 9839), 'numpy.std', 'np.std', (['ep_epsilons'], {}), '(ep_epsilons)\n', (9826, 9839), True, 'import numpy as np\n'), ((14263, 14274), 'numpy.mean', 'np.mean', (['tt'], {}), '(tt)\n', (14270, 14274), True, 'import numpy as np\n'), ((14097, 14108), 'numpy.mean', 'np.mean', (['tt'], {}), '(tt)\n', (14104, 14108), True, 'import numpy as np\n'), ((15488, 15499), 'numpy.mean', 'np.mean', (['tt'], {}), '(tt)\n', (15495, 15499), True, 'import numpy as np\n'), ((8993, 9010), 'numpy.mean', 'np.mean', (['ep_times'], {}), '(ep_times)\n', (9000, 9010), True, 'import numpy as np\n'), ((9014, 9030), 'numpy.std', 'np.std', (['ep_times'], {}), '(ep_times)\n', (9020, 9030), True, 'import numpy as np\n'), ((9051, 9073), 'numpy.mean', 'np.mean', (['ep_step_count'], {}), '(ep_step_count)\n', (9058, 9073), True, 'import numpy as np\n'), ((9077, 9098), 'numpy.std', 'np.std', (['ep_step_count'], {}), '(ep_step_count)\n', (9083, 9098), True, 'import numpy as np\n'), ((9169, 9188), 'numpy.mean', 'np.mean', (['ep_rewards'], {}), '(ep_rewards)\n', (9176, 9188), True, 'import numpy as np\n'), ((9192, 9210), 'numpy.std', 'np.std', (['ep_rewards'], {}), '(ep_rewards)\n', (9198, 9210), True, 'import numpy as np\n'), ((9228, 9248), 'numpy.mean', 'np.mean', (['ep_epsilons'], {}), '(ep_epsilons)\n', (9235, 9248), True, 'import numpy as np\n'), ((9252, 9271), 'numpy.std', 'np.std', (['ep_epsilons'], {}), '(ep_epsilons)\n', (9258, 9271), True, 'import numpy as np\n'), ((14404, 14415), 'numpy.mean', 'np.mean', (['tt'], {}), '(tt)\n', (14411, 14415), True, 'import numpy as np\n')]
import pandas as pd import numpy as np from datetime import datetime, timedelta def test_drawdown_and_returns_series(): index_range = pd.date_range(start=datetime(2000, 1, 1), periods=4, freq='AS-JAN') wealth_index = pd.Series(data=[0.4, 0.3, 0.2, 0.5], index=index_range) dd = wealth_index.drawdown assert dd is not None drawdown_df = dd.data assert drawdown_df is not None assert isinstance(drawdown_df, pd.Series) assert drawdown_df.dtypes == 'float64' assert drawdown_df.name == 'Drawdown' np.testing.assert_almost_equal(drawdown_df['2000-01-01'], 0.0) np.testing.assert_almost_equal(drawdown_df['2001-01-01'], -0.25) np.testing.assert_almost_equal(drawdown_df['2002-01-01'], -0.5) np.testing.assert_almost_equal(drawdown_df['2003-01-01'], 0.0) def test_max_drawdown(): index_range = pd.date_range(start=datetime(2000, 1, 1), periods=4, freq='AS-JAN') wealth_index = pd.Series(data=[0.4, 0.3, 0.2, 0.5], index=index_range) assert wealth_index.drawdown.max_drawdown == -0.5 def test_durations(): index_range = pd.date_range(start=datetime(2000, 1, 1), periods=9, freq='AS-JAN') wealth_index = pd.Series(data=[0.4, 0.3, 0.2, 0.5, 0.4, 0.4, 0.3, 0.3, 0.5], index=index_range) durations = wealth_index.drawdown.durations assert isinstance(durations, pd.Series) assert durations.dtypes == 'timedelta64[ns]' assert durations.name == 'Durations' assert len(durations) == 2 assert durations['2003-01-01'] == timedelta(days=1096) assert durations['2008-01-01'] == timedelta(days=1826)
[ "pandas.Series", "numpy.testing.assert_almost_equal", "datetime.timedelta", "datetime.datetime" ]
[((227, 282), 'pandas.Series', 'pd.Series', ([], {'data': '[0.4, 0.3, 0.2, 0.5]', 'index': 'index_range'}), '(data=[0.4, 0.3, 0.2, 0.5], index=index_range)\n', (236, 282), True, 'import pandas as pd\n'), ((536, 598), 'numpy.testing.assert_almost_equal', 'np.testing.assert_almost_equal', (["drawdown_df['2000-01-01']", '(0.0)'], {}), "(drawdown_df['2000-01-01'], 0.0)\n", (566, 598), True, 'import numpy as np\n'), ((603, 667), 'numpy.testing.assert_almost_equal', 'np.testing.assert_almost_equal', (["drawdown_df['2001-01-01']", '(-0.25)'], {}), "(drawdown_df['2001-01-01'], -0.25)\n", (633, 667), True, 'import numpy as np\n'), ((672, 735), 'numpy.testing.assert_almost_equal', 'np.testing.assert_almost_equal', (["drawdown_df['2002-01-01']", '(-0.5)'], {}), "(drawdown_df['2002-01-01'], -0.5)\n", (702, 735), True, 'import numpy as np\n'), ((740, 802), 'numpy.testing.assert_almost_equal', 'np.testing.assert_almost_equal', (["drawdown_df['2003-01-01']", '(0.0)'], {}), "(drawdown_df['2003-01-01'], 0.0)\n", (770, 802), True, 'import numpy as np\n'), ((935, 990), 'pandas.Series', 'pd.Series', ([], {'data': '[0.4, 0.3, 0.2, 0.5]', 'index': 'index_range'}), '(data=[0.4, 0.3, 0.2, 0.5], index=index_range)\n', (944, 990), True, 'import pandas as pd\n'), ((1174, 1259), 'pandas.Series', 'pd.Series', ([], {'data': '[0.4, 0.3, 0.2, 0.5, 0.4, 0.4, 0.3, 0.3, 0.5]', 'index': 'index_range'}), '(data=[0.4, 0.3, 0.2, 0.5, 0.4, 0.4, 0.3, 0.3, 0.5], index=index_range\n )\n', (1183, 1259), True, 'import pandas as pd\n'), ((1507, 1527), 'datetime.timedelta', 'timedelta', ([], {'days': '(1096)'}), '(days=1096)\n', (1516, 1527), False, 'from datetime import datetime, timedelta\n'), ((1566, 1586), 'datetime.timedelta', 'timedelta', ([], {'days': '(1826)'}), '(days=1826)\n', (1575, 1586), False, 'from datetime import datetime, timedelta\n'), ((160, 180), 'datetime.datetime', 'datetime', (['(2000)', '(1)', '(1)'], {}), '(2000, 1, 1)\n', (168, 180), False, 'from datetime import datetime, timedelta\n'), ((868, 888), 'datetime.datetime', 'datetime', (['(2000)', '(1)', '(1)'], {}), '(2000, 1, 1)\n', (876, 888), False, 'from datetime import datetime, timedelta\n'), ((1107, 1127), 'datetime.datetime', 'datetime', (['(2000)', '(1)', '(1)'], {}), '(2000, 1, 1)\n', (1115, 1127), False, 'from datetime import datetime, timedelta\n')]
import os, json, base64, cv2, glob import numpy as np import matplotlib.pyplot as plt from coco import CocoConfig from Mask.config import Config import Mask.utils as utils import Mask.model as modellib import Mask.visualize as visualize from convert_file import load_image def init(): np.set_printoptions(threshold=np.inf) def run(input_df): data = json.loads(input_df) im = load_image(image64=data) config = CocoConfig() model = modellib.MaskRCNN(mode="inference", model_dir="./models/", config=config) model.load_weights(filepath="./models/mask_rcnn_moles_0090.h5", by_name=True) class_names = ["BG", "malignant", "benign"] # predict the mask, bounding box and class of the image r = model.detect([im])[0] prediction = None for idx, val in enumerate(class_names): if idx == r["class_ids"]: prediction = val print(val) else: continue return prediction
[ "json.loads", "Mask.model.MaskRCNN", "convert_file.load_image", "coco.CocoConfig", "numpy.set_printoptions" ]
[((290, 327), 'numpy.set_printoptions', 'np.set_printoptions', ([], {'threshold': 'np.inf'}), '(threshold=np.inf)\n', (309, 327), True, 'import numpy as np\n'), ((359, 379), 'json.loads', 'json.loads', (['input_df'], {}), '(input_df)\n', (369, 379), False, 'import os, json, base64, cv2, glob\n'), ((389, 413), 'convert_file.load_image', 'load_image', ([], {'image64': 'data'}), '(image64=data)\n', (399, 413), False, 'from convert_file import load_image\n'), ((428, 440), 'coco.CocoConfig', 'CocoConfig', ([], {}), '()\n', (438, 440), False, 'from coco import CocoConfig\n'), ((454, 527), 'Mask.model.MaskRCNN', 'modellib.MaskRCNN', ([], {'mode': '"""inference"""', 'model_dir': '"""./models/"""', 'config': 'config'}), "(mode='inference', model_dir='./models/', config=config)\n", (471, 527), True, 'import Mask.model as modellib\n')]
import streamlit as st import pandas as pd import altair as alt import pickle import numpy as np from map import create_map from airdata import AirData from utils import parse_time, parse_time_hms from vega_datasets import data #st.set_page_config(layout="wide") # Getting data ready, Refresh every hour (same data when user refreshes within an hour) @st.cache(ttl=60 * 60, suppress_st_warning=True) def get_AD_data(): ad = AirData() flight_df = ad.get_flights_df() flight_df = ad.add_time_to_df(flight_df) return ad, flight_df # Cache to prevent computation on every rerun @st.cache def save_AD_data(df): return df.to_csv().encode('utf-8') ad, flight_df = get_AD_data() # Definitions for flight delay ## Prepare data # load in files origin = pickle.load(open('flight-price/DestState.sav','rb')) dest = pickle.load(open('flight-price/DestState.sav','rb')) air = pickle.load(open('flight-price/AirlineCompany.sav','rb')) miles_dic = pickle.load(open('flight-price/miles_dic.sav','rb')) quarter_dic= {'Spring':'Q1','Summer':'Q2','Fall':'Q3','Winter':'Q4'} df_viz = pd.read_csv('flight-price/df_viz.csv').iloc[:,:] # fit the prediction model, get prediction and prediction interval def get_pi(X): all_models = pickle.load(open('flight-price/all_models.sav', 'rb')) lb = all_models[0].predict(X) pred = all_models[2].predict(X) ub = all_models[1].predict(X) return (round(np.exp(lb[0]),2), round(np.exp(pred[0]),2), round(np.exp(ub[0]),2)) # load data for non ML visual def load_data_viz(): return pd.read_csv('flight-price/train_viz.csv').iloc[:,:] # visual for price comparison @st.cache def get_slice_ogstate(df, ogstate=None): labels = pd.Series([1] * len(df), index=df.index) labels &= df['OriginState'] == ogstate return labels def get_slice_destate(df, destate=None): labels = pd.Series([1] * len(df), index=df.index) labels &= df['DestState'] == destate return labels def get_slice_membership(df, ogstate=None, destate=None, quarter=None,airline=None): labels = pd.Series([1] * len(df), index=df.index) if ogstate: labels &= df['OriginState'] == ogstate if destate is not None: labels &= df['DestState'] == destate if quarter: labels &= df['Quarter'].isin(quarter) if airline: labels &= df['AirlineCompany'].isin(airline) return labels #-------------------- Price Heat Map------------------------------------------- def load_data(url): file = url df = pd.read_csv(file) return df def get_season(df, quarter): sub = df[df['Quarter']== quarter] return sub menu_selection = st.sidebar.radio("Menu", ["Introduction","Flight Map", "Flight Delay Analysis", "Flight Price Analysis"]) if menu_selection == 'Introduction': #col1, col2, col3,col4 = st.columns([0.5,1,2,1]) #col2.image("image/flight-logo.jpg", width=150) #col3.markdown("<h1 style='text-align: left; color: #072F5F;'>Flight Traffic Brain</h1>", # unsafe_allow_html=True) col1, col2, col3 = st.columns([0.5,1,4]) col2.image("image/flight-logo.jpg", width=150) col3.markdown("<h1 style='text-align: left; color: #072F5F;'>Flight Traffic Brain</h1>", unsafe_allow_html=True) text = "<p style='font-size:18px'>Nowadays, air traffic control has become a complicated task as there are\ more and more flights and airlines. There has also been rising cases of flight delays possibly due to poor\ management and massive volume of traffic. While air traffic is important to manage from the perspective of\ airports and airlines, flight prices are crucial for customers who usually make decisions of their travel\ plans based on them. In this project we hope to help airports better manage airlines and control airline\ traffic and passengers make wiser decisions about airline flights.</p>" st.write(text, unsafe_allow_html=True) text = "<p style='font-size:18px'>A <span style='color: #1167b1'> real-time map of flights </span> with interactive information such as speed and altitude can help the specialists\ to make better decisions. Meanwhile, an <span style='color: #1167b1'> interactive network graph </span> that shows the connections between airports and\ flights can also improve the handling of dependencies among the traffic. A <span style='color: #1167b1'> data visualization section of delay time </span>\ can also enable users to analyze different flights in real time and in more detail. By filtering the flight according to their\ departure airport, the users can not only view the delay time of different flights, but also have a high-level overview of\ the delay information of flights of different airlines. This information will help airport specialists to better communicate\ with the airports and passengers, and make better decisions in terms of resource distribution. In addition, a <span style='color: #1167b1'> \ machine learning model </span> using historical data to <span style='color: #1167b1'> predict flight price </span> can help passengers\ estimate the potential fare of flight of their interest. An <span style='color: #1167b1'> interactive platform with visualizations of airline comparisons </span> can also allow\ them to compare different flight prices by modifying parameters of interest, thus helping optimize their travel plan.</p>" st.write(text, unsafe_allow_html=True) text = "<br><br><br>This project was created by [<NAME>](<EMAIL>), [<NAME>](<EMAIL>), \ [<NAME>](<EMAIL>) and [<NAME>](<EMAIL>) for the [Interactive Data Science](https://dig.cmu.edu/ids2022) course at\ [Carnegie Mellon University](https://www.cmu.edu)" st.write(text, unsafe_allow_html=True) elif menu_selection == "Flight Map": st.title("Real-time Flight Data Visualization") # ------------ Map starts --------------------- with st.sidebar.expander("Analysis for flights/airports"): st.write("This is an analysis tool from the perspective of flights or airports") to_show = st.selectbox("Data to look at", ["flight", "airport"]) if to_show == "flight": field = st.selectbox("Variable of interest", ["heading", "altitude", "ground_speed"]) else: field = st.selectbox("Variable of interest", ["origin_airport_iata", "destination_airport_iata"]) st.write("This is a map of real-time flights and airports. The blue circles are \ the airport, while the red squares are the flights. You can utilize \ the tool bar on the left tab to explore the data. You can also \ move your mouse over the map to see more information.") map_air = create_map(flight_df, field, to_show) st.altair_chart(map_air,use_container_width=True) st.sidebar.title("Note") st.sidebar.write("This visualization consists of three components.\ The first component is a map that shows real-time flights and airports\ in the U.S. The second component, linked to the first component, \ is an analysis tool for the real-time flight and airport data. \ The third component displays the time information of a flight.") st.sidebar.download_button("Download real-time data", data=save_AD_data(flight_df), file_name='airdata.csv', mime='text/csv') # ------------ Map ends --------------------- # ------------ Flight time starts --------------------- st.write("Here we display the time information of a flight.") option = st.selectbox("Which flight number are you looking into?", flight_df['number'].sort_values()) # Get the corresponding flight row in the dataframe option_row = flight_df[flight_df['number'] == option] option_id = option_row.id.values[0] option_detail = ad.get_flight_details(option_id) option_time = option_detail['time'] # Display scheduled and actual time for departual and arrival using metric col1, col2 = st.columns(2) col1.metric("Scheduled departure time", parse_time(option_time['scheduled']['departure'])) if option_time['real']['departure'] and option_time['scheduled']['departure']: depart_delta = option_time['real']['departure'] - option_time['scheduled']['departure'] else: depart_delta = None col2.metric("Actual departure time", parse_time(option_time['real']['departure']), parse_time_hms(depart_delta), delta_color='inverse') col3, col4 = st.columns(2) col3.metric("Scheduled arrival time", parse_time(option_time['scheduled']['arrival'])) arrival_time = option_time['real']['arrival'] if not arrival_time: arrival_time = option_time['estimated']['arrival'] col4.metric("Estimated/Actual arrival time", parse_time(arrival_time)) # Note that some flights are not displayed due to... so the number of routes # may appear larger than... # ------------ Flight time ends --------------------- elif menu_selection == "Flight Delay Analysis": # ------------ Delay Analysis starts --------------------- st.title("Flight Delay Analysis") st.sidebar.title("Note") st.sidebar.write("This flight delay analysis consists of four parts: \ The first part is a data slicing tool that allows the users to filter any flight data according to the different departure airport.\ The second part lists out all the flights flying from the selected departure airport, and displays the relevant delay time information of the flights. \ The third part displays a stripplot graph to allow the users to visually compare the different departure delay time of flights of different airlines.\ The last part compares the average delay time of different airlines. ") ad = AirData() flight_df = ad.get_flights_df() st.header("Slice Data") st.write("You can filter the airline data by choosing the different departure airport.") with st.expander("Airports"): origin_airport_list = flight_df['origin_airport_iata'].drop_duplicates() option1 = st.selectbox("Departure Airport:", (origin_airport_list)) flight_df_selected1 = flight_df[(flight_df['origin_airport_iata'] == option1)] st.header("Data Visualization") with st.expander("Flight delay from different departure airports"): st.write("This data indicates all the current flights coming from the departure airport and their related delay times.") index = 0 for row in flight_df_selected1.iterrows(): flight_number = flight_df_selected1['number'].values[index] option_id = flight_df_selected1['id'].values[index] option_detail = ad.get_flight_details(option_id) option_time = option_detail['time'] if option_time['real']['departure'] is None: continue elif option_time['real']['arrival'] is None: depart_delta = option_time['real']['departure'] - option_time['scheduled']['departure'] arrive_delta = None col1, col2, col3 = st.columns(3) col1.metric("Flight number", flight_number) col2.metric("Departure delay", parse_time_hms(depart_delta)) col3.metric("Arrival delay", arrive_delta) else: depart_delta = option_time['real']['departure'] - option_time['scheduled']['departure'] arrive_delta = option_time['real']['arrival'] - option_time['scheduled']['arrival'] col1, col2, col3 = st.columns(3) col1.metric("Flight number", flight_number) col2.metric("Departure delay", parse_time_hms(depart_delta)) col3.metric("Arrival delay", parse_time_hms(arrive_delta)) index = index + 1 with st.expander("Flight delay of different airlines"): st.write("This data compares the punctuality and departure delay times between different airlines.") depart_delay = [] index = 0 for row in flight_df_selected1.iterrows(): option_id = flight_df_selected1['id'].values[index] option_detail = ad.get_flight_details(option_id) option_time = option_detail['time'] if option_time['real']['departure'] is None: continue else: depart_delta = option_time['real']['departure'] - option_time['scheduled']['departure'] depart_delta = parse_time_hms(depart_delta) depart_delay.append(depart_delta) index = index + 1 flight_df_selected1['depart_delay'] = depart_delay stripplot = alt.Chart(flight_df_selected1, width=640).mark_circle(size=30).encode( x=alt.X( 'depart_delay', title='Departure delay', scale=alt.Scale()), y=alt.Y( 'airline_iata', title='Airline iata'), color=alt.Color('airline_iata', legend=alt.Legend(orient="right")), tooltip=['number', 'airline_iata', 'depart_delay'] ).transform_calculate( jitter='sqrt(-2*log(random()))*cos(2*PI*random())' ).configure_facet( spacing=0 ).configure_view( stroke=None ) stripplot with st.expander("Compare average departure delay of different airlines"): depart_delay = [] index = 0 for row in flight_df_selected1.iterrows(): option_id = flight_df_selected1['id'].values[index] option_detail = ad.get_flight_details(option_id) option_time = option_detail['time'] if option_time['real']['departure'] is None: continue else: depart_delta = option_time['real']['departure'] - option_time['scheduled']['departure'] # depart_delta = parse_time_hms(depart_delta) depart_delay.append(depart_delta) index = index + 1 flight_df_selected1['depart_delay'] = depart_delay average_delay = [] airline_average_delay_parsed = [] index = 0 for row in flight_df_selected1.iterrows(): ite_airline = flight_df_selected1['airline_iata'].values[index] airline_data = flight_df_selected1[flight_df_selected1['airline_iata'] == ite_airline] airline_average_delay = airline_data['depart_delay'].mean() average_delay_parsed = parse_time_hms(airline_average_delay) average_delay_parsed = str(average_delay_parsed).rstrip(':0') airline_average_delay = round(airline_average_delay, 2) # airline_average_delay = parse_time_hms(airline_average_delay) average_delay.append(airline_average_delay) airline_average_delay_parsed.append(average_delay_parsed) index = index + 1 flight_df_selected1['airline_average_delay'] = average_delay flight_df_selected1['average_delay_parsed'] = airline_average_delay_parsed flight_df_selected2 = flight_df_selected1.drop_duplicates(subset=['airline_iata'], keep='first') flight_df_selected2 = flight_df_selected2.sort_values(by=['airline_average_delay'], ascending=False) barchart = alt.Chart(flight_df_selected2, width=640).mark_bar().encode( x=alt.X('airline_average_delay', axis=alt.Axis(labels=False)), y=alt.Y('airline_iata', sort=alt.EncodingSortField(field="airline_average_delay", op="count", order='ascending')), tooltip=['airline_iata', 'average_delay_parsed'] ) text = barchart.mark_text( align='left', baseline='middle', dx=3 # Nudges text to right so it doesn't appear on top of the bar ).encode( text='average_delay_parsed' ) (barchart + text).properties(height=900) barchart + text index = 0 for row in flight_df_selected2.iterrows(): ite_airline = flight_df_selected2['airline_iata'].values[index] ite_delay = flight_df_selected2['average_delay_parsed'].values[index] # ite_delay = parse_time_hms(ite_delay) ite_delay = str(ite_delay).rstrip(':0') col1, col2 = st.columns(2) col1.metric("Airline", ite_airline) col2.metric("Average departure delay", ite_delay) index = index + 1 # ------------ Delay Analysis ends --------------------- else: # ------------------------ Flight price prediction starts ------------------------------ ## Price Prediction st.title("Flight Price Analysis") # 1. ML prediction st.header("Flight Price Prediction") st.write("Tell us your intended flight information and get predicted flight price value and range.") X_train=pd.read_csv('flight-price/X_train.csv') features = list(X_train.columns) del X_train df_pred = pd.DataFrame(0, index=np.arange(1), columns=features) col1, col2 = st.columns([3, 2]) with col2: og = st.selectbox('Origin', np.array(origin),index=30) de = st.selectbox('Destination', np.array(dest),index=4) season = st.selectbox('Season', ['Spring','Summer','Fall','Winter']) airline = st.selectbox('Airline Company', np.array(air)) numT = st.slider('Number of tickets', 1, 15, 1) if og != "Virgin Islands": df_pred[f'o{og}'] = 1 else: df_pred['oU.S. Virgin Islands']=1 if de != "Virgin Islands": df_pred[f'd{de}'] = 1 else: df_pred['dU.S. Virgin Islands']=1 if season!='Spring': df_pred[quarter_dic[season]] = 1 if airline[-3:-1]!='AA': df_pred[airline[-3:-1]] = 1 df_pred['NumTicketsOrdered'] = numT if og!=de: try: miles = miles_dic[(og,de)] except: miles = miles_dic[(de,og)] df_pred['log_miles']=np.log(miles) else: st.markdown(" ") if og!=de: low, mean, high = get_pi(pd.DataFrame(df_pred)) with col1: st.subheader("Predicted Price per Ticket") st.metric("Low", f'${low}',"+$",delta_color="inverse") st.metric("Mean", f'${mean}') st.metric("High", f'${high}',"-$",delta_color="inverse") df_interval = pd.DataFrame([[low,mean,high]],columns=['Low','Mean','High']) st.write("See where your flight falls in the historical price distribution (2018)") with st.expander("See price distribution"): # plot price dist bar = alt.Chart(df_viz).mark_bar(opacity=0.3,tooltip = True).encode( alt.X('PricePerTicket:Q',title="Price per Ticket ($)"),#scale=alt.Scale(type='log')), alt.Y('count()',title='Raw Frequency Count') ).properties( title='Unit Price Distribution', width=600, height=400 #).transform_filter( ).interactive() mean = alt.Chart(df_interval).mark_rule(color='purple',tooltip=True).encode( x='Mean:Q', size=alt.value(4), ) low = alt.Chart(df_interval.sample(1)).mark_rule(color='darkblue',tooltip=True).encode( x='Low:Q', size=alt.value(2), #strokeDash='Quarter' ) high = alt.Chart(df_interval.sample(1)).mark_rule(color='darkblue',tooltip=True).encode( x='High:Q', size=alt.value(2), #strokeDash='Quarter' ) price_chart = bar + mean + low+ high st.altair_chart(price_chart,use_container_width=True) else: with col1: st.metric(" ", 'Not Available') st.markdown("**Please choose a different origin or destination!**") # ------------------------ Flight price prediction ends ------------------------------ # ------------------------ Flight price comparison starts ------------------------------ ## Price comparison st.header("Check the historical information of the flight you are interested in") st.write('We will look at some historical data in 2018.') df = load_data_viz() cols = st.columns(4) with cols[0]: ogs = sorted(df['OriginState'].unique()) ogstate = st.selectbox('Origin State', ogs,index=ogs.index('New York')) with cols[1]: des = sorted(df['DestState'].unique()) destate = st.selectbox('Destination State', des,index=des.index('California')) with cols[2]: quarter = st.multiselect('Quarter',sorted(df['Quarter'].unique())) with cols[3]: airline = st.multiselect('Airline Company', sorted(df['AirlineCompany'].unique())) slice_labels = get_slice_membership(df, ogstate, destate, quarter,airline) slice_labels.name = "slice_membership" df_show = df[slice_labels].iloc[:,:][['PricePerTicket','og','dest','Quarter','AirlineCompany']].sort_values(by='PricePerTicket') df_show = df_show.rename(columns={'PricePerTicket':'Price per Ticket ($)','og':'Origin','dest':'Destination'}).reset_index(drop=True) df_show['Price per Ticket ($)'] = df_show['Price per Ticket ($)'].apply(lambda x: "{:.2f}".format(x)) if df_show.empty: st.metric(" ", "No Historical Data Available") st.write("Please deselect some quarter/airline options or change origin/destination state.") else: st.dataframe(data=df_show) # ------------------------ Flight price comparison starts ------------------------------ -------- df = load_data('flight-price/train_viz.csv') st.header("Choose the season you want to travel, find the most economical route and airline") quarter = st.selectbox('Season(Quarter)', sorted(df['Quarter'].unique())) season_df = get_season(df,quarter) # Take top 20 frequency states statelist = ['California','Florida','Texas','New York','Georgia','Illinois','Nevada','Virginia','Massachusetts', 'Washington','Pennsylvania','Arizona','New Jersey','Minnesota','Michigan','Missouri','Maryland','Hawaii'] heat_price = season_df[season_df['OriginState'].isin(statelist) ] heat_price = heat_price[heat_price['DestState'].isin(statelist) ] # Take average price and miles per route heat_price = heat_price.groupby(['OriginState','DestState'])[['PricePerTicket','Miles']].mean().reset_index() # Drop the invalid value(origin = destination) heat_price = heat_price[heat_price['OriginState'] != heat_price['DestState']] pts = alt.selection(type="multi", encodings=['x','y']) heat = alt.Chart(heat_price).mark_rect().encode( x='OriginState:O', y='DestState:O', color=alt.condition(pts,'PricePerTicket:Q', alt.ColorValue("grey")), tooltip=['OriginState', 'DestState', 'PricePerTicket','Miles'] ).add_selection(pts) box = alt.Chart(df).mark_boxplot(extent='min-max').encode( x='AirlineCompany:O', y='PricePerTicket:Q', color=alt.Color('AirlineCompany') ).properties( width=500, height=300, ).transform_filter( pts ) st.altair_chart(alt.vconcat(heat,box),use_container_width=True) st.header("Compare the price of different destination based on the origin you choose") origin = st.selectbox('Origin', sorted(df['OriginState'].unique())) def origin_data(origin,df): subset = df[df['OriginState']==origin] subset = subset.groupby(['OriginState','DestState'])[['PricePerTicket','Miles']].mean().reset_index() merged = subset.merge(data.income().groupby('name').mean().reset_index(), how = 'inner', left_on ='DestState', right_on= 'name') return merged subset = origin_data(origin,df) pts = alt.selection(type="multi", encodings=['x','y']) heat_bar = alt.Chart(subset).mark_rect().encode( x='DestState:O', y='OriginState:O', color=alt.condition(pts,'PricePerTicket:Q', alt.ColorValue("grey")), tooltip=['DestState'] ).add_selection(pts) states = alt.topo_feature(data.us_10m.url, 'states') background = alt.Chart(states).mark_geoshape( fill='lightgray', stroke='white' ).properties( width=600, height=400 ).project('albersUsa') foreground = alt.Chart(subset).mark_geoshape().encode( shape='geo:G', color=alt.condition(pts, 'name:N', alt.value('lightgray')), tooltip=['OriginState', 'DestState', 'PricePerTicket','Miles'] ).transform_lookup( lookup='id', from_=alt.LookupData(data=states, key='id'), as_='geo' ).properties( width=600, height=400, ).project( type='albersUsa' ) map = background + foreground st.altair_chart(alt.vconcat(heat_bar, map),use_container_width=True) st.sidebar.title("Note") st.sidebar.write("This flight price analysis consists of four parts.\ The first part is a flight customization section with predicted price range \ against historical price distribution.\ The second part presents a table of customized historical flights of interest. \ The third part displays the historical average flight price by route and airline company.\ The last part shows the available destination on the map and other information based on a chosen origin. ")
[ "pandas.read_csv", "utils.parse_time_hms", "altair.Chart", "numpy.log", "streamlit.sidebar.expander", "utils.parse_time", "numpy.array", "altair.X", "altair.Y", "altair.Legend", "streamlit.metric", "map.create_map", "streamlit.header", "numpy.arange", "streamlit.title", "streamlit.sidebar.title", "altair.value", "streamlit.cache", "streamlit.sidebar.write", "streamlit.expander", "altair.topo_feature", "vega_datasets.data.income", "numpy.exp", "altair.vconcat", "pandas.DataFrame", "streamlit.columns", "altair.LookupData", "streamlit.markdown", "streamlit.altair_chart", "altair.EncodingSortField", "altair.Axis", "streamlit.write", "altair.selection", "altair.ColorValue", "streamlit.dataframe", "streamlit.subheader", "streamlit.selectbox", "altair.Color", "altair.Scale", "airdata.AirData", "streamlit.sidebar.radio", "streamlit.slider" ]
[((358, 405), 'streamlit.cache', 'st.cache', ([], {'ttl': '(60 * 60)', 'suppress_st_warning': '(True)'}), '(ttl=60 * 60, suppress_st_warning=True)\n', (366, 405), True, 'import streamlit as st\n'), ((2654, 2764), 'streamlit.sidebar.radio', 'st.sidebar.radio', (['"""Menu"""', "['Introduction', 'Flight Map', 'Flight Delay Analysis', 'Flight Price Analysis'\n ]"], {}), "('Menu', ['Introduction', 'Flight Map',\n 'Flight Delay Analysis', 'Flight Price Analysis'])\n", (2670, 2764), True, 'import streamlit as st\n'), ((434, 443), 'airdata.AirData', 'AirData', ([], {}), '()\n', (441, 443), False, 'from airdata import AirData\n'), ((2518, 2535), 'pandas.read_csv', 'pd.read_csv', (['file'], {}), '(file)\n', (2529, 2535), True, 'import pandas as pd\n'), ((3106, 3129), 'streamlit.columns', 'st.columns', (['[0.5, 1, 4]'], {}), '([0.5, 1, 4])\n', (3116, 3129), True, 'import streamlit as st\n'), ((3952, 3990), 'streamlit.write', 'st.write', (['text'], {'unsafe_allow_html': '(True)'}), '(text, unsafe_allow_html=True)\n', (3960, 3990), True, 'import streamlit as st\n'), ((5486, 5524), 'streamlit.write', 'st.write', (['text'], {'unsafe_allow_html': '(True)'}), '(text, unsafe_allow_html=True)\n', (5494, 5524), True, 'import streamlit as st\n'), ((5803, 5841), 'streamlit.write', 'st.write', (['text'], {'unsafe_allow_html': '(True)'}), '(text, unsafe_allow_html=True)\n', (5811, 5841), True, 'import streamlit as st\n'), ((1095, 1133), 'pandas.read_csv', 'pd.read_csv', (['"""flight-price/df_viz.csv"""'], {}), "('flight-price/df_viz.csv')\n", (1106, 1133), True, 'import pandas as pd\n'), ((5892, 5939), 'streamlit.title', 'st.title', (['"""Real-time Flight Data Visualization"""'], {}), "('Real-time Flight Data Visualization')\n", (5900, 5939), True, 'import streamlit as st\n'), ((6477, 6789), 'streamlit.write', 'st.write', (['"""This is a map of real-time flights and airports. The blue circles are the airport, while the red squares are the flights. You can utilize the tool bar on the left tab to explore the data. You can also move your mouse over the map to see more information."""'], {}), "(\n 'This is a map of real-time flights and airports. The blue circles are the airport, while the red squares are the flights. You can utilize the tool bar on the left tab to explore the data. You can also move your mouse over the map to see more information.'\n )\n", (6485, 6789), True, 'import streamlit as st\n'), ((6800, 6837), 'map.create_map', 'create_map', (['flight_df', 'field', 'to_show'], {}), '(flight_df, field, to_show)\n', (6810, 6837), False, 'from map import create_map\n'), ((6843, 6893), 'streamlit.altair_chart', 'st.altair_chart', (['map_air'], {'use_container_width': '(True)'}), '(map_air, use_container_width=True)\n', (6858, 6893), True, 'import streamlit as st\n'), ((6898, 6922), 'streamlit.sidebar.title', 'st.sidebar.title', (['"""Note"""'], {}), "('Note')\n", (6914, 6922), True, 'import streamlit as st\n'), ((6928, 7298), 'streamlit.sidebar.write', 'st.sidebar.write', (['"""This visualization consists of three components. The first component is a map that shows real-time flights and airports in the U.S. The second component, linked to the first component, is an analysis tool for the real-time flight and airport data. The third component displays the time information of a flight."""'], {}), "(\n 'This visualization consists of three components. The first component is a map that shows real-time flights and airports in the U.S. The second component, linked to the first component, is an analysis tool for the real-time flight and airport data. The third component displays the time information of a flight.'\n )\n", (6944, 7298), True, 'import streamlit as st\n'), ((7570, 7631), 'streamlit.write', 'st.write', (['"""Here we display the time information of a flight."""'], {}), "('Here we display the time information of a flight.')\n", (7578, 7631), True, 'import streamlit as st\n'), ((8112, 8125), 'streamlit.columns', 'st.columns', (['(2)'], {}), '(2)\n', (8122, 8125), True, 'import streamlit as st\n'), ((8664, 8677), 'streamlit.columns', 'st.columns', (['(2)'], {}), '(2)\n', (8674, 8677), True, 'import streamlit as st\n'), ((1423, 1436), 'numpy.exp', 'np.exp', (['lb[0]'], {}), '(lb[0])\n', (1429, 1436), True, 'import numpy as np\n'), ((1447, 1462), 'numpy.exp', 'np.exp', (['pred[0]'], {}), '(pred[0])\n', (1453, 1462), True, 'import numpy as np\n'), ((1473, 1486), 'numpy.exp', 'np.exp', (['ub[0]'], {}), '(ub[0])\n', (1479, 1486), True, 'import numpy as np\n'), ((1557, 1598), 'pandas.read_csv', 'pd.read_csv', (['"""flight-price/train_viz.csv"""'], {}), "('flight-price/train_viz.csv')\n", (1568, 1598), True, 'import pandas as pd\n'), ((6002, 6054), 'streamlit.sidebar.expander', 'st.sidebar.expander', (['"""Analysis for flights/airports"""'], {}), "('Analysis for flights/airports')\n", (6021, 6054), True, 'import streamlit as st\n'), ((6064, 6149), 'streamlit.write', 'st.write', (['"""This is an analysis tool from the perspective of flights or airports"""'], {}), "('This is an analysis tool from the perspective of flights or airports'\n )\n", (6072, 6149), True, 'import streamlit as st\n'), ((6163, 6217), 'streamlit.selectbox', 'st.selectbox', (['"""Data to look at"""', "['flight', 'airport']"], {}), "('Data to look at', ['flight', 'airport'])\n", (6175, 6217), True, 'import streamlit as st\n'), ((8187, 8236), 'utils.parse_time', 'parse_time', (["option_time['scheduled']['departure']"], {}), "(option_time['scheduled']['departure'])\n", (8197, 8236), False, 'from utils import parse_time, parse_time_hms\n'), ((8514, 8558), 'utils.parse_time', 'parse_time', (["option_time['real']['departure']"], {}), "(option_time['real']['departure'])\n", (8524, 8558), False, 'from utils import parse_time, parse_time_hms\n'), ((8576, 8604), 'utils.parse_time_hms', 'parse_time_hms', (['depart_delta'], {}), '(depart_delta)\n', (8590, 8604), False, 'from utils import parse_time, parse_time_hms\n'), ((8720, 8767), 'utils.parse_time', 'parse_time', (["option_time['scheduled']['arrival']"], {}), "(option_time['scheduled']['arrival'])\n", (8730, 8767), False, 'from utils import parse_time, parse_time_hms\n'), ((8952, 8976), 'utils.parse_time', 'parse_time', (['arrival_time'], {}), '(arrival_time)\n', (8962, 8976), False, 'from utils import parse_time, parse_time_hms\n'), ((9259, 9292), 'streamlit.title', 'st.title', (['"""Flight Delay Analysis"""'], {}), "('Flight Delay Analysis')\n", (9267, 9292), True, 'import streamlit as st\n'), ((9298, 9322), 'streamlit.sidebar.title', 'st.sidebar.title', (['"""Note"""'], {}), "('Note')\n", (9314, 9322), True, 'import streamlit as st\n'), ((9328, 9941), 'streamlit.sidebar.write', 'st.sidebar.write', (['"""This flight delay analysis consists of four parts: The first part is a data slicing tool that allows the users to filter any flight data according to the different departure airport. The second part lists out all the flights flying from the selected departure airport, and displays the relevant delay time information of the flights. The third part displays a stripplot graph to allow the users to visually compare the different departure delay time of flights of different airlines. The last part compares the average delay time of different airlines. """'], {}), "(\n 'This flight delay analysis consists of four parts: The first part is a data slicing tool that allows the users to filter any flight data according to the different departure airport. The second part lists out all the flights flying from the selected departure airport, and displays the relevant delay time information of the flights. The third part displays a stripplot graph to allow the users to visually compare the different departure delay time of flights of different airlines. The last part compares the average delay time of different airlines. '\n )\n", (9344, 9941), True, 'import streamlit as st\n'), ((9951, 9960), 'airdata.AirData', 'AirData', ([], {}), '()\n', (9958, 9960), False, 'from airdata import AirData\n'), ((10002, 10025), 'streamlit.header', 'st.header', (['"""Slice Data"""'], {}), "('Slice Data')\n", (10011, 10025), True, 'import streamlit as st\n'), ((10030, 10128), 'streamlit.write', 'st.write', (['"""You can filter the airline data by choosing the different departure airport."""'], {}), "(\n 'You can filter the airline data by choosing the different departure airport.'\n )\n", (10038, 10128), True, 'import streamlit as st\n'), ((10434, 10465), 'streamlit.header', 'st.header', (['"""Data Visualization"""'], {}), "('Data Visualization')\n", (10443, 10465), True, 'import streamlit as st\n'), ((17100, 17133), 'streamlit.title', 'st.title', (['"""Flight Price Analysis"""'], {}), "('Flight Price Analysis')\n", (17108, 17133), True, 'import streamlit as st\n'), ((17166, 17202), 'streamlit.header', 'st.header', (['"""Flight Price Prediction"""'], {}), "('Flight Price Prediction')\n", (17175, 17202), True, 'import streamlit as st\n'), ((17207, 17317), 'streamlit.write', 'st.write', (['"""Tell us your intended flight information and get predicted flight price value and range."""'], {}), "(\n 'Tell us your intended flight information and get predicted flight price value and range.'\n )\n", (17215, 17317), True, 'import streamlit as st\n'), ((17326, 17365), 'pandas.read_csv', 'pd.read_csv', (['"""flight-price/X_train.csv"""'], {}), "('flight-price/X_train.csv')\n", (17337, 17365), True, 'import pandas as pd\n'), ((17505, 17523), 'streamlit.columns', 'st.columns', (['[3, 2]'], {}), '([3, 2])\n', (17515, 17523), True, 'import streamlit as st\n'), ((20841, 20927), 'streamlit.header', 'st.header', (['"""Check the historical information of the flight you are interested in"""'], {}), "(\n 'Check the historical information of the flight you are interested in')\n", (20850, 20927), True, 'import streamlit as st\n'), ((20927, 20984), 'streamlit.write', 'st.write', (['"""We will look at some historical data in 2018."""'], {}), "('We will look at some historical data in 2018.')\n", (20935, 20984), True, 'import streamlit as st\n'), ((21023, 21036), 'streamlit.columns', 'st.columns', (['(4)'], {}), '(4)\n', (21033, 21036), True, 'import streamlit as st\n'), ((22460, 22563), 'streamlit.header', 'st.header', (['"""Choose the season you want to travel, find the most economical route and airline"""'], {}), "(\n 'Choose the season you want to travel, find the most economical route and airline'\n )\n", (22469, 22563), True, 'import streamlit as st\n'), ((23395, 23444), 'altair.selection', 'alt.selection', ([], {'type': '"""multi"""', 'encodings': "['x', 'y']"}), "(type='multi', encodings=['x', 'y'])\n", (23408, 23444), True, 'import altair as alt\n'), ((24078, 24174), 'streamlit.header', 'st.header', (['"""Compare the price of different destination based on the origin you choose"""'], {}), "(\n 'Compare the price of different destination based on the origin you choose'\n )\n", (24087, 24174), True, 'import streamlit as st\n'), ((24633, 24682), 'altair.selection', 'alt.selection', ([], {'type': '"""multi"""', 'encodings': "['x', 'y']"}), "(type='multi', encodings=['x', 'y'])\n", (24646, 24682), True, 'import altair as alt\n'), ((24935, 24978), 'altair.topo_feature', 'alt.topo_feature', (['data.us_10m.url', '"""states"""'], {}), "(data.us_10m.url, 'states')\n", (24951, 24978), True, 'import altair as alt\n'), ((25737, 25761), 'streamlit.sidebar.title', 'st.sidebar.title', (['"""Note"""'], {}), "('Note')\n", (25753, 25761), True, 'import streamlit as st\n'), ((25767, 26274), 'streamlit.sidebar.write', 'st.sidebar.write', (['"""This flight price analysis consists of four parts. The first part is a flight customization section with predicted price range against historical price distribution. The second part presents a table of customized historical flights of interest. The third part displays the historical average flight price by route and airline company. The last part shows the available destination on the map and other information based on a chosen origin. """'], {}), "(\n 'This flight price analysis consists of four parts. The first part is a flight customization section with predicted price range against historical price distribution. The second part presents a table of customized historical flights of interest. The third part displays the historical average flight price by route and airline company. The last part shows the available destination on the map and other information based on a chosen origin. '\n )\n", (25783, 26274), True, 'import streamlit as st\n'), ((6270, 6347), 'streamlit.selectbox', 'st.selectbox', (['"""Variable of interest"""', "['heading', 'altitude', 'ground_speed']"], {}), "('Variable of interest', ['heading', 'altitude', 'ground_speed'])\n", (6282, 6347), True, 'import streamlit as st\n'), ((6382, 6475), 'streamlit.selectbox', 'st.selectbox', (['"""Variable of interest"""', "['origin_airport_iata', 'destination_airport_iata']"], {}), "('Variable of interest', ['origin_airport_iata',\n 'destination_airport_iata'])\n", (6394, 6475), True, 'import streamlit as st\n'), ((10128, 10151), 'streamlit.expander', 'st.expander', (['"""Airports"""'], {}), "('Airports')\n", (10139, 10151), True, 'import streamlit as st\n'), ((10252, 10307), 'streamlit.selectbox', 'st.selectbox', (['"""Departure Airport:"""', 'origin_airport_list'], {}), "('Departure Airport:', origin_airport_list)\n", (10264, 10307), True, 'import streamlit as st\n'), ((10475, 10536), 'streamlit.expander', 'st.expander', (['"""Flight delay from different departure airports"""'], {}), "('Flight delay from different departure airports')\n", (10486, 10536), True, 'import streamlit as st\n'), ((10546, 10676), 'streamlit.write', 'st.write', (['"""This data indicates all the current flights coming from the departure airport and their related delay times."""'], {}), "(\n 'This data indicates all the current flights coming from the departure airport and their related delay times.'\n )\n", (10554, 10676), True, 'import streamlit as st\n'), ((12200, 12249), 'streamlit.expander', 'st.expander', (['"""Flight delay of different airlines"""'], {}), "('Flight delay of different airlines')\n", (12211, 12249), True, 'import streamlit as st\n'), ((12259, 12369), 'streamlit.write', 'st.write', (['"""This data compares the punctuality and departure delay times between different airlines."""'], {}), "(\n 'This data compares the punctuality and departure delay times between different airlines.'\n )\n", (12267, 12369), True, 'import streamlit as st\n'), ((13727, 13795), 'streamlit.expander', 'st.expander', (['"""Compare average departure delay of different airlines"""'], {}), "('Compare average departure delay of different airlines')\n", (13738, 13795), True, 'import streamlit as st\n'), ((17697, 17759), 'streamlit.selectbox', 'st.selectbox', (['"""Season"""', "['Spring', 'Summer', 'Fall', 'Winter']"], {}), "('Season', ['Spring', 'Summer', 'Fall', 'Winter'])\n", (17709, 17759), True, 'import streamlit as st\n'), ((17837, 17877), 'streamlit.slider', 'st.slider', (['"""Number of tickets"""', '(1)', '(15)', '(1)'], {}), "('Number of tickets', 1, 15, 1)\n", (17846, 17877), True, 'import streamlit as st\n'), ((19036, 19124), 'streamlit.write', 'st.write', (['"""See where your flight falls in the historical price distribution (2018)"""'], {}), "(\n 'See where your flight falls in the historical price distribution (2018)')\n", (19044, 19124), True, 'import streamlit as st\n'), ((22100, 22146), 'streamlit.metric', 'st.metric', (['""" """', '"""No Historical Data Available"""'], {}), "(' ', 'No Historical Data Available')\n", (22109, 22146), True, 'import streamlit as st\n'), ((22155, 22257), 'streamlit.write', 'st.write', (['"""Please deselect some quarter/airline options or change origin/destination state."""'], {}), "(\n 'Please deselect some quarter/airline options or change origin/destination state.'\n )\n", (22163, 22257), True, 'import streamlit as st\n'), ((22267, 22293), 'streamlit.dataframe', 'st.dataframe', ([], {'data': 'df_show'}), '(data=df_show)\n', (22279, 22293), True, 'import streamlit as st\n'), ((24021, 24043), 'altair.vconcat', 'alt.vconcat', (['heat', 'box'], {}), '(heat, box)\n', (24032, 24043), True, 'import altair as alt\n'), ((25675, 25701), 'altair.vconcat', 'alt.vconcat', (['heat_bar', 'map'], {}), '(heat_bar, map)\n', (25686, 25701), True, 'import altair as alt\n'), ((14899, 14936), 'utils.parse_time_hms', 'parse_time_hms', (['airline_average_delay'], {}), '(airline_average_delay)\n', (14913, 14936), False, 'from utils import parse_time, parse_time_hms\n'), ((16701, 16714), 'streamlit.columns', 'st.columns', (['(2)'], {}), '(2)\n', (16711, 16714), True, 'import streamlit as st\n'), ((17455, 17467), 'numpy.arange', 'np.arange', (['(1)'], {}), '(1)\n', (17464, 17467), True, 'import numpy as np\n'), ((17588, 17604), 'numpy.array', 'np.array', (['origin'], {}), '(origin)\n', (17596, 17604), True, 'import numpy as np\n'), ((17656, 17670), 'numpy.array', 'np.array', (['dest'], {}), '(dest)\n', (17664, 17670), True, 'import numpy as np\n'), ((17807, 17820), 'numpy.array', 'np.array', (['air'], {}), '(air)\n', (17815, 17820), True, 'import numpy as np\n'), ((18533, 18546), 'numpy.log', 'np.log', (['miles'], {}), '(miles)\n', (18539, 18546), True, 'import numpy as np\n'), ((18573, 18589), 'streamlit.markdown', 'st.markdown', (['""" """'], {}), "(' ')\n", (18584, 18589), True, 'import streamlit as st\n'), ((18652, 18673), 'pandas.DataFrame', 'pd.DataFrame', (['df_pred'], {}), '(df_pred)\n', (18664, 18673), True, 'import pandas as pd\n'), ((18706, 18748), 'streamlit.subheader', 'st.subheader', (['"""Predicted Price per Ticket"""'], {}), "('Predicted Price per Ticket')\n", (18718, 18748), True, 'import streamlit as st\n'), ((18761, 18817), 'streamlit.metric', 'st.metric', (['"""Low"""', 'f"""${low}"""', '"""+$"""'], {'delta_color': '"""inverse"""'}), "('Low', f'${low}', '+$', delta_color='inverse')\n", (18770, 18817), True, 'import streamlit as st\n'), ((18828, 18857), 'streamlit.metric', 'st.metric', (['"""Mean"""', 'f"""${mean}"""'], {}), "('Mean', f'${mean}')\n", (18837, 18857), True, 'import streamlit as st\n'), ((18870, 18928), 'streamlit.metric', 'st.metric', (['"""High"""', 'f"""${high}"""', '"""-$"""'], {'delta_color': '"""inverse"""'}), "('High', f'${high}', '-$', delta_color='inverse')\n", (18879, 18928), True, 'import streamlit as st\n'), ((18953, 19019), 'pandas.DataFrame', 'pd.DataFrame', (['[[low, mean, high]]'], {'columns': "['Low', 'Mean', 'High']"}), "([[low, mean, high]], columns=['Low', 'Mean', 'High'])\n", (18965, 19019), True, 'import pandas as pd\n'), ((19133, 19170), 'streamlit.expander', 'st.expander', (['"""See price distribution"""'], {}), "('See price distribution')\n", (19144, 19170), True, 'import streamlit as st\n'), ((20351, 20405), 'streamlit.altair_chart', 'st.altair_chart', (['price_chart'], {'use_container_width': '(True)'}), '(price_chart, use_container_width=True)\n', (20366, 20405), True, 'import streamlit as st\n'), ((20455, 20486), 'streamlit.metric', 'st.metric', (['""" """', '"""Not Available"""'], {}), "(' ', 'Not Available')\n", (20464, 20486), True, 'import streamlit as st\n'), ((20499, 20566), 'streamlit.markdown', 'st.markdown', (['"""**Please choose a different origin or destination!**"""'], {}), "('**Please choose a different origin or destination!**')\n", (20510, 20566), True, 'import streamlit as st\n'), ((12863, 12891), 'utils.parse_time_hms', 'parse_time_hms', (['depart_delta'], {}), '(depart_delta)\n', (12877, 12891), False, 'from utils import parse_time, parse_time_hms\n'), ((11295, 11308), 'streamlit.columns', 'st.columns', (['(3)'], {}), '(3)\n', (11305, 11308), True, 'import streamlit as st\n'), ((11846, 11859), 'streamlit.columns', 'st.columns', (['(3)'], {}), '(3)\n', (11856, 11859), True, 'import streamlit as st\n'), ((19776, 19788), 'altair.value', 'alt.value', (['(4)'], {}), '(4)\n', (19785, 19788), True, 'import altair as alt\n'), ((19970, 19982), 'altair.value', 'alt.value', (['(2)'], {}), '(2)\n', (19979, 19982), True, 'import altair as alt\n'), ((20187, 20199), 'altair.value', 'alt.value', (['(2)'], {}), '(2)\n', (20196, 20199), True, 'import altair as alt\n'), ((11472, 11500), 'utils.parse_time_hms', 'parse_time_hms', (['depart_delta'], {}), '(depart_delta)\n', (11486, 11500), False, 'from utils import parse_time, parse_time_hms\n'), ((12023, 12051), 'utils.parse_time_hms', 'parse_time_hms', (['depart_delta'], {}), '(depart_delta)\n', (12037, 12051), False, 'from utils import parse_time, parse_time_hms\n'), ((12126, 12154), 'utils.parse_time_hms', 'parse_time_hms', (['arrive_delta'], {}), '(arrive_delta)\n', (12140, 12154), False, 'from utils import parse_time, parse_time_hms\n'), ((15697, 15738), 'altair.Chart', 'alt.Chart', (['flight_df_selected2'], {'width': '(640)'}), '(flight_df_selected2, width=640)\n', (15706, 15738), True, 'import altair as alt\n'), ((15808, 15830), 'altair.Axis', 'alt.Axis', ([], {'labels': '(False)'}), '(labels=False)\n', (15816, 15830), True, 'import altair as alt\n'), ((15874, 15962), 'altair.EncodingSortField', 'alt.EncodingSortField', ([], {'field': '"""airline_average_delay"""', 'op': '"""count"""', 'order': '"""ascending"""'}), "(field='airline_average_delay', op='count', order=\n 'ascending')\n", (15895, 15962), True, 'import altair as alt\n'), ((23602, 23624), 'altair.ColorValue', 'alt.ColorValue', (['"""grey"""'], {}), "('grey')\n", (23616, 23624), True, 'import altair as alt\n'), ((24840, 24862), 'altair.ColorValue', 'alt.ColorValue', (['"""grey"""'], {}), "('grey')\n", (24854, 24862), True, 'import altair as alt\n'), ((19657, 19679), 'altair.Chart', 'alt.Chart', (['df_interval'], {}), '(df_interval)\n', (19666, 19679), True, 'import altair as alt\n'), ((23456, 23477), 'altair.Chart', 'alt.Chart', (['heat_price'], {}), '(heat_price)\n', (23465, 23477), True, 'import altair as alt\n'), ((23862, 23889), 'altair.Color', 'alt.Color', (['"""AirlineCompany"""'], {}), "('AirlineCompany')\n", (23871, 23889), True, 'import altair as alt\n'), ((24698, 24715), 'altair.Chart', 'alt.Chart', (['subset'], {}), '(subset)\n', (24707, 24715), True, 'import altair as alt\n'), ((25001, 25018), 'altair.Chart', 'alt.Chart', (['states'], {}), '(states)\n', (25010, 25018), True, 'import altair as alt\n'), ((25451, 25488), 'altair.LookupData', 'alt.LookupData', ([], {'data': 'states', 'key': '"""id"""'}), "(data=states, key='id')\n", (25465, 25488), True, 'import altair as alt\n'), ((19299, 19354), 'altair.X', 'alt.X', (['"""PricePerTicket:Q"""'], {'title': '"""Price per Ticket ($)"""'}), "('PricePerTicket:Q', title='Price per Ticket ($)')\n", (19304, 19354), True, 'import altair as alt\n'), ((19401, 19446), 'altair.Y', 'alt.Y', (['"""count()"""'], {'title': '"""Raw Frequency Count"""'}), "('count()', title='Raw Frequency Count')\n", (19406, 19446), True, 'import altair as alt\n'), ((23735, 23748), 'altair.Chart', 'alt.Chart', (['df'], {}), '(df)\n', (23744, 23748), True, 'import altair as alt\n'), ((24457, 24470), 'vega_datasets.data.income', 'data.income', ([], {}), '()\n', (24468, 24470), False, 'from vega_datasets import data\n'), ((13274, 13317), 'altair.Y', 'alt.Y', (['"""airline_iata"""'], {'title': '"""Airline iata"""'}), "('airline_iata', title='Airline iata')\n", (13279, 13317), True, 'import altair as alt\n'), ((25296, 25318), 'altair.value', 'alt.value', (['"""lightgray"""'], {}), "('lightgray')\n", (25305, 25318), True, 'import altair as alt\n'), ((19220, 19237), 'altair.Chart', 'alt.Chart', (['df_viz'], {}), '(df_viz)\n', (19229, 19237), True, 'import altair as alt\n'), ((25188, 25205), 'altair.Chart', 'alt.Chart', (['subset'], {}), '(subset)\n', (25197, 25205), True, 'import altair as alt\n'), ((13059, 13100), 'altair.Chart', 'alt.Chart', (['flight_df_selected1'], {'width': '(640)'}), '(flight_df_selected1, width=640)\n', (13068, 13100), True, 'import altair as alt\n'), ((13246, 13257), 'altair.Scale', 'alt.Scale', ([], {}), '()\n', (13255, 13257), True, 'import altair as alt\n'), ((13403, 13429), 'altair.Legend', 'alt.Legend', ([], {'orient': '"""right"""'}), "(orient='right')\n", (13413, 13429), True, 'import altair as alt\n')]
import numpy as np import pandas as pd def Loader(events,args): """ Create a table with the pulses """ gb = events.groupby('Pulse',sort=False) pulses = events.loc[gb.Sigma.idxmax()] pulses.index = pulses.Pulse pulses.index.name = None pulses = pulses.drop('Pulse', axis='columns') pulses.index.name = 'idx' pulses['Rank'] = 0 pulses.Rank = pulses.Rank.astype(np.int8) pulses['Candidate'] = -1 pulses.Candidate = pulses.Candidate.astype(np.int32) pulses['N_events'] = gb.DM.count() pulses.N_events = pulses.N_events.astype(np.int16) pulses = pulses[pulses.N_events >= args.N_min] if pulses.shape[0] == 0: return pulses # Apply filters to discriminate interesting pulses if not args.no_filter: classic_filters(events[events.Pulse.isin(pulses.index)], pulses, args) #Store the pulses pulses.sort_values(['DM','Time'], inplace=True) if not args.no_store: pulses.to_hdf(args.store_name, 'pulses') return pulses def classic_filters(events, pulses, args): """ Apply RFI filters to the pulses """ RFI_code = 9 events = events[events.Pulse.isin(pulses.index)] events.sort_values(by='DM',inplace=True) gb = events.groupby('Pulse') pulses.sort_index(inplace=True) #Remove flat SNR pulses pulses.Rank[pulses.Sigma / gb.Sigma.min() <= args.SNR_peak_min / args.SNR_min] = RFI_code #Remove flat duration pulses (from Eq.6.21 of Pulsar Handbook) pulses.Rank.loc[gb.Downfact.max() / pulses.Downfact < (args.SNR_peak_min / args.SNR_min)**2] = RFI_code #Remove pulses peaking near the DM edges if args.DM_range is not None: DM_frac = (args.DM_range[1] - args.DM_range[0]) * 0.05 #Remove 5% of DM range from each edge pulses.Rank[(pulses.DM < args.DM_range[0] + DM_frac) | (pulses.DM > args.DM_range[1] - DM_frac)] = RFI_code #Remove pulses intersecting half the maximum SNR other than 2,4,6,8 times def crosses(sig): diff = sig - (sig.max() + sig.min()) / 2. count = np.count_nonzero(np.diff(np.sign(diff))) return (count != 2) & (count != 4) & (count != 6) & (count != 8) pulses.Rank[gb.apply(lambda x: crosses(x.Sigma))] = RFI_code #Remove weaker pulses within 20 ms of brighter ones def simultaneous(p): puls = pulses.Rank[np.abs(pulses.Time-p.Time) < 0.02] if puls.shape[0] == 1: return False if p.name == puls.index[0]: return False else: return True pulses.Rank[pulses.apply(lambda x: simultaneous(x), axis=1)] = RFI_code return
[ "numpy.abs", "numpy.sign" ]
[((1990, 2003), 'numpy.sign', 'np.sign', (['diff'], {}), '(diff)\n', (1997, 2003), True, 'import numpy as np\n'), ((2239, 2267), 'numpy.abs', 'np.abs', (['(pulses.Time - p.Time)'], {}), '(pulses.Time - p.Time)\n', (2245, 2267), True, 'import numpy as np\n')]
# Author: <NAME> at 16/08/2021 <<EMAIL>> # Licence: MIT License # Copyright: <NAME> (2018) <<EMAIL>> from functools import partial import numpy as np from scipy import linalg from .utils import (readout_forward, _initialize_readout, _prepare_inputs_for_learning) from ..base.node import Node from ..base.types import global_dtype def _solve_ridge(XXT, YXT, ridge): return linalg.solve(XXT + ridge, YXT.T, assume_a="sym") def partial_backward(readout: Node, X_batch, Y_batch=None): transient = readout.transient X, Y = _prepare_inputs_for_learning(X_batch, Y_batch, transient=transient, bias=readout.input_bias, allow_reshape=True) xxt = X.T.dot(X) yxt = Y.T.dot(X) XXT = readout.get_buffer("XXT") YXT = readout.get_buffer("YXT") # This is not thread-safe, apparently, using Numpy memmap as buffers # ok for parallelization then with a lock (see ESN object) XXT += xxt YXT += yxt def backward(readout: Node, X=None, Y=None): ridge = readout.ridge XXT = readout.get_buffer("XXT") YXT = readout.get_buffer("YXT") input_dim = readout.input_dim if readout.input_bias: input_dim += 1 ridgeid = (ridge * np.eye(input_dim, dtype=global_dtype)) Wout_raw = _solve_ridge(XXT, YXT, ridgeid) if readout.input_bias: Wout, bias = Wout_raw[1:, :], Wout_raw[0, :][np.newaxis, :] readout.set_param("Wout", Wout) readout.set_param("bias", bias) else: readout.set_param("Wout", Wout_raw) def initialize(readout: Node, x=None, y=None, Wout_init=None): _initialize_readout(readout, x, y, bias=readout.input_bias, init_func=Wout_init) def initialize_buffers(readout): # create memmaped buffers for matrices X.X^T and Y.X^T pre-computed # in parallel for ridge regression # ! only memmap can be used ! Impossible to share Numpy arrays with # different processes in r/w mode otherwise (with proper locking) input_dim = readout.input_dim output_dim = readout.output_dim if readout.input_bias: input_dim += 1 readout.create_buffer("XXT", (input_dim, input_dim)) readout.create_buffer("YXT", (output_dim, input_dim)) class Ridge(Node): def __init__(self, output_dim=None, ridge=0.0, transient=0, Wout=None, input_bias=True, name=None): super(Ridge, self).__init__(params={"Wout": None, "bias": None}, hypers={"ridge": ridge, "transient": transient, "input_bias": input_bias}, forward=readout_forward, partial_backward=partial_backward, backward=backward, output_dim=output_dim, initializer=partial(initialize, Wout_init=Wout), buffers_initializer=initialize_buffers, name=name)
[ "numpy.eye", "functools.partial", "scipy.linalg.solve" ]
[((401, 449), 'scipy.linalg.solve', 'linalg.solve', (['(XXT + ridge)', 'YXT.T'], {'assume_a': '"""sym"""'}), "(XXT + ridge, YXT.T, assume_a='sym')\n", (413, 449), False, 'from scipy import linalg\n'), ((1328, 1365), 'numpy.eye', 'np.eye', (['input_dim'], {'dtype': 'global_dtype'}), '(input_dim, dtype=global_dtype)\n', (1334, 1365), True, 'import numpy as np\n'), ((3167, 3202), 'functools.partial', 'partial', (['initialize'], {'Wout_init': 'Wout'}), '(initialize, Wout_init=Wout)\n', (3174, 3202), False, 'from functools import partial\n')]
import pandas as pd import numpy as np from numpy import corrcoef import matplotlib.pyplot as plt from sklearn.feature_selection import chi2 from sklearn.feature_selection import f_classif from math import * plt.style.use('ggplot') fig = plt.figure() COUNTER = 1 #Return the category dictionary,categorical variables list and continuous list for every column in dataframe. #The categories are assigned as "target(type)_feature(type)" def get_category(df,target_name,categorical_name,columns_name): cat_dict = {} fin_cat_dict = {} catg_catg = [] cont_cont = [] catg_cont = [] cont_catg = [] for col in columns_name: if len(df[col].unique())<=2: cat_dict[col] = "categorical" elif col in categorical_name: cat_dict[col] = "categorical" else: cat_dict[col] = "continous" for col in cat_dict: if cat_dict[col]=="categorical" and cat_dict[target_name]=="categorical": fin_cat_dict[col] = "catg_catg" catg_catg.append(col) elif cat_dict[col]=="continous" and cat_dict[target_name]=="continous": fin_cat_dict[col] = "cont_cont" cont_cont.append(col) elif cat_dict[col]=="continous" and cat_dict[target_name]=="categorical": fin_cat_dict[col] = "catg_cont" catg_cont.append(col) else: fin_cat_dict[col] = "cont_catg" cont_catg.append(col) return fin_cat_dict,catg_catg,cont_cont,catg_cont,cont_catg #Return True if the categorical_name are present in the orignal dataframe columns. def is_present(columns_name,categorical_name): ls = [i for i in categorical_name if i not in columns_name] if len(ls)==0: return True else: raise ValueError(str(ls)+" is not present as a column in the data,Please check the name") #Function returns list of columns with non-numeric data. def clean_str_list(df,lst): rem=[] for i in lst: res = any(isinstance(n,str) for n in df[i]) if res == True: rem.append(i) for j in rem: lst.remove(j) return lst #Returns the Pearson Correlation Coefficient for the continous data columns. def pearson_correlation_cont_cont(x,y): return corrcoef(x,y) # This function is for the bivariate analysis between two continous varibale.Plots scatter plots and shows the coeff for the data. def bivariate_analysis_cont_cont(cont_cont_list,df,target_name,sub_len,COUNTER,PLOT_ROW_SIZE,PLOT_COLUMNS_SIZE): clean_cont_cont_list = clean_str_list(df,cont_cont_list) if len(clean_str_list(df,[target_name])) == 0 and len(cont_cont_list)>0: raise ValueError("You seem to have a target variable with string values.") clean_df = df.dropna() for col in clean_cont_cont_list: summary = clean_df[col].describe() count = summary[0] mean = summary[1] std = summary[2] plt.subplot(PLOT_ROW_SIZE,PLOT_COLUMNS_SIZE,COUNTER) plt.title("mean "+str(np.float32(mean))+" std "+str(np.float32(std)),fontsize=10) x = clean_df[col] y = np.float32(clean_df[target_name]) corr = pearson_correlation_cont_cont(x,y) plt.xlabel(col+"\n count "+str(count)+"\n Corr: "+str(np.float32(corr[0][1])), fontsize=10) plt.ylabel(target_name, fontsize=10) plt.scatter(x,y) print (col+" vs "+target_name+" plotted....") COUNTER +=1 return plt,COUNTER #Chi test is used to see association between catgorical vs categorical variables. #Lower Pvalue are significant they should be < 0.05 #chi value = X^2 = summation [(observed-expected)^2/expected] # The distribution of the statistic X2 is chi-square with (r-1)(c-1) degrees of freedom, where r represents the number of rows in the two-way table and c represents the number of columns. The distribution is denoted (df), where df is the number of degrees of freedom. #pvalue = p(df>=x^2) def evaluate_chi(x,y): chi,p_val = chi2(x,y) return chi,p_val def bivariate_analysis_catg_catg(catg_catg_list,df,target_name,sub_len,COUNTER,PLOT_ROW_SIZE,PLOT_COLUMNS_SIZE,bin_size="auto"): clean_catg_catg_list = clean_str_list(df,catg_catg_list) clean_df = df.dropna() target_classes =df[target_name].unique() label = [str(i) for i in target_classes] c = 0 for col in clean_catg_catg_list: summary = clean_df[col].describe() binwidth = 0.7 if bin_size == 'auto': bins_size =np.arange(min(clean_df[col].tolist()), max(clean_df[col].tolist()) + binwidth, binwidth) else: bins_size = bin_size count = summary[0] mean = summary[1] std = summary[2] plt.subplot(PLOT_ROW_SIZE,PLOT_COLUMNS_SIZE,COUNTER) plt.title("mean "+str(np.float32(mean))+" std "+str(np.float32(std)),fontsize=10) x = [np.array(clean_df[clean_df[target_name]==i][col]) for i in target_classes] y = clean_df[target_name] chi,p_val = evaluate_chi(np.array(clean_df[col]).reshape(-1,1),y) plt.xlabel(col+"\n chi: "+str(np.float32(chi[0]))+" / p_val: "+str(p_val[0]), fontsize=10) plt.ylabel("Frequency", fontsize=10) plt.hist(x,bins=bins_size,stacked=True,label = label) plt.legend(prop={'size': 10}) print (col+" vs "+target_name+" plotted....") COUNTER +=1 c+=1 return plt,COUNTER # Analysis of variance (ANOVA) is a collection of statistical models used to analyze the differences among group means and their associated procedures (such as "variation" among and between groups) # In its simplest form, ANOVA provides a statistical test of whether or not the means of several groups are equal, and therefore generalizes the t-test to more than two groups. ANOVAs are useful for comparing (testing) three or more means (groups or variables) for statistical significance. # A one-way ANOVA is used to compare the means of more than two independent groups. A one-way ANOVA comparing just two groups will give you the same results as the independent t test. def evaluate_anova(x,y): F_value,pvalue = f_classif(x,y) return F_value,pvalue # In descriptive statistics, a box plot or boxplot is a convenient way of graphically depicting groups of numerical data through their quartiles. Box plots may also have lines extending vertically from the boxes (whiskers) indicating variability outside the upper and lower quartiles, hence the terms box-and-whisker plot and box-and-whisker diagram. # Quartile: In descriptive statistics, the quartiles of a ranked set of data values are the three points that divide the data set into four equal groups, each group comprising a quarter of the data def bivariate_analysis_cont_catg(cont_catg_list,df,target_name,sub_len,COUNTER,PLOT_ROW_SIZE,PLOT_COLUMNS_SIZE): clean_cont_catg_list = clean_str_list(df,cont_catg_list) if len(clean_str_list(df,[target_name])) == 0 and len(cont_catg_list)>0: raise ValueError("You seem to have a target variable with string values.") clean_df = df.dropna() for col in clean_cont_catg_list: col_classes =clean_df[col].unique() summary = clean_df[col].describe() count = summary[0] mean = summary[1] std = summary[2] plt.subplot(PLOT_ROW_SIZE,PLOT_COLUMNS_SIZE,COUNTER) plt.title("mean "+str(np.float32(mean))+" std "+str(np.float32(std)),fontsize=10) x = [np.array(clean_df[clean_df[col]==i][target_name]) for i in col_classes] y = np.float32(clean_df[target_name]) f_value,p_val = evaluate_anova(np.array(clean_df[col]).reshape(-1,1),y) plt.xlabel(col+"\n f_value: "+str(np.float32(f_value[0]))+" / p_val: "+str(p_val[0]), fontsize=10) plt.ylabel(target_name, fontsize=10) plt.boxplot(x) print (col+" vs "+target_name+" plotted....") COUNTER +=1 return plt,COUNTER # This function is for the bivariate analysis between categorical vs continuous varibale.Plots box plots. def bivariate_analysis_catg_cont(catg_cont_list,df,target_name,sub_len,COUNTER,PLOT_ROW_SIZE,PLOT_COLUMNS_SIZE): # No need to remove string varible as they are handled by chi2 function of sklearn. # clean_catg_cont_list = clean_str_list(df,catg_cont_list) clean_catg_cont_list = catg_cont_list clean_df = df.dropna() for col in clean_catg_cont_list: col_classes =df[target_name].unique() summary = clean_df[col].describe() count = summary[0] mean = summary[1] std = summary[2] plt.subplot(PLOT_ROW_SIZE,PLOT_COLUMNS_SIZE,COUNTER) plt.title("mean "+str(np.float32(mean))+" std "+str(np.float32(std)),fontsize=10) x = [np.array(clean_df[clean_df[target_name]==i][col]) for i in col_classes] y = clean_df[target_name] f_value,p_val = evaluate_anova(np.array(clean_df[col]).reshape(-1,1),y) plt.xlabel(target_name+"\n f_value: "+str(np.float32(f_value[0]))+" / p_val: "+str(p_val[0]), fontsize=10) plt.ylabel(col, fontsize=10) plt.boxplot(x) print (col+" vs "+target_name+" plotted....") COUNTER +=1 return plt,COUNTER #returns the total number of subplots to be made. def total_subplots(df,lst): clean_df = df.dropna() total = [len(clean_str_list(clean_df,i)) for i in lst] return sum(total) # This function returns new categotical list after removing drop values if in case they are written in both drop and categorical_name list. def remove_drop_from_catglist(drop,categorical_name): for col in drop: if col in categorical_name: categorical_name.remove(col) return categorical_name def plot(data_input,target_name="",categorical_name=[],drop=[],PLOT_COLUMNS_SIZE = 4,bin_size="auto",wspace=0.5,hspace=0.8): """ This is the main function to give Bivariate analysis between the target variable and the input features. Parameters ----------- data_input : Dataframe This is the input Dataframe with all data. target_name : String The name of the target column. categorical_name : list Names of all categorical variable columns with more than 2 classes, to distinguish with the continuous variables. drop : list Names of columns to be dropped. PLOT_COLUMNS_SIZE : int Number of plots to display vertically in the display window.The row size is adjusted accordingly. bin_size : int ;default="auto" Number of bins for the histogram displayed in the categorical vs categorical category. wspace : int ;default = 0.5 Horizontal padding between subplot on the display window. hspace : int ;default = 0.5 Vertical padding between subplot on the display window. ----------- """ if type(data_input).__name__ == "DataFrame" : # Column names columns_name = data_input.columns.values #To drop user specified columns. if is_present(columns_name,drop): data_input = data_input.drop(drop,axis=1) columns_name = data_input.columns.values categorical_name = remove_drop_from_catglist(drop,categorical_name) else: raise ValueError("Couldn't find it in the input Dataframe!") if target_name == "": raise ValueError("Please mention a target variable") #Checks if the categorical_name are present in the orignal dataframe columns. categorical_is_present = is_present(columns_name,categorical_name) target_is_present = is_present(columns_name,[target_name]) if categorical_is_present: fin_cat_dict,catg_catg_list,cont_cont_list,catg_cont_list,cont_catg_list = get_category(data_input,target_name,categorical_name,columns_name) #Subplot(Total number of graphs) total = total_subplots(data_input,[cont_cont_list,catg_catg_list,catg_cont_list,cont_catg_list]) if total < PLOT_COLUMNS_SIZE: total = PLOT_COLUMNS_SIZE PLOT_ROW_SIZE = ceil(float(total)/PLOT_COLUMNS_SIZE) #Call various functions plot,count = bivariate_analysis_cont_cont(cont_cont_list,data_input,target_name,total,COUNTER,PLOT_ROW_SIZE,PLOT_COLUMNS_SIZE) plot,count = bivariate_analysis_catg_catg(catg_catg_list,data_input,target_name,total,count,PLOT_ROW_SIZE,PLOT_COLUMNS_SIZE,bin_size=bin_size) plot,count = bivariate_analysis_cont_catg(cont_catg_list,data_input,target_name,total,count,PLOT_ROW_SIZE,PLOT_COLUMNS_SIZE) plot,count = bivariate_analysis_catg_cont(catg_cont_list,data_input,target_name,total,count,PLOT_ROW_SIZE,PLOT_COLUMNS_SIZE) fig.subplots_adjust(bottom=0.08,left = 0.05,right=0.97,top=0.93,wspace = wspace,hspace = hspace) plot.show() else: raise ValueError("Make sure input data is a Dataframe.")
[ "matplotlib.pyplot.boxplot", "matplotlib.pyplot.hist", "numpy.corrcoef", "matplotlib.pyplot.ylabel", "sklearn.feature_selection.f_classif", "matplotlib.pyplot.style.use", "numpy.array", "matplotlib.pyplot.figure", "matplotlib.pyplot.scatter", "sklearn.feature_selection.chi2", "matplotlib.pyplot.subplot", "numpy.float32", "matplotlib.pyplot.legend" ]
[((208, 231), 'matplotlib.pyplot.style.use', 'plt.style.use', (['"""ggplot"""'], {}), "('ggplot')\n", (221, 231), True, 'import matplotlib.pyplot as plt\n'), ((239, 251), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (249, 251), True, 'import matplotlib.pyplot as plt\n'), ((2265, 2279), 'numpy.corrcoef', 'corrcoef', (['x', 'y'], {}), '(x, y)\n', (2273, 2279), False, 'from numpy import corrcoef\n'), ((4005, 4015), 'sklearn.feature_selection.chi2', 'chi2', (['x', 'y'], {}), '(x, y)\n', (4009, 4015), False, 'from sklearn.feature_selection import chi2\n'), ((6159, 6174), 'sklearn.feature_selection.f_classif', 'f_classif', (['x', 'y'], {}), '(x, y)\n', (6168, 6174), False, 'from sklearn.feature_selection import f_classif\n'), ((2942, 2996), 'matplotlib.pyplot.subplot', 'plt.subplot', (['PLOT_ROW_SIZE', 'PLOT_COLUMNS_SIZE', 'COUNTER'], {}), '(PLOT_ROW_SIZE, PLOT_COLUMNS_SIZE, COUNTER)\n', (2953, 2996), True, 'import matplotlib.pyplot as plt\n'), ((3124, 3157), 'numpy.float32', 'np.float32', (['clean_df[target_name]'], {}), '(clean_df[target_name])\n', (3134, 3157), True, 'import numpy as np\n'), ((3317, 3353), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['target_name'], {'fontsize': '(10)'}), '(target_name, fontsize=10)\n', (3327, 3353), True, 'import matplotlib.pyplot as plt\n'), ((3362, 3379), 'matplotlib.pyplot.scatter', 'plt.scatter', (['x', 'y'], {}), '(x, y)\n', (3373, 3379), True, 'import matplotlib.pyplot as plt\n'), ((4739, 4793), 'matplotlib.pyplot.subplot', 'plt.subplot', (['PLOT_ROW_SIZE', 'PLOT_COLUMNS_SIZE', 'COUNTER'], {}), '(PLOT_ROW_SIZE, PLOT_COLUMNS_SIZE, COUNTER)\n', (4750, 4793), True, 'import matplotlib.pyplot as plt\n'), ((5188, 5224), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Frequency"""'], {'fontsize': '(10)'}), "('Frequency', fontsize=10)\n", (5198, 5224), True, 'import matplotlib.pyplot as plt\n'), ((5233, 5287), 'matplotlib.pyplot.hist', 'plt.hist', (['x'], {'bins': 'bins_size', 'stacked': '(True)', 'label': 'label'}), '(x, bins=bins_size, stacked=True, label=label)\n', (5241, 5287), True, 'import matplotlib.pyplot as plt\n'), ((5295, 5324), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'prop': "{'size': 10}"}), "(prop={'size': 10})\n", (5305, 5324), True, 'import matplotlib.pyplot as plt\n'), ((7327, 7381), 'matplotlib.pyplot.subplot', 'plt.subplot', (['PLOT_ROW_SIZE', 'PLOT_COLUMNS_SIZE', 'COUNTER'], {}), '(PLOT_ROW_SIZE, PLOT_COLUMNS_SIZE, COUNTER)\n', (7338, 7381), True, 'import matplotlib.pyplot as plt\n'), ((7568, 7601), 'numpy.float32', 'np.float32', (['clean_df[target_name]'], {}), '(clean_df[target_name])\n', (7578, 7601), True, 'import numpy as np\n'), ((7799, 7835), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['target_name'], {'fontsize': '(10)'}), '(target_name, fontsize=10)\n', (7809, 7835), True, 'import matplotlib.pyplot as plt\n'), ((7844, 7858), 'matplotlib.pyplot.boxplot', 'plt.boxplot', (['x'], {}), '(x)\n', (7855, 7858), True, 'import matplotlib.pyplot as plt\n'), ((8617, 8671), 'matplotlib.pyplot.subplot', 'plt.subplot', (['PLOT_ROW_SIZE', 'PLOT_COLUMNS_SIZE', 'COUNTER'], {}), '(PLOT_ROW_SIZE, PLOT_COLUMNS_SIZE, COUNTER)\n', (8628, 8671), True, 'import matplotlib.pyplot as plt\n'), ((9085, 9113), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['col'], {'fontsize': '(10)'}), '(col, fontsize=10)\n', (9095, 9113), True, 'import matplotlib.pyplot as plt\n'), ((9122, 9136), 'matplotlib.pyplot.boxplot', 'plt.boxplot', (['x'], {}), '(x)\n', (9133, 9136), True, 'import matplotlib.pyplot as plt\n'), ((4896, 4947), 'numpy.array', 'np.array', (['clean_df[clean_df[target_name] == i][col]'], {}), '(clean_df[clean_df[target_name] == i][col])\n', (4904, 4947), True, 'import numpy as np\n'), ((7484, 7535), 'numpy.array', 'np.array', (['clean_df[clean_df[col] == i][target_name]'], {}), '(clean_df[clean_df[col] == i][target_name])\n', (7492, 7535), True, 'import numpy as np\n'), ((8774, 8825), 'numpy.array', 'np.array', (['clean_df[clean_df[target_name] == i][col]'], {}), '(clean_df[clean_df[target_name] == i][col])\n', (8782, 8825), True, 'import numpy as np\n'), ((3055, 3070), 'numpy.float32', 'np.float32', (['std'], {}), '(std)\n', (3065, 3070), True, 'import numpy as np\n'), ((3271, 3293), 'numpy.float32', 'np.float32', (['corr[0][1]'], {}), '(corr[0][1])\n', (3281, 3293), True, 'import numpy as np\n'), ((4852, 4867), 'numpy.float32', 'np.float32', (['std'], {}), '(std)\n', (4862, 4867), True, 'import numpy as np\n'), ((5039, 5062), 'numpy.array', 'np.array', (['clean_df[col]'], {}), '(clean_df[col])\n', (5047, 5062), True, 'import numpy as np\n'), ((7440, 7455), 'numpy.float32', 'np.float32', (['std'], {}), '(std)\n', (7450, 7455), True, 'import numpy as np\n'), ((7642, 7665), 'numpy.array', 'np.array', (['clean_df[col]'], {}), '(clean_df[col])\n', (7650, 7665), True, 'import numpy as np\n'), ((8730, 8745), 'numpy.float32', 'np.float32', (['std'], {}), '(std)\n', (8740, 8745), True, 'import numpy as np\n'), ((8920, 8943), 'numpy.array', 'np.array', (['clean_df[col]'], {}), '(clean_df[col])\n', (8928, 8943), True, 'import numpy as np\n'), ((3025, 3041), 'numpy.float32', 'np.float32', (['mean'], {}), '(mean)\n', (3035, 3041), True, 'import numpy as np\n'), ((4822, 4838), 'numpy.float32', 'np.float32', (['mean'], {}), '(mean)\n', (4832, 4838), True, 'import numpy as np\n'), ((5119, 5137), 'numpy.float32', 'np.float32', (['chi[0]'], {}), '(chi[0])\n', (5129, 5137), True, 'import numpy as np\n'), ((7410, 7426), 'numpy.float32', 'np.float32', (['mean'], {}), '(mean)\n', (7420, 7426), True, 'import numpy as np\n'), ((7726, 7748), 'numpy.float32', 'np.float32', (['f_value[0]'], {}), '(f_value[0])\n', (7736, 7748), True, 'import numpy as np\n'), ((8700, 8716), 'numpy.float32', 'np.float32', (['mean'], {}), '(mean)\n', (8710, 8716), True, 'import numpy as np\n'), ((9012, 9034), 'numpy.float32', 'np.float32', (['f_value[0]'], {}), '(f_value[0])\n', (9022, 9034), True, 'import numpy as np\n')]
import os import numpy as np def save_samples_truncted_prob(fname, points, prob): ''' Save the visualization of sampling to a ply file. Red points represent positive predictions. Green points represent negative predictions. Parameters fname: File name to save points: [N, 3] array of points prob: [1, N] array of predictions in the range [0~1] Return: None ''' prob = prob.transpose(0, 1).detach().numpy() r = (prob > 0.5).reshape([-1, 1]) * 255 g = (prob < 0.5).reshape([-1, 1]) * 255 b = np.zeros(r.shape) to_save = np.concatenate([points, r, g, b,prob], axis=-1) return np.savetxt(fname, to_save, fmt='%.6f %.6f %.6f %d %d %d %.6f', comments='', header=( 'ply\nformat ascii 1.0\nelement vertex {:d}\nproperty float x\nproperty float y\nproperty float z\nproperty uchar red\nproperty uchar green\nproperty uchar blue\nproperty float prob\nend_header').format( points.shape[0]) ) def save_gallery(preds,samples,names,gallery_id,epoch): pred = preds[0].cpu() sample = samples[0].transpose(0, 1).cpu() name = names[0] save_gallery_path = os.path.join(gallery_id,name.split('/')[-2],"epoch_{:03d}".format(epoch)) os.makedirs(save_gallery_path,exist_ok=True) path = os.path.join(save_gallery_path,'pred.ply') save_samples_truncted_prob(path,sample,pred)
[ "os.makedirs", "numpy.zeros", "os.path.join", "numpy.concatenate" ]
[((568, 585), 'numpy.zeros', 'np.zeros', (['r.shape'], {}), '(r.shape)\n', (576, 585), True, 'import numpy as np\n'), ((601, 649), 'numpy.concatenate', 'np.concatenate', (['[points, r, g, b, prob]'], {'axis': '(-1)'}), '([points, r, g, b, prob], axis=-1)\n', (615, 649), True, 'import numpy as np\n'), ((1380, 1425), 'os.makedirs', 'os.makedirs', (['save_gallery_path'], {'exist_ok': '(True)'}), '(save_gallery_path, exist_ok=True)\n', (1391, 1425), False, 'import os\n'), ((1436, 1479), 'os.path.join', 'os.path.join', (['save_gallery_path', '"""pred.ply"""'], {}), "(save_gallery_path, 'pred.ply')\n", (1448, 1479), False, 'import os\n')]
from bokeh.application.handlers import FunctionHandler, DirectoryHandler from bokeh.application import Application import numpy as np import holoviews as hv import boto3 from PIL import Image import holoviews.plotting.bokeh # important from bokeh.io import show, curdoc from bokeh.layouts import layout import io from holoviews.operation.datashader import datashade from bokeh.models import Slider, Button from marshmallow import Schema, fields, INCLUDE renderer = hv.renderer('bokeh').instance(mode='server') class BokehImageAppArgsSchema(Schema): bucket = fields.List(fields.String()) key = fields.List(fields.String()) height = fields.List(fields.Integer()) width = fields.List(fields.Integer()) # Define valid function for FunctionHandler # when deploying as script, simply attach to curdoc def modify_doc(doc): args = doc.session_context.request.arguments args_schema = BokehImageAppArgsSchema() loaded_args = args_schema.load(args, unknown=INCLUDE) bucket = loaded_args['bucket'][0] key = loaded_args['key'][0] s3 = boto3.resource('s3') bucket = s3.Bucket(bucket) object = bucket.Object(key) file_stream = io.BytesIO() object.download_fileobj(file_stream) pil_image = Image.open(file_stream) hv_img_plot = hv.Image(np.asarray(pil_image)).options( height=loaded_args['height'][0], width=loaded_args['width'][0]) # Create HoloViews plot and attach the document hvplot = renderer.get_plot(hv_img_plot, doc) # Combine the holoviews plot and widgets in a layout plot = layout([ [hvplot.state]], sizing_mode='fixed') doc.add_root(plot) return doc bokeh_image_app = Application(FunctionHandler(modify_doc))
[ "bokeh.layouts.layout", "PIL.Image.open", "holoviews.renderer", "bokeh.application.handlers.FunctionHandler", "io.BytesIO", "numpy.asarray", "boto3.resource", "marshmallow.fields.String", "marshmallow.fields.Integer" ]
[((1073, 1093), 'boto3.resource', 'boto3.resource', (['"""s3"""'], {}), "('s3')\n", (1087, 1093), False, 'import boto3\n'), ((1176, 1188), 'io.BytesIO', 'io.BytesIO', ([], {}), '()\n', (1186, 1188), False, 'import io\n'), ((1246, 1269), 'PIL.Image.open', 'Image.open', (['file_stream'], {}), '(file_stream)\n', (1256, 1269), False, 'from PIL import Image\n'), ((1572, 1617), 'bokeh.layouts.layout', 'layout', (['[[hvplot.state]]'], {'sizing_mode': '"""fixed"""'}), "([[hvplot.state]], sizing_mode='fixed')\n", (1578, 1617), False, 'from bokeh.layouts import layout\n'), ((1698, 1725), 'bokeh.application.handlers.FunctionHandler', 'FunctionHandler', (['modify_doc'], {}), '(modify_doc)\n', (1713, 1725), False, 'from bokeh.application.handlers import FunctionHandler, DirectoryHandler\n'), ((469, 489), 'holoviews.renderer', 'hv.renderer', (['"""bokeh"""'], {}), "('bokeh')\n", (480, 489), True, 'import holoviews as hv\n'), ((580, 595), 'marshmallow.fields.String', 'fields.String', ([], {}), '()\n', (593, 595), False, 'from marshmallow import Schema, fields, INCLUDE\n'), ((619, 634), 'marshmallow.fields.String', 'fields.String', ([], {}), '()\n', (632, 634), False, 'from marshmallow import Schema, fields, INCLUDE\n'), ((661, 677), 'marshmallow.fields.Integer', 'fields.Integer', ([], {}), '()\n', (675, 677), False, 'from marshmallow import Schema, fields, INCLUDE\n'), ((703, 719), 'marshmallow.fields.Integer', 'fields.Integer', ([], {}), '()\n', (717, 719), False, 'from marshmallow import Schema, fields, INCLUDE\n'), ((1298, 1319), 'numpy.asarray', 'np.asarray', (['pil_image'], {}), '(pil_image)\n', (1308, 1319), True, 'import numpy as np\n')]
#import hickle as hkl import numpy as np from keras import backend as K from keras.preprocessing.image import Iterator import matplotlib.pyplot as plt # Defines one class: SequenceGenerator. a subclass of Iterator # ==================================== # Called from kitti_train.py and kitti_evaluate.py. # Class SequenceGenerator is a subclass of Iterator. # Data generator that creates sequences for input into PredNet. class SequenceGenerator(Iterator): # Iterator: can be iterated over in for-loop def __init__(self, data_file, source_file, nt, batch_size=8, shuffle=False, seed=None, output_mode='error', sequence_start_mode='all', N_seq=None, data_format=K.image_data_format()): print("\ndata_utils_RPB.py: Instantiating sequence generator:\n") # LOAD DATA FILE print("data_utils_RBP.py: Data file: \n", data_file) self.X = np.load(data_file) # X will be like (n_images, nb_cols, nb_rows, nb_channels) #self.X =hkl.transpose(self.X, (0, 3, 2, 1)) # =============================================================== # Added statements to print out two consecutive frames. ASM print("data_utils.py: self.X.shape\n", self.X.shape) # e.g., (41396, 128, 160, 3) # print("1st row:\n", self.X[0,:,:,:]) # will print the raw array # Print 1st two consecutive frames # NOTE: the video sequence seems to be stored in reverse order!!! Is this a bug? # 1. When called from "kitti_train.py" the frames for X_train.py and X_val.py seem # to be stored in reverse order. # 2. When called from "kitti_evaluate.py" the frames for X_test.py seem to be # in correct order. # 3. Need to make sure that the source files properly match the data files. my_temp = np.array(self.X[0,:,:,:], dtype = int, copy = True) # convert from float to int plt.imshow(my_temp) # look at 1st image plt.show() my_temp = np.array(self.X[1,:,:,:], dtype = int, copy = True) # convert from float to int plt.imshow(my_temp) # look at 2nd image plt.show() # LOAD SOURCE FILE print("data_utils.py: Source file: \n", source_file) self.sources = np.load(source_file) # Labels in b'string' format # Above: source for each image so when creating sequences can assure that consecutive # frames are from same video print("data_utils.py: self.sources.shape\n", self.sources.shape) # e.g., (41396,) print(self.sources[0]) # should print a byte literal representation of a string # End of print statements # =============================================================== # SET OTHER PARAMS self.nt = nt # 10 self.batch_size = batch_size # 4 if called from "kitti_train.py" self.data_format = data_format # K.image_data_format() assert sequence_start_mode in {'all', 'unique'}, 'sequence_start_mode must be in {all, unique}' self.sequence_start_mode = sequence_start_mode # default is 'all' assert output_mode in {'error', 'prediction'}, 'output_mode must be in {error, prediction}' self.output_mode = output_mode # default is 'error' if self.data_format == 'channels_first': # tensorflow data format is 'channels_last' self.X = np.transpose(self.X, (0, 3, 1, 2)) self.im_shape = self.X[0].shape # (128, 160, 3) I think. if self.sequence_start_mode == 'all': # allow for any possible sequence, starting from any frame self.possible_starts = np.array([i for i in range(self.X.shape[0] - self.nt) if self.sources[i] == self.sources[i + self.nt - 1]]) print("data_utils.py: possible_starts all: ", self.possible_starts) elif self.sequence_start_mode == 'unique': #create sequences where each unique frame is in at most one sequence curr_location = 0 possible_starts = [] while curr_location < self.X.shape[0] - self.nt + 1: if self.sources[curr_location] == self.sources[curr_location + self.nt - 1]: possible_starts.append(curr_location) curr_location += self.nt else: curr_location += 1 self.possible_starts = possible_starts print("data_utils.py: possible_starts unique: ", self.possible_starts) if shuffle: self.possible_starts = np.random.permutation(self.possible_starts) if N_seq is not None and len(self.possible_starts) > N_seq: # select a subset of sequences if want to self.possible_starts = self.possible_starts[:N_seq] self.N_sequences = len(self.possible_starts) super(SequenceGenerator, self).__init__(len(self.possible_starts), batch_size, shuffle, seed) # End of __init__() def __getitem__(self, null): return self.next() def next(self): # Returns a batch of x and y data with self.lock: current_index = (self.batch_index * self.batch_size) % self.n index_array, current_batch_size = next(self.index_generator), self.batch_size batch_x = np.zeros((current_batch_size, self.nt) + self.im_shape, np.float32) for i, idx in enumerate(index_array): idx = self.possible_starts[idx] batch_x[i] = self.preprocess(self.X[idx:idx+self.nt]) if self.output_mode == 'error': # model outputs errors, so y should be zeros batch_y = np.zeros(current_batch_size, np.float32) elif self.output_mode == 'prediction': # output actual pixels batch_y = batch_x return batch_x, batch_y # inputs, targets def preprocess(self, X): return X.astype(np.float32) / 255 # maps to [0, 1] # Returns 10 frames def create_all(self): # Below: plus operator is concatentation. Initialize multidim array of float32 zeros w/ specified shape X_all = np.zeros((self.N_sequences, self.nt) + self.im_shape, np.float32) for i, idx in enumerate(self.possible_starts): X_all[i] = self.preprocess(self.X[idx:idx+self.nt]) # map [0,255] to [0,1] for 10 frames return X_all
[ "matplotlib.pyplot.imshow", "numpy.transpose", "keras.backend.image_data_format", "numpy.random.permutation", "numpy.array", "numpy.zeros", "numpy.load", "matplotlib.pyplot.show" ]
[((718, 739), 'keras.backend.image_data_format', 'K.image_data_format', ([], {}), '()\n', (737, 739), True, 'from keras import backend as K\n'), ((928, 946), 'numpy.load', 'np.load', (['data_file'], {}), '(data_file)\n', (935, 946), True, 'import numpy as np\n'), ((1876, 1926), 'numpy.array', 'np.array', (['self.X[0, :, :, :]'], {'dtype': 'int', 'copy': '(True)'}), '(self.X[0, :, :, :], dtype=int, copy=True)\n', (1884, 1926), True, 'import numpy as np\n'), ((1964, 1983), 'matplotlib.pyplot.imshow', 'plt.imshow', (['my_temp'], {}), '(my_temp)\n', (1974, 1983), True, 'import matplotlib.pyplot as plt\n'), ((2012, 2022), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (2020, 2022), True, 'import matplotlib.pyplot as plt\n'), ((2041, 2091), 'numpy.array', 'np.array', (['self.X[1, :, :, :]'], {'dtype': 'int', 'copy': '(True)'}), '(self.X[1, :, :, :], dtype=int, copy=True)\n', (2049, 2091), True, 'import numpy as np\n'), ((2129, 2148), 'matplotlib.pyplot.imshow', 'plt.imshow', (['my_temp'], {}), '(my_temp)\n', (2139, 2148), True, 'import matplotlib.pyplot as plt\n'), ((2177, 2187), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (2185, 2187), True, 'import matplotlib.pyplot as plt\n'), ((2308, 2328), 'numpy.load', 'np.load', (['source_file'], {}), '(source_file)\n', (2315, 2328), True, 'import numpy as np\n'), ((5287, 5354), 'numpy.zeros', 'np.zeros', (['((current_batch_size, self.nt) + self.im_shape)', 'np.float32'], {}), '((current_batch_size, self.nt) + self.im_shape, np.float32)\n', (5295, 5354), True, 'import numpy as np\n'), ((6080, 6145), 'numpy.zeros', 'np.zeros', (['((self.N_sequences, self.nt) + self.im_shape)', 'np.float32'], {}), '((self.N_sequences, self.nt) + self.im_shape, np.float32)\n', (6088, 6145), True, 'import numpy as np\n'), ((3439, 3473), 'numpy.transpose', 'np.transpose', (['self.X', '(0, 3, 1, 2)'], {}), '(self.X, (0, 3, 1, 2))\n', (3451, 3473), True, 'import numpy as np\n'), ((4567, 4610), 'numpy.random.permutation', 'np.random.permutation', (['self.possible_starts'], {}), '(self.possible_starts)\n', (4588, 4610), True, 'import numpy as np\n'), ((5619, 5659), 'numpy.zeros', 'np.zeros', (['current_batch_size', 'np.float32'], {}), '(current_batch_size, np.float32)\n', (5627, 5659), True, 'import numpy as np\n')]
import psycopg2 from datetime import datetime from psycopg2 import sql from est.fltr import county_return from est.db.cur import con_cur import numpy as np import pandas as pd def comp_find(est, a, b): temp1 = est temp2 = np.array(temp1[0]) county = temp2[0].strip() state = temp2[1].strip() cur, con = con_cur() cur.execute(""" SELECT comp_st, comp_cty, comp_lv, comp_perc FROM est_LandValue(%s, %s, %s, %s) """, (a, b, state, county)) comp_states = cur.fetchall() con.close() return(comp_states) def find_comps(state, county, radius, population): cur, con = con_cur() cur.execute(""" SELECT comp_st, comp_cty, comp_lv, comp_perc FROM est_LandValue(%s, %s, %s, %s) """, (radius, population, state, county)) comp_states = pd.DataFrame(cur.fetchall(), columns = ['State', 'County', 'Land Value', 'Perc Land Value']) con.close() return(comp_states)
[ "numpy.array", "est.db.cur.con_cur" ]
[((231, 249), 'numpy.array', 'np.array', (['temp1[0]'], {}), '(temp1[0])\n', (239, 249), True, 'import numpy as np\n'), ((325, 334), 'est.db.cur.con_cur', 'con_cur', ([], {}), '()\n', (332, 334), False, 'from est.db.cur import con_cur\n'), ((632, 641), 'est.db.cur.con_cur', 'con_cur', ([], {}), '()\n', (639, 641), False, 'from est.db.cur import con_cur\n')]
from aiohttp import web import socketio import numpy as np def load_eigenvector(k,d): vec_path = "eigenvectors/eigen_k=" + str(k) + ",d=" + str(d) + ".npy" eigenvector_np = np.load(vec_path) eigenvector_str = "" for x in np.nditer(eigenvector_np): eigenvector_str += str(x) + " " # print() # print(eigenvector_str) return eigenvector_str # creates a new Async Socket IO Server sio = socketio.AsyncServer(cors_allowed_origins="*") # Creates a new Aiohttp Web Application app = web.Application() # Binds our Socket.IO server to our Web App # instance sio.attach(app) # we can define aiohttp endpoints just as we normally # would with no change async def index(request): with open('index.html') as f: return web.Response(text=f.read(), content_type='text/html') async def test(request): with open('test.js') as f: return web.Response(text=f.read(), content_type='text/js') # If we wanted to create a new websocket endpoint, # use this decorator, passing in the name of the # event we wish to listen out for @sio.on('hi') async def print_message(sid, message, d_JS): k = message d = d_JS # print(k) # print(d) messageToJS = load_eigenvector(k,d) # print() # print(messageToJS) # print() # print(messageToJS) # When we receive a new event of type # 'message' through a socket.io connection # we print the socket ID and the message # print("Socket ID: " , sid) # print(message) #message is the value sent from the HTML await sio.emit('message', messageToJS) # notice it has to be of type 'message' and then pass the # value to send to html doc # @sio.on('d') # async def get_d_val(sid, message): # d = message # We bind our aiohttp endpoint to our app # router app.router.add_get('/', index) app.router.add_get('/test.js', test) # We kick off our server if __name__ == '__main__': web.run_app(app)
[ "aiohttp.web.run_app", "numpy.nditer", "aiohttp.web.Application", "socketio.AsyncServer", "numpy.load" ]
[((423, 469), 'socketio.AsyncServer', 'socketio.AsyncServer', ([], {'cors_allowed_origins': '"""*"""'}), "(cors_allowed_origins='*')\n", (443, 469), False, 'import socketio\n'), ((516, 533), 'aiohttp.web.Application', 'web.Application', ([], {}), '()\n', (531, 533), False, 'from aiohttp import web\n'), ((182, 199), 'numpy.load', 'np.load', (['vec_path'], {}), '(vec_path)\n', (189, 199), True, 'import numpy as np\n'), ((238, 263), 'numpy.nditer', 'np.nditer', (['eigenvector_np'], {}), '(eigenvector_np)\n', (247, 263), True, 'import numpy as np\n'), ((1924, 1940), 'aiohttp.web.run_app', 'web.run_app', (['app'], {}), '(app)\n', (1935, 1940), False, 'from aiohttp import web\n')]
#!/usr/bin/env python # pylint: disable=invalid-name,ungrouped-imports import logging import math import os from importlib import import_module import coloredlogs import numpy as np import tensorflow as tf from scipy.misc import imread from tensorflow.python.framework import dtypes from tensorflow.python.ops import (array_ops, control_flow_ops, functional_ops, math_ops) def get_hand_segmentation_for_image(image_file, hand_dir): return "{}/{}".format(hand_dir, os.path.basename(image_file).replace("image", "hand")) def get_patho_segmentation_for_image(image_file, patho_dir): return "{}/{}".format(patho_dir, os.path.basename(image_file).replace("image", "patho")) def get_combined_segmentation_for_image(image_file, combined_dir): return "{}/{}".format(combined_dir, os.path.basename(image_file).replace("image", "combined")) image_subdir = "image" hand_subdir = "hand" patho_subdir = "patho" combined_subdir = "combined" data_subdirs = { image_subdir: image_subdir, hand_subdir: hand_subdir, patho_subdir: patho_subdir, combined_subdir: combined_subdir } image_transformation_functions = { image_subdir: lambda x, y: x, hand_subdir: get_hand_segmentation_for_image, combined_subdir: get_combined_segmentation_for_image, patho_subdir: get_patho_segmentation_for_image } def is_valid_file(file_name, pattern): return (not pattern or pattern in file_name) and (file_name.endswith(".png") or file_name.endswith(".jpg")) def prepare_images(images, is_colored): tf.logging.info("Preparing {} images".format(len(images))) # normalize the images to the range of [-1, 1] normalized_images = np.array(images, dtype=np.float32) / 127.5 - 1 return normalized_images if is_colored else \ normalized_images.reshape(*normalized_images.shape, 1) # add dimension for "color depth" def segmentation_score(output, ground_truth): assert output.shape[0] == ground_truth.shape[0] predicted = tf.cast(output >= 0, tf.uint8) actual = tf.cast(ground_truth >= 0, tf.uint8) tp = tf.count_nonzero(predicted * actual) # tn = tf.count_nonzero((predicted - 1) * (actual - 1)) fp = tf.count_nonzero(predicted * (actual - 1)) fn = tf.count_nonzero((predicted - 1) * actual) precision = tp / (tp + fp) recall = tp / (tp + fn) return 2 * precision * recall / (precision + recall) def logistic(logit): exp = np.exp(-logit) if isinstance(logit, np.ndarray) else tf.exp(-logit) return 1 / (1 + exp) # since it's unvailable in 1.12.0, this is copied from: # https://github.com/tensorflow/tensorflow/blob/r1.13/tensorflow/contrib/gan/python/eval/python/classifier_metrics_impl.py def kernel_classifier_distance_and_std_from_activations(real_activations, generated_activations, max_block_size=1024, dtype=None): # pylint: disable=no-member """Kernel "classifier" distance for evaluating a generative model. This methods computes the kernel classifier distance from activations of real images and generated images. This can be used independently of the kernel_classifier_distance() method, especially in the case of using large batches during evaluation where we would like to precompute all of the activations before computing the classifier distance, or if we want to compute multiple metrics based on the same images. It also returns a rough estimate of the standard error of the estimator. This technique is described in detail in https://arxiv.org/abs/1801.01401. Given two distributions P and Q of activations, this function calculates E_{X, X' ~ P}[k(X, X')] + E_{Y, Y' ~ Q}[k(Y, Y')] - 2 E_{X ~ P, Y ~ Q}[k(X, Y)] where k is the polynomial kernel k(x, y) = ( x^T y / dimension + 1 )^3. This captures how different the distributions of real and generated images' visual features are. Like the Frechet distance (and unlike the Inception score), this is a true distance and incorporates information about the target images. Unlike the Frechet score, this function computes an *unbiased* and asymptotically normal estimator, which makes comparing estimates across models much more intuitive. The estimator used takes time quadratic in max_block_size. Larger values of max_block_size will decrease the variance of the estimator but increase the computational cost. This differs slightly from the estimator used by the original paper; it is the block estimator of https://arxiv.org/abs/1307.1954. The estimate of the standard error will also be more reliable when there are more blocks, i.e. when max_block_size is smaller. NOTE: the blocking code assumes that real_activations and generated_activations are both in random order. If either is sorted in a meaningful order, the estimator will behave poorly. Args: real_activations: 2D Tensor containing activations of real data. Shape is [batch_size, activation_size]. generated_activations: 2D Tensor containing activations of generated data. Shape is [batch_size, activation_size]. max_block_size: integer, default 1024. The distance estimator splits samples into blocks for computational efficiency. Larger values are more computationally expensive but decrease the variance of the distance estimate. Having a smaller block size also gives a better estimate of the standard error. dtype: if not None, coerce activations to this dtype before computations. Returns: The Kernel Inception Distance. A floating-point scalar of the same type as the output of the activations. An estimate of the standard error of the distance estimator (a scalar of the same type). """ real_activations.shape.assert_has_rank(2) generated_activations.shape.assert_has_rank(2) real_activations.shape[1].assert_is_compatible_with( generated_activations.shape[1]) if dtype is None: dtype = real_activations.dtype assert generated_activations.dtype == dtype else: real_activations = math_ops.cast(real_activations, dtype) generated_activations = math_ops.cast(generated_activations, dtype) # Figure out how to split the activations into blocks of approximately # equal size, with none larger than max_block_size. n_r = array_ops.shape(real_activations)[0] n_g = array_ops.shape(generated_activations)[0] n_bigger = math_ops.maximum(n_r, n_g) n_blocks = math_ops.to_int32(math_ops.ceil(n_bigger / max_block_size)) v_r = n_r // n_blocks v_g = n_g // n_blocks n_plusone_r = n_r - v_r * n_blocks n_plusone_g = n_g - v_g * n_blocks sizes_r = array_ops.concat([ array_ops.fill([n_blocks - n_plusone_r], v_r), array_ops.fill([n_plusone_r], v_r + 1), ], 0) sizes_g = array_ops.concat([ array_ops.fill([n_blocks - n_plusone_g], v_g), array_ops.fill([n_plusone_g], v_g + 1), ], 0) zero = array_ops.zeros([1], dtype=dtypes.int32) inds_r = array_ops.concat([zero, math_ops.cumsum(sizes_r)], 0) inds_g = array_ops.concat([zero, math_ops.cumsum(sizes_g)], 0) dim = math_ops.cast(real_activations.shape[1], dtype) def compute_kid_block(i): 'Compute the ith block of the KID estimate.' r_s = inds_r[i] r_e = inds_r[i + 1] r = real_activations[r_s:r_e] m = math_ops.cast(r_e - r_s, dtype) g_s = inds_g[i] g_e = inds_g[i + 1] g = generated_activations[g_s:g_e] n = math_ops.cast(g_e - g_s, dtype) k_rr = (math_ops.matmul(r, r, transpose_b=True) / dim + 1)**3 k_rg = (math_ops.matmul(r, g, transpose_b=True) / dim + 1)**3 k_gg = (math_ops.matmul(g, g, transpose_b=True) / dim + 1)**3 return (-2 * math_ops.reduce_mean(k_rg) + (math_ops.reduce_sum(k_rr) - math_ops.trace(k_rr)) / (m * (m - 1)) + (math_ops.reduce_sum(k_gg) - math_ops.trace(k_gg)) / (n * (n - 1))) ests = functional_ops.map_fn( compute_kid_block, math_ops.range(n_blocks), dtype=dtype, back_prop=False) mn = math_ops.reduce_mean(ests) # nn_impl.moments doesn't use the Bessel correction, which we want here n_blocks_ = math_ops.cast(n_blocks, dtype) var = control_flow_ops.cond( math_ops.less_equal(n_blocks, 1), lambda: array_ops.constant(float('nan'), dtype=dtype), lambda: math_ops.reduce_sum(math_ops.square(ests - mn)) / (n_blocks_ - 1)) return mn, math_ops.sqrt(var / n_blocks_) def load_model(config): module_names = [ "noise_to_image_models", "image_to_image_models", "deep_image_to_image_models", "deep_noise_to_image_models", "deep_noise_to_image_models", "deep_noise_to_square_image_models", "deep_image_super_resolution_models" ] for module_name in module_names: try: return load_class_from_module(module_name, config.model_name)(config) except AttributeError: pass assert False, "No model with name '{}' found".format(config.model_name) def load_checkpoint(config, checkpoint_number=None, generator=None, discriminator=None, first_generator=None, second_generator=None, first_discriminator=None, second_discriminator=None): # pylint: disable=too-many-arguments tf.logging.info("Loading model from '{}', checkpoint {}".format(config.checkpoint_dir, checkpoint_number)) models = { "generator": generator, "discriminator": discriminator, "first_generator": first_generator, "first_discriminator": first_discriminator, "second_generator": second_generator, "second_discriminator": second_discriminator } models = {key: models[key] for key in models if models[key]} checkpoint = tf.train.Checkpoint(**models) checkpoint_to_restore = "{}/ckpt-{}".format(config.checkpoint_dir, checkpoint_number) \ if checkpoint_number else tf.train.latest_checkpoint(config.checkpoint_dir) checkpoint.restore(checkpoint_to_restore) def load_image_names(data_dir, pattern=None): image_dir = os.path.join("data", data_dir, image_subdir) tf.logging.info("Loading image names from '{}'{}".format( image_dir, " matching pattern '{}'".format(pattern) if pattern else "")) return sorted([os.path.join(image_dir, file_name) for file_name in os.listdir(image_dir) if is_valid_file(file_name, pattern)]) def augment_images(images, original, flip_lr, flip_ud): assert isinstance(images[0], (np.ndarray, tf.Tensor)) if not flip_lr and not flip_ud: assert original return images augmented_images = [] if flip_lr: tf.logging.info("Adding L-R-flipped images") if flip_ud: tf.logging.info("Adding U-D-flipped images") for image in images: if original: augmented_images.append(image) if flip_lr: augmented_images.append(np.fliplr(image)) if flip_ud: augmented_images.append(np.flipud(image)) if flip_lr and flip_ud: augmented_images.append(np.flipud(np.fliplr(image))) return augmented_images def load_images(image_names, data_dir, image_type, original=True, flip_lr=False, flip_ud=False): image_dir = os.path.join("data", data_dir, data_subdirs[image_type]) tf.logging.info("Loading {} images from '{}'".format(len(image_names), image_dir)) is_colored = image_type == "image" get_file_name = lambda x: image_transformation_functions[image_type](x, image_dir) return prepare_images( augment_images( [imread(get_file_name(file_name), mode="RGB" if is_colored else "L") for file_name in image_names], original, flip_lr, flip_ud), is_colored) def configure_logging(): tf.logging.set_verbosity(tf.logging.INFO) coloredlogs.install(level="INFO") coloredlogs.DEFAULT_LEVEL_STYLES = { "debug": {"color": "white", "bold": False}, "info": {"color": "white", "bold": True}, "warning": {"color": "yellow", "bold": True}, "error": {"color": "red", "bold": True}, "fatal": {"color": "magenta", "bold": True}, } logger = logging.getLogger("tensorflow") log_format = "%(asctime)s %(levelname)s %(message)s" formatter = coloredlogs.ColoredFormatter(log_format) for handler in logger.handlers: handler.setFormatter(formatter) logger.propagate = False def get_memory_usage_string(): used = tf.contrib.memory_stats.BytesInUse() total = tf.contrib.memory_stats.BytesLimit() peak = tf.contrib.memory_stats.MaxBytesInUse() return "{:.1f}/{:.1f}GB ({:.1f}%); peak: {:.1f}GB ({:.1f}%)".format( used/1e3**3, total/1e3**3, 100.0*used/total, peak/1e3**3, 100.0*peak/total) def load_class_from_module(module_name, class_name): return getattr(import_module(module_name, class_name), class_name) def flatten(list_of_lists): return [item for sublist in list_of_lists for item in sublist] def format_human(number, digits=3): unit = 1000 if number < unit: return str(number) magnitude = int(math.log(number) / math.log(unit)) pre = "kMGTPE"[magnitude-1] scaled_number = number / math.pow(unit, magnitude) if scaled_number == int(scaled_number): scaled_number = int(scaled_number) else: scaled_number = round(scaled_number, digits) return "{}{}".format(scaled_number, pre) def slerp(val, low, high): # https://github.com/dribnet/plat/blob/master/plat/interpolate.py """Spherical interpolation. val has a range of 0 to 1.""" if val <= 0: return low if val >= 1: return high if np.allclose(low, high): return low omega = np.arccos(np.dot(low/np.linalg.norm(low), high/np.linalg.norm(high))) so = np.sin(omega) return np.sin((1.0-val)*omega) / so * low + np.sin(val*omega)/so * high def truncate_input(values, threshold): tf.logging.debug("Range before truncating: {} - {}".format(tf.reduce_min(values), tf.reduce_max(values))) def my_elementwise_func(x): if abs(x) < threshold: return x while abs(x) >= threshold: x = tf.random_normal((1,))[0] return x def recursive_map(inputs): if len(inputs.shape): # pylint: disable=len-as-condition return tf.map_fn(recursive_map, inputs) return my_elementwise_func(inputs) values = recursive_map(values) tf.logging.debug("Range after truncating: {} - {}".format(tf.reduce_min(values), tf.reduce_max(values))) return values
[ "logging.getLogger", "tensorflow.python.ops.array_ops.zeros", "tensorflow.train.Checkpoint", "tensorflow.logging.set_verbosity", "math.log", "numpy.array", "tensorflow.python.ops.math_ops.cumsum", "numpy.sin", "tensorflow.contrib.memory_stats.BytesInUse", "tensorflow.python.ops.math_ops.range", "tensorflow.cast", "numpy.linalg.norm", "tensorflow.python.ops.math_ops.sqrt", "tensorflow.reduce_min", "os.listdir", "tensorflow.random_normal", "tensorflow.count_nonzero", "tensorflow.python.ops.math_ops.trace", "tensorflow.contrib.memory_stats.BytesLimit", "numpy.exp", "tensorflow.python.ops.array_ops.fill", "tensorflow.python.ops.math_ops.cast", "tensorflow.python.ops.math_ops.square", "numpy.allclose", "tensorflow.python.ops.math_ops.maximum", "importlib.import_module", "numpy.flipud", "numpy.fliplr", "tensorflow.python.ops.math_ops.less_equal", "tensorflow.python.ops.math_ops.matmul", "tensorflow.python.ops.math_ops.reduce_sum", "tensorflow.python.ops.array_ops.shape", "tensorflow.reduce_max", "tensorflow.train.latest_checkpoint", "tensorflow.contrib.memory_stats.MaxBytesInUse", "tensorflow.python.ops.math_ops.ceil", "coloredlogs.install", "math.pow", "tensorflow.logging.info", "os.path.join", "os.path.basename", "tensorflow.map_fn", "tensorflow.python.ops.math_ops.reduce_mean", "coloredlogs.ColoredFormatter", "tensorflow.exp" ]
[((1988, 2018), 'tensorflow.cast', 'tf.cast', (['(output >= 0)', 'tf.uint8'], {}), '(output >= 0, tf.uint8)\n', (1995, 2018), True, 'import tensorflow as tf\n'), ((2030, 2066), 'tensorflow.cast', 'tf.cast', (['(ground_truth >= 0)', 'tf.uint8'], {}), '(ground_truth >= 0, tf.uint8)\n', (2037, 2066), True, 'import tensorflow as tf\n'), ((2075, 2111), 'tensorflow.count_nonzero', 'tf.count_nonzero', (['(predicted * actual)'], {}), '(predicted * actual)\n', (2091, 2111), True, 'import tensorflow as tf\n'), ((2177, 2219), 'tensorflow.count_nonzero', 'tf.count_nonzero', (['(predicted * (actual - 1))'], {}), '(predicted * (actual - 1))\n', (2193, 2219), True, 'import tensorflow as tf\n'), ((2227, 2269), 'tensorflow.count_nonzero', 'tf.count_nonzero', (['((predicted - 1) * actual)'], {}), '((predicted - 1) * actual)\n', (2243, 2269), True, 'import tensorflow as tf\n'), ((6505, 6531), 'tensorflow.python.ops.math_ops.maximum', 'math_ops.maximum', (['n_r', 'n_g'], {}), '(n_r, n_g)\n', (6521, 6531), False, 'from tensorflow.python.ops import array_ops, control_flow_ops, functional_ops, math_ops\n'), ((7016, 7056), 'tensorflow.python.ops.array_ops.zeros', 'array_ops.zeros', (['[1]'], {'dtype': 'dtypes.int32'}), '([1], dtype=dtypes.int32)\n', (7031, 7056), False, 'from tensorflow.python.ops import array_ops, control_flow_ops, functional_ops, math_ops\n'), ((7196, 7243), 'tensorflow.python.ops.math_ops.cast', 'math_ops.cast', (['real_activations.shape[1]', 'dtype'], {}), '(real_activations.shape[1], dtype)\n', (7209, 7243), False, 'from tensorflow.python.ops import array_ops, control_flow_ops, functional_ops, math_ops\n'), ((8092, 8118), 'tensorflow.python.ops.math_ops.reduce_mean', 'math_ops.reduce_mean', (['ests'], {}), '(ests)\n', (8112, 8118), False, 'from tensorflow.python.ops import array_ops, control_flow_ops, functional_ops, math_ops\n'), ((8208, 8238), 'tensorflow.python.ops.math_ops.cast', 'math_ops.cast', (['n_blocks', 'dtype'], {}), '(n_blocks, dtype)\n', (8221, 8238), False, 'from tensorflow.python.ops import array_ops, control_flow_ops, functional_ops, math_ops\n'), ((9731, 9760), 'tensorflow.train.Checkpoint', 'tf.train.Checkpoint', ([], {}), '(**models)\n', (9750, 9760), True, 'import tensorflow as tf\n'), ((10038, 10082), 'os.path.join', 'os.path.join', (['"""data"""', 'data_dir', 'image_subdir'], {}), "('data', data_dir, image_subdir)\n", (10050, 10082), False, 'import os\n'), ((11118, 11174), 'os.path.join', 'os.path.join', (['"""data"""', 'data_dir', 'data_subdirs[image_type]'], {}), "('data', data_dir, data_subdirs[image_type])\n", (11130, 11174), False, 'import os\n'), ((11620, 11661), 'tensorflow.logging.set_verbosity', 'tf.logging.set_verbosity', (['tf.logging.INFO'], {}), '(tf.logging.INFO)\n', (11644, 11661), True, 'import tensorflow as tf\n'), ((11664, 11697), 'coloredlogs.install', 'coloredlogs.install', ([], {'level': '"""INFO"""'}), "(level='INFO')\n", (11683, 11697), False, 'import coloredlogs\n'), ((12004, 12035), 'logging.getLogger', 'logging.getLogger', (['"""tensorflow"""'], {}), "('tensorflow')\n", (12021, 12035), False, 'import logging\n'), ((12105, 12145), 'coloredlogs.ColoredFormatter', 'coloredlogs.ColoredFormatter', (['log_format'], {}), '(log_format)\n', (12133, 12145), False, 'import coloredlogs\n'), ((12285, 12321), 'tensorflow.contrib.memory_stats.BytesInUse', 'tf.contrib.memory_stats.BytesInUse', ([], {}), '()\n', (12319, 12321), True, 'import tensorflow as tf\n'), ((12332, 12368), 'tensorflow.contrib.memory_stats.BytesLimit', 'tf.contrib.memory_stats.BytesLimit', ([], {}), '()\n', (12366, 12368), True, 'import tensorflow as tf\n'), ((12378, 12417), 'tensorflow.contrib.memory_stats.MaxBytesInUse', 'tf.contrib.memory_stats.MaxBytesInUse', ([], {}), '()\n', (12415, 12417), True, 'import tensorflow as tf\n'), ((13421, 13443), 'numpy.allclose', 'np.allclose', (['low', 'high'], {}), '(low, high)\n', (13432, 13443), True, 'import numpy as np\n'), ((13547, 13560), 'numpy.sin', 'np.sin', (['omega'], {}), '(omega)\n', (13553, 13560), True, 'import numpy as np\n'), ((2411, 2425), 'numpy.exp', 'np.exp', (['(-logit)'], {}), '(-logit)\n', (2417, 2425), True, 'import numpy as np\n'), ((2464, 2478), 'tensorflow.exp', 'tf.exp', (['(-logit)'], {}), '(-logit)\n', (2470, 2478), True, 'import tensorflow as tf\n'), ((6157, 6195), 'tensorflow.python.ops.math_ops.cast', 'math_ops.cast', (['real_activations', 'dtype'], {}), '(real_activations, dtype)\n', (6170, 6195), False, 'from tensorflow.python.ops import array_ops, control_flow_ops, functional_ops, math_ops\n'), ((6224, 6267), 'tensorflow.python.ops.math_ops.cast', 'math_ops.cast', (['generated_activations', 'dtype'], {}), '(generated_activations, dtype)\n', (6237, 6267), False, 'from tensorflow.python.ops import array_ops, control_flow_ops, functional_ops, math_ops\n'), ((6404, 6437), 'tensorflow.python.ops.array_ops.shape', 'array_ops.shape', (['real_activations'], {}), '(real_activations)\n', (6419, 6437), False, 'from tensorflow.python.ops import array_ops, control_flow_ops, functional_ops, math_ops\n'), ((6449, 6487), 'tensorflow.python.ops.array_ops.shape', 'array_ops.shape', (['generated_activations'], {}), '(generated_activations)\n', (6464, 6487), False, 'from tensorflow.python.ops import array_ops, control_flow_ops, functional_ops, math_ops\n'), ((6563, 6603), 'tensorflow.python.ops.math_ops.ceil', 'math_ops.ceil', (['(n_bigger / max_block_size)'], {}), '(n_bigger / max_block_size)\n', (6576, 6603), False, 'from tensorflow.python.ops import array_ops, control_flow_ops, functional_ops, math_ops\n'), ((7408, 7439), 'tensorflow.python.ops.math_ops.cast', 'math_ops.cast', (['(r_e - r_s)', 'dtype'], {}), '(r_e - r_s, dtype)\n', (7421, 7439), False, 'from tensorflow.python.ops import array_ops, control_flow_ops, functional_ops, math_ops\n'), ((7532, 7563), 'tensorflow.python.ops.math_ops.cast', 'math_ops.cast', (['(g_e - g_s)', 'dtype'], {}), '(g_e - g_s, dtype)\n', (7545, 7563), False, 'from tensorflow.python.ops import array_ops, control_flow_ops, functional_ops, math_ops\n'), ((8028, 8052), 'tensorflow.python.ops.math_ops.range', 'math_ops.range', (['n_blocks'], {}), '(n_blocks)\n', (8042, 8052), False, 'from tensorflow.python.ops import array_ops, control_flow_ops, functional_ops, math_ops\n'), ((8276, 8308), 'tensorflow.python.ops.math_ops.less_equal', 'math_ops.less_equal', (['n_blocks', '(1)'], {}), '(n_blocks, 1)\n', (8295, 8308), False, 'from tensorflow.python.ops import array_ops, control_flow_ops, functional_ops, math_ops\n'), ((8466, 8496), 'tensorflow.python.ops.math_ops.sqrt', 'math_ops.sqrt', (['(var / n_blocks_)'], {}), '(var / n_blocks_)\n', (8479, 8496), False, 'from tensorflow.python.ops import array_ops, control_flow_ops, functional_ops, math_ops\n'), ((9883, 9932), 'tensorflow.train.latest_checkpoint', 'tf.train.latest_checkpoint', (['config.checkpoint_dir'], {}), '(config.checkpoint_dir)\n', (9909, 9932), True, 'import tensorflow as tf\n'), ((10579, 10623), 'tensorflow.logging.info', 'tf.logging.info', (['"""Adding L-R-flipped images"""'], {}), "('Adding L-R-flipped images')\n", (10594, 10623), True, 'import tensorflow as tf\n'), ((10642, 10686), 'tensorflow.logging.info', 'tf.logging.info', (['"""Adding U-D-flipped images"""'], {}), "('Adding U-D-flipped images')\n", (10657, 10686), True, 'import tensorflow as tf\n'), ((12642, 12680), 'importlib.import_module', 'import_module', (['module_name', 'class_name'], {}), '(module_name, class_name)\n', (12655, 12680), False, 'from importlib import import_module\n'), ((12992, 13017), 'math.pow', 'math.pow', (['unit', 'magnitude'], {}), '(unit, magnitude)\n', (13000, 13017), False, 'import math\n'), ((1688, 1722), 'numpy.array', 'np.array', (['images'], {'dtype': 'np.float32'}), '(images, dtype=np.float32)\n', (1696, 1722), True, 'import numpy as np\n'), ((6767, 6812), 'tensorflow.python.ops.array_ops.fill', 'array_ops.fill', (['[n_blocks - n_plusone_r]', 'v_r'], {}), '([n_blocks - n_plusone_r], v_r)\n', (6781, 6812), False, 'from tensorflow.python.ops import array_ops, control_flow_ops, functional_ops, math_ops\n'), ((6820, 6858), 'tensorflow.python.ops.array_ops.fill', 'array_ops.fill', (['[n_plusone_r]', '(v_r + 1)'], {}), '([n_plusone_r], v_r + 1)\n', (6834, 6858), False, 'from tensorflow.python.ops import array_ops, control_flow_ops, functional_ops, math_ops\n'), ((6905, 6950), 'tensorflow.python.ops.array_ops.fill', 'array_ops.fill', (['[n_blocks - n_plusone_g]', 'v_g'], {}), '([n_blocks - n_plusone_g], v_g)\n', (6919, 6950), False, 'from tensorflow.python.ops import array_ops, control_flow_ops, functional_ops, math_ops\n'), ((6958, 6996), 'tensorflow.python.ops.array_ops.fill', 'array_ops.fill', (['[n_plusone_g]', '(v_g + 1)'], {}), '([n_plusone_g], v_g + 1)\n', (6972, 6996), False, 'from tensorflow.python.ops import array_ops, control_flow_ops, functional_ops, math_ops\n'), ((7092, 7116), 'tensorflow.python.ops.math_ops.cumsum', 'math_ops.cumsum', (['sizes_r'], {}), '(sizes_r)\n', (7107, 7116), False, 'from tensorflow.python.ops import array_ops, control_flow_ops, functional_ops, math_ops\n'), ((7157, 7181), 'tensorflow.python.ops.math_ops.cumsum', 'math_ops.cumsum', (['sizes_g'], {}), '(sizes_g)\n', (7172, 7181), False, 'from tensorflow.python.ops import array_ops, control_flow_ops, functional_ops, math_ops\n'), ((10237, 10271), 'os.path.join', 'os.path.join', (['image_dir', 'file_name'], {}), '(image_dir, file_name)\n', (10249, 10271), False, 'import os\n'), ((12900, 12916), 'math.log', 'math.log', (['number'], {}), '(number)\n', (12908, 12916), False, 'import math\n'), ((12919, 12933), 'math.log', 'math.log', (['unit'], {}), '(unit)\n', (12927, 12933), False, 'import math\n'), ((13736, 13757), 'tensorflow.reduce_min', 'tf.reduce_min', (['values'], {}), '(values)\n', (13749, 13757), True, 'import tensorflow as tf\n'), ((13759, 13780), 'tensorflow.reduce_max', 'tf.reduce_max', (['values'], {}), '(values)\n', (13772, 13780), True, 'import tensorflow as tf\n'), ((14038, 14070), 'tensorflow.map_fn', 'tf.map_fn', (['recursive_map', 'inputs'], {}), '(recursive_map, inputs)\n', (14047, 14070), True, 'import tensorflow as tf\n'), ((14203, 14224), 'tensorflow.reduce_min', 'tf.reduce_min', (['values'], {}), '(values)\n', (14216, 14224), True, 'import tensorflow as tf\n'), ((14226, 14247), 'tensorflow.reduce_max', 'tf.reduce_max', (['values'], {}), '(values)\n', (14239, 14247), True, 'import tensorflow as tf\n'), ((506, 534), 'os.path.basename', 'os.path.basename', (['image_file'], {}), '(image_file)\n', (522, 534), False, 'import os\n'), ((658, 686), 'os.path.basename', 'os.path.basename', (['image_file'], {}), '(image_file)\n', (674, 686), False, 'import os\n'), ((820, 848), 'os.path.basename', 'os.path.basename', (['image_file'], {}), '(image_file)\n', (836, 848), False, 'import os\n'), ((10289, 10310), 'os.listdir', 'os.listdir', (['image_dir'], {}), '(image_dir)\n', (10299, 10310), False, 'import os\n'), ((10811, 10827), 'numpy.fliplr', 'np.fliplr', (['image'], {}), '(image)\n', (10820, 10827), True, 'import numpy as np\n'), ((10875, 10891), 'numpy.flipud', 'np.flipud', (['image'], {}), '(image)\n', (10884, 10891), True, 'import numpy as np\n'), ((13491, 13510), 'numpy.linalg.norm', 'np.linalg.norm', (['low'], {}), '(low)\n', (13505, 13510), True, 'import numpy as np\n'), ((13517, 13537), 'numpy.linalg.norm', 'np.linalg.norm', (['high'], {}), '(high)\n', (13531, 13537), True, 'import numpy as np\n'), ((13570, 13597), 'numpy.sin', 'np.sin', (['((1.0 - val) * omega)'], {}), '((1.0 - val) * omega)\n', (13576, 13597), True, 'import numpy as np\n'), ((13607, 13626), 'numpy.sin', 'np.sin', (['(val * omega)'], {}), '(val * omega)\n', (13613, 13626), True, 'import numpy as np\n'), ((13896, 13918), 'tensorflow.random_normal', 'tf.random_normal', (['(1,)'], {}), '((1,))\n', (13912, 13918), True, 'import tensorflow as tf\n'), ((7577, 7616), 'tensorflow.python.ops.math_ops.matmul', 'math_ops.matmul', (['r', 'r'], {'transpose_b': '(True)'}), '(r, r, transpose_b=True)\n', (7592, 7616), False, 'from tensorflow.python.ops import array_ops, control_flow_ops, functional_ops, math_ops\n'), ((7643, 7682), 'tensorflow.python.ops.math_ops.matmul', 'math_ops.matmul', (['r', 'g'], {'transpose_b': '(True)'}), '(r, g, transpose_b=True)\n', (7658, 7682), False, 'from tensorflow.python.ops import array_ops, control_flow_ops, functional_ops, math_ops\n'), ((7709, 7748), 'tensorflow.python.ops.math_ops.matmul', 'math_ops.matmul', (['g', 'g'], {'transpose_b': '(True)'}), '(g, g, transpose_b=True)\n', (7724, 7748), False, 'from tensorflow.python.ops import array_ops, control_flow_ops, functional_ops, math_ops\n'), ((7780, 7806), 'tensorflow.python.ops.math_ops.reduce_mean', 'math_ops.reduce_mean', (['k_rg'], {}), '(k_rg)\n', (7800, 7806), False, 'from tensorflow.python.ops import array_ops, control_flow_ops, functional_ops, math_ops\n'), ((7903, 7928), 'tensorflow.python.ops.math_ops.reduce_sum', 'math_ops.reduce_sum', (['k_gg'], {}), '(k_gg)\n', (7922, 7928), False, 'from tensorflow.python.ops import array_ops, control_flow_ops, functional_ops, math_ops\n'), ((7931, 7951), 'tensorflow.python.ops.math_ops.trace', 'math_ops.trace', (['k_gg'], {}), '(k_gg)\n', (7945, 7951), False, 'from tensorflow.python.ops import array_ops, control_flow_ops, functional_ops, math_ops\n'), ((8405, 8431), 'tensorflow.python.ops.math_ops.square', 'math_ops.square', (['(ests - mn)'], {}), '(ests - mn)\n', (8420, 8431), False, 'from tensorflow.python.ops import array_ops, control_flow_ops, functional_ops, math_ops\n'), ((10961, 10977), 'numpy.fliplr', 'np.fliplr', (['image'], {}), '(image)\n', (10970, 10977), True, 'import numpy as np\n'), ((7822, 7847), 'tensorflow.python.ops.math_ops.reduce_sum', 'math_ops.reduce_sum', (['k_rr'], {}), '(k_rr)\n', (7841, 7847), False, 'from tensorflow.python.ops import array_ops, control_flow_ops, functional_ops, math_ops\n'), ((7850, 7870), 'tensorflow.python.ops.math_ops.trace', 'math_ops.trace', (['k_rr'], {}), '(k_rr)\n', (7864, 7870), False, 'from tensorflow.python.ops import array_ops, control_flow_ops, functional_ops, math_ops\n')]
#!/usr/bin/env python # -*- coding: utf-8 -*- # # PUB_DATAVIZ: Visualization tools for PINNACLE # Copyright (c) 2020, <NAME> # # MIT License: # https://github.com/IATE-CONICET-UNC/pinnacle/blob/master/LICENSE from matplotlib import pyplot as plt from pinnacle.plot_styles import cycling_attrs, aes_attrs import numpy as np import random class pub_dataviz: def __init__(self, inst): ''' Initialize an instance of a visualizerbecariosthods) ---------------- - papers_histogram: histogram of the years of publications - cumulative_per_author: cumulative number of papers per author - authors_citations_years: scatter for number of authors and citations. - top_proceedings: relation between total number of publications and papers. - number_authors: distribution of the number of authors with time. ''' self.inst = inst self.config = inst.config # def filter_quality(self): def papers_histogram(self, top=False, per_auth=False, quality=5): ''' Papers_histogram: histogram of the years of publications Parameters ---------- top: bool If True, paper in selected journals are used, otherwise, all papers. ''' if top: y = self.inst.pub_inst_top.year.values else: # ACA HACER UNA FUNCION PARA FILTRAR CON EL Q y = self.inst.pub_inst_all.year.values if per_auth: y = list(self.inst.history.index) Ht = [] for a in y: k = self.inst.history.loc[a][0] Ht.append(k) w = [] for i in range(len(Ht)): w.append(1/(max(1, Ht[i]))) sufix = '_norm' else: y = [int(a) for a in y] Ht = np.ones(len(y)) w = np.ones(len(Ht)) sufix = '' tbreaks = np.arange(int(min(y))-0.5, int(max(y)+1)+0.5, 1) fig = plt.figure(figsize=(8, 5)) ax = fig.add_subplot() H = ax.hist(y, bins=tbreaks, weights=w) ymax = max(H[0]) ax.set_ylim(0, ymax) ax.grid() ax.set_xlabel('year') if top: ax.set_ylabel('number of papers') ax.set_title('publications by IATE') fout = (f"{self.config.dir_plot}/" f"papers_per_year_top{sufix}.png") else: ax.set_ylabel('number of published works') ax.set_title('papers published by IATE') fout = (f"{self.config.dir_plot}/" f"papers_per_year_all{sufix}.png") fig.savefig(fout) plt.close() def papers_histogram2(self, top=False, per_auth=False): ''' Papers_histogram: histogram of the years of publications Parameters ---------- top: bool If True, paper in selected journals are used, otherwise, all papers. ''' if per_auth: y = list(self.inst.history.index) npp = [] for a in y: k = self.inst.history.loc[a] if top: npp.append(k[2]/max(1, k[0])) else: npp.append(k[1]/max(1, k[0])) sufix = '_norm' hist = npp else: y = list(self.inst.history.index) y = [int(a) for a in y] sufix = '' tbreaks = np.arange(int(min(y))-0.5, int(max(y)+1)+0.5, 1) H = np.histogram(y, bins=tbreaks) hist = H[0] fig = plt.figure(figsize=(8, 5)) ax = fig.add_subplot() ax.step(y, hist) ymax = max(hist)*1.05 ax.set_ylim(0, ymax) ax.grid() ax.set_xlabel('year') if top: ax.set_ylabel('number of papers') ax.set_title('publications by IATE') fout = (f"{self.config.dir_plot}/" f"papers_per_year_top{sufix}.png") else: ax.set_ylabel('number of published works') ax.set_title('papers published by IATE') fout = (f"{self.config.dir_plot}/" f"papers_per_year_all{sufix}.png") fig.savefig(fout) plt.close() def cumulative_per_author(self, top=False, normalize_first=False): ''' Parameters ---------- top: bool Use all works or papers from selected journals normalize_first: bool Normalize to the year of the first publication ''' import datetime now = datetime.datetime.now() current_year = now.year if normalize_first: tedges = np.arange(-0.5, 20.5, 1) tmeans = np.arange(0, 20, 1) fout = (f"{self.config.dir_plot}/papers_by_author_zero.png") titlen = 'normalized to first' xlab = 'years from first publication' else: tedges = np.arange(1995, 2021, 1) tmeans = np.arange(1995, 2020, 1) fout = (f"{self.config.dir_plot}/papers_by_author_year.png") titlen = '' xlab = 'year' if top: df = self.inst.pub_auth_top titlet = 'papers' else: df = self.inst.pub_auth_all titlet = 'publications' fig = plt.figure(figsize=(14, 7)) ax = fig.add_subplot() cycling_attrs() y_max = 0 auth_names = list(df.author1.unique()) for a in auth_names: d = df[df['author1'].isin([a])] y = [int(i) for i in d.year.values] if len(y) == 0: continue y = np.array(y) if normalize_first: active = current_year - min(y) + 1 y = y - min(y) tedges = np.arange(-0.5, active + 0.5, 1) tmeans = np.arange(0, active, 1) H = np.histogram(y, bins=tedges) ac = H[0].cumsum() y_max = max(y_max, max(ac)) aesthetics = aes_attrs() ax.plot(tmeans, ac, label=a, **aesthetics) title = f'Cumulative {titlet} by IATE researchers {titlen}' ax.set_title(title) ax.set_xlabel(xlab) ax.set_ylabel('cumulative number') ax.legend(loc=2, ncol=2, fontsize='small', frameon=False, handlelength=6) fig.savefig(fout) plt.close() def authors_citations_years(self, top=True): ''' Plot a scatter of number of authors and number of citations Parameters ---------- top: bool Use all works or papers from selected journals ''' if top: df = self.inst.pub_inst_top else: df = self.inst.pub_inst_all npapers = df.shape[0] na = [] nc = [] ye = [] for i in range(npapers): pprs = df.iloc[i] nauths = len(pprs.authors) ncitas = pprs.citation_count year = pprs.year r = random.random()*0.6 - 0.3 na.append(nauths+r) r = random.random()*0.6 - 0.3 nc.append(ncitas+1+r) ye.append(int(year)) y = ((np.array(ye)-1980)*0.2)**2.6 fig = plt.figure(figsize=(10, 5)) ax = fig.add_subplot() ax.scatter(na, nc, s=y, color=(0, 0, 1, 0.3)) ax.set_xscale('log') ax.set_yscale('log') ax.set_xlabel('Number of authors') ax.set_ylabel('Number of citations + 1') ax.legend(loc='center left', bbox_to_anchor=(1.1, 0.5), labelspacing=3) fout = (f"{self.config.dir_plot}/nauth_ncitas_year.png") fig.savefig(fout) plt.close() def top_proceedings(self): ''' Plot a scatter of number of publications vs number of papers ''' tod = [] top = [] auth_names = list(self.inst.pub_inst_all.author1.unique()) for a in auth_names: df = self.inst.pub_inst_all dfa = df[df['author1'].isin([a])] df = self.inst.pub_inst_top dft = df[df['author1'].isin([a])] tod.append(dfa.shape[0]) top.append(dft.shape[0]) fig = plt.figure(figsize=(10, 5)) ax = fig.add_subplot() ax.scatter(tod, top) m = max(tod) ax.plot([0, m], [0, m]) ax.set_title('all works vs. top papers') ax.set_xlabel('all works') ax.set_ylabel('papers top') fout = (f"{self.config.dir_plot}/top_vs_all.png") fig.savefig(fout) plt.close() def number_authors(self, top=True): ''' Plot a scatter for the number of authors as a function of time Parameters ---------- top: bool Use all works or papers from selected journals ''' if top: df = self.inst.pub_inst_top else: df = self.inst.pub_inst_all nauth = [] for i, p in df.iterrows(): nauth.append(len(p.authors)) fig = plt.figure(figsize=(10, 5)) ax = fig.add_subplot() years = [int(y) for y in df.year.values] ax.scatter(years, nauth) ax.set_yscale('log') ax.set_title('number of authors per year') ax.set_xlabel('year') ax.set_ylabel('N authors') fout = (f"{self.config.dir_plot}/year_nauth.png") fig.savefig(fout) plt.close() def nauth_npprs(self, top=True): fig = plt.figure(figsize=(10, 5)) ax = fig.add_subplot() x = list(self.inst.history.index) y = self.inst.history['pop'] if top: z = self.inst.history['npapers_top'] else: z = self.inst.history['npapers_all'] ax.plot(x, y, label='authors') ax.plot(x, z, label='papers') ax.legend() ax.set_title('number of authors per paper') ax.set_xlabel('year') ax.set_ylabel('N authors / paper') if top: ax.set_title('publications by IATE, top papers') fout = (f"{self.config.dir_plot}/nauth_npprs_years_top.png") else: ax.set_title('papers published by IATE, all works') fout = (f"{self.config.dir_plot}/nauth_npprs_years_all.png") fig.savefig(fout) plt.close() def plot_all(self): ''' Make all the plots. ''' self.papers_histogram2(top=True) self.papers_histogram2(top=False) self.papers_histogram2(top=True, per_auth=True) self.papers_histogram2(top=False, per_auth=True) self.cumulative_per_author(top=False, normalize_first=False) self.cumulative_per_author(top=False, normalize_first=True) self.cumulative_per_author(top=True, normalize_first=False) self.cumulative_per_author(top=True, normalize_first=True) self.authors_citations_years() self.top_proceedings() self.nauth_npprs()
[ "numpy.histogram", "pinnacle.plot_styles.cycling_attrs", "matplotlib.pyplot.close", "datetime.datetime.now", "matplotlib.pyplot.figure", "numpy.array", "pinnacle.plot_styles.aes_attrs", "random.random", "numpy.arange" ]
[((2049, 2075), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(8, 5)'}), '(figsize=(8, 5))\n', (2059, 2075), True, 'from matplotlib import pyplot as plt\n'), ((2733, 2744), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (2742, 2744), True, 'from matplotlib import pyplot as plt\n'), ((3678, 3704), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(8, 5)'}), '(figsize=(8, 5))\n', (3688, 3704), True, 'from matplotlib import pyplot as plt\n'), ((4344, 4355), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (4353, 4355), True, 'from matplotlib import pyplot as plt\n'), ((4699, 4722), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (4720, 4722), False, 'import datetime\n'), ((5458, 5485), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(14, 7)'}), '(figsize=(14, 7))\n', (5468, 5485), True, 'from matplotlib import pyplot as plt\n'), ((5525, 5540), 'pinnacle.plot_styles.cycling_attrs', 'cycling_attrs', ([], {}), '()\n', (5538, 5540), False, 'from pinnacle.plot_styles import cycling_attrs, aes_attrs\n'), ((6544, 6555), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (6553, 6555), True, 'from matplotlib import pyplot as plt\n'), ((7423, 7450), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(10, 5)'}), '(figsize=(10, 5))\n', (7433, 7450), True, 'from matplotlib import pyplot as plt\n'), ((7867, 7878), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (7876, 7878), True, 'from matplotlib import pyplot as plt\n'), ((8399, 8426), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(10, 5)'}), '(figsize=(10, 5))\n', (8409, 8426), True, 'from matplotlib import pyplot as plt\n'), ((8754, 8765), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (8763, 8765), True, 'from matplotlib import pyplot as plt\n'), ((9242, 9269), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(10, 5)'}), '(figsize=(10, 5))\n', (9252, 9269), True, 'from matplotlib import pyplot as plt\n'), ((9624, 9635), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (9633, 9635), True, 'from matplotlib import pyplot as plt\n'), ((9688, 9715), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(10, 5)'}), '(figsize=(10, 5))\n', (9698, 9715), True, 'from matplotlib import pyplot as plt\n'), ((10516, 10527), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (10525, 10527), True, 'from matplotlib import pyplot as plt\n'), ((3609, 3638), 'numpy.histogram', 'np.histogram', (['y'], {'bins': 'tbreaks'}), '(y, bins=tbreaks)\n', (3621, 3638), True, 'import numpy as np\n'), ((4805, 4829), 'numpy.arange', 'np.arange', (['(-0.5)', '(20.5)', '(1)'], {}), '(-0.5, 20.5, 1)\n', (4814, 4829), True, 'import numpy as np\n'), ((4851, 4870), 'numpy.arange', 'np.arange', (['(0)', '(20)', '(1)'], {}), '(0, 20, 1)\n', (4860, 4870), True, 'import numpy as np\n'), ((5072, 5096), 'numpy.arange', 'np.arange', (['(1995)', '(2021)', '(1)'], {}), '(1995, 2021, 1)\n', (5081, 5096), True, 'import numpy as np\n'), ((5118, 5142), 'numpy.arange', 'np.arange', (['(1995)', '(2020)', '(1)'], {}), '(1995, 2020, 1)\n', (5127, 5142), True, 'import numpy as np\n'), ((5799, 5810), 'numpy.array', 'np.array', (['y'], {}), '(y)\n', (5807, 5810), True, 'import numpy as np\n'), ((6049, 6077), 'numpy.histogram', 'np.histogram', (['y'], {'bins': 'tedges'}), '(y, bins=tedges)\n', (6061, 6077), True, 'import numpy as np\n'), ((6175, 6186), 'pinnacle.plot_styles.aes_attrs', 'aes_attrs', ([], {}), '()\n', (6184, 6186), False, 'from pinnacle.plot_styles import cycling_attrs, aes_attrs\n'), ((5950, 5982), 'numpy.arange', 'np.arange', (['(-0.5)', '(active + 0.5)', '(1)'], {}), '(-0.5, active + 0.5, 1)\n', (5959, 5982), True, 'import numpy as np\n'), ((6008, 6031), 'numpy.arange', 'np.arange', (['(0)', 'active', '(1)'], {}), '(0, active, 1)\n', (6017, 6031), True, 'import numpy as np\n'), ((7197, 7212), 'random.random', 'random.random', ([], {}), '()\n', (7210, 7212), False, 'import random\n'), ((7271, 7286), 'random.random', 'random.random', ([], {}), '()\n', (7284, 7286), False, 'import random\n'), ((7379, 7391), 'numpy.array', 'np.array', (['ye'], {}), '(ye)\n', (7387, 7391), True, 'import numpy as np\n')]
import numpy as np def Topsis(weights, numerical_data, impact): try: if(numerical_data.shape[1] != weights.shape[0] or weights.shape != impact.shape or numerical_data.shape[1] != impact.shape[0]): raise Exception("Given input is not correct") except Exception as e: print("Given input is incorrect") return #Converting weight matrix into percent form weights = weights/weights.sum() #Making normalized matrix for i in range(numerical_data.shape[1]): numerical_data[:,i] = (numerical_data[:,i]/np.sqrt((numerical_data[:,i]**2).sum())) #Multiplying columns with their specific weights numerical_data = numerical_data*(weights.reshape(1,numerical_data.shape[1])) ideal_best_values = [] ideal_worst_values = [] for i in range(numerical_data.shape[1]): if(impact[i] == "+"): #It indicates this particular feature value need to be increased ideal_best_values.append(numerical_data[:,i].max()) ideal_worst_values.append(numerical_data[:,i].min()) elif(impact[i] == "-"): #This feature value need to be decreased ideal_best_values.append(numerical_data[:,i].min()) ideal_worst_values.append(numerical_data[:,i].max()) ideal_best_values = np.array(ideal_best_values, dtype = np.float) ideal_worst_values = np.array(ideal_worst_values, dtype = np.float) euclDist_ideal_best = np.sqrt(((numerical_data - ideal_best_values)**2).sum(axis = 1)) euclDist_ideal_worst = np.sqrt(((numerical_data - ideal_worst_values)**2).sum(axis = 1)) performance_score = euclDist_ideal_worst/(euclDist_ideal_best + euclDist_ideal_worst) ranking = np.argsort(performance_score) return np.argmax(performance_score)#Returning the index of the row having maximum performance score
[ "numpy.argsort", "numpy.array", "numpy.argmax" ]
[((1182, 1225), 'numpy.array', 'np.array', (['ideal_best_values'], {'dtype': 'np.float'}), '(ideal_best_values, dtype=np.float)\n', (1190, 1225), True, 'import numpy as np\n'), ((1250, 1294), 'numpy.array', 'np.array', (['ideal_worst_values'], {'dtype': 'np.float'}), '(ideal_worst_values, dtype=np.float)\n', (1258, 1294), True, 'import numpy as np\n'), ((1575, 1604), 'numpy.argsort', 'np.argsort', (['performance_score'], {}), '(performance_score)\n', (1585, 1604), True, 'import numpy as np\n'), ((1613, 1641), 'numpy.argmax', 'np.argmax', (['performance_score'], {}), '(performance_score)\n', (1622, 1641), True, 'import numpy as np\n')]
from copy import deepcopy import torch from torch import nn import torch.nn.functional as F import numpy as np from apex import amp from torch.cuda.amp import autocast as autocast from transformers import BertModel, BertTokenizer from util import text_processing from collections import OrderedDict from . import ops as ops from .config import cfg from .lcgn import LCGN, SemanLCGN from .input_unit import Encoder from .output_unit import Classifier from .optimization import * class SingleHop(nn.Module): def __init__(self): super().__init__() self.proj_q = ops.Linear(cfg.ENC_DIM, cfg.CTX_DIM) self.inter2att = ops.Linear(cfg.CTX_DIM, 1) def forward(self, kb, vecQuestions, imagesObjectNum): proj_q = self.proj_q(vecQuestions) interactions = F.normalize(kb * proj_q[:, None, :], dim=-1) raw_att = self.inter2att(interactions).squeeze(-1)# 128 * 49 raw_att = ops.apply_mask1d(raw_att, imagesObjectNum) att = F.softmax(raw_att, dim=-1) x_att = torch.bmm(att[:, None, :], kb).squeeze(1) return x_att class LCGNnet(nn.Module): def __init__(self, num_vocab, num_choices): super().__init__() if cfg.INIT_WRD_EMB_FROM_FILE: embeddingsInit = np.load(cfg.WRD_EMB_INIT_FILE) # 2956 * 300 assert embeddingsInit.shape == (num_vocab-1, cfg.WRD_EMB_DIM) else: embeddingsInit = np.random.randn(num_vocab-1, cfg.WRD_EMB_DIM) self.num_vocab = num_vocab # 2957 self.num_choices = num_choices # 1845 self.tokenizer = BertTokenizer.from_pretrained('/home/xdjf/bert_config/bert-base-uncased') self.model = BertModel.from_pretrained('/home/xdjf/bert_config/bert-base-uncased') self.name_dict = text_processing.VocabDict(cfg.VOCAB_NAME_FILE) name_embedding = self.reset_name_embedding() self.encoder = Encoder(embeddingsInit, name_embedding) self.lcgn = LCGN() #self.sema_lcgn = SemanLCGN() self.single_hop = SingleHop() self.classifier = Classifier(num_choices) #self.seman_encoder = ops.Linear(cfg.WRD_EMB_DIM, cfg.CMD_DIM) def reset_name_embedding(self): weight = torch.zeros(self.name_dict.num_vocab - 1, 768) for word in self.name_dict.word_list: if word == '<unk>': continue temp_embedding = self.extract_name_embedding(word) weight[self.name_dict.word2idx(word) - 1] = temp_embedding return weight def extract_name_embedding(self, name): token_name = self.tokenizer.encode(name, add_special_tokens=False) input_ids = torch.tensor([token_name]) with torch.no_grad(): _, out = self.model(input_ids) return out # 1* 768 def forward(self, batch): #batchSize = len(batch['image_feat_batch']) questionIndices = batch[0] questionLengths = batch[1] semanIndices = batch[2] semanLengths = batch[3] answerIndices = batch[4] nameIndices = batch[5] nameLengths = batch[6] images = batch[7] imagesObjectNum = batch[8] batchSize = images.size(0) # LSTM questionCntxWords, vecQuestions, word_seman, encode_seman, name_embed = self.encoder( questionIndices, questionLengths, # 128 * 30 * 512 128 * 512 semanIndices, semanLengths, nameIndices, nameLengths) encode_seman = encode_seman.permute(1, 0, 2) #encode_seman = self.seman_encoder(encode_seman) # semanCnt = semanCnt[:, 0, :] # LCGN x_out = self.lcgn( images=images, q_encoding=vecQuestions, lstm_outputs=questionCntxWords, word_seman=word_seman, encode_seman=encode_seman, semanIndices=semanIndices, batch_size=batchSize, q_length=questionLengths, entity_num=imagesObjectNum, name_embed=name_embed, nameLengths=nameLengths) # x_out_seman = self.sema_lcgn( # images=images, seman_outputs=semanCnt, # batch_size=batchSize, entity_num=imagesObjectNum) # x_out = self.tensor_inter_graph_propagation(x_out, x_out_seman) # Single-Hop x_att = self.single_hop(x_out, vecQuestions, imagesObjectNum) logits = self.classifier(x_att, vecQuestions) # 128 * 1845 predictions, num_correct = self.add_pred_op(logits, answerIndices) loss = self.add_answer_loss_op(logits, answerIndices) return {"predictions": predictions, "batch_size": int(batchSize), "num_correct": int(num_correct), "loss": loss, "accuracy": float(num_correct * 1. / batchSize)} def tensor_inter_graph_propagation(self, x_out_1, x_out_2): bsz, imageNum, dModel= x_out_1.size(0), x_out_1.size(1), x_out_1.size(2) x_sum_1 = torch.sum(x_out_1, dim=1) x_sum_2 = torch.sum(x_out_2, dim=1) x_expand_1 = x_sum_1.repeat(1, 2) x_expand_2 = x_sum_2.repeat(1, 2) x_sum = torch.cat([x_expand_1, x_expand_2], -1) x_sum = x_sum.unsqueeze(1) x_sum = x_sum.repeat(1, imageNum, 1) x_union = torch.cat([x_out_1, x_out_2], dim=-1) x_union_expand = x_union.repeat(1, 1, 2) x_kr = torch.mul(x_union_expand, x_sum) x_kr = x_kr.view(bsz * imageNum, 4, dModel) x_kr = x_kr.permute(0, 2, 1) x_out = self.conv1d(x_kr) x_out = x_out.squeeze(-1) x_out = x_out.view(bsz, imageNum, dModel) return x_out def add_pred_op(self, logits, answers): if cfg.MASK_PADUNK_IN_LOGITS: logits = logits.clone() logits[..., :2] += -1e30 # mask <pad> and <unk> preds = torch.argmax(logits, dim=-1).detach() # 128 corrects = (preds == answers) correctNum = torch.sum(corrects).item() preds = preds.cpu()#.numpy() return preds, correctNum def add_answer_loss_op(self, logits, answers): if cfg.TRAIN.LOSS_TYPE == "softmax": loss = F.cross_entropy(logits, answers) elif cfg.TRAIN.LOSS_TYPE == "sigmoid": answerDist = F.one_hot(answers, self.num_choices).float() # 128 * 1845 loss = F.binary_cross_entropy_with_logits( logits, answerDist) * self.num_choices else: raise Exception("non-identified loss") return loss class LCGNwrapper(): def __init__(self, num_vocab, num_choices, cfg=None, rank=-1, gpu=0): self.no_decay = ['bias', 'norm'] torch.cuda.set_device(gpu) self.model = LCGNnet(num_vocab, num_choices).cuda(gpu) self.trainable_params = [ { "params": [p for n, p in self.model.named_parameters() if p.requires_grad and not any(nd in n for nd in self.no_decay)], "weight_decay": cfg.weight_decay, }, { "params": [p for n, p in self.model.named_parameters() if p.requires_grad and any(nd in n for nd in self.no_decay)], "weight_decay": 0.0 } ] self.optimizer = torch.optim.AdamW( self.trainable_params, lr=cfg.TRAIN.SOLVER.LR) #self.optimizer = AdamW(self.trainable_params, lr=cfg.TRAIN.SOLVER.LR, eps=cfg.adam_epsilon) total_step = int(943000 / cfg.n_gpus // cfg.TRAIN.BATCH_SIZE + 1) * cfg.TRAIN.MAX_EPOCH self.scheduler = get_cosine_schedule_with_warmup( self.optimizer, num_warmup_steps=cfg.warmup_steps, num_training_steps=total_step) if cfg.fp16: self.scaler = torch.cuda.amp.GradScaler() #self.model, self.optimizer = amp.initialize(self.model, self.optimizer, opt_level=cfg.fp16_opt_level) if cfg.n_gpus > 1: self.model = nn.parallel.DistributedDataParallel(self.model, device_ids=[gpu], output_device=gpu, find_unused_parameters=True) self.lr = cfg.TRAIN.SOLVER.LR self.fp16 = cfg.fp16 self.fp16_opt_level = cfg.fp16_opt_level if cfg.USE_EMA: self.ema_param_dict = { name: p for name, p in self.model.named_parameters() if p.requires_grad} self.ema = ops.ExponentialMovingAverage( self.ema_param_dict, decay=cfg.EMA_DECAY_RATE) self.using_ema_params = False def train(self, training=True): self.model.train(training) if training: self.set_params_from_original() else: self.set_params_from_ema() def eval(self): self.train(False) def state_dict(self): # Generate state dict in training mode current_mode = self.model.training self.train(True) assert (not cfg.USE_EMA) or (not self.using_ema_params) return { 'model': self.model.state_dict(), 'optimizer': self.optimizer.state_dict(), 'ema': self.ema.state_dict() if cfg.USE_EMA else None } # restore original mode self.train(current_mode) def load_state_dict(self, state_dict): # Load parameters in training mode current_mode = self.model.training self.train(True) assert (not cfg.USE_EMA) or (not self.using_ema_params) new_state_dict = OrderedDict() for k, v in state_dict['model'].items(): name = k[7: ] new_state_dict[name] = v self.model.load_state_dict(new_state_dict) if 'optimizer' in state_dict: self.optimizer.load_state_dict(state_dict['optimizer']) else: print('Optimizer does not exist in checkpoint! ' 'Loaded only model parameters.') if cfg.USE_EMA: if 'ema' in state_dict and state_dict['ema'] is not None: self.ema.load_state_dict(state_dict['ema']) else: print('cfg.USE_EMA is True, but EMA does not exist in ' 'checkpoint! Using model params to initialize EMA.') self.ema.load_state_dict( {k: p.data for k, p in self.ema_param_dict.items()}) # restore original mode self.train(current_mode) def set_params_from_ema(self): if (not cfg.USE_EMA) or self.using_ema_params: return self.original_state_dict = deepcopy(self.model.state_dict()) self.ema.set_params_from_ema(self.ema_param_dict) self.using_ema_params = True def set_params_from_original(self): if (not cfg.USE_EMA) or (not self.using_ema_params): return self.model.load_state_dict(self.original_state_dict) self.using_ema_params = False def run_batch(self, batch, train, lr=None): assert train == self.model.training assert (not train) or (lr is not None), 'lr must be set for training' if train: if lr != self.lr: for param_group in self.optimizer.param_groups: param_group['lr'] = lr self.lr = lr self.optimizer.zero_grad() if cfg.fp16: with autocast(): batch_res = self.model.forward(batch) else: batch_res = self.model.forward(batch) loss = batch_res['loss'] if self.fp16: self.scaler.scale(loss).backward() # with amp.scale_loss(loss, self.optimizer) as scaled_loss: # scaled_loss.backward() else: loss.backward() if cfg.TRAIN.CLIP_GRADIENTS: if self.fp16: self.scaler.unscale_(self.optimizer) nn.utils.clip_grad_norm_( self.model.parameters(), cfg.TRAIN.GRAD_MAX_NORM) #torch.nn.utils.clip_grad_norm_(amp.master_params(self.optimizer), cfg.TRAIN.GRAD_MAX_NORM) else: nn.utils.clip_grad_norm_( self.model.parameters(), cfg.TRAIN.GRAD_MAX_NORM) if cfg.fp16: self.scaler.step(self.optimizer) self.scaler.update() else: self.optimizer.step() self.scheduler.step() batch_res['lr'] = self.scheduler.get_last_lr()[0] if cfg.USE_EMA: self.ema.step(self.ema_param_dict) else: with torch.no_grad(): batch_res = self.model.forward(batch) return batch_res
[ "torch.mul", "util.text_processing.VocabDict", "torch.sum", "torch.bmm", "torch.nn.functional.softmax", "torch.cuda.amp.GradScaler", "torch.cuda.amp.autocast", "torch.nn.parallel.DistributedDataParallel", "torch.argmax", "collections.OrderedDict", "transformers.BertModel.from_pretrained", "torch.nn.functional.normalize", "torch.nn.functional.one_hot", "numpy.random.randn", "torch.cuda.set_device", "torch.cat", "transformers.BertTokenizer.from_pretrained", "torch.tensor", "torch.nn.functional.cross_entropy", "torch.no_grad", "numpy.load", "torch.zeros", "torch.optim.AdamW", "torch.nn.functional.binary_cross_entropy_with_logits" ]
[((796, 840), 'torch.nn.functional.normalize', 'F.normalize', (['(kb * proj_q[:, None, :])'], {'dim': '(-1)'}), '(kb * proj_q[:, None, :], dim=-1)\n', (807, 840), True, 'import torch.nn.functional as F\n'), ((985, 1011), 'torch.nn.functional.softmax', 'F.softmax', (['raw_att'], {'dim': '(-1)'}), '(raw_att, dim=-1)\n', (994, 1011), True, 'import torch.nn.functional as F\n'), ((1584, 1657), 'transformers.BertTokenizer.from_pretrained', 'BertTokenizer.from_pretrained', (['"""/home/xdjf/bert_config/bert-base-uncased"""'], {}), "('/home/xdjf/bert_config/bert-base-uncased')\n", (1613, 1657), False, 'from transformers import BertModel, BertTokenizer\n'), ((1679, 1748), 'transformers.BertModel.from_pretrained', 'BertModel.from_pretrained', (['"""/home/xdjf/bert_config/bert-base-uncased"""'], {}), "('/home/xdjf/bert_config/bert-base-uncased')\n", (1704, 1748), False, 'from transformers import BertModel, BertTokenizer\n'), ((1774, 1820), 'util.text_processing.VocabDict', 'text_processing.VocabDict', (['cfg.VOCAB_NAME_FILE'], {}), '(cfg.VOCAB_NAME_FILE)\n', (1799, 1820), False, 'from util import text_processing\n'), ((2217, 2263), 'torch.zeros', 'torch.zeros', (['(self.name_dict.num_vocab - 1)', '(768)'], {}), '(self.name_dict.num_vocab - 1, 768)\n', (2228, 2263), False, 'import torch\n'), ((2676, 2702), 'torch.tensor', 'torch.tensor', (['[token_name]'], {}), '([token_name])\n', (2688, 2702), False, 'import torch\n'), ((4912, 4937), 'torch.sum', 'torch.sum', (['x_out_1'], {'dim': '(1)'}), '(x_out_1, dim=1)\n', (4921, 4937), False, 'import torch\n'), ((4956, 4981), 'torch.sum', 'torch.sum', (['x_out_2'], {'dim': '(1)'}), '(x_out_2, dim=1)\n', (4965, 4981), False, 'import torch\n'), ((5084, 5123), 'torch.cat', 'torch.cat', (['[x_expand_1, x_expand_2]', '(-1)'], {}), '([x_expand_1, x_expand_2], -1)\n', (5093, 5123), False, 'import torch\n'), ((5223, 5260), 'torch.cat', 'torch.cat', (['[x_out_1, x_out_2]'], {'dim': '(-1)'}), '([x_out_1, x_out_2], dim=-1)\n', (5232, 5260), False, 'import torch\n'), ((5326, 5358), 'torch.mul', 'torch.mul', (['x_union_expand', 'x_sum'], {}), '(x_union_expand, x_sum)\n', (5335, 5358), False, 'import torch\n'), ((6621, 6647), 'torch.cuda.set_device', 'torch.cuda.set_device', (['gpu'], {}), '(gpu)\n', (6642, 6647), False, 'import torch\n'), ((7203, 7267), 'torch.optim.AdamW', 'torch.optim.AdamW', (['self.trainable_params'], {'lr': 'cfg.TRAIN.SOLVER.LR'}), '(self.trainable_params, lr=cfg.TRAIN.SOLVER.LR)\n', (7220, 7267), False, 'import torch\n'), ((9482, 9495), 'collections.OrderedDict', 'OrderedDict', ([], {}), '()\n', (9493, 9495), False, 'from collections import OrderedDict\n'), ((1263, 1293), 'numpy.load', 'np.load', (['cfg.WRD_EMB_INIT_FILE'], {}), '(cfg.WRD_EMB_INIT_FILE)\n', (1270, 1293), True, 'import numpy as np\n'), ((1424, 1471), 'numpy.random.randn', 'np.random.randn', (['(num_vocab - 1)', 'cfg.WRD_EMB_DIM'], {}), '(num_vocab - 1, cfg.WRD_EMB_DIM)\n', (1439, 1471), True, 'import numpy as np\n'), ((2716, 2731), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (2729, 2731), False, 'import torch\n'), ((6115, 6147), 'torch.nn.functional.cross_entropy', 'F.cross_entropy', (['logits', 'answers'], {}), '(logits, answers)\n', (6130, 6147), True, 'import torch.nn.functional as F\n'), ((7717, 7744), 'torch.cuda.amp.GradScaler', 'torch.cuda.amp.GradScaler', ([], {}), '()\n', (7742, 7744), False, 'import torch\n'), ((7913, 8030), 'torch.nn.parallel.DistributedDataParallel', 'nn.parallel.DistributedDataParallel', (['self.model'], {'device_ids': '[gpu]', 'output_device': 'gpu', 'find_unused_parameters': '(True)'}), '(self.model, device_ids=[gpu],\n output_device=gpu, find_unused_parameters=True)\n', (7948, 8030), False, 'from torch import nn\n'), ((1029, 1059), 'torch.bmm', 'torch.bmm', (['att[:, None, :]', 'kb'], {}), '(att[:, None, :], kb)\n', (1038, 1059), False, 'import torch\n'), ((5798, 5826), 'torch.argmax', 'torch.argmax', (['logits'], {'dim': '(-1)'}), '(logits, dim=-1)\n', (5810, 5826), False, 'import torch\n'), ((5901, 5920), 'torch.sum', 'torch.sum', (['corrects'], {}), '(corrects)\n', (5910, 5920), False, 'import torch\n'), ((12633, 12648), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (12646, 12648), False, 'import torch\n'), ((6297, 6351), 'torch.nn.functional.binary_cross_entropy_with_logits', 'F.binary_cross_entropy_with_logits', (['logits', 'answerDist'], {}), '(logits, answerDist)\n', (6331, 6351), True, 'import torch.nn.functional as F\n'), ((11331, 11341), 'torch.cuda.amp.autocast', 'autocast', ([], {}), '()\n', (11339, 11341), True, 'from torch.cuda.amp import autocast as autocast\n'), ((6220, 6256), 'torch.nn.functional.one_hot', 'F.one_hot', (['answers', 'self.num_choices'], {}), '(answers, self.num_choices)\n', (6229, 6256), True, 'import torch.nn.functional as F\n')]
""" 3D Agn spin visualisation """ import logging import os import shutil import corner import matplotlib.lines as mlines import matplotlib.pyplot as plt import numpy as np import pandas as pd import pyvista as pv import scipy.stats from bbh_simulator.calculate_kick_vel_from_samples import Samples from matplotlib import rc from tqdm import tqdm logging.getLogger("bbh_simulator").setLevel(logging.ERROR) logging.getLogger().setLevel(logging.ERROR) rc("text", usetex=True) N_VEC = "Num BBH" COS_theta_12 = "cos(theta_12)" COS_theta_1L = "cos(theta_1L)" BILBY_BLUE_COLOR = "#0072C1" VIOLET_COLOR = "#8E44AD" PARAMS = dict( chi_eff=dict(l=r"$\chi_{eff}$", r=(-1, 1)), chi_p=dict(l=r"$\chi_{p}$", r=(0, 1)), cos_tilt_1=dict(l=r"$\cos(t1)$", r=(-1, 1)), cos_tilt_2=dict(l=r"$\cos(t2)$", r=(-1, 1)), cos_theta_12=dict(l=r"$\cos \theta_{12}$", r=(-1, 1)), cos_theta_1L=dict(l=r"$\cos \theta_{1L}$", r=(-1, 1)), ) def rotate_vector_along_z(v1, theta): """ |cos tilt −sin tilt 0| |x| |x cos tilt − y sin tilt| |x'| |sin tilt cos tilt 0| |y| = |x sin tilt + y cos tilt| = |y'| | 0 0 1| |z| | z | |z'| """ x, y, z = v1[0], v1[1], v1[2] return [ x * np.cos(theta) - y * np.sin(theta), x * np.sin(theta) + y * np.cos(theta), z, ] def rotate_vector_along_y(v1, theta): """ | cos tilt 0 sin tilt| |grid_x| | grid_x cos tilt + pred_z sin tilt| |grid_x'| | 0 1 0| |grid_y| = | grid_y | = |grid_y'| |−sin tilt 0 cos tilt| |pred_z| |−grid_x sin tilt + pred_z cos tilt| |pred_z'| """ x, y, z = v1[0], v1[1], v1[2] return [ x * np.cos(theta) + z * np.sin(theta), y, -x * np.sin(theta) + z * np.cos(theta), ] def get_isotropic_vector(std=1): """ Generates a random 3D unit vector (direction) with a uniform spherical distribution Algo from http://stackoverflow.com/questions/5408276/python-uniform-spherical-distribution :return: """ theta = np.random.uniform(0, np.pi * 2) # truncated normal distribution --> peaks at costheta = 1 # hyperparam --> sigma # costheta = np.random.uniform(std, 1) mean = 1 clip_a, clip_b = -1, 1 if std == 0: std = 0.00001 a, b = (clip_a - mean) / std, (clip_b - mean) / std costheta = scipy.stats.truncnorm.rvs( a=a, b=b, loc=mean, scale=std, size=1 )[0] theta = np.arccos(costheta) x = np.sin(theta) * np.cos(theta) y = np.sin(theta) * np.sin(theta) z = np.cos(theta) return [x, y, z] def rotate_v2_to_v1(v1, v2): azimuth = get_azimuth_angle(v1[0], v1[1]) zenith = get_zenith_angle(v1[2]) v2 = rotate_vector_along_y(v2, zenith) v2 = rotate_vector_along_z(v2, azimuth) return v2 def compute_vectors(mesh): origin = 0 vectors = mesh.points - origin vectors = normalise_vectors(vectors) return vectors def normalise_vectors(vectors): return vectors / np.linalg.norm(vectors, axis=1)[:, None] class SphereAngleAnimation: def __init__(self): # default parameters self.kwargs = { "radius": 1, N_VEC: 100, COS_theta_1L: 1, COS_theta_12: 1, } self.s1_color = "lightblue" self.s2_color = "lightgreen" self.plotter = self.init_plotter() self.add_sliders() self.plotter.show("AGN BBH spins") self.add_vectors() def __call__(self, param, value): self.kwargs[param] = value self.update() def add_sliders(self): LEFT = dict( pointa=(0.025, 0.1), pointb=(0.31, 0.1), ) MIDDLE = dict(pointa=(0.35, 0.1), pointb=(0.64, 0.1)) RIGHT = dict( pointa=(0.67, 0.1), pointb=(0.98, 0.1), ) self.plotter.add_slider_widget( callback=lambda value: self(COS_theta_1L, value), rng=[0, 1], value=1, title=f"min {COS_theta_1L}", style="modern", **LEFT, ) self.plotter.add_slider_widget( callback=lambda value: self(COS_theta_12, value), rng=[0, 1], value=1, title=f"min {COS_theta_12}", style="modern", **MIDDLE, ) self.plotter.add_slider_widget( callback=lambda value: self(N_VEC, int(value)), rng=[1, 1000], value=100, title=N_VEC, style="modern", **RIGHT, ) def init_plotter(self): p = pv.Plotter() p.add_mesh(pv.Sphere(radius=self.kwargs["radius"])) ar_kwgs = dict( scale=self.kwargs["radius"] * 2, shaft_radius=0.01, tip_radius=0.05, tip_length=0.1, ) p.add_mesh(pv.Arrow(direction=[1, 0, 0], **ar_kwgs), color="blue") # x p.add_mesh(pv.Arrow(direction=[0, 1, 0], **ar_kwgs), color="red") # y p.add_mesh( pv.Arrow(direction=[0, 0, 1], **ar_kwgs), color="green" ) # Z p.add_legend( labels=[ ["L", "green"], ["S1", self.s1_color], ["S2", self.s2_color], ] ) return p def add_vectors(self): s1_vectors = [ get_isotropic_vector(self.kwargs[COS_theta_1L]) for _ in range(self.kwargs[N_VEC]) ] s2_vectors = [ get_isotropic_vector(self.kwargs[COS_theta_12]) for _ in range(self.kwargs[N_VEC]) ] s2_vectors = [ rotate_v2_to_v1(s1, s2) for s1, s2 in zip(s1_vectors, s2_vectors) ] self.add_vector_list(s1_vectors, name="s1", color=self.s1_color) self.add_vector_list(s2_vectors, name="s2", color=self.s2_color) def add_vector_list(self, vectors, name, color): self.plotter.remove_actor(f"{name}_pts") self.plotter.remove_actor(f"{name}_arrows") pt_cloud = pv.PolyData(vectors) vectors = compute_vectors(pt_cloud) pt_cloud["vectors"] = vectors arrows = pt_cloud.glyph( orient="vectors", scale=False, factor=0.3, ) self.plotter.add_mesh( pt_cloud, color=color, point_size=10, render_points_as_spheres=True, name=f"{name}_pts", ) self.plotter.add_mesh(arrows, color=color, name=f"{name}_arrows") def update(self): self.add_vectors() def get_zenith_angle(z): """Angle from z to vector [0, pi)""" return np.arccos(z) def get_azimuth_angle(x, y): """angle bw north vector and projected vector on the horizontal plane [0, 2pi]""" azimuth = np.arctan2(y, x) # [-pi, pi) if azimuth < 0.0: azimuth += 2 * np.pi return azimuth def get_chi_eff(s1, s2, q=1): s1z, s2z = s1[2], s2[2] return (s1z * s2z) * (q / (1 + q)) def get_chi_p(s1, s2, q=1): chi1p = np.sqrt(s1[0] ** 2 + s1[1] ** 2) chi2p = np.sqrt(s2[0] ** 2 + s2[1] ** 2) qfactor = q * ((4 * q) + 3) / (4 + (3 * q)) return np.maximum(chi1p, chi2p * qfactor) N = 1000 def convert_vectors_to_bbh_param(cos_theta1L_std, cos_theta12_std): """Generate BBH spin vectors and convert to LIGO BBH params cos_tilt_i: Cosine of the zenith angle between the s and j [-1,1] theta_12: diff bw azimuthal angles of the s1hat+s2 projections on orbital plane [0, 2pi] theta_jl: diff bw L and J azimuthal angles [0, 2pi] """ n = N lhat = normalise_vectors([[0, 0, 1] for _ in range(n)]) s1hat = normalise_vectors( [get_isotropic_vector(cos_theta1L_std) for _ in range(n)] ) s2hat = normalise_vectors( [get_isotropic_vector(cos_theta12_std) for _ in range(n)] ) s2hat = normalise_vectors( [rotate_v2_to_v1(s1v, s2v) for s1v, s2v in zip(s1hat, s2hat)] ) df = pd.DataFrame( dict( spin_1x=s1hat[:, 0], spin_1y=s1hat[:, 1], spin_1z=s1hat[:, 2], spin_2x=s2hat[:, 0], spin_2y=s2hat[:, 1], spin_2z=s2hat[:, 2], cos_tilt_1=np.cos([get_zenith_angle(v[2]) for v in s1hat]), cos_tilt_2=np.cos([get_zenith_angle(v[2]) for v in s2hat]), chi_eff=[get_chi_eff(s1, s2) for s1, s2 in zip(s1hat, s2hat)], chi_p=[get_chi_p(s1, s2) for s1, s2 in zip(s1hat, s2hat)], cos_theta_12=[ np.cos(get_angle_bw_vectors(s1, s2)) for s1, s2 in zip(s1hat, s2hat) ], cos_theta_1L=[ np.cos(get_angle_bw_vectors(s1, l)) for s1, l in zip(s1hat, lhat) ], mass_1_source=[25 for _ in s1hat], mass_2_source=[25 for _ in s1hat], ) ) s = Samples(posterior=df) # s.calculate_remnant_kick_velocity() return s.posterior def get_angle_bw_vectors(v1, v2): unit_vector1 = v1 / np.linalg.norm(v1) unit_vector2 = v2 / np.linalg.norm(v2) dot_product = np.dot(unit_vector1, unit_vector2) return np.arccos(dot_product) def plot_corner_of_spins(cos_theta1L_std, cos_theta12_std, save=True): bbh_vectors = convert_vectors_to_bbh_param( cos_theta1L_std=cos_theta1L_std, cos_theta12_std=cos_theta12_std ) params = [p for p in PARAMS.keys()] bbh_vectors = bbh_vectors[params] labels = [PARAMS[p]["l"] for p in params] range = [PARAMS[p]["r"] for p in params] corner.corner(bbh_vectors, **CORNER_KWARGS, labels=labels, range=range) if save: plt.savefig( f"spins_theta1L{cos_theta1L_std:.2f}_theta12{cos_theta12_std:.2f}.png" ) def get_normalisation_weight(len_current_samples, len_of_longest_samples): return np.ones(len_current_samples) * ( len_of_longest_samples / len_current_samples ) def plot_overlaid_corners(cos_theta1L_std_vals, cos_theta12_std_vals, pltdir): params = dict( chi_eff=dict(l=r"$\chi_{eff}$", r=(-1, 1)), chi_p=dict(l=r"$\chi_{p}$", r=(-1, 1)), cos_tilt_1=dict(l=r"$\cos(t1)$", r=(-1, 1)), cos_theta_12=dict(l=r"$\cos \theta_{12}$", r=(-1, 1)), remnant_kick_mag=dict(l=r"$|\vec{v}_k|\ $km/s", r=(0, 3000)), ) base = convert_vectors_to_bbh_param(cos_theta1L_std=1, cos_theta12_std=1) labels = [params[p]["l"] for p in params] range = [params[p]["r"] for p in params] kwargs = dict(**CORNER_KWARGS, labels=labels, range=range) if os.path.isdir(pltdir): shutil.rmtree(pltdir) os.makedirs(pltdir, exist_ok=False) i = 0 for min_cos_theta1L, min_cos_theta12 in tqdm( zip(cos_theta1L_std_vals, cos_theta12_std_vals), total=len(cos_theta1L_std_vals), desc="Hyper-Param settings", ): f = f"{pltdir}/{i:02}_p12{min_cos_theta12:.1f}_p1L{min_cos_theta1L:.1f}.png" compare = convert_vectors_to_bbh_param( cos_theta1L_std=min_cos_theta1L, cos_theta12_std=min_cos_theta12 ) compare.to_csv(f.replace(".png", ".csv")) fig = corner.corner(base[params], **kwargs, color=BILBY_BLUE_COLOR) normalising_weights = get_normalisation_weight( len(compare), max(len(compare), len(base)) ) corner.corner( compare[params], fig=fig, weights=normalising_weights, **kwargs, color=VIOLET_COLOR, ) orig_line = mlines.Line2D( [], [], color=BILBY_BLUE_COLOR, label="Isotropic Spins" ) weighted_line = mlines.Line2D( [], [], color=VIOLET_COLOR, label=f"Adjusted spins $\sigma \cos(12)={min_cos_theta12:.1f}, \sigma \cos(1L)={min_cos_theta1L:.1f}$", ) plt.legend( handles=[orig_line, weighted_line], fontsize=25, frameon=False, bbox_to_anchor=(1, len(labels)), loc="upper right", ) plt.savefig(f) plt.close() i += 1 import glob from bilby_report.tools import image_utils def save_gif(gifname, outdir="gif", loop=False): image_paths = glob.glob(f"{outdir}/*.png") gif_filename = os.path.join(outdir, gifname) orig_len = len(image_paths) image_paths.sort() if loop: image_paths += image_paths[::-1] assert orig_len <= len(image_paths) image_utils.make_gif( image_paths=image_paths, duration=50, gif_save_path=gif_filename ) print(f"Saved gif {gif_filename}") if __name__ == "__main__": r = SphereAngleAnimation() # varying = list(np.arange(0, 2.1, 0.5)) # constant = [1 for i in range(len(varying))] # # outdir = "../output/vary_12" # plot_overlaid_corners(cos_theta1L_std_vals=constant, # cos_theta12_std_vals=varying, pltdir=outdir) # save_gif("vary_12.gif", outdir=outdir, loop=True) # # outdir = "../output/vary_1L" # plot_overlaid_corners(cos_theta1L_std_vals=varying, # cos_theta12_std_vals=constant, pltdir=outdir) # save_gif("vary_1L.gif", outdir=outdir, loop=True)
[ "logging.getLogger", "numpy.arccos", "numpy.sqrt", "bilby_report.tools.image_utils.make_gif", "numpy.arctan2", "matplotlib.rc", "numpy.linalg.norm", "numpy.sin", "corner.corner", "matplotlib.lines.Line2D", "pyvista.Arrow", "bbh_simulator.calculate_kick_vel_from_samples.Samples", "pyvista.PolyData", "matplotlib.pyplot.close", "numpy.dot", "os.path.isdir", "numpy.maximum", "glob.glob", "matplotlib.pyplot.savefig", "numpy.ones", "shutil.rmtree", "numpy.cos", "os.makedirs", "os.path.join", "pyvista.Sphere", "numpy.random.uniform", "pyvista.Plotter" ]
[((452, 475), 'matplotlib.rc', 'rc', (['"""text"""'], {'usetex': '(True)'}), "('text', usetex=True)\n", (454, 475), False, 'from matplotlib import rc\n'), ((2082, 2113), 'numpy.random.uniform', 'np.random.uniform', (['(0)', '(np.pi * 2)'], {}), '(0, np.pi * 2)\n', (2099, 2113), True, 'import numpy as np\n'), ((2492, 2511), 'numpy.arccos', 'np.arccos', (['costheta'], {}), '(costheta)\n', (2501, 2511), True, 'import numpy as np\n'), ((2596, 2609), 'numpy.cos', 'np.cos', (['theta'], {}), '(theta)\n', (2602, 2609), True, 'import numpy as np\n'), ((6720, 6732), 'numpy.arccos', 'np.arccos', (['z'], {}), '(z)\n', (6729, 6732), True, 'import numpy as np\n'), ((6864, 6880), 'numpy.arctan2', 'np.arctan2', (['y', 'x'], {}), '(y, x)\n', (6874, 6880), True, 'import numpy as np\n'), ((7105, 7137), 'numpy.sqrt', 'np.sqrt', (['(s1[0] ** 2 + s1[1] ** 2)'], {}), '(s1[0] ** 2 + s1[1] ** 2)\n', (7112, 7137), True, 'import numpy as np\n'), ((7150, 7182), 'numpy.sqrt', 'np.sqrt', (['(s2[0] ** 2 + s2[1] ** 2)'], {}), '(s2[0] ** 2 + s2[1] ** 2)\n', (7157, 7182), True, 'import numpy as np\n'), ((7242, 7276), 'numpy.maximum', 'np.maximum', (['chi1p', '(chi2p * qfactor)'], {}), '(chi1p, chi2p * qfactor)\n', (7252, 7276), True, 'import numpy as np\n'), ((8983, 9004), 'bbh_simulator.calculate_kick_vel_from_samples.Samples', 'Samples', ([], {'posterior': 'df'}), '(posterior=df)\n', (8990, 9004), False, 'from bbh_simulator.calculate_kick_vel_from_samples import Samples\n'), ((9211, 9245), 'numpy.dot', 'np.dot', (['unit_vector1', 'unit_vector2'], {}), '(unit_vector1, unit_vector2)\n', (9217, 9245), True, 'import numpy as np\n'), ((9257, 9279), 'numpy.arccos', 'np.arccos', (['dot_product'], {}), '(dot_product)\n', (9266, 9279), True, 'import numpy as np\n'), ((9653, 9724), 'corner.corner', 'corner.corner', (['bbh_vectors'], {'labels': 'labels', 'range': 'range'}), '(bbh_vectors, **CORNER_KWARGS, labels=labels, range=range)\n', (9666, 9724), False, 'import corner\n'), ((10665, 10686), 'os.path.isdir', 'os.path.isdir', (['pltdir'], {}), '(pltdir)\n', (10678, 10686), False, 'import os\n'), ((10722, 10757), 'os.makedirs', 'os.makedirs', (['pltdir'], {'exist_ok': '(False)'}), '(pltdir, exist_ok=False)\n', (10733, 10757), False, 'import os\n'), ((12340, 12368), 'glob.glob', 'glob.glob', (['f"""{outdir}/*.png"""'], {}), "(f'{outdir}/*.png')\n", (12349, 12368), False, 'import glob\n'), ((12388, 12417), 'os.path.join', 'os.path.join', (['outdir', 'gifname'], {}), '(outdir, gifname)\n', (12400, 12417), False, 'import os\n'), ((12571, 12662), 'bilby_report.tools.image_utils.make_gif', 'image_utils.make_gif', ([], {'image_paths': 'image_paths', 'duration': '(50)', 'gif_save_path': 'gif_filename'}), '(image_paths=image_paths, duration=50, gif_save_path=\n gif_filename)\n', (12591, 12662), False, 'from bilby_report.tools import image_utils\n'), ((348, 382), 'logging.getLogger', 'logging.getLogger', (['"""bbh_simulator"""'], {}), "('bbh_simulator')\n", (365, 382), False, 'import logging\n'), ((407, 426), 'logging.getLogger', 'logging.getLogger', ([], {}), '()\n', (424, 426), False, 'import logging\n'), ((2520, 2533), 'numpy.sin', 'np.sin', (['theta'], {}), '(theta)\n', (2526, 2533), True, 'import numpy as np\n'), ((2536, 2549), 'numpy.cos', 'np.cos', (['theta'], {}), '(theta)\n', (2542, 2549), True, 'import numpy as np\n'), ((2558, 2571), 'numpy.sin', 'np.sin', (['theta'], {}), '(theta)\n', (2564, 2571), True, 'import numpy as np\n'), ((2574, 2587), 'numpy.sin', 'np.sin', (['theta'], {}), '(theta)\n', (2580, 2587), True, 'import numpy as np\n'), ((4666, 4678), 'pyvista.Plotter', 'pv.Plotter', ([], {}), '()\n', (4676, 4678), True, 'import pyvista as pv\n'), ((6102, 6122), 'pyvista.PolyData', 'pv.PolyData', (['vectors'], {}), '(vectors)\n', (6113, 6122), True, 'import pyvista as pv\n'), ((9131, 9149), 'numpy.linalg.norm', 'np.linalg.norm', (['v1'], {}), '(v1)\n', (9145, 9149), True, 'import numpy as np\n'), ((9174, 9192), 'numpy.linalg.norm', 'np.linalg.norm', (['v2'], {}), '(v2)\n', (9188, 9192), True, 'import numpy as np\n'), ((9746, 9834), 'matplotlib.pyplot.savefig', 'plt.savefig', (['f"""spins_theta1L{cos_theta1L_std:.2f}_theta12{cos_theta12_std:.2f}.png"""'], {}), "(\n f'spins_theta1L{cos_theta1L_std:.2f}_theta12{cos_theta12_std:.2f}.png')\n", (9757, 9834), True, 'import matplotlib.pyplot as plt\n'), ((9940, 9968), 'numpy.ones', 'np.ones', (['len_current_samples'], {}), '(len_current_samples)\n', (9947, 9968), True, 'import numpy as np\n'), ((10696, 10717), 'shutil.rmtree', 'shutil.rmtree', (['pltdir'], {}), '(pltdir)\n', (10709, 10717), False, 'import shutil\n'), ((11246, 11307), 'corner.corner', 'corner.corner', (['base[params]'], {'color': 'BILBY_BLUE_COLOR'}), '(base[params], **kwargs, color=BILBY_BLUE_COLOR)\n', (11259, 11307), False, 'import corner\n'), ((11437, 11540), 'corner.corner', 'corner.corner', (['compare[params]'], {'fig': 'fig', 'weights': 'normalising_weights', 'color': 'VIOLET_COLOR'}), '(compare[params], fig=fig, weights=normalising_weights, **\n kwargs, color=VIOLET_COLOR)\n', (11450, 11540), False, 'import corner\n'), ((11628, 11698), 'matplotlib.lines.Line2D', 'mlines.Line2D', (['[]', '[]'], {'color': 'BILBY_BLUE_COLOR', 'label': '"""Isotropic Spins"""'}), "([], [], color=BILBY_BLUE_COLOR, label='Isotropic Spins')\n", (11641, 11698), True, 'import matplotlib.lines as mlines\n'), ((11745, 11904), 'matplotlib.lines.Line2D', 'mlines.Line2D', (['[]', '[]'], {'color': 'VIOLET_COLOR', 'label': 'f"""Adjusted spins $\\\\sigma \\\\cos(12)={min_cos_theta12:.1f}, \\\\sigma \\\\cos(1L)={min_cos_theta1L:.1f}$"""'}), "([], [], color=VIOLET_COLOR, label=\n f'Adjusted spins $\\\\sigma \\\\cos(12)={min_cos_theta12:.1f}, \\\\sigma \\\\cos(1L)={min_cos_theta1L:.1f}$'\n )\n", (11758, 11904), True, 'import matplotlib.lines as mlines\n'), ((12164, 12178), 'matplotlib.pyplot.savefig', 'plt.savefig', (['f'], {}), '(f)\n', (12175, 12178), True, 'import matplotlib.pyplot as plt\n'), ((12187, 12198), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (12196, 12198), True, 'import matplotlib.pyplot as plt\n'), ((3040, 3071), 'numpy.linalg.norm', 'np.linalg.norm', (['vectors'], {'axis': '(1)'}), '(vectors, axis=1)\n', (3054, 3071), True, 'import numpy as np\n'), ((4698, 4737), 'pyvista.Sphere', 'pv.Sphere', ([], {'radius': "self.kwargs['radius']"}), "(radius=self.kwargs['radius'])\n", (4707, 4737), True, 'import pyvista as pv\n'), ((4925, 4965), 'pyvista.Arrow', 'pv.Arrow', ([], {'direction': '[1, 0, 0]'}), '(direction=[1, 0, 0], **ar_kwgs)\n', (4933, 4965), True, 'import pyvista as pv\n'), ((5005, 5045), 'pyvista.Arrow', 'pv.Arrow', ([], {'direction': '[0, 1, 0]'}), '(direction=[0, 1, 0], **ar_kwgs)\n', (5013, 5045), True, 'import pyvista as pv\n'), ((5097, 5137), 'pyvista.Arrow', 'pv.Arrow', ([], {'direction': '[0, 0, 1]'}), '(direction=[0, 0, 1], **ar_kwgs)\n', (5105, 5137), True, 'import pyvista as pv\n'), ((1250, 1263), 'numpy.cos', 'np.cos', (['theta'], {}), '(theta)\n', (1256, 1263), True, 'import numpy as np\n'), ((1270, 1283), 'numpy.sin', 'np.sin', (['theta'], {}), '(theta)\n', (1276, 1283), True, 'import numpy as np\n'), ((1297, 1310), 'numpy.sin', 'np.sin', (['theta'], {}), '(theta)\n', (1303, 1310), True, 'import numpy as np\n'), ((1317, 1330), 'numpy.cos', 'np.cos', (['theta'], {}), '(theta)\n', (1323, 1330), True, 'import numpy as np\n'), ((1723, 1736), 'numpy.cos', 'np.cos', (['theta'], {}), '(theta)\n', (1729, 1736), True, 'import numpy as np\n'), ((1743, 1756), 'numpy.sin', 'np.sin', (['theta'], {}), '(theta)\n', (1749, 1756), True, 'import numpy as np\n'), ((1782, 1795), 'numpy.sin', 'np.sin', (['theta'], {}), '(theta)\n', (1788, 1795), True, 'import numpy as np\n'), ((1802, 1815), 'numpy.cos', 'np.cos', (['theta'], {}), '(theta)\n', (1808, 1815), True, 'import numpy as np\n')]
#encoding=utf8 ## 参考https://blog.csdn.net/dengxing1234/article/details/73739836 import xgboost as xgb from sklearn.datasets import load_svmlight_file from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression from sklearn.metrics import roc_curve, auc, roc_auc_score from sklearn.externals import joblib import numpy as np from scipy.sparse import hstack from sklearn.preprocessing.data import OneHotEncoder def xgboost_lr_train(libsvmFileNameInitial): # load样本数据 X_all, y_all = load_svmlight_file(libsvmFileNameInitial) # 训练/测试数据分割 X_train, X_test, y_train, y_test = train_test_split(X_all, y_all, test_size = 0.3, random_state = 42) # 定义xgb模型 xgboost = xgb.XGBClassifier(nthread=4, learning_rate=0.08, n_estimators=50, max_depth=5, gamma=0, subsample=0.9, colsample_bytree=0.5) # 训练xgb学习 xgboost.fit(X_train, y_train) # 预测xgb及AUC评测 y_pred_test = xgboost.predict_proba(X_test)[:, 1] xgb_test_auc = roc_auc_score(y_test, y_pred_test) print('xgboost test auc: %.5f' % xgb_test_auc) # xgboost编码原有特征 X_train_leaves = xgboost.apply(X_train) X_test_leaves = xgboost.apply(X_test) # 合并编码后的训练数据和测试数据 All_leaves = np.concatenate((X_train_leaves, X_test_leaves), axis=0) All_leaves = All_leaves.astype(np.int32) # 对所有特征进行ont-hot编码 xgbenc = OneHotEncoder() X_trans = xgbenc.fit_transform(All_leaves) (train_rows, cols) = X_train_leaves.shape # 定义LR模型 lr = LogisticRegression() # lr对xgboost特征编码后的样本模型训练 lr.fit(X_trans[:train_rows, :], y_train) # 预测及AUC评测 y_pred_xgblr1 = lr.predict_proba(X_trans[train_rows:, :])[:, 1] xgb_lr_auc1 = roc_auc_score(y_test, y_pred_xgblr1) print('基于Xgb特征编码后的LR AUC: %.5f' % xgb_lr_auc1) # 定义LR模型 lr = LogisticRegression(n_jobs=-1) # 组合特征 X_train_ext = hstack([X_trans[:train_rows, :], X_train]) X_test_ext = hstack([X_trans[train_rows:, :], X_test]) # lr对组合特征的样本模型训练 lr.fit(X_train_ext, y_train) # 预测及AUC评测 y_pred_xgblr2 = lr.predict_proba(X_test_ext)[:, 1] xgb_lr_auc2 = roc_auc_score(y_test, y_pred_xgblr2) print('基于组合特征的LR AUC: %.5f' % xgb_lr_auc2) if __name__ == '__main__': xgboost_lr_train("data/sample_libsvm_data.txt")
[ "sklearn.datasets.load_svmlight_file", "sklearn.model_selection.train_test_split", "sklearn.metrics.roc_auc_score", "sklearn.linear_model.LogisticRegression", "sklearn.preprocessing.data.OneHotEncoder", "scipy.sparse.hstack", "numpy.concatenate", "xgboost.XGBClassifier" ]
[((536, 577), 'sklearn.datasets.load_svmlight_file', 'load_svmlight_file', (['libsvmFileNameInitial'], {}), '(libsvmFileNameInitial)\n', (554, 577), False, 'from sklearn.datasets import load_svmlight_file\n'), ((634, 696), 'sklearn.model_selection.train_test_split', 'train_test_split', (['X_all', 'y_all'], {'test_size': '(0.3)', 'random_state': '(42)'}), '(X_all, y_all, test_size=0.3, random_state=42)\n', (650, 696), False, 'from sklearn.model_selection import train_test_split\n'), ((730, 859), 'xgboost.XGBClassifier', 'xgb.XGBClassifier', ([], {'nthread': '(4)', 'learning_rate': '(0.08)', 'n_estimators': '(50)', 'max_depth': '(5)', 'gamma': '(0)', 'subsample': '(0.9)', 'colsample_bytree': '(0.5)'}), '(nthread=4, learning_rate=0.08, n_estimators=50, max_depth\n =5, gamma=0, subsample=0.9, colsample_bytree=0.5)\n', (747, 859), True, 'import xgboost as xgb\n'), ((1023, 1057), 'sklearn.metrics.roc_auc_score', 'roc_auc_score', (['y_test', 'y_pred_test'], {}), '(y_test, y_pred_test)\n', (1036, 1057), False, 'from sklearn.metrics import roc_curve, auc, roc_auc_score\n'), ((1257, 1312), 'numpy.concatenate', 'np.concatenate', (['(X_train_leaves, X_test_leaves)'], {'axis': '(0)'}), '((X_train_leaves, X_test_leaves), axis=0)\n', (1271, 1312), True, 'import numpy as np\n'), ((1395, 1410), 'sklearn.preprocessing.data.OneHotEncoder', 'OneHotEncoder', ([], {}), '()\n', (1408, 1410), False, 'from sklearn.preprocessing.data import OneHotEncoder\n'), ((1528, 1548), 'sklearn.linear_model.LogisticRegression', 'LogisticRegression', ([], {}), '()\n', (1546, 1548), False, 'from sklearn.linear_model import LogisticRegression\n'), ((1724, 1760), 'sklearn.metrics.roc_auc_score', 'roc_auc_score', (['y_test', 'y_pred_xgblr1'], {}), '(y_test, y_pred_xgblr1)\n', (1737, 1760), False, 'from sklearn.metrics import roc_curve, auc, roc_auc_score\n'), ((1835, 1864), 'sklearn.linear_model.LogisticRegression', 'LogisticRegression', ([], {'n_jobs': '(-1)'}), '(n_jobs=-1)\n', (1853, 1864), False, 'from sklearn.linear_model import LogisticRegression\n'), ((1894, 1936), 'scipy.sparse.hstack', 'hstack', (['[X_trans[:train_rows, :], X_train]'], {}), '([X_trans[:train_rows, :], X_train])\n', (1900, 1936), False, 'from scipy.sparse import hstack\n'), ((1954, 1995), 'scipy.sparse.hstack', 'hstack', (['[X_trans[train_rows:, :], X_test]'], {}), '([X_trans[train_rows:, :], X_test])\n', (1960, 1995), False, 'from scipy.sparse import hstack\n'), ((2140, 2176), 'sklearn.metrics.roc_auc_score', 'roc_auc_score', (['y_test', 'y_pred_xgblr2'], {}), '(y_test, y_pred_xgblr2)\n', (2153, 2176), False, 'from sklearn.metrics import roc_curve, auc, roc_auc_score\n')]
#!/usr/bin/env python # encoding: utf-8 """ calc beat score of files copyright: www.mgtv.com """ import os import sys import argparse import numpy as np import traceback import beat_evaluation_toolbox as be def calc_beat_score_of_file(annotation_file, beat_file): #check input params if os.path.exists(annotation_file) == False: print("failed! annotation_file:%s not exist\n" % (annotation_file)) return False, 0.0 if os.path.exists(beat_file) == False: print("failed! beat_file:%s not exist\n" % (beat_file)) return False, 0.0 data_annotation = np.loadtxt(annotation_file, usecols=(0)) data_annotation = np.expand_dims(data_annotation, axis=0) data_beat = np.loadtxt(beat_file, usecols=(0)) data_beat = np.expand_dims(data_beat, axis=0) R = be.evaluate_db(data_annotation, data_beat, 'all', doCI=False) #输出结果 print(R['scores']) pscore = R['scores']['pScore'][0] f_measure = R['scores']['fMeasure'][0] aml_c = R['scores']['amlC'][0] aml_t = R['scores']['amlT'][0] cml_c = R['scores']['cmlC'][0] cml_t = R['scores']['cmlT'][0] cem_acc = R['scores']['cemgilAcc'][0] total_score = (aml_c + cem_acc + cml_c + f_measure + pscore + cml_t + aml_t) / 7 print("[%s] score:%.4f"%(beat_file, total_score)) return True, total_score def calc_avg_score_of_files(annotation_files_dir, beat_files_dir, file_extension): #check input params if os.path.exists(annotation_files_dir) == False: print("failed! annotation_files_dir:%s not exist\n" % (annotation_files_dir)) return False, 0.0 if os.path.exists(beat_files_dir) == False: print("failed! beat_files_dir:%s not exist\n" % (beat_files_dir)) return False, 0.0 if not annotation_files_dir.endswith("/"): annotation_files_dir += "/" if not beat_files_dir.endswith("/"): beat_files_dir += "/" annotation_files_url = [f for f in os.listdir(annotation_files_dir) if f.endswith((file_extension))] nb_annotation_files = len(annotation_files_url) beat_files_url = [f for f in os.listdir(beat_files_dir) if f.endswith((file_extension))] nb_beat_files = len(beat_files_url) if nb_annotation_files != nb_beat_files or nb_annotation_files == 0: print("failed! annotation files num:%d beat files num:%d\n" % (nb_annotation_files, nb_beat_files)) return False, 0.0 sum_score = 0.0 for i in range(nb_annotation_files): annotation_file = annotation_files_dir + annotation_files_url[i] beat_file = beat_files_dir + annotation_files_url[i] if os.path.exists(beat_file) == False: print("failed! beat file:%s not exist\n" % (beat_file)) return False, 0.0 ret, score = calc_beat_score_of_file(annotation_file, beat_file) if ret == False: print("failed! calc_beat_score_of_file failed for file:%s\n" % (beat_file)) return False, 0.0 sum_score = sum_score + score avg_score = sum_score / nb_annotation_files return True, avg_score if __name__ == '__main__': parser = argparse.ArgumentParser(description="calc avg score of beat(downbeat) files") parser.add_argument("--annotation_files_dir", required=True, help="Path to input annotation files dir", default="") parser.add_argument("--beat_files_dir", required=True, help="Path to input beats files dir", default="") parser.add_argument("--file_extension", required=True, help="File ext, beat or downbeat", default="") # 获得工作目录,程序模块名称,并切换工作目录 s_work_path, s_module_name = os.path.split(os.path.abspath(sys.argv[0])) print(s_work_path, s_module_name) os.chdir(s_work_path) try: args = parser.parse_args() ret, score = calc_avg_score_of_files(args.annotation_files_dir, args.beat_files_dir, args.file_extension) print("Final score:%.4f" % score) except Exception as e: traceback.print_exc() print("Exception running beat_score_calc: [%s]" % (str(e))) ret = False if ret == True: sys.exit(0) else: sys.exit(1)
[ "os.path.exists", "os.listdir", "argparse.ArgumentParser", "beat_evaluation_toolbox.evaluate_db", "os.chdir", "numpy.expand_dims", "sys.exit", "os.path.abspath", "numpy.loadtxt", "traceback.print_exc" ]
[((640, 678), 'numpy.loadtxt', 'np.loadtxt', (['annotation_file'], {'usecols': '(0)'}), '(annotation_file, usecols=0)\n', (650, 678), True, 'import numpy as np\n'), ((703, 742), 'numpy.expand_dims', 'np.expand_dims', (['data_annotation'], {'axis': '(0)'}), '(data_annotation, axis=0)\n', (717, 742), True, 'import numpy as np\n'), ((769, 801), 'numpy.loadtxt', 'np.loadtxt', (['beat_file'], {'usecols': '(0)'}), '(beat_file, usecols=0)\n', (779, 801), True, 'import numpy as np\n'), ((820, 853), 'numpy.expand_dims', 'np.expand_dims', (['data_beat'], {'axis': '(0)'}), '(data_beat, axis=0)\n', (834, 853), True, 'import numpy as np\n'), ((867, 928), 'beat_evaluation_toolbox.evaluate_db', 'be.evaluate_db', (['data_annotation', 'data_beat', '"""all"""'], {'doCI': '(False)'}), "(data_annotation, data_beat, 'all', doCI=False)\n", (881, 928), True, 'import beat_evaluation_toolbox as be\n'), ((3285, 3362), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""calc avg score of beat(downbeat) files"""'}), "(description='calc avg score of beat(downbeat) files')\n", (3308, 3362), False, 'import argparse\n'), ((3850, 3871), 'os.chdir', 'os.chdir', (['s_work_path'], {}), '(s_work_path)\n', (3858, 3871), False, 'import os\n'), ((314, 345), 'os.path.exists', 'os.path.exists', (['annotation_file'], {}), '(annotation_file)\n', (328, 345), False, 'import os\n'), ((474, 499), 'os.path.exists', 'os.path.exists', (['beat_file'], {}), '(beat_file)\n', (488, 499), False, 'import os\n'), ((1539, 1575), 'os.path.exists', 'os.path.exists', (['annotation_files_dir'], {}), '(annotation_files_dir)\n', (1553, 1575), False, 'import os\n'), ((1714, 1744), 'os.path.exists', 'os.path.exists', (['beat_files_dir'], {}), '(beat_files_dir)\n', (1728, 1744), False, 'import os\n'), ((3778, 3806), 'os.path.abspath', 'os.path.abspath', (['sys.argv[0]'], {}), '(sys.argv[0])\n', (3793, 3806), False, 'import os\n'), ((4280, 4291), 'sys.exit', 'sys.exit', (['(0)'], {}), '(0)\n', (4288, 4291), False, 'import sys\n'), ((4310, 4321), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (4318, 4321), False, 'import sys\n'), ((2059, 2091), 'os.listdir', 'os.listdir', (['annotation_files_dir'], {}), '(annotation_files_dir)\n', (2069, 2091), False, 'import os\n'), ((2211, 2237), 'os.listdir', 'os.listdir', (['beat_files_dir'], {}), '(beat_files_dir)\n', (2221, 2237), False, 'import os\n'), ((2744, 2769), 'os.path.exists', 'os.path.exists', (['beat_file'], {}), '(beat_file)\n', (2758, 2769), False, 'import os\n'), ((4133, 4154), 'traceback.print_exc', 'traceback.print_exc', ([], {}), '()\n', (4152, 4154), False, 'import traceback\n')]
import numpy as np def permutation_value(num_list, max_num): return sum([num_list[i]*max_num**(len(num_list)-1-i) for i in range(len(num_list))]) def permutation_update(in_list): pass init_array = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) init_array.astype('int64') #ULØST!
[ "numpy.array" ]
[((222, 262), 'numpy.array', 'np.array', (['[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]'], {}), '([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])\n', (230, 262), True, 'import numpy as np\n')]
import sys from PyQt4 import QtGui, QtCore from pyqtgraph.Qt import QtGui, QtCore import pyqtgraph as pg import numpy from math import sqrt, sin, cos, pi from geometry.quaternion import Quaternion class StripChart(QtGui.QWidget): """ a class to implement a stripchart using the pyqtgraph plotting utilities """ def __init__(self, plt=None, dim=1, relative_time=False, max_pts=200): super(StripChart, self).__init__() self.plt = plt self.curve = [] self.xdata = [] self.ydata = [] for i in range(0,dim): self.curve.append(plt.plot(pen='w')) self.ydata.append([]) self.xdata.append([]) self.dim = dim self.max_pts = max_pts self._npts = [0,] * dim self.pens = [None,] * dim self.brushes = [None,] * dim self._use_relative_time = relative_time def _update_plot(self): offset = 0.0 if self._use_relative_time: for xd in self.xdata: if len(xd) == 0: continue offset = max(numpy.amax(numpy.array(xd)), offset) for xd,yd,c,i in zip(self.xdata, self.ydata, self.curve, range(self.dim)): if numpy.isscalar(xd): xd = [xd,] yd = [yd,] plot_xdata = numpy.array(xd) - offset plot_ydata = numpy.array(yd) c.setData(x=plot_xdata, y=plot_ydata) if self.brushes is not None: assert len(self.brushes) == self.dim, "Number of brush\ collections must match number of samples" nbrush = 0 if self.brushes[i] is not None: c.setBrush(self.brushes[i]) if self.pens is not None: assert len(self.pens) == self.dim, "Number of pens\ collections must match number of samples" npen = 0 if self.pens[i] is not None: c.setPen(self.pens[i]) def update_data(self, x_new, y_new, idx=None, brushes=None, pens=None): if idx is None: idx = range(0,self.dim) if self.dim == 1: if not isinstance(x_new, tuple): x_new = (x_new,) if not isinstance(y_new, tuple): y_new = (y_new,) for x,y,i in zip(x_new, y_new, idx): if self._npts[i] < self.max_pts: if numpy.isnan(x) or numpy.isnan(y): continue self.xdata[i] = numpy.append(self.xdata[i], x) self.ydata[i] = numpy.append(self.ydata[i], y) self._npts[i] += 1 else: if numpy.isnan(x) or numpy.isnan(y): continue self.xdata[i] = numpy.append(self.xdata[i][1:], x) self.ydata[i] = numpy.append(self.ydata[i][1:], y) if brushes is None: brushes = [None,]*len(idx) if pens is None: pens = [None,]*len(idx) for b,p,i in zip(brushes, pens, idx): self.brushes[i] = b self.pens[i] = p self._update_plot() class ImageDisplay(QtGui.QWidget): """ image view widget """ def __init__(self, img=None, img_data=None, is_colorize=False): super(ImageDisplay, self).__init__() self._img_view = img if img_data is not None: self.img_data = img_data else: self.img_data = numpy.zeros((2,2)) self.cmax = 1.0 self.cmin = 0.0 self.is_colorize = is_colorize def update_data(self, img_new=None): if img_new is None or self._img_view is None: return self.img_data = img_new if self.is_colorize: self._img_view.setImage(self.colorize()) else: self._img_view.setImage(self.img_data) def colorize(self): len_x = self.img_data.shape[0] len_y = self.img_data.shape[1] c = numpy.zeros((len_x, len_y, 3)) crange = self.cmax - self.cmin c[:,:,0] = (self.img_data - self.cmin)/crange c[:,:,1] = 1 - abs(self.img_data/crange) c[:,:,2] = -(self.img_data - self.cmax)/crange return c class xyPlot(QtGui.QWidget): """ Plot Widget for x-y data """ def __init__(self, plt=None, dim=1, xlim=None, ylim=None): super(xyPlot, self).__init__() self.plt = plt self.curve = [] self.xdata = [] self.ydata = [] self.pens = [None,] * dim self.brushes = [None,] * dim self._xlim = xlim self._ylim = ylim self.dim = dim def _update_plot(self): for xd,yd,c,i in zip(self.xdata, self.ydata, self.curve, range(self.dim)): if numpy.isscalar(xd): xd = [xd,] yd = [yd,] if self.size is not None: c.setData(x=xd, y=yd, size=self.size) else: c.setData(x=xd, y=yd) if self.brushes is not None: assert len(self.brushes) == self.dim, "Number of brush\ collections must match number of samples" nbrush = 0 if self.brushes[i] is not None: c.setBrush(self.brushes[i]) if self.pens is not None: assert len(self.pens) == self.dim, "Number of pens\ collections must match number of samples" npen = 0 if self.pens[i] is not None: c.setPen(self.pens[i]) if self._xlim: self.plt.setXRange(self._xlim[0], self._xlim[1]) if self._ylim: self.plt.setYRange(self._ylim[0], self._ylim[1]) def update_data(self, x_new, y_new, curve_index=None, auto_update=True, brushes=None, pens=None, size=None): """Update the xy plot Arguments: x_new: new x data to update. Must either be a numpy array or a tuple of numpy arrays y_new: new y data to update. Must either be a numpy array or a tuple of numpy arrays curve_index: tuple of indices which indicate the curves which the tuples in x_new and y_new should update auto_update: optional, boolean indicating if we should redraw the plot, defaults to True brushes: tuple of brushes corresponding to the data to update pens: tuple of pens corresponding to the data to update size: not really sure Returns: no returns """ assert type(x_new) is type(y_new), "x and y data must either be\ numpy arrays or tuples containing them" if type(x_new) is not tuple: assert self.dim == 1, "must specify tuple of data if there is\ more htan one data series" x_new = (x_new,) y_new = (y_new,) curve_index = (0,) assert curve_index is not None, "must specify the data series that\ correspond to data in x_new and y_new tuples" if brushes is None: brushes = [None,]*len(curve_index) if pens is None: pens = [None,]*len(curve_index) for xd,yd,i,b,p in zip(x_new, y_new, curve_index, brushes, pens): self.xdata[i] = xd self.ydata[i] = yd if b is not None: self.brushes[i] = b if p is not None: self.pens[i] = p self.size = size if auto_update: self._update_plot() class ScatterPlot(xyPlot): """ Widget for scatterplots. Inherits from xyPlot """ def __init__(self, plt=None, dim=1): super(ScatterPlot, self).__init__(plt, dim) for i in range(0, self.dim): self.curve.append(pg.ScatterPlotItem(pen='w')) plt.addItem(self.curve[-1]) self.ydata.append(numpy.zeros((1,))) self.xdata.append(numpy.zeros((1,))) class LinePlot(xyPlot): """ Widget for lineplots. Inherits from xyPlot """ def __init__(self, plt=None, dim=1, xlim=None, ylim=None): super(LinePlot, self).__init__(plt, dim, xlim, ylim) for i in range(0, self.dim): self.curve.append(pg.PlotCurveItem(pen='w')) plt.addItem(self.curve[-1]) self.ydata.append(numpy.zeros((1,))) self.xdata.append(numpy.zeros((1,)))
[ "pyqtgraph.PlotCurveItem", "numpy.isscalar", "pyqtgraph.ScatterPlotItem", "numpy.append", "numpy.array", "numpy.zeros", "numpy.isnan" ]
[((4031, 4061), 'numpy.zeros', 'numpy.zeros', (['(len_x, len_y, 3)'], {}), '((len_x, len_y, 3))\n', (4042, 4061), False, 'import numpy\n'), ((1242, 1260), 'numpy.isscalar', 'numpy.isscalar', (['xd'], {}), '(xd)\n', (1256, 1260), False, 'import numpy\n'), ((1392, 1407), 'numpy.array', 'numpy.array', (['yd'], {}), '(yd)\n', (1403, 1407), False, 'import numpy\n'), ((3516, 3535), 'numpy.zeros', 'numpy.zeros', (['(2, 2)'], {}), '((2, 2))\n', (3527, 3535), False, 'import numpy\n'), ((4820, 4838), 'numpy.isscalar', 'numpy.isscalar', (['xd'], {}), '(xd)\n', (4834, 4838), False, 'import numpy\n'), ((1342, 1357), 'numpy.array', 'numpy.array', (['xd'], {}), '(xd)\n', (1353, 1357), False, 'import numpy\n'), ((2564, 2594), 'numpy.append', 'numpy.append', (['self.xdata[i]', 'x'], {}), '(self.xdata[i], x)\n', (2576, 2594), False, 'import numpy\n'), ((2627, 2657), 'numpy.append', 'numpy.append', (['self.ydata[i]', 'y'], {}), '(self.ydata[i], y)\n', (2639, 2657), False, 'import numpy\n'), ((2825, 2859), 'numpy.append', 'numpy.append', (['self.xdata[i][1:]', 'x'], {}), '(self.xdata[i][1:], x)\n', (2837, 2859), False, 'import numpy\n'), ((2892, 2926), 'numpy.append', 'numpy.append', (['self.ydata[i][1:]', 'y'], {}), '(self.ydata[i][1:], y)\n', (2904, 2926), False, 'import numpy\n'), ((7918, 7945), 'pyqtgraph.ScatterPlotItem', 'pg.ScatterPlotItem', ([], {'pen': '"""w"""'}), "(pen='w')\n", (7936, 7945), True, 'import pyqtgraph as pg\n'), ((8017, 8034), 'numpy.zeros', 'numpy.zeros', (['(1,)'], {}), '((1,))\n', (8028, 8034), False, 'import numpy\n'), ((8066, 8083), 'numpy.zeros', 'numpy.zeros', (['(1,)'], {}), '((1,))\n', (8077, 8083), False, 'import numpy\n'), ((8361, 8386), 'pyqtgraph.PlotCurveItem', 'pg.PlotCurveItem', ([], {'pen': '"""w"""'}), "(pen='w')\n", (8377, 8386), True, 'import pyqtgraph as pg\n'), ((8458, 8475), 'numpy.zeros', 'numpy.zeros', (['(1,)'], {}), '((1,))\n', (8469, 8475), False, 'import numpy\n'), ((8507, 8524), 'numpy.zeros', 'numpy.zeros', (['(1,)'], {}), '((1,))\n', (8518, 8524), False, 'import numpy\n'), ((2469, 2483), 'numpy.isnan', 'numpy.isnan', (['x'], {}), '(x)\n', (2480, 2483), False, 'import numpy\n'), ((2487, 2501), 'numpy.isnan', 'numpy.isnan', (['y'], {}), '(y)\n', (2498, 2501), False, 'import numpy\n'), ((2730, 2744), 'numpy.isnan', 'numpy.isnan', (['x'], {}), '(x)\n', (2741, 2744), False, 'import numpy\n'), ((2748, 2762), 'numpy.isnan', 'numpy.isnan', (['y'], {}), '(y)\n', (2759, 2762), False, 'import numpy\n'), ((1116, 1131), 'numpy.array', 'numpy.array', (['xd'], {}), '(xd)\n', (1127, 1131), False, 'import numpy\n')]
from typing import Tuple, Dict import h5py import pandas as pd import numpy as np from loguru import logger from ruamel.yaml import YAML from joblib import load, dump from umda import EmbeddingModel from sklearn.gaussian_process import GaussianProcessRegressor, kernels from sklearn.neighbors import KNeighborsRegressor from sklearn.model_selection import KFold, GridSearchCV, ShuffleSplit from sklearn.preprocessing import StandardScaler from sklearn import metrics from sklearn.metrics.pairwise import cosine_distances, euclidean_distances from sklearn.linear_model import LinearRegression from sklearn.svm import SVR from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor USE_DASK = False models = { "linear_regression": [ LinearRegression(fit_intercept=False), [{"normalize": [True, False],}], ], "svr": [ SVR(), [ { "kernel": ["rbf",],# "poly"], #"degree": [2, 3, 4], "C": 10**np.linspace(1.5, 2., 20), "gamma": ["auto", 0.05, 0.1], "epsilon": 10**np.linspace(-3., -1., 20), } ], ], "knn": [ KNeighborsRegressor(), [ { "n_neighbors": [2, 4, 10, 15, 30, 50, 70], "metric": ["cosine", "euclidean",], "weights": ["uniform", "distance"] } ], ], "rfr": [ RandomForestRegressor(max_features=None, random_state=1205), [ {"n_estimators": [10, 20, 50, 80, 100, 125, 150, 200], "max_leaf_nodes": [None, 5, 10, 15, 20, 40], "min_samples_leaf": [1, 3, 5, 10, 15, 20, 25, 35], "max_depth": [None, 5, 10, 15, 20] } ], ], "gbr": [ GradientBoostingRegressor(random_state=1205), [ { "learning_rate": 10 ** np.linspace(-3.0, 1.0, 20), "n_estimators": [5, 10, 30, 50, 80, 100, 125, 150, 200], "subsample": [0.2, 0.4, 0.6, 0.8, 1.], "max_depth": [1, 2, 3, 4, 5, 6] } ], ], "gpr": [ None, [{"alpha": 10 ** np.linspace(-10.0, 1.0, 5), "n_restarts_optimizer": [5, 10, 15, 20]}], ], } def standardize_test( estimator: "sklearn model", search_params: Tuple[Dict], data: Tuple[np.ndarray, np.ndarray], seed: int = 42, n_jobs: int = 8, cv: int = 20 ): # split data into X and y for regression X, y = data # Manually specify 10-fold cross-validation for the grid search kfold = KFold(cv, random_state=seed, shuffle=True) grid_search = GridSearchCV( estimator, search_params, scoring="neg_mean_squared_error", cv=kfold, n_jobs=n_jobs, ) # run the grid search grid_search.fit(X, y) # give some summary statistics y_mask = y != 0.0 y_pred = grid_search.best_estimator_.predict(X) # masked error is excluding negative examples mse = metrics.mean_squared_error(y_pred, y) masked_mse = metrics.mean_squared_error(y_pred[y_mask], y[y_mask]) r2 = metrics.r2_score(y, y_pred) errors = {"mse": float(mse), "masked_mse": float(masked_mse), "r^2": float(r2)} return grid_search, grid_search.best_estimator_, errors def mask_distant_species( target: np.ndarray, fullset: np.ndarray, upper_percentile: float = 97. ) -> np.ndarray: distances = cosine_distances(target, fullset) logger.info(f"Min/max distance: {distances.min()}/{distances.max()}") logger.info(f"Mean/std distance: {distances.mean()}/{distances.std()}") lower, mean, upper = np.percentile(distances, [3., 50., upper_percentile]) logger.info(f"3%/50%/{upper_percentile}%: {lower:.3f}/{mean:.3f}/{upper:.3f}") dist_mask = distances.mean(axis=0) > upper return dist_mask def main( prediction_output: str, seed: int = 42, distance_threshold: float = 0.8, n_jobs: int = 8, cv: int = 10 ): logger.add("model_training.log") logger.info(f"Using seed {seed}, cosine distance zeroing: {distance_threshold}") logger.info(f"Cross-validation will be done with {n_jobs} workers.") #rng = np.random.default_rng(seed) logger.info("Loading data") # prepare and load data data = h5py.File("../data/processed/pipeline_embeddings_70.h5", "r") original = h5py.File("../data/processed/smiles_embeddings_300.h5", "r") pipeline = load("../models/embedding_pipeline.pkl") pca = load("../models/pca_model.pkl") embedding_model = load("../models/EmbeddingModel.pkl") ## load in the TMC-1 data and grab the embedding vectors tmc1_df = pd.read_pickle("../data/processed/tmc1_ready.pkl") # ignore H2 lol #tmc1_df = tmc1_df.loc[tmc1_df["canonical"] != "[HH]"] tmc1_df.reset_index(inplace=True, drop=True) ## get into NumPy array #tmc1_vecs = np.vstack(tmc1_df["vectors"]) ##indices = np.arange(len(data["pca"])) #for step in pipeline.steps[:2]: # tmc1_vecs = step[1].transform(tmc1_vecs) ## get the TMC-1 cluster IDs #tmc1_cluster_ids = pipeline.steps[-1][1].predict(tmc1_vecs) tmc1_vecs = np.vstack([embedding_model.vectorize(smi) for smi in tmc1_df["canonical"]]) tmc1_cluster_ids = np.array([embedding_model.cluster(smi) for smi in tmc1_df["canonical"]]) #if USE_DASK: # tmc1_cluster_ids = tmc1_cluster_ids.compute() ## holdout_cluster_ids = pipeline.predict(holdout_vecs).compute() ## compute the PCA embedding for the TMC-1 molecules #tmc1_embedding = pipeline.steps[0][1].transform(tmc1_vecs) # holdout_embedding = pipeline.steps[0][1].transform(holdout_vecs) # for computational efficiency, just grab the most relevant # molecules to TMC-1 mask = np.zeros_like(data["cluster_ids"], dtype=bool) for i in np.unique(tmc1_cluster_ids): mask += data["cluster_ids"][:] == i logger.info(f"There are {mask.sum()} molecules in the TMC-1 cluster(s)") # Extract out the molecules contained within our cluster all_pca = (data["pca"][:])[mask, :] logger.info(f"Shape of the PCA vectors: {all_pca.shape}") logger.info(f"Shape of the TMC1-1 vectors: {tmc1_vecs.shape}") pca_dim = all_pca.shape[-1] # subset_smiles = (data["smiles"][:])[mask] # set them as "X" and "Y" for ease of reference X = tmc1_vecs.copy() Y = np.log10(tmc1_df["Column density (cm^-2)"].to_numpy()) # convert to abundance #Y = tmc1_df["Column density (cm^-2)"].to_numpy() / 1e22 # what we want to do now is to set molecules we have little chance of # detecting to have zero column densities dist_mask = mask_distant_species(X, all_pca, distance_threshold) dummies = all_pca[dist_mask,:] logger.info(f"Setting {dist_mask.sum()} entries to zero column density.") # logger.info(f"Examples of excluded molecules: {subset_smiles[dist_mask][:5]}") dummy_y = np.zeros(dummies.shape[0]) logger.info("Preparing training data") # add the constrained values to our training data train_x = np.vstack([X, dummies]) train_y = np.hstack([Y, dummy_y]) logger.info(f"Shape of X: {train_x.shape} and Y: {train_y.shape}") results = dict() with h5py.File(prediction_output, "a") as h5_output: try: del h5_output["tmc1_cluster_mask"] except: pass # save the intercluster mask h5_output["tmc1_cluster_mask"] = mask # now do the standardized training and testing for every model for model_name, conditions in models.items(): # see if we can delete the key try: del h5_output[model_name] except KeyError: pass logger.info(f"Performing {cv}-fold CV on {model_name}") model, hyperparams = conditions # for gaussian process, define the covariance function if model_name == "gpr": kernel = kernels.ConstantKernel() * kernels.RBF( 3.0, (1e-1, 10.0) ) + kernels.RationalQuadratic( 200.0, 20.0, alpha_bounds=(1e-3, 5e2), length_scale_bounds=(50.0, 1e4) ) * kernels.ConstantKernel() + kernels.ConstantKernel() model = GaussianProcessRegressor(kernel, random_state=1205) grid, best_model, errors = standardize_test( model, hyperparams, (train_x, train_y), n_jobs=n_jobs, cv=cv, seed=seed ) # log the model results results[model_name] = errors logger.info(f"Best errors for {model_name}: {errors}") # pickle the CV grid dump(grid, f"../models/{model_name}_grid.pkl") cv_df = pd.DataFrame.from_dict(grid.cv_results_) cv_df.to_csv(f"../models/{model_name}_grid_summary.csv", index=False) logger.info(f"Caching predictions for best model") if model_name != "gpr": pred_Y = best_model.predict(all_pca) h5_output[f"{model_name}"] = pred_Y else: pred_Y, pred_std = best_model.predict(all_pca, return_std=True) gpr_tmc_y, gpr_tmc_cov = best_model.predict( X, return_cov=True ) # save a bunch of stuff for Gaussian Process for target, name in zip( [pred_Y, pred_std, gpr_tmc_y, gpr_tmc_cov], ["all", "all_std", "tmc_reproduction", "tmc_cov"], ): try: del h5_output[f"{model_name}_{name}"] except KeyError: pass h5_output[f"{model_name}_{name}"] = target tmc1_df[model_name] = best_model.predict(X) tmc1_df.to_csv("tmc1_results.csv", index=False) # save the errors for later reporting yaml = YAML() with open("../models/training_errors.yml", "w+") as write_file: yaml.dump(results, write_file) if __name__ == "__main__": params = { "prediction_output": "../data/processed/model_predictions.h5", "seed": 42, "distance_threshold": 99.98, "n_jobs": 16, "cv": 10 } main(**params)
[ "sklearn.model_selection.GridSearchCV", "sklearn.metrics.pairwise.cosine_distances", "numpy.hstack", "ruamel.yaml.YAML", "sklearn.model_selection.KFold", "sklearn.metrics.r2_score", "pandas.read_pickle", "loguru.logger.add", "sklearn.gaussian_process.GaussianProcessRegressor", "sklearn.ensemble.RandomForestRegressor", "pandas.DataFrame.from_dict", "sklearn.gaussian_process.kernels.ConstantKernel", "numpy.linspace", "numpy.vstack", "joblib.load", "sklearn.svm.SVR", "sklearn.ensemble.GradientBoostingRegressor", "joblib.dump", "sklearn.gaussian_process.kernels.RBF", "sklearn.metrics.mean_squared_error", "h5py.File", "sklearn.gaussian_process.kernels.RationalQuadratic", "sklearn.linear_model.LinearRegression", "numpy.unique", "loguru.logger.info", "sklearn.neighbors.KNeighborsRegressor", "numpy.zeros", "numpy.percentile", "numpy.zeros_like" ]
[((2628, 2670), 'sklearn.model_selection.KFold', 'KFold', (['cv'], {'random_state': 'seed', 'shuffle': '(True)'}), '(cv, random_state=seed, shuffle=True)\n', (2633, 2670), False, 'from sklearn.model_selection import KFold, GridSearchCV, ShuffleSplit\n'), ((2689, 2791), 'sklearn.model_selection.GridSearchCV', 'GridSearchCV', (['estimator', 'search_params'], {'scoring': '"""neg_mean_squared_error"""', 'cv': 'kfold', 'n_jobs': 'n_jobs'}), "(estimator, search_params, scoring='neg_mean_squared_error', cv\n =kfold, n_jobs=n_jobs)\n", (2701, 2791), False, 'from sklearn.model_selection import KFold, GridSearchCV, ShuffleSplit\n'), ((3055, 3092), 'sklearn.metrics.mean_squared_error', 'metrics.mean_squared_error', (['y_pred', 'y'], {}), '(y_pred, y)\n', (3081, 3092), False, 'from sklearn import metrics\n'), ((3110, 3163), 'sklearn.metrics.mean_squared_error', 'metrics.mean_squared_error', (['y_pred[y_mask]', 'y[y_mask]'], {}), '(y_pred[y_mask], y[y_mask])\n', (3136, 3163), False, 'from sklearn import metrics\n'), ((3173, 3200), 'sklearn.metrics.r2_score', 'metrics.r2_score', (['y', 'y_pred'], {}), '(y, y_pred)\n', (3189, 3200), False, 'from sklearn import metrics\n'), ((3485, 3518), 'sklearn.metrics.pairwise.cosine_distances', 'cosine_distances', (['target', 'fullset'], {}), '(target, fullset)\n', (3501, 3518), False, 'from sklearn.metrics.pairwise import cosine_distances, euclidean_distances\n'), ((3694, 3749), 'numpy.percentile', 'np.percentile', (['distances', '[3.0, 50.0, upper_percentile]'], {}), '(distances, [3.0, 50.0, upper_percentile])\n', (3707, 3749), True, 'import numpy as np\n'), ((3752, 3830), 'loguru.logger.info', 'logger.info', (['f"""3%/50%/{upper_percentile}%: {lower:.3f}/{mean:.3f}/{upper:.3f}"""'], {}), "(f'3%/50%/{upper_percentile}%: {lower:.3f}/{mean:.3f}/{upper:.3f}')\n", (3763, 3830), False, 'from loguru import logger\n'), ((4041, 4073), 'loguru.logger.add', 'logger.add', (['"""model_training.log"""'], {}), "('model_training.log')\n", (4051, 4073), False, 'from loguru import logger\n'), ((4078, 4163), 'loguru.logger.info', 'logger.info', (['f"""Using seed {seed}, cosine distance zeroing: {distance_threshold}"""'], {}), "(f'Using seed {seed}, cosine distance zeroing: {distance_threshold}'\n )\n", (4089, 4163), False, 'from loguru import logger\n'), ((4163, 4231), 'loguru.logger.info', 'logger.info', (['f"""Cross-validation will be done with {n_jobs} workers."""'], {}), "(f'Cross-validation will be done with {n_jobs} workers.')\n", (4174, 4231), False, 'from loguru import logger\n'), ((4275, 4302), 'loguru.logger.info', 'logger.info', (['"""Loading data"""'], {}), "('Loading data')\n", (4286, 4302), False, 'from loguru import logger\n'), ((4342, 4403), 'h5py.File', 'h5py.File', (['"""../data/processed/pipeline_embeddings_70.h5"""', '"""r"""'], {}), "('../data/processed/pipeline_embeddings_70.h5', 'r')\n", (4351, 4403), False, 'import h5py\n'), ((4419, 4479), 'h5py.File', 'h5py.File', (['"""../data/processed/smiles_embeddings_300.h5"""', '"""r"""'], {}), "('../data/processed/smiles_embeddings_300.h5', 'r')\n", (4428, 4479), False, 'import h5py\n'), ((4495, 4535), 'joblib.load', 'load', (['"""../models/embedding_pipeline.pkl"""'], {}), "('../models/embedding_pipeline.pkl')\n", (4499, 4535), False, 'from joblib import load, dump\n'), ((4546, 4577), 'joblib.load', 'load', (['"""../models/pca_model.pkl"""'], {}), "('../models/pca_model.pkl')\n", (4550, 4577), False, 'from joblib import load, dump\n'), ((4600, 4636), 'joblib.load', 'load', (['"""../models/EmbeddingModel.pkl"""'], {}), "('../models/EmbeddingModel.pkl')\n", (4604, 4636), False, 'from joblib import load, dump\n'), ((4712, 4762), 'pandas.read_pickle', 'pd.read_pickle', (['"""../data/processed/tmc1_ready.pkl"""'], {}), "('../data/processed/tmc1_ready.pkl')\n", (4726, 4762), True, 'import pandas as pd\n'), ((5818, 5864), 'numpy.zeros_like', 'np.zeros_like', (["data['cluster_ids']"], {'dtype': 'bool'}), "(data['cluster_ids'], dtype=bool)\n", (5831, 5864), True, 'import numpy as np\n'), ((5878, 5905), 'numpy.unique', 'np.unique', (['tmc1_cluster_ids'], {}), '(tmc1_cluster_ids)\n', (5887, 5905), True, 'import numpy as np\n'), ((6133, 6190), 'loguru.logger.info', 'logger.info', (['f"""Shape of the PCA vectors: {all_pca.shape}"""'], {}), "(f'Shape of the PCA vectors: {all_pca.shape}')\n", (6144, 6190), False, 'from loguru import logger\n'), ((6195, 6257), 'loguru.logger.info', 'logger.info', (['f"""Shape of the TMC1-1 vectors: {tmc1_vecs.shape}"""'], {}), "(f'Shape of the TMC1-1 vectors: {tmc1_vecs.shape}')\n", (6206, 6257), False, 'from loguru import logger\n'), ((6965, 6991), 'numpy.zeros', 'np.zeros', (['dummies.shape[0]'], {}), '(dummies.shape[0])\n', (6973, 6991), True, 'import numpy as np\n'), ((6996, 7034), 'loguru.logger.info', 'logger.info', (['"""Preparing training data"""'], {}), "('Preparing training data')\n", (7007, 7034), False, 'from loguru import logger\n'), ((7103, 7126), 'numpy.vstack', 'np.vstack', (['[X, dummies]'], {}), '([X, dummies])\n', (7112, 7126), True, 'import numpy as np\n'), ((7141, 7164), 'numpy.hstack', 'np.hstack', (['[Y, dummy_y]'], {}), '([Y, dummy_y])\n', (7150, 7164), True, 'import numpy as np\n'), ((7169, 7235), 'loguru.logger.info', 'logger.info', (['f"""Shape of X: {train_x.shape} and Y: {train_y.shape}"""'], {}), "(f'Shape of X: {train_x.shape} and Y: {train_y.shape}')\n", (7180, 7235), False, 'from loguru import logger\n'), ((9974, 9980), 'ruamel.yaml.YAML', 'YAML', ([], {}), '()\n', (9978, 9980), False, 'from ruamel.yaml import YAML\n'), ((764, 801), 'sklearn.linear_model.LinearRegression', 'LinearRegression', ([], {'fit_intercept': '(False)'}), '(fit_intercept=False)\n', (780, 801), False, 'from sklearn.linear_model import LinearRegression\n'), ((872, 877), 'sklearn.svm.SVR', 'SVR', ([], {}), '()\n', (875, 877), False, 'from sklearn.svm import SVR\n'), ((1195, 1216), 'sklearn.neighbors.KNeighborsRegressor', 'KNeighborsRegressor', ([], {}), '()\n', (1214, 1216), False, 'from sklearn.neighbors import KNeighborsRegressor\n'), ((1457, 1516), 'sklearn.ensemble.RandomForestRegressor', 'RandomForestRegressor', ([], {'max_features': 'None', 'random_state': '(1205)'}), '(max_features=None, random_state=1205)\n', (1478, 1516), False, 'from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor\n'), ((1819, 1863), 'sklearn.ensemble.GradientBoostingRegressor', 'GradientBoostingRegressor', ([], {'random_state': '(1205)'}), '(random_state=1205)\n', (1844, 1863), False, 'from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor\n'), ((7266, 7299), 'h5py.File', 'h5py.File', (['prediction_output', '"""a"""'], {}), "(prediction_output, 'a')\n", (7275, 7299), False, 'import h5py\n'), ((7779, 7834), 'loguru.logger.info', 'logger.info', (['f"""Performing {cv}-fold CV on {model_name}"""'], {}), "(f'Performing {cv}-fold CV on {model_name}')\n", (7790, 7834), False, 'from loguru import logger\n'), ((8623, 8677), 'loguru.logger.info', 'logger.info', (['f"""Best errors for {model_name}: {errors}"""'], {}), "(f'Best errors for {model_name}: {errors}')\n", (8634, 8677), False, 'from loguru import logger\n'), ((8723, 8769), 'joblib.dump', 'dump', (['grid', 'f"""../models/{model_name}_grid.pkl"""'], {}), "(grid, f'../models/{model_name}_grid.pkl')\n", (8727, 8769), False, 'from joblib import load, dump\n'), ((8790, 8830), 'pandas.DataFrame.from_dict', 'pd.DataFrame.from_dict', (['grid.cv_results_'], {}), '(grid.cv_results_)\n', (8812, 8830), True, 'import pandas as pd\n'), ((8925, 8975), 'loguru.logger.info', 'logger.info', (['f"""Caching predictions for best model"""'], {}), "(f'Caching predictions for best model')\n", (8936, 8975), False, 'from loguru import logger\n'), ((8323, 8374), 'sklearn.gaussian_process.GaussianProcessRegressor', 'GaussianProcessRegressor', (['kernel'], {'random_state': '(1205)'}), '(kernel, random_state=1205)\n', (8347, 8374), False, 'from sklearn.gaussian_process import GaussianProcessRegressor, kernels\n'), ((1012, 1037), 'numpy.linspace', 'np.linspace', (['(1.5)', '(2.0)', '(20)'], {}), '(1.5, 2.0, 20)\n', (1023, 1037), True, 'import numpy as np\n'), ((1115, 1142), 'numpy.linspace', 'np.linspace', (['(-3.0)', '(-1.0)', '(20)'], {}), '(-3.0, -1.0, 20)\n', (1126, 1142), True, 'import numpy as np\n'), ((1928, 1954), 'numpy.linspace', 'np.linspace', (['(-3.0)', '(1.0)', '(20)'], {}), '(-3.0, 1.0, 20)\n', (1939, 1954), True, 'import numpy as np\n'), ((2217, 2243), 'numpy.linspace', 'np.linspace', (['(-10.0)', '(1.0)', '(5)'], {}), '(-10.0, 1.0, 5)\n', (2228, 2243), True, 'import numpy as np\n'), ((8274, 8298), 'sklearn.gaussian_process.kernels.ConstantKernel', 'kernels.ConstantKernel', ([], {}), '()\n', (8296, 8298), False, 'from sklearn.gaussian_process import GaussianProcessRegressor, kernels\n'), ((8007, 8031), 'sklearn.gaussian_process.kernels.ConstantKernel', 'kernels.ConstantKernel', ([], {}), '()\n', (8029, 8031), False, 'from sklearn.gaussian_process import GaussianProcessRegressor, kernels\n'), ((8034, 8063), 'sklearn.gaussian_process.kernels.RBF', 'kernels.RBF', (['(3.0)', '(0.1, 10.0)'], {}), '(3.0, (0.1, 10.0))\n', (8045, 8063), False, 'from sklearn.gaussian_process import GaussianProcessRegressor, kernels\n'), ((8105, 8213), 'sklearn.gaussian_process.kernels.RationalQuadratic', 'kernels.RationalQuadratic', (['(200.0)', '(20.0)'], {'alpha_bounds': '(0.001, 500.0)', 'length_scale_bounds': '(50.0, 10000.0)'}), '(200.0, 20.0, alpha_bounds=(0.001, 500.0),\n length_scale_bounds=(50.0, 10000.0))\n', (8130, 8213), False, 'from sklearn.gaussian_process import GaussianProcessRegressor, kernels\n'), ((8247, 8271), 'sklearn.gaussian_process.kernels.ConstantKernel', 'kernels.ConstantKernel', ([], {}), '()\n', (8269, 8271), False, 'from sklearn.gaussian_process import GaussianProcessRegressor, kernels\n')]
#!/usr/bin/env python # -*- coding: utf-8 import numpy as np from ibidem.advent_of_code.util import get_input_name BASE_PATTERN = [0, 1, 0, -1] def pattern_generator(i): first = True while True: for v in BASE_PATTERN: for _ in range(i + 1): if first: first = False continue yield v def process_signal(i, signal): return abs(sum((v * p) for (v, p) in zip(signal, pattern_generator(i)))) % 10 def process_phase(signal): return [process_signal(i, signal) for i in range(len(signal))] def process_phase_offset(signal): cs = np.flip(np.cumsum(np.flip(signal))) return np.mod(np.abs(cs), 10) def process(data, repetitions=1, offset=None): print("Starting new process") signal = np.fromiter((int(c) for c in data), dtype=np.int8) signal = np.tile(signal, repetitions) print("Signal is {} digits long".format(len(signal))) if offset is None: offset = int(data[:7]) assert offset > len(signal) / 2 print("Dropping first {} digits".format(offset)) pp = process_phase_offset else: pp = process_phase signal = np.array(signal[offset:]) print("Signal is {} digits long after dropping offset".format(len(signal))) for phase in range(100): signal = pp(signal) if phase % 10 == 0: print("Completed phase {}".format(phase)) return "".join(str(d) for d in signal)[:8] def part1(): with open(get_input_name(16, 2019)) as fobj: data = fobj.read().strip() result = process(data, offset=0) print("After 100 phases, the cleaned signal starts with these 8 digits: {}".format(result)) def part2(): with open(get_input_name(16, 2019)) as fobj: data = fobj.read().strip() result = process(data, repetitions=10000) print("After 100 phases, the cleaned signal starts with these 8 digits: {}".format(result)) if __name__ == "__main__": part1() part2()
[ "numpy.tile", "numpy.flip", "numpy.abs", "numpy.array", "ibidem.advent_of_code.util.get_input_name" ]
[((873, 901), 'numpy.tile', 'np.tile', (['signal', 'repetitions'], {}), '(signal, repetitions)\n', (880, 901), True, 'import numpy as np\n'), ((1195, 1220), 'numpy.array', 'np.array', (['signal[offset:]'], {}), '(signal[offset:])\n', (1203, 1220), True, 'import numpy as np\n'), ((697, 707), 'numpy.abs', 'np.abs', (['cs'], {}), '(cs)\n', (703, 707), True, 'import numpy as np\n'), ((661, 676), 'numpy.flip', 'np.flip', (['signal'], {}), '(signal)\n', (668, 676), True, 'import numpy as np\n'), ((1516, 1540), 'ibidem.advent_of_code.util.get_input_name', 'get_input_name', (['(16)', '(2019)'], {}), '(16, 2019)\n', (1530, 1540), False, 'from ibidem.advent_of_code.util import get_input_name\n'), ((1748, 1772), 'ibidem.advent_of_code.util.get_input_name', 'get_input_name', (['(16)', '(2019)'], {}), '(16, 2019)\n', (1762, 1772), False, 'from ibidem.advent_of_code.util import get_input_name\n')]
import pandas as pd import os import numpy as np import math import ast sigma_list = [ math.pow(2,i) for i in range(8)] for sigma in sigma_list: test_case = 'mnist' data_dict={} data_dict_sum={} # for key in def_data.keys(): # data_dict[key] = def_data[key].tolist() file_name=os.path.join('saved_results_1000',test_case+str(sigma).zfill(3)) file_name_sum=file_name+ '_sum' df = pd.read_csv(file_name,sep='\t') df_sum = pd.read_csv(file_name_sum,sep='\t') a0 = df['1'][0].strip('][').split(', ') a1 = df['1'][1].strip('][').split(', ') a2 = df['1'][2].strip('][').split(', ') a3 = df['1'][3].strip('][').split(', ') a4 = df['1'][4].strip('][').split(', ') a5 = df['1'][5].strip('][').split(', ') data_dict['deformed_labels'] = np.asarray([ int(i) for i in a0]) data_dict['original_labels'] = np.asarray([ int(i) for i in a1]) data_dict['norms'] = np.asarray([ float(i) for i in a2]) data_dict['iterations'] = np.asarray([ int(i) for i in a3]) data_dict['overshot'] = np.asarray([ bool(i) for i in a4]) data_dict['same_label'] = np.asarray([ bool(i) for i in a5]) data_dict_sum['test_case'] = test_case data_dict_sum['sigma'] = sigma data_dict_sum['def_suc_rate'] = np.sum(data_dict['same_label'])/data_dict['same_label'].shape[0] data_dict_sum['avg_iter'] = np.sum(data_dict['iterations'])/data_dict['iterations'].shape[0] data_dict_sum['norm'] = np.sum(data_dict['norms'])/data_dict['norms'].shape[0] df = pd.DataFrame.from_dict(data_dict) df_sum = pd.DataFrame.from_dict(data_dict_sum) df.to_csv(file_name, sep='\t') df_sum.to_csv(file_name_sum, sep='\t')
[ "math.pow", "numpy.sum", "pandas.DataFrame.from_dict", "pandas.read_csv" ]
[((88, 102), 'math.pow', 'math.pow', (['(2)', 'i'], {}), '(2, i)\n', (96, 102), False, 'import math\n'), ((423, 455), 'pandas.read_csv', 'pd.read_csv', (['file_name'], {'sep': '"""\t"""'}), "(file_name, sep='\\t')\n", (434, 455), True, 'import pandas as pd\n'), ((468, 504), 'pandas.read_csv', 'pd.read_csv', (['file_name_sum'], {'sep': '"""\t"""'}), "(file_name_sum, sep='\\t')\n", (479, 504), True, 'import pandas as pd\n'), ((1534, 1567), 'pandas.DataFrame.from_dict', 'pd.DataFrame.from_dict', (['data_dict'], {}), '(data_dict)\n', (1556, 1567), True, 'import pandas as pd\n'), ((1581, 1618), 'pandas.DataFrame.from_dict', 'pd.DataFrame.from_dict', (['data_dict_sum'], {}), '(data_dict_sum)\n', (1603, 1618), True, 'import pandas as pd\n'), ((1278, 1309), 'numpy.sum', 'np.sum', (["data_dict['same_label']"], {}), "(data_dict['same_label'])\n", (1284, 1309), True, 'import numpy as np\n'), ((1375, 1406), 'numpy.sum', 'np.sum', (["data_dict['iterations']"], {}), "(data_dict['iterations'])\n", (1381, 1406), True, 'import numpy as np\n'), ((1468, 1494), 'numpy.sum', 'np.sum', (["data_dict['norms']"], {}), "(data_dict['norms'])\n", (1474, 1494), True, 'import numpy as np\n')]
from keras.models import load_model import numpy as np import cv2 import pickle from image_segmentation import segment_image from neural_network import resize_to_fit MODEL_FILENAME = "captcha_model.hdf5" MODEL_LABELS_FILENAME = "model_labels.dat" def solve_captcha(image): # Load up the model labels with open(MODEL_LABELS_FILENAME, "rb") as f: lb = pickle.load(f) # Load up the trained model model = load_model(MODEL_FILENAME) # We do not know the number of characters here chars = segment_image(image, -1) if len(chars) > 0: output = cv2.merge([image] * 3) predictions = [] # Loop over the characters for bounding_box in chars: x, y, w, h = bounding_box # Extract the char from the input image char_image = image[y - 2:y + h + 2, x - 2:x + w + 2] # Re-size the letter image to 60x60 pixels to match training data char_image = resize_to_fit(char_image, 60, 60) if char_image is not None: # Expand dimensions char_image = np.expand_dims(char_image, axis=2) char_image = np.expand_dims(char_image, axis=0) # Use the model to make a prediction prediction = model.predict(char_image) # Convert the encoded prediction to specific label label = lb.inverse_transform(prediction)[0] predictions.append(label) # draw the prediction on the output image cv2.rectangle(output, (x - 2, y - 2), (x + w + 4, y + h + 4), (0, 255, 0), 1) cv2.putText(output, label, (x - 5, y - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.55, (0, 255, 0), 2) # Print captcha captcha_text = "".join(predictions) print("CAPTCHA is: {}".format(captcha_text)) return output, captcha_text return None, ''
[ "cv2.rectangle", "cv2.merge", "keras.models.load_model", "pickle.load", "cv2.putText", "numpy.expand_dims", "image_segmentation.segment_image", "neural_network.resize_to_fit" ]
[((429, 455), 'keras.models.load_model', 'load_model', (['MODEL_FILENAME'], {}), '(MODEL_FILENAME)\n', (439, 455), False, 'from keras.models import load_model\n'), ((520, 544), 'image_segmentation.segment_image', 'segment_image', (['image', '(-1)'], {}), '(image, -1)\n', (533, 544), False, 'from image_segmentation import segment_image\n'), ((369, 383), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (380, 383), False, 'import pickle\n'), ((586, 608), 'cv2.merge', 'cv2.merge', (['([image] * 3)'], {}), '([image] * 3)\n', (595, 608), False, 'import cv2\n'), ((963, 996), 'neural_network.resize_to_fit', 'resize_to_fit', (['char_image', '(60)', '(60)'], {}), '(char_image, 60, 60)\n', (976, 996), False, 'from neural_network import resize_to_fit\n'), ((1102, 1136), 'numpy.expand_dims', 'np.expand_dims', (['char_image'], {'axis': '(2)'}), '(char_image, axis=2)\n', (1116, 1136), True, 'import numpy as np\n'), ((1166, 1200), 'numpy.expand_dims', 'np.expand_dims', (['char_image'], {'axis': '(0)'}), '(char_image, axis=0)\n', (1180, 1200), True, 'import numpy as np\n'), ((1555, 1632), 'cv2.rectangle', 'cv2.rectangle', (['output', '(x - 2, y - 2)', '(x + w + 4, y + h + 4)', '(0, 255, 0)', '(1)'], {}), '(output, (x - 2, y - 2), (x + w + 4, y + h + 4), (0, 255, 0), 1)\n', (1568, 1632), False, 'import cv2\n'), ((1649, 1743), 'cv2.putText', 'cv2.putText', (['output', 'label', '(x - 5, y - 5)', 'cv2.FONT_HERSHEY_SIMPLEX', '(0.55)', '(0, 255, 0)', '(2)'], {}), '(output, label, (x - 5, y - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.55,\n (0, 255, 0), 2)\n', (1660, 1743), False, 'import cv2\n')]
from bs4 import BeautifulSoup as bs import threading import time import numpy as np import sys from io import StringIO import scrapeconfig as cng import consoleconfig as ccng import os def print_html(html_test): '''To print html containers returned by beautifulsoup4''' try: strhtml = str(html_test.prettify()) except: strhtml = str(html_test) print(strhtml) return strhtml def join_threads(threads: list, verbose: bool = False, blink_interval: int = cng.BLINK_INTERVAL): ''' Join ongoing threads from threading module, has a verbose functionality showing the number of active threads. ''' if verbose: space = ' ' backspace = '\b' basemsg = "Active threads: " basemsglen = len(basemsg) sys.stdout.write(basemsg) while threading.activeCount() > 1: countstring = str(threading.activeCount()-1) countlen = len(countstring) sys.stdout.write(countstring) sys.stdout.flush() time.sleep(blink_interval) # Clears current number of threads from terminal and "resets" cursor sys.stdout.write(backspace*countlen + space*countlen + backspace*countlen) sys.stdout.flush() time.sleep(blink_interval) sys.stdout.write(f'\r{space*basemsglen}\r') sys.stdout.write('All threads done!') [worker.join() for worker in threads] return def case_decorator(func): '''Decorator to enforce commmon behavior for cases''' def wrapboi(*args, **kwargs): clear_screen() retobj = func(*args, **kwargs) time.sleep(ccng.CASE_EXIT_WAIT_TIME) return retobj # "Inherit docstring" wrapboi.__doc__ = func.__doc__ return wrapboi if __name__ == '__main__': def test_join_threads(): '''Test join_threads using dummy threads''' def dummywaiter(maxwait: int=10): '''Dummy thread, sleeps for random time between 1 and maxwait (seconds)''' time.sleep(np.random.randint(1, maxwait)) return workers = [threading.Thread(target=dummywaiter) for i in range(500)] [worker.start() for worker in workers] join_threads(workers, verbose=True) test_join_threads()
[ "threading.activeCount", "time.sleep", "numpy.random.randint", "threading.Thread", "sys.stdout.flush", "sys.stdout.write" ]
[((820, 845), 'sys.stdout.write', 'sys.stdout.write', (['basemsg'], {}), '(basemsg)\n', (836, 845), False, 'import sys\n'), ((1388, 1433), 'sys.stdout.write', 'sys.stdout.write', (["f'\\r{space * basemsglen}\\r'"], {}), "(f'\\r{space * basemsglen}\\r')\n", (1404, 1433), False, 'import sys\n'), ((1441, 1478), 'sys.stdout.write', 'sys.stdout.write', (['"""All threads done!"""'], {}), "('All threads done!')\n", (1457, 1478), False, 'import sys\n'), ((1732, 1768), 'time.sleep', 'time.sleep', (['ccng.CASE_EXIT_WAIT_TIME'], {}), '(ccng.CASE_EXIT_WAIT_TIME)\n', (1742, 1768), False, 'import time\n'), ((861, 884), 'threading.activeCount', 'threading.activeCount', ([], {}), '()\n', (882, 884), False, 'import threading\n'), ((1002, 1031), 'sys.stdout.write', 'sys.stdout.write', (['countstring'], {}), '(countstring)\n', (1018, 1031), False, 'import sys\n'), ((1045, 1063), 'sys.stdout.flush', 'sys.stdout.flush', ([], {}), '()\n', (1061, 1063), False, 'import sys\n'), ((1079, 1105), 'time.sleep', 'time.sleep', (['blink_interval'], {}), '(blink_interval)\n', (1089, 1105), False, 'import time\n'), ((1216, 1301), 'sys.stdout.write', 'sys.stdout.write', (['(backspace * countlen + space * countlen + backspace * countlen)'], {}), '(backspace * countlen + space * countlen + backspace * countlen\n )\n', (1232, 1301), False, 'import sys\n'), ((1304, 1322), 'sys.stdout.flush', 'sys.stdout.flush', ([], {}), '()\n', (1320, 1322), False, 'import sys\n'), ((1350, 1376), 'time.sleep', 'time.sleep', (['blink_interval'], {}), '(blink_interval)\n', (1360, 1376), False, 'import time\n'), ((2221, 2257), 'threading.Thread', 'threading.Thread', ([], {'target': 'dummywaiter'}), '(target=dummywaiter)\n', (2237, 2257), False, 'import threading\n'), ((2148, 2177), 'numpy.random.randint', 'np.random.randint', (['(1)', 'maxwait'], {}), '(1, maxwait)\n', (2165, 2177), True, 'import numpy as np\n'), ((921, 944), 'threading.activeCount', 'threading.activeCount', ([], {}), '()\n', (942, 944), False, 'import threading\n')]
import numpy as np import matplotlib.pyplot as plt import seaborn as sns sns.set(context='talk') palette = sns.color_palette() beta = 1 landa = 1./beta reps = 25 pois = np.random.exponential(beta, reps) pois = pois.cumsum() psra = np.arange(reps)*beta + np.random.exponential(beta, reps) - landa psra.sort() f, ax = plt.subplots(1, 2, sharex=True, figsize=(24, 10)) yy = np.arange(reps) + 1 for x, y in zip(pois, yy): ax[0].plot([x, x], [0, y], c=palette[0], ls='--', lw=2) ax[0].step(pois, yy, lw=5) ax[0].scatter(pois, np.zeros(reps)) ax[0].set_title(r'Poisson arrivals, $\lambda$ = {:.1f}'.format(landa)) ax[0].set_xlabel('time') ax[0].set_ylabel('count') for x, y in zip(psra, yy): ax[1].plot([x, x], [0, y], c=palette[0], ls='--', lw=2) ax[1].step(psra, yy, lw=5) ax[1].scatter(psra, np.zeros(reps)) title = r'Pre-scheduled random arrivals, $\sigma$ = {:.1f}'.format(landa) ax[1].set_title(title) ax[1].set_xlabel('time') plt.savefig('pois_psra.png')
[ "seaborn.set", "matplotlib.pyplot.savefig", "seaborn.color_palette", "numpy.random.exponential", "numpy.zeros", "matplotlib.pyplot.subplots", "numpy.arange" ]
[((74, 97), 'seaborn.set', 'sns.set', ([], {'context': '"""talk"""'}), "(context='talk')\n", (81, 97), True, 'import seaborn as sns\n'), ((108, 127), 'seaborn.color_palette', 'sns.color_palette', ([], {}), '()\n', (125, 127), True, 'import seaborn as sns\n'), ((172, 205), 'numpy.random.exponential', 'np.random.exponential', (['beta', 'reps'], {}), '(beta, reps)\n', (193, 205), True, 'import numpy as np\n'), ((321, 370), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(1)', '(2)'], {'sharex': '(True)', 'figsize': '(24, 10)'}), '(1, 2, sharex=True, figsize=(24, 10))\n', (333, 370), True, 'import matplotlib.pyplot as plt\n'), ((944, 972), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""pois_psra.png"""'], {}), "('pois_psra.png')\n", (955, 972), True, 'import matplotlib.pyplot as plt\n'), ((377, 392), 'numpy.arange', 'np.arange', (['reps'], {}), '(reps)\n', (386, 392), True, 'import numpy as np\n'), ((532, 546), 'numpy.zeros', 'np.zeros', (['reps'], {}), '(reps)\n', (540, 546), True, 'import numpy as np\n'), ((805, 819), 'numpy.zeros', 'np.zeros', (['reps'], {}), '(reps)\n', (813, 819), True, 'import numpy as np\n'), ((258, 291), 'numpy.random.exponential', 'np.random.exponential', (['beta', 'reps'], {}), '(beta, reps)\n', (279, 291), True, 'import numpy as np\n'), ((235, 250), 'numpy.arange', 'np.arange', (['reps'], {}), '(reps)\n', (244, 250), True, 'import numpy as np\n')]
import classy.datasets from .Struct import Struct import numpy as np from numpy import sqrt,sum,exp,pi,min,max,linspace def normal(x,mu,sd): return 1.0/sqrt(2*pi*sd**2)*exp(-(x-mu)**2/(2*sd**2)) def overlap(means_,covars_): # http://en.wikipedia.org/wiki/Bhattacharyya_distance # overlap is a dot product s1,s2=covars_ m1,m2=means_ minx=min([m1-4*s1,m2-4*s2]) maxx=min([m1+4*s1,m2+4*s2]) x=linspace(minx,maxx,1000) dx=x[1]-x[0] BC=sum(dx*sqrt(normal(x,m1,s1)*normal(x,m2,s2))) return BC def GMM_features_from_1D_vectors2(origdata,number_of_gaussians_list,verbose=True): from sklearn.mixture import GMM data=Struct(origdata) data.vectors=[] data.feature_names=[] for M in number_of_gaussians_list: for G in range(M): data.feature_names+=['M%d mu%d' % (M,G+1),'M%d sd%d' % (M,G+1)] for X in origdata.vectors: vec=[] for M in number_of_gaussians_list: model = GMM(M).fit(X) means=model.means_.ravel() stddevs=model.covars_.ravel() for m,s in zip(means,stddevs): vec.append(m) vec.append(s) data.vectors.append(vec) data.vectors=np.array(data.vectors) if verbose: classy.datasets.summary(data) return data def GMM_features_from_1D_vectors(origdata,number_of_gaussians,verbose=True): from sklearn.mixture import GMM data=Struct(origdata) data.vectors=[] data.feature_names=[] for i in range(number_of_gaussians): data.feature_names+=['mu%d' % (i+1),'sd%d' % (i+1)] L=number_of_gaussians for i in range(L): for j in range(i+1,L): data.feature_names+=['overlap %d-%d' % (i+1,j+1)] for X in origdata.vectors: model = GMM(number_of_gaussians).fit(X) means=model.means_.ravel() stddevs=model.covars_.ravel() vec=[] for m,s in zip(means,stddevs): vec.append(m) vec.append(s) L=number_of_gaussians for i in range(L): for j in range(i+1,L): vec.append(overlap([means[i],means[j]],[stddevs[i],stddevs[j]])) data.vectors.append(vec) data.vectors=np.array(data.vectors) if verbose: classy.datasets.summary(data) return data
[ "numpy.sqrt", "numpy.exp", "numpy.array", "numpy.linspace", "numpy.min", "sklearn.mixture.GMM" ]
[((365, 396), 'numpy.min', 'min', (['[m1 - 4 * s1, m2 - 4 * s2]'], {}), '([m1 - 4 * s1, m2 - 4 * s2])\n', (368, 396), False, 'from numpy import sqrt, sum, exp, pi, min, max, linspace\n'), ((397, 428), 'numpy.min', 'min', (['[m1 + 4 * s1, m2 + 4 * s2]'], {}), '([m1 + 4 * s1, m2 + 4 * s2])\n', (400, 428), False, 'from numpy import sqrt, sum, exp, pi, min, max, linspace\n'), ((431, 457), 'numpy.linspace', 'linspace', (['minx', 'maxx', '(1000)'], {}), '(minx, maxx, 1000)\n', (439, 457), False, 'from numpy import sqrt, sum, exp, pi, min, max, linspace\n'), ((1276, 1298), 'numpy.array', 'np.array', (['data.vectors'], {}), '(data.vectors)\n', (1284, 1298), True, 'import numpy as np\n'), ((2329, 2351), 'numpy.array', 'np.array', (['data.vectors'], {}), '(data.vectors)\n', (2337, 2351), True, 'import numpy as np\n'), ((174, 209), 'numpy.exp', 'exp', (['(-(x - mu) ** 2 / (2 * sd ** 2))'], {}), '(-(x - mu) ** 2 / (2 * sd ** 2))\n', (177, 209), False, 'from numpy import sqrt, sum, exp, pi, min, max, linspace\n'), ((157, 179), 'numpy.sqrt', 'sqrt', (['(2 * pi * sd ** 2)'], {}), '(2 * pi * sd ** 2)\n', (161, 179), False, 'from numpy import sqrt, sum, exp, pi, min, max, linspace\n'), ((1871, 1895), 'sklearn.mixture.GMM', 'GMM', (['number_of_gaussians'], {}), '(number_of_gaussians)\n', (1874, 1895), False, 'from sklearn.mixture import GMM\n'), ((1013, 1019), 'sklearn.mixture.GMM', 'GMM', (['M'], {}), '(M)\n', (1016, 1019), False, 'from sklearn.mixture import GMM\n')]
import pandas as pd import numpy as np import sys import matplotlib.pyplot as plt import seaborn as sns def plot_conservation(out_path): """ Plotting the fraction of conserved binding sites for Brn2, Ebf2 and Onecut2, based on multiGPS and edgeR results from Aydin et al., 2019 (Nature Neurosciece: PMID 31086315) Parameters: out_path: Filepath prefix for output bar plots (Manuscript Fig. 6A) Returns: None """ # Defining the dataFrames using multiGPS and edgeR results \ # from Aydin et al., (2019) Nat. Neuroscience. # Brn2 brn2 = pd.DataFrame([['shared', 6776], ['iA>iN', 2432], ['iN>iA', 1242]], columns=['category', '#']) brn2['#'] = brn2['#']/np.sum(brn2['#']) # Ebf2 ebf2 = pd.DataFrame([['shared', 23331], ['iA>iN', 10687], ['iN>iA', 7921]], columns=['category', '#']) ebf2['#'] = ebf2['#']/np.sum(ebf2['#']) # Onecut2 onecut2 = pd.DataFrame([['shared', 45416], ['iA>iN', 4622], ['iN>iA', 2965]], columns=['category', '#']) onecut2['#'] = onecut2['#']/np.sum(onecut2['#']) # plot bar plots sns.set_style('ticks') fig, ax = plt.subplots() plt.subplot(1, 3, 1) plt.bar([0, 1, 2], onecut2['#'], width=0.5, color='#687466') plt.yticks(fontsize=12) plt.ylim(0, 1) # plt.subplot(1, 3, 2) plt.bar([0, 1, 2], brn2['#'], width=0.5, color='#cd8d7b') plt.yticks(fontsize=12) plt.ylim(0, 1) # plt.subplot(1, 3, 3) plt.bar([0, 1, 2], ebf2['#'], width=0.5, color='#fbc490') plt.yticks(fontsize=12) plt.ylim(0, 1) # sns.despine() fig.tight_layout() fig.set_size_inches(6, 4) plt.savefig(out_path + 'Fig_6a.pdf') def plot_embeddings(data_path, outpath): """ Plot 2-D latent embeddings for Brn2, Ebf2 and Onecut2. Parameters: data_path: Input file paths (N rows * 2 columns) storing the 2-D co-ordinates for each binding site in the latent space. The embeddings must be derived using latent_embeddings/get_latent_embeddings.py Note: This function assumes that the files are saved with an \ ".embedding.txt" extension. Provide only the prefix as an argument. For example, if the 2-D embedding is stored in "~/Prefix/Oct4.embedding.txt", call function as: plot_embeddings("~/Prefix/Oct4") outpath: Output file path. Returns: None """ transcription_factors = ['Brn2', 'Ebf2', 'Onecut2'] for tf in transcription_factors: dat = np.loadtxt(data_path + tf + '.embedding.txt') plt.scatter(dat[:, 0], dat[:, 1], s=3, alpha=0.3) plt.savefig(outpath) def plot_correlation(data_path, outpath): """ Plotting the correlation between ATAC-seq data at individual sites and the associated chromatin sub-network (Bichrom-CHR) scores. Parameters: data_path: Prefix for the ".bound.chromtracks.npy" file. This file stores the chromatin data at each binding site. outpath: Output file path. Returns: None """ sns.set_style('whitegrid') fig, axs = plt.subplots() for idx, tf in enumerate(['Onecut2', 'Brn2', 'Ebf2']): # load chromatin data chrom_data = np.load(data_path + tf + '.bound.chromtracks.npy') chrom_sum = np.sum(chrom_data, axis=1) # load scores embedding = np.loadtxt(data_path + tf + '.embedding.txt') chrom_score = embedding[:, 1] plt.subplot(1, 3, idx+1) plt.scatter(chrom_sum, chrom_score, color='#084177', s=1, alpha=0.05) fig.set_size_inches(6, 2) plt.subplots_adjust(left=0.1, bottom=0.2, right=0.95, top=0.95) plt.savefig(outpath + 'fig_b.png', dpi=960, layout='tight') def plot_motif_heatmaps(out_path): """ Run MEME-ChIP & FIMO to get the number of motifs enriched at \ chromatin predicted (CP) and sequence predicted (SP) sites. Parameters: out_path: Output file path """ # Brn2 fig, ax = plt.subplots() brn2 =np.array([[919.0, 320], [999, 305], [318, 717], [142, 1769], [72, 612]]) brn2[:, 0] = brn2[:, 0]/933.0 # Total # of sites: 933 brn2[:, 1] = brn2[:, 1]/1055.0 # Total # of sites: 1055 sns.heatmap(brn2, cmap='bone_r', cbar_kws={'shrink': 0.5}, vmax=1.5, linewidths=5.3, linecolor='white') plt.subplots_adjust(left=0.15, bottom=0.1, right=0.85, top=0.95) fig.set_size_inches(2, 3) plt.savefig(out_path + 'fig_c1.pdf') # Ebf2 fig, ax = plt.subplots() ebf2 = np.array([[3146.0, 700], [2922, 1864], [3544, 1228], [1865, 6496], [2882, 2124], [104, 1214]]) ebf2[:, 0] = ebf2[:, 0] / 4146.0 # Total # of sites: 4146 ebf2[:, 1] = ebf2[:, 1] / 3469.0 # Total # of sites: 3469 sns.heatmap(ebf2, cmap='bone_r', cbar_kws={'shrink': 0.5}, vmax=1.5, linewidths=5.3, linecolor='white') plt.subplots_adjust(left=0.15, bottom=0.1, right=0.85, top=0.95) fig.set_size_inches(2, 3) plt.savefig(out_path + 'fig_c2.pdf') # Onecut2 fig, ax = plt.subplots() oc2 =np.array([[1055.0, 6234], [3637, 542], [5227, 1245], [1282, 10372], [1266, 10067]]) oc2[:, 0] = oc2[:, 0]/5771.0 # Total # of sites: 5771 oc2[:, 1] = oc2[:, 1]/4627.0 # Total # of sites: 4627 sns.heatmap(oc2, cmap='bone_r', cbar_kws={'shrink': 0.5}, vmax=1.5, linewidths=5.3, linecolor='white') plt.subplots_adjust(left=0.15, bottom=0.1, right=0.85, top=0.95) fig.set_size_inches(2, 3) plt.savefig(out_path + 'fig_c3.pdf') def plot_ebo_boxplots(data_path, outpath): """ Plot violin plots (manuscript figure 6) for the iAscl1 TFs. Parameters: metrics_path: Path the directory which contains TF.iA.summary files For example, the GATA summary file looks as follows: ... bichrom, GATA, 0.49097278959035834 bichrom, GATA, 0.515491844830841 bichrom, GATA, 0.572293273059536 bichrom, GATA, 0.4909197931794813 bichrom, GATA, 0.519433898153947 seq, GATA, 0.40140515853838615 seq, GATA, 0.4071458624248806 seq, GATA, 0.4944029049796368 seq, GATA, 0.3942885914448734 seq, GATA, 0.4207938581419808 ... Note that seq refers to a sequence-only model. outpath: Output file path. Returns: None """ sns.set_style('darkgrid') fig, ax = plt.subplots() for idx, tf in enumerate(['Brn2', 'Ebf2', 'Onecut2']): dat = pd.read_csv(data_path + tf + '.iA.summary', sep=',', header=None, names=['condition', 'tf', 'auprc']) plt.subplot(1, 3, idx+1) sns.violinplot(x=dat['condition'], y=dat['auprc'], palette=('#ecce6d', '#5b8c85'), order=['seq', 'bichrom'], cut=0) plt.ylim(0, 1) plt.xlabel("") plt.ylabel("") fig.set_size_inches(6, 3) plt.savefig(data_path + 'violinplots.pdf') if __name__ == "__main__": out_path = sys.argv[1] data_path = sys.argv[2] plot_conservation(out_path) plot_embeddings(data_path=data_path, outpath=out_path) plot_correlation(data_path=data_path, outpath=out_path) plot_motif_heatmaps(out_path=out_path) plot_ebo_boxplots(data_path=data_path, outpath=out_path)
[ "pandas.read_csv", "matplotlib.pyplot.ylabel", "seaborn.set_style", "numpy.array", "seaborn.violinplot", "seaborn.despine", "matplotlib.pyplot.xlabel", "matplotlib.pyplot.yticks", "matplotlib.pyplot.scatter", "pandas.DataFrame", "matplotlib.pyplot.ylim", "matplotlib.pyplot.savefig", "seaborn.heatmap", "matplotlib.pyplot.subplots_adjust", "numpy.sum", "matplotlib.pyplot.bar", "numpy.loadtxt", "numpy.load", "matplotlib.pyplot.subplot", "matplotlib.pyplot.subplots" ]
[((589, 687), 'pandas.DataFrame', 'pd.DataFrame', (["[['shared', 6776], ['iA>iN', 2432], ['iN>iA', 1242]]"], {'columns': "['category', '#']"}), "([['shared', 6776], ['iA>iN', 2432], ['iN>iA', 1242]], columns=\n ['category', '#'])\n", (601, 687), True, 'import pandas as pd\n'), ((774, 873), 'pandas.DataFrame', 'pd.DataFrame', (["[['shared', 23331], ['iA>iN', 10687], ['iN>iA', 7921]]"], {'columns': "['category', '#']"}), "([['shared', 23331], ['iA>iN', 10687], ['iN>iA', 7921]],\n columns=['category', '#'])\n", (786, 873), True, 'import pandas as pd\n'), ((967, 1066), 'pandas.DataFrame', 'pd.DataFrame', (["[['shared', 45416], ['iA>iN', 4622], ['iN>iA', 2965]]"], {'columns': "['category', '#']"}), "([['shared', 45416], ['iA>iN', 4622], ['iN>iA', 2965]], columns\n =['category', '#'])\n", (979, 1066), True, 'import pandas as pd\n'), ((1168, 1190), 'seaborn.set_style', 'sns.set_style', (['"""ticks"""'], {}), "('ticks')\n", (1181, 1190), True, 'import seaborn as sns\n'), ((1205, 1219), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (1217, 1219), True, 'import matplotlib.pyplot as plt\n'), ((1224, 1244), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(1)', '(3)', '(1)'], {}), '(1, 3, 1)\n', (1235, 1244), True, 'import matplotlib.pyplot as plt\n'), ((1249, 1309), 'matplotlib.pyplot.bar', 'plt.bar', (['[0, 1, 2]', "onecut2['#']"], {'width': '(0.5)', 'color': '"""#687466"""'}), "([0, 1, 2], onecut2['#'], width=0.5, color='#687466')\n", (1256, 1309), True, 'import matplotlib.pyplot as plt\n'), ((1314, 1337), 'matplotlib.pyplot.yticks', 'plt.yticks', ([], {'fontsize': '(12)'}), '(fontsize=12)\n', (1324, 1337), True, 'import matplotlib.pyplot as plt\n'), ((1342, 1356), 'matplotlib.pyplot.ylim', 'plt.ylim', (['(0)', '(1)'], {}), '(0, 1)\n', (1350, 1356), True, 'import matplotlib.pyplot as plt\n'), ((1367, 1387), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(1)', '(3)', '(2)'], {}), '(1, 3, 2)\n', (1378, 1387), True, 'import matplotlib.pyplot as plt\n'), ((1392, 1449), 'matplotlib.pyplot.bar', 'plt.bar', (['[0, 1, 2]', "brn2['#']"], {'width': '(0.5)', 'color': '"""#cd8d7b"""'}), "([0, 1, 2], brn2['#'], width=0.5, color='#cd8d7b')\n", (1399, 1449), True, 'import matplotlib.pyplot as plt\n'), ((1454, 1477), 'matplotlib.pyplot.yticks', 'plt.yticks', ([], {'fontsize': '(12)'}), '(fontsize=12)\n', (1464, 1477), True, 'import matplotlib.pyplot as plt\n'), ((1482, 1496), 'matplotlib.pyplot.ylim', 'plt.ylim', (['(0)', '(1)'], {}), '(0, 1)\n', (1490, 1496), True, 'import matplotlib.pyplot as plt\n'), ((1507, 1527), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(1)', '(3)', '(3)'], {}), '(1, 3, 3)\n', (1518, 1527), True, 'import matplotlib.pyplot as plt\n'), ((1532, 1589), 'matplotlib.pyplot.bar', 'plt.bar', (['[0, 1, 2]', "ebf2['#']"], {'width': '(0.5)', 'color': '"""#fbc490"""'}), "([0, 1, 2], ebf2['#'], width=0.5, color='#fbc490')\n", (1539, 1589), True, 'import matplotlib.pyplot as plt\n'), ((1594, 1617), 'matplotlib.pyplot.yticks', 'plt.yticks', ([], {'fontsize': '(12)'}), '(fontsize=12)\n', (1604, 1617), True, 'import matplotlib.pyplot as plt\n'), ((1622, 1636), 'matplotlib.pyplot.ylim', 'plt.ylim', (['(0)', '(1)'], {}), '(0, 1)\n', (1630, 1636), True, 'import matplotlib.pyplot as plt\n'), ((1647, 1660), 'seaborn.despine', 'sns.despine', ([], {}), '()\n', (1658, 1660), True, 'import seaborn as sns\n'), ((1718, 1754), 'matplotlib.pyplot.savefig', 'plt.savefig', (["(out_path + 'Fig_6a.pdf')"], {}), "(out_path + 'Fig_6a.pdf')\n", (1729, 1754), True, 'import matplotlib.pyplot as plt\n'), ((3102, 3128), 'seaborn.set_style', 'sns.set_style', (['"""whitegrid"""'], {}), "('whitegrid')\n", (3115, 3128), True, 'import seaborn as sns\n'), ((3144, 3158), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (3156, 3158), True, 'import matplotlib.pyplot as plt\n'), ((3659, 3722), 'matplotlib.pyplot.subplots_adjust', 'plt.subplots_adjust', ([], {'left': '(0.1)', 'bottom': '(0.2)', 'right': '(0.95)', 'top': '(0.95)'}), '(left=0.1, bottom=0.2, right=0.95, top=0.95)\n', (3678, 3722), True, 'import matplotlib.pyplot as plt\n'), ((3727, 3786), 'matplotlib.pyplot.savefig', 'plt.savefig', (["(outpath + 'fig_b.png')"], {'dpi': '(960)', 'layout': '"""tight"""'}), "(outpath + 'fig_b.png', dpi=960, layout='tight')\n", (3738, 3786), True, 'import matplotlib.pyplot as plt\n'), ((4047, 4061), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (4059, 4061), True, 'import matplotlib.pyplot as plt\n'), ((4072, 4144), 'numpy.array', 'np.array', (['[[919.0, 320], [999, 305], [318, 717], [142, 1769], [72, 612]]'], {}), '([[919.0, 320], [999, 305], [318, 717], [142, 1769], [72, 612]])\n', (4080, 4144), True, 'import numpy as np\n'), ((4270, 4377), 'seaborn.heatmap', 'sns.heatmap', (['brn2'], {'cmap': '"""bone_r"""', 'cbar_kws': "{'shrink': 0.5}", 'vmax': '(1.5)', 'linewidths': '(5.3)', 'linecolor': '"""white"""'}), "(brn2, cmap='bone_r', cbar_kws={'shrink': 0.5}, vmax=1.5,\n linewidths=5.3, linecolor='white')\n", (4281, 4377), True, 'import seaborn as sns\n'), ((4394, 4458), 'matplotlib.pyplot.subplots_adjust', 'plt.subplots_adjust', ([], {'left': '(0.15)', 'bottom': '(0.1)', 'right': '(0.85)', 'top': '(0.95)'}), '(left=0.15, bottom=0.1, right=0.85, top=0.95)\n', (4413, 4458), True, 'import matplotlib.pyplot as plt\n'), ((4493, 4529), 'matplotlib.pyplot.savefig', 'plt.savefig', (["(out_path + 'fig_c1.pdf')"], {}), "(out_path + 'fig_c1.pdf')\n", (4504, 4529), True, 'import matplotlib.pyplot as plt\n'), ((4556, 4570), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (4568, 4570), True, 'import matplotlib.pyplot as plt\n'), ((4582, 4681), 'numpy.array', 'np.array', (['[[3146.0, 700], [2922, 1864], [3544, 1228], [1865, 6496], [2882, 2124], [\n 104, 1214]]'], {}), '([[3146.0, 700], [2922, 1864], [3544, 1228], [1865, 6496], [2882, \n 2124], [104, 1214]])\n', (4590, 4681), True, 'import numpy as np\n'), ((4827, 4934), 'seaborn.heatmap', 'sns.heatmap', (['ebf2'], {'cmap': '"""bone_r"""', 'cbar_kws': "{'shrink': 0.5}", 'vmax': '(1.5)', 'linewidths': '(5.3)', 'linecolor': '"""white"""'}), "(ebf2, cmap='bone_r', cbar_kws={'shrink': 0.5}, vmax=1.5,\n linewidths=5.3, linecolor='white')\n", (4838, 4934), True, 'import seaborn as sns\n'), ((4951, 5015), 'matplotlib.pyplot.subplots_adjust', 'plt.subplots_adjust', ([], {'left': '(0.15)', 'bottom': '(0.1)', 'right': '(0.85)', 'top': '(0.95)'}), '(left=0.15, bottom=0.1, right=0.85, top=0.95)\n', (4970, 5015), True, 'import matplotlib.pyplot as plt\n'), ((5050, 5086), 'matplotlib.pyplot.savefig', 'plt.savefig', (["(out_path + 'fig_c2.pdf')"], {}), "(out_path + 'fig_c2.pdf')\n", (5061, 5086), True, 'import matplotlib.pyplot as plt\n'), ((5116, 5130), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (5128, 5130), True, 'import matplotlib.pyplot as plt\n'), ((5140, 5228), 'numpy.array', 'np.array', (['[[1055.0, 6234], [3637, 542], [5227, 1245], [1282, 10372], [1266, 10067]]'], {}), '([[1055.0, 6234], [3637, 542], [5227, 1245], [1282, 10372], [1266, \n 10067]])\n', (5148, 5228), True, 'import numpy as np\n'), ((5364, 5470), 'seaborn.heatmap', 'sns.heatmap', (['oc2'], {'cmap': '"""bone_r"""', 'cbar_kws': "{'shrink': 0.5}", 'vmax': '(1.5)', 'linewidths': '(5.3)', 'linecolor': '"""white"""'}), "(oc2, cmap='bone_r', cbar_kws={'shrink': 0.5}, vmax=1.5,\n linewidths=5.3, linecolor='white')\n", (5375, 5470), True, 'import seaborn as sns\n'), ((5487, 5551), 'matplotlib.pyplot.subplots_adjust', 'plt.subplots_adjust', ([], {'left': '(0.15)', 'bottom': '(0.1)', 'right': '(0.85)', 'top': '(0.95)'}), '(left=0.15, bottom=0.1, right=0.85, top=0.95)\n', (5506, 5551), True, 'import matplotlib.pyplot as plt\n'), ((5586, 5622), 'matplotlib.pyplot.savefig', 'plt.savefig', (["(out_path + 'fig_c3.pdf')"], {}), "(out_path + 'fig_c3.pdf')\n", (5597, 5622), True, 'import matplotlib.pyplot as plt\n'), ((6444, 6469), 'seaborn.set_style', 'sns.set_style', (['"""darkgrid"""'], {}), "('darkgrid')\n", (6457, 6469), True, 'import seaborn as sns\n'), ((6484, 6498), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (6496, 6498), True, 'import matplotlib.pyplot as plt\n'), ((7006, 7048), 'matplotlib.pyplot.savefig', 'plt.savefig', (["(data_path + 'violinplots.pdf')"], {}), "(data_path + 'violinplots.pdf')\n", (7017, 7048), True, 'import matplotlib.pyplot as plt\n'), ((733, 750), 'numpy.sum', 'np.sum', (["brn2['#']"], {}), "(brn2['#'])\n", (739, 750), True, 'import numpy as np\n'), ((920, 937), 'numpy.sum', 'np.sum', (["ebf2['#']"], {}), "(ebf2['#'])\n", (926, 937), True, 'import numpy as np\n'), ((1121, 1141), 'numpy.sum', 'np.sum', (["onecut2['#']"], {}), "(onecut2['#'])\n", (1127, 1141), True, 'import numpy as np\n'), ((2567, 2612), 'numpy.loadtxt', 'np.loadtxt', (["(data_path + tf + '.embedding.txt')"], {}), "(data_path + tf + '.embedding.txt')\n", (2577, 2612), True, 'import numpy as np\n'), ((2621, 2670), 'matplotlib.pyplot.scatter', 'plt.scatter', (['dat[:, 0]', 'dat[:, 1]'], {'s': '(3)', 'alpha': '(0.3)'}), '(dat[:, 0], dat[:, 1], s=3, alpha=0.3)\n', (2632, 2670), True, 'import matplotlib.pyplot as plt\n'), ((2679, 2699), 'matplotlib.pyplot.savefig', 'plt.savefig', (['outpath'], {}), '(outpath)\n', (2690, 2699), True, 'import matplotlib.pyplot as plt\n'), ((3270, 3320), 'numpy.load', 'np.load', (["(data_path + tf + '.bound.chromtracks.npy')"], {}), "(data_path + tf + '.bound.chromtracks.npy')\n", (3277, 3320), True, 'import numpy as np\n'), ((3341, 3367), 'numpy.sum', 'np.sum', (['chrom_data'], {'axis': '(1)'}), '(chrom_data, axis=1)\n', (3347, 3367), True, 'import numpy as np\n'), ((3410, 3455), 'numpy.loadtxt', 'np.loadtxt', (["(data_path + tf + '.embedding.txt')"], {}), "(data_path + tf + '.embedding.txt')\n", (3420, 3455), True, 'import numpy as np\n'), ((3502, 3528), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(1)', '(3)', '(idx + 1)'], {}), '(1, 3, idx + 1)\n', (3513, 3528), True, 'import matplotlib.pyplot as plt\n'), ((3535, 3604), 'matplotlib.pyplot.scatter', 'plt.scatter', (['chrom_sum', 'chrom_score'], {'color': '"""#084177"""', 's': '(1)', 'alpha': '(0.05)'}), "(chrom_sum, chrom_score, color='#084177', s=1, alpha=0.05)\n", (3546, 3604), True, 'import matplotlib.pyplot as plt\n'), ((6572, 6678), 'pandas.read_csv', 'pd.read_csv', (["(data_path + tf + '.iA.summary')"], {'sep': '""","""', 'header': 'None', 'names': "['condition', 'tf', 'auprc']"}), "(data_path + tf + '.iA.summary', sep=',', header=None, names=[\n 'condition', 'tf', 'auprc'])\n", (6583, 6678), True, 'import pandas as pd\n'), ((6708, 6734), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(1)', '(3)', '(idx + 1)'], {}), '(1, 3, idx + 1)\n', (6719, 6734), True, 'import matplotlib.pyplot as plt\n'), ((6741, 6860), 'seaborn.violinplot', 'sns.violinplot', ([], {'x': "dat['condition']", 'y': "dat['auprc']", 'palette': "('#ecce6d', '#5b8c85')", 'order': "['seq', 'bichrom']", 'cut': '(0)'}), "(x=dat['condition'], y=dat['auprc'], palette=('#ecce6d',\n '#5b8c85'), order=['seq', 'bichrom'], cut=0)\n", (6755, 6860), True, 'import seaborn as sns\n'), ((6911, 6925), 'matplotlib.pyplot.ylim', 'plt.ylim', (['(0)', '(1)'], {}), '(0, 1)\n', (6919, 6925), True, 'import matplotlib.pyplot as plt\n'), ((6934, 6948), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['""""""'], {}), "('')\n", (6944, 6948), True, 'import matplotlib.pyplot as plt\n'), ((6957, 6971), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['""""""'], {}), "('')\n", (6967, 6971), True, 'import matplotlib.pyplot as plt\n')]
""" refer to https://github.com/jfzhang95/pytorch-deeplab-xception/blob/master/utils/metrics.py """ import numpy as np __all__ = ['SegmentationMetric'] """ confusionMetric P\L P N P TP FP N FN TN """ class SegmentationMetric(object): def __init__(self, numClass): self.numClass = numClass self.confusionMatrix = np.zeros((self.numClass,) * 2) def pixelAccuracy(self): # return all class overall pixel accuracy # acc = (TP + TN) / (TP + TN + FP + TN) acc = np.diag(self.confusionMatrix).sum() / self.confusionMatrix.sum() return acc def classPixelAccuracy(self): # return each category pixel accuracy(A more accurate way to call it precision) # acc = (TP) / TP + FP classAcc = np.diag(self.confusionMatrix) / self.confusionMatrix.sum(axis=1) return classAcc def meanPixelAccuracy(self): classAcc = self.classPixelAccuracy() meanAcc = np.nanmean(classAcc) return meanAcc def meanIntersectionOverUnion(self): # Intersection = TP Union = TP + FP + FN # IoU = TP / (TP + FP + FN) intersection = np.diag(self.confusionMatrix) union = np.sum(self.confusionMatrix, axis=1) + np.sum(self.confusionMatrix, axis=0) - np.diag( self.confusionMatrix) IoU = intersection / union mIoU = np.nanmean(IoU) return mIoU def genConfusionMatrix(self, imgPredict, imgLabel): # remove classes from unlabeled pixels in gt image and predict mask = (imgLabel >= 0) & (imgLabel < self.numClass) label = self.numClass * imgLabel[mask] + imgPredict[mask] count = np.bincount(label, minlength=self.numClass ** 2) confusionMatrix = count.reshape(self.numClass, self.numClass) return confusionMatrix def Frequency_Weighted_Intersection_over_Union(self): # FWIOU = [(TP+FN)/(TP+FP+TN+FN)] *[TP / (TP + FP + FN)] freq = np.sum(self.confusionMatrix, axis=1) / np.sum(self.confusionMatrix) iu = np.diag(self.confusionMatrix) / ( np.sum(self.confusionMatrix, axis=1) + np.sum(self.confusionMatrix, axis=0) - np.diag(self.confusionMatrix)) FWIoU = (freq[freq > 0] * iu[freq > 0]).sum() return FWIoU def addBatch(self, imgPredict, imgLabel): assert imgPredict.shape == imgLabel.shape self.confusionMatrix += self.genConfusionMatrix(imgPredict, imgLabel) def reset(self): self.confusionMatrix = np.zeros((self.numClass, self.numClass)) if __name__ == '__main__': imgPredict = np.array([0, 0, 1, 1, 2, 2]) imgLabel = np.array([0, 0, 1, 1, 2, 2]) metric = SegmentationMetric(3) metric.addBatch(imgPredict, imgLabel) acc = metric.pixelAccuracy() mIoU = metric.meanIntersectionOverUnion() print(acc, mIoU)
[ "numpy.diag", "numpy.array", "numpy.zeros", "numpy.nanmean", "numpy.sum", "numpy.bincount" ]
[((2630, 2658), 'numpy.array', 'np.array', (['[0, 0, 1, 1, 2, 2]'], {}), '([0, 0, 1, 1, 2, 2])\n', (2638, 2658), True, 'import numpy as np\n'), ((2674, 2702), 'numpy.array', 'np.array', (['[0, 0, 1, 1, 2, 2]'], {}), '([0, 0, 1, 1, 2, 2])\n', (2682, 2702), True, 'import numpy as np\n'), ((359, 389), 'numpy.zeros', 'np.zeros', (['((self.numClass,) * 2)'], {}), '((self.numClass,) * 2)\n', (367, 389), True, 'import numpy as np\n'), ((975, 995), 'numpy.nanmean', 'np.nanmean', (['classAcc'], {}), '(classAcc)\n', (985, 995), True, 'import numpy as np\n'), ((1169, 1198), 'numpy.diag', 'np.diag', (['self.confusionMatrix'], {}), '(self.confusionMatrix)\n', (1176, 1198), True, 'import numpy as np\n'), ((1386, 1401), 'numpy.nanmean', 'np.nanmean', (['IoU'], {}), '(IoU)\n', (1396, 1401), True, 'import numpy as np\n'), ((1692, 1740), 'numpy.bincount', 'np.bincount', (['label'], {'minlength': '(self.numClass ** 2)'}), '(label, minlength=self.numClass ** 2)\n', (1703, 1740), True, 'import numpy as np\n'), ((2543, 2583), 'numpy.zeros', 'np.zeros', (['(self.numClass, self.numClass)'], {}), '((self.numClass, self.numClass))\n', (2551, 2583), True, 'import numpy as np\n'), ((789, 818), 'numpy.diag', 'np.diag', (['self.confusionMatrix'], {}), '(self.confusionMatrix)\n', (796, 818), True, 'import numpy as np\n'), ((1293, 1322), 'numpy.diag', 'np.diag', (['self.confusionMatrix'], {}), '(self.confusionMatrix)\n', (1300, 1322), True, 'import numpy as np\n'), ((1985, 2021), 'numpy.sum', 'np.sum', (['self.confusionMatrix'], {'axis': '(1)'}), '(self.confusionMatrix, axis=1)\n', (1991, 2021), True, 'import numpy as np\n'), ((2024, 2052), 'numpy.sum', 'np.sum', (['self.confusionMatrix'], {}), '(self.confusionMatrix)\n', (2030, 2052), True, 'import numpy as np\n'), ((2066, 2095), 'numpy.diag', 'np.diag', (['self.confusionMatrix'], {}), '(self.confusionMatrix)\n', (2073, 2095), True, 'import numpy as np\n'), ((1215, 1251), 'numpy.sum', 'np.sum', (['self.confusionMatrix'], {'axis': '(1)'}), '(self.confusionMatrix, axis=1)\n', (1221, 1251), True, 'import numpy as np\n'), ((1254, 1290), 'numpy.sum', 'np.sum', (['self.confusionMatrix'], {'axis': '(0)'}), '(self.confusionMatrix, axis=0)\n', (1260, 1290), True, 'import numpy as np\n'), ((2210, 2239), 'numpy.diag', 'np.diag', (['self.confusionMatrix'], {}), '(self.confusionMatrix)\n', (2217, 2239), True, 'import numpy as np\n'), ((532, 561), 'numpy.diag', 'np.diag', (['self.confusionMatrix'], {}), '(self.confusionMatrix)\n', (539, 561), True, 'import numpy as np\n'), ((2116, 2152), 'numpy.sum', 'np.sum', (['self.confusionMatrix'], {'axis': '(1)'}), '(self.confusionMatrix, axis=1)\n', (2122, 2152), True, 'import numpy as np\n'), ((2155, 2191), 'numpy.sum', 'np.sum', (['self.confusionMatrix'], {'axis': '(0)'}), '(self.confusionMatrix, axis=0)\n', (2161, 2191), True, 'import numpy as np\n')]
''' @inproceedings{golestaneh2017spatially, title={Spatially-Varying Blur Detection Based on Multiscale Fused and Sorted Transform Coefficients of Gradient Magnitudes}, author={<NAME> and Karam, <NAME>}, booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition}, year={2017} } ''' import cv2 import numpy as np import os from skimage.filters.rank import entropy from skimage.morphology import square import copy import time class BlurDetector(object): def __init__(self, downsampling_factor=4, num_scales=4, scale_start=3, entropy_filt_kernel_sze=7, sigma_s_RF_filter=15, sigma_r_RF_filter=0.25, num_iterations_RF_filter=3): self.downsampling_factor = downsampling_factor self.num_scales = num_scales self.scale_start = scale_start self.entropy_filt_kernel_sze = entropy_filt_kernel_sze self.sigma_s_RF_filter = sigma_s_RF_filter self.sigma_r_RF_filter = sigma_r_RF_filter self.num_iterations_RF_filter = num_iterations_RF_filter self.scales = self.createScalePyramid() self.__freqBands = [] self.__dct_matrices = [] self.freq_index = [] def disp_progress(self, i, rows, old_progress): progress_dict = {10:'[| ] 10%', 20:'[| | ] 20%', 30:'[| | | ] 30%', 40:'[| | | | ] 40%', 50:'[| | | | | ] 50%', 60:'[| | | | | | ] 60%', 70:'[| | | | | | | ] 70%', 80:'[| | | | | | | | ] 80%', 90:'[| | | | | | | | | ] 90%', 100:'[| | | | | | | | | |] 100%'} i_done = i / rows * 100; p_done = round(i_done / 10) * 10; if(p_done != old_progress): os.system('cls' if os.name == 'nt' else 'clear') print(progress_dict[p_done]) old_progress = p_done return(p_done) def createScalePyramid(self): scales = [] for i in range(self.num_scales): scales.append((2**(self.scale_start + i)) - 1) # Scales would be 7, 15, 31, 63 ... return(scales) def computeImageGradientMagnitude(self, img): __sobelx = cv2.Sobel(img, cv2.CV_64F, 1, 0, borderType=cv2.BORDER_REFLECT) # Find x and y gradients __sobely = cv2.Sobel(img, cv2.CV_64F, 0, 1, borderType=cv2.BORDER_REFLECT) # Find gradient magnitude __magnitude = np.sqrt(__sobelx ** 2.0 + __sobely ** 2.0) return(__magnitude) def __computeFrequencyBands(self): for current_scale in self.scales: matrixInds = np.zeros((current_scale, current_scale)) for i in range(current_scale): matrixInds[0 : max(0, int(((current_scale-1)/2) - i +1)), i] = 1 for i in range(current_scale): if (current_scale-((current_scale-1)/2) - i) <= 0: matrixInds[0:current_scale - i - 1, i] = 2 else: matrixInds[int(current_scale - ((current_scale - 1) / 2) - i - 1): int(current_scale - i - 1), i]=2; matrixInds[0, 0] = 3 self.__freqBands.append(matrixInds) def __dctmtx(self, n): [mesh_cols, mesh_rows] = np.meshgrid(np.linspace(0, n-1, n), np.linspace(0, n-1, n)) dct_matrix = np.sqrt(2/n) * np.cos(np.pi * np.multiply((2 * mesh_cols + 1), mesh_rows) / (2*n)); dct_matrix[0, :] = dct_matrix[0, :] / np.sqrt(2) return(dct_matrix) def __createDCT_Matrices(self): if(len(self.__dct_matrices) > 0): raise TypeError("dct matrices are already defined. Redefinition is not allowed.") for curr_scale in self.scales: dct_matrix = self.__dctmtx(curr_scale) self.__dct_matrices.append(dct_matrix) def __getDCTCoefficients(self, img_blk, ind): rows, cols = np.shape(img_blk) # D = self.__dctmtx(rows) D = self.__dct_matrices[ind] dct_coeff = np.matmul(np.matmul(D, img_blk), np.transpose(D)) return(dct_coeff) def entropyFilt(self, img): return(entropy(img, square(self.entropy_filt_kernel_sze))) def computeScore(self, weighted_local_entropy, T_max): # normalize weighted T max matrix min_val = weighted_local_entropy.min() weighted_T_Max = weighted_local_entropy - min_val max_val = weighted_local_entropy.max() weighted_T_Max = weighted_local_entropy / max_val score = np.median(weighted_local_entropy) return(score) def TransformedDomainRecursiveFilter_Horizontal(self, I, D, sigma): # Feedback Coefficient (Appendix of the paper) a = np.exp(-np.sqrt(2) / sigma) F = copy.deepcopy(I) V = a ** D rows, cols = np.shape(I) # Left --> Right Filter for i in range(1, cols): F[:, i] = F[:, i] + np.multiply(V[:, i], (F[:, i-1] - F[:, i])) # Right --> Left Filter for i in range(cols-2, 1, -1): F[:, i] = F[:, i] + np.multiply(V[:, i+1], (F[:, i + 1] - F[:, i])) return(F) def RF(self, img, joint_img): if(len(joint_img) == 0): joint_img = img joint_img = joint_img.astype('float64') joint_img = joint_img / 255 if(len(np.shape(joint_img)) == 2): cols, rows = np.shape(joint_img) channels = 1 elif(len(np.shape(joint_img)) == 3): cols, rows, channels = np.shape(joint_img) # Estimate horizontal and vertical partial derivatives using finite differences. dIcdx = np.diff(joint_img, n=1, axis=1) dIcdy = np.diff(joint_img, n=1, axis=0) dIdx = np.zeros((cols, rows)); dIdy = np.zeros((cols, rows)); # Compute the l1 - norm distance of neighbor pixels. dIdx[:, 1::] = abs(dIcdx) dIdy[1::, :] = abs(dIcdy) dHdx = (1 + self.sigma_s_RF_filter / self.sigma_r_RF_filter * dIdx) dVdy = (1 + self.sigma_s_RF_filter / self.sigma_r_RF_filter * dIdy) dVdy = np.transpose(dVdy) N = self.num_iterations_RF_filter F = copy.deepcopy(img) for i in range(self.num_iterations_RF_filter): # Compute the sigma value for this iteration (Equation 14 of our paper). sigma_H_i = self.sigma_s_RF_filter * np.sqrt(3) * 2 ** (N - (i + 1)) / np.sqrt(4 ** N - 1) F = self.TransformedDomainRecursiveFilter_Horizontal(F, dHdx, sigma_H_i) F = np.transpose(F) F = self.TransformedDomainRecursiveFilter_Horizontal(F, dVdy, sigma_H_i) F = np.transpose(F) return(F) def detectBlur(self, img, ): ori_rows, ori_cols = np.shape(img) # perform initial gausssian smoothing InputImageGaus = cv2.GaussianBlur(img, (3, 3), sigmaX=0.5, sigmaY=0.5) __gradient_image = self.computeImageGradientMagnitude(InputImageGaus) total_num_layers = 1 + sum(self.scales) # create all dct_matrices beforehand to save computation time self.__createDCT_Matrices() # Create Frequency Labels at all the scalesv self.__computeFrequencyBands() # Compute the indices of the high frequency content inside each frequency band for i in range(self.num_scales): curr_freq_band = self.__freqBands[i] self.freq_index.append(np.where(curr_freq_band == 0)) __padded_image = np.pad(__gradient_image, int(np.floor(max(self.scales)/2)), mode='constant') rows, cols = np.shape(__padded_image) L = [] total_num_points = len([i for i in range(int(max(self.scales)/2), rows - int(max(self.scales)/2), self.downsampling_factor)]) * len([j for j in range(int(max(self.scales) / 2), cols - int(max(self.scales) / 2), self.downsampling_factor)]) L = np.zeros((total_num_points, total_num_layers)) iter = 0 n = 0 old_progress = 0 for i in range(int(max(self.scales)/2), rows - int(max(self.scales)/2), self.downsampling_factor): old_progress = self.disp_progress(i, rows, old_progress) m = 0 n += 1 for j in range(int(max(self.scales) / 2), cols - int(max(self.scales) / 2), self.downsampling_factor): m += 1 high_freq_components = [] for ind, curr_scale in enumerate(self.scales): Patch = __padded_image[i-np.int(curr_scale/2) : i+np.int(curr_scale/2) + 1, j-np.int(curr_scale/2) : j+np.int(curr_scale/2) + 1] dct_coefficients = np.abs(self.__getDCTCoefficients(Patch, ind)) # store all high frequency components high_freq_components.append(dct_coefficients[self.freq_index[ind]]) # Find the first `total_num_layers` smallest values in all the high frequency components - we must not sort the entire array since that is very inefficient high_freq_components = np.hstack(high_freq_components) result = np.argpartition(high_freq_components, total_num_layers) L[iter, :] = high_freq_components[result[:total_num_layers]] iter += 1 L = np.array(L) # normalize the L matrix for i in range(total_num_layers): max_val = max(L[:, i]) L[:, i] = L[:, i] / max_val # perform max pooling on the normalized frequencies ind1d = 0 T_max = np.zeros((n, m)) max_val = 0 min_val = 99999 for i in range(n): for j in range(m): T_max[i][j] = max(L[ind1d, :]) max_val = max(max_val, T_max[i][j]) min_val = min(min_val, T_max[i][j]) ind1d += 1 # Final Map and Post Processing local_entropy = self.entropyFilt(T_max) weighted_local_entropy = np.multiply(local_entropy, T_max) score = self.computeScore(weighted_local_entropy, T_max) rows, cols = np.shape(weighted_local_entropy) # resize the input image to match the size of local_entropy matrix resized_input_image = cv2.resize(InputImageGaus, (cols, rows)) aSmooth = cv2.GaussianBlur(resized_input_image, (3, 3), sigmaX=1, sigmaY=1) final_map = self.RF(weighted_local_entropy, aSmooth) # resize the map to the original resolution final_map = cv2.resize(final_map, (ori_cols, ori_rows)) # normalize the map final_map = final_map / np.max(final_map) return(final_map)
[ "numpy.sqrt", "numpy.hstack", "numpy.array", "copy.deepcopy", "numpy.multiply", "numpy.where", "numpy.diff", "numpy.max", "numpy.linspace", "numpy.matmul", "skimage.morphology.square", "cv2.resize", "cv2.GaussianBlur", "numpy.shape", "numpy.transpose", "numpy.int", "numpy.median", "numpy.argpartition", "numpy.zeros", "os.system", "cv2.Sobel" ]
[((2361, 2424), 'cv2.Sobel', 'cv2.Sobel', (['img', 'cv2.CV_64F', '(1)', '(0)'], {'borderType': 'cv2.BORDER_REFLECT'}), '(img, cv2.CV_64F, 1, 0, borderType=cv2.BORDER_REFLECT)\n', (2370, 2424), False, 'import cv2\n'), ((2470, 2533), 'cv2.Sobel', 'cv2.Sobel', (['img', 'cv2.CV_64F', '(0)', '(1)'], {'borderType': 'cv2.BORDER_REFLECT'}), '(img, cv2.CV_64F, 0, 1, borderType=cv2.BORDER_REFLECT)\n', (2479, 2533), False, 'import cv2\n'), ((2591, 2633), 'numpy.sqrt', 'np.sqrt', (['(__sobelx ** 2.0 + __sobely ** 2.0)'], {}), '(__sobelx ** 2.0 + __sobely ** 2.0)\n', (2598, 2633), True, 'import numpy as np\n'), ((4029, 4046), 'numpy.shape', 'np.shape', (['img_blk'], {}), '(img_blk)\n', (4037, 4046), True, 'import numpy as np\n'), ((4643, 4676), 'numpy.median', 'np.median', (['weighted_local_entropy'], {}), '(weighted_local_entropy)\n', (4652, 4676), True, 'import numpy as np\n'), ((4879, 4895), 'copy.deepcopy', 'copy.deepcopy', (['I'], {}), '(I)\n', (4892, 4895), False, 'import copy\n'), ((4936, 4947), 'numpy.shape', 'np.shape', (['I'], {}), '(I)\n', (4944, 4947), True, 'import numpy as np\n'), ((5760, 5791), 'numpy.diff', 'np.diff', (['joint_img'], {'n': '(1)', 'axis': '(1)'}), '(joint_img, n=1, axis=1)\n', (5767, 5791), True, 'import numpy as np\n'), ((5808, 5839), 'numpy.diff', 'np.diff', (['joint_img'], {'n': '(1)', 'axis': '(0)'}), '(joint_img, n=1, axis=0)\n', (5815, 5839), True, 'import numpy as np\n'), ((5856, 5878), 'numpy.zeros', 'np.zeros', (['(cols, rows)'], {}), '((cols, rows))\n', (5864, 5878), True, 'import numpy as np\n'), ((5895, 5917), 'numpy.zeros', 'np.zeros', (['(cols, rows)'], {}), '((cols, rows))\n', (5903, 5917), True, 'import numpy as np\n'), ((6218, 6236), 'numpy.transpose', 'np.transpose', (['dVdy'], {}), '(dVdy)\n', (6230, 6236), True, 'import numpy as np\n'), ((6292, 6310), 'copy.deepcopy', 'copy.deepcopy', (['img'], {}), '(img)\n', (6305, 6310), False, 'import copy\n'), ((6871, 6884), 'numpy.shape', 'np.shape', (['img'], {}), '(img)\n', (6879, 6884), True, 'import numpy as np\n'), ((6956, 7009), 'cv2.GaussianBlur', 'cv2.GaussianBlur', (['img', '(3, 3)'], {'sigmaX': '(0.5)', 'sigmaY': '(0.5)'}), '(img, (3, 3), sigmaX=0.5, sigmaY=0.5)\n', (6972, 7009), False, 'import cv2\n'), ((7706, 7730), 'numpy.shape', 'np.shape', (['__padded_image'], {}), '(__padded_image)\n', (7714, 7730), True, 'import numpy as np\n'), ((8006, 8052), 'numpy.zeros', 'np.zeros', (['(total_num_points, total_num_layers)'], {}), '((total_num_points, total_num_layers))\n', (8014, 8052), True, 'import numpy as np\n'), ((9389, 9400), 'numpy.array', 'np.array', (['L'], {}), '(L)\n', (9397, 9400), True, 'import numpy as np\n'), ((9647, 9663), 'numpy.zeros', 'np.zeros', (['(n, m)'], {}), '((n, m))\n', (9655, 9663), True, 'import numpy as np\n'), ((10066, 10099), 'numpy.multiply', 'np.multiply', (['local_entropy', 'T_max'], {}), '(local_entropy, T_max)\n', (10077, 10099), True, 'import numpy as np\n'), ((10187, 10219), 'numpy.shape', 'np.shape', (['weighted_local_entropy'], {}), '(weighted_local_entropy)\n', (10195, 10219), True, 'import numpy as np\n'), ((10326, 10366), 'cv2.resize', 'cv2.resize', (['InputImageGaus', '(cols, rows)'], {}), '(InputImageGaus, (cols, rows))\n', (10336, 10366), False, 'import cv2\n'), ((10385, 10450), 'cv2.GaussianBlur', 'cv2.GaussianBlur', (['resized_input_image', '(3, 3)'], {'sigmaX': '(1)', 'sigmaY': '(1)'}), '(resized_input_image, (3, 3), sigmaX=1, sigmaY=1)\n', (10401, 10450), False, 'import cv2\n'), ((10585, 10628), 'cv2.resize', 'cv2.resize', (['final_map', '(ori_cols, ori_rows)'], {}), '(final_map, (ori_cols, ori_rows))\n', (10595, 10628), False, 'import cv2\n'), ((1921, 1969), 'os.system', 'os.system', (["('cls' if os.name == 'nt' else 'clear')"], {}), "('cls' if os.name == 'nt' else 'clear')\n", (1930, 1969), False, 'import os\n'), ((2769, 2809), 'numpy.zeros', 'np.zeros', (['(current_scale, current_scale)'], {}), '((current_scale, current_scale))\n', (2777, 2809), True, 'import numpy as np\n'), ((3406, 3430), 'numpy.linspace', 'np.linspace', (['(0)', '(n - 1)', 'n'], {}), '(0, n - 1, n)\n', (3417, 3430), True, 'import numpy as np\n'), ((3430, 3454), 'numpy.linspace', 'np.linspace', (['(0)', '(n - 1)', 'n'], {}), '(0, n - 1, n)\n', (3441, 3454), True, 'import numpy as np\n'), ((3475, 3489), 'numpy.sqrt', 'np.sqrt', (['(2 / n)'], {}), '(2 / n)\n', (3482, 3489), True, 'import numpy as np\n'), ((3605, 3615), 'numpy.sqrt', 'np.sqrt', (['(2)'], {}), '(2)\n', (3612, 3615), True, 'import numpy as np\n'), ((4148, 4169), 'numpy.matmul', 'np.matmul', (['D', 'img_blk'], {}), '(D, img_blk)\n', (4157, 4169), True, 'import numpy as np\n'), ((4171, 4186), 'numpy.transpose', 'np.transpose', (['D'], {}), '(D)\n', (4183, 4186), True, 'import numpy as np\n'), ((4275, 4311), 'skimage.morphology.square', 'square', (['self.entropy_filt_kernel_sze'], {}), '(self.entropy_filt_kernel_sze)\n', (4281, 4311), False, 'from skimage.morphology import square\n'), ((5510, 5529), 'numpy.shape', 'np.shape', (['joint_img'], {}), '(joint_img)\n', (5518, 5529), True, 'import numpy as np\n'), ((6655, 6670), 'numpy.transpose', 'np.transpose', (['F'], {}), '(F)\n', (6667, 6670), True, 'import numpy as np\n'), ((6773, 6788), 'numpy.transpose', 'np.transpose', (['F'], {}), '(F)\n', (6785, 6788), True, 'import numpy as np\n'), ((10690, 10707), 'numpy.max', 'np.max', (['final_map'], {}), '(final_map)\n', (10696, 10707), True, 'import numpy as np\n'), ((5046, 5089), 'numpy.multiply', 'np.multiply', (['V[:, i]', '(F[:, i - 1] - F[:, i])'], {}), '(V[:, i], F[:, i - 1] - F[:, i])\n', (5057, 5089), True, 'import numpy as np\n'), ((5194, 5241), 'numpy.multiply', 'np.multiply', (['V[:, i + 1]', '(F[:, i + 1] - F[:, i])'], {}), '(V[:, i + 1], F[:, i + 1] - F[:, i])\n', (5205, 5241), True, 'import numpy as np\n'), ((5457, 5476), 'numpy.shape', 'np.shape', (['joint_img'], {}), '(joint_img)\n', (5465, 5476), True, 'import numpy as np\n'), ((5635, 5654), 'numpy.shape', 'np.shape', (['joint_img'], {}), '(joint_img)\n', (5643, 5654), True, 'import numpy as np\n'), ((6534, 6553), 'numpy.sqrt', 'np.sqrt', (['(4 ** N - 1)'], {}), '(4 ** N - 1)\n', (6541, 6553), True, 'import numpy as np\n'), ((7550, 7579), 'numpy.where', 'np.where', (['(curr_freq_band == 0)'], {}), '(curr_freq_band == 0)\n', (7558, 7579), True, 'import numpy as np\n'), ((9159, 9190), 'numpy.hstack', 'np.hstack', (['high_freq_components'], {}), '(high_freq_components)\n', (9168, 9190), True, 'import numpy as np\n'), ((9216, 9271), 'numpy.argpartition', 'np.argpartition', (['high_freq_components', 'total_num_layers'], {}), '(high_freq_components, total_num_layers)\n', (9231, 9271), True, 'import numpy as np\n'), ((4847, 4857), 'numpy.sqrt', 'np.sqrt', (['(2)'], {}), '(2)\n', (4854, 4857), True, 'import numpy as np\n'), ((5572, 5591), 'numpy.shape', 'np.shape', (['joint_img'], {}), '(joint_img)\n', (5580, 5591), True, 'import numpy as np\n'), ((3505, 3546), 'numpy.multiply', 'np.multiply', (['(2 * mesh_cols + 1)', 'mesh_rows'], {}), '(2 * mesh_cols + 1, mesh_rows)\n', (3516, 3546), True, 'import numpy as np\n'), ((6500, 6510), 'numpy.sqrt', 'np.sqrt', (['(3)'], {}), '(3)\n', (6507, 6510), True, 'import numpy as np\n'), ((8611, 8633), 'numpy.int', 'np.int', (['(curr_scale / 2)'], {}), '(curr_scale / 2)\n', (8617, 8633), True, 'import numpy as np\n'), ((8664, 8686), 'numpy.int', 'np.int', (['(curr_scale / 2)'], {}), '(curr_scale / 2)\n', (8670, 8686), True, 'import numpy as np\n'), ((8636, 8658), 'numpy.int', 'np.int', (['(curr_scale / 2)'], {}), '(curr_scale / 2)\n', (8642, 8658), True, 'import numpy as np\n'), ((8689, 8711), 'numpy.int', 'np.int', (['(curr_scale / 2)'], {}), '(curr_scale / 2)\n', (8695, 8711), True, 'import numpy as np\n')]
""" This module contains all the functions needed for extracting satellite-derived shorelines (SDS) Author: <NAME>, Water Research Laboratory, University of New South Wales """ # load modules import os import numpy as np import matplotlib.pyplot as plt import pdb # image processing modules import skimage.filters as filters import skimage.measure as measure import skimage.morphology as morphology # machine learning modules import sklearn if sklearn.__version__[:4] == '0.20': from sklearn.externals import joblib else: import joblib from shapely.geometry import LineString # other modules import matplotlib.patches as mpatches import matplotlib.lines as mlines import matplotlib.cm as cm from matplotlib import gridspec import pickle from datetime import datetime from pylab import ginput # CoastSat modules from coastsat import SDS_tools, SDS_preprocess np.seterr(all='ignore') # raise/ignore divisions by 0 and nans # Main function for batch shoreline detection def extract_shorelines(metadata, settings): """ Main function to extract shorelines from satellite images KV WRL 2018 Arguments: ----------- metadata: dict contains all the information about the satellite images that were downloaded settings: dict with the following keys 'inputs': dict input parameters (sitename, filepath, polygon, dates, sat_list) 'cloud_thresh': float value between 0 and 1 indicating the maximum cloud fraction in the cropped image that is accepted 'cloud_mask_issue': boolean True if there is an issue with the cloud mask and sand pixels are erroneously being masked on the images 'buffer_size': int size of the buffer (m) around the sandy pixels over which the pixels are considered in the thresholding algorithm 'min_beach_area': int minimum allowable object area (in metres^2) for the class 'sand', the area is converted to number of connected pixels 'min_length_sl': int minimum length (in metres) of shoreline contour to be valid 'sand_color': str default', 'dark' (for grey/black sand beaches) or 'bright' (for white sand beaches) 'output_epsg': int output spatial reference system as EPSG code 'check_detection': bool if True, lets user manually accept/reject the mapped shorelines 'save_figure': bool if True, saves a -jpg file for each mapped shoreline 'adjust_detection': bool if True, allows user to manually adjust the detected shoreline Returns: ----------- output: dict contains the extracted shorelines and corresponding dates + metadata """ sitename = settings['inputs']['sitename'] filepath_data = settings['inputs']['filepath'] filepath_models = os.path.join(os.getcwd(), 'classification', 'models') # initialise output structure output = dict([]) # create a subfolder to store the .jpg images showing the detection filepath_jpg = os.path.join(filepath_data, sitename, 'jpg_files', 'detection') if not os.path.exists(filepath_jpg): os.makedirs(filepath_jpg) # close all open figures plt.close('all') print('Mapping shorelines:') # loop through satellite list for satname in metadata.keys(): # get images filepath = SDS_tools.get_filepath(settings['inputs'],satname) filenames = metadata[satname]['filenames'] # initialise the output variables output_timestamp = [] # datetime at which the image was acquired (UTC time) output_shoreline = [] # vector of shoreline points output_filename = [] # filename of the images from which the shorelines where derived output_cloudcover = [] # cloud cover of the images output_geoaccuracy = []# georeferencing accuracy of the images output_idxkeep = [] # index that were kept during the analysis (cloudy images are skipped) output_t_mndwi = [] # MNDWI threshold used to map the shoreline # load classifiers (if sklearn version above 0.20, learn the new files) str_new = '' if not sklearn.__version__[:4] == '0.20': str_new = '_new' if satname in ['L5','L7','L8']: pixel_size = 15 if settings['sand_color'] == 'dark': clf = joblib.load(os.path.join(filepath_models, 'NN_4classes_Landsat_dark%s.pkl'%str_new)) elif settings['sand_color'] == 'bright': clf = joblib.load(os.path.join(filepath_models, 'NN_4classes_Landsat_bright%s.pkl'%str_new)) else: clf = joblib.load(os.path.join(filepath_models, 'NN_4classes_Landsat%s.pkl'%str_new)) elif satname == 'S2': pixel_size = 10 clf = joblib.load(os.path.join(filepath_models, 'NN_4classes_S2%s.pkl'%str_new)) # convert settings['min_beach_area'] and settings['buffer_size'] from metres to pixels buffer_size_pixels = np.ceil(settings['buffer_size']/pixel_size) min_beach_area_pixels = np.ceil(settings['min_beach_area']/pixel_size**2) # loop through the images for i in range(len(filenames)): print('\r%s: %d%%' % (satname,int(((i+1)/len(filenames))*100)), end='') # get image filename fn = SDS_tools.get_filenames(filenames[i],filepath, satname) # preprocess image (cloud mask + pansharpening/downsampling) im_ms, georef, cloud_mask, im_extra, im_QA, im_nodata = SDS_preprocess.preprocess_single(fn, satname, settings['cloud_mask_issue']) # get image spatial reference system (epsg code) from metadata dict image_epsg = metadata[satname]['epsg'][i] # compute cloud_cover percentage (with no data pixels) cloud_cover_combined = np.divide(sum(sum(cloud_mask.astype(int))), (cloud_mask.shape[0]*cloud_mask.shape[1])) if cloud_cover_combined > 0.99: # if 99% of cloudy pixels in image skip continue # remove no data pixels from the cloud mask # (for example L7 bands of no data should not be accounted for) cloud_mask_adv = np.logical_xor(cloud_mask, im_nodata) # compute updated cloud cover percentage (without no data pixels) cloud_cover = np.divide(sum(sum(cloud_mask_adv.astype(int))), (sum(sum((~im_nodata).astype(int))))) # skip image if cloud cover is above user-defined threshold if cloud_cover > settings['cloud_thresh']: continue # calculate a buffer around the reference shoreline (if any has been digitised) im_ref_buffer = create_shoreline_buffer(cloud_mask.shape, georef, image_epsg, pixel_size, settings) # classify image in 4 classes (sand, whitewater, water, other) with NN classifier im_classif, im_labels = classify_image_NN(im_ms, im_extra, cloud_mask, min_beach_area_pixels, clf) # if adjust_detection is True, let the user adjust the detected shoreline if settings['adjust_detection']: date = filenames[i][:19] skip_image, shoreline, t_mndwi = adjust_detection(im_ms, cloud_mask, im_labels, im_ref_buffer, image_epsg, georef, settings, date, satname, buffer_size_pixels) # if the user decides to skip the image, continue and do not save the mapped shoreline if skip_image: continue # otherwise map the contours automatically with one of the two following functions: # if there are pixels in the 'sand' class --> use find_wl_contours2 (enhanced) # otherwise use find_wl_contours2 (traditional) else: try: # use try/except structure for long runs if sum(sum(im_labels[:,:,0])) < 10 : # minimum number of sand pixels # compute MNDWI image (SWIR-G) im_mndwi = SDS_tools.nd_index(im_ms[:,:,4], im_ms[:,:,1], cloud_mask) # find water contours on MNDWI grayscale image contours_mwi, t_mndwi = find_wl_contours1(im_mndwi, cloud_mask, im_ref_buffer) else: # use classification to refine threshold and extract the sand/water interface contours_mwi, t_mndwi = find_wl_contours2(im_ms, im_labels, cloud_mask, buffer_size_pixels, im_ref_buffer) except: print('Could not map shoreline for this image: ' + filenames[i]) continue # process the water contours into a shoreline shoreline = process_shoreline(contours_mwi, cloud_mask, georef, image_epsg, settings) # visualise the mapped shorelines, there are two options: # if settings['check_detection'] = True, shows the detection to the user for accept/reject # if settings['save_figure'] = True, saves a figure for each mapped shoreline if settings['check_detection'] or settings['save_figure']: date = filenames[i][:19] if not settings['check_detection']: plt.ioff() # turning interactive plotting off skip_image = show_detection(im_ms, cloud_mask, im_labels, shoreline, image_epsg, georef, settings, date, satname) # if the user decides to skip the image, continue and do not save the mapped shoreline if skip_image: continue # append to output variables output_timestamp.append(metadata[satname]['dates'][i]) output_shoreline.append(shoreline) output_filename.append(filenames[i]) output_cloudcover.append(cloud_cover) output_geoaccuracy.append(metadata[satname]['acc_georef'][i]) output_idxkeep.append(i) output_t_mndwi.append(t_mndwi) # create dictionnary of output output[satname] = { 'dates': output_timestamp, 'shorelines': output_shoreline, 'filename': output_filename, 'cloud_cover': output_cloudcover, 'geoaccuracy': output_geoaccuracy, 'idx': output_idxkeep, 'MNDWI_threshold': output_t_mndwi, } print('') # close figure window if still open if plt.get_fignums(): plt.close() # change the format to have one list sorted by date with all the shorelines (easier to use) output = SDS_tools.merge_output(output) # save outputput structure as output.pkl filepath = os.path.join(filepath_data, sitename) with open(os.path.join(filepath, sitename + '_output.pkl'), 'wb') as f: pickle.dump(output, f) return output ################################################################################################### # IMAGE CLASSIFICATION FUNCTIONS ################################################################################################### def calculate_features(im_ms, cloud_mask, im_bool): """ Calculates features on the image that are used for the supervised classification. The features include spectral normalized-difference indices and standard deviation of the image for all the bands and indices. KV WRL 2018 Arguments: ----------- im_ms: np.array RGB + downsampled NIR and SWIR cloud_mask: np.array 2D cloud mask with True where cloud pixels are im_bool: np.array 2D array of boolean indicating where on the image to calculate the features Returns: ----------- features: np.array matrix containing each feature (columns) calculated for all the pixels (rows) indicated in im_bool """ # add all the multispectral bands features = np.expand_dims(im_ms[im_bool,0],axis=1) for k in range(1,im_ms.shape[2]): feature = np.expand_dims(im_ms[im_bool,k],axis=1) features = np.append(features, feature, axis=-1) # NIR-G im_NIRG = SDS_tools.nd_index(im_ms[:,:,3], im_ms[:,:,1], cloud_mask) features = np.append(features, np.expand_dims(im_NIRG[im_bool],axis=1), axis=-1) # SWIR-G im_SWIRG = SDS_tools.nd_index(im_ms[:,:,4], im_ms[:,:,1], cloud_mask) features = np.append(features, np.expand_dims(im_SWIRG[im_bool],axis=1), axis=-1) # NIR-R im_NIRR = SDS_tools.nd_index(im_ms[:,:,3], im_ms[:,:,2], cloud_mask) features = np.append(features, np.expand_dims(im_NIRR[im_bool],axis=1), axis=-1) # SWIR-NIR im_SWIRNIR = SDS_tools.nd_index(im_ms[:,:,4], im_ms[:,:,3], cloud_mask) features = np.append(features, np.expand_dims(im_SWIRNIR[im_bool],axis=1), axis=-1) # B-R im_BR = SDS_tools.nd_index(im_ms[:,:,0], im_ms[:,:,2], cloud_mask) features = np.append(features, np.expand_dims(im_BR[im_bool],axis=1), axis=-1) # calculate standard deviation of individual bands for k in range(im_ms.shape[2]): im_std = SDS_tools.image_std(im_ms[:,:,k], 1) features = np.append(features, np.expand_dims(im_std[im_bool],axis=1), axis=-1) # calculate standard deviation of the spectral indices im_std = SDS_tools.image_std(im_NIRG, 1) features = np.append(features, np.expand_dims(im_std[im_bool],axis=1), axis=-1) im_std = SDS_tools.image_std(im_SWIRG, 1) features = np.append(features, np.expand_dims(im_std[im_bool],axis=1), axis=-1) im_std = SDS_tools.image_std(im_NIRR, 1) features = np.append(features, np.expand_dims(im_std[im_bool],axis=1), axis=-1) im_std = SDS_tools.image_std(im_SWIRNIR, 1) features = np.append(features, np.expand_dims(im_std[im_bool],axis=1), axis=-1) im_std = SDS_tools.image_std(im_BR, 1) features = np.append(features, np.expand_dims(im_std[im_bool],axis=1), axis=-1) return features def classify_image_NN(im_ms, im_extra, cloud_mask, min_beach_area, clf): """ Classifies every pixel in the image in one of 4 classes: - sand --> label = 1 - whitewater (breaking waves and swash) --> label = 2 - water --> label = 3 - other (vegetation, buildings, rocks...) --> label = 0 The classifier is a Neural Network that is already trained. KV WRL 2018 Arguments: ----------- im_ms: np.array Pansharpened RGB + downsampled NIR and SWIR im_extra: only used for Landsat 7 and 8 where im_extra is the panchromatic band cloud_mask: np.array 2D cloud mask with True where cloud pixels are min_beach_area: int minimum number of pixels that have to be connected to belong to the SAND class clf: joblib object pre-trained classifier Returns: ----------- im_classif: np.array 2D image containing labels im_labels: np.array of booleans 3D image containing a boolean image for each class (im_classif == label) """ # calculate features vec_features = calculate_features(im_ms, cloud_mask, np.ones(cloud_mask.shape).astype(bool)) vec_features[np.isnan(vec_features)] = 1e-9 # NaN values are create when std is too close to 0 # remove NaNs and cloudy pixels vec_cloud = cloud_mask.reshape(cloud_mask.shape[0]*cloud_mask.shape[1]) vec_nan = np.any(np.isnan(vec_features), axis=1) vec_inf = np.any(np.isinf(vec_features), axis=1) vec_mask = np.logical_or(vec_cloud,np.logical_or(vec_nan,vec_inf)) vec_features = vec_features[~vec_mask, :] # classify pixels labels = clf.predict(vec_features) # recompose image vec_classif = np.nan*np.ones((cloud_mask.shape[0]*cloud_mask.shape[1])) vec_classif[~vec_mask] = labels im_classif = vec_classif.reshape((cloud_mask.shape[0], cloud_mask.shape[1])) # create a stack of boolean images for each label im_sand = im_classif == 1 im_swash = im_classif == 2 im_water = im_classif == 3 # remove small patches of sand or water that could be around the image (usually noise) im_sand = morphology.remove_small_objects(im_sand, min_size=min_beach_area, connectivity=2) im_water = morphology.remove_small_objects(im_water, min_size=min_beach_area, connectivity=2) im_labels = np.stack((im_sand,im_swash,im_water), axis=-1) return im_classif, im_labels ################################################################################################### # CONTOUR MAPPING FUNCTIONS ################################################################################################### def find_wl_contours1(im_ndwi, cloud_mask, im_ref_buffer): """ Traditional method for shoreline detection using a global threshold. Finds the water line by thresholding the Normalized Difference Water Index and applying the Marching Squares Algorithm to contour the iso-value corresponding to the threshold. KV WRL 2018 Arguments: ----------- im_ndwi: np.ndarray Image (2D) with the NDWI (water index) cloud_mask: np.ndarray 2D cloud mask with True where cloud pixels are im_ref_buffer: np.array Binary image containing a buffer around the reference shoreline Returns: ----------- contours: list of np.arrays contains the coordinates of the contour lines t_mwi: float Otsu threshold used to map the contours """ # reshape image to vector vec_ndwi = im_ndwi.reshape(im_ndwi.shape[0] * im_ndwi.shape[1]) vec_mask = cloud_mask.reshape(cloud_mask.shape[0] * cloud_mask.shape[1]) vec = vec_ndwi[~vec_mask] # apply otsu's threshold vec = vec[~np.isnan(vec)] t_otsu = filters.threshold_otsu(vec) # use Marching Squares algorithm to detect contours on ndwi image im_ndwi_buffer = np.copy(im_ndwi) im_ndwi_buffer[~im_ref_buffer] = np.nan contours = measure.find_contours(im_ndwi_buffer, t_otsu) # remove contours that contain NaNs (due to cloud pixels in the contour) contours = process_contours(contours) return contours, t_otsu def find_wl_contours2(im_ms, im_labels, cloud_mask, buffer_size, im_ref_buffer): """ New robust method for extracting shorelines. Incorporates the classification component to refine the treshold and make it specific to the sand/water interface. KV WRL 2018 Arguments: ----------- im_ms: np.array RGB + downsampled NIR and SWIR im_labels: np.array 3D image containing a boolean image for each class in the order (sand, swash, water) cloud_mask: np.array 2D cloud mask with True where cloud pixels are buffer_size: int size of the buffer around the sandy beach over which the pixels are considered in the thresholding algorithm. im_ref_buffer: np.array binary image containing a buffer around the reference shoreline Returns: ----------- contours_mwi: list of np.arrays contains the coordinates of the contour lines extracted from the MNDWI (Modified Normalized Difference Water Index) image t_mwi: float Otsu sand/water threshold used to map the contours """ nrows = cloud_mask.shape[0] ncols = cloud_mask.shape[1] # calculate Normalized Difference Modified Water Index (SWIR - G) im_mwi = SDS_tools.nd_index(im_ms[:,:,4], im_ms[:,:,1], cloud_mask) # calculate Normalized Difference Modified Water Index (NIR - G) im_wi = SDS_tools.nd_index(im_ms[:,:,3], im_ms[:,:,1], cloud_mask) # stack indices together im_ind = np.stack((im_wi, im_mwi), axis=-1) vec_ind = im_ind.reshape(nrows*ncols,2) # reshape labels into vectors vec_sand = im_labels[:,:,0].reshape(ncols*nrows) vec_water = im_labels[:,:,2].reshape(ncols*nrows) # create a buffer around the sandy beach se = morphology.disk(buffer_size) im_buffer = morphology.binary_dilation(im_labels[:,:,0], se) vec_buffer = im_buffer.reshape(nrows*ncols) # select water/sand/swash pixels that are within the buffer int_water = vec_ind[np.logical_and(vec_buffer,vec_water),:] int_sand = vec_ind[np.logical_and(vec_buffer,vec_sand),:] # make sure both classes have the same number of pixels before thresholding if len(int_water) > 0 and len(int_sand) > 0: if np.argmin([int_sand.shape[0],int_water.shape[0]]) == 1: int_sand = int_sand[np.random.choice(int_sand.shape[0],int_water.shape[0], replace=False),:] else: int_water = int_water[np.random.choice(int_water.shape[0],int_sand.shape[0], replace=False),:] # threshold the sand/water intensities int_all = np.append(int_water,int_sand, axis=0) t_mwi = filters.threshold_otsu(int_all[:,0]) t_wi = filters.threshold_otsu(int_all[:,1]) # find contour with MS algorithm im_wi_buffer = np.copy(im_wi) im_wi_buffer[~im_ref_buffer] = np.nan im_mwi_buffer = np.copy(im_mwi) im_mwi_buffer[~im_ref_buffer] = np.nan contours_wi = measure.find_contours(im_wi_buffer, t_wi) contours_mwi = measure.find_contours(im_mwi_buffer, t_mwi) # remove contour points that are NaNs (around clouds) contours_wi = process_contours(contours_wi) contours_mwi = process_contours(contours_mwi) # only return MNDWI contours and threshold return contours_mwi, t_mwi ################################################################################################### # SHORELINE PROCESSING FUNCTIONS ################################################################################################### def create_shoreline_buffer(im_shape, georef, image_epsg, pixel_size, settings): """ Creates a buffer around the reference shoreline. The size of the buffer is given by settings['max_dist_ref']. KV WRL 2018 Arguments: ----------- im_shape: np.array size of the image (rows,columns) georef: np.array vector of 6 elements [Xtr, Xscale, Xshear, Ytr, Yshear, Yscale] image_epsg: int spatial reference system of the image from which the contours were extracted pixel_size: int size of the pixel in metres (15 for Landsat, 10 for Sentinel-2) settings: dict with the following keys 'output_epsg': int output spatial reference system 'reference_shoreline': np.array coordinates of the reference shoreline 'max_dist_ref': int maximum distance from the reference shoreline in metres Returns: ----------- im_buffer: np.array binary image, True where the buffer is, False otherwise """ # initialise the image buffer im_buffer = np.ones(im_shape).astype(bool) if 'reference_shoreline' in settings.keys(): # convert reference shoreline to pixel coordinates ref_sl = settings['reference_shoreline'] ref_sl_conv = SDS_tools.convert_epsg(ref_sl, settings['output_epsg'],image_epsg)[:,:-1] ref_sl_pix = SDS_tools.convert_world2pix(ref_sl_conv, georef) ref_sl_pix_rounded = np.round(ref_sl_pix).astype(int) # make sure that the pixel coordinates of the reference shoreline are inside the image idx_row = np.logical_and(ref_sl_pix_rounded[:,0] > 0, ref_sl_pix_rounded[:,0] < im_shape[1]) idx_col = np.logical_and(ref_sl_pix_rounded[:,1] > 0, ref_sl_pix_rounded[:,1] < im_shape[0]) idx_inside = np.logical_and(idx_row, idx_col) ref_sl_pix_rounded = ref_sl_pix_rounded[idx_inside,:] # create binary image of the reference shoreline (1 where the shoreline is 0 otherwise) im_binary = np.zeros(im_shape) for j in range(len(ref_sl_pix_rounded)): im_binary[ref_sl_pix_rounded[j,1], ref_sl_pix_rounded[j,0]] = 1 im_binary = im_binary.astype(bool) # dilate the binary image to create a buffer around the reference shoreline max_dist_ref_pixels = np.ceil(settings['max_dist_ref']/pixel_size) se = morphology.disk(max_dist_ref_pixels) im_buffer = morphology.binary_dilation(im_binary, se) return im_buffer def process_contours(contours): """ Remove contours that contain NaNs, usually these are contours that are in contact with clouds. KV WRL 2020 Arguments: ----------- contours: list of np.array image contours as detected by the function skimage.measure.find_contours Returns: ----------- contours: list of np.array processed image contours (only the ones that do not contains NaNs) """ # initialise variable contours_nonans = [] # loop through contours and only keep the ones without NaNs for k in range(len(contours)): if np.any(np.isnan(contours[k])): index_nan = np.where(np.isnan(contours[k]))[0] contours_temp = np.delete(contours[k], index_nan, axis=0) if len(contours_temp) > 1: contours_nonans.append(contours_temp) else: contours_nonans.append(contours[k]) return contours_nonans def process_shoreline(contours, cloud_mask, georef, image_epsg, settings): """ Converts the contours from image coordinates to world coordinates. This function also removes the contours that are too small to be a shoreline (based on the parameter settings['min_length_sl']) KV WRL 2018 Arguments: ----------- contours: np.array or list of np.array image contours as detected by the function find_contours cloud_mask: np.array 2D cloud mask with True where cloud pixels are georef: np.array vector of 6 elements [Xtr, Xscale, Xshear, Ytr, Yshear, Yscale] image_epsg: int spatial reference system of the image from which the contours were extracted settings: dict with the following keys 'output_epsg': int output spatial reference system 'min_length_sl': float minimum length of shoreline contour to be kept (in meters) Returns: ----------- shoreline: np.array array of points with the X and Y coordinates of the shoreline """ # convert pixel coordinates to world coordinates contours_world = SDS_tools.convert_pix2world(contours, georef) # convert world coordinates to desired spatial reference system contours_epsg = SDS_tools.convert_epsg(contours_world, image_epsg, settings['output_epsg']) # remove contours that have a perimeter < min_length_sl (provided in settings dict) # this enables to remove the very small contours that do not correspond to the shoreline contours_long = [] for l, wl in enumerate(contours_epsg): coords = [(wl[k,0], wl[k,1]) for k in range(len(wl))] a = LineString(coords) # shapely LineString structure if a.length >= settings['min_length_sl']: contours_long.append(wl) # format points into np.array x_points = np.array([]) y_points = np.array([]) for k in range(len(contours_long)): x_points = np.append(x_points,contours_long[k][:,0]) y_points = np.append(y_points,contours_long[k][:,1]) contours_array = np.transpose(np.array([x_points,y_points])) shoreline = contours_array # now remove any shoreline points that are attached to cloud pixels if sum(sum(cloud_mask)) > 0: # get the coordinates of the cloud pixels idx_cloud = np.where(cloud_mask) idx_cloud = np.array([(idx_cloud[0][k], idx_cloud[1][k]) for k in range(len(idx_cloud[0]))]) # convert to world coordinates and same epsg as the shoreline points coords_cloud = SDS_tools.convert_epsg(SDS_tools.convert_pix2world(idx_cloud, georef), image_epsg, settings['output_epsg'])[:,:-1] # only keep the shoreline points that are at least 30m from any cloud pixel idx_keep = np.ones(len(shoreline)).astype(bool) for k in range(len(shoreline)): if np.any(np.linalg.norm(shoreline[k,:] - coords_cloud, axis=1) < 30): idx_keep[k] = False shoreline = shoreline[idx_keep] return shoreline ################################################################################################### # PLOTTING FUNCTIONS ################################################################################################### def show_detection(im_ms, cloud_mask, im_labels, shoreline,image_epsg, georef, settings, date, satname): """ Shows the detected shoreline to the user for visual quality control. The user can accept/reject the detected shorelines by using keep/skip buttons. KV WRL 2018 Arguments: ----------- im_ms: np.array RGB + downsampled NIR and SWIR cloud_mask: np.array 2D cloud mask with True where cloud pixels are im_labels: np.array 3D image containing a boolean image for each class in the order (sand, swash, water) shoreline: np.array array of points with the X and Y coordinates of the shoreline image_epsg: int spatial reference system of the image from which the contours were extracted georef: np.array vector of 6 elements [Xtr, Xscale, Xshear, Ytr, Yshear, Yscale] date: string date at which the image was taken satname: string indicates the satname (L5,L7,L8 or S2) settings: dict with the following keys 'inputs': dict input parameters (sitename, filepath, polygon, dates, sat_list) 'output_epsg': int output spatial reference system as EPSG code 'check_detection': bool if True, lets user manually accept/reject the mapped shorelines 'save_figure': bool if True, saves a -jpg file for each mapped shoreline Returns: ----------- skip_image: boolean True if the user wants to skip the image, False otherwise """ sitename = settings['inputs']['sitename'] filepath_data = settings['inputs']['filepath'] # subfolder where the .jpg file is stored if the user accepts the shoreline detection filepath = os.path.join(filepath_data, sitename, 'jpg_files', 'detection') im_RGB = SDS_preprocess.rescale_image_intensity(im_ms[:,:,[2,1,0]], cloud_mask, 99.9) # compute classified image im_class = np.copy(im_RGB) cmap = cm.get_cmap('tab20c') colorpalette = cmap(np.arange(0,13,1)) colours = np.zeros((3,4)) colours[0,:] = colorpalette[5] colours[1,:] = np.array([204/255,1,1,1]) colours[2,:] = np.array([0,91/255,1,1]) for k in range(0,im_labels.shape[2]): im_class[im_labels[:,:,k],0] = colours[k,0] im_class[im_labels[:,:,k],1] = colours[k,1] im_class[im_labels[:,:,k],2] = colours[k,2] # compute MNDWI grayscale image im_mwi = SDS_tools.nd_index(im_ms[:,:,4], im_ms[:,:,1], cloud_mask) # transform world coordinates of shoreline into pixel coordinates # use try/except in case there are no coordinates to be transformed (shoreline = []) try: sl_pix = SDS_tools.convert_world2pix(SDS_tools.convert_epsg(shoreline, settings['output_epsg'], image_epsg)[:,[0,1]], georef) except: # if try fails, just add nan into the shoreline vector so the next parts can still run sl_pix = np.array([[np.nan, np.nan],[np.nan, np.nan]]) if plt.get_fignums(): # get open figure if it exists fig = plt.gcf() ax1 = fig.axes[0] ax2 = fig.axes[1] ax3 = fig.axes[2] else: # else create a new figure fig = plt.figure() fig.set_size_inches([18, 9]) mng = plt.get_current_fig_manager() mng.window.showMaximized() # according to the image shape, decide whether it is better to have the images # in vertical subplots or horizontal subplots if im_RGB.shape[1] > 2.5*im_RGB.shape[0]: # vertical subplots gs = gridspec.GridSpec(3, 1) gs.update(bottom=0.03, top=0.97, left=0.03, right=0.97) ax1 = fig.add_subplot(gs[0,0]) ax2 = fig.add_subplot(gs[1,0], sharex=ax1, sharey=ax1) ax3 = fig.add_subplot(gs[2,0], sharex=ax1, sharey=ax1) else: # horizontal subplots gs = gridspec.GridSpec(1, 3) gs.update(bottom=0.05, top=0.95, left=0.05, right=0.95) ax1 = fig.add_subplot(gs[0,0]) ax2 = fig.add_subplot(gs[0,1], sharex=ax1, sharey=ax1) ax3 = fig.add_subplot(gs[0,2], sharex=ax1, sharey=ax1) # change the color of nans to either black (0.0) or white (1.0) or somewhere in between nan_color = 1.0 im_RGB = np.where(np.isnan(im_RGB), nan_color, im_RGB) im_class = np.where(np.isnan(im_class), 1.0, im_class) # create image 1 (RGB) ax1.imshow(im_RGB) ax1.plot(sl_pix[:,0], sl_pix[:,1], 'k.', markersize=3) ax1.axis('off') ax1.set_title(sitename, fontweight='bold', fontsize=16) # create image 2 (classification) ax2.imshow(im_class) ax2.plot(sl_pix[:,0], sl_pix[:,1], 'k.', markersize=3) ax2.axis('off') orange_patch = mpatches.Patch(color=colours[0,:], label='sand') white_patch = mpatches.Patch(color=colours[1,:], label='whitewater') blue_patch = mpatches.Patch(color=colours[2,:], label='water') black_line = mlines.Line2D([],[],color='k',linestyle='-', label='shoreline') ax2.legend(handles=[orange_patch,white_patch,blue_patch, black_line], bbox_to_anchor=(1, 0.5), fontsize=10) ax2.set_title(date, fontweight='bold', fontsize=16) # create image 3 (MNDWI) ax3.imshow(im_mwi, cmap='bwr') ax3.plot(sl_pix[:,0], sl_pix[:,1], 'k.', markersize=3) ax3.axis('off') ax3.set_title(satname, fontweight='bold', fontsize=16) # additional options # ax1.set_anchor('W') # ax2.set_anchor('W') # cb = plt.colorbar() # cb.ax.tick_params(labelsize=10) # cb.set_label('MNDWI values') # ax3.set_anchor('W') # if check_detection is True, let user manually accept/reject the images skip_image = False if settings['check_detection']: # set a key event to accept/reject the detections (see https://stackoverflow.com/a/15033071) # this variable needs to be immuatable so we can access it after the keypress event key_event = {} def press(event): # store what key was pressed in the dictionary key_event['pressed'] = event.key # let the user press a key, right arrow to keep the image, left arrow to skip it # to break the loop the user can press 'escape' while True: btn_keep = plt.text(1.1, 0.9, 'keep ⇨', size=12, ha="right", va="top", transform=ax1.transAxes, bbox=dict(boxstyle="square", ec='k',fc='w')) btn_skip = plt.text(-0.1, 0.9, '⇦ skip', size=12, ha="left", va="top", transform=ax1.transAxes, bbox=dict(boxstyle="square", ec='k',fc='w')) btn_esc = plt.text(0.5, 0, '<esc> to quit', size=12, ha="center", va="top", transform=ax1.transAxes, bbox=dict(boxstyle="square", ec='k',fc='w')) plt.draw() fig.canvas.mpl_connect('key_press_event', press) plt.waitforbuttonpress() # after button is pressed, remove the buttons btn_skip.remove() btn_keep.remove() btn_esc.remove() # keep/skip image according to the pressed key, 'escape' to break the loop if key_event.get('pressed') == 'right': skip_image = False break elif key_event.get('pressed') == 'left': skip_image = True break elif key_event.get('pressed') == 'escape': plt.close() raise StopIteration('User cancelled checking shoreline detection') else: plt.waitforbuttonpress() # if save_figure is True, save a .jpg under /jpg_files/detection if settings['save_figure'] and not skip_image: fig.savefig(os.path.join(filepath, date + '_' + satname + '.jpg'), dpi=150) # don't close the figure window, but remove all axes and settings, ready for next plot for ax in fig.axes: ax.clear() return skip_image def adjust_detection(im_ms, cloud_mask, im_labels, im_ref_buffer, image_epsg, georef, settings, date, satname, buffer_size_pixels): """ Advanced version of show detection where the user can adjust the detected shorelines with a slide bar. KV WRL 2020 Arguments: ----------- im_ms: np.array RGB + downsampled NIR and SWIR cloud_mask: np.array 2D cloud mask with True where cloud pixels are im_labels: np.array 3D image containing a boolean image for each class in the order (sand, swash, water) im_ref_buffer: np.array Binary image containing a buffer around the reference shoreline image_epsg: int spatial reference system of the image from which the contours were extracted georef: np.array vector of 6 elements [Xtr, Xscale, Xshear, Ytr, Yshear, Yscale] date: string date at which the image was taken satname: string indicates the satname (L5,L7,L8 or S2) buffer_size_pixels: int buffer_size converted to number of pixels settings: dict with the following keys 'inputs': dict input parameters (sitename, filepath, polygon, dates, sat_list) 'output_epsg': int output spatial reference system as EPSG code 'save_figure': bool if True, saves a -jpg file for each mapped shoreline Returns: ----------- skip_image: boolean True if the user wants to skip the image, False otherwise shoreline: np.array array of points with the X and Y coordinates of the shoreline t_mndwi: float value of the MNDWI threshold used to map the shoreline """ sitename = settings['inputs']['sitename'] filepath_data = settings['inputs']['filepath'] # subfolder where the .jpg file is stored if the user accepts the shoreline detection filepath = os.path.join(filepath_data, sitename, 'jpg_files', 'detection') # format date date_str = datetime.strptime(date,'%Y-%m-%d-%H-%M-%S').strftime('%Y-%m-%d %H:%M:%S') im_RGB = SDS_preprocess.rescale_image_intensity(im_ms[:,:,[2,1,0]], cloud_mask, 99.9) # compute classified image im_class = np.copy(im_RGB) cmap = cm.get_cmap('tab20c') colorpalette = cmap(np.arange(0,13,1)) colours = np.zeros((3,4)) colours[0,:] = colorpalette[5] colours[1,:] = np.array([204/255,1,1,1]) colours[2,:] = np.array([0,91/255,1,1]) for k in range(0,im_labels.shape[2]): im_class[im_labels[:,:,k],0] = colours[k,0] im_class[im_labels[:,:,k],1] = colours[k,1] im_class[im_labels[:,:,k],2] = colours[k,2] # compute MNDWI grayscale image im_mndwi = SDS_tools.nd_index(im_ms[:,:,4], im_ms[:,:,1], cloud_mask) # buffer MNDWI using reference shoreline im_mndwi_buffer = np.copy(im_mndwi) im_mndwi_buffer[~im_ref_buffer] = np.nan # get MNDWI pixel intensity in each class (for histogram plot) int_sand = im_mndwi[im_labels[:,:,0]] int_ww = im_mndwi[im_labels[:,:,1]] int_water = im_mndwi[im_labels[:,:,2]] labels_other = np.logical_and(np.logical_and(~im_labels[:,:,0],~im_labels[:,:,1]),~im_labels[:,:,2]) int_other = im_mndwi[labels_other] # create figure if plt.get_fignums(): # if it exists, open the figure fig = plt.gcf() ax1 = fig.axes[0] ax2 = fig.axes[1] ax3 = fig.axes[2] ax4 = fig.axes[3] else: # else create a new figure fig = plt.figure() fig.set_size_inches([18, 9]) mng = plt.get_current_fig_manager() mng.window.showMaximized() gs = gridspec.GridSpec(2, 3, height_ratios=[4,1]) gs.update(bottom=0.05, top=0.95, left=0.03, right=0.97) ax1 = fig.add_subplot(gs[0,0]) ax2 = fig.add_subplot(gs[0,1], sharex=ax1, sharey=ax1) ax3 = fig.add_subplot(gs[0,2], sharex=ax1, sharey=ax1) ax4 = fig.add_subplot(gs[1,:]) ########################################################################## # to do: rotate image if too wide ########################################################################## # change the color of nans to either black (0.0) or white (1.0) or somewhere in between nan_color = 1.0 im_RGB = np.where(np.isnan(im_RGB), nan_color, im_RGB) im_class = np.where(np.isnan(im_class), 1.0, im_class) # plot image 1 (RGB) ax1.imshow(im_RGB) ax1.axis('off') ax1.set_title('%s - %s'%(sitename, satname), fontsize=12) # plot image 2 (classification) ax2.imshow(im_class) ax2.axis('off') orange_patch = mpatches.Patch(color=colours[0,:], label='sand') white_patch = mpatches.Patch(color=colours[1,:], label='whitewater') blue_patch = mpatches.Patch(color=colours[2,:], label='water') black_line = mlines.Line2D([],[],color='k',linestyle='-', label='shoreline') ax2.legend(handles=[orange_patch,white_patch,blue_patch, black_line], bbox_to_anchor=(1.1, 0.5), fontsize=10) ax2.set_title(date_str, fontsize=12) # plot image 3 (MNDWI) ax3.imshow(im_mndwi, cmap='bwr') ax3.axis('off') ax3.set_title('MNDWI', fontsize=12) # plot histogram of MNDWI values binwidth = 0.01 ax4.set_facecolor('0.75') ax4.yaxis.grid(color='w', linestyle='--', linewidth=0.5) ax4.set(ylabel='PDF',yticklabels=[], xlim=[-1,1]) if len(int_sand) > 0 and sum(~np.isnan(int_sand)) > 0: bins = np.arange(np.nanmin(int_sand), np.nanmax(int_sand) + binwidth, binwidth) ax4.hist(int_sand, bins=bins, density=True, color=colours[0,:], label='sand') if len(int_ww) > 0 and sum(~np.isnan(int_ww)) > 0: bins = np.arange(np.nanmin(int_ww), np.nanmax(int_ww) + binwidth, binwidth) ax4.hist(int_ww, bins=bins, density=True, color=colours[1,:], label='whitewater', alpha=0.75) if len(int_water) > 0 and sum(~np.isnan(int_water)) > 0: bins = np.arange(np.nanmin(int_water), np.nanmax(int_water) + binwidth, binwidth) ax4.hist(int_water, bins=bins, density=True, color=colours[2,:], label='water', alpha=0.75) if len(int_other) > 0 and sum(~np.isnan(int_other)) > 0: bins = np.arange(np.nanmin(int_other), np.nanmax(int_other) + binwidth, binwidth) ax4.hist(int_other, bins=bins, density=True, color='C4', label='other', alpha=0.5) # automatically map the shoreline based on the classifier if enough sand pixels try: if sum(sum(im_labels[:,:,0])) > 10: # use classification to refine threshold and extract the sand/water interface contours_mndwi, t_mndwi = find_wl_contours2(im_ms, im_labels, cloud_mask, buffer_size_pixels, im_ref_buffer) else: # find water contours on MNDWI grayscale image contours_mndwi, t_mndwi = find_wl_contours1(im_mndwi, cloud_mask, im_ref_buffer) except: print('Could not map shoreline so image was skipped') # clear axes and return skip_image=True, so that image is skipped above for ax in fig.axes: ax.clear() return True,[],[] # process the water contours into a shoreline shoreline = process_shoreline(contours_mndwi, cloud_mask, georef, image_epsg, settings) # convert shoreline to pixels if len(shoreline) > 0: sl_pix = SDS_tools.convert_world2pix(SDS_tools.convert_epsg(shoreline, settings['output_epsg'], image_epsg)[:,[0,1]], georef) else: sl_pix = np.array([[np.nan, np.nan],[np.nan, np.nan]]) # plot the shoreline on the images sl_plot1 = ax1.plot(sl_pix[:,0], sl_pix[:,1], 'k.', markersize=3) sl_plot2 = ax2.plot(sl_pix[:,0], sl_pix[:,1], 'k.', markersize=3) sl_plot3 = ax3.plot(sl_pix[:,0], sl_pix[:,1], 'k.', markersize=3) t_line = ax4.axvline(x=t_mndwi,ls='--', c='k', lw=1.5, label='threshold') ax4.legend(loc=1) plt.draw() # to update the plot # adjust the threshold manually by letting the user change the threshold ax4.set_title('Click on the plot below to change the location of the threhsold and adjust the shoreline detection. When finished, press <Enter>') while True: # let the user click on the threshold plot pt = ginput(n=1, show_clicks=True, timeout=-1) # if a point was clicked if len(pt) > 0: # if user clicked somewhere wrong and value is not between -1 and 1 if np.abs(pt[0][0]) >= 1: continue # update the threshold value t_mndwi = pt[0][0] # update the plot t_line.set_xdata([t_mndwi,t_mndwi]) # map contours with new threshold contours = measure.find_contours(im_mndwi_buffer, t_mndwi) # remove contours that contain NaNs (due to cloud pixels in the contour) contours = process_contours(contours) # process the water contours into a shoreline shoreline = process_shoreline(contours, cloud_mask, georef, image_epsg, settings) # convert shoreline to pixels if len(shoreline) > 0: sl_pix = SDS_tools.convert_world2pix(SDS_tools.convert_epsg(shoreline, settings['output_epsg'], image_epsg)[:,[0,1]], georef) else: sl_pix = np.array([[np.nan, np.nan],[np.nan, np.nan]]) # update the plotted shorelines sl_plot1[0].set_data([sl_pix[:,0], sl_pix[:,1]]) sl_plot2[0].set_data([sl_pix[:,0], sl_pix[:,1]]) sl_plot3[0].set_data([sl_pix[:,0], sl_pix[:,1]]) fig.canvas.draw_idle() else: ax4.set_title('MNDWI pixel intensities and threshold') break # let user manually accept/reject the image skip_image = False # set a key event to accept/reject the detections (see https://stackoverflow.com/a/15033071) # this variable needs to be immuatable so we can access it after the keypress event key_event = {} def press(event): # store what key was pressed in the dictionary key_event['pressed'] = event.key # let the user press a key, right arrow to keep the image, left arrow to skip it # to break the loop the user can press 'escape' while True: btn_keep = plt.text(1.1, 0.9, 'keep ⇨', size=12, ha="right", va="top", transform=ax1.transAxes, bbox=dict(boxstyle="square", ec='k',fc='w')) btn_skip = plt.text(-0.1, 0.9, '⇦ skip', size=12, ha="left", va="top", transform=ax1.transAxes, bbox=dict(boxstyle="square", ec='k',fc='w')) btn_esc = plt.text(0.5, 0, '<esc> to quit', size=12, ha="center", va="top", transform=ax1.transAxes, bbox=dict(boxstyle="square", ec='k',fc='w')) plt.draw() fig.canvas.mpl_connect('key_press_event', press) plt.waitforbuttonpress() # after button is pressed, remove the buttons btn_skip.remove() btn_keep.remove() btn_esc.remove() # keep/skip image according to the pressed key, 'escape' to break the loop if key_event.get('pressed') == 'right': skip_image = False break elif key_event.get('pressed') == 'left': skip_image = True break elif key_event.get('pressed') == 'escape': plt.close() raise StopIteration('User cancelled checking shoreline detection') else: plt.waitforbuttonpress() # if save_figure is True, save a .jpg under /jpg_files/detection if settings['save_figure'] and not skip_image: fig.savefig(os.path.join(filepath, date + '_' + satname + '.jpg'), dpi=150) # don't close the figure window, but remove all axes and settings, ready for next plot for ax in fig.axes: ax.clear() return skip_image, shoreline, t_mndwi
[ "coastsat.SDS_tools.get_filepath", "skimage.filters.threshold_otsu", "numpy.array", "coastsat.SDS_preprocess.preprocess_single", "coastsat.SDS_tools.merge_output", "numpy.linalg.norm", "numpy.nanmin", "matplotlib.lines.Line2D", "numpy.arange", "skimage.morphology.binary_dilation", "os.path.exists", "matplotlib.pyplot.waitforbuttonpress", "coastsat.SDS_preprocess.rescale_image_intensity", "numpy.where", "numpy.delete", "coastsat.SDS_tools.convert_world2pix", "matplotlib.pyplot.close", "numpy.stack", "matplotlib.gridspec.GridSpec", "numpy.nanmax", "numpy.argmin", "numpy.isinf", "matplotlib.cm.get_cmap", "numpy.round", "numpy.abs", "numpy.ceil", "numpy.ones", "numpy.random.choice", "matplotlib.pyplot.gcf", "matplotlib.pyplot.ioff", "numpy.logical_xor", "coastsat.SDS_tools.get_filenames", "shapely.geometry.LineString", "numpy.isnan", "matplotlib.patches.Patch", "skimage.measure.find_contours", "matplotlib.pyplot.draw", "skimage.morphology.disk", "numpy.copy", "skimage.morphology.remove_small_objects", "coastsat.SDS_tools.convert_pix2world", "pickle.dump", "os.makedirs", "numpy.logical_and", "coastsat.SDS_tools.image_std", "datetime.datetime.strptime", "matplotlib.pyplot.get_fignums", "os.path.join", "numpy.logical_or", "os.getcwd", "coastsat.SDS_tools.nd_index", "numpy.append", "coastsat.SDS_tools.convert_epsg", "numpy.zeros", "matplotlib.pyplot.figure", "numpy.expand_dims", "matplotlib.pyplot.get_current_fig_manager", "numpy.seterr", "pylab.ginput" ]
[((874, 897), 'numpy.seterr', 'np.seterr', ([], {'all': '"""ignore"""'}), "(all='ignore')\n", (883, 897), True, 'import numpy as np\n'), ((3131, 3194), 'os.path.join', 'os.path.join', (['filepath_data', 'sitename', '"""jpg_files"""', '"""detection"""'], {}), "(filepath_data, sitename, 'jpg_files', 'detection')\n", (3143, 3194), False, 'import os\n'), ((3307, 3323), 'matplotlib.pyplot.close', 'plt.close', (['"""all"""'], {}), "('all')\n", (3316, 3323), True, 'import matplotlib.pyplot as plt\n'), ((11121, 11138), 'matplotlib.pyplot.get_fignums', 'plt.get_fignums', ([], {}), '()\n', (11136, 11138), True, 'import matplotlib.pyplot as plt\n'), ((11270, 11300), 'coastsat.SDS_tools.merge_output', 'SDS_tools.merge_output', (['output'], {}), '(output)\n', (11292, 11300), False, 'from coastsat import SDS_tools, SDS_preprocess\n'), ((11362, 11399), 'os.path.join', 'os.path.join', (['filepath_data', 'sitename'], {}), '(filepath_data, sitename)\n', (11374, 11399), False, 'import os\n'), ((12581, 12622), 'numpy.expand_dims', 'np.expand_dims', (['im_ms[im_bool, 0]'], {'axis': '(1)'}), '(im_ms[im_bool, 0], axis=1)\n', (12595, 12622), True, 'import numpy as np\n'), ((12800, 12862), 'coastsat.SDS_tools.nd_index', 'SDS_tools.nd_index', (['im_ms[:, :, 3]', 'im_ms[:, :, 1]', 'cloud_mask'], {}), '(im_ms[:, :, 3], im_ms[:, :, 1], cloud_mask)\n', (12818, 12862), False, 'from coastsat import SDS_tools, SDS_preprocess\n'), ((12972, 13034), 'coastsat.SDS_tools.nd_index', 'SDS_tools.nd_index', (['im_ms[:, :, 4]', 'im_ms[:, :, 1]', 'cloud_mask'], {}), '(im_ms[:, :, 4], im_ms[:, :, 1], cloud_mask)\n', (12990, 13034), False, 'from coastsat import SDS_tools, SDS_preprocess\n'), ((13143, 13205), 'coastsat.SDS_tools.nd_index', 'SDS_tools.nd_index', (['im_ms[:, :, 3]', 'im_ms[:, :, 2]', 'cloud_mask'], {}), '(im_ms[:, :, 3], im_ms[:, :, 2], cloud_mask)\n', (13161, 13205), False, 'from coastsat import SDS_tools, SDS_preprocess\n'), ((13319, 13381), 'coastsat.SDS_tools.nd_index', 'SDS_tools.nd_index', (['im_ms[:, :, 4]', 'im_ms[:, :, 3]', 'cloud_mask'], {}), '(im_ms[:, :, 4], im_ms[:, :, 3], cloud_mask)\n', (13337, 13381), False, 'from coastsat import SDS_tools, SDS_preprocess\n'), ((13488, 13550), 'coastsat.SDS_tools.nd_index', 'SDS_tools.nd_index', (['im_ms[:, :, 0]', 'im_ms[:, :, 2]', 'cloud_mask'], {}), '(im_ms[:, :, 0], im_ms[:, :, 2], cloud_mask)\n', (13506, 13550), False, 'from coastsat import SDS_tools, SDS_preprocess\n'), ((13936, 13967), 'coastsat.SDS_tools.image_std', 'SDS_tools.image_std', (['im_NIRG', '(1)'], {}), '(im_NIRG, 1)\n', (13955, 13967), False, 'from coastsat import SDS_tools, SDS_preprocess\n'), ((14065, 14097), 'coastsat.SDS_tools.image_std', 'SDS_tools.image_std', (['im_SWIRG', '(1)'], {}), '(im_SWIRG, 1)\n', (14084, 14097), False, 'from coastsat import SDS_tools, SDS_preprocess\n'), ((14195, 14226), 'coastsat.SDS_tools.image_std', 'SDS_tools.image_std', (['im_NIRR', '(1)'], {}), '(im_NIRR, 1)\n', (14214, 14226), False, 'from coastsat import SDS_tools, SDS_preprocess\n'), ((14324, 14358), 'coastsat.SDS_tools.image_std', 'SDS_tools.image_std', (['im_SWIRNIR', '(1)'], {}), '(im_SWIRNIR, 1)\n', (14343, 14358), False, 'from coastsat import SDS_tools, SDS_preprocess\n'), ((14456, 14485), 'coastsat.SDS_tools.image_std', 'SDS_tools.image_std', (['im_BR', '(1)'], {}), '(im_BR, 1)\n', (14475, 14485), False, 'from coastsat import SDS_tools, SDS_preprocess\n'), ((16849, 16934), 'skimage.morphology.remove_small_objects', 'morphology.remove_small_objects', (['im_sand'], {'min_size': 'min_beach_area', 'connectivity': '(2)'}), '(im_sand, min_size=min_beach_area,\n connectivity=2)\n', (16880, 16934), True, 'import skimage.morphology as morphology\n'), ((16946, 17032), 'skimage.morphology.remove_small_objects', 'morphology.remove_small_objects', (['im_water'], {'min_size': 'min_beach_area', 'connectivity': '(2)'}), '(im_water, min_size=min_beach_area,\n connectivity=2)\n', (16977, 17032), True, 'import skimage.morphology as morphology\n'), ((17046, 17094), 'numpy.stack', 'np.stack', (['(im_sand, im_swash, im_water)'], {'axis': '(-1)'}), '((im_sand, im_swash, im_water), axis=-1)\n', (17054, 17094), True, 'import numpy as np\n'), ((18461, 18488), 'skimage.filters.threshold_otsu', 'filters.threshold_otsu', (['vec'], {}), '(vec)\n', (18483, 18488), True, 'import skimage.filters as filters\n'), ((18580, 18596), 'numpy.copy', 'np.copy', (['im_ndwi'], {}), '(im_ndwi)\n', (18587, 18596), True, 'import numpy as np\n'), ((18656, 18701), 'skimage.measure.find_contours', 'measure.find_contours', (['im_ndwi_buffer', 't_otsu'], {}), '(im_ndwi_buffer, t_otsu)\n', (18677, 18701), True, 'import skimage.measure as measure\n'), ((20102, 20164), 'coastsat.SDS_tools.nd_index', 'SDS_tools.nd_index', (['im_ms[:, :, 4]', 'im_ms[:, :, 1]', 'cloud_mask'], {}), '(im_ms[:, :, 4], im_ms[:, :, 1], cloud_mask)\n', (20120, 20164), False, 'from coastsat import SDS_tools, SDS_preprocess\n'), ((20242, 20304), 'coastsat.SDS_tools.nd_index', 'SDS_tools.nd_index', (['im_ms[:, :, 3]', 'im_ms[:, :, 1]', 'cloud_mask'], {}), '(im_ms[:, :, 3], im_ms[:, :, 1], cloud_mask)\n', (20260, 20304), False, 'from coastsat import SDS_tools, SDS_preprocess\n'), ((20343, 20377), 'numpy.stack', 'np.stack', (['(im_wi, im_mwi)'], {'axis': '(-1)'}), '((im_wi, im_mwi), axis=-1)\n', (20351, 20377), True, 'import numpy as np\n'), ((20619, 20647), 'skimage.morphology.disk', 'morphology.disk', (['buffer_size'], {}), '(buffer_size)\n', (20634, 20647), True, 'import skimage.morphology as morphology\n'), ((20664, 20714), 'skimage.morphology.binary_dilation', 'morphology.binary_dilation', (['im_labels[:, :, 0]', 'se'], {}), '(im_labels[:, :, 0], se)\n', (20690, 20714), True, 'import skimage.morphology as morphology\n'), ((21433, 21471), 'numpy.append', 'np.append', (['int_water', 'int_sand'], {'axis': '(0)'}), '(int_water, int_sand, axis=0)\n', (21442, 21471), True, 'import numpy as np\n'), ((21483, 21520), 'skimage.filters.threshold_otsu', 'filters.threshold_otsu', (['int_all[:, 0]'], {}), '(int_all[:, 0])\n', (21505, 21520), True, 'import skimage.filters as filters\n'), ((21531, 21568), 'skimage.filters.threshold_otsu', 'filters.threshold_otsu', (['int_all[:, 1]'], {}), '(int_all[:, 1])\n', (21553, 21568), True, 'import skimage.filters as filters\n'), ((21625, 21639), 'numpy.copy', 'np.copy', (['im_wi'], {}), '(im_wi)\n', (21632, 21639), True, 'import numpy as np\n'), ((21702, 21717), 'numpy.copy', 'np.copy', (['im_mwi'], {}), '(im_mwi)\n', (21709, 21717), True, 'import numpy as np\n'), ((21779, 21820), 'skimage.measure.find_contours', 'measure.find_contours', (['im_wi_buffer', 't_wi'], {}), '(im_wi_buffer, t_wi)\n', (21800, 21820), True, 'import skimage.measure as measure\n'), ((21840, 21883), 'skimage.measure.find_contours', 'measure.find_contours', (['im_mwi_buffer', 't_mwi'], {}), '(im_mwi_buffer, t_mwi)\n', (21861, 21883), True, 'import skimage.measure as measure\n'), ((27022, 27067), 'coastsat.SDS_tools.convert_pix2world', 'SDS_tools.convert_pix2world', (['contours', 'georef'], {}), '(contours, georef)\n', (27049, 27067), False, 'from coastsat import SDS_tools, SDS_preprocess\n'), ((27156, 27231), 'coastsat.SDS_tools.convert_epsg', 'SDS_tools.convert_epsg', (['contours_world', 'image_epsg', "settings['output_epsg']"], {}), "(contours_world, image_epsg, settings['output_epsg'])\n", (27178, 27231), False, 'from coastsat import SDS_tools, SDS_preprocess\n'), ((27739, 27751), 'numpy.array', 'np.array', (['[]'], {}), '([])\n', (27747, 27751), True, 'import numpy as np\n'), ((27767, 27779), 'numpy.array', 'np.array', (['[]'], {}), '([])\n', (27775, 27779), True, 'import numpy as np\n'), ((30959, 31022), 'os.path.join', 'os.path.join', (['filepath_data', 'sitename', '"""jpg_files"""', '"""detection"""'], {}), "(filepath_data, sitename, 'jpg_files', 'detection')\n", (30971, 31022), False, 'import os\n'), ((31037, 31122), 'coastsat.SDS_preprocess.rescale_image_intensity', 'SDS_preprocess.rescale_image_intensity', (['im_ms[:, :, [2, 1, 0]]', 'cloud_mask', '(99.9)'], {}), '(im_ms[:, :, [2, 1, 0]], cloud_mask, 99.9\n )\n', (31075, 31122), False, 'from coastsat import SDS_tools, SDS_preprocess\n'), ((31161, 31176), 'numpy.copy', 'np.copy', (['im_RGB'], {}), '(im_RGB)\n', (31168, 31176), True, 'import numpy as np\n'), ((31188, 31209), 'matplotlib.cm.get_cmap', 'cm.get_cmap', (['"""tab20c"""'], {}), "('tab20c')\n", (31199, 31209), True, 'import matplotlib.cm as cm\n'), ((31267, 31283), 'numpy.zeros', 'np.zeros', (['(3, 4)'], {}), '((3, 4))\n', (31275, 31283), True, 'import numpy as np\n'), ((31337, 31367), 'numpy.array', 'np.array', (['[204 / 255, 1, 1, 1]'], {}), '([204 / 255, 1, 1, 1])\n', (31345, 31367), True, 'import numpy as np\n'), ((31382, 31411), 'numpy.array', 'np.array', (['[0, 91 / 255, 1, 1]'], {}), '([0, 91 / 255, 1, 1])\n', (31390, 31411), True, 'import numpy as np\n'), ((31655, 31717), 'coastsat.SDS_tools.nd_index', 'SDS_tools.nd_index', (['im_ms[:, :, 4]', 'im_ms[:, :, 1]', 'cloud_mask'], {}), '(im_ms[:, :, 4], im_ms[:, :, 1], cloud_mask)\n', (31673, 31717), False, 'from coastsat import SDS_tools, SDS_preprocess\n'), ((32331, 32348), 'matplotlib.pyplot.get_fignums', 'plt.get_fignums', ([], {}), '()\n', (32346, 32348), True, 'import matplotlib.pyplot as plt\n'), ((34126, 34175), 'matplotlib.patches.Patch', 'mpatches.Patch', ([], {'color': 'colours[0, :]', 'label': '"""sand"""'}), "(color=colours[0, :], label='sand')\n", (34140, 34175), True, 'import matplotlib.patches as mpatches\n'), ((34193, 34248), 'matplotlib.patches.Patch', 'mpatches.Patch', ([], {'color': 'colours[1, :]', 'label': '"""whitewater"""'}), "(color=colours[1, :], label='whitewater')\n", (34207, 34248), True, 'import matplotlib.patches as mpatches\n'), ((34265, 34315), 'matplotlib.patches.Patch', 'mpatches.Patch', ([], {'color': 'colours[2, :]', 'label': '"""water"""'}), "(color=colours[2, :], label='water')\n", (34279, 34315), True, 'import matplotlib.patches as mpatches\n'), ((34332, 34398), 'matplotlib.lines.Line2D', 'mlines.Line2D', (['[]', '[]'], {'color': '"""k"""', 'linestyle': '"""-"""', 'label': '"""shoreline"""'}), "([], [], color='k', linestyle='-', label='shoreline')\n", (34345, 34398), True, 'import matplotlib.lines as mlines\n'), ((39381, 39444), 'os.path.join', 'os.path.join', (['filepath_data', 'sitename', '"""jpg_files"""', '"""detection"""'], {}), "(filepath_data, sitename, 'jpg_files', 'detection')\n", (39393, 39444), False, 'import os\n'), ((39566, 39651), 'coastsat.SDS_preprocess.rescale_image_intensity', 'SDS_preprocess.rescale_image_intensity', (['im_ms[:, :, [2, 1, 0]]', 'cloud_mask', '(99.9)'], {}), '(im_ms[:, :, [2, 1, 0]], cloud_mask, 99.9\n )\n', (39604, 39651), False, 'from coastsat import SDS_tools, SDS_preprocess\n'), ((39690, 39705), 'numpy.copy', 'np.copy', (['im_RGB'], {}), '(im_RGB)\n', (39697, 39705), True, 'import numpy as np\n'), ((39717, 39738), 'matplotlib.cm.get_cmap', 'cm.get_cmap', (['"""tab20c"""'], {}), "('tab20c')\n", (39728, 39738), True, 'import matplotlib.cm as cm\n'), ((39796, 39812), 'numpy.zeros', 'np.zeros', (['(3, 4)'], {}), '((3, 4))\n', (39804, 39812), True, 'import numpy as np\n'), ((39866, 39896), 'numpy.array', 'np.array', (['[204 / 255, 1, 1, 1]'], {}), '([204 / 255, 1, 1, 1])\n', (39874, 39896), True, 'import numpy as np\n'), ((39911, 39940), 'numpy.array', 'np.array', (['[0, 91 / 255, 1, 1]'], {}), '([0, 91 / 255, 1, 1])\n', (39919, 39940), True, 'import numpy as np\n'), ((40186, 40248), 'coastsat.SDS_tools.nd_index', 'SDS_tools.nd_index', (['im_ms[:, :, 4]', 'im_ms[:, :, 1]', 'cloud_mask'], {}), '(im_ms[:, :, 4], im_ms[:, :, 1], cloud_mask)\n', (40204, 40248), False, 'from coastsat import SDS_tools, SDS_preprocess\n'), ((40312, 40329), 'numpy.copy', 'np.copy', (['im_mndwi'], {}), '(im_mndwi)\n', (40319, 40329), True, 'import numpy as np\n'), ((40744, 40761), 'matplotlib.pyplot.get_fignums', 'plt.get_fignums', ([], {}), '()\n', (40759, 40761), True, 'import matplotlib.pyplot as plt\n'), ((42135, 42184), 'matplotlib.patches.Patch', 'mpatches.Patch', ([], {'color': 'colours[0, :]', 'label': '"""sand"""'}), "(color=colours[0, :], label='sand')\n", (42149, 42184), True, 'import matplotlib.patches as mpatches\n'), ((42202, 42257), 'matplotlib.patches.Patch', 'mpatches.Patch', ([], {'color': 'colours[1, :]', 'label': '"""whitewater"""'}), "(color=colours[1, :], label='whitewater')\n", (42216, 42257), True, 'import matplotlib.patches as mpatches\n'), ((42274, 42324), 'matplotlib.patches.Patch', 'mpatches.Patch', ([], {'color': 'colours[2, :]', 'label': '"""water"""'}), "(color=colours[2, :], label='water')\n", (42288, 42324), True, 'import matplotlib.patches as mpatches\n'), ((42341, 42407), 'matplotlib.lines.Line2D', 'mlines.Line2D', (['[]', '[]'], {'color': '"""k"""', 'linestyle': '"""-"""', 'label': '"""shoreline"""'}), "([], [], color='k', linestyle='-', label='shoreline')\n", (42354, 42407), True, 'import matplotlib.lines as mlines\n'), ((45586, 45596), 'matplotlib.pyplot.draw', 'plt.draw', ([], {}), '()\n', (45594, 45596), True, 'import matplotlib.pyplot as plt\n'), ((2943, 2954), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (2952, 2954), False, 'import os\n'), ((3206, 3234), 'os.path.exists', 'os.path.exists', (['filepath_jpg'], {}), '(filepath_jpg)\n', (3220, 3234), False, 'import os\n'), ((3248, 3273), 'os.makedirs', 'os.makedirs', (['filepath_jpg'], {}), '(filepath_jpg)\n', (3259, 3273), False, 'import os\n'), ((3470, 3521), 'coastsat.SDS_tools.get_filepath', 'SDS_tools.get_filepath', (["settings['inputs']", 'satname'], {}), "(settings['inputs'], satname)\n", (3492, 3521), False, 'from coastsat import SDS_tools, SDS_preprocess\n'), ((5135, 5180), 'numpy.ceil', 'np.ceil', (["(settings['buffer_size'] / pixel_size)"], {}), "(settings['buffer_size'] / pixel_size)\n", (5142, 5180), True, 'import numpy as np\n'), ((5211, 5264), 'numpy.ceil', 'np.ceil', (["(settings['min_beach_area'] / pixel_size ** 2)"], {}), "(settings['min_beach_area'] / pixel_size ** 2)\n", (5218, 5264), True, 'import numpy as np\n'), ((11148, 11159), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (11157, 11159), True, 'import matplotlib.pyplot as plt\n'), ((11484, 11506), 'pickle.dump', 'pickle.dump', (['output', 'f'], {}), '(output, f)\n', (11495, 11506), False, 'import pickle\n'), ((12677, 12718), 'numpy.expand_dims', 'np.expand_dims', (['im_ms[im_bool, k]'], {'axis': '(1)'}), '(im_ms[im_bool, k], axis=1)\n', (12691, 12718), True, 'import numpy as np\n'), ((12736, 12773), 'numpy.append', 'np.append', (['features', 'feature'], {'axis': '(-1)'}), '(features, feature, axis=-1)\n', (12745, 12773), True, 'import numpy as np\n'), ((12894, 12934), 'numpy.expand_dims', 'np.expand_dims', (['im_NIRG[im_bool]'], {'axis': '(1)'}), '(im_NIRG[im_bool], axis=1)\n', (12908, 12934), True, 'import numpy as np\n'), ((13066, 13107), 'numpy.expand_dims', 'np.expand_dims', (['im_SWIRG[im_bool]'], {'axis': '(1)'}), '(im_SWIRG[im_bool], axis=1)\n', (13080, 13107), True, 'import numpy as np\n'), ((13237, 13277), 'numpy.expand_dims', 'np.expand_dims', (['im_NIRR[im_bool]'], {'axis': '(1)'}), '(im_NIRR[im_bool], axis=1)\n', (13251, 13277), True, 'import numpy as np\n'), ((13413, 13456), 'numpy.expand_dims', 'np.expand_dims', (['im_SWIRNIR[im_bool]'], {'axis': '(1)'}), '(im_SWIRNIR[im_bool], axis=1)\n', (13427, 13456), True, 'import numpy as np\n'), ((13582, 13620), 'numpy.expand_dims', 'np.expand_dims', (['im_BR[im_bool]'], {'axis': '(1)'}), '(im_BR[im_bool], axis=1)\n', (13596, 13620), True, 'import numpy as np\n'), ((13739, 13777), 'coastsat.SDS_tools.image_std', 'SDS_tools.image_std', (['im_ms[:, :, k]', '(1)'], {}), '(im_ms[:, :, k], 1)\n', (13758, 13777), False, 'from coastsat import SDS_tools, SDS_preprocess\n'), ((14003, 14042), 'numpy.expand_dims', 'np.expand_dims', (['im_std[im_bool]'], {'axis': '(1)'}), '(im_std[im_bool], axis=1)\n', (14017, 14042), True, 'import numpy as np\n'), ((14133, 14172), 'numpy.expand_dims', 'np.expand_dims', (['im_std[im_bool]'], {'axis': '(1)'}), '(im_std[im_bool], axis=1)\n', (14147, 14172), True, 'import numpy as np\n'), ((14262, 14301), 'numpy.expand_dims', 'np.expand_dims', (['im_std[im_bool]'], {'axis': '(1)'}), '(im_std[im_bool], axis=1)\n', (14276, 14301), True, 'import numpy as np\n'), ((14394, 14433), 'numpy.expand_dims', 'np.expand_dims', (['im_std[im_bool]'], {'axis': '(1)'}), '(im_std[im_bool], axis=1)\n', (14408, 14433), True, 'import numpy as np\n'), ((14521, 14560), 'numpy.expand_dims', 'np.expand_dims', (['im_std[im_bool]'], {'axis': '(1)'}), '(im_std[im_bool], axis=1)\n', (14535, 14560), True, 'import numpy as np\n'), ((15897, 15919), 'numpy.isnan', 'np.isnan', (['vec_features'], {}), '(vec_features)\n', (15905, 15919), True, 'import numpy as np\n'), ((16113, 16135), 'numpy.isnan', 'np.isnan', (['vec_features'], {}), '(vec_features)\n', (16121, 16135), True, 'import numpy as np\n'), ((16166, 16188), 'numpy.isinf', 'np.isinf', (['vec_features'], {}), '(vec_features)\n', (16174, 16188), True, 'import numpy as np\n'), ((16241, 16272), 'numpy.logical_or', 'np.logical_or', (['vec_nan', 'vec_inf'], {}), '(vec_nan, vec_inf)\n', (16254, 16272), True, 'import numpy as np\n'), ((16429, 16479), 'numpy.ones', 'np.ones', (['(cloud_mask.shape[0] * cloud_mask.shape[1])'], {}), '(cloud_mask.shape[0] * cloud_mask.shape[1])\n', (16436, 16479), True, 'import numpy as np\n'), ((23754, 23802), 'coastsat.SDS_tools.convert_world2pix', 'SDS_tools.convert_world2pix', (['ref_sl_conv', 'georef'], {}), '(ref_sl_conv, georef)\n', (23781, 23802), False, 'from coastsat import SDS_tools, SDS_preprocess\n'), ((23979, 24067), 'numpy.logical_and', 'np.logical_and', (['(ref_sl_pix_rounded[:, 0] > 0)', '(ref_sl_pix_rounded[:, 0] < im_shape[1])'], {}), '(ref_sl_pix_rounded[:, 0] > 0, ref_sl_pix_rounded[:, 0] <\n im_shape[1])\n', (23993, 24067), True, 'import numpy as np\n'), ((24080, 24168), 'numpy.logical_and', 'np.logical_and', (['(ref_sl_pix_rounded[:, 1] > 0)', '(ref_sl_pix_rounded[:, 1] < im_shape[0])'], {}), '(ref_sl_pix_rounded[:, 1] > 0, ref_sl_pix_rounded[:, 1] <\n im_shape[0])\n', (24094, 24168), True, 'import numpy as np\n'), ((24184, 24216), 'numpy.logical_and', 'np.logical_and', (['idx_row', 'idx_col'], {}), '(idx_row, idx_col)\n', (24198, 24216), True, 'import numpy as np\n'), ((24396, 24414), 'numpy.zeros', 'np.zeros', (['im_shape'], {}), '(im_shape)\n', (24404, 24414), True, 'import numpy as np\n'), ((24698, 24744), 'numpy.ceil', 'np.ceil', (["(settings['max_dist_ref'] / pixel_size)"], {}), "(settings['max_dist_ref'] / pixel_size)\n", (24705, 24744), True, 'import numpy as np\n'), ((24756, 24792), 'skimage.morphology.disk', 'morphology.disk', (['max_dist_ref_pixels'], {}), '(max_dist_ref_pixels)\n', (24771, 24792), True, 'import skimage.morphology as morphology\n'), ((24813, 24854), 'skimage.morphology.binary_dilation', 'morphology.binary_dilation', (['im_binary', 'se'], {}), '(im_binary, se)\n', (24839, 24854), True, 'import skimage.morphology as morphology\n'), ((27553, 27571), 'shapely.geometry.LineString', 'LineString', (['coords'], {}), '(coords)\n', (27563, 27571), False, 'from shapely.geometry import LineString\n'), ((27839, 27882), 'numpy.append', 'np.append', (['x_points', 'contours_long[k][:, 0]'], {}), '(x_points, contours_long[k][:, 0])\n', (27848, 27882), True, 'import numpy as np\n'), ((27900, 27943), 'numpy.append', 'np.append', (['y_points', 'contours_long[k][:, 1]'], {}), '(y_points, contours_long[k][:, 1])\n', (27909, 27943), True, 'import numpy as np\n'), ((27976, 28006), 'numpy.array', 'np.array', (['[x_points, y_points]'], {}), '([x_points, y_points])\n', (27984, 28006), True, 'import numpy as np\n'), ((28215, 28235), 'numpy.where', 'np.where', (['cloud_mask'], {}), '(cloud_mask)\n', (28223, 28235), True, 'import numpy as np\n'), ((31234, 31253), 'numpy.arange', 'np.arange', (['(0)', '(13)', '(1)'], {}), '(0, 13, 1)\n', (31243, 31253), True, 'import numpy as np\n'), ((32411, 32420), 'matplotlib.pyplot.gcf', 'plt.gcf', ([], {}), '()\n', (32418, 32420), True, 'import matplotlib.pyplot as plt\n'), ((32570, 32582), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (32580, 32582), True, 'import matplotlib.pyplot as plt\n'), ((32634, 32663), 'matplotlib.pyplot.get_current_fig_manager', 'plt.get_current_fig_manager', ([], {}), '()\n', (32661, 32663), True, 'import matplotlib.pyplot as plt\n'), ((33678, 33694), 'numpy.isnan', 'np.isnan', (['im_RGB'], {}), '(im_RGB)\n', (33686, 33694), True, 'import numpy as np\n'), ((33739, 33757), 'numpy.isnan', 'np.isnan', (['im_class'], {}), '(im_class)\n', (33747, 33757), True, 'import numpy as np\n'), ((39763, 39782), 'numpy.arange', 'np.arange', (['(0)', '(13)', '(1)'], {}), '(0, 13, 1)\n', (39772, 39782), True, 'import numpy as np\n'), ((40602, 40658), 'numpy.logical_and', 'np.logical_and', (['(~im_labels[:, :, 0])', '(~im_labels[:, :, 1])'], {}), '(~im_labels[:, :, 0], ~im_labels[:, :, 1])\n', (40616, 40658), True, 'import numpy as np\n'), ((40826, 40835), 'matplotlib.pyplot.gcf', 'plt.gcf', ([], {}), '()\n', (40833, 40835), True, 'import matplotlib.pyplot as plt\n'), ((41021, 41033), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (41031, 41033), True, 'import matplotlib.pyplot as plt\n'), ((41085, 41114), 'matplotlib.pyplot.get_current_fig_manager', 'plt.get_current_fig_manager', ([], {}), '()\n', (41112, 41114), True, 'import matplotlib.pyplot as plt\n'), ((41163, 41208), 'matplotlib.gridspec.GridSpec', 'gridspec.GridSpec', (['(2)', '(3)'], {'height_ratios': '[4, 1]'}), '(2, 3, height_ratios=[4, 1])\n', (41180, 41208), False, 'from matplotlib import gridspec\n'), ((41807, 41823), 'numpy.isnan', 'np.isnan', (['im_RGB'], {}), '(im_RGB)\n', (41815, 41823), True, 'import numpy as np\n'), ((41868, 41886), 'numpy.isnan', 'np.isnan', (['im_class'], {}), '(im_class)\n', (41876, 41886), True, 'import numpy as np\n'), ((45187, 45233), 'numpy.array', 'np.array', (['[[np.nan, np.nan], [np.nan, np.nan]]'], {}), '([[np.nan, np.nan], [np.nan, np.nan]])\n', (45195, 45233), True, 'import numpy as np\n'), ((45927, 45968), 'pylab.ginput', 'ginput', ([], {'n': '(1)', 'show_clicks': '(True)', 'timeout': '(-1)'}), '(n=1, show_clicks=True, timeout=-1)\n', (45933, 45968), False, 'from pylab import ginput\n'), ((48693, 48703), 'matplotlib.pyplot.draw', 'plt.draw', ([], {}), '()\n', (48701, 48703), True, 'import matplotlib.pyplot as plt\n'), ((48769, 48793), 'matplotlib.pyplot.waitforbuttonpress', 'plt.waitforbuttonpress', ([], {}), '()\n', (48791, 48793), True, 'import matplotlib.pyplot as plt\n'), ((5474, 5530), 'coastsat.SDS_tools.get_filenames', 'SDS_tools.get_filenames', (['filenames[i]', 'filepath', 'satname'], {}), '(filenames[i], filepath, satname)\n', (5497, 5530), False, 'from coastsat import SDS_tools, SDS_preprocess\n'), ((5671, 5746), 'coastsat.SDS_preprocess.preprocess_single', 'SDS_preprocess.preprocess_single', (['fn', 'satname', "settings['cloud_mask_issue']"], {}), "(fn, satname, settings['cloud_mask_issue'])\n", (5703, 5746), False, 'from coastsat import SDS_tools, SDS_preprocess\n'), ((6390, 6427), 'numpy.logical_xor', 'np.logical_xor', (['cloud_mask', 'im_nodata'], {}), '(cloud_mask, im_nodata)\n', (6404, 6427), True, 'import numpy as np\n'), ((11414, 11462), 'os.path.join', 'os.path.join', (['filepath', "(sitename + '_output.pkl')"], {}), "(filepath, sitename + '_output.pkl')\n", (11426, 11462), False, 'import os\n'), ((13815, 13854), 'numpy.expand_dims', 'np.expand_dims', (['im_std[im_bool]'], {'axis': '(1)'}), '(im_std[im_bool], axis=1)\n', (13829, 13854), True, 'import numpy as np\n'), ((18433, 18446), 'numpy.isnan', 'np.isnan', (['vec'], {}), '(vec)\n', (18441, 18446), True, 'import numpy as np\n'), ((20850, 20887), 'numpy.logical_and', 'np.logical_and', (['vec_buffer', 'vec_water'], {}), '(vec_buffer, vec_water)\n', (20864, 20887), True, 'import numpy as np\n'), ((20913, 20949), 'numpy.logical_and', 'np.logical_and', (['vec_buffer', 'vec_sand'], {}), '(vec_buffer, vec_sand)\n', (20927, 20949), True, 'import numpy as np\n'), ((21093, 21143), 'numpy.argmin', 'np.argmin', (['[int_sand.shape[0], int_water.shape[0]]'], {}), '([int_sand.shape[0], int_water.shape[0]])\n', (21102, 21143), True, 'import numpy as np\n'), ((23447, 23464), 'numpy.ones', 'np.ones', (['im_shape'], {}), '(im_shape)\n', (23454, 23464), True, 'import numpy as np\n'), ((23659, 23726), 'coastsat.SDS_tools.convert_epsg', 'SDS_tools.convert_epsg', (['ref_sl', "settings['output_epsg']", 'image_epsg'], {}), "(ref_sl, settings['output_epsg'], image_epsg)\n", (23681, 23726), False, 'from coastsat import SDS_tools, SDS_preprocess\n'), ((25526, 25547), 'numpy.isnan', 'np.isnan', (['contours[k]'], {}), '(contours[k])\n', (25534, 25547), True, 'import numpy as np\n'), ((25637, 25678), 'numpy.delete', 'np.delete', (['contours[k]', 'index_nan'], {'axis': '(0)'}), '(contours[k], index_nan, axis=0)\n', (25646, 25678), True, 'import numpy as np\n'), ((32277, 32323), 'numpy.array', 'np.array', (['[[np.nan, np.nan], [np.nan, np.nan]]'], {}), '([[np.nan, np.nan], [np.nan, np.nan]])\n', (32285, 32323), True, 'import numpy as np\n'), ((32940, 32963), 'matplotlib.gridspec.GridSpec', 'gridspec.GridSpec', (['(3)', '(1)'], {}), '(3, 1)\n', (32957, 32963), False, 'from matplotlib import gridspec\n'), ((33274, 33297), 'matplotlib.gridspec.GridSpec', 'gridspec.GridSpec', (['(1)', '(3)'], {}), '(1, 3)\n', (33291, 33297), False, 'from matplotlib import gridspec\n'), ((36320, 36330), 'matplotlib.pyplot.draw', 'plt.draw', ([], {}), '()\n', (36328, 36330), True, 'import matplotlib.pyplot as plt\n'), ((36404, 36428), 'matplotlib.pyplot.waitforbuttonpress', 'plt.waitforbuttonpress', ([], {}), '()\n', (36426, 36428), True, 'import matplotlib.pyplot as plt\n'), ((37248, 37301), 'os.path.join', 'os.path.join', (['filepath', "(date + '_' + satname + '.jpg')"], {}), "(filepath, date + '_' + satname + '.jpg')\n", (37260, 37301), False, 'import os\n'), ((39478, 39522), 'datetime.datetime.strptime', 'datetime.strptime', (['date', '"""%Y-%m-%d-%H-%M-%S"""'], {}), "(date, '%Y-%m-%d-%H-%M-%S')\n", (39495, 39522), False, 'from datetime import datetime\n'), ((42991, 43010), 'numpy.nanmin', 'np.nanmin', (['int_sand'], {}), '(int_sand)\n', (43000, 43010), True, 'import numpy as np\n'), ((43220, 43237), 'numpy.nanmin', 'np.nanmin', (['int_ww'], {}), '(int_ww)\n', (43229, 43237), True, 'import numpy as np\n'), ((43468, 43488), 'numpy.nanmin', 'np.nanmin', (['int_water'], {}), '(int_water)\n', (43477, 43488), True, 'import numpy as np\n'), ((43720, 43740), 'numpy.nanmin', 'np.nanmin', (['int_other'], {}), '(int_other)\n', (43729, 43740), True, 'import numpy as np\n'), ((46373, 46420), 'skimage.measure.find_contours', 'measure.find_contours', (['im_mndwi_buffer', 't_mndwi'], {}), '(im_mndwi_buffer, t_mndwi)\n', (46394, 46420), True, 'import skimage.measure as measure\n'), ((49549, 49602), 'os.path.join', 'os.path.join', (['filepath', "(date + '_' + satname + '.jpg')"], {}), "(filepath, date + '_' + satname + '.jpg')\n", (49561, 49602), False, 'import os\n'), ((15840, 15865), 'numpy.ones', 'np.ones', (['cloud_mask.shape'], {}), '(cloud_mask.shape)\n', (15847, 15865), True, 'import numpy as np\n'), ((23832, 23852), 'numpy.round', 'np.round', (['ref_sl_pix'], {}), '(ref_sl_pix)\n', (23840, 23852), True, 'import numpy as np\n'), ((28460, 28506), 'coastsat.SDS_tools.convert_pix2world', 'SDS_tools.convert_pix2world', (['idx_cloud', 'georef'], {}), '(idx_cloud, georef)\n', (28487, 28506), False, 'from coastsat import SDS_tools, SDS_preprocess\n'), ((31928, 31998), 'coastsat.SDS_tools.convert_epsg', 'SDS_tools.convert_epsg', (['shoreline', "settings['output_epsg']", 'image_epsg'], {}), "(shoreline, settings['output_epsg'], image_epsg)\n", (31950, 31998), False, 'from coastsat import SDS_tools, SDS_preprocess\n'), ((43012, 43031), 'numpy.nanmax', 'np.nanmax', (['int_sand'], {}), '(int_sand)\n', (43021, 43031), True, 'import numpy as np\n'), ((43239, 43256), 'numpy.nanmax', 'np.nanmax', (['int_ww'], {}), '(int_ww)\n', (43248, 43256), True, 'import numpy as np\n'), ((43490, 43510), 'numpy.nanmax', 'np.nanmax', (['int_water'], {}), '(int_water)\n', (43499, 43510), True, 'import numpy as np\n'), ((43742, 43762), 'numpy.nanmax', 'np.nanmax', (['int_other'], {}), '(int_other)\n', (43751, 43762), True, 'import numpy as np\n'), ((44943, 45013), 'coastsat.SDS_tools.convert_epsg', 'SDS_tools.convert_epsg', (['shoreline', "settings['output_epsg']", 'image_epsg'], {}), "(shoreline, settings['output_epsg'], image_epsg)\n", (44965, 45013), False, 'from coastsat import SDS_tools, SDS_preprocess\n'), ((46122, 46138), 'numpy.abs', 'np.abs', (['pt[0][0]'], {}), '(pt[0][0])\n', (46128, 46138), True, 'import numpy as np\n'), ((47107, 47153), 'numpy.array', 'np.array', (['[[np.nan, np.nan], [np.nan, np.nan]]'], {}), '([[np.nan, np.nan], [np.nan, np.nan]])\n', (47115, 47153), True, 'import numpy as np\n'), ((4503, 4576), 'os.path.join', 'os.path.join', (['filepath_models', "('NN_4classes_Landsat_dark%s.pkl' % str_new)"], {}), "(filepath_models, 'NN_4classes_Landsat_dark%s.pkl' % str_new)\n", (4515, 4576), False, 'import os\n'), ((4947, 5010), 'os.path.join', 'os.path.join', (['filepath_models', "('NN_4classes_S2%s.pkl' % str_new)"], {}), "(filepath_models, 'NN_4classes_S2%s.pkl' % str_new)\n", (4959, 5010), False, 'import os\n'), ((21181, 21251), 'numpy.random.choice', 'np.random.choice', (['int_sand.shape[0]', 'int_water.shape[0]'], {'replace': '(False)'}), '(int_sand.shape[0], int_water.shape[0], replace=False)\n', (21197, 21251), True, 'import numpy as np\n'), ((21302, 21372), 'numpy.random.choice', 'np.random.choice', (['int_water.shape[0]', 'int_sand.shape[0]'], {'replace': '(False)'}), '(int_water.shape[0], int_sand.shape[0], replace=False)\n', (21318, 21372), True, 'import numpy as np\n'), ((25583, 25604), 'numpy.isnan', 'np.isnan', (['contours[k]'], {}), '(contours[k])\n', (25591, 25604), True, 'import numpy as np\n'), ((28801, 28855), 'numpy.linalg.norm', 'np.linalg.norm', (['(shoreline[k, :] - coords_cloud)'], {'axis': '(1)'}), '(shoreline[k, :] - coords_cloud, axis=1)\n', (28815, 28855), True, 'import numpy as np\n'), ((42941, 42959), 'numpy.isnan', 'np.isnan', (['int_sand'], {}), '(int_sand)\n', (42949, 42959), True, 'import numpy as np\n'), ((43172, 43188), 'numpy.isnan', 'np.isnan', (['int_ww'], {}), '(int_ww)\n', (43180, 43188), True, 'import numpy as np\n'), ((43417, 43436), 'numpy.isnan', 'np.isnan', (['int_water'], {}), '(int_water)\n', (43425, 43436), True, 'import numpy as np\n'), ((43669, 43688), 'numpy.isnan', 'np.isnan', (['int_other'], {}), '(int_other)\n', (43677, 43688), True, 'import numpy as np\n'), ((49266, 49277), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (49275, 49277), True, 'import matplotlib.pyplot as plt\n'), ((49383, 49407), 'matplotlib.pyplot.waitforbuttonpress', 'plt.waitforbuttonpress', ([], {}), '()\n', (49405, 49407), True, 'import matplotlib.pyplot as plt\n'), ((4663, 4738), 'os.path.join', 'os.path.join', (['filepath_models', "('NN_4classes_Landsat_bright%s.pkl' % str_new)"], {}), "(filepath_models, 'NN_4classes_Landsat_bright%s.pkl' % str_new)\n", (4675, 4738), False, 'import os\n'), ((4790, 4858), 'os.path.join', 'os.path.join', (['filepath_models', "('NN_4classes_Landsat%s.pkl' % str_new)"], {}), "(filepath_models, 'NN_4classes_Landsat%s.pkl' % str_new)\n", (4802, 4858), False, 'import os\n'), ((8485, 8547), 'coastsat.SDS_tools.nd_index', 'SDS_tools.nd_index', (['im_ms[:, :, 4]', 'im_ms[:, :, 1]', 'cloud_mask'], {}), '(im_ms[:, :, 4], im_ms[:, :, 1], cloud_mask)\n', (8503, 8547), False, 'from coastsat import SDS_tools, SDS_preprocess\n'), ((9830, 9840), 'matplotlib.pyplot.ioff', 'plt.ioff', ([], {}), '()\n', (9838, 9840), True, 'import matplotlib.pyplot as plt\n'), ((36953, 36964), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (36962, 36964), True, 'import matplotlib.pyplot as plt\n'), ((37082, 37106), 'matplotlib.pyplot.waitforbuttonpress', 'plt.waitforbuttonpress', ([], {}), '()\n', (37104, 37106), True, 'import matplotlib.pyplot as plt\n'), ((46839, 46909), 'coastsat.SDS_tools.convert_epsg', 'SDS_tools.convert_epsg', (['shoreline', "settings['output_epsg']", 'image_epsg'], {}), "(shoreline, settings['output_epsg'], image_epsg)\n", (46861, 46909), False, 'from coastsat import SDS_tools, SDS_preprocess\n')]
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # File name: tool_func.py """ Created on Thu Apr 23 17:39:40 2020 @author: Neo(<EMAIL>) Some tool functions. The comment will be added when I am free. """ from myprogs.vsh.vsh_fit import rotgli_fit_4_table from myprogs.catalog.pos_diff import radio_cat_diff_calc from myprogs.catalog.read_icrf import read_icrf3, read_icrf2 from astropy.stats import sigma_clip, mad_std from astropy import units as u from astropy.table import Table from sklearn.utils import resample import numpy as np # np.random.seed(28) # ----------------------------- FUNCTIONS ----------------------------- def bootstrap_sample(tab, sam_size=500, with_replace=True): """Randomly select items of some number. """ N = len(tab) ind = resample(np.arange(N), replace=with_replace, n_samples=sam_size) new_tab = tab[ind] return new_tab def sample_clean(pos_oft, rho0=10, print_log=False): """Outlier elimination for VSH fitting. """ # Remove the outlier (consider the normalized separation) N0 = len(pos_oft) X0 = np.sqrt(np.log(N0) * 2) X0 = 10000000 rho0 = 1000000 mask = ((pos_oft["nor_sep"] <= X0) & (pos_oft["ang_sep"] < rho0)) # Table of a clean sample pos_oft_cln = pos_oft[mask] N1 = len(pos_oft_cln) if print_log: print("For a sample of %d sources, " "the number of the outlier is smaller than 1 when X >= %.2f." % (N0, X0)) print("After elimination, there are %d sources in the clean sample." % N1) print("The outlier rate is %.2f%%.\n" % ((N0 - N1) / N0 * 100)) return pos_oft_cln def vsh_fit_for_pos(pos_oft, print_log=False): """Estimate the VSH coefficient. """ output = rotgli_fit_4_table(pos_oft, verbose=False) # Keep rotation only and mas -> uas pmt = output["pmt1"] * 1.e3 sig = output["sig1"] * 1.e3 # Calculate the total rotation w, w_err = output["R"] * 1.e3, output["R_err"] * 1.e3 g, g_err = output["G"] * 1.e3, output["G_err"] * 1.e3 # Concatenate the results pmt = np.hstack((pmt, [g, w])) sig = np.hstack((sig, [g_err, w_err])) # Print resultss if print_log: print("Estimates (%6d sources)\n" "----------------------------------------------\n" " Rotation [uas] \n" " x y z \n" "----------------------------------------------\n" " %+4.0f +/- %3.0f %+4.0f +/- %3.0f %+4.0f +/- %3.0f\n" "----------------------------------------------\n" % (len(pos_oft), pmt[3], sig[3], pmt[4], sig[4], pmt[5], sig[5])) return pmt, sig def calc_orient(pos_oft): """Calculate orientation angles based on positional difference """ N0 = len(pos_oft) pos_oft_cln = sample_clean(pos_oft, rho0=10) N1 = len(pos_oft_cln) pmt, sig = vsh_fit_for_pos(pos_oft_cln) return N0, N1, pmt, sig def calc_orient_new(pos_oft): """Calculate orientation angles based on positional difference """ N0 = len(pos_oft) pmt, sig = vsh_fit_for_pos(pos_oft) return N0, pmt, sig def orientation_estimate(pos_oft, opt, clean=False): """Estimate the orientation offsets """ if clean: pos_oft = sample_clean(pos_oft, rho0=10) pmti, sigi = vsh_fit_for_pos(pos_oft) opti = np.hstack((pmti, sigi)) opt = np.vstack((opt, opti)) return opt def orient_angle_sampling(pos_oft, iter_time=1000, sam_size=2000, with_replace=False): """Orientation angle sampling. """ # Array to store data in the form of # [g1, g2, g3, r1, r2, r3, g, r, # sig_r1, sig_r2, sig_r3, sig_g1, sig_g2, sig_g3, sig_g, sig_r] opt = np.empty(dtype=np.float, shape=(16,)) # For all sources opt1 = np.empty(dtype=np.float, shape=(16,)) # For a clean sample for i in range(iter_time): print(">>>>{:4d}th iteration:".format(i+1), end="") pos_oft_sub = bootstrap_sample(pos_oft, sam_size, with_replace) # Sample size is around 60% of the common sources, 3410 * 0.6 = 2046 # All sources opt = orientation_estimate(pos_oft_sub, opt) # Removing Outliers opt1 = orientation_estimate(pos_oft_sub, opt1, True) print(" done!") return opt, opt1 def save_data(data, fname): tab = Table(data, names=["G1", "G2", "G3", "R1", "R2", "R3", "G", "R", "G1_err", "G2_err", "G3_err", "R1_err", "R2_err", "R3_err", "G_err", "R_err"]) tab.write(fname, overwrite=True) def vsh_fit_for_pm(apm_table): """Estimate VSH coefficients from apparent proper motion. """ output = rotgli_fit_4_table(apm_table, verbose=False) # Keep rotation only pmt = output["pmt1"] sig = output["sig1"] # Calculate the total rotation w, w_err = output["R"], output["R_err"] g, g_err = output["G"], output["G_err"] # Concatenate the results pmt = np.hstack((pmt[3:], [w], pmt[:3], [g])) sig = np.hstack((sig[3:], [w_err], sig[:3], [g_err])) return pmt, sig, output def vsh_fit_for_pm2(apm_table): """Estimate VSH coefficients from apparent proper motion. Only rotation vector is estimated. """ output = rotgli_fit_4_table(apm_table, fit_type="T", verbose=False) # Keep rotation only pmt = output["pmt1"] sig = output["sig1"] # Calculate the total rotation w, w_err = output["R"], output["R_err"] # Concatenate the results pmt = np.hstack((pmt, [w])) sig = np.hstack((sig, [w_err])) return pmt, sig, output def calc_mean_std(y): """Esimate robustly the mean and standard deviation """ filtered_data = sigma_clip(y, sigma=3, maxiters=1, stdfunc=mad_std) ymean, ystd = np.mean(filtered_data), np.std(filtered_data) return ymean, ystd def random_walk(epoch, t_scale=5, sigma_var=2): """ """ dt = epoch[1:] - epoch[:-1] dt = np.concatenate(([0], dt)) # Positional offset dra = np.zeros(len(epoch)) ddec = np.zeros(len(epoch)) dra[0] = np.random.random() - 0.5 ddec[0] = np.random.random() - 0.5 for i in range(len(epoch)): # Exponential factor exp_fac_i = np.exp(-dt[i]/t_scale) # Gaussian factor sigma_i = sigma_var * np.sqrt(1-np.exp(-2*dt[i]/t_scale)) g_ra_i = (np.random.random_sample()-0.5) * sigma_i g_dec_i = (np.random.random_sample()-0.5) * sigma_i dra[i] = exp_fac_i * dra[i-1] + g_ra_i ddec[i] = exp_fac_i * ddec[i-1] + g_dec_i return dra, ddec # --------------------------------- END --------------------------------
[ "numpy.mean", "numpy.random.random_sample", "astropy.table.Table", "numpy.hstack", "astropy.stats.sigma_clip", "numpy.random.random", "numpy.log", "myprogs.vsh.vsh_fit.rotgli_fit_4_table", "numpy.exp", "numpy.empty", "numpy.vstack", "numpy.concatenate", "numpy.std", "numpy.arange" ]
[((1757, 1799), 'myprogs.vsh.vsh_fit.rotgli_fit_4_table', 'rotgli_fit_4_table', (['pos_oft'], {'verbose': '(False)'}), '(pos_oft, verbose=False)\n', (1775, 1799), False, 'from myprogs.vsh.vsh_fit import rotgli_fit_4_table\n'), ((2098, 2122), 'numpy.hstack', 'np.hstack', (['(pmt, [g, w])'], {}), '((pmt, [g, w]))\n', (2107, 2122), True, 'import numpy as np\n'), ((2133, 2165), 'numpy.hstack', 'np.hstack', (['(sig, [g_err, w_err])'], {}), '((sig, [g_err, w_err]))\n', (2142, 2165), True, 'import numpy as np\n'), ((3452, 3475), 'numpy.hstack', 'np.hstack', (['(pmti, sigi)'], {}), '((pmti, sigi))\n', (3461, 3475), True, 'import numpy as np\n'), ((3486, 3508), 'numpy.vstack', 'np.vstack', (['(opt, opti)'], {}), '((opt, opti))\n', (3495, 3508), True, 'import numpy as np\n'), ((3814, 3851), 'numpy.empty', 'np.empty', ([], {'dtype': 'np.float', 'shape': '(16,)'}), '(dtype=np.float, shape=(16,))\n', (3822, 3851), True, 'import numpy as np\n'), ((3882, 3919), 'numpy.empty', 'np.empty', ([], {'dtype': 'np.float', 'shape': '(16,)'}), '(dtype=np.float, shape=(16,))\n', (3890, 3919), True, 'import numpy as np\n'), ((4435, 4582), 'astropy.table.Table', 'Table', (['data'], {'names': "['G1', 'G2', 'G3', 'R1', 'R2', 'R3', 'G', 'R', 'G1_err', 'G2_err', 'G3_err',\n 'R1_err', 'R2_err', 'R3_err', 'G_err', 'R_err']"}), "(data, names=['G1', 'G2', 'G3', 'R1', 'R2', 'R3', 'G', 'R', 'G1_err',\n 'G2_err', 'G3_err', 'R1_err', 'R2_err', 'R3_err', 'G_err', 'R_err'])\n", (4440, 4582), False, 'from astropy.table import Table\n'), ((4849, 4893), 'myprogs.vsh.vsh_fit.rotgli_fit_4_table', 'rotgli_fit_4_table', (['apm_table'], {'verbose': '(False)'}), '(apm_table, verbose=False)\n', (4867, 4893), False, 'from myprogs.vsh.vsh_fit import rotgli_fit_4_table\n'), ((5135, 5174), 'numpy.hstack', 'np.hstack', (['(pmt[3:], [w], pmt[:3], [g])'], {}), '((pmt[3:], [w], pmt[:3], [g]))\n', (5144, 5174), True, 'import numpy as np\n'), ((5185, 5232), 'numpy.hstack', 'np.hstack', (['(sig[3:], [w_err], sig[:3], [g_err])'], {}), '((sig[3:], [w_err], sig[:3], [g_err]))\n', (5194, 5232), True, 'import numpy as np\n'), ((5420, 5478), 'myprogs.vsh.vsh_fit.rotgli_fit_4_table', 'rotgli_fit_4_table', (['apm_table'], {'fit_type': '"""T"""', 'verbose': '(False)'}), "(apm_table, fit_type='T', verbose=False)\n", (5438, 5478), False, 'from myprogs.vsh.vsh_fit import rotgli_fit_4_table\n'), ((5676, 5697), 'numpy.hstack', 'np.hstack', (['(pmt, [w])'], {}), '((pmt, [w]))\n', (5685, 5697), True, 'import numpy as np\n'), ((5708, 5733), 'numpy.hstack', 'np.hstack', (['(sig, [w_err])'], {}), '((sig, [w_err]))\n', (5717, 5733), True, 'import numpy as np\n'), ((5872, 5923), 'astropy.stats.sigma_clip', 'sigma_clip', (['y'], {'sigma': '(3)', 'maxiters': '(1)', 'stdfunc': 'mad_std'}), '(y, sigma=3, maxiters=1, stdfunc=mad_std)\n', (5882, 5923), False, 'from astropy.stats import sigma_clip, mad_std\n'), ((6120, 6145), 'numpy.concatenate', 'np.concatenate', (['([0], dt)'], {}), '(([0], dt))\n', (6134, 6145), True, 'import numpy as np\n'), ((785, 797), 'numpy.arange', 'np.arange', (['N'], {}), '(N)\n', (794, 797), True, 'import numpy as np\n'), ((5942, 5964), 'numpy.mean', 'np.mean', (['filtered_data'], {}), '(filtered_data)\n', (5949, 5964), True, 'import numpy as np\n'), ((5966, 5987), 'numpy.std', 'np.std', (['filtered_data'], {}), '(filtered_data)\n', (5972, 5987), True, 'import numpy as np\n'), ((6248, 6266), 'numpy.random.random', 'np.random.random', ([], {}), '()\n', (6264, 6266), True, 'import numpy as np\n'), ((6287, 6305), 'numpy.random.random', 'np.random.random', ([], {}), '()\n', (6303, 6305), True, 'import numpy as np\n'), ((6394, 6418), 'numpy.exp', 'np.exp', (['(-dt[i] / t_scale)'], {}), '(-dt[i] / t_scale)\n', (6400, 6418), True, 'import numpy as np\n'), ((1093, 1103), 'numpy.log', 'np.log', (['N0'], {}), '(N0)\n', (1099, 1103), True, 'import numpy as np\n'), ((6528, 6553), 'numpy.random.random_sample', 'np.random.random_sample', ([], {}), '()\n', (6551, 6553), True, 'import numpy as np\n'), ((6588, 6613), 'numpy.random.random_sample', 'np.random.random_sample', ([], {}), '()\n', (6611, 6613), True, 'import numpy as np\n'), ((6484, 6512), 'numpy.exp', 'np.exp', (['(-2 * dt[i] / t_scale)'], {}), '(-2 * dt[i] / t_scale)\n', (6490, 6512), True, 'import numpy as np\n')]
import numpy as np from opytimizer.optimizers.swarm import sso from opytimizer.spaces import search def test_sso_params(): params = { 'C_w': 0.1, 'C_p': 0.4, 'C_g': 0.9 } new_sso = sso.SSO(params=params) assert new_sso.C_w == 0.1 assert new_sso.C_p == 0.4 assert new_sso.C_g == 0.9 def test_sso_params_setter(): new_sso = sso.SSO() try: new_sso.C_w = 'a' except: new_sso.C_w = 0.1 try: new_sso.C_w = -1 except: new_sso.C_w = 0.1 assert new_sso.C_w == 0.1 try: new_sso.C_p = 'b' except: new_sso.C_p = 0.4 try: new_sso.C_p = 0.05 except: new_sso.C_p = 0.4 assert new_sso.C_p == 0.4 try: new_sso.C_g = 'c' except: new_sso.C_g = 0.9 try: new_sso.C_g = 0.35 except: new_sso.C_g = 0.9 assert new_sso.C_g == 0.9 def test_sso_compile(): search_space = search.SearchSpace(n_agents=10, n_variables=2, lower_bound=[0, 0], upper_bound=[10, 10]) new_sso = sso.SSO() new_sso.compile(search_space) try: new_sso.local_position = 1 except: new_sso.local_position = np.array([1]) assert new_sso.local_position == np.array([1]) def test_sso_evaluate(): def square(x): return np.sum(x**2) search_space = search.SearchSpace(n_agents=10, n_variables=2, lower_bound=[0, 0], upper_bound=[10, 10]) new_sso = sso.SSO() new_sso.compile(search_space) new_sso.evaluate(search_space, square) def test_sso_update(): search_space = search.SearchSpace(n_agents=10, n_variables=2, lower_bound=[0, 0], upper_bound=[10, 10]) new_sso = sso.SSO() new_sso.compile(search_space) new_sso.update(search_space)
[ "numpy.sum", "opytimizer.spaces.search.SearchSpace", "numpy.array", "opytimizer.optimizers.swarm.sso.SSO" ]
[((221, 243), 'opytimizer.optimizers.swarm.sso.SSO', 'sso.SSO', ([], {'params': 'params'}), '(params=params)\n', (228, 243), False, 'from opytimizer.optimizers.swarm import sso\n'), ((383, 392), 'opytimizer.optimizers.swarm.sso.SSO', 'sso.SSO', ([], {}), '()\n', (390, 392), False, 'from opytimizer.optimizers.swarm import sso\n'), ((976, 1068), 'opytimizer.spaces.search.SearchSpace', 'search.SearchSpace', ([], {'n_agents': '(10)', 'n_variables': '(2)', 'lower_bound': '[0, 0]', 'upper_bound': '[10, 10]'}), '(n_agents=10, n_variables=2, lower_bound=[0, 0],\n upper_bound=[10, 10])\n', (994, 1068), False, 'from opytimizer.spaces import search\n'), ((1118, 1127), 'opytimizer.optimizers.swarm.sso.SSO', 'sso.SSO', ([], {}), '()\n', (1125, 1127), False, 'from opytimizer.optimizers.swarm import sso\n'), ((1412, 1504), 'opytimizer.spaces.search.SearchSpace', 'search.SearchSpace', ([], {'n_agents': '(10)', 'n_variables': '(2)', 'lower_bound': '[0, 0]', 'upper_bound': '[10, 10]'}), '(n_agents=10, n_variables=2, lower_bound=[0, 0],\n upper_bound=[10, 10])\n', (1430, 1504), False, 'from opytimizer.spaces import search\n'), ((1554, 1563), 'opytimizer.optimizers.swarm.sso.SSO', 'sso.SSO', ([], {}), '()\n', (1561, 1563), False, 'from opytimizer.optimizers.swarm import sso\n'), ((1686, 1778), 'opytimizer.spaces.search.SearchSpace', 'search.SearchSpace', ([], {'n_agents': '(10)', 'n_variables': '(2)', 'lower_bound': '[0, 0]', 'upper_bound': '[10, 10]'}), '(n_agents=10, n_variables=2, lower_bound=[0, 0],\n upper_bound=[10, 10])\n', (1704, 1778), False, 'from opytimizer.spaces import search\n'), ((1828, 1837), 'opytimizer.optimizers.swarm.sso.SSO', 'sso.SSO', ([], {}), '()\n', (1835, 1837), False, 'from opytimizer.optimizers.swarm import sso\n'), ((1304, 1317), 'numpy.array', 'np.array', (['[1]'], {}), '([1])\n', (1312, 1317), True, 'import numpy as np\n'), ((1379, 1393), 'numpy.sum', 'np.sum', (['(x ** 2)'], {}), '(x ** 2)\n', (1385, 1393), True, 'import numpy as np\n'), ((1252, 1265), 'numpy.array', 'np.array', (['[1]'], {}), '([1])\n', (1260, 1265), True, 'import numpy as np\n')]
import numpy as np from agents import Agent from connectboard import ConnectBoard import time import math class AlphaBeta(Agent): """Agent that implements minimax with alpha-beta pruning to select its next move.""" def get_move(self, game_board: np.ndarray) -> np.ndarray: """Recursively runs minimax to determine the best move to make. Recursively runs minimax algorithm with alpha-beta pruning starting at the current game state. This player is assumed to be maximizing. Args: game_board (np.ndarray): current board with a 1 for current player, -1 for opponent, and 0 for open space Returns: An ndarray representing the move, with a 1 in the row,col of the new piece, and all other entries zero. """ start = time.time() move_val, move = self.alpha_beta(game_board, depth=5) end = time.time() print( "Found optimal move with value: {}, in {}s".format(move_val, (end - start)) ) return move def alpha_beta( self, game_board: np.ndarray, alpha: float = -np.inf, beta: float = np.inf, depth: int = np.inf, max_player: bool = True, ) -> (int, np.ndarray): """Perform minimax with alpha-beta pruning to determine best move to take from current game_board. Performs minimax starting at the current position and ending after looking depth moves ahead, or when all leaf nodes are end_game states. TODO: If multiple winning moves, it picks the first one. Change so agent chooses the quickest win. Args: game_board (np.ndarray): 2D array representing the current pieces as 1 or -1 if they are for the maximizing or minimizing player respectively. alpha (float, optional): The best score achieved by the maximizing player. Defaults to -np.inf, the worst possible value for the maximizing player. beta (float, optional): The best score achieved by the minimizing player. Defaults to np.inf. depth (int, optional): The number of layers to check using minimax. Defualt is np.inf which will check all layers. max_player (bool, optional): Indicates whether the turn at the root node belongs to the minimizing or maximizing player. Default is True, meaning the maximizing player is next to move. Returns: move_val (int): The optimal value of this node. move (np.ndarray): A 6x7 numpy array with a 1 in the spot of the move to take from the current node that will result in the optimal value. """ legal_moves = ConnectBoard.get_legal_moves(game_board) if legal_moves.size == 0 or depth == 0: # Leaf node, perform static value checking. return self.get_static_value(game_board), None next_states = ( game_board + legal_moves if max_player else game_board - legal_moves ) best_move = legal_moves[0] while next_states.size > 0: best_idx = self.get_most_valuable(next_states, max_player) state = next_states[best_idx] next_states = np.delete(next_states, best_idx, 0) # Only recurse farther if the current state is not an end game state if math.isinf(self.get_static_value(state)): val = self.get_static_value(state) else: val, _ = self.alpha_beta( state, alpha=alpha, beta=beta, depth=depth - 1, max_player=not max_player, ) if max_player and val > alpha: alpha = val best_move = legal_moves[best_idx] elif not max_player and val < beta: best_move = legal_moves[best_idx] beta = val legal_moves = np.delete(legal_moves, best_idx, 0) if beta < alpha: break if max_player: return alpha, best_move else: return beta, best_move def get_most_valuable(self, states: np.ndarray, max_player: bool) -> int: """Return the index of next_states corresponding to the best static value for current player. Args: states (np.ndarray): Numpy array of 6x7 board states. Maximizing player is 1,minimizing player is -1. max_player (bool): If max_player is true, return the index with maximum static value, if false, return the index that minimizes static value. """ idx = 0 best_val = self.get_static_value(states[0]) for i in range(1, states.shape[0]): val = self.get_static_value(states[i]) if max_player and val > best_val: idx = i best_val = val elif val < best_val: idx = i best_val = val return idx def get_static_value(self, game_board: np.ndarray) -> float: """Returns the static value of game_board. For each possible way to get four in a row, check if the line contains only 1 or -1. If that row contains pieces from only one player, add the sum of their pieces to value. If either player has 4 in a row, return +/- inf. Args: game_board (np.ndarray): The current minimax board with maximing player as 1 and minimizing player as -1. Returns: value (float): The static value of the current position. """ windows = game_board.flatten()[ConnectBoard.WINDOW_INDICES].reshape(-1, 4) uncontested_windows = windows[windows.min(axis=1) != -windows.max(axis=1)] if uncontested_windows.size == 0: return 0 window_sums = uncontested_windows.sum(axis=1) if window_sums.max() == 4: return np.inf elif window_sums.min() == -4: return -np.inf else: return (abs(window_sums) * window_sums ** 2 / window_sums).sum() def handle_invalid_move(self) -> None: # Throw exception during development # TODO: Add some nice handler later on raise Exception
[ "numpy.delete", "time.time", "connectboard.ConnectBoard.get_legal_moves" ]
[((833, 844), 'time.time', 'time.time', ([], {}), '()\n', (842, 844), False, 'import time\n'), ((921, 932), 'time.time', 'time.time', ([], {}), '()\n', (930, 932), False, 'import time\n'), ((2759, 2799), 'connectboard.ConnectBoard.get_legal_moves', 'ConnectBoard.get_legal_moves', (['game_board'], {}), '(game_board)\n', (2787, 2799), False, 'from connectboard import ConnectBoard\n'), ((3291, 3326), 'numpy.delete', 'np.delete', (['next_states', 'best_idx', '(0)'], {}), '(next_states, best_idx, 0)\n', (3300, 3326), True, 'import numpy as np\n'), ((4044, 4079), 'numpy.delete', 'np.delete', (['legal_moves', 'best_idx', '(0)'], {}), '(legal_moves, best_idx, 0)\n', (4053, 4079), True, 'import numpy as np\n')]
import matplotlib.pyplot as plt import netomaton as ntm import numpy as np if __name__ == '__main__': # NKS page 443 - Rule 122R network = ntm.topology.cellular_automaton(n=100) # carefully chosen initial conditions previous_state = [1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1] initial_conditions = [1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1] trajectory = ntm.evolve(initial_conditions=initial_conditions, network=network, activity_rule=ntm.ReversibleRule(ntm.rules.nks_ca_rule(122)), past_conditions=[previous_state], timesteps=1002) timestep = [] average_node_entropies = [] activities = ntm.get_activities_over_time_as_list(trajectory) for i, c in enumerate(activities): timestep.append(i) bit_string = ''.join([str(x) for x in c]) average_node_entropies.append(ntm.average_node_entropy(activities[:i+1])) print("%s, %s" % (i, average_node_entropies[-1])) plt.subplot(3, 1, (1, 2)) plt.title("Avg. Node (Shannon) Entropy") plt.gca().set_xlim(0, 1002) plt.gca().axes.xaxis.set_ticks([]) plt.plot(timestep, average_node_entropies) plt.subplot(3, 1, 3) plt.gca().axes.yaxis.set_ticks([]) ntm.plot_grid(np.array(activities).T.tolist())
[ "netomaton.rules.nks_ca_rule", "matplotlib.pyplot.gca", "matplotlib.pyplot.plot", "numpy.array", "netomaton.average_node_entropy", "matplotlib.pyplot.title", "matplotlib.pyplot.subplot", "netomaton.get_activities_over_time_as_list", "netomaton.topology.cellular_automaton" ]
[((150, 188), 'netomaton.topology.cellular_automaton', 'ntm.topology.cellular_automaton', ([], {'n': '(100)'}), '(n=100)\n', (181, 188), True, 'import netomaton as ntm\n'), ((1346, 1394), 'netomaton.get_activities_over_time_as_list', 'ntm.get_activities_over_time_as_list', (['trajectory'], {}), '(trajectory)\n', (1382, 1394), True, 'import netomaton as ntm\n'), ((1656, 1681), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(3)', '(1)', '(1, 2)'], {}), '(3, 1, (1, 2))\n', (1667, 1681), True, 'import matplotlib.pyplot as plt\n'), ((1686, 1726), 'matplotlib.pyplot.title', 'plt.title', (['"""Avg. Node (Shannon) Entropy"""'], {}), "('Avg. Node (Shannon) Entropy')\n", (1695, 1726), True, 'import matplotlib.pyplot as plt\n'), ((1802, 1844), 'matplotlib.pyplot.plot', 'plt.plot', (['timestep', 'average_node_entropies'], {}), '(timestep, average_node_entropies)\n', (1810, 1844), True, 'import matplotlib.pyplot as plt\n'), ((1850, 1870), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(3)', '(1)', '(3)'], {}), '(3, 1, 3)\n', (1861, 1870), True, 'import matplotlib.pyplot as plt\n'), ((1549, 1593), 'netomaton.average_node_entropy', 'ntm.average_node_entropy', (['activities[:i + 1]'], {}), '(activities[:i + 1])\n', (1573, 1593), True, 'import netomaton as ntm\n'), ((1731, 1740), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (1738, 1740), True, 'import matplotlib.pyplot as plt\n'), ((1170, 1196), 'netomaton.rules.nks_ca_rule', 'ntm.rules.nks_ca_rule', (['(122)'], {}), '(122)\n', (1191, 1196), True, 'import netomaton as ntm\n'), ((1763, 1772), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (1770, 1772), True, 'import matplotlib.pyplot as plt\n'), ((1875, 1884), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (1882, 1884), True, 'import matplotlib.pyplot as plt\n'), ((1928, 1948), 'numpy.array', 'np.array', (['activities'], {}), '(activities)\n', (1936, 1948), True, 'import numpy as np\n')]
import numpy as np __all__ = ["plot_spectrum_datasets_off_regions", "plot_contour_line"] def plot_spectrum_datasets_off_regions(datasets, ax=None): """Plot spectrum datasets of regions. Parameters ---------- datasets : list of `SpectrumDatasetOnOff` List of spectrum on-off datasets """ import matplotlib.pyplot as plt import matplotlib.patches as mpatches ax = plt.gca(projection=datasets[0].counts_off.geom.wcs) or ax color_cycle = plt.rcParams["axes.prop_cycle"] colors = color_cycle.by_key()["color"] handles = [] for color, dataset in zip(colors, datasets): kwargs = {"edgecolor": color, "facecolor": "none"} dataset.counts_off.plot_region(ax=ax, **kwargs) # create proxy artist for the custom legend handle = mpatches.Patch(label=dataset.name, **kwargs) handles.append(handle) plt.legend(handles=handles) def plot_contour_line(ax, x, y, **kwargs): """Plot smooth curve from contour points""" from scipy.interpolate import CubicSpline # close countour xf = np.append(x, x[0]) yf = np.append(y, y[0]) # curve parametrization must be strictly increasing # so we use the cumulative distance of each point from the first one dist = np.sqrt(np.diff(xf) ** 2.0 + np.diff(yf) ** 2.0) dist = [0] + list(dist) t = np.cumsum(dist) ts = np.linspace(0, t[-1], 50) # 1D cubic spline interpolation cs = CubicSpline(t, np.c_[xf, yf], bc_type="periodic") out = cs(ts) # plot if "marker" in kwargs.keys(): marker = kwargs.pop("marker") else: marker = "+" if "color" in kwargs.keys(): color = kwargs.pop("color") else: color = "b" ax.plot(out[:, 0], out[:, 1], "-", color=color, **kwargs) ax.plot(xf, yf, linestyle='', marker=marker, color=color)
[ "scipy.interpolate.CubicSpline", "matplotlib.pyplot.gca", "numpy.diff", "numpy.append", "numpy.linspace", "matplotlib.patches.Patch", "numpy.cumsum", "matplotlib.pyplot.legend" ]
[((892, 919), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'handles': 'handles'}), '(handles=handles)\n', (902, 919), True, 'import matplotlib.pyplot as plt\n'), ((1090, 1108), 'numpy.append', 'np.append', (['x', 'x[0]'], {}), '(x, x[0])\n', (1099, 1108), True, 'import numpy as np\n'), ((1118, 1136), 'numpy.append', 'np.append', (['y', 'y[0]'], {}), '(y, y[0])\n', (1127, 1136), True, 'import numpy as np\n'), ((1363, 1378), 'numpy.cumsum', 'np.cumsum', (['dist'], {}), '(dist)\n', (1372, 1378), True, 'import numpy as np\n'), ((1388, 1413), 'numpy.linspace', 'np.linspace', (['(0)', 't[-1]', '(50)'], {}), '(0, t[-1], 50)\n', (1399, 1413), True, 'import numpy as np\n'), ((1460, 1509), 'scipy.interpolate.CubicSpline', 'CubicSpline', (['t', 'np.c_[xf, yf]'], {'bc_type': '"""periodic"""'}), "(t, np.c_[xf, yf], bc_type='periodic')\n", (1471, 1509), False, 'from scipy.interpolate import CubicSpline\n'), ((407, 458), 'matplotlib.pyplot.gca', 'plt.gca', ([], {'projection': 'datasets[0].counts_off.geom.wcs'}), '(projection=datasets[0].counts_off.geom.wcs)\n', (414, 458), True, 'import matplotlib.pyplot as plt\n'), ((811, 855), 'matplotlib.patches.Patch', 'mpatches.Patch', ([], {'label': 'dataset.name'}), '(label=dataset.name, **kwargs)\n', (825, 855), True, 'import matplotlib.patches as mpatches\n'), ((1286, 1297), 'numpy.diff', 'np.diff', (['xf'], {}), '(xf)\n', (1293, 1297), True, 'import numpy as np\n'), ((1307, 1318), 'numpy.diff', 'np.diff', (['yf'], {}), '(yf)\n', (1314, 1318), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- """ Created on Mon Nov 11 15:05:10 2019 The Simple Linear Regression model @author: Dr. Dr. <NAME> @web : https://dannyvanpoucke.be """ import pandas as pd import numpy as np from TModelClass import TModelClass from TModelResults import TModelResults from Bootstrap import TBootstrap from TModelQualityData import TModelQualityData from sklearn.pipeline import Pipeline class TLinearModel(TModelClass): """ Child class representing the linear regression model """ def __init__(self,name,Target, Feature: pd.DataFrame, Target_test, Feature_test: pd.DataFrame, Pipeline: Pipeline ): """ Constructor of the TLinearModel class. It requires: - name : the name of the object instance - Feature : a pandas dataframe containing the features - Target : the training target data - Target_test: the test target data - Feature_test: the untransformed features for testing. - Pipeline : a pipeline generated by the PipelineFactory It sets the following properties - pipeline : a pipeline object containing the preprocessing transformations (excluding the fitter function) - model : the fitter function to be used (should be an sklearn function with "fit" method) - feature_tf: the transformed features as obtained by the pipeline """ from sklearn.linear_model import LinearRegression super().__init__(name,Target, Feature,Target_test, Feature_test) self.nameModel='Linear Model' self.name=name print("Initialising the child class:",self.nameModel) #create a pipeline (can be extended to contain more functions, p67) self.pipeline=Pipeline #self.pipeline = Pipeline([ # #('std_scaler', StandardScaler()), #scaling to be centered on 0, with unit variance...since the values are quite different, this will help things # ('std_scaler', StandardScaler(with_mean=False, with_std=False)), #]) self.feature_tf = self.pipeline.fit_transform(Feature) #this is a numpy array... self.model = LinearRegression(fit_intercept=True, normalize=False, copy_X=True, n_jobs=None) #default values..explicitly set #def fit(self): # """ test to check if it is possible to manually set the coef_ and intercept_ # --> conclusion: it seems to work, but only for fit & predict, # not for cross_val_score...which just does new fittings # Class-method wrapping the fit-method of the sklearn model. # # - Target : a pandas dataframe with the Target data belonging to the # Features provided upon initialisation. # """ # import numpy as np # self.model.intercept_ = 0 # self.model.coef_= np.array([-0,0,6.1]).reshape((1,-1)) # self.setCoefficients() # print("FIT COEFF=",self.model.coef_," INTERCEPT=",self.model.intercept_) # print("did some fitting, Parent-style:",type(self.model).__name__) def fitSanityCheck(self)->int: """ Class method which should cover/deal with failures of sklearn. For some reason, sklearn LinearRegression randomly fails on small datasets. This failure gives rise to huge coefficents. Hoever, just shuffling the data seems to resolve the issue. This function returns the number of shuffles needed to regain sanity. """ import sys #first find out if we have "infinite" coefficients cnt=0 insane=(abs(sum(self.model.coef_)/len(self.model.coef_))>1.0E9) #larger than 1 billion should be a clear sign while (insane and (cnt<100)): #try up to 100x ... if non are OK, then it will never be fixed cnt+=1 #then we shuffle the features & targets... #1) recombine in 1 pandas dataframe combo=pd.concat([self.feature,self.target], axis=1, sort=False, join='outer') #2) shuffle: https://stackoverflow.com/questions/29576430/shuffle-dataframe-rows combo=combo.sample(frac=1).reset_index(drop=True) #3) re-store in target/feature/feature_tf self.target=combo[combo.columns[-1]].copy() self.feature=combo.drop(combo.columns[-1],axis=1) self.feature_tf = self.pipeline.fit_transform(self.feature) #this is a numpy array... #4) finally refit self.fit() insane=(abs(sum(abs(self.model.coef_))/len(self.model.coef_))>self.sanityThresshold) #normaly values of 1E14 are reached, but on occasion as low as 1E08 was found if (cnt>0):#update the coefficients self.setCoefficients() if insane: print("EPIC FAIL, 100 attempts at sanity failed in the ",self.name,". Terminating this sick job!") sys.exit() return cnt #serial version def setAverageCoefficients(self,EnsembleData: TModelResults, setCI: bool): """ Use the ensemble data to create an "average" model, and set the "coefficients" in the current model. This should be performed in each model separately """ #import time # 1. Calculate the average coefficients # 1.1. transform them to arrays #start = time.perf_counter_ns() #print("3.1) Average Coefficients : AVG") intercept=np.zeros(EnsembleData.NData) coef=np.zeros((EnsembleData.NData,EnsembleData.modelCoef[0]['coef_'][1].shape[1])) for i in range(EnsembleData.NData): mcf=EnsembleData.modelCoef[i] intercept[i]=np.asarray(mcf['intercept_'][1]).ravel() coef[i,:]=np.asarray(mcf['coef_'][1]).ravel() mean_intercept=np.mean(intercept,axis=0)#axis is the varying direction, so 0 means we calculate the average of a column by varying the row mean_coef=np.mean(coef,axis=0) # 2. Set the model coefficients to these averaged values self.model.intercept_=mean_intercept self.model.coef_=mean_coef self.isAverage = True self.hasCI=False if setCI: #end = time.perf_counter_ns() #print("3.2.a) Average Coefficients : CI Intercept ",(end-start)/10E9) # 3. Calculate Confidence Interval using Bootstrapper tech? # & 4. Store the CI data ## For the intercept boot=TBootstrap(data=intercept,Func=np.mean) #end = time.perf_counter_ns() #print("3.2.b) NPboot",(end-start)/1E9) boot.NPbootstrap(n_iter=2000, Jackknife=True) #end = time.perf_counter_ns() #print("3.2.c) Con Int",(end-start)/1E9) avgm, avgp = boot.ConfidenceInterval(CItype="BCa",alpha=0.05,n_samples=2000)#95%confidence interval self.CI["intercept_lo"]=avgm self.CI["intercept_hi"]=avgp ## For the coefficients avgml=list() avgpl=list() for col in range(EnsembleData.modelCoef[0]['coef_'][1].shape[1]): #end = time.perf_counter_ns() #print("3.2) Average Coefficients : CI Coef ",col," ",(end-start)/1E9) boot=TBootstrap(data=coef[:,col],Func=np.mean) boot.NPbootstrap(n_iter=2000, Jackknife=True) avgm, avgp = boot.ConfidenceInterval(CItype="BCa",alpha=0.05)#95%confidence interval avgml.append(avgm) avgpl.append(avgp) self.CI["coef_lo"]=avgml self.CI["coef_hi"]=avgpl self.hasCI = True #store the resulting coefficients in our wrapper tracker...and we are done self.setCoefficients() self.Quality=TModelQualityData(EData=EnsembleData) def printAverageCoefficients(self, File: str=None): """ Print a block of information to a file, containing the averaged coefficients. parameters: - self: - File: string containing a filename, if None standard output is used. Default=None """ if File is None: print("======= THE AVERAGED MODEL ==============") print(" Model : ",self.name) print(self.Quality.QualitiesText()) if self.hasCI: print("Intercept : ",self.model.intercept_," and CI=[",self.CI["intercept_lo"]," ; ",self.CI["intercept_hi"],"]") for col in range(len(self.model.coef_)): print("coef ",col," : ",self.model.coef_[col]," and CI=[",self.CI["coef_lo"][col]," ; ",self.CI["coef_hi"][col],"]") else: print("Intercept : ",self.model.intercept_) for col in range(len(self.model.coef_)): print("coef ",col," : ",self.model.coef_[col]) print("====================================\n\n") else: foo=open(File,"a+",) foo.write("======= THE AVERAGED MODEL ==============\n") line=" Model : "+self.name+"\n" foo.write(line) foo.write(self.Quality.QualitiesText()) if self.hasCI: line="Intercept : "+str(self.model.intercept_)+" and CI=["+str(self.CI["intercept_lo"])+" ; "+str(self.CI["intercept_hi"])+"] \n" foo.write(line) for col in range(len(self.model.coef_)): line="coef "+str(col)+" : "+str(self.model.coef_[col])+" and CI=["+str(self.CI["coef_lo"][col])+" ; "+str(self.CI["coef_hi"][col])+"] \n" foo.write(line) else: line="Intercept : "+str(self.model.intercept_)+"\n" foo.write(line) for col in range(len(self.model.coef_)): line="coef "+str(col)+" : "+str(self.model.coef_[col])+"\n" foo.write(line) foo.write("====================================\n\n") foo.close() def setCoefficients(self): """ Class-method collecting and storing the fitting coefficients for a linear regression in the object """ import numpy as np super().setCoefficients() self.modelcoef['header_coef']=[self.coefindex,"The coefficients for each target (one per row) are given by:"] self.modelcoef['coef_']=[self.coefindex+1,np.array([self.model.coef_])] self.modelcoef['header_intercept']=[self.coefindex+2,"The intercepts for each target (one per row) are given by:"] self.modelcoef['intercept_']=[self.coefindex+3,np.array([self.model.intercept_])] self.coefindex+=4
[ "numpy.mean", "Bootstrap.TBootstrap", "numpy.asarray", "numpy.array", "numpy.zeros", "sys.exit", "pandas.concat", "sklearn.linear_model.LinearRegression", "TModelQualityData.TModelQualityData" ]
[((2265, 2344), 'sklearn.linear_model.LinearRegression', 'LinearRegression', ([], {'fit_intercept': '(True)', 'normalize': '(False)', 'copy_X': '(True)', 'n_jobs': 'None'}), '(fit_intercept=True, normalize=False, copy_X=True, n_jobs=None)\n', (2281, 2344), False, 'from sklearn.linear_model import LinearRegression\n'), ((5620, 5648), 'numpy.zeros', 'np.zeros', (['EnsembleData.NData'], {}), '(EnsembleData.NData)\n', (5628, 5648), True, 'import numpy as np\n'), ((5662, 5740), 'numpy.zeros', 'np.zeros', (["(EnsembleData.NData, EnsembleData.modelCoef[0]['coef_'][1].shape[1])"], {}), "((EnsembleData.NData, EnsembleData.modelCoef[0]['coef_'][1].shape[1]))\n", (5670, 5740), True, 'import numpy as np\n'), ((5986, 6012), 'numpy.mean', 'np.mean', (['intercept'], {'axis': '(0)'}), '(intercept, axis=0)\n', (5993, 6012), True, 'import numpy as np\n'), ((6128, 6149), 'numpy.mean', 'np.mean', (['coef'], {'axis': '(0)'}), '(coef, axis=0)\n', (6135, 6149), True, 'import numpy as np\n'), ((7995, 8032), 'TModelQualityData.TModelQualityData', 'TModelQualityData', ([], {'EData': 'EnsembleData'}), '(EData=EnsembleData)\n', (8012, 8032), False, 'from TModelQualityData import TModelQualityData\n'), ((4088, 4160), 'pandas.concat', 'pd.concat', (['[self.feature, self.target]'], {'axis': '(1)', 'sort': '(False)', 'join': '"""outer"""'}), "([self.feature, self.target], axis=1, sort=False, join='outer')\n", (4097, 4160), True, 'import pandas as pd\n'), ((5060, 5070), 'sys.exit', 'sys.exit', ([], {}), '()\n', (5068, 5070), False, 'import sys\n'), ((6652, 6692), 'Bootstrap.TBootstrap', 'TBootstrap', ([], {'data': 'intercept', 'Func': 'np.mean'}), '(data=intercept, Func=np.mean)\n', (6662, 6692), False, 'from Bootstrap import TBootstrap\n'), ((10681, 10709), 'numpy.array', 'np.array', (['[self.model.coef_]'], {}), '([self.model.coef_])\n', (10689, 10709), True, 'import numpy as np\n'), ((10889, 10922), 'numpy.array', 'np.array', (['[self.model.intercept_]'], {}), '([self.model.intercept_])\n', (10897, 10922), True, 'import numpy as np\n'), ((7451, 7494), 'Bootstrap.TBootstrap', 'TBootstrap', ([], {'data': 'coef[:, col]', 'Func': 'np.mean'}), '(data=coef[:, col], Func=np.mean)\n', (7461, 7494), False, 'from Bootstrap import TBootstrap\n'), ((5851, 5883), 'numpy.asarray', 'np.asarray', (["mcf['intercept_'][1]"], {}), "(mcf['intercept_'][1])\n", (5861, 5883), True, 'import numpy as np\n'), ((5914, 5941), 'numpy.asarray', 'np.asarray', (["mcf['coef_'][1]"], {}), "(mcf['coef_'][1])\n", (5924, 5941), True, 'import numpy as np\n')]
from __future__ import absolute_import, division, print_function from abc import abstractmethod, abstractproperty import numpy as np from keras import __version__ as __keras_version__ from keras import backend as K from keras.layers import Dense, Dot, Dropout, Input, Lambda, TimeDistributed from keras.models import Model from keras.regularizers import l2 from energyflow.archs.archbase import NNBase, _get_act_layer from energyflow.utils import iter_or_rep __all__ = [ # input constructor functions #'construct_efn_input', 'construct_pfn_input', # weight mask constructor functions #'construct_efn_weight_mask', 'construct_pfn_weight_mask', # network consstructor functions #'construct_distributed_dense', 'construct_latent', 'construct_dense', # full model classes 'EFN', 'PFN' ] ############################################################################### # Keras 2.2.5 fixes bug in 2.2.4 that affects our usage of the Dot layer ############################################################################### keras_version_tuple = tuple(map(int, __keras_version__.split('.'))) DOT_AXIS = 0 if keras_version_tuple <= (2, 2, 4) else 1 ############################################################################### # INPUT FUNCTIONS ############################################################################### def construct_efn_input(input_dim, zs_name=None, phats_name=None): # construct input tensors zs_input = Input(batch_shape=(None, None), name=zs_name) phats_input = Input(batch_shape=(None, None, input_dim), name=phats_name) return [zs_input, phats_input] def construct_pfn_input(input_dim, name=None): # construct input tensor return [Input(batch_shape=(None, None, input_dim), name=name)] ############################################################################### # WEIGHT MASK FUNCTIONS ############################################################################### def construct_efn_weight_mask(input_tensor, mask_val=0., name=None): """""" # define a function which maps the given mask_val to zero def efn_mask_func(X, mask_val=mask_val): # map mask_val to zero and leave everything else alone return X * K.cast(K.not_equal(X, mask_val), K.dtype(X)) mask_layer = Lambda(efn_mask_func, name=name) # return as lists for consistency return [mask_layer], [mask_layer(input_tensor)] def construct_pfn_weight_mask(input_tensor, mask_val=0., name=None): """""" # define a function which maps the given mask_val to zero def pfn_mask_func(X, mask_val=mask_val): # map mask_val to zero and return 1 elsewhere return K.cast(K.any(K.not_equal(X, mask_val), axis=-1), K.dtype(X)) mask_layer = Lambda(pfn_mask_func, name=name) # return as lists for consistency return [mask_layer], [mask_layer(input_tensor)] ############################################################################### # NETWORK FUNCTIONS ############################################################################### def construct_distributed_dense(input_tensor, sizes, acts='relu', k_inits='he_uniform', names=None, l2_regs=0.): """""" # repeat options if singletons acts, k_inits, names = iter_or_rep(acts), iter_or_rep(k_inits), iter_or_rep(names) l2_regs = iter_or_rep(l2_regs) # list of tensors layers, tensors = [], [input_tensor] # iterate over specified layers for s, act, k_init, name, l2_reg in zip(sizes, acts, k_inits, names, l2_regs): # define a dense layer that will be applied through time distributed kwargs = {} if l2_reg > 0.: kwargs.update({'kernel_regularizer': l2(l2_reg), 'bias_regularizer': l2(l2_reg)}) d_layer = Dense(s, kernel_initializer=k_init, **kwargs) # get layers and append them to list tdist_layer = TimeDistributed(d_layer, name=name) act_layer = _get_act_layer(act) layers.extend([tdist_layer, act_layer]) # get tensors and append them to list tensors.append(tdist_layer(tensors[-1])) tensors.append(act_layer(tensors[-1])) return layers, tensors def construct_latent(input_tensor, weight_tensor, dropout=0., name=None): """""" # lists of layers and tensors layers = [Dot(DOT_AXIS, name=name)] tensors = [layers[-1]([weight_tensor, input_tensor])] # apply dropout if specified if dropout > 0.: dr_name = None if name is None else '{}_dropout'.format(name) layers.append(Dropout(dropout, name=dr_name)) tensors.append(layers[-1](tensors[-1])) return layers, tensors def construct_dense(input_tensor, sizes, acts='relu', k_inits='he_uniform', dropouts=0., l2_regs=0., names=None): """""" # repeat options if singletons acts, k_inits, names = iter_or_rep(acts), iter_or_rep(k_inits), iter_or_rep(names) dropouts, l2_regs = iter_or_rep(dropouts), iter_or_rep(l2_regs) # lists of layers and tensors layers, tensors = [], [input_tensor] # iterate to make specified layers z = zip(sizes, acts, k_inits, dropouts, l2_regs, names) for s, act, k_init, dropout, l2_reg, name in z: # get layers and append them to list kwargs = ({'kernel_regularizer': l2(l2_reg), 'bias_regularizer': l2(l2_reg)} if l2_reg > 0. else {}) dense_layer = Dense(s, kernel_initializer=k_init, name=name, **kwargs) act_layer = _get_act_layer(act) layers.extend([dense_layer, act_layer]) # get tensors and append them to list tensors.append(dense_layer(tensors[-1])) tensors.append(act_layer(tensors[-1])) # apply dropout if specified if dropout > 0.: dr_name = None if name is None else '{}_dropout'.format(name) layers.append(Dropout(dropout, name=dr_name)) tensors.append(layers[-1](tensors[-1])) return layers, tensors ############################################################################### # SymmetricPerParticleNN - Base class for EFN-like models ############################################################################### class SymmetricPerParticleNN(NNBase): # EFN(*args, **kwargs) def _process_hps(self): r"""See [`ArchBase`](#archbase) for how to pass in hyperparameters as well as defaults common to all EnergyFlow neural network models. **Required EFN Hyperparameters** - **input_dim** : _int_ - The number of features for each particle. - **Phi_sizes** (formerly `ppm_sizes`) : {_tuple_, _list_} of _int_ - The sizes of the dense layers in the per-particle frontend module $\Phi$. The last element will be the number of latent observables that the model defines. - **F_sizes** (formerly `dense_sizes`) : {_tuple_, _list_} of _int_ - The sizes of the dense layers in the backend module $F$. **Default EFN Hyperparameters** - **Phi_acts**=`'relu'` (formerly `ppm_acts`) : {_tuple_, _list_} of _str_ or Keras activation - Activation functions(s) for the dense layers in the per-particle frontend module $\Phi$. A single string or activation layer will apply the same activation to all layers. Keras advanced activation layers are also accepted, either as strings (which use the default arguments) or as Keras `Layer` instances. If passing a single `Layer` instance, be aware that this layer will be used for all activations and may introduce weight sharing (such as with `PReLU`); it is recommended in this case to pass as many activations as there are layers in the model. See the [Keras activations docs](https://keras.io/activations/) for more detail. - **F_acts**=`'relu'` (formerly `dense_acts`) : {_tuple_, _list_} of _str_ or Keras activation - Activation functions(s) for the dense layers in the backend module $F$. A single string or activation layer will apply the same activation to all layers. - **Phi_k_inits**=`'he_uniform'` (formerly `ppm_k_inits`) : {_tuple_, _list_} of _str_ or Keras initializer - Kernel initializers for the dense layers in the per-particle frontend module $\Phi$. A single string will apply the same initializer to all layers. See the [Keras initializer docs](https: //keras.io/initializers/) for more detail. - **F_k_inits**=`'he_uniform'` (formerly `dense_k_inits`) : {_tuple_, _list_} of _str_ or Keras initializer - Kernel initializers for the dense layers in the backend module $F$. A single string will apply the same initializer to all layers. - **latent_dropout**=`0` : _float_ - Dropout rates for the summation layer that defines the value of the latent observables on the inputs. See the [Keras Dropout layer](https://keras.io/layers/core/#dropout) for more detail. - **F_dropouts**=`0` (formerly `dense_dropouts`) : {_tuple_, _list_} of _float_ - Dropout rates for the dense layers in the backend module $F$. A single float will apply the same dropout rate to all dense layers. - **Phi_l2_regs**=`0` : {_tuple_, _list_} of _float_ - $L_2$-regulatization strength for both the weights and biases of the layers in the $\Phi$ network. A single float will apply the same $L_2$-regulatization to all layers. - **F_l2_regs**=`0` : {_tuple_, _list_} of _float_ - $L_2$-regulatization strength for both the weights and biases of the layers in the $F$ network. A single float will apply the same $L_2$-regulatization to all layers. - **mask_val**=`0` : _float_ - The value for which particles with all features set equal to this value will be ignored. The [Keras Masking layer](https:// keras.io/layers/core/#masking) appears to have issues masking the biases of a network, so this has been implemented in a custom (and correct) manner since version `0.12.0`. """ # process generic NN hps super(SymmetricPerParticleNN, self)._process_hps() # required hyperparameters self.input_dim = self._proc_arg('input_dim') self.Phi_sizes = self._proc_arg('Phi_sizes', old='ppm_sizes') self.F_sizes = self._proc_arg('F_sizes', old='dense_sizes') # activations self.Phi_acts = iter_or_rep(self._proc_arg('Phi_acts', default='relu', old='ppm_acts')) self.F_acts = iter_or_rep(self._proc_arg('F_acts', default='relu', old='dense_acts')) # initializations self.Phi_k_inits = iter_or_rep(self._proc_arg('Phi_k_inits', default='he_uniform', old='ppm_k_inits')) self.F_k_inits = iter_or_rep(self._proc_arg('F_k_inits', default='he_uniform', old='dense_k_inits')) # regularizations self.latent_dropout = self._proc_arg('latent_dropout', default=0.) self.F_dropouts = iter_or_rep(self._proc_arg('F_dropouts', default=0., old='dense_dropouts')) self.Phi_l2_regs = iter_or_rep(self._proc_arg('Phi_l2_regs', default=0.)) self.F_l2_regs = iter_or_rep(self._proc_arg('F_l2_regs', default=0.)) # masking self.mask_val = self._proc_arg('mask_val', default=0.) self._verify_empty_hps() def _construct_model(self): # initialize dictionaries for holding indices of subnetworks self._layer_inds, self._tensor_inds = {}, {} # construct earlier parts of the model self._construct_inputs() self._construct_Phi() self._construct_latent() self._construct_F() # get output layers d_layer = Dense(self.output_dim, name=self._proc_name('output')) act_layer = _get_act_layer(self.output_act) # append output tensors self._tensors.append(d_layer(self.tensors[-1])) self._tensors.append(act_layer(self.tensors[-1])) # construct a new model self._model = Model(inputs=self.inputs, outputs=self.output) # compile model self._compile_model() @abstractmethod def _construct_inputs(self): pass def _construct_Phi(self): # get names names = [self._proc_name('tdist_{}'.format(i)) for i in range(len(self.Phi_sizes))] # determine begin inds layer_inds, tensor_inds = [len(self.layers)], [len(self.tensors)] # construct Phi Phi_layers, Phi_tensors = construct_distributed_dense(self.inputs[-1], self.Phi_sizes, acts=self.Phi_acts, k_inits=self.Phi_k_inits, names=names, l2_regs=self.Phi_l2_regs) # add layers and tensors to internal lists self._layers.extend(Phi_layers) self._tensors.extend(Phi_tensors) # determine end inds layer_inds.append(len(self.layers)) tensor_inds.append(len(self.tensors)) # store inds self._layer_inds['Phi'] = layer_inds self._tensor_inds['Phi'] = tensor_inds def _construct_latent(self): # determine begin inds layer_inds, tensor_inds = [len(self.layers)], [len(self.tensors)] # construct latent tensors latent_layers, latent_tensors = construct_latent(self._tensors[-1], self.weights, dropout=self.latent_dropout, name=self._proc_name('sum')) # add layers and tensors to internal lists self._layers.extend(latent_layers) self._tensors.extend(latent_tensors) # determine end inds layer_inds.append(len(self.layers)) tensor_inds.append(len(self.tensors)) # store inds self._layer_inds['latent'] = layer_inds self._tensor_inds['latent'] = tensor_inds def _construct_F(self): # get names names = [self._proc_name('dense_{}'.format(i)) for i in range(len(self.F_sizes))] # determine begin inds layer_inds, tensor_inds = [len(self.layers)], [len(self.tensors)] # construct F F_layers, F_tensors = construct_dense(self.latent[-1], self.F_sizes, acts=self.F_acts, k_inits=self.F_k_inits, dropouts=self.F_dropouts, names=names, l2_regs=self.F_l2_regs) # add layers and tensors to internal lists self._layers.extend(F_layers) self._tensors.extend(F_tensors) # determine end inds layer_inds.append(len(self.layers)) tensor_inds.append(len(self.tensors)) # store inds self._layer_inds['F'] = layer_inds self._tensor_inds['F'] = tensor_inds @abstractproperty def inputs(self): pass @abstractproperty def weights(self): pass @property def Phi(self): r"""List of tensors corresponding to the layers in the $\Phi$ network.""" begin, end = self._tensor_inds['Phi'] return self._tensors[begin:end] @property def latent(self): """List of tensors corresponding to the summation layer in the network, including any dropout layer if present. """ begin, end = self._tensor_inds['latent'] return self._tensors[begin:end] @property def F(self): """List of tensors corresponding to the layers in the $F$ network.""" begin, end = self._tensor_inds['F'] return self._tensors[begin:end] @property def output(self): """Output tensor for the model.""" return self._tensors[-1] @property def layers(self): """List of all layers in the model.""" return self._layers @property def tensors(self): """List of all tensors in the model.""" return self._tensors ############################################################################### # EFN - Energy flow network class ############################################################################### class EFN(SymmetricPerParticleNN): """Energy Flow Network (EFN) architecture.""" def _construct_inputs(self): # construct input tensors self._inputs = construct_efn_input(self.input_dim, zs_name=self._proc_name('zs_input'), phats_name=self._proc_name('phats_input')) # construct weight tensor mask_layers, mask_tensors = construct_efn_weight_mask(self.inputs[0], mask_val=self.mask_val, name=self._proc_name('mask')) self._weights = mask_tensors[0] # begin list of tensors with the inputs self._tensors = [self.inputs, self.weights] # begin list of layers with the mask layer self._layers = [mask_layers[0]] @property def inputs(self): """List of input tensors to the model. EFNs have two input tensors: `inputs[0]` corresponds to the `zs` input and `inputs[1]` corresponds to the `phats` input. """ return self._inputs @property def weights(self): """Weight tensor for the model. This is the `zs` input where entries equal to `mask_val` have been set to zero. """ return self._weights # eval_filters(patch, n=100, prune=True) def eval_filters(self, patch, n=100, prune=True): """Evaluates the latent space filters of this model on a patch of the two-dimensional geometric input space. **Arguments** - **patch** : {_tuple_, _list_} of _float_ - Specifies the patch of the geometric input space to be evaluated. A list of length 4 is interpretted as `[xmin, ymin, xmax, ymax]`. Passing a single float `R` is equivalent to `[-R,-R,R,R]`. - **n** : {_tuple_, _list_} of _int_ - The number of grid points on which to evaluate the filters. A list of length 2 is interpretted as `[nx, ny]` where `nx` is the number of points along the x (or first) dimension and `ny` is the number of points along the y (or second) dimension. - **prune** : _bool_ - Whether to remove filters that are all zero (which happens sometimes due to dying ReLUs). **Returns** - (_numpy.ndarray_, _numpy.ndarray_, _numpy.ndarray_) - Returns three arrays, `(X, Y, Z)`, where `X` and `Y` have shape `(nx, ny)` and are arrays of the values of the geometric inputs in the specified patch. `Z` has shape `(num_filters, nx, ny)` and is the value of the different filters at each point. """ # determine patch of xy space to evaluate filters on if isinstance(patch, (float, int)): if patch > 0: xmin, ymin, xmax, ymax = -patch, -patch, patch, patch else: ValueError('patch must be positive when passing as a single number.') else: xmin, ymin, xmax, ymax = patch # determine number of pixels in each dimension if isinstance(n, int): nx = ny = n else: nx, ny = n # construct grid of inputs xs, ys = np.linspace(xmin, xmax, nx), np.linspace(ymin, ymax, ny) X, Y = np.meshgrid(xs, ys, indexing='ij') XY = np.asarray([X, Y]).reshape((1, 2, nx*ny)).transpose((0, 2, 1)) # handle weirdness of Keras/tensorflow old_keras = (keras_version_tuple <= (2, 2, 5)) s = self.Phi_sizes[-1] if len(self.Phi_sizes) else self.input_dim in_t, out_t = self.inputs[1], self._tensors[self._tensor_inds['latent'][0] - 1] # construct function kf = K.function([in_t] if old_keras else in_t, [out_t] if old_keras else out_t) # evaluate function Z = kf([XY] if old_keras else XY)[0].reshape(nx, ny, s).transpose((2, 0, 1)) # prune filters that are off if prune: return X, Y, Z[[not (z == 0).all() for z in Z]] return X, Y, Z ############################################################################### # PFN - Particle flow network class ############################################################################### class PFN(SymmetricPerParticleNN): """Particle Flow Network (PFN) architecture. Accepts the same hyperparameters as the [`EFN`](#EFN).""" # PFN(*args, **kwargs) def _construct_inputs(self): """""" # need this for autogen docs # construct input tensor self._inputs = construct_pfn_input(self.input_dim, name=self._proc_name('input')) # construct weight tensor mask_layers, mask_tensors = construct_pfn_weight_mask(self.inputs[0], mask_val=self.mask_val, name=self._proc_name('mask')) self._weights = mask_tensors[0] # begin list of tensors with the inputs self._tensors = [self.inputs, self.weights] # begin list of layers with the mask layer self._layers = [mask_layers[0]] @property def inputs(self): """List of input tensors to the model. PFNs have one input tensor corresponding to the `ps` input. """ return self._inputs @property def weights(self): """Weight tensor for the model. A weight of `0` is assigned to any particle which has all features equal to `mask_val`, and `1` is assigned otherwise. """ return self._weights
[ "keras.backend.dtype", "energyflow.archs.archbase._get_act_layer", "keras.backend.function", "keras.layers.Lambda", "keras.__version__.split", "keras.layers.TimeDistributed", "keras.layers.Dot", "keras.backend.not_equal", "numpy.asarray", "keras.layers.Input", "numpy.linspace", "energyflow.utils.iter_or_rep", "keras.models.Model", "keras.regularizers.l2", "keras.layers.Dense", "numpy.meshgrid", "keras.layers.Dropout" ]
[((1477, 1522), 'keras.layers.Input', 'Input', ([], {'batch_shape': '(None, None)', 'name': 'zs_name'}), '(batch_shape=(None, None), name=zs_name)\n', (1482, 1522), False, 'from keras.layers import Dense, Dot, Dropout, Input, Lambda, TimeDistributed\n'), ((1541, 1600), 'keras.layers.Input', 'Input', ([], {'batch_shape': '(None, None, input_dim)', 'name': 'phats_name'}), '(batch_shape=(None, None, input_dim), name=phats_name)\n', (1546, 1600), False, 'from keras.layers import Dense, Dot, Dropout, Input, Lambda, TimeDistributed\n'), ((2311, 2343), 'keras.layers.Lambda', 'Lambda', (['efn_mask_func'], {'name': 'name'}), '(efn_mask_func, name=name)\n', (2317, 2343), False, 'from keras.layers import Dense, Dot, Dropout, Input, Lambda, TimeDistributed\n'), ((2773, 2805), 'keras.layers.Lambda', 'Lambda', (['pfn_mask_func'], {'name': 'name'}), '(pfn_mask_func, name=name)\n', (2779, 2805), False, 'from keras.layers import Dense, Dot, Dropout, Input, Lambda, TimeDistributed\n'), ((3408, 3428), 'energyflow.utils.iter_or_rep', 'iter_or_rep', (['l2_regs'], {}), '(l2_regs)\n', (3419, 3428), False, 'from energyflow.utils import iter_or_rep\n'), ((1097, 1125), 'keras.__version__.split', '__keras_version__.split', (['"""."""'], {}), "('.')\n", (1120, 1125), True, 'from keras import __version__ as __keras_version__\n'), ((1727, 1780), 'keras.layers.Input', 'Input', ([], {'batch_shape': '(None, None, input_dim)', 'name': 'name'}), '(batch_shape=(None, None, input_dim), name=name)\n', (1732, 1780), False, 'from keras.layers import Dense, Dot, Dropout, Input, Lambda, TimeDistributed\n'), ((3334, 3351), 'energyflow.utils.iter_or_rep', 'iter_or_rep', (['acts'], {}), '(acts)\n', (3345, 3351), False, 'from energyflow.utils import iter_or_rep\n'), ((3353, 3373), 'energyflow.utils.iter_or_rep', 'iter_or_rep', (['k_inits'], {}), '(k_inits)\n', (3364, 3373), False, 'from energyflow.utils import iter_or_rep\n'), ((3375, 3393), 'energyflow.utils.iter_or_rep', 'iter_or_rep', (['names'], {}), '(names)\n', (3386, 3393), False, 'from energyflow.utils import iter_or_rep\n'), ((3860, 3905), 'keras.layers.Dense', 'Dense', (['s'], {'kernel_initializer': 'k_init'}), '(s, kernel_initializer=k_init, **kwargs)\n', (3865, 3905), False, 'from keras.layers import Dense, Dot, Dropout, Input, Lambda, TimeDistributed\n'), ((3974, 4009), 'keras.layers.TimeDistributed', 'TimeDistributed', (['d_layer'], {'name': 'name'}), '(d_layer, name=name)\n', (3989, 4009), False, 'from keras.layers import Dense, Dot, Dropout, Input, Lambda, TimeDistributed\n'), ((4030, 4049), 'energyflow.archs.archbase._get_act_layer', '_get_act_layer', (['act'], {}), '(act)\n', (4044, 4049), False, 'from energyflow.archs.archbase import NNBase, _get_act_layer\n'), ((4404, 4428), 'keras.layers.Dot', 'Dot', (['DOT_AXIS'], {'name': 'name'}), '(DOT_AXIS, name=name)\n', (4407, 4428), False, 'from keras.layers import Dense, Dot, Dropout, Input, Lambda, TimeDistributed\n'), ((4999, 5016), 'energyflow.utils.iter_or_rep', 'iter_or_rep', (['acts'], {}), '(acts)\n', (5010, 5016), False, 'from energyflow.utils import iter_or_rep\n'), ((5018, 5038), 'energyflow.utils.iter_or_rep', 'iter_or_rep', (['k_inits'], {}), '(k_inits)\n', (5029, 5038), False, 'from energyflow.utils import iter_or_rep\n'), ((5040, 5058), 'energyflow.utils.iter_or_rep', 'iter_or_rep', (['names'], {}), '(names)\n', (5051, 5058), False, 'from energyflow.utils import iter_or_rep\n'), ((5083, 5104), 'energyflow.utils.iter_or_rep', 'iter_or_rep', (['dropouts'], {}), '(dropouts)\n', (5094, 5104), False, 'from energyflow.utils import iter_or_rep\n'), ((5106, 5126), 'energyflow.utils.iter_or_rep', 'iter_or_rep', (['l2_regs'], {}), '(l2_regs)\n', (5117, 5126), False, 'from energyflow.utils import iter_or_rep\n'), ((5551, 5607), 'keras.layers.Dense', 'Dense', (['s'], {'kernel_initializer': 'k_init', 'name': 'name'}), '(s, kernel_initializer=k_init, name=name, **kwargs)\n', (5556, 5607), False, 'from keras.layers import Dense, Dot, Dropout, Input, Lambda, TimeDistributed\n'), ((5628, 5647), 'energyflow.archs.archbase._get_act_layer', '_get_act_layer', (['act'], {}), '(act)\n', (5642, 5647), False, 'from energyflow.archs.archbase import NNBase, _get_act_layer\n'), ((12561, 12592), 'energyflow.archs.archbase._get_act_layer', '_get_act_layer', (['self.output_act'], {}), '(self.output_act)\n', (12575, 12592), False, 'from energyflow.archs.archbase import NNBase, _get_act_layer\n'), ((12795, 12841), 'keras.models.Model', 'Model', ([], {'inputs': 'self.inputs', 'outputs': 'self.output'}), '(inputs=self.inputs, outputs=self.output)\n', (12800, 12841), False, 'from keras.models import Model\n'), ((20572, 20606), 'numpy.meshgrid', 'np.meshgrid', (['xs', 'ys'], {'indexing': '"""ij"""'}), "(xs, ys, indexing='ij')\n", (20583, 20606), True, 'import numpy as np\n'), ((20991, 21065), 'keras.backend.function', 'K.function', (['([in_t] if old_keras else in_t)', '([out_t] if old_keras else out_t)'], {}), '([in_t] if old_keras else in_t, [out_t] if old_keras else out_t)\n', (21001, 21065), True, 'from keras import backend as K\n'), ((2743, 2753), 'keras.backend.dtype', 'K.dtype', (['X'], {}), '(X)\n', (2750, 2753), True, 'from keras import backend as K\n'), ((4635, 4665), 'keras.layers.Dropout', 'Dropout', (['dropout'], {'name': 'dr_name'}), '(dropout, name=dr_name)\n', (4642, 4665), False, 'from keras.layers import Dense, Dot, Dropout, Input, Lambda, TimeDistributed\n'), ((20500, 20527), 'numpy.linspace', 'np.linspace', (['xmin', 'xmax', 'nx'], {}), '(xmin, xmax, nx)\n', (20511, 20527), True, 'import numpy as np\n'), ((20529, 20556), 'numpy.linspace', 'np.linspace', (['ymin', 'ymax', 'ny'], {}), '(ymin, ymax, ny)\n', (20540, 20556), True, 'import numpy as np\n'), ((2255, 2279), 'keras.backend.not_equal', 'K.not_equal', (['X', 'mask_val'], {}), '(X, mask_val)\n', (2266, 2279), True, 'from keras import backend as K\n'), ((2281, 2291), 'keras.backend.dtype', 'K.dtype', (['X'], {}), '(X)\n', (2288, 2291), True, 'from keras import backend as K\n'), ((2707, 2731), 'keras.backend.not_equal', 'K.not_equal', (['X', 'mask_val'], {}), '(X, mask_val)\n', (2718, 2731), True, 'from keras import backend as K\n'), ((5442, 5452), 'keras.regularizers.l2', 'l2', (['l2_reg'], {}), '(l2_reg)\n', (5444, 5452), False, 'from keras.regularizers import l2\n'), ((5474, 5484), 'keras.regularizers.l2', 'l2', (['l2_reg'], {}), '(l2_reg)\n', (5476, 5484), False, 'from keras.regularizers import l2\n'), ((6002, 6032), 'keras.layers.Dropout', 'Dropout', (['dropout'], {'name': 'dr_name'}), '(dropout, name=dr_name)\n', (6009, 6032), False, 'from keras.layers import Dense, Dot, Dropout, Input, Lambda, TimeDistributed\n'), ((3797, 3807), 'keras.regularizers.l2', 'l2', (['l2_reg'], {}), '(l2_reg)\n', (3799, 3807), False, 'from keras.regularizers import l2\n'), ((3829, 3839), 'keras.regularizers.l2', 'l2', (['l2_reg'], {}), '(l2_reg)\n', (3831, 3839), False, 'from keras.regularizers import l2\n'), ((20620, 20638), 'numpy.asarray', 'np.asarray', (['[X, Y]'], {}), '([X, Y])\n', (20630, 20638), True, 'import numpy as np\n')]
import tensorflow as tf import numpy as np from blackbox_mpc.optimizers.optimizer_base import OptimizerBase class PSOOptimizer(OptimizerBase): def __init__(self, env_action_space, env_observation_space, planning_horizon=50, max_iterations=5, population_size=500, num_agents=5, c1=tf.constant(0.3, dtype=tf.float32), c2=tf.constant(0.5, dtype=tf.float32), w=tf.constant(0.2, dtype=tf.float32), initial_velocity_fraction=tf.constant(0.01, dtype=tf.float32)): """ This class defines the particle swarm optimizer. (https://www.cs.tufts.edu/comp/150GA/homeworks/hw3/_reading6%201995%20particle%20swarming.pdf) Parameters --------- env_action_space: gym.ActionSpace Defines the action space of the gym environment. env_observation_space: gym.ObservationSpace Defines the observation space of the gym environment. planning_horizon: Int Defines the planning horizon for the optimizer (how many steps to lookahead and optimize for). max_iterations: tf.int32 Defines the maximimum iterations for the CMAES optimizer to refine its guess for the optimal solution. population_size: tf.int32 Defines the population size of the particles evaluated at each iteration. num_agents: tf.int32 Defines the number of runner running in parallel c1: tf.float32 Defines the fraction of the local best known position direction. c2: tf.float32 Defines the fraction of the global best known position direction. w: tf.float32 Defines the fraction of the current velocity to use. initial_velocity_fraction: tf.float32 Defines the initial velocity fraction out of the action space. """ super(PSOOptimizer, self).__init__(name=None, planning_horizon=planning_horizon, max_iterations=max_iterations, num_agents=num_agents, env_action_space=env_action_space, env_observation_space= env_observation_space) self._solution_dim = [self._num_agents, tf.constant(self._planning_horizon, dtype=tf.int32), self._dim_U] self._solution_size = tf.reduce_prod(self._solution_dim) self._population_size = population_size self._particle_positions = tf.Variable(tf.zeros([self._population_size, *self._solution_dim], dtype=tf.float32)) self._particle_velocities = tf.Variable(tf.zeros([self._population_size, *self._solution_dim], dtype=tf.float32)) self._particle_best_known_position = tf.Variable(tf.zeros([self._population_size, *self._solution_dim], dtype=tf.float32)) self._particle_best_known_reward = tf.Variable(tf.zeros([self._population_size, self._num_agents], dtype=tf.float32)) #global self._global_best_known_position = tf.Variable(tf.zeros([*self._solution_dim], dtype=tf.float32)) self._global_best_known_reward = tf.Variable(tf.zeros([self._num_agents], dtype=tf.float32)) solution_variance_values = np.tile(np.square(self._action_lower_bound - self._action_upper_bound) / 16, [self._planning_horizon * self._num_agents, 1]) solution_variance_values = solution_variance_values.reshape([self._num_agents, self._planning_horizon, -1]) self._solution_variance = tf.constant(solution_variance_values, dtype=tf.float32) self._c1 = c1 self._c2 = c2 self._w = w self._initial_velocity_fraction = initial_velocity_fraction self._solution = tf.Variable(tf.zeros([self._num_agents, self._dim_U], dtype=tf.float32)) @tf.function def _optimize(self, current_state, time_step): def continue_condition(t, position): result = tf.less(t, self._max_iterations) return result def iterate(t, position): #evaluate each of the particles # Evaluate and sort solutions feasible_particle_positions = tf.clip_by_value(self._particle_positions, self._action_lower_bound_horizon, self._action_upper_bound_horizon) penalty = tf.norm(tf.reshape(self._particle_positions - feasible_particle_positions, [self._population_size, self._num_agents, -1]), axis=2) ** 2 self._particle_positions.assign(feasible_particle_positions) rewards = self._trajectory_evaluator(current_state, self._particle_positions, time_step) - penalty #set the best local known position condition = tf.less(self._particle_best_known_reward, rewards) new_particle_best_known_position = tf.where(tf.expand_dims(tf.expand_dims(condition, -1), -1), self._particle_positions, self._particle_best_known_position) self._particle_best_known_position.assign(new_particle_best_known_position) new_particle_best_known_reward = tf.where(condition, rewards, self._particle_best_known_reward) self._particle_best_known_reward.assign(new_particle_best_known_reward) #get the global best now global_best_known_position_index = tf.math.argmax(self._particle_best_known_reward) samples = tf.transpose(self._particle_best_known_position, [1, 0, 2, 3]) global_best_known_position_index = tf.cast(global_best_known_position_index, dtype=tf.int32) + tf.range(0, samples.shape[0], dtype=tf.int32) * samples.shape[1] samples = tf.reshape(samples, [-1, *samples.shape[2:]]) self._global_best_known_position.assign(tf.gather(samples, global_best_known_position_index)) samples = tf.reshape(self._particle_best_known_reward, [-1]) self._global_best_known_reward.assign(tf.gather(samples, global_best_known_position_index)) #calculate the velocity now adapted_particle_velocities = (self._particle_velocities * self._w) + \ (self._particle_best_known_position - self._particle_positions) * self._c1 * tf.random.normal(shape=[], dtype=tf.float32) + \ (self._global_best_known_position - self._particle_positions) * self._c2 * tf.random.normal(shape=[], dtype=tf.float32) self._particle_velocities.assign(adapted_particle_velocities) self._particle_positions.assign(self._particle_positions + self._particle_velocities) return t + tf.constant(1, dtype=tf.int32), self._global_best_known_position _ = tf.while_loop(cond=continue_condition, body=iterate, loop_vars=[tf.constant(0, dtype=tf.int32), self._global_best_known_position]) self._solution.assign(self._global_best_known_position[:, 0, :]) # update the particles position for the next iteration lower_bound_dist = self._global_best_known_position - self._action_lower_bound_horizon upper_bound_dist = self._action_upper_bound_horizon - self._global_best_known_position constrained_variance = tf.minimum(tf.minimum(tf.square(lower_bound_dist / tf.constant(2, dtype=tf.float32)), tf.square(upper_bound_dist / tf.constant(2, dtype=tf.float32))), self._solution_variance) samples_positions = tf.random.truncated_normal([self._population_size, *self._solution_dim], tf.concat([self._global_best_known_position[:, 1:], tf.expand_dims(self._global_best_known_position[:, -1], 1)], 1), tf.sqrt(constrained_variance), dtype=tf.float32) action_space = self._action_upper_bound_horizon - self._action_lower_bound_horizon initial_velocity = self._initial_velocity_fraction * action_space samples_velocities = tf.random.uniform([self._population_size, *self._solution_dim], -initial_velocity, initial_velocity, dtype=tf.float32) self._particle_positions.assign(samples_positions) self._particle_velocities.assign(samples_velocities) self._particle_best_known_position.assign(samples_positions) self._particle_best_known_reward.assign(tf.fill([self._population_size, self._num_agents], tf.constant(-np.inf, dtype=tf.float32))) self._global_best_known_reward.assign(tf.fill([self._num_agents], tf.constant(-np.inf, dtype=tf.float32))) #end update particles resulting_action = self._solution return resulting_action def reset(self): """ This method resets the optimizer to its default state at the beginning of the trajectory/episode. """ samples_positions = tf.random.uniform([self._population_size, *self._solution_dim], self._action_lower_bound_horizon, self._action_upper_bound_horizon, dtype=tf.float32) action_space = self._action_upper_bound_horizon - self._action_lower_bound_horizon initial_velocity = self._initial_velocity_fraction * action_space samples_velocities = tf.random.uniform([self._population_size, *self._solution_dim], -initial_velocity, initial_velocity, dtype=tf.float32) self._particle_positions.assign(samples_positions) self._particle_velocities.assign(samples_velocities) self._particle_best_known_position.assign(samples_positions) self._particle_best_known_reward.assign(tf.fill([self._population_size, self._num_agents], tf.constant(-np.inf, dtype=tf.float32))) self._global_best_known_reward.assign(tf.fill([self._num_agents], tf.constant(-np.inf, dtype=tf.float32))) return
[ "tensorflow.random.uniform", "tensorflow.math.argmax", "tensorflow.random.normal", "tensorflow.reduce_prod", "tensorflow.transpose", "numpy.square", "tensorflow.range", "tensorflow.where", "tensorflow.sqrt", "tensorflow.constant", "tensorflow.clip_by_value", "tensorflow.gather", "tensorflow.reshape", "tensorflow.less", "tensorflow.expand_dims", "tensorflow.cast", "tensorflow.zeros" ]
[((320, 354), 'tensorflow.constant', 'tf.constant', (['(0.3)'], {'dtype': 'tf.float32'}), '(0.3, dtype=tf.float32)\n', (331, 354), True, 'import tensorflow as tf\n'), ((376, 410), 'tensorflow.constant', 'tf.constant', (['(0.5)'], {'dtype': 'tf.float32'}), '(0.5, dtype=tf.float32)\n', (387, 410), True, 'import tensorflow as tf\n'), ((414, 448), 'tensorflow.constant', 'tf.constant', (['(0.2)'], {'dtype': 'tf.float32'}), '(0.2, dtype=tf.float32)\n', (425, 448), True, 'import tensorflow as tf\n'), ((493, 528), 'tensorflow.constant', 'tf.constant', (['(0.01)'], {'dtype': 'tf.float32'}), '(0.01, dtype=tf.float32)\n', (504, 528), True, 'import tensorflow as tf\n'), ((2504, 2538), 'tensorflow.reduce_prod', 'tf.reduce_prod', (['self._solution_dim'], {}), '(self._solution_dim)\n', (2518, 2538), True, 'import tensorflow as tf\n'), ((3794, 3849), 'tensorflow.constant', 'tf.constant', (['solution_variance_values'], {'dtype': 'tf.float32'}), '(solution_variance_values, dtype=tf.float32)\n', (3805, 3849), True, 'import tensorflow as tf\n'), ((8720, 8843), 'tensorflow.random.uniform', 'tf.random.uniform', (['[self._population_size, *self._solution_dim]', '(-initial_velocity)', 'initial_velocity'], {'dtype': 'tf.float32'}), '([self._population_size, *self._solution_dim], -\n initial_velocity, initial_velocity, dtype=tf.float32)\n', (8737, 8843), True, 'import tensorflow as tf\n'), ((9726, 9885), 'tensorflow.random.uniform', 'tf.random.uniform', (['[self._population_size, *self._solution_dim]', 'self._action_lower_bound_horizon', 'self._action_upper_bound_horizon'], {'dtype': 'tf.float32'}), '([self._population_size, *self._solution_dim], self.\n _action_lower_bound_horizon, self._action_upper_bound_horizon, dtype=tf\n .float32)\n', (9743, 9885), True, 'import tensorflow as tf\n'), ((10116, 10239), 'tensorflow.random.uniform', 'tf.random.uniform', (['[self._population_size, *self._solution_dim]', '(-initial_velocity)', 'initial_velocity'], {'dtype': 'tf.float32'}), '([self._population_size, *self._solution_dim], -\n initial_velocity, initial_velocity, dtype=tf.float32)\n', (10133, 10239), True, 'import tensorflow as tf\n'), ((2408, 2459), 'tensorflow.constant', 'tf.constant', (['self._planning_horizon'], {'dtype': 'tf.int32'}), '(self._planning_horizon, dtype=tf.int32)\n', (2419, 2459), True, 'import tensorflow as tf\n'), ((2634, 2706), 'tensorflow.zeros', 'tf.zeros', (['[self._population_size, *self._solution_dim]'], {'dtype': 'tf.float32'}), '([self._population_size, *self._solution_dim], dtype=tf.float32)\n', (2642, 2706), True, 'import tensorflow as tf\n'), ((2756, 2828), 'tensorflow.zeros', 'tf.zeros', (['[self._population_size, *self._solution_dim]'], {'dtype': 'tf.float32'}), '([self._population_size, *self._solution_dim], dtype=tf.float32)\n', (2764, 2828), True, 'import tensorflow as tf\n'), ((2887, 2959), 'tensorflow.zeros', 'tf.zeros', (['[self._population_size, *self._solution_dim]'], {'dtype': 'tf.float32'}), '([self._population_size, *self._solution_dim], dtype=tf.float32)\n', (2895, 2959), True, 'import tensorflow as tf\n'), ((3082, 3151), 'tensorflow.zeros', 'tf.zeros', (['[self._population_size, self._num_agents]'], {'dtype': 'tf.float32'}), '([self._population_size, self._num_agents], dtype=tf.float32)\n', (3090, 3151), True, 'import tensorflow as tf\n'), ((3289, 3338), 'tensorflow.zeros', 'tf.zeros', (['[*self._solution_dim]'], {'dtype': 'tf.float32'}), '([*self._solution_dim], dtype=tf.float32)\n', (3297, 3338), True, 'import tensorflow as tf\n'), ((3393, 3439), 'tensorflow.zeros', 'tf.zeros', (['[self._num_agents]'], {'dtype': 'tf.float32'}), '([self._num_agents], dtype=tf.float32)\n', (3401, 3439), True, 'import tensorflow as tf\n'), ((4019, 4078), 'tensorflow.zeros', 'tf.zeros', (['[self._num_agents, self._dim_U]'], {'dtype': 'tf.float32'}), '([self._num_agents, self._dim_U], dtype=tf.float32)\n', (4027, 4078), True, 'import tensorflow as tf\n'), ((4215, 4247), 'tensorflow.less', 'tf.less', (['t', 'self._max_iterations'], {}), '(t, self._max_iterations)\n', (4222, 4247), True, 'import tensorflow as tf\n'), ((4437, 4551), 'tensorflow.clip_by_value', 'tf.clip_by_value', (['self._particle_positions', 'self._action_lower_bound_horizon', 'self._action_upper_bound_horizon'], {}), '(self._particle_positions, self._action_lower_bound_horizon,\n self._action_upper_bound_horizon)\n', (4453, 4551), True, 'import tensorflow as tf\n'), ((5051, 5101), 'tensorflow.less', 'tf.less', (['self._particle_best_known_reward', 'rewards'], {}), '(self._particle_best_known_reward, rewards)\n', (5058, 5101), True, 'import tensorflow as tf\n'), ((5461, 5523), 'tensorflow.where', 'tf.where', (['condition', 'rewards', 'self._particle_best_known_reward'], {}), '(condition, rewards, self._particle_best_known_reward)\n', (5469, 5523), True, 'import tensorflow as tf\n'), ((5747, 5795), 'tensorflow.math.argmax', 'tf.math.argmax', (['self._particle_best_known_reward'], {}), '(self._particle_best_known_reward)\n', (5761, 5795), True, 'import tensorflow as tf\n'), ((5818, 5880), 'tensorflow.transpose', 'tf.transpose', (['self._particle_best_known_position', '[1, 0, 2, 3]'], {}), '(self._particle_best_known_position, [1, 0, 2, 3])\n', (5830, 5880), True, 'import tensorflow as tf\n'), ((6075, 6120), 'tensorflow.reshape', 'tf.reshape', (['samples', '[-1, *samples.shape[2:]]'], {}), '(samples, [-1, *samples.shape[2:]])\n', (6085, 6120), True, 'import tensorflow as tf\n'), ((6249, 6299), 'tensorflow.reshape', 'tf.reshape', (['self._particle_best_known_reward', '[-1]'], {}), '(self._particle_best_known_reward, [-1])\n', (6259, 6299), True, 'import tensorflow as tf\n'), ((8422, 8451), 'tensorflow.sqrt', 'tf.sqrt', (['constrained_variance'], {}), '(constrained_variance)\n', (8429, 8451), True, 'import tensorflow as tf\n'), ((3484, 3546), 'numpy.square', 'np.square', (['(self._action_lower_bound - self._action_upper_bound)'], {}), '(self._action_lower_bound - self._action_upper_bound)\n', (3493, 3546), True, 'import numpy as np\n'), ((5928, 5985), 'tensorflow.cast', 'tf.cast', (['global_best_known_position_index'], {'dtype': 'tf.int32'}), '(global_best_known_position_index, dtype=tf.int32)\n', (5935, 5985), True, 'import tensorflow as tf\n'), ((6173, 6225), 'tensorflow.gather', 'tf.gather', (['samples', 'global_best_known_position_index'], {}), '(samples, global_best_known_position_index)\n', (6182, 6225), True, 'import tensorflow as tf\n'), ((6350, 6402), 'tensorflow.gather', 'tf.gather', (['samples', 'global_best_known_position_index'], {}), '(samples, global_best_known_position_index)\n', (6359, 6402), True, 'import tensorflow as tf\n'), ((9230, 9268), 'tensorflow.constant', 'tf.constant', (['(-np.inf)'], {'dtype': 'tf.float32'}), '(-np.inf, dtype=tf.float32)\n', (9241, 9268), True, 'import tensorflow as tf\n'), ((9399, 9437), 'tensorflow.constant', 'tf.constant', (['(-np.inf)'], {'dtype': 'tf.float32'}), '(-np.inf, dtype=tf.float32)\n', (9410, 9437), True, 'import tensorflow as tf\n'), ((10626, 10664), 'tensorflow.constant', 'tf.constant', (['(-np.inf)'], {'dtype': 'tf.float32'}), '(-np.inf, dtype=tf.float32)\n', (10637, 10664), True, 'import tensorflow as tf\n'), ((10795, 10833), 'tensorflow.constant', 'tf.constant', (['(-np.inf)'], {'dtype': 'tf.float32'}), '(-np.inf, dtype=tf.float32)\n', (10806, 10833), True, 'import tensorflow as tf\n'), ((4637, 4755), 'tensorflow.reshape', 'tf.reshape', (['(self._particle_positions - feasible_particle_positions)', '[self._population_size, self._num_agents, -1]'], {}), '(self._particle_positions - feasible_particle_positions, [self.\n _population_size, self._num_agents, -1])\n', (4647, 4755), True, 'import tensorflow as tf\n'), ((5174, 5203), 'tensorflow.expand_dims', 'tf.expand_dims', (['condition', '(-1)'], {}), '(condition, -1)\n', (5188, 5203), True, 'import tensorflow as tf\n'), ((5988, 6033), 'tensorflow.range', 'tf.range', (['(0)', 'samples.shape[0]'], {'dtype': 'tf.int32'}), '(0, samples.shape[0], dtype=tf.int32)\n', (5996, 6033), True, 'import tensorflow as tf\n'), ((6815, 6859), 'tensorflow.random.normal', 'tf.random.normal', ([], {'shape': '[]', 'dtype': 'tf.float32'}), '(shape=[], dtype=tf.float32)\n', (6831, 6859), True, 'import tensorflow as tf\n'), ((7055, 7085), 'tensorflow.constant', 'tf.constant', (['(1)'], {'dtype': 'tf.int32'}), '(1, dtype=tf.int32)\n', (7066, 7085), True, 'import tensorflow as tf\n'), ((7196, 7226), 'tensorflow.constant', 'tf.constant', (['(0)'], {'dtype': 'tf.int32'}), '(0, dtype=tf.int32)\n', (7207, 7226), True, 'import tensorflow as tf\n'), ((8221, 8279), 'tensorflow.expand_dims', 'tf.expand_dims', (['self._global_best_known_position[:, -1]', '(1)'], {}), '(self._global_best_known_position[:, -1], 1)\n', (8235, 8279), True, 'import tensorflow as tf\n'), ((6649, 6693), 'tensorflow.random.normal', 'tf.random.normal', ([], {'shape': '[]', 'dtype': 'tf.float32'}), '(shape=[], dtype=tf.float32)\n', (6665, 6693), True, 'import tensorflow as tf\n'), ((7671, 7703), 'tensorflow.constant', 'tf.constant', (['(2)'], {'dtype': 'tf.float32'}), '(2, dtype=tf.float32)\n', (7682, 7703), True, 'import tensorflow as tf\n'), ((7788, 7820), 'tensorflow.constant', 'tf.constant', (['(2)'], {'dtype': 'tf.float32'}), '(2, dtype=tf.float32)\n', (7799, 7820), True, 'import tensorflow as tf\n')]
import numpy as np import porespy as ps import matplotlib.pyplot as plt import openpnm as op np.random.seed(0) def test_snow_example_script(): plot = False im1 = ps.generators.blobs(shape=[600, 400], porosity=None, blobiness=1) < 0.4 im2 = ps.generators.blobs(shape=[600, 400], porosity=None, blobiness=1) < 0.7 phases = im1 + (im2 * ~im1)*2 # phases = phases > 0 snow_n = ps.networks.snow2(phases, phase_alias={1: 'solid', 2: 'void'}, boundary_width=5, accuracy='high', parallelization=None) assert snow_n.regions.max() == 211 # Remove all but 1 pixel-width of boundary regions temp = ps.tools.extract_subsection(im=snow_n.regions, shape=np.array(snow_n.regions.shape)-8) assert temp.max() == 211 # Remove complete boundary region temp = ps.tools.extract_subsection(im=snow_n.regions, shape=np.array(snow_n.regions.shape)-10) assert temp.max() == 164 # %% Plot the final extraction overlayed with snow segmentation if plot: fig, ax = plt.subplots(1, 1) ax.imshow(ps.tools.randomize_colors(snow_n.regions.T)) proj = op.io.from_porespy(snow_n.network) op.topotools.plot_connections(network=proj.network, ax=ax) op.topotools.plot_coordinates(network=proj.network, ax=ax) plt.axis('off')
[ "openpnm.topotools.plot_coordinates", "porespy.generators.blobs", "porespy.networks.snow2", "openpnm.io.from_porespy", "numpy.array", "openpnm.topotools.plot_connections", "numpy.random.seed", "matplotlib.pyplot.axis", "porespy.tools.randomize_colors", "matplotlib.pyplot.subplots" ]
[((93, 110), 'numpy.random.seed', 'np.random.seed', (['(0)'], {}), '(0)\n', (107, 110), True, 'import numpy as np\n'), ((401, 528), 'porespy.networks.snow2', 'ps.networks.snow2', (['phases'], {'phase_alias': "{(1): 'solid', (2): 'void'}", 'boundary_width': '(5)', 'accuracy': '"""high"""', 'parallelization': 'None'}), "(phases, phase_alias={(1): 'solid', (2): 'void'},\n boundary_width=5, accuracy='high', parallelization=None)\n", (418, 528), True, 'import porespy as ps\n'), ((173, 238), 'porespy.generators.blobs', 'ps.generators.blobs', ([], {'shape': '[600, 400]', 'porosity': 'None', 'blobiness': '(1)'}), '(shape=[600, 400], porosity=None, blobiness=1)\n', (192, 238), True, 'import porespy as ps\n'), ((255, 320), 'porespy.generators.blobs', 'ps.generators.blobs', ([], {'shape': '[600, 400]', 'porosity': 'None', 'blobiness': '(1)'}), '(shape=[600, 400], porosity=None, blobiness=1)\n', (274, 320), True, 'import porespy as ps\n'), ((1193, 1211), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(1)', '(1)'], {}), '(1, 1)\n', (1205, 1211), True, 'import matplotlib.pyplot as plt\n'), ((1291, 1325), 'openpnm.io.from_porespy', 'op.io.from_porespy', (['snow_n.network'], {}), '(snow_n.network)\n', (1309, 1325), True, 'import openpnm as op\n'), ((1334, 1392), 'openpnm.topotools.plot_connections', 'op.topotools.plot_connections', ([], {'network': 'proj.network', 'ax': 'ax'}), '(network=proj.network, ax=ax)\n', (1363, 1392), True, 'import openpnm as op\n'), ((1401, 1459), 'openpnm.topotools.plot_coordinates', 'op.topotools.plot_coordinates', ([], {'network': 'proj.network', 'ax': 'ax'}), '(network=proj.network, ax=ax)\n', (1430, 1459), True, 'import openpnm as op\n'), ((1468, 1483), 'matplotlib.pyplot.axis', 'plt.axis', (['"""off"""'], {}), "('off')\n", (1476, 1483), True, 'import matplotlib.pyplot as plt\n'), ((1230, 1273), 'porespy.tools.randomize_colors', 'ps.tools.randomize_colors', (['snow_n.regions.T'], {}), '(snow_n.regions.T)\n', (1255, 1273), True, 'import porespy as ps\n'), ((828, 858), 'numpy.array', 'np.array', (['snow_n.regions.shape'], {}), '(snow_n.regions.shape)\n', (836, 858), True, 'import numpy as np\n'), ((1029, 1059), 'numpy.array', 'np.array', (['snow_n.regions.shape'], {}), '(snow_n.regions.shape)\n', (1037, 1059), True, 'import numpy as np\n')]
from bagua.torch_api.contrib.cached_dataset import CachedDataset from torch.utils.data.dataset import Dataset import numpy as np import logging import unittest from tests import skip_if_cuda_available logging.basicConfig(level=logging.DEBUG) class MyDataset(Dataset): def __init__(self, size): self.size = size self.dataset = [(np.random.rand(5, 2), np.random.rand(1)) for _ in range(size)] def __getitem__(self, item): return self.dataset[item] def __len__(self): return self.size class TestCacheDataset(unittest.TestCase): def check_dataset(self, dataset, cache_dataset): for _ in range(10): for _, _ in enumerate(cache_dataset): pass for i in range(len(dataset)): self.assertTrue((dataset[i][0] == cache_dataset[i][0]).all()) self.assertTrue((dataset[i][1] == cache_dataset[i][1]).all()) @skip_if_cuda_available() def test_redis(self): dataset1 = MyDataset(102) dataset2 = MyDataset(102) cache_dataset1 = CachedDataset( dataset1, backend="redis", dataset_name="d1", ) cache_dataset2 = CachedDataset( dataset2, backend="redis", dataset_name="d2", ) cache_dataset1.cache_loader.store.clear() self.check_dataset(dataset1, cache_dataset1) self.assertEqual(cache_dataset1.cache_loader.num_keys(), len(dataset1)) self.check_dataset(dataset2, cache_dataset2) self.assertEqual( cache_dataset2.cache_loader.num_keys(), len(dataset1) + len(dataset2) ) if __name__ == "__main__": unittest.main()
[ "logging.basicConfig", "numpy.random.rand", "bagua.torch_api.contrib.cached_dataset.CachedDataset", "tests.skip_if_cuda_available", "unittest.main" ]
[((202, 242), 'logging.basicConfig', 'logging.basicConfig', ([], {'level': 'logging.DEBUG'}), '(level=logging.DEBUG)\n', (221, 242), False, 'import logging\n'), ((921, 945), 'tests.skip_if_cuda_available', 'skip_if_cuda_available', ([], {}), '()\n', (943, 945), False, 'from tests import skip_if_cuda_available\n'), ((1694, 1709), 'unittest.main', 'unittest.main', ([], {}), '()\n', (1707, 1709), False, 'import unittest\n'), ((1065, 1124), 'bagua.torch_api.contrib.cached_dataset.CachedDataset', 'CachedDataset', (['dataset1'], {'backend': '"""redis"""', 'dataset_name': '"""d1"""'}), "(dataset1, backend='redis', dataset_name='d1')\n", (1078, 1124), False, 'from bagua.torch_api.contrib.cached_dataset import CachedDataset\n'), ((1197, 1256), 'bagua.torch_api.contrib.cached_dataset.CachedDataset', 'CachedDataset', (['dataset2'], {'backend': '"""redis"""', 'dataset_name': '"""d2"""'}), "(dataset2, backend='redis', dataset_name='d2')\n", (1210, 1256), False, 'from bagua.torch_api.contrib.cached_dataset import CachedDataset\n'), ((351, 371), 'numpy.random.rand', 'np.random.rand', (['(5)', '(2)'], {}), '(5, 2)\n', (365, 371), True, 'import numpy as np\n'), ((373, 390), 'numpy.random.rand', 'np.random.rand', (['(1)'], {}), '(1)\n', (387, 390), True, 'import numpy as np\n')]
import numpy as np import argparse from simple_algo_utils import * if __name__=='__main__': parser = argparse.ArgumentParser( formatter_class=argparse.RawDescriptionHelpFormatter,description=None) parser.add_argument('--example_n', default=1, type=int, help=None) parser.add_argument('--verbose', default=0, type=int, help=None) args = vars(parser.parse_args()) example_n = args['example_n'] verbose = args['verbose'] AVAILABLE_EXAMPLES = [1,2] SECTION_LABELS = [None,1,1] PAGES = [None, 223, 225] T_MAX_LIST = [None,3,9] try: print('Example from <NAME>\' textbook section 4.2.3.%s page %s'%( str(SECTION_LABELS[example_n]),str(PAGES[example_n]))) print('example_n : %s'%(str(example_n))) except: print('EXAMPLE NOT FOUND.') print('The available example numbers for --example_n are %s'%(str(AVAILABLE_EXAMPLES))) exit() print("==== SETTOPOLOGY ====") Nj = 4 # no. of neighbors J = np.array([ [1,0], [0,1], [-1,0], [0,-1]]) # (X,Y) coordinates of neighbors assert(J.shape[0]==Nj) print(J, '\n') print("==== SETBSG ====") # the group used was \mathbb{Z}_4 if example_n in [1]: L = 10 elif example_n in [2]: L = 20 nBSG = 4 BSG = setBSG(nBSG, Nj) print('BSG:\n',BSG,'\n') print("==== SETG0 ====") age = np.zeros(shape=(L,L)) if example_n in [1]: G0 = np.array([[0,0,0,0],[3,3,3,3],[0,0,3,3],[0,0,0,0]]) elif example_n in [2]: G0 = [[0,0,0,0], [2,0,0,0],] for i in range(3,1+9): G0.append([i,0,i,0]) G0.append([0,0,10,0]) G0 = np.array(G0) nG0 = G0.shape[0]-1 # no of generators, excluding emtpy generator alpha = range(nG0+1) print('G0:\n',G0,'\n') print('alpha:\n',alpha,'\n') print("==== SETEXTG0 =====") GE = setEXTG0(nBSG, G0, Nj, BSG) print('GE:\n',GE,'\n') print("==== SETCINIT ====") CE = np.ones(shape=(L,L)) if example_n in [1]: CE[4,4] = 5 elif example_n in [2]: CE[10,4:9] = 37 print('CE:\n',CE.astype(int),'\n') print('==== DEVELOP ===') T_MAX = T_MAX_LIST[example_n] P = 1 if example_n in [1,2]: split_mode = None if example_n==2: split_mode = 'split2' CE, age = develop(T_MAX, Nj, nBSG, L, J, GE, CE, age, P, verbose=verbose, growth_mode='growth3', split_mode=split_mode) if example_n == 2: print('\nAPPLY SURGERY HERE') CE[2:7,4:9] = 1 CE[7,4:9] = 21 # print(CE.astype(int)) print_in_alphabet(CE, nBSG, ALPH=None) CE, age = develop(2, Nj, nBSG, L, J, GE, CE, age, P, verbose=verbose, growth_mode='growth3', split_mode=split_mode) print('\nAPPLY MORE SURGERY HERE') CE[4:6,4:9] = 1 CE[9:12,4:9] = 1 CE[8,4:9] = 29 # print(CE.astype(int)) print_in_alphabet(CE, nBSG, ALPH=None) CE, age = develop(2, Nj, nBSG, L, J, GE, CE, age, P, verbose=verbose, growth_mode='growth3', split_mode=split_mode) print('\nLAST PART') CE = np.ones(shape=(20,20)) CE[4,4:10] = [13,13,14,13,13,13] CE[5,4:10] = 19 CE[6,4:10] = 21 CE[7,4:10] = 27 CE[8,4:10] = 29 CE[6,8] = 29 CE[8,5] = 13 print_in_alphabet(CE, nBSG, ALPH=None) print(CE.astype(int)) CE, age = develop(1, Nj, nBSG, L, J, GE, CE, age, P, verbose=verbose, growth_mode='growth3', split_mode=split_mode)
[ "numpy.array", "numpy.zeros", "numpy.ones", "argparse.ArgumentParser" ]
[((107, 207), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'formatter_class': 'argparse.RawDescriptionHelpFormatter', 'description': 'None'}), '(formatter_class=argparse.\n RawDescriptionHelpFormatter, description=None)\n', (130, 207), False, 'import argparse\n'), ((1010, 1054), 'numpy.array', 'np.array', (['[[1, 0], [0, 1], [-1, 0], [0, -1]]'], {}), '([[1, 0], [0, 1], [-1, 0], [0, -1]])\n', (1018, 1054), True, 'import numpy as np\n'), ((1394, 1416), 'numpy.zeros', 'np.zeros', ([], {'shape': '(L, L)'}), '(shape=(L, L))\n', (1402, 1416), True, 'import numpy as np\n'), ((1976, 1997), 'numpy.ones', 'np.ones', ([], {'shape': '(L, L)'}), '(shape=(L, L))\n', (1983, 1997), True, 'import numpy as np\n'), ((1454, 1520), 'numpy.array', 'np.array', (['[[0, 0, 0, 0], [3, 3, 3, 3], [0, 0, 3, 3], [0, 0, 0, 0]]'], {}), '([[0, 0, 0, 0], [3, 3, 3, 3], [0, 0, 3, 3], [0, 0, 0, 0]])\n', (1462, 1520), True, 'import numpy as np\n'), ((1665, 1677), 'numpy.array', 'np.array', (['G0'], {}), '(G0)\n', (1673, 1677), True, 'import numpy as np\n'), ((3220, 3243), 'numpy.ones', 'np.ones', ([], {'shape': '(20, 20)'}), '(shape=(20, 20))\n', (3227, 3243), True, 'import numpy as np\n')]
import logging from vespid import setup_logger logger = setup_logger(__name__) import pandas as pd import numpy as np from tqdm import tqdm def calculate_interdisciplinarity_score( membership_vectors ): ''' Given a set of entities and one vector for each representing the (ordered) strength of membership of that entity across a set of clusters, calculate the level of interdisciplinarity for each entity. NOTE: length of membership_vectors should be the same for all entities for an accurate calculation. Parameters ---------- membership_vectors: numpy array of shape (n_samples, n_clusters) that indicates how strongly each sample/entity belongs to a cluster (e.g. membership_vectors[0] = [0.1, 0.2, 0.3, 0.4] would indicate the strongest association for sample 0 with cluster 3 and the weakest with cluster 0). Returns ------- numpy array of float scores of shape (n_samples,) in the range [0.0, 1.0]. ''' num_clusters = membership_vectors.shape[1] # (N / N-1) * (1 - max(P)) * (1 - stdev(P)) id_scores = (num_clusters / (num_clusters - 1)) * \ (1 - membership_vectors.max(axis=1)) * \ (1 - membership_vectors.std(axis=1)) # In some instances, the score can go higher than 1.0 # Make sure that doesn't happen but we alert on it over_max = id_scores[id_scores > 1.0].sum() if over_max > 0: logger.warn(f"Found {over_max} instances in which score is above 1.0. " "Forcing these to be 1.0...") id_scores[id_scores > 1.0] = 1.0 return id_scores def interdisciplinarity_from_citation_clusters( graph, year, cluster_attribute='clusterID' ): ''' Uses Cypher query with Neo4j instance (enriched with paper cluster labels e.g. from HDBSCAN clustering) to determine how interdisciplinary papers' references and citations are. Uses a similar scoring logic as what is used in vespid.models.clustering with HDBSCAN soft clustering probabilities. Parameters ---------- graph: Neo4jConnectionHandler object. Used for querying the graph for citation information. year: int. Indicates the maximum year of publication of interest. cluster_attribute: str. Indicates the node attribute to use for determining the cluster membership of the node (e.g. 'cluster_id_2019'). Returns ------- pandas DataFrame with columns ['paperID', 'id_score'] of length n_nodes, with id_score being interdisciplinarity scores of shape (n_nodes,) ''' def fill_out_vector(cluster_identifiers, cluster_values, num_total_clusters): ''' Takes a partial membership vector and fills out the missing elements with zeros, placing the nonzero elements properly. Parameters ---------- cluster_identifiers: numpy array of ints. Indicates which clusters map to the values given in ``cluster_values`` (and thus must be the same length as ``cluster_values``) for the node in question. cluster_values: numpy array of float. Indicates the strength of membership the entity has to each cluster for the node in question. num_total_clusters: int. Indicates how many clusters there are in the total solution. Must be greater than or equal to the values provided in ``cluster_identifiers``. Returns ------- numpy array of shape (num_total_clusters,) representing the cluster membership strengths/probabilities of the node. ''' if len(cluster_identifiers) != len(cluster_values): raise ValueError("cluster_identifiers and cluster_values " f"must be of the same length, but got {len(cluster_identifiers)} " f"and {len(cluster_values)}, resp.") if num_total_clusters < np.max(cluster_identifiers): raise ValueError(f"num_total_clusters ({num_total_clusters}) " "must not be less than the maximum " f"cluster_identifiers value ({np.max(cluster_identifiers)})") if len(cluster_identifiers) > len(np.unique(cluster_identifiers)): raise ValueError("cluster_identifiers contains duplicate values") # Build out an all-zeros vector of the proper length cluster_vector = np.zeros(num_total_clusters) # Fill in the right zeros to reflect cluster membership values cluster_vector[cluster_identifiers] = cluster_values return cluster_vector # Query in the same fashion as what is used to generate BW centrality scores # Effectively insures that all papers are either published in `year` or # are referenced by ones published in `year` # also ignores publications that lack a cluster ID or are noise (clusterID = -1) query = f""" MATCH (p:Publication)<-[c:CITED_BY]-(m:Publication) WHERE c.publicationDate.year = {year} AND m.publicationDate.year <= {year} AND p.{cluster_attribute} IS NOT NULL AND toInteger(p.{cluster_attribute}) > -1 AND m.{cluster_attribute} IS NOT NULL AND toInteger(m.{cluster_attribute}) > -1 WITH DISTINCT p AS p, COUNT(c) AS NumTotalCitations MATCH (p)<-[c:CITED_BY]-(m:Publication) WHERE c.publicationDate.year = {year} AND m.publicationDate.year <= {year} AND m.{cluster_attribute} IS NOT NULL AND toInteger(m.{cluster_attribute}) > -1 WITH p, NumTotalCitations, toInteger(m.{cluster_attribute}) AS CitationClusterLabel, COUNT(m) AS NumCitationsInCluster RETURN p.id AS paperID, p.publicationDate.year AS Year, toInteger(p.{cluster_attribute}) AS PrimaryClusterLabel, CitationClusterLabel, toFloat(NumCitationsInCluster) / NumTotalCitations AS FractionalMembership """ df = graph.cypher_query_to_dataframe(query, verbose=False) logger.debug(f"Years covered by network-ID-scoring query are {df['Year'].min()} to {df['Year'].max()}") # Which papers didn't have a membership value for the cluster they're assigned to? # AKA which ones failed to have any citations/references from within their own cluster? df['PrimaryLabelMatchesCitation'] = df['PrimaryClusterLabel'] == df['CitationClusterLabel'] num_zero_primary_membership = \ df['paperID'].nunique() - df.loc[df['PrimaryLabelMatchesCitation'], 'paperID'].nunique() fraction_zero_primary_membership = round(num_zero_primary_membership / df['paperID'].nunique() * 100, 2) if num_zero_primary_membership > 0: logger.warn(f"No citations from host cluster found for " f"{num_zero_primary_membership} ({fraction_zero_primary_membership}%) papers! " "This suggests that the clustering solution may not be very good or " "that the citation network was undersampled") query = f""" MATCH (p:Publication) WHERE p.{cluster_attribute} IS NOT NULL AND p.publicationDate.year = {year} RETURN MAX(toInteger(p.{cluster_attribute})) """ # cluster labels are zero-indexed, so need +1 num_clusters = graph.cypher_query_to_dataframe(query, verbose=False).iloc[0,0] + 1 tqdm.pandas(desc="Building full cluster membership vectors from citation-based membership per paper") # Group membership into list for each paper cluster_vectors = df.groupby('paperID', sort=False).agg(list).progress_apply( lambda row: fill_out_vector( row['CitationClusterLabel'], row['FractionalMembership'], num_clusters ), axis=1 ) id_scores = calculate_interdisciplinarity_score( np.array(cluster_vectors.tolist()) ) output = pd.DataFrame({ 'paperID': df['paperID'].unique(), 'scoreInterDNetwork': id_scores }) #TODO: maybe additional weighting from dendrogram distance/cluster exemplar-exemplar distance? return output
[ "numpy.unique", "vespid.setup_logger", "numpy.max", "numpy.zeros", "tqdm.tqdm.pandas" ]
[((56, 78), 'vespid.setup_logger', 'setup_logger', (['__name__'], {}), '(__name__)\n', (68, 78), False, 'from vespid import setup_logger\n'), ((7366, 7477), 'tqdm.tqdm.pandas', 'tqdm.pandas', ([], {'desc': '"""Building full cluster membership vectors from citation-based membership per paper"""'}), "(desc=\n 'Building full cluster membership vectors from citation-based membership per paper'\n )\n", (7377, 7477), False, 'from tqdm import tqdm\n'), ((4473, 4501), 'numpy.zeros', 'np.zeros', (['num_total_clusters'], {}), '(num_total_clusters)\n', (4481, 4501), True, 'import numpy as np\n'), ((3997, 4024), 'numpy.max', 'np.max', (['cluster_identifiers'], {}), '(cluster_identifiers)\n', (4003, 4024), True, 'import numpy as np\n'), ((4267, 4297), 'numpy.unique', 'np.unique', (['cluster_identifiers'], {}), '(cluster_identifiers)\n', (4276, 4297), True, 'import numpy as np\n'), ((4192, 4219), 'numpy.max', 'np.max', (['cluster_identifiers'], {}), '(cluster_identifiers)\n', (4198, 4219), True, 'import numpy as np\n')]
import numpy as np def Linear_Fit(array_A, array_B): """ Returns slope and y-intercept of the line of best fit """ array_A = np.array(array_A) array_B = np.array(array_B) #Pair arrays then sort them for easier fit zipped_list = zip(array_A[~np.isnan(array_A)], array_B[~np.isnan(array_B)]) sorted_list = sorted(zipped_list) sorted_a, sorted_b = zip(*sorted_list) m, b = np.polyfit(sorted_a, sorted_b, 1) return m, b
[ "numpy.array", "numpy.isnan", "numpy.polyfit" ]
[((142, 159), 'numpy.array', 'np.array', (['array_A'], {}), '(array_A)\n', (150, 159), True, 'import numpy as np\n'), ((174, 191), 'numpy.array', 'np.array', (['array_B'], {}), '(array_B)\n', (182, 191), True, 'import numpy as np\n'), ((421, 454), 'numpy.polyfit', 'np.polyfit', (['sorted_a', 'sorted_b', '(1)'], {}), '(sorted_a, sorted_b, 1)\n', (431, 454), True, 'import numpy as np\n'), ((275, 292), 'numpy.isnan', 'np.isnan', (['array_A'], {}), '(array_A)\n', (283, 292), True, 'import numpy as np\n'), ((304, 321), 'numpy.isnan', 'np.isnan', (['array_B'], {}), '(array_B)\n', (312, 321), True, 'import numpy as np\n')]
# OpenCV: Image processing import cv2 import time import popupWindow as detectionWindow from PyQt5 import QtCore, QtGui, QtWidgets from PyQt5.QtWidgets import QWidget, QApplication, QLabel, QVBoxLayout from PyQt5.QtGui import QPixmap from PyQt5.QtCore import pyqtSignal, pyqtSlot, Qt, QThread # numpy: numerical computation import numpy as np import core.utils as utils # Tensorflow: deep learning import tensorflow as tf # Allow for GPU memory growth to prevent "Out of memory" errors gpus = tf.config.experimental.list_physical_devices('GPU') if gpus: try: for gpu in gpus: tf.config.experimental.set_memory_growth(gpu, True) except RuntimeError as e: print(e) import sma as sma # YOLOV3 itself from core.yolov3 import YOLOv3, decode def startDetection(window, minConfidence, videoPath): popUpFlag = False video_path = videoPath # Number of classes, one class for each element num_classes = 80 input_size = 704 min_confidence = minConfidence / 100 # Layer to be used as an entry point into a Network (a graph of layers). # Tuple with height, width and depth used to reshape arrays. # This is used for reshaping in Keras. input_layer = tf.keras.layers.Input([input_size, input_size, 3]) # (TO DO: see how it does it) feature_maps = YOLOv3(input_layer) bbox_tensors = [] for i, fm in enumerate(feature_maps): bbox_tensor = decode(fm, i) bbox_tensors.append(bbox_tensor) # Model groups layers into an object with training and inference features. # input: input_layer # output: bbox_tensors model = tf.keras.Model(input_layer, bbox_tensors) # load weights from file utils.load_weights(model, "./data/weights/handgun.weights") # Prints a string summary of the network. # model.summary() # Load video from file with openCV vid = cv2.VideoCapture(video_path) runFlag = True while runFlag: # Get a frame from the video # Returns a bool (True/False). # If frame is read correctly, it will be True. # So you can check end of the video by checking this return value. return_value, frame = vid.read() if not return_value: raise ValueError("No image!") # thistuple = ("apple", "banana", "cherry", "orange", "kiwi", "melon", "mango") # print(thistuple[:2]) => ('apple', 'banana') # shape holds heigth, width and number of channels # Gets width and height of the frame frame_size = frame.shape[:2] # np.copy(frame) => Return an array copy of the given object. # Resizes frame to network input size => def image_preporcess(image, target_size, gt_boxes=None): image_data = utils.image_preporcess(np.copy(frame), [input_size, input_size]) image_data = image_data[np.newaxis, ...].astype(np.float32) # Performs the prediction on the frame (TO DO: see how it does it) pred_bbox = model.predict_on_batch(image_data) # Changes tensor shape, similar to transposing a matrix # href: https://www.tensorflow.org/api_docs/python/tf/reshape pred_bbox = [tf.reshape(x, (-1, tf.shape(x)[-1])) for x in pred_bbox] # Concatenates tensors along one dimension axis = 0 => axis = y pred_bbox = tf.concat(pred_bbox, axis=0) # (TO DO: see how it does it) bboxes = utils.postprocess_boxes(pred_bbox, frame_size, input_size, min_confidence) # (TO DO: see how it does it) bboxes = utils.nms(bboxes, 0.45, method='nms') # Draws boundingbox in image # (TO DO: see how it does it) image = utils.draw_bbox(frame, bboxes) window.imageDisplay.setPixmap(QtGui.QPixmap(utils.convert_cv_qt(image.image))) # HERE check if detected class is handgun if(image.classDetected == 'handgun' and image.calculatedSma >= 0.95): if (popUpFlag == False): popUpFlag = True popUpFlag = callPopUpWindow(window, image.image) if popUpFlag == "Alarm": popUpFlag = True window.title.setText("Alarm triggered - Detection saved to PC") window.title.setStyleSheet("color : red") # window.title.setPointSize(25) window.setStyleSheet("""QMainWindow{border: 6px solid red;}""") # Breaks while loop on 'q' press if cv2.waitKey(1) & 0xFF == ord('q'): cv2.destroyAllWindows() break def callPopUpWindow(self, detection): dialog = detectionWindow.DetectionWindow(self) dialog.setImage(detection) dialog.show() if dialog.exec_() == QtWidgets.QDialog.Accepted: return dialog.returnValue
[ "core.utils.load_weights", "tensorflow.keras.layers.Input", "core.yolov3.YOLOv3", "core.utils.draw_bbox", "numpy.copy", "popupWindow.DetectionWindow", "tensorflow.shape", "tensorflow.config.experimental.set_memory_growth", "core.yolov3.decode", "tensorflow.concat", "core.utils.postprocess_boxes", "core.utils.nms", "cv2.destroyAllWindows", "cv2.VideoCapture", "tensorflow.keras.Model", "cv2.waitKey", "core.utils.convert_cv_qt", "tensorflow.config.experimental.list_physical_devices" ]
[((494, 545), 'tensorflow.config.experimental.list_physical_devices', 'tf.config.experimental.list_physical_devices', (['"""GPU"""'], {}), "('GPU')\n", (538, 545), True, 'import tensorflow as tf\n'), ((1219, 1269), 'tensorflow.keras.layers.Input', 'tf.keras.layers.Input', (['[input_size, input_size, 3]'], {}), '([input_size, input_size, 3])\n', (1240, 1269), True, 'import tensorflow as tf\n'), ((1324, 1343), 'core.yolov3.YOLOv3', 'YOLOv3', (['input_layer'], {}), '(input_layer)\n', (1330, 1343), False, 'from core.yolov3 import YOLOv3, decode\n'), ((1631, 1672), 'tensorflow.keras.Model', 'tf.keras.Model', (['input_layer', 'bbox_tensors'], {}), '(input_layer, bbox_tensors)\n', (1645, 1672), True, 'import tensorflow as tf\n'), ((1707, 1766), 'core.utils.load_weights', 'utils.load_weights', (['model', '"""./data/weights/handgun.weights"""'], {}), "(model, './data/weights/handgun.weights')\n", (1725, 1766), True, 'import core.utils as utils\n'), ((1887, 1915), 'cv2.VideoCapture', 'cv2.VideoCapture', (['video_path'], {}), '(video_path)\n', (1903, 1915), False, 'import cv2\n'), ((4629, 4666), 'popupWindow.DetectionWindow', 'detectionWindow.DetectionWindow', (['self'], {}), '(self)\n', (4660, 4666), True, 'import popupWindow as detectionWindow\n'), ((1432, 1445), 'core.yolov3.decode', 'decode', (['fm', 'i'], {}), '(fm, i)\n', (1438, 1445), False, 'from core.yolov3 import YOLOv3, decode\n'), ((3326, 3354), 'tensorflow.concat', 'tf.concat', (['pred_bbox'], {'axis': '(0)'}), '(pred_bbox, axis=0)\n', (3335, 3354), True, 'import tensorflow as tf\n'), ((3411, 3485), 'core.utils.postprocess_boxes', 'utils.postprocess_boxes', (['pred_bbox', 'frame_size', 'input_size', 'min_confidence'], {}), '(pred_bbox, frame_size, input_size, min_confidence)\n', (3434, 3485), True, 'import core.utils as utils\n'), ((3542, 3579), 'core.utils.nms', 'utils.nms', (['bboxes', '(0.45)'], {'method': '"""nms"""'}), "(bboxes, 0.45, method='nms')\n", (3551, 3579), True, 'import core.utils as utils\n'), ((3672, 3702), 'core.utils.draw_bbox', 'utils.draw_bbox', (['frame', 'bboxes'], {}), '(frame, bboxes)\n', (3687, 3702), True, 'import core.utils as utils\n'), ((589, 640), 'tensorflow.config.experimental.set_memory_growth', 'tf.config.experimental.set_memory_growth', (['gpu', '(True)'], {}), '(gpu, True)\n', (629, 640), True, 'import tensorflow as tf\n'), ((2779, 2793), 'numpy.copy', 'np.copy', (['frame'], {}), '(frame)\n', (2786, 2793), True, 'import numpy as np\n'), ((4530, 4553), 'cv2.destroyAllWindows', 'cv2.destroyAllWindows', ([], {}), '()\n', (4551, 4553), False, 'import cv2\n'), ((3760, 3792), 'core.utils.convert_cv_qt', 'utils.convert_cv_qt', (['image.image'], {}), '(image.image)\n', (3779, 3792), True, 'import core.utils as utils\n'), ((4482, 4496), 'cv2.waitKey', 'cv2.waitKey', (['(1)'], {}), '(1)\n', (4493, 4496), False, 'import cv2\n'), ((3196, 3207), 'tensorflow.shape', 'tf.shape', (['x'], {}), '(x)\n', (3204, 3207), True, 'import tensorflow as tf\n')]
from __future__ import print_function import os import keras from keras.layers import Dense,Flatten,Conv2D,MaxPooling2D,Activation,Input,Concatenate,Dropout,GlobalAveragePooling2D from keras.models import Model import time from keras.datasets import cifar10 from keras.optimizers import SGD from keras.utils import get_file from keras.preprocessing import image import numpy as np from keras.applications.imagenet_utils import preprocess_input, decode_predictions #SqueezeNet #backend=tf channels_last (rows,cols,channels) def fire_module(input,squeeze_filters,expand_filters): squeeze=Conv2D(squeeze_filters, kernel_size=(1,1), strides=1, padding='same', kernel_initializer='glorot_uniform', data_format='channels_last' )(input) relu_squeeze=Activation('relu')(squeeze) expand1=Conv2D(expand_filters, kernel_size=(1,1), strides=1, padding='same', kernel_initializer='glorot_uniform', data_format='channels_last' )(relu_squeeze) relu_expand1=Activation('relu')(expand1) expand2=Conv2D(expand_filters, kernel_size=(3,3), strides=1, padding='same', kernel_initializer='glorot_uniform', data_format='channels_last' )(relu_squeeze) relu_expand2=Activation('relu')(expand2) merge=Concatenate(axis=3)([relu_expand1,relu_expand2]) output=merge return output def SqueezeNet(input_shape,num_classes,weight=None): input=Input(shape=input_shape) conv_1=Conv2D(96, kernel_size=(7,7), strides=2, padding='same', kernel_initializer='glorot_uniform' )(input) pool_1=MaxPooling2D(pool_size=(3,3), strides=2)(conv_1) fire_2=fire_module(pool_1,16,64) fire_3=fire_module(fire_2,16,64) fire_4=fire_module(fire_3,32,128) pool_4=MaxPooling2D(pool_size=(3,3), strides=2)(fire_4) fire_5=fire_module(pool_4,32,128) fire_6=fire_module(fire_5,48,192) fire_7=fire_module(fire_6,48,192) fire_8=fire_module(fire_7,64,256) pool_8=MaxPooling2D(pool_size=(3,3), strides=2)(fire_8) fire_9=fire_module(pool_8,64,256) drop=Dropout(0.5)(fire_9) conv_10=Conv2D(num_classes, kernel_size=(1,1), strides=1, padding='same', kernel_initializer='glorot_uniform' )(drop) relu_11=Activation('relu')(conv_10) avgpool=GlobalAveragePooling2D()(relu_11) flatten=Flatten()(relu_11) dense=Dense(64)(flatten) relu_dense=Activation('relu')(dense) dense=Dense(2)(relu_dense) softmax1=Activation('softmax')(dense) softmax=Activation('softmax')(avgpool) print(softmax) output=softmax model=Model(input=input,output=output) return model def main(): t0=time.time() batch_size = 32 num_classes = 10 epochs = 20 data_augmentation = True print('start') (x_train, y_train), (x_test, y_test) = cifar10.load_data() print(x_train.shape) x_train_n = np.zeros((x_train.shape[0], 224, 224, 3),dtype = 'float16') x_test_n = np.zeros((x_test.shape[0], 224, 224, 3),dtype = 'float16') for i in range(x_train.shape[0]): if i%5000==0: print(i) data=x_train[i] img=image.array_to_img(data) img2=img.resize((224,224)) data2=image.img_to_array(img2) x_train_n[i,:]=data2 for i in range(x_test.shape[0]): if i%2000==0: print(i) data=x_test[i] img=image.array_to_img(data) img2=img.resize((224,224)) data2=image.img_to_array(img2) x_test_n[i,:]=data2 y_train = keras.utils.to_categorical(y_train, num_classes) y_test = keras.utils.to_categorical(y_test, num_classes) x_train_n /= 255.0 x_test_n /= 255.0 model=SqueezeNet((224,224,3),10) model.summary() print('wow') print(time.time()-t0) sgd=SGD(lr=0.01,decay=0.0002,momentum=0.9) model.compile(optimizer=sgd, loss='categorical_crossentropy', metrics=['accuracy']) model.fit(x_train_n, y_train, batch_size=batch_size, epochs=epochs, validation_data=(x_test_n, y_test), shuffle=True) if __name__=='__main__': main()
[ "keras.preprocessing.image.img_to_array", "keras.layers.Conv2D", "keras.layers.Flatten", "keras.datasets.cifar10.load_data", "keras.layers.MaxPooling2D", "keras.layers.Concatenate", "keras.utils.to_categorical", "numpy.zeros", "keras.layers.Input", "keras.optimizers.SGD", "keras.models.Model", "keras.layers.Activation", "keras.layers.Dropout", "keras.layers.Dense", "keras.layers.GlobalAveragePooling2D", "time.time", "keras.preprocessing.image.array_to_img" ]
[((1747, 1771), 'keras.layers.Input', 'Input', ([], {'shape': 'input_shape'}), '(shape=input_shape)\n', (1752, 1771), False, 'from keras.layers import Dense, Flatten, Conv2D, MaxPooling2D, Activation, Input, Concatenate, Dropout, GlobalAveragePooling2D\n'), ((3171, 3204), 'keras.models.Model', 'Model', ([], {'input': 'input', 'output': 'output'}), '(input=input, output=output)\n', (3176, 3204), False, 'from keras.models import Model\n'), ((3262, 3273), 'time.time', 'time.time', ([], {}), '()\n', (3271, 3273), False, 'import time\n'), ((3434, 3453), 'keras.datasets.cifar10.load_data', 'cifar10.load_data', ([], {}), '()\n', (3451, 3453), False, 'from keras.datasets import cifar10\n'), ((3499, 3557), 'numpy.zeros', 'np.zeros', (['(x_train.shape[0], 224, 224, 3)'], {'dtype': '"""float16"""'}), "((x_train.shape[0], 224, 224, 3), dtype='float16')\n", (3507, 3557), True, 'import numpy as np\n'), ((3575, 3632), 'numpy.zeros', 'np.zeros', (['(x_test.shape[0], 224, 224, 3)'], {'dtype': '"""float16"""'}), "((x_test.shape[0], 224, 224, 3), dtype='float16')\n", (3583, 3632), True, 'import numpy as np\n'), ((4156, 4204), 'keras.utils.to_categorical', 'keras.utils.to_categorical', (['y_train', 'num_classes'], {}), '(y_train, num_classes)\n', (4182, 4204), False, 'import keras\n'), ((4219, 4266), 'keras.utils.to_categorical', 'keras.utils.to_categorical', (['y_test', 'num_classes'], {}), '(y_test, num_classes)\n', (4245, 4266), False, 'import keras\n'), ((4431, 4471), 'keras.optimizers.SGD', 'SGD', ([], {'lr': '(0.01)', 'decay': '(0.0002)', 'momentum': '(0.9)'}), '(lr=0.01, decay=0.0002, momentum=0.9)\n', (4434, 4471), False, 'from keras.optimizers import SGD\n'), ((615, 755), 'keras.layers.Conv2D', 'Conv2D', (['squeeze_filters'], {'kernel_size': '(1, 1)', 'strides': '(1)', 'padding': '"""same"""', 'kernel_initializer': '"""glorot_uniform"""', 'data_format': '"""channels_last"""'}), "(squeeze_filters, kernel_size=(1, 1), strides=1, padding='same',\n kernel_initializer='glorot_uniform', data_format='channels_last')\n", (621, 755), False, 'from keras.layers import Dense, Flatten, Conv2D, MaxPooling2D, Activation, Input, Concatenate, Dropout, GlobalAveragePooling2D\n'), ((897, 915), 'keras.layers.Activation', 'Activation', (['"""relu"""'], {}), "('relu')\n", (907, 915), False, 'from keras.layers import Dense, Flatten, Conv2D, MaxPooling2D, Activation, Input, Concatenate, Dropout, GlobalAveragePooling2D\n'), ((938, 1077), 'keras.layers.Conv2D', 'Conv2D', (['expand_filters'], {'kernel_size': '(1, 1)', 'strides': '(1)', 'padding': '"""same"""', 'kernel_initializer': '"""glorot_uniform"""', 'data_format': '"""channels_last"""'}), "(expand_filters, kernel_size=(1, 1), strides=1, padding='same',\n kernel_initializer='glorot_uniform', data_format='channels_last')\n", (944, 1077), False, 'from keras.layers import Dense, Flatten, Conv2D, MaxPooling2D, Activation, Input, Concatenate, Dropout, GlobalAveragePooling2D\n'), ((1226, 1244), 'keras.layers.Activation', 'Activation', (['"""relu"""'], {}), "('relu')\n", (1236, 1244), False, 'from keras.layers import Dense, Flatten, Conv2D, MaxPooling2D, Activation, Input, Concatenate, Dropout, GlobalAveragePooling2D\n'), ((1267, 1406), 'keras.layers.Conv2D', 'Conv2D', (['expand_filters'], {'kernel_size': '(3, 3)', 'strides': '(1)', 'padding': '"""same"""', 'kernel_initializer': '"""glorot_uniform"""', 'data_format': '"""channels_last"""'}), "(expand_filters, kernel_size=(3, 3), strides=1, padding='same',\n kernel_initializer='glorot_uniform', data_format='channels_last')\n", (1273, 1406), False, 'from keras.layers import Dense, Flatten, Conv2D, MaxPooling2D, Activation, Input, Concatenate, Dropout, GlobalAveragePooling2D\n'), ((1555, 1573), 'keras.layers.Activation', 'Activation', (['"""relu"""'], {}), "('relu')\n", (1565, 1573), False, 'from keras.layers import Dense, Flatten, Conv2D, MaxPooling2D, Activation, Input, Concatenate, Dropout, GlobalAveragePooling2D\n'), ((1594, 1613), 'keras.layers.Concatenate', 'Concatenate', ([], {'axis': '(3)'}), '(axis=3)\n', (1605, 1613), False, 'from keras.layers import Dense, Flatten, Conv2D, MaxPooling2D, Activation, Input, Concatenate, Dropout, GlobalAveragePooling2D\n'), ((1784, 1882), 'keras.layers.Conv2D', 'Conv2D', (['(96)'], {'kernel_size': '(7, 7)', 'strides': '(2)', 'padding': '"""same"""', 'kernel_initializer': '"""glorot_uniform"""'}), "(96, kernel_size=(7, 7), strides=2, padding='same',\n kernel_initializer='glorot_uniform')\n", (1790, 1882), False, 'from keras.layers import Dense, Flatten, Conv2D, MaxPooling2D, Activation, Input, Concatenate, Dropout, GlobalAveragePooling2D\n'), ((1993, 2034), 'keras.layers.MaxPooling2D', 'MaxPooling2D', ([], {'pool_size': '(3, 3)', 'strides': '(2)'}), '(pool_size=(3, 3), strides=2)\n', (2005, 2034), False, 'from keras.layers import Dense, Flatten, Conv2D, MaxPooling2D, Activation, Input, Concatenate, Dropout, GlobalAveragePooling2D\n'), ((2194, 2235), 'keras.layers.MaxPooling2D', 'MaxPooling2D', ([], {'pool_size': '(3, 3)', 'strides': '(2)'}), '(pool_size=(3, 3), strides=2)\n', (2206, 2235), False, 'from keras.layers import Dense, Flatten, Conv2D, MaxPooling2D, Activation, Input, Concatenate, Dropout, GlobalAveragePooling2D\n'), ((2436, 2477), 'keras.layers.MaxPooling2D', 'MaxPooling2D', ([], {'pool_size': '(3, 3)', 'strides': '(2)'}), '(pool_size=(3, 3), strides=2)\n', (2448, 2477), False, 'from keras.layers import Dense, Flatten, Conv2D, MaxPooling2D, Activation, Input, Concatenate, Dropout, GlobalAveragePooling2D\n'), ((2559, 2571), 'keras.layers.Dropout', 'Dropout', (['(0.5)'], {}), '(0.5)\n', (2566, 2571), False, 'from keras.layers import Dense, Flatten, Conv2D, MaxPooling2D, Activation, Input, Concatenate, Dropout, GlobalAveragePooling2D\n'), ((2593, 2700), 'keras.layers.Conv2D', 'Conv2D', (['num_classes'], {'kernel_size': '(1, 1)', 'strides': '(1)', 'padding': '"""same"""', 'kernel_initializer': '"""glorot_uniform"""'}), "(num_classes, kernel_size=(1, 1), strides=1, padding='same',\n kernel_initializer='glorot_uniform')\n", (2599, 2700), False, 'from keras.layers import Dense, Flatten, Conv2D, MaxPooling2D, Activation, Input, Concatenate, Dropout, GlobalAveragePooling2D\n'), ((2816, 2834), 'keras.layers.Activation', 'Activation', (['"""relu"""'], {}), "('relu')\n", (2826, 2834), False, 'from keras.layers import Dense, Flatten, Conv2D, MaxPooling2D, Activation, Input, Concatenate, Dropout, GlobalAveragePooling2D\n'), ((2857, 2881), 'keras.layers.GlobalAveragePooling2D', 'GlobalAveragePooling2D', ([], {}), '()\n', (2879, 2881), False, 'from keras.layers import Dense, Flatten, Conv2D, MaxPooling2D, Activation, Input, Concatenate, Dropout, GlobalAveragePooling2D\n'), ((2908, 2917), 'keras.layers.Flatten', 'Flatten', ([], {}), '()\n', (2915, 2917), False, 'from keras.layers import Dense, Flatten, Conv2D, MaxPooling2D, Activation, Input, Concatenate, Dropout, GlobalAveragePooling2D\n'), ((2938, 2947), 'keras.layers.Dense', 'Dense', (['(64)'], {}), '(64)\n', (2943, 2947), False, 'from keras.layers import Dense, Flatten, Conv2D, MaxPooling2D, Activation, Input, Concatenate, Dropout, GlobalAveragePooling2D\n'), ((2973, 2991), 'keras.layers.Activation', 'Activation', (['"""relu"""'], {}), "('relu')\n", (2983, 2991), False, 'from keras.layers import Dense, Flatten, Conv2D, MaxPooling2D, Activation, Input, Concatenate, Dropout, GlobalAveragePooling2D\n'), ((3010, 3018), 'keras.layers.Dense', 'Dense', (['(2)'], {}), '(2)\n', (3015, 3018), False, 'from keras.layers import Dense, Flatten, Conv2D, MaxPooling2D, Activation, Input, Concatenate, Dropout, GlobalAveragePooling2D\n'), ((3045, 3066), 'keras.layers.Activation', 'Activation', (['"""softmax"""'], {}), "('softmax')\n", (3055, 3066), False, 'from keras.layers import Dense, Flatten, Conv2D, MaxPooling2D, Activation, Input, Concatenate, Dropout, GlobalAveragePooling2D\n'), ((3089, 3110), 'keras.layers.Activation', 'Activation', (['"""softmax"""'], {}), "('softmax')\n", (3099, 3110), False, 'from keras.layers import Dense, Flatten, Conv2D, MaxPooling2D, Activation, Input, Concatenate, Dropout, GlobalAveragePooling2D\n'), ((3758, 3782), 'keras.preprocessing.image.array_to_img', 'image.array_to_img', (['data'], {}), '(data)\n', (3776, 3782), False, 'from keras.preprocessing import image\n'), ((3834, 3858), 'keras.preprocessing.image.img_to_array', 'image.img_to_array', (['img2'], {}), '(img2)\n', (3852, 3858), False, 'from keras.preprocessing import image\n'), ((4009, 4033), 'keras.preprocessing.image.array_to_img', 'image.array_to_img', (['data'], {}), '(data)\n', (4027, 4033), False, 'from keras.preprocessing import image\n'), ((4085, 4109), 'keras.preprocessing.image.img_to_array', 'image.img_to_array', (['img2'], {}), '(img2)\n', (4103, 4109), False, 'from keras.preprocessing import image\n'), ((4406, 4417), 'time.time', 'time.time', ([], {}), '()\n', (4415, 4417), False, 'import time\n')]
import numpy as np from scipy.stats import binom # import modules needed for logging import logging import os logger = logging.getLogger(__name__) # module logger def cummin(x): """A python implementation of the cummin function in R""" for i in range(1, len(x)): if x[i-1] < x[i]: x[i] = x[i-1] return x def bh_fdr(pval): """A python implementation of the Benjamani-Hochberg FDR method. This code should always give precisely the same answer as using p.adjust(pval, method="BH") in R. Parameters ---------- pval : list or array list/array of p-values Returns ------- pval_adj : np.array adjusted p-values according the benjamani-hochberg method """ pval_array = np.array(pval) sorted_order = np.argsort(pval_array) original_order = np.argsort(sorted_order) pval_array = pval_array[sorted_order] # calculate the needed alpha n = float(len(pval)) pval_adj = np.zeros(int(n)) i = np.arange(1, n+1, dtype=float)[::-1] # largest to smallest pval_adj = np.minimum(1, cummin(n/i * pval_array[::-1]))[::-1] return pval_adj[original_order] def frequency_test(mut_of_interest, total_mut, residues_of_interest, residues_at_risk): """Perform a binomial test on the frequency of missense mutations within given pre-defined residues within the gene. Parameters ---------- mut_of_interest : {list, np.array} number of mutations that are deemed "of interest" total_mut : {list, np.array} total number of mutations residues_of_interest : {list, np.array} contains the number of residues of interest for a mutation. residues_at_risk : {list, np.array} contains the number of residues at risk for a mutation. Returns ------- p_values : np.array p-value for each gene for binomial test """ # initialize input p_values = np.zeros(len(mut_of_interest)) mut = np.asarray(mut_of_interest) N = np.asarray(total_mut) residues_of_interest = np.asarray(residues_of_interest) residues_at_risk = np.asarray(residues_at_risk, dtype=float) residues_at_risk[residues_at_risk==0] = np.nan # fill zeros to avoid divide by zero # calculate the background probability of mutation occurring at # the residues of interest P = residues_of_interest.astype(float) / residues_at_risk # iterate through each gene to calculate p-value logger.info('Calculating binomial test p-values . . .') for k in range(len(mut)): if not np.isnan(P[k]): p_val = binomial_test(mut[k], N[k], P[k]) else: # catch case for nan element p_val = 1.0 p_values[k] = p_val logger.info('Finished calculating binomial test p-values.') return p_values def binomial_test(n, N, P): """Perform binomial test on the observed n being higher than expected. Specifically, N residues are at risk and of those there are n mutations occurred at the Np residues of interest. Given the background probability of a mutation at a specific residue, the p-value is calculated as the probability of observing n or greater mutations. Since N is large and n is small, it is computationally more efficient to take 1 - Pr(i<=n-1). Parameters ---------- n : int number of observed mutations N : int number of residues at risk P : float background probability that a mutation would occur at a single residue Returns ------- pval : np.array p-value for binomial test """ if n <= 0: return 1.0 pval = binom.sf(n-1, N, P) return pval
[ "logging.getLogger", "numpy.asarray", "scipy.stats.binom.sf", "numpy.argsort", "numpy.array", "numpy.isnan", "numpy.arange" ]
[((121, 148), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (138, 148), False, 'import logging\n'), ((763, 777), 'numpy.array', 'np.array', (['pval'], {}), '(pval)\n', (771, 777), True, 'import numpy as np\n'), ((797, 819), 'numpy.argsort', 'np.argsort', (['pval_array'], {}), '(pval_array)\n', (807, 819), True, 'import numpy as np\n'), ((841, 865), 'numpy.argsort', 'np.argsort', (['sorted_order'], {}), '(sorted_order)\n', (851, 865), True, 'import numpy as np\n'), ((2037, 2064), 'numpy.asarray', 'np.asarray', (['mut_of_interest'], {}), '(mut_of_interest)\n', (2047, 2064), True, 'import numpy as np\n'), ((2073, 2094), 'numpy.asarray', 'np.asarray', (['total_mut'], {}), '(total_mut)\n', (2083, 2094), True, 'import numpy as np\n'), ((2122, 2154), 'numpy.asarray', 'np.asarray', (['residues_of_interest'], {}), '(residues_of_interest)\n', (2132, 2154), True, 'import numpy as np\n'), ((2178, 2219), 'numpy.asarray', 'np.asarray', (['residues_at_risk'], {'dtype': 'float'}), '(residues_at_risk, dtype=float)\n', (2188, 2219), True, 'import numpy as np\n'), ((3728, 3749), 'scipy.stats.binom.sf', 'binom.sf', (['(n - 1)', 'N', 'P'], {}), '(n - 1, N, P)\n', (3736, 3749), False, 'from scipy.stats import binom\n'), ((1007, 1039), 'numpy.arange', 'np.arange', (['(1)', '(n + 1)'], {'dtype': 'float'}), '(1, n + 1, dtype=float)\n', (1016, 1039), True, 'import numpy as np\n'), ((2630, 2644), 'numpy.isnan', 'np.isnan', (['P[k]'], {}), '(P[k])\n', (2638, 2644), True, 'import numpy as np\n')]
import io from flask import ( Blueprint, render_template, abort, current_app, make_response ) import numpy as np from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas from matplotlib.figure import Figure client = Blueprint('client', __name__, template_folder='templates', static_url_path='/static') @client.route('/<int:points>', methods=['GET']) def home(points): title = current_app.config['TITLE'] plot = plot_points(points) return render_template('index.html', title=title, plot=plot) def plot_points(points): """Generate a plot with a varying number of randomly generated points Args: points (int): a number of points to plot Returns: An svg plot with <points> data points """ # data for plotting data = np.random data = np.random.rand(points, 2) fig = Figure() FigureCanvas(fig) ax = fig.add_subplot(111) ax.scatter(data[:,0], data[:,1]) ax.set_xlabel('x') ax.set_ylabel('y') ax.set_title(f'There are {points} data points!') ax.grid(True) img = io.StringIO() fig.savefig(img, format='svg') #clip off the xml headers from the image svg_img = '<svg' + img.getvalue().split('<svg')[1] return svg_img
[ "flask.render_template", "numpy.random.rand", "matplotlib.figure.Figure", "matplotlib.backends.backend_agg.FigureCanvasAgg", "io.StringIO", "flask.Blueprint" ]
[((261, 351), 'flask.Blueprint', 'Blueprint', (['"""client"""', '__name__'], {'template_folder': '"""templates"""', 'static_url_path': '"""/static"""'}), "('client', __name__, template_folder='templates', static_url_path=\n '/static')\n", (270, 351), False, 'from flask import Blueprint, render_template, abort, current_app, make_response\n'), ((496, 549), 'flask.render_template', 'render_template', (['"""index.html"""'], {'title': 'title', 'plot': 'plot'}), "('index.html', title=title, plot=plot)\n", (511, 549), False, 'from flask import Blueprint, render_template, abort, current_app, make_response\n'), ((824, 849), 'numpy.random.rand', 'np.random.rand', (['points', '(2)'], {}), '(points, 2)\n', (838, 849), True, 'import numpy as np\n'), ((861, 869), 'matplotlib.figure.Figure', 'Figure', ([], {}), '()\n', (867, 869), False, 'from matplotlib.figure import Figure\n'), ((874, 891), 'matplotlib.backends.backend_agg.FigureCanvasAgg', 'FigureCanvas', (['fig'], {}), '(fig)\n', (886, 891), True, 'from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas\n'), ((1090, 1103), 'io.StringIO', 'io.StringIO', ([], {}), '()\n', (1101, 1103), False, 'import io\n')]
""" Requirements: ----------- pyngrok==5.0.5 mlflow==1.15.0 pandas==1.2.3 numpy==1.19.3 scikit-learn==0.24.1 Examples of usege can be found in the url below: https://nbviewer.jupyter.org/github/abreukuse/ml_utilities/blob/master/examples/experiments_management.ipynb """ import os import mlflow from pyngrok import ngrok import pandas as pd import numpy as np from sklearn.model_selection import train_test_split def generate_mlflow_ui(): """ Creates a remote mlflow user interface with ngrok. """ get_ipython().system_raw("mlflow ui --port 5000 &") ngrok.kill() ngrok_tunnel = ngrok.connect(addr="5000", proto="http", bind_tls=True) print("MLflow Tracking UI:", ngrok_tunnel.public_url, end='\n\n') def __log_metrics(metrics, metric_name, y_train, y_test, y_estimate_train, y_estimate_test): """ Record a particular metric score in mlflow. It will be called from the __logging function. --------------------------------------- Parameters metrics: Dictionary containing the metrics names as keys and the metrics fucnctions as values. metrics_name: String representing the name of the metric. y_train and y_test: A numpy array or pandas series with the true train and test target values. y_estimate_train and y_estimate_test: A numpy array or pandas series with the predicted train and test target values. Return four variables representing the metrics names and values. """ # metric name score_name_train = f'train_{metric_name}' score_name_test = f'test_{metric_name}' # metric score score_train = metrics[metric_name](y_train, y_estimate_train) score_test = metrics[metric_name](y_test, y_estimate_test) if metric_name == 'rmse': score_train = np.sqrt(score_train) score_test = np.sqrt(score_test) # metric log mlflow.log_metric(score_name_train, score_train) mlflow.log_metric(score_name_test, score_test) return score_name_train, score_train, score_name_test, score_test def __logging(metrics, y_train, y_test, y_pred_train, y_pred_test, y_proba_train=None, y_proba_test=None): """ Creates a dictionary with all the metrics from train and test. It will be called from the simple_split function. -------------------------------------------------------- Parameters metrics: Dictionary containing the metrics names as keys and the metrics fucnctions as values. y_train and y_test: The true target values from train and test. y_pred_train and y_pred_test: Array with the estimate results from the algorithms. y_proba_train and y_proba_test: An array with the probability results from the algorithms. Returns a dictionary with metrics names and metrics results. """ metrics_scores = {} log_metrics_results = None for metric_name in metrics.keys(): args = [metrics, metric_name, y_train, y_test] if metric_name not in ['auc', 'log_loss']: log_metrics_results = __log_metrics(*args, y_pred_train, y_pred_test) else: log_metrics_results = __log_metrics(*args, y_proba_train, y_proba_test) # Unpacking score_name_train = log_metrics_results[0] score_train = log_metrics_results[1] score_name_test = log_metrics_results[2] score_test = log_metrics_results[3] # Store the scores in a dictionary metrics_scores.setdefault(score_name_train, score_train) metrics_scores.setdefault(score_name_test, score_test) return metrics_scores def data_artifacts(X_train): """ Creates and stores data artifacts like a sample of the data, the features and indices. --------------------------------------------------- Parameter X_train: The pandas data frame right before it enters the algorithm in the last but one step the pipeline. """ os.makedirs('artifacts_temp', exist_ok=True) features = list(X_train.columns) indices = list(X_train.index) with open('artifacts_temp/features.txt', 'w') as features_txt: features_txt.write(str(features)) with open('artifacts_temp/indices.txt', 'w') as indices_txt: indices_txt.write(str(indices)) X_train.head(10).to_csv('artifacts_temp/X_train_sample.csv', index=False) mlflow.log_artifacts('artifacts_temp') def simple_split(*, task, pipeline, X, y, test_size, metrics, random_state, inverse=None): """ Split the data in train and test sets. ------------------------------------- Parameters task: String indicating if it is a 'classification' or 'regression' task. pipeline: The sklearn pipeline to run. X: Dataframe with all the variables. y: Target. test_size: Size of the test data. It can be a float representing a percentage or an interger. metrics: Sictionary containing the metrics names as keys and the metrics fucnctions as values. random_state: Random number generator for the split in data. inverse: A function with the inverse transformation applied in the target. Returns a dictionary with metrics names and metrics results. """ X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_size, random_state=random_state) # Get the last but one state of the training data. if len(pipeline) > 1: X_train = pipeline[:-1].fit_transform(X_train) pipeline[-1].fit(X_train, y_train) else: pipeline.fit(X_train, y_train) # Collect data artifacts data_artifacts(X_train) if task == 'classification': y_pred_train, y_pred_test, y_proba_train, y_proba_test = None, None, None, None allowed_metrics = ['precision','recall','f1_score','accuracy','auc','log_loss'] if not set(metrics.keys()).issubset(allowed_metrics): raise ValueError(f'Only these metrics are valid: {allowed_metrics}.') if any(item in allowed_metrics[-2:] for item in metrics.keys()): y_proba_train = pipeline[-1].predict_proba(X_train)[:,1] y_proba_test = pipeline.predict_proba(X_test)[:,1] if any(item in allowed_metrics[:-2] for item in metrics.keys()): y_pred_train = pipeline[-1].predict(X_train) y_pred_test = pipeline.predict(X_test) metrics_scores = __logging(metrics, y_train, y_test, y_pred_train, y_pred_test, y_proba_train, y_proba_test) elif task == 'regression': y_pred_train = pipeline[-1].predict(X_train) y_pred_test = pipeline.predict(X_test) if inverse: targets = [y_train, y_test, y_pred_train, y_pred_test] y_train, y_test, y_pred_train, y_pred_test = [inverse(target) for target in targets] allowed_metrics = ['rmse','mae','mape','msle','r2'] if not set(metrics.keys()).issubset(allowed_metrics): raise ValueError(f'Only these metrics are valid: {allowed_metrics}.') metrics_scores = __logging(metrics, y_train, y_test, y_pred_train, y_pred_test) return metrics_scores def cross_validation(*, task, pipeline, X, y, cv_method, metrics, inverse=None): """ Performs cross validation. ------------------------- Parameters pipeline: The sklearn pipeline to run. X: Dataframe with all the variables. y: target. cv_method: When 'cross_validation' is chose. A callble from sklearn e.g {KFold, StratifiedKFold} metrics: Dictionary containing the metrics names as keys and the metrics fucnctions as values. inverse: A function with the inverse transformation applied in the target. Returns a dictionary with metrics names and metrics results. """ metrics_scores = {} X_train = None splits = cv_method for metric_name, metric in metrics.items(): for train_index, test_index in splits.split(X, y): # split X_train, y_train = X.loc[train_index], y.loc[train_index] X_test, y_test = X.loc[test_index], y.loc[test_index] # training if len(pipeline) > 1: X_train = pipeline[:-1].fit_transform(X_train) pipeline[-1].fit(X_train, y_train) else: pipeline.fit(X_train, y_train) # predict if metric_name in ['auc', 'log_loss']: y_pred_train = pipeline[-1].predict_proba(X_train)[:,1] y_pred_test = pipeline.predict_proba(X_test)[:,1] else: y_pred_train = pipeline[-1].predict(X_train) y_pred_test = pipeline.predict(X_test) # inverse tranformation for target if needed if task == 'regression' and inverse: targets = [y_train, y_test, y_pred_train, y_pred_test] y_train, y_test, y_pred_train, y_pred_test = [inverse(target) for target in targets] # compute score score_train = metrics[metric_name](y_train, y_pred_train) score_test = metrics[metric_name](y_test, y_pred_test) if metric_name == 'rmse': score_train = np.sqrt(score_train) score_test = np.sqrt(score_test) metrics_scores.setdefault(f'train_{metric_name}', []).append(score_train) metrics_scores.setdefault(f'test_{metric_name}', []).append(score_test) # log for metric_name, scores in metrics_scores.items(): mlflow.log_metric(metric_name, np.mean(scores)) metrics_scores[metric_name] = np.mean(scores) # Collect data artifacts from the last fold data_artifacts(X_train) return metrics_scores def experiment_manager(task, pipeline, X, y, runs, validation, hyperparameters, metrics, random_state=0, remote_ui=False, **kwargs): """ This function runs experiments and records the results. ----------------------------------------------------- Parameters task: String indicating if it is a 'classification' or 'regression' task. pipeline: The sklearn pipeline to run. X: Dataframe with all the variables. y: Target. validation: 'simple_split' or 'cross_validation'. hyperparameters: A function returning a dictionary with all the hyperparameters names as keys and range values to be tested in each algorithm as values. metrics: Dictionary containing the metrics names as keys and the metrics fucnctions as values. Metrics names allowed are: For classification {'precision', 'recall', 'f1_score', 'accuracy', 'auc', 'log_loss'}. For regression {'rmse', 'mae', 'mape', 'msle', 'r2'}. random_state: Random number generator for the split in data. remote_ui: Interact with mlflow inerface remotely or locally. Set 'True' if you are using google colab or other remote platform. available kwargs: run_label -> For optional labelling in the run name. test_size -> When 'simple_split' is chose. Float for the size of the test set. cv_method -> When 'cross_validation' is chose. A callble from sklearn e.g {KFold, StratifiedKFold} inverse -> A function with the inverse transformation applied in the target. """ experiment_name = pipeline[-1].__class__.__name__ mlflow.set_experiment(experiment_name=experiment_name) experiment = mlflow.get_experiment_by_name(experiment_name) print(f"Experiment Name: {experiment.name}") print(f"Experiment_id: {experiment.experiment_id}", end='\n\n') for run in range(runs): optional_run_label = kwargs.get('run_label') if kwargs.get('run_label') != None else '' with mlflow.start_run(run_name=f'Run: {run+1}{optional_run_label}'): # log hyperpatameters for hyperpatameter_name, hyperpatameter in hyperparameters().items(): mlflow.log_param(hyperpatameter_name.split('__')[1], hyperpatameter) # training pipeline.set_params(**hyperparameters()) # simple split if validation == 'simple_split': mlflow.set_tag('random_state_split', random_state) mlflow.set_tag('test_size', kwargs['test_size']) metrics_scores = simple_split(task=task, pipeline=pipeline, X=X, y=y, test_size=kwargs['test_size'], metrics=metrics, random_state=random_state, inverse=kwargs.get('inverse')) # cross validation elif validation == 'cross_validation': mlflow.set_tag('cv', kwargs['cv_method']) metrics_scores = cross_validation(task=task, pipeline=pipeline, X=X, y=y, cv_method=kwargs['cv_method'], metrics=metrics, inverse=kwargs.get('inverse')) # Print results print(f'Run {run+1}', end='\n\n') print('HYPERPARAMETERS') for key, value in hyperparameters().items(): print(f'{key[key.find("__")+2:]}: {value}') print() print('SCORES') for key, value in metrics_scores.items(): print(f'{key}: {np.round(value, 3)}') print() # mlflow user interface if remote_ui == True: return generate_mlflow_ui() elif remote_ui == False: print('Type "mlflow ui" in your terminal in order to interact with mlflow user interface.', end='\n\n')
[ "numpy.mean", "mlflow.set_tag", "numpy.sqrt", "os.makedirs", "pyngrok.ngrok.kill", "sklearn.model_selection.train_test_split", "mlflow.log_metric", "mlflow.set_experiment", "mlflow.get_experiment_by_name", "mlflow.log_artifacts", "pyngrok.ngrok.connect", "mlflow.start_run", "numpy.round" ]
[((574, 586), 'pyngrok.ngrok.kill', 'ngrok.kill', ([], {}), '()\n', (584, 586), False, 'from pyngrok import ngrok\n'), ((606, 661), 'pyngrok.ngrok.connect', 'ngrok.connect', ([], {'addr': '"""5000"""', 'proto': '"""http"""', 'bind_tls': '(True)'}), "(addr='5000', proto='http', bind_tls=True)\n", (619, 661), False, 'from pyngrok import ngrok\n'), ((1942, 1990), 'mlflow.log_metric', 'mlflow.log_metric', (['score_name_train', 'score_train'], {}), '(score_name_train, score_train)\n', (1959, 1990), False, 'import mlflow\n'), ((1995, 2041), 'mlflow.log_metric', 'mlflow.log_metric', (['score_name_test', 'score_test'], {}), '(score_name_test, score_test)\n', (2012, 2041), False, 'import mlflow\n'), ((4069, 4113), 'os.makedirs', 'os.makedirs', (['"""artifacts_temp"""'], {'exist_ok': '(True)'}), "('artifacts_temp', exist_ok=True)\n", (4080, 4113), False, 'import os\n'), ((4510, 4548), 'mlflow.log_artifacts', 'mlflow.log_artifacts', (['"""artifacts_temp"""'], {}), "('artifacts_temp')\n", (4530, 4548), False, 'import mlflow\n'), ((5528, 5598), 'sklearn.model_selection.train_test_split', 'train_test_split', (['X', 'y'], {'test_size': 'test_size', 'random_state': 'random_state'}), '(X, y, test_size=test_size, random_state=random_state)\n', (5544, 5598), False, 'from sklearn.model_selection import train_test_split\n'), ((12318, 12372), 'mlflow.set_experiment', 'mlflow.set_experiment', ([], {'experiment_name': 'experiment_name'}), '(experiment_name=experiment_name)\n', (12339, 12372), False, 'import mlflow\n'), ((12390, 12436), 'mlflow.get_experiment_by_name', 'mlflow.get_experiment_by_name', (['experiment_name'], {}), '(experiment_name)\n', (12419, 12436), False, 'import mlflow\n'), ((1858, 1878), 'numpy.sqrt', 'np.sqrt', (['score_train'], {}), '(score_train)\n', (1865, 1878), True, 'import numpy as np\n'), ((1900, 1919), 'numpy.sqrt', 'np.sqrt', (['score_test'], {}), '(score_test)\n', (1907, 1919), True, 'import numpy as np\n'), ((10356, 10371), 'numpy.mean', 'np.mean', (['scores'], {}), '(scores)\n', (10363, 10371), True, 'import numpy as np\n'), ((10301, 10316), 'numpy.mean', 'np.mean', (['scores'], {}), '(scores)\n', (10308, 10316), True, 'import numpy as np\n'), ((12693, 12757), 'mlflow.start_run', 'mlflow.start_run', ([], {'run_name': 'f"""Run: {run + 1}{optional_run_label}"""'}), "(run_name=f'Run: {run + 1}{optional_run_label}')\n", (12709, 12757), False, 'import mlflow\n'), ((9955, 9975), 'numpy.sqrt', 'np.sqrt', (['score_train'], {}), '(score_train)\n', (9962, 9975), True, 'import numpy as np\n'), ((10005, 10024), 'numpy.sqrt', 'np.sqrt', (['score_test'], {}), '(score_test)\n', (10012, 10024), True, 'import numpy as np\n'), ((13137, 13187), 'mlflow.set_tag', 'mlflow.set_tag', (['"""random_state_split"""', 'random_state'], {}), "('random_state_split', random_state)\n", (13151, 13187), False, 'import mlflow\n'), ((13204, 13252), 'mlflow.set_tag', 'mlflow.set_tag', (['"""test_size"""', "kwargs['test_size']"], {}), "('test_size', kwargs['test_size'])\n", (13218, 13252), False, 'import mlflow\n'), ((13872, 13913), 'mlflow.set_tag', 'mlflow.set_tag', (['"""cv"""', "kwargs['cv_method']"], {}), "('cv', kwargs['cv_method'])\n", (13886, 13913), False, 'import mlflow\n'), ((14713, 14731), 'numpy.round', 'np.round', (['value', '(3)'], {}), '(value, 3)\n', (14721, 14731), True, 'import numpy as np\n')]
#//////////////#####/////////////// # # ANU u6325688 <NAME> # Supervisor: Dr.<NAME> #//////////////#####/////////////// from __future__ import print_function import torch import torch.nn as nn import torch.nn.parallel import torch.backends.cudnn as cudnn from torch.autograd import Variable import torch.utils.data import numpy as np from GAIL.Discriminator import Discriminator1D from GAIL.Generator import Generator1D from GAIL.PPO import PPO from commons.DataInfo import DataInfo import gym import matplotlib.pyplot as plt from sklearn.preprocessing import normalize cudnn.benchmark = True if torch.cuda.is_available(): map_location=lambda storage, loc: storage.cuda() else: map_location='cpu' device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") class GAIL(): def __init__(self,dataInfo:DataInfo, resultPath)-> None: self.learnRate = 0.0005 self.entropyBeta = 0.001 self.lossCriterion = nn.BCELoss() self.dataInfo = dataInfo self.resultPath = resultPath self.generator = None self.generatorOptim = None self.discriminator = None self.discriminatorOptim = None self.datatype = 0 self.lastActions = [] self.env = gym.make(dataInfo.gameName) self.ppo = None self.ppoExp = None #Graphs self.rwdCounter = [] self.genCounter = [] self.disCounter = [] self.entCounter = [] self.enableOnPolicy = True def setUpGail(self): self.generator = Generator1D(self.dataInfo).to(device) self.generatorOptim = torch.optim.Adam(self.generator.parameters(), lr=self.learnRate) self.discriminator = Discriminator1D(self.dataInfo).to(device) self.discriminatorOptim = torch.optim.Adam(self.discriminator.parameters(), lr=self.learnRate) self.ppoExp = PPO(self.generator,self.learnRate) def getAction(self,state): state = torch.FloatTensor(state.reshape(1, -1)).to(device) return self.generator(state).cpu().data.numpy().flatten() def makeDisInput(self, state, action): output = action.view(action.shape[0],1) output = output.type(torch.FloatTensor).to(device) return torch.cat((state,output),1) def getGraph(self): if len(self.rwdCounter) > 0: plt.plot(range(len(self.rwdCounter)), self.rwdCounter, linestyle='-', marker="X") plt.xlabel("Iteration") plt.ylabel("Rewards") plt.title("GAIL for {}-{} AverageReward={}[{},{}]".format(self.dataInfo.gameName, "LocState", \ str(sum(self.rwdCounter) / len(self.rwdCounter)), \ str(min(self.rwdCounter)), str(max(self.rwdCounter)))) plt.savefig(self.resultPath + "/" + str(self.enableOnPolicy)+"LoctrainRwd.png") plt.close("all") plt.plot(range(len(self.genCounter)), self.genCounter, linestyle='-') plt.xlabel("Batch") plt.ylabel("Loss") plt.title("GAIL-Generator Loss for {}-{}[{},{}]".format(self.dataInfo.gameName, \ "LocState", \ str(round(min(self.genCounter).item(), 5)), \ str(round(max(self.genCounter).item(), 5)))) plt.savefig(self.resultPath + "/" + str(self.enableOnPolicy)+"LoctrainGenLoss.png") plt.close("all") plt.plot(range(len(self.disCounter)), self.disCounter, linestyle='-') plt.xlabel("Batch") plt.ylabel("Loss") plt.title("GAIL-Discriminator Loss for {}-{}[{},{}]".format(self.dataInfo.gameName, \ "LocState", str(round(min(self.disCounter).item(), 5)), \ str(round(max(self.disCounter).item(), 5)))) plt.savefig(self.resultPath + "/" + str(self.enableOnPolicy)+"LoctrainDisLoss.png") plt.close("all") plt.plot(range(len(self.entCounter)), self.entCounter, linestyle='-') plt.xlabel("Batch") plt.ylabel("Entropy") plt.title("GAIL Entropy for {}-{}[{},{}]".format(self.dataInfo.gameName, "LocState", \ str(round(min(self.entCounter).item(), 5)), \ str(round(max(self.entCounter).item(), 5)))) plt.savefig(self.resultPath + "/" + str(self.enableOnPolicy)+"LoctrainEntropy.png") plt.close("all") def updateModel(self): for batchIndex in range(len(self.dataInfo.expertState)): #read experts' state batch = self.dataInfo.expertState[batchIndex].size exp_action = np.zeros((batch, 1)) exp_reward = np.zeros((batch,1)) exp_done = np.zeros((batch,1)) #asume all "not done" exp_done = (exp_done==0) #Return False for all exp_state = np.zeros((batch, self.dataInfo.locateShape)) #Location for j in range(batch): exp_state[j] = self.dataInfo.expertLocation[batchIndex][j] #Location exp_action[j] = self.dataInfo.expertAction[batchIndex][j] exp_state = normalize(exp_state) exp_state = (torch.from_numpy(exp_state)).type(torch.FloatTensor).to(device) # exp_state = torch.unsqueeze(exp_state, 0) exp_action = (torch.from_numpy(exp_action)).type(torch.FloatTensor).to(device) print("Batch: {}\t generating {} fake data...".format(str(batchIndex), str(batch))) #Generate action fake_actionDis, fake_action, fake_entroP = self.generator(exp_state) exp_score = (self.generator.criticScore).detach() # Initialise Discriminator self.discriminatorOptim.zero_grad() #Train Discriminator with fake(s,a) & expert(s,a) detach_fake_action = fake_action.detach() fake_input = self.makeDisInput(exp_state, detach_fake_action) exp_input = self.makeDisInput(exp_state, exp_action) print("Calculating loss...") fake_label = torch.full((batch, 1), 0, device=device) exp_label = torch.full((batch, 1), 1, device=device) fake_loss = self.discriminator(fake_input) fake_loss = self.lossCriterion(fake_loss, fake_label) exp_loss = self.discriminator(exp_input) exp_loss = self.lossCriterion(exp_loss, exp_label) #Update Discriminator based on loss gradient loss = (fake_loss+exp_loss)-self.entropyBeta*fake_entroP.detach().mean() loss.backward() self.discriminatorOptim.step() #Get PPO Loss print("PPO....") exp_state = (Variable(exp_state).data).cpu().numpy() #convert to numpy exp_action = (Variable(exp_action).data).cpu().numpy() exp_score = (Variable(exp_score).data).cpu().numpy() self.ppoExp = PPO(self.generator, self.generatorOptim) self.ppoExp.importExpertData(exp_state,exp_action,exp_reward,exp_score,exp_done,fake_actionDis) state, generatorLoss, entropy = self.ppoExp.optimiseGenerator1D() if torch.isnan(entropy) or loss==0: break self.generator.load_state_dict(state) self.genCounter.append(generatorLoss) self.disCounter.append(loss) self.entCounter.append(entropy) print("--DisLoss {}-- --GenLoss {} --Entropy {}".format(str(loss.detach()), \ str(generatorLoss), str(entropy))) del self.ppoExp def train(self, numIteration, enableOnPolicy): self.enableOnPolicy = str(enableOnPolicy) for i in range(numIteration): print("-----------------------Iteration {}------------------------------".format(str(i))) # GAIL self.dataInfo.shuffle() self.dataInfo.sampleData() self.updateModel() self.ppo = PPO(self.generator, self.generatorOptim) self.ppo.tryEnvironment1D() self.rwdCounter.append(self.ppo.totalReward) if enableOnPolicy == True: #PPO state, loss, entropy = self.ppo.optimiseGenerator1D() if torch.isnan(entropy) or loss==0: del self.ppo continue else: self.generator.load_state_dict(state) del self.ppo self.getGraph() def save(self, path, type): torch.save(self.generator.state_dict(), '{}/{}_generator.pth'.format(path,type)) torch.save(self.discriminator.state_dict(), '{}/{}_discriminator.pth'.format(path,type)) def load(self, path, type): self.generator.load_state_dict(torch.load('{}/{}_generator.pth'.format(path,type),map_location=map_location)) self.discriminator.load_state_dict(torch.load('{}/{}_discriminator.pth'.format(path,type),map_location=map_location))
[ "matplotlib.pyplot.ylabel", "torch.full", "matplotlib.pyplot.xlabel", "GAIL.Generator.Generator1D", "torch.from_numpy", "matplotlib.pyplot.close", "torch.nn.BCELoss", "torch.cuda.is_available", "numpy.zeros", "GAIL.PPO.PPO", "GAIL.Discriminator.Discriminator1D", "sklearn.preprocessing.normalize", "torch.autograd.Variable", "torch.isnan", "gym.make", "torch.cat" ]
[((598, 623), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (621, 623), False, 'import torch\n'), ((741, 766), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (764, 766), False, 'import torch\n'), ((950, 962), 'torch.nn.BCELoss', 'nn.BCELoss', ([], {}), '()\n', (960, 962), True, 'import torch.nn as nn\n'), ((1252, 1279), 'gym.make', 'gym.make', (['dataInfo.gameName'], {}), '(dataInfo.gameName)\n', (1260, 1279), False, 'import gym\n'), ((1882, 1917), 'GAIL.PPO.PPO', 'PPO', (['self.generator', 'self.learnRate'], {}), '(self.generator, self.learnRate)\n', (1885, 1917), False, 'from GAIL.PPO import PPO\n'), ((2248, 2277), 'torch.cat', 'torch.cat', (['(state, output)', '(1)'], {}), '((state, output), 1)\n', (2257, 2277), False, 'import torch\n'), ((3135, 3154), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Batch"""'], {}), "('Batch')\n", (3145, 3154), True, 'import matplotlib.pyplot as plt\n'), ((3163, 3181), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Loss"""'], {}), "('Loss')\n", (3173, 3181), True, 'import matplotlib.pyplot as plt\n'), ((3669, 3685), 'matplotlib.pyplot.close', 'plt.close', (['"""all"""'], {}), "('all')\n", (3678, 3685), True, 'import matplotlib.pyplot as plt\n'), ((3773, 3792), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Batch"""'], {}), "('Batch')\n", (3783, 3792), True, 'import matplotlib.pyplot as plt\n'), ((3801, 3819), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Loss"""'], {}), "('Loss')\n", (3811, 3819), True, 'import matplotlib.pyplot as plt\n'), ((4321, 4337), 'matplotlib.pyplot.close', 'plt.close', (['"""all"""'], {}), "('all')\n", (4330, 4337), True, 'import matplotlib.pyplot as plt\n'), ((4425, 4444), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Batch"""'], {}), "('Batch')\n", (4435, 4444), True, 'import matplotlib.pyplot as plt\n'), ((4453, 4474), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Entropy"""'], {}), "('Entropy')\n", (4463, 4474), True, 'import matplotlib.pyplot as plt\n'), ((4875, 4891), 'matplotlib.pyplot.close', 'plt.close', (['"""all"""'], {}), "('all')\n", (4884, 4891), True, 'import matplotlib.pyplot as plt\n'), ((2444, 2467), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Iteration"""'], {}), "('Iteration')\n", (2454, 2467), True, 'import matplotlib.pyplot as plt\n'), ((2480, 2501), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Rewards"""'], {}), "('Rewards')\n", (2490, 2501), True, 'import matplotlib.pyplot as plt\n'), ((3031, 3047), 'matplotlib.pyplot.close', 'plt.close', (['"""all"""'], {}), "('all')\n", (3040, 3047), True, 'import matplotlib.pyplot as plt\n'), ((5107, 5127), 'numpy.zeros', 'np.zeros', (['(batch, 1)'], {}), '((batch, 1))\n', (5115, 5127), True, 'import numpy as np\n'), ((5153, 5173), 'numpy.zeros', 'np.zeros', (['(batch, 1)'], {}), '((batch, 1))\n', (5161, 5173), True, 'import numpy as np\n'), ((5196, 5216), 'numpy.zeros', 'np.zeros', (['(batch, 1)'], {}), '((batch, 1))\n', (5204, 5216), True, 'import numpy as np\n'), ((5322, 5366), 'numpy.zeros', 'np.zeros', (['(batch, self.dataInfo.locateShape)'], {}), '((batch, self.dataInfo.locateShape))\n', (5330, 5366), True, 'import numpy as np\n'), ((5597, 5617), 'sklearn.preprocessing.normalize', 'normalize', (['exp_state'], {}), '(exp_state)\n', (5606, 5617), False, 'from sklearn.preprocessing import normalize\n'), ((6533, 6573), 'torch.full', 'torch.full', (['(batch, 1)', '(0)'], {'device': 'device'}), '((batch, 1), 0, device=device)\n', (6543, 6573), False, 'import torch\n'), ((6598, 6638), 'torch.full', 'torch.full', (['(batch, 1)', '(1)'], {'device': 'device'}), '((batch, 1), 1, device=device)\n', (6608, 6638), False, 'import torch\n'), ((7387, 7427), 'GAIL.PPO.PPO', 'PPO', (['self.generator', 'self.generatorOptim'], {}), '(self.generator, self.generatorOptim)\n', (7390, 7427), False, 'from GAIL.PPO import PPO\n'), ((8481, 8521), 'GAIL.PPO.PPO', 'PPO', (['self.generator', 'self.generatorOptim'], {}), '(self.generator, self.generatorOptim)\n', (8484, 8521), False, 'from GAIL.PPO import PPO\n'), ((1551, 1577), 'GAIL.Generator.Generator1D', 'Generator1D', (['self.dataInfo'], {}), '(self.dataInfo)\n', (1562, 1577), False, 'from GAIL.Generator import Generator1D\n'), ((1714, 1744), 'GAIL.Discriminator.Discriminator1D', 'Discriminator1D', (['self.dataInfo'], {}), '(self.dataInfo)\n', (1729, 1744), False, 'from GAIL.Discriminator import Discriminator1D\n'), ((7629, 7649), 'torch.isnan', 'torch.isnan', (['entropy'], {}), '(entropy)\n', (7640, 7649), False, 'import torch\n'), ((8770, 8790), 'torch.isnan', 'torch.isnan', (['entropy'], {}), '(entropy)\n', (8781, 8790), False, 'import torch\n'), ((5643, 5670), 'torch.from_numpy', 'torch.from_numpy', (['exp_state'], {}), '(exp_state)\n', (5659, 5670), False, 'import torch\n'), ((5788, 5816), 'torch.from_numpy', 'torch.from_numpy', (['exp_action'], {}), '(exp_action)\n', (5804, 5816), False, 'import torch\n'), ((7171, 7190), 'torch.autograd.Variable', 'Variable', (['exp_state'], {}), '(exp_state)\n', (7179, 7190), False, 'from torch.autograd import Variable\n'), ((7255, 7275), 'torch.autograd.Variable', 'Variable', (['exp_action'], {}), '(exp_action)\n', (7263, 7275), False, 'from torch.autograd import Variable\n'), ((7321, 7340), 'torch.autograd.Variable', 'Variable', (['exp_score'], {}), '(exp_score)\n', (7329, 7340), False, 'from torch.autograd import Variable\n')]
from __future__ import print_function, division from black import out import numpy as np import torch import torch.nn.functional as F import torch.nn as nn import torch from torch.autograd import Variable import torch.nn.functional as F import numpy as np try: from itertools import ifilterfalse except ImportError: # py3k from itertools import filterfalse as ifilterfalse import matplotlib.pyplot as plt import numpy as np import torch import torch.nn.functional as F from sklearn.utils import class_weight class StableBCELoss(torch.nn.modules.Module): def __init__(self): super(StableBCELoss, self).__init__() def forward(self, input, target): neg_abs = - input.abs() loss = input.clamp(min=0) - input * target + (1 + neg_abs.exp()).log() return loss.mean() class CrossEntropyLoss2d(nn.Module): def __init__(self, weight=None, ignore_index=255, reduction='mean'): super(CrossEntropyLoss2d, self).__init__() self.CE = nn.CrossEntropyLoss(weight=weight, ignore_index=ignore_index, reduction=reduction) def forward(self, output, target): loss = self.CE(output, target) return loss class DiceLoss(nn.Module): def __init__(self, smooth=1., ignore_index=None): super(DiceLoss, self).__init__() self.ignore_index = ignore_index self.smooth = smooth def forward(self, output, target): if self.ignore_index is not None and self.ignore_index not in range(target.min(), target.max()): if (target == self.ignore_index).sum() > 0: target[target == self.ignore_index] = target.min() target = make_one_hot(target.unsqueeze(dim=1), classes=output.size()[1]) output = F.softmax(output, dim=1) output_flat = output.contiguous().view(-1) target_flat = target.contiguous().view(-1) intersection = (output_flat * target_flat).sum() loss = 1 - ((2. * intersection + self.smooth) / (output_flat.sum() + target_flat.sum() + self.smooth)) return loss class FocalLoss(nn.Module): def __init__(self, gamma=2, alpha=None, size_average=True): super(FocalLoss, self).__init__() self.gamma = gamma self.size_average = size_average self.CE_loss = nn.CrossEntropyLoss(reduce=False, weight=alpha) def forward(self, output, target): logpt = self.CE_loss(output, target) pt = torch.exp(-logpt) loss = ((1-pt)**self.gamma) * logpt if self.size_average: return loss.mean() return loss.sum() """ ==================== Focal Loss code reference: https://github.com/clcarwin/focal_loss_pytorch ==================== """ # class FocalLoss(nn.Module): # def __init__(self, gamma=0, alpha=None, size_average=True): # super(FocalLoss, self).__init__() # self.gamma = gamma # self.alpha = alpha # if isinstance(alpha,(float,int)): self.alpha = torch.Tensor([alpha,1-alpha]) # if isinstance(alpha,list): self.alpha = torch.Tensor(alpha) # self.size_average = size_average # def forward(self, input, target): # if input.dim()>2: # input = input.view(input.size(0),input.size(1),-1) # N,C,H,W => N,C,H*W # input = input.transpose(1,2) # N,C,H*W => N,H*W,C # input = input.contiguous().view(-1,input.size(2)) # N,H*W,C => N*H*W,C # target = target.view(-1,1) # logpt = F.log_softmax(input) # logpt = logpt.gather(1,target) # logpt = logpt.view(-1) # pt = Variable(logpt.data.exp()) # if self.alpha is not None: # if self.alpha.type()!=input.data.type(): # self.alpha = self.alpha.type_as(input.data) # at = self.alpha.gather(0,target.data.view(-1)) # logpt = logpt * Variable(at) # loss = -1 * (1-pt)**self.gamma * logpt # if self.size_average: return loss.mean() # else: return loss.sum() class CE_DiceLoss(nn.Module): def __init__(self, smooth=1, reduction='mean', ignore_index=None, weight=None): super(CE_DiceLoss, self).__init__() self.smooth = smooth self.dice = DiceLoss() if ignore_index is not None: self.cross_entropy = nn.CrossEntropyLoss(weight=weight, reduction=reduction, ignore_index=ignore_index) else: self.cross_entropy = nn.CrossEntropyLoss(weight=weight, reduction=reduction) def forward(self, output, target): CE_loss = self.cross_entropy(output, target) dice_loss = self.dice(output, target) return CE_loss + dice_loss class LovaszSoftmax(nn.Module): def __init__(self, classes='all', per_image=True, ignore_index=None): super(LovaszSoftmax, self).__init__() self.smooth = classes self.per_image = per_image self.ignore_index = ignore_index def forward(self, output, target): logits = F.softmax(output, dim=1) loss = lovasz_softmax(logits, target, ignore=self.ignore_index) return loss class StableBCELoss(torch.nn.modules.Module): def __init__(self): super(StableBCELoss, self).__init__() def forward(self, input, target): neg_abs = - input.abs() loss = input.clamp(min=0) - input * target + (1 + neg_abs.exp()).log() return loss.mean() """ Lovasz-Softmax and Jaccard hinge loss in PyTorch <NAME> 2018 ESAT-PSI KU Leuven (MIT License) https://github.com/bermanmaxim/LovaszSoftmax/blob/master/pytorch/lovasz_losses.py """ def lovasz_grad(gt_sorted): """ Computes gradient of the Lovasz extension w.r.t sorted errors See Alg. 1 in paper """ p = len(gt_sorted) gts = gt_sorted.sum() intersection = gts - gt_sorted.float().cumsum(0) union = gts + (1 - gt_sorted).float().cumsum(0) jaccard = 1. - intersection / union if p > 1: # cover 1-pixel case jaccard[1:p] = jaccard[1:p] - jaccard[0:-1] return jaccard def iou_binary(preds, labels, EMPTY=1., ignore=None, per_image=True): """ IoU for foreground class binary: 1 foreground, 0 background """ if not per_image: preds, labels = (preds,), (labels,) ious = [] for pred, label in zip(preds, labels): intersection = ((label == 1) & (pred == 1)).sum() union = ((label == 1) | ((pred == 1) & (label != ignore))).sum() if not union: iou = EMPTY else: iou = float(intersection) / float(union) ious.append(iou) iou = mean(ious) # mean accross images if per_image return 100 * iou def iou(preds, labels, C, EMPTY=1., ignore=None, per_image=False): """ Array of IoU for each (non ignored) class """ if not per_image: preds, labels = (preds,), (labels,) ious = [] for pred, label in zip(preds, labels): iou = [] for i in range(C): if i != ignore: # The ignored label is sometimes among predicted classes (ENet - CityScapes) intersection = ((label == i) & (pred == i)).sum() union = ((label == i) | ((pred == i) & (label != ignore))).sum() if not union: iou.append(EMPTY) else: iou.append(float(intersection) / float(union)) ious.append(iou) ious = [mean(iou) for iou in zip(*ious)] # mean accross images if per_image return 100 * np.array(ious) # --------------------------- BINARY LOSSES --------------------------- def lovasz_hinge(logits, labels, per_image=True, ignore=None): """ Binary Lovasz hinge loss logits: [B, H, W] Variable, logits at each pixel (between -\infty and +\infty) labels: [B, H, W] Tensor, binary ground truth masks (0 or 1) per_image: compute the loss per image instead of per batch ignore: void class id """ if per_image: loss = mean(lovasz_hinge_flat(*flatten_binary_scores(log.unsqueeze(0), lab.unsqueeze(0), ignore)) for log, lab in zip(logits, labels)) else: loss = lovasz_hinge_flat(*flatten_binary_scores(logits, labels, ignore)) return loss def lovasz_hinge_flat(logits, labels): """ Binary Lovasz hinge loss logits: [P] Variable, logits at each prediction (between -\infty and +\infty) labels: [P] Tensor, binary ground truth labels (0 or 1) ignore: label to ignore """ if len(labels) == 0: # only void pixels, the gradients should be 0 return logits.sum() * 0. signs = 2. * labels.float() - 1. errors = (1. - logits * Variable(signs)) errors_sorted, perm = torch.sort(errors, dim=0, descending=True) perm = perm.data gt_sorted = labels[perm] grad = lovasz_grad(gt_sorted) loss = torch.dot(F.relu(errors_sorted), Variable(grad)) return loss def flatten_binary_scores(scores, labels, ignore=None): """ Flattens predictions in the batch (binary case) Remove labels equal to 'ignore' """ scores = scores.view(-1) labels = labels.view(-1) if ignore is None: return scores, labels valid = (labels != ignore) vscores = scores[valid] vlabels = labels[valid] return vscores, vlabels def binary_xloss(logits, labels, ignore=None): """ Binary Cross entropy loss logits: [B, H, W] Variable, logits at each pixel (between -\infty and +\infty) labels: [B, H, W] Tensor, binary ground truth masks (0 or 1) ignore: void class id """ logits, labels = flatten_binary_scores(logits, labels, ignore) loss = StableBCELoss()(logits, Variable(labels.float())) return loss # --------------------------- MULTICLASS LOSSES --------------------------- def lovasz_softmax(probas, labels, classes='present', per_image=False, ignore=None): """ Multi-class Lovasz-Softmax loss probas: [B, C, H, W] Variable, class probabilities at each prediction (between 0 and 1). Interpreted as binary (sigmoid) output with outputs of size [B, H, W]. labels: [B, H, W] Tensor, ground truth labels (between 0 and C - 1) classes: 'all' for all, 'present' for classes present in labels, or a list of classes to average. per_image: compute the loss per image instead of per batch ignore: void class labels """ if per_image: loss = mean(lovasz_softmax_flat(*flatten_probas(prob.unsqueeze(0), lab.unsqueeze(0), ignore), classes=classes) for prob, lab in zip(probas, labels)) else: loss = lovasz_softmax_flat(*flatten_probas(probas, labels, ignore), classes=classes) return loss def lovasz_softmax_flat(probas, labels, classes='present'): """ Multi-class Lovasz-Softmax loss probas: [P, C] Variable, class probabilities at each prediction (between 0 and 1) labels: [P] Tensor, ground truth labels (between 0 and C - 1) classes: 'all' for all, 'present' for classes present in labels, or a list of classes to average. """ if probas.numel() == 0: # only void pixels, the gradients should be 0 return probas * 0. C = probas.size(1) losses = [] class_to_sum = list(range(C)) if classes in ['all', 'present'] else classes for c in class_to_sum: fg = (labels == c).float() # foreground for class c if (classes is 'present' and fg.sum() == 0): continue if C == 1: if len(classes) > 1: raise ValueError('Sigmoid output possible only with 1 class') class_pred = probas[:, 0] else: class_pred = probas[:, c] errors = (Variable(fg) - class_pred).abs() errors_sorted, perm = torch.sort(errors, 0, descending=True) perm = perm.data fg_sorted = fg[perm] losses.append(torch.dot(errors_sorted, Variable(lovasz_grad(fg_sorted)))) return mean(losses) def flatten_probas(probas, labels, ignore=None): """ Flattens predictions in the batch """ if probas.dim() == 3: # assumes output of a sigmoid layer B, H, W = probas.size() probas = probas.view(B, 1, H, W) B, C, H, W = probas.size() probas = probas.permute(0, 2, 3, 1).contiguous().view(-1, C) # B * H * W, C = P, C labels = labels.view(-1) if ignore is None: return probas, labels valid = (labels != ignore) vprobas = probas[valid.nonzero().squeeze()] vlabels = labels[valid] return vprobas, vlabels def xloss(logits, labels, ignore=None): """ Cross entropy loss """ return F.cross_entropy(logits, Variable(labels), ignore_index=255) # --------------------------- HELPER FUNCTIONS --------------------------- def isnan(x): return x != x def mean(l, ignore_nan=False, empty=0): """ nanmean compatible with generators. """ l = iter(l) if ignore_nan: l = ifilterfalse(isnan, l) try: n = 1 acc = next(l) except StopIteration: if empty == 'raise': raise ValueError('Empty mean') return empty for n, v in enumerate(l, 2): acc += v if n == 1: return acc return acc / n ### data processing ### def toOneHot(mask, nb_class=10): """ Convert label image to onehot encoding Args: mask (Image): mask containing pixels labels nb_class (int): number of class """ categorical = torch.from_numpy(np.array(mask)).long() categorical = F.one_hot(categorical, nb_class) return categorical.permute(2,0,1).float() ### losses & accuracy ### def dice_loss(yhat, ytrue, epsilon=1e-6): """ Computes a soft Dice Loss Args: yhat (Tensor): predicted masks ytrue (Tensor): targets masks epsilon (Float): smoothing value to avoid division by 0 output: DL value with `mean` reduction """ # compute Dice components intersection = torch.sum(yhat * ytrue, (1,2,3)) cardinal = torch.sum(yhat + ytrue, (1,2,3)) return torch.mean(1. - (2 * intersection / (cardinal + epsilon))) def tversky_index(yhat, ytrue, alpha=0.3, beta=0.7, epsilon=1e-6): """ Computes Tversky index Args: yhat (Tensor): predicted masks ytrue (Tensor): targets masks alpha (Float): weight for False positive beta (Float): weight for False negative `` alpha and beta control the magnitude of penalties and should sum to 1`` epsilon (Float): smoothing value to avoid division by 0 output: tversky index value """ TP = torch.sum(yhat * ytrue) FP = torch.sum((1. - ytrue) * yhat) FN = torch.sum((1. - yhat) * ytrue) return TP/(TP + alpha * FP + beta * FN + epsilon) def tversky_loss(yhat, ytrue): """ Computes tversky loss given tversky index Args: yhat (Tensor): predicted masks ytrue (Tensor): targets masks output: tversky loss value with `mean` reduction """ return torch.mean(1 - tversky_index(yhat, ytrue)) def tversky_focal_loss(yhat, ytrue, alpha=0.7, beta=0.3, gamma=0.75): """ Computes tversky focal loss for highly umbalanced data https://arxiv.org/pdf/1810.07842.pdf Args: yhat (Tensor): predicted masks ytrue (Tensor): targets masks alpha (Float): weight for False positive beta (Float): weight for False negative `` alpha and beta control the magnitude of penalties and should sum to 1`` gamma (Float): focal parameter ``control the balance between easy background and hard ROI training examples`` output: tversky focal loss value with `mean` reduction """ return torch.mean(torch.pow(1 - tversky_index(yhat, ytrue, alpha, beta), gamma)) def focal_loss(yhat, ytrue, alpha=0.75, gamma=2): """ Computes α-balanced focal loss from FAIR https://arxiv.org/pdf/1708.02002v2.pdf Args: yhat (Tensor): predicted masks ytrue (Tensor): targets masks alpha (Float): weight to balance Cross entropy value gamma (Float): focal parameter output: loss value with `mean` reduction """ # compute the actual focal loss focal = -alpha * torch.pow(1. - yhat, gamma) * torch.log(yhat) f_loss = torch.sum(ytrue * focal, dim=1) return torch.mean(f_loss) def iou_accuracy(yhat, ytrue, threshold=0.5, epsilon=1e-6): """ Computes Intersection over Union metric Args: yhat (Tensor): predicted masks ytrue (Tensor): targets masks threshold (Float): threshold for pixel classification epsilon (Float): smoothing parameter for numerical stability output: iou value with `mean` reduction """ intersection = ((yhat>threshold).long() & ytrue.long()).float().sum((1,2,3)) union = ((yhat>threshold).long() | ytrue.long()).float().sum((1,2,3)) return torch.mean(intersection/(union + epsilon)).item() def make_one_hot(labels, classes): one_hot = torch.FloatTensor(labels.size()[0], classes, labels.size()[2], labels.size()[3]).zero_().to(labels.device) target = one_hot.scatter_(1, labels.data, 1) return target def get_weights(target): t_np = target.view(-1).data.cpu().numpy() classes, counts = np.unique(t_np, return_counts=True) # cls_w = np.median(counts) / counts cls_w = class_weight.compute_class_weight(class_weight='balanced', classes=classes, y=t_np) weights = np.ones(7) weights[classes] = cls_w return torch.from_numpy(weights).float().cuda()
[ "torch.sort", "torch.log", "numpy.unique", "numpy.ones", "torch.nn.CrossEntropyLoss", "torch.mean", "sklearn.utils.class_weight.compute_class_weight", "torch.exp", "itertools.filterfalse", "torch.pow", "numpy.array", "torch.from_numpy", "torch.sum", "torch.nn.functional.one_hot", "torch.nn.functional.relu", "torch.autograd.Variable", "torch.nn.functional.softmax" ]
[((8712, 8754), 'torch.sort', 'torch.sort', (['errors'], {'dim': '(0)', 'descending': '(True)'}), '(errors, dim=0, descending=True)\n', (8722, 8754), False, 'import torch\n'), ((13562, 13594), 'torch.nn.functional.one_hot', 'F.one_hot', (['categorical', 'nb_class'], {}), '(categorical, nb_class)\n', (13571, 13594), True, 'import torch.nn.functional as F\n'), ((14010, 14044), 'torch.sum', 'torch.sum', (['(yhat * ytrue)', '(1, 2, 3)'], {}), '(yhat * ytrue, (1, 2, 3))\n', (14019, 14044), False, 'import torch\n'), ((14058, 14092), 'torch.sum', 'torch.sum', (['(yhat + ytrue)', '(1, 2, 3)'], {}), '(yhat + ytrue, (1, 2, 3))\n', (14067, 14092), False, 'import torch\n'), ((14103, 14160), 'torch.mean', 'torch.mean', (['(1.0 - 2 * intersection / (cardinal + epsilon))'], {}), '(1.0 - 2 * intersection / (cardinal + epsilon))\n', (14113, 14160), False, 'import torch\n'), ((14665, 14688), 'torch.sum', 'torch.sum', (['(yhat * ytrue)'], {}), '(yhat * ytrue)\n', (14674, 14688), False, 'import torch\n'), ((14698, 14729), 'torch.sum', 'torch.sum', (['((1.0 - ytrue) * yhat)'], {}), '((1.0 - ytrue) * yhat)\n', (14707, 14729), False, 'import torch\n'), ((14738, 14769), 'torch.sum', 'torch.sum', (['((1.0 - yhat) * ytrue)'], {}), '((1.0 - yhat) * ytrue)\n', (14747, 14769), False, 'import torch\n'), ((16394, 16425), 'torch.sum', 'torch.sum', (['(ytrue * focal)'], {'dim': '(1)'}), '(ytrue * focal, dim=1)\n', (16403, 16425), False, 'import torch\n'), ((16438, 16456), 'torch.mean', 'torch.mean', (['f_loss'], {}), '(f_loss)\n', (16448, 16456), False, 'import torch\n'), ((17385, 17420), 'numpy.unique', 'np.unique', (['t_np'], {'return_counts': '(True)'}), '(t_np, return_counts=True)\n', (17394, 17420), True, 'import numpy as np\n'), ((17474, 17561), 'sklearn.utils.class_weight.compute_class_weight', 'class_weight.compute_class_weight', ([], {'class_weight': '"""balanced"""', 'classes': 'classes', 'y': 't_np'}), "(class_weight='balanced', classes=classes,\n y=t_np)\n", (17507, 17561), False, 'from sklearn.utils import class_weight\n'), ((17573, 17583), 'numpy.ones', 'np.ones', (['(7)'], {}), '(7)\n', (17580, 17583), True, 'import numpy as np\n'), ((1000, 1087), 'torch.nn.CrossEntropyLoss', 'nn.CrossEntropyLoss', ([], {'weight': 'weight', 'ignore_index': 'ignore_index', 'reduction': 'reduction'}), '(weight=weight, ignore_index=ignore_index, reduction=\n reduction)\n', (1019, 1087), True, 'import torch.nn as nn\n'), ((1741, 1765), 'torch.nn.functional.softmax', 'F.softmax', (['output'], {'dim': '(1)'}), '(output, dim=1)\n', (1750, 1765), True, 'import torch.nn.functional as F\n'), ((2302, 2349), 'torch.nn.CrossEntropyLoss', 'nn.CrossEntropyLoss', ([], {'reduce': '(False)', 'weight': 'alpha'}), '(reduce=False, weight=alpha)\n', (2321, 2349), True, 'import torch.nn as nn\n'), ((2448, 2465), 'torch.exp', 'torch.exp', (['(-logpt)'], {}), '(-logpt)\n', (2457, 2465), False, 'import torch\n'), ((4994, 5018), 'torch.nn.functional.softmax', 'F.softmax', (['output'], {'dim': '(1)'}), '(output, dim=1)\n', (5003, 5018), True, 'import torch.nn.functional as F\n'), ((7493, 7507), 'numpy.array', 'np.array', (['ious'], {}), '(ious)\n', (7501, 7507), True, 'import numpy as np\n'), ((8860, 8881), 'torch.nn.functional.relu', 'F.relu', (['errors_sorted'], {}), '(errors_sorted)\n', (8866, 8881), True, 'import torch.nn.functional as F\n'), ((8883, 8897), 'torch.autograd.Variable', 'Variable', (['grad'], {}), '(grad)\n', (8891, 8897), False, 'from torch.autograd import Variable\n'), ((11779, 11817), 'torch.sort', 'torch.sort', (['errors', '(0)'], {'descending': '(True)'}), '(errors, 0, descending=True)\n', (11789, 11817), False, 'import torch\n'), ((12677, 12693), 'torch.autograd.Variable', 'Variable', (['labels'], {}), '(labels)\n', (12685, 12693), False, 'from torch.autograd import Variable\n'), ((12975, 12997), 'itertools.filterfalse', 'ifilterfalse', (['isnan', 'l'], {}), '(isnan, l)\n', (12987, 12997), True, 'from itertools import filterfalse as ifilterfalse\n'), ((16365, 16380), 'torch.log', 'torch.log', (['yhat'], {}), '(yhat)\n', (16374, 16380), False, 'import torch\n'), ((4309, 4396), 'torch.nn.CrossEntropyLoss', 'nn.CrossEntropyLoss', ([], {'weight': 'weight', 'reduction': 'reduction', 'ignore_index': 'ignore_index'}), '(weight=weight, reduction=reduction, ignore_index=\n ignore_index)\n', (4328, 4396), True, 'import torch.nn as nn\n'), ((4439, 4494), 'torch.nn.CrossEntropyLoss', 'nn.CrossEntropyLoss', ([], {'weight': 'weight', 'reduction': 'reduction'}), '(weight=weight, reduction=reduction)\n', (4458, 4494), True, 'import torch.nn as nn\n'), ((8669, 8684), 'torch.autograd.Variable', 'Variable', (['signs'], {}), '(signs)\n', (8677, 8684), False, 'from torch.autograd import Variable\n'), ((16335, 16363), 'torch.pow', 'torch.pow', (['(1.0 - yhat)', 'gamma'], {}), '(1.0 - yhat, gamma)\n', (16344, 16363), False, 'import torch\n'), ((17015, 17059), 'torch.mean', 'torch.mean', (['(intersection / (union + epsilon))'], {}), '(intersection / (union + epsilon))\n', (17025, 17059), False, 'import torch\n'), ((13521, 13535), 'numpy.array', 'np.array', (['mask'], {}), '(mask)\n', (13529, 13535), True, 'import numpy as np\n'), ((11716, 11728), 'torch.autograd.Variable', 'Variable', (['fg'], {}), '(fg)\n', (11724, 11728), False, 'from torch.autograd import Variable\n'), ((17624, 17649), 'torch.from_numpy', 'torch.from_numpy', (['weights'], {}), '(weights)\n', (17640, 17649), False, 'import torch\n')]
# imports import numpy as np from rubin_sim.maf.metrics.baseMetric import BaseMetric # constants __all__ = ["UseMetric"] # exception classes # interface functions # classes class UseMetric(BaseMetric): # pylint: disable=too-few-public-methods """Metric to classify visits by type of visits""" def __init__(self, noteCol="note", **kwargs): self.noteCol = noteCol super().__init__(col=[noteCol], metricDtype="object", **kwargs) def run(self, dataSlice, slicePoint=None): # pylint: disable=invalid-name """Run the metric. Parameters ---------- dataSlice : numpy.NDarray Values passed to metric by the slicer, which the metric will use to calculate metric values at each slicePoint. slicePoint : Dict Dictionary of slicePoint metadata passed to each metric. E.g. the ra/dec of the healpix pixel or opsim fieldId. Returns ------- str use at each slicePoint. """ use_name = None visible_bands = ("u", "g", "r") notes = dataSlice[self.noteCol] if len(notes.shape) == 0: note = notes else: note = notes[0] assert np.all(notes == note) note_elems = note.replace(":", ", ").split(", ") if note_elems[0] == "greedy": use_name = note_elems[0] if note_elems[0] == "DD": use_name = note_elems[1] if note_elems[0] == "blob": use_name = "wide with only IR" for band in visible_bands: if band in note_elems[1]: use_name = "wide with u, g, or r" assert use_name is not None, f"Unrecognized note: {note}" return use_name # internal functions & classes
[ "numpy.all" ]
[((1251, 1272), 'numpy.all', 'np.all', (['(notes == note)'], {}), '(notes == note)\n', (1257, 1272), True, 'import numpy as np\n')]
import time import numpy as np from tqdm import tqdm from sklearn.decomposition import MiniBatchDictionaryLearning from .metrics import distance_between_atoms from .visualizations import show_dictionary_atoms_img from .plots import plot_reconstruction_error_and_dictionary_distances def loader(X, batch_size): for j, i in enumerate(range(0, len(X), batch_size)): try: yield j, X[i: i + batch_size] except IndexError: yield j, X[i:] def study_dictionary_convergence_and_reconstruction_for_images( X: np.ndarray, X_test: np.ndarray, n_atoms=10, batch_size=30, data_nature_changes=[], compute_atoms_distance_every=10, color=True, atom_h=32, atom_w=32, display_intermediate=True): """ X: array of shape (num_samples, feature_size) X_test: array of shape (num_samples, feature_size) """ # Initializations times, reconstruction_errors = [], [] dictionary_atoms_distances, batches_seen = [], [] data_nature_changes_batches = [ size // batch_size for size in data_nature_changes] data_nature_changes_time = [] # Define an online dictionary learning clf = MiniBatchDictionaryLearning(n_components=n_atoms, batch_size=batch_size, transform_algorithm='lasso_lars', verbose=False) former_atoms = np.zeros((n_atoms, X_test.shape[1])) start = time.time() # For every batch of image, compute a partial fit of the dictionary for i, sample in tqdm(loader(X, batch_size), total=X.shape[0] // batch_size): clf.partial_fit(sample) # We then measure the reconstruction error reconstruction_error = np.array([np.linalg.norm( test_x - clf.transform(test_x).dot(clf.components_)) for test_x in X_test]) reconstruction_errors.append(reconstruction_error) times.append(time.time() - start) # We compute the data nature change time if there is any nb_of_current_changes = len(data_nature_changes_time) if nb_of_current_changes < len(data_nature_changes): # Data nature change at current batch if data_nature_changes[nb_of_current_changes] <= i * batch_size: data_nature_changes_time.append(time.time() - start) atoms_distance_computation_cond = i % compute_atoms_distance_every == compute_atoms_distance_every - 1 if atoms_distance_computation_cond: # We occasionally compute the atoms distances between iterations distance_from_prev_dict = distance_between_atoms( former_atoms, clf.components_) former_atoms = np.copy(clf.components_) dictionary_atoms_distances.append(distance_from_prev_dict) batches_seen.append(i) # We optionally display the learnt atoms if display_intermediate: print("=" * 20, "\n", "Batch", i) print("Distance between current and previous atoms:", distance_from_prev_dict) show_dictionary_atoms_img( clf, color=color, atom_h=atom_h, atom_w=atom_w) # We eventually plot the reconstruction error and the evolution of atoms distances reconstruction_errors = np.array(reconstruction_errors).T dictionary_atoms_distances = np.array(dictionary_atoms_distances) plot_reconstruction_error_and_dictionary_distances( times, reconstruction_errors, batches_seen, dictionary_atoms_distances, compute_atoms_distance_every, data_nature_changes_time, data_nature_changes_batches)
[ "numpy.copy", "sklearn.decomposition.MiniBatchDictionaryLearning", "numpy.array", "numpy.zeros", "time.time" ]
[((1165, 1290), 'sklearn.decomposition.MiniBatchDictionaryLearning', 'MiniBatchDictionaryLearning', ([], {'n_components': 'n_atoms', 'batch_size': 'batch_size', 'transform_algorithm': '"""lasso_lars"""', 'verbose': '(False)'}), "(n_components=n_atoms, batch_size=batch_size,\n transform_algorithm='lasso_lars', verbose=False)\n", (1192, 1290), False, 'from sklearn.decomposition import MiniBatchDictionaryLearning\n'), ((1421, 1457), 'numpy.zeros', 'np.zeros', (['(n_atoms, X_test.shape[1])'], {}), '((n_atoms, X_test.shape[1]))\n', (1429, 1457), True, 'import numpy as np\n'), ((1471, 1482), 'time.time', 'time.time', ([], {}), '()\n', (1480, 1482), False, 'import time\n'), ((3405, 3441), 'numpy.array', 'np.array', (['dictionary_atoms_distances'], {}), '(dictionary_atoms_distances)\n', (3413, 3441), True, 'import numpy as np\n'), ((3338, 3369), 'numpy.array', 'np.array', (['reconstruction_errors'], {}), '(reconstruction_errors)\n', (3346, 3369), True, 'import numpy as np\n'), ((2721, 2745), 'numpy.copy', 'np.copy', (['clf.components_'], {}), '(clf.components_)\n', (2728, 2745), True, 'import numpy as np\n'), ((1946, 1957), 'time.time', 'time.time', ([], {}), '()\n', (1955, 1957), False, 'import time\n'), ((2331, 2342), 'time.time', 'time.time', ([], {}), '()\n', (2340, 2342), False, 'import time\n')]
import sys import os # Add basedir to path script_dir = os.path.abspath(os.path.dirname(__file__)) sys.path.append(script_dir + "/../") import numpy as np import pandas as pd import torch from torch.utils.data import Dataset, DataLoader from data.utils import read_pickle_from_file from dscribe.descriptors import ACSF from dscribe.core.system import System from data.data import MolecularGraph, load_csv, make_graph from time import time DATA_DIR = script_dir + "/../../data/" SPLIT_DIR = script_dir + "./split/" GRAPH_DIR = script_dir + "./graph/" class MolecularGraphDataset(Dataset): def __init__(self, split, csv, mode, augment=None): """Set Dataset for molecular graph Arguments: split {str} -- numpy splot csv {str} -- 'train' or 'test' mode {str} -- train Keyword Arguments: augment {[type]} -- [description] (default: {None}) """ self.split = split self.csv = csv self.mode = mode self.augment = augment self.df = pd.read_csv(DATA_DIR + '/%s.csv'%csv) if split is not None: self.id = np.load(split,allow_pickle=True) else: self.id = self.df.molecule_name.unique() def __str__(self): string = ''\ + '\tmode = %s\n'%self.mode \ + '\tsplit = %s\n'%self.split \ + '\tcsv = %s\n'%self.csv \ + '\tlen = %d\n'%len(self) return string def __len__(self): return len(self.id) def __getitem__(self, index): molecule_name = self.id[index] graph_file = f'{GRAPH_DIR}/{molecule_name}.pickle' graph = read_pickle_from_file(graph_file) if 0: # 1JHC, 2JHC, 3JHC, 1JHN, 2JHN, 3JHN, 2JHH, 3JHH mask = np.zeros(len(graph['coupling'].type),np.bool) for t in ['2JHC' , '2JHN', '2JHH']: mask += (graph['coupling'].type == COUPLING_TYPE.index(t)) graph['coupling'].id = graph['coupling'].id[mask] graph['coupling'].contribution = graph['coupling'].contribution[mask] graph['coupling'].index = graph['coupling'].index[mask] graph['coupling'].type = graph['coupling'].type[mask] graph['coupling'].value = graph['coupling'].value[mask] return graph def _collate_fn(batch): graphs = [] targets = [] batch_size = len(batch) offset = 0 coupling_value = [] coupling_atom_index = [] coupling_type_index = [] coupling_batch_index = [] infor = [] for b in range(batch_size): graph = batch[b] graphs.append(graph) num_coupling = len(graph['coupling'].value) coupling_value.append(graph['coupling'].value) coupling_atom_index.append(graph['coupling'].index+offset) coupling_type_index.append (graph['coupling'].type) coupling_batch_index.append(np.array([b]*num_coupling)) infor.append(graph['coupling'].id) offset += len(graph['atom']) train_input = MoleculaGraph().get_flat_data(graphs) gnode = [] for i, j in enumerate(train_input[0]): gnode += [i] * len(j) gbond = [] for i, j in enumerate(train_input[1]): gbond += [i] * len(j) gnode = torch.from_numpy(np.ravel(gnode)) gbond = torch.from_numpy(np.ravel(gbond)) node = torch.from_numpy(np.concatenate(train_input[0])).float() edge = torch.from_numpy(np.concatenate(train_input[1])).float() state = torch.from_numpy(np.concatenate(train_input[2])).float() index1_temp = train_input[3] index2_temp = train_input[4] index1 = [] index2 = [] offset_ind = 0 for ind1, ind2 in zip(index1_temp, index2_temp): index1 += [i + offset_ind for i in ind1] index2 += [i + offset_ind for i in ind2] offset_ind += (max(ind1) + 1) index1 = torch.from_numpy(np.ravel(index1)).long() index2 = torch.from_numpy(np.ravel(index2)).long() coupling_value = torch.from_numpy(np.concatenate(coupling_value)).float() targets = coupling_value coupling_index = np.concatenate([ np.concatenate(coupling_atom_index), np.concatenate(coupling_type_index).reshape(-1,1), np.concatenate(coupling_batch_index).reshape(-1,1), ],-1) coupling_index = torch.from_numpy(coupling_index).long() inputs = [node, edge, state, index1, index2, gnode, gbond, coupling_index, infor] return inputs, targets if __name__ == "__main__": dataset = MolecularGraphDataset(split='debug_split_by_mol.1000.npy', mode = 'train', csv = 'train', ) train_dl = DataLoader(dataset, batch_size=16, shuffle=False, collate_fn=_collate_fn, num_workers=0) # print(dataset[0]) start = time() for inputs, targets in train_dl: print(time() - start) start = time() pass print('qsdf')
[ "data.utils.read_pickle_from_file", "pandas.read_csv", "torch.from_numpy", "os.path.dirname", "numpy.array", "numpy.concatenate", "torch.utils.data.DataLoader", "numpy.ravel", "sys.path.append", "numpy.load", "time.time" ]
[((100, 136), 'sys.path.append', 'sys.path.append', (["(script_dir + '/../')"], {}), "(script_dir + '/../')\n", (115, 136), False, 'import sys\n'), ((73, 98), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (88, 98), False, 'import os\n'), ((4884, 4976), 'torch.utils.data.DataLoader', 'DataLoader', (['dataset'], {'batch_size': '(16)', 'shuffle': '(False)', 'collate_fn': '_collate_fn', 'num_workers': '(0)'}), '(dataset, batch_size=16, shuffle=False, collate_fn=_collate_fn,\n num_workers=0)\n', (4894, 4976), False, 'from torch.utils.data import Dataset, DataLoader\n'), ((5062, 5068), 'time.time', 'time', ([], {}), '()\n', (5066, 5068), False, 'from time import time\n'), ((1152, 1191), 'pandas.read_csv', 'pd.read_csv', (["(DATA_DIR + '/%s.csv' % csv)"], {}), "(DATA_DIR + '/%s.csv' % csv)\n", (1163, 1191), True, 'import pandas as pd\n'), ((1769, 1802), 'data.utils.read_pickle_from_file', 'read_pickle_from_file', (['graph_file'], {}), '(graph_file)\n', (1790, 1802), False, 'from data.utils import read_pickle_from_file\n'), ((3446, 3461), 'numpy.ravel', 'np.ravel', (['gnode'], {}), '(gnode)\n', (3454, 3461), True, 'import numpy as np\n'), ((3492, 3507), 'numpy.ravel', 'np.ravel', (['gbond'], {}), '(gbond)\n', (3500, 3507), True, 'import numpy as np\n'), ((5152, 5158), 'time.time', 'time', ([], {}), '()\n', (5156, 5158), False, 'from time import time\n'), ((1242, 1275), 'numpy.load', 'np.load', (['split'], {'allow_pickle': '(True)'}), '(split, allow_pickle=True)\n', (1249, 1275), True, 'import numpy as np\n'), ((3071, 3099), 'numpy.array', 'np.array', (['([b] * num_coupling)'], {}), '([b] * num_coupling)\n', (3079, 3099), True, 'import numpy as np\n'), ((4286, 4321), 'numpy.concatenate', 'np.concatenate', (['coupling_atom_index'], {}), '(coupling_atom_index)\n', (4300, 4321), True, 'import numpy as np\n'), ((4473, 4505), 'torch.from_numpy', 'torch.from_numpy', (['coupling_index'], {}), '(coupling_index)\n', (4489, 4505), False, 'import torch\n'), ((3537, 3567), 'numpy.concatenate', 'np.concatenate', (['train_input[0]'], {}), '(train_input[0])\n', (3551, 3567), True, 'import numpy as np\n'), ((3605, 3635), 'numpy.concatenate', 'np.concatenate', (['train_input[1]'], {}), '(train_input[1])\n', (3619, 3635), True, 'import numpy as np\n'), ((3674, 3704), 'numpy.concatenate', 'np.concatenate', (['train_input[2]'], {}), '(train_input[2])\n', (3688, 3704), True, 'import numpy as np\n'), ((4051, 4067), 'numpy.ravel', 'np.ravel', (['index1'], {}), '(index1)\n', (4059, 4067), True, 'import numpy as np\n'), ((4106, 4122), 'numpy.ravel', 'np.ravel', (['index2'], {}), '(index2)\n', (4114, 4122), True, 'import numpy as np\n'), ((4169, 4199), 'numpy.concatenate', 'np.concatenate', (['coupling_value'], {}), '(coupling_value)\n', (4183, 4199), True, 'import numpy as np\n'), ((5120, 5126), 'time.time', 'time', ([], {}), '()\n', (5124, 5126), False, 'from time import time\n'), ((4331, 4366), 'numpy.concatenate', 'np.concatenate', (['coupling_type_index'], {}), '(coupling_type_index)\n', (4345, 4366), True, 'import numpy as np\n'), ((4390, 4426), 'numpy.concatenate', 'np.concatenate', (['coupling_batch_index'], {}), '(coupling_batch_index)\n', (4404, 4426), True, 'import numpy as np\n')]
# !/usr/bin/env python # -*- coding: utf-8 -*- """ .. py:currentmodule:: pysemeels.tools.generate_hdf5_file .. moduleauthor:: <NAME> <<EMAIL>> Generate HDF5 file from Hitachi EELS data. """ ############################################################################### # Copyright 2017 <NAME> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ############################################################################### # Standard library modules. import os.path import logging # Third party modules. import numpy as np # Local modules. # Project modules. from pysemeels.hitachi.eels_su.elv_text_file import ElvTextParameters from pysemeels.hitachi.eels_su.elv_file import ElvFile from pysemeels.tools.hdf5_file_labels import * # Globals and constants variables. class GenerateHdf5File(object): def __init__(self, hdf5_file): self.hdf5_file = hdf5_file def add_spectrum(self, file_path, name=None): if name is None: basename, _extension = os.path.splitext(os.path.basename(file_path)) name = basename spectrum_group = self.hdf5_file.create_group(name) elv_text_file_path, _extension = os.path.splitext(file_path) elv_text_file_path += '.txt' with open(elv_text_file_path, 'r', encoding="UTF-16", errors='ignore') as elv_text_file: elv_text_parameters = ElvTextParameters() elv_text_parameters.read(elv_text_file) spectrum_group.attrs[HDF5_MODEL] = elv_text_parameters.model spectrum_group.attrs[HDF5_SAMPLE_HEIGHT] = elv_text_parameters.sample_height_mm spectrum_group.attrs[HDF5_FILE_PATH] = elv_text_parameters.file_name spectrum_group.attrs[HDF5_COMMENT] = elv_text_parameters.comment spectrum_group.attrs[HDF5_DATE] = elv_text_parameters.date spectrum_group.attrs[HDF5_TIME] = elv_text_parameters.time spectrum_group.attrs[HDF5_ACCELERATING_VOLTAGE_V] = elv_text_parameters.accelerating_voltage_V spectrum_group.attrs[HDF5_ENERGY_WIDTH_eV] = elv_text_parameters.energy_width_eV spectrum_group.attrs[HDF5_ENERGY_LOSS] = elv_text_parameters.energy_loss_eV spectrum_group.attrs[HDF5_ACQUISITION_SPEED] = elv_text_parameters.speed_us with open(file_path, 'r', encoding="ANSI", errors='ignore') as elv_text_file: elv_file = ElvFile() elv_file.read(elv_text_file) self.compare_attribute(spectrum_group, HDF5_DATE, elv_file.date) self.compare_attribute(spectrum_group, HDF5_TIME, elv_file.time) self.compare_attribute(spectrum_group, HDF5_COMMENT, elv_file.comment) self.compare_attribute(spectrum_group, HDF5_ACQUISITION_SPEED, elv_file.dose) self.compare_attribute(spectrum_group, HDF5_ENERGY_LOSS, elv_file.le) spectrum_group.attrs[HDF5_RAW] = elv_file.raw self.compare_attribute(spectrum_group, HDF5_ENERGY_WIDTH_eV, elv_file.energy_width) spectrum_group.attrs[HDF5_DUAL_DET_POSITION] = elv_file.dual_det_position spectrum_group.attrs[HDF5_DUAL_DET_POST] = elv_file.dual_det_post spectrum_group.attrs[HDF5_DUAL_DET_CENTER] = elv_file.dual_det_center spectrum_group.attrs[HDF5_Q1] = elv_file.q1 spectrum_group.attrs[HDF5_Q1S] = elv_file.q1s spectrum_group.attrs[HDF5_Q2] = elv_file.q2 spectrum_group.attrs[HDF5_Q2S] = elv_file.q2s spectrum_group.attrs[HDF5_Q3] = elv_file.q3 spectrum_group.attrs[HDF5_H1] = elv_file.h1 spectrum_group.attrs[HDF5_H1S] = elv_file.h1s spectrum_group.attrs[HDF5_H2] = elv_file.h2 spectrum_group.attrs[HDF5_H2S] = elv_file.h2s spectrum_group.attrs[HDF5_H4] = elv_file.h4 spectrum_group.attrs[HDF5_ELV_X] = elv_file.elv_x spectrum_group.attrs[HDF5_ELV_Y] = elv_file.elv_y spectrum_group.attrs[HDF5_SPECTRUM_ALIGNMENT_X] = elv_file.spectrum_alignment_x spectrum_group.attrs[HDF5_SPECTRUM_ALIGNMENT_Y] = elv_file.spectrum_alignment_y spectrum_group.attrs[HDF5_DET_SPEC_ALIGNMENT_X] = elv_file.det_spec_alignment_x spectrum_group.attrs[HDF5_DET_SPEC_ALIGNMENT_Y] = elv_file.det_spec_alignment_y spectrum_group.attrs[HDF5_DET_MAP_ALIGNMENT_X] = elv_file.det_map_alignment_x spectrum_group.attrs[HDF5_DET_MAP_ALIGNMENT_Y] = elv_file.det_map_alignment_y spectrum_group.attrs[HDF5_MAGNIFICATION] = elv_file.mag data = np.zeros((1023, 5)) data[:, 0] = elv_file.energies_eV[:-1] data[:, 1] = elv_file.counts[:-1] data[:, 2] = elv_file.raw_counts[:-1] data[:, 3] = elv_file.gain_corrections[:-1] data[:, 4] = elv_file.dark_currents[:-1] spectrum_data_set = spectrum_group.create_dataset(HDF5_SPECTRUM, data=data) data = np.arange(1, 1023+1) spectrum_channel_data_set = spectrum_group.create_dataset(HDF5_SPECTRUM_CHANNELS, data=data) spectrum_data_set.dims.create_scale(spectrum_channel_data_set, HDF5_SPECTRUM_CHANNEL) spectrum_data_set.dims[0].attach_scale(spectrum_channel_data_set) data_types = [HDF5_SPECTRUM_ENERGIES_eV, HDF5_SPECTRUM_COUNTS, HDF5_SPECTRUM_RAW_COUNTS, HDF5_SPECTRUM_GAIN_CORRECTIONS, HDF5_SPECTRUM_DARK_CURRENTS] max_size = max([len(data_type) for data_type in data_types]) data = np.array(data_types, dtype="S{}".format(max_size+1)) spectrum_types_data_set = spectrum_group.create_dataset(HDF5_SPECTRUM_DATA_TYPES, data=data) spectrum_data_set.dims.create_scale(spectrum_types_data_set, HDF5_SPECTRUM_DATA_TYPE) spectrum_data_set.dims[1].attach_scale(spectrum_types_data_set) def compare_attribute(self, spectrum_group, attribute_name, attribute_value): if attribute_name in spectrum_group.attrs: if attribute_value != spectrum_group.attrs[attribute_name]: logging.error("{} is not the same in .txt and .elv files".format(attribute_name)) else: spectrum_group.attrs[attribute_name] = attribute_value
[ "numpy.zeros", "pysemeels.hitachi.eels_su.elv_file.ElvFile", "pysemeels.hitachi.eels_su.elv_text_file.ElvTextParameters", "numpy.arange" ]
[((1859, 1878), 'pysemeels.hitachi.eels_su.elv_text_file.ElvTextParameters', 'ElvTextParameters', ([], {}), '()\n', (1876, 1878), False, 'from pysemeels.hitachi.eels_su.elv_text_file import ElvTextParameters\n'), ((2883, 2892), 'pysemeels.hitachi.eels_su.elv_file.ElvFile', 'ElvFile', ([], {}), '()\n', (2890, 2892), False, 'from pysemeels.hitachi.eels_su.elv_file import ElvFile\n'), ((5076, 5095), 'numpy.zeros', 'np.zeros', (['(1023, 5)'], {}), '((1023, 5))\n', (5084, 5095), True, 'import numpy as np\n'), ((5461, 5483), 'numpy.arange', 'np.arange', (['(1)', '(1023 + 1)'], {}), '(1, 1023 + 1)\n', (5470, 5483), True, 'import numpy as np\n')]
import sys import click import numpy as np import pandas as pd import tensorflow as tf import tensorflow.keras.backend as K import tensorflow_probability as tfp import statsmodels.api as sm import xgboost as xgb import matplotlib.pyplot as plt import seaborn as sns from abc import ABC, abstractmethod from pathlib import Path from tensorflow.keras.losses import BinaryCrossentropy from bore.models import DenseMaximizableSequential from bore_experiments.datasets import make_classification_dataset from bore_experiments.plotting.utils import GOLDEN_RATIO, WIDTH, pt_to_in from sklearn.svm import SVC from sklearn.ensemble import RandomForestClassifier from sklearn.calibration import CalibratedClassifierCV K.set_floatx("float64") # shortcuts tfd = tfp.distributions OUTPUT_DIR = "figures/" class DensityRatioBase(ABC): def __call__(self, X, y=None): return self.ratio(X, y) @abstractmethod def logit(self, X, y=None): pass def ratio(self, X, y=None): return tf.exp(self.logit(X, y)) def prob(self, X, y=None): """ Probability of sample being from P_{top}(x) vs. P_{bot}(x). """ return tf.sigmoid(self.logit(X, y)) class DensityRatioMarginals(DensityRatioBase): def __init__(self, top, bot): self.top = top self.bot = bot def logit(self, X, y=None): return self.top.log_prob(X) - self.bot.log_prob(X) def make_dataset(self, num_samples, rate=0.5, dtype=tf.float64, seed=None): num_top = int(num_samples * rate) num_bot = num_samples - num_top _X_top = self.top.sample(sample_shape=(num_top, 1), seed=seed) _X_bot = self.bot.sample(sample_shape=(num_bot, 1), seed=seed) X_top = tf.cast(_X_top, dtype=dtype).numpy() X_bot = tf.cast(_X_bot, dtype=dtype).numpy() return X_top, X_bot class MLPDensityRatioEstimator(DensityRatioBase): def __init__(self, num_layers=2, num_units=32, activation="tanh", seed=None, *args, **kwargs): self.model = DenseMaximizableSequential(input_dim=1, output_dim=1, num_layers=num_layers, num_units=num_units, layer_kws=dict(activation=activation)) def logit(self, X, y=None): # TODO: time will tell whether squeezing the final axis # makes things easier. return K.squeeze(self.model(X), axis=-1) def compile(self, optimizer, metrics=["accuracy"], *args, **kwargs): self.model.compile(optimizer=optimizer, loss=BinaryCrossentropy(from_logits=True), metrics=metrics, *args, **kwargs) def fit(self, X_top, X_bot, *args, **kwargs): X, y = make_classification_dataset(X_top, X_bot) return self.model.fit(X, y, *args, **kwargs) def evaluate(self, X_top, X_bot, *args, **kwargs): X, y = make_classification_dataset(X_top, X_bot) return self.model.evaluate(X, y, *args, **kwargs) def gamma_relative_density_ratio(ratio, gamma): denom = gamma + (1-gamma) / ratio return 1 / denom @click.command() @click.argument("name") @click.option('--gamma', '-g', type=float, default=1/3) @click.option("--output-dir", default=OUTPUT_DIR, type=click.Path(file_okay=False, dir_okay=True), help="Output directory.") @click.option('--transparent', is_flag=True) @click.option('--context', default="paper") @click.option('--style', default="ticks") @click.option('--palette', default="deep") @click.option('--width', '-w', type=float, default=pt_to_in(WIDTH)) @click.option('--height', '-h', type=float) @click.option('--aspect', '-a', type=float, default=GOLDEN_RATIO) @click.option('--dpi', type=float) @click.option('--extension', '-e', multiple=True, default=["png"]) @click.option("--seed", default=8888) def main(name, gamma, output_dir, transparent, context, style, palette, width, height, aspect, dpi, extension, seed): num_features = 1 # dimensionality num_train = 1000 # nbr training points in synthetic dataset # x_min, x_max = -6.0, 6.0 x_min, x_max = -5.0, 5.0 num_index_points = 512 # nbr of index points if height is None: height = width / aspect # figsize = size(width, aspect) figsize = (width, height) suffix = f"{width*dpi:.0f}x{height*dpi:.0f}" rc = { "figure.figsize": figsize, "font.serif": ["Times New Roman"], "text.usetex": True, } sns.set(context=context, style=style, palette=palette, font="serif", rc=rc) output_path = Path(output_dir).joinpath(name) output_path.mkdir(parents=True, exist_ok=True) random_state = np.random.RandomState(seed) # /preamble X_grid = np.linspace(x_min, x_max, num_index_points) \ .reshape(-1, num_features) p = tfd.MixtureSameFamily( mixture_distribution=tfd.Categorical(probs=[0.3, 0.7]), components_distribution=tfd.Normal(loc=[2.0, -3.0], scale=[1.0, 0.5])) q = tfd.Normal(loc=0.0, scale=2.0) r = DensityRatioMarginals(top=p, bot=q) X_p, X_q = r.make_dataset(num_train, rate=gamma, seed=seed) X_train, y_train = make_classification_dataset(X_p, X_q) kde_lesser = sm.nonparametric.KDEUnivariate(X_p) kde_lesser.fit(bw="normal_reference") kde_greater = sm.nonparametric.KDEUnivariate(X_q) kde_greater.fit(bw="normal_reference") # Build DataFrame rows = [] rows.append(dict(x=X_grid.squeeze(axis=-1), y=r.top.prob(X_grid).numpy().squeeze(axis=-1), density=r"$\ell(x)$", kind=r"$\textsc{exact}$")) rows.append(dict(x=X_grid.squeeze(axis=-1), y=r.bot.prob(X_grid).numpy().squeeze(axis=-1), density=r"$g(x)$", kind=r"$\textsc{exact}$")) rows.append(dict(x=X_grid.squeeze(axis=-1), y=kde_lesser.evaluate(X_grid.ravel()), density=r"$\ell(x)$", kind=r"$\textsc{kde}$")) rows.append(dict(x=X_grid.squeeze(axis=-1), y=kde_greater.evaluate(X_grid.ravel()), density=r"$g(x)$", kind=r"$\textsc{kde}$")) frames = map(pd.DataFrame, rows) data = pd.concat(frames, axis="index", ignore_index=True, sort=True) fig, ax = plt.subplots() sns.lineplot(x='x', y='y', hue="density", style="kind", data=data, ax=ax) ax.set_prop_cycle(None) ax.set_ylim(-0.025, None) ax.set_xlim(1.1*X_grid.min(), 1.1*X_grid.max()) sns.rugplot(X_p.squeeze(), height=0.02, alpha=0.2, ax=ax) sns.rugplot(X_q.squeeze(), height=0.02, alpha=0.2, ax=ax) ax.set_xlabel(r'$x$') ax.set_ylabel('density') plt.tight_layout() for ext in extension: fig.savefig(output_path.joinpath(f"densities_{context}_{suffix}.{ext}"), dpi=dpi, transparent=transparent) plt.show() classifiers = dict( svm=SVC(C=10.0, kernel="rbf", probability=True, tol=1e-9), rf=RandomForestClassifier(n_estimators=16, max_depth=3, random_state=random_state), xgb=xgb.XGBClassifier(n_estimators=16, max_depth=3, use_label_encoder=False, random_state=random_state) # mlp= ) # base_clf = RandomForestClassifier(random_state=random_state) # clf = CalibratedClassifierCV(base_estimator=base_clf, method="isotonic") \ # .fit(X_train, y_train) r_mlp = MLPDensityRatioEstimator(num_layers=3, num_units=32, activation="elu") r_mlp.compile(optimizer="adam", metrics=["accuracy"]) r_mlp.fit(X_p, X_q, epochs=500, batch_size=64) # Build DataFrame # rows = [] # # exact # # rows.append({'x': X_grid.squeeze(axis=-1), # # 'y': r.ratio(X_grid).numpy().squeeze(axis=-1), # # 'kind': r"$\textsc{exact}$", r'$\gamma$': r"$0$"}) # rows.append({'x': X_grid.squeeze(axis=-1), # 'y': gamma_relative_density_ratio(r.ratio(X_grid), gamma=gamma) \ # .numpy().squeeze(axis=-1), # 'kind': r"$\textsc{exact}$", r'$\gamma$': r"$\frac{1}{4}$", "exact": True}) # # kde # # rows.append({'x': X_grid.squeeze(axis=-1), # # 'y': kde_lesser.evaluate(X_grid.ravel()) / kde_greater.evaluate(X_grid.ravel()), # # 'kind': r"$\textsc{kde}$", r'$\gamma$': r"$0$"}) # rows.append({'x': X_grid.squeeze(axis=-1), # 'y': gamma_relative_density_ratio(kde_lesser.evaluate(X_grid.ravel()) / kde_greater.evaluate(X_grid.ravel()), gamma), # 'kind': r"$\textsc{kde}$", r'$\gamma$': r"$\frac{1}{4}$", "exact": False}) # # cpe # for clf_name, clf in classifiers.items(): # clf = clf.fit(X_train, y_train) # rows.append({'x': X_grid.squeeze(axis=-1), # 'y': clf.predict_proba(X_grid).T[1] / gamma, # 'kind': rf"$\textsc{{cpe}}$ (\textsc{{{clf_name}}})", # r'$\gamma$': r"$\frac{1}{3}$", "exact": False}) # data = pd.concat(map(pd.DataFrame, rows), axis="index", ignore_index=True, # sort=True) fig, ax = plt.subplots() ax.plot(X_grid.squeeze(axis=-1), gamma_relative_density_ratio(r.ratio(X_grid), gamma=gamma).numpy().squeeze(axis=-1), label=r"$\textsc{exact}$") ax.plot(X_grid.squeeze(axis=-1), gamma_relative_density_ratio(kde_lesser.evaluate(X_grid.ravel()) / kde_greater.evaluate(X_grid.ravel()), gamma=gamma), alpha=0.8, label=r"$\textsc{kde}$") ax.plot(X_grid.squeeze(axis=-1), r_mlp.prob(X_grid) / gamma, alpha=0.8, label=r"$\textsc{{cpe}}$ (\textsc{mlp})") ax.set_xlabel(r"$x$") ax.set_ylabel(r"$r_{\gamma}(x)$") ax.set_xlim(1.1*X_grid.min(), 1.1*X_grid.max()) ax.legend() plt.tight_layout() for ext in extension: fig.savefig(output_path.joinpath(f"ratios_mlp_{context}_{suffix}.{ext}"), dpi=dpi, transparent=transparent) plt.show() for clf_name, clf in classifiers.items(): clf = clf.fit(X_train, y_train) fig, ax = plt.subplots() ax.plot(X_grid.squeeze(axis=-1), gamma_relative_density_ratio(r.ratio(X_grid), gamma=gamma).numpy().squeeze(axis=-1), label=r"$\textsc{exact}$") ax.plot(X_grid.squeeze(axis=-1), gamma_relative_density_ratio(kde_lesser.evaluate(X_grid.ravel()) / kde_greater.evaluate(X_grid.ravel()), gamma=gamma), alpha=0.8, label=r"$\textsc{kde}$") ax.plot(X_grid.squeeze(axis=-1), clf.predict_proba(X_grid).T[1] / gamma, alpha=0.8, label=rf"$\textsc{{cpe}}$ (\textsc{{{clf_name}}})") ax.set_xlabel(r"$x$") ax.set_ylabel(r"$r_{\gamma}(x)$") ax.set_xlim(1.1*X_grid.min(), 1.1*X_grid.max()) ax.legend() plt.tight_layout() for ext in extension: fig.savefig(output_path.joinpath(f"ratios_{clf_name}_{context}_{suffix}.{ext}"), dpi=dpi, transparent=transparent) plt.show() return 0 if __name__ == "__main__": sys.exit(main()) # pragma: no cover
[ "tensorflow.cast", "numpy.random.RandomState", "seaborn.set", "pathlib.Path", "click.option", "bore_experiments.datasets.make_classification_dataset", "numpy.linspace", "click.command", "click.argument", "statsmodels.api.nonparametric.KDEUnivariate", "tensorflow.keras.losses.BinaryCrossentropy", "bore_experiments.plotting.utils.pt_to_in", "sklearn.ensemble.RandomForestClassifier", "tensorflow.keras.backend.set_floatx", "seaborn.lineplot", "xgboost.XGBClassifier", "sklearn.svm.SVC", "matplotlib.pyplot.show", "click.Path", "matplotlib.pyplot.tight_layout", "pandas.concat", "matplotlib.pyplot.subplots" ]
[((717, 740), 'tensorflow.keras.backend.set_floatx', 'K.set_floatx', (['"""float64"""'], {}), "('float64')\n", (729, 740), True, 'import tensorflow.keras.backend as K\n'), ((3229, 3244), 'click.command', 'click.command', ([], {}), '()\n', (3242, 3244), False, 'import click\n'), ((3246, 3268), 'click.argument', 'click.argument', (['"""name"""'], {}), "('name')\n", (3260, 3268), False, 'import click\n'), ((3270, 3326), 'click.option', 'click.option', (['"""--gamma"""', '"""-g"""'], {'type': 'float', 'default': '(1 / 3)'}), "('--gamma', '-g', type=float, default=1 / 3)\n", (3282, 3326), False, 'import click\n'), ((3479, 3522), 'click.option', 'click.option', (['"""--transparent"""'], {'is_flag': '(True)'}), "('--transparent', is_flag=True)\n", (3491, 3522), False, 'import click\n'), ((3524, 3566), 'click.option', 'click.option', (['"""--context"""'], {'default': '"""paper"""'}), "('--context', default='paper')\n", (3536, 3566), False, 'import click\n'), ((3568, 3608), 'click.option', 'click.option', (['"""--style"""'], {'default': '"""ticks"""'}), "('--style', default='ticks')\n", (3580, 3608), False, 'import click\n'), ((3610, 3651), 'click.option', 'click.option', (['"""--palette"""'], {'default': '"""deep"""'}), "('--palette', default='deep')\n", (3622, 3651), False, 'import click\n'), ((3721, 3763), 'click.option', 'click.option', (['"""--height"""', '"""-h"""'], {'type': 'float'}), "('--height', '-h', type=float)\n", (3733, 3763), False, 'import click\n'), ((3765, 3829), 'click.option', 'click.option', (['"""--aspect"""', '"""-a"""'], {'type': 'float', 'default': 'GOLDEN_RATIO'}), "('--aspect', '-a', type=float, default=GOLDEN_RATIO)\n", (3777, 3829), False, 'import click\n'), ((3831, 3864), 'click.option', 'click.option', (['"""--dpi"""'], {'type': 'float'}), "('--dpi', type=float)\n", (3843, 3864), False, 'import click\n'), ((3866, 3931), 'click.option', 'click.option', (['"""--extension"""', '"""-e"""'], {'multiple': '(True)', 'default': "['png']"}), "('--extension', '-e', multiple=True, default=['png'])\n", (3878, 3931), False, 'import click\n'), ((3933, 3969), 'click.option', 'click.option', (['"""--seed"""'], {'default': '(8888)'}), "('--seed', default=8888)\n", (3945, 3969), False, 'import click\n'), ((4612, 4687), 'seaborn.set', 'sns.set', ([], {'context': 'context', 'style': 'style', 'palette': 'palette', 'font': '"""serif"""', 'rc': 'rc'}), "(context=context, style=style, palette=palette, font='serif', rc=rc)\n", (4619, 4687), True, 'import seaborn as sns\n'), ((4810, 4837), 'numpy.random.RandomState', 'np.random.RandomState', (['seed'], {}), '(seed)\n', (4831, 4837), True, 'import numpy as np\n'), ((5303, 5340), 'bore_experiments.datasets.make_classification_dataset', 'make_classification_dataset', (['X_p', 'X_q'], {}), '(X_p, X_q)\n', (5330, 5340), False, 'from bore_experiments.datasets import make_classification_dataset\n'), ((5359, 5394), 'statsmodels.api.nonparametric.KDEUnivariate', 'sm.nonparametric.KDEUnivariate', (['X_p'], {}), '(X_p)\n', (5389, 5394), True, 'import statsmodels.api as sm\n'), ((5456, 5491), 'statsmodels.api.nonparametric.KDEUnivariate', 'sm.nonparametric.KDEUnivariate', (['X_q'], {}), '(X_q)\n', (5486, 5491), True, 'import statsmodels.api as sm\n'), ((6340, 6401), 'pandas.concat', 'pd.concat', (['frames'], {'axis': '"""index"""', 'ignore_index': '(True)', 'sort': '(True)'}), "(frames, axis='index', ignore_index=True, sort=True)\n", (6349, 6401), True, 'import pandas as pd\n'), ((6417, 6431), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (6429, 6431), True, 'import matplotlib.pyplot as plt\n'), ((6437, 6510), 'seaborn.lineplot', 'sns.lineplot', ([], {'x': '"""x"""', 'y': '"""y"""', 'hue': '"""density"""', 'style': '"""kind"""', 'data': 'data', 'ax': 'ax'}), "(x='x', y='y', hue='density', style='kind', data=data, ax=ax)\n", (6449, 6510), True, 'import seaborn as sns\n'), ((6808, 6826), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (6824, 6826), True, 'import matplotlib.pyplot as plt\n'), ((6994, 7004), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (7002, 7004), True, 'import matplotlib.pyplot as plt\n'), ((9248, 9262), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (9260, 9262), True, 'import matplotlib.pyplot as plt\n'), ((10007, 10025), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (10023, 10025), True, 'import matplotlib.pyplot as plt\n'), ((10194, 10204), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (10202, 10204), True, 'import matplotlib.pyplot as plt\n'), ((2849, 2890), 'bore_experiments.datasets.make_classification_dataset', 'make_classification_dataset', (['X_top', 'X_bot'], {}), '(X_top, X_bot)\n', (2876, 2890), False, 'from bore_experiments.datasets import make_classification_dataset\n'), ((3016, 3057), 'bore_experiments.datasets.make_classification_dataset', 'make_classification_dataset', (['X_top', 'X_bot'], {}), '(X_top, X_bot)\n', (3043, 3057), False, 'from bore_experiments.datasets import make_classification_dataset\n'), ((10312, 10326), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (10324, 10326), True, 'import matplotlib.pyplot as plt\n'), ((11153, 11171), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (11169, 11171), True, 'import matplotlib.pyplot as plt\n'), ((11363, 11373), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (11371, 11373), True, 'import matplotlib.pyplot as plt\n'), ((3394, 3436), 'click.Path', 'click.Path', ([], {'file_okay': '(False)', 'dir_okay': '(True)'}), '(file_okay=False, dir_okay=True)\n', (3404, 3436), False, 'import click\n'), ((3703, 3718), 'bore_experiments.plotting.utils.pt_to_in', 'pt_to_in', (['WIDTH'], {}), '(WIDTH)\n', (3711, 3718), False, 'from bore_experiments.plotting.utils import GOLDEN_RATIO, WIDTH, pt_to_in\n'), ((4707, 4723), 'pathlib.Path', 'Path', (['output_dir'], {}), '(output_dir)\n', (4711, 4723), False, 'from pathlib import Path\n'), ((4868, 4911), 'numpy.linspace', 'np.linspace', (['x_min', 'x_max', 'num_index_points'], {}), '(x_min, x_max, num_index_points)\n', (4879, 4911), True, 'import numpy as np\n'), ((7042, 7096), 'sklearn.svm.SVC', 'SVC', ([], {'C': '(10.0)', 'kernel': '"""rbf"""', 'probability': '(True)', 'tol': '(1e-09)'}), "(C=10.0, kernel='rbf', probability=True, tol=1e-09)\n", (7045, 7096), False, 'from sklearn.svm import SVC\n'), ((7108, 7187), 'sklearn.ensemble.RandomForestClassifier', 'RandomForestClassifier', ([], {'n_estimators': '(16)', 'max_depth': '(3)', 'random_state': 'random_state'}), '(n_estimators=16, max_depth=3, random_state=random_state)\n', (7130, 7187), False, 'from sklearn.ensemble import RandomForestClassifier\n'), ((7201, 7304), 'xgboost.XGBClassifier', 'xgb.XGBClassifier', ([], {'n_estimators': '(16)', 'max_depth': '(3)', 'use_label_encoder': '(False)', 'random_state': 'random_state'}), '(n_estimators=16, max_depth=3, use_label_encoder=False,\n random_state=random_state)\n', (7218, 7304), True, 'import xgboost as xgb\n'), ((1759, 1787), 'tensorflow.cast', 'tf.cast', (['_X_top'], {'dtype': 'dtype'}), '(_X_top, dtype=dtype)\n', (1766, 1787), True, 'import tensorflow as tf\n'), ((1812, 1840), 'tensorflow.cast', 'tf.cast', (['_X_bot'], {'dtype': 'dtype'}), '(_X_bot, dtype=dtype)\n', (1819, 1840), True, 'import tensorflow as tf\n'), ((2683, 2719), 'tensorflow.keras.losses.BinaryCrossentropy', 'BinaryCrossentropy', ([], {'from_logits': '(True)'}), '(from_logits=True)\n', (2701, 2719), False, 'from tensorflow.keras.losses import BinaryCrossentropy\n')]
""" imgLog.py - experimental log for imgFolder initial: 2019-10-04 """ import os import pandas as pd if ('np' not in dir()): import numpy as np from imlib.imgfolder import ImgFolder __author__ = '<NAME> <<EMAIL>>' __version__ = '1.0.0' class ImgLog(ImgFolder): """ imgFolder for channel experiment images """ def __init__(self, dirname, sort=False, debug=False): """ initialization """ super().__init__(dirname, sort=sort, debug=debug) self._logfname = dirname + '/log.xlsx' if not self.loadLog(): self._data['wall1'] = self._image._meta['wall1'] self._data['wall2'] = self._image._meta['wall2'] self._data['isChannel'] = False self._data['range1'] = self._image._meta['range1'] self._data['range2'] = self._image._meta['range2'] self._data['hasRange'] = False self._data['fangle'] = 0. # frame angle self._data['mangle'] = 0. # migration angle self._data['p'] = 0. # pressure self._data['u'] = 0. # longitudinal velocity self._data['mag'] = '40x' # magnification self._data['filter'] = '' # filter self._data['exp'] = 0. # exposure self._data['location'] = '' # location self._data['D'] = 0. # diffusion constant self._data['Pe'] = 0. # Peclet number self._data = self._data.astype( {'D':'float', 'Pe':'float', 'mangle':'float', 'hasRange':'bool', 'isChannel':'bool', 'exp':'float', 'range1':'int', 'range2':'int', 'wall1':'int', 'wall2':'int'}) def __repr__(self): """ show print out message """ msg = super().__repr__() return msg def __getitem__(self, fileID): self._image = super().__getitem__(fileID) p = self._data.at[fileID, 'p'] if isinstance(p, str) and (p.find(',') > -1): p = float(p.replace(',', '.')) self._data.at[fileID, 'p'] = p if isinstance(p, float) or isinstance(p, np.int64): u = 143.9518*p + 44.0784 # TODO in case of condenser chip self._data.at[fileID, 'u'] = u if self._debug: print('... (p, u) = {}, {}'.format(p, u)) self._data.at[fileID, 'exp'] = self._image._meta['exposuretime'] self._image.set_expInfo(magnification=self._data.at[fileID, 'mag'], velocity=self._data.at[fileID, 'u'], p=p, fangle=self._data.at[fileID, 'fangle']) return self._image # manage log excel sheet def saveLog(self): """ save log sheet """ with pd.ExcelWriter(self._logfname) as writer: if self._debug: print('... save to {}'.format(self._logfname)) self._data.to_excel(writer) def loadLog(self): """ load log sheet """ if os.path.isfile(self._logfname): if self._debug: print('... load from {}'.format(self._logfname)) self._data = pd.read_excel(self._logfname, index_col=0) return True else: return False # image analysis def set_log(self, colname, values, ranges=[]): """ set log values for specific colname """ if len(ranges) == 0: ranges = range(len(self._data)) for i in ranges: self._data.at[i, colname] = values if self._debug: print('{}: [{}] - {}'.format(i, colname, values)) def detect_channel(self, fileID=-1, show=True): """ find wall information and save in object """ if fileID > -1: self._image = self.getfile(fileID) res = self._image.detect_channel(show=show) if len(res) > 3: self._data.at[self._curidx, 'range1'] = res[2] self._data.at[self._curidx, 'range2'] = res[3] self._data.at[self._curidx, 'hasRange'] = True if len(res) > 1: self._data.at[self._curidx, 'wall1'] = res[0] self._data.at[self._curidx, 'wall2'] = res[1] self._data.at[self._curidx, 'isChannel'] = True if len(res) == 1: self._data.at[self._curidx, 'isChannel'] = False return res def analysis_10x(self, fileID, bfileID=-1, wallinfo=[], p=-1, method='gaussian', update=True, padding=0): """ find angle and diffusion constant in 10x flu. and bright field images """ angle = 0.0 if p > -1: self._data.at[self._curidx, 'p'] = p if len(wallinfo) == 4: self._data.loc[fileID, ['wall1', 'wall2', 'range1', 'range2']] = wallinfo print('... fileID: [{}] use wallinfo: {}, ranges: {}'.format(fileID, wallinfo[:2], wallinfo[2:])) else: if bfileID > -1: wallinfo = self.detect_channel(fileID=bfileID) wallinfo[0] = wallinfo[0] + padding wallinfo[1] = wallinfo[1] - padding if len(wallinfo) == 3: self._data.loc[fileID, ['wall1', 'wall2', 'range1']] = wallinfo elif len(wallinfo) == 4: self._data.loc[fileID, ['wall1', 'wall2', 'range1', 'range2']] = wallinfo else: print('... no wall. Is this [{}] correct image?'.format(bfileID)) return img = self.__getitem__(bfileID) angle = img.detect_angles(show=False) print('... fileID: [{}] use wallinfo: {}, ranges: {}, frame angle: {}'.format(fileID, wallinfo[:2], wallinfo[2:], angle)) # set image information self._image = self.__getitem__(fileID) self._image.set_wallinfo(self._data.loc[fileID, ['wall1', 'wall2', 'range1', 'range2']]) self._image.set_expInfo(magnification=self._data.at[fileID, 'mag'], velocity=self._data.at[fileID, 'u'], p=self._data.at[fileID, 'p'], fangle=self._data.at[fileID, 'fangle']) # calculate peak positions self._image.fitlines_x(method=method, update=update) self._image.showfit_sigmas() self._image.showfit_angles() # save results self._data.at[fileID, 'mangle'] = self._image._meta['mangle'] self._data.at[fileID, 'D'] = self._image._meta['D'] self._data.at[fileID, 'Pe'] = self._image._meta['Pe'] if angle > 0: self._data.at[fileID, 'fangle'] = angle def analysis_all(self, blist, flist, method='gaussian', update=False): """ analaysis migration angle of files in flist with wall info from blist """ if isinstance(blist, int): blist = np.zeros_like(np.array(flist)) + blist for i in range(len(flist)): self.analysis_10x(flist[i], bfileID=blist[i], padding=5, update=update, method=method) self.saveLog() def showinfo(self, colname='mag', condition='10x'): """ show panda data with condition """ return self._data[self._data[colname] == condition] # vim:foldmethod=indent:foldlevel=0
[ "os.path.isfile", "numpy.array", "pandas.ExcelWriter", "pandas.read_excel" ]
[((2968, 2998), 'os.path.isfile', 'os.path.isfile', (['self._logfname'], {}), '(self._logfname)\n', (2982, 2998), False, 'import os\n'), ((2744, 2774), 'pandas.ExcelWriter', 'pd.ExcelWriter', (['self._logfname'], {}), '(self._logfname)\n', (2758, 2774), True, 'import pandas as pd\n'), ((3102, 3144), 'pandas.read_excel', 'pd.read_excel', (['self._logfname'], {'index_col': '(0)'}), '(self._logfname, index_col=0)\n', (3115, 3144), True, 'import pandas as pd\n'), ((6749, 6764), 'numpy.array', 'np.array', (['flist'], {}), '(flist)\n', (6757, 6764), True, 'import numpy as np\n')]
from mcc_libusb import * import datetime import time import numpy as np mcc = USB1208FS() mcc.usbOpen() #mcc.usbDConfigPort(DIO_PORTA, DIO_DIR_OUT) #mcc.usbDConfigPort(DIO_PORTB, DIO_DIR_IN) #mcc.usbDOut(DIO_PORTA, 0) #num = mcc.usbAIn(1, BP_1_00V) #print(str(mcc.volts_FS(BP_1_00V, num))) #channel = np.array([1, 2, 3, 7]) #gain = np.array([SE_10_00V, BP_10_00V, BP_20_00V, BP_1_25V]) #mcc.usbALoadQueue(4, channel, gain) #mcc.usbReset() #mcc.usbAIn_Stop() options = AIN_EXECUTION | AIN_GAIN_QUEUE sdata = mcc.usbAIn_Scan_SE(0, 0, 50, 1000, options) print(sdata) print(mcc.volts_SE(np.average(sdata))) #mcc.usbALoadQueue(1, np.array([1]), np.array([BP_10_00V])) #sdata1 = mcc.usbAIn_Scan(1,1,50,1000, AIN_EXECUTION) #print(sdata1) #print(mcc.volts_FS(BP_10_00V, np.average(sdata1))) mcc.usbClose() ''' while 1: print("\nUSB 1208FS Testing") print("----------------") print("Hit 'b' to blink LED") print("Hit 'c' to test counter") print("Hit 'e' to exit") print("Hit 'd' to test digital I/O"); print("Hit 'g' to test analog input scan (differential).") print("Hit 'j' to test analog input scan (single ended).") print("Hit 'i' to test analog input (differential mode)") print("Hit 'h' to test analog input (single ended)") print("Hit 'o' to test analog output") print("Hit 'O' to test analog output scan") print("Hit 'r' to reset") print("Hit 'S' to get status") print("Hit 's' to get serial number") i = input(">> ") if i == 'b': #test to see if led blinks mcc.usbBlink() elif i == 'e': mcc.close() exit(1) elif i == 'd': print("\nTesting Digital I/O....") print("connect pins 21 through 28 <=> 32 through 39") temp = int(input("Enter a byte number [0-0xff]: ")) mcc.usbDOut(DIO_PORTA, temp) din = mcc.usbDIn(DIO_PORTB) print("The number you entered = " + hex(din & 0xff)) elif i == 'i': print("Testing the analog input differential...") gain = int(input("Enter gain: ")) channel = int(input("Enter channel [0-7]: ")) value = mcc.usbAIn(channel, gain) print("Channel: " + str(channel) + ": value = " + str(value)) elif i == 'h': print("Testing the analog input single ended...") #channel = input("Entner channel [0-7]: ") for i in range(0, 100): start = datetime.datetime.now() for j in range(0,8): value = mcc.usbAIn(j, SE_10_00V) print("Channel: %d: Value = 0x%04X, %.2fV" % (j%8 ,value, mcc.volts_SE(value))) delta = datetime.datetime.now() - start; print("%d" % (delta.microseconds)) time.sleep(0.1) elif i == 'o': #test the analog output print("Testing the analog output...") channel = int(input("Enter channel [0-1] => (pin 13-14): ")) value = int(input("Enter a value: ")) mcc.usbAOut(channel, value) else: continue '''
[ "numpy.average" ]
[((585, 602), 'numpy.average', 'np.average', (['sdata'], {}), '(sdata)\n', (595, 602), True, 'import numpy as np\n')]
import sys import os import numpy as np import torch import torch.nn.functional as F from torch.backends import cudnn from utils.utils import cast from utils.utils0 import logging, reset_logging, timeLog, raise_if_absent, add_if_absent_ from .dpcnn import dpcnn from .prep_text import TextData_Uni, TextData_Lab, TextDataBatches, gen_uni_name, gen_lab_name from .prep_text_n import TextData_N, gen_n_name from .prep_text import main as prep_text_main from .text_utils import get_dlist, load_x_emb, match_vocab from gulf import is_gulf, train_base_model, train_gulf_model, copy_params, Target_index cudnn.benchmark = True #-------------------------------------------------------------------- # For a dataset "dataname", the following input files are required. # dataname-train.tok.txt, dataname-train.cat # dataname-test.tok.txt, dataname-test.cat # dataname.catdic # # *.tok.txt: tokens delimited by white space. one document per line. # *.cat: class labels. # *.catdic: class names used in *.cat. one name per line. #-------------------------------------------------------------------- #-------------------------------------------------------------------- def prep_data(opt, types): missing = '' for type in types: ds_path = gen_uni_name(opt.dataroot, opt.dataset, type) ls_path = gen_lab_name(opt.dataroot, opt.dataset, type) if not os.path.exists(ds_path): missing += ' %s' % ds_path if not os.path.exists(ls_path): missing += ' %s' % ls_path if len(missing) > 0: timeLog('----------------------------------------------------------------------') if opt.dont_write_to_dataroot: raise Exception("The following files are missing: %s\nTo generate them, turn off 'dont_write_to_dataroot'." % missing) timeLog('Calling prep_text_main for creating the following files: %s' % missing) prep_text_main('prep', ['--dataset', opt.dataset, '--dataroot', opt.dataroot ]) timeLog('Done with prep text main ------------------------------') else: timeLog('Using existing data files ... ') #---------------------------------------------------------- def check_opt_(opt): #--- required attributes names = [ 'dataroot','dataset','num_dev','x_emb','seed','batch_unit','batch_size','depth','width','dropout','top_dropout','ker_size'] raise_if_absent(opt, names, who='dpcnn_train') #--- optional attributes add_if_absent_(opt, ['dont_write_to_dataroot'], False) add_if_absent_(opt, ['num_train','req_max_len'], -1) add_if_absent_(opt, ['train_dlist_path','dev_dlist_path'], None) add_if_absent_(opt, ['csv_fn'], '') #******************************************************************** def main(opt): timeLog("dpcnn_train(opt) begins ...") check_opt_(opt) logging('Using %s ... ' % ('GPU(s)' if torch.cuda.is_available() else 'CPU')) reset_logging(opt.csv_fn) torch.manual_seed(opt.seed) np.random.seed(opt.seed) #--- load external embeddings x_embed,x_n_maxes = load_x_emb(opt.x_emb) #--- prepare data prep_data(opt, ['train', 'test']) rs = np.random.get_state() def prep_uni(type): return TextData_Uni(pathname=gen_uni_name(opt.dataroot, opt.dataset, type)) def prep_lab(type): return TextData_Lab(pathname=gen_lab_name(opt.dataroot, opt.dataset, type)) def prep_x_dss(type): # 'x' for extra if x_n_maxes is None: return None return [ TextData_N(gen_n_name(opt.dataroot, opt.dataset, n_max, type)) for n_max in x_n_maxes ] trn_dlist,dev_dlist = get_dlist(opt.seed, opt.num_train, opt.num_dev, opt.train_dlist_path, opt.dev_dlist_path, len(prep_uni('train'))) def read_ds_ls_x(dlist): # read data and labels type='train' ds = prep_uni(type); ds.shuffle(dlist) ls = prep_lab(type); ls.shuffle(dlist) x_dss = prep_x_dss(type) if x_dss is not None: for xds in x_dss: xds.shuffle(dlist) return ds, ls, x_dss td_ds,td_ls,x_td = read_ds_ls_x(trn_dlist) # training data dv_ds,dv_ls,x_dv = read_ds_ls_x(dev_dlist) # validation data match_vocab(x_embed, td_ds, x_td) type = 'test' ts_ds = prep_uni(type); ts_ls = prep_lab(type); x_ts = prep_x_dss(type) # test data bch_param = {'req_max_len':opt.req_max_len, 'batch_unit':opt.batch_unit, 'batch_size':opt.batch_size} trn_data = TextDataBatches(td_ds, td_ls, **bch_param, do_shuffle=True, x_dss=x_td) dev_data = TextDataBatches(dv_ds, dv_ls, **bch_param, do_shuffle=False, x_dss=x_dv) tst_data = TextDataBatches(ts_ds, ts_ls, **bch_param, do_shuffle=False, x_dss=x_ts) np.random.set_state(rs) test_dss = [ {'name':'dev', 'data':dev_data}, {'name':'test', 'data':tst_data} ] num_classes = td_ls.num_class() logging('#classes=%d' % num_classes) if num_classes != dv_ls.num_class() or num_classes != ts_ls.num_class(): raise Exception('Conflict in # of classes: ' +str(num_classes)+','+str(dv_ls.num_class())+','+str(ts_ls.num_class())) vocab_size = td_ds.vocab_size() logging('#vocab=%d' % vocab_size) if vocab_size != dv_ds.vocab_size() or vocab_size != ts_ds.vocab_size(): raise Exception('Conflict in vocabulary sizes: '+str(vocab_size)+','+str(dv_ds.vocab_size())+','+str(ts_ds.vocab_size())) #--- prepare a model def initialize_model(): return dpcnn(opt.depth, opt.width, num_classes, vocab_size, top_dropout=opt.top_dropout, dropout=opt.dropout, ker_size=opt.ker_size, x_embed=x_embed) # external embedding func, params = initialize_model() #--- training ... loss_function = F.cross_entropy def net(sample, is_train=False): if sample is None: return loss_function inputs = cast(sample[0], 'long') x_inputs = [ cast(data, 'long') for data in sample[2] ] if len(sample) >= 3 else None output = func(inputs, params, is_train, extra_input=x_inputs) targets = cast(sample[Target_index], 'long') return loss_function(output, targets), output if not is_gulf(opt): train_base_model(opt, net, params, trn_data, test_dss) else: i_func, i_params = initialize_model() copy_params(src=params, dst=i_params) def i_net(sample): is_train = False inputs = cast(sample[0], 'long') x_inputs = [ cast(data, 'long') for data in sample[2] ] if len(sample) >= 3 else None return i_func(inputs, i_params, is_train, extra_input=x_inputs) train_gulf_model(opt, i_net, i_params, net, params, trn_data, test_dss) timeLog("dpcnn_train(opt) ends ...")
[ "utils.utils0.raise_if_absent", "torch.manual_seed", "numpy.random.get_state", "utils.utils0.add_if_absent_", "numpy.random.set_state", "utils.utils.cast", "os.path.exists", "utils.utils0.timeLog", "gulf.train_base_model", "gulf.train_gulf_model", "gulf.copy_params", "torch.cuda.is_available", "utils.utils0.reset_logging", "numpy.random.seed", "gulf.is_gulf", "utils.utils0.logging" ]
[((2349, 2395), 'utils.utils0.raise_if_absent', 'raise_if_absent', (['opt', 'names'], {'who': '"""dpcnn_train"""'}), "(opt, names, who='dpcnn_train')\n", (2364, 2395), False, 'from utils.utils0 import logging, reset_logging, timeLog, raise_if_absent, add_if_absent_\n'), ((2429, 2483), 'utils.utils0.add_if_absent_', 'add_if_absent_', (['opt', "['dont_write_to_dataroot']", '(False)'], {}), "(opt, ['dont_write_to_dataroot'], False)\n", (2443, 2483), False, 'from utils.utils0 import logging, reset_logging, timeLog, raise_if_absent, add_if_absent_\n'), ((2487, 2540), 'utils.utils0.add_if_absent_', 'add_if_absent_', (['opt', "['num_train', 'req_max_len']", '(-1)'], {}), "(opt, ['num_train', 'req_max_len'], -1)\n", (2501, 2540), False, 'from utils.utils0 import logging, reset_logging, timeLog, raise_if_absent, add_if_absent_\n'), ((2543, 2608), 'utils.utils0.add_if_absent_', 'add_if_absent_', (['opt', "['train_dlist_path', 'dev_dlist_path']", 'None'], {}), "(opt, ['train_dlist_path', 'dev_dlist_path'], None)\n", (2557, 2608), False, 'from utils.utils0 import logging, reset_logging, timeLog, raise_if_absent, add_if_absent_\n'), ((2611, 2646), 'utils.utils0.add_if_absent_', 'add_if_absent_', (['opt', "['csv_fn']", '""""""'], {}), "(opt, ['csv_fn'], '')\n", (2625, 2646), False, 'from utils.utils0 import logging, reset_logging, timeLog, raise_if_absent, add_if_absent_\n'), ((2736, 2774), 'utils.utils0.timeLog', 'timeLog', (['"""dpcnn_train(opt) begins ..."""'], {}), "('dpcnn_train(opt) begins ...')\n", (2743, 2774), False, 'from utils.utils0 import logging, reset_logging, timeLog, raise_if_absent, add_if_absent_\n'), ((2879, 2904), 'utils.utils0.reset_logging', 'reset_logging', (['opt.csv_fn'], {}), '(opt.csv_fn)\n', (2892, 2904), False, 'from utils.utils0 import logging, reset_logging, timeLog, raise_if_absent, add_if_absent_\n'), ((2909, 2936), 'torch.manual_seed', 'torch.manual_seed', (['opt.seed'], {}), '(opt.seed)\n', (2926, 2936), False, 'import torch\n'), ((2940, 2964), 'numpy.random.seed', 'np.random.seed', (['opt.seed'], {}), '(opt.seed)\n', (2954, 2964), True, 'import numpy as np\n'), ((3113, 3134), 'numpy.random.get_state', 'np.random.get_state', ([], {}), '()\n', (3132, 3134), True, 'import numpy as np\n'), ((4659, 4682), 'numpy.random.set_state', 'np.random.set_state', (['rs'], {}), '(rs)\n', (4678, 4682), True, 'import numpy as np\n'), ((4807, 4843), 'utils.utils0.logging', 'logging', (["('#classes=%d' % num_classes)"], {}), "('#classes=%d' % num_classes)\n", (4814, 4843), False, 'from utils.utils0 import logging, reset_logging, timeLog, raise_if_absent, add_if_absent_\n'), ((5082, 5115), 'utils.utils0.logging', 'logging', (["('#vocab=%d' % vocab_size)"], {}), "('#vocab=%d' % vocab_size)\n", (5089, 5115), False, 'from utils.utils0 import logging, reset_logging, timeLog, raise_if_absent, add_if_absent_\n'), ((6624, 6660), 'utils.utils0.timeLog', 'timeLog', (['"""dpcnn_train(opt) ends ..."""'], {}), "('dpcnn_train(opt) ends ...')\n", (6631, 6660), False, 'from utils.utils0 import logging, reset_logging, timeLog, raise_if_absent, add_if_absent_\n'), ((1547, 1633), 'utils.utils0.timeLog', 'timeLog', (['"""----------------------------------------------------------------------"""'], {}), "(\n '----------------------------------------------------------------------')\n", (1554, 1633), False, 'from utils.utils0 import logging, reset_logging, timeLog, raise_if_absent, add_if_absent_\n'), ((1800, 1885), 'utils.utils0.timeLog', 'timeLog', (["('Calling prep_text_main for creating the following files: %s' % missing)"], {}), "('Calling prep_text_main for creating the following files: %s' % missing\n )\n", (1807, 1885), False, 'from utils.utils0 import logging, reset_logging, timeLog, raise_if_absent, add_if_absent_\n'), ((1973, 2039), 'utils.utils0.timeLog', 'timeLog', (['"""Done with prep text main ------------------------------"""'], {}), "('Done with prep text main ------------------------------')\n", (1980, 2039), False, 'from utils.utils0 import logging, reset_logging, timeLog, raise_if_absent, add_if_absent_\n'), ((2055, 2096), 'utils.utils0.timeLog', 'timeLog', (['"""Using existing data files ... """'], {}), "('Using existing data files ... ')\n", (2062, 2096), False, 'from utils.utils0 import logging, reset_logging, timeLog, raise_if_absent, add_if_absent_\n'), ((5809, 5832), 'utils.utils.cast', 'cast', (['sample[0]', '"""long"""'], {}), "(sample[0], 'long')\n", (5813, 5832), False, 'from utils.utils import cast\n'), ((6009, 6043), 'utils.utils.cast', 'cast', (['sample[Target_index]', '"""long"""'], {}), "(sample[Target_index], 'long')\n", (6013, 6043), False, 'from utils.utils import cast\n'), ((6107, 6119), 'gulf.is_gulf', 'is_gulf', (['opt'], {}), '(opt)\n', (6114, 6119), False, 'from gulf import is_gulf, train_base_model, train_gulf_model, copy_params, Target_index\n'), ((6127, 6181), 'gulf.train_base_model', 'train_base_model', (['opt', 'net', 'params', 'trn_data', 'test_dss'], {}), '(opt, net, params, trn_data, test_dss)\n', (6143, 6181), False, 'from gulf import is_gulf, train_base_model, train_gulf_model, copy_params, Target_index\n'), ((6241, 6278), 'gulf.copy_params', 'copy_params', ([], {'src': 'params', 'dst': 'i_params'}), '(src=params, dst=i_params)\n', (6252, 6278), False, 'from gulf import is_gulf, train_base_model, train_gulf_model, copy_params, Target_index\n'), ((6548, 6619), 'gulf.train_gulf_model', 'train_gulf_model', (['opt', 'i_net', 'i_params', 'net', 'params', 'trn_data', 'test_dss'], {}), '(opt, i_net, i_params, net, params, trn_data, test_dss)\n', (6564, 6619), False, 'from gulf import is_gulf, train_base_model, train_gulf_model, copy_params, Target_index\n'), ((1382, 1405), 'os.path.exists', 'os.path.exists', (['ds_path'], {}), '(ds_path)\n', (1396, 1405), False, 'import os\n'), ((1456, 1479), 'os.path.exists', 'os.path.exists', (['ls_path'], {}), '(ls_path)\n', (1470, 1479), False, 'import os\n'), ((6349, 6372), 'utils.utils.cast', 'cast', (['sample[0]', '"""long"""'], {}), "(sample[0], 'long')\n", (6353, 6372), False, 'from utils.utils import cast\n'), ((2836, 2861), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (2859, 2861), False, 'import torch\n'), ((5852, 5870), 'utils.utils.cast', 'cast', (['data', '"""long"""'], {}), "(data, 'long')\n", (5856, 5870), False, 'from utils.utils import cast\n'), ((6395, 6413), 'utils.utils.cast', 'cast', (['data', '"""long"""'], {}), "(data, 'long')\n", (6399, 6413), False, 'from utils.utils import cast\n')]
#! /usr/bin/env python # -*- coding: utf-8 -*- import os import sys import random import psutil import logging import pandas as pd import numpy as np from io import open from collections import Counter from multiprocessing import cpu_count from concurrent.futures import ProcessPoolExecutor from scipy.sparse import csr_matrix, save_npz, load_npz, lil_matrix from argparse import ArgumentParser, FileType, ArgumentDefaultsHelpFormatter from gensim.models import Word2Vec from gensim.models.word2vec import LineSentence from six import text_type as unicode from six import iteritems from six.moves import range from fastGraph.graph import Graph from fastGraph import ngram import pdb p = psutil.Process(os.getpid()) try: p.cpu_affinity(list(range(cpu_count()))) except AttributeError: pass LOGFORMAT = "%(asctime).19s %(levelname)s %(filename)s Line %(lineno)s: %(message)s" logging.basicConfig(format=LOGFORMAT) logger = logging.getLogger("fastGraph") logger.setLevel(logging.INFO) DTYPE = np.float64 def debug(type_, value, tb): if hasattr(sys, 'ps1') or not sys.stderr.isatty(): sys.__excepthook__(type_, value, tb) else: import traceback import pdb traceback.print_exception(type_, value, tb) print(u"\n") pdb.pm() def load_matrix(args): logger.info("Reading from "+str(args.input)) if "wiki-Vote.csv" in args.input: df = pd.read_csv(args.input, sep=',', comment='#') max_node = max(max(df['FromNodeId'].unique()), max(df['ToNodeId'].unique())) total_len = max_node + 1 matrix = lil_matrix(np.zeros((total_len, total_len), dtype=DTYPE)) for row in df.itertuples(): matrix[row.FromNodeId, row.ToNodeId] = matrix[row.FromNodeId, row.ToNodeId] + 1 # Each edge is binary return csr_matrix(matrix) elif "weighted_directed.csv" in args.input: df = pd.read_csv(args.input, sep=',', comment='#') max_node = max(max(df['SOURCE'].unique()), max(df['TARGET'].unique())) total_len = max_node + 1 matrix = lil_matrix(np.zeros((total_len, total_len), dtype=DTYPE)) for row in df.itertuples(): matrix[row.SOURCE, row.TARGET] = matrix[row.SOURCE, row.TARGET] + row.RATING # Each edge has different weights return csr_matrix(matrix) elif ".npz" in args.input or ".npy" in args.input: logger.info("Load matrix directly") matrix = np.load(args.input) return csr_matrix(matrix) else: # Implement parsing here to transform into matrix form. raise NotImplementedError("Implement customized parsing here.") def fastGraph_flow(args): # Read and process different input matrix = load_matrix(args) logger.info("Matrix loaded.") graph = Graph() graph.build_graph_from_matrix(matrix, is_directed=True, remove_self_loops=False, normalized_edge=True, outward_prob_check=True) # Generate walks, select which walk to use by de-comment if args.walk_type == "likely": # walks = graph.build_likely_walk_corpus_multiprocess(args.number_paths, args.path_length, # rand=random.Random(0), shuffle=True, deduplicate=False) walks = graph.build_likely_walk_corpus(args.number_paths, args.path_length, rand=random.Random(0), shuffle=True, deduplicate=False) elif args.walk_type == "node2vec": graph.preprocess_node2vec_walk(args.p, args.q) walks = graph.build_node2vec_walk_corpus(args.number_paths, args.path_length, rand=random.Random(0), shuffle=True, deduplicate=False) elif args.walk_type == "deep": walks = graph.build_deepwalk_corpus(args.number_paths, args.path_length, rand=random.Random(0), shuffle=True, deduplicate=False) else: raise ValueError("--walk-type must be either 'likely', 'node2vec' or 'deep'.") # Save walks to storage, enabling gensim's iterator ability. walks_file = ''.join(str(args.input).split('.')[:-1])+'.walks' with open(walks_file, 'w') as fout: for walk in walks: fout.write(' '.join(walk)+'\n') logger.info("Walks saved to "+walks_file) walks = LineSentence(args.input) # Phrases if args.ngram > 1: logger.info("Building n-gram with n="+str(args.ngram)+"...") walks, ngram_phrasers = ngram.build_ngram(walks, args.ngram) # Word2Vec logger.info("Training ...") w2v = Word2Vec(walks, size=args.embed_size, window=args.window_size, min_count=0, sg=1, hs=0, negative=10, workers=args.workers) # Save model w2v.save(args.output) def main(): parser = ArgumentParser("fastGraph", formatter_class=ArgumentDefaultsHelpFormatter, conflict_handler='resolve') parser.add_argument("-l", "--log", dest="log", default="INFO", help="log verbosity level") parser.add_argument('--input', nargs='?', required=True, help='Input matrix') parser.add_argument('--max-memory-data-size', default=1000000000, type=int, help='Size to start dumping walks to disk, instead of keeping them in memory.') parser.add_argument('--number-paths', default=5, type=int, help='Number of random walks to start at each node') parser.add_argument('--output', required=True, help='Output representation file') parser.add_argument('--embed-size', default=64, type=int, help='Dimension of the latent vector as embedding.') parser.add_argument('--seed', default=0, type=int, help='Seed for random walk generator.') parser.add_argument('--directed', default=True, type=bool, help='Treat the graph as directed.') parser.add_argument('--path-length', default=40, type=int, help='Length of the random walk started at each node') parser.add_argument('--window-size', default=5, type=int, help='Window size of skipgram model.') parser.add_argument('--walk-type', default="likely", type=str, help='Which walk method to use: likely, random, node2vec.') parser.add_argument('--p', default=5, type=int, help="p value, refer to original paper: https://cs.stanford.edu/~jure/pubs/node2vec-kdd16.pdf ") parser.add_argument('--q', default=3, type=int, help="q value, refer to original paper: https://cs.stanford.edu/~jure/pubs/node2vec-kdd16.pdf ") parser.add_argument('--workers', default=cpu_count(), type=int, help='Number of parallel processes.') parser.add_argument('--ngram', default=1, type=int, help='N of n-grams, e.g.: set 2 for bigrams, 3 for trigrams, etc.') args = parser.parse_args() numeric_level = getattr(logging, args.log.upper(), None) logging.basicConfig(format=LOGFORMAT) logger.setLevel(numeric_level) fastGraph_flow(args) if __name__ == "__main": sys.exit(main())
[ "logging.getLogger", "pdb.pm", "pandas.read_csv", "io.open", "sys.stderr.isatty", "multiprocessing.cpu_count", "sys.__excepthook__", "argparse.ArgumentParser", "fastGraph.ngram.build_ngram", "random.Random", "fastGraph.graph.Graph", "traceback.print_exception", "gensim.models.Word2Vec", "gensim.models.word2vec.LineSentence", "os.getpid", "scipy.sparse.csr_matrix", "logging.basicConfig", "numpy.zeros", "numpy.load" ]
[((882, 919), 'logging.basicConfig', 'logging.basicConfig', ([], {'format': 'LOGFORMAT'}), '(format=LOGFORMAT)\n', (901, 919), False, 'import logging\n'), ((930, 960), 'logging.getLogger', 'logging.getLogger', (['"""fastGraph"""'], {}), "('fastGraph')\n", (947, 960), False, 'import logging\n'), ((706, 717), 'os.getpid', 'os.getpid', ([], {}), '()\n', (715, 717), False, 'import os\n'), ((2590, 2597), 'fastGraph.graph.Graph', 'Graph', ([], {}), '()\n', (2595, 2597), False, 'from fastGraph.graph import Graph\n'), ((3895, 3919), 'gensim.models.word2vec.LineSentence', 'LineSentence', (['args.input'], {}), '(args.input)\n', (3907, 3919), False, 'from gensim.models.word2vec import LineSentence\n'), ((4127, 4253), 'gensim.models.Word2Vec', 'Word2Vec', (['walks'], {'size': 'args.embed_size', 'window': 'args.window_size', 'min_count': '(0)', 'sg': '(1)', 'hs': '(0)', 'negative': '(10)', 'workers': 'args.workers'}), '(walks, size=args.embed_size, window=args.window_size, min_count=0,\n sg=1, hs=0, negative=10, workers=args.workers)\n', (4135, 4253), False, 'from gensim.models import Word2Vec\n'), ((4318, 4424), 'argparse.ArgumentParser', 'ArgumentParser', (['"""fastGraph"""'], {'formatter_class': 'ArgumentDefaultsHelpFormatter', 'conflict_handler': '"""resolve"""'}), "('fastGraph', formatter_class=ArgumentDefaultsHelpFormatter,\n conflict_handler='resolve')\n", (4332, 4424), False, 'from argparse import ArgumentParser, FileType, ArgumentDefaultsHelpFormatter\n'), ((6293, 6330), 'logging.basicConfig', 'logging.basicConfig', ([], {'format': 'LOGFORMAT'}), '(format=LOGFORMAT)\n', (6312, 6330), False, 'import logging\n'), ((1095, 1131), 'sys.__excepthook__', 'sys.__excepthook__', (['type_', 'value', 'tb'], {}), '(type_, value, tb)\n', (1113, 1131), False, 'import sys\n'), ((1173, 1216), 'traceback.print_exception', 'traceback.print_exception', (['type_', 'value', 'tb'], {}), '(type_, value, tb)\n', (1198, 1216), False, 'import traceback\n'), ((1234, 1242), 'pdb.pm', 'pdb.pm', ([], {}), '()\n', (1240, 1242), False, 'import pdb\n'), ((1355, 1400), 'pandas.read_csv', 'pd.read_csv', (['args.input'], {'sep': '""","""', 'comment': '"""#"""'}), "(args.input, sep=',', comment='#')\n", (1366, 1400), True, 'import pandas as pd\n'), ((1720, 1738), 'scipy.sparse.csr_matrix', 'csr_matrix', (['matrix'], {}), '(matrix)\n', (1730, 1738), False, 'from scipy.sparse import csr_matrix, save_npz, load_npz, lil_matrix\n'), ((3756, 3777), 'io.open', 'open', (['walks_file', '"""w"""'], {}), "(walks_file, 'w')\n", (3760, 3777), False, 'from io import open\n'), ((4041, 4077), 'fastGraph.ngram.build_ngram', 'ngram.build_ngram', (['walks', 'args.ngram'], {}), '(walks, args.ngram)\n', (4058, 4077), False, 'from fastGraph import ngram\n'), ((1072, 1091), 'sys.stderr.isatty', 'sys.stderr.isatty', ([], {}), '()\n', (1089, 1091), False, 'import sys\n'), ((1529, 1574), 'numpy.zeros', 'np.zeros', (['(total_len, total_len)'], {'dtype': 'DTYPE'}), '((total_len, total_len), dtype=DTYPE)\n', (1537, 1574), True, 'import numpy as np\n'), ((1791, 1836), 'pandas.read_csv', 'pd.read_csv', (['args.input'], {'sep': '""","""', 'comment': '"""#"""'}), "(args.input, sep=',', comment='#')\n", (1802, 1836), True, 'import pandas as pd\n'), ((2159, 2177), 'scipy.sparse.csr_matrix', 'csr_matrix', (['matrix'], {}), '(matrix)\n', (2169, 2177), False, 'from scipy.sparse import csr_matrix, save_npz, load_npz, lil_matrix\n'), ((6009, 6020), 'multiprocessing.cpu_count', 'cpu_count', ([], {}), '()\n', (6018, 6020), False, 'from multiprocessing import cpu_count\n'), ((751, 762), 'multiprocessing.cpu_count', 'cpu_count', ([], {}), '()\n', (760, 762), False, 'from multiprocessing import cpu_count\n'), ((1959, 2004), 'numpy.zeros', 'np.zeros', (['(total_len, total_len)'], {'dtype': 'DTYPE'}), '((total_len, total_len), dtype=DTYPE)\n', (1967, 2004), True, 'import numpy as np\n'), ((2279, 2298), 'numpy.load', 'np.load', (['args.input'], {}), '(args.input)\n', (2286, 2298), True, 'import numpy as np\n'), ((2308, 2326), 'scipy.sparse.csr_matrix', 'csr_matrix', (['matrix'], {}), '(matrix)\n', (2318, 2326), False, 'from scipy.sparse import csr_matrix, save_npz, load_npz, lil_matrix\n'), ((3064, 3080), 'random.Random', 'random.Random', (['(0)'], {}), '(0)\n', (3077, 3080), False, 'import random\n'), ((3297, 3313), 'random.Random', 'random.Random', (['(0)'], {}), '(0)\n', (3310, 3313), False, 'import random\n'), ((3473, 3489), 'random.Random', 'random.Random', (['(0)'], {}), '(0)\n', (3486, 3489), False, 'import random\n')]
# coding=utf-8 import sys import os import csv from datetime import datetime, timedelta import numpy as np import matplotlib.pyplot as plt from matplotlib.dates import drange from matplotlib.patches import Rectangle import scenario_factory # http://www.javascripter.net/faq/hextorgb.htm PRIMA = (148/256, 164/256, 182/256) PRIMB = (101/256, 129/256, 164/256) PRIM = ( 31/256, 74/256, 125/256) PRIMC = ( 41/256, 65/256, 94/256) PRIMD = ( 10/256, 42/256, 81/256) EC = (1, 1, 1, 0) GRAY = (0.5, 0.5, 0.5) WHITE = (1, 1, 1) def load(f): with np.load(f) as npz: data = np.array([npz[k] for k in sorted(npz.keys())]) return data def plot_aggregated(sc, bd, unctrl, ctrl, ctrl_sched, res=1): t_day_start = sc.t_block_start - timedelta(hours=sc.t_block_start.hour, minutes=sc.t_block_start.minute) t = drange(t_day_start, sc.t_end, timedelta(minutes=res)) skip = (t_day_start - sc.t_start).total_seconds() / 60 / res i_block_start = (sc.t_block_start - t_day_start).total_seconds() / 60 / res i_block_end = (sc.t_block_end - t_day_start).total_seconds() / 60 / res P_el_unctrl = unctrl[:,0,skip:].sum(0) P_el_ctrl = ctrl[:,0,skip:].sum(0) P_el_sched = ctrl_sched[:,skip:].sum(0) P_el_target = np.ma.array(P_el_sched) block = np.array(sc.block) if block.shape == (1,): block = block.repeat(P_el_target[~P_el_target.mask].shape[0]) elif block.shape[0] == P_el_target[~P_el_target.mask].shape[0] / 15: block = block.repeat(15) P_el_target[~P_el_target.mask] = block T_storage_ctrl = ctrl[:,2,skip:] ft = np.array([t[0]] + list(np.repeat(t[1:-1], 2)) + [t[-1]]) P_el_ctrl_fill = np.repeat(P_el_ctrl[:-1], 2) fig, ax = plt.subplots(2, sharex=True) fig.subplots_adjust(left=0.105, right=0.998, hspace=0.3, top=0.975, bottom=0.2) for a in ax: plt.setp(list(a.spines.values()), color='k') plt.setp([a.get_xticklines(), a.get_yticklines()], color='k') ax[0].set_ylabel('P$_{\mathrm{el}}$ [kW]') ymax = max(P_el_unctrl.max(), P_el_ctrl_fill.max(), P_el_sched.max(), 0) / 1000.0 ymin = min(P_el_unctrl.min(), P_el_ctrl_fill.min(), P_el_sched.min(), 0) / 1000.0 ax[0].set_ylim(ymin - abs(ymin * 0.1), ymax + abs(ymax * 0.1)) xspace = (t[-1] - t[-2]) # ax[0].set_xlim(t[0], t[-1] + xspace) ax[0].set_xlim(t[0], t[len(t)/2]) # ax[0].axvline(t[i_block_start], ls='--', color='0.5') # ax[0].axvline(t[i_block_end], ls='--', color='0.5') ax[0].axvspan(t[i_block_start], t[i_block_end], fc=GRAY+(0.2,), ec=EC) # ax[0].axvline(t[0], ls='-', color=GRAY, lw=0.5) # ax[0].axvline(t[len(t)/2], ls='-', color=GRAY, lw=0.5) l_unctrl, = ax[0].plot_date(t, P_el_unctrl / 1000.0, fmt=':', color='k', drawstyle='steps-post', lw=0.75) l_unctrl.set_dashes([1.0, 1.0]) # add lw=0.0 due to bug in mpl (will show as hairline in pdf though...) l_ctrl = ax[0].fill_between(ft, P_el_ctrl_fill / 1000.0, facecolors=GRAY+(0.75,), edgecolors=EC, lw=0.0) # Create proxy artist as l_ctrl legend handle l_ctrl_proxy = Rectangle((0, 0), 1, 1, fc=GRAY, ec=WHITE, lw=0.0, alpha=0.5) # l_sched, = ax[0].plot_date(t, P_el_sched / 1000.0, fmt='-', color=GRAY, drawstyle='steps-post', lw=0.75) l_target, = ax[0].plot_date(t, P_el_target / 1000.0, fmt='-', color='k', drawstyle='steps-post', lw=0.75) # colors = [ # '#348ABD', # blue # '#7A68A6', # purple # '#A60628', # red # '#467821', # green # '#CF4457', # pink # '#188487', # turqoise # '#E24A33', # orange # '#1F4A7D', # primary # '#BF9D23', # secondary # '#BF5B23', # complementary # '#94A4B6', # primaryA # '#6581A4', # primaryB # '#29415E', # primaryC # '#0A2A51', # primaryD # ][:len(unctrl)] # for (c, P_el_unctrl, P_el_ctrl, P_el_sched) in zip(colors, unctrl[:,0,:], ctrl[:,0,:], ctrl_sched): # ax[0].plot_date(t, P_el_unctrl / 1000.0, fmt='-', color=c, lw=1, label='unctrl') # ax[0].plot_date(t, P_el_ctrl / 1000.0, fmt=':', color=c, lw=1, label='ctrl') # ax[0].plot_date(t, P_el_sched / 1000.0, fmt='--x', color=c, lw=1, label='sched') ymax = T_storage_ctrl.max() - 273 ymin = T_storage_ctrl.min() - 273 ax[1].set_ylim(ymin - abs(ymin * 0.01), ymax + abs(ymax * 0.01)) ax[1].set_ylabel('T$_{\mathrm{storage}}\;[^{\circ}\mathrm{C}]$', labelpad=9) ax[1].axvspan(t[i_block_start], t[i_block_end], fc=GRAY+(0.1,), ec=EC) # ax[1].axvline(t[0], ls='-', color=GRAY, lw=0.5) # ax[1].axvline(t[len(t)/2], ls='-', color=GRAY, lw=0.5) for v in T_storage_ctrl: ax[1].plot_date(t, v - 273.0, fmt='-', color=GRAY, alpha=0.25, lw=0.5) # HP and CHP have different temperature ranges (HP: 40-50, CHP: 50-70) crit = (T_storage_ctrl - 273 >= 50).all(axis=1) T_CHP = T_storage_ctrl[crit] T_HP = T_storage_ctrl[~crit] l_T_med_CHP, = ax[1].plot_date(t, T_CHP.mean(0) - 273.0, fmt='-', color=GRAY, alpha=0.75, lw=1.5) l_T_med_HP, = ax[1].plot_date(t, T_HP.mean(0) - 273.0, fmt='-', color=GRAY, alpha=0.75, lw=1.5) ax[0].xaxis.get_major_formatter().scaled[1/24.] = '%H:%M' ax[-1].set_xlabel('Time of day') fig.autofmt_xdate() ax[1].legend([l_target, l_unctrl, l_ctrl_proxy, l_T_med_CHP], ['target', 'original', 'scheduled', 'storage temperatures (mean)'], bbox_to_anchor=(0., 1.03, 1., .103), loc=8, ncol=4, handletextpad=0.2, mode='expand', handlelength=3, borderaxespad=0.25, fancybox=False, fontsize='x-small') # import pdb # pdb.set_trace() return fig def plot_aggregated_SLP(sc, bd, unctrl, ctrl, ctrl_sched, res=1): assert hasattr(sc, 'slp_file') t_day_start = sc.t_block_start - timedelta(hours=sc.t_block_start.hour, minutes=sc.t_block_start.minute) skip = (t_day_start - sc.t_start).total_seconds() / 60 / res i_block_start = (sc.t_block_start - t_day_start).total_seconds() / 60 / res i_block_end = (sc.t_block_end - t_day_start).total_seconds() / 60 / res t = drange(sc.t_block_start, sc.t_block_end, timedelta(minutes=res)) P_el_unctrl = unctrl[:,0,skip + i_block_start:skip + i_block_end].sum(0) P_el_ctrl = ctrl[:,0,skip + i_block_start:skip + i_block_end].sum(0) # ctrl correction P_el_ctrl = np.roll(P_el_ctrl, -1, axis=0) P_el_sched = ctrl_sched[:,skip + i_block_start:skip + i_block_end].sum(0) T_storage_ctrl = ctrl[:,2,skip + i_block_start:skip + i_block_end] slp = _read_slp(sc, bd)[skip + i_block_start:skip + i_block_end] # diff_ctrl = (P_el_ctrl - P_el_unctrl) / 1000.0 diff_ctrl = (P_el_sched - P_el_unctrl) / 1000.0 diff_ctrl_fill = np.repeat((slp + diff_ctrl)[:-1], 2) slp_fill = np.repeat(slp[:-1], 2) ft = np.array([t[0]] + list(np.repeat(t[1:-1], 2)) + [t[-1]]) # P_el_ctrl_fill = np.repeat(P_el_ctrl[:-1], 2) P_el_ctrl_fill = np.repeat(P_el_sched[:-1], 2) fig, ax = plt.subplots(2, sharex=True) fig.subplots_adjust(left=0.11, right=0.998, hspace=0.2, top=0.95) for a in ax: plt.setp(list(a.spines.values()), color='k') plt.setp([a.get_xticklines(), a.get_yticklines()], color='k') ax[0].set_ylabel('P$_{\mathrm{el}}$ [kW]') ymax = max(P_el_unctrl.max(), P_el_ctrl_fill.max(), P_el_sched.max(), 0) / 1000.0 ymin = min(P_el_unctrl.min(), P_el_ctrl_fill.min(), P_el_sched.min(), 0) / 1000.0 ax[0].set_ylim(ymin - abs(ymin * 0.1), ymax + abs(ymax * 0.1)) xspace = (t[-1] - t[-2]) ax[0].set_xlim(t[0], t[-1] + xspace) l_unctrl, = ax[0].plot_date(t, P_el_unctrl / 1000.0, fmt=':', color='k', drawstyle='steps-post', lw=0.75, label='original') l_unctrl.set_dashes([1.0, 1.0]) # add lw=0.0 due to bug in mpl (will show as hairline in pdf though...) l_ctrl = ax[0].fill_between(ft, P_el_ctrl_fill / 1000.0, facecolors=GRAY+(0.75,), edgecolors=EC, lw=0.0) # Create proxy artist as l_ctrl legend handle l_ctrl_proxy = Rectangle((0, 0), 1, 1, fc=GRAY, ec=WHITE, lw=0.0, alpha=0.5) # l_sched, = ax[0].plot_date(t, P_el_sched / 1000.0, fmt='-', color=PRIM, drawstyle='steps-post', lw=0.75, label='gesteuert') # colors = [ # '#348ABD', # blue # '#7A68A6', # purple # '#A60628', # red # '#467821', # green # '#CF4457', # pink # '#188487', # turqoise # '#E24A33', # orange # '#1F4A7D', # primary # '#BF9D23', # secondary # '#BF5B23', # complementary # '#94A4B6', # primaryA # '#6581A4', # primaryB # '#29415E', # primaryC # '#0A2A51', # primaryD # ][:len(unctrl)] # for (c, P_el_unctrl, P_el_ctrl, P_el_sched) in zip(colors, unctrl[:,0,:], ctrl[:,0,:], ctrl_sched): # ax[0].plot_date(t, P_el_unctrl / 1000.0, fmt='-', color=c, lw=1, label='unctrl') # ax[0].plot_date(t, P_el_ctrl / 1000.0, fmt=':', color=c, lw=1, label='ctrl') # ax[0].plot_date(t, P_el_sched / 1000.0, fmt='--x', color=c, lw=1, label='sched') ax[1].set_ylabel('P$_{el}$ [kW]') ax[1].set_xlabel('Time of day') ymin = min(slp.min(), (slp + diff_ctrl).min()) ax[1].set_ylim(ymin + (ymin * 0.1), 0) l_unctrl_slp, = ax[1].plot_date(t, slp, fmt=':', color='k', drawstyle='steps-post', lw=0.75, label='original') l_unctrl_slp.set_dashes([1.0, 1.0]) ax[1].fill_between(ft, diff_ctrl_fill, slp_fill, where=diff_ctrl_fill>=slp_fill, facecolors=GRAY+(0.3,), edgecolors=EC, lw=0.0) l_diff_slp = ax[1].fill_between(ft, diff_ctrl_fill, slp_fill, where=diff_ctrl_fill<slp_fill, facecolors=GRAY+(0.3,), edgecolors=EC, lw=0.0) # Create proxy artist as l_diff_slp legend handle l_diff_slp_proxy = Rectangle((0, 0), 1, 1, fc=GRAY, ec=WHITE, lw=0.0, alpha=0.3) l_ctrl_slp, = ax[1].plot_date(t, slp + diff_ctrl, fmt='-', color='k', drawstyle='steps-post', lw=0.75, label='scheduled') # ax[0].legend([l_sched, l_unctrl, l_T_med], # ['Verbundfahrplan', 'ungesteuert', 'Speichertemperaturen (Median)'], # bbox_to_anchor=(0., 1.05, 1., .105), loc=8, ncol=4, # handletextpad=0.2, mode='expand', handlelength=3, # borderaxespad=0.25, fancybox=False, fontsize='x-small') ax[0].text(0.5, 1.05, 'Profile of the units under control', ha='center', va='center', fontsize='small', transform=ax[0].transAxes) ax[1].text(0.5, 1.05, 'Profile of the medium-voltage node', ha='center', va='center', fontsize='small', transform=ax[1].transAxes) ax[0].legend([l_unctrl, l_ctrl_proxy], ['original', 'scheduled'], loc='upper right', fancybox=False, fontsize='x-small') ax[1].legend([l_unctrl_slp, l_ctrl_slp, l_diff_slp_proxy], ['original', 'scheduled', 'difference'], loc='upper right', fancybox=False, fontsize='x-small') fig.autofmt_xdate() ax[0].xaxis.get_major_formatter().scaled[1/24.] = '%H:%M' return fig def norm(minimum, maximum, value): # return value if maximum == minimum: return maximum return (value - minimum) / (maximum - minimum) def _read_slp(sc, bd): # Read csv data slp = [] found = False with open(sc.slp_file, 'r', encoding='latin-1') as f: reader = csv.reader(f, delimiter=';') for row in reader: if not row: continue if not found and row[0] == 'Datum': found = True elif found: date = datetime.strptime('_'.join(row[:2]), '%d.%m.%Y_%H:%M:%S') if date < sc.t_start: continue elif date >= sc.t_end: break # This is a demand, so negate the values slp.append(-1.0 * float(row[2].replace(',', '.'))) slp = np.array(slp) # Scale values # if hasattr(sc, 'run_unctrl_datafile'): # slp_norm = norm(slp.min(), slp.max(), slp) # unctrl = load(p(bd, sc.run_unctrl_datafile)).sum(0) / 1000 # slp = slp_norm * (unctrl.max() - unctrl.min()) + unctrl.min() MS_day_mean = 13600 # kWh, derived from SmartNord Scenario document MS_15_mean = MS_day_mean / 96 slp = slp / np.abs(slp.mean()) * MS_15_mean return slp # return np.array(np.roll(slp, 224, axis=0)) def p(basedir, fn): return os.path.join(basedir, fn) def resample(d, resolution): # resample the innermost axis to 'resolution' shape = tuple(d.shape[:-1]) + (int(d.shape[-1]/resolution), resolution) return d.reshape(shape).sum(-1)/resolution def run(sc_file): print() bd = os.path.dirname(sc_file) sc = scenario_factory.Scenario() sc.load_JSON(sc_file) print(sc.title) # # plot_samples(sc, bd) # plot_samples_carpet(sc, bd) # plt.show() # sys.exit(0) unctrl = load(p(bd, sc.run_unctrl_datafile)) block = load(p(bd, sc.run_ctrl_datafile)) post = load(p(bd, sc.run_post_datafile)) sched = load(p(bd, sc.sched_file)) ctrl = np.zeros(unctrl.shape) idx = 0 for l in (block, post): ctrl[:,:,idx:idx + l.shape[-1]] = l idx += l.shape[-1] if sched.shape[-1] == unctrl.shape[-1] / 15: print('Extending schedules shape by factor 15') sched = sched.repeat(15, axis=1) t_start, b_start, b_end = sc.t_start, sc.t_block_start, sc.t_block_end div = 1 if (b_end - t_start).total_seconds() / 60 == sched.shape[-1] * 15: div = 15 elif (b_end - t_start).total_seconds() / 60 == sched.shape[-1] * 60: div = 60 b_s = (b_start - sc.t_start).total_seconds() / 60 / div b_e = (b_end - sc.t_start).total_seconds() / 60 / div ctrl_sched = np.zeros((unctrl.shape[0], unctrl.shape[-1])) ctrl_sched = np.ma.array(ctrl_sched) ctrl_sched[:,:b_s] = np.ma.masked ctrl_sched[:,b_s:b_e] = sched[:,b_s:b_e] ctrl_sched[:,b_e:] = np.ma.masked # plot_each_device(sc, unctrl, ctrl, sched) minutes = (sc.t_end - sc.t_start).total_seconds() / 60 assert unctrl.shape[-1] == ctrl.shape[-1] == ctrl_sched.shape[-1] shape = unctrl.shape[-1] if hasattr(sc, 'slp_file'): if minutes == shape: print('data is 1-minute resolution, will be resampled by 15') res = 15 elif minutes == shape * 15: print('data is 15-minute resolution, all fine') res = 1 else: raise RuntimeError('unsupported data resolution: %.2f' % (minutes / shape)) unctrl = resample(unctrl, res) ctrl = resample(ctrl, res) ctrl_sched = resample(ctrl_sched, res) fig = plot_aggregated_SLP(sc, bd, unctrl, ctrl, ctrl_sched, res=15) else: if minutes == shape: print('data is 1-minute resolution, will be resampled by 60') res = 60 elif minutes == shape * 15: print('data is 15-minute resolution, will be resampled by 4') res = 4 elif minutes == shape * 60: print('data is 60-minute resolution, all fine') res = 1 else: raise RuntimeError('unsupported data resolution: %.2f' % (minutes / shape)) unctrl = resample(unctrl, res) ctrl = resample(ctrl, res) ctrl_sched = resample(ctrl_sched, res) fig = plot_aggregated(sc, bd, unctrl, ctrl, ctrl_sched, res=60) fig.savefig(p(bd, sc.title) + '.pdf') fig.savefig(p(bd, sc.title) + '.png', dpi=300) plt.show() if __name__ == '__main__': for n in sys.argv[1:]: if os.path.isdir(n): run(p(n, '0.json')) else: run(n)
[ "matplotlib.patches.Rectangle", "numpy.repeat", "numpy.roll", "numpy.ma.array", "os.path.join", "numpy.array", "os.path.dirname", "numpy.zeros", "os.path.isdir", "datetime.timedelta", "numpy.load", "csv.reader", "matplotlib.pyplot.subplots", "scenario_factory.Scenario", "matplotlib.pyplot.show" ]
[((1295, 1318), 'numpy.ma.array', 'np.ma.array', (['P_el_sched'], {}), '(P_el_sched)\n', (1306, 1318), True, 'import numpy as np\n'), ((1331, 1349), 'numpy.array', 'np.array', (['sc.block'], {}), '(sc.block)\n', (1339, 1349), True, 'import numpy as np\n'), ((1723, 1751), 'numpy.repeat', 'np.repeat', (['P_el_ctrl[:-1]', '(2)'], {}), '(P_el_ctrl[:-1], 2)\n', (1732, 1751), True, 'import numpy as np\n'), ((1767, 1795), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(2)'], {'sharex': '(True)'}), '(2, sharex=True)\n', (1779, 1795), True, 'import matplotlib.pyplot as plt\n'), ((3124, 3185), 'matplotlib.patches.Rectangle', 'Rectangle', (['(0, 0)', '(1)', '(1)'], {'fc': 'GRAY', 'ec': 'WHITE', 'lw': '(0.0)', 'alpha': '(0.5)'}), '((0, 0), 1, 1, fc=GRAY, ec=WHITE, lw=0.0, alpha=0.5)\n', (3133, 3185), False, 'from matplotlib.patches import Rectangle\n'), ((6634, 6664), 'numpy.roll', 'np.roll', (['P_el_ctrl', '(-1)'], {'axis': '(0)'}), '(P_el_ctrl, -1, axis=0)\n', (6641, 6664), True, 'import numpy as np\n'), ((7010, 7046), 'numpy.repeat', 'np.repeat', (['(slp + diff_ctrl)[:-1]', '(2)'], {}), '((slp + diff_ctrl)[:-1], 2)\n', (7019, 7046), True, 'import numpy as np\n'), ((7062, 7084), 'numpy.repeat', 'np.repeat', (['slp[:-1]', '(2)'], {}), '(slp[:-1], 2)\n', (7071, 7084), True, 'import numpy as np\n'), ((7225, 7254), 'numpy.repeat', 'np.repeat', (['P_el_sched[:-1]', '(2)'], {}), '(P_el_sched[:-1], 2)\n', (7234, 7254), True, 'import numpy as np\n'), ((7270, 7298), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(2)'], {'sharex': '(True)'}), '(2, sharex=True)\n', (7282, 7298), True, 'import matplotlib.pyplot as plt\n'), ((8285, 8346), 'matplotlib.patches.Rectangle', 'Rectangle', (['(0, 0)', '(1)', '(1)'], {'fc': 'GRAY', 'ec': 'WHITE', 'lw': '(0.0)', 'alpha': '(0.5)'}), '((0, 0), 1, 1, fc=GRAY, ec=WHITE, lw=0.0, alpha=0.5)\n', (8294, 8346), False, 'from matplotlib.patches import Rectangle\n'), ((10185, 10246), 'matplotlib.patches.Rectangle', 'Rectangle', (['(0, 0)', '(1)', '(1)'], {'fc': 'GRAY', 'ec': 'WHITE', 'lw': '(0.0)', 'alpha': '(0.3)'}), '((0, 0), 1, 1, fc=GRAY, ec=WHITE, lw=0.0, alpha=0.3)\n', (10194, 10246), False, 'from matplotlib.patches import Rectangle\n'), ((12270, 12283), 'numpy.array', 'np.array', (['slp'], {}), '(slp)\n', (12278, 12283), True, 'import numpy as np\n'), ((12793, 12818), 'os.path.join', 'os.path.join', (['basedir', 'fn'], {}), '(basedir, fn)\n', (12805, 12818), False, 'import os\n'), ((13064, 13088), 'os.path.dirname', 'os.path.dirname', (['sc_file'], {}), '(sc_file)\n', (13079, 13088), False, 'import os\n'), ((13098, 13125), 'scenario_factory.Scenario', 'scenario_factory.Scenario', ([], {}), '()\n', (13123, 13125), False, 'import scenario_factory\n'), ((13463, 13485), 'numpy.zeros', 'np.zeros', (['unctrl.shape'], {}), '(unctrl.shape)\n', (13471, 13485), True, 'import numpy as np\n'), ((14144, 14189), 'numpy.zeros', 'np.zeros', (['(unctrl.shape[0], unctrl.shape[-1])'], {}), '((unctrl.shape[0], unctrl.shape[-1]))\n', (14152, 14189), True, 'import numpy as np\n'), ((14207, 14230), 'numpy.ma.array', 'np.ma.array', (['ctrl_sched'], {}), '(ctrl_sched)\n', (14218, 14230), True, 'import numpy as np\n'), ((15903, 15913), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (15911, 15913), True, 'import matplotlib.pyplot as plt\n'), ((555, 565), 'numpy.load', 'np.load', (['f'], {}), '(f)\n', (562, 565), True, 'import numpy as np\n'), ((753, 824), 'datetime.timedelta', 'timedelta', ([], {'hours': 'sc.t_block_start.hour', 'minutes': 'sc.t_block_start.minute'}), '(hours=sc.t_block_start.hour, minutes=sc.t_block_start.minute)\n', (762, 824), False, 'from datetime import datetime, timedelta\n'), ((904, 926), 'datetime.timedelta', 'timedelta', ([], {'minutes': 'res'}), '(minutes=res)\n', (913, 926), False, 'from datetime import datetime, timedelta\n'), ((6038, 6109), 'datetime.timedelta', 'timedelta', ([], {'hours': 'sc.t_block_start.hour', 'minutes': 'sc.t_block_start.minute'}), '(hours=sc.t_block_start.hour, minutes=sc.t_block_start.minute)\n', (6047, 6109), False, 'from datetime import datetime, timedelta\n'), ((6421, 6443), 'datetime.timedelta', 'timedelta', ([], {'minutes': 'res'}), '(minutes=res)\n', (6430, 6443), False, 'from datetime import datetime, timedelta\n'), ((11717, 11745), 'csv.reader', 'csv.reader', (['f'], {'delimiter': '""";"""'}), "(f, delimiter=';')\n", (11727, 11745), False, 'import csv\n'), ((15981, 15997), 'os.path.isdir', 'os.path.isdir', (['n'], {}), '(n)\n', (15994, 15997), False, 'import os\n'), ((1668, 1689), 'numpy.repeat', 'np.repeat', (['t[1:-1]', '(2)'], {}), '(t[1:-1], 2)\n', (1677, 1689), True, 'import numpy as np\n'), ((7118, 7139), 'numpy.repeat', 'np.repeat', (['t[1:-1]', '(2)'], {}), '(t[1:-1], 2)\n', (7127, 7139), True, 'import numpy as np\n')]
""" This module tests nipy's uses of aliased sympy expressions. That is, sympy.Function's whose value is an arbitrary callable. In these tests, the callable's are scipy.interpolate.interp1d instances representing approximations to Brownian Motions. """ import numpy as np import scipy.interpolate import pylab import sympy from nipy.modalities.fmri import formula, aliased def gen_BrownianMotion(): X = np.arange(0,5,0.01) y = np.random.standard_normal((500,)) Y = np.cumsum(y)*np.sqrt(0.01) B = scipy.interpolate.interp1d(X, Y, bounds_error=0) return B def test_1d(): B = gen_BrownianMotion() Bs = formula.aliased_function("B", B) t = sympy.DeferredVector('t') n={}; aliased._add_aliases_to_namespace(n, Bs) expr = 3*sympy.exp(Bs(t)) + 4 ee = sympy.lambdify(t, expr, (n, 'numpy')) np.testing.assert_almost_equal(ee(B.x), 3*np.exp(B.y)+4) def test_2d(): B1, B2 = [gen_BrownianMotion() for _ in range(2)] B1s = formula.aliased_function("B1", B1) B2s = formula.aliased_function("B2", B2) t = sympy.DeferredVector('t') s = sympy.DeferredVector('s') e = B1s(s)+B2s(t) n={}; aliased._add_aliases_to_namespace(n, e) ee = sympy.lambdify((s,t), e, (n, 'numpy')) np.testing.assert_almost_equal(ee(B1.x, B2.x), B1.y + B2.y)
[ "numpy.random.standard_normal", "numpy.sqrt", "numpy.arange", "nipy.modalities.fmri.aliased._add_aliases_to_namespace", "sympy.lambdify", "numpy.exp", "nipy.modalities.fmri.formula.aliased_function", "numpy.cumsum", "sympy.DeferredVector" ]
[((411, 432), 'numpy.arange', 'np.arange', (['(0)', '(5)', '(0.01)'], {}), '(0, 5, 0.01)\n', (420, 432), True, 'import numpy as np\n'), ((439, 472), 'numpy.random.standard_normal', 'np.random.standard_normal', (['(500,)'], {}), '((500,))\n', (464, 472), True, 'import numpy as np\n'), ((633, 665), 'nipy.modalities.fmri.formula.aliased_function', 'formula.aliased_function', (['"""B"""', 'B'], {}), "('B', B)\n", (657, 665), False, 'from nipy.modalities.fmri import formula, aliased\n'), ((674, 699), 'sympy.DeferredVector', 'sympy.DeferredVector', (['"""t"""'], {}), "('t')\n", (694, 699), False, 'import sympy\n'), ((711, 751), 'nipy.modalities.fmri.aliased._add_aliases_to_namespace', 'aliased._add_aliases_to_namespace', (['n', 'Bs'], {}), '(n, Bs)\n', (744, 751), False, 'from nipy.modalities.fmri import formula, aliased\n'), ((796, 833), 'sympy.lambdify', 'sympy.lambdify', (['t', 'expr', "(n, 'numpy')"], {}), "(t, expr, (n, 'numpy'))\n", (810, 833), False, 'import sympy\n'), ((977, 1011), 'nipy.modalities.fmri.formula.aliased_function', 'formula.aliased_function', (['"""B1"""', 'B1'], {}), "('B1', B1)\n", (1001, 1011), False, 'from nipy.modalities.fmri import formula, aliased\n'), ((1022, 1056), 'nipy.modalities.fmri.formula.aliased_function', 'formula.aliased_function', (['"""B2"""', 'B2'], {}), "('B2', B2)\n", (1046, 1056), False, 'from nipy.modalities.fmri import formula, aliased\n'), ((1066, 1091), 'sympy.DeferredVector', 'sympy.DeferredVector', (['"""t"""'], {}), "('t')\n", (1086, 1091), False, 'import sympy\n'), ((1100, 1125), 'sympy.DeferredVector', 'sympy.DeferredVector', (['"""s"""'], {}), "('s')\n", (1120, 1125), False, 'import sympy\n'), ((1159, 1198), 'nipy.modalities.fmri.aliased._add_aliases_to_namespace', 'aliased._add_aliases_to_namespace', (['n', 'e'], {}), '(n, e)\n', (1192, 1198), False, 'from nipy.modalities.fmri import formula, aliased\n'), ((1209, 1248), 'sympy.lambdify', 'sympy.lambdify', (['(s, t)', 'e', "(n, 'numpy')"], {}), "((s, t), e, (n, 'numpy'))\n", (1223, 1248), False, 'import sympy\n'), ((481, 493), 'numpy.cumsum', 'np.cumsum', (['y'], {}), '(y)\n', (490, 493), True, 'import numpy as np\n'), ((494, 507), 'numpy.sqrt', 'np.sqrt', (['(0.01)'], {}), '(0.01)\n', (501, 507), True, 'import numpy as np\n'), ((881, 892), 'numpy.exp', 'np.exp', (['B.y'], {}), '(B.y)\n', (887, 892), True, 'import numpy as np\n')]
import numpy from chainer import functions from chainer import testing @testing.parameterize(*(testing.product({ 'batchsize': [1, 5], 'size': [10, 20], 'dtype': [numpy.float32], 'eps': [1e-5, 1e-1], }))) @testing.inject_backend_tests( None, # CPU tests [ {}, ] # GPU tests + testing.product({ 'use_cuda': [True], 'use_cudnn': ['never', 'always'], 'cuda_device': [0, 1], }) # ChainerX tests + [ {'use_chainerx': True, 'chainerx_device': 'native:0'}, {'use_chainerx': True, 'chainerx_device': 'cuda:0'}, {'use_chainerx': True, 'chainerx_device': 'cuda:1'}, ] ) class TestLayerNormalization(testing.FunctionTestCase): def setUp(self): self.check_forward_options = {'atol': 1e-4, 'rtol': 1e-3} self.check_backward_options = {'atol': 1e-3, 'rtol': 1e-2} self.check_double_backward_options = {'atol': 1e-3, 'rtol': 1e-2} if self.dtype == numpy.float16: self.check_forward_options = {'atol': 1e-3, 'rtol': 1e-2} self.check_backward_options = {'atol': 1e-3, 'rtol': 1e-2} self.check_double_backward_options = {'atol': 1e-3, 'rtol': 1e-2} def generate_inputs(self): shape = self.batchsize, self.size size = numpy.prod(shape) // shape[0] x = numpy.random.uniform(-1, 1, shape).astype(self.dtype) gamma = numpy.random.uniform(-1, 1, size).astype(self.dtype) beta = numpy.random.uniform(-1, 1, size).astype(self.dtype) return x, gamma, beta def forward_expected(self, inputs): x, gamma, beta = inputs mean = numpy.mean(x, axis=1, keepdims=True) var = numpy.mean(numpy.square(x - mean), axis=1, keepdims=True) std = numpy.sqrt(var + self.eps) y_expected = ( numpy.expand_dims(gamma, axis=0) * (x - mean) / std + numpy.expand_dims(beta, axis=0)) return y_expected, def forward(self, inputs, device): x, gamma, beta = inputs y = functions.layer_normalization(x, gamma, beta, eps=self.eps) return y, testing.run_module(__name__, __file__)
[ "numpy.mean", "numpy.prod", "numpy.sqrt", "chainer.functions.layer_normalization", "chainer.testing.run_module", "numpy.square", "chainer.testing.product", "numpy.expand_dims", "numpy.random.uniform" ]
[((2133, 2171), 'chainer.testing.run_module', 'testing.run_module', (['__name__', '__file__'], {}), '(__name__, __file__)\n', (2151, 2171), False, 'from chainer import testing\n'), ((1658, 1694), 'numpy.mean', 'numpy.mean', (['x'], {'axis': '(1)', 'keepdims': '(True)'}), '(x, axis=1, keepdims=True)\n', (1668, 1694), False, 'import numpy\n'), ((1781, 1807), 'numpy.sqrt', 'numpy.sqrt', (['(var + self.eps)'], {}), '(var + self.eps)\n', (1791, 1807), False, 'import numpy\n'), ((2053, 2112), 'chainer.functions.layer_normalization', 'functions.layer_normalization', (['x', 'gamma', 'beta'], {'eps': 'self.eps'}), '(x, gamma, beta, eps=self.eps)\n', (2082, 2112), False, 'from chainer import functions\n'), ((98, 206), 'chainer.testing.product', 'testing.product', (["{'batchsize': [1, 5], 'size': [10, 20], 'dtype': [numpy.float32], 'eps': [\n 1e-05, 0.1]}"], {}), "({'batchsize': [1, 5], 'size': [10, 20], 'dtype': [numpy.\n float32], 'eps': [1e-05, 0.1]})\n", (113, 206), False, 'from chainer import testing\n'), ((1307, 1324), 'numpy.prod', 'numpy.prod', (['shape'], {}), '(shape)\n', (1317, 1324), False, 'import numpy\n'), ((1720, 1742), 'numpy.square', 'numpy.square', (['(x - mean)'], {}), '(x - mean)\n', (1732, 1742), False, 'import numpy\n'), ((1909, 1940), 'numpy.expand_dims', 'numpy.expand_dims', (['beta'], {'axis': '(0)'}), '(beta, axis=0)\n', (1926, 1940), False, 'import numpy\n'), ((326, 424), 'chainer.testing.product', 'testing.product', (["{'use_cuda': [True], 'use_cudnn': ['never', 'always'], 'cuda_device': [0, 1]}"], {}), "({'use_cuda': [True], 'use_cudnn': ['never', 'always'],\n 'cuda_device': [0, 1]})\n", (341, 424), False, 'from chainer import testing\n'), ((1349, 1383), 'numpy.random.uniform', 'numpy.random.uniform', (['(-1)', '(1)', 'shape'], {}), '(-1, 1, shape)\n', (1369, 1383), False, 'import numpy\n'), ((1419, 1452), 'numpy.random.uniform', 'numpy.random.uniform', (['(-1)', '(1)', 'size'], {}), '(-1, 1, size)\n', (1439, 1452), False, 'import numpy\n'), ((1487, 1520), 'numpy.random.uniform', 'numpy.random.uniform', (['(-1)', '(1)', 'size'], {}), '(-1, 1, size)\n', (1507, 1520), False, 'import numpy\n'), ((1843, 1875), 'numpy.expand_dims', 'numpy.expand_dims', (['gamma'], {'axis': '(0)'}), '(gamma, axis=0)\n', (1860, 1875), False, 'import numpy\n')]
import numpy as np import pandas as pd array = [1,3,4,7,8,10,15] np_array = np.array(array) print("Arranjo NumPy") print(np_array) print("Convertendo para serie Pandas") ds_array = pd.Series(np_array) print("Serie Pandas") print(ds_array)
[ "pandas.Series", "numpy.array" ]
[((78, 93), 'numpy.array', 'np.array', (['array'], {}), '(array)\n', (86, 93), True, 'import numpy as np\n'), ((186, 205), 'pandas.Series', 'pd.Series', (['np_array'], {}), '(np_array)\n', (195, 205), True, 'import pandas as pd\n')]
# Copyright 2022 NVIDIA Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import random import numpy as np import pytest import cunumeric as cn from legate.core import LEGATE_MAX_DIM @pytest.mark.parametrize("ndim", range(0, LEGATE_MAX_DIM)) def test_indices(ndim): dimensions = tuple(random.randint(2, 5) for i in range(ndim)) np_res = np.indices(dimensions) cn_res = cn.indices(dimensions) assert np.array_equal(np_res, cn_res) np_res = np.indices(dimensions, dtype=float) cn_res = cn.indices(dimensions, dtype=float) assert np.array_equal(np_res, cn_res) np_res = np.indices(dimensions, sparse=True) cn_res = cn.indices(dimensions, sparse=True) for i in range(len(np_res)): assert np.array_equal(np_res[i], cn_res[i]) if __name__ == "__main__": import sys sys.exit(pytest.main(sys.argv))
[ "cunumeric.indices", "numpy.indices", "pytest.main", "numpy.array_equal", "random.randint" ]
[((861, 883), 'numpy.indices', 'np.indices', (['dimensions'], {}), '(dimensions)\n', (871, 883), True, 'import numpy as np\n'), ((897, 919), 'cunumeric.indices', 'cn.indices', (['dimensions'], {}), '(dimensions)\n', (907, 919), True, 'import cunumeric as cn\n'), ((931, 961), 'numpy.array_equal', 'np.array_equal', (['np_res', 'cn_res'], {}), '(np_res, cn_res)\n', (945, 961), True, 'import numpy as np\n'), ((976, 1011), 'numpy.indices', 'np.indices', (['dimensions'], {'dtype': 'float'}), '(dimensions, dtype=float)\n', (986, 1011), True, 'import numpy as np\n'), ((1025, 1060), 'cunumeric.indices', 'cn.indices', (['dimensions'], {'dtype': 'float'}), '(dimensions, dtype=float)\n', (1035, 1060), True, 'import cunumeric as cn\n'), ((1072, 1102), 'numpy.array_equal', 'np.array_equal', (['np_res', 'cn_res'], {}), '(np_res, cn_res)\n', (1086, 1102), True, 'import numpy as np\n'), ((1117, 1152), 'numpy.indices', 'np.indices', (['dimensions'], {'sparse': '(True)'}), '(dimensions, sparse=True)\n', (1127, 1152), True, 'import numpy as np\n'), ((1166, 1201), 'cunumeric.indices', 'cn.indices', (['dimensions'], {'sparse': '(True)'}), '(dimensions, sparse=True)\n', (1176, 1201), True, 'import cunumeric as cn\n'), ((1250, 1286), 'numpy.array_equal', 'np.array_equal', (['np_res[i]', 'cn_res[i]'], {}), '(np_res[i], cn_res[i])\n', (1264, 1286), True, 'import numpy as np\n'), ((1345, 1366), 'pytest.main', 'pytest.main', (['sys.argv'], {}), '(sys.argv)\n', (1356, 1366), False, 'import pytest\n'), ((804, 824), 'random.randint', 'random.randint', (['(2)', '(5)'], {}), '(2, 5)\n', (818, 824), False, 'import random\n')]
import tensorflow as tf import numpy as np import os import imageio from utils import get_shardsize, get_zeros_array def resize(image, target_shape): imdtype = image.dtype with tf.device('/CPU:0'): image = tf.image.resize(image, target_shape[:2]).numpy() assert image.shape == target_shape return image.astype(imdtype) def fit_image(image, target_shape, fit_method): assert isinstance(image, np.ndarray), "Image must be numpy array" assert len(image.shape) == 3 and image.shape[-1] == 3, "Original Image shape must be of shape (H, W, 3)." assert len(target_shape) == 3 and target_shape[-1] == 3, "Desired Image shape must be of shape (H, W, 3)." assert fit_method in ['resize', 'center_crop', 'random_crop'], "Crop method must be one of 'resize', 'center_crop' or 'random_crop' " (h, w, _), (htar, wtar, _) = image.shape, target_shape if image.shape == target_shape: return image if h < htar or w < wtar: if fit_method != 'resize': print("Your selected fit method is {} but your desired image shape is larger than the given image's shape. Using resize instead - note that this may change the image aspect ratio.".format(fit_method), end="\r") return resize(image, target_shape) if fit_method == 'resize': return resize(image, target_shape) elif fit_method == 'center_crop': trim_h = int((h - htar)/2) trim_w = int((w - wtar)/2) image = image[trim_h:h-trim_h, trim_w:w-trim_w] if image.shape[0] != htar: image = image[:-1] if image.shape[1] != wtar: image = image[:, :-1] assert image.shape == target_shape, image.shape return image elif fit_method == 'random_crop': imdtype = image.dtype with tf.device('/CPU:0'): image = tf.image.random_crop(tf.constant(image), target_shape).numpy() assert image.shape == target_shape return image.astype(imdtype) def images_to_train_dataset(writedir, datadir, target_shape, fit_method='resize'): ''' writedir: specifies the folder where numpy arrays are created datadir: specifies the folder where the jpg/png files in the dataset are located target_shape: the desired shape of the images fit_method: how to adjust images such that they are of the same shape as target_shape. must be 'resize', 'center_crop' or 'random_crop' remove_datadir: whether or not to delete the original dataset returns: the number of training examples. ''' if len(os.listdir(datadir)) == 0: raise RuntimeError("No training images were found. Data directory should not be empty. ") elif os.path.isfile(datadir): raise RuntimeError("data directory should not be a file, it should be a folder. You may have to unzip your files to a new folder.") if os.path.isfile(writedir): raise RuntimeError("The directory you want to write to is an existing file.") elif writedir == datadir: raise RuntimeError("The numpy arrays should be written to a different directory than the original.") elif os.path.isdir(writedir): if len(os.listdir(writedir)) != 0: print("Files already exist in this directory. Will use these for training.") return len(os.listdir(writedir)) else: os.mkdir(writedir) shard_size = get_shardsize(target_shape) numpy_dataset = get_zeros_array(target_shape) tmp_numpy = get_zeros_array(target_shape) #appends to numpy_dataset in groups of size 50. this is faster. count = 0 files_written = 0 for impath in sorted(os.listdir(datadir)): impath = os.path.join(datadir, impath) try: image = imageio.imread(impath) except: continue #cant be converted to numpy array. image = fit_image(image, target_shape, fit_method) assert len(image.shape) == 3 image = np.expand_dims(image, axis=0) count += 1 tmp_numpy = np.concatenate((tmp_numpy, image), axis=0) if tmp_numpy.shape[0]%64 == 0: numpy_dataset = np.concatenate((numpy_dataset, tmp_numpy)) tmp_numpy = get_zeros_array(target_shape) if numpy_dataset.shape[0] >= shard_size: data_to_write, remaining_data = numpy_dataset[:shard_size], numpy_dataset[shard_size:] print(data_to_write.shape, remaining_data.shape) writepath = os.path.join(writedir, 'data_{}.npy'.format(files_written)) np.save(writepath, data_to_write) files_written += 1 numpy_dataset = remaining_data numpy_dataset = np.concatenate((numpy_dataset, tmp_numpy)) writepath = os.path.join(writedir, 'data_{}.npy'.format(files_written)) if numpy_dataset.shape[0] != 0: np.save(writepath, numpy_dataset) files_written += 1 print("A maximum of %d images will be used in training." % count) return count
[ "tensorflow.device", "os.listdir", "imageio.imread", "tensorflow.image.resize", "os.path.join", "os.path.isfile", "os.path.isdir", "tensorflow.constant", "os.mkdir", "numpy.concatenate", "numpy.expand_dims", "utils.get_zeros_array", "utils.get_shardsize", "numpy.save" ]
[((2888, 2912), 'os.path.isfile', 'os.path.isfile', (['writedir'], {}), '(writedir)\n', (2902, 2912), False, 'import os\n'), ((3406, 3433), 'utils.get_shardsize', 'get_shardsize', (['target_shape'], {}), '(target_shape)\n', (3419, 3433), False, 'from utils import get_shardsize, get_zeros_array\n'), ((3454, 3483), 'utils.get_zeros_array', 'get_zeros_array', (['target_shape'], {}), '(target_shape)\n', (3469, 3483), False, 'from utils import get_shardsize, get_zeros_array\n'), ((3500, 3529), 'utils.get_zeros_array', 'get_zeros_array', (['target_shape'], {}), '(target_shape)\n', (3515, 3529), False, 'from utils import get_shardsize, get_zeros_array\n'), ((4678, 4720), 'numpy.concatenate', 'np.concatenate', (['(numpy_dataset, tmp_numpy)'], {}), '((numpy_dataset, tmp_numpy))\n', (4692, 4720), True, 'import numpy as np\n'), ((186, 205), 'tensorflow.device', 'tf.device', (['"""/CPU:0"""'], {}), "('/CPU:0')\n", (195, 205), True, 'import tensorflow as tf\n'), ((2715, 2738), 'os.path.isfile', 'os.path.isfile', (['datadir'], {}), '(datadir)\n', (2729, 2738), False, 'import os\n'), ((3657, 3676), 'os.listdir', 'os.listdir', (['datadir'], {}), '(datadir)\n', (3667, 3676), False, 'import os\n'), ((3696, 3725), 'os.path.join', 'os.path.join', (['datadir', 'impath'], {}), '(datadir, impath)\n', (3708, 3725), False, 'import os\n'), ((3966, 3995), 'numpy.expand_dims', 'np.expand_dims', (['image'], {'axis': '(0)'}), '(image, axis=0)\n', (3980, 3995), True, 'import numpy as np\n'), ((4036, 4078), 'numpy.concatenate', 'np.concatenate', (['(tmp_numpy, image)'], {'axis': '(0)'}), '((tmp_numpy, image), axis=0)\n', (4050, 4078), True, 'import numpy as np\n'), ((4850, 4883), 'numpy.save', 'np.save', (['writepath', 'numpy_dataset'], {}), '(writepath, numpy_dataset)\n', (4857, 4883), True, 'import numpy as np\n'), ((2581, 2600), 'os.listdir', 'os.listdir', (['datadir'], {}), '(datadir)\n', (2591, 2600), False, 'import os\n'), ((3148, 3171), 'os.path.isdir', 'os.path.isdir', (['writedir'], {}), '(writedir)\n', (3161, 3171), False, 'import os\n'), ((3759, 3781), 'imageio.imread', 'imageio.imread', (['impath'], {}), '(impath)\n', (3773, 3781), False, 'import imageio\n'), ((4146, 4188), 'numpy.concatenate', 'np.concatenate', (['(numpy_dataset, tmp_numpy)'], {}), '((numpy_dataset, tmp_numpy))\n', (4160, 4188), True, 'import numpy as np\n'), ((4213, 4242), 'utils.get_zeros_array', 'get_zeros_array', (['target_shape'], {}), '(target_shape)\n', (4228, 4242), False, 'from utils import get_shardsize, get_zeros_array\n'), ((4549, 4582), 'numpy.save', 'np.save', (['writepath', 'data_to_write'], {}), '(writepath, data_to_write)\n', (4556, 4582), True, 'import numpy as np\n'), ((223, 263), 'tensorflow.image.resize', 'tf.image.resize', (['image', 'target_shape[:2]'], {}), '(image, target_shape[:2])\n', (238, 263), True, 'import tensorflow as tf\n'), ((3369, 3387), 'os.mkdir', 'os.mkdir', (['writedir'], {}), '(writedir)\n', (3377, 3387), False, 'import os\n'), ((1814, 1833), 'tensorflow.device', 'tf.device', (['"""/CPU:0"""'], {}), "('/CPU:0')\n", (1823, 1833), True, 'import tensorflow as tf\n'), ((3188, 3208), 'os.listdir', 'os.listdir', (['writedir'], {}), '(writedir)\n', (3198, 3208), False, 'import os\n'), ((3328, 3348), 'os.listdir', 'os.listdir', (['writedir'], {}), '(writedir)\n', (3338, 3348), False, 'import os\n'), ((1876, 1894), 'tensorflow.constant', 'tf.constant', (['image'], {}), '(image)\n', (1887, 1894), True, 'import tensorflow as tf\n')]
import params import numpy as np def calc_min_delta_t(delta_x, alpha, v_max) -> int: return min(1, 1 / 4 * delta_x ** 2 / alpha, delta_x / v_max) def adjust_boundary(T, v_x, v_y): T[0, :] = params.T_h T[-1, :] = T[-2, :] T[:, 0] = T[:, 1] T[:, -1] = T[:, -2] v_y[0, :] = 0 v_y[-1, :] = v_y[-2, :] v_y[:, 0] = v_y[:, 1] v_y[:, -1] = v_y[:, -2] def diffusion_x_op(T, alpha, delta_t, delta_x): T[1:-1, 1:-1] = T[1:-1, 1:-1] + alpha * delta_t / \ pow(delta_x, 2) * (T[1:-1, 0:-2]-2*T[1:-1, 1:-1]+T[1:-1, 2:]) def diffusion_y_op(T, alpha, delta_t, delta_x): T_cen = T[1:-1, 1:-1] T_down = T[0:-2, 1:-1] T_up = T[2:, 1:-1] T[1:-1, 1:-1] = T_cen + alpha * delta_t / \ pow(delta_x, 2) * (T_down-2*T_cen+T_up) def heat_convection_y_op(T, v_y, delta_t, delta_x): T_cen = T[1:-1, 1:-1] T_down = T[0:-2, 1:-1] v_y_cen = v_y[1:-1, 1:-1] T[1:-1, 1:-1] = T_cen - delta_t / delta_x * v_y_cen * (T_cen-T_down) def mom_convection_y_op(T, v_y, delta_t, delta_x): T_cen = T[1:-1, 1:-1] v_y_cen = v_y[1:-1, 1:-1] v_y_down = v_y[0:-2, 1:-1] T_up = T[2:, 1:-1] b = params.g * np.maximum(np.zeros(T_cen.shape), (T_cen-T_up)/T_up) v_y[1:-1, 1:-1] = v_y_cen + delta_t * b - \ delta_t / delta_x * v_y_cen * (v_y_cen-v_y_down)
[ "numpy.zeros" ]
[((1184, 1205), 'numpy.zeros', 'np.zeros', (['T_cen.shape'], {}), '(T_cen.shape)\n', (1192, 1205), True, 'import numpy as np\n')]
import warnings import numpy as np from tabulate import tabulate from collections import Counter from sklearn.ensemble import ExtraTreesClassifier from sklearn.metrics import precision_score, recall_score, f1_score from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer def get_sentiment(documents, document_ids): """ Input - A document_df that basically has documents and their IDs [tweetid/message hash etc] Returns - A dictionary mapping document ID to sentiment from Vader This function is basically as a function that is generic to the documents which at the moment are tweets & news articles. """ # Vader vader = SentimentIntensityAnalyzer() # Create & populating dict mapping document_id # to sentiment dict sentiment_dict = {} for i, document in enumerate(documents): if document_ids[i] not in sentiment_dict: sentiment_dict[document_ids[i]] = vader.polarity_scores(document) return sentiment_dict def make_predictions(location_features_dict, labels, model=None, permute=False, lead_days=2, days_window=5): """ Input - location_features_dict - The dict mapping from location to features labels - Label dict generated from process_acled_csv(..) model - Specific sklearn model to evaluate/benchmark performance permute - Permute the data before train-test split Returns - None """ # Table for presenting on tabulate result_table = [] # Suppress warnings for divide-by-zero error warnings.filterwarnings("ignore") # Compute intersection for locations present on both dicts common_locations = set(location_features_dict.keys()) & set(labels.keys()) # Sorted for clarity common_locations = sorted(list(common_locations)) for common_location in common_locations: # Get data and labels X, y = location_features_dict[common_location], labels[common_location] X, y = np.array(X), np.array(y) # Eliminate last days to match labels.shape X = X[:-(lead_days + days_window)] # Permute randomly if specified if permute: p = np.random.permutation(len(X)) X, y = X[p], y[p] # Split data into train & test - 75% & 25% split = int(0.75 * len(X)) xtrain, ytrain = X[:split], y[:split] xtest, ytest = X[split:], y[split:] # Default model if model is None: model = xgboost.XGBClassifier(n_estimators=200, n_jobs=-1) # Fit the train data model.fit(xtrain, ytrain) # Make predictions ypred = model.predict(xtest) # Compute metrics train_acc = model.score(xtrain, ytrain) test_acc = model.score(xtest, ytest) precision = precision_score(ytest, ypred) recall = recall_score(ytest, ypred) f1 = f1_score(ytest, ypred) # Add row to result_table result_row = [ common_location, np.round(train_acc, 2), np.round(test_acc, 2), np.round(precision, 2), np.round(recall, 2), np.round(f1, 2), np.round(np.sum(y) / len(y), 2) ] result_table.append(result_row) # Average stats # Turns out median is kind of useless result_table_copy = (np.array(result_table)[:, 1:]).astype(np.float32) averages = np.round(np.mean(result_table_copy, axis=0), 2) # Sort by test accuracy result_table = sorted(result_table, key=lambda x: -x[-2]) # Add them to the existing result table result_table.append(["Average"] + averages.tolist()) # Header for table header = ["Location", "Train Accuracy", "Test Accuracy", "Precision", "Recall", "F1 Score", "+'s in data"] # Print tabulated result print(tabulate(result_table, tablefmt="pipe", stralign="center", headers=header)) # Unsuppress warning warnings.filterwarnings("default") return def get_features(date_dict): """ Input: date_dict to compute features for each date Returns: Features for each date """ # Initialize list for features features = [] # Iterate through dates for date in date_dict: feature_row = [] docs = date_dict[date] # If no rows are present, add zero-row if docs is None: feature_row = [0] * 6 else: # Compute features feature_row.append(len(docs)) mean = docs.mean() feature_row.extend( [mean['pos'], mean['neg'], mean['neu'], mean['compound']]) feature_row.append(len(docs[docs['neg'] > 0])) # Add feature_row to above list features.append(feature_row) return features
[ "vaderSentiment.vaderSentiment.SentimentIntensityAnalyzer", "numpy.mean", "sklearn.metrics.f1_score", "tabulate.tabulate", "sklearn.metrics.precision_score", "sklearn.metrics.recall_score", "numpy.array", "numpy.sum", "warnings.filterwarnings", "numpy.round" ]
[((699, 727), 'vaderSentiment.vaderSentiment.SentimentIntensityAnalyzer', 'SentimentIntensityAnalyzer', ([], {}), '()\n', (725, 727), False, 'from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer\n'), ((1592, 1625), 'warnings.filterwarnings', 'warnings.filterwarnings', (['"""ignore"""'], {}), "('ignore')\n", (1615, 1625), False, 'import warnings\n'), ((4108, 4142), 'warnings.filterwarnings', 'warnings.filterwarnings', (['"""default"""'], {}), "('default')\n", (4131, 4142), False, 'import warnings\n'), ((2846, 2875), 'sklearn.metrics.precision_score', 'precision_score', (['ytest', 'ypred'], {}), '(ytest, ypred)\n', (2861, 2875), False, 'from sklearn.metrics import precision_score, recall_score, f1_score\n'), ((2893, 2919), 'sklearn.metrics.recall_score', 'recall_score', (['ytest', 'ypred'], {}), '(ytest, ypred)\n', (2905, 2919), False, 'from sklearn.metrics import precision_score, recall_score, f1_score\n'), ((2933, 2955), 'sklearn.metrics.f1_score', 'f1_score', (['ytest', 'ypred'], {}), '(ytest, ypred)\n', (2941, 2955), False, 'from sklearn.metrics import precision_score, recall_score, f1_score\n'), ((3508, 3542), 'numpy.mean', 'np.mean', (['result_table_copy'], {'axis': '(0)'}), '(result_table_copy, axis=0)\n', (3515, 3542), True, 'import numpy as np\n'), ((3938, 4012), 'tabulate.tabulate', 'tabulate', (['result_table'], {'tablefmt': '"""pipe"""', 'stralign': '"""center"""', 'headers': 'header'}), "(result_table, tablefmt='pipe', stralign='center', headers=header)\n", (3946, 4012), False, 'from tabulate import tabulate\n'), ((2020, 2031), 'numpy.array', 'np.array', (['X'], {}), '(X)\n', (2028, 2031), True, 'import numpy as np\n'), ((2033, 2044), 'numpy.array', 'np.array', (['y'], {}), '(y)\n', (2041, 2044), True, 'import numpy as np\n'), ((3075, 3097), 'numpy.round', 'np.round', (['train_acc', '(2)'], {}), '(train_acc, 2)\n', (3083, 3097), True, 'import numpy as np\n'), ((3099, 3120), 'numpy.round', 'np.round', (['test_acc', '(2)'], {}), '(test_acc, 2)\n', (3107, 3120), True, 'import numpy as np\n'), ((3144, 3166), 'numpy.round', 'np.round', (['precision', '(2)'], {}), '(precision, 2)\n', (3152, 3166), True, 'import numpy as np\n'), ((3168, 3187), 'numpy.round', 'np.round', (['recall', '(2)'], {}), '(recall, 2)\n', (3176, 3187), True, 'import numpy as np\n'), ((3211, 3226), 'numpy.round', 'np.round', (['f1', '(2)'], {}), '(f1, 2)\n', (3219, 3226), True, 'import numpy as np\n'), ((3434, 3456), 'numpy.array', 'np.array', (['result_table'], {}), '(result_table)\n', (3442, 3456), True, 'import numpy as np\n'), ((3237, 3246), 'numpy.sum', 'np.sum', (['y'], {}), '(y)\n', (3243, 3246), True, 'import numpy as np\n')]
import numpy as np import matplotlib.pyplot as plt with open('input.txt', 'r') as f: stream = f.readline() image = np.array(tuple(map(int, stream))).reshape(-1, 6, 25) nonzero_counts = np.sum(np.count_nonzero(image, axis=2), axis=1) fewest_zeros_layer = np.argsort(nonzero_counts)[-1] unique_values, counts = np.unique(image[fewest_zeros_layer], return_counts=True) value_counts = dict(zip(unique_values, counts)) output_image = np.zeros((6, 25)) image -= 2 for layer in image: output_image = np.where(output_image != 0, output_image, layer) print(f'{(value_counts[1] * value_counts[2])=}') plt.imshow(output_image) plt.show()
[ "matplotlib.pyplot.imshow", "numpy.unique", "numpy.where", "numpy.count_nonzero", "numpy.argsort", "numpy.zeros", "matplotlib.pyplot.show" ]
[((316, 372), 'numpy.unique', 'np.unique', (['image[fewest_zeros_layer]'], {'return_counts': '(True)'}), '(image[fewest_zeros_layer], return_counts=True)\n', (325, 372), True, 'import numpy as np\n'), ((437, 454), 'numpy.zeros', 'np.zeros', (['(6, 25)'], {}), '((6, 25))\n', (445, 454), True, 'import numpy as np\n'), ((604, 628), 'matplotlib.pyplot.imshow', 'plt.imshow', (['output_image'], {}), '(output_image)\n', (614, 628), True, 'import matplotlib.pyplot as plt\n'), ((629, 639), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (637, 639), True, 'import matplotlib.pyplot as plt\n'), ((199, 230), 'numpy.count_nonzero', 'np.count_nonzero', (['image'], {'axis': '(2)'}), '(image, axis=2)\n', (215, 230), True, 'import numpy as np\n'), ((261, 287), 'numpy.argsort', 'np.argsort', (['nonzero_counts'], {}), '(nonzero_counts)\n', (271, 287), True, 'import numpy as np\n'), ((505, 553), 'numpy.where', 'np.where', (['(output_image != 0)', 'output_image', 'layer'], {}), '(output_image != 0, output_image, layer)\n', (513, 553), True, 'import numpy as np\n')]
#!/usr/bin/env python import glob,os import numpy as np from bunch import Bunch import mygis as io import load_data def adjust_p(p,h,dz): '''Convert p [Pa] at elevation h [m] by shifting its elevation by dz [m]''' # p in pascals # h,dz in meters # slp = p/(1 - 2.25577E-5*h)**5.25588 # p=slp*(1 - 2.25577E-5*(h+dz))**5.25588 p*=(1 - 2.25577E-5*(h+dz))**5.25588 def update_base(base,filename,nz): data=load_data.cols(filename) nz=min(data.shape[0]-1,nz) base.z=data[:nz,0] base.dz=np.diff(data[:nz+1,0]).reshape((1,nz,1,1)) base.th=data[:nz,1].reshape((1,nz,1,1)) base.qv=data[:nz,2].reshape((1,nz,1,1))/1000.0 def main(): filename="bc" nx,ny,nz,nt=(20.,20,10,24) dims=[nt,nz,ny,nx] lonmin=-110.0; lonmax=-100.0; dlon=(lonmax-lonmin)/nx latmin=35.0; latmax=45.0; dlat=(latmax-latmin)/ny base=Bunch(u=10.0,w=0.0,v=0.0, qv=0.0013,qc=0.0, p=100000.0, th=np.arange(273.0,300,(300-273.0)/nz).reshape((1,nz,1,1)), dz=400.0) base.z=np.arange(0,nz*base.dz,base.dz) if glob.glob("sounding.txt"): update_base(base,"sounding.txt",nz) nz=base.th.size dims=[nt,nz,ny,nx] u=np.zeros(dims,dtype="f")+base.u w=np.zeros(dims,dtype="f")+base.w v=np.zeros(dims,dtype="f")+base.v qv=np.zeros(dims,dtype="f")+base.qv qc=np.zeros(dims,dtype="f")+base.qc coscurve=np.cos(np.arange(dims[2])/dims[2]*2*np.pi+np.pi)+1 hgt=(coscurve*1000).reshape((1,nx)).repeat(ny,axis=0) lon=np.arange(lonmin,lonmax,dlon) lat=np.arange(latmin,latmax,dlat) lon,lat=np.meshgrid(lon,lat) dz=np.zeros(dims)+base.dz z=np.zeros(dims,dtype="f")+base.z.reshape((1,nz,1,1))+hgt.reshape((1,1,ny,nx)) layer1=(dz[0,0,:,:]/2) z[0,0,:,:]+=layer1 for i in range(1,int(nz)): z[:,i,:,:]=z[:,i-1,:,:]+(dz[:,i-1,:,:]+dz[:,i,:,:])/2.0 p=np.zeros(dims,dtype="f")+base.p adjust_p(p,0.0,z) th=np.zeros(dims,dtype="f")+base.th d4dname=("t","z","y","x") d3dname=("z","y","x") d2dname=("y","x") othervars=[Bunch(data=v, name="V", dims=d4dname,dtype="f",attributes=dict(units="m/s", description="Horizontal (y) wind speed")), Bunch(data=w, name="W", dims=d4dname,dtype="f",attributes=dict(units="m/s", description="Vertical wind speed")), Bunch(data=qv, name="QVAPOR",dims=d4dname,dtype="f",attributes=dict(units="kg/kg",description="Water vapor mixing ratio")), Bunch(data=qc, name="QCLOUD",dims=d4dname,dtype="f",attributes=dict(units="kg/kg",description="Cloud water mixing ratio")), Bunch(data=p, name="P", dims=d4dname,dtype="f",attributes=dict(units="Pa", description="Pressure")), Bunch(data=th, name="T", dims=d4dname,dtype="f",attributes=dict(units="K", description="Potential temperature")), Bunch(data=dz, name="dz", dims=d4dname,dtype="f",attributes=dict(units="m", description="Layer thickness")), Bunch(data=z, name="Z", dims=d4dname,dtype="f",attributes=dict(units="m", description="Layer Height AGL")), Bunch(data=lat,name="XLAT", dims=d2dname,dtype="f",attributes=dict(units="deg", description="Latitude")), Bunch(data=lon,name="XLONG", dims=d2dname,dtype="f",attributes=dict(units="deg", description="Longitude")), Bunch(data=hgt,name="HGT", dims=d2dname,dtype="f",attributes=dict(units="m", description="Terrain Elevation")) ] fileexists=glob.glob(filename) or glob.glob(filename+".nc") if fileexists: print("Removing : "+fileexists[0]) os.remove(fileexists[0]) io.write(filename, u,varname="U", dims=d4dname,dtype="f",attributes=dict(units="m/s",description="Horizontal (x) wind speed"), extravars=othervars) if __name__ == '__main__': main()
[ "numpy.arange", "numpy.diff", "numpy.zeros", "load_data.cols", "numpy.meshgrid", "glob.glob", "os.remove" ]
[((436, 460), 'load_data.cols', 'load_data.cols', (['filename'], {}), '(filename)\n', (450, 460), False, 'import load_data\n'), ((1074, 1109), 'numpy.arange', 'np.arange', (['(0)', '(nz * base.dz)', 'base.dz'], {}), '(0, nz * base.dz, base.dz)\n', (1083, 1109), True, 'import numpy as np\n'), ((1113, 1138), 'glob.glob', 'glob.glob', (['"""sounding.txt"""'], {}), "('sounding.txt')\n", (1122, 1138), False, 'import glob, os\n'), ((1569, 1600), 'numpy.arange', 'np.arange', (['lonmin', 'lonmax', 'dlon'], {}), '(lonmin, lonmax, dlon)\n', (1578, 1600), True, 'import numpy as np\n'), ((1607, 1638), 'numpy.arange', 'np.arange', (['latmin', 'latmax', 'dlat'], {}), '(latmin, latmax, dlat)\n', (1616, 1638), True, 'import numpy as np\n'), ((1649, 1670), 'numpy.meshgrid', 'np.meshgrid', (['lon', 'lat'], {}), '(lon, lat)\n', (1660, 1670), True, 'import numpy as np\n'), ((1246, 1271), 'numpy.zeros', 'np.zeros', (['dims'], {'dtype': '"""f"""'}), "(dims, dtype='f')\n", (1254, 1271), True, 'import numpy as np\n'), ((1284, 1309), 'numpy.zeros', 'np.zeros', (['dims'], {'dtype': '"""f"""'}), "(dims, dtype='f')\n", (1292, 1309), True, 'import numpy as np\n'), ((1322, 1347), 'numpy.zeros', 'np.zeros', (['dims'], {'dtype': '"""f"""'}), "(dims, dtype='f')\n", (1330, 1347), True, 'import numpy as np\n'), ((1361, 1386), 'numpy.zeros', 'np.zeros', (['dims'], {'dtype': '"""f"""'}), "(dims, dtype='f')\n", (1369, 1386), True, 'import numpy as np\n'), ((1401, 1426), 'numpy.zeros', 'np.zeros', (['dims'], {'dtype': '"""f"""'}), "(dims, dtype='f')\n", (1409, 1426), True, 'import numpy as np\n'), ((1682, 1696), 'numpy.zeros', 'np.zeros', (['dims'], {}), '(dims)\n', (1690, 1696), True, 'import numpy as np\n'), ((1949, 1974), 'numpy.zeros', 'np.zeros', (['dims'], {'dtype': '"""f"""'}), "(dims, dtype='f')\n", (1957, 1974), True, 'import numpy as np\n'), ((2010, 2035), 'numpy.zeros', 'np.zeros', (['dims'], {'dtype': '"""f"""'}), "(dims, dtype='f')\n", (2018, 2035), True, 'import numpy as np\n'), ((3613, 3632), 'glob.glob', 'glob.glob', (['filename'], {}), '(filename)\n', (3622, 3632), False, 'import glob, os\n'), ((3636, 3663), 'glob.glob', 'glob.glob', (["(filename + '.nc')"], {}), "(filename + '.nc')\n", (3645, 3663), False, 'import glob, os\n'), ((3732, 3756), 'os.remove', 'os.remove', (['fileexists[0]'], {}), '(fileexists[0])\n', (3741, 3756), False, 'import glob, os\n'), ((527, 552), 'numpy.diff', 'np.diff', (['data[:nz + 1, 0]'], {}), '(data[:nz + 1, 0])\n', (534, 552), True, 'import numpy as np\n'), ((1711, 1736), 'numpy.zeros', 'np.zeros', (['dims'], {'dtype': '"""f"""'}), "(dims, dtype='f')\n", (1719, 1736), True, 'import numpy as np\n'), ((981, 1022), 'numpy.arange', 'np.arange', (['(273.0)', '(300)', '((300 - 273.0) / nz)'], {}), '(273.0, 300, (300 - 273.0) / nz)\n', (990, 1022), True, 'import numpy as np\n'), ((1454, 1472), 'numpy.arange', 'np.arange', (['dims[2]'], {}), '(dims[2])\n', (1463, 1472), True, 'import numpy as np\n')]
# Copyright 2017 Battelle Energy Alliance, LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np def run(raven, inputs): """ Run method. @ In, raven, object, RAVEN object @ In, inputs, dict, input dictionary @ Out, None """ # inputs: a, b, c # outputs: d, e, f # indices: d(), e(x), f(x, y) a = raven.a b = raven.b c = raven.c nx = 5 ny = 3 x = np.arange(nx) * 0.1 y = np.arange(ny) * 10 d = a*a e = x * b f = np.arange(nx*ny).reshape(nx, ny) * c # save raven.x = x raven.y = y raven.d = d raven.e = e raven.f = f raven._indexMap = {'e': ['x'], 'f': ['x', 'y'] }
[ "numpy.arange" ]
[((896, 909), 'numpy.arange', 'np.arange', (['nx'], {}), '(nx)\n', (905, 909), True, 'import numpy as np\n'), ((922, 935), 'numpy.arange', 'np.arange', (['ny'], {}), '(ny)\n', (931, 935), True, 'import numpy as np\n'), ((970, 988), 'numpy.arange', 'np.arange', (['(nx * ny)'], {}), '(nx * ny)\n', (979, 988), True, 'import numpy as np\n')]
"""" STRIP Scanning Strategy Tools test module. """ import unittest import healpy as hp import numpy as np from ScanningTools import ScanningTools as st from astropy.time import Time from astropy.coordinates import SkyCoord, AltAz from ScanningTools.Quaternions import Quaternion as q angles = np.array([[-10, 45, 59], [30, 35, 15], [-180, 25, 20], [3, 4, 5]]) hours = np.array([[23, 59, 16], [7, 56, 59]]) t = np.array([1.546585, -0.56, 0.3333333333333333333, -1.001]) ### INSTRUMENT CHARACTERISTICS ### pointing_accuracy = np.array([0, 0, 25]) #deg (arcsec) ### ### LOCATION INFORMATION ### LAT = np.array([28, 16, 24]) #deg LONG = np.array([-16, 38, 32]) #deg Height = 2400 #m loc = st.get_location(LAT, LONG, Height) ### ### TIME INFORMATION ### LCT_start = (0, 0, 0) #h, m, s LCD_start = (1, 1, 2015) #g, m, y UTC, DST = (0 , 0) #h ### ### ENGINE ROTATION INFORMATION ### zenith_distance = 31 #deg polarization_angle = 60 #deg ### class TestScanningTools(unittest.TestCase): def test_period2sec(self): one_sidereal_year = st.period2sec(years=1, days=0, hours=0, min=0, sec=0, sidereal=True) one_solar_year = st.period2sec(years=1, days=0, hours=0, min=0, sec=0) one_sidereal_day = st.period2sec(years=0, days=1, hours=0, min=0, sec=0, sidereal=True) one_solar_day = st.period2sec(years=0, days=1, hours=0, min=0, sec=0) period_0 = st.period2sec(years=1, days=1, hours=0, min=0, sec=0, sidereal=True) period_1 = st.period2sec(years=5, days=30, hours=0, min=0, sec=0, sidereal=True) period_2 = st.period2sec(years=2, days=17, hours=0, min=0, sec=0, sidereal=True) period_3 = st.period2sec(years=10, days=21, hours=15, min=3, sec=25, sidereal=True) self.assertEqual(one_sidereal_year, 31558145) self.assertEqual(one_solar_year, 31536000) self.assertEqual(one_sidereal_day, 86164) self.assertEqual(one_solar_day, 86400) self.assertEqual(period_0, 31644309) self.assertEqual(period_1, 160375649) self.assertEqual(period_2, 64581080) self.assertEqual(period_3, 317445103) def test_sex2dec(self): ang0 = st.sex2dec(angles) ang1 = st.sex2dec(angles[0], radians=True) self.assertTrue(np.allclose(ang0, np.array([-10.76638889, 30.587500, -180.422222, 3.06805556]))) self.assertEqual(ang1, np.radians(ang0[0])) def test_dec2sex(self): t0 = st.dec2sex(t) t00 = st.dec2sex(t[0]) self.assertTrue(np.allclose(t0, np.array([[1, 32, 47.706], [-0, 33, 36], [0, 20, 0], [-1, 0, 3.6]]))) self.assertTrue(np.allclose(t00, np.array([1, 32, 47.706]))) def test_degrees2hours(self): ang0 = st.degrees2hours(angles) ang1 = st.degrees2hours(angles[2], decimal=True) self.assertTrue(np.allclose(ang0, st.dec2sex(st.sex2dec(angles) / 15))) self.assertTrue(np.allclose(ang1, st.sex2dec(angles)[2] / 15)) def test_hours2degrees(self): ang0 = st.hours2degrees(hours[1]) ang1 = st.hours2degrees(hours, decimal=True) self.assertTrue(np.allclose(ang0, st.dec2sex(st.sex2dec(hours[1]) * 15))) self.assertTrue(np.allclose(ang1, st.sex2dec(hours) * 15)) def test_LocalCivilTime2JulianDay(self): "Integrated Test: it includes also the LCT2GCD and GCD2JD function conversion" Jul_1_2013 = st.LocalCivilTime2JulianDay((3, 37, 0), (1, 7, 2013), UTC=4, DST=1) Jun_19_2009 = st.LocalCivilTime2JulianDay((18, 0, 0), (19, 6, 2009), UTC=0, DST=0) self.assertTrue(np.allclose(Jul_1_2013, 2456474.442)) self.assertTrue(np.allclose(Jun_19_2009, 2455002.25)) t = Time(['2015-1-1 00:00:10', '2018-1-3 5:15:24.3', '1980-4-22 19:30:2']).jd T = np.array([st.LocalCivilTime2JulianDay((0, 0, 10), (1, 1, 2015), UTC=0, DST=0), st.LocalCivilTime2JulianDay((5, 15, 24.3), (3, 1, 2018), UTC=0, DST=0), st.LocalCivilTime2JulianDay((19, 30, 2), (22, 4, 1980), UTC=0, DST=0)]) self.assertTrue(np.allclose(t, T)) def test_LocalCivilTime2LocalSiderealTime(self): LONG = st.dec2sex(0.1) Jun_19_2009 = st.LocalCivilTime2LocalSiderealTime((18, 0, 0), (19, 6, 2009), LONG, UTC=0, DST=0) self.assertTrue(np.allclose(Jun_19_2009, np.array([11, 52, 46.843]))) def test_get_nside_eff(self): fwhm_beam0 = np.array([0, 5, 0]) #deg (arcmin) fwhm_beam1 = np.array([0, 21, 0]) #deg (arcmin) fwhm_beam2 = np.array([0, 32, 0]) #deg (arcmin) self.assertEqual(st.get_nside_eff(fwhm_beam0), 1024) self.assertEqual(st.get_nside_eff(fwhm_beam1), 256) self.assertEqual(st.get_nside_eff(fwhm_beam2), 128) def test_get_full_fp(self): def general_test(x_fp, i, j): self.assertTrue(np.allclose(x_fp[i, 0], x_fp[j, 0])) self.assertTrue(np.allclose(x_fp[i, 1], -x_fp[j, 1])) self.assertTrue(np.allclose(x_fp[i, 2], x_fp[j, 2])) x_fp, n_horns = st.get_full_fp('./ScanningTools/fp_data/fp_theta.txt', './ScanningTools/fp_data/fp_phi.txt') self.assertTrue(np.allclose(np.sum(x_fp**2, axis=1), 1)) self.assertEqual(n_horns, 49) general_test(x_fp, 7, 42) general_test(x_fp, 8, 47) general_test(x_fp, 9, 46) general_test(x_fp, 10, 45) general_test(x_fp, 11, 44) general_test(x_fp, 12, 43) general_test(x_fp, 13, 48) general_test(x_fp, 14, 35) general_test(x_fp, 15, 40) general_test(x_fp, 16, 39) general_test(x_fp, 17, 38) general_test(x_fp, 18, 37) general_test(x_fp, 19, 36) general_test(x_fp, 20, 41) general_test(x_fp, 21, 28) general_test(x_fp, 22, 33) general_test(x_fp, 23, 32) general_test(x_fp, 24, 31) general_test(x_fp, 25, 30) general_test(x_fp, 26, 29) general_test(x_fp, 27, 34) def get_full_fp_polarization_angles(self): def general_test(x_fp, i, j): self.assertTrue(np.allclose(x_fp[i, 0], x_fp[j, 0])) self.assertTrue(np.allclose(x_fp[i, 1], -x_fp[j, 1])) self.assertTrue(np.allclose(x_fp[i, 2], x_fp[j, 2])) full_psi, polarization_versor = st.get_full_fp_polarization_angles( './ScanningTools/fp_data/fp_psi.txt') self.assertTrue(np.allclose(np.sum(polarization_versor**2, axis=1), 1)) self.assertEqual(len(full_psi), 49) self.assertEqual(len(polarization_versor), 49) general_test(polarization_versor, 7, 42) general_test(polarization_versor, 8, 47) general_test(polarization_versor, 9, 46) general_test(polarization_versor, 10, 45) general_test(polarization_versor, 11, 44) general_test(polarization_versor, 12, 43) general_test(polarization_versor, 13, 48) general_test(polarization_versor, 14, 35) general_test(polarization_versor, 15, 40) general_test(polarization_versor, 16, 39) general_test(polarization_versor, 17, 38) general_test(polarization_versor, 18, 37) general_test(polarization_versor, 19, 36) general_test(polarization_versor, 20, 41) general_test(polarization_versor, 21, 28) general_test(polarization_versor, 22, 33) general_test(polarization_versor, 23, 32) general_test(polarization_versor, 24, 31) general_test(polarization_versor, 25, 30) general_test(polarization_versor, 26, 29) general_test(polarization_versor, 27, 34) def test_get_timeJD(self): def general_tests(time, sampling_rate, JD, JD_step, t0, t1): self.assertTrue(np.allclose(time[1:] - time[0:-1], 1 / sampling_rate)) self.assertEqual(len(JD), len(time)) self.assertEqual(np.sum(np.diff(JD_step)), 0) self.assertTrue(np.allclose((t1-t0).sec, 1 / sampling_rate, rtol=1e-3)) def tests_1h(obs_t, time, sampling_rate, JD, JD_step, t0, t1): self.assertEqual(obs_t, 3600) self.assertEqual(len(time), obs_t * sampling_rate) general_tests(time, sampling_rate, JD, JD_step, t0, t1) def tests_1d(LCT_start, LCD_start, obs_t, time, sampling_rate, JD, JD_step, t0, t1, UTC=UTC, DST=DST): general_tests(time, sampling_rate, JD, JD_step, t0, t1) obs_t0, time0, JD0 = st.get_timeJD(LCT_start, LCD_start, sampling_rate, obs_time, UTC=UTC, DST=DST, day=None) self.assertEqual(obs_t, 86400) self.assertEqual(obs_t, obs_t0) self.assertEqual(len(time), obs_t * sampling_rate) self.assertTrue(len(time), len(time0)) self.assertTrue(len(JD), len(JD0)) def tests_1y(LCT_start, LCD_start, obs_t, time, sampling_rate, JD, JD_step, t0, t1, UTC=UTC, DST=DST, day=None): general_tests(time, sampling_rate, JD, JD_step, t0, t1) self.assertEqual(obs_t, 86400 * 365) if day: self.assertEqual(len(time), 86400 * sampling_rate) if day > 1: self.assertTrue(time[0] != 0) else: self.assertTrue(time[0] == 0) else: self.assertEqual(len(time), obs_t * sampling_rate) sampling_rate = 50 #Hz obs_time = (0, 0, 1, 0, 0) #y, d, h, m, s day = None obs_t, time, JD = st.get_timeJD(LCT_start, LCD_start, sampling_rate, obs_time, UTC=UTC, DST=DST, day=day) JD_step = JD[1:] - JD[:-1] t0 = Time(JD[0], format='jd', location=loc) t1 = Time(JD[0] + JD_step[0], format='jd', location=loc) tests_1h(obs_t, time, sampling_rate, JD, JD_step, t0, t1) sampling_rate = 5 #Hz obs_t, time, JD = st.get_timeJD(LCT_start, LCD_start, sampling_rate, obs_time, UTC=UTC, DST=DST, day=day) JD_step = JD[1:] - JD[:-1] t0 = Time(JD[0], format='jd', location=loc) t1 = Time(JD[0] + JD_step[0], format='jd', location=loc) tests_1h(obs_t, time, sampling_rate, JD, JD_step, t0, t1) sampling_rate = 3 #Hz obs_time = (0, 1, 0, 0, 0) #y, d, h, m, s day = 1 obs_t, time, JD = st.get_timeJD(LCT_start, LCD_start, sampling_rate, obs_time, UTC=UTC, DST=DST, day=day) JD_step = JD[1:] - JD[:-1] t0 = Time(JD[0], format='jd', location=loc) t1 = Time(JD[0] + JD_step[0], format='jd', location=loc) tests_1d(LCT_start, LCD_start, obs_t, time, sampling_rate, JD, JD_step, t0, t1, UTC=UTC, DST=DST) sampling_rate = 1 #Hz obs_time = (1, 0, 0, 0, 0) #y, d, h, m, s day0, day1, day2, day3, day4 = (1, 5, 364, None, None) obs_t0, time0, JD0 = st.get_timeJD(LCT_start, LCD_start, sampling_rate, obs_time, UTC=UTC, DST=DST, day=day0) JD_step0 = JD0[1:] - JD0[:-1] t00 = Time(JD0[0], format='jd', location=loc) t10 = Time(JD0[0] + JD_step0[0], format='jd', location=loc) tests_1y(LCT_start, LCD_start, obs_t0, time0, sampling_rate, JD0, JD_step0, t00, t10, UTC=UTC, DST=DST, day=day0) obs_t1, time1, JD1 = st.get_timeJD(LCT_start, LCD_start, sampling_rate, obs_time, UTC=UTC, DST=DST, day=day1) JD_step1 = JD1[1:] - JD1[:-1] t01 = Time(JD1[0], format='jd', location=loc) t11 = Time(JD1[0] + JD_step1[0], format='jd', location=loc) tests_1y(LCT_start, LCD_start, obs_t1, time1, sampling_rate, JD1, JD_step1, t01, t11, UTC=UTC, DST=DST, day=day1) obs_t2, time2, JD2 = st.get_timeJD(LCT_start, LCD_start, sampling_rate, obs_time, UTC=UTC, DST=DST, day=day2) JD_step2 = JD2[1:] - JD2[:-1] t02 = Time(JD2[0], format='jd', location=loc) t12 = Time(JD2[0] + JD_step2[0], format='jd', location=loc) tests_1y(LCT_start, LCD_start, obs_t2, time2, sampling_rate, JD2, JD_step2, t02, t12, UTC=UTC, DST=DST, day=day2) obs_t3, time3, JD3 = st.get_timeJD(LCT_start, LCD_start, sampling_rate, obs_time, UTC=UTC, DST=DST, day=day3) JD_step3 = JD3[1:] - JD3[:-1] t03 = Time(JD3[0], format='jd', location=loc) t13 = Time(JD3[0] + JD_step3[0], format='jd', location=loc) tests_1y(LCT_start, LCD_start, obs_t3, time3, sampling_rate, JD3, JD_step3, t03, t13, UTC=UTC, DST=DST, day=day3) LCT_start4 = (12, 0, 0) obs_t4, time4, JD4 = st.get_timeJD(LCT_start4, LCD_start, sampling_rate, obs_time, UTC=UTC, DST=DST, day=day4) JD_step4 = JD4[1:] - JD4[:-1] t04 = Time(JD4[0], format='jd', location=loc) t14 = Time(JD4[0] + JD_step4[0], format='jd', location=loc) tests_1y(LCT_start4, LCD_start, obs_t4, time4, sampling_rate, JD4, JD_step4, t04, t14, UTC=UTC, DST=DST, day=day4) def test_spin_generator(self): def general_spin_tests(phi, obs_time, time, sampling_rate, rpm, day=None): if day: self.assertEqual(len(phi), 86400 * sampling_rate) else: self.assertEqual(len(phi), obs_time * sampling_rate) self.assertEqual( np.sum(np.r_[True, phi[1:] > phi[:-1]] & np.r_[phi[:-1] > phi[1:], True]), rpm * len(phi) / sampling_rate / 60) self.assertEqual(phi.min(), 0) self.assertTrue(phi.max() < 2 * np.pi) obs_time1, obs_time2, obs_time3 = ((0, 30, 0, 0, 0), (0, 1, 0, 0, 0), (0, 0, 1, 0, 0)) sampling_rate1, sampling_rate2, sampling_rate3 = (1, 3, 50) rpm1, rpm2, rpm3 = (13, 1, 5) day1, day2, day3 = (2, None, None) obs_t1, time1, JD1 = st.get_timeJD(LCT_start, LCD_start, sampling_rate1, obs_time1, UTC=UTC, DST=DST, day=day1) phi1 = st.spin_generator(time1, rpm1) general_spin_tests(phi1, obs_t1, time1, sampling_rate1, rpm1, day=day1) obs_t2, time2, JD2 = st.get_timeJD(LCT_start, LCD_start, sampling_rate2, obs_time2, UTC=UTC, DST=DST, day=day2) phi2 = st.spin_generator(time2, rpm2) general_spin_tests(phi2, obs_t2, time2, sampling_rate2, rpm2, day=day2) obs_t3, time3, JD3 = st.get_timeJD(LCT_start, LCD_start, sampling_rate3, obs_time3, UTC=UTC, DST=DST, day=day3) phi3 = st.spin_generator(time3, rpm3) general_spin_tests(phi3, obs_t3, time3, sampling_rate3, rpm3, day=day3) def test_euler_rotation_matrix(self): phi1, theta1, psi1 = np.radians(([10, 10, 10], [30, 30, 30], [0, 0, 0])) m1 = st.euler_rotation_matrix(phi1, theta1, psi1) M1 = np.array([[0.98480775301220802, -0.1503837331804353, 0.086824088833465152], [0.17364817766693033, 0.85286853195244328, -0.49240387650610395], [0, 0.49999999999999994, 0.86602540378443871]]) phi2, theta2, psi2 = np.radians(([10, 10, 10], [30, 30, 30], [45, 45, 45])) m2 = st.euler_rotation_matrix(phi2, theta2, psi2) M2 = np.array([[0.59002688280798476, -0.80270159783205308, 0.086824088833465152], [0.72585692637316113, 0.4802813184352156, -0.49240387650610395], [0.35355339059327368, 0.35355339059327373, 0.86602540378443871]]) phi3, theta3, psi3 = np.radians(([10, 10, 10], [30, 30, 30], [45, 0, 45])) m3 = st.euler_rotation_matrix(phi3, theta3, psi3) M3 = np.array([[[0.59002688280798476, -0.80270159783205308, 0.086824088833465152], [0.72585692637316113, 0.4802813184352156, -0.49240387650610395], [0.35355339059327368, 0.35355339059327373, 0.86602540378443871]], [[0.98480775301220802, -0.1503837331804353, 0.086824088833465152], [0.17364817766693033, 0.85286853195244328, -0.49240387650610395], [0, 0.49999999999999994, 0.86602540378443871]], [[0.59002688280798476, -0.80270159783205308, 0.086824088833465152], [0.72585692637316113, 0.4802813184352156, -0.49240387650610395], [0.35355339059327368, 0.35355339059327373, 0.86602540378443871]]]) self.assertTrue(np.allclose(m1, np.repeat(M1[None, ...], 3, axis=0))) self.assertTrue(np.allclose(m2, np.repeat(M2[None, ...], 3, axis=0))) self.assertTrue(np.allclose(m3, M3)) def test_engine_rotations(self): obs_time = (0, 0, 0, 30, 0) obs_t, time, JD = st.get_timeJD(LCT_start, LCD_start, 50, obs_time, UTC=UTC, DST=DST, day=None) rpm = 7 theta, phi, psi = st.get_engine_rotations(time, rpm, zenith_distance, polarization_angle) self.assertEqual(len(theta), len(time)) self.assertEqual(len(phi), len(time)) self.assertEqual(len(psi), len(time)) self.assertTrue(np.allclose(theta[1:] - theta[:-1], 0)) self.assertTrue(np.allclose(psi[1:] - psi[:-1], 0)) def test_fp_rotations(self): def general_tests(fp_pointings, fp_pointings_c): self.assertTrue(np.allclose(np.diff(fp_pointings_c[..., 2], axis=-1), 0)) self.assertTrue(np.degrees(fp_pointings[..., 0]).max() <= 365) self.assertTrue(np.degrees(fp_pointings[..., 1]).max() <= 365) self.assertTrue(np.allclose(np.sum(fp_pointings_c**2, axis=-1), 1)) x_fp, n_horns = st.get_full_fp('./ScanningTools/fp_data/fp_theta.txt', './ScanningTools/fp_data/fp_phi.txt') obs_time1, obs_time2 = ((0, 0, 0, 30, 0), (0, 90, 0, 0, 0)) rpm1, rpm2 = (7, 2) day1, day2 = (None, 10) sampling_rate1, sampling_rate2 = (50, 1) obs_t1, time1, JD1 = st.get_timeJD(LCT_start, LCD_start, sampling_rate1, obs_time1, UTC=UTC, DST=DST, day=day1) theta1, phi1, psi1 = st.get_engine_rotations(time1, rpm1, zenith_distance, polarization_angle) obs_t2, time2, JD2 = st.get_timeJD(LCT_start, LCD_start, sampling_rate2, obs_time2, UTC=UTC, DST=DST, day=day2) theta2, phi2, psi2 = st.get_engine_rotations(time2, rpm2, zenith_distance, polarization_angle) n1 = 30 n2 = None fp_rot1 = st.euler_rotation_matrix(phi1, theta1, psi1) fp_rot2 = st.euler_rotation_matrix(phi2, theta2, psi2) fp_pointings1 = st.get_fp_rotations(phi1, theta1, psi1, x_fp, n_horns, time1, n=n1, cartesian=False) fp_pointings1_c = st.get_fp_rotations(phi1, theta1, psi1, x_fp, n_horns, time1, n=n1, cartesian=True) fp_pointings2 = st.get_fp_rotations(phi2, theta2, psi2, x_fp, n_horns, time2, n=n2, cartesian=False) fp_pointings2_c = st.get_fp_rotations(phi2, theta2, psi2, x_fp, n_horns, time2, n=n2, cartesian=True) i = np.random.randint(0, len(time1)) self.assertTrue(np.allclose(np.dot(fp_rot1[i], x_fp[n1]), fp_pointings1_c[i])) rot1 = q.get_quaternion_from_euler(phi1[i], theta1[i], psi1[i]) self.assertTrue(np.allclose(rot1.rotate_vector_by_quaternion(x_fp[n1]).get_versor(), fp_pointings1_c[i, :])) general_tests(fp_pointings1, fp_pointings1_c) j = np.random.randint(0, len(time2)) p = np.random.randint(0, n_horns) self.assertTrue(np.allclose(np.dot(fp_rot2[j], x_fp[p]), fp_pointings2_c[p][j])) rot2 = q.get_quaternion_from_euler(phi2[j], theta2[j], psi2[j]) self.assertTrue(np.allclose(rot2.rotate_vector_by_quaternion(x_fp[p]).get_versor(), fp_pointings2_c[p, j, :])) general_tests(fp_pointings2, fp_pointings2_c) def test_get_horizon_coordinates(self): def general_tests(Alt, Az): self.assertTrue(np.degrees(Alt.max()) <= 90) self.assertTrue(np.degrees(Alt.min()) >= 0) self.assertTrue(np.degrees(Az.max()) <= 360) self.assertTrue(np.degrees(Az.min()) >= 0) x_fp, n_horns = st.get_full_fp('./ScanningTools/fp_data/fp_theta.txt', './ScanningTools/fp_data/fp_phi.txt') obs_time = (0, 2, 0, 0, 0) sampling_rate = 1 rpm = 4 day = 1 n1, n2 = (0, 15) obs_t, time, JD = st.get_timeJD(LCT_start, LCD_start, sampling_rate, obs_time, UTC=UTC, DST=DST, day=day) theta, phi, psi = st.get_engine_rotations(time, rpm, zenith_distance, polarization_angle) fpp = st.get_fp_rotations(phi, theta, psi, x_fp, n_horns, time, n=None, cartesian=False) fpp1 = st.get_fp_rotations(phi, theta, psi, x_fp, n_horns, time, n=n1, cartesian=False) fpp2 = st.get_fp_rotations(phi, theta, psi, x_fp, n_horns, time, n=n2, cartesian=False) Alt, Az = st.get_horizon_coordinates(fpp) Alt1, Az1 = st.get_horizon_coordinates(fpp1) Alt2, Az2 = st.get_horizon_coordinates(fpp2) def test_get_icrs_coordinates(self): x_fp, n_horns = st.get_full_fp('./ScanningTools/fp_data/fp_theta.txt', './ScanningTools/fp_data/fp_phi.txt') obs_time = (0, 2, 0, 0, 0) sampling_rate = 0.001 rpm = 3 day1, day2 = (2, None) n1, n2 = (48, None) obs_t1, time1, JD1 = st.get_timeJD(LCT_start, LCD_start, sampling_rate, obs_time, UTC=UTC, DST=DST, day=day1) obs_t2, time2, JD2 = st.get_timeJD(LCT_start, LCD_start, sampling_rate, obs_time, UTC=UTC, DST=DST, day=day2) theta1, phi1, psi1 = st.get_engine_rotations(time1, rpm, zenith_distance, polarization_angle) theta2, phi2, psi2 = st.get_engine_rotations(time2, rpm, zenith_distance, polarization_angle) fpp1 = st.get_fp_rotations(phi1, theta1, psi1, x_fp, n_horns, time1, n=n1, cartesian=False) fpp2 = st.get_fp_rotations(phi2, theta2, psi2, x_fp, n_horns, time2, n=n1, cartesian=False) fpp3 = st.get_fp_rotations(phi1, theta1, psi1, x_fp, n_horns, time1, n=n2, cartesian=False) fpp4 = st.get_fp_rotations(phi2, theta2, psi2, x_fp, n_horns, time2, n=n2, cartesian=False) Alt1, Az1 = st.get_horizon_coordinates(fpp1) Alt2, Az2 = st.get_horizon_coordinates(fpp2) Alt3, Az3 = st.get_horizon_coordinates(fpp3) Alt4, Az4 = st.get_horizon_coordinates(fpp4) Dec1, Ra1 = st.get_icrs_coordinates(JD1, loc, Alt1, Az1) #1 day 2; n = 48 Dec2, Ra2 = st.get_icrs_coordinates(JD2, loc, Alt2, Az2) #2 day all; n = 48 Dec3, Ra3 = st.get_icrs_coordinates(JD1, loc, Alt3, Az3) #3 day 2; n = all Dec4, Ra4 = st.get_icrs_coordinates(JD2, loc, Alt4, Az4) #4 day all; n = all Dec5, Ra5 = st.get_icrs_coordinates(JD1[0], loc, Alt1, Az1) #5 day 2 [t=0]; n = 48 self.assertTrue(np.allclose(Dec1, Dec3[n1])) self.assertTrue(np.allclose(Ra1, Ra3[n1])) self.assertTrue(np.allclose(Dec1, Dec2[len(Dec1):])) self.assertTrue(np.allclose(Ra1, Ra2[len(Ra1):])) self.assertTrue(np.allclose(Dec1, Dec4[n1, len(Dec1):])) self.assertTrue(np.allclose(Ra1, Ra4[n1, len(Dec1):])) self.assertTrue(np.allclose(Dec1[0], Dec5[0])) self.assertTrue(np.allclose(Ra1[0], Ra5[0])) self.assertFalse(np.allclose(Dec1[1:], Dec5[1:])) self.assertFalse(np.allclose(Ra1[1:], Ra5[1:])) def pointing_test(name, JD, loc): object = SkyCoord.from_name(name) object_AltAz = object.transform_to(AltAz(obstime=Time(JD, format='jd'), location=loc)) object_Alt = object_AltAz.alt.rad object_Az = object_AltAz.az.rad object_Dec, object_Ra = st.get_icrs_coordinates(JD1, loc, object_Alt, object_Az) self.assertTrue(np.allclose(object.dec.rad, object_Dec)) self.assertTrue(np.allclose(object.ra.rad, object_Ra)) name1, name2, name3 = ('M33', 'crab', 'NCG67') pointing_test(name1, JD1, loc) pointing_test(name2, JD1, loc) pointing_test(name3, JD1, loc) def test_get_practical_icrs_coordinates(self): def general_tests(Dec, Ra, PDec, PRa, accuracy): self.assertTrue((np.abs(Dec - PDec) <= accuracy).all()) diff_Ra = np.abs(Ra - PRa).ravel() diff_Ra[diff_Ra > 6] = 2 * np.pi - diff_Ra[diff_Ra > 6] self.assertTrue((diff_Ra <= accuracy).all()) x_fp, n_horns = st.get_full_fp('./ScanningTools/fp_data/fp_theta.txt', './ScanningTools/fp_data/fp_phi.txt') obs_time = (0, 2, 0, 0, 0) sampling_rate = 0.01 rpm = 3 day1 = 2 n1, n2 = (48, None) obs_t1, time1, JD1 = st.get_timeJD(LCT_start, LCD_start, sampling_rate, obs_time, UTC=UTC, DST=DST, day=day1) theta1, phi1, psi1 = st.get_engine_rotations(time1, rpm, zenith_distance, polarization_angle) fpp1 = st.get_fp_rotations(phi1, theta1, psi1, x_fp, n_horns, time1, n=n1, cartesian=False) fpp3 = st.get_fp_rotations(phi1, theta1, psi1, x_fp, n_horns, time1, n=n2, cartesian=False) Alt1, Az1 = st.get_horizon_coordinates(fpp1) Alt3, Az3 = st.get_horizon_coordinates(fpp3) Dec1, Ra1 = st.get_icrs_coordinates(JD1, loc, Alt1, Az1) #1 day 2; n = 48 Dec3, Ra3 = st.get_icrs_coordinates(JD1, loc, Alt3, Az3) #3 day 2; n = all PDec1, PRa1 = st.get_practical_icrs_coordinates(JD1, loc, Alt1, Az1) #1 day 2; n = 48 PDec3, PRa3 = st.get_practical_icrs_coordinates(JD1, loc, Alt3, Az3) #3 day 2; n = all accuracy = st.sex2dec(pointing_accuracy) general_tests(Dec1, Ra1, PDec1, PRa1, accuracy) general_tests(Dec3, Ra3, PDec3, PRa3, accuracy) def test_get_polarization_angles(self): def general_tests(x_fp_pol_versors, pol_ang_proj, fp_pol_pointings): self.assertTrue((np.max(pol_ang_proj, axis=-1) <= np.pi).all()) self.assertTrue((np.min(pol_ang_proj, axis=-1) >= -np.pi).all()) zenith_distance, zenith_distance1 = (0, 10) boresight_angle = 0 obs_time, obs_time1 = ((0, 0, 0, 1, 0), (0, 1, 0, 0, 0)) sampling_rate, sampling_rate1 = (50, 1) rpm, rpm1 = (1, 5) day, day1 = (None, 1) n, n1 = (0, None) obs_t, time, JD = st.get_timeJD(LCT_start, LCD_start, sampling_rate, obs_time, UTC=UTC, DST=DST, day=day) obs_t1, time1, JD1 = st.get_timeJD(LCT_start, LCD_start, sampling_rate1, obs_time1, UTC=UTC, DST=DST, day=day1) theta, phi, psi = st.get_engine_rotations(time, rpm, zenith_distance, boresight_angle) theta1, phi1, psi1 = st.get_engine_rotations(time1, rpm1, zenith_distance1, boresight_angle) theta2, phi2, psi2 = st.get_engine_rotations(time1, rpm1, zenith_distance, boresight_angle) x_fp_pol_angles, x_fp_pol_versors = st.get_full_fp_polarization_angles( './ScanningTools/fp_data/fp_psi.txt') n_horns = len(x_fp_pol_versors) fp_pol_pointings = st.get_fp_rotations(phi, theta, psi, x_fp_pol_versors, n_horns, time, n=n, cartesian=True) #rad fp_pol_pointings1 = st.get_fp_rotations(phi1, theta1, psi1, x_fp_pol_versors, n_horns, time1, n=n1, cartesian=True) #rad pol_ang_proj = st.get_polarization_angles(phi, theta, psi, x_fp_pol_versors, n_horns, time, n=n) pol_ang_proj1 = st.get_polarization_angles(phi1, theta1, psi1, x_fp_pol_versors, n_horns, time1, n=n1) pol_ang_proj2 = st.get_polarization_angles(phi2, theta2, psi2, x_fp_pol_versors, n_horns, time1, n=n1) pol_ang_proj_expected = np.concatenate(( np.linspace(0, np.pi, sampling_rate * obs_t / 2 + 1), np.linspace(-np.pi, 0, sampling_rate * obs_t / 2 + 1)[1:-1])) self.assertTrue(np.allclose(np.arctan2(x_fp_pol_versors[..., 1], x_fp_pol_versors[..., 0]), x_fp_pol_angles)) self.assertTrue(np.allclose(pol_ang_proj2[..., 0], x_fp_pol_angles)) self.assertTrue(np.allclose(pol_ang_proj, pol_ang_proj_expected)) general_tests(x_fp_pol_versors, pol_ang_proj, fp_pol_pointings) general_tests(x_fp_pol_versors, pol_ang_proj1, fp_pol_pointings1) def test_get_scanning_strategy(self): def general_tests(packed_values): (x_fp, x_fp_pol_angles, n_horns, time, JD, theta, phi, psi, fp_pointings_spherical, Alt, Az, Dec, Ra, polarization_angles) = packed_values self.assertTrue(np.allclose(x_fp.shape, (49, 3))) self.assertTrue(np.allclose(x_fp_pol_angles.shape, 49)) self.assertEqual(n_horns, 49) self.assertTrue(np.allclose(time.shape, JD.shape)) self.assertTrue(np.allclose(theta.shape, JD.shape)) self.assertTrue(np.allclose(theta.shape, phi.shape)) self.assertTrue(np.allclose(psi.shape, phi.shape)) self.assertTrue(np.allclose(psi.shape, fp_pointings_spherical.shape[-2])) self.assertTrue(np.allclose(Alt.shape, fp_pointings_spherical.shape[:-1])) self.assertTrue(np.allclose(Alt.shape, Az.shape)) self.assertTrue(np.allclose(Dec.shape, Az.shape)) self.assertTrue(np.allclose(Dec.shape, Ra.shape)) self.assertTrue(np.allclose(polarization_angles.shape, Ra.shape)) self.assertTrue(np.allclose(time.shape, Ra.shape[-1])) self.assertTrue(np.allclose(fp_pointings_spherical.shape[-2], time.shape)) obs_time = (0, 2, 0, 0, 0) sampling_rate = 2 zenith_distance, polarization_angle = (10, 0) rpm = 5 n1, n2 = (15, None) day1, day2 = (1, None) packed_values1 = st.get_scanning_strategy( obs_time, sampling_rate, zenith_distance, polarization_angle, rpm, n=n1, day=day2, LCT_start=(0, 0, 0), LCD_start=(1, 1, 2018), UTC=0, DST=0, LAT=np.array([28, 16, 24]), LONG=np.array([-16, 38, 32]), Height=2400, fp_theta_path='./ScanningTools/fp_data/fp_theta.txt', fp_phi_path='./ScanningTools/fp_data/fp_phi.txt', fp_psi_path='./ScanningTools/fp_data/fp_psi.txt') packed_values2 = st.get_scanning_strategy( obs_time, sampling_rate, zenith_distance, polarization_angle, rpm, n=n2, day=day1, LCT_start=(0, 0, 0), LCD_start=(1, 1, 2018), UTC=0, DST=0, LAT=np.array([28, 16, 24]), LONG=np.array([-16, 38, 32]), Height=2400, fp_theta_path='./ScanningTools/fp_data/fp_theta.txt', fp_phi_path='./ScanningTools/fp_data/fp_phi.txt', fp_psi_path='./ScanningTools/fp_data/fp_psi.txt') general_tests(packed_values1) general_tests(packed_values2) if __name__ == '__main__': unittest.main()
[ "ScanningTools.ScanningTools.dec2sex", "numpy.radians", "ScanningTools.ScanningTools.spin_generator", "numpy.array", "ScanningTools.ScanningTools.get_full_fp_polarization_angles", "numpy.arctan2", "unittest.main", "ScanningTools.ScanningTools.get_nside_eff", "ScanningTools.ScanningTools.hours2degrees", "ScanningTools.ScanningTools.euler_rotation_matrix", "numpy.repeat", "ScanningTools.ScanningTools.period2sec", "numpy.diff", "numpy.max", "ScanningTools.ScanningTools.get_fp_rotations", "numpy.dot", "numpy.linspace", "ScanningTools.ScanningTools.get_polarization_angles", "numpy.min", "ScanningTools.ScanningTools.sex2dec", "numpy.degrees", "numpy.abs", "numpy.allclose", "ScanningTools.ScanningTools.get_timeJD", "astropy.coordinates.SkyCoord.from_name", "ScanningTools.ScanningTools.get_icrs_coordinates", "ScanningTools.ScanningTools.get_horizon_coordinates", "ScanningTools.ScanningTools.get_full_fp", "ScanningTools.Quaternions.Quaternion.get_quaternion_from_euler", "ScanningTools.ScanningTools.LocalCivilTime2LocalSiderealTime", "astropy.time.Time", "numpy.random.randint", "ScanningTools.ScanningTools.get_location", "ScanningTools.ScanningTools.get_practical_icrs_coordinates", "numpy.sum", "ScanningTools.ScanningTools.get_engine_rotations", "ScanningTools.ScanningTools.LocalCivilTime2JulianDay", "ScanningTools.ScanningTools.degrees2hours" ]
[((298, 364), 'numpy.array', 'np.array', (['[[-10, 45, 59], [30, 35, 15], [-180, 25, 20], [3, 4, 5]]'], {}), '([[-10, 45, 59], [30, 35, 15], [-180, 25, 20], [3, 4, 5]])\n', (306, 364), True, 'import numpy as np\n'), ((425, 462), 'numpy.array', 'np.array', (['[[23, 59, 16], [7, 56, 59]]'], {}), '([[23, 59, 16], [7, 56, 59]])\n', (433, 462), True, 'import numpy as np\n'), ((486, 541), 'numpy.array', 'np.array', (['[1.546585, -0.56, 0.3333333333333333, -1.001]'], {}), '([1.546585, -0.56, 0.3333333333333333, -1.001])\n', (494, 541), True, 'import numpy as np\n'), ((601, 621), 'numpy.array', 'np.array', (['[0, 0, 25]'], {}), '([0, 0, 25])\n', (609, 621), True, 'import numpy as np\n'), ((676, 698), 'numpy.array', 'np.array', (['[28, 16, 24]'], {}), '([28, 16, 24])\n', (684, 698), True, 'import numpy as np\n'), ((711, 734), 'numpy.array', 'np.array', (['[-16, 38, 32]'], {}), '([-16, 38, 32])\n', (719, 734), True, 'import numpy as np\n'), ((764, 798), 'ScanningTools.ScanningTools.get_location', 'st.get_location', (['LAT', 'LONG', 'Height'], {}), '(LAT, LONG, Height)\n', (779, 798), True, 'from ScanningTools import ScanningTools as st\n'), ((33054, 33069), 'unittest.main', 'unittest.main', ([], {}), '()\n', (33067, 33069), False, 'import unittest\n'), ((1136, 1204), 'ScanningTools.ScanningTools.period2sec', 'st.period2sec', ([], {'years': '(1)', 'days': '(0)', 'hours': '(0)', 'min': '(0)', 'sec': '(0)', 'sidereal': '(True)'}), '(years=1, days=0, hours=0, min=0, sec=0, sidereal=True)\n', (1149, 1204), True, 'from ScanningTools import ScanningTools as st\n'), ((1230, 1283), 'ScanningTools.ScanningTools.period2sec', 'st.period2sec', ([], {'years': '(1)', 'days': '(0)', 'hours': '(0)', 'min': '(0)', 'sec': '(0)'}), '(years=1, days=0, hours=0, min=0, sec=0)\n', (1243, 1283), True, 'from ScanningTools import ScanningTools as st\n'), ((1311, 1379), 'ScanningTools.ScanningTools.period2sec', 'st.period2sec', ([], {'years': '(0)', 'days': '(1)', 'hours': '(0)', 'min': '(0)', 'sec': '(0)', 'sidereal': '(True)'}), '(years=0, days=1, hours=0, min=0, sec=0, sidereal=True)\n', (1324, 1379), True, 'from ScanningTools import ScanningTools as st\n'), ((1404, 1457), 'ScanningTools.ScanningTools.period2sec', 'st.period2sec', ([], {'years': '(0)', 'days': '(1)', 'hours': '(0)', 'min': '(0)', 'sec': '(0)'}), '(years=0, days=1, hours=0, min=0, sec=0)\n', (1417, 1457), True, 'from ScanningTools import ScanningTools as st\n'), ((1477, 1545), 'ScanningTools.ScanningTools.period2sec', 'st.period2sec', ([], {'years': '(1)', 'days': '(1)', 'hours': '(0)', 'min': '(0)', 'sec': '(0)', 'sidereal': '(True)'}), '(years=1, days=1, hours=0, min=0, sec=0, sidereal=True)\n', (1490, 1545), True, 'from ScanningTools import ScanningTools as st\n'), ((1565, 1634), 'ScanningTools.ScanningTools.period2sec', 'st.period2sec', ([], {'years': '(5)', 'days': '(30)', 'hours': '(0)', 'min': '(0)', 'sec': '(0)', 'sidereal': '(True)'}), '(years=5, days=30, hours=0, min=0, sec=0, sidereal=True)\n', (1578, 1634), True, 'from ScanningTools import ScanningTools as st\n'), ((1654, 1723), 'ScanningTools.ScanningTools.period2sec', 'st.period2sec', ([], {'years': '(2)', 'days': '(17)', 'hours': '(0)', 'min': '(0)', 'sec': '(0)', 'sidereal': '(True)'}), '(years=2, days=17, hours=0, min=0, sec=0, sidereal=True)\n', (1667, 1723), True, 'from ScanningTools import ScanningTools as st\n'), ((1743, 1815), 'ScanningTools.ScanningTools.period2sec', 'st.period2sec', ([], {'years': '(10)', 'days': '(21)', 'hours': '(15)', 'min': '(3)', 'sec': '(25)', 'sidereal': '(True)'}), '(years=10, days=21, hours=15, min=3, sec=25, sidereal=True)\n', (1756, 1815), True, 'from ScanningTools import ScanningTools as st\n'), ((2255, 2273), 'ScanningTools.ScanningTools.sex2dec', 'st.sex2dec', (['angles'], {}), '(angles)\n', (2265, 2273), True, 'from ScanningTools import ScanningTools as st\n'), ((2289, 2324), 'ScanningTools.ScanningTools.sex2dec', 'st.sex2dec', (['angles[0]'], {'radians': '(True)'}), '(angles[0], radians=True)\n', (2299, 2324), True, 'from ScanningTools import ScanningTools as st\n'), ((2588, 2601), 'ScanningTools.ScanningTools.dec2sex', 'st.dec2sex', (['t'], {}), '(t)\n', (2598, 2601), True, 'from ScanningTools import ScanningTools as st\n'), ((2616, 2632), 'ScanningTools.ScanningTools.dec2sex', 'st.dec2sex', (['t[0]'], {}), '(t[0])\n', (2626, 2632), True, 'from ScanningTools import ScanningTools as st\n'), ((2930, 2954), 'ScanningTools.ScanningTools.degrees2hours', 'st.degrees2hours', (['angles'], {}), '(angles)\n', (2946, 2954), True, 'from ScanningTools import ScanningTools as st\n'), ((2970, 3011), 'ScanningTools.ScanningTools.degrees2hours', 'st.degrees2hours', (['angles[2]'], {'decimal': '(True)'}), '(angles[2], decimal=True)\n', (2986, 3011), True, 'from ScanningTools import ScanningTools as st\n'), ((3231, 3257), 'ScanningTools.ScanningTools.hours2degrees', 'st.hours2degrees', (['hours[1]'], {}), '(hours[1])\n', (3247, 3257), True, 'from ScanningTools import ScanningTools as st\n'), ((3273, 3310), 'ScanningTools.ScanningTools.hours2degrees', 'st.hours2degrees', (['hours'], {'decimal': '(True)'}), '(hours, decimal=True)\n', (3289, 3310), True, 'from ScanningTools import ScanningTools as st\n'), ((3632, 3699), 'ScanningTools.ScanningTools.LocalCivilTime2JulianDay', 'st.LocalCivilTime2JulianDay', (['(3, 37, 0)', '(1, 7, 2013)'], {'UTC': '(4)', 'DST': '(1)'}), '((3, 37, 0), (1, 7, 2013), UTC=4, DST=1)\n', (3659, 3699), True, 'from ScanningTools import ScanningTools as st\n'), ((3722, 3790), 'ScanningTools.ScanningTools.LocalCivilTime2JulianDay', 'st.LocalCivilTime2JulianDay', (['(18, 0, 0)', '(19, 6, 2009)'], {'UTC': '(0)', 'DST': '(0)'}), '((18, 0, 0), (19, 6, 2009), UTC=0, DST=0)\n', (3749, 3790), True, 'from ScanningTools import ScanningTools as st\n'), ((4394, 4409), 'ScanningTools.ScanningTools.dec2sex', 'st.dec2sex', (['(0.1)'], {}), '(0.1)\n', (4404, 4409), True, 'from ScanningTools import ScanningTools as st\n'), ((4434, 4520), 'ScanningTools.ScanningTools.LocalCivilTime2LocalSiderealTime', 'st.LocalCivilTime2LocalSiderealTime', (['(18, 0, 0)', '(19, 6, 2009)', 'LONG'], {'UTC': '(0)', 'DST': '(0)'}), '((18, 0, 0), (19, 6, 2009), LONG, UTC=0,\n DST=0)\n', (4469, 4520), True, 'from ScanningTools import ScanningTools as st\n'), ((4785, 4804), 'numpy.array', 'np.array', (['[0, 5, 0]'], {}), '([0, 5, 0])\n', (4793, 4804), True, 'import numpy as np\n'), ((4840, 4860), 'numpy.array', 'np.array', (['[0, 21, 0]'], {}), '([0, 21, 0])\n', (4848, 4860), True, 'import numpy as np\n'), ((4896, 4916), 'numpy.array', 'np.array', (['[0, 32, 0]'], {}), '([0, 32, 0])\n', (4904, 4916), True, 'import numpy as np\n'), ((5434, 5530), 'ScanningTools.ScanningTools.get_full_fp', 'st.get_full_fp', (['"""./ScanningTools/fp_data/fp_theta.txt"""', '"""./ScanningTools/fp_data/fp_phi.txt"""'], {}), "('./ScanningTools/fp_data/fp_theta.txt',\n './ScanningTools/fp_data/fp_phi.txt')\n", (5448, 5530), True, 'from ScanningTools import ScanningTools as st\n'), ((6770, 6842), 'ScanningTools.ScanningTools.get_full_fp_polarization_angles', 'st.get_full_fp_polarization_angles', (['"""./ScanningTools/fp_data/fp_psi.txt"""'], {}), "('./ScanningTools/fp_data/fp_psi.txt')\n", (6804, 6842), True, 'from ScanningTools import ScanningTools as st\n'), ((10124, 10216), 'ScanningTools.ScanningTools.get_timeJD', 'st.get_timeJD', (['LCT_start', 'LCD_start', 'sampling_rate', 'obs_time'], {'UTC': 'UTC', 'DST': 'DST', 'day': 'day'}), '(LCT_start, LCD_start, sampling_rate, obs_time, UTC=UTC, DST=\n DST, day=day)\n', (10137, 10216), True, 'from ScanningTools import ScanningTools as st\n'), ((10300, 10338), 'astropy.time.Time', 'Time', (['JD[0]'], {'format': '"""jd"""', 'location': 'loc'}), "(JD[0], format='jd', location=loc)\n", (10304, 10338), False, 'from astropy.time import Time\n'), ((10352, 10403), 'astropy.time.Time', 'Time', (['(JD[0] + JD_step[0])'], {'format': '"""jd"""', 'location': 'loc'}), "(JD[0] + JD_step[0], format='jd', location=loc)\n", (10356, 10403), False, 'from astropy.time import Time\n'), ((10535, 10627), 'ScanningTools.ScanningTools.get_timeJD', 'st.get_timeJD', (['LCT_start', 'LCD_start', 'sampling_rate', 'obs_time'], {'UTC': 'UTC', 'DST': 'DST', 'day': 'day'}), '(LCT_start, LCD_start, sampling_rate, obs_time, UTC=UTC, DST=\n DST, day=day)\n', (10548, 10627), True, 'from ScanningTools import ScanningTools as st\n'), ((10711, 10749), 'astropy.time.Time', 'Time', (['JD[0]'], {'format': '"""jd"""', 'location': 'loc'}), "(JD[0], format='jd', location=loc)\n", (10715, 10749), False, 'from astropy.time import Time\n'), ((10763, 10814), 'astropy.time.Time', 'Time', (['(JD[0] + JD_step[0])'], {'format': '"""jd"""', 'location': 'loc'}), "(JD[0] + JD_step[0], format='jd', location=loc)\n", (10767, 10814), False, 'from astropy.time import Time\n'), ((11012, 11104), 'ScanningTools.ScanningTools.get_timeJD', 'st.get_timeJD', (['LCT_start', 'LCD_start', 'sampling_rate', 'obs_time'], {'UTC': 'UTC', 'DST': 'DST', 'day': 'day'}), '(LCT_start, LCD_start, sampling_rate, obs_time, UTC=UTC, DST=\n DST, day=day)\n', (11025, 11104), True, 'from ScanningTools import ScanningTools as st\n'), ((11188, 11226), 'astropy.time.Time', 'Time', (['JD[0]'], {'format': '"""jd"""', 'location': 'loc'}), "(JD[0], format='jd', location=loc)\n", (11192, 11226), False, 'from astropy.time import Time\n'), ((11240, 11291), 'astropy.time.Time', 'Time', (['(JD[0] + JD_step[0])'], {'format': '"""jd"""', 'location': 'loc'}), "(JD[0] + JD_step[0], format='jd', location=loc)\n", (11244, 11291), False, 'from astropy.time import Time\n'), ((11589, 11682), 'ScanningTools.ScanningTools.get_timeJD', 'st.get_timeJD', (['LCT_start', 'LCD_start', 'sampling_rate', 'obs_time'], {'UTC': 'UTC', 'DST': 'DST', 'day': 'day0'}), '(LCT_start, LCD_start, sampling_rate, obs_time, UTC=UTC, DST=\n DST, day=day0)\n', (11602, 11682), True, 'from ScanningTools import ScanningTools as st\n'), ((11773, 11812), 'astropy.time.Time', 'Time', (['JD0[0]'], {'format': '"""jd"""', 'location': 'loc'}), "(JD0[0], format='jd', location=loc)\n", (11777, 11812), False, 'from astropy.time import Time\n'), ((11827, 11880), 'astropy.time.Time', 'Time', (['(JD0[0] + JD_step0[0])'], {'format': '"""jd"""', 'location': 'loc'}), "(JD0[0] + JD_step0[0], format='jd', location=loc)\n", (11831, 11880), False, 'from astropy.time import Time\n'), ((12049, 12142), 'ScanningTools.ScanningTools.get_timeJD', 'st.get_timeJD', (['LCT_start', 'LCD_start', 'sampling_rate', 'obs_time'], {'UTC': 'UTC', 'DST': 'DST', 'day': 'day1'}), '(LCT_start, LCD_start, sampling_rate, obs_time, UTC=UTC, DST=\n DST, day=day1)\n', (12062, 12142), True, 'from ScanningTools import ScanningTools as st\n'), ((12230, 12269), 'astropy.time.Time', 'Time', (['JD1[0]'], {'format': '"""jd"""', 'location': 'loc'}), "(JD1[0], format='jd', location=loc)\n", (12234, 12269), False, 'from astropy.time import Time\n'), ((12284, 12337), 'astropy.time.Time', 'Time', (['(JD1[0] + JD_step1[0])'], {'format': '"""jd"""', 'location': 'loc'}), "(JD1[0] + JD_step1[0], format='jd', location=loc)\n", (12288, 12337), False, 'from astropy.time import Time\n'), ((12506, 12599), 'ScanningTools.ScanningTools.get_timeJD', 'st.get_timeJD', (['LCT_start', 'LCD_start', 'sampling_rate', 'obs_time'], {'UTC': 'UTC', 'DST': 'DST', 'day': 'day2'}), '(LCT_start, LCD_start, sampling_rate, obs_time, UTC=UTC, DST=\n DST, day=day2)\n', (12519, 12599), True, 'from ScanningTools import ScanningTools as st\n'), ((12690, 12729), 'astropy.time.Time', 'Time', (['JD2[0]'], {'format': '"""jd"""', 'location': 'loc'}), "(JD2[0], format='jd', location=loc)\n", (12694, 12729), False, 'from astropy.time import Time\n'), ((12744, 12797), 'astropy.time.Time', 'Time', (['(JD2[0] + JD_step2[0])'], {'format': '"""jd"""', 'location': 'loc'}), "(JD2[0] + JD_step2[0], format='jd', location=loc)\n", (12748, 12797), False, 'from astropy.time import Time\n'), ((12966, 13059), 'ScanningTools.ScanningTools.get_timeJD', 'st.get_timeJD', (['LCT_start', 'LCD_start', 'sampling_rate', 'obs_time'], {'UTC': 'UTC', 'DST': 'DST', 'day': 'day3'}), '(LCT_start, LCD_start, sampling_rate, obs_time, UTC=UTC, DST=\n DST, day=day3)\n', (12979, 13059), True, 'from ScanningTools import ScanningTools as st\n'), ((13150, 13189), 'astropy.time.Time', 'Time', (['JD3[0]'], {'format': '"""jd"""', 'location': 'loc'}), "(JD3[0], format='jd', location=loc)\n", (13154, 13189), False, 'from astropy.time import Time\n'), ((13204, 13257), 'astropy.time.Time', 'Time', (['(JD3[0] + JD_step3[0])'], {'format': '"""jd"""', 'location': 'loc'}), "(JD3[0] + JD_step3[0], format='jd', location=loc)\n", (13208, 13257), False, 'from astropy.time import Time\n'), ((13458, 13552), 'ScanningTools.ScanningTools.get_timeJD', 'st.get_timeJD', (['LCT_start4', 'LCD_start', 'sampling_rate', 'obs_time'], {'UTC': 'UTC', 'DST': 'DST', 'day': 'day4'}), '(LCT_start4, LCD_start, sampling_rate, obs_time, UTC=UTC, DST=\n DST, day=day4)\n', (13471, 13552), True, 'from ScanningTools import ScanningTools as st\n'), ((13643, 13682), 'astropy.time.Time', 'Time', (['JD4[0]'], {'format': '"""jd"""', 'location': 'loc'}), "(JD4[0], format='jd', location=loc)\n", (13647, 13682), False, 'from astropy.time import Time\n'), ((13697, 13750), 'astropy.time.Time', 'Time', (['(JD4[0] + JD_step4[0])'], {'format': '"""jd"""', 'location': 'loc'}), "(JD4[0] + JD_step4[0], format='jd', location=loc)\n", (13701, 13750), False, 'from astropy.time import Time\n'), ((14766, 14861), 'ScanningTools.ScanningTools.get_timeJD', 'st.get_timeJD', (['LCT_start', 'LCD_start', 'sampling_rate1', 'obs_time1'], {'UTC': 'UTC', 'DST': 'DST', 'day': 'day1'}), '(LCT_start, LCD_start, sampling_rate1, obs_time1, UTC=UTC, DST\n =DST, day=day1)\n', (14779, 14861), True, 'from ScanningTools import ScanningTools as st\n'), ((14915, 14945), 'ScanningTools.ScanningTools.spin_generator', 'st.spin_generator', (['time1', 'rpm1'], {}), '(time1, rpm1)\n', (14932, 14945), True, 'from ScanningTools import ScanningTools as st\n'), ((15055, 15150), 'ScanningTools.ScanningTools.get_timeJD', 'st.get_timeJD', (['LCT_start', 'LCD_start', 'sampling_rate2', 'obs_time2'], {'UTC': 'UTC', 'DST': 'DST', 'day': 'day2'}), '(LCT_start, LCD_start, sampling_rate2, obs_time2, UTC=UTC, DST\n =DST, day=day2)\n', (15068, 15150), True, 'from ScanningTools import ScanningTools as st\n'), ((15204, 15234), 'ScanningTools.ScanningTools.spin_generator', 'st.spin_generator', (['time2', 'rpm2'], {}), '(time2, rpm2)\n', (15221, 15234), True, 'from ScanningTools import ScanningTools as st\n'), ((15344, 15439), 'ScanningTools.ScanningTools.get_timeJD', 'st.get_timeJD', (['LCT_start', 'LCD_start', 'sampling_rate3', 'obs_time3'], {'UTC': 'UTC', 'DST': 'DST', 'day': 'day3'}), '(LCT_start, LCD_start, sampling_rate3, obs_time3, UTC=UTC, DST\n =DST, day=day3)\n', (15357, 15439), True, 'from ScanningTools import ScanningTools as st\n'), ((15493, 15523), 'ScanningTools.ScanningTools.spin_generator', 'st.spin_generator', (['time3', 'rpm3'], {}), '(time3, rpm3)\n', (15510, 15523), True, 'from ScanningTools import ScanningTools as st\n'), ((15686, 15737), 'numpy.radians', 'np.radians', (['([10, 10, 10], [30, 30, 30], [0, 0, 0])'], {}), '(([10, 10, 10], [30, 30, 30], [0, 0, 0]))\n', (15696, 15737), True, 'import numpy as np\n'), ((15751, 15795), 'ScanningTools.ScanningTools.euler_rotation_matrix', 'st.euler_rotation_matrix', (['phi1', 'theta1', 'psi1'], {}), '(phi1, theta1, psi1)\n', (15775, 15795), True, 'from ScanningTools import ScanningTools as st\n'), ((15809, 16003), 'numpy.array', 'np.array', (['[[0.984807753012208, -0.1503837331804353, 0.08682408883346515], [\n 0.17364817766693033, 0.8528685319524433, -0.49240387650610395], [0, \n 0.49999999999999994, 0.8660254037844387]]'], {}), '([[0.984807753012208, -0.1503837331804353, 0.08682408883346515], [\n 0.17364817766693033, 0.8528685319524433, -0.49240387650610395], [0, \n 0.49999999999999994, 0.8660254037844387]])\n', (15817, 16003), True, 'import numpy as np\n'), ((16074, 16128), 'numpy.radians', 'np.radians', (['([10, 10, 10], [30, 30, 30], [45, 45, 45])'], {}), '(([10, 10, 10], [30, 30, 30], [45, 45, 45]))\n', (16084, 16128), True, 'import numpy as np\n'), ((16142, 16186), 'ScanningTools.ScanningTools.euler_rotation_matrix', 'st.euler_rotation_matrix', (['phi2', 'theta2', 'psi2'], {}), '(phi2, theta2, psi2)\n', (16166, 16186), True, 'from ScanningTools import ScanningTools as st\n'), ((16200, 16411), 'numpy.array', 'np.array', (['[[0.5900268828079848, -0.8027015978320531, 0.08682408883346515], [\n 0.7258569263731611, 0.4802813184352156, -0.49240387650610395], [\n 0.3535533905932737, 0.35355339059327373, 0.8660254037844387]]'], {}), '([[0.5900268828079848, -0.8027015978320531, 0.08682408883346515], [\n 0.7258569263731611, 0.4802813184352156, -0.49240387650610395], [\n 0.3535533905932737, 0.35355339059327373, 0.8660254037844387]])\n', (16208, 16411), True, 'import numpy as np\n'), ((16483, 16536), 'numpy.radians', 'np.radians', (['([10, 10, 10], [30, 30, 30], [45, 0, 45])'], {}), '(([10, 10, 10], [30, 30, 30], [45, 0, 45]))\n', (16493, 16536), True, 'import numpy as np\n'), ((16550, 16594), 'ScanningTools.ScanningTools.euler_rotation_matrix', 'st.euler_rotation_matrix', (['phi3', 'theta3', 'psi3'], {}), '(phi3, theta3, psi3)\n', (16574, 16594), True, 'from ScanningTools import ScanningTools as st\n'), ((16608, 17219), 'numpy.array', 'np.array', (['[[[0.5900268828079848, -0.8027015978320531, 0.08682408883346515], [\n 0.7258569263731611, 0.4802813184352156, -0.49240387650610395], [\n 0.3535533905932737, 0.35355339059327373, 0.8660254037844387]], [[\n 0.984807753012208, -0.1503837331804353, 0.08682408883346515], [\n 0.17364817766693033, 0.8528685319524433, -0.49240387650610395], [0, \n 0.49999999999999994, 0.8660254037844387]], [[0.5900268828079848, -\n 0.8027015978320531, 0.08682408883346515], [0.7258569263731611, \n 0.4802813184352156, -0.49240387650610395], [0.3535533905932737, \n 0.35355339059327373, 0.8660254037844387]]]'], {}), '([[[0.5900268828079848, -0.8027015978320531, 0.08682408883346515],\n [0.7258569263731611, 0.4802813184352156, -0.49240387650610395], [\n 0.3535533905932737, 0.35355339059327373, 0.8660254037844387]], [[\n 0.984807753012208, -0.1503837331804353, 0.08682408883346515], [\n 0.17364817766693033, 0.8528685319524433, -0.49240387650610395], [0, \n 0.49999999999999994, 0.8660254037844387]], [[0.5900268828079848, -\n 0.8027015978320531, 0.08682408883346515], [0.7258569263731611, \n 0.4802813184352156, -0.49240387650610395], [0.3535533905932737, \n 0.35355339059327373, 0.8660254037844387]]])\n', (16616, 17219), True, 'import numpy as np\n'), ((17702, 17779), 'ScanningTools.ScanningTools.get_timeJD', 'st.get_timeJD', (['LCT_start', 'LCD_start', '(50)', 'obs_time'], {'UTC': 'UTC', 'DST': 'DST', 'day': 'None'}), '(LCT_start, LCD_start, 50, obs_time, UTC=UTC, DST=DST, day=None)\n', (17715, 17779), True, 'from ScanningTools import ScanningTools as st\n'), ((17862, 17933), 'ScanningTools.ScanningTools.get_engine_rotations', 'st.get_engine_rotations', (['time', 'rpm', 'zenith_distance', 'polarization_angle'], {}), '(time, rpm, zenith_distance, polarization_angle)\n', (17885, 17933), True, 'from ScanningTools import ScanningTools as st\n'), ((18640, 18736), 'ScanningTools.ScanningTools.get_full_fp', 'st.get_full_fp', (['"""./ScanningTools/fp_data/fp_theta.txt"""', '"""./ScanningTools/fp_data/fp_phi.txt"""'], {}), "('./ScanningTools/fp_data/fp_theta.txt',\n './ScanningTools/fp_data/fp_phi.txt')\n", (18654, 18736), True, 'from ScanningTools import ScanningTools as st\n'), ((18978, 19073), 'ScanningTools.ScanningTools.get_timeJD', 'st.get_timeJD', (['LCT_start', 'LCD_start', 'sampling_rate1', 'obs_time1'], {'UTC': 'UTC', 'DST': 'DST', 'day': 'day1'}), '(LCT_start, LCD_start, sampling_rate1, obs_time1, UTC=UTC, DST\n =DST, day=day1)\n', (18991, 19073), True, 'from ScanningTools import ScanningTools as st\n'), ((19141, 19214), 'ScanningTools.ScanningTools.get_engine_rotations', 'st.get_engine_rotations', (['time1', 'rpm1', 'zenith_distance', 'polarization_angle'], {}), '(time1, rpm1, zenith_distance, polarization_angle)\n', (19164, 19214), True, 'from ScanningTools import ScanningTools as st\n'), ((19297, 19392), 'ScanningTools.ScanningTools.get_timeJD', 'st.get_timeJD', (['LCT_start', 'LCD_start', 'sampling_rate2', 'obs_time2'], {'UTC': 'UTC', 'DST': 'DST', 'day': 'day2'}), '(LCT_start, LCD_start, sampling_rate2, obs_time2, UTC=UTC, DST\n =DST, day=day2)\n', (19310, 19392), True, 'from ScanningTools import ScanningTools as st\n'), ((19460, 19533), 'ScanningTools.ScanningTools.get_engine_rotations', 'st.get_engine_rotations', (['time2', 'rpm2', 'zenith_distance', 'polarization_angle'], {}), '(time2, rpm2, zenith_distance, polarization_angle)\n', (19483, 19533), True, 'from ScanningTools import ScanningTools as st\n'), ((19639, 19683), 'ScanningTools.ScanningTools.euler_rotation_matrix', 'st.euler_rotation_matrix', (['phi1', 'theta1', 'psi1'], {}), '(phi1, theta1, psi1)\n', (19663, 19683), True, 'from ScanningTools import ScanningTools as st\n'), ((19702, 19746), 'ScanningTools.ScanningTools.euler_rotation_matrix', 'st.euler_rotation_matrix', (['phi2', 'theta2', 'psi2'], {}), '(phi2, theta2, psi2)\n', (19726, 19746), True, 'from ScanningTools import ScanningTools as st\n'), ((19771, 19859), 'ScanningTools.ScanningTools.get_fp_rotations', 'st.get_fp_rotations', (['phi1', 'theta1', 'psi1', 'x_fp', 'n_horns', 'time1'], {'n': 'n1', 'cartesian': '(False)'}), '(phi1, theta1, psi1, x_fp, n_horns, time1, n=n1,\n cartesian=False)\n', (19790, 19859), True, 'from ScanningTools import ScanningTools as st\n'), ((19926, 20013), 'ScanningTools.ScanningTools.get_fp_rotations', 'st.get_fp_rotations', (['phi1', 'theta1', 'psi1', 'x_fp', 'n_horns', 'time1'], {'n': 'n1', 'cartesian': '(True)'}), '(phi1, theta1, psi1, x_fp, n_horns, time1, n=n1,\n cartesian=True)\n', (19945, 20013), True, 'from ScanningTools import ScanningTools as st\n'), ((20080, 20168), 'ScanningTools.ScanningTools.get_fp_rotations', 'st.get_fp_rotations', (['phi2', 'theta2', 'psi2', 'x_fp', 'n_horns', 'time2'], {'n': 'n2', 'cartesian': '(False)'}), '(phi2, theta2, psi2, x_fp, n_horns, time2, n=n2,\n cartesian=False)\n', (20099, 20168), True, 'from ScanningTools import ScanningTools as st\n'), ((20235, 20322), 'ScanningTools.ScanningTools.get_fp_rotations', 'st.get_fp_rotations', (['phi2', 'theta2', 'psi2', 'x_fp', 'n_horns', 'time2'], {'n': 'n2', 'cartesian': '(True)'}), '(phi2, theta2, psi2, x_fp, n_horns, time2, n=n2,\n cartesian=True)\n', (20254, 20322), True, 'from ScanningTools import ScanningTools as st\n'), ((20510, 20566), 'ScanningTools.Quaternions.Quaternion.get_quaternion_from_euler', 'q.get_quaternion_from_euler', (['phi1[i]', 'theta1[i]', 'psi1[i]'], {}), '(phi1[i], theta1[i], psi1[i])\n', (20537, 20566), True, 'from ScanningTools.Quaternions import Quaternion as q\n'), ((20831, 20860), 'numpy.random.randint', 'np.random.randint', (['(0)', 'n_horns'], {}), '(0, n_horns)\n', (20848, 20860), True, 'import numpy as np\n'), ((20965, 21021), 'ScanningTools.Quaternions.Quaternion.get_quaternion_from_euler', 'q.get_quaternion_from_euler', (['phi2[j]', 'theta2[j]', 'psi2[j]'], {}), '(phi2[j], theta2[j], psi2[j])\n', (20992, 21021), True, 'from ScanningTools.Quaternions import Quaternion as q\n'), ((21572, 21668), 'ScanningTools.ScanningTools.get_full_fp', 'st.get_full_fp', (['"""./ScanningTools/fp_data/fp_theta.txt"""', '"""./ScanningTools/fp_data/fp_phi.txt"""'], {}), "('./ScanningTools/fp_data/fp_theta.txt',\n './ScanningTools/fp_data/fp_phi.txt')\n", (21586, 21668), True, 'from ScanningTools import ScanningTools as st\n'), ((21848, 21940), 'ScanningTools.ScanningTools.get_timeJD', 'st.get_timeJD', (['LCT_start', 'LCD_start', 'sampling_rate', 'obs_time'], {'UTC': 'UTC', 'DST': 'DST', 'day': 'day'}), '(LCT_start, LCD_start, sampling_rate, obs_time, UTC=UTC, DST=\n DST, day=day)\n', (21861, 21940), True, 'from ScanningTools import ScanningTools as st\n'), ((22002, 22073), 'ScanningTools.ScanningTools.get_engine_rotations', 'st.get_engine_rotations', (['time', 'rpm', 'zenith_distance', 'polarization_angle'], {}), '(time, rpm, zenith_distance, polarization_angle)\n', (22025, 22073), True, 'from ScanningTools import ScanningTools as st\n'), ((22088, 22175), 'ScanningTools.ScanningTools.get_fp_rotations', 'st.get_fp_rotations', (['phi', 'theta', 'psi', 'x_fp', 'n_horns', 'time'], {'n': 'None', 'cartesian': '(False)'}), '(phi, theta, psi, x_fp, n_horns, time, n=None, cartesian\n =False)\n', (22107, 22175), True, 'from ScanningTools import ScanningTools as st\n'), ((22186, 22271), 'ScanningTools.ScanningTools.get_fp_rotations', 'st.get_fp_rotations', (['phi', 'theta', 'psi', 'x_fp', 'n_horns', 'time'], {'n': 'n1', 'cartesian': '(False)'}), '(phi, theta, psi, x_fp, n_horns, time, n=n1, cartesian=False\n )\n', (22205, 22271), True, 'from ScanningTools import ScanningTools as st\n'), ((22282, 22367), 'ScanningTools.ScanningTools.get_fp_rotations', 'st.get_fp_rotations', (['phi', 'theta', 'psi', 'x_fp', 'n_horns', 'time'], {'n': 'n2', 'cartesian': '(False)'}), '(phi, theta, psi, x_fp, n_horns, time, n=n2, cartesian=False\n )\n', (22301, 22367), True, 'from ScanningTools import ScanningTools as st\n'), ((22381, 22412), 'ScanningTools.ScanningTools.get_horizon_coordinates', 'st.get_horizon_coordinates', (['fpp'], {}), '(fpp)\n', (22407, 22412), True, 'from ScanningTools import ScanningTools as st\n'), ((22433, 22465), 'ScanningTools.ScanningTools.get_horizon_coordinates', 'st.get_horizon_coordinates', (['fpp1'], {}), '(fpp1)\n', (22459, 22465), True, 'from ScanningTools import ScanningTools as st\n'), ((22486, 22518), 'ScanningTools.ScanningTools.get_horizon_coordinates', 'st.get_horizon_coordinates', (['fpp2'], {}), '(fpp2)\n', (22512, 22518), True, 'from ScanningTools import ScanningTools as st\n'), ((22595, 22691), 'ScanningTools.ScanningTools.get_full_fp', 'st.get_full_fp', (['"""./ScanningTools/fp_data/fp_theta.txt"""', '"""./ScanningTools/fp_data/fp_phi.txt"""'], {}), "('./ScanningTools/fp_data/fp_theta.txt',\n './ScanningTools/fp_data/fp_phi.txt')\n", (22609, 22691), True, 'from ScanningTools import ScanningTools as st\n'), ((22896, 22989), 'ScanningTools.ScanningTools.get_timeJD', 'st.get_timeJD', (['LCT_start', 'LCD_start', 'sampling_rate', 'obs_time'], {'UTC': 'UTC', 'DST': 'DST', 'day': 'day1'}), '(LCT_start, LCD_start, sampling_rate, obs_time, UTC=UTC, DST=\n DST, day=day1)\n', (22909, 22989), True, 'from ScanningTools import ScanningTools as st\n'), ((23057, 23150), 'ScanningTools.ScanningTools.get_timeJD', 'st.get_timeJD', (['LCT_start', 'LCD_start', 'sampling_rate', 'obs_time'], {'UTC': 'UTC', 'DST': 'DST', 'day': 'day2'}), '(LCT_start, LCD_start, sampling_rate, obs_time, UTC=UTC, DST=\n DST, day=day2)\n', (23070, 23150), True, 'from ScanningTools import ScanningTools as st\n'), ((23218, 23290), 'ScanningTools.ScanningTools.get_engine_rotations', 'st.get_engine_rotations', (['time1', 'rpm', 'zenith_distance', 'polarization_angle'], {}), '(time1, rpm, zenith_distance, polarization_angle)\n', (23241, 23290), True, 'from ScanningTools import ScanningTools as st\n'), ((23373, 23445), 'ScanningTools.ScanningTools.get_engine_rotations', 'st.get_engine_rotations', (['time2', 'rpm', 'zenith_distance', 'polarization_angle'], {}), '(time2, rpm, zenith_distance, polarization_angle)\n', (23396, 23445), True, 'from ScanningTools import ScanningTools as st\n'), ((23516, 23604), 'ScanningTools.ScanningTools.get_fp_rotations', 'st.get_fp_rotations', (['phi1', 'theta1', 'psi1', 'x_fp', 'n_horns', 'time1'], {'n': 'n1', 'cartesian': '(False)'}), '(phi1, theta1, psi1, x_fp, n_horns, time1, n=n1,\n cartesian=False)\n', (23535, 23604), True, 'from ScanningTools import ScanningTools as st\n'), ((23616, 23704), 'ScanningTools.ScanningTools.get_fp_rotations', 'st.get_fp_rotations', (['phi2', 'theta2', 'psi2', 'x_fp', 'n_horns', 'time2'], {'n': 'n1', 'cartesian': '(False)'}), '(phi2, theta2, psi2, x_fp, n_horns, time2, n=n1,\n cartesian=False)\n', (23635, 23704), True, 'from ScanningTools import ScanningTools as st\n'), ((23716, 23804), 'ScanningTools.ScanningTools.get_fp_rotations', 'st.get_fp_rotations', (['phi1', 'theta1', 'psi1', 'x_fp', 'n_horns', 'time1'], {'n': 'n2', 'cartesian': '(False)'}), '(phi1, theta1, psi1, x_fp, n_horns, time1, n=n2,\n cartesian=False)\n', (23735, 23804), True, 'from ScanningTools import ScanningTools as st\n'), ((23816, 23904), 'ScanningTools.ScanningTools.get_fp_rotations', 'st.get_fp_rotations', (['phi2', 'theta2', 'psi2', 'x_fp', 'n_horns', 'time2'], {'n': 'n2', 'cartesian': '(False)'}), '(phi2, theta2, psi2, x_fp, n_horns, time2, n=n2,\n cartesian=False)\n', (23835, 23904), True, 'from ScanningTools import ScanningTools as st\n'), ((23921, 23953), 'ScanningTools.ScanningTools.get_horizon_coordinates', 'st.get_horizon_coordinates', (['fpp1'], {}), '(fpp1)\n', (23947, 23953), True, 'from ScanningTools import ScanningTools as st\n'), ((23974, 24006), 'ScanningTools.ScanningTools.get_horizon_coordinates', 'st.get_horizon_coordinates', (['fpp2'], {}), '(fpp2)\n', (24000, 24006), True, 'from ScanningTools import ScanningTools as st\n'), ((24027, 24059), 'ScanningTools.ScanningTools.get_horizon_coordinates', 'st.get_horizon_coordinates', (['fpp3'], {}), '(fpp3)\n', (24053, 24059), True, 'from ScanningTools import ScanningTools as st\n'), ((24080, 24112), 'ScanningTools.ScanningTools.get_horizon_coordinates', 'st.get_horizon_coordinates', (['fpp4'], {}), '(fpp4)\n', (24106, 24112), True, 'from ScanningTools import ScanningTools as st\n'), ((24133, 24177), 'ScanningTools.ScanningTools.get_icrs_coordinates', 'st.get_icrs_coordinates', (['JD1', 'loc', 'Alt1', 'Az1'], {}), '(JD1, loc, Alt1, Az1)\n', (24156, 24177), True, 'from ScanningTools import ScanningTools as st\n'), ((24221, 24265), 'ScanningTools.ScanningTools.get_icrs_coordinates', 'st.get_icrs_coordinates', (['JD2', 'loc', 'Alt2', 'Az2'], {}), '(JD2, loc, Alt2, Az2)\n', (24244, 24265), True, 'from ScanningTools import ScanningTools as st\n'), ((24310, 24354), 'ScanningTools.ScanningTools.get_icrs_coordinates', 'st.get_icrs_coordinates', (['JD1', 'loc', 'Alt3', 'Az3'], {}), '(JD1, loc, Alt3, Az3)\n', (24333, 24354), True, 'from ScanningTools import ScanningTools as st\n'), ((24398, 24442), 'ScanningTools.ScanningTools.get_icrs_coordinates', 'st.get_icrs_coordinates', (['JD2', 'loc', 'Alt4', 'Az4'], {}), '(JD2, loc, Alt4, Az4)\n', (24421, 24442), True, 'from ScanningTools import ScanningTools as st\n'), ((24489, 24536), 'ScanningTools.ScanningTools.get_icrs_coordinates', 'st.get_icrs_coordinates', (['JD1[0]', 'loc', 'Alt1', 'Az1'], {}), '(JD1[0], loc, Alt1, Az1)\n', (24512, 24536), True, 'from ScanningTools import ScanningTools as st\n'), ((26219, 26315), 'ScanningTools.ScanningTools.get_full_fp', 'st.get_full_fp', (['"""./ScanningTools/fp_data/fp_theta.txt"""', '"""./ScanningTools/fp_data/fp_phi.txt"""'], {}), "('./ScanningTools/fp_data/fp_theta.txt',\n './ScanningTools/fp_data/fp_phi.txt')\n", (26233, 26315), True, 'from ScanningTools import ScanningTools as st\n'), ((26505, 26598), 'ScanningTools.ScanningTools.get_timeJD', 'st.get_timeJD', (['LCT_start', 'LCD_start', 'sampling_rate', 'obs_time'], {'UTC': 'UTC', 'DST': 'DST', 'day': 'day1'}), '(LCT_start, LCD_start, sampling_rate, obs_time, UTC=UTC, DST=\n DST, day=day1)\n', (26518, 26598), True, 'from ScanningTools import ScanningTools as st\n'), ((26666, 26738), 'ScanningTools.ScanningTools.get_engine_rotations', 'st.get_engine_rotations', (['time1', 'rpm', 'zenith_distance', 'polarization_angle'], {}), '(time1, rpm, zenith_distance, polarization_angle)\n', (26689, 26738), True, 'from ScanningTools import ScanningTools as st\n'), ((26807, 26895), 'ScanningTools.ScanningTools.get_fp_rotations', 'st.get_fp_rotations', (['phi1', 'theta1', 'psi1', 'x_fp', 'n_horns', 'time1'], {'n': 'n1', 'cartesian': '(False)'}), '(phi1, theta1, psi1, x_fp, n_horns, time1, n=n1,\n cartesian=False)\n', (26826, 26895), True, 'from ScanningTools import ScanningTools as st\n'), ((26907, 26995), 'ScanningTools.ScanningTools.get_fp_rotations', 'st.get_fp_rotations', (['phi1', 'theta1', 'psi1', 'x_fp', 'n_horns', 'time1'], {'n': 'n2', 'cartesian': '(False)'}), '(phi1, theta1, psi1, x_fp, n_horns, time1, n=n2,\n cartesian=False)\n', (26926, 26995), True, 'from ScanningTools import ScanningTools as st\n'), ((27012, 27044), 'ScanningTools.ScanningTools.get_horizon_coordinates', 'st.get_horizon_coordinates', (['fpp1'], {}), '(fpp1)\n', (27038, 27044), True, 'from ScanningTools import ScanningTools as st\n'), ((27065, 27097), 'ScanningTools.ScanningTools.get_horizon_coordinates', 'st.get_horizon_coordinates', (['fpp3'], {}), '(fpp3)\n', (27091, 27097), True, 'from ScanningTools import ScanningTools as st\n'), ((27118, 27162), 'ScanningTools.ScanningTools.get_icrs_coordinates', 'st.get_icrs_coordinates', (['JD1', 'loc', 'Alt1', 'Az1'], {}), '(JD1, loc, Alt1, Az1)\n', (27141, 27162), True, 'from ScanningTools import ScanningTools as st\n'), ((27206, 27250), 'ScanningTools.ScanningTools.get_icrs_coordinates', 'st.get_icrs_coordinates', (['JD1', 'loc', 'Alt3', 'Az3'], {}), '(JD1, loc, Alt3, Az3)\n', (27229, 27250), True, 'from ScanningTools import ScanningTools as st\n'), ((27296, 27350), 'ScanningTools.ScanningTools.get_practical_icrs_coordinates', 'st.get_practical_icrs_coordinates', (['JD1', 'loc', 'Alt1', 'Az1'], {}), '(JD1, loc, Alt1, Az1)\n', (27329, 27350), True, 'from ScanningTools import ScanningTools as st\n'), ((27394, 27448), 'ScanningTools.ScanningTools.get_practical_icrs_coordinates', 'st.get_practical_icrs_coordinates', (['JD1', 'loc', 'Alt3', 'Az3'], {}), '(JD1, loc, Alt3, Az3)\n', (27427, 27448), True, 'from ScanningTools import ScanningTools as st\n'), ((27489, 27518), 'ScanningTools.ScanningTools.sex2dec', 'st.sex2dec', (['pointing_accuracy'], {}), '(pointing_accuracy)\n', (27499, 27518), True, 'from ScanningTools import ScanningTools as st\n'), ((28239, 28331), 'ScanningTools.ScanningTools.get_timeJD', 'st.get_timeJD', (['LCT_start', 'LCD_start', 'sampling_rate', 'obs_time'], {'UTC': 'UTC', 'DST': 'DST', 'day': 'day'}), '(LCT_start, LCD_start, sampling_rate, obs_time, UTC=UTC, DST=\n DST, day=day)\n', (28252, 28331), True, 'from ScanningTools import ScanningTools as st\n'), ((28399, 28494), 'ScanningTools.ScanningTools.get_timeJD', 'st.get_timeJD', (['LCT_start', 'LCD_start', 'sampling_rate1', 'obs_time1'], {'UTC': 'UTC', 'DST': 'DST', 'day': 'day1'}), '(LCT_start, LCD_start, sampling_rate1, obs_time1, UTC=UTC, DST\n =DST, day=day1)\n', (28412, 28494), True, 'from ScanningTools import ScanningTools as st\n'), ((28559, 28627), 'ScanningTools.ScanningTools.get_engine_rotations', 'st.get_engine_rotations', (['time', 'rpm', 'zenith_distance', 'boresight_angle'], {}), '(time, rpm, zenith_distance, boresight_angle)\n', (28582, 28627), True, 'from ScanningTools import ScanningTools as st\n'), ((28657, 28728), 'ScanningTools.ScanningTools.get_engine_rotations', 'st.get_engine_rotations', (['time1', 'rpm1', 'zenith_distance1', 'boresight_angle'], {}), '(time1, rpm1, zenith_distance1, boresight_angle)\n', (28680, 28728), True, 'from ScanningTools import ScanningTools as st\n'), ((28758, 28828), 'ScanningTools.ScanningTools.get_engine_rotations', 'st.get_engine_rotations', (['time1', 'rpm1', 'zenith_distance', 'boresight_angle'], {}), '(time1, rpm1, zenith_distance, boresight_angle)\n', (28781, 28828), True, 'from ScanningTools import ScanningTools as st\n'), ((28873, 28945), 'ScanningTools.ScanningTools.get_full_fp_polarization_angles', 'st.get_full_fp_polarization_angles', (['"""./ScanningTools/fp_data/fp_psi.txt"""'], {}), "('./ScanningTools/fp_data/fp_psi.txt')\n", (28907, 28945), True, 'from ScanningTools import ScanningTools as st\n'), ((29026, 29120), 'ScanningTools.ScanningTools.get_fp_rotations', 'st.get_fp_rotations', (['phi', 'theta', 'psi', 'x_fp_pol_versors', 'n_horns', 'time'], {'n': 'n', 'cartesian': '(True)'}), '(phi, theta, psi, x_fp_pol_versors, n_horns, time, n=n,\n cartesian=True)\n', (29045, 29120), True, 'from ScanningTools import ScanningTools as st\n'), ((29197, 29297), 'ScanningTools.ScanningTools.get_fp_rotations', 'st.get_fp_rotations', (['phi1', 'theta1', 'psi1', 'x_fp_pol_versors', 'n_horns', 'time1'], {'n': 'n1', 'cartesian': '(True)'}), '(phi1, theta1, psi1, x_fp_pol_versors, n_horns, time1, n\n =n1, cartesian=True)\n', (29216, 29297), True, 'from ScanningTools import ScanningTools as st\n'), ((29369, 29454), 'ScanningTools.ScanningTools.get_polarization_angles', 'st.get_polarization_angles', (['phi', 'theta', 'psi', 'x_fp_pol_versors', 'n_horns', 'time'], {'n': 'n'}), '(phi, theta, psi, x_fp_pol_versors, n_horns, time,\n n=n)\n', (29395, 29454), True, 'from ScanningTools import ScanningTools as st\n'), ((29525, 29615), 'ScanningTools.ScanningTools.get_polarization_angles', 'st.get_polarization_angles', (['phi1', 'theta1', 'psi1', 'x_fp_pol_versors', 'n_horns', 'time1'], {'n': 'n1'}), '(phi1, theta1, psi1, x_fp_pol_versors, n_horns,\n time1, n=n1)\n', (29551, 29615), True, 'from ScanningTools import ScanningTools as st\n'), ((29687, 29777), 'ScanningTools.ScanningTools.get_polarization_angles', 'st.get_polarization_angles', (['phi2', 'theta2', 'psi2', 'x_fp_pol_versors', 'n_horns', 'time1'], {'n': 'n1'}), '(phi2, theta2, psi2, x_fp_pol_versors, n_horns,\n time1, n=n1)\n', (29713, 29777), True, 'from ScanningTools import ScanningTools as st\n'), ((2514, 2533), 'numpy.radians', 'np.radians', (['ang0[0]'], {}), '(ang0[0])\n', (2524, 2533), True, 'import numpy as np\n'), ((3815, 3851), 'numpy.allclose', 'np.allclose', (['Jul_1_2013', '(2456474.442)'], {}), '(Jul_1_2013, 2456474.442)\n', (3826, 3851), True, 'import numpy as np\n'), ((3877, 3913), 'numpy.allclose', 'np.allclose', (['Jun_19_2009', '(2455002.25)'], {}), '(Jun_19_2009, 2455002.25)\n', (3888, 3913), True, 'import numpy as np\n'), ((3927, 3997), 'astropy.time.Time', 'Time', (["['2015-1-1 00:00:10', '2018-1-3 5:15:24.3', '1980-4-22 19:30:2']"], {}), "(['2015-1-1 00:00:10', '2018-1-3 5:15:24.3', '1980-4-22 19:30:2'])\n", (3931, 3997), False, 'from astropy.time import Time\n'), ((4304, 4321), 'numpy.allclose', 'np.allclose', (['t', 'T'], {}), '(t, T)\n', (4315, 4321), True, 'import numpy as np\n'), ((4956, 4984), 'ScanningTools.ScanningTools.get_nside_eff', 'st.get_nside_eff', (['fwhm_beam0'], {}), '(fwhm_beam0)\n', (4972, 4984), True, 'from ScanningTools import ScanningTools as st\n'), ((5017, 5045), 'ScanningTools.ScanningTools.get_nside_eff', 'st.get_nside_eff', (['fwhm_beam1'], {}), '(fwhm_beam1)\n', (5033, 5045), True, 'from ScanningTools import ScanningTools as st\n'), ((5077, 5105), 'ScanningTools.ScanningTools.get_nside_eff', 'st.get_nside_eff', (['fwhm_beam2'], {}), '(fwhm_beam2)\n', (5093, 5105), True, 'from ScanningTools import ScanningTools as st\n'), ((9017, 9110), 'ScanningTools.ScanningTools.get_timeJD', 'st.get_timeJD', (['LCT_start', 'LCD_start', 'sampling_rate', 'obs_time'], {'UTC': 'UTC', 'DST': 'DST', 'day': 'None'}), '(LCT_start, LCD_start, sampling_rate, obs_time, UTC=UTC, DST=\n DST, day=None)\n', (9030, 9110), True, 'from ScanningTools import ScanningTools as st\n'), ((17563, 17582), 'numpy.allclose', 'np.allclose', (['m3', 'M3'], {}), '(m3, M3)\n', (17574, 17582), True, 'import numpy as np\n'), ((18098, 18136), 'numpy.allclose', 'np.allclose', (['(theta[1:] - theta[:-1])', '(0)'], {}), '(theta[1:] - theta[:-1], 0)\n', (18109, 18136), True, 'import numpy as np\n'), ((18162, 18196), 'numpy.allclose', 'np.allclose', (['(psi[1:] - psi[:-1])', '(0)'], {}), '(psi[1:] - psi[:-1], 0)\n', (18173, 18196), True, 'import numpy as np\n'), ((24586, 24613), 'numpy.allclose', 'np.allclose', (['Dec1', 'Dec3[n1]'], {}), '(Dec1, Dec3[n1])\n', (24597, 24613), True, 'import numpy as np\n'), ((24639, 24664), 'numpy.allclose', 'np.allclose', (['Ra1', 'Ra3[n1]'], {}), '(Ra1, Ra3[n1])\n', (24650, 24664), True, 'import numpy as np\n'), ((24937, 24966), 'numpy.allclose', 'np.allclose', (['Dec1[0]', 'Dec5[0]'], {}), '(Dec1[0], Dec5[0])\n', (24948, 24966), True, 'import numpy as np\n'), ((24992, 25019), 'numpy.allclose', 'np.allclose', (['Ra1[0]', 'Ra5[0]'], {}), '(Ra1[0], Ra5[0])\n', (25003, 25019), True, 'import numpy as np\n'), ((25046, 25077), 'numpy.allclose', 'np.allclose', (['Dec1[1:]', 'Dec5[1:]'], {}), '(Dec1[1:], Dec5[1:])\n', (25057, 25077), True, 'import numpy as np\n'), ((25104, 25133), 'numpy.allclose', 'np.allclose', (['Ra1[1:]', 'Ra5[1:]'], {}), '(Ra1[1:], Ra5[1:])\n', (25115, 25133), True, 'import numpy as np\n'), ((25199, 25223), 'astropy.coordinates.SkyCoord.from_name', 'SkyCoord.from_name', (['name'], {}), '(name)\n', (25217, 25223), False, 'from astropy.coordinates import SkyCoord, AltAz\n'), ((25449, 25505), 'ScanningTools.ScanningTools.get_icrs_coordinates', 'st.get_icrs_coordinates', (['JD1', 'loc', 'object_Alt', 'object_Az'], {}), '(JD1, loc, object_Alt, object_Az)\n', (25472, 25505), True, 'from ScanningTools import ScanningTools as st\n'), ((30192, 30243), 'numpy.allclose', 'np.allclose', (['pol_ang_proj2[..., 0]', 'x_fp_pol_angles'], {}), '(pol_ang_proj2[..., 0], x_fp_pol_angles)\n', (30203, 30243), True, 'import numpy as np\n'), ((30281, 30329), 'numpy.allclose', 'np.allclose', (['pol_ang_proj', 'pol_ang_proj_expected'], {}), '(pol_ang_proj, pol_ang_proj_expected)\n', (30292, 30329), True, 'import numpy as np\n'), ((2367, 2425), 'numpy.array', 'np.array', (['[-10.76638889, 30.5875, -180.422222, 3.06805556]'], {}), '([-10.76638889, 30.5875, -180.422222, 3.06805556])\n', (2375, 2425), True, 'import numpy as np\n'), ((2673, 2740), 'numpy.array', 'np.array', (['[[1, 32, 47.706], [-0, 33, 36], [0, 20, 0], [-1, 0, 3.6]]'], {}), '([[1, 32, 47.706], [-0, 33, 36], [0, 20, 0], [-1, 0, 3.6]])\n', (2681, 2740), True, 'import numpy as np\n'), ((2834, 2859), 'numpy.array', 'np.array', (['[1, 32, 47.706]'], {}), '([1, 32, 47.706])\n', (2842, 2859), True, 'import numpy as np\n'), ((4023, 4090), 'ScanningTools.ScanningTools.LocalCivilTime2JulianDay', 'st.LocalCivilTime2JulianDay', (['(0, 0, 10)', '(1, 1, 2015)'], {'UTC': '(0)', 'DST': '(0)'}), '((0, 0, 10), (1, 1, 2015), UTC=0, DST=0)\n', (4050, 4090), True, 'from ScanningTools import ScanningTools as st\n'), ((4114, 4184), 'ScanningTools.ScanningTools.LocalCivilTime2JulianDay', 'st.LocalCivilTime2JulianDay', (['(5, 15, 24.3)', '(3, 1, 2018)'], {'UTC': '(0)', 'DST': '(0)'}), '((5, 15, 24.3), (3, 1, 2018), UTC=0, DST=0)\n', (4141, 4184), True, 'from ScanningTools import ScanningTools as st\n'), ((4208, 4277), 'ScanningTools.ScanningTools.LocalCivilTime2JulianDay', 'st.LocalCivilTime2JulianDay', (['(19, 30, 2)', '(22, 4, 1980)'], {'UTC': '(0)', 'DST': '(0)'}), '((19, 30, 2), (22, 4, 1980), UTC=0, DST=0)\n', (4235, 4277), True, 'from ScanningTools import ScanningTools as st\n'), ((4682, 4708), 'numpy.array', 'np.array', (['[11, 52, 46.843]'], {}), '([11, 52, 46.843])\n', (4690, 4708), True, 'import numpy as np\n'), ((5229, 5264), 'numpy.allclose', 'np.allclose', (['x_fp[i, 0]', 'x_fp[j, 0]'], {}), '(x_fp[i, 0], x_fp[j, 0])\n', (5240, 5264), True, 'import numpy as np\n'), ((5294, 5330), 'numpy.allclose', 'np.allclose', (['x_fp[i, 1]', '(-x_fp[j, 1])'], {}), '(x_fp[i, 1], -x_fp[j, 1])\n', (5305, 5330), True, 'import numpy as np\n'), ((5360, 5395), 'numpy.allclose', 'np.allclose', (['x_fp[i, 2]', 'x_fp[j, 2]'], {}), '(x_fp[i, 2], x_fp[j, 2])\n', (5371, 5395), True, 'import numpy as np\n'), ((5602, 5627), 'numpy.sum', 'np.sum', (['(x_fp ** 2)'], {'axis': '(1)'}), '(x_fp ** 2, axis=1)\n', (5608, 5627), True, 'import numpy as np\n'), ((6549, 6584), 'numpy.allclose', 'np.allclose', (['x_fp[i, 0]', 'x_fp[j, 0]'], {}), '(x_fp[i, 0], x_fp[j, 0])\n', (6560, 6584), True, 'import numpy as np\n'), ((6614, 6650), 'numpy.allclose', 'np.allclose', (['x_fp[i, 1]', '(-x_fp[j, 1])'], {}), '(x_fp[i, 1], -x_fp[j, 1])\n', (6625, 6650), True, 'import numpy as np\n'), ((6680, 6715), 'numpy.allclose', 'np.allclose', (['x_fp[i, 2]', 'x_fp[j, 2]'], {}), '(x_fp[i, 2], x_fp[j, 2])\n', (6691, 6715), True, 'import numpy as np\n'), ((6892, 6932), 'numpy.sum', 'np.sum', (['(polarization_versor ** 2)'], {'axis': '(1)'}), '(polarization_versor ** 2, axis=1)\n', (6898, 6932), True, 'import numpy as np\n'), ((8261, 8314), 'numpy.allclose', 'np.allclose', (['(time[1:] - time[0:-1])', '(1 / sampling_rate)'], {}), '(time[1:] - time[0:-1], 1 / sampling_rate)\n', (8272, 8314), True, 'import numpy as np\n'), ((8451, 8508), 'numpy.allclose', 'np.allclose', (['(t1 - t0).sec', '(1 / sampling_rate)'], {'rtol': '(0.001)'}), '((t1 - t0).sec, 1 / sampling_rate, rtol=0.001)\n', (8462, 8508), True, 'import numpy as np\n'), ((14255, 14328), 'numpy.sum', 'np.sum', (['(np.r_[True, phi[1:] > phi[:-1]] & np.r_[phi[:-1] > phi[1:], True])'], {}), '(np.r_[True, phi[1:] > phi[:-1]] & np.r_[phi[:-1] > phi[1:], True])\n', (14261, 14328), True, 'import numpy as np\n'), ((17423, 17458), 'numpy.repeat', 'np.repeat', (['M1[None, ...]', '(3)'], {'axis': '(0)'}), '(M1[None, ...], 3, axis=0)\n', (17432, 17458), True, 'import numpy as np\n'), ((17501, 17536), 'numpy.repeat', 'np.repeat', (['M2[None, ...]', '(3)'], {'axis': '(0)'}), '(M2[None, ...], 3, axis=0)\n', (17510, 17536), True, 'import numpy as np\n'), ((20444, 20472), 'numpy.dot', 'np.dot', (['fp_rot1[i]', 'x_fp[n1]'], {}), '(fp_rot1[i], x_fp[n1])\n', (20450, 20472), True, 'import numpy as np\n'), ((20897, 20924), 'numpy.dot', 'np.dot', (['fp_rot2[j]', 'x_fp[p]'], {}), '(fp_rot2[j], x_fp[p])\n', (20903, 20924), True, 'import numpy as np\n'), ((25534, 25573), 'numpy.allclose', 'np.allclose', (['object.dec.rad', 'object_Dec'], {}), '(object.dec.rad, object_Dec)\n', (25545, 25573), True, 'import numpy as np\n'), ((25603, 25640), 'numpy.allclose', 'np.allclose', (['object.ra.rad', 'object_Ra'], {}), '(object.ra.rad, object_Ra)\n', (25614, 25640), True, 'import numpy as np\n'), ((29886, 29938), 'numpy.linspace', 'np.linspace', (['(0)', 'np.pi', '(sampling_rate * obs_t / 2 + 1)'], {}), '(0, np.pi, sampling_rate * obs_t / 2 + 1)\n', (29897, 29938), True, 'import numpy as np\n'), ((30050, 30112), 'numpy.arctan2', 'np.arctan2', (['x_fp_pol_versors[..., 1]', 'x_fp_pol_versors[..., 0]'], {}), '(x_fp_pol_versors[..., 1], x_fp_pol_versors[..., 0])\n', (30060, 30112), True, 'import numpy as np\n'), ((30765, 30797), 'numpy.allclose', 'np.allclose', (['x_fp.shape', '(49, 3)'], {}), '(x_fp.shape, (49, 3))\n', (30776, 30797), True, 'import numpy as np\n'), ((30827, 30865), 'numpy.allclose', 'np.allclose', (['x_fp_pol_angles.shape', '(49)'], {}), '(x_fp_pol_angles.shape, 49)\n', (30838, 30865), True, 'import numpy as np\n'), ((30937, 30970), 'numpy.allclose', 'np.allclose', (['time.shape', 'JD.shape'], {}), '(time.shape, JD.shape)\n', (30948, 30970), True, 'import numpy as np\n'), ((31000, 31034), 'numpy.allclose', 'np.allclose', (['theta.shape', 'JD.shape'], {}), '(theta.shape, JD.shape)\n', (31011, 31034), True, 'import numpy as np\n'), ((31064, 31099), 'numpy.allclose', 'np.allclose', (['theta.shape', 'phi.shape'], {}), '(theta.shape, phi.shape)\n', (31075, 31099), True, 'import numpy as np\n'), ((31129, 31162), 'numpy.allclose', 'np.allclose', (['psi.shape', 'phi.shape'], {}), '(psi.shape, phi.shape)\n', (31140, 31162), True, 'import numpy as np\n'), ((31192, 31248), 'numpy.allclose', 'np.allclose', (['psi.shape', 'fp_pointings_spherical.shape[-2]'], {}), '(psi.shape, fp_pointings_spherical.shape[-2])\n', (31203, 31248), True, 'import numpy as np\n'), ((31278, 31335), 'numpy.allclose', 'np.allclose', (['Alt.shape', 'fp_pointings_spherical.shape[:-1]'], {}), '(Alt.shape, fp_pointings_spherical.shape[:-1])\n', (31289, 31335), True, 'import numpy as np\n'), ((31365, 31397), 'numpy.allclose', 'np.allclose', (['Alt.shape', 'Az.shape'], {}), '(Alt.shape, Az.shape)\n', (31376, 31397), True, 'import numpy as np\n'), ((31427, 31459), 'numpy.allclose', 'np.allclose', (['Dec.shape', 'Az.shape'], {}), '(Dec.shape, Az.shape)\n', (31438, 31459), True, 'import numpy as np\n'), ((31489, 31521), 'numpy.allclose', 'np.allclose', (['Dec.shape', 'Ra.shape'], {}), '(Dec.shape, Ra.shape)\n', (31500, 31521), True, 'import numpy as np\n'), ((31551, 31599), 'numpy.allclose', 'np.allclose', (['polarization_angles.shape', 'Ra.shape'], {}), '(polarization_angles.shape, Ra.shape)\n', (31562, 31599), True, 'import numpy as np\n'), ((31629, 31666), 'numpy.allclose', 'np.allclose', (['time.shape', 'Ra.shape[-1]'], {}), '(time.shape, Ra.shape[-1])\n', (31640, 31666), True, 'import numpy as np\n'), ((31696, 31753), 'numpy.allclose', 'np.allclose', (['fp_pointings_spherical.shape[-2]', 'time.shape'], {}), '(fp_pointings_spherical.shape[-2], time.shape)\n', (31707, 31753), True, 'import numpy as np\n'), ((32176, 32198), 'numpy.array', 'np.array', (['[28, 16, 24]'], {}), '([28, 16, 24])\n', (32184, 32198), True, 'import numpy as np\n'), ((32217, 32240), 'numpy.array', 'np.array', (['[-16, 38, 32]'], {}), '([-16, 38, 32])\n', (32225, 32240), True, 'import numpy as np\n'), ((32667, 32689), 'numpy.array', 'np.array', (['[28, 16, 24]'], {}), '([28, 16, 24])\n', (32675, 32689), True, 'import numpy as np\n'), ((32708, 32731), 'numpy.array', 'np.array', (['[-16, 38, 32]'], {}), '([-16, 38, 32])\n', (32716, 32731), True, 'import numpy as np\n'), ((3435, 3452), 'ScanningTools.ScanningTools.sex2dec', 'st.sex2dec', (['hours'], {}), '(hours)\n', (3445, 3452), True, 'from ScanningTools import ScanningTools as st\n'), ((8401, 8417), 'numpy.diff', 'np.diff', (['JD_step'], {}), '(JD_step)\n', (8408, 8417), True, 'import numpy as np\n'), ((18339, 18379), 'numpy.diff', 'np.diff', (['fp_pointings_c[..., 2]'], {'axis': '(-1)'}), '(fp_pointings_c[..., 2], axis=-1)\n', (18346, 18379), True, 'import numpy as np\n'), ((18575, 18611), 'numpy.sum', 'np.sum', (['(fp_pointings_c ** 2)'], {'axis': '(-1)'}), '(fp_pointings_c ** 2, axis=-1)\n', (18581, 18611), True, 'import numpy as np\n'), ((26032, 26048), 'numpy.abs', 'np.abs', (['(Ra - PRa)'], {}), '(Ra - PRa)\n', (26038, 26048), True, 'import numpy as np\n'), ((29952, 30005), 'numpy.linspace', 'np.linspace', (['(-np.pi)', '(0)', '(sampling_rate * obs_t / 2 + 1)'], {}), '(-np.pi, 0, sampling_rate * obs_t / 2 + 1)\n', (29963, 30005), True, 'import numpy as np\n'), ((3065, 3083), 'ScanningTools.ScanningTools.sex2dec', 'st.sex2dec', (['angles'], {}), '(angles)\n', (3075, 3083), True, 'from ScanningTools import ScanningTools as st\n'), ((3134, 3152), 'ScanningTools.ScanningTools.sex2dec', 'st.sex2dec', (['angles'], {}), '(angles)\n', (3144, 3152), True, 'from ScanningTools import ScanningTools as st\n'), ((3364, 3384), 'ScanningTools.ScanningTools.sex2dec', 'st.sex2dec', (['hours[1]'], {}), '(hours[1])\n', (3374, 3384), True, 'from ScanningTools import ScanningTools as st\n'), ((25285, 25306), 'astropy.time.Time', 'Time', (['JD'], {'format': '"""jd"""'}), "(JD, format='jd')\n", (25289, 25306), False, 'from astropy.time import Time\n'), ((18413, 18445), 'numpy.degrees', 'np.degrees', (['fp_pointings[..., 0]'], {}), '(fp_pointings[..., 0])\n', (18423, 18445), True, 'import numpy as np\n'), ((18488, 18520), 'numpy.degrees', 'np.degrees', (['fp_pointings[..., 1]'], {}), '(fp_pointings[..., 1])\n', (18498, 18520), True, 'import numpy as np\n'), ((25971, 25989), 'numpy.abs', 'np.abs', (['(Dec - PDec)'], {}), '(Dec - PDec)\n', (25977, 25989), True, 'import numpy as np\n'), ((27792, 27821), 'numpy.max', 'np.max', (['pol_ang_proj'], {'axis': '(-1)'}), '(pol_ang_proj, axis=-1)\n', (27798, 27821), True, 'import numpy as np\n'), ((27868, 27897), 'numpy.min', 'np.min', (['pol_ang_proj'], {'axis': '(-1)'}), '(pol_ang_proj, axis=-1)\n', (27874, 27897), True, 'import numpy as np\n')]
r""" Mutual Coherence and Babel Function are the properties of a matrix, used to estimate the Spark of a matrix, which in turn is used to determine the optimality of the solution to :math:`\text{P}_0` problem. Babel Function gives a tighter bound on the Spark of a matrix. Spark of a matrix :math:`\boldsymbol{A}` is the size of the smallest subset of linearly dependent columns of :math:`\boldsymbol{A}`. .. currentmodule:: sparse.coherence .. autosummary:: :toctree: toctree/coherence/ mutual_coherence babel """ import math from collections import namedtuple import numpy as np CoherenceSpark = namedtuple("CoherenceSpark", ("coherence", "spark")) def mutual_coherence(mat): r""" For an arbitrary input matrix :math:`\boldsymbol{A}` of size `N` x `M`, the mutual coherence is the maximal absolute inner-product between its normalized columns :math:`\{ a_i \mid i=1,2,...,M \}`: .. math:: \mu (\boldsymbol{A}) = \max_{1 \le i < j \le M} \frac{\mid a_i^\top a_j \mid}{\|a_i\|_2 \|a_j\|_2} :label: coh The mutual coherence :math:`\mu` lies in range `[0, 1]`. At the same time, the Spark lower bound of a matrix is estimated as .. math:: \text{Spark}(\boldsymbol{A}) \ge 1 + \frac{1}{\mu(\boldsymbol{A})} :label: spark Parameters ---------- mat : (N, M) np.ndarray The input matrix :math:`\boldsymbol{A}`. Returns ------- CoherenceSpark A namedtuple with two attributes: `.coherence` - mutual coherence of `mat`; `.spark` - Spark lower bound :eq:`spark` of `mat`. """ mat = mat / np.linalg.norm(mat, axis=0) gram = np.abs(mat.T.dot(mat)) np.fill_diagonal(gram, 0) mu = gram.max() spark = math.ceil(1 + 1 / mu) return CoherenceSpark(mu, spark) def babel(mat): r""" For an arbitrary input matrix :math:`\boldsymbol{A}` of size `N` x `M` and normalized columns :math:`\{ a_i \mid i=1,2,...,M \}`, the Babel-Function is defined by .. math:: \mu_1(k) = \max_{\mid \Lambda \mid = k} \left[ \max_{j \notin \Lambda} \sum_{i \in \Lambda}{\mid a_i^\top a_j \mid} \right] :label: babel If :math:`\mu_1(k-1) < 1`, this implies that any set of :math:`k` columns from :math:`\boldsymbol{A}` are linearly dependent. In this case, the Spark necessarily satisfies .. math:: \text{Spark}(\boldsymbol{A}) > k = 1 + \arg \min_k \left({\mu_1(k) > 1}\right) :label: spark_babel Parameters ---------- mat : (N, M) np.ndarray The input matrix :math:`\boldsymbol{A}`. Returns ------- CoherenceSpark A `namedtuple` with two attributes: `.coherence` - a list of `M-1` elements of :math:`\mu_1(k), \ k=1,2,...,M-1`; `.spark` - Spark lower bound :eq:`spark_babel` of `mat`. Notes ----- :eq:`spark_babel` is a tighter bound on Spark than :eq:`spark`. """ mat = mat / np.linalg.norm(mat, axis=0) gram = np.abs(mat.T.dot(mat)) # Gram matrix' of L2 normalized matrix entries are in range [0, 1] # with 1s on the diagonal gram.sort(axis=1) # sort rows gram = gram[:, ::-1] # in descending order gram = gram[:, 1:] # skip the first column of 1s (diagonal elements) gram = gram.cumsum(axis=1) # cumsum rows mu1 = gram.max(axis=0) spark = np.nonzero(mu1 > 1)[0][0] + 2 return CoherenceSpark(mu1, spark) def _quiz4(): mat = np.reshape([16, -2, 15, 13, 5, 6, 8, 8, 9, 4, 11, 12, 4, 12, 10, 1], (4, 4)) print(mutual_coherence(mat)) print(babel(mat)) if __name__ == '__main__': _quiz4()
[ "collections.namedtuple", "numpy.reshape", "math.ceil", "numpy.fill_diagonal", "numpy.nonzero", "numpy.linalg.norm" ]
[((615, 667), 'collections.namedtuple', 'namedtuple', (['"""CoherenceSpark"""', "('coherence', 'spark')"], {}), "('CoherenceSpark', ('coherence', 'spark'))\n", (625, 667), False, 'from collections import namedtuple\n'), ((1712, 1737), 'numpy.fill_diagonal', 'np.fill_diagonal', (['gram', '(0)'], {}), '(gram, 0)\n', (1728, 1737), True, 'import numpy as np\n'), ((1770, 1791), 'math.ceil', 'math.ceil', (['(1 + 1 / mu)'], {}), '(1 + 1 / mu)\n', (1779, 1791), False, 'import math\n'), ((3506, 3582), 'numpy.reshape', 'np.reshape', (['[16, -2, 15, 13, 5, 6, 8, 8, 9, 4, 11, 12, 4, 12, 10, 1]', '(4, 4)'], {}), '([16, -2, 15, 13, 5, 6, 8, 8, 9, 4, 11, 12, 4, 12, 10, 1], (4, 4))\n', (3516, 3582), True, 'import numpy as np\n'), ((1646, 1673), 'numpy.linalg.norm', 'np.linalg.norm', (['mat'], {'axis': '(0)'}), '(mat, axis=0)\n', (1660, 1673), True, 'import numpy as np\n'), ((3007, 3034), 'numpy.linalg.norm', 'np.linalg.norm', (['mat'], {'axis': '(0)'}), '(mat, axis=0)\n', (3021, 3034), True, 'import numpy as np\n'), ((3412, 3431), 'numpy.nonzero', 'np.nonzero', (['(mu1 > 1)'], {}), '(mu1 > 1)\n', (3422, 3431), True, 'import numpy as np\n')]
""" Created on Sun Feb 12 11:51:29 2017 @author: <NAME> Class: Computer Architecture Language Python 2.7 Input an array of hex-instructions, and return a of decoded MIPS instructions (e.g. 7a078 ADD $2, $9, $8). Instruction types de-constructed in this assignment are ADD, AND, OR, SLT, SUB, BEQ, BNE, LW, and SW. """ import numpy as np hex_instructions = [0x022da822, 0x8ef30018, 0x12a70004, 0x02689820, 0xad930018, 0x02697824, 0xad8ffff4, 0x018c6020, 0x02a4a825, 0x158ffff6, 0x8ef9fff0] # Vectorize hex_instructions as a numpy array so it can be printed in hex format A = np.array(hex_instructions) vhex = np.vectorize(hex) def deconstruct(x): # Start the address at 4 less than the actual target address, since the PC will be incremented at the begining of each loop iteration address = int("7a05c", 16) print print print "The entered hex instructions are :" + str(vhex(A)) print print "---------------------------------------------------------------------" print "The deconstructed MIPS instructions are:" print "---------------------------------------------------------------------" print instruction = 0 for x in hex_instructions: opcode = 0 address += 4 # Increment the PC address for each entry (Branchse are assumed to fail) """The for loop will pass each 32-bit instruction through a series of bitwise & maskes that will isolate a given range. A shift will follow each range-set""" bits1_32 = bin((x & 0b1111111111111111111111111111111)) bits1_6 = bin((x & 0b11111100000000000000000000000000) >> 26) bits7_11 = bin((x & 0b00000011111000000000000000000000) >> 21) bits12_16 = bin((x & 0b00000000000111110000000000000000) >> 16) bits17_21 = bin((x & 0b00000000000000001111100000000000) >> 11) bits22_26 = bin((x & 0b00000000000000000000011111000000) >> 6) bits27_32 = bin((x & 0b00000000000000000000000000111111) >> 0) bits17_32 = bin((x & 0b00000000000000001111111111111111) >> 0) bit17 = bin((x & 0b00000000000000001000000000000000) >> 15) """A block of if statements conditionally identify each instruction type, by evaluating the contents of specific bitfields. The first 5 instruction types (ADD, AND, OR, SLT AND SUB) are evaluated by """ if bits1_6 == "0b0" and bits27_32 == "0b100000": opcode = "ADD" elif bits1_6 == "0b0" and bits27_32 == "0b100100": opcode = "AND" elif bits1_6 == "0b0" and bits27_32 == "0b100101": opcode = "OR" elif bits1_6 == "0b0" and bits27_32 == "0b101010": opcode = "SLT" elif bits1_6 == "0b0" and bits27_32 == "0b100010": opcode = "SUB" elif bits1_6 == "0b100": opcode = "BEQ" elif bits1_6 == "0b101": opcode = "BNE" elif bits1_6 == "0b100011": opcode = "LW" elif bits1_6 == "0b101011": opcode = "SW" else: print "No opcode found" """Once an instruction type has been identified, the bitfields will be used construct an assembly instruction. Each instruction's rs, rt, rd and offset is isolated according to its instruction type, and using these binary values, an instruction type will be formed using concatenated strings""" if opcode == "ADD": rs = bits7_11 rt = bits12_16 rd = bits17_21 x = bits22_26 offset = 0 func = bits27_32 instruction = format(address, '02x') + ": " + str(opcode) + " $" + str(int(rd, 2)) + ", " + "$" + str( int(rs, 2)) + ", " + "$" + str(int(rt, 2)) elif opcode == "AND": rs = bits7_11 rt = bits12_16 rd = bits17_21 x = bits22_26 offset = 0 func = bits27_32 instruction = format(address, '02x') + ": " + str(opcode) + " $" + str(int(rd, 2)) + ", " + "$" + str( int(rs, 2)) + ", " + "$" + str(int(rt, 2)) elif opcode == "OR": rs = bits7_11 rt = bits12_16 rd = bits17_21 x = bits22_26 offset = 0 func = bits27_32 instruction = format(address, '02x') + ": " + str(opcode) + " $" + str(int(rd, 2)) + ", " + "$" + str( int(rs, 2)) + ", " + "$" + str(int(rt, 2)) elif opcode == "SLT": rs = bits7_11 rt = bits12_16 rd = bits17_21 x = bits22_26 offset = 0 func = bits27_32 instruction = format(address, '02x') + ": " + str(opcode) + " $" + str(int(rd, 2)) + ", " + "$" + str( int(rs, 2)) + ", " + "$" + str(int(rt, 2)) elif opcode == "SUB": rs = bits7_11 rt = bits12_16 rd = bits17_21 x = bits22_26 offset = 0 func = bits27_32 instruction = format(address, '02x') + ": " + str(opcode) + " $" + str(int(rd, 2)) + ", " + "$" + str( int(rs, 2)) + ", " + "$" + str(int(rt, 2)) elif opcode == "BEQ": rs = bits7_11 rt = bits12_16 offset = int(bits17_32, 2) if bit17 == '0b1': mask = 2 ** ((len((offset)[2:])) - 1) offset = -(int(offset, 2) & mask) + (int(offset, 2) & ~mask) new_address = (address) + (offset * 4) instruction = format(address, '02x') + ": " + str(opcode) + " $" + str(int(rs, 2)) + ", " + "$" + str( int(rt, 2)) + ", " + format(new_address, '02x') else: new_address = (address) + (offset * 4) instruction = format(address, '02x') + ": " + str(opcode) + " $" + str(int(rs, 2)) + ", " + "$" + str( int(rt, 2)) + ", " + format(new_address, '02x') elif opcode == "BNE": rs = bits7_11 rt = bits12_16 offset = bits17_32 if bit17 == '0b1': mask = 2 ** ((len((offset)[2:])) - 1) offset = -(int(offset, 2) & mask) + (int(offset, 2) & ~mask) new_address = (address) + (offset * 4) instruction = format(address, '02x') + ": " + str(opcode) + " $" + str(int(rs, 2)) + ", " + "$" + str( int(rt, 2)) + ", " + format(new_address, '02x') else: instruction = format(address, '02x') + ": " + str(opcode) + " $" + str(int(rs, 2)) + ", " + "$" + str( int(rt, 2)) + ", " + format(new_address, '02x') new_address = (address) + (offset * 4) elif opcode == "LW": rs = bits7_11 rt = bits12_16 offset = bits17_32 if bit17 == '0b1': mask = 2 ** ((len((offset)[2:])) - 1) offset = -(int(offset, 2) & mask) + (int(offset, 2) & ~mask) instruction = format(address, '02x') + ": " + str(opcode) + " $" + str(int(rt, 2)) + ", " + str( offset) + ", " + "(" + str(int(rs, 2)) + ")" else: instruction = format(address, '02x') + ": " + str(opcode) + " $" + str(int(rt, 2)) + ", " + str( int(offset, 2)) + ", " + "(" + str(int(rs, 2)) + ")" elif opcode == "SW": rs = bits7_11 rt = bits12_16 offset = bits17_32 if bit17 == '0b1': mask = 2 ** ((len((offset)[2:])) - 1) offset = -(int(offset, 2) & mask) + (int(offset, 2) & ~mask) instruction = format(address, '02x') + ": " + str(opcode) + " $" + str(int(rt, 2)) + ", " + str( offset) + ", " + "(" + str(int(rs, 2)) + ")" else: instruction = format(address, '02x') + ": " + str(opcode) + " $" + str(int(rt, 2)) + ", " + str( int(offset, 2)) + ", " + "(" + str(int(rs, 2)) + ")" """A print instruction set within the for loop will print out the assembly instruction produced by each iteration through the hex_instructions list. As currently set, the list will only print out the compiled instruction for each hex input, however un-quoting the """ print instruction # Unquote the print block belowhere to enable troubleshooting (showing bit fields after each instruction) """ print "--------------------------------------------------------------" print "Address :" + format(address, '02x') print "bits 1:32 = " + bits1_32 print "bits 1:6 = " + bits1_6 print "bits 7:11 = " + bits7_11 print "bits 12:16 = " + bits12_16 print "bits 17:21 = " + bits17_21 print "bits 22:26 = " + bits22_26 print "bits 27:32 = " + bits27_32 print "bits 17:32 = " + bits17_32 print "bit 17 =" + bit17 print "offset = " + str(offset) print type(offset) print "--------------------------------------------------------------" """ # Calling the function on the hex_instructions list will execute the defined program. deconstruct(hex_instructions)
[ "numpy.array", "numpy.vectorize" ]
[((642, 668), 'numpy.array', 'np.array', (['hex_instructions'], {}), '(hex_instructions)\n', (650, 668), True, 'import numpy as np\n'), ((677, 694), 'numpy.vectorize', 'np.vectorize', (['hex'], {}), '(hex)\n', (689, 694), True, 'import numpy as np\n')]
import sklearn.datasets import sklearn.model_selection import sklearn.linear_model import numpy import compare_auc_delong_xu import unittest import scipy.stats class TestIris(unittest.TestCase): @classmethod def setUpClass(cls): data = sklearn.datasets.load_iris() x_train, x_test, y_train, cls.y_test = sklearn.model_selection.train_test_split( data.data, (data.target == 1).astype(numpy.int), test_size=0.8, random_state=42) cls.predictions = sklearn.linear_model.LogisticRegression(solver="lbfgs").fit( x_train, y_train).predict_proba(x_test)[:, 1] cls.sklearn_auc = sklearn.metrics.roc_auc_score(cls.y_test, cls.predictions) def test_variance_const(self): auc, variance = compare_auc_delong_xu.delong_roc_variance(self.y_test, self.predictions) numpy.testing.assert_allclose(self.sklearn_auc, auc) numpy.testing.assert_allclose(0.0015359814789736538, variance) class TestGauss(unittest.TestCase): x_distr = scipy.stats.norm(0.5, 1) y_distr = scipy.stats.norm(-0.5, 1) def test_variance(self): sample_size_x = 7 sample_size_y = 14 n_trials = 50000 aucs = numpy.empty(n_trials) variances = numpy.empty(n_trials) numpy.random.seed(1234235) labels = numpy.concatenate([numpy.ones(sample_size_x), numpy.zeros(sample_size_y)]) for trial in range(n_trials): scores = numpy.concatenate([ self.x_distr.rvs(sample_size_x), self.y_distr.rvs(sample_size_y)]) aucs[trial] = sklearn.metrics.roc_auc_score(labels, scores) auc_delong, variances[trial] = compare_auc_delong_xu.delong_roc_variance( labels, scores) numpy.testing.assert_allclose(aucs[trial], auc_delong) numpy.testing.assert_allclose(variances.mean(), aucs.var(), rtol=0.1)
[ "numpy.ones", "numpy.testing.assert_allclose", "compare_auc_delong_xu.delong_roc_variance", "numpy.zeros", "numpy.empty", "numpy.random.seed" ]
[((758, 830), 'compare_auc_delong_xu.delong_roc_variance', 'compare_auc_delong_xu.delong_roc_variance', (['self.y_test', 'self.predictions'], {}), '(self.y_test, self.predictions)\n', (799, 830), False, 'import compare_auc_delong_xu\n'), ((839, 891), 'numpy.testing.assert_allclose', 'numpy.testing.assert_allclose', (['self.sklearn_auc', 'auc'], {}), '(self.sklearn_auc, auc)\n', (868, 891), False, 'import numpy\n'), ((900, 962), 'numpy.testing.assert_allclose', 'numpy.testing.assert_allclose', (['(0.0015359814789736538)', 'variance'], {}), '(0.0015359814789736538, variance)\n', (929, 962), False, 'import numpy\n'), ((1203, 1224), 'numpy.empty', 'numpy.empty', (['n_trials'], {}), '(n_trials)\n', (1214, 1224), False, 'import numpy\n'), ((1245, 1266), 'numpy.empty', 'numpy.empty', (['n_trials'], {}), '(n_trials)\n', (1256, 1266), False, 'import numpy\n'), ((1275, 1301), 'numpy.random.seed', 'numpy.random.seed', (['(1234235)'], {}), '(1234235)\n', (1292, 1301), False, 'import numpy\n'), ((1687, 1744), 'compare_auc_delong_xu.delong_roc_variance', 'compare_auc_delong_xu.delong_roc_variance', (['labels', 'scores'], {}), '(labels, scores)\n', (1728, 1744), False, 'import compare_auc_delong_xu\n'), ((1774, 1828), 'numpy.testing.assert_allclose', 'numpy.testing.assert_allclose', (['aucs[trial]', 'auc_delong'], {}), '(aucs[trial], auc_delong)\n', (1803, 1828), False, 'import numpy\n'), ((1338, 1363), 'numpy.ones', 'numpy.ones', (['sample_size_x'], {}), '(sample_size_x)\n', (1348, 1363), False, 'import numpy\n'), ((1365, 1391), 'numpy.zeros', 'numpy.zeros', (['sample_size_y'], {}), '(sample_size_y)\n', (1376, 1391), False, 'import numpy\n')]
# -*- coding: utf-8 -*- # emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: """ """ import pytest import os import tarfile from pathlib import Path import nibabel as nib import numpy as np from ....tests.resource import setup as setuptestresources from ....resource import get as getresource from ..flame1 import flame1 from ...fixes import FLAMEO as FSLFLAMEO from nipype.interfaces import fsl, ants from nipype.pipeline import engine as pe from templateflow.api import get as get_template from ...imagemaths.merge import _merge, _merge_mask from ...stats.model import _group_model from ....utils import first @pytest.fixture(scope="module") def wakemandg_hensonrn(tmp_path_factory): tmp_path = tmp_path_factory.mktemp(basename="wakemandg_hensonrn") os.chdir(str(tmp_path)) setuptestresources() inputtarpath = getresource("wakemandg_hensonrn_statmaps.tar.gz") with tarfile.open(inputtarpath) as fp: fp.extractall(tmp_path) subjects = [f"{i+1:02d}" for i in range(16)] suffixes = ["stat-effect_statmap", "stat-variance_statmap", "mask"] data = { suffix: [ tmp_path / f"sub-{subject}_task-faces_feature-taskBased_taskcontrast-facesGtScrambled_model-aggregateTaskBasedAcrossRuns_contrast-intercept_{suffix}.nii.gz" for subject in subjects ] for suffix in suffixes } data.update({ "subjects": subjects, "spreadsheet": tmp_path / "subjects_age_sex.csv", }) return data @pytest.fixture(scope="module") def mni_downsampled(tmp_path_factory): tmp_path = tmp_path_factory.mktemp(basename="mni_downsampled") os.chdir(str(tmp_path)) tpl = get_template("MNI152NLin2009cAsym", resolution=2, desc="brain", suffix="mask") result = ants.ResampleImageBySpacing( dimension=3, input_image=tpl, out_spacing=(6, 6, 6) ).run() return result.outputs.output_image @pytest.fixture(scope="module") def wakemandg_hensonrn_downsampled(tmp_path_factory, wakemandg_hensonrn, mni_downsampled): tmp_path = tmp_path_factory.mktemp(basename="wakemandg_hensonrn_downsampled") os.chdir(str(tmp_path)) data = dict() def _downsample(in_file): result = ants.ApplyTransforms( dimension=3, input_image_type=0, input_image=in_file, reference_image=mni_downsampled, interpolation="NearestNeighbor", transforms=["identity"] ).run() return result.outputs.output_image for k, v in wakemandg_hensonrn.items(): if isinstance(v, list): data[k] = [_downsample(f) if Path(f).exists() else f for f in v] else: data[k] = v return data @pytest.mark.timeout(600) @pytest.mark.parametrize("use_var_cope", [False, True]) def test_FLAME1(tmp_path, wakemandg_hensonrn_downsampled, use_var_cope): os.chdir(str(tmp_path)) # prepare data = wakemandg_hensonrn_downsampled cope_files = data["stat-effect_statmap"] var_cope_files = data["stat-variance_statmap"] mask_files = data["mask"] subjects = data["subjects"] spreadsheet_file = data["spreadsheet"] regressors, contrasts, _ = _group_model( subjects=subjects, spreadsheet=spreadsheet_file, variabledicts=[ {"name": "Sub", "type": "id"}, {"name": "Age", "type": "continuous"}, {"name": "ReactionTime", "type": "categorical"}, ], contrastdicts=[ {"variable": ["Age"], "type": "infer"}, {"variable": ["ReactionTime"], "type": "infer"} ] ) # run FSL merge_cope_file = _merge(cope_files, "t") merge_var_cope_file = _merge(var_cope_files, "t") merge_mask_file = _merge_mask(mask_files) workflow = pe.Workflow("comparison", base_dir=str(tmp_path)) multipleregressdesign = pe.Node( fsl.MultipleRegressDesign( regressors=regressors, contrasts=contrasts, ), name="multipleregressdesign", ) flameo = pe.Node( FSLFLAMEO( run_mode="flame1", cope_file=merge_cope_file, mask_file=merge_mask_file, ), name="flameo" ) if use_var_cope: flameo.inputs.var_cope_file = merge_var_cope_file workflow.connect(multipleregressdesign, "design_mat", flameo, "design_file") workflow.connect(multipleregressdesign, "design_con", flameo, "t_con_file") workflow.connect(multipleregressdesign, "design_fts", flameo, "f_con_file") workflow.connect(multipleregressdesign, "design_grp", flameo, "cov_split_file") execgraph = workflow.run() # retrieve flameo again for node in execgraph.nodes(): if node.name == "flameo": flameo = node result = flameo.result r0 = dict( cope=result.outputs.copes[0], tstat=result.outputs.tstats[0], fstat=first(result.outputs.fstats), tdof=result.outputs.tdof[0], ) # run halfpipe if use_var_cope: var_cope_files_or_none = var_cope_files else: var_cope_files_or_none = None result = flame1( cope_files=cope_files, var_cope_files=var_cope_files_or_none, mask_files=mask_files, regressors=regressors, contrasts=contrasts, num_threads=1, ) r1 = dict( cope=result["copes"][0], tstat=result["tstats"][0], fstat=result["fstats"][2], tdof=result["tdof"][0], ) # compare mask = nib.load(merge_mask_file).get_fdata() > 0 for k in set(r0.keys()) & set(r1.keys()): a0 = nib.load(r0[k]).get_fdata()[mask] a1 = nib.load(r1[k]).get_fdata()[mask] # weak criteria, determined post-hoc # we don't expect exactly identical results, because FSL and numpy # use different numerics code and we use double precision while FSL # uses single precision floating point # so these assertions are here to verify that the small differences # will not get any larger with future changes or optimizations # no more than one percent of voxels can be more than one percent different assert np.isclose(a0, a1, rtol=1e-2).mean() > 0.99, f"Too many diverging voxels for {k}" # mean error average needs to be below 0.05 assert np.abs(a0 - a1).mean() < 0.05, f"Too high mean error average for {k}"
[ "nipype.interfaces.ants.ApplyTransforms", "numpy.abs", "tarfile.open", "numpy.isclose", "nibabel.load", "pathlib.Path", "templateflow.api.get", "nipype.interfaces.ants.ResampleImageBySpacing", "pytest.mark.parametrize", "nipype.interfaces.fsl.MultipleRegressDesign", "pytest.fixture", "pytest.mark.timeout" ]
[((683, 713), 'pytest.fixture', 'pytest.fixture', ([], {'scope': '"""module"""'}), "(scope='module')\n", (697, 713), False, 'import pytest\n'), ((1566, 1596), 'pytest.fixture', 'pytest.fixture', ([], {'scope': '"""module"""'}), "(scope='module')\n", (1580, 1596), False, 'import pytest\n'), ((1996, 2026), 'pytest.fixture', 'pytest.fixture', ([], {'scope': '"""module"""'}), "(scope='module')\n", (2010, 2026), False, 'import pytest\n'), ((2806, 2830), 'pytest.mark.timeout', 'pytest.mark.timeout', (['(600)'], {}), '(600)\n', (2825, 2830), False, 'import pytest\n'), ((2832, 2886), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""use_var_cope"""', '[False, True]'], {}), "('use_var_cope', [False, True])\n", (2855, 2886), False, 'import pytest\n'), ((1743, 1821), 'templateflow.api.get', 'get_template', (['"""MNI152NLin2009cAsym"""'], {'resolution': '(2)', 'desc': '"""brain"""', 'suffix': '"""mask"""'}), "('MNI152NLin2009cAsym', resolution=2, desc='brain', suffix='mask')\n", (1755, 1821), True, 'from templateflow.api import get as get_template\n'), ((960, 986), 'tarfile.open', 'tarfile.open', (['inputtarpath'], {}), '(inputtarpath)\n', (972, 986), False, 'import tarfile\n'), ((3974, 4043), 'nipype.interfaces.fsl.MultipleRegressDesign', 'fsl.MultipleRegressDesign', ([], {'regressors': 'regressors', 'contrasts': 'contrasts'}), '(regressors=regressors, contrasts=contrasts)\n', (3999, 4043), False, 'from nipype.interfaces import fsl, ants\n'), ((1836, 1921), 'nipype.interfaces.ants.ResampleImageBySpacing', 'ants.ResampleImageBySpacing', ([], {'dimension': '(3)', 'input_image': 'tpl', 'out_spacing': '(6, 6, 6)'}), '(dimension=3, input_image=tpl, out_spacing=(6, 6, 6)\n )\n', (1863, 1921), False, 'from nipype.interfaces import fsl, ants\n'), ((2296, 2469), 'nipype.interfaces.ants.ApplyTransforms', 'ants.ApplyTransforms', ([], {'dimension': '(3)', 'input_image_type': '(0)', 'input_image': 'in_file', 'reference_image': 'mni_downsampled', 'interpolation': '"""NearestNeighbor"""', 'transforms': "['identity']"}), "(dimension=3, input_image_type=0, input_image=in_file,\n reference_image=mni_downsampled, interpolation='NearestNeighbor',\n transforms=['identity'])\n", (2316, 2469), False, 'from nipype.interfaces import fsl, ants\n'), ((5625, 5650), 'nibabel.load', 'nib.load', (['merge_mask_file'], {}), '(merge_mask_file)\n', (5633, 5650), True, 'import nibabel as nib\n'), ((5727, 5742), 'nibabel.load', 'nib.load', (['r0[k]'], {}), '(r0[k])\n', (5735, 5742), True, 'import nibabel as nib\n'), ((5774, 5789), 'nibabel.load', 'nib.load', (['r1[k]'], {}), '(r1[k])\n', (5782, 5789), True, 'import nibabel as nib\n'), ((6299, 6328), 'numpy.isclose', 'np.isclose', (['a0', 'a1'], {'rtol': '(0.01)'}), '(a0, a1, rtol=0.01)\n', (6309, 6328), True, 'import numpy as np\n'), ((6449, 6464), 'numpy.abs', 'np.abs', (['(a0 - a1)'], {}), '(a0 - a1)\n', (6455, 6464), True, 'import numpy as np\n'), ((2712, 2719), 'pathlib.Path', 'Path', (['f'], {}), '(f)\n', (2716, 2719), False, 'from pathlib import Path\n')]
from __future__ import annotations import mmap import threading from enum import Enum from itertools import product from pathlib import Path from typing import ( TYPE_CHECKING, Optional, Sequence, Set, Sized, SupportsInt, Union, cast, overload, ) import numpy as np from ._util import AXIS, VoxelSize, get_reader, is_supported_file from .structures import Attributes, ExpLoop, FrameMetadata, Metadata, XYPosLoop try: from functools import cached_property except ImportError: cached_property = property # type: ignore if TYPE_CHECKING: from typing import Any, Dict, List, Tuple import dask.array as da import xarray as xr from typing_extensions import Literal Index = Union[int, slice] class ReadMode(str, Enum): MMAP = "mmap" SDK = "sdk" class ND2File: _memmap: mmap.mmap _is_legacy: bool def __init__( self, path: Union[Path, str], validate_frames: bool = False, search_window: int = 100, ) -> None: """Open an nd2 file. Parameters ---------- path : Union[Path, str] Filename of an nd2 file. validate_frames : bool Whether to verify (and attempt to fix) frames whose positions have been shifted relative to the predicted offset (i.e. in a corrupted file). This comes at a slight performance penalty at file open, but may "rescue" some corrupt files. by default False. search_window : int When validate_frames is true, this is the search window (in KB) that will be used to try to find the actual chunk position. by default 100 KB """ self._path = str(path) self._rdr = get_reader( self._path, validate_frames=validate_frames, search_window=search_window ) self._closed = False self._is_legacy = "Legacy" in type(self._rdr).__name__ self._lock = threading.RLock() @staticmethod def is_supported_file(path) -> bool: return is_supported_file(path) @property def path(self): """Path of the image.""" return self._path @property def is_legacy(self) -> bool: """Whether file is a legacy nd2 (JPEG2000) file.""" return self._is_legacy def open(self) -> None: """open file for reading.""" if self.closed: self._rdr.open() self._closed = False def close(self) -> None: """Close file (may cause segfault if read when closed in some cases).""" if not self.closed: self._rdr.close() self._closed = True @property def closed(self) -> bool: """Whether the file is closed.""" return self._closed def __enter__(self) -> ND2File: self.open() return self def __exit__(self, *_) -> None: self.close() def __getstate__(self): state = self.__dict__.copy() del state["_rdr"] del state["_lock"] return state def __setstate__(self, d): self.__dict__ = d self._lock = threading.RLock() self._rdr = get_reader(self._path) if self._closed: self._rdr.close() @cached_property def attributes(self) -> Attributes: """Core image attributes""" return self._rdr.attributes @cached_property def text_info(self) -> Dict[str, Any]: """Misc text info.""" return self._rdr.text_info() @cached_property def experiment(self) -> List[ExpLoop]: """Loop information for each nd axis""" return self._rdr.experiment() @cached_property def metadata(self) -> Union[Metadata, dict]: """Various metadata (will be dict if legacy format).""" return self._rdr.metadata() def frame_metadata( self, seq_index: Union[int, tuple] ) -> Union[FrameMetadata, dict]: """Metadata for specific frame. This includes the global metadata from the metadata function. (will be dict if legacy format). Parameters ---------- seq_index : Union[int, tuple] frame index Returns ------- Union[FrameMetadata, dict] dict if legacy format, else FrameMetadata """ idx = cast( int, self._seq_index_from_coords(seq_index) if isinstance(seq_index, tuple) else seq_index, ) return self._rdr.frame_metadata(idx) @cached_property def custom_data(self) -> Dict[str, Any]: """Dict of various unstructured custom metadata.""" return self._rdr._custom_data() @cached_property def ndim(self) -> int: """number of dimensions""" return len(self.shape) @cached_property def shape(self) -> Tuple[int, ...]: """size of each axis""" return self._coord_shape + self._frame_shape @cached_property def sizes(self) -> Dict[str, int]: """names and sizes for each axis""" attrs = self.attributes dims = {AXIS._MAP[c[1]]: c[2] for c in self._rdr._coord_info()} dims[AXIS.CHANNEL] = ( dims.pop(AXIS.CHANNEL) if AXIS.CHANNEL in dims else (attrs.channelCount or 1) ) dims[AXIS.Y] = attrs.heightPx dims[AXIS.X] = attrs.widthPx or -1 if self.components_per_channel == 3: # rgb dims[AXIS.RGB] = self.components_per_channel else: # if not exactly 3 channels, throw them all into monochrome channels dims[AXIS.CHANNEL] = attrs.componentCount return {k: v for k, v in dims.items() if v != 1} @property def is_rgb(self) -> bool: """Whether the image is rgb""" return self.components_per_channel in (3, 4) @property def components_per_channel(self) -> int: """Number of components per channel (e.g. 3 for rgb)""" attrs = cast(Attributes, self.attributes) return attrs.componentCount // (attrs.channelCount or 1) @property def size(self) -> int: """Total number of pixels in the volume.""" return int(np.prod(self.shape)) @property def nbytes(self) -> int: """Total bytes of image data.""" return self.size * self.dtype.itemsize @cached_property def dtype(self) -> np.dtype: """Image data type""" attrs = self.attributes d = attrs.pixelDataType[0] if attrs.pixelDataType else "u" return np.dtype(f"{d}{attrs.bitsPerComponentInMemory // 8}") def voxel_size(self, channel: int = 0) -> VoxelSize: """XYZ voxel size. Parameters ---------- channel : int Channel for which to retrieve voxel info, by default 0 Returns ------- VoxelSize Named tuple with attrs `x`, `y`, and `z`. """ return VoxelSize(*self._rdr.voxel_size()) def asarray(self, position: Optional[int] = None) -> np.ndarray: """Read image into numpy array. Parameters ---------- position : int, optional A specific XY position to extract, by default (None) reads all. Returns ------- np.ndarray Raises ------ ValueError if `position` is a string and is not a valid position name IndexError if `position` is provided and is out of range """ final_shape = list(self.shape) if position is None: seqs: Sequence[int] = range(self._frame_count) else: if isinstance(position, str): try: position = self._position_names().index(position) except ValueError as e: raise ValueError( f"{position!r} is not a valid position name" ) from e try: pidx = list(self.sizes).index(AXIS.POSITION) except ValueError as exc: if position > 0: raise IndexError( f"Position {position} is out of range. " f"Only 1 position available" ) from exc seqs = range(self._frame_count) else: if position >= self.sizes[AXIS.POSITION]: raise IndexError( f"Position {position} is out of range. " f"Only {self.sizes[AXIS.POSITION]} positions available" ) ranges: List[Union[range, tuple]] = [ range(x) for x in self._coord_shape ] ranges[pidx] = (position,) coords = list(zip(*product(*ranges))) seqs = self._seq_index_from_coords(coords) # type: ignore final_shape[pidx] = 1 arr: np.ndarray = np.stack([self._get_frame(i) for i in seqs]) return arr.reshape(final_shape) def __array__(self) -> np.ndarray: """array protocol""" return self.asarray() def to_dask(self, wrapper=True, copy=True) -> da.Array: """Create dask array (delayed reader) representing image. This generally works well, but it remains to be seen whether performance is optimized, or if we're duplicating safety mechanisms. You may try various combinations of `wrapper` and `copy`, setting both to `False` will very likely cause segmentation faults in many cases. But setting one of them to `False`, may slightly improve read speed in certain cases. Parameters ---------- wrapper : bool If True (the default), the returned obect will be a thin subclass of a :class:`dask.array.Array` (an `ResourceBackedDaskArray`) that manages the opening and closing of this file when getting chunks via compute(). If `wrapper` is `False`, then a pure `da.Array` will be returned. However, when that array is computed, it will incur a file open/close on *every* chunk that is read (in the `_dask_block` method). As such `wrapper` will generally be much faster, however, it *may* fail (i.e. result in segmentation faults) with certain dask schedulers. copy : bool If `True` (the default), the dask chunk-reading function will return an array copy. This can avoid segfaults in certain cases, though it may also add overhead. Returns ------- da.Array """ from dask.array import map_blocks chunks = [(1,) * x for x in self._coord_shape] chunks += [(x,) for x in self._frame_shape] dask_arr = map_blocks( self._dask_block, copy=copy, chunks=chunks, dtype=self.dtype, ) if wrapper: from resource_backed_dask_array import ResourceBackedDaskArray # this subtype allows the dask array to re-open the underlying # nd2 file on compute. return ResourceBackedDaskArray.from_array(dask_arr, self) return dask_arr _NO_IDX = -1 def _seq_index_from_coords( self, coords: Sequence ) -> Union[Sequence[int], SupportsInt]: if not self._coord_shape: return self._NO_IDX return np.ravel_multi_index(coords, self._coord_shape) def _dask_block(self, copy: bool, block_id: Tuple[int]) -> np.ndarray: if isinstance(block_id, np.ndarray): return with self._lock: was_closed = self.closed if self.closed: self.open() try: ncoords = len(self._coord_shape) idx = self._seq_index_from_coords(block_id[:ncoords]) if idx == self._NO_IDX: if any(block_id): raise ValueError( f"Cannot get chunk {block_id} for single frame image." ) idx = 0 data = self._get_frame(cast(int, idx)) data = data.copy() if copy else data return data[(np.newaxis,) * ncoords] finally: if was_closed: self.close() def to_xarray( self, delayed: bool = True, squeeze: bool = True, position: Optional[int] = None, copy: bool = True, ) -> xr.DataArray: """Create labeled xarray representing image. `array.dims` will be populated according to image metadata, and coordinates will be populated based on pixel spacings. Additional metadata is available in `array.attrs['metadata']`. Parameters ---------- delayed : bool Whether the DataArray should be backed by dask array or numpy array, by default True (dask). squeeze : bool Whether to squeeze singleton dimensions, by default True position : int, optional A specific XY position to extract, by default (None) reads all. copy : bool Only applies when `delayed==True`. See `to_dask` for details. Returns ------- xr.DataArray xarray with all axes labeled. """ import xarray as xr data = self.to_dask(copy=copy) if delayed else self.asarray(position) dims = list(self.sizes) coords = self._expand_coords(squeeze) if not squeeze: for missing_dim in set(coords).difference(dims): dims.insert(0, missing_dim) missing_axes = len(dims) - data.ndim if missing_axes > 0: data = data[(np.newaxis,) * missing_axes] if position is not None and not delayed and AXIS.POSITION in coords: # if it's delayed, we do this using isel below instead. coords[AXIS.POSITION] = [coords[AXIS.POSITION][position]] x = xr.DataArray( data, dims=dims, coords=coords, attrs={ "metadata": { "metadata": self.metadata, "experiment": self.experiment, "attributes": self.attributes, "text_info": self.text_info, } }, ) if delayed and position is not None and AXIS.POSITION in coords: x = x.isel({AXIS.POSITION: [position]}) return x.squeeze() if squeeze else x @property def _frame_coords(self) -> Set[str]: return {AXIS.X, AXIS.Y, AXIS.CHANNEL, AXIS.RGB} @property def _raw_frame_shape(self) -> Tuple[int, int, int, int]: """sizes of each frame coordinate, prior to reshape""" attr = self.attributes return ( attr.heightPx, attr.widthPx or -1, attr.channelCount or 1, self.components_per_channel, ) @property def _frame_shape(self) -> Tuple[int, ...]: """sizes of each frame coordinate, after reshape & squeeze""" return tuple(v for k, v in self.sizes.items() if k in self._frame_coords) @cached_property def _coord_shape(self) -> Tuple[int, ...]: """sizes of each *non-frame* coordinate""" return tuple(v for k, v in self.sizes.items() if k not in self._frame_coords) @property def _frame_count(self) -> int: return int(np.prod(self._coord_shape)) def _get_frame(self, index: int) -> np.ndarray: frame = self._rdr._read_image(index) frame.shape = self._raw_frame_shape return frame.transpose((2, 0, 1, 3)).squeeze() def _expand_coords(self, squeeze: bool = True) -> dict: """Return a dict that can be used as the coords argument to xr.DataArray Parameters ---------- squeeze : bool whether to squeeze axes with length < 2, by default True Returns ------- dict dict of axis name -> coordinates """ dx, dy, dz = self.voxel_size() coords: Dict[str, Sized] = { AXIS.Y: np.arange(self.attributes.heightPx) * dy, AXIS.X: np.arange(self.attributes.widthPx or 1) * dx, AXIS.CHANNEL: self._channel_names, AXIS.POSITION: ["XYPos:0"], # maybe overwritten below } for c in self.experiment: if squeeze and c.count <= 1: continue if c.type == "ZStackLoop": coords[AXIS.Z] = np.arange(c.count) * c.parameters.stepUm elif c.type == "TimeLoop": coords[AXIS.TIME] = np.arange(c.count) * c.parameters.periodMs elif c.type == "NETimeLoop": pers = [np.arange(p.count) * p.periodMs for p in c.parameters.periods] coords[AXIS.TIME] = np.hstack(pers) elif c.type == "XYPosLoop": coords[AXIS._MAP["XYPosLoop"]] = self._position_names(c) if self.components_per_channel > 1: coords[AXIS.RGB] = ["Red", "Green", "Blue", "alpha"][ : self.components_per_channel ] # fix for Z axis missing from experiment: if AXIS.Z in self.sizes and AXIS.Z not in coords: coords[AXIS.Z] = np.arange(self.sizes[AXIS.Z]) * dz if squeeze: return {k: v for k, v in coords.items() if len(v) > 1} return coords def _position_names(self, loop: Optional[XYPosLoop] = None) -> List[str]: if loop is None: for c in self.experiment: if c.type == "XYPosLoop": loop = c break if loop is None: return ["XYPos:0"] return [p.name or f"XYPos:{i}" for i, p in enumerate(loop.parameters.points)] @property def _channel_names(self) -> List[str]: return self._rdr.channel_names() def __repr__(self) -> str: try: details = " (closed)" if self.closed else f" {self.dtype}: {self.sizes!r}" extra = f": {Path(self.path).name!r}{details}" except Exception: extra = "" return f"<ND2File at {hex(id(self))}{extra}>" @overload def imread( file: Union[Path, str], dask: Literal[False] = False, xarray: Literal[False] = False, validate_frames: bool = False, ) -> np.ndarray: ... @overload def imread( file: Union[Path, str], dask: bool = ..., xarray: Literal[True] = True, validate_frames: bool = False, ) -> xr.DataArray: ... @overload def imread( file: Union[Path, str], dask: Literal[True] = ..., xarray=False, validate_frames: bool = False, ) -> da.Array: ... def imread( file: Union[Path, str], dask: bool = False, xarray: bool = False, validate_frames: bool = False, ): """Open `file`, return requested array type, and close `file`. Parameters ---------- file : Union[Path, str] Filepath (`str`) or `Path` object to ND2 file. dask : bool If `True`, returns a (delayed) `dask.array.Array`. This will avoid reading any data from disk until specifically requested by using `.compute()` or casting to a numpy array with `np.asarray()`. By default `False`. xarray : bool If `True`, returns an `xarray.DataArray`, `array.dims` will be populated according to image metadata, and coordinates will be populated based on pixel spacings. Additional metadata is available in `array.attrs['metadata']`. If `dask` is also `True`, will return an xarray backed by a delayed dask array. By default `False`. validate_frames : bool Whether to verify (and attempt to fix) frames whose positions have been shifted relative to the predicted offset (i.e. in a corrupted file). This comes at a slight performance penalty at file open, but may "rescue" some corrupt files. by default False. Returns ------- Union[np.ndarray, dask.array.Array, xarray.DataArray] Array subclass, depending on arguments used. """ with ND2File(file, validate_frames=validate_frames) as nd2: if xarray: return nd2.to_xarray(delayed=dask) elif dask: return nd2.to_dask() else: return nd2.asarray()
[ "numpy.prod", "numpy.hstack", "pathlib.Path", "numpy.ravel_multi_index", "dask.array.map_blocks", "threading.RLock", "itertools.product", "resource_backed_dask_array.ResourceBackedDaskArray.from_array", "xarray.DataArray", "numpy.dtype", "typing.cast", "numpy.arange" ]
[((1978, 1995), 'threading.RLock', 'threading.RLock', ([], {}), '()\n', (1993, 1995), False, 'import threading\n'), ((3150, 3167), 'threading.RLock', 'threading.RLock', ([], {}), '()\n', (3165, 3167), False, 'import threading\n'), ((6028, 6061), 'typing.cast', 'cast', (['Attributes', 'self.attributes'], {}), '(Attributes, self.attributes)\n', (6032, 6061), False, 'from typing import TYPE_CHECKING, Optional, Sequence, Set, Sized, SupportsInt, Union, cast, overload\n'), ((6592, 6645), 'numpy.dtype', 'np.dtype', (['f"""{d}{attrs.bitsPerComponentInMemory // 8}"""'], {}), "(f'{d}{attrs.bitsPerComponentInMemory // 8}')\n", (6600, 6645), True, 'import numpy as np\n'), ((10911, 10983), 'dask.array.map_blocks', 'map_blocks', (['self._dask_block'], {'copy': 'copy', 'chunks': 'chunks', 'dtype': 'self.dtype'}), '(self._dask_block, copy=copy, chunks=chunks, dtype=self.dtype)\n', (10921, 10983), False, 'from dask.array import map_blocks\n'), ((11550, 11597), 'numpy.ravel_multi_index', 'np.ravel_multi_index', (['coords', 'self._coord_shape'], {}), '(coords, self._coord_shape)\n', (11570, 11597), True, 'import numpy as np\n'), ((14206, 14399), 'xarray.DataArray', 'xr.DataArray', (['data'], {'dims': 'dims', 'coords': 'coords', 'attrs': "{'metadata': {'metadata': self.metadata, 'experiment': self.experiment,\n 'attributes': self.attributes, 'text_info': self.text_info}}"}), "(data, dims=dims, coords=coords, attrs={'metadata': {'metadata':\n self.metadata, 'experiment': self.experiment, 'attributes': self.\n attributes, 'text_info': self.text_info}})\n", (14218, 14399), True, 'import xarray as xr\n'), ((6240, 6259), 'numpy.prod', 'np.prod', (['self.shape'], {}), '(self.shape)\n', (6247, 6259), True, 'import numpy as np\n'), ((11268, 11318), 'resource_backed_dask_array.ResourceBackedDaskArray.from_array', 'ResourceBackedDaskArray.from_array', (['dask_arr', 'self'], {}), '(dask_arr, self)\n', (11302, 11318), False, 'from resource_backed_dask_array import ResourceBackedDaskArray\n'), ((15683, 15709), 'numpy.prod', 'np.prod', (['self._coord_shape'], {}), '(self._coord_shape)\n', (15690, 15709), True, 'import numpy as np\n'), ((16381, 16416), 'numpy.arange', 'np.arange', (['self.attributes.heightPx'], {}), '(self.attributes.heightPx)\n', (16390, 16416), True, 'import numpy as np\n'), ((16443, 16482), 'numpy.arange', 'np.arange', (['(self.attributes.widthPx or 1)'], {}), '(self.attributes.widthPx or 1)\n', (16452, 16482), True, 'import numpy as np\n'), ((17547, 17576), 'numpy.arange', 'np.arange', (['self.sizes[AXIS.Z]'], {}), '(self.sizes[AXIS.Z])\n', (17556, 17576), True, 'import numpy as np\n'), ((12289, 12303), 'typing.cast', 'cast', (['int', 'idx'], {}), '(int, idx)\n', (12293, 12303), False, 'from typing import TYPE_CHECKING, Optional, Sequence, Set, Sized, SupportsInt, Union, cast, overload\n'), ((16786, 16804), 'numpy.arange', 'np.arange', (['c.count'], {}), '(c.count)\n', (16795, 16804), True, 'import numpy as np\n'), ((16902, 16920), 'numpy.arange', 'np.arange', (['c.count'], {}), '(c.count)\n', (16911, 16920), True, 'import numpy as np\n'), ((17109, 17124), 'numpy.hstack', 'np.hstack', (['pers'], {}), '(pers)\n', (17118, 17124), True, 'import numpy as np\n'), ((18329, 18344), 'pathlib.Path', 'Path', (['self.path'], {}), '(self.path)\n', (18333, 18344), False, 'from pathlib import Path\n'), ((8868, 8884), 'itertools.product', 'product', (['*ranges'], {}), '(*ranges)\n', (8875, 8884), False, 'from itertools import product\n'), ((17010, 17028), 'numpy.arange', 'np.arange', (['p.count'], {}), '(p.count)\n', (17019, 17028), True, 'import numpy as np\n')]
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """ResNet model for classifying images from CIFAR-10 dataset. Support single-host training with one or multiple devices. ResNet as proposed in: <NAME>, <NAME>, <NAME>, <NAME> Deep Residual Learning for Image Recognition. arXiv:1512.03385 CIFAR-10 as in: http://www.cs.toronto.edu/~kriz/cifar.html """ from __future__ import division from __future__ import print_function import argparse import datetime import functools import itertools import os # Silence tf for prettier logging of Bayesian Optimization os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3" from bayes_opt import BayesianOptimization from bayes_opt import UtilityFunction import cifar10 import cifar10_model import cifar10_utils import numpy as np import six from six.moves import xrange # pylint: disable=redefined-builtin import tensorflow as tf # import tensorflow_addons as tfa # Setting verbosity to INFO will log training and evaluation details. tf.logging.set_verbosity(tf.logging.ERROR) import ray from ray.tune import run, Trainable from ray.tune.schedulers import AsyncHyperBandScheduler from ray.tune.suggest.bayesopt import BayesOptSearch import logging logging.getLogger("tensorflow").setLevel(logging.ERROR) parser = argparse.ArgumentParser() parser.add_argument( "--data-dir", type=str, required=True, help="The directory where the CIFAR-10 input data is stored.", ) parser.add_argument( "--job-dir", type=str, required=True, help="The directory where the model will be stored.", ) parser.add_argument( "--variable-strategy", choices=["CPU", "GPU"], type=str, default="CPU", help="Where to locate variable operations", ) parser.add_argument( "--num-gpus", type=int, default=1, help="The number of gpus used. Uses only CPU if set to 0.", ) parser.add_argument( "--num-layers", type=int, default=20, help="The number of layers of the model.", ) parser.add_argument( "--train-steps", type=int, default=80000, help="The number of steps to use for training.", ) # parser.add_argument( # "--train-batch-size", # type=int, # default=128, # help="Batch size for training.", # ) parser.add_argument( "--eval-batch-size", type=int, default=500, help="Batch size for validation.", ) parser.add_argument( "--num-batches-for-eval", type=int, default=10, help="Number of batches for validation.", ) # parser.add_argument( # "--momentum", # type=float, # default=0.9, # help="Momentum for MomentumOptimizer.", # ) # parser.add_argument( # "--weight-decay", # type=float, # default=2e-4, # help="Weight decay for convolutions.", # ) # parser.add_argument( # "--learning-rate", # type=float, # default=0.1, # help="""\ # This is the inital learning rate value. The learning rate will decrease # during training. For more details check the model_fn implementation in # this file.\ # """, # ) parser.add_argument( "--use-distortion-for-training", type=bool, default=True, help="If doing image distortion for training.", ) parser.add_argument( "--sync", action="store_true", default=False, help="""\ If present when running in a distributed environment will run on sync mode.\ """, ) parser.add_argument( "--num-intra-threads", type=int, default=0, help="""\ Number of threads to use for intra-op parallelism. When training on CPU set to 0 to have the system pick the appropriate number or alternatively set it to the number of physical CPU cores.\ """, ) parser.add_argument( "--num-inter-threads", type=int, default=0, help="""\ Number of threads to use for inter-op parallelism. If set to 0, the system will pick an appropriate number.\ """, ) parser.add_argument( "--data-format", type=str, default=None, help="""\ If not set, the data format best for the training device is used. Allowed values: channels_first (NCHW) channels_last (NHWC).\ """, ) parser.add_argument( "--log-device-placement", action="store_true", default=False, help="Whether to log device placement.", ) # parser.add_argument( # "--batch-norm-decay", # type=float, # default=0.997, # help="Decay for batch norm.", # ) # parser.add_argument( # "--batch-norm-epsilon", # type=float, # default=1e-5, # help="Epsilon for batch norm.", # ) # Add arguments related to BayesOpt parser.add_argument( "--smoke-test", action="store_true", default=False, help="Finish quickly for testing", ) # parser.add_argument( # "--verbose", type=bool, default=False, help="Verbose output of training." # ) parser.add_argument( "--strategy", type=str, default="proposed", help="Strategy for discretizing. Possible options are: basic, proposed.", ) parser.add_argument( "--metric", type=str, default="accuracy", help="""\ Whether to use accuracy or loss for Bayesian optimization.\ """, ) # TODO: better name? parser.add_argument( "--precision", type=int, default=1000, help="""\ Size of grid\ """, ) parser.add_argument( "--log-path", type=str, default=os.getcwd() + "/train.log", help=""" """, ) parser.add_argument( "--ray-address", type=str, default="", help=""" """, ) args = parser.parse_args() # Filling in shared values here hparams = {} hparams["num_layers"] = args.num_layers hparams["eval_batch_size"] = args.eval_batch_size hparams["sync"] = args.sync hparams["num_inter_threads"] = args.num_inter_threads hparams["data_format"] = args.data_format def get_model_fn(num_gpus, variable_strategy, num_workers): """Returns a function that will build the resnet model.""" def _resnet_model_fn(features, labels, mode, params): """Resnet model body. Support single host, one or more GPU training. Parameter distribution can be either one of the following scheme. 1. CPU is the parameter server and manages gradient updates. 2. Parameters are distributed evenly across all GPUs, and the first GPU manages gradient updates. Args: features: a list of tensors, one for each tower labels: a list of tensors, one for each tower mode: ModeKeys.TRAIN or EVAL params: Hyperparameters suitable for tuning Returns: A EstimatorSpec object. """ is_training = mode == tf.estimator.ModeKeys.TRAIN weight_decay = params.weight_decay momentum = params.momentum tower_features = features tower_labels = labels tower_losses = [] tower_gradvars = [] tower_preds = [] # channels first (NCHW) is normally optimal on GPU and channels last (NHWC) # on CPU. The exception is Intel MKL on CPU which is optimal with # channels_last. data_format = params.data_format if not data_format: if num_gpus == 0: data_format = "channels_last" else: data_format = "channels_first" if num_gpus == 0: num_devices = 1 device_type = "cpu" else: num_devices = num_gpus device_type = "gpu" for i in range(num_devices): worker_device = "/{}:{}".format(device_type, i) if variable_strategy == "CPU": device_setter = cifar10_utils.local_device_setter( worker_device=worker_device ) elif variable_strategy == "GPU": device_setter = cifar10_utils.local_device_setter( ps_device_type="gpu", worker_device=worker_device, ps_strategy=tf.contrib.training.GreedyLoadBalancingStrategy( num_gpus, tf.contrib.training.byte_size_load_fn ), ) with tf.variable_scope("resnet", reuse=bool(i != 0)): with tf.name_scope("tower_%d" % i) as name_scope: with tf.device(device_setter): loss, gradvars, preds = _tower_fn( is_training, weight_decay, tower_features[i], tower_labels[i], data_format, params.num_layers, params.batch_norm_decay, params.batch_norm_epsilon, ) tower_losses.append(loss) tower_gradvars.append(gradvars) tower_preds.append(preds) if i == 0: # Only trigger batch_norm moving mean and variance update from # the 1st tower. Ideally, we should grab the updates from all # towers but these stats accumulate extremely fast so we can # ignore the other stats from the other towers without # significant detriment. update_ops = tf.get_collection( tf.GraphKeys.UPDATE_OPS, name_scope ) # Now compute global loss and gradients. gradvars = [] with tf.name_scope("gradient_averaging"): all_grads = {} for grad, var in itertools.chain(*tower_gradvars): if grad is not None: all_grads.setdefault(var, []).append(grad) for var, grads in six.iteritems(all_grads): # Average gradients on the same device as the variables # to which they apply. with tf.device(var.device): if len(grads) == 1: avg_grad = grads[0] else: avg_grad = tf.multiply( tf.add_n(grads), 1.0 / len(grads) ) gradvars.append((avg_grad, var)) # Device that runs the ops to apply global gradient updates. consolidation_device = ( "/gpu:0" if variable_strategy == "GPU" else "/cpu:0" ) with tf.device(consolidation_device): # Suggested learning rate scheduling from # https://github.com/ppwwyyxx/tensorpack/blob/master/examples/ResNet/cifar10-resnet.py#L155 num_batches_per_epoch = cifar10.Cifar10DataSet.num_examples_per_epoch( "train" ) // ( params.train_batch_size * num_workers ) boundaries = [ num_batches_per_epoch * x for x in np.array([80, 120, 160], dtype=np.int64) ] staged_lr = [ params.learning_rate * x for x in [1, 0.1, 0.01, 0.001] ] learning_rate = tf.train.piecewise_constant( tf.train.get_global_step(), boundaries, staged_lr ) loss = tf.reduce_mean(tower_losses, name="loss") # examples_sec_hook = cifar10_utils.ExamplesPerSecondHook( # params.train_batch_size, every_n_steps=10 # ) # tensors_to_log = {"learning_rate": learning_rate, "loss": loss} # logging_hook = tf.train.LoggingTensorHook( # tensors=tensors_to_log, every_n_iter=100 # ) # train_hooks = [logging_hook, examples_sec_hook] train_hooks = [] # Hyper-parameter "momentum" is only used for the Momentum Optimizer # Other optimizers use their default parameters. if params.optimizer == "momentum": optimizer = tf.train.MomentumOptimizer( learning_rate=learning_rate, momentum=momentum ) elif params.optimizer == "adam": optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate) elif params.optimizer == "adagrad": optimizer = tf.train.AdagradOptimizer( learning_rate=learning_rate ) elif params.optimizer == "adadelta": optimizer = tf.train.AdadeltaOptimizer( learning_rate=learning_rate ) elif params.optimizer == "sgd": optimizer = tf.train.GradientDescentOptimizer( learning_rate=learning_rate ) elif params.optimizer == "rmsprop": optimizer = tf.train.RMSPropOptimizer( learning_rate=learning_rate ) else: raise ValueError("unrecognized optimizer name") # TODO: RAdam is implemented in tensorflow-addons v0.6, which requires tf 2.0 # Upgrade code by removing tf.contrib modules. # optimizer = tfa.optimizers.RectifiedAdam(lr=learning_rate) if params.sync: optimizer = tf.train.SyncReplicasOptimizer( optimizer, replicas_to_aggregate=num_workers ) sync_replicas_hook = optimizer.make_session_run_hook( params.is_chief ) train_hooks.append(sync_replicas_hook) # Create single grouped train op train_op = [ optimizer.apply_gradients( gradvars, global_step=tf.train.get_global_step() ) ] train_op.extend(update_ops) train_op = tf.group(*train_op) predictions = { "classes": tf.concat( [p["classes"] for p in tower_preds], axis=0 ), "probabilities": tf.concat( [p["probabilities"] for p in tower_preds], axis=0 ), } stacked_labels = tf.concat(labels, axis=0) metrics = { "accuracy": tf.metrics.accuracy( stacked_labels, predictions["classes"] ) } return tf.estimator.EstimatorSpec( mode=mode, predictions=predictions, loss=loss, train_op=train_op, training_hooks=train_hooks, eval_metric_ops=metrics, ) return _resnet_model_fn def _tower_fn( is_training, weight_decay, feature, label, data_format, num_layers, batch_norm_decay, batch_norm_epsilon, ): """Build computation tower (Resnet). Args: is_training: true if is training graph. weight_decay: weight regularization strength, a float. feature: a Tensor. label: a Tensor. data_format: channels_last (NHWC) or channels_first (NCHW). num_layers: number of layers, an int. batch_norm_decay: decay for batch normalization, a float. batch_norm_epsilon: epsilon for batch normalization, a float. Returns: A tuple with the loss for the tower, the gradients and parameters, and predictions. """ model = cifar10_model.ResNetCifar10( num_layers, batch_norm_decay=batch_norm_decay, batch_norm_epsilon=batch_norm_epsilon, is_training=is_training, data_format=data_format, ) logits = model.forward_pass(feature, input_data_format="channels_last") tower_pred = { "classes": tf.argmax(input=logits, axis=1), "probabilities": tf.nn.softmax(logits), } tower_loss = tf.losses.sparse_softmax_cross_entropy( logits=logits, labels=label ) tower_loss = tf.reduce_mean(tower_loss) model_params = tf.trainable_variables() tower_loss += weight_decay * tf.add_n( [tf.nn.l2_loss(v) for v in model_params] ) tower_grad = tf.gradients(tower_loss, model_params) return tower_loss, zip(tower_grad, model_params), tower_pred def input_fn( data_dir, subset, num_shards, batch_size, use_distortion_for_training=True ): """Create input graph for model. Args: data_dir: Directory where TFRecords representing the dataset are located. subset: one of 'train', 'validation' and 'eval'. num_shards: num of towers participating in data-parallel training. batch_size: total batch size for training to be divided by the number of shards. use_distortion_for_training: True to use distortions. Returns: two lists of tensors for features and labels, each of num_shards length. """ with tf.device("/cpu:0"): use_distortion = subset == "train" and use_distortion_for_training dataset = cifar10.Cifar10DataSet(data_dir, subset, use_distortion) image_batch, label_batch = dataset.make_batch(batch_size) if num_shards <= 1: # No GPU available or only 1 GPU. return [image_batch], [label_batch] # Note that passing num=batch_size is safe here, even though # dataset.batch(batch_size) can, in some cases, return fewer than batch_size # examples. This is because it does so only when repeating for a limited # number of epochs, but our dataset repeats forever. image_batch = tf.unstack(image_batch, num=batch_size, axis=0) label_batch = tf.unstack(label_batch, num=batch_size, axis=0) feature_shards = [[] for i in range(num_shards)] label_shards = [[] for i in range(num_shards)] for i in xrange(batch_size): idx = i % num_shards feature_shards[idx].append(image_batch[i]) label_shards[idx].append(label_batch[i]) feature_shards = [tf.parallel_stack(x) for x in feature_shards] label_shards = [tf.parallel_stack(x) for x in label_shards] return feature_shards, label_shards def build_estimator( data_dir, num_gpus, variable_strategy, run_config, hparams, use_distortion_for_training=True, ws=None, ): """Returns an Experiment function. Experiments perform training on several workers in parallel, in other words experiments know how to invoke train and eval in a sensible fashion for distributed training. Arguments passed directly to this function are not tunable, all other arguments should be passed within tf.HParams, passed to the enclosed function. Args: data_dir: str. Location of the data for input_fns. num_gpus: int. Number of GPUs on each worker. variable_strategy: String. CPU to use CPU as the parameter server and GPU to use the GPUs as the parameter server. use_distortion_for_training: bool. See cifar10.Cifar10DataSet. Returns: A function (tf.estimator.RunConfig, tf.contrib.training.HParams) -> tf.contrib.learn.Experiment. Suitable for use by tf.contrib.learn.learn_runner, which will run various methods on Experiment (train, evaluate) based on information about the current runner in `run_config`. """ # Create estimator. train_input_fn = functools.partial( input_fn, data_dir, subset="train", num_shards=num_gpus, batch_size=hparams.train_batch_size, use_distortion_for_training=use_distortion_for_training, ) eval_input_fn = functools.partial( input_fn, data_dir, subset="validation", batch_size=hparams.eval_batch_size, num_shards=num_gpus, ) # validation: 5000, eval:10000 num_eval_examples = cifar10.Cifar10DataSet.num_examples_per_epoch( "validation" ) if num_eval_examples % hparams.eval_batch_size != 0: raise ValueError( "validation set size must be multiple of eval_batch_size" ) classifier = tf.estimator.Estimator( model_fn=get_model_fn( num_gpus, variable_strategy, run_config.num_worker_replicas or 1 ), config=run_config, params=hparams, warm_start_from=ws, ) return train_input_fn, eval_input_fn, classifier def get_idx(pbounds, names): param_names = list(pbounds.keys()) param_names.sort() param_list = [0] * len(param_names) for i in range(len(param_names)): if param_names[i] in names: param_list[i] = 1 return param_list class MyTrainableEstimator(Trainable): def _setup(self, config): # The env variable is on deprecation path, default is set to off. os.environ["TF_SYNC_ON_FINISH"] = "0" os.environ["TF_ENABLE_WINOGRAD_NONFUSED"] = "1" # Session configuration. sess_config = tf.ConfigProto( allow_soft_placement=True, log_device_placement=args.log_device_placement, intra_op_parallelism_threads=args.num_intra_threads, gpu_options=tf.GPUOptions( force_gpu_compatible=True, allow_growth=True ), ) # Convert to actual hyperparameter values here using the grid (discrete) input hparams["train_batch_size"] = 2 ** (int(config["batch_size"]) + 5) hparams["momentum"] = 0.4 + ( 0.55 * int(config["momentum"]) / args.precision ) hparams["weight_decay"] = 1e-4 + ( 1e-4 * int(config["weight_decay"]) / args.precision ) hparams["batch_norm_decay"] = 0.8 + ( 0.199 * int(config["batch_norm_decay"]) / args.precision ) hparams["batch_norm_epsilon"] = 1e-5 + ( 0.00099 * int(config["batch_norm_epsilon"]) / args.precision ) hparams["learning_rate"] = 0.01 + ( 0.1 * int(config["learning_rate"]) / args.precision ) opt = int(config["optimizer"]) if opt == 0: hparams["optimizer"] = "momentum" elif opt == 1: hparams["optimizer"] = "adam" elif opt == 2: hparams["optimizer"] = "adagrad" elif opt == 3: hparams["optimizer"] = "adadelta" elif opt == 4: hparams["optimizer"] = "sgd" else: hparams["optimizer"] = "rmsprop" # Calculate number of steps per one epoch self.train_steps = cifar10.Cifar10DataSet.num_examples_per_epoch( "train" ) // (hparams["train_batch_size"]) # TODO: Fix checkpoint dir run_config = cifar10_utils.RunConfig( session_config=sess_config, model_dir=None, save_checkpoints_secs=None, save_checkpoints_steps=self.train_steps, keep_checkpoint_max=None, keep_checkpoint_every_n_hours=None, ) self.run_config = run_config self.train_input_fn, self.eval_input_fn, self.estimator = build_estimator( data_dir=args.data_dir, num_gpus=args.num_gpus, variable_strategy=args.variable_strategy, use_distortion_for_training=args.use_distortion_for_training, run_config=run_config, hparams=tf.contrib.training.HParams( is_chief=run_config.is_chief, **hparams ), ) self.logger = logging.getLogger("metrics") self.logger.setLevel(logging.INFO) file_handler = logging.FileHandler(args.log_path) self.logger.addHandler(file_handler) self.logger.info(f"[CONFIG] ID={self._experiment_id} config={hparams}") # self.steps = self.train_steps def _train(self): self.estimator.train( input_fn=self.train_input_fn, steps=self.train_steps ) metrics = self.estimator.evaluate( input_fn=self.eval_input_fn, steps=args.eval_batch_size * args.num_batches_for_eval, ) # self.steps = self.steps + self.train_steps self.logger.info( f"[RESULT] ID={self._experiment_id} iter={self._iteration} result={metrics}" ) return metrics def _stop(self): self.estimator = None def _save(self, checkpoint_dir): lastest_checkpoint = self.estimator.latest_checkpoint() tf.logging.info( "Saving checkpoint {} for tune".format(lastest_checkpoint) ) f = open(checkpoint_dir + "/path.txt", "w") f.write(lastest_checkpoint) f.flush() f.close() return checkpoint_dir + "/path.txt" def _restore(self, checkpoint_path): f = open(checkpoint_path, "r") path = f.readline().strip() tf.logging.info("Opening checkpoint {} for tune".format(path)) f.flush() f.close() ws = tf.estimator.WarmStartSettings(ckpt_to_initialize_from=path) self.train_input_fn, self.eval_input_fn, self.estimator = build_estimator( data_dir=args.data_dir, num_gpus=args.num_gpus, variable_strategy=args.variable_strategy, use_distortion_for_training=args.use_distortion_for_training, run_config=self.run_config, hparams=tf.contrib.training.HParams( is_chief=self.run_config.is_chief, **hparams ), warm_start_from=ws, ) def main(): # print(args) # Minor hack of generating a grid of 100 values each. # By setting all parameters to be discrete values over range (0,100), # we can map each integer value to corresponding hyperparameter value in training code. pbounds = { "batch_size": (0, 6), "momentum": (0, args.precision), "weight_decay": (0, args.precision), "batch_norm_decay": (0, args.precision), "batch_norm_epsilon": (0, args.precision), "learning_rate": (0, args.precision), "optimizer": (0, 6), } discrete = [ "batch_size", "momentum", "weight_decay", "batch_norm_decay", "batch_norm_epsilon", "learning_rate", "optimizer", ] categorical = [] discrete_indices = get_idx(pbounds, discrete) categorical_indices = get_idx(pbounds, categorical) train_spec = { "resources_per_trial": {"cpu": 12, "gpu": 1}, "stop": { "accuracy": 93, "training_iteration": 2 if args.smoke_test else 99999, }, "config": { "exp": "ckpt", # the name of directory where training results are saved "log_level": "ERROR", }, "num_samples": 100000, "local_dir": "/home/ddoyoon/BayesianOptimization/examples/cnn/cifar10_estimator/ckpt", "checkpoint_at_end": True, } algo = BayesOptSearch( args.strategy, pbounds, discrete=discrete_indices, categorical=categorical_indices, max_concurrent=12, metric="accuracy", mode="max", utility_kwargs={"kind": "ucb", "kappa": 2.5, "xi": 0.0}, ) # TODO: Initial values will not be discretized as of now. # Manually probing with discrete values instead. # algo.optimizer.probe( # params={ # "batch_size": 0, # "momentum": 0, # "weight_decay": 0, # "batch_norm_decay": 0, # "batch_norm_epsilon": 0, # "learning_rate": 0, # }, # lazy=True, # ) scheduler = AsyncHyperBandScheduler( metric="accuracy", mode="max", max_t=200, grace_period=20, reduction_factor=2, ) experiment_start = datetime.datetime.utcnow() logger = logging.getLogger("metrics") logger.setLevel(logging.INFO) file_handler = logging.FileHandler(args.log_path) logger.addHandler(file_handler) logger.info(f"[ TIME ] start={experiment_start}") run( MyTrainableEstimator, name="bo_resnet_cifar10", search_alg=algo, scheduler=scheduler, **train_spec, ) experiment_end = datetime.datetime.utcnow() experiment_duration = experiment_end - experiment_start logger.info(f"[ TIME ] end={experiment_end}") logger.info( f"[ TIME ] end-to-end (min)={experiment_duration.total_seconds() / 60}" ) if __name__ == "__main__": if args.ray_address != "": ray.init(redis_address=args.ray_address, logging_level=logging.ERROR) else: ray.init() if args.num_gpus > 0: assert tf.test.is_gpu_available(), "Requested GPUs but none found." if args.num_gpus < 0: raise ValueError( 'Invalid GPU count: "--num-gpus" must be 0 or a positive integer.' ) if args.num_gpus == 0 and args.variable_strategy == "GPU": raise ValueError( "num-gpus=0, CPU must be used as parameter server. Set" "--variable-strategy=CPU." ) if (args.num_layers - 2) % 6 != 0: raise ValueError("Invalid --num-layers parameter.") main()
[ "logging.getLogger", "ray.tune.suggest.bayesopt.BayesOptSearch", "tensorflow.unstack", "itertools.chain", "cifar10.Cifar10DataSet", "tensorflow.logging.set_verbosity", "tensorflow.estimator.EstimatorSpec", "tensorflow.gradients", "tensorflow.group", "numpy.array", "six.moves.xrange", "tensorflow.nn.softmax", "tensorflow.reduce_mean", "tensorflow.parallel_stack", "ray.init", "tensorflow.GPUOptions", "tensorflow.contrib.training.GreedyLoadBalancingStrategy", "ray.tune.schedulers.AsyncHyperBandScheduler", "argparse.ArgumentParser", "tensorflow.test.is_gpu_available", "cifar10_utils.local_device_setter", "tensorflow.metrics.accuracy", "tensorflow.estimator.WarmStartSettings", "tensorflow.concat", "tensorflow.train.get_global_step", "logging.FileHandler", "tensorflow.train.SyncReplicasOptimizer", "tensorflow.trainable_variables", "tensorflow.train.AdamOptimizer", "tensorflow.device", "tensorflow.train.MomentumOptimizer", "cifar10_model.ResNetCifar10", "tensorflow.nn.l2_loss", "tensorflow.train.GradientDescentOptimizer", "tensorflow.train.AdadeltaOptimizer", "cifar10.Cifar10DataSet.num_examples_per_epoch", "six.iteritems", "cifar10_utils.RunConfig", "tensorflow.train.RMSPropOptimizer", "datetime.datetime.utcnow", "os.getcwd", "tensorflow.train.AdagradOptimizer", "tensorflow.argmax", "tensorflow.add_n", "functools.partial", "tensorflow.name_scope", "tensorflow.contrib.training.HParams", "tensorflow.losses.sparse_softmax_cross_entropy", "ray.tune.run", "tensorflow.get_collection" ]
[((1608, 1650), 'tensorflow.logging.set_verbosity', 'tf.logging.set_verbosity', (['tf.logging.ERROR'], {}), '(tf.logging.ERROR)\n', (1632, 1650), True, 'import tensorflow as tf\n'), ((1891, 1916), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (1914, 1916), False, 'import argparse\n'), ((16042, 16213), 'cifar10_model.ResNetCifar10', 'cifar10_model.ResNetCifar10', (['num_layers'], {'batch_norm_decay': 'batch_norm_decay', 'batch_norm_epsilon': 'batch_norm_epsilon', 'is_training': 'is_training', 'data_format': 'data_format'}), '(num_layers, batch_norm_decay=batch_norm_decay,\n batch_norm_epsilon=batch_norm_epsilon, is_training=is_training,\n data_format=data_format)\n', (16069, 16213), False, 'import cifar10_model\n'), ((16472, 16539), 'tensorflow.losses.sparse_softmax_cross_entropy', 'tf.losses.sparse_softmax_cross_entropy', ([], {'logits': 'logits', 'labels': 'label'}), '(logits=logits, labels=label)\n', (16510, 16539), True, 'import tensorflow as tf\n'), ((16571, 16597), 'tensorflow.reduce_mean', 'tf.reduce_mean', (['tower_loss'], {}), '(tower_loss)\n', (16585, 16597), True, 'import tensorflow as tf\n'), ((16618, 16642), 'tensorflow.trainable_variables', 'tf.trainable_variables', ([], {}), '()\n', (16640, 16642), True, 'import tensorflow as tf\n'), ((16759, 16797), 'tensorflow.gradients', 'tf.gradients', (['tower_loss', 'model_params'], {}), '(tower_loss, model_params)\n', (16771, 16797), True, 'import tensorflow as tf\n'), ((20008, 20185), 'functools.partial', 'functools.partial', (['input_fn', 'data_dir'], {'subset': '"""train"""', 'num_shards': 'num_gpus', 'batch_size': 'hparams.train_batch_size', 'use_distortion_for_training': 'use_distortion_for_training'}), "(input_fn, data_dir, subset='train', num_shards=num_gpus,\n batch_size=hparams.train_batch_size, use_distortion_for_training=\n use_distortion_for_training)\n", (20025, 20185), False, 'import functools\n'), ((20253, 20373), 'functools.partial', 'functools.partial', (['input_fn', 'data_dir'], {'subset': '"""validation"""', 'batch_size': 'hparams.eval_batch_size', 'num_shards': 'num_gpus'}), "(input_fn, data_dir, subset='validation', batch_size=\n hparams.eval_batch_size, num_shards=num_gpus)\n", (20270, 20373), False, 'import functools\n'), ((20476, 20535), 'cifar10.Cifar10DataSet.num_examples_per_epoch', 'cifar10.Cifar10DataSet.num_examples_per_epoch', (['"""validation"""'], {}), "('validation')\n", (20521, 20535), False, 'import cifar10\n'), ((27538, 27751), 'ray.tune.suggest.bayesopt.BayesOptSearch', 'BayesOptSearch', (['args.strategy', 'pbounds'], {'discrete': 'discrete_indices', 'categorical': 'categorical_indices', 'max_concurrent': '(12)', 'metric': '"""accuracy"""', 'mode': '"""max"""', 'utility_kwargs': "{'kind': 'ucb', 'kappa': 2.5, 'xi': 0.0}"}), "(args.strategy, pbounds, discrete=discrete_indices,\n categorical=categorical_indices, max_concurrent=12, metric='accuracy',\n mode='max', utility_kwargs={'kind': 'ucb', 'kappa': 2.5, 'xi': 0.0})\n", (27552, 27751), False, 'from ray.tune.suggest.bayesopt import BayesOptSearch\n'), ((28246, 28352), 'ray.tune.schedulers.AsyncHyperBandScheduler', 'AsyncHyperBandScheduler', ([], {'metric': '"""accuracy"""', 'mode': '"""max"""', 'max_t': '(200)', 'grace_period': '(20)', 'reduction_factor': '(2)'}), "(metric='accuracy', mode='max', max_t=200,\n grace_period=20, reduction_factor=2)\n", (28269, 28352), False, 'from ray.tune.schedulers import AsyncHyperBandScheduler\n'), ((28420, 28446), 'datetime.datetime.utcnow', 'datetime.datetime.utcnow', ([], {}), '()\n', (28444, 28446), False, 'import datetime\n'), ((28460, 28488), 'logging.getLogger', 'logging.getLogger', (['"""metrics"""'], {}), "('metrics')\n", (28477, 28488), False, 'import logging\n'), ((28542, 28576), 'logging.FileHandler', 'logging.FileHandler', (['args.log_path'], {}), '(args.log_path)\n', (28561, 28576), False, 'import logging\n'), ((28672, 28779), 'ray.tune.run', 'run', (['MyTrainableEstimator'], {'name': '"""bo_resnet_cifar10"""', 'search_alg': 'algo', 'scheduler': 'scheduler'}), "(MyTrainableEstimator, name='bo_resnet_cifar10', search_alg=algo,\n scheduler=scheduler, **train_spec)\n", (28675, 28779), False, 'from ray.tune import run, Trainable\n'), ((28845, 28871), 'datetime.datetime.utcnow', 'datetime.datetime.utcnow', ([], {}), '()\n', (28869, 28871), False, 'import datetime\n'), ((1825, 1856), 'logging.getLogger', 'logging.getLogger', (['"""tensorflow"""'], {}), "('tensorflow')\n", (1842, 1856), False, 'import logging\n'), ((15026, 15175), 'tensorflow.estimator.EstimatorSpec', 'tf.estimator.EstimatorSpec', ([], {'mode': 'mode', 'predictions': 'predictions', 'loss': 'loss', 'train_op': 'train_op', 'training_hooks': 'train_hooks', 'eval_metric_ops': 'metrics'}), '(mode=mode, predictions=predictions, loss=loss,\n train_op=train_op, training_hooks=train_hooks, eval_metric_ops=metrics)\n', (15052, 15175), True, 'import tensorflow as tf\n'), ((16367, 16398), 'tensorflow.argmax', 'tf.argmax', ([], {'input': 'logits', 'axis': '(1)'}), '(input=logits, axis=1)\n', (16376, 16398), True, 'import tensorflow as tf\n'), ((16425, 16446), 'tensorflow.nn.softmax', 'tf.nn.softmax', (['logits'], {}), '(logits)\n', (16438, 16446), True, 'import tensorflow as tf\n'), ((17494, 17513), 'tensorflow.device', 'tf.device', (['"""/cpu:0"""'], {}), "('/cpu:0')\n", (17503, 17513), True, 'import tensorflow as tf\n'), ((17608, 17664), 'cifar10.Cifar10DataSet', 'cifar10.Cifar10DataSet', (['data_dir', 'subset', 'use_distortion'], {}), '(data_dir, subset, use_distortion)\n', (17630, 17664), False, 'import cifar10\n'), ((18172, 18219), 'tensorflow.unstack', 'tf.unstack', (['image_batch'], {'num': 'batch_size', 'axis': '(0)'}), '(image_batch, num=batch_size, axis=0)\n', (18182, 18219), True, 'import tensorflow as tf\n'), ((18242, 18289), 'tensorflow.unstack', 'tf.unstack', (['label_batch'], {'num': 'batch_size', 'axis': '(0)'}), '(label_batch, num=batch_size, axis=0)\n', (18252, 18289), True, 'import tensorflow as tf\n'), ((18419, 18437), 'six.moves.xrange', 'xrange', (['batch_size'], {}), '(batch_size)\n', (18425, 18437), False, 'from six.moves import xrange\n'), ((23323, 23529), 'cifar10_utils.RunConfig', 'cifar10_utils.RunConfig', ([], {'session_config': 'sess_config', 'model_dir': 'None', 'save_checkpoints_secs': 'None', 'save_checkpoints_steps': 'self.train_steps', 'keep_checkpoint_max': 'None', 'keep_checkpoint_every_n_hours': 'None'}), '(session_config=sess_config, model_dir=None,\n save_checkpoints_secs=None, save_checkpoints_steps=self.train_steps,\n keep_checkpoint_max=None, keep_checkpoint_every_n_hours=None)\n', (23346, 23529), False, 'import cifar10_utils\n'), ((24114, 24142), 'logging.getLogger', 'logging.getLogger', (['"""metrics"""'], {}), "('metrics')\n", (24131, 24142), False, 'import logging\n'), ((24209, 24243), 'logging.FileHandler', 'logging.FileHandler', (['args.log_path'], {}), '(args.log_path)\n', (24228, 24243), False, 'import logging\n'), ((25567, 25627), 'tensorflow.estimator.WarmStartSettings', 'tf.estimator.WarmStartSettings', ([], {'ckpt_to_initialize_from': 'path'}), '(ckpt_to_initialize_from=path)\n', (25597, 25627), True, 'import tensorflow as tf\n'), ((29154, 29223), 'ray.init', 'ray.init', ([], {'redis_address': 'args.ray_address', 'logging_level': 'logging.ERROR'}), '(redis_address=args.ray_address, logging_level=logging.ERROR)\n', (29162, 29223), False, 'import ray\n'), ((29242, 29252), 'ray.init', 'ray.init', ([], {}), '()\n', (29250, 29252), False, 'import ray\n'), ((29295, 29321), 'tensorflow.test.is_gpu_available', 'tf.test.is_gpu_available', ([], {}), '()\n', (29319, 29321), True, 'import tensorflow as tf\n'), ((5946, 5957), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (5955, 5957), False, 'import os\n'), ((10175, 10210), 'tensorflow.name_scope', 'tf.name_scope', (['"""gradient_averaging"""'], {}), "('gradient_averaging')\n", (10188, 10210), True, 'import tensorflow as tf\n'), ((10268, 10300), 'itertools.chain', 'itertools.chain', (['*tower_gradvars'], {}), '(*tower_gradvars)\n', (10283, 10300), False, 'import itertools\n'), ((10432, 10456), 'six.iteritems', 'six.iteritems', (['all_grads'], {}), '(all_grads)\n', (10445, 10456), False, 'import six\n'), ((11099, 11130), 'tensorflow.device', 'tf.device', (['consolidation_device'], {}), '(consolidation_device)\n', (11108, 11130), True, 'import tensorflow as tf\n'), ((11903, 11944), 'tensorflow.reduce_mean', 'tf.reduce_mean', (['tower_losses'], {'name': '"""loss"""'}), "(tower_losses, name='loss')\n", (11917, 11944), True, 'import tensorflow as tf\n'), ((14474, 14493), 'tensorflow.group', 'tf.group', (['*train_op'], {}), '(*train_op)\n', (14482, 14493), True, 'import tensorflow as tf\n'), ((14820, 14845), 'tensorflow.concat', 'tf.concat', (['labels'], {'axis': '(0)'}), '(labels, axis=0)\n', (14829, 14845), True, 'import tensorflow as tf\n'), ((18606, 18626), 'tensorflow.parallel_stack', 'tf.parallel_stack', (['x'], {}), '(x)\n', (18623, 18626), True, 'import tensorflow as tf\n'), ((18676, 18696), 'tensorflow.parallel_stack', 'tf.parallel_stack', (['x'], {}), '(x)\n', (18693, 18696), True, 'import tensorflow as tf\n'), ((23156, 23210), 'cifar10.Cifar10DataSet.num_examples_per_epoch', 'cifar10.Cifar10DataSet.num_examples_per_epoch', (['"""train"""'], {}), "('train')\n", (23201, 23210), False, 'import cifar10\n'), ((8198, 8260), 'cifar10_utils.local_device_setter', 'cifar10_utils.local_device_setter', ([], {'worker_device': 'worker_device'}), '(worker_device=worker_device)\n', (8231, 8260), False, 'import cifar10_utils\n'), ((11326, 11380), 'cifar10.Cifar10DataSet.num_examples_per_epoch', 'cifar10.Cifar10DataSet.num_examples_per_epoch', (['"""train"""'], {}), "('train')\n", (11371, 11380), False, 'import cifar10\n'), ((11819, 11845), 'tensorflow.train.get_global_step', 'tf.train.get_global_step', ([], {}), '()\n', (11843, 11845), True, 'import tensorflow as tf\n'), ((12615, 12689), 'tensorflow.train.MomentumOptimizer', 'tf.train.MomentumOptimizer', ([], {'learning_rate': 'learning_rate', 'momentum': 'momentum'}), '(learning_rate=learning_rate, momentum=momentum)\n', (12641, 12689), True, 'import tensorflow as tf\n'), ((13902, 13978), 'tensorflow.train.SyncReplicasOptimizer', 'tf.train.SyncReplicasOptimizer', (['optimizer'], {'replicas_to_aggregate': 'num_workers'}), '(optimizer, replicas_to_aggregate=num_workers)\n', (13932, 13978), True, 'import tensorflow as tf\n'), ((14550, 14604), 'tensorflow.concat', 'tf.concat', (["[p['classes'] for p in tower_preds]"], {'axis': '(0)'}), "([p['classes'] for p in tower_preds], axis=0)\n", (14559, 14604), True, 'import tensorflow as tf\n'), ((14677, 14737), 'tensorflow.concat', 'tf.concat', (["[p['probabilities'] for p in tower_preds]"], {'axis': '(0)'}), "([p['probabilities'] for p in tower_preds], axis=0)\n", (14686, 14737), True, 'import tensorflow as tf\n'), ((14898, 14957), 'tensorflow.metrics.accuracy', 'tf.metrics.accuracy', (['stacked_labels', "predictions['classes']"], {}), "(stacked_labels, predictions['classes'])\n", (14917, 14957), True, 'import tensorflow as tf\n'), ((16695, 16711), 'tensorflow.nn.l2_loss', 'tf.nn.l2_loss', (['v'], {}), '(v)\n', (16708, 16711), True, 'import tensorflow as tf\n'), ((21783, 21842), 'tensorflow.GPUOptions', 'tf.GPUOptions', ([], {'force_gpu_compatible': '(True)', 'allow_growth': '(True)'}), '(force_gpu_compatible=True, allow_growth=True)\n', (21796, 21842), True, 'import tensorflow as tf\n'), ((23981, 24049), 'tensorflow.contrib.training.HParams', 'tf.contrib.training.HParams', ([], {'is_chief': 'run_config.is_chief'}), '(is_chief=run_config.is_chief, **hparams)\n', (24008, 24049), True, 'import tensorflow as tf\n'), ((25971, 26044), 'tensorflow.contrib.training.HParams', 'tf.contrib.training.HParams', ([], {'is_chief': 'self.run_config.is_chief'}), '(is_chief=self.run_config.is_chief, **hparams)\n', (25998, 26044), True, 'import tensorflow as tf\n'), ((8783, 8812), 'tensorflow.name_scope', 'tf.name_scope', (["('tower_%d' % i)"], {}), "('tower_%d' % i)\n", (8796, 8812), True, 'import tensorflow as tf\n'), ((10590, 10611), 'tensorflow.device', 'tf.device', (['var.device'], {}), '(var.device)\n', (10599, 10611), True, 'import tensorflow as tf\n'), ((11578, 11618), 'numpy.array', 'np.array', (['[80, 120, 160]'], {'dtype': 'np.int64'}), '([80, 120, 160], dtype=np.int64)\n', (11586, 11618), True, 'import numpy as np\n'), ((12801, 12852), 'tensorflow.train.AdamOptimizer', 'tf.train.AdamOptimizer', ([], {'learning_rate': 'learning_rate'}), '(learning_rate=learning_rate)\n', (12823, 12852), True, 'import tensorflow as tf\n'), ((8853, 8877), 'tensorflow.device', 'tf.device', (['device_setter'], {}), '(device_setter)\n', (8862, 8877), True, 'import tensorflow as tf\n'), ((12929, 12983), 'tensorflow.train.AdagradOptimizer', 'tf.train.AdagradOptimizer', ([], {'learning_rate': 'learning_rate'}), '(learning_rate=learning_rate)\n', (12954, 12983), True, 'import tensorflow as tf\n'), ((14352, 14378), 'tensorflow.train.get_global_step', 'tf.train.get_global_step', ([], {}), '()\n', (14376, 14378), True, 'import tensorflow as tf\n'), ((8534, 8635), 'tensorflow.contrib.training.GreedyLoadBalancingStrategy', 'tf.contrib.training.GreedyLoadBalancingStrategy', (['num_gpus', 'tf.contrib.training.byte_size_load_fn'], {}), '(num_gpus, tf.contrib.\n training.byte_size_load_fn)\n', (8581, 8635), True, 'import tensorflow as tf\n'), ((9973, 10027), 'tensorflow.get_collection', 'tf.get_collection', (['tf.GraphKeys.UPDATE_OPS', 'name_scope'], {}), '(tf.GraphKeys.UPDATE_OPS, name_scope)\n', (9990, 10027), True, 'import tensorflow as tf\n'), ((10799, 10814), 'tensorflow.add_n', 'tf.add_n', (['grads'], {}), '(grads)\n', (10807, 10814), True, 'import tensorflow as tf\n'), ((13099, 13154), 'tensorflow.train.AdadeltaOptimizer', 'tf.train.AdadeltaOptimizer', ([], {'learning_rate': 'learning_rate'}), '(learning_rate=learning_rate)\n', (13125, 13154), True, 'import tensorflow as tf\n'), ((13265, 13327), 'tensorflow.train.GradientDescentOptimizer', 'tf.train.GradientDescentOptimizer', ([], {'learning_rate': 'learning_rate'}), '(learning_rate=learning_rate)\n', (13298, 13327), True, 'import tensorflow as tf\n'), ((13442, 13496), 'tensorflow.train.RMSPropOptimizer', 'tf.train.RMSPropOptimizer', ([], {'learning_rate': 'learning_rate'}), '(learning_rate=learning_rate)\n', (13467, 13496), True, 'import tensorflow as tf\n')]
import torch import cv2 as cv import numpy as np from sklearn.neighbors import NearestNeighbors from .model_utils import spread_feature def optimize_image_mask(image_mask, sp_image, nK=4, th=1e-2): mask_pts = image_mask.reshape(-1) xyz_pts = sp_image.reshape(-1, 3) xyz_pts = xyz_pts[mask_pts > 0.5, :] Neighbors = NearestNeighbors(n_neighbors=nK + 1, algorithm='kd_tree').fit(xyz_pts) nn_dist, nn_idx = Neighbors.kneighbors(xyz_pts) # N,nK nn_dist = nn_dist[:, 1:] valid = (np.sum((nn_dist < th).astype(np.float), axis=1) == nK).astype(np.float) optimized_mask = image_mask.reshape(-1) optimized_mask[mask_pts > 0.5] = valid optimized_mask = optimized_mask.reshape(image_mask.shape[0], image_mask.shape[1]) return optimized_mask def generate_final_mask(image_learned_uv, image_mask, image_resize_factor, mask_container_low_res, final_gim): """ Post Process Algorithm to generate mask of the unwrapped chart Parameters ---------- image_learned_uv: [H,W,2] image_mask: [H,W] image_resize_factor: float mask_container_low_res: a predefined tensor with intermediate low resolution final_gim: a predefined tensor with target high resolution """ # resize (larger) rgb and uv with Bi-linear up-sampling resized_uv = cv.resize(image_learned_uv, dsize=(image_resize_factor * image_learned_uv.shape[0], image_resize_factor * image_learned_uv.shape[1]), interpolation=cv.INTER_LINEAR) resized_mask = cv.resize(image_mask, dsize=(image_resize_factor * image_learned_uv.shape[0], image_resize_factor * image_learned_uv.shape[1]), interpolation=cv.INTER_LINEAR) resized_mask = (resized_mask > 0.5).astype(np.float) # use gradient to remove the edge discontinuous_mask_u = cv.Laplacian(image_learned_uv[..., 0], ddepth=cv.CV_32F) # small gradient map discontinuous_mask_v = cv.Laplacian(image_learned_uv[..., 1], ddepth=cv.CV_32F) # small gradient map # use the max and min in latent u and v to find the threshhold u_max = (image_learned_uv[..., 0] * image_mask).max() v_max = (image_learned_uv[..., 1] * image_mask).max() u_min = (image_learned_uv[..., 0] * image_mask + (1.0 - image_mask)).min() v_min = (image_learned_uv[..., 1] * image_mask + (1.0 - image_mask)).min() u_th = (u_max - u_min) / 30 v_th = (v_max - v_min) / 30 discontinuous_mask_u = (discontinuous_mask_u > u_th).astype(np.float) * image_mask discontinuous_mask_v = (discontinuous_mask_v > v_th).astype(np.float) * image_mask discontinuous_mask = ((discontinuous_mask_u + discontinuous_mask_v) > 0).astype(np.float) # use the mask to remove the boundary boundary_recovery_mask = (cv.Laplacian(image_mask, ddepth=cv.CV_32F) > 0.01).astype(np.float) discontinuous_mask = discontinuous_mask * (1.0 - boundary_recovery_mask) resized_discontinuous_mask = cv.resize(discontinuous_mask, dsize=(image_resize_factor * image_learned_uv.shape[0], image_resize_factor * image_learned_uv.shape[1]), interpolation=cv.INTER_NEAREST) # make the small mask & texture high_res_mask = torch.from_numpy(resized_mask * (1.0 - resized_discontinuous_mask)) \ .unsqueeze(0).unsqueeze(0).cuda().float() # 1,1,R,R high_res_uv = torch.from_numpy(resized_uv).permute(2, 0, 1).unsqueeze(0).cuda().float() low_res_mask = mask_container_low_res.cuda() low_res_mask = spread_feature(low_res_mask, high_res_uv, high_res_mask, high_res_mask) # use close to remove the holes in small mask and then resize low_res_mask_closed = low_res_mask.detach().cpu().squeeze(0).squeeze(0).numpy() # R,R close_k_size = int(final_gim.shape[2] / 100) close_kernel = cv.getStructuringElement(cv.MORPH_ELLIPSE, (close_k_size, close_k_size)) final_mask_np = cv.resize(low_res_mask_closed, dsize=(final_gim.shape[2], final_gim.shape[2]), interpolation=cv.INTER_NEAREST) # R,R,3 final_mask_np = (final_mask_np > 0).astype(np.float) final_mask_np = cv.morphologyEx(final_mask_np, cv.MORPH_OPEN, close_kernel) return final_mask_np def generate_texture(sp_image, full_gim, image_rgb, image_mask, final_mask_np, final_res, nK=4, th=1e-2): # prepare root and query points form the image and from the high-res chart root_xyz_np = sp_image.reshape(-1, 3) # H*W,3 root_rgb_np = image_rgb.reshape(-1, 3) # H*W,3 _image_mask = image_mask.reshape(-1) # H*W root_xyz_np = root_xyz_np[_image_mask > 0.5, :] # M,2 [0,1] root_rgb_np = root_rgb_np[_image_mask > 0.5, :] # M,3 [0,1] query_xyz_np = full_gim.reshape(-1, 3) # R*R,3 _final_mask_np = final_mask_np.reshape(-1) # R*R query_xyz_np = query_xyz_np[_final_mask_np > 0.5, :] # N,3 [0,1] # finding nearest root pixel points Neighbors = NearestNeighbors(n_neighbors=nK, algorithm='kd_tree').fit(root_xyz_np) nn_dist, nn_idx = Neighbors.kneighbors(query_xyz_np) # N,nK # optimize the gim mask valid = (nn_dist[:, 0] < th).astype(np.float) optimized_final_mask_np = final_mask_np.reshape(-1).copy() optimized_final_mask_np[_final_mask_np > 0.5] = valid optimized_final_mask_np = optimized_final_mask_np.reshape(final_mask_np.shape[0], final_mask_np.shape[1]) # do interpolation based on chart distance interpolation_weight = nn_dist.copy() interpolation_weight = 1 - interpolation_weight / np.sum(interpolation_weight, 1, keepdims=True) interpolation_weight = interpolation_weight / np.sum(interpolation_weight, 1, keepdims=True) query_rgb_np = np.zeros((query_xyz_np.shape[0], 3)) for kdx in range(nK): nn_color = root_rgb_np[nn_idx[:, kdx], :] query_rgb_np += nn_color * interpolation_weight[:, kdx][..., np.newaxis] final_texture_np = np.ones((final_res ** 2, 3)) final_texture_np[_final_mask_np > 0.5, :] = query_rgb_np final_texture_np = final_texture_np.reshape(final_res, final_res, 3) return final_texture_np, optimized_final_mask_np
[ "cv2.Laplacian", "numpy.ones", "torch.from_numpy", "cv2.morphologyEx", "numpy.zeros", "numpy.sum", "sklearn.neighbors.NearestNeighbors", "cv2.resize", "cv2.getStructuringElement" ]
[((1330, 1503), 'cv2.resize', 'cv.resize', (['image_learned_uv'], {'dsize': '(image_resize_factor * image_learned_uv.shape[0], image_resize_factor *\n image_learned_uv.shape[1])', 'interpolation': 'cv.INTER_LINEAR'}), '(image_learned_uv, dsize=(image_resize_factor * image_learned_uv.\n shape[0], image_resize_factor * image_learned_uv.shape[1]),\n interpolation=cv.INTER_LINEAR)\n', (1339, 1503), True, 'import cv2 as cv\n'), ((1593, 1761), 'cv2.resize', 'cv.resize', (['image_mask'], {'dsize': '(image_resize_factor * image_learned_uv.shape[0], image_resize_factor *\n image_learned_uv.shape[1])', 'interpolation': 'cv.INTER_LINEAR'}), '(image_mask, dsize=(image_resize_factor * image_learned_uv.shape[0\n ], image_resize_factor * image_learned_uv.shape[1]), interpolation=cv.\n INTER_LINEAR)\n', (1602, 1761), True, 'import cv2 as cv\n'), ((1951, 2007), 'cv2.Laplacian', 'cv.Laplacian', (['image_learned_uv[..., 0]'], {'ddepth': 'cv.CV_32F'}), '(image_learned_uv[..., 0], ddepth=cv.CV_32F)\n', (1963, 2007), True, 'import cv2 as cv\n'), ((2057, 2113), 'cv2.Laplacian', 'cv.Laplacian', (['image_learned_uv[..., 1]'], {'ddepth': 'cv.CV_32F'}), '(image_learned_uv[..., 1], ddepth=cv.CV_32F)\n', (2069, 2113), True, 'import cv2 as cv\n'), ((3059, 3235), 'cv2.resize', 'cv.resize', (['discontinuous_mask'], {'dsize': '(image_resize_factor * image_learned_uv.shape[0], image_resize_factor *\n image_learned_uv.shape[1])', 'interpolation': 'cv.INTER_NEAREST'}), '(discontinuous_mask, dsize=(image_resize_factor * image_learned_uv\n .shape[0], image_resize_factor * image_learned_uv.shape[1]),\n interpolation=cv.INTER_NEAREST)\n', (3068, 3235), True, 'import cv2 as cv\n'), ((4007, 4079), 'cv2.getStructuringElement', 'cv.getStructuringElement', (['cv.MORPH_ELLIPSE', '(close_k_size, close_k_size)'], {}), '(cv.MORPH_ELLIPSE, (close_k_size, close_k_size))\n', (4031, 4079), True, 'import cv2 as cv\n'), ((4100, 4215), 'cv2.resize', 'cv.resize', (['low_res_mask_closed'], {'dsize': '(final_gim.shape[2], final_gim.shape[2])', 'interpolation': 'cv.INTER_NEAREST'}), '(low_res_mask_closed, dsize=(final_gim.shape[2], final_gim.shape[2\n ]), interpolation=cv.INTER_NEAREST)\n', (4109, 4215), True, 'import cv2 as cv\n'), ((4385, 4444), 'cv2.morphologyEx', 'cv.morphologyEx', (['final_mask_np', 'cv.MORPH_OPEN', 'close_kernel'], {}), '(final_mask_np, cv.MORPH_OPEN, close_kernel)\n', (4400, 4444), True, 'import cv2 as cv\n'), ((5921, 5957), 'numpy.zeros', 'np.zeros', (['(query_xyz_np.shape[0], 3)'], {}), '((query_xyz_np.shape[0], 3))\n', (5929, 5957), True, 'import numpy as np\n'), ((6138, 6166), 'numpy.ones', 'np.ones', (['(final_res ** 2, 3)'], {}), '((final_res ** 2, 3))\n', (6145, 6166), True, 'import numpy as np\n'), ((5855, 5901), 'numpy.sum', 'np.sum', (['interpolation_weight', '(1)'], {'keepdims': '(True)'}), '(interpolation_weight, 1, keepdims=True)\n', (5861, 5901), True, 'import numpy as np\n'), ((332, 389), 'sklearn.neighbors.NearestNeighbors', 'NearestNeighbors', ([], {'n_neighbors': '(nK + 1)', 'algorithm': '"""kd_tree"""'}), "(n_neighbors=nK + 1, algorithm='kd_tree')\n", (348, 389), False, 'from sklearn.neighbors import NearestNeighbors\n'), ((5170, 5223), 'sklearn.neighbors.NearestNeighbors', 'NearestNeighbors', ([], {'n_neighbors': 'nK', 'algorithm': '"""kd_tree"""'}), "(n_neighbors=nK, algorithm='kd_tree')\n", (5186, 5223), False, 'from sklearn.neighbors import NearestNeighbors\n'), ((5758, 5804), 'numpy.sum', 'np.sum', (['interpolation_weight', '(1)'], {'keepdims': '(True)'}), '(interpolation_weight, 1, keepdims=True)\n', (5764, 5804), True, 'import numpy as np\n'), ((2881, 2923), 'cv2.Laplacian', 'cv.Laplacian', (['image_mask'], {'ddepth': 'cv.CV_32F'}), '(image_mask, ddepth=cv.CV_32F)\n', (2893, 2923), True, 'import cv2 as cv\n'), ((3419, 3486), 'torch.from_numpy', 'torch.from_numpy', (['(resized_mask * (1.0 - resized_discontinuous_mask))'], {}), '(resized_mask * (1.0 - resized_discontinuous_mask))\n', (3435, 3486), False, 'import torch\n'), ((3568, 3596), 'torch.from_numpy', 'torch.from_numpy', (['resized_uv'], {}), '(resized_uv)\n', (3584, 3596), False, 'import torch\n')]
import logging import os import numpy as np import torch if torch.cuda.is_available(): torch.backends.cudnn.enabled = True torch.backends.cudnn.benchmark = True torch.backends.cudnn.deterministic = True device = torch.device('cuda') else: device = torch.device('cpu') def _patch_noise_extend_to_img(noise, image_size=[3, 32, 32], patch_location='center'): c, h, w = image_size[0], image_size[1], image_size[2] mask = np.zeros((c, h, w), np.float32) x_len, y_len = noise.shape[1], noise.shape[2] if patch_location == 'center' or (h == w == x_len == y_len): x = h // 2 y = w // 2 elif patch_location == 'random': x = np.random.randint(x_len // 2, w - x_len // 2) y = np.random.randint(y_len // 2, h - y_len // 2) else: raise('Invalid patch location') x1 = np.clip(x - x_len // 2, 0, h) x2 = np.clip(x + x_len // 2, 0, h) y1 = np.clip(y - y_len // 2, 0, w) y2 = np.clip(y + y_len // 2, 0, w) mask[:, x1: x2, y1: y2] = noise return mask def setup_logger(name, log_file, level=logging.INFO): """To setup as many loggers as you want""" formatter = logging.Formatter('%(asctime)s %(message)s') console_handler = logging.StreamHandler() console_handler.setFormatter(formatter) file_handler = logging.FileHandler(log_file) file_handler.setFormatter(formatter) logger = logging.getLogger(name) logger.setLevel(level) logger.addHandler(file_handler) logger.addHandler(console_handler) return logger def log_display(epoch, global_step, time_elapse, **kwargs): display = 'epoch=' + str(epoch) + \ '\tglobal_step=' + str(global_step) for key, value in kwargs.items(): if type(value) == str: display = '\t' + key + '=' + value else: display += '\t' + str(key) + '=%.4f' % value display += '\ttime=%.2fit/s' % (1. / time_elapse) return display def accuracy(output, target, topk=(1,)): maxk = max(topk) batch_size = target.size(0) _, pred = output.topk(maxk, 1, True, True) pred = pred.t() correct = pred.eq(target.view(1, -1).expand_as(pred)) res = [] for k in topk: correct_k = correct[:k].view(-1).float().sum(0) res.append(correct_k.mul_(1/batch_size)) return res def save_model(filename, epoch, model, optimizer, scheduler, save_best=False, **kwargs): # Torch Save State Dict state = { 'epoch': epoch+1, 'model_state_dict': model.state_dict(), 'optimizer_state_dict': optimizer.state_dict(), 'scheduler_state_dict': scheduler.state_dict() if scheduler is not None else None } for key, value in kwargs.items(): state[key] = value torch.save(state, filename + '.pth') filename += '_best.pth' if save_best: torch.save(state, filename) return def load_model(filename, model, optimizer, scheduler, **kwargs): # Load Torch State Dict filename = filename + '.pth' checkpoints = torch.load(filename, map_location=device) model.load_state_dict(checkpoints['model_state_dict']) if optimizer is not None and checkpoints['optimizer_state_dict'] is not None: optimizer.load_state_dict(checkpoints['optimizer_state_dict']) if scheduler is not None and checkpoints['scheduler_state_dict'] is not None: scheduler.load_state_dict(checkpoints['scheduler_state_dict']) return checkpoints def count_parameters_in_MB(model): return sum(np.prod(v.size()) for name, v in model.named_parameters() if "auxiliary_head" not in name)/1e6 def build_dirs(path): if not os.path.exists(path): os.makedirs(path) return class AverageMeter(object): """Computes and stores the average and current value""" def __init__(self): self.reset() def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 self.max = 0 def update(self, val, n=1): self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count self.max = max(self.max, val) def onehot(size, target): vec = torch.zeros(size, dtype=torch.float32) vec[target] = 1. return vec def rand_bbox(size, lam): if len(size) == 4: W = size[2] H = size[3] elif len(size) == 3: W = size[1] H = size[2] else: raise Exception cut_rat = np.sqrt(1. - lam) cut_w = np.int(W * cut_rat) cut_h = np.int(H * cut_rat) # uniform cx = np.random.randint(W) cy = np.random.randint(H) bbx1 = np.clip(cx - cut_w // 2, 0, W) bby1 = np.clip(cy - cut_h // 2, 0, H) bbx2 = np.clip(cx + cut_w // 2, 0, W) bby2 = np.clip(cy + cut_h // 2, 0, H) return bbx1, bby1, bbx2, bby2
[ "numpy.clip", "logging.getLogger", "os.path.exists", "logging.StreamHandler", "numpy.sqrt", "os.makedirs", "logging.Formatter", "torch.load", "numpy.zeros", "torch.cuda.is_available", "logging.FileHandler", "numpy.random.randint", "torch.save", "numpy.int", "torch.zeros", "torch.device" ]
[((62, 87), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (85, 87), False, 'import torch\n'), ((230, 250), 'torch.device', 'torch.device', (['"""cuda"""'], {}), "('cuda')\n", (242, 250), False, 'import torch\n'), ((270, 289), 'torch.device', 'torch.device', (['"""cpu"""'], {}), "('cpu')\n", (282, 289), False, 'import torch\n'), ((449, 480), 'numpy.zeros', 'np.zeros', (['(c, h, w)', 'np.float32'], {}), '((c, h, w), np.float32)\n', (457, 480), True, 'import numpy as np\n'), ((848, 877), 'numpy.clip', 'np.clip', (['(x - x_len // 2)', '(0)', 'h'], {}), '(x - x_len // 2, 0, h)\n', (855, 877), True, 'import numpy as np\n'), ((887, 916), 'numpy.clip', 'np.clip', (['(x + x_len // 2)', '(0)', 'h'], {}), '(x + x_len // 2, 0, h)\n', (894, 916), True, 'import numpy as np\n'), ((926, 955), 'numpy.clip', 'np.clip', (['(y - y_len // 2)', '(0)', 'w'], {}), '(y - y_len // 2, 0, w)\n', (933, 955), True, 'import numpy as np\n'), ((965, 994), 'numpy.clip', 'np.clip', (['(y + y_len // 2)', '(0)', 'w'], {}), '(y + y_len // 2, 0, w)\n', (972, 994), True, 'import numpy as np\n'), ((1166, 1210), 'logging.Formatter', 'logging.Formatter', (['"""%(asctime)s %(message)s"""'], {}), "('%(asctime)s %(message)s')\n", (1183, 1210), False, 'import logging\n'), ((1233, 1256), 'logging.StreamHandler', 'logging.StreamHandler', ([], {}), '()\n', (1254, 1256), False, 'import logging\n'), ((1320, 1349), 'logging.FileHandler', 'logging.FileHandler', (['log_file'], {}), '(log_file)\n', (1339, 1349), False, 'import logging\n'), ((1404, 1427), 'logging.getLogger', 'logging.getLogger', (['name'], {}), '(name)\n', (1421, 1427), False, 'import logging\n'), ((2763, 2799), 'torch.save', 'torch.save', (['state', "(filename + '.pth')"], {}), "(state, filename + '.pth')\n", (2773, 2799), False, 'import torch\n'), ((3039, 3080), 'torch.load', 'torch.load', (['filename'], {'map_location': 'device'}), '(filename, map_location=device)\n', (3049, 3080), False, 'import torch\n'), ((4200, 4238), 'torch.zeros', 'torch.zeros', (['size'], {'dtype': 'torch.float32'}), '(size, dtype=torch.float32)\n', (4211, 4238), False, 'import torch\n'), ((4480, 4498), 'numpy.sqrt', 'np.sqrt', (['(1.0 - lam)'], {}), '(1.0 - lam)\n', (4487, 4498), True, 'import numpy as np\n'), ((4510, 4529), 'numpy.int', 'np.int', (['(W * cut_rat)'], {}), '(W * cut_rat)\n', (4516, 4529), True, 'import numpy as np\n'), ((4542, 4561), 'numpy.int', 'np.int', (['(H * cut_rat)'], {}), '(H * cut_rat)\n', (4548, 4561), True, 'import numpy as np\n'), ((4586, 4606), 'numpy.random.randint', 'np.random.randint', (['W'], {}), '(W)\n', (4603, 4606), True, 'import numpy as np\n'), ((4616, 4636), 'numpy.random.randint', 'np.random.randint', (['H'], {}), '(H)\n', (4633, 4636), True, 'import numpy as np\n'), ((4649, 4679), 'numpy.clip', 'np.clip', (['(cx - cut_w // 2)', '(0)', 'W'], {}), '(cx - cut_w // 2, 0, W)\n', (4656, 4679), True, 'import numpy as np\n'), ((4691, 4721), 'numpy.clip', 'np.clip', (['(cy - cut_h // 2)', '(0)', 'H'], {}), '(cy - cut_h // 2, 0, H)\n', (4698, 4721), True, 'import numpy as np\n'), ((4733, 4763), 'numpy.clip', 'np.clip', (['(cx + cut_w // 2)', '(0)', 'W'], {}), '(cx + cut_w // 2, 0, W)\n', (4740, 4763), True, 'import numpy as np\n'), ((4775, 4805), 'numpy.clip', 'np.clip', (['(cy + cut_h // 2)', '(0)', 'H'], {}), '(cy + cut_h // 2, 0, H)\n', (4782, 4805), True, 'import numpy as np\n'), ((2854, 2881), 'torch.save', 'torch.save', (['state', 'filename'], {}), '(state, filename)\n', (2864, 2881), False, 'import torch\n'), ((3651, 3671), 'os.path.exists', 'os.path.exists', (['path'], {}), '(path)\n', (3665, 3671), False, 'import os\n'), ((3681, 3698), 'os.makedirs', 'os.makedirs', (['path'], {}), '(path)\n', (3692, 3698), False, 'import os\n'), ((684, 729), 'numpy.random.randint', 'np.random.randint', (['(x_len // 2)', '(w - x_len // 2)'], {}), '(x_len // 2, w - x_len // 2)\n', (701, 729), True, 'import numpy as np\n'), ((742, 787), 'numpy.random.randint', 'np.random.randint', (['(y_len // 2)', '(h - y_len // 2)'], {}), '(y_len // 2, h - y_len // 2)\n', (759, 787), True, 'import numpy as np\n')]