code
stringlengths
31
1.05M
apis
list
extract_api
stringlengths
97
1.91M
#!/usr/bin/env python # # Copyright (C) 2018 Intel Corporation # # SPDX-License-Identifier: MIT from __future__ import absolute_import, division, print_function import argparse import os import glog as log import numpy as np import cv2 from lxml import etree from tqdm import tqdm def parse_args(): """Parse arguments of command line""" parser = argparse.ArgumentParser( fromfile_prefix_chars='@', description='Convert CVAT XML annotations to masks' ) parser.add_argument( '--cvat-xml', metavar='FILE', required=True, help='input file with CVAT annotation in xml format' ) parser.add_argument( '--background-color', metavar='COLOR_BGR', default="0,0,0", help='specify background color (by default: 0,0,0)' ) parser.add_argument( '--label-color', metavar='LABEL:COLOR_BGR', action='append', default=[], help="specify a label's color (e.g. 255 or 255,0,0). The color will " + "be interpreted in accordance with the mask format." ) parser.add_argument( '--mask-bitness', type=int, choices=[8, 24], default=8, help='choose bitness for masks' ) parser.add_argument( '--output-dir', metavar='DIRECTORY', required=True, help='directory for output masks' ) return parser.parse_args() def parse_anno_file(cvat_xml): root = etree.parse(cvat_xml).getroot() anno = [] for image_tag in root.iter('image'): image = {} for key, value in image_tag.items(): image[key] = value image['shapes'] = [] for poly_tag in image_tag.iter('polygon'): polygon = {'type': 'polygon'} for key, value in poly_tag.items(): polygon[key] = value image['shapes'].append(polygon) for box_tag in image_tag.iter('box'): box = {'type': 'box'} for key, value in box_tag.items(): box[key] = value box['points'] = "{0},{1};{2},{1};{2},{3};{0},{3}".format( box['xtl'], box['ytl'], box['xbr'], box['ybr']) image['shapes'].append(box) image['shapes'].sort(key=lambda x: int(x.get('z_order', 0))) anno.append(image) return anno def create_mask_file(mask_path, width, height, bitness, color_map, background, shapes): mask = np.zeros((height, width, bitness // 8), dtype=np.uint8) for shape in shapes: color = color_map.get(shape['label'], background) points = [tuple(map(float, p.split(','))) for p in shape['points'].split(';')] points = np.array([(int(p[0]), int(p[1])) for p in points]) mask = cv2.fillPoly(mask, [points], color=color) cv2.imwrite(mask_path, mask) def to_scalar(str, dim): scalar = list(map(int, str.split(','))) if len(scalar) < dim: scalar.extend([scalar[-1]] * dim) return tuple(scalar[0:dim]) def main(): args = parse_args() anno = parse_anno_file(args.cvat_xml) color_map = {} dim = args.mask_bitness // 8 for item in args.label_color: label, color = item.split(':') color_map[label] = to_scalar(color, dim) background = to_scalar(args.background_color, dim) for image in tqdm(anno, desc='Generate masks'): mask_path = os.path.join(args.output_dir, os.path.splitext(image['name'])[0] + '.png') mask_dir = os.path.dirname(mask_path) if mask_dir: os.makedirs(mask_dir, exist_ok=True) create_mask_file(mask_path, int(image['width']), int(image['height']), args.mask_bitness, color_map, background, image['shapes']) if __name__ == "__main__": main()
[ "cv2.imwrite", "cv2.fillPoly", "argparse.ArgumentParser", "os.makedirs", "tqdm.tqdm", "lxml.etree.parse", "os.path.splitext", "os.path.dirname", "numpy.zeros" ]
[((358, 466), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'fromfile_prefix_chars': '"""@"""', 'description': '"""Convert CVAT XML annotations to masks"""'}), "(fromfile_prefix_chars='@', description=\n 'Convert CVAT XML annotations to masks')\n", (381, 466), False, 'import argparse\n'), ((2382, 2437), 'numpy.zeros', 'np.zeros', (['(height, width, bitness // 8)'], {'dtype': 'np.uint8'}), '((height, width, bitness // 8), dtype=np.uint8)\n', (2390, 2437), True, 'import numpy as np\n'), ((2738, 2766), 'cv2.imwrite', 'cv2.imwrite', (['mask_path', 'mask'], {}), '(mask_path, mask)\n', (2749, 2766), False, 'import cv2\n'), ((3264, 3297), 'tqdm.tqdm', 'tqdm', (['anno'], {'desc': '"""Generate masks"""'}), "(anno, desc='Generate masks')\n", (3268, 3297), False, 'from tqdm import tqdm\n'), ((2692, 2733), 'cv2.fillPoly', 'cv2.fillPoly', (['mask', '[points]'], {'color': 'color'}), '(mask, [points], color=color)\n', (2704, 2733), False, 'import cv2\n'), ((3413, 3439), 'os.path.dirname', 'os.path.dirname', (['mask_path'], {}), '(mask_path)\n', (3428, 3439), False, 'import os\n'), ((1401, 1422), 'lxml.etree.parse', 'etree.parse', (['cvat_xml'], {}), '(cvat_xml)\n', (1412, 1422), False, 'from lxml import etree\n'), ((3473, 3509), 'os.makedirs', 'os.makedirs', (['mask_dir'], {'exist_ok': '(True)'}), '(mask_dir, exist_ok=True)\n', (3484, 3509), False, 'import os\n'), ((3349, 3380), 'os.path.splitext', 'os.path.splitext', (["image['name']"], {}), "(image['name'])\n", (3365, 3380), False, 'import os\n')]
# -*- coding: utf-8 -*- """Tests of GLSAR and diagnostics against Gretl Created on Thu Feb 02 21:15:47 2012 Author: <NAME> License: BSD-3 """ import os import numpy as np from numpy.testing import (assert_almost_equal, assert_equal, assert_allclose, assert_array_less) from statsmodels.regression.linear_model import OLS, GLSAR from statsmodels.tools.tools import add_constant from statsmodels.datasets import macrodata import statsmodels.stats.sandwich_covariance as sw import statsmodels.stats.diagnostic as smsdia import statsmodels.stats.outliers_influence as oi def compare_ftest(contrast_res, other, decimal=(5,4)): assert_almost_equal(contrast_res.fvalue, other[0], decimal=decimal[0]) assert_almost_equal(contrast_res.pvalue, other[1], decimal=decimal[1]) assert_equal(contrast_res.df_num, other[2]) assert_equal(contrast_res.df_denom, other[3]) assert_equal("f", other[4]) class TestGLSARGretl: def test_all(self): d = macrodata.load_pandas().data #import datasetswsm.greene as g #d = g.load('5-1') #growth rates gs_l_realinv = 400 * np.diff(np.log(d['realinv'].values)) gs_l_realgdp = 400 * np.diff(np.log(d['realgdp'].values)) #simple diff, not growthrate, I want heteroscedasticity later for testing endogd = np.diff(d['realinv']) exogd = add_constant(np.c_[np.diff(d['realgdp'].values), d['realint'][:-1].values]) endogg = gs_l_realinv exogg = add_constant(np.c_[gs_l_realgdp, d['realint'][:-1].values]) res_ols = OLS(endogg, exogg).fit() #print res_ols.params mod_g1 = GLSAR(endogg, exogg, rho=-0.108136) res_g1 = mod_g1.fit() #print res_g1.params mod_g2 = GLSAR(endogg, exogg, rho=-0.108136) #-0.1335859) from R res_g2 = mod_g2.iterative_fit(maxiter=5) #print res_g2.params rho = -0.108136 # coefficient std. error t-ratio p-value 95% CONFIDENCE INTERVAL partable = np.array([ [-9.50990, 0.990456, -9.602, 3.65e-018, -11.4631, -7.55670], # *** [ 4.37040, 0.208146, 21.00, 2.93e-052, 3.95993, 4.78086], # *** [-0.579253, 0.268009, -2.161, 0.0319, -1.10777, -0.0507346]]) # ** #Statistics based on the rho-differenced data: result_gretl_g1 = dict( endog_mean = ("Mean dependent var", 3.113973), endog_std = ("S.D. dependent var", 18.67447), ssr = ("Sum squared resid", 22530.90), mse_resid_sqrt = ("S.E. of regression", 10.66735), rsquared = ("R-squared", 0.676973), rsquared_adj = ("Adjusted R-squared", 0.673710), fvalue = ("F(2, 198)", 221.0475), f_pvalue = ("P-value(F)", 3.56e-51), resid_acf1 = ("rho", -0.003481), dw = ("Durbin-Watson", 1.993858)) #fstatistic, p-value, df1, df2 reset_2_3 = [5.219019, 0.00619, 2, 197, "f"] reset_2 = [7.268492, 0.00762, 1, 198, "f"] reset_3 = [5.248951, 0.023, 1, 198, "f"] #LM-statistic, p-value, df arch_4 = [7.30776, 0.120491, 4, "chi2"] #multicollinearity vif = [1.002, 1.002] cond_1norm = 6862.0664 determinant = 1.0296049e+009 reciprocal_condition_number = 0.013819244 #Chi-square(2): test-statistic, pvalue, df normality = [20.2792, 3.94837e-005, 2] #tests res = res_g1 #with rho from Gretl #basic assert_almost_equal(res.params, partable[:,0], 4) assert_almost_equal(res.bse, partable[:,1], 6) assert_almost_equal(res.tvalues, partable[:,2], 2) assert_almost_equal(res.ssr, result_gretl_g1['ssr'][1], decimal=2) #assert_almost_equal(res.llf, result_gretl_g1['llf'][1], decimal=7) #not in gretl #assert_almost_equal(res.rsquared, result_gretl_g1['rsquared'][1], decimal=7) #FAIL #assert_almost_equal(res.rsquared_adj, result_gretl_g1['rsquared_adj'][1], decimal=7) #FAIL assert_almost_equal(np.sqrt(res.mse_resid), result_gretl_g1['mse_resid_sqrt'][1], decimal=5) assert_almost_equal(res.fvalue, result_gretl_g1['fvalue'][1], decimal=4) assert_allclose(res.f_pvalue, result_gretl_g1['f_pvalue'][1], rtol=1e-2) #assert_almost_equal(res.durbin_watson, result_gretl_g1['dw'][1], decimal=7) #TODO #arch #sm_arch = smsdia.acorr_lm(res.wresid**2, maxlag=4, autolag=None) sm_arch = smsdia.het_arch(res.wresid, nlags=4) assert_almost_equal(sm_arch[0], arch_4[0], decimal=4) assert_almost_equal(sm_arch[1], arch_4[1], decimal=6) #tests res = res_g2 #with estimated rho #estimated lag coefficient assert_almost_equal(res.model.rho, rho, decimal=3) #basic assert_almost_equal(res.params, partable[:,0], 4) assert_almost_equal(res.bse, partable[:,1], 3) assert_almost_equal(res.tvalues, partable[:,2], 2) assert_almost_equal(res.ssr, result_gretl_g1['ssr'][1], decimal=2) #assert_almost_equal(res.llf, result_gretl_g1['llf'][1], decimal=7) #not in gretl #assert_almost_equal(res.rsquared, result_gretl_g1['rsquared'][1], decimal=7) #FAIL #assert_almost_equal(res.rsquared_adj, result_gretl_g1['rsquared_adj'][1], decimal=7) #FAIL assert_almost_equal(np.sqrt(res.mse_resid), result_gretl_g1['mse_resid_sqrt'][1], decimal=5) assert_almost_equal(res.fvalue, result_gretl_g1['fvalue'][1], decimal=0) assert_almost_equal(res.f_pvalue, result_gretl_g1['f_pvalue'][1], decimal=6) #assert_almost_equal(res.durbin_watson, result_gretl_g1['dw'][1], decimal=7) #TODO c = oi.reset_ramsey(res, degree=2) compare_ftest(c, reset_2, decimal=(2,4)) c = oi.reset_ramsey(res, degree=3) compare_ftest(c, reset_2_3, decimal=(2,4)) #arch #sm_arch = smsdia.acorr_lm(res.wresid**2, maxlag=4, autolag=None) sm_arch = smsdia.het_arch(res.wresid, nlags=4) assert_almost_equal(sm_arch[0], arch_4[0], decimal=1) assert_almost_equal(sm_arch[1], arch_4[1], decimal=2) ''' Performing iterative calculation of rho... ITER RHO ESS 1 -0.10734 22530.9 2 -0.10814 22530.9 Model 4: Cochrane-Orcutt, using observations 1959:3-2009:3 (T = 201) Dependent variable: ds_l_realinv rho = -0.108136 coefficient std. error t-ratio p-value ------------------------------------------------------------- const -9.50990 0.990456 -9.602 3.65e-018 *** ds_l_realgdp 4.37040 0.208146 21.00 2.93e-052 *** realint_1 -0.579253 0.268009 -2.161 0.0319 ** Statistics based on the rho-differenced data: Mean dependent var 3.113973 S.D. dependent var 18.67447 Sum squared resid 22530.90 S.E. of regression 10.66735 R-squared 0.676973 Adjusted R-squared 0.673710 F(2, 198) 221.0475 P-value(F) 3.56e-51 rho -0.003481 Durbin-Watson 1.993858 ''' ''' RESET test for specification (squares and cubes) Test statistic: F = 5.219019, with p-value = P(F(2,197) > 5.21902) = 0.00619 RESET test for specification (squares only) Test statistic: F = 7.268492, with p-value = P(F(1,198) > 7.26849) = 0.00762 RESET test for specification (cubes only) Test statistic: F = 5.248951, with p-value = P(F(1,198) > 5.24895) = 0.023: ''' ''' Test for ARCH of order 4 coefficient std. error t-ratio p-value -------------------------------------------------------- alpha(0) 97.0386 20.3234 4.775 3.56e-06 *** alpha(1) 0.176114 0.0714698 2.464 0.0146 ** alpha(2) -0.0488339 0.0724981 -0.6736 0.5014 alpha(3) -0.0705413 0.0737058 -0.9571 0.3397 alpha(4) 0.0384531 0.0725763 0.5298 0.5968 Null hypothesis: no ARCH effect is present Test statistic: LM = 7.30776 with p-value = P(Chi-square(4) > 7.30776) = 0.120491: ''' ''' Variance Inflation Factors Minimum possible value = 1.0 Values > 10.0 may indicate a collinearity problem ds_l_realgdp 1.002 realint_1 1.002 VIF(j) = 1/(1 - R(j)^2), where R(j) is the multiple correlation coefficient between variable j and the other independent variables Properties of matrix X'X: 1-norm = 6862.0664 Determinant = 1.0296049e+009 Reciprocal condition number = 0.013819244 ''' ''' Test for ARCH of order 4 - Null hypothesis: no ARCH effect is present Test statistic: LM = 7.30776 with p-value = P(Chi-square(4) > 7.30776) = 0.120491 Test of common factor restriction - Null hypothesis: restriction is acceptable Test statistic: F(2, 195) = 0.426391 with p-value = P(F(2, 195) > 0.426391) = 0.653468 Test for normality of residual - Null hypothesis: error is normally distributed Test statistic: Chi-square(2) = 20.2792 with p-value = 3.94837e-005: ''' #no idea what this is ''' Augmented regression for common factor test OLS, using observations 1959:3-2009:3 (T = 201) Dependent variable: ds_l_realinv coefficient std. error t-ratio p-value --------------------------------------------------------------- const -10.9481 1.35807 -8.062 7.44e-014 *** ds_l_realgdp 4.28893 0.229459 18.69 2.40e-045 *** realint_1 -0.662644 0.334872 -1.979 0.0492 ** ds_l_realinv_1 -0.108892 0.0715042 -1.523 0.1294 ds_l_realgdp_1 0.660443 0.390372 1.692 0.0923 * realint_2 0.0769695 0.341527 0.2254 0.8219 Sum of squared residuals = 22432.8 Test of common factor restriction Test statistic: F(2, 195) = 0.426391, with p-value = 0.653468 ''' ################ with OLS, HAC errors #Model 5: OLS, using observations 1959:2-2009:3 (T = 202) #Dependent variable: ds_l_realinv #HAC standard errors, bandwidth 4 (Bartlett kernel) #coefficient std. error t-ratio p-value 95% CONFIDENCE INTERVAL #for confidence interval t(199, 0.025) = 1.972 partable = np.array([ [-9.48167, 1.17709, -8.055, 7.17e-014, -11.8029, -7.16049], # *** [4.37422, 0.328787, 13.30, 2.62e-029, 3.72587, 5.02258], #*** [-0.613997, 0.293619, -2.091, 0.0378, -1.19300, -0.0349939]]) # ** result_gretl_g1 = dict( endog_mean = ("Mean dependent var", 3.257395), endog_std = ("S.D. dependent var", 18.73915), ssr = ("Sum squared resid", 22799.68), mse_resid_sqrt = ("S.E. of regression", 10.70380), rsquared = ("R-squared", 0.676978), rsquared_adj = ("Adjusted R-squared", 0.673731), fvalue = ("F(2, 199)", 90.79971), f_pvalue = ("P-value(F)", 9.53e-29), llf = ("Log-likelihood", -763.9752), aic = ("Akaike criterion", 1533.950), bic = ("Schwarz criterion", 1543.875), hqic = ("Hannan-Quinn", 1537.966), resid_acf1 = ("rho", -0.107341), dw = ("Durbin-Watson", 2.213805)) linear_logs = [1.68351, 0.430953, 2, "chi2"] #for logs: dropping 70 nan or incomplete observations, T=133 #(res_ols.model.exog <=0).any(1).sum() = 69 ?not 70 linear_squares = [7.52477, 0.0232283, 2, "chi2"] #Autocorrelation, Breusch-Godfrey test for autocorrelation up to order 4 lm_acorr4 = [1.17928, 0.321197, 4, 195, "F"] lm2_acorr4 = [4.771043, 0.312, 4, "chi2"] acorr_ljungbox4 = [5.23587, 0.264, 4, "chi2"] #break cusum_Harvey_Collier = [0.494432, 0.621549, 198, "t"] #stats.t.sf(0.494432, 198)*2 #see cusum results in files break_qlr = [3.01985, 0.1, 3, 196, "maxF"] #TODO check this, max at 2001:4 break_chow = [13.1897, 0.00424384, 3, "chi2"] # break at 1984:1 arch_4 = [3.43473, 0.487871, 4, "chi2"] normality = [23.962, 0.00001, 2, "chi2"] het_white = [33.503723, 0.000003, 5, "chi2"] het_breusch_pagan = [1.302014, 0.521520, 2, "chi2"] #TODO: not available het_breusch_pagan_konker = [0.709924, 0.701200, 2, "chi2"] reset_2_3 = [5.219019, 0.00619, 2, 197, "f"] reset_2 = [7.268492, 0.00762, 1, 198, "f"] reset_3 = [5.248951, 0.023, 1, 198, "f"] #not available cond_1norm = 5984.0525 determinant = 7.1087467e+008 reciprocal_condition_number = 0.013826504 vif = [1.001, 1.001] names = 'date residual leverage influence DFFITS'.split() cur_dir = os.path.abspath(os.path.dirname(__file__)) fpath = os.path.join(cur_dir, 'results/leverage_influence_ols_nostars.txt') lev = np.genfromtxt(fpath, skip_header=3, skip_footer=1, converters={0:lambda s: s}) #either numpy 1.6 or python 3.2 changed behavior if np.isnan(lev[-1]['f1']): lev = np.genfromtxt(fpath, skip_header=3, skip_footer=2, converters={0:lambda s: s}) lev.dtype.names = names res = res_ols #for easier copying cov_hac = sw.cov_hac_simple(res, nlags=4, use_correction=False) bse_hac = sw.se_cov(cov_hac) assert_almost_equal(res.params, partable[:,0], 5) assert_almost_equal(bse_hac, partable[:,1], 5) #TODO assert_almost_equal(res.ssr, result_gretl_g1['ssr'][1], decimal=2) assert_almost_equal(res.llf, result_gretl_g1['llf'][1], decimal=4) #not in gretl assert_almost_equal(res.rsquared, result_gretl_g1['rsquared'][1], decimal=6) #FAIL assert_almost_equal(res.rsquared_adj, result_gretl_g1['rsquared_adj'][1], decimal=6) #FAIL assert_almost_equal(np.sqrt(res.mse_resid), result_gretl_g1['mse_resid_sqrt'][1], decimal=5) #f-value is based on cov_hac I guess #res2 = res.get_robustcov_results(cov_type='HC1') # TODO: fvalue differs from Gretl, trying any of the HCx #assert_almost_equal(res2.fvalue, result_gretl_g1['fvalue'][1], decimal=0) #FAIL #assert_approx_equal(res.f_pvalue, result_gretl_g1['f_pvalue'][1], significant=1) #FAIL #assert_almost_equal(res.durbin_watson, result_gretl_g1['dw'][1], decimal=7) #TODO c = oi.reset_ramsey(res, degree=2) compare_ftest(c, reset_2, decimal=(6,5)) c = oi.reset_ramsey(res, degree=3) compare_ftest(c, reset_2_3, decimal=(6,5)) linear_sq = smsdia.linear_lm(res.resid, res.model.exog) assert_almost_equal(linear_sq[0], linear_squares[0], decimal=6) assert_almost_equal(linear_sq[1], linear_squares[1], decimal=7) hbpk = smsdia.het_breuschpagan(res.resid, res.model.exog) assert_almost_equal(hbpk[0], het_breusch_pagan_konker[0], decimal=6) assert_almost_equal(hbpk[1], het_breusch_pagan_konker[1], decimal=6) hw = smsdia.het_white(res.resid, res.model.exog) assert_almost_equal(hw[:2], het_white[:2], 6) #arch #sm_arch = smsdia.acorr_lm(res.resid**2, maxlag=4, autolag=None) sm_arch = smsdia.het_arch(res.resid, nlags=4) assert_almost_equal(sm_arch[0], arch_4[0], decimal=5) assert_almost_equal(sm_arch[1], arch_4[1], decimal=6) vif2 = [oi.variance_inflation_factor(res.model.exog, k) for k in [1,2]] infl = oi.OLSInfluence(res_ols) #print np.max(np.abs(lev['DFFITS'] - infl.dffits[0])) #print np.max(np.abs(lev['leverage'] - infl.hat_matrix_diag)) #print np.max(np.abs(lev['influence'] - infl.influence)) #just added this based on Gretl #just rough test, low decimal in Gretl output, assert_almost_equal(lev['residual'], res.resid, decimal=3) assert_almost_equal(lev['DFFITS'], infl.dffits[0], decimal=3) assert_almost_equal(lev['leverage'], infl.hat_matrix_diag, decimal=3) assert_almost_equal(lev['influence'], infl.influence, decimal=4) def test_GLSARlag(): #test that results for lag>1 is close to lag=1, and smaller ssr from statsmodels.datasets import macrodata d2 = macrodata.load_pandas().data g_gdp = 400*np.diff(np.log(d2['realgdp'].values)) g_inv = 400*np.diff(np.log(d2['realinv'].values)) exogg = add_constant(np.c_[g_gdp, d2['realint'][:-1].values], prepend=False) mod1 = GLSAR(g_inv, exogg, 1) res1 = mod1.iterative_fit(5) mod4 = GLSAR(g_inv, exogg, 4) res4 = mod4.iterative_fit(10) assert_array_less(np.abs(res1.params / res4.params - 1), 0.03) assert_array_less(res4.ssr, res1.ssr) assert_array_less(np.abs(res4.bse / res1.bse) - 1, 0.015) assert_array_less(np.abs((res4.fittedvalues / res1.fittedvalues - 1).mean()), 0.015) assert_equal(len(mod4.rho), 4) if __name__ == '__main__': t = TestGLSARGretl() t.test_all() ''' Model 5: OLS, using observations 1959:2-2009:3 (T = 202) Dependent variable: ds_l_realinv HAC standard errors, bandwidth 4 (Bartlett kernel) coefficient std. error t-ratio p-value ------------------------------------------------------------- const -9.48167 1.17709 -8.055 7.17e-014 *** ds_l_realgdp 4.37422 0.328787 13.30 2.62e-029 *** realint_1 -0.613997 0.293619 -2.091 0.0378 ** Mean dependent var 3.257395 S.D. dependent var 18.73915 Sum squared resid 22799.68 S.E. of regression 10.70380 R-squared 0.676978 Adjusted R-squared 0.673731 F(2, 199) 90.79971 P-value(F) 9.53e-29 Log-likelihood -763.9752 Akaike criterion 1533.950 Schwarz criterion 1543.875 Hannan-Quinn 1537.966 rho -0.107341 Durbin-Watson 2.213805 QLR test for structural break - Null hypothesis: no structural break Test statistic: max F(3, 196) = 3.01985 at observation 2001:4 (10 percent critical value = 4.09) Non-linearity test (logs) - Null hypothesis: relationship is linear Test statistic: LM = 1.68351 with p-value = P(Chi-square(2) > 1.68351) = 0.430953 Non-linearity test (squares) - Null hypothesis: relationship is linear Test statistic: LM = 7.52477 with p-value = P(Chi-square(2) > 7.52477) = 0.0232283 LM test for autocorrelation up to order 4 - Null hypothesis: no autocorrelation Test statistic: LMF = 1.17928 with p-value = P(F(4,195) > 1.17928) = 0.321197 CUSUM test for parameter stability - Null hypothesis: no change in parameters Test statistic: Harvey-Collier t(198) = 0.494432 with p-value = P(t(198) > 0.494432) = 0.621549 Chow test for structural break at observation 1984:1 - Null hypothesis: no structural break Asymptotic test statistic: Chi-square(3) = 13.1897 with p-value = 0.00424384 Test for ARCH of order 4 - Null hypothesis: no ARCH effect is present Test statistic: LM = 3.43473 with p-value = P(Chi-square(4) > 3.43473) = 0.487871: #ANOVA Analysis of Variance: Sum of squares df Mean square Regression 47782.7 2 23891.3 Residual 22799.7 199 114.571 Total 70582.3 201 351.156 R^2 = 47782.7 / 70582.3 = 0.676978 F(2, 199) = 23891.3 / 114.571 = 208.528 [p-value 1.47e-049] #LM-test autocorrelation Breusch-Godfrey test for autocorrelation up to order 4 OLS, using observations 1959:2-2009:3 (T = 202) Dependent variable: uhat coefficient std. error t-ratio p-value ------------------------------------------------------------ const 0.0640964 1.06719 0.06006 0.9522 ds_l_realgdp -0.0456010 0.217377 -0.2098 0.8341 realint_1 0.0511769 0.293136 0.1746 0.8616 uhat_1 -0.104707 0.0719948 -1.454 0.1475 uhat_2 -0.00898483 0.0742817 -0.1210 0.9039 uhat_3 0.0837332 0.0735015 1.139 0.2560 uhat_4 -0.0636242 0.0737363 -0.8629 0.3893 Unadjusted R-squared = 0.023619 Test statistic: LMF = 1.179281, with p-value = P(F(4,195) > 1.17928) = 0.321 Alternative statistic: TR^2 = 4.771043, with p-value = P(Chi-square(4) > 4.77104) = 0.312 Ljung-Box Q' = 5.23587, with p-value = P(Chi-square(4) > 5.23587) = 0.264: RESET test for specification (squares and cubes) Test statistic: F = 5.219019, with p-value = P(F(2,197) > 5.21902) = 0.00619 RESET test for specification (squares only) Test statistic: F = 7.268492, with p-value = P(F(1,198) > 7.26849) = 0.00762 RESET test for specification (cubes only) Test statistic: F = 5.248951, with p-value = P(F(1,198) > 5.24895) = 0.023 #heteroscedasticity White White's test for heteroskedasticity OLS, using observations 1959:2-2009:3 (T = 202) Dependent variable: uhat^2 coefficient std. error t-ratio p-value ------------------------------------------------------------- const 104.920 21.5848 4.861 2.39e-06 *** ds_l_realgdp -29.7040 6.24983 -4.753 3.88e-06 *** realint_1 -6.93102 6.95607 -0.9964 0.3203 sq_ds_l_realg 4.12054 0.684920 6.016 8.62e-09 *** X2_X3 2.89685 1.38571 2.091 0.0379 ** sq_realint_1 0.662135 1.10919 0.5970 0.5512 Unadjusted R-squared = 0.165860 Test statistic: TR^2 = 33.503723, with p-value = P(Chi-square(5) > 33.503723) = 0.000003: #heteroscedasticity Breusch-Pagan (original) Breusch-Pagan test for heteroskedasticity OLS, using observations 1959:2-2009:3 (T = 202) Dependent variable: scaled uhat^2 coefficient std. error t-ratio p-value ------------------------------------------------------------- const 1.09468 0.192281 5.693 4.43e-08 *** ds_l_realgdp -0.0323119 0.0386353 -0.8363 0.4040 realint_1 0.00410778 0.0512274 0.08019 0.9362 Explained sum of squares = 2.60403 Test statistic: LM = 1.302014, with p-value = P(Chi-square(2) > 1.302014) = 0.521520 #heteroscedasticity Breusch-Pagan Koenker Breusch-Pagan test for heteroskedasticity OLS, using observations 1959:2-2009:3 (T = 202) Dependent variable: scaled uhat^2 (Koenker robust variant) coefficient std. error t-ratio p-value ------------------------------------------------------------ const 10.6870 21.7027 0.4924 0.6230 ds_l_realgdp -3.64704 4.36075 -0.8363 0.4040 realint_1 0.463643 5.78202 0.08019 0.9362 Explained sum of squares = 33174.2 Test statistic: LM = 0.709924, with p-value = P(Chi-square(2) > 0.709924) = 0.701200 ########## forecast #forecast mean y For 95% confidence intervals, t(199, 0.025) = 1.972 Obs ds_l_realinv prediction std. error 95% interval 2008:3 -7.134492 -17.177905 2.946312 -22.987904 - -11.367905 2008:4 -27.665860 -36.294434 3.036851 -42.282972 - -30.305896 2009:1 -70.239280 -44.018178 4.007017 -51.919841 - -36.116516 2009:2 -27.024588 -12.284842 1.427414 -15.099640 - -9.470044 2009:3 8.078897 4.483669 1.315876 1.888819 - 7.078520 Forecast evaluation statistics Mean Error -3.7387 Mean Squared Error 218.61 Root Mean Squared Error 14.785 Mean Absolute Error 12.646 Mean Percentage Error -7.1173 Mean Absolute Percentage Error -43.867 Theil's U 0.4365 Bias proportion, UM 0.06394 Regression proportion, UR 0.13557 Disturbance proportion, UD 0.80049 #forecast actual y For 95% confidence intervals, t(199, 0.025) = 1.972 Obs ds_l_realinv prediction std. error 95% interval 2008:3 -7.134492 -17.177905 11.101892 -39.070353 - 4.714544 2008:4 -27.665860 -36.294434 11.126262 -58.234939 - -14.353928 2009:1 -70.239280 -44.018178 11.429236 -66.556135 - -21.480222 2009:2 -27.024588 -12.284842 10.798554 -33.579120 - 9.009436 2009:3 8.078897 4.483669 10.784377 -16.782652 - 25.749991 Forecast evaluation statistics Mean Error -3.7387 Mean Squared Error 218.61 Root Mean Squared Error 14.785 Mean Absolute Error 12.646 Mean Percentage Error -7.1173 Mean Absolute Percentage Error -43.867 Theil's U 0.4365 Bias proportion, UM 0.06394 Regression proportion, UR 0.13557 Disturbance proportion, UD 0.80049 '''
[ "numpy.sqrt", "numpy.testing.assert_equal", "numpy.log", "statsmodels.stats.diagnostic.het_white", "numpy.array", "numpy.genfromtxt", "statsmodels.stats.diagnostic.het_breuschpagan", "numpy.testing.assert_array_less", "statsmodels.stats.outliers_influence.OLSInfluence", "numpy.testing.assert_allclose", "statsmodels.stats.outliers_influence.reset_ramsey", "numpy.diff", "numpy.testing.assert_almost_equal", "statsmodels.regression.linear_model.OLS", "statsmodels.regression.linear_model.GLSAR", "statsmodels.tools.tools.add_constant", "numpy.abs", "statsmodels.stats.sandwich_covariance.cov_hac_simple", "os.path.dirname", "statsmodels.stats.outliers_influence.variance_inflation_factor", "numpy.isnan", "statsmodels.datasets.macrodata.load_pandas", "statsmodels.stats.diagnostic.linear_lm", "statsmodels.stats.diagnostic.het_arch", "os.path.join", "statsmodels.stats.sandwich_covariance.se_cov" ]
[((662, 732), 'numpy.testing.assert_almost_equal', 'assert_almost_equal', (['contrast_res.fvalue', 'other[0]'], {'decimal': 'decimal[0]'}), '(contrast_res.fvalue, other[0], decimal=decimal[0])\n', (681, 732), False, 'from numpy.testing import assert_almost_equal, assert_equal, assert_allclose, assert_array_less\n'), ((737, 807), 'numpy.testing.assert_almost_equal', 'assert_almost_equal', (['contrast_res.pvalue', 'other[1]'], {'decimal': 'decimal[1]'}), '(contrast_res.pvalue, other[1], decimal=decimal[1])\n', (756, 807), False, 'from numpy.testing import assert_almost_equal, assert_equal, assert_allclose, assert_array_less\n'), ((812, 855), 'numpy.testing.assert_equal', 'assert_equal', (['contrast_res.df_num', 'other[2]'], {}), '(contrast_res.df_num, other[2])\n', (824, 855), False, 'from numpy.testing import assert_almost_equal, assert_equal, assert_allclose, assert_array_less\n'), ((860, 905), 'numpy.testing.assert_equal', 'assert_equal', (['contrast_res.df_denom', 'other[3]'], {}), '(contrast_res.df_denom, other[3])\n', (872, 905), False, 'from numpy.testing import assert_almost_equal, assert_equal, assert_allclose, assert_array_less\n'), ((910, 937), 'numpy.testing.assert_equal', 'assert_equal', (['"""f"""', 'other[4]'], {}), "('f', other[4])\n", (922, 937), False, 'from numpy.testing import assert_almost_equal, assert_equal, assert_allclose, assert_array_less\n'), ((17494, 17562), 'statsmodels.tools.tools.add_constant', 'add_constant', (["np.c_[g_gdp, d2['realint'][:-1].values]"], {'prepend': '(False)'}), "(np.c_[g_gdp, d2['realint'][:-1].values], prepend=False)\n", (17506, 17562), False, 'from statsmodels.tools.tools import add_constant\n'), ((17575, 17597), 'statsmodels.regression.linear_model.GLSAR', 'GLSAR', (['g_inv', 'exogg', '(1)'], {}), '(g_inv, exogg, 1)\n', (17580, 17597), False, 'from statsmodels.regression.linear_model import OLS, GLSAR\n'), ((17643, 17665), 'statsmodels.regression.linear_model.GLSAR', 'GLSAR', (['g_inv', 'exogg', '(4)'], {}), '(g_inv, exogg, 4)\n', (17648, 17665), False, 'from statsmodels.regression.linear_model import OLS, GLSAR\n'), ((17772, 17809), 'numpy.testing.assert_array_less', 'assert_array_less', (['res4.ssr', 'res1.ssr'], {}), '(res4.ssr, res1.ssr)\n', (17789, 17809), False, 'from numpy.testing import assert_almost_equal, assert_equal, assert_allclose, assert_array_less\n'), ((1351, 1372), 'numpy.diff', 'np.diff', (["d['realinv']"], {}), "(d['realinv'])\n", (1358, 1372), True, 'import numpy as np\n'), ((1512, 1571), 'statsmodels.tools.tools.add_constant', 'add_constant', (["np.c_[gs_l_realgdp, d['realint'][:-1].values]"], {}), "(np.c_[gs_l_realgdp, d['realint'][:-1].values])\n", (1524, 1571), False, 'from statsmodels.tools.tools import add_constant\n'), ((1664, 1699), 'statsmodels.regression.linear_model.GLSAR', 'GLSAR', (['endogg', 'exogg'], {'rho': '(-0.108136)'}), '(endogg, exogg, rho=-0.108136)\n', (1669, 1699), False, 'from statsmodels.regression.linear_model import OLS, GLSAR\n'), ((1777, 1812), 'statsmodels.regression.linear_model.GLSAR', 'GLSAR', (['endogg', 'exogg'], {'rho': '(-0.108136)'}), '(endogg, exogg, rho=-0.108136)\n', (1782, 1812), False, 'from statsmodels.regression.linear_model import OLS, GLSAR\n'), ((2055, 2247), 'numpy.array', 'np.array', (['[[-9.5099, 0.990456, -9.602, 3.65e-18, -11.4631, -7.5567], [4.3704, \n 0.208146, 21.0, 2.93e-52, 3.95993, 4.78086], [-0.579253, 0.268009, -\n 2.161, 0.0319, -1.10777, -0.0507346]]'], {}), '([[-9.5099, 0.990456, -9.602, 3.65e-18, -11.4631, -7.5567], [4.3704,\n 0.208146, 21.0, 2.93e-52, 3.95993, 4.78086], [-0.579253, 0.268009, -\n 2.161, 0.0319, -1.10777, -0.0507346]])\n', (2063, 2247), True, 'import numpy as np\n'), ((3619, 3669), 'numpy.testing.assert_almost_equal', 'assert_almost_equal', (['res.params', 'partable[:, 0]', '(4)'], {}), '(res.params, partable[:, 0], 4)\n', (3638, 3669), False, 'from numpy.testing import assert_almost_equal, assert_equal, assert_allclose, assert_array_less\n'), ((3677, 3724), 'numpy.testing.assert_almost_equal', 'assert_almost_equal', (['res.bse', 'partable[:, 1]', '(6)'], {}), '(res.bse, partable[:, 1], 6)\n', (3696, 3724), False, 'from numpy.testing import assert_almost_equal, assert_equal, assert_allclose, assert_array_less\n'), ((3732, 3783), 'numpy.testing.assert_almost_equal', 'assert_almost_equal', (['res.tvalues', 'partable[:, 2]', '(2)'], {}), '(res.tvalues, partable[:, 2], 2)\n', (3751, 3783), False, 'from numpy.testing import assert_almost_equal, assert_equal, assert_allclose, assert_array_less\n'), ((3792, 3858), 'numpy.testing.assert_almost_equal', 'assert_almost_equal', (['res.ssr', "result_gretl_g1['ssr'][1]"], {'decimal': '(2)'}), "(res.ssr, result_gretl_g1['ssr'][1], decimal=2)\n", (3811, 3858), False, 'from numpy.testing import assert_almost_equal, assert_equal, assert_allclose, assert_array_less\n'), ((4250, 4322), 'numpy.testing.assert_almost_equal', 'assert_almost_equal', (['res.fvalue', "result_gretl_g1['fvalue'][1]"], {'decimal': '(4)'}), "(res.fvalue, result_gretl_g1['fvalue'][1], decimal=4)\n", (4269, 4322), False, 'from numpy.testing import assert_almost_equal, assert_equal, assert_allclose, assert_array_less\n'), ((4331, 4403), 'numpy.testing.assert_allclose', 'assert_allclose', (['res.f_pvalue', "result_gretl_g1['f_pvalue'][1]"], {'rtol': '(0.01)'}), "(res.f_pvalue, result_gretl_g1['f_pvalue'][1], rtol=0.01)\n", (4346, 4403), False, 'from numpy.testing import assert_almost_equal, assert_equal, assert_allclose, assert_array_less\n'), ((4650, 4686), 'statsmodels.stats.diagnostic.het_arch', 'smsdia.het_arch', (['res.wresid'], {'nlags': '(4)'}), '(res.wresid, nlags=4)\n', (4665, 4686), True, 'import statsmodels.stats.diagnostic as smsdia\n'), ((4695, 4748), 'numpy.testing.assert_almost_equal', 'assert_almost_equal', (['sm_arch[0]', 'arch_4[0]'], {'decimal': '(4)'}), '(sm_arch[0], arch_4[0], decimal=4)\n', (4714, 4748), False, 'from numpy.testing import assert_almost_equal, assert_equal, assert_allclose, assert_array_less\n'), ((4757, 4810), 'numpy.testing.assert_almost_equal', 'assert_almost_equal', (['sm_arch[1]', 'arch_4[1]'], {'decimal': '(6)'}), '(sm_arch[1], arch_4[1], decimal=6)\n', (4776, 4810), False, 'from numpy.testing import assert_almost_equal, assert_equal, assert_allclose, assert_array_less\n'), ((4912, 4962), 'numpy.testing.assert_almost_equal', 'assert_almost_equal', (['res.model.rho', 'rho'], {'decimal': '(3)'}), '(res.model.rho, rho, decimal=3)\n', (4931, 4962), False, 'from numpy.testing import assert_almost_equal, assert_equal, assert_allclose, assert_array_less\n'), ((4987, 5037), 'numpy.testing.assert_almost_equal', 'assert_almost_equal', (['res.params', 'partable[:, 0]', '(4)'], {}), '(res.params, partable[:, 0], 4)\n', (5006, 5037), False, 'from numpy.testing import assert_almost_equal, assert_equal, assert_allclose, assert_array_less\n'), ((5045, 5092), 'numpy.testing.assert_almost_equal', 'assert_almost_equal', (['res.bse', 'partable[:, 1]', '(3)'], {}), '(res.bse, partable[:, 1], 3)\n', (5064, 5092), False, 'from numpy.testing import assert_almost_equal, assert_equal, assert_allclose, assert_array_less\n'), ((5100, 5151), 'numpy.testing.assert_almost_equal', 'assert_almost_equal', (['res.tvalues', 'partable[:, 2]', '(2)'], {}), '(res.tvalues, partable[:, 2], 2)\n', (5119, 5151), False, 'from numpy.testing import assert_almost_equal, assert_equal, assert_allclose, assert_array_less\n'), ((5160, 5226), 'numpy.testing.assert_almost_equal', 'assert_almost_equal', (['res.ssr', "result_gretl_g1['ssr'][1]"], {'decimal': '(2)'}), "(res.ssr, result_gretl_g1['ssr'][1], decimal=2)\n", (5179, 5226), False, 'from numpy.testing import assert_almost_equal, assert_equal, assert_allclose, assert_array_less\n'), ((5618, 5690), 'numpy.testing.assert_almost_equal', 'assert_almost_equal', (['res.fvalue', "result_gretl_g1['fvalue'][1]"], {'decimal': '(0)'}), "(res.fvalue, result_gretl_g1['fvalue'][1], decimal=0)\n", (5637, 5690), False, 'from numpy.testing import assert_almost_equal, assert_equal, assert_allclose, assert_array_less\n'), ((5699, 5775), 'numpy.testing.assert_almost_equal', 'assert_almost_equal', (['res.f_pvalue', "result_gretl_g1['f_pvalue'][1]"], {'decimal': '(6)'}), "(res.f_pvalue, result_gretl_g1['f_pvalue'][1], decimal=6)\n", (5718, 5775), False, 'from numpy.testing import assert_almost_equal, assert_equal, assert_allclose, assert_array_less\n'), ((5882, 5912), 'statsmodels.stats.outliers_influence.reset_ramsey', 'oi.reset_ramsey', (['res'], {'degree': '(2)'}), '(res, degree=2)\n', (5897, 5912), True, 'import statsmodels.stats.outliers_influence as oi\n'), ((5974, 6004), 'statsmodels.stats.outliers_influence.reset_ramsey', 'oi.reset_ramsey', (['res'], {'degree': '(3)'}), '(res, degree=3)\n', (5989, 6004), True, 'import statsmodels.stats.outliers_influence as oi\n'), ((6163, 6199), 'statsmodels.stats.diagnostic.het_arch', 'smsdia.het_arch', (['res.wresid'], {'nlags': '(4)'}), '(res.wresid, nlags=4)\n', (6178, 6199), True, 'import statsmodels.stats.diagnostic as smsdia\n'), ((6208, 6261), 'numpy.testing.assert_almost_equal', 'assert_almost_equal', (['sm_arch[0]', 'arch_4[0]'], {'decimal': '(1)'}), '(sm_arch[0], arch_4[0], decimal=1)\n', (6227, 6261), False, 'from numpy.testing import assert_almost_equal, assert_equal, assert_allclose, assert_array_less\n'), ((6270, 6323), 'numpy.testing.assert_almost_equal', 'assert_almost_equal', (['sm_arch[1]', 'arch_4[1]'], {'decimal': '(2)'}), '(sm_arch[1], arch_4[1], decimal=2)\n', (6289, 6323), False, 'from numpy.testing import assert_almost_equal, assert_equal, assert_allclose, assert_array_less\n'), ((11095, 11288), 'numpy.array', 'np.array', (['[[-9.48167, 1.17709, -8.055, 7.17e-14, -11.8029, -7.16049], [4.37422, \n 0.328787, 13.3, 2.62e-29, 3.72587, 5.02258], [-0.613997, 0.293619, -\n 2.091, 0.0378, -1.193, -0.0349939]]'], {}), '([[-9.48167, 1.17709, -8.055, 7.17e-14, -11.8029, -7.16049], [\n 4.37422, 0.328787, 13.3, 2.62e-29, 3.72587, 5.02258], [-0.613997, \n 0.293619, -2.091, 0.0378, -1.193, -0.0349939]])\n', (11103, 11288), True, 'import numpy as np\n'), ((13880, 13947), 'os.path.join', 'os.path.join', (['cur_dir', '"""results/leverage_influence_ols_nostars.txt"""'], {}), "(cur_dir, 'results/leverage_influence_ols_nostars.txt')\n", (13892, 13947), False, 'import os\n'), ((13962, 14047), 'numpy.genfromtxt', 'np.genfromtxt', (['fpath'], {'skip_header': '(3)', 'skip_footer': '(1)', 'converters': '{(0): lambda s: s}'}), '(fpath, skip_header=3, skip_footer=1, converters={(0): lambda\n s: s})\n', (13975, 14047), True, 'import numpy as np\n'), ((14137, 14160), 'numpy.isnan', 'np.isnan', (["lev[-1]['f1']"], {}), "(lev[-1]['f1'])\n", (14145, 14160), True, 'import numpy as np\n'), ((14386, 14439), 'statsmodels.stats.sandwich_covariance.cov_hac_simple', 'sw.cov_hac_simple', (['res'], {'nlags': '(4)', 'use_correction': '(False)'}), '(res, nlags=4, use_correction=False)\n', (14403, 14439), True, 'import statsmodels.stats.sandwich_covariance as sw\n'), ((14459, 14477), 'statsmodels.stats.sandwich_covariance.se_cov', 'sw.se_cov', (['cov_hac'], {}), '(cov_hac)\n', (14468, 14477), True, 'import statsmodels.stats.sandwich_covariance as sw\n'), ((14487, 14537), 'numpy.testing.assert_almost_equal', 'assert_almost_equal', (['res.params', 'partable[:, 0]', '(5)'], {}), '(res.params, partable[:, 0], 5)\n', (14506, 14537), False, 'from numpy.testing import assert_almost_equal, assert_equal, assert_allclose, assert_array_less\n'), ((14545, 14592), 'numpy.testing.assert_almost_equal', 'assert_almost_equal', (['bse_hac', 'partable[:, 1]', '(5)'], {}), '(bse_hac, partable[:, 1], 5)\n', (14564, 14592), False, 'from numpy.testing import assert_almost_equal, assert_equal, assert_allclose, assert_array_less\n'), ((14615, 14681), 'numpy.testing.assert_almost_equal', 'assert_almost_equal', (['res.ssr', "result_gretl_g1['ssr'][1]"], {'decimal': '(2)'}), "(res.ssr, result_gretl_g1['ssr'][1], decimal=2)\n", (14634, 14681), False, 'from numpy.testing import assert_almost_equal, assert_equal, assert_allclose, assert_array_less\n'), ((14690, 14756), 'numpy.testing.assert_almost_equal', 'assert_almost_equal', (['res.llf', "result_gretl_g1['llf'][1]"], {'decimal': '(4)'}), "(res.llf, result_gretl_g1['llf'][1], decimal=4)\n", (14709, 14756), False, 'from numpy.testing import assert_almost_equal, assert_equal, assert_allclose, assert_array_less\n'), ((14779, 14855), 'numpy.testing.assert_almost_equal', 'assert_almost_equal', (['res.rsquared', "result_gretl_g1['rsquared'][1]"], {'decimal': '(6)'}), "(res.rsquared, result_gretl_g1['rsquared'][1], decimal=6)\n", (14798, 14855), False, 'from numpy.testing import assert_almost_equal, assert_equal, assert_allclose, assert_array_less\n'), ((14870, 14958), 'numpy.testing.assert_almost_equal', 'assert_almost_equal', (['res.rsquared_adj', "result_gretl_g1['rsquared_adj'][1]"], {'decimal': '(6)'}), "(res.rsquared_adj, result_gretl_g1['rsquared_adj'][1],\n decimal=6)\n", (14889, 14958), False, 'from numpy.testing import assert_almost_equal, assert_equal, assert_allclose, assert_array_less\n'), ((15520, 15550), 'statsmodels.stats.outliers_influence.reset_ramsey', 'oi.reset_ramsey', (['res'], {'degree': '(2)'}), '(res, degree=2)\n', (15535, 15550), True, 'import statsmodels.stats.outliers_influence as oi\n'), ((15612, 15642), 'statsmodels.stats.outliers_influence.reset_ramsey', 'oi.reset_ramsey', (['res'], {'degree': '(3)'}), '(res, degree=3)\n', (15627, 15642), True, 'import statsmodels.stats.outliers_influence as oi\n'), ((15715, 15758), 'statsmodels.stats.diagnostic.linear_lm', 'smsdia.linear_lm', (['res.resid', 'res.model.exog'], {}), '(res.resid, res.model.exog)\n', (15731, 15758), True, 'import statsmodels.stats.diagnostic as smsdia\n'), ((15767, 15830), 'numpy.testing.assert_almost_equal', 'assert_almost_equal', (['linear_sq[0]', 'linear_squares[0]'], {'decimal': '(6)'}), '(linear_sq[0], linear_squares[0], decimal=6)\n', (15786, 15830), False, 'from numpy.testing import assert_almost_equal, assert_equal, assert_allclose, assert_array_less\n'), ((15839, 15902), 'numpy.testing.assert_almost_equal', 'assert_almost_equal', (['linear_sq[1]', 'linear_squares[1]'], {'decimal': '(7)'}), '(linear_sq[1], linear_squares[1], decimal=7)\n', (15858, 15902), False, 'from numpy.testing import assert_almost_equal, assert_equal, assert_allclose, assert_array_less\n'), ((15919, 15969), 'statsmodels.stats.diagnostic.het_breuschpagan', 'smsdia.het_breuschpagan', (['res.resid', 'res.model.exog'], {}), '(res.resid, res.model.exog)\n', (15942, 15969), True, 'import statsmodels.stats.diagnostic as smsdia\n'), ((15978, 16046), 'numpy.testing.assert_almost_equal', 'assert_almost_equal', (['hbpk[0]', 'het_breusch_pagan_konker[0]'], {'decimal': '(6)'}), '(hbpk[0], het_breusch_pagan_konker[0], decimal=6)\n', (15997, 16046), False, 'from numpy.testing import assert_almost_equal, assert_equal, assert_allclose, assert_array_less\n'), ((16055, 16123), 'numpy.testing.assert_almost_equal', 'assert_almost_equal', (['hbpk[1]', 'het_breusch_pagan_konker[1]'], {'decimal': '(6)'}), '(hbpk[1], het_breusch_pagan_konker[1], decimal=6)\n', (16074, 16123), False, 'from numpy.testing import assert_almost_equal, assert_equal, assert_allclose, assert_array_less\n'), ((16138, 16181), 'statsmodels.stats.diagnostic.het_white', 'smsdia.het_white', (['res.resid', 'res.model.exog'], {}), '(res.resid, res.model.exog)\n', (16154, 16181), True, 'import statsmodels.stats.diagnostic as smsdia\n'), ((16190, 16235), 'numpy.testing.assert_almost_equal', 'assert_almost_equal', (['hw[:2]', 'het_white[:2]', '(6)'], {}), '(hw[:2], het_white[:2], 6)\n', (16209, 16235), False, 'from numpy.testing import assert_almost_equal, assert_equal, assert_allclose, assert_array_less\n'), ((16342, 16377), 'statsmodels.stats.diagnostic.het_arch', 'smsdia.het_arch', (['res.resid'], {'nlags': '(4)'}), '(res.resid, nlags=4)\n', (16357, 16377), True, 'import statsmodels.stats.diagnostic as smsdia\n'), ((16386, 16439), 'numpy.testing.assert_almost_equal', 'assert_almost_equal', (['sm_arch[0]', 'arch_4[0]'], {'decimal': '(5)'}), '(sm_arch[0], arch_4[0], decimal=5)\n', (16405, 16439), False, 'from numpy.testing import assert_almost_equal, assert_equal, assert_allclose, assert_array_less\n'), ((16448, 16501), 'numpy.testing.assert_almost_equal', 'assert_almost_equal', (['sm_arch[1]', 'arch_4[1]'], {'decimal': '(6)'}), '(sm_arch[1], arch_4[1], decimal=6)\n', (16467, 16501), False, 'from numpy.testing import assert_almost_equal, assert_equal, assert_allclose, assert_array_less\n'), ((16599, 16623), 'statsmodels.stats.outliers_influence.OLSInfluence', 'oi.OLSInfluence', (['res_ols'], {}), '(res_ols)\n', (16614, 16623), True, 'import statsmodels.stats.outliers_influence as oi\n'), ((16918, 16976), 'numpy.testing.assert_almost_equal', 'assert_almost_equal', (["lev['residual']", 'res.resid'], {'decimal': '(3)'}), "(lev['residual'], res.resid, decimal=3)\n", (16937, 16976), False, 'from numpy.testing import assert_almost_equal, assert_equal, assert_allclose, assert_array_less\n'), ((16985, 17046), 'numpy.testing.assert_almost_equal', 'assert_almost_equal', (["lev['DFFITS']", 'infl.dffits[0]'], {'decimal': '(3)'}), "(lev['DFFITS'], infl.dffits[0], decimal=3)\n", (17004, 17046), False, 'from numpy.testing import assert_almost_equal, assert_equal, assert_allclose, assert_array_less\n'), ((17055, 17124), 'numpy.testing.assert_almost_equal', 'assert_almost_equal', (["lev['leverage']", 'infl.hat_matrix_diag'], {'decimal': '(3)'}), "(lev['leverage'], infl.hat_matrix_diag, decimal=3)\n", (17074, 17124), False, 'from numpy.testing import assert_almost_equal, assert_equal, assert_allclose, assert_array_less\n'), ((17133, 17197), 'numpy.testing.assert_almost_equal', 'assert_almost_equal', (["lev['influence']", 'infl.influence'], {'decimal': '(4)'}), "(lev['influence'], infl.influence, decimal=4)\n", (17152, 17197), False, 'from numpy.testing import assert_almost_equal, assert_equal, assert_allclose, assert_array_less\n'), ((17345, 17368), 'statsmodels.datasets.macrodata.load_pandas', 'macrodata.load_pandas', ([], {}), '()\n', (17366, 17368), False, 'from statsmodels.datasets import macrodata\n'), ((17723, 17760), 'numpy.abs', 'np.abs', (['(res1.params / res4.params - 1)'], {}), '(res1.params / res4.params - 1)\n', (17729, 17760), True, 'import numpy as np\n'), ((1000, 1023), 'statsmodels.datasets.macrodata.load_pandas', 'macrodata.load_pandas', ([], {}), '()\n', (1021, 1023), False, 'from statsmodels.datasets import macrodata\n'), ((4169, 4191), 'numpy.sqrt', 'np.sqrt', (['res.mse_resid'], {}), '(res.mse_resid)\n', (4176, 4191), True, 'import numpy as np\n'), ((5537, 5559), 'numpy.sqrt', 'np.sqrt', (['res.mse_resid'], {}), '(res.mse_resid)\n', (5544, 5559), True, 'import numpy as np\n'), ((13837, 13862), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (13852, 13862), False, 'import os\n'), ((14180, 14265), 'numpy.genfromtxt', 'np.genfromtxt', (['fpath'], {'skip_header': '(3)', 'skip_footer': '(2)', 'converters': '{(0): lambda s: s}'}), '(fpath, skip_header=3, skip_footer=2, converters={(0): lambda\n s: s})\n', (14193, 14265), True, 'import numpy as np\n'), ((14989, 15011), 'numpy.sqrt', 'np.sqrt', (['res.mse_resid'], {}), '(res.mse_resid)\n', (14996, 15011), True, 'import numpy as np\n'), ((16519, 16566), 'statsmodels.stats.outliers_influence.variance_inflation_factor', 'oi.variance_inflation_factor', (['res.model.exog', 'k'], {}), '(res.model.exog, k)\n', (16547, 16566), True, 'import statsmodels.stats.outliers_influence as oi\n'), ((17398, 17426), 'numpy.log', 'np.log', (["d2['realgdp'].values"], {}), "(d2['realgdp'].values)\n", (17404, 17426), True, 'import numpy as np\n'), ((17452, 17480), 'numpy.log', 'np.log', (["d2['realinv'].values"], {}), "(d2['realinv'].values)\n", (17458, 17480), True, 'import numpy as np\n'), ((17832, 17859), 'numpy.abs', 'np.abs', (['(res4.bse / res1.bse)'], {}), '(res4.bse / res1.bse)\n', (17838, 17859), True, 'import numpy as np\n'), ((1156, 1183), 'numpy.log', 'np.log', (["d['realinv'].values"], {}), "(d['realinv'].values)\n", (1162, 1183), True, 'import numpy as np\n'), ((1222, 1249), 'numpy.log', 'np.log', (["d['realgdp'].values"], {}), "(d['realgdp'].values)\n", (1228, 1249), True, 'import numpy as np\n'), ((1591, 1609), 'statsmodels.regression.linear_model.OLS', 'OLS', (['endogg', 'exogg'], {}), '(endogg, exogg)\n', (1594, 1609), False, 'from statsmodels.regression.linear_model import OLS, GLSAR\n'), ((1408, 1436), 'numpy.diff', 'np.diff', (["d['realgdp'].values"], {}), "(d['realgdp'].values)\n", (1415, 1436), True, 'import numpy as np\n')]
import warnings import numba import numpy as np import strax import straxen DEFAULT_MAX_SAMPLES = 20_000 @straxen.mini_analysis(requires=('records',), warn_beyond_sec=10, default_time_selection='touching') def records_matrix(records, time_range, seconds_range, config, to_pe, max_samples=DEFAULT_MAX_SAMPLES, ignore_max_sample_warning=False): """Return (wv_matrix, times, pms) - wv_matrix: (n_samples, n_pmt) array with per-PMT waveform intensity in PE/ns - times: time labels in seconds (corr. to rows) - pmts: PMT numbers (corr. to columns) Both times and pmts have one extra element. :param max_samples: Maximum number of time samples. If window and dt conspire to exceed this, waveforms will be downsampled. :param ignore_max_sample_warning: If True, suppress warning when this happens. Example: wvm, ts, ys = st.records_matrix(run_id, seconds_range=(1., 1.00001)) plt.pcolormesh(ts, ys, wvm.T, norm=matplotlib.colors.LogNorm()) plt.colorbar(label='Intensity [PE / ns]') """ if len(records): dt = records[0]['dt'] samples_per_record = len(records[0]['data']) else: # Defaults here do not matter, nothing will be plotted anyway dt = 10, 110 record_duration = samples_per_record * dt window = time_range[1] - time_range[0] if window / dt > max_samples: with np.errstate(divide='ignore', invalid='ignore'): # Downsample. New dt must be # a) multiple of old dt dts = np.arange(0, record_duration + dt, dt).astype(np.int) # b) divisor of record duration dts = dts[record_duration / dts % 1 == 0] # c) total samples < max_samples dts = dts[window / dts < max_samples] if len(dts): # Pick lowest dt that satisfies criteria dt = dts.min() else: # Records will be downsampled to single points dt = max(record_duration, window // max_samples) if not ignore_max_sample_warning: warnings.warn(f"Matrix would exceed max_samples {max_samples}, " f"downsampling to dt = {dt} ns.") wvm = _records_to_matrix( records, t0=time_range[0], n_channels=config['n_tpc_pmts'], dt=dt, window=window) wvm = wvm.astype(np.float32) * to_pe.reshape(1, -1) / dt # Note + 1, so data for sample 0 will range from 0-1 in plot ts = (np.arange(wvm.shape[0] + 1) * dt / int(1e9) + seconds_range[0]) ys = np.arange(wvm.shape[1] + 1) return wvm, ts, ys @straxen.mini_analysis(requires=('raw_records',), warn_beyond_sec=3e-3, default_time_selection='touching') def raw_records_matrix(context, run_id, raw_records, time_range, ignore_max_sample_warning=False, max_samples=DEFAULT_MAX_SAMPLES, **kwargs): # Convert raw to records. We may not be able to baseline correctly # at the start of the range due to missing zeroth fragments records = strax.raw_to_records(raw_records) strax.baseline(records, allow_sloppy_chunking=True) strax.zero_out_of_bounds(records) return context.records_matrix(run_id=run_id, records=records, time_range=time_range, max_samples=max_samples, ignore_max_sample_warning=ignore_max_sample_warning, **kwargs) @numba.njit def _records_to_matrix(records, t0, window, n_channels, dt=10): n_samples = (window // dt) + 1 # Use 32-bit integers, so downsampling saturated samples doesn't # cause wraparounds # TODO: amplitude bit shift! y = np.zeros((n_samples, n_channels), dtype=np.int32) if not len(records): return y samples_per_record = len(records[0]['data']) for r in records: if r['channel'] > n_channels: continue if dt >= samples_per_record * r['dt']: # Downsample to single sample -> store area idx = (r['time'] - t0) // dt if idx >= len(y): print(len(y), idx) raise IndexError('Despite n_samples = window // dt + 1, our ' 'idx is too high?!') y[idx, r['channel']] += r['area'] continue # Assume out-of-bounds data has been zeroed, so we do not # need to do r['data'][:r['length']] here. # This simplifies downsampling. w = r['data'].astype(np.int32) if dt > r['dt']: # Downsample duration = samples_per_record * r['dt'] assert duration % dt == 0, "Cannot downsample fractionally" # .astype here keeps numba happy ... ?? w = w.reshape(duration // dt, -1).sum(axis=1).astype(np.int32) elif dt < r['dt']: raise ValueError("Upsampling not yet implemented") (r_start, r_end), (y_start, y_end) = strax.overlap_indices( r['time'] // dt, len(w), t0 // dt, n_samples) # += is paranoid, data in individual channels should not overlap # but... https://github.com/AxFoundation/strax/issues/119 y[y_start:y_end, r['channel']] += w[r_start:r_end] return y
[ "strax.raw_to_records", "numpy.errstate", "numpy.zeros", "strax.baseline", "strax.zero_out_of_bounds", "straxen.mini_analysis", "warnings.warn", "numpy.arange" ]
[((111, 214), 'straxen.mini_analysis', 'straxen.mini_analysis', ([], {'requires': "('records',)", 'warn_beyond_sec': '(10)', 'default_time_selection': '"""touching"""'}), "(requires=('records',), warn_beyond_sec=10,\n default_time_selection='touching')\n", (132, 214), False, 'import straxen\n'), ((2754, 2864), 'straxen.mini_analysis', 'straxen.mini_analysis', ([], {'requires': "('raw_records',)", 'warn_beyond_sec': '(0.003)', 'default_time_selection': '"""touching"""'}), "(requires=('raw_records',), warn_beyond_sec=0.003,\n default_time_selection='touching')\n", (2775, 2864), False, 'import straxen\n'), ((2699, 2726), 'numpy.arange', 'np.arange', (['(wvm.shape[1] + 1)'], {}), '(wvm.shape[1] + 1)\n', (2708, 2726), True, 'import numpy as np\n'), ((3266, 3299), 'strax.raw_to_records', 'strax.raw_to_records', (['raw_records'], {}), '(raw_records)\n', (3286, 3299), False, 'import strax\n'), ((3304, 3355), 'strax.baseline', 'strax.baseline', (['records'], {'allow_sloppy_chunking': '(True)'}), '(records, allow_sloppy_chunking=True)\n', (3318, 3355), False, 'import strax\n'), ((3360, 3393), 'strax.zero_out_of_bounds', 'strax.zero_out_of_bounds', (['records'], {}), '(records)\n', (3384, 3393), False, 'import strax\n'), ((3989, 4038), 'numpy.zeros', 'np.zeros', (['(n_samples, n_channels)'], {'dtype': 'np.int32'}), '((n_samples, n_channels), dtype=np.int32)\n', (3997, 4038), True, 'import numpy as np\n'), ((1505, 1551), 'numpy.errstate', 'np.errstate', ([], {'divide': '"""ignore"""', 'invalid': '"""ignore"""'}), "(divide='ignore', invalid='ignore')\n", (1516, 1551), True, 'import numpy as np\n'), ((2211, 2315), 'warnings.warn', 'warnings.warn', (['f"""Matrix would exceed max_samples {max_samples}, downsampling to dt = {dt} ns."""'], {}), "(\n f'Matrix would exceed max_samples {max_samples}, downsampling to dt = {dt} ns.'\n )\n", (2224, 2315), False, 'import warnings\n'), ((2626, 2653), 'numpy.arange', 'np.arange', (['(wvm.shape[0] + 1)'], {}), '(wvm.shape[0] + 1)\n', (2635, 2653), True, 'import numpy as np\n'), ((1649, 1687), 'numpy.arange', 'np.arange', (['(0)', '(record_duration + dt)', 'dt'], {}), '(0, record_duration + dt, dt)\n', (1658, 1687), True, 'import numpy as np\n')]
import numpy as np from openpnm.algorithms import ReactiveTransport from openpnm.models.physics import generic_source_term as gst from openpnm.utils import logging logger = logging.getLogger(__name__) class ChargeConservation(ReactiveTransport): r""" A class to enforce charge conservation in ionic transport simulations. Parameters ---------- network : OpenPNM Network object The network on which this algorithm operates project : OpenPNM Project object Either a network or a project must be specified name : string, optional A unique name to give the object for easier identification. If not given, one is generated. """ def __init__(self, settings={}, phase=None, **kwargs): def_set = {'phase': None, 'quantity': 'pore.potential', 'conductance': 'throat.ionic_conductance', 'charge_conservation': 'electroneutrality', 'gui': {'setup': {'phase': None, 'quantity': '', 'conductance': '', 'charge_conservation': ''}, 'set_rate_BC': {'pores': None, 'values': None}, 'set_value_BC': {'pores': None, 'values': None}, 'set_source': {'pores': None, 'propname': ''} } } super().__init__(**kwargs) self.settings.update(def_set) self.settings.update(settings) if phase is not None: self.setup(phase=phase) def setup(self, phase=None, quantity='', conductance='', charge_conservation=None, **kwargs): r""" This method takes several arguments that are essential to running the algorithm and adds them to the settings. Parameters ---------- phase : OpenPNM Phase object The phase on which the algorithm is to be run. quantity : string (default is ``'pore.mole_fraction'``) The name of the physical quantity to be calculated. conductance : string (default is ``'throat.diffusive_conductance'``) The name of the pore-scale transport conductance values. These are typically calculated by a model attached to a *Physics* object associated with the given *Phase*. charge_conservation : string The assumption adopted to enforce charge conservation when performing ions transport simulations (default is "electroneutrality"). Notes ----- Any additional arguments are added to the ``settings`` dictionary of the object. """ if phase: self.settings['phase'] = phase.name if quantity: self.settings['quantity'] = quantity if conductance: self.settings['conductance'] = conductance if charge_conservation: self.settings['charge_conservation'] = charge_conservation super().setup(**kwargs) def _charge_conservation_eq_source_term(self, e_alg): # Source term for Poisson or charge conservation (electroneutrality) eq phase = self.project.phases()[self.settings['phase']] Ps = (self['pore.all'] * np.isnan(self['pore.bc_value']) * np.isnan(self['pore.bc_rate'])) mod = gst.charge_conservation phys = self.project.find_physics(phase=phase) phys[0].add_model(propname='pore.charge_conservation', model=mod, phase=phase, p_alg=self, e_alg=e_alg, assumption=self.settings['charge_conservation']) self.set_source(propname='pore.charge_conservation', pores=Ps)
[ "numpy.isnan", "openpnm.utils.logging.getLogger" ]
[((173, 200), 'openpnm.utils.logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (190, 200), False, 'from openpnm.utils import logging\n'), ((3600, 3630), 'numpy.isnan', 'np.isnan', (["self['pore.bc_rate']"], {}), "(self['pore.bc_rate'])\n", (3608, 3630), True, 'import numpy as np\n'), ((3552, 3583), 'numpy.isnan', 'np.isnan', (["self['pore.bc_value']"], {}), "(self['pore.bc_value'])\n", (3560, 3583), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- # Copyright 2019 <NAME>. All Rights Reserved. # # Licensed under the MIT License; # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://opensource.org/licenses/MIT # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== import logging import multiprocessing import numpy as np import os import random import torch import torch.backends.cudnn as cudnn from kerosene.configs.configs import RunConfiguration, DatasetConfiguration from kerosene.configs.parsers import YamlConfigurationParser from kerosene.loggers.visdom import PlotType, PlotFrequency from kerosene.loggers.visdom.config import VisdomConfiguration from kerosene.loggers.visdom.visdom import VisdomLogger, VisdomData from kerosene.training.trainers import ModelTrainerFactory from samitorch.inputs.utils import augmented_sample_collate from torch.utils.data import DataLoader from torch.utils.data.dataloader import DataLoader from deepNormalize.config.parsers import ArgsParserFactory, ArgsParserType from deepNormalize.factories.customModelFactory import CustomModelFactory from deepNormalize.factories.customTrainerFactory import TrainerFactory from deepNormalize.inputs.datasets import iSEGSliceDatasetFactory, MRBrainSSliceDatasetFactory, ABIDESliceDatasetFactory from deepNormalize.nn.criterions import CustomCriterionFactory from deepNormalize.utils.constants import * from deepNormalize.utils.image_slicer import ImageReconstructor cudnn.benchmark = True cudnn.enabled = True np.random.seed(42) random.seed(42) if __name__ == '__main__': # Basic settings logging.basicConfig(level=logging.INFO) torch.set_num_threads(multiprocessing.cpu_count()) torch.set_num_interop_threads(multiprocessing.cpu_count()) args = ArgsParserFactory.create_parser(ArgsParserType.MODEL_TRAINING).parse_args() # Create configurations. run_config = RunConfiguration(use_amp=args.use_amp, local_rank=args.local_rank, amp_opt_level=args.amp_opt_level) model_trainer_configs, training_config = YamlConfigurationParser.parse(args.config_file) if not isinstance(model_trainer_configs, list): model_trainer_configs = [model_trainer_configs] dataset_configs = YamlConfigurationParser.parse_section(args.config_file, "dataset") dataset_configs = {k: DatasetConfiguration(v) for k, v, in dataset_configs.items()} data_augmentation_config = YamlConfigurationParser.parse_section(args.config_file, "data_augmentation") config_html = [training_config.to_html(), list(map(lambda config: config.to_html(), dataset_configs.values())), list(map(lambda config: config.to_html(), model_trainer_configs))] # Prepare the data. train_datasets = list() valid_datasets = list() test_datasets = list() reconstruction_datasets = list() iSEG_train = None iSEG_CSV = None MRBrainS_train = None MRBrainS_CSV = None ABIDE_train = None ABIDE_CSV = None iSEG_augmentation_strategy = None MRBrainS_augmentation_strategy = None ABIDE_augmentation_strategy = None # Initialize the model trainers model_trainer_factory = ModelTrainerFactory(model_factory=CustomModelFactory(), criterion_factory=CustomCriterionFactory()) model_trainers = model_trainer_factory.create(model_trainer_configs) if not isinstance(model_trainers, list): model_trainers = [model_trainers] # Create datasets if dataset_configs.get("iSEG", None) is not None: iSEG_train, iSEG_valid, iSEG_test, iSEG_reconstruction = iSEGSliceDatasetFactory.create_train_valid_test( source_dir=dataset_configs["iSEG"].path, modalities=dataset_configs["iSEG"].modalities, dataset_id=ISEG_ID, test_size=dataset_configs["iSEG"].validation_split, max_subjects=dataset_configs["iSEG"].max_subjects, max_num_patches=dataset_configs["iSEG"].max_num_patches, augment=dataset_configs["iSEG"].augment, patch_size=dataset_configs["iSEG"].patch_size, step=dataset_configs["iSEG"].step, test_patch_size=dataset_configs["iSEG"].test_patch_size, test_step=dataset_configs["iSEG"].test_step, data_augmentation_config=data_augmentation_config) train_datasets.append(iSEG_train) valid_datasets.append(iSEG_valid) reconstruction_datasets.append(iSEG_reconstruction) if dataset_configs.get("MRBrainS", None) is not None: MRBrainS_train, MRBrainS_valid, MRBrainS_test, MRBrainS_reconstruction = MRBrainSSliceDatasetFactory.create_train_valid_test( source_dir=dataset_configs["MRBrainS"].path, modalities=dataset_configs["MRBrainS"].modalities, dataset_id=MRBRAINS_ID, test_size=dataset_configs["MRBrainS"].validation_split, max_subjects=dataset_configs["MRBrainS"].max_subjects, max_num_patches=dataset_configs["MRBrainS"].max_num_patches, augment=dataset_configs["MRBrainS"].augment, patch_size=dataset_configs["MRBrainS"].patch_size, step=dataset_configs["MRBrainS"].step, test_patch_size=dataset_configs["MRBrainS"].test_patch_size, test_step=dataset_configs["MRBrainS"].test_step, data_augmentation_config=data_augmentation_config) test_datasets.append(MRBrainS_test) reconstruction_datasets.append(MRBrainS_reconstruction) if dataset_configs.get("ABIDE", None) is not None: ABIDE_train, ABIDE_valid, ABIDE_test, ABIDE_reconstruction = ABIDESliceDatasetFactory.create_train_valid_test( source_dir=dataset_configs["ABIDE"].path, modalities=dataset_configs["ABIDE"].modalities, dataset_id=ABIDE_ID, sites=dataset_configs["ABIDE"].sites, max_subjects=dataset_configs["ABIDE"].max_subjects, test_size=dataset_configs["ABIDE"].validation_split, max_num_patches=dataset_configs["ABIDE"].max_num_patches, augment=dataset_configs["ABIDE"].augment, patch_size=dataset_configs["ABIDE"].patch_size, step=dataset_configs["ABIDE"].step, test_patch_size=dataset_configs["ABIDE"].test_patch_size, test_step=dataset_configs["ABIDE"].test_step, data_augmentation_config=data_augmentation_config) train_datasets.append(ABIDE_train) valid_datasets.append(ABIDE_valid) test_datasets.append(ABIDE_test) reconstruction_datasets.append(ABIDE_reconstruction) if len(list(dataset_configs.keys())) == 2: segmentation_reconstructor = ImageReconstructor( [iSEG_reconstruction._source_images[0], MRBrainS_reconstruction._source_images[0]], patch_size=dataset_configs["iSEG"].test_patch_size, reconstructed_image_size=(1, 256, 256, 192), step=dataset_configs["iSEG"].test_step, models=[model_trainers[0]], segment=True, batch_size=8) input_reconstructor = ImageReconstructor( [iSEG_reconstruction._source_images[0], MRBrainS_reconstruction._source_images[0]], patch_size=dataset_configs["iSEG"].test_patch_size, reconstructed_image_size=(1, 256, 256, 192), step=dataset_configs["iSEG"].test_step, batch_size=50) gt_reconstructor = ImageReconstructor( [iSEG_reconstruction._target_images[0], MRBrainS_reconstruction._target_images[0]], patch_size=dataset_configs["iSEG"].test_patch_size, reconstructed_image_size=(1, 256, 256, 192), step=dataset_configs["iSEG"].test_step, is_ground_truth=True, batch_size=50) if dataset_configs["iSEG"].augment: augmented_input_reconstructor = ImageReconstructor( [iSEG_reconstruction._source_images[0], MRBrainS_reconstruction._source_images[0]], patch_size=dataset_configs["iSEG"].test_patch_size, reconstructed_image_size=(1, 256, 256, 192), step=dataset_configs["iSEG"].test_step, batch_size=50, alpha=data_augmentation_config["test"]["bias_field"]["alpha"][0], prob_bias=data_augmentation_config["test"]["bias_field"]["prob_bias"], snr=data_augmentation_config["test"]["noise"]["snr"], prob_noise=data_augmentation_config["test"]["noise"]["prob_noise"]) else: augmented_input_reconstructor = None augmented_normalized_input_reconstructor = None else: segmentation_reconstructor = ImageReconstructor( [iSEG_reconstruction._source_images[0], MRBrainS_reconstruction._source_images[0], ABIDE_reconstruction._source_images[0]], patch_size=(1, 32, 32, 32), reconstructed_image_size=(1, 256, 256, 192), step=dataset_configs["iSEG"].test_step, models=[model_trainers[0]], normalize_and_segment=True, batch_size=4) input_reconstructor = ImageReconstructor( [iSEG_reconstruction._source_images[0], MRBrainS_reconstruction._source_images[0], ABIDE_reconstruction._source_images[0]], patch_size=(1, 32, 32, 32), reconstructed_image_size=(1, 256, 256, 192), step=dataset_configs["iSEG"].test_step, batch_size=50) gt_reconstructor = ImageReconstructor( [iSEG_reconstruction._target_images[0], MRBrainS_reconstruction._target_images[0], ABIDE_reconstruction._target_images[0]], patch_size=(1, 32, 32, 32), reconstructed_image_size=(1, 256, 256, 192), step=dataset_configs["iSEG"].test_step, batch_size=50, is_ground_truth=True) if dataset_configs["iSEG"].augment: augmented_input_reconstructor = ImageReconstructor( [iSEG_reconstruction._source_images[0], MRBrainS_reconstruction._source_images[0], ABIDE_reconstruction._source_images[0]], patch_size=(1, 32, 32, 32), reconstructed_image_size=(1, 256, 256, 192), step=dataset_configs["iSEG"].test_step, batch_size=50, alpha=data_augmentation_config["test"]["bias_field"]["alpha"][0], prob_bias=data_augmentation_config["test"]["bias_field"]["prob_bias"], snr=data_augmentation_config["test"]["noise"]["snr"], prob_noise=data_augmentation_config["test"]["noise"]["prob_noise"]) else: augmented_input_reconstructor = None augmented_normalized_input_reconstructor = None # Concat datasets. if len(dataset_configs) > 1: train_dataset = torch.utils.data.ConcatDataset(train_datasets) valid_dataset = torch.utils.data.ConcatDataset(valid_datasets) test_dataset = torch.utils.data.ConcatDataset(test_datasets) else: train_dataset = train_datasets[0] valid_dataset = valid_datasets[0] test_dataset = test_datasets[0] # Create loaders. dataloaders = list(map(lambda dataset: DataLoader(dataset, training_config.batch_size, sampler=None, shuffle=True, num_workers=args.num_workers, collate_fn=augmented_sample_collate, drop_last=True, pin_memory=True), [train_dataset, valid_dataset, test_dataset])) # Initialize the loggers. visdom_config = VisdomConfiguration.from_yml(args.config_file, "visdom") exp = args.config_file.split("/")[-3:] if visdom_config.save_destination is not None: save_folder = visdom_config.save_destination + os.path.join(exp[0], exp[1], os.path.basename( os.path.normpath(visdom_config.env))) else: save_folder = "saves/{}".format(os.path.basename(os.path.normpath(visdom_config.env))) [os.makedirs("{}/{}".format(save_folder, model), exist_ok=True) for model in ["Discriminator", "Generator", "Segmenter"]] visdom_logger = VisdomLogger(visdom_config) visdom_logger(VisdomData("Experiment", "Experiment Config", PlotType.TEXT_PLOT, PlotFrequency.EVERY_EPOCH, None, config_html)) visdom_logger(VisdomData("Experiment", "Patch count", PlotType.BAR_PLOT, PlotFrequency.EVERY_EPOCH, x=[len(iSEG_train) if iSEG_train is not None else 0, len(MRBrainS_train) if MRBrainS_train is not None else 0, len(ABIDE_train) if ABIDE_train is not None else 0], y=["iSEG", "MRBrainS", "ABIDE"], params={"opts": {"title": "Patch count"}})) trainer = TrainerFactory(training_config.trainer).create(training_config, model_trainers, dataloaders, reconstruction_datasets, None, input_reconstructor, segmentation_reconstructor, augmented_input_reconstructor, None, gt_reconstructor, run_config, dataset_configs, save_folder, visdom_logger) trainer.train(training_config.nb_epochs)
[ "torch.utils.data.ConcatDataset", "deepNormalize.factories.customTrainerFactory.TrainerFactory", "deepNormalize.utils.image_slicer.ImageReconstructor", "multiprocessing.cpu_count", "kerosene.configs.configs.DatasetConfiguration", "kerosene.loggers.visdom.visdom.VisdomLogger", "deepNormalize.inputs.datasets.MRBrainSSliceDatasetFactory.create_train_valid_test", "kerosene.configs.configs.RunConfiguration", "deepNormalize.inputs.datasets.iSEGSliceDatasetFactory.create_train_valid_test", "deepNormalize.config.parsers.ArgsParserFactory.create_parser", "deepNormalize.nn.criterions.CustomCriterionFactory", "torch.utils.data.dataloader.DataLoader", "os.path.normpath", "numpy.random.seed", "kerosene.loggers.visdom.visdom.VisdomData", "kerosene.loggers.visdom.config.VisdomConfiguration.from_yml", "deepNormalize.factories.customModelFactory.CustomModelFactory", "deepNormalize.inputs.datasets.ABIDESliceDatasetFactory.create_train_valid_test", "logging.basicConfig", "kerosene.configs.parsers.YamlConfigurationParser.parse", "kerosene.configs.parsers.YamlConfigurationParser.parse_section", "random.seed" ]
[((1889, 1907), 'numpy.random.seed', 'np.random.seed', (['(42)'], {}), '(42)\n', (1903, 1907), True, 'import numpy as np\n'), ((1908, 1923), 'random.seed', 'random.seed', (['(42)'], {}), '(42)\n', (1919, 1923), False, 'import random\n'), ((1977, 2016), 'logging.basicConfig', 'logging.basicConfig', ([], {'level': 'logging.INFO'}), '(level=logging.INFO)\n', (1996, 2016), False, 'import logging\n'), ((2269, 2373), 'kerosene.configs.configs.RunConfiguration', 'RunConfiguration', ([], {'use_amp': 'args.use_amp', 'local_rank': 'args.local_rank', 'amp_opt_level': 'args.amp_opt_level'}), '(use_amp=args.use_amp, local_rank=args.local_rank,\n amp_opt_level=args.amp_opt_level)\n', (2285, 2373), False, 'from kerosene.configs.configs import RunConfiguration, DatasetConfiguration\n'), ((2415, 2462), 'kerosene.configs.parsers.YamlConfigurationParser.parse', 'YamlConfigurationParser.parse', (['args.config_file'], {}), '(args.config_file)\n', (2444, 2462), False, 'from kerosene.configs.parsers import YamlConfigurationParser\n'), ((2593, 2659), 'kerosene.configs.parsers.YamlConfigurationParser.parse_section', 'YamlConfigurationParser.parse_section', (['args.config_file', '"""dataset"""'], {}), "(args.config_file, 'dataset')\n", (2630, 2659), False, 'from kerosene.configs.parsers import YamlConfigurationParser\n'), ((2779, 2855), 'kerosene.configs.parsers.YamlConfigurationParser.parse_section', 'YamlConfigurationParser.parse_section', (['args.config_file', '"""data_augmentation"""'], {}), "(args.config_file, 'data_augmentation')\n", (2816, 2855), False, 'from kerosene.configs.parsers import YamlConfigurationParser\n'), ((12352, 12408), 'kerosene.loggers.visdom.config.VisdomConfiguration.from_yml', 'VisdomConfiguration.from_yml', (['args.config_file', '"""visdom"""'], {}), "(args.config_file, 'visdom')\n", (12380, 12408), False, 'from kerosene.loggers.visdom.config import VisdomConfiguration\n'), ((13045, 13072), 'kerosene.loggers.visdom.visdom.VisdomLogger', 'VisdomLogger', (['visdom_config'], {}), '(visdom_config)\n', (13057, 13072), False, 'from kerosene.loggers.visdom.visdom import VisdomLogger, VisdomData\n'), ((2043, 2070), 'multiprocessing.cpu_count', 'multiprocessing.cpu_count', ([], {}), '()\n', (2068, 2070), False, 'import multiprocessing\n'), ((2106, 2133), 'multiprocessing.cpu_count', 'multiprocessing.cpu_count', ([], {}), '()\n', (2131, 2133), False, 'import multiprocessing\n'), ((2686, 2709), 'kerosene.configs.configs.DatasetConfiguration', 'DatasetConfiguration', (['v'], {}), '(v)\n', (2706, 2709), False, 'from kerosene.configs.configs import RunConfiguration, DatasetConfiguration\n'), ((3975, 4604), 'deepNormalize.inputs.datasets.iSEGSliceDatasetFactory.create_train_valid_test', 'iSEGSliceDatasetFactory.create_train_valid_test', ([], {'source_dir': "dataset_configs['iSEG'].path", 'modalities': "dataset_configs['iSEG'].modalities", 'dataset_id': 'ISEG_ID', 'test_size': "dataset_configs['iSEG'].validation_split", 'max_subjects': "dataset_configs['iSEG'].max_subjects", 'max_num_patches': "dataset_configs['iSEG'].max_num_patches", 'augment': "dataset_configs['iSEG'].augment", 'patch_size': "dataset_configs['iSEG'].patch_size", 'step': "dataset_configs['iSEG'].step", 'test_patch_size': "dataset_configs['iSEG'].test_patch_size", 'test_step': "dataset_configs['iSEG'].test_step", 'data_augmentation_config': 'data_augmentation_config'}), "(source_dir=dataset_configs[\n 'iSEG'].path, modalities=dataset_configs['iSEG'].modalities, dataset_id\n =ISEG_ID, test_size=dataset_configs['iSEG'].validation_split,\n max_subjects=dataset_configs['iSEG'].max_subjects, max_num_patches=\n dataset_configs['iSEG'].max_num_patches, augment=dataset_configs['iSEG'\n ].augment, patch_size=dataset_configs['iSEG'].patch_size, step=\n dataset_configs['iSEG'].step, test_patch_size=dataset_configs['iSEG'].\n test_patch_size, test_step=dataset_configs['iSEG'].test_step,\n data_augmentation_config=data_augmentation_config)\n", (4022, 4604), False, 'from deepNormalize.inputs.datasets import iSEGSliceDatasetFactory, MRBrainSSliceDatasetFactory, ABIDESliceDatasetFactory\n'), ((4996, 5678), 'deepNormalize.inputs.datasets.MRBrainSSliceDatasetFactory.create_train_valid_test', 'MRBrainSSliceDatasetFactory.create_train_valid_test', ([], {'source_dir': "dataset_configs['MRBrainS'].path", 'modalities': "dataset_configs['MRBrainS'].modalities", 'dataset_id': 'MRBRAINS_ID', 'test_size': "dataset_configs['MRBrainS'].validation_split", 'max_subjects': "dataset_configs['MRBrainS'].max_subjects", 'max_num_patches': "dataset_configs['MRBrainS'].max_num_patches", 'augment': "dataset_configs['MRBrainS'].augment", 'patch_size': "dataset_configs['MRBrainS'].patch_size", 'step': "dataset_configs['MRBrainS'].step", 'test_patch_size': "dataset_configs['MRBrainS'].test_patch_size", 'test_step': "dataset_configs['MRBrainS'].test_step", 'data_augmentation_config': 'data_augmentation_config'}), "(source_dir=\n dataset_configs['MRBrainS'].path, modalities=dataset_configs['MRBrainS'\n ].modalities, dataset_id=MRBRAINS_ID, test_size=dataset_configs[\n 'MRBrainS'].validation_split, max_subjects=dataset_configs['MRBrainS'].\n max_subjects, max_num_patches=dataset_configs['MRBrainS'].\n max_num_patches, augment=dataset_configs['MRBrainS'].augment,\n patch_size=dataset_configs['MRBrainS'].patch_size, step=dataset_configs\n ['MRBrainS'].step, test_patch_size=dataset_configs['MRBrainS'].\n test_patch_size, test_step=dataset_configs['MRBrainS'].test_step,\n data_augmentation_config=data_augmentation_config)\n", (5047, 5678), False, 'from deepNormalize.inputs.datasets import iSEGSliceDatasetFactory, MRBrainSSliceDatasetFactory, ABIDESliceDatasetFactory\n'), ((6014, 6698), 'deepNormalize.inputs.datasets.ABIDESliceDatasetFactory.create_train_valid_test', 'ABIDESliceDatasetFactory.create_train_valid_test', ([], {'source_dir': "dataset_configs['ABIDE'].path", 'modalities': "dataset_configs['ABIDE'].modalities", 'dataset_id': 'ABIDE_ID', 'sites': "dataset_configs['ABIDE'].sites", 'max_subjects': "dataset_configs['ABIDE'].max_subjects", 'test_size': "dataset_configs['ABIDE'].validation_split", 'max_num_patches': "dataset_configs['ABIDE'].max_num_patches", 'augment': "dataset_configs['ABIDE'].augment", 'patch_size': "dataset_configs['ABIDE'].patch_size", 'step': "dataset_configs['ABIDE'].step", 'test_patch_size': "dataset_configs['ABIDE'].test_patch_size", 'test_step': "dataset_configs['ABIDE'].test_step", 'data_augmentation_config': 'data_augmentation_config'}), "(source_dir=dataset_configs\n ['ABIDE'].path, modalities=dataset_configs['ABIDE'].modalities,\n dataset_id=ABIDE_ID, sites=dataset_configs['ABIDE'].sites, max_subjects\n =dataset_configs['ABIDE'].max_subjects, test_size=dataset_configs[\n 'ABIDE'].validation_split, max_num_patches=dataset_configs['ABIDE'].\n max_num_patches, augment=dataset_configs['ABIDE'].augment, patch_size=\n dataset_configs['ABIDE'].patch_size, step=dataset_configs['ABIDE'].step,\n test_patch_size=dataset_configs['ABIDE'].test_patch_size, test_step=\n dataset_configs['ABIDE'].test_step, data_augmentation_config=\n data_augmentation_config)\n", (6062, 6698), False, 'from deepNormalize.inputs.datasets import iSEGSliceDatasetFactory, MRBrainSSliceDatasetFactory, ABIDESliceDatasetFactory\n'), ((7086, 7398), 'deepNormalize.utils.image_slicer.ImageReconstructor', 'ImageReconstructor', (['[iSEG_reconstruction._source_images[0], MRBrainS_reconstruction.\n _source_images[0]]'], {'patch_size': "dataset_configs['iSEG'].test_patch_size", 'reconstructed_image_size': '(1, 256, 256, 192)', 'step': "dataset_configs['iSEG'].test_step", 'models': '[model_trainers[0]]', 'segment': '(True)', 'batch_size': '(8)'}), "([iSEG_reconstruction._source_images[0],\n MRBrainS_reconstruction._source_images[0]], patch_size=dataset_configs[\n 'iSEG'].test_patch_size, reconstructed_image_size=(1, 256, 256, 192),\n step=dataset_configs['iSEG'].test_step, models=[model_trainers[0]],\n segment=True, batch_size=8)\n", (7104, 7398), False, 'from deepNormalize.utils.image_slicer import ImageReconstructor\n'), ((7485, 7752), 'deepNormalize.utils.image_slicer.ImageReconstructor', 'ImageReconstructor', (['[iSEG_reconstruction._source_images[0], MRBrainS_reconstruction.\n _source_images[0]]'], {'patch_size': "dataset_configs['iSEG'].test_patch_size", 'reconstructed_image_size': '(1, 256, 256, 192)', 'step': "dataset_configs['iSEG'].test_step", 'batch_size': '(50)'}), "([iSEG_reconstruction._source_images[0],\n MRBrainS_reconstruction._source_images[0]], patch_size=dataset_configs[\n 'iSEG'].test_patch_size, reconstructed_image_size=(1, 256, 256, 192),\n step=dataset_configs['iSEG'].test_step, batch_size=50)\n", (7503, 7752), False, 'from deepNormalize.utils.image_slicer import ImageReconstructor\n'), ((7828, 8122), 'deepNormalize.utils.image_slicer.ImageReconstructor', 'ImageReconstructor', (['[iSEG_reconstruction._target_images[0], MRBrainS_reconstruction.\n _target_images[0]]'], {'patch_size': "dataset_configs['iSEG'].test_patch_size", 'reconstructed_image_size': '(1, 256, 256, 192)', 'step': "dataset_configs['iSEG'].test_step", 'is_ground_truth': '(True)', 'batch_size': '(50)'}), "([iSEG_reconstruction._target_images[0],\n MRBrainS_reconstruction._target_images[0]], patch_size=dataset_configs[\n 'iSEG'].test_patch_size, reconstructed_image_size=(1, 256, 256, 192),\n step=dataset_configs['iSEG'].test_step, is_ground_truth=True, batch_size=50\n )\n", (7846, 8122), False, 'from deepNormalize.utils.image_slicer import ImageReconstructor\n'), ((9095, 9443), 'deepNormalize.utils.image_slicer.ImageReconstructor', 'ImageReconstructor', (['[iSEG_reconstruction._source_images[0], MRBrainS_reconstruction.\n _source_images[0], ABIDE_reconstruction._source_images[0]]'], {'patch_size': '(1, 32, 32, 32)', 'reconstructed_image_size': '(1, 256, 256, 192)', 'step': "dataset_configs['iSEG'].test_step", 'models': '[model_trainers[0]]', 'normalize_and_segment': '(True)', 'batch_size': '(4)'}), "([iSEG_reconstruction._source_images[0],\n MRBrainS_reconstruction._source_images[0], ABIDE_reconstruction.\n _source_images[0]], patch_size=(1, 32, 32, 32),\n reconstructed_image_size=(1, 256, 256, 192), step=dataset_configs[\n 'iSEG'].test_step, models=[model_trainers[0]], normalize_and_segment=\n True, batch_size=4)\n", (9113, 9443), False, 'from deepNormalize.utils.image_slicer import ImageReconstructor\n'), ((9549, 9837), 'deepNormalize.utils.image_slicer.ImageReconstructor', 'ImageReconstructor', (['[iSEG_reconstruction._source_images[0], MRBrainS_reconstruction.\n _source_images[0], ABIDE_reconstruction._source_images[0]]'], {'patch_size': '(1, 32, 32, 32)', 'reconstructed_image_size': '(1, 256, 256, 192)', 'step': "dataset_configs['iSEG'].test_step", 'batch_size': '(50)'}), "([iSEG_reconstruction._source_images[0],\n MRBrainS_reconstruction._source_images[0], ABIDE_reconstruction.\n _source_images[0]], patch_size=(1, 32, 32, 32),\n reconstructed_image_size=(1, 256, 256, 192), step=dataset_configs[\n 'iSEG'].test_step, batch_size=50)\n", (9567, 9837), False, 'from deepNormalize.utils.image_slicer import ImageReconstructor\n'), ((9921, 10231), 'deepNormalize.utils.image_slicer.ImageReconstructor', 'ImageReconstructor', (['[iSEG_reconstruction._target_images[0], MRBrainS_reconstruction.\n _target_images[0], ABIDE_reconstruction._target_images[0]]'], {'patch_size': '(1, 32, 32, 32)', 'reconstructed_image_size': '(1, 256, 256, 192)', 'step': "dataset_configs['iSEG'].test_step", 'batch_size': '(50)', 'is_ground_truth': '(True)'}), "([iSEG_reconstruction._target_images[0],\n MRBrainS_reconstruction._target_images[0], ABIDE_reconstruction.\n _target_images[0]], patch_size=(1, 32, 32, 32),\n reconstructed_image_size=(1, 256, 256, 192), step=dataset_configs[\n 'iSEG'].test_step, batch_size=50, is_ground_truth=True)\n", (9939, 10231), False, 'from deepNormalize.utils.image_slicer import ImageReconstructor\n'), ((11285, 11331), 'torch.utils.data.ConcatDataset', 'torch.utils.data.ConcatDataset', (['train_datasets'], {}), '(train_datasets)\n', (11315, 11331), False, 'import torch\n'), ((11356, 11402), 'torch.utils.data.ConcatDataset', 'torch.utils.data.ConcatDataset', (['valid_datasets'], {}), '(valid_datasets)\n', (11386, 11402), False, 'import torch\n'), ((11426, 11471), 'torch.utils.data.ConcatDataset', 'torch.utils.data.ConcatDataset', (['test_datasets'], {}), '(test_datasets)\n', (11456, 11471), False, 'import torch\n'), ((13092, 13207), 'kerosene.loggers.visdom.visdom.VisdomData', 'VisdomData', (['"""Experiment"""', '"""Experiment Config"""', 'PlotType.TEXT_PLOT', 'PlotFrequency.EVERY_EPOCH', 'None', 'config_html'], {}), "('Experiment', 'Experiment Config', PlotType.TEXT_PLOT,\n PlotFrequency.EVERY_EPOCH, None, config_html)\n", (13102, 13207), False, 'from kerosene.loggers.visdom.visdom import VisdomLogger, VisdomData\n'), ((2146, 2208), 'deepNormalize.config.parsers.ArgsParserFactory.create_parser', 'ArgsParserFactory.create_parser', (['ArgsParserType.MODEL_TRAINING'], {}), '(ArgsParserType.MODEL_TRAINING)\n', (2177, 2208), False, 'from deepNormalize.config.parsers import ArgsParserFactory, ArgsParserType\n'), ((3559, 3579), 'deepNormalize.factories.customModelFactory.CustomModelFactory', 'CustomModelFactory', ([], {}), '()\n', (3577, 3579), False, 'from deepNormalize.factories.customModelFactory import CustomModelFactory\n'), ((3647, 3671), 'deepNormalize.nn.criterions.CustomCriterionFactory', 'CustomCriterionFactory', ([], {}), '()\n', (3669, 3671), False, 'from deepNormalize.nn.criterions import CustomCriterionFactory\n'), ((8266, 8812), 'deepNormalize.utils.image_slicer.ImageReconstructor', 'ImageReconstructor', (['[iSEG_reconstruction._source_images[0], MRBrainS_reconstruction.\n _source_images[0]]'], {'patch_size': "dataset_configs['iSEG'].test_patch_size", 'reconstructed_image_size': '(1, 256, 256, 192)', 'step': "dataset_configs['iSEG'].test_step", 'batch_size': '(50)', 'alpha': "data_augmentation_config['test']['bias_field']['alpha'][0]", 'prob_bias': "data_augmentation_config['test']['bias_field']['prob_bias']", 'snr': "data_augmentation_config['test']['noise']['snr']", 'prob_noise': "data_augmentation_config['test']['noise']['prob_noise']"}), "([iSEG_reconstruction._source_images[0],\n MRBrainS_reconstruction._source_images[0]], patch_size=dataset_configs[\n 'iSEG'].test_patch_size, reconstructed_image_size=(1, 256, 256, 192),\n step=dataset_configs['iSEG'].test_step, batch_size=50, alpha=\n data_augmentation_config['test']['bias_field']['alpha'][0], prob_bias=\n data_augmentation_config['test']['bias_field']['prob_bias'], snr=\n data_augmentation_config['test']['noise']['snr'], prob_noise=\n data_augmentation_config['test']['noise']['prob_noise'])\n", (8284, 8812), False, 'from deepNormalize.utils.image_slicer import ImageReconstructor\n'), ((10388, 10955), 'deepNormalize.utils.image_slicer.ImageReconstructor', 'ImageReconstructor', (['[iSEG_reconstruction._source_images[0], MRBrainS_reconstruction.\n _source_images[0], ABIDE_reconstruction._source_images[0]]'], {'patch_size': '(1, 32, 32, 32)', 'reconstructed_image_size': '(1, 256, 256, 192)', 'step': "dataset_configs['iSEG'].test_step", 'batch_size': '(50)', 'alpha': "data_augmentation_config['test']['bias_field']['alpha'][0]", 'prob_bias': "data_augmentation_config['test']['bias_field']['prob_bias']", 'snr': "data_augmentation_config['test']['noise']['snr']", 'prob_noise': "data_augmentation_config['test']['noise']['prob_noise']"}), "([iSEG_reconstruction._source_images[0],\n MRBrainS_reconstruction._source_images[0], ABIDE_reconstruction.\n _source_images[0]], patch_size=(1, 32, 32, 32),\n reconstructed_image_size=(1, 256, 256, 192), step=dataset_configs[\n 'iSEG'].test_step, batch_size=50, alpha=data_augmentation_config['test'\n ]['bias_field']['alpha'][0], prob_bias=data_augmentation_config['test']\n ['bias_field']['prob_bias'], snr=data_augmentation_config['test'][\n 'noise']['snr'], prob_noise=data_augmentation_config['test']['noise'][\n 'prob_noise'])\n", (10406, 10955), False, 'from deepNormalize.utils.image_slicer import ImageReconstructor\n'), ((13716, 13755), 'deepNormalize.factories.customTrainerFactory.TrainerFactory', 'TrainerFactory', (['training_config.trainer'], {}), '(training_config.trainer)\n', (13730, 13755), False, 'from deepNormalize.factories.customTrainerFactory import TrainerFactory\n'), ((11672, 11855), 'torch.utils.data.dataloader.DataLoader', 'DataLoader', (['dataset', 'training_config.batch_size'], {'sampler': 'None', 'shuffle': '(True)', 'num_workers': 'args.num_workers', 'collate_fn': 'augmented_sample_collate', 'drop_last': '(True)', 'pin_memory': '(True)'}), '(dataset, training_config.batch_size, sampler=None, shuffle=True,\n num_workers=args.num_workers, collate_fn=augmented_sample_collate,\n drop_last=True, pin_memory=True)\n', (11682, 11855), False, 'from torch.utils.data.dataloader import DataLoader\n'), ((12850, 12885), 'os.path.normpath', 'os.path.normpath', (['visdom_config.env'], {}), '(visdom_config.env)\n', (12866, 12885), False, 'import os\n'), ((12745, 12780), 'os.path.normpath', 'os.path.normpath', (['visdom_config.env'], {}), '(visdom_config.env)\n', (12761, 12780), False, 'import os\n')]
import sys import unittest import os import tempfile from netCDF4 import Dataset import numpy as np from numpy.testing import assert_array_equal FILE_NAME = tempfile.NamedTemporaryFile(suffix='.nc', delete=False).name VL_NAME = 'vlen_type' VL_BASETYPE = np.int16 DIM1_NAME = 'lon' DIM2_NAME = 'lat' nlons = 5; nlats = 5 VAR1_NAME = 'ragged' VAR2_NAME = 'strings' VAR3_NAME = 'strings_alt' VAR4_NAME = 'string_scalar' VAR5_NAME = 'vlen_scalar' data = np.empty(nlats*nlons,object) datas = np.empty(nlats*nlons,object) nn = 0 for n in range(nlats*nlons): nn = nn + 1 data[n] = np.arange(nn,dtype=VL_BASETYPE) datas[n] = ''.join([chr(i) for i in range(97,97+nn+1)]) data = np.reshape(data,(nlats,nlons)) datas = np.reshape(datas,(nlats,nlons)) class VariablesTestCase(unittest.TestCase): def setUp(self): self.file = FILE_NAME f = Dataset(self.file,'w') vlen_t = f.createVLType(VL_BASETYPE, VL_NAME) f.createDimension(DIM1_NAME,nlons) f.createDimension(DIM2_NAME,nlats) ragged = f.createVariable(VAR1_NAME, vlen_t,\ (DIM2_NAME,DIM1_NAME)) strings = f.createVariable(VAR2_NAME, str, (DIM2_NAME,DIM1_NAME)) strings_alt = f.createVariable(VAR3_NAME, datas.astype(str).dtype, (DIM2_NAME, DIM1_NAME)) string_scalar = f.createVariable(VAR4_NAME,str,()) vlen_scalar = f.createVariable(VAR5_NAME,vlen_t,()) ragged[:] = data ragged[-1,-1] = data[-1,-1] strings[:] = datas strings[-2,-2] = datas[-2,-2] strings_alt[:] = datas.astype(str) string_scalar[...] = 'foo' #issue458 vlen_scalar[...] = np.array([1,2,3],np.int16) f.close() def tearDown(self): # Remove the temporary files os.remove(self.file) def runTest(self): """testing vlen variables""" f = Dataset(self.file, 'r') v = f.variables[VAR1_NAME] vs = f.variables[VAR2_NAME] vs_alt = f.variables[VAR3_NAME] assert list(f.vltypes.keys()) == [VL_NAME] assert f.vltypes[VL_NAME].dtype == VL_BASETYPE assert f.variables['string_scalar'][...] == 'foo' assert_array_equal(f.variables['vlen_scalar'][...],np.array([1,2,3],np.int16)) data2 = v[:] data2s = vs[:] for i in range(nlons): for j in range(nlats): assert_array_equal(data2[j,i], data[j,i]) assert datas[j,i] == data2s[j,i] assert_array_equal(datas, vs_alt[:]) f.close() class TestInvalidDataType(unittest.TestCase): def runTest(self): f = Dataset(FILE_NAME, 'w', format='NETCDF3_CLASSIC') f.createDimension('x', 1) # using assertRaisesRegext as a context manager # only works with python >= 2.7 (issue #497) #with self.assertRaisesRegexp(ValueError, 'strings are only supported'): # f.createVariable('foo', str, ('x',)) try: f.createVariable('foo', str, ('x',)) except ValueError: pass f.close() os.remove(FILE_NAME) class TestScalarVlenString(unittest.TestCase): # issue 333 def runTest(self): f = Dataset(FILE_NAME, 'w', format='NETCDF4') teststring = f.createVariable('teststring', str) stringout = "yyyymmdd_hhmmss" teststring[()] = stringout f.close() f = Dataset(FILE_NAME) assert f.variables['teststring'][:] == stringout f.close() os.remove(FILE_NAME) class TestIntegerIndex(unittest.TestCase): # issue 526 def runTest(self): strtest = Dataset(FILE_NAME, 'w', format='NETCDF4') strtest.createDimension('tenstrings', 10) strtest.createVariable('tenstrings', str, ['tenstrings']) strtest['tenstrings'][np.int32(5)] = 'asdf' strtest['tenstrings'][6.0] = 'asdf' strtest.close() f = Dataset(FILE_NAME) assert f.variables['tenstrings'][np.int32(5)] == 'asdf' assert f.variables['tenstrings'][6.0] == 'asdf' f.close() os.remove(FILE_NAME) class TestObjectArrayIndexing(unittest.TestCase): def setUp(self): self.file = FILE_NAME f = Dataset(self.file,'w') vlen_t = f.createVLType(VL_BASETYPE, VL_NAME) f.createDimension(DIM1_NAME,nlons) f.createDimension(DIM2_NAME,nlats) strings_alt = f.createVariable(VAR3_NAME, datas.astype(str).dtype, (DIM2_NAME, DIM1_NAME)) strings_alt[:] = datas.astype(str) f.close() def tearDown(self): # Remove the temporary files os.remove(self.file) def runTest(self): """testing vlen variables""" f = Dataset(self.file, 'r') vs_alt = f.variables[VAR3_NAME] unicode_strings = vs_alt[:] fancy_indexed = unicode_strings[0][[1,2,4]] assert fancy_indexed[0] == 'abc' assert fancy_indexed[1] == 'abcd' assert fancy_indexed[2] == 'abcdef' f.close() class VlenAppendTestCase(unittest.TestCase): def setUp(self): import netCDF4 if netCDF4.__netcdf4libversion__ < "4.4.1": self.skip = True try: self.skipTest("This test requires NetCDF 4.4.1 or later.") except AttributeError: # workaround for Python 2.6 (skipTest(reason) is new # in Python 2.7) pass else: self.skip = False self.file = FILE_NAME f = Dataset(self.file, 'w') vlen_type = f.createVLType(np.float64, 'vltest') f.createDimension('x', None) v = f.createVariable('vl', vlen_type, 'x') w = f.createVariable('vl2', np.float64, 'x') f.close() def tearDown(self): # Remove the temporary files os.remove(self.file) def runTest(self): """testing appending to vlen variables (issue #527).""" # workaround for Python 2.6 if self.skip: return f = Dataset(self.file, 'a') w = f.variables["vl2"] v = f.variables["vl"] w[0:3] = np.arange(3, dtype=np.float64) v[0] # sometimes crashes v[0].tolist() # sometimes crashes v[0].size # BOOM! f.close() class Vlen_ScaledInts(unittest.TestCase): def setUp(self): self.file = FILE_NAME nc = Dataset(self.file, 'w') vlen_type = nc.createVLType(np.uint8, 'vltest') nc.createDimension('x', None) v = nc.createVariable('vl', vlen_type, 'x') v.scale_factor = 1./254. v.missing_value=np.array(255,np.uint8) # random lengths between 1 and 1000 ilen = np.random.randint(1,1000,size=100) n = 0 for nlen in ilen: data = np.random.uniform(low=0.0, high=1.0, size=nlen) v[n] = data if n==99: self.data = data n += 1 nc.close() def tearDown(self): # Remove the temporary files os.remove(self.file) def runTest(self): """testing packing float vlens as scaled integers (issue #1003).""" nc = Dataset(self.file) data = nc['vl'][-1] # check max error of compression err = np.abs(data - self.data) assert(err.max() < nc['vl'].scale_factor) # turn off auto-scaling nc.set_auto_maskandscale(False) data = nc['vl'][-1] assert(data[-1] == np.around(self.data[-1]/nc['vl'].scale_factor)) nc.close() if __name__ == '__main__': unittest.main()
[ "numpy.abs", "numpy.reshape", "numpy.testing.assert_array_equal", "netCDF4.Dataset", "numpy.int32", "numpy.array", "numpy.random.randint", "numpy.random.uniform", "numpy.empty", "numpy.around", "tempfile.NamedTemporaryFile", "unittest.main", "numpy.arange", "os.remove" ]
[((451, 482), 'numpy.empty', 'np.empty', (['(nlats * nlons)', 'object'], {}), '(nlats * nlons, object)\n', (459, 482), True, 'import numpy as np\n'), ((488, 519), 'numpy.empty', 'np.empty', (['(nlats * nlons)', 'object'], {}), '(nlats * nlons, object)\n', (496, 519), True, 'import numpy as np\n'), ((682, 714), 'numpy.reshape', 'np.reshape', (['data', '(nlats, nlons)'], {}), '(data, (nlats, nlons))\n', (692, 714), True, 'import numpy as np\n'), ((721, 754), 'numpy.reshape', 'np.reshape', (['datas', '(nlats, nlons)'], {}), '(datas, (nlats, nlons))\n', (731, 754), True, 'import numpy as np\n'), ((158, 213), 'tempfile.NamedTemporaryFile', 'tempfile.NamedTemporaryFile', ([], {'suffix': '""".nc"""', 'delete': '(False)'}), "(suffix='.nc', delete=False)\n", (185, 213), False, 'import tempfile\n'), ((583, 615), 'numpy.arange', 'np.arange', (['nn'], {'dtype': 'VL_BASETYPE'}), '(nn, dtype=VL_BASETYPE)\n', (592, 615), True, 'import numpy as np\n'), ((7659, 7674), 'unittest.main', 'unittest.main', ([], {}), '()\n', (7672, 7674), False, 'import unittest\n'), ((863, 886), 'netCDF4.Dataset', 'Dataset', (['self.file', '"""w"""'], {}), "(self.file, 'w')\n", (870, 886), False, 'from netCDF4 import Dataset\n'), ((1708, 1737), 'numpy.array', 'np.array', (['[1, 2, 3]', 'np.int16'], {}), '([1, 2, 3], np.int16)\n', (1716, 1737), True, 'import numpy as np\n'), ((1823, 1843), 'os.remove', 'os.remove', (['self.file'], {}), '(self.file)\n', (1832, 1843), False, 'import os\n'), ((1917, 1940), 'netCDF4.Dataset', 'Dataset', (['self.file', '"""r"""'], {}), "(self.file, 'r')\n", (1924, 1940), False, 'from netCDF4 import Dataset\n'), ((2528, 2564), 'numpy.testing.assert_array_equal', 'assert_array_equal', (['datas', 'vs_alt[:]'], {}), '(datas, vs_alt[:])\n', (2546, 2564), False, 'from numpy.testing import assert_array_equal\n'), ((2666, 2715), 'netCDF4.Dataset', 'Dataset', (['FILE_NAME', '"""w"""'], {'format': '"""NETCDF3_CLASSIC"""'}), "(FILE_NAME, 'w', format='NETCDF3_CLASSIC')\n", (2673, 2715), False, 'from netCDF4 import Dataset\n'), ((3122, 3142), 'os.remove', 'os.remove', (['FILE_NAME'], {}), '(FILE_NAME)\n', (3131, 3142), False, 'import os\n'), ((3242, 3283), 'netCDF4.Dataset', 'Dataset', (['FILE_NAME', '"""w"""'], {'format': '"""NETCDF4"""'}), "(FILE_NAME, 'w', format='NETCDF4')\n", (3249, 3283), False, 'from netCDF4 import Dataset\n'), ((3444, 3462), 'netCDF4.Dataset', 'Dataset', (['FILE_NAME'], {}), '(FILE_NAME)\n', (3451, 3462), False, 'from netCDF4 import Dataset\n'), ((3546, 3566), 'os.remove', 'os.remove', (['FILE_NAME'], {}), '(FILE_NAME)\n', (3555, 3566), False, 'import os\n'), ((3668, 3709), 'netCDF4.Dataset', 'Dataset', (['FILE_NAME', '"""w"""'], {'format': '"""NETCDF4"""'}), "(FILE_NAME, 'w', format='NETCDF4')\n", (3675, 3709), False, 'from netCDF4 import Dataset\n'), ((3958, 3976), 'netCDF4.Dataset', 'Dataset', (['FILE_NAME'], {}), '(FILE_NAME)\n', (3965, 3976), False, 'from netCDF4 import Dataset\n'), ((4123, 4143), 'os.remove', 'os.remove', (['FILE_NAME'], {}), '(FILE_NAME)\n', (4132, 4143), False, 'import os\n'), ((4259, 4282), 'netCDF4.Dataset', 'Dataset', (['self.file', '"""w"""'], {}), "(self.file, 'w')\n", (4266, 4282), False, 'from netCDF4 import Dataset\n'), ((4691, 4711), 'os.remove', 'os.remove', (['self.file'], {}), '(self.file)\n', (4700, 4711), False, 'import os\n'), ((4785, 4808), 'netCDF4.Dataset', 'Dataset', (['self.file', '"""r"""'], {}), "(self.file, 'r')\n", (4792, 4808), False, 'from netCDF4 import Dataset\n'), ((5591, 5614), 'netCDF4.Dataset', 'Dataset', (['self.file', '"""w"""'], {}), "(self.file, 'w')\n", (5598, 5614), False, 'from netCDF4 import Dataset\n'), ((5901, 5921), 'os.remove', 'os.remove', (['self.file'], {}), '(self.file)\n', (5910, 5921), False, 'import os\n'), ((6100, 6123), 'netCDF4.Dataset', 'Dataset', (['self.file', '"""a"""'], {}), "(self.file, 'a')\n", (6107, 6123), False, 'from netCDF4 import Dataset\n'), ((6202, 6232), 'numpy.arange', 'np.arange', (['(3)'], {'dtype': 'np.float64'}), '(3, dtype=np.float64)\n', (6211, 6232), True, 'import numpy as np\n'), ((6502, 6525), 'netCDF4.Dataset', 'Dataset', (['self.file', '"""w"""'], {}), "(self.file, 'w')\n", (6509, 6525), False, 'from netCDF4 import Dataset\n'), ((6729, 6752), 'numpy.array', 'np.array', (['(255)', 'np.uint8'], {}), '(255, np.uint8)\n', (6737, 6752), True, 'import numpy as np\n'), ((6811, 6847), 'numpy.random.randint', 'np.random.randint', (['(1)', '(1000)'], {'size': '(100)'}), '(1, 1000, size=100)\n', (6828, 6847), True, 'import numpy as np\n'), ((7123, 7143), 'os.remove', 'os.remove', (['self.file'], {}), '(self.file)\n', (7132, 7143), False, 'import os\n'), ((7256, 7274), 'netCDF4.Dataset', 'Dataset', (['self.file'], {}), '(self.file)\n', (7263, 7274), False, 'from netCDF4 import Dataset\n'), ((7358, 7382), 'numpy.abs', 'np.abs', (['(data - self.data)'], {}), '(data - self.data)\n', (7364, 7382), True, 'import numpy as np\n'), ((2275, 2304), 'numpy.array', 'np.array', (['[1, 2, 3]', 'np.int16'], {}), '([1, 2, 3], np.int16)\n', (2283, 2304), True, 'import numpy as np\n'), ((3856, 3867), 'numpy.int32', 'np.int32', (['(5)'], {}), '(5)\n', (3864, 3867), True, 'import numpy as np\n'), ((6905, 6952), 'numpy.random.uniform', 'np.random.uniform', ([], {'low': '(0.0)', 'high': '(1.0)', 'size': 'nlen'}), '(low=0.0, high=1.0, size=nlen)\n', (6922, 6952), True, 'import numpy as np\n'), ((7560, 7608), 'numpy.around', 'np.around', (["(self.data[-1] / nc['vl'].scale_factor)"], {}), "(self.data[-1] / nc['vl'].scale_factor)\n", (7569, 7608), True, 'import numpy as np\n'), ((2429, 2472), 'numpy.testing.assert_array_equal', 'assert_array_equal', (['data2[j, i]', 'data[j, i]'], {}), '(data2[j, i], data[j, i])\n', (2447, 2472), False, 'from numpy.testing import assert_array_equal\n'), ((4018, 4029), 'numpy.int32', 'np.int32', (['(5)'], {}), '(5)\n', (4026, 4029), True, 'import numpy as np\n')]
import numpy as np if __name__ == '__main__': h, w = map( int, input().split() ) row_list = [] for i in range(h): single_row = list( map(int, input().split() ) ) np_row = np.array( single_row ) row_list.append( np_row ) min_of_each_row = np.min( row_list, axis = 1) max_of_min = np.max( min_of_each_row ) print( max_of_min )
[ "numpy.max", "numpy.array", "numpy.min" ]
[((288, 312), 'numpy.min', 'np.min', (['row_list'], {'axis': '(1)'}), '(row_list, axis=1)\n', (294, 312), True, 'import numpy as np\n'), ((334, 357), 'numpy.max', 'np.max', (['min_of_each_row'], {}), '(min_of_each_row)\n', (340, 357), True, 'import numpy as np\n'), ((206, 226), 'numpy.array', 'np.array', (['single_row'], {}), '(single_row)\n', (214, 226), True, 'import numpy as np\n')]
from .._BlackJack import BlackJackCPP import gym import ctypes import numpy as np from gym import spaces class BlackJack(gym.Env): def __init__(self, natural=False): self.env = BlackJackCPP(natural) self.action_space = spaces.Discrete(2) self.observation_space = spaces.Tuple(( spaces.Discrete(32), spaces.Discrete(11), spaces.Discrete(2) )) self.state = None self.natural = natural def seed(self, seed=None): if seed is None: return [self.env.get_seed()] else: if not isinstance(seed, ctypes.c_uint32): seed = ctypes.c_uint32(seed).value self.env.set_seed(seed) return [seed] def step(self, action): assert self.action_space.contains(action) state, reward, done = self.env.step(action) self.state = np.array(state) return self.state, reward, done, {} def render(self, mode='human'): return None def reset(self): self.state = np.array(self.env.reset()) return self.state
[ "numpy.array", "ctypes.c_uint32", "gym.spaces.Discrete" ]
[((242, 260), 'gym.spaces.Discrete', 'spaces.Discrete', (['(2)'], {}), '(2)\n', (257, 260), False, 'from gym import spaces\n'), ((905, 920), 'numpy.array', 'np.array', (['state'], {}), '(state)\n', (913, 920), True, 'import numpy as np\n'), ((321, 340), 'gym.spaces.Discrete', 'spaces.Discrete', (['(32)'], {}), '(32)\n', (336, 340), False, 'from gym import spaces\n'), ((354, 373), 'gym.spaces.Discrete', 'spaces.Discrete', (['(11)'], {}), '(11)\n', (369, 373), False, 'from gym import spaces\n'), ((387, 405), 'gym.spaces.Discrete', 'spaces.Discrete', (['(2)'], {}), '(2)\n', (402, 405), False, 'from gym import spaces\n'), ((663, 684), 'ctypes.c_uint32', 'ctypes.c_uint32', (['seed'], {}), '(seed)\n', (678, 684), False, 'import ctypes\n')]
import numpy as np from . import _version __version__ = _version.get_versions()['version'] HXR_COLORS = ("#000000", "#02004a", "#030069", "#04008f", "#0500b3", "#0700ff") SXR_COLORS = ("#000000", "#330000", "#520000", "#850000", "#ad0000", "#ff0000") HXR_AREAS = { "GUN" : [2017.911, 2018.712], "L0" : [2018.712, 2024.791], "DL1_1": [2024.791, 2031.992], "DL1_2": [2031.992, 2035.035], "L1": [2035.035, 2044.167], "BC1": [2044.167, 2059.733], "L2": [2059.733, 2410.698], "BC2": [2410.698, 2438.400], "L3": [2438.400, 3042.005], "CLTH_0": [3042.005, 3050.512], "CLTH_1": [3050.512, 3058.457], "CLTH_2": [3058.457, 3110.961], "BSYH_1": [3110.961, 3117.409], "BSYH_2": [3117.409, 3224.022], "LTUH": [3224.022, 3562.739], "UNDH": [3562.739, 3718.483], "DMPH_1": [3718.483, 3734.407], "DMPH_2": [3734.407, 3765.481] } HXR_AREAS = {np.mean(value): key for key, value in HXR_AREAS.items()} SXR_AREAS = { "GUN" : [2017.911, 2017.911], "L0" : [2018.712, 2024.791], "DL1_1": [2024.791, 2031.992], "DL1_2": [2031.992, 2035.035], "L1": [2035.035, 2044.167], "BC1": [2044.167, 2059.733], "L2": [2059.733, 2410.698], "BC2": [2410.698, 2438.400], "L3": [2438.400, 3042.005], "CLTH_0": [3042.005, 3050.512], "CLTH_1": [3050.512, 3058.457], "CLTS": [3177.650, 3224.022], "BSYS": [3224.022, 3565.656], "LTUS": [3565.656, 3718.483], "UNDS": [3718.483, 3734.407], "DMPS_1": [3734.407, 3734.407], "DMPS_2": [3734.407, 3765.481] } SXR_AREAS = {np.mean(value): key for key, value in SXR_AREAS.items()}
[ "numpy.mean" ]
[((903, 917), 'numpy.mean', 'np.mean', (['value'], {}), '(value)\n', (910, 917), True, 'import numpy as np\n'), ((1569, 1583), 'numpy.mean', 'np.mean', (['value'], {}), '(value)\n', (1576, 1583), True, 'import numpy as np\n')]
import os import tempfile import numpy as np import tensorflow as tf from time import time from termcolor import cprint from unittest import TestCase from .. import K from .. import Input, Dense, GRU, Bidirectional, Embedding from .. import Model, load_model from .. import l2 from .. import maxnorm from .. import Adam, Nadam, SGD from .. import AdamW, NadamW, SGDW from .. import get_weight_decays, fill_dict_in_order, reset_seeds, K_eval print("TF version: %s" % tf.__version__) tf_eager = bool(os.environ["TF_EAGER"] == "True") if tf_eager: print("TF running eagerly") else: tf.compat.v1.disable_eager_execution() print("TF running in graph mode") class TestOptimizers(TestCase): def test_all(self): # Save/Load, Warm Restarts (w/ cosine annealing) for optimizer_name in ['AdamW', 'NadamW', 'SGDW']: cprint("<< TESTING {} OPTIMIZER >>".format(optimizer_name), 'blue') reset_seeds() num_batches, num_epochs = 25, 4 batch_size, timesteps, num_channels = 16, 8, 4 batch_shape = (batch_size, timesteps, num_channels) total_iterations = num_batches # due to warm restarts self.model = self._make_model(batch_shape, total_iterations) optimizer = self._make_optimizer(optimizer_name, self.model, total_iterations) self.model.compile(optimizer, loss='binary_crossentropy') self.assertTrue(self._valid_weight_decays(self.model)) self.model._make_train_function() # else K.eval before train may fail X, Y = self._make_data(num_batches, *batch_shape) self.eta_history = [] # for stop-introspection self.t_cur_history = [] # for stop-introspection for epoch in range(num_epochs): for batch_num in range(num_batches): self.t_cur_history += [K_eval(self.model.optimizer.t_cur, K)] self.eta_history += [K_eval(self.model.optimizer.eta_t, K)] self.model.train_on_batch(X[batch_num], Y[batch_num]) self.eta_history += [K_eval(self.model.optimizer.eta_t, K)] self.eta_history.pop(-(1 + int(tf_eager))) K.set_value(self.model.optimizer.t_cur, 0) self.assertTrue(self._valid_cosine_annealing(self.eta_history, total_iterations, num_epochs)) self._test_save_load(self.model, X, optimizer_name, optimizer) # cleanup del self.model, optimizer reset_seeds(reset_graph_with_backend=K) cprint("\n<< {} MAIN TEST PASSED >>\n".format(optimizer_name), 'green') cprint("\n<< ALL MAIN TESTS PASSED >>\n", 'green') def test_misc(self): # tests of non-main features to improve coverage for optimizer_name in ['AdamW', 'NadamW', 'SGDW']: cprint("<< TESTING {} OPTIMIZER >>".format(optimizer_name), 'blue') reset_seeds() optimizer_kw = {'total_iterations': 0, 'decay': 1e-3, 'amsgrad': optimizer_name == 'AdamW', 'nesterov': optimizer_name == 'SGDW'} num_batches = 4 batch_size, timesteps = 16, 8 batch_shape = (batch_size, timesteps) embed_input_dim = 5 total_iterations = 0 self.model = self._make_model(batch_shape, total_iterations, embed_input_dim=embed_input_dim, dense_constraint=1, l2_reg=1e-4, bidirectional=False, sparse=True) optimizer = self._make_optimizer(optimizer_name, self.model, **optimizer_kw) self.model.compile(optimizer, loss='sparse_categorical_crossentropy') X, Y = self._make_data(num_batches, *batch_shape, embed_input_dim=embed_input_dim, sparse=True) for batch_num in range(num_batches): self.model.train_on_batch(X[batch_num], Y[batch_num]) self._test_save_load(self.model, X, optimizer_name, optimizer) # cleanup del self.model, optimizer reset_seeds(reset_graph_with_backend=K) cprint("\n<< {} MISC TEST PASSED >>\n".format(optimizer_name), 'green') cprint("\n<< ALL MISC TESTS PASSED >>\n", 'green') def test_control(self): # tests losses against original optimizers' for optimizer_name in ['AdamW', 'NadamW', 'SGDW']: cprint("<< TESTING {} OPTIMIZER >>".format(optimizer_name), 'blue') pass_txt = "Control Test Passed" if optimizer_name == 'AdamW': for amsgrad in [True, False]: self._test_control(optimizer_name, amsgrad=amsgrad) print("\n>> AdamW amsgrad={} {}".format(amsgrad, pass_txt)) elif optimizer_name == 'NadamW': self._test_control(optimizer_name) elif optimizer_name == 'SGDW': for nesterov in [True, False]: self._test_control(optimizer_name, nesterov=nesterov) print("\n>> SGDW nesterov={} {}".format(nesterov, pass_txt)) o_name = optimizer_name cprint("\n<< {} {} >>\n".format(o_name, pass_txt.upper()), 'green') cprint("\n<< ALL CONTROL TESTS PASSED >>\n", 'green') def _test_control(self, optimizer_name, amsgrad=False, nesterov=False): optimizer_kw = dict(total_iterations=0, decay=1e-3, amsgrad=amsgrad, nesterov=nesterov, control_mode=True) num_batches = 100 batch_size, timesteps = 16, 32 batch_shape = (batch_size, timesteps) embed_input_dim = 5 total_iterations = 0 model_kw = dict(batch_shape=batch_shape, dense_constraint=1, total_iterations=total_iterations, embed_input_dim=embed_input_dim, l2_reg=0, bidirectional=False, sparse=True) loss_name = 'sparse_categorical_crossentropy' reset_seeds(verbose=0) X, Y = self._make_data(num_batches, *batch_shape, embed_input_dim=embed_input_dim, sparse=True) reset_seeds(reset_graph_with_backend=K, verbose=0) self.model_custom = self._make_model(**model_kw) optimizer_custom = self._make_optimizer(optimizer_name, self.model_custom, **optimizer_kw) self.model_custom.compile(optimizer_custom, loss=loss_name) self.loss_custom = [] # for introspection t0 = time() for batch_num in range(num_batches): self.loss_custom += [self.model_custom.train_on_batch( X[batch_num], Y[batch_num])] print("model_custom -- %s batches -- time: %.2f sec" % (num_batches, time() - t0)) reset_seeds(reset_graph_with_backend=K, verbose=0) self.model_control = self._make_model(**model_kw) optimizer_control = self._make_optimizer(optimizer_name[:-1], self.model_control, **optimizer_kw) self.model_control.compile(optimizer_control, loss=loss_name) self.loss_control = [] # for introspection t0 = time() for batch_num in range(num_batches): self.loss_control += [self.model_control.train_on_batch( X[batch_num], Y[batch_num])] print("model_control -- %s batches -- time: %.2f sec" % (num_batches, time() - t0)) loss_diff = np.abs(np.array(self.loss_custom) - np.array(self.loss_control)) print("%s max loss diff: %e" % (optimizer_name, np.max(loss_diff))) self.assertTrue(np.allclose(self.loss_custom, self.loss_control, rtol=0, atol=1e-3)) # cleanup del self.model_custom, self.model_control del optimizer_custom, optimizer_control reset_seeds(reset_graph_with_backend=K, verbose=0) def _test_save_load(self, model, X, optimizer_name, optimizer): saved_model_preds = model.predict(X[0]) saved_model_weights = K.batch_get_value(model.trainable_weights) saved_optim_weights = K.batch_get_value(model.optimizer.weights) test_name = 'test__%f{}.h5'.format(np.random.random()) modelpath = os.path.join(tempfile.gettempdir(), test_name) model.save(modelpath) del model model = load_model(modelpath, custom_objects={optimizer_name: optimizer}) loaded_model_preds = model.predict(X[0]) loaded_model_weights = K.batch_get_value(model.trainable_weights) loaded_optim_weights = K.batch_get_value(model.optimizer.weights) self.assertTrue(np.allclose(saved_model_preds, loaded_model_preds, rtol=0, atol=1e-8)) for smw, lmw in zip(saved_model_weights, loaded_model_weights): self.assertTrue(np.allclose(smw, lmw, rtol=0, atol=1e-8)) for sow, low in zip(saved_optim_weights, loaded_optim_weights): self.assertTrue(np.allclose(sow, low, rtol=0, atol=1e-8)) @staticmethod def _make_data(num_batches, batch_size, timesteps, num_channels=None, embed_input_dim=None, sparse=False): if sparse: X = np.random.randint(0, embed_input_dim, (num_batches, batch_size, timesteps)) else: X = np.random.randn(num_batches, batch_size, timesteps, num_channels) Y = np.random.randint(0, 2, (num_batches, batch_size)) return X, Y @staticmethod def _make_model(batch_shape, total_iterations, l2_reg=0, bidirectional=True, dense_constraint=None, embed_input_dim=None, sparse=False): if dense_constraint is not None: dense_constraint = maxnorm(dense_constraint) ipt = Input(batch_shape=batch_shape) if sparse: x = Embedding(embed_input_dim, embed_input_dim*3 + 1, mask_zero=True)(ipt) else: x = ipt gru = GRU(4, recurrent_regularizer=l2(l2_reg), bias_regularizer=l2(l2_reg)) if bidirectional: x = Bidirectional(gru)(x) else: x = gru(x) x = Dense(2, kernel_regularizer=l2(l2_reg), kernel_constraint=dense_constraint)(x) if sparse: out = Dense(2, activation='softmax')(x) else: out = Dense(1, activation='sigmoid')(x) return Model(ipt, out) @staticmethod def _make_optimizer(optimizer_name, model, total_iterations, decay=0, amsgrad=False, nesterov=False, control_mode=False): optimizer_dict = {'AdamW': AdamW, 'NadamW': NadamW, 'SGDW': SGDW, 'Adam': Adam, 'Nadam': Nadam, 'SGD': SGD} optimizer = optimizer_dict[optimizer_name] optimizer_kw = {} if 'Adam' in optimizer_name: optimizer_kw = {'amsgrad': amsgrad} elif 'SGD' in optimizer_name: optimizer_kw = {'nesterov': nesterov, 'momentum': .9} if 'Nadam' not in optimizer_name: optimizer_kw.update({'decay': decay}) if not control_mode: wd_dict = get_weight_decays(model) l2_extra = [2e-5]*(len(wd_dict) - 3) wd = fill_dict_in_order(wd_dict, [1e-5, 1e-5, 1e-6] + l2_extra) lr_m = {'gru': 0.5} use_cosine_annealing = True else: wd, lr_m = None, None use_cosine_annealing = False if not any([optimizer_name == name for name in ('Adam', 'Nadam', 'SGD')]): return optimizer(lr=1e-4, weight_decays=wd, lr_multipliers=lr_m, use_cosine_annealing=use_cosine_annealing, t_cur=0, total_iterations=total_iterations, **optimizer_kw) else: return optimizer(lr=1e-4, **optimizer_kw) @staticmethod def _valid_weight_decays(model): weight_decays = get_weight_decays(model) trues = 0 for wd in weight_decays.values(): trues += (wd != 0) return (trues == 0) @staticmethod def _valid_cosine_annealing(eta_history, total_iterations, num_epochs): eta_history_simul = [] for epoch in range(num_epochs): for iteration in range(0, total_iterations): eta_history_simul.append(0.5 * ( 1 + np.cos(np.pi*iteration / total_iterations))) return np.allclose(eta_history, eta_history_simul, rtol=0, atol=2e-7)
[ "numpy.allclose", "numpy.random.random", "numpy.max", "tensorflow.compat.v1.disable_eager_execution", "numpy.random.randint", "numpy.random.randn", "tempfile.gettempdir", "numpy.array", "numpy.cos", "time.time", "termcolor.cprint" ]
[((591, 629), 'tensorflow.compat.v1.disable_eager_execution', 'tf.compat.v1.disable_eager_execution', ([], {}), '()\n', (627, 629), True, 'import tensorflow as tf\n'), ((2744, 2796), 'termcolor.cprint', 'cprint', (['"""\n<< ALL MAIN TESTS PASSED >>\n"""', '"""green"""'], {}), '("""\n<< ALL MAIN TESTS PASSED >>\n""", \'green\')\n', (2750, 2796), False, 'from termcolor import cprint\n'), ((4481, 4533), 'termcolor.cprint', 'cprint', (['"""\n<< ALL MISC TESTS PASSED >>\n"""', '"""green"""'], {}), '("""\n<< ALL MISC TESTS PASSED >>\n""", \'green\')\n', (4487, 4533), False, 'from termcolor import cprint\n'), ((5499, 5554), 'termcolor.cprint', 'cprint', (['"""\n<< ALL CONTROL TESTS PASSED >>\n"""', '"""green"""'], {}), '("""\n<< ALL CONTROL TESTS PASSED >>\n""", \'green\')\n', (5505, 5554), False, 'from termcolor import cprint\n'), ((6887, 6893), 'time.time', 'time', ([], {}), '()\n', (6891, 6893), False, 'from time import time\n'), ((7667, 7673), 'time.time', 'time', ([], {}), '()\n', (7671, 7673), False, 'from time import time\n'), ((10028, 10078), 'numpy.random.randint', 'np.random.randint', (['(0)', '(2)', '(num_batches, batch_size)'], {}), '(0, 2, (num_batches, batch_size))\n', (10045, 10078), True, 'import numpy as np\n'), ((13060, 13123), 'numpy.allclose', 'np.allclose', (['eta_history', 'eta_history_simul'], {'rtol': '(0)', 'atol': '(2e-07)'}), '(eta_history, eta_history_simul, rtol=0, atol=2e-07)\n', (13071, 13123), True, 'import numpy as np\n'), ((8208, 8276), 'numpy.allclose', 'np.allclose', (['self.loss_custom', 'self.loss_control'], {'rtol': '(0)', 'atol': '(0.001)'}), '(self.loss_custom, self.loss_control, rtol=0, atol=0.001)\n', (8219, 8276), True, 'import numpy as np\n'), ((8795, 8813), 'numpy.random.random', 'np.random.random', ([], {}), '()\n', (8811, 8813), True, 'import numpy as np\n'), ((8848, 8869), 'tempfile.gettempdir', 'tempfile.gettempdir', ([], {}), '()\n', (8867, 8869), False, 'import tempfile\n'), ((9235, 9305), 'numpy.allclose', 'np.allclose', (['saved_model_preds', 'loaded_model_preds'], {'rtol': '(0)', 'atol': '(1e-08)'}), '(saved_model_preds, loaded_model_preds, rtol=0, atol=1e-08)\n', (9246, 9305), True, 'import numpy as np\n'), ((9810, 9885), 'numpy.random.randint', 'np.random.randint', (['(0)', 'embed_input_dim', '(num_batches, batch_size, timesteps)'], {}), '(0, embed_input_dim, (num_batches, batch_size, timesteps))\n', (9827, 9885), True, 'import numpy as np\n'), ((9950, 10015), 'numpy.random.randn', 'np.random.randn', (['num_batches', 'batch_size', 'timesteps', 'num_channels'], {}), '(num_batches, batch_size, timesteps, num_channels)\n', (9965, 10015), True, 'import numpy as np\n'), ((8022, 8048), 'numpy.array', 'np.array', (['self.loss_custom'], {}), '(self.loss_custom)\n', (8030, 8048), True, 'import numpy as np\n'), ((8078, 8105), 'numpy.array', 'np.array', (['self.loss_control'], {}), '(self.loss_control)\n', (8086, 8105), True, 'import numpy as np\n'), ((9442, 9483), 'numpy.allclose', 'np.allclose', (['smw', 'lmw'], {'rtol': '(0)', 'atol': '(1e-08)'}), '(smw, lmw, rtol=0, atol=1e-08)\n', (9453, 9483), True, 'import numpy as np\n'), ((9584, 9625), 'numpy.allclose', 'np.allclose', (['sow', 'low'], {'rtol': '(0)', 'atol': '(1e-08)'}), '(sow, low, rtol=0, atol=1e-08)\n', (9595, 9625), True, 'import numpy as np\n'), ((8163, 8180), 'numpy.max', 'np.max', (['loss_diff'], {}), '(loss_diff)\n', (8169, 8180), True, 'import numpy as np\n'), ((7196, 7202), 'time.time', 'time', ([], {}), '()\n', (7200, 7202), False, 'from time import time\n'), ((7980, 7986), 'time.time', 'time', ([], {}), '()\n', (7984, 7986), False, 'from time import time\n'), ((13000, 13044), 'numpy.cos', 'np.cos', (['(np.pi * iteration / total_iterations)'], {}), '(np.pi * iteration / total_iterations)\n', (13006, 13044), True, 'import numpy as np\n')]
import os import sys import time import random import string import argparse import torch import torch.backends.cudnn as cudnn import torch.nn.init as init import torch.optim as optim import torch.utils.data import numpy as np from utils import CTCLabelConverter, CTCLabelConverterForBaiduWarpctc, AttnLabelConverter, Averager from simclr_dataset import hierarchical_dataset, AlignCollate, Batch_Balanced_Dataset from simclr_model import FeaturesModel as Model from test import validation from byol_pytorch import BYOL from imgaug import augmenters as iaa import imgaug as ia from tqdm import tqdm import matplotlib.pyplot as plt device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') def train(opt): """ dataset preparation """ if not opt.data_filtering_off: print('Filtering the images containing characters which are not in opt.character') print('Filtering the images whose label is longer than opt.batch_max_length') # see https://github.com/clovaai/deep-text-recognition-benchmark/blob/6593928855fb7abb999a99f428b3e4477d4ae356/dataset.py#L130 opt.select_data = opt.select_data.split('-') opt.batch_ratio = opt.batch_ratio.split('-') train_dataset = Batch_Balanced_Dataset(opt) log = open(f'./saved_models/{opt.exp_name}/log_dataset.txt', 'a') ia.seed(1) image_transforms = iaa.Sequential([iaa.SomeOf((1, 5), [iaa.LinearContrast((0.5, 1.0)), iaa.GaussianBlur((0.5, 1.5)), iaa.Crop(percent=((0, 0.4),(0, 0),(0, 0.4),(0, 0.0)), keep_size=True), iaa.Crop(percent=((0, 0.0),(0, 0.02),(0, 0),(0, 0.02)), keep_size=True), iaa.Sharpen(alpha=(0.0, 0.5), lightness=(0.0, 0.5)), iaa.PiecewiseAffine(scale=(0.02, 0.03), mode='edge'), iaa.PerspectiveTransform(scale=(0.01, 0.02))], random_order=True)]) AlignCollate_valid = AlignCollate(imgH=opt.imgH, imgW=opt.imgW, keep_ratio_with_pad=opt.PAD, image_transforms=image_transforms) valid_dataset, valid_dataset_log = hierarchical_dataset(root=opt.valid_data, opt=opt) valid_loader = torch.utils.data.DataLoader( valid_dataset, batch_size=opt.batch_size, shuffle=True, # 'True' to check training progress with validation function. num_workers=int(opt.workers), collate_fn=AlignCollate_valid, pin_memory=True) log.write(valid_dataset_log) print('-' * 80) log.write('-' * 80 + '\n') log.close() if opt.rgb: opt.input_channel = 3 model = Model(opt) print('model input parameters', opt.imgH, opt.imgW, opt.num_fiducial, opt.input_channel, opt.output_channel, opt.hidden_size, opt.batch_max_length, opt.Transformation, opt.FeatureExtraction, opt.SequenceModeling) # weight initialization for name, param in model.named_parameters(): if 'localization_fc2' in name: print(f'Skip {name} as it is already initialized') continue try: if 'bias' in name: init.constant_(param, 0.0) elif 'weight' in name: init.kaiming_normal_(param) except Exception as e: # for batchnorm. if 'weight' in name: param.data.fill_(1) continue # data parallel for multi-GPU model = torch.nn.DataParallel(model).to(device) model.train() if opt.saved_model != '': print(f'loading pretrained model from {opt.saved_model}') if opt.FT: model.load_state_dict(torch.load(opt.saved_model), strict=False) else: model.load_state_dict(torch.load(opt.saved_model)) print("Model:") print(model) image_transforms = iaa.Sequential([iaa.SomeOf((1, 5), [iaa.LinearContrast((0.5, 1.0)), iaa.GaussianBlur((0.5, 1.5)), iaa.Crop(percent=((0, 0.4),(0, 0),(0, 0.4),(0, 0.0)), keep_size=True), iaa.Crop(percent=((0, 0.0),(0, 0.02),(0, 0),(0, 0.02)), keep_size=True), iaa.Sharpen(alpha=(0.0, 0.5), lightness=(0.0, 0.5)), iaa.PiecewiseAffine(scale=(0.02, 0.03), mode='edge'), iaa.PerspectiveTransform(scale=(0.01, 0.02))], random_order=True)]) byol_learner = BYOL( model, image_size=(32,100), hidden_layer=-1, channels=1, augment_fn=image_transforms, augmented=True) print(byol_learner) # filter that only require gradient decent filtered_parameters = [] params_num = [] for p in filter(lambda p: p.requires_grad, byol_learner.parameters()): filtered_parameters.append(p) params_num.append(np.prod(p.size())) print('Trainable params num : ', sum(params_num)) # setup optimizer if opt.optimizer == 'adam': optimizer = optim.Adam(filtered_parameters, lr=opt.lr, betas=(opt.beta1, 0.999)) elif opt.optimizer == 'adadelta': optimizer = optim.Adadelta(filtered_parameters, lr=opt.lr, rho=opt.rho, eps=opt.eps, weight_decay=opt.weight_decay) elif opt.optimizer == 'sgd': optimizer = optim.SGD(filtered_parameters, lr=opt.lr, momentum=opt.momentum, weight_decay=opt.weight_decay, nesterov=opt.nesterov) else: raise Exception('Unknown optimizer') print("Optimizer:") print(optimizer) """ final options """ # print(opt) with open(f'./saved_models/{opt.exp_name}/opt.txt', 'a') as opt_file: opt_log = '------------ Options -------------\n' args = vars(opt) for k, v in args.items(): opt_log += f'{str(k)}: {str(v)}\n' opt_log += '---------------------------------------\n' print(opt_log) opt_file.write(opt_log) """ start training """ start_iter = 0 if opt.saved_model != '': try: start_iter = int(opt.saved_model.split('_')[-1].split('.')[0]) print(f'continue to train, start_iter: {start_iter}') except: pass #LR Scheduler: scheduler = optim.lr_scheduler.MultiStepLR(optimizer, milestones=[int(0.6*opt.num_iter), int(0.8*opt.num_iter)], last_epoch=start_iter-1, gamma=0.1) best_loss = None iteration = start_iter print(device) loss_avg = Averager() valid_loss_avg = Averager() # kl_loss_avg = Averager() # kl_loss = torch.nn.KLDivLoss() epoch = 0 while(True): # train part for i in tqdm(range(opt.valInterval)): image_tensors, _ = train_dataset.get_batch() image = image_tensors.to(device) optimizer.zero_grad() loss = byol_learner(image) loss.backward() if opt.grad_clip: torch.nn.utils.clip_grad_norm_(byol_learner.parameters(), opt.grad_clip) optimizer.step() scheduler.step() byol_learner.update_moving_average() loss_avg.add(loss) if iteration==0: print("Epoch {:06d} Loss: {:.04f}".format(iteration, loss_avg.val())) iteration += 1 byol_learner.eval() model.eval() with torch.no_grad(): for image_tensors, _ in valid_loader: image = image_tensors.to(device) val_loss = byol_learner(image) valid_loss_avg.add(val_loss) # features = model(image) # features = features.view(-1, 26, features.shape[1]) # kl_div = kl_loss(features[:int(features.shape[0]/2)], features[int(features.shape[0]/2):]) # kl_loss_avg.add(kl_div) model.train() byol_learner.train() with open(f'./saved_models/{opt.exp_name}/log_train.txt', 'a') as log: log.write("Iteration {:06d} Loss: {:.06f} Val loss: {:06f}".format(iteration, loss_avg.val(), valid_loss_avg.val()) + '\n') print("Iteration {:06d} Loss: {:.06f} Val loss: {:06f}".format(iteration, loss_avg.val(), valid_loss_avg.val())) if best_loss is None: best_loss = valid_loss_avg.val() torch.save(model.state_dict(), f'./saved_models/{opt.exp_name}/iter_{iteration+1}.pth') elif best_loss > valid_loss_avg.val(): best_loss = valid_loss_avg.val() torch.save(model.state_dict(), f'./saved_models/{opt.exp_name}/iter_{iteration+1}.pth') scheduler.step() loss_avg.reset() valid_loss_avg.reset() if epoch % 5 == 0: torch.save(model.state_dict(), f'./saved_models/{opt.exp_name}/iter_{iteration+1}.pth') if (iteration + 1) >= opt.num_iter: print('end the training') torch.save(model.state_dict(), f'./saved_models/{opt.exp_name}/iter_{iteration+1}.pth') sys.exit() epoch +=1 if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--exp_name', help='Where to store logs and models') parser.add_argument('--train_data', required=True, help='path to training dataset') parser.add_argument('--valid_data', required=True, help='path to validation dataset') parser.add_argument('--manualSeed', type=int, default=1111, help='for random seed setting') parser.add_argument('--workers', type=int, help='number of data loading workers', default=4) parser.add_argument('--batch_size', type=int, default=192, help='input batch size') parser.add_argument('--num_iter', type=int, default=300000, help='number of iterations to train for') parser.add_argument('--valInterval', type=int, default=2000, help='Interval between each validation') parser.add_argument('--saved_model', default='', help="path to model to continue training") parser.add_argument('--FT', action='store_true', help='whether to do fine-tuning') parser.add_argument('--optimizer', type=str, choices=['adam', 'adadelta', 'sgd'], help="Optimizer") parser.add_argument('--lr', type=float, default=1, help='learning rate, default=1.0 for Adadelta') parser.add_argument('--beta1', type=float, default=0.9, help='beta1 for adam. default=0.9') parser.add_argument('--rho', type=float, default=0.95, help='decay rate rho for Adadelta. default=0.95') parser.add_argument('--eps', type=float, default=1e-8, help='eps for Adadelta. default=1e-8') parser.add_argument('--nesterov', action='store_true', help='Use Nesterov momentum for SGD') parser.add_argument('--momentum', type=float, default=0.9, help='Momentum for SGD') parser.add_argument('--grad_clip', type=float, default=5, help='gradient clipping value. default=5') parser.add_argument('--baiduCTC', action='store_true', help='for data_filtering_off mode') """ Data processing """ parser.add_argument('--select_data', type=str, default='MJ-ST', help='select training data (default is MJ-ST, which means MJ and ST used as training data)') parser.add_argument('--batch_ratio', type=str, default='0.5-0.5', help='assign ratio for each selected data in the batch') parser.add_argument('--total_data_usage_ratio', type=str, default='1.0', help='total data usage ratio, this ratio is multiplied to total number of data.') parser.add_argument('--batch_max_length', type=int, default=25, help='maximum-label-length') parser.add_argument('--imgH', type=int, default=32, help='the height of the input image') parser.add_argument('--imgW', type=int, default=100, help='the width of the input image') parser.add_argument('--rgb', action='store_true', help='use rgb input') parser.add_argument('--character', type=str, default='0123456789abcdefghijklmnopqrstuvwxyz', help='character label') parser.add_argument('--sensitive', action='store_true', help='for sensitive character mode') parser.add_argument('--PAD', action='store_true', help='whether to keep ratio then pad for image resize') parser.add_argument('--data_filtering_off', action='store_true', help='for data_filtering_off mode') """ Model Architecture """ parser.add_argument('--Transformation', type=str, required=True, help='Transformation stage. None|TPS') parser.add_argument('--FeatureExtraction', type=str, required=True, help='FeatureExtraction stage. VGG|RCNN|ResNet') parser.add_argument('--SequenceModeling', type=str, required=True, help='SequenceModeling stage. None|BiLSTM') parser.add_argument('--num_fiducial', type=int, default=20, help='number of fiducial points of TPS-STN') parser.add_argument('--input_channel', type=int, default=1, help='the number of input channel of Feature extractor') parser.add_argument('--output_channel', type=int, default=512, help='the number of output channel of Feature extractor') parser.add_argument('--hidden_size', type=int, default=256, help='the size of the LSTM hidden state') parser.add_argument('--weight_decay', type=float, default=10e-4, help='Weight decay') parser.add_argument('--FinalLayer', action='store_true', help='Use a nonlinear projection head during training') parser.add_argument('--final_feature', type=int, default=256, help='the size of the output of the final layer') opt = parser.parse_args() if not opt.exp_name: opt.exp_name = f'{opt.Transformation}-{opt.FeatureExtraction}-{opt.SequenceModeling}-BYOL' opt.exp_name += f'-Seed{opt.manualSeed}' # print(opt.exp_name) os.makedirs(f'./saved_models/{opt.exp_name}', exist_ok=True) """ vocab / character number configuration """ if opt.sensitive: # opt.character += 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' opt.character = string.printable[:-6] # same with ASTER setting (use 94 char). """ Seed and GPU setting """ # print("Random Seed: ", opt.manualSeed) random.seed(opt.manualSeed) np.random.seed(opt.manualSeed) torch.manual_seed(opt.manualSeed) torch.cuda.manual_seed(opt.manualSeed) cudnn.benchmark = True cudnn.deterministic = True opt.num_gpu = torch.cuda.device_count() # print('device count', opt.num_gpu) if opt.num_gpu > 1: print('------ Use multi-GPU setting ------') print('if you stuck too long time with multi-GPU setting, try to set --workers 0') # check multi-GPU issue https://github.com/clovaai/deep-text-recognition-benchmark/issues/1 opt.workers = opt.workers * opt.num_gpu opt.batch_size = opt.batch_size * opt.num_gpu """ previous version print('To equlize batch stats to 1-GPU setting, the batch_size is multiplied with num_gpu and multiplied batch_size is ', opt.batch_size) opt.batch_size = opt.batch_size * opt.num_gpu print('To equalize the number of epochs to 1-GPU setting, num_iter is divided with num_gpu by default.') If you dont care about it, just commnet out these line.) opt.num_iter = int(opt.num_iter / opt.num_gpu) """ train(opt)
[ "imgaug.augmenters.PiecewiseAffine", "torch.nn.init.constant_", "imgaug.augmenters.GaussianBlur", "simclr_dataset.AlignCollate", "torch.cuda.device_count", "simclr_dataset.Batch_Balanced_Dataset", "torch.cuda.is_available", "sys.exit", "argparse.ArgumentParser", "imgaug.augmenters.Crop", "torch.nn.init.kaiming_normal_", "numpy.random.seed", "imgaug.augmenters.LinearContrast", "imgaug.augmenters.Sharpen", "simclr_dataset.hierarchical_dataset", "torch.optim.Adadelta", "torch.optim.SGD", "simclr_model.FeaturesModel", "imgaug.augmenters.PerspectiveTransform", "utils.Averager", "torch.manual_seed", "torch.optim.Adam", "os.makedirs", "torch.load", "torch.nn.DataParallel", "random.seed", "imgaug.seed", "torch.no_grad", "torch.cuda.manual_seed", "byol_pytorch.BYOL" ]
[((1220, 1247), 'simclr_dataset.Batch_Balanced_Dataset', 'Batch_Balanced_Dataset', (['opt'], {}), '(opt)\n', (1242, 1247), False, 'from simclr_dataset import hierarchical_dataset, AlignCollate, Batch_Balanced_Dataset\n'), ((1328, 1338), 'imgaug.seed', 'ia.seed', (['(1)'], {}), '(1)\n', (1335, 1338), True, 'import imgaug as ia\n'), ((2014, 2124), 'simclr_dataset.AlignCollate', 'AlignCollate', ([], {'imgH': 'opt.imgH', 'imgW': 'opt.imgW', 'keep_ratio_with_pad': 'opt.PAD', 'image_transforms': 'image_transforms'}), '(imgH=opt.imgH, imgW=opt.imgW, keep_ratio_with_pad=opt.PAD,\n image_transforms=image_transforms)\n', (2026, 2124), False, 'from simclr_dataset import hierarchical_dataset, AlignCollate, Batch_Balanced_Dataset\n'), ((2160, 2210), 'simclr_dataset.hierarchical_dataset', 'hierarchical_dataset', ([], {'root': 'opt.valid_data', 'opt': 'opt'}), '(root=opt.valid_data, opt=opt)\n', (2180, 2210), False, 'from simclr_dataset import hierarchical_dataset, AlignCollate, Batch_Balanced_Dataset\n'), ((2651, 2661), 'simclr_model.FeaturesModel', 'Model', (['opt'], {}), '(opt)\n', (2656, 2661), True, 'from simclr_model import FeaturesModel as Model\n'), ((4486, 4598), 'byol_pytorch.BYOL', 'BYOL', (['model'], {'image_size': '(32, 100)', 'hidden_layer': '(-1)', 'channels': '(1)', 'augment_fn': 'image_transforms', 'augmented': '(True)'}), '(model, image_size=(32, 100), hidden_layer=-1, channels=1, augment_fn=\n image_transforms, augmented=True)\n', (4490, 4598), False, 'from byol_pytorch import BYOL\n'), ((6485, 6495), 'utils.Averager', 'Averager', ([], {}), '()\n', (6493, 6495), False, 'from utils import CTCLabelConverter, CTCLabelConverterForBaiduWarpctc, AttnLabelConverter, Averager\n'), ((6517, 6527), 'utils.Averager', 'Averager', ([], {}), '()\n', (6525, 6527), False, 'from utils import CTCLabelConverter, CTCLabelConverterForBaiduWarpctc, AttnLabelConverter, Averager\n'), ((9091, 9116), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (9114, 9116), False, 'import argparse\n'), ((13778, 13838), 'os.makedirs', 'os.makedirs', (['f"""./saved_models/{opt.exp_name}"""'], {'exist_ok': '(True)'}), "(f'./saved_models/{opt.exp_name}', exist_ok=True)\n", (13789, 13838), False, 'import os\n'), ((14140, 14167), 'random.seed', 'random.seed', (['opt.manualSeed'], {}), '(opt.manualSeed)\n', (14151, 14167), False, 'import random\n'), ((14172, 14202), 'numpy.random.seed', 'np.random.seed', (['opt.manualSeed'], {}), '(opt.manualSeed)\n', (14186, 14202), True, 'import numpy as np\n'), ((14207, 14240), 'torch.manual_seed', 'torch.manual_seed', (['opt.manualSeed'], {}), '(opt.manualSeed)\n', (14224, 14240), False, 'import torch\n'), ((14245, 14283), 'torch.cuda.manual_seed', 'torch.cuda.manual_seed', (['opt.manualSeed'], {}), '(opt.manualSeed)\n', (14267, 14283), False, 'import torch\n'), ((14361, 14386), 'torch.cuda.device_count', 'torch.cuda.device_count', ([], {}), '()\n', (14384, 14386), False, 'import torch\n'), ((666, 691), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (689, 691), False, 'import torch\n'), ((5052, 5120), 'torch.optim.Adam', 'optim.Adam', (['filtered_parameters'], {'lr': 'opt.lr', 'betas': '(opt.beta1, 0.999)'}), '(filtered_parameters, lr=opt.lr, betas=(opt.beta1, 0.999))\n', (5062, 5120), True, 'import torch.optim as optim\n'), ((3452, 3480), 'torch.nn.DataParallel', 'torch.nn.DataParallel', (['model'], {}), '(model)\n', (3473, 3480), False, 'import torch\n'), ((5179, 5286), 'torch.optim.Adadelta', 'optim.Adadelta', (['filtered_parameters'], {'lr': 'opt.lr', 'rho': 'opt.rho', 'eps': 'opt.eps', 'weight_decay': 'opt.weight_decay'}), '(filtered_parameters, lr=opt.lr, rho=opt.rho, eps=opt.eps,\n weight_decay=opt.weight_decay)\n', (5193, 5286), True, 'import torch.optim as optim\n'), ((7377, 7392), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (7390, 7392), False, 'import torch\n'), ((9011, 9021), 'sys.exit', 'sys.exit', ([], {}), '()\n', (9019, 9021), False, 'import sys\n'), ((3160, 3186), 'torch.nn.init.constant_', 'init.constant_', (['param', '(0.0)'], {}), '(param, 0.0)\n', (3174, 3186), True, 'import torch.nn.init as init\n'), ((3659, 3686), 'torch.load', 'torch.load', (['opt.saved_model'], {}), '(opt.saved_model)\n', (3669, 3686), False, 'import torch\n'), ((3750, 3777), 'torch.load', 'torch.load', (['opt.saved_model'], {}), '(opt.saved_model)\n', (3760, 3777), False, 'import torch\n'), ((5336, 5458), 'torch.optim.SGD', 'optim.SGD', (['filtered_parameters'], {'lr': 'opt.lr', 'momentum': 'opt.momentum', 'weight_decay': 'opt.weight_decay', 'nesterov': 'opt.nesterov'}), '(filtered_parameters, lr=opt.lr, momentum=opt.momentum,\n weight_decay=opt.weight_decay, nesterov=opt.nesterov)\n', (5345, 5458), True, 'import torch.optim as optim\n'), ((1425, 1455), 'imgaug.augmenters.LinearContrast', 'iaa.LinearContrast', (['(0.5, 1.0)'], {}), '((0.5, 1.0))\n', (1443, 1455), True, 'from imgaug import augmenters as iaa\n'), ((1483, 1511), 'imgaug.augmenters.GaussianBlur', 'iaa.GaussianBlur', (['(0.5, 1.5)'], {}), '((0.5, 1.5))\n', (1499, 1511), True, 'from imgaug import augmenters as iaa\n'), ((1539, 1611), 'imgaug.augmenters.Crop', 'iaa.Crop', ([], {'percent': '((0, 0.4), (0, 0), (0, 0.4), (0, 0.0))', 'keep_size': '(True)'}), '(percent=((0, 0.4), (0, 0), (0, 0.4), (0, 0.0)), keep_size=True)\n', (1547, 1611), True, 'from imgaug import augmenters as iaa\n'), ((1636, 1710), 'imgaug.augmenters.Crop', 'iaa.Crop', ([], {'percent': '((0, 0.0), (0, 0.02), (0, 0), (0, 0.02))', 'keep_size': '(True)'}), '(percent=((0, 0.0), (0, 0.02), (0, 0), (0, 0.02)), keep_size=True)\n', (1644, 1710), True, 'from imgaug import augmenters as iaa\n'), ((1735, 1786), 'imgaug.augmenters.Sharpen', 'iaa.Sharpen', ([], {'alpha': '(0.0, 0.5)', 'lightness': '(0.0, 0.5)'}), '(alpha=(0.0, 0.5), lightness=(0.0, 0.5))\n', (1746, 1786), True, 'from imgaug import augmenters as iaa\n'), ((1814, 1866), 'imgaug.augmenters.PiecewiseAffine', 'iaa.PiecewiseAffine', ([], {'scale': '(0.02, 0.03)', 'mode': '"""edge"""'}), "(scale=(0.02, 0.03), mode='edge')\n", (1833, 1866), True, 'from imgaug import augmenters as iaa\n'), ((1894, 1938), 'imgaug.augmenters.PerspectiveTransform', 'iaa.PerspectiveTransform', ([], {'scale': '(0.01, 0.02)'}), '(scale=(0.01, 0.02))\n', (1918, 1938), True, 'from imgaug import augmenters as iaa\n'), ((3238, 3265), 'torch.nn.init.kaiming_normal_', 'init.kaiming_normal_', (['param'], {}), '(param)\n', (3258, 3265), True, 'import torch.nn.init as init\n'), ((3903, 3933), 'imgaug.augmenters.LinearContrast', 'iaa.LinearContrast', (['(0.5, 1.0)'], {}), '((0.5, 1.0))\n', (3921, 3933), True, 'from imgaug import augmenters as iaa\n'), ((3961, 3989), 'imgaug.augmenters.GaussianBlur', 'iaa.GaussianBlur', (['(0.5, 1.5)'], {}), '((0.5, 1.5))\n', (3977, 3989), True, 'from imgaug import augmenters as iaa\n'), ((4017, 4089), 'imgaug.augmenters.Crop', 'iaa.Crop', ([], {'percent': '((0, 0.4), (0, 0), (0, 0.4), (0, 0.0))', 'keep_size': '(True)'}), '(percent=((0, 0.4), (0, 0), (0, 0.4), (0, 0.0)), keep_size=True)\n', (4025, 4089), True, 'from imgaug import augmenters as iaa\n'), ((4114, 4188), 'imgaug.augmenters.Crop', 'iaa.Crop', ([], {'percent': '((0, 0.0), (0, 0.02), (0, 0), (0, 0.02))', 'keep_size': '(True)'}), '(percent=((0, 0.0), (0, 0.02), (0, 0), (0, 0.02)), keep_size=True)\n', (4122, 4188), True, 'from imgaug import augmenters as iaa\n'), ((4213, 4264), 'imgaug.augmenters.Sharpen', 'iaa.Sharpen', ([], {'alpha': '(0.0, 0.5)', 'lightness': '(0.0, 0.5)'}), '(alpha=(0.0, 0.5), lightness=(0.0, 0.5))\n', (4224, 4264), True, 'from imgaug import augmenters as iaa\n'), ((4292, 4344), 'imgaug.augmenters.PiecewiseAffine', 'iaa.PiecewiseAffine', ([], {'scale': '(0.02, 0.03)', 'mode': '"""edge"""'}), "(scale=(0.02, 0.03), mode='edge')\n", (4311, 4344), True, 'from imgaug import augmenters as iaa\n'), ((4372, 4416), 'imgaug.augmenters.PerspectiveTransform', 'iaa.PerspectiveTransform', ([], {'scale': '(0.01, 0.02)'}), '(scale=(0.01, 0.02))\n', (4396, 4416), True, 'from imgaug import augmenters as iaa\n')]
import sys sys.path.append('../../') import constants as cnst import os os.environ['PYTHONHASHSEED'] = '2' import tqdm from model.stg2_generator import StyledGenerator import numpy as np from my_utils.visualize_flame_overlay import OverLayViz from my_utils.flm_dynamic_fit_overlay import camera_ringnetpp from my_utils.generate_gif import generate_from_flame_sequence from my_utils.generic_utils import save_set_of_images from my_utils import compute_fid import constants from dataset_loaders import fast_image_reshape import torch from my_utils import generic_utils from my_utils.eye_centering import position_to_given_location def ge_gen_in(flm_params, textured_rndr, norm_map, normal_map_cond, texture_cond): if normal_map_cond and texture_cond: return torch.cat((textured_rndr, norm_map), dim=1) elif normal_map_cond: return norm_map elif texture_cond: return textured_rndr else: return flm_params # General settings save_images = True code_size = 236 use_inst_norm = True core_tensor_res = 4 resolution = 256 alpha = 1 step_max = int(np.log2(resolution) - 2) root_out_dir = f'{cnst.output_root}sample/' num_smpl_to_eval_on = 1000 use_styled_conv_stylegan2 = True flength = 5000 cam_t = np.array([0., 0., 0]) camera_params = camera_ringnetpp((512, 512), trans=cam_t, focal=flength) run_ids_1 = [29, ] # with sqrt(2) # run_ids_1 = [7, 24, 8, 3] # run_ids_1 = [7, 8, 3] settings_for_runs = \ {24: {'name': 'vector_cond', 'model_idx': '216000_1', 'normal_maps_as_cond': False, 'rendered_flame_as_condition': False, 'apply_sqrt2_fac_in_eq_lin': False}, 29: {'name': 'full_model', 'model_idx': '294000_1', 'normal_maps_as_cond': True, 'rendered_flame_as_condition': True, 'apply_sqrt2_fac_in_eq_lin': True}, 7: {'name': 'flm_rndr_tex_interp', 'model_idx': '051000_1', 'normal_maps_as_cond': False, 'rendered_flame_as_condition': True, 'apply_sqrt2_fac_in_eq_lin': False}, 3: {'name': 'norm_mp_tex_interp', 'model_idx': '203000_1', 'normal_maps_as_cond': True, 'rendered_flame_as_condition': False, 'apply_sqrt2_fac_in_eq_lin': False}, 8: {'name': 'norm_map_rend_flm_no_tex_interp', 'model_idx': '009000_1', 'normal_maps_as_cond': True, 'rendered_flame_as_condition': True, 'apply_sqrt2_fac_in_eq_lin': False},} overlay_visualizer = OverLayViz() # overlay_visualizer.setup_renderer(mesh_file=None) flm_params = np.zeros((num_smpl_to_eval_on, code_size)).astype('float32') fl_param_dict = np.load(cnst.all_flame_params_file, allow_pickle=True).item() for i, key in enumerate(fl_param_dict): flame_param = fl_param_dict[key] flame_param = np.hstack((flame_param['shape'], flame_param['exp'], flame_param['pose'], flame_param['cam'], flame_param['tex'], flame_param['lit'].flatten())) # tz = camera_params['f'][0] / (camera_params['c'][0] * flame_param[:, 156:157]) # flame_param[:, 156:159] = np.concatenate((flame_param[:, 157:], tz), axis=1) # import ipdb; ipdb.set_trace() flm_params[i, :] = flame_param.astype('float32') if i == num_smpl_to_eval_on - 1: break batch_size = 64 flame_decoder = overlay_visualizer.deca.flame.eval() for run_idx in run_ids_1: # import ipdb; ipdb.set_trace() generator_1 = torch.nn.DataParallel( StyledGenerator(embedding_vocab_size=69158, rendered_flame_ascondition=settings_for_runs[run_idx]['rendered_flame_as_condition'], normal_maps_as_cond=settings_for_runs[run_idx]['normal_maps_as_cond'], core_tensor_res=core_tensor_res, w_truncation_factor=1.0, apply_sqrt2_fac_in_eq_lin=settings_for_runs[run_idx]['apply_sqrt2_fac_in_eq_lin'], n_mlp=8)).cuda() model_idx = settings_for_runs[run_idx]['model_idx'] ckpt1 = torch.load(f'{cnst.output_root}checkpoint/{run_idx}/{model_idx}.model') generator_1.load_state_dict(ckpt1['generator_running']) generator_1 = generator_1.eval() # images = np.zeros((num_smpl_to_eval_on, 3, resolution, resolution)).astype('float32') pbar = tqdm.tqdm(range(0, num_smpl_to_eval_on, batch_size)) pbar.set_description('Generating_images') flame_mesh_imgs = None mdl_id = 'mdl2_' if settings_for_runs[run_idx]['name'] == 'full_model': mdl_id = 'mdl1_' for batch_idx in pbar: flm_batch = flm_params[batch_idx:batch_idx+batch_size, :] flm_batch = torch.from_numpy(flm_batch).cuda() flm_batch = position_to_given_location(flame_decoder, flm_batch) batch_size_true = flm_batch.shape[0] if settings_for_runs[run_idx]['normal_maps_as_cond'] or \ settings_for_runs[run_idx]['rendered_flame_as_condition']: cam = flm_batch[:, constants.DECA_IDX['cam'][0]:constants.DECA_IDX['cam'][1]:] shape = flm_batch[:, constants.INDICES['SHAPE'][0]:constants.INDICES['SHAPE'][1]] exp = flm_batch[:, constants.INDICES['EXP'][0]:constants.INDICES['EXP'][1]] pose = flm_batch[:, constants.INDICES['POSE'][0]:constants.INDICES['POSE'][1]] # import ipdb; ipdb.set_trace() light_code = \ flm_batch[:, constants.DECA_IDX['lit'][0]:constants.DECA_IDX['lit'][1]:].view((batch_size_true, 9, 3)) texture_code = flm_batch[:, constants.DECA_IDX['tex'][0]:constants.DECA_IDX['tex'][1]:] norma_map_img, _, _, _, rend_flm = \ overlay_visualizer.get_rendered_mesh(flame_params=(shape, exp, pose, light_code, texture_code), camera_params=cam) rend_flm = torch.clamp(rend_flm, 0, 1) * 2 - 1 norma_map_img = torch.clamp(norma_map_img, 0, 1) * 2 - 1 rend_flm = fast_image_reshape(rend_flm, height_out=256, width_out=256, mode='bilinear') norma_map_img = fast_image_reshape(norma_map_img, height_out=256, width_out=256, mode='bilinear') else: rend_flm = None norma_map_img = None gen_1_in = ge_gen_in(flm_batch, rend_flm, norma_map_img, settings_for_runs[run_idx]['normal_maps_as_cond'], settings_for_runs[run_idx]['rendered_flame_as_condition']) # torch.manual_seed(2) identity_embeddings = torch.randint(low=0, high=69158, size=(gen_1_in.shape[0], ), dtype=torch.long, device='cuda') mdl_1_gen_images = generic_utils.get_images_from_flame_params( flame_params=gen_1_in.cpu().numpy(), pose=None, model=generator_1, step=step_max, alpha=alpha, input_indices=identity_embeddings.cpu().numpy()) # import ipdb; ipdb.set_trace() images = torch.clamp(mdl_1_gen_images, -1, 1).cpu().numpy() flame_mesh_imgs = torch.clamp(rend_flm, -1, 1).cpu().numpy() save_path_current_id = os.path.join(root_out_dir, 'inter_model_comparison', settings_for_runs[run_idx]['name']) save_set_of_images(path=save_path_current_id, prefix=f'{mdl_id}_{batch_idx}', images=(images + 1) / 2, show_prog_bar=True) #save flam rndr save_path_current_id_flm_rndr = os.path.join(root_out_dir, 'inter_model_comparison', settings_for_runs[run_idx]['name']) save_set_of_images(path=save_path_current_id_flm_rndr, prefix=f'mesh_{batch_idx}', images=(flame_mesh_imgs + 1) / 2, show_prog_bar=True) # save_set_of_images(path=save_path_this_expt, prefix='mesh_', images=((norma_map_img + 1) / 2).cpu().numpy()) # save_set_of_images(path=save_path_this_expt, prefix='mdl1_', images=((mdl_1_gen_images + 1) / 2).cpu().numpy()) # save_set_of_images(path=save_path_this_expt, prefix='mdl2_', images=((mdl_2_gen_images + 1) / 2).cpu().numpy())
[ "my_utils.visualize_flame_overlay.OverLayViz", "torch.load", "os.path.join", "my_utils.generic_utils.save_set_of_images", "my_utils.flm_dynamic_fit_overlay.camera_ringnetpp", "dataset_loaders.fast_image_reshape", "numpy.array", "numpy.zeros", "torch.randint", "my_utils.eye_centering.position_to_given_location", "model.stg2_generator.StyledGenerator", "torch.from_numpy", "numpy.log2", "numpy.load", "sys.path.append", "torch.clamp", "torch.cat" ]
[((11, 36), 'sys.path.append', 'sys.path.append', (['"""../../"""'], {}), "('../../')\n", (26, 36), False, 'import sys\n'), ((1244, 1267), 'numpy.array', 'np.array', (['[0.0, 0.0, 0]'], {}), '([0.0, 0.0, 0])\n', (1252, 1267), True, 'import numpy as np\n'), ((1282, 1338), 'my_utils.flm_dynamic_fit_overlay.camera_ringnetpp', 'camera_ringnetpp', (['(512, 512)'], {'trans': 'cam_t', 'focal': 'flength'}), '((512, 512), trans=cam_t, focal=flength)\n', (1298, 1338), False, 'from my_utils.flm_dynamic_fit_overlay import camera_ringnetpp\n'), ((2360, 2372), 'my_utils.visualize_flame_overlay.OverLayViz', 'OverLayViz', ([], {}), '()\n', (2370, 2372), False, 'from my_utils.visualize_flame_overlay import OverLayViz\n'), ((3909, 3980), 'torch.load', 'torch.load', (['f"""{cnst.output_root}checkpoint/{run_idx}/{model_idx}.model"""'], {}), "(f'{cnst.output_root}checkpoint/{run_idx}/{model_idx}.model')\n", (3919, 3980), False, 'import torch\n'), ((770, 813), 'torch.cat', 'torch.cat', (['(textured_rndr, norm_map)'], {'dim': '(1)'}), '((textured_rndr, norm_map), dim=1)\n', (779, 813), False, 'import torch\n'), ((1091, 1110), 'numpy.log2', 'np.log2', (['resolution'], {}), '(resolution)\n', (1098, 1110), True, 'import numpy as np\n'), ((2439, 2481), 'numpy.zeros', 'np.zeros', (['(num_smpl_to_eval_on, code_size)'], {}), '((num_smpl_to_eval_on, code_size))\n', (2447, 2481), True, 'import numpy as np\n'), ((2516, 2570), 'numpy.load', 'np.load', (['cnst.all_flame_params_file'], {'allow_pickle': '(True)'}), '(cnst.all_flame_params_file, allow_pickle=True)\n', (2523, 2570), True, 'import numpy as np\n'), ((4582, 4634), 'my_utils.eye_centering.position_to_given_location', 'position_to_given_location', (['flame_decoder', 'flm_batch'], {}), '(flame_decoder, flm_batch)\n', (4608, 4634), False, 'from my_utils.eye_centering import position_to_given_location\n'), ((6390, 6487), 'torch.randint', 'torch.randint', ([], {'low': '(0)', 'high': '(69158)', 'size': '(gen_1_in.shape[0],)', 'dtype': 'torch.long', 'device': '"""cuda"""'}), "(low=0, high=69158, size=(gen_1_in.shape[0],), dtype=torch.\n long, device='cuda')\n", (6403, 6487), False, 'import torch\n'), ((7002, 7095), 'os.path.join', 'os.path.join', (['root_out_dir', '"""inter_model_comparison"""', "settings_for_runs[run_idx]['name']"], {}), "(root_out_dir, 'inter_model_comparison', settings_for_runs[\n run_idx]['name'])\n", (7014, 7095), False, 'import os\n'), ((7099, 7226), 'my_utils.generic_utils.save_set_of_images', 'save_set_of_images', ([], {'path': 'save_path_current_id', 'prefix': 'f"""{mdl_id}_{batch_idx}"""', 'images': '((images + 1) / 2)', 'show_prog_bar': '(True)'}), "(path=save_path_current_id, prefix=\n f'{mdl_id}_{batch_idx}', images=(images + 1) / 2, show_prog_bar=True)\n", (7117, 7226), False, 'from my_utils.generic_utils import save_set_of_images\n'), ((7314, 7407), 'os.path.join', 'os.path.join', (['root_out_dir', '"""inter_model_comparison"""', "settings_for_runs[run_idx]['name']"], {}), "(root_out_dir, 'inter_model_comparison', settings_for_runs[\n run_idx]['name'])\n", (7326, 7407), False, 'import os\n'), ((7464, 7605), 'my_utils.generic_utils.save_set_of_images', 'save_set_of_images', ([], {'path': 'save_path_current_id_flm_rndr', 'prefix': 'f"""mesh_{batch_idx}"""', 'images': '((flame_mesh_imgs + 1) / 2)', 'show_prog_bar': '(True)'}), "(path=save_path_current_id_flm_rndr, prefix=\n f'mesh_{batch_idx}', images=(flame_mesh_imgs + 1) / 2, show_prog_bar=True)\n", (7482, 7605), False, 'from my_utils.generic_utils import save_set_of_images\n'), ((5860, 5936), 'dataset_loaders.fast_image_reshape', 'fast_image_reshape', (['rend_flm'], {'height_out': '(256)', 'width_out': '(256)', 'mode': '"""bilinear"""'}), "(rend_flm, height_out=256, width_out=256, mode='bilinear')\n", (5878, 5936), False, 'from dataset_loaders import fast_image_reshape\n'), ((5965, 6051), 'dataset_loaders.fast_image_reshape', 'fast_image_reshape', (['norma_map_img'], {'height_out': '(256)', 'width_out': '(256)', 'mode': '"""bilinear"""'}), "(norma_map_img, height_out=256, width_out=256, mode=\n 'bilinear')\n", (5983, 6051), False, 'from dataset_loaders import fast_image_reshape\n'), ((3338, 3710), 'model.stg2_generator.StyledGenerator', 'StyledGenerator', ([], {'embedding_vocab_size': '(69158)', 'rendered_flame_ascondition': "settings_for_runs[run_idx]['rendered_flame_as_condition']", 'normal_maps_as_cond': "settings_for_runs[run_idx]['normal_maps_as_cond']", 'core_tensor_res': 'core_tensor_res', 'w_truncation_factor': '(1.0)', 'apply_sqrt2_fac_in_eq_lin': "settings_for_runs[run_idx]['apply_sqrt2_fac_in_eq_lin']", 'n_mlp': '(8)'}), "(embedding_vocab_size=69158, rendered_flame_ascondition=\n settings_for_runs[run_idx]['rendered_flame_as_condition'],\n normal_maps_as_cond=settings_for_runs[run_idx]['normal_maps_as_cond'],\n core_tensor_res=core_tensor_res, w_truncation_factor=1.0,\n apply_sqrt2_fac_in_eq_lin=settings_for_runs[run_idx][\n 'apply_sqrt2_fac_in_eq_lin'], n_mlp=8)\n", (3353, 3710), False, 'from model.stg2_generator import StyledGenerator\n'), ((4527, 4554), 'torch.from_numpy', 'torch.from_numpy', (['flm_batch'], {}), '(flm_batch)\n', (4543, 4554), False, 'import torch\n'), ((5732, 5759), 'torch.clamp', 'torch.clamp', (['rend_flm', '(0)', '(1)'], {}), '(rend_flm, 0, 1)\n', (5743, 5759), False, 'import torch\n'), ((5796, 5828), 'torch.clamp', 'torch.clamp', (['norma_map_img', '(0)', '(1)'], {}), '(norma_map_img, 0, 1)\n', (5807, 5828), False, 'import torch\n'), ((6849, 6885), 'torch.clamp', 'torch.clamp', (['mdl_1_gen_images', '(-1)', '(1)'], {}), '(mdl_1_gen_images, -1, 1)\n', (6860, 6885), False, 'import torch\n'), ((6926, 6954), 'torch.clamp', 'torch.clamp', (['rend_flm', '(-1)', '(1)'], {}), '(rend_flm, -1, 1)\n', (6937, 6954), False, 'import torch\n')]
import unittest import numpy as np from numpy.testing import assert_almost_equal from dymos.utils.hermite import hermite_matrices class TestHermiteMatrices(unittest.TestCase): def test_quadratic(self): # Interpolate with values and rates provided at [-1, 1] in tau space tau_given = [-1.0, 1.0] tau_eval = np.linspace(-1, 1, 100) # In time space use the boundaries [-2, 2] dt_dtau = 4.0 / 2.0 # Provide values for y = t**2 and its time-derivative y_given = [4.0, 4.0] ydot_given = [-4.0, 4.0] # Get the hermite matrices. Ai, Bi, Ad, Bd = hermite_matrices(tau_given, tau_eval) # Interpolate y and ydot at tau_eval points in tau space. y_i = np.dot(Ai, y_given) + dt_dtau * np.dot(Bi, ydot_given) ydot_i = (1.0 / dt_dtau) * np.dot(Ad, y_given) + np.dot(Bd, ydot_given) # Compute our function as a point of comparison. y_computed = (tau_eval * dt_dtau)**2 ydot_computed = 2.0 * (tau_eval * dt_dtau) # Check results assert_almost_equal(y_i, y_computed) assert_almost_equal(ydot_i, ydot_computed) def test_cubic(self): # Interpolate with values and rates provided at [-1, 1] in tau space tau_given = [-1.0, 0.0, 1.0] tau_eval = np.linspace(-1, 1, 101) # In time space use the boundaries [-2, 2] dt_dtau = 4.0 / 2.0 # Provide values for y = t**2 and its time-derivative y_given = [-8.0, 0.0, 8.0] ydot_given = [12.0, 0.0, 12.0] # Get the hermite matrices. Ai, Bi, Ad, Bd = hermite_matrices(tau_given, tau_eval) # Interpolate y and ydot at tau_eval points in tau space. y_i = np.dot(Ai, y_given) + dt_dtau * np.dot(Bi, ydot_given) ydot_i = (1.0 / dt_dtau) * np.dot(Ad, y_given) + np.dot(Bd, ydot_given) # Compute our function as a point of comparison. y_computed = (tau_eval * dt_dtau)**3 ydot_computed = 3.0 * (tau_eval * dt_dtau)**2 # Check results assert_almost_equal(y_i, y_computed) assert_almost_equal(ydot_i, ydot_computed) if __name__ == '__main__': # pragma: no cover unittest.main()
[ "numpy.testing.assert_almost_equal", "numpy.linspace", "dymos.utils.hermite.hermite_matrices", "numpy.dot", "unittest.main" ]
[((2209, 2224), 'unittest.main', 'unittest.main', ([], {}), '()\n', (2222, 2224), False, 'import unittest\n'), ((340, 363), 'numpy.linspace', 'np.linspace', (['(-1)', '(1)', '(100)'], {}), '(-1, 1, 100)\n', (351, 363), True, 'import numpy as np\n'), ((631, 668), 'dymos.utils.hermite.hermite_matrices', 'hermite_matrices', (['tau_given', 'tau_eval'], {}), '(tau_given, tau_eval)\n', (647, 668), False, 'from dymos.utils.hermite import hermite_matrices\n'), ((1072, 1108), 'numpy.testing.assert_almost_equal', 'assert_almost_equal', (['y_i', 'y_computed'], {}), '(y_i, y_computed)\n', (1091, 1108), False, 'from numpy.testing import assert_almost_equal\n'), ((1117, 1159), 'numpy.testing.assert_almost_equal', 'assert_almost_equal', (['ydot_i', 'ydot_computed'], {}), '(ydot_i, ydot_computed)\n', (1136, 1159), False, 'from numpy.testing import assert_almost_equal\n'), ((1321, 1344), 'numpy.linspace', 'np.linspace', (['(-1)', '(1)', '(101)'], {}), '(-1, 1, 101)\n', (1332, 1344), True, 'import numpy as np\n'), ((1624, 1661), 'dymos.utils.hermite.hermite_matrices', 'hermite_matrices', (['tau_given', 'tau_eval'], {}), '(tau_given, tau_eval)\n', (1640, 1661), False, 'from dymos.utils.hermite import hermite_matrices\n'), ((2068, 2104), 'numpy.testing.assert_almost_equal', 'assert_almost_equal', (['y_i', 'y_computed'], {}), '(y_i, y_computed)\n', (2087, 2104), False, 'from numpy.testing import assert_almost_equal\n'), ((2113, 2155), 'numpy.testing.assert_almost_equal', 'assert_almost_equal', (['ydot_i', 'ydot_computed'], {}), '(ydot_i, ydot_computed)\n', (2132, 2155), False, 'from numpy.testing import assert_almost_equal\n'), ((750, 769), 'numpy.dot', 'np.dot', (['Ai', 'y_given'], {}), '(Ai, y_given)\n', (756, 769), True, 'import numpy as np\n'), ((862, 884), 'numpy.dot', 'np.dot', (['Bd', 'ydot_given'], {}), '(Bd, ydot_given)\n', (868, 884), True, 'import numpy as np\n'), ((1743, 1762), 'numpy.dot', 'np.dot', (['Ai', 'y_given'], {}), '(Ai, y_given)\n', (1749, 1762), True, 'import numpy as np\n'), ((1855, 1877), 'numpy.dot', 'np.dot', (['Bd', 'ydot_given'], {}), '(Bd, ydot_given)\n', (1861, 1877), True, 'import numpy as np\n'), ((782, 804), 'numpy.dot', 'np.dot', (['Bi', 'ydot_given'], {}), '(Bi, ydot_given)\n', (788, 804), True, 'import numpy as np\n'), ((840, 859), 'numpy.dot', 'np.dot', (['Ad', 'y_given'], {}), '(Ad, y_given)\n', (846, 859), True, 'import numpy as np\n'), ((1775, 1797), 'numpy.dot', 'np.dot', (['Bi', 'ydot_given'], {}), '(Bi, ydot_given)\n', (1781, 1797), True, 'import numpy as np\n'), ((1833, 1852), 'numpy.dot', 'np.dot', (['Ad', 'y_given'], {}), '(Ad, y_given)\n', (1839, 1852), True, 'import numpy as np\n')]
# ****************************************************************************** # Copyright 2018 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ****************************************************************************** from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import numpy as np import numbers from typing import Union class NumericLimits(object): """Class providing interface to extract numerical limits for given data type.""" @staticmethod def _get_number_limits_class(dtype): # type: (np.dtype) -> Union[IntegralLimits, FloatingPointLimits] """Return specialized class instance with limits set for given data type. :param dtype: The data type we want to check limits for. :return: The specialized class instance providing numeric limits. """ data_type = dtype.type value = data_type(1) if isinstance(value, numbers.Integral): return IntegralLimits(data_type) elif isinstance(value, numbers.Real): return FloatingPointLimits(data_type) else: raise ValueError('NumericLimits: unsupported data type: <{}>.'.format(dtype.type)) @staticmethod def _get_dtype(dtype): # type: (Union[np.dtype, int, float]) -> np.dtype """Return numpy dtype object wrapping provided data type. :param dtype: The data type to be wrapped. :return: The numpy dtype object. """ return dtype if isinstance(dtype, np.dtype) else np.dtype(dtype) @classmethod def max(cls, dtype): # type: (np.dtype) -> Union[int, float] """Return maximum value that can be represented in given data type. :param dtype: The data type we want to check maximum value for. :return: The maximum value. """ return cls._get_number_limits_class(cls._get_dtype(dtype)).max @classmethod def min(cls, dtype): # type: (np.dtype) -> Union[int, float] """Return minimum value that can be represented in given data type. :param dtype: The data type we want to check minimum value for. :return: The minimum value. """ return cls._get_number_limits_class(cls._get_dtype(dtype)).min class FloatingPointLimits(object): """Class providing access to numeric limits for floating point data types.""" def __init__(self, data_type): # type: (type) -> None self.data_type = data_type @property def max(self): # type: () -> float """Provide maximum representable value by stored data type. :return: The maximum value. """ return np.finfo(self.data_type).max @property def min(self): # type: () -> float """Provide minimum representable value by stored data type. :return: The minimum value. """ return np.finfo(self.data_type).min class IntegralLimits(object): """Class providing access to numeric limits for integral data types.""" def __init__(self, data_type): # type: (type) -> None self.data_type = data_type @property def max(self): # type: () -> int """Provide maximum representable value by stored data type. :return: The maximum value. """ return np.iinfo(self.data_type).max @property def min(self): # type: () -> int """Provide minimum representable value by stored data type. :return: The minimum value. """ return np.iinfo(self.data_type).min
[ "numpy.finfo", "numpy.dtype", "numpy.iinfo" ]
[((2119, 2134), 'numpy.dtype', 'np.dtype', (['dtype'], {}), '(dtype)\n', (2127, 2134), True, 'import numpy as np\n'), ((3240, 3264), 'numpy.finfo', 'np.finfo', (['self.data_type'], {}), '(self.data_type)\n', (3248, 3264), True, 'import numpy as np\n'), ((3456, 3480), 'numpy.finfo', 'np.finfo', (['self.data_type'], {}), '(self.data_type)\n', (3464, 3480), True, 'import numpy as np\n'), ((3873, 3897), 'numpy.iinfo', 'np.iinfo', (['self.data_type'], {}), '(self.data_type)\n', (3881, 3897), True, 'import numpy as np\n'), ((4087, 4111), 'numpy.iinfo', 'np.iinfo', (['self.data_type'], {}), '(self.data_type)\n', (4095, 4111), True, 'import numpy as np\n')]
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ # Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from npu_bridge.npu_init import * import unittest import numpy as np from avod.datasets.kitti import kitti_aug class KittiAugTest(unittest.TestCase): def test_flip_boxes_3d(self): boxes_3d = np.array([ [1, 2, 3, 4, 5, 6, np.pi / 4], [1, 2, 3, 4, 5, 6, -np.pi / 4] ]) exp_flipped_boxes_3d = np.array([ [-1, 2, 3, 4, 5, 6, 3 * np.pi / 4], [-1, 2, 3, 4, 5, 6, -3 * np.pi / 4] ]) flipped_boxes_3d = kitti_aug.flip_boxes_3d(boxes_3d) np.testing.assert_almost_equal(flipped_boxes_3d, exp_flipped_boxes_3d)
[ "numpy.array", "avod.datasets.kitti.kitti_aug.flip_boxes_3d", "numpy.testing.assert_almost_equal" ]
[((1490, 1563), 'numpy.array', 'np.array', (['[[1, 2, 3, 4, 5, 6, np.pi / 4], [1, 2, 3, 4, 5, 6, -np.pi / 4]]'], {}), '([[1, 2, 3, 4, 5, 6, np.pi / 4], [1, 2, 3, 4, 5, 6, -np.pi / 4]])\n', (1498, 1563), True, 'import numpy as np\n'), ((1630, 1718), 'numpy.array', 'np.array', (['[[-1, 2, 3, 4, 5, 6, 3 * np.pi / 4], [-1, 2, 3, 4, 5, 6, -3 * np.pi / 4]]'], {}), '([[-1, 2, 3, 4, 5, 6, 3 * np.pi / 4], [-1, 2, 3, 4, 5, 6, -3 * np.\n pi / 4]])\n', (1638, 1718), True, 'import numpy as np\n'), ((1776, 1809), 'avod.datasets.kitti.kitti_aug.flip_boxes_3d', 'kitti_aug.flip_boxes_3d', (['boxes_3d'], {}), '(boxes_3d)\n', (1799, 1809), False, 'from avod.datasets.kitti import kitti_aug\n'), ((1819, 1889), 'numpy.testing.assert_almost_equal', 'np.testing.assert_almost_equal', (['flipped_boxes_3d', 'exp_flipped_boxes_3d'], {}), '(flipped_boxes_3d, exp_flipped_boxes_3d)\n', (1849, 1889), True, 'import numpy as np\n')]
import cv2 import numpy as np from pycocotools.coco import COCO import os from ..dataloading import get_yolox_datadir from .datasets_wrapper import Dataset class MOTDataset(Dataset): """ COCO dataset class. """ def __init__( # This function is called in the exps yolox_x_mot17_half.py in this way: dataset = MOTDataset( # data_dir=os.path.join(get_yolox_datadir(), "mot"), # json_file=self.train_ann, # name='train', # img_size=self.input_size, # preproc=TrainTransform(rgb_means=(0.485, 0.456, 0.406), # std=(0.229, 0.224, 0.225), # max_labels=500,),) self, data_dir=None, json_file="train_half.json", name="train", img_size=(608, 1088), preproc=None, ): """ COCO dataset initialization. Annotation data are read into memory by COCO API. Args: data_dir (str): dataset root directory json_file (str): COCO json file name name (str): COCO data name (e.g. 'train2017' or 'val2017') img_size (int): target image size after pre-processing preproc: data augmentation strategy """ super().__init__(img_size) if data_dir is None: data_dir = os.path.join(get_yolox_datadir(), "mot") self.data_dir = data_dir self.json_file = json_file self.coco = COCO(os.path.join(self.data_dir, "annotations", self.json_file)) self.ids = self.coco.getImgIds() self.class_ids = sorted(self.coco.getCatIds()) cats = self.coco.loadCats(self.coco.getCatIds()) self._classes = tuple([c["name"] for c in cats]) self.annotations = self._load_coco_annotations() self.name = name self.img_size = img_size self.preproc = preproc def __len__(self): return len(self.ids) def _load_coco_annotations(self): return [self.load_anno_from_ids(_ids) for _ids in self.ids] def load_anno_from_ids(self, id_): im_ann = self.coco.loadImgs(id_)[0] width = im_ann["width"] height = im_ann["height"] #frame_id = im_ann["frame_id"] : the default value '1' avoid to break augmentation & evaluation processes frame_id = 1 #video_id = im_ann["video_id"] : the default value '1' avoid to break augmentation & evaluation processes video_id = 1 anno_ids = self.coco.getAnnIds(imgIds=[int(id_)], iscrowd=False) annotations = self.coco.loadAnns(anno_ids) objs = [] for obj in annotations: x1 = obj["bbox"][0] y1 = obj["bbox"][1] x2 = x1 + obj["bbox"][2] y2 = y1 + obj["bbox"][3] if obj["area"] > 0 and x2 >= x1 and y2 >= y1: obj["clean_bbox"] = [x1, y1, x2, y2] objs.append(obj) num_objs = len(objs) res = np.zeros((num_objs, 6)) for ix, obj in enumerate(objs): cls = self.class_ids.index(obj["category_id"]) res[ix, 0:4] = obj["clean_bbox"] res[ix, 4] = cls #res[ix, 5] = obj["track_id"] # See comment line 66; same comment for the default value 1 res[ix, 5] = 1 file_name = im_ann["file_name"] if "file_name" in im_ann else "{:012}".format(id_) + ".jpg" img_info = (height, width, frame_id, video_id, file_name) del im_ann, annotations return (res, img_info, file_name) def load_anno(self, index): return self.annotations[index][0] def pull_item(self, index): id_ = self.ids[index] res, img_info, file_name = self.annotations[index] # load image and preprocess img_file = os.path.join( self.data_dir, self.name, file_name ) img = cv2.imread(img_file) assert img is not None return img, res.copy(), img_info, np.array([id_]) @Dataset.resize_getitem def __getitem__(self, index): """ One image / label pair for the given index is picked up and pre-processed. Args: index (int): data index Returns: img (numpy.ndarray): pre-processed image padded_labels (torch.Tensor): pre-processed label data. The shape is :math:`[max_labels, 5]`. each label consists of [class, xc, yc, w, h]: class (float): class index. xc, yc (float) : center of bbox whose values range from 0 to 1. w, h (float) : size of bbox whose values range from 0 to 1. info_img : tuple of h, w, nh, nw, dx, dy. h, w (int): original shape of the image nh, nw (int): shape of the resized image without padding dx, dy (int): pad size img_id (int): same as the input index. Used for evaluation. """ img, target, img_info, img_id = self.pull_item(index) if self.preproc is not None: img, target = self.preproc(img, target, self.input_dim) return img, target, img_info, img_id
[ "numpy.array", "numpy.zeros", "os.path.join", "cv2.imread" ]
[((3616, 3639), 'numpy.zeros', 'np.zeros', (['(num_objs, 6)'], {}), '((num_objs, 6))\n', (3624, 3639), True, 'import numpy as np\n'), ((4439, 4488), 'os.path.join', 'os.path.join', (['self.data_dir', 'self.name', 'file_name'], {}), '(self.data_dir, self.name, file_name)\n', (4451, 4488), False, 'import os\n'), ((4525, 4545), 'cv2.imread', 'cv2.imread', (['img_file'], {}), '(img_file)\n', (4535, 4545), False, 'import cv2\n'), ((2119, 2177), 'os.path.join', 'os.path.join', (['self.data_dir', '"""annotations"""', 'self.json_file'], {}), "(self.data_dir, 'annotations', self.json_file)\n", (2131, 2177), False, 'import os\n'), ((4620, 4635), 'numpy.array', 'np.array', (['[id_]'], {}), '([id_])\n', (4628, 4635), True, 'import numpy as np\n')]
import unittest import dace import numpy as np from dace.transformation.dataflow import MapTiling, OutLocalStorage N = dace.symbol('N') @dace.program def arange(): out = np.ndarray([N], np.int32) for i in dace.map[0:N]: with dace.tasklet: o >> out[i] o = i return out class LocalStorageTests(unittest.TestCase): def test_even(self): sdfg = arange.to_sdfg() sdfg.apply_transformations([MapTiling, OutLocalStorage], options=[{ 'tile_sizes': [8] }, {}]) self.assertTrue( np.array_equal(sdfg(N=16), np.arange(16, dtype=np.int32))) def test_uneven(self): # For testing uneven decomposition, use longer buffer and ensure # it's not filled over output = np.ones(20, np.int32) sdfg = arange.to_sdfg() sdfg.apply_transformations([MapTiling, OutLocalStorage], options=[{ 'tile_sizes': [5] }, {}]) dace.propagate_memlets_sdfg(sdfg) sdfg(N=16, __return=output) self.assertTrue( np.array_equal(output[:16], np.arange(16, dtype=np.int32))) self.assertTrue(np.array_equal(output[16:], np.ones(4, np.int32))) if __name__ == '__main__': unittest.main()
[ "numpy.ones", "dace.propagate_memlets_sdfg", "dace.symbol", "numpy.ndarray", "unittest.main", "numpy.arange" ]
[((120, 136), 'dace.symbol', 'dace.symbol', (['"""N"""'], {}), "('N')\n", (131, 136), False, 'import dace\n'), ((177, 202), 'numpy.ndarray', 'np.ndarray', (['[N]', 'np.int32'], {}), '([N], np.int32)\n', (187, 202), True, 'import numpy as np\n'), ((1422, 1437), 'unittest.main', 'unittest.main', ([], {}), '()\n', (1435, 1437), False, 'import unittest\n'), ((874, 895), 'numpy.ones', 'np.ones', (['(20)', 'np.int32'], {}), '(20, np.int32)\n', (881, 895), True, 'import numpy as np\n'), ((1147, 1180), 'dace.propagate_memlets_sdfg', 'dace.propagate_memlets_sdfg', (['sdfg'], {}), '(sdfg)\n', (1174, 1180), False, 'import dace\n'), ((693, 722), 'numpy.arange', 'np.arange', (['(16)'], {'dtype': 'np.int32'}), '(16, dtype=np.int32)\n', (702, 722), True, 'import numpy as np\n'), ((1282, 1311), 'numpy.arange', 'np.arange', (['(16)'], {'dtype': 'np.int32'}), '(16, dtype=np.int32)\n', (1291, 1311), True, 'import numpy as np\n'), ((1366, 1386), 'numpy.ones', 'np.ones', (['(4)', 'np.int32'], {}), '(4, np.int32)\n', (1373, 1386), True, 'import numpy as np\n')]
#!/usr/bin/env python # -*- coding: utf-8 -*- # This file is part of the SPORCO package. Details of the copyright # and user license can be found in the 'LICENSE.txt' file distributed # with the package. """ Basis Pursuit DeNoising ======================= This example demonstrates the use of class :class:`.admm.bpdn.BPDN` to solve the Basis Pursuit DeNoising (BPDN) problem :cite:`chen-1998-atomic` $$\mathrm{argmin}_\mathbf{x} \; (1/2) \| D \mathbf{x} - \mathbf{s} \|_2^2 + \lambda \| \mathbf{x} \|_1 \;,$$ where $D$ is the dictionary, $\mathbf{x}$ is the sparse representation, and $\mathbf{s}$ is the signal to be represented. In this example the BPDN problem is used to estimate the reference sparse representation that generated a signal from a noisy version of the signal. """ from __future__ import print_function from builtins import input import numpy as np from sporco.admm import bpdn from sporco import util from sporco import plot """ Configure problem size, sparsity, and noise level. """ N = 512 # Signal size M = 4*N # Dictionary size L = 32 # Number of non-zero coefficients in generator sigma = 0.5 # Noise level """ Construct random dictionary, reference random sparse representation, and test signal consisting of the synthesis of the reference sparse representation with additive Gaussian noise. """ # Construct random dictionary and random sparse coefficients np.random.seed(12345) D = np.random.randn(N, M) x0 = np.zeros((M, 1)) si = np.random.permutation(list(range(0, M-1))) x0[si[0:L]] = np.random.randn(L, 1) # Construct reference and noisy signal s0 = D.dot(x0) s = s0 + sigma*np.random.randn(N,1) """ Set BPDN solver class options. """ opt = bpdn.BPDN.Options({'Verbose': False, 'MaxMainIter': 500, 'RelStopTol': 1e-3, 'AutoRho': {'RsdlTarget': 1.0}}) """ Select regularization parameter $\lambda$ by evaluating the error in recovering the sparse representation over a logarithmicaly spaced grid. (The reference representation is assumed to be known, which is not realistic in a real application.) A function is defined that evalues the BPDN recovery error for a specified $\lambda$, and this function is evaluated in parallel by :func:`sporco.util.grid_search`. """ # Function computing reconstruction error at lmbda def evalerr(prm): lmbda = prm[0] b = bpdn.BPDN(D, s, lmbda, opt) x = b.solve() return np.sum(np.abs(x-x0)) # Parallel evalution of error function on lmbda grid lrng = np.logspace(1, 2, 20) sprm, sfvl, fvmx, sidx = util.grid_search(evalerr, (lrng,)) lmbda = sprm[0] print('Minimum ℓ1 error: %5.2f at 𝜆 = %.2e' % (sfvl, lmbda)) """ Once the best $\lambda$ has been determined, run BPDN with verbose display of ADMM iteration statistics. """ # Initialise and run BPDN object for best lmbda opt['Verbose'] = True b = bpdn.BPDN(D, s, lmbda, opt) x = b.solve() print("BPDN solve time: %.2fs" % b.timer.elapsed('solve')) """ Plot comparison of reference and recovered representations. """ plot.plot(np.hstack((x0, x)), title='Sparse representation', lgnd=['Reference', 'Reconstructed']) """ Plot lmbda error curve, functional value, residuals, and rho """ its = b.getitstat() fig = plot.figure(figsize=(15, 10)) plot.subplot(2, 2, 1) plot.plot(fvmx, x=lrng, ptyp='semilogx', xlbl='$\lambda$', ylbl='Error', fig=fig) plot.subplot(2, 2, 2) plot.plot(its.ObjFun, xlbl='Iterations', ylbl='Functional', fig=fig) plot.subplot(2, 2, 3) plot.plot(np.vstack((its.PrimalRsdl, its.DualRsdl)).T, ptyp='semilogy', xlbl='Iterations', ylbl='Residual', lgnd=['Primal', 'Dual'], fig=fig) plot.subplot(2, 2, 4) plot.plot(its.Rho, xlbl='Iterations', ylbl='Penalty Parameter', fig=fig) fig.show() # Wait for enter on keyboard input()
[ "numpy.abs", "builtins.input", "sporco.util.grid_search", "numpy.hstack", "sporco.admm.bpdn.BPDN", "numpy.zeros", "numpy.random.seed", "numpy.vstack", "sporco.admm.bpdn.BPDN.Options", "sporco.plot.figure", "sporco.plot.subplot", "numpy.logspace", "numpy.random.randn", "sporco.plot.plot" ]
[((1417, 1438), 'numpy.random.seed', 'np.random.seed', (['(12345)'], {}), '(12345)\n', (1431, 1438), True, 'import numpy as np\n'), ((1443, 1464), 'numpy.random.randn', 'np.random.randn', (['N', 'M'], {}), '(N, M)\n', (1458, 1464), True, 'import numpy as np\n'), ((1470, 1486), 'numpy.zeros', 'np.zeros', (['(M, 1)'], {}), '((M, 1))\n', (1478, 1486), True, 'import numpy as np\n'), ((1549, 1570), 'numpy.random.randn', 'np.random.randn', (['L', '(1)'], {}), '(L, 1)\n', (1564, 1570), True, 'import numpy as np\n'), ((1710, 1825), 'sporco.admm.bpdn.BPDN.Options', 'bpdn.BPDN.Options', (["{'Verbose': False, 'MaxMainIter': 500, 'RelStopTol': 0.001, 'AutoRho': {\n 'RsdlTarget': 1.0}}"], {}), "({'Verbose': False, 'MaxMainIter': 500, 'RelStopTol': \n 0.001, 'AutoRho': {'RsdlTarget': 1.0}})\n", (1727, 1825), False, 'from sporco.admm import bpdn\n'), ((2494, 2515), 'numpy.logspace', 'np.logspace', (['(1)', '(2)', '(20)'], {}), '(1, 2, 20)\n', (2505, 2515), True, 'import numpy as np\n'), ((2541, 2575), 'sporco.util.grid_search', 'util.grid_search', (['evalerr', '(lrng,)'], {}), '(evalerr, (lrng,))\n', (2557, 2575), False, 'from sporco import util\n'), ((2844, 2871), 'sporco.admm.bpdn.BPDN', 'bpdn.BPDN', (['D', 's', 'lmbda', 'opt'], {}), '(D, s, lmbda, opt)\n', (2853, 2871), False, 'from sporco.admm import bpdn\n'), ((3223, 3252), 'sporco.plot.figure', 'plot.figure', ([], {'figsize': '(15, 10)'}), '(figsize=(15, 10))\n', (3234, 3252), False, 'from sporco import plot\n'), ((3253, 3274), 'sporco.plot.subplot', 'plot.subplot', (['(2)', '(2)', '(1)'], {}), '(2, 2, 1)\n', (3265, 3274), False, 'from sporco import plot\n'), ((3275, 3361), 'sporco.plot.plot', 'plot.plot', (['fvmx'], {'x': 'lrng', 'ptyp': '"""semilogx"""', 'xlbl': '"""$\\\\lambda$"""', 'ylbl': '"""Error"""', 'fig': 'fig'}), "(fvmx, x=lrng, ptyp='semilogx', xlbl='$\\\\lambda$', ylbl='Error',\n fig=fig)\n", (3284, 3361), False, 'from sporco import plot\n'), ((3367, 3388), 'sporco.plot.subplot', 'plot.subplot', (['(2)', '(2)', '(2)'], {}), '(2, 2, 2)\n', (3379, 3388), False, 'from sporco import plot\n'), ((3389, 3457), 'sporco.plot.plot', 'plot.plot', (['its.ObjFun'], {'xlbl': '"""Iterations"""', 'ylbl': '"""Functional"""', 'fig': 'fig'}), "(its.ObjFun, xlbl='Iterations', ylbl='Functional', fig=fig)\n", (3398, 3457), False, 'from sporco import plot\n'), ((3458, 3479), 'sporco.plot.subplot', 'plot.subplot', (['(2)', '(2)', '(3)'], {}), '(2, 2, 3)\n', (3470, 3479), False, 'from sporco import plot\n'), ((3642, 3663), 'sporco.plot.subplot', 'plot.subplot', (['(2)', '(2)', '(4)'], {}), '(2, 2, 4)\n', (3654, 3663), False, 'from sporco import plot\n'), ((3664, 3736), 'sporco.plot.plot', 'plot.plot', (['its.Rho'], {'xlbl': '"""Iterations"""', 'ylbl': '"""Penalty Parameter"""', 'fig': 'fig'}), "(its.Rho, xlbl='Iterations', ylbl='Penalty Parameter', fig=fig)\n", (3673, 3736), False, 'from sporco import plot\n'), ((3780, 3787), 'builtins.input', 'input', ([], {}), '()\n', (3785, 3787), False, 'from builtins import input\n'), ((2354, 2381), 'sporco.admm.bpdn.BPDN', 'bpdn.BPDN', (['D', 's', 'lmbda', 'opt'], {}), '(D, s, lmbda, opt)\n', (2363, 2381), False, 'from sporco.admm import bpdn\n'), ((3027, 3045), 'numpy.hstack', 'np.hstack', (['(x0, x)'], {}), '((x0, x))\n', (3036, 3045), True, 'import numpy as np\n'), ((1641, 1662), 'numpy.random.randn', 'np.random.randn', (['N', '(1)'], {}), '(N, 1)\n', (1656, 1662), True, 'import numpy as np\n'), ((2418, 2432), 'numpy.abs', 'np.abs', (['(x - x0)'], {}), '(x - x0)\n', (2424, 2432), True, 'import numpy as np\n'), ((3490, 3531), 'numpy.vstack', 'np.vstack', (['(its.PrimalRsdl, its.DualRsdl)'], {}), '((its.PrimalRsdl, its.DualRsdl))\n', (3499, 3531), True, 'import numpy as np\n')]
""" A bar graph. (c) September 2017 by <NAME> """ import argparse from collections import defaultdict from keras.models import Sequential from keras.layers import Dense, Activation import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import numpy as np import sys np.set_printoptions(suppress=True, linewidth=200) # Some matplotlib settings. plt.style.use('seaborn-darkgrid') titlesize = 21 labelsize = 17 legendsize = 15 ticksize = 15 bar_width = 0.80 opacity = 1.0 error_config = {'ecolor': '0.0', 'linewidth':3.0} def deprecated(): """ This is a deprecated method, only to show how to possibly combine these into one plot. However, I find this unwieldly. """ fig, ax = plt.subplots() bar_width = 0.80 opacity = 0.5 error_config = {'ecolor': '0.3'} rects1 = plt.bar(np.array([0,1]), means_lin, bar_width, alpha=opacity, color='b', yerr=std_lin, error_kw=error_config, label='Lin') rects2 = plt.bar(np.array([3,4,5,6,7]), means_rfs, bar_width, alpha=opacity, color='r', yerr=std_rfs, error_kw=error_config, label='RF') rects3 = plt.bar(np.array([9,10]), means_dnn, bar_width, alpha=opacity, color='y', yerr=std_dnn, error_kw=error_config, label='DNN') plt.xticks(np.arange(11) + bar_width / 2, ('A','B','','D','E','F','G','','','J','K')) plt.xlabel('Group') plt.ylabel('Scores') plt.title('Scores by group and gender') plt.tight_layout() plt.legend() plt.savefig('figures/validation_set_results.png') def plot(results, vv): lin_mean = [] lin_std = [] lin_keys = [] rfs_mean = [] rfs_std = [] rfs_keys = [] dnn_mean = [] dnn_std = [] dnn_keys = [] sorted_keys = sorted(results.keys()) for key in sorted_keys: info = [ss['loss'] for ss in results[key]] if 'Lin' in key: lin_mean.append(np.mean(info)) lin_std.append(np.std(info)) lin_keys.append(key) elif 'RFs' in key: rfs_mean.append(np.mean(info)) rfs_std.append(np.std(info)) rfs_keys.append(key) elif 'DNN' in key: dnn_mean.append(np.mean(info)) dnn_std.append(np.std(info)) dnn_keys.append(key) print("\nlin_mean: {}".format(lin_mean)) print("lin_std: {}".format(lin_std)) print("lin_keys: {}".format(lin_keys)) print("\nrfs_mean: {}".format(rfs_mean)) print("rfs_std: {}".format(rfs_std)) print("rfs_keys: {}".format(rfs_keys)) print("\nDNN results:") for (mean,std,key) in zip(dnn_mean,dnn_std,dnn_keys): print("{:.2f}\t{:.2f}\t{}".format(mean,std,key)) # sys.exit() # Use this to determine which DNN models should be here. dnn_threshold = 3.0 real_index = 0 for ii,(mean,std,key) in enumerate(zip(dnn_mean,dnn_std,dnn_keys)): if mean > dnn_threshold: continue real_index += 1 # Gah! Now I can finally make the bar chart. I think it's easiest to have it # split across three different subplots, one per algorithm category. width_ratio = [len(lin_keys),len(rfs_keys),real_index] fig, ax = plt.subplots(nrows=1, ncols=3, figsize=(16,5), gridspec_kw={'width_ratios':width_ratio}) for ii,(mean,std,key) in enumerate(zip(lin_mean,lin_std,lin_keys)): ax[0].bar(np.array([ii]), mean, bar_width, alpha=opacity, yerr=std, error_kw=error_config, label=key[4:]) for ii,(mean,std,key) in enumerate(zip(rfs_mean,rfs_std,rfs_keys)): ax[1].bar(np.array([ii]), mean, bar_width, alpha=opacity, yerr=std, error_kw=error_config, label=key[4:]) real_index = 0 for ii,(mean,std,key) in enumerate(zip(dnn_mean,dnn_std,dnn_keys)): if mean > dnn_threshold: continue ax[2].bar(np.array([real_index]), mean, bar_width, alpha=opacity, yerr=std, error_kw=error_config, label=key[4:]) real_index += 1 # Some rather tedious but necessary stuff to make it publication-quality. ax[0].set_title('Linear', fontsize=titlesize) ax[1].set_title('Random Forests', fontsize=titlesize) ax[2].set_title('Deep Neural Networks', fontsize=titlesize) ax[0].set_ylabel('Average Squared $L_2$, 10-Fold CV', fontsize=labelsize) for i in range(3): ax[i].set_xlabel('Algorithm', fontsize=labelsize) ax[i].set_ylim([0.0,9.0]) ax[i].tick_params(axis='y', labelsize=ticksize) ax[i].set_xticklabels([]) ax[0].legend(loc="best", ncol=1, prop={'size':legendsize}) ax[1].legend(loc="best", ncol=2, prop={'size':legendsize}) ax[2].legend(loc="best", ncol=3, prop={'size':legendsize}) plt.tight_layout() plt.savefig('figures/validation_set_results_v'+vv+'.png') if __name__ == "__main__": pp = argparse.ArgumentParser() pp.add_argument('--version', type=int) pp.add_argument('--kfolds', type=int, default=10) args = pp.parse_args() assert args.version is not None VERSION = str(args.version).zfill(2) file_name = 'results/results_kfolds10_v'+VERSION+'.npy' results = np.load(file_name)[()] print("results has keys: {}".format(results.keys())) plot(results, VERSION)
[ "numpy.mean", "matplotlib.pyplot.savefig", "argparse.ArgumentParser", "matplotlib.pyplot.ylabel", "matplotlib.use", "numpy.arange", "matplotlib.pyplot.xlabel", "matplotlib.pyplot.style.use", "numpy.array", "matplotlib.pyplot.tight_layout", "numpy.std", "matplotlib.pyplot.title", "numpy.load", "matplotlib.pyplot.subplots", "matplotlib.pyplot.legend", "numpy.set_printoptions" ]
[((201, 222), 'matplotlib.use', 'matplotlib.use', (['"""Agg"""'], {}), "('Agg')\n", (215, 222), False, 'import matplotlib\n'), ((285, 334), 'numpy.set_printoptions', 'np.set_printoptions', ([], {'suppress': '(True)', 'linewidth': '(200)'}), '(suppress=True, linewidth=200)\n', (304, 334), True, 'import numpy as np\n'), ((364, 397), 'matplotlib.pyplot.style.use', 'plt.style.use', (['"""seaborn-darkgrid"""'], {}), "('seaborn-darkgrid')\n", (377, 397), True, 'import matplotlib.pyplot as plt\n'), ((717, 731), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (729, 731), True, 'import matplotlib.pyplot as plt\n'), ((1649, 1668), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Group"""'], {}), "('Group')\n", (1659, 1668), True, 'import matplotlib.pyplot as plt\n'), ((1673, 1693), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Scores"""'], {}), "('Scores')\n", (1683, 1693), True, 'import matplotlib.pyplot as plt\n'), ((1698, 1737), 'matplotlib.pyplot.title', 'plt.title', (['"""Scores by group and gender"""'], {}), "('Scores by group and gender')\n", (1707, 1737), True, 'import matplotlib.pyplot as plt\n'), ((1742, 1760), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (1758, 1760), True, 'import matplotlib.pyplot as plt\n'), ((1765, 1777), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (1775, 1777), True, 'import matplotlib.pyplot as plt\n'), ((1782, 1831), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""figures/validation_set_results.png"""'], {}), "('figures/validation_set_results.png')\n", (1793, 1831), True, 'import matplotlib.pyplot as plt\n'), ((3473, 3567), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {'nrows': '(1)', 'ncols': '(3)', 'figsize': '(16, 5)', 'gridspec_kw': "{'width_ratios': width_ratio}"}), "(nrows=1, ncols=3, figsize=(16, 5), gridspec_kw={'width_ratios':\n width_ratio})\n", (3485, 3567), True, 'import matplotlib.pyplot as plt\n'), ((5199, 5217), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (5215, 5217), True, 'import matplotlib.pyplot as plt\n'), ((5222, 5283), 'matplotlib.pyplot.savefig', 'plt.savefig', (["('figures/validation_set_results_v' + vv + '.png')"], {}), "('figures/validation_set_results_v' + vv + '.png')\n", (5233, 5283), True, 'import matplotlib.pyplot as plt\n'), ((5318, 5343), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (5341, 5343), False, 'import argparse\n'), ((830, 846), 'numpy.array', 'np.array', (['[0, 1]'], {}), '([0, 1])\n', (838, 846), True, 'import numpy as np\n'), ((1071, 1096), 'numpy.array', 'np.array', (['[3, 4, 5, 6, 7]'], {}), '([3, 4, 5, 6, 7])\n', (1079, 1096), True, 'import numpy as np\n'), ((1317, 1334), 'numpy.array', 'np.array', (['[9, 10]'], {}), '([9, 10])\n', (1325, 1334), True, 'import numpy as np\n'), ((5620, 5638), 'numpy.load', 'np.load', (['file_name'], {}), '(file_name)\n', (5627, 5638), True, 'import numpy as np\n'), ((1554, 1567), 'numpy.arange', 'np.arange', (['(11)'], {}), '(11)\n', (1563, 1567), True, 'import numpy as np\n'), ((3680, 3694), 'numpy.array', 'np.array', (['[ii]'], {}), '([ii])\n', (3688, 3694), True, 'import numpy as np\n'), ((3938, 3952), 'numpy.array', 'np.array', (['[ii]'], {}), '([ii])\n', (3946, 3952), True, 'import numpy as np\n'), ((4269, 4291), 'numpy.array', 'np.array', (['[real_index]'], {}), '([real_index])\n', (4277, 4291), True, 'import numpy as np\n'), ((2193, 2206), 'numpy.mean', 'np.mean', (['info'], {}), '(info)\n', (2200, 2206), True, 'import numpy as np\n'), ((2235, 2247), 'numpy.std', 'np.std', (['info'], {}), '(info)\n', (2241, 2247), True, 'import numpy as np\n'), ((2337, 2350), 'numpy.mean', 'np.mean', (['info'], {}), '(info)\n', (2344, 2350), True, 'import numpy as np\n'), ((2379, 2391), 'numpy.std', 'np.std', (['info'], {}), '(info)\n', (2385, 2391), True, 'import numpy as np\n'), ((2481, 2494), 'numpy.mean', 'np.mean', (['info'], {}), '(info)\n', (2488, 2494), True, 'import numpy as np\n'), ((2523, 2535), 'numpy.std', 'np.std', (['info'], {}), '(info)\n', (2529, 2535), True, 'import numpy as np\n')]
# SPDX-License-Identifier: Apache-2.0 """Unit Tests for custom rnns.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import tensorflow as tf from tensorflow.python.ops import init_ops from backend_test_base import Tf2OnnxBackendTestBase from common import * # pylint: disable=wildcard-import, unused-wildcard-import from tf2onnx.tf_loader import is_tf2 # pylint: disable=missing-docstring,invalid-name,unused-argument,using-constant-test # pylint: disable=abstract-method,arguments-differ if is_tf2(): BasicLSTMCell = tf.compat.v1.nn.rnn_cell.BasicLSTMCell LSTMCell = tf.compat.v1.nn.rnn_cell.LSTMCell GRUCell = tf.compat.v1.nn.rnn_cell.GRUCell RNNCell = tf.compat.v1.nn.rnn_cell.RNNCell MultiRNNCell = tf.compat.v1.nn.rnn_cell.MultiRNNCell dynamic_rnn = tf.compat.v1.nn.dynamic_rnn bidirectional_dynamic_rnn = tf.compat.v1.nn.bidirectional_dynamic_rnn else: LSTMBlockCell = tf.contrib.rnn.LSTMBlockCell LSTMCell = tf.nn.rnn_cell.LSTMCell GRUCell = tf.nn.rnn_cell.LSTMCell RNNCell = tf.nn.rnn_cell.RNNCell MultiRNNCell = tf.contrib.rnn.MultiRNNCell dynamic_rnn = tf.nn.dynamic_rnn bidirectional_dynamic_rnn = tf.nn.bidirectional_dynamic_rnn class CustomRnnCellTests(Tf2OnnxBackendTestBase): @check_opset_min_version(8, "Scan") @skip_tf2() def test_single_dynamic_custom_rnn(self): size = 5 # size of each model layer. batch_size = 1 cell = GatedGRUCell(size) x_val = np.array([[1., 1.], [2., 2.], [3., 3.]], dtype=np.float32) x_val = np.stack([x_val] * batch_size) def func(x): xs, s = dynamic_rnn(cell=cell, dtype=tf.float32, inputs=x, time_major=False) return tf.identity(xs, name="output"), tf.identity(s, name="final_state") feed_dict = {"input_1:0": x_val} input_names_with_port = ["input_1:0"] output_names_with_port = ["output:0", "final_state:0"] self.run_test_case(func, feed_dict, input_names_with_port, output_names_with_port, 0.1) @check_opset_min_version(8, "Scan") @skip_tf2() def test_single_dynamic_custom_rnn_time_major(self): size = 5 # size of each model layer. batch_size = 1 x_val = np.array([[1., 1.], [2., 2.], [3., 3.]], dtype=np.float32) x_val = np.stack([x_val] * batch_size) def func(x): cell = GatedGRUCell(size) xs, s = dynamic_rnn(cell=cell, dtype=tf.float32, inputs=x, time_major=True) return tf.identity(xs, name="output"), tf.identity(s, name="final_state") feed_dict = {"input_1:0": x_val} input_names_with_port = ["input_1:0"] output_names_with_port = ["output:0", "final_state:0"] self.run_test_case(func, feed_dict, input_names_with_port, output_names_with_port, 0.1) @check_opset_min_version(8, "Scan") @skip_tf2() def test_single_dynamic_custom_rnn_with_seq_length(self): units = 5 batch_size = 6 x_val = np.array([[1., 1.], [2., 2.], [3., 3.], [4., 4.], [5., 5.]], dtype=np.float32) x_val = np.stack([x_val] * batch_size) def func(x): # no scope cell = GatedGRUCell(units) outputs, cell_state = dynamic_rnn( cell, x, dtype=tf.float32, sequence_length=[4, 3, 4, 5, 2, 1]) return tf.identity(outputs, name="output"), tf.identity(cell_state, name="cell_state") feed_dict = {"input_1:0": x_val} input_names_with_port = ["input_1:0"] output_names_with_port = ["output:0", "cell_state:0"] self.run_test_case(func, feed_dict, input_names_with_port, output_names_with_port, rtol=1e-06) @check_opset_min_version(8, "Scan") @skip_tf2() def test_single_dynamic_custom_rnn_with_non_const_seq_length(self): units = 5 batch_size = 6 x_val = np.array([[1., 1.], [2., 2.], [3., 3.], [4., 4.], [5., 5.]], dtype=np.float32) x_val = np.stack([x_val] * batch_size) y_val = np.array([4, 3, 4, 5, 2, 1], dtype=np.int32) def func(x, seq_length): # no scope cell = GatedGRUCell(units) outputs, cell_state = dynamic_rnn( cell, x, dtype=tf.float32, sequence_length=tf.identity(seq_length)) return tf.identity(outputs, name="output"), tf.identity(cell_state, name="cell_state") feed_dict = {"input_1:0": x_val, "input_2:0": y_val} input_names_with_port = ["input_1:0", "input_2:0"] output_names_with_port = ["output:0", "cell_state:0"] self.run_test_case(func, feed_dict, input_names_with_port, output_names_with_port, rtol=1e-06) @check_opset_min_version(8, "Scan") @check_tf_min_version("1.8") @skip_tf2() def test_attention_wrapper_const_encoder(self): size = 5 time_step = 3 input_size = 4 attn_size = size batch_size = 9 # shape [batch size, time step, size] # attention_state: usually the output of an RNN encoder. # This tensor should be shaped `[batch_size, max_time, ...]`. decoder_time_step = 6 x_val = np.random.randn(decoder_time_step, input_size).astype('f') x_val = np.stack([x_val] * batch_size) attention_states = np.random.randn(batch_size, time_step, attn_size).astype('f') def func(x): attention_mechanism = tf.contrib.seq2seq.BahdanauAttention(attn_size, attention_states) match_input_fn = lambda curr_input, state: tf.concat([curr_input, state], axis=-1) cell = LSTMCell(size) match_cell_fw = tf.contrib.seq2seq.AttentionWrapper(cell, attention_mechanism, attention_layer_size=attn_size, cell_input_fn=match_input_fn, output_attention=False) output, attr_state = dynamic_rnn(match_cell_fw, x, dtype=tf.float32) return tf.identity(output, name="output"), tf.identity(attr_state.cell_state, name="final_state") feed_dict = {"input_1:0": x_val} input_names_with_port = ["input_1:0"] output_names_with_port = ["output:0"] output_names_with_port = ["output:0", "final_state:0"] self.run_test_case(func, feed_dict, input_names_with_port, output_names_with_port, 0.1) @check_opset_min_version(8, "Scan") @check_tf_min_version("1.8") @skip_tf2() def test_attention_wrapper_lstm_encoder(self): size = 5 time_step = 3 input_size = 4 attn_size = size batch_size = 9 # shape [batch size, time step, size] # attention_state: usually the output of an RNN encoder. # This tensor should be shaped `[batch_size, max_time, ...]` encoder_time_step = time_step encoder_x_val = np.random.randn(encoder_time_step, input_size).astype('f') encoder_x_val = np.stack([encoder_x_val] * batch_size) decoder_time_step = 6 decoder_x_val = np.random.randn(decoder_time_step, input_size).astype('f') decoder_x_val = np.stack([decoder_x_val] * batch_size) def func(encoder_x, decoder_x): encoder_cell = LSTMCell(size) output, attr_state = dynamic_rnn(encoder_cell, encoder_x, dtype=tf.float32) output_0 = tf.identity(output, name="output_0") attention_states = output attention_mechanism = tf.contrib.seq2seq.BahdanauAttention(attn_size, attention_states) match_input_fn = lambda curr_input, state: tf.concat([curr_input, state], axis=-1) cell = LSTMCell(size) match_cell_fw = tf.contrib.seq2seq.AttentionWrapper(cell, attention_mechanism, attention_layer_size=attn_size, cell_input_fn=match_input_fn, output_attention=False) output, attr_state = dynamic_rnn(match_cell_fw, decoder_x, dtype=tf.float32) return output_0, tf.identity(output, name="output"), tf.identity(attr_state.cell_state, name="final_state") feed_dict = {"input_1:0": encoder_x_val, "input_2:0": decoder_x_val} input_names_with_port = ["input_1:0", "input_2:0"] output_names_with_port = ["output_0:0", "output:0", "final_state:0"] self.run_test_case(func, feed_dict, input_names_with_port, output_names_with_port, 0.1) @check_opset_min_version(8, "Scan") @check_tf_min_version("1.8") @skip_tf2() def test_attention_wrapper_gru_encoder(self): size = 5 time_step = 3 input_size = 4 attn_size = size batch_size = 9 # shape [batch size, time step, size] # attention_state: usually the output of an RNN encoder. # This tensor should be shaped `[batch_size, max_time, ...]` encoder_time_step = time_step encoder_x_val = np.random.randn(encoder_time_step, input_size).astype('f') encoder_x_val = np.stack([encoder_x_val] * batch_size) decoder_time_step = 6 decoder_x_val = np.random.randn(decoder_time_step, input_size).astype('f') decoder_x_val = np.stack([decoder_x_val] * batch_size) def func(encoder_x, decoder_x): encoder_cell = GRUCell(size) output, attr_state = dynamic_rnn(encoder_cell, encoder_x, dtype=tf.float32) _ = tf.identity(output, name="output_0") attention_states = output attention_mechanism = tf.contrib.seq2seq.BahdanauAttention(attn_size, attention_states) match_input_fn = lambda curr_input, state: tf.concat([curr_input, state], axis=-1) cell = GRUCell(size) match_cell_fw = tf.contrib.seq2seq.AttentionWrapper(cell, attention_mechanism, attention_layer_size=attn_size, cell_input_fn=match_input_fn, output_attention=False) output, attr_state = dynamic_rnn(match_cell_fw, decoder_x, dtype=tf.float32) return tf.identity(output, name="output"), tf.identity(attr_state.cell_state, name="final_state") feed_dict = {"input_1:0": encoder_x_val, "input_2:0": decoder_x_val} input_names_with_port = ["input_1:0", "input_2:0"] output_names_with_port = ["output_0:0", "output:0", "final_state:0"] self.run_test_case(func, feed_dict, input_names_with_port, output_names_with_port, 0.1) @check_opset_min_version(8, "Scan") @check_tf_min_version("1.8") @skip_tf2() def test_attention_wrapper_lstm_encoder_input_has_none_dim(self): size = 5 time_step = 3 input_size = 4 attn_size = size batch_size = 9 # shape [batch size, time step, size] # attention_state: usually the output of an RNN encoder. # This tensor should be shaped `[batch_size, max_time, ...]` encoder_time_step = time_step encoder_x_val = np.random.randn(encoder_time_step, input_size).astype('f') encoder_x_val = np.stack([encoder_x_val] * batch_size) decoder_time_step = 6 decoder_x_val = np.random.randn(decoder_time_step, input_size).astype('f') decoder_x_val = np.stack([decoder_x_val] * batch_size) def func(encoder_x, decoder_x): encoder_cell = LSTMCell(size) output, attr_state = dynamic_rnn(encoder_cell, encoder_x, dtype=tf.float32) _ = tf.identity(output, name="output_0") attention_states = output attention_mechanism = tf.contrib.seq2seq.BahdanauAttention(attn_size, attention_states) match_input_fn = lambda curr_input, state: tf.concat([curr_input, state], axis=-1) cell = LSTMCell(size) match_cell_fw = tf.contrib.seq2seq.AttentionWrapper(cell, attention_mechanism, attention_layer_size=attn_size, cell_input_fn=match_input_fn, output_attention=False) output, attr_state = dynamic_rnn(match_cell_fw, decoder_x, dtype=tf.float32) return tf.identity(output, name="output"), tf.identity(attr_state.cell_state, name="final_state") feed_dict = {"input_1:0": encoder_x_val, "input_2:0": decoder_x_val} input_names_with_port = ["input_1:0", "input_2:0"] output_names_with_port = ["output_0:0", "output:0", "final_state:0"] self.run_test_case(func, feed_dict, input_names_with_port, output_names_with_port, 0.1) @check_opset_min_version(8, "Scan") @skip_tf2() def test_multi_rnn_lstm(self, state_is_tuple=True): units = 5 batch_size = 6 x_val = np.array([[1., 1.], [2., 2.], [3., 3.], [4., 4.]], dtype=np.float32) x_val = np.stack([x_val] * batch_size) def func(x): initializer = init_ops.constant_initializer(0.5) cell_0 = LSTMCell(units, initializer=initializer, state_is_tuple=state_is_tuple) cell_1 = LSTMCell(units, initializer=initializer, state_is_tuple=state_is_tuple) cell_2 = LSTMCell(units, initializer=initializer, state_is_tuple=state_is_tuple) cells = MultiRNNCell([cell_0, cell_1, cell_2], state_is_tuple=state_is_tuple) outputs, cell_state = dynamic_rnn(cells, x, dtype=tf.float32) return tf.identity(outputs, name="output"), tf.identity(cell_state, name="cell_state") input_names_with_port = ["input_1:0"] feed_dict = {"input_1:0": x_val} output_names_with_port = ["output:0", "cell_state:0"] self.run_test_case(func, feed_dict, input_names_with_port, output_names_with_port, rtol=1e-06) @check_opset_min_version(8, "Scan") @check_tf_min_version("1.8") @skip_opset(9, "ReverseSequence") @skip_tf2() @allow_missing_shapes("Missing RNN shape") def test_bidrectional_attention_wrapper_lstm_encoder(self): size = 30 time_step = 3 input_size = 4 attn_size = size batch_size = 9 # shape [batch size, time step, size] # attention_state: usually the output of an RNN encoder. # This tensor should be shaped `[batch_size, max_time, ...]` encoder_time_step = time_step encoder_x_val = np.random.randn(encoder_time_step, input_size).astype('f') encoder_x_val = np.stack([encoder_x_val] * batch_size) decoder_time_step = 6 decoder_x_val = np.random.randn(decoder_time_step, batch_size, input_size).astype('f') def func(encoder_x, decoder_x, seq_length): encoder_cell = LSTMCell(size) attention_states, _ = dynamic_rnn(encoder_cell, encoder_x, dtype=tf.float32) # [9, 3, 30], [9, 30] attention_mechanism = tf.contrib.seq2seq.BahdanauAttention(attn_size, attention_states) match_input_fn = lambda curr_input, state: tf.concat([curr_input, state], axis=-1) cell = LSTMCell(size) match_cell_fw = tf.contrib.seq2seq.AttentionWrapper(cell, attention_mechanism, attention_layer_size=attn_size, cell_input_fn=match_input_fn, output_attention=False) match_cell_bk = tf.contrib.seq2seq.AttentionWrapper(cell, attention_mechanism, attention_layer_size=attn_size, cell_input_fn=match_input_fn, output_attention=False) (match_output_fw, match_output_bk), (match_state_fw, match_state_bk) = \ bidirectional_dynamic_rnn(cell_fw=match_cell_fw, cell_bw=match_cell_bk, inputs=decoder_x, sequence_length=tf.identity(seq_length), dtype=tf.float32, time_major=True) matched_output = tf.concat([match_output_fw, match_output_bk], axis=-1) matched_state = tf.concat([match_state_fw.cell_state, match_state_bk.cell_state], -1) return tf.identity(matched_output, name="output_0"), tf.identity(matched_state, name="final_state") feed_dict = {"input_1:0": encoder_x_val, "input_2:0": decoder_x_val, "input_3:0": np.array([6, 5, 4, 3, 2, 1, 2, 3, 6], dtype=np.int32)} input_names_with_port = ["input_1:0", "input_2:0", "input_3:0"] output_names_with_port = ["output_0:0", "final_state:0"] self.run_test_case(func, feed_dict, input_names_with_port, output_names_with_port, 0.1) class GatedGRUCell(RNNCell): def __init__(self, hidden_dim, reuse=None): super().__init__(self, _reuse=reuse) self._num_units = hidden_dim self._activation = tf.tanh @property def state_size(self): return self._num_units @property def output_size(self): return self._num_units def call(self, inputs, state): # inputs shape: [batch size, time step, input size] = [1, 3, 2] # num_units: 5 # W shape: [2, 3 * 5] = [2, 15] # U shape: [5, 3 * 5] = [5, 15] # b shape: [1, 3 * 5] = [1, 15] # state shape: [batch size, state size] = [1, 5] input_dim = inputs.get_shape()[-1] assert input_dim is not None, "input dimension must be defined" # W = tf.get_variable(name="W", shape=[input_dim, 3 * self._num_units], dtype=tf.float32) W = np.arange(30.0, dtype=np.float32).reshape((2, 15)) # U = tf.get_variable(name='U', shape=[self._num_units, 3 * self._num_units], dtype=tf.float32) U = np.arange(75.0, dtype=np.float32).reshape((5, 15)) # b = tf.get_variable(name='b', shape=[1, 3 * self._num_units], dtype=tf.float32) b = np.arange(15.0, dtype=np.float32).reshape((1, 15)) xw = tf.split(tf.matmul(inputs, W) + b, 3, 1) hu = tf.split(tf.matmul(state, U), 3, 1) r = tf.sigmoid(xw[0] + hu[0]) z = tf.sigmoid(xw[1] + hu[1]) h1 = self._activation(xw[2] + r * hu[2]) next_h = h1 * (1 - z) + state * z return next_h, next_h if __name__ == '__main__': unittest_main()
[ "tensorflow.contrib.seq2seq.BahdanauAttention", "tensorflow.contrib.seq2seq.AttentionWrapper", "tf2onnx.tf_loader.is_tf2", "numpy.array", "numpy.stack", "tensorflow.sigmoid", "tensorflow.concat", "tensorflow.matmul", "tensorflow.identity", "tensorflow.python.ops.init_ops.constant_initializer", "numpy.random.randn", "numpy.arange" ]
[((584, 592), 'tf2onnx.tf_loader.is_tf2', 'is_tf2', ([], {}), '()\n', (590, 592), False, 'from tf2onnx.tf_loader import is_tf2\n'), ((1563, 1627), 'numpy.array', 'np.array', (['[[1.0, 1.0], [2.0, 2.0], [3.0, 3.0]]'], {'dtype': 'np.float32'}), '([[1.0, 1.0], [2.0, 2.0], [3.0, 3.0]], dtype=np.float32)\n', (1571, 1627), True, 'import numpy as np\n'), ((1638, 1668), 'numpy.stack', 'np.stack', (['([x_val] * batch_size)'], {}), '([x_val] * batch_size)\n', (1646, 1668), True, 'import numpy as np\n'), ((2311, 2375), 'numpy.array', 'np.array', (['[[1.0, 1.0], [2.0, 2.0], [3.0, 3.0]]'], {'dtype': 'np.float32'}), '([[1.0, 1.0], [2.0, 2.0], [3.0, 3.0]], dtype=np.float32)\n', (2319, 2375), True, 'import numpy as np\n'), ((2386, 2416), 'numpy.stack', 'np.stack', (['([x_val] * batch_size)'], {}), '([x_val] * batch_size)\n', (2394, 2416), True, 'import numpy as np\n'), ((3073, 3165), 'numpy.array', 'np.array', (['[[1.0, 1.0], [2.0, 2.0], [3.0, 3.0], [4.0, 4.0], [5.0, 5.0]]'], {'dtype': 'np.float32'}), '([[1.0, 1.0], [2.0, 2.0], [3.0, 3.0], [4.0, 4.0], [5.0, 5.0]],\n dtype=np.float32)\n', (3081, 3165), True, 'import numpy as np\n'), ((3168, 3198), 'numpy.stack', 'np.stack', (['([x_val] * batch_size)'], {}), '([x_val] * batch_size)\n', (3176, 3198), True, 'import numpy as np\n'), ((3994, 4086), 'numpy.array', 'np.array', (['[[1.0, 1.0], [2.0, 2.0], [3.0, 3.0], [4.0, 4.0], [5.0, 5.0]]'], {'dtype': 'np.float32'}), '([[1.0, 1.0], [2.0, 2.0], [3.0, 3.0], [4.0, 4.0], [5.0, 5.0]],\n dtype=np.float32)\n', (4002, 4086), True, 'import numpy as np\n'), ((4089, 4119), 'numpy.stack', 'np.stack', (['([x_val] * batch_size)'], {}), '([x_val] * batch_size)\n', (4097, 4119), True, 'import numpy as np\n'), ((4136, 4180), 'numpy.array', 'np.array', (['[4, 3, 4, 5, 2, 1]'], {'dtype': 'np.int32'}), '([4, 3, 4, 5, 2, 1], dtype=np.int32)\n', (4144, 4180), True, 'import numpy as np\n'), ((5395, 5425), 'numpy.stack', 'np.stack', (['([x_val] * batch_size)'], {}), '([x_val] * batch_size)\n', (5403, 5425), True, 'import numpy as np\n'), ((7263, 7301), 'numpy.stack', 'np.stack', (['([encoder_x_val] * batch_size)'], {}), '([encoder_x_val] * batch_size)\n', (7271, 7301), True, 'import numpy as np\n'), ((7439, 7477), 'numpy.stack', 'np.stack', (['([decoder_x_val] * batch_size)'], {}), '([decoder_x_val] * batch_size)\n', (7447, 7477), True, 'import numpy as np\n'), ((9579, 9617), 'numpy.stack', 'np.stack', (['([encoder_x_val] * batch_size)'], {}), '([encoder_x_val] * batch_size)\n', (9587, 9617), True, 'import numpy as np\n'), ((9755, 9793), 'numpy.stack', 'np.stack', (['([decoder_x_val] * batch_size)'], {}), '([decoder_x_val] * batch_size)\n', (9763, 9793), True, 'import numpy as np\n'), ((11894, 11932), 'numpy.stack', 'np.stack', (['([encoder_x_val] * batch_size)'], {}), '([encoder_x_val] * batch_size)\n', (11902, 11932), True, 'import numpy as np\n'), ((12070, 12108), 'numpy.stack', 'np.stack', (['([decoder_x_val] * batch_size)'], {}), '([decoder_x_val] * batch_size)\n', (12078, 12108), True, 'import numpy as np\n'), ((13787, 13863), 'numpy.array', 'np.array', (['[[1.0, 1.0], [2.0, 2.0], [3.0, 3.0], [4.0, 4.0]]'], {'dtype': 'np.float32'}), '([[1.0, 1.0], [2.0, 2.0], [3.0, 3.0], [4.0, 4.0]], dtype=np.float32)\n', (13795, 13863), True, 'import numpy as np\n'), ((13872, 13902), 'numpy.stack', 'np.stack', (['([x_val] * batch_size)'], {}), '([x_val] * batch_size)\n', (13880, 13902), True, 'import numpy as np\n'), ((15642, 15680), 'numpy.stack', 'np.stack', (['([encoder_x_val] * batch_size)'], {}), '([encoder_x_val] * batch_size)\n', (15650, 15680), True, 'import numpy as np\n'), ((19725, 19750), 'tensorflow.sigmoid', 'tf.sigmoid', (['(xw[0] + hu[0])'], {}), '(xw[0] + hu[0])\n', (19735, 19750), True, 'import tensorflow as tf\n'), ((19763, 19788), 'tensorflow.sigmoid', 'tf.sigmoid', (['(xw[1] + hu[1])'], {}), '(xw[1] + hu[1])\n', (19773, 19788), True, 'import tensorflow as tf\n'), ((5571, 5636), 'tensorflow.contrib.seq2seq.BahdanauAttention', 'tf.contrib.seq2seq.BahdanauAttention', (['attn_size', 'attention_states'], {}), '(attn_size, attention_states)\n', (5607, 5636), True, 'import tensorflow as tf\n'), ((5795, 5951), 'tensorflow.contrib.seq2seq.AttentionWrapper', 'tf.contrib.seq2seq.AttentionWrapper', (['cell', 'attention_mechanism'], {'attention_layer_size': 'attn_size', 'cell_input_fn': 'match_input_fn', 'output_attention': '(False)'}), '(cell, attention_mechanism,\n attention_layer_size=attn_size, cell_input_fn=match_input_fn,\n output_attention=False)\n', (5830, 5951), True, 'import tensorflow as tf\n'), ((7672, 7708), 'tensorflow.identity', 'tf.identity', (['output'], {'name': '"""output_0"""'}), "(output, name='output_0')\n", (7683, 7708), True, 'import tensorflow as tf\n'), ((7781, 7846), 'tensorflow.contrib.seq2seq.BahdanauAttention', 'tf.contrib.seq2seq.BahdanauAttention', (['attn_size', 'attention_states'], {}), '(attn_size, attention_states)\n', (7817, 7846), True, 'import tensorflow as tf\n'), ((8076, 8232), 'tensorflow.contrib.seq2seq.AttentionWrapper', 'tf.contrib.seq2seq.AttentionWrapper', (['cell', 'attention_mechanism'], {'attention_layer_size': 'attn_size', 'cell_input_fn': 'match_input_fn', 'output_attention': '(False)'}), '(cell, attention_mechanism,\n attention_layer_size=attn_size, cell_input_fn=match_input_fn,\n output_attention=False)\n', (8111, 8232), True, 'import tensorflow as tf\n'), ((9980, 10016), 'tensorflow.identity', 'tf.identity', (['output'], {'name': '"""output_0"""'}), "(output, name='output_0')\n", (9991, 10016), True, 'import tensorflow as tf\n'), ((10089, 10154), 'tensorflow.contrib.seq2seq.BahdanauAttention', 'tf.contrib.seq2seq.BahdanauAttention', (['attn_size', 'attention_states'], {}), '(attn_size, attention_states)\n', (10125, 10154), True, 'import tensorflow as tf\n'), ((10383, 10539), 'tensorflow.contrib.seq2seq.AttentionWrapper', 'tf.contrib.seq2seq.AttentionWrapper', (['cell', 'attention_mechanism'], {'attention_layer_size': 'attn_size', 'cell_input_fn': 'match_input_fn', 'output_attention': '(False)'}), '(cell, attention_mechanism,\n attention_layer_size=attn_size, cell_input_fn=match_input_fn,\n output_attention=False)\n', (10418, 10539), True, 'import tensorflow as tf\n'), ((12296, 12332), 'tensorflow.identity', 'tf.identity', (['output'], {'name': '"""output_0"""'}), "(output, name='output_0')\n", (12307, 12332), True, 'import tensorflow as tf\n'), ((12405, 12470), 'tensorflow.contrib.seq2seq.BahdanauAttention', 'tf.contrib.seq2seq.BahdanauAttention', (['attn_size', 'attention_states'], {}), '(attn_size, attention_states)\n', (12441, 12470), True, 'import tensorflow as tf\n'), ((12700, 12856), 'tensorflow.contrib.seq2seq.AttentionWrapper', 'tf.contrib.seq2seq.AttentionWrapper', (['cell', 'attention_mechanism'], {'attention_layer_size': 'attn_size', 'cell_input_fn': 'match_input_fn', 'output_attention': '(False)'}), '(cell, attention_mechanism,\n attention_layer_size=attn_size, cell_input_fn=match_input_fn,\n output_attention=False)\n', (12735, 12856), True, 'import tensorflow as tf\n'), ((13950, 13984), 'tensorflow.python.ops.init_ops.constant_initializer', 'init_ops.constant_initializer', (['(0.5)'], {}), '(0.5)\n', (13979, 13984), False, 'from tensorflow.python.ops import init_ops\n'), ((16058, 16123), 'tensorflow.contrib.seq2seq.BahdanauAttention', 'tf.contrib.seq2seq.BahdanauAttention', (['attn_size', 'attention_states'], {}), '(attn_size, attention_states)\n', (16094, 16123), True, 'import tensorflow as tf\n'), ((16353, 16509), 'tensorflow.contrib.seq2seq.AttentionWrapper', 'tf.contrib.seq2seq.AttentionWrapper', (['cell', 'attention_mechanism'], {'attention_layer_size': 'attn_size', 'cell_input_fn': 'match_input_fn', 'output_attention': '(False)'}), '(cell, attention_mechanism,\n attention_layer_size=attn_size, cell_input_fn=match_input_fn,\n output_attention=False)\n', (16388, 16509), True, 'import tensorflow as tf\n'), ((16786, 16942), 'tensorflow.contrib.seq2seq.AttentionWrapper', 'tf.contrib.seq2seq.AttentionWrapper', (['cell', 'attention_mechanism'], {'attention_layer_size': 'attn_size', 'cell_input_fn': 'match_input_fn', 'output_attention': '(False)'}), '(cell, attention_mechanism,\n attention_layer_size=attn_size, cell_input_fn=match_input_fn,\n output_attention=False)\n', (16821, 16942), True, 'import tensorflow as tf\n'), ((17698, 17752), 'tensorflow.concat', 'tf.concat', (['[match_output_fw, match_output_bk]'], {'axis': '(-1)'}), '([match_output_fw, match_output_bk], axis=-1)\n', (17707, 17752), True, 'import tensorflow as tf\n'), ((17781, 17850), 'tensorflow.concat', 'tf.concat', (['[match_state_fw.cell_state, match_state_bk.cell_state]', '(-1)'], {}), '([match_state_fw.cell_state, match_state_bk.cell_state], -1)\n', (17790, 17850), True, 'import tensorflow as tf\n'), ((18075, 18128), 'numpy.array', 'np.array', (['[6, 5, 4, 3, 2, 1, 2, 3, 6]'], {'dtype': 'np.int32'}), '([6, 5, 4, 3, 2, 1, 2, 3, 6], dtype=np.int32)\n', (18083, 18128), True, 'import numpy as np\n'), ((19686, 19705), 'tensorflow.matmul', 'tf.matmul', (['state', 'U'], {}), '(state, U)\n', (19695, 19705), True, 'import tensorflow as tf\n'), ((1798, 1828), 'tensorflow.identity', 'tf.identity', (['xs'], {'name': '"""output"""'}), "(xs, name='output')\n", (1809, 1828), True, 'import tensorflow as tf\n'), ((1830, 1864), 'tensorflow.identity', 'tf.identity', (['s'], {'name': '"""final_state"""'}), "(s, name='final_state')\n", (1841, 1864), True, 'import tensorflow as tf\n'), ((2583, 2613), 'tensorflow.identity', 'tf.identity', (['xs'], {'name': '"""output"""'}), "(xs, name='output')\n", (2594, 2613), True, 'import tensorflow as tf\n'), ((2615, 2649), 'tensorflow.identity', 'tf.identity', (['s'], {'name': '"""final_state"""'}), "(s, name='final_state')\n", (2626, 2649), True, 'import tensorflow as tf\n'), ((3475, 3510), 'tensorflow.identity', 'tf.identity', (['outputs'], {'name': '"""output"""'}), "(outputs, name='output')\n", (3486, 3510), True, 'import tensorflow as tf\n'), ((3512, 3554), 'tensorflow.identity', 'tf.identity', (['cell_state'], {'name': '"""cell_state"""'}), "(cell_state, name='cell_state')\n", (3523, 3554), True, 'import tensorflow as tf\n'), ((4474, 4509), 'tensorflow.identity', 'tf.identity', (['outputs'], {'name': '"""output"""'}), "(outputs, name='output')\n", (4485, 4509), True, 'import tensorflow as tf\n'), ((4511, 4553), 'tensorflow.identity', 'tf.identity', (['cell_state'], {'name': '"""cell_state"""'}), "(cell_state, name='cell_state')\n", (4522, 4553), True, 'import tensorflow as tf\n'), ((5320, 5366), 'numpy.random.randn', 'np.random.randn', (['decoder_time_step', 'input_size'], {}), '(decoder_time_step, input_size)\n', (5335, 5366), True, 'import numpy as np\n'), ((5454, 5503), 'numpy.random.randn', 'np.random.randn', (['batch_size', 'time_step', 'attn_size'], {}), '(batch_size, time_step, attn_size)\n', (5469, 5503), True, 'import numpy as np\n'), ((5693, 5732), 'tensorflow.concat', 'tf.concat', (['[curr_input, state]'], {'axis': '(-1)'}), '([curr_input, state], axis=-1)\n', (5702, 5732), True, 'import tensorflow as tf\n'), ((6301, 6335), 'tensorflow.identity', 'tf.identity', (['output'], {'name': '"""output"""'}), "(output, name='output')\n", (6312, 6335), True, 'import tensorflow as tf\n'), ((6337, 6391), 'tensorflow.identity', 'tf.identity', (['attr_state.cell_state'], {'name': '"""final_state"""'}), "(attr_state.cell_state, name='final_state')\n", (6348, 6391), True, 'import tensorflow as tf\n'), ((7180, 7226), 'numpy.random.randn', 'np.random.randn', (['encoder_time_step', 'input_size'], {}), '(encoder_time_step, input_size)\n', (7195, 7226), True, 'import numpy as np\n'), ((7356, 7402), 'numpy.random.randn', 'np.random.randn', (['decoder_time_step', 'input_size'], {}), '(decoder_time_step, input_size)\n', (7371, 7402), True, 'import numpy as np\n'), ((7974, 8013), 'tensorflow.concat', 'tf.concat', (['[curr_input, state]'], {'axis': '(-1)'}), '([curr_input, state], axis=-1)\n', (7983, 8013), True, 'import tensorflow as tf\n'), ((8601, 8635), 'tensorflow.identity', 'tf.identity', (['output'], {'name': '"""output"""'}), "(output, name='output')\n", (8612, 8635), True, 'import tensorflow as tf\n'), ((8637, 8691), 'tensorflow.identity', 'tf.identity', (['attr_state.cell_state'], {'name': '"""final_state"""'}), "(attr_state.cell_state, name='final_state')\n", (8648, 8691), True, 'import tensorflow as tf\n'), ((9496, 9542), 'numpy.random.randn', 'np.random.randn', (['encoder_time_step', 'input_size'], {}), '(encoder_time_step, input_size)\n', (9511, 9542), True, 'import numpy as np\n'), ((9672, 9718), 'numpy.random.randn', 'np.random.randn', (['decoder_time_step', 'input_size'], {}), '(decoder_time_step, input_size)\n', (9687, 9718), True, 'import numpy as np\n'), ((10282, 10321), 'tensorflow.concat', 'tf.concat', (['[curr_input, state]'], {'axis': '(-1)'}), '([curr_input, state], axis=-1)\n', (10291, 10321), True, 'import tensorflow as tf\n'), ((10896, 10930), 'tensorflow.identity', 'tf.identity', (['output'], {'name': '"""output"""'}), "(output, name='output')\n", (10907, 10930), True, 'import tensorflow as tf\n'), ((10932, 10986), 'tensorflow.identity', 'tf.identity', (['attr_state.cell_state'], {'name': '"""final_state"""'}), "(attr_state.cell_state, name='final_state')\n", (10943, 10986), True, 'import tensorflow as tf\n'), ((11811, 11857), 'numpy.random.randn', 'np.random.randn', (['encoder_time_step', 'input_size'], {}), '(encoder_time_step, input_size)\n', (11826, 11857), True, 'import numpy as np\n'), ((11987, 12033), 'numpy.random.randn', 'np.random.randn', (['decoder_time_step', 'input_size'], {}), '(decoder_time_step, input_size)\n', (12002, 12033), True, 'import numpy as np\n'), ((12598, 12637), 'tensorflow.concat', 'tf.concat', (['[curr_input, state]'], {'axis': '(-1)'}), '([curr_input, state], axis=-1)\n', (12607, 12637), True, 'import tensorflow as tf\n'), ((13215, 13249), 'tensorflow.identity', 'tf.identity', (['output'], {'name': '"""output"""'}), "(output, name='output')\n", (13226, 13249), True, 'import tensorflow as tf\n'), ((13251, 13305), 'tensorflow.identity', 'tf.identity', (['attr_state.cell_state'], {'name': '"""final_state"""'}), "(attr_state.cell_state, name='final_state')\n", (13262, 13305), True, 'import tensorflow as tf\n'), ((14631, 14666), 'tensorflow.identity', 'tf.identity', (['outputs'], {'name': '"""output"""'}), "(outputs, name='output')\n", (14642, 14666), True, 'import tensorflow as tf\n'), ((14668, 14710), 'tensorflow.identity', 'tf.identity', (['cell_state'], {'name': '"""cell_state"""'}), "(cell_state, name='cell_state')\n", (14679, 14710), True, 'import tensorflow as tf\n'), ((15559, 15605), 'numpy.random.randn', 'np.random.randn', (['encoder_time_step', 'input_size'], {}), '(encoder_time_step, input_size)\n', (15574, 15605), True, 'import numpy as np\n'), ((15735, 15793), 'numpy.random.randn', 'np.random.randn', (['decoder_time_step', 'batch_size', 'input_size'], {}), '(decoder_time_step, batch_size, input_size)\n', (15750, 15793), True, 'import numpy as np\n'), ((16251, 16290), 'tensorflow.concat', 'tf.concat', (['[curr_input, state]'], {'axis': '(-1)'}), '([curr_input, state], axis=-1)\n', (16260, 16290), True, 'import tensorflow as tf\n'), ((17870, 17914), 'tensorflow.identity', 'tf.identity', (['matched_output'], {'name': '"""output_0"""'}), "(matched_output, name='output_0')\n", (17881, 17914), True, 'import tensorflow as tf\n'), ((17916, 17962), 'tensorflow.identity', 'tf.identity', (['matched_state'], {'name': '"""final_state"""'}), "(matched_state, name='final_state')\n", (17927, 17962), True, 'import tensorflow as tf\n'), ((19238, 19271), 'numpy.arange', 'np.arange', (['(30.0)'], {'dtype': 'np.float32'}), '(30.0, dtype=np.float32)\n', (19247, 19271), True, 'import numpy as np\n'), ((19405, 19438), 'numpy.arange', 'np.arange', (['(75.0)'], {'dtype': 'np.float32'}), '(75.0, dtype=np.float32)\n', (19414, 19438), True, 'import numpy as np\n'), ((19558, 19591), 'numpy.arange', 'np.arange', (['(15.0)'], {'dtype': 'np.float32'}), '(15.0, dtype=np.float32)\n', (19567, 19591), True, 'import numpy as np\n'), ((19632, 19652), 'tensorflow.matmul', 'tf.matmul', (['inputs', 'W'], {}), '(inputs, W)\n', (19641, 19652), True, 'import tensorflow as tf\n'), ((4430, 4453), 'tensorflow.identity', 'tf.identity', (['seq_length'], {}), '(seq_length)\n', (4441, 4453), True, 'import tensorflow as tf\n'), ((17524, 17547), 'tensorflow.identity', 'tf.identity', (['seq_length'], {}), '(seq_length)\n', (17535, 17547), True, 'import tensorflow as tf\n')]
import unittest from numpy.testing import assert_array_equal import numpy as np from libact.base.dataset import Dataset from libact.models import LogisticRegression from libact.query_strategies import VarianceReduction from .utils import run_qs class VarianceReductionTestCase(unittest.TestCase): """Variance reduction test case using artifitial dataset""" def setUp(self): self.X = [[-2, -1], [1, 1], [-1, -2], [-1, -1], [1, 2], [2, 1]] self.y = [0, 1, 0, 1, 0, 1] self.quota = 4 def test_variance_reduction(self): trn_ds = Dataset(self.X, np.concatenate([self.y[:2], [None] * (len(self.y) - 2)])) qs = VarianceReduction(trn_ds, model=LogisticRegression(), sigma=0.1) qseq = run_qs(trn_ds, qs, self.y, self.quota) assert_array_equal(qseq, np.array([4, 5, 2, 3])) if __name__ == '__main__': unittest.main()
[ "unittest.main", "numpy.array", "libact.models.LogisticRegression" ]
[((936, 951), 'unittest.main', 'unittest.main', ([], {}), '()\n', (949, 951), False, 'import unittest\n'), ((879, 901), 'numpy.array', 'np.array', (['[4, 5, 2, 3]'], {}), '([4, 5, 2, 3])\n', (887, 901), True, 'import numpy as np\n'), ((759, 779), 'libact.models.LogisticRegression', 'LogisticRegression', ([], {}), '()\n', (777, 779), False, 'from libact.models import LogisticRegression\n')]
from manimlib.imports import * from manimlib.utils import bezier import numpy as np class VectorInterpolator: def __init__(self,points): self.points = points self.n = len(self.points) self.dists = [0] for i in range(len(self.points)): self.dists += [np.linalg.norm( self.points[i] - self.points[(i+1) % self.n] )+self.dists[i]] def interpolate(self,alpha): dist = alpha*self.dists[-1] idx = self.interpolate_index(dist) mult = (dist - self.dists[idx])/np.linalg.norm(self.points[(idx+1)%self.n]-self.points[idx]) return self.points[idx] + \ mult*(self.points[(idx+1)%self.n]-self.points[idx]) def interpolate_index(self,dist): def is_solution(idx): if idx == self.n-1: return self.dists[idx] <= dist else: return ((self.dists[cur] <= dist) and (self.dists[(cur+1)%self.n] >= dist)) # binary search step_size=int(self.n / 4) cur=int(self.n / 2) while not is_solution(cur): if self.dists[cur] > dist: cur -= step_size else: cur += step_size step_size = max(int(step_size/2), 1) return cur
[ "numpy.linalg.norm" ]
[((575, 641), 'numpy.linalg.norm', 'np.linalg.norm', (['(self.points[(idx + 1) % self.n] - self.points[idx])'], {}), '(self.points[(idx + 1) % self.n] - self.points[idx])\n', (589, 641), True, 'import numpy as np\n'), ((300, 362), 'numpy.linalg.norm', 'np.linalg.norm', (['(self.points[i] - self.points[(i + 1) % self.n])'], {}), '(self.points[i] - self.points[(i + 1) % self.n])\n', (314, 362), True, 'import numpy as np\n')]
from __future__ import division from unittest import skipIf, TestCase import os from pandas import DataFrame import numpy as np from numpy.testing import assert_array_equal BACKEND_AVAILABLE = os.environ.get("ETS_TOOLKIT", "qt4") != "null" if BACKEND_AVAILABLE: from app_common.apptools.testing_utils import assert_obj_gui_works from pybleau.app.plotting.plot_config import HeatmapPlotConfigurator, \ HEATMAP_PLOT_TYPE, HistogramPlotConfigurator, HIST_PLOT_TYPE, \ LinePlotConfigurator, BarPlotConfigurator, ScatterPlotConfigurator, \ SCATTER_PLOT_TYPE, CMAP_SCATTER_PLOT_TYPE, LINE_PLOT_TYPE, \ BAR_PLOT_TYPE LEN = 16 TEST_DF = DataFrame({"a": [1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4], "b": [1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4], "c": [1, 2, 3, 4, 2, 3, 1, 1, 4, 4, 5, 6, 4, 4, 5, 6], "d": list("ababcabcdabcdeab"), "e": np.random.randn(LEN), "f": range(LEN), # Highly repetitive column to split the entire data into 2 "g": np.array(["0", "1"] * (LEN // 2)), "h": np.array([0, 1] * (LEN // 2), dtype=bool), }) class BasePlotConfig(object): def test_creation_fails_if_no_df(self): with self.assertRaises(ValueError): config = self.configurator() config.to_dict() def test_bring_up(self): obj = self.configurator(data_source=TEST_DF) assert_obj_gui_works(obj) # Assertion utilities ----------------------------------------------------- def assert_editor_options(self, editor): editor_options = editor.values if self.numerical_cols_only: for col in editor_options: if col != "index": self.assertIn(TEST_DF[col].dtype, (np.int64, np.float64)) else: self.assertEqual(set(editor_options), set(TEST_DF.columns) | {"index"}) class BaseXYPlotConfig(BasePlotConfig): def test_plot_basic(self): config = self.configurator(data_source=TEST_DF, x_col_name="a", y_col_name="b") self.assertEqual(config.plot_type, self.basic_type) config_dict = config.to_dict() self.assertIsInstance(config_dict, dict) self.assertIn("x_arr", config_dict) assert_array_equal(config_dict["x_arr"], TEST_DF["a"].values) self.assertIn("y_arr", config_dict) assert_array_equal(config_dict["y_arr"], TEST_DF["b"].values) def test_data_choices(self): """ Make sure different configurators provide the right data choices. """ config = self.configurator(data_source=TEST_DF, x_col_name="a", y_col_name="b") view_items = config._data_selection_items() x_editor = view_items[0].content[0].editor self.assert_editor_options(x_editor) y_editor = view_items[1].content[0].editor self.assert_editor_options(y_editor) def test_plot_colored_by_str_col(self): # Color by a column filled with boolean values config = self.configurator(data_source=TEST_DF, x_col_name="a", y_col_name="b", z_col_name="d") self.assertIn(config.plot_type, self.basic_type) config_dict = config.to_dict() self.assertIsInstance(config_dict, dict) self.assertIn("x_arr", config_dict) self.assertIsInstance(config_dict["x_arr"], dict) d_values = TEST_DF["d"].unique() self.assertEqual(set(config_dict["x_arr"].keys()), set(d_values)) for arr in config_dict["x_arr"].values(): self.assertIsInstance(arr, np.ndarray) # For example: assert_array_equal(config_dict["x_arr"]["c"], np.array([1, 4, 4])) self.assertIn("y_arr", config_dict) self.assertIsInstance(config_dict["y_arr"], dict) self.assertEqual(set(config_dict["y_arr"].keys()), set(d_values)) for arr in config_dict["y_arr"].values(): self.assertIsInstance(arr, np.ndarray) # For example: assert_array_equal(config_dict["y_arr"]["c"], np.array([2, 2, 3])) def test_plot_colored_by_bool_col(self): # Color by a column filled with boolean values config = self.configurator(data_source=TEST_DF, x_col_name="a", y_col_name="b", z_col_name="h") self.assertIn(config.plot_type, self.basic_type) config_dict = config.to_dict() self.assertIsInstance(config_dict, dict) self.assertIn("x_arr", config_dict) self.assertIsInstance(config_dict["x_arr"], dict) hue_values = set(TEST_DF["h"]) self.assertEqual(set(config_dict["x_arr"].keys()), hue_values) assert_array_equal(config_dict["x_arr"][False], TEST_DF["a"][::2]) assert_array_equal(config_dict["x_arr"][True], TEST_DF["a"][1::2]) self.assertIn("y_arr", config_dict) self.assertIsInstance(config_dict["y_arr"], dict) self.assertEqual(set(config_dict["y_arr"].keys()), hue_values) assert_array_equal(config_dict["y_arr"][False], TEST_DF["b"][::2]) assert_array_equal(config_dict["y_arr"][True], TEST_DF["b"][1::2]) def test_plot_colored_by_NON_EXISTENT_col(self): config = self.configurator(data_source=TEST_DF, x_col_name="a", y_col_name="b", z_col_name="NON-EXISTENT") with self.assertRaises(KeyError): config.to_dict() @skipIf(not BACKEND_AVAILABLE, "No UI backend available") class TestScatterPlotConfig(TestCase, BaseXYPlotConfig): def setUp(self): self.configurator = ScatterPlotConfigurator self.basic_type = SCATTER_PLOT_TYPE self.numerical_cols_only = True def test_plot_scatter_colored_by_int_col(self): config = self.configurator(data_source=TEST_DF, x_col_name="a", y_col_name="b", z_col_name="c") self.assertEqual(config.plot_type, CMAP_SCATTER_PLOT_TYPE) config_dict = config.to_dict() self.assertIsInstance(config_dict, dict) self.assertIn("x_arr", config_dict) self.assertIsInstance(config_dict["x_arr"], np.ndarray) self.assertIn("y_arr", config_dict) self.assertIsInstance(config_dict["y_arr"], np.ndarray) self.assertIn("z_arr", config_dict) self.assertIsInstance(config_dict["z_arr"], np.ndarray) def test_plot_scatter_colored_by_float_col(self): config = self.configurator(data_source=TEST_DF, x_col_name="a", y_col_name="b", z_col_name="e") self.assertEqual(config.plot_type, CMAP_SCATTER_PLOT_TYPE) config_dict = config.to_dict() self.assertIsInstance(config_dict, dict) self.assertIn("x_arr", config_dict) self.assertIsInstance(config_dict["x_arr"], np.ndarray) self.assertIn("y_arr", config_dict) self.assertIsInstance(config_dict["y_arr"], np.ndarray) self.assertIn("z_arr", config_dict) self.assertIsInstance(config_dict["z_arr"], np.ndarray) def test_style_colorize_by_float_changes_on_color_column_change(self): """ The dtype of the column to colorize controls colorize_by_float. """ # Color by a string: config = self.configurator(data_source=TEST_DF, x_col_name="a", y_col_name="b", z_col_name="d") self.assertFalse(config.plot_style.colorize_by_float) # Color by a float: config.z_col_name = "e" self.assertTrue(config.plot_style.colorize_by_float) def test_scatter_data_selection_columns(self): config = self.configurator(data_source=TEST_DF, x_col_name="a", y_col_name="b", z_col_name="d") columns = config._data_selection_columns() expected = config._numerical_columns self.assertCountEqual(columns, expected) def test_scatter_color_selection_columns(self): config = self.configurator(data_source=TEST_DF, x_col_name="a", y_col_name="b", z_col_name="d") columns = config._color_selection_columns() expected = [""] + config._available_columns self.assertCountEqual(columns, expected) @skipIf(not BACKEND_AVAILABLE, "No UI backend available") class TestLinePlotConfig(TestCase, BaseXYPlotConfig): def setUp(self): self.configurator = LinePlotConfigurator self.basic_type = LINE_PLOT_TYPE self.numerical_cols_only = True def test_line_data_selection_columns(self): config = self.configurator(data_source=TEST_DF, x_col_name="a", y_col_name="b", z_col_name="d") columns = config._data_selection_columns() expected = config._numerical_columns self.assertCountEqual(columns, expected) def test_line_color_selection_columns(self): config = self.configurator(data_source=TEST_DF, x_col_name="a", y_col_name="b", z_col_name="d") columns = config._color_selection_columns() expected = [""] + config._available_columns self.assertCountEqual(columns, expected) @skipIf(not BACKEND_AVAILABLE, "No UI backend available") class TestBarPlotConfig(TestCase, BaseXYPlotConfig): def setUp(self): self.configurator = BarPlotConfigurator self.basic_type = BAR_PLOT_TYPE self.numerical_cols_only = False def test_data_choices(self): """ Make sure different configurators provide the right data choices. """ config = self.configurator(data_source=TEST_DF, x_col_name="a", y_col_name="b") view_items = config._data_selection_items() x_editor = view_items[0].content[3].content[0].content[0].editor self.assert_editor_options(x_editor) def test_melt_mode_no_effect(self): config = self.configurator(data_source=TEST_DF, melt_source_data=True) self.assertEqual(config.plot_type, self.basic_type) # No columns to melt, so no transformation: self.assertIs(config.data_source, TEST_DF) self.assertIs(config.transformed_data, TEST_DF) def test_melt_mode_with_melted_columns(self): config = self.configurator(data_source=TEST_DF, melt_source_data=True, columns_to_melt=["e", "f"]) self.assertIsNot(config.transformed_data, TEST_DF) self.assertIs(config.data_source, TEST_DF) # Pulling the x_arr forces a reset of the x_col_name x_values = np.array(["e"]*LEN+["f"]*LEN) assert_array_equal(config.x_arr, x_values) self.assertEqual(config.x_col_name, "variable") self.assertEqual(len(config.y_arr), 2 * LEN) self.assertEqual(config.y_col_name, "value") config_dict = config.to_dict() self.assertIsInstance(config_dict, dict) self.assertIn("x_arr", config_dict) assert_array_equal(config_dict["x_arr"], x_values) self.assertIn("y_arr", config_dict) self.assertEqual(len(config_dict["y_arr"]), 2 * LEN) def test_melt_mode_with_melted_columns_and_str_color(self): config = self.configurator(data_source=TEST_DF, melt_source_data=True, columns_to_melt=["e", "f"], z_col_name="g") self.assertIsNot(config.transformed_data, TEST_DF) self.assertIs(config.data_source, TEST_DF) hue_values = TEST_DF["g"].unique() # Pulling the x_arr forces a reset of the x_col_name x_values = np.array(["e"] * (LEN // 2) + ["f"] * (LEN // 2)) self.assertEqual(set(config.x_arr.keys()), set(hue_values)) for key in hue_values: assert_array_equal(config.x_arr[key], x_values) self.assertEqual(config.x_col_name, "variable") for key in hue_values: self.assertEqual(len(config.y_arr[key]), LEN) self.assertEqual(config.y_col_name, "value") self.assertIn("g", config.transformed_data.columns) config_dict = config.to_dict() self.assertIsInstance(config_dict, dict) self.assertIn("x_arr", config_dict) self.assertEqual(set(config_dict["x_arr"].keys()), set(hue_values)) for key in hue_values: assert_array_equal(config_dict["x_arr"][key], x_values) self.assertIn("y_arr", config_dict) for key in hue_values: self.assertEqual(len(config_dict["y_arr"][key]), LEN) def test_melt_mode_with_melted_columns_and_bool_color(self): config = self.configurator(data_source=TEST_DF, melt_source_data=True, columns_to_melt=["e", "f"], z_col_name="h") self.assertIsNot(config.transformed_data, TEST_DF) self.assertIs(config.data_source, TEST_DF) hue_values = TEST_DF["h"].unique() # Pulling the x_arr forces a reset of the x_col_name x_values = np.array(["e"] * (LEN // 2) + ["f"] * (LEN // 2)) self.assertEqual(set(config.x_arr.keys()), set(hue_values)) for key in hue_values: assert_array_equal(config.x_arr[key], x_values) self.assertEqual(config.x_col_name, "variable") for key in hue_values: self.assertEqual(len(config.y_arr[key]), LEN) self.assertEqual(config.y_col_name, "value") self.assertIn("h", config.transformed_data.columns) config_dict = config.to_dict() self.assertIsInstance(config_dict, dict) self.assertIn("x_arr", config_dict) self.assertEqual(set(config_dict["x_arr"].keys()), set(hue_values)) for key in hue_values: assert_array_equal(config_dict["x_arr"][key], x_values) self.assertIn("y_arr", config_dict) for key in hue_values: self.assertEqual(len(config_dict["y_arr"][key]), LEN) @skipIf(not BACKEND_AVAILABLE, "No UI backend available") class TestHistogramPlotConfig(BasePlotConfig, TestCase): def setUp(self): self.configurator = HistogramPlotConfigurator self.basic_type = HIST_PLOT_TYPE self.numerical_cols_only = True # Tests ------------------------------------------------------------------- def test_plot_basic(self): config = self.configurator(data_source=TEST_DF, x_col_name="a") self.assertEqual(config.plot_type, self.basic_type) config_dict = config.to_dict() self.assertIsInstance(config_dict, dict) self.assertIn("x_arr", config_dict) assert_array_equal(config_dict["x_arr"], TEST_DF["a"].values) def test_plot_NON_EXISTENT_col(self): config = self.configurator(data_source=TEST_DF, x_col_name="NON-EXISTENT") with self.assertRaises(KeyError): config.to_dict() def test_data_choices(self): """ Make sure different configurators provide the right data choices. """ config = self.configurator(data_source=TEST_DF, x_col_name="a") view_items = config._data_selection_items() x_editor = view_items[0].content[0].editor self.assert_editor_options(x_editor) @skipIf(not BACKEND_AVAILABLE, "No UI backend available") class TestHeatmapPlotConfig(BasePlotConfig, TestCase): def setUp(self): self.configurator = HeatmapPlotConfigurator self.basic_type = HEATMAP_PLOT_TYPE self.numerical_cols_only = True # Tests ------------------------------------------------------------------- def test_plot_basic(self): config = self.configurator(data_source=TEST_DF, x_col_name="a", y_col_name="b", z_col_name="e") self.assertEqual(config.plot_type, self.basic_type) config_dict = config.to_dict() self.assertIsInstance(config_dict, dict) def test_plot_colored_by_NON_EXISTENT_col(self): config = self.configurator(data_source=TEST_DF, x_col_name="a", y_col_name="b", z_col_name="NON-EXISTENT") with self.assertRaises(KeyError): config.to_dict() def test_data_choices(self): """ Make sure different configurators provide the right data choices. Passing non-numerical """ config = self.configurator(data_source=TEST_DF, x_col_name="a", y_col_name="b", z_col_name="e") view_items = config._data_selection_items() x_editor = view_items[0].content[0].editor self.assert_editor_options(x_editor) y_editor = view_items[1].content[0].editor self.assert_editor_options(y_editor)
[ "app_common.apptools.testing_utils.assert_obj_gui_works", "unittest.skipIf", "os.environ.get", "numpy.array", "numpy.random.randn", "numpy.testing.assert_array_equal" ]
[((5646, 5702), 'unittest.skipIf', 'skipIf', (['(not BACKEND_AVAILABLE)', '"""No UI backend available"""'], {}), "(not BACKEND_AVAILABLE, 'No UI backend available')\n", (5652, 5702), False, 'from unittest import skipIf, TestCase\n'), ((8462, 8518), 'unittest.skipIf', 'skipIf', (['(not BACKEND_AVAILABLE)', '"""No UI backend available"""'], {}), "(not BACKEND_AVAILABLE, 'No UI backend available')\n", (8468, 8518), False, 'from unittest import skipIf, TestCase\n'), ((9402, 9458), 'unittest.skipIf', 'skipIf', (['(not BACKEND_AVAILABLE)', '"""No UI backend available"""'], {}), "(not BACKEND_AVAILABLE, 'No UI backend available')\n", (9408, 9458), False, 'from unittest import skipIf, TestCase\n'), ((14104, 14160), 'unittest.skipIf', 'skipIf', (['(not BACKEND_AVAILABLE)', '"""No UI backend available"""'], {}), "(not BACKEND_AVAILABLE, 'No UI backend available')\n", (14110, 14160), False, 'from unittest import skipIf, TestCase\n'), ((15401, 15457), 'unittest.skipIf', 'skipIf', (['(not BACKEND_AVAILABLE)', '"""No UI backend available"""'], {}), "(not BACKEND_AVAILABLE, 'No UI backend available')\n", (15407, 15457), False, 'from unittest import skipIf, TestCase\n'), ((195, 231), 'os.environ.get', 'os.environ.get', (['"""ETS_TOOLKIT"""', '"""qt4"""'], {}), "('ETS_TOOLKIT', 'qt4')\n", (209, 231), False, 'import os\n'), ((970, 990), 'numpy.random.randn', 'np.random.randn', (['LEN'], {}), '(LEN)\n', (985, 990), True, 'import numpy as np\n'), ((1136, 1169), 'numpy.array', 'np.array', (["(['0', '1'] * (LEN // 2))"], {}), "(['0', '1'] * (LEN // 2))\n", (1144, 1169), True, 'import numpy as np\n'), ((1197, 1238), 'numpy.array', 'np.array', (['([0, 1] * (LEN // 2))'], {'dtype': 'bool'}), '([0, 1] * (LEN // 2), dtype=bool)\n', (1205, 1238), True, 'import numpy as np\n'), ((1545, 1570), 'app_common.apptools.testing_utils.assert_obj_gui_works', 'assert_obj_gui_works', (['obj'], {}), '(obj)\n', (1565, 1570), False, 'from app_common.apptools.testing_utils import assert_obj_gui_works\n'), ((2451, 2512), 'numpy.testing.assert_array_equal', 'assert_array_equal', (["config_dict['x_arr']", "TEST_DF['a'].values"], {}), "(config_dict['x_arr'], TEST_DF['a'].values)\n", (2469, 2512), False, 'from numpy.testing import assert_array_equal\n'), ((2565, 2626), 'numpy.testing.assert_array_equal', 'assert_array_equal', (["config_dict['y_arr']", "TEST_DF['b'].values"], {}), "(config_dict['y_arr'], TEST_DF['b'].values)\n", (2583, 2626), False, 'from numpy.testing import assert_array_equal\n'), ((4902, 4968), 'numpy.testing.assert_array_equal', 'assert_array_equal', (["config_dict['x_arr'][False]", "TEST_DF['a'][::2]"], {}), "(config_dict['x_arr'][False], TEST_DF['a'][::2])\n", (4920, 4968), False, 'from numpy.testing import assert_array_equal\n'), ((4977, 5043), 'numpy.testing.assert_array_equal', 'assert_array_equal', (["config_dict['x_arr'][True]", "TEST_DF['a'][1::2]"], {}), "(config_dict['x_arr'][True], TEST_DF['a'][1::2])\n", (4995, 5043), False, 'from numpy.testing import assert_array_equal\n'), ((5226, 5292), 'numpy.testing.assert_array_equal', 'assert_array_equal', (["config_dict['y_arr'][False]", "TEST_DF['b'][::2]"], {}), "(config_dict['y_arr'][False], TEST_DF['b'][::2])\n", (5244, 5292), False, 'from numpy.testing import assert_array_equal\n'), ((5301, 5367), 'numpy.testing.assert_array_equal', 'assert_array_equal', (["config_dict['y_arr'][True]", "TEST_DF['b'][1::2]"], {}), "(config_dict['y_arr'][True], TEST_DF['b'][1::2])\n", (5319, 5367), False, 'from numpy.testing import assert_array_equal\n'), ((10803, 10838), 'numpy.array', 'np.array', (["(['e'] * LEN + ['f'] * LEN)"], {}), "(['e'] * LEN + ['f'] * LEN)\n", (10811, 10838), True, 'import numpy as np\n'), ((10841, 10883), 'numpy.testing.assert_array_equal', 'assert_array_equal', (['config.x_arr', 'x_values'], {}), '(config.x_arr, x_values)\n', (10859, 10883), False, 'from numpy.testing import assert_array_equal\n'), ((11188, 11238), 'numpy.testing.assert_array_equal', 'assert_array_equal', (["config_dict['x_arr']", 'x_values'], {}), "(config_dict['x_arr'], x_values)\n", (11206, 11238), False, 'from numpy.testing import assert_array_equal\n'), ((11803, 11852), 'numpy.array', 'np.array', (["(['e'] * (LEN // 2) + ['f'] * (LEN // 2))"], {}), "(['e'] * (LEN // 2) + ['f'] * (LEN // 2))\n", (11811, 11852), True, 'import numpy as np\n'), ((13182, 13231), 'numpy.array', 'np.array', (["(['e'] * (LEN // 2) + ['f'] * (LEN // 2))"], {}), "(['e'] * (LEN // 2) + ['f'] * (LEN // 2))\n", (13190, 13231), True, 'import numpy as np\n'), ((14760, 14821), 'numpy.testing.assert_array_equal', 'assert_array_equal', (["config_dict['x_arr']", "TEST_DF['a'].values"], {}), "(config_dict['x_arr'], TEST_DF['a'].values)\n", (14778, 14821), False, 'from numpy.testing import assert_array_equal\n'), ((3898, 3917), 'numpy.array', 'np.array', (['[1, 4, 4]'], {}), '([1, 4, 4])\n', (3906, 3917), True, 'import numpy as np\n'), ((4274, 4293), 'numpy.array', 'np.array', (['[2, 2, 3]'], {}), '([2, 2, 3])\n', (4282, 4293), True, 'import numpy as np\n'), ((11964, 12011), 'numpy.testing.assert_array_equal', 'assert_array_equal', (['config.x_arr[key]', 'x_values'], {}), '(config.x_arr[key], x_values)\n', (11982, 12011), False, 'from numpy.testing import assert_array_equal\n'), ((12524, 12579), 'numpy.testing.assert_array_equal', 'assert_array_equal', (["config_dict['x_arr'][key]", 'x_values'], {}), "(config_dict['x_arr'][key], x_values)\n", (12542, 12579), False, 'from numpy.testing import assert_array_equal\n'), ((13343, 13390), 'numpy.testing.assert_array_equal', 'assert_array_equal', (['config.x_arr[key]', 'x_values'], {}), '(config.x_arr[key], x_values)\n', (13361, 13390), False, 'from numpy.testing import assert_array_equal\n'), ((13903, 13958), 'numpy.testing.assert_array_equal', 'assert_array_equal', (["config_dict['x_arr'][key]", 'x_values'], {}), "(config_dict['x_arr'][key], x_values)\n", (13921, 13958), False, 'from numpy.testing import assert_array_equal\n')]
import numpy as np import logging import numbers import torch import math import json import sys from torch.optim.lr_scheduler import LambdaLR from torchvision.transforms.functional import pad class AverageMeter(object): """Computes and stores the average and current value""" def __init__(self): self.reset() def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count class ConstantLRSchedule(LambdaLR): """ Constant learning rate schedule. """ def __init__(self, optimizer, last_epoch=-1): super(ConstantLRSchedule, self).__init__(optimizer, lambda _: 1.0, last_epoch=last_epoch) class WarmupConstantSchedule(LambdaLR): """ Linear warmup and then constant. Linearly increases learning rate schedule from 0 to 1 over `warmup_steps` training steps. Keeps learning rate schedule equal to 1. after warmup_steps. """ def __init__(self, optimizer, warmup_steps, last_epoch=-1): self.warmup_steps = warmup_steps super(WarmupConstantSchedule, self).__init__(optimizer, self.lr_lambda, last_epoch=last_epoch) def lr_lambda(self, step): if step < self.warmup_steps: return float(step) / float(max(1.0, self.warmup_steps)) return 1. class WarmupLinearSchedule(LambdaLR): """ Linear warmup and then linear decay. Linearly increases learning rate from 0 to 1 over `warmup_steps` training steps. Linearly decreases learning rate from 1. to 0. over remaining `t_total - warmup_steps` steps. """ def __init__(self, optimizer, warmup_steps, t_total, last_epoch=-1): self.warmup_steps = warmup_steps self.t_total = t_total super(WarmupLinearSchedule, self).__init__(optimizer, self.lr_lambda, last_epoch=last_epoch) def lr_lambda(self, step): if step < self.warmup_steps: return float(step) / float(max(1, self.warmup_steps)) return max(0.0, float(self.t_total - step) / float(max(1.0, self.t_total - self.warmup_steps))) class WarmupCosineSchedule(LambdaLR): """ Linear warmup and then cosine decay. Linearly increases learning rate from 0 to 1 over `warmup_steps` training steps. Decreases learning rate from 1. to 0. over remaining `t_total - warmup_steps` steps following a cosine curve. If `cycles` (default=0.5) is different from default, learning rate follows cosine function after warmup. """ def __init__(self, optimizer, warmup_steps, t_total, cycles=.5, last_epoch=-1): self.warmup_steps = warmup_steps self.t_total = t_total self.cycles = cycles super(WarmupCosineSchedule, self).__init__(optimizer, self.lr_lambda, last_epoch=last_epoch) def lr_lambda(self, step): if step < self.warmup_steps: return float(step) / float(max(1.0, self.warmup_steps)) # progress after warmup progress = float(step - self.warmup_steps) / float(max(1, self.t_total - self.warmup_steps)) return max(0.0, 0.5 * (1. + math.cos(math.pi * float(self.cycles) * 2.0 * progress))) def get_padding(image): w, h = image.size max_wh = np.max([w, h]) h_padding = (max_wh - w) / 2 v_padding = (max_wh - h) / 2 l_pad = h_padding if h_padding % 1 == 0 else h_padding + 0.5 t_pad = v_padding if v_padding % 1 == 0 else v_padding + 0.5 r_pad = h_padding if h_padding % 1 == 0 else h_padding - 0.5 b_pad = v_padding if v_padding % 1 == 0 else v_padding - 0.5 padding = (int(l_pad), int(t_pad), int(r_pad), int(b_pad)) return padding class NewPad(object): def __init__(self, fill=0, padding_mode='constant'): assert isinstance(fill, (numbers.Number, str, tuple)) assert padding_mode in ['constant', 'edge', 'reflect', 'symmetric'] self.fill = fill self.padding_mode = padding_mode def __call__(self, img): """ Args: img (PIL Image): Image to be padded. Returns: PIL Image: Padded image. """ return pad(img, get_padding(img), self.fill, self.padding_mode) def __repr__(self): return self.__class__.__name__ + '(padding={0}, fill={1}, padding_mode={2})'. \ format(self.fill, self.padding_mode) def find_device(): device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") return device def read_json(data): with open(data) as f: return json.load(f) def save_json(data, path): with open(path, 'w', encoding='utf-8') as f: json.dump(data, f) def setup_logger(): logger = logging.getLogger('train') logger.setLevel(logging.INFO) if len(logger.handlers) == 0: formatter = logging.Formatter('%(asctime)s | %(message)s') ch = logging.StreamHandler(stream=sys.stdout) ch.setFormatter(formatter) logger.addHandler(ch) return logger def adjust_learning_rate(optimizer, epoch, lr): """Sets the learning rate to the initial LR decayed by 10 every 30 epochs""" lr = lr * (0.1 ** (epoch // 30)) for param_group in optimizer.param_groups: param_group['lr'] = lr def save_checkpoint(model, path): torch.save(model.state_dict(), path) def reverse_norm_image(image): MEAN = torch.tensor([0.485, 0.456, 0.406]) STD = torch.tensor([0.229, 0.224, 0.225]) reverse_image = image * STD[:, None, None] + MEAN[:, None, None] return reverse_image.permute(1, 2, 0).cpu().numpy()
[ "logging.getLogger", "logging.StreamHandler", "logging.Formatter", "numpy.max", "torch.tensor", "torch.cuda.is_available", "json.load", "json.dump" ]
[((3352, 3366), 'numpy.max', 'np.max', (['[w, h]'], {}), '([w, h])\n', (3358, 3366), True, 'import numpy as np\n'), ((4799, 4825), 'logging.getLogger', 'logging.getLogger', (['"""train"""'], {}), "('train')\n", (4816, 4825), False, 'import logging\n'), ((5465, 5500), 'torch.tensor', 'torch.tensor', (['[0.485, 0.456, 0.406]'], {}), '([0.485, 0.456, 0.406])\n', (5477, 5500), False, 'import torch\n'), ((5511, 5546), 'torch.tensor', 'torch.tensor', (['[0.229, 0.224, 0.225]'], {}), '([0.229, 0.224, 0.225])\n', (5523, 5546), False, 'import torch\n'), ((4646, 4658), 'json.load', 'json.load', (['f'], {}), '(f)\n', (4655, 4658), False, 'import json\n'), ((4745, 4763), 'json.dump', 'json.dump', (['data', 'f'], {}), '(data, f)\n', (4754, 4763), False, 'import json\n'), ((4914, 4960), 'logging.Formatter', 'logging.Formatter', (['"""%(asctime)s | %(message)s"""'], {}), "('%(asctime)s | %(message)s')\n", (4931, 4960), False, 'import logging\n'), ((4974, 5014), 'logging.StreamHandler', 'logging.StreamHandler', ([], {'stream': 'sys.stdout'}), '(stream=sys.stdout)\n', (4995, 5014), False, 'import logging\n'), ((4526, 4551), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (4549, 4551), False, 'import torch\n')]
# -*- coding: utf-8 -*- """ Created on Tue Apr 03 11:06:37 2018 @author: vmg """ import sdf import numpy as np # Load 2006 LUT for interpolation # 2006 Groeneveld Look-Up Table as presented in # "2006 CHF Look-Up Table", Nuclear Engineering and Design 237, pp. 190-1922. # This file requires the file 2006LUTdata.txt # Pressure range [MPa] from 2006 LUT, convert to [Pa] P = np.array((0.10,0.30,0.50,1.0,2.0,3.0,5.0,7.0,10.0,12.0,14.0,16.0,18.0,20.0,21.0))*1e6 # Mass Flux range [kg/m^2-s] from 2006 .LUT. G = np.array((0.,50.,100.,300.,500.,750.,1000.,1500.,2000.,2500.,3000.,3500.,4000.,4500.,5000.,5500.,6000.,6500.,7000.,7500.,8000.)) # Quality range from 2006 LUT x = np.array((-0.50,-0.40,-0.30,-0.20,-0.15,-0.10,-0.05,0.00,0.05,0.10,0.15,0.20,0.25,0.30,0.35,0.40,0.45,0.50,0.60,0.70,0.80,0.90,1.00)) # Critical heat flux [kW/m^2] from 2006 LUT, convert to [W/m^2] q_raw=np.loadtxt('../Data/2006LUTdata.txt')*1e3 # Convert the imported array into a (MxNxQ) where: # M is number of mass flux divisions # N is number of quality divisions # Q is number of pressure divisions lenG = len(G) lenx = len(x) lenP = len(P) q = np.zeros((lenG,lenx,lenP)) for i in xrange(lenG): for j in xrange(lenx): for k in xrange(lenP): q[i,j,k] = q_raw[i + k*lenG,j] # Create the datasets: ds_G = sdf.Dataset('G', data=G, unit='kg/(m2.s)', is_scale=True, display_name='Mass Flux') ds_x = sdf.Dataset('x', data=x, unit='1', is_scale=True, display_name='Quality') ds_P = sdf.Dataset('P', data=P, unit='Pa', is_scale=True, display_name='Pressure') ds_q = sdf.Dataset('q', data=q, unit='W/m2', scales=[ds_G,ds_x,ds_P]) # Create the root group and write the file: g = sdf.Group('/', comment='2006 CHF LUT', datasets=[ds_G,ds_x,ds_P,ds_q]) sdf.save('../Data/2006LUT.sdf', g)
[ "sdf.Group", "numpy.array", "numpy.zeros", "numpy.loadtxt", "sdf.save", "sdf.Dataset" ]
[((517, 695), 'numpy.array', 'np.array', (['(0.0, 50.0, 100.0, 300.0, 500.0, 750.0, 1000.0, 1500.0, 2000.0, 2500.0, \n 3000.0, 3500.0, 4000.0, 4500.0, 5000.0, 5500.0, 6000.0, 6500.0, 7000.0,\n 7500.0, 8000.0)'], {}), '((0.0, 50.0, 100.0, 300.0, 500.0, 750.0, 1000.0, 1500.0, 2000.0, \n 2500.0, 3000.0, 3500.0, 4000.0, 4500.0, 5000.0, 5500.0, 6000.0, 6500.0,\n 7000.0, 7500.0, 8000.0))\n', (525, 695), True, 'import numpy as np\n'), ((681, 824), 'numpy.array', 'np.array', (['(-0.5, -0.4, -0.3, -0.2, -0.15, -0.1, -0.05, 0.0, 0.05, 0.1, 0.15, 0.2, \n 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0)'], {}), '((-0.5, -0.4, -0.3, -0.2, -0.15, -0.1, -0.05, 0.0, 0.05, 0.1, 0.15,\n 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0))\n', (689, 824), True, 'import numpy as np\n'), ((1140, 1168), 'numpy.zeros', 'np.zeros', (['(lenG, lenx, lenP)'], {}), '((lenG, lenx, lenP))\n', (1148, 1168), True, 'import numpy as np\n'), ((1338, 1426), 'sdf.Dataset', 'sdf.Dataset', (['"""G"""'], {'data': 'G', 'unit': '"""kg/(m2.s)"""', 'is_scale': '(True)', 'display_name': '"""Mass Flux"""'}), "('G', data=G, unit='kg/(m2.s)', is_scale=True, display_name=\n 'Mass Flux')\n", (1349, 1426), False, 'import sdf\n'), ((1429, 1502), 'sdf.Dataset', 'sdf.Dataset', (['"""x"""'], {'data': 'x', 'unit': '"""1"""', 'is_scale': '(True)', 'display_name': '"""Quality"""'}), "('x', data=x, unit='1', is_scale=True, display_name='Quality')\n", (1440, 1502), False, 'import sdf\n'), ((1510, 1585), 'sdf.Dataset', 'sdf.Dataset', (['"""P"""'], {'data': 'P', 'unit': '"""Pa"""', 'is_scale': '(True)', 'display_name': '"""Pressure"""'}), "('P', data=P, unit='Pa', is_scale=True, display_name='Pressure')\n", (1521, 1585), False, 'import sdf\n'), ((1593, 1657), 'sdf.Dataset', 'sdf.Dataset', (['"""q"""'], {'data': 'q', 'unit': '"""W/m2"""', 'scales': '[ds_G, ds_x, ds_P]'}), "('q', data=q, unit='W/m2', scales=[ds_G, ds_x, ds_P])\n", (1604, 1657), False, 'import sdf\n'), ((1705, 1778), 'sdf.Group', 'sdf.Group', (['"""/"""'], {'comment': '"""2006 CHF LUT"""', 'datasets': '[ds_G, ds_x, ds_P, ds_q]'}), "('/', comment='2006 CHF LUT', datasets=[ds_G, ds_x, ds_P, ds_q])\n", (1714, 1778), False, 'import sdf\n'), ((1776, 1810), 'sdf.save', 'sdf.save', (['"""../Data/2006LUT.sdf"""', 'g'], {}), "('../Data/2006LUT.sdf', g)\n", (1784, 1810), False, 'import sdf\n'), ((381, 478), 'numpy.array', 'np.array', (['(0.1, 0.3, 0.5, 1.0, 2.0, 3.0, 5.0, 7.0, 10.0, 12.0, 14.0, 16.0, 18.0, 20.0,\n 21.0)'], {}), '((0.1, 0.3, 0.5, 1.0, 2.0, 3.0, 5.0, 7.0, 10.0, 12.0, 14.0, 16.0, \n 18.0, 20.0, 21.0))\n', (389, 478), True, 'import numpy as np\n'), ((886, 923), 'numpy.loadtxt', 'np.loadtxt', (['"""../Data/2006LUTdata.txt"""'], {}), "('../Data/2006LUTdata.txt')\n", (896, 923), True, 'import numpy as np\n')]
import copy import json import logging import os import sys import time from collections import defaultdict import numpy as np import tensorflow as tf from sklearn import decomposition from .. import dp_logging from . import labeler_utils from .base_model import AutoSubRegistrationMeta, BaseModel, BaseTrainableModel _file_dir = os.path.dirname(os.path.abspath(__file__)) logger = dp_logging.get_child_logger(__name__) class NoV1ResourceMessageFilter(logging.Filter): """Removes TF2 warning for using TF1 model which has resources.""" def filter(self, record): msg = 'is a problem, consider rebuilding the SavedModel after ' + \ 'running tf.compat.v1.enable_resource_variables()' return msg not in record.getMessage() tf_logger = logging.getLogger('tensorflow') tf_logger.addFilter(NoV1ResourceMessageFilter()) @tf.keras.utils.register_keras_serializable() class FBetaScore(tf.keras.metrics.Metric): r"""Computes F-Beta score. Adapted and slightly modified from https://github.com/tensorflow/addons/blob/v0.12.0/tensorflow_addons/metrics/f_scores.py#L211-L283 # Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # https://github.com/tensorflow/addons/blob/v0.12.0/LICENSE # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== It is the weighted harmonic mean of precision and recall. Output range is `[0, 1]`. Works for both multi-class and multi-label classification. $$ F_{\beta} = (1 + \beta^2) * \frac{\textrm{precision} * \textrm{precision}}{(\beta^2 \cdot \textrm{precision}) + \textrm{recall}} $$ Args: num_classes: Number of unique classes in the dataset. average: Type of averaging to be performed on data. Acceptable values are `None`, `micro`, `macro` and `weighted`. Default value is None. beta: Determines the weight of precision and recall in harmonic mean. Determines the weight given to the precision and recall. Default value is 1. threshold: Elements of `y_pred` greater than threshold are converted to be 1, and the rest 0. If threshold is None, the argmax is converted to 1, and the rest 0. name: (Optional) String name of the metric instance. dtype: (Optional) Data type of the metric result. Returns: F-Beta Score: float. """ # Modification: remove the run-time type checking for functions def __init__(self, num_classes, average=None, beta=1.0, threshold=None, name="fbeta_score", dtype=None, **kwargs): super().__init__(name=name, dtype=dtype) if average not in (None, "micro", "macro", "weighted"): raise ValueError( "Unknown average type. Acceptable values " "are: [None, 'micro', 'macro', 'weighted']" ) if not isinstance(beta, float): raise TypeError("The value of beta should be a python float") if beta <= 0.0: raise ValueError("beta value should be greater than zero") if threshold is not None: if not isinstance(threshold, float): raise TypeError("The value of threshold should be a python float") if threshold > 1.0 or threshold <= 0.0: raise ValueError("threshold should be between 0 and 1") self.num_classes = num_classes self.average = average self.beta = beta self.threshold = threshold self.axis = None self.init_shape = [] if self.average != "micro": self.axis = 0 self.init_shape = [self.num_classes] def _zero_wt_init(name): return self.add_weight( name, shape=self.init_shape, initializer="zeros", dtype=self.dtype ) self.true_positives = _zero_wt_init("true_positives") self.false_positives = _zero_wt_init("false_positives") self.false_negatives = _zero_wt_init("false_negatives") self.weights_intermediate = _zero_wt_init("weights_intermediate") def update_state(self, y_true, y_pred, sample_weight=None): if self.threshold is None: threshold = tf.reduce_max(y_pred, axis=-1, keepdims=True) # make sure [0, 0, 0] doesn't become [1, 1, 1] # Use abs(x) > eps, instead of x != 0 to check for zero y_pred = tf.logical_and(y_pred >= threshold, tf.abs(y_pred) > 1e-12) else: y_pred = y_pred > self.threshold y_true = tf.cast(y_true, self.dtype) y_pred = tf.cast(y_pred, self.dtype) def _weighted_sum(val, sample_weight): if sample_weight is not None: val = tf.math.multiply(val, tf.expand_dims(sample_weight, 1)) return tf.reduce_sum(val, axis=self.axis) self.true_positives.assign_add(_weighted_sum(y_pred * y_true, sample_weight)) self.false_positives.assign_add( _weighted_sum(y_pred * (1 - y_true), sample_weight) ) self.false_negatives.assign_add( _weighted_sum((1 - y_pred) * y_true, sample_weight) ) self.weights_intermediate.assign_add(_weighted_sum(y_true, sample_weight)) def result(self): precision = tf.math.divide_no_nan( self.true_positives, self.true_positives + self.false_positives ) recall = tf.math.divide_no_nan( self.true_positives, self.true_positives + self.false_negatives ) mul_value = precision * recall add_value = (tf.math.square(self.beta) * precision) + recall mean = tf.math.divide_no_nan(mul_value, add_value) f1_score = mean * (1 + tf.math.square(self.beta)) if self.average == "weighted": weights = tf.math.divide_no_nan( self.weights_intermediate, tf.reduce_sum(self.weights_intermediate) ) f1_score = tf.reduce_sum(f1_score * weights) elif self.average is not None: # [micro, macro] f1_score = tf.reduce_mean(f1_score) return f1_score def get_config(self): """Returns the serializable config of the metric.""" config = { "num_classes": self.num_classes, "average": self.average, "beta": self.beta, "threshold": self.threshold, } base_config = super().get_config() return {**base_config, **config} def reset_states(self): reset_value = tf.zeros(self.init_shape, dtype=self.dtype) tf.keras.backend.batch_set_value([(v, reset_value) for v in self.variables]) @tf.keras.utils.register_keras_serializable() class F1Score(FBetaScore): r"""Computes F-1 Score. # Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # https://github.com/tensorflow/addons/blob/v0.12.0/LICENSE # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== It is the harmonic mean of precision and recall. Output range is `[0, 1]`. Works for both multi-class and multi-label classification. $$ F_1 = 2 \cdot \frac{\textrm{precision} \cdot \textrm{recall}}{\textrm{precision} + \textrm{recall}} $$ Args: num_classes: Number of unique classes in the dataset. average: Type of averaging to be performed on data. Acceptable values are `None`, `micro`, `macro` and `weighted`. Default value is None. threshold: Elements of `y_pred` above threshold are considered to be 1, and the rest 0. If threshold is None, the argmax is converted to 1, and the rest 0. name: (Optional) String name of the metric instance. dtype: (Optional) Data type of the metric result. Returns: F-1 Score: float. """ # Modification: remove the run-time type checking for functions def __init__(self, num_classes, average=None, threshold=None, name="f1_score", dtype=None): super().__init__(num_classes, average, 1.0, threshold, name=name, dtype=dtype) def get_config(self): base_config = super().get_config() del base_config["beta"] return base_config def build_embd_dictionary(filename): """ Returns a numpy embedding dictionary from embed file with GloVe-like format :param filename: Path to the embed file for loading :type filename: str """ embd_table = dict() with open(filename, 'r') as embds: for line in embds: line = line.strip().split() embd_table[line[0]] = np.asarray(line[1:]) return embd_table def create_glove_char(n_dims, source_file=None): """ Embeds GloVe chars embeddings from source file to n_dims principal components in a new file :param n_dims: Final number of principal component dims of the embeddings :type n_dims: int :param source_file: Location of original embeddings to factor down :type source_file: str """ if source_file is None: source_file = os.path.join(_file_dir, "embeddings/glove.840B.300d-char.txt") # get embedding table first and vectors as array embd_table = build_embd_dictionary(source_file) embd_words, embd_matrix = [ np.asarray(ls) if i > 0 else list(ls) for i, ls in enumerate(zip(*embd_table.items()))] # get PCA embedder pca = decomposition.PCA(n_components=n_dims) reduced_embds = pca.fit_transform(embd_matrix) # write to file dir_name = os.path.dirname(source_file) embd_file_name = os.path.join(dir_name, 'glove-reduced-{}D.txt'.format(n_dims)) with open(embd_file_name, 'w') as file: for word, embd in zip(embd_words, reduced_embds): file.write(word + " " + ' '.join(str(num) for num in embd) + "\n") class CharacterLevelCnnModel(BaseTrainableModel, metaclass=AutoSubRegistrationMeta): # boolean if the label mapping requires the mapping for index 0 reserved requires_zero_mapping = True def __init__(self, label_mapping=None, parameters=None): """ CNN Model Initializer. initialize epoch_id :param label_mapping: maps labels to their encoded integers :type label_mapping: dict :param parameters: Contains all the appropriate parameters for the model. Must contain num_labels. Other possible parameters are: max_length, max_char_encoding_id, dim_embed, size_fc dropout, size_conv, num_fil, optimizer, default_label :type parameters: dict :return: None """ # parameter initialization if not parameters: parameters = {} parameters.setdefault('max_length', 3400) parameters.setdefault('max_char_encoding_id', 127) parameters.setdefault('dim_embed', 64) parameters.setdefault('size_fc', [96, 96]) parameters.setdefault('dropout', 0.073) parameters.setdefault('size_conv', 13) parameters.setdefault('default_label', "UNKNOWN") parameters.setdefault('num_fil', [48 for _ in range(4)]) parameters['pad_label'] = 'PAD' self._epoch_id = 0 # reconstruct flags for model self._model_num_labels = 0 self._model_default_ind = -1 BaseModel.__init__(self, label_mapping, parameters) def __eq__(self, other): """ Checks if two models are equal with one another, may only check important variables, i.e. may not check model itself. :param self: a model :param other: a model :type self: BaseModel :type other: BaseModel :return: Whether or not self and other are equal :rtype: bool """ if self._parameters != other._parameters \ or self._label_mapping != other._label_mapping: return False return True def _validate_parameters(self, parameters): """ Validate the parameters sent in. Raise error if invalid parameters are present. :param parameters: parameter dict containing the following parameters: max_length: Maximum char length in a sample max_char_encoding_id: Maximum integer value for encoding the input dim_embed: Number of embedded dimensions size_fc: Size of each fully connected layers dropout: Ratio of dropout in the model size_conv: Convolution kernel size default_label: Key for label_mapping that is the default label pad_label: Key for entities_dict that is the pad label num_fil: Number of filters in each convolution layer :type parameters: dict :return: None """ errors = [] list_of_necessary_params = ['max_length', 'max_char_encoding_id', 'dim_embed', 'size_fc', 'dropout', 'size_conv', 'default_label', 'pad_label', 'num_fil'] # Make sure the necessary parameters are present and valid. for param in parameters: if param in ['max_length', 'max_char_encoding_id', 'dim_embed', 'size_conv']: if not isinstance(parameters[param], (int, float)) \ or parameters[param] < 0: errors.append(param + " must be a valid integer or float " "greater than 0.") elif param == 'dropout': if not isinstance(parameters[param], (int, float)) \ or parameters[param] < 0 or parameters[param] > 1: errors.append(param + " must be a valid integer or float " "from 0 to 1.") elif param == 'size_fc' or param == 'num_fil': if not isinstance(parameters[param], list) \ or len(parameters[param]) == 0: errors.append(param + " must be a non-empty list of " "integers.") else: for item in parameters[param]: if not isinstance(item, int): errors.append(param + " must be a non-empty " "list of integers.") break elif param == 'default_label': if not isinstance(parameters[param], str): error = str(param) + " must be a string." errors.append(error) # Error if there are extra parameters thrown in for param in parameters: if param not in list_of_necessary_params: errors.append(param + " is not an accepted parameter.") if errors: raise ValueError('\n'.join(errors)) def set_label_mapping(self, label_mapping): """ Sets the labels for the model :param label_mapping: label mapping of the model :type label_mapping: dict :return: None """ if not isinstance(label_mapping, (list, dict)): raise TypeError("Labels must either be a non-empty encoding dict " "which maps labels to index encodings or a list.") label_mapping = copy.deepcopy(label_mapping) if 'PAD' not in label_mapping: if isinstance(label_mapping, list): # if list missing PAD label_mapping = ['PAD'] + label_mapping elif 0 not in label_mapping.values(): # if dict missing PAD and 0 label_mapping.update({'PAD': 0}) if (isinstance(label_mapping, dict) and label_mapping.get('PAD', None) != 0): # dict with bad PAD raise ValueError("`PAD` must map to index zero.") if self._parameters['default_label'] not in label_mapping: raise ValueError("The `default_label` of {} must exist in the " "label mapping.".format( self._parameters['default_label'])) super().set_label_mapping(label_mapping) def _need_to_reconstruct_model(self): """ Determines whether or not the model needs to be reconstructed. :return: bool of whether or not the model needs to reconstruct. """ if not self._model: return False default_ind = self.label_mapping[self._parameters['default_label']] return self.num_labels != self._model_num_labels or \ default_ind != self._model_default_ind def save_to_disk(self, dirpath): """ Saves whole model to disk with weights :param dirpath: directory path where you want to save the model to :type dirpath: str :return: None """ if not self._model: self._construct_model() elif self._need_to_reconstruct_model(): self._reconstruct_model() model_param_dirpath = os.path.join(dirpath, "model_parameters.json") with open(model_param_dirpath, 'w') as fp: json.dump(self._parameters, fp) labels_dirpath = os.path.join(dirpath, "label_mapping.json") with open(labels_dirpath, 'w') as fp: json.dump(self.label_mapping, fp) self._model.save(os.path.join(dirpath)) @classmethod def load_from_disk(cls, dirpath): """ Loads whole model from disk with weights :param dirpath: directory path where you want to load the model from :type dirpath: str :return: None """ # load parameters model_param_dirpath = os.path.join(dirpath, "model_parameters.json") with open(model_param_dirpath, 'r') as fp: parameters = json.load(fp) # load label_mapping labels_dirpath = os.path.join(dirpath, "label_mapping.json") with open(labels_dirpath, 'r') as fp: label_mapping = json.load(fp) # use f1 score metric custom_objects = { "F1Score": F1Score( num_classes=max(label_mapping.values()) + 1, average='micro'), "CharacterLevelCnnModel": cls, } with tf.keras.utils.custom_object_scope(custom_objects): tf_model = tf.keras.models.load_model(dirpath) loaded_model = cls(label_mapping, parameters) loaded_model._model = tf_model # Tensorflow v1 Model weights need to be transferred. if not callable(tf_model): loaded_model._construct_model() tf1_weights = [] for var in tf_model.variables: if 'training' not in var.name: tf1_weights.append(var.value()) loaded_model._construct_model() tf1_weights.append(loaded_model._model.weights[-1].value()) loaded_model._model.set_weights(tf1_weights) # load self loaded_model._model_num_labels = loaded_model.num_labels loaded_model._model_default_ind = loaded_model.label_mapping[ loaded_model._parameters['default_label'] ] return loaded_model @staticmethod def _char_encoding_layer(input_str_tensor, max_char_encoding_id, max_len): """ Character encoding for the list of sentences :param input_str_tensor: input list of sentences converted to tensor :type input_str_tensor: tf.tensor :param max_char_encoding_id: Maximum integer value for encoding the input :type max_char_encoding_id: int :param max_len: Maximum char length in a sample :type max_len: int :return : tensor containing encoded list of input sentences :rtype: tf.Tensor """ # convert characters to indices input_str_flatten = tf.reshape(input_str_tensor, [-1]) sentences_encode = tf.strings.unicode_decode(input_str_flatten, input_encoding='UTF-8') sentences_encode = tf.add(tf.cast(1, tf.int32), sentences_encode) sentences_encode = tf.math.minimum(sentences_encode, max_char_encoding_id + 1) # padding sentences_encode_pad = sentences_encode.to_tensor(shape=[None, max_len]) return sentences_encode_pad @staticmethod def _argmax_threshold_layer(num_labels, threshold=0.0, default_ind=1): """ Adds an argmax threshold layer to the model. This layer's output will be the argmax value if the confidence for that argmax meets the threshold for its label, otherwise it will be the default label index. :param num_labels: number of entities :type num_labels: int :param threshold: default set to 0 so all confidences pass. :type threshold: float :param default_ind: default index :type default_ind: int :return: final argmax threshold layer for the model """ # Initialize the thresholds vector variable and create the threshold # matrix. class ThreshArgMaxLayer(tf.keras.layers.Layer): def __init__(self, threshold_, num_labels_): super(ThreshArgMaxLayer, self).__init__() thresh_init = tf.constant_initializer(threshold_) self.thresh_vec = tf.Variable( name='ThreshVec', initial_value=thresh_init(shape=[num_labels_]), trainable=False) def call(self, argmax_layer, confidence_layer): threshold_at_argmax = tf.gather(self.thresh_vec, argmax_layer) confidence_max_layer = tf.keras.backend.max(confidence_layer, axis=2) # Check if the confidences meet the threshold minimum. argmax_mask = tf.keras.backend.cast( tf.keras.backend.greater_equal(confidence_max_layer, threshold_at_argmax), dtype=argmax_layer.dtype) # Create a vector the same size as the batch_size which # represents the background label bg_label_tf = tf.keras.backend.constant( default_ind, dtype=argmax_layer.dtype) # Generate the final predicted output using the function: final_predicted_layer = tf.add( bg_label_tf, tf.multiply( tf.subtract(argmax_layer, bg_label_tf), argmax_mask ), name='ThreshArgMax' ) return final_predicted_layer return ThreshArgMaxLayer(threshold, num_labels) def _construct_model(self): """ Model constructor for the data labeler. This also serves as a weight reset. :return: None """ num_labels = self.num_labels default_ind = self.label_mapping[self._parameters['default_label']] # Reset model tf.keras.backend.clear_session() # generate glove embedding create_glove_char(self._parameters['dim_embed']) # generate model self._model = tf.keras.models.Sequential() # default parameters max_length = self._parameters['max_length'] max_char_encoding_id = self._parameters['max_char_encoding_id'] # Encoding layer def encoding_function(input_str): char_in_vector = CharacterLevelCnnModel._char_encoding_layer( input_str, max_char_encoding_id, max_length) return char_in_vector self._model.add(tf.keras.layers.Input(shape=(None,), dtype=tf.string)) self._model.add( tf.keras.layers.Lambda(encoding_function, output_shape=tuple([max_length]))) # Create a pre-trained weight matrix # character encoding indices range from 0 to max_char_encoding_id, # we add one extra index for out-of-vocabulary character embed_file = os.path.join( _file_dir, "embeddings/glove-reduced-{}D.txt".format( self._parameters['dim_embed'])) embedding_matrix = np.zeros((max_char_encoding_id + 2, self._parameters['dim_embed'])) embedding_dict = build_embd_dictionary(embed_file) input_shape = tuple([max_length]) # Fill in the weight matrix: let pad and space be 0s for ascii_num in range(max_char_encoding_id): if chr(ascii_num) in embedding_dict: embedding_matrix[ascii_num + 1] = embedding_dict[chr(ascii_num)] self._model.add(tf.keras.layers.Embedding( max_char_encoding_id + 2, self._parameters['dim_embed'], weights=[embedding_matrix], input_length=input_shape[0], trainable=True)) # Add the convolutional layers for fil in self._parameters['num_fil']: self._model.add(tf.keras.layers.Conv1D( filters=fil, kernel_size=self._parameters['size_conv'], activation='relu', padding='same')) if self._parameters['dropout']: self._model.add( tf.keras.layers.Dropout(self._parameters['dropout'])) # Add batch normalization, set fused = True for compactness self._model.add( tf.keras.layers.BatchNormalization(fused=False, scale=True)) # Add the fully connected layers for size in self._parameters['size_fc']: self._model.add( tf.keras.layers.Dense(units=size, activation='relu')) if self._parameters['dropout']: self._model.add( tf.keras.layers.Dropout(self._parameters['dropout'])) # Add the final Softmax layer self._model.add( tf.keras.layers.Dense(num_labels, activation='softmax')) # Output the model into a .pb file for TensorFlow argmax_layer = tf.keras.backend.argmax(self._model.output) # Create confidence layers final_predicted_layer = CharacterLevelCnnModel._argmax_threshold_layer( num_labels, threshold=0.0, default_ind=default_ind) argmax_outputs = self._model.outputs + \ [argmax_layer, final_predicted_layer(argmax_layer, self._model.output)] self._model = tf.keras.Model(self._model.inputs, argmax_outputs) # Compile the model softmax_output_layer_name = self._model.outputs[0].name.split('/')[0] losses = {softmax_output_layer_name: "categorical_crossentropy"} # use f1 score metric f1_score_training = F1Score(num_classes=num_labels, average='micro') metrics = {softmax_output_layer_name: ['acc', f1_score_training]} self._model.compile(loss=losses, optimizer="adam", metrics=metrics) self._epoch_id = 0 self._model_num_labels = num_labels self._model_default_ind = default_ind def reset_weights(self): """ Reset the weights of the model. :return: None """ self._construct_model() def _reconstruct_model(self): """ Reconstruct the appropriate layers if the number of number of labels is altered :return: None """ # Reset model tf.keras.backend.clear_session() num_labels = self.num_labels default_ind = self.label_mapping[self._parameters['default_label']] # Remove the 3 output layers (dense_2', 'tf_op_layer_ArgMax', # 'thresh_arg_max_layer') for _ in range(3): self._model.layers.pop() # Add the final Softmax layer to the previous spot final_softmax_layer = tf.keras.layers.Dense( num_labels, activation='softmax', name="dense_2")( self._model.layers[-4].output) # Output the model into a .pb file for TensorFlow argmax_layer = tf.keras.backend.argmax(final_softmax_layer) # Create confidence layers final_predicted_layer = CharacterLevelCnnModel._argmax_threshold_layer( num_labels, threshold=0.0, default_ind=default_ind) argmax_outputs = [final_softmax_layer] + \ [argmax_layer, final_predicted_layer(argmax_layer, final_softmax_layer)] self._model = tf.keras.Model(self._model.inputs, argmax_outputs) # Compile the model softmax_output_layer_name = self._model.outputs[0].name.split('/')[0] losses = {softmax_output_layer_name: "categorical_crossentropy"} # use f1 score metric f1_score_training = F1Score(num_classes=num_labels, average='micro') metrics = {softmax_output_layer_name: ['acc', f1_score_training]} self._model.compile(loss=losses, optimizer="adam", metrics=metrics) self._epoch_id = 0 self._model_num_labels = num_labels self._model_default_ind = default_ind def fit(self, train_data, val_data=None, batch_size=32, label_mapping=None, reset_weights=False, verbose=True): """ Train the current model with the training data and validation data :param train_data: Training data used to train model :type train_data: Union[list, np.ndarray] :param val_data: Validation data used to validate the training :type val_data: Union[list, np.ndarray] :param batch_size: Used to determine number of samples in each batch :type batch_size: int :param label_mapping: maps labels to their encoded integers :type label_mapping: Union[dict, None] :param reset_weights: Flag to determine whether to reset the weights or not :type reset_weights: bool :param verbose: Flag to determine whether to print status or not :type verbose: bool :return: None """ if label_mapping is not None: self.set_label_mapping(label_mapping) if not self._model: self._construct_model() else: if self._need_to_reconstruct_model(): self._reconstruct_model() if reset_weights: self.reset_weights() history = defaultdict() f1 = None f1_report = [] self._model.reset_metrics() softmax_output_layer_name = self._model.outputs[0].name.split('/')[0] start_time = time.time() batch_id = 0 for x_train, y_train in train_data: model_results = self._model.train_on_batch( x_train, {softmax_output_layer_name: y_train}) sys.stdout.flush() if verbose: sys.stdout.write( "\rEPOCH %d, batch_id %d: loss: %f - acc: %f - " "f1_score %f" % (self._epoch_id, batch_id, *model_results[1:])) batch_id += 1 for i, metric_label in enumerate(self._model.metrics_names): history[metric_label] = model_results[i] if val_data: f1, f1_report = self._validate_training(val_data) history['f1_report'] = f1_report val_f1 = f1_report['weighted avg']['f1-score'] \ if f1_report else np.NAN val_precision = f1_report['weighted avg']['precision'] \ if f1_report else np.NAN val_recall = f1_report['weighted avg']['recall'] \ if f1_report else np.NAN epoch_time = time.time() - start_time logger.info("\rEPOCH %d (%ds), loss: %f - acc: %f - f1_score %f -- " "val_f1: %f - val_precision: %f - val_recall %f" % (self._epoch_id, epoch_time, *model_results[1:], val_f1, val_precision, val_recall)) self._epoch_id += 1 return history, f1, f1_report def _validate_training(self, val_data, batch_size_test=32, verbose_log=True, verbose_keras=False): """ Validate the model on the test set and return the evaluation metrics. :param val_data: data generator for the validation :type val_data: iterator :param batch_size_test: Number of samples to process in testing :type batch_size_test: int :param verbose_log: whether or not to print out scores for training, etc. :type verbose_log: bool :param verbose_keras: whether or not to print out scores for training, from keras. :type verbose_keras: bool return (f1-score, f1 report). """ f1 = None f1_report = None if val_data is None: return f1, f1_report # Predict on the test set batch_id = 0 y_val_pred = [] y_val_test = [] for x_val, y_val in val_data: y_val_pred.append(self._model.predict( x_val, batch_size=batch_size_test, verbose=verbose_keras)[1]) y_val_test.append(np.argmax(y_val, axis=-1)) batch_id += 1 sys.stdout.flush() if verbose_log: sys.stdout.write("\rEPOCH %g, validation_batch_id %d" % (self._epoch_id, batch_id)) tf.keras.backend.set_floatx('float32') # Clean the predicted entities and the actual entities f1, f1_report = labeler_utils.evaluate_accuracy( np.concatenate(y_val_pred, axis=0), np.concatenate(y_val_test, axis=0), self.num_labels, self.reverse_label_mapping, verbose=verbose_keras) return f1, f1_report def predict(self, data, batch_size=32, show_confidences=False, verbose=True): """ Run model and get predictions :param data: text input :type data: Union[list, numpy.ndarray] :param batch_size: number of samples in the batch of data :type batch_size: int :param show_confidences: whether user wants prediction confidences :type show_confidences: :param verbose: Flag to determine whether to print status or not :type verbose: bool :return: char level predictions and confidences :rtype: dict """ if not self._model: raise ValueError("You are trying to predict without a model. " "Construct/Load a model before predicting.") elif self._need_to_reconstruct_model(): raise RuntimeError("The model label mapping definitions have been " "altered without additional training. Please " "train the model or reset the label mapping to " "predict.") # Pre-allocate space for predictions confidences = [] sentence_lengths = np.zeros((batch_size,), dtype=int) predictions = np.zeros((batch_size, self._parameters['max_length'])) if show_confidences: confidences = np.zeros((batch_size, self._parameters['max_length'], self.num_labels)) # Run model with batching allocation_index = 0 for batch_id, batch_data in enumerate(data): model_output = self._model( tf.convert_to_tensor(batch_data) ) # Count number of samples in batch to prevent array mismatch num_samples_in_batch = len(batch_data) allocation_index = batch_id * batch_size # Double array size if len(predictions) <= allocation_index: predictions = np.pad(predictions, ((0, len(predictions)), (0, 0)), mode='constant') sentence_lengths = np.pad( sentence_lengths, pad_width=((0, len(sentence_lengths)),), mode='constant') if show_confidences: confidences = np.pad(confidences, ((0, len(predictions)), (0, 0), (0, 0)), mode='constant') if show_confidences: confidences[allocation_index:allocation_index + num_samples_in_batch] = model_output[0].numpy() predictions[allocation_index:allocation_index + num_samples_in_batch] = model_output[1].numpy() sentence_lengths[allocation_index:allocation_index + num_samples_in_batch] = list(map(lambda x: len(x[0]), batch_data)) allocation_index += num_samples_in_batch # Convert predictions, confidences to lists from numpy predictions_list = [i for i in range(0, allocation_index)] confidences_list = None if show_confidences: confidences_list = [i for i in range(0, allocation_index)] # Append slices of predictions to return prediction & confidence matrices for index, sentence_length \ in enumerate(sentence_lengths[:allocation_index]): predictions_list[index] = list(predictions[index][:sentence_length]) if show_confidences: confidences_list[index] = list(confidences[index][:sentence_length]) if show_confidences: return {'pred': predictions_list, 'conf': confidences_list} return {'pred': predictions_list} def details(self): """ Prints the relevant details of the model (summary, parameters, label mapping) """ print("\n###### Model Details ######\n") self._model.summary() print("\nModel Parameters:") for key, value in self._parameters.items(): print("{}: {}".format(key, value)) print("\nModel Label Mapping:") for key, value in self.label_mapping.items(): print("{}: {}".format(key, value))
[ "logging.getLogger", "tensorflow.reduce_sum", "tensorflow.math.divide_no_nan", "tensorflow.keras.layers.BatchNormalization", "tensorflow.keras.layers.Dense", "tensorflow.keras.models.load_model", "copy.deepcopy", "tensorflow.reduce_mean", "tensorflow.cast", "tensorflow.math.minimum", "tensorflow.keras.layers.Input", "sklearn.decomposition.PCA", "numpy.asarray", "tensorflow.keras.backend.max", "numpy.concatenate", "tensorflow.convert_to_tensor", "sys.stdout.flush", "tensorflow.keras.models.Sequential", "tensorflow.keras.layers.Conv1D", "tensorflow.strings.unicode_decode", "tensorflow.zeros", "tensorflow.keras.backend.greater_equal", "tensorflow.keras.layers.Dropout", "numpy.argmax", "tensorflow.keras.backend.set_floatx", "tensorflow.reduce_max", "tensorflow.keras.utils.register_keras_serializable", "os.path.dirname", "tensorflow.keras.layers.Embedding", "tensorflow.keras.utils.custom_object_scope", "tensorflow.gather", "tensorflow.reshape", "tensorflow.keras.backend.batch_set_value", "tensorflow.expand_dims", "tensorflow.subtract", "os.path.abspath", "time.time", "tensorflow.math.square", "os.path.join", "tensorflow.keras.backend.constant", "json.load", "numpy.zeros", "collections.defaultdict", "tensorflow.constant_initializer", "tensorflow.abs", "tensorflow.keras.Model", "tensorflow.keras.backend.argmax", "tensorflow.keras.backend.clear_session", "json.dump", "sys.stdout.write" ]
[((775, 806), 'logging.getLogger', 'logging.getLogger', (['"""tensorflow"""'], {}), "('tensorflow')\n", (792, 806), False, 'import logging\n'), ((859, 903), 'tensorflow.keras.utils.register_keras_serializable', 'tf.keras.utils.register_keras_serializable', ([], {}), '()\n', (901, 903), True, 'import tensorflow as tf\n'), ((7294, 7338), 'tensorflow.keras.utils.register_keras_serializable', 'tf.keras.utils.register_keras_serializable', ([], {}), '()\n', (7336, 7338), True, 'import tensorflow as tf\n'), ((349, 374), 'os.path.abspath', 'os.path.abspath', (['__file__'], {}), '(__file__)\n', (364, 374), False, 'import os\n'), ((10680, 10718), 'sklearn.decomposition.PCA', 'decomposition.PCA', ([], {'n_components': 'n_dims'}), '(n_components=n_dims)\n', (10697, 10718), False, 'from sklearn import decomposition\n'), ((10806, 10834), 'os.path.dirname', 'os.path.dirname', (['source_file'], {}), '(source_file)\n', (10821, 10834), False, 'import os\n'), ((5184, 5211), 'tensorflow.cast', 'tf.cast', (['y_true', 'self.dtype'], {}), '(y_true, self.dtype)\n', (5191, 5211), True, 'import tensorflow as tf\n'), ((5229, 5256), 'tensorflow.cast', 'tf.cast', (['y_pred', 'self.dtype'], {}), '(y_pred, self.dtype)\n', (5236, 5256), True, 'import tensorflow as tf\n'), ((5922, 6013), 'tensorflow.math.divide_no_nan', 'tf.math.divide_no_nan', (['self.true_positives', '(self.true_positives + self.false_positives)'], {}), '(self.true_positives, self.true_positives + self.\n false_positives)\n', (5943, 6013), True, 'import tensorflow as tf\n'), ((6048, 6139), 'tensorflow.math.divide_no_nan', 'tf.math.divide_no_nan', (['self.true_positives', '(self.true_positives + self.false_negatives)'], {}), '(self.true_positives, self.true_positives + self.\n false_negatives)\n', (6069, 6139), True, 'import tensorflow as tf\n'), ((6281, 6324), 'tensorflow.math.divide_no_nan', 'tf.math.divide_no_nan', (['mul_value', 'add_value'], {}), '(mul_value, add_value)\n', (6302, 6324), True, 'import tensorflow as tf\n'), ((7162, 7205), 'tensorflow.zeros', 'tf.zeros', (['self.init_shape'], {'dtype': 'self.dtype'}), '(self.init_shape, dtype=self.dtype)\n', (7170, 7205), True, 'import tensorflow as tf\n'), ((7214, 7290), 'tensorflow.keras.backend.batch_set_value', 'tf.keras.backend.batch_set_value', (['[(v, reset_value) for v in self.variables]'], {}), '([(v, reset_value) for v in self.variables])\n', (7246, 7290), True, 'import tensorflow as tf\n'), ((10307, 10369), 'os.path.join', 'os.path.join', (['_file_dir', '"""embeddings/glove.840B.300d-char.txt"""'], {}), "(_file_dir, 'embeddings/glove.840B.300d-char.txt')\n", (10319, 10369), False, 'import os\n'), ((16744, 16772), 'copy.deepcopy', 'copy.deepcopy', (['label_mapping'], {}), '(label_mapping)\n', (16757, 16772), False, 'import copy\n'), ((18434, 18480), 'os.path.join', 'os.path.join', (['dirpath', '"""model_parameters.json"""'], {}), "(dirpath, 'model_parameters.json')\n", (18446, 18480), False, 'import os\n'), ((18601, 18644), 'os.path.join', 'os.path.join', (['dirpath', '"""label_mapping.json"""'], {}), "(dirpath, 'label_mapping.json')\n", (18613, 18644), False, 'import os\n'), ((19098, 19144), 'os.path.join', 'os.path.join', (['dirpath', '"""model_parameters.json"""'], {}), "(dirpath, 'model_parameters.json')\n", (19110, 19144), False, 'import os\n'), ((19290, 19333), 'os.path.join', 'os.path.join', (['dirpath', '"""label_mapping.json"""'], {}), "(dirpath, 'label_mapping.json')\n", (19302, 19333), False, 'import os\n'), ((21288, 21322), 'tensorflow.reshape', 'tf.reshape', (['input_str_tensor', '[-1]'], {}), '(input_str_tensor, [-1])\n', (21298, 21322), True, 'import tensorflow as tf\n'), ((21350, 21418), 'tensorflow.strings.unicode_decode', 'tf.strings.unicode_decode', (['input_str_flatten'], {'input_encoding': '"""UTF-8"""'}), "(input_str_flatten, input_encoding='UTF-8')\n", (21375, 21418), True, 'import tensorflow as tf\n'), ((21573, 21632), 'tensorflow.math.minimum', 'tf.math.minimum', (['sentences_encode', '(max_char_encoding_id + 1)'], {}), '(sentences_encode, max_char_encoding_id + 1)\n', (21588, 21632), True, 'import tensorflow as tf\n'), ((24599, 24631), 'tensorflow.keras.backend.clear_session', 'tf.keras.backend.clear_session', ([], {}), '()\n', (24629, 24631), True, 'import tensorflow as tf\n'), ((24773, 24801), 'tensorflow.keras.models.Sequential', 'tf.keras.models.Sequential', ([], {}), '()\n', (24799, 24801), True, 'import tensorflow as tf\n'), ((25785, 25852), 'numpy.zeros', 'np.zeros', (["(max_char_encoding_id + 2, self._parameters['dim_embed'])"], {}), "((max_char_encoding_id + 2, self._parameters['dim_embed']))\n", (25793, 25852), True, 'import numpy as np\n'), ((27629, 27672), 'tensorflow.keras.backend.argmax', 'tf.keras.backend.argmax', (['self._model.output'], {}), '(self._model.output)\n', (27652, 27672), True, 'import tensorflow as tf\n'), ((28048, 28098), 'tensorflow.keras.Model', 'tf.keras.Model', (['self._model.inputs', 'argmax_outputs'], {}), '(self._model.inputs, argmax_outputs)\n', (28062, 28098), True, 'import tensorflow as tf\n'), ((29070, 29102), 'tensorflow.keras.backend.clear_session', 'tf.keras.backend.clear_session', ([], {}), '()\n', (29100, 29102), True, 'import tensorflow as tf\n'), ((29715, 29759), 'tensorflow.keras.backend.argmax', 'tf.keras.backend.argmax', (['final_softmax_layer'], {}), '(final_softmax_layer)\n', (29738, 29759), True, 'import tensorflow as tf\n'), ((30186, 30236), 'tensorflow.keras.Model', 'tf.keras.Model', (['self._model.inputs', 'argmax_outputs'], {}), '(self._model.inputs, argmax_outputs)\n', (30200, 30236), True, 'import tensorflow as tf\n'), ((32129, 32142), 'collections.defaultdict', 'defaultdict', ([], {}), '()\n', (32140, 32142), False, 'from collections import defaultdict\n'), ((32321, 32332), 'time.time', 'time.time', ([], {}), '()\n', (32330, 32332), False, 'import time\n'), ((35185, 35223), 'tensorflow.keras.backend.set_floatx', 'tf.keras.backend.set_floatx', (['"""float32"""'], {}), "('float32')\n", (35212, 35223), True, 'import tensorflow as tf\n'), ((36799, 36833), 'numpy.zeros', 'np.zeros', (['(batch_size,)'], {'dtype': 'int'}), '((batch_size,), dtype=int)\n', (36807, 36833), True, 'import numpy as np\n'), ((36856, 36910), 'numpy.zeros', 'np.zeros', (["(batch_size, self._parameters['max_length'])"], {}), "((batch_size, self._parameters['max_length']))\n", (36864, 36910), True, 'import numpy as np\n'), ((4853, 4898), 'tensorflow.reduce_max', 'tf.reduce_max', (['y_pred'], {'axis': '(-1)', 'keepdims': '(True)'}), '(y_pred, axis=-1, keepdims=True)\n', (4866, 4898), True, 'import tensorflow as tf\n'), ((5444, 5478), 'tensorflow.reduce_sum', 'tf.reduce_sum', (['val'], {'axis': 'self.axis'}), '(val, axis=self.axis)\n', (5457, 5478), True, 'import tensorflow as tf\n'), ((6589, 6622), 'tensorflow.reduce_sum', 'tf.reduce_sum', (['(f1_score * weights)'], {}), '(f1_score * weights)\n', (6602, 6622), True, 'import tensorflow as tf\n'), ((9847, 9867), 'numpy.asarray', 'np.asarray', (['line[1:]'], {}), '(line[1:])\n', (9857, 9867), True, 'import numpy as np\n'), ((10550, 10564), 'numpy.asarray', 'np.asarray', (['ls'], {}), '(ls)\n', (10560, 10564), True, 'import numpy as np\n'), ((18544, 18575), 'json.dump', 'json.dump', (['self._parameters', 'fp'], {}), '(self._parameters, fp)\n', (18553, 18575), False, 'import json\n'), ((18703, 18736), 'json.dump', 'json.dump', (['self.label_mapping', 'fp'], {}), '(self.label_mapping, fp)\n', (18712, 18736), False, 'import json\n'), ((18762, 18783), 'os.path.join', 'os.path.join', (['dirpath'], {}), '(dirpath)\n', (18774, 18783), False, 'import os\n'), ((19221, 19234), 'json.load', 'json.load', (['fp'], {}), '(fp)\n', (19230, 19234), False, 'import json\n'), ((19408, 19421), 'json.load', 'json.load', (['fp'], {}), '(fp)\n', (19417, 19421), False, 'import json\n'), ((19673, 19723), 'tensorflow.keras.utils.custom_object_scope', 'tf.keras.utils.custom_object_scope', (['custom_objects'], {}), '(custom_objects)\n', (19707, 19723), True, 'import tensorflow as tf\n'), ((19748, 19783), 'tensorflow.keras.models.load_model', 'tf.keras.models.load_model', (['dirpath'], {}), '(dirpath)\n', (19774, 19783), True, 'import tensorflow as tf\n'), ((21506, 21526), 'tensorflow.cast', 'tf.cast', (['(1)', 'tf.int32'], {}), '(1, tf.int32)\n', (21513, 21526), True, 'import tensorflow as tf\n'), ((25218, 25271), 'tensorflow.keras.layers.Input', 'tf.keras.layers.Input', ([], {'shape': '(None,)', 'dtype': 'tf.string'}), '(shape=(None,), dtype=tf.string)\n', (25239, 25271), True, 'import tensorflow as tf\n'), ((26262, 26426), 'tensorflow.keras.layers.Embedding', 'tf.keras.layers.Embedding', (['(max_char_encoding_id + 2)', "self._parameters['dim_embed']"], {'weights': '[embedding_matrix]', 'input_length': 'input_shape[0]', 'trainable': '(True)'}), "(max_char_encoding_id + 2, self._parameters[\n 'dim_embed'], weights=[embedding_matrix], input_length=input_shape[0],\n trainable=True)\n", (26287, 26426), True, 'import tensorflow as tf\n'), ((27490, 27545), 'tensorflow.keras.layers.Dense', 'tf.keras.layers.Dense', (['num_labels'], {'activation': '"""softmax"""'}), "(num_labels, activation='softmax')\n", (27511, 27545), True, 'import tensorflow as tf\n'), ((29504, 29575), 'tensorflow.keras.layers.Dense', 'tf.keras.layers.Dense', (['num_labels'], {'activation': '"""softmax"""', 'name': '"""dense_2"""'}), "(num_labels, activation='softmax', name='dense_2')\n", (29525, 29575), True, 'import tensorflow as tf\n'), ((32529, 32547), 'sys.stdout.flush', 'sys.stdout.flush', ([], {}), '()\n', (32545, 32547), False, 'import sys\n'), ((34988, 35006), 'sys.stdout.flush', 'sys.stdout.flush', ([], {}), '()\n', (35004, 35006), False, 'import sys\n'), ((35356, 35390), 'numpy.concatenate', 'np.concatenate', (['y_val_pred'], {'axis': '(0)'}), '(y_val_pred, axis=0)\n', (35370, 35390), True, 'import numpy as np\n'), ((35404, 35438), 'numpy.concatenate', 'np.concatenate', (['y_val_test'], {'axis': '(0)'}), '(y_val_test, axis=0)\n', (35418, 35438), True, 'import numpy as np\n'), ((36966, 37037), 'numpy.zeros', 'np.zeros', (["(batch_size, self._parameters['max_length'], self.num_labels)"], {}), "((batch_size, self._parameters['max_length'], self.num_labels))\n", (36974, 37037), True, 'import numpy as np\n'), ((6218, 6243), 'tensorflow.math.square', 'tf.math.square', (['self.beta'], {}), '(self.beta)\n', (6232, 6243), True, 'import tensorflow as tf\n'), ((6356, 6381), 'tensorflow.math.square', 'tf.math.square', (['self.beta'], {}), '(self.beta)\n', (6370, 6381), True, 'import tensorflow as tf\n'), ((6511, 6551), 'tensorflow.reduce_sum', 'tf.reduce_sum', (['self.weights_intermediate'], {}), '(self.weights_intermediate)\n', (6524, 6551), True, 'import tensorflow as tf\n'), ((6704, 6728), 'tensorflow.reduce_mean', 'tf.reduce_mean', (['f1_score'], {}), '(f1_score)\n', (6718, 6728), True, 'import tensorflow as tf\n'), ((22764, 22799), 'tensorflow.constant_initializer', 'tf.constant_initializer', (['threshold_'], {}), '(threshold_)\n', (22787, 22799), True, 'import tensorflow as tf\n'), ((23089, 23129), 'tensorflow.gather', 'tf.gather', (['self.thresh_vec', 'argmax_layer'], {}), '(self.thresh_vec, argmax_layer)\n', (23098, 23129), True, 'import tensorflow as tf\n'), ((23170, 23216), 'tensorflow.keras.backend.max', 'tf.keras.backend.max', (['confidence_layer'], {'axis': '(2)'}), '(confidence_layer, axis=2)\n', (23190, 23216), True, 'import tensorflow as tf\n'), ((23744, 23808), 'tensorflow.keras.backend.constant', 'tf.keras.backend.constant', (['default_ind'], {'dtype': 'argmax_layer.dtype'}), '(default_ind, dtype=argmax_layer.dtype)\n', (23769, 23808), True, 'import tensorflow as tf\n'), ((26596, 26714), 'tensorflow.keras.layers.Conv1D', 'tf.keras.layers.Conv1D', ([], {'filters': 'fil', 'kernel_size': "self._parameters['size_conv']", 'activation': '"""relu"""', 'padding': '"""same"""'}), "(filters=fil, kernel_size=self._parameters[\n 'size_conv'], activation='relu', padding='same')\n", (26618, 26714), True, 'import tensorflow as tf\n'), ((27012, 27071), 'tensorflow.keras.layers.BatchNormalization', 'tf.keras.layers.BatchNormalization', ([], {'fused': '(False)', 'scale': '(True)'}), '(fused=False, scale=True)\n', (27046, 27071), True, 'import tensorflow as tf\n'), ((27209, 27261), 'tensorflow.keras.layers.Dense', 'tf.keras.layers.Dense', ([], {'units': 'size', 'activation': '"""relu"""'}), "(units=size, activation='relu')\n", (27230, 27261), True, 'import tensorflow as tf\n'), ((32588, 32724), 'sys.stdout.write', 'sys.stdout.write', (["('\\rEPOCH %d, batch_id %d: loss: %f - acc: %f - f1_score %f' % (self.\n _epoch_id, batch_id, *model_results[1:]))"], {}), "(\n '\\rEPOCH %d, batch_id %d: loss: %f - acc: %f - f1_score %f' % (self.\n _epoch_id, batch_id, *model_results[1:]))\n", (32604, 32724), False, 'import sys\n'), ((33399, 33410), 'time.time', 'time.time', ([], {}), '()\n', (33408, 33410), False, 'import time\n'), ((34923, 34948), 'numpy.argmax', 'np.argmax', (['y_val'], {'axis': '(-1)'}), '(y_val, axis=-1)\n', (34932, 34948), True, 'import numpy as np\n'), ((35051, 35138), 'sys.stdout.write', 'sys.stdout.write', (["('\\rEPOCH %g, validation_batch_id %d' % (self._epoch_id, batch_id))"], {}), "('\\rEPOCH %g, validation_batch_id %d' % (self._epoch_id,\n batch_id))\n", (35067, 35138), False, 'import sys\n'), ((37283, 37315), 'tensorflow.convert_to_tensor', 'tf.convert_to_tensor', (['batch_data'], {}), '(batch_data)\n', (37303, 37315), True, 'import tensorflow as tf\n'), ((5083, 5097), 'tensorflow.abs', 'tf.abs', (['y_pred'], {}), '(y_pred)\n', (5089, 5097), True, 'import tensorflow as tf\n'), ((5391, 5423), 'tensorflow.expand_dims', 'tf.expand_dims', (['sample_weight', '(1)'], {}), '(sample_weight, 1)\n', (5405, 5423), True, 'import tensorflow as tf\n'), ((23422, 23495), 'tensorflow.keras.backend.greater_equal', 'tf.keras.backend.greater_equal', (['confidence_max_layer', 'threshold_at_argmax'], {}), '(confidence_max_layer, threshold_at_argmax)\n', (23452, 23495), True, 'import tensorflow as tf\n'), ((26841, 26893), 'tensorflow.keras.layers.Dropout', 'tf.keras.layers.Dropout', (["self._parameters['dropout']"], {}), "(self._parameters['dropout'])\n", (26864, 26893), True, 'import tensorflow as tf\n'), ((27360, 27412), 'tensorflow.keras.layers.Dropout', 'tf.keras.layers.Dropout', (["self._parameters['dropout']"], {}), "(self._parameters['dropout'])\n", (27383, 27412), True, 'import tensorflow as tf\n'), ((24043, 24081), 'tensorflow.subtract', 'tf.subtract', (['argmax_layer', 'bg_label_tf'], {}), '(argmax_layer, bg_label_tf)\n', (24054, 24081), True, 'import tensorflow as tf\n')]
from PyQt5.QtWidgets import QLabel, QWidget, QGridLayout, QCheckBox, QGroupBox from InftyDoubleSpinBox import InftyDoubleSpinBox from PyQt5.QtCore import pyqtSignal, Qt import helplib as hl import numpy as np class dataControlWidget(QGroupBox): showErrorBars_changed = pyqtSignal(bool) ignoreFirstPoint_changed = pyqtSignal(bool) data_changed = pyqtSignal(bool, bool) data_shift = pyqtSignal(np.float64) load_fits = pyqtSignal(list) load_view = pyqtSignal(str) load_meta = pyqtSignal(str) fit_on_startup = pyqtSignal() SHOW_ERROR_BARS = "Show error bars" SHOW_ERROR_BARS_NOT_LOADED = "Show error bars (could not be calculated)" def __init__(self): QWidget.__init__(self) self.setTitle('Data Settings') self.__lblEnergyShift = QLabel("Energy Shift:") self.__dsbEnergyShift = InftyDoubleSpinBox() self.__dsbEnergyShift.editingFinished.connect(self.__energyShiftChanged) self.__dsbEnergyShift.setSingleStep(0.01) self.__chkShowErrorBars = QCheckBox(self.SHOW_ERROR_BARS_NOT_LOADED) self.__chkShowErrorBars.stateChanged.connect(self.__chkShowErrorBars_changed) self.__chkIgnoreFirstPoint = QCheckBox('Ignore first data point.') self.__chkIgnoreFirstPoint.stateChanged.connect(self.__chkIgnoreFirstPoint_changed) self.__mainLayout = QGridLayout() self.setLayout(self.__mainLayout) self.__mainLayout.setAlignment(Qt.AlignTop) self.__mainLayout.addWidget(self.__lblEnergyShift, 0, 0) self.__mainLayout.addWidget(self.__dsbEnergyShift, 0, 1) self.__mainLayout.addWidget(self.__chkShowErrorBars, 1, 0, 1, 2) self.__mainLayout.addWidget(self.__chkIgnoreFirstPoint, 2, 0, 1, 2) self.__chkIgnoreFirstPoint.setVisible(False) self.reset(False) def reset(self, enable): self.__data = None self.__all_data = None self.__stdErrors = None self.__chkShowErrorBars.setCheckable(True) self.__chkShowErrorBars.setChecked(False) self.__chkShowErrorBars.setEnabled(False) self.__chkIgnoreFirstPoint.setCheckable(True) self.__chkIgnoreFirstPoint.setChecked(False) self.__chkIgnoreFirstPoint.setEnabled(False) self.setEnergyShift(0.0) self.__prevShift = 0.0 self.setEnabled(enable) def __chkShowErrorBars_changed(self, state): self.__chkShowErrorBars.setCheckState(state) self.showErrorBars_changed.emit(self.getShowErrorBars()) def __chkIgnoreFirstPoint_changed(self, state): self.__chkIgnoreFirstPoint.setCheckState(state) self.ignoreFirstPoint_changed.emit(self.getIgnoreFirstPoint()) def __energyShiftChanged(self): self.cause_shift() def cause_shift(self): energyShift = self.__dsbEnergyShift.value() increment = energyShift - self.__prevShift self.__prevShift = energyShift self.data_shift.emit(increment) self.data_changed.emit(self.getShowErrorBars(), self.getIgnoreFirstPoint()) # def setData(self, data): # self.__data = data def getData(self): first_point = 0 if self.getIgnoreFirstPoint(): first_point = 1 return self.__data[first_point:,] def getEnergyShift(self): return (self.__dsbEnergyShift.value()) def setEnergyShift(self, value): #increment = self.__dsbEnergyShift.value() - value increment = value - self.__dsbEnergyShift.value() self.__dsbEnergyShift.setValue(value) #self.__shiftData(increment) #self.data_shift.emit(increment) def __shiftData(self, increment): try: if self.__data is not None: for set in self.__data: set[0] += increment except Exception as e: print(e) def getStdErrors(self): if self.__stdErrors is not None: first_point = 0 if self.getIgnoreFirstPoint(): first_point = 1 return self.__stdErrors[first_point:] else: return None def getMax_Energy(self): if self.getData() is not None: return self.getData()[-1][0] else: return None def getMin_Energy(self): if self.getData() is not None: return self.getData()[0][0] else: return None def getShowErrorBars(self): return self.__chkShowErrorBars.isChecked() def setShowErrorBars(self, value): self.__chkShowErrorBars.setChecked(value) def getIgnoreFirstPoint(self): return self.__chkIgnoreFirstPoint.isChecked() def setIgnoreFirstPoint(self, value): self.__chkIgnoreFirstPoint.setChecked(value) def hasStdErrors(self): return self.__stdErrors is not None def loadFile(self, fileName, id_string): self.__all_data, self.__stdErrors, (fit_strings, view_string, data_string, meta_string), id_found =\ hl.readFileForFitsDataAndStdErrorAndMetaData(fileName, id_string) #we need a copy to not save any altered data! self.__data = (self.__all_data[:, 0:2]).copy() if len(self.__data) <= 1: raise Exception("Not enough data in file!") if self.hasStdErrors(): self.__chkShowErrorBars.setText(self.SHOW_ERROR_BARS) else: self.__chkShowErrorBars.setText(self.SHOW_ERROR_BARS_NOT_LOADED) self.__chkShowErrorBars.setEnabled(self.hasStdErrors()) self.__chkShowErrorBars.setChecked(self.hasStdErrors()) self.__chkIgnoreFirstPoint.setEnabled(True) self.data_changed.emit(self.hasStdErrors(), self.getIgnoreFirstPoint()) self.load_fits.emit(fit_strings) self.load_view.emit(view_string) self.load_meta.emit(meta_string) self.load_from_data_string(data_string) self.cause_shift() self.fit_on_startup.emit() return id_found def load_from_data_string(self, data_string): if data_string is not None: split_string = data_string.split('\v') for i in range(0, len(split_string)): item = split_string[i].split('=') if len(item) == 2: if (item[0] == 'egs'): self.setEnergyShift(np.float64(item[1])) elif item[0] == 'seb': if item[1] == '1' or item[1] == 'True': self.setShowErrorBars(True) elif item[1] == '0' or item[1] == 'False': self.setShowErrorBars(False) elif item[0] == 'ifd': if item[1] == '1' or item[1] == 'True': self.setIgnoreFirstPoint(True) elif item[1] == '0' or item[1] == 'False': self.setIgnoreFirstPoint(False) def get_data_string(self): return 'egs=' + str(self.getEnergyShift()) + '\vseb=' + str(self.getShowErrorBars()) +\ '\vifd=' + str(self.getIgnoreFirstPoint()) def saveFile(self, fileName, id_string, fit_strings, view_string, data_string, meta_string): hl.saveFilewithMetaData(id_string, fileName, self.__all_data, (fit_strings, view_string, data_string, meta_string))
[ "PyQt5.QtCore.pyqtSignal", "InftyDoubleSpinBox.InftyDoubleSpinBox", "helplib.saveFilewithMetaData", "numpy.float64", "PyQt5.QtWidgets.QWidget.__init__", "PyQt5.QtWidgets.QGridLayout", "PyQt5.QtWidgets.QLabel", "helplib.readFileForFitsDataAndStdErrorAndMetaData", "PyQt5.QtWidgets.QCheckBox" ]
[((274, 290), 'PyQt5.QtCore.pyqtSignal', 'pyqtSignal', (['bool'], {}), '(bool)\n', (284, 290), False, 'from PyQt5.QtCore import pyqtSignal, Qt\n'), ((322, 338), 'PyQt5.QtCore.pyqtSignal', 'pyqtSignal', (['bool'], {}), '(bool)\n', (332, 338), False, 'from PyQt5.QtCore import pyqtSignal, Qt\n'), ((358, 380), 'PyQt5.QtCore.pyqtSignal', 'pyqtSignal', (['bool', 'bool'], {}), '(bool, bool)\n', (368, 380), False, 'from PyQt5.QtCore import pyqtSignal, Qt\n'), ((398, 420), 'PyQt5.QtCore.pyqtSignal', 'pyqtSignal', (['np.float64'], {}), '(np.float64)\n', (408, 420), False, 'from PyQt5.QtCore import pyqtSignal, Qt\n'), ((437, 453), 'PyQt5.QtCore.pyqtSignal', 'pyqtSignal', (['list'], {}), '(list)\n', (447, 453), False, 'from PyQt5.QtCore import pyqtSignal, Qt\n'), ((470, 485), 'PyQt5.QtCore.pyqtSignal', 'pyqtSignal', (['str'], {}), '(str)\n', (480, 485), False, 'from PyQt5.QtCore import pyqtSignal, Qt\n'), ((502, 517), 'PyQt5.QtCore.pyqtSignal', 'pyqtSignal', (['str'], {}), '(str)\n', (512, 517), False, 'from PyQt5.QtCore import pyqtSignal, Qt\n'), ((539, 551), 'PyQt5.QtCore.pyqtSignal', 'pyqtSignal', ([], {}), '()\n', (549, 551), False, 'from PyQt5.QtCore import pyqtSignal, Qt\n'), ((711, 733), 'PyQt5.QtWidgets.QWidget.__init__', 'QWidget.__init__', (['self'], {}), '(self)\n', (727, 733), False, 'from PyQt5.QtWidgets import QLabel, QWidget, QGridLayout, QCheckBox, QGroupBox\n'), ((807, 830), 'PyQt5.QtWidgets.QLabel', 'QLabel', (['"""Energy Shift:"""'], {}), "('Energy Shift:')\n", (813, 830), False, 'from PyQt5.QtWidgets import QLabel, QWidget, QGridLayout, QCheckBox, QGroupBox\n'), ((863, 883), 'InftyDoubleSpinBox.InftyDoubleSpinBox', 'InftyDoubleSpinBox', ([], {}), '()\n', (881, 883), False, 'from InftyDoubleSpinBox import InftyDoubleSpinBox\n'), ((1058, 1100), 'PyQt5.QtWidgets.QCheckBox', 'QCheckBox', (['self.SHOW_ERROR_BARS_NOT_LOADED'], {}), '(self.SHOW_ERROR_BARS_NOT_LOADED)\n', (1067, 1100), False, 'from PyQt5.QtWidgets import QLabel, QWidget, QGridLayout, QCheckBox, QGroupBox\n'), ((1225, 1262), 'PyQt5.QtWidgets.QCheckBox', 'QCheckBox', (['"""Ignore first data point."""'], {}), "('Ignore first data point.')\n", (1234, 1262), False, 'from PyQt5.QtWidgets import QLabel, QWidget, QGridLayout, QCheckBox, QGroupBox\n'), ((1392, 1405), 'PyQt5.QtWidgets.QGridLayout', 'QGridLayout', ([], {}), '()\n', (1403, 1405), False, 'from PyQt5.QtWidgets import QLabel, QWidget, QGridLayout, QCheckBox, QGroupBox\n'), ((5107, 5172), 'helplib.readFileForFitsDataAndStdErrorAndMetaData', 'hl.readFileForFitsDataAndStdErrorAndMetaData', (['fileName', 'id_string'], {}), '(fileName, id_string)\n', (5151, 5172), True, 'import helplib as hl\n'), ((7390, 7509), 'helplib.saveFilewithMetaData', 'hl.saveFilewithMetaData', (['id_string', 'fileName', 'self.__all_data', '(fit_strings, view_string, data_string, meta_string)'], {}), '(id_string, fileName, self.__all_data, (fit_strings,\n view_string, data_string, meta_string))\n', (7413, 7509), True, 'import helplib as hl\n'), ((6493, 6512), 'numpy.float64', 'np.float64', (['item[1]'], {}), '(item[1])\n', (6503, 6512), True, 'import numpy as np\n')]
# This notebook implements a proof-of-principle for # Multi-Agent Common Knowledge Reinforcement Learning (MACKRL) # The entire notebook can be executed online, no need to download anything # http://pytorch.org/ from itertools import chain import torch import torch.nn.functional as F from torch.multiprocessing import Pool, set_start_method, freeze_support try: set_start_method('spawn') except RuntimeError: pass from torch.nn import init from torch.optim import Adam, SGD import numpy as np import matplotlib.pyplot as plt use_cuda = False payoff_values = [] payoff_values.append(torch.tensor([ # payoff values [5, 0, 0, 2, 0], [0, 1, 2, 4, 2], [0, 0, 0, 2, 0], [0, 0, 0, 1, 0], [0, 0, 0, 0, 0], ], dtype=torch.float32) * 0.2) payoff_values.append( torch.tensor([ # payoff values [0, 0, 1, 0, 5], [0, 0, 2, 0, 0], [1, 2, 4, 2, 1], [0, 0, 2, 0, 0], [0, 0, 1, 0, 0], ], dtype=torch.float32) * 0.2) n_agents = 2 n_actions = len(payoff_values[0]) n_states_dec = 5 n_states_joint = 3 n_mix_hidden = 3 p_observation = 0.5 p_ck_noise = [0.0] # Number of gradient steps t_max = 202 # We'll be using a high learning rate, since we have exact gradients lr = 0.05 # DEBUG: 0.05 if exact gradients! optim = 'adam' # You can reduce this number if you are short on time. (Eg. n_trials = 20) #n_trials = 100 # 30 n_trials = 20 #15 #100 std_val = 1.0 # These are the 3 settings we run: MACRKL, Joint-action-learner (always uses CK), # Independent Actor-Critic (always uses decentralised actions selection) labels = ["IAC", "JAL"] p_vec = [0.0, 0.2, 0.4, 0.6, 0.8, 1.0] final_res = [] # # Pair-Controller with 3 input state (no CK, CK & Matrix ID = 0, CK & Matrix ID = 1), n_actions^2 actions for # # joint action + 1 action for delegation to the independent agents. # theta_joint = init.normal_(torch.zeros(n_states_joint, n_actions ** 2 + 1, requires_grad=True), std=0.1) # Produce marginalised policy: pi_pc[0] * pi^a * pi^b + p(u^ab) def p_joint_all(pi_pc, pi_dec): p_joint = pi_pc[1:].view(n_actions, n_actions).clone() pi_a_pi_b = torch.ger(pi_dec[0], pi_dec[1]) p_joint = pi_pc[0] * pi_a_pi_b + p_joint return p_joint def p_joint_all_noise_alt(pi_pcs, pi_dec, p_ck_noise, ck_state): p_none = (1-p_ck_noise) ** 2 # both unnoised p_both = (p_ck_noise) ** 2 # both noised p_one = (1-p_ck_noise) * p_ck_noise # exactly one noised p_marg_ag0_ck1 = pi_pcs[1][1:].view(n_actions, n_actions).clone().sum(dim=0) p_marg_ag0_ck2 = pi_pcs[2][1:].view(n_actions, n_actions).clone().sum(dim=0) p_marg_ag1_ck1 = pi_pcs[1][1:].view(n_actions, n_actions).clone().sum(dim=1) p_marg_ag1_ck2 = pi_pcs[2][1:].view(n_actions, n_actions).clone().sum(dim=1) p_joint_ck0 = pi_pcs[0][1:].view(n_actions, n_actions).clone() p_joint_ck1 = pi_pcs[1][1:].view(n_actions, n_actions).clone() p_joint_ck2 = pi_pcs[2][1:].view(n_actions, n_actions).clone() p_d_ck0 = pi_pcs[0][0] p_d_ck1 = pi_pcs[1][0] p_d_ck2 = pi_pcs[2][0] def make_joint(p1, p2, mode="interval"): """ 1. Pick uniform random variable between [0,1] 2. Do multinomial sampling through contiguous, ordered bucketing for both p1, p2 """ p1 = p1.clone().view(-1) p2 = p2.clone().view(-1) p_final = p1.clone().zero_() if mode == "interval": for i in range(p1.shape[0]): # calculate overlap between the probability distributions low1 = torch.sum(p1[:i]) high1 = low1 + p1[i] low2 = torch.sum(p2[:i]) high2 = low2 + p2[i] if low1 >= low2 and high2 > low1: p_final[i] = torch.min(high1, high2) - low1 pass elif low2 >= low1 and high1 > low2: p_final[i] = torch.min(high1, high2) - low2 else: p_final[i] = 0 return p_final.clone().view(n_actions, n_actions) if ck_state == 0: p_joint = p_joint_ck0 + p_d_ck0 * torch.ger(pi_dec[0], pi_dec[1]) return p_joint # always delegate elif ck_state == 1: p_joint = p_none * p_joint_ck1 + \ p_both * p_joint_ck2 + \ p_one * make_joint(p_joint_ck1, p_joint_ck2) + \ p_one * make_joint(p_joint_ck2, p_joint_ck1) + \ (p_one * p_d_ck1 * p_d_ck2 + p_one * p_d_ck2 * p_d_ck1 + p_both * p_d_ck2 + p_none * p_d_ck1) * torch.ger(pi_dec[0], pi_dec[1]) \ + p_one * p_d_ck1 * (1 - p_d_ck2) * torch.ger(pi_dec[0], p_marg_ag1_ck2) \ + p_one * (1 - p_d_ck2) * p_d_ck1 * torch.ger(p_marg_ag0_ck2, pi_dec[1]) \ + p_one * p_d_ck2 * (1 - p_d_ck1) * torch.ger(pi_dec[0], p_marg_ag1_ck1) \ + p_one * (1 - p_d_ck1) * p_d_ck2 * torch.ger(p_marg_ag0_ck1, pi_dec[1]) return p_joint elif ck_state == 2: p_joint = p_none * p_joint_ck2 + \ p_both * p_joint_ck1 + \ p_one * make_joint(p_joint_ck2, p_joint_ck1) + \ p_one * make_joint(p_joint_ck1, p_joint_ck2) + \ (p_one * p_d_ck2 * p_d_ck1 + p_one * p_d_ck1 * p_d_ck2 + p_both * p_d_ck1 + p_none * p_d_ck2) * torch.ger(pi_dec[0], pi_dec[1]) \ + p_one * p_d_ck2 * (1 - p_d_ck1) * torch.ger(pi_dec[0], p_marg_ag1_ck1) \ + p_one * (1 - p_d_ck1) * p_d_ck2 * torch.ger(p_marg_ag0_ck1, pi_dec[1]) \ + p_one * p_d_ck1 * (1 - p_d_ck2) * torch.ger(pi_dec[0], p_marg_ag1_ck2) \ + p_one * (1 - p_d_ck2) * p_d_ck1 * torch.ger(p_marg_ag0_ck2, pi_dec[1]) return p_joint pass def get_policies(common_knowledge, observations, run, test, thetas_dec, theta_joint, p_ck_noise=0): if test: beta = 100 else: beta = 1 actions = [] pi_dec = [] # common_knowledge decides whether ck_state is informative if common_knowledge == 0: ck_state = 0 else: ck_state = int(observations[0] + 1) if p_ck_noise == 0: pol_vals = theta_joint[ck_state, :].clone() # logits get masked out for independent learner and joint-action-learner # independent learner has a pair controller that always delegates if run == 'JAL': pol_vals[0] = -10 ** 10 elif run == 'IAC': pol_vals[1:] = -10 ** 10 # apply temperature to set testing pi_pc = F.softmax(pol_vals * beta, -1) # calcuate decentralised policies for i in range(n_agents): dec_state = int(observations[i]) pi = F.softmax(thetas_dec[i][dec_state] * beta, -1) pi_dec.append(pi) return pi_pc, pi_dec else: pol_vals = theta_joint.clone() pi_pcs = [] for i in range(n_states_joint): if run == 'JAL': pol_vals[i][0] = -10 ** 10 elif run == 'IAC': pol_vals[i][1:] = -10 ** 10 # apply temperature to set testing pi_pcs.append(F.softmax(pol_vals[i] * beta, -1)) # calcuate decentralised policies for i in range(n_agents): dec_state = int(observations[i]) pi = F.softmax(thetas_dec[i][dec_state] * beta, -1) pi_dec.append(pi) return pi_pcs, pi_dec, ck_state def get_state(common_knowledge, obs_0, obs_1, matrix_id): receives_obs = [obs_0, obs_1] if common_knowledge == 1: observations = np.repeat(matrix_id, 2) else: observations = np.ones((n_agents)) * 2 # for ag in range(n_agents): if receives_obs[ag]: observations[ag] += matrix_id + 1 return common_knowledge, observations, matrix_id # Calculate the expected return: sum_{\tau} P(\tau | pi) R(\tau) def expected_return(p_common, p_observation, thetas, run, test, p_ck_noise=0): thetas_dec = thetas["dec"] theta_joint = thetas["joint"] # Probability of CK p_common_val = [1 - p_common, p_common] # Probability of observation given no CK) p_obs_val = [1 - p_observation, p_observation] # Matrices are chosen 50 / 50 p_matrix = [0.5, 0.5] # p_matrix = [1.0, 0.0] # DEBUG! # Initialise expected return ret_val = 0 for ck in [0, 1]: for matrix_id in [0, 1]: for obs_0 in [0, 1]: for obs_1 in [0, 1]: p_state = p_common_val[ck] * p_obs_val[obs_0] * p_obs_val[obs_1] * p_matrix[matrix_id] common_knowledge, observations, matrix_id = get_state(ck, obs_0, obs_1, matrix_id) # Get final probabilities for joint actions if p_ck_noise==0: pi_pc, pi_dec = get_policies(common_knowledge, observations, run, test, thetas_dec, theta_joint) p_joint_val = p_joint_all(pi_pc, pi_dec) else: pol_vals, pi_dec, ck_state = get_policies(common_knowledge, observations, run, test, thetas_dec, theta_joint, p_ck_noise) p_joint_val = p_joint_all_noise_alt(pol_vals, pi_dec, p_ck_noise, ck_state) # Expected return is just the elementwise product of rewards and action probabilities expected_ret = (p_joint_val * payoff_values[matrix_id]).sum() # Add return from given state ret_val = ret_val + p_state * expected_ret return ret_val def _proc(args): p_common, p_observation, run, p_ck_noise, t_max, n_trials = args results = [] for nt in range(n_trials): print("Run: {} P_CK_NOISE: {} P_common: {} #Trial: {}".format(run, p_ck_noise, p_common, nt)) results_log = np.zeros((t_max // (t_max // 100),)) results_log_test = np.zeros((t_max // (t_max // 100),)) thetas = {} thetas["dec"] = [init.normal_(torch.zeros(n_states_dec, n_actions, requires_grad=True), std=std_val) for i in range(n_agents)] thetas["joint"] = init.normal_(torch.zeros(n_states_joint, n_actions ** 2 + 1, requires_grad=True), std=std_val) params = chain(*[_v if isinstance(_v, (list, tuple)) else [_v] for _v in thetas.values()]) params = list(params) if use_cuda: for param in params: param = param.to("cuda") if optim == 'sgd': optimizer = SGD(params, lr=lr) else: optimizer = Adam(params, lr=lr) for i in range(t_max): if run in ['MACKRL', 'JAL', 'IAC']: loss = - expected_return(p_common, p_observation, thetas, run, False, p_ck_noise) r_s = -loss.data.numpy() optimizer.zero_grad() loss.backward() optimizer.step() if i % (t_max // 100) == 0: if run in ['MACKRL', 'JAL', 'IAC']: r_test = expected_return(p_common, p_observation, thetas, run, True, p_ck_noise) results_log_test[i // (t_max // 100)] = r_test results_log[i // (t_max // 100)] = r_s results.append((results_log_test, results_log)) return results def main(): use_mp = True if use_mp: pool = Pool(processes=2) # Well be appending results to these lists run_results = [] for run in labels: noise_results = [] for pnoise in p_ck_noise: print("Run: {} P_CK_NOISE: {}".format(run, pnoise)) results = pool.map(_proc, [ (pc, p_observation, run, pnoise, t_max, n_trials) for pc in p_vec ]) noise_results.append(results) run_results.append(noise_results) for p_common_id, p_common in enumerate(p_vec): all_res = [] all_res_test = [] for run_id, run in enumerate(labels): for pnoise_id, pnoise in enumerate(p_ck_noise): try: results = run_results[run_id][pnoise_id][p_common_id] except Exception as e: pass all_res_test.append(np.stack([r[0] for r in results], axis=1)) all_res.append(np.stack([r[1] for r in results], axis=1)) final_res.append([all_res_test, all_res]) pool.close() pool.join() else: # Well be appending results to these lists run_results = [] for run in labels: noise_results = [] for pnoise in p_ck_noise: print("Run: {} P_CK_NOISE: {}".format(run, pnoise)) results = [_proc((pc, p_observation, run, pnoise, t_max, n_trials)) for pc in p_vec ] noise_results.append(results) run_results.append(noise_results) for p_common_id, p_common in enumerate(p_vec): all_res = [] all_res_test = [] for run_id, run in enumerate(labels): for pnoise_id, pnoise in enumerate(p_ck_noise): try: results = run_results[run_id][pnoise_id][p_common_id] except Exception as e: pass all_res_test.append(np.stack([r[0] for r in results], axis=1)) all_res.append(np.stack([r[1] for r in results], axis=1)) final_res.append([all_res_test, all_res]) import pickle import uuid import os res_dict = {} res_dict["final_res"] = final_res res_dict["labels"] = labels res_dict["p_ck_noise"] = p_ck_noise res_dict["p_vec"] = p_vec if not os.path.exists(os.path.join(os.path.dirname(os.path.abspath(__file__)), "pickles")): os.makedirs(os.path.join(os.path.dirname(os.path.abspath(__file__)), "pickles")) pickle.dump(res_dict, open(os.path.join(os.path.dirname(os.path.abspath(__file__)), "pickles", "final_res_{}.p".format(uuid.uuid4().hex[:4])), "wb")) plt.figure(figsize=(5, 5)) color = ['b', 'r','g', 'c', 'm', 'y', 'k','b', 'r','g', 'c', 'm', 'y', 'k'] titles = ['Test', 'Train Performance'] for pl in [0,1]: ax = plt.subplot(1, 1, 1) for i in range(len(labels)): for pck, pcknoise in enumerate(p_ck_noise): mean_vals = [] min_vals = [] max_vals = [] for j, p in enumerate( p_vec ): vals = final_res[j][pl] this_mean = np.mean( vals[i*len(p_ck_noise) + pck], 1)[-1] std = np.std(vals[i], 1)[-1]/0.5 low = this_mean-std / (n_trials)**0.5 high = this_mean + std / (n_trials)**0.5 mean_vals.append( this_mean ) min_vals.append( low ) max_vals.append( high ) plt.plot(p_vec, mean_vals, color[(i*len(p_ck_noise) + pck) % len(color)], label = "{} p_ck_noise: {}".format(labels[i], pcknoise)) plt.fill_between(p_vec, min_vals, max_vals, facecolor=color[i], alpha=0.3) plt.xlabel('P(common knowledge)') plt.ylabel('Expected Return') plt.ylim([0.0, 1.01]) plt.xlim([-0.01, 1.01]) ax.set_facecolor((1.0, 1.0, 1.0)) ax.grid(color='k', linestyle='-', linewidth=1) ax.set_title(titles[pl]) plt.legend() plt.xticks([0, 0.5, 1]) plt.yticks([0.5, 0.75, 1]) plt.savefig("MACKRL {}.pdf".format(titles[pl])) plt.show(block=False) if __name__ == "__main__": freeze_support() main()
[ "torch.ger", "matplotlib.pyplot.ylabel", "matplotlib.pyplot.fill_between", "torch.min", "torch.multiprocessing.freeze_support", "torch.sum", "torch.nn.functional.softmax", "numpy.repeat", "matplotlib.pyplot.xlabel", "torch.multiprocessing.Pool", "numpy.stack", "matplotlib.pyplot.yticks", "matplotlib.pyplot.ylim", "torch.multiprocessing.set_start_method", "torch.optim.SGD", "numpy.ones", "matplotlib.pyplot.xticks", "uuid.uuid4", "numpy.std", "matplotlib.pyplot.xlim", "matplotlib.pyplot.legend", "matplotlib.pyplot.show", "torch.optim.Adam", "torch.tensor", "matplotlib.pyplot.figure", "numpy.zeros", "os.path.abspath", "matplotlib.pyplot.subplot", "torch.zeros" ]
[((370, 395), 'torch.multiprocessing.set_start_method', 'set_start_method', (['"""spawn"""'], {}), "('spawn')\n", (386, 395), False, 'from torch.multiprocessing import Pool, set_start_method, freeze_support\n'), ((2125, 2156), 'torch.ger', 'torch.ger', (['pi_dec[0]', 'pi_dec[1]'], {}), '(pi_dec[0], pi_dec[1])\n', (2134, 2156), False, 'import torch\n'), ((14535, 14561), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(5, 5)'}), '(figsize=(5, 5))\n', (14545, 14561), True, 'import matplotlib.pyplot as plt\n'), ((16329, 16345), 'torch.multiprocessing.freeze_support', 'freeze_support', ([], {}), '()\n', (16343, 16345), False, 'from torch.multiprocessing import Pool, set_start_method, freeze_support\n'), ((599, 724), 'torch.tensor', 'torch.tensor', (['[[5, 0, 0, 2, 0], [0, 1, 2, 4, 2], [0, 0, 0, 2, 0], [0, 0, 0, 1, 0], [0, 0,\n 0, 0, 0]]'], {'dtype': 'torch.float32'}), '([[5, 0, 0, 2, 0], [0, 1, 2, 4, 2], [0, 0, 0, 2, 0], [0, 0, 0, \n 1, 0], [0, 0, 0, 0, 0]], dtype=torch.float32)\n', (611, 724), False, 'import torch\n'), ((793, 918), 'torch.tensor', 'torch.tensor', (['[[0, 0, 1, 0, 5], [0, 0, 2, 0, 0], [1, 2, 4, 2, 1], [0, 0, 2, 0, 0], [0, 0,\n 1, 0, 0]]'], {'dtype': 'torch.float32'}), '([[0, 0, 1, 0, 5], [0, 0, 2, 0, 0], [1, 2, 4, 2, 1], [0, 0, 2, \n 0, 0], [0, 0, 1, 0, 0]], dtype=torch.float32)\n', (805, 918), False, 'import torch\n'), ((6659, 6689), 'torch.nn.functional.softmax', 'F.softmax', (['(pol_vals * beta)', '(-1)'], {}), '(pol_vals * beta, -1)\n', (6668, 6689), True, 'import torch.nn.functional as F\n'), ((7710, 7733), 'numpy.repeat', 'np.repeat', (['matrix_id', '(2)'], {}), '(matrix_id, 2)\n', (7719, 7733), True, 'import numpy as np\n'), ((9970, 10006), 'numpy.zeros', 'np.zeros', (['(t_max // (t_max // 100),)'], {}), '((t_max // (t_max // 100),))\n', (9978, 10006), True, 'import numpy as np\n'), ((10034, 10070), 'numpy.zeros', 'np.zeros', (['(t_max // (t_max // 100),)'], {}), '((t_max // (t_max // 100),))\n', (10042, 10070), True, 'import numpy as np\n'), ((11627, 11644), 'torch.multiprocessing.Pool', 'Pool', ([], {'processes': '(2)'}), '(processes=2)\n', (11631, 11644), False, 'from torch.multiprocessing import Pool, set_start_method, freeze_support\n'), ((14720, 14740), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(1)', '(1)', '(1)'], {}), '(1, 1, 1)\n', (14731, 14740), True, 'import matplotlib.pyplot as plt\n'), ((15859, 15892), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""P(common knowledge)"""'], {}), "('P(common knowledge)')\n", (15869, 15892), True, 'import matplotlib.pyplot as plt\n'), ((15901, 15930), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Expected Return"""'], {}), "('Expected Return')\n", (15911, 15930), True, 'import matplotlib.pyplot as plt\n'), ((15939, 15960), 'matplotlib.pyplot.ylim', 'plt.ylim', (['[0.0, 1.01]'], {}), '([0.0, 1.01])\n', (15947, 15960), True, 'import matplotlib.pyplot as plt\n'), ((15969, 15992), 'matplotlib.pyplot.xlim', 'plt.xlim', (['[-0.01, 1.01]'], {}), '([-0.01, 1.01])\n', (15977, 15992), True, 'import matplotlib.pyplot as plt\n'), ((16131, 16143), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (16141, 16143), True, 'import matplotlib.pyplot as plt\n'), ((16152, 16175), 'matplotlib.pyplot.xticks', 'plt.xticks', (['[0, 0.5, 1]'], {}), '([0, 0.5, 1])\n', (16162, 16175), True, 'import matplotlib.pyplot as plt\n'), ((16184, 16210), 'matplotlib.pyplot.yticks', 'plt.yticks', (['[0.5, 0.75, 1]'], {}), '([0.5, 0.75, 1])\n', (16194, 16210), True, 'import matplotlib.pyplot as plt\n'), ((16275, 16296), 'matplotlib.pyplot.show', 'plt.show', ([], {'block': '(False)'}), '(block=False)\n', (16283, 16296), True, 'import matplotlib.pyplot as plt\n'), ((6829, 6875), 'torch.nn.functional.softmax', 'F.softmax', (['(thetas_dec[i][dec_state] * beta)', '(-1)'], {}), '(thetas_dec[i][dec_state] * beta, -1)\n', (6838, 6875), True, 'import torch.nn.functional as F\n'), ((7445, 7491), 'torch.nn.functional.softmax', 'F.softmax', (['(thetas_dec[i][dec_state] * beta)', '(-1)'], {}), '(thetas_dec[i][dec_state] * beta, -1)\n', (7454, 7491), True, 'import torch.nn.functional as F\n'), ((7767, 7784), 'numpy.ones', 'np.ones', (['n_agents'], {}), '(n_agents)\n', (7774, 7784), True, 'import numpy as np\n'), ((10291, 10358), 'torch.zeros', 'torch.zeros', (['n_states_joint', '(n_actions ** 2 + 1)'], {'requires_grad': '(True)'}), '(n_states_joint, n_actions ** 2 + 1, requires_grad=True)\n', (10302, 10358), False, 'import torch\n'), ((10690, 10708), 'torch.optim.SGD', 'SGD', (['params'], {'lr': 'lr'}), '(params, lr=lr)\n', (10693, 10708), False, 'from torch.optim import Adam, SGD\n'), ((10747, 10766), 'torch.optim.Adam', 'Adam', (['params'], {'lr': 'lr'}), '(params, lr=lr)\n', (10751, 10766), False, 'from torch.optim import Adam, SGD\n'), ((3537, 3554), 'torch.sum', 'torch.sum', (['p1[:i]'], {}), '(p1[:i])\n', (3546, 3554), False, 'import torch\n'), ((3615, 3632), 'torch.sum', 'torch.sum', (['p2[:i]'], {}), '(p2[:i])\n', (3624, 3632), False, 'import torch\n'), ((4110, 4141), 'torch.ger', 'torch.ger', (['pi_dec[0]', 'pi_dec[1]'], {}), '(pi_dec[0], pi_dec[1])\n', (4119, 4141), False, 'import torch\n'), ((7267, 7300), 'torch.nn.functional.softmax', 'F.softmax', (['(pol_vals[i] * beta)', '(-1)'], {}), '(pol_vals[i] * beta, -1)\n', (7276, 7300), True, 'import torch.nn.functional as F\n'), ((10130, 10186), 'torch.zeros', 'torch.zeros', (['n_states_dec', 'n_actions'], {'requires_grad': '(True)'}), '(n_states_dec, n_actions, requires_grad=True)\n', (10141, 10186), False, 'import torch\n'), ((15643, 15717), 'matplotlib.pyplot.fill_between', 'plt.fill_between', (['p_vec', 'min_vals', 'max_vals'], {'facecolor': 'color[i]', 'alpha': '(0.3)'}), '(p_vec, min_vals, max_vals, facecolor=color[i], alpha=0.3)\n', (15659, 15717), True, 'import matplotlib.pyplot as plt\n'), ((4965, 5001), 'torch.ger', 'torch.ger', (['p_marg_ag0_ck1', 'pi_dec[1]'], {}), '(p_marg_ag0_ck1, pi_dec[1])\n', (4974, 5001), False, 'import torch\n'), ((14070, 14095), 'os.path.abspath', 'os.path.abspath', (['__file__'], {}), '(__file__)\n', (14085, 14095), False, 'import os\n'), ((14204, 14229), 'os.path.abspath', 'os.path.abspath', (['__file__'], {}), '(__file__)\n', (14219, 14229), False, 'import os\n'), ((14348, 14373), 'os.path.abspath', 'os.path.abspath', (['__file__'], {}), '(__file__)\n', (14363, 14373), False, 'import os\n'), ((3753, 3776), 'torch.min', 'torch.min', (['high1', 'high2'], {}), '(high1, high2)\n', (3762, 3776), False, 'import torch\n'), ((4872, 4908), 'torch.ger', 'torch.ger', (['pi_dec[0]', 'p_marg_ag1_ck1'], {}), '(pi_dec[0], p_marg_ag1_ck1)\n', (4881, 4908), False, 'import torch\n'), ((5807, 5843), 'torch.ger', 'torch.ger', (['p_marg_ag0_ck2', 'pi_dec[1]'], {}), '(p_marg_ag0_ck2, pi_dec[1])\n', (5816, 5843), False, 'import torch\n'), ((12531, 12572), 'numpy.stack', 'np.stack', (['[r[0] for r in results]'], {'axis': '(1)'}), '([r[0] for r in results], axis=1)\n', (12539, 12572), True, 'import numpy as np\n'), ((12609, 12650), 'numpy.stack', 'np.stack', (['[r[1] for r in results]'], {'axis': '(1)'}), '([r[1] for r in results], axis=1)\n', (12617, 12650), True, 'import numpy as np\n'), ((13633, 13674), 'numpy.stack', 'np.stack', (['[r[0] for r in results]'], {'axis': '(1)'}), '([r[0] for r in results], axis=1)\n', (13641, 13674), True, 'import numpy as np\n'), ((13711, 13752), 'numpy.stack', 'np.stack', (['[r[1] for r in results]'], {'axis': '(1)'}), '([r[1] for r in results], axis=1)\n', (13719, 13752), True, 'import numpy as np\n'), ((3894, 3917), 'torch.min', 'torch.min', (['high1', 'high2'], {}), '(high1, high2)\n', (3903, 3917), False, 'import torch\n'), ((4779, 4815), 'torch.ger', 'torch.ger', (['p_marg_ag0_ck2', 'pi_dec[1]'], {}), '(p_marg_ag0_ck2, pi_dec[1])\n', (4788, 4815), False, 'import torch\n'), ((5714, 5750), 'torch.ger', 'torch.ger', (['pi_dec[0]', 'p_marg_ag1_ck2'], {}), '(pi_dec[0], p_marg_ag1_ck2)\n', (5723, 5750), False, 'import torch\n'), ((14500, 14512), 'uuid.uuid4', 'uuid.uuid4', ([], {}), '()\n', (14510, 14512), False, 'import uuid\n'), ((15122, 15140), 'numpy.std', 'np.std', (['vals[i]', '(1)'], {}), '(vals[i], 1)\n', (15128, 15140), True, 'import numpy as np\n'), ((4686, 4722), 'torch.ger', 'torch.ger', (['pi_dec[0]', 'p_marg_ag1_ck2'], {}), '(pi_dec[0], p_marg_ag1_ck2)\n', (4695, 4722), False, 'import torch\n'), ((5621, 5657), 'torch.ger', 'torch.ger', (['p_marg_ag0_ck1', 'pi_dec[1]'], {}), '(p_marg_ag0_ck1, pi_dec[1])\n', (5630, 5657), False, 'import torch\n'), ((4598, 4629), 'torch.ger', 'torch.ger', (['pi_dec[0]', 'pi_dec[1]'], {}), '(pi_dec[0], pi_dec[1])\n', (4607, 4629), False, 'import torch\n'), ((5528, 5564), 'torch.ger', 'torch.ger', (['pi_dec[0]', 'p_marg_ag1_ck1'], {}), '(pi_dec[0], p_marg_ag1_ck1)\n', (5537, 5564), False, 'import torch\n'), ((5440, 5471), 'torch.ger', 'torch.ger', (['pi_dec[0]', 'pi_dec[1]'], {}), '(pi_dec[0], pi_dec[1])\n', (5449, 5471), False, 'import torch\n')]
import time import torch import warnings import numpy as np from tianshou.env import BaseVectorEnv from tianshou.data import Batch, ReplayBuffer,\ ListReplayBuffer from tianshou.utils import MovAvg class Collector(object): """docstring for Collector""" def __init__(self, policy, env, buffer=None, stat_size=100): super().__init__() self.env = env self.env_num = 1 self.collect_step = 0 self.collect_episode = 0 self.collect_time = 0 if buffer is None: self.buffer = ReplayBuffer(100) else: self.buffer = buffer self.policy = policy self.process_fn = policy.process_fn self._multi_env = isinstance(env, BaseVectorEnv) self._multi_buf = False # True if buf is a list # need multiple cache buffers only if storing in one buffer self._cached_buf = [] if self._multi_env: self.env_num = len(env) if isinstance(self.buffer, list): assert len(self.buffer) == self.env_num, \ 'The number of data buffer does not match the number of ' \ 'input env.' self._multi_buf = True elif isinstance(self.buffer, ReplayBuffer): self._cached_buf = [ ListReplayBuffer() for _ in range(self.env_num)] else: raise TypeError('The buffer in data collector is invalid!') self.reset_env() self.reset_buffer() # state over batch is either a list, an np.ndarray, or a torch.Tensor self.state = None self.step_speed = MovAvg(stat_size) self.episode_speed = MovAvg(stat_size) def reset_buffer(self): if self._multi_buf: for b in self.buffer: b.reset() else: self.buffer.reset() def get_env_num(self): return self.env_num def reset_env(self): self._obs = self.env.reset() self._act = self._rew = self._done = self._info = None if self._multi_env: self.reward = np.zeros(self.env_num) self.length = np.zeros(self.env_num) else: self.reward, self.length = 0, 0 for b in self._cached_buf: b.reset() def seed(self, seed=None): if hasattr(self.env, 'seed'): return self.env.seed(seed) def render(self, **kwargs): if hasattr(self.env, 'render'): return self.env.render(**kwargs) def close(self): if hasattr(self.env, 'close'): self.env.close() def _make_batch(self, data): if isinstance(data, np.ndarray): return data[None] else: return np.array([data]) def collect(self, n_step=0, n_episode=0, render=0): warning_count = 0 if not self._multi_env: n_episode = np.sum(n_episode) start_time = time.time() assert sum([(n_step != 0), (n_episode != 0)]) == 1, \ "One and only one collection number specification permitted!" cur_step = 0 cur_episode = np.zeros(self.env_num) if self._multi_env else 0 reward_sum = 0 length_sum = 0 while True: if warning_count >= 100000: warnings.warn( 'There are already many steps in an episode. ' 'You should add a time limitation to your environment!', Warning) if self._multi_env: batch_data = Batch( obs=self._obs, act=self._act, rew=self._rew, done=self._done, obs_next=None, info=self._info) else: batch_data = Batch( obs=self._make_batch(self._obs), act=self._make_batch(self._act), rew=self._make_batch(self._rew), done=self._make_batch(self._done), obs_next=None, info=self._make_batch(self._info)) result = self.policy(batch_data, self.state) self.state = result.state if hasattr(result, 'state') else None if isinstance(result.act, torch.Tensor): self._act = result.act.detach().cpu().numpy() elif not isinstance(self._act, np.ndarray): self._act = np.array(result.act) else: self._act = result.act obs_next, self._rew, self._done, self._info = self.env.step( self._act if self._multi_env else self._act[0]) if render > 0: self.env.render() time.sleep(render) self.length += 1 self.reward += self._rew if self._multi_env: for i in range(self.env_num): data = { 'obs': self._obs[i], 'act': self._act[i], 'rew': self._rew[i], 'done': self._done[i], 'obs_next': obs_next[i], 'info': self._info[i]} if self._cached_buf: warning_count += 1 self._cached_buf[i].add(**data) elif self._multi_buf: warning_count += 1 self.buffer[i].add(**data) cur_step += 1 else: warning_count += 1 self.buffer.add(**data) cur_step += 1 if self._done[i]: if n_step != 0 or np.isscalar(n_episode) or \ cur_episode[i] < n_episode[i]: cur_episode[i] += 1 reward_sum += self.reward[i] length_sum += self.length[i] if self._cached_buf: cur_step += len(self._cached_buf[i]) self.buffer.update(self._cached_buf[i]) self.reward[i], self.length[i] = 0, 0 if self._cached_buf: self._cached_buf[i].reset() if isinstance(self.state, list): self.state[i] = None elif self.state is not None: if isinstance(self.state[i], dict): self.state[i] = {} else: self.state[i] = self.state[i] * 0 if isinstance(self.state, torch.Tensor): # remove ref count in pytorch (?) self.state = self.state.detach() if sum(self._done): obs_next = self.env.reset(np.where(self._done)[0]) if n_episode != 0: if isinstance(n_episode, list) and \ (cur_episode >= np.array(n_episode)).all() or \ np.isscalar(n_episode) and \ cur_episode.sum() >= n_episode: break else: self.buffer.add( self._obs, self._act[0], self._rew, self._done, obs_next, self._info) cur_step += 1 if self._done: cur_episode += 1 reward_sum += self.reward length_sum += self.length self.reward, self.length = 0, 0 self.state = None obs_next = self.env.reset() if n_episode != 0 and cur_episode >= n_episode: break if n_step != 0 and cur_step >= n_step: break self._obs = obs_next self._obs = obs_next if self._multi_env: cur_episode = sum(cur_episode) duration = time.time() - start_time self.step_speed.add(cur_step / duration) self.episode_speed.add(cur_episode / duration) self.collect_step += cur_step self.collect_episode += cur_episode self.collect_time += duration if isinstance(n_episode, list): n_episode = np.sum(n_episode) else: n_episode = max(cur_episode, 1) return { 'n/ep': cur_episode, 'n/st': cur_step, 'v/st': self.step_speed.get(), 'v/ep': self.episode_speed.get(), 'rew': reward_sum / n_episode, 'len': length_sum / n_episode, } def sample(self, batch_size): if self._multi_buf: if batch_size > 0: lens = [len(b) for b in self.buffer] total = sum(lens) batch_index = np.random.choice( total, batch_size, p=np.array(lens) / total) else: batch_index = np.array([]) batch_data = Batch() for i, b in enumerate(self.buffer): cur_batch = (batch_index == i).sum() if batch_size and cur_batch or batch_size <= 0: batch, indice = b.sample(cur_batch) batch = self.process_fn(batch, b, indice) batch_data.append(batch) else: batch_data, indice = self.buffer.sample(batch_size) batch_data = self.process_fn(batch_data, self.buffer, indice) return batch_data
[ "tianshou.utils.MovAvg", "numpy.isscalar", "numpy.where", "tianshou.data.ReplayBuffer", "time.sleep", "numpy.array", "numpy.zeros", "numpy.sum", "tianshou.data.Batch", "tianshou.data.ListReplayBuffer", "warnings.warn", "time.time" ]
[((1660, 1677), 'tianshou.utils.MovAvg', 'MovAvg', (['stat_size'], {}), '(stat_size)\n', (1666, 1677), False, 'from tianshou.utils import MovAvg\n'), ((1707, 1724), 'tianshou.utils.MovAvg', 'MovAvg', (['stat_size'], {}), '(stat_size)\n', (1713, 1724), False, 'from tianshou.utils import MovAvg\n'), ((2961, 2972), 'time.time', 'time.time', ([], {}), '()\n', (2970, 2972), False, 'import time\n'), ((550, 567), 'tianshou.data.ReplayBuffer', 'ReplayBuffer', (['(100)'], {}), '(100)\n', (562, 567), False, 'from tianshou.data import Batch, ReplayBuffer, ListReplayBuffer\n'), ((2124, 2146), 'numpy.zeros', 'np.zeros', (['self.env_num'], {}), '(self.env_num)\n', (2132, 2146), True, 'import numpy as np\n'), ((2173, 2195), 'numpy.zeros', 'np.zeros', (['self.env_num'], {}), '(self.env_num)\n', (2181, 2195), True, 'import numpy as np\n'), ((2766, 2782), 'numpy.array', 'np.array', (['[data]'], {}), '([data])\n', (2774, 2782), True, 'import numpy as np\n'), ((2922, 2939), 'numpy.sum', 'np.sum', (['n_episode'], {}), '(n_episode)\n', (2928, 2939), True, 'import numpy as np\n'), ((3152, 3174), 'numpy.zeros', 'np.zeros', (['self.env_num'], {}), '(self.env_num)\n', (3160, 3174), True, 'import numpy as np\n'), ((8048, 8059), 'time.time', 'time.time', ([], {}), '()\n', (8057, 8059), False, 'import time\n'), ((8361, 8378), 'numpy.sum', 'np.sum', (['n_episode'], {}), '(n_episode)\n', (8367, 8378), True, 'import numpy as np\n'), ((9082, 9089), 'tianshou.data.Batch', 'Batch', ([], {}), '()\n', (9087, 9089), False, 'from tianshou.data import Batch, ReplayBuffer, ListReplayBuffer\n'), ((3323, 3456), 'warnings.warn', 'warnings.warn', (['"""There are already many steps in an episode. You should add a time limitation to your environment!"""', 'Warning'], {}), "(\n 'There are already many steps in an episode. You should add a time limitation to your environment!'\n , Warning)\n", (3336, 3456), False, 'import warnings\n'), ((3572, 3675), 'tianshou.data.Batch', 'Batch', ([], {'obs': 'self._obs', 'act': 'self._act', 'rew': 'self._rew', 'done': 'self._done', 'obs_next': 'None', 'info': 'self._info'}), '(obs=self._obs, act=self._act, rew=self._rew, done=self._done,\n obs_next=None, info=self._info)\n', (3577, 3675), False, 'from tianshou.data import Batch, ReplayBuffer, ListReplayBuffer\n'), ((4695, 4713), 'time.sleep', 'time.sleep', (['render'], {}), '(render)\n', (4705, 4713), False, 'import time\n'), ((9044, 9056), 'numpy.array', 'np.array', (['[]'], {}), '([])\n', (9052, 9056), True, 'import numpy as np\n'), ((4403, 4423), 'numpy.array', 'np.array', (['result.act'], {}), '(result.act)\n', (4411, 4423), True, 'import numpy as np\n'), ((1334, 1352), 'tianshou.data.ListReplayBuffer', 'ListReplayBuffer', ([], {}), '()\n', (1350, 1352), False, 'from tianshou.data import Batch, ReplayBuffer, ListReplayBuffer\n'), ((5642, 5664), 'numpy.isscalar', 'np.isscalar', (['n_episode'], {}), '(n_episode)\n', (5653, 5664), True, 'import numpy as np\n'), ((6904, 6924), 'numpy.where', 'np.where', (['self._done'], {}), '(self._done)\n', (6912, 6924), True, 'import numpy as np\n'), ((7125, 7147), 'numpy.isscalar', 'np.isscalar', (['n_episode'], {}), '(n_episode)\n', (7136, 7147), True, 'import numpy as np\n'), ((8972, 8986), 'numpy.array', 'np.array', (['lens'], {}), '(lens)\n', (8980, 8986), True, 'import numpy as np\n'), ((7065, 7084), 'numpy.array', 'np.array', (['n_episode'], {}), '(n_episode)\n', (7073, 7084), True, 'import numpy as np\n')]
# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. # SPDX-License-Identifier: CC-BY-4.0 import os import cv2 from collections import namedtuple import imageio from PIL import Image from random import randrange import numpy as np from sklearn.decomposition import PCA from scipy.spatial.distance import pdist, squareform import torch import matplotlib matplotlib.use('Agg') # Required for gif animations import matplotlib as mpl import matplotlib.pyplot as plt import matplotlib.image as image import matplotlib.patches as patches from multimodal_affinities.visualization.vis_handler import VisHandler from multimodal_affinities.visualization.image_utils import resize_image from multimodal_affinities.visualization.colors_util import rgb_hex_to_tuple class PlotsProducer: def __init__(self, document, output_path): # Load background image self.image_path = document.image_path self.img = plt.imread(self.image_path) self.img_opencv = cv2.imread(self.image_path) dpi = 120 mpl.rcParams['figure.dpi'] = dpi height = self.img.shape[0] width = self.img.shape[1] self.figsize = width / float(dpi), height / float(dpi) # Fig size in inches self.document = document self.output_path = output_path if not os.path.exists(output_path): os.makedirs(output_path) def plot_word_boxes_on_image(self): set_of_words = [[word] for word in self.document.get_words()] # list of singleton word lists fig, ax = plt.subplots(1, figsize=self.figsize) monochrome_colors_list = ['#5a5d8f' for _ in self.document.get_words()] self._draw_entity_bounding_boxes(fig=fig, ax=ax, bg_img=self.img, title='', entity_sets=set_of_words, colors_list=monochrome_colors_list) fig.savefig(os.path.join(self.output_path, self.document.basename + '_word_boxes.png')) plt.close(fig) def save_phrase_detection_results(self): set_of_phrases = [[phrase] for phrase in self.document.get_phrases()] # list of singleton phrase lists fig, ax = plt.subplots(1, figsize=self.figsize) self._draw_entity_bounding_boxes(fig=fig, ax=ax, bg_img=self.img, title='Phrase Detection', entity_sets=set_of_phrases) fig.savefig(os.path.join(self.output_path, self.document.basename + '_phrase_detection.png')) plt.close(fig) def save_clustering_results(self, with_title=True, colors_list=None): set_of_clusters = [cluster.words for cluster in self.document.get_clusters()] # list of list of words (clusters) self._save_set_of_clusters(set_of_clusters, with_title, colors_list) def save_clustering_labels(self, clustering_labels, colors_list=None): cluster_ids = np.unique(np.array(clustering_labels)) cluster_id_to_cluster_idx = {cluster_id: idx for idx, cluster_id in enumerate(cluster_ids)} # Converts from list of labels to list of list of words (clusters) set_of_clusters = [[] for _ in range(len(cluster_ids))] for word_idx, word in enumerate(self.document.get_words()): cluster_id = clustering_labels[word_idx] if cluster_id == -1: # Ignore non-clustered words continue cluster_idx = cluster_id_to_cluster_idx[cluster_id] set_of_clusters[cluster_idx].append(word) self._save_set_of_clusters(set_of_clusters, colors_list) def _save_set_of_clusters(self, set_of_clusters, with_title=True, colors_list=None): """ :param document: :param set_of_clusters: list of list of words (clusters) :return: """ output_img = self._draw_entity_bounding_boxes_opencv(bg_img=self.img_opencv, entity_sets=set_of_clusters, colors_list=colors_list) cv2.imwrite(os.path.join(self.output_path, self.document.basename + '_clustering.png'), output_img) @staticmethod def _draw_entity_bounding_boxes_opencv(bg_img, entity_sets, colors_list=None): img_height = bg_img.shape[0] img_width = bg_img.shape[1] if colors_list is None: colors_list = VisHandler.generate_colors_list(amount=len(entity_sets)) face_colors = colors_list edge_colors = VisHandler.generate_darker_palette(colors_list) output_img = bg_img.copy() alpha = 0.8 for set_idx, entities_set in enumerate(entity_sets): face_color = face_colors[set_idx] edge_color = edge_colors[set_idx] for entity in entities_set: x = entity.geometry.left * img_width y = entity.geometry.top * img_height width = entity.geometry.width * img_width height = entity.geometry.height * img_height # writing the text onto the image and returning it rgb_color = rgb_hex_to_tuple(face_color) cv2.rectangle(output_img, (int(x), int(y)), (int(x + width), int(y + height)), (rgb_color[2], rgb_color[1], rgb_color[0]), cv2.FILLED) output_img = cv2.addWeighted(output_img, alpha, bg_img, 1 - alpha, 0) return output_img @staticmethod def _draw_entity_bounding_boxes(fig, ax, bg_img, title, entity_sets, colors_list=None): ax.set_title(title) plt.tick_params(axis='both', which='both', bottom='off', top='off', labelbottom='off', right='off', left='off', labelleft='off') plt.imshow(bg_img) img_height = bg_img.shape[0] img_width = bg_img.shape[1] if colors_list is None: colors_list = VisHandler.generate_colors_list(amount=len(entity_sets)) face_colors = colors_list edge_colors = VisHandler.generate_darker_palette(colors_list) for set_idx, entities_set in enumerate(entity_sets): face_color = face_colors[set_idx] edge_color = edge_colors[set_idx] for entity in entities_set: x = entity.geometry.left * img_width y = entity.geometry.top * img_height width = entity.geometry.width * img_width height = entity.geometry.height * img_height rect = patches.Rectangle((x, y), width, height, linewidth=2, edgecolor=edge_color, facecolor=face_color, alpha=0.4) ax.add_patch(rect) @staticmethod def plot_pca_embedding_space_for_clusters(document, output_path, embedding_property='embedding', title=''): """ Plot 2d PCA visualization of the embedding space according to cluster colors. :param document: Document with clustering results :param embedding_property: Embedding property of words - normally 'embedding' or 'unprojected_embedding' :return: """ if not os.path.exists(output_path): os.makedirs(output_path) words = document.get_words() clusters = document.get_clusters() if len(words) == 0 or getattr(words[0], embedding_property) is None: return if embedding_property == 'unprojected_embedding': embeddings = [] for word in words: unprojected_embedding = torch.cat(word.unprojected_embedding['embeddings'], dim=1) unprojected_embedding = unprojected_embedding.detach().cpu().numpy() embeddings.append(unprojected_embedding) else: embeddings = [getattr(word, embedding_property).detach().cpu().numpy() for word in words] colors_palette = VisHandler.generate_colors_list(amount=len(clusters)) word_to_color = {word: colors_palette[cluster_idx] for cluster_idx, cluster in enumerate(clusters) for word in cluster.words} colors = [word_to_color[word] for word in words] embeddings_array = np.array(embeddings).squeeze() num_pca_comp = 2 embeddings_2d = PCA(n_components=num_pca_comp).fit_transform(embeddings_array) x_list = [embeddings_2d[i, 0] for i in range(embeddings_2d.shape[0])] y_list = [embeddings_2d[i, 1] for i in range(embeddings_2d.shape[0])] fig, ax = plt.subplots(1) plot_title = embedding_property if plot_title != '': plot_title += ': ' + title plt.title(plot_title) plt.scatter(x_list, y_list, c=colors, s=1, alpha=0.8) fig.tight_layout() fig.savefig(os.path.join(output_path, document.basename + '_' + embedding_property + '_pca.png')) plt.close(fig) @staticmethod def _find_k_furthest_words_per_cluster(document, embeddings_2d, k=3): """ Greedy approximation algorithm for finding k furthest neighbour words per cluster. k is expected to be relatively small (< 100) """ words = document.get_words() word_to_embedding_2d_idx = {word: idx for idx, word in enumerate(words)} clusters = document.get_clusters() solution_per_cluster = {} ClusterSolution = namedtuple('ClusterSolution', ['word_indices', 'words']) for cluster in clusters: # Generate cluster pairwise distances matrix all_cluster_embeddings_indices = [word_to_embedding_2d_idx[word] for word in cluster.words] all_cluster_embeddings = np.take(embeddings_2d, all_cluster_embeddings_indices, axis=0) pairwise_distances = pdist(all_cluster_embeddings, metric='euclidean') distances_matrix = squareform(pairwise_distances) # Total distance from selected set so far distances_accumulator = np.zeros(len(cluster.words)) # Sample first point random_index = randrange(len(cluster.words)) # Indices of selected points selected_points = [random_index] # How many points we need to add points_to_calc_count = min(k - 1, len(words) - 1) for _ in range(points_to_calc_count): last_point_selected = selected_points[-1] # Update accumulator with distance collected from last point distances_accumulator += distances_matrix[last_point_selected] # Eliminate last point selected from distance matrix & accumulator distances_matrix[:, random_index] = 0 distances_matrix[random_index, :] = 0 furthrest_point_from_set = np.argmax(distances_accumulator, axis=0) selected_points.append(furthrest_point_from_set) selected_words = [cluster.words[point] for point in selected_points] selected_word_indices = [word_to_embedding_2d_idx[word] for word in selected_words] solution_per_cluster[cluster] = ClusterSolution(word_indices=selected_word_indices, words=selected_words) return solution_per_cluster @staticmethod def _extract_crops_per_cluster_solution(document, solution_per_cluster): """ Extracts crops for each selected word in k-furthest neighbours solution :param document: :param solution_per_cluster: Solution of k-furthest neighbours :return: """ word_indices_to_crops = {} for cluster, cluster_solution in solution_per_cluster.items(): for word_index, word in zip(cluster_solution.word_indices, cluster_solution.words): bbox = word.get_bbox() # left, top, width, height y_min = int(round(bbox[1] * document.height)) y_max = int(round((bbox[1] + bbox[3]) * document.height)) x_min = int(round(bbox[0] * document.width)) x_max = int(round((bbox[0] + bbox[2]) * document.width)) image_of_crop = document.image[max(0, y_min):min(y_max, document.height), max(0, x_min):min(x_max, document.width), :] pil_image = Image.fromarray(image_of_crop[...,::-1]) # BGR to RGB pil_image = pil_image.convert('RGB') word_indices_to_crops[word_index] = pil_image return word_indices_to_crops @staticmethod def _space_out_crops(indices_to_crops, words, x_list, y_list, dist_from_pt=0.01, height=0.02): """ Calculates the positions and dimensions of crop images on the embedding space plot. Makes sure crops don't overlay each other. This method assumes a small number of crops (< 1000) and performs a naive linear comparison for each crop. :param indices_to_crops: dict of word index (by order in doc) to PIL crop :param words: List of words :param x_list: List of corresponding pt x positions :param y_list: List of corresponding pt y positions :param dist_from_pt: How far in (x-y) coords the crop should be placed from the plot :param height: Height of the crop, in figure axes dimensions (note: for normalized pca space: -1 to 1) :return: indices_to_extents: dict of word index to extens describing position and dimensions of each crop. Crops are shifted so they don't cover each other, """ indices_to_extents = {} MatplotExtent = namedtuple('matplot_extent', ['left', 'right', 'bottom', 'top']) is_extent_x_intersect = lambda e1, e2: not (e1.right < e2.left or e1.left > e2.right) is_extent_y_intersect = lambda e1, e2: not (e1.top > e2.bottom or e1.bottom < e2.top) is_extent_intersect = lambda e1, e2: is_extent_x_intersect(e1, e2) and is_extent_y_intersect(e1, e2) min_x, max_x = min(x_list), max(x_list) min_y, max_y = min(y_list), max(y_list) height = (max_y - min_y) * height dist_from_pt = min(max_y - min_y, max_x - min_x) * dist_from_pt for point_index, crop in indices_to_crops.items(): word_aspect_ratio = words[point_index].geometry.width / words[point_index].geometry.height axis_ratio = (max_x-min_x) / (max_y-min_y) / 2 width = height * word_aspect_ratio * axis_ratio left, right = x_list[point_index] + dist_from_pt, x_list[point_index] + dist_from_pt + width bottom, top = y_list[point_index] + dist_from_pt + height, y_list[point_index] + dist_from_pt overlap = True while overlap: overlap = False extent = MatplotExtent(left, right, bottom, top) for other_crop_extent in indices_to_extents.values(): other_left, other_right, other_bottom, other_top = other_crop_extent spaceout_margin = dist_from_pt / 2 if is_extent_intersect(extent, other_crop_extent): overlap = True # shift below if other_bottom <= top <= other_top: top = other_bottom + spaceout_margin bottom = top + height else: # shift above bottom = other_top - spaceout_margin top = bottom - height continue indices_to_extents[point_index] = extent return indices_to_extents def plot_clusters_and_embedding_space_with_crops(self, document, output_path, crops_per_cluster=3, embedding_properties=['embedding', 'unprojected_embedding'], unprojected_caption=None): """ Plot 2d PCA visualization of the embedding space according to cluster colors. :param document: Document with clustering results :param embedding_property: Embedding property of words - normally 'embedding' or 'unprojected_embedding' :return: """ if not os.path.exists(output_path): os.makedirs(output_path) words = document.get_words() clusters = document.get_clusters() if len(words) == 0 or \ all([getattr(words[0], embedding_property) is None for embedding_property in embedding_properties]): return colors_palette = VisHandler.generate_colors_list(amount=len(clusters)) word_to_color = {word: colors_palette[cluster_idx] for cluster_idx, cluster in enumerate(clusters) for word in cluster.words} colors = [word_to_color[word] for word in words] # Initially empty, the first embedding property we process will set those for all figures selected_word_crops_per_cluster = None indices_to_crops = None for embedding_property in embedding_properties: if embedding_property == 'unprojected_embedding': # Can't handle tuples, concat them embeddings = [] for word in words: unprojected_embedding = torch.cat(word.unprojected_embedding['embeddings'], dim=1) unprojected_embedding = unprojected_embedding.detach().cpu().numpy() embeddings.append(unprojected_embedding) else: embeddings = [getattr(word, embedding_property).detach().cpu().numpy() for word in words] embeddings_array = np.array(embeddings).squeeze() num_pca_comp = 2 embeddings_2d = PCA(n_components=num_pca_comp).fit_transform(embeddings_array) x_list = [embeddings_2d[i, 0] for i in range(embeddings_2d.shape[0])] y_list = [embeddings_2d[i, 1] for i in range(embeddings_2d.shape[0])] fig, ax = plt.subplots(1) if crops_per_cluster > 0: if selected_word_crops_per_cluster is None and indices_to_crops is None: # Calculate per first attribute selected_word_crops_per_cluster = PlotsProducer._find_k_furthest_words_per_cluster(document, embeddings_2d, k=crops_per_cluster) indices_to_crops = PlotsProducer._extract_crops_per_cluster_solution(document, selected_word_crops_per_cluster) indices_to_extents = PlotsProducer._space_out_crops(indices_to_crops, words, x_list, y_list, dist_from_pt=0.02, height=0.04) # Plot crop images for point_index, crop in indices_to_crops.items(): extent = indices_to_extents[point_index] rect = patches.Rectangle((extent.left, extent.top), extent.right-extent.left, extent.bottom-extent.top, linewidth=0.5, edgecolor="black", facecolor="none", zorder=5) ax.imshow(crop, aspect='auto', alpha=0.65, extent=extent, zorder=4) ax.add_patch(rect) # Plot points if embedding_property == 'unprojected_embedding': plot_title = 'Initial unprojected embeddings, pre training (PCA)' else: if unprojected_caption is None: plot_title = 'Projected embeddings, post training (PCA)' else: plot_title = unprojected_caption plt.title(plot_title) plt.scatter(x_list, y_list, c=colors, s=18, alpha=1.0, edgecolors='black', linewidth=1.0, zorder=3) plt.tick_params(axis='both', which='both', bottom='off', top='off', labelbottom='off', right='off', left='off', labelleft='off') ax.get_xaxis().set_visible(False) ax.get_yaxis().set_visible(False) fig.tight_layout() fig.savefig(os.path.join(output_path, document.basename + '_' + embedding_property + '_pca.png')) plt.close(fig) # Finally plot clusters on original image self.save_clustering_results(with_title=False, colors_list=colors_palette) return colors_palette @staticmethod def animate_pca_embedding_space_for_clusters(document, output_path, embeddings_history, colors_palette=None): """ Plot 2d PCA visualization of the embedding space according to cluster colors. :param document: Document with clustering results :param embedding_property: Embedding property of words - normally 'embedding' or 'unprojected_embedding' :return: """ if not os.path.exists(output_path): os.makedirs(output_path) words = document.get_words() clusters = document.get_clusters() if len(words) == 0 or embeddings_history is None or len(embeddings_history) == 0: return if colors_palette is None: colors_palette = VisHandler.generate_colors_list(amount=len(clusters)) word_to_color = {word: colors_palette[cluster_idx] for cluster_idx, cluster in enumerate(clusters) for word in cluster.words} colors = [word_to_color[word] for word in words] scatter_data = [] for state_idx, embeddings_state in enumerate(embeddings_history): epoch = state_idx + 1 normalized_embeddings_dict = embeddings_state['normalized'] unnormalized_embeddings_dict = embeddings_state['unnormalized'] if len(normalized_embeddings_dict) > 0: normalized_embeddings = [normalized_embeddings_dict[word].detach().cpu().numpy() for word in words] chosen_embedding = normalized_embeddings elif len(unnormalized_embeddings_dict) > 0: unnormalized_embeddings = [unnormalized_embeddings_dict[word].detach().cpu().numpy() for word in words] chosen_embedding = unnormalized_embeddings else: return embeddings_array = np.array(chosen_embedding).squeeze() num_pca_comp = 2 embeddings_2d = PCA(n_components=num_pca_comp).fit_transform(embeddings_array) x_list = [embeddings_2d[i, 0] for i in range(embeddings_2d.shape[0])] y_list = [embeddings_2d[i, 1] for i in range(embeddings_2d.shape[0])] push_pull_ratio = embeddings_state['push_pull_ratio'] scatter_data.append((epoch, x_list, y_list, push_pull_ratio)) min_x = min(min(scatter_data, key=lambda entry: min(entry[1]))[1]) max_x = max(max(scatter_data, key=lambda entry: max(entry[1]))[1]) min_y = min(min(scatter_data, key=lambda entry: min(entry[2]))[2]) max_y = max(max(scatter_data, key=lambda entry: max(entry[2]))[2]) padding_factor = 0.1 min_x -= (max_x - min_x) * padding_factor max_x += (max_x - min_x) * padding_factor min_y -= (max_y - min_y) * padding_factor max_y += (max_y - min_y) * padding_factor frames = [] for epoch, x_list, y_list, push_pull_ratio in scatter_data: fig, ax = plt.subplots(1) ax.set_xlim(min_x, max_x) ax.set_ylim(min_y, max_y) plot_title = 'Projected embeddings at epoch #' + str(epoch) + ' (PCA)' plt.title(plot_title) plt.scatter(x_list, y_list, c=colors, s=18, alpha=1.0, edgecolors='black', linewidth=1.0, zorder=3) plt.tick_params(axis='both', which='both', bottom='off', top='off', labelbottom='off', right='off', left='off', labelleft='off') ax.get_xaxis().set_visible(False) ax.get_yaxis().set_visible(False) # Used to return the plot as an image rray fig.tight_layout() fig.canvas.draw() # draw the canvas, cache the renderer output_frame = np.frombuffer(fig.canvas.tostring_rgb(), dtype='uint8') output_frame = output_frame.reshape(fig.canvas.get_width_height()[::-1] + (3,)) frames.append(output_frame) imageio.mimsave(os.path.join(output_path, document.basename + '_embeddings_history.gif'), frames, fps=2)
[ "numpy.array", "matplotlib.pyplot.imshow", "os.path.exists", "sklearn.decomposition.PCA", "matplotlib.pyplot.close", "cv2.addWeighted", "numpy.take", "matplotlib.pyplot.scatter", "collections.namedtuple", "scipy.spatial.distance.squareform", "matplotlib.use", "scipy.spatial.distance.pdist", "matplotlib.pyplot.tick_params", "numpy.argmax", "multimodal_affinities.visualization.colors_util.rgb_hex_to_tuple", "matplotlib.pyplot.title", "cv2.imread", "torch.cat", "PIL.Image.fromarray", "matplotlib.patches.Rectangle", "os.makedirs", "matplotlib.pyplot.imread", "multimodal_affinities.visualization.vis_handler.VisHandler.generate_darker_palette", "os.path.join", "matplotlib.pyplot.subplots" ]
[((370, 391), 'matplotlib.use', 'matplotlib.use', (['"""Agg"""'], {}), "('Agg')\n", (384, 391), False, 'import matplotlib\n'), ((939, 966), 'matplotlib.pyplot.imread', 'plt.imread', (['self.image_path'], {}), '(self.image_path)\n', (949, 966), True, 'import matplotlib.pyplot as plt\n'), ((993, 1020), 'cv2.imread', 'cv2.imread', (['self.image_path'], {}), '(self.image_path)\n', (1003, 1020), False, 'import cv2\n'), ((1551, 1588), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(1)'], {'figsize': 'self.figsize'}), '(1, figsize=self.figsize)\n', (1563, 1588), True, 'import matplotlib.pyplot as plt\n'), ((2042, 2056), 'matplotlib.pyplot.close', 'plt.close', (['fig'], {}), '(fig)\n', (2051, 2056), True, 'import matplotlib.pyplot as plt\n'), ((2233, 2270), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(1)'], {'figsize': 'self.figsize'}), '(1, figsize=self.figsize)\n', (2245, 2270), True, 'import matplotlib.pyplot as plt\n'), ((2550, 2564), 'matplotlib.pyplot.close', 'plt.close', (['fig'], {}), '(fig)\n', (2559, 2564), True, 'import matplotlib.pyplot as plt\n'), ((4550, 4597), 'multimodal_affinities.visualization.vis_handler.VisHandler.generate_darker_palette', 'VisHandler.generate_darker_palette', (['colors_list'], {}), '(colors_list)\n', (4584, 4597), False, 'from multimodal_affinities.visualization.vis_handler import VisHandler\n'), ((5398, 5454), 'cv2.addWeighted', 'cv2.addWeighted', (['output_img', 'alpha', 'bg_img', '(1 - alpha)', '(0)'], {}), '(output_img, alpha, bg_img, 1 - alpha, 0)\n', (5413, 5454), False, 'import cv2\n'), ((5630, 5762), 'matplotlib.pyplot.tick_params', 'plt.tick_params', ([], {'axis': '"""both"""', 'which': '"""both"""', 'bottom': '"""off"""', 'top': '"""off"""', 'labelbottom': '"""off"""', 'right': '"""off"""', 'left': '"""off"""', 'labelleft': '"""off"""'}), "(axis='both', which='both', bottom='off', top='off',\n labelbottom='off', right='off', left='off', labelleft='off')\n", (5645, 5762), True, 'import matplotlib.pyplot as plt\n'), ((5816, 5834), 'matplotlib.pyplot.imshow', 'plt.imshow', (['bg_img'], {}), '(bg_img)\n', (5826, 5834), True, 'import matplotlib.pyplot as plt\n'), ((6081, 6128), 'multimodal_affinities.visualization.vis_handler.VisHandler.generate_darker_palette', 'VisHandler.generate_darker_palette', (['colors_list'], {}), '(colors_list)\n', (6115, 6128), False, 'from multimodal_affinities.visualization.vis_handler import VisHandler\n'), ((8798, 8813), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(1)'], {}), '(1)\n', (8810, 8813), True, 'import matplotlib.pyplot as plt\n'), ((8930, 8951), 'matplotlib.pyplot.title', 'plt.title', (['plot_title'], {}), '(plot_title)\n', (8939, 8951), True, 'import matplotlib.pyplot as plt\n'), ((8960, 9013), 'matplotlib.pyplot.scatter', 'plt.scatter', (['x_list', 'y_list'], {'c': 'colors', 's': '(1)', 'alpha': '(0.8)'}), '(x_list, y_list, c=colors, s=1, alpha=0.8)\n', (8971, 9013), True, 'import matplotlib.pyplot as plt\n'), ((9156, 9170), 'matplotlib.pyplot.close', 'plt.close', (['fig'], {}), '(fig)\n', (9165, 9170), True, 'import matplotlib.pyplot as plt\n'), ((9649, 9705), 'collections.namedtuple', 'namedtuple', (['"""ClusterSolution"""', "['word_indices', 'words']"], {}), "('ClusterSolution', ['word_indices', 'words'])\n", (9659, 9705), False, 'from collections import namedtuple\n'), ((13820, 13884), 'collections.namedtuple', 'namedtuple', (['"""matplot_extent"""', "['left', 'right', 'bottom', 'top']"], {}), "('matplot_extent', ['left', 'right', 'bottom', 'top'])\n", (13830, 13884), False, 'from collections import namedtuple\n'), ((1324, 1351), 'os.path.exists', 'os.path.exists', (['output_path'], {}), '(output_path)\n', (1338, 1351), False, 'import os\n'), ((1365, 1389), 'os.makedirs', 'os.makedirs', (['output_path'], {}), '(output_path)\n', (1376, 1389), False, 'import os\n'), ((1958, 2032), 'os.path.join', 'os.path.join', (['self.output_path', "(self.document.basename + '_word_boxes.png')"], {}), "(self.output_path, self.document.basename + '_word_boxes.png')\n", (1970, 2032), False, 'import os\n'), ((2460, 2545), 'os.path.join', 'os.path.join', (['self.output_path', "(self.document.basename + '_phrase_detection.png')"], {}), "(self.output_path, self.document.basename + '_phrase_detection.png'\n )\n", (2472, 2545), False, 'import os\n'), ((2947, 2974), 'numpy.array', 'np.array', (['clustering_labels'], {}), '(clustering_labels)\n', (2955, 2974), True, 'import numpy as np\n'), ((4113, 4187), 'os.path.join', 'os.path.join', (['self.output_path', "(self.document.basename + '_clustering.png')"], {}), "(self.output_path, self.document.basename + '_clustering.png')\n", (4125, 4187), False, 'import os\n'), ((7415, 7442), 'os.path.exists', 'os.path.exists', (['output_path'], {}), '(output_path)\n', (7429, 7442), False, 'import os\n'), ((7456, 7480), 'os.makedirs', 'os.makedirs', (['output_path'], {}), '(output_path)\n', (7467, 7480), False, 'import os\n'), ((9062, 9150), 'os.path.join', 'os.path.join', (['output_path', "(document.basename + '_' + embedding_property + '_pca.png')"], {}), "(output_path, document.basename + '_' + embedding_property +\n '_pca.png')\n", (9074, 9150), False, 'import os\n'), ((9937, 9999), 'numpy.take', 'np.take', (['embeddings_2d', 'all_cluster_embeddings_indices'], {'axis': '(0)'}), '(embeddings_2d, all_cluster_embeddings_indices, axis=0)\n', (9944, 9999), True, 'import numpy as np\n'), ((10033, 10082), 'scipy.spatial.distance.pdist', 'pdist', (['all_cluster_embeddings'], {'metric': '"""euclidean"""'}), "(all_cluster_embeddings, metric='euclidean')\n", (10038, 10082), False, 'from scipy.spatial.distance import pdist, squareform\n'), ((10114, 10144), 'scipy.spatial.distance.squareform', 'squareform', (['pairwise_distances'], {}), '(pairwise_distances)\n', (10124, 10144), False, 'from scipy.spatial.distance import pdist, squareform\n'), ((16469, 16496), 'os.path.exists', 'os.path.exists', (['output_path'], {}), '(output_path)\n', (16483, 16496), False, 'import os\n'), ((16510, 16534), 'os.makedirs', 'os.makedirs', (['output_path'], {}), '(output_path)\n', (16521, 16534), False, 'import os\n'), ((18261, 18276), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(1)'], {}), '(1)\n', (18273, 18276), True, 'import matplotlib.pyplot as plt\n'), ((19986, 20007), 'matplotlib.pyplot.title', 'plt.title', (['plot_title'], {}), '(plot_title)\n', (19995, 20007), True, 'import matplotlib.pyplot as plt\n'), ((20020, 20123), 'matplotlib.pyplot.scatter', 'plt.scatter', (['x_list', 'y_list'], {'c': 'colors', 's': '(18)', 'alpha': '(1.0)', 'edgecolors': '"""black"""', 'linewidth': '(1.0)', 'zorder': '(3)'}), "(x_list, y_list, c=colors, s=18, alpha=1.0, edgecolors='black',\n linewidth=1.0, zorder=3)\n", (20031, 20123), True, 'import matplotlib.pyplot as plt\n'), ((20132, 20264), 'matplotlib.pyplot.tick_params', 'plt.tick_params', ([], {'axis': '"""both"""', 'which': '"""both"""', 'bottom': '"""off"""', 'top': '"""off"""', 'labelbottom': '"""off"""', 'right': '"""off"""', 'left': '"""off"""', 'labelleft': '"""off"""'}), "(axis='both', which='both', bottom='off', top='off',\n labelbottom='off', right='off', left='off', labelleft='off')\n", (20147, 20264), True, 'import matplotlib.pyplot as plt\n'), ((20563, 20577), 'matplotlib.pyplot.close', 'plt.close', (['fig'], {}), '(fig)\n', (20572, 20577), True, 'import matplotlib.pyplot as plt\n'), ((21189, 21216), 'os.path.exists', 'os.path.exists', (['output_path'], {}), '(output_path)\n', (21203, 21216), False, 'import os\n'), ((21230, 21254), 'os.makedirs', 'os.makedirs', (['output_path'], {}), '(output_path)\n', (21241, 21254), False, 'import os\n'), ((23723, 23738), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(1)'], {}), '(1)\n', (23735, 23738), True, 'import matplotlib.pyplot as plt\n'), ((23910, 23931), 'matplotlib.pyplot.title', 'plt.title', (['plot_title'], {}), '(plot_title)\n', (23919, 23931), True, 'import matplotlib.pyplot as plt\n'), ((23945, 24048), 'matplotlib.pyplot.scatter', 'plt.scatter', (['x_list', 'y_list'], {'c': 'colors', 's': '(18)', 'alpha': '(1.0)', 'edgecolors': '"""black"""', 'linewidth': '(1.0)', 'zorder': '(3)'}), "(x_list, y_list, c=colors, s=18, alpha=1.0, edgecolors='black',\n linewidth=1.0, zorder=3)\n", (23956, 24048), True, 'import matplotlib.pyplot as plt\n'), ((24057, 24189), 'matplotlib.pyplot.tick_params', 'plt.tick_params', ([], {'axis': '"""both"""', 'which': '"""both"""', 'bottom': '"""off"""', 'top': '"""off"""', 'labelbottom': '"""off"""', 'right': '"""off"""', 'left': '"""off"""', 'labelleft': '"""off"""'}), "(axis='both', which='both', bottom='off', top='off',\n labelbottom='off', right='off', left='off', labelleft='off')\n", (24072, 24189), True, 'import matplotlib.pyplot as plt\n'), ((24730, 24802), 'os.path.join', 'os.path.join', (['output_path', "(document.basename + '_embeddings_history.gif')"], {}), "(output_path, document.basename + '_embeddings_history.gif')\n", (24742, 24802), False, 'import os\n'), ((5166, 5194), 'multimodal_affinities.visualization.colors_util.rgb_hex_to_tuple', 'rgb_hex_to_tuple', (['face_color'], {}), '(face_color)\n', (5182, 5194), False, 'from multimodal_affinities.visualization.colors_util import rgb_hex_to_tuple\n'), ((6571, 6683), 'matplotlib.patches.Rectangle', 'patches.Rectangle', (['(x, y)', 'width', 'height'], {'linewidth': '(2)', 'edgecolor': 'edge_color', 'facecolor': 'face_color', 'alpha': '(0.4)'}), '((x, y), width, height, linewidth=2, edgecolor=edge_color,\n facecolor=face_color, alpha=0.4)\n', (6588, 6683), True, 'import matplotlib.patches as patches\n'), ((7815, 7873), 'torch.cat', 'torch.cat', (["word.unprojected_embedding['embeddings']"], {'dim': '(1)'}), "(word.unprojected_embedding['embeddings'], dim=1)\n", (7824, 7873), False, 'import torch\n'), ((8480, 8500), 'numpy.array', 'np.array', (['embeddings'], {}), '(embeddings)\n', (8488, 8500), True, 'import numpy as np\n'), ((8560, 8590), 'sklearn.decomposition.PCA', 'PCA', ([], {'n_components': 'num_pca_comp'}), '(n_components=num_pca_comp)\n', (8563, 8590), False, 'from sklearn.decomposition import PCA\n'), ((11053, 11093), 'numpy.argmax', 'np.argmax', (['distances_accumulator'], {'axis': '(0)'}), '(distances_accumulator, axis=0)\n', (11062, 11093), True, 'import numpy as np\n'), ((12540, 12581), 'PIL.Image.fromarray', 'Image.fromarray', (['image_of_crop[..., ::-1]'], {}), '(image_of_crop[..., ::-1])\n', (12555, 12581), False, 'from PIL import Image\n'), ((20465, 20553), 'os.path.join', 'os.path.join', (['output_path', "(document.basename + '_' + embedding_property + '_pca.png')"], {}), "(output_path, document.basename + '_' + embedding_property +\n '_pca.png')\n", (20477, 20553), False, 'import os\n'), ((17558, 17616), 'torch.cat', 'torch.cat', (["word.unprojected_embedding['embeddings']"], {'dim': '(1)'}), "(word.unprojected_embedding['embeddings'], dim=1)\n", (17567, 17616), False, 'import torch\n'), ((17923, 17943), 'numpy.array', 'np.array', (['embeddings'], {}), '(embeddings)\n', (17931, 17943), True, 'import numpy as np\n'), ((18011, 18041), 'sklearn.decomposition.PCA', 'PCA', ([], {'n_components': 'num_pca_comp'}), '(n_components=num_pca_comp)\n', (18014, 18041), False, 'from sklearn.decomposition import PCA\n'), ((19119, 19291), 'matplotlib.patches.Rectangle', 'patches.Rectangle', (['(extent.left, extent.top)', '(extent.right - extent.left)', '(extent.bottom - extent.top)'], {'linewidth': '(0.5)', 'edgecolor': '"""black"""', 'facecolor': '"""none"""', 'zorder': '(5)'}), "((extent.left, extent.top), extent.right - extent.left, \n extent.bottom - extent.top, linewidth=0.5, edgecolor='black', facecolor\n ='none', zorder=5)\n", (19136, 19291), True, 'import matplotlib.patches as patches\n'), ((22621, 22647), 'numpy.array', 'np.array', (['chosen_embedding'], {}), '(chosen_embedding)\n', (22629, 22647), True, 'import numpy as np\n'), ((22715, 22745), 'sklearn.decomposition.PCA', 'PCA', ([], {'n_components': 'num_pca_comp'}), '(n_components=num_pca_comp)\n', (22718, 22745), False, 'from sklearn.decomposition import PCA\n')]
import os import numpy as np save_stem='extra_vis_friday_harbor' data_dir='../../data/sdk_new_100' resolution=100 cre=False source_acronyms=['VISal','VISam','VISl','VISp','VISpl','VISpm', 'VISli','VISpor','VISrl','VISa'] lambda_list = np.logspace(3,12,10) scale_lambda=True min_vox=0 # save_file_name='visual_output.hdf5' #source_coverage=0.90 source_coverage=0.95 #source_shell = 1 source_shell=None save_dir=os.path.join('../../data/connectivities',save_stem) experiments_fn=None target_acronyms=source_acronyms solver=os.path.abspath('../smoothness_c/solve') cmdfile=os.path.join(save_dir,'model_fitting_cmds') selected_fit_cmds=os.path.join(save_dir,'model_fitting_after_selection_cmds') save_mtx=True cross_val_matrices=True cross_val=5 fit_gaussian=False select_one_lambda=False if select_one_lambda: lambda_fn='lambda_opt' else: lambda_fn='lambda_ipsi_contra_opt' laplacian='free' shuffle_seed=666 max_injection_volume=0.7
[ "os.path.abspath", "numpy.logspace", "os.path.join" ]
[((253, 275), 'numpy.logspace', 'np.logspace', (['(3)', '(12)', '(10)'], {}), '(3, 12, 10)\n', (264, 275), True, 'import numpy as np\n'), ((428, 480), 'os.path.join', 'os.path.join', (['"""../../data/connectivities"""', 'save_stem'], {}), "('../../data/connectivities', save_stem)\n", (440, 480), False, 'import os\n'), ((539, 579), 'os.path.abspath', 'os.path.abspath', (['"""../smoothness_c/solve"""'], {}), "('../smoothness_c/solve')\n", (554, 579), False, 'import os\n'), ((588, 632), 'os.path.join', 'os.path.join', (['save_dir', '"""model_fitting_cmds"""'], {}), "(save_dir, 'model_fitting_cmds')\n", (600, 632), False, 'import os\n'), ((650, 710), 'os.path.join', 'os.path.join', (['save_dir', '"""model_fitting_after_selection_cmds"""'], {}), "(save_dir, 'model_fitting_after_selection_cmds')\n", (662, 710), False, 'import os\n')]
# encoding: utf-8 ''' @author: yangsen @license: @contact: @software: @file: numpy_mat.py @time: 18-8-25 下午9:56 @desc: ''' import numpy as np a = np.arange(9).reshape(3,3) # 行 a[1] a[[1,2]] a[np.array([1,2])] # 列 a[:,1] a[:,[1,2]] a[:,np.array([1,2])]
[ "numpy.array", "numpy.arange" ]
[((194, 210), 'numpy.array', 'np.array', (['[1, 2]'], {}), '([1, 2])\n', (202, 210), True, 'import numpy as np\n'), ((146, 158), 'numpy.arange', 'np.arange', (['(9)'], {}), '(9)\n', (155, 158), True, 'import numpy as np\n'), ((238, 254), 'numpy.array', 'np.array', (['[1, 2]'], {}), '([1, 2])\n', (246, 254), True, 'import numpy as np\n')]
from typing import Union, Iterable, List import numpy as np import pandas as pd from ..models._transformer import _ArrayTransformer, _MultiArrayTransformer class _DataFrameTransformer(_ArrayTransformer): '''`_ArrayTransformer` wrapper for `pandas.DataFrame`. ''' def __init__(self): super().__init__() def fit(self, X : pd.DataFrame, axis : Union[int, Iterable[int]] = 0): if not isinstance(X, pd.DataFrame): raise ValueError('This interface is for `pandas.DataFrame` only') if isinstance(axis, list): axis = axis[0] # Set sample and feature index if axis == 0: self.index_samples = X.index self.index_features = X.columns elif axis == 1: self.index_samples = X.columns self.index_features = X.index else: raise ValueError('axis must be either 0 or 1') # Fit the data try: super().fit(X=X.values, axis=axis) except AttributeError: err_msg = 'weights must be of type {:}.'.format(repr(pd.DataFrame)) raise TypeError(err_msg) return self def transform(self, X : pd.DataFrame) -> np.ndarray: try: return super().transform(X.values) except AttributeError: err_msg = 'weights must be of type {:}.'.format(repr(pd.DataFrame)) raise TypeError(err_msg) def fit_transform(self, X : pd.DataFrame, axis : int = 0) -> np.ndarray: return self.fit(X=X, axis=axis).transform(X) def transform_weights(self, weights : pd.DataFrame) -> np.ndarray: try: return super().transform_weights(weights.values) except AttributeError: return super().transform_weights(weights) def back_transform(self, X : np.ndarray) -> pd.DataFrame: df = super().back_transform(X) return pd.DataFrame( df, index=self.index_samples, columns=self.index_features ) def back_transform_eofs(self, X : np.ndarray) -> pd.DataFrame: eofs = super().back_transform_eofs(X) return pd.DataFrame( eofs, index=self.index_features, columns=range(1, eofs.shape[-1] + 1) ) def back_transform_pcs(self, X : np.ndarray) -> pd.DataFrame: pcs = super().back_transform_pcs(X) return pd.DataFrame( pcs, index=self.index_samples, columns=range(1, pcs.shape[-1] + 1) ) class _MultiDataFrameTransformer(_MultiArrayTransformer): 'Transform multiple 2D ``pd.DataFrame`` to a single 2D ``np.ndarry``.' def __init__(self): super().__init__() def fit(self, X : Union[pd.DataFrame, List[pd.DataFrame]], axis : Union[int, Iterable[int]] = 0): X = self._convert2list(X) self.tfs = [_DataFrameTransformer().fit(x, axis=axis) for x in X] if len(set([tf.n_valid_samples for tf in self.tfs])) > 1: err_msg = 'All individual arrays must have same number of samples.' raise ValueError(err_msg) self.idx_array_sep = np.cumsum([tf.n_valid_features for tf in self.tfs]) self.axis_samples = self.tfs[0].axis_samples return self def transform(self, X : Union[pd.DataFrame, List[pd.DataFrame]]) -> np.ndarray: return super().transform(X=X) def transform_weights(self, weights : Union[pd.DataFrame, List[pd.DataFrame]]) -> np.ndarray: return super().transform_weights(weights=weights) def fit_transform( self, X : Union[pd.DataFrame, List[pd.DataFrame]], axis : Union[int, Iterable[int]] = 0 ) -> np.ndarray: return self.fit(X=X, axis=axis).transform(X) def back_transform(self, X : np.ndarray) -> pd.DataFrame: return super().back_transform(X=X) def back_transform_eofs(self, X : np.ndarray) -> pd.DataFrame: return super().back_transform_eofs(X=X) def back_transform_pcs(self, X : np.ndarray) -> pd.DataFrame: return super().back_transform_pcs(X=X)
[ "pandas.DataFrame", "numpy.cumsum" ]
[((1911, 1982), 'pandas.DataFrame', 'pd.DataFrame', (['df'], {'index': 'self.index_samples', 'columns': 'self.index_features'}), '(df, index=self.index_samples, columns=self.index_features)\n', (1923, 1982), True, 'import pandas as pd\n'), ((3153, 3204), 'numpy.cumsum', 'np.cumsum', (['[tf.n_valid_features for tf in self.tfs]'], {}), '([tf.n_valid_features for tf in self.tfs])\n', (3162, 3204), True, 'import numpy as np\n')]
# Neural Networks Demystified # Part 1: Data + Architecture # # Supporting code for short YouTube series on artificial neural networks. # # <NAME> # @stephencwelch import numpy as np # X = (hours sleeping, hours studying), y = Score on test X = np.array(([3,5], [5,1], [10,2]), dtype=float) y = np.array(([75], [82], [93]), dtype=float) # Normalize X = X/np.amax(X, axis=0) y = y/100 #Max test score is 100
[ "numpy.array", "numpy.amax" ]
[((247, 295), 'numpy.array', 'np.array', (['([3, 5], [5, 1], [10, 2])'], {'dtype': 'float'}), '(([3, 5], [5, 1], [10, 2]), dtype=float)\n', (255, 295), True, 'import numpy as np\n'), ((297, 338), 'numpy.array', 'np.array', (['([75], [82], [93])'], {'dtype': 'float'}), '(([75], [82], [93]), dtype=float)\n', (305, 338), True, 'import numpy as np\n'), ((358, 376), 'numpy.amax', 'np.amax', (['X'], {'axis': '(0)'}), '(X, axis=0)\n', (365, 376), True, 'import numpy as np\n')]
import numpy as np from PIL import Image import matplotlib.pyplot as plt import histogram_module import dist_module def rgb2gray(rgb): r, g, b = rgb[:, :, 0], rgb[:, :, 1], rgb[:, :, 2] gray = 0.2989 * r + 0.5870 * g + 0.1140 * b return gray # model_images - list of file names of model images # query_images - list of file names of query images # # dist_type - string which specifies distance type: 'chi2', 'l2', 'intersect' # hist_type - string which specifies histogram type: 'grayvalue', 'dxdy', 'rgb', 'rg' # # note: use functions 'get_dist_by_name', 'get_hist_by_name' and 'is_grayvalue_hist' to obtain # handles to distance and histogram functions, and to find out whether histogram function # expects grayvalue or color image def find_best_match(model_images, query_images, dist_type, hist_type, num_bins): hist_isgray = histogram_module.is_grayvalue_hist(hist_type) model_hists = compute_histograms(model_images, hist_type, hist_isgray, num_bins) query_hists = compute_histograms(query_images, hist_type, hist_isgray, num_bins) D = np.zeros((len(model_images), len(query_images))) # compute distance for each couple of query - image for j, query in enumerate(query_hists): for i, model in enumerate(model_hists): D[i, j] = dist_module.get_dist_by_name(model, query, dist_type) best_match = [] # to save best matches # for each query , find best model for j in range(len(query_images)): query_matches = D[:, j] # get query columns from matrix argmin = np.argmin(query_matches) # get index with minimum distance best_match.append(argmin) # save index for query best_match = np.array(best_match) # array of best match for each query return best_match, D def compute_histograms(image_list, hist_type, hist_isgray, num_bins): image_hist = [] # Compute hisgoram for each image and add it at the bottom of image_hist # ... (your code here) for img in image_list: img_color = np.array(Image.open(img)) # if hist is gray type we use gray image # othewise rgb image img_to_process = rgb2gray(img_color) if hist_isgray else img_color.astype('double') # We compute histogram for image hist = histogram_module.get_hist_by_name(img=img_to_process, num_bins_gray=num_bins, hist_name=hist_type ) image_hist.append(hist) return image_hist # For each image file from 'query_images' find and visualize the 5 nearest images from 'model_image'. # # Note: use the previously implemented function 'find_best_match' # Note: use subplot command to show all the images in the same Python figure, one row per query image def show_neighbors(model_images, query_images, dist_type, hist_type, num_bins): plt.figure() num_nearest = 5 # show the top-5 neighbors # ... (your code here) _, D = find_best_match(model_images=model_images, query_images=query_images, dist_type=dist_type, hist_type=hist_type, num_bins=num_bins ) Q = len(query_images) pos = 0 for j in range(Q): query_matches = D[:, j] best_args = np.argsort(query_matches)[:num_nearest] query_img = query_images[j] pos += 1 plt.subplot(Q, 6, pos); plt.imshow(np.array(Image.open(query_img)), vmin=0, vmax=255); plt.title(f'Q{j}') for ind in range(len(best_args)): pos += 1 model_ind = best_args[ind] model_img = model_images[model_ind] plt.subplot(Q, 6, pos); plt.imshow(np.array(Image.open(model_img)), vmin=0, vmax=255); plt.title(f'MO.{model_ind}') plt.show()
[ "PIL.Image.open", "histogram_module.is_grayvalue_hist", "histogram_module.get_hist_by_name", "numpy.argsort", "numpy.array", "matplotlib.pyplot.figure", "numpy.argmin", "matplotlib.pyplot.title", "dist_module.get_dist_by_name", "matplotlib.pyplot.subplot", "matplotlib.pyplot.show" ]
[((866, 911), 'histogram_module.is_grayvalue_hist', 'histogram_module.is_grayvalue_hist', (['hist_type'], {}), '(hist_type)\n', (900, 911), False, 'import histogram_module\n'), ((1708, 1728), 'numpy.array', 'np.array', (['best_match'], {}), '(best_match)\n', (1716, 1728), True, 'import numpy as np\n'), ((2953, 2965), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (2963, 2965), True, 'import matplotlib.pyplot as plt\n'), ((3968, 3978), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (3976, 3978), True, 'import matplotlib.pyplot as plt\n'), ((1572, 1596), 'numpy.argmin', 'np.argmin', (['query_matches'], {}), '(query_matches)\n', (1581, 1596), True, 'import numpy as np\n'), ((2292, 2395), 'histogram_module.get_hist_by_name', 'histogram_module.get_hist_by_name', ([], {'img': 'img_to_process', 'num_bins_gray': 'num_bins', 'hist_name': 'hist_type'}), '(img=img_to_process, num_bins_gray=\n num_bins, hist_name=hist_type)\n', (2325, 2395), False, 'import histogram_module\n'), ((3539, 3561), 'matplotlib.pyplot.subplot', 'plt.subplot', (['Q', '(6)', 'pos'], {}), '(Q, 6, pos)\n', (3550, 3561), True, 'import matplotlib.pyplot as plt\n'), ((3642, 3660), 'matplotlib.pyplot.title', 'plt.title', (['f"""Q{j}"""'], {}), "(f'Q{j}')\n", (3651, 3660), True, 'import matplotlib.pyplot as plt\n'), ((1312, 1365), 'dist_module.get_dist_by_name', 'dist_module.get_dist_by_name', (['model', 'query', 'dist_type'], {}), '(model, query, dist_type)\n', (1340, 1365), False, 'import dist_module\n'), ((2047, 2062), 'PIL.Image.open', 'Image.open', (['img'], {}), '(img)\n', (2057, 2062), False, 'from PIL import Image\n'), ((3436, 3461), 'numpy.argsort', 'np.argsort', (['query_matches'], {}), '(query_matches)\n', (3446, 3461), True, 'import numpy as np\n'), ((3823, 3845), 'matplotlib.pyplot.subplot', 'plt.subplot', (['Q', '(6)', 'pos'], {}), '(Q, 6, pos)\n', (3834, 3845), True, 'import matplotlib.pyplot as plt\n'), ((3934, 3962), 'matplotlib.pyplot.title', 'plt.title', (['f"""MO.{model_ind}"""'], {}), "(f'MO.{model_ind}')\n", (3943, 3962), True, 'import matplotlib.pyplot as plt\n'), ((3591, 3612), 'PIL.Image.open', 'Image.open', (['query_img'], {}), '(query_img)\n', (3601, 3612), False, 'from PIL import Image\n'), ((3879, 3900), 'PIL.Image.open', 'Image.open', (['model_img'], {}), '(model_img)\n', (3889, 3900), False, 'from PIL import Image\n')]
################################################################################ # Copyright (c) 2015-2018 Skymind, Inc. # # This program and the accompanying materials are made available under the # terms of the Apache License, Version 2.0 which is available at # https://www.apache.org/licenses/LICENSE-2.0. # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. # # SPDX-License-Identifier: Apache-2.0 ################################################################################ from .java_classes import * import numpy as np import ctypes import warnings native_ops = NativeOpsHolder.getInstance().getDeviceNativeOps() # DATA TYPE MANAGEMENT DOUBLE = DataType.DOUBLE FLOAT = DataType.FLOAT HALF = DataType.HALF LONG = DataType.LONG INT = DataType.INT SHORT = DataType.SHORT UBYTE = DataType.UBYTE BYTE = DataType.BYTE BOOL = DataType.BOOL UTF8 = DataType.UTF8 COMPRESSED = DataType.COMPRESSED UNKNOWN = DataType.UNKNOWN SUPPORTED_JAVA_DTYPES = [ DOUBLE, FLOAT, HALF, LONG, INT, SHORT, BOOL #UTF8 ] SUPPORTED_PYTHON_DTYPES = [ np.float64, np.float32, np.float16, np.int64, np.int32, np.int16, np.bool_ #np.str_ ] _PY2J = {SUPPORTED_PYTHON_DTYPES[i] : SUPPORTED_JAVA_DTYPES[i] for i in range(len(SUPPORTED_JAVA_DTYPES))} _J2PY = {SUPPORTED_JAVA_DTYPES[i] : SUPPORTED_PYTHON_DTYPES[i] for i in range(len(SUPPORTED_JAVA_DTYPES))} def _dtype_py2j(dtype): if isinstance(dtype, str): dtype = np.dtype(dtype).type elif isinstance(dtype, np.dtype): dtype = dtype.type jtype = _PY2J.get(dtype) if jtype is None: raise NotImplementedError("Unsupported type: " + dtype.name) return jtype def _dtype_j2py(dtype): pytype = _J2PY.get(dtype) if pytype is None: raise NotImplementedError("Unsupported type: " + (str(dtype))) return pytype def set_context_dtype(dtype): ''' Sets the dtype for nd4j # Arguments dtype: 'float' or 'double' ''' dtype_map = { 'float32': 'float', 'float64': 'double' } dtype = dtype_map.get(dtype, dtype) if dtype not in ['float', 'double']: raise ValueError("Invalid dtype '{}'. Available dtypes are 'float' and 'double'.".format(dtype)) dtype_ = DataTypeUtil.getDtypeFromContext(dtype) DataTypeUtil.setDTypeForContext(dtype_) if get_context_dtype() != dtype: warnings.warn("Can not set context dtype now. Set it at the beginning of your program.") def get_context_dtype(): ''' Returns the nd4j dtype ''' dtype = DataTypeUtil.getDtypeFromContext() return DataTypeUtil.getDTypeForName(dtype) _refs = [] def _from_numpy(np_array): ''' Convert numpy array to nd4j array ''' pointer_address, _ = np_array.__array_interface__['data'] _refs.append(np_array) pointer = native_ops.pointerForAddress(pointer_address) size = np_array.size pointer.limit(size) jdtype = _dtype_py2j(np_array.dtype) ''' mapping = { DOUBLE: DoublePointer, FLOAT: FloatPointer, HALF: HalfPointer, LONG: LongPointer, INT: IntPointer, SHORT: ShortPointer, BOOL: BoolPointer } pc = mapping[jdtype] #pointer = pc(pointer) ''' buff = Nd4j.createBuffer(pointer, size, jdtype) assert buff.address() == pointer_address _refs.append(buff) elem_size = buff.getElementSize() assert elem_size == np_array.dtype.itemsize strides = np_array.strides strides = [dim / elem_size for dim in strides] shape = np_array.shape nd4j_array = Nd4j.create(buff, shape, strides, 0) assert buff.address() == nd4j_array.data().address() return nd4j_array def _to_numpy(nd4j_array): ''' Convert nd4j array to numpy array ''' buff = nd4j_array.data() address = buff.pointer().address() dtype = nd4j_array.dataType().toString() mapping = { 'DOUBLE': ctypes.c_double, 'FLOAT': ctypes.c_float, 'HALF': ctypes.c_short, 'LONG': ctypes.c_long, 'INT': ctypes.c_int, 'SHORT': ctypes.c_short, 'BOOL': ctypes.c_bool } Pointer = ctypes.POINTER(mapping[dtype]) pointer = ctypes.cast(address, Pointer) np_array = np.ctypeslib.as_array(pointer, tuple(nd4j_array.shape())) return np_array def _indarray(x): typ = type(x) if typ is INDArray: return x elif typ is ndarray: return x.array elif 'numpy' in str(typ): return _from_numpy(x) elif typ in (list, tuple): return _from_numpy(np.array(x)) elif typ in (int, float): return Nd4j.scalar(x) else: raise Exception('Data type not understood :' + str(typ)) def _nparray(x): typ = type(x) if typ is INDArray: return ndarray(x).numpy() elif typ is ndarray: return x.numpy() elif 'numpy' in str(typ): return x elif typ in (list, tuple): return np.array(x) elif typ in (int, float): return np.array(x) else: raise Exception('Data type not understood :' + str(typ)) def broadcast_like(y, x): xs = x.shape() ys = y.shape() if xs == ys: return y _xs = tuple(xs) _ys = tuple(ys) nx = len(xs) ny = len(ys) if nx > ny: diff = nx - ny ys = ([1] * diff) + ys y = y.reshape(ys) ny = nx elif ny > nx: raise Exception('Unable to broadcast shapes ' + str(_xs) + '' ' and ' + str(_ys)) yt = [] rep_y = False for xd, yd in zip(xs, ys): if xd == yd: yt.append(1) elif xd == 1: raise Exception('Unable to broadcast shapes ' + str(_xs) + '' ' and ' + str(_ys)) elif yd == 1: yt.append(xd) rep_y = True else: raise Exception('Unable to broadcast shapes ' + str(_xs) + '' ' and ' + str(_ys)) if rep_y: y = y.repmat(*yt) return y def broadcast(x, y): xs = x.shape() ys = y.shape() if xs == ys: return x, y _xs = tuple(xs) _ys = tuple(ys) nx = len(xs) ny = len(ys) if nx > ny: diff = nx - ny ys = ([1] * diff) + ys y = y.reshape(*ys) ny = nx elif ny > nx: diff = ny - nx xs = ([1] * diff) + xs x = x.reshape(*xs) nx = ny xt = [] yt = [] rep_x = False rep_y = False for xd, yd in zip(xs, ys): if xd == yd: xt.append(1) yt.append(1) elif xd == 1: xt.append(yd) yt.append(1) rep_x = True elif yd == 1: xt.append(1) yt.append(xd) rep_y = True else: raise Exception('Unable to broadcast shapes ' + str(_xs) + '' ' and ' + str(_ys)) if rep_x: x = Nd4j.tile(x, *xt) if rep_y: try: y = Nd4j.tile(y, *yt) except: y = Nd4j.tile(y, *yt) return x, y class ndarray(object): def __init__(self, data, dtype=None): # we ignore dtype for now typ = type(data) if 'nd4j' in typ.__name__: # Note that we don't make a copy here self.array = data elif typ is ndarray: self.array = data.array.dup() else: if typ is not np.ndarray: data = np.array(data) self.array = _from_numpy(data) def numpy(self): try: return self.np_array except AttributeError: self.np_array = _to_numpy(self.array) return self.np_array @property def size(self): return self.array.length() @property def shape(self): return tuple(self.array.shape()) @shape.setter def shape(self, value): arr = self.reshape(value) self.array = arr.array @property def ndim(self): return len(self.array.shape()) def __getitem__(self, key): return ndarray(self.numpy()[key]) if type(key) is int: return ndarray(self.array.get(NDArrayIndex.point(key))) if type(key) is slice: start = key.start stop = key.stop step = key.step if start is None: start = 0 if stop is None: shape = self.array.shape() if shape[0] == 1: stop = shape[1] else: stop = shape[0] if stop - start <= 0: return None if step is None or step == 1: return ndarray(self.array.get(NDArrayIndex.interval(start, stop))) else: return ndarray(self.array.get(NDArrayIndex.interval(start, step, stop))) if type(key) is list: raise NotImplementedError( 'Sorry, this type of indexing is not supported yet.') if type(key) is tuple: key = list(key) shape = self.array.shape() ndim = len(shape) nk = len(key) key += [slice(None)] * (ndim - nk) args = [] for i, dim in enumerate(key): if type(dim) is int: args.append(NDArrayIndex.point(dim)) elif type(dim) is slice: if dim == slice(None): args.append(NDArrayIndex.all()) else: start = dim.start stop = dim.stop step = dim.step if start is None: start = 0 if stop is None: stop = shape[i] if stop - start <= 0: return None if step is None or step == 1: args.append(NDArrayIndex.interval(start, stop)) else: args.append(NDArrayIndex.interval( start, step, stop)) elif type(dim) in (list, tuple): raise NotImplementedError( 'Sorry, this type of indexing is not supported yet.') return ndarray(self.array.get(*args)) def __setitem__(self, key, other): self.numpy()[key] = _nparray(other) return other = _indarray(other) view = self[key] if view is None: return view = view.array other = broadcast_like(other, view) view.assign(other) def __add__(self, other): return ndarray(self.numpy() + _nparray(other)) other = _indarray(other) x, y = broadcast(self.array, other) return ndarray(x.add(y)) def __sub__(self, other): return ndarray(self.numpy() - _nparray(other)) other = _indarray(other) x, y = broadcast(self.array, other) return ndarray(x.sub(y)) def __mul__(self, other): return ndarray(self.numpy() * _nparray(other)) other = _indarray(other) x, y = broadcast(self.array, other) return ndarray(x.mul(y)) def __div__(self, other): return ndarray(self.numpy() / _nparray(other)) other = _indarray(other) x, y = broadcast(self.array, other) return ndarray(x.div(y)) def __pow__(self, other): return ndarray(self.numpy() ** _nparray(other)) other = _indarray(other) x, y = broadcast(self.array, other) return ndarray(Transforms.pow(x, y)) def __iadd__(self, other): self.numpy().__iadd__(_nparray(other)) return self other = _indarray(other) if self.array.shape() == other.shape(): self.array = self.array.addi(other) else: x, y = broadcast(self.array, other) self.array = x.add(y) return self def __isub__(self, other): self.numpy().__isub__(_nparray(other)) return self other = _indarray(other) if self.array.shape() == other.shape(): self.array = self.array.subi(other) else: x, y = broadcast(self.array, other) self.array = x.sub(y) return self def __imul__(self, other): self.numpy().__imul__(_nparray(other)) return self other = _indarray(other) if self.array.shape() == other.shape(): self.array = self.array.muli(other) else: x, y = broadcast(self.array, other) self.array = x.mul(y) return self def __idiv__(self, other): self.numpy().__idiv__(_nparray(other)) return self other = _indarray(other) if self.array.shape() == other.shape(): self.array = self.array.divi(other) else: x, y = broadcast(self.array, other) self.array = x.div(y) return self def __ipow__(self, other): self.numpy().__ipow__(_nparray(other)) return self other = _indarray(other) if self.array.shape() == other.shape(): self.array = self.array.divi(other) else: x, y = broadcast(self.array, other) self.array = Transforms.pow(x, y) return self def __getattr__(self, attr): import ops f = getattr(ops, attr) setattr(ndarray, attr, f) return getattr(self, attr) def __int__(self): if self.array.length() == 1: return self.array.getInt(0) raise Exception('Applicable only for scalars') def __float__(self): if self.array.length() == 1: return self.array.getDouble(0) raise Exception('Applicable only for scalars') @property def T(self): return self.transpose() def array(*args, **kwargs): return ndarray(*args, **kwargs)
[ "ctypes.POINTER", "numpy.array", "ctypes.cast", "warnings.warn", "numpy.dtype" ]
[((4456, 4486), 'ctypes.POINTER', 'ctypes.POINTER', (['mapping[dtype]'], {}), '(mapping[dtype])\n', (4470, 4486), False, 'import ctypes\n'), ((4501, 4530), 'ctypes.cast', 'ctypes.cast', (['address', 'Pointer'], {}), '(address, Pointer)\n', (4512, 4530), False, 'import ctypes\n'), ((2678, 2771), 'warnings.warn', 'warnings.warn', (['"""Can not set context dtype now. Set it at the beginning of your program."""'], {}), "(\n 'Can not set context dtype now. Set it at the beginning of your program.')\n", (2691, 2771), False, 'import warnings\n'), ((1752, 1767), 'numpy.dtype', 'np.dtype', (['dtype'], {}), '(dtype)\n', (1760, 1767), True, 'import numpy as np\n'), ((5255, 5266), 'numpy.array', 'np.array', (['x'], {}), '(x)\n', (5263, 5266), True, 'import numpy as np\n'), ((7783, 7797), 'numpy.array', 'np.array', (['data'], {}), '(data)\n', (7791, 7797), True, 'import numpy as np\n'), ((4869, 4880), 'numpy.array', 'np.array', (['x'], {}), '(x)\n', (4877, 4880), True, 'import numpy as np\n'), ((5312, 5323), 'numpy.array', 'np.array', (['x'], {}), '(x)\n', (5320, 5323), True, 'import numpy as np\n')]
#! /usr/bin/Python from gensim.models.keyedvectors import KeyedVectors from scipy import spatial from numpy import linalg import argparse import sys vector_file = sys.argv[1] if len(sys.argv) != 6: print('arguments wrong!') print(len(sys.argv)) exit() else: words = [sys.argv[2], sys.argv[3], sys.argv[4], sys.argv[5]] print(words) wvs = KeyedVectors.load_word2vec_format(vector_file, binary=True) print('WVs loaded.') for w in words: if w not in wvs.vocab: print('out of vocab!') exit() #print(wvs.most_similar(positive=[words[1], words[2]], negative=[words[0]], topn=3)) w1 = wvs[words[0]] w2 = wvs[words[1]] w3 = wvs[words[2]] w4 = wvs[words[3]] m1 = w1 / linalg.norm(w1) m2 = w2 / linalg.norm(w2) m3 = w3 / linalg.norm(w3) m4 = w4 / linalg.norm(w4) diff1 = w1 - w2 diff2 = w3 - w4 miff1 = m1 - m2 miff2 = m3 - m4 print('-------Word Space---------') print('to word-4: ', 1-spatial.distance.cosine(m2+m3-m1, m4)) print('to word-3: ', 1-spatial.distance.cosine(m1+m4-m2, m3)) print('to word-2: ', 1-spatial.distance.cosine(m4+m1-m3, m2)) print('to word-1: ', 1-spatial.distance.cosine(m2+m3-m4, m1)) print('------Analogy Space-------') print(' cosine: ', 1-spatial.distance.cosine(diff1, diff2)) print(' Euclidean: ', 1-linalg.norm(diff1-diff2)/(linalg.norm(diff1)+linalg.norm(diff2))) print(' M-cosine: ', 1-spatial.distance.cosine(miff1, miff2)) print('M-Euclidean: ', 1-linalg.norm(miff1-miff2)/(linalg.norm(miff1)+linalg.norm(miff2)))
[ "gensim.models.keyedvectors.KeyedVectors.load_word2vec_format", "scipy.spatial.distance.cosine", "numpy.linalg.norm" ]
[((366, 425), 'gensim.models.keyedvectors.KeyedVectors.load_word2vec_format', 'KeyedVectors.load_word2vec_format', (['vector_file'], {'binary': '(True)'}), '(vector_file, binary=True)\n', (399, 425), False, 'from gensim.models.keyedvectors import KeyedVectors\n'), ((709, 724), 'numpy.linalg.norm', 'linalg.norm', (['w1'], {}), '(w1)\n', (720, 724), False, 'from numpy import linalg\n'), ((736, 751), 'numpy.linalg.norm', 'linalg.norm', (['w2'], {}), '(w2)\n', (747, 751), False, 'from numpy import linalg\n'), ((763, 778), 'numpy.linalg.norm', 'linalg.norm', (['w3'], {}), '(w3)\n', (774, 778), False, 'from numpy import linalg\n'), ((790, 805), 'numpy.linalg.norm', 'linalg.norm', (['w4'], {}), '(w4)\n', (801, 805), False, 'from numpy import linalg\n'), ((939, 980), 'scipy.spatial.distance.cosine', 'spatial.distance.cosine', (['(m2 + m3 - m1)', 'm4'], {}), '(m2 + m3 - m1, m4)\n', (962, 980), False, 'from scipy import spatial\n'), ((1002, 1043), 'scipy.spatial.distance.cosine', 'spatial.distance.cosine', (['(m1 + m4 - m2)', 'm3'], {}), '(m1 + m4 - m2, m3)\n', (1025, 1043), False, 'from scipy import spatial\n'), ((1065, 1106), 'scipy.spatial.distance.cosine', 'spatial.distance.cosine', (['(m4 + m1 - m3)', 'm2'], {}), '(m4 + m1 - m3, m2)\n', (1088, 1106), False, 'from scipy import spatial\n'), ((1128, 1169), 'scipy.spatial.distance.cosine', 'spatial.distance.cosine', (['(m2 + m3 - m4)', 'm1'], {}), '(m2 + m3 - m4, m1)\n', (1151, 1169), False, 'from scipy import spatial\n'), ((1230, 1267), 'scipy.spatial.distance.cosine', 'spatial.distance.cosine', (['diff1', 'diff2'], {}), '(diff1, diff2)\n', (1253, 1267), False, 'from scipy import spatial\n'), ((1387, 1424), 'scipy.spatial.distance.cosine', 'spatial.distance.cosine', (['miff1', 'miff2'], {}), '(miff1, miff2)\n', (1410, 1424), False, 'from scipy import spatial\n'), ((1295, 1321), 'numpy.linalg.norm', 'linalg.norm', (['(diff1 - diff2)'], {}), '(diff1 - diff2)\n', (1306, 1321), False, 'from numpy import linalg\n'), ((1452, 1478), 'numpy.linalg.norm', 'linalg.norm', (['(miff1 - miff2)'], {}), '(miff1 - miff2)\n', (1463, 1478), False, 'from numpy import linalg\n'), ((1321, 1339), 'numpy.linalg.norm', 'linalg.norm', (['diff1'], {}), '(diff1)\n', (1332, 1339), False, 'from numpy import linalg\n'), ((1340, 1358), 'numpy.linalg.norm', 'linalg.norm', (['diff2'], {}), '(diff2)\n', (1351, 1358), False, 'from numpy import linalg\n'), ((1478, 1496), 'numpy.linalg.norm', 'linalg.norm', (['miff1'], {}), '(miff1)\n', (1489, 1496), False, 'from numpy import linalg\n'), ((1497, 1515), 'numpy.linalg.norm', 'linalg.norm', (['miff2'], {}), '(miff2)\n', (1508, 1515), False, 'from numpy import linalg\n')]
import numpy as np import scipy as sp import scipy.sparse.linalg as splinalg def eig2_nL(g, tol_eigs = 1.0e-6, normalize:bool = True, dim:int=1): """ DESCRIPTION ----------- Computes the eigenvector that corresponds to the second smallest eigenvalue of the normalized Laplacian matrix then it uses sweep cut to round the solution. PARAMETERS (mandatory) ---------------------- g: graph object PARAMETERS (optional) --------------------- dim: positive, int default == 1 The number of eigenvectors or dimensions to compute. tol_eigs: positive float, double default == 1.0e-6 Tolerance for computation of the eigenvector that corresponds to the second smallest eigenvalue of the normalized Laplacian matrix. normalize: bool, default == True True if we should return the eigenvectors of the generalized eigenvalue problem associated with the normalized Laplacian. This should be on unless you know what you are doing. RETURNS ------ p: Eigenvector or Eigenvector matrixthat corresponds to the second smallest eigenvalue of the normalized Laplacian matrix and larger eigenvectors if dim >= 0. """ n = g.adjacency_matrix.shape[0] D_sqrt_neg = sp.sparse.spdiags(g.dn_sqrt.transpose(), 0, n, n) L = sp.sparse.identity(n) - D_sqrt_neg.dot((g.adjacency_matrix.dot(D_sqrt_neg))) emb_eig_val, p = splinalg.eigsh(L, which='SM', k=1+dim, tol = tol_eigs) F = np.real(p[:,1:]) if normalize: F *= g.dn_sqrt[:,np.newaxis] return F, emb_eig_val """ Random walks and local cuts in graphs, Chung, LAA 2007 We just form the sub-matrix of the Laplacian and use the eigenvector there. """ def eig2nL_subgraph(g, ref_nodes, tol_eigs = 1.0e-6, normalize: bool = True): A_sub = g.adjacency_matrix.tocsr()[ref_nodes, :].tocsc()[:, ref_nodes] nref = len(ref_nodes) D_sqrt_neg = sp.sparse.spdiags(g.dn_sqrt[ref_nodes].transpose(), 0, nref, nref) L_sub = sp.sparse.identity(nref) - D_sqrt_neg.dot((A_sub.dot(D_sqrt_neg))) emb_eig_val, emb_eig = splinalg.eigsh(L_sub, which='SM', k=1, tol=tol_eigs) emb_eig *= -1 if max(emb_eig) < 0 else 1 f = emb_eig[:,0] if normalize: f *= g.dn_sqrt[ref_nodes] return ((ref_nodes,f), emb_eig_val)
[ "numpy.real", "scipy.sparse.identity", "scipy.sparse.linalg.eigsh" ]
[((1613, 1667), 'scipy.sparse.linalg.eigsh', 'splinalg.eigsh', (['L'], {'which': '"""SM"""', 'k': '(1 + dim)', 'tol': 'tol_eigs'}), "(L, which='SM', k=1 + dim, tol=tol_eigs)\n", (1627, 1667), True, 'import scipy.sparse.linalg as splinalg\n'), ((1677, 1694), 'numpy.real', 'np.real', (['p[:, 1:]'], {}), '(p[:, 1:])\n', (1684, 1694), True, 'import numpy as np\n'), ((2286, 2338), 'scipy.sparse.linalg.eigsh', 'splinalg.eigsh', (['L_sub'], {'which': '"""SM"""', 'k': '(1)', 'tol': 'tol_eigs'}), "(L_sub, which='SM', k=1, tol=tol_eigs)\n", (2300, 2338), True, 'import scipy.sparse.linalg as splinalg\n'), ((1514, 1535), 'scipy.sparse.identity', 'sp.sparse.identity', (['n'], {}), '(n)\n', (1532, 1535), True, 'import scipy as sp\n'), ((2192, 2216), 'scipy.sparse.identity', 'sp.sparse.identity', (['nref'], {}), '(nref)\n', (2210, 2216), True, 'import scipy as sp\n')]
#!/usr/bin/env python # -*- coding: utf-8 -*- import random import numpy as np # Generic data augmentation class Augmenter: """ Generic data augmentation class with chained operations """ def __init__(self, ops=[]): if not isinstance(ops, list): print("Error: ops must be a list of functions") quit() self.ops = ops def add(self, op): self.ops.append(op) def augment(self, img): aug = img.copy() for op in self.ops: aug = op(aug) return aug def __call__(self, img): return self.augment(img) ########## # Images # ########## def horizontal_flip(p=0.5): def fc(img): if random.random() < p: return img[..., ::-1] else: return img return fc def vertical_flip(p=0.5): def fc(img): if random.random() < p: return img[..., ::-1, :] else: return img return fc def gaussian_noise(p=0.5, mean=0, sigma=0.02): def fc(img): if random.random() < p: gauss = np.random.normal(mean, sigma, img.shape).astype(np.float32) return img + gauss else: return img return fc def black_vstripe(p=0.5, size=10): def fc(img): if random.random() < p: j = int(random.random() * (img.shape[1]-size)) img[..., j:j+size] = 0 return img else: return img return fc def black_hstripe(p=0.5, size=10): def fc(img): if random.random() < p: j = int(random.random() * (img.shape[0]-size)) img[..., j:j+size, :] = 0 return img else: return img return fc def default_augmenter(p=0.5, strip_size=3, mean=0, sigma=0.02): """Default data augmentation with horizontal flip, vertical flip, gaussian noise, black hstripe, and black vstripe. Returns: Augmenter object. Use as: aug.augment(img) """ print("Using default image augmenter") return Augmenter([ horizontal_flip(p), gaussian_noise(p, mean, sigma), black_hstripe(p, size=strip_size), black_vstripe(p, size=strip_size) ]) ########## # Videos # ########## def horizontal_flip_vid(p=0.5): def fc(vid): if random.random() < p: return vid[..., ::-1] else: return vid return fc def black_vstripe_vid(p=0.5, size=10): def fc(batch): if random.random() < p: j = int(random.random() * (batch.shape[-1]-size)) batch[..., j:j+size] = 0 return batch else: return batch return fc def black_hstripe_vid(p=0.5, size=10): def fc(batch): if random.random() < p: j = int(random.random() * (batch.shape[-2]-size)) batch[..., j:j+size, :] = 0 return batch else: return batch return fc def default_augmenter_vid(p=0.5, strip_size=3, mean=0, sigma=0.02): """Default data augmentation with horizontal flip, gaussian noise, black hstripe, and black vstripe. Returns: Augmenter object. Use as: aug.augment(img) """ return Augmenter([ horizontal_flip_vid(p), gaussian_noise(p, mean, sigma), black_hstripe_vid(p, size=strip_size), black_vstripe_vid(p, size=strip_size) ])
[ "numpy.random.normal", "random.random" ]
[((712, 727), 'random.random', 'random.random', ([], {}), '()\n', (725, 727), False, 'import random\n'), ((873, 888), 'random.random', 'random.random', ([], {}), '()\n', (886, 888), False, 'import random\n'), ((1058, 1073), 'random.random', 'random.random', ([], {}), '()\n', (1071, 1073), False, 'import random\n'), ((1305, 1320), 'random.random', 'random.random', ([], {}), '()\n', (1318, 1320), False, 'import random\n'), ((1558, 1573), 'random.random', 'random.random', ([], {}), '()\n', (1571, 1573), False, 'import random\n'), ((2299, 2314), 'random.random', 'random.random', ([], {}), '()\n', (2312, 2314), False, 'import random\n'), ((2475, 2490), 'random.random', 'random.random', ([], {}), '()\n', (2488, 2490), False, 'import random\n'), ((2743, 2758), 'random.random', 'random.random', ([], {}), '()\n', (2756, 2758), False, 'import random\n'), ((1099, 1139), 'numpy.random.normal', 'np.random.normal', (['mean', 'sigma', 'img.shape'], {}), '(mean, sigma, img.shape)\n', (1115, 1139), True, 'import numpy as np\n'), ((1346, 1361), 'random.random', 'random.random', ([], {}), '()\n', (1359, 1361), False, 'import random\n'), ((1599, 1614), 'random.random', 'random.random', ([], {}), '()\n', (1612, 1614), False, 'import random\n'), ((2516, 2531), 'random.random', 'random.random', ([], {}), '()\n', (2529, 2531), False, 'import random\n'), ((2784, 2799), 'random.random', 'random.random', ([], {}), '()\n', (2797, 2799), False, 'import random\n')]
import numpy as np def rot_to_angle(rot): return np.arccos(0.5*np.trace(rot)-0.5) def rot_to_heading(rot): # This function calculates the heading angle of the rot matrix w.r.t. the y-axis new_rot = rot[0:3:2, 0:3:2] # remove the mid row and column corresponding to the y-axis new_rot = new_rot/np.linalg.det(new_rot) return np.arctan2(new_rot[1, 0], new_rot[0, 0])
[ "numpy.trace", "numpy.arctan2", "numpy.linalg.det" ]
[((349, 389), 'numpy.arctan2', 'np.arctan2', (['new_rot[1, 0]', 'new_rot[0, 0]'], {}), '(new_rot[1, 0], new_rot[0, 0])\n', (359, 389), True, 'import numpy as np\n'), ((315, 337), 'numpy.linalg.det', 'np.linalg.det', (['new_rot'], {}), '(new_rot)\n', (328, 337), True, 'import numpy as np\n'), ((69, 82), 'numpy.trace', 'np.trace', (['rot'], {}), '(rot)\n', (77, 82), True, 'import numpy as np\n')]
import logging logger = logging.getLogger(__name__) import random import chainercv import numpy as np from matplotlib import pyplot as plt from mpl_toolkits.mplot3d import Axes3D # NOQA from pose.hand_dataset.geometry_utils import normalize_joint_zyx from pose.hand_dataset.image_utils import normalize_depth # Decimal Code (R,G,B) BASE_COLOR = { "RED": (255, 0, 0), "GREEN": (0, 255, 0), "BLUE": (0, 0, 255), "YELLOW": (255, 255, 0), "CYAN": (0, 255, 255), "MAGENTA": (255, 0, 255), } def vis_image(img, ax=None): """ extend chainercv.visualizations.vis_image """ C, H, W = img.shape if C == 1: if ax is None: fig = plt.figure() ax = fig.add_subplot(1, 1, 1) # remove channnel dimension ax.imshow(img.squeeze()) else: ax = chainercv.visualizations.vis_image(img, ax) return ax def preprocess(point, ax, img): input_point = np.asarray(point) if input_point.ndim == 2: input_point = np.expand_dims(point, axis=0) H, W = None, None if ax is None: fig = plt.figure() if input_point.shape[-1] == 3: ax = fig.add_subplot(1, 1, 1, projection="3d") else: ax = fig.add_subplot(1, 1, 1) if img is not None: ax = vis_image(img, ax=ax) _, H, W = img.shape return input_point, ax, H, W def vis_point(point, img=None, color=None, ax=None): """ Visualize points in an image, customized to our purpose. Base implementation is taken from chainercv.visualizations.vis_image """ point, ax, H, W = preprocess(point, ax, img) n_inst = len(point) c = np.asarray(color) / 255. if color is not None else None for i in range(n_inst): # note that the shape of `point[i]` is (K,N) and the format of one is (y, x), (z,y,x). # (K, N) -> (N, K) pts = point[i].transpose() # (K,N) -> (N,K) # resort coordinate order : yx -> xy or zyx -> xyz pts = pts[::-1] ax.scatter(*pts, c=c) if W is not None: ax.set_xlim(left=0, right=W) if H is not None: ax.set_ylim(bottom=H - 1, top=0) return ax def vis_edge(point, indices, img=None, color=None, ax=None): """ Visualize edges in an image """ point, ax, H, W = preprocess(point, ax, img) n_inst = len(point) if color is not None: color = np.asarray(color) / 255. else: color = [None] * len(indices) for i in range(n_inst): # note that the shape of `point[i]` is (K,N) and the format of one is (y, x) or (z,y,x). pts = point[i] for ((s, t), c) in zip(indices, color): # Select point which consists edge. It is a pair or point (start, target). # Note that [::-1] does resort coordinate order: yx -> xy or zyx -> xyz edge = pts[[s, t]].transpose() edge = edge[::-1] ax.plot(*edge, c=c) if W is not None: ax.set_xlim(left=0, right=W) if H is not None: ax.set_ylim(bottom=H - 1, top=0) return ax def vis_pose(point, indices, img=None, point_color=None, edge_color=None, ax=None): ax = vis_point(point, img=img, color=point_color, ax=ax) vis_edge(point, indices, img=img, color=edge_color, ax=ax) def visualize_both(dataset, keypoint_names, edges, color_map, normalize=False): import random idx = random.randint(0, len(dataset) - 1) logger.info("get example") example = dataset.get_example(idx) logger.info("Done get example") fig = plt.figure(figsize=(8, 8)) ax1 = fig.add_subplot(221) ax2 = fig.add_subplot(222) ax3 = fig.add_subplot(223, projection="3d") ax4 = fig.add_subplot(224, projection="3d") color = [color_map[k] for k in keypoint_names] edge_color = [color_map[s, t] for s, t in edges] depth = example["depth"].astype(np.float32) depth_joint = example["depth_joint"] depth_camera = example["depth_camera"] depth_vu, depth_z = depth_camera.zyx2vu(depth_joint, return_z=True) z_size = example["param"]["z_size"] if normalize: depth = normalize_depth(depth, z_com=depth_z.mean(), z_size=z_size) depth_joint = normalize_joint_zyx(depth_joint, depth_camera, z_size) rgb = example["rgb"] rgb_joint = example["rgb_joint"] rgb_camera = example["rgb_camera"] rgb_vu = rgb_camera.zyx2vu(rgb_joint) rgb_joint = normalize_joint_zyx(rgb_joint, rgb_camera, z_size) print(example["param"]) vis_point(rgb_vu, img=rgb, color=color, ax=ax1) vis_edge(rgb_vu, indices=edges, color=edge_color, ax=ax1) vis_point(rgb_joint, color=color, ax=ax3) vis_edge(rgb_joint, indices=edges, color=edge_color, ax=ax3) vis_point(depth_vu, img=depth, color=color, ax=ax2) vis_edge(depth_vu, indices=edges, color=edge_color, ax=ax2) vis_point(depth_joint, color=color, ax=ax4) vis_edge(depth_joint, indices=edges, color=edge_color, ax=ax4) for ax in [ax3, ax4]: ax.set_xlabel("x") ax.set_ylabel("y") ax.set_zlabel("z") ax.view_init(-65, -90) plt.savefig("output.png") plt.show() def visualize_rgb(dataset, keypoint_names, edges, color_map, idx=None): import random if idx is None: idx = random.randint(0, len(dataset) - 1) logger.info("get example") example = dataset.get_example(idx) logger.info("Done get example") fig = plt.figure(figsize=(5, 10)) ax1 = fig.add_subplot(211) ax3 = fig.add_subplot(212, projection="3d") color = [color_map[k] for k in keypoint_names] edge_color = [color_map[s, t] for s, t in edges] rgb = example["rgb"] rgb_joint = example["rgb_joint"] rgb_camera = example["rgb_camera"] rgb_vu = rgb_camera.zyx2vu(rgb_joint) vis_point(rgb_vu, img=rgb, color=color, ax=ax1) vis_edge(rgb_vu, indices=edges, color=edge_color, ax=ax1) vis_point(rgb_joint, color=color, ax=ax3) vis_edge(rgb_joint, indices=edges, color=edge_color, ax=ax3) for ax in [ax3]: ax.set_xlabel("x") ax.set_ylabel("y") ax.set_zlabel("z") ax.view_init(-65, -90) plt.savefig("output.png") plt.show() def visualize_depth(dataset, keypoint_names, edges, color_map, normalize=False): idx = random.randint(0, len(dataset) - 1) logger.info("get example") example = dataset.get_example(idx) logger.info("Done get example") fig = plt.figure(figsize=(5, 10)) ax2 = fig.add_subplot(211) ax4 = fig.add_subplot(212, projection="3d") color = [color_map[k] for k in keypoint_names] edge_color = [color_map[s, t] for s, t in edges] depth = example["depth"].astype(np.float32) depth_joint = example["depth_joint"] depth_camera = example["depth_camera"] depth_vu, depth_z = depth_camera.zyx2vu(depth_joint, return_z=True) z_size = example["param"]["z_size"] if normalize: depth = normalize_depth(depth, z_com=depth_z.mean(), z_size=z_size) depth_joint = normalize_joint_zyx(depth_joint, depth_camera, z_size) print(example["param"]) vis_point(depth_vu, img=depth, color=color, ax=ax2) vis_edge(depth_vu, indices=edges, color=edge_color, ax=ax2) vis_point(depth_joint, color=color, ax=ax4) vis_edge(depth_joint, indices=edges, color=edge_color, ax=ax4) for ax in [ax4]: ax.set_xlabel("x") ax.set_ylabel("y") ax.set_zlabel("z") ax.view_init(-65, -90) plt.savefig("output.png") plt.show()
[ "logging.getLogger", "chainercv.visualizations.vis_image", "matplotlib.pyplot.savefig", "numpy.asarray", "matplotlib.pyplot.figure", "pose.hand_dataset.geometry_utils.normalize_joint_zyx", "numpy.expand_dims", "matplotlib.pyplot.show" ]
[((25, 52), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (42, 52), False, 'import logging\n'), ((946, 963), 'numpy.asarray', 'np.asarray', (['point'], {}), '(point)\n', (956, 963), True, 'import numpy as np\n'), ((3562, 3588), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(8, 8)'}), '(figsize=(8, 8))\n', (3572, 3588), True, 'from matplotlib import pyplot as plt\n'), ((4427, 4477), 'pose.hand_dataset.geometry_utils.normalize_joint_zyx', 'normalize_joint_zyx', (['rgb_joint', 'rgb_camera', 'z_size'], {}), '(rgb_joint, rgb_camera, z_size)\n', (4446, 4477), False, 'from pose.hand_dataset.geometry_utils import normalize_joint_zyx\n'), ((5115, 5140), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""output.png"""'], {}), "('output.png')\n", (5126, 5140), True, 'from matplotlib import pyplot as plt\n'), ((5145, 5155), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (5153, 5155), True, 'from matplotlib import pyplot as plt\n'), ((5434, 5461), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(5, 10)'}), '(figsize=(5, 10))\n', (5444, 5461), True, 'from matplotlib import pyplot as plt\n'), ((6155, 6180), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""output.png"""'], {}), "('output.png')\n", (6166, 6180), True, 'from matplotlib import pyplot as plt\n'), ((6185, 6195), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (6193, 6195), True, 'from matplotlib import pyplot as plt\n'), ((6441, 6468), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(5, 10)'}), '(figsize=(5, 10))\n', (6451, 6468), True, 'from matplotlib import pyplot as plt\n'), ((7009, 7063), 'pose.hand_dataset.geometry_utils.normalize_joint_zyx', 'normalize_joint_zyx', (['depth_joint', 'depth_camera', 'z_size'], {}), '(depth_joint, depth_camera, z_size)\n', (7028, 7063), False, 'from pose.hand_dataset.geometry_utils import normalize_joint_zyx\n'), ((7468, 7493), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""output.png"""'], {}), "('output.png')\n", (7479, 7493), True, 'from matplotlib import pyplot as plt\n'), ((7498, 7508), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (7506, 7508), True, 'from matplotlib import pyplot as plt\n'), ((836, 879), 'chainercv.visualizations.vis_image', 'chainercv.visualizations.vis_image', (['img', 'ax'], {}), '(img, ax)\n', (870, 879), False, 'import chainercv\n'), ((1017, 1046), 'numpy.expand_dims', 'np.expand_dims', (['point'], {'axis': '(0)'}), '(point, axis=0)\n', (1031, 1046), True, 'import numpy as np\n'), ((1102, 1114), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (1112, 1114), True, 'from matplotlib import pyplot as plt\n'), ((4212, 4266), 'pose.hand_dataset.geometry_utils.normalize_joint_zyx', 'normalize_joint_zyx', (['depth_joint', 'depth_camera', 'z_size'], {}), '(depth_joint, depth_camera, z_size)\n', (4231, 4266), False, 'from pose.hand_dataset.geometry_utils import normalize_joint_zyx\n'), ((689, 701), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (699, 701), True, 'from matplotlib import pyplot as plt\n'), ((1675, 1692), 'numpy.asarray', 'np.asarray', (['color'], {}), '(color)\n', (1685, 1692), True, 'import numpy as np\n'), ((2409, 2426), 'numpy.asarray', 'np.asarray', (['color'], {}), '(color)\n', (2419, 2426), True, 'import numpy as np\n')]
from typing import List, Tuple, Union import numpy as np import scipy.special from PIL import Image, ImageFilter class RandomBetaMorphology: def __init__( self, filter_size_min: int, filter_size_max: int, alpha: float, beta: float ) -> None: assert filter_size_min % 2 != 0, "Filter size must be odd" assert filter_size_max % 2 != 0, "Filter size must be odd" self.filter_size_min = filter_size_min self.filter_size_max = filter_size_max self.alpha = alpha self.beta = beta self.filter_sizes, self.filter_probs = self._create_filter_distribution( filter_size_min, filter_size_max, alpha, beta ) @staticmethod def _create_filter_distribution( filter_size_min: int, filter_size_max: int, alpha: float, beta: float ) -> Tuple[List[int], Union[List[float], np.ndarray]]: n = (filter_size_max - filter_size_min) // 2 + 1 if n < 2: return [filter_size_min], np.asarray([1.0], dtype=np.float32) filter_sizes = [] filter_probs = [] for k in range(n): filter_sizes.append(filter_size_min + 2 * k) filter_probs.append( scipy.special.comb(n, k) * scipy.special.beta(alpha + k, n - k + beta) ) np_filter_probs = np.asarray(filter_probs, dtype=np.float32) np_filter_probs = filter_probs / np_filter_probs.sum() return filter_sizes, np_filter_probs def sample_filter_size(self): filter_size = np.random.choice(self.filter_sizes, p=self.filter_probs) return filter_size def __call__(self, *args, **kwargs): return NotImplementedError def __repr__(self) -> str: return ( f"vision.{self.__class__.__name__}(" f"filter_size_min={self.filter_size_min}, " f"filter_size_max={self.filter_size_max}, " f"alpha={self.alpha}, beta={self.beta})" ) class Dilate(RandomBetaMorphology): def __init__( self, filter_size_min: int = 3, filter_size_max: int = 7, alpha: float = 1, beta: float = 3, ) -> None: super().__init__(filter_size_min, filter_size_max, alpha, beta) def __call__(self, img: Image) -> Image: filter_size = self.sample_filter_size() return img.filter(ImageFilter.MaxFilter(filter_size)) class Erode(RandomBetaMorphology): def __init__( self, filter_size_min: int = 3, filter_size_max: int = 5, alpha: float = 1, beta: float = 3, ) -> None: super().__init__(filter_size_min, filter_size_max, alpha, beta) def __call__(self, img: Image) -> Image: filter_size = self.sample_filter_size() return img.filter(ImageFilter.MinFilter(filter_size)) if __name__ == "__main__": import argparse from PIL import ImageOps parser = argparse.ArgumentParser() parser.add_argument("--operation", choices=("dilate", "erode"), default="dilate") parser.add_argument("images", type=argparse.FileType("rb"), nargs="+") args = parser.parse_args() transformer = Dilate() if args.operation == "dilate" else Erode() for f in args.images: x = Image.open(f, "r").convert("L") x = ImageOps.invert(x) y = transformer(x) w, h = x.size z = Image.new("L", (w, 2 * h)) z.paste(x, (0, 0)) z.paste(y, (0, h)) z = z.resize(size=(w // 2, h), resample=Image.BICUBIC) z.show() input()
[ "argparse.FileType", "PIL.Image.open", "argparse.ArgumentParser", "numpy.random.choice", "PIL.Image.new", "PIL.ImageFilter.MinFilter", "numpy.asarray", "PIL.ImageOps.invert", "PIL.ImageFilter.MaxFilter" ]
[((2926, 2951), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (2949, 2951), False, 'import argparse\n'), ((1328, 1370), 'numpy.asarray', 'np.asarray', (['filter_probs'], {'dtype': 'np.float32'}), '(filter_probs, dtype=np.float32)\n', (1338, 1370), True, 'import numpy as np\n'), ((1536, 1592), 'numpy.random.choice', 'np.random.choice', (['self.filter_sizes'], {'p': 'self.filter_probs'}), '(self.filter_sizes, p=self.filter_probs)\n', (1552, 1592), True, 'import numpy as np\n'), ((3298, 3316), 'PIL.ImageOps.invert', 'ImageOps.invert', (['x'], {}), '(x)\n', (3313, 3316), False, 'from PIL import ImageOps\n'), ((3379, 3405), 'PIL.Image.new', 'Image.new', (['"""L"""', '(w, 2 * h)'], {}), "('L', (w, 2 * h))\n", (3388, 3405), False, 'from PIL import Image, ImageFilter\n'), ((2366, 2400), 'PIL.ImageFilter.MaxFilter', 'ImageFilter.MaxFilter', (['filter_size'], {}), '(filter_size)\n', (2387, 2400), False, 'from PIL import Image, ImageFilter\n'), ((2797, 2831), 'PIL.ImageFilter.MinFilter', 'ImageFilter.MinFilter', (['filter_size'], {}), '(filter_size)\n', (2818, 2831), False, 'from PIL import Image, ImageFilter\n'), ((3077, 3100), 'argparse.FileType', 'argparse.FileType', (['"""rb"""'], {}), "('rb')\n", (3094, 3100), False, 'import argparse\n'), ((996, 1031), 'numpy.asarray', 'np.asarray', (['[1.0]'], {'dtype': 'np.float32'}), '([1.0], dtype=np.float32)\n', (1006, 1031), True, 'import numpy as np\n'), ((3254, 3272), 'PIL.Image.open', 'Image.open', (['f', '"""r"""'], {}), "(f, 'r')\n", (3264, 3272), False, 'from PIL import Image, ImageFilter\n')]
'''Analysis utility functions. :Author: <NAME> <<EMAIL>> :Date: 2016-03-26 :Copyright: 2016-2018, Karr Lab :License: MIT ''' # TODO(Arthur): IMPORTANT: refactor and replace from matplotlib import pyplot from matplotlib import ticker from wc_lang import Model, Submodel from scipy.constants import Avogadro import numpy as np import re def plot(model, time = np.zeros(0), species_counts = None, volume = np.zeros(0), extracellular_volume = np.zeros(0), selected_species_compartments = [], yDatas = {}, units = 'mM', title = '', fileName = ''): #convert time to hours time = time.copy() / 3600 #create figure fig = pyplot.figure() #extract data to plot if not yDatas: yDatas = {} for species_compartment_id in selected_species_compartments: #extract data match = re.match('^(?P<speciesId>[a-z0-9\-_]+)\[(?P<compartmentId>[a-z0-9\-_]+)\]$', species_compartment_id, re.I).groupdict() speciesId = match['speciesId'] compartmentId = match['compartmentId'] if isinstance(model, Model): species = model.get_component_by_id(speciesId, 'species') compartment = model.get_component_by_id(compartmentId, 'compartments') yData = species_counts[species.index, compartment.index, :] elif isinstance(model, Submodel): yData = species_counts[species_compartment_id] else: raise Exception('Invalid model type %s' % model.__class__.__name__) #scale if compartmentId == 'c': V = volume else: V = extracellular_volume if units == 'pM': scale = 1 / Avogadro / V * 1e12 elif units == 'nM': scale = 1 / Avogadro / V * 1e9 elif units == 'uM': scale = 1 / Avogadro / V * 1e6 elif units == 'mM': scale = 1 / Avogadro / V * 1e3 elif units == 'M': scale = 1 / Avogadro / V * 1e0 elif units == 'molecules': scale = 1 else: raise Exception('Invalid units "%s"' % units) yData *= scale yDatas[species_compartment_id] = yData #plot results yMin = 1e12 yMax = -1e12 for label, yData in yDatas.items(): #update range yMin = min(yMin, np.min(yData)) yMax = max(yMax, np.max(yData)) #add to plot pyplot.plot(time, yData, label=label) #set axis limits pyplot.xlim((0, time[-1])) pyplot.ylim((yMin, yMax)) #add axis labels and legend if title: pyplot.title(title) pyplot.xlabel('Time (h)') if units == 'molecules': pyplot.ylabel('Copy number') else: pyplot.ylabel('Concentration (%s)' % units) y_formatter = ticker.ScalarFormatter(useOffset=False) pyplot.gca().get_yaxis().set_major_formatter(y_formatter) if len(selected_species_compartments) > 1: pyplot.legend() #save if fileName: fig.savefig(fileName) pyplot.close(fig)
[ "matplotlib.pyplot.title", "matplotlib.pyplot.ylabel", "matplotlib.pyplot.gca", "matplotlib.pyplot.xlabel", "matplotlib.pyplot.plot", "re.match", "numpy.max", "matplotlib.pyplot.close", "numpy.zeros", "matplotlib.pyplot.figure", "matplotlib.ticker.ScalarFormatter", "numpy.min", "matplotlib.pyplot.ylim", "matplotlib.pyplot.xlim", "matplotlib.pyplot.legend" ]
[((362, 373), 'numpy.zeros', 'np.zeros', (['(0)'], {}), '(0)\n', (370, 373), True, 'import numpy as np\n'), ((411, 422), 'numpy.zeros', 'np.zeros', (['(0)'], {}), '(0)\n', (419, 422), True, 'import numpy as np\n'), ((447, 458), 'numpy.zeros', 'np.zeros', (['(0)'], {}), '(0)\n', (455, 458), True, 'import numpy as np\n'), ((651, 666), 'matplotlib.pyplot.figure', 'pyplot.figure', ([], {}), '()\n', (664, 666), False, 'from matplotlib import pyplot\n'), ((2617, 2643), 'matplotlib.pyplot.xlim', 'pyplot.xlim', (['(0, time[-1])'], {}), '((0, time[-1]))\n', (2628, 2643), False, 'from matplotlib import pyplot\n'), ((2648, 2673), 'matplotlib.pyplot.ylim', 'pyplot.ylim', (['(yMin, yMax)'], {}), '((yMin, yMax))\n', (2659, 2673), False, 'from matplotlib import pyplot\n'), ((2754, 2779), 'matplotlib.pyplot.xlabel', 'pyplot.xlabel', (['"""Time (h)"""'], {}), "('Time (h)')\n", (2767, 2779), False, 'from matplotlib import pyplot\n'), ((2928, 2967), 'matplotlib.ticker.ScalarFormatter', 'ticker.ScalarFormatter', ([], {'useOffset': '(False)'}), '(useOffset=False)\n', (2950, 2967), False, 'from matplotlib import ticker\n'), ((2553, 2590), 'matplotlib.pyplot.plot', 'pyplot.plot', (['time', 'yData'], {'label': 'label'}), '(time, yData, label=label)\n', (2564, 2590), False, 'from matplotlib import pyplot\n'), ((2729, 2748), 'matplotlib.pyplot.title', 'pyplot.title', (['title'], {}), '(title)\n', (2741, 2748), False, 'from matplotlib import pyplot\n'), ((2818, 2846), 'matplotlib.pyplot.ylabel', 'pyplot.ylabel', (['"""Copy number"""'], {}), "('Copy number')\n", (2831, 2846), False, 'from matplotlib import pyplot\n'), ((2865, 2908), 'matplotlib.pyplot.ylabel', 'pyplot.ylabel', (["('Concentration (%s)' % units)"], {}), "('Concentration (%s)' % units)\n", (2878, 2908), False, 'from matplotlib import pyplot\n'), ((3086, 3101), 'matplotlib.pyplot.legend', 'pyplot.legend', ([], {}), '()\n', (3099, 3101), False, 'from matplotlib import pyplot\n'), ((3168, 3185), 'matplotlib.pyplot.close', 'pyplot.close', (['fig'], {}), '(fig)\n', (3180, 3185), False, 'from matplotlib import pyplot\n'), ((2468, 2481), 'numpy.min', 'np.min', (['yData'], {}), '(yData)\n', (2474, 2481), True, 'import numpy as np\n'), ((2508, 2521), 'numpy.max', 'np.max', (['yData'], {}), '(yData)\n', (2514, 2521), True, 'import numpy as np\n'), ((848, 963), 're.match', 're.match', (['"""^(?P<speciesId>[a-z0-9\\\\-_]+)\\\\[(?P<compartmentId>[a-z0-9\\\\-_]+)\\\\]$"""', 'species_compartment_id', 're.I'], {}), "('^(?P<speciesId>[a-z0-9\\\\-_]+)\\\\[(?P<compartmentId>[a-z0-9\\\\-_]+)\\\\]$'\n , species_compartment_id, re.I)\n", (856, 963), False, 'import re\n'), ((2972, 2984), 'matplotlib.pyplot.gca', 'pyplot.gca', ([], {}), '()\n', (2982, 2984), False, 'from matplotlib import pyplot\n')]
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for SparseTensorsMap.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.python.client import session from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import sparse_tensor as sparse_tensor_lib from tensorflow.python.ops import array_ops from tensorflow.python.ops import sparse_ops from tensorflow.python.ops import variables from tensorflow.python.platform import benchmark from tensorflow.python.platform import test # pylint: disable=protected-access add_sparse_to_tensors_map = sparse_ops._add_sparse_to_tensors_map add_many_sparse_to_tensors_map = sparse_ops._add_many_sparse_to_tensors_map take_many_sparse_from_tensors_map = ( sparse_ops._take_many_sparse_from_tensors_map) # pylint: enable=protected-access class SparseTensorsMapTest(test.TestCase): def _SparseTensorPlaceholder(self, dtype=None): if dtype is None: dtype = dtypes.int32 return sparse_tensor_lib.SparseTensor( array_ops.placeholder(dtypes.int64), array_ops.placeholder(dtype), array_ops.placeholder(dtypes.int64)) def _SparseTensorValue_5x6(self, permutation): ind = np.array([[0, 0], [1, 0], [1, 3], [1, 4], [3, 2], [3, 3]]).astype(np.int64) val = np.array([0, 10, 13, 14, 32, 33]).astype(np.int32) ind = ind[permutation] val = val[permutation] shape = np.array([5, 6]).astype(np.int64) return sparse_tensor_lib.SparseTensorValue(ind, val, shape) def _SparseTensorValue_3x4(self, permutation): ind = np.array([[0, 0], [1, 0], [1, 2], [1, 3], [2, 2], [2, 3]]).astype(np.int64) val = np.array([0, 10, 13, 14, 32, 33]).astype(np.int32) ind = ind[permutation] val = val[permutation] shape = np.array([3, 4]).astype(np.int64) return sparse_tensor_lib.SparseTensorValue(ind, val, shape) def _SparseTensorValue_1x1x1(self): ind = np.array([[0, 0, 0]]).astype(np.int64) val = np.array([0]).astype(np.int32) shape = np.array([3, 4, 5]).astype(np.int64) return sparse_tensor_lib.SparseTensorValue(ind, val, shape) def testAddTakeMany(self): with self.session(graph=ops.Graph(), use_gpu=False) as sess: sp_input0 = self._SparseTensorValue_5x6(np.arange(6)) sp_input1 = self._SparseTensorValue_3x4(np.arange(6)) handle0 = add_sparse_to_tensors_map(sp_input0, shared_name="a") handle1 = add_sparse_to_tensors_map(sp_input1, shared_name="a") self.assertEqual(handle0.get_shape(), ()) handles_concat = array_ops.stack([handle0, handle1]) sp_out = take_many_sparse_from_tensors_map( sparse_map_op=handle0.op, sparse_handles=handles_concat) combined_indices, combined_values, combined_shape = self.evaluate(sp_out) self.assertAllEqual(combined_indices[:6, 0], [0] * 6) # minibatch 0 self.assertAllEqual(combined_indices[:6, 1:], sp_input0[0]) self.assertAllEqual(combined_indices[6:, 0], [1] * 6) # minibatch 1 self.assertAllEqual(combined_indices[6:, 1:], sp_input1[0]) self.assertAllEqual(combined_values[:6], sp_input0[1]) self.assertAllEqual(combined_values[6:], sp_input1[1]) self.assertAllEqual(combined_shape, [2, 5, 6]) def testFeedAddTakeMany(self): with self.session(use_gpu=False) as sess: sp_input = self._SparseTensorPlaceholder() input0_val = self._SparseTensorValue_5x6(np.arange(6)) input1_val = self._SparseTensorValue_3x4(np.arange(6)) handle = add_sparse_to_tensors_map(sp_input) handle0_value = sess.run(handle, feed_dict={sp_input: input0_val}) handle1_value = sess.run(handle, feed_dict={sp_input: input1_val}) sparse_handles = ops.convert_to_tensor( [handle0_value, handle1_value], dtype=dtypes.int64) sp_roundtrip = take_many_sparse_from_tensors_map( sparse_map_op=handle.op, sparse_handles=sparse_handles) combined_indices, combined_values, combined_shape = self.evaluate( sp_roundtrip) self.assertAllEqual(combined_indices[:6, 0], [0] * 6) # minibatch 0 self.assertAllEqual(combined_indices[:6, 1:], input0_val[0]) self.assertAllEqual(combined_indices[6:, 0], [1] * 6) # minibatch 1 self.assertAllEqual(combined_indices[6:, 1:], input1_val[0]) self.assertAllEqual(combined_values[:6], input0_val[1]) self.assertAllEqual(combined_values[6:], input1_val[1]) self.assertAllEqual(combined_shape, [2, 5, 6]) def testAddManyTakeManyRoundTrip(self): with self.session(use_gpu=False) as sess: # N == 4 because shape_value == [4, 5] indices_value = np.array([[0, 0], [0, 1], [2, 0]], dtype=np.int64) values_value = np.array([b"a", b"b", b"c"]) shape_value = np.array([4, 5], dtype=np.int64) sparse_tensor = self._SparseTensorPlaceholder(dtype=dtypes.string) handles = add_many_sparse_to_tensors_map(sparse_tensor) roundtrip = take_many_sparse_from_tensors_map( sparse_map_op=handles.op, sparse_handles=handles) handles_value, roundtrip_value = sess.run( [handles, roundtrip], feed_dict={ sparse_tensor.indices: indices_value, sparse_tensor.values: values_value, sparse_tensor.dense_shape: shape_value }) self.assertEqual(handles_value.shape, (4,)) self.assertAllEqual(roundtrip_value.indices, indices_value) self.assertAllEqual(roundtrip_value.values, values_value) self.assertAllEqual(roundtrip_value.dense_shape, shape_value) def testDeserializeFailsInconsistentRank(self): with self.session(use_gpu=False) as sess: sp_input = self._SparseTensorPlaceholder() input0_val = self._SparseTensorValue_5x6(np.arange(6)) input1_val = self._SparseTensorValue_1x1x1() handle = add_sparse_to_tensors_map(sp_input) handle0_value = sess.run(handle, feed_dict={sp_input: input0_val}) handle1_value = sess.run(handle, feed_dict={sp_input: input1_val}) handle_concat = ops.convert_to_tensor( [handle0_value, handle1_value], dtype=dtypes.int64) sp_roundtrip = take_many_sparse_from_tensors_map( sparse_map_op=handle.op, sparse_handles=handle_concat) with self.assertRaisesOpError( r"Inconsistent rank across SparseTensors: rank prior to " r"SparseTensor\[1\] was: 3 but rank of SparseTensor\[1\] is: 4"): self.evaluate(sp_roundtrip) def testTakeManyFailsWrongInputOp(self): with self.session(use_gpu=False) as sess: input_val = self._SparseTensorValue_5x6(np.arange(6)) handle = add_sparse_to_tensors_map(input_val) handle_value = self.evaluate(handle) bad_handle = handle_value + 10 sp_roundtrip = take_many_sparse_from_tensors_map( sparse_map_op=handle.op, sparse_handles=[handle_value, bad_handle]) with self.assertRaisesOpError(r"Unable to find SparseTensor: 10"): self.evaluate(sp_roundtrip) class BenchmarkSparseTensorsMapVsSerialization(test.Benchmark): def benchmarkVeryLarge2DFloatSparseTensor(self): np.random.seed(127) num_elements = 10000 batch_size = 64 indices_batch = np.random.randint( batch_size, size=num_elements, dtype=np.int64) indices_value = np.arange(num_elements, dtype=np.int64) indices = np.asarray( sorted(zip(indices_batch, indices_value)), dtype=np.int64) values = ["feature_value_for_embedding_lookup"] * num_elements shape = np.asarray([batch_size, num_elements], dtype=np.int64) with session.Session(config=benchmark.benchmark_config()) as sess: with ops.device("/cpu:0"): indices = variables.Variable(indices) values = variables.Variable(values) shape = variables.Variable(shape) st = sparse_tensor_lib.SparseTensor(indices, values, shape) st_handles = add_many_sparse_to_tensors_map(st) st_roundtrip = take_many_sparse_from_tensors_map( sparse_map_op=st_handles.op, sparse_handles=st_handles) st_roundtrip_op = st_roundtrip.values.op st_serialized = sparse_ops.serialize_many_sparse(st) st_deserialized = sparse_ops.deserialize_many_sparse( st_serialized, dtype=values.dtype) st_deserialized_op = st_deserialized.values.op variables.global_variables_initializer().run() st_roundtrip_values = self.evaluate(st_roundtrip) st_deserialized_values = self.evaluate(st_deserialized) np.testing.assert_equal(st_roundtrip_values.values, st_deserialized_values.values) np.testing.assert_equal(st_roundtrip_values.indices, st_deserialized_values.indices) np.testing.assert_equal(st_roundtrip_values.dense_shape, st_deserialized_values.dense_shape) self.run_op_benchmark( sess, st_roundtrip_op, min_iters=2000, name="benchmark_very_large_2d_float_st_tensor_maps") self.run_op_benchmark( sess, st_deserialized_op, min_iters=2000, name="benchmark_very_large_2d_float_st_serialization") if __name__ == "__main__": test.main()
[ "tensorflow.python.ops.sparse_ops.serialize_many_sparse", "numpy.testing.assert_equal", "tensorflow.python.ops.variables.global_variables_initializer", "tensorflow.python.framework.sparse_tensor.SparseTensorValue", "numpy.array", "tensorflow.python.ops.variables.Variable", "numpy.arange", "tensorflow.python.ops.array_ops.placeholder", "numpy.asarray", "tensorflow.python.platform.benchmark.benchmark_config", "numpy.random.seed", "tensorflow.python.framework.ops.convert_to_tensor", "tensorflow.python.framework.ops.device", "tensorflow.python.ops.sparse_ops.deserialize_many_sparse", "tensorflow.python.framework.sparse_tensor.SparseTensor", "tensorflow.python.ops.array_ops.stack", "numpy.random.randint", "tensorflow.python.framework.ops.Graph", "tensorflow.python.platform.test.main" ]
[((10045, 10056), 'tensorflow.python.platform.test.main', 'test.main', ([], {}), '()\n', (10054, 10056), False, 'from tensorflow.python.platform import test\n'), ((2231, 2283), 'tensorflow.python.framework.sparse_tensor.SparseTensorValue', 'sparse_tensor_lib.SparseTensorValue', (['ind', 'val', 'shape'], {}), '(ind, val, shape)\n', (2266, 2283), True, 'from tensorflow.python.framework import sparse_tensor as sparse_tensor_lib\n'), ((2614, 2666), 'tensorflow.python.framework.sparse_tensor.SparseTensorValue', 'sparse_tensor_lib.SparseTensorValue', (['ind', 'val', 'shape'], {}), '(ind, val, shape)\n', (2649, 2666), True, 'from tensorflow.python.framework import sparse_tensor as sparse_tensor_lib\n'), ((2856, 2908), 'tensorflow.python.framework.sparse_tensor.SparseTensorValue', 'sparse_tensor_lib.SparseTensorValue', (['ind', 'val', 'shape'], {}), '(ind, val, shape)\n', (2891, 2908), True, 'from tensorflow.python.framework import sparse_tensor as sparse_tensor_lib\n'), ((7898, 7917), 'numpy.random.seed', 'np.random.seed', (['(127)'], {}), '(127)\n', (7912, 7917), True, 'import numpy as np\n'), ((7983, 8047), 'numpy.random.randint', 'np.random.randint', (['batch_size'], {'size': 'num_elements', 'dtype': 'np.int64'}), '(batch_size, size=num_elements, dtype=np.int64)\n', (8000, 8047), True, 'import numpy as np\n'), ((8077, 8116), 'numpy.arange', 'np.arange', (['num_elements'], {'dtype': 'np.int64'}), '(num_elements, dtype=np.int64)\n', (8086, 8116), True, 'import numpy as np\n'), ((8289, 8343), 'numpy.asarray', 'np.asarray', (['[batch_size, num_elements]'], {'dtype': 'np.int64'}), '([batch_size, num_elements], dtype=np.int64)\n', (8299, 8343), True, 'import numpy as np\n'), ((1789, 1824), 'tensorflow.python.ops.array_ops.placeholder', 'array_ops.placeholder', (['dtypes.int64'], {}), '(dtypes.int64)\n', (1810, 1824), False, 'from tensorflow.python.ops import array_ops\n'), ((1834, 1862), 'tensorflow.python.ops.array_ops.placeholder', 'array_ops.placeholder', (['dtype'], {}), '(dtype)\n', (1855, 1862), False, 'from tensorflow.python.ops import array_ops\n'), ((1864, 1899), 'tensorflow.python.ops.array_ops.placeholder', 'array_ops.placeholder', (['dtypes.int64'], {}), '(dtypes.int64)\n', (1885, 1899), False, 'from tensorflow.python.ops import array_ops\n'), ((3335, 3370), 'tensorflow.python.ops.array_ops.stack', 'array_ops.stack', (['[handle0, handle1]'], {}), '([handle0, handle1])\n', (3350, 3370), False, 'from tensorflow.python.ops import array_ops\n'), ((4501, 4574), 'tensorflow.python.framework.ops.convert_to_tensor', 'ops.convert_to_tensor', (['[handle0_value, handle1_value]'], {'dtype': 'dtypes.int64'}), '([handle0_value, handle1_value], dtype=dtypes.int64)\n', (4522, 4574), False, 'from tensorflow.python.framework import ops\n'), ((5425, 5475), 'numpy.array', 'np.array', (['[[0, 0], [0, 1], [2, 0]]'], {'dtype': 'np.int64'}), '([[0, 0], [0, 1], [2, 0]], dtype=np.int64)\n', (5433, 5475), True, 'import numpy as np\n'), ((5497, 5525), 'numpy.array', 'np.array', (["[b'a', b'b', b'c']"], {}), "([b'a', b'b', b'c'])\n", (5505, 5525), True, 'import numpy as np\n'), ((5546, 5578), 'numpy.array', 'np.array', (['[4, 5]'], {'dtype': 'np.int64'}), '([4, 5], dtype=np.int64)\n', (5554, 5578), True, 'import numpy as np\n'), ((6825, 6898), 'tensorflow.python.framework.ops.convert_to_tensor', 'ops.convert_to_tensor', (['[handle0_value, handle1_value]'], {'dtype': 'dtypes.int64'}), '([handle0_value, handle1_value], dtype=dtypes.int64)\n', (6846, 6898), False, 'from tensorflow.python.framework import ops\n'), ((1961, 2019), 'numpy.array', 'np.array', (['[[0, 0], [1, 0], [1, 3], [1, 4], [3, 2], [3, 3]]'], {}), '([[0, 0], [1, 0], [1, 3], [1, 4], [3, 2], [3, 3]])\n', (1969, 2019), True, 'import numpy as np\n'), ((2067, 2100), 'numpy.array', 'np.array', (['[0, 10, 13, 14, 32, 33]'], {}), '([0, 10, 13, 14, 32, 33])\n', (2075, 2100), True, 'import numpy as np\n'), ((2186, 2202), 'numpy.array', 'np.array', (['[5, 6]'], {}), '([5, 6])\n', (2194, 2202), True, 'import numpy as np\n'), ((2344, 2402), 'numpy.array', 'np.array', (['[[0, 0], [1, 0], [1, 2], [1, 3], [2, 2], [2, 3]]'], {}), '([[0, 0], [1, 0], [1, 2], [1, 3], [2, 2], [2, 3]])\n', (2352, 2402), True, 'import numpy as np\n'), ((2450, 2483), 'numpy.array', 'np.array', (['[0, 10, 13, 14, 32, 33]'], {}), '([0, 10, 13, 14, 32, 33])\n', (2458, 2483), True, 'import numpy as np\n'), ((2569, 2585), 'numpy.array', 'np.array', (['[3, 4]'], {}), '([3, 4])\n', (2577, 2585), True, 'import numpy as np\n'), ((2716, 2737), 'numpy.array', 'np.array', (['[[0, 0, 0]]'], {}), '([[0, 0, 0]])\n', (2724, 2737), True, 'import numpy as np\n'), ((2765, 2778), 'numpy.array', 'np.array', (['[0]'], {}), '([0])\n', (2773, 2778), True, 'import numpy as np\n'), ((2808, 2827), 'numpy.array', 'np.array', (['[3, 4, 5]'], {}), '([3, 4, 5])\n', (2816, 2827), True, 'import numpy as np\n'), ((3050, 3062), 'numpy.arange', 'np.arange', (['(6)'], {}), '(6)\n', (3059, 3062), True, 'import numpy as np\n'), ((3110, 3122), 'numpy.arange', 'np.arange', (['(6)'], {}), '(6)\n', (3119, 3122), True, 'import numpy as np\n'), ((4204, 4216), 'numpy.arange', 'np.arange', (['(6)'], {}), '(6)\n', (4213, 4216), True, 'import numpy as np\n'), ((4265, 4277), 'numpy.arange', 'np.arange', (['(6)'], {}), '(6)\n', (4274, 4277), True, 'import numpy as np\n'), ((6539, 6551), 'numpy.arange', 'np.arange', (['(6)'], {}), '(6)\n', (6548, 6551), True, 'import numpy as np\n'), ((7386, 7398), 'numpy.arange', 'np.arange', (['(6)'], {}), '(6)\n', (7395, 7398), True, 'import numpy as np\n'), ((8426, 8446), 'tensorflow.python.framework.ops.device', 'ops.device', (['"""/cpu:0"""'], {}), "('/cpu:0')\n", (8436, 8446), False, 'from tensorflow.python.framework import ops\n'), ((8466, 8493), 'tensorflow.python.ops.variables.Variable', 'variables.Variable', (['indices'], {}), '(indices)\n', (8484, 8493), False, 'from tensorflow.python.ops import variables\n'), ((8511, 8537), 'tensorflow.python.ops.variables.Variable', 'variables.Variable', (['values'], {}), '(values)\n', (8529, 8537), False, 'from tensorflow.python.ops import variables\n'), ((8554, 8579), 'tensorflow.python.ops.variables.Variable', 'variables.Variable', (['shape'], {}), '(shape)\n', (8572, 8579), False, 'from tensorflow.python.ops import variables\n'), ((8593, 8647), 'tensorflow.python.framework.sparse_tensor.SparseTensor', 'sparse_tensor_lib.SparseTensor', (['indices', 'values', 'shape'], {}), '(indices, values, shape)\n', (8623, 8647), True, 'from tensorflow.python.framework import sparse_tensor as sparse_tensor_lib\n'), ((8905, 8941), 'tensorflow.python.ops.sparse_ops.serialize_many_sparse', 'sparse_ops.serialize_many_sparse', (['st'], {}), '(st)\n', (8937, 8941), False, 'from tensorflow.python.ops import sparse_ops\n'), ((8968, 9037), 'tensorflow.python.ops.sparse_ops.deserialize_many_sparse', 'sparse_ops.deserialize_many_sparse', (['st_serialized'], {'dtype': 'values.dtype'}), '(st_serialized, dtype=values.dtype)\n', (9002, 9037), False, 'from tensorflow.python.ops import sparse_ops\n'), ((9293, 9380), 'numpy.testing.assert_equal', 'np.testing.assert_equal', (['st_roundtrip_values.values', 'st_deserialized_values.values'], {}), '(st_roundtrip_values.values, st_deserialized_values.\n values)\n', (9316, 9380), True, 'import numpy as np\n'), ((9416, 9505), 'numpy.testing.assert_equal', 'np.testing.assert_equal', (['st_roundtrip_values.indices', 'st_deserialized_values.indices'], {}), '(st_roundtrip_values.indices, st_deserialized_values\n .indices)\n', (9439, 9505), True, 'import numpy as np\n'), ((9541, 9637), 'numpy.testing.assert_equal', 'np.testing.assert_equal', (['st_roundtrip_values.dense_shape', 'st_deserialized_values.dense_shape'], {}), '(st_roundtrip_values.dense_shape,\n st_deserialized_values.dense_shape)\n', (9564, 9637), True, 'import numpy as np\n'), ((2967, 2978), 'tensorflow.python.framework.ops.Graph', 'ops.Graph', ([], {}), '()\n', (2976, 2978), False, 'from tensorflow.python.framework import ops\n'), ((8376, 8404), 'tensorflow.python.platform.benchmark.benchmark_config', 'benchmark.benchmark_config', ([], {}), '()\n', (8402, 8404), False, 'from tensorflow.python.platform import benchmark\n'), ((9115, 9155), 'tensorflow.python.ops.variables.global_variables_initializer', 'variables.global_variables_initializer', ([], {}), '()\n', (9153, 9155), False, 'from tensorflow.python.ops import variables\n')]
#!/usr/bin/env python # coding: utf-8 # In[ ]: import pysam import os import pandas as pd import numpy as np import time import argparse import sys from multiprocessing import Pool # In[ ]: # ##arguments for testing # bam_file_path = '/fh/scratch/delete90/ha_g/realigned_bams/cfDNA_MBC_ULP_hg38/realign_bam_paired_snakemake-master/results/MBC_1041_1_ULP/MBC_1041_1_ULP_recalibrated.bam' # bam_file_name = 'MBC_1041_1_ULP' # mapable_path = '../../downloads/genome/repeat_masker.mapable.k50.Umap.hg38.bedGraph' # ref_seq_path = '/fh/fast/ha_g/grp/reference/GRCh38/GRCh38.fa' # chrom_sizes_path = '/fh/fast/ha_g/grp/reference/GRCh38/hg38.standard.chrom.sizes' # out_dir = './tmp/' # map_q = 20 # size_range = [15,500] # CPU = 4 # In[ ]: parser = argparse.ArgumentParser() parser.add_argument('--bam_file', help='sample_bam_file', required=True) parser.add_argument('--bam_file_name', help='sample name (does not need to match actual file name)', required=True) parser.add_argument('--mapable_regions', help='highly mapable regions to be used in GC correction, bedGraph or bed foramt', required=True) parser.add_argument('--ref_seq',help='reference sequence (fasta format)',required=True) parser.add_argument('--chrom_sizes',help='path to chromosome sizes for the reference seq',required=True) parser.add_argument('--out_dir',help='folder for GC bias results',required=True) parser.add_argument('--map_q',help='minimum mapping quality for reads to be considered',type=int,required=True) parser.add_argument('--size_range',help='range of read sizes to be included',nargs=2, type=int, required=True) parser.add_argument('--CPU',help='number of CPU for parallelizing', type=int, required=True) args = parser.parse_args() bam_file_path = args.bam_file bam_file_name = args.bam_file_name mapable_path=args.mapable_regions ref_seq_path = args.ref_seq chrom_sizes_path = args.chrom_sizes out_dir = args.out_dir map_q = args.map_q size_range = args.size_range CPU = args.CPU # In[ ]: print('arguments provided:') print('\tbam_file_path = "'+bam_file_path+'"') print('\tbam_file_name = "'+bam_file_name+'"') print('\tmapable_regions = "'+mapable_path+'"') print('\tref_seq_path = "'+ref_seq_path+'"') print('\tchrom_sizes_path = "'+chrom_sizes_path+'"') print('\tout_dir = "'+out_dir+'"') print('\tmap_q = '+str(map_q)) print('\tsize_range = '+str(size_range)) print('\tCPU = '+str(CPU)) # In[ ]: mapable_name = mapable_path.rsplit('/',1)[1].rsplit('.',1)[0] out_file = out_dir +'/'+mapable_name+'/GC_counts/'+ bam_file_name+'.GC_counts.txt' print('out_file',out_file) # In[ ]: #create a directory for the GC data if not os.path.exists(out_dir +'/'+mapable_name): os.mkdir(out_dir +'/'+mapable_name) if not os.path.exists(out_dir +'/'+mapable_name+'/GC_counts/'): os.mkdir(out_dir +'/'+mapable_name+'/GC_counts/') # In[ ]: #import filter mapable_intervals = pd.read_csv(mapable_path, sep='\t', header=None) #remove non standard chromosomes and X and Y chroms = ['chr'+str(m) for m in range(1,23)] mapable_intervals = mapable_intervals[mapable_intervals[0].isin(chroms)] print('chroms:', chroms) print('number_of_intervals:',len(mapable_intervals)) sys.stdout.flush() # In[ ]: def collect_reads(sublist): #create a dict for holding the frequency of each read length and GC content GC_dict = {} for length in range(size_range[0],size_range[1]+1): GC_dict[length]={} for num_GC in range(0,length+1): GC_dict[length][num_GC]=0 #import the bam file #this needs to be done within the loop otherwise it gives a truncated file warning bam_file = pysam.AlignmentFile(bam_file_path, "rb") print('sublist intervals:',len(sublist)) #this might also need to be in the loop #import the ref_seq ref_seq=pysam.FastaFile(ref_seq_path) for i in range(len(sublist)): chrom = sublist.iloc[i][0] start = sublist.iloc[i][1] end = sublist.iloc[i][2] if i%5000==0: print('interval',i,':',chrom,start,end,'seconds:',np.round(time.time()-start_time)) sys.stdout.flush() #fetch any read that overlaps the inteterval (don't need to extend the interval because the fetch function does this automatically) fetched = bam_file.fetch(chrom,start,end) for read in fetched: #use both fw (positive template length) and rv (negative template length) reads if (read.is_reverse==False and read.template_length>=size_range[0] and read.template_length<=size_range[1]) or (read.is_reverse==True and -read.template_length>=size_range[0] and -read.template_length<=size_range[1]): #qc filters, some longer fragments are considered 'improper pairs' but I would like to keep these if read.is_paired==True and read.mapping_quality>=map_q and read.is_duplicate==False and read.is_qcfail==False: if read.is_reverse==False: read_start = read.reference_start read_end = read.reference_start+read.template_length elif read.is_reverse==True: read_end = read.reference_start + read.reference_length read_start = read_end + read.template_length fragment_seq = ref_seq.fetch(read.reference_name,read_start,read_end) #tally up the GC content fragment_seq=fragment_seq.replace('g','G').replace('c','C').replace('a','A').replace('t','T').replace('n','N') # ################# # ##logic check#### # ################# # if read.is_reverse==False: # if fragment_seq[0:read.reference_length]==read.query_sequence and len(fragment_seq)==read.template_length: # print('fw match',read.reference_length) # else: # print(fragment_seq[0:read.reference_length],read.reference_length,'fw') # print(read.query_sequence,len(read.query_sequence),'fw') # print(len(fragment_seq),read.template_length) # print('\n') # elif read.is_reverse==True: # if fragment_seq[-read.reference_length:]==read.query_sequence and len(fragment_seq)==-read.template_length: # print('rv match',read.reference_length) # else: # print(fragment_seq[-read.reference_length:],read.reference_length,'rv') # print(read.query_sequence,len(read.query_sequence),'rv') # print(len(fragment_seq),read.template_length) # print('\n') # ################# #split and convert to numpy array fragment_seq = np.array(list(fragment_seq)) #replace with values fragment_seq[(fragment_seq=='G') | (fragment_seq=='C')]=1 fragment_seq[(fragment_seq=='A') | (fragment_seq=='T')]=0 fragment_seq[(fragment_seq=='N')]=np.random.randint(2) #choose a random 0 or 1 for N (so that you always get an integer) #should be very rare if the filter is done right fragment_seq = fragment_seq.astype(int) num_GC = int(fragment_seq.sum()) GC_dict[abs(read.template_length)][num_GC]+=1 print('done') return(GC_dict) # In[ ]: start_time = time.time() p = Pool(processes=CPU) #use the available CPU sublists = np.array_split(mapable_intervals,CPU) #split the list into sublists, one per CPU GC_dict_list = p.map(collect_reads, sublists, 1) # In[ ]: all_GC_df = pd.DataFrame() for i,GC_dict in enumerate(GC_dict_list): GC_df = pd.DataFrame() for length in GC_dict.keys(): current = pd.Series(GC_dict[length]).reset_index() current = current.rename(columns={'index':'num_GC',0:'number_of_fragments'}) current['length']=length current = current[['length','num_GC','number_of_fragments']] GC_df = GC_df.append(current, ignore_index=True) GC_df = GC_df.set_index(['length','num_GC']) all_GC_df[i] = GC_df['number_of_fragments'] del(GC_df,GC_dict) all_GC_df = all_GC_df.sum(axis=1) all_GC_df = pd.DataFrame(all_GC_df).rename(columns = {0:'number_of_fragments'}) all_GC_df = all_GC_df.reset_index() all_GC_df.to_csv(out_file,sep='\t',index=False) # In[ ]: print('done') # In[ ]: # In[ ]: # In[ ]:
[ "pandas.Series", "os.path.exists", "argparse.ArgumentParser", "pandas.read_csv", "pysam.AlignmentFile", "numpy.array_split", "numpy.random.randint", "multiprocessing.Pool", "os.mkdir", "pandas.DataFrame", "sys.stdout.flush", "time.time", "pysam.FastaFile" ]
[((762, 787), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (785, 787), False, 'import argparse\n'), ((2901, 2949), 'pandas.read_csv', 'pd.read_csv', (['mapable_path'], {'sep': '"""\t"""', 'header': 'None'}), "(mapable_path, sep='\\t', header=None)\n", (2912, 2949), True, 'import pandas as pd\n'), ((3194, 3212), 'sys.stdout.flush', 'sys.stdout.flush', ([], {}), '()\n', (3210, 3212), False, 'import sys\n'), ((7702, 7713), 'time.time', 'time.time', ([], {}), '()\n', (7711, 7713), False, 'import time\n'), ((7718, 7737), 'multiprocessing.Pool', 'Pool', ([], {'processes': 'CPU'}), '(processes=CPU)\n', (7722, 7737), False, 'from multiprocessing import Pool\n'), ((7772, 7810), 'numpy.array_split', 'np.array_split', (['mapable_intervals', 'CPU'], {}), '(mapable_intervals, CPU)\n', (7786, 7810), True, 'import numpy as np\n'), ((7928, 7942), 'pandas.DataFrame', 'pd.DataFrame', ([], {}), '()\n', (7940, 7942), True, 'import pandas as pd\n'), ((2652, 2696), 'os.path.exists', 'os.path.exists', (["(out_dir + '/' + mapable_name)"], {}), "(out_dir + '/' + mapable_name)\n", (2666, 2696), False, 'import os\n'), ((2699, 2737), 'os.mkdir', 'os.mkdir', (["(out_dir + '/' + mapable_name)"], {}), "(out_dir + '/' + mapable_name)\n", (2707, 2737), False, 'import os\n'), ((2742, 2802), 'os.path.exists', 'os.path.exists', (["(out_dir + '/' + mapable_name + '/GC_counts/')"], {}), "(out_dir + '/' + mapable_name + '/GC_counts/')\n", (2756, 2802), False, 'import os\n'), ((2803, 2857), 'os.mkdir', 'os.mkdir', (["(out_dir + '/' + mapable_name + '/GC_counts/')"], {}), "(out_dir + '/' + mapable_name + '/GC_counts/')\n", (2811, 2857), False, 'import os\n'), ((3649, 3689), 'pysam.AlignmentFile', 'pysam.AlignmentFile', (['bam_file_path', '"""rb"""'], {}), "(bam_file_path, 'rb')\n", (3668, 3689), False, 'import pysam\n'), ((3820, 3849), 'pysam.FastaFile', 'pysam.FastaFile', (['ref_seq_path'], {}), '(ref_seq_path)\n', (3835, 3849), False, 'import pysam\n'), ((7997, 8011), 'pandas.DataFrame', 'pd.DataFrame', ([], {}), '()\n', (8009, 8011), True, 'import pandas as pd\n'), ((8520, 8543), 'pandas.DataFrame', 'pd.DataFrame', (['all_GC_df'], {}), '(all_GC_df)\n', (8532, 8543), True, 'import pandas as pd\n'), ((4122, 4140), 'sys.stdout.flush', 'sys.stdout.flush', ([], {}), '()\n', (4138, 4140), False, 'import sys\n'), ((8064, 8090), 'pandas.Series', 'pd.Series', (['GC_dict[length]'], {}), '(GC_dict[length])\n', (8073, 8090), True, 'import pandas as pd\n'), ((7321, 7341), 'numpy.random.randint', 'np.random.randint', (['(2)'], {}), '(2)\n', (7338, 7341), True, 'import numpy as np\n'), ((4085, 4096), 'time.time', 'time.time', ([], {}), '()\n', (4094, 4096), False, 'import time\n')]
import numpy as np import network def main(): x = np.array([2, 3]) nw = network.NeuralNetwork() print(nw.feedforward(x)) if __name__ == "__main__": main()
[ "numpy.array", "network.NeuralNetwork" ]
[((56, 72), 'numpy.array', 'np.array', (['[2, 3]'], {}), '([2, 3])\n', (64, 72), True, 'import numpy as np\n'), ((82, 105), 'network.NeuralNetwork', 'network.NeuralNetwork', ([], {}), '()\n', (103, 105), False, 'import network\n')]
""" Generates Tisserand plots """ from enum import Enum import numpy as np from astropy import units as u from matplotlib import pyplot as plt from poliastro.plotting._base import BODY_COLORS from poliastro.twobody.mean_elements import get_mean_elements from poliastro.util import norm class TisserandKind(Enum): """All possible Tisserand kinds""" APSIS = "apsis" ENERGY = "energy" PERIOD = "period" class TisserandPlotter: """Generates Tisserand figures""" def __init__(self, kind=TisserandKind.APSIS, axes=None): """Object initializer Parameters ---------- kind : TisserandKind Nature for the Tisserand axes : ~matplotlib.pyplot.axes Axes for the figure """ # Asign Tisserand kind self.kind = kind # Check if axis available if not axes: _, self.ax = plt.subplots(1, 1) else: self.ax = axes # Force axes scale regarding Tisserand kind self.ax.set_xscale("log") if self.kind == TisserandKind.APSIS: self.ax.set_yscale("log") def _solve_tisserand( self, body, vinf_span, num_contours, alpha_lim=(0, np.pi), N=100 ): """Solves all possible Tisserand lines with a meshgrid workflow Parameters ---------- body : ~poliastro.bodies.Body Body to be plotted Tisserand vinf_array : ~astropy.units.Quantity Desired Vinf for the flyby num_contours : int Number of contour lines for flyby speed alpha_lim : tuple Minimum and maximum flyby angles. N : int Number of points for flyby angle. Notes ----- The algorithm for generating Tisserand plots is the one depicted in "Preliminary Trajectory Design of a Mission to Enceladus" by David <NAME>, section 3.6 """ # Generate mean orbital elements Earth body_rv = get_mean_elements(body).to_vectors() R_body, V_body = norm(body_rv.r), norm(body_rv.v) # Generate non-dimensional velocity and alpha span vinf_array = np.linspace(vinf_span[0], vinf_span[-1], num_contours) alpha_array = np.linspace(alpha_lim[0], alpha_lim[-1], N) vinf_array /= V_body # Construct the mesh for any configuration V_INF, ALPHA = np.meshgrid(vinf_array, alpha_array) # Solving for non-dimensional a_sc and ecc_sc A_SC = 1 / np.abs(1 - V_INF ** 2 - 2 * V_INF * np.cos(ALPHA)) ECC_SC = np.sqrt(1 - 1 / A_SC * ((3 - 1 / A_SC - V_INF ** 2) / (2)) ** 2) # Compute main Tisserand variables RR_P = A_SC * R_body * (1 - ECC_SC) RR_A = A_SC * R_body * (1 + ECC_SC) TT = 2 * np.pi * np.sqrt((A_SC * R_body) ** 3 / body.parent.k) EE = -body.parent.k / (2 * A_SC * R_body) # Build color lines to internal canvas return RR_P, RR_A, EE, TT def _build_lines(self, RR_P, RR_A, EE, TT, color): """Collect lines and append them to internal data Parameters ---------- data : list Array containing [RR_P, RR_A, EE, TT, color] Returns ------- lines: list Plotting lines for the Tisserand """ # Plot desired kind lines if self.kind == TisserandKind.APSIS: # Generate apsis lines lines = self.ax.plot(RR_A.to(u.AU), RR_P.to(u.AU), color=color) elif self.kind == TisserandKind.ENERGY: # Generate energy lines lines = self.ax.plot( RR_P.to(u.AU), EE.to(u.km ** 2 / u.s ** 2), color=color ) elif self.kind == TisserandKind.PERIOD: # Generate period lines lines = self.ax.plot(RR_P.to(u.AU), TT.to(u.year), color=color) return lines def plot_line(self, body, vinf, alpha_lim=(0, np.pi), color=None): """Plots body Tisserand line within flyby angle Parameters ---------- body : ~poliastro.bodies.Body Body to be plotted Tisserand vinf : ~astropy.units.Quantity Vinf velocity line alpha_lim : tuple Minimum and maximum flyby angles color : str String representing for the color lines Returns ------- self.ax: ~matplotlib.axes.Axes Apsis tisserand is the default plotting option """ # HACK: to reuse Tisserand solver, we transform input Vinf into a tuple vinf_span = (vinf, vinf) # Solve Tisserand parameters RR_P, RR_A, EE, TT = self._solve_tisserand( body, vinf_span, num_contours=2, alpha_lim=alpha_lim ) # Check if color defined if not color: color = BODY_COLORS[body.name] # Build canvas lines from Tisserand parameters self._build_lines(RR_P, RR_A, EE, TT, color) return self.ax def plot(self, body, vinf_span, num_contours=10, color=None): """Plots body Tisserand for given amount of solutions within Vinf span Parameters ---------- body : ~poliastro.bodies.Body Body to be plotted Tisserand vinf_span : tuple Minimum and maximum Vinf velocities num_contours : int Number of points to iterate over previously defined velocities color : str String representing for the color lines Returns ------- self.ax: ~matplotlib.axes.Axes Apsis tisserand is the default plotting option """ # Solve Tisserand parameters RR_P, RR_A, EE, TT = self._solve_tisserand(body, vinf_span, num_contours) # Check if color defined if not color: color = BODY_COLORS[body.name] # Build canvas lines from Tisserand parameters self._build_lines(RR_P, RR_A, EE, TT, color) return self.ax
[ "poliastro.util.norm", "numpy.sqrt", "poliastro.twobody.mean_elements.get_mean_elements", "numpy.linspace", "numpy.cos", "numpy.meshgrid", "matplotlib.pyplot.subplots" ]
[((2191, 2245), 'numpy.linspace', 'np.linspace', (['vinf_span[0]', 'vinf_span[-1]', 'num_contours'], {}), '(vinf_span[0], vinf_span[-1], num_contours)\n', (2202, 2245), True, 'import numpy as np\n'), ((2268, 2311), 'numpy.linspace', 'np.linspace', (['alpha_lim[0]', 'alpha_lim[-1]', 'N'], {}), '(alpha_lim[0], alpha_lim[-1], N)\n', (2279, 2311), True, 'import numpy as np\n'), ((2416, 2452), 'numpy.meshgrid', 'np.meshgrid', (['vinf_array', 'alpha_array'], {}), '(vinf_array, alpha_array)\n', (2427, 2452), True, 'import numpy as np\n'), ((2595, 2657), 'numpy.sqrt', 'np.sqrt', (['(1 - 1 / A_SC * ((3 - 1 / A_SC - V_INF ** 2) / 2) ** 2)'], {}), '(1 - 1 / A_SC * ((3 - 1 / A_SC - V_INF ** 2) / 2) ** 2)\n', (2602, 2657), True, 'import numpy as np\n'), ((904, 922), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(1)', '(1)'], {}), '(1, 1)\n', (916, 922), True, 'from matplotlib import pyplot as plt\n'), ((2077, 2092), 'poliastro.util.norm', 'norm', (['body_rv.r'], {}), '(body_rv.r)\n', (2081, 2092), False, 'from poliastro.util import norm\n'), ((2094, 2109), 'poliastro.util.norm', 'norm', (['body_rv.v'], {}), '(body_rv.v)\n', (2098, 2109), False, 'from poliastro.util import norm\n'), ((2817, 2862), 'numpy.sqrt', 'np.sqrt', (['((A_SC * R_body) ** 3 / body.parent.k)'], {}), '((A_SC * R_body) ** 3 / body.parent.k)\n', (2824, 2862), True, 'import numpy as np\n'), ((2015, 2038), 'poliastro.twobody.mean_elements.get_mean_elements', 'get_mean_elements', (['body'], {}), '(body)\n', (2032, 2038), False, 'from poliastro.twobody.mean_elements import get_mean_elements\n'), ((2563, 2576), 'numpy.cos', 'np.cos', (['ALPHA'], {}), '(ALPHA)\n', (2569, 2576), True, 'import numpy as np\n')]
from mars import main_loop import numpy as np from mars.settings import * class Problem: """ Synopsis -------- User class for the Kelvin-Helmholtz instability Args ---- None Methods ------- initialise Set all variables in each cell to initialise the simulation. internal_bc Specify the internal boundary for the simulation. TODO ---- None """ def __init__(self): self.parameter = { 'Name':'<NAME> instability.', 'Dimensions':'2D', 'x1 min':-0.5, 'x1 max':0.5, 'x2 min':-0.5, 'x2 max':0.5, 'x3 min':-0.5, 'x3 max':0.5, 'resolution x1':256, 'resolution x2':256, 'resolution x3':0, 'cfl':0.3, 'initial dt':1.0e-5, 'max dt increase':1.5, 'initial t': 0.0, 'max time': 5.0, 'save frequency': 2.5e-2, 'output type': ['numpy'], 'output primitives': True, 'print to file':False, 'profiling': True, 'restart file':None, 'gamma':1.4, 'density unit':1.0, 'length unit':1.0, 'velocity unit':1.0, 'optimisation': 'numba', 'riemann':'hllc', 'reconstruction':'linear', 'limiter':'minmod', 'time stepping':'RK2', 'method':'hydro', 'lower x1 boundary':'reciprocal', 'upper x1 boundary':'reciprocal', 'lower x2 boundary':'reciprocal', 'upper x2 boundary':'reciprocal', 'lower x3 boundary':'reciprocal', 'upper x3 boundary':'reciprocal', 'internal boundary':False } def initialise(self, V, g, l): if self.parameter['Dimensions'] == '2D': Y, X = np.meshgrid(g.x1, g.x2, indexing='ij') if self.parameter['Dimensions'] == '3D': Z, Y, X = np.meshgrid(g.x1, g.x2, g.x3, indexing='ij') yp = 0.25 dens_1 = 2.0 dens_2 = 1.0 pres = 2.0 vel_1 = 0.5 vel_2 = 0.0 amp = 0.001 vx1_per = (np.random.random(V.shape)*2.0 - 1)*amp vx2_per = (np.random.random(V.shape)*2.0 - 1)*amp region_1 = np.absolute(Y) < yp region_2 = np.absolute(Y) > yp V[rho, region_1] = dens_1 V[prs, region_1] = pres V[vx1, region_1] = vel_1 + vx1_per[vx1, region_1] V[vx2, region_1] = vel_2 + vx2_per[vx2, region_1] V[rho, region_2] = dens_2 V[prs, region_2] = pres V[vx1, region_2] = -vel_1 + vx1_per[vx1, region_2] V[vx2, region_2] = vel_2 + vx2_per[vx2, region_2] def internal_bc(self): return None if __name__ == "__main__": main_loop(Problem())
[ "numpy.random.random", "numpy.meshgrid", "numpy.absolute" ]
[((1932, 1970), 'numpy.meshgrid', 'np.meshgrid', (['g.x1', 'g.x2'], {'indexing': '"""ij"""'}), "(g.x1, g.x2, indexing='ij')\n", (1943, 1970), True, 'import numpy as np\n'), ((2043, 2087), 'numpy.meshgrid', 'np.meshgrid', (['g.x1', 'g.x2', 'g.x3'], {'indexing': '"""ij"""'}), "(g.x1, g.x2, g.x3, indexing='ij')\n", (2054, 2087), True, 'import numpy as np\n'), ((2365, 2379), 'numpy.absolute', 'np.absolute', (['Y'], {}), '(Y)\n', (2376, 2379), True, 'import numpy as np\n'), ((2404, 2418), 'numpy.absolute', 'np.absolute', (['Y'], {}), '(Y)\n', (2415, 2418), True, 'import numpy as np\n'), ((2248, 2273), 'numpy.random.random', 'np.random.random', (['V.shape'], {}), '(V.shape)\n', (2264, 2273), True, 'import numpy as np\n'), ((2306, 2331), 'numpy.random.random', 'np.random.random', (['V.shape'], {}), '(V.shape)\n', (2322, 2331), True, 'import numpy as np\n')]
import numpy as np from scipy.signal import savgol_filter import matplotlib.pyplot as plt import MadDog x = [] y = [] def generate(): # Generate random data base = np.linspace(0, 5, 11) # base = np.random.randint(0, 10, 5) outliers = np.random.randint(10, 20, 2) data = np.concatenate((base, outliers)) np.random.shuffle(data) return data def fill_data(): # Build random data return np.concatenate((np.array([0]), MadDog.find_outliers(generate()))), np.concatenate( (np.array([0]), MadDog.find_outliers(generate()))) # np.sin(x) + np.cos(x) + np.random.random(100) # np.linspace(0, 2*np.pi, 100) def savitzky(x, y, ploy_nom): return savgol_filter(x, len(x) - 1, 10), savgol_filter(y, len(y) - 1, 10) def map(x_filtered, y_filtered, x, y, title="title"): # Generate some test data heatmap, xedges, yedges = np.histogram2d(x, y, bins=50) extent = [xedges[0], xedges[-1], yedges[0], yedges[-1]] plt.clf() plt.imshow(heatmap.T, extent=extent, origin='lower') plt.show() heatmap, xedges, yedges = np.histogram2d(x_filtered, y_filtered, bins=50) extent = [xedges[0], xedges[-1], yedges[0], yedges[-1]] plt.clf() plt.imshow(heatmap.T, extent=extent, origin='lower') plt.show() def show(x_filtered, y_filtered, x, y, title="Lorem ipsum"): # Plotting fig = plt.figure() ax = fig.subplots() plt.plot(x_filtered, y_filtered, 'red', marker="o") plt.plot(x, y, 'green', marker="o") plt.subplots_adjust(bottom=0.25) plt.xlabel('x') plt.ylabel('y') plt.title(title) plt.legend(["Filter", "Raw"]) plt.show() # Generating the noisy signal x, y = fill_data() print(len(y)) # Savitzky-Golay filter x_filtered, y_filtered = savitzky(x, y, 2) print("X unfiltered>> ", x) print("Y unfiltered>> ", y) print("X filtered>> ", x_filtered) print("Y filtered>> ", y_filtered) show(x_filtered, y_filtered, x, y)
[ "matplotlib.pyplot.imshow", "matplotlib.pyplot.show", "matplotlib.pyplot.ylabel", "matplotlib.pyplot.legend", "matplotlib.pyplot.xlabel", "matplotlib.pyplot.clf", "matplotlib.pyplot.plot", "numpy.array", "numpy.linspace", "numpy.random.randint", "matplotlib.pyplot.figure", "numpy.concatenate", "numpy.histogram2d", "matplotlib.pyplot.title", "matplotlib.pyplot.subplots_adjust", "numpy.random.shuffle" ]
[((175, 196), 'numpy.linspace', 'np.linspace', (['(0)', '(5)', '(11)'], {}), '(0, 5, 11)\n', (186, 196), True, 'import numpy as np\n'), ((253, 281), 'numpy.random.randint', 'np.random.randint', (['(10)', '(20)', '(2)'], {}), '(10, 20, 2)\n', (270, 281), True, 'import numpy as np\n'), ((293, 325), 'numpy.concatenate', 'np.concatenate', (['(base, outliers)'], {}), '((base, outliers))\n', (307, 325), True, 'import numpy as np\n'), ((330, 353), 'numpy.random.shuffle', 'np.random.shuffle', (['data'], {}), '(data)\n', (347, 353), True, 'import numpy as np\n'), ((877, 906), 'numpy.histogram2d', 'np.histogram2d', (['x', 'y'], {'bins': '(50)'}), '(x, y, bins=50)\n', (891, 906), True, 'import numpy as np\n'), ((972, 981), 'matplotlib.pyplot.clf', 'plt.clf', ([], {}), '()\n', (979, 981), True, 'import matplotlib.pyplot as plt\n'), ((986, 1038), 'matplotlib.pyplot.imshow', 'plt.imshow', (['heatmap.T'], {'extent': 'extent', 'origin': '"""lower"""'}), "(heatmap.T, extent=extent, origin='lower')\n", (996, 1038), True, 'import matplotlib.pyplot as plt\n'), ((1043, 1053), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (1051, 1053), True, 'import matplotlib.pyplot as plt\n'), ((1085, 1132), 'numpy.histogram2d', 'np.histogram2d', (['x_filtered', 'y_filtered'], {'bins': '(50)'}), '(x_filtered, y_filtered, bins=50)\n', (1099, 1132), True, 'import numpy as np\n'), ((1198, 1207), 'matplotlib.pyplot.clf', 'plt.clf', ([], {}), '()\n', (1205, 1207), True, 'import matplotlib.pyplot as plt\n'), ((1212, 1264), 'matplotlib.pyplot.imshow', 'plt.imshow', (['heatmap.T'], {'extent': 'extent', 'origin': '"""lower"""'}), "(heatmap.T, extent=extent, origin='lower')\n", (1222, 1264), True, 'import matplotlib.pyplot as plt\n'), ((1269, 1279), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (1277, 1279), True, 'import matplotlib.pyplot as plt\n'), ((1368, 1380), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (1378, 1380), True, 'import matplotlib.pyplot as plt\n'), ((1409, 1460), 'matplotlib.pyplot.plot', 'plt.plot', (['x_filtered', 'y_filtered', '"""red"""'], {'marker': '"""o"""'}), "(x_filtered, y_filtered, 'red', marker='o')\n", (1417, 1460), True, 'import matplotlib.pyplot as plt\n'), ((1465, 1500), 'matplotlib.pyplot.plot', 'plt.plot', (['x', 'y', '"""green"""'], {'marker': '"""o"""'}), "(x, y, 'green', marker='o')\n", (1473, 1500), True, 'import matplotlib.pyplot as plt\n'), ((1505, 1537), 'matplotlib.pyplot.subplots_adjust', 'plt.subplots_adjust', ([], {'bottom': '(0.25)'}), '(bottom=0.25)\n', (1524, 1537), True, 'import matplotlib.pyplot as plt\n'), ((1542, 1557), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""x"""'], {}), "('x')\n", (1552, 1557), True, 'import matplotlib.pyplot as plt\n'), ((1562, 1577), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""y"""'], {}), "('y')\n", (1572, 1577), True, 'import matplotlib.pyplot as plt\n'), ((1582, 1598), 'matplotlib.pyplot.title', 'plt.title', (['title'], {}), '(title)\n', (1591, 1598), True, 'import matplotlib.pyplot as plt\n'), ((1603, 1632), 'matplotlib.pyplot.legend', 'plt.legend', (["['Filter', 'Raw']"], {}), "(['Filter', 'Raw'])\n", (1613, 1632), True, 'import matplotlib.pyplot as plt\n'), ((1637, 1647), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (1645, 1647), True, 'import matplotlib.pyplot as plt\n'), ((440, 453), 'numpy.array', 'np.array', (['[0]'], {}), '([0])\n', (448, 453), True, 'import numpy as np\n'), ((516, 529), 'numpy.array', 'np.array', (['[0]'], {}), '([0])\n', (524, 529), True, 'import numpy as np\n')]
import random as rn import numpy as np # open system dynamics of a qubit and compare numerical results with the analytical calculations # NOTE these are also TUTORIALS of the library, so see the Tutorials for what these are doing and analytical # calculations. # currently includes 2 cases: (i) decay only, and (ii) unitary evolution by calling Liouville method without giving # any collapse operators. For now, only looks at excited state populations # TODO this is an unfinished test. below two tests are the same and it actually is not testing open system dynamics. decayRateSM = rn.random() excitedPopulation = lambda t: 0.5*np.exp(-(0.00001*(decayRateSM+1)*2+1j)*50*t) populations = {'excitedAnalytical':[], 'excitedNumerical':[]} # this is used as the calculate attribute of the qubit, and the singleQubit fixture evolve method calls this at every # step of the evolution. It stores both numerical and analytical excited state populations into the dictionary above. def singleQubitDecayCalculate(qub, state, i): populations['excitedAnalytical'].append(excitedPopulation(i*qub.stepSize)) populations['excitedNumerical'].append(state[0, 0]) def test_qubitUnitaryEvolutionFromLiouville(singleQubit): for k in populations: populations[k] = [] singleQubit.evolutionMethod = singleQubit.openEvolution singleQubit.calculate = singleQubitDecayCalculate singleQubit.evolve() assert singleQubit.stepCount == len(populations['excitedNumerical']) def test_qubitDecay(singleQubit): for k in populations: populations[k] = [] singleQubit.evolutionMethod = singleQubit.openEvolution singleQubit.calculate = singleQubitDecayCalculate singleQubit.evolve() assert singleQubit.stepCount == len(populations['excitedNumerical'])
[ "numpy.exp", "random.random" ]
[((587, 598), 'random.random', 'rn.random', ([], {}), '()\n', (596, 598), True, 'import random as rn\n'), ((634, 690), 'numpy.exp', 'np.exp', (['(-(1e-05 * (decayRateSM + 1) * 2 + 1.0j) * 50 * t)'], {}), '(-(1e-05 * (decayRateSM + 1) * 2 + 1.0j) * 50 * t)\n', (640, 690), True, 'import numpy as np\n')]
#!/usr/bin/env python #=============================================================================# # # # NAME: do_RMsynth_1D.py # # # # PURPOSE: API for runnning RM-synthesis on an ASCII Stokes I, Q & U spectrum.# # # # MODIFIED: 16-Nov-2018 by <NAME> # # MODIFIED: 23-October-2019 by <NAME> # # # #=============================================================================# # # # The MIT License (MIT) # # # # Copyright (c) 2015 - 2018 <NAME> # # # # Permission is hereby granted, free of charge, to any person obtaining a # # copy of this software and associated documentation files (the "Software"), # # to deal in the Software without restriction, including without limitation # # the rights to use, copy, modify, merge, publish, distribute, sublicense, # # and/or sell copies of the Software, and to permit persons to whom the # # Software is furnished to do so, subject to the following conditions: # # # # The above copyright notice and this permission notice shall be included in # # all copies or substantial portions of the Software. # # # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # # DEALINGS IN THE SOFTWARE. # # # #=============================================================================# import sys import os import time import traceback import json import math as m import numpy as np import matplotlib.pyplot as plt from RMutils.util_RM import do_rmsynth from RMutils.util_RM import do_rmsynth_planes from RMutils.util_RM import get_rmsf_planes from RMutils.util_RM import measure_FDF_parms from RMutils.util_RM import measure_qu_complexity from RMutils.util_RM import measure_fdf_complexity from RMutils.util_misc import nanmedian from RMutils.util_misc import toscalar from RMutils.util_misc import create_frac_spectra from RMutils.util_misc import poly5 from RMutils.util_misc import MAD from RMutils.util_plotTk import plot_Ipqu_spectra_fig from RMutils.util_plotTk import plot_rmsf_fdf_fig from RMutils.util_plotTk import plot_complexity_fig from RMutils.util_plotTk import CustomNavbar from RMutils.util_plotTk import plot_rmsIQU_vs_nu_ax if sys.version_info.major == 2: print('RM-tools will no longer run with Python 2! Please use Python 3.') exit() C = 2.997924538e8 # Speed of light [m/s] #-----------------------------------------------------------------------------# def run_rmsynth(data, polyOrd=3, phiMax_radm2=None, dPhi_radm2=None, nSamples=10.0, weightType="variance", fitRMSF=False, noStokesI=False, phiNoise_radm2=1e6, nBits=32, showPlots=False, debug=False, verbose=False, log=print,units='Jy/beam', prefixOut="prefixOut", args=None): """Run RM synthesis on 1D data. Args: data (list): Contains frequency and polarization data as either: [freq_Hz, I, Q, U, dI, dQ, dU] freq_Hz (array_like): Frequency of each channel in Hz. I (array_like): Stokes I intensity in each channel. Q (array_like): Stokes Q intensity in each channel. U (array_like): Stokes U intensity in each channel. dI (array_like): Error in Stokes I intensity in each channel. dQ (array_like): Error in Stokes Q intensity in each channel. dU (array_like): Error in Stokes U intensity in each channel. or [freq_Hz, q, u, dq, du] freq_Hz (array_like): Frequency of each channel in Hz. q (array_like): Fractional Stokes Q intensity (Q/I) in each channel. u (array_like): Fractional Stokes U intensity (U/I) in each channel. dq (array_like): Error in fractional Stokes Q intensity in each channel. du (array_like): Error in fractional Stokes U intensity in each channel. Kwargs: polyOrd (int): Order of polynomial to fit to Stokes I spectrum. phiMax_radm2 (float): Maximum absolute Faraday depth (rad/m^2). dPhi_radm2 (float): Faraday depth channel size (rad/m^2). nSamples (float): Number of samples across the RMSF. weightType (str): Can be "variance" or "uniform" "variance" -- Weight by uncertainty in Q and U. "uniform" -- Weight uniformly (i.e. with 1s) fitRMSF (bool): Fit a Gaussian to the RMSF? noStokesI (bool: Is Stokes I data provided? phiNoise_radm2 (float): ???? nBits (int): Precision of floating point numbers. showPlots (bool): Show plots? debug (bool): Turn on debugging messages & plots? verbose (bool): Verbosity. log (function): Which logging function to use. units (str): Units of data. Returns: mDict (dict): Summary of RM synthesis results. aDict (dict): Data output by RM synthesis. """ # Sanity checks if not os.path.exists(args.dataFile[0]): print("File does not exist: '%s'." % args.dataFile[0]) sys.exit() prefixOut, ext = os.path.splitext(args.dataFile[0]) # Default data types dtFloat = "float" + str(nBits) dtComplex = "complex" + str(2*nBits) # freq_Hz, I, Q, U, dI, dQ, dU try: if verbose: log("> Trying [freq_Hz, I, Q, U, dI, dQ, dU]", end=' ') (freqArr_Hz, IArr, QArr, UArr, dIArr, dQArr, dUArr) = data if verbose: log("... success.") except Exception: if verbose: log("...failed.") # freq_Hz, q, u, dq, du try: if verbose: log("> Trying [freq_Hz, q, u, dq, du]", end=' ') (freqArr_Hz, QArr, UArr, dQArr, dUArr) = data if verbose: log("... success.") noStokesI = True except Exception: if verbose: log("...failed.") if debug: log(traceback.format_exc()) sys.exit() if verbose: log("Successfully read in the Stokes spectra.") # If no Stokes I present, create a dummy spectrum = unity if noStokesI: if verbose: log("Warn: no Stokes I data in use.") IArr = np.ones_like(QArr) dIArr = np.zeros_like(QArr) # Convert to GHz for convenience freqArr_GHz = freqArr_Hz / 1e9 dQUArr = (dQArr + dUArr)/2.0 # Fit the Stokes I spectrum and create the fractional spectra IModArr, qArr, uArr, dqArr, duArr, fitDict = \ create_frac_spectra(freqArr = freqArr_GHz, IArr = IArr, QArr = QArr, UArr = UArr, dIArr = dIArr, dQArr = dQArr, dUArr = dUArr, polyOrd = polyOrd, verbose = True, debug = debug) # Plot the data and the Stokes I model fit if verbose: log("Plotting the input data and spectral index fit.") freqHirArr_Hz = np.linspace(freqArr_Hz[0], freqArr_Hz[-1], 10000) IModHirArr = poly5(fitDict["p"])(freqHirArr_Hz/1e9) specFig = plt.figure(figsize=(12.0, 8)) plot_Ipqu_spectra_fig(freqArr_Hz = freqArr_Hz, IArr = IArr, qArr = qArr, uArr = uArr, dIArr = dIArr, dqArr = dqArr, duArr = duArr, freqHirArr_Hz = freqHirArr_Hz, IModArr = IModHirArr, fig = specFig, units = units) # Use the custom navigation toolbar (does not work on Mac OS X) # try: # specFig.canvas.toolbar.pack_forget() # CustomNavbar(specFig.canvas, specFig.canvas.toolbar.window) # except Exception: # pass # Display the figure # if not plt.isinteractive(): # specFig.show() # DEBUG (plot the Q, U and average RMS spectrum) if debug: rmsFig = plt.figure(figsize=(12.0, 8)) ax = rmsFig.add_subplot(111) ax.plot(freqArr_Hz/1e9, dQUArr, marker='o', color='k', lw=0.5, label='rms <QU>') ax.plot(freqArr_Hz/1e9, dQArr, marker='o', color='b', lw=0.5, label='rms Q') ax.plot(freqArr_Hz/1e9, dUArr, marker='o', color='r', lw=0.5, label='rms U') xRange = (np.nanmax(freqArr_Hz)-np.nanmin(freqArr_Hz))/1e9 ax.set_xlim( np.min(freqArr_Hz)/1e9 - xRange*0.05, np.max(freqArr_Hz)/1e9 + xRange*0.05) ax.set_xlabel('$\\nu$ (GHz)') ax.set_ylabel('RMS '+units) ax.set_title("RMS noise in Stokes Q, U and <Q,U> spectra") # rmsFig.show() #-------------------------------------------------------------------------# # Calculate some wavelength parameters lambdaSqArr_m2 = np.power(C/freqArr_Hz, 2.0) dFreq_Hz = np.nanmin(np.abs(np.diff(freqArr_Hz))) lambdaSqRange_m2 = ( np.nanmax(lambdaSqArr_m2) - np.nanmin(lambdaSqArr_m2) ) dLambdaSqMin_m2 = np.nanmin(np.abs(np.diff(lambdaSqArr_m2))) dLambdaSqMax_m2 = np.nanmax(np.abs(np.diff(lambdaSqArr_m2))) # Set the Faraday depth range fwhmRMSF_radm2 = 2.0 * m.sqrt(3.0) / lambdaSqRange_m2 if dPhi_radm2 is None: dPhi_radm2 = fwhmRMSF_radm2 / nSamples if phiMax_radm2 is None: phiMax_radm2 = m.sqrt(3.0) / dLambdaSqMax_m2 phiMax_radm2 = max(phiMax_radm2, fwhmRMSF_radm2*10.) # Force the minimum phiMax to 10 FWHM # Faraday depth sampling. Zero always centred on middle channel nChanRM = int(round(abs((phiMax_radm2 - 0.0) / dPhi_radm2)) * 2.0 + 1.0) startPhi_radm2 = - (nChanRM-1.0) * dPhi_radm2 / 2.0 stopPhi_radm2 = + (nChanRM-1.0) * dPhi_radm2 / 2.0 phiArr_radm2 = np.linspace(startPhi_radm2, stopPhi_radm2, nChanRM) phiArr_radm2 = phiArr_radm2.astype(dtFloat) if verbose: log("PhiArr = %.2f to %.2f by %.2f (%d chans)." % (phiArr_radm2[0], phiArr_radm2[-1], float(dPhi_radm2), nChanRM)) # Calculate the weighting as 1/sigma^2 or all 1s (uniform) if weightType=="variance": weightArr = 1.0 / np.power(dQUArr, 2.0) else: weightType = "uniform" weightArr = np.ones(freqArr_Hz.shape, dtype=dtFloat) if verbose: log("Weight type is '%s'." % weightType) startTime = time.time() # Perform RM-synthesis on the spectrum dirtyFDF, lam0Sq_m2 = do_rmsynth_planes(dataQ = qArr, dataU = uArr, lambdaSqArr_m2 = lambdaSqArr_m2, phiArr_radm2 = phiArr_radm2, weightArr = weightArr, nBits = nBits, verbose = verbose, log = log) # Calculate the Rotation Measure Spread Function RMSFArr, phi2Arr_radm2, fwhmRMSFArr, fitStatArr = \ get_rmsf_planes(lambdaSqArr_m2 = lambdaSqArr_m2, phiArr_radm2 = phiArr_radm2, weightArr = weightArr, mskArr = ~np.isfinite(qArr), lam0Sq_m2 = lam0Sq_m2, double = True, fitRMSF = fitRMSF, fitRMSFreal = False, nBits = nBits, verbose = verbose, log = log) fwhmRMSF = float(fwhmRMSFArr) # ALTERNATE RM-SYNTHESIS CODE --------------------------------------------# #dirtyFDF, [phi2Arr_radm2, RMSFArr], lam0Sq_m2, fwhmRMSF = \ # do_rmsynth(qArr, uArr, lambdaSqArr_m2, phiArr_radm2, weightArr) #-------------------------------------------------------------------------# endTime = time.time() cputime = (endTime - startTime) if verbose: log("> RM-synthesis completed in %.2f seconds." % cputime) # Determine the Stokes I value at lam0Sq_m2 from the Stokes I model # Multiply the dirty FDF by Ifreq0 to recover the PI freq0_Hz = C / m.sqrt(lam0Sq_m2) Ifreq0 = poly5(fitDict["p"])(freq0_Hz/1e9) dirtyFDF *= (Ifreq0) # FDF is in fracpol units initially, convert back to flux # Calculate the theoretical noise in the FDF !!Old formula only works for wariance weights! weightArr = np.where(np.isnan(weightArr), 0.0, weightArr) dFDFth = np.sqrt( np.sum(weightArr**2 * np.nan_to_num(dQUArr)**2) / (np.sum(weightArr))**2 ) # Measure the parameters of the dirty FDF # Use the theoretical noise to calculate uncertainties mDict = measure_FDF_parms(FDF = dirtyFDF, phiArr = phiArr_radm2, fwhmRMSF = fwhmRMSF, dFDF = dFDFth, lamSqArr_m2 = lambdaSqArr_m2, lam0Sq = lam0Sq_m2) mDict["Ifreq0"] = toscalar(Ifreq0) mDict["polyCoeffs"] = ",".join([str(x) for x in fitDict["p"]]) mDict["IfitStat"] = fitDict["fitStatus"] mDict["IfitChiSqRed"] = fitDict["chiSqRed"] mDict["lam0Sq_m2"] = toscalar(lam0Sq_m2) mDict["freq0_Hz"] = toscalar(freq0_Hz) mDict["fwhmRMSF"] = toscalar(fwhmRMSF) mDict["dQU"] = toscalar(nanmedian(dQUArr)) mDict["dFDFth"] = toscalar(dFDFth) mDict["units"] = units if fitDict["fitStatus"] >= 128: log("WARNING: Stokes I model contains negative values!") elif fitDict["fitStatus"] >= 64: log("Caution: Stokes I model has low signal-to-noise.") #Add information on nature of channels: good_channels=np.where(np.logical_and(weightArr != 0,np.isfinite(qArr)))[0] mDict["min_freq"]=float(np.min(freqArr_Hz[good_channels])) mDict["max_freq"]=float(np.max(freqArr_Hz[good_channels])) mDict["N_channels"]=good_channels.size mDict["median_channel_width"]=float(np.median(np.diff(freqArr_Hz))) # Measure the complexity of the q and u spectra mDict["fracPol"] = mDict["ampPeakPIfit"]/(Ifreq0) mD, pD = measure_qu_complexity(freqArr_Hz = freqArr_Hz, qArr = qArr, uArr = uArr, dqArr = dqArr, duArr = duArr, fracPol = mDict["fracPol"], psi0_deg = mDict["polAngle0Fit_deg"], RM_radm2 = mDict["phiPeakPIfit_rm2"]) mDict.update(mD) # Debugging plots for spectral complexity measure if debug: tmpFig = plot_complexity_fig(xArr=pD["xArrQ"], qArr=pD["yArrQ"], dqArr=pD["dyArrQ"], sigmaAddqArr=pD["sigmaAddArrQ"], chiSqRedqArr=pD["chiSqRedArrQ"], probqArr=pD["probArrQ"], uArr=pD["yArrU"], duArr=pD["dyArrU"], sigmaAdduArr=pD["sigmaAddArrU"], chiSqReduArr=pD["chiSqRedArrU"], probuArr=pD["probArrU"], mDict=mDict) if saveOutput: if verbose: print("Saving debug plots:") outFilePlot = prefixOut + ".debug-plots.pdf" if verbose: print("> " + outFilePlot) tmpFig.savefig(outFilePlot, bbox_inches = 'tight') else: tmpFig.show() #add array dictionary aDict = dict() aDict["phiArr_radm2"] = phiArr_radm2 aDict["phi2Arr_radm2"] = phi2Arr_radm2 aDict["RMSFArr"] = RMSFArr aDict["freqArr_Hz"] = freqArr_Hz aDict["weightArr"]=weightArr aDict["dirtyFDF"]=dirtyFDF if verbose: # Print the results to the screen log() log('-'*80) log('RESULTS:\n') log('FWHM RMSF = %.4g rad/m^2' % (mDict["fwhmRMSF"])) log('Pol Angle = %.4g (+/-%.4g) deg' % (mDict["polAngleFit_deg"], mDict["dPolAngleFit_deg"])) log('Pol Angle 0 = %.4g (+/-%.4g) deg' % (mDict["polAngle0Fit_deg"], mDict["dPolAngle0Fit_deg"])) log('Peak FD = %.4g (+/-%.4g) rad/m^2' % (mDict["phiPeakPIfit_rm2"], mDict["dPhiPeakPIfit_rm2"])) log('freq0_GHz = %.4g ' % (mDict["freq0_Hz"]/1e9)) log('I freq0 = %.4g %s' % (mDict["Ifreq0"],units)) log('Peak PI = %.4g (+/-%.4g) %s' % (mDict["ampPeakPIfit"], mDict["dAmpPeakPIfit"],units)) log('QU Noise = %.4g %s' % (mDict["dQU"],units)) log('FDF Noise (theory) = %.4g %s' % (mDict["dFDFth"],units)) log('FDF Noise (Corrected MAD) = %.4g %s' % (mDict["dFDFcorMAD"],units)) log('FDF Noise (rms) = %.4g %s' % (mDict["dFDFrms"],units)) log('FDF SNR = %.4g ' % (mDict["snrPIfit"])) log('sigma_add(q) = %.4g (+%.4g, -%.4g)' % (mDict["sigmaAddQ"], mDict["dSigmaAddPlusQ"], mDict["dSigmaAddMinusQ"])) log('sigma_add(u) = %.4g (+%.4g, -%.4g)' % (mDict["sigmaAddU"], mDict["dSigmaAddPlusU"], mDict["dSigmaAddMinusU"])) log() log('-'*80) # Plot the RM Spread Function and dirty FDF if showPlots or saveOutput: fdfFig = plt.figure(figsize=(12.0, 8)) plot_rmsf_fdf_fig(phiArr = phiArr_radm2, FDF = dirtyFDF, phi2Arr = phi2Arr_radm2, RMSFArr = RMSFArr, fwhmRMSF = fwhmRMSF, vLine = mDict["phiPeakPIfit_rm2"], fig = fdfFig, units = units) # Use the custom navigation toolbar # try: # fdfFig.canvas.toolbar.pack_forget() # CustomNavbar(fdfFig.canvas, fdfFig.canvas.toolbar.window) # except Exception: # pass # Display the figure # fdfFig.show() # Pause if plotting enabled if showPlots: plt.show() elif saveOutput or debug: if verbose: print("Saving RMSF and dirty FDF plot:") outFilePlot = prefixOut + ".RMSF-dirtyFDF-plots.pdf" if verbose: print("> " + outFilePlot) fdfFig.savefig(outFilePlot, bbox_inches = 'tight') # #if verbose: print "Press <RETURN> to exit ...", # input() return mDict, aDict def readFile(dataFile, nBits, verbose=True, debug=False): """ Read the I, Q & U data from the ASCII file. Inputs: datafile (str): relative or absolute path to file. nBits (int): number of bits to store the data as. verbose (bool): Print verbose messages to terminal? debug (bool): Print full traceback in case of failure? Returns: data (list of arrays): List containing the columns found in the file. If Stokes I is present, this will be [freq_Hz, I, Q, U, dI, dQ, dU], else [freq_Hz, q, u, dq, du]. """ # Default data types dtFloat = "float" + str(nBits) dtComplex = "complex" + str(2*nBits) # Output prefix is derived from the input file name # Read the data-file. Format=space-delimited, comments="#". if verbose: print("Reading the data file '%s':" % dataFile) # freq_Hz, I, Q, U, dI, dQ, dU try: if verbose: print("> Trying [freq_Hz, I, Q, U, dI, dQ, dU]", end=' ') (freqArr_Hz, IArr, QArr, UArr, dIArr, dQArr, dUArr) = \ np.loadtxt(dataFile, unpack=True, dtype=dtFloat) if verbose: print("... success.") data=[freqArr_Hz, IArr, QArr, UArr, dIArr, dQArr, dUArr] except Exception: if verbose: print("...failed.") # freq_Hz, q, u, dq, du try: if verbose: print("> Trying [freq_Hz, q, u, dq, du]", end=' ') (freqArr_Hz, QArr, UArr, dQArr, dUArr) = \ np.loadtxt(dataFile, unpack=True, dtype=dtFloat) if verbose: print("... success.") data=[freqArr_Hz, QArr, UArr, dQArr, dUArr] noStokesI = True except Exception: if verbose: print("...failed.") if debug: print(traceback.format_exc()) sys.exit() if verbose: print("Successfully read in the Stokes spectra.") return data def saveOutput(outdict, arrdict, prefixOut, verbose): # Save the dirty FDF, RMSF and weight array to ASCII files if verbose: print("Saving the dirty FDF, RMSF weight arrays to ASCII files.") outFile = prefixOut + "_FDFdirty.dat" if verbose: print("> %s" % outFile) np.savetxt(outFile, list(zip(arrdict["phiArr_radm2"], arrdict["dirtyFDF"].real, arrdict["dirtyFDF"].imag))) outFile = prefixOut + "_RMSF.dat" if verbose: print("> %s" % outFile) np.savetxt(outFile, list(zip(arrdict["phi2Arr_radm2"], arrdict["RMSFArr"].real, arrdict["RMSFArr"].imag))) outFile = prefixOut + "_weight.dat" if verbose: print("> %s" % outFile) np.savetxt(outFile, list(zip(arrdict["freqArr_Hz"], arrdict["weightArr"]))) # Save the measurements to a "key=value" text file outFile = prefixOut + "_RMsynth.dat" if verbose: print("Saving the measurements on the FDF in 'key=val' and JSON formats.") print("> %s" % outFile) FH = open(outFile, "w") for k, v in outdict.items(): FH.write("%s=%s\n" % (k, v)) FH.close() outFile = prefixOut + "_RMsynth.json" if verbose: print("> %s" % outFile) json.dump(dict(outdict), open(outFile, "w")) #-----------------------------------------------------------------------------# def main(): import argparse """ Start the function to perform RM-synthesis if called from the command line. """ # Help string to be shown using the -h option descStr = """ Run RM-synthesis on Stokes I, Q and U spectra (1D) stored in an ASCII file. The Stokes I spectrum is first fit with a polynomial and the resulting model used to create fractional q = Q/I and u = U/I spectra. The ASCII file should the following columns, in a space separated format: [freq_Hz, I, Q, U, I_err, Q_err, U_err] OR [freq_Hz, Q, U, Q_err, U_err] To get outputs, one or more of the following flags must be set: -S, -p, -v. """ epilog_text=""" Outputs with -S flag: _FDFdirty.dat: Dirty FDF/RM Spectrum [Phi, Q, U] _RMSF.dat: Computed RMSF [Phi, Q, U] _RMsynth.dat: list of derived parameters for RM spectrum (approximately equivalent to -v flag output) _RMsynth.json: dictionary of derived parameters for RM spectrum _weight.dat: Calculated channel weights [freq_Hz, weight] """ # Parse the command line options parser = argparse.ArgumentParser(description=descStr,epilog=epilog_text, formatter_class=argparse.RawTextHelpFormatter) parser.add_argument("dataFile", metavar="dataFile.dat", nargs=1, help="ASCII file containing Stokes spectra & errors.") parser.add_argument("-t", dest="fitRMSF", action="store_true", help="fit a Gaussian to the RMSF [False]") parser.add_argument("-l", dest="phiMax_radm2", type=float, default=None, help="absolute max Faraday depth sampled [Auto].") parser.add_argument("-d", dest="dPhi_radm2", type=float, default=None, help="width of Faraday depth channel [Auto].\n(overrides -s NSAMPLES flag)") parser.add_argument("-s", dest="nSamples", type=float, default=10, help="number of samples across the RMSF lobe [10].") parser.add_argument("-w", dest="weightType", default="variance", help="weighting [inverse variance] or 'uniform' (all 1s).") parser.add_argument("-o", dest="polyOrd", type=int, default=2, help="polynomial order to fit to I spectrum [2].") parser.add_argument("-i", dest="noStokesI", action="store_true", help="ignore the Stokes I spectrum [False].") parser.add_argument("-b", dest="bit64", action="store_true", help="use 64-bit floating point precision [False (uses 32-bit)]") parser.add_argument("-p", dest="showPlots", action="store_true", help="show the plots [False].") parser.add_argument("-v", dest="verbose", action="store_true", help="verbose output [False].") parser.add_argument("-S", dest="saveOutput", action="store_true", help="save the arrays and plots [False].") parser.add_argument("-D", dest="debug", action="store_true", help="turn on debugging messages & plots [False].") parser.add_argument("-U", dest="units", type=str, default="Jy/beam", help="Intensity units of the data. [Jy/beam]") args = parser.parse_args() # Sanity checks if not os.path.exists(args.dataFile[0]): print("File does not exist: '%s'." % args.dataFile[0]) sys.exit() prefixOut, ext = os.path.splitext(args.dataFile[0]) dataDir, dummy = os.path.split(args.dataFile[0]) # Set the floating point precision nBits = 32 if args.bit64: nBits = 64 verbose=args.verbose data = readFile(args.dataFile[0],nBits, verbose=verbose, debug=args.debug) # Run RM-synthesis on the spectra mDict, aDict = run_rmsynth(data = data, polyOrd = args.polyOrd, phiMax_radm2 = args.phiMax_radm2, dPhi_radm2 = args.dPhi_radm2, nSamples = args.nSamples, weightType = args.weightType, fitRMSF = args.fitRMSF, noStokesI = args.noStokesI, nBits = nBits, showPlots = args.showPlots, debug = args.debug, verbose = verbose, units = args.units, prefixOut = prefixOut, args = args, ) if args.saveOutput: saveOutput(mDict, aDict, prefixOut, verbose) #-----------------------------------------------------------------------------# if __name__ == "__main__": main()
[ "math.sqrt", "RMutils.util_misc.toscalar", "numpy.isfinite", "sys.exit", "numpy.nanmin", "os.path.exists", "RMutils.util_misc.create_frac_spectra", "argparse.ArgumentParser", "numpy.diff", "os.path.split", "numpy.max", "numpy.linspace", "numpy.nanmax", "numpy.min", "RMutils.util_plotTk.plot_rmsf_fdf_fig", "RMutils.util_RM.measure_FDF_parms", "RMutils.util_plotTk.plot_complexity_fig", "RMutils.util_plotTk.plot_Ipqu_spectra_fig", "RMutils.util_RM.measure_qu_complexity", "numpy.ones", "RMutils.util_RM.do_rmsynth_planes", "os.path.splitext", "numpy.isnan", "time.time", "matplotlib.pyplot.show", "numpy.ones_like", "traceback.format_exc", "numpy.power", "RMutils.util_misc.poly5", "numpy.sum", "matplotlib.pyplot.figure", "RMutils.util_misc.nanmedian", "numpy.loadtxt", "numpy.zeros_like", "numpy.nan_to_num" ]
[((6474, 6508), 'os.path.splitext', 'os.path.splitext', (['args.dataFile[0]'], {}), '(args.dataFile[0])\n', (6490, 6508), False, 'import os\n'), ((7816, 7980), 'RMutils.util_misc.create_frac_spectra', 'create_frac_spectra', ([], {'freqArr': 'freqArr_GHz', 'IArr': 'IArr', 'QArr': 'QArr', 'UArr': 'UArr', 'dIArr': 'dIArr', 'dQArr': 'dQArr', 'dUArr': 'dUArr', 'polyOrd': 'polyOrd', 'verbose': '(True)', 'debug': 'debug'}), '(freqArr=freqArr_GHz, IArr=IArr, QArr=QArr, UArr=UArr,\n dIArr=dIArr, dQArr=dQArr, dUArr=dUArr, polyOrd=polyOrd, verbose=True,\n debug=debug)\n', (7835, 7980), False, 'from RMutils.util_misc import create_frac_spectra\n'), ((8457, 8506), 'numpy.linspace', 'np.linspace', (['freqArr_Hz[0]', 'freqArr_Hz[-1]', '(10000)'], {}), '(freqArr_Hz[0], freqArr_Hz[-1], 10000)\n', (8468, 8506), True, 'import numpy as np\n'), ((8577, 8606), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(12.0, 8)'}), '(figsize=(12.0, 8))\n', (8587, 8606), True, 'import matplotlib.pyplot as plt\n'), ((8611, 8812), 'RMutils.util_plotTk.plot_Ipqu_spectra_fig', 'plot_Ipqu_spectra_fig', ([], {'freqArr_Hz': 'freqArr_Hz', 'IArr': 'IArr', 'qArr': 'qArr', 'uArr': 'uArr', 'dIArr': 'dIArr', 'dqArr': 'dqArr', 'duArr': 'duArr', 'freqHirArr_Hz': 'freqHirArr_Hz', 'IModArr': 'IModHirArr', 'fig': 'specFig', 'units': 'units'}), '(freqArr_Hz=freqArr_Hz, IArr=IArr, qArr=qArr, uArr=\n uArr, dIArr=dIArr, dqArr=dqArr, duArr=duArr, freqHirArr_Hz=\n freqHirArr_Hz, IModArr=IModHirArr, fig=specFig, units=units)\n', (8632, 8812), False, 'from RMutils.util_plotTk import plot_Ipqu_spectra_fig\n'), ((10474, 10503), 'numpy.power', 'np.power', (['(C / freqArr_Hz)', '(2.0)'], {}), '(C / freqArr_Hz, 2.0)\n', (10482, 10503), True, 'import numpy as np\n'), ((11419, 11470), 'numpy.linspace', 'np.linspace', (['startPhi_radm2', 'stopPhi_radm2', 'nChanRM'], {}), '(startPhi_radm2, stopPhi_radm2, nChanRM)\n', (11430, 11470), True, 'import numpy as np\n'), ((12140, 12151), 'time.time', 'time.time', ([], {}), '()\n', (12149, 12151), False, 'import time\n'), ((12222, 12390), 'RMutils.util_RM.do_rmsynth_planes', 'do_rmsynth_planes', ([], {'dataQ': 'qArr', 'dataU': 'uArr', 'lambdaSqArr_m2': 'lambdaSqArr_m2', 'phiArr_radm2': 'phiArr_radm2', 'weightArr': 'weightArr', 'nBits': 'nBits', 'verbose': 'verbose', 'log': 'log'}), '(dataQ=qArr, dataU=uArr, lambdaSqArr_m2=lambdaSqArr_m2,\n phiArr_radm2=phiArr_radm2, weightArr=weightArr, nBits=nBits, verbose=\n verbose, log=log)\n', (12239, 12390), False, 'from RMutils.util_RM import do_rmsynth_planes\n'), ((13809, 13820), 'time.time', 'time.time', ([], {}), '()\n', (13818, 13820), False, 'import time\n'), ((14607, 14741), 'RMutils.util_RM.measure_FDF_parms', 'measure_FDF_parms', ([], {'FDF': 'dirtyFDF', 'phiArr': 'phiArr_radm2', 'fwhmRMSF': 'fwhmRMSF', 'dFDF': 'dFDFth', 'lamSqArr_m2': 'lambdaSqArr_m2', 'lam0Sq': 'lam0Sq_m2'}), '(FDF=dirtyFDF, phiArr=phiArr_radm2, fwhmRMSF=fwhmRMSF,\n dFDF=dFDFth, lamSqArr_m2=lambdaSqArr_m2, lam0Sq=lam0Sq_m2)\n', (14624, 14741), False, 'from RMutils.util_RM import measure_FDF_parms\n'), ((14950, 14966), 'RMutils.util_misc.toscalar', 'toscalar', (['Ifreq0'], {}), '(Ifreq0)\n', (14958, 14966), False, 'from RMutils.util_misc import toscalar\n'), ((15153, 15172), 'RMutils.util_misc.toscalar', 'toscalar', (['lam0Sq_m2'], {}), '(lam0Sq_m2)\n', (15161, 15172), False, 'from RMutils.util_misc import toscalar\n'), ((15197, 15215), 'RMutils.util_misc.toscalar', 'toscalar', (['freq0_Hz'], {}), '(freq0_Hz)\n', (15205, 15215), False, 'from RMutils.util_misc import toscalar\n'), ((15240, 15258), 'RMutils.util_misc.toscalar', 'toscalar', (['fwhmRMSF'], {}), '(fwhmRMSF)\n', (15248, 15258), False, 'from RMutils.util_misc import toscalar\n'), ((15328, 15344), 'RMutils.util_misc.toscalar', 'toscalar', (['dFDFth'], {}), '(dFDFth)\n', (15336, 15344), False, 'from RMutils.util_misc import toscalar\n'), ((16067, 16267), 'RMutils.util_RM.measure_qu_complexity', 'measure_qu_complexity', ([], {'freqArr_Hz': 'freqArr_Hz', 'qArr': 'qArr', 'uArr': 'uArr', 'dqArr': 'dqArr', 'duArr': 'duArr', 'fracPol': "mDict['fracPol']", 'psi0_deg': "mDict['polAngle0Fit_deg']", 'RM_radm2': "mDict['phiPeakPIfit_rm2']"}), "(freqArr_Hz=freqArr_Hz, qArr=qArr, uArr=uArr, dqArr=\n dqArr, duArr=duArr, fracPol=mDict['fracPol'], psi0_deg=mDict[\n 'polAngle0Fit_deg'], RM_radm2=mDict['phiPeakPIfit_rm2'])\n", (16088, 16267), False, 'from RMutils.util_RM import measure_qu_complexity\n'), ((25240, 25355), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': 'descStr', 'epilog': 'epilog_text', 'formatter_class': 'argparse.RawTextHelpFormatter'}), '(description=descStr, epilog=epilog_text,\n formatter_class=argparse.RawTextHelpFormatter)\n', (25263, 25355), False, 'import argparse\n'), ((27601, 27635), 'os.path.splitext', 'os.path.splitext', (['args.dataFile[0]'], {}), '(args.dataFile[0])\n', (27617, 27635), False, 'import os\n'), ((27657, 27688), 'os.path.split', 'os.path.split', (['args.dataFile[0]'], {}), '(args.dataFile[0])\n', (27670, 27688), False, 'import os\n'), ((6337, 6369), 'os.path.exists', 'os.path.exists', (['args.dataFile[0]'], {}), '(args.dataFile[0])\n', (6351, 6369), False, 'import os\n'), ((6442, 6452), 'sys.exit', 'sys.exit', ([], {}), '()\n', (6450, 6452), False, 'import sys\n'), ((7524, 7542), 'numpy.ones_like', 'np.ones_like', (['QArr'], {}), '(QArr)\n', (7536, 7542), True, 'import numpy as np\n'), ((7559, 7578), 'numpy.zeros_like', 'np.zeros_like', (['QArr'], {}), '(QArr)\n', (7572, 7578), True, 'import numpy as np\n'), ((8524, 8543), 'RMutils.util_misc.poly5', 'poly5', (["fitDict['p']"], {}), "(fitDict['p'])\n", (8529, 8543), False, 'from RMutils.util_misc import poly5\n'), ((9601, 9630), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(12.0, 8)'}), '(figsize=(12.0, 8))\n', (9611, 9630), True, 'import matplotlib.pyplot as plt\n'), ((10581, 10606), 'numpy.nanmax', 'np.nanmax', (['lambdaSqArr_m2'], {}), '(lambdaSqArr_m2)\n', (10590, 10606), True, 'import numpy as np\n'), ((10634, 10659), 'numpy.nanmin', 'np.nanmin', (['lambdaSqArr_m2'], {}), '(lambdaSqArr_m2)\n', (10643, 10659), True, 'import numpy as np\n'), ((12025, 12065), 'numpy.ones', 'np.ones', (['freqArr_Hz.shape'], {'dtype': 'dtFloat'}), '(freqArr_Hz.shape, dtype=dtFloat)\n', (12032, 12065), True, 'import numpy as np\n'), ((14081, 14098), 'math.sqrt', 'm.sqrt', (['lam0Sq_m2'], {}), '(lam0Sq_m2)\n', (14087, 14098), True, 'import math as m\n'), ((14112, 14131), 'RMutils.util_misc.poly5', 'poly5', (["fitDict['p']"], {}), "(fitDict['p'])\n", (14117, 14131), False, 'from RMutils.util_misc import poly5\n'), ((14354, 14373), 'numpy.isnan', 'np.isnan', (['weightArr'], {}), '(weightArr)\n', (14362, 14373), True, 'import numpy as np\n'), ((15287, 15304), 'RMutils.util_misc.nanmedian', 'nanmedian', (['dQUArr'], {}), '(dQUArr)\n', (15296, 15304), False, 'from RMutils.util_misc import nanmedian\n'), ((15734, 15767), 'numpy.min', 'np.min', (['freqArr_Hz[good_channels]'], {}), '(freqArr_Hz[good_channels])\n', (15740, 15767), True, 'import numpy as np\n'), ((15797, 15830), 'numpy.max', 'np.max', (['freqArr_Hz[good_channels]'], {}), '(freqArr_Hz[good_channels])\n', (15803, 15830), True, 'import numpy as np\n'), ((16655, 16979), 'RMutils.util_plotTk.plot_complexity_fig', 'plot_complexity_fig', ([], {'xArr': "pD['xArrQ']", 'qArr': "pD['yArrQ']", 'dqArr': "pD['dyArrQ']", 'sigmaAddqArr': "pD['sigmaAddArrQ']", 'chiSqRedqArr': "pD['chiSqRedArrQ']", 'probqArr': "pD['probArrQ']", 'uArr': "pD['yArrU']", 'duArr': "pD['dyArrU']", 'sigmaAdduArr': "pD['sigmaAddArrU']", 'chiSqReduArr': "pD['chiSqRedArrU']", 'probuArr': "pD['probArrU']", 'mDict': 'mDict'}), "(xArr=pD['xArrQ'], qArr=pD['yArrQ'], dqArr=pD['dyArrQ'],\n sigmaAddqArr=pD['sigmaAddArrQ'], chiSqRedqArr=pD['chiSqRedArrQ'],\n probqArr=pD['probArrQ'], uArr=pD['yArrU'], duArr=pD['dyArrU'],\n sigmaAdduArr=pD['sigmaAddArrU'], chiSqReduArr=pD['chiSqRedArrU'],\n probuArr=pD['probArrU'], mDict=mDict)\n", (16674, 16979), False, 'from RMutils.util_plotTk import plot_complexity_fig\n'), ((19693, 19722), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(12.0, 8)'}), '(figsize=(12.0, 8))\n', (19703, 19722), True, 'import matplotlib.pyplot as plt\n'), ((19731, 19908), 'RMutils.util_plotTk.plot_rmsf_fdf_fig', 'plot_rmsf_fdf_fig', ([], {'phiArr': 'phiArr_radm2', 'FDF': 'dirtyFDF', 'phi2Arr': 'phi2Arr_radm2', 'RMSFArr': 'RMSFArr', 'fwhmRMSF': 'fwhmRMSF', 'vLine': "mDict['phiPeakPIfit_rm2']", 'fig': 'fdfFig', 'units': 'units'}), "(phiArr=phiArr_radm2, FDF=dirtyFDF, phi2Arr=phi2Arr_radm2,\n RMSFArr=RMSFArr, fwhmRMSF=fwhmRMSF, vLine=mDict['phiPeakPIfit_rm2'],\n fig=fdfFig, units=units)\n", (19748, 19908), False, 'from RMutils.util_plotTk import plot_rmsf_fdf_fig\n'), ((20471, 20481), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (20479, 20481), True, 'import matplotlib.pyplot as plt\n'), ((21937, 21985), 'numpy.loadtxt', 'np.loadtxt', (['dataFile'], {'unpack': '(True)', 'dtype': 'dtFloat'}), '(dataFile, unpack=True, dtype=dtFloat)\n', (21947, 21985), True, 'import numpy as np\n'), ((27464, 27496), 'os.path.exists', 'os.path.exists', (['args.dataFile[0]'], {}), '(args.dataFile[0])\n', (27478, 27496), False, 'import os\n'), ((27569, 27579), 'sys.exit', 'sys.exit', ([], {}), '()\n', (27577, 27579), False, 'import sys\n'), ((10534, 10553), 'numpy.diff', 'np.diff', (['freqArr_Hz'], {}), '(freqArr_Hz)\n', (10541, 10553), True, 'import numpy as np\n'), ((10701, 10724), 'numpy.diff', 'np.diff', (['lambdaSqArr_m2'], {}), '(lambdaSqArr_m2)\n', (10708, 10724), True, 'import numpy as np\n'), ((10766, 10789), 'numpy.diff', 'np.diff', (['lambdaSqArr_m2'], {}), '(lambdaSqArr_m2)\n', (10773, 10789), True, 'import numpy as np\n'), ((10854, 10865), 'math.sqrt', 'm.sqrt', (['(3.0)'], {}), '(3.0)\n', (10860, 10865), True, 'import math as m\n'), ((11011, 11022), 'math.sqrt', 'm.sqrt', (['(3.0)'], {}), '(3.0)\n', (11017, 11022), True, 'import math as m\n'), ((11942, 11963), 'numpy.power', 'np.power', (['dQUArr', '(2.0)'], {}), '(dQUArr, 2.0)\n', (11950, 11963), True, 'import numpy as np\n'), ((15925, 15944), 'numpy.diff', 'np.diff', (['freqArr_Hz'], {}), '(freqArr_Hz)\n', (15932, 15944), True, 'import numpy as np\n'), ((9993, 10014), 'numpy.nanmax', 'np.nanmax', (['freqArr_Hz'], {}), '(freqArr_Hz)\n', (10002, 10014), True, 'import numpy as np\n'), ((10015, 10036), 'numpy.nanmin', 'np.nanmin', (['freqArr_Hz'], {}), '(freqArr_Hz)\n', (10024, 10036), True, 'import numpy as np\n'), ((13086, 13103), 'numpy.isfinite', 'np.isfinite', (['qArr'], {}), '(qArr)\n', (13097, 13103), True, 'import numpy as np\n'), ((14464, 14481), 'numpy.sum', 'np.sum', (['weightArr'], {}), '(weightArr)\n', (14470, 14481), True, 'import numpy as np\n'), ((15683, 15700), 'numpy.isfinite', 'np.isfinite', (['qArr'], {}), '(qArr)\n', (15694, 15700), True, 'import numpy as np\n'), ((22356, 22404), 'numpy.loadtxt', 'np.loadtxt', (['dataFile'], {'unpack': '(True)', 'dtype': 'dtFloat'}), '(dataFile, unpack=True, dtype=dtFloat)\n', (22366, 22404), True, 'import numpy as np\n'), ((7295, 7305), 'sys.exit', 'sys.exit', ([], {}), '()\n', (7303, 7305), False, 'import sys\n'), ((10063, 10081), 'numpy.min', 'np.min', (['freqArr_Hz'], {}), '(freqArr_Hz)\n', (10069, 10081), True, 'import numpy as np\n'), ((10122, 10140), 'numpy.max', 'np.max', (['freqArr_Hz'], {}), '(freqArr_Hz)\n', (10128, 10140), True, 'import numpy as np\n'), ((22687, 22697), 'sys.exit', 'sys.exit', ([], {}), '()\n', (22695, 22697), False, 'import sys\n'), ((14435, 14456), 'numpy.nan_to_num', 'np.nan_to_num', (['dQUArr'], {}), '(dQUArr)\n', (14448, 14456), True, 'import numpy as np\n'), ((7259, 7281), 'traceback.format_exc', 'traceback.format_exc', ([], {}), '()\n', (7279, 7281), False, 'import traceback\n'), ((22651, 22673), 'traceback.format_exc', 'traceback.format_exc', ([], {}), '()\n', (22671, 22673), False, 'import traceback\n')]
""" Contains functions to generate and combine a clustering ensemble. """ import numpy as np import pandas as pd from sklearn.metrics import pairwise_distances from sklearn.metrics import adjusted_rand_score as ari from sklearn.metrics import adjusted_mutual_info_score as ami from sklearn.metrics import normalized_mutual_info_score as nmi from tqdm import tqdm from clustering.utils import reset_estimator, compare_arrays def generate_ensemble(data, clusterers: dict, attributes: list, affinity_matrix=None): """ It generates an ensemble from the data given a set of clusterers (a clusterer is an instance of a clustering algorithm with a fixed set of parameters). Args: data: A numpy array, pandas dataframe, or any other structure supported by the clusterers as data input. clusterers: A dictionary with clusterers specified in this format: { 'k-means #1': KMeans(n_clusters=2), ... } attributes: A list of attributes to save in the final dataframe; for example, including "n_clusters" will extract this attribute from the estimator and include it in the final dataframe returned. affinity_matrix: If the clustering algorithm is AgglomerativeClustering (from sklearn) and the linkage method is different than ward (which only support euclidean distance), the affinity_matrix is given as data input to the estimator instead of data. Returns: A pandas DataFrame with all the partitions generated by the clusterers. Columns include the clusterer name/id, the partition, the estimator parameters (obtained with the get_params() method) and any other attribute specified. """ ensemble = [] for clus_name, clus_obj in tqdm(clusterers.items(), total=len(clusterers)): # get partition # # for agglomerative clustering both data and affinity_matrix should be # given; for ward linkage, data is used, and for the other linkage # methods the affinity_matrix is used if (type(clus_obj).__name__ == "AgglomerativeClustering") and ( clus_obj.linkage != "ward" ): partition = clus_obj.fit_predict(affinity_matrix).astype(float) else: partition = clus_obj.fit_predict(data).astype(float) # remove from partition noisy points (for example, if using DBSCAN) partition[partition < 0] = np.nan # get number of clusters partition_no_nan = partition[~np.isnan(partition)] n_clusters = np.unique(partition_no_nan).shape[0] # stop if n_clusters <= 1 if n_clusters <= 1: reset_estimator(clus_obj) continue res = pd.Series( { "clusterer_id": clus_name, "clusterer_params": str(clus_obj.get_params()), "partition": partition, } ) for attr in attributes: if attr == "n_clusters" and not hasattr(clus_obj, attr): res[attr] = n_clusters else: res[attr] = getattr(clus_obj, attr) ensemble.append(res) # for some estimators such as DBSCAN this is needed, because otherwise # the estimator saves references of huge data structures not needed in # this context reset_estimator(clus_obj) return pd.DataFrame(ensemble).set_index("clusterer_id") def get_ensemble_distance_matrix(ensemble, n_jobs=1): """ Given an ensemble, it computes the coassociation matrix (a distance matrix for all objects using the ensemble information). For each object pair, the coassociation matrix contains the percentage of times the pair of objects was clustered together in the ensemble. Args: ensemble: A numpy array representing a set of clustering solutions on the same data. Each row is a clustering solution (partition) and columns are objects. n_jobs: The number of jobs used by the pairwise_distance matrix from sklearn. Returns: A numpy array representing a square distance matrix for all objects (coassociation matrix). """ def _compare(x, y): xy = np.array([x, y]).T xy = xy[~np.isnan(xy).any(axis=1)] return (xy[:, 0] != xy[:, 1]).sum() / xy.shape[0] return pairwise_distances( ensemble.T, metric=_compare, n_jobs=n_jobs, force_all_finite="allow-nan" ) def supraconsensus(ensemble, k, methods, selection_criterion, n_jobs=1, use_tqdm=False): """ It combines a clustering ensemble using a set of methods that the user can specify. Each of these methods combines the ensemble and returns a single partition. This function returns the combined partition that maximizes the selection criterion. Args: ensemble: a clustering ensemble (rows are partitions, columns are objects). k: the final number of clusters for the combined partition. methods: a list of methods to apply on the ensemble; each returns a combined partition. selection_criterion: a function that represents the selection criterion; this function has to accept an ensemble as the first argument, and a partition as the second one. n_jobs: number of jobs. use_tqdm: ensembles/disables the use of tqdm to show a progress bar. Returns: Returns a tuple: (partition, best method name, best criterion value) """ from concurrent.futures import ProcessPoolExecutor, as_completed methods_results = {} with ProcessPoolExecutor(max_workers=n_jobs) as executor: tasks = {executor.submit(m, ensemble, k): m.__name__ for m in methods} for future in tqdm( as_completed(tasks), total=len(tasks), disable=(not use_tqdm), ncols=100, ): method_name = tasks[future] part = future.result() criterion_value = selection_criterion(ensemble, part) methods_results[method_name] = { "partition": part, "criterion_value": criterion_value, } # select the best performing method according to the selection criterion best_method = max( methods_results, key=lambda x: methods_results[x]["criterion_value"] ) best_method_results = methods_results[best_method] return ( best_method_results["partition"], best_method, best_method_results["criterion_value"], ) def run_method_and_compute_agreement(method_func, ensemble_data, ensemble, k, **kwargs): """ Runs a consensus clustering method on the ensemble data, obtains the consolidated partition with the desired number of clusters, and computes a series of performance measures. Args: method_func: A consensus function (first argument is either the ensemble or the coassociation matrix derived from the ensemble). ensemble_data: A numpy array with the ensemble data that will be given to the specified method. For evidence accumulation methods, this is the coassociation matrix (a square matrix with the distance between object pairs derived from the ensemble). ensemble: A numpy array representing the ensemble (partitions in rows, objects in columns). k: The number of clusters to obtain from the ensemble data using the specified method. kwargs: Other parameters passed to `method_func`. Returns: It returns a tuple with the data partition derived from the ensemble data using the specified method, and some performance measures of this partition. """ part = method_func(ensemble_data, k, **kwargs) nmi_values = np.array( [ compare_arrays(ensemble_member, part, nmi, use_weighting=True) for ensemble_member in ensemble ] ) ami_values = np.array( [ compare_arrays(ensemble_member, part, ami, use_weighting=True) for ensemble_member in ensemble ] ) ari_values = np.array( [ compare_arrays(ensemble_member, part, ari, use_weighting=True) for ensemble_member in ensemble ] ) performance_values = { "ari_mean": np.mean(ari_values), "ari_median": np.median(ari_values), "ari_std": np.std(ari_values), "ami_mean": np.mean(ami_values), "ami_median": np.median(ami_values), "ami_std": np.std(ami_values), "nmi_mean": np.mean(nmi_values), "nmi_median": np.median(nmi_values), "nmi_std": np.std(nmi_values), } return part, performance_values
[ "numpy.mean", "numpy.median", "numpy.unique", "clustering.utils.reset_estimator", "sklearn.metrics.pairwise_distances", "concurrent.futures.as_completed", "numpy.array", "numpy.isnan", "concurrent.futures.ProcessPoolExecutor", "numpy.std", "pandas.DataFrame", "clustering.utils.compare_arrays" ]
[((4500, 4596), 'sklearn.metrics.pairwise_distances', 'pairwise_distances', (['ensemble.T'], {'metric': '_compare', 'n_jobs': 'n_jobs', 'force_all_finite': '"""allow-nan"""'}), "(ensemble.T, metric=_compare, n_jobs=n_jobs,\n force_all_finite='allow-nan')\n", (4518, 4596), False, 'from sklearn.metrics import pairwise_distances\n'), ((3448, 3473), 'clustering.utils.reset_estimator', 'reset_estimator', (['clus_obj'], {}), '(clus_obj)\n', (3463, 3473), False, 'from clustering.utils import reset_estimator, compare_arrays\n'), ((5826, 5865), 'concurrent.futures.ProcessPoolExecutor', 'ProcessPoolExecutor', ([], {'max_workers': 'n_jobs'}), '(max_workers=n_jobs)\n', (5845, 5865), False, 'from concurrent.futures import ProcessPoolExecutor, as_completed\n'), ((8669, 8688), 'numpy.mean', 'np.mean', (['ari_values'], {}), '(ari_values)\n', (8676, 8688), True, 'import numpy as np\n'), ((8712, 8733), 'numpy.median', 'np.median', (['ari_values'], {}), '(ari_values)\n', (8721, 8733), True, 'import numpy as np\n'), ((8754, 8772), 'numpy.std', 'np.std', (['ari_values'], {}), '(ari_values)\n', (8760, 8772), True, 'import numpy as np\n'), ((8794, 8813), 'numpy.mean', 'np.mean', (['ami_values'], {}), '(ami_values)\n', (8801, 8813), True, 'import numpy as np\n'), ((8837, 8858), 'numpy.median', 'np.median', (['ami_values'], {}), '(ami_values)\n', (8846, 8858), True, 'import numpy as np\n'), ((8879, 8897), 'numpy.std', 'np.std', (['ami_values'], {}), '(ami_values)\n', (8885, 8897), True, 'import numpy as np\n'), ((8919, 8938), 'numpy.mean', 'np.mean', (['nmi_values'], {}), '(nmi_values)\n', (8926, 8938), True, 'import numpy as np\n'), ((8962, 8983), 'numpy.median', 'np.median', (['nmi_values'], {}), '(nmi_values)\n', (8971, 8983), True, 'import numpy as np\n'), ((9004, 9022), 'numpy.std', 'np.std', (['nmi_values'], {}), '(nmi_values)\n', (9010, 9022), True, 'import numpy as np\n'), ((2759, 2784), 'clustering.utils.reset_estimator', 'reset_estimator', (['clus_obj'], {}), '(clus_obj)\n', (2774, 2784), False, 'from clustering.utils import reset_estimator, compare_arrays\n'), ((3486, 3508), 'pandas.DataFrame', 'pd.DataFrame', (['ensemble'], {}), '(ensemble)\n', (3498, 3508), True, 'import pandas as pd\n'), ((4368, 4384), 'numpy.array', 'np.array', (['[x, y]'], {}), '([x, y])\n', (4376, 4384), True, 'import numpy as np\n'), ((5999, 6018), 'concurrent.futures.as_completed', 'as_completed', (['tasks'], {}), '(tasks)\n', (6011, 6018), False, 'from concurrent.futures import ProcessPoolExecutor, as_completed\n'), ((8152, 8214), 'clustering.utils.compare_arrays', 'compare_arrays', (['ensemble_member', 'part', 'nmi'], {'use_weighting': '(True)'}), '(ensemble_member, part, nmi, use_weighting=True)\n', (8166, 8214), False, 'from clustering.utils import reset_estimator, compare_arrays\n'), ((8325, 8387), 'clustering.utils.compare_arrays', 'compare_arrays', (['ensemble_member', 'part', 'ami'], {'use_weighting': '(True)'}), '(ensemble_member, part, ami, use_weighting=True)\n', (8339, 8387), False, 'from clustering.utils import reset_estimator, compare_arrays\n'), ((8498, 8560), 'clustering.utils.compare_arrays', 'compare_arrays', (['ensemble_member', 'part', 'ari'], {'use_weighting': '(True)'}), '(ensemble_member, part, ari, use_weighting=True)\n', (8512, 8560), False, 'from clustering.utils import reset_estimator, compare_arrays\n'), ((2605, 2624), 'numpy.isnan', 'np.isnan', (['partition'], {}), '(partition)\n', (2613, 2624), True, 'import numpy as np\n'), ((2647, 2674), 'numpy.unique', 'np.unique', (['partition_no_nan'], {}), '(partition_no_nan)\n', (2656, 2674), True, 'import numpy as np\n'), ((4404, 4416), 'numpy.isnan', 'np.isnan', (['xy'], {}), '(xy)\n', (4412, 4416), True, 'import numpy as np\n')]
""" Provides a class that handles the fits metadata required by PypeIt. .. include common links, assuming primary doc root is up one directory .. include:: ../include/links.rst """ import os import io import string from copy import deepcopy import datetime from IPython import embed import numpy as np import yaml from astropy import table, coordinates, time, units from pypeit import msgs from pypeit import utils from pypeit.core import framematch from pypeit.core import flux_calib from pypeit.core import parse from pypeit.core import meta from pypeit.io import dict_to_lines from pypeit.par import PypeItPar from pypeit.par.util import make_pypeit_file from pypeit.bitmask import BitMask # TODO: Turn this into a DataContainer # Initially tried to subclass this from astropy.table.Table, but that # proved too difficult. class PypeItMetaData: """ Provides a table and interface to the relevant fits file metadata used during the reduction. The content of the fits table is dictated by the header keywords specified for the provided spectrograph. It is expected that this table can be used to set the frame type of each file. The metadata is validated using checks specified by the provided spectrograph class. For the data table, one should typically provide either the file list from which to grab the data from the fits headers or the data directly. If neither are provided the table is instantiated without any data. Args: spectrograph (:class:`pypeit.spectrographs.spectrograph.Spectrograph`): The spectrograph used to collect the data save to each file. The class is used to provide the header keyword data to include in the table and specify any validation checks. par (:obj:`pypeit.par.pypeitpar.PypeItPar`): PypeIt parameters used to set the code behavior. files (:obj:`str`, :obj:`list`, optional): The list of files to include in the table. data (table-like, optional): The data to include in the table. The type can be anything allowed by the instantiation of :class:`astropy.table.Table`. usrdata (:obj:`astropy.table.Table`, optional): A user provided set of data used to supplement or overwrite metadata read from the file headers. The table must have a `filename` column that is used to match to the metadata table generated within PypeIt. **Note**: This is ignored if `data` is also provided. This functionality is only used when building the metadata from the fits files. strict (:obj:`bool`, optional): Function will fault if there is a problem with the reading the header for any of the provided files; see :func:`pypeit.spectrographs.spectrograph.get_headarr`. Set to False to instead report a warning and continue. Attributes: spectrograph (:class:`pypeit.spectrographs.spectrograph.Spectrograph`): The spectrograph used to collect the data save to each file. The class is used to provide the header keyword data to include in the table and specify any validation checks. par (:class:`pypeit.par.pypeitpar.PypeItPar`): PypeIt parameters used to set the code behavior. If not provided, the default parameters specific to the provided spectrograph are used. configs (:obj:`dict`): A dictionary of the unique configurations identified. type_bitmask (:class:`pypeit.core.framematch.FrameTypeBitMask`): The bitmask used to set the frame type of each fits file. calib_bitmask (:class:`BitMask`): The bitmask used to keep track of the calibration group bits. table (:class:`astropy.table.Table`): The table with the relevant metadata for each fits file to use in the data reduction. """ def __init__(self, spectrograph, par, files=None, data=None, usrdata=None, strict=True): if data is None and files is None: # Warn that table will be empty msgs.warn('Both data and files are None in the instantiation of PypeItMetaData.' ' The table will be empty!') # Initialize internals self.spectrograph = spectrograph self.par = par if not isinstance(self.par, PypeItPar): raise TypeError('Input parameter set must be of type PypeItPar.') self.type_bitmask = framematch.FrameTypeBitMask() # Build table self.table = table.Table(data if files is None else self._build(files, strict=strict, usrdata=usrdata)) # Merge with user data, if present if usrdata is not None: self.merge(usrdata) # Impose types on specific columns self._impose_types(['comb_id', 'bkg_id', 'manual'], [int, int, str]) # Initialize internal attributes self.configs = None self.calib_bitmask = None # Initialize columns that the user might add self.set_user_added_columns() # Validate instrument name self.spectrograph.vet_instrument(self.table) def _impose_types(self, columns, types): """ Impose a set of types on certain columns. .. note:: :attr:`table` is edited in place. Args: columns (:obj:`list`): List of column names types (:obj:`list`): List of types """ for c,t in zip(columns, types): if c in self.keys(): self.table[c] = self.table[c].astype(t) def _build(self, files, strict=True, usrdata=None): """ Generate the fitstbl that will be at the heart of PypeItMetaData. Args: files (:obj:`str`, :obj:`list`): One or more files to use to build the table. strict (:obj:`bool`, optional): Function will fault if :func:`fits.getheader` fails to read any of the headers. Set to False to report a warning and continue. usrdata (astropy.table.Table, optional): Parsed for frametype for a few instruments (e.g. VLT) where meta data may not be required Returns: dict: Dictionary with the data to assign to :attr:`table`. """ # Allow for single files _files = files if hasattr(files, '__len__') else [files] # Build lists to fill data = {k:[] for k in self.spectrograph.meta.keys()} data['directory'] = ['None']*len(_files) data['filename'] = ['None']*len(_files) # Build the table for idx, ifile in enumerate(_files): # User data (for frame type) if usrdata is None: usr_row = None else: # TODO: This check should be done elsewhere # Check if os.path.basename(ifile) != usrdata['filename'][idx]: msgs.error('File name list does not match user-provided metadata table. See ' 'usrdata argument of instantiation of PypeItMetaData.') usr_row = usrdata[idx] # Add the directory and file name to the table data['directory'][idx], data['filename'][idx] = os.path.split(ifile) if not data['directory'][idx]: data['directory'][idx] = '.' # Read the fits headers headarr = self.spectrograph.get_headarr(ifile, strict=strict) # Grab Meta for meta_key in self.spectrograph.meta.keys(): value = self.spectrograph.get_meta_value(headarr, meta_key, required=strict, usr_row=usr_row, ignore_bad_header = self.par['rdx']['ignore_bad_headers']) if isinstance(value, str) and '#' in value: value = value.replace('#', '') msgs.warn('Removing troublesome # character from {0}. Returning {1}.'.format( meta_key, value)) data[meta_key].append(value) msgs.info('Added metadata for {0}'.format(os.path.split(ifile)[1])) # JFH Changed the below to not crash if some files have None in # their MJD. This is the desired behavior since if there are # empty or corrupt files we still want this to run. # Validate, print out a warning if there is problem try: time.Time(data['mjd'], format='mjd') except ValueError: mjd = np.asarray(data['mjd']) filenames = np.asarray(data['filename']) bad_files = filenames[mjd == None] # Print status message msg = 'Time invalid for {0} files.\n'.format(len(bad_files)) msg += 'Continuing, but the following frames may be empty or have corrupt headers:\n' for file in bad_files: msg += ' {0}\n'.format(file) msgs.warn(msg) # Return return data # TODO: In this implementation, slicing the PypeItMetaData object # will return an astropy.table.Table, not a PypeItMetaData object. def __getitem__(self, item): return self.table.__getitem__(item) def __setitem__(self, item, value): return self.table.__setitem__(item, value) def __len__(self): return self.table.__len__() def __repr__(self): return self.table._base_repr_(html=False, descr_vals=['PypeItMetaData:\n', ' spectrograph={0}\n'.format( self.spectrograph.name), ' length={0}\n'.format(len(self))]) def _repr_html_(self): return self.table._base_repr_(html=True, max_width=-1, descr_vals=['PypeItMetaData: spectrograph={0}, length={1}\n'.format( self.spectrograph.name, len(self))]) @staticmethod def default_keys(): return [ 'directory', 'filename', 'instrume' ] def keys(self): return self.table.keys() def sort(self, col): return self.table.sort(col) def merge(self, usrdata, match_type=True): """ Use the provided table to supplement or overwrite the metadata. If the internal table already contains the column in `usrdata`, the function will try to match the data type of the `usrdata` column to the existing data type. If it can't it will just add the column anyway, with the type in `usrdata`. You can avoid this step by setting `match_type=False`. Args: usrdata (:obj:`astropy.table.Table`): A user provided set of data used to supplement or overwrite metadata read from the file headers. The table must have a `filename` column that is used to match to the metadata table generated within PypeIt. match_type (:obj:`bool`, optional): Attempt to match the data type in `usrdata` to the type in the internal table. See above. Raises: TypeError: Raised if `usrdata` is not an `astropy.io.table.Table` KeyError: Raised if `filename` is not a key in the provided table. """ meta_data_model = meta.get_meta_data_model() # Check the input if not isinstance(usrdata, table.Table): raise TypeError('Must provide an astropy.io.table.Table instance.') if 'filename' not in usrdata.keys(): raise KeyError('The user-provided table must have \'filename\' column!') # Make sure the data are correctly ordered srt = [np.where(f == self.table['filename'])[0][0] for f in usrdata['filename']] # Convert types if possible existing_keys = list(set(self.table.keys()) & set(usrdata.keys())) radec_done = False if len(existing_keys) > 0 and match_type: for key in existing_keys: if len(self.table[key].shape) > 1: # NOT ALLOWED!! # TODO: This should be converted to an assert statement... raise ValueError('CODING ERROR: Found high-dimensional column.') #embed(header='372 of metadata') elif key in meta_data_model.keys(): # Is this meta data?? dtype = meta_data_model[key]['dtype'] else: dtype = self.table[key].dtype # Deal with None's properly nones = usrdata[key] == 'None' usrdata[key][nones] = None # Rest # Allow for str RA, DEC (backwards compatability) if key in ['ra', 'dec'] and not radec_done: ras, decs = meta.convert_radec(usrdata['ra'][~nones].data, usrdata['dec'][~nones].data) usrdata['ra'][~nones] = ras.astype(dtype) usrdata['dec'][~nones] = decs.astype(dtype) radec_done = True else: usrdata[key][~nones] = usrdata[key][~nones].astype(dtype) # Include the user data in the table for key in usrdata.keys(): self.table[key] = usrdata[key][srt] def finalize_usr_build(self, frametype, setup): """ Finalize the build of the table based on user-provided data, typically pulled from the PypeIt file. This function: - sets the frame types based on the provided object - sets all the configurations to the provided `setup` - assigns all frames to a single calibration group, if the 'calib' column does not exist - if the 'comb_id' column does not exist, this sets the combination groups to be either undefined or to be unique for each science or standard frame, see :func:`set_combination_groups`. .. note:: This should only be run if all files are from a single instrument configuration. :attr:`table` is modified in-place. See also: :func:`pypeit.pypeitsetup.PypeItSetup.run`. .. todo:: - Why isn't frametype just in the user-provided data? It may be (see get_frame_types) and I'm just not using it... Args: frametype (:obj:`dict`): A dictionary with the types designated by the user. The file name and type are expected to be the key and value of the dictionary, respectively. The number of keys therefore *must* match the number of files in :attr:`table`. For frames that have multiple types, the types should be provided as a string with comma-separated types. setup (:obj:`str`): If the 'setup' columns does not exist, fill the configuration setup columns with this single identifier. """ self.get_frame_types(user=frametype) # TODO: Add in a call to clean_configurations? I didn't add it # here, because this method is only called for a preconstructed # pypeit file, which should nominally follow an execution of # pypeit_setup. If the user edits back in a frame that has an # invalid key, at least for now the DEIMOS image reader will # fault. self.set_configurations(fill=setup) self.set_calibration_groups(default=True) self.set_combination_groups() def get_configuration(self, indx, cfg_keys=None): """ Return the configuration dictionary for a given frame. This is not the same as the backwards compatible "setup" dictionary. Args: indx (:obj:`int`): The index of the table row to use to construct the configuration. cfg_keys (:obj:`list`, optional): The list of metadata keys to use to construct the configuration. If None, the `configuration_keys` of :attr:`spectrograph` is used. Returns: dict: A dictionary with the metadata values from the selected row. """ _cfg_keys = self.spectrograph.configuration_keys() if cfg_keys is None else cfg_keys return {k:self.table[k][indx] for k in _cfg_keys} def master_key(self, row, det=1): """ Construct the master key for the file in the provided row. The master key is the combination of the configuration, the calibration group, and the detector. The configuration ID is the same as included in the configuration column (A, B, C, etc), the calibration group is the same as the calibration bit number, and the detector number is provided as an argument and converted to a zero-filled string with two digits (the maximum number of detectors is 99). Using the calibration bit in the keyword allows MasterFrames to be used with multiple calibration groups. Args: row (:obj:`int`): The 0-indexed row used to construct the key. det (:obj:`int`, :obj:`tuple`, optional): The 1-indexed detector number(s). If a tuple, it must include detectors designated as a viable mosaic for :attr:`spectrograph`; see :func:`~pypeit.spectrographs.spectrograph.Spectrograph.allowed_mosaics`. Returns: :obj:`str`: Master key with configuration, calibration group(s), and detector. Raises: PypeItError: Raised if the 'setup' or 'calibbit' columns haven't been defined. """ if 'setup' not in self.keys() or 'calibbit' not in self.keys(): msgs.error('Cannot provide master key string without setup and calibbit; ' 'run set_configurations and set_calibration_groups.') det_name = self.spectrograph.get_det_name(det) return f"{self['setup'][row]}_{self['calibbit'][row]}_{det_name}" def construct_obstime(self, row): """ Construct the MJD of when the frame was observed. .. todo:: - Consolidate with :func:`convert_time` ? Args: row (:obj:`int`): The 0-indexed row of the frame. Returns: astropy.time.Time: The MJD of the observation. """ return time.Time(self['mjd'][row], format='mjd') def construct_basename(self, row, obstime=None): """ Construct the root name primarily for PypeIt file output. Args: row (:obj:`int`): The 0-indexed row of the frame. obstime (:class:`astropy.time.Time`, optional): The MJD of the observation. If None, constructed using :func:`construct_obstime`. Returns: str: The root name for file output. """ _obstime = self.construct_obstime(row) if obstime is None else obstime tiso = time.Time(_obstime, format='isot') dtime = datetime.datetime.strptime(tiso.value, '%Y-%m-%dT%H:%M:%S.%f') return '{0}-{1}_{2}_{3}{4}'.format(self['filename'][row].split('.fits')[0], self['target'][row].replace(" ", ""), self.spectrograph.camera, datetime.datetime.strftime(dtime, '%Y%m%dT'), tiso.value.split("T")[1].replace(':','')) def get_setup(self, row, det=None, config_only=False): """ Construct the setup dictionary. .. todo:: - This is for backwards compatibility, but we should consider reformatting it. And it may be something to put in the relevant spectrograph class. Args: row (:obj:`int`): The 0-indexed row used to construct the setup. det (:obj:`int`, optional): The 1-indexed detector to include. If None, all detectors are included. config_only (:obj:`bool`, optional): Just return the dictionary with the configuration, don't include the top-level designation of the configuration itself. Returns: dict: The pypeit setup dictionary with the default format. Raises: PypeItError: Raised if the 'setup' isn't been defined. """ if 'setup' not in self.keys(): msgs.error('Cannot provide instrument setup without \'setup\' column; ' 'run set_configurations.') dispname = 'none' if 'dispname' not in self.keys() else self['dispname'][row] dispangle = 'none' if 'dispangle' not in self.keys() else self['dispangle'][row] dichroic = 'none' if 'dichroic' not in self.keys() else self['dichroic'][row] decker = 'none' if 'decker' not in self.keys() else self['decker'][row] slitwid = 'none' if 'slitwid' not in self.keys() else self['slitwid'][row] slitlen = 'none' if 'slitlen' not in self.keys() else self['slitlen'][row] binning = '1,1' if 'binning' not in self.keys() else self['binning'][row] skey = 'Setup {}'.format(self['setup'][row]) # Key names *must* match configuration_keys() for spectrographs setup = {skey: {'--': {'disperser': {'dispname': dispname, 'dispangle':dispangle}, 'dichroic': dichroic, 'slit': {'decker': decker, 'slitwid':slitwid, 'slitlen':slitlen}, 'binning': binning, # PypeIt orientation binning of a science image } } } #_det = np.arange(self.spectrograph.ndet)+1 if det is None else [det] #for d in _det: # setup[skey][str(d).zfill(2)] \ # = {'binning': binning, 'det': d, # 'namp': self.spectrograph.detector[d-1]['numamplifiers']} return setup[skey] if config_only else setup def get_configuration_names(self, ignore=None, return_index=False, configs=None): """ Get the list of the unique configuration names. This provides just the list of setup identifiers ('A', 'B', etc.) and the row index where it first occurs. This is different from :func:`unique_configurations` because the latter determines and provides the configurations themselves. This is mostly a convenience function for the writing routines. Args: ignore (:obj:`list`, optional): Ignore configurations in the provided list. return_index (:obj:`bool`, optional): Return row indices with the first occurence of these configurations. configs (:obj:`str`, :obj:`list`, optional): One or more strings used to select the configurations to include in the returned objects. If ``'all'``, pass back all configurations. Otherwise, only return the configurations matched to this provided string or list of strings (e.g., ['A','C']). Returns: numpy.array: The list of unique setup names. A second returned object provides the indices of the first occurrence of these setups, if requested. Raises: PypeItError: Raised if the 'setup' isn't been defined. """ if 'setup' not in self.keys(): msgs.error('Cannot get setup names; run set_configurations.') # Unique configurations setups, indx = np.unique(self['setup'], return_index=True) if ignore is not None: # Remove the selected configurations to ignore rm = np.logical_not(np.isin(setups, ignore)) setups = setups[rm] indx = indx[rm] # Restrict _configs = None if configs is None else np.atleast_1d(configs) # TODO: Why do we need to specify 'all' here? Can't `configs is # None` mean that you want all the configurations? Or can we # make the default 'all'? if configs is not None and 'all' not in _configs: use = np.isin(setups, _configs) setups = setups[use] indx = indx[use] return setups, indx if return_index else setups def _get_cfgs(self, copy=False, rm_none=False): """ Convenience method to return :attr:`configs` with possible alterations. This method *should not* be called by any method outside of this class; use :func:`unique_configurations` instead. Args: copy (:obj:`bool`, optional): Return a deep copy of :attr:`configs` instead of the object itself. rm_none (:obj:`bool`, optional): Remove any configurations set to 'None'. If copy is True, this is done *after* :attr:`configs` is copied to a new dictionary. Returns: :obj:`dict`: A nested dictionary, one dictionary per configuration with the associated metadata for each. """ _cfg = deepcopy(self.configs) if copy else self.configs if rm_none and 'None' in _cfg.keys(): del _cfg['None'] return _cfg def unique_configurations(self, force=False, copy=False, rm_none=False): """ Return the unique instrument configurations. If run before the ``'setup'`` column is initialized, this function determines the unique instrument configurations by finding unique combinations of the items in the metadata table listed by the spectrograph ``configuration_keys`` method. If run after the ``'setup'`` column has been set, this simply constructs the configuration dictionary using the unique configurations in that column. This is used to set the internal :attr:`configs`. If this attribute is not None, this function simply returns :attr:`config` (cf. ``force``). .. warning:: Any frame types returned by the :func:`~pypeit.spectrographs.spectrograph.Spectrograph.config_independent_frames` method for :attr:`spectrograph` will be ignored in the construction of the unique configurations. If :func:`~pypeit.spectrographs.spectrograph.Spectrograph.config_independent_frames` does not return None and the frame types have not yet been defined (see :func:`get_frame_types`), this method will fault! Args: force (:obj:`bool`, optional): Force the configurations to be redetermined. Otherwise the configurations are only determined if :attr:`configs` has not yet been defined. copy (:obj:`bool`, optional): Return a deep copy of :attr:`configs` instead of the object itself. rm_none (:obj:`bool`, optional): Remove any configurations set to 'None'. If copy is True, this is done *after* :attr:`configs` is copied to a new dictionary. Returns: :obj:`dict`: A nested dictionary, one dictionary per configuration with the associated metadata for each. Raises: PypeItError: Raised if there are list of frame types to ignore but the frame types have not been defined yet. """ if self.configs is not None and not force: return self._get_cfgs(copy=copy, rm_none=rm_none) if 'setup' in self.keys(): msgs.info('Setup column already set. Finding unique configurations.') uniq, indx = np.unique(self['setup'], return_index=True) ignore = uniq == 'None' if np.sum(ignore) > 0: msgs.warn('Ignoring {0} frames with configuration set to None.'.format( np.sum(ignore))) self.configs = {} for i in range(len(uniq)): if ignore[i]: continue self.configs[uniq[i]] = self.get_configuration(indx[i]) msgs.info('Found {0} unique configurations.'.format(len(self.configs))) return self._get_cfgs(copy=copy, rm_none=rm_none) msgs.info('Using metadata to determine unique configurations.') # If the frame types have been set, ignore anything listed in # the ignore_frames indx = np.arange(len(self)) ignore_frames = self.spectrograph.config_independent_frames() if ignore_frames is not None: if 'frametype' not in self.keys(): msgs.error('To ignore frames, types must have been defined; run get_frame_types.') ignore_frames = list(ignore_frames.keys()) msgs.info('Unique configurations ignore frames with type: {0}'.format(ignore_frames)) use = np.ones(len(self), dtype=bool) for ftype in ignore_frames: use &= np.logical_not(self.find_frames(ftype)) indx = indx[use] if len(indx) == 0: msgs.error('No frames to use to define configurations!') # Get the list of keys to use cfg_keys = self.spectrograph.configuration_keys() # Configuration identifiers are iterations through the # upper-case letters: A, B, C, etc. double_alphabet = [str_i + str_j for str_i in string.ascii_uppercase for str_j in string.ascii_uppercase] cfg_iter = list(string.ascii_uppercase) + double_alphabet cfg_indx = 0 # TODO: Placeholder: Allow an empty set of configuration keys # meaning that the instrument setup has only one configuration. if len(cfg_keys) == 0: self.configs = {} self.configs[cfg_iter[cfg_indx]] = {} msgs.info('All files assumed to be from a single configuration.') return self._get_cfgs(copy=copy, rm_none=rm_none) # Use the first file to set the first unique configuration self.configs = {} self.configs[cfg_iter[cfg_indx]] = self.get_configuration(indx[0], cfg_keys=cfg_keys) cfg_indx += 1 # Check if any of the other files show a different # configuration. for i in indx[1:]: j = 0 for c in self.configs.values(): if row_match_config(self.table[i], c, self.spectrograph): break j += 1 unique = j == len(self.configs) if unique: if cfg_indx == len(cfg_iter): msgs.error('Cannot assign more than {0} configurations!'.format(len(cfg_iter))) self.configs[cfg_iter[cfg_indx]] = self.get_configuration(i, cfg_keys=cfg_keys) cfg_indx += 1 msgs.info('Found {0} unique configurations.'.format(len(self.configs))) return self._get_cfgs(copy=copy, rm_none=rm_none) def set_configurations(self, configs=None, force=False, fill=None): """ Assign each frame to a configuration (setup) and include it in the metadata table. The internal table is edited *in place*. If the 'setup' column already exists, the configurations are **not** reset unless you call the function with ``force=True``. Args: configs (:obj:`dict`, optional): A nested dictionary, one dictionary per configuration with the associated values of the metadata associated with each configuration. The metadata keywords in the dictionary should be the same as in the table, and the keywords used to set the configuration should be the same as returned by the spectrograph `configuration_keys` method. The latter is not checked. If None, this is set by :func:`unique_configurations`. force (:obj:`bool`, optional): Force the configurations to be reset. fill (:obj:`str`, optional): If the 'setup' column does not exist, fill the configuration setup columns with this single identifier. Ignores other inputs. Raises: PypeItError: Raised if none of the keywords in the provided configuration match with the metadata keywords. Also raised when some frames cannot be assigned to a configuration, the spectrograph defined frames that have been ignored in the determination of the unique configurations, but the frame types have not been set yet. """ # Configurations have already been set if 'setup' in self.keys() and not force: return if 'setup' not in self.keys() and fill is not None: self['setup'] = fill return _configs = self.unique_configurations() if configs is None else configs for k, cfg in _configs.items(): if len(set(cfg.keys()) - set(self.keys())) > 0: msgs.error('Configuration {0} defined using unavailable keywords!'.format(k)) self.table['setup'] = 'None' nrows = len(self) for i in range(nrows): for d, cfg in _configs.items(): if row_match_config(self.table[i], cfg, self.spectrograph): self.table['setup'][i] = d # Check if any of the configurations are not set not_setup = self.table['setup'] == 'None' if not np.any(not_setup): # All are set, so we're done return # Some frame types may have been ignored ignore_frames = self.spectrograph.config_independent_frames() if ignore_frames is None: # Nope, we're still done return # At this point, we need the frame type to continue if 'frametype' not in self.keys(): msgs.error('To account for ignored frames, types must have been defined; run ' 'get_frame_types.') # For each configuration, determine if any of the frames with # the ignored frame types should be assigned to it: for cfg_key in _configs.keys(): in_cfg = self.table['setup'] == cfg_key for ftype, metakey in ignore_frames.items(): # TODO: For now, use this assert to check that the # metakey is either not set or a string assert metakey is None or isinstance(metakey, str), \ 'CODING ERROR: metadata keywords set by config_indpendent_frames are not ' \ 'correctly defined for {0}; values must be None or a string.'.format( self.spectrograph.__class__.__name__) # Get the list of frames of this type without a # configuration indx = (self.table['setup'] == 'None') & self.find_frames(ftype) if not np.any(indx): continue if metakey is None: # No matching meta data defined, so just set all # the frames to this (first) configuration self.table['setup'][indx] = cfg_key continue # Find the unique values of meta for this configuration uniq_meta = np.unique(self.table[metakey][in_cfg].data) # Warn the user that the matching meta values are not # unique for this configuration. if uniq_meta.size != 1: msgs.warn('When setting the instrument configuration for {0} '.format(ftype) + 'frames, configuration {0} does not have unique '.format(cfg_key) + '{0} values.' .format(meta)) # Find the frames of this type that match any of the # meta data values indx &= np.isin(self.table[metakey], uniq_meta) self.table['setup'][indx] = cfg_key def clean_configurations(self): """ Ensure that configuration-defining keywords all have values that will yield good PypeIt reductions. Any frames that do not are removed from :attr:`table`, meaning this method may modify that attribute directly. The valid values for configuration keys is set by :func:`~pypeit.spectrographs.spectrograph.Spectrograph.valid_configuration_values`. """ cfg_limits = self.spectrograph.valid_configuration_values() if cfg_limits is None: # No values specified, so we're done return good = np.ones(len(self), dtype=bool) for key in cfg_limits.keys(): # NOTE: For now, check that the configuration values were # correctly assigned in the spectrograph class definition. # This should probably go somewhere else or just removed. assert isinstance(cfg_limits[key], list), \ 'CODING ERROR: valid_configuration_values is not correctly defined ' \ 'for {0}; values must be a list.'.format(self.spectrograph.__class__.__name__) # Check that the metadata are valid for this column. indx = np.isin(self[key], cfg_limits[key]) if not np.all(indx): msgs.warn('Found frames with invalid {0}.'.format(key)) good &= indx if np.all(good): # All values good, so we're done return # Alert the user that some of the frames are going to be # removed msg = 'The following frames have configurations that cannot be reduced by PypeIt' \ ' and will be removed from the metadata table (pypeit file):\n' indx = np.where(np.logical_not(good))[0] for i in indx: msg += ' {0}\n'.format(self['filename'][i]) msgs.warn(msg) # And remove 'em self.table = self.table[good] def _set_calib_group_bits(self): """ Set the calibration group bit based on the string values of the 'calib' column. """ # Find the number groups by searching for the maximum number # provided, regardless of whether or not a science frame is # assigned to that group. ngroups = 0 for i in range(len(self)): if self['calib'][i] in ['all', 'None']: # No information, keep going continue # Convert to a list of numbers l = np.amax([ 0 if len(n) == 0 else int(n) for n in self['calib'][i].replace(':',',').split(',')]) # Check against current maximum ngroups = max(l+1, ngroups) # Define the bitmask and initialize the bits self.calib_bitmask = BitMask(np.arange(ngroups)) self['calibbit'] = 0 # Set the calibration bits for i in range(len(self)): # Convert the string to the group list grp = parse.str2list(self['calib'][i], ngroups) if grp is None: # No group selected continue # Assign the group; ensure the integers are unique self['calibbit'][i] = self.calib_bitmask.turn_on(self['calibbit'][i], grp) def _check_calib_groups(self): """ Check that the calibration groups are valid. This currently only checks that the science frames are associated with one calibration group. TODO: Is this appropriate for NIR data? """ is_science = self.find_frames('science') for i in range(len(self)): if not is_science[i]: continue if len(self.calib_bitmask.flagged_bits(self['calibbit'][i])) > 1: msgs.error('Science frames can only be assigned to a single calibration group.') @property def n_calib_groups(self): """Return the number of calibration groups.""" return None if self.calib_bitmask is None else self.calib_bitmask.nbits def set_calibration_groups(self, global_frames=None, default=False, force=False): """ Group calibration frames into sets. Requires the 'setup' column to have been defined. For now this is a simple grouping of frames with the same configuration. .. todo:: - Maintain a detailed description of the logic. The 'calib' column has a string type to make sure that it matches with what can be read from the pypeit file. The 'calibbit' column is actually what is used to determine the calibration group of each frame; see :attr:`calib_bitmask`. Args: global_frames (:obj:`list`, optional): A list of strings with the frame types to use in all calibration groups (e.g., ['bias', 'dark']). default (:obj:`bool`, optional): If the 'calib' column is not present, set a single calibration group *for all rows*. force (:obj:`bool`, optional): Force the calibration groups to be reconstructed if the 'calib' column already exists. Raises: PypeItError: Raised if 'setup' column is not defined, or if `global_frames` is provided but the frame types have not been defined yet. """ # Set the default if requested and 'calib' doesn't exist yet if 'calib' not in self.keys() and default: self['calib'] = '0' # Make sure the calibbit column does not exist if 'calibbit' in self.keys(): del self['calibbit'] # Groups have already been set if 'calib' in self.keys() and 'calibbit' in self.keys() and not force: return # Groups have been set but the bits have not (likely because the # data was read from a pypeit file) if 'calib' in self.keys() and 'calibbit' not in self.keys() and not force: self._set_calib_group_bits() self._check_calib_groups() return # TODO: The rest of this just nominally sets the calibration # group based on the configuration. This will change! # The configuration must be present to determine the calibration # group if 'setup' not in self.keys(): msgs.error('Must have defined \'setup\' column first; try running set_configurations.') configs = np.unique(self['setup'].data).tolist() if 'None' in configs: configs.remove('None') # Ignore frames with undefined configurations n_cfg = len(configs) # TODO: Science frames can only have one calibration group # Assign everything from the same configuration to the same # calibration group; this needs to have dtype=object, otherwise # any changes to the strings will be truncated at 4 characters. self.table['calib'] = np.full(len(self), 'None', dtype=object) for i in range(n_cfg): self['calib'][(self['setup'] == configs[i]) & (self['framebit'] > 0)] = str(i) # Allow some frame types to be used in all calibration groups # (like biases and darks) if global_frames is not None: if 'frametype' not in self.keys(): msgs.error('To set global frames, types must have been defined; ' 'run get_frame_types.') calibs = '0' if n_cfg == 1 else ','.join(np.arange(n_cfg).astype(str)) for ftype in global_frames: indx = np.where(self.find_frames(ftype))[0] for i in indx: self['calib'][i] = calibs # Set the bits based on the string representation of the groups self._set_calib_group_bits() # Check that the groups are valid self._check_calib_groups() def find_frames(self, ftype, calib_ID=None, index=False): """ Find the rows with the associated frame type. If the index is provided, the frames must also be matched to the relevant science frame. Args: ftype (str): The frame type identifier. See the keys for :class:`pypeit.core.framematch.FrameTypeBitMask`. If set to the string 'None', this returns all frames without a known type. calib_ID (:obj:`int`, optional): Index of the calibration group that it must match. If None, any row of the specified frame type is included. index (:obj:`bool`, optional): Return an array of 0-indexed indices instead of a boolean array. Returns: numpy.ndarray: A boolean array, or an integer array if index=True, with the rows that contain the frames of the requested type. Raises: PypeItError: Raised if the `framebit` column is not set in the table. """ if 'framebit' not in self.keys(): msgs.error('Frame types are not set. First run get_frame_types.') if ftype == 'None': return self['framebit'] == 0 # Select frames indx = self.type_bitmask.flagged(self['framebit'], ftype) if calib_ID is not None: # Select frames in the same calibration group indx &= self.find_calib_group(calib_ID) # Return return np.where(indx)[0] if index else indx def find_frame_files(self, ftype, calib_ID=None): """ Return the list of files with a given frame type. The frames must also match the science frame index, if it is provided. Args: ftype (str): The frame type identifier. See the keys for :class:`pypeit.core.framematch.FrameTypeBitMask`. calib_ID (:obj:`int`, optional): Index of the calibration group that it must match. If None, any row of the specified frame type is included. Returns: list: List of file paths that match the frame type and science frame ID, if the latter is provided. """ return self.frame_paths(self.find_frames(ftype, calib_ID=calib_ID)) def frame_paths(self, indx): """ Return the full paths to one or more frames. Args: indx (:obj:`int`, array-like): One or more 0-indexed rows in the table with the frames to return. Can be an array of indices or a boolean array of the correct length. Returns: list: List of the full paths of one or more frames. """ if isinstance(indx, (int,np.integer)): return os.path.join(self['directory'][indx], self['filename'][indx]) return [os.path.join(d,f) for d,f in zip(self['directory'][indx], self['filename'][indx])] def set_frame_types(self, type_bits, merge=True): """ Set and return a Table with the frame types and bits. Args: type_bits (numpy.ndarray): Integer bitmask with the frame types. The length must match the existing number of table rows. merge (:obj:`bool`, optional): Merge the types and bits into the existing table. This will *overwrite* any existing columns. Returns: `astropy.table.Table`: Table with two columns, the frame type name and bits. """ # Making Columns to pad string array ftype_colmA = table.Column(self.type_bitmask.type_names(type_bits), name='frametype') # KLUDGE ME # # TODO: It would be good to get around this. Is it related to # this change? # http://docs.astropy.org/en/stable/table/access_table.html#bytestring-columns-in-python-3 # # See also: # # http://docs.astropy.org/en/stable/api/astropy.table.Table.html#astropy.table.Table.convert_bytestring_to_unicode # # Or we can force type_names() in bitmask to always return the # correct type... if int(str(ftype_colmA.dtype)[2:]) < 9: ftype_colm = table.Column(self.type_bitmask.type_names(type_bits), dtype='U9', name='frametype') else: ftype_colm = ftype_colmA fbits_colm = table.Column(type_bits, name='framebit') t = table.Table([ftype_colm, fbits_colm]) if merge: self['frametype'] = t['frametype'] self['framebit'] = t['framebit'] return t def edit_frame_type(self, indx, frame_type, append=False): """ Edit the frame type by hand. Args: indx (:obj:`int`): The 0-indexed row in the table to edit frame_type (:obj:`str`, :obj:`list`): One or more frame types to append/overwrite. append (:obj:`bool`, optional): Append the frame type. If False, all existing frame types are overwitten by the provided type. """ if not append: self['framebit'][indx] = 0 self['framebit'][indx] = self.type_bitmask.turn_on(self['framebit'][indx], flag=frame_type) self['frametype'][indx] = self.type_bitmask.type_names(self['framebit'][indx]) def get_frame_types(self, flag_unknown=False, user=None, merge=True): """ Generate a table of frame types from the input metadata object. .. todo:: - Here's where we could add a SPIT option. Args: flag_unknown (:obj:`bool`, optional): Instead of crashing out if there are unidentified files, leave without a type and continue. user (:obj:`dict`, optional): A dictionary with the types designated by the user. The file name and type are expected to be the key and value of the dictionary, respectively. The number of keys therefore *must* match the number of files in :attr:`table`. For frames that have multiple types, the types should be provided as a string with comma-separated types. merge (:obj:`bool`, optional): Merge the frame typing into the exiting table. Returns: :obj:`astropy.table.Table`: A Table with two columns, the type names and the type bits. See :class:`pypeit.core.framematch.FrameTypeBitMask` for the allowed frame types. """ # Checks if 'frametype' in self.keys() or 'framebit' in self.keys(): msgs.warn('Removing existing frametype and framebit columns.') if 'frametype' in self.keys(): del self.table['frametype'] if 'framebit' in self.keys(): del self.table['framebit'] # # TODO: This needs to be moved into each Spectrograph # if useIDname and 'idname' not in self.keys(): # raise ValueError('idname is not set in table; cannot use it for file typing.') # Start msgs.info("Typing files") type_bits = np.zeros(len(self), dtype=self.type_bitmask.minimum_dtype()) # Use the user-defined frame types from the input dictionary if user is not None: if len(user.keys()) != len(self): raise ValueError('The user-provided dictionary does not match table length.') msgs.info('Using user-provided frame types.') for ifile,ftypes in user.items(): indx = self['filename'] == ifile type_bits[indx] = self.type_bitmask.turn_on(type_bits[indx], flag=ftypes.split(',')) return self.set_frame_types(type_bits, merge=merge) # Loop over the frame types for i, ftype in enumerate(self.type_bitmask.keys()): # # Initialize: Flag frames with the correct ID name or start by # # flagging all as true # indx = self['idname'] == self.spectrograph.idname(ftype) if useIDname \ # else np.ones(len(self), dtype=bool) # Include a combination of instrument-specific checks using # combinations of the full set of metadata exprng = self.par['scienceframe']['exprng'] if ftype == 'science' \ else self.par['calibrations']['{0}frame'.format(ftype)]['exprng'] # TODO: Use & or | ? Using idname above gets overwritten by # this if the frames to meet the other checks in this call. # indx &= self.spectrograph.check_frame_type(ftype, self.table, exprng=exprng) indx = self.spectrograph.check_frame_type(ftype, self.table, exprng=exprng) # Turn on the relevant bits type_bits[indx] = self.type_bitmask.turn_on(type_bits[indx], flag=ftype) # Find the nearest standard star to each science frame # TODO: Should this be 'standard' or 'science' or both? if 'ra' not in self.keys() or 'dec' not in self.keys(): msgs.warn('Cannot associate standard with science frames without sky coordinates.') else: # TODO: Do we want to do this here? indx = self.type_bitmask.flagged(type_bits, flag='standard') for b, f, ra, dec in zip(type_bits[indx], self['filename'][indx], self['ra'][indx], self['dec'][indx]): if ra == 'None' or dec == 'None': msgs.warn('RA and DEC must not be None for file:' + msgs.newline() + f) msgs.warn('The above file could be a twilight flat frame that was' + msgs.newline() + 'missed by the automatic identification.') b = self.type_bitmask.turn_off(b, flag='standard') continue # If an object exists within 20 arcmins of a listed standard, # then it is probably a standard star foundstd = flux_calib.find_standard_file(ra, dec, check=True) b = self.type_bitmask.turn_off(b, flag='science' if foundstd else 'standard') # Find the files without any types indx = np.logical_not(self.type_bitmask.flagged(type_bits)) if np.any(indx): msgs.info("Couldn't identify the following files:") for f in self['filename'][indx]: msgs.info(f) if not flag_unknown: msgs.error("Check these files before continuing") # Finish up (note that this is called above if user is not None!) msgs.info("Typing completed!") return self.set_frame_types(type_bits, merge=merge) def set_pypeit_cols(self, write_bkg_pairs=False, write_manual=False): """ Generate the list of columns to be included in the fitstbl (nearly the complete list). Args: write_bkg_pairs (:obj:`bool`, optional): Add additional ``PypeIt`` columns for calib, comb_id and bkg_id write_manual (:obj:`bool`, optional): Add additional ``PypeIt`` columns for manual extraction Returns: `numpy.ndarray`_: Array of columns to be used in the fits table> """ # Columns for output columns = self.spectrograph.pypeit_file_keys() extras = [] # comb, bkg columns if write_bkg_pairs: extras += ['calib', 'comb_id', 'bkg_id'] # manual if write_manual: extras += ['manual'] for key in extras: if key not in columns: columns += [key] # Take only those present output_cols = np.array(columns) return output_cols[np.isin(output_cols, self.keys())].tolist() def set_combination_groups(self, assign_objects=True): """ Set combination groups. .. note:: :attr:`table` is edited in place. This function can be used to initialize the combination group and background group columns, and/or to initialize the combination groups to the set of objects (science or standard frames) to a unique integer. If the 'comb_id' or 'bkg_id' columns do not exist, they're set to -1. Args: assign_objects (:obj:`bool`, optional): If all of 'comb_id' values are less than 0 (meaning they're unassigned), the combination groups are set to be unique for each standard and science frame. """ if 'comb_id' not in self.keys(): self['comb_id'] = -1 if 'bkg_id' not in self.keys(): self['bkg_id'] = -1 if assign_objects and np.all(self['comb_id'] < 0): # find_frames will throw an exception if framebit is not # set... sci_std_idx = np.where(np.any([self.find_frames('science'), self.find_frames('standard')], axis=0))[0] self['comb_id'][sci_std_idx] = np.arange(len(sci_std_idx), dtype=int) + 1 def set_user_added_columns(self): """ Set columns that the user *might* add .. note:: :attr:`table` is edited in place. This function can be used to initialize columns that the user might add """ if 'manual' not in self.keys(): self['manual'] = '' def write_sorted(self, ofile, overwrite=True, ignore=None, write_bkg_pairs=False, write_manual=False): """ Write the sorted file. The sorted file lists all the unique instrument configurations (setups) and the frames associated with each configuration. The output data table is identical to the pypeit file output. .. todo:: - This is for backwards compatibility, but we should consider reformatting/removing it. Args: ofile (:obj:`str`): Name for the output sorted file. overwrite (:obj:`bool`, optional): Overwrite any existing file with the same name. ignore (:obj:`list`, optional): Ignore configurations in the provided list. write_bkg_pairs (:obj:`bool`, optional): Add additional ``PypeIt`` columns for calib, comb_id and bkg_id write_manual (:obj:`bool`, optional): Add additional ``PypeIt`` columns for manual extraction Raises: PypeItError: Raised if the 'setup' isn't been defined. """ if 'setup' not in self.keys(): msgs.error('Cannot write sorted instrument configuration table without \'setup\' ' 'column; run set_configurations.') if os.path.isfile(ofile) and not overwrite: msgs.error('{0} already exists. Use ovewrite=True to overwrite.'.format(ofile)) # Grab output columns output_cols = self.set_pypeit_cols(write_bkg_pairs=write_bkg_pairs, write_manual=write_manual) cfgs = self.unique_configurations(copy=ignore is not None) if ignore is not None: for key in cfgs.keys(): if key in ignore: del cfgs[key] # Construct file ff = open(ofile, 'w') for setup in cfgs.keys(): # Get the subtable of frames taken in this configuration indx = self['setup'] == setup if not np.any(indx): continue subtbl = self.table[output_cols][indx] # Write the file ff.write('##########################################################\n') ff.write('Setup {:s}\n'.format(setup)) ff.write('\n'.join(dict_to_lines(cfgs[setup], level=1)) + '\n') ff.write('#---------------------------------------------------------\n') mjd = subtbl['mjd'].copy() # Deal with possibly None mjds if there were corrupt header cards mjd[mjd == None] = -99999.0 isort = np.argsort(mjd) subtbl = subtbl[isort] subtbl.write(ff, format='ascii.fixed_width') ff.write('##end\n') ff.close() # TODO: Do we need a calib file? def write_calib(self, ofile, overwrite=True, ignore=None): """ Write the calib file. The calib file provides the unique instrument configurations (setups) and the association of each frame from that configuration with a given calibration group. .. todo:: - This is for backwards compatibility, but we should consider reformatting/removing it. - This is complicated by allowing some frame types to have no association with an instrument configuration - This is primarily used for QA now; but could probably use the pypeit file instead Args: ofile (:obj:`str`): Name for the output sorted file. overwrite (:obj:`bool`, optional): Overwrite any existing file with the same name. ignore (:obj:`list`, optional): Ignore calibration groups in the provided list. Raises: PypeItError: Raised if the 'setup' or 'calibbit' columns haven't been defined. """ if 'setup' not in self.keys() or 'calibbit' not in self.keys(): msgs.error('Cannot write calibration groups without \'setup\' and \'calibbit\' ' 'columns; run set_configurations and set_calibration_groups.') if os.path.isfile(ofile) and not overwrite: msgs.error('{0} already exists. Use ovewrite=True to overwrite.'.format(ofile)) # Construct the setups dictionary cfg = self.unique_configurations(copy=True, rm_none=True) # TODO: We should edit the relevant follow-on code so that we # don't have to do these gymnastics. Or better yet, just stop # producing/using the *.calib file. _cfg = {} for setup in cfg.keys(): _cfg[setup] = {} _cfg[setup]['--'] = deepcopy(cfg[setup]) cfg = _cfg # Iterate through the calibration bit names as these are the root of the # MasterFrames and QA for icbit in np.unique(self['calibbit'].data): cbit = int(icbit) # for yaml # Skip this group if ignore is not None and cbit in ignore: continue # Find the frames in this group #in_group = self.find_calib_group(i) in_cbit = self['calibbit'] == cbit # Find the unique configurations in this group, ignoring any # undefined ('None') configurations #setup = np.unique(self['setup'][in_group]).tolist() setup = np.unique(self['setup'][in_cbit]).tolist() if 'None' in setup: setup.remove('None') # Make sure that each calibration group should only contain # frames from a single configuration if len(setup) != 1: msgs.error('Each calibration group must be from one and only one instrument ' 'configuration with a valid letter identifier; i.e., the ' 'configuration cannot be None.') # Find the frames of each type in this group cfg[setup[0]][cbit] = {} for key in self.type_bitmask.keys(): #ftype_in_group = self.find_frames(key) & in_group ftype_in_group = self.find_frames(key) & in_cbit cfg[setup[0]][cbit][key] = [ os.path.join(d,f) for d,f in zip(self['directory'][ftype_in_group], self['filename'][ftype_in_group])] # Write it ff = open(ofile, 'w') ff.write(yaml.dump(utils.yamlify(cfg))) ff.close() def write_pypeit(self, output_path=None, cfg_lines=None, write_bkg_pairs=False, write_manual=False, configs=None): """ Write a pypeit file in data-table format. The pypeit file is the main configuration file for PypeIt, configuring the control-flow and algorithmic parameters and listing the data files to read. This function writes the columns selected by the :func:`pypeit.spectrographs.spectrograph.Spectrograph.pypeit_file_keys`, which can be specific to each instrument. Args: output_path (:obj:`str`, optional): Root path for the output pypeit files. If None, set to current directory. If the output directory does not exist, it is created. cfg_lines (:obj:`list`, optional): The list of configuration lines to include in the file. If None are provided, the vanilla configuration is included. write_bkg_pairs (:obj:`bool`, optional): When constructing the :class:`pypeit.metadata.PypeItMetaData` object, include two columns called `comb_id` and `bkg_id` that identify object and background frame pairs. write_manual (:obj:`bool`, optional): Add additional ``PypeIt`` columns for manual extraction configs (:obj:`str`, :obj:`list`, optional): One or more strings used to select the configurations to include in the returned objects. If ``'all'``, pass back all configurations. Otherwise, only return the configurations matched to this provided string or list of strings (e.g., ['A','C']). See :attr:`configs`. Raises: PypeItError: Raised if the 'setup' isn't defined and split is True. Returns: :obj:`list`: List of ``PypeIt`` files generated. """ # Set output path if output_path is None: output_path = os.getcwd() # Find unique configurations, always ignoring any 'None' # configurations... cfg = self.unique_configurations(copy=True, rm_none=True) # Get the setups to write if configs is None or configs == 'all' or configs == ['all']: cfg_keys = list(cfg.keys()) else: _configs = configs if isinstance(configs, list) else [configs] cfg_keys = [key for key in cfg.keys() if key in _configs] if len(cfg_keys) == 0: msgs.error('No setups to write!') # Grab output columns output_cols = self.set_pypeit_cols(write_bkg_pairs=write_bkg_pairs, write_manual=write_manual) # Write the pypeit files ofiles = [None]*len(cfg_keys) for j,setup in enumerate(cfg_keys): # Create the output directory root = '{0}_{1}'.format(self.spectrograph.name, setup) odir = os.path.join(output_path, root) if not os.path.isdir(odir): os.makedirs(odir) # Create the output file name ofiles[j] = os.path.join(odir, '{0}.pypeit'.format(root)) # Get the setup lines setup_lines = dict_to_lines({'Setup {0}'.format(setup): utils.yamlify(cfg[setup])}, level=1) # Get the paths in_cfg = self['setup'] == setup if not np.any(in_cfg): continue paths = np.unique(self['directory'][in_cfg]).tolist() # Get the data lines subtbl = self.table[output_cols][in_cfg] subtbl.sort(['frametype','filename']) with io.StringIO() as ff: subtbl.write(ff, format='ascii.fixed_width') data_lines = ff.getvalue().split('\n')[:-1] # Write the file make_pypeit_file(ofiles[j], self.spectrograph.name, [], cfg_lines=cfg_lines, setup_lines=setup_lines, sorted_files=data_lines, paths=paths) # Return return ofiles def write(self, output=None, rows=None, columns=None, sort_col=None, overwrite=False, header=None): """ Write the metadata either to a file or to the screen. The method allows you to set the columns to print and which column to use for sorting. Args: output (:obj:`str`, optional): Output signature or file name. If None, the table contents are printed to the screen. If ``'table'``, the table that would have been printed/written to disk is returned. Otherwise, the string is interpreted as the name of an ascii file to which to write the table contents. rows (`numpy.ndarray`_, optional): A boolean vector selecting the rows of the table to write. If None, all rows are written. Shape must match the number of the rows in the table. columns (:obj:`str`, :obj:`list`, optional): A list of columns to include in the output file. Can be provided as a list directly or as a comma-separated string. If None or ``'all'``, all columns in are written; if ``'pypeit'``, the columns are the same as those included in the pypeit file. Each selected column must be a valid pypeit metadata keyword, specific to :attr:`spectrograph`. Additional valid keywords, depending on the processing level of the metadata table, are directory, filename, frametype, framebit, setup, calib, and calibbit. sort_col (:obj:`str`, optional): Name of the column to use for sorting the output. If None, the table is printed in its current state. overwrite (:obj:`bool`, optional): Overwrite any existing file; otherwise raise an exception. header (:obj:`str`, :obj:`list`, optional): One or more strings to write to the top of the file, on string per file line; ``# `` is added to the beginning of each string. Ignored if ``output`` does not specify an output file. Returns: `astropy.table.Table`: The table object that would have been written/printed if ``output == 'table'``. Otherwise, the method always returns None. Raises: ValueError: Raised if the columns to include are not valid, or if the column to use for sorting is not valid. FileExistsError: Raised if overwrite is False and the file exists. """ # Check the file can be written (this is here because the spectrograph # needs to be defined first) ofile = None if output in [None, 'table'] else output if ofile is not None and os.path.isfile(ofile) and not overwrite: raise FileExistsError(f'{ofile} already exists; set flag to overwrite.') # Check the rows input if rows is not None and len(rows) != len(self.table): raise ValueError('Boolean vector selecting output rows has incorrect length.') # Get the columns to return if columns in [None, 'all']: tbl_cols = list(self.keys()) elif columns == 'pypeit': tbl_cols = self.set_pypeit_cols(write_bkg_pairs=True) else: all_cols = list(self.keys()) tbl_cols = columns if isinstance(columns, list) else columns.split(',') badcol = [col not in all_cols for col in tbl_cols] if np.any(badcol): raise ValueError('The following columns are not valid: {0}'.format( ', '.join(tbl_cols[badcol]))) # Make sure the basic parameters are the first few columns; do them in # reverse order so I can always insert at the beginning of the list for col in ['framebit', 'frametype', 'filename', 'directory']: if col not in tbl_cols: continue indx = np.where([t == col for t in tbl_cols])[0][0] if indx != 0: tbl_cols.insert(0, tbl_cols.pop(indx)) # Make sure the dithers and combination and background IDs are the last # few columns ncol = len(tbl_cols) for col in ['dithpat', 'dithpos', 'dithoff', 'calib', 'comb_id', 'bkg_id']: if col not in tbl_cols: continue indx = np.where([t == col for t in tbl_cols])[0][0] if indx != ncol-1: tbl_cols.insert(ncol-1, tbl_cols.pop(indx)) # Copy the internal table so that it is unaltered output_tbl = self.table.copy() # Select the output rows if a vector was provided if rows is not None: output_tbl = output_tbl[rows] # Select and sort the data by a given column if sort_col is not None: if sort_col not in self.keys(): raise ValueError(f'Cannot sort by {sort_col}. Not a valid column.') # Ignore any NoneTypes indx = output_tbl[sort_col] != None is_None = np.logical_not(indx) srt = np.append(np.where(is_None)[0], np.where(indx)[0][np.argsort(output_tbl[sort_col][indx].data)]) output_tbl = output_tbl[tbl_cols][srt] else: output_tbl = output_tbl[tbl_cols] if output == 'table': # Instead of writing, just return the modified table return output_tbl # Always write the table in ascii format with io.StringIO() as ff: output_tbl.write(ff, format='ascii.fixed_width') data_lines = ff.getvalue().split('\n')[:-1] if ofile is None: # Output file not defined so just print it print('\n'.join(data_lines)) return None # Write the output to an ascii file with open(ofile, 'w') as f: if header is not None: _header = header if isinstance(header, list) else [header] for h in _header: f.write(f'# {h}\n') f.write('\n') f.write('\n'.join(data_lines)) f.write('\n') # Just to be explicit that the method returns None when writing to a # file... return None def find_calib_group(self, grp): """ Find all the frames associated with the provided calibration group. Args: grp (:obj:`int`): The calibration group integer. Returns: numpy.ndarray: Boolean array selecting those frames in the table included in the selected calibration group. Raises: PypeItError: Raised if the 'calibbit' column is not defined. """ if 'calibbit' not in self.keys(): msgs.error('Calibration groups are not set. First run set_calibration_groups.') return self.calib_bitmask.flagged(self['calibbit'].data, grp) def find_frame_calib_groups(self, row): """ Find the calibration groups associated with a specific frame. """ return self.calib_bitmask.flagged_bits(self['calibbit'][row]) # TODO: Is there a reason why this is not an attribute of # PypeItMetaData? def row_match_config(row, config, spectrograph): """ Queries whether a row from the fitstbl matches the input configuration Args: row (astropy.table.Row): From fitstbl config (dict): Defines the configuration spectrograph (pypeit.spectrographs.spectrograph.Spectrograph): Used to grab the rtol value for float meta (e.g. dispangle) Returns: bool: True if the row matches the input configuration """ # Loop on keys in config match = [] for k in config.keys(): # Deal with floating configs (e.g. grating angle) if isinstance(config[k], float): if row[k] is None: match.append(False) elif np.abs(config[k]-row[k])/config[k] < spectrograph.meta[k]['rtol']: match.append(True) else: match.append(False) else: # The np.all allows for arrays in the Table (e.g. binning) match.append(np.all(config[k] == row[k])) # Check return np.all(match)
[ "pypeit.core.framematch.FrameTypeBitMask", "astropy.table.Table", "pypeit.io.dict_to_lines", "pypeit.core.parse.str2list", "numpy.logical_not", "pypeit.msgs.newline", "numpy.isin", "numpy.argsort", "numpy.array", "pypeit.core.meta.convert_radec", "copy.deepcopy", "numpy.arange", "pypeit.msgs.error", "numpy.where", "pypeit.utils.yamlify", "numpy.asarray", "os.path.split", "pypeit.msgs.warn", "os.path.isdir", "io.StringIO", "numpy.abs", "pypeit.core.flux_calib.find_standard_file", "pypeit.msgs.info", "numpy.any", "os.path.isfile", "astropy.table.Column", "pypeit.par.util.make_pypeit_file", "pypeit.core.meta.get_meta_data_model", "numpy.atleast_1d", "numpy.unique", "os.makedirs", "datetime.datetime.strptime", "os.path.join", "os.getcwd", "astropy.time.Time", "numpy.sum", "os.path.basename", "numpy.all", "datetime.datetime.strftime" ]
[((78727, 78740), 'numpy.all', 'np.all', (['match'], {}), '(match)\n', (78733, 78740), True, 'import numpy as np\n'), ((4634, 4663), 'pypeit.core.framematch.FrameTypeBitMask', 'framematch.FrameTypeBitMask', ([], {}), '()\n', (4661, 4663), False, 'from pypeit.core import framematch\n'), ((11930, 11956), 'pypeit.core.meta.get_meta_data_model', 'meta.get_meta_data_model', ([], {}), '()\n', (11954, 11956), False, 'from pypeit.core import meta\n'), ((19255, 19296), 'astropy.time.Time', 'time.Time', (["self['mjd'][row]"], {'format': '"""mjd"""'}), "(self['mjd'][row], format='mjd')\n", (19264, 19296), False, 'from astropy import table, coordinates, time, units\n'), ((19877, 19911), 'astropy.time.Time', 'time.Time', (['_obstime'], {'format': '"""isot"""'}), "(_obstime, format='isot')\n", (19886, 19911), False, 'from astropy import table, coordinates, time, units\n'), ((19928, 19990), 'datetime.datetime.strptime', 'datetime.datetime.strptime', (['tiso.value', '"""%Y-%m-%dT%H:%M:%S.%f"""'], {}), "(tiso.value, '%Y-%m-%dT%H:%M:%S.%f')\n", (19954, 19990), False, 'import datetime\n'), ((24686, 24729), 'numpy.unique', 'np.unique', (["self['setup']"], {'return_index': '(True)'}), "(self['setup'], return_index=True)\n", (24695, 24729), True, 'import numpy as np\n'), ((29498, 29561), 'pypeit.msgs.info', 'msgs.info', (['"""Using metadata to determine unique configurations."""'], {}), "('Using metadata to determine unique configurations.')\n", (29507, 29561), False, 'from pypeit import msgs\n'), ((38774, 38786), 'numpy.all', 'np.all', (['good'], {}), '(good)\n', (38780, 38786), True, 'import numpy as np\n'), ((39245, 39259), 'pypeit.msgs.warn', 'msgs.warn', (['msg'], {}), '(msg)\n', (39254, 39259), False, 'from pypeit import msgs\n'), ((50007, 50047), 'astropy.table.Column', 'table.Column', (['type_bits'], {'name': '"""framebit"""'}), "(type_bits, name='framebit')\n", (50019, 50047), False, 'from astropy import table, coordinates, time, units\n'), ((50060, 50097), 'astropy.table.Table', 'table.Table', (['[ftype_colm, fbits_colm]'], {}), '([ftype_colm, fbits_colm])\n', (50071, 50097), False, 'from astropy import table, coordinates, time, units\n'), ((52805, 52830), 'pypeit.msgs.info', 'msgs.info', (['"""Typing files"""'], {}), "('Typing files')\n", (52814, 52830), False, 'from pypeit import msgs\n'), ((56013, 56025), 'numpy.any', 'np.any', (['indx'], {}), '(indx)\n', (56019, 56025), True, 'import numpy as np\n'), ((56351, 56381), 'pypeit.msgs.info', 'msgs.info', (['"""Typing completed!"""'], {}), "('Typing completed!')\n", (56360, 56381), False, 'from pypeit import msgs\n'), ((57480, 57497), 'numpy.array', 'np.array', (['columns'], {}), '(columns)\n', (57488, 57497), True, 'import numpy as np\n'), ((64257, 64289), 'numpy.unique', 'np.unique', (["self['calibbit'].data"], {}), "(self['calibbit'].data)\n", (64266, 64289), True, 'import numpy as np\n'), ((4251, 4368), 'pypeit.msgs.warn', 'msgs.warn', (['"""Both data and files are None in the instantiation of PypeItMetaData. The table will be empty!"""'], {}), "(\n 'Both data and files are None in the instantiation of PypeItMetaData. The table will be empty!'\n )\n", (4260, 4368), False, 'from pypeit import msgs\n'), ((7604, 7624), 'os.path.split', 'os.path.split', (['ifile'], {}), '(ifile)\n', (7617, 7624), False, 'import os\n'), ((8888, 8924), 'astropy.time.Time', 'time.Time', (["data['mjd']"], {'format': '"""mjd"""'}), "(data['mjd'], format='mjd')\n", (8897, 8924), False, 'from astropy import table, coordinates, time, units\n'), ((18587, 18722), 'pypeit.msgs.error', 'msgs.error', (['"""Cannot provide master key string without setup and calibbit; run set_configurations and set_calibration_groups."""'], {}), "(\n 'Cannot provide master key string without setup and calibbit; run set_configurations and set_calibration_groups.'\n )\n", (18597, 18722), False, 'from pypeit import msgs\n'), ((20268, 20312), 'datetime.datetime.strftime', 'datetime.datetime.strftime', (['dtime', '"""%Y%m%dT"""'], {}), "(dtime, '%Y%m%dT')\n", (20294, 20312), False, 'import datetime\n'), ((21439, 21542), 'pypeit.msgs.error', 'msgs.error', (['"""Cannot provide instrument setup without \'setup\' column; run set_configurations."""'], {}), '(\n "Cannot provide instrument setup without \'setup\' column; run set_configurations."\n )\n', (21449, 21542), False, 'from pypeit import msgs\n'), ((24568, 24629), 'pypeit.msgs.error', 'msgs.error', (['"""Cannot get setup names; run set_configurations."""'], {}), "('Cannot get setup names; run set_configurations.')\n", (24578, 24629), False, 'from pypeit import msgs\n'), ((25006, 25028), 'numpy.atleast_1d', 'np.atleast_1d', (['configs'], {}), '(configs)\n', (25019, 25028), True, 'import numpy as np\n'), ((25280, 25305), 'numpy.isin', 'np.isin', (['setups', '_configs'], {}), '(setups, _configs)\n', (25287, 25305), True, 'import numpy as np\n'), ((26261, 26283), 'copy.deepcopy', 'deepcopy', (['self.configs'], {}), '(self.configs)\n', (26269, 26283), False, 'from copy import deepcopy\n'), ((28799, 28869), 'pypeit.msgs.info', 'msgs.info', (['"""Setup column already set. Finding unique configurations."""'], {}), "('Setup column already set. Finding unique configurations.')\n", (28808, 28869), False, 'from pypeit import msgs\n'), ((28895, 28938), 'numpy.unique', 'np.unique', (["self['setup']"], {'return_index': '(True)'}), "(self['setup'], return_index=True)\n", (28904, 28938), True, 'import numpy as np\n'), ((30324, 30380), 'pypeit.msgs.error', 'msgs.error', (['"""No frames to use to define configurations!"""'], {}), "('No frames to use to define configurations!')\n", (30334, 30380), False, 'from pypeit import msgs\n'), ((31053, 31118), 'pypeit.msgs.info', 'msgs.info', (['"""All files assumed to be from a single configuration."""'], {}), "('All files assumed to be from a single configuration.')\n", (31062, 31118), False, 'from pypeit import msgs\n'), ((34828, 34845), 'numpy.any', 'np.any', (['not_setup'], {}), '(not_setup)\n', (34834, 34845), True, 'import numpy as np\n'), ((35233, 35338), 'pypeit.msgs.error', 'msgs.error', (['"""To account for ignored frames, types must have been defined; run get_frame_types."""'], {}), "(\n 'To account for ignored frames, types must have been defined; run get_frame_types.'\n )\n", (35243, 35338), False, 'from pypeit import msgs\n'), ((38596, 38631), 'numpy.isin', 'np.isin', (['self[key]', 'cfg_limits[key]'], {}), '(self[key], cfg_limits[key])\n', (38603, 38631), True, 'import numpy as np\n'), ((40190, 40208), 'numpy.arange', 'np.arange', (['ngroups'], {}), '(ngroups)\n', (40199, 40208), True, 'import numpy as np\n'), ((40379, 40420), 'pypeit.core.parse.str2list', 'parse.str2list', (["self['calib'][i]", 'ngroups'], {}), "(self['calib'][i], ngroups)\n", (40393, 40420), False, 'from pypeit.core import parse\n'), ((43833, 43923), 'pypeit.msgs.error', 'msgs.error', (['"""Must have defined \'setup\' column first; try running set_configurations."""'], {}), '(\n "Must have defined \'setup\' column first; try running set_configurations.")\n', (43843, 43923), False, 'from pypeit import msgs\n'), ((46578, 46644), 'pypeit.msgs.error', 'msgs.error', (['"""Frame types are not set. First run get_frame_types."""'], {}), "('Frame types are not set. First run get_frame_types.')\n", (46588, 46644), False, 'from pypeit import msgs\n'), ((48316, 48377), 'os.path.join', 'os.path.join', (["self['directory'][indx]", "self['filename'][indx]"], {}), "(self['directory'][indx], self['filename'][indx])\n", (48328, 48377), False, 'import os\n'), ((48394, 48412), 'os.path.join', 'os.path.join', (['d', 'f'], {}), '(d, f)\n', (48406, 48412), False, 'import os\n'), ((52350, 52412), 'pypeit.msgs.warn', 'msgs.warn', (['"""Removing existing frametype and framebit columns."""'], {}), "('Removing existing frametype and framebit columns.')\n", (52359, 52412), False, 'from pypeit import msgs\n'), ((53167, 53212), 'pypeit.msgs.info', 'msgs.info', (['"""Using user-provided frame types."""'], {}), "('Using user-provided frame types.')\n", (53176, 53212), False, 'from pypeit import msgs\n'), ((54788, 54876), 'pypeit.msgs.warn', 'msgs.warn', (['"""Cannot associate standard with science frames without sky coordinates."""'], {}), "(\n 'Cannot associate standard with science frames without sky coordinates.')\n", (54797, 54876), False, 'from pypeit import msgs\n'), ((56039, 56090), 'pypeit.msgs.info', 'msgs.info', (['"""Couldn\'t identify the following files:"""'], {}), '("Couldn\'t identify the following files:")\n', (56048, 56090), False, 'from pypeit import msgs\n'), ((58525, 58552), 'numpy.all', 'np.all', (["(self['comb_id'] < 0)"], {}), "(self['comb_id'] < 0)\n", (58531, 58552), True, 'import numpy as np\n'), ((60486, 60608), 'pypeit.msgs.error', 'msgs.error', (['"""Cannot write sorted instrument configuration table without \'setup\' column; run set_configurations."""'], {}), '(\n "Cannot write sorted instrument configuration table without \'setup\' column; run set_configurations."\n )\n', (60496, 60608), False, 'from pypeit import msgs\n'), ((60639, 60660), 'os.path.isfile', 'os.path.isfile', (['ofile'], {}), '(ofile)\n', (60653, 60660), False, 'import os\n'), ((61966, 61981), 'numpy.argsort', 'np.argsort', (['mjd'], {}), '(mjd)\n', (61976, 61981), True, 'import numpy as np\n'), ((63363, 63509), 'pypeit.msgs.error', 'msgs.error', (['"""Cannot write calibration groups without \'setup\' and \'calibbit\' columns; run set_configurations and set_calibration_groups."""'], {}), '(\n "Cannot write calibration groups without \'setup\' and \'calibbit\' columns; run set_configurations and set_calibration_groups."\n )\n', (63373, 63509), False, 'from pypeit import msgs\n'), ((63542, 63563), 'os.path.isfile', 'os.path.isfile', (['ofile'], {}), '(ofile)\n', (63556, 63563), False, 'import os\n'), ((64082, 64102), 'copy.deepcopy', 'deepcopy', (['cfg[setup]'], {}), '(cfg[setup])\n', (64090, 64102), False, 'from copy import deepcopy\n'), ((68106, 68117), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (68115, 68117), False, 'import os\n'), ((68626, 68659), 'pypeit.msgs.error', 'msgs.error', (['"""No setups to write!"""'], {}), "('No setups to write!')\n", (68636, 68659), False, 'from pypeit import msgs\n'), ((69081, 69112), 'os.path.join', 'os.path.join', (['output_path', 'root'], {}), '(output_path, root)\n', (69093, 69112), False, 'import os\n'), ((69989, 70132), 'pypeit.par.util.make_pypeit_file', 'make_pypeit_file', (['ofiles[j]', 'self.spectrograph.name', '[]'], {'cfg_lines': 'cfg_lines', 'setup_lines': 'setup_lines', 'sorted_files': 'data_lines', 'paths': 'paths'}), '(ofiles[j], self.spectrograph.name, [], cfg_lines=cfg_lines,\n setup_lines=setup_lines, sorted_files=data_lines, paths=paths)\n', (70005, 70132), False, 'from pypeit.par.util import make_pypeit_file\n'), ((73155, 73176), 'os.path.isfile', 'os.path.isfile', (['ofile'], {}), '(ofile)\n', (73169, 73176), False, 'import os\n'), ((75475, 75495), 'numpy.logical_not', 'np.logical_not', (['indx'], {}), '(indx)\n', (75489, 75495), True, 'import numpy as np\n'), ((75938, 75951), 'io.StringIO', 'io.StringIO', ([], {}), '()\n', (75949, 75951), False, 'import io\n'), ((77248, 77333), 'pypeit.msgs.error', 'msgs.error', (['"""Calibration groups are not set. First run set_calibration_groups."""'], {}), "('Calibration groups are not set. First run set_calibration_groups.'\n )\n", (77258, 77333), False, 'from pypeit import msgs\n'), ((8970, 8993), 'numpy.asarray', 'np.asarray', (["data['mjd']"], {}), "(data['mjd'])\n", (8980, 8993), True, 'import numpy as np\n'), ((9018, 9046), 'numpy.asarray', 'np.asarray', (["data['filename']"], {}), "(data['filename'])\n", (9028, 9046), True, 'import numpy as np\n'), ((9395, 9409), 'pypeit.msgs.warn', 'msgs.warn', (['msg'], {}), '(msg)\n', (9404, 9409), False, 'from pypeit import msgs\n'), ((24853, 24876), 'numpy.isin', 'np.isin', (['setups', 'ignore'], {}), '(setups, ignore)\n', (24860, 24876), True, 'import numpy as np\n'), ((28990, 29004), 'numpy.sum', 'np.sum', (['ignore'], {}), '(ignore)\n', (28996, 29004), True, 'import numpy as np\n'), ((29868, 29955), 'pypeit.msgs.error', 'msgs.error', (['"""To ignore frames, types must have been defined; run get_frame_types."""'], {}), "(\n 'To ignore frames, types must have been defined; run get_frame_types.')\n", (29878, 29955), False, 'from pypeit import msgs\n'), ((36676, 36719), 'numpy.unique', 'np.unique', (['self.table[metakey][in_cfg].data'], {}), '(self.table[metakey][in_cfg].data)\n', (36685, 36719), True, 'import numpy as np\n'), ((37263, 37302), 'numpy.isin', 'np.isin', (['self.table[metakey]', 'uniq_meta'], {}), '(self.table[metakey], uniq_meta)\n', (37270, 37302), True, 'import numpy as np\n'), ((38651, 38663), 'numpy.all', 'np.all', (['indx'], {}), '(indx)\n', (38657, 38663), True, 'import numpy as np\n'), ((39130, 39150), 'numpy.logical_not', 'np.logical_not', (['good'], {}), '(good)\n', (39144, 39150), True, 'import numpy as np\n'), ((41171, 41256), 'pypeit.msgs.error', 'msgs.error', (['"""Science frames can only be assigned to a single calibration group."""'], {}), "('Science frames can only be assigned to a single calibration group.'\n )\n", (41181, 41256), False, 'from pypeit import msgs\n'), ((43939, 43968), 'numpy.unique', 'np.unique', (["self['setup'].data"], {}), "(self['setup'].data)\n", (43948, 43968), True, 'import numpy as np\n'), ((44811, 44902), 'pypeit.msgs.error', 'msgs.error', (['"""To set global frames, types must have been defined; run get_frame_types."""'], {}), "(\n 'To set global frames, types must have been defined; run get_frame_types.')\n", (44821, 44902), False, 'from pypeit import msgs\n'), ((46981, 46995), 'numpy.where', 'np.where', (['indx'], {}), '(indx)\n', (46989, 46995), True, 'import numpy as np\n'), ((55741, 55791), 'pypeit.core.flux_calib.find_standard_file', 'flux_calib.find_standard_file', (['ra', 'dec'], {'check': '(True)'}), '(ra, dec, check=True)\n', (55770, 55791), False, 'from pypeit.core import flux_calib\n'), ((56152, 56164), 'pypeit.msgs.info', 'msgs.info', (['f'], {}), '(f)\n', (56161, 56164), False, 'from pypeit import msgs\n'), ((56214, 56263), 'pypeit.msgs.error', 'msgs.error', (['"""Check these files before continuing"""'], {}), "('Check these files before continuing')\n", (56224, 56263), False, 'from pypeit import msgs\n'), ((61373, 61385), 'numpy.any', 'np.any', (['indx'], {}), '(indx)\n', (61379, 61385), True, 'import numpy as np\n'), ((65071, 65244), 'pypeit.msgs.error', 'msgs.error', (['"""Each calibration group must be from one and only one instrument configuration with a valid letter identifier; i.e., the configuration cannot be None."""'], {}), "(\n 'Each calibration group must be from one and only one instrument configuration with a valid letter identifier; i.e., the configuration cannot be None.'\n )\n", (65081, 65244), False, 'from pypeit import msgs\n'), ((65906, 65924), 'pypeit.utils.yamlify', 'utils.yamlify', (['cfg'], {}), '(cfg)\n', (65919, 65924), False, 'from pypeit import utils\n'), ((69132, 69151), 'os.path.isdir', 'os.path.isdir', (['odir'], {}), '(odir)\n', (69145, 69151), False, 'import os\n'), ((69169, 69186), 'os.makedirs', 'os.makedirs', (['odir'], {}), '(odir)\n', (69180, 69186), False, 'import os\n'), ((69546, 69560), 'numpy.any', 'np.any', (['in_cfg'], {}), '(in_cfg)\n', (69552, 69560), True, 'import numpy as np\n'), ((69806, 69819), 'io.StringIO', 'io.StringIO', ([], {}), '()\n', (69817, 69819), False, 'import io\n'), ((73898, 73912), 'numpy.any', 'np.any', (['badcol'], {}), '(badcol)\n', (73904, 73912), True, 'import numpy as np\n'), ((78675, 78702), 'numpy.all', 'np.all', (['(config[k] == row[k])'], {}), '(config[k] == row[k])\n', (78681, 78702), True, 'import numpy as np\n'), ((7206, 7229), 'os.path.basename', 'os.path.basename', (['ifile'], {}), '(ifile)\n', (7222, 7229), False, 'import os\n'), ((7279, 7420), 'pypeit.msgs.error', 'msgs.error', (['"""File name list does not match user-provided metadata table. See usrdata argument of instantiation of PypeItMetaData."""'], {}), "(\n 'File name list does not match user-provided metadata table. See usrdata argument of instantiation of PypeItMetaData.'\n )\n", (7289, 7420), False, 'from pypeit import msgs\n'), ((12309, 12346), 'numpy.where', 'np.where', (["(f == self.table['filename'])"], {}), "(f == self.table['filename'])\n", (12317, 12346), True, 'import numpy as np\n'), ((13414, 13489), 'pypeit.core.meta.convert_radec', 'meta.convert_radec', (["usrdata['ra'][~nones].data", "usrdata['dec'][~nones].data"], {}), "(usrdata['ra'][~nones].data, usrdata['dec'][~nones].data)\n", (13432, 13489), False, 'from pypeit.core import meta\n'), ((36279, 36291), 'numpy.any', 'np.any', (['indx'], {}), '(indx)\n', (36285, 36291), True, 'import numpy as np\n'), ((64789, 64822), 'numpy.unique', 'np.unique', (["self['setup'][in_cbit]"], {}), "(self['setup'][in_cbit])\n", (64798, 64822), True, 'import numpy as np\n'), ((65616, 65634), 'os.path.join', 'os.path.join', (['d', 'f'], {}), '(d, f)\n', (65628, 65634), False, 'import os\n'), ((69418, 69443), 'pypeit.utils.yamlify', 'utils.yamlify', (['cfg[setup]'], {}), '(cfg[setup])\n', (69431, 69443), False, 'from pypeit import utils\n'), ((69607, 69643), 'numpy.unique', 'np.unique', (["self['directory'][in_cfg]"], {}), "(self['directory'][in_cfg])\n", (69616, 69643), True, 'import numpy as np\n'), ((74368, 74408), 'numpy.where', 'np.where', (['[(t == col) for t in tbl_cols]'], {}), '([(t == col) for t in tbl_cols])\n', (74376, 74408), True, 'import numpy as np\n'), ((74790, 74830), 'numpy.where', 'np.where', (['[(t == col) for t in tbl_cols]'], {}), '([(t == col) for t in tbl_cols])\n', (74798, 74830), True, 'import numpy as np\n'), ((75524, 75541), 'numpy.where', 'np.where', (['is_None'], {}), '(is_None)\n', (75532, 75541), True, 'import numpy as np\n'), ((75592, 75635), 'numpy.argsort', 'np.argsort', (['output_tbl[sort_col][indx].data'], {}), '(output_tbl[sort_col][indx].data)\n', (75602, 75635), True, 'import numpy as np\n'), ((8574, 8594), 'os.path.split', 'os.path.split', (['ifile'], {}), '(ifile)\n', (8587, 8594), False, 'import os\n'), ((29126, 29140), 'numpy.sum', 'np.sum', (['ignore'], {}), '(ignore)\n', (29132, 29140), True, 'import numpy as np\n'), ((61659, 61694), 'pypeit.io.dict_to_lines', 'dict_to_lines', (['cfgs[setup]'], {'level': '(1)'}), '(cfgs[setup], level=1)\n', (61672, 61694), False, 'from pypeit.io import dict_to_lines\n'), ((75574, 75588), 'numpy.where', 'np.where', (['indx'], {}), '(indx)\n', (75582, 75588), True, 'import numpy as np\n'), ((78409, 78435), 'numpy.abs', 'np.abs', (['(config[k] - row[k])'], {}), '(config[k] - row[k])\n', (78415, 78435), True, 'import numpy as np\n'), ((44982, 44998), 'numpy.arange', 'np.arange', (['n_cfg'], {}), '(n_cfg)\n', (44991, 44998), True, 'import numpy as np\n'), ((55282, 55296), 'pypeit.msgs.newline', 'msgs.newline', ([], {}), '()\n', (55294, 55296), False, 'from pypeit import msgs\n'), ((55421, 55435), 'pypeit.msgs.newline', 'msgs.newline', ([], {}), '()\n', (55433, 55435), False, 'from pypeit import msgs\n')]
import rospy from sensor_msgs.msg import Image from std_msgs.msg import String from cv_bridge import CvBridge import cv2 import numpy as np import tensorflow as tf import classify_image class RosTensorFlow(): def __init__(self): classify_image.maybe_download_and_extract() self._session = tf.Session() classify_image.create_graph() self._cv_bridge = CvBridge() self._sub = rospy.Subscriber('/usb_cam/image_raw', Image, self.callback, queue_size=1) self._pub = rospy.Publisher('result', String, queue_size=1) self.score_threshold = rospy.get_param('~score_threshold', 0.1) self.use_top_k = rospy.get_param('~use_top_k', 5) def callback(self, image_msg): cv_image = self._cv_bridge.imgmsg_to_cv2(image_msg, "bgr8") # copy from # classify_image.py image_data = cv2.imencode('.jpg', cv_image)[1].tostring() # Creates graph from saved GraphDef. softmax_tensor = self._session.graph.get_tensor_by_name('softmax:0') predictions = self._session.run( softmax_tensor, {'DecodeJpeg/contents:0': image_data}) predictions = np.squeeze(predictions) # Creates node ID --> English string lookup. node_lookup = classify_image.NodeLookup() top_k = predictions.argsort()[-self.use_top_k:][::-1] for node_id in top_k: human_string = node_lookup.id_to_string(node_id) score = predictions[node_id] if score > self.score_threshold: rospy.loginfo('%s (score = %.5f)' % (human_string, score)) self._pub.publish(human_string) def main(self): rospy.spin() if __name__ == '__main__': classify_image.setup_args() rospy.init_node('rostensorflow') tensor = RosTensorFlow() tensor.main()
[ "rospy.Publisher", "rospy.Subscriber", "cv2.imencode", "rospy.init_node", "tensorflow.Session", "rospy.get_param", "numpy.squeeze", "cv_bridge.CvBridge", "rospy.spin", "classify_image.setup_args", "classify_image.NodeLookup", "classify_image.create_graph", "classify_image.maybe_download_and_extract", "rospy.loginfo" ]
[((1726, 1753), 'classify_image.setup_args', 'classify_image.setup_args', ([], {}), '()\n', (1751, 1753), False, 'import classify_image\n'), ((1758, 1790), 'rospy.init_node', 'rospy.init_node', (['"""rostensorflow"""'], {}), "('rostensorflow')\n", (1773, 1790), False, 'import rospy\n'), ((243, 286), 'classify_image.maybe_download_and_extract', 'classify_image.maybe_download_and_extract', ([], {}), '()\n', (284, 286), False, 'import classify_image\n'), ((311, 323), 'tensorflow.Session', 'tf.Session', ([], {}), '()\n', (321, 323), True, 'import tensorflow as tf\n'), ((332, 361), 'classify_image.create_graph', 'classify_image.create_graph', ([], {}), '()\n', (359, 361), False, 'import classify_image\n'), ((388, 398), 'cv_bridge.CvBridge', 'CvBridge', ([], {}), '()\n', (396, 398), False, 'from cv_bridge import CvBridge\n'), ((420, 494), 'rospy.Subscriber', 'rospy.Subscriber', (['"""/usb_cam/image_raw"""', 'Image', 'self.callback'], {'queue_size': '(1)'}), "('/usb_cam/image_raw', Image, self.callback, queue_size=1)\n", (436, 494), False, 'import rospy\n'), ((515, 562), 'rospy.Publisher', 'rospy.Publisher', (['"""result"""', 'String'], {'queue_size': '(1)'}), "('result', String, queue_size=1)\n", (530, 562), False, 'import rospy\n'), ((594, 634), 'rospy.get_param', 'rospy.get_param', (['"""~score_threshold"""', '(0.1)'], {}), "('~score_threshold', 0.1)\n", (609, 634), False, 'import rospy\n'), ((660, 692), 'rospy.get_param', 'rospy.get_param', (['"""~use_top_k"""', '(5)'], {}), "('~use_top_k', 5)\n", (675, 692), False, 'import rospy\n'), ((1163, 1186), 'numpy.squeeze', 'np.squeeze', (['predictions'], {}), '(predictions)\n', (1173, 1186), True, 'import numpy as np\n'), ((1262, 1289), 'classify_image.NodeLookup', 'classify_image.NodeLookup', ([], {}), '()\n', (1287, 1289), False, 'import classify_image\n'), ((1681, 1693), 'rospy.spin', 'rospy.spin', ([], {}), '()\n', (1691, 1693), False, 'import rospy\n'), ((1545, 1603), 'rospy.loginfo', 'rospy.loginfo', (["('%s (score = %.5f)' % (human_string, score))"], {}), "('%s (score = %.5f)' % (human_string, score))\n", (1558, 1603), False, 'import rospy\n'), ((866, 896), 'cv2.imencode', 'cv2.imencode', (['""".jpg"""', 'cv_image'], {}), "('.jpg', cv_image)\n", (878, 896), False, 'import cv2\n')]
import numpy as np def segment_Y(Y, **params): Y_segments = params.get("Y_segments") Y_quantile = params.get("Y_quantile") print("segmenting Y") Y = Y.values.reshape(-1) Y_quantile = np.quantile(Y, Y_quantile, axis = 0) bigger_mask = (Y > Y_quantile).copy() smaller_mask = (Y <= Y_quantile).copy() Y[bigger_mask] = 1 Y[smaller_mask] = 0 Y = Y.astype(int) return Y
[ "numpy.quantile" ]
[((191, 225), 'numpy.quantile', 'np.quantile', (['Y', 'Y_quantile'], {'axis': '(0)'}), '(Y, Y_quantile, axis=0)\n', (202, 225), True, 'import numpy as np\n')]
import numpy def lax_friedrichs(cons_minus, cons_plus, simulation, tl): alpha = tl.grid.dx / tl.dt flux = numpy.zeros_like(cons_minus) prim_minus, aux_minus = simulation.model.cons2all(cons_minus, tl.prim) prim_plus, aux_plus = simulation.model.cons2all(cons_plus , tl.prim) f_minus = simulation.model.flux(cons_minus, prim_minus, aux_minus) f_plus = simulation.model.flux(cons_plus, prim_plus, aux_plus ) flux[:, 1:-1] = 0.5 * ( (f_plus[:,0:-2] + f_minus[:,1:-1]) + \ alpha * (cons_plus[:,0:-2] - cons_minus[:,1:-1]) ) return flux def upwind(cons_minus, cons_plus, simulation, patch): flux = numpy.zeros_like(cons_minus) flux[:, 1:-1] = simulation.model.riemann_problem_flux(cons_plus [:, 0:-2], cons_minus[:, 1:-1]) return flux
[ "numpy.zeros_like" ]
[((115, 143), 'numpy.zeros_like', 'numpy.zeros_like', (['cons_minus'], {}), '(cons_minus)\n', (131, 143), False, 'import numpy\n'), ((666, 694), 'numpy.zeros_like', 'numpy.zeros_like', (['cons_minus'], {}), '(cons_minus)\n', (682, 694), False, 'import numpy\n')]
import numpy as np import random from collections import namedtuple def generate_prob_matrix(n): matrix = np.random.rand(n, n) for i in range(n): matrix[i][i] = 0 for i in range(n): matrix[i] = (1/np.sum(matrix[i]))*matrix[i] return matrix def categorical(p): return np.random.choice(len(p), 1, p=p)[0] Drone = namedtuple('Drone', 'speed probability') Site = namedtuple('Site', 'location') class System: def __init__(self, sites, drones): self.sites = {} self.drones = {} n = len(sites) for i, drone in enumerate(drones): self.drones[i] = drone for i, site in enumerate(sites): self.sites[i] = site distance = np.zeros([n, n]) for i in range(n): for j in range(n): if i < j: x = np.subtract(sites[i], sites[j]) d = np.linalg.norm(x) distance[i][j] = d distance[j][i] = d self.distance = distance def get_site(self, site_id): return self.sites[site_id] def get_drone(self, drone_id): return self.drones[drone_id] def compute_path_distance(self, path): n = len(path) d = 0 for i in range(n - 1): d += self.distance[path[i]][path[i + 1]] return d def compute_path_time(self, path, drone_id): d = self.compute_path_distance(path) return d/self.get_drone(drone_id).speed def generate_path_of_length(self, length, drone_id): path = [] P = self.get_drone(drone_id).probability num_sites = len(self.sites) s = categorical([1/num_sites]*num_sites) path.append(s) site = s for i in range(length): site = categorical(P[site]) path.append(site) return path def generate_path(self, s, t, drone_id): path = [s] P = self.get_drone(drone_id).probability site = categorical(P[s]) path.append(site) while site != t: site = categorical(P[site]) path.append(site) return path @staticmethod def generate_random_system(n, k): locations = np.random.rand(n, 2) sites = [] for i in locations: sites.append(Site(i)) drones = [] for i in range(k): speed = abs(random.random()) probability = generate_prob_matrix(n) drones.append(Drone(speed, probability)) return System(sites, drones) def _compute_arrival_times(path, drone_id, sites, speed): arrival_times = [] t = 0 for i in range(len(path) - 1): t += system.compute_path_time(path[i:i+2], drone_id=drone_id) arrival_times.append((drone_id, path[i], path[i+1], t)) return arrival_times def _generate_arrival_times(system, num_drones, length): arrival_times = [[] for _ in range(len(system.sites))] events = [] for i in range(system): pass events.extend(compute_arrival_times(path, i)) def get_key(item): return item[3] events = sorted(events, key=get_key) for event in events: drone_id = event[0] site_id = event[2] time = event[3] arrival_times[site_id].append((drone_id, time)) return arrival_times def compute_cost(system, n): arrival_times = generate_arrival_times(system, n) interarrival_times = [[] for _ in range(len(system.sites))] for i in range(len(arrival_times)): arrivals = arrival_times[i] for j in range(len(arrivals) - 1): interarrival_times[i].append(arrivals[j+1][1] - arrivals[j][1]) interarrival_avgs = [compute_average(i) for i in interarrival_times] return max(interarrival_avgs) def compute_average(data): return (1/len(data))*sum(data)
[ "collections.namedtuple", "numpy.random.rand", "numpy.subtract", "numpy.sum", "numpy.zeros", "numpy.linalg.norm", "random.random" ]
[((357, 397), 'collections.namedtuple', 'namedtuple', (['"""Drone"""', '"""speed probability"""'], {}), "('Drone', 'speed probability')\n", (367, 397), False, 'from collections import namedtuple\n'), ((405, 435), 'collections.namedtuple', 'namedtuple', (['"""Site"""', '"""location"""'], {}), "('Site', 'location')\n", (415, 435), False, 'from collections import namedtuple\n'), ((113, 133), 'numpy.random.rand', 'np.random.rand', (['n', 'n'], {}), '(n, n)\n', (127, 133), True, 'import numpy as np\n'), ((738, 754), 'numpy.zeros', 'np.zeros', (['[n, n]'], {}), '([n, n])\n', (746, 754), True, 'import numpy as np\n'), ((2252, 2272), 'numpy.random.rand', 'np.random.rand', (['n', '(2)'], {}), '(n, 2)\n', (2266, 2272), True, 'import numpy as np\n'), ((230, 247), 'numpy.sum', 'np.sum', (['matrix[i]'], {}), '(matrix[i])\n', (236, 247), True, 'import numpy as np\n'), ((2426, 2441), 'random.random', 'random.random', ([], {}), '()\n', (2439, 2441), False, 'import random\n'), ((863, 894), 'numpy.subtract', 'np.subtract', (['sites[i]', 'sites[j]'], {}), '(sites[i], sites[j])\n', (874, 894), True, 'import numpy as np\n'), ((919, 936), 'numpy.linalg.norm', 'np.linalg.norm', (['x'], {}), '(x)\n', (933, 936), True, 'import numpy as np\n')]
#-*- coding:utf-8 -*- # &Author AnFany # 引入方法 import Kmeans_AnFany as K_Af # AnFany import Kmeans_Sklearn as K_Sk # Sklearn import matplotlib.pyplot as plt from pylab import mpl # 作图显示中文 mpl.rcParams['font.sans-serif'] = ['FangSong'] # 设置中文字体新宋体 mpl.rcParams['axes.unicode_minus'] = False import numpy as np # 利用sklearn生成数据集 from sklearn.datasets import make_blobs X, Y = make_blobs(n_samples=600, centers=6, n_features=2) # 绘制散点图 def fig_scatter(exdata, eydata, titl='训练数据散点图', co=['r', 'g', 'k', 'b', 'y', 'm'], marker=['o','^','H','v','d','>']): typeclass = sorted(list(set(eydata))) for ii in range(len(typeclass)): datax = exdata[eydata == typeclass[ii]] plt.scatter(datax[:, 0], datax[:, -1], c=co[ii], s=50, marker=marker[ii]) plt.title(titl) #plt.legend(['%d类'%i for i in typeclass], bbox_to_anchor=(1.2, 0.9)) plt.xlabel('特征1') plt.ylabel('特征2') # 调用不同的方法 # AnFany kresult = K_Af.op_kmeans(X, countcen=6) # Sklearn sk = K_Sk.KMeans(init='k-means++', n_clusters=6, n_init=10) train = sk.fit(X) result = sk.predict(X) skru = K_Sk.trans(result) #绘制算法后的类别的散点图 def sca(Xdata, Center, signdict, co=['r', 'g', 'y', 'b', 'c', 'm'], marker=['o','^','H','s','d','*'], titl = 'AnFany 结果'): du = 1 for jj in signdict: xdata = Xdata[signdict[jj]] plt.scatter(xdata[:, 0], xdata[:, -1], c=co[jj], s=50, marker=marker[jj], label='%d类' % jj) # 绘制样本散点图 for ss in Center: if du: plt.scatter(ss[0], ss[1], c='k', s=100, marker='8', label='类别中心') #绘制类别中心点 du = 0 else: plt.scatter(ss[0], ss[1], c='k', s=100, marker='8') # 绘制类别中心点 plt.legend(bbox_to_anchor=(1.2, 1)) plt.title(titl) plt.xlabel('特征1') plt.ylabel('特征2') # 定义欧几里得距离 def dis(sample, center): cen = np.array([center]) sample = np.array(sample) if len(sample) != 0: usb = np.sum((sample - cen) ** 2, axis=1) ** 0.5 return usb else: return 0 # 计算最终的分类结果的成本值 def Cost(Xdata, typedict): center = {} for kk in typedict: center[kk] = np.mean(Xdata[typedict[kk]], axis=0) # 均值 cio = 0 for cc in typedict: cio += np.sum(dis(Xdata[typedict[cc]], center[cc])) return cio # 最终的结果展示 plt.subplot(2, 2, 1) fig_scatter(X, Y) plt.subplot(2, 2, 2) sca(X, kresult[0], kresult[2]) plt.subplot(2, 2, 3) sca(X, train.cluster_centers_, skru, titl='Sklearn 结果') plt.subplot(2, 2, 4) plt.axis('off') plt.text(0.3, 0.6, 'AnFany 最终的分类成本值为:%.5f'%Cost(X, kresult[2])) plt.text(0.3, 0.3, 'Sklearn 最终的分类成本值为:%.5f'%Cost(X, skru)) plt.show()
[ "numpy.mean", "matplotlib.pyplot.title", "matplotlib.pyplot.ylabel", "matplotlib.pyplot.legend", "matplotlib.pyplot.xlabel", "sklearn.datasets.make_blobs", "numpy.array", "numpy.sum", "Kmeans_AnFany.op_kmeans", "matplotlib.pyplot.scatter", "matplotlib.pyplot.axis", "Kmeans_Sklearn.KMeans", "matplotlib.pyplot.subplot", "Kmeans_Sklearn.trans", "matplotlib.pyplot.show" ]
[((393, 443), 'sklearn.datasets.make_blobs', 'make_blobs', ([], {'n_samples': '(600)', 'centers': '(6)', 'n_features': '(2)'}), '(n_samples=600, centers=6, n_features=2)\n', (403, 443), False, 'from sklearn.datasets import make_blobs\n'), ((964, 993), 'Kmeans_AnFany.op_kmeans', 'K_Af.op_kmeans', (['X'], {'countcen': '(6)'}), '(X, countcen=6)\n', (978, 993), True, 'import Kmeans_AnFany as K_Af\n'), ((1015, 1069), 'Kmeans_Sklearn.KMeans', 'K_Sk.KMeans', ([], {'init': '"""k-means++"""', 'n_clusters': '(6)', 'n_init': '(10)'}), "(init='k-means++', n_clusters=6, n_init=10)\n", (1026, 1069), True, 'import Kmeans_Sklearn as K_Sk\n'), ((1123, 1141), 'Kmeans_Sklearn.trans', 'K_Sk.trans', (['result'], {}), '(result)\n', (1133, 1141), True, 'import Kmeans_Sklearn as K_Sk\n'), ((2335, 2355), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(2)', '(2)', '(1)'], {}), '(2, 2, 1)\n', (2346, 2355), True, 'import matplotlib.pyplot as plt\n'), ((2378, 2398), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(2)', '(2)', '(2)'], {}), '(2, 2, 2)\n', (2389, 2398), True, 'import matplotlib.pyplot as plt\n'), ((2434, 2454), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(2)', '(2)', '(3)'], {}), '(2, 2, 3)\n', (2445, 2454), True, 'import matplotlib.pyplot as plt\n'), ((2515, 2535), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(2)', '(2)', '(4)'], {}), '(2, 2, 4)\n', (2526, 2535), True, 'import matplotlib.pyplot as plt\n'), ((2537, 2552), 'matplotlib.pyplot.axis', 'plt.axis', (['"""off"""'], {}), "('off')\n", (2545, 2552), True, 'import matplotlib.pyplot as plt\n'), ((2681, 2691), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (2689, 2691), True, 'import matplotlib.pyplot as plt\n'), ((792, 807), 'matplotlib.pyplot.title', 'plt.title', (['titl'], {}), '(titl)\n', (801, 807), True, 'import matplotlib.pyplot as plt\n'), ((887, 904), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""特征1"""'], {}), "('特征1')\n", (897, 904), True, 'import matplotlib.pyplot as plt\n'), ((910, 927), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""特征2"""'], {}), "('特征2')\n", (920, 927), True, 'import matplotlib.pyplot as plt\n'), ((1718, 1753), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'bbox_to_anchor': '(1.2, 1)'}), '(bbox_to_anchor=(1.2, 1))\n', (1728, 1753), True, 'import matplotlib.pyplot as plt\n'), ((1759, 1774), 'matplotlib.pyplot.title', 'plt.title', (['titl'], {}), '(titl)\n', (1768, 1774), True, 'import matplotlib.pyplot as plt\n'), ((1780, 1797), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""特征1"""'], {}), "('特征1')\n", (1790, 1797), True, 'import matplotlib.pyplot as plt\n'), ((1803, 1820), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""特征2"""'], {}), "('特征2')\n", (1813, 1820), True, 'import matplotlib.pyplot as plt\n'), ((1872, 1890), 'numpy.array', 'np.array', (['[center]'], {}), '([center])\n', (1880, 1890), True, 'import numpy as np\n'), ((1905, 1921), 'numpy.array', 'np.array', (['sample'], {}), '(sample)\n', (1913, 1921), True, 'import numpy as np\n'), ((713, 786), 'matplotlib.pyplot.scatter', 'plt.scatter', (['datax[:, 0]', 'datax[:, -1]'], {'c': 'co[ii]', 's': '(50)', 'marker': 'marker[ii]'}), '(datax[:, 0], datax[:, -1], c=co[ii], s=50, marker=marker[ii])\n', (724, 786), True, 'import matplotlib.pyplot as plt\n'), ((1370, 1465), 'matplotlib.pyplot.scatter', 'plt.scatter', (['xdata[:, 0]', 'xdata[:, -1]'], {'c': 'co[jj]', 's': '(50)', 'marker': 'marker[jj]', 'label': "('%d类' % jj)"}), "(xdata[:, 0], xdata[:, -1], c=co[jj], s=50, marker=marker[jj],\n label='%d类' % jj)\n", (1381, 1465), True, 'import matplotlib.pyplot as plt\n'), ((2164, 2200), 'numpy.mean', 'np.mean', (['Xdata[typedict[kk]]'], {'axis': '(0)'}), '(Xdata[typedict[kk]], axis=0)\n', (2171, 2200), True, 'import numpy as np\n'), ((1525, 1590), 'matplotlib.pyplot.scatter', 'plt.scatter', (['ss[0]', 'ss[1]'], {'c': '"""k"""', 's': '(100)', 'marker': '"""8"""', 'label': '"""类别中心"""'}), "(ss[0], ss[1], c='k', s=100, marker='8', label='类别中心')\n", (1536, 1590), True, 'import matplotlib.pyplot as plt\n'), ((1648, 1699), 'matplotlib.pyplot.scatter', 'plt.scatter', (['ss[0]', 'ss[1]'], {'c': '"""k"""', 's': '(100)', 'marker': '"""8"""'}), "(ss[0], ss[1], c='k', s=100, marker='8')\n", (1659, 1699), True, 'import matplotlib.pyplot as plt\n'), ((1963, 1998), 'numpy.sum', 'np.sum', (['((sample - cen) ** 2)'], {'axis': '(1)'}), '((sample - cen) ** 2, axis=1)\n', (1969, 1998), True, 'import numpy as np\n')]
# ***************************************************************************** # Copyright (c) 2020, Intel Corporation All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; # OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, # WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR # OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, # EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ***************************************************************************** """ | This file contains SDC utility functions related to typing compilation phase """ import numpy import numba import sdc from numba import types from numba.core.errors import TypingError from numba.np import numpy_support from sdc.datatypes.indexes import * from sdc.str_arr_type import string_array_type, StringArrayType from sdc.datatypes.categorical.types import Categorical sdc_old_index_types = (types.Array, StringArrayType, ) sdc_pandas_index_types = ( EmptyIndexType, PositionalIndexType, RangeIndexType, Int64IndexType, MultiIndexType, ) + sdc_old_index_types sdc_indexes_range_like = ( PositionalIndexType, RangeIndexType, ) # TO-DO: support caching of data allocated for range indexes at request for .values sdc_indexes_wo_values_cache = ( EmptyIndexType, PositionalIndexType, RangeIndexType, ) sdc_pandas_df_column_types = ( types.Array, StringArrayType, Categorical, ) class TypeChecker: """ Validate object type and raise TypingError if the type is invalid, e.g.: Method nsmallest(). The object n given: bool expected: int """ msg_template = '{} The object {}\n given: {}\n expected: {}' def __init__(self, func_name): """ Parameters ---------- func_name: :obj:`str` name of the function where types checking """ self.func_name = func_name def raise_exc(self, data, expected_types, name=''): """ Raise exception with unified message Parameters ---------- data: :obj:`any` real type of the data expected_types: :obj:`str` expected types inserting directly to the exception name: :obj:`str` name of the parameter """ msg = self.msg_template.format(self.func_name, name, data, expected_types) raise TypingError(msg) def check(self, data, accepted_type, name=''): """ Check data type belongs to specified type Parameters ---------- data: :obj:`any` real type of the data accepted_type: :obj:`type` accepted type name: :obj:`str` name of the parameter """ if not isinstance(data, accepted_type): self.raise_exc(data, accepted_type.__name__, name=name) class SDCLimitation(Exception): """Exception to be raised in case of SDC limitation""" pass def kwsparams2list(params): """Convert parameters dict to a list of string of a format 'key=value'""" return ['{}={}'.format(k, v) for k, v in params.items()] def sigparams2list(param_names, defaults): """Creates a list of strings of a format 'key=value' from parameter names and default values""" return [(f'{param}' if param not in defaults else f'{param}={defaults[param]}') for param in param_names] def has_literal_value(var, value): """Used during typing to check that variable var is a Numba literal value equal to value""" if not isinstance(var, types.Literal): return False if value is None: return isinstance(var, types.NoneType) or var.literal_value is value elif isinstance(value, type(bool)): return var.literal_value is value else: return var.literal_value == value def has_python_value(var, value): """Used during typing to check that variable var was resolved as Python type and has specific value""" if not isinstance(var, type(value)): return False if value is None or isinstance(value, type(bool)): return var is value else: return var == value def is_default(var, value): return has_literal_value(var, value) or has_python_value(var, value) or isinstance(var, types.Omitted) def check_is_numeric_array(type_var): """Used during typing to check that type_var is a numeric numpy arrays""" return check_is_array_of_dtype(type_var, types.Number) def check_index_is_numeric(ty_series): """Used during typing to check that series has numeric index""" return isinstance(ty_series.index.dtype, types.Number) def check_types_comparable(ty_left, ty_right): """Used during typing to check that specified types can be compared""" if hasattr(ty_left, 'dtype'): ty_left = ty_left.dtype if hasattr(ty_right, 'dtype'): ty_right = ty_right.dtype # add the rest of supported types here if isinstance(ty_left, types.Number): return isinstance(ty_right, types.Number) if isinstance(ty_left, types.UnicodeType): return isinstance(ty_right, types.UnicodeType) if isinstance(ty_left, types.Boolean): return isinstance(ty_right, types.Boolean) if isinstance(ty_left, (types.Tuple, types.UniTuple)): # FIXME: just for now to unblock compilation return ty_left == ty_right return False def check_arrays_comparable(ty_left, ty_right): """Used during typing to check that underlying arrays of specified types can be compared""" return ((ty_left == string_array_type and ty_right == string_array_type) or (check_is_numeric_array(ty_left) and check_is_numeric_array(ty_right))) def check_is_array_of_dtype(type_var, dtype): """Used during typing to check that type_var is a numeric numpy array of specific dtype""" return isinstance(type_var, types.Array) and isinstance(type_var.dtype, dtype) def find_common_dtype_from_numpy_dtypes(array_types, scalar_types): """Used to find common numba dtype for a sequences of numba dtypes each representing some numpy dtype""" np_array_dtypes = [numpy_support.as_dtype(dtype) for dtype in array_types] np_scalar_dtypes = [numpy_support.as_dtype(dtype) for dtype in scalar_types] np_common_dtype = numpy.find_common_type(np_array_dtypes, np_scalar_dtypes) numba_common_dtype = numpy_support.from_dtype(np_common_dtype) return numba_common_dtype def find_index_common_dtype(left, right): """Used to find common dtype for indexes of two series and verify if index dtypes are equal""" left_index_dtype = left.dtype right_index_dtype = right.dtype index_dtypes_match = left_index_dtype == right_index_dtype if not index_dtypes_match: numba_index_common_dtype = find_common_dtype_from_numpy_dtypes( [left_index_dtype, right_index_dtype], []) else: numba_index_common_dtype = left_index_dtype return index_dtypes_match, numba_index_common_dtype def gen_impl_generator(codegen, impl_name): """Generate generator of an implementation""" def _df_impl_generator(*args, **kwargs): func_text, global_vars = codegen(*args, **kwargs) loc_vars = {} exec(func_text, global_vars, loc_vars) _impl = loc_vars[impl_name] return _impl return _df_impl_generator def check_signed_integer(ty): return isinstance(ty, types.Integer) and ty.signed def _check_dtype_param_type(dtype): """ Returns True is dtype is a valid type for dtype parameter and False otherwise. Used in RangeIndex ctor and other methods that take dtype parameter. """ valid_dtype_types = (types.NoneType, types.Omitted, types.UnicodeType, types.NumberClass) return isinstance(dtype, valid_dtype_types) or dtype is None
[ "numba.np.numpy_support.from_dtype", "numba.np.numpy_support.as_dtype", "numba.core.errors.TypingError", "numpy.find_common_type" ]
[((7400, 7457), 'numpy.find_common_type', 'numpy.find_common_type', (['np_array_dtypes', 'np_scalar_dtypes'], {}), '(np_array_dtypes, np_scalar_dtypes)\n', (7422, 7457), False, 'import numpy\n'), ((7483, 7524), 'numba.np.numpy_support.from_dtype', 'numpy_support.from_dtype', (['np_common_dtype'], {}), '(np_common_dtype)\n', (7507, 7524), False, 'from numba.np import numpy_support\n'), ((3501, 3517), 'numba.core.errors.TypingError', 'TypingError', (['msg'], {}), '(msg)\n', (3512, 3517), False, 'from numba.core.errors import TypingError\n'), ((7241, 7270), 'numba.np.numpy_support.as_dtype', 'numpy_support.as_dtype', (['dtype'], {}), '(dtype)\n', (7263, 7270), False, 'from numba.np import numpy_support\n'), ((7321, 7350), 'numba.np.numpy_support.as_dtype', 'numpy_support.as_dtype', (['dtype'], {}), '(dtype)\n', (7343, 7350), False, 'from numba.np import numpy_support\n')]
import argparse import numpy as np import os import sys import matplotlib matplotlib.use('agg') import matplotlib.pyplot as plt sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))) from saliency.visualizer.smiles_visualizer import SmilesVisualizer def visualize(dir_path): parent_dir = os.path.dirname(dir_path) saliency_vanilla = np.load(os.path.join(dir_path, "saliency_vanilla.npy")) saliency_smooth = np.load(os.path.join(dir_path, "saliency_smooth.npy")) saliency_bayes = np.load(os.path.join(dir_path, "saliency_bayes.npy")) visualizer = SmilesVisualizer() os.makedirs(os.path.join(parent_dir, "result_vanilla"), exist_ok=True) os.makedirs(os.path.join(parent_dir, "result_smooth"), exist_ok=True) os.makedirs(os.path.join(parent_dir, "result_bayes"), exist_ok=True) test_idx = np.load(os.path.join(dir_path, "test_idx.npy")) answer = np.load(os.path.join(dir_path, "answer.npy")) output = np.load(os.path.join(dir_path, "output.npy")) smiles_all = np.load(os.path.join(parent_dir, "smiles.npy")) def calc_range(saliency): vmax = float('-inf') vmin = float('inf') for v in saliency: vmax = max(vmax, np.max(v)) vmin = min(vmin, np.min(v)) return vmin, vmax v_range_vanilla = calc_range(saliency_vanilla) v_range_smooth = calc_range(saliency_smooth) v_range_bayes = calc_range(saliency_bayes) def get_scaler(v_range): def scaler(saliency_): saliency = np.copy(saliency_) minv, maxv = v_range if maxv == minv: saliency = np.zeros_like(saliency) else: pos = saliency >= 0.0 saliency[pos] = saliency[pos]/maxv nega = saliency < 0.0 saliency[nega] = saliency[nega]/(np.abs(minv)) return saliency return scaler scaler_vanilla = get_scaler(v_range_vanilla) scaler_smooth = get_scaler(v_range_smooth) scaler_bayes = get_scaler(v_range_bayes) def color(x): if x > 0: # Red for positive value return 1., 1. - x, 1. - x else: # Blue for negative value x *= -1 return 1. - x, 1. - x, 1. for i, id in enumerate(test_idx): smiles = smiles_all[id] out = output[i] ans = answer[i] # legend = "t:{}, p:{}".format(ans, out) legend = '' ext = '.png' # '.svg' # visualizer.visualize( # saliency_vanilla[id], smiles, save_filepath=os.path.join(parent_dir, "result_vanilla", str(id) + ext), # visualize_ratio=1.0, legend=legend, scaler=scaler_vanilla, color_fn=color) # visualizer.visualize( # saliency_smooth[id], smiles, save_filepath=os.path.join(parent_dir, "result_smooth", str(id) + ext), # visualize_ratio=1.0, legend=legend, scaler=scaler_smooth, color_fn=color) visualizer.visualize( saliency_bayes[id], smiles, save_filepath=os.path.join(parent_dir, "result_bayes", str(id) + ext), visualize_ratio=1.0, legend=legend, scaler=scaler_bayes, color_fn=color) def plot_result(prediction, answer, save_filepath='result.png'): plt.scatter(prediction, answer, marker='.') plt.plot([-100, 100], [-100, 100], c='r') max_v = max(np.max(prediction), np.max(answer)) min_v = min(np.min(prediction), np.min(answer)) plt.xlim([min_v-0.1, max_v+0.1]) plt.xlabel("prediction") plt.ylim([min_v-0.1, max_v+0.1]) plt.ylabel("ground truth") plt.savefig(save_filepath) plt.close() def main(): parser = argparse.ArgumentParser( description='Regression with own dataset.') parser.add_argument('--dirpath', '-d', type=str, default='./results/M_30_3_32_32') args = parser.parse_args() path = args.dirpath n_split = 5 output = [] answer = [] for i in range(n_split): suffix = str(i) + "-" + str(n_split) output.append(np.load(os.path.join(path, suffix, "output.npy"))) answer.append(np.load(os.path.join(path, suffix, "answer.npy"))) output = np.concatenate(output) answer = np.concatenate(answer) plot_result(output, answer, save_filepath=os.path.join(path, "result.png")) for i in range(n_split): suffix = str(i) + "-" + str(n_split) print(suffix) visualize(os.path.join(path, suffix)) if __name__ == '__main__': main()
[ "matplotlib.pyplot.ylabel", "argparse.ArgumentParser", "matplotlib.pyplot.xlabel", "matplotlib.pyplot.plot", "numpy.max", "matplotlib.pyplot.close", "matplotlib.pyplot.scatter", "numpy.min", "numpy.concatenate", "matplotlib.pyplot.ylim", "numpy.abs", "matplotlib.pyplot.savefig", "matplotlib.use", "os.path.dirname", "matplotlib.pyplot.xlim", "numpy.copy", "os.path.join", "saliency.visualizer.smiles_visualizer.SmilesVisualizer", "os.path.abspath", "numpy.zeros_like" ]
[((76, 97), 'matplotlib.use', 'matplotlib.use', (['"""agg"""'], {}), "('agg')\n", (90, 97), False, 'import matplotlib\n'), ((336, 361), 'os.path.dirname', 'os.path.dirname', (['dir_path'], {}), '(dir_path)\n', (351, 361), False, 'import os\n'), ((611, 629), 'saliency.visualizer.smiles_visualizer.SmilesVisualizer', 'SmilesVisualizer', ([], {}), '()\n', (627, 629), False, 'from saliency.visualizer.smiles_visualizer import SmilesVisualizer\n'), ((3296, 3339), 'matplotlib.pyplot.scatter', 'plt.scatter', (['prediction', 'answer'], {'marker': '"""."""'}), "(prediction, answer, marker='.')\n", (3307, 3339), True, 'import matplotlib.pyplot as plt\n'), ((3344, 3385), 'matplotlib.pyplot.plot', 'plt.plot', (['[-100, 100]', '[-100, 100]'], {'c': '"""r"""'}), "([-100, 100], [-100, 100], c='r')\n", (3352, 3385), True, 'import matplotlib.pyplot as plt\n'), ((3494, 3530), 'matplotlib.pyplot.xlim', 'plt.xlim', (['[min_v - 0.1, max_v + 0.1]'], {}), '([min_v - 0.1, max_v + 0.1])\n', (3502, 3530), True, 'import matplotlib.pyplot as plt\n'), ((3531, 3555), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""prediction"""'], {}), "('prediction')\n", (3541, 3555), True, 'import matplotlib.pyplot as plt\n'), ((3560, 3596), 'matplotlib.pyplot.ylim', 'plt.ylim', (['[min_v - 0.1, max_v + 0.1]'], {}), '([min_v - 0.1, max_v + 0.1])\n', (3568, 3596), True, 'import matplotlib.pyplot as plt\n'), ((3597, 3623), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""ground truth"""'], {}), "('ground truth')\n", (3607, 3623), True, 'import matplotlib.pyplot as plt\n'), ((3628, 3654), 'matplotlib.pyplot.savefig', 'plt.savefig', (['save_filepath'], {}), '(save_filepath)\n', (3639, 3654), True, 'import matplotlib.pyplot as plt\n'), ((3659, 3670), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (3668, 3670), True, 'import matplotlib.pyplot as plt\n'), ((3698, 3765), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Regression with own dataset."""'}), "(description='Regression with own dataset.')\n", (3721, 3765), False, 'import argparse\n'), ((4198, 4220), 'numpy.concatenate', 'np.concatenate', (['output'], {}), '(output)\n', (4212, 4220), True, 'import numpy as np\n'), ((4234, 4256), 'numpy.concatenate', 'np.concatenate', (['answer'], {}), '(answer)\n', (4248, 4256), True, 'import numpy as np\n'), ((393, 439), 'os.path.join', 'os.path.join', (['dir_path', '"""saliency_vanilla.npy"""'], {}), "(dir_path, 'saliency_vanilla.npy')\n", (405, 439), False, 'import os\n'), ((471, 516), 'os.path.join', 'os.path.join', (['dir_path', '"""saliency_smooth.npy"""'], {}), "(dir_path, 'saliency_smooth.npy')\n", (483, 516), False, 'import os\n'), ((547, 591), 'os.path.join', 'os.path.join', (['dir_path', '"""saliency_bayes.npy"""'], {}), "(dir_path, 'saliency_bayes.npy')\n", (559, 591), False, 'import os\n'), ((646, 688), 'os.path.join', 'os.path.join', (['parent_dir', '"""result_vanilla"""'], {}), "(parent_dir, 'result_vanilla')\n", (658, 688), False, 'import os\n'), ((721, 762), 'os.path.join', 'os.path.join', (['parent_dir', '"""result_smooth"""'], {}), "(parent_dir, 'result_smooth')\n", (733, 762), False, 'import os\n'), ((795, 835), 'os.path.join', 'os.path.join', (['parent_dir', '"""result_bayes"""'], {}), "(parent_dir, 'result_bayes')\n", (807, 835), False, 'import os\n'), ((876, 914), 'os.path.join', 'os.path.join', (['dir_path', '"""test_idx.npy"""'], {}), "(dir_path, 'test_idx.npy')\n", (888, 914), False, 'import os\n'), ((937, 973), 'os.path.join', 'os.path.join', (['dir_path', '"""answer.npy"""'], {}), "(dir_path, 'answer.npy')\n", (949, 973), False, 'import os\n'), ((996, 1032), 'os.path.join', 'os.path.join', (['dir_path', '"""output.npy"""'], {}), "(dir_path, 'output.npy')\n", (1008, 1032), False, 'import os\n'), ((1060, 1098), 'os.path.join', 'os.path.join', (['parent_dir', '"""smiles.npy"""'], {}), "(parent_dir, 'smiles.npy')\n", (1072, 1098), False, 'import os\n'), ((3402, 3420), 'numpy.max', 'np.max', (['prediction'], {}), '(prediction)\n', (3408, 3420), True, 'import numpy as np\n'), ((3422, 3436), 'numpy.max', 'np.max', (['answer'], {}), '(answer)\n', (3428, 3436), True, 'import numpy as np\n'), ((3454, 3472), 'numpy.min', 'np.min', (['prediction'], {}), '(prediction)\n', (3460, 3472), True, 'import numpy as np\n'), ((3474, 3488), 'numpy.min', 'np.min', (['answer'], {}), '(answer)\n', (3480, 3488), True, 'import numpy as np\n'), ((1553, 1571), 'numpy.copy', 'np.copy', (['saliency_'], {}), '(saliency_)\n', (1560, 1571), True, 'import numpy as np\n'), ((4304, 4336), 'os.path.join', 'os.path.join', (['path', '"""result.png"""'], {}), "(path, 'result.png')\n", (4316, 4336), False, 'import os\n'), ((4452, 4478), 'os.path.join', 'os.path.join', (['path', 'suffix'], {}), '(path, suffix)\n', (4464, 4478), False, 'import os\n'), ((195, 220), 'os.path.abspath', 'os.path.abspath', (['__file__'], {}), '(__file__)\n', (210, 220), False, 'import os\n'), ((1244, 1253), 'numpy.max', 'np.max', (['v'], {}), '(v)\n', (1250, 1253), True, 'import numpy as np\n'), ((1284, 1293), 'numpy.min', 'np.min', (['v'], {}), '(v)\n', (1290, 1293), True, 'import numpy as np\n'), ((1661, 1684), 'numpy.zeros_like', 'np.zeros_like', (['saliency'], {}), '(saliency)\n', (1674, 1684), True, 'import numpy as np\n'), ((4069, 4109), 'os.path.join', 'os.path.join', (['path', 'suffix', '"""output.npy"""'], {}), "(path, suffix, 'output.npy')\n", (4081, 4109), False, 'import os\n'), ((4142, 4182), 'os.path.join', 'os.path.join', (['path', 'suffix', '"""answer.npy"""'], {}), "(path, suffix, 'answer.npy')\n", (4154, 4182), False, 'import os\n'), ((1879, 1891), 'numpy.abs', 'np.abs', (['minv'], {}), '(minv)\n', (1885, 1891), True, 'import numpy as np\n')]
import numpy as np from PySide2.QtCore import QSignalBlocker, Signal from PySide2.QtWidgets import QGridLayout, QWidget from hexrd.ui.scientificspinbox import ScientificDoubleSpinBox DEFAULT_ENABLED_STYLE_SHEET = 'background-color: white' DEFAULT_DISABLED_STYLE_SHEET = 'background-color: #F0F0F0' INVALID_MATRIX_STYLE_SHEET = 'background-color: red' class MatrixEditor(QWidget): data_modified = Signal() def __init__(self, data, parent=None): super().__init__(parent) self._data = data # If this is not None, then only the elements present in the # list (as (i, j) items) will be enabled. self._enabled_elements = None # If this is set, it will be called every time the data updates # to apply equality constraints. self._apply_constraints_func = None # Whether or not the matrix is currently invalid self.matrix_invalid = False # Reason the matrix is currently invalid self.matrix_invalid_reason = '' self.setLayout(QGridLayout()) self.add_spin_boxes() self.update_gui() def add_spin_boxes(self): layout = self.layout() for i in range(self.rows): for j in range(self.cols): sb = self.create_spin_box() layout.addWidget(sb, i, j) def create_spin_box(self): sb = ScientificDoubleSpinBox() sb.setKeyboardTracking(False) sb.valueChanged.connect(self.element_modified) return sb def element_modified(self): self.update_data() @property def data(self): return self._data @data.setter def data(self, v): if not np.array_equal(self._data, v): if self._data.shape != v.shape: msg = (f'Shape {v.shape} does not match original shape ' f'{self._data.shape}') raise AttributeError(msg) self._data = v self.reset_disabled_values() self.update_gui() @property def rows(self): return self.data.shape[0] @property def cols(self): return self.data.shape[1] def update_data(self): self.data[:] = self.gui_data self.apply_constraints() self.data_modified.emit() def update_gui(self): self.gui_data = self.data @property def gui_data(self): row_range = range(self.rows) col_range = range(self.cols) return [[self.gui_value(i, j) for j in col_range] for i in row_range] @gui_data.setter def gui_data(self, v): blockers = [QSignalBlocker(w) for w in self.all_widgets] # noqa: F841 for i in range(self.rows): for j in range(self.cols): self.set_gui_value(i, j, v[i][j]) @property def all_widgets(self): row_range = range(self.rows) col_range = range(self.cols) return [self.widget(i, j) for j in col_range for i in row_range] @property def enabled_widgets(self): widgets = [] for i in range(self.rows): for j in range(self.cols): if (i, j) in self.enabled_elements: widgets.append(self.widget(i, j)) return widgets def widget(self, row, col): return self.layout().itemAtPosition(row, col).widget() def gui_value(self, row, col): return self.widget(row, col).value() def set_gui_value(self, row, col, val): self.widget(row, col).setValue(val) def set_matrix_invalid(self, s): self.matrix_invalid = True self.matrix_invalid_reason = s self.update_tooltips() self.update_enable_states() def set_matrix_valid(self): self.matrix_invalid = False self.matrix_invalid_reason = '' self.update_tooltips() self.update_enable_states() def update_tooltips(self): if self.matrix_invalid: tooltip = self.matrix_invalid_reason else: tooltip = '' for w in self.enabled_widgets: w.setToolTip(tooltip) def update_enable_states(self): enable_all = self.enabled_elements is None for i in range(self.rows): for j in range(self.cols): w = self.widget(i, j) enable = enable_all or (i, j) in self.enabled_elements w.setEnabled(enable) enabled_str = 'enabled' if enable else 'disabled' style_sheet = getattr(self, f'{enabled_str}_style_sheet') w.setStyleSheet(style_sheet) def reset_disabled_values(self): # Resets all disabled values to zero, then applies constraints for i in range(self.rows): for j in range(self.cols): if not self.widget(i, j).isEnabled(): self.data[i, j] = 0.0 self.apply_constraints() self.update_gui() @property def enabled_style_sheet(self): if self.matrix_invalid: return INVALID_MATRIX_STYLE_SHEET return DEFAULT_ENABLED_STYLE_SHEET @property def disabled_style_sheet(self): return DEFAULT_DISABLED_STYLE_SHEET @property def enabled_elements(self): return self._enabled_elements @enabled_elements.setter def enabled_elements(self, v): if self._enabled_elements != v: self._enabled_elements = v self.update_enable_states() self.reset_disabled_values() @property def apply_constraints_func(self): return self._apply_constraints_func @apply_constraints_func.setter def apply_constraints_func(self, v): if self._apply_constraints_func != v: self._apply_constraints_func = v self.apply_constraints() def apply_constraints(self): if (func := self.apply_constraints_func) is None: return func(self.data) self.update_gui() if __name__ == '__main__': import sys from PySide2.QtWidgets import QApplication, QDialog, QVBoxLayout if len(sys.argv) < 2: sys.exit('Usage: <script> <matrix_size>') rows, cols = [int(x) for x in sys.argv[1].split('x')] data = np.ones((rows, cols)) app = QApplication(sys.argv) dialog = QDialog() layout = QVBoxLayout() dialog.setLayout(layout) editor = MatrixEditor(data) layout.addWidget(editor) # def constraints(x): # x[2][2] = x[1][1] # editor.enabled_elements = [(1, 1), (3, 4)] # editor.apply_constraints_func = constraints def on_data_modified(): print(f'Data modified: {editor.data}') editor.data_modified.connect(on_data_modified) dialog.finished.connect(app.quit) dialog.show() app.exec_()
[ "hexrd.ui.scientificspinbox.ScientificDoubleSpinBox", "PySide2.QtWidgets.QGridLayout", "numpy.ones", "PySide2.QtCore.QSignalBlocker", "PySide2.QtCore.Signal", "PySide2.QtWidgets.QApplication", "numpy.array_equal", "sys.exit", "PySide2.QtWidgets.QVBoxLayout", "PySide2.QtWidgets.QDialog" ]
[((407, 415), 'PySide2.QtCore.Signal', 'Signal', ([], {}), '()\n', (413, 415), False, 'from PySide2.QtCore import QSignalBlocker, Signal\n'), ((6248, 6269), 'numpy.ones', 'np.ones', (['(rows, cols)'], {}), '((rows, cols))\n', (6255, 6269), True, 'import numpy as np\n'), ((6281, 6303), 'PySide2.QtWidgets.QApplication', 'QApplication', (['sys.argv'], {}), '(sys.argv)\n', (6293, 6303), False, 'from PySide2.QtWidgets import QApplication, QDialog, QVBoxLayout\n'), ((6317, 6326), 'PySide2.QtWidgets.QDialog', 'QDialog', ([], {}), '()\n', (6324, 6326), False, 'from PySide2.QtWidgets import QApplication, QDialog, QVBoxLayout\n'), ((6340, 6353), 'PySide2.QtWidgets.QVBoxLayout', 'QVBoxLayout', ([], {}), '()\n', (6351, 6353), False, 'from PySide2.QtWidgets import QApplication, QDialog, QVBoxLayout\n'), ((1383, 1408), 'hexrd.ui.scientificspinbox.ScientificDoubleSpinBox', 'ScientificDoubleSpinBox', ([], {}), '()\n', (1406, 1408), False, 'from hexrd.ui.scientificspinbox import ScientificDoubleSpinBox\n'), ((6136, 6177), 'sys.exit', 'sys.exit', (['"""Usage: <script> <matrix_size>"""'], {}), "('Usage: <script> <matrix_size>')\n", (6144, 6177), False, 'import sys\n'), ((1044, 1057), 'PySide2.QtWidgets.QGridLayout', 'QGridLayout', ([], {}), '()\n', (1055, 1057), False, 'from PySide2.QtWidgets import QGridLayout, QWidget\n'), ((1697, 1726), 'numpy.array_equal', 'np.array_equal', (['self._data', 'v'], {}), '(self._data, v)\n', (1711, 1726), True, 'import numpy as np\n'), ((2623, 2640), 'PySide2.QtCore.QSignalBlocker', 'QSignalBlocker', (['w'], {}), '(w)\n', (2637, 2640), False, 'from PySide2.QtCore import QSignalBlocker, Signal\n')]
import sqlite3 from random import randint, choice import numpy as np conn = sqlite3.connect('ej.db') c = conn.cursor() #OBTENIENDO TAMAnOS MAXIMOS MINIMOS Y PROMEDIO# c.execute('SELECT MAX(alto) FROM features') resultado = c.fetchone() if resultado: altoMax = resultado[0] c.execute('SELECT MIN(alto) FROM features') resultado = c.fetchone() if resultado: altoMin = resultado[0] altoProm = abs((altoMax + altoMin) / 2) #print altoMax , altoProm , altoMin arrAlto = [altoMax , altoProm , altoMin] c.execute('SELECT MAX(ancho) FROM features') resultado = c.fetchone() if resultado: anchoMax = resultado[0] c.execute('SELECT MIN(ancho) FROM features') resultado = c.fetchone() if resultado: anchoMin = resultado[0] anchoProm = abs((anchoMax + anchoMin) / 2) anchoMaxProm = abs((anchoMax + anchoProm) / 2) anchoMinProm = abs((anchoMin + anchoProm) / 2) arrAncho = [anchoMax, anchoMaxProm, anchoProm, anchoMinProm, anchoMin] #### CREANDO CLASES NEGATIVAS for i in range(0,3): for j in range(0,5): for _ in range(10): negAncho = arrAncho[j] negAlto = arrAlto[i] rand_alto_max = int(negAlto * 1.5) rand_alto_min = int(negAlto * 0.5) r3 = rand_alto_max * 2 rand_ancho_max = int(negAncho*1.5) rand_ancho_min = int(negAncho*0.5) r33 = rand_ancho_max * 2 f1 = choice([np.random.randint(1, rand_alto_min), np.random.randint(rand_alto_max, r3)]) f2 = choice([np.random.randint(1, rand_ancho_min), np.random.randint(rand_ancho_max, r33)]) c.execute("insert into features (ancho, alto, area, clase) values (?, ?, ?, ?)", (f2, f1, f2*f1, 0)) conn.commit() conn.close()
[ "numpy.random.randint", "sqlite3.connect" ]
[((78, 102), 'sqlite3.connect', 'sqlite3.connect', (['"""ej.db"""'], {}), "('ej.db')\n", (93, 102), False, 'import sqlite3\n'), ((1413, 1448), 'numpy.random.randint', 'np.random.randint', (['(1)', 'rand_alto_min'], {}), '(1, rand_alto_min)\n', (1430, 1448), True, 'import numpy as np\n'), ((1450, 1486), 'numpy.random.randint', 'np.random.randint', (['rand_alto_max', 'r3'], {}), '(rand_alto_max, r3)\n', (1467, 1486), True, 'import numpy as np\n'), ((1514, 1550), 'numpy.random.randint', 'np.random.randint', (['(1)', 'rand_ancho_min'], {}), '(1, rand_ancho_min)\n', (1531, 1550), True, 'import numpy as np\n'), ((1552, 1590), 'numpy.random.randint', 'np.random.randint', (['rand_ancho_max', 'r33'], {}), '(rand_ancho_max, r33)\n', (1569, 1590), True, 'import numpy as np\n')]
from itertools import count import numpy as np class Particle(object): """Object containing all the properties for a single particle""" _ids = count(0) def __init__(self, main_data=None, x=np.zeros(2)): self.id = next(self._ids) self.main_data = main_data self.x = np.array(x) self.v = np.zeros(2) self.a = np.zeros(2) self.D = 0 self.rho = main_data.rho0 self.P = 0 self.m = main_data.dx ** 2 * main_data.rho0 # initial mass depends on the initial particle spacing self.boundary = False # Particle by default is not on the boundary # For predictor corrector self.prev_x = np.array(x) self.prev_v = np.zeros(2) self.prev_rho = main_data.rho0 def calc_index(self): """Calculates the 2D integer index for the particle's location in the search grid""" # Calculates the bucket coordinates self.list_num = np.array((self.x - self.main_data.min_x) / (2.0 * self.main_data.h), int) def B(self): return (self.main_data.rho0 * self.main_data.c0 ** 2) / self.main_data.gamma def update_P(self): """ Equation of state System is assumed slightly compressible """ rho0 = self.main_data.rho0 gamma = self.main_data.gamma self.P = self.B() * ((self.rho / rho0)**gamma - 1) def set_main_data(self, main_data): self.main_data = main_data def set_x(self, x): self.x = x self.calc_index() def set_v(self, v): self.v = v def set_a(self, a): self.a = a def set_D(self, D): self.D = D def set_rho(self, rho): self.rho = rho self.update_P() def m(self, m): self.m = m def list_attributes(self): x_s = "position: " + str(self.x) + ", " v_s = "velocity: " + str(self.v) + ", " a_s = "acceleration: " + str(self.a) + ", " D_s = "derivative of density: " + str(self.D) + ", " rho_s = "density: " + str(self.rho) + ", " m_s = "mass: " + str(self.m) + ", " P_s = "pressure: " + str(self.P) + ", " boundary_s = "is boundary: " + str(self.boundary) return [x_s + v_s + a_s + D_s + rho_s + m_s + P_s + boundary_s]
[ "numpy.array", "numpy.zeros", "itertools.count" ]
[((154, 162), 'itertools.count', 'count', (['(0)'], {}), '(0)\n', (159, 162), False, 'from itertools import count\n'), ((205, 216), 'numpy.zeros', 'np.zeros', (['(2)'], {}), '(2)\n', (213, 216), True, 'import numpy as np\n'), ((305, 316), 'numpy.array', 'np.array', (['x'], {}), '(x)\n', (313, 316), True, 'import numpy as np\n'), ((334, 345), 'numpy.zeros', 'np.zeros', (['(2)'], {}), '(2)\n', (342, 345), True, 'import numpy as np\n'), ((363, 374), 'numpy.zeros', 'np.zeros', (['(2)'], {}), '(2)\n', (371, 374), True, 'import numpy as np\n'), ((687, 698), 'numpy.array', 'np.array', (['x'], {}), '(x)\n', (695, 698), True, 'import numpy as np\n'), ((721, 732), 'numpy.zeros', 'np.zeros', (['(2)'], {}), '(2)\n', (729, 732), True, 'import numpy as np\n'), ((960, 1033), 'numpy.array', 'np.array', (['((self.x - self.main_data.min_x) / (2.0 * self.main_data.h))', 'int'], {}), '((self.x - self.main_data.min_x) / (2.0 * self.main_data.h), int)\n', (968, 1033), True, 'import numpy as np\n')]
import os import glob import cv2 import numpy as np import torch from torchvision.transforms import transforms from natsort import natsorted from models import resmasking_dropout1 from utils.datasets.fer2013dataset import EMOTION_DICT from barez import show transform = transforms.Compose( [ transforms.ToPILImage(), transforms.ToTensor(), ] ) def activations_mask(tensor): tensor = torch.squeeze(tensor, 0) tensor = torch.mean(tensor, 0) tensor = tensor.detach().cpu().numpy() tensor = np.maximum(tensor, 0) tensor = cv2.resize(tensor, (224, 224)) tensor = tensor - np.min(tensor) tensor = tensor / np.max(tensor) heatmap = cv2.applyColorMap(np.uint8(255 * tensor), cv2.COLORMAP_JET) return heatmap model = resmasking_dropout1(3, 7) # state = torch.load('./saved/checkpoints/resmasking_dropout1_rot30_2019Nov17_14.33') state = torch.load("./saved/checkpoints/Z_resmasking_dropout1_rot30_2019Nov30_13.32") model.load_state_dict(state["net"]) model.cuda() model.eval() for image_path in natsorted( glob.glob("/home/z/research/bkemo/images/**/*.png", recursive=True) ): image_name = os.path.basename(image_path) print(image_name) # image_path = '/home/z/research/bkemo/images/disgust/0.0_dc10a3_1976_0.png' image = cv2.imread(image_path) image = cv2.resize(image, (224, 224)) tensor = transform(image) tensor = torch.unsqueeze(tensor, 0) tensor = tensor.cuda() # output = model(tensor) x = model.conv1(tensor) # 112 x = model.bn1(x) x = model.relu(x) x = model.maxpool(x) # 56 x = model.layer1(x) # 56 m = model.mask1(x) x = x * (1 + m) x = model.layer2(x) # 28 m = model.mask2(x) x = x * (1 + m) x = model.layer3(x) # 14 heat_1 = activations_mask(x) m = model.mask3(x) x = x * (1 + m) # heat_2 = activations_mask(m) x = model.layer4(x) # 7 m = model.mask4(x) x = x * (1 + m) x = model.avgpool(x) x = torch.flatten(x, 1) output = model.fc(x) # print(np.sum(heat_1 - heat_2)) # show(np.concatenate((image, heat_1, heat_2), axis=1)) cv2.imwrite( "./masking_provements/{}".format(image_name), np.concatenate((image, heat_1), axis=1), ) # np.concatenate((image, heat_1, heat_2), axis=1)) # output = output.cpu().numpy() # print(EMOTION_DICT[torch.argmax(output, 1).item()])
[ "torchvision.transforms.transforms.ToPILImage", "models.resmasking_dropout1", "numpy.uint8", "cv2.resize", "torch.mean", "torch.unsqueeze", "torch.load", "numpy.min", "torch.flatten", "numpy.max", "torchvision.transforms.transforms.ToTensor", "os.path.basename", "numpy.concatenate", "torch.squeeze", "numpy.maximum", "cv2.imread", "glob.glob" ]
[((774, 799), 'models.resmasking_dropout1', 'resmasking_dropout1', (['(3)', '(7)'], {}), '(3, 7)\n', (793, 799), False, 'from models import resmasking_dropout1\n'), ((894, 971), 'torch.load', 'torch.load', (['"""./saved/checkpoints/Z_resmasking_dropout1_rot30_2019Nov30_13.32"""'], {}), "('./saved/checkpoints/Z_resmasking_dropout1_rot30_2019Nov30_13.32')\n", (904, 971), False, 'import torch\n'), ((414, 438), 'torch.squeeze', 'torch.squeeze', (['tensor', '(0)'], {}), '(tensor, 0)\n', (427, 438), False, 'import torch\n'), ((452, 473), 'torch.mean', 'torch.mean', (['tensor', '(0)'], {}), '(tensor, 0)\n', (462, 473), False, 'import torch\n'), ((530, 551), 'numpy.maximum', 'np.maximum', (['tensor', '(0)'], {}), '(tensor, 0)\n', (540, 551), True, 'import numpy as np\n'), ((565, 595), 'cv2.resize', 'cv2.resize', (['tensor', '(224, 224)'], {}), '(tensor, (224, 224))\n', (575, 595), False, 'import cv2\n'), ((1068, 1135), 'glob.glob', 'glob.glob', (['"""/home/z/research/bkemo/images/**/*.png"""'], {'recursive': '(True)'}), "('/home/z/research/bkemo/images/**/*.png', recursive=True)\n", (1077, 1135), False, 'import glob\n'), ((1156, 1184), 'os.path.basename', 'os.path.basename', (['image_path'], {}), '(image_path)\n', (1172, 1184), False, 'import os\n'), ((1300, 1322), 'cv2.imread', 'cv2.imread', (['image_path'], {}), '(image_path)\n', (1310, 1322), False, 'import cv2\n'), ((1335, 1364), 'cv2.resize', 'cv2.resize', (['image', '(224, 224)'], {}), '(image, (224, 224))\n', (1345, 1364), False, 'import cv2\n'), ((1408, 1434), 'torch.unsqueeze', 'torch.unsqueeze', (['tensor', '(0)'], {}), '(tensor, 0)\n', (1423, 1434), False, 'import torch\n'), ((1999, 2018), 'torch.flatten', 'torch.flatten', (['x', '(1)'], {}), '(x, 1)\n', (2012, 2018), False, 'import torch\n'), ((305, 328), 'torchvision.transforms.transforms.ToPILImage', 'transforms.ToPILImage', ([], {}), '()\n', (326, 328), False, 'from torchvision.transforms import transforms\n'), ((338, 359), 'torchvision.transforms.transforms.ToTensor', 'transforms.ToTensor', ([], {}), '()\n', (357, 359), False, 'from torchvision.transforms import transforms\n'), ((618, 632), 'numpy.min', 'np.min', (['tensor'], {}), '(tensor)\n', (624, 632), True, 'import numpy as np\n'), ((655, 669), 'numpy.max', 'np.max', (['tensor'], {}), '(tensor)\n', (661, 669), True, 'import numpy as np\n'), ((703, 725), 'numpy.uint8', 'np.uint8', (['(255 * tensor)'], {}), '(255 * tensor)\n', (711, 725), True, 'import numpy as np\n'), ((2223, 2262), 'numpy.concatenate', 'np.concatenate', (['(image, heat_1)'], {'axis': '(1)'}), '((image, heat_1), axis=1)\n', (2237, 2262), True, 'import numpy as np\n')]
import os import numpy as np import tensorflow as tf from image_quality.utils import utils class TrainDataGenerator(tf.keras.utils.Sequence): '''inherits from Keras Sequence base object, allows to use multiprocessing in .fit_generator''' def __init__(self, samples, img_dir, batch_size, n_classes, basenet_preprocess, img_load_dims=(256, 256), img_crop_dims=(224, 224), shuffle=True): self.samples = samples self.img_dir = img_dir self.batch_size = batch_size self.n_classes = n_classes self.basenet_preprocess = basenet_preprocess # Keras basenet specific preprocessing function self.img_load_dims = img_load_dims # dimensions that images get resized into when loaded self.img_crop_dims = img_crop_dims # dimensions that images get randomly cropped to self.shuffle = shuffle self.on_epoch_end() # call ensures that samples are shuffled in first epoch if shuffle is set to True def __len__(self): return int(np.ceil(len(self.samples) / self.batch_size)) # number of batches per epoch def __getitem__(self, index): batch_indexes = self.indexes[index*self.batch_size:(index+1)*self.batch_size] # get batch indexes batch_samples = [self.samples[i] for i in batch_indexes] # get batch samples X, y = self.__data_generator(batch_samples) return X, y def on_epoch_end(self): self.indexes = np.arange(len(self.samples)) if self.shuffle is True: np.random.shuffle(self.indexes) def __data_generator(self, batch_samples): # initialize images and labels tensors for faster processing X = np.empty((len(batch_samples), *self.img_crop_dims, 3)) y = np.empty((len(batch_samples), self.n_classes)) for i, sample in enumerate(batch_samples): # load and randomly augment image img_file = os.path.join(self.img_dir, '{}'.format(sample['image_id'])) img = utils.load_image(img_file, self.img_load_dims) if img is not None: img = utils.random_crop(img, self.img_crop_dims) img = utils.random_horizontal_flip(img) X[i, ] = img # normalize labels y[i, ] = utils.normalize_labels(sample['label']) # apply basenet specific preprocessing # input is 4D numpy array of RGB values within [0, 255] X = self.basenet_preprocess(X) return X, y class TestDataGenerator(tf.keras.utils.Sequence): '''inherits from Keras Sequence base object, allows to use multiprocessing in .fit_generator''' def __init__(self, samples, img_dir, batch_size, n_classes, basenet_preprocess, img_load_dims=(224, 224)): self.samples = samples self.img_dir = img_dir self.batch_size = batch_size self.n_classes = n_classes self.basenet_preprocess = basenet_preprocess # Keras basenet specific preprocessing function self.img_load_dims = img_load_dims # dimensions that images get resized into when loaded self.on_epoch_end() # call ensures that samples are shuffled in first epoch if shuffle is set to True def __len__(self): return int(np.ceil(len(self.samples) / self.batch_size)) # number of batches per epoch def __getitem__(self, index): batch_indexes = self.indexes[index*self.batch_size:(index+1)*self.batch_size] # get batch indexes batch_samples = [self.samples[i] for i in batch_indexes] # get batch samples X, y = self.__data_generator(batch_samples) return X, y def on_epoch_end(self): self.indexes = np.arange(len(self.samples)) def __data_generator(self, batch_samples): # initialize images and labels tensors for faster processing X = np.empty((len(batch_samples), *self.img_load_dims, 3)) y = np.empty((len(batch_samples), self.n_classes)) for i, sample in enumerate(batch_samples): # load and randomly augment image img_file = os.path.join(self.img_dir, '{}'.format(sample['image_id'])) img = utils.load_image(img_file, self.img_load_dims) if img is not None: X[i, ] = img # normalize labels if sample.get('label') is not None: y[i, ] = utils.normalize_labels(sample['label']) # apply basenet specific preprocessing # input is 4D numpy array of RGB values within [0, 255] X = self.basenet_preprocess(X) return X, y
[ "image_quality.utils.utils.random_crop", "image_quality.utils.utils.load_image", "image_quality.utils.utils.random_horizontal_flip", "image_quality.utils.utils.normalize_labels", "numpy.random.shuffle" ]
[((1440, 1471), 'numpy.random.shuffle', 'np.random.shuffle', (['self.indexes'], {}), '(self.indexes)\n', (1457, 1471), True, 'import numpy as np\n'), ((1878, 1924), 'image_quality.utils.utils.load_image', 'utils.load_image', (['img_file', 'self.img_load_dims'], {}), '(img_file, self.img_load_dims)\n', (1894, 1924), False, 'from image_quality.utils import utils\n'), ((2118, 2157), 'image_quality.utils.utils.normalize_labels', 'utils.normalize_labels', (["sample['label']"], {}), "(sample['label'])\n", (2140, 2157), False, 'from image_quality.utils import utils\n'), ((3876, 3922), 'image_quality.utils.utils.load_image', 'utils.load_image', (['img_file', 'self.img_load_dims'], {}), '(img_file, self.img_load_dims)\n', (3892, 3922), False, 'from image_quality.utils import utils\n'), ((1965, 2007), 'image_quality.utils.utils.random_crop', 'utils.random_crop', (['img', 'self.img_crop_dims'], {}), '(img, self.img_crop_dims)\n', (1982, 2007), False, 'from image_quality.utils import utils\n'), ((2022, 2055), 'image_quality.utils.utils.random_horizontal_flip', 'utils.random_horizontal_flip', (['img'], {}), '(img)\n', (2050, 2055), False, 'from image_quality.utils import utils\n'), ((4055, 4094), 'image_quality.utils.utils.normalize_labels', 'utils.normalize_labels', (["sample['label']"], {}), "(sample['label'])\n", (4077, 4094), False, 'from image_quality.utils import utils\n')]
# -*- coding: utf-8 -*- """ Licensed to the Apache Software Foundation (ASF) under one or more contributor license agreements. See the NOTICE file distributed with this work for additional information regarding copyright ownership. The ASF licenses this file to you under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from qiskit.quantum_info.operators.channel import Choi, PTM, Kraus, Chi, SuperOp import numpy as np from qat.comm.quops.ttypes import QuantumChannel, RepresentationType from qat.comm.datamodel.ttypes import Matrix, ComplexNumber def array_to_matrix(array): """ Transform a two dimmentional numpy array to a myqlm Matrix. Args: array: (ndarray) a two dimmentional numpy array Returns: (Matrix): a myqlm Matrix """ assert len(array.shape) == 2, "The array must be two dimmentional" data = [] for arr in array: for elem in arr: data.append(ComplexNumber(np.real(elem), np.imag(elem))) matri = Matrix(array.shape[0], array.shape[1], data) return matri def qiskit_to_qchannel(representation): """ Create a myqlm representation of quantum channel from a qiskit representation of a quantum channel. Args: representation: (Kraus|Choi|Chi|SuperOp|PTM) qiskit representation of a quantum channel. Returns: (QuantumChannel): myqlm representation of a quantum channel. """ qchannel = None qiskit_data = representation.data # Find what representation it is. # Then create the corresponding matrix (kraus_ops|basis|matrix)from the data # of the representation. # Finally, create the QuantumChannel with the RepresentationType, the arity # (got from the qiskit representation) and the matrix. if isinstance(representation, Kraus): kraus_ops = [] for arr in qiskit_data: kraus_ops.append(array_to_matrix(arr)) qchannel = QuantumChannel( representation=RepresentationType.KRAUS, arity=representation.num_qubits, kraus_ops=kraus_ops) elif isinstance(representation, Chi): basis = [] basis.append(array_to_matrix(qiskit_data)) qchannel = QuantumChannel( representation=RepresentationType.CHI, arity=representation.num_qubits, basis=basis) elif isinstance(representation, SuperOp): basis = [] basis.append(array_to_matrix(qiskit_data)) qchannel = QuantumChannel( representation=RepresentationType.SUPEROP, arity=representation.num_qubits, basis=basis) elif isinstance(representation, PTM): matri = array_to_matrix(qiskit_data) qchannel = QuantumChannel( representation=RepresentationType.PTM, arity=representation.num_qubits, matrix=matri) elif isinstance(representation, Choi): matri = array_to_matrix(qiskit_data) qchannel = QuantumChannel( representation=RepresentationType.CHOI, arity=representation.num_qubits, matrix=matri) return qchannel def qchannel_to_qiskit(representation): """ Create a qiskit representation of quantum channel from a myqlm representation of a quantum channel. Args: representation: (QuantumChannel) myqlm representation of a quantum channel. Returns: (Kraus|Choi|Chi|SuperOp|PTM): qiskit representation of a quantum channel. """ rep = representation.representation # Find what representation it is. # Then create the corresponding matrix and shape it like qiskit is expecting it. # Finally, create the qiskit representation from that matrix. if rep in (RepresentationType.PTM, RepresentationType.CHOI): matri = representation.matrix data_re = [] data_im = [] for i in range(matri.nRows): for j in range(matri.nCols): data_re.append(matri.data[i * matri.nRows + j].re + 0.j) data_im.append(matri.data[i * matri.nRows + j].im) data = np.array(data_re) data.imag = np.array(data_im) data = data.reshape((matri.nRows, matri.nCols)) return PTM(data) if (rep == RepresentationType.PTM) else Choi(data) if rep in (RepresentationType.CHI, RepresentationType.SUPEROP): final_data = [] for matri in representation.basis: data_re = [] data_im = [] for i in range(matri.nRows): for j in range(matri.nCols): data_re.append(matri.data[i * matri.nRows + j].re + 0.j) data_im.append(matri.data[i * matri.nRows + j].im) data = np.array(data_re) data.imag = np.array(data_im) data = data.reshape((matri.nRows, matri.nCols)) final_data.append(data) if rep == RepresentationType.CHI: return Chi(final_data) if len(final_data) > 1 else Chi(final_data[0]) return SuperOp(final_data) if len(final_data) > 1 else SuperOp(final_data[0]) if rep == RepresentationType.KRAUS: final_data = [] for matri in representation.kraus_ops: data_re = [] data_im = [] for i in range(matri.nRows): for j in range(matri.nCols): data_re.append(matri.data[i * matri.nRows + j].re + 0.j) data_im.append(matri.data[i * matri.nRows + j].im) data = np.array(data_re) data.imag = np.array(data_im) data = data.reshape((matri.nRows, matri.nCols)) final_data.append(data) return Kraus(final_data) return None
[ "qiskit.quantum_info.operators.channel.Chi", "qiskit.quantum_info.operators.channel.Kraus", "qiskit.quantum_info.operators.channel.Choi", "qiskit.quantum_info.operators.channel.PTM", "qat.comm.quops.ttypes.QuantumChannel", "numpy.array", "qiskit.quantum_info.operators.channel.SuperOp", "numpy.real", "qat.comm.datamodel.ttypes.Matrix", "numpy.imag" ]
[((1512, 1556), 'qat.comm.datamodel.ttypes.Matrix', 'Matrix', (['array.shape[0]', 'array.shape[1]', 'data'], {}), '(array.shape[0], array.shape[1], data)\n', (1518, 1556), False, 'from qat.comm.datamodel.ttypes import Matrix, ComplexNumber\n'), ((2444, 2558), 'qat.comm.quops.ttypes.QuantumChannel', 'QuantumChannel', ([], {'representation': 'RepresentationType.KRAUS', 'arity': 'representation.num_qubits', 'kraus_ops': 'kraus_ops'}), '(representation=RepresentationType.KRAUS, arity=\n representation.num_qubits, kraus_ops=kraus_ops)\n', (2458, 2558), False, 'from qat.comm.quops.ttypes import QuantumChannel, RepresentationType\n'), ((4610, 4627), 'numpy.array', 'np.array', (['data_re'], {}), '(data_re)\n', (4618, 4627), True, 'import numpy as np\n'), ((4648, 4665), 'numpy.array', 'np.array', (['data_im'], {}), '(data_im)\n', (4656, 4665), True, 'import numpy as np\n'), ((6187, 6204), 'qiskit.quantum_info.operators.channel.Kraus', 'Kraus', (['final_data'], {}), '(final_data)\n', (6192, 6204), False, 'from qiskit.quantum_info.operators.channel import Choi, PTM, Kraus, Chi, SuperOp\n'), ((2722, 2826), 'qat.comm.quops.ttypes.QuantumChannel', 'QuantumChannel', ([], {'representation': 'RepresentationType.CHI', 'arity': 'representation.num_qubits', 'basis': 'basis'}), '(representation=RepresentationType.CHI, arity=representation.\n num_qubits, basis=basis)\n', (2736, 2826), False, 'from qat.comm.quops.ttypes import QuantumChannel, RepresentationType\n'), ((4737, 4746), 'qiskit.quantum_info.operators.channel.PTM', 'PTM', (['data'], {}), '(data)\n', (4740, 4746), False, 'from qiskit.quantum_info.operators.channel import Choi, PTM, Kraus, Chi, SuperOp\n'), ((4787, 4797), 'qiskit.quantum_info.operators.channel.Choi', 'Choi', (['data'], {}), '(data)\n', (4791, 4797), False, 'from qiskit.quantum_info.operators.channel import Choi, PTM, Kraus, Chi, SuperOp\n'), ((5236, 5253), 'numpy.array', 'np.array', (['data_re'], {}), '(data_re)\n', (5244, 5253), True, 'import numpy as np\n'), ((5278, 5295), 'numpy.array', 'np.array', (['data_im'], {}), '(data_im)\n', (5286, 5295), True, 'import numpy as np\n'), ((5531, 5550), 'qiskit.quantum_info.operators.channel.SuperOp', 'SuperOp', (['final_data'], {}), '(final_data)\n', (5538, 5550), False, 'from qiskit.quantum_info.operators.channel import Choi, PTM, Kraus, Chi, SuperOp\n'), ((5579, 5601), 'qiskit.quantum_info.operators.channel.SuperOp', 'SuperOp', (['final_data[0]'], {}), '(final_data[0])\n', (5586, 5601), False, 'from qiskit.quantum_info.operators.channel import Choi, PTM, Kraus, Chi, SuperOp\n'), ((6016, 6033), 'numpy.array', 'np.array', (['data_re'], {}), '(data_re)\n', (6024, 6033), True, 'import numpy as np\n'), ((6058, 6075), 'numpy.array', 'np.array', (['data_im'], {}), '(data_im)\n', (6066, 6075), True, 'import numpy as np\n'), ((2994, 3102), 'qat.comm.quops.ttypes.QuantumChannel', 'QuantumChannel', ([], {'representation': 'RepresentationType.SUPEROP', 'arity': 'representation.num_qubits', 'basis': 'basis'}), '(representation=RepresentationType.SUPEROP, arity=\n representation.num_qubits, basis=basis)\n', (3008, 3102), False, 'from qat.comm.quops.ttypes import QuantumChannel, RepresentationType\n'), ((5453, 5468), 'qiskit.quantum_info.operators.channel.Chi', 'Chi', (['final_data'], {}), '(final_data)\n', (5456, 5468), False, 'from qiskit.quantum_info.operators.channel import Choi, PTM, Kraus, Chi, SuperOp\n'), ((5497, 5515), 'qiskit.quantum_info.operators.channel.Chi', 'Chi', (['final_data[0]'], {}), '(final_data[0])\n', (5500, 5515), False, 'from qiskit.quantum_info.operators.channel import Choi, PTM, Kraus, Chi, SuperOp\n'), ((1469, 1482), 'numpy.real', 'np.real', (['elem'], {}), '(elem)\n', (1476, 1482), True, 'import numpy as np\n'), ((1484, 1497), 'numpy.imag', 'np.imag', (['elem'], {}), '(elem)\n', (1491, 1497), True, 'import numpy as np\n'), ((3241, 3346), 'qat.comm.quops.ttypes.QuantumChannel', 'QuantumChannel', ([], {'representation': 'RepresentationType.PTM', 'arity': 'representation.num_qubits', 'matrix': 'matri'}), '(representation=RepresentationType.PTM, arity=representation.\n num_qubits, matrix=matri)\n', (3255, 3346), False, 'from qat.comm.quops.ttypes import QuantumChannel, RepresentationType\n'), ((3486, 3592), 'qat.comm.quops.ttypes.QuantumChannel', 'QuantumChannel', ([], {'representation': 'RepresentationType.CHOI', 'arity': 'representation.num_qubits', 'matrix': 'matri'}), '(representation=RepresentationType.CHOI, arity=representation\n .num_qubits, matrix=matri)\n', (3500, 3592), False, 'from qat.comm.quops.ttypes import QuantumChannel, RepresentationType\n')]
#!/usr/bin/env python3 """ Copyright (c) 2018-2021 Intel Corporation Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from openvino.runtime import Core, get_version import cv2 as cv import numpy as np import logging as log from time import perf_counter import sys from argparse import ArgumentParser, SUPPRESS from pathlib import Path sys.path.append(str(Path(__file__).resolve().parents[2] / 'common/python')) sys.path.append(str(Path(__file__).resolve().parents[2] / 'common/python/openvino/model_zoo')) import monitors from images_capture import open_images_capture from model_api.performance_metrics import PerformanceMetrics log.basicConfig(format='[ %(levelname)s ] %(message)s', level=log.DEBUG, stream=sys.stdout) def build_arg(): parser = ArgumentParser(add_help=False) in_args = parser.add_argument_group('Options') in_args.add_argument('-h', '--help', action='help', default=SUPPRESS, help='Help with the script.') in_args.add_argument("-m", "--model", help="Required. Path to .xml file with pre-trained model.", required=True, type=Path) in_args.add_argument("-d", "--device", help="Optional. Specify target device for infer: CPU, GPU, HDDL or MYRIAD. " "Default: CPU", default="CPU", type=str) in_args.add_argument('-i', "--input", required=True, help='Required. An input to process. The input must be a single image, ' 'a folder of images, video file or camera id.') in_args.add_argument('--loop', default=False, action='store_true', help='Optional. Enable reading the input in a loop.') in_args.add_argument('-o', '--output', required=False, help='Optional. Name of the output file(s) to save.') in_args.add_argument('-limit', '--output_limit', required=False, default=1000, type=int, help='Optional. Number of frames to store in output. ' 'If 0 is set, all frames are stored.') in_args.add_argument("--no_show", help="Optional. Don't show output.", action='store_true', default=False) in_args.add_argument("-u", "--utilization_monitors", default="", type=str, help="Optional. List of monitors to show initially.") return parser def main(args): cap = open_images_capture(args.input, args.loop) log.info('OpenVINO Inference Engine') log.info('\tbuild: {}'.format(get_version())) core = Core() log.info('Reading model {}'.format(args.model)) model = core.read_model(args.model, args.model.with_suffix(".bin")) input_tensor_name = 'data_l' input_shape = model.input(input_tensor_name).shape assert input_shape[1] == 1, "Expected model input shape with 1 channel" inputs = {} for input in model.inputs: inputs[input.get_any_name()] = np.zeros(input.shape) assert len(model.outputs) == 1, "Expected number of outputs is equal 1" compiled_model = core.compile_model(model, device_name=args.device) infer_request = compiled_model.create_infer_request() log.info('The model {} is loaded to {}'.format(args.model, args.device)) _, _, h_in, w_in = input_shape frames_processed = 0 imshow_size = (640, 480) graph_size = (imshow_size[0] // 2, imshow_size[1] // 4) presenter = monitors.Presenter(args.utilization_monitors, imshow_size[1] * 2 - graph_size[1], graph_size) metrics = PerformanceMetrics() video_writer = cv.VideoWriter() if args.output and not video_writer.open(args.output, cv.VideoWriter_fourcc(*'MJPG'), cap.fps(), (imshow_size[0] * 2, imshow_size[1] * 2)): raise RuntimeError("Can't open video writer") start_time = perf_counter() original_frame = cap.read() if original_frame is None: raise RuntimeError("Can't read an image from the input") while original_frame is not None: (h_orig, w_orig) = original_frame.shape[:2] if original_frame.shape[2] > 1: frame = cv.cvtColor(cv.cvtColor(original_frame, cv.COLOR_BGR2GRAY), cv.COLOR_GRAY2RGB) else: frame = cv.cvtColor(original_frame, cv.COLOR_GRAY2RGB) img_rgb = frame.astype(np.float32) / 255 img_lab = cv.cvtColor(img_rgb, cv.COLOR_RGB2Lab) img_l_rs = cv.resize(img_lab.copy(), (w_in, h_in))[:, :, 0] inputs[input_tensor_name] = np.expand_dims(img_l_rs, axis=[0, 1]) res = next(iter(infer_request.infer(inputs).values())) update_res = np.squeeze(res) out = update_res.transpose((1, 2, 0)) out = cv.resize(out, (w_orig, h_orig)) img_lab_out = np.concatenate((img_lab[:, :, 0][:, :, np.newaxis], out), axis=2) img_bgr_out = np.clip(cv.cvtColor(img_lab_out, cv.COLOR_Lab2BGR), 0, 1) original_image = cv.resize(original_frame, imshow_size) grayscale_image = cv.resize(frame, imshow_size) colorize_image = (cv.resize(img_bgr_out, imshow_size) * 255).astype(np.uint8) lab_image = cv.resize(img_lab_out, imshow_size).astype(np.uint8) original_image = cv.putText(original_image, 'Original', (25, 50), cv.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2, cv.LINE_AA) grayscale_image = cv.putText(grayscale_image, 'Grayscale', (25, 50), cv.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2, cv.LINE_AA) colorize_image = cv.putText(colorize_image, 'Colorize', (25, 50), cv.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2, cv.LINE_AA) lab_image = cv.putText(lab_image, 'LAB interpretation', (25, 50), cv.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2, cv.LINE_AA) ir_image = [cv.hconcat([original_image, grayscale_image]), cv.hconcat([lab_image, colorize_image])] final_image = cv.vconcat(ir_image) metrics.update(start_time, final_image) frames_processed += 1 if video_writer.isOpened() and (args.output_limit <= 0 or frames_processed <= args.output_limit): video_writer.write(final_image) presenter.drawGraphs(final_image) if not args.no_show: cv.imshow('Colorization Demo', final_image) key = cv.waitKey(1) if key in {ord("q"), ord("Q"), 27}: break presenter.handleKey(key) start_time = perf_counter() original_frame = cap.read() metrics.log_total() for rep in presenter.reportMeans(): log.info(rep) if __name__ == "__main__": args = build_arg().parse_args() sys.exit(main(args) or 0)
[ "cv2.vconcat", "model_api.performance_metrics.PerformanceMetrics", "images_capture.open_images_capture", "cv2.imshow", "logging.info", "argparse.ArgumentParser", "pathlib.Path", "time.perf_counter", "cv2.VideoWriter", "numpy.concatenate", "cv2.VideoWriter_fourcc", "cv2.waitKey", "numpy.squeeze", "cv2.putText", "cv2.cvtColor", "cv2.resize", "cv2.hconcat", "logging.basicConfig", "openvino.runtime.Core", "numpy.zeros", "numpy.expand_dims", "monitors.Presenter", "openvino.runtime.get_version" ]
[((1125, 1220), 'logging.basicConfig', 'log.basicConfig', ([], {'format': '"""[ %(levelname)s ] %(message)s"""', 'level': 'log.DEBUG', 'stream': 'sys.stdout'}), "(format='[ %(levelname)s ] %(message)s', level=log.DEBUG,\n stream=sys.stdout)\n", (1140, 1220), True, 'import logging as log\n'), ((1249, 1279), 'argparse.ArgumentParser', 'ArgumentParser', ([], {'add_help': '(False)'}), '(add_help=False)\n', (1263, 1279), False, 'from argparse import ArgumentParser, SUPPRESS\n'), ((2931, 2973), 'images_capture.open_images_capture', 'open_images_capture', (['args.input', 'args.loop'], {}), '(args.input, args.loop)\n', (2950, 2973), False, 'from images_capture import open_images_capture\n'), ((2979, 3016), 'logging.info', 'log.info', (['"""OpenVINO Inference Engine"""'], {}), "('OpenVINO Inference Engine')\n", (2987, 3016), True, 'import logging as log\n'), ((3078, 3084), 'openvino.runtime.Core', 'Core', ([], {}), '()\n', (3082, 3084), False, 'from openvino.runtime import Core, get_version\n'), ((3936, 4033), 'monitors.Presenter', 'monitors.Presenter', (['args.utilization_monitors', '(imshow_size[1] * 2 - graph_size[1])', 'graph_size'], {}), '(args.utilization_monitors, imshow_size[1] * 2 -\n graph_size[1], graph_size)\n', (3954, 4033), False, 'import monitors\n'), ((4044, 4064), 'model_api.performance_metrics.PerformanceMetrics', 'PerformanceMetrics', ([], {}), '()\n', (4062, 4064), False, 'from model_api.performance_metrics import PerformanceMetrics\n'), ((4085, 4101), 'cv2.VideoWriter', 'cv.VideoWriter', ([], {}), '()\n', (4099, 4101), True, 'import cv2 as cv\n'), ((4363, 4377), 'time.perf_counter', 'perf_counter', ([], {}), '()\n', (4375, 4377), False, 'from time import perf_counter\n'), ((3462, 3483), 'numpy.zeros', 'np.zeros', (['input.shape'], {}), '(input.shape)\n', (3470, 3483), True, 'import numpy as np\n'), ((4886, 4924), 'cv2.cvtColor', 'cv.cvtColor', (['img_rgb', 'cv.COLOR_RGB2Lab'], {}), '(img_rgb, cv.COLOR_RGB2Lab)\n', (4897, 4924), True, 'import cv2 as cv\n'), ((5030, 5067), 'numpy.expand_dims', 'np.expand_dims', (['img_l_rs'], {'axis': '[0, 1]'}), '(img_l_rs, axis=[0, 1])\n', (5044, 5067), True, 'import numpy as np\n'), ((5154, 5169), 'numpy.squeeze', 'np.squeeze', (['res'], {}), '(res)\n', (5164, 5169), True, 'import numpy as np\n'), ((5231, 5263), 'cv2.resize', 'cv.resize', (['out', '(w_orig, h_orig)'], {}), '(out, (w_orig, h_orig))\n', (5240, 5263), True, 'import cv2 as cv\n'), ((5286, 5351), 'numpy.concatenate', 'np.concatenate', (['(img_lab[:, :, 0][:, :, np.newaxis], out)'], {'axis': '(2)'}), '((img_lab[:, :, 0][:, :, np.newaxis], out), axis=2)\n', (5300, 5351), True, 'import numpy as np\n'), ((5458, 5496), 'cv2.resize', 'cv.resize', (['original_frame', 'imshow_size'], {}), '(original_frame, imshow_size)\n', (5467, 5496), True, 'import cv2 as cv\n'), ((5523, 5552), 'cv2.resize', 'cv.resize', (['frame', 'imshow_size'], {}), '(frame, imshow_size)\n', (5532, 5552), True, 'import cv2 as cv\n'), ((5738, 5846), 'cv2.putText', 'cv.putText', (['original_image', '"""Original"""', '(25, 50)', 'cv.FONT_HERSHEY_SIMPLEX', '(1)', '(0, 0, 255)', '(2)', 'cv.LINE_AA'], {}), "(original_image, 'Original', (25, 50), cv.FONT_HERSHEY_SIMPLEX, 1,\n (0, 0, 255), 2, cv.LINE_AA)\n", (5748, 5846), True, 'import cv2 as cv\n'), ((5905, 6015), 'cv2.putText', 'cv.putText', (['grayscale_image', '"""Grayscale"""', '(25, 50)', 'cv.FONT_HERSHEY_SIMPLEX', '(1)', '(0, 0, 255)', '(2)', 'cv.LINE_AA'], {}), "(grayscale_image, 'Grayscale', (25, 50), cv.FONT_HERSHEY_SIMPLEX,\n 1, (0, 0, 255), 2, cv.LINE_AA)\n", (5915, 6015), True, 'import cv2 as cv\n'), ((6074, 6182), 'cv2.putText', 'cv.putText', (['colorize_image', '"""Colorize"""', '(25, 50)', 'cv.FONT_HERSHEY_SIMPLEX', '(1)', '(0, 0, 255)', '(2)', 'cv.LINE_AA'], {}), "(colorize_image, 'Colorize', (25, 50), cv.FONT_HERSHEY_SIMPLEX, 1,\n (0, 0, 255), 2, cv.LINE_AA)\n", (6084, 6182), True, 'import cv2 as cv\n'), ((6235, 6349), 'cv2.putText', 'cv.putText', (['lab_image', '"""LAB interpretation"""', '(25, 50)', 'cv.FONT_HERSHEY_SIMPLEX', '(1)', '(0, 0, 255)', '(2)', 'cv.LINE_AA'], {}), "(lab_image, 'LAB interpretation', (25, 50), cv.\n FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2, cv.LINE_AA)\n", (6245, 6349), True, 'import cv2 as cv\n'), ((6527, 6547), 'cv2.vconcat', 'cv.vconcat', (['ir_image'], {}), '(ir_image)\n', (6537, 6547), True, 'import cv2 as cv\n'), ((7066, 7080), 'time.perf_counter', 'perf_counter', ([], {}), '()\n', (7078, 7080), False, 'from time import perf_counter\n'), ((7190, 7203), 'logging.info', 'log.info', (['rep'], {}), '(rep)\n', (7198, 7203), True, 'import logging as log\n'), ((3051, 3064), 'openvino.runtime.get_version', 'get_version', ([], {}), '()\n', (3062, 3064), False, 'from openvino.runtime import Core, get_version\n'), ((4771, 4817), 'cv2.cvtColor', 'cv.cvtColor', (['original_frame', 'cv.COLOR_GRAY2RGB'], {}), '(original_frame, cv.COLOR_GRAY2RGB)\n', (4782, 4817), True, 'import cv2 as cv\n'), ((5382, 5424), 'cv2.cvtColor', 'cv.cvtColor', (['img_lab_out', 'cv.COLOR_Lab2BGR'], {}), '(img_lab_out, cv.COLOR_Lab2BGR)\n', (5393, 5424), True, 'import cv2 as cv\n'), ((6397, 6442), 'cv2.hconcat', 'cv.hconcat', (['[original_image, grayscale_image]'], {}), '([original_image, grayscale_image])\n', (6407, 6442), True, 'import cv2 as cv\n'), ((6464, 6503), 'cv2.hconcat', 'cv.hconcat', (['[lab_image, colorize_image]'], {}), '([lab_image, colorize_image])\n', (6474, 6503), True, 'import cv2 as cv\n'), ((6862, 6905), 'cv2.imshow', 'cv.imshow', (['"""Colorization Demo"""', 'final_image'], {}), "('Colorization Demo', final_image)\n", (6871, 6905), True, 'import cv2 as cv\n'), ((6924, 6937), 'cv2.waitKey', 'cv.waitKey', (['(1)'], {}), '(1)\n', (6934, 6937), True, 'import cv2 as cv\n'), ((4160, 4190), 'cv2.VideoWriter_fourcc', 'cv.VideoWriter_fourcc', (["*'MJPG'"], {}), "(*'MJPG')\n", (4181, 4190), True, 'import cv2 as cv\n'), ((4670, 4716), 'cv2.cvtColor', 'cv.cvtColor', (['original_frame', 'cv.COLOR_BGR2GRAY'], {}), '(original_frame, cv.COLOR_BGR2GRAY)\n', (4681, 4716), True, 'import cv2 as cv\n'), ((5659, 5694), 'cv2.resize', 'cv.resize', (['img_lab_out', 'imshow_size'], {}), '(img_lab_out, imshow_size)\n', (5668, 5694), True, 'import cv2 as cv\n'), ((5579, 5614), 'cv2.resize', 'cv.resize', (['img_bgr_out', 'imshow_size'], {}), '(img_bgr_out, imshow_size)\n', (5588, 5614), True, 'import cv2 as cv\n'), ((848, 862), 'pathlib.Path', 'Path', (['__file__'], {}), '(__file__)\n', (852, 862), False, 'from pathlib import Path\n'), ((924, 938), 'pathlib.Path', 'Path', (['__file__'], {}), '(__file__)\n', (928, 938), False, 'from pathlib import Path\n')]
import math import imageio import cv2 as cv import numpy as np import transformer def fix_rotation(img): img_copy = img.copy() img = cv.cvtColor(img, cv.COLOR_BGR2GRAY) rows, cols = img.shape img = cv.adaptiveThreshold(img, 255, cv.ADAPTIVE_THRESH_MEAN_C, cv.THRESH_BINARY_INV, 15, 9) kernel = cv.getStructuringElement(cv.MORPH_ELLIPSE, (3, 3)) img = cv.morphologyEx(img, cv.MORPH_OPEN, kernel) img = cv.medianBlur(img, 3) contours, hierarchy = cv.findContours(img, cv.RETR_LIST, cv.CHAIN_APPROX_NONE) roi = max(contours, key=cv.contourArea) x, y, w, h = cv.boundingRect(roi) corners = [[x, y], [x + w, y], [x, y + h], [x + w, y + h]] src = np.float32(corners) # src = np.reshape(src, (len(src), 1, 2)) # perimeter = cv.arcLength(src, True) # corners = cv.approxPolyDP(src, perimeter // 10, True) # corners = np.vstack(corners) dst = np.float32([[0, 0], [cols, 0], [0, rows], [cols, rows]]) matrix = cv.getPerspectiveTransform(src, dst) rotated_img = cv.warpPerspective(img_copy, matrix, (cols, rows)) cv.imshow('', rotated_img) D1 = 105 D2 = 175 D3 = 275 if __name__ == "__main__": cap = cv.VideoCapture('samples/delta.mp4') if not cap.isOpened(): raise IOError("Video was not opened!") mse = 0 count = 0 reader = imageio.get_reader('samples/delta.mp4') fps = reader.get_meta_data()['fps'] writer = imageio.get_writer('samples/result.mp4', fps=fps) while True: res, frame = cap.read() if not res: break mean_error = 0 holes_count = 0 img = frame.copy() cv.imshow('dfa', img) frame = cv.cvtColor(frame, cv.COLOR_BGR2GRAY) frame_copy = frame.copy() # frame = cv.adaptiveThreshold(frame, 255, cv.ADAPTIVE_THRESH_MEAN_C, cv.THRESH_BINARY_INV, 15, 9) # kernel = cv.getStructuringElement(cv.MORPH_ELLIPSE, (3, 3)) # frame = cv.morphologyEx(frame, cv.MORPH_OPEN, kernel) # frame = cv.medianBlur(frame, 3) # contours, hierarchy = cv.findContours(frame, cv.RETR_LIST, cv.CHAIN_APPROX_NONE) # roi = max(contours, key=cv.contourArea) # x, y, w, h = cv.boundingRect(roi) x, y, w, h = 115, 0, 445, 360 img = img[y: y+h, x: x+w] img = transformer.rotate_along_axis(img, theta=40) frame_copy = frame_copy[y: y+h, x: x+w] frame_copy = transformer.rotate_along_axis(frame_copy, theta=40) # cv.imshow('', frame_copy) # cv.rectangle(frame_copy, (x, y), (x + w, y + h), (0, 255, 0), 2) # cv.drawContours(frame_copy, roi, -1, (0, 0, 255), 2) # res, mask = cv.threshold(frame_copy, 0, 255, cv.THRESH_BINARY) # frame_copy = cv.bitwise_and(frame_copy, frame_copy, mask=mask) # corners = cv.goodFeaturesToTrack(frame_copy, 1000, 0.0001, 1) # corners = list(sorted(corners, key=lambda x: x[0][1])) # print(corners[-1], corners[-2]) # print() # corners = np.array([[38, 293], [407, 293]]) # for item in corners: # # x, y = map(int, item.ravel()) # x, y = item # cv.circle(img, (x, y), 5, (0, 0, 255), -1) src = np.float32([[0, 0], [w, 0], [38, 293], [407, 293]]) dst = np.float32([[0, 0], [w, 0], [30, h], [w - 30, h]]) matrix = cv.getPerspectiveTransform(src, dst) img = cv.warpPerspective(img, matrix, (w, h)) cv.imshow('', img) img_copy = img.copy() img = cv.cvtColor(img, cv.COLOR_BGR2GRAY) img = cv.adaptiveThreshold(img, 255, cv.ADAPTIVE_THRESH_MEAN_C, cv.THRESH_BINARY_INV, 15, 9) kernel = cv.getStructuringElement(cv.MORPH_ELLIPSE, (3, 3)) img = cv.morphologyEx(img, cv.MORPH_OPEN, kernel) img = cv.medianBlur(img, 3) origin = (w // 2 + 4, h // 2 + 2) o1, o2 = origin r = w // 2 + 1 ORIGIN = (0, 0) R = 300 # mm contours, hierarchy = cv.findContours(img, cv.RETR_LIST, cv.CHAIN_APPROX_NONE) contours = list(filter(lambda x: 50 < cv.contourArea(x) < 175, contours)) factor = 0.1 smooth_contours = [] for i in range(len(contours)): epsilon = factor * cv.arcLength(contours[i], True) approx = cv.approxPolyDP(contours[i], epsilon, True) x, y, width, height = cv.boundingRect(approx) area = width*height if len(approx) == 4 and 75 < area < 200: smooth_contours.append(contours[i]) center, radius = cv.minEnclosingCircle(approx) radius = int(radius) center = tuple(map(int, center)) x, y = center X = ((x - o1) * R) / r Y = ((y - o2) * R) / r X, Y = round(X, 2), round(Y, 2) cv.circle(img_copy, center, radius, (0, 255, 0), 2) cv.putText(img_copy, str((X, Y)), center, cv.FONT_HERSHEY_SIMPLEX, 0.3, (255, 0, 255, 255), 1, cv.LINE_AA) e1, e2, e3 = map(lambda d: abs(math.hypot(X, Y) - d), [D1, D2, D3]) error = min(e1, e2, e3) if error < 10: mean_error += error ** 2 holes_count += 1 cv.circle(img_copy, origin, 4, (0, 0, 255), -1) # cv.line(img_copy, origin, (origin[0], origin[1]), (255, 0, 255), 2) mean_error /= holes_count mse += mean_error count += 1 cv.imshow("Final", img_copy) writer.append_data(img_copy) # cv.imshow("Chg", img) if cv.waitKey(30) == 27: break print("E:", mse / count, "N:", count) writer.close() cap.release() cv.destroyAllWindows()
[ "cv2.imshow", "cv2.warpPerspective", "cv2.destroyAllWindows", "cv2.approxPolyDP", "math.hypot", "imageio.get_writer", "imageio.get_reader", "cv2.arcLength", "cv2.medianBlur", "cv2.contourArea", "cv2.waitKey", "cv2.getPerspectiveTransform", "cv2.minEnclosingCircle", "cv2.morphologyEx", "cv2.circle", "cv2.cvtColor", "transformer.rotate_along_axis", "cv2.adaptiveThreshold", "cv2.VideoCapture", "cv2.findContours", "cv2.getStructuringElement", "numpy.float32", "cv2.boundingRect" ]
[((142, 177), 'cv2.cvtColor', 'cv.cvtColor', (['img', 'cv.COLOR_BGR2GRAY'], {}), '(img, cv.COLOR_BGR2GRAY)\n', (153, 177), True, 'import cv2 as cv\n'), ((215, 306), 'cv2.adaptiveThreshold', 'cv.adaptiveThreshold', (['img', '(255)', 'cv.ADAPTIVE_THRESH_MEAN_C', 'cv.THRESH_BINARY_INV', '(15)', '(9)'], {}), '(img, 255, cv.ADAPTIVE_THRESH_MEAN_C, cv.\n THRESH_BINARY_INV, 15, 9)\n', (235, 306), True, 'import cv2 as cv\n'), ((316, 366), 'cv2.getStructuringElement', 'cv.getStructuringElement', (['cv.MORPH_ELLIPSE', '(3, 3)'], {}), '(cv.MORPH_ELLIPSE, (3, 3))\n', (340, 366), True, 'import cv2 as cv\n'), ((377, 420), 'cv2.morphologyEx', 'cv.morphologyEx', (['img', 'cv.MORPH_OPEN', 'kernel'], {}), '(img, cv.MORPH_OPEN, kernel)\n', (392, 420), True, 'import cv2 as cv\n'), ((432, 453), 'cv2.medianBlur', 'cv.medianBlur', (['img', '(3)'], {}), '(img, 3)\n', (445, 453), True, 'import cv2 as cv\n'), ((481, 537), 'cv2.findContours', 'cv.findContours', (['img', 'cv.RETR_LIST', 'cv.CHAIN_APPROX_NONE'], {}), '(img, cv.RETR_LIST, cv.CHAIN_APPROX_NONE)\n', (496, 537), True, 'import cv2 as cv\n'), ((604, 624), 'cv2.boundingRect', 'cv.boundingRect', (['roi'], {}), '(roi)\n', (619, 624), True, 'import cv2 as cv\n'), ((698, 717), 'numpy.float32', 'np.float32', (['corners'], {}), '(corners)\n', (708, 717), True, 'import numpy as np\n'), ((912, 968), 'numpy.float32', 'np.float32', (['[[0, 0], [cols, 0], [0, rows], [cols, rows]]'], {}), '([[0, 0], [cols, 0], [0, rows], [cols, rows]])\n', (922, 968), True, 'import numpy as np\n'), ((983, 1019), 'cv2.getPerspectiveTransform', 'cv.getPerspectiveTransform', (['src', 'dst'], {}), '(src, dst)\n', (1009, 1019), True, 'import cv2 as cv\n'), ((1038, 1088), 'cv2.warpPerspective', 'cv.warpPerspective', (['img_copy', 'matrix', '(cols, rows)'], {}), '(img_copy, matrix, (cols, rows))\n', (1056, 1088), True, 'import cv2 as cv\n'), ((1093, 1119), 'cv2.imshow', 'cv.imshow', (['""""""', 'rotated_img'], {}), "('', rotated_img)\n", (1102, 1119), True, 'import cv2 as cv\n'), ((1187, 1223), 'cv2.VideoCapture', 'cv.VideoCapture', (['"""samples/delta.mp4"""'], {}), "('samples/delta.mp4')\n", (1202, 1223), True, 'import cv2 as cv\n'), ((1339, 1378), 'imageio.get_reader', 'imageio.get_reader', (['"""samples/delta.mp4"""'], {}), "('samples/delta.mp4')\n", (1357, 1378), False, 'import imageio\n'), ((1432, 1481), 'imageio.get_writer', 'imageio.get_writer', (['"""samples/result.mp4"""'], {'fps': 'fps'}), "('samples/result.mp4', fps=fps)\n", (1450, 1481), False, 'import imageio\n'), ((5765, 5787), 'cv2.destroyAllWindows', 'cv.destroyAllWindows', ([], {}), '()\n', (5785, 5787), True, 'import cv2 as cv\n'), ((1653, 1674), 'cv2.imshow', 'cv.imshow', (['"""dfa"""', 'img'], {}), "('dfa', img)\n", (1662, 1674), True, 'import cv2 as cv\n'), ((1691, 1728), 'cv2.cvtColor', 'cv.cvtColor', (['frame', 'cv.COLOR_BGR2GRAY'], {}), '(frame, cv.COLOR_BGR2GRAY)\n', (1702, 1728), True, 'import cv2 as cv\n'), ((2320, 2364), 'transformer.rotate_along_axis', 'transformer.rotate_along_axis', (['img'], {'theta': '(40)'}), '(img, theta=40)\n', (2349, 2364), False, 'import transformer\n'), ((2434, 2485), 'transformer.rotate_along_axis', 'transformer.rotate_along_axis', (['frame_copy'], {'theta': '(40)'}), '(frame_copy, theta=40)\n', (2463, 2485), False, 'import transformer\n'), ((3234, 3285), 'numpy.float32', 'np.float32', (['[[0, 0], [w, 0], [38, 293], [407, 293]]'], {}), '([[0, 0], [w, 0], [38, 293], [407, 293]])\n', (3244, 3285), True, 'import numpy as np\n'), ((3300, 3350), 'numpy.float32', 'np.float32', (['[[0, 0], [w, 0], [30, h], [w - 30, h]]'], {}), '([[0, 0], [w, 0], [30, h], [w - 30, h]])\n', (3310, 3350), True, 'import numpy as np\n'), ((3368, 3404), 'cv2.getPerspectiveTransform', 'cv.getPerspectiveTransform', (['src', 'dst'], {}), '(src, dst)\n', (3394, 3404), True, 'import cv2 as cv\n'), ((3419, 3458), 'cv2.warpPerspective', 'cv.warpPerspective', (['img', 'matrix', '(w, h)'], {}), '(img, matrix, (w, h))\n', (3437, 3458), True, 'import cv2 as cv\n'), ((3467, 3485), 'cv2.imshow', 'cv.imshow', (['""""""', 'img'], {}), "('', img)\n", (3476, 3485), True, 'import cv2 as cv\n'), ((3531, 3566), 'cv2.cvtColor', 'cv.cvtColor', (['img', 'cv.COLOR_BGR2GRAY'], {}), '(img, cv.COLOR_BGR2GRAY)\n', (3542, 3566), True, 'import cv2 as cv\n'), ((3581, 3672), 'cv2.adaptiveThreshold', 'cv.adaptiveThreshold', (['img', '(255)', 'cv.ADAPTIVE_THRESH_MEAN_C', 'cv.THRESH_BINARY_INV', '(15)', '(9)'], {}), '(img, 255, cv.ADAPTIVE_THRESH_MEAN_C, cv.\n THRESH_BINARY_INV, 15, 9)\n', (3601, 3672), True, 'import cv2 as cv\n'), ((3686, 3736), 'cv2.getStructuringElement', 'cv.getStructuringElement', (['cv.MORPH_ELLIPSE', '(3, 3)'], {}), '(cv.MORPH_ELLIPSE, (3, 3))\n', (3710, 3736), True, 'import cv2 as cv\n'), ((3751, 3794), 'cv2.morphologyEx', 'cv.morphologyEx', (['img', 'cv.MORPH_OPEN', 'kernel'], {}), '(img, cv.MORPH_OPEN, kernel)\n', (3766, 3794), True, 'import cv2 as cv\n'), ((3809, 3830), 'cv2.medianBlur', 'cv.medianBlur', (['img', '(3)'], {}), '(img, 3)\n', (3822, 3830), True, 'import cv2 as cv\n'), ((3998, 4054), 'cv2.findContours', 'cv.findContours', (['img', 'cv.RETR_LIST', 'cv.CHAIN_APPROX_NONE'], {}), '(img, cv.RETR_LIST, cv.CHAIN_APPROX_NONE)\n', (4013, 4054), True, 'import cv2 as cv\n'), ((5318, 5365), 'cv2.circle', 'cv.circle', (['img_copy', 'origin', '(4)', '(0, 0, 255)', '(-1)'], {}), '(img_copy, origin, 4, (0, 0, 255), -1)\n', (5327, 5365), True, 'import cv2 as cv\n'), ((5532, 5560), 'cv2.imshow', 'cv.imshow', (['"""Final"""', 'img_copy'], {}), "('Final', img_copy)\n", (5541, 5560), True, 'import cv2 as cv\n'), ((4319, 4362), 'cv2.approxPolyDP', 'cv.approxPolyDP', (['contours[i]', 'epsilon', '(True)'], {}), '(contours[i], epsilon, True)\n', (4334, 4362), True, 'import cv2 as cv\n'), ((4410, 4433), 'cv2.boundingRect', 'cv.boundingRect', (['approx'], {}), '(approx)\n', (4425, 4433), True, 'import cv2 as cv\n'), ((5641, 5655), 'cv2.waitKey', 'cv.waitKey', (['(30)'], {}), '(30)\n', (5651, 5655), True, 'import cv2 as cv\n'), ((4266, 4297), 'cv2.arcLength', 'cv.arcLength', (['contours[i]', '(True)'], {}), '(contours[i], True)\n', (4278, 4297), True, 'import cv2 as cv\n'), ((4605, 4634), 'cv2.minEnclosingCircle', 'cv.minEnclosingCircle', (['approx'], {}), '(approx)\n', (4626, 4634), True, 'import cv2 as cv\n'), ((4896, 4947), 'cv2.circle', 'cv.circle', (['img_copy', 'center', 'radius', '(0, 255, 0)', '(2)'], {}), '(img_copy, center, radius, (0, 255, 0), 2)\n', (4905, 4947), True, 'import cv2 as cv\n'), ((4101, 4118), 'cv2.contourArea', 'cv.contourArea', (['x'], {}), '(x)\n', (4115, 4118), True, 'import cv2 as cv\n'), ((5119, 5135), 'math.hypot', 'math.hypot', (['X', 'Y'], {}), '(X, Y)\n', (5129, 5135), False, 'import math\n')]
# This is the code to train the xgboost model with cross-validation for each unique room in the dataset. # Models are dumped into ./models and results are dumped into two csv files in the current work directory. import argparse import json import math import os import pickle import warnings from typing import Tuple import numpy as np import pandas as pd import xgboost as xgb from hyperopt import fmin, tpe, hp, STATUS_OK, Trials from imblearn.over_sampling import SMOTE from numpy.random import RandomState from sklearn.metrics import r2_score, mean_squared_error from sklearn.model_selection import train_test_split from sklearn.utils import compute_sample_weight from tqdm import tqdm from xgboost import DMatrix, cv # Set up an argument parser to decide the metric function parser = argparse.ArgumentParser() parser.add_argument("--metric", choices=['R2', 'RMSE'], type=str, required=False, default='R2', help="The evaluation metric you want to use to train the XGBoost model") parser.add_argument("--log", choices=[0, 1, 100], type=int, required=False, default=0, help="Whether to print out the training progress") parser.add_argument("--SMOTE", choices=[0, 1], type=int, required=False, default=1, help="Whether use the SMOTE or not") parser.add_argument("--SMOGN", choices=[0, 1], type=int, required=False, default=0, help="Whether use the SMOGN or not") parser.add_argument("--SampleWeight", choices=[0, 1], type=int, required=False, default=0, help="Whether use the sample weight") args = parser.parse_args() # Ignore all the warnings and set pandas to display every column and row everytime we print a dataframe warnings.filterwarnings('ignore') pd.set_option('display.max_columns', None) pd.set_option('display.max_rows', None) assert args.SMOTE != args.SMOGN, "Can't use SMOTE and SMOGN at the same time!" # Load the data with a positive AC electricity consumption value, and drop the time data as we don't need them data = pd.read_csv("summer_data_compiled.csv", index_col=0) data = data[data.AC > 0].drop(['Time', 'Date', 'Hour'], axis=1).reset_index(drop=True) # Create some directory to store the models and future analysis figures. # log_folder_name = "Test_{}_{}".format(args.metric, datetime.now().strftime("%Y_%m_%d_%H_%M_%S")) log_folder_name = "Test_R2_HYPEROPT" log_folder_name = log_folder_name + "_SMOTE" if args.SMOTE else log_folder_name log_folder_name = log_folder_name + "_SMOGN" if args.SMOGN else log_folder_name log_folder_name = log_folder_name + "_SW" if args.SampleWeight else log_folder_name previous_parameter_folder = "Test_R2_HYPEROPT" assert log_folder_name != previous_parameter_folder, "Previous folder name exists" if not os.path.exists('./{}/'.format(log_folder_name)): os.mkdir('./{}'.format(log_folder_name)) os.mkdir('./{}/models/'.format(log_folder_name)) os.mkdir('./{}/trntst_models/'.format(log_folder_name)) # Define our evaluation functions def RMSE(predt: np.ndarray, dtrain: DMatrix) -> Tuple[str, float]: truth_value = dtrain.get_label() root_squard_error = math.sqrt(mean_squared_error(truth_value, predt)) return "RMSE", root_squard_error def R2(predt: np.ndarray, dtrain: DMatrix) -> Tuple[str, float]: truth_value = dtrain.get_label() r2_value = r2_score(truth_value, predt) return "R2", r2_value def fobjective(space): param_dict_tunning = {'max_depth': int(space['max_depth']), 'learning_rate': space['learning_rate'], 'colsample_bytree': space['colsample_bytree'], 'min_child_weight': int(space['min_child_weight']), 'reg_alpha': int(space['reg_alpha']), 'reg_lambda': space['reg_lambda'], 'subsample': space['subsample'], 'min_split_loss': space['min_split_loss'], 'objective': 'reg:squarederror'} xgb_cv_result = xgb.cv(dtrain=data_matrix, params=param_dict_tunning, nfold=5, early_stopping_rounds=30, as_pandas=True, num_boost_round=200, seed=seed, metrics='rmse', maximize=False, shuffle=True) return {"loss": (xgb_cv_result["test-rmse-mean"]).tail(1).iloc[0], "status": STATUS_OK} eval_dict = {'RMSE': RMSE, 'R2': R2} print("Start Training The Models") # Create two dataframes to store the result during the training and after the training. error_csv = pd.DataFrame( columns=['room', 'train-{}-mean'.format(args.metric), 'train-{}-std'.format(args.metric), 'train-rmse-mean', 'train-rmse-std', 'test-{}-mean'.format(args.metric), 'test-{}-std'.format(args.metric), 'test-rmse-mean', 'test-rmse-std']) prediction_csv = pd.DataFrame(columns=['room', 'observation', 'prediction']) room_list = data['Location'].unique() # ranging through all the rooms and do the training and cross-validation for each room. for room in tqdm(room_list): seed = 2030 + room # Four rooms have low quality data and we delete them manually if room == 309 or room == 312 or room == 826 or room == 917 or room == 1001: continue # We extract the data of particular room and run the SMOTE algorithm on it. room_data = data[data.Location == room].drop(['Location'], axis=1).reset_index(drop=True) if args.SMOTE: # Label all the AC data by 0.75, all AC above 0.75 will be marked as 1, otherwise 0. Split into X and y room_data['SMOTE_split'] = (room_data['AC'] > 0.75).astype('int') X = room_data.drop(['SMOTE_split'], axis=1) y = room_data['SMOTE_split'] # Run the SMOTE algorithm and retrieve the result. model_smote = SMOTE(random_state=621, k_neighbors=3) room_data_smote, smote_split = model_smote.fit_resample(X, y) # concat the result from SMOTE and split the result into X and y for training. room_data_smote = pd.concat([room_data_smote, smote_split], axis=1) y = room_data_smote['AC'] X = room_data_smote.drop(['AC', 'SMOTE_split'], axis=1) elif args.SMOGN: if len(room_data) < 500: room_data['SMOTE_split'] = (room_data['AC'] > 0.75).astype('int') X = room_data.drop(['SMOTE_split'], axis=1) y = room_data['SMOTE_split'] # Run the SMOTE algorithm and retrieve the result. model_smote = SMOTE(random_state=621, k_neighbors=3) room_data_smote, smote_split = model_smote.fit_resample(X, y) # concat the result from SMOTE and split the result into X and y for training. room_data_smote = pd.concat([room_data_smote, smote_split], axis=1) y = room_data_smote['AC'] X = room_data_smote.drop(['AC', 'SMOTE_split'], axis=1) else: room_data = pd.read_csv('./SMOGN_processed/{}.csv'.format(room), index_col=0) y = room_data['AC'] X = room_data.drop(['AC'], axis=1) else: y = pd.DataFrame(room_data['AC'].fillna(method='pad')) X = room_data.drop(['AC'], axis=1).fillna(method='pad') if args.SampleWeight: class_sample = pd.cut(y, bins=15) weight = compute_sample_weight(class_weight="balanced", y=class_sample) X = X.to_numpy() # Build another full data matrix for the built-in cross validation function to work. data_matrix = DMatrix(data=X, label=y, weight=weight) if args.SampleWeight else DMatrix(data=X, label=y) # Cross_validation with hyper-parameter tuning space = {'max_depth': hp.quniform("max_depth", 3, 10, 1), 'learning_rate': hp.uniform("learning_rate", 0.1, 3), 'colsample_bytree': hp.uniform("colsample_bytree", 0.5, 1), 'min_child_weight': hp.quniform("min_child_weight", 1, 20, 1), 'reg_alpha': hp.quniform("reg_alpha", 0, 100, 1), 'reg_lambda': hp.uniform("reg_lambda", 0, 2), 'subsample': hp.uniform("subsample", 0.5, 1), 'min_split_loss': hp.uniform("min_split_loss", 0, 9)} if os.path.exists('./{}/models/{}_parameter.npy'.format(previous_parameter_folder, room)): best_param_dict = np.load('./{}/models/{}_parameter.npy'.format(previous_parameter_folder, room), allow_pickle=True).item() np.save('./{}/models/{}_parameter.npy'.format(log_folder_name, room), best_param_dict) else: trials = Trials() best_hyperparams = fmin(fn=fobjective, space=space, algo=tpe.suggest, max_evals=400, trials=trials, rstate=RandomState(seed)) # setup our training parameters and a model variable as model checkpoint best_param_dict = {'objective': 'reg:squarederror', 'max_depth': int(best_hyperparams['max_depth']), 'reg_alpha': best_hyperparams['reg_alpha'], 'reg_lambda': best_hyperparams['reg_lambda'], 'min_child_weight': best_hyperparams['min_child_weight'], 'colsample_bytree': best_hyperparams['colsample_bytree'], 'learning_rate': best_hyperparams['learning_rate'], 'subsample': best_hyperparams['subsample'], 'min_split_loss': best_hyperparams['min_split_loss']} np.save('./{}/models/{}_parameter.npy'.format(log_folder_name, room), best_param_dict) # Use the built-in cv function to do the cross validation, still with ten folds, this will return us the results. xgb_cv_result = cv(dtrain=data_matrix, params=best_param_dict, nfold=5, early_stopping_rounds=30, as_pandas=True, num_boost_round=200, seed=seed, shuffle=True, feval=eval_dict[args.metric], maximize=True) xgb_cv_result['room'] = room error_csv.loc[len(error_csv)] = xgb_cv_result.loc[len(xgb_cv_result) - 1] # Use one training_testing for ploting, and save both ground truth and prediction value into the dataframe X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=seed) d_train = DMatrix(X_train, label=y_train) d_test = DMatrix(X_test, label=y_test) watchlist = [(d_test, 'eval'), (d_train, 'train')] xgb_model_train_test = xgb.train(params=best_param_dict, dtrain=d_train, num_boost_round=200, evals=watchlist, verbose_eval=args.log, xgb_model=None, feval=eval_dict[args.metric], maximize=True) prediction = np.array(xgb_model_train_test.predict(d_test)).tolist() real = np.array(y_test).tolist() prediction_csv.loc[len(prediction_csv)] = {'room': room, 'observation': json.dumps(real), 'prediction': json.dumps(prediction)} # Dump the error dataframes into csv files. error_csv.to_csv('./{}/error.csv'.format(log_folder_name), index=False) prediction_csv.to_csv('./{}/prediction.csv'.format(log_folder_name), index=False) # Develop a model using the whole orignial dataset, and save the model xgb_model_full = xgb.train(params=best_param_dict, dtrain=data_matrix, num_boost_round=200, evals=watchlist, verbose_eval=args.log, xgb_model=None, feval=eval_dict[args.metric], maximize=True) # Save all the models we trained for future use pickle.dump(xgb_model_train_test, open('./{}/trntst_models/{}.pickle.bat'.format(log_folder_name, room), 'wb')) pickle.dump(xgb_model_full, open('./{}/models/{}.pickle.bat'.format(log_folder_name, room), 'wb')) print("Training finished!")
[ "pandas.read_csv", "numpy.array", "xgboost.DMatrix", "sklearn.metrics.r2_score", "numpy.random.RandomState", "argparse.ArgumentParser", "xgboost.train", "json.dumps", "pandas.set_option", "xgboost.cv", "pandas.DataFrame", "sklearn.model_selection.train_test_split", "hyperopt.hp.quniform", "sklearn.metrics.mean_squared_error", "hyperopt.hp.uniform", "sklearn.utils.compute_sample_weight", "warnings.filterwarnings", "hyperopt.Trials", "imblearn.over_sampling.SMOTE", "tqdm.tqdm", "pandas.cut", "pandas.concat" ]
[((792, 817), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (815, 817), False, 'import argparse\n'), ((1688, 1721), 'warnings.filterwarnings', 'warnings.filterwarnings', (['"""ignore"""'], {}), "('ignore')\n", (1711, 1721), False, 'import warnings\n'), ((1722, 1764), 'pandas.set_option', 'pd.set_option', (['"""display.max_columns"""', 'None'], {}), "('display.max_columns', None)\n", (1735, 1764), True, 'import pandas as pd\n'), ((1765, 1804), 'pandas.set_option', 'pd.set_option', (['"""display.max_rows"""', 'None'], {}), "('display.max_rows', None)\n", (1778, 1804), True, 'import pandas as pd\n'), ((2004, 2056), 'pandas.read_csv', 'pd.read_csv', (['"""summer_data_compiled.csv"""'], {'index_col': '(0)'}), "('summer_data_compiled.csv', index_col=0)\n", (2015, 2056), True, 'import pandas as pd\n'), ((4810, 4869), 'pandas.DataFrame', 'pd.DataFrame', ([], {'columns': "['room', 'observation', 'prediction']"}), "(columns=['room', 'observation', 'prediction'])\n", (4822, 4869), True, 'import pandas as pd\n'), ((5010, 5025), 'tqdm.tqdm', 'tqdm', (['room_list'], {}), '(room_list)\n', (5014, 5025), False, 'from tqdm import tqdm\n'), ((3315, 3343), 'sklearn.metrics.r2_score', 'r2_score', (['truth_value', 'predt'], {}), '(truth_value, predt)\n', (3323, 3343), False, 'from sklearn.metrics import r2_score, mean_squared_error\n'), ((4010, 4201), 'xgboost.cv', 'xgb.cv', ([], {'dtrain': 'data_matrix', 'params': 'param_dict_tunning', 'nfold': '(5)', 'early_stopping_rounds': '(30)', 'as_pandas': '(True)', 'num_boost_round': '(200)', 'seed': 'seed', 'metrics': '"""rmse"""', 'maximize': '(False)', 'shuffle': '(True)'}), "(dtrain=data_matrix, params=param_dict_tunning, nfold=5,\n early_stopping_rounds=30, as_pandas=True, num_boost_round=200, seed=\n seed, metrics='rmse', maximize=False, shuffle=True)\n", (4016, 4201), True, 'import xgboost as xgb\n'), ((9618, 9815), 'xgboost.cv', 'cv', ([], {'dtrain': 'data_matrix', 'params': 'best_param_dict', 'nfold': '(5)', 'early_stopping_rounds': '(30)', 'as_pandas': '(True)', 'num_boost_round': '(200)', 'seed': 'seed', 'shuffle': '(True)', 'feval': 'eval_dict[args.metric]', 'maximize': '(True)'}), '(dtrain=data_matrix, params=best_param_dict, nfold=5,\n early_stopping_rounds=30, as_pandas=True, num_boost_round=200, seed=\n seed, shuffle=True, feval=eval_dict[args.metric], maximize=True)\n', (9620, 9815), False, 'from xgboost import DMatrix, cv\n'), ((10116, 10172), 'sklearn.model_selection.train_test_split', 'train_test_split', (['X', 'y'], {'test_size': '(0.2)', 'random_state': 'seed'}), '(X, y, test_size=0.2, random_state=seed)\n', (10132, 10172), False, 'from sklearn.model_selection import train_test_split\n'), ((10187, 10218), 'xgboost.DMatrix', 'DMatrix', (['X_train'], {'label': 'y_train'}), '(X_train, label=y_train)\n', (10194, 10218), False, 'from xgboost import DMatrix, cv\n'), ((10232, 10261), 'xgboost.DMatrix', 'DMatrix', (['X_test'], {'label': 'y_test'}), '(X_test, label=y_test)\n', (10239, 10261), False, 'from xgboost import DMatrix, cv\n'), ((10346, 10526), 'xgboost.train', 'xgb.train', ([], {'params': 'best_param_dict', 'dtrain': 'd_train', 'num_boost_round': '(200)', 'evals': 'watchlist', 'verbose_eval': 'args.log', 'xgb_model': 'None', 'feval': 'eval_dict[args.metric]', 'maximize': '(True)'}), '(params=best_param_dict, dtrain=d_train, num_boost_round=200,\n evals=watchlist, verbose_eval=args.log, xgb_model=None, feval=eval_dict\n [args.metric], maximize=True)\n', (10355, 10526), True, 'import xgboost as xgb\n'), ((11154, 11338), 'xgboost.train', 'xgb.train', ([], {'params': 'best_param_dict', 'dtrain': 'data_matrix', 'num_boost_round': '(200)', 'evals': 'watchlist', 'verbose_eval': 'args.log', 'xgb_model': 'None', 'feval': 'eval_dict[args.metric]', 'maximize': '(True)'}), '(params=best_param_dict, dtrain=data_matrix, num_boost_round=200,\n evals=watchlist, verbose_eval=args.log, xgb_model=None, feval=eval_dict\n [args.metric], maximize=True)\n', (11163, 11338), True, 'import xgboost as xgb\n'), ((3119, 3157), 'sklearn.metrics.mean_squared_error', 'mean_squared_error', (['truth_value', 'predt'], {}), '(truth_value, predt)\n', (3137, 3157), False, 'from sklearn.metrics import r2_score, mean_squared_error\n'), ((5767, 5805), 'imblearn.over_sampling.SMOTE', 'SMOTE', ([], {'random_state': '(621)', 'k_neighbors': '(3)'}), '(random_state=621, k_neighbors=3)\n', (5772, 5805), False, 'from imblearn.over_sampling import SMOTE\n'), ((5990, 6039), 'pandas.concat', 'pd.concat', (['[room_data_smote, smote_split]'], {'axis': '(1)'}), '([room_data_smote, smote_split], axis=1)\n', (5999, 6039), True, 'import pandas as pd\n'), ((7218, 7236), 'pandas.cut', 'pd.cut', (['y'], {'bins': '(15)'}), '(y, bins=15)\n', (7224, 7236), True, 'import pandas as pd\n'), ((7254, 7316), 'sklearn.utils.compute_sample_weight', 'compute_sample_weight', ([], {'class_weight': '"""balanced"""', 'y': 'class_sample'}), "(class_weight='balanced', y=class_sample)\n", (7275, 7316), False, 'from sklearn.utils import compute_sample_weight\n'), ((7447, 7486), 'xgboost.DMatrix', 'DMatrix', ([], {'data': 'X', 'label': 'y', 'weight': 'weight'}), '(data=X, label=y, weight=weight)\n', (7454, 7486), False, 'from xgboost import DMatrix, cv\n'), ((7513, 7537), 'xgboost.DMatrix', 'DMatrix', ([], {'data': 'X', 'label': 'y'}), '(data=X, label=y)\n', (7520, 7537), False, 'from xgboost import DMatrix, cv\n'), ((7616, 7650), 'hyperopt.hp.quniform', 'hp.quniform', (['"""max_depth"""', '(3)', '(10)', '(1)'], {}), "('max_depth', 3, 10, 1)\n", (7627, 7650), False, 'from hyperopt import fmin, tpe, hp, STATUS_OK, Trials\n'), ((7682, 7717), 'hyperopt.hp.uniform', 'hp.uniform', (['"""learning_rate"""', '(0.1)', '(3)'], {}), "('learning_rate', 0.1, 3)\n", (7692, 7717), False, 'from hyperopt import fmin, tpe, hp, STATUS_OK, Trials\n'), ((7752, 7790), 'hyperopt.hp.uniform', 'hp.uniform', (['"""colsample_bytree"""', '(0.5)', '(1)'], {}), "('colsample_bytree', 0.5, 1)\n", (7762, 7790), False, 'from hyperopt import fmin, tpe, hp, STATUS_OK, Trials\n'), ((7825, 7866), 'hyperopt.hp.quniform', 'hp.quniform', (['"""min_child_weight"""', '(1)', '(20)', '(1)'], {}), "('min_child_weight', 1, 20, 1)\n", (7836, 7866), False, 'from hyperopt import fmin, tpe, hp, STATUS_OK, Trials\n'), ((7894, 7929), 'hyperopt.hp.quniform', 'hp.quniform', (['"""reg_alpha"""', '(0)', '(100)', '(1)'], {}), "('reg_alpha', 0, 100, 1)\n", (7905, 7929), False, 'from hyperopt import fmin, tpe, hp, STATUS_OK, Trials\n'), ((7958, 7988), 'hyperopt.hp.uniform', 'hp.uniform', (['"""reg_lambda"""', '(0)', '(2)'], {}), "('reg_lambda', 0, 2)\n", (7968, 7988), False, 'from hyperopt import fmin, tpe, hp, STATUS_OK, Trials\n'), ((8016, 8047), 'hyperopt.hp.uniform', 'hp.uniform', (['"""subsample"""', '(0.5)', '(1)'], {}), "('subsample', 0.5, 1)\n", (8026, 8047), False, 'from hyperopt import fmin, tpe, hp, STATUS_OK, Trials\n'), ((8080, 8114), 'hyperopt.hp.uniform', 'hp.uniform', (['"""min_split_loss"""', '(0)', '(9)'], {}), "('min_split_loss', 0, 9)\n", (8090, 8114), False, 'from hyperopt import fmin, tpe, hp, STATUS_OK, Trials\n'), ((8500, 8508), 'hyperopt.Trials', 'Trials', ([], {}), '()\n', (8506, 8508), False, 'from hyperopt import fmin, tpe, hp, STATUS_OK, Trials\n'), ((10743, 10759), 'json.dumps', 'json.dumps', (['real'], {}), '(real)\n', (10753, 10759), False, 'import json\n'), ((10822, 10844), 'json.dumps', 'json.dumps', (['prediction'], {}), '(prediction)\n', (10832, 10844), False, 'import json\n'), ((10640, 10656), 'numpy.array', 'np.array', (['y_test'], {}), '(y_test)\n', (10648, 10656), True, 'import numpy as np\n'), ((6457, 6495), 'imblearn.over_sampling.SMOTE', 'SMOTE', ([], {'random_state': '(621)', 'k_neighbors': '(3)'}), '(random_state=621, k_neighbors=3)\n', (6462, 6495), False, 'from imblearn.over_sampling import SMOTE\n'), ((6692, 6741), 'pandas.concat', 'pd.concat', (['[room_data_smote, smote_split]'], {'axis': '(1)'}), '([room_data_smote, smote_split], axis=1)\n', (6701, 6741), True, 'import pandas as pd\n'), ((8656, 8673), 'numpy.random.RandomState', 'RandomState', (['seed'], {}), '(seed)\n', (8667, 8673), False, 'from numpy.random import RandomState\n')]
import numpy as np from pyad.nn import NeuralNet from sklearn.datasets import load_breast_cancer from sklearn.model_selection import train_test_split np.random.seed(0) data = load_breast_cancer() X_train, X_test, y_train, y_test = train_test_split( data.data, data.target, train_size=0.8, random_state=0 ) nn = NeuralNet(loss_fn='cross_entropy') nn.add_layer(X_train.shape[1], 100, activation='linear') nn.add_layer(100, 100, activation='logistic') nn.add_layer(100, 1 + np.max(y_train), activation='linear') nn.train( X_train, y_train, X_test, y_test, batch_size=1, learning_rate=1e-3, epochs=20 ) print('Predictions:', nn.predict(X_test))
[ "sklearn.model_selection.train_test_split", "sklearn.datasets.load_breast_cancer", "numpy.max", "pyad.nn.NeuralNet", "numpy.random.seed" ]
[((151, 168), 'numpy.random.seed', 'np.random.seed', (['(0)'], {}), '(0)\n', (165, 168), True, 'import numpy as np\n'), ((176, 196), 'sklearn.datasets.load_breast_cancer', 'load_breast_cancer', ([], {}), '()\n', (194, 196), False, 'from sklearn.datasets import load_breast_cancer\n'), ((233, 305), 'sklearn.model_selection.train_test_split', 'train_test_split', (['data.data', 'data.target'], {'train_size': '(0.8)', 'random_state': '(0)'}), '(data.data, data.target, train_size=0.8, random_state=0)\n', (249, 305), False, 'from sklearn.model_selection import train_test_split\n'), ((318, 352), 'pyad.nn.NeuralNet', 'NeuralNet', ([], {'loss_fn': '"""cross_entropy"""'}), "(loss_fn='cross_entropy')\n", (327, 352), False, 'from pyad.nn import NeuralNet\n'), ((478, 493), 'numpy.max', 'np.max', (['y_train'], {}), '(y_train)\n', (484, 493), True, 'import numpy as np\n')]
# required modules import numpy as np import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec from matplotlib import cm from matplotlib.colors import Normalize from mpl_toolkits.mplot3d import Axes3D from matplotlib.animation import FuncAnimation # two-dimesional version def plot_mse_loss_surface_2d(fig, ax, x, y, v=0.0, l2=0.0, w1_range=(-2, 2), w2_range=(2, -2)): # create weight space n_w = 100 w1 = np.linspace(w1_range[0], w1_range[1], num=n_w) # weight 1 w2 = np.linspace(w2_range[0], w2_range[1], num=n_w) # weight 2 ws_x, ws_y = np.meshgrid(w1, w2) cost_ws = np.zeros((n_w, n_w)) # initialize cost matrix # Fill the cost matrix for each combination of weights for i in range(n_w): for j in range(n_w): y_pred = ws_x[i, j] * ws_y[i, j] * x y_true = y cost_ws[i, j] = 0.5 * (y_true - y_pred)**2 + \ 0.5 * l2 * (ws_x[i, j]**2 + ws_y[i, j]**2) + 0.5 * v * (ws_x[i, j]*ws_y[i, j])**2 # compute gradients dy, dx = np.gradient(cost_ws) # plot vector space skip = (slice(None, None, 5), slice(None, None, 5)) # fig, ax = plt.subplots(figsize=(8, 8)) #ax.contour(ws_x, ws_y, cost_ws, 200) im = ax.imshow(cost_ws, extent=[ws_x.min(), ws_x.max( ), ws_y.min(), ws_y.max()], cmap=cm.coolwarm) ax.quiver(ws_x[skip], ws_y[skip], -dx[skip], dy[skip], cost_ws[skip]) cbar = fig.colorbar(im, ax=ax) # ax.set(aspect=1, title='Loss Surface') cbar.ax.set_ylabel('$Loss$', fontsize=15) ax.set_xlabel('$w_1$', fontsize=15) ax.set_ylabel('$w_2$', fontsize=15) # ax.grid() # add saddle point ax.scatter(0, 0, label='Saddle point', c='red', marker='*') # ax.scatter(0,0, c='black', marker=r'$\rightarrow$', label='Negative gradient') settings = (x, y, v, l2, w1_range, w2_range) return ax, settings # three-dimensional version def plot_mse_loss_surface_3d(ax, x, y, v=0.0, l2=0.0, w1_range=(-2, 2), w2_range=(2, -2), angle=30): # create weight space n_w = 100 w1 = np.linspace(w1_range[0], w1_range[1], num=n_w) # weight 1 w2 = np.linspace(w2_range[0], w2_range[1], num=n_w) # weight 2 ws_x, ws_y = np.meshgrid(w1, w2) cost_ws = np.zeros((n_w, n_w)) # initialize cost matrix # Fill the cost matrix for each combination of weights for i in range(n_w): for j in range(n_w): y_pred = ws_x[i, j] * ws_y[i, j] * x y_true = y cost_ws[i, j] = 0.5 * (y_true - y_pred)**2 + \ 0.5 * l2 * (ws_x[i, j]**2 + ws_y[i, j]**2) + 0.5 * v * (ws_x[i, j]*ws_y[i, j])**2 X = ws_x Y = ws_y Z = cost_ws #fig, ax = plt.subplots(figsize=(8, 8)) #ax = fig.add_subplot(1,1,1, projection='3d') # fourth dimention - colormap # create colormap according to x-value (can use any 50x50 array) color_dimension = Z # change to desired fourth dimension minn, maxx = color_dimension.min(), color_dimension.max() norm = Normalize(minn, maxx) m = plt.cm.ScalarMappable(norm=norm, cmap='jet') m.set_array([]) fcolors = m.to_rgba(color_dimension) # plot # fig = plt.figure(figsize=(8, 8)) # ax = fig.gca(projection='3d') ax.set_zlim(0, 50) ax.plot([0], [0], 'ro', c='red', marker='*', label='Saddle point') ax.plot_surface(X, Y, Z, rstride=1, cstride=1, facecolors=fcolors, vmin=minn, vmax=maxx, shade=False, alpha=1) ax.set_xlabel('$w_1$', fontsize=20) ax.set_ylabel('$w_2$', fontsize=20) ax.set_zlabel('$Loss$', fontsize=20) settings = (x, y, v, l2, w1_range, w2_range) ax.view_init(angle, 10) return ax, settings def plot_global_minimum_manifold_2d(ax, settings): # retieve cached settings x, y, v, l2, w1_range, w2_range = settings n_w = 1000 man_w1 = np.linspace(w1_range[0], w1_range[1], num=n_w) man_w2 = np.linspace(w2_range[0], w2_range[1], num=n_w) man_ws_x, man_ws_y = np.meshgrid(man_w1, man_w2) loss = 0.5 * y *(1 - man_ws_x * man_ws_y * x)**2 + \ 0.5 * l2 * (man_ws_x**2 + man_ws_y**2) + 0.5 * v * (man_ws_x * man_ws_y)**2 min_loss = np.min(loss) manifold_indices = loss < min_loss + 1e-5 manifold_x = man_ws_x[manifold_indices] manifold_y = man_ws_y[manifold_indices] # plot manifold of global minima ax.scatter(manifold_y, manifold_x, s=0.1, c='cyan', label='Manifold of global minima') def plot_global_minimum_manifold_3d(ax, settings): # retieve cached settings x, y, v, l2, w1_range, w2_range = settings n_w = 1000 man_w1 = np.linspace(w1_range[0], w1_range[1], num=n_w) man_w2 = np.linspace(w2_range[0], w2_range[1], num=n_w) man_ws_x, man_ws_y = np.meshgrid(man_w1, man_w2) loss = 0.5 * y * (1 - man_ws_x * man_ws_y * x)**2 + \ 0.5 * l2 * (man_ws_x**2 + man_ws_y**2) + 0.5 * v * (man_ws_x*man_ws_y)**2 min_loss = np.min(loss) manifold_indices = loss < min_loss + 1e-5 manifold_x = man_ws_x[manifold_indices] manifold_y = man_ws_y[manifold_indices] pos = np.where(np.abs(np.diff(manifold_y)) >= 0.1)[0]+1 x = np.insert(manifold_x, pos, np.nan) y = np.insert(manifold_y, pos, np.nan) # plot manifold of global minima #ax.scatter(manifold_y, manifold_x, 0, s=0.5, c='cyan', # label='Manifold of global minima') ax.plot(y, x, c='cyan', label='Manifold of global minima') def plot_optimiser_trajectory_2d(ax, weights, **kwargs): w1_vals = weights['w1'] w2_vals = weights['w2'] ax.plot(w1_vals, w2_vals, **kwargs) def plot_optimiser_trajectory_3d(ax, settings, weights, **kwargs): x, y, v, l2, _, _ = settings w1_vals = np.array(weights['w1']) w2_vals = np.array(weights['w2']) loss = 0.5 * y * (1 - w1_vals * w2_vals * x)**2 + \ 0.5 * l2 * (w1_vals**2 + w2_vals**2) + 0.5 * v * (w1_vals*w2_vals)**2 ax.plot(w1_vals, w2_vals, loss, **kwargs) def plot_optimiser_trajectory(x, y, weights, dim='2d', angle=45, manifold=False, **kwargs): if dim == '3d': ax, settings = plot_mse_loss_surface_3d(x, y, angle=angle) if manifold: plot_global_minimum_manifold_3d(ax, settings) plot_optimiser_trajectory_3d(ax, settings, weights, **kwargs) else: ax, settings = plot_mse_loss_surface_2d(x, y) if manifold: plot_global_minimum_manifold_2d(ax, settings) plot_optimiser_trajectory_2d(ax, weights, **kwargs) def plot_weight_norm(ax, weights, **kwargs): w1_vals = np.array(weights['w1']) w2_vals = np.array(weights['w2']) epochs = np.arange(0, len(w1_vals), 1) norms = np.sqrt(w1_vals**2 + w2_vals**2) ax.set_xlabel('Epoch', fontsize=12) ax.set_ylabel('Weight norm', fontsize=12) ax.plot(epochs, norms, linewidth=2.0, **kwargs) def animate_optimiser_trajectory_2d(i, ax, weights, **kwargs): w1_vals = weights['w1'] w2_vals = weights['w2'] ax.plot(w1_vals[:i], w2_vals[:i], **kwargs) return ax def animate_optimiser_trajectory_3d(i, ax, settings, weights, **kwargs): x, y, v, l2, _, _ = settings w1_vals = np.array(weights['w1']) w2_vals = np.array(weights['w2']) loss = 0.5 * y * (1 - w1_vals * w2_vals * x)**2 + \ 0.5 * l2 * (w1_vals**2 + w2_vals**2) + 0.5 * v * (w1_vals*w2_vals)**2 ax.plot(w1_vals[:i], w2_vals[:i], loss[:i], **kwargs) return ax def plot_optimiser_loss(x, y, v, l2, weights, **kwargs): loss = [] epoch = np.arange(0, len(weights['w1'])) for w1, w2 in zip(weights['w1'], weights['w2']): loss_val = 0.5 * y * (1 - w1 * w2 * x)**2 + 0.5 * l2 * (w1**2 + w2**2) + 0.5 * v * (w1 * w2)**2 loss.append(loss_val) plt.plot(epoch, loss, **kwargs) plt.xlabel('Epoch') plt.ylabel('Loss') def plot_interpolated_trajectory_2d(ax, w1_a, w2_a, w1_b, w2_b, start=0, end=1, **kwargs): alpha = np.arange(start, end, 0.001) w1_path = [] w2_path = [] for a in alpha: ww1 = (1 - a) * w1_a + a * w1_b ww2 = (1 - a) * w2_a + a * w2_b w1_path.append(ww1) w2_path.append(ww2) ax.plot(w1_path, w2_path, **kwargs) def plot_interpolated_trajectory_3d(ax, settings, w1_a, w2_a, w1_b, w2_b, start=0, end=1, **kwargs): x, y, _, _ = settings alpha = np.arange(start, end, 0.001) w1_path = [] w2_path = [] loss = [] for a in alpha: ww1 = (1 - a) * w1_a + a * w1_b ww2 = (1 - a) * w2_a + a * w2_b loss_val = 0.5 * (y - ww1 * ww2 * x)**2 + 0.5 * l2 * (ww1**2 + ww2**2) loss.append(loss_val) w1_path.append(ww1) w2_path.append(ww2) ax.plot(w1_path, w2_path, loss, **kwargs) def plot_interpolated_loss(x, y, w1_a, w2_a, w1_b, w2_b, start=0, end=1, **kwargs): alpha = np.arange(start, end, 0.001) interpolated_loss = [] for a in alpha: ww1 = (1 - a) * w1_a + a * w1_b ww2 = (1 - a) * w2_a + a * w2_b loss_val = 0.5 * (y - ww1 * ww2 * x)**2 + 0.5 * l2 * (ww1**2 + ww2**2) interpolated_loss.append(loss_val) plt.plot(alpha, interpolated_loss, **kwargs) plt.xlabel(r'$\alpha$') plt.ylabel('Loss') def plot_learning_dynamics(ax, weights, **kwargs): epoch = np.arange(0, len(weights['w1'])) scores = [] for w1, w2 in zip(weights['w1'], weights['w2']): scores.append(w1 * w2) ax.plot(epoch, scores, **kwargs) def animate_learning_dynamics(i, ax, weights, y, **kwargs): n_epoch = len(weights['w1']) epoch = np.arange(1, n_epoch) scores = [] for w1, w2 in zip(weights['w1'], weights['w2']): scores.append(w1 * w2) ax.set_xlim((1, n_epoch)) ax.set_ylim((0, y)) ax.set_xlabel('Epoch', fontsize=15) ax.set_ylabel('$w_2 \cdot w_1$', fontsize=15) ax.plot(epoch[:i], scores[:i], **kwargs) return ax def animate_learning(weights, save=False, name='anim'): gs = gridspec.GridSpec(2, 4) gs.update(wspace=0.5) fig = plt.figure(figsize=(12, 8)) ax1 = fig.add_subplot(gs[0, :2], ) ax2 = fig.add_subplot(gs[0, 2:], projection='3d') ax3 = fig.add_subplot(gs[1, 1:3]) # ax1 = fig.add_subplot(2, 2, 1) # ax2 = fig.add_subplot(2, 2, 2, projection = '3d') # ax3 = fig.add_subplot(2, 2, 3) # ax4 = fig.add_subplot(2, 2, 4) ax1, settings = plot_mse_loss_surface_2d(ax1, 1, 1) ax2, settings = plot_mse_loss_surface_3d(ax2, 1, 1, angle=60) plot_global_minimum_manifold_2d(ax1, settings) plot_global_minimum_manifold_3d(ax2, settings) def update(i): animate_optimiser_trajectory_2d( i, ax1, settings, weights, 'Gradient descent') animate_optimiser_trajectory_3d( i, ax2, settings, weights, 'Gradient descent') animate_learning_dynamics(i, ax3, weights, 1) # animate_weight_norm(i, ax4, scalarNet.history) # suncAnimation will call the 'update' function for each frame anim = FuncAnimation(fig, update, frames=100, interval=5, save_count=50) # HTML(anim.to_html5_video()) if save: anim.save(name + '.gif', dpi=80, writer='imagemagick') plt.show()
[ "numpy.sqrt", "matplotlib.pyplot.ylabel", "numpy.array", "numpy.gradient", "numpy.arange", "matplotlib.pyplot.xlabel", "matplotlib.pyplot.plot", "numpy.diff", "numpy.linspace", "matplotlib.gridspec.GridSpec", "numpy.min", "numpy.meshgrid", "matplotlib.pyplot.cm.ScalarMappable", "matplotlib.colors.Normalize", "matplotlib.pyplot.show", "numpy.insert", "matplotlib.animation.FuncAnimation", "numpy.zeros", "matplotlib.pyplot.figure" ]
[((434, 480), 'numpy.linspace', 'np.linspace', (['w1_range[0]', 'w1_range[1]'], {'num': 'n_w'}), '(w1_range[0], w1_range[1], num=n_w)\n', (445, 480), True, 'import numpy as np\n'), ((502, 548), 'numpy.linspace', 'np.linspace', (['w2_range[0]', 'w2_range[1]'], {'num': 'n_w'}), '(w2_range[0], w2_range[1], num=n_w)\n', (513, 548), True, 'import numpy as np\n'), ((578, 597), 'numpy.meshgrid', 'np.meshgrid', (['w1', 'w2'], {}), '(w1, w2)\n', (589, 597), True, 'import numpy as np\n'), ((612, 632), 'numpy.zeros', 'np.zeros', (['(n_w, n_w)'], {}), '((n_w, n_w))\n', (620, 632), True, 'import numpy as np\n'), ((1040, 1060), 'numpy.gradient', 'np.gradient', (['cost_ws'], {}), '(cost_ws)\n', (1051, 1060), True, 'import numpy as np\n'), ((2062, 2108), 'numpy.linspace', 'np.linspace', (['w1_range[0]', 'w1_range[1]'], {'num': 'n_w'}), '(w1_range[0], w1_range[1], num=n_w)\n', (2073, 2108), True, 'import numpy as np\n'), ((2130, 2176), 'numpy.linspace', 'np.linspace', (['w2_range[0]', 'w2_range[1]'], {'num': 'n_w'}), '(w2_range[0], w2_range[1], num=n_w)\n', (2141, 2176), True, 'import numpy as np\n'), ((2206, 2225), 'numpy.meshgrid', 'np.meshgrid', (['w1', 'w2'], {}), '(w1, w2)\n', (2217, 2225), True, 'import numpy as np\n'), ((2240, 2260), 'numpy.zeros', 'np.zeros', (['(n_w, n_w)'], {}), '((n_w, n_w))\n', (2248, 2260), True, 'import numpy as np\n'), ((3007, 3028), 'matplotlib.colors.Normalize', 'Normalize', (['minn', 'maxx'], {}), '(minn, maxx)\n', (3016, 3028), False, 'from matplotlib.colors import Normalize\n'), ((3037, 3081), 'matplotlib.pyplot.cm.ScalarMappable', 'plt.cm.ScalarMappable', ([], {'norm': 'norm', 'cmap': '"""jet"""'}), "(norm=norm, cmap='jet')\n", (3058, 3081), True, 'import matplotlib.pyplot as plt\n'), ((3843, 3889), 'numpy.linspace', 'np.linspace', (['w1_range[0]', 'w1_range[1]'], {'num': 'n_w'}), '(w1_range[0], w1_range[1], num=n_w)\n', (3854, 3889), True, 'import numpy as np\n'), ((3903, 3949), 'numpy.linspace', 'np.linspace', (['w2_range[0]', 'w2_range[1]'], {'num': 'n_w'}), '(w2_range[0], w2_range[1], num=n_w)\n', (3914, 3949), True, 'import numpy as np\n'), ((3975, 4002), 'numpy.meshgrid', 'np.meshgrid', (['man_w1', 'man_w2'], {}), '(man_w1, man_w2)\n', (3986, 4002), True, 'import numpy as np\n'), ((4159, 4171), 'numpy.min', 'np.min', (['loss'], {}), '(loss)\n', (4165, 4171), True, 'import numpy as np\n'), ((4609, 4655), 'numpy.linspace', 'np.linspace', (['w1_range[0]', 'w1_range[1]'], {'num': 'n_w'}), '(w1_range[0], w1_range[1], num=n_w)\n', (4620, 4655), True, 'import numpy as np\n'), ((4669, 4715), 'numpy.linspace', 'np.linspace', (['w2_range[0]', 'w2_range[1]'], {'num': 'n_w'}), '(w2_range[0], w2_range[1], num=n_w)\n', (4680, 4715), True, 'import numpy as np\n'), ((4741, 4768), 'numpy.meshgrid', 'np.meshgrid', (['man_w1', 'man_w2'], {}), '(man_w1, man_w2)\n', (4752, 4768), True, 'import numpy as np\n'), ((4924, 4936), 'numpy.min', 'np.min', (['loss'], {}), '(loss)\n', (4930, 4936), True, 'import numpy as np\n'), ((5140, 5174), 'numpy.insert', 'np.insert', (['manifold_x', 'pos', 'np.nan'], {}), '(manifold_x, pos, np.nan)\n', (5149, 5174), True, 'import numpy as np\n'), ((5183, 5217), 'numpy.insert', 'np.insert', (['manifold_y', 'pos', 'np.nan'], {}), '(manifold_y, pos, np.nan)\n', (5192, 5217), True, 'import numpy as np\n'), ((5717, 5740), 'numpy.array', 'np.array', (["weights['w1']"], {}), "(weights['w1'])\n", (5725, 5740), True, 'import numpy as np\n'), ((5755, 5778), 'numpy.array', 'np.array', (["weights['w2']"], {}), "(weights['w2'])\n", (5763, 5778), True, 'import numpy as np\n'), ((6553, 6576), 'numpy.array', 'np.array', (["weights['w1']"], {}), "(weights['w1'])\n", (6561, 6576), True, 'import numpy as np\n'), ((6591, 6614), 'numpy.array', 'np.array', (["weights['w2']"], {}), "(weights['w2'])\n", (6599, 6614), True, 'import numpy as np\n'), ((6670, 6706), 'numpy.sqrt', 'np.sqrt', (['(w1_vals ** 2 + w2_vals ** 2)'], {}), '(w1_vals ** 2 + w2_vals ** 2)\n', (6677, 6706), True, 'import numpy as np\n'), ((7146, 7169), 'numpy.array', 'np.array', (["weights['w1']"], {}), "(weights['w1'])\n", (7154, 7169), True, 'import numpy as np\n'), ((7184, 7207), 'numpy.array', 'np.array', (["weights['w2']"], {}), "(weights['w2'])\n", (7192, 7207), True, 'import numpy as np\n'), ((7723, 7754), 'matplotlib.pyplot.plot', 'plt.plot', (['epoch', 'loss'], {}), '(epoch, loss, **kwargs)\n', (7731, 7754), True, 'import matplotlib.pyplot as plt\n'), ((7759, 7778), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Epoch"""'], {}), "('Epoch')\n", (7769, 7778), True, 'import matplotlib.pyplot as plt\n'), ((7783, 7801), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Loss"""'], {}), "('Loss')\n", (7793, 7801), True, 'import matplotlib.pyplot as plt\n'), ((7907, 7935), 'numpy.arange', 'np.arange', (['start', 'end', '(0.001)'], {}), '(start, end, 0.001)\n', (7916, 7935), True, 'import numpy as np\n'), ((8307, 8335), 'numpy.arange', 'np.arange', (['start', 'end', '(0.001)'], {}), '(start, end, 0.001)\n', (8316, 8335), True, 'import numpy as np\n'), ((8793, 8821), 'numpy.arange', 'np.arange', (['start', 'end', '(0.001)'], {}), '(start, end, 0.001)\n', (8802, 8821), True, 'import numpy as np\n'), ((9075, 9119), 'matplotlib.pyplot.plot', 'plt.plot', (['alpha', 'interpolated_loss'], {}), '(alpha, interpolated_loss, **kwargs)\n', (9083, 9119), True, 'import matplotlib.pyplot as plt\n'), ((9124, 9147), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""$\\\\alpha$"""'], {}), "('$\\\\alpha$')\n", (9134, 9147), True, 'import matplotlib.pyplot as plt\n'), ((9152, 9170), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Loss"""'], {}), "('Loss')\n", (9162, 9170), True, 'import matplotlib.pyplot as plt\n'), ((9513, 9534), 'numpy.arange', 'np.arange', (['(1)', 'n_epoch'], {}), '(1, n_epoch)\n', (9522, 9534), True, 'import numpy as np\n'), ((9905, 9928), 'matplotlib.gridspec.GridSpec', 'gridspec.GridSpec', (['(2)', '(4)'], {}), '(2, 4)\n', (9922, 9928), True, 'import matplotlib.gridspec as gridspec\n'), ((9966, 9993), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(12, 8)'}), '(figsize=(12, 8))\n', (9976, 9993), True, 'import matplotlib.pyplot as plt\n'), ((10929, 10994), 'matplotlib.animation.FuncAnimation', 'FuncAnimation', (['fig', 'update'], {'frames': '(100)', 'interval': '(5)', 'save_count': '(50)'}), '(fig, update, frames=100, interval=5, save_count=50)\n', (10942, 10994), False, 'from matplotlib.animation import FuncAnimation\n'), ((11110, 11120), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (11118, 11120), True, 'import matplotlib.pyplot as plt\n'), ((5098, 5117), 'numpy.diff', 'np.diff', (['manifold_y'], {}), '(manifold_y)\n', (5105, 5117), True, 'import numpy as np\n')]
# Copyright 2019 Google LLC # # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Test layers from qconvolutional.py.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import numpy as np from numpy.testing import assert_allclose import pytest import tempfile from tensorflow.keras import backend as K from tensorflow.keras.layers import Activation from tensorflow.keras.layers import Flatten from tensorflow.keras.layers import Input from tensorflow.keras.models import Model from tensorflow.keras.backend import clear_session from qkeras import binary from qkeras import ternary from qkeras import QActivation from qkeras import QDense from qkeras import QConv1D from qkeras import QConv2D from qkeras import QSeparableConv2D from qkeras import quantized_bits from qkeras import quantized_relu from qkeras.utils import model_save_quantized_weights from qkeras.utils import quantized_model_from_json from qkeras.utils import load_qmodel from qkeras import print_qstats from qkeras import extract_model_operations # TODO(hzhuang): # qoctave_conv test # qbatchnorm test def test_qnetwork(): x = x_in = Input((28, 28, 1), name='input') x = QSeparableConv2D( 32, (2, 2), strides=(2, 2), depthwise_quantizer=binary(alpha=1.0), pointwise_quantizer=quantized_bits(4, 0, 1, alpha=1.0), depthwise_activation=quantized_bits(6, 2, 1, alpha=1.0), bias_quantizer=quantized_bits(4, 0, 1), name='conv2d_0_m')( x) x = QActivation('quantized_relu(6,2,1)', name='act0_m')(x) x = QConv2D( 64, (3, 3), strides=(2, 2), kernel_quantizer=ternary(alpha=1.0), bias_quantizer=quantized_bits(4, 0, 1), name='conv2d_1_m', activation=quantized_relu(6, 3, 1))( x) x = QConv2D( 64, (2, 2), strides=(2, 2), kernel_quantizer=quantized_bits(6, 2, 1, alpha=1.0), bias_quantizer=quantized_bits(4, 0, 1), name='conv2d_2_m')( x) x = QActivation('quantized_relu(6,4,1)', name='act2_m')(x) x = Flatten(name='flatten')(x) x = QDense( 10, kernel_quantizer=quantized_bits(6, 2, 1, alpha=1.0), bias_quantizer=quantized_bits(4, 0, 1), name='dense')( x) x = Activation('softmax', name='softmax')(x) model = Model(inputs=[x_in], outputs=[x]) # reload the model to ensure saving/loading works json_string = model.to_json() clear_session() model = quantized_model_from_json(json_string) # generate same output for weights np.random.seed(42) for layer in model.layers: all_weights = [] for i, weights in enumerate(layer.get_weights()): input_size = np.prod(layer.input.shape.as_list()[1:]) if input_size is None: input_size = 576 * 10 # to avoid learning sizes shape = weights.shape assert input_size > 0, 'input size for {} {}'.format(layer.name, i) # he normal initialization with a scale factor of 2.0 all_weights.append( 10.0 * np.random.normal(0.0, np.sqrt(2.0 / input_size), shape)) if all_weights: layer.set_weights(all_weights) # apply quantizer to weights model_save_quantized_weights(model) all_weights = [] for layer in model.layers: for i, weights in enumerate(layer.get_weights()): w = np.sum(weights) all_weights.append(w) all_weights = np.array(all_weights) # test_qnetwork_weight_quantization all_weights_signature = np.array( [2., -6.75, -0.625, -2., -0.25, -56., 1.125, -1.625, -1.125]) assert all_weights.size == all_weights_signature.size assert np.all(all_weights == all_weights_signature) # test_qnetwork_forward: expected_output = np.array( [[0.e+00, 0.e+00, 0.e+00, 0.e+00, 0.e+00, 0.e+00, 1.e+00, 0.e+00, 0.e+00, 0.e+00], [0.e+00, 0.e+00, 0.e+00, 0.e+00, 0.e+00, 0.e+00, 1.e+00, 0.e+00, 0.e+00, 0.e+00], [0.e+00, 0.e+00, 0.e+00, 0.e+00, 0.e+00, 0.e+00, 0.e+00, 0.e+00, 6.e-08, 1.e+00], [0.e+00, 0.e+00, 0.e+00, 0.e+00, 0.e+00, 0.e+00, 1.e+00, 0.e+00, 0.e+00, 0.e+00], [ 0.e+00 ,0.e+00, 0.e+00, 0.e+00, 0.e+00, 0.e+00, 1.e+00, 0.e+00, 0.e+00, 0.e+00], [0.e+00, 0.e+00, 0.e+00, 0.e+00, 0.e+00, 0.e+00, 0.e+00, 0.e+00, 5.e-07, 1.e+00], [0.e+00, 0.e+00, 0.e+00, 0.e+00, 0.e+00, 0.e+00 ,1.e+00, 0.e+00, 0.e+00, 0.e+00], [0.e+00, 1.e+00, 0.e+00, 0.e+00, 0.e+00, 0.e+00 ,0.e+00, 0.e+00, 0.e+00, 0.e+00], [0.e+00, 0.e+00, 0.e+00, 0.e+00, 1.e+00, 0.e+00, 0.e+00, 0.e+00, 0.e+00, 0.e+00], [0.e+00, 0.e+00, 0.e+00, 0.e+00, 0.e+00, 1.e+00, 0.e+00, 0.e+00, 0.e+00, 0.e+00]]).astype(np.float16) inputs = 2 * np.random.rand(10, 28, 28, 1) actual_output = model.predict(inputs).astype(np.float16) assert_allclose(actual_output, expected_output, rtol=1e-4) def test_qconv1d(): np.random.seed(33) x = Input((4, 4,)) y = QConv1D( 2, 1, kernel_quantizer=quantized_bits(6, 2, 1, alpha=1.0), bias_quantizer=quantized_bits(4, 0, 1), name='qconv1d')( x) model = Model(inputs=x, outputs=y) # Extract model operations model_ops = extract_model_operations(model) # Assertion about the number of operations for this Conv1D layer assert model_ops['qconv1d']['number_of_operations'] == 32 # Print qstats to make sure it works with Conv1D layer print_qstats(model) # reload the model to ensure saving/loading works # json_string = model.to_json() # clear_session() # model = quantized_model_from_json(json_string) for layer in model.layers: all_weights = [] for i, weights in enumerate(layer.get_weights()): input_size = np.prod(layer.input.shape.as_list()[1:]) if input_size is None: input_size = 10 * 10 shape = weights.shape assert input_size > 0, 'input size for {} {}'.format(layer.name, i) all_weights.append( 10.0 * np.random.normal(0.0, np.sqrt(2.0 / input_size), shape)) if all_weights: layer.set_weights(all_weights) # Save the model as an h5 file using Keras's model.save() fd, fname = tempfile.mkstemp('.h5') model.save(fname) del model # Delete the existing model # Return a compiled model identical to the previous one model = load_qmodel(fname) # Clean the created h5 file after loading the model os.close(fd) os.remove(fname) # apply quantizer to weights model_save_quantized_weights(model) inputs = np.random.rand(2, 4, 4) p = model.predict(inputs).astype(np.float16) y = np.array([[[-2.441, 3.816], [-3.807, -1.426], [-2.684, -1.317], [-1.659, 0.9834]], [[-4.99, 1.139], [-2.559, -1.216], [-2.285, 1.905], [-2.652, -0.467]]]).astype(np.float16) assert np.all(p == y) if __name__ == '__main__': pytest.main([__file__])
[ "qkeras.quantized_bits", "numpy.sqrt", "numpy.random.rand", "qkeras.utils.quantized_model_from_json", "qkeras.QActivation", "numpy.array", "tensorflow.keras.backend.clear_session", "qkeras.extract_model_operations", "os.remove", "tensorflow.keras.layers.Input", "qkeras.binary", "numpy.testing.assert_allclose", "pytest.main", "numpy.random.seed", "tensorflow.keras.models.Model", "tensorflow.keras.layers.Activation", "qkeras.utils.model_save_quantized_weights", "os.close", "qkeras.utils.load_qmodel", "tensorflow.keras.layers.Flatten", "tempfile.mkstemp", "qkeras.print_qstats", "qkeras.quantized_relu", "numpy.sum", "qkeras.ternary", "numpy.all" ]
[((1761, 1793), 'tensorflow.keras.layers.Input', 'Input', (['(28, 28, 1)'], {'name': '"""input"""'}), "((28, 28, 1), name='input')\n", (1766, 1793), False, 'from tensorflow.keras.layers import Input\n'), ((2913, 2946), 'tensorflow.keras.models.Model', 'Model', ([], {'inputs': '[x_in]', 'outputs': '[x]'}), '(inputs=[x_in], outputs=[x])\n', (2918, 2946), False, 'from tensorflow.keras.models import Model\n'), ((3034, 3049), 'tensorflow.keras.backend.clear_session', 'clear_session', ([], {}), '()\n', (3047, 3049), False, 'from tensorflow.keras.backend import clear_session\n'), ((3060, 3098), 'qkeras.utils.quantized_model_from_json', 'quantized_model_from_json', (['json_string'], {}), '(json_string)\n', (3085, 3098), False, 'from qkeras.utils import quantized_model_from_json\n'), ((3139, 3157), 'numpy.random.seed', 'np.random.seed', (['(42)'], {}), '(42)\n', (3153, 3157), True, 'import numpy as np\n'), ((3761, 3796), 'qkeras.utils.model_save_quantized_weights', 'model_save_quantized_weights', (['model'], {}), '(model)\n', (3789, 3796), False, 'from qkeras.utils import model_save_quantized_weights\n'), ((3972, 3993), 'numpy.array', 'np.array', (['all_weights'], {}), '(all_weights)\n', (3980, 3993), True, 'import numpy as np\n'), ((4059, 4132), 'numpy.array', 'np.array', (['[2.0, -6.75, -0.625, -2.0, -0.25, -56.0, 1.125, -1.625, -1.125]'], {}), '([2.0, -6.75, -0.625, -2.0, -0.25, -56.0, 1.125, -1.625, -1.125])\n', (4067, 4132), True, 'import numpy as np\n'), ((4203, 4247), 'numpy.all', 'np.all', (['(all_weights == all_weights_signature)'], {}), '(all_weights == all_weights_signature)\n', (4209, 4247), True, 'import numpy as np\n'), ((5385, 5445), 'numpy.testing.assert_allclose', 'assert_allclose', (['actual_output', 'expected_output'], {'rtol': '(0.0001)'}), '(actual_output, expected_output, rtol=0.0001)\n', (5400, 5445), False, 'from numpy.testing import assert_allclose\n'), ((5468, 5486), 'numpy.random.seed', 'np.random.seed', (['(33)'], {}), '(33)\n', (5482, 5486), True, 'import numpy as np\n'), ((5493, 5506), 'tensorflow.keras.layers.Input', 'Input', (['(4, 4)'], {}), '((4, 4))\n', (5498, 5506), False, 'from tensorflow.keras.layers import Input\n'), ((5686, 5712), 'tensorflow.keras.models.Model', 'Model', ([], {'inputs': 'x', 'outputs': 'y'}), '(inputs=x, outputs=y)\n', (5691, 5712), False, 'from tensorflow.keras.models import Model\n'), ((5757, 5788), 'qkeras.extract_model_operations', 'extract_model_operations', (['model'], {}), '(model)\n', (5781, 5788), False, 'from qkeras import extract_model_operations\n'), ((5977, 5996), 'qkeras.print_qstats', 'print_qstats', (['model'], {}), '(model)\n', (5989, 5996), False, 'from qkeras import print_qstats\n'), ((6711, 6734), 'tempfile.mkstemp', 'tempfile.mkstemp', (['""".h5"""'], {}), "('.h5')\n", (6727, 6734), False, 'import tempfile\n'), ((6865, 6883), 'qkeras.utils.load_qmodel', 'load_qmodel', (['fname'], {}), '(fname)\n', (6876, 6883), False, 'from qkeras.utils import load_qmodel\n'), ((6941, 6953), 'os.close', 'os.close', (['fd'], {}), '(fd)\n', (6949, 6953), False, 'import os\n'), ((6956, 6972), 'os.remove', 'os.remove', (['fname'], {}), '(fname)\n', (6965, 6972), False, 'import os\n'), ((7007, 7042), 'qkeras.utils.model_save_quantized_weights', 'model_save_quantized_weights', (['model'], {}), '(model)\n', (7035, 7042), False, 'from qkeras.utils import model_save_quantized_weights\n'), ((7055, 7078), 'numpy.random.rand', 'np.random.rand', (['(2)', '(4)', '(4)'], {}), '(2, 4, 4)\n', (7069, 7078), True, 'import numpy as np\n'), ((7365, 7379), 'numpy.all', 'np.all', (['(p == y)'], {}), '(p == y)\n', (7371, 7379), True, 'import numpy as np\n'), ((7411, 7434), 'pytest.main', 'pytest.main', (['[__file__]'], {}), '([__file__])\n', (7422, 7434), False, 'import pytest\n'), ((2119, 2170), 'qkeras.QActivation', 'QActivation', (['"""quantized_relu(6,2,1)"""'], {'name': '"""act0_m"""'}), "('quantized_relu(6,2,1)', name='act0_m')\n", (2130, 2170), False, 'from qkeras import QActivation\n'), ((2604, 2655), 'qkeras.QActivation', 'QActivation', (['"""quantized_relu(6,4,1)"""'], {'name': '"""act2_m"""'}), "('quantized_relu(6,4,1)', name='act2_m')\n", (2615, 2655), False, 'from qkeras import QActivation\n'), ((2665, 2688), 'tensorflow.keras.layers.Flatten', 'Flatten', ([], {'name': '"""flatten"""'}), "(name='flatten')\n", (2672, 2688), False, 'from tensorflow.keras.layers import Flatten\n'), ((2861, 2898), 'tensorflow.keras.layers.Activation', 'Activation', (['"""softmax"""'], {'name': '"""softmax"""'}), "('softmax', name='softmax')\n", (2871, 2898), False, 'from tensorflow.keras.layers import Activation\n'), ((5294, 5323), 'numpy.random.rand', 'np.random.rand', (['(10)', '(28)', '(28)', '(1)'], {}), '(10, 28, 28, 1)\n', (5308, 5323), True, 'import numpy as np\n'), ((3911, 3926), 'numpy.sum', 'np.sum', (['weights'], {}), '(weights)\n', (3917, 3926), True, 'import numpy as np\n'), ((4296, 4863), 'numpy.array', 'np.array', (['[[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 1.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 6e-08, 1.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0], [0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 5e-07, 1.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, \n 0.0, 0.0], [0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, \n 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0,\n 1.0, 0.0, 0.0, 0.0, 0.0]]'], {}), '([[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0], [0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 6e-08, 1.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, \n 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0], [0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5e-07, 1.0], [0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 1.0, 0.0, 0.0, 0.0], [0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0], [0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, \n 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0]])\n', (4304, 4863), True, 'import numpy as np\n'), ((7132, 7296), 'numpy.array', 'np.array', (['[[[-2.441, 3.816], [-3.807, -1.426], [-2.684, -1.317], [-1.659, 0.9834]], [\n [-4.99, 1.139], [-2.559, -1.216], [-2.285, 1.905], [-2.652, -0.467]]]'], {}), '([[[-2.441, 3.816], [-3.807, -1.426], [-2.684, -1.317], [-1.659, \n 0.9834]], [[-4.99, 1.139], [-2.559, -1.216], [-2.285, 1.905], [-2.652, \n -0.467]]])\n', (7140, 7296), True, 'import numpy as np\n'), ((1884, 1901), 'qkeras.binary', 'binary', ([], {'alpha': '(1.0)'}), '(alpha=1.0)\n', (1890, 1901), False, 'from qkeras import binary\n'), ((1929, 1963), 'qkeras.quantized_bits', 'quantized_bits', (['(4)', '(0)', '(1)'], {'alpha': '(1.0)'}), '(4, 0, 1, alpha=1.0)\n', (1943, 1963), False, 'from qkeras import quantized_bits\n'), ((1992, 2026), 'qkeras.quantized_bits', 'quantized_bits', (['(6)', '(2)', '(1)'], {'alpha': '(1.0)'}), '(6, 2, 1, alpha=1.0)\n', (2006, 2026), False, 'from qkeras import quantized_bits\n'), ((2049, 2072), 'qkeras.quantized_bits', 'quantized_bits', (['(4)', '(0)', '(1)'], {}), '(4, 0, 1)\n', (2063, 2072), False, 'from qkeras import quantized_bits\n'), ((2252, 2270), 'qkeras.ternary', 'ternary', ([], {'alpha': '(1.0)'}), '(alpha=1.0)\n', (2259, 2270), False, 'from qkeras import ternary\n'), ((2293, 2316), 'qkeras.quantized_bits', 'quantized_bits', (['(4)', '(0)', '(1)'], {}), '(4, 0, 1)\n', (2307, 2316), False, 'from qkeras import quantized_bits\n'), ((2360, 2383), 'qkeras.quantized_relu', 'quantized_relu', (['(6)', '(3)', '(1)'], {}), '(6, 3, 1)\n', (2374, 2383), False, 'from qkeras import quantized_relu\n'), ((2477, 2511), 'qkeras.quantized_bits', 'quantized_bits', (['(6)', '(2)', '(1)'], {'alpha': '(1.0)'}), '(6, 2, 1, alpha=1.0)\n', (2491, 2511), False, 'from qkeras import quantized_bits\n'), ((2534, 2557), 'qkeras.quantized_bits', 'quantized_bits', (['(4)', '(0)', '(1)'], {}), '(4, 0, 1)\n', (2548, 2557), False, 'from qkeras import quantized_bits\n'), ((2739, 2773), 'qkeras.quantized_bits', 'quantized_bits', (['(6)', '(2)', '(1)'], {'alpha': '(1.0)'}), '(6, 2, 1, alpha=1.0)\n', (2753, 2773), False, 'from qkeras import quantized_bits\n'), ((2796, 2819), 'qkeras.quantized_bits', 'quantized_bits', (['(4)', '(0)', '(1)'], {}), '(4, 0, 1)\n', (2810, 2819), False, 'from qkeras import quantized_bits\n'), ((5558, 5592), 'qkeras.quantized_bits', 'quantized_bits', (['(6)', '(2)', '(1)'], {'alpha': '(1.0)'}), '(6, 2, 1, alpha=1.0)\n', (5572, 5592), False, 'from qkeras import quantized_bits\n'), ((5615, 5638), 'qkeras.quantized_bits', 'quantized_bits', (['(4)', '(0)', '(1)'], {}), '(4, 0, 1)\n', (5629, 5638), False, 'from qkeras import quantized_bits\n'), ((3635, 3660), 'numpy.sqrt', 'np.sqrt', (['(2.0 / input_size)'], {}), '(2.0 / input_size)\n', (3642, 3660), True, 'import numpy as np\n'), ((6545, 6570), 'numpy.sqrt', 'np.sqrt', (['(2.0 / input_size)'], {}), '(2.0 / input_size)\n', (6552, 6570), True, 'import numpy as np\n')]
#!/usr/bin/env python # -*- coding: utf-8 -*- # License: BSD-3 (https://tldrlegal.com/license/bsd-3-clause-license-(revised)) # Copyright (c) 2016-2021, <NAME>; Luczywo, Nadia # All rights reserved. # ============================================================================= # DOCS # ============================================================================= """Functionalities for remove negatives from criteria. In addition to the main functionality, an MCDA agnostic function is offered to push negatives values on an array along an arbitrary axis. """ # ============================================================================= # IMPORTS # ============================================================================= import numpy as np from ..core import SKCMatrixAndWeightTransformerABC from ..utils import doc_inherit # ============================================================================= # FUNCTIONS # ============================================================================= def push_negatives(arr, axis): r"""Increment the array until all the valuer are sean >= 0. If an array has negative values this function increment the values proportionally to made all the array positive along an axis. .. math:: \overline{X}_{ij} = \begin{cases} X_{ij} + min_{X_{ij}} & \text{if } X_{ij} < 0\\ X_{ij} & \text{otherwise} \end{cases} Parameters ---------- arr: :py:class:`numpy.ndarray` like. A array with values axis : :py:class:`int` optional Axis along which to operate. By default, flattened input is used. Returns ------- :py:class:`numpy.ndarray` array with all values >= 0. Examples -------- .. code-block:: pycon >>> from skcriteria.preprocess import push_negatives >>> mtx = [[1, 2], [3, 4]] >>> mtx_lt0 = [[-1, 2], [3, 4]] # has a negative value >>> push_negatives(mtx) # array without negatives don't be affected array([[1, 2], [3, 4]]) # all the array is incremented by 1 to eliminate the negative >>> push_negatives(mtx_lt0) array([[0, 3], [4, 5]]) # by column only the first one (with the negative value) is affected >>> push_negatives(mtx_lt0, axis=0) array([[0, 2], [4, 4]]) # by row only the first row (with the negative value) is affected >>> push_negatives(mtx_lt0, axis=1) array([[0, 3], [3, 4]]) """ arr = np.asarray(arr) mins = np.min(arr, axis=axis, keepdims=True) delta = (mins < 0) * mins return arr - delta class PushNegatives(SKCMatrixAndWeightTransformerABC): r"""Increment the matrix/weights until all the valuer are sean >= 0. If the matrix/weights has negative values this function increment the values proportionally to made all the matrix/weights positive along an axis. .. math:: \overline{X}_{ij} = \begin{cases} X_{ij} + min_{X_{ij}} & \text{if } X_{ij} < 0\\ X_{ij} & \text{otherwise} \end{cases} """ @doc_inherit(SKCMatrixAndWeightTransformerABC._transform_weights) def _transform_weights(self, weights): return push_negatives(weights, axis=None) @doc_inherit(SKCMatrixAndWeightTransformerABC._transform_matrix) def _transform_matrix(self, matrix): return push_negatives(matrix, axis=0)
[ "numpy.asarray", "numpy.min" ]
[((2605, 2620), 'numpy.asarray', 'np.asarray', (['arr'], {}), '(arr)\n', (2615, 2620), True, 'import numpy as np\n'), ((2632, 2669), 'numpy.min', 'np.min', (['arr'], {'axis': 'axis', 'keepdims': '(True)'}), '(arr, axis=axis, keepdims=True)\n', (2638, 2669), True, 'import numpy as np\n')]
import numpy as np from treelas import post_order, TreeInstance def test_demo_3x7_postord(): parent = np.array([0, 4, 5, 0, 3, 4, 7, 8, 5, 6, 7, 8, 9, 14, 17, 12, 15, 16, 19, 16, 17]) po = post_order(parent, include_root=True) expect = np.array([12, 11, 19, 20, 21, 14, 15, 18, 17, 16, 13, 10, 7, 8, 9, 3, 6, 2, 5, 4, 1], dtype='i4') - 1 assert (po == expect).all() def test_demo_3x7(): y = np.fromstring("0.62 0.73 0.71 1.5 1.17 0.43 1.08 0.62 " + "1.73 0.95 1.46 1.6 1.16 0.38 0.9 0.32 " + "-0.48 0.95 1.08 0.02 0.4", sep=" ") parent = np.array([0, 4, 5, 0, 3, 4, 7, 8, 5, 6, 7, 8, 9, 14, 17, 12, 15, 16, 19, 16, 17]) lam = 1.0 prob = TreeInstance(y, parent, lam=lam) assert prob.root == 0 assert prob.parent.dtype == np.int32 prob.solve() assert abs(prob.x.mean() - prob.y.mean()) < 1e-15 assert len(np.unique(prob.x)) == 2 assert max(np.abs(prob.dual[2:]) - lam) < 1e-12 assert max(np.abs(prob.gamma)) < 1e-15
[ "numpy.abs", "numpy.unique", "treelas.post_order", "treelas.TreeInstance", "numpy.array", "numpy.fromstring" ]
[((108, 193), 'numpy.array', 'np.array', (['[0, 4, 5, 0, 3, 4, 7, 8, 5, 6, 7, 8, 9, 14, 17, 12, 15, 16, 19, 16, 17]'], {}), '([0, 4, 5, 0, 3, 4, 7, 8, 5, 6, 7, 8, 9, 14, 17, 12, 15, 16, 19, 16,\n 17])\n', (116, 193), True, 'import numpy as np\n'), ((222, 259), 'treelas.post_order', 'post_order', (['parent'], {'include_root': '(True)'}), '(parent, include_root=True)\n', (232, 259), False, 'from treelas import post_order, TreeInstance\n'), ((461, 606), 'numpy.fromstring', 'np.fromstring', (["('0.62 0.73 0.71 1.5 1.17 0.43 1.08 0.62 ' +\n '1.73 0.95 1.46 1.6 1.16 0.38 0.9 0.32 ' + '-0.48 0.95 1.08 0.02 0.4')"], {'sep': '""" """'}), "('0.62 0.73 0.71 1.5 1.17 0.43 1.08 0.62 ' +\n '1.73 0.95 1.46 1.6 1.16 0.38 0.9 0.32 ' + '-0.48 0.95 1.08 0.02 0.4',\n sep=' ')\n", (474, 606), True, 'import numpy as np\n'), ((656, 741), 'numpy.array', 'np.array', (['[0, 4, 5, 0, 3, 4, 7, 8, 5, 6, 7, 8, 9, 14, 17, 12, 15, 16, 19, 16, 17]'], {}), '([0, 4, 5, 0, 3, 4, 7, 8, 5, 6, 7, 8, 9, 14, 17, 12, 15, 16, 19, 16,\n 17])\n', (664, 741), True, 'import numpy as np\n'), ((786, 818), 'treelas.TreeInstance', 'TreeInstance', (['y', 'parent'], {'lam': 'lam'}), '(y, parent, lam=lam)\n', (798, 818), False, 'from treelas import post_order, TreeInstance\n'), ((273, 374), 'numpy.array', 'np.array', (['[12, 11, 19, 20, 21, 14, 15, 18, 17, 16, 13, 10, 7, 8, 9, 3, 6, 2, 5, 4, 1]'], {'dtype': '"""i4"""'}), "([12, 11, 19, 20, 21, 14, 15, 18, 17, 16, 13, 10, 7, 8, 9, 3, 6, 2,\n 5, 4, 1], dtype='i4')\n", (281, 374), True, 'import numpy as np\n'), ((972, 989), 'numpy.unique', 'np.unique', (['prob.x'], {}), '(prob.x)\n', (981, 989), True, 'import numpy as np\n'), ((1063, 1081), 'numpy.abs', 'np.abs', (['prob.gamma'], {}), '(prob.gamma)\n', (1069, 1081), True, 'import numpy as np\n'), ((1011, 1032), 'numpy.abs', 'np.abs', (['prob.dual[2:]'], {}), '(prob.dual[2:])\n', (1017, 1032), True, 'import numpy as np\n')]
from tqdm import tqdm import pandas as pd import numpy as np, argparse, time, pickle, random, os, datetime import torch import torch.optim as optim from model import MaskedNLLLoss, BC_LSTM from dataloader import MELDDataLoader from sklearn.metrics import f1_score, confusion_matrix, accuracy_score, classification_report def setup_seed(seed): """ Manually Fix the random seed to get deterministic results. """ torch.manual_seed(seed) torch.cuda.manual_seed(seed) torch.cuda.manual_seed_all(seed) np.random.seed(seed) random.seed(seed) torch.benchmark = False torch.backends.cudnn.deterministic = True def train_or_eval_model(model, loss_function, dataloader, epoch, optimizer=None, mode='train'): losses, preds, labels, masks, losses_sense = [], [], [], [], [] max_sequence_len = [] assert mode != 'train' or optimizer != None if mode == 'train': model.train() else: model.eval() with tqdm(dataloader) as td: for data in td: if mode == 'train': optimizer.zero_grad() textf, acouf, mask, label = [d.cuda() for d in data[:-1]] if args.cuda else data[:-1] log_prob, _ = model(textf, None, acouf, None, mask) lp_ = log_prob.transpose(0,1).contiguous().view(-1, log_prob.size()[2]) # batch*seq_len, n_classes labels_ = label.view(-1) # batch*seq_len loss = loss_function(lp_, labels_, mask) pred_ = torch.argmax(lp_,1) # batch*seq_len preds.append(pred_.data.cpu().numpy()) labels.append(labels_.data.cpu().numpy()) masks.append(mask.view(-1).cpu().numpy()) losses.append(loss.item()*masks[-1].sum()) if mode == 'train': total_loss = loss total_loss.backward() optimizer.step() if preds!=[]: preds = np.concatenate(preds) labels = np.concatenate(labels) masks = np.concatenate(masks) else: return float('nan'), float('nan'), float('nan'), [], [], [], float('nan'),[] avg_loss = round(np.sum(losses)/np.sum(masks), 4) avg_sense_loss = round(np.sum(losses_sense)/np.sum(masks), 4) avg_accuracy = round(accuracy_score(labels,preds, sample_weight=masks)*100, 2) avg_fscore = round(f1_score(labels,preds, sample_weight=masks, average='weighted')*100, 2) if mode == 'test': class_report = classification_report(labels, preds, sample_weight=masks, target_names=['neutral', 'surprise', 'fear', 'sadness', 'joy', 'disgust', 'anger'], digits=6) print(class_report) return avg_loss, avg_accuracy, labels, preds, masks, [avg_fscore] def parse_args(): parser = argparse.ArgumentParser() parser.add_argument('--num_workers', type=int, default=0, help='num workers of loading data') # dataloader settings parser.add_argument('--batch-size', type=int, default=32, metavar='BS', help='batch size') parser.add_argument('--data_path', type=str, default='../TextCnn/dataset/MELD_features_raw.pkl') # model settings. parser.add_argument('--attention_type', type=str, default='general2') parser.add_argument('--utterance_dim', type=int, default=600, help='embedding dims to use') parser.add_argument('--emotion_state_dim', type=int, default=100) parser.add_argument('--hidden_layer_dim', type=int, default=100) parser.add_argument('--dropout', type=float, default=0.25) parser.add_argument('--n_classes', type=int, default=7) # late fusion module. parser.add_argument('--lateFusionModule', type=str, default='concat') parser.add_argument('--input_features', type=tuple, default=(100, 300)) parser.add_argument('--pre_fusion_hidden_dims', type=tuple, default=(24, 7)) parser.add_argument('--pre_fusion_dropout', type=float, default=0.4) parser.add_argument('--post_fusion_dropout', type=float, default=0.3) # train settings. parser.add_argument('--lr', type=float, default=1e-4, metavar='LR', help='learning rate') parser.add_argument('--l2', type=float, default=1e-5, metavar='L2', help='L2 regularization weight') parser.add_argument('--epochs', type=int, default=100, metavar='E', help='number of epochs') return parser.parse_args() if __name__ == '__main__': args = parse_args() args.cuda = torch.cuda.is_available() if args.cuda: print('Running on GPU') else: print('Running on CPU') for seed in [1, 11, 111, 1111, 11111]: setup_seed(seed) args.seed = seed print(args) model = BC_LSTM(args) print('MELD BC_LSTM MODULE ...') if args.cuda: model.cuda() loss_weights = torch.FloatTensor([1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]) loss_function = MaskedNLLLoss(loss_weights.cuda() if args.cuda else loss_weights) optimizer = optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.l2) lf = open('logs/cnn_meld_logs.txt', 'a') dataloader = MELDDataLoader(args) valid_losses, valid_fscores = [], [] test_fscores, test_accuracys, test_losses = [], [], [] best_loss, best_label, best_pred, best_mask = None, None, None, None for e in range(args.epochs): start_time = time.time() train_loss, train_acc, _, _, _, train_fscore = train_or_eval_model(model, loss_function, dataloader['train'], e, optimizer, mode='train') valid_loss, valid_acc, _, _, _, valid_fscore = train_or_eval_model(model, loss_function, dataloader['valid'], e, mode='valid') test_loss, test_acc, test_label, test_pred, test_mask, test_fscore = train_or_eval_model(model, loss_function, dataloader['test'], e, mode='test') valid_losses.append(valid_loss) valid_fscores.append(valid_fscore) test_losses.append(test_loss) test_accuracys.append(test_acc) test_fscores.append(test_fscore) x = 'epoch: {}, train_loss: {}, acc: {}, fscore: {}, valid_loss: {}, acc: {}, fscore: {}, test_loss: {}, acc: {}, fscore: {}, time: {} sec'.format(e+1, train_loss, train_acc, train_fscore, valid_loss, valid_acc, valid_fscore, test_loss, test_acc, test_fscore, round(time.time()-start_time, 2)) print (x) lf.write(x + '\n') valid_fscores = np.array(valid_fscores).transpose() test_fscores = np.array(test_fscores).transpose() # [1, epoches] test_accuracys = np.array(test_accuracys).transpose() # [epoches] f1_score1 = test_fscores[0][np.argmin(valid_losses)] acc_score1 = test_accuracys[np.argmin(valid_losses)] f1_score2 = test_fscores[0][np.argmax(valid_fscores[0])] acc_score2 = test_accuracys[np.argmax(valid_fscores[0])] scores = [acc_score1, f1_score1, acc_score2, f1_score2] scores = [str(item) for item in scores] print ('Test Scores: Weighted F1') print('@Best Valid Loss: Test Acc: {}, Test F1: {}'.format(acc_score1, f1_score1)) print('@Best Valid F1: Test Acc: {}, Test F1: {}'.format(acc_score2, f1_score2)) rf = open('results/cnn_meld_results.txt', 'a') rf.write('\t'.join(scores) + '\t' + str(args) + '\n') rf.close()
[ "sklearn.metrics.classification_report", "numpy.array", "torch.cuda.is_available", "argparse.ArgumentParser", "model.BC_LSTM", "dataloader.MELDDataLoader", "numpy.random.seed", "numpy.concatenate", "numpy.argmin", "torch.argmax", "numpy.argmax", "time.time", "sklearn.metrics.accuracy_score", "torch.cuda.manual_seed_all", "torch.manual_seed", "sklearn.metrics.f1_score", "tqdm.tqdm", "random.seed", "numpy.sum", "torch.cuda.manual_seed", "torch.FloatTensor" ]
[((427, 450), 'torch.manual_seed', 'torch.manual_seed', (['seed'], {}), '(seed)\n', (444, 450), False, 'import torch\n'), ((455, 483), 'torch.cuda.manual_seed', 'torch.cuda.manual_seed', (['seed'], {}), '(seed)\n', (477, 483), False, 'import torch\n'), ((488, 520), 'torch.cuda.manual_seed_all', 'torch.cuda.manual_seed_all', (['seed'], {}), '(seed)\n', (514, 520), False, 'import torch\n'), ((525, 545), 'numpy.random.seed', 'np.random.seed', (['seed'], {}), '(seed)\n', (539, 545), True, 'import numpy as np, argparse, time, pickle, random, os, datetime\n'), ((550, 567), 'random.seed', 'random.seed', (['seed'], {}), '(seed)\n', (561, 567), False, 'import numpy as np, argparse, time, pickle, random, os, datetime\n'), ((2807, 2832), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (2830, 2832), False, 'import numpy as np, argparse, time, pickle, random, os, datetime\n'), ((4486, 4511), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (4509, 4511), False, 'import torch\n'), ((978, 994), 'tqdm.tqdm', 'tqdm', (['dataloader'], {}), '(dataloader)\n', (982, 994), False, 'from tqdm import tqdm\n'), ((1982, 2003), 'numpy.concatenate', 'np.concatenate', (['preds'], {}), '(preds)\n', (1996, 2003), True, 'import numpy as np, argparse, time, pickle, random, os, datetime\n'), ((2021, 2043), 'numpy.concatenate', 'np.concatenate', (['labels'], {}), '(labels)\n', (2035, 2043), True, 'import numpy as np, argparse, time, pickle, random, os, datetime\n'), ((2061, 2082), 'numpy.concatenate', 'np.concatenate', (['masks'], {}), '(masks)\n', (2075, 2082), True, 'import numpy as np, argparse, time, pickle, random, os, datetime\n'), ((2524, 2684), 'sklearn.metrics.classification_report', 'classification_report', (['labels', 'preds'], {'sample_weight': 'masks', 'target_names': "['neutral', 'surprise', 'fear', 'sadness', 'joy', 'disgust', 'anger']", 'digits': '(6)'}), "(labels, preds, sample_weight=masks, target_names=[\n 'neutral', 'surprise', 'fear', 'sadness', 'joy', 'disgust', 'anger'],\n digits=6)\n", (2545, 2684), False, 'from sklearn.metrics import f1_score, confusion_matrix, accuracy_score, classification_report\n'), ((4744, 4757), 'model.BC_LSTM', 'BC_LSTM', (['args'], {}), '(args)\n', (4751, 4757), False, 'from model import MaskedNLLLoss, BC_LSTM\n'), ((4879, 4933), 'torch.FloatTensor', 'torch.FloatTensor', (['[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]'], {}), '([1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0])\n', (4896, 4933), False, 'import torch\n'), ((5207, 5227), 'dataloader.MELDDataLoader', 'MELDDataLoader', (['args'], {}), '(args)\n', (5221, 5227), False, 'from dataloader import MELDDataLoader\n'), ((1541, 1561), 'torch.argmax', 'torch.argmax', (['lp_', '(1)'], {}), '(lp_, 1)\n', (1553, 1561), False, 'import torch\n'), ((2200, 2214), 'numpy.sum', 'np.sum', (['losses'], {}), '(losses)\n', (2206, 2214), True, 'import numpy as np, argparse, time, pickle, random, os, datetime\n'), ((2215, 2228), 'numpy.sum', 'np.sum', (['masks'], {}), '(masks)\n', (2221, 2228), True, 'import numpy as np, argparse, time, pickle, random, os, datetime\n'), ((2260, 2280), 'numpy.sum', 'np.sum', (['losses_sense'], {}), '(losses_sense)\n', (2266, 2280), True, 'import numpy as np, argparse, time, pickle, random, os, datetime\n'), ((2281, 2294), 'numpy.sum', 'np.sum', (['masks'], {}), '(masks)\n', (2287, 2294), True, 'import numpy as np, argparse, time, pickle, random, os, datetime\n'), ((2325, 2375), 'sklearn.metrics.accuracy_score', 'accuracy_score', (['labels', 'preds'], {'sample_weight': 'masks'}), '(labels, preds, sample_weight=masks)\n', (2339, 2375), False, 'from sklearn.metrics import f1_score, confusion_matrix, accuracy_score, classification_report\n'), ((2406, 2470), 'sklearn.metrics.f1_score', 'f1_score', (['labels', 'preds'], {'sample_weight': 'masks', 'average': '"""weighted"""'}), "(labels, preds, sample_weight=masks, average='weighted')\n", (2414, 2470), False, 'from sklearn.metrics import f1_score, confusion_matrix, accuracy_score, classification_report\n'), ((5478, 5489), 'time.time', 'time.time', ([], {}), '()\n', (5487, 5489), False, 'import numpy as np, argparse, time, pickle, random, os, datetime\n'), ((6811, 6834), 'numpy.argmin', 'np.argmin', (['valid_losses'], {}), '(valid_losses)\n', (6820, 6834), True, 'import numpy as np, argparse, time, pickle, random, os, datetime\n'), ((6872, 6895), 'numpy.argmin', 'np.argmin', (['valid_losses'], {}), '(valid_losses)\n', (6881, 6895), True, 'import numpy as np, argparse, time, pickle, random, os, datetime\n'), ((6933, 6960), 'numpy.argmax', 'np.argmax', (['valid_fscores[0]'], {}), '(valid_fscores[0])\n', (6942, 6960), True, 'import numpy as np, argparse, time, pickle, random, os, datetime\n'), ((6998, 7025), 'numpy.argmax', 'np.argmax', (['valid_fscores[0]'], {}), '(valid_fscores[0])\n', (7007, 7025), True, 'import numpy as np, argparse, time, pickle, random, os, datetime\n'), ((6591, 6614), 'numpy.array', 'np.array', (['valid_fscores'], {}), '(valid_fscores)\n', (6599, 6614), True, 'import numpy as np, argparse, time, pickle, random, os, datetime\n'), ((6650, 6672), 'numpy.array', 'np.array', (['test_fscores'], {}), '(test_fscores)\n', (6658, 6672), True, 'import numpy as np, argparse, time, pickle, random, os, datetime\n'), ((6725, 6749), 'numpy.array', 'np.array', (['test_accuracys'], {}), '(test_accuracys)\n', (6733, 6749), True, 'import numpy as np, argparse, time, pickle, random, os, datetime\n'), ((6472, 6483), 'time.time', 'time.time', ([], {}), '()\n', (6481, 6483), False, 'import numpy as np, argparse, time, pickle, random, os, datetime\n')]
import logging from typing import List, Callable import numpy as np from pyquaternion import Quaternion from pyrep import PyRep from pyrep.errors import IKError from pyrep.objects import Dummy, Object from rlbench import utils from rlbench.action_modes import ArmActionMode, ActionMode from rlbench.backend.exceptions import BoundaryError, WaypointError from rlbench.backend.observation import Observation from rlbench.backend.robot import Robot from rlbench.backend.scene import Scene from rlbench.backend.task import Task from rlbench.demo import Demo from rlbench.observation_config import ObservationConfig _TORQUE_MAX_VEL = 9999 _DT = 0.05 _MAX_RESET_ATTEMPTS = 40 _MAX_DEMO_ATTEMPTS = 10 class InvalidActionError(Exception): pass class TaskEnvironmentError(Exception): pass class TaskEnvironment(object): def __init__(self, pyrep: PyRep, robot: Robot, scene: Scene, task: Task, action_mode: ActionMode, dataset_root: str, obs_config: ObservationConfig, static_positions: bool = False, attach_grasped_objects: bool = True): self._pyrep = pyrep self._robot = robot self._scene = scene self._task = task self._variation_number = 0 self._action_mode = action_mode self._dataset_root = dataset_root self._obs_config = obs_config self._static_positions = static_positions self._attach_grasped_objects = attach_grasped_objects self._reset_called = False self._prev_ee_velocity = None self._enable_path_observations = False self._scene.load(self._task) self._pyrep.start() self._target_workspace_check = Dummy.create() self._last_e = None def get_name(self) -> str: return self._task.get_name() def sample_variation(self) -> int: self._variation_number = np.random.randint( 0, self._task.variation_count()) return self._variation_number def set_variation(self, v: int) -> None: if v >= self.variation_count(): raise TaskEnvironmentError( 'Requested variation %d, but there are only %d variations.' % ( v, self.variation_count())) self._variation_number = v def variation_count(self) -> int: return self._task.variation_count() def reset(self) -> (List[str], Observation): self._scene.reset() try: desc = self._scene.init_episode( self._variation_number, max_attempts=_MAX_RESET_ATTEMPTS, randomly_place=not self._static_positions) except (BoundaryError, WaypointError) as e: raise TaskEnvironmentError( 'Could not place the task %s in the scene. This should not ' 'happen, please raise an issues on this task.' % self._task.get_name()) from e self._reset_called = True # redundancy resolution self._last_e = None # Returns a list of descriptions and the first observation return desc, self._scene.get_observation() def get_observation(self) -> Observation: return self._scene.get_observation() def get_joint_upper_velocity_limits(self): return self._robot.arm.get_joint_upper_velocity_limits() def get_all_graspable_objects(self): return self._task.get_graspable_objects() def get_robot_visuals(self): return self._robot.arm.get_visuals() def get_all_graspable_object_positions(self, relative_to_cameras=False): """ returns the positions of all graspable object relative to all enabled cameras """ objects = self._task.get_graspable_objects() positions = [] for ob in objects: if relative_to_camera: positions.append(self._scene.get_object_position_relative_to_cameras(ob)) else: positions.append({"left_shoulder_camera": ob.get_position(), "right_shoulder_camera": ob.get_position(), "front_camera": ob.get_position(), "wrist_camera": ob.get_position()}) return positions def get_all_graspable_object_poses(self, relative_to_cameras=False): """ returns the pose of all graspable object relative to all enabled cameras """ objects = self._task.get_graspable_objects() poses = [] for ob in objects: if relative_to_cameras: poses.append(self._scene.get_object_pose_relative_to_cameras(ob)) else: poses.append({"left_shoulder_camera": ob.get_pose(), "right_shoulder_camera": ob.get_pose(), "front_camera": ob.get_pose(), "wrist_camera": ob.get_pose()}) return poses def _assert_action_space(self, action, expected_shape): if np.shape(action) != expected_shape: raise RuntimeError( 'Expected the action shape to be: %s, but was shape: %s' % ( str(expected_shape), str(np.shape(action)))) def _assert_unit_quaternion(self, quat): if not np.isclose(np.linalg.norm(quat), 1.0): raise RuntimeError('Action contained non unit quaternion!') def _torque_action(self, action): self._robot.arm.set_joint_target_velocities( [(_TORQUE_MAX_VEL if t < 0 else -_TORQUE_MAX_VEL) for t in action]) self._robot.arm.set_joint_forces(np.abs(action)) def _ee_action(self, action, relative_to=None): self._assert_unit_quaternion(action[3:]) try: joint_positions = self._robot.arm.solve_ik( action[:3], quaternion=action[3:], relative_to=relative_to) self._robot.arm.set_joint_target_positions(joint_positions) except IKError as e: raise InvalidActionError('Could not find a path.') from e done = False prev_values = None # Move until reached target joint positions or until we stop moving # (e.g. when we collide wth something) while not done: self._scene.step() cur_positions = self._robot.arm.get_joint_positions() reached = np.allclose(cur_positions, joint_positions, atol=0.01) not_moving = False if prev_values is not None: not_moving = np.allclose( cur_positions, prev_values, atol=0.001) prev_values = cur_positions done = reached or not_moving def _path_action(self, action, relative_to=None): self._assert_unit_quaternion(action[3:]) try: # Check if the target is in the workspace; if not, then quick reject # Only checks position, not rotation pos_to_check = action[:3] if relative_to is not None: self._target_workspace_check.set_position( pos_to_check, relative_to) pos_to_check = self._target_workspace_check.get_position() valid = self._scene.check_target_in_workspace(pos_to_check) if not valid: raise InvalidActionError('Target is outside of workspace.') path = self._robot.arm.get_path( action[:3], quaternion=action[3:], ignore_collisions=True, relative_to=relative_to) done = False observations = [] while not done: done = path.step() self._scene.step() if self._enable_path_observations: observations.append(self._scene.get_observation()) success, terminate = self._task.success() # If the task succeeds while traversing path, then break early if success: break observations.append(self._scene.get_observation()) return observations except IKError as e: raise InvalidActionError('Could not find a path.') from e def step(self, action, camcorder=None) -> (Observation, int, bool): # returns observation, reward, done, info if not self._reset_called: raise RuntimeError( "Call 'reset' before calling 'step' on a task.") # action should contain 1 extra value for gripper open close state arm_action = np.array(action[:-1]) ee_action = action[-1] if 0.0 > ee_action > 1.0: raise ValueError('Gripper action expected to be within 0 and 1.') # Discretize the gripper action current_ee = (1.0 if self._robot.gripper.get_open_amount()[0] > 0.9 else 0.0) if ee_action > 0.5: ee_action = 1.0 elif ee_action < 0.5: ee_action = 0.0 if current_ee != ee_action: arm_action = np.array([0.0]*7) if self._action_mode.arm == ArmActionMode.ABS_JOINT_VELOCITY: self._assert_action_space(arm_action, (len(self._robot.arm.joints),)) self._robot.arm.set_joint_target_velocities(arm_action) self._scene.step() # if needed save some images if camcorder: obs = self._scene.get_observation() camcorder.save(obs, self.get_robot_visuals(), self.get_all_graspable_objects()) elif self._action_mode.arm == ArmActionMode.DELTA_JOINT_VELOCITY: self._assert_action_space(arm_action, (len(self._robot.arm.joints),)) cur = np.array(self._robot.arm.get_joint_velocities()) self._robot.arm.set_joint_target_velocities(cur + arm_action) self._scene.step() elif self._action_mode.arm == ArmActionMode.ABS_JOINT_POSITION: self._assert_action_space(arm_action, (len(self._robot.arm.joints),)) self._robot.arm.set_joint_target_positions(arm_action) self._scene.step() elif self._action_mode.arm == ArmActionMode.DELTA_JOINT_POSITION: self._assert_action_space(arm_action, (len(self._robot.arm.joints),)) cur = np.array(self._robot.arm.get_joint_positions()) self._robot.arm.set_joint_target_positions(cur + arm_action) self._scene.step() elif self._action_mode.arm == ArmActionMode.ABS_JOINT_TORQUE: self._assert_action_space( arm_action, (len(self._robot.arm.joints),)) self._torque_action(arm_action) self._scene.step() elif self._action_mode.arm == ArmActionMode.DELTA_JOINT_TORQUE: cur = np.array(self._robot.arm.get_joint_forces()) new_action = cur + arm_action self._torque_action(new_action) self._scene.step() elif self._action_mode.arm == ArmActionMode.ABS_EE_POSE_WORLD_FRAME: self._assert_action_space(arm_action, (7,)) self._ee_action(list(arm_action)) elif self._action_mode.arm == ArmActionMode.ABS_EE_POSE_PLAN_WORLD_FRAME: self._assert_action_space(arm_action, (7,)) self._path_observations = [] self._path_observations = self._path_action(list(arm_action)) elif self._action_mode.arm == ArmActionMode.DELTA_EE_POSE_PLAN_WORLD_FRAME: self._assert_action_space(arm_action, (7,)) a_x, a_y, a_z, a_qx, a_qy, a_qz, a_qw = arm_action x, y, z, qx, qy, qz, qw = self._robot.arm.get_tip().get_pose() new_rot = Quaternion(a_qw, a_qx, a_qy, a_qz) * Quaternion(qw, qx, qy, qz) qw, qx, qy, qz = list(new_rot) new_pose = [a_x + x, a_y + y, a_z + z] + [qx, qy, qz, qw] self._path_observations = [] self._path_observations = self._path_action(list(new_pose)) elif self._action_mode.arm == ArmActionMode.DELTA_EE_POSE_WORLD_FRAME: self._assert_action_space(arm_action, (7,)) a_x, a_y, a_z, a_qx, a_qy, a_qz, a_qw = arm_action x, y, z, qx, qy, qz, qw = self._robot.arm.get_tip().get_pose() new_rot = Quaternion(a_qw, a_qx, a_qy, a_qz) * Quaternion( qw, qx, qy, qz) qw, qx, qy, qz = list(new_rot) new_pose = [a_x + x, a_y + y, a_z + z] + [qx, qy, qz, qw] self._ee_action(list(new_pose)) elif self._action_mode.arm == ArmActionMode.EE_POSE_EE_FRAME: self._assert_action_space(arm_action, (7,)) self._ee_action( list(arm_action), relative_to=self._robot.arm.get_tip()) elif self._action_mode.arm == ArmActionMode.EE_POSE_PLAN_EE_FRAME: self._assert_action_space(arm_action, (7,)) self._path_observations = [] self._path_observations = self._path_action( list(arm_action), relative_to=self._robot.arm.get_tip()) else: raise RuntimeError('Unrecognised action mode.') if current_ee != ee_action: done = False while not done: done = self._robot.gripper.actuate(ee_action, velocity=0.2) self._pyrep.step() self._task.step() # if needed save some images if camcorder: obs = self._scene.get_observation() camcorder.save(obs, self.get_robot_visuals(), self.get_all_graspable_objects()) if ee_action == 0.0 and self._attach_grasped_objects: # If gripper close action, the check for grasp. for g_obj in self._task.get_graspable_objects(): self._robot.gripper.grasp(g_obj) else: # If gripper open action, the check for ungrasp. self._robot.gripper.release() success, terminate = self._task.success() task_reward = self._task.reward() reward = float(success) if task_reward is None else task_reward return self._scene.get_observation(), reward, terminate def resolve_redundancy_joint_velocities(self, actions, setup): """ Resolves redundant self-motion into the nullspace without changing the gripper tip position :param actions: Current actions without redundancy resolution. :param setup: Setup for redundancy resolution defining the mode, weighting etc. :return: Array of joint velocities, which move the robot's tip according to the provided actions yet push the joint position towards a reference position. """ # get the Jacobian J = self._robot.arm.get_jacobian() J = np.transpose(J) J = np.flip(J) J = J[-3:] # compute the pseudo inverse J_plus = np.linalg.pinv(J) # weighting if type(setup["W"]) is list: W = np.array(setup["W"]) elif setup["W"] is None: # use default weighting later W = None else: raise TypeError("Unsupported type %s for weighting vector." % type(setup["W"])) # compute the error if setup["mode"] == "reference_position": dL, L = self.get_loss_reference_position(setup["ref_position"], W) elif setup["mode"] == "collision_avoidance": dL, L = self.get_loss_collision_avoidance(W, setup) # compute the joint velocities q_dot_redundancy = setup["alpha"] * np.matmul((np.identity(len(self._robot.arm.joints)) - np.matmul(J_plus, J)), dL) # the provided jacobian seems to be inaccurate resulting in slight movement of the ee. This is why # the velocites are set to 0 once the error stops changing much. e = dL if setup["cut-off_error"] is not None: if self._last_e is not None: e_dot = np.sum(np.abs(e - self._last_e)) if self._last_e is not None and e_dot < setup["cut-off_error"]: q_dot_redundancy = np.array([0.0] * 7) self._last_e = e else: self._last_e = e return actions - q_dot_redundancy, L def get_loss_reference_position(self, ref_pos, W): """ Calculates the summed squarred error between the current and the reference consfiguration as well as its partial derivatives with respect to al q's for redundancy resoltuion. -> L(q) = 1/2 sum_{i=1}^N w_i (q_i - \tilde{q}_i)^2 :param ref_pos: Reference position. :param W: Weighting vector. :return: 1: The partial derivatives of the summed squarred error between the current and the reference configuration -> -> \nabla_q L(q) 2: Summed squarred error between the current and the reference configuration. -> L(q) """ if W is None: # default weighting W = np.array([1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]) e = (self._robot.arm.get_joint_positions() - ref_pos) return e * W, 0.5*np.dot(e,e*W) def get_loss_collision_avoidance(self, W, setup): """ Calculates the loss as well as the respective partial derivatives for redundancy resoltuion with collision avoidance. This only works with tasks that include one obstacles! L(q) = \sum_{i=1}^N d(q)^{-1} :param W: Weighting vector. :return: 1: The partial derivatives of the loss above. -> \nable_q L(q) 2: The loss shown above.-> L(q) """ # get the position of the object p_obs = self._task.obstacle.get_position() + np.array([0, 0, 0.33]) - self._robot.arm.joints[0].get_position() #p_obs = self._task.obstacle.get_position() p_obs = np.append(p_obs, [1]) # get the transformation matrices, their derivatives, and the positions of the links A_1, A_2, A_3, A_4, A_5, A_6, A_7 = self._robot.get_transformation_matrices() dA_1, dA_2, dA_3, dA_4, dA_5, dA_6, dA_7 = self._robot.get_transformation_matrices_derivatives() p_1, p_2, p_3, p_4, p_5, p_6, p_7 = self._robot.get_link_positions_in_ref_frames() # we use reciprocal of the distance between each link and an obstacle as our Loss # the chain rule delivers: d/dq L = (p_i^0 (q_1,..., q_i) - p_obs)^T * d/dq (p_i^0 (q_1,..., q_i) - p_obs) # where p_i^0 = (\prod_{j=1}^i A_j^{j-1}(q_j)) * p_i # as the left side of d/dq L is used often, let's calculate it in advance d_1_T = np.transpose(A_1.dot(p_1) - p_obs) d_2_T = np.transpose(A_1.dot(A_2).dot(p_2) - p_obs) d_3_T = np.transpose(A_1.dot(A_2).dot(A_3).dot(p_3) - p_obs) d_4_T = np.transpose(A_1.dot(A_2).dot(A_3).dot(A_4).dot(p_4) - p_obs) d_5_T = np.transpose(A_1.dot(A_2).dot(A_3).dot(A_4).dot(A_5).dot(p_5) - p_obs) d_6_T = np.transpose(A_1.dot(A_2).dot(A_3).dot(A_4).dot(A_5).dot(A_6).dot(p_6) - p_obs) d_7_T = np.transpose(A_1.dot(A_2).dot(A_3).dot(A_4).dot(A_5).dot(A_6).dot(A_7).dot(p_7) - p_obs) # now we can calculate the derivatives in each dimension dq_1 = -np.matmul(d_1_T, dA_1.dot(p_1)) + \ -np.matmul(d_2_T, dA_1.dot(A_2).dot(p_2)) + \ -np.matmul(d_3_T, dA_1.dot(A_2).dot(A_3).dot(p_3)) + \ -np.matmul(d_4_T, dA_1.dot(A_2).dot(A_3).dot(A_4).dot(p_4)) + \ -np.matmul(d_5_T, dA_1.dot(A_2).dot(A_3).dot(A_4).dot(A_5).dot(p_5)) + \ -np.matmul(d_6_T, dA_1.dot(A_2).dot(A_3).dot(A_4).dot(A_5).dot(A_6).dot(p_6)) + \ -np.matmul(d_7_T, dA_1.dot(A_2).dot(A_3).dot(A_4).dot(A_5).dot(A_6).dot(A_7).dot(p_7)) dq_2 = -np.matmul(d_2_T, A_1.dot(dA_2).dot(p_2)) + \ -np.matmul(d_3_T, A_1.dot(dA_2).dot(A_3).dot(p_3)) + \ -np.matmul(d_4_T, A_1.dot(dA_2).dot(A_3).dot(A_4).dot(p_4)) + \ -np.matmul(d_5_T, A_1.dot(dA_2).dot(A_3).dot(A_4).dot(A_5).dot(p_5)) + \ -np.matmul(d_6_T, A_1.dot(dA_2).dot(A_3).dot(A_4).dot(A_5).dot(A_6).dot(p_6)) + \ -np.matmul(d_7_T, A_1.dot(dA_2).dot(A_3).dot(A_4).dot(A_5).dot(A_6).dot(A_7).dot(p_7)) dq_3 = -np.matmul(d_3_T, A_1.dot(A_2).dot(dA_3).dot(p_3)) + \ -np.matmul(d_4_T, A_1.dot(A_2).dot(dA_3).dot(A_4).dot(p_4)) + \ -np.matmul(d_5_T, A_1.dot(A_2).dot(dA_3).dot(A_4).dot(A_5).dot(p_5)) + \ -np.matmul(d_6_T, A_1.dot(A_2).dot(dA_3).dot(A_4).dot(A_5).dot(A_6).dot(p_6)) + \ -np.matmul(d_7_T, A_1.dot(A_2).dot(dA_3).dot(A_4).dot(A_5).dot(A_6).dot(A_7).dot(p_7)) dq_4 = -np.matmul(d_4_T, A_1.dot(A_2).dot(A_3).dot(dA_4).dot(p_4)) + \ -np.matmul(d_5_T, A_1.dot(A_2).dot(A_3).dot(dA_4).dot(A_5).dot(p_5)) + \ -np.matmul(d_6_T, A_1.dot(A_2).dot(A_3).dot(dA_4).dot(A_5).dot(A_6).dot(p_6)) + \ -np.matmul(d_7_T, A_1.dot(A_2).dot(A_3).dot(dA_4).dot(A_5).dot(A_6).dot(A_7).dot(p_7)) dq_5 = -np.matmul(d_5_T, A_1.dot(A_2).dot(A_3).dot(A_4).dot(dA_5).dot(p_5)) + \ -np.matmul(d_6_T, A_1.dot(A_2).dot(A_3).dot(A_4).dot(dA_5).dot(A_6).dot(p_6)) + \ -np.matmul(d_7_T, A_1.dot(A_2).dot(A_3).dot(A_4).dot(dA_5).dot(A_6).dot(A_7).dot(p_7)) dq_6 = -np.matmul(d_6_T, A_1.dot(A_2).dot(A_3).dot(A_4).dot(A_5).dot(dA_6).dot(p_6)) + \ -np.matmul(d_7_T, A_1.dot(A_2).dot(A_3).dot(A_4).dot(A_5).dot(dA_6).dot(A_7).dot(p_7)) dq_7 = -np.matmul(d_7_T, A_1.dot(A_2).dot(A_3).dot(A_4).dot(A_5).dot(A_6).dot(dA_7).dot(p_7)) if W is None: # default weighting vector -> based on the reciprocal of the distance. The greater the distance the smaller # the weight. That is, it is concentrated on close objects. W = np.array([1 / np.sum(np.square(d_1_T)), 1 / np.sum(np.square(d_2_T)) , 1 / np.sum(np.square(d_3_T)) , 1 / np.sum(np.square(d_4_T)) , 1 / np.sum(np.square(d_5_T)) , 1 / np.sum(np.square(d_6_T)) , 1 / np.sum(np.square(d_7_T)) ]) * 0.1 # --- scaling to keep distance to joint limits --- # get the minimum distance of each joint to its limit joint_positions = np.array([j.get_joint_position() for j in self._robot.arm.joints]) lower_joint_limits = np.array(setup["lower_joint_pos_limit"]) upper_joint_limits = np.array(setup["upper_joint_pos_limit"]) min_j_distances = [np.minimum(u-j, j-l) for l,u,j in zip(lower_joint_limits, upper_joint_limits, joint_positions)] # start scaling down error when joint limit is 15° away. # Scaling is done linearly from 0 to 1 for 0° <= d <= 15° rad_thres = 15*(np.pi/180) W *= np.array([ np.minimum((1/rad_thres)*d, 1.0) for d in min_j_distances]) # concatenate the derivaties to vector and apply weightig dL = np.array([dq_1, dq_2, dq_3, dq_4, dq_5, dq_6, dq_7])*W # calculate the loss L = np.sqrt(np.dot(d_1_T, d_1_T))*W[0] \ + np.sqrt(np.dot(d_2_T, d_2_T))*W[1] \ + np.sqrt(np.dot(d_3_T, d_3_T))*W[2] \ + np.sqrt(np.dot(d_4_T, d_4_T))*W[3] \ + np.sqrt(np.dot(d_5_T, d_5_T))*W[4] \ + np.sqrt(np.dot(d_6_T, d_6_T))*W[5] \ + np.sqrt(np.dot(d_7_T, d_7_T))*W[6] return dL, L def enable_path_observations(self, value: bool) -> None: if (self._action_mode.arm != ArmActionMode.DELTA_EE_POSE_PLAN_WORLD_FRAME and self._action_mode.arm != ArmActionMode.ABS_EE_POSE_PLAN_WORLD_FRAME and self._action_mode.arm != ArmActionMode.EE_POSE_PLAN_EE_FRAME): raise RuntimeError('Only available in DELTA_EE_POSE_PLAN or ' 'ABS_EE_POSE_PLAN action mode.') self._enable_path_observations = value def get_path_observations(self): if (self._action_mode.arm != ArmActionMode.DELTA_EE_POSE_PLAN_WORLD_FRAME and self._action_mode.arm != ArmActionMode.ABS_EE_POSE_PLAN_WORLD_FRAME and self._action_mode.arm != ArmActionMode.EE_POSE_PLAN_EE_FRAME): raise RuntimeError('Only available in DELTA_EE_POSE_PLAN or ' 'ABS_EE_POSE_PLAN action mode.') return self._path_observations def get_demos(self, amount: int, live_demos: bool = False, image_paths: bool = False, callable_each_step: Callable[[Observation], None] = None, max_attempts: int = _MAX_DEMO_ATTEMPTS, ) -> List[Demo]: """Negative means all demos""" if not live_demos and (self._dataset_root is None or len(self._dataset_root) == 0): raise RuntimeError( "Can't ask for a stored demo when no dataset root provided.") if not live_demos: if self._dataset_root is None or len(self._dataset_root) == 0: raise RuntimeError( "Can't ask for stored demo when no dataset root provided.") demos = utils.get_stored_demos( amount, image_paths, self._dataset_root, self._variation_number, self._task.get_name(), self._obs_config) else: ctr_loop = self._robot.arm.joints[0].is_control_loop_enabled() self._robot.arm.set_control_loop_enabled(True) demos = self._get_live_demos( amount, callable_each_step, max_attempts) self._robot.arm.set_control_loop_enabled(ctr_loop) return demos def _get_live_demos(self, amount: int, callable_each_step: Callable[ [Observation], None] = None, max_attempts: int = _MAX_DEMO_ATTEMPTS) -> List[Demo]: demos = [] for i in range(amount): attempts = max_attempts while attempts > 0: random_seed = np.random.get_state() self.reset() logging.info('Collecting demo %d' % i) try: demo = self._scene.get_demo( callable_each_step=callable_each_step) demo.random_seed = random_seed demos.append(demo) break except Exception as e: attempts -= 1 logging.info('Bad demo. ' + str(e)) if attempts <= 0: raise RuntimeError( 'Could not collect demos. Maybe a problem with the task?') return demos def reset_to_demo(self, demo: Demo) -> (List[str], Observation): demo.restore_state() return self.reset()
[ "numpy.flip", "numpy.abs", "numpy.allclose", "numpy.random.get_state", "numpy.linalg.pinv", "numpy.minimum", "pyquaternion.Quaternion", "numpy.square", "pyrep.objects.Dummy.create", "numpy.array", "numpy.append", "numpy.dot", "numpy.matmul", "numpy.linalg.norm", "numpy.shape", "numpy.transpose", "logging.info" ]
[((1721, 1735), 'pyrep.objects.Dummy.create', 'Dummy.create', ([], {}), '()\n', (1733, 1735), False, 'from pyrep.objects import Dummy, Object\n'), ((8536, 8557), 'numpy.array', 'np.array', (['action[:-1]'], {}), '(action[:-1])\n', (8544, 8557), True, 'import numpy as np\n'), ((14997, 15012), 'numpy.transpose', 'np.transpose', (['J'], {}), '(J)\n', (15009, 15012), True, 'import numpy as np\n'), ((15025, 15035), 'numpy.flip', 'np.flip', (['J'], {}), '(J)\n', (15032, 15035), True, 'import numpy as np\n'), ((15110, 15127), 'numpy.linalg.pinv', 'np.linalg.pinv', (['J'], {}), '(J)\n', (15124, 15127), True, 'import numpy as np\n'), ((18089, 18110), 'numpy.append', 'np.append', (['p_obs', '[1]'], {}), '(p_obs, [1])\n', (18098, 18110), True, 'import numpy as np\n'), ((22729, 22769), 'numpy.array', 'np.array', (["setup['lower_joint_pos_limit']"], {}), "(setup['lower_joint_pos_limit'])\n", (22737, 22769), True, 'import numpy as np\n'), ((22799, 22839), 'numpy.array', 'np.array', (["setup['upper_joint_pos_limit']"], {}), "(setup['upper_joint_pos_limit'])\n", (22807, 22839), True, 'import numpy as np\n'), ((5012, 5028), 'numpy.shape', 'np.shape', (['action'], {}), '(action)\n', (5020, 5028), True, 'import numpy as np\n'), ((5620, 5634), 'numpy.abs', 'np.abs', (['action'], {}), '(action)\n', (5626, 5634), True, 'import numpy as np\n'), ((6368, 6422), 'numpy.allclose', 'np.allclose', (['cur_positions', 'joint_positions'], {'atol': '(0.01)'}), '(cur_positions, joint_positions, atol=0.01)\n', (6379, 6422), True, 'import numpy as np\n'), ((9006, 9025), 'numpy.array', 'np.array', (['([0.0] * 7)'], {}), '([0.0] * 7)\n', (9014, 9025), True, 'import numpy as np\n'), ((15202, 15222), 'numpy.array', 'np.array', (["setup['W']"], {}), "(setup['W'])\n", (15210, 15222), True, 'import numpy as np\n'), ((17229, 17274), 'numpy.array', 'np.array', (['[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]'], {}), '([1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0])\n', (17237, 17274), True, 'import numpy as np\n'), ((22867, 22891), 'numpy.minimum', 'np.minimum', (['(u - j)', '(j - l)'], {}), '(u - j, j - l)\n', (22877, 22891), True, 'import numpy as np\n'), ((23356, 23408), 'numpy.array', 'np.array', (['[dq_1, dq_2, dq_3, dq_4, dq_5, dq_6, dq_7]'], {}), '([dq_1, dq_2, dq_3, dq_4, dq_5, dq_6, dq_7])\n', (23364, 23408), True, 'import numpy as np\n'), ((5294, 5314), 'numpy.linalg.norm', 'np.linalg.norm', (['quat'], {}), '(quat)\n', (5308, 5314), True, 'import numpy as np\n'), ((6523, 6574), 'numpy.allclose', 'np.allclose', (['cur_positions', 'prev_values'], {'atol': '(0.001)'}), '(cur_positions, prev_values, atol=0.001)\n', (6534, 6574), True, 'import numpy as np\n'), ((16317, 16336), 'numpy.array', 'np.array', (['([0.0] * 7)'], {}), '([0.0] * 7)\n', (16325, 16336), True, 'import numpy as np\n'), ((17363, 17379), 'numpy.dot', 'np.dot', (['e', '(e * W)'], {}), '(e, e * W)\n', (17369, 17379), True, 'import numpy as np\n'), ((17954, 17976), 'numpy.array', 'np.array', (['[0, 0, 0.33]'], {}), '([0, 0, 0.33])\n', (17962, 17976), True, 'import numpy as np\n'), ((23216, 23250), 'numpy.minimum', 'np.minimum', (['(1 / rad_thres * d)', '(1.0)'], {}), '(1 / rad_thres * d, 1.0)\n', (23226, 23250), True, 'import numpy as np\n'), ((26437, 26458), 'numpy.random.get_state', 'np.random.get_state', ([], {}), '()\n', (26456, 26458), True, 'import numpy as np\n'), ((26504, 26542), 'logging.info', 'logging.info', (["('Collecting demo %d' % i)"], {}), "('Collecting demo %d' % i)\n", (26516, 26542), False, 'import logging\n'), ((15838, 15858), 'numpy.matmul', 'np.matmul', (['J_plus', 'J'], {}), '(J_plus, J)\n', (15847, 15858), True, 'import numpy as np\n'), ((16180, 16204), 'numpy.abs', 'np.abs', (['(e - self._last_e)'], {}), '(e - self._last_e)\n', (16186, 16204), True, 'import numpy as np\n'), ((23761, 23781), 'numpy.dot', 'np.dot', (['d_7_T', 'd_7_T'], {}), '(d_7_T, d_7_T)\n', (23767, 23781), True, 'import numpy as np\n'), ((23711, 23731), 'numpy.dot', 'np.dot', (['d_6_T', 'd_6_T'], {}), '(d_6_T, d_6_T)\n', (23717, 23731), True, 'import numpy as np\n'), ((5202, 5218), 'numpy.shape', 'np.shape', (['action'], {}), '(action)\n', (5210, 5218), True, 'import numpy as np\n'), ((23661, 23681), 'numpy.dot', 'np.dot', (['d_5_T', 'd_5_T'], {}), '(d_5_T, d_5_T)\n', (23667, 23681), True, 'import numpy as np\n'), ((22117, 22133), 'numpy.square', 'np.square', (['d_1_T'], {}), '(d_1_T)\n', (22126, 22133), True, 'import numpy as np\n'), ((22173, 22189), 'numpy.square', 'np.square', (['d_2_T'], {}), '(d_2_T)\n', (22182, 22189), True, 'import numpy as np\n'), ((22230, 22246), 'numpy.square', 'np.square', (['d_3_T'], {}), '(d_3_T)\n', (22239, 22246), True, 'import numpy as np\n'), ((22287, 22303), 'numpy.square', 'np.square', (['d_4_T'], {}), '(d_4_T)\n', (22296, 22303), True, 'import numpy as np\n'), ((22344, 22360), 'numpy.square', 'np.square', (['d_5_T'], {}), '(d_5_T)\n', (22353, 22360), True, 'import numpy as np\n'), ((22401, 22417), 'numpy.square', 'np.square', (['d_6_T'], {}), '(d_6_T)\n', (22410, 22417), True, 'import numpy as np\n'), ((22458, 22474), 'numpy.square', 'np.square', (['d_7_T'], {}), '(d_7_T)\n', (22467, 22474), True, 'import numpy as np\n'), ((23611, 23631), 'numpy.dot', 'np.dot', (['d_4_T', 'd_4_T'], {}), '(d_4_T, d_4_T)\n', (23617, 23631), True, 'import numpy as np\n'), ((23561, 23581), 'numpy.dot', 'np.dot', (['d_3_T', 'd_3_T'], {}), '(d_3_T, d_3_T)\n', (23567, 23581), True, 'import numpy as np\n'), ((23461, 23481), 'numpy.dot', 'np.dot', (['d_1_T', 'd_1_T'], {}), '(d_1_T, d_1_T)\n', (23467, 23481), True, 'import numpy as np\n'), ((23511, 23531), 'numpy.dot', 'np.dot', (['d_2_T', 'd_2_T'], {}), '(d_2_T, d_2_T)\n', (23517, 23531), True, 'import numpy as np\n'), ((11795, 11829), 'pyquaternion.Quaternion', 'Quaternion', (['a_qw', 'a_qx', 'a_qy', 'a_qz'], {}), '(a_qw, a_qx, a_qy, a_qz)\n', (11805, 11829), False, 'from pyquaternion import Quaternion\n'), ((11832, 11858), 'pyquaternion.Quaternion', 'Quaternion', (['qw', 'qx', 'qy', 'qz'], {}), '(qw, qx, qy, qz)\n', (11842, 11858), False, 'from pyquaternion import Quaternion\n'), ((12452, 12486), 'pyquaternion.Quaternion', 'Quaternion', (['a_qw', 'a_qx', 'a_qy', 'a_qz'], {}), '(a_qw, a_qx, a_qy, a_qz)\n', (12462, 12486), False, 'from pyquaternion import Quaternion\n'), ((12489, 12515), 'pyquaternion.Quaternion', 'Quaternion', (['qw', 'qx', 'qy', 'qz'], {}), '(qw, qx, qy, qz)\n', (12499, 12515), False, 'from pyquaternion import Quaternion\n')]
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Copyright (C) 2010 <NAME> <<EMAIL>> # Licensed under the GNU LGPL v2.1 - http://www.gnu.org/licenses/lgpl.html """ Automated tests for checking transformation algorithms (the models package). """ import logging import unittest import numpy as np from gensim.corpora.mmcorpus import MmCorpus from gensim.models import rpmodel from gensim import matutils from gensim.test.utils import datapath, get_tmpfile class TestRpModel(unittest.TestCase): def setUp(self): self.corpus = MmCorpus(datapath('testcorpus.mm')) def test_transform(self): # create the transformation model # HACK; set fixed seed so that we always get the same random matrix (and can compare against expected results) np.random.seed(13) model = rpmodel.RpModel(self.corpus, num_topics=2) # transform one document doc = list(self.corpus)[0] transformed = model[doc] vec = matutils.sparse2full(transformed, 2) # convert to dense vector, for easier equality tests expected = np.array([-0.70710677, 0.70710677]) self.assertTrue(np.allclose(vec, expected)) # transformed entries must be equal up to sign def test_persistence(self): fname = get_tmpfile('gensim_models.tst') model = rpmodel.RpModel(self.corpus, num_topics=2) model.save(fname) model2 = rpmodel.RpModel.load(fname) self.assertEqual(model.num_topics, model2.num_topics) self.assertTrue(np.allclose(model.projection, model2.projection)) tstvec = [] self.assertTrue(np.allclose(model[tstvec], model2[tstvec])) # try projecting an empty vector def test_persistence_compressed(self): fname = get_tmpfile('gensim_models.tst.gz') model = rpmodel.RpModel(self.corpus, num_topics=2) model.save(fname) model2 = rpmodel.RpModel.load(fname, mmap=None) self.assertEqual(model.num_topics, model2.num_topics) self.assertTrue(np.allclose(model.projection, model2.projection)) tstvec = [] self.assertTrue(np.allclose(model[tstvec], model2[tstvec])) # try projecting an empty vector if __name__ == '__main__': logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.DEBUG) unittest.main()
[ "logging.basicConfig", "gensim.models.rpmodel.RpModel.load", "gensim.matutils.sparse2full", "numpy.allclose", "gensim.test.utils.get_tmpfile", "gensim.models.rpmodel.RpModel", "numpy.array", "numpy.random.seed", "gensim.test.utils.datapath", "unittest.main" ]
[((2218, 2314), 'logging.basicConfig', 'logging.basicConfig', ([], {'format': '"""%(asctime)s : %(levelname)s : %(message)s"""', 'level': 'logging.DEBUG'}), "(format='%(asctime)s : %(levelname)s : %(message)s',\n level=logging.DEBUG)\n", (2237, 2314), False, 'import logging\n'), ((2315, 2330), 'unittest.main', 'unittest.main', ([], {}), '()\n', (2328, 2330), False, 'import unittest\n'), ((779, 797), 'numpy.random.seed', 'np.random.seed', (['(13)'], {}), '(13)\n', (793, 797), True, 'import numpy as np\n'), ((814, 856), 'gensim.models.rpmodel.RpModel', 'rpmodel.RpModel', (['self.corpus'], {'num_topics': '(2)'}), '(self.corpus, num_topics=2)\n', (829, 856), False, 'from gensim.models import rpmodel\n'), ((973, 1009), 'gensim.matutils.sparse2full', 'matutils.sparse2full', (['transformed', '(2)'], {}), '(transformed, 2)\n', (993, 1009), False, 'from gensim import matutils\n'), ((1084, 1119), 'numpy.array', 'np.array', (['[-0.70710677, 0.70710677]'], {}), '([-0.70710677, 0.70710677])\n', (1092, 1119), True, 'import numpy as np\n'), ((1269, 1301), 'gensim.test.utils.get_tmpfile', 'get_tmpfile', (['"""gensim_models.tst"""'], {}), "('gensim_models.tst')\n", (1280, 1301), False, 'from gensim.test.utils import datapath, get_tmpfile\n'), ((1318, 1360), 'gensim.models.rpmodel.RpModel', 'rpmodel.RpModel', (['self.corpus'], {'num_topics': '(2)'}), '(self.corpus, num_topics=2)\n', (1333, 1360), False, 'from gensim.models import rpmodel\n'), ((1404, 1431), 'gensim.models.rpmodel.RpModel.load', 'rpmodel.RpModel.load', (['fname'], {}), '(fname)\n', (1424, 1431), False, 'from gensim.models import rpmodel\n'), ((1750, 1785), 'gensim.test.utils.get_tmpfile', 'get_tmpfile', (['"""gensim_models.tst.gz"""'], {}), "('gensim_models.tst.gz')\n", (1761, 1785), False, 'from gensim.test.utils import datapath, get_tmpfile\n'), ((1802, 1844), 'gensim.models.rpmodel.RpModel', 'rpmodel.RpModel', (['self.corpus'], {'num_topics': '(2)'}), '(self.corpus, num_topics=2)\n', (1817, 1844), False, 'from gensim.models import rpmodel\n'), ((1888, 1926), 'gensim.models.rpmodel.RpModel.load', 'rpmodel.RpModel.load', (['fname'], {'mmap': 'None'}), '(fname, mmap=None)\n', (1908, 1926), False, 'from gensim.models import rpmodel\n'), ((552, 577), 'gensim.test.utils.datapath', 'datapath', (['"""testcorpus.mm"""'], {}), "('testcorpus.mm')\n", (560, 577), False, 'from gensim.test.utils import datapath, get_tmpfile\n'), ((1144, 1170), 'numpy.allclose', 'np.allclose', (['vec', 'expected'], {}), '(vec, expected)\n', (1155, 1170), True, 'import numpy as np\n'), ((1518, 1566), 'numpy.allclose', 'np.allclose', (['model.projection', 'model2.projection'], {}), '(model.projection, model2.projection)\n', (1529, 1566), True, 'import numpy as np\n'), ((1612, 1654), 'numpy.allclose', 'np.allclose', (['model[tstvec]', 'model2[tstvec]'], {}), '(model[tstvec], model2[tstvec])\n', (1623, 1654), True, 'import numpy as np\n'), ((2013, 2061), 'numpy.allclose', 'np.allclose', (['model.projection', 'model2.projection'], {}), '(model.projection, model2.projection)\n', (2024, 2061), True, 'import numpy as np\n'), ((2107, 2149), 'numpy.allclose', 'np.allclose', (['model[tstvec]', 'model2[tstvec]'], {}), '(model[tstvec], model2[tstvec])\n', (2118, 2149), True, 'import numpy as np\n')]
import os import h5py import nibabel as nb import numpy as np import torch import torch.utils.data as data from torchvision import transforms import utils.preprocessor as preprocessor # transform_train = transforms.Compose([ # transforms.RandomCrop(200, padding=56), # transforms.ToTensor(), # ]) class ImdbData(data.Dataset): def __init__(self, X, y, w, transforms=None): self.X = X if len(X.shape) == 4 else X[:, np.newaxis, :, :] self.y = y self.w = w self.transforms = transforms def __getitem__(self, index): img = torch.from_numpy(self.X[index]) label = torch.from_numpy(self.y[index]) weight = torch.from_numpy(self.w[index]) return img, label, weight def __len__(self): return len(self.y) def get_imdb_dataset(data_params): data_train = h5py.File(os.path.join(data_params['data_dir'], data_params['train_data_file']), 'r') label_train = h5py.File(os.path.join(data_params['data_dir'], data_params['train_label_file']), 'r') class_weight_train = h5py.File(os.path.join(data_params['data_dir'], data_params['train_class_weights_file']), 'r') weight_train = h5py.File(os.path.join(data_params['data_dir'], data_params['train_weights_file']), 'r') data_test = h5py.File(os.path.join(data_params['data_dir'], data_params['test_data_file']), 'r') label_test = h5py.File(os.path.join(data_params['data_dir'], data_params['test_label_file']), 'r') class_weight_test = h5py.File(os.path.join(data_params['data_dir'], data_params['test_class_weights_file']), 'r') weight_test = h5py.File(os.path.join(data_params['data_dir'], data_params['test_weights_file']), 'r') return (ImdbData(data_train['data'][()], label_train['label'][()], class_weight_train['class_weights'][()]), ImdbData(data_test['data'][()], label_test['label'][()], class_weight_test['class_weights'][()])) def load_dataset(file_paths, orientation, remap_config, return_weights=False, reduce_slices=False, remove_black=False): print("Loading and preprocessing data...") volume_list, labelmap_list, headers, class_weights_list, weights_list = [], [], [], [], [] for file_path in file_paths: volume, labelmap, class_weights, weights, header = load_and_preprocess(file_path, orientation, remap_config=remap_config, reduce_slices=reduce_slices, remove_black=remove_black, return_weights=return_weights) volume_list.append(volume) labelmap_list.append(labelmap) if return_weights: class_weights_list.append(class_weights) weights_list.append(weights) headers.append(header) print("#", end='', flush=True) print("100%", flush=True) if return_weights: return volume_list, labelmap_list, class_weights_list, weights_list, headers else: return volume_list, labelmap_list, headers def load_and_preprocess(file_path, orientation, remap_config, reduce_slices=False, remove_black=False, return_weights=False): volume, labelmap, header = load_data(file_path, orientation) volume, labelmap, class_weights, weights = preprocess(volume, labelmap, remap_config=remap_config, reduce_slices=reduce_slices, remove_black=remove_black, return_weights=return_weights) return volume, labelmap, class_weights, weights, header def load_and_preprocess_eval(file_path, orientation, notlabel=True): volume_nifty = nb.load(file_path[0]) header = volume_nifty.header volume = volume_nifty.get_fdata() if notlabel: volume = (volume - np.min(volume)) / (np.max(volume) - np.min(volume)) else: volume = np.round(volume) if orientation == "COR": volume = volume.transpose((2, 0, 1)) elif orientation == "AXI": volume = volume.transpose((1, 2, 0)) return volume, header def load_data(file_path, orientation): volume_nifty, labelmap_nifty = nb.load(file_path[0]), nb.load(file_path[1]) volume, labelmap = volume_nifty.get_fdata(), labelmap_nifty.get_fdata() volume = (volume - np.min(volume)) / (np.max(volume) - np.min(volume)) volume, labelmap = preprocessor.rotate_orientation(volume, labelmap, orientation) return volume, labelmap, volume_nifty.header def preprocess(volume, labelmap, remap_config, reduce_slices=False, remove_black=False, return_weights=False): if reduce_slices: volume, labelmap = preprocessor.reduce_slices(volume, labelmap) if remap_config: labelmap = preprocessor.remap_labels(labelmap, remap_config) if remove_black: volume, labelmap = preprocessor.remove_black(volume, labelmap) if return_weights: class_weights, weights = preprocessor.estimate_weights_mfb(labelmap) return volume, labelmap, class_weights, weights else: return volume, labelmap, None, None # def load_file_paths(data_dir, label_dir, volumes_txt_file=None): # """ # This function returns the file paths combined as a list where each element is a 2 element tuple, 0th being data and 1st being label. # It should be modified to suit the need of the project # :param data_dir: Directory which contains the data files # :param label_dir: Directory which contains the label files # :param volumes_txt_file: (Optional) Path to the a csv file, when provided only these data points will be read # :return: list of file paths as string # """ # # volume_exclude_list = ['IXI290', 'IXI423'] # if volumes_txt_file: # with open(volumes_txt_file) as file_handle: # volumes_to_use = file_handle.read().splitlines() # else: # volumes_to_use = [name for name in os.listdir(data_dir) if # name.startswith('IXI') and name not in volume_exclude_list] # # file_paths = [ # [os.path.join(data_dir, vol, 'mri/orig.mgz'), os.path.join(label_dir, vol, 'mri/aseg.auto_noCCseg.mgz')] # for # vol in volumes_to_use] # return file_paths def load_file_paths(data_dir, label_dir, data_id, volumes_txt_file=None): """ This function returns the file paths combined as a list where each element is a 2 element tuple, 0th being data and 1st being label. It should be modified to suit the need of the project :param data_dir: Directory which contains the data files :param label_dir: Directory which contains the label files :param data_id: A flag indicates the name of Dataset for proper file reading :param volumes_txt_file: (Optional) Path to the a csv file, when provided only these data points will be read :return: list of file paths as string """ if volumes_txt_file: with open(volumes_txt_file) as file_handle: volumes_to_use = file_handle.read().splitlines() else: volumes_to_use = [name for name in os.listdir(data_dir)] if data_id == "MALC": file_paths = [ [os.path.join(data_dir, vol, 'mri/orig.mgz'), os.path.join(label_dir, vol + '_glm.mgz')] for vol in volumes_to_use] elif data_id == "ADNI": file_paths = [ [os.path.join(data_dir, vol, 'orig.mgz'), os.path.join(label_dir, vol, 'Lab_con.mgz')] for vol in volumes_to_use] elif data_id == "CANDI": file_paths = [ [os.path.join(data_dir, vol + '/' + vol + '_1.mgz'), os.path.join(label_dir, vol + '/' + vol + '_1_seg.mgz')] for vol in volumes_to_use] elif data_id == "IBSR": file_paths = [ [os.path.join(data_dir, vol, 'mri/orig.mgz'), os.path.join(label_dir, vol + '_map.nii.gz')] for vol in volumes_to_use] elif data_id == "BORIS": #BORIS file_paths = [ [os.path.join(data_dir, vol), os.path.join(label_dir, vol.replace('.nii', '_seg.nii'))] for vol in volumes_to_use] else: raise ValueError("Invalid entry, valid options are MALC, ADNI, CANDI and IBSR") return file_paths def load_file_paths_eval(data_dir, volumes_txt_file, dir_struct): """ This function returns the file paths combined as a list where each element is a 2 element tuple, 0th being data and 1st being label. It should be modified to suit the need of the project :param data_dir: Directory which contains the data files :param volumes_txt_file: Path to the a csv file, when provided only these data points will be read :param dir_struct: If the id_list is in FreeSurfer style or normal :return: list of file paths as string """ with open(volumes_txt_file) as file_handle: volumes_to_use = file_handle.read().splitlines() if dir_struct == "FS": file_paths = [ [os.path.join(data_dir, vol, 'mri/orig.mgz')] for vol in volumes_to_use] elif dir_struct == "Linear": file_paths = [ [os.path.join(data_dir, vol)] for vol in volumes_to_use] elif dir_struct == "part_FS": file_paths = [ [os.path.join(data_dir, vol, 'orig.mgz')] for vol in volumes_to_use] else: raise ValueError("Invalid entry, valid options are FS and Linear") return file_paths
[ "os.listdir", "nibabel.load", "os.path.join", "torch.from_numpy", "utils.preprocessor.estimate_weights_mfb", "utils.preprocessor.remap_labels", "numpy.max", "utils.preprocessor.rotate_orientation", "numpy.min", "utils.preprocessor.reduce_slices", "utils.preprocessor.remove_black", "numpy.round" ]
[((4062, 4083), 'nibabel.load', 'nb.load', (['file_path[0]'], {}), '(file_path[0])\n', (4069, 4083), True, 'import nibabel as nb\n'), ((4766, 4828), 'utils.preprocessor.rotate_orientation', 'preprocessor.rotate_orientation', (['volume', 'labelmap', 'orientation'], {}), '(volume, labelmap, orientation)\n', (4797, 4828), True, 'import utils.preprocessor as preprocessor\n'), ((582, 613), 'torch.from_numpy', 'torch.from_numpy', (['self.X[index]'], {}), '(self.X[index])\n', (598, 613), False, 'import torch\n'), ((630, 661), 'torch.from_numpy', 'torch.from_numpy', (['self.y[index]'], {}), '(self.y[index])\n', (646, 661), False, 'import torch\n'), ((679, 710), 'torch.from_numpy', 'torch.from_numpy', (['self.w[index]'], {}), '(self.w[index])\n', (695, 710), False, 'import torch\n'), ((860, 929), 'os.path.join', 'os.path.join', (["data_params['data_dir']", "data_params['train_data_file']"], {}), "(data_params['data_dir'], data_params['train_data_file'])\n", (872, 929), False, 'import os\n'), ((964, 1034), 'os.path.join', 'os.path.join', (["data_params['data_dir']", "data_params['train_label_file']"], {}), "(data_params['data_dir'], data_params['train_label_file'])\n", (976, 1034), False, 'import os\n'), ((1076, 1154), 'os.path.join', 'os.path.join', (["data_params['data_dir']", "data_params['train_class_weights_file']"], {}), "(data_params['data_dir'], data_params['train_class_weights_file'])\n", (1088, 1154), False, 'import os\n'), ((1190, 1262), 'os.path.join', 'os.path.join', (["data_params['data_dir']", "data_params['train_weights_file']"], {}), "(data_params['data_dir'], data_params['train_weights_file'])\n", (1202, 1262), False, 'import os\n'), ((1296, 1364), 'os.path.join', 'os.path.join', (["data_params['data_dir']", "data_params['test_data_file']"], {}), "(data_params['data_dir'], data_params['test_data_file'])\n", (1308, 1364), False, 'import os\n'), ((1398, 1467), 'os.path.join', 'os.path.join', (["data_params['data_dir']", "data_params['test_label_file']"], {}), "(data_params['data_dir'], data_params['test_label_file'])\n", (1410, 1467), False, 'import os\n'), ((1508, 1585), 'os.path.join', 'os.path.join', (["data_params['data_dir']", "data_params['test_class_weights_file']"], {}), "(data_params['data_dir'], data_params['test_class_weights_file'])\n", (1520, 1585), False, 'import os\n'), ((1620, 1691), 'os.path.join', 'os.path.join', (["data_params['data_dir']", "data_params['test_weights_file']"], {}), "(data_params['data_dir'], data_params['test_weights_file'])\n", (1632, 1691), False, 'import os\n'), ((4278, 4294), 'numpy.round', 'np.round', (['volume'], {}), '(volume)\n', (4286, 4294), True, 'import numpy as np\n'), ((4547, 4568), 'nibabel.load', 'nb.load', (['file_path[0]'], {}), '(file_path[0])\n', (4554, 4568), True, 'import nibabel as nb\n'), ((4570, 4591), 'nibabel.load', 'nb.load', (['file_path[1]'], {}), '(file_path[1])\n', (4577, 4591), True, 'import nibabel as nb\n'), ((5040, 5084), 'utils.preprocessor.reduce_slices', 'preprocessor.reduce_slices', (['volume', 'labelmap'], {}), '(volume, labelmap)\n', (5066, 5084), True, 'import utils.preprocessor as preprocessor\n'), ((5126, 5175), 'utils.preprocessor.remap_labels', 'preprocessor.remap_labels', (['labelmap', 'remap_config'], {}), '(labelmap, remap_config)\n', (5151, 5175), True, 'import utils.preprocessor as preprocessor\n'), ((5225, 5268), 'utils.preprocessor.remove_black', 'preprocessor.remove_black', (['volume', 'labelmap'], {}), '(volume, labelmap)\n', (5250, 5268), True, 'import utils.preprocessor as preprocessor\n'), ((5326, 5369), 'utils.preprocessor.estimate_weights_mfb', 'preprocessor.estimate_weights_mfb', (['labelmap'], {}), '(labelmap)\n', (5359, 5369), True, 'import utils.preprocessor as preprocessor\n'), ((4691, 4705), 'numpy.min', 'np.min', (['volume'], {}), '(volume)\n', (4697, 4705), True, 'import numpy as np\n'), ((4710, 4724), 'numpy.max', 'np.max', (['volume'], {}), '(volume)\n', (4716, 4724), True, 'import numpy as np\n'), ((4727, 4741), 'numpy.min', 'np.min', (['volume'], {}), '(volume)\n', (4733, 4741), True, 'import numpy as np\n'), ((4199, 4213), 'numpy.min', 'np.min', (['volume'], {}), '(volume)\n', (4205, 4213), True, 'import numpy as np\n'), ((4218, 4232), 'numpy.max', 'np.max', (['volume'], {}), '(volume)\n', (4224, 4232), True, 'import numpy as np\n'), ((4235, 4249), 'numpy.min', 'np.min', (['volume'], {}), '(volume)\n', (4241, 4249), True, 'import numpy as np\n'), ((7469, 7489), 'os.listdir', 'os.listdir', (['data_dir'], {}), '(data_dir)\n', (7479, 7489), False, 'import os\n'), ((7554, 7597), 'os.path.join', 'os.path.join', (['data_dir', 'vol', '"""mri/orig.mgz"""'], {}), "(data_dir, vol, 'mri/orig.mgz')\n", (7566, 7597), False, 'import os\n'), ((7599, 7640), 'os.path.join', 'os.path.join', (['label_dir', "(vol + '_glm.mgz')"], {}), "(label_dir, vol + '_glm.mgz')\n", (7611, 7640), False, 'import os\n'), ((9395, 9438), 'os.path.join', 'os.path.join', (['data_dir', 'vol', '"""mri/orig.mgz"""'], {}), "(data_dir, vol, 'mri/orig.mgz')\n", (9407, 9438), False, 'import os\n'), ((7757, 7796), 'os.path.join', 'os.path.join', (['data_dir', 'vol', '"""orig.mgz"""'], {}), "(data_dir, vol, 'orig.mgz')\n", (7769, 7796), False, 'import os\n'), ((7798, 7841), 'os.path.join', 'os.path.join', (['label_dir', 'vol', '"""Lab_con.mgz"""'], {}), "(label_dir, vol, 'Lab_con.mgz')\n", (7810, 7841), False, 'import os\n'), ((9560, 9587), 'os.path.join', 'os.path.join', (['data_dir', 'vol'], {}), '(data_dir, vol)\n', (9572, 9587), False, 'import os\n'), ((7959, 8009), 'os.path.join', 'os.path.join', (['data_dir', "(vol + '/' + vol + '_1.mgz')"], {}), "(data_dir, vol + '/' + vol + '_1.mgz')\n", (7971, 8009), False, 'import os\n'), ((8024, 8079), 'os.path.join', 'os.path.join', (['label_dir', "(vol + '/' + vol + '_1_seg.mgz')"], {}), "(label_dir, vol + '/' + vol + '_1_seg.mgz')\n", (8036, 8079), False, 'import os\n'), ((9710, 9749), 'os.path.join', 'os.path.join', (['data_dir', 'vol', '"""orig.mgz"""'], {}), "(data_dir, vol, 'orig.mgz')\n", (9722, 9749), False, 'import os\n'), ((8196, 8239), 'os.path.join', 'os.path.join', (['data_dir', 'vol', '"""mri/orig.mgz"""'], {}), "(data_dir, vol, 'mri/orig.mgz')\n", (8208, 8239), False, 'import os\n'), ((8241, 8285), 'os.path.join', 'os.path.join', (['label_dir', "(vol + '_map.nii.gz')"], {}), "(label_dir, vol + '_map.nii.gz')\n", (8253, 8285), False, 'import os\n'), ((8410, 8437), 'os.path.join', 'os.path.join', (['data_dir', 'vol'], {}), '(data_dir, vol)\n', (8422, 8437), False, 'import os\n')]
import copy import numpy as np import open3d as o3d from tqdm import tqdm from scipy import stats import utils_o3d as utils def remove_ground_plane(pcd, z_thresh=-2.7): cropped = copy.deepcopy(pcd) cropped_points = np.array(cropped.points) cropped_points = cropped_points[cropped_points[:, -1] > z_thresh] pcd_final = o3d.geometry.PointCloud() pcd_final.points = o3d.utility.Vector3dVector(cropped_points) return pcd_final def remove_y_plane(pcd, y_thresh=5): cropped = copy.deepcopy(pcd) cropped_points = np.array(cropped.points) cropped_points = cropped_points[cropped_points[:, 0] < y_thresh] cropped_points[:, -1] = -cropped_points[:, -1] pcd_final = o3d.geometry.PointCloud() pcd_final.points = o3d.utility.Vector3dVector(cropped_points) return pcd_final def compute_features(pcd, voxel_size, normals_nn=100, features_nn=120, downsample=True): normals_radius = voxel_size * 2 features_radius = voxel_size * 4 # Downsample the point cloud using Voxel grids if downsample: print(':: Input size:', np.array(pcd.points).shape) pcd_down = utils.downsample_point_cloud(pcd, voxel_size) print(':: Downsample with a voxel size %.3f' % voxel_size) print(':: Downsample size', np.array(pcd_down.points).shape) else: pcd_down = copy.deepcopy(pcd) # Estimate normals print(':: Estimate normal with search radius %.3f' % normals_radius) pcd_down.estimate_normals( o3d.geometry.KDTreeSearchParamHybrid(radius=normals_radius, max_nn=normals_nn)) # Compute FPFH features print(':: Compute FPFH feature with search radius %.3f' % features_radius) features = o3d.registration.compute_fpfh_feature(pcd_down, o3d.geometry.KDTreeSearchParamHybrid(radius=features_radius, max_nn=features_nn)) return pcd_down, features def match_features(pcd0, pcd1, feature0, feature1, thresh=None, display=False): pcd0, pcd1 = copy.deepcopy(pcd0), copy.deepcopy(pcd1) print(':: Input size 0:', np.array(pcd0.points).shape) print(':: Input size 1:', np.array(pcd1.points).shape) print(':: Features size 0:', np.array(feature0.data).shape) print(':: Features size 1:', np.array(feature1.data).shape) utils.paint_uniform_color(pcd0, color=[1, 0.706, 0]) utils.paint_uniform_color(pcd1, color=[0, 0.651, 0.929]) scores, indices = [], [] fpfh_tree = o3d.geometry.KDTreeFlann(feature1) for i in tqdm(range(len(pcd0.points)), desc=':: Feature Matching'): [_, idx, _] = fpfh_tree.search_knn_vector_xd(feature0.data[:, i], 1) scores.append(np.linalg.norm(pcd0.points[i] - pcd1.points[idx[0]])) indices.append([i, idx[0]]) scores, indices = np.array(scores), np.array(indices) median = np.median(scores) if thresh is None: thresh = median inliers_idx = np.where(scores <= thresh)[0] pcd0_idx = indices[inliers_idx, 0] pcd1_idx = indices[inliers_idx, 1] print(':: Score stats: Min=%0.3f, Max=%0.3f, Median=%0.3f, N<Thresh=%d' % ( np.min(scores), np.max(scores), median, len(inliers_idx))) if display: for i, j in zip(pcd0_idx, pcd1_idx): pcd0.colors[i] = [1, 0, 0] pcd1.colors[j] = [1, 0, 0] utils.display([pcd0, pcd1]) return pcd0_idx, pcd1_idx def estimate_scale(pcd0, pcd1, pcd0_idx, pcd1_idx, top_percent=1.0, ransac_iters=5000, sample_size=50): points0 = np.asarray(pcd0.points)[pcd0_idx] points1 = np.asarray(pcd1.points)[pcd1_idx] mean0 = np.mean(points0, axis=0) mean1 = np.mean(points1, axis=0) top_count = int(top_percent * len(pcd0_idx)) assert top_count > sample_size, 'top_count <= sample_size' scales = [] for i in tqdm(range(ransac_iters), desc=':: Scale Estimation RANSAC'): args = np.random.choice(top_count, sample_size, replace=False) points0_r = points0[args] points1_r = points1[args] score0 = np.sum((points0_r - mean0) ** 2, axis=1) score1 = np.sum((points1_r - mean1) ** 2, axis=1) scale = np.sqrt(np.mean(score1) / np.mean(score0)) scales.append(scale) best_scale = stats.mode(scales)[0][0] print(':: Estimated scale:', best_scale) return best_scale def global_registration(source_down, target_down, source_fpfh, target_fpfh, voxel_size, distance_threshold=1.0, num_iters=4000000, num_val_iters=500): print(':: Distance threshold %.3f' % distance_threshold) result = o3d.registration.registration_ransac_based_on_feature_matching( source_down, target_down, source_fpfh, target_fpfh, distance_threshold, o3d.registration.TransformationEstimationPointToPoint(False), 4, [ o3d.registration.CorrespondenceCheckerBasedOnEdgeLength(0.9), o3d.registration.CorrespondenceCheckerBasedOnDistance( distance_threshold) ], o3d.registration.RANSACConvergenceCriteria(num_iters, num_val_iters)) return result def fast_global_registration(source_down, target_down, source_fpfh, target_fpfh, voxel_size): distance_threshold = 1.0 result = o3d.registration.registration_fast_based_on_feature_matching( source_down, target_down, source_fpfh, target_fpfh, o3d.registration.FastGlobalRegistrationOption( maximum_correspondence_distance=distance_threshold)) return result def refine_registration(source, target, source_fpfh, target_fpfh, initial_result, voxel_size): distance_threshold = 0.1 print(':: Distance threshold %.3f' % distance_threshold) result = o3d.registration.registration_icp( source, target, distance_threshold, initial_result.transformation, o3d.registration.TransformationEstimationPointToPlane()) return result def registration(pcd0, pcd1, feature1, feature2, voxel_size, method='global'): if method == 'global': print('\nRANSAC global registration on scaled point clouds...') initial_result = global_registration(pcd0, pcd1, feature1, feature2, voxel_size) elif method == 'fast_global': print('\nFast global registration on scaled point clouds...') initial_result = fast_global_registration(pcd0, pcd1, feature1, feature2, voxel_size) else: print(':: Registration method not supported') return print(':: Initial registration results:') print(initial_result) print('\nDisplaying initial result...') draw_registration_result(pcd0, pcd1, initial_result.transformation) print('\nRefine registration...') result = refine_registration(pcd0, pcd1, feature1, feature2, initial_result, voxel_size) print(':: Final registration results:') print(result) return result def draw_registration_result(source, target, transformation): source_temp = copy.deepcopy(source) target_temp = copy.deepcopy(target) source_temp.paint_uniform_color([1, 0.706, 0]) target_temp.paint_uniform_color([0, 0.651, 0.929]) source_temp.transform(transformation) o3d.visualization.draw_geometries([source_temp, target_temp]) def run(): voxel_size = 0.2 dso_scale = 0.03 pcd_lidar = o3d.io.read_point_cloud('../maps/scans/scan_050.pcd') pcd_lidar = remove_ground_plane(pcd_lidar) pcd_dso = o3d.io.read_point_cloud('../maps/dso_map_cleaned.pcd') pcd_dso = remove_ground_plane(pcd_dso, z_thresh=4.5) pcd_dso = remove_y_plane(pcd_dso, y_thresh=0.2) # pcd_dso = utils.scale_point_cloud(pcd_dso, dso_scale).rotate([0.5, 0.5, 0.5]).translate([10, 20, 30]) # Ground plane removal results # utils.display(pcds=[pcd_lidar, pcd_dso], colors=[[1, 0.706, 0], [0, 0.651, 0.929]]) # utils.display(pcds=[pcd_dso], colors=[[0, 0.651, 0.929]]) # return print('\nComputing FPFH features for lidar point cloud...') pcd_lidar_down, features_lidar = compute_features(pcd_lidar, voxel_size=voxel_size) print('\nComputing FPFH features for DSO point cloud...') pcd_dso_down, features_dso = compute_features(pcd_dso, voxel_size=voxel_size * (dso_scale if dso_scale < 1 else 1)) print('\nMatching FPFH features...') pcd_lidar_idx, pcd_dso_idx = match_features(pcd_lidar_down, pcd_dso_down, features_lidar, features_dso, thresh=None) print('\nEstimating scale using matches...') scale = estimate_scale(pcd_lidar_down, pcd_dso_down, pcd_lidar_idx, pcd_dso_idx) scale = 0.06 print('\nCorrecting scale...') pcd_dso_scaled = utils.scale_point_cloud(pcd_dso, 1.0 / scale) utils.display(pcds=[pcd_lidar, pcd_dso_scaled], colors=[[1, 0.706, 0], [0, 0.651, 0.929]]) # return # Registration pcd_dso_scaled_down, features_dso_scaled = compute_features( pcd_dso_scaled, voxel_size=voxel_size) result = registration(pcd_lidar_down, pcd_dso_scaled_down, features_lidar, features_dso_scaled, voxel_size, method='global') print('\nDisplaying result...') draw_registration_result(pcd_lidar, pcd_dso_scaled, result.transformation) if __name__ == '__main__': run()
[ "open3d.registration.TransformationEstimationPointToPlane", "numpy.array", "copy.deepcopy", "numpy.linalg.norm", "numpy.mean", "numpy.where", "numpy.asarray", "numpy.max", "open3d.registration.RANSACConvergenceCriteria", "numpy.min", "open3d.geometry.KDTreeFlann", "open3d.registration.CorrespondenceCheckerBasedOnEdgeLength", "utils_o3d.downsample_point_cloud", "numpy.random.choice", "open3d.geometry.KDTreeSearchParamHybrid", "open3d.visualization.draw_geometries", "open3d.io.read_point_cloud", "open3d.registration.TransformationEstimationPointToPoint", "utils_o3d.display", "open3d.utility.Vector3dVector", "numpy.median", "open3d.registration.FastGlobalRegistrationOption", "scipy.stats.mode", "utils_o3d.scale_point_cloud", "numpy.sum", "open3d.geometry.PointCloud", "utils_o3d.paint_uniform_color", "open3d.registration.CorrespondenceCheckerBasedOnDistance" ]
[((187, 205), 'copy.deepcopy', 'copy.deepcopy', (['pcd'], {}), '(pcd)\n', (200, 205), False, 'import copy\n'), ((227, 251), 'numpy.array', 'np.array', (['cropped.points'], {}), '(cropped.points)\n', (235, 251), True, 'import numpy as np\n'), ((338, 363), 'open3d.geometry.PointCloud', 'o3d.geometry.PointCloud', ([], {}), '()\n', (361, 363), True, 'import open3d as o3d\n'), ((387, 429), 'open3d.utility.Vector3dVector', 'o3d.utility.Vector3dVector', (['cropped_points'], {}), '(cropped_points)\n', (413, 429), True, 'import open3d as o3d\n'), ((504, 522), 'copy.deepcopy', 'copy.deepcopy', (['pcd'], {}), '(pcd)\n', (517, 522), False, 'import copy\n'), ((544, 568), 'numpy.array', 'np.array', (['cropped.points'], {}), '(cropped.points)\n', (552, 568), True, 'import numpy as np\n'), ((705, 730), 'open3d.geometry.PointCloud', 'o3d.geometry.PointCloud', ([], {}), '()\n', (728, 730), True, 'import open3d as o3d\n'), ((754, 796), 'open3d.utility.Vector3dVector', 'o3d.utility.Vector3dVector', (['cropped_points'], {}), '(cropped_points)\n', (780, 796), True, 'import open3d as o3d\n'), ((2258, 2310), 'utils_o3d.paint_uniform_color', 'utils.paint_uniform_color', (['pcd0'], {'color': '[1, 0.706, 0]'}), '(pcd0, color=[1, 0.706, 0])\n', (2283, 2310), True, 'import utils_o3d as utils\n'), ((2315, 2371), 'utils_o3d.paint_uniform_color', 'utils.paint_uniform_color', (['pcd1'], {'color': '[0, 0.651, 0.929]'}), '(pcd1, color=[0, 0.651, 0.929])\n', (2340, 2371), True, 'import utils_o3d as utils\n'), ((2418, 2452), 'open3d.geometry.KDTreeFlann', 'o3d.geometry.KDTreeFlann', (['feature1'], {}), '(feature1)\n', (2442, 2452), True, 'import open3d as o3d\n'), ((2786, 2803), 'numpy.median', 'np.median', (['scores'], {}), '(scores)\n', (2795, 2803), True, 'import numpy as np\n'), ((3542, 3566), 'numpy.mean', 'np.mean', (['points0'], {'axis': '(0)'}), '(points0, axis=0)\n', (3549, 3566), True, 'import numpy as np\n'), ((3579, 3603), 'numpy.mean', 'np.mean', (['points1'], {'axis': '(0)'}), '(points1, axis=0)\n', (3586, 3603), True, 'import numpy as np\n'), ((6823, 6844), 'copy.deepcopy', 'copy.deepcopy', (['source'], {}), '(source)\n', (6836, 6844), False, 'import copy\n'), ((6863, 6884), 'copy.deepcopy', 'copy.deepcopy', (['target'], {}), '(target)\n', (6876, 6884), False, 'import copy\n'), ((7037, 7098), 'open3d.visualization.draw_geometries', 'o3d.visualization.draw_geometries', (['[source_temp, target_temp]'], {}), '([source_temp, target_temp])\n', (7070, 7098), True, 'import open3d as o3d\n'), ((7171, 7224), 'open3d.io.read_point_cloud', 'o3d.io.read_point_cloud', (['"""../maps/scans/scan_050.pcd"""'], {}), "('../maps/scans/scan_050.pcd')\n", (7194, 7224), True, 'import open3d as o3d\n'), ((7287, 7341), 'open3d.io.read_point_cloud', 'o3d.io.read_point_cloud', (['"""../maps/dso_map_cleaned.pcd"""'], {}), "('../maps/dso_map_cleaned.pcd')\n", (7310, 7341), True, 'import open3d as o3d\n'), ((8478, 8523), 'utils_o3d.scale_point_cloud', 'utils.scale_point_cloud', (['pcd_dso', '(1.0 / scale)'], {}), '(pcd_dso, 1.0 / scale)\n', (8501, 8523), True, 'import utils_o3d as utils\n'), ((8528, 8623), 'utils_o3d.display', 'utils.display', ([], {'pcds': '[pcd_lidar, pcd_dso_scaled]', 'colors': '[[1, 0.706, 0], [0, 0.651, 0.929]]'}), '(pcds=[pcd_lidar, pcd_dso_scaled], colors=[[1, 0.706, 0], [0, \n 0.651, 0.929]])\n', (8541, 8623), True, 'import utils_o3d as utils\n'), ((1134, 1179), 'utils_o3d.downsample_point_cloud', 'utils.downsample_point_cloud', (['pcd', 'voxel_size'], {}), '(pcd, voxel_size)\n', (1162, 1179), True, 'import utils_o3d as utils\n'), ((1337, 1355), 'copy.deepcopy', 'copy.deepcopy', (['pcd'], {}), '(pcd)\n', (1350, 1355), False, 'import copy\n'), ((1494, 1572), 'open3d.geometry.KDTreeSearchParamHybrid', 'o3d.geometry.KDTreeSearchParamHybrid', ([], {'radius': 'normals_radius', 'max_nn': 'normals_nn'}), '(radius=normals_radius, max_nn=normals_nn)\n', (1530, 1572), True, 'import open3d as o3d\n'), ((1754, 1839), 'open3d.geometry.KDTreeSearchParamHybrid', 'o3d.geometry.KDTreeSearchParamHybrid', ([], {'radius': 'features_radius', 'max_nn': 'features_nn'}), '(radius=features_radius, max_nn=features_nn\n )\n', (1790, 1839), True, 'import open3d as o3d\n'), ((1966, 1985), 'copy.deepcopy', 'copy.deepcopy', (['pcd0'], {}), '(pcd0)\n', (1979, 1985), False, 'import copy\n'), ((1987, 2006), 'copy.deepcopy', 'copy.deepcopy', (['pcd1'], {}), '(pcd1)\n', (2000, 2006), False, 'import copy\n'), ((2737, 2753), 'numpy.array', 'np.array', (['scores'], {}), '(scores)\n', (2745, 2753), True, 'import numpy as np\n'), ((2755, 2772), 'numpy.array', 'np.array', (['indices'], {}), '(indices)\n', (2763, 2772), True, 'import numpy as np\n'), ((2861, 2887), 'numpy.where', 'np.where', (['(scores <= thresh)'], {}), '(scores <= thresh)\n', (2869, 2887), True, 'import numpy as np\n'), ((3265, 3292), 'utils_o3d.display', 'utils.display', (['[pcd0, pcd1]'], {}), '([pcd0, pcd1])\n', (3278, 3292), True, 'import utils_o3d as utils\n'), ((3448, 3471), 'numpy.asarray', 'np.asarray', (['pcd0.points'], {}), '(pcd0.points)\n', (3458, 3471), True, 'import numpy as np\n'), ((3496, 3519), 'numpy.asarray', 'np.asarray', (['pcd1.points'], {}), '(pcd1.points)\n', (3506, 3519), True, 'import numpy as np\n'), ((3823, 3878), 'numpy.random.choice', 'np.random.choice', (['top_count', 'sample_size'], {'replace': '(False)'}), '(top_count, sample_size, replace=False)\n', (3839, 3878), True, 'import numpy as np\n'), ((3965, 4005), 'numpy.sum', 'np.sum', (['((points0_r - mean0) ** 2)'], {'axis': '(1)'}), '((points0_r - mean0) ** 2, axis=1)\n', (3971, 4005), True, 'import numpy as np\n'), ((4023, 4063), 'numpy.sum', 'np.sum', (['((points1_r - mean1) ** 2)'], {'axis': '(1)'}), '((points1_r - mean1) ** 2, axis=1)\n', (4029, 4063), True, 'import numpy as np\n'), ((4647, 4707), 'open3d.registration.TransformationEstimationPointToPoint', 'o3d.registration.TransformationEstimationPointToPoint', (['(False)'], {}), '(False)\n', (4700, 4707), True, 'import open3d as o3d\n'), ((4902, 4970), 'open3d.registration.RANSACConvergenceCriteria', 'o3d.registration.RANSACConvergenceCriteria', (['num_iters', 'num_val_iters'], {}), '(num_iters, num_val_iters)\n', (4944, 4970), True, 'import open3d as o3d\n'), ((5263, 5365), 'open3d.registration.FastGlobalRegistrationOption', 'o3d.registration.FastGlobalRegistrationOption', ([], {'maximum_correspondence_distance': 'distance_threshold'}), '(maximum_correspondence_distance\n =distance_threshold)\n', (5308, 5365), True, 'import open3d as o3d\n'), ((5713, 5768), 'open3d.registration.TransformationEstimationPointToPlane', 'o3d.registration.TransformationEstimationPointToPlane', ([], {}), '()\n', (5766, 5768), True, 'import open3d as o3d\n'), ((2037, 2058), 'numpy.array', 'np.array', (['pcd0.points'], {}), '(pcd0.points)\n', (2045, 2058), True, 'import numpy as np\n'), ((2096, 2117), 'numpy.array', 'np.array', (['pcd1.points'], {}), '(pcd1.points)\n', (2104, 2117), True, 'import numpy as np\n'), ((2158, 2181), 'numpy.array', 'np.array', (['feature0.data'], {}), '(feature0.data)\n', (2166, 2181), True, 'import numpy as np\n'), ((2222, 2245), 'numpy.array', 'np.array', (['feature1.data'], {}), '(feature1.data)\n', (2230, 2245), True, 'import numpy as np\n'), ((2624, 2676), 'numpy.linalg.norm', 'np.linalg.norm', (['(pcd0.points[i] - pcd1.points[idx[0]])'], {}), '(pcd0.points[i] - pcd1.points[idx[0]])\n', (2638, 2676), True, 'import numpy as np\n'), ((4170, 4188), 'scipy.stats.mode', 'stats.mode', (['scales'], {}), '(scales)\n', (4180, 4188), False, 'from scipy import stats\n'), ((4726, 4786), 'open3d.registration.CorrespondenceCheckerBasedOnEdgeLength', 'o3d.registration.CorrespondenceCheckerBasedOnEdgeLength', (['(0.9)'], {}), '(0.9)\n', (4781, 4786), True, 'import open3d as o3d\n'), ((4800, 4873), 'open3d.registration.CorrespondenceCheckerBasedOnDistance', 'o3d.registration.CorrespondenceCheckerBasedOnDistance', (['distance_threshold'], {}), '(distance_threshold)\n', (4853, 4873), True, 'import open3d as o3d\n'), ((1087, 1107), 'numpy.array', 'np.array', (['pcd.points'], {}), '(pcd.points)\n', (1095, 1107), True, 'import numpy as np\n'), ((1283, 1308), 'numpy.array', 'np.array', (['pcd_down.points'], {}), '(pcd_down.points)\n', (1291, 1308), True, 'import numpy as np\n'), ((3058, 3072), 'numpy.min', 'np.min', (['scores'], {}), '(scores)\n', (3064, 3072), True, 'import numpy as np\n'), ((3074, 3088), 'numpy.max', 'np.max', (['scores'], {}), '(scores)\n', (3080, 3088), True, 'import numpy as np\n'), ((4088, 4103), 'numpy.mean', 'np.mean', (['score1'], {}), '(score1)\n', (4095, 4103), True, 'import numpy as np\n'), ((4106, 4121), 'numpy.mean', 'np.mean', (['score0'], {}), '(score0)\n', (4113, 4121), True, 'import numpy as np\n')]
#!/usr/bin/env python import os import numpy as np import pandas as pd os.getcwd() # Request for the filename # Current version of this script works only with TSV type files mainFilename = input('Input your file name (diabetes.tab.txt or housing.data.txt): ') print() # To create proper dataframe, transforming it with numpy # Then changing it with pandas filenameData = np.genfromtxt(mainFilename, dtype='str') filenameData = pd.DataFrame(filenameData) # Obtains first row to identify header is string or numeric headers = filenameData.iloc[0] try: pd.to_numeric(headers) except: filenameData = pd.DataFrame(filenameData.values[1:], columns=headers) # Changes strings to numbers (self identifies for float or integer) filenameData = filenameData.apply(pd.to_numeric) # Obtains the mean and standard deviation of the columns listMean = filenameData.mean() listStd = filenameData.std() print(filenameData) # Prints out the results print('Mean for each column:') for idx in filenameData.columns: print(idx,':',listMean[idx]) print() print('Standard deviation for each column:') for idx in filenameData.columns: print(idx,':',listStd[idx])
[ "pandas.DataFrame", "numpy.genfromtxt", "pandas.to_numeric", "os.getcwd" ]
[((73, 84), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (82, 84), False, 'import os\n'), ((375, 415), 'numpy.genfromtxt', 'np.genfromtxt', (['mainFilename'], {'dtype': '"""str"""'}), "(mainFilename, dtype='str')\n", (388, 415), True, 'import numpy as np\n'), ((432, 458), 'pandas.DataFrame', 'pd.DataFrame', (['filenameData'], {}), '(filenameData)\n', (444, 458), True, 'import pandas as pd\n'), ((561, 583), 'pandas.to_numeric', 'pd.to_numeric', (['headers'], {}), '(headers)\n', (574, 583), True, 'import pandas as pd\n'), ((611, 665), 'pandas.DataFrame', 'pd.DataFrame', (['filenameData.values[1:]'], {'columns': 'headers'}), '(filenameData.values[1:], columns=headers)\n', (623, 665), True, 'import pandas as pd\n')]
import numpy as np from sklearn.utils.multiclass import type_of_target from mindware.base_estimator import BaseEstimator from mindware.components.utils.constants import type_dict, MULTILABEL_CLS, IMG_CLS, TEXT_CLS, OBJECT_DET from mindware.components.feature_engineering.transformation_graph import DataNode class Classifier(BaseEstimator): """This class implements the classification task. """ def initialize(self, data: DataNode, **kwargs): if self.metric is None: self.metric = 'acc' # Check the task type: {binary, multiclass} task_type = type_of_target(data.data[1]) if task_type in type_dict: task_type = type_dict[task_type] else: raise ValueError("Invalid Task Type: %s!" % task_type) self.task_type = task_type super().initialize(data=data, **kwargs) def fit(self, data: DataNode, **kwargs): """ Fit the classifier to given training data. :param data: instance of DataNode :return: self """ if self._ml_engine is None: self.initialize(data=data, **kwargs) super().fit(data, **kwargs) return self def predict(self, X, batch_size=None, n_jobs=1): """ Predict classes for X. :param X: Datanode :param batch_size: int :param n_jobs: int :return: y : array of shape = [n_samples] The predicted classes. """ if not isinstance(X, DataNode): raise ValueError("X is supposed to be a Data Node, but get %s" % type(X)) return super().predict(X, batch_size=batch_size, n_jobs=n_jobs) def refit(self): return super().refit() def predict_proba(self, X, batch_size=None, n_jobs=1): """ Predict probabilities of classes for all samples X. :param X: Datanode :param batch_size: int :param n_jobs: int :return: y : array of shape = [n_samples, n_classes] The predicted class probabilities. """ if not isinstance(X, DataNode): raise ValueError("X is supposed to be a Data Node, but get %s" % type(X)) pred_proba = super().predict_proba(X, batch_size=batch_size, n_jobs=n_jobs) if self.task_type != MULTILABEL_CLS: assert ( np.allclose( np.sum(pred_proba, axis=1), np.ones_like(pred_proba[:, 0])) ), "Prediction probability does not sum up to 1!" # Check that all probability values lie between 0 and 1. assert ( (pred_proba >= 0).all() and (pred_proba <= 1).all() ), "Found prediction probability value outside of [0, 1]!" return pred_proba def get_tree_importance(self, data: DataNode): from lightgbm import LGBMClassifier import pandas as pd X, y = self.data_transformer(data).data lgb = LGBMClassifier(random_state=1) lgb.fit(X, y) _importance = lgb.feature_importances_ h = {} h['feature_id'] = np.array(range(len(_importance))) h['feature_importance'] = _importance return pd.DataFrame(h) def get_linear_importance(self, data: DataNode): from sklearn.linear_model import LogisticRegression import pandas as pd X, y = self.data_transformer(data).data clf = LogisticRegression(random_state=1) clf.fit(X, y) _ef = clf.coef_ std_array = np.std(_ef, ddof=1, axis=0) abs_array = abs(_ef) mean_array = np.mean(abs_array, axis=0) _importance = std_array / mean_array h = {} h['feature_id'] = np.array(range(len(_importance))) h['feature_importance'] = _importance return pd.DataFrame(h) def get_linear_impact(self, data: DataNode): from sklearn.linear_model import LogisticRegression import pandas as pd if (len(set(data.data[1]))) > 2: print('ERROR! Only binary classification is supported!') return 0 X, y = self.data_transformer(data).data clf = LogisticRegression(random_state=1) clf.fit(X, y) _ef = clf.coef_ _impact = _ef[0] h = {} h['feature_id'] = np.array(range(len(_impact))) h['feature_impact'] = _impact return pd.DataFrame(h) class Regressor(BaseEstimator): """This class implements the regression task. """ def initialize(self, data: DataNode, **kwargs): self.metric = 'mse' if self.metric is None else self.metric # Check the task type: {continuous} task_type = type_dict['continuous'] self.task_type = task_type super().initialize(data=data, **kwargs) def fit(self, data, **kwargs): """ Fit the regressor to given training data. :param data: DataNode :return: self """ if self._ml_engine is None: self.initialize(data=data, **kwargs) super().fit(data, **kwargs) return self def predict(self, X, batch_size=None, n_jobs=1): """ Make predictions for X. :param X: DataNode :param batch_size: int :param n_jobs: int :return: y : array of shape = [n_samples] or [n_samples, n_labels] The predicted classes. """ if not isinstance(X, DataNode): raise ValueError("X is supposed to be a Data Node, but get %s" % type(X)) return super().predict(X, batch_size=batch_size, n_jobs=n_jobs) def get_tree_importance(self, data: DataNode): from lightgbm import LGBMRegressor import pandas as pd X, y = self.data_transformer(data).data lgb = LGBMRegressor(random_state=1) lgb.fit(X, y) _importance = lgb.feature_importances_ h = {} h['feature_id'] = np.array(range(len(_importance))) h['feature_importance'] = _importance return pd.DataFrame(h) def get_linear_impact(self, data: DataNode): from sklearn.linear_model import LinearRegression import pandas as pd X, y = self.data_transformer(data).data reg = LinearRegression() reg.fit(X, y) _impact = reg.coef_ h = {} h['feature_id'] = np.array(range(len(_impact))) h['feature_impact'] = _impact return pd.DataFrame(h)
[ "numpy.mean", "numpy.ones_like", "lightgbm.LGBMClassifier", "lightgbm.LGBMRegressor", "sklearn.linear_model.LogisticRegression", "numpy.sum", "sklearn.utils.multiclass.type_of_target", "numpy.std", "pandas.DataFrame", "sklearn.linear_model.LinearRegression" ]
[((591, 619), 'sklearn.utils.multiclass.type_of_target', 'type_of_target', (['data.data[1]'], {}), '(data.data[1])\n', (605, 619), False, 'from sklearn.utils.multiclass import type_of_target\n'), ((2957, 2987), 'lightgbm.LGBMClassifier', 'LGBMClassifier', ([], {'random_state': '(1)'}), '(random_state=1)\n', (2971, 2987), False, 'from lightgbm import LGBMClassifier\n'), ((3193, 3208), 'pandas.DataFrame', 'pd.DataFrame', (['h'], {}), '(h)\n', (3205, 3208), True, 'import pandas as pd\n'), ((3413, 3447), 'sklearn.linear_model.LogisticRegression', 'LogisticRegression', ([], {'random_state': '(1)'}), '(random_state=1)\n', (3431, 3447), False, 'from sklearn.linear_model import LogisticRegression\n'), ((3514, 3541), 'numpy.std', 'np.std', (['_ef'], {'ddof': '(1)', 'axis': '(0)'}), '(_ef, ddof=1, axis=0)\n', (3520, 3541), True, 'import numpy as np\n'), ((3592, 3618), 'numpy.mean', 'np.mean', (['abs_array'], {'axis': '(0)'}), '(abs_array, axis=0)\n', (3599, 3618), True, 'import numpy as np\n'), ((3800, 3815), 'pandas.DataFrame', 'pd.DataFrame', (['h'], {}), '(h)\n', (3812, 3815), True, 'import pandas as pd\n'), ((4147, 4181), 'sklearn.linear_model.LogisticRegression', 'LogisticRegression', ([], {'random_state': '(1)'}), '(random_state=1)\n', (4165, 4181), False, 'from sklearn.linear_model import LogisticRegression\n'), ((4377, 4392), 'pandas.DataFrame', 'pd.DataFrame', (['h'], {}), '(h)\n', (4389, 4392), True, 'import pandas as pd\n'), ((5766, 5795), 'lightgbm.LGBMRegressor', 'LGBMRegressor', ([], {'random_state': '(1)'}), '(random_state=1)\n', (5779, 5795), False, 'from lightgbm import LGBMRegressor\n'), ((6001, 6016), 'pandas.DataFrame', 'pd.DataFrame', (['h'], {}), '(h)\n', (6013, 6016), True, 'import pandas as pd\n'), ((6215, 6233), 'sklearn.linear_model.LinearRegression', 'LinearRegression', ([], {}), '()\n', (6231, 6233), False, 'from sklearn.linear_model import LinearRegression\n'), ((6408, 6423), 'pandas.DataFrame', 'pd.DataFrame', (['h'], {}), '(h)\n', (6420, 6423), True, 'import pandas as pd\n'), ((2384, 2410), 'numpy.sum', 'np.sum', (['pred_proba'], {'axis': '(1)'}), '(pred_proba, axis=1)\n', (2390, 2410), True, 'import numpy as np\n'), ((2432, 2462), 'numpy.ones_like', 'np.ones_like', (['pred_proba[:, 0]'], {}), '(pred_proba[:, 0])\n', (2444, 2462), True, 'import numpy as np\n')]
import time import warnings import matplotlib.pyplot as plt import numpy as np import sympy as sp from .global_qbx import global_qbx_self from .mesh import apply_interp_mat, gauss_rule, panelize_symbolic_surface, upsample def find_dcutoff_refine(kernel, src, tol, plot=False): # prep step 1: find d_cutoff and d_refine # The goal is to estimate the error due to the QBX local patch # The local surface will have singularities at the tips where it is cut off # These singularities will cause error in the QBX expansion. We want to make # the local patch large enough that these singularities are irrelevant. # To isolate the QBX patch cutoff error, we will use a very high upsampling. # We'll also choose p to be the minimum allowed value since that will result in # the largest cutoff error. Increasing p will reduce the cutoff error guaranteeing that # we never need to worry about cutoff error. density = np.ones_like(src.pts[:, 0]) # np.cos(src.pts[:,0] * src.pts[:,1]) if plot: plt.figure(figsize=(9, 13)) params = [] d_cutoffs = [1.1, 1.3, 1.6, 2.0] ps = np.arange(1, 55, 3) for di, direction in enumerate([-1.0, 1.0]): baseline = global_qbx_self(kernel, src, p=30, kappa=8, direction=direction) baseline_v = baseline.dot(density) # Check that the local qbx method matches the simple global qbx approach when d_cutoff is very large d_refine_high = 8.0 with warnings.catch_warnings(): warnings.simplefilter("ignore") local_baseline = kernel.integrate( src.pts, src, d_cutoff=3.0, tol=1e-20, max_p=50, d_refine=d_refine_high, on_src_direction=direction, ) local_baseline_v = local_baseline.dot(density) err = np.max(np.abs(baseline_v - local_baseline_v)) print(err) assert err < tol / 2 n_qbx_panels = [] drefine_optimal = [] p_for_full_accuracy = [] if plot: plt.subplot(3, 2, 1 + di) for i_d, d_cutoff in enumerate(d_cutoffs): errs = [] for i_p, p in enumerate(ps): # print(p, d_cutoff) with warnings.catch_warnings(): warnings.simplefilter("ignore") test, report = kernel.integrate( src.pts, src, d_cutoff=d_cutoff, tol=1e-15, max_p=p, on_src_direction=direction, d_refine=d_refine_high, return_report=True, ) testv = test.dot(density) err = np.max(np.abs(baseline_v - testv)) errs.append(err) # print(p, err) if err < tol: for d_refine_decrease in np.arange(1.0, d_refine_high, 0.25): refine_test, refine_report = kernel.integrate( src.pts, src, d_cutoff=d_cutoff, tol=1e-15, max_p=p + 10, # Increase p here to have a refinement safety margin on_src_direction=direction, d_refine=d_refine_decrease, return_report=True, ) refine_testv = refine_test.dot(density) refine_err = np.max(np.abs(baseline_v - refine_testv)) if refine_err < tol: drefine_optimal.append(d_refine_decrease) n_qbx_panels.append(refine_report["n_qbx_panels"]) p_for_full_accuracy.append(p) break if len(n_qbx_panels) <= i_d: print(f"Failed to find parameters for {d_cutoff}") drefine_optimal.append(1000) n_qbx_panels.append(1e6) p_for_full_accuracy.append(1e3) break if plot: print(d_cutoff, errs) plt.plot(ps[: i_p + 1], np.log10(errs), label=str(d_cutoff)) params.append((direction, n_qbx_panels, drefine_optimal, p_for_full_accuracy)) if plot: plt.legend() plt.title("interior" if direction > 0 else "exterior") plt.xlabel(r"$p_{\textrm{max}}$") if di == 0: plt.ylabel(r"$\log_{10}(\textrm{error})$") plt.yticks(-np.arange(0, 16, 3)) plt.xticks(np.arange(0, 61, 10)) plt.ylim([-15, 0]) plt.subplot(3, 2, 3 + di) plt.plot(d_cutoffs, np.array(n_qbx_panels) / src.n_pts, "k-*") plt.xlabel(r"$d_{\textrm{cutoff}}$") plt.ylim([0, 8]) if di == 0: plt.ylabel("QBX panels per point") plt.subplot(3, 2, 5 + di) plt.plot(d_cutoffs, np.array(drefine_optimal), "k-*") plt.xlabel(r"$d_{\textrm{cutoff}}$") plt.ylim([0, 6]) if di == 0: plt.ylabel(r"$d_{\textrm{refine}}$") if plot: plt.tight_layout() plt.show() total_cost = 0 for i in [0, 1]: direction, n_qbx_panels, drefine_optimal, p_for_full_accuracy = params[i] appx_cost = ( np.array(p_for_full_accuracy) * np.array(n_qbx_panels) * np.array(drefine_optimal) ) if plot: print(direction, appx_cost) total_cost += appx_cost if plot: plt.plot(d_cutoffs, total_cost, "k-o") plt.show() best_idx = np.argmin(total_cost) d_cutoff = d_cutoffs[best_idx] d_refine = drefine_optimal[best_idx] return d_cutoff, d_refine # prep step 2: find the minimum distance at which integrals are computed # to the required tolerance def _find_d_up_helper(kernel, nq, max_curvature, start_d, tol, kappa): t = sp.var("t") n_panels = 2 while True: panel_edges = np.linspace(-1, 1, n_panels + 1) panel_bounds = np.stack((panel_edges[:-1], panel_edges[1:]), axis=1) circle = panelize_symbolic_surface( t, sp.cos(sp.pi * t), sp.sin(sp.pi * t), panel_bounds, *gauss_rule(nq) ) n_panels_new = np.max(circle.panel_length / max_curvature * circle.panel_radius) if n_panels_new <= n_panels: break n_panels = np.ceil(n_panels_new).astype(int) # print(f"\nusing {n_panels} panels with max_curvature={max_curvature}") circle_kappa, _ = upsample(circle, kappa) circle_upsample, interp_mat_upsample = upsample(circle_kappa, 2) # TODO: Write more about the underlying regularity assumptions!! # Why is it acceptable to use this test_density here? Empirically, any # well-resolved density has approximately the same error as integrating sin(x). # For example, integrating: 1, cos(x)^2. # If we integrate a poorly resolved density, we do see higher errors. # # How poorly resolved does the density need to be in order to see higher error? # It seems like an interpolation Linfinity error of around 1e-5 causes the d_up value to start to drift upwards. # # As a simple heuristic that seems to perform very well, we compute the # error when integrating a constant and then double the required distance # in order to account for integrands that are not quite so perfectly # resolved. # if assume_regularity: # omega = 1.0 # else: # omega = 999.0# / max_curvature # f = lambda x: np.sin(omega * x) # test_density = interp_mat_upsample.dot(f(circle.pts[:,0])) # test_density_upsampled = f(circle_upsample.pts[:,0]) # print('l2 err', np.linalg.norm(test_density - test_density_upsampled) / np.linalg.norm(test_density_upsampled)) # print('linf err', np.max(np.abs(test_density - test_density_upsampled))) # test_density = f(circle.pts[:,0]) # test_density = np.sin(999 * circle.pts[:,0]) test_density = np.ones(circle_kappa.n_pts) d_up = 0 for direction in [-1.0, 1.0]: d = start_d for i in range(50): # In actuality, we only need to test interior points because the curvature # of the surface ensures that more source panels are near the observation # points and, as a result, the error will be higher for any given value of d. L = np.repeat(circle_kappa.panel_length, circle_kappa.panel_order) dist = L * d test_pts = ( circle_kappa.pts + direction * circle_kappa.normals * dist[:, None] ) # Check to make sure that the closest distance to a source point is # truly `dist`. This check might fail if the interior test_pts are # crossing over into the other half of the circle. min_src_dist = np.min( np.linalg.norm((test_pts[:, None] - circle_kappa.pts[None, :]), axis=2), axis=1, ) if not np.allclose(min_src_dist, dist): return False, d upsample_mat = np.transpose( apply_interp_mat( kernel._direct(test_pts, circle_upsample), interp_mat_upsample ), (0, 2, 1), ) est_mat = np.transpose(kernel._direct(test_pts, circle_kappa), (0, 2, 1)) # err = np.max(np.abs(upsample_mat - est_mat).sum(axis=2)) err = np.max( np.abs(upsample_mat.dot(test_density) - est_mat.dot(test_density)) ) # print(d, err) if err < tol: d_up = max(d, d_up) break d *= 1.2 return True, d_up def find_d_up(kernel, nq, max_curvature, start_d, tol, kappa): d = start_d for i in range(10): d_up = _find_d_up_helper(kernel, nq, max_curvature * (0.8) ** i, d, tol, kappa) if d_up[0]: return d_up[1] d = d_up[1] def final_check(kernel, src): density = np.ones_like(src.pts[:, 0]) # np.cos(source.pts[:,0] * src.pts[:,1]) baseline = global_qbx_self(kernel, src, p=50, kappa=10, direction=1.0) baseline_v = baseline.dot(density) tols = 10.0 ** np.arange(0, -15, -1) errs = [] runtimes = [] for tol in tols: runs = [] for i in range(10): start = time.time() local_baseline, report = kernel.integrate( src.pts, src, tol=tol, on_src_direction=1.0, return_report=True, ) runs.append(time.time() - start) runtimes.append(np.min(runs)) local_baseline_v = local_baseline.dot(density) errs.append(np.max(np.abs(baseline_v - local_baseline_v))) # print(tol, errs[-1], runtime) # assert(np.max(np.abs(baseline_v-local_baseline_v)) < 5e-14) plt.figure(figsize=(9, 5)) plt.subplot(1, 2, 1) plt.plot(-np.log10(tols), np.log10(errs)) plt.subplot(1, 2, 2) plt.plot(-np.log10(tols), runtimes) plt.tight_layout() plt.show()
[ "sympy.cos", "numpy.log10", "matplotlib.pyplot.ylabel", "numpy.array", "sympy.var", "numpy.linalg.norm", "numpy.arange", "numpy.repeat", "matplotlib.pyplot.xlabel", "matplotlib.pyplot.plot", "numpy.max", "numpy.stack", "numpy.linspace", "numpy.min", "warnings.simplefilter", "numpy.argmin", "matplotlib.pyplot.ylim", "numpy.abs", "sympy.sin", "numpy.ceil", "numpy.allclose", "numpy.ones", "matplotlib.pyplot.title", "time.time", "matplotlib.pyplot.legend", "matplotlib.pyplot.show", "numpy.ones_like", "warnings.catch_warnings", "matplotlib.pyplot.figure", "matplotlib.pyplot.tight_layout", "matplotlib.pyplot.subplot" ]
[((951, 978), 'numpy.ones_like', 'np.ones_like', (['src.pts[:, 0]'], {}), '(src.pts[:, 0])\n', (963, 978), True, 'import numpy as np\n'), ((1130, 1149), 'numpy.arange', 'np.arange', (['(1)', '(55)', '(3)'], {}), '(1, 55, 3)\n', (1139, 1149), True, 'import numpy as np\n'), ((6070, 6091), 'numpy.argmin', 'np.argmin', (['total_cost'], {}), '(total_cost)\n', (6079, 6091), True, 'import numpy as np\n'), ((6380, 6391), 'sympy.var', 'sp.var', (['"""t"""'], {}), "('t')\n", (6386, 6391), True, 'import sympy as sp\n'), ((8460, 8487), 'numpy.ones', 'np.ones', (['circle_kappa.n_pts'], {}), '(circle_kappa.n_pts)\n', (8467, 8487), True, 'import numpy as np\n'), ((10506, 10533), 'numpy.ones_like', 'np.ones_like', (['src.pts[:, 0]'], {}), '(src.pts[:, 0])\n', (10518, 10533), True, 'import numpy as np\n'), ((11396, 11422), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(9, 5)'}), '(figsize=(9, 5))\n', (11406, 11422), True, 'import matplotlib.pyplot as plt\n'), ((11427, 11447), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(1)', '(2)', '(1)'], {}), '(1, 2, 1)\n', (11438, 11447), True, 'import matplotlib.pyplot as plt\n'), ((11498, 11518), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(1)', '(2)', '(2)'], {}), '(1, 2, 2)\n', (11509, 11518), True, 'import matplotlib.pyplot as plt\n'), ((11563, 11581), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (11579, 11581), True, 'import matplotlib.pyplot as plt\n'), ((11586, 11596), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (11594, 11596), True, 'import matplotlib.pyplot as plt\n'), ((1039, 1066), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(9, 13)'}), '(figsize=(9, 13))\n', (1049, 1066), True, 'import matplotlib.pyplot as plt\n'), ((5574, 5592), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (5590, 5592), True, 'import matplotlib.pyplot as plt\n'), ((5601, 5611), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (5609, 5611), True, 'import matplotlib.pyplot as plt\n'), ((5996, 6034), 'matplotlib.pyplot.plot', 'plt.plot', (['d_cutoffs', 'total_cost', '"""k-o"""'], {}), "(d_cutoffs, total_cost, 'k-o')\n", (6004, 6034), True, 'import matplotlib.pyplot as plt\n'), ((6043, 6053), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (6051, 6053), True, 'import matplotlib.pyplot as plt\n'), ((6448, 6480), 'numpy.linspace', 'np.linspace', (['(-1)', '(1)', '(n_panels + 1)'], {}), '(-1, 1, n_panels + 1)\n', (6459, 6480), True, 'import numpy as np\n'), ((6504, 6557), 'numpy.stack', 'np.stack', (['(panel_edges[:-1], panel_edges[1:])'], {'axis': '(1)'}), '((panel_edges[:-1], panel_edges[1:]), axis=1)\n', (6512, 6557), True, 'import numpy as np\n'), ((6718, 6783), 'numpy.max', 'np.max', (['(circle.panel_length / max_curvature * circle.panel_radius)'], {}), '(circle.panel_length / max_curvature * circle.panel_radius)\n', (6724, 6783), True, 'import numpy as np\n'), ((10709, 10730), 'numpy.arange', 'np.arange', (['(0)', '(-15)', '(-1)'], {}), '(0, -15, -1)\n', (10718, 10730), True, 'import numpy as np\n'), ((11478, 11492), 'numpy.log10', 'np.log10', (['errs'], {}), '(errs)\n', (11486, 11492), True, 'import numpy as np\n'), ((1477, 1502), 'warnings.catch_warnings', 'warnings.catch_warnings', ([], {}), '()\n', (1500, 1502), False, 'import warnings\n'), ((1516, 1547), 'warnings.simplefilter', 'warnings.simplefilter', (['"""ignore"""'], {}), "('ignore')\n", (1537, 1547), False, 'import warnings\n'), ((1898, 1935), 'numpy.abs', 'np.abs', (['(baseline_v - local_baseline_v)'], {}), '(baseline_v - local_baseline_v)\n', (1904, 1935), True, 'import numpy as np\n'), ((2103, 2128), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(3)', '(2)', '(1 + di)'], {}), '(3, 2, 1 + di)\n', (2114, 2128), True, 'import matplotlib.pyplot as plt\n'), ((4696, 4708), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (4706, 4708), True, 'import matplotlib.pyplot as plt\n'), ((4721, 4775), 'matplotlib.pyplot.title', 'plt.title', (["('interior' if direction > 0 else 'exterior')"], {}), "('interior' if direction > 0 else 'exterior')\n", (4730, 4775), True, 'import matplotlib.pyplot as plt\n'), ((4788, 4821), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""$p_{\\\\textrm{max}}$"""'], {}), "('$p_{\\\\textrm{max}}$')\n", (4798, 4821), True, 'import matplotlib.pyplot as plt\n'), ((5007, 5025), 'matplotlib.pyplot.ylim', 'plt.ylim', (['[-15, 0]'], {}), '([-15, 0])\n', (5015, 5025), True, 'import matplotlib.pyplot as plt\n'), ((5039, 5064), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(3)', '(2)', '(3 + di)'], {}), '(3, 2, 3 + di)\n', (5050, 5064), True, 'import matplotlib.pyplot as plt\n'), ((5152, 5188), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""$d_{\\\\textrm{cutoff}}$"""'], {}), "('$d_{\\\\textrm{cutoff}}$')\n", (5162, 5188), True, 'import matplotlib.pyplot as plt\n'), ((5201, 5217), 'matplotlib.pyplot.ylim', 'plt.ylim', (['[0, 8]'], {}), '([0, 8])\n', (5209, 5217), True, 'import matplotlib.pyplot as plt\n'), ((5306, 5331), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(3)', '(2)', '(5 + di)'], {}), '(3, 2, 5 + di)\n', (5317, 5331), True, 'import matplotlib.pyplot as plt\n'), ((5410, 5446), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""$d_{\\\\textrm{cutoff}}$"""'], {}), "('$d_{\\\\textrm{cutoff}}$')\n", (5420, 5446), True, 'import matplotlib.pyplot as plt\n'), ((5459, 5475), 'matplotlib.pyplot.ylim', 'plt.ylim', (['[0, 6]'], {}), '([0, 6])\n', (5467, 5475), True, 'import matplotlib.pyplot as plt\n'), ((5850, 5875), 'numpy.array', 'np.array', (['drefine_optimal'], {}), '(drefine_optimal)\n', (5858, 5875), True, 'import numpy as np\n'), ((6617, 6634), 'sympy.cos', 'sp.cos', (['(sp.pi * t)'], {}), '(sp.pi * t)\n', (6623, 6634), True, 'import sympy as sp\n'), ((6636, 6653), 'sympy.sin', 'sp.sin', (['(sp.pi * t)'], {}), '(sp.pi * t)\n', (6642, 6653), True, 'import sympy as sp\n'), ((8863, 8925), 'numpy.repeat', 'np.repeat', (['circle_kappa.panel_length', 'circle_kappa.panel_order'], {}), '(circle_kappa.panel_length, circle_kappa.panel_order)\n', (8872, 8925), True, 'import numpy as np\n'), ((10850, 10861), 'time.time', 'time.time', ([], {}), '()\n', (10859, 10861), False, 'import time\n'), ((11145, 11157), 'numpy.min', 'np.min', (['runs'], {}), '(runs)\n', (11151, 11157), True, 'import numpy as np\n'), ((11462, 11476), 'numpy.log10', 'np.log10', (['tols'], {}), '(tols)\n', (11470, 11476), True, 'import numpy as np\n'), ((11533, 11547), 'numpy.log10', 'np.log10', (['tols'], {}), '(tols)\n', (11541, 11547), True, 'import numpy as np\n'), ((4862, 4905), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""$\\\\log_{10}(\\\\textrm{error})$"""'], {}), "('$\\\\log_{10}(\\\\textrm{error})$')\n", (4872, 4905), True, 'import matplotlib.pyplot as plt\n'), ((4973, 4993), 'numpy.arange', 'np.arange', (['(0)', '(61)', '(10)'], {}), '(0, 61, 10)\n', (4982, 4993), True, 'import numpy as np\n'), ((5258, 5292), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""QBX panels per point"""'], {}), "('QBX panels per point')\n", (5268, 5292), True, 'import matplotlib.pyplot as plt\n'), ((5364, 5389), 'numpy.array', 'np.array', (['drefine_optimal'], {}), '(drefine_optimal)\n', (5372, 5389), True, 'import numpy as np\n'), ((5516, 5552), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""$d_{\\\\textrm{refine}}$"""'], {}), "('$d_{\\\\textrm{refine}}$')\n", (5526, 5552), True, 'import matplotlib.pyplot as plt\n'), ((5769, 5798), 'numpy.array', 'np.array', (['p_for_full_accuracy'], {}), '(p_for_full_accuracy)\n', (5777, 5798), True, 'import numpy as np\n'), ((5813, 5835), 'numpy.array', 'np.array', (['n_qbx_panels'], {}), '(n_qbx_panels)\n', (5821, 5835), True, 'import numpy as np\n'), ((6858, 6879), 'numpy.ceil', 'np.ceil', (['n_panels_new'], {}), '(n_panels_new)\n', (6865, 6879), True, 'import numpy as np\n'), ((9349, 9418), 'numpy.linalg.norm', 'np.linalg.norm', (['(test_pts[:, None] - circle_kappa.pts[None, :])'], {'axis': '(2)'}), '(test_pts[:, None] - circle_kappa.pts[None, :], axis=2)\n', (9363, 9418), True, 'import numpy as np\n'), ((9479, 9510), 'numpy.allclose', 'np.allclose', (['min_src_dist', 'dist'], {}), '(min_src_dist, dist)\n', (9490, 9510), True, 'import numpy as np\n'), ((11241, 11278), 'numpy.abs', 'np.abs', (['(baseline_v - local_baseline_v)'], {}), '(baseline_v - local_baseline_v)\n', (11247, 11278), True, 'import numpy as np\n'), ((2301, 2326), 'warnings.catch_warnings', 'warnings.catch_warnings', ([], {}), '()\n', (2324, 2326), False, 'import warnings\n'), ((2348, 2379), 'warnings.simplefilter', 'warnings.simplefilter', (['"""ignore"""'], {}), "('ignore')\n", (2369, 2379), False, 'import warnings\n'), ((4541, 4555), 'numpy.log10', 'np.log10', (['errs'], {}), '(errs)\n', (4549, 4555), True, 'import numpy as np\n'), ((4929, 4948), 'numpy.arange', 'np.arange', (['(0)', '(16)', '(3)'], {}), '(0, 16, 3)\n', (4938, 4948), True, 'import numpy as np\n'), ((5097, 5119), 'numpy.array', 'np.array', (['n_qbx_panels'], {}), '(n_qbx_panels)\n', (5105, 5119), True, 'import numpy as np\n'), ((11100, 11111), 'time.time', 'time.time', ([], {}), '()\n', (11109, 11111), False, 'import time\n'), ((2851, 2877), 'numpy.abs', 'np.abs', (['(baseline_v - testv)'], {}), '(baseline_v - testv)\n', (2857, 2877), True, 'import numpy as np\n'), ((3035, 3070), 'numpy.arange', 'np.arange', (['(1.0)', 'd_refine_high', '(0.25)'], {}), '(1.0, d_refine_high, 0.25)\n', (3044, 3070), True, 'import numpy as np\n'), ((3769, 3802), 'numpy.abs', 'np.abs', (['(baseline_v - refine_testv)'], {}), '(baseline_v - refine_testv)\n', (3775, 3802), True, 'import numpy as np\n')]
from setuptools import setup, Extension, find_packages import subprocess import errno import re import os import shutil import sys import zipfile from urllib.request import urlretrieve import numpy from Cython.Build import cythonize isWindows = os.name == 'nt' isMac = sys.platform == 'darwin' is64Bit = sys.maxsize > 2**32 # adapted from cffi's setup.py # the following may be overridden if pkg-config exists libraries = ['lensfun'] include_dirs = [] library_dirs = [] extra_compile_args = [] extra_link_args = [] def _ask_pkg_config(resultlist, option, result_prefix='', sysroot=False): pkg_config = os.environ.get('PKG_CONFIG','pkg-config') try: p = subprocess.Popen([pkg_config, option, 'lensfun'], stdout=subprocess.PIPE) except OSError as e: if e.errno != errno.ENOENT: raise else: t = p.stdout.read().decode().strip() if p.wait() == 0: res = t.split() # '-I/usr/...' -> '/usr/...' for x in res: assert x.startswith(result_prefix) res = [x[len(result_prefix):] for x in res] sysroot = sysroot and os.environ.get('PKG_CONFIG_SYSROOT_DIR', '') if sysroot: # old versions of pkg-config don't support this env var, # so here we emulate its effect if needed res = [path if path.startswith(sysroot) else sysroot + path for path in res] resultlist[:] = res def use_pkg_config(): _ask_pkg_config(include_dirs, '--cflags-only-I', '-I', sysroot=True) _ask_pkg_config(extra_compile_args, '--cflags-only-other') _ask_pkg_config(library_dirs, '--libs-only-L', '-L', sysroot=True) _ask_pkg_config(extra_link_args, '--libs-only-other') _ask_pkg_config(libraries, '--libs-only-l', '-l') if isWindows or isMac: cmake_build = os.path.abspath('external/lensfun/build') install_dir = os.path.join(cmake_build, 'install') include_dirs += [os.path.join(install_dir, 'include', 'lensfun')] library_dirs += [os.path.join(install_dir, 'lib')] else: use_pkg_config() # this must be after use_pkg_config()! include_dirs += [numpy.get_include()] # for version_helper.h include_dirs += [os.path.abspath('lensfunpy')] def clone_submodules(): if not os.path.exists('external/lensfun/README.md'): print('lensfun git submodule not cloned yet, will invoke "git submodule update --init" now') if os.system('git submodule update --init') != 0: raise Exception('git failed') def windows_lensfun_compile(): clone_submodules() cwd = os.getcwd() # Download cmake to build lensfun cmake_version = '3.13.4' cmake_url = 'https://github.com/Kitware/CMake/releases/download/v{v}/cmake-{v}-win32-x86.zip'.format(v=cmake_version) cmake = os.path.abspath('external/cmake-{}-win32-x86/bin/cmake.exe'.format(cmake_version)) # Download vcpkg to build dependencies of lensfun vcpkg_commit = '2021.05.12' vcpkg_url = 'https://github.com/Microsoft/vcpkg/archive/{}.zip'.format(vcpkg_commit) vcpkg_dir = os.path.abspath('external/vcpkg-{}'.format(vcpkg_commit)) vcpkg_bootstrap = os.path.join(vcpkg_dir, 'bootstrap-vcpkg.bat') vcpkg = os.path.join(vcpkg_dir, 'vcpkg.exe') files = [(cmake_url, 'external', cmake), (vcpkg_url, 'external', vcpkg_bootstrap)] for url, extractdir, extractcheck in files: if not os.path.exists(extractcheck): path = 'external/' + os.path.basename(url) if not os.path.exists(path): print('Downloading', url) try: urlretrieve(url, path) except: # repeat once in case of network issues urlretrieve(url, path) with zipfile.ZipFile(path) as z: print('Extracting', path, 'into', extractdir) z.extractall(extractdir) if not os.path.exists(path): raise RuntimeError(path + ' not found!') # Bootstrap vcpkg os.chdir(vcpkg_dir) if not os.path.exists(vcpkg): code = os.system(vcpkg_bootstrap) if code != 0: sys.exit(code) # lensfun depends on glib2, so let's build it with vcpkg vcpkg_arch = 'x64' if is64Bit else 'x86' vcpkg_triplet = '{}-windows'.format(vcpkg_arch) code = os.system(vcpkg + ' install glib:' + vcpkg_triplet) if code != 0: sys.exit(code) vcpkg_install_dir = os.path.join(vcpkg_dir, 'installed', vcpkg_triplet) # bundle runtime dlls vcpkg_bin_dir = os.path.join(vcpkg_install_dir, 'bin') glib2_dll = os.path.join(vcpkg_bin_dir, 'glib-2.0-0.dll') # configure and compile lensfun if not os.path.exists(cmake_build): os.mkdir(cmake_build) os.chdir(cmake_build) # temporary hack to avoid https://stackoverflow.com/a/53547931 # (python module not needed here anyway) patch_path = '../apps/CMakeLists.txt' with open(patch_path) as f: content = f.read() content = content.replace('IF(PYTHON)', 'IF(FALSE)') with open(patch_path, 'w') as f: f.write(content) cmds = [cmake + ' .. -G "NMake Makefiles" -DCMAKE_BUILD_TYPE=Release ' +\ '-DBUILD_TESTS=off -DINSTALL_HELPER_SCRIPTS=off ' +\ '-DCMAKE_TOOLCHAIN_FILE={}/scripts/buildsystems/vcpkg.cmake '.format(vcpkg_dir) +\ '-DGLIB2_BASE_DIR={} -DGLIB2_DLL={} -DCMAKE_INSTALL_PREFIX=install'.format(vcpkg_install_dir, glib2_dll), cmake + ' --build .', cmake + ' --build . --target install', ] for cmd in cmds: print(cmd) code = os.system(cmd) if code != 0: sys.exit(code) os.chdir(cwd) dll_runtime_libs = [('lensfun.dll', os.path.join(install_dir, 'bin')), ('glib-2.0-0.dll', vcpkg_bin_dir), # dependencies of glib ('pcre.dll', vcpkg_bin_dir), ('iconv-2.dll', vcpkg_bin_dir), ('charset-1.dll', vcpkg_bin_dir), ('intl-8.dll', vcpkg_bin_dir), ] for filename, folder in dll_runtime_libs: src = os.path.join(folder, filename) dest = 'lensfunpy/' + filename print('copying', src, '->', dest) shutil.copyfile(src, dest) def mac_lensfun_compile(): clone_submodules() # configure and compile lensfun cwd = os.getcwd() if not os.path.exists(cmake_build): os.mkdir(cmake_build) os.chdir(cmake_build) install_name_dir = os.path.join(install_dir, 'lib') cmds = ['cmake .. -DCMAKE_BUILD_TYPE=Release ' +\ '-DBUILD_TESTS=off -DINSTALL_HELPER_SCRIPTS=off ' +\ '-DCMAKE_INSTALL_PREFIX=install ' +\ '-DCMAKE_INSTALL_NAME_DIR=' + install_name_dir, 'cmake --build .', 'cmake --build . --target install', ] for cmd in cmds: print(cmd) code = os.system(cmd) if code != 0: sys.exit(code) os.chdir(cwd) def bundle_db_files(): import glob db_files = 'lensfunpy/db_files' if not os.path.exists(db_files): os.makedirs(db_files) for path in glob.glob('external/lensfun/data/db/*.xml'): dest = os.path.join(db_files, os.path.basename(path)) print('copying', path, '->', dest) shutil.copyfile(path, dest) package_data = {'lensfunpy': []} # evil hack, check cmd line for relevant commands # custom cmdclasses didn't work out in this case cmdline = ''.join(sys.argv[1:]) needsCompile = any(s in cmdline for s in ['install', 'bdist', 'build_ext', 'wheel', 'nosetests']) if isWindows and needsCompile: windows_lensfun_compile() package_data['lensfunpy'].append('*.dll') elif isMac and needsCompile: mac_lensfun_compile() if any(s in cmdline for s in ['clean', 'sdist']): # When running sdist after a previous run of bdist or build_ext # then even with the 'clean' command the .egg-info folder stays. # This folder contains SOURCES.txt which in turn is used by sdist # to include package data files, but we don't want .dll's and .xml # files in our source distribution. Therefore, to prevent accidents, # we help a little... egg_info = 'lensfunpy.egg-info' print('removing', egg_info) shutil.rmtree(egg_info, ignore_errors=True) if 'sdist' not in cmdline: # This assumes that the lensfun version from external/lensfun was used. # If that's not the case, the bundled files may fail to load, for example, # if lensfunpy was linked against an older lensfun version already on # the system (Linux mostly) and the database format changed in an incompatible way. # In that case, loading of bundled files can still be disabled # with Database(load_bundled=False). package_data['lensfunpy'].append('db_files/*.xml') bundle_db_files() # Support for optional Cython line tracing # run the following to generate a test coverage report: # $ export LINETRACE=1 # $ python setup.py build_ext --inplace # $ nosetests --with-coverage --cover-html --cover-package=lensfunpy compdirectives = {} macros = [] if (os.environ.get('LINETRACE', False)): compdirectives['linetrace'] = True macros.append(('CYTHON_TRACE', '1')) extensions = cythonize([Extension("lensfunpy._lensfun", include_dirs=include_dirs, sources=[os.path.join('lensfunpy', '_lensfun.pyx')], libraries=libraries, library_dirs=library_dirs, extra_compile_args=extra_compile_args, extra_link_args=extra_link_args, define_macros=macros )], compiler_directives=compdirectives) # make __version__ available (https://stackoverflow.com/a/16084844) exec(open('lensfunpy/_version.py').read()) setup( name = 'lensfunpy', version = __version__, description = 'Lens distortion correction for Python, a wrapper for lensfun', long_description = open('README.rst').read(), author = '<NAME>', author_email = '<EMAIL>', url = 'https://github.com/letmaik/lensfunpy', classifiers=[ 'Development Status :: 4 - Beta', 'Intended Audience :: Developers', 'Natural Language :: English', 'License :: OSI Approved :: MIT License', 'Programming Language :: Cython', 'Programming Language :: Python', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Operating System :: MacOS', 'Operating System :: Microsoft :: Windows', 'Operating System :: POSIX', 'Operating System :: Unix', 'Topic :: Multimedia :: Graphics', 'Topic :: Software Development :: Libraries', ], packages = find_packages(), ext_modules = extensions, package_data = package_data, install_requires=['numpy'] )
[ "zipfile.ZipFile", "sys.exit", "os.path.exists", "urllib.request.urlretrieve", "subprocess.Popen", "setuptools.find_packages", "os.mkdir", "numpy.get_include", "glob.glob", "shutil.copyfile", "os.makedirs", "os.environ.get", "os.path.join", "os.getcwd", "os.chdir", "os.path.basename", "shutil.rmtree", "os.path.abspath", "os.system" ]
[((9442, 9476), 'os.environ.get', 'os.environ.get', (['"""LINETRACE"""', '(False)'], {}), "('LINETRACE', False)\n", (9456, 9476), False, 'import os\n'), ((613, 655), 'os.environ.get', 'os.environ.get', (['"""PKG_CONFIG"""', '"""pkg-config"""'], {}), "('PKG_CONFIG', 'pkg-config')\n", (627, 655), False, 'import os\n'), ((1962, 2003), 'os.path.abspath', 'os.path.abspath', (['"""external/lensfun/build"""'], {}), "('external/lensfun/build')\n", (1977, 2003), False, 'import os\n'), ((2022, 2058), 'os.path.join', 'os.path.join', (['cmake_build', '"""install"""'], {}), "(cmake_build, 'install')\n", (2034, 2058), False, 'import os\n'), ((2277, 2296), 'numpy.get_include', 'numpy.get_include', ([], {}), '()\n', (2294, 2296), False, 'import numpy\n'), ((2339, 2367), 'os.path.abspath', 'os.path.abspath', (['"""lensfunpy"""'], {}), "('lensfunpy')\n", (2354, 2367), False, 'import os\n'), ((2718, 2729), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (2727, 2729), False, 'import os\n'), ((3291, 3337), 'os.path.join', 'os.path.join', (['vcpkg_dir', '"""bootstrap-vcpkg.bat"""'], {}), "(vcpkg_dir, 'bootstrap-vcpkg.bat')\n", (3303, 3337), False, 'import os\n'), ((3350, 3386), 'os.path.join', 'os.path.join', (['vcpkg_dir', '"""vcpkg.exe"""'], {}), "(vcpkg_dir, 'vcpkg.exe')\n", (3362, 3386), False, 'import os\n'), ((4214, 4233), 'os.chdir', 'os.chdir', (['vcpkg_dir'], {}), '(vcpkg_dir)\n', (4222, 4233), False, 'import os\n'), ((4530, 4581), 'os.system', 'os.system', (["(vcpkg + ' install glib:' + vcpkg_triplet)"], {}), "(vcpkg + ' install glib:' + vcpkg_triplet)\n", (4539, 4581), False, 'import os\n'), ((4647, 4698), 'os.path.join', 'os.path.join', (['vcpkg_dir', '"""installed"""', 'vcpkg_triplet'], {}), "(vcpkg_dir, 'installed', vcpkg_triplet)\n", (4659, 4698), False, 'import os\n'), ((4750, 4788), 'os.path.join', 'os.path.join', (['vcpkg_install_dir', '"""bin"""'], {}), "(vcpkg_install_dir, 'bin')\n", (4762, 4788), False, 'import os\n'), ((4805, 4850), 'os.path.join', 'os.path.join', (['vcpkg_bin_dir', '"""glib-2.0-0.dll"""'], {}), "(vcpkg_bin_dir, 'glib-2.0-0.dll')\n", (4817, 4850), False, 'import os\n'), ((4962, 4983), 'os.chdir', 'os.chdir', (['cmake_build'], {}), '(cmake_build)\n', (4970, 4983), False, 'import os\n'), ((5919, 5932), 'os.chdir', 'os.chdir', (['cwd'], {}), '(cwd)\n', (5927, 5932), False, 'import os\n'), ((6682, 6693), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (6691, 6693), False, 'import os\n'), ((6768, 6789), 'os.chdir', 'os.chdir', (['cmake_build'], {}), '(cmake_build)\n', (6776, 6789), False, 'import os\n'), ((6813, 6845), 'os.path.join', 'os.path.join', (['install_dir', '"""lib"""'], {}), "(install_dir, 'lib')\n", (6825, 6845), False, 'import os\n'), ((7314, 7327), 'os.chdir', 'os.chdir', (['cwd'], {}), '(cwd)\n', (7322, 7327), False, 'import os\n'), ((7487, 7530), 'glob.glob', 'glob.glob', (['"""external/lensfun/data/db/*.xml"""'], {}), "('external/lensfun/data/db/*.xml')\n", (7496, 7530), False, 'import glob\n'), ((8600, 8643), 'shutil.rmtree', 'shutil.rmtree', (['egg_info'], {'ignore_errors': '(True)'}), '(egg_info, ignore_errors=True)\n', (8613, 8643), False, 'import shutil\n'), ((676, 749), 'subprocess.Popen', 'subprocess.Popen', (["[pkg_config, option, 'lensfun']"], {'stdout': 'subprocess.PIPE'}), "([pkg_config, option, 'lensfun'], stdout=subprocess.PIPE)\n", (692, 749), False, 'import subprocess\n'), ((2085, 2132), 'os.path.join', 'os.path.join', (['install_dir', '"""include"""', '"""lensfun"""'], {}), "(install_dir, 'include', 'lensfun')\n", (2097, 2132), False, 'import os\n'), ((2155, 2187), 'os.path.join', 'os.path.join', (['install_dir', '"""lib"""'], {}), "(install_dir, 'lib')\n", (2167, 2187), False, 'import os\n'), ((2405, 2449), 'os.path.exists', 'os.path.exists', (['"""external/lensfun/README.md"""'], {}), "('external/lensfun/README.md')\n", (2419, 2449), False, 'import os\n'), ((4245, 4266), 'os.path.exists', 'os.path.exists', (['vcpkg'], {}), '(vcpkg)\n', (4259, 4266), False, 'import os\n'), ((4283, 4309), 'os.system', 'os.system', (['vcpkg_bootstrap'], {}), '(vcpkg_bootstrap)\n', (4292, 4309), False, 'import os\n'), ((4608, 4622), 'sys.exit', 'sys.exit', (['code'], {}), '(code)\n', (4616, 4622), False, 'import sys\n'), ((4899, 4926), 'os.path.exists', 'os.path.exists', (['cmake_build'], {}), '(cmake_build)\n', (4913, 4926), False, 'import os\n'), ((4936, 4957), 'os.mkdir', 'os.mkdir', (['cmake_build'], {}), '(cmake_build)\n', (4944, 4957), False, 'import os\n'), ((5850, 5864), 'os.system', 'os.system', (['cmd'], {}), '(cmd)\n', (5859, 5864), False, 'import os\n'), ((6428, 6458), 'os.path.join', 'os.path.join', (['folder', 'filename'], {}), '(folder, filename)\n', (6440, 6458), False, 'import os\n'), ((6548, 6574), 'shutil.copyfile', 'shutil.copyfile', (['src', 'dest'], {}), '(src, dest)\n', (6563, 6574), False, 'import shutil\n'), ((6705, 6732), 'os.path.exists', 'os.path.exists', (['cmake_build'], {}), '(cmake_build)\n', (6719, 6732), False, 'import os\n'), ((6742, 6763), 'os.mkdir', 'os.mkdir', (['cmake_build'], {}), '(cmake_build)\n', (6750, 6763), False, 'import os\n'), ((7246, 7260), 'os.system', 'os.system', (['cmd'], {}), '(cmd)\n', (7255, 7260), False, 'import os\n'), ((7415, 7439), 'os.path.exists', 'os.path.exists', (['db_files'], {}), '(db_files)\n', (7429, 7439), False, 'import os\n'), ((7449, 7470), 'os.makedirs', 'os.makedirs', (['db_files'], {}), '(db_files)\n', (7460, 7470), False, 'import os\n'), ((7645, 7672), 'shutil.copyfile', 'shutil.copyfile', (['path', 'dest'], {}), '(path, dest)\n', (7660, 7672), False, 'import shutil\n'), ((11227, 11242), 'setuptools.find_packages', 'find_packages', ([], {}), '()\n', (11240, 11242), False, 'from setuptools import setup, Extension, find_packages\n'), ((2563, 2603), 'os.system', 'os.system', (['"""git submodule update --init"""'], {}), "('git submodule update --init')\n", (2572, 2603), False, 'import os\n'), ((3556, 3584), 'os.path.exists', 'os.path.exists', (['extractcheck'], {}), '(extractcheck)\n', (3570, 3584), False, 'import os\n'), ((4344, 4358), 'sys.exit', 'sys.exit', (['code'], {}), '(code)\n', (4352, 4358), False, 'import sys\n'), ((5899, 5913), 'sys.exit', 'sys.exit', (['code'], {}), '(code)\n', (5907, 5913), False, 'import sys\n'), ((5974, 6006), 'os.path.join', 'os.path.join', (['install_dir', '"""bin"""'], {}), "(install_dir, 'bin')\n", (5986, 6006), False, 'import os\n'), ((7295, 7309), 'sys.exit', 'sys.exit', (['code'], {}), '(code)\n', (7303, 7309), False, 'import sys\n'), ((7570, 7592), 'os.path.basename', 'os.path.basename', (['path'], {}), '(path)\n', (7586, 7592), False, 'import os\n'), ((1176, 1220), 'os.environ.get', 'os.environ.get', (['"""PKG_CONFIG_SYSROOT_DIR"""', '""""""'], {}), "('PKG_CONFIG_SYSROOT_DIR', '')\n", (1190, 1220), False, 'import os\n'), ((3619, 3640), 'os.path.basename', 'os.path.basename', (['url'], {}), '(url)\n', (3635, 3640), False, 'import os\n'), ((3660, 3680), 'os.path.exists', 'os.path.exists', (['path'], {}), '(path)\n', (3674, 3680), False, 'import os\n'), ((3941, 3962), 'zipfile.ZipFile', 'zipfile.ZipFile', (['path'], {}), '(path)\n', (3956, 3962), False, 'import zipfile\n'), ((4108, 4128), 'os.path.exists', 'os.path.exists', (['path'], {}), '(path)\n', (4122, 4128), False, 'import os\n'), ((3765, 3787), 'urllib.request.urlretrieve', 'urlretrieve', (['url', 'path'], {}), '(url, path)\n', (3776, 3787), False, 'from urllib.request import urlretrieve\n'), ((9680, 9721), 'os.path.join', 'os.path.join', (['"""lensfunpy"""', '"""_lensfun.pyx"""'], {}), "('lensfunpy', '_lensfun.pyx')\n", (9692, 9721), False, 'import os\n'), ((3892, 3914), 'urllib.request.urlretrieve', 'urlretrieve', (['url', 'path'], {}), '(url, path)\n', (3903, 3914), False, 'from urllib.request import urlretrieve\n')]
# Copyright (c) 2008,2015,2016,2017,2018,2019 MetPy Developers. # Distributed under the terms of the BSD 3-Clause License. # SPDX-License-Identifier: BSD-3-Clause """Contains a collection of basic calculations. These include: * wind components * heat index * windchill """ import warnings import numpy as np from scipy.ndimage import gaussian_filter from .. import constants as mpconsts from ..package_tools import Exporter from ..units import atleast_1d, check_units, masked_array, units from ..xarray import preprocess_xarray exporter = Exporter(globals()) # The following variables are constants for a standard atmosphere t0 = 288. * units.kelvin p0 = 1013.25 * units.hPa @exporter.export @preprocess_xarray @check_units('[speed]', '[speed]') def wind_speed(u, v): r"""Compute the wind speed from u and v-components. Parameters ---------- u : `pint.Quantity` Wind component in the X (East-West) direction v : `pint.Quantity` Wind component in the Y (North-South) direction Returns ------- wind speed: `pint.Quantity` The speed of the wind See Also -------- wind_components """ speed = np.sqrt(u * u + v * v) return speed @exporter.export @preprocess_xarray @check_units('[speed]', '[speed]') def wind_direction(u, v, convention='from'): r"""Compute the wind direction from u and v-components. Parameters ---------- u : `pint.Quantity` Wind component in the X (East-West) direction v : `pint.Quantity` Wind component in the Y (North-South) direction convention : str Convention to return direction. 'from' returns the direction the wind is coming from (meteorological convention). 'to' returns the direction the wind is going towards (oceanographic convention). Default is 'from'. Returns ------- direction: `pint.Quantity` The direction of the wind in interval [0, 360] degrees, with 360 being North, with the direction defined by the convention kwarg. See Also -------- wind_components Notes ----- In the case of calm winds (where `u` and `v` are zero), this function returns a direction of 0. """ wdir = 90. * units.deg - np.arctan2(-v, -u) origshape = wdir.shape wdir = atleast_1d(wdir) # Handle oceanographic convection if convention == 'to': wdir -= 180 * units.deg elif convention not in ('to', 'from'): raise ValueError('Invalid kwarg for "convention". Valid options are "from" or "to".') wdir[wdir <= 0] += 360. * units.deg # avoid unintended modification of `pint.Quantity` by direct use of magnitude calm_mask = (np.asarray(u.magnitude) == 0.) & (np.asarray(v.magnitude) == 0.) # np.any check required for legacy numpy which treats 0-d False boolean index as zero if np.any(calm_mask): wdir[calm_mask] = 0. * units.deg return wdir.reshape(origshape).to('degrees') @exporter.export @preprocess_xarray @check_units('[speed]') def wind_components(speed, wdir): r"""Calculate the U, V wind vector components from the speed and direction. Parameters ---------- speed : `pint.Quantity` The wind speed (magnitude) wdir : `pint.Quantity` The wind direction, specified as the direction from which the wind is blowing (0-2 pi radians or 0-360 degrees), with 360 degrees being North. Returns ------- u, v : tuple of `pint.Quantity` The wind components in the X (East-West) and Y (North-South) directions, respectively. See Also -------- wind_speed wind_direction Examples -------- >>> from metpy.units import units >>> metpy.calc.wind_components(10. * units('m/s'), 225. * units.deg) (<Quantity(7.071067811865475, 'meter / second')>, <Quantity(7.071067811865477, 'meter / second')>) """ wdir = _check_radians(wdir, max_radians=4 * np.pi) u = -speed * np.sin(wdir) v = -speed * np.cos(wdir) return u, v @exporter.export @preprocess_xarray @check_units(temperature='[temperature]', speed='[speed]') def windchill(temperature, speed, face_level_winds=False, mask_undefined=True): r"""Calculate the Wind Chill Temperature Index (WCTI). Calculates WCTI from the current temperature and wind speed using the formula outlined by the FCM [FCMR192003]_. Specifically, these formulas assume that wind speed is measured at 10m. If, instead, the speeds are measured at face level, the winds need to be multiplied by a factor of 1.5 (this can be done by specifying `face_level_winds` as `True`.) Parameters ---------- temperature : `pint.Quantity` The air temperature speed : `pint.Quantity` The wind speed at 10m. If instead the winds are at face level, `face_level_winds` should be set to `True` and the 1.5 multiplicative correction will be applied automatically. face_level_winds : bool, optional A flag indicating whether the wind speeds were measured at facial level instead of 10m, thus requiring a correction. Defaults to `False`. mask_undefined : bool, optional A flag indicating whether a masked array should be returned with values where wind chill is undefined masked. These are values where the temperature > 50F or wind speed <= 3 miles per hour. Defaults to `True`. Returns ------- `pint.Quantity` The corresponding Wind Chill Temperature Index value(s) See Also -------- heat_index """ # Correct for lower height measurement of winds if necessary if face_level_winds: # No in-place so that we copy # noinspection PyAugmentAssignment speed = speed * 1.5 temp_limit, speed_limit = 10. * units.degC, 3 * units.mph speed_factor = speed.to('km/hr').magnitude ** 0.16 wcti = units.Quantity((0.6215 + 0.3965 * speed_factor) * temperature.to('degC').magnitude - 11.37 * speed_factor + 13.12, units.degC).to(temperature.units) # See if we need to mask any undefined values if mask_undefined: mask = np.array((temperature > temp_limit) | (speed <= speed_limit)) if mask.any(): wcti = masked_array(wcti, mask=mask) return wcti @exporter.export @preprocess_xarray @check_units('[temperature]') def heat_index(temperature, rh, mask_undefined=True): r"""Calculate the Heat Index from the current temperature and relative humidity. The implementation uses the formula outlined in [Rothfusz1990]_, which is a multi-variable least-squares regression of the values obtained in [Steadman1979]_. Additional conditional corrections are applied to match what the National Weather Service operationally uses. See Figure 3 of [Anderson2013]_ for a depiction of this algorithm and further discussion. Parameters ---------- temperature : `pint.Quantity` Air temperature rh : `pint.Quantity` The relative humidity expressed as a unitless ratio in the range [0, 1]. Can also pass a percentage if proper units are attached. Returns ------- `pint.Quantity` The corresponding Heat Index value(s) Other Parameters ---------------- mask_undefined : bool, optional A flag indicating whether a masked array should be returned with values masked where the temperature < 80F. Defaults to `True`. See Also -------- windchill """ temperature = atleast_1d(temperature) rh = atleast_1d(rh) # assign units to rh if they currently are not present if not hasattr(rh, 'units'): rh = rh * units.dimensionless delta = temperature.to(units.degF) - 0. * units.degF rh2 = rh * rh delta2 = delta * delta # Simplifed Heat Index -- constants converted for RH in [0, 1] a = -10.3 * units.degF + 1.1 * delta + 4.7 * units.delta_degF * rh # More refined Heat Index -- constants converted for RH in [0, 1] b = (-42.379 * units.degF + 2.04901523 * delta + 1014.333127 * units.delta_degF * rh - 22.475541 * delta * rh - 6.83783e-3 / units.delta_degF * delta2 - 5.481717e2 * units.delta_degF * rh2 + 1.22874e-1 / units.delta_degF * delta2 * rh + 8.5282 * delta * rh2 - 1.99e-2 / units.delta_degF * delta2 * rh2) # Create return heat index hi = np.full(np.shape(temperature), np.nan) * units.degF # Retain masked status of temperature with resulting heat index if hasattr(temperature, 'mask'): hi = masked_array(hi) # If T <= 40F, Heat Index is T sel = (temperature <= 40. * units.degF) if np.any(sel): hi[sel] = temperature[sel].to(units.degF) # If a < 79F and hi is unset, Heat Index is a sel = (a < 79. * units.degF) & np.isnan(hi) if np.any(sel): hi[sel] = a[sel] # Use b now for anywhere hi has yet to be set sel = np.isnan(hi) if np.any(sel): hi[sel] = b[sel] # Adjustment for RH <= 13% and 80F <= T <= 112F sel = ((rh <= 13. * units.percent) & (temperature >= 80. * units.degF) & (temperature <= 112. * units.degF)) if np.any(sel): rh15adj = ((13. - rh * 100.) / 4. * ((17. * units.delta_degF - np.abs(delta - 95. * units.delta_degF)) / 17. * units.delta_degF) ** 0.5) hi[sel] = hi[sel] - rh15adj[sel] # Adjustment for RH > 85% and 80F <= T <= 87F sel = ((rh > 85. * units.percent) & (temperature >= 80. * units.degF) & (temperature <= 87. * units.degF)) if np.any(sel): rh85adj = 0.02 * (rh * 100. - 85.) * (87. * units.delta_degF - delta) hi[sel] = hi[sel] + rh85adj[sel] # See if we need to mask any undefined values if mask_undefined: mask = np.array(temperature < 80. * units.degF) if mask.any(): hi = masked_array(hi, mask=mask) return hi @exporter.export @preprocess_xarray @check_units(temperature='[temperature]', speed='[speed]') def apparent_temperature(temperature, rh, speed, face_level_winds=False, mask_undefined=True): r"""Calculate the current apparent temperature. Calculates the current apparent temperature based on the wind chill or heat index as appropriate for the current conditions. Follows [NWS10201]_. Parameters ---------- temperature : `pint.Quantity` The air temperature rh : `pint.Quantity` The relative humidity expressed as a unitless ratio in the range [0, 1]. Can also pass a percentage if proper units are attached. speed : `pint.Quantity` The wind speed at 10m. If instead the winds are at face level, `face_level_winds` should be set to `True` and the 1.5 multiplicative correction will be applied automatically. face_level_winds : bool, optional A flag indicating whether the wind speeds were measured at facial level instead of 10m, thus requiring a correction. Defaults to `False`. mask_undefined : bool, optional A flag indicating whether a masked array should be returned with values where wind chill or heat_index is undefined masked. For wind chill, these are values where the temperature > 50F or wind speed <= 3 miles per hour. For heat index, these are values where the temperature < 80F. Defaults to `True`. Returns ------- `pint.Quantity` The corresponding apparent temperature value(s) See Also -------- heat_index, windchill """ is_not_scalar = isinstance(temperature.m, (list, tuple, np.ndarray)) temperature = atleast_1d(temperature) rh = atleast_1d(rh) speed = atleast_1d(speed) # NB: mask_defined=True is needed to know where computed values exist wind_chill_temperature = windchill(temperature, speed, face_level_winds=face_level_winds, mask_undefined=True).to(temperature.units) heat_index_temperature = heat_index(temperature, rh, mask_undefined=True).to(temperature.units) # Combine the heat index and wind chill arrays (no point has a value in both) # NB: older numpy.ma.where does not return a masked array app_temperature = masked_array( np.ma.where(masked_array(wind_chill_temperature).mask, heat_index_temperature.to(temperature.units), wind_chill_temperature.to(temperature.units) ), temperature.units) # If mask_undefined is False, then set any masked values to the temperature if not mask_undefined: app_temperature[app_temperature.mask] = temperature[app_temperature.mask] # If no values are masked and provided temperature does not have a mask # we should return a non-masked array if not np.any(app_temperature.mask) and not hasattr(temperature, 'mask'): app_temperature = np.array(app_temperature.m) * temperature.units if is_not_scalar: return app_temperature else: return atleast_1d(app_temperature)[0] @exporter.export @preprocess_xarray @check_units('[pressure]') def pressure_to_height_std(pressure): r"""Convert pressure data to heights using the U.S. standard atmosphere [NOAA1976]_. The implementation uses the formula outlined in [Hobbs1977]_ pg.60-61. Parameters ---------- pressure : `pint.Quantity` Atmospheric pressure Returns ------- `pint.Quantity` The corresponding height value(s) Notes ----- .. math:: Z = \frac{T_0}{\Gamma}[1-\frac{p}{p_0}^\frac{R\Gamma}{g}] """ gamma = 6.5 * units('K/km') return (t0 / gamma) * (1 - (pressure / p0).to('dimensionless')**( mpconsts.Rd * gamma / mpconsts.g)) @exporter.export @preprocess_xarray @check_units('[length]') def height_to_geopotential(height): r"""Compute geopotential for a given height. Calculates the geopotential from height using the following formula, which is derived from the definition of geopotential as given in [Hobbs2006]_ Pg. 69 Eq 3.21: .. math:: \Phi = G m_e \left( \frac{1}{R_e} - \frac{1}{R_e + z}\right) (where :math:`\Phi` is geopotential, :math:`z` is height, :math:`R_e` is average Earth radius, :math:`G` is the (universal) gravitational constant, and :math:`m_e` is the approximate mass of Earth.) Parameters ---------- height : `pint.Quantity` Height above sea level Returns ------- `pint.Quantity` The corresponding geopotential value(s) Examples -------- >>> import metpy.calc >>> from metpy.units import units >>> height = np.linspace(0, 10000, num=11) * units.m >>> geopot = metpy.calc.height_to_geopotential(height) >>> geopot <Quantity([ 0. 9817.46806283 19631.85526579 29443.16305887 39251.39289118 49056.54621087 58858.62446524 68657.62910064 78453.56156252 88246.42329544 98036.21574305], 'meter ** 2 / second ** 2')> """ # Direct implementation of formula from Hobbs yields poor numerical results (see # gh-1075), so was replaced with algebraic equivalent. return (mpconsts.G * mpconsts.me / mpconsts.Re) * (height / (mpconsts.Re + height)) @exporter.export @preprocess_xarray def geopotential_to_height(geopot): r"""Compute height from a given geopotential. Calculates the height from geopotential using the following formula, which is derived from the definition of geopotential as given in [Hobbs2006]_ Pg. 69 Eq 3.21: .. math:: z = \frac{1}{\frac{1}{R_e} - \frac{\Phi}{G m_e}} - R_e (where :math:`\Phi` is geopotential, :math:`z` is height, :math:`R_e` is average Earth radius, :math:`G` is the (universal) gravitational constant, and :math:`m_e` is the approximate mass of Earth.) Parameters ---------- geopotential : `pint.Quantity` Geopotential Returns ------- `pint.Quantity` The corresponding height value(s) Examples -------- >>> import metpy.calc >>> from metpy.units import units >>> height = np.linspace(0, 10000, num=11) * units.m >>> geopot = metpy.calc.height_to_geopotential(height) >>> geopot <Quantity([ 0. 9817.46806283 19631.85526579 29443.16305887 39251.39289118 49056.54621087 58858.62446524 68657.62910064 78453.56156252 88246.42329544 98036.21574305], 'meter ** 2 / second ** 2')> >>> height = metpy.calc.geopotential_to_height(geopot) >>> height <Quantity([ 0. 1000. 2000. 3000. 4000. 5000. 6000. 7000. 8000. 9000. 10000.], 'meter')> """ # Direct implementation of formula from Hobbs yields poor numerical results (see # gh-1075), so was replaced with algebraic equivalent. scaled = geopot * mpconsts.Re return scaled * mpconsts.Re / (mpconsts.G * mpconsts.me - scaled) @exporter.export @preprocess_xarray @check_units('[length]') def height_to_pressure_std(height): r"""Convert height data to pressures using the U.S. standard atmosphere [NOAA1976]_. The implementation inverts the formula outlined in [Hobbs1977]_ pg.60-61. Parameters ---------- height : `pint.Quantity` Atmospheric height Returns ------- `pint.Quantity` The corresponding pressure value(s) Notes ----- .. math:: p = p_0 e^{\frac{g}{R \Gamma} \text{ln}(1-\frac{Z \Gamma}{T_0})} """ gamma = 6.5 * units('K/km') return p0 * (1 - (gamma / t0) * height) ** (mpconsts.g / (mpconsts.Rd * gamma)) @exporter.export @preprocess_xarray def coriolis_parameter(latitude): r"""Calculate the coriolis parameter at each point. The implementation uses the formula outlined in [Hobbs1977]_ pg.370-371. Parameters ---------- latitude : array_like Latitude at each point Returns ------- `pint.Quantity` The corresponding coriolis force at each point """ latitude = _check_radians(latitude, max_radians=np.pi / 2) return (2. * mpconsts.omega * np.sin(latitude)).to('1/s') @exporter.export @preprocess_xarray @check_units('[pressure]', '[length]') def add_height_to_pressure(pressure, height): r"""Calculate the pressure at a certain height above another pressure level. This assumes a standard atmosphere [NOAA1976]_. Parameters ---------- pressure : `pint.Quantity` Pressure level height : `pint.Quantity` Height above a pressure level Returns ------- `pint.Quantity` The corresponding pressure value for the height above the pressure level See Also -------- pressure_to_height_std, height_to_pressure_std, add_pressure_to_height """ pressure_level_height = pressure_to_height_std(pressure) return height_to_pressure_std(pressure_level_height + height) @exporter.export @preprocess_xarray @check_units('[length]', '[pressure]') def add_pressure_to_height(height, pressure): r"""Calculate the height at a certain pressure above another height. This assumes a standard atmosphere [NOAA1976]_. Parameters ---------- height : `pint.Quantity` Height level pressure : `pint.Quantity` Pressure above height level Returns ------- `pint.Quantity` The corresponding height value for the pressure above the height level See Also -------- pressure_to_height_std, height_to_pressure_std, add_height_to_pressure """ pressure_at_height = height_to_pressure_std(height) return pressure_to_height_std(pressure_at_height - pressure) @exporter.export @preprocess_xarray @check_units('[dimensionless]', '[pressure]', '[pressure]') def sigma_to_pressure(sigma, psfc, ptop): r"""Calculate pressure from sigma values. Parameters ---------- sigma : ndarray The sigma levels to be converted to pressure levels. psfc : `pint.Quantity` The surface pressure value. ptop : `pint.Quantity` The pressure value at the top of the model domain. Returns ------- `pint.Quantity` The pressure values at the given sigma levels. Notes ----- Sigma definition adapted from [Philips1957]_. .. math:: p = \sigma * (p_{sfc} - p_{top}) + p_{top} * :math:`p` is pressure at a given `\sigma` level * :math:`\sigma` is non-dimensional, scaled pressure * :math:`p_{sfc}` is pressure at the surface or model floor * :math:`p_{top}` is pressure at the top of the model domain """ if np.any(sigma < 0) or np.any(sigma > 1): raise ValueError('Sigma values should be bounded by 0 and 1') if psfc.magnitude < 0 or ptop.magnitude < 0: raise ValueError('Pressure input should be non-negative') return sigma * (psfc - ptop) + ptop @exporter.export @preprocess_xarray def smooth_gaussian(scalar_grid, n): """Filter with normal distribution of weights. Parameters ---------- scalar_grid : `pint.Quantity` Some n-dimensional scalar grid. If more than two axes, smoothing is only done across the last two. n : int Degree of filtering Returns ------- `pint.Quantity` The filtered 2D scalar grid Notes ----- This function is a close replication of the GEMPAK function GWFS, but is not identical. The following notes are incorporated from the GEMPAK source code: This function smoothes a scalar grid using a moving average low-pass filter whose weights are determined by the normal (Gaussian) probability distribution function for two dimensions. The weight given to any grid point within the area covered by the moving average for a target grid point is proportional to EXP [ -( D ** 2 ) ], where D is the distance from that point to the target point divided by the standard deviation of the normal distribution. The value of the standard deviation is determined by the degree of filtering requested. The degree of filtering is specified by an integer. This integer is the number of grid increments from crest to crest of the wave for which the theoretical response is 1/e = .3679. If the grid increment is called delta_x, and the value of this integer is represented by N, then the theoretical filter response function value for the N * delta_x wave will be 1/e. The actual response function will be greater than the theoretical value. The larger N is, the more severe the filtering will be, because the response function for all wavelengths shorter than N * delta_x will be less than 1/e. Furthermore, as N is increased, the slope of the filter response function becomes more shallow; so, the response at all wavelengths decreases, but the amount of decrease lessens with increasing wavelength. (The theoretical response function can be obtained easily--it is the Fourier transform of the weight function described above.) The area of the patch covered by the moving average varies with N. As N gets bigger, the smoothing gets stronger, and weight values farther from the target grid point are larger because the standard deviation of the normal distribution is bigger. Thus, increasing N has the effect of expanding the moving average window as well as changing the values of weights. The patch is a square covering all points whose weight values are within two standard deviations of the mean of the two dimensional normal distribution. The key difference between GEMPAK's GWFS and this function is that, in GEMPAK, the leftover weight values representing the fringe of the distribution are applied to the target grid point. In this function, the leftover weights are not used. When this function is invoked, the first argument is the grid to be smoothed, the second is the value of N as described above: GWFS ( S, N ) where N > 1. If N <= 1, N = 2 is assumed. For example, if N = 4, then the 4 delta x wave length is passed with approximate response 1/e. """ # Compute standard deviation in a manner consistent with GEMPAK n = int(round(n)) if n < 2: n = 2 sgma = n / (2 * np.pi) # Construct sigma sequence so smoothing occurs only in horizontal direction nax = len(scalar_grid.shape) # Assume the last two axes represent the horizontal directions sgma_seq = [sgma if i > nax - 3 else 0 for i in range(nax)] # Compute smoothed field and reattach units res = gaussian_filter(scalar_grid, sgma_seq, truncate=2 * np.sqrt(2)) if hasattr(scalar_grid, 'units'): res = res * scalar_grid.units return res @exporter.export @preprocess_xarray def smooth_n_point(scalar_grid, n=5, passes=1): """Filter with normal distribution of weights. Parameters ---------- scalar_grid : array-like or `pint.Quantity` Some 2D scalar grid to be smoothed. n: int The number of points to use in smoothing, only valid inputs are 5 and 9. Defaults to 5. passes : int The number of times to apply the filter to the grid. Defaults to 1. Returns ------- array-like or `pint.Quantity` The filtered 2D scalar grid. Notes ----- This function is a close replication of the GEMPAK function SM5S and SM9S depending on the choice of the number of points to use for smoothing. This function can be applied multiple times to create a more smoothed field and will only smooth the interior points, leaving the end points with their original values. If a masked value or NaN values exists in the array, it will propagate to any point that uses that particular grid point in the smoothing calculation. Applying the smoothing function multiple times will propogate NaNs further throughout the domain. """ if n == 9: p = 0.25 q = 0.125 r = 0.0625 elif n == 5: p = 0.5 q = 0.125 r = 0.0 else: raise ValueError('The number of points to use in the smoothing ' 'calculation must be either 5 or 9.') smooth_grid = scalar_grid[:].copy() for _i in range(passes): smooth_grid[1:-1, 1:-1] = (p * smooth_grid[1:-1, 1:-1] + q * (smooth_grid[2:, 1:-1] + smooth_grid[1:-1, 2:] + smooth_grid[:-2, 1:-1] + smooth_grid[1:-1, :-2]) + r * (smooth_grid[2:, 2:] + smooth_grid[2:, :-2] + + smooth_grid[:-2, 2:] + smooth_grid[:-2, :-2])) return smooth_grid @exporter.export @preprocess_xarray @check_units('[pressure]', '[length]') def altimeter_to_station_pressure(altimeter_value, height): r"""Convert the altimeter measurement to station pressure. This function is useful for working with METARs since they do not provide altimeter values, but not sea-level pressure or station pressure. The following definitions of altimeter setting and station pressure are taken from [Smithsonian1951]_ Altimeter setting is the pressure value to which an aircraft altimeter scale is set so that it will indicate the altitude above mean sea-level of an aircraft on the ground at the location for which the value is determined. It assumes a standard atmosphere [NOAA1976]_. Station pressure is the atmospheric pressure at the designated station elevation. Finding the station pressure can be helpful for calculating sea-level pressure or other parameters. Parameters ---------- altimeter_value : `pint.Quantity` The altimeter setting value as defined by the METAR or other observation, which can be measured in either inches of mercury (in. Hg) or millibars (mb) height: `pint.Quantity` Elevation of the station measuring pressure. Returns ------- `pint.Quantity` The station pressure in hPa or in. Hg, which can be used to calculate sea-level pressure See Also -------- altimeter_to_sea_level_pressure Notes ----- This function is implemented using the following equations from the Smithsonian Handbook (1951) p. 269 Equation 1: .. math:: A_{mb} = (p_{mb} - 0.3)F Equation 3: .. math:: F = \left [1 + \left(\frac{p_{0}^n a}{T_{0}} \right) \frac{H_{b}}{p_{1}^n} \right ] ^ \frac{1}{n} Where :math:`p_{0}` = standard sea-level pressure = 1013.25 mb :math:`p_{1} = p_{mb} - 0.3` when :math:`p_{0} = 1013.25 mb` gamma = lapse rate in [NOAA1976]_ standard atmosphere below the isothermal layer :math:`6.5^{\circ}C. km.^{-1}` :math:`t_{0}` = standard sea-level temperature 288 K :math:`H_{b} =` station elevation in meters (elevation for which station pressure is given) :math:`n = \frac{a R_{d}}{g} = 0.190284` where :math:`R_{d}` is the gas constant for dry air And solving for :math:`p_{mb}` results in the equation below, which is used to calculate station pressure :math:`(p_{mb})` .. math:: p_{mb} = \left [A_{mb} ^ n - \left (\frac{p_{0} a H_{b}}{T_0} \right) \right] ^ \frac{1}{n} + 0.3 """ # Gamma Value for this case gamma = 0.0065 * units('K/m') # N-Value n = (mpconsts.Rd * gamma / mpconsts.g).to_base_units() return ((altimeter_value ** n - ((p0.to(altimeter_value.units) ** n * gamma * height) / t0)) ** (1 / n) + 0.3 * units.hPa) @exporter.export @preprocess_xarray @check_units('[pressure]', '[length]', '[temperature]') def altimeter_to_sea_level_pressure(altimeter_value, height, temperature): r"""Convert the altimeter setting to sea-level pressure. This function is useful for working with METARs since most provide altimeter values, but not sea-level pressure, which is often plotted on surface maps. The following definitions of altimeter setting, station pressure, and sea-level pressure are taken from [Smithsonian1951]_ Altimeter setting is the pressure value to which an aircraft altimeter scale is set so that it will indicate the altitude above mean sea-level of an aircraft on the ground at the location for which the value is determined. It assumes a standard atmosphere. Station pressure is the atmospheric pressure at the designated station elevation. Sea-level pressure is a pressure value obtained by the theoretical reduction of barometric pressure to sea level. It is assumed that atmosphere extends to sea level below the station and that the properties of the atmosphere are related to conditions observed at the station. This value is recorded by some surface observation stations, but not all. If the value is recorded, it can be found in the remarks section. Finding the sea-level pressure is helpful for plotting purposes and different calculations. Parameters ---------- altimeter_value : 'pint.Quantity' The altimeter setting value is defined by the METAR or other observation, with units of inches of mercury (in Hg) or millibars (hPa) height : 'pint.Quantity' Elevation of the station measuring pressure. Often times measured in meters temperature : 'pint.Quantity' Temperature at the station Returns ------- 'pint.Quantity' The sea-level pressure in hPa and makes pressure values easier to compare between different stations See Also -------- altimeter_to_station_pressure Notes ----- This function is implemented using the following equations from Wallace and Hobbs (1977) Equation 2.29: .. math:: \Delta z = Z_{2} - Z_{1} = \frac{R_{d} \bar T_{v}}{g_0}ln\left(\frac{p_{1}}{p_{2}}\right) = \bar H ln \left (\frac {p_{1}}{p_{2}} \right) Equation 2.31: .. math:: p_{0} = p_{g}exp \left(\frac{Z_{g}}{\bar H} \right) \\ = p_{g}exp \left(\frac{g_{0}Z_{g}}{R_{d}\bar T_{v}} \right) Then by substituting :math:`Delta_{Z}` for :math:`Z_{g}` in Equation 2.31: .. math:: p_{sea_level} = p_{station} exp\left(\frac{\Delta z}{H}\right) where :math:`Delta_{Z}` is the elevation in meters and :math:`H = \frac{R_{d}T}{g}` """ # Calculate the station pressure using function altimeter_to_station_pressure() psfc = altimeter_to_station_pressure(altimeter_value, height) # Calculate the scale height h = mpconsts.Rd * temperature / mpconsts.g return psfc * np.exp(height / h) def _check_radians(value, max_radians=2 * np.pi): """Input validation of values that could be in degrees instead of radians. Parameters ---------- value : `pint.Quantity` The input value to check. max_radians : float Maximum absolute value of radians before warning. Returns ------- `pint.Quantity` The input value """ try: value = value.to('radians').m except AttributeError: pass if np.greater(np.nanmax(np.abs(value)), max_radians): warnings.warn('Input over {} radians. ' 'Ensure proper units are given.'.format(max_radians)) return value
[ "numpy.abs", "numpy.sqrt", "numpy.asarray", "numpy.any", "numpy.exp", "numpy.array", "numpy.arctan2", "numpy.isnan", "numpy.cos", "numpy.sin", "numpy.shape" ]
[((1176, 1198), 'numpy.sqrt', 'np.sqrt', (['(u * u + v * v)'], {}), '(u * u + v * v)\n', (1183, 1198), True, 'import numpy as np\n'), ((2865, 2882), 'numpy.any', 'np.any', (['calm_mask'], {}), '(calm_mask)\n', (2871, 2882), True, 'import numpy as np\n'), ((8772, 8783), 'numpy.any', 'np.any', (['sel'], {}), '(sel)\n', (8778, 8783), True, 'import numpy as np\n'), ((8941, 8952), 'numpy.any', 'np.any', (['sel'], {}), '(sel)\n', (8947, 8952), True, 'import numpy as np\n'), ((9040, 9052), 'numpy.isnan', 'np.isnan', (['hi'], {}), '(hi)\n', (9048, 9052), True, 'import numpy as np\n'), ((9060, 9071), 'numpy.any', 'np.any', (['sel'], {}), '(sel)\n', (9066, 9071), True, 'import numpy as np\n'), ((9282, 9293), 'numpy.any', 'np.any', (['sel'], {}), '(sel)\n', (9288, 9293), True, 'import numpy as np\n'), ((9702, 9713), 'numpy.any', 'np.any', (['sel'], {}), '(sel)\n', (9708, 9713), True, 'import numpy as np\n'), ((2254, 2272), 'numpy.arctan2', 'np.arctan2', (['(-v)', '(-u)'], {}), '(-v, -u)\n', (2264, 2272), True, 'import numpy as np\n'), ((3982, 3994), 'numpy.sin', 'np.sin', (['wdir'], {}), '(wdir)\n', (3988, 3994), True, 'import numpy as np\n'), ((4012, 4024), 'numpy.cos', 'np.cos', (['wdir'], {}), '(wdir)\n', (4018, 4024), True, 'import numpy as np\n'), ((6208, 6269), 'numpy.array', 'np.array', (['((temperature > temp_limit) | (speed <= speed_limit))'], {}), '((temperature > temp_limit) | (speed <= speed_limit))\n', (6216, 6269), True, 'import numpy as np\n'), ((8921, 8933), 'numpy.isnan', 'np.isnan', (['hi'], {}), '(hi)\n', (8929, 8933), True, 'import numpy as np\n'), ((9923, 9964), 'numpy.array', 'np.array', (['(temperature < 80.0 * units.degF)'], {}), '(temperature < 80.0 * units.degF)\n', (9931, 9964), True, 'import numpy as np\n'), ((20720, 20737), 'numpy.any', 'np.any', (['(sigma < 0)'], {}), '(sigma < 0)\n', (20726, 20737), True, 'import numpy as np\n'), ((20741, 20758), 'numpy.any', 'np.any', (['(sigma > 1)'], {}), '(sigma > 1)\n', (20747, 20758), True, 'import numpy as np\n'), ((32848, 32866), 'numpy.exp', 'np.exp', (['(height / h)'], {}), '(height / h)\n', (32854, 32866), True, 'import numpy as np\n'), ((2703, 2726), 'numpy.asarray', 'np.asarray', (['u.magnitude'], {}), '(u.magnitude)\n', (2713, 2726), True, 'import numpy as np\n'), ((2737, 2760), 'numpy.asarray', 'np.asarray', (['v.magnitude'], {}), '(v.magnitude)\n', (2747, 2760), True, 'import numpy as np\n'), ((8506, 8527), 'numpy.shape', 'np.shape', (['temperature'], {}), '(temperature)\n', (8514, 8527), True, 'import numpy as np\n'), ((12986, 13014), 'numpy.any', 'np.any', (['app_temperature.mask'], {}), '(app_temperature.mask)\n', (12992, 13014), True, 'import numpy as np\n'), ((13079, 13106), 'numpy.array', 'np.array', (['app_temperature.m'], {}), '(app_temperature.m)\n', (13087, 13106), True, 'import numpy as np\n'), ((33367, 33380), 'numpy.abs', 'np.abs', (['value'], {}), '(value)\n', (33373, 33380), True, 'import numpy as np\n'), ((18231, 18247), 'numpy.sin', 'np.sin', (['latitude'], {}), '(latitude)\n', (18237, 18247), True, 'import numpy as np\n'), ((24835, 24845), 'numpy.sqrt', 'np.sqrt', (['(2)'], {}), '(2)\n', (24842, 24845), True, 'import numpy as np\n'), ((9385, 9424), 'numpy.abs', 'np.abs', (['(delta - 95.0 * units.delta_degF)'], {}), '(delta - 95.0 * units.delta_degF)\n', (9391, 9424), True, 'import numpy as np\n')]
"""Objects representing regions in space.""" import math import random import itertools import numpy import scipy.spatial import shapely.geometry import shapely.ops from scenic.core.distributions import Samplable, RejectionException, needsSampling from scenic.core.lazy_eval import valueInContext from scenic.core.vectors import Vector, OrientedVector, VectorDistribution from scenic.core.geometry import RotatedRectangle from scenic.core.geometry import sin, cos, hypot, findMinMax, pointIsInCone, averageVectors from scenic.core.geometry import headingOfSegment, triangulatePolygon, plotPolygon, polygonUnion from scenic.core.type_support import toVector from scenic.core.utils import cached, areEquivalent def toPolygon(thing): if needsSampling(thing): return None if hasattr(thing, 'polygon'): return thing.polygon if hasattr(thing, 'polygons'): return thing.polygons if hasattr(thing, 'lineString'): return thing.lineString return None def regionFromShapelyObject(obj, orientation=None): """Build a 'Region' from Shapely geometry.""" assert obj.is_valid, obj if obj.is_empty: return nowhere elif isinstance(obj, (shapely.geometry.Polygon, shapely.geometry.MultiPolygon)): return PolygonalRegion(polygon=obj, orientation=orientation) elif isinstance(obj, (shapely.geometry.LineString, shapely.geometry.MultiLineString)): return PolylineRegion(polyline=obj, orientation=orientation) else: raise RuntimeError(f'unhandled type of Shapely geometry: {obj}') class PointInRegionDistribution(VectorDistribution): """Uniform distribution over points in a Region""" def __init__(self, region): super().__init__(region) self.region = region def sampleGiven(self, value): return value[self.region].uniformPointInner() def __str__(self): return f'PointIn({self.region})' class Region(Samplable): """Abstract class for regions.""" def __init__(self, name, *dependencies, orientation=None): super().__init__(dependencies) self.name = name self.orientation = orientation def sampleGiven(self, value): return self def intersect(self, other, triedReversed=False): """Get a `Region` representing the intersection of this one with another.""" if triedReversed: return IntersectionRegion(self, other) else: return other.intersect(self, triedReversed=True) @staticmethod def uniformPointIn(region): """Get a uniform `Distribution` over points in a `Region`.""" return PointInRegionDistribution(region) def uniformPoint(self): """Sample a uniformly-random point in this `Region`. Can only be called on fixed Regions with no random parameters. """ assert not needsSampling(self) return self.uniformPointInner() def uniformPointInner(self): """Do the actual random sampling. Implemented by subclasses.""" raise NotImplementedError() def containsPoint(self, point): """Check if the `Region` contains a point. Implemented by subclasses.""" raise NotImplementedError() def containsObject(self, obj): """Check if the `Region` contains an :obj:`~scenic.core.object_types.Object`. The default implementation assumes the `Region` is convex; subclasses must override the method if this is not the case. """ for corner in obj.corners: if not self.containsPoint(corner): return False return True def __contains__(self, thing): """Check if this `Region` contains an object or vector.""" from scenic.core.object_types import Object if isinstance(thing, Object): return self.containsObject(thing) vec = toVector(thing, '"X in Y" with X not an Object or a vector') return self.containsPoint(vec) def getAABB(self): """Axis-aligned bounding box for this `Region`. Implemented by some subclasses.""" raise NotImplementedError() def orient(self, vec): """Orient the given vector along the region's orientation, if any.""" if self.orientation is None: return vec else: return OrientedVector(vec.x, vec.y, self.orientation[vec]) def __str__(self): return f'<Region {self.name}>' class AllRegion(Region): """Region consisting of all space.""" def intersect(self, other, triedReversed=False): return other def containsPoint(self, point): return True def containsObject(self, obj): return True def __eq__(self, other): return type(other) is AllRegion def __hash__(self): return hash(AllRegion) class EmptyRegion(Region): """Region containing no points.""" def intersect(self, other, triedReversed=False): return self def uniformPointInner(self): raise RejectionException(f'sampling empty Region') def containsPoint(self, point): return False def containsObject(self, obj): return False def show(self, plt, style=None): pass def __eq__(self, other): return type(other) is EmptyRegion def __hash__(self): return hash(EmptyRegion) everywhere = AllRegion('everywhere') nowhere = EmptyRegion('nowhere') class CircularRegion(Region): def __init__(self, center, radius, resolution=32): super().__init__('Circle', center, radius) self.center = center.toVector() self.radius = radius self.circumcircle = (self.center, self.radius) if not (needsSampling(self.center) or needsSampling(self.radius)): ctr = shapely.geometry.Point(self.center) self.polygon = ctr.buffer(self.radius, resolution=resolution) def sampleGiven(self, value): return CircularRegion(value[self.center], value[self.radius]) def evaluateInner(self, context): center = valueInContext(self.center, context) radius = valueInContext(self.radius, context) return CircularRegion(center, radius) def containsPoint(self, point): point = point.toVector() return point.distanceTo(self.center) <= self.radius def uniformPointInner(self): x, y = self.center r = random.triangular(0, self.radius, self.radius) t = random.uniform(-math.pi, math.pi) pt = Vector(x + (r * cos(t)), y + (r * sin(t))) return self.orient(pt) def getAABB(self): x, y = self.center r = self.radius return ((x - r, y - r), (x + r, y + r)) def isEquivalentTo(self, other): if type(other) is not CircularRegion: return False return (areEquivalent(other.center, self.center) and areEquivalent(other.radius, self.radius)) def __str__(self): return f'CircularRegion({self.center}, {self.radius})' class SectorRegion(Region): def __init__(self, center, radius, heading, angle, resolution=32): super().__init__('Sector', center, radius, heading, angle) self.center = center.toVector() self.radius = radius self.heading = heading self.angle = angle r = (radius / 2) * cos(angle / 2) self.circumcircle = (self.center.offsetRadially(r, heading), r) if not any(needsSampling(x) for x in (self.center, radius, heading, angle)): ctr = shapely.geometry.Point(self.center) circle = ctr.buffer(self.radius, resolution=resolution) if angle >= math.tau - 0.001: self.polygon = circle else: mask = shapely.geometry.Polygon([ self.center, self.center.offsetRadially(radius, heading + angle/2), self.center.offsetRadially(2*radius, heading), self.center.offsetRadially(radius, heading - angle/2) ]) self.polygon = circle & mask def sampleGiven(self, value): return SectorRegion(value[self.center], value[self.radius], value[self.heading], value[self.angle]) def evaluateInner(self, context): center = valueInContext(self.center, context) radius = valueInContext(self.radius, context) heading = valueInContext(self.heading, context) angle = valueInContext(self.angle, context) return SectorRegion(center, radius, heading, angle) def containsPoint(self, point): point = point.toVector() if not pointIsInCone(tuple(point), tuple(self.center), self.heading, self.angle): return False return point.distanceTo(self.center) <= self.radius def uniformPointInner(self): x, y = self.center heading, angle, maxDist = self.heading, self.angle, self.radius r = random.triangular(0, maxDist, maxDist) ha = angle / 2.0 t = random.uniform(-ha, ha) + (heading + (math.pi / 2)) pt = Vector(x + (r * cos(t)), y + (r * sin(t))) return self.orient(pt) def isEquivalentTo(self, other): if type(other) is not SectorRegion: return False return (areEquivalent(other.center, self.center) and areEquivalent(other.radius, self.radius) and areEquivalent(other.heading, self.heading) and areEquivalent(other.angle, self.angle)) def __str__(self): return f'SectorRegion({self.center},{self.radius},{self.heading},{self.angle})' class RectangularRegion(RotatedRectangle, Region): def __init__(self, position, heading, width, height): super().__init__('Rectangle', position, heading, width, height) self.position = position.toVector() self.heading = heading self.width = width self.height = height self.hw = hw = width / 2 self.hh = hh = height / 2 self.radius = hypot(hw, hh) # circumcircle; for collision detection self.corners = tuple(position.offsetRotated(heading, Vector(*offset)) for offset in ((hw, hh), (-hw, hh), (-hw, -hh), (hw, -hh))) self.circumcircle = (self.position, self.radius) def sampleGiven(self, value): return RectangularRegion(value[self.position], value[self.heading], value[self.width], value[self.height]) def evaluateInner(self, context): position = valueInContext(self.position, context) heading = valueInContext(self.heading, context) width = valueInContext(self.width, context) height = valueInContext(self.height, context) return RectangularRegion(position, heading, width, height) def uniformPointInner(self): hw, hh = self.hw, self.hh rx = random.uniform(-hw, hw) ry = random.uniform(-hh, hh) pt = self.position.offsetRotated(self.heading, Vector(rx, ry)) return self.orient(pt) def getAABB(self): x, y = zip(*self.corners) minx, maxx = findMinMax(x) miny, maxy = findMinMax(y) return ((minx, miny), (maxx, maxy)) def isEquivalentTo(self, other): if type(other) is not RectangularRegion: return False return (areEquivalent(other.position, self.position) and areEquivalent(other.heading, self.heading) and areEquivalent(other.width, self.width) and areEquivalent(other.height, self.height)) def __str__(self): return f'RectangularRegion({self.position},{self.heading},{self.width},{self.height})' class PolylineRegion(Region): """Region given by one or more polylines (chain of line segments)""" def __init__(self, points=None, polyline=None, orientation=True): super().__init__('Polyline', orientation=orientation) if points is not None: points = tuple(points) if len(points) < 2: raise RuntimeError('tried to create PolylineRegion with < 2 points') self.points = points self.lineString = shapely.geometry.LineString(points) elif polyline is not None: if isinstance(polyline, shapely.geometry.LineString): if len(polyline.coords) < 2: raise RuntimeError('tried to create PolylineRegion with <2-point LineString') elif isinstance(polyline, shapely.geometry.MultiLineString): if len(polyline) == 0: raise RuntimeError('tried to create PolylineRegion from empty MultiLineString') for line in polyline: assert len(line.coords) >= 2 else: raise RuntimeError('tried to create PolylineRegion from non-LineString') self.lineString = polyline else: raise RuntimeError('must specify points or polyline for PolylineRegion') if not self.lineString.is_valid: raise RuntimeError('tried to create PolylineRegion with ' f'invalid LineString {self.lineString}') self.segments = self.segmentsOf(self.lineString) cumulativeLengths = [] total = 0 for p, q in self.segments: dx, dy = p[0] - q[0], p[1] - q[1] total += math.hypot(dx, dy) cumulativeLengths.append(total) self.cumulativeLengths = cumulativeLengths @classmethod def segmentsOf(cls, lineString): if isinstance(lineString, shapely.geometry.LineString): segments = [] points = list(lineString.coords) if len(points) < 2: raise RuntimeError('LineString has fewer than 2 points') last = points[0] for point in points[1:]: segments.append((last, point)) last = point return segments elif isinstance(lineString, shapely.geometry.MultiLineString): allSegments = [] for line in lineString: allSegments.extend(cls.segmentsOf(line)) return allSegments else: raise RuntimeError('called segmentsOf on non-linestring') def uniformPointInner(self): pointA, pointB = random.choices(self.segments, cum_weights=self.cumulativeLengths)[0] interpolation = random.random() x, y = averageVectors(pointA, pointB, weight=interpolation) if self.orientation is True: return OrientedVector(x, y, headingOfSegment(pointA, pointB)) else: return self.orient(Vector(x, y)) def intersect(self, other, triedReversed=False): poly = toPolygon(other) if poly is not None: intersection = self.lineString & poly if (intersection.is_empty or not isinstance(intersection, (shapely.geometry.LineString, shapely.geometry.MultiLineString))): # TODO handle points! return nowhere return PolylineRegion(polyline=intersection) return super().intersect(other, triedReversed) def containsPoint(self, point): return self.lineString.intersects(shapely.geometry.Point(point)) def containsObject(self, obj): return False def getAABB(self): xmin, ymin, xmax, ymax = self.lineString.bounds return ((xmin, ymin), (xmax, ymax)) def show(self, plt, style='r-'): for pointA, pointB in self.segments: plt.plot([pointA[0], pointB[0]], [pointA[1], pointB[1]], style) def __str__(self): return f'PolylineRegion({self.lineString})' def __eq__(self, other): if type(other) is not PolylineRegion: return NotImplemented return (other.lineString == self.lineString) @cached def __hash__(self): return hash(str(self.lineString)) class PolygonalRegion(Region): """Region given by one or more polygons (possibly with holes)""" def __init__(self, points=None, polygon=None, orientation=None): super().__init__('Polygon', orientation=orientation) if polygon is None and points is None: raise RuntimeError('must specify points or polygon for PolygonalRegion') if polygon is None: points = tuple(points) if len(points) == 0: raise RuntimeError('tried to create PolygonalRegion from empty point list!') for point in points: if needsSampling(point): raise RuntimeError('only fixed PolygonalRegions are supported') self.points = points polygon = shapely.geometry.Polygon(points) if isinstance(polygon, shapely.geometry.Polygon): self.polygons = shapely.geometry.MultiPolygon([polygon]) elif isinstance(polygon, shapely.geometry.MultiPolygon): self.polygons = polygon else: raise RuntimeError(f'tried to create PolygonalRegion from non-polygon {polygon}') if not self.polygons.is_valid: raise RuntimeError('tried to create PolygonalRegion with ' f'invalid polygon {self.polygons}') if points is None and len(self.polygons) == 1 and len(self.polygons[0].interiors) == 0: self.points = tuple(self.polygons[0].exterior.coords[:-1]) if self.polygons.is_empty: raise RuntimeError('tried to create empty PolygonalRegion') triangles = [] for polygon in self.polygons: triangles.extend(triangulatePolygon(polygon)) assert len(triangles) > 0, self.polygons self.trianglesAndBounds = tuple((tri, tri.bounds) for tri in triangles) areas = (triangle.area for triangle in triangles) self.cumulativeTriangleAreas = tuple(itertools.accumulate(areas)) def uniformPointInner(self): triangle, bounds = random.choices( self.trianglesAndBounds, cum_weights=self.cumulativeTriangleAreas)[0] minx, miny, maxx, maxy = bounds # TODO improve? while True: x, y = random.uniform(minx, maxx), random.uniform(miny, maxy) if triangle.intersects(shapely.geometry.Point(x, y)): return self.orient(Vector(x, y)) def intersect(self, other, triedReversed=False): poly = toPolygon(other) orientation = other.orientation if self.orientation is None else self.orientation if poly is not None: intersection = self.polygons & poly if intersection.is_empty: return nowhere elif isinstance(intersection, (shapely.geometry.Polygon, shapely.geometry.MultiPolygon)): return PolygonalRegion(polygon=intersection, orientation=orientation) elif isinstance(intersection, shapely.geometry.GeometryCollection): polys = [] for geom in intersection: if isinstance(geom, shapely.geometry.Polygon): polys.append(geom) if len(polys) == 0: # TODO handle points, lines raise RuntimeError('unhandled type of polygon intersection') intersection = shapely.geometry.MultiPolygon(polys) return PolygonalRegion(polygon=intersection, orientation=orientation) else: # TODO handle points, lines raise RuntimeError('unhandled type of polygon intersection') return super().intersect(other, triedReversed) def union(self, other): poly = toPolygon(other) if not poly: raise RuntimeError(f'cannot take union of PolygonalRegion with {other}') union = polygonUnion((self.polygons, poly)) return PolygonalRegion(polygon=union) def containsPoint(self, point): return self.polygons.intersects(shapely.geometry.Point(point)) def containsObject(self, obj): objPoly = obj.polygon if objPoly is None: raise RuntimeError('tried to test containment of symbolic Object!') # TODO improve boundary handling? return self.polygons.contains(objPoly) def getAABB(self): xmin, xmax, ymin, ymax = self.polygons.bounds return ((xmin, ymin), (xmax, ymax)) def show(self, plt, style='r-'): plotPolygon(self.polygons, plt, style=style) def __str__(self): return '<PolygonalRegion>' def __eq__(self, other): if type(other) is not PolygonalRegion: return NotImplemented return (other.polygons == self.polygons and other.orientation == self.orientation) @cached def __hash__(self): # TODO better way to hash mutable Shapely geometries? (also for PolylineRegion) return hash((str(self.polygons), self.orientation)) class PointSetRegion(Region): """Region consisting of a set of discrete points. No :obj:`~scenic.core.object_types.Object` can be contained in a `PointSetRegion`, since the latter is discrete. (This may not be true for subclasses, e.g. `GridRegion`.) Args: name (str): name for debugging points (iterable): set of points comprising the region kdtree (:obj:`scipy.spatial.KDTree`, optional): k-D tree for the points (one will be computed if none is provided) orientation (:obj:`~scenic.core.vectors.VectorField`, optional): orientation for the region tolerance (float, optional): distance tolerance for checking whether a point lies in the region """ def __init__(self, name, points, kdTree=None, orientation=None, tolerance=1e-6): super().__init__(name, orientation=orientation) self.points = tuple(points) for point in self.points: if needsSampling(point): raise RuntimeError('only fixed PointSetRegions are supported') self.kdTree = scipy.spatial.cKDTree(self.points) if kdTree is None else kdTree self.orientation = orientation self.tolerance = tolerance def uniformPointInner(self): return self.orient(Vector(*random.choice(self.points))) def intersect(self, other, triedReversed=False): def sampler(intRegion): o = intRegion.regions[1] center, radius = o.circumcircle possibles = (Vector(*self.kdTree.data[i]) for i in self.kdTree.query_ball_point(center, radius)) intersection = [p for p in possibles if o.containsPoint(p)] if len(intersection) == 0: raise RejectionException(f'empty intersection of Regions {self} and {o}') return self.orient(random.choice(intersection)) return IntersectionRegion(self, other, sampler=sampler, orientation=self.orientation) def containsPoint(self, point): distance, location = self.kdTree.query(point) return (distance <= self.tolerance) def containsObject(self, obj): raise NotImplementedError() def __eq__(self, other): if type(other) is not PointSetRegion: return NotImplemented return (other.name == self.name and other.points == self.points and other.orientation == self.orientation) def __hash__(self): return hash((self.name, self.points, self.orientation)) class GridRegion(PointSetRegion): """A Region given by an obstacle grid. A point is considered to be in a `GridRegion` if the nearest grid point is not an obstacle. Args: name (str): name for debugging grid: 2D list, tuple, or NumPy array of 0s and 1s, where 1 indicates an obstacle and 0 indicates free space Ax (float): spacing between grid points along X axis Ay (float): spacing between grid points along Y axis Bx (float): X coordinate of leftmost grid column By (float): Y coordinate of lowest grid row orientation (:obj:`~scenic.core.vectors.VectorField`, optional): orientation of region """ def __init__(self, name, grid, Ax, Ay, Bx, By, orientation=None): self.grid = numpy.array(grid) self.sizeY, self.sizeX = self.grid.shape self.Ax, self.Ay = Ax, Ay self.Bx, self.By = Bx, By y, x = numpy.where(self.grid == 0) points = [self.gridToPoint(point) for point in zip(x, y)] super().__init__(name, points, orientation=orientation) def gridToPoint(self, gp): x, y = gp return ((self.Ax * x) + self.Bx, (self.Ay * y) + self.By) def pointToGrid(self, point): x, y = point x = (x - self.Bx) / self.Ax y = (y - self.By) / self.Ay nx = int(round(x)) if nx < 0 or nx >= self.sizeX: return None ny = int(round(y)) if ny < 0 or ny >= self.sizeY: return None return (nx, ny) def containsPoint(self, point): gp = self.pointToGrid(point) if gp is None: return False x, y = gp return (self.grid[y, x] == 0) def containsObject(self, obj): # TODO improve this procedure! # Fast check for c in obj.corners: if not self.containsPoint(c): return False # Slow check gps = [self.pointToGrid(corner) for corner in obj.corners] x, y = zip(*gps) minx, maxx = findMinMax(x) miny, maxy = findMinMax(y) for x in range(minx, maxx+1): for y in range(miny, maxy+1): p = self.gridToPoint((x, y)) if self.grid[y, x] == 1 and obj.containsPoint(p): return False return True class IntersectionRegion(Region): def __init__(self, *regions, orientation=None, sampler=None): self.regions = tuple(regions) if len(self.regions) < 2: raise RuntimeError('tried to take intersection of fewer than 2 regions') super().__init__('Intersection', *self.regions, orientation=orientation) if sampler is None: sampler = self.genericSampler self.sampler = sampler def sampleGiven(self, value): regs = [value[reg] for reg in self.regions] # Now that regions have been sampled, attempt intersection again in the hopes # there is a specialized sampler to handle it (unless we already have one) if self.sampler is self.genericSampler: failed = False intersection = regs[0] for region in regs[1:]: intersection = intersection.intersect(region) if isinstance(intersection, IntersectionRegion): failed = True break if not failed: intersection.orientation = value[self.orientation] return intersection return IntersectionRegion(*regs, orientation=value[self.orientation], sampler=self.sampler) def evaluateInner(self, context): regs = (valueInContext(reg, context) for reg in self.regions) orientation = valueInContext(self.orientation, context) return IntersectionRegion(*regs, orientation=orientation, sampler=self.sampler) def containsPoint(self, point): return all(region.containsPoint(point) for region in self.regions) def uniformPointInner(self): return self.orient(self.sampler(self)) @staticmethod def genericSampler(intersection): regs = intersection.regions point = regs[0].uniformPointInner() for region in regs[1:]: if not region.containsPoint(point): raise RejectionException( f'sampling intersection of Regions {regs[0]} and {region}') return point def isEquivalentTo(self, other): if type(other) is not IntersectionRegion: return False return (areEquivalent(set(other.regions), set(self.regions)) and other.orientation == self.orientation) def __str__(self): return f'IntersectionRegion({self.regions})'
[ "random.triangular", "scenic.core.vectors.OrientedVector", "numpy.array", "random.choices", "scenic.core.lazy_eval.valueInContext", "math.hypot", "scenic.core.geometry.findMinMax", "scenic.core.geometry.triangulatePolygon", "scenic.core.type_support.toVector", "scenic.core.geometry.hypot", "scenic.core.vectors.Vector", "numpy.where", "scenic.core.geometry.polygonUnion", "scenic.core.geometry.sin", "scenic.core.utils.areEquivalent", "scenic.core.geometry.headingOfSegment", "random.uniform", "random.choice", "scenic.core.geometry.plotPolygon", "scenic.core.distributions.RejectionException", "scenic.core.geometry.cos", "itertools.accumulate", "scenic.core.geometry.averageVectors", "random.random", "scenic.core.distributions.needsSampling" ]
[((739, 759), 'scenic.core.distributions.needsSampling', 'needsSampling', (['thing'], {}), '(thing)\n', (752, 759), False, 'from scenic.core.distributions import Samplable, RejectionException, needsSampling\n'), ((3511, 3571), 'scenic.core.type_support.toVector', 'toVector', (['thing', '""""X in Y" with X not an Object or a vector"""'], {}), '(thing, \'"X in Y" with X not an Object or a vector\')\n', (3519, 3571), False, 'from scenic.core.type_support import toVector\n'), ((4507, 4551), 'scenic.core.distributions.RejectionException', 'RejectionException', (['f"""sampling empty Region"""'], {}), "(f'sampling empty Region')\n", (4525, 4551), False, 'from scenic.core.distributions import Samplable, RejectionException, needsSampling\n'), ((5431, 5467), 'scenic.core.lazy_eval.valueInContext', 'valueInContext', (['self.center', 'context'], {}), '(self.center, context)\n', (5445, 5467), False, 'from scenic.core.lazy_eval import valueInContext\n'), ((5479, 5515), 'scenic.core.lazy_eval.valueInContext', 'valueInContext', (['self.radius', 'context'], {}), '(self.radius, context)\n', (5493, 5515), False, 'from scenic.core.lazy_eval import valueInContext\n'), ((5729, 5775), 'random.triangular', 'random.triangular', (['(0)', 'self.radius', 'self.radius'], {}), '(0, self.radius, self.radius)\n', (5746, 5775), False, 'import random\n'), ((5782, 5815), 'random.uniform', 'random.uniform', (['(-math.pi)', 'math.pi'], {}), '(-math.pi, math.pi)\n', (5796, 5815), False, 'import random\n'), ((7347, 7383), 'scenic.core.lazy_eval.valueInContext', 'valueInContext', (['self.center', 'context'], {}), '(self.center, context)\n', (7361, 7383), False, 'from scenic.core.lazy_eval import valueInContext\n'), ((7395, 7431), 'scenic.core.lazy_eval.valueInContext', 'valueInContext', (['self.radius', 'context'], {}), '(self.radius, context)\n', (7409, 7431), False, 'from scenic.core.lazy_eval import valueInContext\n'), ((7444, 7481), 'scenic.core.lazy_eval.valueInContext', 'valueInContext', (['self.heading', 'context'], {}), '(self.heading, context)\n', (7458, 7481), False, 'from scenic.core.lazy_eval import valueInContext\n'), ((7492, 7527), 'scenic.core.lazy_eval.valueInContext', 'valueInContext', (['self.angle', 'context'], {}), '(self.angle, context)\n', (7506, 7527), False, 'from scenic.core.lazy_eval import valueInContext\n'), ((7921, 7959), 'random.triangular', 'random.triangular', (['(0)', 'maxDist', 'maxDist'], {}), '(0, maxDist, maxDist)\n', (7938, 7959), False, 'import random\n'), ((8872, 8885), 'scenic.core.geometry.hypot', 'hypot', (['hw', 'hh'], {}), '(hw, hh)\n', (8877, 8885), False, 'from scenic.core.geometry import sin, cos, hypot, findMinMax, pointIsInCone, averageVectors\n'), ((9306, 9344), 'scenic.core.lazy_eval.valueInContext', 'valueInContext', (['self.position', 'context'], {}), '(self.position, context)\n', (9320, 9344), False, 'from scenic.core.lazy_eval import valueInContext\n'), ((9357, 9394), 'scenic.core.lazy_eval.valueInContext', 'valueInContext', (['self.heading', 'context'], {}), '(self.heading, context)\n', (9371, 9394), False, 'from scenic.core.lazy_eval import valueInContext\n'), ((9405, 9440), 'scenic.core.lazy_eval.valueInContext', 'valueInContext', (['self.width', 'context'], {}), '(self.width, context)\n', (9419, 9440), False, 'from scenic.core.lazy_eval import valueInContext\n'), ((9452, 9488), 'scenic.core.lazy_eval.valueInContext', 'valueInContext', (['self.height', 'context'], {}), '(self.height, context)\n', (9466, 9488), False, 'from scenic.core.lazy_eval import valueInContext\n'), ((9616, 9639), 'random.uniform', 'random.uniform', (['(-hw)', 'hw'], {}), '(-hw, hw)\n', (9630, 9639), False, 'import random\n'), ((9647, 9670), 'random.uniform', 'random.uniform', (['(-hh)', 'hh'], {}), '(-hh, hh)\n', (9661, 9670), False, 'import random\n'), ((9825, 9838), 'scenic.core.geometry.findMinMax', 'findMinMax', (['x'], {}), '(x)\n', (9835, 9838), False, 'from scenic.core.geometry import sin, cos, hypot, findMinMax, pointIsInCone, averageVectors\n'), ((9854, 9867), 'scenic.core.geometry.findMinMax', 'findMinMax', (['y'], {}), '(y)\n', (9864, 9867), False, 'from scenic.core.geometry import sin, cos, hypot, findMinMax, pointIsInCone, averageVectors\n'), ((12627, 12642), 'random.random', 'random.random', ([], {}), '()\n', (12640, 12642), False, 'import random\n'), ((12652, 12704), 'scenic.core.geometry.averageVectors', 'averageVectors', (['pointA', 'pointB'], {'weight': 'interpolation'}), '(pointA, pointB, weight=interpolation)\n', (12666, 12704), False, 'from scenic.core.geometry import sin, cos, hypot, findMinMax, pointIsInCone, averageVectors\n'), ((17273, 17308), 'scenic.core.geometry.polygonUnion', 'polygonUnion', (['(self.polygons, poly)'], {}), '((self.polygons, poly))\n', (17285, 17308), False, 'from scenic.core.geometry import headingOfSegment, triangulatePolygon, plotPolygon, polygonUnion\n'), ((17819, 17863), 'scenic.core.geometry.plotPolygon', 'plotPolygon', (['self.polygons', 'plt'], {'style': 'style'}), '(self.polygons, plt, style=style)\n', (17830, 17863), False, 'from scenic.core.geometry import headingOfSegment, triangulatePolygon, plotPolygon, polygonUnion\n'), ((21225, 21242), 'numpy.array', 'numpy.array', (['grid'], {}), '(grid)\n', (21236, 21242), False, 'import numpy\n'), ((21351, 21378), 'numpy.where', 'numpy.where', (['(self.grid == 0)'], {}), '(self.grid == 0)\n', (21362, 21378), False, 'import numpy\n'), ((22268, 22281), 'scenic.core.geometry.findMinMax', 'findMinMax', (['x'], {}), '(x)\n', (22278, 22281), False, 'from scenic.core.geometry import sin, cos, hypot, findMinMax, pointIsInCone, averageVectors\n'), ((22297, 22310), 'scenic.core.geometry.findMinMax', 'findMinMax', (['y'], {}), '(y)\n', (22307, 22310), False, 'from scenic.core.geometry import sin, cos, hypot, findMinMax, pointIsInCone, averageVectors\n'), ((23700, 23741), 'scenic.core.lazy_eval.valueInContext', 'valueInContext', (['self.orientation', 'context'], {}), '(self.orientation, context)\n', (23714, 23741), False, 'from scenic.core.lazy_eval import valueInContext\n'), ((2632, 2651), 'scenic.core.distributions.needsSampling', 'needsSampling', (['self'], {}), '(self)\n', (2645, 2651), False, 'from scenic.core.distributions import Samplable, RejectionException, needsSampling\n'), ((3901, 3952), 'scenic.core.vectors.OrientedVector', 'OrientedVector', (['vec.x', 'vec.y', 'self.orientation[vec]'], {}), '(vec.x, vec.y, self.orientation[vec])\n', (3915, 3952), False, 'from scenic.core.vectors import Vector, OrientedVector, VectorDistribution\n'), ((6094, 6134), 'scenic.core.utils.areEquivalent', 'areEquivalent', (['other.center', 'self.center'], {}), '(other.center, self.center)\n', (6107, 6134), False, 'from scenic.core.utils import cached, areEquivalent\n'), ((6149, 6189), 'scenic.core.utils.areEquivalent', 'areEquivalent', (['other.radius', 'self.radius'], {}), '(other.radius, self.radius)\n', (6162, 6189), False, 'from scenic.core.utils import cached, areEquivalent\n'), ((6551, 6565), 'scenic.core.geometry.cos', 'cos', (['(angle / 2)'], {}), '(angle / 2)\n', (6554, 6565), False, 'from scenic.core.geometry import sin, cos, hypot, findMinMax, pointIsInCone, averageVectors\n'), ((7985, 8008), 'random.uniform', 'random.uniform', (['(-ha)', 'ha'], {}), '(-ha, ha)\n', (7999, 8008), False, 'import random\n'), ((8211, 8251), 'scenic.core.utils.areEquivalent', 'areEquivalent', (['other.center', 'self.center'], {}), '(other.center, self.center)\n', (8224, 8251), False, 'from scenic.core.utils import cached, areEquivalent\n'), ((8266, 8306), 'scenic.core.utils.areEquivalent', 'areEquivalent', (['other.radius', 'self.radius'], {}), '(other.radius, self.radius)\n', (8279, 8306), False, 'from scenic.core.utils import cached, areEquivalent\n'), ((8321, 8363), 'scenic.core.utils.areEquivalent', 'areEquivalent', (['other.heading', 'self.heading'], {}), '(other.heading, self.heading)\n', (8334, 8363), False, 'from scenic.core.utils import cached, areEquivalent\n'), ((8378, 8416), 'scenic.core.utils.areEquivalent', 'areEquivalent', (['other.angle', 'self.angle'], {}), '(other.angle, self.angle)\n', (8391, 8416), False, 'from scenic.core.utils import cached, areEquivalent\n'), ((9720, 9734), 'scenic.core.vectors.Vector', 'Vector', (['rx', 'ry'], {}), '(rx, ry)\n', (9726, 9734), False, 'from scenic.core.vectors import Vector, OrientedVector, VectorDistribution\n'), ((10010, 10054), 'scenic.core.utils.areEquivalent', 'areEquivalent', (['other.position', 'self.position'], {}), '(other.position, self.position)\n', (10023, 10054), False, 'from scenic.core.utils import cached, areEquivalent\n'), ((10069, 10111), 'scenic.core.utils.areEquivalent', 'areEquivalent', (['other.heading', 'self.heading'], {}), '(other.heading, self.heading)\n', (10082, 10111), False, 'from scenic.core.utils import cached, areEquivalent\n'), ((10126, 10164), 'scenic.core.utils.areEquivalent', 'areEquivalent', (['other.width', 'self.width'], {}), '(other.width, self.width)\n', (10139, 10164), False, 'from scenic.core.utils import cached, areEquivalent\n'), ((10179, 10219), 'scenic.core.utils.areEquivalent', 'areEquivalent', (['other.height', 'self.height'], {}), '(other.height, self.height)\n', (10192, 10219), False, 'from scenic.core.utils import cached, areEquivalent\n'), ((11746, 11764), 'math.hypot', 'math.hypot', (['dx', 'dy'], {}), '(dx, dy)\n', (11756, 11764), False, 'import math\n'), ((12506, 12571), 'random.choices', 'random.choices', (['self.segments'], {'cum_weights': 'self.cumulativeLengths'}), '(self.segments, cum_weights=self.cumulativeLengths)\n', (12520, 12571), False, 'import random\n'), ((15651, 15678), 'itertools.accumulate', 'itertools.accumulate', (['areas'], {}), '(areas)\n', (15671, 15678), False, 'import itertools\n'), ((15732, 15818), 'random.choices', 'random.choices', (['self.trianglesAndBounds'], {'cum_weights': 'self.cumulativeTriangleAreas'}), '(self.trianglesAndBounds, cum_weights=self.\n cumulativeTriangleAreas)\n', (15746, 15818), False, 'import random\n'), ((19147, 19167), 'scenic.core.distributions.needsSampling', 'needsSampling', (['point'], {}), '(point)\n', (19160, 19167), False, 'from scenic.core.distributions import Samplable, RejectionException, needsSampling\n'), ((23630, 23658), 'scenic.core.lazy_eval.valueInContext', 'valueInContext', (['reg', 'context'], {}), '(reg, context)\n', (23644, 23658), False, 'from scenic.core.lazy_eval import valueInContext\n'), ((5119, 5145), 'scenic.core.distributions.needsSampling', 'needsSampling', (['self.center'], {}), '(self.center)\n', (5132, 5145), False, 'from scenic.core.distributions import Samplable, RejectionException, needsSampling\n'), ((5149, 5175), 'scenic.core.distributions.needsSampling', 'needsSampling', (['self.radius'], {}), '(self.radius)\n', (5162, 5175), False, 'from scenic.core.distributions import Samplable, RejectionException, needsSampling\n'), ((12767, 12799), 'scenic.core.geometry.headingOfSegment', 'headingOfSegment', (['pointA', 'pointB'], {}), '(pointA, pointB)\n', (12783, 12799), False, 'from scenic.core.geometry import headingOfSegment, triangulatePolygon, plotPolygon, polygonUnion\n'), ((12831, 12843), 'scenic.core.vectors.Vector', 'Vector', (['x', 'y'], {}), '(x, y)\n', (12837, 12843), False, 'from scenic.core.vectors import Vector, OrientedVector, VectorDistribution\n'), ((14492, 14512), 'scenic.core.distributions.needsSampling', 'needsSampling', (['point'], {}), '(point)\n', (14505, 14512), False, 'from scenic.core.distributions import Samplable, RejectionException, needsSampling\n'), ((15414, 15441), 'scenic.core.geometry.triangulatePolygon', 'triangulatePolygon', (['polygon'], {}), '(polygon)\n', (15432, 15441), False, 'from scenic.core.geometry import headingOfSegment, triangulatePolygon, plotPolygon, polygonUnion\n'), ((15900, 15926), 'random.uniform', 'random.uniform', (['minx', 'maxx'], {}), '(minx, maxx)\n', (15914, 15926), False, 'import random\n'), ((15928, 15954), 'random.uniform', 'random.uniform', (['miny', 'maxy'], {}), '(miny, maxy)\n', (15942, 15954), False, 'import random\n'), ((19624, 19652), 'scenic.core.vectors.Vector', 'Vector', (['*self.kdTree.data[i]'], {}), '(*self.kdTree.data[i])\n', (19630, 19652), False, 'from scenic.core.vectors import Vector, OrientedVector, VectorDistribution\n'), ((19827, 19894), 'scenic.core.distributions.RejectionException', 'RejectionException', (['f"""empty intersection of Regions {self} and {o}"""'], {}), "(f'empty intersection of Regions {self} and {o}')\n", (19845, 19894), False, 'from scenic.core.distributions import Samplable, RejectionException, needsSampling\n'), ((19917, 19944), 'random.choice', 'random.choice', (['intersection'], {}), '(intersection)\n', (19930, 19944), False, 'import random\n'), ((24193, 24271), 'scenic.core.distributions.RejectionException', 'RejectionException', (['f"""sampling intersection of Regions {regs[0]} and {region}"""'], {}), "(f'sampling intersection of Regions {regs[0]} and {region}')\n", (24211, 24271), False, 'from scenic.core.distributions import Samplable, RejectionException, needsSampling\n'), ((5839, 5845), 'scenic.core.geometry.cos', 'cos', (['t'], {}), '(t)\n', (5842, 5845), False, 'from scenic.core.geometry import sin, cos, hypot, findMinMax, pointIsInCone, averageVectors\n'), ((5857, 5863), 'scenic.core.geometry.sin', 'sin', (['t'], {}), '(t)\n', (5860, 5863), False, 'from scenic.core.geometry import sin, cos, hypot, findMinMax, pointIsInCone, averageVectors\n'), ((6646, 6662), 'scenic.core.distributions.needsSampling', 'needsSampling', (['x'], {}), '(x)\n', (6659, 6662), False, 'from scenic.core.distributions import Samplable, RejectionException, needsSampling\n'), ((8060, 8066), 'scenic.core.geometry.cos', 'cos', (['t'], {}), '(t)\n', (8063, 8066), False, 'from scenic.core.geometry import sin, cos, hypot, findMinMax, pointIsInCone, averageVectors\n'), ((8078, 8084), 'scenic.core.geometry.sin', 'sin', (['t'], {}), '(t)\n', (8081, 8084), False, 'from scenic.core.geometry import sin, cos, hypot, findMinMax, pointIsInCone, averageVectors\n'), ((8982, 8997), 'scenic.core.vectors.Vector', 'Vector', (['*offset'], {}), '(*offset)\n', (8988, 8997), False, 'from scenic.core.vectors import Vector, OrientedVector, VectorDistribution\n'), ((16035, 16047), 'scenic.core.vectors.Vector', 'Vector', (['x', 'y'], {}), '(x, y)\n', (16041, 16047), False, 'from scenic.core.vectors import Vector, OrientedVector, VectorDistribution\n'), ((19439, 19465), 'random.choice', 'random.choice', (['self.points'], {}), '(self.points)\n', (19452, 19465), False, 'import random\n')]
#!/usr/bin/env python """Distribution functions This module provides functions for dealing with normal distributions and generating error maps. When called directly as main, it allows for converting a threshold map into an error map. ``` $ python -m mlcsim.dist --help usage: dist.py [-h] [-b {1,2,3,4}] -f F [-o O] options: -h, --help show this help message and exit -b {1,2,3,4} bits per cell -f F Threshold map json to convert -o O output to file ``` """ import argparse import json from pprint import pprint from typing import Dict, List import numpy as np from scipy import stats as ss # type: ignore # https://stackoverflow.com/a/32574638/9047818 # https://stackoverflow.com/a/13072714/9047818 def normalMidpoint(mean_a: float, mean_b: float, std_a: float, std_b: float) -> float: """Find the midpoint between two normal distributions Args: mean_a (float): Mean of first distribution mean_b (float): Mean of second distribution std_a (float): Std dev of first distribution std_b (float): Std dev of second distribution Returns: float: Midpoint between distributions """ a = 1 / (2 * std_a**2) - 1 / (2 * std_b**2) b = mean_b / (std_b**2) - mean_a / (std_a**2) c = ( mean_a**2 / (2 * std_a**2) - mean_b**2 / (2 * std_b**2) - np.log(std_b / std_a) ) roots = np.roots([a, b, c]) masked = np.ma.masked_outside(roots, mean_a, mean_b) return float(masked[~masked.mask][0][0]) # https://www.askpython.com/python/normal-distribution def normalChance(mean: float, stdev: float, thr: float) -> float: """Find the chance of a normal distribution above/below a given value Args: mean (float): Mean of the distribution stdev (float): Std dev of the distribution thr (float): Threshold to check above/below Returns: float: Chance for threshold to end up above/below the given point in the distribution """ chance = ss.norm(loc=mean, scale=stdev).cdf(thr) return float(chance if mean > thr else 1 - chance) def genErrorMap(thr_maps: Dict[str, List[List[float]]], bpc: int) -> List[List[float]]: """Generate an error map from a threshold map Args: thr_maps (dict): Threshold map bpc (int): Bits per cell Raises: ValueError: if the given bpc is not in the threshold map Returns: list: Error map from the threshold map """ if str(bpc) not in thr_maps.keys(): raise ValueError(f"Threshold map does not have values for {bpc} levels") thr_map: List[List[float]] = thr_maps[str(bpc)] err_map = [[0.0]] for i in range(len(thr_map) - 1): mid = normalMidpoint( thr_map[i][0], thr_map[i + 1][0], thr_map[i][1], thr_map[i + 1][1] ) up = normalChance(thr_map[i][0], thr_map[i][1], mid) dn = normalChance(thr_map[i + 1][0], thr_map[i + 1][1], mid) err_map[i].append(up) err_map.append([dn]) err_map[-1].append(0.0) return err_map def _main(): parser = argparse.ArgumentParser() parser.add_argument( "-b", type=int, default=2, choices=range(1, 5), help="bits per cell" ) parser.add_argument("-f", required=True, help="Threshold map json to convert") parser.add_argument("-o", type=str, help="output to file") args = parser.parse_args() with open(args.f) as f: thr_map = json.load(f) err_map = genErrorMap(thr_map, args.b) if args.o: with open(args.o, "w") as f: json.dump(err_map, f) else: pprint(err_map) if __name__ == "__main__": _main()
[ "numpy.ma.masked_outside", "argparse.ArgumentParser", "scipy.stats.norm", "numpy.log", "numpy.roots", "json.load", "pprint.pprint", "json.dump" ]
[((1404, 1423), 'numpy.roots', 'np.roots', (['[a, b, c]'], {}), '([a, b, c])\n', (1412, 1423), True, 'import numpy as np\n'), ((1437, 1480), 'numpy.ma.masked_outside', 'np.ma.masked_outside', (['roots', 'mean_a', 'mean_b'], {}), '(roots, mean_a, mean_b)\n', (1457, 1480), True, 'import numpy as np\n'), ((3098, 3123), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (3121, 3123), False, 'import argparse\n'), ((1364, 1385), 'numpy.log', 'np.log', (['(std_b / std_a)'], {}), '(std_b / std_a)\n', (1370, 1385), True, 'import numpy as np\n'), ((3458, 3470), 'json.load', 'json.load', (['f'], {}), '(f)\n', (3467, 3470), False, 'import json\n'), ((3620, 3635), 'pprint.pprint', 'pprint', (['err_map'], {}), '(err_map)\n', (3626, 3635), False, 'from pprint import pprint\n'), ((2013, 2043), 'scipy.stats.norm', 'ss.norm', ([], {'loc': 'mean', 'scale': 'stdev'}), '(loc=mean, scale=stdev)\n', (2020, 2043), True, 'from scipy import stats as ss\n'), ((3580, 3601), 'json.dump', 'json.dump', (['err_map', 'f'], {}), '(err_map, f)\n', (3589, 3601), False, 'import json\n')]
import random import argparse import numpy as np import pandas as pd import os import time import string import torch import torch.nn as nn import torch.nn.functional as F from torch.utils.data import DataLoader from tqdm import tqdm from model import WideResnet from cifar import get_train_loader, get_val_loader from label_guessor import LabelGuessor from lr_scheduler import WarmupCosineLrScheduler from ema import EMA import utils ## args parser = argparse.ArgumentParser(description=' FixMatch Training') parser.add_argument('--wresnet-k', default=2, type=int, help='width factor of wide resnet') parser.add_argument('--wresnet-n', default=28, type=int, help='depth of wide resnet') parser.add_argument('--n-classes', type=int, default=10, help='number of classes in dataset') parser.add_argument('--n-labeled', type=int, default=10, help='number of labeled samples for training') parser.add_argument('--n-epochs', type=int, default=256, help='number of training epochs') parser.add_argument('--batchsize', type=int, default=64, help='train batch size of labeled samples') parser.add_argument('--mu', type=int, default=7, help='factor of train batch size of unlabeled samples') parser.add_argument('--mu-c', type=int, default=1, help='factor of train batch size of contrastive learing samples') parser.add_argument('--thr', type=float, default=0.95, help='pseudo label threshold') parser.add_argument('--n-imgs-per-epoch', type=int, default=50000, help='number of training images for each epoch') parser.add_argument('--lam-x', type=float, default=1., help='coefficient of labeled loss') parser.add_argument('--lam-u', type=float, default=1., help='coefficient of unlabeled loss') parser.add_argument('--lam-clr', type=float, default=1., help='coefficient of contrastive loss') parser.add_argument('--ema-alpha', type=float, default=0.999, help='decay rate for ema module') parser.add_argument('--lr', type=float, default=0.03, help='learning rate for training') parser.add_argument('--weight-decay', type=float, default=5e-4, help='weight decay') parser.add_argument('--momentum', type=float, default=0.9, help='momentum for optimizer') parser.add_argument('--seed', type=int, default=-1, help='seed for random behaviors, no seed if negtive') parser.add_argument('--feature_dim', default=128, type=int, help='Feature dim for latent vector') parser.add_argument('--temperature', default=0.5, type=float, help='Temperature used in softmax') parser.add_argument('--k', default=200, type=int, help='Top k most similar images used to predict the label') parser.add_argument('--test', default=0, type=int, help='0 is softmax test function, 1 is similarity test function') parser.add_argument('--bootstrap', type=int, default=16, help='Bootstrapping factor (default=16)') parser.add_argument('--boot-schedule', type=int, default=1, help='Bootstrapping schedule (default=1)') parser.add_argument('--balance', type=int, default=0, help='Balance class methods to use (default=0 None)') parser.add_argument('--delT', type=float, default=0.2, help='Class balance threshold delta (default=0.2)') args = parser.parse_args() print(args) # save results save_name_pre = '{}_E{}_B{}_LX{}_LU{}_LCLR{}_THR{}_LR{}_WD{}'.format(args.n_labeled, args.n_epochs, args.batchsize, args.lam_x, args.lam_u, args.lam_clr, args.thr, args.lr, args.weight_decay) ticks = time.time() result_dir = 'results/' + save_name_pre + '.' + str(ticks) if not os.path.exists(result_dir): os.mkdir(result_dir) def set_model(): model = WideResnet(args.n_classes, k=args.wresnet_k, n=args.wresnet_n, feature_dim=args.feature_dim) # wresnet-28-2 model.train() model.cuda() criteria_x = nn.CrossEntropyLoss().cuda() criteria_u = nn.CrossEntropyLoss().cuda() return model, criteria_x, criteria_u def train_one_epoch( model, criteria_x, criteria_u, optim, lr_schdlr, ema, dltrain_x, dltrain_u, dltrain_all, lb_guessor, ): loss_avg, loss_x_avg, loss_u_avg, loss_clr_avg = [], [], [], [] epsilon = 0.000001 dl_u, dl_all = iter(dltrain_u), iter(dltrain_all) for _, _, ims_all_1, ims_all_2, _ in tqdm(dl_all, desc='Training ...'): ims_u_weak, ims_u_strong, _, _, lbs_u = next(dl_u) loss_x, loss_u, loss_clr = torch.tensor(0).cuda(), torch.tensor(0).cuda(), torch.tensor(0).cuda() fv_1, fv_2 = torch.tensor(0).cuda(), torch.tensor(0).cuda() ims_u_weak = ims_u_weak.cuda() ims_u_strong = ims_u_strong.cuda() ims_all_1 = ims_all_1.cuda(non_blocking=True) ims_all_2 = ims_all_2.cuda(non_blocking=True) dl_x = iter(dltrain_x) ims_x_weak, _, _, _, lbs_x = next(dl_x) ims_x_weak = ims_x_weak.cuda() lbs_x = lbs_x.cuda() n_x, n_u, n_all = 0, 0, 0 if args.lam_u >= epsilon and args.lam_clr >= epsilon: #pseudo-labeling and Contrasive learning lbs_u, valid_u, mask_u = lb_guessor(model, ims_u_weak, args.balance, args.delT) ims_u_strong = ims_u_strong[valid_u] n_x, n_u, n_all = ims_x_weak.size(0), ims_u_strong.size(0), ims_all_1.size(0) if n_u != 0: ims_x_u_all_1 = torch.cat([ims_x_weak, ims_u_strong, ims_all_1], dim=0).detach() ims_x_u_all_2 = torch.cat([ims_x_weak, ims_u_strong, ims_all_2], dim=0).detach() logits_x_u_all_1, fv_1, z_1 = model(ims_x_u_all_1) logits_x_u_all_2, fv_2, z_2 = model(ims_x_u_all_2) logits_x_u_all = (logits_x_u_all_1 + logits_x_u_all_2) / 2 logits_x, logits_u = logits_x_u_all[:n_x], logits_x_u_all[n_x:(n_x + n_u)] loss_x = criteria_x(logits_x, lbs_x) if args.balance == 2 or args.balance == 3: loss_u = (F.cross_entropy(logits_u, lbs_u, reduction='none') * mask_u).mean() else: loss_u = criteria_u(logits_u, lbs_u) else: # n_u == 0 ims_x_all_1 = torch.cat([ims_x_weak, ims_all_1], dim=0).detach() ims_x_all_2 = torch.cat([ims_x_weak, ims_all_2], dim=0).detach() logits_x_all_1, fv_1, z_1 = model(ims_x_all_1) logits_x_all_2, fv_2, z_2 = model(ims_x_all_2) logits_x_all = (logits_x_all_1 + logits_x_all_2) / 2 logits_x = logits_x_all[:n_x] loss_x = criteria_x(logits_x, lbs_x) loss_u = torch.tensor(0) elif args.lam_u >= epsilon: #lam_clr == 0: pseudo-labeling only lbs_u, valid_u, mask_u = lb_guessor(model, ims_u_weak, args.balance, args.delT) ims_u_strong = ims_u_strong[valid_u] n_x, n_u = ims_x_weak.size(0), ims_u_strong.size(0) if n_u != 0: ims_x_u = torch.cat([ims_x_weak, ims_u_strong], dim=0).detach() logits_x_u, _, _ = model(ims_x_u) logits_x, logits_u = logits_x_u[:n_x], logits_x_u[n_x:] loss_x = criteria_x(logits_x, lbs_x) if args.balance == 2 or args.balance == 3: loss_u = (F.cross_entropy(logits_u, lbs_u, reduction='none') * mask_u).mean() else: loss_u = criteria_u(logits_u, lbs_u) else: # n_u == 0 logits_x, _, _ = model(ims_x_weak) loss_x = criteria_x(logits_x, lbs_x) loss_u = torch.tensor(0) else: #lam_u == 0: contrastive learning only n_x, n_all = ims_x_weak.size(0), ims_all_1.size(0) ims_x_all_1 = torch.cat([ims_x_weak, ims_all_1], dim=0).detach() ims_x_all_2 = torch.cat([ims_x_weak, ims_all_2], dim=0).detach() logits_x_all_1, fv_1, z_1 = model(ims_x_all_1) logits_x_all_2, fv_2, z_2 = model(ims_x_all_2) logits_x_all = (logits_x_all_1 + logits_x_all_2) / 2 logits_x = logits_x_all[:n_x] loss_x = criteria_x(logits_x, lbs_x) loss_u = torch.tensor(0) if args.lam_clr >= epsilon: #compute l_clr fv_1 = fv_1[(n_x + n_u):] fv_2 = fv_2[(n_x + n_u):] z_1 = z_1[(n_x + n_u):] z_2 = z_2[(n_x + n_u):] #[2*muc*B, D] z = torch.cat([z_1, z_2], dim=0) #[2*muc*B, 2*muc*B] sim_matrix = torch.exp(torch.mm(z, z.t().contiguous()) / args.temperature) #denominator #[2*muc*B, 2*muc*B] # mask = (torch.ones_like(sim_matrix) - torch.eye(2 * args.mu_c * args.batchsize, device=sim_matrix.device)).bool() mask = (torch.ones_like(sim_matrix) - torch.eye(2 * args.mu_c * args.batchsize, device=sim_matrix.device)) mask = mask > 0 #[2*muc*B, 2*muc*B - 1] sim_matrix = sim_matrix.masked_select(mask).view(2 * args.mu_c * args.batchsize, -1) #[muc*B] pos_sim = torch.exp(torch.sum(z_1 * z_2, dim=-1) / args.temperature) #numerator #[2*muc*B] pos_sim = torch.cat([pos_sim, pos_sim], dim=0) loss_clr = (- torch.log(pos_sim / sim_matrix.sum(dim=-1))).mean() #compute loss loss = args.lam_x * loss_x + args.lam_u * loss_u + args.lam_clr * loss_clr optim.zero_grad() loss.backward() optim.step() ema.update_params() lr_schdlr.step() loss_x_avg.append(loss_x.item()) loss_u_avg.append(loss_u.item()) loss_clr_avg.append(loss_clr.item()) loss_avg.append(loss.item()) ema.update_buffer() def evaluate(ema): ema.apply_shadow() ema.model.eval() ema.model.cuda() dlval = get_val_loader(batch_size=128, num_workers=0) matches = [] for ims, lbs in dlval: ims = ims.cuda() lbs = lbs.cuda() with torch.no_grad(): logits, _, _ = ema.model(ims) scores = torch.softmax(logits, dim=1) _, preds = torch.max(scores, dim=1) match = lbs == preds matches.append(match) matches = torch.cat(matches, dim=0).float() acc = torch.mean(matches) ema.restore() return acc def test(model, memory_data_loader, test_data_loader, c, epoch): model.eval() total_top1, total_top5, total_num, feature_bank, feature_labels = 0.0, 0.0, 0, [], [] with torch.no_grad(): # generate feature bank for data, _, _ in tqdm(memory_data_loader, desc='Feature extracting'): logits, feature, _ = model(data.cuda(non_blocking=True)) feature_bank.append(feature) feature_labels.append(torch.tensor(torch.argmax(logits,dim=1),dtype=torch.int64)) # [D, N] feature_bank = torch.cat(feature_bank, dim=0).t().contiguous() # [N] feature_labels = torch.cat(feature_labels, dim=0).contiguous().cpu() # loop test data to predict the label by weighted knn search test_bar = tqdm(test_data_loader) for data, _, target in test_bar: # data, target = data.cuda(non_blocking=True), target.cuda(non_blocking=True) data = data.cuda(non_blocking=True) _, feature, _ = model(data) total_num += data.size(0) # compute cos similarity between each feature vector and feature bank ---> [B, N] sim_matrix = torch.mm(feature, feature_bank) # [B, K] sim_weight, sim_indices = sim_matrix.topk(k=args.k, dim=-1) # [B, K] # sim_labels = torch.gather(feature_labels.expand(data.size(0), -1), dim=-1, index=sim_indices) sim_labels = torch.gather(feature_labels.expand(data.size(0), -1), dim=-1, index=sim_indices.cpu()) sim_weight = (sim_weight / args.temperature).exp() # counts for each class one_hot_label = torch.zeros(data.size(0) * args.k, c, device=sim_labels.device) # [B*K, C] one_hot_label = one_hot_label.scatter(-1, sim_labels.view(-1, 1), 1.0) # weighted score ---> [B, C] pred_scores = torch.sum(one_hot_label.view(data.size(0), -1, c) * sim_weight.cpu().unsqueeze(dim=-1), dim=1) pred_labels = pred_scores.argsort(dim=-1, descending=True) total_top1 += torch.sum((pred_labels[:, :1] == target.unsqueeze(dim=-1)).any(dim=-1).float()).item() test_bar.set_description('Test Epoch: [{}/{}] Acc@1:{:.2f}%' .format(epoch, args.n_epochs, total_top1 / total_num * 100)) return total_top1 / total_num * 100 def get_random_string(length): letters = string.ascii_lowercase result_str = ''.join(random.choice(letters) for i in range(length)) return result_str def sort_unlabeled(ema,numPerClass): ema.apply_shadow() ema.model.eval() ema.model.cuda() n_iters_per_epoch = args.n_imgs_per_epoch // args.batchsize _, _, dltrain_all = get_train_loader(args.batchsize, 1, 1, n_iters_per_epoch, L=args.n_classes*numPerClass, seed=args.seed) predicted = [] labels = [] for ims_w, _, _, _, lbs in dltrain_all: ims = ims_w.cuda() labels.append(lbs) with torch.no_grad(): logits, _, _ = ema.model(ims) scores = torch.softmax(logits, dim=1) predicted.append(scores.cpu()) print( "labels ",len(labels)) labels = np.concatenate(labels, axis=0) print( "labels ",len(labels)) predicted = np.concatenate( predicted, axis=0) preds = predicted.argmax(1) probs = predicted.max(1) top = np.argsort(-probs,axis=0) del dltrain_all, logits labeledSize =args.n_classes * numPerClass unique_train_pseudo_labels, unique_train_counts = np.unique(preds, return_counts=True) print("Number of training pseudo-labels in each class: ", unique_train_counts," for classes: ", unique_train_pseudo_labels) sortByClass = np.random.randint(0,high=len(top), size=(args.n_classes, numPerClass), dtype=int) indx = np.zeros([args.n_classes], dtype=int) matches = np.zeros([args.n_classes, numPerClass], dtype=int) labls = preds[top] samples = top for i in range(len(top)): if indx[labls[i]] < numPerClass: sortByClass[labls[i], indx[labls[i]]] = samples[i] if labls[i] == labels[top[i]]: matches[labls[i], indx[labls[i]]] = 1 indx[labls[i]] += 1 if min(indx) < numPerClass: print("Counts of at least one class ", indx, " is lower than ", numPerClass) name = "dataset/seeds/size"+str(labeledSize)+"." + get_random_string(8) + ".npy" np.save(name, sortByClass[0:args.n_classes, :numPerClass]) classAcc = 100*np.sum(matches, axis=1)/numPerClass print("Accuracy of the predicted pseudo-labels: top ", labeledSize, ", ", np.mean(classAcc), classAcc ) ema.restore() return name def train(): n_iters_per_epoch = args.n_imgs_per_epoch // args.batchsize n_iters_all = n_iters_per_epoch * args.n_epochs #/ args.mu_c epsilon = 0.000001 model, criteria_x, criteria_u = set_model() lb_guessor = LabelGuessor(thresh=args.thr) ema = EMA(model, args.ema_alpha) wd_params, non_wd_params = [], [] for param in model.parameters(): if len(param.size()) == 1: non_wd_params.append(param) else: wd_params.append(param) param_list = [{'params': wd_params}, {'params': non_wd_params, 'weight_decay': 0}] optim = torch.optim.SGD(param_list, lr=args.lr, weight_decay=args.weight_decay, momentum=args.momentum, nesterov=True) lr_schdlr = WarmupCosineLrScheduler(optim, max_iter=n_iters_all, warmup_iter=0) dltrain_x, dltrain_u, dltrain_all = get_train_loader(args.batchsize, args.mu, args.mu_c, n_iters_per_epoch, L=args.n_labeled, seed=args.seed) train_args = dict( model=model, criteria_x=criteria_x, criteria_u=criteria_u, optim=optim, lr_schdlr=lr_schdlr, ema=ema, dltrain_x=dltrain_x, dltrain_u=dltrain_u, dltrain_all=dltrain_all, lb_guessor=lb_guessor, ) n_labeled = int(args.n_labeled / args.n_classes) best_acc, top1 = -1, -1 results = {'top 1 acc': [], 'best_acc': []} b_schedule = [args.n_epochs/2, 3*args.n_epochs/4] if args.boot_schedule == 1: step = int(args.n_epochs/3) b_schedule = [step, 2*step] elif args.boot_schedule == 2: step = int(args.n_epochs/4) b_schedule = [step, 2*step, 3*step] for e in range(args.n_epochs): if args.bootstrap > 1 and (e in b_schedule): seed = 99 n_labeled *= args.bootstrap name = sort_unlabeled(ema, n_labeled) print("Bootstrap at epoch ", e," Name = ",name) dltrain_x, dltrain_u, dltrain_all = get_train_loader(args.batchsize, args.mu, args.mu_c, n_iters_per_epoch, L=10*n_labeled, seed=seed, name=name) train_args = dict( model=model, criteria_x=criteria_x, criteria_u=criteria_u, optim=optim, lr_schdlr=lr_schdlr, ema=ema, dltrain_x=dltrain_x, dltrain_u=dltrain_u, dltrain_all=dltrain_all, lb_guessor=lb_guessor, ) model.train() train_one_epoch(**train_args) torch.cuda.empty_cache() if args.test == 0 or args.lam_clr < epsilon: top1 = evaluate(ema) * 100 elif args.test == 1: memory_data = utils.CIFAR10Pair(root='dataset', train=True, transform=utils.test_transform, download=False) memory_data_loader = DataLoader(memory_data, batch_size=args.batchsize, shuffle=False, num_workers=16, pin_memory=True) test_data = utils.CIFAR10Pair(root='dataset', train=False, transform=utils.test_transform, download=False) test_data_loader = DataLoader(test_data, batch_size=args.batchsize, shuffle=False, num_workers=16, pin_memory=True) c = len(memory_data.classes) #10 top1 = test(model, memory_data_loader, test_data_loader, c, e) best_acc = top1 if best_acc < top1 else best_acc results['top 1 acc'].append('{:.4f}'.format(top1)) results['best_acc'].append('{:.4f}'.format(best_acc)) data_frame = pd.DataFrame(data=results) data_frame.to_csv(result_dir + '/' + save_name_pre + '.accuracy.csv', index_label='epoch') log_msg = [ 'epoch: {}'.format(e + 1), 'top 1 acc: {:.4f}'.format(top1), 'best_acc: {:.4f}'.format(best_acc)] print(', '.join(log_msg)) if __name__ == '__main__': train()
[ "torch.nn.CrossEntropyLoss", "torch.max", "numpy.argsort", "lr_scheduler.WarmupCosineLrScheduler", "torch.softmax", "torch.sum", "utils.CIFAR10Pair", "numpy.save", "os.path.exists", "numpy.mean", "argparse.ArgumentParser", "torch.mean", "torch.eye", "os.mkdir", "numpy.concatenate", "pandas.DataFrame", "ema.EMA", "torch.argmax", "torch.optim.SGD", "random.choice", "torch.ones_like", "label_guessor.LabelGuessor", "cifar.get_val_loader", "time.time", "torch.cuda.empty_cache", "torch.cat", "numpy.unique", "model.WideResnet", "tqdm.tqdm", "torch.mm", "numpy.sum", "numpy.zeros", "torch.tensor", "torch.nn.functional.cross_entropy", "torch.utils.data.DataLoader", "torch.no_grad", "cifar.get_train_loader" ]
[((454, 511), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '""" FixMatch Training"""'}), "(description=' FixMatch Training')\n", (477, 511), False, 'import argparse\n'), ((3352, 3363), 'time.time', 'time.time', ([], {}), '()\n', (3361, 3363), False, 'import time\n'), ((3430, 3456), 'os.path.exists', 'os.path.exists', (['result_dir'], {}), '(result_dir)\n', (3444, 3456), False, 'import os\n'), ((3462, 3482), 'os.mkdir', 'os.mkdir', (['result_dir'], {}), '(result_dir)\n', (3470, 3482), False, 'import os\n'), ((3513, 3610), 'model.WideResnet', 'WideResnet', (['args.n_classes'], {'k': 'args.wresnet_k', 'n': 'args.wresnet_n', 'feature_dim': 'args.feature_dim'}), '(args.n_classes, k=args.wresnet_k, n=args.wresnet_n, feature_dim=\n args.feature_dim)\n', (3523, 3610), False, 'from model import WideResnet\n'), ((4198, 4231), 'tqdm.tqdm', 'tqdm', (['dl_all'], {'desc': '"""Training ..."""'}), "(dl_all, desc='Training ...')\n", (4202, 4231), False, 'from tqdm import tqdm\n'), ((9834, 9879), 'cifar.get_val_loader', 'get_val_loader', ([], {'batch_size': '(128)', 'num_workers': '(0)'}), '(batch_size=128, num_workers=0)\n', (9848, 9879), False, 'from cifar import get_train_loader, get_val_loader\n'), ((10270, 10289), 'torch.mean', 'torch.mean', (['matches'], {}), '(matches)\n', (10280, 10289), False, 'import torch\n'), ((13106, 13215), 'cifar.get_train_loader', 'get_train_loader', (['args.batchsize', '(1)', '(1)', 'n_iters_per_epoch'], {'L': '(args.n_classes * numPerClass)', 'seed': 'args.seed'}), '(args.batchsize, 1, 1, n_iters_per_epoch, L=args.n_classes *\n numPerClass, seed=args.seed)\n', (13122, 13215), False, 'from cifar import get_train_loader, get_val_loader\n'), ((13557, 13587), 'numpy.concatenate', 'np.concatenate', (['labels'], {'axis': '(0)'}), '(labels, axis=0)\n', (13571, 13587), True, 'import numpy as np\n'), ((13638, 13671), 'numpy.concatenate', 'np.concatenate', (['predicted'], {'axis': '(0)'}), '(predicted, axis=0)\n', (13652, 13671), True, 'import numpy as np\n'), ((13744, 13770), 'numpy.argsort', 'np.argsort', (['(-probs)'], {'axis': '(0)'}), '(-probs, axis=0)\n', (13754, 13770), True, 'import numpy as np\n'), ((13924, 13960), 'numpy.unique', 'np.unique', (['preds'], {'return_counts': '(True)'}), '(preds, return_counts=True)\n', (13933, 13960), True, 'import numpy as np\n'), ((14200, 14237), 'numpy.zeros', 'np.zeros', (['[args.n_classes]'], {'dtype': 'int'}), '([args.n_classes], dtype=int)\n', (14208, 14237), True, 'import numpy as np\n'), ((14252, 14302), 'numpy.zeros', 'np.zeros', (['[args.n_classes, numPerClass]'], {'dtype': 'int'}), '([args.n_classes, numPerClass], dtype=int)\n', (14260, 14302), True, 'import numpy as np\n'), ((14816, 14874), 'numpy.save', 'np.save', (['name', 'sortByClass[0:args.n_classes, :numPerClass]'], {}), '(name, sortByClass[0:args.n_classes, :numPerClass])\n', (14823, 14874), True, 'import numpy as np\n'), ((15307, 15336), 'label_guessor.LabelGuessor', 'LabelGuessor', ([], {'thresh': 'args.thr'}), '(thresh=args.thr)\n', (15319, 15336), False, 'from label_guessor import LabelGuessor\n'), ((15347, 15373), 'ema.EMA', 'EMA', (['model', 'args.ema_alpha'], {}), '(model, args.ema_alpha)\n', (15350, 15373), False, 'from ema import EMA\n'), ((15674, 15788), 'torch.optim.SGD', 'torch.optim.SGD', (['param_list'], {'lr': 'args.lr', 'weight_decay': 'args.weight_decay', 'momentum': 'args.momentum', 'nesterov': '(True)'}), '(param_list, lr=args.lr, weight_decay=args.weight_decay,\n momentum=args.momentum, nesterov=True)\n', (15689, 15788), False, 'import torch\n'), ((15801, 15868), 'lr_scheduler.WarmupCosineLrScheduler', 'WarmupCosineLrScheduler', (['optim'], {'max_iter': 'n_iters_all', 'warmup_iter': '(0)'}), '(optim, max_iter=n_iters_all, warmup_iter=0)\n', (15824, 15868), False, 'from lr_scheduler import WarmupCosineLrScheduler\n'), ((15910, 16020), 'cifar.get_train_loader', 'get_train_loader', (['args.batchsize', 'args.mu', 'args.mu_c', 'n_iters_per_epoch'], {'L': 'args.n_labeled', 'seed': 'args.seed'}), '(args.batchsize, args.mu, args.mu_c, n_iters_per_epoch, L=\n args.n_labeled, seed=args.seed)\n', (15926, 16020), False, 'from cifar import get_train_loader, get_val_loader\n'), ((10505, 10520), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (10518, 10520), False, 'import torch\n'), ((10580, 10631), 'tqdm.tqdm', 'tqdm', (['memory_data_loader'], {'desc': '"""Feature extracting"""'}), "(memory_data_loader, desc='Feature extracting')\n", (10584, 10631), False, 'from tqdm import tqdm\n'), ((11104, 11126), 'tqdm.tqdm', 'tqdm', (['test_data_loader'], {}), '(test_data_loader)\n', (11108, 11126), False, 'from tqdm import tqdm\n'), ((15010, 15027), 'numpy.mean', 'np.mean', (['classAcc'], {}), '(classAcc)\n', (15017, 15027), True, 'import numpy as np\n'), ((17740, 17764), 'torch.cuda.empty_cache', 'torch.cuda.empty_cache', ([], {}), '()\n', (17762, 17764), False, 'import torch\n'), ((18719, 18745), 'pandas.DataFrame', 'pd.DataFrame', ([], {'data': 'results'}), '(data=results)\n', (18731, 18745), True, 'import pandas as pd\n'), ((3673, 3694), 'torch.nn.CrossEntropyLoss', 'nn.CrossEntropyLoss', ([], {}), '()\n', (3692, 3694), True, 'import torch.nn as nn\n'), ((3719, 3740), 'torch.nn.CrossEntropyLoss', 'nn.CrossEntropyLoss', ([], {}), '()\n', (3738, 3740), True, 'import torch.nn as nn\n'), ((8427, 8455), 'torch.cat', 'torch.cat', (['[z_1, z_2]'], {'dim': '(0)'}), '([z_1, z_2], dim=0)\n', (8436, 8455), False, 'import torch\n'), ((9185, 9221), 'torch.cat', 'torch.cat', (['[pos_sim, pos_sim]'], {'dim': '(0)'}), '([pos_sim, pos_sim], dim=0)\n', (9194, 9221), False, 'import torch\n'), ((9988, 10003), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (10001, 10003), False, 'import torch\n'), ((10068, 10096), 'torch.softmax', 'torch.softmax', (['logits'], {'dim': '(1)'}), '(logits, dim=1)\n', (10081, 10096), False, 'import torch\n'), ((10120, 10144), 'torch.max', 'torch.max', (['scores'], {'dim': '(1)'}), '(scores, dim=1)\n', (10129, 10144), False, 'import torch\n'), ((10226, 10251), 'torch.cat', 'torch.cat', (['matches'], {'dim': '(0)'}), '(matches, dim=0)\n', (10235, 10251), False, 'import torch\n'), ((11515, 11546), 'torch.mm', 'torch.mm', (['feature', 'feature_bank'], {}), '(feature, feature_bank)\n', (11523, 11546), False, 'import torch\n'), ((12845, 12867), 'random.choice', 'random.choice', (['letters'], {}), '(letters)\n', (12858, 12867), False, 'import random\n'), ((13357, 13372), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (13370, 13372), False, 'import torch\n'), ((13438, 13466), 'torch.softmax', 'torch.softmax', (['logits'], {'dim': '(1)'}), '(logits, dim=1)\n', (13451, 13466), False, 'import torch\n'), ((14895, 14918), 'numpy.sum', 'np.sum', (['matches'], {'axis': '(1)'}), '(matches, axis=1)\n', (14901, 14918), True, 'import numpy as np\n'), ((17098, 17214), 'cifar.get_train_loader', 'get_train_loader', (['args.batchsize', 'args.mu', 'args.mu_c', 'n_iters_per_epoch'], {'L': '(10 * n_labeled)', 'seed': 'seed', 'name': 'name'}), '(args.batchsize, args.mu, args.mu_c, n_iters_per_epoch, L=\n 10 * n_labeled, seed=seed, name=name)\n', (17114, 17214), False, 'from cifar import get_train_loader, get_val_loader\n'), ((6509, 6524), 'torch.tensor', 'torch.tensor', (['(0)'], {}), '(0)\n', (6521, 6524), False, 'import torch\n'), ((8140, 8155), 'torch.tensor', 'torch.tensor', (['(0)'], {}), '(0)\n', (8152, 8155), False, 'import torch\n'), ((8767, 8794), 'torch.ones_like', 'torch.ones_like', (['sim_matrix'], {}), '(sim_matrix)\n', (8782, 8794), False, 'import torch\n'), ((8797, 8864), 'torch.eye', 'torch.eye', (['(2 * args.mu_c * args.batchsize)'], {'device': 'sim_matrix.device'}), '(2 * args.mu_c * args.batchsize, device=sim_matrix.device)\n', (8806, 8864), False, 'import torch\n'), ((17913, 18011), 'utils.CIFAR10Pair', 'utils.CIFAR10Pair', ([], {'root': '"""dataset"""', 'train': '(True)', 'transform': 'utils.test_transform', 'download': '(False)'}), "(root='dataset', train=True, transform=utils.\n test_transform, download=False)\n", (17930, 18011), False, 'import utils\n'), ((18040, 18142), 'torch.utils.data.DataLoader', 'DataLoader', (['memory_data'], {'batch_size': 'args.batchsize', 'shuffle': '(False)', 'num_workers': '(16)', 'pin_memory': '(True)'}), '(memory_data, batch_size=args.batchsize, shuffle=False,\n num_workers=16, pin_memory=True)\n', (18050, 18142), False, 'from torch.utils.data import DataLoader\n'), ((18163, 18262), 'utils.CIFAR10Pair', 'utils.CIFAR10Pair', ([], {'root': '"""dataset"""', 'train': '(False)', 'transform': 'utils.test_transform', 'download': '(False)'}), "(root='dataset', train=False, transform=utils.\n test_transform, download=False)\n", (18180, 18262), False, 'import utils\n'), ((18289, 18390), 'torch.utils.data.DataLoader', 'DataLoader', (['test_data'], {'batch_size': 'args.batchsize', 'shuffle': '(False)', 'num_workers': '(16)', 'pin_memory': '(True)'}), '(test_data, batch_size=args.batchsize, shuffle=False, num_workers\n =16, pin_memory=True)\n', (18299, 18390), False, 'from torch.utils.data import DataLoader\n'), ((4328, 4343), 'torch.tensor', 'torch.tensor', (['(0)'], {}), '(0)\n', (4340, 4343), False, 'import torch\n'), ((4352, 4367), 'torch.tensor', 'torch.tensor', (['(0)'], {}), '(0)\n', (4364, 4367), False, 'import torch\n'), ((4376, 4391), 'torch.tensor', 'torch.tensor', (['(0)'], {}), '(0)\n', (4388, 4391), False, 'import torch\n'), ((4420, 4435), 'torch.tensor', 'torch.tensor', (['(0)'], {}), '(0)\n', (4432, 4435), False, 'import torch\n'), ((4444, 4459), 'torch.tensor', 'torch.tensor', (['(0)'], {}), '(0)\n', (4456, 4459), False, 'import torch\n'), ((7509, 7524), 'torch.tensor', 'torch.tensor', (['(0)'], {}), '(0)\n', (7521, 7524), False, 'import torch\n'), ((9080, 9108), 'torch.sum', 'torch.sum', (['(z_1 * z_2)'], {'dim': '(-1)'}), '(z_1 * z_2, dim=-1)\n', (9089, 9108), False, 'import torch\n'), ((10790, 10817), 'torch.argmax', 'torch.argmax', (['logits'], {'dim': '(1)'}), '(logits, dim=1)\n', (10802, 10817), False, 'import torch\n'), ((5243, 5298), 'torch.cat', 'torch.cat', (['[ims_x_weak, ims_u_strong, ims_all_1]'], {'dim': '(0)'}), '([ims_x_weak, ims_u_strong, ims_all_1], dim=0)\n', (5252, 5298), False, 'import torch\n'), ((5340, 5395), 'torch.cat', 'torch.cat', (['[ims_x_weak, ims_u_strong, ims_all_2]'], {'dim': '(0)'}), '([ims_x_weak, ims_u_strong, ims_all_2], dim=0)\n', (5349, 5395), False, 'import torch\n'), ((6058, 6099), 'torch.cat', 'torch.cat', (['[ims_x_weak, ims_all_1]'], {'dim': '(0)'}), '([ims_x_weak, ims_all_1], dim=0)\n', (6067, 6099), False, 'import torch\n'), ((6139, 6180), 'torch.cat', 'torch.cat', (['[ims_x_weak, ims_all_2]'], {'dim': '(0)'}), '([ims_x_weak, ims_all_2], dim=0)\n', (6148, 6180), False, 'import torch\n'), ((7717, 7758), 'torch.cat', 'torch.cat', (['[ims_x_weak, ims_all_1]'], {'dim': '(0)'}), '([ims_x_weak, ims_all_1], dim=0)\n', (7726, 7758), False, 'import torch\n'), ((7794, 7835), 'torch.cat', 'torch.cat', (['[ims_x_weak, ims_all_2]'], {'dim': '(0)'}), '([ims_x_weak, ims_all_2], dim=0)\n', (7803, 7835), False, 'import torch\n'), ((10877, 10907), 'torch.cat', 'torch.cat', (['feature_bank'], {'dim': '(0)'}), '(feature_bank, dim=0)\n', (10886, 10907), False, 'import torch\n'), ((10964, 10996), 'torch.cat', 'torch.cat', (['feature_labels'], {'dim': '(0)'}), '(feature_labels, dim=0)\n', (10973, 10996), False, 'import torch\n'), ((6882, 6926), 'torch.cat', 'torch.cat', (['[ims_x_weak, ims_u_strong]'], {'dim': '(0)'}), '([ims_x_weak, ims_u_strong], dim=0)\n', (6891, 6926), False, 'import torch\n'), ((5847, 5897), 'torch.nn.functional.cross_entropy', 'F.cross_entropy', (['logits_u', 'lbs_u'], {'reduction': '"""none"""'}), "(logits_u, lbs_u, reduction='none')\n", (5862, 5897), True, 'import torch.nn.functional as F\n'), ((7200, 7250), 'torch.nn.functional.cross_entropy', 'F.cross_entropy', (['logits_u', 'lbs_u'], {'reduction': '"""none"""'}), "(logits_u, lbs_u, reduction='none')\n", (7215, 7250), True, 'import torch.nn.functional as F\n')]
import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt data = pd.read_csv("data.csv") data.info() """ Data columns (total 33 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 id 569 non-null int64 . . . 32 Unnamed: 32 0 non-null float64 """ data.drop(["Unnamed: 32", "id"], axis = 1, inplace = True) # data.head(10) data.diagnosis = [1 if each == "M" else 0 for each in data.diagnosis] y = data.diagnosis.values x_data = data.drop(["diagnosis"], axis = 1) # %% Normalization x_normalized = (x_data - np.min(x_data)) / (np.max(x_data) - np.min(x_data)).values x_data.head() """ x_data.head() Out[9]: radius_mean texture_mean ... symmetry_worst fractal_dimension_worst 0 17.99 10.38 ... 0.4601 0.11890 1 20.57 17.77 ... 0.2750 0.08902 2 19.69 21.25 ... 0.3613 0.08758 3 11.42 20.38 ... 0.6638 0.17300 4 20.29 14.34 ... 0.2364 0.07678 """ x_normalized.head() """ x_normalized.head() Out[10]: radius_mean texture_mean ... symmetry_worst fractal_dimension_worst 0 0.521037 0.022658 ... 0.598462 0.418864 1 0.643144 0.272574 ... 0.233590 0.222878 2 0.601496 0.390260 ... 0.403706 0.213433 3 0.210090 0.360839 ... 1.000000 0.773711 4 0.629893 0.156578 ... 0.157500 0.142595 """ # %% train test split from sklearn.model_selection import train_test_split x_train, x_test, y_train, y_test = train_test_split(x_normalized,y,test_size = 0.25, random_state = 42) # test size & random state can be changed, test size can be choosen as 0.2 or 0.18 # sklearn randomly splits, with given state data will be splitted with same random pattern. # rows as features x_train = x_train.T x_test = x_test.T y_train = y_train.T y_test = y_test.T # %% Parameter Initialize """ If all the weights were initialized to zero, backpropagation will not work as expected because the gradient for the intermediate neurons and starting neurons will die out(become zero) and will not update ever. """ def initialize_weights_and_bias(dimension): w = np.full((dimension,1), 0.01) # init 0.01 b = np.zeros(1) return w,b def sigmoid(n): y_hat = 1 / (1 + np.exp(-n)) return y_hat # %% def forward_backward_propagation(w,b,x_train,y_train): # forward propagation z = np.dot(w.T,x_train) + b #y_train = y_train.T.reshape(-1,1) y_hat = sigmoid(z) loss = -(y_train*np.log(y_hat)+(1-y_train)*np.log(1-y_hat)) cost = (np.sum(loss))/x_train.shape[1] # x_train.shape[1] is for scaling # Once cost is calculated, forward prop. is completed. # backward propagation derivative_weight = (np.dot(x_train,((y_hat-y_train).T)))/x_train.shape[1] # x_train.shape[1] is for scaling derivative_bias = np.sum(y_hat-y_train)/x_train.shape[1] # x_train.shape[1] is for scaling # x_train.shape[1] = 426 gradients = {"derivative_weight": derivative_weight,"derivative_bias": derivative_bias} return cost,gradients # Updating(learning) parameters def update(w, b, x_train, y_train, learning_rate,number_of_iteration): cost_list = [] cost_list2 = [] index = [] # updating(learning) parameters is number_of_iterarion times for i in range(number_of_iteration): # make forward and backward propagation and find cost and gradients cost,gradients = forward_backward_propagation(w,b,x_train,y_train) cost_list.append(cost) # lets update w = w - learning_rate * gradients["derivative_weight"] b = b - learning_rate * gradients["derivative_bias"] if i % 100 == 0: # that's arbitrary, you can set it differently cost_list2.append(cost) index.append(i) print ("Cost after iteration %i: %f" %(i, cost)) # we update(learn) parameters weights and bias parameters = {"weight": w,"bias": b} plt.plot(index,cost_list2) plt.xticks(index,rotation='vertical') plt.xlabel("Number of Iteration") plt.ylabel("Cost") plt.legend() plt.show() return parameters, gradients, cost_list # prediction def predict(w,b,x_test): # x_test is a input for forward propagation z = sigmoid(np.dot(w.T,x_test)+b) Y_prediction = np.zeros((1,x_test.shape[1])) # if z is bigger than 0.5, our prediction is one - true (y_hat=1), # if z is smaller than 0.5, our prediction is sign zero - false (y_hat=0), for i in range(z.shape[1]): if z[0,i]<= 0.5: Y_prediction[0,i] = 0 else: Y_prediction[0,i] = 1 return Y_prediction #implementing logistic regression def logistic_regression(x_train, y_train, x_test, y_test, learning_rate , num_iterations): # initialize dimension = x_train.shape[0] w,b = initialize_weights_and_bias(dimension) # do not change learning rate parameters, gradients, cost_list = update(w, b, x_train, y_train, learning_rate,num_iterations) y_prediction_test = predict(parameters["weight"],parameters["bias"],x_test) y_pred_train = predict(parameters["weight"],parameters["bias"],x_train) # Print accuracy print("test accuracy: {} %".format(100 - np.mean(np.abs(y_prediction_test - y_test)) * 100)) print("train accuracy: {} %".format(100 - np.mean(np.abs(y_pred_train - y_train)) * 100)) # %% Hyperparameter tuning logistic_regression(x_train, y_train, x_test, y_test,learning_rate = 3, num_iterations = 1500) """ Cost after iteration 0: 0.693035 Cost after iteration 100: 0.153169 Cost after iteration 200: 0.121662 Cost after iteration 300: 0.107146 Cost after iteration 400: 0.098404 Cost after iteration 500: 0.092401 Cost after iteration 600: 0.087937 Cost after iteration 700: 0.084435 Cost after iteration 800: 0.081582 Cost after iteration 900: 0.079191 Cost after iteration 1000: 0.077143 Cost after iteration 1100: 0.075359 Cost after iteration 1200: 0.073784 Cost after iteration 1300: 0.072378 Cost after iteration 1400: 0.071111 No handles with labels found to put in legend. test accuracy: 98.6013986013986 % train accuracy: 98.35680751173709 % """ logistic_regression(x_train, y_train, x_test, y_test,learning_rate = 1, num_iterations = 1500) """ Cost after iteration 0: 0.693035 Cost after iteration 100: 0.226383 Cost after iteration 200: 0.176670 Cost after iteration 300: 0.153585 Cost after iteration 400: 0.139306 Cost after iteration 500: 0.129319 Cost after iteration 600: 0.121835 Cost after iteration 700: 0.115963 Cost after iteration 800: 0.111204 Cost after iteration 900: 0.107248 No handles with labels found to put in legend. Cost after iteration 1000: 0.103893 Cost after iteration 1100: 0.101001 Cost after iteration 1200: 0.098474 Cost after iteration 1300: 0.096240 Cost after iteration 1400: 0.094247 test accuracy: 97.9020979020979 % train accuracy: 98.12206572769954 % """ logistic_regression(x_train, y_train, x_test, y_test,learning_rate = 0.3, num_iterations = 1500) """ Cost after iteration 0: 0.693035 Cost after iteration 100: 0.357455 Cost after iteration 200: 0.274917 Cost after iteration 300: 0.235865 Cost after iteration 400: 0.212165 Cost after iteration 500: 0.195780 Cost after iteration 600: 0.183524 Cost after iteration 700: 0.173868 Cost after iteration 800: 0.165980 Cost after iteration 900: 0.159363 Cost after iteration 1000: 0.153700 Cost after iteration 1100: 0.148775 Cost after iteration 1200: 0.144439 Cost after iteration 1300: 0.140581 Cost after iteration 1400: 0.137119 No handles with labels found to put in legend. test accuracy: 97.9020979020979 % train accuracy: 96.94835680751174 % """ # %% Sklearn from sklearn.linear_model import LogisticRegression x_train = x_train.T x_test = x_test.T y_train = y_train.T y_test = y_test.T logreg = LogisticRegression(random_state = 42,max_iter= 1500) print("test accuracy: {} ".format(logreg.fit(x_train, y_train).score(x_test, y_test))) print("train accuracy: {} ".format(logreg.fit(x_train, y_train).score(x_train, y_train))) """ test accuracy: 0.986013986013986 train accuracy: 0.9671361502347418 """ # %%
[ "numpy.abs", "pandas.read_csv", "matplotlib.pyplot.xticks", "sklearn.model_selection.train_test_split", "matplotlib.pyplot.ylabel", "matplotlib.pyplot.xlabel", "matplotlib.pyplot.plot", "numpy.log", "sklearn.linear_model.LogisticRegression", "numpy.max", "numpy.sum", "numpy.zeros", "numpy.dot", "numpy.exp", "numpy.min", "numpy.full", "matplotlib.pyplot.legend", "matplotlib.pyplot.show" ]
[((101, 124), 'pandas.read_csv', 'pd.read_csv', (['"""data.csv"""'], {}), "('data.csv')\n", (112, 124), True, 'import pandas as pd\n'), ((1836, 1902), 'sklearn.model_selection.train_test_split', 'train_test_split', (['x_normalized', 'y'], {'test_size': '(0.25)', 'random_state': '(42)'}), '(x_normalized, y, test_size=0.25, random_state=42)\n', (1852, 1902), False, 'from sklearn.model_selection import train_test_split\n'), ((8143, 8193), 'sklearn.linear_model.LogisticRegression', 'LogisticRegression', ([], {'random_state': '(42)', 'max_iter': '(1500)'}), '(random_state=42, max_iter=1500)\n', (8161, 8193), False, 'from sklearn.linear_model import LogisticRegression\n'), ((2473, 2502), 'numpy.full', 'np.full', (['(dimension, 1)', '(0.01)'], {}), '((dimension, 1), 0.01)\n', (2480, 2502), True, 'import numpy as np\n'), ((2522, 2533), 'numpy.zeros', 'np.zeros', (['(1)'], {}), '(1)\n', (2530, 2533), True, 'import numpy as np\n'), ((4282, 4309), 'matplotlib.pyplot.plot', 'plt.plot', (['index', 'cost_list2'], {}), '(index, cost_list2)\n', (4290, 4309), True, 'import matplotlib.pyplot as plt\n'), ((4313, 4351), 'matplotlib.pyplot.xticks', 'plt.xticks', (['index'], {'rotation': '"""vertical"""'}), "(index, rotation='vertical')\n", (4323, 4351), True, 'import matplotlib.pyplot as plt\n'), ((4355, 4388), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Number of Iteration"""'], {}), "('Number of Iteration')\n", (4365, 4388), True, 'import matplotlib.pyplot as plt\n'), ((4393, 4411), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Cost"""'], {}), "('Cost')\n", (4403, 4411), True, 'import matplotlib.pyplot as plt\n'), ((4416, 4428), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (4426, 4428), True, 'import matplotlib.pyplot as plt\n'), ((4433, 4443), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (4441, 4443), True, 'import matplotlib.pyplot as plt\n'), ((4632, 4662), 'numpy.zeros', 'np.zeros', (['(1, x_test.shape[1])'], {}), '((1, x_test.shape[1]))\n', (4640, 4662), True, 'import numpy as np\n'), ((662, 676), 'numpy.min', 'np.min', (['x_data'], {}), '(x_data)\n', (668, 676), True, 'import numpy as np\n'), ((2712, 2732), 'numpy.dot', 'np.dot', (['w.T', 'x_train'], {}), '(w.T, x_train)\n', (2718, 2732), True, 'import numpy as np\n'), ((2874, 2886), 'numpy.sum', 'np.sum', (['loss'], {}), '(loss)\n', (2880, 2886), True, 'import numpy as np\n'), ((3061, 3097), 'numpy.dot', 'np.dot', (['x_train', '(y_hat - y_train).T'], {}), '(x_train, (y_hat - y_train).T)\n', (3067, 3097), True, 'import numpy as np\n'), ((3172, 3195), 'numpy.sum', 'np.sum', (['(y_hat - y_train)'], {}), '(y_hat - y_train)\n', (3178, 3195), True, 'import numpy as np\n'), ((681, 695), 'numpy.max', 'np.max', (['x_data'], {}), '(x_data)\n', (687, 695), True, 'import numpy as np\n'), ((698, 712), 'numpy.min', 'np.min', (['x_data'], {}), '(x_data)\n', (704, 712), True, 'import numpy as np\n'), ((2587, 2597), 'numpy.exp', 'np.exp', (['(-n)'], {}), '(-n)\n', (2593, 2597), True, 'import numpy as np\n'), ((4591, 4610), 'numpy.dot', 'np.dot', (['w.T', 'x_test'], {}), '(w.T, x_test)\n', (4597, 4610), True, 'import numpy as np\n'), ((2819, 2832), 'numpy.log', 'np.log', (['y_hat'], {}), '(y_hat)\n', (2825, 2832), True, 'import numpy as np\n'), ((2845, 2862), 'numpy.log', 'np.log', (['(1 - y_hat)'], {}), '(1 - y_hat)\n', (2851, 2862), True, 'import numpy as np\n'), ((5571, 5605), 'numpy.abs', 'np.abs', (['(y_prediction_test - y_test)'], {}), '(y_prediction_test - y_test)\n', (5577, 5605), True, 'import numpy as np\n'), ((5669, 5699), 'numpy.abs', 'np.abs', (['(y_pred_train - y_train)'], {}), '(y_pred_train - y_train)\n', (5675, 5699), True, 'import numpy as np\n')]
import os import numpy as np import torch import argparse from hparams import create_hparams from model import lcm from train import load_model from torch.utils.data import DataLoader from reader import TextMelIDLoader, TextMelIDCollate, id2sp from inference_utils import plot_data parser = argparse.ArgumentParser() parser.add_argument('-c', '--checkpoint_path', type=str, help='directory to save checkpoints') parser.add_argument('--hparams', type=str, required=False, help='comma separated name=value pairs') args = parser.parse_args() checkpoint_path=args.checkpoint_path hparams = create_hparams(args.hparams) model = load_model(hparams) model.load_state_dict(torch.load(checkpoint_path)['state_dict'], strict=False) _ = model.eval() def gen_embedding(speaker): training_list = hparams.training_list train_set_A = TextMelIDLoader(training_list, hparams.mel_mean_std, hparams.speaker_A, hparams.speaker_B, shuffle=False,pids=[speaker]) collate_fn = TextMelIDCollate(lcm(hparams.n_frames_per_step_encoder, hparams.n_frames_per_step_decoder)) train_loader_A = DataLoader(train_set_A, num_workers=1, shuffle=False, sampler=None, batch_size=1, pin_memory=False, drop_last=True, collate_fn=collate_fn) with torch.no_grad(): speaker_embeddings = [] for i,batch in enumerate(train_loader_A): #print i x, y = model.parse_batch(batch) text_input_padded, mel_padded, text_lengths, mel_lengths, speaker_id = x speaker_id, speaker_embedding = model.speaker_encoder.inference(mel_padded) speaker_embedding = speaker_embedding.data.cpu().numpy() speaker_embeddings.append(speaker_embedding) speaker_embeddings = np.vstack(speaker_embeddings) print(speaker_embeddings.shape) if not os.path.exists('outdir/embeddings'): os.makedirs('outdir/embeddings') np.save('outdir/embeddings/%s.npy'%speaker, speaker_embeddings) plot_data([speaker_embeddings], 'outdir/embeddings/%s.pdf'%speaker) print('Generating embedding of %s ...'%hparams.speaker_A) gen_embedding(hparams.speaker_A) print('Generating embedding of %s ...'%hparams.speaker_B) gen_embedding(hparams.speaker_B)
[ "os.path.exists", "argparse.ArgumentParser", "os.makedirs", "train.load_model", "torch.load", "model.lcm", "hparams.create_hparams", "numpy.vstack", "torch.utils.data.DataLoader", "torch.no_grad", "reader.TextMelIDLoader", "inference_utils.plot_data", "numpy.save" ]
[((293, 318), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (316, 318), False, 'import argparse\n'), ((638, 666), 'hparams.create_hparams', 'create_hparams', (['args.hparams'], {}), '(args.hparams)\n', (652, 666), False, 'from hparams import create_hparams\n'), ((676, 695), 'train.load_model', 'load_model', (['hparams'], {}), '(hparams)\n', (686, 695), False, 'from train import load_model\n'), ((884, 1009), 'reader.TextMelIDLoader', 'TextMelIDLoader', (['training_list', 'hparams.mel_mean_std', 'hparams.speaker_A', 'hparams.speaker_B'], {'shuffle': '(False)', 'pids': '[speaker]'}), '(training_list, hparams.mel_mean_std, hparams.speaker_A,\n hparams.speaker_B, shuffle=False, pids=[speaker])\n', (899, 1009), False, 'from reader import TextMelIDLoader, TextMelIDCollate, id2sp\n'), ((1202, 1344), 'torch.utils.data.DataLoader', 'DataLoader', (['train_set_A'], {'num_workers': '(1)', 'shuffle': '(False)', 'sampler': 'None', 'batch_size': '(1)', 'pin_memory': '(False)', 'drop_last': '(True)', 'collate_fn': 'collate_fn'}), '(train_set_A, num_workers=1, shuffle=False, sampler=None,\n batch_size=1, pin_memory=False, drop_last=True, collate_fn=collate_fn)\n', (1212, 1344), False, 'from torch.utils.data import DataLoader\n'), ((2116, 2181), 'numpy.save', 'np.save', (["('outdir/embeddings/%s.npy' % speaker)", 'speaker_embeddings'], {}), "('outdir/embeddings/%s.npy' % speaker, speaker_embeddings)\n", (2123, 2181), True, 'import numpy as np\n'), ((2184, 2253), 'inference_utils.plot_data', 'plot_data', (['[speaker_embeddings]', "('outdir/embeddings/%s.pdf' % speaker)"], {}), "([speaker_embeddings], 'outdir/embeddings/%s.pdf' % speaker)\n", (2193, 2253), False, 'from inference_utils import plot_data\n'), ((718, 745), 'torch.load', 'torch.load', (['checkpoint_path'], {}), '(checkpoint_path)\n', (728, 745), False, 'import torch\n'), ((1077, 1150), 'model.lcm', 'lcm', (['hparams.n_frames_per_step_encoder', 'hparams.n_frames_per_step_decoder'], {}), '(hparams.n_frames_per_step_encoder, hparams.n_frames_per_step_decoder)\n', (1080, 1150), False, 'from model import lcm\n'), ((1447, 1462), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (1460, 1462), False, 'import torch\n'), ((1943, 1972), 'numpy.vstack', 'np.vstack', (['speaker_embeddings'], {}), '(speaker_embeddings)\n', (1952, 1972), True, 'import numpy as np\n'), ((2029, 2064), 'os.path.exists', 'os.path.exists', (['"""outdir/embeddings"""'], {}), "('outdir/embeddings')\n", (2043, 2064), False, 'import os\n'), ((2074, 2106), 'os.makedirs', 'os.makedirs', (['"""outdir/embeddings"""'], {}), "('outdir/embeddings')\n", (2085, 2106), False, 'import os\n')]
# Author: <NAME> <<EMAIL>> import numpy as np from bolero.representation import BlackBoxBehavior from bolero.representation import DMPBehavior as DMPBehaviorImpl class DMPBehavior(BlackBoxBehavior): """Dynamical Movement Primitive. Parameters ---------- execution_time : float, optional (default: 1) Execution time of the DMP in seconds. dt : float, optional (default: 0.01) Time between successive steps in seconds. n_features : int, optional (default: 50) Number of RBF features for each dimension of the DMP. configuration_file : string, optional (default: None) Name of a configuration file that should be used to initialize the DMP. If it is set all other arguments will be ignored. """ def __init__(self, execution_time=1.0, dt=0.01, n_features=50, configuration_file=None): self.dmp = DMPBehaviorImpl(execution_time, dt, n_features, configuration_file) def init(self, n_inputs, n_outputs): """Initialize the behavior. Parameters ---------- n_inputs : int number of inputs n_outputs : int number of outputs """ self.dmp.init(3 * n_inputs, 3 * n_outputs) self.n_joints = n_inputs self.x = np.empty(3 * self.n_joints) self.x[:] = np.nan def reset(self): self.dmp.reset() self.x[:] = 0.0 def set_inputs(self, inputs): self.x[:self.n_joints] = inputs[:] def can_step(self): return self.dmp.can_step() def step(self): self.dmp.set_inputs(self.x) self.dmp.step() self.dmp.get_outputs(self.x) def get_outputs(self, outputs): outputs[:] = self.x[:self.n_joints] def get_n_params(self): return self.dmp.get_n_params() def get_params(self): return self.dmp.get_params() def set_params(self, params): self.dmp.set_params(params) def set_meta_parameters(self, keys, values): self.dmp.set_meta_parameters(keys, values) def trajectory(self): return self.dmp.trajectory() class DMPBehaviorWithGoalParams(DMPBehavior): def __init__(self, goal, execution_time=1.0, dt=0.01, n_features=50, configuration_file=None): super(DMPBehaviorWithGoalParams, self).__init__( execution_time, dt, n_features, configuration_file) self.params = np.copy(goal) def set_meta_parameters(self, keys, values): self.dmp.set_meta_parameters(keys, values) self.set_params(self.params) def get_n_params(self): return len(self.params) def get_params(self): return self.params def set_params(self, params): self.params[:] = params self.dmp.set_meta_parameters(["g"], [self.params])
[ "numpy.copy", "numpy.empty", "bolero.representation.DMPBehavior" ]
[((900, 967), 'bolero.representation.DMPBehavior', 'DMPBehaviorImpl', (['execution_time', 'dt', 'n_features', 'configuration_file'], {}), '(execution_time, dt, n_features, configuration_file)\n', (915, 967), True, 'from bolero.representation import DMPBehavior as DMPBehaviorImpl\n'), ((1340, 1367), 'numpy.empty', 'np.empty', (['(3 * self.n_joints)'], {}), '(3 * self.n_joints)\n', (1348, 1367), True, 'import numpy as np\n'), ((2478, 2491), 'numpy.copy', 'np.copy', (['goal'], {}), '(goal)\n', (2485, 2491), True, 'import numpy as np\n')]
# Script for data augmentation functions import numpy as np from collections import deque from PIL import Image import cv2 from data.config import * def imread_cv2(image_path): """ Read image_path with cv2 format (H, W, C) if image is '.gif' outputs is a numpy array of {0,1} """ image_format = image_path[-3:] if image_format == 'jpg': image = cv2.imread(image_path) else: image = np.array(Image.open(image_path)) return image def resize_cv2(image, heigh=1280, width=1918): return cv2.resize(image, (width, heigh), cv2.INTER_LINEAR) def image_to_tensor(image, mean=0, std=1.): """Transform image (input is numpy array, read in by cv2) """ if len(image.shape) == 2: image = image.reshape(image.shape[0], image.shape[1], 1) image = image.astype(np.float32) image = (image-mean)/std image = image.transpose((2,0,1)) tensor = torch.from_numpy(image) return tensor # --- Data Augmentation functions --- # # A lot of functions can be found here: # https://github.com/fchollet/keras/blob/master/keras/preprocessing/image.py#L223 # transform image and label def randomHorizontalFlip(image, mask, p=0.5): """Do a random horizontal flip with probability p""" if np.random.random() < p: image = np.fliplr(image) mask = np.fliplr(mask) return image, mask def randomVerticalFlip(image, mask, p=0.5): """Do a random vertical flip with probability p""" if np.random.random() < p: image = np.flipud(image) mask = np.flipud(mask) return image, mask def randomHorizontalShift(image, mask, max_shift=0.05, p=0.5): """Do random horizontal shift with max proportion shift and with probability p Elements that roll beyond the last position are re-introduced at the first.""" max_shift_pixels = int(max_shift*image.shape[1]) shift = np.random.choice(np.arange(-max_shift_pixels, max_shift_pixels+1)) if np.random.random() < p: image = np.roll(image, shift, axis=1) mask = np.roll(mask, shift, axis=1) return image, mask def randomVerticalShift(image, mask, max_shift=0.05, p=0.5): """Do random vertical shift with max proportion shift and probability p Elements that roll beyond the last position are re-introduced at the first.""" max_shift_pixels = int(max_shift*image.shape[0]) shift = np.random.choice(np.arange(-max_shift_pixels, max_shift_pixels+1)) if np.random.random() < p: image = np.roll(image, shift, axis=0) mask = np.roll(mask, shift, axis=0) return image, mask def randomInvert(image, mask, p=0.5): """Randomly invert image with probability p""" if np.random.random() < p: image = 255 - image mask = mask return image, mask def randomBrightness(image, mask, p=0.75): """With probability p, randomly increase or decrease brightness. See https://stackoverflow.com/questions/37822375/python-opencv-increasing-image-brightness-without-overflowing-uint8-array""" if np.random.random() < p: max_value = np.percentile(255-image, q=25) # avoid burning out white cars, so take image-specific maximum value = np.random.choice(np.arange(-max_value, max_value)) if value > 0: image = np.where((255 - image) < value,255,image+value).astype(np.uint8) else: image = np.where(image < -value,0,image+value).astype(np.uint8) return image, mask def randomHue(image, mask, p=0.25, max_value=75): """With probability p, randomly increase or decrease hue. See https://stackoverflow.com/questions/32609098/how-to-fast-change-image-brightness-with-python-opencv""" if np.random.random() < p: value = np.random.choice(np.arange(-max_value, max_value)) hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV) hsv[:,:,0] = hsv[:,:,0] + value hsv = np.clip(hsv, a_min=0, a_max=255).astype(np.uint8) image = cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR) return image, mask def GaussianBlur(image, mask, kernel=(1, 1),sigma=1, p=0.5): """With probability p, apply Gaussian blur""" # TODO return image, mask def randomRotate(image, mask, max_angle, p=0.5): """Perform random rotation with max_angle and probability p""" # TODO return(image, mask)
[ "numpy.clip", "PIL.Image.open", "numpy.roll", "numpy.flipud", "numpy.random.random", "numpy.fliplr", "numpy.where", "cv2.cvtColor", "numpy.percentile", "cv2.resize", "cv2.imread", "numpy.arange" ]
[((538, 589), 'cv2.resize', 'cv2.resize', (['image', '(width, heigh)', 'cv2.INTER_LINEAR'], {}), '(image, (width, heigh), cv2.INTER_LINEAR)\n', (548, 589), False, 'import cv2\n'), ((379, 401), 'cv2.imread', 'cv2.imread', (['image_path'], {}), '(image_path)\n', (389, 401), False, 'import cv2\n'), ((1257, 1275), 'numpy.random.random', 'np.random.random', ([], {}), '()\n', (1273, 1275), True, 'import numpy as np\n'), ((1297, 1313), 'numpy.fliplr', 'np.fliplr', (['image'], {}), '(image)\n', (1306, 1313), True, 'import numpy as np\n'), ((1329, 1344), 'numpy.fliplr', 'np.fliplr', (['mask'], {}), '(mask)\n', (1338, 1344), True, 'import numpy as np\n'), ((1475, 1493), 'numpy.random.random', 'np.random.random', ([], {}), '()\n', (1491, 1493), True, 'import numpy as np\n'), ((1515, 1531), 'numpy.flipud', 'np.flipud', (['image'], {}), '(image)\n', (1524, 1531), True, 'import numpy as np\n'), ((1547, 1562), 'numpy.flipud', 'np.flipud', (['mask'], {}), '(mask)\n', (1556, 1562), True, 'import numpy as np\n'), ((1898, 1948), 'numpy.arange', 'np.arange', (['(-max_shift_pixels)', '(max_shift_pixels + 1)'], {}), '(-max_shift_pixels, max_shift_pixels + 1)\n', (1907, 1948), True, 'import numpy as np\n'), ((1955, 1973), 'numpy.random.random', 'np.random.random', ([], {}), '()\n', (1971, 1973), True, 'import numpy as np\n'), ((1995, 2024), 'numpy.roll', 'np.roll', (['image', 'shift'], {'axis': '(1)'}), '(image, shift, axis=1)\n', (2002, 2024), True, 'import numpy as np\n'), ((2040, 2068), 'numpy.roll', 'np.roll', (['mask', 'shift'], {'axis': '(1)'}), '(mask, shift, axis=1)\n', (2047, 2068), True, 'import numpy as np\n'), ((2395, 2445), 'numpy.arange', 'np.arange', (['(-max_shift_pixels)', '(max_shift_pixels + 1)'], {}), '(-max_shift_pixels, max_shift_pixels + 1)\n', (2404, 2445), True, 'import numpy as np\n'), ((2452, 2470), 'numpy.random.random', 'np.random.random', ([], {}), '()\n', (2468, 2470), True, 'import numpy as np\n'), ((2496, 2525), 'numpy.roll', 'np.roll', (['image', 'shift'], {'axis': '(0)'}), '(image, shift, axis=0)\n', (2503, 2525), True, 'import numpy as np\n'), ((2545, 2573), 'numpy.roll', 'np.roll', (['mask', 'shift'], {'axis': '(0)'}), '(mask, shift, axis=0)\n', (2552, 2573), True, 'import numpy as np\n'), ((2694, 2712), 'numpy.random.random', 'np.random.random', ([], {}), '()\n', (2710, 2712), True, 'import numpy as np\n'), ((3039, 3057), 'numpy.random.random', 'np.random.random', ([], {}), '()\n', (3055, 3057), True, 'import numpy as np\n'), ((3083, 3115), 'numpy.percentile', 'np.percentile', (['(255 - image)'], {'q': '(25)'}), '(255 - image, q=25)\n', (3096, 3115), True, 'import numpy as np\n'), ((3696, 3714), 'numpy.random.random', 'np.random.random', ([], {}), '()\n', (3712, 3714), True, 'import numpy as np\n'), ((3801, 3839), 'cv2.cvtColor', 'cv2.cvtColor', (['image', 'cv2.COLOR_BGR2HSV'], {}), '(image, cv2.COLOR_BGR2HSV)\n', (3813, 3839), False, 'import cv2\n'), ((3960, 3996), 'cv2.cvtColor', 'cv2.cvtColor', (['hsv', 'cv2.COLOR_HSV2BGR'], {}), '(hsv, cv2.COLOR_HSV2BGR)\n', (3972, 3996), False, 'import cv2\n'), ((437, 459), 'PIL.Image.open', 'Image.open', (['image_path'], {}), '(image_path)\n', (447, 459), False, 'from PIL import Image\n'), ((3210, 3242), 'numpy.arange', 'np.arange', (['(-max_value)', 'max_value'], {}), '(-max_value, max_value)\n', (3219, 3242), True, 'import numpy as np\n'), ((3753, 3785), 'numpy.arange', 'np.arange', (['(-max_value)', 'max_value'], {}), '(-max_value, max_value)\n', (3762, 3785), True, 'import numpy as np\n'), ((3894, 3926), 'numpy.clip', 'np.clip', (['hsv'], {'a_min': '(0)', 'a_max': '(255)'}), '(hsv, a_min=0, a_max=255)\n', (3901, 3926), True, 'import numpy as np\n'), ((3286, 3335), 'numpy.where', 'np.where', (['(255 - image < value)', '(255)', '(image + value)'], {}), '(255 - image < value, 255, image + value)\n', (3294, 3335), True, 'import numpy as np\n'), ((3385, 3427), 'numpy.where', 'np.where', (['(image < -value)', '(0)', '(image + value)'], {}), '(image < -value, 0, image + value)\n', (3393, 3427), True, 'import numpy as np\n')]
### Load necessary libraries ### import numpy as np from sklearn.model_selection import KFold from sklearn.metrics import accuracy_score import tensorflow as tf from tensorflow import keras from sklearn.metrics import ConfusionMatrixDisplay model = get_network() model.summary() ### Train and evaluate via 10-Folds cross-validation ### accuracies = [] folds = np.array(['fold1','fold2','fold3','fold4', 'fold5','fold6','fold7','fold8', 'fold9','fold10']) load_dir = "UrbanSounds8K/processed/" kf = KFold(n_splits=10) for train_index, test_index in kf.split(folds): x_train, y_train = [], [] for ind in train_index: # read features or segments of an audio file train_data = np.load("{0}/{1}.npz".format(load_dir,folds[ind]), allow_pickle=True) # for training stack all the segments so that they are treated as an example/instance features = np.concatenate(train_data["features"], axis=0) labels = np.concatenate(train_data["labels"], axis=0) x_train.append(features) y_train.append(labels) # stack x,y pairs of all training folds x_train = np.concatenate(x_train, axis = 0).astype(np.float32) y_train = np.concatenate(y_train, axis = 0).astype(np.float32) # for testing we will make predictions on each segment and average them to # produce single label for an entire sound clip. test_data = np.load("{0}/{1}.npz".format(load_dir, folds[test_index][0]), allow_pickle=True) x_test = test_data["features"] y_test = test_data["labels"] log_dir="logs/fit/" + folds[test_index][0] tensorboard_callback = tf.keras.callbacks.TensorBoard(log_dir=log_dir, histogram_freq=1) model = get_network() model.fit(x_train, y_train, epochs = 20, batch_size = 64, verbose = 1, validation_split=0.2, use_multiprocessing=True, workers=8, callbacks=[tensorboard_callback]) # evaluate on test set/fold y_true, y_pred = [], [] for x, y in zip(x_test, y_test): # average predictions over segments of a sound clip avg_p = np.argmax(np.mean(model.predict(x), axis = 0)) y_pred.append(avg_p) # pick single label via np.unique for a sound clip y_true.append(np.unique(y)[0]) accuracies.append(accuracy_score(y_true, y_pred)) print("Fold n accuracy: {0}".format(accuracy_score(y_true, y_pred))) cm = ConfusionMatrixDisplay.from_predictions(y_true, y_pred) cm.figure_.savefig('conf_mat_' + str(test_index) + '_acc_' + str(accuracy_score(y_true, y_pred)) + '.png',dpi=1000) print("Average 10 Folds Accuracy: {0}".format(np.mean(accuracies)))
[ "numpy.mean", "sklearn.metrics.ConfusionMatrixDisplay.from_predictions", "tensorflow.keras.callbacks.TensorBoard", "numpy.unique", "numpy.array", "numpy.concatenate", "sklearn.model_selection.KFold", "sklearn.metrics.accuracy_score" ]
[((365, 470), 'numpy.array', 'np.array', (["['fold1', 'fold2', 'fold3', 'fold4', 'fold5', 'fold6', 'fold7', 'fold8',\n 'fold9', 'fold10']"], {}), "(['fold1', 'fold2', 'fold3', 'fold4', 'fold5', 'fold6', 'fold7',\n 'fold8', 'fold9', 'fold10'])\n", (373, 470), True, 'import numpy as np\n'), ((539, 557), 'sklearn.model_selection.KFold', 'KFold', ([], {'n_splits': '(10)'}), '(n_splits=10)\n', (544, 557), False, 'from sklearn.model_selection import KFold\n'), ((1696, 1761), 'tensorflow.keras.callbacks.TensorBoard', 'tf.keras.callbacks.TensorBoard', ([], {'log_dir': 'log_dir', 'histogram_freq': '(1)'}), '(log_dir=log_dir, histogram_freq=1)\n', (1726, 1761), True, 'import tensorflow as tf\n'), ((2468, 2523), 'sklearn.metrics.ConfusionMatrixDisplay.from_predictions', 'ConfusionMatrixDisplay.from_predictions', (['y_true', 'y_pred'], {}), '(y_true, y_pred)\n', (2507, 2523), False, 'from sklearn.metrics import ConfusionMatrixDisplay\n'), ((945, 991), 'numpy.concatenate', 'np.concatenate', (["train_data['features']"], {'axis': '(0)'}), "(train_data['features'], axis=0)\n", (959, 991), True, 'import numpy as np\n'), ((1010, 1054), 'numpy.concatenate', 'np.concatenate', (["train_data['labels']"], {'axis': '(0)'}), "(train_data['labels'], axis=0)\n", (1024, 1054), True, 'import numpy as np\n'), ((2349, 2379), 'sklearn.metrics.accuracy_score', 'accuracy_score', (['y_true', 'y_pred'], {}), '(y_true, y_pred)\n', (2363, 2379), False, 'from sklearn.metrics import accuracy_score\n'), ((2695, 2714), 'numpy.mean', 'np.mean', (['accuracies'], {}), '(accuracies)\n', (2702, 2714), True, 'import numpy as np\n'), ((1179, 1210), 'numpy.concatenate', 'np.concatenate', (['x_train'], {'axis': '(0)'}), '(x_train, axis=0)\n', (1193, 1210), True, 'import numpy as np\n'), ((1246, 1277), 'numpy.concatenate', 'np.concatenate', (['y_train'], {'axis': '(0)'}), '(y_train, axis=0)\n', (1260, 1277), True, 'import numpy as np\n'), ((2425, 2455), 'sklearn.metrics.accuracy_score', 'accuracy_score', (['y_true', 'y_pred'], {}), '(y_true, y_pred)\n', (2439, 2455), False, 'from sklearn.metrics import accuracy_score\n'), ((2309, 2321), 'numpy.unique', 'np.unique', (['y'], {}), '(y)\n', (2318, 2321), True, 'import numpy as np\n'), ((2593, 2623), 'sklearn.metrics.accuracy_score', 'accuracy_score', (['y_true', 'y_pred'], {}), '(y_true, y_pred)\n', (2607, 2623), False, 'from sklearn.metrics import accuracy_score\n')]
import os # Restrict the script to run on CPU os.environ ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" os.environ["CUDA_VISIBLE_DEVICES"] = "" # Import Keras Tensoflow Backend # from keras import backend as K import tensorflow as tf # Configure it to use only specific CPU Cores config = tf.ConfigProto(intra_op_parallelism_threads=4, inter_op_parallelism_threads=4, device_count={"CPU": 1, "GPU": 0}, allow_soft_placement=True) # import tensorflow as tf import numpy as np from IEOMAP_dataset_AC import dataset, IeomapSentenceIterator from sklearn.metrics import confusion_matrix from models_AC import SentenceModel import json import os def emotion_recognition(n_run, epochs, batch_size, embedding_size, first_rnn_size, dropout, embedding, num_speakers): ######################################################################################################################## # Hyper-parameters ######################################################################################################################## split_size = 0.8 # Split proportion of train and test data #log_dir = './logs_AC/RNN_without_ID/1' log_dir = './logs_AC/RNN_' \ + str(num_speakers) + '/' + str(n_run) + '/' #log_dir = './logs_AC/RNN_' + embedding + 'Emb' + str(embedding_size) + '_1layer' + str(2*first_rnn_size) + '/' + str(n_run) train_log_dir = log_dir + 'train' val_log_dir = log_dir + 'val' ######################################################################################################################## # Initialize the Data set ######################################################################################################################## sentences, targets, data_info, speakers = dataset(mode='sentences', embedding=embedding, embedding_size=embedding_size) train_data = IeomapSentenceIterator(sentences[0], targets[0], data_info['sentences_length'][0], speakers[0]) val_data = IeomapSentenceIterator(sentences[1], targets[1], data_info['sentences_length'][1], speakers[1]) test_data = IeomapSentenceIterator(sentences[2], targets[2], data_info['sentences_length'][2], speakers[2]) ######################################################################################################################## # Initialize the model ######################################################################################################################## g = SentenceModel(vocab_size=(data_info['vocabulary_size'] + 1), embedding_size=embedding_size, first_rnn_size=first_rnn_size, num_classes=data_info['num_classes'], dropout=dropout, embedding=embedding, num_speakers=num_speakers) # Store model setup model_setup = {'vocab_size': (data_info['vocabulary_size'] + 1), 'embedding_size': embedding_size, 'first_rnn_size': first_rnn_size, 'num_classes': data_info['num_classes'], 'dropout': dropout, 'embedding': embedding, 'num_speakers': num_speakers} dirname = os.path.dirname(log_dir) if not os.path.exists(dirname): os.makedirs(dirname) with open(log_dir + 'model_setup.p', 'w') as file: json.dump(model_setup, file, indent=4) ######################################################################################################################## # Initialize the parameters ######################################################################################################################## sess = tf.Session(config=config) sess.run(tf.global_variables_initializer()) sess.run(tf.local_variables_initializer()) saver = tf.train.Saver() epoch = 0 best_epoch = 0 train_conf_matrix = 0 val_conf_matrix = 0 test_conf_matrix = 0 best_acc = 0 ######################################################################################################################## # Performance Indicators ######################################################################################################################## writer_train = tf.summary.FileWriter(train_log_dir, sess.graph) writer_val = tf.summary.FileWriter(val_log_dir) accuracy_tf = tf.placeholder(tf.float32, []) precision_tf = tf.placeholder(tf.float32, []) recall_tf = tf.placeholder(tf.float32, []) summary_op = tf.summary.scalar('accuracy', accuracy_tf) summary_op = tf.summary.scalar('precision', precision_tf) summary_op = tf.summary.scalar('recall', recall_tf) ######################################################################################################################## # Model training procedure ######################################################################################################################## while train_data.epoch < epochs: # and train_data.epoch < best_epoch + 20: sentences_batch, sentences_length_batch, targets_batch, speakers_batch = train_data.next_batch(batch_size) preds, _ = sess.run([g['preds'], g['ts']], feed_dict={g['x']: np.array(sentences_batch), g['y']: np.array(targets_batch).reshape(len(targets_batch)), g['speaker']: np.array(speakers_batch), g['seqlen']: np.array(sentences_length_batch).reshape(len(targets_batch))}) #################################################################################################################### # Calculate the Train data Confusion Matrix #################################################################################################################### train_conf_matrix += confusion_matrix(targets_batch, preds, labels=range(data_info['num_classes'])) #################################################################################################################### # Add the end of each training epoch compute the validation results and store the relevant information #################################################################################################################### if train_data.epoch != epoch: while val_data.epoch == epoch: sentences_batch, sentences_length_batch, targets_batch, speakers_batch = val_data.next_batch(batch_size) preds = sess.run([g['preds']], feed_dict={g['x']: np.array(sentences_batch), g['y']: np.array(targets_batch).reshape(len(targets_batch)), g['speaker']: np.array(speakers_batch), g['seqlen']: np.array(sentences_length_batch).reshape( len(targets_batch))}) ############################################################################################################ # Calculate the Test data Confusion Matrix ############################################################################################################ val_conf_matrix += confusion_matrix(targets_batch, preds[0], labels=range(data_info['num_classes'])) ################################################################################################################ # Compute Accuracy, Precision and Recall ################################################################################################################ train_CM_size = len(train_conf_matrix) total_train = sum(sum(train_conf_matrix)) train_TP = np.diagonal(train_conf_matrix) train_FP = [sum(train_conf_matrix[:, i]) - train_TP[i] for i in range(train_CM_size)] train_FN = [sum(train_conf_matrix[i, :]) - train_TP[i] for i in range(train_CM_size)] train_TN = train_CM_size - train_TP - train_FP - train_FN train_precision = train_TP / (train_TP + train_FP) # aka True Positive Rate train_recall = train_TP / (train_TP + train_FN) total_train_correct = sum(train_TP) total_train_accuracy = total_train_correct / total_train total_train_precision = sum(train_precision) / train_CM_size total_train_recall = sum(train_recall) / train_CM_size val_CM_size = len(val_conf_matrix) total_val = sum(sum(val_conf_matrix)) val_TP = np.diagonal(val_conf_matrix) val_FP = [sum(val_conf_matrix[:, i]) - val_TP[i] for i in range(val_CM_size)] val_FN = [sum(val_conf_matrix[i, :]) - val_TP[i] for i in range(val_CM_size)] val_TN = val_CM_size - val_TP - val_FP - val_FN val_precision = val_TP / (val_TP + val_FP) val_recall = val_TP / (val_TP + val_FN) total_val_correct = sum(val_TP) total_val_accuracy = total_val_correct / total_val total_val_precision = sum(val_precision) / val_CM_size total_val_recall = sum(val_recall) / val_CM_size ################################################################################################################ # Store Accuracy Precision Recall ################################################################################################################ train_acc_summary = tf.Summary( value=[tf.Summary.Value(tag="accuracy", simple_value=total_train_accuracy), ]) train_prec_summary = tf.Summary( value=[tf.Summary.Value(tag="precision", simple_value=total_train_precision), ]) train_rec_summary = tf.Summary(value=[tf.Summary.Value(tag="recall", simple_value=total_train_recall), ]) val_acc_summary = tf.Summary(value=[tf.Summary.Value(tag="accuracy", simple_value=total_val_accuracy), ]) val_prec_summary = tf.Summary( value=[tf.Summary.Value(tag="precision", simple_value=total_val_precision), ]) val_rec_summary = tf.Summary(value=[tf.Summary.Value(tag="recall", simple_value=total_val_recall), ]) writer_train.add_summary(train_acc_summary, epoch) writer_train.add_summary(train_prec_summary, epoch) writer_train.add_summary(train_rec_summary, epoch) writer_val.add_summary(val_acc_summary, epoch) writer_val.add_summary(val_prec_summary, epoch) writer_val.add_summary(val_rec_summary, epoch) writer_train.flush() writer_val.flush() ################################################################################################################ # Print the confusion matrix and store important information ################################################################################################################ print(train_conf_matrix) print(val_conf_matrix) if best_acc < total_val_accuracy: saver.save(sess, log_dir + "acc_best_validation_model.ckpt") best_acc = total_val_accuracy best_epoch = epoch store_info = {'epoch': best_epoch, 'train_conf_matrix': list([list(x) for x in train_conf_matrix]), 'train_accuracy': total_train_accuracy, 'train_precision': list(train_precision), 'total_train_precision': total_train_precision, 'train_recall': list(train_recall), 'total_train_recall': total_train_recall, 'val_conf_matrix': list([list(x) for x in val_conf_matrix]), 'val_accuracy': total_val_accuracy, 'val_precision': list(val_precision), 'total_val_precision': total_val_precision, 'val_recall': list(val_recall), 'total_val_recall': total_val_recall} store_convergence_info = {'epoch': train_data.epoch, 'train_conf_matrix': list([list(x) for x in train_conf_matrix]), 'train_accuracy': total_train_accuracy, 'train_precision': list(train_precision), 'total_train_precision': total_train_precision, 'train_recall': list(train_recall), 'total_train_recall': total_train_recall, 'val_conf_matrix': list([list(x) for x in val_conf_matrix]), 'val_accuracy': total_val_accuracy, 'val_precision': list(val_precision), 'total_val_precision': total_val_precision, 'val_recall': list(val_recall), 'total_val_recall': total_val_recall} ################################################################################################################ # Get ready for the next epoch ################################################################################################################ epoch += 1 train_conf_matrix = 0 val_conf_matrix = 0 ################################################################################################################ #################################################################################################################### # Add the end of training compute the test results and store the relevant information #################################################################################################################### while test_data.epoch == 0: sentences_batch, sentences_length_batch, targets_batch, speakers_batch = test_data.next_batch(batch_size) preds = sess.run([g['preds']], feed_dict={g['x']: np.array(sentences_batch), g['y']: np.array(targets_batch).reshape(len(targets_batch)), g['speaker']: np.array(speakers_batch), g['seqlen']: np.array(sentences_length_batch).reshape( len(targets_batch))}) ############################################################################################################ # Calculate the Test data Confusion Matrix ############################################################################################################ test_conf_matrix += confusion_matrix(targets_batch, preds[0], labels=range(data_info['num_classes'])) ################################################################################################################ # Compute Accuracy, Precision and Recall ################################################################################################################ test_CM_size = len(test_conf_matrix) total_test = sum(sum(test_conf_matrix)) test_TP = np.diagonal(test_conf_matrix) test_FP = [sum(test_conf_matrix[:, i]) - test_TP[i] for i in range(test_CM_size)] test_FN = [sum(test_conf_matrix[i, :]) - test_TP[i] for i in range(test_CM_size)] test_TN = test_CM_size - test_TP - test_FP - test_FN test_precision = test_TP / (test_TP + test_FP) test_recall = test_TP / (test_TP + test_FN) total_test_correct = sum(test_TP) total_test_accuracy = total_test_correct / total_test total_test_precision = sum(test_precision) / test_CM_size total_test_recall = sum(test_recall) / test_CM_size ################################################################################################################ # Print the confusion matrix and store important information ################################################################################################################ print(test_conf_matrix) store_convergence_info['test_conf_matrix'] = list([list(x) for x in test_conf_matrix]) store_convergence_info['test_accuracy'] = total_test_accuracy store_convergence_info['test_precision'] = list(test_precision) store_convergence_info['total_test_precision'] = total_test_precision store_convergence_info['test_recall'] = list(test_recall) store_convergence_info['total_test_recall'] = total_test_recall # trick to be able to save numpy.int64 into json def default(o): if isinstance(o, np.int64): return int(o) raise TypeError with open(log_dir + 'convergence_results.p', 'w') as file: json.dump(store_convergence_info, file, default=default, indent=4) saver.save(sess, log_dir + "convergence_model.ckpt") #################################################################################################################### # Add the end of training compute the test results of the best validation model and store the relevant information #################################################################################################################### saver.restore(sess, log_dir + "acc_best_validation_model.ckpt") test_conf_matrix = 0 while test_data.epoch == 1: sentences_batch, sentences_length_batch, targets_batch, speakers_batch = test_data.next_batch(batch_size) preds = sess.run([g['preds']], feed_dict={g['x']: np.array(sentences_batch), g['y']: np.array(targets_batch).reshape(len(targets_batch)), g['speaker']: np.array(speakers_batch), g['seqlen']: np.array(sentences_length_batch).reshape( len(targets_batch))}) ############################################################################################################ # Calculate the Test data Confusion Matrix ############################################################################################################ test_conf_matrix += confusion_matrix(targets_batch, preds[0], labels=range(data_info['num_classes'])) ################################################################################################################ # Compute Accuracy, Precision and Recall ################################################################################################################ test_CM_size = len(test_conf_matrix) total_test = sum(sum(test_conf_matrix)) test_TP = np.diagonal(test_conf_matrix) test_FP = [sum(test_conf_matrix[:, i]) - test_TP[i] for i in range(test_CM_size)] test_FN = [sum(test_conf_matrix[i, :]) - test_TP[i] for i in range(test_CM_size)] test_TN = test_CM_size - test_TP - test_FP - test_FN test_precision = test_TP / (test_TP + test_FP) test_recall = test_TP / (test_TP + test_FN) total_test_correct = sum(test_TP) total_test_accuracy = total_test_correct / total_test total_test_precision = sum(test_precision) / test_CM_size total_test_recall = sum(test_recall) / test_CM_size ################################################################################################################ # Print the confusion matrix and store important information ################################################################################################################ print(test_conf_matrix) store_info['test_conf_matrix'] = list([list(x) for x in test_conf_matrix]) store_info['test_accuracy'] = total_test_accuracy store_info['test_precision'] = list(test_precision) store_info['total_test_precision'] = total_test_precision store_info['test_recall'] = list(test_recall) store_info['total_test_recall'] = total_test_recall with open(log_dir + 'acc_best_validation_results.p', 'w') as file: json.dump(store_info, file, default=default, indent=4)
[ "tensorflow.local_variables_initializer", "numpy.diagonal", "os.path.exists", "os.makedirs", "tensorflow.Session", "tensorflow.train.Saver", "tensorflow.placeholder", "tensorflow.global_variables_initializer", "IEOMAP_dataset_AC.dataset", "os.path.dirname", "IEOMAP_dataset_AC.IeomapSentenceIterator", "numpy.array", "tensorflow.Summary.Value", "models_AC.SentenceModel", "tensorflow.ConfigProto", "tensorflow.summary.scalar", "tensorflow.summary.FileWriter", "json.dump" ]
[((280, 425), 'tensorflow.ConfigProto', 'tf.ConfigProto', ([], {'intra_op_parallelism_threads': '(4)', 'inter_op_parallelism_threads': '(4)', 'device_count': "{'CPU': 1, 'GPU': 0}", 'allow_soft_placement': '(True)'}), "(intra_op_parallelism_threads=4, inter_op_parallelism_threads\n =4, device_count={'CPU': 1, 'GPU': 0}, allow_soft_placement=True)\n", (294, 425), True, 'import tensorflow as tf\n'), ((1837, 1914), 'IEOMAP_dataset_AC.dataset', 'dataset', ([], {'mode': '"""sentences"""', 'embedding': 'embedding', 'embedding_size': 'embedding_size'}), "(mode='sentences', embedding=embedding, embedding_size=embedding_size)\n", (1844, 1914), False, 'from IEOMAP_dataset_AC import dataset, IeomapSentenceIterator\n'), ((1933, 2033), 'IEOMAP_dataset_AC.IeomapSentenceIterator', 'IeomapSentenceIterator', (['sentences[0]', 'targets[0]', "data_info['sentences_length'][0]", 'speakers[0]'], {}), "(sentences[0], targets[0], data_info[\n 'sentences_length'][0], speakers[0])\n", (1955, 2033), False, 'from IEOMAP_dataset_AC import dataset, IeomapSentenceIterator\n'), ((2044, 2144), 'IEOMAP_dataset_AC.IeomapSentenceIterator', 'IeomapSentenceIterator', (['sentences[1]', 'targets[1]', "data_info['sentences_length'][1]", 'speakers[1]'], {}), "(sentences[1], targets[1], data_info[\n 'sentences_length'][1], speakers[1])\n", (2066, 2144), False, 'from IEOMAP_dataset_AC import dataset, IeomapSentenceIterator\n'), ((2156, 2256), 'IEOMAP_dataset_AC.IeomapSentenceIterator', 'IeomapSentenceIterator', (['sentences[2]', 'targets[2]', "data_info['sentences_length'][2]", 'speakers[2]'], {}), "(sentences[2], targets[2], data_info[\n 'sentences_length'][2], speakers[2])\n", (2178, 2256), False, 'from IEOMAP_dataset_AC import dataset, IeomapSentenceIterator\n'), ((2538, 2776), 'models_AC.SentenceModel', 'SentenceModel', ([], {'vocab_size': "(data_info['vocabulary_size'] + 1)", 'embedding_size': 'embedding_size', 'first_rnn_size': 'first_rnn_size', 'num_classes': "data_info['num_classes']", 'dropout': 'dropout', 'embedding': 'embedding', 'num_speakers': 'num_speakers'}), "(vocab_size=data_info['vocabulary_size'] + 1, embedding_size=\n embedding_size, first_rnn_size=first_rnn_size, num_classes=data_info[\n 'num_classes'], dropout=dropout, embedding=embedding, num_speakers=\n num_speakers)\n", (2551, 2776), False, 'from models_AC import SentenceModel\n'), ((3308, 3332), 'os.path.dirname', 'os.path.dirname', (['log_dir'], {}), '(log_dir)\n', (3323, 3332), False, 'import os\n'), ((3795, 3820), 'tensorflow.Session', 'tf.Session', ([], {'config': 'config'}), '(config=config)\n', (3805, 3820), True, 'import tensorflow as tf\n'), ((3928, 3944), 'tensorflow.train.Saver', 'tf.train.Saver', ([], {}), '()\n', (3942, 3944), True, 'import tensorflow as tf\n'), ((4369, 4417), 'tensorflow.summary.FileWriter', 'tf.summary.FileWriter', (['train_log_dir', 'sess.graph'], {}), '(train_log_dir, sess.graph)\n', (4390, 4417), True, 'import tensorflow as tf\n'), ((4435, 4469), 'tensorflow.summary.FileWriter', 'tf.summary.FileWriter', (['val_log_dir'], {}), '(val_log_dir)\n', (4456, 4469), True, 'import tensorflow as tf\n'), ((4489, 4519), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32', '[]'], {}), '(tf.float32, [])\n', (4503, 4519), True, 'import tensorflow as tf\n'), ((4539, 4569), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32', '[]'], {}), '(tf.float32, [])\n', (4553, 4569), True, 'import tensorflow as tf\n'), ((4586, 4616), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32', '[]'], {}), '(tf.float32, [])\n', (4600, 4616), True, 'import tensorflow as tf\n'), ((4635, 4677), 'tensorflow.summary.scalar', 'tf.summary.scalar', (['"""accuracy"""', 'accuracy_tf'], {}), "('accuracy', accuracy_tf)\n", (4652, 4677), True, 'import tensorflow as tf\n'), ((4695, 4739), 'tensorflow.summary.scalar', 'tf.summary.scalar', (['"""precision"""', 'precision_tf'], {}), "('precision', precision_tf)\n", (4712, 4739), True, 'import tensorflow as tf\n'), ((4757, 4795), 'tensorflow.summary.scalar', 'tf.summary.scalar', (['"""recall"""', 'recall_tf'], {}), "('recall', recall_tf)\n", (4774, 4795), True, 'import tensorflow as tf\n'), ((15755, 15784), 'numpy.diagonal', 'np.diagonal', (['test_conf_matrix'], {}), '(test_conf_matrix)\n', (15766, 15784), True, 'import numpy as np\n'), ((19245, 19274), 'numpy.diagonal', 'np.diagonal', (['test_conf_matrix'], {}), '(test_conf_matrix)\n', (19256, 19274), True, 'import numpy as np\n'), ((3344, 3367), 'os.path.exists', 'os.path.exists', (['dirname'], {}), '(dirname)\n', (3358, 3367), False, 'import os\n'), ((3377, 3397), 'os.makedirs', 'os.makedirs', (['dirname'], {}), '(dirname)\n', (3388, 3397), False, 'import os\n'), ((3462, 3500), 'json.dump', 'json.dump', (['model_setup', 'file'], {'indent': '(4)'}), '(model_setup, file, indent=4)\n', (3471, 3500), False, 'import json\n'), ((3834, 3867), 'tensorflow.global_variables_initializer', 'tf.global_variables_initializer', ([], {}), '()\n', (3865, 3867), True, 'import tensorflow as tf\n'), ((3882, 3914), 'tensorflow.local_variables_initializer', 'tf.local_variables_initializer', ([], {}), '()\n', (3912, 3914), True, 'import tensorflow as tf\n'), ((17307, 17373), 'json.dump', 'json.dump', (['store_convergence_info', 'file'], {'default': 'default', 'indent': '(4)'}), '(store_convergence_info, file, default=default, indent=4)\n', (17316, 17373), False, 'import json\n'), ((20585, 20639), 'json.dump', 'json.dump', (['store_info', 'file'], {'default': 'default', 'indent': '(4)'}), '(store_info, file, default=default, indent=4)\n', (20594, 20639), False, 'import json\n'), ((8039, 8069), 'numpy.diagonal', 'np.diagonal', (['train_conf_matrix'], {}), '(train_conf_matrix)\n', (8050, 8069), True, 'import numpy as np\n'), ((8864, 8892), 'numpy.diagonal', 'np.diagonal', (['val_conf_matrix'], {}), '(val_conf_matrix)\n', (8875, 8892), True, 'import numpy as np\n'), ((5400, 5425), 'numpy.array', 'np.array', (['sentences_batch'], {}), '(sentences_batch)\n', (5408, 5425), True, 'import numpy as np\n'), ((5580, 5604), 'numpy.array', 'np.array', (['speakers_batch'], {}), '(speakers_batch)\n', (5588, 5604), True, 'import numpy as np\n'), ((14627, 14652), 'numpy.array', 'np.array', (['sentences_batch'], {}), '(sentences_batch)\n', (14635, 14652), True, 'import numpy as np\n'), ((14801, 14825), 'numpy.array', 'np.array', (['speakers_batch'], {}), '(speakers_batch)\n', (14809, 14825), True, 'import numpy as np\n'), ((18117, 18142), 'numpy.array', 'np.array', (['sentences_batch'], {}), '(sentences_batch)\n', (18125, 18142), True, 'import numpy as np\n'), ((18291, 18315), 'numpy.array', 'np.array', (['speakers_batch'], {}), '(speakers_batch)\n', (18299, 18315), True, 'import numpy as np\n'), ((9841, 9908), 'tensorflow.Summary.Value', 'tf.Summary.Value', ([], {'tag': '"""accuracy"""', 'simple_value': 'total_train_accuracy'}), "(tag='accuracy', simple_value=total_train_accuracy)\n", (9857, 9908), True, 'import tensorflow as tf\n'), ((9981, 10050), 'tensorflow.Summary.Value', 'tf.Summary.Value', ([], {'tag': '"""precision"""', 'simple_value': 'total_train_precision'}), "(tag='precision', simple_value=total_train_precision)\n", (9997, 10050), True, 'import tensorflow as tf\n'), ((10105, 10168), 'tensorflow.Summary.Value', 'tf.Summary.Value', ([], {'tag': '"""recall"""', 'simple_value': 'total_train_recall'}), "(tag='recall', simple_value=total_train_recall)\n", (10121, 10168), True, 'import tensorflow as tf\n'), ((10222, 10287), 'tensorflow.Summary.Value', 'tf.Summary.Value', ([], {'tag': '"""accuracy"""', 'simple_value': 'total_val_accuracy'}), "(tag='accuracy', simple_value=total_val_accuracy)\n", (10238, 10287), True, 'import tensorflow as tf\n'), ((10358, 10425), 'tensorflow.Summary.Value', 'tf.Summary.Value', ([], {'tag': '"""precision"""', 'simple_value': 'total_val_precision'}), "(tag='precision', simple_value=total_val_precision)\n", (10374, 10425), True, 'import tensorflow as tf\n'), ((10478, 10539), 'tensorflow.Summary.Value', 'tf.Summary.Value', ([], {'tag': '"""recall"""', 'simple_value': 'total_val_recall'}), "(tag='recall', simple_value=total_val_recall)\n", (10494, 10539), True, 'import tensorflow as tf\n'), ((5474, 5497), 'numpy.array', 'np.array', (['targets_batch'], {}), '(targets_batch)\n', (5482, 5497), True, 'import numpy as np\n'), ((5658, 5690), 'numpy.array', 'np.array', (['sentences_length_batch'], {}), '(sentences_length_batch)\n', (5666, 5690), True, 'import numpy as np\n'), ((6795, 6820), 'numpy.array', 'np.array', (['sentences_batch'], {}), '(sentences_batch)\n', (6803, 6820), True, 'import numpy as np\n'), ((6985, 7009), 'numpy.array', 'np.array', (['speakers_batch'], {}), '(speakers_batch)\n', (6993, 7009), True, 'import numpy as np\n'), ((14698, 14721), 'numpy.array', 'np.array', (['targets_batch'], {}), '(targets_batch)\n', (14706, 14721), True, 'import numpy as np\n'), ((14876, 14908), 'numpy.array', 'np.array', (['sentences_length_batch'], {}), '(sentences_length_batch)\n', (14884, 14908), True, 'import numpy as np\n'), ((18188, 18211), 'numpy.array', 'np.array', (['targets_batch'], {}), '(targets_batch)\n', (18196, 18211), True, 'import numpy as np\n'), ((18366, 18398), 'numpy.array', 'np.array', (['sentences_length_batch'], {}), '(sentences_length_batch)\n', (18374, 18398), True, 'import numpy as np\n'), ((6874, 6897), 'numpy.array', 'np.array', (['targets_batch'], {}), '(targets_batch)\n', (6882, 6897), True, 'import numpy as np\n'), ((7068, 7100), 'numpy.array', 'np.array', (['sentences_length_batch'], {}), '(sentences_length_batch)\n', (7076, 7100), True, 'import numpy as np\n')]
# Copyright 2017 ProjectQ-Framework (www.projectq.ch) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Tests for projectq.backends._sim._simulator.py, using both the Python and the C++ simulator as backends. """ import copy import math import cmath import numpy import pytest import random import scipy import scipy.sparse import scipy.sparse.linalg from projectq import MainEngine from projectq.cengines import (BasicEngine, BasicMapperEngine, DummyEngine, LocalOptimizer, NotYetMeasuredError) from projectq.ops import (All, Allocate, BasicGate, BasicMathGate, CNOT, C, Command, H, Measure, QubitOperator, Rx, Ry, Rz, S, TimeEvolution, Toffoli, X, Y, Z, Swap, SqrtSwap, UniformlyControlledRy, UniformlyControlledRz) from projectq.libs.math import (AddConstant, AddConstantModN, SubConstant, SubConstantModN, MultiplyByConstantModN) from projectq.meta import Compute, Uncompute, Control, Dagger, LogicalQubitIDTag from projectq.types import WeakQubitRef from projectq.backends import Simulator tolerance = 1e-6 def test_is_qrack_simulator_present(): _qracksim = pytest.importorskip("projectq.backends._qracksim._qracksim") import projectq.backends._qracksim._qracksim as _ def get_available_simulators(): result = [] try: test_is_qrack_simulator_present() result.append("qrack_simulator_qengine") result.append("qrack_simulator_qunit") except: pass return result @pytest.fixture(params=get_available_simulators()) def sim(request): if request.param == "qrack_simulator_qengine": from projectq.backends._qracksim._qracksim import QrackSimulator as QrackSim sim = Simulator() sim._simulator = QrackSim(1, -1, 1) elif request.param == "qrack_simulator_qunit": from projectq.backends._qracksim._qracksim import QrackSimulator as QrackSim sim = Simulator() sim._simulator = QrackSim(1, -1, 2) return sim @pytest.fixture(params=["mapper", "no_mapper"]) def mapper(request): """ Adds a mapper which changes qubit ids by adding 1 """ if request.param == "mapper": class TrivialMapper(BasicMapperEngine): def __init__(self): BasicEngine.__init__(self) self.current_mapping = dict() def receive(self, command_list): for cmd in command_list: for qureg in cmd.all_qubits: for qubit in qureg: if qubit.id == -1: continue elif qubit.id not in self.current_mapping: previous_map = self.current_mapping previous_map[qubit.id] = qubit.id + 1 self.current_mapping = previous_map self._send_cmd_with_mapped_ids(cmd) return TrivialMapper() if request.param == "no_mapper": return None class Mock1QubitGate(BasicGate): def __init__(self): BasicGate.__init__(self) self.cnt = 0 @property def matrix(self): self.cnt += 1 return numpy.matrix([[0, 1], [1, 0]]) class Mock6QubitGate(BasicGate): def __init__(self): BasicGate.__init__(self) self.cnt = 0 @property def matrix(self): self.cnt += 1 return numpy.eye(2 ** 6) class MockNoMatrixGate(BasicGate): def __init__(self): BasicGate.__init__(self) self.cnt = 0 @property def matrix(self): self.cnt += 1 raise AttributeError def test_simulator_is_available(sim): backend = DummyEngine(save_commands=True) eng = MainEngine(backend, []) qubit = eng.allocate_qubit() Measure | qubit qubit[0].__del__() assert len(backend.received_commands) == 3 # Test that allocate, measure, basic math, and deallocate are available. for cmd in backend.received_commands: assert sim.is_available(cmd) new_cmd = backend.received_commands[-1] new_cmd.gate = Mock6QubitGate() assert not sim.is_available(new_cmd) new_cmd.gate = MockNoMatrixGate() assert not sim.is_available(new_cmd) new_cmd.gate = Mock1QubitGate() assert sim.is_available(new_cmd) new_cmd = backend.received_commands[-2] assert len(new_cmd.qubits) == 1 new_cmd.gate = AddConstantModN(1, 2) assert sim.is_available(new_cmd) new_cmd.gate = MultiplyByConstantModN(1, 2) assert sim.is_available(new_cmd) #new_cmd.gate = DivideByConstantModN(1, 2) #assert sim.is_available(new_cmd) def test_simulator_cheat(sim): # cheat function should return a tuple assert isinstance(sim.cheat(), tuple) # first entry is the qubit mapping. # should be empty: assert len(sim.cheat()[0]) == 0 # state vector should only have 1 entry: assert len(sim.cheat()[1]) == 1 eng = MainEngine(sim, []) qubit = eng.allocate_qubit() # one qubit has been allocated assert len(sim.cheat()[0]) == 1 assert sim.cheat()[0][0] == 0 assert len(sim.cheat()[1]) == 2 assert 1. == pytest.approx(abs(sim.cheat()[1][0])) qubit[0].__del__() # should be empty: assert len(sim.cheat()[0]) == 0 # state vector should only have 1 entry: assert len(sim.cheat()[1]) == 1 def test_simulator_functional_measurement(sim): eng = MainEngine(sim, []) qubits = eng.allocate_qureg(5) # entangle all qubits: H | qubits[0] for qb in qubits[1:]: CNOT | (qubits[0], qb) All(Measure) | qubits bit_value_sum = sum([int(qubit) for qubit in qubits]) assert bit_value_sum == 0 or bit_value_sum == 5 def test_simulator_measure_mapped_qubit(sim): eng = MainEngine(sim, []) qb1 = WeakQubitRef(engine=eng, idx=1) qb2 = WeakQubitRef(engine=eng, idx=2) cmd0 = Command(engine=eng, gate=Allocate, qubits=([qb1],)) cmd1 = Command(engine=eng, gate=X, qubits=([qb1],)) cmd2 = Command(engine=eng, gate=Measure, qubits=([qb1],), controls=[], tags=[LogicalQubitIDTag(2)]) with pytest.raises(NotYetMeasuredError): int(qb1) with pytest.raises(NotYetMeasuredError): int(qb2) eng.send([cmd0, cmd1, cmd2]) eng.flush() with pytest.raises(NotYetMeasuredError): int(qb1) assert int(qb2) == 1 def test_simulator_kqubit_exception(sim): m1 = Rx(0.3).matrix m2 = Rx(0.8).matrix m3 = Ry(0.1).matrix m4 = Rz(0.9).matrix.dot(Ry(-0.1).matrix) m = numpy.kron(m4, numpy.kron(m3, numpy.kron(m2, m1))) class KQubitGate(BasicGate): @property def matrix(self): return m eng = MainEngine(sim, []) qureg = eng.allocate_qureg(3) with pytest.raises(Exception): KQubitGate() | qureg with pytest.raises(Exception): H | qureg def test_simulator_swap(sim): eng = MainEngine(sim, []) qubits1 = eng.allocate_qureg(1) qubits2 = eng.allocate_qureg(1) X | qubits1 Swap | (qubits1, qubits2) All(Measure) | qubits1 All(Measure) | qubits2 assert (int(qubits1[0]) == 0) and (int(qubits2[0]) == 1) SqrtSwap | (qubits1, qubits2) SqrtSwap | (qubits1, qubits2) All(Measure) | qubits1 All(Measure) | qubits2 assert (int(qubits1[0]) == 1) and (int(qubits2[0]) == 0) def test_simulator_math(sim): eng = MainEngine(sim, []) qubits = eng.allocate_qureg(8) AddConstant(1) | qubits; All(Measure) | qubits value = 0 for i in range(len(qubits)): value += int(qubits[i]) << i assert value == 1 AddConstantModN(10, 256) | qubits; All(Measure) | qubits value = 0 for i in range(len(qubits)): value += int(qubits[i]) << i assert value == 11 controls = eng.allocate_qureg(1) # Control is off C(AddConstantModN(10, 256)) | (controls, qubits) All(Measure) | qubits value = 0 for i in range(len(qubits)): value += int(qubits[i]) << i assert value == 11 # Turn control on X | controls C(AddConstantModN(10, 256)) | (controls, qubits) All(Measure) | qubits value = 0 for i in range(len(qubits)): value += int(qubits[i]) << i assert value == 21 SubConstant(5) | qubits; All(Measure) | qubits value = 0 for i in range(len(qubits)): value += int(qubits[i]) << i assert value == 16 C(SubConstantModN(10, 256)) | (controls, qubits) All(Measure) | qubits value = 0 for i in range(len(qubits)): value += int(qubits[i]) << i assert value == 6 # Turn control off X | controls C(SubConstantModN(10, 256)) | (controls, qubits) All(Measure) | qubits value = 0 for i in range(len(qubits)): value += int(qubits[i]) << i assert value == 6 MultiplyByConstantModN(2, 256) | qubits; All(Measure) | qubits value = 0 for i in range(len(qubits)): value += int(qubits[i]) << i assert value == 12 # Control is off C(MultiplyByConstantModN(2, 256)) | (controls, qubits) All(Measure) | qubits value = 0 for i in range(len(qubits)): value += int(qubits[i]) << i assert value == 12 # Turn control on X | controls C(MultiplyByConstantModN(10, 256)) | (controls, qubits) All(Measure) | qubits value = 0 for i in range(len(qubits)): value += int(qubits[i]) << i assert value == 120 def test_simulator_probability(sim, mapper): engine_list = [LocalOptimizer()] if mapper is not None: engine_list.append(mapper) eng = MainEngine(sim, engine_list=engine_list) qubits = eng.allocate_qureg(6) All(H) | qubits eng.flush() bits = [0, 0, 1, 0, 1, 0] for i in range(6): assert (eng.backend.get_probability(bits[:i], qubits[:i]) == pytest.approx(0.5**i)) extra_qubit = eng.allocate_qubit() with pytest.raises(RuntimeError): eng.backend.get_probability([0], extra_qubit) del extra_qubit All(H) | qubits Ry(2 * math.acos(math.sqrt(0.3))) | qubits[0] eng.flush() assert eng.backend.get_probability([0], [qubits[0]]) == pytest.approx(0.3) Ry(2 * math.acos(math.sqrt(0.4))) | qubits[2] eng.flush() assert eng.backend.get_probability([0], [qubits[2]]) == pytest.approx(0.4) assert (numpy.isclose(0.12, eng.backend.get_probability([0, 0], qubits[:3:2]), rtol=tolerance, atol=tolerance)) assert (numpy.isclose(0.18, eng.backend.get_probability([0, 1], qubits[:3:2]), rtol=tolerance, atol=tolerance)) assert (numpy.isclose(0.28, eng.backend.get_probability([1, 0], qubits[:3:2]), rtol=tolerance, atol=tolerance)) All(Measure) | qubits def test_simulator_amplitude(sim, mapper): engine_list = [LocalOptimizer()] if mapper is not None: engine_list.append(mapper) eng = MainEngine(sim, engine_list=engine_list) qubits = eng.allocate_qureg(6) All(X) | qubits All(H) | qubits eng.flush() bits = [0, 0, 1, 0, 1, 0] polR, polPhi = cmath.polar(eng.backend.get_amplitude(bits, qubits)) while polPhi < 0: polPhi += 2 * math.pi assert polR == pytest.approx(1. / 8.) bits = [0, 0, 0, 0, 1, 0] polR2, polPhi2 = cmath.polar(eng.backend.get_amplitude(bits, qubits)) while polPhi2 < math.pi: polPhi2 += 2 * math.pi assert polR2 == pytest.approx(polR) assert (polPhi2 - math.pi) == pytest.approx(polPhi) bits = [0, 1, 1, 0, 1, 0] polR3, polPhi3 = cmath.polar(eng.backend.get_amplitude(bits, qubits)) while polPhi3 < math.pi: polPhi3 += 2 * math.pi assert polR3 == pytest.approx(polR) assert (polPhi3 - math.pi) == pytest.approx(polPhi) All(H) | qubits All(X) | qubits Ry(2 * math.acos(0.3)) | qubits[0] eng.flush() bits = [0] * 6 polR, polPhi = cmath.polar(eng.backend.get_amplitude(bits, qubits)) assert polR == pytest.approx(0.3) bits[0] = 1 polR, polPhi = cmath.polar(eng.backend.get_amplitude(bits, qubits)) assert (polR == pytest.approx(math.sqrt(0.91))) All(Measure) | qubits # raises if not all qubits are in the list: with pytest.raises(RuntimeError): eng.backend.get_amplitude(bits, qubits[:-1]) # doesn't just check for length: with pytest.raises(RuntimeError): eng.backend.get_amplitude(bits, qubits[:-1] + [qubits[0]]) extra_qubit = eng.allocate_qubit() eng.flush() # there is a new qubit now! with pytest.raises(RuntimeError): eng.backend.get_amplitude(bits, qubits) def test_simulator_set_wavefunction(sim, mapper): engine_list = [LocalOptimizer()] if mapper is not None: engine_list.append(mapper) eng = MainEngine(sim, engine_list=engine_list) qubits = eng.allocate_qureg(2) wf = [0., 0., math.sqrt(0.2), math.sqrt(0.8)] with pytest.raises(RuntimeError): eng.backend.set_wavefunction(wf, qubits) eng.flush() eng.backend.set_wavefunction(wf, qubits) assert pytest.approx(eng.backend.get_probability('1', [qubits[0]])) == .8 assert pytest.approx(eng.backend.get_probability('01', qubits)) == .2 assert pytest.approx(eng.backend.get_probability('1', [qubits[1]])) == 1. All(Measure) | qubits def test_simulator_set_wavefunction_always_complex(sim): """ Checks that wavefunction is always complex """ eng = MainEngine(sim) qubit = eng.allocate_qubit() eng.flush() wf = [1., 0] eng.backend.set_wavefunction(wf, qubit) Y | qubit eng.flush() amplitude = eng.backend.get_amplitude('1', qubit) assert amplitude == pytest.approx(1j) or amplitude == pytest.approx(-1j) def test_simulator_collapse_wavefunction(sim, mapper): engine_list = [LocalOptimizer()] if mapper is not None: engine_list.append(mapper) eng = MainEngine(sim, engine_list=engine_list) qubits = eng.allocate_qureg(4) # unknown qubits: raises with pytest.raises(RuntimeError): eng.backend.collapse_wavefunction(qubits, [0] * 4) eng.flush() eng.backend.collapse_wavefunction(qubits, [0] * 4) assert pytest.approx(eng.backend.get_probability([0] * 4, qubits)) == 1. All(H) | qubits[1:] eng.flush() assert pytest.approx(eng.backend.get_probability([0] * 4, qubits)) == .125 # impossible outcome: raises with pytest.raises(RuntimeError): eng.backend.collapse_wavefunction(qubits, [1] + [0] * 3) eng.backend.collapse_wavefunction(qubits[:-1], [0, 1, 0]) probability = eng.backend.get_probability([0, 1, 0, 1], qubits) assert probability == pytest.approx(.5) eng.backend.set_wavefunction([1.] + [0.] * 15, qubits) H | qubits[0] CNOT | (qubits[0], qubits[1]) eng.flush() eng.backend.collapse_wavefunction([qubits[0]], [1]) probability = eng.backend.get_probability([1, 1], qubits[0:2]) assert probability == pytest.approx(1.) def test_simulator_no_uncompute_exception(sim): eng = MainEngine(sim, []) qubit = eng.allocate_qubit() H | qubit with pytest.raises(RuntimeError): qubit[0].__del__() # If you wanted to keep using the qubit, you shouldn't have deleted it. assert qubit[0].id == -1 def test_simulator_functional_entangle(sim): eng = MainEngine(sim, []) qubits = eng.allocate_qureg(5) # entangle all qubits: H | qubits[0] for qb in qubits[1:]: CNOT | (qubits[0], qb) # check the state vector: assert .5 == pytest.approx(abs(sim.cheat()[1][0])**2, rel=tolerance, abs=tolerance) assert .5 == pytest.approx(abs(sim.cheat()[1][31])**2, rel=tolerance, abs=tolerance) for i in range(1, 31): assert 0. == pytest.approx(abs(sim.cheat()[1][i]), rel=tolerance, abs=tolerance) # unentangle all except the first 2 for qb in qubits[2:]: CNOT | (qubits[0], qb) # entangle using Toffolis for qb in qubits[2:]: Toffoli | (qubits[0], qubits[1], qb) # check the state vector: assert .5 == pytest.approx(abs(sim.cheat()[1][0])**2, rel=tolerance, abs=tolerance) assert .5 == pytest.approx(abs(sim.cheat()[1][31])**2, rel=tolerance, abs=tolerance) for i in range(1, 31): assert 0. == pytest.approx(abs(sim.cheat()[1][i]), rel=tolerance, abs=tolerance) # uncompute using multi-controlled NOTs with Control(eng, qubits[0:-1]): X | qubits[-1] with Control(eng, qubits[0:-2]): X | qubits[-2] with Control(eng, qubits[0:-3]): X | qubits[-3] CNOT | (qubits[0], qubits[1]) H | qubits[0] # check the state vector: assert 1. == pytest.approx(abs(sim.cheat()[1][0])**2, rel=tolerance, abs=tolerance) for i in range(1, 32): assert 0. == pytest.approx(abs(sim.cheat()[1][i]), rel=tolerance, abs=tolerance) All(Measure) | qubits def test_simulator_convert_logical_to_mapped_qubits(sim): mapper = BasicMapperEngine() def receive(command_list): pass mapper.receive = receive eng = MainEngine(sim, [mapper]) qubit0 = eng.allocate_qubit() qubit1 = eng.allocate_qubit() mapper.current_mapping = {qubit0[0].id: qubit1[0].id, qubit1[0].id: qubit0[0].id} assert (sim._convert_logical_to_mapped_qureg(qubit0 + qubit1) == qubit1 + qubit0) def slow_implementation(angles, control_qubits, target_qubit, eng, gate_class): """ Assumption is that control_qubits[0] is lowest order bit We apply angles[0] to state |0> """ assert len(angles) == 2**len(control_qubits) for index in range(2**len(control_qubits)): with Compute(eng): for bit_pos in range(len(control_qubits)): if not (index >> bit_pos) & 1: X | control_qubits[bit_pos] with Control(eng, control_qubits): gate_class(angles[index]) | target_qubit Uncompute(eng) @pytest.mark.parametrize("gate_classes", [(Ry, UniformlyControlledRy), (Rz, UniformlyControlledRz)]) def test_uniformly_controlled_r(sim, gate_classes): n = 2 random_angles = [3.0, 0.8, 1.2, 0.7] basis_state_index = 2 basis_state = [0] * 2**(n+1) basis_state[basis_state_index] = 1. correct_eng = MainEngine(backend=Simulator()) test_eng = MainEngine(backend=sim) correct_sim = correct_eng.backend correct_qb = correct_eng.allocate_qubit() correct_ctrl_qureg = correct_eng.allocate_qureg(n) correct_eng.flush() test_sim = test_eng.backend test_qb = test_eng.allocate_qubit() test_ctrl_qureg = test_eng.allocate_qureg(n) test_eng.flush() correct_sim.set_wavefunction(basis_state, correct_qb + correct_ctrl_qureg) test_sim.set_wavefunction(basis_state, test_qb + test_ctrl_qureg) test_eng.flush() correct_eng.flush() gate_classes[1](random_angles) | (test_ctrl_qureg, test_qb) slow_implementation(angles=random_angles, control_qubits=correct_ctrl_qureg, target_qubit=correct_qb, eng=correct_eng, gate_class=gate_classes[0]) test_eng.flush() correct_eng.flush() for fstate in range(2**(n+1)): binary_state = format(fstate, '0' + str(n+1) + 'b') test = test_sim.get_amplitude(binary_state, test_qb + test_ctrl_qureg) correct = correct_sim.get_amplitude(binary_state, correct_qb + correct_ctrl_qureg) print(test, "==", correct) assert correct == pytest.approx(test, rel=tolerance, abs=tolerance) All(Measure) | test_qb + test_ctrl_qureg All(Measure) | correct_qb + correct_ctrl_qureg test_eng.flush(deallocate_qubits=True) correct_eng.flush(deallocate_qubits=True) def test_qubit_operator(sim): test_eng = MainEngine(sim) test_qureg = test_eng.allocate_qureg(1) test_eng.flush() qubit_op = QubitOperator("X0 X1", 1) with pytest.raises(Exception): sim.get_expectation_value(qubit_op, test_qureg) test_eng.backend.set_wavefunction([1, 0], test_qureg) test_eng.flush() qubit_op = QubitOperator("X0", 1) qubit_op | test_qureg[0] test_eng.flush() amplitude = test_eng.backend.get_amplitude('0', test_qureg) assert amplitude == pytest.approx(0.) amplitude = test_eng.backend.get_amplitude('1', test_qureg) assert amplitude == pytest.approx(1.) def test_get_expectation_value(sim): num_qubits = 2 test_eng = MainEngine(sim) test_qureg = test_eng.allocate_qureg(num_qubits) test_eng.flush() qubit_op = QubitOperator("X0 X1 X2", 1) with pytest.raises(Exception): sim.get_expectation_value(qubit_op, test_qureg) qubit_op = QubitOperator("X0", 1) test_eng.backend.set_wavefunction([1 / math.sqrt(2), 1 / math.sqrt(2), 0, 0], test_qureg) test_eng.flush() assert(sim.get_expectation_value(qubit_op, test_qureg) == pytest.approx(1, rel=tolerance, abs=tolerance)) test_eng.backend.set_wavefunction([1 / math.sqrt(2), -1 / math.sqrt(2), 0, 0], test_qureg) test_eng.flush() assert(sim.get_expectation_value(qubit_op, test_qureg) == pytest.approx(-1, rel=tolerance, abs=tolerance)) qubit_op = QubitOperator("Y0", 1) test_eng.backend.set_wavefunction([1 / math.sqrt(2), 1j / math.sqrt(2), 0, 0], test_qureg) test_eng.flush() assert(sim.get_expectation_value(qubit_op, test_qureg) == pytest.approx(1, rel=tolerance, abs=tolerance)) test_eng.backend.set_wavefunction([1 / math.sqrt(2), -1j / math.sqrt(2), 0, 0], test_qureg) test_eng.flush() assert(sim.get_expectation_value(qubit_op, test_qureg) == pytest.approx(-1, rel=tolerance, abs=tolerance)) qubit_op = QubitOperator("Z0", 1) test_eng.backend.set_wavefunction([1, 0, 0, 0], test_qureg) test_eng.flush() assert(sim.get_expectation_value(qubit_op, test_qureg) == pytest.approx(1, rel=tolerance, abs=tolerance)) test_eng.backend.set_wavefunction([0, 1, 0, 0], test_qureg) test_eng.flush() assert(sim.get_expectation_value(qubit_op, test_qureg) == pytest.approx(-1, rel=tolerance, abs=tolerance)) qubit_op = QubitOperator("Z0", 0.25) test_eng.backend.set_wavefunction([1, 0, 0, 0], test_qureg) test_eng.flush() assert(sim.get_expectation_value(qubit_op, test_qureg) == pytest.approx(0.25, rel=tolerance, abs=tolerance)) test_eng.backend.set_wavefunction([0, 1, 0, 0], test_qureg) test_eng.flush() assert(sim.get_expectation_value(qubit_op, test_qureg) == pytest.approx(-0.25, rel=tolerance, abs=tolerance)) qubit_op = QubitOperator("Z0 Z1", 1) test_eng.backend.set_wavefunction([1, 0, 0, 0], test_qureg) test_eng.flush() assert(sim.get_expectation_value(qubit_op, test_qureg) == pytest.approx(1, rel=tolerance, abs=tolerance)) X | test_qureg[0] test_eng.flush() assert(sim.get_expectation_value(qubit_op, test_qureg) == pytest.approx(-1, rel=tolerance, abs=tolerance)) X | test_qureg[1] test_eng.flush() assert(sim.get_expectation_value(qubit_op, test_qureg) == pytest.approx(1, rel=tolerance, abs=tolerance)) X | test_qureg[0] test_eng.flush() assert(sim.get_expectation_value(qubit_op, test_qureg) == pytest.approx(-1, rel=tolerance, abs=tolerance))
[ "projectq.types.WeakQubitRef", "math.acos", "projectq.MainEngine", "projectq.cengines.DummyEngine", "math.sqrt", "projectq.ops.All", "pytest.fixture", "projectq.libs.math.SubConstantModN", "projectq.libs.math.AddConstantModN", "projectq.ops.Rx", "projectq.libs.math.SubConstant", "numpy.eye", "projectq.meta.Compute", "projectq.ops.Ry", "projectq.meta.LogicalQubitIDTag", "projectq.cengines.BasicMapperEngine", "numpy.kron", "projectq.libs.math.AddConstant", "pytest.raises", "projectq.libs.math.MultiplyByConstantModN", "projectq.meta.Control", "projectq.ops.Rz", "projectq.backends._qracksim._qracksim.QrackSimulator", "pytest.approx", "projectq.ops.QubitOperator", "projectq.ops.Command", "projectq.cengines.BasicEngine.__init__", "projectq.cengines.LocalOptimizer", "projectq.backends.Simulator", "pytest.mark.parametrize", "pytest.importorskip", "projectq.ops.BasicGate.__init__", "numpy.matrix", "projectq.meta.Uncompute" ]
[((2688, 2734), 'pytest.fixture', 'pytest.fixture', ([], {'params': "['mapper', 'no_mapper']"}), "(params=['mapper', 'no_mapper'])\n", (2702, 2734), False, 'import pytest\n'), ((18744, 18847), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""gate_classes"""', '[(Ry, UniformlyControlledRy), (Rz, UniformlyControlledRz)]'], {}), "('gate_classes', [(Ry, UniformlyControlledRy), (Rz,\n UniformlyControlledRz)])\n", (18767, 18847), False, 'import pytest\n'), ((1832, 1892), 'pytest.importorskip', 'pytest.importorskip', (['"""projectq.backends._qracksim._qracksim"""'], {}), "('projectq.backends._qracksim._qracksim')\n", (1851, 1892), False, 'import pytest\n'), ((4517, 4548), 'projectq.cengines.DummyEngine', 'DummyEngine', ([], {'save_commands': '(True)'}), '(save_commands=True)\n', (4528, 4548), False, 'from projectq.cengines import BasicEngine, BasicMapperEngine, DummyEngine, LocalOptimizer, NotYetMeasuredError\n'), ((4559, 4582), 'projectq.MainEngine', 'MainEngine', (['backend', '[]'], {}), '(backend, [])\n', (4569, 4582), False, 'from projectq import MainEngine\n'), ((5241, 5262), 'projectq.libs.math.AddConstantModN', 'AddConstantModN', (['(1)', '(2)'], {}), '(1, 2)\n', (5256, 5262), False, 'from projectq.libs.math import AddConstant, AddConstantModN, SubConstant, SubConstantModN, MultiplyByConstantModN\n'), ((5320, 5348), 'projectq.libs.math.MultiplyByConstantModN', 'MultiplyByConstantModN', (['(1)', '(2)'], {}), '(1, 2)\n', (5342, 5348), False, 'from projectq.libs.math import AddConstant, AddConstantModN, SubConstant, SubConstantModN, MultiplyByConstantModN\n'), ((5781, 5800), 'projectq.MainEngine', 'MainEngine', (['sim', '[]'], {}), '(sim, [])\n', (5791, 5800), False, 'from projectq import MainEngine\n'), ((6255, 6274), 'projectq.MainEngine', 'MainEngine', (['sim', '[]'], {}), '(sim, [])\n', (6265, 6274), False, 'from projectq import MainEngine\n'), ((6608, 6627), 'projectq.MainEngine', 'MainEngine', (['sim', '[]'], {}), '(sim, [])\n', (6618, 6627), False, 'from projectq import MainEngine\n'), ((6638, 6669), 'projectq.types.WeakQubitRef', 'WeakQubitRef', ([], {'engine': 'eng', 'idx': '(1)'}), '(engine=eng, idx=1)\n', (6650, 6669), False, 'from projectq.types import WeakQubitRef\n'), ((6680, 6711), 'projectq.types.WeakQubitRef', 'WeakQubitRef', ([], {'engine': 'eng', 'idx': '(2)'}), '(engine=eng, idx=2)\n', (6692, 6711), False, 'from projectq.types import WeakQubitRef\n'), ((6723, 6774), 'projectq.ops.Command', 'Command', ([], {'engine': 'eng', 'gate': 'Allocate', 'qubits': '([qb1],)'}), '(engine=eng, gate=Allocate, qubits=([qb1],))\n', (6730, 6774), False, 'from projectq.ops import All, Allocate, BasicGate, BasicMathGate, CNOT, C, Command, H, Measure, QubitOperator, Rx, Ry, Rz, S, TimeEvolution, Toffoli, X, Y, Z, Swap, SqrtSwap, UniformlyControlledRy, UniformlyControlledRz\n'), ((6786, 6830), 'projectq.ops.Command', 'Command', ([], {'engine': 'eng', 'gate': 'X', 'qubits': '([qb1],)'}), '(engine=eng, gate=X, qubits=([qb1],))\n', (6793, 6830), False, 'from projectq.ops import All, Allocate, BasicGate, BasicMathGate, CNOT, C, Command, H, Measure, QubitOperator, Rx, Ry, Rz, S, TimeEvolution, Toffoli, X, Y, Z, Swap, SqrtSwap, UniformlyControlledRy, UniformlyControlledRz\n'), ((7544, 7563), 'projectq.MainEngine', 'MainEngine', (['sim', '[]'], {}), '(sim, [])\n', (7554, 7563), False, 'from projectq import MainEngine\n'), ((7757, 7776), 'projectq.MainEngine', 'MainEngine', (['sim', '[]'], {}), '(sim, [])\n', (7767, 7776), False, 'from projectq import MainEngine\n'), ((8238, 8257), 'projectq.MainEngine', 'MainEngine', (['sim', '[]'], {}), '(sim, [])\n', (8248, 8257), False, 'from projectq import MainEngine\n'), ((10462, 10502), 'projectq.MainEngine', 'MainEngine', (['sim'], {'engine_list': 'engine_list'}), '(sim, engine_list=engine_list)\n', (10472, 10502), False, 'from projectq import MainEngine\n'), ((11724, 11764), 'projectq.MainEngine', 'MainEngine', (['sim'], {'engine_list': 'engine_list'}), '(sim, engine_list=engine_list)\n', (11734, 11764), False, 'from projectq import MainEngine\n'), ((13589, 13629), 'projectq.MainEngine', 'MainEngine', (['sim'], {'engine_list': 'engine_list'}), '(sim, engine_list=engine_list)\n', (13599, 13629), False, 'from projectq import MainEngine\n'), ((14243, 14258), 'projectq.MainEngine', 'MainEngine', (['sim'], {}), '(sim)\n', (14253, 14258), False, 'from projectq import MainEngine\n'), ((14696, 14736), 'projectq.MainEngine', 'MainEngine', (['sim'], {'engine_list': 'engine_list'}), '(sim, engine_list=engine_list)\n', (14706, 14736), False, 'from projectq import MainEngine\n'), ((15829, 15848), 'projectq.MainEngine', 'MainEngine', (['sim', '[]'], {}), '(sim, [])\n', (15839, 15848), False, 'from projectq import MainEngine\n'), ((16123, 16142), 'projectq.MainEngine', 'MainEngine', (['sim', '[]'], {}), '(sim, [])\n', (16133, 16142), False, 'from projectq import MainEngine\n'), ((17740, 17759), 'projectq.cengines.BasicMapperEngine', 'BasicMapperEngine', ([], {}), '()\n', (17757, 17759), False, 'from projectq.cengines import BasicEngine, BasicMapperEngine, DummyEngine, LocalOptimizer, NotYetMeasuredError\n'), ((17845, 17870), 'projectq.MainEngine', 'MainEngine', (['sim', '[mapper]'], {}), '(sim, [mapper])\n', (17855, 17870), False, 'from projectq import MainEngine\n'), ((19155, 19178), 'projectq.MainEngine', 'MainEngine', ([], {'backend': 'sim'}), '(backend=sim)\n', (19165, 19178), False, 'from projectq import MainEngine\n'), ((20729, 20744), 'projectq.MainEngine', 'MainEngine', (['sim'], {}), '(sim)\n', (20739, 20744), False, 'from projectq import MainEngine\n'), ((20826, 20851), 'projectq.ops.QubitOperator', 'QubitOperator', (['"""X0 X1"""', '(1)'], {}), "('X0 X1', 1)\n", (20839, 20851), False, 'from projectq.ops import All, Allocate, BasicGate, BasicMathGate, CNOT, C, Command, H, Measure, QubitOperator, Rx, Ry, Rz, S, TimeEvolution, Toffoli, X, Y, Z, Swap, SqrtSwap, UniformlyControlledRy, UniformlyControlledRz\n'), ((21076, 21098), 'projectq.ops.QubitOperator', 'QubitOperator', (['"""X0"""', '(1)'], {}), "('X0', 1)\n", (21089, 21098), False, 'from projectq.ops import All, Allocate, BasicGate, BasicMathGate, CNOT, C, Command, H, Measure, QubitOperator, Rx, Ry, Rz, S, TimeEvolution, Toffoli, X, Y, Z, Swap, SqrtSwap, UniformlyControlledRy, UniformlyControlledRz\n'), ((21434, 21449), 'projectq.MainEngine', 'MainEngine', (['sim'], {}), '(sim)\n', (21444, 21449), False, 'from projectq import MainEngine\n'), ((21540, 21568), 'projectq.ops.QubitOperator', 'QubitOperator', (['"""X0 X1 X2"""', '(1)'], {}), "('X0 X1 X2', 1)\n", (21553, 21568), False, 'from projectq.ops import All, Allocate, BasicGate, BasicMathGate, CNOT, C, Command, H, Measure, QubitOperator, Rx, Ry, Rz, S, TimeEvolution, Toffoli, X, Y, Z, Swap, SqrtSwap, UniformlyControlledRy, UniformlyControlledRz\n'), ((21676, 21698), 'projectq.ops.QubitOperator', 'QubitOperator', (['"""X0"""', '(1)'], {}), "('X0', 1)\n", (21689, 21698), False, 'from projectq.ops import All, Allocate, BasicGate, BasicMathGate, CNOT, C, Command, H, Measure, QubitOperator, Rx, Ry, Rz, S, TimeEvolution, Toffoli, X, Y, Z, Swap, SqrtSwap, UniformlyControlledRy, UniformlyControlledRz\n'), ((22243, 22265), 'projectq.ops.QubitOperator', 'QubitOperator', (['"""Y0"""', '(1)'], {}), "('Y0', 1)\n", (22256, 22265), False, 'from projectq.ops import All, Allocate, BasicGate, BasicMathGate, CNOT, C, Command, H, Measure, QubitOperator, Rx, Ry, Rz, S, TimeEvolution, Toffoli, X, Y, Z, Swap, SqrtSwap, UniformlyControlledRy, UniformlyControlledRz\n'), ((22812, 22834), 'projectq.ops.QubitOperator', 'QubitOperator', (['"""Z0"""', '(1)'], {}), "('Z0', 1)\n", (22825, 22834), False, 'from projectq.ops import All, Allocate, BasicGate, BasicMathGate, CNOT, C, Command, H, Measure, QubitOperator, Rx, Ry, Rz, S, TimeEvolution, Toffoli, X, Y, Z, Swap, SqrtSwap, UniformlyControlledRy, UniformlyControlledRz\n'), ((23318, 23343), 'projectq.ops.QubitOperator', 'QubitOperator', (['"""Z0"""', '(0.25)'], {}), "('Z0', 0.25)\n", (23331, 23343), False, 'from projectq.ops import All, Allocate, BasicGate, BasicMathGate, CNOT, C, Command, H, Measure, QubitOperator, Rx, Ry, Rz, S, TimeEvolution, Toffoli, X, Y, Z, Swap, SqrtSwap, UniformlyControlledRy, UniformlyControlledRz\n'), ((23833, 23858), 'projectq.ops.QubitOperator', 'QubitOperator', (['"""Z0 Z1"""', '(1)'], {}), "('Z0 Z1', 1)\n", (23846, 23858), False, 'from projectq.ops import All, Allocate, BasicGate, BasicMathGate, CNOT, C, Command, H, Measure, QubitOperator, Rx, Ry, Rz, S, TimeEvolution, Toffoli, X, Y, Z, Swap, SqrtSwap, UniformlyControlledRy, UniformlyControlledRz\n'), ((2408, 2419), 'projectq.backends.Simulator', 'Simulator', ([], {}), '()\n', (2417, 2419), False, 'from projectq.backends import Simulator\n'), ((2445, 2463), 'projectq.backends._qracksim._qracksim.QrackSimulator', 'QrackSim', (['(1)', '(-1)', '(1)'], {}), '(1, -1, 1)\n', (2453, 2463), True, 'from projectq.backends._qracksim._qracksim import QrackSimulator as QrackSim\n'), ((3795, 3819), 'projectq.ops.BasicGate.__init__', 'BasicGate.__init__', (['self'], {}), '(self)\n', (3813, 3819), False, 'from projectq.ops import All, Allocate, BasicGate, BasicMathGate, CNOT, C, Command, H, Measure, QubitOperator, Rx, Ry, Rz, S, TimeEvolution, Toffoli, X, Y, Z, Swap, SqrtSwap, UniformlyControlledRy, UniformlyControlledRz\n'), ((3935, 3965), 'numpy.matrix', 'numpy.matrix', (['[[0, 1], [1, 0]]'], {}), '([[0, 1], [1, 0]])\n', (3947, 3965), False, 'import numpy\n'), ((4074, 4098), 'projectq.ops.BasicGate.__init__', 'BasicGate.__init__', (['self'], {}), '(self)\n', (4092, 4098), False, 'from projectq.ops import All, Allocate, BasicGate, BasicMathGate, CNOT, C, Command, H, Measure, QubitOperator, Rx, Ry, Rz, S, TimeEvolution, Toffoli, X, Y, Z, Swap, SqrtSwap, UniformlyControlledRy, UniformlyControlledRz\n'), ((4214, 4231), 'numpy.eye', 'numpy.eye', (['(2 ** 6)'], {}), '(2 ** 6)\n', (4223, 4231), False, 'import numpy\n'), ((4309, 4333), 'projectq.ops.BasicGate.__init__', 'BasicGate.__init__', (['self'], {}), '(self)\n', (4327, 4333), False, 'from projectq.ops import All, Allocate, BasicGate, BasicMathGate, CNOT, C, Command, H, Measure, QubitOperator, Rx, Ry, Rz, S, TimeEvolution, Toffoli, X, Y, Z, Swap, SqrtSwap, UniformlyControlledRy, UniformlyControlledRz\n'), ((6417, 6429), 'projectq.ops.All', 'All', (['Measure'], {}), '(Measure)\n', (6420, 6429), False, 'from projectq.ops import All, Allocate, BasicGate, BasicMathGate, CNOT, C, Command, H, Measure, QubitOperator, Rx, Ry, Rz, S, TimeEvolution, Toffoli, X, Y, Z, Swap, SqrtSwap, UniformlyControlledRy, UniformlyControlledRz\n'), ((6963, 6997), 'pytest.raises', 'pytest.raises', (['NotYetMeasuredError'], {}), '(NotYetMeasuredError)\n', (6976, 6997), False, 'import pytest\n'), ((7025, 7059), 'pytest.raises', 'pytest.raises', (['NotYetMeasuredError'], {}), '(NotYetMeasuredError)\n', (7038, 7059), False, 'import pytest\n'), ((7136, 7170), 'pytest.raises', 'pytest.raises', (['NotYetMeasuredError'], {}), '(NotYetMeasuredError)\n', (7149, 7170), False, 'import pytest\n'), ((7267, 7274), 'projectq.ops.Rx', 'Rx', (['(0.3)'], {}), '(0.3)\n', (7269, 7274), False, 'from projectq.ops import All, Allocate, BasicGate, BasicMathGate, CNOT, C, Command, H, Measure, QubitOperator, Rx, Ry, Rz, S, TimeEvolution, Toffoli, X, Y, Z, Swap, SqrtSwap, UniformlyControlledRy, UniformlyControlledRz\n'), ((7291, 7298), 'projectq.ops.Rx', 'Rx', (['(0.8)'], {}), '(0.8)\n', (7293, 7298), False, 'from projectq.ops import All, Allocate, BasicGate, BasicMathGate, CNOT, C, Command, H, Measure, QubitOperator, Rx, Ry, Rz, S, TimeEvolution, Toffoli, X, Y, Z, Swap, SqrtSwap, UniformlyControlledRy, UniformlyControlledRz\n'), ((7315, 7322), 'projectq.ops.Ry', 'Ry', (['(0.1)'], {}), '(0.1)\n', (7317, 7322), False, 'from projectq.ops import All, Allocate, BasicGate, BasicMathGate, CNOT, C, Command, H, Measure, QubitOperator, Rx, Ry, Rz, S, TimeEvolution, Toffoli, X, Y, Z, Swap, SqrtSwap, UniformlyControlledRy, UniformlyControlledRz\n'), ((7607, 7631), 'pytest.raises', 'pytest.raises', (['Exception'], {}), '(Exception)\n', (7620, 7631), False, 'import pytest\n'), ((7671, 7695), 'pytest.raises', 'pytest.raises', (['Exception'], {}), '(Exception)\n', (7684, 7695), False, 'import pytest\n'), ((7901, 7913), 'projectq.ops.All', 'All', (['Measure'], {}), '(Measure)\n', (7904, 7913), False, 'from projectq.ops import All, Allocate, BasicGate, BasicMathGate, CNOT, C, Command, H, Measure, QubitOperator, Rx, Ry, Rz, S, TimeEvolution, Toffoli, X, Y, Z, Swap, SqrtSwap, UniformlyControlledRy, UniformlyControlledRz\n'), ((7928, 7940), 'projectq.ops.All', 'All', (['Measure'], {}), '(Measure)\n', (7931, 7940), False, 'from projectq.ops import All, Allocate, BasicGate, BasicMathGate, CNOT, C, Command, H, Measure, QubitOperator, Rx, Ry, Rz, S, TimeEvolution, Toffoli, X, Y, Z, Swap, SqrtSwap, UniformlyControlledRy, UniformlyControlledRz\n'), ((8085, 8097), 'projectq.ops.All', 'All', (['Measure'], {}), '(Measure)\n', (8088, 8097), False, 'from projectq.ops import All, Allocate, BasicGate, BasicMathGate, CNOT, C, Command, H, Measure, QubitOperator, Rx, Ry, Rz, S, TimeEvolution, Toffoli, X, Y, Z, Swap, SqrtSwap, UniformlyControlledRy, UniformlyControlledRz\n'), ((8112, 8124), 'projectq.ops.All', 'All', (['Measure'], {}), '(Measure)\n', (8115, 8124), False, 'from projectq.ops import All, Allocate, BasicGate, BasicMathGate, CNOT, C, Command, H, Measure, QubitOperator, Rx, Ry, Rz, S, TimeEvolution, Toffoli, X, Y, Z, Swap, SqrtSwap, UniformlyControlledRy, UniformlyControlledRz\n'), ((8298, 8312), 'projectq.libs.math.AddConstant', 'AddConstant', (['(1)'], {}), '(1)\n', (8309, 8312), False, 'from projectq.libs.math import AddConstant, AddConstantModN, SubConstant, SubConstantModN, MultiplyByConstantModN\n'), ((8327, 8339), 'projectq.ops.All', 'All', (['Measure'], {}), '(Measure)\n', (8330, 8339), False, 'from projectq.ops import All, Allocate, BasicGate, BasicMathGate, CNOT, C, Command, H, Measure, QubitOperator, Rx, Ry, Rz, S, TimeEvolution, Toffoli, X, Y, Z, Swap, SqrtSwap, UniformlyControlledRy, UniformlyControlledRz\n'), ((8460, 8484), 'projectq.libs.math.AddConstantModN', 'AddConstantModN', (['(10)', '(256)'], {}), '(10, 256)\n', (8475, 8484), False, 'from projectq.libs.math import AddConstant, AddConstantModN, SubConstant, SubConstantModN, MultiplyByConstantModN\n'), ((8499, 8511), 'projectq.ops.All', 'All', (['Measure'], {}), '(Measure)\n', (8502, 8511), False, 'from projectq.ops import All, Allocate, BasicGate, BasicMathGate, CNOT, C, Command, H, Measure, QubitOperator, Rx, Ry, Rz, S, TimeEvolution, Toffoli, X, Y, Z, Swap, SqrtSwap, UniformlyControlledRy, UniformlyControlledRz\n'), ((8745, 8757), 'projectq.ops.All', 'All', (['Measure'], {}), '(Measure)\n', (8748, 8757), False, 'from projectq.ops import All, Allocate, BasicGate, BasicMathGate, CNOT, C, Command, H, Measure, QubitOperator, Rx, Ry, Rz, S, TimeEvolution, Toffoli, X, Y, Z, Swap, SqrtSwap, UniformlyControlledRy, UniformlyControlledRz\n'), ((8972, 8984), 'projectq.ops.All', 'All', (['Measure'], {}), '(Measure)\n', (8975, 8984), False, 'from projectq.ops import All, Allocate, BasicGate, BasicMathGate, CNOT, C, Command, H, Measure, QubitOperator, Rx, Ry, Rz, S, TimeEvolution, Toffoli, X, Y, Z, Swap, SqrtSwap, UniformlyControlledRy, UniformlyControlledRz\n'), ((9106, 9120), 'projectq.libs.math.SubConstant', 'SubConstant', (['(5)'], {}), '(5)\n', (9117, 9120), False, 'from projectq.libs.math import AddConstant, AddConstantModN, SubConstant, SubConstantModN, MultiplyByConstantModN\n'), ((9135, 9147), 'projectq.ops.All', 'All', (['Measure'], {}), '(Measure)\n', (9138, 9147), False, 'from projectq.ops import All, Allocate, BasicGate, BasicMathGate, CNOT, C, Command, H, Measure, QubitOperator, Rx, Ry, Rz, S, TimeEvolution, Toffoli, X, Y, Z, Swap, SqrtSwap, UniformlyControlledRy, UniformlyControlledRz\n'), ((9322, 9334), 'projectq.ops.All', 'All', (['Measure'], {}), '(Measure)\n', (9325, 9334), False, 'from projectq.ops import All, Allocate, BasicGate, BasicMathGate, CNOT, C, Command, H, Measure, QubitOperator, Rx, Ry, Rz, S, TimeEvolution, Toffoli, X, Y, Z, Swap, SqrtSwap, UniformlyControlledRy, UniformlyControlledRz\n'), ((9549, 9561), 'projectq.ops.All', 'All', (['Measure'], {}), '(Measure)\n', (9552, 9561), False, 'from projectq.ops import All, Allocate, BasicGate, BasicMathGate, CNOT, C, Command, H, Measure, QubitOperator, Rx, Ry, Rz, S, TimeEvolution, Toffoli, X, Y, Z, Swap, SqrtSwap, UniformlyControlledRy, UniformlyControlledRz\n'), ((9682, 9712), 'projectq.libs.math.MultiplyByConstantModN', 'MultiplyByConstantModN', (['(2)', '(256)'], {}), '(2, 256)\n', (9704, 9712), False, 'from projectq.libs.math import AddConstant, AddConstantModN, SubConstant, SubConstantModN, MultiplyByConstantModN\n'), ((9727, 9739), 'projectq.ops.All', 'All', (['Measure'], {}), '(Measure)\n', (9730, 9739), False, 'from projectq.ops import All, Allocate, BasicGate, BasicMathGate, CNOT, C, Command, H, Measure, QubitOperator, Rx, Ry, Rz, S, TimeEvolution, Toffoli, X, Y, Z, Swap, SqrtSwap, UniformlyControlledRy, UniformlyControlledRz\n'), ((9942, 9954), 'projectq.ops.All', 'All', (['Measure'], {}), '(Measure)\n', (9945, 9954), False, 'from projectq.ops import All, Allocate, BasicGate, BasicMathGate, CNOT, C, Command, H, Measure, QubitOperator, Rx, Ry, Rz, S, TimeEvolution, Toffoli, X, Y, Z, Swap, SqrtSwap, UniformlyControlledRy, UniformlyControlledRz\n'), ((10176, 10188), 'projectq.ops.All', 'All', (['Measure'], {}), '(Measure)\n', (10179, 10188), False, 'from projectq.ops import All, Allocate, BasicGate, BasicMathGate, CNOT, C, Command, H, Measure, QubitOperator, Rx, Ry, Rz, S, TimeEvolution, Toffoli, X, Y, Z, Swap, SqrtSwap, UniformlyControlledRy, UniformlyControlledRz\n'), ((10372, 10388), 'projectq.cengines.LocalOptimizer', 'LocalOptimizer', ([], {}), '()\n', (10386, 10388), False, 'from projectq.cengines import BasicEngine, BasicMapperEngine, DummyEngine, LocalOptimizer, NotYetMeasuredError\n'), ((10542, 10548), 'projectq.ops.All', 'All', (['H'], {}), '(H)\n', (10545, 10548), False, 'from projectq.ops import All, Allocate, BasicGate, BasicMathGate, CNOT, C, Command, H, Measure, QubitOperator, Rx, Ry, Rz, S, TimeEvolution, Toffoli, X, Y, Z, Swap, SqrtSwap, UniformlyControlledRy, UniformlyControlledRz\n'), ((10783, 10810), 'pytest.raises', 'pytest.raises', (['RuntimeError'], {}), '(RuntimeError)\n', (10796, 10810), False, 'import pytest\n'), ((10890, 10896), 'projectq.ops.All', 'All', (['H'], {}), '(H)\n', (10893, 10896), False, 'from projectq.ops import All, Allocate, BasicGate, BasicMathGate, CNOT, C, Command, H, Measure, QubitOperator, Rx, Ry, Rz, S, TimeEvolution, Toffoli, X, Y, Z, Swap, SqrtSwap, UniformlyControlledRy, UniformlyControlledRz\n'), ((11032, 11050), 'pytest.approx', 'pytest.approx', (['(0.3)'], {}), '(0.3)\n', (11045, 11050), False, 'import pytest\n'), ((11177, 11195), 'pytest.approx', 'pytest.approx', (['(0.4)'], {}), '(0.4)\n', (11190, 11195), False, 'import pytest\n'), ((11548, 11560), 'projectq.ops.All', 'All', (['Measure'], {}), '(Measure)\n', (11551, 11560), False, 'from projectq.ops import All, Allocate, BasicGate, BasicMathGate, CNOT, C, Command, H, Measure, QubitOperator, Rx, Ry, Rz, S, TimeEvolution, Toffoli, X, Y, Z, Swap, SqrtSwap, UniformlyControlledRy, UniformlyControlledRz\n'), ((11634, 11650), 'projectq.cengines.LocalOptimizer', 'LocalOptimizer', ([], {}), '()\n', (11648, 11650), False, 'from projectq.cengines import BasicEngine, BasicMapperEngine, DummyEngine, LocalOptimizer, NotYetMeasuredError\n'), ((11804, 11810), 'projectq.ops.All', 'All', (['X'], {}), '(X)\n', (11807, 11810), False, 'from projectq.ops import All, Allocate, BasicGate, BasicMathGate, CNOT, C, Command, H, Measure, QubitOperator, Rx, Ry, Rz, S, TimeEvolution, Toffoli, X, Y, Z, Swap, SqrtSwap, UniformlyControlledRy, UniformlyControlledRz\n'), ((11824, 11830), 'projectq.ops.All', 'All', (['H'], {}), '(H)\n', (11827, 11830), False, 'from projectq.ops import All, Allocate, BasicGate, BasicMathGate, CNOT, C, Command, H, Measure, QubitOperator, Rx, Ry, Rz, S, TimeEvolution, Toffoli, X, Y, Z, Swap, SqrtSwap, UniformlyControlledRy, UniformlyControlledRz\n'), ((12029, 12053), 'pytest.approx', 'pytest.approx', (['(1.0 / 8.0)'], {}), '(1.0 / 8.0)\n', (12042, 12053), False, 'import pytest\n'), ((12236, 12255), 'pytest.approx', 'pytest.approx', (['polR'], {}), '(polR)\n', (12249, 12255), False, 'import pytest\n'), ((12290, 12311), 'pytest.approx', 'pytest.approx', (['polPhi'], {}), '(polPhi)\n', (12303, 12311), False, 'import pytest\n'), ((12496, 12515), 'pytest.approx', 'pytest.approx', (['polR'], {}), '(polR)\n', (12509, 12515), False, 'import pytest\n'), ((12550, 12571), 'pytest.approx', 'pytest.approx', (['polPhi'], {}), '(polPhi)\n', (12563, 12571), False, 'import pytest\n'), ((12576, 12582), 'projectq.ops.All', 'All', (['H'], {}), '(H)\n', (12579, 12582), False, 'from projectq.ops import All, Allocate, BasicGate, BasicMathGate, CNOT, C, Command, H, Measure, QubitOperator, Rx, Ry, Rz, S, TimeEvolution, Toffoli, X, Y, Z, Swap, SqrtSwap, UniformlyControlledRy, UniformlyControlledRz\n'), ((12596, 12602), 'projectq.ops.All', 'All', (['X'], {}), '(X)\n', (12599, 12602), False, 'from projectq.ops import All, Allocate, BasicGate, BasicMathGate, CNOT, C, Command, H, Measure, QubitOperator, Rx, Ry, Rz, S, TimeEvolution, Toffoli, X, Y, Z, Swap, SqrtSwap, UniformlyControlledRy, UniformlyControlledRz\n'), ((12777, 12795), 'pytest.approx', 'pytest.approx', (['(0.3)'], {}), '(0.3)\n', (12790, 12795), False, 'import pytest\n'), ((12952, 12964), 'projectq.ops.All', 'All', (['Measure'], {}), '(Measure)\n', (12955, 12964), False, 'from projectq.ops import All, Allocate, BasicGate, BasicMathGate, CNOT, C, Command, H, Measure, QubitOperator, Rx, Ry, Rz, S, TimeEvolution, Toffoli, X, Y, Z, Swap, SqrtSwap, UniformlyControlledRy, UniformlyControlledRz\n'), ((13031, 13058), 'pytest.raises', 'pytest.raises', (['RuntimeError'], {}), '(RuntimeError)\n', (13044, 13058), False, 'import pytest\n'), ((13159, 13186), 'pytest.raises', 'pytest.raises', (['RuntimeError'], {}), '(RuntimeError)\n', (13172, 13186), False, 'import pytest\n'), ((13351, 13378), 'pytest.raises', 'pytest.raises', (['RuntimeError'], {}), '(RuntimeError)\n', (13364, 13378), False, 'import pytest\n'), ((13499, 13515), 'projectq.cengines.LocalOptimizer', 'LocalOptimizer', ([], {}), '()\n', (13513, 13515), False, 'from projectq.cengines import BasicEngine, BasicMapperEngine, DummyEngine, LocalOptimizer, NotYetMeasuredError\n'), ((13683, 13697), 'math.sqrt', 'math.sqrt', (['(0.2)'], {}), '(0.2)\n', (13692, 13697), False, 'import math\n'), ((13699, 13713), 'math.sqrt', 'math.sqrt', (['(0.8)'], {}), '(0.8)\n', (13708, 13713), False, 'import math\n'), ((13724, 13751), 'pytest.raises', 'pytest.raises', (['RuntimeError'], {}), '(RuntimeError)\n', (13737, 13751), False, 'import pytest\n'), ((14097, 14109), 'projectq.ops.All', 'All', (['Measure'], {}), '(Measure)\n', (14100, 14109), False, 'from projectq.ops import All, Allocate, BasicGate, BasicMathGate, CNOT, C, Command, H, Measure, QubitOperator, Rx, Ry, Rz, S, TimeEvolution, Toffoli, X, Y, Z, Swap, SqrtSwap, UniformlyControlledRy, UniformlyControlledRz\n'), ((14606, 14622), 'projectq.cengines.LocalOptimizer', 'LocalOptimizer', ([], {}), '()\n', (14620, 14622), False, 'from projectq.cengines import BasicEngine, BasicMapperEngine, DummyEngine, LocalOptimizer, NotYetMeasuredError\n'), ((14810, 14837), 'pytest.raises', 'pytest.raises', (['RuntimeError'], {}), '(RuntimeError)\n', (14823, 14837), False, 'import pytest\n'), ((15050, 15056), 'projectq.ops.All', 'All', (['H'], {}), '(H)\n', (15053, 15056), False, 'from projectq.ops import All, Allocate, BasicGate, BasicMathGate, CNOT, C, Command, H, Measure, QubitOperator, Rx, Ry, Rz, S, TimeEvolution, Toffoli, X, Y, Z, Swap, SqrtSwap, UniformlyControlledRy, UniformlyControlledRz\n'), ((15207, 15234), 'pytest.raises', 'pytest.raises', (['RuntimeError'], {}), '(RuntimeError)\n', (15220, 15234), False, 'import pytest\n'), ((15457, 15475), 'pytest.approx', 'pytest.approx', (['(0.5)'], {}), '(0.5)\n', (15470, 15475), False, 'import pytest\n'), ((15751, 15769), 'pytest.approx', 'pytest.approx', (['(1.0)'], {}), '(1.0)\n', (15764, 15769), False, 'import pytest\n'), ((15905, 15932), 'pytest.raises', 'pytest.raises', (['RuntimeError'], {}), '(RuntimeError)\n', (15918, 15932), False, 'import pytest\n'), ((17182, 17208), 'projectq.meta.Control', 'Control', (['eng', 'qubits[0:-1]'], {}), '(eng, qubits[0:-1])\n', (17189, 17208), False, 'from projectq.meta import Compute, Uncompute, Control, Dagger, LogicalQubitIDTag\n'), ((17242, 17268), 'projectq.meta.Control', 'Control', (['eng', 'qubits[0:-2]'], {}), '(eng, qubits[0:-2])\n', (17249, 17268), False, 'from projectq.meta import Compute, Uncompute, Control, Dagger, LogicalQubitIDTag\n'), ((17302, 17328), 'projectq.meta.Control', 'Control', (['eng', 'qubits[0:-3]'], {}), '(eng, qubits[0:-3])\n', (17309, 17328), False, 'from projectq.meta import Compute, Uncompute, Control, Dagger, LogicalQubitIDTag\n'), ((17645, 17657), 'projectq.ops.All', 'All', (['Measure'], {}), '(Measure)\n', (17648, 17657), False, 'from projectq.ops import All, Allocate, BasicGate, BasicMathGate, CNOT, C, Command, H, Measure, QubitOperator, Rx, Ry, Rz, S, TimeEvolution, Toffoli, X, Y, Z, Swap, SqrtSwap, UniformlyControlledRy, UniformlyControlledRz\n'), ((18726, 18740), 'projectq.meta.Uncompute', 'Uncompute', (['eng'], {}), '(eng)\n', (18735, 18740), False, 'from projectq.meta import Compute, Uncompute, Control, Dagger, LogicalQubitIDTag\n'), ((20502, 20514), 'projectq.ops.All', 'All', (['Measure'], {}), '(Measure)\n', (20505, 20514), False, 'from projectq.ops import All, Allocate, BasicGate, BasicMathGate, CNOT, C, Command, H, Measure, QubitOperator, Rx, Ry, Rz, S, TimeEvolution, Toffoli, X, Y, Z, Swap, SqrtSwap, UniformlyControlledRy, UniformlyControlledRz\n'), ((20547, 20559), 'projectq.ops.All', 'All', (['Measure'], {}), '(Measure)\n', (20550, 20559), False, 'from projectq.ops import All, Allocate, BasicGate, BasicMathGate, CNOT, C, Command, H, Measure, QubitOperator, Rx, Ry, Rz, S, TimeEvolution, Toffoli, X, Y, Z, Swap, SqrtSwap, UniformlyControlledRy, UniformlyControlledRz\n'), ((20861, 20885), 'pytest.raises', 'pytest.raises', (['Exception'], {}), '(Exception)\n', (20874, 20885), False, 'import pytest\n'), ((21238, 21256), 'pytest.approx', 'pytest.approx', (['(0.0)'], {}), '(0.0)\n', (21251, 21256), False, 'import pytest\n'), ((21344, 21362), 'pytest.approx', 'pytest.approx', (['(1.0)'], {}), '(1.0)\n', (21357, 21362), False, 'import pytest\n'), ((21578, 21602), 'pytest.raises', 'pytest.raises', (['Exception'], {}), '(Exception)\n', (21591, 21602), False, 'import pytest\n'), ((21914, 21960), 'pytest.approx', 'pytest.approx', (['(1)'], {'rel': 'tolerance', 'abs': 'tolerance'}), '(1, rel=tolerance, abs=tolerance)\n', (21927, 21960), False, 'import pytest\n'), ((22178, 22225), 'pytest.approx', 'pytest.approx', (['(-1)'], {'rel': 'tolerance', 'abs': 'tolerance'}), '(-1, rel=tolerance, abs=tolerance)\n', (22191, 22225), False, 'import pytest\n'), ((22482, 22528), 'pytest.approx', 'pytest.approx', (['(1)'], {'rel': 'tolerance', 'abs': 'tolerance'}), '(1, rel=tolerance, abs=tolerance)\n', (22495, 22528), False, 'import pytest\n'), ((22747, 22794), 'pytest.approx', 'pytest.approx', (['(-1)'], {'rel': 'tolerance', 'abs': 'tolerance'}), '(-1, rel=tolerance, abs=tolerance)\n', (22760, 22794), False, 'import pytest\n'), ((23020, 23066), 'pytest.approx', 'pytest.approx', (['(1)'], {'rel': 'tolerance', 'abs': 'tolerance'}), '(1, rel=tolerance, abs=tolerance)\n', (23033, 23066), False, 'import pytest\n'), ((23253, 23300), 'pytest.approx', 'pytest.approx', (['(-1)'], {'rel': 'tolerance', 'abs': 'tolerance'}), '(-1, rel=tolerance, abs=tolerance)\n', (23266, 23300), False, 'import pytest\n'), ((23529, 23578), 'pytest.approx', 'pytest.approx', (['(0.25)'], {'rel': 'tolerance', 'abs': 'tolerance'}), '(0.25, rel=tolerance, abs=tolerance)\n', (23542, 23578), False, 'import pytest\n'), ((23765, 23815), 'pytest.approx', 'pytest.approx', (['(-0.25)'], {'rel': 'tolerance', 'abs': 'tolerance'}), '(-0.25, rel=tolerance, abs=tolerance)\n', (23778, 23815), False, 'import pytest\n'), ((24044, 24090), 'pytest.approx', 'pytest.approx', (['(1)'], {'rel': 'tolerance', 'abs': 'tolerance'}), '(1, rel=tolerance, abs=tolerance)\n', (24057, 24090), False, 'import pytest\n'), ((24197, 24244), 'pytest.approx', 'pytest.approx', (['(-1)'], {'rel': 'tolerance', 'abs': 'tolerance'}), '(-1, rel=tolerance, abs=tolerance)\n', (24210, 24244), False, 'import pytest\n'), ((24351, 24397), 'pytest.approx', 'pytest.approx', (['(1)'], {'rel': 'tolerance', 'abs': 'tolerance'}), '(1, rel=tolerance, abs=tolerance)\n', (24364, 24397), False, 'import pytest\n'), ((24504, 24551), 'pytest.approx', 'pytest.approx', (['(-1)'], {'rel': 'tolerance', 'abs': 'tolerance'}), '(-1, rel=tolerance, abs=tolerance)\n', (24517, 24551), False, 'import pytest\n'), ((2614, 2625), 'projectq.backends.Simulator', 'Simulator', ([], {}), '()\n', (2623, 2625), False, 'from projectq.backends import Simulator\n'), ((2651, 2669), 'projectq.backends._qracksim._qracksim.QrackSimulator', 'QrackSim', (['(1)', '(-1)', '(2)'], {}), '(1, -1, 2)\n', (2659, 2669), True, 'from projectq.backends._qracksim._qracksim import QrackSimulator as QrackSim\n'), ((7358, 7366), 'projectq.ops.Ry', 'Ry', (['(-0.1)'], {}), '(-0.1)\n', (7360, 7366), False, 'from projectq.ops import All, Allocate, BasicGate, BasicMathGate, CNOT, C, Command, H, Measure, QubitOperator, Rx, Ry, Rz, S, TimeEvolution, Toffoli, X, Y, Z, Swap, SqrtSwap, UniformlyControlledRy, UniformlyControlledRz\n'), ((7413, 7431), 'numpy.kron', 'numpy.kron', (['m2', 'm1'], {}), '(m2, m1)\n', (7423, 7431), False, 'import numpy\n'), ((8694, 8718), 'projectq.libs.math.AddConstantModN', 'AddConstantModN', (['(10)', '(256)'], {}), '(10, 256)\n', (8709, 8718), False, 'from projectq.libs.math import AddConstant, AddConstantModN, SubConstant, SubConstantModN, MultiplyByConstantModN\n'), ((8921, 8945), 'projectq.libs.math.AddConstantModN', 'AddConstantModN', (['(10)', '(256)'], {}), '(10, 256)\n', (8936, 8945), False, 'from projectq.libs.math import AddConstant, AddConstantModN, SubConstant, SubConstantModN, MultiplyByConstantModN\n'), ((9271, 9295), 'projectq.libs.math.SubConstantModN', 'SubConstantModN', (['(10)', '(256)'], {}), '(10, 256)\n', (9286, 9295), False, 'from projectq.libs.math import AddConstant, AddConstantModN, SubConstant, SubConstantModN, MultiplyByConstantModN\n'), ((9498, 9522), 'projectq.libs.math.SubConstantModN', 'SubConstantModN', (['(10)', '(256)'], {}), '(10, 256)\n', (9513, 9522), False, 'from projectq.libs.math import AddConstant, AddConstantModN, SubConstant, SubConstantModN, MultiplyByConstantModN\n'), ((9885, 9915), 'projectq.libs.math.MultiplyByConstantModN', 'MultiplyByConstantModN', (['(2)', '(256)'], {}), '(2, 256)\n', (9907, 9915), False, 'from projectq.libs.math import AddConstant, AddConstantModN, SubConstant, SubConstantModN, MultiplyByConstantModN\n'), ((10118, 10149), 'projectq.libs.math.MultiplyByConstantModN', 'MultiplyByConstantModN', (['(10)', '(256)'], {}), '(10, 256)\n', (10140, 10149), False, 'from projectq.libs.math import AddConstant, AddConstantModN, SubConstant, SubConstantModN, MultiplyByConstantModN\n'), ((10712, 10735), 'pytest.approx', 'pytest.approx', (['(0.5 ** i)'], {}), '(0.5 ** i)\n', (10725, 10735), False, 'import pytest\n'), ((12930, 12945), 'math.sqrt', 'math.sqrt', (['(0.91)'], {}), '(0.91)\n', (12939, 12945), False, 'import math\n'), ((14477, 14496), 'pytest.approx', 'pytest.approx', (['(1.0j)'], {}), '(1.0j)\n', (14490, 14496), False, 'import pytest\n'), ((14511, 14531), 'pytest.approx', 'pytest.approx', (['(-1.0j)'], {}), '(-1.0j)\n', (14524, 14531), False, 'import pytest\n'), ((18458, 18470), 'projectq.meta.Compute', 'Compute', (['eng'], {}), '(eng)\n', (18465, 18470), False, 'from projectq.meta import Compute, Uncompute, Control, Dagger, LogicalQubitIDTag\n'), ((18635, 18663), 'projectq.meta.Control', 'Control', (['eng', 'control_qubits'], {}), '(eng, control_qubits)\n', (18642, 18663), False, 'from projectq.meta import Compute, Uncompute, Control, Dagger, LogicalQubitIDTag\n'), ((19127, 19138), 'projectq.backends.Simulator', 'Simulator', ([], {}), '()\n', (19136, 19138), False, 'from projectq.backends import Simulator\n'), ((20447, 20496), 'pytest.approx', 'pytest.approx', (['test'], {'rel': 'tolerance', 'abs': 'tolerance'}), '(test, rel=tolerance, abs=tolerance)\n', (20460, 20496), False, 'import pytest\n'), ((2957, 2983), 'projectq.cengines.BasicEngine.__init__', 'BasicEngine.__init__', (['self'], {}), '(self)\n', (2977, 2983), False, 'from projectq.cengines import BasicEngine, BasicMapperEngine, DummyEngine, LocalOptimizer, NotYetMeasuredError\n'), ((6931, 6951), 'projectq.meta.LogicalQubitIDTag', 'LogicalQubitIDTag', (['(2)'], {}), '(2)\n', (6948, 6951), False, 'from projectq.meta import Compute, Uncompute, Control, Dagger, LogicalQubitIDTag\n'), ((7339, 7346), 'projectq.ops.Rz', 'Rz', (['(0.9)'], {}), '(0.9)\n', (7341, 7346), False, 'from projectq.ops import All, Allocate, BasicGate, BasicMathGate, CNOT, C, Command, H, Measure, QubitOperator, Rx, Ry, Rz, S, TimeEvolution, Toffoli, X, Y, Z, Swap, SqrtSwap, UniformlyControlledRy, UniformlyControlledRz\n'), ((12623, 12637), 'math.acos', 'math.acos', (['(0.3)'], {}), '(0.3)\n', (12632, 12637), False, 'import math\n'), ((21742, 21754), 'math.sqrt', 'math.sqrt', (['(2)'], {}), '(2)\n', (21751, 21754), False, 'import math\n'), ((21760, 21772), 'math.sqrt', 'math.sqrt', (['(2)'], {}), '(2)\n', (21769, 21772), False, 'import math\n'), ((22005, 22017), 'math.sqrt', 'math.sqrt', (['(2)'], {}), '(2)\n', (22014, 22017), False, 'import math\n'), ((22024, 22036), 'math.sqrt', 'math.sqrt', (['(2)'], {}), '(2)\n', (22033, 22036), False, 'import math\n'), ((22309, 22321), 'math.sqrt', 'math.sqrt', (['(2)'], {}), '(2)\n', (22318, 22321), False, 'import math\n'), ((22328, 22340), 'math.sqrt', 'math.sqrt', (['(2)'], {}), '(2)\n', (22337, 22340), False, 'import math\n'), ((22573, 22585), 'math.sqrt', 'math.sqrt', (['(2)'], {}), '(2)\n', (22582, 22585), False, 'import math\n'), ((22593, 22605), 'math.sqrt', 'math.sqrt', (['(2)'], {}), '(2)\n', (22602, 22605), False, 'import math\n'), ((10927, 10941), 'math.sqrt', 'math.sqrt', (['(0.3)'], {}), '(0.3)\n', (10936, 10941), False, 'import math\n'), ((11072, 11086), 'math.sqrt', 'math.sqrt', (['(0.4)'], {}), '(0.4)\n', (11081, 11086), False, 'import math\n')]
""" Remove Fragments not in Knowledgebase """ __author__ = "<NAME>" __email__ = "<EMAIL>" __copyright__ = "Copyright 2019, Hong Kong University of Science and Technology" __license__ = "3-clause BSD" from argparse import ArgumentParser import numpy as np import pickle parser = ArgumentParser(description="Build Files") parser.add_argument("--datadir", type=str, default="Data", help="input - XXX.YYY ") parser.add_argument("--envNewAcronym", type=str, default="PRT.SNW", help="input - XXX.YYY ") args = parser.parse_args() # Check the Bound Fragments BoundFrags = np.loadtxt("../%s/%s/%s.Homogenised.boundfrags_zeros.txt" %(args.datadir, args.envNewAcronym, args.envNewAcronym), delimiter=',') normalDF = pickle.load(open("../%s/GrandCID.dict" %(args.datadir), "rb")) binding = np.full(BoundFrags.shape,-1) mlength = 0 for r, i in enumerate(BoundFrags): for c, j in enumerate(i[i!=0]): try: # Checks whether the Fragment can be found in the 59k Fragment Base binding[r,c]=normalDF.index.get_loc(int(j)) except: continue temp = binding[r] if temp[temp!=-1].shape[0] > mlength: mlength = temp[temp!=-1].shape[0] print(mlength) #Finds the maximum number of Fragments per environment -> 705 indices = np.empty(binding.shape[0]) red_binding = np.full((binding.shape[0], mlength), -1) for j, i in enumerate(binding): indices[j] = i[i!=-1].shape[0] red_binding[j][:int(indices[j])] = i[i!=-1] red_binding = np.delete(red_binding, np.where(indices==0), axis=0) pickle.dump(red_binding, open("../%s/%s/%s.binding.mtr" %(args.datadir, args.envNewAcronym, args.envNewAcronym), "wb")) # Removes environments without binding Fragments Features_all = pickle.load(open("../%s/%s/%s.Homogenised.property.pvar" %(args.datadir, args.envNewAcronym, args.envNewAcronym), "rb")) Features_all = np.delete(Features_all, np.where(indices==0), axis=0) pickle.dump(Features_all, open("../%s/%s/%s.Homogenised.property.pvar" %(args.datadir, args.envNewAcronym, args.envNewAcronym), "wb")) # Removes environment annotiation without binding fragments with open("../%s/%s/%s.Homogenised.annotation.txt" %(args.datadir, args.envNewAcronym, args.envNewAcronym), "r+") as f: lines = f.readlines() for i in np.where(indices==0)[0][::-1]: del lines[i] f.seek(0) f.truncate() f.writelines(lines)
[ "argparse.ArgumentParser", "numpy.where", "numpy.empty", "numpy.full", "numpy.loadtxt" ]
[((281, 322), 'argparse.ArgumentParser', 'ArgumentParser', ([], {'description': '"""Build Files"""'}), "(description='Build Files')\n", (295, 322), False, 'from argparse import ArgumentParser\n'), ((572, 706), 'numpy.loadtxt', 'np.loadtxt', (["('../%s/%s/%s.Homogenised.boundfrags_zeros.txt' % (args.datadir, args.\n envNewAcronym, args.envNewAcronym))"], {'delimiter': '""","""'}), "('../%s/%s/%s.Homogenised.boundfrags_zeros.txt' % (args.datadir,\n args.envNewAcronym, args.envNewAcronym), delimiter=',')\n", (582, 706), True, 'import numpy as np\n'), ((788, 817), 'numpy.full', 'np.full', (['BoundFrags.shape', '(-1)'], {}), '(BoundFrags.shape, -1)\n', (795, 817), True, 'import numpy as np\n'), ((1296, 1322), 'numpy.empty', 'np.empty', (['binding.shape[0]'], {}), '(binding.shape[0])\n', (1304, 1322), True, 'import numpy as np\n'), ((1337, 1377), 'numpy.full', 'np.full', (['(binding.shape[0], mlength)', '(-1)'], {}), '((binding.shape[0], mlength), -1)\n', (1344, 1377), True, 'import numpy as np\n'), ((1530, 1552), 'numpy.where', 'np.where', (['(indices == 0)'], {}), '(indices == 0)\n', (1538, 1552), True, 'import numpy as np\n'), ((1908, 1930), 'numpy.where', 'np.where', (['(indices == 0)'], {}), '(indices == 0)\n', (1916, 1930), True, 'import numpy as np\n'), ((2294, 2316), 'numpy.where', 'np.where', (['(indices == 0)'], {}), '(indices == 0)\n', (2302, 2316), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- """ Created on Sat May 25 13:17:49 2019 @author: Toonw """ import numpy as np def vlen(a): return (a[0]**2 + a[1]**2)**0.5 def add(v1,v2): return (v1[0]+v2[0], v1[1]+v2[1]) def sub(v1,v2): return (v1[0]-v2[0], v1[1]-v2[1]) def unit_vector(v): vu = v / np.linalg.norm(v) return (vu[0], vu[1]) def angle_between(v1, v2): angle = np.arccos(np.dot(v1,v2)/(vlen(v1)*vlen(v2))) return angle # Similarity measure of article ## https://pdfs.semanticscholar.org/60b5/aca20ba34d424f4236359bd5e6aa30487682.pdf def sim_measure(A, B): # similarity between two shapes A and B # print(A) # print(B) return 1 - (sum([(vlen(unit_vector(a))+vlen(unit_vector(b)))*angle_between(a,b) for a,b in zip(A,B)]))/(np.pi*(len(A)+len(B)))
[ "numpy.dot", "numpy.linalg.norm" ]
[((300, 317), 'numpy.linalg.norm', 'np.linalg.norm', (['v'], {}), '(v)\n', (314, 317), True, 'import numpy as np\n'), ((394, 408), 'numpy.dot', 'np.dot', (['v1', 'v2'], {}), '(v1, v2)\n', (400, 408), True, 'import numpy as np\n')]
import numpy as np import tensorflow as tf import os from scipy.io import savemat from scipy.io import loadmat from scipy.misc import imread from scipy.misc import imsave from alexnet_face_classifier import * import matplotlib.pyplot as plt plt.switch_backend('agg') class backprop_graph: def __init__(self, num_classes, nhid, cnn): self.num_classes = num_classes self.inputs = tf.placeholder(tf.float32, shape = [None, 227, 227, 3], name='input') self.labels_1hot = tf.placeholder(tf.float32, shape=[None, self.num_classes]) self.cnn = cnn(self.inputs, None, self.num_classes) self.cnn.preprocess() self.cnn.convlayers() self.cnn.fc_layers(transfer_learning=False, nhid=nhid) def classifier_graph(self, temp=3.0): self.probabilities = tf.nn.softmax(self.cnn.fc2/temp) self.probability = tf.tensordot(self.probabilities, self.labels_1hot, axes=[[1],[1]]) self.log_probability = tf.log(self.probability) def guided_backprop_graph(self): self.grad_fc2 = tf.nn.relu(tf.gradients(self.probability, self.cnn.fc2)[0]) self.grad_fc1 = tf.nn.relu(tf.gradients(self.cnn.fc2, self.cnn.fc1, grad_ys=self.grad_fc2)[0]) self.grad_conv5 = tf.nn.relu(tf.gradients(self.cnn.fc1, self.cnn.conv5, grad_ys=self.grad_fc1)[0]) self.grad_conv4 = tf.nn.relu(tf.gradients(self.cnn.conv5, self.cnn.conv4, grad_ys=self.grad_conv5)[0]) self.grad_conv3 = tf.nn.relu(tf.gradients(self.cnn.conv4, self.cnn.conv3, grad_ys=self.grad_conv4)[0]) self.grad_conv2 = tf.nn.relu(tf.gradients(self.cnn.conv3, self.cnn.conv2, grad_ys=self.grad_conv3)[0]) self.grad_conv1 = tf.nn.relu(tf.gradients(self.cnn.conv2, self.cnn.conv1, grad_ys=self.grad_conv2)[0]) self.grad_image = tf.nn.relu(tf.gradients(self.cnn.conv1, self.inputs, grad_ys=self.grad_conv1)[0]) ### def guided_backprop(graph, image, one_hot, sess): image = np.expand_dims(image, 0) one_hot = np.expand_dims(one_hot, 0) saliency_map = sess.run(graph.grad_image, feed_dict={graph.inputs:image, graph.labels_1hot:one_hot})[0] scaling_adjustment = 1E-20 saliency_map_scaled = saliency_map/(np.max(saliency_map)+scaling_adjustment) return saliency_map_scaled
[ "tensorflow.tensordot", "tensorflow.placeholder", "matplotlib.pyplot.switch_backend", "numpy.max", "tensorflow.gradients", "tensorflow.nn.softmax", "numpy.expand_dims", "tensorflow.log" ]
[((243, 268), 'matplotlib.pyplot.switch_backend', 'plt.switch_backend', (['"""agg"""'], {}), "('agg')\n", (261, 268), True, 'import matplotlib.pyplot as plt\n'), ((1967, 1991), 'numpy.expand_dims', 'np.expand_dims', (['image', '(0)'], {}), '(image, 0)\n', (1981, 1991), True, 'import numpy as np\n'), ((2006, 2032), 'numpy.expand_dims', 'np.expand_dims', (['one_hot', '(0)'], {}), '(one_hot, 0)\n', (2020, 2032), True, 'import numpy as np\n'), ((402, 469), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32'], {'shape': '[None, 227, 227, 3]', 'name': '"""input"""'}), "(tf.float32, shape=[None, 227, 227, 3], name='input')\n", (416, 469), True, 'import tensorflow as tf\n'), ((499, 557), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32'], {'shape': '[None, self.num_classes]'}), '(tf.float32, shape=[None, self.num_classes])\n', (513, 557), True, 'import tensorflow as tf\n'), ((819, 853), 'tensorflow.nn.softmax', 'tf.nn.softmax', (['(self.cnn.fc2 / temp)'], {}), '(self.cnn.fc2 / temp)\n', (832, 853), True, 'import tensorflow as tf\n'), ((879, 946), 'tensorflow.tensordot', 'tf.tensordot', (['self.probabilities', 'self.labels_1hot'], {'axes': '[[1], [1]]'}), '(self.probabilities, self.labels_1hot, axes=[[1], [1]])\n', (891, 946), True, 'import tensorflow as tf\n'), ((977, 1001), 'tensorflow.log', 'tf.log', (['self.probability'], {}), '(self.probability)\n', (983, 1001), True, 'import tensorflow as tf\n'), ((2216, 2236), 'numpy.max', 'np.max', (['saliency_map'], {}), '(saliency_map)\n', (2222, 2236), True, 'import numpy as np\n'), ((1079, 1123), 'tensorflow.gradients', 'tf.gradients', (['self.probability', 'self.cnn.fc2'], {}), '(self.probability, self.cnn.fc2)\n', (1091, 1123), True, 'import tensorflow as tf\n'), ((1163, 1226), 'tensorflow.gradients', 'tf.gradients', (['self.cnn.fc2', 'self.cnn.fc1'], {'grad_ys': 'self.grad_fc2'}), '(self.cnn.fc2, self.cnn.fc1, grad_ys=self.grad_fc2)\n', (1175, 1226), True, 'import tensorflow as tf\n'), ((1268, 1333), 'tensorflow.gradients', 'tf.gradients', (['self.cnn.fc1', 'self.cnn.conv5'], {'grad_ys': 'self.grad_fc1'}), '(self.cnn.fc1, self.cnn.conv5, grad_ys=self.grad_fc1)\n', (1280, 1333), True, 'import tensorflow as tf\n'), ((1375, 1444), 'tensorflow.gradients', 'tf.gradients', (['self.cnn.conv5', 'self.cnn.conv4'], {'grad_ys': 'self.grad_conv5'}), '(self.cnn.conv5, self.cnn.conv4, grad_ys=self.grad_conv5)\n', (1387, 1444), True, 'import tensorflow as tf\n'), ((1486, 1555), 'tensorflow.gradients', 'tf.gradients', (['self.cnn.conv4', 'self.cnn.conv3'], {'grad_ys': 'self.grad_conv4'}), '(self.cnn.conv4, self.cnn.conv3, grad_ys=self.grad_conv4)\n', (1498, 1555), True, 'import tensorflow as tf\n'), ((1597, 1666), 'tensorflow.gradients', 'tf.gradients', (['self.cnn.conv3', 'self.cnn.conv2'], {'grad_ys': 'self.grad_conv3'}), '(self.cnn.conv3, self.cnn.conv2, grad_ys=self.grad_conv3)\n', (1609, 1666), True, 'import tensorflow as tf\n'), ((1708, 1777), 'tensorflow.gradients', 'tf.gradients', (['self.cnn.conv2', 'self.cnn.conv1'], {'grad_ys': 'self.grad_conv2'}), '(self.cnn.conv2, self.cnn.conv1, grad_ys=self.grad_conv2)\n', (1720, 1777), True, 'import tensorflow as tf\n'), ((1819, 1885), 'tensorflow.gradients', 'tf.gradients', (['self.cnn.conv1', 'self.inputs'], {'grad_ys': 'self.grad_conv1'}), '(self.cnn.conv1, self.inputs, grad_ys=self.grad_conv1)\n', (1831, 1885), True, 'import tensorflow as tf\n')]
import copy import unittest import networkx as nx import numpy as np from scipy.special import erf from dfn import Fluid, FractureNetworkThermal class TestFractureNetworkThermal(unittest.TestCase): def __init__(self, *args, **kwargs): super(TestFractureNetworkThermal, self).__init__(*args, **kwargs) # fluid properties cp_w = 4300.0 rho_w = 1000.0 mu_w = 1E-3 self.fluid = Fluid(density=rho_w, viscosity=mu_w, heat_capacity=cp_w) # reservoir properties k_r = 2.9 cp_r = 1050.0 rho_r = 2700.0 alpha_r = k_r / (rho_r * cp_r) # first network conn_1 = [(0, 1), (1, 2), (1, 3), (2, 4), (3, 4), (4, 5)] L_1 = [100, 500, 500, 500, 500, 100] H_1 = [500, 500, 500, 500, 500, 500] w_1 = [1E-3, 1E-3, 1E-3, 1E-3, 1E-3, 1E-3] self.network_1 = FractureNetworkThermal(conn_1, L_1, H_1, w_1, k_r, alpha_r) # second network conn_2 = [(0, 1), (1, 2), (2, 3), (1, 4), (2, 5), (3, 6), (4, 5), (5, 6), (4, 7), (5, 8), (6, 9), (7, 8), (8, 9), (9, 10)] L_2 = 250 * np.ones(len(conn_2)) L_2[0] = 100 L_2[-1] = 100 H_2 = 500 * np.ones(len(conn_2)) w_2 = 1E-3 * np.ones(len(conn_2)) self.network_2 = FractureNetworkThermal(conn_2, L_2, H_2, w_2, k_r, alpha_r) def copy_networks(self): """Return a copy of the fracture networks.""" return copy.copy(self.network_1), copy.copy(self.network_2) def networks_with_flow(self): """Return networks with the mass flow calculated.""" network_1, network_2 = self.copy_networks() P_0 = 0.0 m_inj = 50.0 network_1.calculate_flow(self.fluid, {0: P_0}, {5: -m_inj}) network_2.calculate_flow(self.fluid, {0: P_0}, {10: -m_inj}) return network_1, network_2 def reverse_nodes(self, network, segments): """Reverse the node order for given segments.""" conn = network.connectivity for seg in segments: inlet, outlet = conn[seg] conn[seg, :] = outlet, inlet network.connectivity = conn return network def test_no_mass_flow(self): """Test if TypeError is raised for networks without flow calculated.""" with self.assertRaises(TypeError): self.network_1._check_if_calculated() with self.assertRaises(TypeError): self.network_2._check_if_calculated() def test_neg_mass_flow(self): """Test if valueError is raised for networks with negative flow.""" network_1, network_2 = self.networks_with_flow() network_1 = self.reverse_nodes(network_1, [1]) network_2 = self.reverse_nodes(network_2, [1]) network_1.calculate_flow(self.fluid, {0: 0}, {5: -1.0}) network_2.calculate_flow(self.fluid, {0: 0}, {10: -1.0}) with self.assertRaises(ValueError): network_1.calculate_temperature(self.fluid, 0, [0], [1]) with self.assertRaises(ValueError): network_2.calculate_temperature(self.fluid, 0, [0], [1]) def test_construct_graph(self): """Test _construct_graph method.""" network_1, network_2 = self.networks_with_flow() network_1._construct_graph() network_2._construct_graph() # construct graph for network 1 G_1 = nx.MultiDiGraph() edge_data_1 = [(0, 1, {'index': 0}), (1, 2, {'index': 1}), (1, 3, {'index': 2}), (2, 4, {'index': 3}), (3, 4, {'index': 4}), (4, 5, {'index': 5})] G_1.add_edges_from(edge_data_1) # construct graph for network 2 G_2 = nx.MultiDiGraph() edge_data_2 = [(0, 1, {'index': 0}), (1, 2, {'index': 1}), (2, 3, {'index': 2}), (1, 4, {'index': 3}), (2, 5, {'index': 4}), (3, 6, {'index': 5}), (4, 5, {'index': 6}), (5, 6, {'index': 7}), (4, 7, {'index': 8}), (5, 8, {'index': 9}), (6, 9, {'index': 10}), (7, 8, {'index': 11}), (8, 9, {'index': 12}), (9, 10, {'index': 13})] G_2.add_edges_from(edge_data_2) # return True if graphs are the same is_isomorphic_1 = nx.is_isomorphic(network_1.graph, G_1) is_isomorphic_2 = nx.is_isomorphic(network_2.graph, G_2) self.assertTrue(is_isomorphic_1) self.assertTrue(is_isomorphic_2) def test_find_injection_nodes(self): """Test _find_injection_nodes method.""" network_1, network_2 = self.networks_with_flow() network_1._construct_graph() network_2._construct_graph() self.assertEqual(network_1._find_injection_nodes(), [0]) self.assertEqual(network_2._find_injection_nodes(), [0]) def test_mass_contribution(self): """Test _mass_contribution method.""" network_1, network_2 = self.networks_with_flow() chi_1 = network_1._mass_contribution() chi_2 = network_2._mass_contribution() # first network for i in (0, 1, 2, 5): self.assertAlmostEqual(chi_1[i], 1.0, 12) self.assertAlmostEqual(chi_1[3] + chi_1[4], 1.0, 12) # second network for i in (0, 1, 2, 3, 8, 13): self.assertAlmostEqual(chi_2[i], 1.0, 12) for i, j in [(4, 6), (5, 7), (9, 11), (10, 12)]: self.assertAlmostEqual(chi_2[i] + chi_2[j], 1.0, 12) def test_find_paths(self): """Test find_paths method.""" # .find_paths method calls .construct_graph if needed. Manually call # .construct_graph() on one network for testing both True and False # conditions network_1, network_2 = self.networks_with_flow() network_1._construct_graph() path_1 = {(0, 1, 3), (0, 2, 4)} path_2 = {(0, 1, 2, 5, 10), (0, 1, 4, 7, 10), (0, 3, 6, 7, 10), (0, 3, 6, 9, 12), (0, 3, 8, 11, 12), (0, 1, 4, 9, 12)} self.assertEqual(path_1, set(network_1.find_paths(0, 4))) self.assertEqual(path_2, set(network_2.find_paths(0, 9))) def test_calculate_temperature_inlet_segment(self): """Test calculate_temperature ability to handle the inlet segment.""" # operational parameters for temperature t_end = 86400 * 365.25 * 20 time = t_end * np.linspace(1.0 / 100, 1.0, 100) distance = np.linspace(0.0, 100.0, 100) z, t = np.meshgrid(distance, time) network_1, network_2 = self.networks_with_flow() # create parameters for temperature manually m_1 = network_1.mass_flow[0] m_2 = network_2.mass_flow[0] beta_1 = 2 * network_1.thermal_cond * network_1.thickness[0] / \ (m_1 * network_1.fluid.c_f) beta_2 = 2 * network_2.thermal_cond * network_2.thickness[0] / \ (m_2 * network_2.fluid.c_f) xi_1 = beta_1 * z / (2 * np.sqrt(network_1.thermal_diff * t)) xi_2 = beta_2 * z / (2 * np.sqrt(network_2.thermal_diff * t)) Theta_1 = erf(xi_1) Theta_2 = erf(xi_2) # difference between manual and automatic construction diff_1 = Theta_1 - network_1.calculate_temperature(self.fluid, 0, distance, time) diff_2 = Theta_2 - network_2.calculate_temperature(self.fluid, 0, distance, time) self.assertAlmostEqual((diff_1**2).sum() / (Theta_1**2).sum(), 0, 12) self.assertAlmostEqual((diff_2**2).sum() / (Theta_2**2).sum(), 0, 12) def test_calculate_temperature(self): """Test calculate_temperature by constructing manual the equations.""" # operational parameters for temperature t_end = 86400 * 365.25 * 20 time = t_end * np.linspace(1.0 / 100, 1.0, 100) distance = np.linspace(0.0, 100.0, 100) z, t = np.meshgrid(distance, time) network_1, network_2 = self.networks_with_flow() # create parameters for temperature manually chi_1 = np.array([1.0, 1.0, 1.0, 0.5, 0.5, 1.0]) chi_2 = np.ones(network_2.n_segments) chi_2[4:8] = 0.5 chi_2[9:13] = 0.5 m_1 = network_1.mass_flow m_2 = network_2.mass_flow beta_1 = 2 * network_1.thermal_cond * network_1.thickness / \ (m_1 * network_1.fluid.c_f) beta_2 = 2 * network_2.thermal_cond * network_2.thickness / \ (m_2 * network_2.fluid.c_f) xi_1 = np.einsum('i,jk->ijk', beta_1 * network_1.length, 1 / (2 * np.sqrt(network_1.thermal_diff * t))) xi_2 = np.einsum('i,jk->ijk', beta_2 * network_2.length, 1 / (2 * np.sqrt(network_2.thermal_diff * t))) a = xi_1[[0, 2, 4], :, :].sum(axis=0) b = xi_1[[0, 1, 3], :, :].sum(axis=0) xi_seg = beta_1[-1] * z / (2 * np.sqrt(network_1.thermal_diff * t)) Theta_1 = chi_1[0] * chi_1[2] * chi_1[4] * erf(a + xi_seg) + \ chi_1[0] * chi_1[1] * chi_1[3] * erf(b + xi_seg) a = xi_2[[0, 1, 2, 5, 10], :, :].sum(axis=0) b = xi_2[[0, 1, 4, 7, 10], :, :].sum(axis=0) c = xi_2[[0, 3, 6, 7, 10], :, :].sum(axis=0) d = xi_2[[0, 3, 6, 9, 12], :, :].sum(axis=0) e = xi_2[[0, 3, 8, 11, 12], :, :].sum(axis=0) f = xi_2[[0, 1, 4, 9, 12], :, :].sum(axis=0) C_1 = chi_2[0] * chi_2[1] * chi_2[2] * chi_2[5] * chi_2[10] C_2 = chi_2[0] * chi_2[1] * chi_2[4] * chi_2[7] * chi_2[10] C_3 = chi_2[0] * chi_2[3] * chi_2[6] * chi_2[7] * chi_2[10] C_4 = chi_2[0] * chi_2[3] * chi_2[6] * chi_2[9] * chi_2[12] C_5 = chi_2[0] * chi_2[3] * chi_2[8] * chi_2[11] * chi_2[12] C_6 = chi_2[0] * chi_2[1] * chi_2[4] * chi_2[9] * chi_2[12] xi_seg = beta_2[-1] * z / (2 * np.sqrt(network_2.thermal_diff * t)) Theta_2 = C_1 * erf(a + xi_seg) + C_2 * erf(b + xi_seg) + \ C_3 * erf(c + xi_seg) + C_4 * erf(d + xi_seg) + \ C_5 * erf(e + xi_seg) + C_6 * erf(f + xi_seg) # difference between manual and automatic construction diff_1 = Theta_1 - network_1.calculate_temperature(self.fluid, 5, distance, time) diff_2 = Theta_2 - network_2.calculate_temperature(self.fluid, 13, distance, time) self.assertAlmostEqual((diff_1**2).sum() / (Theta_1**2).sum(), 0, 12) self.assertAlmostEqual((diff_2**2).sum() / (Theta_2**2).sum(), 0, 12) if __name__ == '__main__': unittest.main()
[ "networkx.MultiDiGraph", "networkx.is_isomorphic", "numpy.sqrt", "numpy.ones", "dfn.FractureNetworkThermal", "numpy.array", "numpy.linspace", "scipy.special.erf", "dfn.Fluid", "unittest.main", "numpy.meshgrid", "copy.copy" ]
[((10801, 10816), 'unittest.main', 'unittest.main', ([], {}), '()\n', (10814, 10816), False, 'import unittest\n'), ((432, 488), 'dfn.Fluid', 'Fluid', ([], {'density': 'rho_w', 'viscosity': 'mu_w', 'heat_capacity': 'cp_w'}), '(density=rho_w, viscosity=mu_w, heat_capacity=cp_w)\n', (437, 488), False, 'from dfn import Fluid, FractureNetworkThermal\n'), ((880, 939), 'dfn.FractureNetworkThermal', 'FractureNetworkThermal', (['conn_1', 'L_1', 'H_1', 'w_1', 'k_r', 'alpha_r'], {}), '(conn_1, L_1, H_1, w_1, k_r, alpha_r)\n', (902, 939), False, 'from dfn import Fluid, FractureNetworkThermal\n'), ((1355, 1414), 'dfn.FractureNetworkThermal', 'FractureNetworkThermal', (['conn_2', 'L_2', 'H_2', 'w_2', 'k_r', 'alpha_r'], {}), '(conn_2, L_2, H_2, w_2, k_r, alpha_r)\n', (1377, 1414), False, 'from dfn import Fluid, FractureNetworkThermal\n'), ((3500, 3517), 'networkx.MultiDiGraph', 'nx.MultiDiGraph', ([], {}), '()\n', (3515, 3517), True, 'import networkx as nx\n'), ((3814, 3831), 'networkx.MultiDiGraph', 'nx.MultiDiGraph', ([], {}), '()\n', (3829, 3831), True, 'import networkx as nx\n'), ((4418, 4456), 'networkx.is_isomorphic', 'nx.is_isomorphic', (['network_1.graph', 'G_1'], {}), '(network_1.graph, G_1)\n', (4434, 4456), True, 'import networkx as nx\n'), ((4483, 4521), 'networkx.is_isomorphic', 'nx.is_isomorphic', (['network_2.graph', 'G_2'], {}), '(network_2.graph, G_2)\n', (4499, 4521), True, 'import networkx as nx\n'), ((6565, 6593), 'numpy.linspace', 'np.linspace', (['(0.0)', '(100.0)', '(100)'], {}), '(0.0, 100.0, 100)\n', (6576, 6593), True, 'import numpy as np\n'), ((6609, 6636), 'numpy.meshgrid', 'np.meshgrid', (['distance', 'time'], {}), '(distance, time)\n', (6620, 6636), True, 'import numpy as np\n'), ((7209, 7218), 'scipy.special.erf', 'erf', (['xi_1'], {}), '(xi_1)\n', (7212, 7218), False, 'from scipy.special import erf\n'), ((7237, 7246), 'scipy.special.erf', 'erf', (['xi_2'], {}), '(xi_2)\n', (7240, 7246), False, 'from scipy.special import erf\n'), ((8050, 8078), 'numpy.linspace', 'np.linspace', (['(0.0)', '(100.0)', '(100)'], {}), '(0.0, 100.0, 100)\n', (8061, 8078), True, 'import numpy as np\n'), ((8094, 8121), 'numpy.meshgrid', 'np.meshgrid', (['distance', 'time'], {}), '(distance, time)\n', (8105, 8121), True, 'import numpy as np\n'), ((8250, 8290), 'numpy.array', 'np.array', (['[1.0, 1.0, 1.0, 0.5, 0.5, 1.0]'], {}), '([1.0, 1.0, 1.0, 0.5, 0.5, 1.0])\n', (8258, 8290), True, 'import numpy as np\n'), ((8307, 8336), 'numpy.ones', 'np.ones', (['network_2.n_segments'], {}), '(network_2.n_segments)\n', (8314, 8336), True, 'import numpy as np\n'), ((1562, 1587), 'copy.copy', 'copy.copy', (['self.network_1'], {}), '(self.network_1)\n', (1571, 1587), False, 'import copy\n'), ((1589, 1614), 'copy.copy', 'copy.copy', (['self.network_2'], {}), '(self.network_2)\n', (1598, 1614), False, 'import copy\n'), ((6512, 6544), 'numpy.linspace', 'np.linspace', (['(1.0 / 100)', '(1.0)', '(100)'], {}), '(1.0 / 100, 1.0, 100)\n', (6523, 6544), True, 'import numpy as np\n'), ((7997, 8029), 'numpy.linspace', 'np.linspace', (['(1.0 / 100)', '(1.0)', '(100)'], {}), '(1.0 / 100, 1.0, 100)\n', (8008, 8029), True, 'import numpy as np\n'), ((7083, 7118), 'numpy.sqrt', 'np.sqrt', (['(network_1.thermal_diff * t)'], {}), '(network_1.thermal_diff * t)\n', (7090, 7118), True, 'import numpy as np\n'), ((7153, 7188), 'numpy.sqrt', 'np.sqrt', (['(network_2.thermal_diff * t)'], {}), '(network_2.thermal_diff * t)\n', (7160, 7188), True, 'import numpy as np\n'), ((9083, 9118), 'numpy.sqrt', 'np.sqrt', (['(network_1.thermal_diff * t)'], {}), '(network_1.thermal_diff * t)\n', (9090, 9118), True, 'import numpy as np\n'), ((9172, 9187), 'scipy.special.erf', 'erf', (['(a + xi_seg)'], {}), '(a + xi_seg)\n', (9175, 9187), False, 'from scipy.special import erf\n'), ((9237, 9252), 'scipy.special.erf', 'erf', (['(b + xi_seg)'], {}), '(b + xi_seg)\n', (9240, 9252), False, 'from scipy.special import erf\n'), ((10022, 10057), 'numpy.sqrt', 'np.sqrt', (['(network_2.thermal_diff * t)'], {}), '(network_2.thermal_diff * t)\n', (10029, 10057), True, 'import numpy as np\n'), ((10233, 10248), 'scipy.special.erf', 'erf', (['(f + xi_seg)'], {}), '(f + xi_seg)\n', (10236, 10248), False, 'from scipy.special import erf\n'), ((8777, 8812), 'numpy.sqrt', 'np.sqrt', (['(network_1.thermal_diff * t)'], {}), '(network_1.thermal_diff * t)\n', (8784, 8812), True, 'import numpy as np\n'), ((8914, 8949), 'numpy.sqrt', 'np.sqrt', (['(network_2.thermal_diff * t)'], {}), '(network_2.thermal_diff * t)\n', (8921, 8949), True, 'import numpy as np\n'), ((10209, 10224), 'scipy.special.erf', 'erf', (['(e + xi_seg)'], {}), '(e + xi_seg)\n', (10212, 10224), False, 'from scipy.special import erf\n'), ((10171, 10186), 'scipy.special.erf', 'erf', (['(d + xi_seg)'], {}), '(d + xi_seg)\n', (10174, 10186), False, 'from scipy.special import erf\n'), ((10147, 10162), 'scipy.special.erf', 'erf', (['(c + xi_seg)'], {}), '(c + xi_seg)\n', (10150, 10162), False, 'from scipy.special import erf\n'), ((10085, 10100), 'scipy.special.erf', 'erf', (['(a + xi_seg)'], {}), '(a + xi_seg)\n', (10088, 10100), False, 'from scipy.special import erf\n'), ((10109, 10124), 'scipy.special.erf', 'erf', (['(b + xi_seg)'], {}), '(b + xi_seg)\n', (10112, 10124), False, 'from scipy.special import erf\n')]
import numpy as np import math from scipy.optimize import curve_fit def calc_lorentzian(CestCurveS, x_calcentires, mask, config): (rows, colums, z_slices, entires) = CestCurveS.shape lorenzian = {key: np.zeros((rows, colums, z_slices), dtype=float) for key in config.lorenzian_keys} for k in range(z_slices): for i in range(rows): for j in range(colums): if mask[i, j, k] != 0: params = calc_lorenzian_pixel(CestCurveS[i, j, k, :], x_calcentires, config.Lorenzian['MT_f'], config.Lorenzian['NOE1_f'], config.Lorenzian['NOE2_f'], config.Lorenzian['OH_f'], config.Lorenzian['NH_f']) if params is None: continue dic = { 'OH_a': params[3], 'OH_w': params[4], 'NH_a': params[5], 'NH_w': params[6], 'NOE1_a': params[7], 'NOE1_w': params[8], 'NOE2_a': params[9], 'NOE2_w': params[10], 'MT_a': params[11], 'MT_w': params[12], } for key in config.lorenzian_keys: lorenzian[key][i, j, k] = dic[key] return lorenzian def calc_lorenzian_pixel(values, x_calcentires, MT_f, NOE1_f, NOE2_f, OH_f, NH_f): # wassr_offset, da die Z-Spektren vorher korrigiert wurden fit = lorenz_like_matlab(wassr_offset=0, MT_f=MT_f, NOE1_f=NOE1_f, NOE2_f=NOE2_f, OH_f=OH_f, NH_f=NH_f) try: param, param_cov = curve_fit(fit, x_calcentires, values, bounds=([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10])) except RuntimeError: param = None return param def lorenz_like_matlab(wassr_offset, MT_f: float = - 2.43, NOE1_f: float = - 1, NOE2_f: float = - 2.6, OH_f: float = + 1.4, NH_f: float = + 3.2): # X_f = frequenz of X #ret = (a + ak) - (a * ((b ** 2) / 4) / (((b ** 2) / 4) + (x - wassr_offset) ** 2)) pass def one_lorenz(x, amplitude, width, wassr_offset, frequenz): return amplitude * ((width ** 2) / 4) / (((width ** 2) / 4) + (x - (wassr_offset + frequenz)) ** 2)
[ "scipy.optimize.curve_fit", "numpy.zeros" ]
[((212, 259), 'numpy.zeros', 'np.zeros', (['(rows, colums, z_slices)'], {'dtype': 'float'}), '((rows, colums, z_slices), dtype=float)\n', (220, 259), True, 'import numpy as np\n'), ((1741, 1886), 'scipy.optimize.curve_fit', 'curve_fit', (['fit', 'x_calcentires', 'values'], {'bounds': '([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [10, 10, 10, 10, 10, 10, 10, 10, \n 10, 10, 10, 10, 10])'}), '(fit, x_calcentires, values, bounds=([0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n 0, 0, 0], [10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10]))\n', (1750, 1886), False, 'from scipy.optimize import curve_fit\n')]
import backend as F import numpy as np import scipy as sp import dgl from dgl import utils import unittest from numpy.testing import assert_array_equal np.random.seed(42) def generate_rand_graph(n): arr = (sp.sparse.random(n, n, density=0.1, format='coo') != 0).astype(np.int64) return dgl.DGLGraph(arr, readonly=True) def test_create_full(): g = generate_rand_graph(100) full_nf = dgl.contrib.sampling.sampler.create_full_nodeflow(g, 5) assert full_nf.number_of_nodes() == g.number_of_nodes() * 6 assert full_nf.number_of_edges() == g.number_of_edges() * 5 def test_1neighbor_sampler_all(): g = generate_rand_graph(100) # In this case, NeighborSampling simply gets the neighborhood of a single vertex. for i, subg in enumerate(dgl.contrib.sampling.NeighborSampler( g, 1, g.number_of_nodes(), neighbor_type='in', num_workers=4)): seed_ids = subg.layer_parent_nid(-1) assert len(seed_ids) == 1 src, dst, eid = g.in_edges(seed_ids, form='all') assert subg.number_of_nodes() == len(src) + 1 assert subg.number_of_edges() == len(src) assert seed_ids == subg.layer_parent_nid(-1) child_src, child_dst, child_eid = subg.in_edges(subg.layer_nid(-1), form='all') assert F.array_equal(child_src, subg.layer_nid(0)) src1 = subg.map_to_parent_nid(child_src) assert F.array_equal(src1, src) def is_sorted(arr): return np.sum(np.sort(arr) == arr, 0) == len(arr) def verify_subgraph(g, subg, seed_id): seed_id = F.asnumpy(seed_id) seeds = F.asnumpy(subg.map_to_parent_nid(subg.layer_nid(-1))) assert seed_id in seeds child_seed = F.asnumpy(subg.layer_nid(-1))[seeds == seed_id] src, dst, eid = g.in_edges(seed_id, form='all') child_src, child_dst, child_eid = subg.in_edges(child_seed, form='all') child_src = F.asnumpy(child_src) # We don't allow duplicate elements in the neighbor list. assert(len(np.unique(child_src)) == len(child_src)) # The neighbor list also needs to be sorted. assert(is_sorted(child_src)) # a neighbor in the subgraph must also exist in parent graph. src = F.asnumpy(src) for i in subg.map_to_parent_nid(child_src): assert F.asnumpy(i) in src def test_1neighbor_sampler(): g = generate_rand_graph(100) # In this case, NeighborSampling simply gets the neighborhood of a single vertex. for subg in dgl.contrib.sampling.NeighborSampler(g, 1, 5, neighbor_type='in', num_workers=4): seed_ids = subg.layer_parent_nid(-1) assert len(seed_ids) == 1 assert subg.number_of_nodes() <= 6 assert subg.number_of_edges() <= 5 verify_subgraph(g, subg, seed_ids) def test_prefetch_neighbor_sampler(): g = generate_rand_graph(100) # In this case, NeighborSampling simply gets the neighborhood of a single vertex. for subg in dgl.contrib.sampling.NeighborSampler(g, 1, 5, neighbor_type='in', num_workers=4, prefetch=True): seed_ids = subg.layer_parent_nid(-1) assert len(seed_ids) == 1 assert subg.number_of_nodes() <= 6 assert subg.number_of_edges() <= 5 verify_subgraph(g, subg, seed_ids) def test_10neighbor_sampler_all(): g = generate_rand_graph(100) # In this case, NeighborSampling simply gets the neighborhood of a single vertex. for subg in dgl.contrib.sampling.NeighborSampler(g, 10, g.number_of_nodes(), neighbor_type='in', num_workers=4): seed_ids = subg.layer_parent_nid(-1) assert F.array_equal(seed_ids, subg.map_to_parent_nid(subg.layer_nid(-1))) src, dst, eid = g.in_edges(seed_ids, form='all') child_src, child_dst, child_eid = subg.in_edges(subg.layer_nid(-1), form='all') src1 = subg.map_to_parent_nid(child_src) assert F.array_equal(src1, src) def check_10neighbor_sampler(g, seeds): # In this case, NeighborSampling simply gets the neighborhood of a single vertex. for subg in dgl.contrib.sampling.NeighborSampler(g, 10, 5, neighbor_type='in', num_workers=4, seed_nodes=seeds): seed_ids = subg.layer_parent_nid(-1) assert subg.number_of_nodes() <= 6 * len(seed_ids) assert subg.number_of_edges() <= 5 * len(seed_ids) for seed_id in seed_ids: verify_subgraph(g, subg, seed_id) def test_10neighbor_sampler(): g = generate_rand_graph(100) check_10neighbor_sampler(g, None) check_10neighbor_sampler(g, seeds=np.unique(np.random.randint(0, g.number_of_nodes(), size=int(g.number_of_nodes() / 10)))) def _test_layer_sampler(prefetch=False): g = generate_rand_graph(100) nid = g.nodes() src, dst, eid = g.all_edges(form='all', order='eid') n_batches = 5 batch_size = 50 seed_batches = [np.sort(np.random.choice(F.asnumpy(nid), batch_size, replace=False)) for i in range(n_batches)] seed_nodes = np.hstack(seed_batches) layer_sizes = [50] * 3 LayerSampler = getattr(dgl.contrib.sampling, 'LayerSampler') sampler = LayerSampler(g, batch_size, layer_sizes, 'in', seed_nodes=seed_nodes, num_workers=4, prefetch=prefetch) for sub_g in sampler: assert all(sub_g.layer_size(i) < size for i, size in enumerate(layer_sizes)) sub_nid = F.arange(0, sub_g.number_of_nodes()) assert all(np.all(np.isin(F.asnumpy(sub_g.layer_nid(i)), F.asnumpy(sub_nid))) for i in range(sub_g.num_layers)) assert np.all(np.isin(F.asnumpy(sub_g.map_to_parent_nid(sub_nid)), F.asnumpy(nid))) sub_eid = F.arange(0, sub_g.number_of_edges()) assert np.all(np.isin(F.asnumpy(sub_g.map_to_parent_eid(sub_eid)), F.asnumpy(eid))) assert any(np.all(np.sort(F.asnumpy(sub_g.layer_parent_nid(-1))) == seed_batch) for seed_batch in seed_batches) sub_src, sub_dst = sub_g.all_edges(order='eid') for i in range(sub_g.num_blocks): block_eid = sub_g.block_eid(i) block_src = sub_g.map_to_parent_nid(F.gather_row(sub_src, block_eid)) block_dst = sub_g.map_to_parent_nid(F.gather_row(sub_dst, block_eid)) block_parent_eid = sub_g.block_parent_eid(i) block_parent_src = F.gather_row(src, block_parent_eid) block_parent_dst = F.gather_row(dst, block_parent_eid) assert np.all(F.asnumpy(block_src == block_parent_src)) n_layers = sub_g.num_layers sub_n = sub_g.number_of_nodes() assert sum(F.shape(sub_g.layer_nid(i))[0] for i in range(n_layers)) == sub_n n_blocks = sub_g.num_blocks sub_m = sub_g.number_of_edges() assert sum(F.shape(sub_g.block_eid(i))[0] for i in range(n_blocks)) == sub_m def test_layer_sampler(): _test_layer_sampler() _test_layer_sampler(prefetch=True) @unittest.skipIf(dgl.backend.backend_name == "tensorflow", reason="Error occured when multiprocessing") def test_nonuniform_neighbor_sampler(): # Construct a graph with # (1) A path (0, 1, ..., 99) with weight 1 # (2) A bunch of random edges with weight 0. edges = [] for i in range(99): edges.append((i, i + 1)) for i in range(1000): edge = (np.random.randint(100), np.random.randint(100)) if edge not in edges: edges.append(edge) src, dst = zip(*edges) g = dgl.DGLGraph() g.add_nodes(100) g.add_edges(src, dst) g.readonly() g.edata['w'] = F.cat([ F.ones((99,), F.float64, F.cpu()), F.zeros((len(edges) - 99,), F.float64, F.cpu())], 0) # Test 1-neighbor NodeFlow with 99 as target node. # The generated NodeFlow should only contain node i on layer i. sampler = dgl.contrib.sampling.NeighborSampler( g, 1, 1, 99, 'in', transition_prob='w', seed_nodes=[99]) nf = next(iter(sampler)) assert nf.num_layers == 100 for i in range(nf.num_layers): assert nf.layer_size(i) == 1 assert F.asnumpy(nf.layer_parent_nid(i)[0]) == i # Test the reverse direction sampler = dgl.contrib.sampling.NeighborSampler( g, 1, 1, 99, 'out', transition_prob='w', seed_nodes=[0]) nf = next(iter(sampler)) assert nf.num_layers == 100 for i in range(nf.num_layers): assert nf.layer_size(i) == 1 assert F.asnumpy(nf.layer_parent_nid(i)[0]) == 99 - i def test_setseed(): g = generate_rand_graph(100) nids = [] dgl.random.seed(42) for subg in dgl.contrib.sampling.NeighborSampler( g, 5, 3, num_hops=2, neighbor_type='in', num_workers=1): nids.append( tuple(tuple(F.asnumpy(subg.layer_parent_nid(i))) for i in range(3))) # reinitialize dgl.random.seed(42) for i, subg in enumerate(dgl.contrib.sampling.NeighborSampler( g, 5, 3, num_hops=2, neighbor_type='in', num_workers=1)): item = tuple(tuple(F.asnumpy(subg.layer_parent_nid(i))) for i in range(3)) assert item == nids[i] for i, subg in enumerate(dgl.contrib.sampling.NeighborSampler( g, 5, 3, num_hops=2, neighbor_type='in', num_workers=4)): pass def check_head_tail(g): lsrc, ldst, leid = g.all_edges(form='all', order='eid') lsrc = np.unique(F.asnumpy(lsrc)) head_nid = np.unique(F.asnumpy(g.head_nid)) assert len(head_nid) == len(g.head_nid) np.testing.assert_equal(lsrc, head_nid) ldst = np.unique(F.asnumpy(ldst)) tail_nid = np.unique(F.asnumpy(g.tail_nid)) assert len(tail_nid) == len(g.tail_nid) np.testing.assert_equal(tail_nid, ldst) def check_negative_sampler(mode, exclude_positive, neg_size): g = generate_rand_graph(100) num_edges = g.number_of_edges() etype = np.random.randint(0, 10, size=g.number_of_edges(), dtype=np.int64) g.edata['etype'] = F.copy_to(F.tensor(etype), F.cpu()) pos_gsrc, pos_gdst, pos_geid = g.all_edges(form='all', order='eid') pos_map = {} for i in range(len(pos_geid)): pos_d = int(F.asnumpy(pos_gdst[i])) pos_e = int(F.asnumpy(pos_geid[i])) pos_map[(pos_d, pos_e)] = int(F.asnumpy(pos_gsrc[i])) EdgeSampler = getattr(dgl.contrib.sampling, 'EdgeSampler') # Test the homogeneous graph. batch_size = 50 total_samples = 0 for pos_edges, neg_edges in EdgeSampler(g, batch_size, negative_mode=mode, reset=False, neg_sample_size=neg_size, exclude_positive=exclude_positive, return_false_neg=True): pos_lsrc, pos_ldst, pos_leid = pos_edges.all_edges(form='all', order='eid') assert_array_equal(F.asnumpy(F.gather_row(pos_edges.parent_eid, pos_leid)), F.asnumpy(g.edge_ids(F.gather_row(pos_edges.parent_nid, pos_lsrc), F.gather_row(pos_edges.parent_nid, pos_ldst)))) neg_lsrc, neg_ldst, neg_leid = neg_edges.all_edges(form='all', order='eid') neg_src = F.gather_row(neg_edges.parent_nid, neg_lsrc) neg_dst = F.gather_row(neg_edges.parent_nid, neg_ldst) neg_eid = F.gather_row(neg_edges.parent_eid, neg_leid) for i in range(len(neg_eid)): neg_d = int(F.asnumpy(neg_dst)[i]) neg_e = int(F.asnumpy(neg_eid)[i]) assert (neg_d, neg_e) in pos_map if exclude_positive: assert int(F.asnumpy(neg_src[i])) != pos_map[(neg_d, neg_e)] check_head_tail(neg_edges) pos_tails = F.gather_row(pos_edges.parent_nid, pos_edges.tail_nid) neg_tails = F.gather_row(neg_edges.parent_nid, neg_edges.tail_nid) pos_tails = np.sort(F.asnumpy(pos_tails)) neg_tails = np.sort(F.asnumpy(neg_tails)) np.testing.assert_equal(pos_tails, neg_tails) exist = neg_edges.edata['false_neg'] if exclude_positive: assert np.sum(F.asnumpy(exist) == 0) == len(exist) else: assert F.array_equal(g.has_edges_between(neg_src, neg_dst), exist) total_samples += batch_size assert total_samples <= num_edges # check replacement = True # with reset = False (default setting) total_samples = 0 for pos_edges, neg_edges in EdgeSampler(g, batch_size, replacement=True, reset=False, negative_mode=mode, neg_sample_size=neg_size, exclude_positive=exclude_positive, return_false_neg=True): _, _, pos_leid = pos_edges.all_edges(form='all', order='eid') assert len(pos_leid) == batch_size total_samples += len(pos_leid) assert total_samples == num_edges # check replacement = False # with reset = False (default setting) total_samples = 0 for pos_edges, neg_edges in EdgeSampler(g, batch_size, replacement=False, reset=False, negative_mode=mode, neg_sample_size=neg_size, exclude_positive=exclude_positive, return_false_neg=True): _, _, pos_leid = pos_edges.all_edges(form='all', order='eid') assert len(pos_leid) == batch_size total_samples += len(pos_leid) assert total_samples == num_edges # check replacement = True # with reset = True total_samples = 0 max_samples = 2 * num_edges for pos_edges, neg_edges in EdgeSampler(g, batch_size, replacement=True, reset=True, negative_mode=mode, neg_sample_size=neg_size, exclude_positive=exclude_positive, return_false_neg=True): _, _, pos_leid = pos_edges.all_edges(form='all', order='eid') assert len(pos_leid) <= batch_size total_samples += len(pos_leid) if (total_samples >= max_samples): break assert total_samples >= max_samples # check replacement = False # with reset = True total_samples = 0 max_samples = 2 * num_edges for pos_edges, neg_edges in EdgeSampler(g, batch_size, replacement=False, reset=True, negative_mode=mode, neg_sample_size=neg_size, exclude_positive=exclude_positive, return_false_neg=True): _, _, pos_leid = pos_edges.all_edges(form='all', order='eid') assert len(pos_leid) <= batch_size total_samples += len(pos_leid) if (total_samples >= max_samples): break assert total_samples >= max_samples # Test the knowledge graph. total_samples = 0 for _, neg_edges in EdgeSampler(g, batch_size, negative_mode=mode, reset=False, neg_sample_size=neg_size, exclude_positive=exclude_positive, relations=g.edata['etype'], return_false_neg=True): neg_lsrc, neg_ldst, neg_leid = neg_edges.all_edges(form='all', order='eid') neg_src = F.gather_row(neg_edges.parent_nid, neg_lsrc) neg_dst = F.gather_row(neg_edges.parent_nid, neg_ldst) neg_eid = F.gather_row(neg_edges.parent_eid, neg_leid) exists = neg_edges.edata['false_neg'] neg_edges.edata['etype'] = F.gather_row(g.edata['etype'], neg_eid) for i in range(len(neg_eid)): u, v = F.asnumpy(neg_src[i]), F.asnumpy(neg_dst[i]) if g.has_edge_between(u, v): eid = g.edge_id(u, v) etype = g.edata['etype'][eid] exist = neg_edges.edata['etype'][i] == etype assert F.asnumpy(exists[i]) == F.asnumpy(exist) total_samples += batch_size assert total_samples <= num_edges def check_weighted_negative_sampler(mode, exclude_positive, neg_size): g = generate_rand_graph(100) num_edges = g.number_of_edges() num_nodes = g.number_of_nodes() edge_weight = F.copy_to(F.tensor(np.full((num_edges,), 1, dtype=np.float32)), F.cpu()) node_weight = F.copy_to(F.tensor(np.full((num_nodes,), 1, dtype=np.float32)), F.cpu()) etype = np.random.randint(0, 10, size=num_edges, dtype=np.int64) g.edata['etype'] = F.copy_to(F.tensor(etype), F.cpu()) pos_gsrc, pos_gdst, pos_geid = g.all_edges(form='all', order='eid') pos_map = {} for i in range(len(pos_geid)): pos_d = int(F.asnumpy(pos_gdst[i])) pos_e = int(F.asnumpy(pos_geid[i])) pos_map[(pos_d, pos_e)] = int(F.asnumpy(pos_gsrc[i])) EdgeSampler = getattr(dgl.contrib.sampling, 'EdgeSampler') # Correctness check # Test the homogeneous graph. batch_size = 50 # Test the knowledge graph with edge weight provied. total_samples = 0 for pos_edges, neg_edges in EdgeSampler(g, batch_size, reset=False, edge_weight=edge_weight, negative_mode=mode, neg_sample_size=neg_size, exclude_positive=exclude_positive, return_false_neg=True): pos_lsrc, pos_ldst, pos_leid = pos_edges.all_edges(form='all', order='eid') assert_array_equal(F.asnumpy(F.gather_row(pos_edges.parent_eid, pos_leid)), F.asnumpy(g.edge_ids(F.gather_row(pos_edges.parent_nid, pos_lsrc), F.gather_row(pos_edges.parent_nid, pos_ldst)))) neg_lsrc, neg_ldst, neg_leid = neg_edges.all_edges(form='all', order='eid') neg_src = F.gather_row(neg_edges.parent_nid, neg_lsrc) neg_dst = F.gather_row(neg_edges.parent_nid, neg_ldst) neg_eid = F.gather_row(neg_edges.parent_eid, neg_leid) for i in range(len(neg_eid)): neg_d = int(F.asnumpy(neg_dst[i])) neg_e = int(F.asnumpy(neg_eid[i])) assert (neg_d, neg_e) in pos_map if exclude_positive: assert int(F.asnumpy(neg_src[i])) != pos_map[(neg_d, neg_e)] check_head_tail(neg_edges) pos_tails = F.gather_row(pos_edges.parent_nid, pos_edges.tail_nid) neg_tails = F.gather_row(neg_edges.parent_nid, neg_edges.tail_nid) pos_tails = np.sort(F.asnumpy(pos_tails)) neg_tails = np.sort(F.asnumpy(neg_tails)) np.testing.assert_equal(pos_tails, neg_tails) exist = neg_edges.edata['false_neg'] if exclude_positive: assert np.sum(F.asnumpy(exist) == 0) == len(exist) else: assert F.array_equal(g.has_edges_between(neg_src, neg_dst), exist) total_samples += batch_size assert total_samples <= num_edges # Test the knowledge graph with edge weight provied. total_samples = 0 for pos_edges, neg_edges in EdgeSampler(g, batch_size, reset=False, edge_weight=edge_weight, negative_mode=mode, neg_sample_size=neg_size, exclude_positive=exclude_positive, relations=g.edata['etype'], return_false_neg=True): neg_lsrc, neg_ldst, neg_leid = neg_edges.all_edges(form='all', order='eid') neg_src = F.gather_row(neg_edges.parent_nid, neg_lsrc) neg_dst = F.gather_row(neg_edges.parent_nid, neg_ldst) neg_eid = F.gather_row(neg_edges.parent_eid, neg_leid) exists = neg_edges.edata['false_neg'] neg_edges.edata['etype'] = F.gather_row(g.edata['etype'], neg_eid) for i in range(len(neg_eid)): u, v = F.asnumpy(neg_src[i]), F.asnumpy(neg_dst[i]) if g.has_edge_between(u, v): eid = g.edge_id(u, v) etype = g.edata['etype'][eid] exist = neg_edges.edata['etype'][i] == etype assert F.asnumpy(exists[i]) == F.asnumpy(exist) total_samples += batch_size assert total_samples <= num_edges # Test the knowledge graph with edge/node weight provied. total_samples = 0 for pos_edges, neg_edges in EdgeSampler(g, batch_size, reset=False, edge_weight=edge_weight, node_weight=node_weight, negative_mode=mode, neg_sample_size=neg_size, exclude_positive=exclude_positive, relations=g.edata['etype'], return_false_neg=True): neg_lsrc, neg_ldst, neg_leid = neg_edges.all_edges(form='all', order='eid') neg_src = F.gather_row(neg_edges.parent_nid, neg_lsrc) neg_dst = F.gather_row(neg_edges.parent_nid, neg_ldst) neg_eid = F.gather_row(neg_edges.parent_eid, neg_leid) exists = neg_edges.edata['false_neg'] neg_edges.edata['etype'] = F.gather_row(g.edata['etype'], neg_eid) for i in range(len(neg_eid)): u, v = F.asnumpy(neg_src[i]), F.asnumpy(neg_dst[i]) if g.has_edge_between(u, v): eid = g.edge_id(u, v) etype = g.edata['etype'][eid] exist = neg_edges.edata['etype'][i] == etype assert F.asnumpy(exists[i]) == F.asnumpy(exist) total_samples += batch_size assert total_samples <= num_edges # check replacement = True with pos edges no-uniform sample # with reset = False total_samples = 0 for pos_edges, neg_edges in EdgeSampler(g, batch_size, replacement=True, reset=False, edge_weight=edge_weight, negative_mode=mode, neg_sample_size=neg_size, exclude_positive=exclude_positive, return_false_neg=True): _, _, pos_leid = pos_edges.all_edges(form='all', order='eid') assert len(pos_leid) == batch_size total_samples += len(pos_leid) assert total_samples == num_edges # check replacement = True with pos edges no-uniform sample # with reset = True total_samples = 0 max_samples = 4 * num_edges for pos_edges, neg_edges in EdgeSampler(g, batch_size, replacement=True, reset=True, edge_weight=edge_weight, negative_mode=mode, neg_sample_size=neg_size, exclude_positive=exclude_positive, return_false_neg=True): _, _, pos_leid = pos_edges.all_edges(form='all', order='eid') assert len(pos_leid) == batch_size total_samples += len(pos_leid) if total_samples >= max_samples: break assert total_samples == max_samples # check replacement = False with pos/neg edges no-uniform sample # reset = False total_samples = 0 for pos_edges, neg_edges in EdgeSampler(g, batch_size, replacement=False, reset=False, edge_weight=edge_weight, node_weight=node_weight, negative_mode=mode, neg_sample_size=neg_size, exclude_positive=exclude_positive, relations=g.edata['etype'], return_false_neg=True): _, _, pos_leid = pos_edges.all_edges(form='all', order='eid') assert len(pos_leid) == batch_size total_samples += len(pos_leid) assert total_samples == num_edges # check replacement = False with pos/neg edges no-uniform sample # reset = True total_samples = 0 for pos_edges, neg_edges in EdgeSampler(g, batch_size, replacement=False, reset=True, edge_weight=edge_weight, node_weight=node_weight, negative_mode=mode, neg_sample_size=neg_size, exclude_positive=exclude_positive, relations=g.edata['etype'], return_false_neg=True): _, _, pos_leid = pos_edges.all_edges(form='all', order='eid') assert len(pos_leid) == batch_size total_samples += len(pos_leid) if total_samples >= max_samples: break assert total_samples == max_samples # Check Rate dgl.random.seed(0) g = generate_rand_graph(1000) num_edges = g.number_of_edges() num_nodes = g.number_of_nodes() edge_weight = F.copy_to(F.tensor(np.full((num_edges,), 1, dtype=np.float32)), F.cpu()) edge_weight[0] = F.sum(edge_weight, dim=0) node_weight = F.copy_to(F.tensor(np.full((num_nodes,), 1, dtype=np.float32)), F.cpu()) node_weight[-1] = F.sum(node_weight, dim=0) / 200 etype = np.random.randint(0, 20, size=num_edges, dtype=np.int64) g.edata['etype'] = F.copy_to(F.tensor(etype), F.cpu()) # Test w/o node weight. max_samples = num_edges // 5 total_samples = 0 # Test the knowledge graph with edge weight provied. edge_sampled = np.full((num_edges,), 0, dtype=np.int32) node_sampled = np.full((num_nodes,), 0, dtype=np.int32) for pos_edges, neg_edges in EdgeSampler(g, batch_size, replacement=True, edge_weight=edge_weight, shuffle=True, negative_mode=mode, neg_sample_size=neg_size, exclude_positive=False, relations=g.edata['etype'], return_false_neg=True): _, _, pos_leid = pos_edges.all_edges(form='all', order='eid') neg_lsrc, neg_ldst, _ = neg_edges.all_edges(form='all', order='eid') if 'head' in mode: neg_src = neg_edges.parent_nid[neg_lsrc] np.add.at(node_sampled, F.asnumpy(neg_src), 1) else: neg_dst = neg_edges.parent_nid[neg_ldst] np.add.at(node_sampled, F.asnumpy(neg_dst), 1) np.add.at(edge_sampled, F.asnumpy(pos_edges.parent_eid[pos_leid]), 1) total_samples += batch_size if total_samples > max_samples: break # Check rate here edge_rate_0 = edge_sampled[0] / edge_sampled.sum() edge_tail_half_cnt = edge_sampled[edge_sampled.shape[0] // 2:-1].sum() edge_rate_tail_half = edge_tail_half_cnt / edge_sampled.sum() assert np.allclose(edge_rate_0, 0.5, atol=0.05) assert np.allclose(edge_rate_tail_half, 0.25, atol=0.05) node_rate_0 = node_sampled[0] / node_sampled.sum() node_tail_half_cnt = node_sampled[node_sampled.shape[0] // 2:-1].sum() node_rate_tail_half = node_tail_half_cnt / node_sampled.sum() assert node_rate_0 < 0.02 assert np.allclose(node_rate_tail_half, 0.5, atol=0.02) # Test the knowledge graph with edge/node weight provied. edge_sampled = np.full((num_edges,), 0, dtype=np.int32) node_sampled = np.full((num_nodes,), 0, dtype=np.int32) total_samples = 0 for pos_edges, neg_edges in EdgeSampler(g, batch_size, replacement=True, edge_weight=edge_weight, node_weight=node_weight, shuffle=True, negative_mode=mode, neg_sample_size=neg_size, exclude_positive=False, relations=g.edata['etype'], return_false_neg=True): _, _, pos_leid = pos_edges.all_edges(form='all', order='eid') neg_lsrc, neg_ldst, _ = neg_edges.all_edges(form='all', order='eid') if 'head' in mode: neg_src = F.gather_row(neg_edges.parent_nid, neg_lsrc) np.add.at(node_sampled, F.asnumpy(neg_src), 1) else: neg_dst = F.gather_row(neg_edges.parent_nid, neg_ldst) np.add.at(node_sampled, F.asnumpy(neg_dst), 1) np.add.at(edge_sampled, F.asnumpy(pos_edges.parent_eid[pos_leid]), 1) total_samples += batch_size if total_samples > max_samples: break # Check rate here edge_rate_0 = edge_sampled[0] / edge_sampled.sum() edge_tail_half_cnt = edge_sampled[edge_sampled.shape[0] // 2:-1].sum() edge_rate_tail_half = edge_tail_half_cnt / edge_sampled.sum() assert np.allclose(edge_rate_0, 0.5, atol=0.05) assert np.allclose(edge_rate_tail_half, 0.25, atol=0.05) node_rate = node_sampled[-1] / node_sampled.sum() node_rate_a = np.average(node_sampled[:50]) / node_sampled.sum() node_rate_b = np.average(node_sampled[50:100]) / node_sampled.sum() # As neg sampling does not contain duplicate nodes, # this test takes some acceptable variation on the sample rate. assert np.allclose(node_rate, node_rate_a * 5, atol=0.002) assert np.allclose(node_rate_a, node_rate_b, atol=0.0002) def check_positive_edge_sampler(): g = generate_rand_graph(1000) num_edges = g.number_of_edges() edge_weight = F.copy_to(F.tensor(np.full((num_edges,), 1, dtype=np.float32)), F.cpu()) edge_weight[num_edges-1] = num_edges ** 3 EdgeSampler = getattr(dgl.contrib.sampling, 'EdgeSampler') # Correctness check # Test the homogeneous graph. batch_size = 128 edge_sampled = np.full((num_edges,), 0, dtype=np.int32) for pos_edges in EdgeSampler(g, batch_size, reset=False, edge_weight=edge_weight): _, _, pos_leid = pos_edges.all_edges(form='all', order='eid') np.add.at(edge_sampled, F.asnumpy(pos_edges.parent_eid[pos_leid]), 1) truth = np.full((num_edges,), 1, dtype=np.int32) edge_sampled = edge_sampled[:num_edges] assert np.array_equal(truth, edge_sampled) edge_sampled = np.full((num_edges,), 0, dtype=np.int32) for pos_edges in EdgeSampler(g, batch_size, reset=False, shuffle=True, edge_weight=edge_weight): _, _, pos_leid = pos_edges.all_edges(form='all', order='eid') np.add.at(edge_sampled, F.asnumpy(pos_edges.parent_eid[pos_leid]), 1) truth = np.full((num_edges,), 1, dtype=np.int32) edge_sampled = edge_sampled[:num_edges] assert np.array_equal(truth, edge_sampled) @unittest.skipIf(dgl.backend.backend_name == "tensorflow", reason="TF doesn't support item assignment") def test_negative_sampler(): check_negative_sampler('chunk-head', False, 10) check_negative_sampler('head', True, 10) check_negative_sampler('head', False, 10) check_weighted_negative_sampler('chunk-head', False, 10) check_weighted_negative_sampler('head', True, 10) check_weighted_negative_sampler('head', False, 10) check_positive_edge_sampler() #disable this check for now. It might take too long time. #check_negative_sampler('head', False, 100) if __name__ == '__main__': test_create_full() test_1neighbor_sampler_all() test_10neighbor_sampler_all() test_1neighbor_sampler() test_10neighbor_sampler() test_layer_sampler() test_nonuniform_neighbor_sampler() test_setseed() test_negative_sampler()
[ "numpy.testing.assert_equal", "numpy.hstack", "unittest.skipIf", "backend.array_equal", "backend.sum", "dgl.random.seed", "numpy.sort", "scipy.sparse.random", "numpy.random.seed", "dgl.DGLGraph", "dgl.contrib.sampling.NeighborSampler", "backend.tensor", "dgl.contrib.sampling.sampler.create_full_nodeflow", "numpy.allclose", "backend.asnumpy", "numpy.average", "numpy.unique", "numpy.random.randint", "numpy.array_equal", "backend.gather_row", "numpy.full", "backend.cpu" ]
[((153, 171), 'numpy.random.seed', 'np.random.seed', (['(42)'], {}), '(42)\n', (167, 171), True, 'import numpy as np\n'), ((7157, 7264), 'unittest.skipIf', 'unittest.skipIf', (["(dgl.backend.backend_name == 'tensorflow')"], {'reason': '"""Error occured when multiprocessing"""'}), "(dgl.backend.backend_name == 'tensorflow', reason=\n 'Error occured when multiprocessing')\n", (7172, 7264), False, 'import unittest\n'), ((32993, 33100), 'unittest.skipIf', 'unittest.skipIf', (["(dgl.backend.backend_name == 'tensorflow')"], {'reason': '"""TF doesn\'t support item assignment"""'}), '(dgl.backend.backend_name == \'tensorflow\', reason=\n "TF doesn\'t support item assignment")\n', (33008, 33100), False, 'import unittest\n'), ((296, 328), 'dgl.DGLGraph', 'dgl.DGLGraph', (['arr'], {'readonly': '(True)'}), '(arr, readonly=True)\n', (308, 328), False, 'import dgl\n'), ((401, 456), 'dgl.contrib.sampling.sampler.create_full_nodeflow', 'dgl.contrib.sampling.sampler.create_full_nodeflow', (['g', '(5)'], {}), '(g, 5)\n', (450, 456), False, 'import dgl\n'), ((1542, 1560), 'backend.asnumpy', 'F.asnumpy', (['seed_id'], {}), '(seed_id)\n', (1551, 1560), True, 'import backend as F\n'), ((1865, 1885), 'backend.asnumpy', 'F.asnumpy', (['child_src'], {}), '(child_src)\n', (1874, 1885), True, 'import backend as F\n'), ((2163, 2177), 'backend.asnumpy', 'F.asnumpy', (['src'], {}), '(src)\n', (2172, 2177), True, 'import backend as F\n'), ((2427, 2512), 'dgl.contrib.sampling.NeighborSampler', 'dgl.contrib.sampling.NeighborSampler', (['g', '(1)', '(5)'], {'neighbor_type': '"""in"""', 'num_workers': '(4)'}), "(g, 1, 5, neighbor_type='in', num_workers=4\n )\n", (2463, 2512), False, 'import dgl\n'), ((2944, 3043), 'dgl.contrib.sampling.NeighborSampler', 'dgl.contrib.sampling.NeighborSampler', (['g', '(1)', '(5)'], {'neighbor_type': '"""in"""', 'num_workers': '(4)', 'prefetch': '(True)'}), "(g, 1, 5, neighbor_type='in',\n num_workers=4, prefetch=True)\n", (2980, 3043), False, 'import dgl\n'), ((4133, 4236), 'dgl.contrib.sampling.NeighborSampler', 'dgl.contrib.sampling.NeighborSampler', (['g', '(10)', '(5)'], {'neighbor_type': '"""in"""', 'num_workers': '(4)', 'seed_nodes': 'seeds'}), "(g, 10, 5, neighbor_type='in',\n num_workers=4, seed_nodes=seeds)\n", (4169, 4236), False, 'import dgl\n'), ((5169, 5192), 'numpy.hstack', 'np.hstack', (['seed_batches'], {}), '(seed_batches)\n', (5178, 5192), True, 'import numpy as np\n'), ((7683, 7697), 'dgl.DGLGraph', 'dgl.DGLGraph', ([], {}), '()\n', (7695, 7697), False, 'import dgl\n'), ((8032, 8129), 'dgl.contrib.sampling.NeighborSampler', 'dgl.contrib.sampling.NeighborSampler', (['g', '(1)', '(1)', '(99)', '"""in"""'], {'transition_prob': '"""w"""', 'seed_nodes': '[99]'}), "(g, 1, 1, 99, 'in', transition_prob='w',\n seed_nodes=[99])\n", (8068, 8129), False, 'import dgl\n'), ((8374, 8472), 'dgl.contrib.sampling.NeighborSampler', 'dgl.contrib.sampling.NeighborSampler', (['g', '(1)', '(1)', '(99)', '"""out"""'], {'transition_prob': '"""w"""', 'seed_nodes': '[0]'}), "(g, 1, 1, 99, 'out', transition_prob=\n 'w', seed_nodes=[0])\n", (8410, 8472), False, 'import dgl\n'), ((8747, 8766), 'dgl.random.seed', 'dgl.random.seed', (['(42)'], {}), '(42)\n', (8762, 8766), False, 'import dgl\n'), ((8783, 8880), 'dgl.contrib.sampling.NeighborSampler', 'dgl.contrib.sampling.NeighborSampler', (['g', '(5)', '(3)'], {'num_hops': '(2)', 'neighbor_type': '"""in"""', 'num_workers': '(1)'}), "(g, 5, 3, num_hops=2, neighbor_type=\n 'in', num_workers=1)\n", (8819, 8880), False, 'import dgl\n'), ((9016, 9035), 'dgl.random.seed', 'dgl.random.seed', (['(42)'], {}), '(42)\n', (9031, 9035), False, 'import dgl\n'), ((9658, 9697), 'numpy.testing.assert_equal', 'np.testing.assert_equal', (['lsrc', 'head_nid'], {}), '(lsrc, head_nid)\n', (9681, 9697), True, 'import numpy as np\n'), ((9833, 9872), 'numpy.testing.assert_equal', 'np.testing.assert_equal', (['tail_nid', 'ldst'], {}), '(tail_nid, ldst)\n', (9856, 9872), True, 'import numpy as np\n'), ((17319, 17375), 'numpy.random.randint', 'np.random.randint', (['(0)', '(10)'], {'size': 'num_edges', 'dtype': 'np.int64'}), '(0, 10, size=num_edges, dtype=np.int64)\n', (17336, 17375), True, 'import numpy as np\n'), ((26687, 26705), 'dgl.random.seed', 'dgl.random.seed', (['(0)'], {}), '(0)\n', (26702, 26705), False, 'import dgl\n'), ((26924, 26949), 'backend.sum', 'F.sum', (['edge_weight'], {'dim': '(0)'}), '(edge_weight, dim=0)\n', (26929, 26949), True, 'import backend as F\n'), ((27107, 27163), 'numpy.random.randint', 'np.random.randint', (['(0)', '(20)'], {'size': 'num_edges', 'dtype': 'np.int64'}), '(0, 20, size=num_edges, dtype=np.int64)\n', (27124, 27163), True, 'import numpy as np\n'), ((27383, 27423), 'numpy.full', 'np.full', (['(num_edges,)', '(0)'], {'dtype': 'np.int32'}), '((num_edges,), 0, dtype=np.int32)\n', (27390, 27423), True, 'import numpy as np\n'), ((27443, 27483), 'numpy.full', 'np.full', (['(num_nodes,)', '(0)'], {'dtype': 'np.int32'}), '((num_nodes,), 0, dtype=np.int32)\n', (27450, 27483), True, 'import numpy as np\n'), ((28888, 28928), 'numpy.allclose', 'np.allclose', (['edge_rate_0', '(0.5)'], {'atol': '(0.05)'}), '(edge_rate_0, 0.5, atol=0.05)\n', (28899, 28928), True, 'import numpy as np\n'), ((28940, 28989), 'numpy.allclose', 'np.allclose', (['edge_rate_tail_half', '(0.25)'], {'atol': '(0.05)'}), '(edge_rate_tail_half, 0.25, atol=0.05)\n', (28951, 28989), True, 'import numpy as np\n'), ((29228, 29276), 'numpy.allclose', 'np.allclose', (['node_rate_tail_half', '(0.5)'], {'atol': '(0.02)'}), '(node_rate_tail_half, 0.5, atol=0.02)\n', (29239, 29276), True, 'import numpy as np\n'), ((29359, 29399), 'numpy.full', 'np.full', (['(num_edges,)', '(0)'], {'dtype': 'np.int32'}), '((num_edges,), 0, dtype=np.int32)\n', (29366, 29399), True, 'import numpy as np\n'), ((29419, 29459), 'numpy.full', 'np.full', (['(num_nodes,)', '(0)'], {'dtype': 'np.int32'}), '((num_nodes,), 0, dtype=np.int32)\n', (29426, 29459), True, 'import numpy as np\n'), ((30983, 31023), 'numpy.allclose', 'np.allclose', (['edge_rate_0', '(0.5)'], {'atol': '(0.05)'}), '(edge_rate_0, 0.5, atol=0.05)\n', (30994, 31023), True, 'import numpy as np\n'), ((31035, 31084), 'numpy.allclose', 'np.allclose', (['edge_rate_tail_half', '(0.25)'], {'atol': '(0.05)'}), '(edge_rate_tail_half, 0.25, atol=0.05)\n', (31046, 31084), True, 'import numpy as np\n'), ((31416, 31467), 'numpy.allclose', 'np.allclose', (['node_rate', '(node_rate_a * 5)'], {'atol': '(0.002)'}), '(node_rate, node_rate_a * 5, atol=0.002)\n', (31427, 31467), True, 'import numpy as np\n'), ((31479, 31529), 'numpy.allclose', 'np.allclose', (['node_rate_a', 'node_rate_b'], {'atol': '(0.0002)'}), '(node_rate_a, node_rate_b, atol=0.0002)\n', (31490, 31529), True, 'import numpy as np\n'), ((31936, 31976), 'numpy.full', 'np.full', (['(num_edges,)', '(0)'], {'dtype': 'np.int32'}), '((num_edges,), 0, dtype=np.int32)\n', (31943, 31976), True, 'import numpy as np\n'), ((32296, 32336), 'numpy.full', 'np.full', (['(num_edges,)', '(1)'], {'dtype': 'np.int32'}), '((num_edges,), 1, dtype=np.int32)\n', (32303, 32336), True, 'import numpy as np\n'), ((32392, 32427), 'numpy.array_equal', 'np.array_equal', (['truth', 'edge_sampled'], {}), '(truth, edge_sampled)\n', (32406, 32427), True, 'import numpy as np\n'), ((32448, 32488), 'numpy.full', 'np.full', (['(num_edges,)', '(0)'], {'dtype': 'np.int32'}), '((num_edges,), 0, dtype=np.int32)\n', (32455, 32488), True, 'import numpy as np\n'), ((32858, 32898), 'numpy.full', 'np.full', (['(num_edges,)', '(1)'], {'dtype': 'np.int32'}), '((num_edges,), 1, dtype=np.int32)\n', (32865, 32898), True, 'import numpy as np\n'), ((32954, 32989), 'numpy.array_equal', 'np.array_equal', (['truth', 'edge_sampled'], {}), '(truth, edge_sampled)\n', (32968, 32989), True, 'import numpy as np\n'), ((1388, 1412), 'backend.array_equal', 'F.array_equal', (['src1', 'src'], {}), '(src1, src)\n', (1401, 1412), True, 'import backend as F\n'), ((3965, 3989), 'backend.array_equal', 'F.array_equal', (['src1', 'src'], {}), '(src1, src)\n', (3978, 3989), True, 'import backend as F\n'), ((9065, 9162), 'dgl.contrib.sampling.NeighborSampler', 'dgl.contrib.sampling.NeighborSampler', (['g', '(5)', '(3)'], {'num_hops': '(2)', 'neighbor_type': '"""in"""', 'num_workers': '(1)'}), "(g, 5, 3, num_hops=2, neighbor_type=\n 'in', num_workers=1)\n", (9101, 9162), False, 'import dgl\n'), ((9317, 9414), 'dgl.contrib.sampling.NeighborSampler', 'dgl.contrib.sampling.NeighborSampler', (['g', '(5)', '(3)'], {'num_hops': '(2)', 'neighbor_type': '"""in"""', 'num_workers': '(4)'}), "(g, 5, 3, num_hops=2, neighbor_type=\n 'in', num_workers=4)\n", (9353, 9414), False, 'import dgl\n'), ((9545, 9560), 'backend.asnumpy', 'F.asnumpy', (['lsrc'], {}), '(lsrc)\n', (9554, 9560), True, 'import backend as F\n'), ((9587, 9608), 'backend.asnumpy', 'F.asnumpy', (['g.head_nid'], {}), '(g.head_nid)\n', (9596, 9608), True, 'import backend as F\n'), ((9720, 9735), 'backend.asnumpy', 'F.asnumpy', (['ldst'], {}), '(ldst)\n', (9729, 9735), True, 'import backend as F\n'), ((9762, 9783), 'backend.asnumpy', 'F.asnumpy', (['g.tail_nid'], {}), '(g.tail_nid)\n', (9771, 9783), True, 'import backend as F\n'), ((10118, 10133), 'backend.tensor', 'F.tensor', (['etype'], {}), '(etype)\n', (10126, 10133), True, 'import backend as F\n'), ((10135, 10142), 'backend.cpu', 'F.cpu', ([], {}), '()\n', (10140, 10142), True, 'import backend as F\n'), ((11419, 11463), 'backend.gather_row', 'F.gather_row', (['neg_edges.parent_nid', 'neg_lsrc'], {}), '(neg_edges.parent_nid, neg_lsrc)\n', (11431, 11463), True, 'import backend as F\n'), ((11482, 11526), 'backend.gather_row', 'F.gather_row', (['neg_edges.parent_nid', 'neg_ldst'], {}), '(neg_edges.parent_nid, neg_ldst)\n', (11494, 11526), True, 'import backend as F\n'), ((11545, 11589), 'backend.gather_row', 'F.gather_row', (['neg_edges.parent_eid', 'neg_leid'], {}), '(neg_edges.parent_eid, neg_leid)\n', (11557, 11589), True, 'import backend as F\n'), ((11933, 11987), 'backend.gather_row', 'F.gather_row', (['pos_edges.parent_nid', 'pos_edges.tail_nid'], {}), '(pos_edges.parent_nid, pos_edges.tail_nid)\n', (11945, 11987), True, 'import backend as F\n'), ((12008, 12062), 'backend.gather_row', 'F.gather_row', (['neg_edges.parent_nid', 'neg_edges.tail_nid'], {}), '(neg_edges.parent_nid, neg_edges.tail_nid)\n', (12020, 12062), True, 'import backend as F\n'), ((12171, 12216), 'numpy.testing.assert_equal', 'np.testing.assert_equal', (['pos_tails', 'neg_tails'], {}), '(pos_tails, neg_tails)\n', (12194, 12216), True, 'import numpy as np\n'), ((16230, 16274), 'backend.gather_row', 'F.gather_row', (['neg_edges.parent_nid', 'neg_lsrc'], {}), '(neg_edges.parent_nid, neg_lsrc)\n', (16242, 16274), True, 'import backend as F\n'), ((16293, 16337), 'backend.gather_row', 'F.gather_row', (['neg_edges.parent_nid', 'neg_ldst'], {}), '(neg_edges.parent_nid, neg_ldst)\n', (16305, 16337), True, 'import backend as F\n'), ((16356, 16400), 'backend.gather_row', 'F.gather_row', (['neg_edges.parent_eid', 'neg_leid'], {}), '(neg_edges.parent_eid, neg_leid)\n', (16368, 16400), True, 'import backend as F\n'), ((16482, 16521), 'backend.gather_row', 'F.gather_row', (["g.edata['etype']", 'neg_eid'], {}), "(g.edata['etype'], neg_eid)\n", (16494, 16521), True, 'import backend as F\n'), ((17207, 17214), 'backend.cpu', 'F.cpu', ([], {}), '()\n', (17212, 17214), True, 'import backend as F\n'), ((17298, 17305), 'backend.cpu', 'F.cpu', ([], {}), '()\n', (17303, 17305), True, 'import backend as F\n'), ((17409, 17424), 'backend.tensor', 'F.tensor', (['etype'], {}), '(etype)\n', (17417, 17424), True, 'import backend as F\n'), ((17426, 17433), 'backend.cpu', 'F.cpu', ([], {}), '()\n', (17431, 17433), True, 'import backend as F\n'), ((18858, 18902), 'backend.gather_row', 'F.gather_row', (['neg_edges.parent_nid', 'neg_lsrc'], {}), '(neg_edges.parent_nid, neg_lsrc)\n', (18870, 18902), True, 'import backend as F\n'), ((18921, 18965), 'backend.gather_row', 'F.gather_row', (['neg_edges.parent_nid', 'neg_ldst'], {}), '(neg_edges.parent_nid, neg_ldst)\n', (18933, 18965), True, 'import backend as F\n'), ((18984, 19028), 'backend.gather_row', 'F.gather_row', (['neg_edges.parent_eid', 'neg_leid'], {}), '(neg_edges.parent_eid, neg_leid)\n', (18996, 19028), True, 'import backend as F\n'), ((19372, 19426), 'backend.gather_row', 'F.gather_row', (['pos_edges.parent_nid', 'pos_edges.tail_nid'], {}), '(pos_edges.parent_nid, pos_edges.tail_nid)\n', (19384, 19426), True, 'import backend as F\n'), ((19447, 19501), 'backend.gather_row', 'F.gather_row', (['neg_edges.parent_nid', 'neg_edges.tail_nid'], {}), '(neg_edges.parent_nid, neg_edges.tail_nid)\n', (19459, 19501), True, 'import backend as F\n'), ((19610, 19655), 'numpy.testing.assert_equal', 'np.testing.assert_equal', (['pos_tails', 'neg_tails'], {}), '(pos_tails, neg_tails)\n', (19633, 19655), True, 'import numpy as np\n'), ((20681, 20725), 'backend.gather_row', 'F.gather_row', (['neg_edges.parent_nid', 'neg_lsrc'], {}), '(neg_edges.parent_nid, neg_lsrc)\n', (20693, 20725), True, 'import backend as F\n'), ((20744, 20788), 'backend.gather_row', 'F.gather_row', (['neg_edges.parent_nid', 'neg_ldst'], {}), '(neg_edges.parent_nid, neg_ldst)\n', (20756, 20788), True, 'import backend as F\n'), ((20807, 20851), 'backend.gather_row', 'F.gather_row', (['neg_edges.parent_eid', 'neg_leid'], {}), '(neg_edges.parent_eid, neg_leid)\n', (20819, 20851), True, 'import backend as F\n'), ((20933, 20972), 'backend.gather_row', 'F.gather_row', (["g.edata['etype']", 'neg_eid'], {}), "(g.edata['etype'], neg_eid)\n", (20945, 20972), True, 'import backend as F\n'), ((22193, 22237), 'backend.gather_row', 'F.gather_row', (['neg_edges.parent_nid', 'neg_lsrc'], {}), '(neg_edges.parent_nid, neg_lsrc)\n', (22205, 22237), True, 'import backend as F\n'), ((22256, 22300), 'backend.gather_row', 'F.gather_row', (['neg_edges.parent_nid', 'neg_ldst'], {}), '(neg_edges.parent_nid, neg_ldst)\n', (22268, 22300), True, 'import backend as F\n'), ((22319, 22363), 'backend.gather_row', 'F.gather_row', (['neg_edges.parent_eid', 'neg_leid'], {}), '(neg_edges.parent_eid, neg_leid)\n', (22331, 22363), True, 'import backend as F\n'), ((22445, 22484), 'backend.gather_row', 'F.gather_row', (["g.edata['etype']", 'neg_eid'], {}), "(g.edata['etype'], neg_eid)\n", (22457, 22484), True, 'import backend as F\n'), ((26894, 26901), 'backend.cpu', 'F.cpu', ([], {}), '()\n', (26899, 26901), True, 'import backend as F\n'), ((27032, 27039), 'backend.cpu', 'F.cpu', ([], {}), '()\n', (27037, 27039), True, 'import backend as F\n'), ((27063, 27088), 'backend.sum', 'F.sum', (['node_weight'], {'dim': '(0)'}), '(node_weight, dim=0)\n', (27068, 27088), True, 'import backend as F\n'), ((27197, 27212), 'backend.tensor', 'F.tensor', (['etype'], {}), '(etype)\n', (27205, 27212), True, 'import backend as F\n'), ((27214, 27221), 'backend.cpu', 'F.cpu', ([], {}), '()\n', (27219, 27221), True, 'import backend as F\n'), ((31158, 31187), 'numpy.average', 'np.average', (['node_sampled[:50]'], {}), '(node_sampled[:50])\n', (31168, 31187), True, 'import numpy as np\n'), ((31227, 31259), 'numpy.average', 'np.average', (['node_sampled[50:100]'], {}), '(node_sampled[50:100])\n', (31237, 31259), True, 'import numpy as np\n'), ((31718, 31725), 'backend.cpu', 'F.cpu', ([], {}), '()\n', (31723, 31725), True, 'import backend as F\n'), ((1963, 1983), 'numpy.unique', 'np.unique', (['child_src'], {}), '(child_src)\n', (1972, 1983), True, 'import numpy as np\n'), ((2241, 2253), 'backend.asnumpy', 'F.asnumpy', (['i'], {}), '(i)\n', (2250, 2253), True, 'import backend as F\n'), ((6568, 6603), 'backend.gather_row', 'F.gather_row', (['src', 'block_parent_eid'], {}), '(src, block_parent_eid)\n', (6580, 6603), True, 'import backend as F\n'), ((6635, 6670), 'backend.gather_row', 'F.gather_row', (['dst', 'block_parent_eid'], {}), '(dst, block_parent_eid)\n', (6647, 6670), True, 'import backend as F\n'), ((7539, 7561), 'numpy.random.randint', 'np.random.randint', (['(100)'], {}), '(100)\n', (7556, 7561), True, 'import numpy as np\n'), ((7563, 7585), 'numpy.random.randint', 'np.random.randint', (['(100)'], {}), '(100)\n', (7580, 7585), True, 'import numpy as np\n'), ((10289, 10311), 'backend.asnumpy', 'F.asnumpy', (['pos_gdst[i]'], {}), '(pos_gdst[i])\n', (10298, 10311), True, 'import backend as F\n'), ((10333, 10355), 'backend.asnumpy', 'F.asnumpy', (['pos_geid[i]'], {}), '(pos_geid[i])\n', (10342, 10355), True, 'import backend as F\n'), ((10395, 10417), 'backend.asnumpy', 'F.asnumpy', (['pos_gsrc[i]'], {}), '(pos_gsrc[i])\n', (10404, 10417), True, 'import backend as F\n'), ((12091, 12111), 'backend.asnumpy', 'F.asnumpy', (['pos_tails'], {}), '(pos_tails)\n', (12100, 12111), True, 'import backend as F\n'), ((12141, 12161), 'backend.asnumpy', 'F.asnumpy', (['neg_tails'], {}), '(neg_tails)\n', (12150, 12161), True, 'import backend as F\n'), ((17162, 17204), 'numpy.full', 'np.full', (['(num_edges,)', '(1)'], {'dtype': 'np.float32'}), '((num_edges,), 1, dtype=np.float32)\n', (17169, 17204), True, 'import numpy as np\n'), ((17253, 17295), 'numpy.full', 'np.full', (['(num_nodes,)', '(1)'], {'dtype': 'np.float32'}), '((num_nodes,), 1, dtype=np.float32)\n', (17260, 17295), True, 'import numpy as np\n'), ((17580, 17602), 'backend.asnumpy', 'F.asnumpy', (['pos_gdst[i]'], {}), '(pos_gdst[i])\n', (17589, 17602), True, 'import backend as F\n'), ((17624, 17646), 'backend.asnumpy', 'F.asnumpy', (['pos_geid[i]'], {}), '(pos_geid[i])\n', (17633, 17646), True, 'import backend as F\n'), ((17686, 17708), 'backend.asnumpy', 'F.asnumpy', (['pos_gsrc[i]'], {}), '(pos_gsrc[i])\n', (17695, 17708), True, 'import backend as F\n'), ((19530, 19550), 'backend.asnumpy', 'F.asnumpy', (['pos_tails'], {}), '(pos_tails)\n', (19539, 19550), True, 'import backend as F\n'), ((19580, 19600), 'backend.asnumpy', 'F.asnumpy', (['neg_tails'], {}), '(neg_tails)\n', (19589, 19600), True, 'import backend as F\n'), ((26849, 26891), 'numpy.full', 'np.full', (['(num_edges,)', '(1)'], {'dtype': 'np.float32'}), '((num_edges,), 1, dtype=np.float32)\n', (26856, 26891), True, 'import numpy as np\n'), ((26987, 27029), 'numpy.full', 'np.full', (['(num_nodes,)', '(1)'], {'dtype': 'np.float32'}), '((num_nodes,), 1, dtype=np.float32)\n', (26994, 27029), True, 'import numpy as np\n'), ((28518, 28559), 'backend.asnumpy', 'F.asnumpy', (['pos_edges.parent_eid[pos_leid]'], {}), '(pos_edges.parent_eid[pos_leid])\n', (28527, 28559), True, 'import backend as F\n'), ((30337, 30381), 'backend.gather_row', 'F.gather_row', (['neg_edges.parent_nid', 'neg_lsrc'], {}), '(neg_edges.parent_nid, neg_lsrc)\n', (30349, 30381), True, 'import backend as F\n'), ((30477, 30521), 'backend.gather_row', 'F.gather_row', (['neg_edges.parent_nid', 'neg_ldst'], {}), '(neg_edges.parent_nid, neg_ldst)\n', (30489, 30521), True, 'import backend as F\n'), ((30613, 30654), 'backend.asnumpy', 'F.asnumpy', (['pos_edges.parent_eid[pos_leid]'], {}), '(pos_edges.parent_eid[pos_leid])\n', (30622, 30654), True, 'import backend as F\n'), ((31673, 31715), 'numpy.full', 'np.full', (['(num_edges,)', '(1)'], {'dtype': 'np.float32'}), '((num_edges,), 1, dtype=np.float32)\n', (31680, 31715), True, 'import numpy as np\n'), ((32238, 32279), 'backend.asnumpy', 'F.asnumpy', (['pos_edges.parent_eid[pos_leid]'], {}), '(pos_edges.parent_eid[pos_leid])\n', (32247, 32279), True, 'import backend as F\n'), ((32800, 32841), 'backend.asnumpy', 'F.asnumpy', (['pos_edges.parent_eid[pos_leid]'], {}), '(pos_edges.parent_eid[pos_leid])\n', (32809, 32841), True, 'import backend as F\n'), ((212, 261), 'scipy.sparse.random', 'sp.sparse.random', (['n', 'n'], {'density': '(0.1)', 'format': '"""coo"""'}), "(n, n, density=0.1, format='coo')\n", (228, 261), True, 'import scipy as sp\n'), ((1452, 1464), 'numpy.sort', 'np.sort', (['arr'], {}), '(arr)\n', (1459, 1464), True, 'import numpy as np\n'), ((5061, 5075), 'backend.asnumpy', 'F.asnumpy', (['nid'], {}), '(nid)\n', (5070, 5075), True, 'import backend as F\n'), ((5840, 5854), 'backend.asnumpy', 'F.asnumpy', (['nid'], {}), '(nid)\n', (5849, 5854), True, 'import backend as F\n'), ((6017, 6031), 'backend.asnumpy', 'F.asnumpy', (['eid'], {}), '(eid)\n', (6026, 6031), True, 'import backend as F\n'), ((6363, 6395), 'backend.gather_row', 'F.gather_row', (['sub_src', 'block_eid'], {}), '(sub_src, block_eid)\n', (6375, 6395), True, 'import backend as F\n'), ((6445, 6477), 'backend.gather_row', 'F.gather_row', (['sub_dst', 'block_eid'], {}), '(sub_dst, block_eid)\n', (6457, 6477), True, 'import backend as F\n'), ((6698, 6738), 'backend.asnumpy', 'F.asnumpy', (['(block_src == block_parent_src)'], {}), '(block_src == block_parent_src)\n', (6707, 6738), True, 'import backend as F\n'), ((7823, 7830), 'backend.cpu', 'F.cpu', ([], {}), '()\n', (7828, 7830), True, 'import backend as F\n'), ((7880, 7887), 'backend.cpu', 'F.cpu', ([], {}), '()\n', (7885, 7887), True, 'import backend as F\n'), ((11078, 11122), 'backend.gather_row', 'F.gather_row', (['pos_edges.parent_eid', 'pos_leid'], {}), '(pos_edges.parent_eid, pos_leid)\n', (11090, 11122), True, 'import backend as F\n'), ((16579, 16600), 'backend.asnumpy', 'F.asnumpy', (['neg_src[i]'], {}), '(neg_src[i])\n', (16588, 16600), True, 'import backend as F\n'), ((16602, 16623), 'backend.asnumpy', 'F.asnumpy', (['neg_dst[i]'], {}), '(neg_dst[i])\n', (16611, 16623), True, 'import backend as F\n'), ((18518, 18562), 'backend.gather_row', 'F.gather_row', (['pos_edges.parent_eid', 'pos_leid'], {}), '(pos_edges.parent_eid, pos_leid)\n', (18530, 18562), True, 'import backend as F\n'), ((19091, 19112), 'backend.asnumpy', 'F.asnumpy', (['neg_dst[i]'], {}), '(neg_dst[i])\n', (19100, 19112), True, 'import backend as F\n'), ((19138, 19159), 'backend.asnumpy', 'F.asnumpy', (['neg_eid[i]'], {}), '(neg_eid[i])\n', (19147, 19159), True, 'import backend as F\n'), ((21030, 21051), 'backend.asnumpy', 'F.asnumpy', (['neg_src[i]'], {}), '(neg_src[i])\n', (21039, 21051), True, 'import backend as F\n'), ((21053, 21074), 'backend.asnumpy', 'F.asnumpy', (['neg_dst[i]'], {}), '(neg_dst[i])\n', (21062, 21074), True, 'import backend as F\n'), ((22542, 22563), 'backend.asnumpy', 'F.asnumpy', (['neg_src[i]'], {}), '(neg_src[i])\n', (22551, 22563), True, 'import backend as F\n'), ((22565, 22586), 'backend.asnumpy', 'F.asnumpy', (['neg_dst[i]'], {}), '(neg_dst[i])\n', (22574, 22586), True, 'import backend as F\n'), ((28337, 28355), 'backend.asnumpy', 'F.asnumpy', (['neg_src'], {}), '(neg_src)\n', (28346, 28355), True, 'import backend as F\n'), ((28463, 28481), 'backend.asnumpy', 'F.asnumpy', (['neg_dst'], {}), '(neg_dst)\n', (28472, 28481), True, 'import backend as F\n'), ((30418, 30436), 'backend.asnumpy', 'F.asnumpy', (['neg_src'], {}), '(neg_src)\n', (30427, 30436), True, 'import backend as F\n'), ((30558, 30576), 'backend.asnumpy', 'F.asnumpy', (['neg_dst'], {}), '(neg_dst)\n', (30567, 30576), True, 'import backend as F\n'), ((11173, 11217), 'backend.gather_row', 'F.gather_row', (['pos_edges.parent_nid', 'pos_lsrc'], {}), '(pos_edges.parent_nid, pos_lsrc)\n', (11185, 11217), True, 'import backend as F\n'), ((11267, 11311), 'backend.gather_row', 'F.gather_row', (['pos_edges.parent_nid', 'pos_ldst'], {}), '(pos_edges.parent_nid, pos_ldst)\n', (11279, 11311), True, 'import backend as F\n'), ((11652, 11670), 'backend.asnumpy', 'F.asnumpy', (['neg_dst'], {}), '(neg_dst)\n', (11661, 11670), True, 'import backend as F\n'), ((11699, 11717), 'backend.asnumpy', 'F.asnumpy', (['neg_eid'], {}), '(neg_eid)\n', (11708, 11717), True, 'import backend as F\n'), ((16833, 16853), 'backend.asnumpy', 'F.asnumpy', (['exists[i]'], {}), '(exists[i])\n', (16842, 16853), True, 'import backend as F\n'), ((16857, 16873), 'backend.asnumpy', 'F.asnumpy', (['exist'], {}), '(exist)\n', (16866, 16873), True, 'import backend as F\n'), ((18613, 18657), 'backend.gather_row', 'F.gather_row', (['pos_edges.parent_nid', 'pos_lsrc'], {}), '(pos_edges.parent_nid, pos_lsrc)\n', (18625, 18657), True, 'import backend as F\n'), ((18707, 18751), 'backend.gather_row', 'F.gather_row', (['pos_edges.parent_nid', 'pos_ldst'], {}), '(pos_edges.parent_nid, pos_ldst)\n', (18719, 18751), True, 'import backend as F\n'), ((21284, 21304), 'backend.asnumpy', 'F.asnumpy', (['exists[i]'], {}), '(exists[i])\n', (21293, 21304), True, 'import backend as F\n'), ((21308, 21324), 'backend.asnumpy', 'F.asnumpy', (['exist'], {}), '(exist)\n', (21317, 21324), True, 'import backend as F\n'), ((22796, 22816), 'backend.asnumpy', 'F.asnumpy', (['exists[i]'], {}), '(exists[i])\n', (22805, 22816), True, 'import backend as F\n'), ((22820, 22836), 'backend.asnumpy', 'F.asnumpy', (['exist'], {}), '(exist)\n', (22829, 22836), True, 'import backend as F\n'), ((5661, 5679), 'backend.asnumpy', 'F.asnumpy', (['sub_nid'], {}), '(sub_nid)\n', (5670, 5679), True, 'import backend as F\n'), ((11827, 11848), 'backend.asnumpy', 'F.asnumpy', (['neg_src[i]'], {}), '(neg_src[i])\n', (11836, 11848), True, 'import backend as F\n'), ((12318, 12334), 'backend.asnumpy', 'F.asnumpy', (['exist'], {}), '(exist)\n', (12327, 12334), True, 'import backend as F\n'), ((19266, 19287), 'backend.asnumpy', 'F.asnumpy', (['neg_src[i]'], {}), '(neg_src[i])\n', (19275, 19287), True, 'import backend as F\n'), ((19757, 19773), 'backend.asnumpy', 'F.asnumpy', (['exist'], {}), '(exist)\n', (19766, 19773), True, 'import backend as F\n')]