code
stringlengths 31
1.05M
| apis
list | extract_api
stringlengths 97
1.91M
|
---|---|---|
# -*- coding: utf-8 -*-
"""
Helper functions for HDF5
Created on Tue Jun 2 12:37:50 2020
:copyright:
<NAME> (<EMAIL>)
:license:
MIT
"""
# =============================================================================
# Imports
# =============================================================================
from collections.abc import Iterable
import inspect
import numpy as np
import h5py
import gc
from mth5.utils.mth5_logger import setup_logger
logger = setup_logger(__name__)
# =============================================================================
# Acceptable compressions
# =============================================================================
COMPRESSION = ["lzf", "gzip", "szip", None]
COMPRESSION_LEVELS = {
"lzf": [None],
"gzip": range(10),
"szip": ["ec-8", "ee-10", "nn-8", "nn-10"],
None: [None],
}
def validate_compression(compression, level):
"""
validate that the input compression is supported.
:param compression: type of lossless compression
:type compression: string, [ 'lzf' | 'gzip' | 'szip' | None ]
:param level: compression level if supported
:type level: string for 'szip' or int for 'gzip'
:return: compression type
:rtype: string
:return: compressiong level
:rtype: string for 'szip' or int for 'gzip'
:raises: ValueError if comporession or level are not supported
:raises: TypeError if compression level is not a string
"""
if compression is None:
return None, None
if not isinstance(compression, (str, type(None))):
msg = "compression type must be a string, not {0}".format(type(compression))
logger.error(msg)
raise TypeError(msg)
if not compression in COMPRESSION:
msg = (
f"Compression type {compression} not supported. "
+ f"Supported options are {COMPRESSION}"
)
logger.error(msg)
raise ValueError(msg)
if compression == "lzf":
level = COMPRESSION_LEVELS["lzf"][0]
elif compression == " gzip":
if not isinstance(level, (int)):
msg = "Level type for gzip must be an int, not {0}.".format(
type(level) + f" Options are {0}".format(COMPRESSION_LEVELS["gzip"])
)
logger.error(msg)
raise TypeError(msg)
elif compression == " szip":
if not isinstance(level, (str)):
msg = "Level type for szip must be an str, not {0}.".format(
type(level)
) + " Options are {0}".format(COMPRESSION_LEVELS["szip"])
logger.error(msg)
raise TypeError(msg)
if not level in COMPRESSION_LEVELS[compression]:
msg = (
f"compression level {level} not supported for {compression}."
+ " Options are {0}".format(COMPRESSION_LEVELS[compression])
)
logger.error(msg)
raise ValueError(msg)
return compression, level
def recursive_hdf5_tree(group, lines=[]):
if isinstance(group, (h5py._hl.group.Group, h5py._hl.files.File)):
for key, value in group.items():
lines.append("-{0}: {1}".format(key, value))
recursive_hdf5_tree(value, lines)
elif isinstance(group, h5py._hl.dataset.Dataset):
for key, value in group.attrs.items():
lines.append("\t-{0}: {1}".format(key, value))
return "\n".join(lines)
def close_open_files():
for obj in gc.get_objects():
try:
if isinstance(obj, h5py.File):
msg = "Found HDF5 File object "
print(msg)
try:
msg = "{0}, ".format(obj.filename)
obj.flush()
obj.close()
msg += "Closed File"
logger.info(msg)
except:
msg += "File already closed."
logger.info(msg)
except:
print("Object {} does not have __class__")
def get_tree(parent):
"""
Simple function to recursively print the contents of an hdf5 group
Parameters
----------
parent : :class:`h5py.Group`
HDF5 (sub-)tree to print
"""
lines = ["{0}:".format(parent.name), "=" * 20]
if not isinstance(parent, (h5py.File, h5py.Group)):
raise TypeError("Provided object is not a h5py.File or h5py.Group " "object")
def fancy_print(name, obj):
# lines.append(name)
spacing = " " * 4 * (name.count("/") + 1)
group_name = name[name.rfind("/") + 1 :]
if isinstance(obj, h5py.Group):
lines.append("{0}|- Group: {1}".format(spacing, group_name))
lines.append("{0}{1}".format(spacing, (len(group_name) + 10) * "-"))
elif isinstance(obj, h5py.Dataset):
lines.append("{0}--> Dataset: {1}".format(spacing, group_name))
lines.append("{0}{1}".format(spacing, (len(group_name) + 15) * "."))
# lines.append(parent.name)
parent.visititems(fancy_print)
return "\n".join(lines)
def to_numpy_type(value):
"""
Need to make the attributes friendly with Numpy and HDF5.
For numbers and bool this is straight forward they are automatically
mapped in h5py to a numpy type.
But for strings this can be a challenge, especially a list of strings.
HDF5 should only deal with ASCII characters or Unicode. No binary data
is allowed.
"""
if value is None:
return "none"
# For now turn references into a generic string
if isinstance(value, h5py.h5r.Reference):
value = str(value)
if isinstance(
value,
(
str,
np.str_,
int,
float,
bool,
complex,
np.int_,
np.float_,
np.bool_,
np.complex_,
),
):
return value
if isinstance(value, Iterable):
if np.any([type(x) in [str, bytes, np.str_] for x in value]):
return np.array(value, dtype="S")
else:
return np.array(value)
else:
raise TypeError("Type {0} not understood".format(type(value)))
# =============================================================================
#
# =============================================================================
def inherit_doc_string(cls):
for base in inspect.getmro(cls):
if base.__doc__ is not None:
cls.__doc__ = base.__doc__
break
return cls
|
[
"gc.get_objects",
"mth5.utils.mth5_logger.setup_logger",
"inspect.getmro",
"numpy.array"
] |
[((476, 498), 'mth5.utils.mth5_logger.setup_logger', 'setup_logger', (['__name__'], {}), '(__name__)\n', (488, 498), False, 'from mth5.utils.mth5_logger import setup_logger\n'), ((3440, 3456), 'gc.get_objects', 'gc.get_objects', ([], {}), '()\n', (3454, 3456), False, 'import gc\n'), ((6379, 6398), 'inspect.getmro', 'inspect.getmro', (['cls'], {}), '(cls)\n', (6393, 6398), False, 'import inspect\n'), ((6012, 6038), 'numpy.array', 'np.array', (['value'], {'dtype': '"""S"""'}), "(value, dtype='S')\n", (6020, 6038), True, 'import numpy as np\n'), ((6072, 6087), 'numpy.array', 'np.array', (['value'], {}), '(value)\n', (6080, 6087), True, 'import numpy as np\n')]
|
import os
import random
import numpy as np
import torch
def set_seed(seed=None):
if seed is None:
return None
random.seed(seed)
os.environ['PYTHONHASHSEED'] = ("%s" % seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.benchmark = False
torch.backends.deterministic = True
class AverageMeter(object):
"""Computes and stores the average and current value.
Code imported from https://github.com/pytorch/examples/blob/master/imagenet/main.py#L247-L262
"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
|
[
"numpy.random.seed",
"torch.manual_seed",
"torch.cuda.manual_seed",
"torch.cuda.manual_seed_all",
"random.seed"
] |
[((129, 146), 'random.seed', 'random.seed', (['seed'], {}), '(seed)\n', (140, 146), False, 'import random\n'), ((200, 220), 'numpy.random.seed', 'np.random.seed', (['seed'], {}), '(seed)\n', (214, 220), True, 'import numpy as np\n'), ((225, 248), 'torch.manual_seed', 'torch.manual_seed', (['seed'], {}), '(seed)\n', (242, 248), False, 'import torch\n'), ((253, 281), 'torch.cuda.manual_seed', 'torch.cuda.manual_seed', (['seed'], {}), '(seed)\n', (275, 281), False, 'import torch\n'), ((286, 318), 'torch.cuda.manual_seed_all', 'torch.cuda.manual_seed_all', (['seed'], {}), '(seed)\n', (312, 318), False, 'import torch\n')]
|
"""Answer to Exercise 1.3
Author: <NAME>
Email : <EMAIL>
"""
from __future__ import print_function
import numpy as np
import keras.backend as K
# create variable w, b and x
w = K.placeholder(shape=(2,), dtype=np.float32)
# note that b is not a scalar
b = K.placeholder(shape=(1,), dtype=np.float32)
x = K.placeholder(shape=(2,), dtype=np.float32)
# compute the sum
a = K.sum(w*x+b)
# compute the function f
y = 1./(1+K.exp(-a))
# compile the function
fun = K.function(inputs=[x, w, b], outputs=[y])
# Test function
# compute y = f(2*x_1+3*x_2+0.5)
W = np.array([2, 3], dtype=np.float32)
B = np.array([0.5], dtype=np.float32)
X = np.array([1, 2], dtype=np.float32)
print (fun([X, W, B])[0])
|
[
"keras.backend.placeholder",
"keras.backend.exp",
"keras.backend.function",
"keras.backend.sum",
"numpy.array"
] |
[((180, 223), 'keras.backend.placeholder', 'K.placeholder', ([], {'shape': '(2,)', 'dtype': 'np.float32'}), '(shape=(2,), dtype=np.float32)\n', (193, 223), True, 'import keras.backend as K\n'), ((258, 301), 'keras.backend.placeholder', 'K.placeholder', ([], {'shape': '(1,)', 'dtype': 'np.float32'}), '(shape=(1,), dtype=np.float32)\n', (271, 301), True, 'import keras.backend as K\n'), ((306, 349), 'keras.backend.placeholder', 'K.placeholder', ([], {'shape': '(2,)', 'dtype': 'np.float32'}), '(shape=(2,), dtype=np.float32)\n', (319, 349), True, 'import keras.backend as K\n'), ((373, 389), 'keras.backend.sum', 'K.sum', (['(w * x + b)'], {}), '(w * x + b)\n', (378, 389), True, 'import keras.backend as K\n'), ((462, 503), 'keras.backend.function', 'K.function', ([], {'inputs': '[x, w, b]', 'outputs': '[y]'}), '(inputs=[x, w, b], outputs=[y])\n', (472, 503), True, 'import keras.backend as K\n'), ((559, 593), 'numpy.array', 'np.array', (['[2, 3]'], {'dtype': 'np.float32'}), '([2, 3], dtype=np.float32)\n', (567, 593), True, 'import numpy as np\n'), ((598, 631), 'numpy.array', 'np.array', (['[0.5]'], {'dtype': 'np.float32'}), '([0.5], dtype=np.float32)\n', (606, 631), True, 'import numpy as np\n'), ((636, 670), 'numpy.array', 'np.array', (['[1, 2]'], {'dtype': 'np.float32'}), '([1, 2], dtype=np.float32)\n', (644, 670), True, 'import numpy as np\n'), ((421, 430), 'keras.backend.exp', 'K.exp', (['(-a)'], {}), '(-a)\n', (426, 430), True, 'import keras.backend as K\n')]
|
# Copyright (c) Facebook, Inc. and its affiliates.
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import torch
from lottery.branch import base
import models.registry
from pruning.mask import Mask
from pruning.pruned_model import PrunedModel
from training import train
from utils.tensor_utils import generate_mask_active, erank, shuffle_tensor, mutual_coherence,\
gradient_mean, activation_mean, activation
import datasets.registry
import numpy as np
import copy
from platforms.platform import get_platform
from foundations import paths
from tqdm import tqdm
erank_frobenius_coeff = 0.75
class Branch(base.Branch):
def branch_function(self, seed: int, property: str, trials: int, top: int = 1):
# Randomize the mask.
orig_mask = Mask.load(self.level_root)
best_mask = Mask()
start_step = self.lottery_desc.str_to_step('0ep')
# Use level 0 model for dense pre-pruned model
if not get_platform().is_primary_process: return
base_model = models.registry.load(self.level_root.replace(f'level_{self.level}', 'level_0'), start_step,
self.lottery_desc.model_hparams)
orig_model = PrunedModel(base_model, Mask.ones_like(base_model))
model_graduate = copy.deepcopy(orig_model)
model = copy.deepcopy(orig_model)
# Randomize while keeping the same layerwise proportions as the original mask.
prunable_tensors = set(orig_model.prunable_layer_names) - set(orig_model.prunable_conv_names)
tensors = {k[6:]: v.clone() for k, v in orig_model.state_dict().items() if k[6:] in prunable_tensors}
train_loader = datasets.registry.get(self.lottery_desc.dataset_hparams, train=True)
input = list(train_loader)[0][0]
if property == 'activation' or property == 'gradient_mean' or property == 'loss' or property == 'accuracy' or property == 'labels_entropy':
input, labels = list(train_loader)[0]
input, labels = input.cuda(), labels.cuda()
# features = orig_model.intermediate(input)
# features.insert(0, input)
properties = np.zeros((len(tensors), trials))
for i, (name, param) in enumerate(tensors.items()):
curr_mask = Mask()
for t in tqdm(range(trials)):
curr_mask[name] = shuffle_tensor(orig_mask[name], seed=seed+t).int()
if property == 'weight_erank':
properties[i, t] = erank(param * curr_mask[name])
if property == 'weight_min_singular':
s = torch.linalg.svdvals(param * curr_mask[name])
properties[i, t] = s[-1]
elif property == 'weight_mutual_coherence':
properties[i, t] = -mutual_coherence(param * curr_mask[name])
elif property == 'weight_frobenius':
properties[i, t] = (param * curr_mask[name]).norm().item()
elif property == 'weight_kaiming':
kaiming_std = torch.sqrt(torch.tensor(2.) / param.size(1)) # for fc only!
properties[i, t] = -torch.abs(param[curr_mask[name] > 0].std() - kaiming_std)
elif property == 'features_erank':
model = copy.deepcopy(model_graduate)
model.register_buffer(PrunedModel.to_mask_name(name), curr_mask[name].float())
# model[name].data = param * curr_mask[name]
features_for_prop = model.intermediate(input)
properties[i, t] = erank(features_for_prop[i])
elif property == 'features_erank_frobenius':
model = copy.deepcopy(model_graduate)
model.register_buffer(PrunedModel.to_mask_name(name), curr_mask[name].float())
# model[name].data = param * curr_mask[name]
with torch.no_grad():
features_for_prop = model.intermediate(input)
properties[i, t] = erank_frobenius_coeff * erank(features_for_prop[i]) +\
(1- erank_frobenius_coeff) * features_for_prop[i].norm().item()
elif property == 'features_mutual_coherence':
model = copy.deepcopy(model_graduate)
model.register_buffer(PrunedModel.to_mask_name(name), curr_mask[name].float())
# model[name].data = param * curr_mask[name]
features_for_prop = model.intermediate(input)
properties[i, t] = -mutual_coherence(features_for_prop[i])
elif property == 'features_frobenius':
model = copy.deepcopy(model_graduate)
model.register_buffer(PrunedModel.to_mask_name(name), curr_mask[name].float())
# model[name].data = param * curr_mask[name]
features_for_prop = model.intermediate(input)
properties[i, t] = features_for_prop[i].norm().item()
elif property == 'features_stable_rank':
model = copy.deepcopy(model_graduate)
model.register_buffer(PrunedModel.to_mask_name(name), curr_mask[name].float())
# model[name].data = param * curr_mask[name]
features_for_prop = model.intermediate(input)
properties[i, t] = (torch.linalg.norm(features_for_prop[-1], ord='fro') /
torch.linalg.norm(features_for_prop[-1],ord=2)).item()
elif property == 'features_nuclear':
model = copy.deepcopy(model_graduate)
model.register_buffer(PrunedModel.to_mask_name(name), curr_mask[name].float())
# model[name].data = param * curr_mask[name]
features_for_prop = model.intermediate(input)
properties[i, t] = features_for_prop[i].norm(p=1).item()
elif property == 'min_singular':
model = copy.deepcopy(model_graduate)
model.register_buffer(PrunedModel.to_mask_name(name), curr_mask[name].float())
# model[name].data = param * curr_mask[name]
features_for_prop = model.intermediate(input)
_, s, _ = torch.svd(features_for_prop[i], compute_uv=False)
properties[i, t] = s[-1]
elif property == 'activation':
if i < len(tensors) - 1:
model = copy.deepcopy(model_graduate)
model.register_buffer(PrunedModel.to_mask_name(name), curr_mask[name].float())
model.cuda()
properties[i, t] = activation(model, input)[i]
else:
properties[i, t] = 0
elif property == 'gradient_mean':
model = copy.deepcopy(model_graduate)
model.register_buffer(PrunedModel.to_mask_name(name), curr_mask[name].float())
model.cuda()
properties[i, t] = gradient_mean(model, input, labels)[i]
elif property == 'loss':
model = copy.deepcopy(model_graduate)
model.register_buffer(PrunedModel.to_mask_name(name), curr_mask[name].float())
model.cuda()
loss = model.loss_criterion(model(input), labels)
properties[i, t] = -loss
elif property == 'accuracy':
model = copy.deepcopy(model_graduate)
model.register_buffer(PrunedModel.to_mask_name(name), curr_mask[name].float())
model.cuda()
output = model(input)
_, predicted = torch.max(output.data, 1)
total = labels.size(0)
correct = (predicted == labels).sum().item()
properties[i, t] = correct / total
elif property == 'labels_entropy':
model = copy.deepcopy(model_graduate)
model.register_buffer(PrunedModel.to_mask_name(name), curr_mask[name].float())
model.cuda()
output = model(input)
_, predicted = torch.max(output.data, 1)
total = labels.size(0)
p = predicted.histc(bins=10) / total
properties[i, t] = -torch.sum(p[p > 0] * p[p > 0].log()).item()
best_mask[name] = shuffle_tensor(orig_mask[name], int(seed + np.argmax(properties[i, :]))).int()
model_graduate.register_buffer(PrunedModel.to_mask_name(name), best_mask[name].float())
# Save the properties.
with open(paths.properties(self.branch_root, property), 'wb') as f:
np.save(f, properties)
for t in range(1,top+1): # bug fixed, one of them is chosen with the worst property value
curr_model = copy.deepcopy(base_model)
best_mask[name] = shuffle_tensor(orig_mask[name], int(seed + np.argsort(properties[i, :])[-t])).int()
best_mask.save(f'{self.branch_root}_top_{t}')
if not get_platform().exists(f'{self.branch_root}_top_{t}'): get_platform().makedirs(f'{self.branch_root}_top_{t}')
# Train the model with the new mask.
pruned_model = PrunedModel(curr_model, best_mask)
train.standard_train(pruned_model, f'{self.branch_root}_top_{t}', self.lottery_desc.dataset_hparams,
self.lottery_desc.training_hparams, start_step=start_step, verbose=self.verbose)
@staticmethod
def description():
return "Randomly active prune the model with max property."
@staticmethod
def name():
return 'max_random'
|
[
"pruning.mask.Mask",
"numpy.argmax",
"utils.tensor_utils.mutual_coherence",
"utils.tensor_utils.gradient_mean",
"numpy.argsort",
"torch.no_grad",
"pruning.pruned_model.PrunedModel.to_mask_name",
"utils.tensor_utils.shuffle_tensor",
"torch.linalg.norm",
"pruning.mask.Mask.load",
"utils.tensor_utils.erank",
"copy.deepcopy",
"numpy.save",
"torch.svd",
"utils.tensor_utils.activation",
"torch.max",
"training.train.standard_train",
"torch.linalg.svdvals",
"foundations.paths.properties",
"pruning.pruned_model.PrunedModel",
"platforms.platform.get_platform",
"torch.tensor",
"pruning.mask.Mask.ones_like"
] |
[((834, 860), 'pruning.mask.Mask.load', 'Mask.load', (['self.level_root'], {}), '(self.level_root)\n', (843, 860), False, 'from pruning.mask import Mask\n'), ((881, 887), 'pruning.mask.Mask', 'Mask', ([], {}), '()\n', (885, 887), False, 'from pruning.mask import Mask\n'), ((1344, 1369), 'copy.deepcopy', 'copy.deepcopy', (['orig_model'], {}), '(orig_model)\n', (1357, 1369), False, 'import copy\n'), ((1386, 1411), 'copy.deepcopy', 'copy.deepcopy', (['orig_model'], {}), '(orig_model)\n', (1399, 1411), False, 'import copy\n'), ((1291, 1317), 'pruning.mask.Mask.ones_like', 'Mask.ones_like', (['base_model'], {}), '(base_model)\n', (1305, 1317), False, 'from pruning.mask import Mask\n'), ((2328, 2334), 'pruning.mask.Mask', 'Mask', ([], {}), '()\n', (2332, 2334), False, 'from pruning.mask import Mask\n'), ((8981, 9003), 'numpy.save', 'np.save', (['f', 'properties'], {}), '(f, properties)\n', (8988, 9003), True, 'import numpy as np\n'), ((9128, 9153), 'copy.deepcopy', 'copy.deepcopy', (['base_model'], {}), '(base_model)\n', (9141, 9153), False, 'import copy\n'), ((9532, 9566), 'pruning.pruned_model.PrunedModel', 'PrunedModel', (['curr_model', 'best_mask'], {}), '(curr_model, best_mask)\n', (9543, 9566), False, 'from pruning.pruned_model import PrunedModel\n'), ((9579, 9769), 'training.train.standard_train', 'train.standard_train', (['pruned_model', 'f"""{self.branch_root}_top_{t}"""', 'self.lottery_desc.dataset_hparams', 'self.lottery_desc.training_hparams'], {'start_step': 'start_step', 'verbose': 'self.verbose'}), "(pruned_model, f'{self.branch_root}_top_{t}', self.\n lottery_desc.dataset_hparams, self.lottery_desc.training_hparams,\n start_step=start_step, verbose=self.verbose)\n", (9599, 9769), False, 'from training import train\n'), ((1016, 1030), 'platforms.platform.get_platform', 'get_platform', ([], {}), '()\n', (1028, 1030), False, 'from platforms.platform import get_platform\n'), ((8804, 8834), 'pruning.pruned_model.PrunedModel.to_mask_name', 'PrunedModel.to_mask_name', (['name'], {}), '(name)\n', (8828, 8834), False, 'from pruning.pruned_model import PrunedModel\n'), ((8911, 8955), 'foundations.paths.properties', 'paths.properties', (['self.branch_root', 'property'], {}), '(self.branch_root, property)\n', (8927, 8955), False, 'from foundations import paths\n'), ((2548, 2578), 'utils.tensor_utils.erank', 'erank', (['(param * curr_mask[name])'], {}), '(param * curr_mask[name])\n', (2553, 2578), False, 'from utils.tensor_utils import generate_mask_active, erank, shuffle_tensor, mutual_coherence, gradient_mean, activation_mean, activation\n'), ((2657, 2702), 'torch.linalg.svdvals', 'torch.linalg.svdvals', (['(param * curr_mask[name])'], {}), '(param * curr_mask[name])\n', (2677, 2702), False, 'import torch\n'), ((2411, 2457), 'utils.tensor_utils.shuffle_tensor', 'shuffle_tensor', (['orig_mask[name]'], {'seed': '(seed + t)'}), '(orig_mask[name], seed=seed + t)\n', (2425, 2457), False, 'from utils.tensor_utils import generate_mask_active, erank, shuffle_tensor, mutual_coherence, gradient_mean, activation_mean, activation\n'), ((9346, 9360), 'platforms.platform.get_platform', 'get_platform', ([], {}), '()\n', (9358, 9360), False, 'from platforms.platform import get_platform\n'), ((9400, 9414), 'platforms.platform.get_platform', 'get_platform', ([], {}), '()\n', (9412, 9414), False, 'from platforms.platform import get_platform\n'), ((2848, 2889), 'utils.tensor_utils.mutual_coherence', 'mutual_coherence', (['(param * curr_mask[name])'], {}), '(param * curr_mask[name])\n', (2864, 2889), False, 'from utils.tensor_utils import generate_mask_active, erank, shuffle_tensor, mutual_coherence, gradient_mean, activation_mean, activation\n'), ((8725, 8752), 'numpy.argmax', 'np.argmax', (['properties[i, :]'], {}), '(properties[i, :])\n', (8734, 8752), True, 'import numpy as np\n'), ((3344, 3373), 'copy.deepcopy', 'copy.deepcopy', (['model_graduate'], {}), '(model_graduate)\n', (3357, 3373), False, 'import copy\n'), ((3643, 3670), 'utils.tensor_utils.erank', 'erank', (['features_for_prop[i]'], {}), '(features_for_prop[i])\n', (3648, 3670), False, 'from utils.tensor_utils import generate_mask_active, erank, shuffle_tensor, mutual_coherence, gradient_mean, activation_mean, activation\n'), ((9227, 9255), 'numpy.argsort', 'np.argsort', (['properties[i, :]'], {}), '(properties[i, :])\n', (9237, 9255), True, 'import numpy as np\n'), ((3118, 3135), 'torch.tensor', 'torch.tensor', (['(2.0)'], {}), '(2.0)\n', (3130, 3135), False, 'import torch\n'), ((3416, 3446), 'pruning.pruned_model.PrunedModel.to_mask_name', 'PrunedModel.to_mask_name', (['name'], {}), '(name)\n', (3440, 3446), False, 'from pruning.pruned_model import PrunedModel\n'), ((3760, 3789), 'copy.deepcopy', 'copy.deepcopy', (['model_graduate'], {}), '(model_graduate)\n', (3773, 3789), False, 'import copy\n'), ((3832, 3862), 'pruning.pruned_model.PrunedModel.to_mask_name', 'PrunedModel.to_mask_name', (['name'], {}), '(name)\n', (3856, 3862), False, 'from pruning.pruned_model import PrunedModel\n'), ((3979, 3994), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (3992, 3994), False, 'import torch\n'), ((4353, 4382), 'copy.deepcopy', 'copy.deepcopy', (['model_graduate'], {}), '(model_graduate)\n', (4366, 4382), False, 'import copy\n'), ((4129, 4156), 'utils.tensor_utils.erank', 'erank', (['features_for_prop[i]'], {}), '(features_for_prop[i])\n', (4134, 4156), False, 'from utils.tensor_utils import generate_mask_active, erank, shuffle_tensor, mutual_coherence, gradient_mean, activation_mean, activation\n'), ((4425, 4455), 'pruning.pruned_model.PrunedModel.to_mask_name', 'PrunedModel.to_mask_name', (['name'], {}), '(name)\n', (4449, 4455), False, 'from pruning.pruned_model import PrunedModel\n'), ((4653, 4691), 'utils.tensor_utils.mutual_coherence', 'mutual_coherence', (['features_for_prop[i]'], {}), '(features_for_prop[i])\n', (4669, 4691), False, 'from utils.tensor_utils import generate_mask_active, erank, shuffle_tensor, mutual_coherence, gradient_mean, activation_mean, activation\n'), ((4775, 4804), 'copy.deepcopy', 'copy.deepcopy', (['model_graduate'], {}), '(model_graduate)\n', (4788, 4804), False, 'import copy\n'), ((4847, 4877), 'pruning.pruned_model.PrunedModel.to_mask_name', 'PrunedModel.to_mask_name', (['name'], {}), '(name)\n', (4871, 4877), False, 'from pruning.pruned_model import PrunedModel\n'), ((5194, 5223), 'copy.deepcopy', 'copy.deepcopy', (['model_graduate'], {}), '(model_graduate)\n', (5207, 5223), False, 'import copy\n'), ((5266, 5296), 'pruning.pruned_model.PrunedModel.to_mask_name', 'PrunedModel.to_mask_name', (['name'], {}), '(name)\n', (5290, 5296), False, 'from pruning.pruned_model import PrunedModel\n'), ((5724, 5753), 'copy.deepcopy', 'copy.deepcopy', (['model_graduate'], {}), '(model_graduate)\n', (5737, 5753), False, 'import copy\n'), ((5796, 5826), 'pruning.pruned_model.PrunedModel.to_mask_name', 'PrunedModel.to_mask_name', (['name'], {}), '(name)\n', (5820, 5826), False, 'from pruning.pruned_model import PrunedModel\n'), ((6138, 6167), 'copy.deepcopy', 'copy.deepcopy', (['model_graduate'], {}), '(model_graduate)\n', (6151, 6167), False, 'import copy\n'), ((6428, 6477), 'torch.svd', 'torch.svd', (['features_for_prop[i]'], {'compute_uv': '(False)'}), '(features_for_prop[i], compute_uv=False)\n', (6437, 6477), False, 'import torch\n'), ((5494, 5545), 'torch.linalg.norm', 'torch.linalg.norm', (['features_for_prop[-1]'], {'ord': '"""fro"""'}), "(features_for_prop[-1], ord='fro')\n", (5511, 5545), False, 'import torch\n'), ((5588, 5635), 'torch.linalg.norm', 'torch.linalg.norm', (['features_for_prop[-1]'], {'ord': '(2)'}), '(features_for_prop[-1], ord=2)\n', (5605, 5635), False, 'import torch\n'), ((6210, 6240), 'pruning.pruned_model.PrunedModel.to_mask_name', 'PrunedModel.to_mask_name', (['name'], {}), '(name)\n', (6234, 6240), False, 'from pruning.pruned_model import PrunedModel\n'), ((6647, 6676), 'copy.deepcopy', 'copy.deepcopy', (['model_graduate'], {}), '(model_graduate)\n', (6660, 6676), False, 'import copy\n'), ((7037, 7066), 'copy.deepcopy', 'copy.deepcopy', (['model_graduate'], {}), '(model_graduate)\n', (7050, 7066), False, 'import copy\n'), ((6723, 6753), 'pruning.pruned_model.PrunedModel.to_mask_name', 'PrunedModel.to_mask_name', (['name'], {}), '(name)\n', (6747, 6753), False, 'from pruning.pruned_model import PrunedModel\n'), ((6860, 6884), 'utils.tensor_utils.activation', 'activation', (['model', 'input'], {}), '(model, input)\n', (6870, 6884), False, 'from utils.tensor_utils import generate_mask_active, erank, shuffle_tensor, mutual_coherence, gradient_mean, activation_mean, activation\n'), ((7109, 7139), 'pruning.pruned_model.PrunedModel.to_mask_name', 'PrunedModel.to_mask_name', (['name'], {}), '(name)\n', (7133, 7139), False, 'from pruning.pruned_model import PrunedModel\n'), ((7238, 7273), 'utils.tensor_utils.gradient_mean', 'gradient_mean', (['model', 'input', 'labels'], {}), '(model, input, labels)\n', (7251, 7273), False, 'from utils.tensor_utils import generate_mask_active, erank, shuffle_tensor, mutual_coherence, gradient_mean, activation_mean, activation\n'), ((7346, 7375), 'copy.deepcopy', 'copy.deepcopy', (['model_graduate'], {}), '(model_graduate)\n', (7359, 7375), False, 'import copy\n'), ((7418, 7448), 'pruning.pruned_model.PrunedModel.to_mask_name', 'PrunedModel.to_mask_name', (['name'], {}), '(name)\n', (7442, 7448), False, 'from pruning.pruned_model import PrunedModel\n'), ((7696, 7725), 'copy.deepcopy', 'copy.deepcopy', (['model_graduate'], {}), '(model_graduate)\n', (7709, 7725), False, 'import copy\n'), ((7935, 7960), 'torch.max', 'torch.max', (['output.data', '(1)'], {}), '(output.data, 1)\n', (7944, 7960), False, 'import torch\n'), ((7768, 7798), 'pruning.pruned_model.PrunedModel.to_mask_name', 'PrunedModel.to_mask_name', (['name'], {}), '(name)\n', (7792, 7798), False, 'from pruning.pruned_model import PrunedModel\n'), ((8203, 8232), 'copy.deepcopy', 'copy.deepcopy', (['model_graduate'], {}), '(model_graduate)\n', (8216, 8232), False, 'import copy\n'), ((8442, 8467), 'torch.max', 'torch.max', (['output.data', '(1)'], {}), '(output.data, 1)\n', (8451, 8467), False, 'import torch\n'), ((8275, 8305), 'pruning.pruned_model.PrunedModel.to_mask_name', 'PrunedModel.to_mask_name', (['name'], {}), '(name)\n', (8299, 8305), False, 'from pruning.pruned_model import PrunedModel\n')]
|
# -*- coding: utf-8 -*-
"""
Tic Toe Using pygame , numpy and sys with Graphical User Interface
"""
import pygame
import sys
from pygame.locals import *
import numpy as np
# ------
# constants
# -------
width = 800
height = 800
#row and columns
board_rows = 3
board_columns = 3
cross_width = 25
square_size = width//board_columns
# colors in RGB format
line_Width = 15
red = (255, 0, 0)
bg_color = (28, 170, 156)
line_color = (23, 145, 135)
circle_color = (239, 231, 200)
cross_color = (66, 66, 66)
space = square_size//4
# circle
circle_radius = square_size//3
circle_width = 14
pygame.init()
screen = pygame.display.set_mode((height, width))
pygame.display.set_caption('Tic Tac Toe!')
screen.fill(bg_color)
# color to display restart
white = (255, 255, 255)
green = (0, 255, 0)
blue = (0, 0, 128)
font = pygame.font.Font('freesansbold.ttf', 25)
# create a text suface object,
# on which text is drawn on it.
text = font.render('Press R to restart', True, green, blue)
Won = font.render(" Won", True, blue, green)
leave = font.render("Press X to Exit", True, white, red)
# create a rectangular object for the
# text surface object
leaveRect = text.get_rect()
textRect = text.get_rect()
winRect = Won.get_rect()
winRect.center = (100, 30)
textRect.center = (width-400, 30)
leaveRect.center = (width-120, 30)
board = np.zeros((board_rows, board_columns))
# print(board)
#pygame.draw.line( screen ,red ,(10,10),(300,300),10)
def draw_figures():
for row in range(board_rows):
for col in range(board_columns):
if board[row][col] == 1:
pygame.draw.circle(screen, circle_color, (int(col*square_size + square_size//2), int(
row*square_size + square_size//2)), circle_radius, circle_width)
elif board[row][col] == 2:
pygame.draw.line(screen, cross_color, (col*square_size + space, row*square_size + square_size -
space), (col*square_size+square_size - space, row*square_size + space), cross_width)
pygame.draw.line(screen, cross_color, (col*square_size + space, row*square_size + space),
(col*square_size + square_size - space, row*square_size + square_size - space), cross_width)
def draw_lines():
pygame.draw.line(screen, line_color, (0, square_size),
(width, square_size), line_Width)
# 2nd horizontal line
pygame.draw.line(screen, line_color, (0, 2*square_size),
(width, 2*square_size), line_Width)
# 1st verticle
pygame.draw.line(screen, line_color, (square_size, 0),
(square_size, height), line_Width)
# 2nd verticle
pygame.draw.line(screen, line_color, (2*square_size, 0),
(2*square_size, height), line_Width)
# To mark which square player has chosen
def mark_square(row, col, player):
board[row][col] = player
# TO check the availablity of a square
def available_square(row, col):
return board[row][col] == 0
# check board full or not
def is_board_full():
k = False
for row in range(board_rows):
for col in range(board_columns):
if board[row][col] == 0:
k = False
else:
k = True
return k
def check_win(player):
# check verticle win
for col in range(board_columns):
if board[0][col] == player and board[1][col] == player and board[2][col] == player:
draw_vertical_winning_line(col, player)
return True
# check Horizontal win
for row in range(board_rows):
if board[row][0] == player and board[row][1] == player and board[row][2] == player:
draw_horizontal_winning_line(row, player)
return True
# check for asc win
if board[2][0] == player and board[1][1] == player and board[0][2] == player:
draw_asc_diagonal(player)
return True
if board[0][0] == player and board[1][1] == player and board[2][2] == player:
draw_des_diagonal(player)
return True
def draw_horizontal_winning_line(row, player):
posY = row*square_size + square_size//2
if(player == 1):
color = circle_color
else:
color = cross_color
pygame.draw.line(screen, color, (15, posY), (width-15, posY), 15)
def draw_vertical_winning_line(col, player):
posX = col*square_size + square_size//2
if(player == 1):
color = circle_color
else:
color = cross_color
pygame.draw.line(screen, color, (posX, 15), (posX, width-15), 15)
def draw_asc_diagonal(player):
if(player == 1):
color = circle_color
else:
color = cross_color
pygame.draw.line(screen, color, (15, height-15), (width-15, 15), 15)
def draw_des_diagonal(player):
if(player == 1):
color = circle_color
else:
color = cross_color
pygame.draw.line(screen, color, (15, 15), (width-15, height-15), 15)
def restart():
screen.fill(bg_color)
draw_lines()
player = 1
for row in range(board_rows):
for col in range(board_columns):
board[row][col] = 0
draw_lines()
# player
player = 1
game_over = False
while True: # main game loop
for event in pygame.event.get(): # constantly looks for the event
if event.type == pygame.QUIT: # if user clicks exit pygame.QUIT and sys exits
pygame.quit()
sys.exit()
board_full = is_board_full()
if board_full and not game_over:
Won = font.render(" It's a Tie ", True, blue, green)
screen.blit(Won, winRect)
screen.blit(text, textRect)
screen.blit(leave, leaveRect)
if event.type == pygame.MOUSEBUTTONDOWN and not game_over:
mouseX = event.pos[0] # x
mouseY = event.pos[1] # y
clicked_row = int(mouseY // square_size)
clicked_column = int(mouseX // square_size)
if available_square(clicked_row, clicked_column):
mark_square(clicked_row, clicked_column, player)
if(check_win(player)):
game_over = True
Won = font.render("Player"+str(player) +
" Won ", True, blue, green)
screen.blit(Won, winRect)
screen.blit(text, textRect)
screen.blit(leave, leaveRect)
player = player % 2 + 1
if not game_over and not board_full:
Won = font.render("Player"+str(player) +
" Turn ", True, blue, green)
screen.blit(Won, winRect)
draw_figures()
# to restart the game
if event.type == pygame.KEYDOWN:
if event.key == pygame.K_r:
restart()
game_over = False
elif event.key == pygame.K_x:
pygame.quit()
sys.exit()
# print(board)
pygame.display.update()
|
[
"pygame.quit",
"pygame.draw.line",
"pygame.event.get",
"pygame.display.set_mode",
"numpy.zeros",
"pygame.init",
"pygame.display.update",
"pygame.font.Font",
"pygame.display.set_caption",
"sys.exit"
] |
[((608, 621), 'pygame.init', 'pygame.init', ([], {}), '()\n', (619, 621), False, 'import pygame\n'), ((632, 672), 'pygame.display.set_mode', 'pygame.display.set_mode', (['(height, width)'], {}), '((height, width))\n', (655, 672), False, 'import pygame\n'), ((674, 716), 'pygame.display.set_caption', 'pygame.display.set_caption', (['"""Tic Tac Toe!"""'], {}), "('Tic Tac Toe!')\n", (700, 716), False, 'import pygame\n'), ((844, 884), 'pygame.font.Font', 'pygame.font.Font', (['"""freesansbold.ttf"""', '(25)'], {}), "('freesansbold.ttf', 25)\n", (860, 884), False, 'import pygame\n'), ((1372, 1409), 'numpy.zeros', 'np.zeros', (['(board_rows, board_columns)'], {}), '((board_rows, board_columns))\n', (1380, 1409), True, 'import numpy as np\n'), ((2344, 2436), 'pygame.draw.line', 'pygame.draw.line', (['screen', 'line_color', '(0, square_size)', '(width, square_size)', 'line_Width'], {}), '(screen, line_color, (0, square_size), (width, square_size),\n line_Width)\n', (2360, 2436), False, 'import pygame\n'), ((2487, 2587), 'pygame.draw.line', 'pygame.draw.line', (['screen', 'line_color', '(0, 2 * square_size)', '(width, 2 * square_size)', 'line_Width'], {}), '(screen, line_color, (0, 2 * square_size), (width, 2 *\n square_size), line_Width)\n', (2503, 2587), False, 'import pygame\n'), ((2627, 2721), 'pygame.draw.line', 'pygame.draw.line', (['screen', 'line_color', '(square_size, 0)', '(square_size, height)', 'line_Width'], {}), '(screen, line_color, (square_size, 0), (square_size, height\n ), line_Width)\n', (2643, 2721), False, 'import pygame\n'), ((2764, 2865), 'pygame.draw.line', 'pygame.draw.line', (['screen', 'line_color', '(2 * square_size, 0)', '(2 * square_size, height)', 'line_Width'], {}), '(screen, line_color, (2 * square_size, 0), (2 * square_size,\n height), line_Width)\n', (2780, 2865), False, 'import pygame\n'), ((4377, 4444), 'pygame.draw.line', 'pygame.draw.line', (['screen', 'color', '(15, posY)', '(width - 15, posY)', '(15)'], {}), '(screen, color, (15, posY), (width - 15, posY), 15)\n', (4393, 4444), False, 'import pygame\n'), ((4635, 4702), 'pygame.draw.line', 'pygame.draw.line', (['screen', 'color', '(posX, 15)', '(posX, width - 15)', '(15)'], {}), '(screen, color, (posX, 15), (posX, width - 15), 15)\n', (4651, 4702), False, 'import pygame\n'), ((4834, 4906), 'pygame.draw.line', 'pygame.draw.line', (['screen', 'color', '(15, height - 15)', '(width - 15, 15)', '(15)'], {}), '(screen, color, (15, height - 15), (width - 15, 15), 15)\n', (4850, 4906), False, 'import pygame\n'), ((5036, 5108), 'pygame.draw.line', 'pygame.draw.line', (['screen', 'color', '(15, 15)', '(width - 15, height - 15)', '(15)'], {}), '(screen, color, (15, 15), (width - 15, height - 15), 15)\n', (5052, 5108), False, 'import pygame\n'), ((5404, 5422), 'pygame.event.get', 'pygame.event.get', ([], {}), '()\n', (5420, 5422), False, 'import pygame\n'), ((7233, 7256), 'pygame.display.update', 'pygame.display.update', ([], {}), '()\n', (7254, 7256), False, 'import pygame\n'), ((5559, 5572), 'pygame.quit', 'pygame.quit', ([], {}), '()\n', (5570, 5572), False, 'import pygame\n'), ((5586, 5596), 'sys.exit', 'sys.exit', ([], {}), '()\n', (5594, 5596), False, 'import sys\n'), ((1867, 2065), 'pygame.draw.line', 'pygame.draw.line', (['screen', 'cross_color', '(col * square_size + space, row * square_size + square_size - space)', '(col * square_size + square_size - space, row * square_size + space)', 'cross_width'], {}), '(screen, cross_color, (col * square_size + space, row *\n square_size + square_size - space), (col * square_size + square_size -\n space, row * square_size + space), cross_width)\n', (1883, 2065), False, 'import pygame\n'), ((2099, 2297), 'pygame.draw.line', 'pygame.draw.line', (['screen', 'cross_color', '(col * square_size + space, row * square_size + space)', '(col * square_size + square_size - space, row * square_size + square_size -\n space)', 'cross_width'], {}), '(screen, cross_color, (col * square_size + space, row *\n square_size + space), (col * square_size + square_size - space, row *\n square_size + square_size - space), cross_width)\n', (2115, 2297), False, 'import pygame\n'), ((7154, 7167), 'pygame.quit', 'pygame.quit', ([], {}), '()\n', (7165, 7167), False, 'import pygame\n'), ((7185, 7195), 'sys.exit', 'sys.exit', ([], {}), '()\n', (7193, 7195), False, 'import sys\n')]
|
import random
import numpy as np
import heapq as hp
import time
from k_shortest_path import k_shortest_path_algorithm, k_shortest_path_all_destination
def simulated_annealing_unsplittable_flows(graph, commodity_list, nb_iterations=10**5, nb_k_shortest_paths=10, verbose=0):
nb_nodes = len(graph)
nb_commodities = len(commodity_list)
# Set the initial/final temperature and the temperature decrement
T = T_init = 200
T_final = 1
dT = (T_final/T_init)**(1/nb_iterations)
all_distances = compute_all_distances(graph)
log_values = - np.log(1 - np.arange(0, 1, 0.001))
use_graph = [{neighbor : 0 for neighbor in graph[node]} for node in range(nb_nodes)] # Will contain the total flow used on each arc
# Compute the k-shortest paths for each commodity and store them in possible_paths_per_commodity
shortest_paths_per_origin = {}
possible_paths_per_commodity = []
for commodity_index, commodity in enumerate(commodity_list):
origin, destination, demand = commodity
if origin not in shortest_paths_per_origin:
shortest_paths_per_origin[origin] = k_shortest_path_all_destination(graph, origin, nb_k_shortest_paths)
path_and_cost_list = shortest_paths_per_origin[origin][destination]
possible_paths_per_commodity.append([remove_cycle_from_path(path) for path, cost in path_and_cost_list])
solution = []
fitness = 0
# Create an intial solution
for commodity_index, commodity in enumerate(commodity_list):
new_path_index = np.random.choice(len(possible_paths_per_commodity[commodity_index]))
new_path = possible_paths_per_commodity[commodity_index][new_path_index]
solution.append(new_path)
fitness += update_fitness_and_use_graph(use_graph, graph, [], new_path, commodity[2])
# Main loop
for iter_index in range(nb_iterations):
if verbose and iter_index %1000 == 0:
print(iter_index, fitness, end=' \r')
commodity_index = random.randint(0, nb_commodities - 1) # Choose the commodity which will change its path during the iteration
commodity = commodity_list[commodity_index]
nb_possible_paths = len(possible_paths_per_commodity[commodity_index])
if nb_possible_paths < 5 or random.random() < 0.:
if nb_possible_paths >= 10:
index_to_remove = np.random.choice(len(possible_paths_per_commodity[commodity_index]))
possible_paths_per_commodity[commodity_index].pop(index_to_remove)
# Create a new possible path for the commodity : this procedure considers the current overflow of the arcs
new_path = get_new_path(graph, use_graph, commodity, log_values, all_distances, T=3)
possible_paths_per_commodity[commodity_index].append(new_path)
else:
# Choose a random new_path for the commodity
new_path_index = np.random.choice(len(possible_paths_per_commodity[commodity_index]))
new_path = possible_paths_per_commodity[commodity_index][new_path_index]
# Change the path used by the commodity and modify the fitness accordingly
new_fitness = fitness + update_fitness_and_use_graph(use_graph, graph, solution[commodity_index], new_path, commodity[2])
old_path = solution[commodity_index]
solution[commodity_index] = new_path
proba = np.exp((fitness - new_fitness) / T)
T = T * dT
# Keep the new solution according to the simulated annealing rule or return to the old solution
if new_fitness <= fitness or random.random() < proba:
fitness = new_fitness
else:
solution[commodity_index] = old_path
update_fitness_and_use_graph(use_graph, graph, new_path, old_path, commodity[2]) # Modify use_graph
return solution, fitness
def update_fitness_and_use_graph(use_graph, graph, old_path, new_path, commodity_demand):
# This function makes the updates necessary to reflect the fact that a commodity uses new_path instead of old_path
# To do so, it updates use_graph (total flow going through eahc arc) and computes in delta_fitness
delta_fitness = 0
for i in range(len(old_path) - 1):
node1 = old_path[i]
node2 = old_path[i+1]
old_overload = max(use_graph[node1][node2] - graph[node1][node2], 0)
use_graph[node1][node2] -= commodity_demand
delta_fitness += max(use_graph[node1][node2] - graph[node1][node2], 0) - old_overload
for i in range(len(new_path) - 1):
node1 = new_path[i]
node2 = new_path[i+1]
old_overload = max(use_graph[node1][node2] - graph[node1][node2], 0)
use_graph[node1][node2] += commodity_demand
delta_fitness += max(use_graph[node1][node2] - graph[node1][node2], 0) - old_overload
return delta_fitness
def get_new_path(graph, use_graph, commodity, log_values, all_distances, T=1, overload_coeff=10**-2):
# This functions create a random path for a commodity biased toward short path and arcs with a low overflow
# To do so, an A* algorithm is applied with random arc cost and a penalisation of the overflow
origin, destination, demand = commodity
priority_q = [(0, origin, None)] # Priority queue storing the nodes to explore : encode with a binary tree
parent_list = [None] * len(graph)
distances = [None] * len(graph)
while priority_q:
value, current_node, parent_node = hp.heappop(priority_q)
if distances[current_node] is None:
parent_list[current_node] = parent_node
distances[current_node] = value
if current_node == destination:
break
for neighbor in graph[current_node]:
if distances[neighbor] is None:
arc_cost = 1 # Each arc has length 1 to guide toward shorter paths
arc_cost += overload_coeff * max(0, demand + use_graph[current_node][neighbor] - graph[current_node][neighbor]) # Penalize the arc with high overflow
arc_cost += log_values[int(random.random() * 1000)] # Add some randomness to the arc cost
arc_cost += all_distances[neighbor][destination] # A* heuristic : distance to the target node
hp.heappush(priority_q, (value + arc_cost, neighbor, current_node))
# Compute a reverse path according to parent_list
path = [destination]
current_node = destination
while current_node != origin:
current_node = parent_list[current_node]
path.append(current_node)
path.reverse()
return path
def get_new_path_2(graph, use_graph, commodity, all_distances, T=1, overload_coeff=None):
origin, destination, demand = commodity
current_node = origin
new_path = [current_node]
if overload_coeff is None:
overload_coeff = 10**-3
i = 0
while current_node != destination:
i+=1
if i%20==0:
overload_coeff /= 10
neighbor_list = list(graph[current_node].keys())
arc_efficiency_list = []
l = []
for neighbor in neighbor_list:
if True or neighbor in graph[current_node] and graph[current_node][neighbor] > 0:
arc_efficiency_list.append(all_distances[neighbor][destination] + 1 + overload_coeff * max(0, demand + use_graph[current_node][neighbor] - graph[current_node][neighbor]))
l.append(neighbor)
arc_efficiency_list = np.array(arc_efficiency_list)
neighbor_list = l
proba = np.exp(- arc_efficiency_list * T)
proba = proba/sum(proba)
current_node = np.random.choice(neighbor_list, p=proba)
new_path.append(current_node)
return new_path
def compute_all_distances(graph):
nb_nodes = len(graph)
all_distances = []
unitary_graph = [{neighbor : 1 for neighbor in graph[node]} for node in range(nb_nodes)]
for initial_node in range(nb_nodes):
parent_list, distances = dijkstra(unitary_graph, initial_node)
for i in range(len(distances)):
if distances[i] is None:
distances[i] = 10.**10
all_distances.append(distances)
return all_distances
def dijkstra(graph, initial_node, destination_node=None):
priority_q = [(0, initial_node, None)]
parent_list = [None] * len(graph)
distances = [None] * len(graph)
while priority_q:
value, current_node, parent_node = hp.heappop(priority_q)
if distances[current_node] is None:
parent_list[current_node] = parent_node
distances[current_node] = value
if current_node == destination_node:
return parent_list, distances
for neighbor in graph[current_node]:
if distances[neighbor] is None:
hp.heappush(priority_q, (value + graph[current_node][neighbor], neighbor, current_node))
return parent_list, distances
def remove_cycle_from_path(path):
is_in_path = set()
new_path = []
for node in path:
if node in is_in_path:
while new_path[-1] != node:
node_to_remove = new_path.pop()
is_in_path.remove(node_to_remove)
else:
is_in_path.add(node)
new_path.append(node)
return new_path
if __name__ == "__main__":
pass
|
[
"random.randint",
"heapq.heappush",
"k_shortest_path.k_shortest_path_all_destination",
"heapq.heappop",
"random.random",
"numpy.array",
"numpy.exp",
"numpy.arange",
"numpy.random.choice"
] |
[((2006, 2043), 'random.randint', 'random.randint', (['(0)', '(nb_commodities - 1)'], {}), '(0, nb_commodities - 1)\n', (2020, 2043), False, 'import random\n'), ((3400, 3435), 'numpy.exp', 'np.exp', (['((fitness - new_fitness) / T)'], {}), '((fitness - new_fitness) / T)\n', (3406, 3435), True, 'import numpy as np\n'), ((5476, 5498), 'heapq.heappop', 'hp.heappop', (['priority_q'], {}), '(priority_q)\n', (5486, 5498), True, 'import heapq as hp\n'), ((7501, 7530), 'numpy.array', 'np.array', (['arc_efficiency_list'], {}), '(arc_efficiency_list)\n', (7509, 7530), True, 'import numpy as np\n'), ((7574, 7606), 'numpy.exp', 'np.exp', (['(-arc_efficiency_list * T)'], {}), '(-arc_efficiency_list * T)\n', (7580, 7606), True, 'import numpy as np\n'), ((7665, 7705), 'numpy.random.choice', 'np.random.choice', (['neighbor_list'], {'p': 'proba'}), '(neighbor_list, p=proba)\n', (7681, 7705), True, 'import numpy as np\n'), ((8481, 8503), 'heapq.heappop', 'hp.heappop', (['priority_q'], {}), '(priority_q)\n', (8491, 8503), True, 'import heapq as hp\n'), ((1126, 1193), 'k_shortest_path.k_shortest_path_all_destination', 'k_shortest_path_all_destination', (['graph', 'origin', 'nb_k_shortest_paths'], {}), '(graph, origin, nb_k_shortest_paths)\n', (1157, 1193), False, 'from k_shortest_path import k_shortest_path_algorithm, k_shortest_path_all_destination\n'), ((577, 599), 'numpy.arange', 'np.arange', (['(0)', '(1)', '(0.001)'], {}), '(0, 1, 0.001)\n', (586, 599), True, 'import numpy as np\n'), ((2284, 2299), 'random.random', 'random.random', ([], {}), '()\n', (2297, 2299), False, 'import random\n'), ((3597, 3612), 'random.random', 'random.random', ([], {}), '()\n', (3610, 3612), False, 'import random\n'), ((6305, 6372), 'heapq.heappush', 'hp.heappush', (['priority_q', '(value + arc_cost, neighbor, current_node)'], {}), '(priority_q, (value + arc_cost, neighbor, current_node))\n', (6316, 6372), True, 'import heapq as hp\n'), ((8858, 8950), 'heapq.heappush', 'hp.heappush', (['priority_q', '(value + graph[current_node][neighbor], neighbor, current_node)'], {}), '(priority_q, (value + graph[current_node][neighbor], neighbor,\n current_node))\n', (8869, 8950), True, 'import heapq as hp\n'), ((6108, 6123), 'random.random', 'random.random', ([], {}), '()\n', (6121, 6123), False, 'import random\n')]
|
import sys
import os
from mpl_toolkits import mplot3d
import numpy as np
import matplotlib.pyplot as plt
filePath_gt = sys.argv[1]
filePath_results = sys.argv[2]
gt = np.genfromtxt(filePath_gt, delimiter=",", names=["x", "y", "timestamp"])
results = np.genfromtxt(filePath_results, delimiter=",", names=["x", "y", "timestamp"])
COM_pix = np.genfromtxt("COM_pix.csv", delimiter=",", names=["v", "timestamp"])
COM_meter = np.genfromtxt("COM_robot.csv", delimiter=",", names=["y", "timestamp"])
fig1 = plt.figure()
plt.plot(gt['timestamp'], gt['y'], 'b', label='ground truth')
plt.plot(results['timestamp'], results['y'], 'r', label='tracker results', linewidth=3)
plt.xlim(5000, 40000)
plt.legend()
plt.title('Tracker Validation')
plt.xlabel('Time [ms]')
plt.ylabel('y CoM [pixels]')
plt.show()
fig2 = plt.figure()
plt.plot(gt['timestamp'], gt['x'], 'b', label='ground truth')
plt.plot(results['timestamp'], results['x'], 'r', label='tracker results', linewidth=3)
plt.xlim(5000, 40000)
plt.legend()
plt.title('Tracker Validation')
plt.xlabel('Time [ms]')
plt.ylabel('x CoM [pixels]')
plt.show()
fig3 = plt.figure()
plt.plot(COM_pix['timestamp'], COM_pix['v'], 'g')
plt.title('y CoM visual space')
plt.xlim([30, 40])
plt.xlabel('Time [ms]')
plt.ylabel('y CoM [pixels]')
plt.show()
fig4 = plt.figure()
plt.plot(COM_meter['timestamp'], COM_meter['y'], 'k')
plt.title('y CoM wrt robot frame')
plt.xlim([30, 40])
plt.xlabel('Time [ms]')
plt.ylabel('y CoM [meters]')
plt.show()
# ax = plt.axes(projection='3d')
# ax.plot3D(x, y, timestamps, 'r')
|
[
"matplotlib.pyplot.title",
"matplotlib.pyplot.xlim",
"matplotlib.pyplot.show",
"matplotlib.pyplot.plot",
"matplotlib.pyplot.legend",
"numpy.genfromtxt",
"matplotlib.pyplot.figure",
"matplotlib.pyplot.ylabel",
"matplotlib.pyplot.xlabel"
] |
[((171, 243), 'numpy.genfromtxt', 'np.genfromtxt', (['filePath_gt'], {'delimiter': '""","""', 'names': "['x', 'y', 'timestamp']"}), "(filePath_gt, delimiter=',', names=['x', 'y', 'timestamp'])\n", (184, 243), True, 'import numpy as np\n'), ((254, 331), 'numpy.genfromtxt', 'np.genfromtxt', (['filePath_results'], {'delimiter': '""","""', 'names': "['x', 'y', 'timestamp']"}), "(filePath_results, delimiter=',', names=['x', 'y', 'timestamp'])\n", (267, 331), True, 'import numpy as np\n'), ((342, 411), 'numpy.genfromtxt', 'np.genfromtxt', (['"""COM_pix.csv"""'], {'delimiter': '""","""', 'names': "['v', 'timestamp']"}), "('COM_pix.csv', delimiter=',', names=['v', 'timestamp'])\n", (355, 411), True, 'import numpy as np\n'), ((424, 495), 'numpy.genfromtxt', 'np.genfromtxt', (['"""COM_robot.csv"""'], {'delimiter': '""","""', 'names': "['y', 'timestamp']"}), "('COM_robot.csv', delimiter=',', names=['y', 'timestamp'])\n", (437, 495), True, 'import numpy as np\n'), ((504, 516), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (514, 516), True, 'import matplotlib.pyplot as plt\n'), ((517, 578), 'matplotlib.pyplot.plot', 'plt.plot', (["gt['timestamp']", "gt['y']", '"""b"""'], {'label': '"""ground truth"""'}), "(gt['timestamp'], gt['y'], 'b', label='ground truth')\n", (525, 578), True, 'import matplotlib.pyplot as plt\n'), ((579, 670), 'matplotlib.pyplot.plot', 'plt.plot', (["results['timestamp']", "results['y']", '"""r"""'], {'label': '"""tracker results"""', 'linewidth': '(3)'}), "(results['timestamp'], results['y'], 'r', label='tracker results',\n linewidth=3)\n", (587, 670), True, 'import matplotlib.pyplot as plt\n'), ((667, 688), 'matplotlib.pyplot.xlim', 'plt.xlim', (['(5000)', '(40000)'], {}), '(5000, 40000)\n', (675, 688), True, 'import matplotlib.pyplot as plt\n'), ((689, 701), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (699, 701), True, 'import matplotlib.pyplot as plt\n'), ((702, 733), 'matplotlib.pyplot.title', 'plt.title', (['"""Tracker Validation"""'], {}), "('Tracker Validation')\n", (711, 733), True, 'import matplotlib.pyplot as plt\n'), ((734, 757), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Time [ms]"""'], {}), "('Time [ms]')\n", (744, 757), True, 'import matplotlib.pyplot as plt\n'), ((758, 786), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""y CoM [pixels]"""'], {}), "('y CoM [pixels]')\n", (768, 786), True, 'import matplotlib.pyplot as plt\n'), ((787, 797), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (795, 797), True, 'import matplotlib.pyplot as plt\n'), ((807, 819), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (817, 819), True, 'import matplotlib.pyplot as plt\n'), ((820, 881), 'matplotlib.pyplot.plot', 'plt.plot', (["gt['timestamp']", "gt['x']", '"""b"""'], {'label': '"""ground truth"""'}), "(gt['timestamp'], gt['x'], 'b', label='ground truth')\n", (828, 881), True, 'import matplotlib.pyplot as plt\n'), ((882, 973), 'matplotlib.pyplot.plot', 'plt.plot', (["results['timestamp']", "results['x']", '"""r"""'], {'label': '"""tracker results"""', 'linewidth': '(3)'}), "(results['timestamp'], results['x'], 'r', label='tracker results',\n linewidth=3)\n", (890, 973), True, 'import matplotlib.pyplot as plt\n'), ((970, 991), 'matplotlib.pyplot.xlim', 'plt.xlim', (['(5000)', '(40000)'], {}), '(5000, 40000)\n', (978, 991), True, 'import matplotlib.pyplot as plt\n'), ((992, 1004), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (1002, 1004), True, 'import matplotlib.pyplot as plt\n'), ((1005, 1036), 'matplotlib.pyplot.title', 'plt.title', (['"""Tracker Validation"""'], {}), "('Tracker Validation')\n", (1014, 1036), True, 'import matplotlib.pyplot as plt\n'), ((1037, 1060), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Time [ms]"""'], {}), "('Time [ms]')\n", (1047, 1060), True, 'import matplotlib.pyplot as plt\n'), ((1061, 1089), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""x CoM [pixels]"""'], {}), "('x CoM [pixels]')\n", (1071, 1089), True, 'import matplotlib.pyplot as plt\n'), ((1090, 1100), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (1098, 1100), True, 'import matplotlib.pyplot as plt\n'), ((1109, 1121), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (1119, 1121), True, 'import matplotlib.pyplot as plt\n'), ((1122, 1171), 'matplotlib.pyplot.plot', 'plt.plot', (["COM_pix['timestamp']", "COM_pix['v']", '"""g"""'], {}), "(COM_pix['timestamp'], COM_pix['v'], 'g')\n", (1130, 1171), True, 'import matplotlib.pyplot as plt\n'), ((1172, 1203), 'matplotlib.pyplot.title', 'plt.title', (['"""y CoM visual space"""'], {}), "('y CoM visual space')\n", (1181, 1203), True, 'import matplotlib.pyplot as plt\n'), ((1204, 1222), 'matplotlib.pyplot.xlim', 'plt.xlim', (['[30, 40]'], {}), '([30, 40])\n', (1212, 1222), True, 'import matplotlib.pyplot as plt\n'), ((1223, 1246), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Time [ms]"""'], {}), "('Time [ms]')\n", (1233, 1246), True, 'import matplotlib.pyplot as plt\n'), ((1247, 1275), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""y CoM [pixels]"""'], {}), "('y CoM [pixels]')\n", (1257, 1275), True, 'import matplotlib.pyplot as plt\n'), ((1276, 1286), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (1284, 1286), True, 'import matplotlib.pyplot as plt\n'), ((1295, 1307), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (1305, 1307), True, 'import matplotlib.pyplot as plt\n'), ((1308, 1361), 'matplotlib.pyplot.plot', 'plt.plot', (["COM_meter['timestamp']", "COM_meter['y']", '"""k"""'], {}), "(COM_meter['timestamp'], COM_meter['y'], 'k')\n", (1316, 1361), True, 'import matplotlib.pyplot as plt\n'), ((1362, 1396), 'matplotlib.pyplot.title', 'plt.title', (['"""y CoM wrt robot frame"""'], {}), "('y CoM wrt robot frame')\n", (1371, 1396), True, 'import matplotlib.pyplot as plt\n'), ((1397, 1415), 'matplotlib.pyplot.xlim', 'plt.xlim', (['[30, 40]'], {}), '([30, 40])\n', (1405, 1415), True, 'import matplotlib.pyplot as plt\n'), ((1416, 1439), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Time [ms]"""'], {}), "('Time [ms]')\n", (1426, 1439), True, 'import matplotlib.pyplot as plt\n'), ((1440, 1468), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""y CoM [meters]"""'], {}), "('y CoM [meters]')\n", (1450, 1468), True, 'import matplotlib.pyplot as plt\n'), ((1469, 1479), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (1477, 1479), True, 'import matplotlib.pyplot as plt\n')]
|
"""
Module for guiding construction of the Wavelength Image
.. include common links, assuming primary doc root is up one directory
.. include:: ../links.rst
"""
import inspect
import numpy as np
import os
from pypeit import msgs
from pypeit import utils
from pypeit import datamodel
from IPython import embed
class WaveImage(datamodel.DataContainer):
version = '1.0.0'
# I/O
output_to_disk = None #('WVTILTS_IMAGE', 'WVTILTS_FULLMASK', 'WVTILTS_DETECTOR_CONTAINER')
hdu_prefix = None
# Master fun
master_type = 'Wave'
master_file_format = 'fits'
datamodel = {
'image': dict(otype=np.ndarray, atype=np.floating, desc='2D Wavelength image'),
'PYP_SPEC': dict(otype=str, desc='PypeIt spectrograph name'),
}
def __init__(self, image, PYP_SPEC=None):
# Parse
args, _, _, values = inspect.getargvalues(inspect.currentframe())
d = dict([(k,values[k]) for k in args[1:]])
# Setup the DataContainer
datamodel.DataContainer.__init__(self, d=d)
class BuildWaveImage(object):
"""
Class to generate the Wavelength Image
Args:
slits (:class:`pypeit.edgetrace.SlitTraceSet`):
Object holding the slit edge locations
tilts (np.ndarray or None):
Tilt image
wv_calib (dict or None): wavelength solution dictionary
Parameters are read from wv_calib['par']
spectrograph (:class:`pypeit.spectrographs.spectrograph.Spectrograph`):
The `Spectrograph` instance that sets the
instrument used to take the observations. Used to set
:attr:`spectrograph`.
det (int or None):
Attributes:
image (np.ndarray): Wavelength image
steps (list): List of the processing steps performed
"""
master_type = 'Wave'
# @classmethod
# def from_master_file(cls, master_file):
# """
#
# Args:
# master_file (str):
#
# Returns:
# waveimage.WaveImage:
#
# """
# # Spectrograph
# spectrograph, extras = masterframe.items_from_master_file(master_file)
# head0 = extras[0]
# # Master info
# master_dir = head0['MSTRDIR']
# master_key = head0['MSTRKEY']
# # Instantiate
# slf = cls(None, None, None, spectrograph, None, master_dir=master_dir,
# master_key=master_key, reuse_masters=True)
# slf.image = slf.load(ifile=master_file)
# # Return
# return slf
# TODO: Is maskslits ever anything besides slits.mask? (e.g., see calibrations.py call)
def __init__(self, slits, tilts, wv_calib, spectrograph, det):
# MasterFrame
#masterframe.MasterFrame.__init__(self, self.master_type, master_dir=master_dir,
# master_key=master_key, reuse_masters=reuse_masters)
# Required parameters
self.spectrograph = spectrograph
self.det = det
# TODO: Do we need to assign slits to self?
self.slits = slits
self.tilts = tilts
self.wv_calib = wv_calib
if self.slits is None:
self.slitmask = None
self.slit_spat_pos = None
else:
# NOTE: This uses the pad defined by EdgeTraceSetPar
self.slitmask = self.slits.slit_img()
# This selects the coordinates for the tweaked edges if
# they exist, original otherwise.
self.slit_spat_pos = self.slits.spatial_coordinates()
# For echelle order, primarily
# TODO: only echelle is ever used. Do we need to keep the whole
# thing?
self.par = wv_calib['par'] if wv_calib is not None else None
# Main output
self.image = None
self.steps = []
def build_wave(self):
"""
Main algorithm to build the wavelength image
Returns:
`numpy.ndarray`_: The wavelength image.
"""
# Loop on slits
ok_slits = np.where(np.invert(self.slits.mask))[0]
self.image = np.zeros_like(self.tilts)
nspec = self.slitmask.shape[0]
# Error checking on the wv_calib
#if (nspec-1) != int(self.wv_calib[str(0)]['fmax']):
# msgs.error('Your wavelength fits used inconsistent normalization. Something is wrong!')
# If this is echelle print out a status message and do some error checking
if self.par['echelle']:
msgs.info('Evaluating 2-d wavelength solution for echelle....')
if len(self.wv_calib['fit2d']['orders']) != len(ok_slits):
msgs.error('wv_calib and ok_slits do not line up. Something is very wrong!')
# Unpack some 2-d fit parameters if this is echelle
for slit in ok_slits:
thismask = (self.slitmask == slit)
if self.par['echelle']:
# TODO: Put this in `SlitTraceSet`?
order, indx = self.spectrograph.slit2order(self.slit_spat_pos[slit])
# evaluate solution
self.image[thismask] = utils.func_val(self.wv_calib['fit2d']['coeffs'],
self.tilts[thismask],
self.wv_calib['fit2d']['func2d'],
x2=np.ones_like(self.tilts[thismask])*order,
minx=self.wv_calib['fit2d']['min_spec'],
maxx=self.wv_calib['fit2d']['max_spec'],
minx2=self.wv_calib['fit2d']['min_order'],
maxx2=self.wv_calib['fit2d']['max_order'])
self.image[thismask] /= order
else:
iwv_calib = self.wv_calib[str(slit)]
self.image[thismask] = utils.func_val(iwv_calib['fitc'], self.tilts[thismask],
iwv_calib['function'],
minx=iwv_calib['fmin'],
maxx=iwv_calib['fmax'])
# Return
self.steps.append(inspect.stack()[0][3])
return WaveImage(self.image, PYP_SPEC=self.spectrograph.spectrograph)
def __repr__(self):
# Generate sets string
txt = '<{:s}: >'.format(self.__class__.__name__)
return txt
|
[
"numpy.zeros_like",
"numpy.ones_like",
"numpy.invert",
"pypeit.msgs.error",
"pypeit.datamodel.DataContainer.__init__",
"pypeit.utils.func_val",
"inspect.currentframe",
"inspect.stack",
"pypeit.msgs.info"
] |
[((997, 1040), 'pypeit.datamodel.DataContainer.__init__', 'datamodel.DataContainer.__init__', (['self'], {'d': 'd'}), '(self, d=d)\n', (1029, 1040), False, 'from pypeit import datamodel\n'), ((4079, 4104), 'numpy.zeros_like', 'np.zeros_like', (['self.tilts'], {}), '(self.tilts)\n', (4092, 4104), True, 'import numpy as np\n'), ((879, 901), 'inspect.currentframe', 'inspect.currentframe', ([], {}), '()\n', (899, 901), False, 'import inspect\n'), ((4476, 4539), 'pypeit.msgs.info', 'msgs.info', (['"""Evaluating 2-d wavelength solution for echelle...."""'], {}), "('Evaluating 2-d wavelength solution for echelle....')\n", (4485, 4539), False, 'from pypeit import msgs\n'), ((4027, 4053), 'numpy.invert', 'np.invert', (['self.slits.mask'], {}), '(self.slits.mask)\n', (4036, 4053), True, 'import numpy as np\n'), ((4627, 4703), 'pypeit.msgs.error', 'msgs.error', (['"""wv_calib and ok_slits do not line up. Something is very wrong!"""'], {}), "('wv_calib and ok_slits do not line up. Something is very wrong!')\n", (4637, 4703), False, 'from pypeit import msgs\n'), ((5949, 6080), 'pypeit.utils.func_val', 'utils.func_val', (["iwv_calib['fitc']", 'self.tilts[thismask]', "iwv_calib['function']"], {'minx': "iwv_calib['fmin']", 'maxx': "iwv_calib['fmax']"}), "(iwv_calib['fitc'], self.tilts[thismask], iwv_calib[\n 'function'], minx=iwv_calib['fmin'], maxx=iwv_calib['fmax'])\n", (5963, 6080), False, 'from pypeit import utils\n'), ((6285, 6300), 'inspect.stack', 'inspect.stack', ([], {}), '()\n', (6298, 6300), False, 'import inspect\n'), ((5363, 5397), 'numpy.ones_like', 'np.ones_like', (['self.tilts[thismask]'], {}), '(self.tilts[thismask])\n', (5375, 5397), True, 'import numpy as np\n')]
|
#!/usr/bin/env python
from ATK.Core import DoubleInPointerFilter, DoubleOutPointerFilter
from ATK.Delay import DoubleUniversalVariableDelayLineFilter
from ATK.EQ import DoubleSecondOrderLowPassFilter
from ATK.Tools import DoubleWhiteNoiseGeneratorFilter
import matplotlib.pyplot as plt
sample_rate = 96000
def filter(input, blend=0, feedback=0, feedforward=1):
import numpy as np
output = np.zeros(input.shape, dtype=np.float64)
infilter = DoubleInPointerFilter(input, False)
infilter.set_input_sampling_rate(sample_rate)
noisefilter = DoubleWhiteNoiseGeneratorFilter()
noisefilter.set_input_sampling_rate(sample_rate)
noisefilter.set_offset(50e-3 * sample_rate)
noisefilter.set_volume(25e-3 * sample_rate)
lownoisefilter = DoubleSecondOrderLowPassFilter()
lownoisefilter.set_input_sampling_rate(sample_rate)
lownoisefilter.set_cut_frequency(5)
lownoisefilter.set_input_port(0, noisefilter, 0)
delayfilter = DoubleUniversalVariableDelayLineFilter(5000)
delayfilter.set_input_sampling_rate(sample_rate)
delayfilter.set_input_port(0, infilter, 0)
delayfilter.set_input_port(1, lownoisefilter, 0)
delayfilter.set_blend(blend)
delayfilter.set_feedback(feedback)
delayfilter.set_feedforward(feedforward)
outfilter = DoubleOutPointerFilter(output, False)
outfilter.set_input_sampling_rate(sample_rate)
outfilter.set_input_port(0, delayfilter, 0)
outfilter.process(input.shape[1])
return output
if __name__ == "__main__":
import numpy as np
size = 960000
x = np.arange(size, dtype=np.float64).reshape(1, -1) / sample_rate
d = np.sin(x * 2 * np.pi * 1000)
np.savetxt("input.txt", d)
out = filter(d, feedforward=1, blend=0.7, feedback=-0.7)
np.savetxt("output.txt", out)
|
[
"ATK.Core.DoubleInPointerFilter",
"ATK.Delay.DoubleUniversalVariableDelayLineFilter",
"ATK.EQ.DoubleSecondOrderLowPassFilter",
"ATK.Core.DoubleOutPointerFilter",
"ATK.Tools.DoubleWhiteNoiseGeneratorFilter",
"numpy.zeros",
"numpy.savetxt",
"numpy.sin",
"numpy.arange"
] |
[((397, 436), 'numpy.zeros', 'np.zeros', (['input.shape'], {'dtype': 'np.float64'}), '(input.shape, dtype=np.float64)\n', (405, 436), True, 'import numpy as np\n'), ((451, 486), 'ATK.Core.DoubleInPointerFilter', 'DoubleInPointerFilter', (['input', '(False)'], {}), '(input, False)\n', (472, 486), False, 'from ATK.Core import DoubleInPointerFilter, DoubleOutPointerFilter\n'), ((552, 585), 'ATK.Tools.DoubleWhiteNoiseGeneratorFilter', 'DoubleWhiteNoiseGeneratorFilter', ([], {}), '()\n', (583, 585), False, 'from ATK.Tools import DoubleWhiteNoiseGeneratorFilter\n'), ((753, 785), 'ATK.EQ.DoubleSecondOrderLowPassFilter', 'DoubleSecondOrderLowPassFilter', ([], {}), '()\n', (783, 785), False, 'from ATK.EQ import DoubleSecondOrderLowPassFilter\n'), ((948, 992), 'ATK.Delay.DoubleUniversalVariableDelayLineFilter', 'DoubleUniversalVariableDelayLineFilter', (['(5000)'], {}), '(5000)\n', (986, 992), False, 'from ATK.Delay import DoubleUniversalVariableDelayLineFilter\n'), ((1268, 1305), 'ATK.Core.DoubleOutPointerFilter', 'DoubleOutPointerFilter', (['output', '(False)'], {}), '(output, False)\n', (1290, 1305), False, 'from ATK.Core import DoubleInPointerFilter, DoubleOutPointerFilter\n'), ((1597, 1625), 'numpy.sin', 'np.sin', (['(x * 2 * np.pi * 1000)'], {}), '(x * 2 * np.pi * 1000)\n', (1603, 1625), True, 'import numpy as np\n'), ((1629, 1655), 'numpy.savetxt', 'np.savetxt', (['"""input.txt"""', 'd'], {}), "('input.txt', d)\n", (1639, 1655), True, 'import numpy as np\n'), ((1717, 1746), 'numpy.savetxt', 'np.savetxt', (['"""output.txt"""', 'out'], {}), "('output.txt', out)\n", (1727, 1746), True, 'import numpy as np\n'), ((1528, 1561), 'numpy.arange', 'np.arange', (['size'], {'dtype': 'np.float64'}), '(size, dtype=np.float64)\n', (1537, 1561), True, 'import numpy as np\n')]
|
import cv2
import numpy as np
import skfmm
import skimage
from numpy import ma
def get_mask(sx, sy, scale, step_size):
size = int(step_size // scale) * 2 + 1
mask = np.zeros((size, size))
for i in range(size):
for j in range(size):
if ((i + 0.5) - (size // 2 + sx)) ** 2 + \
((j + 0.5) - (size // 2 + sy)) ** 2 <= \
step_size ** 2 \
and ((i + 0.5) - (size // 2 + sx)) ** 2 + \
((j + 0.5) - (size // 2 + sy)) ** 2 > \
(step_size - 1) ** 2:
mask[i, j] = 1
mask[size // 2, size // 2] = 1
return mask
def get_dist(sx, sy, scale, step_size):
size = int(step_size // scale) * 2 + 1
mask = np.zeros((size, size)) + 1e-10
for i in range(size):
for j in range(size):
if ((i + 0.5) - (size // 2 + sx)) ** 2 + \
((j + 0.5) - (size // 2 + sy)) ** 2 <= \
step_size ** 2:
mask[i, j] = max(5,
(((i + 0.5) - (size // 2 + sx)) ** 2 +
((j + 0.5) - (size // 2 + sy)) ** 2) ** 0.5)
return mask
class FMMPlanner():
def __init__(self, traversible, scale=1, step_size=5):
self.scale = scale
self.step_size = step_size
if scale != 1.:
self.traversible = cv2.resize(traversible,
(traversible.shape[1] // scale,
traversible.shape[0] // scale),
interpolation=cv2.INTER_NEAREST)
self.traversible = np.rint(self.traversible)
else:
self.traversible = traversible
self.du = int(self.step_size / (self.scale * 1.))
self.fmm_dist = None
def set_goal(self, goal, auto_improve=False):
traversible_ma = ma.masked_values(self.traversible * 1, 0)
goal_x, goal_y = int(goal[0] / (self.scale * 1.)), \
int(goal[1] / (self.scale * 1.))
if self.traversible[goal_x, goal_y] == 0. and auto_improve:
goal_x, goal_y = self._find_nearest_goal([goal_x, goal_y])
traversible_ma[goal_x, goal_y] = 0
dd = skfmm.distance(traversible_ma, dx=1)
dd = ma.filled(dd, np.max(dd) + 1)
self.fmm_dist = dd
return
def set_multi_goal(self, goal_map):
traversible_ma = ma.masked_values(self.traversible * 1, 0)
traversible_ma[goal_map == 1] = 0
dd = skfmm.distance(traversible_ma, dx=1)
dd = ma.filled(dd, np.max(dd) + 1)
self.fmm_dist = dd
return
def get_short_term_goal(self, state):
scale = self.scale * 1.
state = [x / scale for x in state]
dx, dy = state[0] - int(state[0]), state[1] - int(state[1])
mask = get_mask(dx, dy, scale, self.step_size)
dist_mask = get_dist(dx, dy, scale, self.step_size)
state = [int(x) for x in state]
dist = np.pad(self.fmm_dist, self.du,
'constant', constant_values=self.fmm_dist.shape[0] ** 2)
subset = dist[state[0]:state[0] + 2 * self.du + 1,
state[1]:state[1] + 2 * self.du + 1]
assert subset.shape[0] == 2 * self.du + 1 and \
subset.shape[1] == 2 * self.du + 1, \
"Planning error: unexpected subset shape {}".format(subset.shape)
subset *= mask
subset += (1 - mask) * self.fmm_dist.shape[0] ** 2
distance = subset[self.du,self.du]
if subset[self.du, self.du] < 0.25 * 100 / 5.: # 25cm
stop = True
else:
stop = False
subset -= subset[self.du, self.du]
ratio1 = subset / dist_mask
subset[ratio1 < -1.5] = 1
(stg_x, stg_y) = np.unravel_index(np.argmin(subset), subset.shape)
#print(subset[stg_x,stg_y])
if subset[stg_x, stg_y] > -0.0001:
replan = True
else:
replan = False
return (stg_x + state[0] - self.du) * scale, \
(stg_y + state[1] - self.du) * scale, distance, stop
def _find_nearest_goal(self, goal):
traversible = skimage.morphology.binary_dilation(
np.zeros(self.traversible.shape),
skimage.morphology.disk(2)) != True
traversible = traversible * 1.
planner = FMMPlanner(traversible)
planner.set_goal(goal)
mask = self.traversible
dist_map = planner.fmm_dist * mask
dist_map[dist_map == 0] = dist_map.max()
goal = np.unravel_index(dist_map.argmin(), dist_map.shape)
return goal
|
[
"numpy.pad",
"numpy.ma.masked_values",
"skfmm.distance",
"numpy.zeros",
"skimage.morphology.disk",
"numpy.argmin",
"numpy.rint",
"numpy.max",
"cv2.resize"
] |
[((175, 197), 'numpy.zeros', 'np.zeros', (['(size, size)'], {}), '((size, size))\n', (183, 197), True, 'import numpy as np\n'), ((737, 759), 'numpy.zeros', 'np.zeros', (['(size, size)'], {}), '((size, size))\n', (745, 759), True, 'import numpy as np\n'), ((1898, 1939), 'numpy.ma.masked_values', 'ma.masked_values', (['(self.traversible * 1)', '(0)'], {}), '(self.traversible * 1, 0)\n', (1914, 1939), False, 'from numpy import ma\n'), ((2243, 2279), 'skfmm.distance', 'skfmm.distance', (['traversible_ma'], {'dx': '(1)'}), '(traversible_ma, dx=1)\n', (2257, 2279), False, 'import skfmm\n'), ((2431, 2472), 'numpy.ma.masked_values', 'ma.masked_values', (['(self.traversible * 1)', '(0)'], {}), '(self.traversible * 1, 0)\n', (2447, 2472), False, 'from numpy import ma\n'), ((2528, 2564), 'skfmm.distance', 'skfmm.distance', (['traversible_ma'], {'dx': '(1)'}), '(traversible_ma, dx=1)\n', (2542, 2564), False, 'import skfmm\n'), ((3008, 3100), 'numpy.pad', 'np.pad', (['self.fmm_dist', 'self.du', '"""constant"""'], {'constant_values': '(self.fmm_dist.shape[0] ** 2)'}), "(self.fmm_dist, self.du, 'constant', constant_values=self.fmm_dist.\n shape[0] ** 2)\n", (3014, 3100), True, 'import numpy as np\n'), ((1372, 1497), 'cv2.resize', 'cv2.resize', (['traversible', '(traversible.shape[1] // scale, traversible.shape[0] // scale)'], {'interpolation': 'cv2.INTER_NEAREST'}), '(traversible, (traversible.shape[1] // scale, traversible.shape[0\n ] // scale), interpolation=cv2.INTER_NEAREST)\n', (1382, 1497), False, 'import cv2\n'), ((1651, 1676), 'numpy.rint', 'np.rint', (['self.traversible'], {}), '(self.traversible)\n', (1658, 1676), True, 'import numpy as np\n'), ((3830, 3847), 'numpy.argmin', 'np.argmin', (['subset'], {}), '(subset)\n', (3839, 3847), True, 'import numpy as np\n'), ((2307, 2317), 'numpy.max', 'np.max', (['dd'], {}), '(dd)\n', (2313, 2317), True, 'import numpy as np\n'), ((2592, 2602), 'numpy.max', 'np.max', (['dd'], {}), '(dd)\n', (2598, 2602), True, 'import numpy as np\n'), ((4244, 4276), 'numpy.zeros', 'np.zeros', (['self.traversible.shape'], {}), '(self.traversible.shape)\n', (4252, 4276), True, 'import numpy as np\n'), ((4290, 4316), 'skimage.morphology.disk', 'skimage.morphology.disk', (['(2)'], {}), '(2)\n', (4313, 4316), False, 'import skimage\n')]
|
from CNS_UDP_FAST import CNS
import numpy as np
import time
import random
class ENVCNS(CNS):
def __init__(self, Name, IP, PORT, Monitoring_ENV=None):
super(ENVCNS, self).__init__(threrad_name=Name,
CNS_IP=IP, CNS_Port=PORT,
Remote_IP='192.168.0.29', Remote_Port=PORT, Max_len=10)
self.Monitoring_ENV = Monitoring_ENV
self.Name = Name # = id
self.AcumulatedReward = 0
self.ENVStep = 0
self.LoggerPath = 'DB'
self.want_tick = 5 # 1sec
self.Loger_txt = ''
self.input_info = [
# (para, x_round, x_min, x_max), (x_min=0, x_max=0 is not normalized.)
('BHV142', 1, 0, 0), # Letdown(HV142)
]
self.action_space = 1
self.observation_space = len(self.input_info)
# ENV Logger
def ENVlogging(self, s):
cr_time = time.strftime('%c', time.localtime(time.time()))
if self.ENVStep == 0:
with open(f'{self.Name}.txt', 'a') as f:
f.write('==' * 20 + '\n')
f.write(f'[{cr_time}]\n')
f.write('==' * 20 + '\n')
else:
with open(f'{self.Name}.txt', 'a') as f:
f.write(f'[{cr_time}] {self.Loger_txt}\n')
def normalize(self, x, x_round, x_min, x_max):
if x_max == 0 and x_min == 0:
# It means X value is not normalized.
x = x / x_round
else:
x = x_max if x >= x_max else x
x = x_min if x <= x_min else x
x = (x - x_min) / (x_max - x_min)
return x
def get_state(self):
state = []
for para, x_round, x_min, x_max in self.input_info:
if para in self.mem.keys():
state.append(self.normalize(self.mem[para]['Val'], x_round, x_min, x_max))
else:
# ADD logic ----- 계산된 값을 사용하고 싶을 때
pass
# state = [self.mem[para]['Val'] / Round_val for para, Round_val in self.input_info]
self.Loger_txt += f'{state}\t'
return np.array(state)
def get_reward(self):
"""
R => _
:return:
"""
r = 0
self.Loger_txt += f'R:{r}\t'
return r
def get_done(self, r):
V = {
'Dumy': 0
}
r = self.normalize(r, 1, 0, 2)
d = False
self.Loger_txt += f'{d}\t'
return d, self.normalize(r, 1, 0, 2)
def _send_control_save(self, zipParaVal):
super(ENVCNS, self)._send_control_save(para=zipParaVal[0], val=zipParaVal[1])
def send_act(self, A):
"""
A 에 해당하는 액션을 보내고 나머지는 자동
E.x)
self._send_control_save(['KSWO115'], [0])
...
self._send_control_to_cns()
:param A: A 액션 [0, 0, 0] <- act space에 따라서
:return: AMod: 수정된 액션
"""
AMod = A
V = {
'CNSTime': self.mem['KCNTOMS']['Val'],
'Delta_T': self.mem['TDELTA']['Val'],
'ChargingVV': self.mem['BFV122']['Val'],
'ChargingVM': self.mem['KLAMPO95']['Val'], # 1 m 0 a
'LetDownSet': self.mem['ZINST36']['Val'],
}
ActOrderBook = {
'ChargingValveOpen': (['KSWO101', 'KSWO102'], [0, 1]),
'ChargingValveStay': (['KSWO101', 'KSWO102'], [0, 0]),
'ChargingValveClase': (['KSWO101', 'KSWO102'], [1, 0]),
'ChargingEdit': (['BFV122'], [0.12]),
'LetdownValveOpen': (['KSWO231', 'KSWO232'], [0, 1]),
'LetdownValveStay': (['KSWO231', 'KSWO232'], [0, 0]),
'LetdownValveClose': (['KSWO231', 'KSWO232'], [1, 0]),
'PZRBackHeaterOff': (['KSWO125'], [0]), 'PZRBackHeaterOn': (['KSWO125'], [1]),
'PZRProHeaterMan': (['KSWO120'], [1]), 'PZRProHeaterAuto': (['KSWO120'], [0]),
'PZRProHeaterDown': (['KSWO121', 'KSWO122'], [1, 0]),
'PZRProHeaterStay': (['KSWO121', 'KSWO122'], [0, 0]),
'PZRProHeaterUp': (['KSWO121', 'KSWO122'], [0, 1]),
'LetDownSetDown': (['KSWO90', 'KSWO91'], [1, 0]),
'LetDownSetStay': (['KSWO90', 'KSWO91'], [0, 0]),
'LetDownSetUP': (['KSWO90', 'KSWO91'], [0, 1]),
'ChangeDelta': (['TDELTA'], [1.0]),
'ChargingAuto': (['KSWO100'], [0])
}
# Delta
# if V['Delta_T'] != 1: self._send_control_save(ActOrderBook['ChangeDelta'])
# Done Act
self._send_control_to_cns()
return AMod
def SkipAct(self):
ActOrderBook = {
'Dumy': (['Dumy_para'], [0]),
}
# Skip or Reset Act
# self._send_control_save(ActOrderBook['LetdownValveStay'])
# Done Act
self._send_control_to_cns()
return 0
def step(self, A, mean_, std_):
"""
A를 받고 1 step 전진
:param A: [Act], numpy.ndarry, Act는 numpy.float32
:return: 최신 state와 reward done 반환
"""
# Old Data (time t) ---------------------------------------
AMod = self.send_act(A)
self.want_tick = int(10)
if self.Monitoring_ENV is not None:
self.Monitoring_ENV.push_ENV_val(i=self.Name,
Dict_val={f'{Para}': self.mem[f'{Para}']['Val'] for Para in
['BHV142', 'BFV122', 'ZINST65', 'ZINST63']}
)
self.Monitoring_ENV.push_ENV_ActDis(i=self.Name,
Dict_val={'Mean': mean_, 'Std': std_}
)
# New Data (time t+1) -------------------------------------
super(ENVCNS, self).step()
self._append_val_to_list()
self.ENVStep += 1
reward = self.get_reward()
done, reward = self.get_done(reward)
if self.Monitoring_ENV is not None:
self.Monitoring_ENV.push_ENV_reward(i=self.Name,
Dict_val={'R': reward, 'AcuR': self.AcumulatedReward, 'Done': done})
next_state = self.get_state()
# ----------------------------------------------------------
self.ENVlogging(s=self.Loger_txt)
# self.Loger_txt = f'{next_state}\t'
self.Loger_txt = ''
return next_state, reward, done, AMod
def reset(self, file_name):
# 1] CNS 상태 초기화 및 초기화된 정보 메모리에 업데이트
super(ENVCNS, self).reset(initial_nub=1, mal=True, mal_case=35, mal_opt=1, mal_time=450, file_name=file_name)
# 2] 업데이트된 'Val'를 'List'에 추가 및 ENVLogging 초기화
self._append_val_to_list()
self.ENVlogging('')
# 3] 'Val'을 상태로 제작후 반환
state = self.get_state()
# 4] 보상 누적치 및 ENVStep 초기화
self.AcumulatedReward = 0
self.ENVStep = 0
if self.Monitoring_ENV is not None: self.Monitoring_ENV.init_ENV_val(self.Name)
# 5] FIX RADVAL
self.FixedRad = random.randint(0, 20) * 5
self.FixedTime = 0
self.FixedTemp = 0
return state
if __name__ == '__main__':
# ENVCNS TEST
env = ENVCNS(Name='Env1', IP='192.168.0.101', PORT=int(f'7101'))
# Run
for _ in range(1, 2):
env.reset(file_name=f'Ep{_}')
start = time.time()
for _ in range(0, 300):
A = 0
next_state, reward, done, AMod = env.step(A, std_=1, mean_=0)
if done:
print(f'END--{start}->{time.time()} [{time.time()-start}]')
break
|
[
"numpy.array",
"random.randint",
"time.time"
] |
[((2121, 2136), 'numpy.array', 'np.array', (['state'], {}), '(state)\n', (2129, 2136), True, 'import numpy as np\n'), ((7354, 7365), 'time.time', 'time.time', ([], {}), '()\n', (7363, 7365), False, 'import time\n'), ((7046, 7067), 'random.randint', 'random.randint', (['(0)', '(20)'], {}), '(0, 20)\n', (7060, 7067), False, 'import random\n'), ((967, 978), 'time.time', 'time.time', ([], {}), '()\n', (976, 978), False, 'import time\n'), ((7550, 7561), 'time.time', 'time.time', ([], {}), '()\n', (7559, 7561), False, 'import time\n'), ((7565, 7576), 'time.time', 'time.time', ([], {}), '()\n', (7574, 7576), False, 'import time\n')]
|
import argparse
import math
import os
from datetime import datetime
import h5py
import numpy as np
import plyfile
from matplotlib import cm
import rospy
import rospkg
import ros_numpy
import math
import sys
import cv2
from sensor_msgs.msg import PointCloud
from geometry_msgs.msg import Point32
import sensor_msgs.point_cloud2 as pc2
import pcl
from pcl_helper import *
from std_msgs.msg import Header
class datasetVis(object):
def __init__(self):
rospy.init_node('tutorial', anonymous=True)
self.rate = rospy.Rate(10)
self.pub = rospy.Publisher("/kitti_dataset", PointCloud2, queue_size=1)
default_data_dir = '/home/usrg/Dataset/LidarDetection/niro'
default_output_dir = 'data/s3dis/pointcnn'
parser = argparse.ArgumentParser()
parser.add_argument('-d', '--data', dest='data_dir', default=default_data_dir,
help=f'Path to S3DIS data (default is {default_data_dir})')
parser.add_argument('-f', '--folder', dest='output_dir', default=default_output_dir,
help=f'Folder to write labels (default is {default_output_dir})')
parser.add_argument('--max_num_points', '-m', help='Max point number of each sample', type=int, default=230400)
parser.add_argument('--block_size', '-b', help='Block size', type=float, default=1.5)
parser.add_argument('--grid_size', '-g', help='Grid size', type=float, default=0.03)
parser.add_argument('--save_ply', '-s', help='Convert .pts to .ply', action='store_true')
args = parser.parse_args()
self.visualize(data_dir=args.data_dir, output_dir=args.output_dir)
def visualize(self, data_dir, output_dir):
object_dict = {
'Pedestrian': 0,
'Car': 1,
'Cyclist': 2,
'Van': 1,
'Truck': -3,
'Person_sitting': 0,
'Tram': -99,
'Misc': -99,
'DontCare': -1
}
training_path = os.path.join(data_dir, 'training')
if not os.path.isdir(training_path):
print("No such directory.")
return
# pc_path_dir = os.path.join(training_path, 'velodyne') # kitti
# label_path_dir = os.path.join(training_path, 'label_2') # kitti
pc_path_dir = os.path.join(training_path, 'lidar') #niro
label_path_dir = os.path.join(training_path, 'label') # niro
pc_dir = os.listdir(pc_path_dir)
pc_dir = sorted(pc_dir)
# label_objects = os.listdir(label_path_dir)
print(len(pc_dir))
xyz_room = np.zeros((1, 6))
label_room = np.zeros((1, 1))
for pc_buf in pc_dir:
pc_ind = pc_buf.split('.', 1)[0]
# pc_path = os.path.join(pc_path_dir, pc_ind + '.bin') # kitti
pc_path = os.path.join(pc_path_dir, pc_ind + '.npy') # niro
label_path = os.path.join(label_path_dir, pc_ind + '.txt')
print(pc_path, label_path)
# xyzi_arr = np.fromfile(pc_path, dtype=np.float32).reshape(-1, 4) #kitti
xyzi_arr = np.load(pc_path).reshape(-1, 4) #niro
xyzi_arr = np.array(xyzi_arr[:, :3])
# ori_pc = pcl.PointCloud(xyzi_arr)
header = Header()
header.stamp = rospy.Time.now()
header.frame_id = 'velodyne'
# fields = [PointField('x', 0, PointField.FLOAT32, 1),
# PointField('y', 4, PointField.FLOAT32, 1),
# PointField('z', 8, PointField.FLOAT32, 1),
# PointField('intensity', 12, PointField.FLOAT32, 1)]
# ros_msg = pc2.create_cloud(header, fields, xyzi_arr)
ros_msg = pc2.create_cloud_xyz32(header, xyzi_arr)
num_channel = int(xyzi_arr.shape[0] / 64)
print('# of channel : ', num_channel, ', shape: ', xyzi_arr.shape)
self.pub.publish(ros_msg)
self.rate.sleep()
def main():
vis = datasetVis()
if __name__ == '__main__':
main()
|
[
"numpy.load",
"argparse.ArgumentParser",
"rospy.Time.now",
"std_msgs.msg.Header",
"os.path.isdir",
"numpy.zeros",
"rospy.Publisher",
"rospy.Rate",
"sensor_msgs.point_cloud2.create_cloud_xyz32",
"numpy.array",
"rospy.init_node",
"os.path.join",
"os.listdir"
] |
[((465, 508), 'rospy.init_node', 'rospy.init_node', (['"""tutorial"""'], {'anonymous': '(True)'}), "('tutorial', anonymous=True)\n", (480, 508), False, 'import rospy\n'), ((530, 544), 'rospy.Rate', 'rospy.Rate', (['(10)'], {}), '(10)\n', (540, 544), False, 'import rospy\n'), ((564, 624), 'rospy.Publisher', 'rospy.Publisher', (['"""/kitti_dataset"""', 'PointCloud2'], {'queue_size': '(1)'}), "('/kitti_dataset', PointCloud2, queue_size=1)\n", (579, 624), False, 'import rospy\n'), ((763, 788), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (786, 788), False, 'import argparse\n'), ((2010, 2044), 'os.path.join', 'os.path.join', (['data_dir', '"""training"""'], {}), "(data_dir, 'training')\n", (2022, 2044), False, 'import os\n'), ((2319, 2355), 'os.path.join', 'os.path.join', (['training_path', '"""lidar"""'], {}), "(training_path, 'lidar')\n", (2331, 2355), False, 'import os\n'), ((2387, 2423), 'os.path.join', 'os.path.join', (['training_path', '"""label"""'], {}), "(training_path, 'label')\n", (2399, 2423), False, 'import os\n'), ((2449, 2472), 'os.listdir', 'os.listdir', (['pc_path_dir'], {}), '(pc_path_dir)\n', (2459, 2472), False, 'import os\n'), ((2605, 2621), 'numpy.zeros', 'np.zeros', (['(1, 6)'], {}), '((1, 6))\n', (2613, 2621), True, 'import numpy as np\n'), ((2643, 2659), 'numpy.zeros', 'np.zeros', (['(1, 1)'], {}), '((1, 1))\n', (2651, 2659), True, 'import numpy as np\n'), ((2060, 2088), 'os.path.isdir', 'os.path.isdir', (['training_path'], {}), '(training_path)\n', (2073, 2088), False, 'import os\n'), ((2838, 2880), 'os.path.join', 'os.path.join', (['pc_path_dir', "(pc_ind + '.npy')"], {}), "(pc_path_dir, pc_ind + '.npy')\n", (2850, 2880), False, 'import os\n'), ((2913, 2958), 'os.path.join', 'os.path.join', (['label_path_dir', "(pc_ind + '.txt')"], {}), "(label_path_dir, pc_ind + '.txt')\n", (2925, 2958), False, 'import os\n'), ((3182, 3207), 'numpy.array', 'np.array', (['xyzi_arr[:, :3]'], {}), '(xyzi_arr[:, :3])\n', (3190, 3207), True, 'import numpy as np\n'), ((3280, 3288), 'std_msgs.msg.Header', 'Header', ([], {}), '()\n', (3286, 3288), False, 'from std_msgs.msg import Header\n'), ((3316, 3332), 'rospy.Time.now', 'rospy.Time.now', ([], {}), '()\n', (3330, 3332), False, 'import rospy\n'), ((3759, 3799), 'sensor_msgs.point_cloud2.create_cloud_xyz32', 'pc2.create_cloud_xyz32', (['header', 'xyzi_arr'], {}), '(header, xyzi_arr)\n', (3781, 3799), True, 'import sensor_msgs.point_cloud2 as pc2\n'), ((3121, 3137), 'numpy.load', 'np.load', (['pc_path'], {}), '(pc_path)\n', (3128, 3137), True, 'import numpy as np\n')]
|
import numpy as np
import pandas as pd
def mrd(a, b, M):
'''
Calculate the Multiresolution Decomposition for a given timeseries of two variables
Howell and Mahrt, 1997; Vickers and Mahrt, 2003; Vickers and Mahrt 2006
Args:
a (array) : Array for timeseries "a"
b (array) : Array for timeseries "b"
M (int) : Number of points in the MRD (2^M points)
Returns:
D (array) : Decomposition array
T (array) : Time array
'''
# Pre-allocate time and decomposition arrays
T = np.zeros(M)
D = np.zeros(M)
# Loop through 0 - M values (reversed)
for m in np.flip(np.arange(M + 1)):
ms = M - m # M - m in Vickers and Mahrt 2003
L = 2 ** ms
sum_ab = 0.
# Split arrays into m equal slices
arr_list_a = np.split(a, L)
arr_list_b = np.split(b, L)
for i, (temp_a, temp_b) in enumerate(zip(arr_list_a, arr_list_b)):
# Get the mean for each segment, then calculate cumulative sum
mean_a = temp_a.mean()
mean_b = temp_b.mean()
sum_ab += np.sum(mean_a * mean_b)
# Subtract mean if number of segments < number of values
if arr_list_a[0].shape[0] > 1:
arr_list_a[i] = temp_a - mean_a
arr_list_b[i] = temp_b - mean_b
# Write out decomposition and time values (ignoring m = M)
if arr_list_a[0].shape[0] < 2 ** M:
T[ms - 1] = L
D[ms - 1] = sum_ab * (1 / 2 ** (ms))
# Write out new means to original arrays
a = np.array(arr_list_a).flatten()
b = np.array(arr_list_b).flatten()
return T, np.flip(D)
def mrd_tau(a, b, M, dt):
'''
Return
'''
|
[
"numpy.sum",
"numpy.flip",
"numpy.zeros",
"numpy.split",
"numpy.arange",
"numpy.array"
] |
[((542, 553), 'numpy.zeros', 'np.zeros', (['M'], {}), '(M)\n', (550, 553), True, 'import numpy as np\n'), ((562, 573), 'numpy.zeros', 'np.zeros', (['M'], {}), '(M)\n', (570, 573), True, 'import numpy as np\n'), ((639, 655), 'numpy.arange', 'np.arange', (['(M + 1)'], {}), '(M + 1)\n', (648, 655), True, 'import numpy as np\n'), ((819, 833), 'numpy.split', 'np.split', (['a', 'L'], {}), '(a, L)\n', (827, 833), True, 'import numpy as np\n'), ((855, 869), 'numpy.split', 'np.split', (['b', 'L'], {}), '(b, L)\n', (863, 869), True, 'import numpy as np\n'), ((1685, 1695), 'numpy.flip', 'np.flip', (['D'], {}), '(D)\n', (1692, 1695), True, 'import numpy as np\n'), ((1114, 1137), 'numpy.sum', 'np.sum', (['(mean_a * mean_b)'], {}), '(mean_a * mean_b)\n', (1120, 1137), True, 'import numpy as np\n'), ((1596, 1616), 'numpy.array', 'np.array', (['arr_list_a'], {}), '(arr_list_a)\n', (1604, 1616), True, 'import numpy as np\n'), ((1639, 1659), 'numpy.array', 'np.array', (['arr_list_b'], {}), '(arr_list_b)\n', (1647, 1659), True, 'import numpy as np\n')]
|
"""
python3 py/compare_pdfs.py -f data/test_pdfs/00026_04_fda-K071597_test_data.pdf data/test_pdfs/small_test/copied_data.pdf
"""
import os
import re
import sys
import json
import math
import pickle
import hashlib
import time
import unicodedata
import datetime
import itertools
import subprocess
from pathlib import Path
import numpy as np
from itertools import groupby
from itertools import combinations
from operator import itemgetter
from random import randint
import sklearn
# from scipy.stats import chisquare
# PyMuPDF
import fitz
fitz.TOOLS.mupdf_display_errors(False)
import warnings
warnings.filterwarnings("ignore")
from pydivsufsort import divsufsort, kasai
import argparse
VERSION = "1.3.1"
TEXT_SEP = '^_^'
PAGE_SEP = '@@@'
#-------------------------------------------------------------------------------
# UTILS
#-------------------------------------------------------------------------------
def get_datadir():
currdir = os.path.dirname(os.path.realpath(__file__))
parentdir = str(Path(currdir).parent)
return parentdir + os.path.sep + 'data'
def list_of_unique_dicts(L):
# https://stackoverflow.com/questions/11092511/python-list-of-unique-dictionaries
return list({json.dumps(v, sort_keys=True): v for v in L}.values())
def find_common_substrings(text1, text2, min_len):
# Find all common non-overlapping substrings between two strings.
# minLen is the minimum acceptable length of resulting common substrings.
#
# findCommonSubstrings("abcde", "bcbcd", 2)
# -> ["bcd"]
# Note: "bc" and "cd" are also common substrings, but they are substrings
# of "bcd" and therefore do not count.
#
# combined: "abcdebcbcd"
# suffix array: [0 5 7 1 6 8 2 9 3 4]
# suffixes:
# - abcdebcbcd
# - bcbcd
# - bcd
# - bcdebcbcd
# - cbcd
# - cd
# - cdebcbcd
# - d
# - debcbcd
# - ebcbcd
# LCP array: [0 0 2 3 0 1 2 0 1 0]
#
# Iterating through LCP we check to see if the LCP value is greater than
# minLen (meaning the overlap is long enough), and if the overlap occurs
# in both texts.
# We get some candidates:
# - bc
# - bcd
# - cd
#
# We sort the candidates by length and remove those that are substrings of
# any previous candidate. Thus we are left with "bcd".
text_combined = text1 + TEXT_SEP + text2
sa = divsufsort(text_combined)
lcp = kasai(text_combined, sa)
lcp = list(lcp)
lcp = np.array(lcp[:-1])
# Collect candidates
candidates = []
l = len(text1)
j1s = np.array(sa[:-1])
j2s = np.array(sa[1:])
j_min = np.minimum(j1s, j2s)
j_max = np.maximum(j1s, j2s)
is_long_enough = lcp > min_len
is_in_both = (j_min < l) & (j_max > l)
does_not_cross = ~((j_min < l) & (j_min + lcp > l))
is_ok = is_long_enough & is_in_both & does_not_cross
my_jmin = j_min[is_ok]
my_jmax = j_max[is_ok]
my_h = lcp[is_ok]
# Remove candidates that are a substring of other candidates
# Sort by length, descending
sorted_idxs = np.argsort(-my_h)
my_jmin = my_jmin[sorted_idxs]
my_jmax = my_jmax[sorted_idxs]
my_h = my_h[sorted_idxs]
# Go through and take out overlapping substrings
def is_subset_of_any_existing(new, existing):
new_start, new_end = new
for j1, _, h in existing:
ex_start = j1
ex_end = j1 + h
if ex_start <= new_start and new_end <= ex_end:
return True
return False
offset = l+len(TEXT_SEP) # What to substract to get index of occurrence in text2
non_overlapping = []
LIMIT = 100000
for j1, j2, h in zip(my_jmin[:LIMIT], my_jmax[:LIMIT], my_h[:LIMIT]):
start = j1
end = j1 + h
if not is_subset_of_any_existing(new=(start, end), existing=non_overlapping):
non_overlapping.append((j1, j2-offset, h))
result = []
for k1, k2, h in non_overlapping:
substr = text1[k1:k1+h]
if len(substr.strip()) > min_len:
result.append((substr, k1, k2, h))
return result
#-------------------------------------------------------------------------------
# READING FILES
#-------------------------------------------------------------------------------
# def get_page_texts(filename):
# texts = []
# with fitz.open(filename) as doc:
# for page in doc:
# page_text = page.get_text()
# page_text_ascii = ''.join(c if c.isascii() else ' ' for c in page_text)
# texts.append((page.number+1, page_text_ascii))
# return texts
def get_page_image_hashes(filename):
hashes = []
with fitz.open(filename) as doc:
for page in doc:
page_images = page.get_image_info(hashes=True)
page_hashes = []
for img in page_images:
hash_ = img['digest'].hex()
if img['height'] > 200 and img['width'] > 200:
page_hashes.append(hash_)
hashes.append((page.number+1, page_hashes))
return hashes
def read_blocks_and_hashes(filename):
if filename[-4:] != '.pdf':
raise Exception('Fitz cannot read non-PDF file', filename)
text_blocks = []
image_hashes = []
with fitz.open(filename) as doc:
n_pages = 0
cum_block_len = 0
for page in doc:
n_pages += 1
# t0 = time.time()
# page_d = page.get_text('dict')
page_blocks = page.get_text('blocks')
page_images = page.get_image_info(hashes=True)
w = page.rect.width
h = page.rect.height
# print(time.time()-t0, 'get text dict')
# t0 = time.time()
for img in page_images:
hash_ = img['digest'].hex()
x0, y0, x1, y1 = img['bbox']
bbox = (x0/w, y0/h, x1/w, y1/h) # Relative to page size
if img['height'] > 200 and img['width'] > 200:
image_hashes.append((hash_, bbox, page.number+1))
for raw_block in page_blocks:
x0, y0, x1, y1, block_text, n, typ = raw_block
bbox = (x0/w, y0/h, x1/w, y1/h) # Relative to page size
if typ == 0: # Only look at text blocks
block_text = block_text.strip()
block_text = block_text.encode("ascii", errors="ignore").decode()
text_blocks.append((block_text, cum_block_len, bbox, page.number+1))
cum_block_len += len(block_text)
# print(time.time()-t0, 'other stuff')
return text_blocks, image_hashes, n_pages
def is_compatible(v_current, v_cache):
"""
v_current and v_cache are strings like 1.1.1
compare first two digits
"""
int_cur = int(''.join(v_current.split('.')[:2]))
int_cache = int(''.join(v_cache.split('.')[:2]))
return int_cur == int_cache
def get_file_data(filenames, regen_cache):
data = []
for i, full_filename in enumerate(filenames):
blocks_text, image_hashes, n_pages = None, None, None
# Check if cached exists next to PDF
cached_filename = full_filename + '.jsoncached'
try:
if os.path.exists(cached_filename) and not regen_cache:
with open(cached_filename, 'rb') as f:
cached = json.load(f)
if is_compatible(VERSION, cached['version']):
blocks_text, image_hashes, n_pages = cached['data']
blocks_text = [(t, c, tuple(b), p) for t, c, b, p in blocks_text]
# Sadly JSON doesnt understand tuples
except:
pass
if not blocks_text and not image_hashes and not n_pages:
# if True:
blocks_text, image_hashes, n_pages = read_blocks_and_hashes(full_filename)
# And cache the data
with open(cached_filename, 'w') as f:
json.dump({
'version': VERSION,
'data': [blocks_text, image_hashes, n_pages],
}, f)
path_to_file = (os.path.sep).join(full_filename.split(os.path.sep)[:-1])
filename = full_filename.split(os.path.sep)[-1]
# blocks_text_lengths = [len(t) for t, b, p in blocks_text]
blocks_digits = []
cum = 0
for t, c, b, p in blocks_text:
ds = get_digits(t)
blocks_digits.append((ds, cum, b, p))
cum += len(ds)
# blocks_digits_lengths = [len(t) for t, b, p in blocks_digits]
full_text = ''.join(t for t, c, bbx, p in blocks_text)
full_digits = ''.join(t for t, c, bbx, p in blocks_digits)
file_data = {
'path_to_file': path_to_file,
'filename': filename,
'file_index': i,
'blocks_text': blocks_text,
# 'blocks_text_lengths': blocks_text_lengths,
'blocks_digits': blocks_digits,
# 'blocks_digits_lengths': blocks_digits_lengths,
'full_text': full_text,
'full_digits': full_digits,
'image_hashes': image_hashes,
'n_pages': n_pages,
}
data.append(file_data)
return data
#-------------------------------------------------------------------------------
# COMPARISON
#-------------------------------------------------------------------------------
def get_digits(text):
result = ''.join(c for c in text if c.isnumeric())
return result
def compare_images(hash_info_a, hash_info_b):
# hash_info_a and hash_info_b are lists of tuples
# (img_hash, bbox, page_number)
# Create these dicts so that we can look up info later
info_a = {hsh: (bbx, p) for hsh, bbx, p in hash_info_a}
info_b = {hsh: (bbx, p) for hsh, bbx, p in hash_info_b}
hashes_a = set(info_a)
hashes_b = set(info_b)
common_hashes = hashes_a.intersection(hashes_b)
common_hash_info = []
for h in common_hashes:
result = (h, info_a[h], info_b[h])
common_hash_info.append(result)
return common_hash_info
def benford_test(text):
"""
Check distribution of leading digits against benford distribution.
The input text string here will typically be a paragraph.
"""
if len(text) < 140:
return 1.0
n_digits = sum(c.isnumeric() for c in text)
n_letters = sum(c.isalpha() for c in text)
try:
if n_digits / n_letters < 0.5:
return 1.0
except ZeroDivisionError:
pass
# First replace decimals and commas
page_text2 = text.replace('.', '')
page_text2 = page_text2.replace(',', '')
# Then iterate thru and get lead digits
leading_digits = []
for prev, cur in zip(' '+page_text2[:-1], page_text2):
if cur.isnumeric() and not prev.isnumeric():
leading_digits.append(cur)
# print('Leading digits:', leading_digits)
if not leading_digits:
return 1.0
# Get counts
counts = [leading_digits.count(str(d)) for d in range(1, 10)]
percentages = [100*c/sum(counts) for c in counts]
# print('Percentages:', percentages)
# Benford's Law percentages for leading digits 1-9
BENFORD = [30.1, 17.6, 12.5, 9.7, 7.9, 6.7, 5.8, 5.1, 4.6]
# Chi square test
p = chisquare(percentages, f_exp=BENFORD).pvalue
return p
def combine_bboxes(bboxes, threshold=0.6):
"""
If the bboxes are close together, combine them into one.
We check this by comparing the sum of areas over the area of the combined
bbox. If it's over a threshold, we go ahead and combine.
Inputs:
bboxes - list of (x0, y0, x1, y1)
thresold - area threshold to combine
"""
sum_areas = sum((x1-x0) * (y1-y0) for x0, y0, x1, y1 in bboxes)
cx0 = min(x0 for x0, y0, x1, y1 in bboxes)
cx1 = max(x1 for x0, y0, x1, y1 in bboxes)
cy0 = min(y0 for x0, y0, x1, y1 in bboxes)
cy1 = max(y1 for x0, y0, x1, y1 in bboxes)
new_area = (cx1-cx0) * (cy1-cy0)
if sum_areas / new_area > threshold:
return [(cx0, cy0, cx1, cy1)]
else:
return bboxes
def find_blocks_of_sus_substr(blocks, sus_start, h):
"""
Inputs:
blocks - list of tups (text, cum_txt_len, bbox, page_num)
sus_start - int index of occurrence of substring
h - length of sus substr
Returns (page number int, bbox tup)
"""
blocks_covered = []
for block in blocks:
text, block_start, bbox, page_num = block
block_end = block_start + len(text)
# block_start comes from len() and so is IN the block
# block_end is NOT in the block
is_left = sus_start < block_start and sus_start+h < block_start
is_right = block_end <= sus_start and block_end <= sus_start+h
if not (is_left or is_right):
blocks_covered.append(block)
return blocks_covered
def get_bboxes_by_page(sus_str, blocks1, blocks2, j1, j2, h):
"""
Inputs:
sus_str - the suspiciuos str
blocks1 - list of tups (text, cum_txt_len, bbox, page_num)
blocks in text1 where the string is located
blocks2 - list of tups (text, cum_txt_len, bbox, page_num)
blocks in text2 where the string is located
j1 - index of occurrence in text 1
j2 - index of occurrence in text 2
h - length of suspicious string
Outputs:
list of tups (sus_substr, page_a, bbox_a, page_b, bbox_b)
"""
def get_page_str_block_str(blocks, j, h):
pages = []
block_idxs = []
block_i = 0
for txt, cum, box, p in blocks:
pages += [p]*len(txt)
block_idxs += [block_i]*len(txt)
block_i += 1
# trim
pad_start = j - blocks[0][1] # How many chars until we see the sus string
pad_end = (blocks[-1][1]+len(blocks[-1][0])) - (j+h) # Extra chars at the end
if pad_end == 0: # because [-0] index works weirdly
pages = pages[pad_start:]
block_idxs = block_idxs[pad_start:]
else:
pages = pages[pad_start:-pad_end]
block_idxs = block_idxs[pad_start:-pad_end]
return pages, block_idxs
pages1, block_idxs_1 = get_page_str_block_str(blocks1, j1, h)
pages2, block_idxs_2 = get_page_str_block_str(blocks2, j2, h)
assert len(pages1) == len(pages2) # Should be same bc the common substring is same
uniq_page_blocks = {}
for i in range(len(pages1)):
page_pair = (pages1[i], pages2[i])
try:
block_1_i = blocks1[block_idxs_1[i]]
block_2_i = blocks2[block_idxs_2[i]]
uniq_page_blocks[page_pair]['blocks1'][block_1_i] = 0
uniq_page_blocks[page_pair]['blocks2'][block_2_i] = 0
uniq_page_blocks[page_pair]['str_len'] += 1
except KeyError:
uniq_page_blocks[page_pair] = {
'blocks1': {block_1_i: 0},
'blocks2': {block_2_i: 0},
'str_len': 1
}
result = []
for page_pair, block_dict in uniq_page_blocks.items():
page_a, page_b = page_pair
bbox_a = [box for txt, cum, box, p in block_dict['blocks1']]
bbox_b = [box for txt, cum, box, p in block_dict['blocks2']]
bbox_a = combine_bboxes(bbox_a)
bbox_b = combine_bboxes(bbox_b)
page_str = ''.join(txt for txt, cum, box, p in block_dict['blocks1'])
if sus_str in page_str:
result.append((sus_str, page_a, bbox_a, page_b, bbox_b))
elif page_str in sus_str:
result.append((page_str, page_a, bbox_a, page_b, bbox_b))
else:
# Try from start
from_start = page_str[:block_dict['str_len']]
from_end = page_str[-block_dict['str_len']:]
if from_start in sus_str:
result.append((from_start, page_a, bbox_a, page_b, bbox_b))
elif from_end in sus_str:
result.append((from_end, page_a, bbox_a, page_b, bbox_b))
else:
print(page_str, sus_str, block_dict['str_len'])
raise Exception('Cant get substring')
return result
def find_page_of_sus_image(pages, sus_hash):
for page_num, page_hashes in pages:
if sus_hash in page_hashes:
return page_num
return 'Page not found'
def filter_sus_pairs(suspicious_pairs):
common_text_sus_pairs = []
all_other_pairs = []
for p in suspicious_pairs:
if p['type'] == 'Common text string':
common_text_sus_pairs.append(p)
else:
all_other_pairs.append(p)
if not common_text_sus_pairs:
return suspicious_pairs
datadir = get_datadir()
with open(f'{datadir}/vectorizer.p', 'rb') as f:
vectorizer = pickle.load(f)
with open(f'{datadir}/text_clf.p', 'rb') as f:
clf = pickle.load(f)
text_strs = [p['string'] for p in common_text_sus_pairs]
X = vectorizer.transform(text_strs)
y_pred = clf.predict(X)
# Go through and identify whether text pairs are good or bad.
# Save which pages have insignificant (bad) text pairs and remember those,
# we will ignore other matches from those pages as well.
significant_text_pairs = []
bad_pages = set()
for pair, prediction in zip(common_text_sus_pairs, y_pred):
if prediction==1:
significant_text_pairs.append(pair)
else:
bad_page_1 = (pair['pages'][0]['file_index'], pair['pages'][0]['page'])
bad_page_2 = (pair['pages'][1]['file_index'], pair['pages'][1]['page'])
bad_pages.add(bad_page_1)
bad_pages.add(bad_page_2)
significant_other_pairs = []
for pair in all_other_pairs:
page1 = (pair['pages'][0]['file_index'], pair['pages'][0]['page'])
page2 = (pair['pages'][1]['file_index'], pair['pages'][1]['page'])
if page1 in bad_pages or page2 in bad_pages:
continue
else:
significant_other_pairs.append(pair)
return significant_text_pairs + significant_other_pairs
def compare_texts(data_a, data_b, text_suffix, min_len, comparison_type_name):
"""
Inputs:
data_a - data for first PDF
data_b - data for second PDF
text_suffix - suffix to determine which data field to use (text or digits)
min_len - minimum acceptable length of duplicate text
comparison_type_name - what to put in the output for "type"
"""
results = []
common_substrings = find_common_substrings(
text1=data_a[f'full_{text_suffix}'],
text2=data_b[f'full_{text_suffix}'],
min_len=min_len
)
if any(common_substrings):
for sus_str, j1, j2, h in common_substrings:
blocks_a = find_blocks_of_sus_substr(data_a[f'blocks_{text_suffix}'], j1, h)
blocks_b = find_blocks_of_sus_substr(data_b[f'blocks_{text_suffix}'], j2, h)
bboxes = get_bboxes_by_page(sus_str, blocks_a, blocks_b, j1, j2, h)
for sus_substr, page_a, bbox_a, page_b, bbox_b in bboxes:
str_preview = sus_substr
if len(str_preview) > 97:
str_preview = str_preview[:97].replace('\n', ' ')+'...'
sus_result = {
'type': comparison_type_name,
'string': sus_substr,
'string_preview': str_preview,
'length': len(sus_substr),
'pages': [
{
'file_index': data_a['file_index'],
'page': page_a,
'bbox': bbox_a,
}, {
'file_index': data_b['file_index'],
'page': page_b,
'bbox': bbox_b,
},
]
}
results.append(sus_result)
return results
#-------------------------------------------------------------------------------
# GATHERING RESULTS
#-------------------------------------------------------------------------------
def get_file_info(file_data, suspicious_pairs):
# Set of suspicious pages for filename
sus_page_sets = [set() for i in file_data]
for pair in suspicious_pairs:
pages = pair['pages']
for page in pages:
sus_page_sets[page['file_index']].add(page['page'])
file_info = []
for i, data in enumerate(file_data):
file_sus_pages = list(sus_page_sets[i])
fi = {
'filename': data['filename'],
'path_to_file': data['path_to_file'],
'n_pages': data['n_pages'],
'n_suspicious_pages': len(file_sus_pages),
'suspicious_pages': file_sus_pages,
}
file_info.append(fi)
return file_info
def get_similarity_scores(file_data, suspicious_pairs, methods_run):
METHOD_NAMES = [
('Common digit sequence', 'digits'),
('Common text string', 'text'),
('Identical image', 'images'),
]
# Reorganize the suspicious pairs so we can efficiently access when looping
reorg_sus_pairs = {}
for sus in suspicious_pairs:
file_a, file_b = [p['file_index'] for p in sus['pages']]
method = sus['type']
if file_a not in reorg_sus_pairs:
reorg_sus_pairs[file_a] = {}
if file_b not in reorg_sus_pairs[file_a]:
reorg_sus_pairs[file_a][file_b] = {}
if method not in reorg_sus_pairs[file_a][file_b]:
reorg_sus_pairs[file_a][file_b][method] = []
reorg_sus_pairs[file_a][file_b][method].append(sus)
# Only upper triangle not incl. diagonal of cross matrix
similarity_scores = {}
for a in range(len(file_data)-1):
for b in range(a+1, len(file_data)):
if a not in similarity_scores:
similarity_scores[a] = {}
if b not in similarity_scores[a]:
similarity_scores[a][b] = {}
for method_long, method_short in METHOD_NAMES:
if method_short in methods_run:
try:
suspairs = reorg_sus_pairs[a][b].get(method_long, [])
except KeyError:
suspairs = []
if method_long == 'Common digit sequence':
intersect = sum(s['length'] for s in suspairs)
a_clean = file_data[a]['full_digits']
b_clean = file_data[b]['full_digits']
union = len(a_clean) + len(b_clean) - intersect
elif method_long == 'Common text string':
intersect = sum(s['length'] for s in suspairs)
a_clean = file_data[a]['full_text']
b_clean = file_data[b]['full_text']
union = len(a_clean) + len(b_clean) - intersect
elif method_long == 'Identical image':
intersect = len(suspairs)
union = (len(file_data[a]['image_hashes']) +
len(file_data[b]['image_hashes']) - intersect)
if union == 0:
jaccard = 'Undefined'
else:
jaccard = intersect / union
similarity_scores[a][b][method_long] = jaccard
else:
similarity_scores[a][b][method_long] = 'Not run'
return similarity_scores
def get_version():
# repo = Repo()
# ver = repo.git.describe('--always')
# currdir = os.path.dirname(os.path.realpath(__file__))
# ver = subprocess.check_output(["git", "describe", "--always"], cwd=currdir).strip()
# return ver.decode("utf-8")
return VERSION
#-------------------------------------------------------------------------------
# MAIN
#-------------------------------------------------------------------------------
def main(filenames, methods, pretty_print, verbose=False, regen_cache=False):
t0 = time.time()
assert len(filenames) >= 2, 'Must have at least 2 files to compare!'
if not methods:
if verbose: print('Methods not specified, using default (all).')
methods = ['digits', 'images', 'text']
if verbose: print('Using methods:', ', '.join(methods))
suspicious_pairs = []
if verbose: print('Reading files...')
file_data = get_file_data(filenames, regen_cache)
for i in range(len(filenames)-1):
for j in range(i+1, len(filenames)):
# i always less than j
a = file_data[i]
b = file_data[j]
# Compare numbers
if 'digits' in methods:
if verbose: print('Comparing digits...')
digit_results = compare_texts(
data_a=a,
data_b=b,
text_suffix='digits',
min_len=30,
comparison_type_name='Common digit sequence'
)
suspicious_pairs.extend(digit_results)
# Compare texts
if 'text' in methods:
if verbose: print('Comparing texts...')
text_results = compare_texts(
data_a=a,
data_b=b,
text_suffix='text',
min_len=280,
comparison_type_name='Common text string'
)
suspicious_pairs.extend(text_results)
# Compare images
if 'images' in methods:
if verbose: print('Comparing images...')
identical_images = compare_images(
a['image_hashes'],
b['image_hashes'],
)
any_images_are_sus = len(identical_images) > 0
if any_images_are_sus:
for img_hash, info_a, info_b in identical_images:
bbox_a, sus_page_a = info_a
bbox_b, sus_page_b = info_b
sus_result = {
'type': 'Identical image',
'image_hash': img_hash,
'pages': [
{
'file_index': a['file_index'],
'page': sus_page_a,
'bbox': [bbox_a],
}, {
'file_index': b['file_index'],
'page': sus_page_b,
'bbox': [bbox_b],
},
]
}
suspicious_pairs.append(sus_result)
# Remove duplicate suspicious pairs (this might happen if a page has
# multiple common substrings with another page)
if verbose: print('Removing duplicate sus pairs...')
suspicious_pairs = list_of_unique_dicts(suspicious_pairs)
# Filter out irrelevant sus pairs
if verbose: print('Removing irrelevant pairs...')
suspicious_pairs = filter_sus_pairs(suspicious_pairs)
# Calculate some more things for the final output
if verbose: print('Gathering output...')
if verbose: print('\tGet file info...')
file_info = get_file_info(file_data, suspicious_pairs)
if verbose: print('\tGet total pages...')
total_page_pairs = sum(f['n_pages'] for f in file_info)
if verbose: print('\tGet similarity score...')
similarity_scores = get_similarity_scores(file_data, suspicious_pairs, methods)
if verbose: print('\tGet version...')
version = get_version()
if verbose: print('\tResults gathered.')
dt = time.time() - t0
if dt == 0:
pages_per_second = -1
else:
pages_per_second = total_page_pairs/dt
result = {
'files': file_info,
'suspicious_pairs': suspicious_pairs,
'num_suspicious_pairs': len(suspicious_pairs),
'elapsed_time_sec': dt,
'pages_per_second': pages_per_second,
'similarity_scores': similarity_scores,
'version': version,
'time': datetime.datetime.now().strftime("%Y-%m-%dT%H:%M:%SZ")
}
if pretty_print:
print(json.dumps(result, indent=2), file=sys.stdout)
else:
print(json.dumps(result), file=sys.stdout)
return
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument(
'-f',
'--filenames',
help='PDF filenames to compare',
nargs='+',
)
parser.add_argument(
'-m',
'--methods',
help='Which of the three comparison methods to use: text, digits, images',
nargs='+',
)
parser.add_argument(
'-p',
'--pretty_print',
help='Pretty print output',
action='store_true'
)
parser.add_argument(
'-c',
'--regen_cache',
help='Ignore and overwrite cached data',
action='store_true'
)
parser.add_argument(
'-v',
'--verbose',
help='Print things while running',
action='store_true'
)
parser.add_argument(
'--version',
help='Print version',
action='store_true'
)
args = parser.parse_args()
if args.version:
print(VERSION)
else:
main(
filenames=args.filenames,
methods=args.methods,
pretty_print=args.pretty_print,
verbose=args.verbose,
regen_cache=args.regen_cache
)
# Within-file tests:
# - Benford's Law
# for file in filenames:
# a = file_data[file.split('/')[-1]]
# for page_num, page_text in a['page_texts']:
# paragraphs = re.split(r'[ \n]{4,}', page_text)
# for paragraph in paragraphs:
# p = benford_test(paragraph)
# if p < 0.05:
# sus_result = {
# 'type': 'Failed Benford Test',
# 'p_value': p,
# 'pages': [
# {'filename': a['filename'], 'page': page_num},
# {'filename': a['filename'], 'page': page_num},
# ]
# }
|
[
"numpy.maximum",
"argparse.ArgumentParser",
"json.dumps",
"numpy.argsort",
"pathlib.Path",
"pickle.load",
"os.path.exists",
"datetime.datetime.now",
"json.dump",
"numpy.minimum",
"os.path.realpath",
"fitz.open",
"pydivsufsort.kasai",
"json.load",
"warnings.filterwarnings",
"time.time",
"fitz.TOOLS.mupdf_display_errors",
"numpy.array",
"pydivsufsort.divsufsort"
] |
[((566, 604), 'fitz.TOOLS.mupdf_display_errors', 'fitz.TOOLS.mupdf_display_errors', (['(False)'], {}), '(False)\n', (597, 604), False, 'import fitz\n'), ((623, 656), 'warnings.filterwarnings', 'warnings.filterwarnings', (['"""ignore"""'], {}), "('ignore')\n", (646, 656), False, 'import warnings\n'), ((2506, 2531), 'pydivsufsort.divsufsort', 'divsufsort', (['text_combined'], {}), '(text_combined)\n', (2516, 2531), False, 'from pydivsufsort import divsufsort, kasai\n'), ((2543, 2567), 'pydivsufsort.kasai', 'kasai', (['text_combined', 'sa'], {}), '(text_combined, sa)\n', (2548, 2567), False, 'from pydivsufsort import divsufsort, kasai\n'), ((2600, 2618), 'numpy.array', 'np.array', (['lcp[:-1]'], {}), '(lcp[:-1])\n', (2608, 2618), True, 'import numpy as np\n'), ((2699, 2716), 'numpy.array', 'np.array', (['sa[:-1]'], {}), '(sa[:-1])\n', (2707, 2716), True, 'import numpy as np\n'), ((2728, 2744), 'numpy.array', 'np.array', (['sa[1:]'], {}), '(sa[1:])\n', (2736, 2744), True, 'import numpy as np\n'), ((2758, 2778), 'numpy.minimum', 'np.minimum', (['j1s', 'j2s'], {}), '(j1s, j2s)\n', (2768, 2778), True, 'import numpy as np\n'), ((2792, 2812), 'numpy.maximum', 'np.maximum', (['j1s', 'j2s'], {}), '(j1s, j2s)\n', (2802, 2812), True, 'import numpy as np\n'), ((3216, 3233), 'numpy.argsort', 'np.argsort', (['(-my_h)'], {}), '(-my_h)\n', (3226, 3233), True, 'import numpy as np\n'), ((24901, 24912), 'time.time', 'time.time', ([], {}), '()\n', (24910, 24912), False, 'import time\n'), ((29448, 29473), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (29471, 29473), False, 'import argparse\n'), ((1011, 1037), 'os.path.realpath', 'os.path.realpath', (['__file__'], {}), '(__file__)\n', (1027, 1037), False, 'import os\n'), ((4866, 4885), 'fitz.open', 'fitz.open', (['filename'], {}), '(filename)\n', (4875, 4885), False, 'import fitz\n'), ((5482, 5501), 'fitz.open', 'fitz.open', (['filename'], {}), '(filename)\n', (5491, 5501), False, 'import fitz\n'), ((17376, 17390), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (17387, 17390), False, 'import pickle\n'), ((17458, 17472), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (17469, 17472), False, 'import pickle\n'), ((28728, 28739), 'time.time', 'time.time', ([], {}), '()\n', (28737, 28739), False, 'import time\n'), ((1060, 1073), 'pathlib.Path', 'Path', (['currdir'], {}), '(currdir)\n', (1064, 1073), False, 'from pathlib import Path\n'), ((29278, 29306), 'json.dumps', 'json.dumps', (['result'], {'indent': '(2)'}), '(result, indent=2)\n', (29288, 29306), False, 'import json\n'), ((29351, 29369), 'json.dumps', 'json.dumps', (['result'], {}), '(result)\n', (29361, 29369), False, 'import json\n'), ((7517, 7548), 'os.path.exists', 'os.path.exists', (['cached_filename'], {}), '(cached_filename)\n', (7531, 7548), False, 'import os\n'), ((8282, 8367), 'json.dump', 'json.dump', (["{'version': VERSION, 'data': [blocks_text, image_hashes, n_pages]}", 'f'], {}), "({'version': VERSION, 'data': [blocks_text, image_hashes, n_pages]}, f\n )\n", (8291, 8367), False, 'import json\n'), ((29177, 29200), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (29198, 29200), False, 'import datetime\n'), ((1266, 1295), 'json.dumps', 'json.dumps', (['v'], {'sort_keys': '(True)'}), '(v, sort_keys=True)\n', (1276, 1295), False, 'import json\n'), ((7656, 7668), 'json.load', 'json.load', (['f'], {}), '(f)\n', (7665, 7668), False, 'import json\n')]
|
# encoding: utf-8
import numpy as np
from scipy.special import expit
from keras.datasets import mnist
from keras.utils import to_categorical
np.random.seed(7)
inputs_units = 784
hidden_units = 256
output_units = 10
class MlpNumpy(object):
def __init__(self):
self.__hidden_weight = np.random.randn(hidden_units, inputs_units)
self.__output_weight = np.random.randn(output_units, hidden_units)
def forward(self, images_x):
hidden_z = np.dot(self.__hidden_weight, images_x)
hidden_a = expit(hidden_z)
output_z = np.dot(self.__output_weight, hidden_a)
output_a = expit(output_z)
print(output_a)
return hidden_z, hidden_a, output_z, output_a
def backward(self, images_x, labels_y):
"""
:param images_x: (inputs_units, batch_size)
:param labels_y:
:return:
"""
# hidden_z, hidden_a (hidden_units, batch_size)
# output_z, output_a (output_units, batch_size)
hidden_z, hidden_a, output_z, output_a = self.forward(images_x)
print("loss: {:.5f}".format(np.square(labels_y - output_a).mean().sum()))
# delta_output (output_units, batch_size)
delta_output = - (labels_y - output_a) * expit(output_z) * (1 - expit(output_z))
# gradi_output_weight (output_units, hidden_units)
gradi_output_weight = np.dot(delta_output, hidden_a.T)
# hidden layer
# delta_hidden (hidden_units, batch_size)
delta_hidden = expit(hidden_z) * (1 - expit(hidden_z)) * np.dot(self.__output_weight.T, delta_output)
# gradi_output_weight (hidden_units, inputs_units)
gradi_hidden_weight = np.dot(delta_hidden, images_x.T)
return gradi_output_weight, gradi_hidden_weight
def train(self, epochs):
(images_x, labels_y), (_, _) = mnist.load_data()
images_x = images_x.reshape(784, -1)
images_x = images_x.astype(np.float32)
images_x = images_x / 255
labels_y = to_categorical(labels_y, 10)
labels_y = labels_y.reshape(10, -1)
images_x = images_x[:, :256]
labels_y = labels_y[:, :256]
for _ in range(epochs):
gradi_output_weight, gradi_hidden_weight = self.backward(images_x, labels_y)
self.__output_weight -= 1e-2 * gradi_output_weight
self.__hidden_weight -= 1e-2 * gradi_hidden_weight
if __name__ == "__main__":
mn = MlpNumpy()
mn.train(epochs=1000)
|
[
"numpy.random.seed",
"numpy.random.randn",
"keras.datasets.mnist.load_data",
"numpy.square",
"scipy.special.expit",
"numpy.dot",
"keras.utils.to_categorical"
] |
[((142, 159), 'numpy.random.seed', 'np.random.seed', (['(7)'], {}), '(7)\n', (156, 159), True, 'import numpy as np\n'), ((298, 341), 'numpy.random.randn', 'np.random.randn', (['hidden_units', 'inputs_units'], {}), '(hidden_units, inputs_units)\n', (313, 341), True, 'import numpy as np\n'), ((373, 416), 'numpy.random.randn', 'np.random.randn', (['output_units', 'hidden_units'], {}), '(output_units, hidden_units)\n', (388, 416), True, 'import numpy as np\n'), ((470, 508), 'numpy.dot', 'np.dot', (['self.__hidden_weight', 'images_x'], {}), '(self.__hidden_weight, images_x)\n', (476, 508), True, 'import numpy as np\n'), ((528, 543), 'scipy.special.expit', 'expit', (['hidden_z'], {}), '(hidden_z)\n', (533, 543), False, 'from scipy.special import expit\n'), ((563, 601), 'numpy.dot', 'np.dot', (['self.__output_weight', 'hidden_a'], {}), '(self.__output_weight, hidden_a)\n', (569, 601), True, 'import numpy as np\n'), ((621, 636), 'scipy.special.expit', 'expit', (['output_z'], {}), '(output_z)\n', (626, 636), False, 'from scipy.special import expit\n'), ((1375, 1407), 'numpy.dot', 'np.dot', (['delta_output', 'hidden_a.T'], {}), '(delta_output, hidden_a.T)\n', (1381, 1407), True, 'import numpy as np\n'), ((1681, 1713), 'numpy.dot', 'np.dot', (['delta_hidden', 'images_x.T'], {}), '(delta_hidden, images_x.T)\n', (1687, 1713), True, 'import numpy as np\n'), ((1840, 1857), 'keras.datasets.mnist.load_data', 'mnist.load_data', ([], {}), '()\n', (1855, 1857), False, 'from keras.datasets import mnist\n'), ((2005, 2033), 'keras.utils.to_categorical', 'to_categorical', (['labels_y', '(10)'], {}), '(labels_y, 10)\n', (2019, 2033), False, 'from keras.utils import to_categorical\n'), ((1547, 1591), 'numpy.dot', 'np.dot', (['self.__output_weight.T', 'delta_output'], {}), '(self.__output_weight.T, delta_output)\n', (1553, 1591), True, 'import numpy as np\n'), ((1246, 1261), 'scipy.special.expit', 'expit', (['output_z'], {}), '(output_z)\n', (1251, 1261), False, 'from scipy.special import expit\n'), ((1269, 1284), 'scipy.special.expit', 'expit', (['output_z'], {}), '(output_z)\n', (1274, 1284), False, 'from scipy.special import expit\n'), ((1505, 1520), 'scipy.special.expit', 'expit', (['hidden_z'], {}), '(hidden_z)\n', (1510, 1520), False, 'from scipy.special import expit\n'), ((1528, 1543), 'scipy.special.expit', 'expit', (['hidden_z'], {}), '(hidden_z)\n', (1533, 1543), False, 'from scipy.special import expit\n'), ((1100, 1130), 'numpy.square', 'np.square', (['(labels_y - output_a)'], {}), '(labels_y - output_a)\n', (1109, 1130), True, 'import numpy as np\n')]
|
import numpy as np
from flow.core import rewards
from flow.core.util import calculate_human_rl_timesteps_spent_in_simulation
from flow.envs import BottleneckEnv
from flow.envs.multiagent import MultiEnv
from gym.spaces import Box
MAX_LANES = 4 # base number of largest number of lanes in the network
EDGE_LIST = ["1", "2", "3", "4", "5"] # Edge 1 is before the toll booth
EDGE_BEFORE_TOLL = "1" # Specifies which edge number is before toll booth
TB_TL_ID = "2"
EDGE_AFTER_TOLL = "2" # Specifies which edge number is after toll booth
NUM_TOLL_LANES = MAX_LANES
TOLL_BOOTH_AREA = 10 # how far into the edge lane changing is disabled
RED_LIGHT_DIST = 50 # how close for the ramp meter to start going off
EDGE_BEFORE_RAMP_METER = "2" # Specifies which edge is before ramp meter
EDGE_AFTER_RAMP_METER = "3" # Specifies which edge is after ramp meter
NUM_RAMP_METERS = MAX_LANES
RAMP_METER_AREA = 80 # Area occupied by ramp meter
MEAN_NUM_SECONDS_WAIT_AT_FAST_TRACK = 3 # Average waiting time at fast track
MEAN_NUM_SECONDS_WAIT_AT_TOLL = 15 # Average waiting time at toll
BOTTLE_NECK_LEN = 280 # Length of bottleneck
NUM_VEHICLE_NORM = 20
# Keys for RL experiments
ADDITIONAL_RL_ENV_PARAMS = {
# velocity to use in reward functions
"target_velocity": 30,
}
class BottleneckMultiAgentEnv(MultiEnv, BottleneckEnv):
"""BottleneckMultiAgentEnv.
Environment used to train vehicles to effectively pass through a
bottleneck.
States
An observation is the edge position, speed, lane, and edge number of
the AV, the distance to and velocity of the vehicles
in front and behind the AV for all lanes.
Actions
The action space 1 value for acceleration and 1 for lane changing
Rewards
The reward is the average speed of the edge the agent is currently in combined with the speed of
the agent. With some discount for lane changing.
Termination
A rollout is terminated once the time horizon is reached.
"""
def __init__(self, env_params, sim_params, network, simulator='traci'):
"""Initialize BottleneckMultiAgentEnv."""
for p in ADDITIONAL_RL_ENV_PARAMS.keys():
if p not in env_params.additional_params:
raise KeyError(
'Environment parameter "{}" not supplied'.format(p))
super().__init__(env_params, sim_params, network, simulator)
self.max_speed = self.k.network.max_speed()
@property
def observation_space(self):
"""See class definition."""
num_obs = 4 * MAX_LANES * self.scaling + 4
return Box(low=0, high=1, shape=(num_obs,), dtype=np.float32)
def get_state(self):
"""See class definition."""
obs = {}
headway_scale = 1000
for rl_id in self.k.vehicle.get_rl_ids():
# Get own normalized x location, speed, lane and edge
edge_num = self.k.vehicle.get_edge(rl_id)
if edge_num is None or edge_num == '' or edge_num[0] == ':':
edge_num = -1
else:
edge_num = int(edge_num) / 6
self_observation = [
self.k.vehicle.get_x_by_id(rl_id) / 1000,
(self.k.vehicle.get_speed(rl_id) / self.max_speed),
(self.k.vehicle.get_lane(rl_id) / MAX_LANES),
edge_num
]
# Get relative normalized ...
num_lanes = MAX_LANES * self.scaling
headway = np.asarray([1000] * num_lanes) / headway_scale
tailway = np.asarray([1000] * num_lanes) / headway_scale
vel_in_front = np.asarray([0] * num_lanes) / self.max_speed
vel_behind = np.asarray([0] * num_lanes) / self.max_speed
lane_leaders = self.k.vehicle.get_lane_leaders(rl_id)
lane_followers = self.k.vehicle.get_lane_followers(rl_id)
lane_headways = self.k.vehicle.get_lane_headways(rl_id)
lane_tailways = self.k.vehicle.get_lane_tailways(rl_id)
headway[0:len(lane_headways)] = (
np.asarray(lane_headways) / headway_scale)
tailway[0:len(lane_tailways)] = (
np.asarray(lane_tailways) / headway_scale)
for i, lane_leader in enumerate(lane_leaders):
if lane_leader != '':
vel_in_front[i] = (self.k.vehicle.get_speed(lane_leader) / self.max_speed)
for i, lane_follower in enumerate(lane_followers):
if lane_followers != '':
vel_behind[i] = (self.k.vehicle.get_speed(lane_follower) / self.max_speed)
relative_observation = np.concatenate((headway, tailway, vel_in_front, vel_behind))
obs.update({rl_id: np.concatenate((self_observation, relative_observation))})
return obs
def compute_reward(self, rl_actions, **kwargs):
return_rewards = {}
# in the warmup steps, rl_actions is None
if rl_actions:
# for rl_id, actions in rl_actions.items():
for rl_id in self.k.vehicle.get_rl_ids():
reward = 0
# If there is a collision all agents get no reward
if not kwargs['fail']:
# Reward desired velocity in own edge
edge_num = self.k.vehicle.get_edge(rl_id)
reward += rewards.desired_velocity(self, fail=kwargs['fail'], edge_list=[edge_num],
use_only_rl_ids=True)
# Punish own lane changing
if rl_id in rl_actions:
reward -= abs(rl_actions[rl_id][1])
return_rewards[rl_id] = reward
return return_rewards
@property
def action_space(self):
"""
:return: A box defining the size and bounds of the output layer of the network used for rl learning
"""
max_decel = self.env_params.additional_params["max_decel"]
max_accel = self.env_params.additional_params["max_accel"]
lb = [-abs(max_decel), -1] # * self.num_rl
ub = [max_accel, 1] # * self.num_rl
return Box(np.array(lb), np.array(ub), dtype=np.float32)
def _apply_rl_actions(self, rl_actions):
"""
This function applies the actions the every reinforcement agent in the simulation
:param rl_actions: The output of the PPO network based on the last steps observation per agent
"""
rl_ids = self.k.vehicle.get_rl_ids()
if rl_actions: # in the warmup steps, rl_actions is None
for rl_id, actions in rl_actions.items():
if rl_id not in rl_ids:
continue
self.k.vehicle.apply_acceleration(rl_id, actions[0])
if self.time_counter <= self.env_params.additional_params['lane_change_duration'] \
+ self.k.vehicle.get_last_lc(rl_id):
self.k.vehicle.apply_lane_change(str(rl_id), round(actions[1]))
class BottleneckMultiAgentEnvFinal(BottleneckMultiAgentEnv):
@property
def observation_space(self):
"""See class definition."""
lb = [0] * 4 + [-1] * 18
ub = [1] * 4 + [1] * 18
return Box(np.array(lb), np.array(ub), dtype=np.float32)
def get_state(self):
"""See class definition."""
obs = {}
headway_scale = 1000
rl_ids = self.k.vehicle.get_rl_ids()
for rl_id in rl_ids:
# Get own normalized x location, speed, lane and edge
edge_num = self.k.vehicle.get_edge(rl_id)
if edge_num is None or edge_num == '' or edge_num[0] == ':':
edge_num = -1
else:
edge_num = int(edge_num) / 6
self_lane = self.k.vehicle.get_lane(rl_id)
# Some SUMO versions sometimes return a wrong lane id
if self_lane > MAX_LANES or self_lane < 0:
print("SUMO returned bad lane id")
self_lane = 0
self_observation = [
self.k.vehicle.get_x_by_id(rl_id) / 1000,
(self.k.vehicle.get_speed(rl_id) / self.max_speed),
(self_lane / MAX_LANES),
edge_num
]
# First normalize the features for all lanes
lane_headways = np.array(self.k.vehicle.get_lane_headways(rl_id)) / headway_scale
lane_tailways = np.array(self.k.vehicle.get_lane_tailways(rl_id)) / headway_scale
vel_in_front = np.array(self.k.vehicle.get_lane_leaders_speed(rl_id)) / self.max_speed
vel_behind = np.array(self.k.vehicle.get_lane_followers_speed(rl_id)) / self.max_speed
type_of_vehicles_in_front = np.array([.5 if car_id in rl_ids else 1.
for car_id in self.k.vehicle.get_lane_leaders(rl_id)])
type_of_vehicles_behind = np.array([.5 if car_id in rl_ids else 1.
for car_id in self.k.vehicle.get_lane_followers(rl_id)])
# Pad the normalized features with -1s
lane_headways = np.concatenate(([-1], lane_headways, [-1]))
lane_tailways = np.concatenate(([-1], lane_tailways, [-1]))
vel_in_front = np.concatenate(([-1], vel_in_front, [-1]))
vel_behind = np.concatenate(([-1], vel_behind, [-1]))
type_of_vehicles_in_front = np.concatenate(([-1], type_of_vehicles_in_front, [-1]))
type_of_vehicles_behind = np.concatenate(([-1], type_of_vehicles_behind, [-1]))
# Selecting the three closest lanes
self_lane += 1 # Because we padded the lanes with 0s
lane_headways = lane_headways[self_lane - 1:self_lane + 2]
lane_tailways = lane_tailways[self_lane - 1:self_lane + 2]
vel_in_front = vel_in_front[self_lane - 1:self_lane + 2]
vel_behind = vel_behind[self_lane - 1:self_lane + 2]
type_of_vehicles_in_front = type_of_vehicles_in_front[self_lane - 1:self_lane + 2]
type_of_vehicles_behind = type_of_vehicles_behind[self_lane - 1:self_lane + 2]
relative_observation = np.concatenate((lane_headways, lane_tailways, vel_in_front, vel_behind,
type_of_vehicles_in_front, type_of_vehicles_behind))
obs.update({rl_id: np.concatenate((self_observation, relative_observation))})
obs.update({rl_id: np.array([0] * 22) for rl_id in self.k.vehicle.get_arrived_rl_ids()})
return obs
def compute_evaluation_reward(self):
if self.time_counter == self.env_params.horizon:
outflow_all = self.k.vehicle.get_outflow_rate(500)
outflow_rl = self.k.vehicle.get_rl_outflow_rate(500)
outflow_human = outflow_all - outflow_rl
# average timesteps spent in simulation
rl_times, human_times = calculate_human_rl_timesteps_spent_in_simulation(self.k.vehicle._departed_ids,
self.k.vehicle._arrived_ids)
with open("result", "a") as f:
f.write("{} + {} = {} {:.2f}% {:.2f} {:.2f}\n".format(outflow_rl, outflow_human, outflow_all,
outflow_rl / outflow_all * 100,
np.mean(rl_times),
np.mean(human_times)))
return {rl_id: outflow_rl / outflow_all for rl_id in self.k.vehicle.get_rl_ids()}
else:
return {rl_id: 0 for rl_id in self.k.vehicle.get_rl_ids()}
def compute_reward(self, rl_actions, **kwargs):
"""
:param rl_actions: The output of the PPO network based on the last steps observation per agent
:param kwargs: Can contain fail, to indicate that a crash happened
:return: The individual reward for every agent
"""
rl_agent_rewards = {}
rl_ids = self.k.vehicle.get_rl_ids()
if rl_actions and rl_ids:
# Some reward function based on the speed of the recently arrived AVs - constant punishment for time
new_reward = (self.k.vehicle.get_new_reward() / len(rl_ids)) - 0.006
# More punishment for the amount if AVs in the simulation
new_reward -= 0.003 * len(rl_ids)
rl_agent_rewards = {rl_id: new_reward for rl_id in rl_ids}
# Colliders get punished
if kwargs['fail']:
for collider_id in self.k.vehicle.get_collided_ids():
if collider_id in rl_agent_rewards:
rl_agent_rewards[collider_id] -= 10
# Reward agent that made it to the exit
arrived_rl_ids = self.k.vehicle.get_arrived_rl_ids()
if arrived_rl_ids:
for arrived_agent_id, time in zip(arrived_rl_ids, self.k.vehicle.timed_rl_arrived[-1]):
rl_agent_rewards[arrived_agent_id] = 200 / time
if self.env_params.evaluate:
return self.compute_evaluation_reward()
return rl_agent_rewards
class BottleneckThijsMultiAgentEnv(BottleneckMultiAgentEnvFinal):
""" For backwards compatibility """
pass
class BottleneckMultiAgentEnvOld(BottleneckMultiAgentEnv):
"""BottleneckMultiAgentEnv.
Environment used to train vehicles to effectively pass through a
bottleneck.
States
An observation is the edge position, speed, lane, and edge number of
the AV, the distance to and velocity of the vehicles
in front and behind the AV for all lanes.
Actions
The action space 1 value for acceleration and 1 for lane changing
Rewards
The reward is the average speed of the edge the agent is currently in combined with the speed of
the agent. With some discount for lane changing.
Termination
A rollout is terminated once the time horizon is reached.
"""
def __init__(self, env_params, sim_params, network, simulator='traci'):
super().__init__(env_params, sim_params, network, simulator)
self.nr_self_perc_features = 3 # Nr of features an rl car perceives from itself
self.perc_lanes_around = 1 # Nr of lanes the car perceives around its own lane
self.features_per_car = 3 # Nr of features the rl car observes per other car
@property
def observation_space(self):
"""Returns size of input tensor passed to RL network. 2 = headway + tailway // left + right"""
perceived_lanes = 2 * self.perc_lanes_around + 1 # 2*sides + own lane
perceived_cars = 2 * perceived_lanes # front + back
perceived_features_others = perceived_cars * self.features_per_car # nr of cars * (nr of features/other car)
total_features = perceived_features_others + self.nr_self_perc_features
return Box(low=-2000, high=2000, shape=(total_features,), dtype=np.float32)
def get_label(self, veh_id):
if 'rl' in veh_id:
return 2.
elif 'human' in veh_id or 'flow' in veh_id:
return 1.
return 0.
def get_state(self):
"""Returns state representation per RL vehicle."""
obs = {}
for veh_id in self.k.vehicle.get_rl_ids():
edge = self.k.vehicle.get_edge(veh_id)
lane = self.k.vehicle.get_lane(veh_id)
veh_x_pos = self.k.vehicle.get_x_by_id(veh_id)
# Infos the car stores about itself:
self_representation = [veh_x_pos, # Car's current x-position along the road
self.k.vehicle.get_speed(veh_id), # Car's current speed
self.k.network.speed_limit(edge)] # How fast car may drive (reference value)
others_representation = [] # Representation of surrounding vehicles
### Headway ###
# Returned ids sorted by lane index
leading_cars_ids = self.k.vehicle.get_lane_leaders(veh_id)
leading_cars_dist = [self.k.vehicle.get_x_by_id(lead_id) - veh_x_pos for lead_id in leading_cars_ids]
leading_cars_labels = [self.get_label(leading_id) for leading_id in leading_cars_ids]
leading_cars_speed = self.k.vehicle.get_speed(leading_cars_ids, error=float(self.k.network.max_speed()))
leading_cars_lanes = self.k.vehicle.get_lane(leading_cars_ids)
# Sorted increasingly by lane from 0 to nr of lanes
headway_cars_map = list(zip(leading_cars_lanes,
leading_cars_labels,
leading_cars_dist,
leading_cars_speed))
for l in range(lane-self.perc_lanes_around, lane+self.perc_lanes_around+1): # Interval +/- 1 around rl car's lane
if 0 <= l < self.k.network.num_lanes(edge):
# Valid lane value (=lane value inside set of existing lanes)
if headway_cars_map[l][0] == l:
# There is a car on this lane in front since lane-value in map is not equal to error-code
others_representation.extend(headway_cars_map[l][1:]) # Add [idX, distX, speedX]
else:
# There is no car in respective lane in front of rl car since lane-value == error-code
others_representation.extend([0., 1000, float(self.k.network.max_speed())])
else:
# Lane to left/right does not exist. Pad values with -1.'s
others_representation.extend([-1.] * self.features_per_car)
### Tailway ###
# Sorted by lane index if not mistaken...
following_cars_ids = self.k.vehicle.get_lane_followers(veh_id)
following_cars_dist = [self.k.vehicle.get_x_by_id(follow_id) - veh_x_pos if not follow_id == ''
else -1000 for follow_id in following_cars_ids]
following_cars_labels = [self.get_label(following_id) for following_id in following_cars_ids]
following_cars_speed = self.k.vehicle.get_speed(following_cars_ids, error=0)
following_cars_lanes = self.k.vehicle.get_lane(following_cars_ids, error=-1001)
tailway_cars_map = list(zip(following_cars_lanes,
following_cars_labels,
following_cars_dist,
following_cars_speed))
for l in range(lane-self.perc_lanes_around, lane+self.perc_lanes_around+1): # Interval +/- 1 around rl car's lane
if 0 <= l < self.k.network.num_lanes(edge):
# Valid lane value (=lane value inside set of existing lanes)
if tailway_cars_map[l][0] == l:
# There is a car on this lane behind since lane-value in map is not equal to error-code
others_representation.extend(tailway_cars_map[l][1:]) # Add [idX, distX, speedX]
else:
# There is no car in respective lane behind rl car since lane-value == error-code
others_representation.extend([0., -1000, 0])
else:
# Lane to left/right does not exist. Pad values with -1.'s
others_representation.extend([-1.] * self.features_per_car)
# Merge two lists (self-representation & representation of surrounding lanes/cars) and transform to array
self_representation.extend(others_representation)
observation_arr = np.asarray(self_representation, dtype=float)
obs[veh_id] = observation_arr # Assign representation about self and surrounding cars to car's observation
return obs
def compute_reward(self, rl_actions, **kwargs):
"""
:param rl_actions: The output of the PPO network based on the last steps observation per agent
:param kwargs: Can contain fail, to indicate that a crash happened
:return: The individual reward for every agent
"""
# if a crash occurred everybody gets 0
if kwargs['fail']:
return {rl_id: 0 for rl_id in self.k.vehicle.get_rl_ids()}
# Average outflow over last 10 steps, divided 2000 * scaling.
# TODO: NEXT: try own reward computation
outflow_reward = 2/3 * self.k.vehicle.get_rl_outflow_rate(10 * self.sim_step) / (2000.0 * self.scaling)
rl_agent_rewards = {}
if rl_actions:
for rl_id in self.k.vehicle.get_rl_ids():
# Reward desired velocity in own edge + the total outflow
edge_num = self.k.vehicle.get_edge(rl_id)
rl_agent_rewards[rl_id] = 1/3 * rewards.desired_velocity(self, edge_list=[edge_num],
use_only_rl_ids=True) + outflow_reward
return rl_agent_rewards
|
[
"flow.core.rewards.desired_velocity",
"numpy.asarray",
"flow.core.util.calculate_human_rl_timesteps_spent_in_simulation",
"numpy.mean",
"numpy.array",
"gym.spaces.Box",
"numpy.concatenate"
] |
[((2644, 2698), 'gym.spaces.Box', 'Box', ([], {'low': '(0)', 'high': '(1)', 'shape': '(num_obs,)', 'dtype': 'np.float32'}), '(low=0, high=1, shape=(num_obs,), dtype=np.float32)\n', (2647, 2698), False, 'from gym.spaces import Box\n'), ((15147, 15215), 'gym.spaces.Box', 'Box', ([], {'low': '(-2000)', 'high': '(2000)', 'shape': '(total_features,)', 'dtype': 'np.float32'}), '(low=-2000, high=2000, shape=(total_features,), dtype=np.float32)\n', (15150, 15215), False, 'from gym.spaces import Box\n'), ((4696, 4756), 'numpy.concatenate', 'np.concatenate', (['(headway, tailway, vel_in_front, vel_behind)'], {}), '((headway, tailway, vel_in_front, vel_behind))\n', (4710, 4756), True, 'import numpy as np\n'), ((6224, 6236), 'numpy.array', 'np.array', (['lb'], {}), '(lb)\n', (6232, 6236), True, 'import numpy as np\n'), ((6238, 6250), 'numpy.array', 'np.array', (['ub'], {}), '(ub)\n', (6246, 6250), True, 'import numpy as np\n'), ((7315, 7327), 'numpy.array', 'np.array', (['lb'], {}), '(lb)\n', (7323, 7327), True, 'import numpy as np\n'), ((7329, 7341), 'numpy.array', 'np.array', (['ub'], {}), '(ub)\n', (7337, 7341), True, 'import numpy as np\n'), ((9224, 9267), 'numpy.concatenate', 'np.concatenate', (['([-1], lane_headways, [-1])'], {}), '(([-1], lane_headways, [-1]))\n', (9238, 9267), True, 'import numpy as np\n'), ((9296, 9339), 'numpy.concatenate', 'np.concatenate', (['([-1], lane_tailways, [-1])'], {}), '(([-1], lane_tailways, [-1]))\n', (9310, 9339), True, 'import numpy as np\n'), ((9367, 9409), 'numpy.concatenate', 'np.concatenate', (['([-1], vel_in_front, [-1])'], {}), '(([-1], vel_in_front, [-1]))\n', (9381, 9409), True, 'import numpy as np\n'), ((9435, 9475), 'numpy.concatenate', 'np.concatenate', (['([-1], vel_behind, [-1])'], {}), '(([-1], vel_behind, [-1]))\n', (9449, 9475), True, 'import numpy as np\n'), ((9516, 9571), 'numpy.concatenate', 'np.concatenate', (['([-1], type_of_vehicles_in_front, [-1])'], {}), '(([-1], type_of_vehicles_in_front, [-1]))\n', (9530, 9571), True, 'import numpy as np\n'), ((9610, 9663), 'numpy.concatenate', 'np.concatenate', (['([-1], type_of_vehicles_behind, [-1])'], {}), '(([-1], type_of_vehicles_behind, [-1]))\n', (9624, 9663), True, 'import numpy as np\n'), ((10277, 10405), 'numpy.concatenate', 'np.concatenate', (['(lane_headways, lane_tailways, vel_in_front, vel_behind,\n type_of_vehicles_in_front, type_of_vehicles_behind)'], {}), '((lane_headways, lane_tailways, vel_in_front, vel_behind,\n type_of_vehicles_in_front, type_of_vehicles_behind))\n', (10291, 10405), True, 'import numpy as np\n'), ((11030, 11142), 'flow.core.util.calculate_human_rl_timesteps_spent_in_simulation', 'calculate_human_rl_timesteps_spent_in_simulation', (['self.k.vehicle._departed_ids', 'self.k.vehicle._arrived_ids'], {}), '(self.k.vehicle.\n _departed_ids, self.k.vehicle._arrived_ids)\n', (11078, 11142), False, 'from flow.core.util import calculate_human_rl_timesteps_spent_in_simulation\n'), ((20092, 20136), 'numpy.asarray', 'np.asarray', (['self_representation'], {'dtype': 'float'}), '(self_representation, dtype=float)\n', (20102, 20136), True, 'import numpy as np\n'), ((3519, 3549), 'numpy.asarray', 'np.asarray', (['([1000] * num_lanes)'], {}), '([1000] * num_lanes)\n', (3529, 3549), True, 'import numpy as np\n'), ((3588, 3618), 'numpy.asarray', 'np.asarray', (['([1000] * num_lanes)'], {}), '([1000] * num_lanes)\n', (3598, 3618), True, 'import numpy as np\n'), ((3662, 3689), 'numpy.asarray', 'np.asarray', (['([0] * num_lanes)'], {}), '([0] * num_lanes)\n', (3672, 3689), True, 'import numpy as np\n'), ((3732, 3759), 'numpy.asarray', 'np.asarray', (['([0] * num_lanes)'], {}), '([0] * num_lanes)\n', (3742, 3759), True, 'import numpy as np\n'), ((4116, 4141), 'numpy.asarray', 'np.asarray', (['lane_headways'], {}), '(lane_headways)\n', (4126, 4141), True, 'import numpy as np\n'), ((4225, 4250), 'numpy.asarray', 'np.asarray', (['lane_tailways'], {}), '(lane_tailways)\n', (4235, 4250), True, 'import numpy as np\n'), ((10571, 10589), 'numpy.array', 'np.array', (['([0] * 22)'], {}), '([0] * 22)\n', (10579, 10589), True, 'import numpy as np\n'), ((4789, 4845), 'numpy.concatenate', 'np.concatenate', (['(self_observation, relative_observation)'], {}), '((self_observation, relative_observation))\n', (4803, 4845), True, 'import numpy as np\n'), ((5416, 5515), 'flow.core.rewards.desired_velocity', 'rewards.desired_velocity', (['self'], {'fail': "kwargs['fail']", 'edge_list': '[edge_num]', 'use_only_rl_ids': '(True)'}), "(self, fail=kwargs['fail'], edge_list=[edge_num],\n use_only_rl_ids=True)\n", (5440, 5515), False, 'from flow.core import rewards\n'), ((10485, 10541), 'numpy.concatenate', 'np.concatenate', (['(self_observation, relative_observation)'], {}), '((self_observation, relative_observation))\n', (10499, 10541), True, 'import numpy as np\n'), ((11552, 11569), 'numpy.mean', 'np.mean', (['rl_times'], {}), '(rl_times)\n', (11559, 11569), True, 'import numpy as np\n'), ((11642, 11662), 'numpy.mean', 'np.mean', (['human_times'], {}), '(human_times)\n', (11649, 11662), True, 'import numpy as np\n'), ((21253, 21327), 'flow.core.rewards.desired_velocity', 'rewards.desired_velocity', (['self'], {'edge_list': '[edge_num]', 'use_only_rl_ids': '(True)'}), '(self, edge_list=[edge_num], use_only_rl_ids=True)\n', (21277, 21327), False, 'from flow.core import rewards\n')]
|
import yaml
import numpy as np
def load(path):
with open('config/default_values.yaml', 'r') as f:
default_cfg = yaml.load(f, yaml.FullLoader)
with open(path, 'r') as f:
cfg = yaml.load(f, yaml.FullLoader)
default_cfg.update(cfg)
cfg = default_cfg
cfg['data_bounding_box'] = np.array(cfg['data_bounding_box'])
cfg['data_bounding_box_str'] = ",".join(str(x) for x in cfg['data_bounding_box'])
return cfg
|
[
"yaml.load",
"numpy.array"
] |
[((314, 348), 'numpy.array', 'np.array', (["cfg['data_bounding_box']"], {}), "(cfg['data_bounding_box'])\n", (322, 348), True, 'import numpy as np\n'), ((125, 154), 'yaml.load', 'yaml.load', (['f', 'yaml.FullLoader'], {}), '(f, yaml.FullLoader)\n', (134, 154), False, 'import yaml\n'), ((201, 230), 'yaml.load', 'yaml.load', (['f', 'yaml.FullLoader'], {}), '(f, yaml.FullLoader)\n', (210, 230), False, 'import yaml\n')]
|
import pickle
import numpy as np
import pandas as pd
from collections import Counter
def get_xy(dist, normed=False):
counter = Counter(dist)
x=[];y=[]
for xval in sorted(counter.keys()):
x.append(xval)
y.append(counter[xval])
y = np.array(y)
if normed:
y = y/y.sum()
return x, y
print("Reading shipping distances.", flush=True)
shipping_dist = dict()
with open('/home/larock.t/git/shipping/data/port_shipping_distances.csv', 'r') as fin:
for line in fin:
u,v,dist = line.strip().split(',')
shipping_dist[(u,v)] = float(dist)
print("Computing filtered path stats.", flush=True)
scratch_base = '/scratch/larock.t/shipping/results/interpolated_paths/'
## Filtered paths
filtered_stats = {
'num_paths':[],
'route_lengths':[],
'path_lengths':[],
'distances':[],
'routes_per_path':[]
}
filtered_paths = dict()
import sys
argv = sys.argv
if len(argv) > 1:
rt_thresh = float(sys.argv[1])
dt_thresh = float(sys.argv[2])
else:
rt_thresh = 1.0
dt_thresh = 1.5
dt_thresh = 'detour'
with open(scratch_base + f'iterative_paths_filtered_dt-{dt_thresh}_rt-{rt_thresh}.txt', 'r') as fin:
pair_counter = 0
total_pairs = 0
prev_pair = (-1,-1)
first = True
for line in fin:
path, mr_dist, route_dist, *routes = line.strip().split('|')
path = path.strip().split(',')
dist = int(mr_dist)
pair = (path[0], path[-1])
filtered_paths.setdefault(pair, dict())
filtered_paths[pair][tuple(path)] = dist
filtered_stats['distances'].append(float(route_dist))
filtered_stats['routes_per_path'].append(len(routes))
if pair != prev_pair and not first:
num_paths = len(filtered_paths[prev_pair])
filtered_stats['num_paths'].append(num_paths)
## Compute over _all_ paths (same for all 4 path datasets)
route_lengths = [p for p in filtered_paths[prev_pair].values()]
filtered_stats['route_lengths'] += route_lengths
path_lengths = [len(p)-1 for p in filtered_paths[prev_pair].keys()]
filtered_stats['path_lengths'] += path_lengths
pair_counter += 1
total_pairs += 1
if pair_counter == 50_000:
print(f"{total_pairs} pairs processed.", flush=True)
pair_counter = 0
prev_pair = pair
if first: first = False
## Do the last pair!
num_paths = len(filtered_paths[prev_pair])
filtered_stats['num_paths'].append(num_paths)
route_lengths = list(filtered_paths[prev_pair].values())
filtered_stats['route_lengths'] += route_lengths
path_lengths = [len(p)-1 for p in filtered_paths[prev_pair].keys()]
filtered_stats['path_lengths'] += path_lengths
import pickle
with open(scratch_base + f'iterative_paths_filtered_dt-{dt_thresh}_rt-{rt_thresh}_stats.pickle', 'wb') as fpickle:
pickle.dump(filtered_stats, fpickle)
print("Computing clique path stats.", flush=True)
## Clique paths
clique_stats = {
'num_paths':[],
'route_lengths':[],
'path_lengths':[],
'distances':[]
}
with open(scratch_base + 'shortest_paths_clique.pickle', 'rb') as fpickle:
paper_paths_dict = pickle.load(fpickle)
gwdata = pd.read_csv('../data/original/Nodes_2015_country_degree_bc_B_Z_P.csv', encoding='latin-1' ) ## Just need to get id to name mapping
port_mapping = dict(zip(gwdata.id.values,gwdata.port.values))
with open(scratch_base + 'clique_minroute_paths.pickle', 'rb') as fpickle:
minimum_routes_sp = pickle.load(fpickle)
for pair in paper_paths_dict:
num_paths = len(paper_paths_dict[pair])
#num_paths_dist_cg.append(num_paths)
clique_stats['num_paths'].append(num_paths)
mpair = (port_mapping[pair[0]], port_mapping[pair[1]])
if mpair in minimum_routes_sp:
route_lengths = [p for p in minimum_routes_sp[mpair].values()]
clique_stats['route_lengths'] += route_lengths
#path_lengths = [len(next(iter(paper_paths_dict[pair])))-1]*len(paper_paths_dict[pair])
#clique_stats['path_lengths'] += path_lengths
# get shipping distance for *ALL* shortest paths
for path in paper_paths_dict[pair]:
clique_stats['path_lengths'].append(len(path))
# Real distance
d = 0.0
for i in range(1, len(path)):
mpair = (port_mapping[path[i-1]], port_mapping[path[i]])
d += shipping_dist[mpair]
clique_stats['distances'].append(d)
#for pair in minimum_routes_sp:
# # To make all inset histograms have the same number of points,
# # I should change this to paper_paths_dict instead.
# for path in minimum_routes_sp[pair]:
# ## Real distance
# d = 0.0
# for i in range(1, len(path)):
# d += shipping_dist[path[i-1], path[i]]
# clique_stats['distances'].append(d)
## coroute graph paths
print("Computing coroute path stats.", flush=True)
coroute_stats = {
'num_paths':[],
'route_lengths':[],
'path_lengths':[],
'distances':[]
}
with open(scratch_base + 'shortest_paths_coroute.pickle', 'rb') as fpickle:
coroute_paths = pickle.load(fpickle)
with open(scratch_base + 'coroute_minroute_paths.pickle', 'rb') as fpickle:
minimum_routes = pickle.load(fpickle)
for pair in coroute_paths:
num_paths = len(coroute_paths[pair])
coroute_stats['num_paths'].append(num_paths)
if pair in minimum_routes:
route_lengths = [p for p in minimum_routes[pair].values()]
coroute_stats['route_lengths'] += route_lengths
#coroute_lengths = [len(next(iter(coroute_paths[pair])))-1]*len(coroute_paths[pair])
#coroute_stats['path_lengths'] += coroute_lengths
for path in coroute_paths[pair]:
coroute_stats['path_lengths'].append(len(path)-1)
## Real distance
d = 0.0
for i in range(1, len(path)):
d += shipping_dist[path[i-1], path[i]]
coroute_stats['distances'].append(d)
#for pair in minimum_routes:
# for path in minimum_routes[pair]:
# ## Real distance
# d = 0.0
# for i in range(1, len(path)):
# d += shipping_dist[path[i-1], path[i]]
# coroute_stats['distances'].append(d)
## Path graph paths
print("Computing path path stats.", flush=True)
path_stats = {
'num_paths':[],
'route_lengths':[],
'path_lengths':[],
'distances':[]
}
with open(scratch_base + 'shortest_paths_pathrep.pickle', 'rb') as fpickle:
pg_paths = pickle.load(fpickle)
with open(scratch_base + 'sp_pathrep_minroutes.pickle', 'rb') as fpickle:
minimum_routes = pickle.load(fpickle)
for pair in pg_paths:
num_paths = len(pg_paths[pair])
path_stats['num_paths'].append(num_paths)
route_lengths = [p for p in minimum_routes[pair].values()]
path_stats['route_lengths'] += route_lengths
path_lengths = [len(next(iter(pg_paths[pair])))-1]*len(pg_paths[pair])
path_stats['path_lengths'] += path_lengths
for path in pg_paths[pair]:
## Real distance
d = 0.0
for i in range(1, len(path)):
d += shipping_dist[path[i-1], path[i]]
path_stats['distances'].append(d)
print("Dumping stats.", flush=True)
with open(scratch_base + f'path_comparison_stats_dt-{dt_thresh}_rt-{rt_thresh}_alldists.pickle', 'wb') as fpickle:
pickle.dump((filtered_stats, clique_stats, coroute_stats, path_stats), fpickle)
|
[
"pickle.dump",
"pandas.read_csv",
"pickle.load",
"numpy.array",
"collections.Counter"
] |
[((3245, 3339), 'pandas.read_csv', 'pd.read_csv', (['"""../data/original/Nodes_2015_country_degree_bc_B_Z_P.csv"""'], {'encoding': '"""latin-1"""'}), "('../data/original/Nodes_2015_country_degree_bc_B_Z_P.csv',\n encoding='latin-1')\n", (3256, 3339), True, 'import pandas as pd\n'), ((133, 146), 'collections.Counter', 'Counter', (['dist'], {}), '(dist)\n', (140, 146), False, 'from collections import Counter\n'), ((264, 275), 'numpy.array', 'np.array', (['y'], {}), '(y)\n', (272, 275), True, 'import numpy as np\n'), ((2908, 2944), 'pickle.dump', 'pickle.dump', (['filtered_stats', 'fpickle'], {}), '(filtered_stats, fpickle)\n', (2919, 2944), False, 'import pickle\n'), ((3215, 3235), 'pickle.load', 'pickle.load', (['fpickle'], {}), '(fpickle)\n', (3226, 3235), False, 'import pickle\n'), ((3537, 3557), 'pickle.load', 'pickle.load', (['fpickle'], {}), '(fpickle)\n', (3548, 3557), False, 'import pickle\n'), ((5121, 5141), 'pickle.load', 'pickle.load', (['fpickle'], {}), '(fpickle)\n', (5132, 5141), False, 'import pickle\n'), ((5239, 5259), 'pickle.load', 'pickle.load', (['fpickle'], {}), '(fpickle)\n', (5250, 5259), False, 'import pickle\n'), ((6463, 6483), 'pickle.load', 'pickle.load', (['fpickle'], {}), '(fpickle)\n', (6474, 6483), False, 'import pickle\n'), ((6579, 6599), 'pickle.load', 'pickle.load', (['fpickle'], {}), '(fpickle)\n', (6590, 6599), False, 'import pickle\n'), ((7301, 7380), 'pickle.dump', 'pickle.dump', (['(filtered_stats, clique_stats, coroute_stats, path_stats)', 'fpickle'], {}), '((filtered_stats, clique_stats, coroute_stats, path_stats), fpickle)\n', (7312, 7380), False, 'import pickle\n')]
|
'''
.. module:: skrf.plotting
========================================
plotting (:mod:`skrf.plotting`)
========================================
This module provides general plotting functions.
Plots and Charts
------------------
.. autosummary::
:toctree: generated/
smith
plot_smith
plot_rectangular
plot_polar
plot_complex_rectangular
plot_complex_polar
Misc Functions
-----------------
.. autosummary::
:toctree: generated/
save_all_figs
add_markers_to_lines
legend_off
func_on_all_figs
scrape_legend
'''
import pylab as plb
import numpy as npy
from matplotlib.patches import Circle # for drawing smith chart
from matplotlib.pyplot import quiver
from matplotlib import rcParams
#from matplotlib.lines import Line2D # for drawing smith chart
def smith(smithR=1, chart_type = 'z', draw_labels = False, border=False,
ax=None, ref_imm = 1.0, draw_vswr=None):
'''
plots the smith chart of a given radius
Parameters
-----------
smithR : number
radius of smith chart
chart_type : ['z','y','zy', 'yz']
Contour type. Possible values are
* *'z'* : lines of constant impedance
* *'y'* : lines of constant admittance
* *'zy'* : lines of constant impedance stronger than admittance
* *'yz'* : lines of constant admittance stronger than impedance
draw_labels : Boolean
annotate real and imaginary parts of impedance on the
chart (only if smithR=1)
border : Boolean
draw a rectangular border with axis ticks, around the perimeter
of the figure. Not used if draw_labels = True
ax : matplotlib.axes object
existing axes to draw smith chart on
ref_imm : number
Reference immittance for center of Smith chart. Only changes
labels, if printed.
draw_vswr : list of numbers, Boolean or None
draw VSWR circles. If True, default values are used.
'''
##TODO: fix this function so it doesnt suck
if ax == None:
ax1 = plb.gca()
else:
ax1 = ax
# contour holds matplotlib instances of: pathes.Circle, and lines.Line2D, which
# are the contours on the smith chart
contour = []
# these are hard-coded on purpose,as they should always be present
rHeavyList = [0,1]
xHeavyList = [1,-1]
#TODO: fix this
# these could be dynamically coded in the future, but work good'nuff for now
if not draw_labels:
rLightList = plb.logspace(3,-5,9,base=.5)
xLightList = plb.hstack([plb.logspace(2,-5,8,base=.5), -1*plb.logspace(2,-5,8,base=.5)])
else:
rLightList = plb.array( [ 0.2, 0.5, 1.0, 2.0, 5.0 ] )
xLightList = plb.array( [ 0.2, 0.5, 1.0, 2.0 , 5.0, -0.2, -0.5, -1.0, -2.0, -5.0 ] )
# vswr lines
if isinstance(draw_vswr, (tuple,list)):
vswrVeryLightList = draw_vswr
elif draw_vswr is True:
# use the default I like
vswrVeryLightList = [1.5, 2.0, 3.0, 5.0]
else:
vswrVeryLightList = []
# cheap way to make a ok-looking smith chart at larger than 1 radii
if smithR > 1:
rMax = (1.+smithR)/(1.-smithR)
rLightList = plb.hstack([ plb.linspace(0,rMax,11) , rLightList ])
if chart_type.startswith('y'):
y_flip_sign = -1
else:
y_flip_sign = 1
# draw impedance and/or admittance
both_charts = chart_type in ('zy', 'yz')
# loops through Verylight, Light and Heavy lists and draws circles using patches
# for analysis of this see <NAME> notes (from uva)
superLightColor = dict(ec='whitesmoke', fc='none')
veryLightColor = dict(ec='lightgrey', fc='none')
lightColor = dict(ec='grey', fc='none')
heavyColor = dict(ec='black', fc='none')
# vswr circules verylight
for vswr in vswrVeryLightList:
radius = (vswr-1.0) / (vswr+1.0)
contour.append( Circle((0, 0), radius, **veryLightColor))
# impedance/admittance circles
for r in rLightList:
center = (r/(1.+r)*y_flip_sign,0 )
radius = 1./(1+r)
if both_charts:
contour.insert(0, Circle((-center[0], center[1]), radius, **superLightColor))
contour.append(Circle(center, radius, **lightColor))
for x in xLightList:
center = (1*y_flip_sign,1./x)
radius = 1./x
if both_charts:
contour.insert(0, Circle( (-center[0], center[1]), radius, **superLightColor))
contour.append(Circle(center, radius, **lightColor))
for r in rHeavyList:
center = (r/(1.+r)*y_flip_sign,0 )
radius = 1./(1+r)
contour.append(Circle(center, radius, **heavyColor))
for x in xHeavyList:
center = (1*y_flip_sign,1./x)
radius = 1./x
contour.append(Circle(center, radius, **heavyColor))
# clipping circle
clipc = Circle( [0,0], smithR, ec='k',fc='None',visible=True)
ax1.add_patch( clipc)
#draw x and y axis
ax1.axhline(0, color='k', lw=.1, clip_path=clipc)
ax1.axvline(1*y_flip_sign, color='k', clip_path=clipc)
ax1.grid(0)
# Set axis limits by plotting white points so zooming works properly
ax1.plot(smithR*npy.array([-1.1, 1.1]), smithR*npy.array([-1.1, 1.1]), 'w.', markersize = 0)
ax1.axis('image') # Combination of 'equal' and 'tight'
if not border:
ax1.yaxis.set_ticks([])
ax1.xaxis.set_ticks([])
for loc, spine in ax1.spines.items():
spine.set_color('none')
if draw_labels:
#Clear axis
ax1.yaxis.set_ticks([])
ax1.xaxis.set_ticks([])
for loc, spine in ax1.spines.items():
spine.set_color('none')
# Make annotations only if the radius is 1
if smithR is 1:
#Make room for annotation
ax1.plot(npy.array([-1.25, 1.25]), npy.array([-1.1, 1.1]), 'w.', markersize = 0)
ax1.axis('image')
#Annotate real part
for value in rLightList:
# Set radius of real part's label; offset slightly left (Z
# chart, y_flip_sign == 1) or right (Y chart, y_flip_sign == -1)
# so label doesn't overlap chart's circles
rho = (value - 1)/(value + 1) - y_flip_sign*0.01
if y_flip_sign is 1:
halignstyle = "right"
else:
halignstyle = "left"
ax1.annotate(str(value*ref_imm), xy=(rho*smithR, 0.01),
xytext=(rho*smithR, 0.01), ha = halignstyle, va = "baseline")
#Annotate imaginary part
radialScaleFactor = 1.01 # Scale radius of label position by this
# factor. Making it >1 places the label
# outside the Smith chart's circle
for value in xLightList:
#Transforms from complex to cartesian
S = (1j*value - 1) / (1j*value + 1)
S *= smithR * radialScaleFactor
rhox = S.real
rhoy = S.imag * y_flip_sign
# Choose alignment anchor point based on label's value
if ((value == 1.0) or (value == -1.0)):
halignstyle = "center"
elif (rhox < 0.0):
halignstyle = "right"
else:
halignstyle = "left"
if (rhoy < 0):
valignstyle = "top"
else:
valignstyle = "bottom"
#Annotate value
ax1.annotate(str(value*ref_imm) + 'j', xy=(rhox, rhoy),
xytext=(rhox, rhoy), ha = halignstyle, va = valignstyle)
#Annotate 0 and inf
ax1.annotate('0.0', xy=(-1.02, 0), xytext=(-1.02, 0),
ha = "right", va = "center")
ax1.annotate('$\infty$', xy=(radialScaleFactor, 0), xytext=(radialScaleFactor, 0),
ha = "left", va = "center")
# annotate vswr circles
for vswr in vswrVeryLightList:
rhoy = (vswr-1.0) / (vswr+1.0)
ax1.annotate(str(vswr), xy=(0, rhoy*smithR),
xytext=(0, rhoy*smithR), ha="center", va="bottom",
color='grey', size='smaller')
# loop though contours and draw them on the given axes
for currentContour in contour:
cc=ax1.add_patch(currentContour)
cc.set_clip_path(clipc)
def plot_rectangular(x, y, x_label=None, y_label=None, title=None,
show_legend=True, axis='tight', ax=None, *args, **kwargs):
'''
plots rectangular data and optionally label axes.
Parameters
------------
z : array-like, of complex data
data to plot
x_label : string
x-axis label
y_label : string
y-axis label
title : string
plot title
show_legend : Boolean
controls the drawing of the legend
ax : :class:`matplotlib.axes.AxesSubplot` object
axes to draw on
*args,**kwargs : passed to pylab.plot
'''
if ax is None:
ax = plb.gca()
my_plot = ax.plot(x, y, *args, **kwargs)
if x_label is not None:
ax.set_xlabel(x_label)
if y_label is not None:
ax.set_ylabel(y_label)
if title is not None:
ax.set_title(title)
if show_legend:
# only show legend if they provide a label
if 'label' in kwargs:
ax.legend()
if axis is not None:
ax.autoscale(True, 'x', True)
ax.autoscale(True, 'y', False)
if plb.isinteractive():
plb.draw()
return my_plot
def plot_polar(theta, r, x_label=None, y_label=None, title=None,
show_legend=True, axis_equal=False, ax=None, *args, **kwargs):
'''
plots polar data on a polar plot and optionally label axes.
Parameters
------------
theta : array-like
data to plot
r : array-like
x_label : string
x-axis label
y_label : string
y-axis label
title : string
plot title
show_legend : Boolean
controls the drawing of the legend
ax : :class:`matplotlib.axes.AxesSubplot` object
axes to draw on
*args,**kwargs : passed to pylab.plot
See Also
----------
plot_rectangular : plots rectangular data
plot_complex_rectangular : plot complex data on complex plane
plot_polar : plot polar data
plot_complex_polar : plot complex data on polar plane
plot_smith : plot complex data on smith chart
'''
if ax is None:
ax = plb.gca(polar=True)
ax.plot(theta, r, *args, **kwargs)
if x_label is not None:
ax.set_xlabel(x_label)
if y_label is not None:
ax.set_ylabel(y_label)
if title is not None:
ax.set_title(title)
if show_legend:
# only show legend if they provide a label
if 'label' in kwargs:
ax.legend()
if axis_equal:
ax.axis('equal')
if plb.isinteractive():
plb.draw()
def plot_complex_rectangular(z, x_label='Real', y_label='Imag',
title='Complex Plane', show_legend=True, axis='equal', ax=None,
*args, **kwargs):
'''
plot complex data on the complex plane
Parameters
------------
z : array-like, of complex data
data to plot
x_label : string
x-axis label
y_label : string
y-axis label
title : string
plot title
show_legend : Boolean
controls the drawing of the legend
ax : :class:`matplotlib.axes.AxesSubplot` object
axes to draw on
*args,**kwargs : passed to pylab.plot
See Also
----------
plot_rectangular : plots rectangular data
plot_complex_rectangular : plot complex data on complex plane
plot_polar : plot polar data
plot_complex_polar : plot complex data on polar plane
plot_smith : plot complex data on smith chart
'''
x = npy.real(z)
y = npy.imag(z)
plot_rectangular(x=x, y=y, x_label=x_label, y_label=y_label,
title=title, show_legend=show_legend, axis=axis,
ax=ax, *args, **kwargs)
def plot_complex_polar(z, x_label=None, y_label=None,
title=None, show_legend=True, axis_equal=False, ax=None,
*args, **kwargs):
'''
plot complex data in polar format.
Parameters
------------
z : array-like, of complex data
data to plot
x_label : string
x-axis label
y_label : string
y-axis label
title : string
plot title
show_legend : Boolean
controls the drawing of the legend
ax : :class:`matplotlib.axes.AxesSubplot` object
axes to draw on
*args,**kwargs : passed to pylab.plot
See Also
----------
plot_rectangular : plots rectangular data
plot_complex_rectangular : plot complex data on complex plane
plot_polar : plot polar data
plot_complex_polar : plot complex data on polar plane
plot_smith : plot complex data on smith chart
'''
theta = npy.angle(z)
r = npy.abs(z)
plot_polar(theta=theta, r=r, x_label=x_label, y_label=y_label,
title=title, show_legend=show_legend, axis_equal=axis_equal,
ax=ax, *args, **kwargs)
def plot_smith(s, smith_r=1, chart_type='z', x_label='Real',
y_label='Imaginary', title='Complex Plane', show_legend=True,
axis='equal', ax=None, force_chart = False, draw_vswr=None, *args, **kwargs):
'''
plot complex data on smith chart
Parameters
------------
s : complex array-like
reflection-coeffient-like data to plot
smith_r : number
radius of smith chart
chart_type : ['z','y']
Contour type for chart.
* *'z'* : lines of constant impedance
* *'y'* : lines of constant admittance
x_label : string
x-axis label
y_label : string
y-axis label
title : string
plot title
show_legend : Boolean
controls the drawing of the legend
axis_equal: Boolean
sets axis to be equal increments (calls axis('equal'))
force_chart : Boolean
forces the re-drawing of smith chart
ax : :class:`matplotlib.axes.AxesSubplot` object
axes to draw on
*args,**kwargs : passed to pylab.plot
See Also
----------
plot_rectangular : plots rectangular data
plot_complex_rectangular : plot complex data on complex plane
plot_polar : plot polar data
plot_complex_polar : plot complex data on polar plane
plot_smith : plot complex data on smith chart
'''
if ax is None:
ax = plb.gca()
# test if smith chart is already drawn
if not force_chart:
if len(ax.patches) == 0:
smith(ax=ax, smithR = smith_r, chart_type=chart_type, draw_vswr=draw_vswr)
plot_complex_rectangular(s, x_label=x_label, y_label=y_label,
title=title, show_legend=show_legend, axis=axis,
ax=ax, *args, **kwargs)
ax.axis(smith_r*npy.array([-1.1, 1.1, -1.1, 1.1]))
if plb.isinteractive():
plb.draw()
def subplot_params(ntwk, param='s', proj='db', size_per_port=4, newfig=True,
add_titles=True, keep_it_tight=True, subplot_kw={}, *args, **kw):
'''
Plot all networks parameters individually on subplots
Parameters
--------------
'''
if newfig:
f,axs= plb.subplots(ntwk.nports,ntwk.nports,
figsize =(size_per_port*ntwk.nports,
size_per_port*ntwk.nports ),
**subplot_kw)
else:
f = plb.gcf()
axs = npy.array(f.get_axes())
for ports,ax in zip(ntwk.port_tuples, axs.flatten()):
plot_func = ntwk.__getattribute__('plot_%s_%s'%(param, proj))
plot_func(m=ports[0], n=ports[1], ax=ax,*args, **kw)
if add_titles:
ax.set_title('%s%i%i'%(param.upper(),ports[0]+1, ports[1]+1))
if keep_it_tight:
plb.tight_layout()
return f,axs
def shade_bands(edges, y_range=None,cmap='prism', **kwargs):
'''
Shades frequency bands.
when plotting data over a set of frequency bands it is nice to
have each band visually separated from the other. The kwarg `alpha`
is useful.
Parameters
--------------
edges : array-like
x-values separating regions of a given shade
y_range : tuple
y-values to shade in
cmap : str
see matplotlib.cm or matplotlib.colormaps for acceptable values
\*\* : key word arguments
passed to `matplotlib.fill_between`
Examples
-----------
>>> rf.shade_bands([325,500,750,1100], alpha=.2)
'''
cmap = plb.cm.get_cmap(cmap)
y_range=plb.gca().get_ylim()
axis = plb.axis()
for k in range(len(edges)-1):
plb.fill_between(
[edges[k],edges[k+1]],
y_range[0], y_range[1],
color = cmap(1.0*k/len(edges)),
**kwargs)
plb.axis(axis)
def save_all_figs(dir = './', format=None, replace_spaces = True, echo = True):
'''
Save all open Figures to disk.
Parameters
------------
dir : string
path to save figures into
format : None, or list of strings
the types of formats to save figures as. The elements of this
list are passed to :matplotlib:`savefig`. This is a list so that
you can save each figure in multiple formats.
echo : bool
True prints filenames as they are saved
'''
if dir[-1] != '/':
dir = dir + '/'
for fignum in plb.get_fignums():
fileName = plb.figure(fignum).get_axes()[0].get_title()
if replace_spaces:
fileName = fileName.replace(' ','_')
if fileName == '':
fileName = 'unnamedPlot'
if format is None:
plb.savefig(dir+fileName)
if echo:
print((dir+fileName))
else:
for fmt in format:
plb.savefig(dir+fileName+'.'+fmt, format=fmt)
if echo:
print((dir+fileName+'.'+fmt))
saf = save_all_figs
def add_markers_to_lines(ax=None,marker_list=['o','D','s','+','x'], markevery=10):
'''
adds markers to existing lings on a plot
this is convinient if you have already have a plot made, but then
need to add markers afterwards, so that it can be interpreted in
black and white. The markevery argument makes the markers less
frequent than the data, which is generally what you want.
Parameters
-----------
ax : matplotlib.Axes
axis which to add markers to, defaults to gca()
marker_list : list of marker characters
see matplotlib.plot help for possible marker characters
markevery : int
markevery number of points with a marker.
'''
if ax is None:
ax=plb.gca()
lines = ax.get_lines()
if len(lines) > len (marker_list ):
marker_list *= 3
[k[0].set_marker(k[1]) for k in zip(lines, marker_list)]
[line.set_markevery(markevery) for line in lines]
def legend_off(ax=None):
'''
turn off the legend for a given axes.
if no axes is given then it will use current axes.
Parameters
-----------
ax : matplotlib.Axes object
axes to operate on
'''
if ax is None:
plb.gca().legend_.set_visible(0)
else:
ax.legend_.set_visible(0)
def scrape_legend(n=None, ax=None):
'''
scrapes a legend with redundant labels
Given a legend of m entries of n groups, this will remove all but
every m/nth entry. This is used when you plot many lines representing
the same thing, and only want one label entry in the legend for the
whole ensemble of lines
'''
if ax is None:
ax = plb.gca()
handles, labels = ax.get_legend_handles_labels()
if n is None:
n =len ( set(labels))
if n>len(handles):
raise ValueError('number of entries is too large')
k_list = [int(k) for k in npy.linspace(0,len(handles)-1,n)]
ax.legend([handles[k] for k in k_list], [labels[k] for k in k_list])
def func_on_all_figs(func, *args, **kwargs):
'''
runs a function after making all open figures current.
useful if you need to change the properties of many open figures
at once, like turn off the grid.
Parameters
----------
func : function
function to call
\*args, \*\*kwargs : pased to func
Examples
----------
>>> rf.func_on_all_figs(grid,alpha=.3)
'''
for fig_n in plb.get_fignums():
fig = plb.figure(fig_n)
for ax_n in fig.axes:
fig.add_axes(ax_n) # trick to make axes current
func(*args, **kwargs)
plb.draw()
foaf = func_on_all_figs
def plot_vector(a, off=0+0j, *args, **kwargs):
'''
plot a 2d vector
'''
return quiver(off.real,off.imag,a.real,a.imag,scale_units ='xy',
angles='xy',scale=1, *args, **kwargs)
def colors():
return rcParams['axes.color_cycle']
|
[
"pylab.isinteractive",
"numpy.abs",
"numpy.angle",
"matplotlib.pyplot.quiver",
"numpy.imag",
"pylab.subplots",
"pylab.tight_layout",
"pylab.figure",
"pylab.linspace",
"pylab.gcf",
"pylab.cm.get_cmap",
"pylab.get_fignums",
"pylab.draw",
"numpy.real",
"pylab.array",
"matplotlib.patches.Circle",
"pylab.savefig",
"pylab.logspace",
"pylab.axis",
"numpy.array",
"pylab.gca"
] |
[((4918, 4973), 'matplotlib.patches.Circle', 'Circle', (['[0, 0]', 'smithR'], {'ec': '"""k"""', 'fc': '"""None"""', 'visible': '(True)'}), "([0, 0], smithR, ec='k', fc='None', visible=True)\n", (4924, 4973), False, 'from matplotlib.patches import Circle\n'), ((9732, 9751), 'pylab.isinteractive', 'plb.isinteractive', ([], {}), '()\n', (9749, 9751), True, 'import pylab as plb\n'), ((11165, 11184), 'pylab.isinteractive', 'plb.isinteractive', ([], {}), '()\n', (11182, 11184), True, 'import pylab as plb\n'), ((12114, 12125), 'numpy.real', 'npy.real', (['z'], {}), '(z)\n', (12122, 12125), True, 'import numpy as npy\n'), ((12134, 12145), 'numpy.imag', 'npy.imag', (['z'], {}), '(z)\n', (12142, 12145), True, 'import numpy as npy\n'), ((13187, 13199), 'numpy.angle', 'npy.angle', (['z'], {}), '(z)\n', (13196, 13199), True, 'import numpy as npy\n'), ((13208, 13218), 'numpy.abs', 'npy.abs', (['z'], {}), '(z)\n', (13215, 13218), True, 'import numpy as npy\n'), ((15167, 15186), 'pylab.isinteractive', 'plb.isinteractive', ([], {}), '()\n', (15184, 15186), True, 'import pylab as plb\n'), ((16870, 16891), 'pylab.cm.get_cmap', 'plb.cm.get_cmap', (['cmap'], {}), '(cmap)\n', (16885, 16891), True, 'import pylab as plb\n'), ((16936, 16946), 'pylab.axis', 'plb.axis', ([], {}), '()\n', (16944, 16946), True, 'import pylab as plb\n'), ((17150, 17164), 'pylab.axis', 'plb.axis', (['axis'], {}), '(axis)\n', (17158, 17164), True, 'import pylab as plb\n'), ((17765, 17782), 'pylab.get_fignums', 'plb.get_fignums', ([], {}), '()\n', (17780, 17782), True, 'import pylab as plb\n'), ((20815, 20832), 'pylab.get_fignums', 'plb.get_fignums', ([], {}), '()\n', (20830, 20832), True, 'import pylab as plb\n'), ((21135, 21239), 'matplotlib.pyplot.quiver', 'quiver', (['off.real', 'off.imag', 'a.real', 'a.imag', '*args'], {'scale_units': '"""xy"""', 'angles': '"""xy"""', 'scale': '(1)'}), "(off.real, off.imag, a.real, a.imag, *args, scale_units='xy', angles=\n 'xy', scale=1, **kwargs)\n", (21141, 21239), False, 'from matplotlib.pyplot import quiver\n'), ((2127, 2136), 'pylab.gca', 'plb.gca', ([], {}), '()\n', (2134, 2136), True, 'import pylab as plb\n'), ((2574, 2606), 'pylab.logspace', 'plb.logspace', (['(3)', '(-5)', '(9)'], {'base': '(0.5)'}), '(3, -5, 9, base=0.5)\n', (2586, 2606), True, 'import pylab as plb\n'), ((2731, 2767), 'pylab.array', 'plb.array', (['[0.2, 0.5, 1.0, 2.0, 5.0]'], {}), '([0.2, 0.5, 1.0, 2.0, 5.0])\n', (2740, 2767), True, 'import pylab as plb\n'), ((2793, 2859), 'pylab.array', 'plb.array', (['[0.2, 0.5, 1.0, 2.0, 5.0, -0.2, -0.5, -1.0, -2.0, -5.0]'], {}), '([0.2, 0.5, 1.0, 2.0, 5.0, -0.2, -0.5, -1.0, -2.0, -5.0])\n', (2802, 2859), True, 'import pylab as plb\n'), ((9256, 9265), 'pylab.gca', 'plb.gca', ([], {}), '()\n', (9263, 9265), True, 'import pylab as plb\n'), ((9761, 9771), 'pylab.draw', 'plb.draw', ([], {}), '()\n', (9769, 9771), True, 'import pylab as plb\n'), ((10743, 10762), 'pylab.gca', 'plb.gca', ([], {'polar': '(True)'}), '(polar=True)\n', (10750, 10762), True, 'import pylab as plb\n'), ((11194, 11204), 'pylab.draw', 'plb.draw', ([], {}), '()\n', (11202, 11204), True, 'import pylab as plb\n'), ((14750, 14759), 'pylab.gca', 'plb.gca', ([], {}), '()\n', (14757, 14759), True, 'import pylab as plb\n'), ((15196, 15206), 'pylab.draw', 'plb.draw', ([], {}), '()\n', (15204, 15206), True, 'import pylab as plb\n'), ((15527, 15651), 'pylab.subplots', 'plb.subplots', (['ntwk.nports', 'ntwk.nports'], {'figsize': '(size_per_port * ntwk.nports, size_per_port * ntwk.nports)'}), '(ntwk.nports, ntwk.nports, figsize=(size_per_port * ntwk.nports,\n size_per_port * ntwk.nports), **subplot_kw)\n', (15539, 15651), True, 'import pylab as plb\n'), ((15771, 15780), 'pylab.gcf', 'plb.gcf', ([], {}), '()\n', (15778, 15780), True, 'import pylab as plb\n'), ((16136, 16154), 'pylab.tight_layout', 'plb.tight_layout', ([], {}), '()\n', (16152, 16154), True, 'import pylab as plb\n'), ((19067, 19076), 'pylab.gca', 'plb.gca', ([], {}), '()\n', (19074, 19076), True, 'import pylab as plb\n'), ((20018, 20027), 'pylab.gca', 'plb.gca', ([], {}), '()\n', (20025, 20027), True, 'import pylab as plb\n'), ((20848, 20865), 'pylab.figure', 'plb.figure', (['fig_n'], {}), '(fig_n)\n', (20858, 20865), True, 'import pylab as plb\n'), ((3973, 4013), 'matplotlib.patches.Circle', 'Circle', (['(0, 0)', 'radius'], {}), '((0, 0), radius, **veryLightColor)\n', (3979, 4013), False, 'from matplotlib.patches import Circle\n'), ((4282, 4318), 'matplotlib.patches.Circle', 'Circle', (['center', 'radius'], {}), '(center, radius, **lightColor)\n', (4288, 4318), False, 'from matplotlib.patches import Circle\n'), ((4543, 4579), 'matplotlib.patches.Circle', 'Circle', (['center', 'radius'], {}), '(center, radius, **lightColor)\n', (4549, 4579), False, 'from matplotlib.patches import Circle\n'), ((4699, 4735), 'matplotlib.patches.Circle', 'Circle', (['center', 'radius'], {}), '(center, radius, **heavyColor)\n', (4705, 4735), False, 'from matplotlib.patches import Circle\n'), ((4845, 4881), 'matplotlib.patches.Circle', 'Circle', (['center', 'radius'], {}), '(center, radius, **heavyColor)\n', (4851, 4881), False, 'from matplotlib.patches import Circle\n'), ((5244, 5266), 'numpy.array', 'npy.array', (['[-1.1, 1.1]'], {}), '([-1.1, 1.1])\n', (5253, 5266), True, 'import numpy as npy\n'), ((5275, 5297), 'numpy.array', 'npy.array', (['[-1.1, 1.1]'], {}), '([-1.1, 1.1])\n', (5284, 5297), True, 'import numpy as npy\n'), ((15125, 15158), 'numpy.array', 'npy.array', (['[-1.1, 1.1, -1.1, 1.1]'], {}), '([-1.1, 1.1, -1.1, 1.1])\n', (15134, 15158), True, 'import numpy as npy\n'), ((16904, 16913), 'pylab.gca', 'plb.gca', ([], {}), '()\n', (16911, 16913), True, 'import pylab as plb\n'), ((18027, 18054), 'pylab.savefig', 'plb.savefig', (['(dir + fileName)'], {}), '(dir + fileName)\n', (18038, 18054), True, 'import pylab as plb\n'), ((21002, 21012), 'pylab.draw', 'plb.draw', ([], {}), '()\n', (21010, 21012), True, 'import pylab as plb\n'), ((2636, 2668), 'pylab.logspace', 'plb.logspace', (['(2)', '(-5)', '(8)'], {'base': '(0.5)'}), '(2, -5, 8, base=0.5)\n', (2648, 2668), True, 'import pylab as plb\n'), ((3281, 3306), 'pylab.linspace', 'plb.linspace', (['(0)', 'rMax', '(11)'], {}), '(0, rMax, 11)\n', (3293, 3306), True, 'import pylab as plb\n'), ((4199, 4257), 'matplotlib.patches.Circle', 'Circle', (['(-center[0], center[1])', 'radius'], {}), '((-center[0], center[1]), radius, **superLightColor)\n', (4205, 4257), False, 'from matplotlib.patches import Circle\n'), ((4459, 4517), 'matplotlib.patches.Circle', 'Circle', (['(-center[0], center[1])', 'radius'], {}), '((-center[0], center[1]), radius, **superLightColor)\n', (4465, 4517), False, 'from matplotlib.patches import Circle\n'), ((5891, 5915), 'numpy.array', 'npy.array', (['[-1.25, 1.25]'], {}), '([-1.25, 1.25])\n', (5900, 5915), True, 'import numpy as npy\n'), ((5917, 5939), 'numpy.array', 'npy.array', (['[-1.1, 1.1]'], {}), '([-1.1, 1.1])\n', (5926, 5939), True, 'import numpy as npy\n'), ((18173, 18224), 'pylab.savefig', 'plb.savefig', (["(dir + fileName + '.' + fmt)"], {'format': 'fmt'}), "(dir + fileName + '.' + fmt, format=fmt)\n", (18184, 18224), True, 'import pylab as plb\n'), ((2669, 2701), 'pylab.logspace', 'plb.logspace', (['(2)', '(-5)', '(8)'], {'base': '(0.5)'}), '(2, -5, 8, base=0.5)\n', (2681, 2701), True, 'import pylab as plb\n'), ((19552, 19561), 'pylab.gca', 'plb.gca', ([], {}), '()\n', (19559, 19561), True, 'import pylab as plb\n'), ((17803, 17821), 'pylab.figure', 'plb.figure', (['fignum'], {}), '(fignum)\n', (17813, 17821), True, 'import pylab as plb\n')]
|
import os
import torch
from itertools import combinations
import six
import collections
from tqdm import tqdm, trange
import numpy as np
np.set_printoptions(threshold=10010)
def check_uniqueness(iterable_list):
flag = 0
for array1, array2 in combinations(iterable_list, 2):
for i in range(len(array1)):
for j in range(len(array2)):
if array1[i] == array2[j]:
print("Ouch! ", i, "th element of array 1 with value ", str(array1[i]), " and ", str(j), "th element of array 2 with value ", str(array2[j]))
flag += 1
if flag == 0:
print("All is well!")
if flag != 0:
print(str(flag) + " repetitions... Reformulate data points!")
def flatten_grad(grad):
tuple_to_list = []
for tensor in grad:
tuple_to_list.append(tensor.view(-1))
all_flattened = torch.cat(tuple_to_list)
return all_flattened
def find_hessian(loss, model):
grad1 = torch.autograd.grad(loss, model.parameters(), create_graph=True) #create graph important for the gradients
grad1 = flatten_grad(grad1)
list_length = grad1.size(0)
hessian = torch.zeros(list_length, list_length)
for idx in trange(list_length, desc="Calculating hessian"):
grad2rd = torch.autograd.grad(grad1[idx], model.parameters(), create_graph=True)
cnt = 0
for g in grad2rd:
g2 = g.contiguous().view(-1) if cnt == 0 else torch.cat([g2, g.contiguous().view(-1)])
cnt = 1
hessian[idx] = g2.detach().cpu()
del g2
H = hessian.cpu().data.numpy()
# calculate every element separately -> detach after calculating all 2ndgrad from this 1grad
return H
def find_heigenvalues(loss, model):
H = find_hessian(loss, model)
eigenvalues = np.linalg.eigvalsh(H)
return eigenvalues
def save_to_file(list, filename, folder_name = None):
if folder_name is None:
folder_name = 'tmp'
if isinstance(list, torch.Tensor):
if list.requires_grad is True:
list = list.detach().numpy()
list_to_string = np.array2string(np.asarray(list), separator=' ', max_line_width=np.inf)
list_wo_brackets = list_to_string.translate({ord(i): None for i in '[]'})
file = open(folder_name + '/' + filename, 'w')
file.write(list_wo_brackets)
file.close()
def append_to_file(list, filename, folder_name = None, delimiter = ' '):
if folder_name is None:
folder_name = 'tmp'
if isinstance(list, torch.Tensor):
if list.requires_grad is True:
list = list.detach().numpy()
list_to_string = np.array2string(np.asarray(list), separator=delimiter, max_line_width=np.inf)
list_wo_brackets = list_to_string.translate({ord(i): None for i in '[]'})
file = open(folder_name + '/' + filename, 'a')
file.write("\n")
file.close()
file = open(folder_name + '/' + filename, 'a')
file.write(list_wo_brackets)
file.close()
def remove_slash(path):
return path[:-1] if path[-1] == '/' else path
# nD list to 1D list
def flatten(list):
if isinstance(list, collections.Iterable):
return [a for i in list for a in flatten(i)]
else:
return [list]
|
[
"numpy.set_printoptions",
"tqdm.trange",
"numpy.asarray",
"torch.cat",
"numpy.linalg.eigvalsh",
"itertools.combinations",
"torch.zeros"
] |
[((138, 174), 'numpy.set_printoptions', 'np.set_printoptions', ([], {'threshold': '(10010)'}), '(threshold=10010)\n', (157, 174), True, 'import numpy as np\n'), ((252, 282), 'itertools.combinations', 'combinations', (['iterable_list', '(2)'], {}), '(iterable_list, 2)\n', (264, 282), False, 'from itertools import combinations\n'), ((872, 896), 'torch.cat', 'torch.cat', (['tuple_to_list'], {}), '(tuple_to_list)\n', (881, 896), False, 'import torch\n'), ((1152, 1189), 'torch.zeros', 'torch.zeros', (['list_length', 'list_length'], {}), '(list_length, list_length)\n', (1163, 1189), False, 'import torch\n'), ((1206, 1253), 'tqdm.trange', 'trange', (['list_length'], {'desc': '"""Calculating hessian"""'}), "(list_length, desc='Calculating hessian')\n", (1212, 1253), False, 'from tqdm import tqdm, trange\n'), ((1824, 1845), 'numpy.linalg.eigvalsh', 'np.linalg.eigvalsh', (['H'], {}), '(H)\n', (1842, 1845), True, 'import numpy as np\n'), ((2138, 2154), 'numpy.asarray', 'np.asarray', (['list'], {}), '(list)\n', (2148, 2154), True, 'import numpy as np\n'), ((2661, 2677), 'numpy.asarray', 'np.asarray', (['list'], {}), '(list)\n', (2671, 2677), True, 'import numpy as np\n')]
|
"""3D Bar plot of a TOF camera with hexagonal pixels"""
from vedo import *
import numpy as np
settings.defaultFont = "Glasgo"
settings.useParallelProjection = True
vals = np.abs(np.random.randn(4*6)) # pixel heights
cols = colorMap(vals, "summer")
k = 0
items = [__doc__]
for i in range(4):
for j in range(6):
val, col= vals[k], cols[k]
x, y, z = [i+j%2/2, j/1.155, val+0.01]
zbar= Polygon([x,y,0], nsides=6, r=0.55, c=col).extrude(val)
line= Polygon([x,y,z], nsides=6, r=0.55, c='k').wireframe().lw(2)
txt = Text3D(f"{i}/{j}", [x,y,z], s=.15, c='k', justify='center')
items += [zbar, line, txt]
k += 1
show(items, axes=7)
|
[
"numpy.random.randn"
] |
[((180, 202), 'numpy.random.randn', 'np.random.randn', (['(4 * 6)'], {}), '(4 * 6)\n', (195, 202), True, 'import numpy as np\n')]
|
"""
Implements ZOO (Zero-Order Optimization) Attack.
This code is based on the L2-attack from the original implementation of the attack:
https://github.com/huanzhang12/ZOO-Attack/blob/master/l2_attack_black.py
Usage:
>>> import json
>>> from code_soup.ch5.models.zoo_attack import ZOOAttack
>>> config = json.load(open('./code-soup/ch5/models/configs/zoo_attack.json'))
>>> attack = ZOOAttack(model, config, input_image_shape=[28, 28, 3], device = 'cpu')
>>> adv_img, const = attack.attack(orig_img, target)
"""
from typing import Dict, List
import cv2
import numpy as np
import torch
import torch.nn.functional as F
from PIL import Image
class ZooAttack:
"""
Implements the ZooAttack class.
"""
def __init__(
self,
model: torch.nn.Module,
config: Dict,
input_image_shape: List[int],
device: str,
):
"""Initializes the ZooAttack class.
Args:
model (torch.nn.Module): A PyTorch model.
config (Dict): A dictionary containing the configuration for the attack.
input_image_shape (List[int]): A tuple of ints containing the shape of the input image.
device (str): The device to perform the attack on.
Raises:
NotImplementedError: If `use_tanh` is `False` and `use_resize` is `True`.
"""
assert len(input_image_shape) == 3, "`input_image_shape` must be of length 3"
self.config = config
if self.config["use_tanh"] is False and self.config["use_resize"] is True:
# NOTE: self.up and self.down need to be updated dynamically to match the modifier shape.
# Original Implementation is possibly flawed in this aspect.
raise NotImplementedError(
"Current implementation does not support `use_tanh` as `False` and `use_resize` as `True` at the same time."
)
if self.config["early_stop_iters"] == 0:
self.config["early_stop_iters"] = self.config["max_iterations"] // 10
self.device = device
self.input_image_shape = input_image_shape
# Put model in eval mode
self.model = model.to(device)
self.model.eval()
# DUMMIES - Values will be reset during attack
var_size = np.prod(input_image_shape) # width * height * num_channels
self.var_list = np.array(range(0, var_size), dtype=np.int32)
# Initialize Adam optimizer values
self.mt_arr = np.zeros(var_size, dtype=np.float32)
self.vt_arr = np.zeros(var_size, dtype=np.float32)
self.adam_epochs = np.ones(var_size, dtype=np.int64)
# Sampling Probabilities
self.sample_prob = np.ones(var_size, dtype=np.float32) / var_size
def get_perturbed_image(self, orig_img: torch.tensor, modifier: np.ndarray):
"""Calculates the perturbed image given `orig_img` and `modifier`.
Args:
orig_img (torch.tensor): The original image with a batch dimension. Expected batch size is 1.
Using any other batch size may lead to unexpected behavior.
modifier (np.ndarray): A numpy array with modifier(s) for the image.
Returns:
torch.tensor: The perturbed image from original image and modifier.
"""
assert orig_img.ndim == 4, "`orig_img` must be a 4D tensor"
assert modifier.ndim == 4, "`modifier` must be a 4D tensor"
b = modifier.shape[0]
x = orig_img.shape[1]
y = orig_img.shape[2]
z = orig_img.shape[3]
new_modifier = np.zeros((b, x, y, z), dtype=np.float32)
if x != modifier.shape[1] or y != modifier.shape[2]:
for k, v in enumerate(modifier):
new_modifier[k, :, :, :] = cv2.resize(
modifier[k, :, :, :],
(x, y),
interpolation=cv2.INTER_LINEAR,
)
else:
new_modifier = modifier
if self.config["use_tanh"]:
return torch.tanh(orig_img + new_modifier) / 2
else:
return orig_img + new_modifier
def l2_distance_loss(self, orig_img: torch.tensor, new_img: torch.tensor):
"""Calculates the L2 loss between the image and the new images.
Args:
orig_img (torch.tensor): The original image tensor.
new_img (torch.tensor): The tensor containing the perturbed images from the original image.
Returns:
np.ndarray: The numpy array containing the L2 loss between the original image and the perturbed images.
"""
# assert orig_img.shape == new_img.shape, "Images must be the same shape"
assert new_img.ndim == 4, "`new_img` must be a 4D tensor"
dim = (1, 2, 3)
if self.config["use_tanh"]:
return (
torch.sum(torch.square(new_img - torch.tanh(orig_img) / 2), dim=dim)
.detach()
.cpu()
.numpy()
)
else:
return (
torch.sum(torch.square(new_img - orig_img), dim=dim)
.detach()
.cpu()
.numpy()
)
def confidence_loss(self, new_img: torch.tensor, target: torch.tensor):
"""Calculate the confidence loss between the perturbed images and target.
Args:
new_img (torch.tensor): A 4D tensor containing the perturbed images.
target (torch.tensor): A 2D tensor containing the target labels.
Returns:
np.ndarray: A numpy array containing the confidence loss between the perturbed images and target.
"""
assert new_img.ndim == 4, "`new_img` must be of shape (N, H, W, C)"
assert (
target.ndim == 2
), "`target` must be of shape (N,L) where L is number of classes"
new_img = new_img.permute(0, 3, 1, 2)
model_output = self.model(new_img)
if self.config["use_log"]:
model_output = F.softmax(model_output, dim=1)
real = torch.sum(target * model_output, dim=1)
other = torch.max((1 - target) * model_output - (target * 10000), dim=1)[0]
if self.config["use_log"]:
real = torch.log(real + 1e-30)
other = torch.log(other + 1e-30)
confidence = torch.tensor(self.config["confidence"], device=self.device).type(
torch.float64
)
if self.config["targeted"]:
# If targetted, optimize for making the other class most likely
output = (
torch.max(torch.zeros_like(real), other - real + confidence)
.detach()
.cpu()
.numpy()
)
else:
# If untargetted, optimize for making this class least likely.
output = (
torch.max(torch.zeros_like(real), real - other + confidence)
.detach()
.cpu()
.numpy()
)
return output, model_output
def total_loss(
self,
orig_img: torch.tensor,
new_img: torch.tensor,
target: torch.tensor,
const: int,
):
"""Calculate the total loss for the original image and the perturbed images.
Args:
orig_img (torch.tensor): A 4D tensor containing the original image.
new_img (torch.tensor): A 4D tensor containing the perturbed images.
target (torch.tensor): A 2D tensor containing the target labels.
const (int): The constant to be used in calculating the loss, with which confidence loss is scaled.
Returns:
np.ndarray: A numpy array containing the total loss for the original image and the perturbed images.
"""
l2_loss = self.l2_distance_loss(orig_img, new_img)
confidence_loss, model_output = self.confidence_loss(new_img, target)
return (
l2_loss + const * confidence_loss,
l2_loss,
confidence_loss,
model_output,
)
# Adapted from original code
def max_pooling(self, modifier: np.ndarray, patch_size: int):
"""Max pooling operation on a single-channel modifier with a given patch size.
The array remains the same size after the operation, only the patches have max value throughout.
Args:
modifier (np.ndarray): A numpy array containing a channel of the perturbation.
patch_size (int): The size of the patches to be max pooled.
Returns:
np.ndarray: A 2D modifier array containing the max pooled patches.
"""
assert modifier.ndim == 2, "`modifier` must be a 2D array"
img_pool = np.copy(modifier)
img_x = modifier.shape[0]
img_y = modifier.shape[1]
for i in range(0, img_x, patch_size):
for j in range(0, img_y, patch_size):
img_pool[i : i + patch_size, j : j + patch_size] = np.max(
modifier[i : i + patch_size, j : j + patch_size]
)
return img_pool
def zero_order_gradients(self, losses: np.ndarray):
"""Calculate the zero order gradients for the losses.
Args:
losses (np.ndarray): A numpy array containing the losses with length - 2 * batch_size + 1
Returns:
np.ndarray: A numpy array containing the zero order gradients for the losses.
"""
grad = np.zeros(self.config["batch_size"])
for i in range(self.config["batch_size"]):
grad[i] = (losses[i * 2 + 1] - losses[i * 2 + 2]) / 0.0002
return grad
def coordinate_adam(
self, indices: np.ndarray, grad: np.ndarray, modifier: np.ndarray, proj: bool
):
"""Perform inplace coordinate-wise Adam update on modifier.
Args:
indices (np.ndarray): A numpy array containing the indices of the coordinates to be updated.
grad (np.ndarray): A numpy array containing the gradients.
modifier (np.ndarray): A numpy array containing the current modifier/perturbation.
proj (bool): Whether to limit the new values of the modifier between up and down limits.
"""
# First moment
mt = self.mt_arr[indices]
mt = self.config["adam_beta1"] * mt + (1 - self.config["adam_beta1"]) * grad
self.mt_arr[indices] = mt
# Second moment
vt = self.vt_arr[indices]
vt = self.config["adam_beta2"] * vt + (1 - self.config["adam_beta2"]) * (
grad * grad
)
self.vt_arr[indices] = vt
epochs = self.adam_epochs[indices]
# Bias Correction
mt_hat = mt / (1 - np.power(self.config["adam_beta1"], epochs))
vt_hat = vt / (1 - np.power(self.config["adam_beta2"], epochs))
m = modifier.reshape(-1)
old_val = m[indices]
old_val -= (
self.config["learning_rate"]
* mt_hat
/ (np.sqrt(vt_hat) + self.config["adam_eps"])
)
if proj:
old_val = np.maximum(
np.minimum(old_val, self.up[indices]), self.down[indices]
)
m[indices] = old_val
self.adam_epochs[indices] = epochs + 1
# return m.reshape(modifier.shape)
# Adapted from original code
def get_new_prob(
self, modifier: np.ndarray, max_pooling_ratio: int = 8, gen_double: bool = False
):
"""
Calculate the new probabilities by performing max pooling on the modifier.
Args:
modifier (np.ndarray): A numpy array containing the perturbation.
max_pooling_ratio (int): The ratio of the size of the patches to be max pooled.
gen_double (bool): Whether to double the size of the perturbation after max pooling.
Returns:
np.ndarray: A numpy array containing the new probabilities.
"""
modifier = np.squeeze(modifier)
old_shape = modifier.shape
if gen_double:
new_shape = (old_shape[0] * 2, old_shape[1] * 2, old_shape[2])
else:
new_shape = old_shape
prob = np.empty(shape=new_shape, dtype=np.float32)
for i in range(modifier.shape[2]):
image = np.abs(modifier[:, :, i])
image_pool = self.max_pooling(image, old_shape[0] // max_pooling_ratio)
if gen_double:
prob[:, :, i] = np.array(
Image.fromarray(image_pool).resize(
(new_shape[0], new_shape[1]), Image.NEAREST
)
)
else:
prob[:, :, i] = image_pool
# NOTE: This is here to handle all zeros input
if np.sum(prob) != 0:
prob /= np.sum(prob)
else: # pragma: no cover
prob = np.ones(shape=new_shape, dtype=np.float32)
prob /= np.sum(prob)
return prob
# Adapted from original code
def resize_img(
self,
small_x: int,
small_y: int,
num_channels: int,
modifier: np.ndarray,
max_pooling_ratio: int = 8,
reset_only: bool = False,
):
"""
Resize the image to the specified size.
Args:
small_x (int): The new x size of the image.
small_y (int): The new y size of the image.
num_channels (int): The number of channels in the image.
modifier (np.ndarray): A numpy array containing the perturbation.
max_pooling_ratio (int): The ratio of the size of the patches to be max pooled.
reset_only (bool): Whether to only reset the image, or to resize and crop as well.
"""
small_single_shape = (small_x, small_y, num_channels)
new_modifier = np.zeros((1,) + small_single_shape, dtype=np.float32)
if not reset_only:
# run the resize_op once to get the scaled image
assert modifier.ndim == 4, "Expected 4D array as modifier"
prev_modifier = np.copy(modifier)
for k, v in enumerate(modifier):
new_modifier[k, :, :, :] = cv2.resize(
modifier[k, :, :, :],
(small_x, small_y),
interpolation=cv2.INTER_LINEAR,
)
# prepare the list of all valid variables
var_size = np.prod(small_single_shape)
self.var_list = np.array(range(0, var_size), dtype=np.int32)
# ADAM status
self.mt_arr = np.zeros(var_size, dtype=np.float32)
self.vt_arr = np.zeros(var_size, dtype=np.float32)
self.adam_epochs = np.ones(var_size, dtype=np.int32)
# update sample probability
if reset_only:
self.sample_prob = np.ones(var_size, dtype=np.float32) / var_size
else:
self.sample_prob = self.get_new_prob(prev_modifier, max_pooling_ratio, True)
self.sample_prob = self.sample_prob.reshape(var_size)
return new_modifier
def single_step(
self,
modifier: np.ndarray,
orig_img: torch.tensor,
target: torch.tensor,
const: int,
max_pooling_ratio: int = 8,
var_indice: list = None,
):
"""
Perform a single step of optimization.
Args:
modifier (np.ndarray): A numpy array containing the perturbation.
orig_img (torch.tensor): The original image.
target (torch.tensor): The target image.
const (int): The constant to be used in the loss function.
max_pooling_ratio (int): The ratio of the size of the patches to be max pooled.
var_indice (list): The indices of the coordinates to be optimized.
Returns:
(float, float, float, np.ndarray, torch.tensor):
The total loss, the L2 loss, the confidence loss,
model output on perturbed image, the perturbed image.
"""
assert modifier.ndim == 4, "Expected 4D array as modifier"
assert modifier.shape[0] == 1, "Expected 1 batch for modifier"
assert target.ndim == 2, "Expected 2D tensor as target"
var = np.repeat(modifier, self.config["batch_size"] * 2 + 1, axis=0)
var_size = modifier.size
# Select indices for current iteration
if var_indice is None:
if self.config["use_importance"]:
var_indice = np.random.choice(
self.var_list.size,
self.config["batch_size"],
replace=False,
p=self.sample_prob,
)
else:
var_indice = np.random.choice(
self.var_list.size, self.config["batch_size"], replace=False
)
indices = self.var_list[var_indice]
for i in range(self.config["batch_size"]):
var[i * 2 + 1].reshape(-1)[indices[i]] += 0.0001
var[i * 2 + 2].reshape(-1)[indices[i]] -= 0.0001
new_img = self.get_perturbed_image(orig_img, var)
losses, l2_losses, confidence_losses, model_output = self.total_loss(
orig_img, new_img, target, const
)
if modifier.shape[1] > self.config["init_size"]:
self.sample_prob = self.get_new_prob(
modifier, max_pooling_ratio=max_pooling_ratio
)
self.sample_prob = self.sample_prob.reshape(var_size)
grad = self.zero_order_gradients(losses)
# Modifier is updated here, so is adam epochs, mt_arr, and vt_arr
self.coordinate_adam(indices, grad, modifier, not self.config["use_tanh"])
return (
losses[0],
l2_losses[0],
confidence_losses[0],
model_output[0].detach().numpy(),
new_img[0],
)
def attack(
self,
orig_img: np.ndarray,
target: np.ndarray,
modifier_init: np.ndarray = None,
max_pooling_ratio: int = 8,
):
"""
Perform the attack on coordinate-batches.
Args:
orig_img (np.ndarray): The original image.
target (np.ndarray): The target image.
modifier_init (np.ndarray): The initial modifier. Default is `None`.
max_pooling_ratio (int): The ratio of the size of the patches to be max pooled.
Returns:
(np.ndarray, np.ndarray): The best perturbed image and best constant for scaling confidence loss.
"""
def compare(x, y):
if not isinstance(x, (float, int, np.int64)):
x = np.copy(x)
if self.config["targeted"]:
x[y] -= self.config["confidence"]
else:
x[y] += self.config["confidence"]
x = np.argmax(x)
if self.config["targeted"]:
return x == y
else:
return x != y
assert orig_img.ndim == 3, "Expected 3D array as image"
assert target.ndim == 1, "Expected 1D array as target"
if modifier_init is not None:
assert modifier_init.ndim == 3, "Expected 3D array as modifier"
modifier = modifier_init.copy()
else:
if self.config["use_resize"]:
modifier = self.resize_img(
self.config["init_size"],
self.config["init_size"],
3,
modifier_init,
max_pooling_ratio,
reset_only=True,
)
else:
modifier = np.zeros(orig_img.shape, dtype=np.float32)
if self.config["use_tanh"]:
orig_img = np.arctanh(orig_img * 1.999999)
var_size = np.prod(orig_img.shape) # width * height * num_channels
self.var_list = np.array(range(0, var_size), dtype=np.int32)
# Initialize Adam optimizer values
self.mt_arr = np.zeros(var_size, dtype=np.float32)
self.vt_arr = np.zeros(var_size, dtype=np.float32)
self.adam_epochs = np.ones(var_size, dtype=np.int64)
self.up = np.zeros(var_size, dtype=np.float32)
self.down = np.zeros(var_size, dtype=np.float32)
# Sampling Probabilities
self.sample_prob = np.ones(var_size, dtype=np.float32) / var_size
low = 0.0
mid = self.config["initial_const"]
high = 1e10
if not self.config["use_tanh"]:
self.up = 0.5 - orig_img.reshape(-1)
self.down = -0.5 - orig_img.reshape(-1)
outer_best_const = mid
outer_best_l2 = 1e10
outer_best_score = -1
outer_best_adv = orig_img
# Make Everything 4D and Tensorize
orig_img = torch.from_numpy(orig_img).unsqueeze(0).to(self.device)
target = torch.from_numpy(target).unsqueeze(0).to(self.device)
modifier = modifier.reshape((-1,) + modifier.shape)
for outer_step in range(self.config["binary_search_steps"]):
best_l2 = 1e10
best_score = -1
# NOTE: In the original implemenation there is a step to move mid to high
# at last step with some condition
prev = 1e6
last_confidence_loss = 1.0
if modifier_init is not None:
assert modifier_init.ndim == 3, "Expected 3D array as modifier"
modifier = modifier_init.copy()
modifier = modifier.reshape((-1,) + modifier.shape)
else:
if self.config["use_resize"]:
modifier = self.resize_img(
self.config["init_size"],
self.config["init_size"],
3,
modifier_init,
max_pooling_ratio,
reset_only=True,
)
else:
modifier = np.zeros(orig_img.shape, dtype=np.float32)
self.mt_arr.fill(0.0)
self.vt_arr.fill(0.0)
self.adam_epochs.fill(1)
stage = 0
eval_costs = 0
# NOTE: Original code allows for a custom start point in iterations
for iter in range(0, self.config["max_iterations"]):
if self.config["use_resize"]:
if iter == self.config["resize_iter_1"]:
modifier = self.resize_img(
self.config["init_size"] * 2,
self.config["init_size"] * 2,
3,
modifier,
max_pooling_ratio,
)
if iter == self.config["resize_iter_2"]:
modifier = self.resize_img(
self.config["init_size"] * 4,
self.config["init_size"] * 4,
3,
modifier,
max_pooling_ratio,
)
if iter % (self.config["max_iterations"] // 10) == 0:
new_img = self.get_perturbed_image(orig_img, modifier)
(
total_losses,
l2_losses,
confidence_losses,
model_output,
) = self.total_loss(orig_img, new_img, target, mid)
print(
f"iter = {iter}, cost = {eval_costs}, size = {modifier.shape}, "
f"total_loss = {total_losses[0]:.5g}, l2_loss = {l2_losses[0]:.5g}, "
f"confidence_loss = {confidence_losses[0]:.5g}"
)
(
total_loss,
l2_loss,
confidence_loss,
model_output,
adv_img,
) = self.single_step(
modifier, orig_img, target, mid, max_pooling_ratio=max_pooling_ratio
)
eval_costs += self.config["batch_size"]
if (
confidence_loss == 0.0
and last_confidence_loss != 0.0
and stage == 0
):
if self.config["reset_adam_after_found"]:
print("Resetting Adam")
self.mt_arr.fill(0.0)
self.vt_arr.fill(0.0)
self.adam_epochs.fill(1)
print("Setting Stage to 1")
stage = 1
last_confidence_loss = confidence_loss
if (
self.config["abort_early"]
and iter % self.config["early_stop_iters"] == 0
):
if total_loss > prev * 0.9999:
print("Early stopping because there is no improvement")
break
prev = total_loss
if l2_loss < best_l2 and compare(model_output, np.argmax(target[0])):
best_l2 = l2_loss
best_score = np.argmax(model_output)
if l2_loss < outer_best_l2 and compare(
model_output, np.argmax(target[0])
):
outer_best_l2 = l2_loss
outer_best_score = np.argmax(model_output)
outer_best_adv = adv_img
outer_best_const = mid
if compare(best_score, np.argmax(target[0])) and best_score != -1:
print("Old Constant: ", mid)
high = min(high, mid)
if high < 1e9:
mid = (low + high) / 2
print("New Constant: ", mid)
else:
print("Old Constant: ", mid)
low = max(low, mid)
if high < 1e9: # pragma: no cover
mid = (low + high) / 2
else: # pragma: no cover
mid *= 10
print("new constant: ", mid)
return outer_best_adv, outer_best_const
|
[
"numpy.abs",
"numpy.sum",
"numpy.argmax",
"numpy.empty",
"numpy.ones",
"numpy.prod",
"torch.square",
"numpy.arctanh",
"numpy.copy",
"numpy.power",
"numpy.max",
"numpy.random.choice",
"torch.log",
"cv2.resize",
"numpy.repeat",
"numpy.minimum",
"torch.zeros_like",
"torch.max",
"numpy.squeeze",
"torch.sum",
"torch.tanh",
"torch.from_numpy",
"numpy.zeros",
"torch.nn.functional.softmax",
"PIL.Image.fromarray",
"torch.tensor",
"numpy.sqrt"
] |
[((2303, 2329), 'numpy.prod', 'np.prod', (['input_image_shape'], {}), '(input_image_shape)\n', (2310, 2329), True, 'import numpy as np\n'), ((2498, 2534), 'numpy.zeros', 'np.zeros', (['var_size'], {'dtype': 'np.float32'}), '(var_size, dtype=np.float32)\n', (2506, 2534), True, 'import numpy as np\n'), ((2557, 2593), 'numpy.zeros', 'np.zeros', (['var_size'], {'dtype': 'np.float32'}), '(var_size, dtype=np.float32)\n', (2565, 2593), True, 'import numpy as np\n'), ((2621, 2654), 'numpy.ones', 'np.ones', (['var_size'], {'dtype': 'np.int64'}), '(var_size, dtype=np.int64)\n', (2628, 2654), True, 'import numpy as np\n'), ((3590, 3630), 'numpy.zeros', 'np.zeros', (['(b, x, y, z)'], {'dtype': 'np.float32'}), '((b, x, y, z), dtype=np.float32)\n', (3598, 3630), True, 'import numpy as np\n'), ((6083, 6122), 'torch.sum', 'torch.sum', (['(target * model_output)'], {'dim': '(1)'}), '(target * model_output, dim=1)\n', (6092, 6122), False, 'import torch\n'), ((8774, 8791), 'numpy.copy', 'np.copy', (['modifier'], {}), '(modifier)\n', (8781, 8791), True, 'import numpy as np\n'), ((9514, 9549), 'numpy.zeros', 'np.zeros', (["self.config['batch_size']"], {}), "(self.config['batch_size'])\n", (9522, 9549), True, 'import numpy as np\n'), ((12004, 12024), 'numpy.squeeze', 'np.squeeze', (['modifier'], {}), '(modifier)\n', (12014, 12024), True, 'import numpy as np\n'), ((12221, 12264), 'numpy.empty', 'np.empty', ([], {'shape': 'new_shape', 'dtype': 'np.float32'}), '(shape=new_shape, dtype=np.float32)\n', (12229, 12264), True, 'import numpy as np\n'), ((13867, 13920), 'numpy.zeros', 'np.zeros', (['((1,) + small_single_shape)'], {'dtype': 'np.float32'}), '((1,) + small_single_shape, dtype=np.float32)\n', (13875, 13920), True, 'import numpy as np\n'), ((14448, 14475), 'numpy.prod', 'np.prod', (['small_single_shape'], {}), '(small_single_shape)\n', (14455, 14475), True, 'import numpy as np\n'), ((14589, 14625), 'numpy.zeros', 'np.zeros', (['var_size'], {'dtype': 'np.float32'}), '(var_size, dtype=np.float32)\n', (14597, 14625), True, 'import numpy as np\n'), ((14648, 14684), 'numpy.zeros', 'np.zeros', (['var_size'], {'dtype': 'np.float32'}), '(var_size, dtype=np.float32)\n', (14656, 14684), True, 'import numpy as np\n'), ((14712, 14745), 'numpy.ones', 'np.ones', (['var_size'], {'dtype': 'np.int32'}), '(var_size, dtype=np.int32)\n', (14719, 14745), True, 'import numpy as np\n'), ((16255, 16317), 'numpy.repeat', 'np.repeat', (['modifier', "(self.config['batch_size'] * 2 + 1)"], {'axis': '(0)'}), "(modifier, self.config['batch_size'] * 2 + 1, axis=0)\n", (16264, 16317), True, 'import numpy as np\n'), ((19860, 19883), 'numpy.prod', 'np.prod', (['orig_img.shape'], {}), '(orig_img.shape)\n', (19867, 19883), True, 'import numpy as np\n'), ((20052, 20088), 'numpy.zeros', 'np.zeros', (['var_size'], {'dtype': 'np.float32'}), '(var_size, dtype=np.float32)\n', (20060, 20088), True, 'import numpy as np\n'), ((20111, 20147), 'numpy.zeros', 'np.zeros', (['var_size'], {'dtype': 'np.float32'}), '(var_size, dtype=np.float32)\n', (20119, 20147), True, 'import numpy as np\n'), ((20175, 20208), 'numpy.ones', 'np.ones', (['var_size'], {'dtype': 'np.int64'}), '(var_size, dtype=np.int64)\n', (20182, 20208), True, 'import numpy as np\n'), ((20227, 20263), 'numpy.zeros', 'np.zeros', (['var_size'], {'dtype': 'np.float32'}), '(var_size, dtype=np.float32)\n', (20235, 20263), True, 'import numpy as np\n'), ((20284, 20320), 'numpy.zeros', 'np.zeros', (['var_size'], {'dtype': 'np.float32'}), '(var_size, dtype=np.float32)\n', (20292, 20320), True, 'import numpy as np\n'), ((2716, 2751), 'numpy.ones', 'np.ones', (['var_size'], {'dtype': 'np.float32'}), '(var_size, dtype=np.float32)\n', (2723, 2751), True, 'import numpy as np\n'), ((6036, 6066), 'torch.nn.functional.softmax', 'F.softmax', (['model_output'], {'dim': '(1)'}), '(model_output, dim=1)\n', (6045, 6066), True, 'import torch.nn.functional as F\n'), ((6139, 6201), 'torch.max', 'torch.max', (['((1 - target) * model_output - target * 10000)'], {'dim': '(1)'}), '((1 - target) * model_output - target * 10000, dim=1)\n', (6148, 6201), False, 'import torch\n'), ((6262, 6285), 'torch.log', 'torch.log', (['(real + 1e-30)'], {}), '(real + 1e-30)\n', (6271, 6285), False, 'import torch\n'), ((6306, 6330), 'torch.log', 'torch.log', (['(other + 1e-30)'], {}), '(other + 1e-30)\n', (6315, 6330), False, 'import torch\n'), ((12328, 12353), 'numpy.abs', 'np.abs', (['modifier[:, :, i]'], {}), '(modifier[:, :, i])\n', (12334, 12353), True, 'import numpy as np\n'), ((12799, 12811), 'numpy.sum', 'np.sum', (['prob'], {}), '(prob)\n', (12805, 12811), True, 'import numpy as np\n'), ((12838, 12850), 'numpy.sum', 'np.sum', (['prob'], {}), '(prob)\n', (12844, 12850), True, 'import numpy as np\n'), ((12904, 12946), 'numpy.ones', 'np.ones', ([], {'shape': 'new_shape', 'dtype': 'np.float32'}), '(shape=new_shape, dtype=np.float32)\n', (12911, 12946), True, 'import numpy as np\n'), ((12967, 12979), 'numpy.sum', 'np.sum', (['prob'], {}), '(prob)\n', (12973, 12979), True, 'import numpy as np\n'), ((14108, 14125), 'numpy.copy', 'np.copy', (['modifier'], {}), '(modifier)\n', (14115, 14125), True, 'import numpy as np\n'), ((19808, 19839), 'numpy.arctanh', 'np.arctanh', (['(orig_img * 1.999999)'], {}), '(orig_img * 1.999999)\n', (19818, 19839), True, 'import numpy as np\n'), ((20382, 20417), 'numpy.ones', 'np.ones', (['var_size'], {'dtype': 'np.float32'}), '(var_size, dtype=np.float32)\n', (20389, 20417), True, 'import numpy as np\n'), ((3781, 3853), 'cv2.resize', 'cv2.resize', (['modifier[k, :, :, :]', '(x, y)'], {'interpolation': 'cv2.INTER_LINEAR'}), '(modifier[k, :, :, :], (x, y), interpolation=cv2.INTER_LINEAR)\n', (3791, 3853), False, 'import cv2\n'), ((4039, 4074), 'torch.tanh', 'torch.tanh', (['(orig_img + new_modifier)'], {}), '(orig_img + new_modifier)\n', (4049, 4074), False, 'import torch\n'), ((6353, 6412), 'torch.tensor', 'torch.tensor', (["self.config['confidence']"], {'device': 'self.device'}), "(self.config['confidence'], device=self.device)\n", (6365, 6412), False, 'import torch\n'), ((9023, 9075), 'numpy.max', 'np.max', (['modifier[i:i + patch_size, j:j + patch_size]'], {}), '(modifier[i:i + patch_size, j:j + patch_size])\n', (9029, 9075), True, 'import numpy as np\n'), ((10763, 10806), 'numpy.power', 'np.power', (["self.config['adam_beta1']", 'epochs'], {}), "(self.config['adam_beta1'], epochs)\n", (10771, 10806), True, 'import numpy as np\n'), ((10835, 10878), 'numpy.power', 'np.power', (["self.config['adam_beta2']", 'epochs'], {}), "(self.config['adam_beta2'], epochs)\n", (10843, 10878), True, 'import numpy as np\n'), ((11041, 11056), 'numpy.sqrt', 'np.sqrt', (['vt_hat'], {}), '(vt_hat)\n', (11048, 11056), True, 'import numpy as np\n'), ((11161, 11198), 'numpy.minimum', 'np.minimum', (['old_val', 'self.up[indices]'], {}), '(old_val, self.up[indices])\n', (11171, 11198), True, 'import numpy as np\n'), ((14214, 14303), 'cv2.resize', 'cv2.resize', (['modifier[k, :, :, :]', '(small_x, small_y)'], {'interpolation': 'cv2.INTER_LINEAR'}), '(modifier[k, :, :, :], (small_x, small_y), interpolation=cv2.\n INTER_LINEAR)\n', (14224, 14303), False, 'import cv2\n'), ((14836, 14871), 'numpy.ones', 'np.ones', (['var_size'], {'dtype': 'np.float32'}), '(var_size, dtype=np.float32)\n', (14843, 14871), True, 'import numpy as np\n'), ((16506, 16609), 'numpy.random.choice', 'np.random.choice', (['self.var_list.size', "self.config['batch_size']"], {'replace': '(False)', 'p': 'self.sample_prob'}), "(self.var_list.size, self.config['batch_size'], replace=\n False, p=self.sample_prob)\n", (16522, 16609), True, 'import numpy as np\n'), ((16751, 16829), 'numpy.random.choice', 'np.random.choice', (['self.var_list.size', "self.config['batch_size']"], {'replace': '(False)'}), "(self.var_list.size, self.config['batch_size'], replace=False)\n", (16767, 16829), True, 'import numpy as np\n'), ((18693, 18703), 'numpy.copy', 'np.copy', (['x'], {}), '(x)\n', (18700, 18703), True, 'import numpy as np\n'), ((18898, 18910), 'numpy.argmax', 'np.argmax', (['x'], {}), '(x)\n', (18907, 18910), True, 'import numpy as np\n'), ((19705, 19747), 'numpy.zeros', 'np.zeros', (['orig_img.shape'], {'dtype': 'np.float32'}), '(orig_img.shape, dtype=np.float32)\n', (19713, 19747), True, 'import numpy as np\n'), ((22028, 22070), 'numpy.zeros', 'np.zeros', (['orig_img.shape'], {'dtype': 'np.float32'}), '(orig_img.shape, dtype=np.float32)\n', (22036, 22070), True, 'import numpy as np\n'), ((25310, 25333), 'numpy.argmax', 'np.argmax', (['model_output'], {}), '(model_output)\n', (25319, 25333), True, 'import numpy as np\n'), ((25548, 25571), 'numpy.argmax', 'np.argmax', (['model_output'], {}), '(model_output)\n', (25557, 25571), True, 'import numpy as np\n'), ((25696, 25716), 'numpy.argmax', 'np.argmax', (['target[0]'], {}), '(target[0])\n', (25705, 25716), True, 'import numpy as np\n'), ((20841, 20867), 'torch.from_numpy', 'torch.from_numpy', (['orig_img'], {}), '(orig_img)\n', (20857, 20867), False, 'import torch\n'), ((20914, 20938), 'torch.from_numpy', 'torch.from_numpy', (['target'], {}), '(target)\n', (20930, 20938), False, 'import torch\n'), ((25216, 25236), 'numpy.argmax', 'np.argmax', (['target[0]'], {}), '(target[0])\n', (25225, 25236), True, 'import numpy as np\n'), ((25425, 25445), 'numpy.argmax', 'np.argmax', (['target[0]'], {}), '(target[0])\n', (25434, 25445), True, 'import numpy as np\n'), ((12527, 12554), 'PIL.Image.fromarray', 'Image.fromarray', (['image_pool'], {}), '(image_pool)\n', (12542, 12554), False, 'from PIL import Image\n'), ((5083, 5115), 'torch.square', 'torch.square', (['(new_img - orig_img)'], {}), '(new_img - orig_img)\n', (5095, 5115), False, 'import torch\n'), ((6617, 6639), 'torch.zeros_like', 'torch.zeros_like', (['real'], {}), '(real)\n', (6633, 6639), False, 'import torch\n'), ((6894, 6916), 'torch.zeros_like', 'torch.zeros_like', (['real'], {}), '(real)\n', (6910, 6916), False, 'import torch\n'), ((4898, 4918), 'torch.tanh', 'torch.tanh', (['orig_img'], {}), '(orig_img)\n', (4908, 4918), False, 'import torch\n')]
|
import numpy as np
import pickle as pkl
import scipy.sparse as sp
no_of_graphs = int(input(" no. pf graphs "))
start = int(input(" starting point of graphs "))
#total_type_edges = int(input(" type of edges \n"))
total_type_edges = 4
data_folder = "./data/custom/"
for graph_num in range(start,no_of_graphs):
print("--------------------------------------")
num_nodes = int(input(" no. of nodes \n"))
A = [np.zeros((num_nodes,num_nodes)) for _ in range(total_type_edges)]
X = np.zeros(num_nodes)
labels = np.zeros(num_nodes)
num_of_edges = int(input(" no. of edges \n"))
print(" enter the edges : 0 moving across , 1 moving ahead , 2 no movement , 3 diagonall")
for edges in range(num_of_edges):
print("Edge # {}of{}".format(edges,num_of_edges))
x = int(input("edge details : X : "))
y = int(input("edge details : Y : "))
e = int(input("edge details : E : "))
A[e][x,y] = 1
A[e][y,x] = 1
#node_type = int(input(" no. of edges \n"))
print(" node type : 0 car,1 pole , 2 marker")
print(" Labels : 0 moving , 1 static " )
for e in range(num_nodes):
X[e] = int(input(" node {} type :".format(e)))
labels[e] = int(input(" labels for node {} : ".format(e)))
## dump stuff here
X = sp.csr_matrix(X)
A = [ sp.csr_matrix(a) for a in A ]
pkl.dump(labels,open(data_folder + "labels" + str(graph_num).zfill(4) + ".pkl","wb"))
pkl.dump(A,open(data_folder + "A" + str(graph_num).zfill(4) + ".pkl","wb"))
pkl.dump(X,open(data_folder + "X" + str(graph_num).zfill(4) + ".pkl","wb"))
|
[
"scipy.sparse.csr_matrix",
"numpy.zeros"
] |
[((498, 517), 'numpy.zeros', 'np.zeros', (['num_nodes'], {}), '(num_nodes)\n', (506, 517), True, 'import numpy as np\n'), ((531, 550), 'numpy.zeros', 'np.zeros', (['num_nodes'], {}), '(num_nodes)\n', (539, 550), True, 'import numpy as np\n'), ((1312, 1328), 'scipy.sparse.csr_matrix', 'sp.csr_matrix', (['X'], {}), '(X)\n', (1325, 1328), True, 'import scipy.sparse as sp\n'), ((424, 456), 'numpy.zeros', 'np.zeros', (['(num_nodes, num_nodes)'], {}), '((num_nodes, num_nodes))\n', (432, 456), True, 'import numpy as np\n'), ((1339, 1355), 'scipy.sparse.csr_matrix', 'sp.csr_matrix', (['a'], {}), '(a)\n', (1352, 1355), True, 'import scipy.sparse as sp\n')]
|
import numpy as np
# Variables controlling flow of the program
mode_globals = 2
save_history_globals = True
load_recording_globals = False
# Variables used for physical simulation
dt_main_simulation_globals = 0.020
speedup_globals = 1.0
# MPC
dt_mpc_simulation_globals = 0.20
mpc_horizon_globals = 20
# Parameters of the CartPole
m_globals = 2.0 # mass of pend, kg
M_globals = 1.0 # mass of cart, kg
L_globals = 1.0 # half length of pend, m
u_max_globals = 200.0 # max cart force, N
M_fric_globals = 0.0 # 1.0, # cart friction, N/m/s
J_fric_globals = 0.0 # 10.0, # friction coefficient on angular velocity, Nm/rad/s
v_max_globals = 10.0 # max DC motor speed, m/s, in absense of friction, used for motor back EMF model
controlDisturbance_globals = 0.0 # 0.01, # disturbance, as factor of u_max
sensorNoise_globals = 0.0 # 0.01, # noise, as factor of max values
g_globals = 9.81 # gravity, m/s^2
k_globals = 4.0 / 3.0 # Dimensionless factor, for moment of inertia of the pend (with L being half if the length)
# Variables for random trace generation
N_globals = 10 # Complexity of the random trace, number of random points used for interpolation
random_length_globals = 1e2 # Number of points in the random length trece
# def cartpole_dyncamic(position,):
def cartpole_integration(s, dt):
position = s.position + s.positionD * dt
positionD = s.positionD + s.positionDD * dt
angle = s.angle + s.angleD * dt
angleD = s.angleD + s.angleDD * dt
return position, positionD, angle, angleD
def cartpole_ode(p, s, u):
ca = np.cos(s.angle)
sa = np.sin(s.angle)
A = (p.k + 1) * (p.M + p.m) - p.m * (ca ** 2)
angleDD = (p.g * (p.m + p.M) * sa -
((p.J_fric * (p.m + p.M) * s.angleD) / (p.L * p.m)) -
ca * (p.m * p.L * (s.angleD ** 2) * sa + p.M_fric * s.positionD) +
ca * u) / (A * p.L)
positionDD = (
p.m * p.g * sa * ca -
((p.J_fric * s.angleD * ca) / (p.L)) -
(p.k + 1) * (p.m * p.L * (s.angleD ** 2) * sa + p.M_fric * s.positionD) +
(p.k + 1) * u
) / A
return angleDD, positionDD
def Q2u(Q, p):
u = p.u_max * Q + p.controlDisturbance * np.random.normal() * p.u_max # Q is drive -1:1 range, add noise on control
return u
|
[
"numpy.sin",
"numpy.random.normal",
"numpy.cos"
] |
[((1563, 1578), 'numpy.cos', 'np.cos', (['s.angle'], {}), '(s.angle)\n', (1569, 1578), True, 'import numpy as np\n'), ((1588, 1603), 'numpy.sin', 'np.sin', (['s.angle'], {}), '(s.angle)\n', (1594, 1603), True, 'import numpy as np\n'), ((2289, 2307), 'numpy.random.normal', 'np.random.normal', ([], {}), '()\n', (2305, 2307), True, 'import numpy as np\n')]
|
import torch
import random
import numpy as np
from pathlib import Path
from typing import Any, List, Tuple, Dict, Optional, Callable
from torch.utils.data import DataLoader
from torch.utils.data.sampler import SubsetRandomSampler
from image_classification.utils import import_class, import_object
import wandb
import logging
log = logging.getLogger(__name__)
class Trainer:
def __init__(self, config: dict):
self.config = config
self.set_seed(config.seed)
self.data_dir = Path(config.data_dir)/config.dataset.class_name
self.data_dir.mkdir(parents=True, exist_ok=True)
self.output_dir = Path(config.output_dir)/wandb.run.id
self.output_dir.mkdir(parents=True, exist_ok=True)
self.ckpt_dir = Path(self.config.checkpoint_dir)
self.ckpt_dir.mkdir(parents=True, exist_ok=True)
self.load_data()
self.load_model()
def set_seed(self, seed: int):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
log.info(f"Setting seed: {seed}")
def load_data(self):
config = self.config.dataset
train_preprocessor = import_object(config.train_preprocessor, "preprocessor")
test_preprocessor = import_object(config.test_preprocessor, "preprocessor")
dataset_class = import_class(config.module, config.class_name)
train_dataset = dataset_class(
is_train=True, transform=train_preprocessor,
data_dir=self.data_dir, download_data=config.download
)
eval_dataset = dataset_class(
is_train=True, transform=test_preprocessor,
data_dir=self.data_dir, download_data=config.download
)
test_dataset = dataset_class(
is_train=False, transform=test_preprocessor,
data_dir=self.data_dir, download_data=config.download
)
indices = range(len(train_dataset))
train_indices = indices[:config.train_eval_split]
eval_indices = indices[config.train_eval_split:]
train_sampler = SubsetRandomSampler(train_indices)
eval_sampler = SubsetRandomSampler(eval_indices)
self.train_dl = DataLoader(train_dataset, config.batch_size, sampler=train_sampler)
self.eval_dl = DataLoader(eval_dataset, config.batch_size*2, sampler=eval_sampler)
self.test_dl = DataLoader(test_dataset, config.batch_size*2, shuffle=False)
log.info(
f"Loaded datasets: "
f"train[{len(train_dataset)}] "
f"eval[{len(eval_dataset)}] "
f"test[{len(test_dataset)}] "
)
def load_model(self):
config = self.config.model
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model_class = import_class(config.module, config.class_name)
self.model = model_class(**config, device=device)
log.info(f"Loaded {config.class_name} on {device}")
|
[
"torch.utils.data.sampler.SubsetRandomSampler",
"numpy.random.seed",
"torch.utils.data.DataLoader",
"torch.manual_seed",
"pathlib.Path",
"random.seed",
"torch.cuda.is_available",
"image_classification.utils.import_class",
"image_classification.utils.import_object",
"logging.getLogger"
] |
[((333, 360), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (350, 360), False, 'import logging\n'), ((756, 788), 'pathlib.Path', 'Path', (['self.config.checkpoint_dir'], {}), '(self.config.checkpoint_dir)\n', (760, 788), False, 'from pathlib import Path\n'), ((945, 962), 'random.seed', 'random.seed', (['seed'], {}), '(seed)\n', (956, 962), False, 'import random\n'), ((971, 991), 'numpy.random.seed', 'np.random.seed', (['seed'], {}), '(seed)\n', (985, 991), True, 'import numpy as np\n'), ((1000, 1023), 'torch.manual_seed', 'torch.manual_seed', (['seed'], {}), '(seed)\n', (1017, 1023), False, 'import torch\n'), ((1255, 1311), 'image_classification.utils.import_object', 'import_object', (['config.train_preprocessor', '"""preprocessor"""'], {}), "(config.train_preprocessor, 'preprocessor')\n", (1268, 1311), False, 'from image_classification.utils import import_class, import_object\n'), ((1340, 1395), 'image_classification.utils.import_object', 'import_object', (['config.test_preprocessor', '"""preprocessor"""'], {}), "(config.test_preprocessor, 'preprocessor')\n", (1353, 1395), False, 'from image_classification.utils import import_class, import_object\n'), ((1420, 1466), 'image_classification.utils.import_class', 'import_class', (['config.module', 'config.class_name'], {}), '(config.module, config.class_name)\n', (1432, 1466), False, 'from image_classification.utils import import_class, import_object\n'), ((2164, 2198), 'torch.utils.data.sampler.SubsetRandomSampler', 'SubsetRandomSampler', (['train_indices'], {}), '(train_indices)\n', (2183, 2198), False, 'from torch.utils.data.sampler import SubsetRandomSampler\n'), ((2222, 2255), 'torch.utils.data.sampler.SubsetRandomSampler', 'SubsetRandomSampler', (['eval_indices'], {}), '(eval_indices)\n', (2241, 2255), False, 'from torch.utils.data.sampler import SubsetRandomSampler\n'), ((2280, 2347), 'torch.utils.data.DataLoader', 'DataLoader', (['train_dataset', 'config.batch_size'], {'sampler': 'train_sampler'}), '(train_dataset, config.batch_size, sampler=train_sampler)\n', (2290, 2347), False, 'from torch.utils.data import DataLoader\n'), ((2371, 2440), 'torch.utils.data.DataLoader', 'DataLoader', (['eval_dataset', '(config.batch_size * 2)'], {'sampler': 'eval_sampler'}), '(eval_dataset, config.batch_size * 2, sampler=eval_sampler)\n', (2381, 2440), False, 'from torch.utils.data import DataLoader\n'), ((2462, 2524), 'torch.utils.data.DataLoader', 'DataLoader', (['test_dataset', '(config.batch_size * 2)'], {'shuffle': '(False)'}), '(test_dataset, config.batch_size * 2, shuffle=False)\n', (2472, 2524), False, 'from torch.utils.data import DataLoader\n'), ((2878, 2924), 'image_classification.utils.import_class', 'import_class', (['config.module', 'config.class_name'], {}), '(config.module, config.class_name)\n', (2890, 2924), False, 'from image_classification.utils import import_class, import_object\n'), ((505, 526), 'pathlib.Path', 'Path', (['config.data_dir'], {}), '(config.data_dir)\n', (509, 526), False, 'from pathlib import Path\n'), ((636, 659), 'pathlib.Path', 'Path', (['config.output_dir'], {}), '(config.output_dir)\n', (640, 659), False, 'from pathlib import Path\n'), ((2818, 2843), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (2841, 2843), False, 'import torch\n')]
|
from pandas import DataFrame, read_hdf
import numpy as np
import os
import matplotlib.pyplot as plt
# parameters
directories = ["/data/u_rgast_software/PycharmProjects/BrainNetworks/BasalGanglia/stn_gpe_healthy_opt2/PopulationDrops"]
fid = "PopulationDrop"
params = ['eta_e', 'eta_p', 'eta_a', 'delta_e', 'delta_p', 'delta_a', 'tau_e', 'tau_p', 'tau_a',
'k_ee', 'k_pe', 'k_ae', 'k_ep', 'k_pp', 'k_ap', 'k_pa', 'k_aa', 'k_ps', 'k_as']
result_vars = ['results', 'fitness', 'sigma']
# load data into frame
df = DataFrame(data=np.zeros((1, len(params) + len(result_vars))), columns=result_vars + params)
for d in directories:
for fn in os.listdir(d):
if fn.startswith(fid) and fn.endswith(".h5"):
df = df.append(read_hdf(f"{d}/{fn}"))
df = df.iloc[1:, :]
# plot histograms of conditions
winner = df.nlargest(n=1, columns='fitness')
fig, ax = plt.subplots()
labels = ['C1', 'C2', 'C3', 'C4', 'C5', 'C6', 'C7']
model_rates = np.round(winner['results'].iloc[0][1], decimals=1)
target_rates = [60.0, 40.0, 70.0, 100.0, 30.0, 60.0, 100.0]
x = np.arange(len(labels)) # the label locations
width = 0.35 # the width of the bars
rects1 = ax.bar(x - width / 2, model_rates, width, label='model')
rects2 = ax.bar(x + width / 2, target_rates, width, label='target')
# Add some text for labels, title and custom x-axis tick labels, etc.
ax.set_ylabel('GPe firing rate')
ax.set_title('Comparison between model fit and target firing rates')
ax.set_xticks(x)
ax.set_xticklabels(labels)
ax.legend()
def autolabel(rects):
"""Attach a text label above each bar in *rects*, displaying its height."""
for rect in rects:
height = rect.get_height()
ax.annotate('{}'.format(height),
xy=(rect.get_x() + rect.get_width() / 2, height),
xytext=(0, 3), # 3 points vertical offset
textcoords="offset points",
ha='center', va='bottom')
autolabel(rects1)
autolabel(rects2)
fig.tight_layout()
plt.show()
|
[
"matplotlib.pyplot.show",
"pandas.read_hdf",
"matplotlib.pyplot.subplots",
"numpy.round",
"os.listdir"
] |
[((875, 889), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (887, 889), True, 'import matplotlib.pyplot as plt\n'), ((957, 1007), 'numpy.round', 'np.round', (["winner['results'].iloc[0][1]"], {'decimals': '(1)'}), "(winner['results'].iloc[0][1], decimals=1)\n", (965, 1007), True, 'import numpy as np\n'), ((2010, 2020), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (2018, 2020), True, 'import matplotlib.pyplot as plt\n'), ((648, 661), 'os.listdir', 'os.listdir', (['d'], {}), '(d)\n', (658, 661), False, 'import os\n'), ((744, 765), 'pandas.read_hdf', 'read_hdf', (['f"""{d}/{fn}"""'], {}), "(f'{d}/{fn}')\n", (752, 765), False, 'from pandas import DataFrame, read_hdf\n')]
|
import random
import numpy as np
import pytest
from pandas import DataFrame
from tests.utils import assert_dataframes_equals
from weaverbird.backends.pandas_executor.steps.rank import execute_rank
from weaverbird.pipeline.steps import RankStep
@pytest.fixture
def sample_df():
return DataFrame(
{'COUNTRY': ['France'] * 3 + ['USA'] * 4, 'VALUE': [10, 20, 30, 10, 40, 30, 50]}
)
def test_rank(sample_df: DataFrame):
step = RankStep(
name='rank',
valueCol='VALUE',
order='asc',
method='standard',
)
df_result = execute_rank(step, sample_df)
expected_result = DataFrame(
{
'COUNTRY': ['France', 'USA', 'France', 'France', 'USA', 'USA', 'USA'],
'VALUE': [10, 10, 20, 30, 30, 40, 50],
'VALUE_RANK': [1, 1, 3, 4, 4, 6, 7],
}
)
assert_dataframes_equals(df_result, expected_result)
def test_rank_with_groups(sample_df: DataFrame):
step = RankStep(
name='rank',
valueCol='VALUE',
groupby=['COUNTRY'],
order='desc',
method='dense',
newColumnName='rank',
)
df_result = execute_rank(step, sample_df)
expected_result = DataFrame(
{
'COUNTRY': ['France', 'USA', 'France', 'USA', 'France', 'USA', 'USA'],
'VALUE': [30, 50, 20, 40, 10, 30, 10],
'rank': [1, 1, 2, 2, 3, 3, 4],
}
)
assert_dataframes_equals(df_result, expected_result)
def test_benchmark_rank(benchmark):
groups = ['group_1', 'group_2']
df = DataFrame(
{
'value': np.random.random(1000),
'id': list(range(1000)),
'group': [random.choice(groups) for _ in range(1000)],
}
)
step = RankStep(
name='rank',
valueCol='value',
groupby=['group'],
order='desc',
method='dense',
newColumnName='rank',
)
benchmark(execute_rank, step, df)
|
[
"pandas.DataFrame",
"weaverbird.backends.pandas_executor.steps.rank.execute_rank",
"random.choice",
"tests.utils.assert_dataframes_equals",
"numpy.random.random",
"weaverbird.pipeline.steps.RankStep"
] |
[((292, 388), 'pandas.DataFrame', 'DataFrame', (["{'COUNTRY': ['France'] * 3 + ['USA'] * 4, 'VALUE': [10, 20, 30, 10, 40, 30, 50]\n }"], {}), "({'COUNTRY': ['France'] * 3 + ['USA'] * 4, 'VALUE': [10, 20, 30, \n 10, 40, 30, 50]})\n", (301, 388), False, 'from pandas import DataFrame\n'), ((448, 519), 'weaverbird.pipeline.steps.RankStep', 'RankStep', ([], {'name': '"""rank"""', 'valueCol': '"""VALUE"""', 'order': '"""asc"""', 'method': '"""standard"""'}), "(name='rank', valueCol='VALUE', order='asc', method='standard')\n", (456, 519), False, 'from weaverbird.pipeline.steps import RankStep\n'), ((575, 604), 'weaverbird.backends.pandas_executor.steps.rank.execute_rank', 'execute_rank', (['step', 'sample_df'], {}), '(step, sample_df)\n', (587, 604), False, 'from weaverbird.backends.pandas_executor.steps.rank import execute_rank\n'), ((628, 795), 'pandas.DataFrame', 'DataFrame', (["{'COUNTRY': ['France', 'USA', 'France', 'France', 'USA', 'USA', 'USA'],\n 'VALUE': [10, 10, 20, 30, 30, 40, 50], 'VALUE_RANK': [1, 1, 3, 4, 4, 6, 7]}"], {}), "({'COUNTRY': ['France', 'USA', 'France', 'France', 'USA', 'USA',\n 'USA'], 'VALUE': [10, 10, 20, 30, 30, 40, 50], 'VALUE_RANK': [1, 1, 3, \n 4, 4, 6, 7]})\n", (637, 795), False, 'from pandas import DataFrame\n'), ((852, 904), 'tests.utils.assert_dataframes_equals', 'assert_dataframes_equals', (['df_result', 'expected_result'], {}), '(df_result, expected_result)\n', (876, 904), False, 'from tests.utils import assert_dataframes_equals\n'), ((967, 1083), 'weaverbird.pipeline.steps.RankStep', 'RankStep', ([], {'name': '"""rank"""', 'valueCol': '"""VALUE"""', 'groupby': "['COUNTRY']", 'order': '"""desc"""', 'method': '"""dense"""', 'newColumnName': '"""rank"""'}), "(name='rank', valueCol='VALUE', groupby=['COUNTRY'], order='desc',\n method='dense', newColumnName='rank')\n", (975, 1083), False, 'from weaverbird.pipeline.steps import RankStep\n'), ((1151, 1180), 'weaverbird.backends.pandas_executor.steps.rank.execute_rank', 'execute_rank', (['step', 'sample_df'], {}), '(step, sample_df)\n', (1163, 1180), False, 'from weaverbird.backends.pandas_executor.steps.rank import execute_rank\n'), ((1204, 1365), 'pandas.DataFrame', 'DataFrame', (["{'COUNTRY': ['France', 'USA', 'France', 'USA', 'France', 'USA', 'USA'],\n 'VALUE': [30, 50, 20, 40, 10, 30, 10], 'rank': [1, 1, 2, 2, 3, 3, 4]}"], {}), "({'COUNTRY': ['France', 'USA', 'France', 'USA', 'France', 'USA',\n 'USA'], 'VALUE': [30, 50, 20, 40, 10, 30, 10], 'rank': [1, 1, 2, 2, 3, \n 3, 4]})\n", (1213, 1365), False, 'from pandas import DataFrame\n'), ((1422, 1474), 'tests.utils.assert_dataframes_equals', 'assert_dataframes_equals', (['df_result', 'expected_result'], {}), '(df_result, expected_result)\n', (1446, 1474), False, 'from tests.utils import assert_dataframes_equals\n'), ((1756, 1870), 'weaverbird.pipeline.steps.RankStep', 'RankStep', ([], {'name': '"""rank"""', 'valueCol': '"""value"""', 'groupby': "['group']", 'order': '"""desc"""', 'method': '"""dense"""', 'newColumnName': '"""rank"""'}), "(name='rank', valueCol='value', groupby=['group'], order='desc',\n method='dense', newColumnName='rank')\n", (1764, 1870), False, 'from weaverbird.pipeline.steps import RankStep\n'), ((1600, 1622), 'numpy.random.random', 'np.random.random', (['(1000)'], {}), '(1000)\n', (1616, 1622), True, 'import numpy as np\n'), ((1683, 1704), 'random.choice', 'random.choice', (['groups'], {}), '(groups)\n', (1696, 1704), False, 'import random\n')]
|
import numpy as np
import matplotlib.pyplot as plt
from sklearn import decomposition
from matplotlib import pylab
from matplotlib.patches import Rectangle
from pylab import cm
from prettytable import PrettyTable
class DataPlotting:
# singleton
instance = None
def __init__(self, calibration_data):
self.pca = None
# compute dimension reduction if needed
if calibration_data.shape[1] > 2:
self.pca = decomposition.PCA(n_components=2)
self.pca.fit(calibration_data)
# add singleton reference
DataPlotting.instance = self
def dim_reduction(self, input_data):
if self.pca is not None:
input_data = self.pca.transform(input_data)
return input_data
# apply dimension reduction if needed
if input_data.shape[1] > 2:
self.pca = decomposition.PCA(n_components=2)
self.pca.fit(input_data)
return input_data
def plot_text(self, info):
# get reference to current plot and hide axis
plot_ref = plt.gca()
plot_ref.get_xaxis().set_visible(False)
plot_ref.axes.get_yaxis().set_visible(False)
plt.setp(plot_ref, frame_on=False)
plt.axis([0, 1, 0, 1])
plt.text(0, 1, info, horizontalalignment='left', verticalalignment='top', transform=plot_ref.axes.transAxes)
def plot_clusters(self, input_data, labels, show_axes, title, sub_title, fixed_coord=None, show_legend=False):
# generate colors for labels
cluster_no = len(set(labels))
color_map = cm.get_cmap("rainbow", cluster_no) #rainbow, jet
colors = np.array([color_map(int(x)) for x in labels])
# apply dimension reduction if needed
input_data = self.dim_reduction(input_data)
# resolve axis
if fixed_coord is not None:
min_x = fixed_coord[0]
max_x = fixed_coord[1]
min_y = fixed_coord[2]
max_y = fixed_coord[3]
plt.axis([min_x, max_x, min_y, max_y])
else:
min_x = input_data[:, 0].min()
max_x = input_data[:, 0].max()
min_y = input_data[:, 1].min()
max_y = input_data[:, 1].max()
plt.axis([min_x - max_x/5, max_x + max_x/5, min_y - max_y/5, max_y + max_y/5])
# get reference to current plot and hide axis
plot_ref = plt.gca()
if not show_axes:
plot_ref.get_xaxis().set_visible(False)
plot_ref.axes.get_yaxis().set_visible(False)
# plot text, top and bottom
plt.text(0, 1, title, horizontalalignment='left', verticalalignment='bottom', transform=plot_ref.axes.transAxes)
plt.text(0, 0, '\n' + sub_title, horizontalalignment='left', verticalalignment='top', transform=plot_ref.axes.transAxes)
else:
# plot text, top and bottom
plt.text(0, 1, title, horizontalalignment='left', verticalalignment='bottom', transform=plot_ref.axes.transAxes)
plt.text(0, 0, '\n\n' + sub_title, horizontalalignment='left', verticalalignment='top', transform=plot_ref.axes.transAxes)
new_lines = sub_title.count("\n") + 1
plt.gcf().subplots_adjust(bottom=new_lines * 0.06)
# plot data, one scatter cmd for each cluster designating also the label
labels = np.array(labels)
for label_no in range(cluster_no):
idxs = np.where(labels == label_no)
plt.scatter(input_data[idxs][:, 0], input_data[idxs][:, 1], c=colors[idxs], s=50, label="C" + str(label_no))
if show_legend is True:
plt.legend(loc='lower left', bbox_to_anchor=(1.1, 0), ncol=5)
def plot_self_cells(self, points):
self.plot_points(points, 'x', 'red')
def plot_ab_boxes(self, box_list):
# get reference to current plot
plot_ref = plt.gca()
for box in box_list:
x = box[0][0]
y = box[0][1]
w = box[1][0] - x
h = box[1][1] - y
plot_ref.add_patch(Rectangle((x,y), w, h, color='blue', alpha=0.2))
def plot_points(self, points, marker, color):
if len(points) == 0:
return
# apply dimension reduction if needed
points = self.dim_reduction(points)
# http://matplotlib.org/api/artist_api.html#matplotlib.lines.Line2D.set_marker
if points.shape[0] > 0:
plt.scatter(points[:, 0], points[:, 1], marker=marker, c=color)
@staticmethod
def plot_snapshot(temp_data, temp_labels, temp_bounding_boxes, temp_self_points, snapshot_info, fixed_coord=None, plt_idx=1):
# start new figure
plt.figure(num=None, figsize=(14, 6), dpi=80, facecolor='w', edgecolor='k')
# plot points
pylab.subplot(1, 2, 1)
plt_idx += 1
DataPlotting.instance.plot_clusters(temp_data, temp_labels, title="", sub_title="", show_axes=True, fixed_coord=fixed_coord, show_legend=True)
DataPlotting.instance.plot_self_cells(temp_self_points)
# plot Ab boundingBox
DataPlotting.instance.plot_ab_boxes(temp_bounding_boxes)
# plot text
pylab.subplot(1, 2, 2)
plt_idx += 1
DataPlotting.instance.plot_text(snapshot_info)
pylab.show()
class DataPrinter:
def tabular(self, dct):
# construct table data
table_data = []
alg_list = set()
for input_data in dct:
row_data = []
row_data.append(input_data)
for alg in dct[input_data]:
row_data.append(dct[input_data][alg])
alg_list.add(alg)
table_data.append(row_data)
table_data = np.array(table_data).ravel()
col_no = len(alg_list) + 1
table_data.shape = (len(table_data)/col_no, col_no)
# construct table
table = PrettyTable()
table.add_column("Input Data", table_data[:, 0])
table.align["Input Data"] = "l"
col_idx = 1
for alg in alg_list:
table.add_column(alg, table_data[:, col_idx])
col_idx += 1
# print the ascii table
print(table)
|
[
"matplotlib.pylab.subplot",
"matplotlib.patches.Rectangle",
"matplotlib.pyplot.gca",
"matplotlib.pyplot.scatter",
"matplotlib.pyplot.legend",
"matplotlib.pyplot.setp",
"matplotlib.pyplot.axis",
"matplotlib.pyplot.text",
"matplotlib.pyplot.figure",
"numpy.where",
"numpy.array",
"prettytable.PrettyTable",
"sklearn.decomposition.PCA",
"pylab.cm.get_cmap",
"matplotlib.pyplot.gcf",
"matplotlib.pylab.show"
] |
[((1104, 1113), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (1111, 1113), True, 'import matplotlib.pyplot as plt\n'), ((1226, 1260), 'matplotlib.pyplot.setp', 'plt.setp', (['plot_ref'], {'frame_on': '(False)'}), '(plot_ref, frame_on=False)\n', (1234, 1260), True, 'import matplotlib.pyplot as plt\n'), ((1272, 1294), 'matplotlib.pyplot.axis', 'plt.axis', (['[0, 1, 0, 1]'], {}), '([0, 1, 0, 1])\n', (1280, 1294), True, 'import matplotlib.pyplot as plt\n'), ((1304, 1416), 'matplotlib.pyplot.text', 'plt.text', (['(0)', '(1)', 'info'], {'horizontalalignment': '"""left"""', 'verticalalignment': '"""top"""', 'transform': 'plot_ref.axes.transAxes'}), "(0, 1, info, horizontalalignment='left', verticalalignment='top',\n transform=plot_ref.axes.transAxes)\n", (1312, 1416), True, 'import matplotlib.pyplot as plt\n'), ((1629, 1663), 'pylab.cm.get_cmap', 'cm.get_cmap', (['"""rainbow"""', 'cluster_no'], {}), "('rainbow', cluster_no)\n", (1640, 1663), False, 'from pylab import cm\n'), ((2463, 2472), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (2470, 2472), True, 'import matplotlib.pyplot as plt\n'), ((3449, 3465), 'numpy.array', 'np.array', (['labels'], {}), '(labels)\n', (3457, 3465), True, 'import numpy as np\n'), ((3982, 3991), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (3989, 3991), True, 'import matplotlib.pyplot as plt\n'), ((4803, 4878), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'num': 'None', 'figsize': '(14, 6)', 'dpi': '(80)', 'facecolor': '"""w"""', 'edgecolor': '"""k"""'}), "(num=None, figsize=(14, 6), dpi=80, facecolor='w', edgecolor='k')\n", (4813, 4878), True, 'import matplotlib.pyplot as plt\n'), ((4911, 4933), 'matplotlib.pylab.subplot', 'pylab.subplot', (['(1)', '(2)', '(1)'], {}), '(1, 2, 1)\n', (4924, 4933), False, 'from matplotlib import pylab\n'), ((5302, 5324), 'matplotlib.pylab.subplot', 'pylab.subplot', (['(1)', '(2)', '(2)'], {}), '(1, 2, 2)\n', (5315, 5324), False, 'from matplotlib import pylab\n'), ((5412, 5424), 'matplotlib.pylab.show', 'pylab.show', ([], {}), '()\n', (5422, 5424), False, 'from matplotlib import pylab\n'), ((6025, 6038), 'prettytable.PrettyTable', 'PrettyTable', ([], {}), '()\n', (6036, 6038), False, 'from prettytable import PrettyTable\n'), ((465, 498), 'sklearn.decomposition.PCA', 'decomposition.PCA', ([], {'n_components': '(2)'}), '(n_components=2)\n', (482, 498), False, 'from sklearn import decomposition\n'), ((894, 927), 'sklearn.decomposition.PCA', 'decomposition.PCA', ([], {'n_components': '(2)'}), '(n_components=2)\n', (911, 927), False, 'from sklearn import decomposition\n'), ((2064, 2102), 'matplotlib.pyplot.axis', 'plt.axis', (['[min_x, max_x, min_y, max_y]'], {}), '([min_x, max_x, min_y, max_y])\n', (2072, 2102), True, 'import matplotlib.pyplot as plt\n'), ((2307, 2398), 'matplotlib.pyplot.axis', 'plt.axis', (['[min_x - max_x / 5, max_x + max_x / 5, min_y - max_y / 5, max_y + max_y / 5]'], {}), '([min_x - max_x / 5, max_x + max_x / 5, min_y - max_y / 5, max_y + \n max_y / 5])\n', (2315, 2398), True, 'import matplotlib.pyplot as plt\n'), ((2667, 2784), 'matplotlib.pyplot.text', 'plt.text', (['(0)', '(1)', 'title'], {'horizontalalignment': '"""left"""', 'verticalalignment': '"""bottom"""', 'transform': 'plot_ref.axes.transAxes'}), "(0, 1, title, horizontalalignment='left', verticalalignment=\n 'bottom', transform=plot_ref.axes.transAxes)\n", (2675, 2784), True, 'import matplotlib.pyplot as plt\n'), ((2793, 2917), 'matplotlib.pyplot.text', 'plt.text', (['(0)', '(0)', "('\\n' + sub_title)"], {'horizontalalignment': '"""left"""', 'verticalalignment': '"""top"""', 'transform': 'plot_ref.axes.transAxes'}), "(0, 0, '\\n' + sub_title, horizontalalignment='left',\n verticalalignment='top', transform=plot_ref.axes.transAxes)\n", (2801, 2917), True, 'import matplotlib.pyplot as plt\n'), ((2983, 3100), 'matplotlib.pyplot.text', 'plt.text', (['(0)', '(1)', 'title'], {'horizontalalignment': '"""left"""', 'verticalalignment': '"""bottom"""', 'transform': 'plot_ref.axes.transAxes'}), "(0, 1, title, horizontalalignment='left', verticalalignment=\n 'bottom', transform=plot_ref.axes.transAxes)\n", (2991, 3100), True, 'import matplotlib.pyplot as plt\n'), ((3109, 3235), 'matplotlib.pyplot.text', 'plt.text', (['(0)', '(0)', "('\\n\\n' + sub_title)"], {'horizontalalignment': '"""left"""', 'verticalalignment': '"""top"""', 'transform': 'plot_ref.axes.transAxes'}), "(0, 0, '\\n\\n' + sub_title, horizontalalignment='left',\n verticalalignment='top', transform=plot_ref.axes.transAxes)\n", (3117, 3235), True, 'import matplotlib.pyplot as plt\n'), ((3530, 3558), 'numpy.where', 'np.where', (['(labels == label_no)'], {}), '(labels == label_no)\n', (3538, 3558), True, 'import numpy as np\n'), ((3729, 3790), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'loc': '"""lower left"""', 'bbox_to_anchor': '(1.1, 0)', 'ncol': '(5)'}), "(loc='lower left', bbox_to_anchor=(1.1, 0), ncol=5)\n", (3739, 3790), True, 'import matplotlib.pyplot as plt\n'), ((4550, 4613), 'matplotlib.pyplot.scatter', 'plt.scatter', (['points[:, 0]', 'points[:, 1]'], {'marker': 'marker', 'c': 'color'}), '(points[:, 0], points[:, 1], marker=marker, c=color)\n', (4561, 4613), True, 'import matplotlib.pyplot as plt\n'), ((4170, 4218), 'matplotlib.patches.Rectangle', 'Rectangle', (['(x, y)', 'w', 'h'], {'color': '"""blue"""', 'alpha': '(0.2)'}), "((x, y), w, h, color='blue', alpha=0.2)\n", (4179, 4218), False, 'from matplotlib.patches import Rectangle\n'), ((5853, 5873), 'numpy.array', 'np.array', (['table_data'], {}), '(table_data)\n', (5861, 5873), True, 'import numpy as np\n'), ((3296, 3305), 'matplotlib.pyplot.gcf', 'plt.gcf', ([], {}), '()\n', (3303, 3305), True, 'import matplotlib.pyplot as plt\n')]
|
#!/usr/bin/env python
import numpy as np
import cPickle as pk
import tensorflow as tf
from keras import backend as K
from time import time
from variables import DTYPE, EPSILON
from utils import convert_type, discount, LinearVF, gauss_log_prob, numel, dot_not_flat
from mpi4py import MPI
comm = MPI.COMM_WORLD
rank = comm.Get_rank()
size = comm.Get_size()
DISTRIBUTED = size > 1
def dprint(*args, **kwargs):
if DISTRIBUTED and not rank == 0:
return
else:
print(args)
def sync_list(arrays, avg=True):
buffs = [np.copy(a) for a in arrays]
for a, b in zip(arrays, buffs):
comm.Allreduce(a, b, MPI.SUM)
if avg:
b /= float(size)
return buffs
class TRPO(object):
""" TRPO Implementation
Args:
env: a Gym environment
policy: a differentiable tf function
optimizer: an optimizer
delta: max KL penalty
gamma: discounting factor
"""
def __init__(self, env, policy=None, optimizer=None, delta=0.01,
gamma=0.99, update_freq=100, gae=True, gae_lam=0.97,
cg_damping=0.1, momentum=0.0):
self.env = env
self.policy = policy
self.optimizer = optimizer
self.delta = delta
self.gamma = gamma
self.update_freq = update_freq
self.step = 0
self.episodes = 0
self.vf = LinearVF()
self.gae = gae
self.gae_lam = gae_lam
self.cg_damping = cg_damping
self.momentum = momentum
self._reset_iter()
self.np_action_logstd_param = convert_type(0.01 * np.random.randn(1, policy.out_dim))
self.action_logstd_param = K.variable(self.np_action_logstd_param)
self.previous = [0.0 for _ in self.params]
self.stats = {
'avg_reward': [],
'total_steps': [],
'total_ep': [],
'total_time': [],
'kl_div': [],
'surr_loss': [],
'entropy': [],
}
self.build_computational_graphs()
self.start_time = time()
if DISTRIBUTED:
params = K.batch_get_value(self.params)
params = sync_list(params)
self.set_params(params)
@property
def n_iterations(self):
return self.step // self.update_freq
@property
def params(self):
return [self.action_logstd_param, ] + self.policy.params
def build_computational_graphs(self):
# Build loss graphs
a = K.placeholder(ndim=2, name='actions')
s = K.placeholder(ndim=2, name='states')
a_means = K.placeholder(ndim=2, name='action_means')
a_logstds = K.placeholder(ndim=2, name='actions_logstds')
advantages = K.placeholder(ndim=2, name='advantage_values')
new_logstds_shape = K.placeholder(ndim=2, name='logstds_shape') # Just a 0-valued tensor of the right shape
inputs = [a, s, a_means, a_logstds, advantages, new_logstds_shape]
self.surrogate, self.surr_graph, self.grads_surr_graph = self.build_surrogate(inputs)
self.entropy, self.ent_graph, self.grads_ent_graph = self.build_entropy(inputs)
self.kl, self.kl_graph, self.grads_kl_graph = self.build_kl(inputs)
self.losses = K.function(inputs, [self.surr_graph, self.ent_graph, self.kl_graph])
# TODO: Clean the following scrap
tangents = [K.placeholder(shape=K.get_value(p).shape) for p in self.params]
new_a_means = self.policy.model(s)
new_a_logstds = new_logstds_shape + self.action_logstd_param
stop_means, stop_logstds = K.stop_gradient(new_a_means), K.stop_gradient(new_a_logstds)
# NOTE: Following seems fishy. (cf: Sutskever's code, utils.py:gauss_selfKL_firstfixed())
stop_var = K.exp(2 * stop_logstds)
var = K.exp(2 * new_a_logstds)
temp = (stop_var + (stop_means - new_a_means)**2) / (2*var)
kl_first_graph = K.mean(new_a_logstds - stop_logstds + temp - 0.5)
grads_kl_first = K.gradients(kl_first_graph, self.params)
gvp_graph = [K.sum(g * t) for g, t in zip(grads_kl_first, tangents)]
grads_gvp_graph = K.gradients(gvp_graph, self.params)
# self.grads_gvp = K.function(inputs + tangents + self.params, [kl_first_graph, ])
self.grads_gvp = K.function(inputs + tangents + self.params, grads_gvp_graph)
def _reset_iter(self):
self.iter_reward = 0
self.iter_n_ep = 0
self.iter_actions = [[], ]
self.iter_states = [[], ]
self.iter_rewards = [[], ]
self.iter_action_mean = [[], ]
self.iter_action_logstd = [[], ]
self.iter_done = []
def _remove_episode(self, ep):
"""
ep: int or list of ints. Index of episodes to be remove from current
iteration.
"""
self.iter_rewards = np.delete(self.iter_rewards, ep, 0)
self.iter_actions = np.delete(self.iter_actions, ep, 0)
self.iter_states = np.delete(self.iter_states, ep, 0)
self.iter_action_mean = np.delete(self.iter_action_mean, ep, 0)
self.iter_action_logstd = np.delete(self.iter_action_logstd, ep, 0)
self.iter_done = np.delete(self.iter_done, ep, 0)
if isinstance(ep, list):
self.iter_n_ep -= len(ep)
self.episodes -= len(ep)
else:
self.iter_n_ep -= 1
self.episodes -= 1
def act(self, s):
"""
Sample from the policy, where the outputs of the net are the mean and
the param self.action_logstd_param gives you the logstd.
"""
s = convert_type(s)
s = s.reshape((1, -1))
action_mean = convert_type(self.policy(s))
out = np.copy(action_mean)
out += (np.exp(self.np_action_logstd_param) *
np.random.randn(*self.np_action_logstd_param.shape))
return out[0], {'action_mean': action_mean,
'action_logstd': self.np_action_logstd_param}
def new_episode(self, terminated=False):
"""
terminated: whether the episode was terminated by the env (True), or
manually (False).
"""
self.iter_done.append(terminated)
if not terminated or self.step % self.update_freq != 0:
self.iter_n_ep += 1
self.episodes += 1
self.iter_actions.append([])
self.iter_states.append([])
self.iter_rewards.append([])
self.iter_action_mean.append([])
self.iter_action_logstd.append([])
def learn(self, s0, a, r, s1, end_ep, action_info=None):
ep = self.iter_n_ep
self.iter_actions[ep].append(a)
self.iter_states[ep].append(s0)
self.iter_rewards[ep].append(r)
if action_info is not None:
self.iter_action_mean[ep].append(action_info['action_mean'])
self.iter_action_logstd[ep].append(action_info['action_logstd'])
self.step += 1
self.iter_reward += r
if self.step % self.update_freq == 0:
self.update()
def update(self):
"""
Performs the TRPO update of the parameters.
"""
returns = []
advantages = []
# Compute advantage
for ep in xrange(self.iter_n_ep+1):
r = discount(self.iter_rewards[ep], self.gamma)
b = self.vf(self.iter_states[ep])
if self.gae and len(b) > 0:
terminated = len(self.iter_done) != ep and self.iter_done[ep]
b1 = np.append(b, 0 if terminated else b[-1])
deltas = self.iter_rewards[ep] + self.gamma*b1[1:] - b1[:-1]
adv = discount(deltas, self.gamma * self.gae_lam)
else:
adv = r - b
returns.append(r)
advantages.append(adv)
# Fit baseline for next iter
self.vf.learn(self.iter_states, returns)
states = np.concatenate(self.iter_states)
actions = np.concatenate(self.iter_actions)
actions = convert_type(actions)
means = np.concatenate(self.iter_action_mean).reshape(states.shape[0], -1)
logstds = np.concatenate(self.iter_action_logstd).reshape(states.shape[0], -1)
# Standardize A() to have mean=0, std=1
advantage = np.concatenate(advantages).reshape(states.shape[0], -1)
advantage -= advantage.mean()
advantage /= (advantage.std() + EPSILON)
advantage = convert_type(advantage)
inputs = [actions, states, means, logstds, advantage]
# TODO: The following is to be cleaned, most of it can be made into a graph
#Begin of CG
surr_loss, surr_gradients = self.surrogate(*inputs)
def fisher_vec_prod(vectors):
a_logstds = np.zeros(means.shape, dtype=DTYPE) + logstds
new_logstds = np.zeros(means.shape, dtype=DTYPE)
args = [actions, states, means, a_logstds, advantage, new_logstds]
res = self.grads_gvp(args + vectors)
# GRAPH: directly get grads_graph and extend it with the following
return [r + (p * self.cg_damping) for r, p in zip(res, vectors)]
def conjgrad(fvp, grads, cg_iters=10, residual_tol=1e-10):
p = [np.copy(g) for g in grads]
r = [np.copy(g) for g in grads]
x = [np.zeros_like(g) for g in grads]
# GRAPH: extend fvp, control with tf.cond, inputs are p, r, x
rdotr = dot_not_flat(r, r)
# rdotr = dot_not_flat(grads, grads)
for i in xrange(cg_iters):
z = fvp(p)
pdotz = np.sum([np.sum(a*b) for a, b in zip(p, z)])
v = rdotr / pdotz
x = [a + (v*b) for a, b in zip(x, p)]
r = [a - (v*b) for a, b in zip(r, z)]
newrdotr = np.sum([np.sum(g**2) for g in grads])
mu = newrdotr / rdotr
p = [a + mu * b for a, b in zip(r, p)]
rdotr = newrdotr
if rdotr < residual_tol:
break
return x
grads = [-g for g in surr_gradients]
stepdir = conjgrad(fisher_vec_prod, grads)
# GRAPH: stepdir is a graph, extend it to shs
shs = 0.5 * dot_not_flat(stepdir, fisher_vec_prod(stepdir))
assert shs > 0
lm = np.sqrt(shs / self.delta)
fullstep = [s / lm for s in stepdir]
neggdotdir = dot_not_flat(grads, stepdir)
# GRAPH: All 5 lines above can be converted to a graph
# End of CG
# Begin Linesearch
def loss(params):
self.set_params(params)
return self.surrogate(*inputs)[0]
def linesearch(loss, params, fullstep, exp_improve_rate):
# GRAPH: graph the following with tf.cond
accept_ratio = 0.1
max_backtracks = 10
loss_val = loss(params)
for (i, stepfrac) in enumerate(0.5 ** np.arange(max_backtracks)):
update = [(stepfrac * f) for f in fullstep]
new_params = [p + u for p, u in zip(params, update)]
# new_params = [a + (stepfrac * b) for a, b in zip(params, fullstep)]
new_loss_val = loss(new_params)
actual_improve = loss_val - new_loss_val
exp_improve = stepfrac * exp_improve_rate
ratio = actual_improve / exp_improve
if ratio > accept_ratio and actual_improve > 0:
return update
# return new_params
return [0 for f in fullstep]
# return params
params = K.batch_get_value(self.params)
# Apply momentum pre-linesearch:
# params = [p + self.momentum * prev
# for p, prev in zip(params, self.previous)]
update = linesearch(loss, params, fullstep, neggdotdir / lm)
update = [u + f for f, u in zip(fullstep, update)]
if DISTRIBUTED:
update = sync_list(update, avg=True)
# fullstep = sync_list(fullstep, avg=True)
self.previous = [self.momentum * prev + u
for prev, u in zip(self.previous, update)]
# Apply momentum pre-linesearch:
# new_params = [p + u for p, u in zip(params, update)]
# Apply momentum post-linesearch:
new_params = [p + u for p, u in zip(params, self.previous)]
self.set_params(new_params)
# End Linesearch
a_logstds = np.zeros(means.shape, dtype=DTYPE) + logstds
new_logstds = np.zeros(means.shape, dtype=DTYPE)
args = [actions, states, means, a_logstds, advantage, new_logstds]
surr, ent, kl = self.losses(args)
stats = {
'avg_reward': self.iter_reward / float(max(self.iter_n_ep, 1)),
'total_steps': self.step,
'total_ep': int(self.episodes),
'total_time': time() - self.start_time,
'kl_div': float(kl),
'surr_loss': float(surr),
'entropy': float(ent),
}
dprint('*' * 20, 'Iteration ' + str(self.n_iterations), '*' * 20)
dprint('Average Reward on Iteration:', stats['avg_reward'])
dprint('Total Steps: ', self.step)
dprint('Total Epsiodes: ', self.episodes)
dprint('Time Elapsed: ', stats['total_time'])
dprint('KL Divergence: ', kl)
dprint('Surrogate Loss: ', surr)
dprint('Entropy: ', ent)
dprint('\n')
self.stats['avg_reward'].append(stats['avg_reward'])
self.stats['total_steps'].append(stats['total_steps'])
self.stats['total_ep'].append(stats['total_ep'])
self.stats['total_time'].append(stats['total_time'])
self.stats['kl_div'].append(stats['kl_div'])
self.stats['surr_loss'].append(stats['surr_loss'])
self.stats['entropy'].append(stats['entropy'])
self._reset_iter()
def done(self):
return False
# return self.iter_reward >= self.env.solved_threshold * 1.1
def load(self, path):
with open(path, 'wb') as f:
params = pk.load(f)
self.set_params(params)
def save(self, path):
params = K.batch_get_value(self.params)
with open(path, 'wb') as f:
pk.dump(params, f)
def set_params(self, params):
K.batch_set_value(zip(self.params, params))
self.np_action_logstd_param = K.get_value(self.action_logstd_param)
def update_params(self, updates):
for p, u in zip(self.params, updates):
K.set_value(p, K.get_value(p) + u)
self.np_action_logstd_param = K.get_value(self.action_logstd_param)
def build_surrogate(self, variables):
# Build graph of surrogate loss
a, s, a_means, a_logstds, advantages, new_logstds_shape = variables
# Computes the gauss_log_prob on sampled data.
old_log_p_n = gauss_log_prob(a_means, a_logstds, a)
# Here we compute the gauss_log_prob, but wrt current params
new_a_means = self.policy.model(s)
new_a_logstds = new_logstds_shape + self.action_logstd_param
new_log_p_n = gauss_log_prob(new_a_means, new_a_logstds, a)
# Compute the actual surrogate
ratio = K.exp(new_log_p_n - old_log_p_n)
advantages = K.reshape(advantages, (-1, ))
surr_graph = -K.mean(ratio * advantages)
grad_surr_graph = K.gradients(surr_graph, self.params)
inputs = variables + self.params
graph = K.function(inputs, [surr_graph, ] + grad_surr_graph)
# graph = K.function(inputs, [surr_graph, ])
def surrogate(actions, states, action_means, action_logstds, advantages):
# TODO: Allocating new np.arrays might be slow.
logstds = np.zeros(action_means.shape, dtype=DTYPE) + action_logstds
new_logstds = np.zeros(action_means.shape, dtype=DTYPE)
args = [actions, states, action_means, logstds,
advantages, new_logstds]
res = graph(args)
return res[0], res[1:]
return surrogate, surr_graph, grad_surr_graph
def build_kl(self, variables):
a, s, a_means, a_logstds, advantages, new_logstds_shape = variables
new_a_means = self.policy.model(s)
new_a_logstds = new_logstds_shape + self.action_logstd_param
# NOTE: Might be fishy. (cf: Sutskever's code, utils.py:gauss_KL())
old_var = K.exp(2 * a_logstds)
new_var = K.exp(2 * new_a_logstds)
temp = (old_var + (a_means - new_a_means)**2) / (2 * new_var)
kl_graph = K.mean(new_a_logstds - a_logstds + temp - 0.5)
grad_kl_graph = K.gradients(kl_graph, self.params)
inputs = variables + self.params
# graph = K.function(inputs, [kl_graph, ] + grad_kl_graph)
graph = K.function(inputs, [kl_graph, ])
def kl(actions, states, action_means, action_logstds, advantages):
logstds = np.zeros(action_means.shape, dtype=DTYPE) + action_logstds
new_logstds = np.zeros(action_means.shape, dtype=DTYPE)
args = [actions, states, action_means, logstds,
advantages, new_logstds]
res = graph(args)
return res[0], res[1:]
return kl, kl_graph, grad_kl_graph
def build_entropy(self, variables):
a, s, a_means, a_logstds, advantages, new_logstds_shape = variables
new_a_logstds = new_logstds_shape + self.action_logstd_param
ent_graph = K.mean(new_a_logstds + 0.5 * np.log(2*np.pi*np.e))
grad_ent_graph = K.gradients(ent_graph, self.params)
inputs = variables + self.params
# graph = K.function(inputs, [ent_graph, ] + grad_ent_graph)
graph = K.function(inputs, [ent_graph, ])
def entropy(actions, states, action_means, action_logstds, advantages):
logstds = np.zeros(action_means.shape, dtype=DTYPE) + action_logstds
new_logstds = np.zeros(action_means.shape, dtype=DTYPE)
args = [actions, states, action_means, logstds,
advantages, new_logstds]
res = graph(args)
return res[0], res[1:]
return entropy, ent_graph, grad_ent_graph
|
[
"numpy.sum",
"cPickle.load",
"numpy.arange",
"keras.backend.stop_gradient",
"numpy.exp",
"keras.backend.placeholder",
"numpy.zeros_like",
"numpy.copy",
"numpy.random.randn",
"keras.backend.reshape",
"numpy.append",
"utils.discount",
"keras.backend.gradients",
"keras.backend.batch_get_value",
"utils.gauss_log_prob",
"keras.backend.exp",
"utils.dot_not_flat",
"keras.backend.function",
"keras.backend.get_value",
"utils.LinearVF",
"numpy.delete",
"numpy.concatenate",
"numpy.log",
"numpy.zeros",
"keras.backend.sum",
"time.time",
"utils.convert_type",
"cPickle.dump",
"keras.backend.mean",
"keras.backend.variable",
"numpy.sqrt"
] |
[((543, 553), 'numpy.copy', 'np.copy', (['a'], {}), '(a)\n', (550, 553), True, 'import numpy as np\n'), ((1383, 1393), 'utils.LinearVF', 'LinearVF', ([], {}), '()\n', (1391, 1393), False, 'from utils import convert_type, discount, LinearVF, gauss_log_prob, numel, dot_not_flat\n'), ((1674, 1713), 'keras.backend.variable', 'K.variable', (['self.np_action_logstd_param'], {}), '(self.np_action_logstd_param)\n', (1684, 1713), True, 'from keras import backend as K\n'), ((2069, 2075), 'time.time', 'time', ([], {}), '()\n', (2073, 2075), False, 'from time import time\n'), ((2501, 2538), 'keras.backend.placeholder', 'K.placeholder', ([], {'ndim': '(2)', 'name': '"""actions"""'}), "(ndim=2, name='actions')\n", (2514, 2538), True, 'from keras import backend as K\n'), ((2551, 2587), 'keras.backend.placeholder', 'K.placeholder', ([], {'ndim': '(2)', 'name': '"""states"""'}), "(ndim=2, name='states')\n", (2564, 2587), True, 'from keras import backend as K\n'), ((2606, 2648), 'keras.backend.placeholder', 'K.placeholder', ([], {'ndim': '(2)', 'name': '"""action_means"""'}), "(ndim=2, name='action_means')\n", (2619, 2648), True, 'from keras import backend as K\n'), ((2669, 2714), 'keras.backend.placeholder', 'K.placeholder', ([], {'ndim': '(2)', 'name': '"""actions_logstds"""'}), "(ndim=2, name='actions_logstds')\n", (2682, 2714), True, 'from keras import backend as K\n'), ((2736, 2782), 'keras.backend.placeholder', 'K.placeholder', ([], {'ndim': '(2)', 'name': '"""advantage_values"""'}), "(ndim=2, name='advantage_values')\n", (2749, 2782), True, 'from keras import backend as K\n'), ((2811, 2854), 'keras.backend.placeholder', 'K.placeholder', ([], {'ndim': '(2)', 'name': '"""logstds_shape"""'}), "(ndim=2, name='logstds_shape')\n", (2824, 2854), True, 'from keras import backend as K\n'), ((3255, 3323), 'keras.backend.function', 'K.function', (['inputs', '[self.surr_graph, self.ent_graph, self.kl_graph]'], {}), '(inputs, [self.surr_graph, self.ent_graph, self.kl_graph])\n', (3265, 3323), True, 'from keras import backend as K\n'), ((3777, 3800), 'keras.backend.exp', 'K.exp', (['(2 * stop_logstds)'], {}), '(2 * stop_logstds)\n', (3782, 3800), True, 'from keras import backend as K\n'), ((3815, 3839), 'keras.backend.exp', 'K.exp', (['(2 * new_a_logstds)'], {}), '(2 * new_a_logstds)\n', (3820, 3839), True, 'from keras import backend as K\n'), ((3933, 3982), 'keras.backend.mean', 'K.mean', (['(new_a_logstds - stop_logstds + temp - 0.5)'], {}), '(new_a_logstds - stop_logstds + temp - 0.5)\n', (3939, 3982), True, 'from keras import backend as K\n'), ((4008, 4048), 'keras.backend.gradients', 'K.gradients', (['kl_first_graph', 'self.params'], {}), '(kl_first_graph, self.params)\n', (4019, 4048), True, 'from keras import backend as K\n'), ((4153, 4188), 'keras.backend.gradients', 'K.gradients', (['gvp_graph', 'self.params'], {}), '(gvp_graph, self.params)\n', (4164, 4188), True, 'from keras import backend as K\n'), ((4305, 4365), 'keras.backend.function', 'K.function', (['(inputs + tangents + self.params)', 'grads_gvp_graph'], {}), '(inputs + tangents + self.params, grads_gvp_graph)\n', (4315, 4365), True, 'from keras import backend as K\n'), ((4848, 4883), 'numpy.delete', 'np.delete', (['self.iter_rewards', 'ep', '(0)'], {}), '(self.iter_rewards, ep, 0)\n', (4857, 4883), True, 'import numpy as np\n'), ((4912, 4947), 'numpy.delete', 'np.delete', (['self.iter_actions', 'ep', '(0)'], {}), '(self.iter_actions, ep, 0)\n', (4921, 4947), True, 'import numpy as np\n'), ((4975, 5009), 'numpy.delete', 'np.delete', (['self.iter_states', 'ep', '(0)'], {}), '(self.iter_states, ep, 0)\n', (4984, 5009), True, 'import numpy as np\n'), ((5042, 5081), 'numpy.delete', 'np.delete', (['self.iter_action_mean', 'ep', '(0)'], {}), '(self.iter_action_mean, ep, 0)\n', (5051, 5081), True, 'import numpy as np\n'), ((5116, 5157), 'numpy.delete', 'np.delete', (['self.iter_action_logstd', 'ep', '(0)'], {}), '(self.iter_action_logstd, ep, 0)\n', (5125, 5157), True, 'import numpy as np\n'), ((5183, 5215), 'numpy.delete', 'np.delete', (['self.iter_done', 'ep', '(0)'], {}), '(self.iter_done, ep, 0)\n', (5192, 5215), True, 'import numpy as np\n'), ((5604, 5619), 'utils.convert_type', 'convert_type', (['s'], {}), '(s)\n', (5616, 5619), False, 'from utils import convert_type, discount, LinearVF, gauss_log_prob, numel, dot_not_flat\n'), ((5716, 5736), 'numpy.copy', 'np.copy', (['action_mean'], {}), '(action_mean)\n', (5723, 5736), True, 'import numpy as np\n'), ((7926, 7958), 'numpy.concatenate', 'np.concatenate', (['self.iter_states'], {}), '(self.iter_states)\n', (7940, 7958), True, 'import numpy as np\n'), ((7977, 8010), 'numpy.concatenate', 'np.concatenate', (['self.iter_actions'], {}), '(self.iter_actions)\n', (7991, 8010), True, 'import numpy as np\n'), ((8029, 8050), 'utils.convert_type', 'convert_type', (['actions'], {}), '(actions)\n', (8041, 8050), False, 'from utils import convert_type, discount, LinearVF, gauss_log_prob, numel, dot_not_flat\n'), ((8453, 8476), 'utils.convert_type', 'convert_type', (['advantage'], {}), '(advantage)\n', (8465, 8476), False, 'from utils import convert_type, discount, LinearVF, gauss_log_prob, numel, dot_not_flat\n'), ((10339, 10364), 'numpy.sqrt', 'np.sqrt', (['(shs / self.delta)'], {}), '(shs / self.delta)\n', (10346, 10364), True, 'import numpy as np\n'), ((10431, 10459), 'utils.dot_not_flat', 'dot_not_flat', (['grads', 'stepdir'], {}), '(grads, stepdir)\n', (10443, 10459), False, 'from utils import convert_type, discount, LinearVF, gauss_log_prob, numel, dot_not_flat\n'), ((11633, 11663), 'keras.backend.batch_get_value', 'K.batch_get_value', (['self.params'], {}), '(self.params)\n', (11650, 11663), True, 'from keras import backend as K\n'), ((12551, 12585), 'numpy.zeros', 'np.zeros', (['means.shape'], {'dtype': 'DTYPE'}), '(means.shape, dtype=DTYPE)\n', (12559, 12585), True, 'import numpy as np\n'), ((14193, 14223), 'keras.backend.batch_get_value', 'K.batch_get_value', (['self.params'], {}), '(self.params)\n', (14210, 14223), True, 'from keras import backend as K\n'), ((14416, 14453), 'keras.backend.get_value', 'K.get_value', (['self.action_logstd_param'], {}), '(self.action_logstd_param)\n', (14427, 14453), True, 'from keras import backend as K\n'), ((14625, 14662), 'keras.backend.get_value', 'K.get_value', (['self.action_logstd_param'], {}), '(self.action_logstd_param)\n', (14636, 14662), True, 'from keras import backend as K\n'), ((14900, 14937), 'utils.gauss_log_prob', 'gauss_log_prob', (['a_means', 'a_logstds', 'a'], {}), '(a_means, a_logstds, a)\n', (14914, 14937), False, 'from utils import convert_type, discount, LinearVF, gauss_log_prob, numel, dot_not_flat\n'), ((15142, 15187), 'utils.gauss_log_prob', 'gauss_log_prob', (['new_a_means', 'new_a_logstds', 'a'], {}), '(new_a_means, new_a_logstds, a)\n', (15156, 15187), False, 'from utils import convert_type, discount, LinearVF, gauss_log_prob, numel, dot_not_flat\n'), ((15244, 15276), 'keras.backend.exp', 'K.exp', (['(new_log_p_n - old_log_p_n)'], {}), '(new_log_p_n - old_log_p_n)\n', (15249, 15276), True, 'from keras import backend as K\n'), ((15298, 15326), 'keras.backend.reshape', 'K.reshape', (['advantages', '(-1,)'], {}), '(advantages, (-1,))\n', (15307, 15326), True, 'from keras import backend as K\n'), ((15404, 15440), 'keras.backend.gradients', 'K.gradients', (['surr_graph', 'self.params'], {}), '(surr_graph, self.params)\n', (15415, 15440), True, 'from keras import backend as K\n'), ((15499, 15549), 'keras.backend.function', 'K.function', (['inputs', '([surr_graph] + grad_surr_graph)'], {}), '(inputs, [surr_graph] + grad_surr_graph)\n', (15509, 15549), True, 'from keras import backend as K\n'), ((16443, 16463), 'keras.backend.exp', 'K.exp', (['(2 * a_logstds)'], {}), '(2 * a_logstds)\n', (16448, 16463), True, 'from keras import backend as K\n'), ((16482, 16506), 'keras.backend.exp', 'K.exp', (['(2 * new_a_logstds)'], {}), '(2 * new_a_logstds)\n', (16487, 16506), True, 'from keras import backend as K\n'), ((16596, 16642), 'keras.backend.mean', 'K.mean', (['(new_a_logstds - a_logstds + temp - 0.5)'], {}), '(new_a_logstds - a_logstds + temp - 0.5)\n', (16602, 16642), True, 'from keras import backend as K\n'), ((16667, 16701), 'keras.backend.gradients', 'K.gradients', (['kl_graph', 'self.params'], {}), '(kl_graph, self.params)\n', (16678, 16701), True, 'from keras import backend as K\n'), ((16827, 16857), 'keras.backend.function', 'K.function', (['inputs', '[kl_graph]'], {}), '(inputs, [kl_graph])\n', (16837, 16857), True, 'from keras import backend as K\n'), ((17584, 17619), 'keras.backend.gradients', 'K.gradients', (['ent_graph', 'self.params'], {}), '(ent_graph, self.params)\n', (17595, 17619), True, 'from keras import backend as K\n'), ((17747, 17778), 'keras.backend.function', 'K.function', (['inputs', '[ent_graph]'], {}), '(inputs, [ent_graph])\n', (17757, 17778), True, 'from keras import backend as K\n'), ((2121, 2151), 'keras.backend.batch_get_value', 'K.batch_get_value', (['self.params'], {}), '(self.params)\n', (2138, 2151), True, 'from keras import backend as K\n'), ((3598, 3626), 'keras.backend.stop_gradient', 'K.stop_gradient', (['new_a_means'], {}), '(new_a_means)\n', (3613, 3626), True, 'from keras import backend as K\n'), ((3628, 3658), 'keras.backend.stop_gradient', 'K.stop_gradient', (['new_a_logstds'], {}), '(new_a_logstds)\n', (3643, 3658), True, 'from keras import backend as K\n'), ((4071, 4083), 'keras.backend.sum', 'K.sum', (['(g * t)'], {}), '(g * t)\n', (4076, 4083), True, 'from keras import backend as K\n'), ((5754, 5789), 'numpy.exp', 'np.exp', (['self.np_action_logstd_param'], {}), '(self.np_action_logstd_param)\n', (5760, 5789), True, 'import numpy as np\n'), ((5808, 5859), 'numpy.random.randn', 'np.random.randn', (['*self.np_action_logstd_param.shape'], {}), '(*self.np_action_logstd_param.shape)\n', (5823, 5859), True, 'import numpy as np\n'), ((7296, 7339), 'utils.discount', 'discount', (['self.iter_rewards[ep]', 'self.gamma'], {}), '(self.iter_rewards[ep], self.gamma)\n', (7304, 7339), False, 'from utils import convert_type, discount, LinearVF, gauss_log_prob, numel, dot_not_flat\n'), ((8840, 8874), 'numpy.zeros', 'np.zeros', (['means.shape'], {'dtype': 'DTYPE'}), '(means.shape, dtype=DTYPE)\n', (8848, 8874), True, 'import numpy as np\n'), ((9460, 9478), 'utils.dot_not_flat', 'dot_not_flat', (['r', 'r'], {}), '(r, r)\n', (9472, 9478), False, 'from utils import convert_type, discount, LinearVF, gauss_log_prob, numel, dot_not_flat\n'), ((12484, 12518), 'numpy.zeros', 'np.zeros', (['means.shape'], {'dtype': 'DTYPE'}), '(means.shape, dtype=DTYPE)\n', (12492, 12518), True, 'import numpy as np\n'), ((14102, 14112), 'cPickle.load', 'pk.load', (['f'], {}), '(f)\n', (14109, 14112), True, 'import cPickle as pk\n'), ((14272, 14290), 'cPickle.dump', 'pk.dump', (['params', 'f'], {}), '(params, f)\n', (14279, 14290), True, 'import cPickle as pk\n'), ((15351, 15377), 'keras.backend.mean', 'K.mean', (['(ratio * advantages)'], {}), '(ratio * advantages)\n', (15357, 15377), True, 'from keras import backend as K\n'), ((15856, 15897), 'numpy.zeros', 'np.zeros', (['action_means.shape'], {'dtype': 'DTYPE'}), '(action_means.shape, dtype=DTYPE)\n', (15864, 15897), True, 'import numpy as np\n'), ((17043, 17084), 'numpy.zeros', 'np.zeros', (['action_means.shape'], {'dtype': 'DTYPE'}), '(action_means.shape, dtype=DTYPE)\n', (17051, 17084), True, 'import numpy as np\n'), ((17969, 18010), 'numpy.zeros', 'np.zeros', (['action_means.shape'], {'dtype': 'DTYPE'}), '(action_means.shape, dtype=DTYPE)\n', (17977, 18010), True, 'import numpy as np\n'), ((1603, 1637), 'numpy.random.randn', 'np.random.randn', (['(1)', 'policy.out_dim'], {}), '(1, policy.out_dim)\n', (1618, 1637), True, 'import numpy as np\n'), ((7526, 7566), 'numpy.append', 'np.append', (['b', '(0 if terminated else b[-1])'], {}), '(b, 0 if terminated else b[-1])\n', (7535, 7566), True, 'import numpy as np\n'), ((7666, 7709), 'utils.discount', 'discount', (['deltas', '(self.gamma * self.gae_lam)'], {}), '(deltas, self.gamma * self.gae_lam)\n', (7674, 7709), False, 'from utils import convert_type, discount, LinearVF, gauss_log_prob, numel, dot_not_flat\n'), ((8067, 8104), 'numpy.concatenate', 'np.concatenate', (['self.iter_action_mean'], {}), '(self.iter_action_mean)\n', (8081, 8104), True, 'import numpy as np\n'), ((8152, 8191), 'numpy.concatenate', 'np.concatenate', (['self.iter_action_logstd'], {}), '(self.iter_action_logstd)\n', (8166, 8191), True, 'import numpy as np\n'), ((8290, 8316), 'numpy.concatenate', 'np.concatenate', (['advantages'], {}), '(advantages)\n', (8304, 8316), True, 'import numpy as np\n'), ((8769, 8803), 'numpy.zeros', 'np.zeros', (['means.shape'], {'dtype': 'DTYPE'}), '(means.shape, dtype=DTYPE)\n', (8777, 8803), True, 'import numpy as np\n'), ((9245, 9255), 'numpy.copy', 'np.copy', (['g'], {}), '(g)\n', (9252, 9255), True, 'import numpy as np\n'), ((9289, 9299), 'numpy.copy', 'np.copy', (['g'], {}), '(g)\n', (9296, 9299), True, 'import numpy as np\n'), ((9333, 9349), 'numpy.zeros_like', 'np.zeros_like', (['g'], {}), '(g)\n', (9346, 9349), True, 'import numpy as np\n'), ((12907, 12913), 'time.time', 'time', ([], {}), '()\n', (12911, 12913), False, 'from time import time\n'), ((15771, 15812), 'numpy.zeros', 'np.zeros', (['action_means.shape'], {'dtype': 'DTYPE'}), '(action_means.shape, dtype=DTYPE)\n', (15779, 15812), True, 'import numpy as np\n'), ((16958, 16999), 'numpy.zeros', 'np.zeros', (['action_means.shape'], {'dtype': 'DTYPE'}), '(action_means.shape, dtype=DTYPE)\n', (16966, 16999), True, 'import numpy as np\n'), ((17884, 17925), 'numpy.zeros', 'np.zeros', (['action_means.shape'], {'dtype': 'DTYPE'}), '(action_means.shape, dtype=DTYPE)\n', (17892, 17925), True, 'import numpy as np\n'), ((10949, 10974), 'numpy.arange', 'np.arange', (['max_backtracks'], {}), '(max_backtracks)\n', (10958, 10974), True, 'import numpy as np\n'), ((14567, 14581), 'keras.backend.get_value', 'K.get_value', (['p'], {}), '(p)\n', (14578, 14581), True, 'from keras import backend as K\n'), ((17537, 17561), 'numpy.log', 'np.log', (['(2 * np.pi * np.e)'], {}), '(2 * np.pi * np.e)\n', (17543, 17561), True, 'import numpy as np\n'), ((3407, 3421), 'keras.backend.get_value', 'K.get_value', (['p'], {}), '(p)\n', (3418, 3421), True, 'from keras import backend as K\n'), ((9626, 9639), 'numpy.sum', 'np.sum', (['(a * b)'], {}), '(a * b)\n', (9632, 9639), True, 'import numpy as np\n'), ((9839, 9853), 'numpy.sum', 'np.sum', (['(g ** 2)'], {}), '(g ** 2)\n', (9845, 9853), True, 'import numpy as np\n')]
|
#!/usr/bin/python
# The contents of this file are in the public domain. See LICENSE_FOR_EXAMPLE_PROGRAMS.txt
#
# This example program shows how you can use dlib to make an object
# detector for things like object, pedestrians, and any other semi-rigid
# object. In particular, we go though the steps to train the kind of sliding
# window object detector first published by <NAME> in 2005 in the
# paper Histograms of Oriented Gradients for Human Detection.
#
#
# COMPILING/INSTALLING THE DLIB PYTHON INTERFACE
# You can install dlib using the command:
# pip install dlib
#
# Alternatively, if you want to compile dlib yourself then go into the dlib
# root folder and run:
# python setup.py install
# or
# python setup.py install --yes USE_AVX_INSTRUCTIONS
# if you have a CPU that supports AVX instructions, since this makes some
# things run faster.
#
# Compiling dlib should work on any operating system so long as you have
# CMake and boost-python installed. On Ubuntu, this can be done easily by
# running the command:
# sudo apt-get install libboost-python-dev cmake
#
# Also note that this example requires scikit-image which can be installed
# via the command:
# pip install scikit-image
# Or downloaded from http://scikit-image.org/download.html.
import os
import sys
import glob
import cv2
import dlib
from skimage import io
import cv2
import matplotlib.pyplot as plt
import numpy as np
current_dir = os.path.abspath(os.curdir)
print(current_dir)
# In this example we are going to train a face detector based on the small
# object dataset in the examples/object directory. This means you need to supply
# the path to this object folder as a command line argument so we will know
# where it is.
if len(sys.argv) < 2:
print(
"Give the path to the examples/object directory as the argument to this "
"program. For example, if you are in the python_examples folder then "
"execute this program by running:\n"
" ./train_object_detector.py ../examples/object")
exit()
ip_folder = sys.argv[1]
random_check_folder = sys.argv[2]
options = dlib.shape_predictor_training_options()
# Now make the object responsible for training the model.
# This algorithm has a bunch of parameters you can mess with. The
# documentation for the shape_predictor_trainer explains all of them.
# You should also read Kazemi's paper which explains all the parameters
# in great detail. However, here I'm just setting three of them
# differently than their default values. I'm doing this because we
# have a very small dataset. In particular, setting the oversampling
# to a high amount (300) effectively boosts the training set size, so
# that helps this example.
options.oversampling_amount = 300
# I'm also reducing the capacity of the model by explicitly increasing
# the regularization (making nu smaller) and by using trees with
# smaller depths.
options.nu = 0.05
options.tree_depth = 2
options.be_verbose = True
print(ip_folder)
ip_folder = os.path.abspath(ip_folder)
training_xml_path = os.path.abspath(os.path.join(ip_folder, "training","training.xml"))
testing_xml_path = os.path.abspath(os.path.join(ip_folder, "testing","testing.xml"))
print(training_xml_path,testing_xml_path)
# This function does the actual training. It will save the final detector to
# detector.dat. The input is an XML file that lists the images in the training
# dataset and also contains the positions of the face boxes. To create your
# own XML files you can use the imglab tool which can be found in the
# tools/imglab folder. It is a simple graphical tool for labeling objects in
# images with boxes. To see how to use it read the tools/imglab/README.txt
# file. But for this example, we just use the training.xml file included with
# dlib.
if not os.path.exists(os.path.join(ip_folder,"detector.dat")):
os.chdir(os.path.dirname(training_xml_path))
dlib.train_shape_predictor("training.xml", os.path.join(ip_folder,"detector.dat"), options)
# Now that we have a face detector we can test it. The first statement tests
# it on the training data. It will print(the precision, recall, and then)
# average precision.
print("") # Print blank line to create gap from previous output
os.chdir(os.path.dirname(training_xml_path))
train_test = dlib.test_shape_predictor("training.xml", os.path.join(ip_folder,"detector.dat").replace("\\","/"))
print("Training accuracy: {}".format(train_test))
# However, to get an idea if it really worked without overfitting we need to
# run it on images it wasn't trained on. The next line does this. Happily, we
# see that the object detector works perfectly on the testing images.
#print("Testing accuracy: {}".format(dlib.test_simple_object_detector(testing_xml_path, os.path.join(current_dir,"detector.dat")))
os.chdir(os.path.dirname(testing_xml_path))
true_test = dlib.test_shape_predictor("testing.xml", os.path.join(ip_folder,"detector.dat").replace("\\","/"))
print("Testing accuracy: {}".format(true_test))
os.chdir(current_dir)
# Now let's use the detector as you would in a normal application. First we
# will load it from disk.
predictor = dlib.shape_predictor(os.path.join(ip_folder,"detector.dat").replace("\\","/"))
detector = dlib.simple_object_detector(os.path.join(ip_folder,"detector.svm").replace("\\","/"))
# We can look at the HOG filter we learned. It should look like a face. Neat!
#win_det = dlib.image_window()
#win_det.set_image(detector)
# Now let's run the detector over the images in the object folder and display the
# results.
#win = dlib.image_window()
print("Showing detections on the images in the object folder...")
verify_files = glob.glob(os.path.join(random_check_folder, "*.JPG"))
tot_verify_files = len(verify_files)
positive_verify = 0
for f in verify_files:
print("Processing file: {}".format(f))
img = io.imread(f)
orig_img = img.copy()
dets = detector(img)
print("Number of object detected: {}".format(len(dets)))
#win.clear_overlay()
#win.set_image(img)
#win.add_overlay(dets)
#dlib.hit_enter_to_continue()
if len(dets)>0:
for k, d in enumerate(dets):
print("Detection {}: Left: {} Top: {} Right: {} Bottom: {}".format(
k, d.left(), d.top(), d.right(), d.bottom()))
xmin = d.left()
ymin = d.top()
xmax = d.right()
ymax = d.bottom()
cv2.rectangle(img,(xmin,ymin),(xmax,ymax),(255,0,0),5)
# Get the landmarks/parts for the face in box d.
shape = predictor(img, d)
#print("Part 0: {}, Part 1: {} ...".format(shape.part(0),
# shape.part(1)))
print(shape)
if len(shape.parts())>0:
parts = []
positive_verify = positive_verify + 1
for part in enumerate(shape.parts()):
print(part)
parts.append([part[1].x,part[1].y])
nparts = np.array(parts, np.int32)
print(nparts)
cv2.polylines(img, np.int32([nparts]),True,(0,255,0))
fig = plt.figure(figsize = (15,15))
ax1 = fig.add_subplot(211)
ax1.set_xticks([])
ax1.set_yticks([])
ax1.set_title('Original Image')
ax1.imshow(orig_img)
#plt.show()
ax2 = fig.add_subplot(212)
ax2.set_xticks([])
ax2.set_yticks([])
ax2.set_title('Image with Detections')
ax2.imshow(img)
plt.show()
print("% of Image Shapes Detected:",int(positive_verify*100/tot_verify_files))
|
[
"os.path.abspath",
"matplotlib.pyplot.show",
"os.path.dirname",
"matplotlib.pyplot.figure",
"numpy.array",
"dlib.shape_predictor_training_options",
"numpy.int32",
"cv2.rectangle",
"os.path.join",
"os.chdir",
"skimage.io.imread"
] |
[((1480, 1506), 'os.path.abspath', 'os.path.abspath', (['os.curdir'], {}), '(os.curdir)\n', (1495, 1506), False, 'import os\n'), ((2154, 2193), 'dlib.shape_predictor_training_options', 'dlib.shape_predictor_training_options', ([], {}), '()\n', (2191, 2193), False, 'import dlib\n'), ((3046, 3072), 'os.path.abspath', 'os.path.abspath', (['ip_folder'], {}), '(ip_folder)\n', (3061, 3072), False, 'import os\n'), ((5055, 5076), 'os.chdir', 'os.chdir', (['current_dir'], {}), '(current_dir)\n', (5063, 5076), False, 'import os\n'), ((3109, 3160), 'os.path.join', 'os.path.join', (['ip_folder', '"""training"""', '"""training.xml"""'], {}), "(ip_folder, 'training', 'training.xml')\n", (3121, 3160), False, 'import os\n'), ((3196, 3245), 'os.path.join', 'os.path.join', (['ip_folder', '"""testing"""', '"""testing.xml"""'], {}), "(ip_folder, 'testing', 'testing.xml')\n", (3208, 3245), False, 'import os\n'), ((4294, 4328), 'os.path.dirname', 'os.path.dirname', (['training_xml_path'], {}), '(training_xml_path)\n', (4309, 4328), False, 'import os\n'), ((4860, 4893), 'os.path.dirname', 'os.path.dirname', (['testing_xml_path'], {}), '(testing_xml_path)\n', (4875, 4893), False, 'import os\n'), ((5721, 5763), 'os.path.join', 'os.path.join', (['random_check_folder', '"""*.JPG"""'], {}), "(random_check_folder, '*.JPG')\n", (5733, 5763), False, 'import os\n'), ((5899, 5911), 'skimage.io.imread', 'io.imread', (['f'], {}), '(f)\n', (5908, 5911), False, 'from skimage import io\n'), ((7201, 7229), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(15, 15)'}), '(figsize=(15, 15))\n', (7211, 7229), True, 'import matplotlib.pyplot as plt\n'), ((7530, 7540), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (7538, 7540), True, 'import matplotlib.pyplot as plt\n'), ((3856, 3895), 'os.path.join', 'os.path.join', (['ip_folder', '"""detector.dat"""'], {}), "(ip_folder, 'detector.dat')\n", (3868, 3895), False, 'import os\n'), ((3910, 3944), 'os.path.dirname', 'os.path.dirname', (['training_xml_path'], {}), '(training_xml_path)\n', (3925, 3944), False, 'import os\n'), ((3994, 4033), 'os.path.join', 'os.path.join', (['ip_folder', '"""detector.dat"""'], {}), "(ip_folder, 'detector.dat')\n", (4006, 4033), False, 'import os\n'), ((4385, 4424), 'os.path.join', 'os.path.join', (['ip_folder', '"""detector.dat"""'], {}), "(ip_folder, 'detector.dat')\n", (4397, 4424), False, 'import os\n'), ((4948, 4987), 'os.path.join', 'os.path.join', (['ip_folder', '"""detector.dat"""'], {}), "(ip_folder, 'detector.dat')\n", (4960, 4987), False, 'import os\n'), ((5213, 5252), 'os.path.join', 'os.path.join', (['ip_folder', '"""detector.dat"""'], {}), "(ip_folder, 'detector.dat')\n", (5225, 5252), False, 'import os\n'), ((5310, 5349), 'os.path.join', 'os.path.join', (['ip_folder', '"""detector.svm"""'], {}), "(ip_folder, 'detector.svm')\n", (5322, 5349), False, 'import os\n'), ((6461, 6523), 'cv2.rectangle', 'cv2.rectangle', (['img', '(xmin, ymin)', '(xmax, ymax)', '(255, 0, 0)', '(5)'], {}), '(img, (xmin, ymin), (xmax, ymax), (255, 0, 0), 5)\n', (6474, 6523), False, 'import cv2\n'), ((7064, 7089), 'numpy.array', 'np.array', (['parts', 'np.int32'], {}), '(parts, np.int32)\n', (7072, 7089), True, 'import numpy as np\n'), ((7155, 7173), 'numpy.int32', 'np.int32', (['[nparts]'], {}), '([nparts])\n', (7163, 7173), True, 'import numpy as np\n')]
|
# -*- coding: utf-8 -*-
"""
Created on Tue Oct 13 17:15:16 2020
@author: JAVIER
"""
import numpy as np
import pandas as pd
import pickle
from .. import bci_architectures as athena
from . import bci_penalty_plugin as bci_penalty
from .. import load_brain_data as lb
from Fancy_aggregations import penalties as pn
from Fancy_aggregations import binary_parser as bp
quasi_similarities = [pn._cuadratic_cost, pn._realistic_optimistic_cost, pn._huber_cost, pn._realistic_pesimistic_cost]
quasi_dis = [pn._anti_cuadratic_cost]
quasi_total = quasi_similarities + quasi_dis
quasisim_name = ['Quadratic', 'Optimistic', 'Huber', 'Pessimistic']
quasidis_name = ['Anti-Quadratic']
names_total = quasisim_name + quasidis_name
def generate_combination(cost1, cost2):
'''
Returns a lambda of the two cost combined according to the appropiate mixing
function.
:param cost1: index of cost 1 in the quasi_total vector
'''
if (cost1 < len(quasi_similarities)) and (cost2 < len(quasi_similarities)):
comb_function = pn._convex_comb
else:
comb_function = pn._convex_quasi_comb
return comb_function(quasi_total[cost1], quasi_total[cost2])
# =============================================================================
# BINARY CLASSIFICATION GRADIENT FOR THE AGGREGATION MFF
# =============================================================================
def binary_cross_entropy_loss(output, y):
return np.log(y * output + (1 - y) * output)
def binary_update_alpha(X, cost, alpha, y):
forward_logits = multi_alpha_forward(X, cost, alpha)
loss = binary_cross_entropy_loss(forward_logits[:,0], y)
update_alpha = loss * X
return update_alpha
def binary_train_loop(X, cost, alpha, y, learning_rate=0.01):
'''
'''
loss = np.inf
new_loss = 0
while new_loss >= loss:
loss = new_loss
alpha += binary_update_alpha(X, cost, alpha, y)
forward_logits = multi_alpha_forward(X, cost, alpha)
new_loss = binary_cross_entropy_loss(forward_logits, y)
return alpha, new_loss
multi_cost_names = ['R2+Opt', 'hub+Opt','Anti+Opt', 'Hub+Anti']
uni_cost_names = ['R2', 'opt', 'Anti-consensus', 'Huber', 'Pes']
# =============================================================================
# DYNAMIC ALPHA LEARNING METHOD
# =============================================================================
def logistic_alpha_forward(X, cost_convex, clf):
'''
X shape: (bandas, samples, clases)
out shape: (samples, clases)
'''
reformed_X = np.swapaxes(X, 0, 1)
reformed_X = reformed_X.reshape((reformed_X.shape[0], reformed_X.shape[1]*reformed_X.shape[2]))
alphas = clf.predict(reformed_X)
result = np.zeros((X.shape[1], X.shape[2]))
for sample in range(X.shape[1]):
alpha_cost = lambda real, yhat, axis: cost_convex(real, yhat, axis, alphas[sample])
result[sample] = pn.penalty_aggregation(X[:, sample, :], [bp.parse(x) for x in athena.classical_aggregations], axis=0, keepdims=False, cost=alpha_cost)
return result
def multimodal_alpha_forward(X, cost, cost2, alpha):
'''
X shape: list of n arrays (bandas, samples, clases)
clfs: list of alphas.
out shape: (samples, clases)
'''
david_played_and_it_pleased_the_lord = [bp.parse(x) for x in athena.agg_functions_names]
agg_phase_1 = lambda X0, alpha, keepdims=False, axis=0: pn.penalty_aggregation(X0, david_played_and_it_pleased_the_lord, axis=axis, keepdims=keepdims, cost=lambda real, yhat, axis: cost(real, yhat, axis, alpha=alpha))
agg_phase_2 = lambda X0, alpha, keepdims=False, axis=0: pn.penalty_aggregation(X0, david_played_and_it_pleased_the_lord, axis=axis, keepdims=keepdims, cost=lambda real, yhat, axis: cost2(real, yhat, axis, alpha=alpha))
return mpa_aggregation(X, agg_phase_1, agg_phase_2, alpha, keepdims=False)
def generate_real_alpha(X, y, aggs, cost, opt=1):
a = None
b = None
for alpha in np.arange(0.01, 1.01, 0.1):
alpha_cost = lambda X, yhat, axis: cost(X, yhat, axis, alpha)
pagg = pn.penalty_aggregation(X, [bp.parse(x) for x in aggs], axis=0, keepdims=False, cost=alpha_cost)
if np.argmax(pagg) == y:
if a is None:
a = alpha
else:
b = alpha
if a is None:
a = 0.5
if b is None:
b = 0.5
d1 = np.abs(a - 0.5)
d2 = np.abs(b - 0.5)
if opt == 1:
if d1 <= d2:
return a
else:
return b
elif opt == 2:
return (a + b) / 2
def generate_train_data_alpha(logits, labels, aggs=athena.classical_aggregations, cost=pn.cost_functions[0], opt=1):
bands, samples, classes = logits.shape
y = np.zeros((samples,))
for sample in range(samples):
y[sample] = generate_real_alpha(logits[:,sample,:], labels[sample], aggs, cost, opt=opt)
return y
def gen_all_good_alpha_trad(cost, aggs=athena.classical_aggregations, opt=1, multi_class=False):
'''
Learn the logistic regression for the whole set of datasets. (Trad framework)
'''
import sklearn.linear_model
from sklearn.model_selection import KFold
n_splits = 5
kf = KFold(n_splits=n_splits)
all_data = carmen_penalty_cache_logits(mff=False, multi_class=multi_class)
all_logits_train, all_y_train, all_logits_test, all_y_test = all_data
clfs = []
for logits_train, y_train, logits_test, y_test in zip(all_logits_train, all_y_train, all_logits_test, all_y_test):
if opt == 1 or opt == 2:
logits_reshaped = np.swapaxes(logits_train, 0, 1)
logits_reshaped = logits_reshaped.reshape((logits_reshaped.shape[0], logits_reshaped.shape[1]*logits_reshaped.shape[2]))
y_alpha = generate_train_data_alpha(logits_train, y_train, aggs=aggs, cost=cost, opt=opt)
clf = sklearn.linear_model.LinearRegression().fit(logits_reshaped, y_alpha)
elif opt == 'classic':
def func_opt(alphita):
acc = lambda x_data, y : np.mean(np.equal(y, np.argmax( pn.penalty_aggregation(x_data, [bp.parse(x) for x in aggs], axis=0, keepdims=False, cost=lambda X, yhat, axis: cost(X, yhat, axis, alpha=alphita)), axis=1)))
acum_acc = 0
for train_index, test_index in kf.split(logits_train[0,:,:]):
_, X_test = logits_train[:, train_index, :], logits_train[:, test_index, :]
_, y_test = y_train[train_index], y_train[test_index]
acum_acc += acc(X_test, y_test)
return 1 - acum_acc / n_splits #Rememeber: we are minimizing
clf = athena.my_optimization(func_opt)
clfs.append(clf)
return clfs
# =============================================================================
# MULTIMODAL ALPHA OPTIMIZATION
# =============================================================================
def eval_alpha(alpha_v, y_hat, y):
'''
Returns
-------
None.
'''
alpha_score = np.mean(np.minimum(alpha_v, 1 - alpha_v))
acc_score = np.mean(np.equal(y_hat, y))
return (alpha_score + acc_score) / 2
def mpa_aggregation(logits, agg1, agg2, alpha, keepdims=False):
n_2 = len(logits)
n_1, samples, clases = logits[0].shape
res = np.zeros((n_2, samples, clases))
for ix, logit in enumerate(logits):
res[ix, :, :] = agg1(logit, axis=0, keepdims=False, alpha=alpha[ix])
return agg2(res, axis=0, keepdims=keepdims, alpha=alpha[-1])
def eval_conf(X, alpha, y, agg1, agg2):
'''
Computes the mpa agg for X, and returns the optimization score.
Parameters
----------
X : TYPE
DESCRIPTION.
alpha : TYPE
DESCRIPTION.
y : TYPE
DESCRIPTION.
agg1 : TYPE
DESCRIPTION.
agg2 : TYPE
DESCRIPTION.
Returns
-------
TYPE
DESCRIPTION.
'''
y_hat = np.argmax(mpa_aggregation(X, agg1, agg2, alpha), axis=1)
return eval_alpha(alpha, y_hat, y)
def gen_all_good_alpha_mff(cost, cost2, aggs=athena.agg_functions_names, opt=1, four_class=False):
'''
Learn the logistic regression for the whole set of datasets.
'''
from scipy.optimize import least_squares
all_data = carmen_penalty_cache_logits(mff=True, multi_class=four_class)
all_logits_train, all_y_train, all_logits_test, all_y_test = all_data
datasets = []
agg_phase_1 = lambda X, alpha, keepdims=False, axis=0: pn.penalty_aggregation(X, aggs, axis=axis, keepdims=keepdims, cost=lambda real, yhat, axis: cost(real, yhat, axis, alpha=alpha))
agg_phase_2 = lambda X, alpha, keepdims=False, axis=0: pn.penalty_aggregation(X, aggs, axis=axis, keepdims=keepdims, cost=lambda real, yhat, axis: cost2(real, yhat, axis, alpha=alpha))
for logits_train, y_train, logits_test, y_test in zip(all_logits_train, all_y_train, all_logits_test, all_y_test):
optimize_lambda = lambda alpha: -eval_conf(logits_train, alpha, y_train, agg_phase_1, agg_phase_2) #Remember we are minimizng
x0_alpha = np.array([0.5] * len(logits_train) + [0.5])
res_1 = least_squares(optimize_lambda, x0_alpha, bounds=[0.0001, 0.9999])
datasets.append(res_1.x)
return datasets
# =============================================================================
# SAVE AND LOAD CLFS
# =============================================================================
def save_clfs(cost, cost_name, mff=False, four_classes=False, opt=1):
if mff:
clfs = gen_all_good_alpha_mff(cost, cost, [bp.parse(x) for x in athena.mff_aggregations], opt=opt, four_class=four_classes)
else:
clfs = gen_all_good_alpha_trad(cost, athena.classical_aggregations, opt=opt, multi_class=four_classes)
ending = ''
if not mff:
ending += '_trad'
else:
ending += '_mff'
if four_classes:
ending += '_tonguefoot'
else:
ending += '_binary'
ending += '_' + str(opt)
if (opt == 1) or (opt == 2):
with open('./regression_models/lclfs_' + cost_name + ending + '.pckl', 'wb') as f:
pickle.dump(clfs, f)
elif opt == 'classic':
with open('./classic_alpha_models/alpha_' + cost_name + ending + '.pckl', 'wb') as f:
pickle.dump(clfs, f)
def load_clfs(cost_name, mff=False, four_classes=False, opt=1):
import pickle
ending = ''
if not mff:
ending += '_trad'
else:
ending += '_mff'
if four_classes or four_classes == '_4_class':
ending += '_tonguefoot'
else:
ending += '_binary'
ending += '_' + str(opt)
if (opt == 1) or (opt == 2):
with open('./regression_models/lclfs_' + cost_name + ending + '.pckl', 'rb') as f:
clfs = pickle.load(f)
elif opt == 'classic':
with open('./classic_alpha_models/alpha_' + cost_name + ending + '.pckl', 'rb') as f:
clfs = pickle.load(f)
return clfs
def compute_accuracy_logistic_alpha(cost_convex, cost_name, mff=True, four_classes=False, opt=1):
accuracy = lambda yhat, yreal: np.mean(np.equal(yhat, yreal))
clfs = load_clfs(cost_name, mff, four_classes, opt)
all_logits_train, all_y_train, all_logits_test, all_y_test = carmen_penalty_cache_logits(mff=mff, multi_class=four_classes)
train_accuracies = np.zeros((len(all_y_train)))
test_accuracies = np.zeros((len(all_y_test)))
ix = 0
for logits_train, y_train, logits_test, y_test in zip(all_logits_train, all_y_train, all_logits_test, all_y_test):
if mff:
agg_logits = multimodal_alpha_forward(logits_train, cost_convex, cost_convex, clfs[ix])
agg_logits_test = multimodal_alpha_forward(logits_test, cost_convex, cost_convex, clfs[ix])
else:
if (opt == 1) or (opt == 2):
agg_logits = logistic_alpha_forward(logits_train, cost_convex, clfs[ix])
agg_logits_test = logistic_alpha_forward(logits_test, cost_convex, clfs[ix])
elif opt == 'classic':
alpha_cost = lambda X, yhat, axis: cost_convex(X, yhat, axis, alpha=clfs[ix])
agg_logits = bci_penalty._forward_penalty(logits_train, alpha_cost)
agg_logits_test = bci_penalty._forward_penalty(logits_test, alpha_cost)
yhat_train = np.argmax(agg_logits, axis=1)
yhat_test = np.argmax(agg_logits_test, axis=1)
train_accuracies[ix] = accuracy(yhat_train, y_train)
test_accuracies[ix] = accuracy(yhat_test, y_test)
ix+= 1
return train_accuracies, test_accuracies
# =============================================================================
# FORWARD AND MISCELLANIOUS
# =============================================================================
def carmen_penalty_cache_logits(mff=True, multi_class=False):
if mff:
framework='mff'
archi = athena.bci_achitecture.emf_carmen_penalty_architecture
else:
framework='trad'
archi = athena.bci_achitecture.trad_carmen_penalty_architecture
if multi_class or (multi_class == '_4_class'):
class_mode = '4_class'
elif not multi_class or (multi_class == '_binary'):
class_mode = 'binary'
try:
with open('logits_' + framework + '_carmen_' + class_mode + '_train.pckl', 'rb') as f:
logits_train = pickle.load(f)
with open('logits_' + framework + '_carmen_'+ class_mode +'_test.pckl', 'rb') as f:
logits_test = pickle.load(f)
with open('logits_' + framework + '_carmen_'+ class_mode +'_train_y.pckl', 'rb') as f:
y_train = pickle.load(f)
with open('logits_' + framework + '_carmen_'+ class_mode +'_test_y.pckl', 'rb') as f:
y_test = pickle.load(f)
except (IOError, EOFError) as e:
print('Recomputing logits...', e)
logits_train, y_train, logits_test, y_test = carmen_best_alpha_2a_all_logits(archi, 0, verbose=False, agregacion=pn.base_cost_functions[0], mff=mff, four_clases=multi_class)
return logits_train, y_train, logits_test, y_test
def multi_alpha_forward(X, cost_convex, alpha):
try:
multiple_alpha = len(alpha) > 1
except:
multiple_alpha = False
agg_logits = np.zeros((len(X), X[0].shape[1], X[0].shape[2]))
for wave in range(len(X)):
if not multiple_alpha:
alpha_cost = lambda real, yhat, axis: cost_convex(real, yhat, axis, alpha[0])
else:
alpha_cost = lambda real, yhat, axis: cost_convex(real, yhat, axis, alpha[wave])
agg_logits[wave] = pn.penalty_aggregation(X[wave], [bp.parse(x) for x in athena.mff_aggregations], axis=0, keepdims=False, cost=alpha_cost)
if multiple_alpha:
alpha_cost = lambda real, yhat, axis: cost_convex(real, yhat, axis, alpha[-1])
else:
alpha_cost = lambda real, yhat, axis: cost_convex(real, yhat, axis, alpha)
return pn.penalty_aggregation(agg_logits, [bp.parse(x) for x in athena.mff_aggregations], axis=0, keepdims=False, cost=alpha_cost)
def _alpha_learn(X, y, cost, mff=False):
def compute_accuracy(yhat, y):
return np.mean(np.equal(yhat, y))
def optimize_function(X, y, cost_convex, alpha):
alpha_cost = lambda real, yhat, axis: cost_convex(real, yhat, axis, alpha)
agg_logits = pn.penalty_aggregation(X, [bp.parse(x) for x in athena.classical_aggregations], axis=0, keepdims=False, cost=alpha_cost)
yhat = np.argmax(agg_logits, axis=1)
return 1 - compute_accuracy(yhat, y)
def optimize_function_mff(X, y, cost_convex, alpha):
agg_logits = multi_alpha_forward(X, cost_convex, alpha)
yhat = np.argmax(agg_logits, axis=1)
return 1 - compute_accuracy(yhat, y)
if mff:
function_alpha = lambda a: optimize_function_mff(X, y, cost, a)
x0 = [0.5] * 5
else:
function_alpha = lambda a: optimize_function(X, y, cost, a)
x0 = [0.5]
res = athena.my_optimization(function_alpha, x0=x0, niter=100, mode='montecarlo')
alpha_value = res
if hasattr(alpha_value, 'len'):
alpha_value = alpha_value[0]
return lambda real, yhatf, axis: cost(real, yhatf, axis, alpha_value), alpha_value
def study_alpha(architecture, x_test, y_test, cost, mff=False):
lgts = architecture.csp_pass(x_test)
alpha_f, alpha = _alpha_learn(lgts, y_test, cost, mff=mff)
aggregation_set = athena.classical_aggregations if not mff else athena.mff_aggregations
if not mff:
agg_logits = pn.penalty_aggregation(lgts, [bp.parse(x) for x in aggregation_set], axis=0, keepdims=False, cost=alpha_f)
else:
agg_logits = multi_alpha_forward(lgts, cost, alpha)
yhat = np.argmax(agg_logits, axis=1)
return np.mean(np.equal(y_test, yhat))
def carmen_train_2a_all(architecture, derivate=0, verbose=False, agregacion=None, four_clases=False, opt=False):
accuracies = []
for dataset_train, dataset_test in zip(lb.all_carmen_datasets_partitions(full_tasks=four_clases, opt=opt), lb.all_carmen_datasets_partitions(full_tasks=four_clases, test=True, opt=opt)):
X_train, y_train = dataset_train
X_test, y_test = dataset_test
X_train = np.transpose(X_train, (2, 1, 0))
X_test = np.transpose(X_test, (2, 1, 0))
my_architecture = athena.bci_achitecture()
if agregacion is None:
architecture(my_architecture, X_train, y_train, verbose)
else:
architecture(my_architecture, X_train, y_train, verbose, agregacion)
accuracies.append(np.mean(np.equal(my_architecture.forward(X_test), y_test)))
if verbose:
print('N-th accuracy: ' + str(np.mean(np.equal(my_architecture.forward(X_test), y_test))), 'Actual mean: ' + str(np.mean(accuracies)))
return accuracies, my_architecture
def carmen_best_alpha_2a_all(architecture, cost, derivate=0, verbose=False, agregacion=None, four_clases=False, opt=False, mff=False):
accuracies = []
for dataset_train, dataset_test in zip(lb.all_carmen_datasets_partitions(full_tasks=four_clases, opt=opt), lb.all_carmen_datasets_partitions(full_tasks=four_clases, test=True, opt=opt)):
X_train, y_train = dataset_train
X_test, y_test = dataset_test
X_train = np.transpose(X_train, (2, 1, 0))
X_test = np.transpose(X_test, (2, 1, 0))
my_architecture = athena.bci_achitecture()
if agregacion is None:
architecture(my_architecture, X_train, y_train, verbose)
else:
architecture(my_architecture, X_train, y_train, verbose, agregacion)
accuracies.append(study_alpha(my_architecture, X_test, y_test, agregacion, mff))
if verbose:
print('N-th accuracy: ' + str(np.mean(np.equal(my_architecture.forward(X_test), y_test))), 'Actual mean: ' + str(np.mean(accuracies)))
return accuracies, my_architecture
def carmen_best_alpha_2a_all_logits(architecture, cost, derivate=0, verbose=False, agregacion=None, four_clases=False, opt=False, mff=False):
logits_train = []
logits_test = []
all_y_train = []
all_y_test = []
n_partitions = 20
for dataset_train, dataset_test in zip(lb.all_carmen_datasets_partitions(full_tasks=four_clases, opt=opt, n_partition=n_partitions), lb.all_carmen_datasets_partitions(full_tasks=four_clases, test=True, opt=opt, n_partition=n_partitions)):
X_train, y_train = dataset_train
X_test, y_test = dataset_test
X_train = np.transpose(X_train, (2, 1, 0))
X_test = np.transpose(X_test, (2, 1, 0))
my_architecture = athena.bci_achitecture()
if agregacion is None:
architecture(my_architecture, X_train, y_train, verbose)
else:
architecture(my_architecture, X_train, y_train, verbose, agregacion)
logits_train.append(my_architecture.logits)
logits_test.append(my_architecture.csp_pass(X_test))
all_y_train.append(y_train)
all_y_test.append(y_test)
import pickle
framework = 'mff' if mff else 'trad'
class_mode = 'binary' if not four_clases else '4_class'
with open('logits_' + framework + '_carmen_' + class_mode + '_train.pckl', 'wb') as f:
pickle.dump(logits_train, f)
with open('logits_' + framework + '_carmen_' + class_mode + '_train_y.pckl', 'wb') as f:
pickle.dump(all_y_train, f)
with open('logits_' + framework + '_carmen_' + class_mode + '_test.pckl', 'wb') as f:
pickle.dump(logits_test, f)
with open('logits_' + framework + '_carmen_' + class_mode + '_test_y.pckl', 'wb') as f:
pickle.dump(all_y_test, f)
return logits_train, all_y_train, logits_test, all_y_test
def classifier_new_alpha(nombre, coste, multi_class=False, reload=True, mff=False, opt=1):
if reload:
save_clfs(coste, nombre, mff, four_classes=multi_class, opt=opt)
train_acc, test_acc = compute_accuracy_logistic_alpha(coste, nombre, mff, multi_class, opt)
return train_acc, test_acc
def accuracy_report(cost_names, cost_funcs, mff, reload, multi_class, opt):
accuracies_df = pd.DataFrame(np.zeros((len(cost_names), 1)), index=cost_names, columns=['Accuracy'])
for ix, cost_func in enumerate(cost_funcs):
accuracies_train, accuracies_test = classifier_new_alpha(cost_names[ix], cost_func, mff=mff, reload=reload, multi_class=multi_class, opt=opt)
accuracies_df.iloc[ix,0] = np.mean(accuracies_test)
return accuracies_df
def accuracy_report_dual(mff, reload, multi_class_bool, opt):
'''
Igual que accuracy report pero en una table de coste x coste
'''
accuracies_df = pd.DataFrame(np.zeros((len(names_total), len(names_total))), index=names_total, columns=names_total)
for ix, cost_func in enumerate(quasi_total):
for jx, cost_func2 in enumerate(quasi_total):
cost = generate_combination(ix, jx)
accuracies_train, accuracies_test = classifier_new_alpha(names_total[ix] + '+' + names_total[jx], cost, mff=mff, reload=reload, multi_class=multi_class_bool, opt=opt)
acc_test_df = pd.DataFrame(accuracies_test)
mff_str = 'mff' if mff else 'trad'
multi_class = 'four_classes' if multi_class_bool else 'binary'
acc_test_df.to_csv('./carmen_results/' + mff_str + '_' + multi_class + '_' + str(opt) + '_' + names_total[ix].replace(' ','_') + '_' + names_total[jx].replace(' ','_') + '.csv')
accuracies_df.iloc[ix,jx] = np.mean(accuracies_test)
return accuracies_df
def bin_alpha(opt=1, cost_names=multi_cost_names, cost_funcs=(pn.cost_functions[0], pn.cost_functions[1], pn.cost_functions[2], pn.cost_functions[3]), multi_class=False, mff=False, reload=True):
framework = 'mff' if mff else 'trad'
opt_str = '_' + str(opt)
multiclass_str = '_4_class' if multi_class else '_binary'
accuracy_report(cost_names, cost_funcs, mff, reload, multi_class, opt).to_csv('carmen_' + framework + '_penalty_costs_accuracies_best_alpha' + opt_str + multiclass_str + '.csv')
def bin_alpha_dual(opt=1, multi_class=False, mff=False, reload=True):
framework = 'mff' if mff else 'trad'
opt_str = '_' + str(opt)
multiclass_str = '_4_class' if multi_class else '_binary'
accuracy_report_dual(mff, reload, multi_class, opt).to_csv('carmen_' + framework + '_penalty_costs_accuracies_best_alpha' + opt_str + multiclass_str + '.csv')
def convert_to_tex(path_df):
'''
'''
load_df = pd.read_csv(path_df, index_col=0)
load_df.values[[np.arange(load_df.shape[0])]*2] = 0
max_value = load_df.max().max()
n_cols = len(load_df.columns)
def normal_format(val):
return val
def max_bold(val):
max_string = '$ %.4f $' if val != max_value else '{$ \\mathbf{%.4f} $}'
return max_string % val
load_df.to_latex(open(path_df.replace('.csv', '.tex'), 'w'), formatters=[max_bold]*n_cols, column_format='l' + 'c'*n_cols, escape=False)
def carmen_main(mode, args=None):
print('Carmen bci plugin, mode: ', mode)
# =============================================================================
# CARMEN CSP PENALTY DATA EXPERIMENTS
# =============================================================================
if str(mode) == 'study_new_alpha_costs_binary':
bin_alpha_dual(opt='classic', multi_class=False, mff=False, reload=True)
bin_alpha_dual(opt=1, multi_class=False, mff=False, reload=True)
elif str(mode) == 'study_new_alpha_costs_full_class':
bin_alpha_dual(opt='classic', multi_class=True, mff=False, reload=True)
bin_alpha_dual(opt=1, multi_class=True, mff=False, reload=True)
elif str(mode) == 'study_new_alpha_costs_binary_mff':
bin_alpha_dual(opt=1, multi_class=False, mff=True, reload=True)
elif str(mode) == 'study_new_alpha_costs_full_class_mff':
bin_alpha_dual(opt=1, multi_class=True, mff=True, reload=True)
else:
return 0
return 1
if __name__ == '__main__':
carmen_main('study_new_alpha_costs_binary_mff')
|
[
"Fancy_aggregations.binary_parser.parse",
"pandas.DataFrame",
"pickle.dump",
"numpy.minimum",
"numpy.abs",
"numpy.log",
"numpy.argmax",
"pandas.read_csv",
"numpy.zeros",
"numpy.transpose",
"sklearn.model_selection.KFold",
"numpy.equal",
"scipy.optimize.least_squares",
"numpy.mean",
"numpy.arange",
"numpy.swapaxes",
"pickle.load"
] |
[((1445, 1482), 'numpy.log', 'np.log', (['(y * output + (1 - y) * output)'], {}), '(y * output + (1 - y) * output)\n', (1451, 1482), True, 'import numpy as np\n'), ((2555, 2575), 'numpy.swapaxes', 'np.swapaxes', (['X', '(0)', '(1)'], {}), '(X, 0, 1)\n', (2566, 2575), True, 'import numpy as np\n'), ((2727, 2761), 'numpy.zeros', 'np.zeros', (['(X.shape[1], X.shape[2])'], {}), '((X.shape[1], X.shape[2]))\n', (2735, 2761), True, 'import numpy as np\n'), ((3971, 3997), 'numpy.arange', 'np.arange', (['(0.01)', '(1.01)', '(0.1)'], {}), '(0.01, 1.01, 0.1)\n', (3980, 3997), True, 'import numpy as np\n'), ((4389, 4404), 'numpy.abs', 'np.abs', (['(a - 0.5)'], {}), '(a - 0.5)\n', (4395, 4404), True, 'import numpy as np\n'), ((4414, 4429), 'numpy.abs', 'np.abs', (['(b - 0.5)'], {}), '(b - 0.5)\n', (4420, 4429), True, 'import numpy as np\n'), ((4744, 4764), 'numpy.zeros', 'np.zeros', (['(samples,)'], {}), '((samples,))\n', (4752, 4764), True, 'import numpy as np\n'), ((5213, 5237), 'sklearn.model_selection.KFold', 'KFold', ([], {'n_splits': 'n_splits'}), '(n_splits=n_splits)\n', (5218, 5237), False, 'from sklearn.model_selection import KFold\n'), ((7309, 7341), 'numpy.zeros', 'np.zeros', (['(n_2, samples, clases)'], {}), '((n_2, samples, clases))\n', (7317, 7341), True, 'import numpy as np\n'), ((16802, 16831), 'numpy.argmax', 'np.argmax', (['agg_logits'], {'axis': '(1)'}), '(agg_logits, axis=1)\n', (16811, 16831), True, 'import numpy as np\n'), ((23558, 23591), 'pandas.read_csv', 'pd.read_csv', (['path_df'], {'index_col': '(0)'}), '(path_df, index_col=0)\n', (23569, 23591), True, 'import pandas as pd\n'), ((3301, 3312), 'Fancy_aggregations.binary_parser.parse', 'bp.parse', (['x'], {}), '(x)\n', (3309, 3312), True, 'from Fancy_aggregations import binary_parser as bp\n'), ((7048, 7080), 'numpy.minimum', 'np.minimum', (['alpha_v', '(1 - alpha_v)'], {}), '(alpha_v, 1 - alpha_v)\n', (7058, 7080), True, 'import numpy as np\n'), ((7106, 7124), 'numpy.equal', 'np.equal', (['y_hat', 'y'], {}), '(y_hat, y)\n', (7114, 7124), True, 'import numpy as np\n'), ((9133, 9198), 'scipy.optimize.least_squares', 'least_squares', (['optimize_lambda', 'x0_alpha'], {'bounds': '[0.0001, 0.9999]'}), '(optimize_lambda, x0_alpha, bounds=[0.0001, 0.9999])\n', (9146, 9198), False, 'from scipy.optimize import least_squares\n'), ((12321, 12350), 'numpy.argmax', 'np.argmax', (['agg_logits'], {'axis': '(1)'}), '(agg_logits, axis=1)\n', (12330, 12350), True, 'import numpy as np\n'), ((12371, 12405), 'numpy.argmax', 'np.argmax', (['agg_logits_test'], {'axis': '(1)'}), '(agg_logits_test, axis=1)\n', (12380, 12405), True, 'import numpy as np\n'), ((15548, 15577), 'numpy.argmax', 'np.argmax', (['agg_logits'], {'axis': '(1)'}), '(agg_logits, axis=1)\n', (15557, 15577), True, 'import numpy as np\n'), ((15761, 15790), 'numpy.argmax', 'np.argmax', (['agg_logits'], {'axis': '(1)'}), '(agg_logits, axis=1)\n', (15770, 15790), True, 'import numpy as np\n'), ((16851, 16873), 'numpy.equal', 'np.equal', (['y_test', 'yhat'], {}), '(y_test, yhat)\n', (16859, 16873), True, 'import numpy as np\n'), ((17299, 17331), 'numpy.transpose', 'np.transpose', (['X_train', '(2, 1, 0)'], {}), '(X_train, (2, 1, 0))\n', (17311, 17331), True, 'import numpy as np\n'), ((17349, 17380), 'numpy.transpose', 'np.transpose', (['X_test', '(2, 1, 0)'], {}), '(X_test, (2, 1, 0))\n', (17361, 17380), True, 'import numpy as np\n'), ((18361, 18393), 'numpy.transpose', 'np.transpose', (['X_train', '(2, 1, 0)'], {}), '(X_train, (2, 1, 0))\n', (18373, 18393), True, 'import numpy as np\n'), ((18411, 18442), 'numpy.transpose', 'np.transpose', (['X_test', '(2, 1, 0)'], {}), '(X_test, (2, 1, 0))\n', (18423, 18442), True, 'import numpy as np\n'), ((19571, 19603), 'numpy.transpose', 'np.transpose', (['X_train', '(2, 1, 0)'], {}), '(X_train, (2, 1, 0))\n', (19583, 19603), True, 'import numpy as np\n'), ((19621, 19652), 'numpy.transpose', 'np.transpose', (['X_test', '(2, 1, 0)'], {}), '(X_test, (2, 1, 0))\n', (19633, 19652), True, 'import numpy as np\n'), ((20304, 20332), 'pickle.dump', 'pickle.dump', (['logits_train', 'f'], {}), '(logits_train, f)\n', (20315, 20332), False, 'import pickle\n'), ((20434, 20461), 'pickle.dump', 'pickle.dump', (['all_y_train', 'f'], {}), '(all_y_train, f)\n', (20445, 20461), False, 'import pickle\n'), ((20560, 20587), 'pickle.dump', 'pickle.dump', (['logits_test', 'f'], {}), '(logits_test, f)\n', (20571, 20587), False, 'import pickle\n'), ((20688, 20714), 'pickle.dump', 'pickle.dump', (['all_y_test', 'f'], {}), '(all_y_test, f)\n', (20699, 20714), False, 'import pickle\n'), ((21502, 21526), 'numpy.mean', 'np.mean', (['accuracies_test'], {}), '(accuracies_test)\n', (21509, 21526), True, 'import numpy as np\n'), ((4192, 4207), 'numpy.argmax', 'np.argmax', (['pagg'], {}), '(pagg)\n', (4201, 4207), True, 'import numpy as np\n'), ((5589, 5620), 'numpy.swapaxes', 'np.swapaxes', (['logits_train', '(0)', '(1)'], {}), '(logits_train, 0, 1)\n', (5600, 5620), True, 'import numpy as np\n'), ((10124, 10144), 'pickle.dump', 'pickle.dump', (['clfs', 'f'], {}), '(clfs, f)\n', (10135, 10144), False, 'import pickle\n'), ((10771, 10785), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (10782, 10785), False, 'import pickle\n'), ((11100, 11121), 'numpy.equal', 'np.equal', (['yhat', 'yreal'], {}), '(yhat, yreal)\n', (11108, 11121), True, 'import numpy as np\n'), ((13406, 13420), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (13417, 13420), False, 'import pickle\n'), ((13548, 13562), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (13559, 13562), False, 'import pickle\n'), ((13689, 13703), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (13700, 13703), False, 'import pickle\n'), ((13828, 13842), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (13839, 13842), False, 'import pickle\n'), ((15045, 15056), 'Fancy_aggregations.binary_parser.parse', 'bp.parse', (['x'], {}), '(x)\n', (15053, 15056), True, 'from Fancy_aggregations import binary_parser as bp\n'), ((15234, 15251), 'numpy.equal', 'np.equal', (['yhat', 'y'], {}), '(yhat, y)\n', (15242, 15251), True, 'import numpy as np\n'), ((22173, 22202), 'pandas.DataFrame', 'pd.DataFrame', (['accuracies_test'], {}), '(accuracies_test)\n', (22185, 22202), True, 'import pandas as pd\n'), ((22555, 22579), 'numpy.mean', 'np.mean', (['accuracies_test'], {}), '(accuracies_test)\n', (22562, 22579), True, 'import numpy as np\n'), ((2959, 2970), 'Fancy_aggregations.binary_parser.parse', 'bp.parse', (['x'], {}), '(x)\n', (2967, 2970), True, 'from Fancy_aggregations import binary_parser as bp\n'), ((4111, 4122), 'Fancy_aggregations.binary_parser.parse', 'bp.parse', (['x'], {}), '(x)\n', (4119, 4122), True, 'from Fancy_aggregations import binary_parser as bp\n'), ((9569, 9580), 'Fancy_aggregations.binary_parser.parse', 'bp.parse', (['x'], {}), '(x)\n', (9577, 9580), True, 'from Fancy_aggregations import binary_parser as bp\n'), ((10278, 10298), 'pickle.dump', 'pickle.dump', (['clfs', 'f'], {}), '(clfs, f)\n', (10289, 10298), False, 'import pickle\n'), ((10926, 10940), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (10937, 10940), False, 'import pickle\n'), ((14705, 14716), 'Fancy_aggregations.binary_parser.parse', 'bp.parse', (['x'], {}), '(x)\n', (14713, 14716), True, 'from Fancy_aggregations import binary_parser as bp\n'), ((15439, 15450), 'Fancy_aggregations.binary_parser.parse', 'bp.parse', (['x'], {}), '(x)\n', (15447, 15450), True, 'from Fancy_aggregations import binary_parser as bp\n'), ((16643, 16654), 'Fancy_aggregations.binary_parser.parse', 'bp.parse', (['x'], {}), '(x)\n', (16651, 16654), True, 'from Fancy_aggregations import binary_parser as bp\n'), ((23612, 23639), 'numpy.arange', 'np.arange', (['load_df.shape[0]'], {}), '(load_df.shape[0])\n', (23621, 23639), True, 'import numpy as np\n'), ((17853, 17872), 'numpy.mean', 'np.mean', (['accuracies'], {}), '(accuracies)\n', (17860, 17872), True, 'import numpy as np\n'), ((18918, 18937), 'numpy.mean', 'np.mean', (['accuracies'], {}), '(accuracies)\n', (18925, 18937), True, 'import numpy as np\n'), ((6114, 6125), 'Fancy_aggregations.binary_parser.parse', 'bp.parse', (['x'], {}), '(x)\n', (6122, 6125), True, 'from Fancy_aggregations import binary_parser as bp\n')]
|
import matplotlib.image as mpimg
import numpy as np
import pickle
from test_feature_exrtact import *
from lesson_functions import *
color_space = 'YCrCb'
orient = 9
pix_per_cell = 8
cell_per_block = 2
hog_channel = 'ALL'
spatial_size = (32, 32)
hist_bins = 32
spatial_feat = True
hist_feat = True
hog_feat = True
scale = 1.5
t = time.time()
n_samples = 1000
random_ids = np.random.randint(0, len(car_images), n_samples)
test_cars = np.array(car_images)[random_ids]
test_noncars = np.array(noncar_images)[random_ids]
car_features = extract_features(car_images,
color_space=color_space,
spatial_size=spatial_size,
hist_bins=hist_bins,
orient=orient,
pix_per_cell=pix_per_cell,
cell_per_block=cell_per_block,
hog_channel=hog_channel,
spatial_feat=spatial_feat,
hist_feat=hist_feat,
hog_feat=hog_feat)
noncar_features = extract_features(noncar_images,
color_space=color_space,
spatial_size=spatial_size,
hist_bins=hist_bins,
orient=orient,
pix_per_cell=pix_per_cell,
cell_per_block=cell_per_block,
hog_channel=hog_channel,
spatial_feat=spatial_feat,
hist_feat=hist_feat,
hog_feat=hog_feat)
print (time.time()-t, 'Seconds to compute features..')
X = np.vstack((car_features, noncar_features)).astype(np.float64)
X_scaler = StandardScaler().fit(X)
scaled_X = X_scaler.transform(X)
y = np.hstack((np.ones(len(car_features)), np.zeros(len(noncar_features))))
rand_state = np.random.randint(0,100)
X_train, X_test, y_train, y_test = train_test_split(scaled_X, y, test_size=0.1, random_state=rand_state)
print('Using: ', orient, 'orientations, ', pix_per_cell, 'pixels per cell,',
cell_per_block, 'cells per block,', hist_bins, 'histogram bins, and',
spatial_size, 'spatial sampling')
print('Feature vector length: ', len(X_train[0]))
svc = LinearSVC(C=0.01)
t = time.time()
svc.fit(X_train, y_train)
print(round(time.time()-t, 2), 'Seconds to train SVC...')
print('accuracy: ', round(svc.score(X_test, y_test), 4))
#trained_svc_pickle = {}
#trained_svc_pickle["svc"] = svc
#trained_svc_pickle["x_scaler"] = X_scaler
#trained_svc_pickle["scale"] = scale
#trained_svc_pickle["orient"] = orient
#trained_svc_pickle["pix_per_cell"] = pix_per_cell
#trained_svc_pickle["cell_per_block"] = cell_per_block
#trained_svc_pickle["spatial_size"] = spatial_size
#trained_svc_pickle["hist_bins"] = hist_bins
#trained_svc_pickle["color_space"] = color_space
#pickle.dump(trained_svc_pickle, open('./trained_svc_pickle.p', 'wb'))
|
[
"numpy.random.randint",
"numpy.array",
"numpy.vstack"
] |
[((2090, 2115), 'numpy.random.randint', 'np.random.randint', (['(0)', '(100)'], {}), '(0, 100)\n', (2107, 2115), True, 'import numpy as np\n'), ((461, 481), 'numpy.array', 'np.array', (['car_images'], {}), '(car_images)\n', (469, 481), True, 'import numpy as np\n'), ((510, 533), 'numpy.array', 'np.array', (['noncar_images'], {}), '(noncar_images)\n', (518, 533), True, 'import numpy as np\n'), ((1859, 1901), 'numpy.vstack', 'np.vstack', (['(car_features, noncar_features)'], {}), '((car_features, noncar_features))\n', (1868, 1901), True, 'import numpy as np\n')]
|
"""
dlc2kinematics
© <NAME>
https://github.com/AdaptiveMotorControlLab/dlc2kinematics/
"""
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from matplotlib import gridspec
from mpl_toolkits.mplot3d import Axes3D
from sklearn.decomposition import PCA
from dlc2kinematics.utils import auxiliaryfunctions
def plot_velocity(df, df_velocity, start=None, end=None):
"""
Plots the computed velocities with the original X, Y data
Parameters
----------
df: the .h5 file 2d or 3d from DeepLabCut that you loaded during dlc2kinematics.load_data
df_velocity: Pandas dataframe of computed velocities. Computed with dlc2kinematics.compute_velocity
start: int
Optional. Integer specifying the start of frame index to select. Default is set to 0.
end: int
Optional. Integer specifying the end of frame index to select. Default is set to length of dataframe.
Example
-------
>>> dlc2kinematics.plot_velocity(df, df_velocity, start=1,end=500)
"""
try:
df_velocity = pd.read_hdf(df_velocity, "df_with_missing")
except:
pass
if start == None:
start = 0
if end == None:
end = len(df_velocity)
ax = df_velocity[start:end].plot(kind="line")
plt.xlabel("Frame numbers")
plt.ylabel("velocity (AU)")
ax.spines["right"].set_visible(False)
ax.spines["top"].set_visible(False)
plt.title("Computed Velocity", loc="left")
plt.legend(loc="center left", bbox_to_anchor=(1, 0.5))
plt.show()
ax1 = df[start:end].plot(kind="line")
plt.xlabel("Frame numbers")
plt.ylabel("position")
ax1.spines["right"].set_visible(False)
ax1.spines["top"].set_visible(False)
plt.title("Loaded Position Data", loc="left")
plt.legend(loc="center left", bbox_to_anchor=(1, 0.5))
plt.show()
def plot_joint_angles(joint_angle, angles=[None], start=None, end=None):
"""
Plots the joint angles
Parameters
----------
joint_angle: Pandas dataframe of joint angles.
angles: list
Optional. List of angles to plot
start: int
Optional. Integer specifying the start of frame index to select. Default is set to 0.
end: int
Optional. Integer specifying the end of frame index to select. Default is set to length of dataframe.
Example
-------
>>> dlc2kinematics.plot_joint_angles(joint_angle)
"""
try:
joint_angle = pd.read_hdf(joint_angle, "df_with_missing")
except:
pass
if start == None:
start = 0
if end == None:
end = len(joint_angle)
if angles[0] == None:
angles = list(joint_angle.columns.get_level_values(0))
ax = joint_angle[angles][start:end].plot(kind="line")
# plt.tight_layout()
plt.ylim([0, 180])
plt.xlabel("Frame numbers")
plt.ylabel("Joint angle in degrees")
ax.spines["right"].set_visible(False)
ax.spines["top"].set_visible(False)
plt.title("Joint Angles", loc="left")
plt.legend(loc="center left", bbox_to_anchor=(1, 0.5))
plt.show()
def visualize_synergies(data_reconstructed):
ncols, _, nrows = data_reconstructed.shape
fig, axes = plt.subplots(nrows, ncols, sharex=True, sharey=True, figsize=(10, 8))
for row in range(nrows):
for col in range(ncols):
ax = axes[row, col]
ax.plot(data_reconstructed[col, :, row])
if row == 0:
ax.set_title(f"Synergy {col + 1}")
ax.tick_params(axis="both", which="both", bottom=False, left=False)
def pca_plot(
num,
v,
fig,
k,
df_projected,
variance_explained,
n_comps,
bodyparts2plot,
bp_to_connect,
):
"""
customized PCA plot.
"""
gs = gridspec.GridSpec(1, num)
cmap = "cividis_r"
alphaValue = 0.7
color = plt.cm.get_cmap(cmap, len(bodyparts2plot))
scorer = df_projected.columns.get_level_values(0)[0]
axes2 = fig.add_subplot(gs[0, v], projection="3d") # row 0, col 1
fig.tight_layout()
plt.cla()
axes2.cla()
xdata_3d = []
ydata_3d = []
zdata_3d = []
xdata_3d_pca = []
ydata_3d_pca = []
zdata_3d_pca = []
xRight_3d = []
yRight_3d = []
zRight_3d = []
xRight_3d_pca = []
yRight_3d_pca = []
zRight_3d_pca = []
axes2.view_init(113, 270)
axes2.set_xlim3d([4, 10]) # [4,9]
axes2.set_ylim3d([1, -3]) # 1,-5
axes2.set_zlim3d([14, 10])
axes2.set_xticklabels([])
axes2.set_yticklabels([])
axes2.set_zticklabels([])
axes2.xaxis.grid(False)
# Need a loop for drawing skeleton
for right_bp in bp_to_connect:
xRight_3d_pca.append(df_projected.iloc[k][scorer][right_bp]["x"])
yRight_3d_pca.append(df_projected.iloc[k][scorer][right_bp]["y"])
zRight_3d_pca.append(df_projected.iloc[k][scorer][right_bp]["z"])
for bpindex, bp in enumerate(bodyparts2plot):
xdata_3d_pca.append(df_projected.iloc[k][scorer][bp]["x"])
ydata_3d_pca.append(df_projected.iloc[k][scorer][bp]["y"])
zdata_3d_pca.append(df_projected.iloc[k][scorer][bp]["z"])
p2 = axes2.scatter(
df_projected[scorer][bp]["x"][k],
df_projected[scorer][bp]["y"][k],
df_projected[scorer][bp]["z"][k],
marker="o",
) # c=color(bodyparts2plot.index(bp))
axes2.plot(
xRight_3d_pca, yRight_3d_pca, zRight_3d_pca, color="black", alpha=alphaValue
)
axes2.set_title(
"Reconstructed with %s PCs and %s%% EV"
% (n_comps, round(variance_explained * 100, 2))
)
return plt
def plot_3d_pca_reconstruction(
df, n_components, framenumber, bodyparts2plot, bp_to_connect
):
"""
Computes and plots a 3D reconstruction of various pc's.
Parameters
----------
df: Pandas dataframe of either original bodypart 3d file, or outputs from compute_joint_velocity, or compute_joint_acceleration.
n_components: int
how many principal components to use
framenumer: int
which frame do you want to display?
Example
-------
>>> dlc2kinematics.plot_3d_pca_reconstruction(joint_velocity, n_components=10, frame=1)
"""
# pca = PCA(n_components=n_components, svd_solver="full").fit(df)
comp = [n_components, 1]
num = len(comp)
fig = plt.figure(figsize=(9, 5))
fig.tight_layout()
scorer = df.columns.get_level_values(0)[0]
k = framenumber # a specific frame the user wants to show.
for v in range(len(comp)):
p = PCA(comp[v]).fit(df)
n_comps = p.n_components_ # n_components
components = p.transform(df)
projected = p.inverse_transform(components)
variance_explained = np.cumsum(p.explained_variance_ratio_)[-1]
df_projected = auxiliaryfunctions.create_empty_df(df)
bodyparts = list(df.columns.get_level_values(1))[0::3]
projected_reshape = projected.reshape(len(projected), len(bodyparts), 3)
for idx, bp in enumerate(bodyparts):
df_projected.loc(axis=1)[scorer, bp] = projected_reshape[:, idx]
pca_plot(
num,
v,
fig,
k,
df_projected,
variance_explained,
n_comps,
bodyparts2plot,
bp_to_connect,
)
plt.show()
def plot_umap(Y, size=5, alpha=1, color="indigo", figsize=(10, 6)):
"""
Computes and plots a 3D reconstruction of various pc's.
Parameters
----------
Y: fitted data from dlc2kinematics.compute_umap. n_fitted_samples x number_components
size: int
size of each individual datapoint
alpha: int
alpha blending value, transparent - opaque
color:
Depending on what you want to color, the color input can be a matrix of size n_fitted_samples x number_components
Example
-------
>>> c = np.random.rand(Y.shape[0],3)
>>> dlc2kinematics.plot_umap(Y, 5, 1, c)
"""
fig = plt.figure(figsize=figsize)
ax = Axes3D(fig)
ax.view_init(0, 20)
ax.dist = 8
ax.scatter(Y[:, 0], Y[:, 2], Y[:, 1], alpha=alpha, s=size, c=color)
|
[
"matplotlib.pyplot.title",
"matplotlib.pyplot.show",
"mpl_toolkits.mplot3d.Axes3D",
"pandas.read_hdf",
"matplotlib.pyplot.ylim",
"matplotlib.pyplot.legend",
"numpy.cumsum",
"matplotlib.pyplot.figure",
"matplotlib.pyplot.cla",
"sklearn.decomposition.PCA",
"dlc2kinematics.utils.auxiliaryfunctions.create_empty_df",
"matplotlib.pyplot.ylabel",
"matplotlib.gridspec.GridSpec",
"matplotlib.pyplot.xlabel",
"matplotlib.pyplot.subplots"
] |
[((1270, 1297), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Frame numbers"""'], {}), "('Frame numbers')\n", (1280, 1297), True, 'import matplotlib.pyplot as plt\n'), ((1302, 1329), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""velocity (AU)"""'], {}), "('velocity (AU)')\n", (1312, 1329), True, 'import matplotlib.pyplot as plt\n'), ((1416, 1458), 'matplotlib.pyplot.title', 'plt.title', (['"""Computed Velocity"""'], {'loc': '"""left"""'}), "('Computed Velocity', loc='left')\n", (1425, 1458), True, 'import matplotlib.pyplot as plt\n'), ((1463, 1517), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'loc': '"""center left"""', 'bbox_to_anchor': '(1, 0.5)'}), "(loc='center left', bbox_to_anchor=(1, 0.5))\n", (1473, 1517), True, 'import matplotlib.pyplot as plt\n'), ((1522, 1532), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (1530, 1532), True, 'import matplotlib.pyplot as plt\n'), ((1580, 1607), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Frame numbers"""'], {}), "('Frame numbers')\n", (1590, 1607), True, 'import matplotlib.pyplot as plt\n'), ((1612, 1634), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""position"""'], {}), "('position')\n", (1622, 1634), True, 'import matplotlib.pyplot as plt\n'), ((1723, 1768), 'matplotlib.pyplot.title', 'plt.title', (['"""Loaded Position Data"""'], {'loc': '"""left"""'}), "('Loaded Position Data', loc='left')\n", (1732, 1768), True, 'import matplotlib.pyplot as plt\n'), ((1773, 1827), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'loc': '"""center left"""', 'bbox_to_anchor': '(1, 0.5)'}), "(loc='center left', bbox_to_anchor=(1, 0.5))\n", (1783, 1827), True, 'import matplotlib.pyplot as plt\n'), ((1832, 1842), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (1840, 1842), True, 'import matplotlib.pyplot as plt\n'), ((2788, 2806), 'matplotlib.pyplot.ylim', 'plt.ylim', (['[0, 180]'], {}), '([0, 180])\n', (2796, 2806), True, 'import matplotlib.pyplot as plt\n'), ((2811, 2838), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Frame numbers"""'], {}), "('Frame numbers')\n", (2821, 2838), True, 'import matplotlib.pyplot as plt\n'), ((2843, 2879), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Joint angle in degrees"""'], {}), "('Joint angle in degrees')\n", (2853, 2879), True, 'import matplotlib.pyplot as plt\n'), ((2966, 3003), 'matplotlib.pyplot.title', 'plt.title', (['"""Joint Angles"""'], {'loc': '"""left"""'}), "('Joint Angles', loc='left')\n", (2975, 3003), True, 'import matplotlib.pyplot as plt\n'), ((3008, 3062), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'loc': '"""center left"""', 'bbox_to_anchor': '(1, 0.5)'}), "(loc='center left', bbox_to_anchor=(1, 0.5))\n", (3018, 3062), True, 'import matplotlib.pyplot as plt\n'), ((3067, 3077), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (3075, 3077), True, 'import matplotlib.pyplot as plt\n'), ((3188, 3257), 'matplotlib.pyplot.subplots', 'plt.subplots', (['nrows', 'ncols'], {'sharex': '(True)', 'sharey': '(True)', 'figsize': '(10, 8)'}), '(nrows, ncols, sharex=True, sharey=True, figsize=(10, 8))\n', (3200, 3257), True, 'import matplotlib.pyplot as plt\n'), ((3757, 3782), 'matplotlib.gridspec.GridSpec', 'gridspec.GridSpec', (['(1)', 'num'], {}), '(1, num)\n', (3774, 3782), False, 'from matplotlib import gridspec\n'), ((4037, 4046), 'matplotlib.pyplot.cla', 'plt.cla', ([], {}), '()\n', (4044, 4046), True, 'import matplotlib.pyplot as plt\n'), ((6332, 6358), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(9, 5)'}), '(figsize=(9, 5))\n', (6342, 6358), True, 'import matplotlib.pyplot as plt\n'), ((7327, 7337), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (7335, 7337), True, 'import matplotlib.pyplot as plt\n'), ((7985, 8012), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': 'figsize'}), '(figsize=figsize)\n', (7995, 8012), True, 'import matplotlib.pyplot as plt\n'), ((8022, 8033), 'mpl_toolkits.mplot3d.Axes3D', 'Axes3D', (['fig'], {}), '(fig)\n', (8028, 8033), False, 'from mpl_toolkits.mplot3d import Axes3D\n'), ((1055, 1098), 'pandas.read_hdf', 'pd.read_hdf', (['df_velocity', '"""df_with_missing"""'], {}), "(df_velocity, 'df_with_missing')\n", (1066, 1098), True, 'import pandas as pd\n'), ((2447, 2490), 'pandas.read_hdf', 'pd.read_hdf', (['joint_angle', '"""df_with_missing"""'], {}), "(joint_angle, 'df_with_missing')\n", (2458, 2490), True, 'import pandas as pd\n'), ((6792, 6830), 'dlc2kinematics.utils.auxiliaryfunctions.create_empty_df', 'auxiliaryfunctions.create_empty_df', (['df'], {}), '(df)\n', (6826, 6830), False, 'from dlc2kinematics.utils import auxiliaryfunctions\n'), ((6726, 6764), 'numpy.cumsum', 'np.cumsum', (['p.explained_variance_ratio_'], {}), '(p.explained_variance_ratio_)\n', (6735, 6764), True, 'import numpy as np\n'), ((6537, 6549), 'sklearn.decomposition.PCA', 'PCA', (['comp[v]'], {}), '(comp[v])\n', (6540, 6549), False, 'from sklearn.decomposition import PCA\n')]
|
import numpy as np
from scipy import stats
data = np.array([1,2,3,4])
ans = np.median(data)
print(ans)
|
[
"numpy.median",
"numpy.array"
] |
[((51, 73), 'numpy.array', 'np.array', (['[1, 2, 3, 4]'], {}), '([1, 2, 3, 4])\n', (59, 73), True, 'import numpy as np\n'), ((77, 92), 'numpy.median', 'np.median', (['data'], {}), '(data)\n', (86, 92), True, 'import numpy as np\n')]
|
#!/usr/bin/env python
# test_processors.py
#
# Copyright (C) 2020-2021 <NAME>
# All rights reserved.
#
# This software may be modified and distributed under the terms of the
# BSD license. See the LICENSE file for details.
from os.path import getsize
import numpy as np
import pytest
from PIL import Image
from shared import (
esrgan_models,
expected_output_mode,
infiles,
skip_if_ci,
xfail_if_platform,
xfail_unsupported_mode,
)
from pipescaler.common import temporary_filename
from pipescaler.processors import (
AppleScriptExternalProcessor,
AutomatorExternalProcessor,
CropProcessor,
ESRGANProcessor,
ExpandProcessor,
HeightToNormalProcessor,
ModeProcessor,
PngquantExternalProcessor,
PotraceExternalProcessor,
ResizeProcessor,
SolidColorProcessor,
TexconvExternalProcessor,
ThresholdProcessor,
WaifuExternalProcessor,
XbrzProcessor,
)
# region Fixtures
@pytest.fixture()
def apple_script_external_processor(request) -> AppleScriptExternalProcessor:
return AppleScriptExternalProcessor(**request.param)
@pytest.fixture()
def automator_external_processor(request) -> AutomatorExternalProcessor:
return AutomatorExternalProcessor(**request.param)
@pytest.fixture()
def crop_processor(request) -> CropProcessor:
return CropProcessor(**request.param)
@pytest.fixture()
def esrgan_processor(request) -> ESRGANProcessor:
return ESRGANProcessor(**request.param)
@pytest.fixture()
def expand_processor(request) -> ExpandProcessor:
return ExpandProcessor(**request.param)
@pytest.fixture()
def height_to_normal_processor(request) -> HeightToNormalProcessor:
return HeightToNormalProcessor(**request.param)
@pytest.fixture()
def mode_processor(request) -> ModeProcessor:
return ModeProcessor(**request.param)
@pytest.fixture()
def potrace_external_processor(request) -> PotraceExternalProcessor:
return PotraceExternalProcessor(**request.param)
@pytest.fixture()
def pngquant_external_processor(request) -> PngquantExternalProcessor:
return PngquantExternalProcessor(**request.param)
@pytest.fixture()
def resize_processor(request) -> ResizeProcessor:
return ResizeProcessor(**request.param)
@pytest.fixture()
def solid_color_processor(request) -> SolidColorProcessor:
return SolidColorProcessor(**request.param)
@pytest.fixture()
def texconv_external_processor(request) -> TexconvExternalProcessor:
return TexconvExternalProcessor(**request.param)
@pytest.fixture()
def threshold_processor(request) -> ThresholdProcessor:
return ThresholdProcessor(**request.param)
@pytest.fixture()
def waifu_external_processor(request) -> WaifuExternalProcessor:
return WaifuExternalProcessor(**request.param)
@pytest.fixture()
def xbrz_processor(request) -> XbrzProcessor:
return XbrzProcessor(**request.param)
# endregion
@pytest.mark.serial
@pytest.mark.parametrize(
("infile", "apple_script_external_processor"),
[
xfail_if_platform({"Linux", "Windows"})(
infiles["RGB"],
{"script": "pixelmator/ml_super_resolution.scpt", "args": "2"},
),
xfail_if_platform({"Linux", "Windows"})(
infiles["RGBA"],
{"script": "pixelmator/ml_super_resolution.scpt", "args": "2"},
),
],
indirect=["apple_script_external_processor"],
)
def test_apple_script_external(
infile: str, apple_script_external_processor: AppleScriptExternalProcessor
) -> None:
with temporary_filename(".png") as outfile:
apple_script_external_processor(infile, outfile)
with Image.open(infile) as input_image, Image.open(outfile) as output_image:
assert output_image.mode == input_image.mode
assert output_image.size == (
input_image.size[0] * int(apple_script_external_processor.args),
input_image.size[1] * int(apple_script_external_processor.args),
)
@pytest.mark.serial
@pytest.mark.parametrize(
("infile", "automator_external_processor"),
[
xfail_if_platform({"Linux", "Windows"})(
infiles["RGB"],
{"workflow": "pixelmator/denoise.workflow"},
),
xfail_if_platform({"Linux", "Windows"})(
infiles["RGBA"],
{"workflow": "pixelmator/denoise.workflow"},
),
],
indirect=["automator_external_processor"],
)
def test_automator_external(
infile: str, automator_external_processor: AutomatorExternalProcessor
) -> None:
with temporary_filename(".png") as outfile:
automator_external_processor(infile, outfile)
with Image.open(infile) as input_image, Image.open(outfile) as output_image:
assert output_image.mode == input_image.mode
assert output_image.size == input_image.size
@pytest.mark.parametrize(
("infile", "crop_processor"),
[
(infiles["L"], {"pixels": (4, 4, 4, 4)}),
(infiles["LA"], {"pixels": (4, 4, 4, 4)}),
(infiles["RGB"], {"pixels": (4, 4, 4, 4)}),
(infiles["RGBA"], {"pixels": (4, 4, 4, 4)}),
(infiles["PL"], {"pixels": (4, 4, 4, 4)}),
(infiles["PLA"], {"pixels": (4, 4, 4, 4)}),
(infiles["PRGB"], {"pixels": (4, 4, 4, 4)}),
(infiles["PRGBA"], {"pixels": (4, 4, 4, 4)}),
],
indirect=["crop_processor"],
)
def test_crop(infile: str, crop_processor: CropProcessor) -> None:
with temporary_filename(".png") as outfile:
crop_processor(infile, outfile)
with Image.open(infile) as input_image, Image.open(outfile) as output_image:
assert output_image.mode == input_image.mode
assert output_image.size == (
input_image.size[0] - crop_processor.left - crop_processor.right,
input_image.size[1] - crop_processor.top - crop_processor.bottom,
)
@pytest.mark.serial
@pytest.mark.parametrize(
("infile", "esrgan_processor"),
[
skip_if_ci()(infiles["L"], {"model_infile": esrgan_models["1x_BC1-smooth2"]}),
skip_if_ci()(infiles["PL"], {"model_infile": esrgan_models["1x_BC1-smooth2"]}),
skip_if_ci()(
infiles["PRGB"], {"model_infile": esrgan_models["1x_BC1-smooth2"]}
),
skip_if_ci()(infiles["RGB"], {"model_infile": esrgan_models["1x_BC1-smooth2"]}),
skip_if_ci()(infiles["RGB"], {"model_infile": esrgan_models["RRDB_ESRGAN_x4"]}),
skip_if_ci()(
infiles["RGB"], {"model_infile": esrgan_models["RRDB_ESRGAN_x4_old_arch"]}
),
skip_if_ci(xfail_unsupported_mode())(
infiles["LA"], {"model_infile": esrgan_models["1x_BC1-smooth2"]}
),
skip_if_ci(xfail_unsupported_mode())(
infiles["PLA"], {"model_infile": esrgan_models["1x_BC1-smooth2"]}
),
skip_if_ci(xfail_unsupported_mode())(
infiles["PRGBA"], {"model_infile": esrgan_models["1x_BC1-smooth2"]}
),
skip_if_ci(xfail_unsupported_mode())(
infiles["RGBA"], {"model_infile": esrgan_models["1x_BC1-smooth2"]}
),
],
indirect=["esrgan_processor"],
)
def test_esrgan(infile: str, esrgan_processor: ESRGANProcessor) -> None:
with temporary_filename(".png") as outfile:
esrgan_processor(infile, outfile)
with Image.open(infile) as input_image, Image.open(outfile) as output_image:
assert output_image.mode == expected_output_mode(input_image)
@pytest.mark.parametrize(
("infile", "expand_processor"),
[
(infiles["L"], {"pixels": (4, 4, 4, 4)}),
(infiles["LA"], {"pixels": (4, 4, 4, 4)}),
(infiles["RGB"], {"pixels": (4, 4, 4, 4)}),
(infiles["RGBA"], {"pixels": (4, 4, 4, 4)}),
(infiles["PL"], {"pixels": (4, 4, 4, 4)}),
(infiles["PLA"], {"pixels": (4, 4, 4, 4)}),
(infiles["PRGB"], {"pixels": (4, 4, 4, 4)}),
(infiles["PRGBA"], {"pixels": (4, 4, 4, 4)}),
],
indirect=["expand_processor"],
)
def test_expand(infile: str, expand_processor: ExpandProcessor) -> None:
with temporary_filename(".png") as outfile:
expand_processor(infile, outfile)
with Image.open(infile) as input_image, Image.open(outfile) as output_image:
assert output_image.mode == input_image.mode
assert output_image.size == (
input_image.size[0] + expand_processor.left + expand_processor.right,
input_image.size[1] + expand_processor.top + expand_processor.bottom,
)
@pytest.mark.parametrize(
("infile", "height_to_normal_processor"),
[
(infiles["L"], {"sigma": 0.5}),
(infiles["L"], {"sigma": 1.0}),
xfail_unsupported_mode()(infiles["LA"], {"sigma": 1.0}),
(infiles["PL"], {"sigma": 1.0}),
xfail_unsupported_mode()(infiles["PLA"], {"sigma": 1.0}),
xfail_unsupported_mode()(infiles["PRGB"], {"sigma": 1.0}),
xfail_unsupported_mode()(infiles["PRGBA"], {"sigma": 1.0}),
xfail_unsupported_mode()(infiles["RGB"], {"sigma": 1.0}),
xfail_unsupported_mode()(infiles["RGBA"], {"sigma": 1.0}),
],
indirect=["height_to_normal_processor"],
)
def test_height_to_normal(
infile: str, height_to_normal_processor: HeightToNormalProcessor
) -> None:
with temporary_filename(".png") as outfile:
height_to_normal_processor(infile, outfile)
with Image.open(infile) as input_image, Image.open(outfile) as output_image:
output_datum = np.array(output_image)
assert output_image.mode == "RGB"
assert output_image.size == input_image.size
assert np.min(output_datum[:, :, 2] >= 128)
@pytest.mark.parametrize(
("infile", "mode_processor"),
[
(infiles["L"], {"mode": "L"}),
(infiles["L"], {"mode": "LA"}),
(infiles["L"], {"mode": "RGB"}),
(infiles["L"], {"mode": "RGBA"}),
(infiles["LA"], {"mode": "L"}),
(infiles["LA"], {"mode": "LA"}),
(infiles["LA"], {"mode": "RGB"}),
(infiles["LA"], {"mode": "RGBA"}),
(infiles["RGB"], {"mode": "L"}),
(infiles["RGB"], {"mode": "LA"}),
(infiles["RGB"], {"mode": "RGB"}),
(infiles["RGB"], {"mode": "RGBA"}),
(infiles["RGBA"], {"mode": "L"}),
(infiles["RGBA"], {"mode": "LA"}),
(infiles["RGBA"], {"mode": "RGB"}),
(infiles["RGBA"], {"mode": "RGBA"}),
(infiles["PL"], {"mode": "RGBA"}),
(infiles["PLA"], {"mode": "RGBA"}),
(infiles["PRGB"], {"mode": "RGBA"}),
(infiles["PRGBA"], {"mode": "RGBA"}),
],
indirect=["mode_processor"],
)
def test_mode(infile: str, mode_processor: ModeProcessor) -> None:
with temporary_filename(".png") as outfile:
mode_processor(infile, outfile)
with Image.open(infile) as input_image, Image.open(outfile) as output_image:
assert output_image.size == input_image.size
assert output_image.mode == mode_processor.mode
@pytest.mark.parametrize(
("infile", "pngquant_external_processor"),
[
(infiles["L"], {}),
(infiles["LA"], {}),
(infiles["RGB"], {}),
(infiles["RGBA"], {}),
(infiles["PL"], {}),
(infiles["PRGB"], {}),
(infiles["PRGBA"], {}),
(infiles["PLA"], {}),
],
indirect=["pngquant_external_processor"],
)
def test_pngquant_external(
infile: str, pngquant_external_processor: PngquantExternalProcessor
) -> None:
with temporary_filename(".png") as outfile:
pngquant_external_processor(infile, outfile)
with Image.open(infile) as input_image, Image.open(outfile) as output_image:
assert output_image.mode in (input_image.mode, "P")
assert output_image.size == input_image.size
assert getsize(outfile) <= getsize(infile)
@pytest.mark.parametrize(
("infile", "potrace_external_processor"),
[
(infiles["L"], {}),
(infiles["L"], {"scale": 2}),
xfail_unsupported_mode()(infiles["LA"], {}),
(infiles["PL"], {}),
xfail_unsupported_mode()(infiles["PLA"], {}),
xfail_unsupported_mode()(infiles["PRGB"], {}),
xfail_unsupported_mode()(infiles["PRGBA"], {}),
xfail_unsupported_mode()(infiles["RGB"], {}),
xfail_unsupported_mode()(infiles["RGBA"], {}),
],
indirect=["potrace_external_processor"],
)
def test_potrace_external(
infile: str, potrace_external_processor: PotraceExternalProcessor
) -> None:
with temporary_filename(".png") as outfile:
potrace_external_processor(infile, outfile)
with Image.open(infile) as input_image, Image.open(outfile) as output_image:
assert output_image.mode == "L"
assert output_image.size == (
input_image.size[0] * potrace_external_processor.scale,
input_image.size[1] * potrace_external_processor.scale,
)
@pytest.mark.parametrize(
("infile", "resize_processor"),
[
(infiles["L"], {"scale": 2}),
(infiles["LA"], {"scale": 2}),
(infiles["RGB"], {"scale": 2}),
(infiles["RGBA"], {"scale": 2}),
(infiles["PL"], {"scale": 2}),
(infiles["PLA"], {"scale": 2}),
(infiles["PRGB"], {"scale": 2}),
(infiles["PRGBA"], {"scale": 2}),
],
indirect=["resize_processor"],
)
def test_resize(infile: str, resize_processor: ResizeProcessor) -> None:
with temporary_filename(".png") as outfile:
resize_processor(infile, outfile)
with Image.open(infile) as input_image, Image.open(outfile) as output_image:
assert output_image.mode == expected_output_mode(input_image)
assert output_image.size == (
input_image.size[0] * resize_processor.scale,
input_image.size[1] * resize_processor.scale,
)
@pytest.mark.parametrize(
("infile", "solid_color_processor"),
[
(infiles["L"], {}),
(infiles["LA"], {}),
(infiles["RGB"], {}),
(infiles["RGBA"], {}),
(infiles["PL"], {}),
(infiles["PLA"], {}),
(infiles["PRGB"], {}),
(infiles["PRGBA"], {}),
],
indirect=["solid_color_processor"],
)
def test_solid_color(infile: str, solid_color_processor: SolidColorProcessor) -> None:
with temporary_filename(".png") as outfile:
solid_color_processor(infile, outfile)
with Image.open(infile) as input_image, Image.open(outfile) as output_image:
assert output_image.mode == expected_output_mode(input_image)
assert output_image.size == input_image.size
assert len(output_image.getcolors()) == 1
@pytest.mark.parametrize(
("infile", "texconv_external_processor"),
[
xfail_if_platform({"Darwin", "Linux"})(infiles["L"], {}),
xfail_if_platform({"Darwin", "Linux"})(infiles["LA"], {}),
xfail_if_platform({"Darwin", "Linux"})(infiles["RGB"], {}),
xfail_if_platform({"Darwin", "Linux"})(infiles["RGBA"], {}),
xfail_if_platform({"Darwin", "Linux"})(infiles["PL"], {}),
xfail_if_platform({"Darwin", "Linux"})(infiles["PLA"], {}),
xfail_if_platform({"Darwin", "Linux"})(infiles["PRGB"], {}),
xfail_if_platform({"Darwin", "Linux"})(infiles["PRGBA"], {}),
],
indirect=["texconv_external_processor"],
)
def test_texconv_external(
infile: str, texconv_external_processor: TexconvExternalProcessor
) -> None:
with temporary_filename(".png") as outfile:
texconv_external_processor(infile, outfile)
with Image.open(infile) as input_image, Image.open(outfile) as output_image:
assert output_image.mode == "RGBA"
assert output_image.size == input_image.size
@pytest.mark.parametrize(
("infile", "threshold_processor"),
[
(infiles["L"], {}),
(infiles["L"], {"denoise": True}),
xfail_unsupported_mode()(infiles["LA"], {}),
(infiles["PL"], {}),
xfail_unsupported_mode()(infiles["PLA"], {}),
xfail_unsupported_mode()(infiles["PRGB"], {}),
xfail_unsupported_mode()(infiles["PRGBA"], {}),
xfail_unsupported_mode()(infiles["RGB"], {}),
xfail_unsupported_mode()(infiles["RGBA"], {}),
],
indirect=["threshold_processor"],
)
def test_threshold(infile: str, threshold_processor: ThresholdProcessor) -> None:
with temporary_filename(".png") as outfile:
threshold_processor(infile, outfile)
with Image.open(infile) as input_image, Image.open(outfile) as output_image:
output_datum = np.array(output_image)
assert output_image.mode == "L"
assert output_image.size == input_image.size
assert np.logical_or(output_datum == 0, output_datum == 255).all()
@pytest.mark.serial
@pytest.mark.parametrize(
("infile", "waifu_external_processor"),
[
skip_if_ci()(infiles["L"], {"imagetype": "a", "denoise": 0, "scale": 2}),
skip_if_ci()(infiles["PL"], {"imagetype": "a", "denoise": 0, "scale": 2}),
skip_if_ci()(infiles["PRGB"], {"imagetype": "a", "denoise": 0, "scale": 2}),
skip_if_ci()(infiles["RGB"], {"imagetype": "a", "denoise": 0, "scale": 2}),
skip_if_ci()(infiles["RGB"], {"imagetype": "a", "denoise": 3, "scale": 2}),
skip_if_ci(xfail_unsupported_mode())(
infiles["LA"], {"imagetype": "a", "denoise": 0, "scale": 2}
),
skip_if_ci(xfail_unsupported_mode())(
infiles["PLA"], {"imagetype": "a", "denoise": 0, "scale": 2}
),
skip_if_ci(xfail_unsupported_mode())(
infiles["PRGBA"], {"imagetype": "a", "denoise": 0, "scale": 2}
),
skip_if_ci(xfail_unsupported_mode())(
infiles["RGBA"], {"imagetype": "a", "denoise": 0, "scale": 2}
),
],
indirect=["waifu_external_processor"],
)
def test_waifu_external(
infile: str, waifu_external_processor: WaifuExternalProcessor
) -> None:
with temporary_filename(".png") as outfile:
waifu_external_processor(infile, outfile)
with Image.open(infile) as input_image, Image.open(outfile) as output_image:
assert output_image.mode == expected_output_mode(input_image)
assert output_image.size == (
input_image.size[0] * waifu_external_processor.scale,
input_image.size[1] * waifu_external_processor.scale,
)
@pytest.mark.parametrize(
("infile", "xbrz_processor"),
[
(infiles["L"], {"scale": 2}),
(infiles["LA"], {"scale": 2}),
(infiles["RGB"], {"scale": 2}),
(infiles["RGBA"], {"scale": 2}),
(infiles["PL"], {"scale": 2}),
(infiles["PLA"], {"scale": 2}),
(infiles["PRGB"], {"scale": 2}),
(infiles["PRGBA"], {"scale": 2}),
],
indirect=["xbrz_processor"],
)
def test_xbrz(infile: str, xbrz_processor: XbrzProcessor) -> None:
with temporary_filename(".png") as outfile:
xbrz_processor(infile, outfile)
with Image.open(infile) as input_image, Image.open(outfile) as output_image:
assert output_image.mode == expected_output_mode(input_image)
assert output_image.size == (
input_image.size[0] * xbrz_processor.scale,
input_image.size[1] * xbrz_processor.scale,
)
|
[
"pipescaler.processors.ThresholdProcessor",
"pipescaler.processors.XbrzProcessor",
"pipescaler.processors.ESRGANProcessor",
"pipescaler.processors.AppleScriptExternalProcessor",
"pipescaler.processors.SolidColorProcessor",
"pytest.mark.parametrize",
"pipescaler.processors.CropProcessor",
"shared.xfail_if_platform",
"pipescaler.processors.PotraceExternalProcessor",
"pipescaler.processors.ResizeProcessor",
"shared.xfail_unsupported_mode",
"pipescaler.common.temporary_filename",
"os.path.getsize",
"pytest.fixture",
"shared.skip_if_ci",
"numpy.min",
"pipescaler.processors.WaifuExternalProcessor",
"pipescaler.processors.TexconvExternalProcessor",
"pipescaler.processors.AutomatorExternalProcessor",
"pipescaler.processors.ExpandProcessor",
"pipescaler.processors.HeightToNormalProcessor",
"PIL.Image.open",
"pipescaler.processors.ModeProcessor",
"shared.expected_output_mode",
"numpy.array",
"numpy.logical_or",
"pipescaler.processors.PngquantExternalProcessor"
] |
[((958, 974), 'pytest.fixture', 'pytest.fixture', ([], {}), '()\n', (972, 974), False, 'import pytest\n'), ((1113, 1129), 'pytest.fixture', 'pytest.fixture', ([], {}), '()\n', (1127, 1129), False, 'import pytest\n'), ((1261, 1277), 'pytest.fixture', 'pytest.fixture', ([], {}), '()\n', (1275, 1277), False, 'import pytest\n'), ((1369, 1385), 'pytest.fixture', 'pytest.fixture', ([], {}), '()\n', (1383, 1385), False, 'import pytest\n'), ((1483, 1499), 'pytest.fixture', 'pytest.fixture', ([], {}), '()\n', (1497, 1499), False, 'import pytest\n'), ((1597, 1613), 'pytest.fixture', 'pytest.fixture', ([], {}), '()\n', (1611, 1613), False, 'import pytest\n'), ((1737, 1753), 'pytest.fixture', 'pytest.fixture', ([], {}), '()\n', (1751, 1753), False, 'import pytest\n'), ((1845, 1861), 'pytest.fixture', 'pytest.fixture', ([], {}), '()\n', (1859, 1861), False, 'import pytest\n'), ((1987, 2003), 'pytest.fixture', 'pytest.fixture', ([], {}), '()\n', (2001, 2003), False, 'import pytest\n'), ((2132, 2148), 'pytest.fixture', 'pytest.fixture', ([], {}), '()\n', (2146, 2148), False, 'import pytest\n'), ((2246, 2262), 'pytest.fixture', 'pytest.fixture', ([], {}), '()\n', (2260, 2262), False, 'import pytest\n'), ((2373, 2389), 'pytest.fixture', 'pytest.fixture', ([], {}), '()\n', (2387, 2389), False, 'import pytest\n'), ((2515, 2531), 'pytest.fixture', 'pytest.fixture', ([], {}), '()\n', (2529, 2531), False, 'import pytest\n'), ((2638, 2654), 'pytest.fixture', 'pytest.fixture', ([], {}), '()\n', (2652, 2654), False, 'import pytest\n'), ((2774, 2790), 'pytest.fixture', 'pytest.fixture', ([], {}), '()\n', (2788, 2790), False, 'import pytest\n'), ((4842, 5307), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (["('infile', 'crop_processor')", "[(infiles['L'], {'pixels': (4, 4, 4, 4)}), (infiles['LA'], {'pixels': (4, 4,\n 4, 4)}), (infiles['RGB'], {'pixels': (4, 4, 4, 4)}), (infiles['RGBA'],\n {'pixels': (4, 4, 4, 4)}), (infiles['PL'], {'pixels': (4, 4, 4, 4)}), (\n infiles['PLA'], {'pixels': (4, 4, 4, 4)}), (infiles['PRGB'], {'pixels':\n (4, 4, 4, 4)}), (infiles['PRGBA'], {'pixels': (4, 4, 4, 4)})]"], {'indirect': "['crop_processor']"}), "(('infile', 'crop_processor'), [(infiles['L'], {\n 'pixels': (4, 4, 4, 4)}), (infiles['LA'], {'pixels': (4, 4, 4, 4)}), (\n infiles['RGB'], {'pixels': (4, 4, 4, 4)}), (infiles['RGBA'], {'pixels':\n (4, 4, 4, 4)}), (infiles['PL'], {'pixels': (4, 4, 4, 4)}), (infiles[\n 'PLA'], {'pixels': (4, 4, 4, 4)}), (infiles['PRGB'], {'pixels': (4, 4, \n 4, 4)}), (infiles['PRGBA'], {'pixels': (4, 4, 4, 4)})], indirect=[\n 'crop_processor'])\n", (4865, 5307), False, 'import pytest\n'), ((7470, 7939), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (["('infile', 'expand_processor')", "[(infiles['L'], {'pixels': (4, 4, 4, 4)}), (infiles['LA'], {'pixels': (4, 4,\n 4, 4)}), (infiles['RGB'], {'pixels': (4, 4, 4, 4)}), (infiles['RGBA'],\n {'pixels': (4, 4, 4, 4)}), (infiles['PL'], {'pixels': (4, 4, 4, 4)}), (\n infiles['PLA'], {'pixels': (4, 4, 4, 4)}), (infiles['PRGB'], {'pixels':\n (4, 4, 4, 4)}), (infiles['PRGBA'], {'pixels': (4, 4, 4, 4)})]"], {'indirect': "['expand_processor']"}), "(('infile', 'expand_processor'), [(infiles['L'], {\n 'pixels': (4, 4, 4, 4)}), (infiles['LA'], {'pixels': (4, 4, 4, 4)}), (\n infiles['RGB'], {'pixels': (4, 4, 4, 4)}), (infiles['RGBA'], {'pixels':\n (4, 4, 4, 4)}), (infiles['PL'], {'pixels': (4, 4, 4, 4)}), (infiles[\n 'PLA'], {'pixels': (4, 4, 4, 4)}), (infiles['PRGB'], {'pixels': (4, 4, \n 4, 4)}), (infiles['PRGBA'], {'pixels': (4, 4, 4, 4)})], indirect=[\n 'expand_processor'])\n", (7493, 7939), False, 'import pytest\n'), ((9690, 10510), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (["('infile', 'mode_processor')", "[(infiles['L'], {'mode': 'L'}), (infiles['L'], {'mode': 'LA'}), (infiles[\n 'L'], {'mode': 'RGB'}), (infiles['L'], {'mode': 'RGBA'}), (infiles['LA'\n ], {'mode': 'L'}), (infiles['LA'], {'mode': 'LA'}), (infiles['LA'], {\n 'mode': 'RGB'}), (infiles['LA'], {'mode': 'RGBA'}), (infiles['RGB'], {\n 'mode': 'L'}), (infiles['RGB'], {'mode': 'LA'}), (infiles['RGB'], {\n 'mode': 'RGB'}), (infiles['RGB'], {'mode': 'RGBA'}), (infiles['RGBA'],\n {'mode': 'L'}), (infiles['RGBA'], {'mode': 'LA'}), (infiles['RGBA'], {\n 'mode': 'RGB'}), (infiles['RGBA'], {'mode': 'RGBA'}), (infiles['PL'], {\n 'mode': 'RGBA'}), (infiles['PLA'], {'mode': 'RGBA'}), (infiles['PRGB'],\n {'mode': 'RGBA'}), (infiles['PRGBA'], {'mode': 'RGBA'})]"], {'indirect': "['mode_processor']"}), "(('infile', 'mode_processor'), [(infiles['L'], {\n 'mode': 'L'}), (infiles['L'], {'mode': 'LA'}), (infiles['L'], {'mode':\n 'RGB'}), (infiles['L'], {'mode': 'RGBA'}), (infiles['LA'], {'mode': 'L'\n }), (infiles['LA'], {'mode': 'LA'}), (infiles['LA'], {'mode': 'RGB'}),\n (infiles['LA'], {'mode': 'RGBA'}), (infiles['RGB'], {'mode': 'L'}), (\n infiles['RGB'], {'mode': 'LA'}), (infiles['RGB'], {'mode': 'RGB'}), (\n infiles['RGB'], {'mode': 'RGBA'}), (infiles['RGBA'], {'mode': 'L'}), (\n infiles['RGBA'], {'mode': 'LA'}), (infiles['RGBA'], {'mode': 'RGB'}), (\n infiles['RGBA'], {'mode': 'RGBA'}), (infiles['PL'], {'mode': 'RGBA'}),\n (infiles['PLA'], {'mode': 'RGBA'}), (infiles['PRGB'], {'mode': 'RGBA'}),\n (infiles['PRGBA'], {'mode': 'RGBA'})], indirect=['mode_processor'])\n", (9713, 10510), False, 'import pytest\n'), ((11008, 11314), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (["('infile', 'pngquant_external_processor')", "[(infiles['L'], {}), (infiles['LA'], {}), (infiles['RGB'], {}), (infiles[\n 'RGBA'], {}), (infiles['PL'], {}), (infiles['PRGB'], {}), (infiles[\n 'PRGBA'], {}), (infiles['PLA'], {})]"], {'indirect': "['pngquant_external_processor']"}), "(('infile', 'pngquant_external_processor'), [(\n infiles['L'], {}), (infiles['LA'], {}), (infiles['RGB'], {}), (infiles[\n 'RGBA'], {}), (infiles['PL'], {}), (infiles['PRGB'], {}), (infiles[\n 'PRGBA'], {}), (infiles['PLA'], {})], indirect=[\n 'pngquant_external_processor'])\n", (11031, 11314), False, 'import pytest\n'), ((12952, 13315), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (["('infile', 'resize_processor')", "[(infiles['L'], {'scale': 2}), (infiles['LA'], {'scale': 2}), (infiles[\n 'RGB'], {'scale': 2}), (infiles['RGBA'], {'scale': 2}), (infiles['PL'],\n {'scale': 2}), (infiles['PLA'], {'scale': 2}), (infiles['PRGB'], {\n 'scale': 2}), (infiles['PRGBA'], {'scale': 2})]"], {'indirect': "['resize_processor']"}), "(('infile', 'resize_processor'), [(infiles['L'], {\n 'scale': 2}), (infiles['LA'], {'scale': 2}), (infiles['RGB'], {'scale':\n 2}), (infiles['RGBA'], {'scale': 2}), (infiles['PL'], {'scale': 2}), (\n infiles['PLA'], {'scale': 2}), (infiles['PRGB'], {'scale': 2}), (\n infiles['PRGBA'], {'scale': 2})], indirect=['resize_processor'])\n", (12975, 13315), False, 'import pytest\n'), ((13889, 14176), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (["('infile', 'solid_color_processor')", "[(infiles['L'], {}), (infiles['LA'], {}), (infiles['RGB'], {}), (infiles[\n 'RGBA'], {}), (infiles['PL'], {}), (infiles['PLA'], {}), (infiles[\n 'PRGB'], {}), (infiles['PRGBA'], {})]"], {'indirect': "['solid_color_processor']"}), "(('infile', 'solid_color_processor'), [(infiles['L'],\n {}), (infiles['LA'], {}), (infiles['RGB'], {}), (infiles['RGBA'], {}),\n (infiles['PL'], {}), (infiles['PLA'], {}), (infiles['PRGB'], {}), (\n infiles['PRGBA'], {})], indirect=['solid_color_processor'])\n", (13912, 14176), False, 'import pytest\n'), ((18466, 18825), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (["('infile', 'xbrz_processor')", "[(infiles['L'], {'scale': 2}), (infiles['LA'], {'scale': 2}), (infiles[\n 'RGB'], {'scale': 2}), (infiles['RGBA'], {'scale': 2}), (infiles['PL'],\n {'scale': 2}), (infiles['PLA'], {'scale': 2}), (infiles['PRGB'], {\n 'scale': 2}), (infiles['PRGBA'], {'scale': 2})]"], {'indirect': "['xbrz_processor']"}), "(('infile', 'xbrz_processor'), [(infiles['L'], {\n 'scale': 2}), (infiles['LA'], {'scale': 2}), (infiles['RGB'], {'scale':\n 2}), (infiles['RGBA'], {'scale': 2}), (infiles['PL'], {'scale': 2}), (\n infiles['PLA'], {'scale': 2}), (infiles['PRGB'], {'scale': 2}), (\n infiles['PRGBA'], {'scale': 2})], indirect=['xbrz_processor'])\n", (18489, 18825), False, 'import pytest\n'), ((1064, 1109), 'pipescaler.processors.AppleScriptExternalProcessor', 'AppleScriptExternalProcessor', ([], {}), '(**request.param)\n', (1092, 1109), False, 'from pipescaler.processors import AppleScriptExternalProcessor, AutomatorExternalProcessor, CropProcessor, ESRGANProcessor, ExpandProcessor, HeightToNormalProcessor, ModeProcessor, PngquantExternalProcessor, PotraceExternalProcessor, ResizeProcessor, SolidColorProcessor, TexconvExternalProcessor, ThresholdProcessor, WaifuExternalProcessor, XbrzProcessor\n'), ((1214, 1257), 'pipescaler.processors.AutomatorExternalProcessor', 'AutomatorExternalProcessor', ([], {}), '(**request.param)\n', (1240, 1257), False, 'from pipescaler.processors import AppleScriptExternalProcessor, AutomatorExternalProcessor, CropProcessor, ESRGANProcessor, ExpandProcessor, HeightToNormalProcessor, ModeProcessor, PngquantExternalProcessor, PotraceExternalProcessor, ResizeProcessor, SolidColorProcessor, TexconvExternalProcessor, ThresholdProcessor, WaifuExternalProcessor, XbrzProcessor\n'), ((1335, 1365), 'pipescaler.processors.CropProcessor', 'CropProcessor', ([], {}), '(**request.param)\n', (1348, 1365), False, 'from pipescaler.processors import AppleScriptExternalProcessor, AutomatorExternalProcessor, CropProcessor, ESRGANProcessor, ExpandProcessor, HeightToNormalProcessor, ModeProcessor, PngquantExternalProcessor, PotraceExternalProcessor, ResizeProcessor, SolidColorProcessor, TexconvExternalProcessor, ThresholdProcessor, WaifuExternalProcessor, XbrzProcessor\n'), ((1447, 1479), 'pipescaler.processors.ESRGANProcessor', 'ESRGANProcessor', ([], {}), '(**request.param)\n', (1462, 1479), False, 'from pipescaler.processors import AppleScriptExternalProcessor, AutomatorExternalProcessor, CropProcessor, ESRGANProcessor, ExpandProcessor, HeightToNormalProcessor, ModeProcessor, PngquantExternalProcessor, PotraceExternalProcessor, ResizeProcessor, SolidColorProcessor, TexconvExternalProcessor, ThresholdProcessor, WaifuExternalProcessor, XbrzProcessor\n'), ((1561, 1593), 'pipescaler.processors.ExpandProcessor', 'ExpandProcessor', ([], {}), '(**request.param)\n', (1576, 1593), False, 'from pipescaler.processors import AppleScriptExternalProcessor, AutomatorExternalProcessor, CropProcessor, ESRGANProcessor, ExpandProcessor, HeightToNormalProcessor, ModeProcessor, PngquantExternalProcessor, PotraceExternalProcessor, ResizeProcessor, SolidColorProcessor, TexconvExternalProcessor, ThresholdProcessor, WaifuExternalProcessor, XbrzProcessor\n'), ((1693, 1733), 'pipescaler.processors.HeightToNormalProcessor', 'HeightToNormalProcessor', ([], {}), '(**request.param)\n', (1716, 1733), False, 'from pipescaler.processors import AppleScriptExternalProcessor, AutomatorExternalProcessor, CropProcessor, ESRGANProcessor, ExpandProcessor, HeightToNormalProcessor, ModeProcessor, PngquantExternalProcessor, PotraceExternalProcessor, ResizeProcessor, SolidColorProcessor, TexconvExternalProcessor, ThresholdProcessor, WaifuExternalProcessor, XbrzProcessor\n'), ((1811, 1841), 'pipescaler.processors.ModeProcessor', 'ModeProcessor', ([], {}), '(**request.param)\n', (1824, 1841), False, 'from pipescaler.processors import AppleScriptExternalProcessor, AutomatorExternalProcessor, CropProcessor, ESRGANProcessor, ExpandProcessor, HeightToNormalProcessor, ModeProcessor, PngquantExternalProcessor, PotraceExternalProcessor, ResizeProcessor, SolidColorProcessor, TexconvExternalProcessor, ThresholdProcessor, WaifuExternalProcessor, XbrzProcessor\n'), ((1942, 1983), 'pipescaler.processors.PotraceExternalProcessor', 'PotraceExternalProcessor', ([], {}), '(**request.param)\n', (1966, 1983), False, 'from pipescaler.processors import AppleScriptExternalProcessor, AutomatorExternalProcessor, CropProcessor, ESRGANProcessor, ExpandProcessor, HeightToNormalProcessor, ModeProcessor, PngquantExternalProcessor, PotraceExternalProcessor, ResizeProcessor, SolidColorProcessor, TexconvExternalProcessor, ThresholdProcessor, WaifuExternalProcessor, XbrzProcessor\n'), ((2086, 2128), 'pipescaler.processors.PngquantExternalProcessor', 'PngquantExternalProcessor', ([], {}), '(**request.param)\n', (2111, 2128), False, 'from pipescaler.processors import AppleScriptExternalProcessor, AutomatorExternalProcessor, CropProcessor, ESRGANProcessor, ExpandProcessor, HeightToNormalProcessor, ModeProcessor, PngquantExternalProcessor, PotraceExternalProcessor, ResizeProcessor, SolidColorProcessor, TexconvExternalProcessor, ThresholdProcessor, WaifuExternalProcessor, XbrzProcessor\n'), ((2210, 2242), 'pipescaler.processors.ResizeProcessor', 'ResizeProcessor', ([], {}), '(**request.param)\n', (2225, 2242), False, 'from pipescaler.processors import AppleScriptExternalProcessor, AutomatorExternalProcessor, CropProcessor, ESRGANProcessor, ExpandProcessor, HeightToNormalProcessor, ModeProcessor, PngquantExternalProcessor, PotraceExternalProcessor, ResizeProcessor, SolidColorProcessor, TexconvExternalProcessor, ThresholdProcessor, WaifuExternalProcessor, XbrzProcessor\n'), ((2333, 2369), 'pipescaler.processors.SolidColorProcessor', 'SolidColorProcessor', ([], {}), '(**request.param)\n', (2352, 2369), False, 'from pipescaler.processors import AppleScriptExternalProcessor, AutomatorExternalProcessor, CropProcessor, ESRGANProcessor, ExpandProcessor, HeightToNormalProcessor, ModeProcessor, PngquantExternalProcessor, PotraceExternalProcessor, ResizeProcessor, SolidColorProcessor, TexconvExternalProcessor, ThresholdProcessor, WaifuExternalProcessor, XbrzProcessor\n'), ((2470, 2511), 'pipescaler.processors.TexconvExternalProcessor', 'TexconvExternalProcessor', ([], {}), '(**request.param)\n', (2494, 2511), False, 'from pipescaler.processors import AppleScriptExternalProcessor, AutomatorExternalProcessor, CropProcessor, ESRGANProcessor, ExpandProcessor, HeightToNormalProcessor, ModeProcessor, PngquantExternalProcessor, PotraceExternalProcessor, ResizeProcessor, SolidColorProcessor, TexconvExternalProcessor, ThresholdProcessor, WaifuExternalProcessor, XbrzProcessor\n'), ((2599, 2634), 'pipescaler.processors.ThresholdProcessor', 'ThresholdProcessor', ([], {}), '(**request.param)\n', (2617, 2634), False, 'from pipescaler.processors import AppleScriptExternalProcessor, AutomatorExternalProcessor, CropProcessor, ESRGANProcessor, ExpandProcessor, HeightToNormalProcessor, ModeProcessor, PngquantExternalProcessor, PotraceExternalProcessor, ResizeProcessor, SolidColorProcessor, TexconvExternalProcessor, ThresholdProcessor, WaifuExternalProcessor, XbrzProcessor\n'), ((2731, 2770), 'pipescaler.processors.WaifuExternalProcessor', 'WaifuExternalProcessor', ([], {}), '(**request.param)\n', (2753, 2770), False, 'from pipescaler.processors import AppleScriptExternalProcessor, AutomatorExternalProcessor, CropProcessor, ESRGANProcessor, ExpandProcessor, HeightToNormalProcessor, ModeProcessor, PngquantExternalProcessor, PotraceExternalProcessor, ResizeProcessor, SolidColorProcessor, TexconvExternalProcessor, ThresholdProcessor, WaifuExternalProcessor, XbrzProcessor\n'), ((2848, 2878), 'pipescaler.processors.XbrzProcessor', 'XbrzProcessor', ([], {}), '(**request.param)\n', (2861, 2878), False, 'from pipescaler.processors import AppleScriptExternalProcessor, AutomatorExternalProcessor, CropProcessor, ESRGANProcessor, ExpandProcessor, HeightToNormalProcessor, ModeProcessor, PngquantExternalProcessor, PotraceExternalProcessor, ResizeProcessor, SolidColorProcessor, TexconvExternalProcessor, ThresholdProcessor, WaifuExternalProcessor, XbrzProcessor\n'), ((3517, 3543), 'pipescaler.common.temporary_filename', 'temporary_filename', (['""".png"""'], {}), "('.png')\n", (3535, 3543), False, 'from pipescaler.common import temporary_filename\n'), ((4546, 4572), 'pipescaler.common.temporary_filename', 'temporary_filename', (['""".png"""'], {}), "('.png')\n", (4564, 4572), False, 'from pipescaler.common import temporary_filename\n'), ((5441, 5467), 'pipescaler.common.temporary_filename', 'temporary_filename', (['""".png"""'], {}), "('.png')\n", (5459, 5467), False, 'from pipescaler.common import temporary_filename\n'), ((7226, 7252), 'pipescaler.common.temporary_filename', 'temporary_filename', (['""".png"""'], {}), "('.png')\n", (7244, 7252), False, 'from pipescaler.common import temporary_filename\n'), ((8079, 8105), 'pipescaler.common.temporary_filename', 'temporary_filename', (['""".png"""'], {}), "('.png')\n", (8097, 8105), False, 'from pipescaler.common import temporary_filename\n'), ((9301, 9327), 'pipescaler.common.temporary_filename', 'temporary_filename', (['""".png"""'], {}), "('.png')\n", (9319, 9327), False, 'from pipescaler.common import temporary_filename\n'), ((10723, 10749), 'pipescaler.common.temporary_filename', 'temporary_filename', (['""".png"""'], {}), "('.png')\n", (10741, 10749), False, 'from pipescaler.common import temporary_filename\n'), ((11501, 11527), 'pipescaler.common.temporary_filename', 'temporary_filename', (['""".png"""'], {}), "('.png')\n", (11519, 11527), False, 'from pipescaler.common import temporary_filename\n'), ((12528, 12554), 'pipescaler.common.temporary_filename', 'temporary_filename', (['""".png"""'], {}), "('.png')\n", (12546, 12554), False, 'from pipescaler.common import temporary_filename\n'), ((13465, 13491), 'pipescaler.common.temporary_filename', 'temporary_filename', (['""".png"""'], {}), "('.png')\n", (13483, 13491), False, 'from pipescaler.common import temporary_filename\n'), ((14346, 14372), 'pipescaler.common.temporary_filename', 'temporary_filename', (['""".png"""'], {}), "('.png')\n", (14364, 14372), False, 'from pipescaler.common import temporary_filename\n'), ((15498, 15524), 'pipescaler.common.temporary_filename', 'temporary_filename', (['""".png"""'], {}), "('.png')\n", (15516, 15524), False, 'from pipescaler.common import temporary_filename\n'), ((16417, 16443), 'pipescaler.common.temporary_filename', 'temporary_filename', (['""".png"""'], {}), "('.png')\n", (16435, 16443), False, 'from pipescaler.common import temporary_filename\n'), ((18018, 18044), 'pipescaler.common.temporary_filename', 'temporary_filename', (['""".png"""'], {}), "('.png')\n", (18036, 18044), False, 'from pipescaler.common import temporary_filename\n'), ((18969, 18995), 'pipescaler.common.temporary_filename', 'temporary_filename', (['""".png"""'], {}), "('.png')\n", (18987, 18995), False, 'from pipescaler.common import temporary_filename\n'), ((3627, 3645), 'PIL.Image.open', 'Image.open', (['infile'], {}), '(infile)\n', (3637, 3645), False, 'from PIL import Image\n'), ((3662, 3681), 'PIL.Image.open', 'Image.open', (['outfile'], {}), '(outfile)\n', (3672, 3681), False, 'from PIL import Image\n'), ((3006, 3045), 'shared.xfail_if_platform', 'xfail_if_platform', (["{'Linux', 'Windows'}"], {}), "({'Linux', 'Windows'})\n", (3023, 3045), False, 'from shared import esrgan_models, expected_output_mode, infiles, skip_if_ci, xfail_if_platform, xfail_unsupported_mode\n'), ((3170, 3209), 'shared.xfail_if_platform', 'xfail_if_platform', (["{'Linux', 'Windows'}"], {}), "({'Linux', 'Windows'})\n", (3187, 3209), False, 'from shared import esrgan_models, expected_output_mode, infiles, skip_if_ci, xfail_if_platform, xfail_unsupported_mode\n'), ((4653, 4671), 'PIL.Image.open', 'Image.open', (['infile'], {}), '(infile)\n', (4663, 4671), False, 'from PIL import Image\n'), ((4688, 4707), 'PIL.Image.open', 'Image.open', (['outfile'], {}), '(outfile)\n', (4698, 4707), False, 'from PIL import Image\n'), ((4084, 4123), 'shared.xfail_if_platform', 'xfail_if_platform', (["{'Linux', 'Windows'}"], {}), "({'Linux', 'Windows'})\n", (4101, 4123), False, 'from shared import esrgan_models, expected_output_mode, infiles, skip_if_ci, xfail_if_platform, xfail_unsupported_mode\n'), ((4229, 4268), 'shared.xfail_if_platform', 'xfail_if_platform', (["{'Linux', 'Windows'}"], {}), "({'Linux', 'Windows'})\n", (4246, 4268), False, 'from shared import esrgan_models, expected_output_mode, infiles, skip_if_ci, xfail_if_platform, xfail_unsupported_mode\n'), ((5534, 5552), 'PIL.Image.open', 'Image.open', (['infile'], {}), '(infile)\n', (5544, 5552), False, 'from PIL import Image\n'), ((5569, 5588), 'PIL.Image.open', 'Image.open', (['outfile'], {}), '(outfile)\n', (5579, 5588), False, 'from PIL import Image\n'), ((7321, 7339), 'PIL.Image.open', 'Image.open', (['infile'], {}), '(infile)\n', (7331, 7339), False, 'from PIL import Image\n'), ((7356, 7375), 'PIL.Image.open', 'Image.open', (['outfile'], {}), '(outfile)\n', (7366, 7375), False, 'from PIL import Image\n'), ((5981, 5993), 'shared.skip_if_ci', 'skip_if_ci', ([], {}), '()\n', (5991, 5993), False, 'from shared import esrgan_models, expected_output_mode, infiles, skip_if_ci, xfail_if_platform, xfail_unsupported_mode\n'), ((6068, 6080), 'shared.skip_if_ci', 'skip_if_ci', ([], {}), '()\n', (6078, 6080), False, 'from shared import esrgan_models, expected_output_mode, infiles, skip_if_ci, xfail_if_platform, xfail_unsupported_mode\n'), ((6156, 6168), 'shared.skip_if_ci', 'skip_if_ci', ([], {}), '()\n', (6166, 6168), False, 'from shared import esrgan_models, expected_output_mode, infiles, skip_if_ci, xfail_if_platform, xfail_unsupported_mode\n'), ((6268, 6280), 'shared.skip_if_ci', 'skip_if_ci', ([], {}), '()\n', (6278, 6280), False, 'from shared import esrgan_models, expected_output_mode, infiles, skip_if_ci, xfail_if_platform, xfail_unsupported_mode\n'), ((6357, 6369), 'shared.skip_if_ci', 'skip_if_ci', ([], {}), '()\n', (6367, 6369), False, 'from shared import esrgan_models, expected_output_mode, infiles, skip_if_ci, xfail_if_platform, xfail_unsupported_mode\n'), ((6446, 6458), 'shared.skip_if_ci', 'skip_if_ci', ([], {}), '()\n', (6456, 6458), False, 'from shared import esrgan_models, expected_output_mode, infiles, skip_if_ci, xfail_if_platform, xfail_unsupported_mode\n'), ((8174, 8192), 'PIL.Image.open', 'Image.open', (['infile'], {}), '(infile)\n', (8184, 8192), False, 'from PIL import Image\n'), ((8209, 8228), 'PIL.Image.open', 'Image.open', (['outfile'], {}), '(outfile)\n', (8219, 8228), False, 'from PIL import Image\n'), ((9406, 9424), 'PIL.Image.open', 'Image.open', (['infile'], {}), '(infile)\n', (9416, 9424), False, 'from PIL import Image\n'), ((9441, 9460), 'PIL.Image.open', 'Image.open', (['outfile'], {}), '(outfile)\n', (9451, 9460), False, 'from PIL import Image\n'), ((9505, 9527), 'numpy.array', 'np.array', (['output_image'], {}), '(output_image)\n', (9513, 9527), True, 'import numpy as np\n'), ((9650, 9686), 'numpy.min', 'np.min', (['(output_datum[:, :, 2] >= 128)'], {}), '(output_datum[:, :, 2] >= 128)\n', (9656, 9686), True, 'import numpy as np\n'), ((8699, 8723), 'shared.xfail_unsupported_mode', 'xfail_unsupported_mode', ([], {}), '()\n', (8721, 8723), False, 'from shared import esrgan_models, expected_output_mode, infiles, skip_if_ci, xfail_if_platform, xfail_unsupported_mode\n'), ((8805, 8829), 'shared.xfail_unsupported_mode', 'xfail_unsupported_mode', ([], {}), '()\n', (8827, 8829), False, 'from shared import esrgan_models, expected_output_mode, infiles, skip_if_ci, xfail_if_platform, xfail_unsupported_mode\n'), ((8871, 8895), 'shared.xfail_unsupported_mode', 'xfail_unsupported_mode', ([], {}), '()\n', (8893, 8895), False, 'from shared import esrgan_models, expected_output_mode, infiles, skip_if_ci, xfail_if_platform, xfail_unsupported_mode\n'), ((8938, 8962), 'shared.xfail_unsupported_mode', 'xfail_unsupported_mode', ([], {}), '()\n', (8960, 8962), False, 'from shared import esrgan_models, expected_output_mode, infiles, skip_if_ci, xfail_if_platform, xfail_unsupported_mode\n'), ((9006, 9030), 'shared.xfail_unsupported_mode', 'xfail_unsupported_mode', ([], {}), '()\n', (9028, 9030), False, 'from shared import esrgan_models, expected_output_mode, infiles, skip_if_ci, xfail_if_platform, xfail_unsupported_mode\n'), ((9072, 9096), 'shared.xfail_unsupported_mode', 'xfail_unsupported_mode', ([], {}), '()\n', (9094, 9096), False, 'from shared import esrgan_models, expected_output_mode, infiles, skip_if_ci, xfail_if_platform, xfail_unsupported_mode\n'), ((10816, 10834), 'PIL.Image.open', 'Image.open', (['infile'], {}), '(infile)\n', (10826, 10834), False, 'from PIL import Image\n'), ((10851, 10870), 'PIL.Image.open', 'Image.open', (['outfile'], {}), '(outfile)\n', (10861, 10870), False, 'from PIL import Image\n'), ((11607, 11625), 'PIL.Image.open', 'Image.open', (['infile'], {}), '(infile)\n', (11617, 11625), False, 'from PIL import Image\n'), ((11642, 11661), 'PIL.Image.open', 'Image.open', (['outfile'], {}), '(outfile)\n', (11652, 11661), False, 'from PIL import Image\n'), ((12633, 12651), 'PIL.Image.open', 'Image.open', (['infile'], {}), '(infile)\n', (12643, 12651), False, 'from PIL import Image\n'), ((12668, 12687), 'PIL.Image.open', 'Image.open', (['outfile'], {}), '(outfile)\n', (12678, 12687), False, 'from PIL import Image\n'), ((12009, 12033), 'shared.xfail_unsupported_mode', 'xfail_unsupported_mode', ([], {}), '()\n', (12031, 12033), False, 'from shared import esrgan_models, expected_output_mode, infiles, skip_if_ci, xfail_if_platform, xfail_unsupported_mode\n'), ((12091, 12115), 'shared.xfail_unsupported_mode', 'xfail_unsupported_mode', ([], {}), '()\n', (12113, 12115), False, 'from shared import esrgan_models, expected_output_mode, infiles, skip_if_ci, xfail_if_platform, xfail_unsupported_mode\n'), ((12145, 12169), 'shared.xfail_unsupported_mode', 'xfail_unsupported_mode', ([], {}), '()\n', (12167, 12169), False, 'from shared import esrgan_models, expected_output_mode, infiles, skip_if_ci, xfail_if_platform, xfail_unsupported_mode\n'), ((12200, 12224), 'shared.xfail_unsupported_mode', 'xfail_unsupported_mode', ([], {}), '()\n', (12222, 12224), False, 'from shared import esrgan_models, expected_output_mode, infiles, skip_if_ci, xfail_if_platform, xfail_unsupported_mode\n'), ((12256, 12280), 'shared.xfail_unsupported_mode', 'xfail_unsupported_mode', ([], {}), '()\n', (12278, 12280), False, 'from shared import esrgan_models, expected_output_mode, infiles, skip_if_ci, xfail_if_platform, xfail_unsupported_mode\n'), ((12310, 12334), 'shared.xfail_unsupported_mode', 'xfail_unsupported_mode', ([], {}), '()\n', (12332, 12334), False, 'from shared import esrgan_models, expected_output_mode, infiles, skip_if_ci, xfail_if_platform, xfail_unsupported_mode\n'), ((13560, 13578), 'PIL.Image.open', 'Image.open', (['infile'], {}), '(infile)\n', (13570, 13578), False, 'from PIL import Image\n'), ((13595, 13614), 'PIL.Image.open', 'Image.open', (['outfile'], {}), '(outfile)\n', (13605, 13614), False, 'from PIL import Image\n'), ((14446, 14464), 'PIL.Image.open', 'Image.open', (['infile'], {}), '(infile)\n', (14456, 14464), False, 'from PIL import Image\n'), ((14481, 14500), 'PIL.Image.open', 'Image.open', (['outfile'], {}), '(outfile)\n', (14491, 14500), False, 'from PIL import Image\n'), ((15603, 15621), 'PIL.Image.open', 'Image.open', (['infile'], {}), '(infile)\n', (15613, 15621), False, 'from PIL import Image\n'), ((15638, 15657), 'PIL.Image.open', 'Image.open', (['outfile'], {}), '(outfile)\n', (15648, 15657), False, 'from PIL import Image\n'), ((14791, 14829), 'shared.xfail_if_platform', 'xfail_if_platform', (["{'Darwin', 'Linux'}"], {}), "({'Darwin', 'Linux'})\n", (14808, 14829), False, 'from shared import esrgan_models, expected_output_mode, infiles, skip_if_ci, xfail_if_platform, xfail_unsupported_mode\n'), ((14857, 14895), 'shared.xfail_if_platform', 'xfail_if_platform', (["{'Darwin', 'Linux'}"], {}), "({'Darwin', 'Linux'})\n", (14874, 14895), False, 'from shared import esrgan_models, expected_output_mode, infiles, skip_if_ci, xfail_if_platform, xfail_unsupported_mode\n'), ((14924, 14962), 'shared.xfail_if_platform', 'xfail_if_platform', (["{'Darwin', 'Linux'}"], {}), "({'Darwin', 'Linux'})\n", (14941, 14962), False, 'from shared import esrgan_models, expected_output_mode, infiles, skip_if_ci, xfail_if_platform, xfail_unsupported_mode\n'), ((14992, 15030), 'shared.xfail_if_platform', 'xfail_if_platform', (["{'Darwin', 'Linux'}"], {}), "({'Darwin', 'Linux'})\n", (15009, 15030), False, 'from shared import esrgan_models, expected_output_mode, infiles, skip_if_ci, xfail_if_platform, xfail_unsupported_mode\n'), ((15061, 15099), 'shared.xfail_if_platform', 'xfail_if_platform', (["{'Darwin', 'Linux'}"], {}), "({'Darwin', 'Linux'})\n", (15078, 15099), False, 'from shared import esrgan_models, expected_output_mode, infiles, skip_if_ci, xfail_if_platform, xfail_unsupported_mode\n'), ((15128, 15166), 'shared.xfail_if_platform', 'xfail_if_platform', (["{'Darwin', 'Linux'}"], {}), "({'Darwin', 'Linux'})\n", (15145, 15166), False, 'from shared import esrgan_models, expected_output_mode, infiles, skip_if_ci, xfail_if_platform, xfail_unsupported_mode\n'), ((15196, 15234), 'shared.xfail_if_platform', 'xfail_if_platform', (["{'Darwin', 'Linux'}"], {}), "({'Darwin', 'Linux'})\n", (15213, 15234), False, 'from shared import esrgan_models, expected_output_mode, infiles, skip_if_ci, xfail_if_platform, xfail_unsupported_mode\n'), ((15265, 15303), 'shared.xfail_if_platform', 'xfail_if_platform', (["{'Darwin', 'Linux'}"], {}), "({'Darwin', 'Linux'})\n", (15282, 15303), False, 'from shared import esrgan_models, expected_output_mode, infiles, skip_if_ci, xfail_if_platform, xfail_unsupported_mode\n'), ((16515, 16533), 'PIL.Image.open', 'Image.open', (['infile'], {}), '(infile)\n', (16525, 16533), False, 'from PIL import Image\n'), ((16550, 16569), 'PIL.Image.open', 'Image.open', (['outfile'], {}), '(outfile)\n', (16560, 16569), False, 'from PIL import Image\n'), ((16614, 16636), 'numpy.array', 'np.array', (['output_image'], {}), '(output_image)\n', (16622, 16636), True, 'import numpy as np\n'), ((15931, 15955), 'shared.xfail_unsupported_mode', 'xfail_unsupported_mode', ([], {}), '()\n', (15953, 15955), False, 'from shared import esrgan_models, expected_output_mode, infiles, skip_if_ci, xfail_if_platform, xfail_unsupported_mode\n'), ((16013, 16037), 'shared.xfail_unsupported_mode', 'xfail_unsupported_mode', ([], {}), '()\n', (16035, 16037), False, 'from shared import esrgan_models, expected_output_mode, infiles, skip_if_ci, xfail_if_platform, xfail_unsupported_mode\n'), ((16067, 16091), 'shared.xfail_unsupported_mode', 'xfail_unsupported_mode', ([], {}), '()\n', (16089, 16091), False, 'from shared import esrgan_models, expected_output_mode, infiles, skip_if_ci, xfail_if_platform, xfail_unsupported_mode\n'), ((16122, 16146), 'shared.xfail_unsupported_mode', 'xfail_unsupported_mode', ([], {}), '()\n', (16144, 16146), False, 'from shared import esrgan_models, expected_output_mode, infiles, skip_if_ci, xfail_if_platform, xfail_unsupported_mode\n'), ((16178, 16202), 'shared.xfail_unsupported_mode', 'xfail_unsupported_mode', ([], {}), '()\n', (16200, 16202), False, 'from shared import esrgan_models, expected_output_mode, infiles, skip_if_ci, xfail_if_platform, xfail_unsupported_mode\n'), ((16232, 16256), 'shared.xfail_unsupported_mode', 'xfail_unsupported_mode', ([], {}), '()\n', (16254, 16256), False, 'from shared import esrgan_models, expected_output_mode, infiles, skip_if_ci, xfail_if_platform, xfail_unsupported_mode\n'), ((18121, 18139), 'PIL.Image.open', 'Image.open', (['infile'], {}), '(infile)\n', (18131, 18139), False, 'from PIL import Image\n'), ((18156, 18175), 'PIL.Image.open', 'Image.open', (['outfile'], {}), '(outfile)\n', (18166, 18175), False, 'from PIL import Image\n'), ((16923, 16935), 'shared.skip_if_ci', 'skip_if_ci', ([], {}), '()\n', (16933, 16935), False, 'from shared import esrgan_models, expected_output_mode, infiles, skip_if_ci, xfail_if_platform, xfail_unsupported_mode\n'), ((17005, 17017), 'shared.skip_if_ci', 'skip_if_ci', ([], {}), '()\n', (17015, 17017), False, 'from shared import esrgan_models, expected_output_mode, infiles, skip_if_ci, xfail_if_platform, xfail_unsupported_mode\n'), ((17088, 17100), 'shared.skip_if_ci', 'skip_if_ci', ([], {}), '()\n', (17098, 17100), False, 'from shared import esrgan_models, expected_output_mode, infiles, skip_if_ci, xfail_if_platform, xfail_unsupported_mode\n'), ((17173, 17185), 'shared.skip_if_ci', 'skip_if_ci', ([], {}), '()\n', (17183, 17185), False, 'from shared import esrgan_models, expected_output_mode, infiles, skip_if_ci, xfail_if_platform, xfail_unsupported_mode\n'), ((17257, 17269), 'shared.skip_if_ci', 'skip_if_ci', ([], {}), '()\n', (17267, 17269), False, 'from shared import esrgan_models, expected_output_mode, infiles, skip_if_ci, xfail_if_platform, xfail_unsupported_mode\n'), ((19062, 19080), 'PIL.Image.open', 'Image.open', (['infile'], {}), '(infile)\n', (19072, 19080), False, 'from PIL import Image\n'), ((19097, 19116), 'PIL.Image.open', 'Image.open', (['outfile'], {}), '(outfile)\n', (19107, 19116), False, 'from PIL import Image\n'), ((7433, 7466), 'shared.expected_output_mode', 'expected_output_mode', (['input_image'], {}), '(input_image)\n', (7453, 7466), False, 'from shared import esrgan_models, expected_output_mode, infiles, skip_if_ci, xfail_if_platform, xfail_unsupported_mode\n'), ((6577, 6601), 'shared.xfail_unsupported_mode', 'xfail_unsupported_mode', ([], {}), '()\n', (6599, 6601), False, 'from shared import esrgan_models, expected_output_mode, infiles, skip_if_ci, xfail_if_platform, xfail_unsupported_mode\n'), ((6711, 6735), 'shared.xfail_unsupported_mode', 'xfail_unsupported_mode', ([], {}), '()\n', (6733, 6735), False, 'from shared import esrgan_models, expected_output_mode, infiles, skip_if_ci, xfail_if_platform, xfail_unsupported_mode\n'), ((6846, 6870), 'shared.xfail_unsupported_mode', 'xfail_unsupported_mode', ([], {}), '()\n', (6868, 6870), False, 'from shared import esrgan_models, expected_output_mode, infiles, skip_if_ci, xfail_if_platform, xfail_unsupported_mode\n'), ((6983, 7007), 'shared.xfail_unsupported_mode', 'xfail_unsupported_mode', ([], {}), '()\n', (7005, 7007), False, 'from shared import esrgan_models, expected_output_mode, infiles, skip_if_ci, xfail_if_platform, xfail_unsupported_mode\n'), ((11819, 11835), 'os.path.getsize', 'getsize', (['outfile'], {}), '(outfile)\n', (11826, 11835), False, 'from os.path import getsize\n'), ((11839, 11854), 'os.path.getsize', 'getsize', (['infile'], {}), '(infile)\n', (11846, 11854), False, 'from os.path import getsize\n'), ((13672, 13705), 'shared.expected_output_mode', 'expected_output_mode', (['input_image'], {}), '(input_image)\n', (13692, 13705), False, 'from shared import esrgan_models, expected_output_mode, infiles, skip_if_ci, xfail_if_platform, xfail_unsupported_mode\n'), ((14558, 14591), 'shared.expected_output_mode', 'expected_output_mode', (['input_image'], {}), '(input_image)\n', (14578, 14591), False, 'from shared import esrgan_models, expected_output_mode, infiles, skip_if_ci, xfail_if_platform, xfail_unsupported_mode\n'), ((18233, 18266), 'shared.expected_output_mode', 'expected_output_mode', (['input_image'], {}), '(input_image)\n', (18253, 18266), False, 'from shared import esrgan_models, expected_output_mode, infiles, skip_if_ci, xfail_if_platform, xfail_unsupported_mode\n'), ((17352, 17376), 'shared.xfail_unsupported_mode', 'xfail_unsupported_mode', ([], {}), '()\n', (17374, 17376), False, 'from shared import esrgan_models, expected_output_mode, infiles, skip_if_ci, xfail_if_platform, xfail_unsupported_mode\n'), ((17481, 17505), 'shared.xfail_unsupported_mode', 'xfail_unsupported_mode', ([], {}), '()\n', (17503, 17505), False, 'from shared import esrgan_models, expected_output_mode, infiles, skip_if_ci, xfail_if_platform, xfail_unsupported_mode\n'), ((17611, 17635), 'shared.xfail_unsupported_mode', 'xfail_unsupported_mode', ([], {}), '()\n', (17633, 17635), False, 'from shared import esrgan_models, expected_output_mode, infiles, skip_if_ci, xfail_if_platform, xfail_unsupported_mode\n'), ((17743, 17767), 'shared.xfail_unsupported_mode', 'xfail_unsupported_mode', ([], {}), '()\n', (17765, 17767), False, 'from shared import esrgan_models, expected_output_mode, infiles, skip_if_ci, xfail_if_platform, xfail_unsupported_mode\n'), ((19174, 19207), 'shared.expected_output_mode', 'expected_output_mode', (['input_image'], {}), '(input_image)\n', (19194, 19207), False, 'from shared import esrgan_models, expected_output_mode, infiles, skip_if_ci, xfail_if_platform, xfail_unsupported_mode\n'), ((16757, 16810), 'numpy.logical_or', 'np.logical_or', (['(output_datum == 0)', '(output_datum == 255)'], {}), '(output_datum == 0, output_datum == 255)\n', (16770, 16810), True, 'import numpy as np\n')]
|
#!/usr/bin/env python
#
# A noddy example to exercise most of the features in the "eb" module.
# Demonstrates how I recommend filling in the parameter vector - this
# way internal rearrangements of the vector as the model evolves won't
# break all of your scripts.
#
import numpy
import eb
import matplotlib.pyplot as plt
# Allocate main parameter vector, init to zero.
parm = numpy.zeros(eb.NPAR, dtype=numpy.double)
# These are the basic parameters of the model.
parm[eb.PAR_J] = 0.799853 # J surface brightness ratio
parm[eb.PAR_RASUM] = 0.015548 # (R_1+R_2)/a
parm[eb.PAR_RR] = 0.785989 # R_2/R_1
parm[eb.PAR_COSI] = 0.004645 # cos i
# Mass ratio is used only for computing ellipsoidal variation and
# light travel time. Set to zero to disable ellipsoidal.
parm[eb.PAR_Q] = 0.6904
# Light travel time coefficient.
ktot = 55.602793 # K_1+K_2 in km/s
cltt = 1000*ktot / eb.LIGHT
# Set to zero if you don't need light travel correction (it's fairly slow
# and can often be neglected).
parm[eb.PAR_CLTT] = cltt # ktot / c
# Radiative properties of star 1.
parm[eb.PAR_LDLIN1] = 0.2094 # u1 star 1
parm[eb.PAR_LDNON1] = 0.6043 # u2 star 1
parm[eb.PAR_GD1] = 0.32 # gravity darkening, std. value
parm[eb.PAR_REFL1] = 0.4 # albedo, std. value
# Spot model. Assumes spots on star 1 and not eclipsed.
parm[eb.PAR_ROT1] = 0.636539 # rotation parameter (1 = sync.)
parm[eb.PAR_FSPOT1] = 0.0 # fraction of spots eclipsed
parm[eb.PAR_OOE1O] = 0.0 # base spottedness out of eclipse
parm[eb.PAR_OOE11A] = 0.006928 # *sin
parm[eb.PAR_OOE11B] = 0.005088 # *cos
# PAR_OOE12* are sin(2*rot*omega) on star 1,
# PAR_OOE2* are for spots on star 2.
# Assume star 2 is the same as star 1 but without spots.
parm[eb.PAR_LDLIN2] = parm[eb.PAR_LDLIN1]
parm[eb.PAR_LDNON2] = parm[eb.PAR_LDNON1]
parm[eb.PAR_GD2] = parm[eb.PAR_GD1]
parm[eb.PAR_REFL2] = parm[eb.PAR_REFL1]
# Orbital parameters.
parm[eb.PAR_ECOSW] = 0.152408 # ecosw
parm[eb.PAR_ESINW] = 0.182317 # esinw
parm[eb.PAR_P] = 41.032363 # period
parm[eb.PAR_T0] = 2455290.046183 # T0 (epoch of primary eclipse)
# OTHER NOTES:
#
# To do standard transit models (a'la Mandel & Agol),
# set J=0, q=0, cltt=0, albedo=0.
# This makes the secondary dark, and disables ellipsoidal and reflection.
#
# The strange parameterization of radial velocity is to retain the
# flexibility to be able to model just light curves, SB1s, or SB2s.
#
# For improved precision, it's best to subtract most of the "DC offset"
# from T0 and the time array (e.g. take off the nominal value of T0 or
# the midtime of the data array) and add it back on at the end when
# printing parm[eb.PAR_T0] and vder[eb.PAR_TSEC]. Likewise the period
# can cause scaling problems in minimization routines (because it has
# to be so much more precise than the other parameters), and may need
# similar treatment.
# Simple (but not astronomer friendly) dump of model parameters.
print("Model parameters:")
for name, value, unit in zip(eb.parnames, parm, eb.parunits):
print("{0:<10} {1:14.6f} {2}".format(name, value, unit))
# Derived parameters.
vder = eb.getvder(parm, -61.070553, ktot)
print("Derived parameters:")
for name, value, unit in zip(eb.dernames, vder, eb.derunits):
print("{0:<10} {1:14.6f} {2}".format(name, value, unit))
# Phases of contact points.
(ps, pe, ss, se) = eb.phicont(parm)
if ps > 0.5:
ps -= 1.0
# Use max(duration) for sampling range.
pdur=pe-ps
sdur=se-ss
if pdur > sdur:
mdur = pdur
else:
mdur = sdur
# ...centered on the average of start and end points.
pa=0.5*(ps+pe)
sa=0.5*(ss+se)
# Generate phase array: primary, secondary, and out of eclipse
# in leading dimension.
phi = numpy.empty([3, 1000], dtype=numpy.double)
phi[0] = numpy.linspace(pa-mdur, pa+mdur, phi.shape[1])
phi[1] = numpy.linspace(sa-mdur, sa+mdur, phi.shape[1])
phi[2] = numpy.linspace(-0.25, 1.25, phi.shape[1])
# All magnitudes.
typ = numpy.empty_like(phi, dtype=numpy.uint8)
typ.fill(eb.OBS_MAG)
# These calls both do the same thing. First, phase.
y = eb.model(parm, phi, typ, eb.FLAG_PHI)
# Alternative using time.
#t = parm[eb.PAR_T0] + phi*parm[eb.PAR_P]
#y = eb.model(parm, t, typ)
# Plot eclipses in top 2 panels. Manual y range, forced same on
# both plots. x range is already guaranteed to be the same above.
ymin = y.min()
ymax = y.max()
yrange = ymax - ymin
plt.subplot(2, 2, 1)
plt.ylim(ymax+0.05*yrange, ymin-0.05*yrange)
plt.plot(phi[0], y[0])
plt.plot([ps, ps], [ymax, ymin], linestyle='--')
plt.plot([pe, pe], [ymax, ymin], linestyle='--')
plt.subplot(2, 2, 2)
plt.ylim(ymax+0.05*yrange, ymin-0.05*yrange)
plt.plot(phi[1], y[1])
plt.plot([ss, ss], [ymax, ymin], linestyle='--')
plt.plot([se, se], [ymax, ymin], linestyle='--')
# Out of eclipse plot across the bottom with 5*sigma clipping, robust
# MAD estimator.
median = numpy.median(y[2])
adiff = numpy.absolute(y[2]-median)
sigma = 1.48*numpy.median(adiff)
tmp = numpy.compress(adiff < 5*sigma, y[2])
ymin = tmp.min()
ymax = tmp.max()
yrange = ymax - ymin
plt.subplot(2, 1, 2)
plt.ylim(ymax+0.05*yrange, ymin-0.05*yrange)
plt.plot(phi[2], y[2])
plt.show()
|
[
"matplotlib.pyplot.subplot",
"numpy.absolute",
"matplotlib.pyplot.show",
"matplotlib.pyplot.plot",
"eb.phicont",
"matplotlib.pyplot.ylim",
"numpy.empty",
"numpy.median",
"numpy.compress",
"numpy.zeros",
"numpy.empty_like",
"numpy.linspace",
"eb.getvder",
"eb.model"
] |
[((379, 419), 'numpy.zeros', 'numpy.zeros', (['eb.NPAR'], {'dtype': 'numpy.double'}), '(eb.NPAR, dtype=numpy.double)\n', (390, 419), False, 'import numpy\n'), ((3170, 3204), 'eb.getvder', 'eb.getvder', (['parm', '(-61.070553)', 'ktot'], {}), '(parm, -61.070553, ktot)\n', (3180, 3204), False, 'import eb\n'), ((3405, 3421), 'eb.phicont', 'eb.phicont', (['parm'], {}), '(parm)\n', (3415, 3421), False, 'import eb\n'), ((3739, 3781), 'numpy.empty', 'numpy.empty', (['[3, 1000]'], {'dtype': 'numpy.double'}), '([3, 1000], dtype=numpy.double)\n', (3750, 3781), False, 'import numpy\n'), ((3791, 3841), 'numpy.linspace', 'numpy.linspace', (['(pa - mdur)', '(pa + mdur)', 'phi.shape[1]'], {}), '(pa - mdur, pa + mdur, phi.shape[1])\n', (3805, 3841), False, 'import numpy\n'), ((3847, 3897), 'numpy.linspace', 'numpy.linspace', (['(sa - mdur)', '(sa + mdur)', 'phi.shape[1]'], {}), '(sa - mdur, sa + mdur, phi.shape[1])\n', (3861, 3897), False, 'import numpy\n'), ((3903, 3944), 'numpy.linspace', 'numpy.linspace', (['(-0.25)', '(1.25)', 'phi.shape[1]'], {}), '(-0.25, 1.25, phi.shape[1])\n', (3917, 3944), False, 'import numpy\n'), ((3970, 4010), 'numpy.empty_like', 'numpy.empty_like', (['phi'], {'dtype': 'numpy.uint8'}), '(phi, dtype=numpy.uint8)\n', (3986, 4010), False, 'import numpy\n'), ((4090, 4127), 'eb.model', 'eb.model', (['parm', 'phi', 'typ', 'eb.FLAG_PHI'], {}), '(parm, phi, typ, eb.FLAG_PHI)\n', (4098, 4127), False, 'import eb\n'), ((4409, 4429), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(2)', '(2)', '(1)'], {}), '(2, 2, 1)\n', (4420, 4429), True, 'import matplotlib.pyplot as plt\n'), ((4430, 4482), 'matplotlib.pyplot.ylim', 'plt.ylim', (['(ymax + 0.05 * yrange)', '(ymin - 0.05 * yrange)'], {}), '(ymax + 0.05 * yrange, ymin - 0.05 * yrange)\n', (4438, 4482), True, 'import matplotlib.pyplot as plt\n'), ((4475, 4497), 'matplotlib.pyplot.plot', 'plt.plot', (['phi[0]', 'y[0]'], {}), '(phi[0], y[0])\n', (4483, 4497), True, 'import matplotlib.pyplot as plt\n'), ((4499, 4547), 'matplotlib.pyplot.plot', 'plt.plot', (['[ps, ps]', '[ymax, ymin]'], {'linestyle': '"""--"""'}), "([ps, ps], [ymax, ymin], linestyle='--')\n", (4507, 4547), True, 'import matplotlib.pyplot as plt\n'), ((4548, 4596), 'matplotlib.pyplot.plot', 'plt.plot', (['[pe, pe]', '[ymax, ymin]'], {'linestyle': '"""--"""'}), "([pe, pe], [ymax, ymin], linestyle='--')\n", (4556, 4596), True, 'import matplotlib.pyplot as plt\n'), ((4598, 4618), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(2)', '(2)', '(2)'], {}), '(2, 2, 2)\n', (4609, 4618), True, 'import matplotlib.pyplot as plt\n'), ((4619, 4671), 'matplotlib.pyplot.ylim', 'plt.ylim', (['(ymax + 0.05 * yrange)', '(ymin - 0.05 * yrange)'], {}), '(ymax + 0.05 * yrange, ymin - 0.05 * yrange)\n', (4627, 4671), True, 'import matplotlib.pyplot as plt\n'), ((4664, 4686), 'matplotlib.pyplot.plot', 'plt.plot', (['phi[1]', 'y[1]'], {}), '(phi[1], y[1])\n', (4672, 4686), True, 'import matplotlib.pyplot as plt\n'), ((4688, 4736), 'matplotlib.pyplot.plot', 'plt.plot', (['[ss, ss]', '[ymax, ymin]'], {'linestyle': '"""--"""'}), "([ss, ss], [ymax, ymin], linestyle='--')\n", (4696, 4736), True, 'import matplotlib.pyplot as plt\n'), ((4737, 4785), 'matplotlib.pyplot.plot', 'plt.plot', (['[se, se]', '[ymax, ymin]'], {'linestyle': '"""--"""'}), "([se, se], [ymax, ymin], linestyle='--')\n", (4745, 4785), True, 'import matplotlib.pyplot as plt\n'), ((4883, 4901), 'numpy.median', 'numpy.median', (['y[2]'], {}), '(y[2])\n', (4895, 4901), False, 'import numpy\n'), ((4910, 4939), 'numpy.absolute', 'numpy.absolute', (['(y[2] - median)'], {}), '(y[2] - median)\n', (4924, 4939), False, 'import numpy\n'), ((4977, 5016), 'numpy.compress', 'numpy.compress', (['(adiff < 5 * sigma)', 'y[2]'], {}), '(adiff < 5 * sigma, y[2])\n', (4991, 5016), False, 'import numpy\n'), ((5072, 5092), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(2)', '(1)', '(2)'], {}), '(2, 1, 2)\n', (5083, 5092), True, 'import matplotlib.pyplot as plt\n'), ((5093, 5145), 'matplotlib.pyplot.ylim', 'plt.ylim', (['(ymax + 0.05 * yrange)', '(ymin - 0.05 * yrange)'], {}), '(ymax + 0.05 * yrange, ymin - 0.05 * yrange)\n', (5101, 5145), True, 'import matplotlib.pyplot as plt\n'), ((5138, 5160), 'matplotlib.pyplot.plot', 'plt.plot', (['phi[2]', 'y[2]'], {}), '(phi[2], y[2])\n', (5146, 5160), True, 'import matplotlib.pyplot as plt\n'), ((5162, 5172), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (5170, 5172), True, 'import matplotlib.pyplot as plt\n'), ((4951, 4970), 'numpy.median', 'numpy.median', (['adiff'], {}), '(adiff)\n', (4963, 4970), False, 'import numpy\n')]
|
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Mon Jun 15 23:00:51 2020
@author: zf
"""
# import pycocotools.coco as coco
from pycocotools.coco import COCO
import os
import shutil
from tqdm import tqdm
import skimage.io as io
import matplotlib.pyplot as plt
import cv2
from PIL import Image, ImageDraw
import numpy as np
import sys
sys.path.append('/home/zf/0tools')
from py_cpu_nms import py_cpu_nms, py_cpu_label_nms
from r_nms_cpu import nms_rotate_cpu
from DataFunction import write_rotate_xml
from All_Class_NAME_LABEL import NAME_LABEL_MAP_USnavy_20,NAME_LONG_MAP_USnavy,NAME_STD_MAP_USnavy,LABEL_NAME_MAP_USnavy_20
from Rotatexml2DotaTxT import eval_rotatexml
def get_label_name_map(NAME_LABEL_MAP):
reverse_dict = {}
for name, label in NAME_LABEL_MAP.items():
reverse_dict[label] = name
return reverse_dict
def id2name(coco):
classes=dict()
for cls in coco.dataset['categories']:
classes[cls['id']]=cls['name']
return classes
def show_rotate_box(src_img,rotateboxes,name=None):
cx, cy, w,h,Angle=rotateboxes[:,0], rotateboxes[:,1], rotateboxes[:,2], rotateboxes[:,3], rotateboxes[:,4]
p_rotate=[]
for i in range(rotateboxes.shape[0]):
RotateMatrix=np.array([
[np.cos(Angle[i]),-np.sin(Angle[i])],
[np.sin(Angle[i]),np.cos(Angle[i])]])
rhead,r1,r2,r3,r4=np.transpose([0,-h/2]),np.transpose([-w[i]/2,-h[i]/2]),np.transpose([w[i]/2,-h[i]/2]),np.transpose([w[i]/2,h[i]/2]),np.transpose([-w[i]/2,h[i]/2])
rhead=np.transpose(np.dot(RotateMatrix, rhead))+[cx[i],cy[i]]
p1=np.transpose(np.dot(RotateMatrix, r1))+[cx[i],cy[i]]
p2=np.transpose(np.dot(RotateMatrix, r2))+[cx[i],cy[i]]
p3=np.transpose(np.dot(RotateMatrix, r3))+[cx[i],cy[i]]
p4=np.transpose(np.dot(RotateMatrix, r4))+[cx[i],cy[i]]
p_rotate_=np.int32(np.vstack((p1,p2,p3,p4)))
p_rotate.append(p_rotate_)
cv2.polylines(src_img,np.array(p_rotate),True,(0,255,255))
cv2.imshow('rotate_box',src_img.astype('uint8'))
cv2.waitKey(0)
cv2.destroyAllWindows()
def result2rotatebox_cvbox(coco,dataset,img,classes,cls_id,show=True):
annIds = coco.getAnnIds(imgIds=img['id'], catIds=cls_id, iscrowd=None)
anns = coco.loadAnns(annIds)
result_=np.zeros((0,7))
for ann in anns:
class_name=classes[ann['category_id']]
bbox=ann['bbox']
xmin = int(bbox[0])
ymin = int(bbox[1])
xmax = int(bbox[2] + bbox[0])
ymax = int(bbox[3] + bbox[1])
ang=bbox[4]
score=ann['score']
if score>score_threshold:
res_array=np.array([xmin,ymin,xmax,ymax,ang,score,NAME_LABEL_MAP[class_name]]).T
result_=np.vstack((result_,res_array))
result = result_
cx, cy, w,h=(result[:,0]+result[:,2])/2 ,(result[:,1]+result[:,3])/2 ,(result[:,2]-result[:,0]) ,(result[:,3]-result[:,1])
ang=result[:,4]/180*np.pi
center=np.vstack((cx,cy)).T#中心坐标
rotateboxes=np.vstack((cx, cy, w,h,ang,result[:,6],result[:,5])).T
p_cv=[]
cvboxes=np.zeros_like(rotateboxes)
for i in range(rotateboxes.shape[0]):
angle_cv=rotateboxes[i,4]/np.pi*180
if angle_cv>0:
angle_cv=angle_cv
cv_h=rotateboxes[i,3]
cv_w=rotateboxes[i,2]
else:
angle_cv=angle_cv+90
cv_h=rotateboxes[i,2]
cv_w=rotateboxes[i,3]
cvboxes[i,:]=[rotateboxes[i,0],rotateboxes[i,1],cv_w,cv_h,angle_cv,result[i,6],result[i,5]]
return cvboxes,rotateboxes
def merge_json2rotatexml(gtFile, annFile, merge_xmldir, NAME_LABEL_MAP,
NAME_LONG_MAP, NAME_STD_MAP, std_scale,
score_threshold):
classes_names = []
for name, label in NAME_LABEL_MAP.items():
classes_names.append(name)
if not os.path.exists(merge_xmldir):
os.mkdir(merge_xmldir)
LABEl_NAME_MAP = get_label_name_map(NAME_LABEL_MAP)
#COCO API for initializing annotated data
coco = COCO(gtFile)
# coco_o=COCO(gtFile)
coco_res=coco.loadRes(annFile)
#show all classes in coco
classes = id2name(coco)
print(classes)
classes_ids = coco.getCatIds(catNms=classes_names)
print(classes_ids)
#Get ID number of this class
img_ids=coco.getImgIds()
print('len of dataset:{}'.format(len(img_ids)))
# imgIds=img_ids[0:10]
img_name_ori=''
result=np.zeros((0,8))
name_det={}
for imgId in tqdm(img_ids):
img = coco_res.loadImgs(imgId)[0]
# Img_fullname='%s/%s/%s'%(dataDir,dataset,img['file_name'])
filename = img['file_name']
str_num=filename.replace('.jpg','').strip().split('__')
img_name=str_num[0]
scale=np.float(str_num[1])
ww_=np.int(str_num[2])
hh_=np.int(str_num[3])
cvboxes,rotateboxes=result2rotatebox_cvbox(coco_res, 'val2017', img, classes,classes_ids,show=True)
xml_dir='/home/zf/CenterNet/exp/ctdet/CenR_usnavy512_dla_2x/rotatexml'
write_rotate_xml(xml_dir, img["file_name"],
[1024, 1024, 3], 0.5, 'USnavy', rotateboxes,
LABEl_NAME_MAP, rotateboxes[:,6]) #size,gsd,imagesource
# img_dir='/home/zf/CenterNet/data/coco/val2017'
# src_img=cv2.imread(os.path.join(img_dir,img["file_name"]))
# show_rotate_box(src_img,rotateboxes)
# result_[:, 0:4]=(result_[:, 0:4]+ww_)/scale
# if not img_name in name_det :
# name_det[img_name]= result_
# else:
# name_det[img_name]= np.vstack((name_det[img_name],result_))
# # # # #将所有检测结果综合起来 #正框mns
# for img_name, result in name_det.items():
# # if std_scale==0:
# # inx = py_cpu_nms(dets=np.array(result, np.float32),thresh=nms_threshold,max_output_size=500)
# # result=result[inx]
# # else:
# # inx ,scores= py_cpu_label_nms(dets=np.array(result, np.float32),thresh=nms_threshold,max_output_size=500,
# # LABEL_NAME_MAP=LABEL_NAME_MAP_USnavy_20,
# # NAME_LONG_MAP=NAME_LONG_MAP_USnavy,std_scale=std_scale)
# # result=result[inx]
# # result[:, 4]=scores[inx]
# cvrboxes,rotateboxes=result2rotatebox_cvbox(img,result)
# #斜框NMS
# if cvrboxes.size>0:
# keep = nms_rotate_cpu(cvrboxes,cvrboxes[:,6],rnms_threshold, 200) #这里可以改
# rotateboxes=rotateboxes[keep]
# # #去掉过小的目标
# # keep=[]
# # for i in range(rotateboxes.shape[0]):
# # box=rotateboxes[i,:]
# # actual_long=box[3]*scale
# # standad_long=NAME_LONG_MAP[LABEl_NAME_MAP[box[5]]]
# # STD_long=NAME_STD_MAP[LABEl_NAME_MAP[box[5]]]
# # if np.abs(actual_long-standad_long)/standad_long < STD_long *1.2 and box[2]>16:
# # keep.append(i)
# # else:
# # print('{} hh:{} ww:{}'.format(img_name,hh_,ww_))
# # print('{} th label {} is wrong,long is {} normal long is {} width is {}'.format(i+1,LABEl_NAME_MAP[box[5]],actual_long,standad_long,box[3]))
# # rotateboxes=rotateboxes[keep]
# #保存检测结果 为比赛格式
# # image_dir,image_name=os.path.split(img_path)
# # gt_box=rotateboxes[:,0:5]
# # label=rotateboxes[:,6]
# write_rotate_xml(merge_xmldir, '{}.jpg'.format(img_name),
# [1024, 1024, 3], 0.5, 'USnavy', rotateboxes,
# LABEl_NAME_MAP, rotateboxes[:,
# 6]) #size,gsd,imagesource
if __name__ == '__main__':
#Store annotations and train2014/val2014/... in this folder
annFile = '/home/zf/CenterNet/exp/ctdet/CenR_usnavy512_dla_2x/results.json'
gtFile='/home/zf/Dataset/US_Navy_train_square/annotations/person_keypoints_val2017.json'
#the path you want to save your results for coco to voc
merge_xmldir = '/home/zf/Dataset/USnavy_test_gt/CenR_DLA34'
txt_dir_h = '/media/zf/E/Dataset/US_Navy_train_square/eval/0/'
annopath = '/media/zf/E/Dataset/US_Navy_train_square/eval/GT20_TxT/' #GT_angle0_TxT#GT20_TxT
nms_threshold=0.9#0.8
rnms_threshold=0.15#0.1
score_threshold=0.1
std_scale=0.4
score_threshold_2=0.05
NAME_LABEL_MAP = NAME_LABEL_MAP_USnavy_20
NAME_LONG_MAP = NAME_LONG_MAP_USnavy
NAME_STD_MAP = NAME_STD_MAP_USnavy
merge_json2rotatexml(gtFile,annFile, merge_xmldir, NAME_LABEL_MAP, NAME_LONG_MAP, NAME_STD_MAP, std_scale, score_threshold)
eval_rotatexml(merge_xmldir,
txt_dir_h,
annopath,
NAME_LABEL_MAP=NAME_LABEL_MAP,
file_ext='.xml',
flag='test')
|
[
"os.mkdir",
"DataFunction.write_rotate_xml",
"numpy.sin",
"sys.path.append",
"numpy.zeros_like",
"os.path.exists",
"numpy.transpose",
"numpy.int",
"cv2.destroyAllWindows",
"tqdm.tqdm",
"Rotatexml2DotaTxT.eval_rotatexml",
"cv2.waitKey",
"numpy.float",
"numpy.cos",
"numpy.dot",
"numpy.vstack",
"numpy.zeros",
"pycocotools.coco.COCO",
"numpy.array"
] |
[((348, 382), 'sys.path.append', 'sys.path.append', (['"""/home/zf/0tools"""'], {}), "('/home/zf/0tools')\n", (363, 382), False, 'import sys\n'), ((2090, 2104), 'cv2.waitKey', 'cv2.waitKey', (['(0)'], {}), '(0)\n', (2101, 2104), False, 'import cv2\n'), ((2109, 2132), 'cv2.destroyAllWindows', 'cv2.destroyAllWindows', ([], {}), '()\n', (2130, 2132), False, 'import cv2\n'), ((2328, 2344), 'numpy.zeros', 'np.zeros', (['(0, 7)'], {}), '((0, 7))\n', (2336, 2344), True, 'import numpy as np\n'), ((3107, 3133), 'numpy.zeros_like', 'np.zeros_like', (['rotateboxes'], {}), '(rotateboxes)\n', (3120, 3133), True, 'import numpy as np\n'), ((4059, 4071), 'pycocotools.coco.COCO', 'COCO', (['gtFile'], {}), '(gtFile)\n', (4063, 4071), False, 'from pycocotools.coco import COCO\n'), ((4460, 4476), 'numpy.zeros', 'np.zeros', (['(0, 8)'], {}), '((0, 8))\n', (4468, 4476), True, 'import numpy as np\n'), ((4509, 4522), 'tqdm.tqdm', 'tqdm', (['img_ids'], {}), '(img_ids)\n', (4513, 4522), False, 'from tqdm import tqdm\n'), ((8632, 8747), 'Rotatexml2DotaTxT.eval_rotatexml', 'eval_rotatexml', (['merge_xmldir', 'txt_dir_h', 'annopath'], {'NAME_LABEL_MAP': 'NAME_LABEL_MAP', 'file_ext': '""".xml"""', 'flag': '"""test"""'}), "(merge_xmldir, txt_dir_h, annopath, NAME_LABEL_MAP=\n NAME_LABEL_MAP, file_ext='.xml', flag='test')\n", (8646, 8747), False, 'from Rotatexml2DotaTxT import eval_rotatexml\n'), ((1996, 2014), 'numpy.array', 'np.array', (['p_rotate'], {}), '(p_rotate)\n', (2004, 2014), True, 'import numpy as np\n'), ((2986, 3005), 'numpy.vstack', 'np.vstack', (['(cx, cy)'], {}), '((cx, cy))\n', (2995, 3005), True, 'import numpy as np\n'), ((3028, 3086), 'numpy.vstack', 'np.vstack', (['(cx, cy, w, h, ang, result[:, 6], result[:, 5])'], {}), '((cx, cy, w, h, ang, result[:, 6], result[:, 5]))\n', (3037, 3086), True, 'import numpy as np\n'), ((3885, 3913), 'os.path.exists', 'os.path.exists', (['merge_xmldir'], {}), '(merge_xmldir)\n', (3899, 3913), False, 'import os\n'), ((3923, 3945), 'os.mkdir', 'os.mkdir', (['merge_xmldir'], {}), '(merge_xmldir)\n', (3931, 3945), False, 'import os\n'), ((4777, 4797), 'numpy.float', 'np.float', (['str_num[1]'], {}), '(str_num[1])\n', (4785, 4797), True, 'import numpy as np\n'), ((4810, 4828), 'numpy.int', 'np.int', (['str_num[2]'], {}), '(str_num[2])\n', (4816, 4828), True, 'import numpy as np\n'), ((4841, 4859), 'numpy.int', 'np.int', (['str_num[3]'], {}), '(str_num[3])\n', (4847, 4859), True, 'import numpy as np\n'), ((5055, 5182), 'DataFunction.write_rotate_xml', 'write_rotate_xml', (['xml_dir', "img['file_name']", '[1024, 1024, 3]', '(0.5)', '"""USnavy"""', 'rotateboxes', 'LABEl_NAME_MAP', 'rotateboxes[:, 6]'], {}), "(xml_dir, img['file_name'], [1024, 1024, 3], 0.5, 'USnavy',\n rotateboxes, LABEl_NAME_MAP, rotateboxes[:, 6])\n", (5071, 5182), False, 'from DataFunction import write_rotate_xml\n'), ((1409, 1434), 'numpy.transpose', 'np.transpose', (['[0, -h / 2]'], {}), '([0, -h / 2])\n', (1421, 1434), True, 'import numpy as np\n'), ((1432, 1468), 'numpy.transpose', 'np.transpose', (['[-w[i] / 2, -h[i] / 2]'], {}), '([-w[i] / 2, -h[i] / 2])\n', (1444, 1468), True, 'import numpy as np\n'), ((1464, 1499), 'numpy.transpose', 'np.transpose', (['[w[i] / 2, -h[i] / 2]'], {}), '([w[i] / 2, -h[i] / 2])\n', (1476, 1499), True, 'import numpy as np\n'), ((1495, 1529), 'numpy.transpose', 'np.transpose', (['[w[i] / 2, h[i] / 2]'], {}), '([w[i] / 2, h[i] / 2])\n', (1507, 1529), True, 'import numpy as np\n'), ((1525, 1560), 'numpy.transpose', 'np.transpose', (['[-w[i] / 2, h[i] / 2]'], {}), '([-w[i] / 2, h[i] / 2])\n', (1537, 1560), True, 'import numpy as np\n'), ((1909, 1936), 'numpy.vstack', 'np.vstack', (['(p1, p2, p3, p4)'], {}), '((p1, p2, p3, p4))\n', (1918, 1936), True, 'import numpy as np\n'), ((2763, 2794), 'numpy.vstack', 'np.vstack', (['(result_, res_array)'], {}), '((result_, res_array))\n', (2772, 2794), True, 'import numpy as np\n'), ((1583, 1610), 'numpy.dot', 'np.dot', (['RotateMatrix', 'rhead'], {}), '(RotateMatrix, rhead)\n', (1589, 1610), True, 'import numpy as np\n'), ((1650, 1674), 'numpy.dot', 'np.dot', (['RotateMatrix', 'r1'], {}), '(RotateMatrix, r1)\n', (1656, 1674), True, 'import numpy as np\n'), ((1714, 1738), 'numpy.dot', 'np.dot', (['RotateMatrix', 'r2'], {}), '(RotateMatrix, r2)\n', (1720, 1738), True, 'import numpy as np\n'), ((1778, 1802), 'numpy.dot', 'np.dot', (['RotateMatrix', 'r3'], {}), '(RotateMatrix, r3)\n', (1784, 1802), True, 'import numpy as np\n'), ((1842, 1866), 'numpy.dot', 'np.dot', (['RotateMatrix', 'r4'], {}), '(RotateMatrix, r4)\n', (1848, 1866), True, 'import numpy as np\n'), ((2672, 2746), 'numpy.array', 'np.array', (['[xmin, ymin, xmax, ymax, ang, score, NAME_LABEL_MAP[class_name]]'], {}), '([xmin, ymin, xmax, ymax, ang, score, NAME_LABEL_MAP[class_name]])\n', (2680, 2746), True, 'import numpy as np\n'), ((1278, 1294), 'numpy.cos', 'np.cos', (['Angle[i]'], {}), '(Angle[i])\n', (1284, 1294), True, 'import numpy as np\n'), ((1346, 1362), 'numpy.sin', 'np.sin', (['Angle[i]'], {}), '(Angle[i])\n', (1352, 1362), True, 'import numpy as np\n'), ((1363, 1379), 'numpy.cos', 'np.cos', (['Angle[i]'], {}), '(Angle[i])\n', (1369, 1379), True, 'import numpy as np\n'), ((1296, 1312), 'numpy.sin', 'np.sin', (['Angle[i]'], {}), '(Angle[i])\n', (1302, 1312), True, 'import numpy as np\n')]
|
#!/usr/bin/env python
# coding: utf-8
import sys
sys.path.append('../../')
import os
import numpy as np
import torch
import scipy as sc
import dill
from core.dynamics import RoboticDynamics
from koopman_core.util import run_experiment, evaluate_ol_pred
from koopman_core.dynamics import BilinearLiftedDynamics
from koopman_core.learning import KoopDnn, KoopmanNetCtrl
from ray import tune
from ray.tune.suggest.bohb import TuneBOHB
from ray.tune.schedulers import HyperBandForBOHB, ASHAScheduler
import matplotlib.pyplot as plt
class FiniteDimKoopSys(RoboticDynamics):
def __init__(self, lambd, mu, c):
RoboticDynamics.__init__(self, 2, 2)
self.params = lambd, mu, c
def D(self, q):
return np.array([[1, 0], [0, (q[0] + 1) ** (-1)]])
def C(self, q, q_dot):
labmd, mu, c = self.params
return -np.array([[lambd, 0], [(q[0] + 1) ** (-1) * (2 * lambd - mu) * c * q_dot[0], (q[0] + 1) ** (-1) * mu]])
def G(self, q):
return np.array([0, 0])
def B(self, q):
return np.array([[1, 0], [0, 1]])
# Define system and system linearization:
sys_name = 'bilinearizable_sys'
n, m = 4, 2
lambd, mu, c = .3, .2, -.5
system = FiniteDimKoopSys(lambd, mu, c)
A_lin = np.array([[0, 0, 1, 0],
[0, 0, 0, 1],
[0, 0, lambd, 0],
[0, 0, 0, mu]])
B_lin = np.array([[0, 0],
[0, 0],
[1, 0],
[0, 1]])
# Define LQR controller for data collection:
q_dc, r_dc = 5e2, 1 # State and actuation penalty values, data collection
Q_dc = q_dc * np.identity(n) # State penalty matrix, data collection
R_dc = r_dc*np.identity(m) # Actuation penalty matrix, data collection
P_dc = sc.linalg.solve_continuous_are(A_lin, B_lin, Q_dc, R_dc) # Algebraic Ricatti equation solution, data collection
K_dc = np.linalg.inv(R_dc)@B_lin.T@P_dc # LQR feedback gain matrix, data collection
K_dc_p = K_dc[:,:int(n/2)] # Proportional control gains, data collection
K_dc_d = K_dc[:,int(n/2):] # Derivative control gains, data collection
# Data collection parameters:
collect_data = True
test_frac = 0.2
val_frac = 0.2
dt = 1.0e-2 # Time step length
traj_length_dc = 2. # Trajectory length, data collection
n_pred_dc = int(traj_length_dc/dt) # Number of time steps, data collection
t_eval = dt * np.arange(n_pred_dc + 1) # Simulation time points
n_traj_train = 250 # Number of trajectories to execute, data collection
n_traj_test = 100 # Number of trajectories to execute, data collection
noise_var = 5. # Exploration noise to perturb controller, data collection
x0_max = np.array([1., 1., 1., 1.]) # Initial value limits
directory = os.path.abspath("working_files/bkeedmd/") # Path to save learned models
# Model configuration parameters:
net_params = {}
net_params['state_dim'] = n
net_params['ctrl_dim'] = m
net_params['first_obs_const'] = True
net_params['override_kinematics'] = True
net_params['dt'] = dt
net_params['data_dir'] = directory + '/data'
net_params['n_multistep'] = 1
# DNN architecture parameters:
net_params['encoder_hidden_dim'] = [20, 20, 20]
net_params['encoder_output_dim'] = 10
net_params['epochs'] = 200
net_params['optimizer'] = 'adam'
# DNN tunable parameters:
net_params['lr'] = tune.loguniform(1e-5, 1e-2)
net_params['l2_reg'] = tune.loguniform(1e-6, 1e-1)
net_params['l1_reg'] = tune.loguniform(1e-6, 1e-1)
net_params['batch_size'] = tune.choice([16, 32, 64, 128])
net_params['lin_loss_penalty'] = tune.uniform(0, 1)
# Hyperparameter tuning parameters:
num_samples = -1
time_budget_s = 120#3*60*60 # Time budget for tuning process for each n_multistep value
n_multistep_lst = [1, 5, 10, 30]
if torch.cuda.is_available():
resources_cpu = 2
resources_gpu = 0.2
else:
resources_cpu = 1
resources_gpu = 0
# Collect/load datasets:
if collect_data:
xs_train, us_train, t_eval_train = run_experiment(system, n, n_traj_train, n_pred_dc, t_eval,
x0_max, m=m, K_p=K_dc_p, K_d=K_dc_d, noise_var=noise_var)
xs_test, us_test, t_eval_test = run_experiment(system, n, n_traj_test, n_pred_dc, t_eval,
x0_max, m=m, K_p=K_dc_p, K_d=K_dc_d, noise_var=noise_var)
data_list = [xs_train, us_train, t_eval_train, n_traj_train, xs_test, us_test, t_eval_test, n_traj_test]
outfile = open(directory + '/data/' + sys_name + '_data.pickle', 'wb')
dill.dump(data_list, outfile)
outfile.close()
else:
infile = open(directory + '/data/' + sys_name + '_data.pickle', 'rb')
xs_train, us_train, t_eval_train, n_traj_train, xs_test, us_test, t_eval_test, n_traj_test = dill.load(infile)
infile.close()
# Define Koopman DNN model:
net = KoopmanNetCtrl(net_params)
model_kdnn = KoopDnn(net)
model_kdnn.set_datasets(xs_train, us_train, t_eval_train)
# Set up hyperparameter tuning:
trainable = lambda config: model_kdnn.model_pipeline(config, print_epoch=False, tune_run=True)
tune.register_trainable('trainable_pipeline', trainable)
best_trial_lst, best_config_lst = [], []
for n_multistep in n_multistep_lst:
net_params['n_multistep'] = n_multistep
scheduler = ASHAScheduler(
time_attr='training_iteration',
metric='loss',
mode='min',
max_t=net_params['epochs'],
grace_period=30,
)
result = tune.run(
'trainable_pipeline',
config=net_params,
checkpoint_at_end=True,
num_samples=num_samples,
time_budget_s=time_budget_s,
scheduler=scheduler,
resources_per_trial={'cpu': resources_cpu, 'gpu': resources_gpu},
verbose=1
)
# algo = TuneBOHB(metric='loss', mode='min')
# bohb = HyperBandForBOHB(
# metric='loss',
# mode='min',
# max_t=net_params['epochs'],
# time_attr='training_iteration'
# )
# result = tune.run(
# 'trainable_pipeline',
# config=net_params,
# checkpoint_at_end=True,
# num_samples=num_samples,
# time_budget_s=time_budget_s,
# scheduler=bohb,
# search_alg=algo,
# resources_per_trial={'cpu': resources_cpu, 'gpu': resources_gpu},
# verbose=3
# )
best_trial_lst.append(result.get_best_trial("loss", "min", "last"))
best_config_lst.append(result.get_best_config("loss", "min"))
# Analyze the results:
val_loss = []
test_loss = []
open_loop_mse = []
open_loop_std = []
for best_trial in best_trial_lst:
# Extract validation loss:
val_loss.append(best_trial.last_result["loss"])
# Calculate test loss:
best_model = KoopDnn(best_trial.config)
checkpoint_path = os.path.join(best_trial.checkpoint.value, 'checkpoint')
model_state, optimizer_state = torch.load(checkpoint_path)
best_model.koopman_net.load_state_dict(model_state)
test_loss.append(best_model.test_loss(xs_test, us_test, t_eval_test))
# Calculate open loop mse and std:
n_tot = net_params['state_dim'] + net_params['encoder_output_dim'] + int(net_params['first_obs_const'])
best_model.construct_koopman_model()
sys_kdnn = BilinearLiftedDynamics(n_tot, m, best_model.A, best_model.B, best_model.C,
best_model.basis_encode, continuous_mdl=False, dt=dt)
mse, std = evaluate_ol_pred(sys_kdnn, xs_test, us_test, t_eval_test)
open_loop_mse.append(mse)
open_loop_std.append(std)
plt.figure()
plt.plot(n_multistep_lst, val_loss, label='validation loss')
plt.plot(n_multistep_lst, test_loss, label='test loss')
plt.plot(n_multistep_lst, open_loop_mse, label='open loop mse')
plt.plot(n_multistep_lst, open_loop_std, label='open loop std')
plt.xlabel('# of multistep prediction steps')
plt.ylabel('Loss')
plt.title('Best tuned model performance VS multistep horizon')
plt.legend()
plt.savefig(directory + '/figures/' + 'tuning_summary_' + sys_name + '.pdf')
outfile = open(directory + '/data/' + sys_name + '_best_params.pickle', 'wb')
data_list_tuning = [best_config_lst, val_loss, test_loss, open_loop_mse, open_loop_std]
dill.dump(data_list_tuning, outfile)
outfile.close()
|
[
"koopman_core.learning.KoopDnn",
"ray.tune.uniform",
"matplotlib.pyplot.title",
"matplotlib.pyplot.figure",
"numpy.arange",
"koopman_core.util.evaluate_ol_pred",
"os.path.join",
"sys.path.append",
"os.path.abspath",
"koopman_core.dynamics.BilinearLiftedDynamics",
"koopman_core.learning.KoopmanNetCtrl",
"torch.load",
"numpy.identity",
"koopman_core.util.run_experiment",
"dill.load",
"ray.tune.run",
"matplotlib.pyplot.legend",
"scipy.linalg.solve_continuous_are",
"torch.cuda.is_available",
"ray.tune.schedulers.ASHAScheduler",
"numpy.linalg.inv",
"matplotlib.pyplot.ylabel",
"dill.dump",
"matplotlib.pyplot.plot",
"ray.tune.register_trainable",
"ray.tune.choice",
"numpy.array",
"core.dynamics.RoboticDynamics.__init__",
"ray.tune.loguniform",
"matplotlib.pyplot.xlabel",
"matplotlib.pyplot.savefig"
] |
[((49, 74), 'sys.path.append', 'sys.path.append', (['"""../../"""'], {}), "('../../')\n", (64, 74), False, 'import sys\n'), ((1229, 1300), 'numpy.array', 'np.array', (['[[0, 0, 1, 0], [0, 0, 0, 1], [0, 0, lambd, 0], [0, 0, 0, mu]]'], {}), '([[0, 0, 1, 0], [0, 0, 0, 1], [0, 0, lambd, 0], [0, 0, 0, mu]])\n', (1237, 1300), True, 'import numpy as np\n'), ((1363, 1405), 'numpy.array', 'np.array', (['[[0, 0], [0, 0], [1, 0], [0, 1]]'], {}), '([[0, 0], [0, 0], [1, 0], [0, 1]])\n', (1371, 1405), True, 'import numpy as np\n'), ((1855, 1911), 'scipy.linalg.solve_continuous_are', 'sc.linalg.solve_continuous_are', (['A_lin', 'B_lin', 'Q_dc', 'R_dc'], {}), '(A_lin, B_lin, Q_dc, R_dc)\n', (1885, 1911), True, 'import scipy as sc\n'), ((3169, 3199), 'numpy.array', 'np.array', (['[1.0, 1.0, 1.0, 1.0]'], {}), '([1.0, 1.0, 1.0, 1.0])\n', (3177, 3199), True, 'import numpy as np\n'), ((3264, 3305), 'os.path.abspath', 'os.path.abspath', (['"""working_files/bkeedmd/"""'], {}), "('working_files/bkeedmd/')\n", (3279, 3305), False, 'import os\n'), ((3890, 3918), 'ray.tune.loguniform', 'tune.loguniform', (['(1e-05)', '(0.01)'], {}), '(1e-05, 0.01)\n', (3905, 3918), False, 'from ray import tune\n'), ((3941, 3968), 'ray.tune.loguniform', 'tune.loguniform', (['(1e-06)', '(0.1)'], {}), '(1e-06, 0.1)\n', (3956, 3968), False, 'from ray import tune\n'), ((3992, 4019), 'ray.tune.loguniform', 'tune.loguniform', (['(1e-06)', '(0.1)'], {}), '(1e-06, 0.1)\n', (4007, 4019), False, 'from ray import tune\n'), ((4047, 4077), 'ray.tune.choice', 'tune.choice', (['[16, 32, 64, 128]'], {}), '([16, 32, 64, 128])\n', (4058, 4077), False, 'from ray import tune\n'), ((4111, 4129), 'ray.tune.uniform', 'tune.uniform', (['(0)', '(1)'], {}), '(0, 1)\n', (4123, 4129), False, 'from ray import tune\n'), ((4345, 4370), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (4368, 4370), False, 'import torch\n'), ((5415, 5441), 'koopman_core.learning.KoopmanNetCtrl', 'KoopmanNetCtrl', (['net_params'], {}), '(net_params)\n', (5429, 5441), False, 'from koopman_core.learning import KoopDnn, KoopmanNetCtrl\n'), ((5455, 5467), 'koopman_core.learning.KoopDnn', 'KoopDnn', (['net'], {}), '(net)\n', (5462, 5467), False, 'from koopman_core.learning import KoopDnn, KoopmanNetCtrl\n'), ((5654, 5710), 'ray.tune.register_trainable', 'tune.register_trainable', (['"""trainable_pipeline"""', 'trainable'], {}), "('trainable_pipeline', trainable)\n", (5677, 5710), False, 'from ray import tune\n'), ((8076, 8088), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (8086, 8088), True, 'import matplotlib.pyplot as plt\n'), ((8089, 8149), 'matplotlib.pyplot.plot', 'plt.plot', (['n_multistep_lst', 'val_loss'], {'label': '"""validation loss"""'}), "(n_multistep_lst, val_loss, label='validation loss')\n", (8097, 8149), True, 'import matplotlib.pyplot as plt\n'), ((8150, 8205), 'matplotlib.pyplot.plot', 'plt.plot', (['n_multistep_lst', 'test_loss'], {'label': '"""test loss"""'}), "(n_multistep_lst, test_loss, label='test loss')\n", (8158, 8205), True, 'import matplotlib.pyplot as plt\n'), ((8206, 8269), 'matplotlib.pyplot.plot', 'plt.plot', (['n_multistep_lst', 'open_loop_mse'], {'label': '"""open loop mse"""'}), "(n_multistep_lst, open_loop_mse, label='open loop mse')\n", (8214, 8269), True, 'import matplotlib.pyplot as plt\n'), ((8270, 8333), 'matplotlib.pyplot.plot', 'plt.plot', (['n_multistep_lst', 'open_loop_std'], {'label': '"""open loop std"""'}), "(n_multistep_lst, open_loop_std, label='open loop std')\n", (8278, 8333), True, 'import matplotlib.pyplot as plt\n'), ((8334, 8379), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""# of multistep prediction steps"""'], {}), "('# of multistep prediction steps')\n", (8344, 8379), True, 'import matplotlib.pyplot as plt\n'), ((8380, 8398), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Loss"""'], {}), "('Loss')\n", (8390, 8398), True, 'import matplotlib.pyplot as plt\n'), ((8399, 8461), 'matplotlib.pyplot.title', 'plt.title', (['"""Best tuned model performance VS multistep horizon"""'], {}), "('Best tuned model performance VS multistep horizon')\n", (8408, 8461), True, 'import matplotlib.pyplot as plt\n'), ((8462, 8474), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (8472, 8474), True, 'import matplotlib.pyplot as plt\n'), ((8475, 8551), 'matplotlib.pyplot.savefig', 'plt.savefig', (["(directory + '/figures/' + 'tuning_summary_' + sys_name + '.pdf')"], {}), "(directory + '/figures/' + 'tuning_summary_' + sys_name + '.pdf')\n", (8486, 8551), True, 'import matplotlib.pyplot as plt\n'), ((8719, 8755), 'dill.dump', 'dill.dump', (['data_list_tuning', 'outfile'], {}), '(data_list_tuning, outfile)\n', (8728, 8755), False, 'import dill\n'), ((1642, 1656), 'numpy.identity', 'np.identity', (['n'], {}), '(n)\n', (1653, 1656), True, 'import numpy as np\n'), ((1748, 1762), 'numpy.identity', 'np.identity', (['m'], {}), '(m)\n', (1759, 1762), True, 'import numpy as np\n'), ((2705, 2729), 'numpy.arange', 'np.arange', (['(n_pred_dc + 1)'], {}), '(n_pred_dc + 1)\n', (2714, 2729), True, 'import numpy as np\n'), ((4550, 4671), 'koopman_core.util.run_experiment', 'run_experiment', (['system', 'n', 'n_traj_train', 'n_pred_dc', 't_eval', 'x0_max'], {'m': 'm', 'K_p': 'K_dc_p', 'K_d': 'K_dc_d', 'noise_var': 'noise_var'}), '(system, n, n_traj_train, n_pred_dc, t_eval, x0_max, m=m, K_p\n =K_dc_p, K_d=K_dc_d, noise_var=noise_var)\n', (4564, 4671), False, 'from koopman_core.util import run_experiment, evaluate_ol_pred\n'), ((4757, 4877), 'koopman_core.util.run_experiment', 'run_experiment', (['system', 'n', 'n_traj_test', 'n_pred_dc', 't_eval', 'x0_max'], {'m': 'm', 'K_p': 'K_dc_p', 'K_d': 'K_dc_d', 'noise_var': 'noise_var'}), '(system, n, n_traj_test, n_pred_dc, t_eval, x0_max, m=m, K_p=\n K_dc_p, K_d=K_dc_d, noise_var=noise_var)\n', (4771, 4877), False, 'from koopman_core.util import run_experiment, evaluate_ol_pred\n'), ((5116, 5145), 'dill.dump', 'dill.dump', (['data_list', 'outfile'], {}), '(data_list, outfile)\n', (5125, 5145), False, 'import dill\n'), ((5343, 5360), 'dill.load', 'dill.load', (['infile'], {}), '(infile)\n', (5352, 5360), False, 'import dill\n'), ((5850, 5971), 'ray.tune.schedulers.ASHAScheduler', 'ASHAScheduler', ([], {'time_attr': '"""training_iteration"""', 'metric': '"""loss"""', 'mode': '"""min"""', 'max_t': "net_params['epochs']", 'grace_period': '(30)'}), "(time_attr='training_iteration', metric='loss', mode='min',\n max_t=net_params['epochs'], grace_period=30)\n", (5863, 5971), False, 'from ray.tune.schedulers import HyperBandForBOHB, ASHAScheduler\n'), ((6028, 6266), 'ray.tune.run', 'tune.run', (['"""trainable_pipeline"""'], {'config': 'net_params', 'checkpoint_at_end': '(True)', 'num_samples': 'num_samples', 'time_budget_s': 'time_budget_s', 'scheduler': 'scheduler', 'resources_per_trial': "{'cpu': resources_cpu, 'gpu': resources_gpu}", 'verbose': '(1)'}), "('trainable_pipeline', config=net_params, checkpoint_at_end=True,\n num_samples=num_samples, time_budget_s=time_budget_s, scheduler=\n scheduler, resources_per_trial={'cpu': resources_cpu, 'gpu':\n resources_gpu}, verbose=1)\n", (6036, 6266), False, 'from ray import tune\n'), ((7269, 7295), 'koopman_core.learning.KoopDnn', 'KoopDnn', (['best_trial.config'], {}), '(best_trial.config)\n', (7276, 7295), False, 'from koopman_core.learning import KoopDnn, KoopmanNetCtrl\n'), ((7318, 7373), 'os.path.join', 'os.path.join', (['best_trial.checkpoint.value', '"""checkpoint"""'], {}), "(best_trial.checkpoint.value, 'checkpoint')\n", (7330, 7373), False, 'import os\n'), ((7409, 7436), 'torch.load', 'torch.load', (['checkpoint_path'], {}), '(checkpoint_path)\n', (7419, 7436), False, 'import torch\n'), ((7771, 7903), 'koopman_core.dynamics.BilinearLiftedDynamics', 'BilinearLiftedDynamics', (['n_tot', 'm', 'best_model.A', 'best_model.B', 'best_model.C', 'best_model.basis_encode'], {'continuous_mdl': '(False)', 'dt': 'dt'}), '(n_tot, m, best_model.A, best_model.B, best_model.C,\n best_model.basis_encode, continuous_mdl=False, dt=dt)\n', (7793, 7903), False, 'from koopman_core.dynamics import BilinearLiftedDynamics\n'), ((7957, 8014), 'koopman_core.util.evaluate_ol_pred', 'evaluate_ol_pred', (['sys_kdnn', 'xs_test', 'us_test', 't_eval_test'], {}), '(sys_kdnn, xs_test, us_test, t_eval_test)\n', (7973, 8014), False, 'from koopman_core.util import run_experiment, evaluate_ol_pred\n'), ((616, 652), 'core.dynamics.RoboticDynamics.__init__', 'RoboticDynamics.__init__', (['self', '(2)', '(2)'], {}), '(self, 2, 2)\n', (640, 652), False, 'from core.dynamics import RoboticDynamics\n'), ((724, 765), 'numpy.array', 'np.array', (['[[1, 0], [0, (q[0] + 1) ** -1]]'], {}), '([[1, 0], [0, (q[0] + 1) ** -1]])\n', (732, 765), True, 'import numpy as np\n'), ((987, 1003), 'numpy.array', 'np.array', (['[0, 0]'], {}), '([0, 0])\n', (995, 1003), True, 'import numpy as np\n'), ((1040, 1066), 'numpy.array', 'np.array', (['[[1, 0], [0, 1]]'], {}), '([[1, 0], [0, 1]])\n', (1048, 1066), True, 'import numpy as np\n'), ((1978, 1997), 'numpy.linalg.inv', 'np.linalg.inv', (['R_dc'], {}), '(R_dc)\n', (1991, 1997), True, 'import numpy as np\n'), ((847, 951), 'numpy.array', 'np.array', (['[[lambd, 0], [(q[0] + 1) ** -1 * (2 * lambd - mu) * c * q_dot[0], (q[0] + 1\n ) ** -1 * mu]]'], {}), '([[lambd, 0], [(q[0] + 1) ** -1 * (2 * lambd - mu) * c * q_dot[0], \n (q[0] + 1) ** -1 * mu]])\n', (855, 951), True, 'import numpy as np\n')]
|
import sys
import pandas as pd
import re
import numpy as np
from sqlalchemy import create_engine
from nltk.tokenize import word_tokenize
from nltk.corpus import stopwords
from nltk.stem import WordNetLemmatizer
from nltk.stem.porter import PorterStemmer
from sklearn.pipeline import Pipeline
from sklearn.feature_extraction.text import CountVectorizer, TfidfTransformer
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.multioutput import MultiOutputClassifier
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.metrics import classification_report
from joblib import dump
import pickle
def load_data(database_filepath):
'''
INPUT - database_filepath
OUTPUT:
X - features DataFrame
y - responses DataFrame
category_names - list of features available in feature DataFrame
This function reads the table 'categorized_message' from a database db-file.
This db-file is the output of the script 'process_data.py' and returns the
X and y df and the list of features.
'''
engine = create_engine('sqlite:///'+database_filepath)
df = pd.read_sql_table('categorized_messages', engine)
X = df['message']
y = df.drop(columns=['id','message','original','genre', 'child_alone'])
category_names = y.columns.tolist()
return X, y, category_names
def tokenize(text):
'''
INPUT - text (string)
OUTPUT - tokenized and cleansed text (string)
This function tokenizes and cleanses a string by the following steps:
1. any url will be replaced by the string 'urlplaceholder'
2. any puctuation and capitalization will be removed
3. the text will be tokenized
4. any stopword will be removed
5. each word will be first lemmatized and then stemmed
'''
# get list of all urls using regex
url_regex = 'http[s]?://(?:[a-zA-Z]|[0-9]|[$-_@.&+]|[!*\(\),]|(?:%[0-9a-fA-F][0-9a-fA-F]))+'
detected_urls = re.findall(url_regex, text)
# replace each url in text string with placeholder
for url in detected_urls:
text = text.replace(url, 'urlplaceholder')
# Remove punctuation characters
text = re.sub(r'[^a-zA-Z0-9äöüÄÖÜß ]', '', text.lower())
# tokenize
tokens = word_tokenize(text)
# Remove stop words
tokens = [tok for tok in tokens if tok not in stopwords.words("english")]
# instantiate lemmatizer and stemmer
lemmatizer = WordNetLemmatizer()
# lemmatize and stemm
clean_tokens = []
for tok in tokens:
clean_tok = lemmatizer.lemmatize(tok).lower().strip()
clean_tokens.append(clean_tok)
return clean_tokens
def build_model():
'''
INPUT: None
OUTPUT: GridSearchCV object
This functions instantiates the model pipeline and performs a GridSearch
Classifier: Gradient Boosting classifier
GridSearch Parameters:
learning_rate = [.05, .1]
n_estimators = [50, 200]
'''
pipeline = Pipeline([
('vect', CountVectorizer(tokenizer = tokenize)),
('tfidf', TfidfTransformer()),
('clf', MultiOutputClassifier(GradientBoostingClassifier()))
])
params_gbc = {'clf__estimator__n_estimators': [50, 200],
'clf__estimator__learning_rate': [.05, .1]
}
cv = GridSearchCV(pipeline, param_grid=params_gbc, verbose=3, return_train_score=True)
return cv
def evaluate_model(model, X_test, y_test, category_names):
'''
INPUT:
model - trained model
X_test - a np-array of testing features
y_train - a np-array of testing responses
category_names - a list of column names of the features df
OUTPUT:
a classification report for each feature will be printed out.
'''
#predicting y_test
y_pred = pd.DataFrame(model.predict(X_test), columns=category_names)
y_test = pd.DataFrame(y_test, columns=category_names)
print(model)
print()
print(classification_report(y_test.melt().value, y_pred.melt().value, zero_division=0))
print('_______________________________________________________________________________________')
print('Detailed classification report per feature')
for col in category_names:
print('{}\n{}'.format(col, classification_report(y_test[col], y_pred[col], zero_division=0)))
print('____________________________________________________________________________________\n')
def save_model(model, model_filepath):
# Save to file in the current working directory
joblib_file = model_filepath
dump(model, joblib_file, protocol=pickle.HIGHEST_PROTOCOL)
def main():
if len(sys.argv) == 3:
database_filepath, model_filepath = sys.argv[1:]
print('Loading data...\n DATABASE: {}'.format(database_filepath))
X, Y, category_names = load_data(database_filepath)
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2)
X_train, X_test = np.array(X_train), np.array(X_test)
Y_train, Y_test = np.array(Y_train), np.array(Y_test)
print('Building model...')
model = build_model()
print('Training model - this might take a while...')
model.fit(X_train, Y_train)
print('Evaluating model...')
evaluate_model(model, X_test, Y_test, category_names)
print('Saving model...\n MODEL: {}'.format(model_filepath))
save_model(model, model_filepath)
print('Trained model saved!')
else:
print('Please provide the filepath of the disaster messages database '\
'as the first argument and the filepath of the pickle file to '\
'save the model to as the second argument. \n\nExample: python '\
'train_classifier.py ../data/DisasterResponse.db classifier.pkl')
if __name__ == '__main__':
main()
|
[
"pandas.DataFrame",
"sklearn.model_selection.GridSearchCV",
"sklearn.feature_extraction.text.CountVectorizer",
"nltk.stem.WordNetLemmatizer",
"sklearn.model_selection.train_test_split",
"joblib.dump",
"sklearn.metrics.classification_report",
"sklearn.ensemble.GradientBoostingClassifier",
"pandas.read_sql_table",
"re.findall",
"numpy.array",
"nltk.corpus.stopwords.words",
"sqlalchemy.create_engine",
"sklearn.feature_extraction.text.TfidfTransformer",
"nltk.tokenize.word_tokenize"
] |
[((1068, 1115), 'sqlalchemy.create_engine', 'create_engine', (["('sqlite:///' + database_filepath)"], {}), "('sqlite:///' + database_filepath)\n", (1081, 1115), False, 'from sqlalchemy import create_engine\n'), ((1123, 1172), 'pandas.read_sql_table', 'pd.read_sql_table', (['"""categorized_messages"""', 'engine'], {}), "('categorized_messages', engine)\n", (1140, 1172), True, 'import pandas as pd\n'), ((1959, 1986), 're.findall', 're.findall', (['url_regex', 'text'], {}), '(url_regex, text)\n', (1969, 1986), False, 'import re\n'), ((2251, 2270), 'nltk.tokenize.word_tokenize', 'word_tokenize', (['text'], {}), '(text)\n', (2264, 2270), False, 'from nltk.tokenize import word_tokenize\n'), ((2433, 2452), 'nltk.stem.WordNetLemmatizer', 'WordNetLemmatizer', ([], {}), '()\n', (2450, 2452), False, 'from nltk.stem import WordNetLemmatizer\n'), ((3303, 3389), 'sklearn.model_selection.GridSearchCV', 'GridSearchCV', (['pipeline'], {'param_grid': 'params_gbc', 'verbose': '(3)', 'return_train_score': '(True)'}), '(pipeline, param_grid=params_gbc, verbose=3, return_train_score\n =True)\n', (3315, 3389), False, 'from sklearn.model_selection import train_test_split, GridSearchCV\n'), ((3855, 3899), 'pandas.DataFrame', 'pd.DataFrame', (['y_test'], {'columns': 'category_names'}), '(y_test, columns=category_names)\n', (3867, 3899), True, 'import pandas as pd\n'), ((4543, 4601), 'joblib.dump', 'dump', (['model', 'joblib_file'], {'protocol': 'pickle.HIGHEST_PROTOCOL'}), '(model, joblib_file, protocol=pickle.HIGHEST_PROTOCOL)\n', (4547, 4601), False, 'from joblib import dump\n'), ((4879, 4916), 'sklearn.model_selection.train_test_split', 'train_test_split', (['X', 'Y'], {'test_size': '(0.2)'}), '(X, Y, test_size=0.2)\n', (4895, 4916), False, 'from sklearn.model_selection import train_test_split, GridSearchCV\n'), ((4944, 4961), 'numpy.array', 'np.array', (['X_train'], {}), '(X_train)\n', (4952, 4961), True, 'import numpy as np\n'), ((4963, 4979), 'numpy.array', 'np.array', (['X_test'], {}), '(X_test)\n', (4971, 4979), True, 'import numpy as np\n'), ((5006, 5023), 'numpy.array', 'np.array', (['Y_train'], {}), '(Y_train)\n', (5014, 5023), True, 'import numpy as np\n'), ((5025, 5041), 'numpy.array', 'np.array', (['Y_test'], {}), '(Y_test)\n', (5033, 5041), True, 'import numpy as np\n'), ((2346, 2372), 'nltk.corpus.stopwords.words', 'stopwords.words', (['"""english"""'], {}), "('english')\n", (2361, 2372), False, 'from nltk.corpus import stopwords\n'), ((2996, 3031), 'sklearn.feature_extraction.text.CountVectorizer', 'CountVectorizer', ([], {'tokenizer': 'tokenize'}), '(tokenizer=tokenize)\n', (3011, 3031), False, 'from sklearn.feature_extraction.text import CountVectorizer, TfidfTransformer\n'), ((3054, 3072), 'sklearn.feature_extraction.text.TfidfTransformer', 'TfidfTransformer', ([], {}), '()\n', (3070, 3072), False, 'from sklearn.feature_extraction.text import CountVectorizer, TfidfTransformer\n'), ((4246, 4310), 'sklearn.metrics.classification_report', 'classification_report', (['y_test[col]', 'y_pred[col]'], {'zero_division': '(0)'}), '(y_test[col], y_pred[col], zero_division=0)\n', (4267, 4310), False, 'from sklearn.metrics import classification_report\n'), ((3113, 3141), 'sklearn.ensemble.GradientBoostingClassifier', 'GradientBoostingClassifier', ([], {}), '()\n', (3139, 3141), False, 'from sklearn.ensemble import GradientBoostingClassifier\n')]
|
# * This code is provided solely for the personal and private use of students
# * taking the CSC401 course at the University of Toronto. Copying for purposes
# * other than this use is expressly prohibited. All forms of distribution of
# * this code, including but not limited to public repositories on GitHub,
# * GitLab, Bitbucket, or any other online platform, whether as given or with
# * any changes, are expressly prohibited.
#
# * All of the files in this directory and all subdirectories are:
# * Copyright (c) 2020 <NAME>
import os
import argparse
from scipy.stats import ttest_rel
from sklearn.feature_selection import f_classif
from sklearn.feature_selection import SelectKBest
from sklearn.ensemble import AdaBoostClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import confusion_matrix
from sklearn.model_selection import train_test_split
from sklearn.neural_network import MLPClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn.linear_model import SGDClassifier
from sklearn.model_selection import KFold
# set the random state for reproducibility
import numpy as np
np.random.seed(401)
CLF_DICT = {
0: SGDClassifier,
1: GaussianNB,
2: RandomForestClassifier,
3: MLPClassifier,
4: AdaBoostClassifier
}
def accuracy(c):
""" Compute accuracy given Numpy array confusion matrix C. Returns a floating point value. """
n, _ = c.shape
return sum([c[i, i] for i in range(n)]) / sum([c[i, j] for i in range(n) for j in range(n)])
def recall(c):
""" Compute recall given Numpy array confusion matrix C. Returns a list of floating point values. """
n, _ = c.shape
return [(c[k, k] / sum([c[k, j] for j in range(n)])) for k in range(n)]
def precision(c):
""" Compute precision given Numpy array confusion matrix C. Returns a list of floating point values """
n, _ = c.shape
return [(c[k, k] / sum([c[i, k] for i in range(n)])) for k in range(n)]
def class31(output_dir, X_train, X_test, y_train, y_test):
""" This function performs experiment 3.1
Parameters
output_dir: path of directory to write output to
Returns:
i: int, the index of the supposed best classifier
"""
print('Section 3.1')
# 1. SGDClassifier: support vector machine with a linear kernel.
sgd = SGDClassifier()
sgd.fit(X_train, y_train)
# 2. GaussianNB: a Gaussian naive Bayes classifier.
gnb = GaussianNB()
gnb.fit(X_train, y_train)
# 3. RandomForestClassifier: with a maximum depth of 5, and 10 estimators.
rf = RandomForestClassifier(max_depth=5, n_estimators=10)
rf.fit(X_train, y_train)
# 4. MLPClassifier: A feed-forward neural network, with α = 0.05.
mlp = MLPClassifier(alpha=0.05)
mlp.fit(X_train, y_train)
# 5. AdaBoostClassifier: with the default hyper-parameters.
ada = AdaBoostClassifier()
ada.fit(X_train, y_train)
scores = []
with open(f"{output_dir}/a1_3.1.txt", "w") as out_f:
# For each classifier, compute results and write the following output:
for clf in [sgd, gnb, rf, mlp, ada]:
c = confusion_matrix(y_test, clf.predict(X_test))
acc = accuracy(c)
scores.append(acc)
out_f.write(f'Results for {str(clf)}:\n') # Classifier name
out_f.write(f'\tAccuracy: {acc:.4f}\n')
out_f.write(f'\tRecall: {[round(item, 4) for item in recall(c)]}\n')
out_f.write(f'\tPrecision: {[round(item, 4) for item in precision(c)]}\n')
out_f.write(f'\tConfusion Matrix: \n{c}\n\n')
return int(np.argmax(scores))
def class32(output_dir, X_train, X_test, y_train, y_test, iBest):
""" This function performs experiment 3.2
Parameters:
output_dir: path of directory to write output to
iBest: int, the index of the supposed best classifier (from task 3.1)
Returns:
X_1k: numPy array, just 1K rows of X_train
y_1k: numPy array, just 1K rows of y_train
"""
print('Section 3.2')
clf = CLF_DICT[iBest]()
with open(f"{output_dir}/a1_3.2.txt", "w") as out_f:
# For each number of training examples, compute results and write
for num_train in map(int, [1e4, 5e4, 1e5, 15e4, 2e5]): # 1K, 5K, 10K, 15K, and 20K
clf.fit(X_train[:num_train], y_train[:num_train])
c = confusion_matrix(y_test, clf.predict(X_test))
acc = accuracy(c)
out_f.write(f'{num_train}: {acc:.4f}\n')
return X_train[:1000], y_train[:1000]
def class33(output_dir, X_train, X_test, y_train, y_test, i, X_1k, y_1k):
""" This function performs experiment 3.3
Parameters:
output_dir: path of directory to write output to
i: int, the index of the supposed best classifier (from task 3.1)
X_1k: numPy array, just 1K rows of X_train (from task 3.2)
y_1k: numPy array, just 1K rows of y_train (from task 3.2)
"""
print('Section 3.3')
with open(f"{output_dir}/a1_3.3.txt", "w") as out_f:
# Prepare the variables with corresponding names, then uncomment this, so it writes them to outf.
""" 1. For the 32k training set and each number of features k = {5, 50},
find the best k features according to this approach.
Write the associated p-values to a1 3.3.txt using the format strings provided.
"""
for k in [5, 50]:
# For each number of features k_feat, write the p-values for that number of features:
selector = SelectKBest(k=k)
selector.fit(X_train, y_train)
pp = selector.pvalues_[np.argpartition(selector.scores_, -k)[-k:]]
out_f.write(f'{k} p-values: {[format(pval) for pval in pp]}\n')
""" 2. Train the best classifier from section 3.1 for each of the 1K training set and the 32K training set,
using only the best k = 5 features. Write the accuracies on the full test set of both classifiers to
a1 3.3.txt using the format strings provided.
"""
selector = SelectKBest(k=5)
X_new = selector.fit_transform(X_train, y_train)
X_test_new = selector.transform(X_test)
clf = CLF_DICT[i]()
clf.fit(X_new[:1000], y_train[:1000])
c = confusion_matrix(y_test, clf.predict(X_test_new))
accuracy_1k = accuracy(c)
out_f.write(f'Accuracy for 1k: {accuracy_1k:.4f}\n')
clf = CLF_DICT[i]()
clf.fit(X_new, y_train)
c = confusion_matrix(y_test, clf.predict(X_test_new))
accuracy_full = accuracy(c)
out_f.write(f'Accuracy for full dataset: {accuracy_full:.4f}\n')
""" 3. Extract the indices of the top k = 5 features using the 1K training set and take the intersection with
the k = 5 features using the 32K training set. Write using the format strings provided.
"""
top_1k_selector = SelectKBest(k=5)
top_1k_selector.fit(X_train[:1000], y_train[:1000])
top_1k_index = set(np.argpartition(top_1k_selector.scores_, -5)[-5:])
top_all_selector = SelectKBest(k=5)
top_all_selector.fit(X_train, y_train)
top_all_index = set(np.argpartition(top_all_selector.scores_, -5)[-5:])
feature_intersection = top_1k_index.intersection(top_all_index)
out_f.write(f'Chosen feature intersection: {feature_intersection}\n')
"""
4. Format the top k = 5 feature indices extracted from the 32K training set to file using the format
string provided.
"""
out_f.write(f'Top-5 at higher: {top_all_index}\n')
def class34(output_dir, X_train, X_test, y_train, y_test, i):
""" This function performs experiment 3.4
Parameters
output_dir: path of directory to write output to
i: int, the index of the supposed best classifier (from task 3.1)
"""
print('Section 3.4')
with open(f"{output_dir}/a1_3.4.txt", "w") as outf:
# Prepare kfold_accuracies, then uncomment this, so it writes them to outf.
sgd = SGDClassifier()
gnb = GaussianNB()
rf = RandomForestClassifier(max_depth=5, n_estimators=10)
mlp = MLPClassifier(alpha=0.05)
ada = AdaBoostClassifier()
kfold_accuracies = []
for clf in [sgd, gnb, rf, mlp, ada]:
kf = KFold(n_splits=5, random_state=None, shuffle=False)
kfold_accs = []
for train_index, test_index in kf.split(X_train):
X_train_s, X_test_s = X_train[train_index], X_train[test_index]
y_train_s, y_test_s = y_train[train_index], y_train[test_index]
clf.fit(X_train_s, y_train_s)
kfold_accs.append(accuracy(confusion_matrix(y_test_s, clf.predict(X_test_s))))
kfold_accuracies.append(int(np.mean(kfold_accs)))
outf.write(f'Kfold Accuracies: {[round(acc, 4) for acc in kfold_accuracies]}\n')
# outf.write(f'p-values: {[format(pval) for pval in p_values]}\n')
if __name__ == "__main__":
"""
python a1_classify.py -i feats.npz -o .
"""
parser = argparse.ArgumentParser()
parser.add_argument("-i", "--input", help="the input npz file from Task 2", required=True)
parser.add_argument("-o", "--output_dir",
help="The directory to write a1_3.X.txt files to.",
default=os.path.dirname(os.path.dirname(__file__)))
args = parser.parse_args()
""" Load data and split into train and test. """
with np.load(args.input) as npz_f:
feat = npz_f["arr_0"]
x, y = feat[:, :-1], feat[:, -1]
X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.2)
""" Complete each classification experiment, in sequence. """
i_best = class31(args.output_dir, X_train, X_test, y_train, y_test)
x_1k, y_1k = class32(args.output_dir, X_train, X_test, y_train, y_test, i_best)
class33(args.output_dir, X_train, X_test, y_train, y_test, i_best, x_1k, y_1k)
class34(args.output_dir, X_train, X_test, y_train, y_test, i_best)
|
[
"sklearn.ensemble.RandomForestClassifier",
"sklearn.naive_bayes.GaussianNB",
"sklearn.ensemble.AdaBoostClassifier",
"numpy.random.seed",
"argparse.ArgumentParser",
"sklearn.linear_model.SGDClassifier",
"numpy.argmax",
"numpy.load",
"sklearn.model_selection.train_test_split",
"os.path.dirname",
"sklearn.model_selection.KFold",
"numpy.argpartition",
"numpy.mean",
"sklearn.neural_network.MLPClassifier",
"sklearn.feature_selection.SelectKBest"
] |
[((1143, 1162), 'numpy.random.seed', 'np.random.seed', (['(401)'], {}), '(401)\n', (1157, 1162), True, 'import numpy as np\n'), ((2351, 2366), 'sklearn.linear_model.SGDClassifier', 'SGDClassifier', ([], {}), '()\n', (2364, 2366), False, 'from sklearn.linear_model import SGDClassifier\n'), ((2464, 2476), 'sklearn.naive_bayes.GaussianNB', 'GaussianNB', ([], {}), '()\n', (2474, 2476), False, 'from sklearn.naive_bayes import GaussianNB\n'), ((2596, 2648), 'sklearn.ensemble.RandomForestClassifier', 'RandomForestClassifier', ([], {'max_depth': '(5)', 'n_estimators': '(10)'}), '(max_depth=5, n_estimators=10)\n', (2618, 2648), False, 'from sklearn.ensemble import RandomForestClassifier\n'), ((2759, 2784), 'sklearn.neural_network.MLPClassifier', 'MLPClassifier', ([], {'alpha': '(0.05)'}), '(alpha=0.05)\n', (2772, 2784), False, 'from sklearn.neural_network import MLPClassifier\n'), ((2890, 2910), 'sklearn.ensemble.AdaBoostClassifier', 'AdaBoostClassifier', ([], {}), '()\n', (2908, 2910), False, 'from sklearn.ensemble import AdaBoostClassifier\n'), ((9128, 9153), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (9151, 9153), False, 'import argparse\n'), ((9677, 9714), 'sklearn.model_selection.train_test_split', 'train_test_split', (['x', 'y'], {'test_size': '(0.2)'}), '(x, y, test_size=0.2)\n', (9693, 9714), False, 'from sklearn.model_selection import train_test_split\n'), ((3628, 3645), 'numpy.argmax', 'np.argmax', (['scores'], {}), '(scores)\n', (3637, 3645), True, 'import numpy as np\n'), ((6098, 6114), 'sklearn.feature_selection.SelectKBest', 'SelectKBest', ([], {'k': '(5)'}), '(k=5)\n', (6109, 6114), False, 'from sklearn.feature_selection import SelectKBest\n'), ((6940, 6956), 'sklearn.feature_selection.SelectKBest', 'SelectKBest', ([], {'k': '(5)'}), '(k=5)\n', (6951, 6956), False, 'from sklearn.feature_selection import SelectKBest\n'), ((7123, 7139), 'sklearn.feature_selection.SelectKBest', 'SelectKBest', ([], {'k': '(5)'}), '(k=5)\n', (7134, 7139), False, 'from sklearn.feature_selection import SelectKBest\n'), ((8080, 8095), 'sklearn.linear_model.SGDClassifier', 'SGDClassifier', ([], {}), '()\n', (8093, 8095), False, 'from sklearn.linear_model import SGDClassifier\n'), ((8110, 8122), 'sklearn.naive_bayes.GaussianNB', 'GaussianNB', ([], {}), '()\n', (8120, 8122), False, 'from sklearn.naive_bayes import GaussianNB\n'), ((8136, 8188), 'sklearn.ensemble.RandomForestClassifier', 'RandomForestClassifier', ([], {'max_depth': '(5)', 'n_estimators': '(10)'}), '(max_depth=5, n_estimators=10)\n', (8158, 8188), False, 'from sklearn.ensemble import RandomForestClassifier\n'), ((8203, 8228), 'sklearn.neural_network.MLPClassifier', 'MLPClassifier', ([], {'alpha': '(0.05)'}), '(alpha=0.05)\n', (8216, 8228), False, 'from sklearn.neural_network import MLPClassifier\n'), ((8243, 8263), 'sklearn.ensemble.AdaBoostClassifier', 'AdaBoostClassifier', ([], {}), '()\n', (8261, 8263), False, 'from sklearn.ensemble import AdaBoostClassifier\n'), ((9541, 9560), 'numpy.load', 'np.load', (['args.input'], {}), '(args.input)\n', (9548, 9560), True, 'import numpy as np\n'), ((5571, 5587), 'sklearn.feature_selection.SelectKBest', 'SelectKBest', ([], {'k': 'k'}), '(k=k)\n', (5582, 5587), False, 'from sklearn.feature_selection import SelectKBest\n'), ((8357, 8408), 'sklearn.model_selection.KFold', 'KFold', ([], {'n_splits': '(5)', 'random_state': 'None', 'shuffle': '(False)'}), '(n_splits=5, random_state=None, shuffle=False)\n', (8362, 8408), False, 'from sklearn.model_selection import KFold\n'), ((7044, 7088), 'numpy.argpartition', 'np.argpartition', (['top_1k_selector.scores_', '(-5)'], {}), '(top_1k_selector.scores_, -5)\n', (7059, 7088), True, 'import numpy as np\n'), ((7215, 7260), 'numpy.argpartition', 'np.argpartition', (['top_all_selector.scores_', '(-5)'], {}), '(top_all_selector.scores_, -5)\n', (7230, 7260), True, 'import numpy as np\n'), ((9419, 9444), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (9434, 9444), False, 'import os\n'), ((5667, 5704), 'numpy.argpartition', 'np.argpartition', (['selector.scores_', '(-k)'], {}), '(selector.scores_, -k)\n', (5682, 5704), True, 'import numpy as np\n'), ((8840, 8859), 'numpy.mean', 'np.mean', (['kfold_accs'], {}), '(kfold_accs)\n', (8847, 8859), True, 'import numpy as np\n')]
|
import sys
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
import utils
from methods import methods
from visualization import plots
FILENAME = 'datasets/ILThermo_Tm.csv'
MODEL = 'mlp_regressor'
DIRNAME = 'my_test'
descs = sys.argv[1:] if len(sys.argv) > 1 else None
# Get X matrix and response vector y
df, y_error = utils.read_data(FILENAME)
X, y = utils.molecular_descriptors(df,descs)
Y = np.empty((y.shape[0],2))
Y[:,0] = y.ravel()
Y[:,1] = y_error.ravel()
X_train,X_test,Y_train,Y_test = train_test_split(X,Y,test_size=0.10)
y_train = Y_train[:,0]
y_test = Y_test[:,0]
e_train = Y_train[:,1]
e_test = Y_test[:,1]
# Normalize testing data using training data
X_train, X_mean, X_std = utils.normalization(X_train)
X_test, trash, trash = utils.normalization(X_test, X_mean, X_std)
# Do machine_learning call
if (MODEL.lower() == 'mlp_regressor'):
obj = methods.do_MLP_regressor(X_train, y_train.ravel())
elif (MODEL.lower() == 'lasso'):
obj = methods.do_lasso(X_train, y_train.ravel())
elif (MODEL.lower() == 'svr'):
obj = methods.do_svr(X_train, y_train.ravel())
else:
raise ValueError("Model not supported")
#Plots
simple_parity_plot = plots.parity_plot(y_train, obj.predict(X_train))
#Creates a prediction and experimental values plot
predict_train = np.zeros(X_train.shape[0])
predict_test = np.zeros(X_test.shape[0])
predict_train, predict_test = plots.error_values(np.copy(X_train),np.copy(X_test),np.copy(y_train),np.copy(y_test))
plot = False
if plot:
#Creates a plot for the training data set
plt.figure(figsize=(10,8))
plt.subplot(1,2,1)
plt.scatter(y_train,predict_train,s=0.5,color='blue')
plt.title('Prediction on training data')
plt.plot(np.linspace(0,12,1000),np.linspace(0,12,1000),color='black')
plt.xlim((0,12))
plt.ylim((0,12))
plt.xlabel("Experiment($S*m^2/mol$)")
plt.ylabel("Prediction($S*m^2/mol$)")
#Creates a plot for the testing data set
plt.subplot(1,2,2)
plt.scatter(y_test,predict_test,s=2,color='blue')
plt.title('Prediction on test data')
plt.xlim((0,12))
plt.ylim((0,12))
plt.xlabel("Experiment($S*m^2/mol$)")
plt.ylabel("Prediction($S*m^2/mol$)")
plt.plot(np.linspace(0,12,1000),np.linspace(0,12,1000),color='black')
plt.show()
#Creates a plot for the experimental and predicted data to the experimental error provided by the ILThermo database
fig = plt.figure(figsize=(10,8))
ax = fig.add_subplot(111)
ax1 = fig.add_subplot(211)
ax2 = fig.add_subplot(212)
#Set up the training data set plot
result = pd.DataFrame(columns=['Experiment','Prediction','error'])
result.Experiment = y_train
result.Prediction = predict_train
result.error = e_train
result = result.sort_values(['Experiment','Prediction'],ascending=[1,1])
print(result)
import sys
sys.exit()
#Creates a subplot for the training data set
size=0.2
ax1.set_xlim((0,2300))
ax1.set_ylim((-1,13))
ax1.scatter(np.arange(X_train.shape[0]),result.Experiment,color="blue",s=size,label='Experiment')
ax1.scatter(np.arange(X_train.shape[0]),result.Prediction,color="red",s=size,label='Prediction')
ax1.scatter(np.arange(X_train.shape[0]),result.Experiment+result.error,color="green",s=size,label='Experiment Error')
ax1.scatter(np.arange(X_train.shape[0]),result.Experiment-result.error,color="green",s=size)
ax1.set_title('Prediction on Training data')
ax1.legend(loc='upper left')
#Setting up the test data set plot
result = pd.DataFrame(columns=['Experiment','Prediction','error'])
result.Experiment = y_test
result.Prediction = predict_test
result.error = e_test
result = result.sort_values(['Experiment','Prediction'],ascending=[1,1])
#Creates a subplot for the testing data set
size=2
ax2.set_xlim((0,260))
ax2.set_ylim((-1,13))
ax2.scatter(np.arange(X_test.shape[0]),result.Experiment,color="blue",s=size,label='Experiment')
ax2.scatter(np.arange(X_test.shape[0]),result.Prediction,color="red",s=size,label='Prediction')
ax2.scatter(np.arange(X_test.shape[0]),result.Experiment+result.error,color="green",s=size,label='Experiment Error')
ax2.scatter(np.arange(X_test.shape[0]),result.Experiment-result.error,color="green",s=size)
ax2.set_title('Prediction on test data')
ax2.legend(loc='upper left')
#Personal preference additions to the plot
ax.set_xlabel('Data points')
ax.set_ylabel('Conductivity($S*m^2/mol$)')
ax.spines['top'].set_color('none')
ax.spines['bottom'].set_color('none')
ax.spines['left'].set_color('none')
ax.spines['right'].set_color('none')
ax.tick_params(labelcolor='w', top='off', bottom='off', left='off', right='off')
fig.tight_layout()
plt.show()
|
[
"matplotlib.pyplot.title",
"numpy.empty",
"sklearn.model_selection.train_test_split",
"utils.molecular_descriptors",
"matplotlib.pyplot.figure",
"numpy.arange",
"pandas.DataFrame",
"utils.normalization",
"numpy.copy",
"numpy.linspace",
"matplotlib.pyplot.show",
"matplotlib.pyplot.ylim",
"matplotlib.pyplot.ylabel",
"sys.exit",
"matplotlib.pyplot.subplot",
"matplotlib.pyplot.xlim",
"matplotlib.pyplot.scatter",
"utils.read_data",
"numpy.zeros",
"matplotlib.pyplot.xlabel"
] |
[((398, 423), 'utils.read_data', 'utils.read_data', (['FILENAME'], {}), '(FILENAME)\n', (413, 423), False, 'import utils\n'), ((431, 469), 'utils.molecular_descriptors', 'utils.molecular_descriptors', (['df', 'descs'], {}), '(df, descs)\n', (458, 469), False, 'import utils\n'), ((474, 499), 'numpy.empty', 'np.empty', (['(y.shape[0], 2)'], {}), '((y.shape[0], 2))\n', (482, 499), True, 'import numpy as np\n'), ((576, 613), 'sklearn.model_selection.train_test_split', 'train_test_split', (['X', 'Y'], {'test_size': '(0.1)'}), '(X, Y, test_size=0.1)\n', (592, 613), False, 'from sklearn.model_selection import train_test_split\n'), ((773, 801), 'utils.normalization', 'utils.normalization', (['X_train'], {}), '(X_train)\n', (792, 801), False, 'import utils\n'), ((825, 867), 'utils.normalization', 'utils.normalization', (['X_test', 'X_mean', 'X_std'], {}), '(X_test, X_mean, X_std)\n', (844, 867), False, 'import utils\n'), ((1360, 1386), 'numpy.zeros', 'np.zeros', (['X_train.shape[0]'], {}), '(X_train.shape[0])\n', (1368, 1386), True, 'import numpy as np\n'), ((1402, 1427), 'numpy.zeros', 'np.zeros', (['X_test.shape[0]'], {}), '(X_test.shape[0])\n', (1410, 1427), True, 'import numpy as np\n'), ((2647, 2706), 'pandas.DataFrame', 'pd.DataFrame', ([], {'columns': "['Experiment', 'Prediction', 'error']"}), "(columns=['Experiment', 'Prediction', 'error'])\n", (2659, 2706), True, 'import pandas as pd\n'), ((2889, 2899), 'sys.exit', 'sys.exit', ([], {}), '()\n', (2897, 2899), False, 'import sys\n'), ((3525, 3584), 'pandas.DataFrame', 'pd.DataFrame', ([], {'columns': "['Experiment', 'Prediction', 'error']"}), "(columns=['Experiment', 'Prediction', 'error'])\n", (3537, 3584), True, 'import pandas as pd\n'), ((4668, 4678), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (4676, 4678), True, 'import matplotlib.pyplot as plt\n'), ((1477, 1493), 'numpy.copy', 'np.copy', (['X_train'], {}), '(X_train)\n', (1484, 1493), True, 'import numpy as np\n'), ((1494, 1509), 'numpy.copy', 'np.copy', (['X_test'], {}), '(X_test)\n', (1501, 1509), True, 'import numpy as np\n'), ((1510, 1526), 'numpy.copy', 'np.copy', (['y_train'], {}), '(y_train)\n', (1517, 1526), True, 'import numpy as np\n'), ((1527, 1542), 'numpy.copy', 'np.copy', (['y_test'], {}), '(y_test)\n', (1534, 1542), True, 'import numpy as np\n'), ((1618, 1645), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(10, 8)'}), '(figsize=(10, 8))\n', (1628, 1645), True, 'import matplotlib.pyplot as plt\n'), ((1649, 1669), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(1)', '(2)', '(1)'], {}), '(1, 2, 1)\n', (1660, 1669), True, 'import matplotlib.pyplot as plt\n'), ((1672, 1728), 'matplotlib.pyplot.scatter', 'plt.scatter', (['y_train', 'predict_train'], {'s': '(0.5)', 'color': '"""blue"""'}), "(y_train, predict_train, s=0.5, color='blue')\n", (1683, 1728), True, 'import matplotlib.pyplot as plt\n'), ((1730, 1770), 'matplotlib.pyplot.title', 'plt.title', (['"""Prediction on training data"""'], {}), "('Prediction on training data')\n", (1739, 1770), True, 'import matplotlib.pyplot as plt\n'), ((1849, 1866), 'matplotlib.pyplot.xlim', 'plt.xlim', (['(0, 12)'], {}), '((0, 12))\n', (1857, 1866), True, 'import matplotlib.pyplot as plt\n'), ((1870, 1887), 'matplotlib.pyplot.ylim', 'plt.ylim', (['(0, 12)'], {}), '((0, 12))\n', (1878, 1887), True, 'import matplotlib.pyplot as plt\n'), ((1891, 1928), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Experiment($S*m^2/mol$)"""'], {}), "('Experiment($S*m^2/mol$)')\n", (1901, 1928), True, 'import matplotlib.pyplot as plt\n'), ((1933, 1970), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Prediction($S*m^2/mol$)"""'], {}), "('Prediction($S*m^2/mol$)')\n", (1943, 1970), True, 'import matplotlib.pyplot as plt\n'), ((2023, 2043), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(1)', '(2)', '(2)'], {}), '(1, 2, 2)\n', (2034, 2043), True, 'import matplotlib.pyplot as plt\n'), ((2046, 2098), 'matplotlib.pyplot.scatter', 'plt.scatter', (['y_test', 'predict_test'], {'s': '(2)', 'color': '"""blue"""'}), "(y_test, predict_test, s=2, color='blue')\n", (2057, 2098), True, 'import matplotlib.pyplot as plt\n'), ((2100, 2136), 'matplotlib.pyplot.title', 'plt.title', (['"""Prediction on test data"""'], {}), "('Prediction on test data')\n", (2109, 2136), True, 'import matplotlib.pyplot as plt\n'), ((2141, 2158), 'matplotlib.pyplot.xlim', 'plt.xlim', (['(0, 12)'], {}), '((0, 12))\n', (2149, 2158), True, 'import matplotlib.pyplot as plt\n'), ((2162, 2179), 'matplotlib.pyplot.ylim', 'plt.ylim', (['(0, 12)'], {}), '((0, 12))\n', (2170, 2179), True, 'import matplotlib.pyplot as plt\n'), ((2183, 2220), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Experiment($S*m^2/mol$)"""'], {}), "('Experiment($S*m^2/mol$)')\n", (2193, 2220), True, 'import matplotlib.pyplot as plt\n'), ((2225, 2262), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Prediction($S*m^2/mol$)"""'], {}), "('Prediction($S*m^2/mol$)')\n", (2235, 2262), True, 'import matplotlib.pyplot as plt\n'), ((2341, 2351), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (2349, 2351), True, 'import matplotlib.pyplot as plt\n'), ((2483, 2510), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(10, 8)'}), '(figsize=(10, 8))\n', (2493, 2510), True, 'import matplotlib.pyplot as plt\n'), ((3011, 3038), 'numpy.arange', 'np.arange', (['X_train.shape[0]'], {}), '(X_train.shape[0])\n', (3020, 3038), True, 'import numpy as np\n'), ((3109, 3136), 'numpy.arange', 'np.arange', (['X_train.shape[0]'], {}), '(X_train.shape[0])\n', (3118, 3136), True, 'import numpy as np\n'), ((3206, 3233), 'numpy.arange', 'np.arange', (['X_train.shape[0]'], {}), '(X_train.shape[0])\n', (3215, 3233), True, 'import numpy as np\n'), ((3324, 3351), 'numpy.arange', 'np.arange', (['X_train.shape[0]'], {}), '(X_train.shape[0])\n', (3333, 3351), True, 'import numpy as np\n'), ((3846, 3872), 'numpy.arange', 'np.arange', (['X_test.shape[0]'], {}), '(X_test.shape[0])\n', (3855, 3872), True, 'import numpy as np\n'), ((3943, 3969), 'numpy.arange', 'np.arange', (['X_test.shape[0]'], {}), '(X_test.shape[0])\n', (3952, 3969), True, 'import numpy as np\n'), ((4039, 4065), 'numpy.arange', 'np.arange', (['X_test.shape[0]'], {}), '(X_test.shape[0])\n', (4048, 4065), True, 'import numpy as np\n'), ((4156, 4182), 'numpy.arange', 'np.arange', (['X_test.shape[0]'], {}), '(X_test.shape[0])\n', (4165, 4182), True, 'import numpy as np\n'), ((1784, 1808), 'numpy.linspace', 'np.linspace', (['(0)', '(12)', '(1000)'], {}), '(0, 12, 1000)\n', (1795, 1808), True, 'import numpy as np\n'), ((1807, 1831), 'numpy.linspace', 'np.linspace', (['(0)', '(12)', '(1000)'], {}), '(0, 12, 1000)\n', (1818, 1831), True, 'import numpy as np\n'), ((2276, 2300), 'numpy.linspace', 'np.linspace', (['(0)', '(12)', '(1000)'], {}), '(0, 12, 1000)\n', (2287, 2300), True, 'import numpy as np\n'), ((2299, 2323), 'numpy.linspace', 'np.linspace', (['(0)', '(12)', '(1000)'], {}), '(0, 12, 1000)\n', (2310, 2323), True, 'import numpy as np\n')]
|
#!/usr/bin/env python
# -*- coding: utf-8 -*-
from pcompile import ureg
from math import floor
from numpy.random import random
from copy import copy
class NameRegistry(object):
def __init__(self, names=set()):
self.names=names
assert isinstance(self.names, set)
def new(self, tag=None):
'''Generate a potentially unique name and check if its in the name
registry. If not, return it. If so, keep generating names.'''
max_iterations = 100
i = 0
while i < max_iterations:
name = self.generate(tag)
if name not in self.names:
self.names.add(name)
return name
i += 1
return None
def generate(self, tag=None):
if tag is None or len(tag) == 0:
name = 'unlabeled_container_'
else:
name = str(tag) + "_"
name += str(int(floor(random()*1e6)))
return name
_PCR_96 = {'ctype':'96-pcr', 'children':[],
'child_ctype':'96-pcr', 'free':True,
'parent_only':True, 'children_free':96, 'name':None,
'max_volume': 200 * ureg.microliter, 'container_ref':None,
'well_ref':None}
_PCR_96_WELL = {'ctype':'96-pcr', 'parent_name':None, 'free':True,
'max_volume':200 * ureg.microliter,
'parent_index':None}
for i in range(0,96):
well = copy(_PCR_96_WELL)
well['parent_index'] = i
_PCR_96['children'].append(well)
_MICRO_15 = {'ctype':'micro-1.5', 'children':[
{'ctype':'96-pcr', 'parent_name':None, 'free':True,
'max_volume':200 * ureg.microliter,
'parent_index':0}
],
'name':'', 'child_ctype':'micro-1.5',
'free':True, 'parent_only':True,
'children_free':1,
'max_volume':1500 * ureg.microliter,
'container_ref':None,
'well_ref':None}
_CONTAINERS = {'96-pcr': _PCR_96,
'micro-1.5': _MICRO_15}
class Items(object):
def __init__(self,
containers=[],
name_registry=NameRegistry()):
self.containers = containers
self.name_registry = name_registry
def allocate(self, env, ctype):
'''Find an instance of ctype in self.containers and return it.
Note: This way of representing container relationships is wildly
unecessary and will be updated to use the container > well > solution
model in place of the current parent = container > child = well >
solution model.
'''
for i,c in enumerate(self.containers):
if c['ctype'] == ctype:
#print 'found a container of the right ctype'
#print c['free']
if c['free']:
#print 'container is free'
if ('parent_only' not in c) or (not c['parent_only']):
#print 'is right ctype, is free, does not have children'
c['free'] = False
# Container ref should have already been created
c['well_ref'] = c['container_ref'].well(0)
return c
elif ('child_ctype' in c and c['child_ctype'] == ctype):
#print 'examining containers contained by parent'
for j,ch in enumerate(c['children']):
if ch['free']:
ch['free'] = False
# If this was the last well in the parent plate
if ch['parent_index'] == len(c['children']):
c['free'] = False
ch['container_ref'] = c['container_ref']
ch['well_ref'] = ch['container_ref'].well(ch['parent_index'])
return ch
#print 'couldnt allocate within existing items, allocatig a new container'
# Didn't find a free container in the stack of existing containers,
# let's try to allocate one.
if ctype in _CONTAINERS.keys():
new = copy(_CONTAINERS[ctype])
name = self.name_registry.new()
new['name'] = name
ref = env.protocol.ref(name, cont_type=ctype, storage='cold_4')
new['container_ref'] = ref
self.containers.append(new)
if ('parent_only' in new) and (new['parent_only'] is True):
ch = new['children'][0]
ch['free'] = False
ch['container_ref'] = ref
ch['well_ref'] = ref.well(0)
return ch
else:
return new
else:
return None
class Container(object):
#effectively this just imposes a particular
#structure on a dict. nothing special about it otherwise.
def __init__(self,
ctype=None,
location=None):
self.ctype = ctype
self.location = location
self.max_volume = max_volume(ctype)
def max_volume(ctype):
if ctype in _CONTAINERS.keys():
return _CONTAINERS[ctype]['max_volume']
else:
return None
def min_container_type(vol):
hit = None
for c in _CONTAINERS.values():
if c['max_volume'] > vol:
if (hit is None) or (hit['max_volume'] > c['max_volume']):
hit = c
if hit is not None:
return hit['ctype']
else:
return None
|
[
"numpy.random.random",
"copy.copy"
] |
[((1403, 1421), 'copy.copy', 'copy', (['_PCR_96_WELL'], {}), '(_PCR_96_WELL)\n', (1407, 1421), False, 'from copy import copy\n'), ((4235, 4259), 'copy.copy', 'copy', (['_CONTAINERS[ctype]'], {}), '(_CONTAINERS[ctype])\n', (4239, 4259), False, 'from copy import copy\n'), ((922, 930), 'numpy.random.random', 'random', ([], {}), '()\n', (928, 930), False, 'from numpy.random import random\n')]
|
import torch
import torch.nn.functional as F
from tensorboardX import SummaryWriter
from sklearn.metrics import roc_auc_score
import numpy as np
import time
from tqdm import tqdm
import os
from utlis.utils import model_name, select_model
from utlis.utils import get_optimizer, make_dataLoader, LoadModel, lr_schedule, make_dataLoader_chexpert
from utlis.utils import weighted_BCELoss, SaveModel, make_dataLoader_binary, get_loss
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def training(model, args):
"""
This function trains the multi-label model.
model: PyTorch model with model
args: configuration file (argparse)
return: train the returned the model
"""
writer = SummaryWriter(log_dir=os.path.join(args.log_dir, model_name(args)))
writer.add_text('log', str(args), 0)
if args.backbone == 'resnet50_wildcat':
params = model.get_config_optim(args.lr, 0.5)
else:
params = model.parameters()
optimizer = get_optimizer(params, args)
if args.dataset == "NIH":
dataloaders, dataset_sizes, class_names = make_dataLoader(args)
elif args.dataset == 'ChesXpert':
dataloaders, dataset_sizes, class_names = make_dataLoader_chexpert(args)
else:
assert "Wrong dataset"
if not os.path.exists(args.model_save_dir):
os.makedirs(args.model_save_dir)
best_auc_ave = 0.0 # to check if best validation accuracy
epoch_inti = 1 # epoch starts from here
best_model_wts = model.state_dict()
best_auc = []
iter_num = 0
# Prepare checkpoint file and model file to save and load from
checkpoint_file = os.path.join(args.model_save_dir, str(model_name(args) + '_' + "checkpoint.pth"))
bestmodel_file = os.path.join(args.model_save_dir, str(model_name(args) + '_' + "best_model.pth"))
''' Check for existing training results. If it existst, and the configuration
is set to resume `config.resume_TIRG==True`, resume from previous training.
If not, delete existing checkpoint.'''
if os.path.exists(checkpoint_file):
if args.resume:
model, optimizer, epoch_inti, best_auc_ave = LoadModel(checkpoint_file, model, optimizer, epoch_inti,
best_auc_ave)
print("Checkpoint found! Resuming")
else:
pass
print(model)
since = time.time()
for epoch in range(epoch_inti, args.epochs + 1):
print('Epoch {}/{}'.format(epoch, args.epochs))
print('-' * 10)
iter_num = 0
for phase in ['train','val']:
# Only Validation in every 5 cycles
if (phase == 'val') :
model.train(False)
elif phase == 'train':
model.train(True) # Set model to training mode
running_loss = 0.0
output_list = []
label_list = []
loss_list = []
# Iterate over data.
for idx, data in enumerate(tqdm(dataloaders[phase])):
# if iter_num > 100 and phase == 'train':
# break
images, labels, names = data
images = images.to(device)
labels = labels.to(device)
mask = 1 * (labels >= 0)
mask = mask.to(device)
if phase == 'train':
torch.set_grad_enabled(True)
else:
torch.set_grad_enabled(False)
# calculate weight for loss
P = 0
N = 0
for label in labels:
for v in label:
if int(v) == 1:
P += 1
else:
N += 1
if P != 0 and N != 0:
BP = (P + N) / P
BN = (P + N) / N
weights = torch.tensor([BP, BN], dtype=torch.float).to(device)
else:
weights = None
# zero the parameter gradients
optimizer.zero_grad()
# Predicting output
outputs = model(images)
# classification loss
if args.weighted_loss:
loss = weighted_BCELoss(outputs, labels, weights=weights)
else:
loss_func = torch.nn.BCELoss(reduction='none')
loss = loss_func(outputs[:, 0].unsqueeze(dim=-1),
torch.tensor(labels[:, 0].unsqueeze(dim=-1), dtype=torch.float))
loss = torch.where((labels >= 0)[:, 0].unsqueeze(axis=-1), loss, torch.zeros_like(loss)).mean()
for index in range(1, args.num_classes):
loss_temp = loss_func(outputs[:, index].unsqueeze(dim=-1),
torch.tensor(labels[:, index].unsqueeze(dim=-1), dtype=torch.float))
loss_temp = torch.where((labels >= 0)[:, index].unsqueeze(axis=-1), loss_temp,
torch.zeros_like(loss_temp)).mean()
loss += loss_temp
# backward + optimize only if in training phase
if phase == 'train':
loss.backward()
optimizer.step()
iter_num += 1
running_loss += loss.item()
loss_list.append(loss.item())
outputs = outputs.detach().to('cpu').numpy()
labels = labels.detach().to('cpu').numpy()
for i in range(outputs.shape[0]):
output_list.append(np.where(labels[i] >= 0, outputs[i], 0).tolist())
label_list.append(np.where(labels[i] >= 0, labels[i], 0).tolist())
# Saving logs
if idx % 100 == 0 and idx != 0:
if phase == 'train':
writer.add_scalar('loss/train_batch', loss.item() / outputs.shape[0], iter_num)
try:
auc = roc_auc_score(np.array(label_list[-100 * args.batch_size:]),
np.array(output_list[-100 * args.batch_size:]))
writer.add_scalar('auc/train_batch', auc, iter_num)
print('\nAUC/Train', auc)
print('Batch Loss', sum(loss_list) / len(loss_list))
except:
pass
epoch_loss = running_loss / dataset_sizes[phase]
# Computing AUC
try:
epoch_auc_ave = roc_auc_score(np.array(label_list), np.array(output_list))
epoch_auc = roc_auc_score(np.array(label_list), np.array(output_list), average=None)
except ValueError:
epoch_auc_ave = roc_auc_score(np.array(label_list)[:, :12], np.array(output_list)[:, :12]) * (12 / 13) + \
roc_auc_score(np.array(label_list)[:, 13], np.array(output_list)[:, 13]) * (1 / 13)
epoch_auc = roc_auc_score(np.array(label_list)[:, :12], np.array(output_list)[:, :12], average=None)
epoch_auc = np.append(epoch_auc, 0)
epoch_auc = np.append(epoch_auc, roc_auc_score(np.array(label_list)[:, 13], np.array(output_list)[:, 13], average=None))
except:
epoch_auc_ave = 0
epoch_auc = [0 for _ in range(len(class_names))]
if phase == 'val':
writer.add_scalar('loss/validation', epoch_loss, epoch)
writer.add_scalar('auc/validation', epoch_auc_ave, epoch)
if phase == 'train':
writer.add_scalar('loss/train', epoch_loss, epoch)
writer.add_scalar('auc/train', epoch_auc_ave, epoch)
log_str = ''
log_str += 'Loss: {:.4f} AUC: {:.4f} \n\n'.format(
epoch_loss, epoch_auc_ave)
for i, c in enumerate(class_names):
log_str += '{}: {:.4f} \n'.format(c, epoch_auc[i])
log_str += '\n'
if phase == 'val':
print("\n\nValidation Phase ")
else:
print("\n\nTraining Phase ")
print(log_str)
writer.add_text('log', log_str, iter_num)
print("Best validation average AUC :", best_auc_ave)
print("Average AUC of current epoch :", epoch_auc_ave)
# save model with best validation AUC
if phase == 'val' and epoch_auc_ave > best_auc_ave:
best_auc = epoch_auc
print("Rewriting model with AUROC :", round(best_auc_ave, 4), " by model with AUROC : ",
round(epoch_auc_ave, 4))
best_auc_ave = epoch_auc_ave
print('Model saved to %s' % bestmodel_file)
print("Saving the best checkpoint")
SaveModel(epoch, model, optimizer, best_auc_ave, bestmodel_file)
if phase == 'train' and epoch % 1 == 0:
SaveModel(epoch, model, optimizer, best_auc_ave, checkpoint_file)
print()
time_elapsed = time.time() - since
print('Training complete in {:.0f}m {:.0f}s'.format(
time_elapsed // 60, time_elapsed % 60))
print('Best val AUC: {:4f}'.format(best_auc_ave))
print()
try:
for i, c in enumerate(class_names):
print('{}: {:.4f} '.format(c, best_auc[i]))
except:
for i, c in enumerate(class_names):
print('{}: {:.4f} '.format(c, epoch_auc[i]))
# load best model weights to return
model.load_state_dict(best_model_wts)
return model
def training_abnormal(model, args):
"""
Train the binary classification model.
model: PyTorch model with model
args: configuration file (argparse)
return: train the returned the model
"""
print("____________________________________________")
print("__________Binary Classification_____________")
print("____________________________________________")
writer = SummaryWriter(log_dir=os.path.join(args.log_dir, model_name(args)))
optimizer = get_optimizer(model.parameters(), args)
dataloaders, dataset_sizes, class_names = make_dataLoader_binary(args)
criterion = torch.nn.BCELoss()
if not os.path.exists(args.model_save_dir):
os.makedirs(args.model_save_dir)
best_auc_ave = 0.0 # to check if best validation accuracy
epoch_inti = 1 # epoch starts from here
best_model_wts = model.state_dict()
iter_num = 0
# Prepare checkpoint file and model file to save and load from
checkpoint_file = os.path.join(args.model_save_dir, str(model_name(args) + '_' + "checkpoint.pth"))
bestmodel_file = os.path.join(args.model_save_dir, str(model_name(args) + '_' + "best_model.pth"))
''' Check for existing training results. If it existst, and the configuration
is set to resume `config.resume_TIRG==True`, resume from previous training.
If not, delete existing checkpoint.'''
if os.path.exists(checkpoint_file):
if args.resume:
model, optimizer, epoch_inti, best_auc_ave = LoadModel(checkpoint_file, model, optimizer, epoch_inti,
best_auc_ave)
print("Checkpoint found! Resuming")
else:
pass
since = time.time()
for epoch in range(epoch_inti, args.epochs):
print('Epoch {}/{}'.format(epoch, args.epochs - 1))
print('-' * 10)
# Each epoch has a training and validation phase
for phase in ['train', 'val']:
# Only Validation in every 5 cycles
if (phase == 'val') and (epoch % 1 != 0):
continue
if phase == 'train':
model.train(True) # Set model to training mode
else:
model.train(False) # Set model to evaluate mode
running_loss = 0.0
output_list = []
label_list = []
loss_list = []
# Iterate over data.
for idx, data in enumerate(tqdm(dataloaders[phase])):
images, labels, names = data
images = images.to(device)
labels = labels.to(device)
labels = labels.unsqueeze(axis=1)
# if labels.sum() == 0:
# continue
# calculate weight for loss
P, N = 0, 0
for label in labels:
for v in label:
if int(v) == 1:
P += 1
else:
N += 1
if P != 0 and N != 0:
BP = (P + N) / P
BN = (P + N) / N
weights = torch.tensor([BP, BN], dtype=torch.float).to(device)
else:
weights = None
if phase == 'train':
torch.set_grad_enabled(True)
else:
torch.set_grad_enabled(False)
# zero the parameter gradients
optimizer.zero_grad()
outputs = model(images)
# classification loss
loss = weighted_BCELoss(outputs, labels, weights=weights)
# loss = criterion(outputs, labels.type(torch.cuda.FloatTensor))
# backward + optimize only if in training phase
if phase == 'train':
loss.backward()
optimizer.step()
iter_num += 1
running_loss += loss.item()
loss_list.append(loss.item())
outputs = outputs.detach().to('cpu').numpy()
labels = labels.detach().to('cpu').numpy()
for i in range(outputs.shape[0]):
output_list.append(outputs[i].tolist())
label_list.append(labels[i].tolist())
if idx % 10 == 0:
if phase == 'train':
writer.add_scalar('Loss/Train', loss.item() / outputs.shape[0], iter_num)
if idx % 100 == 0 and idx != 0:
if phase == 'train':
try:
auc = roc_auc_score(np.array(label_list[-100 * args.batch_size:]),
np.array(output_list[-100 * args.batch_size:]))
print('\nAUC/Train', auc)
print('Batch Loss', sum(loss_list) / len(loss_list))
print('Batch Accuracy', ((((np.array(output_list) > 0.5) * 1)
== np.array(label_list)) * 1).mean())
loss_list = []
writer.add_scalar('AUC/Train', auc, iter_num)
except:
pass
epoch_loss = running_loss / dataset_sizes[phase]
epoch_auc_ave = roc_auc_score(np.array(label_list), np.array(output_list))
if phase == 'val':
writer.add_scalar('Loss/Validation', epoch_loss, iter_num)
writer.add_scalar('AUC/Validation', epoch_auc_ave, iter_num)
log_str = ''
log_str += 'Loss: {:.4f} AUC: {:.4f} \n\n'.format(epoch_loss, epoch_auc_ave)
log_str += '\n'
if phase == 'val':
print("\n\nValidation Phase ")
else:
print("\n\nTraining Phase ")
print(log_str)
writer.add_text('log', log_str, iter_num)
print("Best average AUC :", best_auc_ave)
print("Average AUC of current epoch", epoch_auc_ave)
# save model for validation
if phase == 'val' and epoch_auc_ave > best_auc_ave:
print("Rewriting model with accuracy", round(best_auc_ave, 4), " by ", round(epoch_auc_ave, 4))
best_auc_ave = epoch_auc_ave
print('Model saved to %s' % bestmodel_file)
print("Saving the best checkpoint")
SaveModel(epoch, model, optimizer, best_auc_ave, bestmodel_file)
writer.add_text('log', 'Model saved to %s\n\n' % (args.model_save_dir), iter_num)
if phase == 'train' and epoch % 1 == 0:
SaveModel(epoch, model, optimizer, best_auc_ave, checkpoint_file)
print()
time_elapsed = time.time() - since
print('Training complete in {:.0f}m {:.0f}s'.format(
time_elapsed // 60, time_elapsed % 60))
print('Best val AUC: {:4f}'.format(best_auc_ave))
print()
# load best model weights
model.load_state_dict(best_model_wts)
return model
def training_PCAM(model, args):
"""
Train the PCAM model.
model: PyTorch model with model
args: configuration file (argparse)
return: train the returned the model
"""
writer = SummaryWriter(log_dir=os.path.join(args.log_dir, model_name(args)))
writer.add_text('log', str(args), 0)
if args.backbone == 'resnet50_wildcat':
params = model.get_config_optim(args.lr, 0.5)
else:
params = model.parameters()
optimizer = get_optimizer(params, args)
dataloaders, dataset_sizes, class_names = make_dataLoader(args)
if not os.path.exists(args.model_save_dir):
os.makedirs(args.model_save_dir)
best_auc_ave = 0.0 # to check if best validation accuracy
epoch_inti = 1 # epoch starts from here
best_model_wts = model.state_dict()
best_auc = []
iter_num = 0
# Prepare checkpoint file and model file to save and load from
checkpoint_file = os.path.join(args.model_save_dir, str(model_name(args) + '_' + "checkpoint.pth"))
bestmodel_file = os.path.join(args.model_save_dir, str(model_name(args) + '_' + "best_model.pth"))
''' Check for existing training results. If it existst, and the configuration
is set to resume `config.resume_TIRG==True`, resume from previous training.
If not, delete existing checkpoint.'''
if os.path.exists(checkpoint_file):
if args.resume:
model, optimizer, epoch_inti, best_auc_ave = LoadModel(checkpoint_file, model, optimizer, epoch_inti,
best_auc_ave)
print("Checkpoint found! Resuming")
else:
pass
print(model)
since = time.time()
for epoch in range(epoch_inti, args.epochs + 1):
print('Epoch {}/{}'.format(epoch, args.epochs))
print('-' * 10)
for phase in ['train', 'val']:
# Only Validation in every 5 cycles
if (phase == 'val') and (epoch % 1 != 0):
continue
if phase == 'train':
model.train(True) # Set model to training mode
else:
model.train(False) # Set model to evaluate mode
running_loss = 0.0
output_list = []
label_list = []
lr = lr_schedule(args.lr, 0.1, epoch,
[4, 8, 12])
for param_group in optimizer.param_groups:
param_group['lr'] = lr
# Iterate over data.
for idx, data in enumerate(tqdm(dataloaders[phase])):
images, labels, names = data
images = images.to(device)
labels = labels.to(device)
if phase == 'train':
torch.set_grad_enabled(True)
else:
torch.set_grad_enabled(False)
# zero the parameter gradients
optimizer.zero_grad()
outputs, logit_map = model(images)
# classification loss
loss = 0
for t in range(args.num_classes):
loss_t, acc_t = get_loss(outputs, labels, t, device, args)
loss += loss_t
# backward + optimize only if in training phase
if phase == 'train':
loss.backward()
optimizer.step()
iter_num += 1
running_loss += loss.item()
outputs = outputs.detach().to('cpu').numpy()
labels = labels.detach().to('cpu').numpy()
for i in range(outputs.shape[0]):
output_list.append(outputs[i].tolist())
label_list.append(labels[i].tolist())
if idx % 100 == 0 and idx != 0:
if phase == 'train':
writer.add_scalar('loss/train_batch', loss.item() / outputs.shape[0], iter_num)
try:
auc = roc_auc_score(np.array(label_list[-100 * args.batch_size:]),
np.array(output_list[-100 * args.batch_size:]))
writer.add_scalar('auc/train_batch', auc, iter_num)
except:
pass
epoch_loss = running_loss / dataset_sizes[phase]
try:
epoch_auc_ave = roc_auc_score(np.array(label_list), np.array(output_list))
epoch_auc = roc_auc_score(np.array(label_list), np.array(output_list), average=None)
except:
epoch_auc_ave = 0
epoch_auc = [0 for _ in range(len(class_names))]
if phase == 'val':
writer.add_scalar('loss/validation', epoch_loss, epoch)
writer.add_scalar('auc/validation', epoch_auc_ave, epoch)
if phase == 'train':
writer.add_scalar('loss/train', epoch_loss, epoch)
writer.add_scalar('auc/train', epoch_auc_ave, epoch)
log_str = ''
log_str += 'Loss: {:.4f} AUC: {:.4f} \n\n'.format(
epoch_loss, epoch_auc_ave)
for i, c in enumerate(class_names):
log_str += '{}: {:.4f} \n'.format(c, epoch_auc[i])
log_str += '\n'
if phase == 'val':
print("\n\nValidation Phase ")
else:
print("\n\nTraining Phase ")
print(log_str)
writer.add_text('log', log_str, iter_num)
print("Best validation average AUC :", best_auc_ave)
print("Average AUC of current epoch :", epoch_auc_ave)
# save model for validation
if phase == 'val' and epoch_auc_ave > best_auc_ave:
best_auc = epoch_auc
print("Rewriting model with AUROC :", round(best_auc_ave, 4), " by model with AUROC : ",
round(epoch_auc_ave, 4))
best_auc_ave = epoch_auc_ave
print('Model saved to %s' % bestmodel_file)
print("Saving the best checkpoint")
SaveModel(epoch, model, optimizer, best_auc_ave, bestmodel_file)
if phase == 'train' and epoch % 1 == 0:
SaveModel(epoch, model, optimizer, best_auc_ave, checkpoint_file)
print()
time_elapsed = time.time() - since
print('Training complete in {:.0f}m {:.0f}s'.format(
time_elapsed // 60, time_elapsed % 60))
print('Best val AUC: {:4f}'.format(best_auc_ave))
print()
for i, c in enumerate(class_names):
print('{}: {:.4f} '.format(c, best_auc[i]))
# load best model weights
model.load_state_dict(best_model_wts)
return model
|
[
"utlis.utils.get_optimizer",
"utlis.utils.LoadModel",
"utlis.utils.SaveModel",
"utlis.utils.model_name",
"torch.nn.BCELoss",
"os.path.exists",
"numpy.append",
"utlis.utils.make_dataLoader_chexpert",
"utlis.utils.get_loss",
"tqdm.tqdm",
"torch.zeros_like",
"utlis.utils.make_dataLoader_binary",
"torch.cuda.is_available",
"torch.set_grad_enabled",
"utlis.utils.lr_schedule",
"os.makedirs",
"time.time",
"utlis.utils.weighted_BCELoss",
"numpy.where",
"numpy.array",
"utlis.utils.make_dataLoader",
"torch.tensor"
] |
[((995, 1022), 'utlis.utils.get_optimizer', 'get_optimizer', (['params', 'args'], {}), '(params, args)\n', (1008, 1022), False, 'from utlis.utils import get_optimizer, make_dataLoader, LoadModel, lr_schedule, make_dataLoader_chexpert\n'), ((2051, 2082), 'os.path.exists', 'os.path.exists', (['checkpoint_file'], {}), '(checkpoint_file)\n', (2065, 2082), False, 'import os\n'), ((2412, 2423), 'time.time', 'time.time', ([], {}), '()\n', (2421, 2423), False, 'import time\n'), ((10394, 10422), 'utlis.utils.make_dataLoader_binary', 'make_dataLoader_binary', (['args'], {}), '(args)\n', (10416, 10422), False, 'from utlis.utils import weighted_BCELoss, SaveModel, make_dataLoader_binary, get_loss\n'), ((10439, 10457), 'torch.nn.BCELoss', 'torch.nn.BCELoss', ([], {}), '()\n', (10455, 10457), False, 'import torch\n'), ((11202, 11233), 'os.path.exists', 'os.path.exists', (['checkpoint_file'], {}), '(checkpoint_file)\n', (11216, 11233), False, 'import os\n'), ((11546, 11557), 'time.time', 'time.time', ([], {}), '()\n', (11555, 11557), False, 'import time\n'), ((17450, 17477), 'utlis.utils.get_optimizer', 'get_optimizer', (['params', 'args'], {}), '(params, args)\n', (17463, 17477), False, 'from utlis.utils import get_optimizer, make_dataLoader, LoadModel, lr_schedule, make_dataLoader_chexpert\n'), ((17524, 17545), 'utlis.utils.make_dataLoader', 'make_dataLoader', (['args'], {}), '(args)\n', (17539, 17545), False, 'from utlis.utils import get_optimizer, make_dataLoader, LoadModel, lr_schedule, make_dataLoader_chexpert\n'), ((18309, 18340), 'os.path.exists', 'os.path.exists', (['checkpoint_file'], {}), '(checkpoint_file)\n', (18323, 18340), False, 'import os\n'), ((18670, 18681), 'time.time', 'time.time', ([], {}), '()\n', (18679, 18681), False, 'import time\n'), ((464, 489), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (487, 489), False, 'import torch\n'), ((1104, 1125), 'utlis.utils.make_dataLoader', 'make_dataLoader', (['args'], {}), '(args)\n', (1119, 1125), False, 'from utlis.utils import get_optimizer, make_dataLoader, LoadModel, lr_schedule, make_dataLoader_chexpert\n'), ((1298, 1333), 'os.path.exists', 'os.path.exists', (['args.model_save_dir'], {}), '(args.model_save_dir)\n', (1312, 1333), False, 'import os\n'), ((1343, 1375), 'os.makedirs', 'os.makedirs', (['args.model_save_dir'], {}), '(args.model_save_dir)\n', (1354, 1375), False, 'import os\n'), ((9308, 9319), 'time.time', 'time.time', ([], {}), '()\n', (9317, 9319), False, 'import time\n'), ((10470, 10505), 'os.path.exists', 'os.path.exists', (['args.model_save_dir'], {}), '(args.model_save_dir)\n', (10484, 10505), False, 'import os\n'), ((10515, 10547), 'os.makedirs', 'os.makedirs', (['args.model_save_dir'], {}), '(args.model_save_dir)\n', (10526, 10547), False, 'import os\n'), ((16695, 16706), 'time.time', 'time.time', ([], {}), '()\n', (16704, 16706), False, 'import time\n'), ((17558, 17593), 'os.path.exists', 'os.path.exists', (['args.model_save_dir'], {}), '(args.model_save_dir)\n', (17572, 17593), False, 'import os\n'), ((17603, 17635), 'os.makedirs', 'os.makedirs', (['args.model_save_dir'], {}), '(args.model_save_dir)\n', (17614, 17635), False, 'import os\n'), ((23368, 23379), 'time.time', 'time.time', ([], {}), '()\n', (23377, 23379), False, 'import time\n'), ((1214, 1244), 'utlis.utils.make_dataLoader_chexpert', 'make_dataLoader_chexpert', (['args'], {}), '(args)\n', (1238, 1244), False, 'from utlis.utils import get_optimizer, make_dataLoader, LoadModel, lr_schedule, make_dataLoader_chexpert\n'), ((2165, 2235), 'utlis.utils.LoadModel', 'LoadModel', (['checkpoint_file', 'model', 'optimizer', 'epoch_inti', 'best_auc_ave'], {}), '(checkpoint_file, model, optimizer, epoch_inti, best_auc_ave)\n', (2174, 2235), False, 'from utlis.utils import get_optimizer, make_dataLoader, LoadModel, lr_schedule, make_dataLoader_chexpert\n'), ((11316, 11386), 'utlis.utils.LoadModel', 'LoadModel', (['checkpoint_file', 'model', 'optimizer', 'epoch_inti', 'best_auc_ave'], {}), '(checkpoint_file, model, optimizer, epoch_inti, best_auc_ave)\n', (11325, 11386), False, 'from utlis.utils import get_optimizer, make_dataLoader, LoadModel, lr_schedule, make_dataLoader_chexpert\n'), ((18423, 18493), 'utlis.utils.LoadModel', 'LoadModel', (['checkpoint_file', 'model', 'optimizer', 'epoch_inti', 'best_auc_ave'], {}), '(checkpoint_file, model, optimizer, epoch_inti, best_auc_ave)\n', (18432, 18493), False, 'from utlis.utils import get_optimizer, make_dataLoader, LoadModel, lr_schedule, make_dataLoader_chexpert\n'), ((19268, 19312), 'utlis.utils.lr_schedule', 'lr_schedule', (['args.lr', '(0.1)', 'epoch', '[4, 8, 12]'], {}), '(args.lr, 0.1, epoch, [4, 8, 12])\n', (19279, 19312), False, 'from utlis.utils import get_optimizer, make_dataLoader, LoadModel, lr_schedule, make_dataLoader_chexpert\n'), ((775, 791), 'utlis.utils.model_name', 'model_name', (['args'], {}), '(args)\n', (785, 791), False, 'from utlis.utils import model_name, select_model\n'), ((3024, 3048), 'tqdm.tqdm', 'tqdm', (['dataloaders[phase]'], {}), '(dataloaders[phase])\n', (3028, 3048), False, 'from tqdm import tqdm\n'), ((9071, 9135), 'utlis.utils.SaveModel', 'SaveModel', (['epoch', 'model', 'optimizer', 'best_auc_ave', 'bestmodel_file'], {}), '(epoch, model, optimizer, best_auc_ave, bestmodel_file)\n', (9080, 9135), False, 'from utlis.utils import weighted_BCELoss, SaveModel, make_dataLoader_binary, get_loss\n'), ((9205, 9270), 'utlis.utils.SaveModel', 'SaveModel', (['epoch', 'model', 'optimizer', 'best_auc_ave', 'checkpoint_file'], {}), '(epoch, model, optimizer, best_auc_ave, checkpoint_file)\n', (9214, 9270), False, 'from utlis.utils import weighted_BCELoss, SaveModel, make_dataLoader_binary, get_loss\n'), ((10273, 10289), 'utlis.utils.model_name', 'model_name', (['args'], {}), '(args)\n', (10283, 10289), False, 'from utlis.utils import model_name, select_model\n'), ((12285, 12309), 'tqdm.tqdm', 'tqdm', (['dataloaders[phase]'], {}), '(dataloaders[phase])\n', (12289, 12309), False, 'from tqdm import tqdm\n'), ((13449, 13499), 'utlis.utils.weighted_BCELoss', 'weighted_BCELoss', (['outputs', 'labels'], {'weights': 'weights'}), '(outputs, labels, weights=weights)\n', (13465, 13499), False, 'from utlis.utils import weighted_BCELoss, SaveModel, make_dataLoader_binary, get_loss\n'), ((15255, 15275), 'numpy.array', 'np.array', (['label_list'], {}), '(label_list)\n', (15263, 15275), True, 'import numpy as np\n'), ((15277, 15298), 'numpy.array', 'np.array', (['output_list'], {}), '(output_list)\n', (15285, 15298), True, 'import numpy as np\n'), ((16360, 16424), 'utlis.utils.SaveModel', 'SaveModel', (['epoch', 'model', 'optimizer', 'best_auc_ave', 'bestmodel_file'], {}), '(epoch, model, optimizer, best_auc_ave, bestmodel_file)\n', (16369, 16424), False, 'from utlis.utils import weighted_BCELoss, SaveModel, make_dataLoader_binary, get_loss\n'), ((16592, 16657), 'utlis.utils.SaveModel', 'SaveModel', (['epoch', 'model', 'optimizer', 'best_auc_ave', 'checkpoint_file'], {}), '(epoch, model, optimizer, best_auc_ave, checkpoint_file)\n', (16601, 16657), False, 'from utlis.utils import weighted_BCELoss, SaveModel, make_dataLoader_binary, get_loss\n'), ((17230, 17246), 'utlis.utils.model_name', 'model_name', (['args'], {}), '(args)\n', (17240, 17246), False, 'from utlis.utils import model_name, select_model\n'), ((19508, 19532), 'tqdm.tqdm', 'tqdm', (['dataloaders[phase]'], {}), '(dataloaders[phase])\n', (19512, 19532), False, 'from tqdm import tqdm\n'), ((23131, 23195), 'utlis.utils.SaveModel', 'SaveModel', (['epoch', 'model', 'optimizer', 'best_auc_ave', 'bestmodel_file'], {}), '(epoch, model, optimizer, best_auc_ave, bestmodel_file)\n', (23140, 23195), False, 'from utlis.utils import weighted_BCELoss, SaveModel, make_dataLoader_binary, get_loss\n'), ((23265, 23330), 'utlis.utils.SaveModel', 'SaveModel', (['epoch', 'model', 'optimizer', 'best_auc_ave', 'checkpoint_file'], {}), '(epoch, model, optimizer, best_auc_ave, checkpoint_file)\n', (23274, 23330), False, 'from utlis.utils import weighted_BCELoss, SaveModel, make_dataLoader_binary, get_loss\n'), ((1690, 1706), 'utlis.utils.model_name', 'model_name', (['args'], {}), '(args)\n', (1700, 1706), False, 'from utlis.utils import model_name, select_model\n'), ((1793, 1809), 'utlis.utils.model_name', 'model_name', (['args'], {}), '(args)\n', (1803, 1809), False, 'from utlis.utils import model_name, select_model\n'), ((3409, 3437), 'torch.set_grad_enabled', 'torch.set_grad_enabled', (['(True)'], {}), '(True)\n', (3431, 3437), False, 'import torch\n'), ((3480, 3509), 'torch.set_grad_enabled', 'torch.set_grad_enabled', (['(False)'], {}), '(False)\n', (3502, 3509), False, 'import torch\n'), ((4331, 4381), 'utlis.utils.weighted_BCELoss', 'weighted_BCELoss', (['outputs', 'labels'], {'weights': 'weights'}), '(outputs, labels, weights=weights)\n', (4347, 4381), False, 'from utlis.utils import weighted_BCELoss, SaveModel, make_dataLoader_binary, get_loss\n'), ((4436, 4470), 'torch.nn.BCELoss', 'torch.nn.BCELoss', ([], {'reduction': '"""none"""'}), "(reduction='none')\n", (4452, 4470), False, 'import torch\n'), ((6771, 6791), 'numpy.array', 'np.array', (['label_list'], {}), '(label_list)\n', (6779, 6791), True, 'import numpy as np\n'), ((6793, 6814), 'numpy.array', 'np.array', (['output_list'], {}), '(output_list)\n', (6801, 6814), True, 'import numpy as np\n'), ((6858, 6878), 'numpy.array', 'np.array', (['label_list'], {}), '(label_list)\n', (6866, 6878), True, 'import numpy as np\n'), ((6880, 6901), 'numpy.array', 'np.array', (['output_list'], {}), '(output_list)\n', (6888, 6901), True, 'import numpy as np\n'), ((7332, 7355), 'numpy.append', 'np.append', (['epoch_auc', '(0)'], {}), '(epoch_auc, 0)\n', (7341, 7355), True, 'import numpy as np\n'), ((10842, 10858), 'utlis.utils.model_name', 'model_name', (['args'], {}), '(args)\n', (10852, 10858), False, 'from utlis.utils import model_name, select_model\n'), ((10945, 10961), 'utlis.utils.model_name', 'model_name', (['args'], {}), '(args)\n', (10955, 10961), False, 'from utlis.utils import model_name, select_model\n'), ((13161, 13189), 'torch.set_grad_enabled', 'torch.set_grad_enabled', (['(True)'], {}), '(True)\n', (13183, 13189), False, 'import torch\n'), ((13232, 13261), 'torch.set_grad_enabled', 'torch.set_grad_enabled', (['(False)'], {}), '(False)\n', (13254, 13261), False, 'import torch\n'), ((17948, 17964), 'utlis.utils.model_name', 'model_name', (['args'], {}), '(args)\n', (17958, 17964), False, 'from utlis.utils import model_name, select_model\n'), ((18051, 18067), 'utlis.utils.model_name', 'model_name', (['args'], {}), '(args)\n', (18061, 18067), False, 'from utlis.utils import model_name, select_model\n'), ((19725, 19753), 'torch.set_grad_enabled', 'torch.set_grad_enabled', (['(True)'], {}), '(True)\n', (19747, 19753), False, 'import torch\n'), ((19796, 19825), 'torch.set_grad_enabled', 'torch.set_grad_enabled', (['(False)'], {}), '(False)\n', (19818, 19825), False, 'import torch\n'), ((20113, 20155), 'utlis.utils.get_loss', 'get_loss', (['outputs', 'labels', 't', 'device', 'args'], {}), '(outputs, labels, t, device, args)\n', (20121, 20155), False, 'from utlis.utils import weighted_BCELoss, SaveModel, make_dataLoader_binary, get_loss\n'), ((21418, 21438), 'numpy.array', 'np.array', (['label_list'], {}), '(label_list)\n', (21426, 21438), True, 'import numpy as np\n'), ((21440, 21461), 'numpy.array', 'np.array', (['output_list'], {}), '(output_list)\n', (21448, 21461), True, 'import numpy as np\n'), ((21505, 21525), 'numpy.array', 'np.array', (['label_list'], {}), '(label_list)\n', (21513, 21525), True, 'import numpy as np\n'), ((21527, 21548), 'numpy.array', 'np.array', (['output_list'], {}), '(output_list)\n', (21535, 21548), True, 'import numpy as np\n'), ((3954, 3995), 'torch.tensor', 'torch.tensor', (['[BP, BN]'], {'dtype': 'torch.float'}), '([BP, BN], dtype=torch.float)\n', (3966, 3995), False, 'import torch\n'), ((7229, 7249), 'numpy.array', 'np.array', (['label_list'], {}), '(label_list)\n', (7237, 7249), True, 'import numpy as np\n'), ((7259, 7280), 'numpy.array', 'np.array', (['output_list'], {}), '(output_list)\n', (7267, 7280), True, 'import numpy as np\n'), ((12993, 13034), 'torch.tensor', 'torch.tensor', (['[BP, BN]'], {'dtype': 'torch.float'}), '([BP, BN], dtype=torch.float)\n', (13005, 13034), False, 'import torch\n'), ((4728, 4750), 'torch.zeros_like', 'torch.zeros_like', (['loss'], {}), '(loss)\n', (4744, 4750), False, 'import torch\n'), ((5757, 5796), 'numpy.where', 'np.where', (['(labels[i] >= 0)', 'outputs[i]', '(0)'], {}), '(labels[i] >= 0, outputs[i], 0)\n', (5765, 5796), True, 'import numpy as np\n'), ((5845, 5883), 'numpy.where', 'np.where', (['(labels[i] >= 0)', 'labels[i]', '(0)'], {}), '(labels[i] >= 0, labels[i], 0)\n', (5853, 5883), True, 'import numpy as np\n'), ((6195, 6240), 'numpy.array', 'np.array', (['label_list[-100 * args.batch_size:]'], {}), '(label_list[-100 * args.batch_size:])\n', (6203, 6240), True, 'import numpy as np\n'), ((6290, 6336), 'numpy.array', 'np.array', (['output_list[-100 * args.batch_size:]'], {}), '(output_list[-100 * args.batch_size:])\n', (6298, 6336), True, 'import numpy as np\n'), ((7419, 7439), 'numpy.array', 'np.array', (['label_list'], {}), '(label_list)\n', (7427, 7439), True, 'import numpy as np\n'), ((7448, 7469), 'numpy.array', 'np.array', (['output_list'], {}), '(output_list)\n', (7456, 7469), True, 'import numpy as np\n'), ((14509, 14554), 'numpy.array', 'np.array', (['label_list[-100 * args.batch_size:]'], {}), '(label_list[-100 * args.batch_size:])\n', (14517, 14554), True, 'import numpy as np\n'), ((14604, 14650), 'numpy.array', 'np.array', (['output_list[-100 * args.batch_size:]'], {}), '(output_list[-100 * args.batch_size:])\n', (14612, 14650), True, 'import numpy as np\n'), ((21005, 21050), 'numpy.array', 'np.array', (['label_list[-100 * args.batch_size:]'], {}), '(label_list[-100 * args.batch_size:])\n', (21013, 21050), True, 'import numpy as np\n'), ((21100, 21146), 'numpy.array', 'np.array', (['output_list[-100 * args.batch_size:]'], {}), '(output_list[-100 * args.batch_size:])\n', (21108, 21146), True, 'import numpy as np\n'), ((5169, 5196), 'torch.zeros_like', 'torch.zeros_like', (['loss_temp'], {}), '(loss_temp)\n', (5185, 5196), False, 'import torch\n'), ((6994, 7014), 'numpy.array', 'np.array', (['label_list'], {}), '(label_list)\n', (7002, 7014), True, 'import numpy as np\n'), ((7024, 7045), 'numpy.array', 'np.array', (['output_list'], {}), '(output_list)\n', (7032, 7045), True, 'import numpy as np\n'), ((7117, 7137), 'numpy.array', 'np.array', (['label_list'], {}), '(label_list)\n', (7125, 7137), True, 'import numpy as np\n'), ((7146, 7167), 'numpy.array', 'np.array', (['output_list'], {}), '(output_list)\n', (7154, 7167), True, 'import numpy as np\n'), ((14934, 14954), 'numpy.array', 'np.array', (['label_list'], {}), '(label_list)\n', (14942, 14954), True, 'import numpy as np\n'), ((14843, 14864), 'numpy.array', 'np.array', (['output_list'], {}), '(output_list)\n', (14851, 14864), True, 'import numpy as np\n')]
|
'''
1、借鉴老师代码V1
2、解读他的代码思路
- trian_labels.csv 的读取
-
3、我未曾用过的库
- glob - 可使用相对路径的库?| 可按照Unix终端所使用的那般规则来查询文件等
'''
import os
import pdb
import cv2
import time
import codecs
import random
import argparse
import numpy as np
import pandas as pd
import seaborn as sns
from tqdm import tqdm
from loguru import logger
from colorama import Fore, Back, Style
r_ = Fore.WHITE
import torch
from torch import nn, optim
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
import torchvision
from torchvision import transforms
from efficientnet_pytorch import EfficientNet, utils
from sklearn import metrics
from sklearn.model_selection import StratifiedKFold
import plotly.express as px
import plotly.graph_objects as go
import plotly.figure_factory as ff
from plotly.offline import iplot
from plotly.subplots import make_subplots
# from skimage import color, data
# from skimage.util import random_noise
# from skimage.exposure import adjust_gamma
# from skimage.io import imshow, imread, imsave
# from skimage.transform import rotate, AffineTransform, warp, rescale, resize, downscale_local_mean
from snippets_dataset import SnippetsDataset, SnippetsDatasetTest
logger.add('/home/alben/code/kaggle_SETI_search_ET/log/train.log', rotation="1 day")
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
def set_seed(seed=123):
'''Sets the seed of the entire notebook so results are the same every time we run.
This is for REPRODUCIBILITY.'''
np.random.seed(seed)
random_state = np.random.RandomState(seed)
random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
os.environ['PYTHONHASHSEED'] = str(seed)
return random_state
random_state = set_seed()
class EfficientNetV2(nn.Module):
def __init__(self, backbone, out_dim):
super(EfficientNetV2, self).__init__()
self.efficientnet = EfficientNet.from_pretrained(backbone)
fc_in_feature = self.efficientnet._fc.in_features
self.efficientnet._fc = nn.Linear(fc_in_feature, out_dim)
self.conv1_6_3 = nn.Conv2d(6, 3, kernel_size=3, stride=1, padding=3, bias=False)
def forward(self, x):
x = self.conv1_6_3(x)
x = self.efficientnet(x)
return x
def mixup_data(x, y, alpha=1.0, use_cuda=True):
'''
Returns mixed inputs, pairs of targets, and lambda
'''
if alpha > 0:
lam = np.random.beta(alpha, alpha)
else:
lam = 1
batch_size = x.size()[0]
index = torch.randperm(batch_size)
if use_cuda:
index = index.cuda()
mixed_x = lam * x + (1 - lam) * x[index, :]
y_a, y_b = y, y[index]
return mixed_x, y_a, y_b, lam
def mixup_criterion(criterion, pred, y_a, y_b, lam):
return lam * criterion(pred, y_a.view(-1, 1)) + (1 - lam) * criterion(pred, y_b.view(-1, 1))
def train(epoch, model, train_loader, optimizer, loss_fn, lr_scheduler):
losses_train, accuracy_train = [], []
Y, y_pred = [], []
model.train()
for i, data in enumerate(train_loader):
s_t = time.time()
images, labels = data
images, labels = images.type(torch.FloatTensor), labels.type(torch.FloatTensor)
images, labels = images.to(device), labels.to(device)
batch_n, crops_n, C, H, W = images.shape
images = images.view(-1, C, H, W)
labels = labels.repeat_interleave(crops_n)
outputs = model(images).squeeze(1)
optimizer.zero_grad()
loss = loss_fn(outputs, labels)
loss.backward()
optimizer.step()
losses_train.append(loss.item())
Y.extend(labels.detach().cpu().numpy().tolist())
y_pred.extend(outputs.detach().cpu().numpy().tolist())
if (i + 1) % PRINT_INTERVAL == 0:
logger.info(f'Train - Epoch = {epoch:3}; Iteration = {i:3}; Len = {len(train_loader):3}; Loss = {np.mean(losses_train):8.4}; Acc = {metrics.roc_auc_score(Y, y_pred):8.4}; Interval = {time.time() - s_t:8.4}')
lr_scheduler.step()
return losses_train, metrics.roc_auc_score(Y, y_pred)
def valid(epoch, model, valide_loader):
losses_valid, accuracy_valid = [], []
Y, y_pred = [], []
model.eval()
with torch.no_grad():
for i, data in enumerate(valide_loader):
s_t = time.time()
images, labels = data
images, labels = images.type(torch.FloatTensor), labels.type(torch.FloatTensor)
images, labels = images.to(device), labels.to(device)
batch_n, crops_n, C, H, W = images.shape
images = images.view(-1, C, H, W)
outputs = model(images).squeeze(1)
outputs_avg = outputs.view(batch_n, crops_n).mean(1)
loss = loss_fn(outputs_avg, labels)
losses_valid.append(loss.item())
Y.extend(labels.detach().cpu().numpy().tolist())
y_pred.extend(outputs_avg.detach().cpu().numpy().tolist())
logger.info(f'Valid - Epoch = {epoch:3}; Iteration = {i:3}; Len = {len(valide_loader):3}; Loss = {np.mean(losses_valid):8.4}; Acc = {metrics.roc_auc_score(Y, y_pred):8.4}; Interval = {time.time() - s_t:8.4}')
return losses_valid, metrics.roc_auc_score(Y, y_pred)
def test(epoch, model, test_loader, writer):
flag = 0
model.eval()
with torch.no_grad():
for i, data in enumerate(test_loader):
images = data
images = images.type(torch.FloatTensor)
images = images.to(device)
batch_n, crops_n, C, H, W = images.shape
grid_images = images[:, 0, :, :, :]
images = images.view(-1, C, H, W)
outputs = model(images)
outputs_avg = outputs.view(batch_n, crops_n).mean(1)
if flag == 0:
grid_images = grid_images.contiguous().view(-1, 1, grid_images.shape[-2], grid_images.shape[-1])
grid = torchvision.utils.make_grid(grid_images, nrow=6)
writer.add_image(f'test_{epoch}_{i}', grid)
flag = 1
logger.info(f'Test - Epoch = {epoch:3}; predict = {outputs_avg}')
def transforms_(data):
data = torch.from_numpy(data)
ten_datas = transforms.TenCrop(224, vertical_flip=False)(data)
return torch.stack(ten_datas)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--ver',
type=str,
help='procedure ver',
default='0')
parser.add_argument('--comment',
type=str,
help='version comment',
default='first_version')
args = parser.parse_args()
ver = args.ver
comment = args.comment
logger.info(f'{"*" * 25} version = {ver}; comment = {comment} {"*" * 25}')
EPOCH = 4
BATCH_SIZE = 10
PRINT_INTERVAL = 1000
TRAIN_DATA_PATH = '/home/alben/data/cv_listen_2021_06/train'
TEST_DATA_PATH = '/home/alben/data/cv_listen_2021_06/test'
LABELS_CSV = '/home/alben/data/cv_listen_2021_06/train_labels.csv'
BOARD_PATH = '/home/alben/code/kaggle_SETI_search_ET/board/train'
MODEL_SAVE_PATH = '/home/alben/code/kaggle_SETI_search_ET/model_state'
LR = 0.01
LR_DECAY_STEP = 6
NUM_CLASSES = 1
baseline_name = 'efficientnet-b3'
normalize_mean, normalize_std = [0.485, 0.456, 0.406], [0.229, 0.224, 0.225]
IMG_H_W = (273, 256)
writer = SummaryWriter(log_dir=BOARD_PATH, flush_secs=60)
train_data = SnippetsDataset(TRAIN_DATA_PATH, LABELS_CSV, 'train', transforms_)
train_loader = DataLoader(dataset=train_data,
batch_size=BATCH_SIZE,
shuffle=True)
valid_data = SnippetsDataset(TRAIN_DATA_PATH, LABELS_CSV, 'valid', transforms_)
valid_loader = DataLoader(dataset=valid_data,
batch_size=BATCH_SIZE,
shuffle=True)
test_data = SnippetsDatasetTest(TEST_DATA_PATH, transforms_)
test_loader = DataLoader(dataset=test_data,
batch_size=len(test_data))
# model = EfficientNet.from_pretrained(baseline_name)
# model._conv_stem = first_layer
# fc_in_feature = model._fc.in_features
# model._fc = nn.Linear(fc_in_feature, NUM_CLASSES, bias=True)
model = EfficientNetV2(baseline_name, NUM_CLASSES)
model.to(device)
loss_fn = nn.BCEWithLogitsLoss()
optimizer = optim.SGD(model.parameters(), lr=LR, momentum=0.9)
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=LR_DECAY_STEP, gamma=0.5)
for epoch in tqdm(range(EPOCH)):
losses_train, acc_train = train(epoch, model, train_loader, optimizer, loss_fn, lr_scheduler)
losses_valid, acc_valid = valid(epoch, model, valid_loader)
writer.add_scalars(f'loss_{ver}', {'train': np.mean(losses_train),
'valid': np.mean(losses_valid)}, epoch)
writer.add_scalars(f'accuracy_{ver}', {'train': acc_train,
'valid': acc_valid}, epoch)
test(epoch, model, test_loader, writer)
torch.save(model.state_dict(), f'{MODEL_SAVE_PATH}/vggnet_cat_dog_0525_{epoch}.pth')
logger.info(f'Summary - Epoch = {epoch:3}; loss_train = {np.mean(losses_train):8.4}; loss_valid = {np.mean(losses_valid):8.4}; acc_train = {acc_train:8.4}; acc_valid = {acc_valid:8.4}')
writer.close()
|
[
"numpy.random.seed",
"argparse.ArgumentParser",
"torch.optim.lr_scheduler.StepLR",
"numpy.mean",
"torch.no_grad",
"loguru.logger.add",
"torch.utils.data.DataLoader",
"numpy.random.RandomState",
"random.seed",
"torch.utils.tensorboard.SummaryWriter",
"torch.nn.Linear",
"torch.nn.BCEWithLogitsLoss",
"efficientnet_pytorch.EfficientNet.from_pretrained",
"numpy.random.beta",
"torch.manual_seed",
"torch.nn.Conv2d",
"torch.cuda.manual_seed",
"sklearn.metrics.roc_auc_score",
"torch.randperm",
"snippets_dataset.SnippetsDataset",
"torch.cuda.is_available",
"torch.from_numpy",
"torchvision.transforms.TenCrop",
"torch.stack",
"time.time",
"torchvision.utils.make_grid",
"loguru.logger.info",
"snippets_dataset.SnippetsDatasetTest"
] |
[((1197, 1286), 'loguru.logger.add', 'logger.add', (['"""/home/alben/code/kaggle_SETI_search_ET/log/train.log"""'], {'rotation': '"""1 day"""'}), "('/home/alben/code/kaggle_SETI_search_ET/log/train.log', rotation\n ='1 day')\n", (1207, 1286), False, 'from loguru import logger\n'), ((1507, 1527), 'numpy.random.seed', 'np.random.seed', (['seed'], {}), '(seed)\n', (1521, 1527), True, 'import numpy as np\n'), ((1547, 1574), 'numpy.random.RandomState', 'np.random.RandomState', (['seed'], {}), '(seed)\n', (1568, 1574), True, 'import numpy as np\n'), ((1579, 1596), 'random.seed', 'random.seed', (['seed'], {}), '(seed)\n', (1590, 1596), False, 'import random\n'), ((1601, 1624), 'torch.manual_seed', 'torch.manual_seed', (['seed'], {}), '(seed)\n', (1618, 1624), False, 'import torch\n'), ((1629, 1657), 'torch.cuda.manual_seed', 'torch.cuda.manual_seed', (['seed'], {}), '(seed)\n', (1651, 1657), False, 'import torch\n'), ((2605, 2631), 'torch.randperm', 'torch.randperm', (['batch_size'], {}), '(batch_size)\n', (2619, 2631), False, 'import torch\n'), ((6225, 6247), 'torch.from_numpy', 'torch.from_numpy', (['data'], {}), '(data)\n', (6241, 6247), False, 'import torch\n'), ((6326, 6348), 'torch.stack', 'torch.stack', (['ten_datas'], {}), '(ten_datas)\n', (6337, 6348), False, 'import torch\n'), ((6391, 6416), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (6414, 6416), False, 'import argparse\n'), ((6816, 6890), 'loguru.logger.info', 'logger.info', (['f"""{\'*\' * 25} version = {ver}; comment = {comment} {\'*\' * 25}"""'], {}), '(f"{\'*\' * 25} version = {ver}; comment = {comment} {\'*\' * 25}")\n', (6827, 6890), False, 'from loguru import logger\n'), ((7510, 7558), 'torch.utils.tensorboard.SummaryWriter', 'SummaryWriter', ([], {'log_dir': 'BOARD_PATH', 'flush_secs': '(60)'}), '(log_dir=BOARD_PATH, flush_secs=60)\n', (7523, 7558), False, 'from torch.utils.tensorboard import SummaryWriter\n'), ((7577, 7643), 'snippets_dataset.SnippetsDataset', 'SnippetsDataset', (['TRAIN_DATA_PATH', 'LABELS_CSV', '"""train"""', 'transforms_'], {}), "(TRAIN_DATA_PATH, LABELS_CSV, 'train', transforms_)\n", (7592, 7643), False, 'from snippets_dataset import SnippetsDataset, SnippetsDatasetTest\n'), ((7663, 7730), 'torch.utils.data.DataLoader', 'DataLoader', ([], {'dataset': 'train_data', 'batch_size': 'BATCH_SIZE', 'shuffle': '(True)'}), '(dataset=train_data, batch_size=BATCH_SIZE, shuffle=True)\n', (7673, 7730), False, 'from torch.utils.data import DataLoader\n'), ((7809, 7875), 'snippets_dataset.SnippetsDataset', 'SnippetsDataset', (['TRAIN_DATA_PATH', 'LABELS_CSV', '"""valid"""', 'transforms_'], {}), "(TRAIN_DATA_PATH, LABELS_CSV, 'valid', transforms_)\n", (7824, 7875), False, 'from snippets_dataset import SnippetsDataset, SnippetsDatasetTest\n'), ((7895, 7962), 'torch.utils.data.DataLoader', 'DataLoader', ([], {'dataset': 'valid_data', 'batch_size': 'BATCH_SIZE', 'shuffle': '(True)'}), '(dataset=valid_data, batch_size=BATCH_SIZE, shuffle=True)\n', (7905, 7962), False, 'from torch.utils.data import DataLoader\n'), ((8040, 8088), 'snippets_dataset.SnippetsDatasetTest', 'SnippetsDatasetTest', (['TEST_DATA_PATH', 'transforms_'], {}), '(TEST_DATA_PATH, transforms_)\n', (8059, 8088), False, 'from snippets_dataset import SnippetsDataset, SnippetsDatasetTest\n'), ((8491, 8513), 'torch.nn.BCEWithLogitsLoss', 'nn.BCEWithLogitsLoss', ([], {}), '()\n', (8511, 8513), False, 'from torch import nn, optim\n'), ((8600, 8678), 'torch.optim.lr_scheduler.StepLR', 'torch.optim.lr_scheduler.StepLR', (['optimizer'], {'step_size': 'LR_DECAY_STEP', 'gamma': '(0.5)'}), '(optimizer, step_size=LR_DECAY_STEP, gamma=0.5)\n', (8631, 8678), False, 'import torch\n'), ((1316, 1341), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (1339, 1341), False, 'import torch\n'), ((1996, 2034), 'efficientnet_pytorch.EfficientNet.from_pretrained', 'EfficientNet.from_pretrained', (['backbone'], {}), '(backbone)\n', (2024, 2034), False, 'from efficientnet_pytorch import EfficientNet, utils\n'), ((2125, 2158), 'torch.nn.Linear', 'nn.Linear', (['fc_in_feature', 'out_dim'], {}), '(fc_in_feature, out_dim)\n', (2134, 2158), False, 'from torch import nn, optim\n'), ((2184, 2247), 'torch.nn.Conv2d', 'nn.Conv2d', (['(6)', '(3)'], {'kernel_size': '(3)', 'stride': '(1)', 'padding': '(3)', 'bias': '(False)'}), '(6, 3, kernel_size=3, stride=1, padding=3, bias=False)\n', (2193, 2247), False, 'from torch import nn, optim\n'), ((2508, 2536), 'numpy.random.beta', 'np.random.beta', (['alpha', 'alpha'], {}), '(alpha, alpha)\n', (2522, 2536), True, 'import numpy as np\n'), ((3157, 3168), 'time.time', 'time.time', ([], {}), '()\n', (3166, 3168), False, 'import time\n'), ((4129, 4161), 'sklearn.metrics.roc_auc_score', 'metrics.roc_auc_score', (['Y', 'y_pred'], {}), '(Y, y_pred)\n', (4150, 4161), False, 'from sklearn import metrics\n'), ((4296, 4311), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (4309, 4311), False, 'import torch\n'), ((5265, 5297), 'sklearn.metrics.roc_auc_score', 'metrics.roc_auc_score', (['Y', 'y_pred'], {}), '(Y, y_pred)\n', (5286, 5297), False, 'from sklearn import metrics\n'), ((5384, 5399), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (5397, 5399), False, 'import torch\n'), ((6264, 6308), 'torchvision.transforms.TenCrop', 'transforms.TenCrop', (['(224)'], {'vertical_flip': '(False)'}), '(224, vertical_flip=False)\n', (6282, 6308), False, 'from torchvision import transforms\n'), ((4380, 4391), 'time.time', 'time.time', ([], {}), '()\n', (4389, 4391), False, 'import time\n'), ((6123, 6188), 'loguru.logger.info', 'logger.info', (['f"""Test - Epoch = {epoch:3}; predict = {outputs_avg}"""'], {}), "(f'Test - Epoch = {epoch:3}; predict = {outputs_avg}')\n", (6134, 6188), False, 'from loguru import logger\n'), ((5977, 6025), 'torchvision.utils.make_grid', 'torchvision.utils.make_grid', (['grid_images'], {'nrow': '(6)'}), '(grid_images, nrow=6)\n', (6004, 6025), False, 'import torchvision\n'), ((8939, 8960), 'numpy.mean', 'np.mean', (['losses_train'], {}), '(losses_train)\n', (8946, 8960), True, 'import numpy as np\n'), ((9014, 9035), 'numpy.mean', 'np.mean', (['losses_valid'], {}), '(losses_valid)\n', (9021, 9035), True, 'import numpy as np\n'), ((5129, 5150), 'numpy.mean', 'np.mean', (['losses_valid'], {}), '(losses_valid)\n', (5136, 5150), True, 'import numpy as np\n'), ((5164, 5196), 'sklearn.metrics.roc_auc_score', 'metrics.roc_auc_score', (['Y', 'y_pred'], {}), '(Y, y_pred)\n', (5185, 5196), False, 'from sklearn import metrics\n'), ((9393, 9414), 'numpy.mean', 'np.mean', (['losses_train'], {}), '(losses_train)\n', (9400, 9414), True, 'import numpy as np\n'), ((9435, 9456), 'numpy.mean', 'np.mean', (['losses_valid'], {}), '(losses_valid)\n', (9442, 9456), True, 'import numpy as np\n'), ((3969, 3990), 'numpy.mean', 'np.mean', (['losses_train'], {}), '(losses_train)\n', (3976, 3990), True, 'import numpy as np\n'), ((4004, 4036), 'sklearn.metrics.roc_auc_score', 'metrics.roc_auc_score', (['Y', 'y_pred'], {}), '(Y, y_pred)\n', (4025, 4036), False, 'from sklearn import metrics\n'), ((5215, 5226), 'time.time', 'time.time', ([], {}), '()\n', (5224, 5226), False, 'import time\n'), ((4055, 4066), 'time.time', 'time.time', ([], {}), '()\n', (4064, 4066), False, 'import time\n')]
|
import glob
import os.path as pth
import numpy as np
import collections
import matplotlib.pylab as plt
import keras.utils
class RgbdSetElement(object):
def __init__(self, npz_path):
self.npz_path = npz_path
self.npz_file = pth.basename(npz_path)
self.set_name = self.npz_file.split("_", maxsplit=1)[0]
self.image_cnt = self.__image_count_from_file(npz_path)
self.current_rbgd_ary = False
def __image_count_from_file(self, npz_path):
with np.load(npz_path) as f:
rgbd_ary = f["rgbd_ary"]
return rgbd_ary.shape[0]
def read_next_batch(self, batch_size):
if isinstance(self.current_rbgd_ary, bool) and not self.current_rbgd_ary:
f = np.load(self.npz_path)
self.current_rbgd_ary = f["rgbd_ary"]
self.current_batch_idx = 0
try:
current_batch = self.current_rbgd_ary[self.current_batch_idx*batch_size:(self.current_batch_idx + 1)*batch_size, :, :, :]
if (current_batch.shape[0] < batch_size):
raise ValueError()
self.current_batch_idx += 1
return current_batch
except:
self.current_rbgd_ary = False
self.current_batch_idx = False
return False
class RgbdSet(object):
def __init__(self):
self.set_name = False
self.elements = list()
@property
def image_count(self):
if not self.set_name or not self.elements:
raise ValueError("Invalid state, set has no name or no elements")
return sum([e.image_cnt for e in self.elements])
def append(self, set_el):
if not self.set_name:
self.set_name = set_el.set_name
if self.set_name != set_el.set_name:
raise ValueError("Set name and element set name does not match")
self.elements.append(set_el)
return self
class RgbdSetSequence(keras.utils.Sequence):
def __init__(self, rgbd_set:RgbdSet, batch_size, validation_split=0.2, is_validation=False, max_len=25000):
self.rgbd_set = rgbd_set
self.batch_size = batch_size
self.validation_split = validation_split
self.is_validation = is_validation
self.max_len = max_len
self.image_cnt = self.__calculate_image_count()
self.element_queue = self.__copy_elements(rgbd_set, validation_split, is_validation)
def __calculate_image_count(self):
N = min(self.rgbd_set.image_count, self.max_len)
if self.is_validation:
return N * self.validation_split
else:
return N * (1. - self.validation_split)
def __len__(self):
return int(np.ceil(self.image_cnt / float(self.batch_size)))
@property
def current_element(self):
return self.element_queue[0] if self.element_queue else False
def __getitem__(self, idx):
if not self.current_element:
return False
next_batch = self.current_element.read_next_batch(self.batch_size)
if isinstance(next_batch, bool) and next_batch == False:
self.element_queue.pop()
return self.__getitem__(idx)
return next_batch
def __copy_elements(self, rgbd_set, validation_split, is_validation):
all_els = reversed(rgbd_set.elements) if is_validation else rgbd_set.elements
cpy_els = []
M = 0
for el in all_els:
if M >= self.image_cnt: break
M += el.image_cnt
cpy_els.append(el)
return collections.deque(cpy_els)
class RgbdSeq(keras.utils.Sequence):
def __init__(self, all_sets_dict, batch_size, validation_split=0.2, is_validation=False, max_per_set_len=25000):
self.sets_dict = all_sets_dict
self.seqs_dict = dict([(k, RgbdSetSequence(s, batch_size, validation_split, is_validation, max_per_set_len))
for k, s in all_sets_dict.items()])
def __len__(self):
return sum(len(s) for s in self.seqs_dict.values())
def __getitem__(self, idx):
seq_idx = idx % len(self.seqs_dict)
seq_els = list(self.seqs_dict.values())
return seq_els[seq_idx][idx]
def plot_image_count_hist(self):
plt.figure()
plt.bar(self.sets_dict.keys(), [v.image_count for v in self.sets_dict.values()])
plt.show()
def create_rgbdseq_from_files(glob_pattern="data/*.npz", is_validation=False, batch_size=250):
rgbd_sets = collections.defaultdict(RgbdSet)
for npz_path in glob.glob(glob_pattern):
print("Loading %s" % npz_path)
set_el = RgbdSetElement(npz_path)
rgbd_sets[set_el.set_name].append(set_el)
seq = RgbdSeq(rgbd_sets, is_validation=is_validation, batch_size=batch_size)
return seq
|
[
"numpy.load",
"matplotlib.pylab.show",
"os.path.basename",
"collections.defaultdict",
"glob.glob",
"collections.deque",
"matplotlib.pylab.figure"
] |
[((4473, 4505), 'collections.defaultdict', 'collections.defaultdict', (['RgbdSet'], {}), '(RgbdSet)\n', (4496, 4505), False, 'import collections\n'), ((4526, 4549), 'glob.glob', 'glob.glob', (['glob_pattern'], {}), '(glob_pattern)\n', (4535, 4549), False, 'import glob\n'), ((245, 267), 'os.path.basename', 'pth.basename', (['npz_path'], {}), '(npz_path)\n', (257, 267), True, 'import os.path as pth\n'), ((3542, 3568), 'collections.deque', 'collections.deque', (['cpy_els'], {}), '(cpy_els)\n', (3559, 3568), False, 'import collections\n'), ((4239, 4251), 'matplotlib.pylab.figure', 'plt.figure', ([], {}), '()\n', (4249, 4251), True, 'import matplotlib.pylab as plt\n'), ((4349, 4359), 'matplotlib.pylab.show', 'plt.show', ([], {}), '()\n', (4357, 4359), True, 'import matplotlib.pylab as plt\n'), ((497, 514), 'numpy.load', 'np.load', (['npz_path'], {}), '(npz_path)\n', (504, 514), True, 'import numpy as np\n'), ((737, 759), 'numpy.load', 'np.load', (['self.npz_path'], {}), '(self.npz_path)\n', (744, 759), True, 'import numpy as np\n')]
|
import os
import os.path as path
import pandas as pd
import numpy as np
from scipy import stats
def read_data_sets(file_path):
column_names = ['timestamp','x-axis', 'y-axis', 'z-axis','x1-axis', 'y1-axis', 'z1-axis','x2-axis', 'y2-axis', 'z2-axis','activity']
data = pd.read_csv(file_path,header = None, names = column_names)
return data
def feature_normalize(dataset):
mu = np.mean(dataset,axis = 0)
sigma = np.std(dataset,axis = 0)
return mu,sigma
def windows(data, size):
start = 0
while start < data.count():
yield int(start), int(start + size)
start += (size/2)
def segment_signal(data,window_size,num_channels):
segments = np.empty((0,window_size,num_channels))
labels = np.empty((0))
for (start, end) in windows(data["timestamp"], window_size):
x = data["x-axis"][start:end]
y = data["y-axis"][start:end]
z = data["z-axis"][start:end]
x1 = data["x1-axis"][start:end]
y1 = data["y1-axis"][start:end]
z1 = data["z1-axis"][start:end]
x2 = data["x2-axis"][start:end]
y2 = data["y2-axis"][start:end]
z2 = data["z2-axis"][start:end]
if(len(data["timestamp"][start:end]) == window_size):
# segments = np.vstack([segments,np.dstack([x,y,z,x1,y1,z1])])
segments = np.vstack([segments,np.dstack([x,y,z,x1,y1,z1,x2,y2,z2])])
labels = np.append(labels,stats.mode(data["activity"][start:end])[0][0])
return segments, labels
def preprocess_data(dataset,valset,testset,input_height,input_width,num_channels):
dataset.dropna(axis=0, how='any', inplace= True)
testset.dropna(axis=0, how='any', inplace= True)
valset.dropna(axis=0,how='any',inplace=True)
xmu,xsigma=feature_normalize(dataset['x-axis'])
dataset['x-axis'] = (dataset['x-axis']-xmu)/xsigma
valset['x-axis'] = (valset['x-axis']-xmu)/xsigma
testset['x-axis']= (testset['x-axis']-xmu)/xsigma
ymu,ysigma=feature_normalize(dataset['y-axis'])
dataset['y-axis'] = (dataset['y-axis']-ymu)/ysigma
valset['y-axis'] = (valset['y-axis']-ymu)/ysigma
testset['y-axis']= (testset['y-axis']-ymu)/ysigma
zmu,zsigma=feature_normalize(dataset['z-axis'])
dataset['z-axis'] = (dataset['z-axis']-zmu)/zsigma
valset['z-axis']= (valset['z-axis']-zmu)/zsigma
testset['z-axis']= (testset['z-axis']-zmu)/zsigma
xmu1,xsigma1=feature_normalize(dataset['x1-axis'])
dataset['x1-axis'] = (dataset['x1-axis']-xmu1)/xsigma1
valset['x1-axis']= (valset['x1-axis']-xmu1)/xsigma1
testset['x1-axis']= (testset['x1-axis']-xmu1)/xsigma1
ymu1,ysigma1=feature_normalize(dataset['y1-axis'])
dataset['y1-axis'] = (dataset['y1-axis']-ymu1)/ysigma1
valset['y1-axis'] = (valset['y1-axis']-ymu1)/ysigma1
testset['y1-axis']= (testset['y1-axis']-ymu1)/ysigma1
zmu1,zsigma1=feature_normalize(dataset['z1-axis'])
dataset['z1-axis'] = (dataset['z1-axis']-zmu1)/zsigma1
valset['z1-axis']= (valset['z1-axis']-zmu1)/zsigma1
testset['z1-axis']= (testset['z1-axis']-zmu1)/zsigma1
xmu2,xsigma2=feature_normalize(dataset['x2-axis'])
dataset['x2-axis'] = (dataset['x2-axis']-xmu2)/xsigma2
valset['x2-axis']= (valset['x2-axis']-xmu2)/xsigma2
testset['x2-axis']= (testset['x2-axis']-xmu2)/xsigma2
ymu2,ysigma2=feature_normalize(dataset['y2-axis'])
dataset['y2-axis'] = (dataset['y2-axis']-ymu2)/ysigma2
valset['y2-axis'] = (valset['y2-axis']-ymu2)/ysigma2
testset['y2-axis']= (testset['y2-axis']-ymu2)/ysigma2
zmu2,zsigma2=feature_normalize(dataset['z2-axis'])
dataset['z2-axis'] = (dataset['z2-axis']-zmu2)/zsigma2
valset['z2-axis']= (valset['z2-axis']-zmu2)/zsigma2
testset['z2-axis']= (testset['z2-axis']-zmu2)/zsigma2
print(xmu,' ',xsigma)
print(ymu,' ',ysigma)
print(zmu,' ',zsigma)
print(xmu1,' ',xsigma1)
print(ymu1,' ',ysigma1)
print(zmu1,' ',zsigma1)
print(xmu2,' ',xsigma2)
print(ymu2,' ',ysigma2)
print(zmu2,' ',zsigma2)
train_x, train_y = segment_signal(data=dataset,window_size=input_width,num_channels=num_channels)
val_x,val_y=segment_signal(data=valset,window_size=input_width,num_channels=num_channels)
test_x,test_y=segment_signal(data=testset,window_size=input_width,num_channels=num_channels)
train_y = np.asarray(pd.get_dummies(train_y), dtype = np.int8)
val_y=np.asarray(pd.get_dummies(val_y), dtype = np.int8)
test_y=np.asarray(pd.get_dummies(test_y), dtype = np.int8)
train_x = train_x.reshape(len(train_x), input_width, num_channels, input_height)
val_x = val_x.reshape(len(val_x), input_width, num_channels, input_height)
test_x = test_x.reshape(len(test_x), input_width, num_channels, input_height)
return train_x,train_y,val_x,val_y,test_x,test_y
input_height = 1
window_size = 50
num_channels = 9
# num_channels = 6
#These files are copied by all of the raw data in train_set, valid_set and test_set respectively.
dataset = read_data_sets(file_path='Datasets/TotalSet/trainSet.txt')
valset= read_data_sets(file_path='Datasets/TotalSet/validationSet.txt')
testset= read_data_sets(file_path='Datasets/TotalSet/testSet.txt')
x_train, y_train, x_val, y_val,x_test,y_test=preprocess_data(dataset=dataset,valset=valset,testset=testset,input_height=input_height,input_width=window_size,num_channels=num_channels)
idx = np.random.permutation(len(x_train))
x_train,y_train = x_train[idx], y_train[idx]
idx = np.random.permutation(len(x_test))
x_test,y_test = x_test[idx], y_test[idx]
np.save('Datasets/OutSet_AddMagnetic/x_train',x_train)
np.save('Datasets/OutSet_AddMagnetic/y_train',y_train)
np.save('Datasets/OutSet_AddMagnetic/x_valid',x_val)
np.save('Datasets/OutSet_AddMagnetic/y_valid',y_val)
np.save('Datasets/OutSet_AddMagnetic/x_test',x_test)
np.save('Datasets/OutSet_AddMagnetic/y_test',y_test)
|
[
"numpy.dstack",
"numpy.save",
"scipy.stats.mode",
"pandas.read_csv",
"numpy.empty",
"numpy.std",
"pandas.get_dummies",
"numpy.mean"
] |
[((5542, 5597), 'numpy.save', 'np.save', (['"""Datasets/OutSet_AddMagnetic/x_train"""', 'x_train'], {}), "('Datasets/OutSet_AddMagnetic/x_train', x_train)\n", (5549, 5597), True, 'import numpy as np\n'), ((5597, 5652), 'numpy.save', 'np.save', (['"""Datasets/OutSet_AddMagnetic/y_train"""', 'y_train'], {}), "('Datasets/OutSet_AddMagnetic/y_train', y_train)\n", (5604, 5652), True, 'import numpy as np\n'), ((5652, 5705), 'numpy.save', 'np.save', (['"""Datasets/OutSet_AddMagnetic/x_valid"""', 'x_val'], {}), "('Datasets/OutSet_AddMagnetic/x_valid', x_val)\n", (5659, 5705), True, 'import numpy as np\n'), ((5705, 5758), 'numpy.save', 'np.save', (['"""Datasets/OutSet_AddMagnetic/y_valid"""', 'y_val'], {}), "('Datasets/OutSet_AddMagnetic/y_valid', y_val)\n", (5712, 5758), True, 'import numpy as np\n'), ((5758, 5811), 'numpy.save', 'np.save', (['"""Datasets/OutSet_AddMagnetic/x_test"""', 'x_test'], {}), "('Datasets/OutSet_AddMagnetic/x_test', x_test)\n", (5765, 5811), True, 'import numpy as np\n'), ((5811, 5864), 'numpy.save', 'np.save', (['"""Datasets/OutSet_AddMagnetic/y_test"""', 'y_test'], {}), "('Datasets/OutSet_AddMagnetic/y_test', y_test)\n", (5818, 5864), True, 'import numpy as np\n'), ((275, 330), 'pandas.read_csv', 'pd.read_csv', (['file_path'], {'header': 'None', 'names': 'column_names'}), '(file_path, header=None, names=column_names)\n', (286, 330), True, 'import pandas as pd\n'), ((392, 416), 'numpy.mean', 'np.mean', (['dataset'], {'axis': '(0)'}), '(dataset, axis=0)\n', (399, 416), True, 'import numpy as np\n'), ((430, 453), 'numpy.std', 'np.std', (['dataset'], {'axis': '(0)'}), '(dataset, axis=0)\n', (436, 453), True, 'import numpy as np\n'), ((692, 732), 'numpy.empty', 'np.empty', (['(0, window_size, num_channels)'], {}), '((0, window_size, num_channels))\n', (700, 732), True, 'import numpy as np\n'), ((744, 755), 'numpy.empty', 'np.empty', (['(0)'], {}), '(0)\n', (752, 755), True, 'import numpy as np\n'), ((4342, 4365), 'pandas.get_dummies', 'pd.get_dummies', (['train_y'], {}), '(train_y)\n', (4356, 4365), True, 'import pandas as pd\n'), ((4405, 4426), 'pandas.get_dummies', 'pd.get_dummies', (['val_y'], {}), '(val_y)\n', (4419, 4426), True, 'import pandas as pd\n'), ((4467, 4489), 'pandas.get_dummies', 'pd.get_dummies', (['test_y'], {}), '(test_y)\n', (4481, 4489), True, 'import pandas as pd\n'), ((1357, 1401), 'numpy.dstack', 'np.dstack', (['[x, y, z, x1, y1, z1, x2, y2, z2]'], {}), '([x, y, z, x1, y1, z1, x2, y2, z2])\n', (1366, 1401), True, 'import numpy as np\n'), ((1434, 1473), 'scipy.stats.mode', 'stats.mode', (["data['activity'][start:end]"], {}), "(data['activity'][start:end])\n", (1444, 1473), False, 'from scipy import stats\n')]
|
from bokeh.plotting import figure, curdoc, vplot, hplot
from bokeh.models.widgets import Button, Toggle, Slider, VBoxForm, HBox, VBox, CheckboxGroup
from bokeh.driving import linear
import numpy as np
# Forward & reverse propagating waves. Use global variables to pass values into function.
def forward_wave():
return np.exp(-alpha*(z - zmin)) * np.cos(twopi * (current_time - z_norm))
def reverse_wave():
return (np.exp(-alpha*(z[-1] - zmin)) * reflection_coef) * \
np.exp(alpha*z) * np.cos(twopi * (current_time + z_norm))
def standing_wave():
return np.sqrt(1.0 + 2*reflection_coef*np.cos(2.0*twopi*z_norm) + reflection_coef**2)
# Initializations
freq_Hz = 100e6
velocity_mps = 2e8
wavelength_m = velocity_mps / freq_Hz
twopi = 2.0*np.pi
n_samp_one_temporal_cycle = 60
alpha = 0.0
reflection_coef = 1.0
current_time = 0.0
zmin = -20
zmax = 0
numpnts = 500
periodic_callback_time_ms = 16
z = np.linspace(zmin,zmax,numpnts)
z_norm = z/wavelength_m
color_forward_wave = 'blue'
color_reverse_wave = 'red'
alpha_forward_reverse_waves = 0.5
color_sum_wave = 'black'
alpha_sum_wave = 0.3
v1 = forward_wave()
v2 = reverse_wave()
vsum = v1 + v2
color_standing_wave = 'green'
alpha_standing_wave = 0.3
vstanding = standing_wave()
ii = 0
# Set up plot
p = figure(plot_width=600, plot_height=400, x_range=(zmin,zmax), y_range=(-2.1,2.1), \
title="Forward & Reverse Sinusoidal Voltages", \
tools="pan,box_zoom,save,reset")
l_forward = p.line(z, v1, line_width=2, color=color_forward_wave, line_alpha=alpha_forward_reverse_waves)
l_reverse = p.line(z, v2, line_width=2, color=color_reverse_wave, line_alpha=alpha_forward_reverse_waves)
l_sum = p.line(z, vsum, line_width=2, color=color_sum_wave, line_alpha=0.0)
l_standing = p.line(z, vstanding, line_width=2, color=color_standing_wave, line_alpha=0.0)
#l_sum.glyph.visible = False
p.xaxis.axis_label = "z (m)"
p.yaxis.axis_label = "Voltage (V)"
t1 = p.text(zmin+1.5, 1.5, text=['f = {} MHz'.format(freq_Hz/1.e6)],
text_align="left", text_font_size="10pt")
t2 = p.text(zmin+1.5, 1.3, text=['\u03BB = u/f = {} m'.format(wavelength_m)], text_align="left", text_font_size="10pt")
t3 = p.text(zmin+1.5, 1.7, text=['u = {:.1e} m/s'.format(velocity_mps)], text_align="left", text_font_size="10pt")
# Set up toggle button & callback function
def toggle_handler(active):
if active:
toggle.label = 'Stop'
checkbox_group.disabled = True
#t3.data_source.data["text"] = ['Running']
curdoc().add_periodic_callback(update, periodic_callback_time_ms)
else:
toggle.label = 'Start'
checkbox_group.disabled = False
#t3.data_source.data["text"] = ['Stopped']
curdoc().remove_periodic_callback(update)
toggle = Toggle(label="Start", type="success")
toggle.on_click(toggle_handler)
toggle.active = False
# Set up reset button
def reset_handler():
global ii, current_time
ii = 0
current_time = 0
l_forward.data_source.data["y"] = forward_wave()
l_reverse.data_source.data["y"] = reverse_wave()
l_sum.data_source.data["y"] = l_forward.data_source.data["y"] + \
l_reverse.data_source.data["y"]
#t2.data_source.data["text"] = ['t = {:.3f} s'.format(current_time)]
button_reset = Button(label="Reset", type="success")
button_reset.on_click(reset_handler)
# Set up checkboxes to show/hide forward & reverse propagating waves
def checkbox_group_handler(active):
global alpha, alpha_slider
if 0 in active:
#l_forward.glyph.visible = True
l_forward.glyph.line_alpha = alpha_forward_reverse_waves
else:
#l_forward.glyph.visible = False
l_forward.glyph.line_alpha = 0.0
if 1 in active:
#l_reverse.glyph.visible = True
l_reverse.glyph.line_alpha = alpha_forward_reverse_waves
else:
#l_reverse.glyph.visible = False
l_reverse.glyph.line_alpha = 0.0
if 2 in active:
#l_sum.glyph.visible = True
l_sum.glyph.line_alpha = alpha_sum_wave
else:
#l_sum.glyph.visible = False
l_sum.glyph.line_alpha = 0.0
if 3 in active:
alpha = 0.0
alpha_slider.value = 0.0
alpha_slider.disabled = True
l_standing.glyph.line_alpha = alpha_standing_wave
else:
alpha_slider.disabled = False
l_standing.glyph.line_alpha = 0.0
#t1.data_source.data["text"] = ['{} {}'.format(l_forward.glyph.line_alpha,l_reverse.glyph.line_alpha)]
checkbox_group = CheckboxGroup(
labels=["Forward Propagating Wave", "Reverse Propagating Wave", "Sum of Waves",
"Standing Wave (valid only for \u03B1=0)"], active=[0, 1])
checkbox_group.on_click(checkbox_group_handler)
# Set up slider & callback function
def update_alpha(attrname, old, new):
global alpha
alpha = alpha_slider.value
if not toggle.active:
l_forward.data_source.data["y"] = forward_wave()
l_reverse.data_source.data["y"] = reverse_wave()
l_sum.data_source.data["y"] = l_forward.data_source.data["y"] + \
l_reverse.data_source.data["y"]
alpha_slider = Slider(title="Attenuation Constant, \u03B1 (1/m)", value=0.0, start=0.0, end=0.25, step=0.005)
alpha_slider.on_change('value', update_alpha)
# Set up slider & callback function for reflection_coef
def update_gamma(attrname, old, new):
global reflection_coef
reflection_coef = gamma_slider.value
if not toggle.active:
l_forward.data_source.data["y"] = forward_wave()
l_reverse.data_source.data["y"] = reverse_wave()
l_sum.data_source.data["y"] = l_forward.data_source.data["y"] + \
l_reverse.data_source.data["y"]
l_standing.data_source.data["y"] = standing_wave()
gamma_slider = Slider(title="Reflection Coefficient, \u0393", value=reflection_coef, start=-1.0, end=1.0, step=0.01)
gamma_slider.on_change('value', update_gamma)
# Set up layout
layout = hplot(p, VBox(toggle, button_reset, checkbox_group, alpha_slider, gamma_slider, height=580), width=980)
# Create callback function for periodic callback
def update():
global ii, current_time
if toggle.active:
ii += 1
current_time = ii / n_samp_one_temporal_cycle
l_forward.data_source.data["y"] = forward_wave()
l_reverse.data_source.data["y"] = reverse_wave()
l_sum.data_source.data["y"] = l_forward.data_source.data["y"] + \
l_reverse.data_source.data["y"]
l_standing.data_source.data["y"] = standing_wave()
|
[
"bokeh.plotting.figure",
"bokeh.models.widgets.CheckboxGroup",
"bokeh.models.widgets.VBox",
"numpy.exp",
"numpy.linspace",
"numpy.cos",
"bokeh.models.widgets.Slider",
"bokeh.plotting.curdoc",
"bokeh.models.widgets.Toggle",
"bokeh.models.widgets.Button"
] |
[((921, 953), 'numpy.linspace', 'np.linspace', (['zmin', 'zmax', 'numpnts'], {}), '(zmin, zmax, numpnts)\n', (932, 953), True, 'import numpy as np\n'), ((1277, 1448), 'bokeh.plotting.figure', 'figure', ([], {'plot_width': '(600)', 'plot_height': '(400)', 'x_range': '(zmin, zmax)', 'y_range': '(-2.1, 2.1)', 'title': '"""Forward & Reverse Sinusoidal Voltages"""', 'tools': '"""pan,box_zoom,save,reset"""'}), "(plot_width=600, plot_height=400, x_range=(zmin, zmax), y_range=(-2.1,\n 2.1), title='Forward & Reverse Sinusoidal Voltages', tools=\n 'pan,box_zoom,save,reset')\n", (1283, 1448), False, 'from bokeh.plotting import figure, curdoc, vplot, hplot\n'), ((2766, 2803), 'bokeh.models.widgets.Toggle', 'Toggle', ([], {'label': '"""Start"""', 'type': '"""success"""'}), "(label='Start', type='success')\n", (2772, 2803), False, 'from bokeh.models.widgets import Button, Toggle, Slider, VBoxForm, HBox, VBox, CheckboxGroup\n'), ((3292, 3329), 'bokeh.models.widgets.Button', 'Button', ([], {'label': '"""Reset"""', 'type': '"""success"""'}), "(label='Reset', type='success')\n", (3298, 3329), False, 'from bokeh.models.widgets import Button, Toggle, Slider, VBoxForm, HBox, VBox, CheckboxGroup\n'), ((4508, 4663), 'bokeh.models.widgets.CheckboxGroup', 'CheckboxGroup', ([], {'labels': "['Forward Propagating Wave', 'Reverse Propagating Wave', 'Sum of Waves',\n 'Standing Wave (valid only for α=0)']", 'active': '[0, 1]'}), "(labels=['Forward Propagating Wave',\n 'Reverse Propagating Wave', 'Sum of Waves',\n 'Standing Wave (valid only for α=0)'], active=[0, 1])\n", (4521, 4663), False, 'from bokeh.models.widgets import Button, Toggle, Slider, VBoxForm, HBox, VBox, CheckboxGroup\n'), ((5156, 5250), 'bokeh.models.widgets.Slider', 'Slider', ([], {'title': '"""Attenuation Constant, α (1/m)"""', 'value': '(0.0)', 'start': '(0.0)', 'end': '(0.25)', 'step': '(0.005)'}), "(title='Attenuation Constant, α (1/m)', value=0.0, start=0.0, end=\n 0.25, step=0.005)\n", (5162, 5250), False, 'from bokeh.models.widgets import Button, Toggle, Slider, VBoxForm, HBox, VBox, CheckboxGroup\n'), ((5818, 5918), 'bokeh.models.widgets.Slider', 'Slider', ([], {'title': '"""Reflection Coefficient, Γ"""', 'value': 'reflection_coef', 'start': '(-1.0)', 'end': '(1.0)', 'step': '(0.01)'}), "(title='Reflection Coefficient, Γ', value=reflection_coef, start=-1.0,\n end=1.0, step=0.01)\n", (5824, 5918), False, 'from bokeh.models.widgets import Button, Toggle, Slider, VBoxForm, HBox, VBox, CheckboxGroup\n'), ((6001, 6087), 'bokeh.models.widgets.VBox', 'VBox', (['toggle', 'button_reset', 'checkbox_group', 'alpha_slider', 'gamma_slider'], {'height': '(580)'}), '(toggle, button_reset, checkbox_group, alpha_slider, gamma_slider,\n height=580)\n', (6005, 6087), False, 'from bokeh.models.widgets import Button, Toggle, Slider, VBoxForm, HBox, VBox, CheckboxGroup\n'), ((325, 352), 'numpy.exp', 'np.exp', (['(-alpha * (z - zmin))'], {}), '(-alpha * (z - zmin))\n', (331, 352), True, 'import numpy as np\n'), ((353, 392), 'numpy.cos', 'np.cos', (['(twopi * (current_time - z_norm))'], {}), '(twopi * (current_time - z_norm))\n', (359, 392), True, 'import numpy as np\n'), ((507, 546), 'numpy.cos', 'np.cos', (['(twopi * (current_time + z_norm))'], {}), '(twopi * (current_time + z_norm))\n', (513, 546), True, 'import numpy as np\n'), ((489, 506), 'numpy.exp', 'np.exp', (['(alpha * z)'], {}), '(alpha * z)\n', (495, 506), True, 'import numpy as np\n'), ((425, 456), 'numpy.exp', 'np.exp', (['(-alpha * (z[-1] - zmin))'], {}), '(-alpha * (z[-1] - zmin))\n', (431, 456), True, 'import numpy as np\n'), ((2509, 2517), 'bokeh.plotting.curdoc', 'curdoc', ([], {}), '()\n', (2515, 2517), False, 'from bokeh.plotting import figure, curdoc, vplot, hplot\n'), ((2715, 2723), 'bokeh.plotting.curdoc', 'curdoc', ([], {}), '()\n', (2721, 2723), False, 'from bokeh.plotting import figure, curdoc, vplot, hplot\n'), ((611, 639), 'numpy.cos', 'np.cos', (['(2.0 * twopi * z_norm)'], {}), '(2.0 * twopi * z_norm)\n', (617, 639), True, 'import numpy as np\n')]
|
"""
Particular class of real traffic network
@author: <NAME>
"""
import configparser
import logging
import numpy as np
import matplotlib.pyplot as plt
import os
import seaborn as sns
import time
from envs.env import PhaseMap, PhaseSet, TrafficSimulator
from real_net.data.build_file import gen_rou_file
sns.set_color_codes()
STATE_NAMES = ['wave']
# node: (phase key, neighbor list)
NODES = {'10026': ('6.0', ['9431', '9561', 'cluster_9563_9597', '9531']),
'8794': ('4.0', ['cluster_8985_9609', '9837', '9058', 'cluster_9563_9597']),
'8940': ('2.1', ['9007', '9429']),
'8996': ('2.2', ['cluster_9389_9689', '9713']),
'9007': ('2.3', ['9309', '8940']),
'9058': ('4.0', ['cluster_8985_9609', '8794', 'joinedS_0']),
'9153': ('2.0', ['9643']),
'9309': ('4.0', ['9466', '9007', 'cluster_9043_9052']),
'9413': ('2.3', ['9721', '9837']),
'9429': ('5.0', ['cluster_9043_9052', 'joinedS_1', '8940']),
'9431': ('2.4', ['9721', '9884', '9561', '10026']),
'9433': ('2.5', ['joinedS_1']),
'9466': ('4.0', ['9309', 'joinedS_0', 'cluster_9043_9052']),
'9480': ('2.3', ['8996', '9713']),
'9531': ('2.6', ['joinedS_1', '10026']),
'9561': ('4.0', ['cluster_9389_9689', '10026', '9431', '9884']),
'9643': ('2.3', ['9153']),
'9713': ('3.0', ['9721', '9884', '8996']),
'9721': ('6.0', ['9431', '9713', '9413']),
'9837': ('3.1', ['9413', '8794', 'cluster_8985_9609']),
'9884': ('2.7', ['9713', '9431', 'cluster_9389_9689', '9561']),
'cluster_8751_9630': ('4.0', ['cluster_9389_9689']),
'cluster_8985_9609': ('4.0', ['9837', '8794', '9058']),
'cluster_9043_9052': ('4.1', ['cluster_9563_9597', '9466', '9309', '10026', 'joinedS_1']),
'cluster_9389_9689': ('4.0', ['9884', '9561', 'cluster_8751_9630', '8996']),
'cluster_9563_9597': ('4.2', ['10026', '8794', 'joinedS_0', 'cluster_9043_9052']),
'joinedS_0': ('6.1', ['9058', 'cluster_9563_9597', '9466']),
'joinedS_1': ('3.2', ['9531', '9429'])}
PHASES = {'4.0': ['GGgrrrGGgrrr', 'rrrGGgrrrGGg', 'rrGrrrrrGrrr', 'rrrrrGrrrrrG'],
'4.1': ['GGgrrGGGrrr', 'rrGrrrrrrrr', 'rrrGgrrrGGg', 'rrrrGrrrrrG'],
'4.2': ['GGGGrrrrrrrr', 'GGggrrGGggrr', 'rrrGGGGrrrrr', 'grrGGggrrGGg'],
'2.0': ['GGrrr', 'ggGGG'],
'2.1': ['GGGrrr', 'rrGGGg'],
'2.2': ['Grr', 'gGG'],
'2.3': ['GGGgrr', 'GrrrGG'],
'2.4': ['GGGGrr', 'rrrrGG'],
'2.5': ['Gg', 'rG'],
'2.6': ['GGGg', 'rrrG'],
'2.7': ['GGg', 'rrG'],
'3.0': ['GGgrrrGGg', 'rrGrrrrrG', 'rrrGGGGrr'],
'3.1': ['GgrrGG', 'rGrrrr', 'rrGGGr'],
'3.2': ['GGGGrrrGG', 'rrrrGGGGr', 'GGGGrrGGr'],
'5.0': ['GGGGgrrrrGGGggrrrr', 'grrrGrrrrgrrGGrrrr', 'GGGGGrrrrrrrrrrrrr',
'rrrrrrrrrGGGGGrrrr', 'rrrrrGGggrrrrrggGg'],
'6.0': ['GGGgrrrGGGgrrr', 'rrrGrrrrrrGrrr', 'GGGGrrrrrrrrrr', 'rrrrrrrrrrGGGG',
'rrrrGGgrrrrGGg', 'rrrrrrGrrrrrrG'],
'6.1': ['GGgrrGGGrrrGGGgrrrGGGg', 'rrGrrrrrrrrrrrGrrrrrrG', 'GGGrrrrrGGgrrrrGGgrrrr',
'GGGrrrrrrrGrrrrrrGrrrr', 'rrrGGGrrrrrrrrrrrrGGGG', 'rrrGGGrrrrrGGGgrrrGGGg']}
class RealNetPhase(PhaseMap):
def __init__(self):
self.phases = {}
for key, val in PHASES.items():
self.phases[key] = PhaseSet(val)
class RealNetController:
def __init__(self, node_names, nodes):
self.name = 'greedy'
self.node_names = node_names
self.nodes = nodes
def forward(self, obs):
actions = []
for ob, node_name in zip(obs, self.node_names):
actions.append(self.greedy(ob, node_name))
return actions
def greedy(self, ob, node_name):
# get the action space
phases = PHASES[NODES[node_name][0]]
flows = []
node = self.nodes[node_name]
# get the green waves
for phase in phases:
wave = 0
visited_ilds = set()
for i, signal in enumerate(phase):
if signal == 'G':
# find controlled lane
lane = node.lanes_in[i]
# ild = 'ild:' + lane
ild = lane
# if it has not been counted, add the wave
if ild not in visited_ilds:
j = node.ilds_in.index(ild)
wave += ob[j]
visited_ilds.add(ild)
flows.append(wave)
return np.argmax(np.array(flows))
class RealNetEnv(TrafficSimulator):
def __init__(self, config, port=0, output_path='', is_record=False, record_stat=False):
self.flow_rate = config.getint('flow_rate')
super().__init__(config, output_path, is_record, record_stat, port=port)
def _get_node_phase_id(self, node_name):
return self.phase_node_map[node_name]
def _init_neighbor_map(self):
return dict([(key, val[1]) for key, val in NODES.items()])
def _init_map(self):
self.neighbor_map = self._init_neighbor_map()
self.phase_map = RealNetPhase()
self.phase_node_map = dict([(key, val[0]) for key, val in NODES.items()])
self.state_names = STATE_NAMES
def _init_sim_config(self, seed):
# comment out to call build_file.py
return gen_rou_file(self.data_path,
self.flow_rate,
seed=seed,
thread=self.sim_thread)
def plot_stat(self, rewards):
self.state_stat['reward'] = rewards
for name, data in self.state_stat.items():
fig = plt.figure(figsize=(8, 6))
plot_cdf(data)
plt.ylabel(name)
fig.savefig(self.output_path + self.name + '_' + name + '.png')
def plot_cdf(X, c='b', label=None):
sorted_data = np.sort(X)
yvals = np.arange(len(sorted_data))/float(len(sorted_data)-1)
plt.plot(sorted_data, yvals, color=c, label=label)
if __name__ == '__main__':
logging.basicConfig(format='%(asctime)s [%(levelname)s] %(message)s',
level=logging.INFO)
config = configparser.ConfigParser()
config.read('./config/config_test_real.ini')
base_dir = './output_result/'
if not os.path.exists(base_dir):
os.mkdir(base_dir)
env = RealNetEnv(config['ENV_CONFIG'], 2, base_dir, is_record=True, record_stat=True)
env.train_mode = False
time.sleep(1)
# ob = env.reset(gui=True)
controller = RealNetController(env.node_names, env.nodes)
env.init_test_seeds(list(range(10000, 100001, 10000)))
rewards = []
for i in range(10):
ob = env.reset(test_ind=i)
global_rewards = []
cur_step = 0
while True:
next_ob, reward, done, global_reward = env.step(controller.forward(ob))
# for node_name, node_ob in zip(env.node_names, next_ob):
# logging.info('%d, %s:%r\n' % (cur_step, node_name, node_ob))
global_rewards.append(global_reward)
rewards += list(reward)
cur_step += 1
if done:
break
ob = next_ob
env.terminate()
logging.info('step: %d, avg reward: %.2f' % (cur_step, np.mean(global_rewards)))
time.sleep(1)
env.plot_stat(np.array(rewards))
env.terminate()
time.sleep(2)
env.collect_tripinfo()
env.output_data()
|
[
"os.mkdir",
"logging.basicConfig",
"matplotlib.pyplot.plot",
"seaborn.set_color_codes",
"os.path.exists",
"real_net.data.build_file.gen_rou_file",
"time.sleep",
"numpy.sort",
"matplotlib.pyplot.figure",
"numpy.mean",
"numpy.array",
"matplotlib.pyplot.ylabel",
"configparser.ConfigParser",
"envs.env.PhaseSet"
] |
[((305, 326), 'seaborn.set_color_codes', 'sns.set_color_codes', ([], {}), '()\n', (324, 326), True, 'import seaborn as sns\n'), ((5980, 5990), 'numpy.sort', 'np.sort', (['X'], {}), '(X)\n', (5987, 5990), True, 'import numpy as np\n'), ((6061, 6111), 'matplotlib.pyplot.plot', 'plt.plot', (['sorted_data', 'yvals'], {'color': 'c', 'label': 'label'}), '(sorted_data, yvals, color=c, label=label)\n', (6069, 6111), True, 'import matplotlib.pyplot as plt\n'), ((6145, 6239), 'logging.basicConfig', 'logging.basicConfig', ([], {'format': '"""%(asctime)s [%(levelname)s] %(message)s"""', 'level': 'logging.INFO'}), "(format='%(asctime)s [%(levelname)s] %(message)s', level\n =logging.INFO)\n", (6164, 6239), False, 'import logging\n'), ((6272, 6299), 'configparser.ConfigParser', 'configparser.ConfigParser', ([], {}), '()\n', (6297, 6299), False, 'import configparser\n'), ((6568, 6581), 'time.sleep', 'time.sleep', (['(1)'], {}), '(1)\n', (6578, 6581), False, 'import time\n'), ((7487, 7500), 'time.sleep', 'time.sleep', (['(2)'], {}), '(2)\n', (7497, 7500), False, 'import time\n'), ((5453, 5532), 'real_net.data.build_file.gen_rou_file', 'gen_rou_file', (['self.data_path', 'self.flow_rate'], {'seed': 'seed', 'thread': 'self.sim_thread'}), '(self.data_path, self.flow_rate, seed=seed, thread=self.sim_thread)\n', (5465, 5532), False, 'from real_net.data.build_file import gen_rou_file\n'), ((6394, 6418), 'os.path.exists', 'os.path.exists', (['base_dir'], {}), '(base_dir)\n', (6408, 6418), False, 'import os\n'), ((6428, 6446), 'os.mkdir', 'os.mkdir', (['base_dir'], {}), '(base_dir)\n', (6436, 6446), False, 'import os\n'), ((7412, 7425), 'time.sleep', 'time.sleep', (['(1)'], {}), '(1)\n', (7422, 7425), False, 'import time\n'), ((7444, 7461), 'numpy.array', 'np.array', (['rewards'], {}), '(rewards)\n', (7452, 7461), True, 'import numpy as np\n'), ((3452, 3465), 'envs.env.PhaseSet', 'PhaseSet', (['val'], {}), '(val)\n', (3460, 3465), False, 'from envs.env import PhaseMap, PhaseSet, TrafficSimulator\n'), ((4640, 4655), 'numpy.array', 'np.array', (['flows'], {}), '(flows)\n', (4648, 4655), True, 'import numpy as np\n'), ((5765, 5791), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(8, 6)'}), '(figsize=(8, 6))\n', (5775, 5791), True, 'import matplotlib.pyplot as plt\n'), ((5831, 5847), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['name'], {}), '(name)\n', (5841, 5847), True, 'import matplotlib.pyplot as plt\n'), ((7378, 7401), 'numpy.mean', 'np.mean', (['global_rewards'], {}), '(global_rewards)\n', (7385, 7401), True, 'import numpy as np\n')]
|
import numpy as np
import torch
import gym
import argparse
import os
import utils
import TD3
import kerbal_rl.env as envs
def generate_input(obs) :
mean_altitude = obs[1].mean_altitude
speed = obs[1].vertical_speed
dry_mass = obs[0].dry_mass
mass = obs[0].mass
max_thrust = obs[0].max_thrust
thrust = obs[0].thrust
goal = obs[2]
input = ((mean_altitude, speed, dry_mass, mass, max_thrust, thrust, goal))
return input
# Runs policy for X episodes and returns average reward
def evaluate_policy(policy, eval_episodes=1):
avg_reward = 0.
for _ in range(eval_episodes):
obs = env.reset()
done = False
input = generate_input(obs)
while not done:
action = policy.select_action(np.array(input))
obs, reward, done, _ = env.step(action)
avg_reward += reward
avg_reward /= eval_episodes
print ("---------------------------------------")
print ("Evaluation over %d episodes: %f" % (eval_episodes, avg_reward))
print ("---------------------------------------")
return avg_reward
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--policy_name", default="TD3") # Policy name
parser.add_argument("--seed", default=0, type=int) # Sets Gym, PyTorch and Numpy seeds
parser.add_argument("--start_timesteps", default=2e4, type=int) # How many time steps purely random policy is run for
parser.add_argument("--eval_freq", default=5e2, type=float) # How often (time steps) we evaluate
parser.add_argument("--max_timesteps", default=1e6, type=float) # Max time steps to run environment for
parser.add_argument("--save_models", action="store_true") # Whether or not models are saved
parser.add_argument("--expl_noise", default=0.1, type=float) # Std of Gaussian exploration noise
parser.add_argument("--batch_size", default=200, type=int) # Batch size for both actor and critic
parser.add_argument("--discount", default=0.99, type=float) # Discount factor
parser.add_argument("--tau", default=0.005, type=float) # Target network update rate
parser.add_argument("--policy_noise", default=0.2, type=float) # Noise added to target policy during critic update
parser.add_argument("--noise_clip", default=0.5, type=float) # Range to clip target policy noise
parser.add_argument("--policy_freq", default=2, type=int) # Frequency of delayed policy updates
args = parser.parse_args()
file_name = "%s_%s_%s" % (args.policy_name, 'hover_v0', str(args.seed))
print ("---------------------------------------")
print ("Settings: %s" % (file_name))
print ("---------------------------------------")
if not os.path.exists("./results"):
os.makedirs("./results")
if args.save_models and not os.path.exists("./pytorch_models"):
os.makedirs("./pytorch_models")
# env = kerbal_rl.make('hover_v0')
env = envs.hover_v0()
# Set seeds
torch.manual_seed(args.seed)
np.random.seed(args.seed)
state_dim = 7 # custom
action_dim = 1
max_action = env.action_max
# Initialize policy
policy = TD3.TD3(state_dim, action_dim, max_action)
replay_buffer = utils.ReplayBuffer()
# Evaluate untrained policy
evaluations = [evaluate_policy(policy)]
total_timesteps = 0
timesteps_since_eval = 0
episode_num = 0
done = True
while total_timesteps < args.max_timesteps:
if done:
if total_timesteps != 0:
print('Total T : ', total_timesteps, ' Episode Num : ', episode_num, ' Episode : ', episode_timesteps, ' Reward : ', episode_reward)
policy.train(replay_buffer, episode_timesteps, args.batch_size, args.discount, args.tau, args.policy_noise, args.noise_clip, args.policy_freq)
# Evaluate episode
if timesteps_since_eval >= args.eval_freq:
timesteps_since_eval %= args.eval_freq
evaluations.append(evaluate_policy(policy))
if args.save_models: policy.save(file_name, directory="./pytorch_models")
np.save("./results/%s" % (file_name), evaluations)
# Reset environment
obs = env.reset()
done = False
episode_reward = 0
episode_timesteps = 0
episode_num += 1
obs = generate_input(obs)
# Select action randomly or according to policy
if total_timesteps < args.start_timesteps:
action = env.sample_action_space()
else:
action = policy.select_action(np.array(obs))
if args.expl_noise != 0:
action = (action + np.random.normal(0, args.expl_noise, size=env.action_space)).clip(env.action_min, env.action_max)
# Perform action
new_obs, reward, done, _ = env.step(action)
new_obs = generate_input(new_obs)
done_bool = float(done)
episode_reward += reward
# Store data in replay buffer
replay_buffer.add((obs, new_obs, action, reward, done_bool))
obs = new_obs
print('goal : ', obs[6])
episode_timesteps += 1
total_timesteps += 1
timesteps_since_eval += 1
# Final evaluation
evaluations.append(evaluate_policy(policy))
if args.save_models: policy.save("%s" % (file_name), directory="./pytorch_models")
np.save("./results/%s" % (file_name), evaluations)
|
[
"numpy.save",
"numpy.random.seed",
"argparse.ArgumentParser",
"os.makedirs",
"kerbal_rl.env.hover_v0",
"torch.manual_seed",
"os.path.exists",
"TD3.TD3",
"numpy.array",
"numpy.random.normal",
"utils.ReplayBuffer"
] |
[((1050, 1075), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (1073, 1075), False, 'import argparse\n'), ((2795, 2810), 'kerbal_rl.env.hover_v0', 'envs.hover_v0', ([], {}), '()\n', (2808, 2810), True, 'import kerbal_rl.env as envs\n'), ((2825, 2853), 'torch.manual_seed', 'torch.manual_seed', (['args.seed'], {}), '(args.seed)\n', (2842, 2853), False, 'import torch\n'), ((2855, 2880), 'numpy.random.seed', 'np.random.seed', (['args.seed'], {}), '(args.seed)\n', (2869, 2880), True, 'import numpy as np\n'), ((2985, 3027), 'TD3.TD3', 'TD3.TD3', (['state_dim', 'action_dim', 'max_action'], {}), '(state_dim, action_dim, max_action)\n', (2992, 3027), False, 'import TD3\n'), ((3045, 3065), 'utils.ReplayBuffer', 'utils.ReplayBuffer', ([], {}), '()\n', (3063, 3065), False, 'import utils\n'), ((4919, 4967), 'numpy.save', 'np.save', (["('./results/%s' % file_name)", 'evaluations'], {}), "('./results/%s' % file_name, evaluations)\n", (4926, 4967), True, 'import numpy as np\n'), ((2596, 2623), 'os.path.exists', 'os.path.exists', (['"""./results"""'], {}), "('./results')\n", (2610, 2623), False, 'import os\n'), ((2627, 2651), 'os.makedirs', 'os.makedirs', (['"""./results"""'], {}), "('./results')\n", (2638, 2651), False, 'import os\n'), ((2719, 2750), 'os.makedirs', 'os.makedirs', (['"""./pytorch_models"""'], {}), "('./pytorch_models')\n", (2730, 2750), False, 'import os\n'), ((2681, 2715), 'os.path.exists', 'os.path.exists', (['"""./pytorch_models"""'], {}), "('./pytorch_models')\n", (2695, 2715), False, 'import os\n'), ((700, 715), 'numpy.array', 'np.array', (['input'], {}), '(input)\n', (708, 715), True, 'import numpy as np\n'), ((3841, 3889), 'numpy.save', 'np.save', (["('./results/%s' % file_name)", 'evaluations'], {}), "('./results/%s' % file_name, evaluations)\n", (3848, 3889), True, 'import numpy as np\n'), ((4228, 4241), 'numpy.array', 'np.array', (['obs'], {}), '(obs)\n', (4236, 4241), True, 'import numpy as np\n'), ((4295, 4354), 'numpy.random.normal', 'np.random.normal', (['(0)', 'args.expl_noise'], {'size': 'env.action_space'}), '(0, args.expl_noise, size=env.action_space)\n', (4311, 4354), True, 'import numpy as np\n')]
|
import numpy as np
def fdr(pvalues, alpha=0.05):
"""
Calculate the p-value cut-off to control for
the false discovery rate (FDR) for multiple testing.
If by controlling for FDR, all of n null hypotheses
are rejected, the conservative Bonferroni bound (alpha/n)
is returned instead.
Arguments
---------
pvalues : array
(n, ), p values for n multiple tests.
alpha : float, optional
Significance level. Default is 0.05.
Returns
-------
: float
Adjusted criterion for rejecting the null hypothesis.
If by controlling for FDR, all of n null hypotheses
are rejected, the conservative Bonferroni bound (alpha/n)
is returned.
Notes
-----
For technical details see :cite:`Benjamini:2001` and
:cite:`Castro:2006tz`.
Examples
--------
>>> import pysal.lib
>>> import numpy as np
>>> np.random.seed(10)
>>> w = pysal.lib.io.open(pysal.lib.examples.get_path("stl.gal")).read()
>>> f = pysal.lib.io.open(pysal.lib.examples.get_path("stl_hom.txt"))
>>> y = np.array(f.by_col['HR8893'])
>>> from pysal.explore.esda.moran import Moran_Local
>>> from pysal.explore.esda import fdr
>>> lm = Moran_Local(y, w, transformation = "r", permutations = 999)
>>> fdr(lm.p_sim, 0.1)
0.002564102564102564
>>> fdr(lm.p_sim, 0.05) #return the conservative Bonferroni bound
0.000641025641025641
"""
n = len(pvalues)
p_sort = np.sort(pvalues)[::-1]
index = np.arange(n, 0, -1)
p_fdr = index * alpha / n
search = p_sort < p_fdr
sig_all = np.where(search)[0]
if len(sig_all) == 0:
return alpha/n
else:
return p_fdr[sig_all[0]]
|
[
"numpy.sort",
"numpy.where",
"numpy.arange"
] |
[((1609, 1628), 'numpy.arange', 'np.arange', (['n', '(0)', '(-1)'], {}), '(n, 0, -1)\n', (1618, 1628), True, 'import numpy as np\n'), ((1574, 1590), 'numpy.sort', 'np.sort', (['pvalues'], {}), '(pvalues)\n', (1581, 1590), True, 'import numpy as np\n'), ((1701, 1717), 'numpy.where', 'np.where', (['search'], {}), '(search)\n', (1709, 1717), True, 'import numpy as np\n')]
|
import os
import json
import logging
import azure.functions as func
from flass.model import load_mlflow_model
import flass
import numpy as np
CACHED_MODEL = None
def main(req: func.HttpRequest) -> func.HttpResponse:
logging.info(f"Flass is at {flass.__file__}")
logging.info("Python HTTP trigger function processed a request to Flass func.")
model_location = os.getenv("MLFLOW_MODEL_LOCATION")
connection_string = os.getenv("AZURE_STORAGE_CONNECTION_STRING")
connection_string_length = len(connection_string) if connection_string else 0
response = f"Welcome to Flass. Model location is {model_location}\n"
response += (
f"Lenght of model storage connection string is {connection_string_length}\n"
)
global CACHED_MODEL
if CACHED_MODEL:
logging.info("Model found in cache, using this")
trained_model = CACHED_MODEL
else:
logging.info(f"Model not found in cache, loading from {model_location}")
trained_model = load_mlflow_model(model_location)
CACHED_MODEL = trained_model
logging.info(f"Model loaded successfully")
payload_from_param = req.params.get("payload")
if payload_from_param:
logging.info(
f"Trying to param payload of type {type(payload_from_param)} "
f"and value {payload_from_param} into json"
)
payload = json.loads(payload_from_param)
else:
try:
req_body = req.get_json()
except ValueError:
payload = None
else:
payload = req_body.get("payload")
if payload:
logging.info(
f"Trying to load payload of type {type(payload)} "
f"and value {payload} into numpy array"
)
try:
np_array = np.array(payload)
except Exception as e:
logging.error(f"Failed to parse, error: {e}")
logging.info(f"Arryay loaded, dimensions {np_array.shape}")
result = trained_model.predict(payload)
return func.HttpResponse(json.dumps(result.tolist()))
else:
return func.HttpResponse(
response + "\nPlease pass data in the key 'payload' on the query string "
"or in the request body",
status_code=400,
)
|
[
"logging.error",
"flass.model.load_mlflow_model",
"json.loads",
"logging.info",
"numpy.array",
"azure.functions.HttpResponse",
"os.getenv"
] |
[((237, 282), 'logging.info', 'logging.info', (['f"""Flass is at {flass.__file__}"""'], {}), "(f'Flass is at {flass.__file__}')\n", (249, 282), False, 'import logging\n'), ((288, 367), 'logging.info', 'logging.info', (['"""Python HTTP trigger function processed a request to Flass func."""'], {}), "('Python HTTP trigger function processed a request to Flass func.')\n", (300, 367), False, 'import logging\n'), ((392, 426), 'os.getenv', 'os.getenv', (['"""MLFLOW_MODEL_LOCATION"""'], {}), "('MLFLOW_MODEL_LOCATION')\n", (401, 426), False, 'import os\n'), ((452, 496), 'os.getenv', 'os.getenv', (['"""AZURE_STORAGE_CONNECTION_STRING"""'], {}), "('AZURE_STORAGE_CONNECTION_STRING')\n", (461, 496), False, 'import os\n'), ((824, 872), 'logging.info', 'logging.info', (['"""Model found in cache, using this"""'], {}), "('Model found in cache, using this')\n", (836, 872), False, 'import logging\n'), ((931, 1003), 'logging.info', 'logging.info', (['f"""Model not found in cache, loading from {model_location}"""'], {}), "(f'Model not found in cache, loading from {model_location}')\n", (943, 1003), False, 'import logging\n'), ((1029, 1062), 'flass.model.load_mlflow_model', 'load_mlflow_model', (['model_location'], {}), '(model_location)\n', (1046, 1062), False, 'from flass.model import load_mlflow_model\n'), ((1110, 1152), 'logging.info', 'logging.info', (['f"""Model loaded successfully"""'], {}), "(f'Model loaded successfully')\n", (1122, 1152), False, 'import logging\n'), ((1421, 1451), 'json.loads', 'json.loads', (['payload_from_param'], {}), '(payload_from_param)\n', (1431, 1451), False, 'import json\n'), ((1964, 2023), 'logging.info', 'logging.info', (['f"""Arryay loaded, dimensions {np_array.shape}"""'], {}), "(f'Arryay loaded, dimensions {np_array.shape}')\n", (1976, 2023), False, 'import logging\n'), ((2165, 2308), 'azure.functions.HttpResponse', 'func.HttpResponse', (['(response +\n """\nPlease pass data in the key \'payload\' on the query string or in the request body"""\n )'], {'status_code': '(400)'}), '(response +\n """\nPlease pass data in the key \'payload\' on the query string or in the request body"""\n , status_code=400)\n', (2182, 2308), True, 'import azure.functions as func\n'), ((1844, 1861), 'numpy.array', 'np.array', (['payload'], {}), '(payload)\n', (1852, 1861), True, 'import numpy as np\n'), ((1907, 1952), 'logging.error', 'logging.error', (['f"""Failed to parse, error: {e}"""'], {}), "(f'Failed to parse, error: {e}')\n", (1920, 1952), False, 'import logging\n')]
|
from typing import Tuple
import torch
from scipy.ndimage.interpolation import map_coordinates
from scipy.ndimage.filters import gaussian_filter
import numpy as np
class Augmentation(object):
"""
Super class for all augmentations.
"""
def __init__(self) -> None:
"""
Constructor method
"""
pass
def need_labels(self) -> None:
"""
Method should return if the labels are needed for the augmentation
"""
raise NotImplementedError()
def __call__(self, *args, **kwargs) -> None:
"""
Call method is used to apply the augmentation
:param args: Will be ignored
:param kwargs: Will be ignored
"""
raise NotImplementedError()
class VerticalFlip(Augmentation):
"""
This class implements vertical flipping for instance segmentation.
"""
def __init__(self) -> None:
"""
Constructor method
"""
# Call super constructor
super(VerticalFlip, self).__init__()
def need_labels(self) -> bool:
"""
Method returns that the labels are needed for the augmentation
:return: (Bool) True will be returned
"""
return True
def __call__(self, input: torch.tensor, instances: torch.tensor,
bounding_boxes: torch.tensor) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""
Flipping augmentation (only horizontal)
:param image: (torch.Tensor) Input image of shape [channels, height, width]
:param instances: (torch.Tenor) Instances segmentation maps of shape [instances, height, width]
:param bounding_boxes: (torch.Tensor) Bounding boxes of shape [instances, 4 (x1, y1, x2, y2)]
:return: (Tuple[torch.Tensor, torch.Tensor, torch.Tensor]) Input flipped, instances flipped & BBs flipped
"""
# Flip input
input_flipped = input.flip(dims=(2,))
# Flip instances
instances_flipped = instances.flip(dims=(2,))
# Flip bounding boxes
image_center = torch.tensor((input.shape[2] // 2, input.shape[1] // 2))
bounding_boxes[:, [0, 2]] += 2 * (image_center - bounding_boxes[:, [0, 2]])
bounding_boxes_w = torch.abs(bounding_boxes[:, 0] - bounding_boxes[:, 2])
bounding_boxes[:, 0] -= bounding_boxes_w
bounding_boxes[:, 2] += bounding_boxes_w
return input_flipped, instances_flipped, bounding_boxes
class ElasticDeformation(Augmentation):
"""
This class implement random elastic deformation of a given input image
"""
def __init__(self, alpha: float = 125, sigma: float = 20) -> None:
"""
Constructor method
:param alpha: (float) Alpha coefficient which represents the scaling
:param sigma: (float) Sigma coefficient which represents the elastic factor
"""
# Call super constructor
super(ElasticDeformation, self).__init__()
# Save parameters
self.alpha = alpha
self.sigma = sigma
def need_labels(self) -> bool:
"""
Method returns that the labels are needed for the augmentation
:return: (Bool) True will be returned
"""
return False
def __call__(self, image: torch.Tensor) -> torch.Tensor:
"""
Method applies the random elastic deformation
:param image: (torch.Tensor) Input image
:return: (torch.Tensor) Transformed input image
"""
# Convert torch tensor to numpy array for scipy
image = image.numpy()
# Save basic shape
shape = image.shape[1:]
# Sample offsets
dx = gaussian_filter((np.random.rand(*shape) * 2 - 1), self.sigma, mode="constant", cval=0) * self.alpha
dy = gaussian_filter((np.random.rand(*shape) * 2 - 1), self.sigma, mode="constant", cval=0) * self.alpha
x, y = np.meshgrid(np.arange(shape[0]), np.arange(shape[1]), indexing='ij')
indices = np.reshape(x + dx, (-1, 1)), np.reshape(y + dy, (-1, 1))
# Perform deformation
for index in range(image.shape[0]):
image[index] = map_coordinates(image[index], indices, order=1).reshape(shape)
return torch.from_numpy(image)
class NoiseInjection(Augmentation):
"""
This class implements vertical flipping for instance segmentation.
"""
def __init__(self, mean: float = 0.0, std: float = 0.25) -> None:
"""
Constructor method
:param mean: (Optional[float]) Mean of the gaussian noise
:param std: (Optional[float]) Standard deviation of the gaussian noise
"""
# Call super constructor
super(NoiseInjection, self).__init__()
# Save parameter
self.mean = mean
self.std = std
def need_labels(self) -> bool:
"""
Method returns that the labels are needed for the augmentation
:return: (Bool) False will be returned
"""
return False
def __call__(self, input: torch.Tensor) -> torch.Tensor:
"""
Method injects gaussian noise to the given input image
:param image: (torch.Tensor) Input image
:return: (torch.Tensor) Transformed input image
"""
# Get noise
noise = self.mean + torch.randn_like(input) * self.std
# Apply nose to image
input = input + noise
return input
|
[
"torch.randn_like",
"scipy.ndimage.interpolation.map_coordinates",
"numpy.arange",
"numpy.reshape",
"numpy.random.rand",
"torch.abs",
"torch.tensor",
"torch.from_numpy"
] |
[((2083, 2139), 'torch.tensor', 'torch.tensor', (['(input.shape[2] // 2, input.shape[1] // 2)'], {}), '((input.shape[2] // 2, input.shape[1] // 2))\n', (2095, 2139), False, 'import torch\n'), ((2251, 2305), 'torch.abs', 'torch.abs', (['(bounding_boxes[:, 0] - bounding_boxes[:, 2])'], {}), '(bounding_boxes[:, 0] - bounding_boxes[:, 2])\n', (2260, 2305), False, 'import torch\n'), ((4226, 4249), 'torch.from_numpy', 'torch.from_numpy', (['image'], {}), '(image)\n', (4242, 4249), False, 'import torch\n'), ((3915, 3934), 'numpy.arange', 'np.arange', (['shape[0]'], {}), '(shape[0])\n', (3924, 3934), True, 'import numpy as np\n'), ((3936, 3955), 'numpy.arange', 'np.arange', (['shape[1]'], {}), '(shape[1])\n', (3945, 3955), True, 'import numpy as np\n'), ((3990, 4017), 'numpy.reshape', 'np.reshape', (['(x + dx)', '(-1, 1)'], {}), '(x + dx, (-1, 1))\n', (4000, 4017), True, 'import numpy as np\n'), ((4019, 4046), 'numpy.reshape', 'np.reshape', (['(y + dy)', '(-1, 1)'], {}), '(y + dy, (-1, 1))\n', (4029, 4046), True, 'import numpy as np\n'), ((5296, 5319), 'torch.randn_like', 'torch.randn_like', (['input'], {}), '(input)\n', (5312, 5319), False, 'import torch\n'), ((4148, 4195), 'scipy.ndimage.interpolation.map_coordinates', 'map_coordinates', (['image[index]', 'indices'], {'order': '(1)'}), '(image[index], indices, order=1)\n', (4163, 4195), False, 'from scipy.ndimage.interpolation import map_coordinates\n'), ((3692, 3714), 'numpy.random.rand', 'np.random.rand', (['*shape'], {}), '(*shape)\n', (3706, 3714), True, 'import numpy as np\n'), ((3805, 3827), 'numpy.random.rand', 'np.random.rand', (['*shape'], {}), '(*shape)\n', (3819, 3827), True, 'import numpy as np\n')]
|
from tqdm import tqdm
import numpy as np
import argparse
parser = argparse.ArgumentParser(
description='Binarize dense extreme prediction data sets.')
parser.add_argument('input', help='Path to input file')
parser.add_argument(
'-f', '--filter', help='Path to file containing indices to filter by.')
parser.add_argument(
'-o', '--out', required=True, help='Path to output file.')
args = parser.parse_args()
with open(args.input) as in_file:
n, d = (int(i) for i in in_file.readline().split(' '))
dense = np.empty((n, d), dtype=np.float32)
for i in tqdm(range(n)):
dense[i, :] = [np.float32(j) for j in in_file.readline().split(' ')]
# Make sure that we've reached EOF
assert len(in_file.read(1)) == 0
if args.filter is not None:
with open(args.filter) as filter_file:
n, = np.fromfile(filter_file, dtype=np.int32, count=1)
idxs = np.fromfile(filter_file, dtype=np.int32, count=n)
# Make sure that we've reached EOF
assert len(filter_file.read(1)) == 0
dense = dense[idxs, :]
print('Saving to "%s" ... ' % args.out, end='')
with open(args.out, 'wb') as out_file:
np.array(dense.shape, dtype=np.int32).tofile(out_file)
dense.tofile(out_file)
print('done.')
|
[
"argparse.ArgumentParser",
"numpy.fromfile",
"numpy.empty",
"numpy.float32",
"numpy.array"
] |
[((67, 155), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Binarize dense extreme prediction data sets."""'}), "(description=\n 'Binarize dense extreme prediction data sets.')\n", (90, 155), False, 'import argparse\n'), ((527, 561), 'numpy.empty', 'np.empty', (['(n, d)'], {'dtype': 'np.float32'}), '((n, d), dtype=np.float32)\n', (535, 561), True, 'import numpy as np\n'), ((830, 879), 'numpy.fromfile', 'np.fromfile', (['filter_file'], {'dtype': 'np.int32', 'count': '(1)'}), '(filter_file, dtype=np.int32, count=1)\n', (841, 879), True, 'import numpy as np\n'), ((895, 944), 'numpy.fromfile', 'np.fromfile', (['filter_file'], {'dtype': 'np.int32', 'count': 'n'}), '(filter_file, dtype=np.int32, count=n)\n', (906, 944), True, 'import numpy as np\n'), ((614, 627), 'numpy.float32', 'np.float32', (['j'], {}), '(j)\n', (624, 627), True, 'import numpy as np\n'), ((1152, 1189), 'numpy.array', 'np.array', (['dense.shape'], {'dtype': 'np.int32'}), '(dense.shape, dtype=np.int32)\n', (1160, 1189), True, 'import numpy as np\n')]
|
import os
from enum import Enum
import numpy as np
from PIL import Image
from tensorflow.keras.applications.imagenet_utils import preprocess_input
from keras_preprocessing import image
from tensorflow.python.keras.models import load_model
DATASET_PATH = os.environ['DATASET_PATH']
TARGET_RESOLUTION = (64, 64)
class Classes(Enum):
CARNIVAL = 0
FACE = 1
MASK = 2
def load_dataset():
Ximgs = []
y_train = []
for file in os.listdir(f'{DATASET_PATH}/Train/Carnaval/'):
Ximgs.append(
np.array(
Image.open(f'{DATASET_PATH}/Train/Carnaval/{file}').resize(TARGET_RESOLUTION).convert('RGB')) / 255.0)
y_train.append([1, 0, 0])
for file in os.listdir(f'{DATASET_PATH}/Train/Face/'):
Ximgs.append(
np.array(Image.open(f'{DATASET_PATH}/Train/Face/{file}').resize(TARGET_RESOLUTION).convert('RGB')) / 255.0)
y_train.append([0, 1, 0])
for file in os.listdir(f'{DATASET_PATH}/Train/Mask/'):
Ximgs.append(
np.array(Image.open(f'{DATASET_PATH}/Train/Mask/{file}').resize(TARGET_RESOLUTION).convert('RGB')) / 255.0)
y_train.append([0, 0, 1])
Ximgs_test = []
y_test = []
for file in os.listdir(f'{DATASET_PATH}/Test/Carnaval/'):
Ximgs_test.append(
np.array(
Image.open(f'{DATASET_PATH}/Test/Carnaval/{file}').resize(TARGET_RESOLUTION).convert('RGB')) / 255.0)
y_test.append([1, 0, 0])
for file in os.listdir(f'{DATASET_PATH}/Test/Face/'):
Ximgs_test.append(
np.array(Image.open(f'{DATASET_PATH}/Test/Face/{file}').resize(TARGET_RESOLUTION).convert('RGB')) / 255.0)
y_test.append([0, 1, 0])
for file in os.listdir(f'{DATASET_PATH}/Test/Mask/'):
Ximgs_test.append(
np.array(Image.open(f'{DATASET_PATH}/Test/Mask/{file}').resize(TARGET_RESOLUTION).convert('RGB')) / 255.0)
y_test.append([0, 0, 1])
x_train = np.array(Ximgs)
y_train = np.array(y_train)
x_test = np.array(Ximgs_test)
y_test = np.array(y_test)
return (x_train, y_train), (x_test, y_test)
def load_linear_model(file):
model = load_model(f'./models/linear_model.keras')
# model.summary()
img = Image.open(file).resize(TARGET_RESOLUTION)
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
images = np.vstack([x])
# print(f'Linear model : {Classes(model.predict_classes(images, batch_size=64))}')
return Classes(model.predict_classes(images, batch_size=64)).name
def load_mlp_model(file: str):
model = load_model(f'./models/mlp_model.keras')
# model.summary()
img = Image.open(file).resize(TARGET_RESOLUTION)
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
images = np.vstack([x])
# print(f'MLP model : {Classes(model.predict_classes(images, batch_size=64))}')
return Classes(model.predict_classes(images, batch_size=64)).name
def load_cnn_model(file: str):
model = load_model(f'./models/cnn_model.keras')
# model.summary()
img = Image.open(file).resize(TARGET_RESOLUTION)
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
images = np.vstack([x])
# print(f'CNN model : {Classes(model.predict_classes(images, batch_size=64))}')
return Classes(model.predict_classes(images, batch_size=64)).name
def load_resnet_model(file: str):
model = load_model(f'./models/resnet_model.keras')
# model.summary()
img = Image.open(file).resize(TARGET_RESOLUTION)
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x)
res = model.predict(x)
return Classes(np.argmax(res, axis=1)).name
# print(f'Test Acc : {Classes(model.predict(images, batch_size=10))}')
def load_custom_model(file: str, path: str):
model = load_model(f'./models/{path}')
# model.summary()
img = Image.open(file).resize(TARGET_RESOLUTION)
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x)
res = model.predict(x)
return Classes(np.argmax(res, axis=1)).name
# print(f'Test Acc : {Classes(model.predict(images, batch_size=10))}')
|
[
"tensorflow.python.keras.models.load_model",
"tensorflow.keras.applications.imagenet_utils.preprocess_input",
"numpy.argmax",
"numpy.expand_dims",
"keras_preprocessing.image.img_to_array",
"PIL.Image.open",
"numpy.array",
"os.listdir",
"numpy.vstack"
] |
[((449, 494), 'os.listdir', 'os.listdir', (['f"""{DATASET_PATH}/Train/Carnaval/"""'], {}), "(f'{DATASET_PATH}/Train/Carnaval/')\n", (459, 494), False, 'import os\n'), ((709, 750), 'os.listdir', 'os.listdir', (['f"""{DATASET_PATH}/Train/Face/"""'], {}), "(f'{DATASET_PATH}/Train/Face/')\n", (719, 750), False, 'import os\n'), ((944, 985), 'os.listdir', 'os.listdir', (['f"""{DATASET_PATH}/Train/Mask/"""'], {}), "(f'{DATASET_PATH}/Train/Mask/')\n", (954, 985), False, 'import os\n'), ((1215, 1259), 'os.listdir', 'os.listdir', (['f"""{DATASET_PATH}/Test/Carnaval/"""'], {}), "(f'{DATASET_PATH}/Test/Carnaval/')\n", (1225, 1259), False, 'import os\n'), ((1477, 1517), 'os.listdir', 'os.listdir', (['f"""{DATASET_PATH}/Test/Face/"""'], {}), "(f'{DATASET_PATH}/Test/Face/')\n", (1487, 1517), False, 'import os\n'), ((1714, 1754), 'os.listdir', 'os.listdir', (['f"""{DATASET_PATH}/Test/Mask/"""'], {}), "(f'{DATASET_PATH}/Test/Mask/')\n", (1724, 1754), False, 'import os\n'), ((1949, 1964), 'numpy.array', 'np.array', (['Ximgs'], {}), '(Ximgs)\n', (1957, 1964), True, 'import numpy as np\n'), ((1979, 1996), 'numpy.array', 'np.array', (['y_train'], {}), '(y_train)\n', (1987, 1996), True, 'import numpy as np\n'), ((2010, 2030), 'numpy.array', 'np.array', (['Ximgs_test'], {}), '(Ximgs_test)\n', (2018, 2030), True, 'import numpy as np\n'), ((2044, 2060), 'numpy.array', 'np.array', (['y_test'], {}), '(y_test)\n', (2052, 2060), True, 'import numpy as np\n'), ((2152, 2194), 'tensorflow.python.keras.models.load_model', 'load_model', (['f"""./models/linear_model.keras"""'], {}), "(f'./models/linear_model.keras')\n", (2162, 2194), False, 'from tensorflow.python.keras.models import load_model\n'), ((2278, 2301), 'keras_preprocessing.image.img_to_array', 'image.img_to_array', (['img'], {}), '(img)\n', (2296, 2301), False, 'from keras_preprocessing import image\n'), ((2310, 2335), 'numpy.expand_dims', 'np.expand_dims', (['x'], {'axis': '(0)'}), '(x, axis=0)\n', (2324, 2335), True, 'import numpy as np\n'), ((2349, 2363), 'numpy.vstack', 'np.vstack', (['[x]'], {}), '([x])\n', (2358, 2363), True, 'import numpy as np\n'), ((2567, 2606), 'tensorflow.python.keras.models.load_model', 'load_model', (['f"""./models/mlp_model.keras"""'], {}), "(f'./models/mlp_model.keras')\n", (2577, 2606), False, 'from tensorflow.python.keras.models import load_model\n'), ((2690, 2713), 'keras_preprocessing.image.img_to_array', 'image.img_to_array', (['img'], {}), '(img)\n', (2708, 2713), False, 'from keras_preprocessing import image\n'), ((2722, 2747), 'numpy.expand_dims', 'np.expand_dims', (['x'], {'axis': '(0)'}), '(x, axis=0)\n', (2736, 2747), True, 'import numpy as np\n'), ((2761, 2775), 'numpy.vstack', 'np.vstack', (['[x]'], {}), '([x])\n', (2770, 2775), True, 'import numpy as np\n'), ((2976, 3015), 'tensorflow.python.keras.models.load_model', 'load_model', (['f"""./models/cnn_model.keras"""'], {}), "(f'./models/cnn_model.keras')\n", (2986, 3015), False, 'from tensorflow.python.keras.models import load_model\n'), ((3099, 3122), 'keras_preprocessing.image.img_to_array', 'image.img_to_array', (['img'], {}), '(img)\n', (3117, 3122), False, 'from keras_preprocessing import image\n'), ((3131, 3156), 'numpy.expand_dims', 'np.expand_dims', (['x'], {'axis': '(0)'}), '(x, axis=0)\n', (3145, 3156), True, 'import numpy as np\n'), ((3170, 3184), 'numpy.vstack', 'np.vstack', (['[x]'], {}), '([x])\n', (3179, 3184), True, 'import numpy as np\n'), ((3388, 3430), 'tensorflow.python.keras.models.load_model', 'load_model', (['f"""./models/resnet_model.keras"""'], {}), "(f'./models/resnet_model.keras')\n", (3398, 3430), False, 'from tensorflow.python.keras.models import load_model\n'), ((3514, 3537), 'keras_preprocessing.image.img_to_array', 'image.img_to_array', (['img'], {}), '(img)\n', (3532, 3537), False, 'from keras_preprocessing import image\n'), ((3546, 3571), 'numpy.expand_dims', 'np.expand_dims', (['x'], {'axis': '(0)'}), '(x, axis=0)\n', (3560, 3571), True, 'import numpy as np\n'), ((3580, 3599), 'tensorflow.keras.applications.imagenet_utils.preprocess_input', 'preprocess_input', (['x'], {}), '(x)\n', (3596, 3599), False, 'from tensorflow.keras.applications.imagenet_utils import preprocess_input\n'), ((3812, 3842), 'tensorflow.python.keras.models.load_model', 'load_model', (['f"""./models/{path}"""'], {}), "(f'./models/{path}')\n", (3822, 3842), False, 'from tensorflow.python.keras.models import load_model\n'), ((3926, 3949), 'keras_preprocessing.image.img_to_array', 'image.img_to_array', (['img'], {}), '(img)\n', (3944, 3949), False, 'from keras_preprocessing import image\n'), ((3958, 3983), 'numpy.expand_dims', 'np.expand_dims', (['x'], {'axis': '(0)'}), '(x, axis=0)\n', (3972, 3983), True, 'import numpy as np\n'), ((3992, 4011), 'tensorflow.keras.applications.imagenet_utils.preprocess_input', 'preprocess_input', (['x'], {}), '(x)\n', (4008, 4011), False, 'from tensorflow.keras.applications.imagenet_utils import preprocess_input\n'), ((2227, 2243), 'PIL.Image.open', 'Image.open', (['file'], {}), '(file)\n', (2237, 2243), False, 'from PIL import Image\n'), ((2639, 2655), 'PIL.Image.open', 'Image.open', (['file'], {}), '(file)\n', (2649, 2655), False, 'from PIL import Image\n'), ((3048, 3064), 'PIL.Image.open', 'Image.open', (['file'], {}), '(file)\n', (3058, 3064), False, 'from PIL import Image\n'), ((3463, 3479), 'PIL.Image.open', 'Image.open', (['file'], {}), '(file)\n', (3473, 3479), False, 'from PIL import Image\n'), ((3648, 3670), 'numpy.argmax', 'np.argmax', (['res'], {'axis': '(1)'}), '(res, axis=1)\n', (3657, 3670), True, 'import numpy as np\n'), ((3875, 3891), 'PIL.Image.open', 'Image.open', (['file'], {}), '(file)\n', (3885, 3891), False, 'from PIL import Image\n'), ((4060, 4082), 'numpy.argmax', 'np.argmax', (['res'], {'axis': '(1)'}), '(res, axis=1)\n', (4069, 4082), True, 'import numpy as np\n'), ((556, 607), 'PIL.Image.open', 'Image.open', (['f"""{DATASET_PATH}/Train/Carnaval/{file}"""'], {}), "(f'{DATASET_PATH}/Train/Carnaval/{file}')\n", (566, 607), False, 'from PIL import Image\n'), ((795, 842), 'PIL.Image.open', 'Image.open', (['f"""{DATASET_PATH}/Train/Face/{file}"""'], {}), "(f'{DATASET_PATH}/Train/Face/{file}')\n", (805, 842), False, 'from PIL import Image\n'), ((1030, 1077), 'PIL.Image.open', 'Image.open', (['f"""{DATASET_PATH}/Train/Mask/{file}"""'], {}), "(f'{DATASET_PATH}/Train/Mask/{file}')\n", (1040, 1077), False, 'from PIL import Image\n'), ((1326, 1376), 'PIL.Image.open', 'Image.open', (['f"""{DATASET_PATH}/Test/Carnaval/{file}"""'], {}), "(f'{DATASET_PATH}/Test/Carnaval/{file}')\n", (1336, 1376), False, 'from PIL import Image\n'), ((1567, 1613), 'PIL.Image.open', 'Image.open', (['f"""{DATASET_PATH}/Test/Face/{file}"""'], {}), "(f'{DATASET_PATH}/Test/Face/{file}')\n", (1577, 1613), False, 'from PIL import Image\n'), ((1804, 1850), 'PIL.Image.open', 'Image.open', (['f"""{DATASET_PATH}/Test/Mask/{file}"""'], {}), "(f'{DATASET_PATH}/Test/Mask/{file}')\n", (1814, 1850), False, 'from PIL import Image\n')]
|
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""MelGAN eval"""
import os
import numpy as np
from scipy.io.wavfile import write
from mindspore import Model
from mindspore.train.serialization import load_checkpoint, load_param_into_net
from mindspore.common.tensor import Tensor
import mindspore.context as context
from src.model import Generator
from src.model_utils.config import config as cfg
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
if __name__ == '__main__':
context.set_context(device_id=cfg.device_id)
if not os.path.exists(cfg.output_path):
os.mkdir(cfg.output_path)
net_G = Generator(alpha=cfg.leaky_alpha)
net_G.set_train(False)
# load checkpoint
param_dict = load_checkpoint(cfg.eval_model_path)
load_param_into_net(net_G, param_dict)
print('load model done !')
model = Model(net_G)
# get list
mel_path = cfg.eval_data_path
data_list = os.listdir(mel_path)
for data_name in data_list:
melpath = os.path.join(mel_path, data_name)
# data preprocessing
meldata = np.load(melpath)
meldata = (meldata + 5.0) / 5.0
pad_node = 0
if meldata.shape[1] < cfg.eval_length:
pad_node = cfg.eval_length - meldata.shape[1]
meldata = np.pad(meldata, ((0, 0), (0, pad_node)), mode='constant', constant_values=0.0)
meldata_s = meldata[np.newaxis, :, 0:cfg.eval_length]
# first frame
wav_data = np.array([])
output = model.predict(Tensor(meldata_s)).asnumpy().ravel()
wav_data = np.concatenate((wav_data, output))
# initialization parameters
repeat_frame = cfg.eval_length // 8
i = cfg.eval_length - repeat_frame
length = cfg.eval_length
num_weights = i
interval = (cfg.hop_size*repeat_frame) // num_weights
weights = np.linspace(0.0, 1.0, num_weights)
while i < meldata.shape[1]:
# data preprocessing
meldata_s = meldata[:, i:i+length]
if meldata_s.shape[1] != cfg.eval_length:
pad_node = cfg.hop_size * (cfg.eval_length-meldata_s.shape[1])
meldata_s = np.pad(meldata_s, ((0, 0), (0, cfg.eval_length-meldata_s.shape[1])), mode='edge')
meldata_s = meldata_s[np.newaxis, :, :]
# i-th frame
output = model.predict(Tensor(meldata_s)).asnumpy().ravel()
print('output{}={}'.format(i, output))
lenwav = cfg.hop_size*repeat_frame
lenout = 0
# overlap
for j in range(num_weights-1):
wav_data[-lenwav:-lenwav+interval] = weights[-j-1] * wav_data[-lenwav:-lenwav+interval] +\
weights[j] * output[lenout:lenout+interval]
lenwav = lenwav - interval
lenout = lenout + interval
wav_data[-lenwav:] = weights[-num_weights] * wav_data[-lenwav:] +\
weights[num_weights-1] * output[lenout:lenout+lenwav]
wav_data = np.concatenate((wav_data, output[cfg.hop_size*repeat_frame:]))
i = i + length - repeat_frame
if pad_node != 0:
wav_data = wav_data[:-pad_node]
# save as wav file
wav_data = 32768.0 * wav_data
out_path = os.path.join(cfg.output_path, 'restruction_' + data_name.replace('npy', 'wav'))
write(out_path, cfg.sample, wav_data.astype('int16'))
print('{} done!'.format(data_name))
|
[
"numpy.pad",
"mindspore.context.set_context",
"os.mkdir",
"numpy.load",
"mindspore.Model",
"os.path.exists",
"mindspore.common.tensor.Tensor",
"numpy.array",
"mindspore.train.serialization.load_checkpoint",
"numpy.linspace",
"src.model.Generator",
"os.path.join",
"os.listdir",
"numpy.concatenate",
"mindspore.train.serialization.load_param_into_net"
] |
[((1019, 1087), 'mindspore.context.set_context', 'context.set_context', ([], {'mode': 'context.GRAPH_MODE', 'device_target': '"""Ascend"""'}), "(mode=context.GRAPH_MODE, device_target='Ascend')\n", (1038, 1087), True, 'import mindspore.context as context\n'), ((1121, 1165), 'mindspore.context.set_context', 'context.set_context', ([], {'device_id': 'cfg.device_id'}), '(device_id=cfg.device_id)\n', (1140, 1165), True, 'import mindspore.context as context\n'), ((1257, 1289), 'src.model.Generator', 'Generator', ([], {'alpha': 'cfg.leaky_alpha'}), '(alpha=cfg.leaky_alpha)\n', (1266, 1289), False, 'from src.model import Generator\n'), ((1357, 1393), 'mindspore.train.serialization.load_checkpoint', 'load_checkpoint', (['cfg.eval_model_path'], {}), '(cfg.eval_model_path)\n', (1372, 1393), False, 'from mindspore.train.serialization import load_checkpoint, load_param_into_net\n'), ((1398, 1436), 'mindspore.train.serialization.load_param_into_net', 'load_param_into_net', (['net_G', 'param_dict'], {}), '(net_G, param_dict)\n', (1417, 1436), False, 'from mindspore.train.serialization import load_checkpoint, load_param_into_net\n'), ((1481, 1493), 'mindspore.Model', 'Model', (['net_G'], {}), '(net_G)\n', (1486, 1493), False, 'from mindspore import Model\n'), ((1560, 1580), 'os.listdir', 'os.listdir', (['mel_path'], {}), '(mel_path)\n', (1570, 1580), False, 'import os\n'), ((1177, 1208), 'os.path.exists', 'os.path.exists', (['cfg.output_path'], {}), '(cfg.output_path)\n', (1191, 1208), False, 'import os\n'), ((1218, 1243), 'os.mkdir', 'os.mkdir', (['cfg.output_path'], {}), '(cfg.output_path)\n', (1226, 1243), False, 'import os\n'), ((1633, 1666), 'os.path.join', 'os.path.join', (['mel_path', 'data_name'], {}), '(mel_path, data_name)\n', (1645, 1666), False, 'import os\n'), ((1715, 1731), 'numpy.load', 'np.load', (['melpath'], {}), '(melpath)\n', (1722, 1731), True, 'import numpy as np\n'), ((2103, 2115), 'numpy.array', 'np.array', (['[]'], {}), '([])\n', (2111, 2115), True, 'import numpy as np\n'), ((2203, 2237), 'numpy.concatenate', 'np.concatenate', (['(wav_data, output)'], {}), '((wav_data, output))\n', (2217, 2237), True, 'import numpy as np\n'), ((2499, 2533), 'numpy.linspace', 'np.linspace', (['(0.0)', '(1.0)', 'num_weights'], {}), '(0.0, 1.0, num_weights)\n', (2510, 2533), True, 'import numpy as np\n'), ((1920, 1998), 'numpy.pad', 'np.pad', (['meldata', '((0, 0), (0, pad_node))'], {'mode': '"""constant"""', 'constant_values': '(0.0)'}), "(meldata, ((0, 0), (0, pad_node)), mode='constant', constant_values=0.0)\n", (1926, 1998), True, 'import numpy as np\n'), ((3710, 3774), 'numpy.concatenate', 'np.concatenate', (['(wav_data, output[cfg.hop_size * repeat_frame:])'], {}), '((wav_data, output[cfg.hop_size * repeat_frame:]))\n', (3724, 3774), True, 'import numpy as np\n'), ((2812, 2900), 'numpy.pad', 'np.pad', (['meldata_s', '((0, 0), (0, cfg.eval_length - meldata_s.shape[1]))'], {'mode': '"""edge"""'}), "(meldata_s, ((0, 0), (0, cfg.eval_length - meldata_s.shape[1])), mode\n ='edge')\n", (2818, 2900), True, 'import numpy as np\n'), ((2147, 2164), 'mindspore.common.tensor.Tensor', 'Tensor', (['meldata_s'], {}), '(meldata_s)\n', (2153, 2164), False, 'from mindspore.common.tensor import Tensor\n'), ((3007, 3024), 'mindspore.common.tensor.Tensor', 'Tensor', (['meldata_s'], {}), '(meldata_s)\n', (3013, 3024), False, 'from mindspore.common.tensor import Tensor\n')]
|
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# =============================================================================
## @file ostap/math/primes.py
# Get prime numbers
# @code
# np = primes ( 1000 )## get all prime numbers that are smaller than 1000
# @endcode
# The function <code>primes</code> use sieve algorithm to get
# the prime numbers and it could be relatively slow.e.g. for N>2**32
# A bit more effecient version with reusage of the prime numbers
# is by using of the class Primes:
# @code
# p = Primes ( 1000000 )
# for n in p : ...
# @endcode
# The class <code>Primes</code> stores and reuses the prime numbers when possible,
# thus allowing a bit more CPU efficient treatment.
#
# @see https://stackoverflow.com/questions/2068372/fastest-way-to-list-all-primes-below-n/3035188#3035188
# @author <NAME> <EMAIL>
# @date 2016-07-15
# =============================================================================
""" Get prime numbers
"""
# =============================================================================
__author__ = "<NAME> <EMAIL>"
__date__ = "2009-09-12"
__version__ = "Version $Revision:$"
# =============================================================================
__all__ = (
'primes' , ## function to get an array of prime numbers ,
'Primes' , ## class to store/reuse/handle the prime numbers
)
# =============================================================================
# logging
# =============================================================================
from ostap.logger.logger import getLogger
if '__main__' == __name__ : logger = getLogger ( 'ostap.math.primes' )
else : logger = getLogger ( __name__ )
# =============================================================================
import bisect , random
from builtins import range
# =============================================================================
try :
import numpy
atype = numpy.uint64
# =========================================================================
## get the array of prime numbers that do not exceed <code>n</code>
# - <code>numpy</code> (fast?) version
# @code
# nums = primes ( 1000)
# @endcode
# @param n the upper edge
# @return the array o fprime numbers that do not exceed <code>n</code>
# @see https://stackoverflow.com/questions/2068372/fastest-way-to-list-all-primes-below-n/3035188#3035188
def primes(n):
""" Get the array of prime numbers that do not exceed n
- numpy (fast?) version
>>> nums = primes ( 1000)
- see https://stackoverflow.com/questions/2068372/fastest-way-to-list-all-primes-below-n/3035188#3035188
"""
if n == 2 : return numpy.array ([] , dtype = atype )
elif n <= 3 : numpy.array ([2] , dtype = atype )
elif n <= 5 : numpy.array ([2,3] , dtype = atype )
sieve = numpy.ones(n//3 + (n%6==2), dtype=numpy.bool)
for i in range(1,int(n**0.5)//3+1):
if sieve[i]:
k=3*i+1|1
sieve[ k*k//3 ::2*k] = False
sieve[k*(k-2*(i&1)+4)//3::2*k] = False
return numpy.r_[2,3,((3*numpy.nonzero(sieve)[0][1:]+1)|1)]
except ImportError :
# =========================================================================
## get the array of prime numbers that do not exceed <code>n</code>
# - pure python (slow?) version
# @code
# nums = primes ( 1000)
# @endcode
# @param n the upper edge
# @return the array o fprime numbers that do not exceed <code>n</code>
# @see https://stackoverflow.com/questions/2068372/fastest-way-to-list-all-primes-below-n/3035188#3035188
def primes ( n ):
""" Get the array of prime numbers that do not exceed n
- pure python (slow?) version
>>> nums = primes ( 1000)
- see https://stackoverflow.com/questions/2068372/fastest-way-to-list-all-primes-below-n/3035188#3035188
"""
if n == 2 : return []
elif n <= 3 : return [2]
elif n <= 5 : return [2,3]
n, correction = n-n%6+6, 2-(n%6>1)
sieve = [True] * (n//3)
for i in range(1,int(n**0.5)//3+1):
if sieve[i]:
k=3*i+1|1
sieve[ k*k//3 ::2*k] = [False] * ((n//6-k*k//6-1)//k+1)
sieve[k*(k-2*(i&1)+4)//3::2*k] = [False] * ((n//6-k*(k-2*(i&1)+4)//6-1)//k+1)
return [2,3] + [3*i+1|1 for i in range(1,n//3-correction) if sieve[i]]
logger.warning ("primes: Numpy can't be imported, pure python/(slow?) version will be used")
# =============================================================================
## @class Primes
# produce and store the primary numbers
# @code
# p = Primes(1000)
# for q in p : print q ## loop over all primes
# for q in p.range ( 500 , 700 ) : print q ## loop over primes betee 500 and 700
# qs = p[:20] ## get teh first twenty primes
# qs = p[10:20] ## get the range of primes
# q = p.choice ( 300 , 800 ) ## get random prime betwewn 300 and 800
# @endcode
class Primes(object) :
"""Produce and store the primary numbers
>>> p = Primes(1000)
>>> for q in p : print q ## loop over all primes
>>> for q in p.range ( 500 , 700 ) : print q ## loop over primes betee 500 and 700
>>> qs = p[:20] ## get teh first twenty primes
>>> qs = p[10:20] ## get the range of primes
>>> q = p.choice ( 300 , 800 ) ## get random prime betwewn 300 and 800
"""
__primes = [] ## the storage of prime numbers
__last = 0 ## the (current) upper edge
# =========================================================================
## create the instance
# Note, that the actual storage of prime numbers is shared between
# the instances,. allowing to reuse already calculated numbers
def __init__ ( self , n = 1000000 ) :
if not self.__primes or self.__last < n :
self.__primes = primes ( n )
self.__last = n
self.__N = n
# =========================================================================
@property
def primes ( self ) :
"""``primes'' : currently known array of primes"""
return self.__primes
# =========================================================================
@property
def upper ( self ) :
"""``last'' : get the upper edge for produced prime numbers"""
return self.__last
# =========================================================================
@property
def N ( self ) :
"""``N'' : get the current boundary of the prime numbers"""
return self.__N
# =========================================================================
## iterator over primary numbers
# @code
# primes = Primes ( 1000 )
# for n in primes : ...
# @endcode
def __iter__ ( self ) :
"""Iterator over primary numbers between [2,N]
>>> primes = Primes ( 1000 )
>>> for n in primes : ...
"""
for n in self.__primes :
if n < self.__N : yield n
else : break
# =========================================================================
## iterator over the range of primary numbers in the range (min,max)
# @code
# primes = Primes ( 10000 )
# for n in primes.range ( 300 , 500 ) : ...
# @endcode
def range ( self , min , max ) :
"""Iterator over primary numbers between [min,max]
>>> primes = Primes ( 10000 )
>>> for n in primes.range ( 300 , 500 ) : ...
"""
bmin = bisect.bisect_left ( self.__primes , min )
bmax = bisect.bisect_left ( self.__primes , max )
for i in range ( bmin , bmax ) :
yield self.__primes[i]
# =========================================================================
## Get random primary number in the specified range
# @code
# primes = Primes ( 10000 )
# p = primes.choice()
# p = primes.choice( min = 300 )
# p = primes.choice( min = 300 , max = 500 )
# @endcode
def choice ( self , min = None , max = None ) :
"""Get random primary number in the specified range
>>> primes = Primes ( 10000 )
>>> p = primes.choice()
>>> p = primes.choice( min = 300 )
>>> p = primes.choice( min = 300 , max = 500 )
"""
if ( min is None or min <= self.__primes[0] ) and \
( max is None or max > self.__primes [-1] ) :
return random.choice ( self.__primes )
if min is None : bmin = 0
else : bmin = bisect.bisect_left ( self.__primes , min )
bmax = bisect.bisect_left ( self.__primes , max )
return random.choice ( self [ bmin : bmax] )
# =========================================================================
## get primary number with certain index or slice
# @code
# p = Primes ( 4000 )
# n = p[100]
# s = p[-5:]
# @endcode
def __getitem__ ( self , index ) :
"""Get primary number with certain index or slice
>>> primes = Primes ( 4000 )
>>> n = primes [100]
>>> s = primes [-5:]
"""
return self.__primes [ index ]
# =============================================================================
if '__main__' == __name__ :
from ostap.utils.docme import docme
docme ( __name__ , logger = logger )
# =============================================================================
## The END
# =============================================================================
|
[
"ostap.logger.logger.getLogger",
"builtins.range",
"numpy.ones",
"random.choice",
"numpy.nonzero",
"numpy.array",
"ostap.utils.docme.docme",
"bisect.bisect_left"
] |
[((1641, 1671), 'ostap.logger.logger.getLogger', 'getLogger', (['"""ostap.math.primes"""'], {}), "('ostap.math.primes')\n", (1650, 1671), False, 'from ostap.logger.logger import getLogger\n'), ((1713, 1732), 'ostap.logger.logger.getLogger', 'getLogger', (['__name__'], {}), '(__name__)\n', (1722, 1732), False, 'from ostap.logger.logger import getLogger\n'), ((9728, 9758), 'ostap.utils.docme.docme', 'docme', (['__name__'], {'logger': 'logger'}), '(__name__, logger=logger)\n', (9733, 9758), False, 'from ostap.utils.docme import docme\n'), ((2976, 3027), 'numpy.ones', 'numpy.ones', (['(n // 3 + (n % 6 == 2))'], {'dtype': 'numpy.bool'}), '(n // 3 + (n % 6 == 2), dtype=numpy.bool)\n', (2986, 3027), False, 'import numpy\n'), ((7845, 7883), 'bisect.bisect_left', 'bisect.bisect_left', (['self.__primes', 'min'], {}), '(self.__primes, min)\n', (7863, 7883), False, 'import bisect, random\n'), ((7904, 7942), 'bisect.bisect_left', 'bisect.bisect_left', (['self.__primes', 'max'], {}), '(self.__primes, max)\n', (7922, 7942), False, 'import bisect, random\n'), ((7966, 7983), 'builtins.range', 'range', (['bmin', 'bmax'], {}), '(bmin, bmax)\n', (7971, 7983), False, 'from builtins import range\n'), ((8984, 9022), 'bisect.bisect_left', 'bisect.bisect_left', (['self.__primes', 'max'], {}), '(self.__primes, max)\n', (9002, 9022), False, 'import bisect, random\n'), ((9043, 9073), 'random.choice', 'random.choice', (['self[bmin:bmax]'], {}), '(self[bmin:bmax])\n', (9056, 9073), False, 'import bisect, random\n'), ((2796, 2824), 'numpy.array', 'numpy.array', (['[]'], {'dtype': 'atype'}), '([], dtype=atype)\n', (2807, 2824), False, 'import numpy\n'), ((8809, 8837), 'random.choice', 'random.choice', (['self.__primes'], {}), '(self.__primes)\n', (8822, 8837), False, 'import bisect, random\n'), ((8917, 8955), 'bisect.bisect_left', 'bisect.bisect_left', (['self.__primes', 'min'], {}), '(self.__primes, min)\n', (8935, 8955), False, 'import bisect, random\n'), ((2853, 2882), 'numpy.array', 'numpy.array', (['[2]'], {'dtype': 'atype'}), '([2], dtype=atype)\n', (2864, 2882), False, 'import numpy\n'), ((2917, 2949), 'numpy.array', 'numpy.array', (['[2, 3]'], {'dtype': 'atype'}), '([2, 3], dtype=atype)\n', (2928, 2949), False, 'import numpy\n'), ((4572, 4601), 'builtins.range', 'range', (['(1)', '(n // 3 - correction)'], {}), '(1, n // 3 - correction)\n', (4577, 4601), False, 'from builtins import range\n'), ((3259, 3279), 'numpy.nonzero', 'numpy.nonzero', (['sieve'], {}), '(sieve)\n', (3272, 3279), False, 'import numpy\n')]
|
import numpy as np
# from scipy.fft import fft, ifft
from numpy.fft import fft, ifft, fftfreq, fftshift
import matplotlib.pyplot as plt
f = np.array([
1, 2-1j, -1j, -1+2j
])
print(f"The vector of values if {f}")
F = fft(f)
print(f"The fourier transform is {F}")
f_hat = ifft(F)
error = np.abs(f - f_hat)
print(f"The returned values are {f_hat}")
print(f"The error between the values is {error}")
w = fftfreq(f.size)
fig, ax = plt.subplots()
# same for NumPy and for Python
ax.plot(fftshift(w), fftshift(f.real)) # To get a real component
ax.plot(fftshift(w), fftshift(f.imag)) # To get an imaginary component
plt.show()
|
[
"numpy.fft.ifft",
"numpy.abs",
"matplotlib.pyplot.show",
"numpy.fft.fft",
"numpy.fft.fftfreq",
"numpy.fft.fftshift",
"numpy.array",
"matplotlib.pyplot.subplots"
] |
[((141, 182), 'numpy.array', 'np.array', (['[1, 2 - 1.0j, -1.0j, -1 + 2.0j]'], {}), '([1, 2 - 1.0j, -1.0j, -1 + 2.0j])\n', (149, 182), True, 'import numpy as np\n'), ((223, 229), 'numpy.fft.fft', 'fft', (['f'], {}), '(f)\n', (226, 229), False, 'from numpy.fft import fft, ifft, fftfreq, fftshift\n'), ((278, 285), 'numpy.fft.ifft', 'ifft', (['F'], {}), '(F)\n', (282, 285), False, 'from numpy.fft import fft, ifft, fftfreq, fftshift\n'), ((294, 311), 'numpy.abs', 'np.abs', (['(f - f_hat)'], {}), '(f - f_hat)\n', (300, 311), True, 'import numpy as np\n'), ((409, 424), 'numpy.fft.fftfreq', 'fftfreq', (['f.size'], {}), '(f.size)\n', (416, 424), False, 'from numpy.fft import fft, ifft, fftfreq, fftshift\n'), ((436, 450), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (448, 450), True, 'import matplotlib.pyplot as plt\n'), ((621, 631), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (629, 631), True, 'import matplotlib.pyplot as plt\n'), ((491, 502), 'numpy.fft.fftshift', 'fftshift', (['w'], {}), '(w)\n', (499, 502), False, 'from numpy.fft import fft, ifft, fftfreq, fftshift\n'), ((504, 520), 'numpy.fft.fftshift', 'fftshift', (['f.real'], {}), '(f.real)\n', (512, 520), False, 'from numpy.fft import fft, ifft, fftfreq, fftshift\n'), ((557, 568), 'numpy.fft.fftshift', 'fftshift', (['w'], {}), '(w)\n', (565, 568), False, 'from numpy.fft import fft, ifft, fftfreq, fftshift\n'), ((570, 586), 'numpy.fft.fftshift', 'fftshift', (['f.imag'], {}), '(f.imag)\n', (578, 586), False, 'from numpy.fft import fft, ifft, fftfreq, fftshift\n')]
|
import os
import numpy as np
from tqdm import tqdm
import copy
import shutil
from data_info.data_info import DataInfo
from heatmap_generator.anisotropic_laplace_heatmap_generator import AnisotropicLaplaceHeatmapGenerator
class DatasetGenerator:
@classmethod
def generate_dataset(cls):
print('\nStep 1: Generate gt numpy file\n')
cls.generate_gt_numpy()
print('\nStep 2: Generate original image folder\n')
cls.generate_image_folder()
print('\nStep 3: Generate GT image file\n')
cls.generate_heatmap()
@classmethod
def generate_gt_numpy(cls):
r"""
랜드마크 좌표를 GT 폴더에 landmark_point_gt_numpy로 저장
0~149: train 데이터
150~299: test1 데이터
300~399: test2 데이터
"""
# 랜드마크 좌표를 저장할 numpy 배열
junior_numpy = np.zeros((400, 19, 2))
senior_numpy = np.zeros((400, 19, 2))
average_numpy = np.zeros((400, 19, 2))
# 원본 데이터 폴더
junior_senior_folders = os.listdir(DataInfo.original_gt_folder_path)
junior_senior_folders.sort()
# 원본 데이터 폴더에서 txt 파일을 읽어 numpy 배열로 저장
# class는 저장하지 않고 건너뜀
for junior_senior_folder in junior_senior_folders:
original_files = os.listdir(os.path.join(DataInfo.original_gt_folder_path, junior_senior_folder))
original_files.sort()
points_numpy = np.zeros((400, 19, 2))
for original_file_index, original_file in enumerate(original_files):
file = open(os.path.join(DataInfo.original_gt_folder_path, junior_senior_folder, original_file))
file_lines = file.readlines()
file.close()
for i, line in enumerate(file_lines):
if i < 19:
x, y = line.split(',')
x = int(x)
y = int(y)
points_numpy[original_file_index][i][0] = x
points_numpy[original_file_index][i][1] = y
else:
pass
if junior_senior_folder[junior_senior_folder.index('_') + 1:] == "junior":
junior_numpy = copy.deepcopy(points_numpy)
else:
senior_numpy = copy.deepcopy(points_numpy)
# junior과 senior의 평균 구해서 numpy 배열로 저장
for gt_file_index, [junior_points, senior_points] in enumerate(zip(junior_numpy, senior_numpy)):
for landmark_index, [junior_point, senior_point] in enumerate(zip(junior_points, senior_points)):
average_point_x = (junior_point[0] + senior_point[0]) / 2
average_point_y = (junior_point[1] + senior_point[1]) / 2
average_point = np.array([average_point_x, average_point_y])
average_numpy[gt_file_index][landmark_index] = average_point
# save
os.makedirs(DataInfo.landmark_gt_numpy_folder_path, exist_ok=True)
np.save(DataInfo.landmark_gt_numpy_path, average_numpy)
@classmethod
def generate_image_folder(cls):
r"""
원본 이미지를 train_test_data 폴더의 train, test 폴더에 복사
"""
# 원본 이미지 폴더(test1, test2, train) 경로를 리스트로 저장
images_folders = os.listdir(DataInfo.raw_image_folder_path)
images_folders.sort()
# 이미지를 이동시킬 폴더
if not os.path.exists(DataInfo.train_test_image_folder_path):
os.makedirs(DataInfo.train_test_image_folder_path)
for images_folder in images_folders:
# Test1, Test2, Train 폴더 각각 생성
data_type = images_folder[:5].lower()
input_image_folder_path = os.path.join(DataInfo.train_test_image_folder_path, data_type, 'input', 'no_label')
if not os.path.exists(input_image_folder_path):
os.makedirs(input_image_folder_path)
images = os.listdir(os.path.join(DataInfo.raw_image_folder_path, images_folder))
images.sort()
# 이미지 복사
for image in images:
shutil.copy(os.path.join(DataInfo.raw_image_folder_path, images_folder, image),
os.path.join(input_image_folder_path, image))
@classmethod
def generate_heatmap(cls):
r"""
generate gt image at 'train_test_image/
- gt 이미지를 train, test1, test2 폴더에 랜드마크별로 저장
params:
new_size: 새로 생성할 GT 이미지 크기. [W, H]
landmark_point = [W, H]
landmark_gt_numpy: 0~149: train 데이터
150~299: test1 데이터
300~399: test2 데이터
"""
heatmap_generator = AnisotropicLaplaceHeatmapGenerator()
landmark_gt_numpy = np.load(DataInfo.landmark_gt_numpy_path)
data_type_and_numpy_zip = zip(['train', 'test1', 'test2'],
[landmark_gt_numpy[0:150],
landmark_gt_numpy[150:300],
landmark_gt_numpy[300:400]])
for data_type, gt_numpy in data_type_and_numpy_zip:
image_path = os.path.join(DataInfo.train_test_image_folder_path, data_type)
for i, gt in enumerate(tqdm(gt_numpy)):
for j, landmark_point in enumerate(gt):
heatmap_img = heatmap_generator.get_heatmap_image(landmark_point)
landmark_gt_path = os.path.join(image_path, 'heatmap', "{:0>2d}".format(j + 1))
os.makedirs(landmark_gt_path, exist_ok=True)
image_name = str(i + 1).zfill(5)
heatmap_img.save(os.path.join(landmark_gt_path, image_name + '.png'))
|
[
"numpy.load",
"numpy.save",
"copy.deepcopy",
"os.makedirs",
"tqdm.tqdm",
"numpy.zeros",
"os.path.exists",
"heatmap_generator.anisotropic_laplace_heatmap_generator.AnisotropicLaplaceHeatmapGenerator",
"numpy.array",
"os.path.join",
"os.listdir"
] |
[((838, 860), 'numpy.zeros', 'np.zeros', (['(400, 19, 2)'], {}), '((400, 19, 2))\n', (846, 860), True, 'import numpy as np\n'), ((884, 906), 'numpy.zeros', 'np.zeros', (['(400, 19, 2)'], {}), '((400, 19, 2))\n', (892, 906), True, 'import numpy as np\n'), ((931, 953), 'numpy.zeros', 'np.zeros', (['(400, 19, 2)'], {}), '((400, 19, 2))\n', (939, 953), True, 'import numpy as np\n'), ((1007, 1051), 'os.listdir', 'os.listdir', (['DataInfo.original_gt_folder_path'], {}), '(DataInfo.original_gt_folder_path)\n', (1017, 1051), False, 'import os\n'), ((2896, 2962), 'os.makedirs', 'os.makedirs', (['DataInfo.landmark_gt_numpy_folder_path'], {'exist_ok': '(True)'}), '(DataInfo.landmark_gt_numpy_folder_path, exist_ok=True)\n', (2907, 2962), False, 'import os\n'), ((2971, 3026), 'numpy.save', 'np.save', (['DataInfo.landmark_gt_numpy_path', 'average_numpy'], {}), '(DataInfo.landmark_gt_numpy_path, average_numpy)\n', (2978, 3026), True, 'import numpy as np\n'), ((3243, 3285), 'os.listdir', 'os.listdir', (['DataInfo.raw_image_folder_path'], {}), '(DataInfo.raw_image_folder_path)\n', (3253, 3285), False, 'import os\n'), ((4680, 4716), 'heatmap_generator.anisotropic_laplace_heatmap_generator.AnisotropicLaplaceHeatmapGenerator', 'AnisotropicLaplaceHeatmapGenerator', ([], {}), '()\n', (4714, 4716), False, 'from heatmap_generator.anisotropic_laplace_heatmap_generator import AnisotropicLaplaceHeatmapGenerator\n'), ((4746, 4786), 'numpy.load', 'np.load', (['DataInfo.landmark_gt_numpy_path'], {}), '(DataInfo.landmark_gt_numpy_path)\n', (4753, 4786), True, 'import numpy as np\n'), ((1396, 1418), 'numpy.zeros', 'np.zeros', (['(400, 19, 2)'], {}), '((400, 19, 2))\n', (1404, 1418), True, 'import numpy as np\n'), ((3355, 3408), 'os.path.exists', 'os.path.exists', (['DataInfo.train_test_image_folder_path'], {}), '(DataInfo.train_test_image_folder_path)\n', (3369, 3408), False, 'import os\n'), ((3422, 3472), 'os.makedirs', 'os.makedirs', (['DataInfo.train_test_image_folder_path'], {}), '(DataInfo.train_test_image_folder_path)\n', (3433, 3472), False, 'import os\n'), ((3650, 3737), 'os.path.join', 'os.path.join', (['DataInfo.train_test_image_folder_path', 'data_type', '"""input"""', '"""no_label"""'], {}), "(DataInfo.train_test_image_folder_path, data_type, 'input',\n 'no_label')\n", (3662, 3737), False, 'import os\n'), ((5140, 5202), 'os.path.join', 'os.path.join', (['DataInfo.train_test_image_folder_path', 'data_type'], {}), '(DataInfo.train_test_image_folder_path, data_type)\n', (5152, 5202), False, 'import os\n'), ((1264, 1332), 'os.path.join', 'os.path.join', (['DataInfo.original_gt_folder_path', 'junior_senior_folder'], {}), '(DataInfo.original_gt_folder_path, junior_senior_folder)\n', (1276, 1332), False, 'import os\n'), ((2202, 2229), 'copy.deepcopy', 'copy.deepcopy', (['points_numpy'], {}), '(points_numpy)\n', (2215, 2229), False, 'import copy\n'), ((2279, 2306), 'copy.deepcopy', 'copy.deepcopy', (['points_numpy'], {}), '(points_numpy)\n', (2292, 2306), False, 'import copy\n'), ((2749, 2793), 'numpy.array', 'np.array', (['[average_point_x, average_point_y]'], {}), '([average_point_x, average_point_y])\n', (2757, 2793), True, 'import numpy as np\n'), ((3753, 3792), 'os.path.exists', 'os.path.exists', (['input_image_folder_path'], {}), '(input_image_folder_path)\n', (3767, 3792), False, 'import os\n'), ((3810, 3846), 'os.makedirs', 'os.makedirs', (['input_image_folder_path'], {}), '(input_image_folder_path)\n', (3821, 3846), False, 'import os\n'), ((3880, 3939), 'os.path.join', 'os.path.join', (['DataInfo.raw_image_folder_path', 'images_folder'], {}), '(DataInfo.raw_image_folder_path, images_folder)\n', (3892, 3939), False, 'import os\n'), ((5238, 5252), 'tqdm.tqdm', 'tqdm', (['gt_numpy'], {}), '(gt_numpy)\n', (5242, 5252), False, 'from tqdm import tqdm\n'), ((1528, 1615), 'os.path.join', 'os.path.join', (['DataInfo.original_gt_folder_path', 'junior_senior_folder', 'original_file'], {}), '(DataInfo.original_gt_folder_path, junior_senior_folder,\n original_file)\n', (1540, 1615), False, 'import os\n'), ((4050, 4116), 'os.path.join', 'os.path.join', (['DataInfo.raw_image_folder_path', 'images_folder', 'image'], {}), '(DataInfo.raw_image_folder_path, images_folder, image)\n', (4062, 4116), False, 'import os\n'), ((4146, 4190), 'os.path.join', 'os.path.join', (['input_image_folder_path', 'image'], {}), '(input_image_folder_path, image)\n', (4158, 4190), False, 'import os\n'), ((5517, 5561), 'os.makedirs', 'os.makedirs', (['landmark_gt_path'], {'exist_ok': '(True)'}), '(landmark_gt_path, exist_ok=True)\n', (5528, 5561), False, 'import os\n'), ((5653, 5704), 'os.path.join', 'os.path.join', (['landmark_gt_path', "(image_name + '.png')"], {}), "(landmark_gt_path, image_name + '.png')\n", (5665, 5704), False, 'import os\n')]
|
# -*- coding: utf-8 -*-
#
# Copyright (C) 2019 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG),
# acting on behalf of its Max Planck Institute for Intelligent Systems and the
# Max Planck Institute for Biological Cybernetics. All rights reserved.
#
# Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is holder of all proprietary rights
# on this computer program. You can only use this computer program if you have closed a license agreement
# with MPG or you get the right to use the computer program from someone who is authorized to grant you that right.
# Any use of the computer program without a valid license is prohibited and liable to prosecution.
# Contact: <EMAIL>
#
#
# If you use this code in a research publication please consider citing the following:
#
# Expressive Body Capture: 3D Hands, Face, and Body from a Single Image <https://arxiv.org/abs/1904.05866>
#
#
# Code Developed by:
# <NAME> <https://www.linkedin.com/in/nghorbani/>
#
# 2018.12.13
import numpy as np
import torch
import torch.nn as nn
from smplx.lbs import lbs
class BodyModel(nn.Module):
def __init__(self,
bm_path,
model_type,
params =None,
num_betas = 10,
batch_size = 1,
num_dmpls = None, path_dmpl = None,
num_expressions = 10,
use_posedirs = True,
dtype = torch.float32):
super(BodyModel, self).__init__()
'''
:param bm_path: path to a SMPL model as pkl file
:param num_betas: number of shape parameters to include.
if betas are provided in params, num_betas would be overloaded with number of thoes betas
:param batch_size: number of smpl vertices to get
:param device: default on gpu
:param dtype: float precision of the compuations
:return: verts, trans, pose, betas
'''
# Todo: if params the batchsize should be read from one of the params
self.dtype = dtype
self.model_type = model_type
assert self.model_type in ['smpl', 'smplh', 'smplhf', 'mano_left', 'mano_right'], ValueError('model_type should be in smpl/smplh/smplhf/mano_left/mano_right.')
if params is None: params = {}
# -- Load SMPL params --
if '.npz' in bm_path: smpl_dict = np.load(bm_path, encoding = 'latin1')
else: raise ValueError('bm_path should be either a .pkl nor .npz file')
if num_dmpls is not None and path_dmpl is None:
raise (ValueError('path_dmpl should be provided when using dmpls!'))
use_dmpl = False
if num_dmpls is not None and path_dmpl is not None: use_dmpl = True
# Mean template vertices
v_template = np.repeat(smpl_dict['v_template'][np.newaxis], batch_size, axis=0)
self.register_buffer('v_template', torch.tensor(v_template, dtype=dtype))
self.register_buffer('f', torch.tensor(smpl_dict['f'].astype(np.int32), dtype=torch.int32))
if len(params):
if 'betas' in params.keys():
num_betas = params['betas'].shape[1]
if 'dmpls' in params.keys():
num_dmpls = params['dmpls'].shape[1]
num_total_betas = smpl_dict['shapedirs'].shape[-1]
if num_betas < 1:
num_betas = num_total_betas
shapedirs = smpl_dict['shapedirs'][:, :, :num_betas]
self.register_buffer('shapedirs', torch.tensor(shapedirs, dtype=dtype))
if model_type == 'smplhf':
exprdirs = smpl_dict['shapedirs'][:, :, 300:(300+num_expressions)]
self.register_buffer('exprdirs', torch.tensor(exprdirs, dtype=dtype))
expression = torch.tensor(np.zeros((batch_size, num_expressions)), dtype=dtype, requires_grad=True)
self.register_parameter('expression', nn.Parameter(expression, requires_grad=True))
if use_dmpl:
raise NotImplementedError('DMPL loader not yet developed for python 3.7')
# # Todo: I have changed this without testing
# with open(path_dmpl, 'r') as f:
# dmpl_shapedirs = pickle.load(f)
#
# dmpl_shapedirs = dmpl_shapedirs[:, :, :num_dmpls]
# self.register_buffer('dmpl_shapedirs', torch.tensor(dmpl_shapedirs, dtype=dtype))
# Regressor for joint locations given shape - 6890 x 24
self.register_buffer('J_regressor', torch.tensor(smpl_dict['J_regressor'], dtype=dtype))
# Pose blend shape basis: 6890 x 3 x 207, reshaped to 6890*30 x 207
if use_posedirs:
posedirs = smpl_dict['posedirs']
posedirs = posedirs.reshape([posedirs.shape[0] * 3, -1]).T
self.register_buffer('posedirs', torch.tensor(posedirs, dtype=dtype))
else:
self.posedirs = None
# indices of parents for each joints
kintree_table = smpl_dict['kintree_table'].astype(np.int32)
self.register_buffer('kintree_table', torch.tensor(kintree_table, dtype=torch.int32))
# LBS weights
# weights = np.repeat(smpl_dict['weights'][np.newaxis], batch_size, axis=0)
weights = smpl_dict['weights']
self.register_buffer('weights', torch.tensor(weights, dtype=dtype))
if 'trans' in params.keys():
trans = params['trans']
else:
trans = torch.tensor(np.zeros((batch_size, 3)), dtype=dtype, requires_grad = True)
self.register_parameter('trans', nn.Parameter(trans, requires_grad=True))
#root_orient
# if model_type in ['smpl', 'smplh']:
root_orient = torch.tensor(np.zeros((batch_size, 3)), dtype=dtype, requires_grad=True)
self.register_parameter('root_orient', nn.Parameter(root_orient, requires_grad=True))
#pose_body
if model_type in ['smpl', 'smplh', 'smplhf']:
pose_body = torch.tensor(np.zeros((batch_size, 63)), dtype=dtype, requires_grad=True)
self.register_parameter('pose_body', nn.Parameter(pose_body, requires_grad=True))
# pose_hand
if 'pose_hand' in params.keys():
pose_hand = params['pose_hand']
else:
if model_type in ['smpl']:
pose_hand = torch.tensor(np.zeros((batch_size, 1 * 3 * 2)), dtype=dtype, requires_grad=True)
elif model_type in ['smplh', 'smplhf']:
pose_hand = torch.tensor(np.zeros((batch_size, 15 * 3 * 2)), dtype=dtype, requires_grad=True)
elif model_type in ['mano_left', 'mano_right']:
pose_hand = torch.tensor(np.zeros((batch_size, 15 * 3)), dtype=dtype, requires_grad=True)
self.register_parameter('pose_hand', nn.Parameter(pose_hand, requires_grad=True))
# face poses
if model_type == 'smplhf':
pose_jaw = torch.tensor(np.zeros((batch_size, 1 * 3)), dtype=dtype, requires_grad=True)
self.register_parameter('pose_jaw', nn.Parameter(pose_jaw, requires_grad=True))
pose_eye = torch.tensor(np.zeros((batch_size, 2 * 3)), dtype=dtype, requires_grad=True)
self.register_parameter('pose_eye', nn.Parameter(pose_eye, requires_grad=True))
if 'betas' in params.keys():
betas = params['betas']
else:
betas = torch.tensor(np.zeros((batch_size, num_betas)), dtype=dtype, requires_grad=True)
self.register_parameter('betas', nn.Parameter(betas, requires_grad=True))
if use_dmpl:
if 'dmpls' in params.keys():
dmpls = params['dmpls']
else:
dmpls = torch.tensor(np.zeros((batch_size, num_dmpls)), dtype=dtype, requires_grad=True)
self.register_parameter('dmpls', nn.Parameter(dmpls, requires_grad=True))
self.batch_size = batch_size
def r(self):
from human_body_prior.tools.omni_tools import copy2cpu as c2c
return c2c(self.forward().v)
def forward(self, root_orient=None, pose_body = None, pose_hand=None, pose_jaw=None, pose_eye=None, betas = None, trans = None, **kwargs):
'''
:param root_orient: Nx3
:param pose_body:
:param pose_hand:
:param pose_jaw:
:param pose_eye:
:param kwargs:
:return:
'''
assert self.model_type in ['smpl', 'smplh', 'smplhf', 'mano_left', 'mano_right'], ValueError('model_type should be in smpl/smplh/smplhf/mano_left/mano_right.')
if root_orient is None: root_orient = self.root_orient
if self.model_type in ['smplh', 'smpl']:
if pose_body is None: pose_body = self.pose_body
if pose_hand is None: pose_hand = self.pose_hand
elif self.model_type == 'smplhf':
if pose_body is None: pose_body = self.pose_body
if pose_hand is None: pose_hand = self.pose_hand
if pose_jaw is None: pose_jaw = self.pose_jaw
if pose_eye is None: pose_eye = self.pose_eye
elif self.model_type in ['mano_left', 'mano_right']:
if pose_hand is None: pose_hand = self.pose_hand
if trans is None: trans = self.trans
if betas is None: betas = self.betas
if self.model_type in ['smplh', 'smpl']:
full_pose = torch.cat([root_orient, pose_body, pose_hand], dim=1)
elif self.model_type == 'smplhf':
full_pose = torch.cat([root_orient, pose_body, pose_jaw, pose_eye, pose_hand], dim=1) # orient:3, body:63, jaw:3, eyel:3, eyer:3, handl, handr
elif self.model_type in ['mano_left', 'mano_right']:
full_pose = torch.cat([root_orient, pose_hand], dim=1)
if self.model_type == 'smplhf':
shape_components = torch.cat([betas, self.expression], dim=-1)
shapedirs = torch.cat([self.shapedirs, self.exprdirs], dim=-1)
else:
shape_components = betas
shapedirs = self.shapedirs
verts, joints = lbs(betas=shape_components, pose=full_pose, v_template=self.v_template,
shapedirs=shapedirs, posedirs=self.posedirs,
J_regressor=self.J_regressor, parents=self.kintree_table[0].long(),
lbs_weights=self.weights,
dtype=self.dtype)
Jtr = joints + trans.unsqueeze(dim=1)
verts = verts + trans.unsqueeze(dim=1)
class result_meta(object):
pass
res = result_meta()
res.v = verts
res.f = self.f
res.betas = self.betas
res.Jtr = Jtr #Todo: ik can be made with vposer
if self.model_type == 'smpl':
res.pose_body = pose_body
elif self.model_type == 'smplh':
res.pose_body = pose_body
res.pose_hand = pose_hand
elif self.model_type == 'smplhf':
res.pose_body = pose_body
res.pose_hand = pose_hand
res.pose_jaw = pose_jaw
res.pose_eye = pose_eye
elif self.model_type in ['mano_left', 'mano_right']:
res.pose_hand = pose_hand
res.full_pose = full_pose
return res
class BodyModelWithPoser(BodyModel):
def __init__(self, poser_type, smpl_exp_dir='0020_06', mano_exp_dir=None, **kwargs):
'''
:param poser_type: vposer/gposer
:param kwargs:
'''
super(BodyModelWithPoser, self).__init__(**kwargs)
self.poser_type = poser_type
if self.poser_type == 'vposer':
self.has_gravity = True if '003' in smpl_exp_dir else False
if self.model_type == 'smpl':
from human_body_prior.tools.model_loader import load_vposer as poser_loader
self.poser_body_pt, self.poser_body_ps = poser_loader(smpl_exp_dir)
self.poser_body_pt.to(self.trans.device)
poZ_body = torch.tensor(np.zeros([self.batch_size, self.poser_body_ps.latentD]), requires_grad=True,
dtype=self.trans.dtype)
self.register_parameter('poZ_body', nn.Parameter(poZ_body, requires_grad=True))
self.pose_body.requires_grad = False
elif self.model_type in ['smplh', 'smplhf']:
# from experiments.nima.body_prior.tools_pt.load_vposer import load_vposer as poser_loader
from human_body_prior.tools.model_loader import load_vposer as poser_loader
# body
self.poser_body_pt, self.poser_body_ps = poser_loader(smpl_exp_dir)
self.poser_body_pt.to(self.trans.device)
poZ_body = self.pose_body.new(np.zeros([self.batch_size, self.poser_body_ps.latentD]))
self.register_parameter('poZ_body', nn.Parameter(poZ_body, requires_grad=True))
self.pose_body.requires_grad = False
# hand left
self.poser_handL_pt, self.poser_handL_ps = poser_loader(mano_exp_dir)
self.poser_handL_pt.to(self.trans.device)
poZ_handL = self.pose_hand.new(np.zeros([self.batch_size, self.poser_handL_ps.latentD]))
self.register_parameter('poZ_handL', nn.Parameter(poZ_handL, requires_grad=True))
# hand right
self.poser_handR_pt, self.poser_handR_ps = poser_loader(mano_exp_dir)
self.poser_handR_pt.to(self.trans.device)
poZ_handR = self.pose_hand.new(np.zeros([self.batch_size, self.poser_handR_ps.latentD]))
self.register_parameter('poZ_handR', nn.Parameter(poZ_handR, requires_grad=True))
self.pose_hand.requires_grad = False
elif self.model_type in ['mano_left', 'mano_right']:
from human_body_prior.tools.model_loader import load_vposer as poser_loader
self.poser_hand_pt, self.poser_hand_ps = poser_loader(mano_exp_dir)
self.poser_hand_pt.to(self.trans.device)
poZ_hand = self.pose_hand.new(np.zeros([self.batch_size, self.poser_hand_ps.latentD]))
self.register_parameter('poZ_hand', nn.Parameter(poZ_hand, requires_grad=True))
self.pose_hand.requires_grad = False
def forward(self, **kwargs):
if self.poser_type == 'vposer':
if self.model_type == 'smpl':
pose_body = self.poser_body_pt.decode(self.poZ_body, output_type='aa').view(self.batch_size, -1)
new_body = super(BodyModelWithPoser, self).forward(pose_body=pose_body, **kwargs)
new_body.poZ_body = self.poZ_body
elif self.model_type in ['smplh', 'smplhf']:
pose_body = self.poser_body_pt.decode(self.poZ_body, output_type='aa').view(self.batch_size, -1)
pose_handL = self.poser_handL_pt.decode(self.poZ_handL, output_type='aa').view(self.batch_size, -1)
pose_handR = self.poser_handR_pt.decode(self.poZ_handR, output_type='aa').view(self.batch_size, -1)
pose_hand = torch.cat([pose_handL, pose_handR], dim=1)
# new_body = BodyModel.forward(self, pose_body=pose_body, pose_hand=pose_hand)
new_body = super(BodyModelWithPoser, self).forward(pose_body=pose_body, pose_hand=pose_hand, **kwargs)
elif self.model_type in ['mano_left', 'mano_right']:
pose_hand = self.poser_hand_pt.decode(self.poZ_hand, output_type='aa').view(self.batch_size, -1)
# new_body = BodyModel.forward(self, pose_hand=pose_hand)
new_body = super(BodyModelWithPoser, self).forward(pose_hand=pose_hand, **kwargs)
else:
new_body = BodyModel.forward(self)
return new_body
def randomize_pose(self):
if self.poser_type == 'vposer':
if self.model_type == 'smpl':
with torch.no_grad():
self.poZ_body.data[:] = self.poZ_body.new(np.random.randn(*list(self.poZ_body.shape))).detach()
self.pose_body.data[:] = self.poser_body_pt.decode(self.poZ_body, output_type='aa').view(self.batch_size, -1)
elif self.model_type in ['smplh', 'smplhf']:
with torch.no_grad():
self.poZ_body.data[:] = self.poZ_body.new(np.random.randn(*list(self.poZ_body.shape))).detach()
self.poZ_handL.data[:] = self.poZ_handL.new(np.random.randn(*list(self.poZ_handL.shape))).detach()
self.poZ_handR.data[:] = self.poZ_handR.new(np.random.randn(*list(self.poZ_handR.shape))).detach()
self.pose_body.data[:] = self.poser_body_pt.decode(self.poZ_body, output_type='aa').view(self.batch_size, -1)
pose_handL = self.poser_handL_pt.decode(self.poZ_handL, output_type='aa').view(self.batch_size, -1)
pose_handR = self.poser_handR_pt.decode(self.poZ_handR, output_type='aa').view(self.batch_size, -1)
self.pose_hand.data[:] = torch.cat([pose_handL, pose_handR], dim=1)
|
[
"torch.nn.Parameter",
"numpy.load",
"human_body_prior.tools.model_loader.load_vposer",
"numpy.zeros",
"torch.cat",
"torch.no_grad",
"torch.tensor",
"numpy.repeat"
] |
[((2797, 2863), 'numpy.repeat', 'np.repeat', (["smpl_dict['v_template'][np.newaxis]", 'batch_size'], {'axis': '(0)'}), "(smpl_dict['v_template'][np.newaxis], batch_size, axis=0)\n", (2806, 2863), True, 'import numpy as np\n'), ((2384, 2419), 'numpy.load', 'np.load', (['bm_path'], {'encoding': '"""latin1"""'}), "(bm_path, encoding='latin1')\n", (2391, 2419), True, 'import numpy as np\n'), ((2907, 2944), 'torch.tensor', 'torch.tensor', (['v_template'], {'dtype': 'dtype'}), '(v_template, dtype=dtype)\n', (2919, 2944), False, 'import torch\n'), ((3490, 3526), 'torch.tensor', 'torch.tensor', (['shapedirs'], {'dtype': 'dtype'}), '(shapedirs, dtype=dtype)\n', (3502, 3526), False, 'import torch\n'), ((4479, 4530), 'torch.tensor', 'torch.tensor', (["smpl_dict['J_regressor']"], {'dtype': 'dtype'}), "(smpl_dict['J_regressor'], dtype=dtype)\n", (4491, 4530), False, 'import torch\n'), ((5039, 5085), 'torch.tensor', 'torch.tensor', (['kintree_table'], {'dtype': 'torch.int32'}), '(kintree_table, dtype=torch.int32)\n', (5051, 5085), False, 'import torch\n'), ((5273, 5307), 'torch.tensor', 'torch.tensor', (['weights'], {'dtype': 'dtype'}), '(weights, dtype=dtype)\n', (5285, 5307), False, 'import torch\n'), ((5533, 5572), 'torch.nn.Parameter', 'nn.Parameter', (['trans'], {'requires_grad': '(True)'}), '(trans, requires_grad=True)\n', (5545, 5572), True, 'import torch.nn as nn\n'), ((5677, 5702), 'numpy.zeros', 'np.zeros', (['(batch_size, 3)'], {}), '((batch_size, 3))\n', (5685, 5702), True, 'import numpy as np\n'), ((5784, 5829), 'torch.nn.Parameter', 'nn.Parameter', (['root_orient'], {'requires_grad': '(True)'}), '(root_orient, requires_grad=True)\n', (5796, 5829), True, 'import torch.nn as nn\n'), ((6738, 6781), 'torch.nn.Parameter', 'nn.Parameter', (['pose_hand'], {'requires_grad': '(True)'}), '(pose_hand, requires_grad=True)\n', (6750, 6781), True, 'import torch.nn as nn\n'), ((7454, 7493), 'torch.nn.Parameter', 'nn.Parameter', (['betas'], {'requires_grad': '(True)'}), '(betas, requires_grad=True)\n', (7466, 7493), True, 'import torch.nn as nn\n'), ((9317, 9370), 'torch.cat', 'torch.cat', (['[root_orient, pose_body, pose_hand]'], {'dim': '(1)'}), '([root_orient, pose_body, pose_hand], dim=1)\n', (9326, 9370), False, 'import torch\n'), ((9772, 9815), 'torch.cat', 'torch.cat', (['[betas, self.expression]'], {'dim': '(-1)'}), '([betas, self.expression], dim=-1)\n', (9781, 9815), False, 'import torch\n'), ((9840, 9890), 'torch.cat', 'torch.cat', (['[self.shapedirs, self.exprdirs]'], {'dim': '(-1)'}), '([self.shapedirs, self.exprdirs], dim=-1)\n', (9849, 9890), False, 'import torch\n'), ((3688, 3723), 'torch.tensor', 'torch.tensor', (['exprdirs'], {'dtype': 'dtype'}), '(exprdirs, dtype=dtype)\n', (3700, 3723), False, 'import torch\n'), ((3764, 3803), 'numpy.zeros', 'np.zeros', (['(batch_size, num_expressions)'], {}), '((batch_size, num_expressions))\n', (3772, 3803), True, 'import numpy as np\n'), ((3888, 3932), 'torch.nn.Parameter', 'nn.Parameter', (['expression'], {'requires_grad': '(True)'}), '(expression, requires_grad=True)\n', (3900, 3932), True, 'import torch.nn as nn\n'), ((4795, 4830), 'torch.tensor', 'torch.tensor', (['posedirs'], {'dtype': 'dtype'}), '(posedirs, dtype=dtype)\n', (4807, 4830), False, 'import torch\n'), ((5430, 5455), 'numpy.zeros', 'np.zeros', (['(batch_size, 3)'], {}), '((batch_size, 3))\n', (5438, 5455), True, 'import numpy as np\n'), ((5942, 5968), 'numpy.zeros', 'np.zeros', (['(batch_size, 63)'], {}), '((batch_size, 63))\n', (5950, 5968), True, 'import numpy as np\n'), ((6052, 6095), 'torch.nn.Parameter', 'nn.Parameter', (['pose_body'], {'requires_grad': '(True)'}), '(pose_body, requires_grad=True)\n', (6064, 6095), True, 'import torch.nn as nn\n'), ((6876, 6905), 'numpy.zeros', 'np.zeros', (['(batch_size, 1 * 3)'], {}), '((batch_size, 1 * 3))\n', (6884, 6905), True, 'import numpy as np\n'), ((6988, 7030), 'torch.nn.Parameter', 'nn.Parameter', (['pose_jaw'], {'requires_grad': '(True)'}), '(pose_jaw, requires_grad=True)\n', (7000, 7030), True, 'import torch.nn as nn\n'), ((7068, 7097), 'numpy.zeros', 'np.zeros', (['(batch_size, 2 * 3)'], {}), '((batch_size, 2 * 3))\n', (7076, 7097), True, 'import numpy as np\n'), ((7180, 7222), 'torch.nn.Parameter', 'nn.Parameter', (['pose_eye'], {'requires_grad': '(True)'}), '(pose_eye, requires_grad=True)\n', (7192, 7222), True, 'import torch.nn as nn\n'), ((7345, 7378), 'numpy.zeros', 'np.zeros', (['(batch_size, num_betas)'], {}), '((batch_size, num_betas))\n', (7353, 7378), True, 'import numpy as np\n'), ((7766, 7805), 'torch.nn.Parameter', 'nn.Parameter', (['dmpls'], {'requires_grad': '(True)'}), '(dmpls, requires_grad=True)\n', (7778, 7805), True, 'import torch.nn as nn\n'), ((9441, 9514), 'torch.cat', 'torch.cat', (['[root_orient, pose_body, pose_jaw, pose_eye, pose_hand]'], {'dim': '(1)'}), '([root_orient, pose_body, pose_jaw, pose_eye, pose_hand], dim=1)\n', (9450, 9514), False, 'import torch\n'), ((11845, 11871), 'human_body_prior.tools.model_loader.load_vposer', 'poser_loader', (['smpl_exp_dir'], {}), '(smpl_exp_dir)\n', (11857, 11871), True, 'from human_body_prior.tools.model_loader import load_vposer as poser_loader\n'), ((6297, 6330), 'numpy.zeros', 'np.zeros', (['(batch_size, 1 * 3 * 2)'], {}), '((batch_size, 1 * 3 * 2))\n', (6305, 6330), True, 'import numpy as np\n'), ((7653, 7686), 'numpy.zeros', 'np.zeros', (['(batch_size, num_dmpls)'], {}), '((batch_size, num_dmpls))\n', (7661, 7686), True, 'import numpy as np\n'), ((9657, 9699), 'torch.cat', 'torch.cat', (['[root_orient, pose_hand]'], {'dim': '(1)'}), '([root_orient, pose_hand], dim=1)\n', (9666, 9699), False, 'import torch\n'), ((11970, 12025), 'numpy.zeros', 'np.zeros', (['[self.batch_size, self.poser_body_ps.latentD]'], {}), '([self.batch_size, self.poser_body_ps.latentD])\n', (11978, 12025), True, 'import numpy as np\n'), ((12163, 12205), 'torch.nn.Parameter', 'nn.Parameter', (['poZ_body'], {'requires_grad': '(True)'}), '(poZ_body, requires_grad=True)\n', (12175, 12205), True, 'import torch.nn as nn\n'), ((12598, 12624), 'human_body_prior.tools.model_loader.load_vposer', 'poser_loader', (['smpl_exp_dir'], {}), '(smpl_exp_dir)\n', (12610, 12624), True, 'from human_body_prior.tools.model_loader import load_vposer as poser_loader\n'), ((13023, 13049), 'human_body_prior.tools.model_loader.load_vposer', 'poser_loader', (['mano_exp_dir'], {}), '(mano_exp_dir)\n', (13035, 13049), True, 'from human_body_prior.tools.model_loader import load_vposer as poser_loader\n'), ((13401, 13427), 'human_body_prior.tools.model_loader.load_vposer', 'poser_loader', (['mano_exp_dir'], {}), '(mano_exp_dir)\n', (13413, 13427), True, 'from human_body_prior.tools.model_loader import load_vposer as poser_loader\n'), ((15105, 15147), 'torch.cat', 'torch.cat', (['[pose_handL, pose_handR]'], {'dim': '(1)'}), '([pose_handL, pose_handR], dim=1)\n', (15114, 15147), False, 'import torch\n'), ((15934, 15949), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (15947, 15949), False, 'import torch\n'), ((6458, 6492), 'numpy.zeros', 'np.zeros', (['(batch_size, 15 * 3 * 2)'], {}), '((batch_size, 15 * 3 * 2))\n', (6466, 6492), True, 'import numpy as np\n'), ((12729, 12784), 'numpy.zeros', 'np.zeros', (['[self.batch_size, self.poser_body_ps.latentD]'], {}), '([self.batch_size, self.poser_body_ps.latentD])\n', (12737, 12784), True, 'import numpy as np\n'), ((12838, 12880), 'torch.nn.Parameter', 'nn.Parameter', (['poZ_body'], {'requires_grad': '(True)'}), '(poZ_body, requires_grad=True)\n', (12850, 12880), True, 'import torch.nn as nn\n'), ((13156, 13212), 'numpy.zeros', 'np.zeros', (['[self.batch_size, self.poser_handL_ps.latentD]'], {}), '([self.batch_size, self.poser_handL_ps.latentD])\n', (13164, 13212), True, 'import numpy as np\n'), ((13267, 13310), 'torch.nn.Parameter', 'nn.Parameter', (['poZ_handL'], {'requires_grad': '(True)'}), '(poZ_handL, requires_grad=True)\n', (13279, 13310), True, 'import torch.nn as nn\n'), ((13534, 13590), 'numpy.zeros', 'np.zeros', (['[self.batch_size, self.poser_handR_ps.latentD]'], {}), '([self.batch_size, self.poser_handR_ps.latentD])\n', (13542, 13590), True, 'import numpy as np\n'), ((13645, 13688), 'torch.nn.Parameter', 'nn.Parameter', (['poZ_handR'], {'requires_grad': '(True)'}), '(poZ_handR, requires_grad=True)\n', (13657, 13688), True, 'import torch.nn as nn\n'), ((13959, 13985), 'human_body_prior.tools.model_loader.load_vposer', 'poser_loader', (['mano_exp_dir'], {}), '(mano_exp_dir)\n', (13971, 13985), True, 'from human_body_prior.tools.model_loader import load_vposer as poser_loader\n'), ((16276, 16291), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (16289, 16291), False, 'import torch\n'), ((17063, 17105), 'torch.cat', 'torch.cat', (['[pose_handL, pose_handR]'], {'dim': '(1)'}), '([pose_handL, pose_handR], dim=1)\n', (17072, 17105), False, 'import torch\n'), ((6628, 6658), 'numpy.zeros', 'np.zeros', (['(batch_size, 15 * 3)'], {}), '((batch_size, 15 * 3))\n', (6636, 6658), True, 'import numpy as np\n'), ((14090, 14145), 'numpy.zeros', 'np.zeros', (['[self.batch_size, self.poser_hand_ps.latentD]'], {}), '([self.batch_size, self.poser_hand_ps.latentD])\n', (14098, 14145), True, 'import numpy as np\n'), ((14199, 14241), 'torch.nn.Parameter', 'nn.Parameter', (['poZ_hand'], {'requires_grad': '(True)'}), '(poZ_hand, requires_grad=True)\n', (14211, 14241), True, 'import torch.nn as nn\n')]
|
# -*- coding: utf-8 -*-
"""System transmission plots.
This code creates transmission line and interface plots.
@author: <NAME>, <NAME>
"""
import os
import logging
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.cm as cm
import matplotlib.colors as mcolors
import matplotlib.dates as mdates
import marmot.config.mconfig as mconfig
from marmot.plottingmodules.plotutils.plot_library import PlotLibrary
from marmot.plottingmodules.plotutils.plot_data_helper import PlotDataHelper
from marmot.plottingmodules.plotutils.plot_exceptions import (MissingInputData, DataSavedInModule,
UnderDevelopment, InputSheetError, MissingMetaData, UnsupportedAggregation, MissingZoneData)
class MPlot(PlotDataHelper):
"""transmission MPlot class.
All the plotting modules use this same class name.
This class contains plotting methods that are grouped based on the
current module name.
The transmission.py module contains methods that are
related to the transmission network.
MPlot inherits from the PlotDataHelper class to assist in creating figures.
"""
def __init__(self, argument_dict: dict):
"""
Args:
argument_dict (dict): Dictionary containing all
arguments passed from MarmotPlot.
"""
# iterate over items in argument_dict and set as properties of class
# see key_list in Marmot_plot_main for list of properties
for prop in argument_dict:
self.__setattr__(prop, argument_dict[prop])
# Instantiation of MPlotHelperFunctions
super().__init__(self.Marmot_Solutions_folder, self.AGG_BY, self.ordered_gen,
self.PLEXOS_color_dict, self.Scenarios, self.ylabels,
self.xlabels, self.gen_names_dict, self.TECH_SUBSET,
Region_Mapping=self.Region_Mapping)
self.logger = logging.getLogger('marmot_plot.'+__name__)
self.font_defaults = mconfig.parser("font_settings")
def line_util(self, **kwargs):
"""Creates a timeseries line plot of transmission lineflow utilization for each region.
Utilization is plotted between 0 and 1 on the y-axis.
The plot will default to showing the 10 highest utilized lines. A Line category
can also be passed instead, using the property field in the Marmot_plot_select.csv
Each scenarios is plotted on a separate Facet plot.
This methods calls _util() to create the figure.
Returns:
dict: Dictionary containing the created plot and its data table.
"""
outputs = self._util(**kwargs)
return outputs
def line_hist(self, **kwargs):
"""Creates a histogram of transmission lineflow utilization for each region.
Utilization is plotted between 0 and 1 on the x-axis, with # lines on the y-axis.
Each bar is equal to a 0.05 utilization rate
The plot will default to showing all lines. A Line category can also be passed
instead using the property field in the Marmot_plot_select.csv
Each scenarios is plotted on a separate Facet plot.
This methods calls _util() and passes the hist=True argument to create the figure.
Returns:
dict: Dictionary containing the created plot and its data table.
"""
outputs = self._util(hist=True, **kwargs)
return outputs
def _util(self, hist: bool = False, prop: str = None,
start_date_range: str = None,
end_date_range: str = None, **_):
"""Creates utilization plots, line plot and histograms
This methods is called from line_util() and line_hist()
Args:
hist (bool, optional): If True creates a histogram of utilization.
Defaults to False.
prop (str, optional): Optional PLEXOS line category to display.
Defaults to None.
start_date_range (str, optional): Defines a start date at which to represent data from.
Defaults to None.
end_date_range (str, optional): Defines a end date at which to represent data to.
Defaults to None.
Returns:
dict: Dictionary containing the created plot and its data table.
"""
outputs = {}
# List of properties needed by the plot, properties are a set of tuples and contain 3 parts:
# required True/False, property name and scenarios required, scenarios must be a list.
properties = [(True,"line_Flow",self.Scenarios),
(True,"line_Import_Limit",self.Scenarios)]
# Runs get_formatted_data within PlotDataHelper to populate PlotDataHelper dictionary
# with all required properties, returns a 1 if required data is missing
check_input_data = self.get_formatted_data(properties)
if 1 in check_input_data:
return MissingInputData()
# sets up x, y dimensions of plot
ncols, nrows = self.set_facet_col_row_dimensions(facet=True,
multi_scenario=self.Scenarios)
grid_size = ncols*nrows
# Used to calculate any excess axis to delete
plot_number = len(self.Scenarios)
excess_axs = grid_size - plot_number
for zone_input in self.Zones:
self.logger.info(f"For all lines touching Zone = {zone_input}")
mplt = PlotLibrary(nrows, ncols, sharey=True,
squeeze=False, ravel_axs=True)
fig, axs = mplt.get_figure()
plt.subplots_adjust(wspace=0.1, hspace=0.25)
data_table=[]
for n, scenario in enumerate(self.Scenarios):
self.logger.info(f"Scenario = {str(scenario)}")
# gets correct metadata based on area aggregation
if self.AGG_BY=='zone':
zone_lines = self.meta.zone_lines(scenario)
else:
zone_lines = self.meta.region_lines(scenario)
try:
zone_lines = zone_lines.set_index([self.AGG_BY])
except:
self.logger.warning("Column to Aggregate by is missing")
continue
try:
zone_lines = zone_lines.xs(zone_input)
zone_lines=zone_lines['line_name'].unique()
except KeyError:
self.logger.warning('No data to plot for scenario')
outputs[zone_input] = MissingZoneData()
continue
flow = self["line_Flow"].get(scenario).copy()
#Limit to only lines touching to this zone
flow = flow[flow.index.get_level_values('line_name').isin(zone_lines)]
if self.shift_leapday == True:
flow = self.adjust_for_leapday(flow)
limits = self["line_Import_Limit"].get(scenario).copy()
limits = limits.droplevel('timestamp').drop_duplicates()
limits.mask(limits[0]==0.0,other=0.01,inplace=True) #if limit is zero set to small value
# This checks for a nan in string. If no scenario selected, do nothing.
if pd.notna(prop):
self.logger.info(f"Line category = {str(prop)}")
line_relations = self.meta.lines(scenario).rename(columns={"name":"line_name"}).set_index(["line_name"])
flow=pd.merge(flow,line_relations, left_index=True,
right_index=True)
flow=flow[flow["category"] == prop]
flow=flow.drop('category',axis=1)
flow = pd.merge(flow,limits[0].abs(),on = 'line_name',how='left')
flow['Util']=(flow['0_x'].abs()/flow['0_y']).fillna(0)
#If greater than 1 because exceeds flow limit, report as 1
flow['Util'][flow['Util'] > 1] = 1
annual_util=flow['Util'].groupby(["line_name"]).mean().rename(scenario)
# top annual utilized lines
top_utilization = annual_util.nlargest(10, keep='first')
color_dict = dict(zip(self.Scenarios,self.color_list))
if hist == True:
mplt.histogram(annual_util, color_dict,label=scenario, sub_pos=n)
else:
for line in top_utilization.index.get_level_values(level='line_name').unique():
duration_curve = flow.loc[line].sort_values(by='Util',
ascending=False).reset_index(drop=True)
mplt.lineplot(duration_curve, 'Util' ,label=line, sub_pos=n)
axs[n].set_ylim((0,1.1))
data_table.append(annual_util)
mplt.add_legend()
#Remove extra axes
mplt.remove_excess_axs(excess_axs,grid_size)
# add facet labels
mplt.add_facet_labels(xlabels=self.xlabels,
ylabels = self.ylabels)
if hist == True:
if pd.notna(prop):
prop_name = 'All Lines'
else:
prop_name = prop
plt.ylabel('Number of lines', color='black',
rotation='vertical', labelpad=30)
plt.xlabel(f'Line Utilization: {prop_name}', color='black',
rotation='horizontal', labelpad=30)
else:
if pd.notna(prop):
prop_name ='Top 10 Lines'
else:
prop_name = prop
plt.ylabel(f'Line Utilization: {prop_name}', color='black',
rotation='vertical', labelpad=60)
plt.xlabel('Intervals', color='black',
rotation='horizontal', labelpad=20)
if mconfig.parser("plot_title_as_region"):
mplt.add_main_title(zone_input)
try:
del annual_util,
except:
continue
Data_Out = pd.concat(data_table)
outputs[zone_input] = {'fig': fig,'data_table':Data_Out}
return outputs
def int_flow_ind(self, figure_name: str = None, prop: str = None,
start_date_range: str = None,
end_date_range: str = None, **_):
"""Creates a line plot of interchange flows and their import and export limits.
Each interchange is potted on a separate facet plot.
The plot includes every interchange that originates or ends in the aggregation zone.
This can be adjusted by passing a comma separated string of interchanges to the property input.
The code will create either a timeseries or duration curve depending on
if the word 'duration_curve' is in the figure_name.
To make a duration curve, ensure the word 'duration_curve' is found in the figure_name.
Args:
figure_name (str, optional): User defined figure output name.
Defaults to None.
prop (str, optional): Comma separated string of interchanges.
Defaults to None.
start_date_range (str, optional): Defines a start date at which to represent data from.
Defaults to None.
end_date_range (str, optional): Defines a end date at which to represent data to.
Defaults to None.
Returns:
dict: dictionary containing the created plot and its data table
"""
duration_curve=False
if 'duration_curve' in figure_name:
duration_curve = True
# List of properties needed by the plot, properties are a set of tuples and contain 3 parts:
# required True/False, property name and scenarios required, scenarios must be a list.
properties = [(True,"interface_Flow",self.Scenarios),
(True,"interface_Import_Limit",self.Scenarios),
(True,"interface_Export_Limit",self.Scenarios)]
# Runs get_formatted_data within PlotDataHelper to populate PlotDataHelper dictionary
# with all required properties, returns a 1 if required data is missing
check_input_data = self.get_formatted_data(properties)
if 1 in check_input_data:
return MissingInputData()
scenario = self.Scenarios[0]
outputs = {}
if pd.notna(start_date_range):
self.logger.info(f"Plotting specific date range: \
{str(start_date_range)} to {str(end_date_range)}")
for zone_input in self.Zones:
self.logger.info(f"For all interfaces touching Zone = {zone_input}")
Data_Table_Out = pd.DataFrame()
# gets correct metadata based on area aggregation
if self.AGG_BY=='zone':
zone_lines = self.meta.zone_lines(scenario)
else:
zone_lines = self.meta.region_lines(scenario)
try:
zone_lines = zone_lines.set_index([self.AGG_BY])
except:
self.logger.info("Column to Aggregate by is missing")
continue
zone_lines = zone_lines.xs(zone_input)
zone_lines = zone_lines['line_name'].unique()
#Map lines to interfaces
all_ints = self.meta.interface_lines(scenario) #Map lines to interfaces
all_ints.index = all_ints.line
ints = all_ints.loc[all_ints.index.intersection(zone_lines)]
#flow = flow[flow.index.get_level_values('interface_name').isin(ints.interface)] #Limit to only interfaces touching to this zone
#flow = flow.droplevel('interface_category')
export_limits = self["interface_Export_Limit"].get(scenario).copy().droplevel('timestamp')
export_limits.mask(export_limits[0]==0.0,other=0.01,inplace=True) #if limit is zero set to small value
export_limits = export_limits[export_limits.index.get_level_values('interface_name').isin(ints.interface)]
export_limits = export_limits[export_limits[0].abs() < 99998] #Filter out unenforced interfaces.
#Drop unnecessary columns.
export_limits.reset_index(inplace = True)
export_limits.drop(columns=['interface_category', 'units'], inplace=True)
export_limits.set_index('interface_name',inplace = True)
import_limits = self["interface_Import_Limit"].get(scenario).copy().droplevel('timestamp')
import_limits.mask(import_limits[0]==0.0,other=0.01,inplace=True) #if limit is zero set to small value
import_limits = import_limits[import_limits.index.get_level_values('interface_name').isin(ints.interface)]
import_limits = import_limits[import_limits[0].abs() < 99998] #Filter out unenforced interfaces.
reported_ints = import_limits.index.get_level_values('interface_name').unique()
#Drop unnecessary columns.
import_limits.reset_index(inplace = True)
import_limits.drop(columns=['interface_category', 'units'], inplace=True)
import_limits.set_index('interface_name',inplace = True)
#Extract time index
ti = self["interface_Flow"][self.Scenarios[0]].index.get_level_values('timestamp').unique()
if pd.notna(prop):
interf_list = prop.split(',')
self.logger.info('Plotting only interfaces specified in Marmot_plot_select.csv')
self.logger.info(interf_list)
else:
interf_list = reported_ints.copy()
self.logger.info('Plotting full time series results.')
xdim,ydim = self.set_x_y_dimension(len(interf_list))
mplt = PlotLibrary(ydim, xdim, squeeze=False,
ravel_axs=True)
fig, axs = mplt.get_figure()
grid_size = xdim * ydim
excess_axs = grid_size - len(interf_list)
plt.subplots_adjust(wspace=0.05, hspace=0.2)
missing_ints = 0
chunks = []
n = -1
for interf in interf_list:
n += 1
#Remove leading spaces
if interf[0] == ' ':
interf = interf[1:]
if interf in reported_ints:
chunks_interf = []
single_exp_lim = export_limits.loc[interf] / 1000 #TODO: Use auto unit converter
single_imp_lim = import_limits.loc[interf] / 1000
#Check if all hours have the same limit.
check = single_exp_lim.to_numpy()
identical = check[0] == check.all()
limits = pd.concat([single_exp_lim,single_imp_lim],axis = 1)
limits.columns = ['export limit','import limit']
limits.index = ti
for scenario in self.Scenarios:
flow = self["interface_Flow"].get(scenario)
single_int = flow.xs(interf, level='interface_name') / 1000
single_int.index = single_int.index.droplevel(['interface_category','units'])
single_int.columns = [interf]
single_int = single_int.reset_index().set_index('timestamp')
limits = limits.reset_index().set_index('timestamp')
if self.shift_leapday == True:
single_int = self.adjust_for_leapday(single_int)
if pd.notna(start_date_range):
single_int = single_int[start_date_range : end_date_range]
limits = limits[start_date_range : end_date_range]
if duration_curve:
single_int = self.sort_duration(single_int,interf)
mplt.lineplot(single_int, interf,
label=f"{scenario}\n interface flow",
sub_pos=n)
# Only print limits if it doesn't change monthly or if you are plotting a time series.
# Otherwise the limit lines could be misleading.
if not duration_curve or identical[0]:
if scenario == self.Scenarios[-1]:
#Only plot limits for last scenario.
limits_color_dict = {'export limit': 'red', 'import limit': 'green'}
mplt.lineplot(limits, 'export limit',
label='export limit', color=limits_color_dict,
linestyle='--', sub_pos=n)
mplt.lineplot(limits, 'import limit',
label='import limit', color=limits_color_dict,
linestyle='--', sub_pos=n)
#For output time series .csv
scenario_names = pd.Series([scenario] * len(single_int), name='Scenario')
single_int_out = single_int.set_index([scenario_names], append=True)
chunks_interf.append(single_int_out)
Data_out_line = pd.concat(chunks_interf,axis = 0)
Data_out_line.columns = [interf]
chunks.append(Data_out_line)
else:
self.logger.warning(f"{interf} not found in results. Have you tagged "
"it with the 'Must Report' property in PLEXOS?")
excess_axs += 1
missing_ints += 1
continue
axs[n].set_title(interf)
if not duration_curve:
mplt.set_subplot_timeseries_format(sub_pos=n)
if missing_ints == len(interf_list):
outputs = MissingInputData()
return outputs
Data_Table_Out = pd.concat(chunks,axis = 1)
Data_Table_Out = Data_Table_Out.reset_index()
index_name = 'level_0' if duration_curve else 'timestamp'
Data_Table_Out = Data_Table_Out.pivot(index = index_name,columns = 'Scenario')
#Limits_Out = pd.concat(limits_chunks,axis = 1)
#Limits_Out.index = ['Export Limit','Import Limit']
# Data_Table_Out = Data_Table_Out.reset_index()
# Data_Table_Out = Data_Table_Out.groupby(Data_Table_Out.index // 24).mean()
# Data_Table_Out.index = pd.date_range(start = '1/1/2024',end = '12/31/2024',freq = 'D')
mplt.add_legend()
plt.ylabel('Flow (GW)', color='black', rotation='vertical',
labelpad=30)
if duration_curve:
plt.xlabel('Sorted hour of the year', color='black', labelpad=30)
plt.tight_layout(rect=[0, 0.03, 1, 0.97])
if mconfig.parser("plot_title_as_region"):
mplt.add_main_title(zone_input)
outputs[zone_input] = {'fig': fig, 'data_table': Data_Table_Out}
#Limits_Out.to_csv(os.path.join(self.Marmot_Solutions_folder, 'Figures_Output',self.AGG_BY + '_transmission','Individual_Interface_Limits.csv'))
return outputs
def int_flow_ind_seasonal(self, figure_name: str = None, prop: str = None,
start_date_range: str = None,
end_date_range: str = None, **_):
"""#TODO: Finish Docstring
Args:
figure_name (str, optional): User defined figure output name.
Defaults to None.
prop (str, optional): Comma separated string of interchanges.
Defaults to None.
start_date_range (str, optional): Defines a start date at which to represent data from.
Defaults to None.
end_date_range (str, optional): Defines a end date at which to represent data to.
Defaults to None.
Returns:
dict: dictionary containing the created plot and its data table
"""
#TODO: Use auto unit converter in method
duration_curve=False
if 'duration_curve' in figure_name:
duration_curve = True
# List of properties needed by the plot, properties are a set of tuples and contain 3 parts:
# required True/False, property name and scenarios required, scenarios must be a list.
properties = [(True,"interface_Flow",self.Scenarios),
(True,"interface_Import_Limit",self.Scenarios),
(True,"interface_Export_Limit",self.Scenarios)]
# Runs get_formatted_data within PlotDataHelper to populate PlotDataHelper dictionary
# with all required properties, returns a 1 if required data is missing
check_input_data = self.get_formatted_data(properties)
if 1 in check_input_data:
return MissingInputData()
scenario = self.Scenarios[0]
outputs = {}
for zone_input in self.Zones:
self.logger.info("For all interfaces touching Zone = "+zone_input)
Data_Table_Out = pd.DataFrame()
# gets correct metadata based on area aggregation
if self.AGG_BY=='zone':
zone_lines = self.meta.zone_lines(scenario)
else:
zone_lines = self.meta.region_lines(scenario)
try:
zone_lines = zone_lines.set_index([self.AGG_BY])
except:
self.logger.info("Column to Aggregate by is missing")
continue
zone_lines = zone_lines.xs(zone_input)
zone_lines = zone_lines['line_name'].unique()
#Map lines to interfaces
all_ints = self.meta.interface_lines(scenario) #Map lines to interfaces
all_ints.index = all_ints.line
ints = all_ints.loc[all_ints.index.intersection(zone_lines)]
#flow = flow[flow.index.get_level_values('interface_name').isin(ints.interface)] #Limit to only interfaces touching to this zone
#flow = flow.droplevel('interface_category')
export_limits = self["interface_Export_Limit"].get(scenario).droplevel('timestamp')
export_limits.mask(export_limits[0]==0.0,other=0.01,inplace=True) #if limit is zero set to small value
export_limits = export_limits[export_limits.index.get_level_values('interface_name').isin(ints.interface)]
export_limits = export_limits[export_limits[0].abs() < 99998] #Filter out unenforced interfaces.
#Drop unnecessary columns.
export_limits.reset_index(inplace = True)
export_limits.drop(columns = 'interface_category',inplace = True)
export_limits.set_index('interface_name',inplace = True)
import_limits = self["interface_Import_Limit"].get(scenario).droplevel('timestamp')
import_limits.mask(import_limits[0]==0.0,other=0.01,inplace=True) #if limit is zero set to small value
import_limits = import_limits[import_limits.index.get_level_values('interface_name').isin(ints.interface)]
import_limits = import_limits[import_limits[0].abs() < 99998] #Filter out unenforced interfaces.
reported_ints = import_limits.index.get_level_values('interface_name').unique()
#Drop unnecessary columns.
import_limits.reset_index(inplace = True)
import_limits.drop(columns = 'interface_category',inplace = True)
import_limits.set_index('interface_name',inplace = True)
#Extract time index
ti = self["interface_Flow"][self.Scenarios[0]].index.get_level_values('timestamp').unique()
if prop != '':
interf_list = prop.split(',')
self.logger.info('Plotting only interfaces specified in Marmot_plot_select.csv')
self.logger.info(interf_list)
else:
interf_list = reported_ints.copy()
self.logger.info('Carving out season from ' + start_date_range + ' to ' + end_date_range)
#Remove missing interfaces from the list.
for interf in interf_list:
#Remove leading spaces
if interf[0] == ' ':
interf = interf[1:]
if interf not in reported_ints:
self.logger.warning(interf + ' not found in results.')
interf_list.remove(interf)
if not interf_list:
outputs = MissingInputData()
return outputs
xdim = 2
ydim = len(interf_list)
mplt = PlotLibrary(ydim, xdim, squeeze=False)
fig, axs = mplt.get_figure()
grid_size = xdim * ydim
excess_axs = grid_size - len(interf_list)
plt.subplots_adjust(wspace=0.05, hspace=0.2)
missing_ints = 0
chunks = []
limits_chunks = []
n = -1
for interf in interf_list:
n += 1
#Remove leading spaces
if interf[0] == ' ':
interf = interf[1:]
chunks_interf = []
single_exp_lim = export_limits.loc[interf] / 1000
single_imp_lim = import_limits.loc[interf] / 1000
#Check if all hours have the same limit.
check = single_exp_lim.to_numpy()
identical = check[0] == check.all()
limits = pd.concat([single_exp_lim,single_imp_lim],axis = 1)
limits.columns = ['export limit','import limit']
limits.index = ti
for scenario in self.Scenarios:
flow = self["interface_Flow"].get(scenario)
single_int = flow.xs(interf,level = 'interface_name') / 1000
single_int.index = single_int.index.droplevel('interface_category')
single_int.columns = [interf]
if self.shift_leapday == True:
single_int = self.adjust_for_leapday(single_int)
summer = single_int[start_date_range:end_date_range]
winter = single_int.drop(summer.index)
summer_lim = limits[start_date_range:end_date_range]
winter_lim = limits.drop(summer.index)
if duration_curve:
summer = self.sort_duration(summer,interf)
winter = self.sort_duration(winter,interf)
summer_lim = self.sort_duration(summer_lim,'export limit')
winter_lim = self.sort_duration(winter_lim,'export limit')
axs[n,0].plot(summer[interf],linewidth = 1,label = scenario + '\n interface flow')
axs[n,1].plot(winter[interf],linewidth = 1,label = scenario + '\n interface flow')
if scenario == self.Scenarios[-1]:
for col in summer_lim:
limits_color_dict = {'export limit': 'red', 'import limit': 'green'}
axs[n,0].plot(summer_lim[col], linewidth=1, linestyle='--',
color=limits_color_dict[col], label=col)
axs[n,1].plot(winter_lim[col], linewidth=1, linestyle='--',
color=limits_color_dict[col], label=col)
#For output time series .csv
scenario_names = pd.Series([scenario] * len(single_int), name='Scenario')
single_int_out = single_int.set_index([scenario_names], append=True)
chunks_interf.append(single_int_out)
Data_out_line = pd.concat(chunks_interf,axis = 0)
Data_out_line.columns = [interf]
chunks.append(Data_out_line)
axs[n,0].set_title(interf)
axs[n,1].set_title(interf)
if not duration_curve:
locator = mdates.AutoDateLocator(minticks=4, maxticks=8)
formatter = mdates.ConciseDateFormatter(locator)
formatter.formats[2] = '%d\n %b'
formatter.zero_formats[1] = '%b\n %Y'
formatter.zero_formats[2] = '%d\n %b'
formatter.zero_formats[3] = '%H:%M\n %d-%b'
formatter.offset_formats[3] = '%b %Y'
formatter.show_offset = False
axs[n,0].xaxis.set_major_locator(locator)
axs[n,0].xaxis.set_major_formatter(formatter)
axs[n,1].xaxis.set_major_locator(locator)
axs[n,1].xaxis.set_major_formatter(formatter)
mplt.add_legend()
Data_Table_Out = pd.concat(chunks,axis = 1)
#Limits_Out = pd.concat(limits_chunks,axis = 1)
#Limits_Out.index = ['Export Limit','Import Limit']
plt.ylabel('Flow (GW)', color='black', rotation='vertical', labelpad=30)
if duration_curve:
plt.xlabel('Sorted hour of the year', color = 'black', labelpad = 30)
fig.text(0.15,0.98,'Summer (' + start_date_range + ' to ' + end_date_range + ')',fontsize = 16)
fig.text(0.58,0.98,'Winter',fontsize = 16)
plt.tight_layout(rect=[0, 0.03, 1, 0.97])
if mconfig.parser("plot_title_as_region"):
mplt.add_main_title(zone_input)
outputs[zone_input] = {'fig': fig, 'data_table': Data_Table_Out}
#Limits_Out.to_csv(os.path.join(self.Marmot_Solutions_folder, 'Figures_Output',self.AGG_BY + '_transmission','Individual_Interface_Limits.csv'))
return outputs
#TODO: re-organize parameters (self vs. not self)
def int_flow_ind_diff(self, figure_name: str = None, **_):
"""Plot under development
This method plots the hourly difference in interface flow between two scenarios for
individual interfaces, with a facet for each interface.
The two scenarios are defined in the "Scenario_Diff" row of Marmot_user_defined_inputs.
The interfaces are specified in the plot properties field of Marmot_plot_select.csv (column 4).
The figure and data tables are saved within the module.
Returns:
UnderDevelopment(): Exception class, plot is not functional.
"""
return UnderDevelopment() # TODO: add new get_data method
duration_curve=False
if 'duration_curve' in figure_name:
duration_curve = True
check_input_data = []
Flow_Collection = {}
Import_Limit_Collection = {}
Export_Limit_Collection = {}
check_input_data.extend([get_data(Flow_Collection,"interface_Flow",self.Marmot_Solutions_folder, self.Scenarios)])
check_input_data.extend([get_data(Import_Limit_Collection,"interface_Import_Limit",self.Marmot_Solutions_folder, self.Scenarios)])
check_input_data.extend([get_data(Export_Limit_Collection,"interface_Export_Limit",self.Marmot_Solutions_folder, self.Scenarios)])
if 1 in check_input_data:
outputs = MissingInputData()
return outputs
scenario = self.Scenarios[0]
outputs = {}
if not pd.isnull(self.start_date):
self.logger.info("Plotting specific date range: \
{} to {}".format(str(self.start_date),str(self.end_date)))
for zone_input in self.Zones:
self.logger.info("For all interfaces touching Zone = "+zone_input)
Data_Table_Out = pd.DataFrame()
# gets correct metadata based on area aggregation
if self.AGG_BY=='zone':
zone_lines = self.meta.zone_lines(scenario)
else:
zone_lines = self.meta.region_lines(scenario)
try:
zone_lines = zone_lines.set_index([self.AGG_BY])
except:
self.logger.info("Column to Aggregate by is missing")
continue
zone_lines = zone_lines.xs(zone_input)
zone_lines = zone_lines['line_name'].unique()
#Map lines to interfaces
all_ints = self.meta.interface_lines(scenario) #Map lines to interfaces
all_ints.index = all_ints.line
ints = all_ints.loc[all_ints.index.intersection(zone_lines)]
#flow = flow[flow.index.get_level_values('interface_name').isin(ints.interface)] #Limit to only interfaces touching to this zone
#flow = flow.droplevel('interface_category')
export_limits = Export_Limit_Collection.get(scenario).droplevel('timestamp')
export_limits.mask(export_limits[0]==0.0,other=0.01,inplace=True) #if limit is zero set to small value
export_limits = export_limits[export_limits.index.get_level_values('interface_name').isin(ints.interface)]
export_limits = export_limits[export_limits[0].abs() < 99998] #Filter out unenforced interfaces.
#Drop unnecessary columns.
export_limits.reset_index(inplace = True)
export_limits.drop(columns = 'interface_category',inplace = True)
export_limits.set_index('interface_name',inplace = True)
import_limits = Import_Limit_Collection.get(scenario).droplevel('timestamp')
import_limits.mask(import_limits[0]==0.0,other=0.01,inplace=True) #if limit is zero set to small value
import_limits = import_limits[import_limits.index.get_level_values('interface_name').isin(ints.interface)]
import_limits = import_limits[import_limits[0].abs() < 99998] #Filter out unenforced interfaces.
reported_ints = import_limits.index.get_level_values('interface_name').unique()
#Drop unnecessary columns.
import_limits.reset_index(inplace = True)
import_limits.drop(columns = 'interface_category',inplace = True)
import_limits.set_index('interface_name',inplace = True)
#Extract time index
ti = Flow_Collection[self.Scenarios[0]].index.get_level_values('timestamp').unique()
if self.prop != '':
interf_list = self.prop.split(',')
self.logger.info('Plotting only interfaces specified in Marmot_plot_select.csv')
self.logger.info(interf_list)
else:
interf_list = reported_ints.copy()
self.logger.info('Plotting full time series results.')
xdim,ydim = self.set_x_y_dimension(len(interf_list))
mplt = PlotLibrary(nrows, ncols,
squeeze=False, ravel_axs=True)
fig, axs = mplt.get_figure()
grid_size = xdim * ydim
excess_axs = grid_size - len(interf_list)
plt.subplots_adjust(wspace=0.05, hspace=0.2)
missing_ints = 0
chunks = []
limits_chunks = []
n = -1
for interf in interf_list:
n += 1
#Remove leading spaces
if interf[0] == ' ':
interf = interf[1:]
if interf in reported_ints:
chunks_interf = []
single_exp_lim = export_limits.loc[interf] / 1000 #TODO: Use auto unit converter in method
single_imp_lim = import_limits.loc[interf] / 1000
#Check if all hours have the same limit.
check = single_exp_lim.to_numpy()
identical = check[0] == check.all()
limits = pd.concat([single_exp_lim,single_imp_lim],axis = 1)
limits.columns = ['export limit','import limit']
limits.index = ti
for scenario in self.Scenarios:
flow = Flow_Collection.get(scenario)
single_int = flow.xs(interf,level = 'interface_name') / 1000
single_int.index = single_int.index.droplevel('interface_category')
single_int.columns = [interf]
if self.shift_leapday == True:
single_int = self.adjust_for_leapday(single_int)
single_int = single_int.reset_index().set_index('timestamp')
limits = limits.reset_index().set_index('timestamp')
if not pd.isnull(self.start_date):
single_int = single_int[self.start_date : self.end_date]
limits = limits[self.start_date : self.end_date]
if duration_curve:
single_int = self.sort_duration(single_int,interf)
mplt.lineplot(single_int,interf,label = scenario + '\n interface flow', sub_pos = n)
#Only print limits if it doesn't change monthly or if you are plotting a time series. Otherwise the limit lines could be misleading.
if not duration_curve or identical[0]:
if scenario == self.Scenarios[-1]:
#Only plot limits for last scenario.
limits_color_dict = {'export limit': 'red', 'import limit': 'green'}
mplt.lineplot(limits,'export limit',label = 'export limit',color = limits_color_dict,linestyle = '--', sub_pos = n)
mplt.lineplot(limits,'import limit',label = 'import limit',color = limits_color_dict,linestyle = '--', sub_pos = n)
#For output time series .csv
scenario_names = pd.Series([scenario] * len(single_int),name = 'Scenario')
single_int_out = single_int.set_index([scenario_names],append = True)
chunks_interf.append(single_int_out)
Data_out_line = pd.concat(chunks_interf,axis = 0)
Data_out_line.columns = [interf]
chunks.append(Data_out_line)
else:
self.logger.warning(interf + ' not found in results. Have you tagged it with the "Must Report" property in PLEXOS?')
excess_axs += 1
missing_ints += 1
continue
axs[n].set_title(interf)
handles, labels = axs[n].get_legend_handles_labels()
if not duration_curve:
self.set_subplot_timeseries_format(axs, sub_pos=n)
if n == len(interf_list) - 1:
axs[n].legend(loc='lower left',bbox_to_anchor=(1.05,-0.2))
if missing_ints == len(interf_list):
outputs = MissingInputData()
return outputs
Data_Table_Out = pd.concat(chunks,axis = 1)
Data_Table_Out = Data_Table_Out.reset_index()
index_name = 'level_0' if duration_curve else 'timestamp'
Data_Table_Out = Data_Table_Out.pivot(index = index_name,columns = 'Scenario')
#Limits_Out = pd.concat(limits_chunks,axis = 1)
#Limits_Out.index = ['Export Limit','Import Limit']
# Data_Table_Out = Data_Table_Out.reset_index()
# Data_Table_Out = Data_Table_Out.groupby(Data_Table_Out.index // 24).mean()
# Data_Table_Out.index = pd.date_range(start = '1/1/2024',end = '12/31/2024',freq = 'D')
plt.ylabel('Flow (GW)', color='black', rotation='vertical', labelpad=30)
if duration_curve:
plt.xlabel('Sorted hour of the year', color = 'black', labelpad = 30)
plt.tight_layout(rect=[0, 0.03, 1, 0.97])
if mconfig.parser("plot_title_as_region"):
mplt.add_main_title(zone_input)
outputs[zone_input] = {'fig': fig, 'data_table': Data_Table_Out}
#Limits_Out.to_csv(os.path.join(self.Marmot_Solutions_folder, 'Figures_Output',self.AGG_BY + '_transmission','Individual_Interface_Limits.csv'))
return outputs
def line_flow_ind(self, figure_name: str = None, prop: str = None, **_):
"""
#TODO: Finish Docstring
This method plots flow, import and export limit, for individual transmission lines,
with a facet for each line.
The lines are specified in the plot properties field of Marmot_plot_select.csv (column 4).
The plot includes every interchange that originates or ends in the aggregation zone.
Figures and data tables are returned to plot_main
Args:
figure_name (str, optional): [description]. Defaults to None.
prop (str, optional): [description]. Defaults to None.
Returns:
[type]: [description]
"""
#TODO: Use auto unit converter in method
duration_curve=False
if 'duration_curve' in figure_name:
duration_curve = True
# List of properties needed by the plot, properties are a set of tuples and contain 3 parts:
# required True/False, property name and scenarios required, scenarios must be a list.
properties = [(True,"line_Flow",self.Scenarios),
(True,"line_Import_Limit",self.Scenarios),
(True,"line_Export_Limit",self.Scenarios)]
# Runs get_formatted_data within PlotDataHelper to populate PlotDataHelper dictionary
# with all required properties, returns a 1 if required data is missing
check_input_data = self.get_formatted_data(properties)
if 1 in check_input_data:
return MissingInputData()
#Select only lines specified in Marmot_plot_select.csv.
select_lines = prop.split(",")
if select_lines == None:
return InputSheetError()
self.logger.info('Plotting only lines specified in Marmot_plot_select.csv')
self.logger.info(select_lines)
scenario = self.Scenarios[0] #Select single scenario for purpose of extracting limits.
export_limits = self["line_Export_Limit"].get(scenario).droplevel('timestamp')
export_limits.mask(export_limits[0]==0.0,other=0.01,inplace=True) #if limit is zero set to small value
export_limits = export_limits[export_limits[0].abs() < 99998] #Filter out unenforced lines.
import_limits = self["line_Import_Limit"].get(scenario).droplevel('timestamp')
import_limits.mask(import_limits[0]==0.0,other=0.01,inplace=True) #if limit is zero set to small value
import_limits = import_limits[import_limits[0].abs() < 99998] #Filter out unenforced lines.
flows = self["line_Flow"][scenario]
# limited_lines = []
# i = 0
# all_lines = flows.index.get_level_values('line_name').unique()
# for line in all_lines:
# i += 1
# print(line)
# print(i / len(all_lines))
# exp = export_limits.loc[line].squeeze()[0]
# imp = import_limits.loc[line].squeeze()[0]
# flow = flows.xs(line,level = 'line_name')[0].tolist()
# if exp in flow or imp in flow:
# limited_lines.append(line)
# print(limited_lines)
# pd.DataFrame(limited_lines).to_csv('/Users/mschwarz/OR OSW local/Solutions/Figures_Output/limited_lines.csv')
xdim,ydim = self.set_x_y_dimension(len(select_lines))
grid_size = xdim * ydim
excess_axs = grid_size - len(select_lines)
mplt = PlotLibrary(ydim, xdim, squeeze=False,
ravel_axs=True)
fig, axs = mplt.get_figure()
reported_lines = self["line_Flow"][self.Scenarios[0]].index.get_level_values('line_name').unique()
n = -1
missing_lines = 0
chunks = []
limits_chunks = []
for line in select_lines:
n += 1
#Remove leading spaces
if line[0] == ' ':
line = line[1:]
if line in reported_lines:
chunks_line = []
single_exp_lim = export_limits.loc[line]
single_imp_lim = import_limits.loc[line]
limits = pd.concat([single_exp_lim,single_imp_lim])
limits_chunks.append(limits)
single_exp_lim = single_exp_lim.squeeze()
single_imp_lim = single_imp_lim.squeeze()
# If export/import limits were pulled as an interval property, take the average.
if len(single_exp_lim) > 1:
single_exp_lim = single_exp_lim.mean()
single_imp_lim = single_imp_lim.mean()
limits = pd.Series([single_exp_lim,single_imp_lim],name = line)
limits_chunks.append(limits)
for scenario in self.Scenarios:
flow = self["line_Flow"][scenario]
single_line = flow.xs(line,level = 'line_name')
single_line = single_line.droplevel('units')
single_line.columns = [line]
if self.shift_leapday == True:
single_line = self.adjust_for_leapday(single_line)
single_line_out = single_line.copy()
if duration_curve:
single_line = self.sort_duration(single_line,line)
mplt.lineplot(single_line, line, label = scenario + '\n line flow', sub_pos=n)
#Add %congested number to plot.
if scenario == self.Scenarios[0]:
viol_exp = single_line[single_line[line] > single_exp_lim].count()
viol_imp = single_line[single_line[line] < single_imp_lim].count()
viol_perc = 100 * (viol_exp + viol_imp) / len(single_line)
viol_perc = round(viol_perc.squeeze(),3)
axs[n].annotate('Violation = ' + str(viol_perc) + '% of hours', xy = (0.1,0.15),xycoords='axes fraction')
cong_exp = single_line[single_line[line] == single_exp_lim].count()
cong_imp = single_line[single_line[line] == single_imp_lim].count()
cong_perc = 100 * (cong_exp + cong_imp) / len(single_line)
cong_perc = round(cong_perc.squeeze(),0)
axs[n].annotate('Congestion = ' + str(cong_perc) + '% of hours', xy = (0.1,0.1),xycoords='axes fraction')
#For output time series .csv
scenario_names = pd.Series([scenario] * len(single_line_out),name = 'Scenario')
single_line_out = single_line_out.set_index([scenario_names],append = True)
chunks_line.append(single_line_out)
Data_out_line = pd.concat(chunks_line,axis = 0)
chunks.append(Data_out_line)
else:
self.logger.warning(line + ' not found in results. Have you tagged it with the "Must Report" property in PLEXOS?')
excess_axs += 1
missing_lines += 1
continue
mplt.remove_excess_axs(excess_axs,grid_size)
axs[n].axhline(y = single_exp_lim, ls = '--',label = 'Export Limit',color = 'red')
axs[n].axhline(y = single_imp_lim, ls = '--',label = 'Import Limit', color = 'green')
axs[n].set_title(line)
if not duration_curve:
mplt.set_subplot_timeseries_format(sub_pos=n)
if missing_lines == len(select_lines):
outputs = MissingInputData()
return outputs
Data_Table_Out = pd.concat(chunks,axis = 1)
#Limits_Out = pd.concat(limits_chunks,axis = 1)
#Limits_Out.index = ['Export Limit','Import Limit']
mplt.add_legend()
plt.ylabel('Flow (MW)', color='black', rotation='vertical', labelpad=30)
#plt.tight_layout(rect=[0, 0.03, 1, 0.97])
plt.tight_layout()
fn_suffix = '_duration_curve' if duration_curve else ''
fig.savefig(os.path.join(self.Marmot_Solutions_folder, 'Figures_Output',self.AGG_BY + '_transmission',figure_name + fn_suffix + '.svg'), dpi=600, bbox_inches='tight')
Data_Table_Out.to_csv(os.path.join(self.Marmot_Solutions_folder, 'Figures_Output',self.AGG_BY + '_transmission',figure_name + fn_suffix + '.csv'))
# Limits_Out.to_csv(os.path.join(self.Marmot_Solutions_folder, 'Figures_Output',self.AGG_BY + '_transmission',figure_name + 'limits.csv'))
outputs = DataSavedInModule()
return outputs
def line_flow_ind_diff(self, figure_name: str = None,
prop: str = None, **_):
"""
#TODO: Finish Docstring
This method plots the flow difference for individual transmission lines, with a facet for each line.
The scenarios are specified in the "Scenario_Diff_plot" field of Marmot_user_defined_inputs.csv.
The lines are specified in the plot properties field of Marmot_plot_select.csv (column 4).
Figures and data tables are saved in the module.
Args:
figure_name (str, optional): [description]. Defaults to None.
prop (str, optional): [description]. Defaults to None.
Returns:
[type]: [description]
"""
#TODO: Use auto unit converter in method
duration_curve=False
if 'duration_curve' in figure_name:
duration_curve = True
# List of properties needed by the plot, properties are a set of tuples and contain 3 parts:
# required True/False, property name and scenarios required, scenarios must be a list.
properties = [(True,"line_Flow",self.Scenarios)]
# Runs get_formatted_data within PlotDataHelper to populate PlotDataHelper dictionary
# with all required properties, returns a 1 if required data is missing
check_input_data = self.get_formatted_data(properties)
if 1 in check_input_data:
outputs = MissingInputData()
return outputs
#Select only lines specified in Marmot_plot_select.csv.
select_lines = prop.split(",")
if select_lines == None:
outputs = InputSheetError()
return outputs
self.logger.info('Plotting only lines specified in Marmot_plot_select.csv')
self.logger.info(select_lines)
flow_diff = self["line_Flow"].get(self.Scenario_Diff[1]) - self["line_Flow"].get(self.Scenario_Diff[0])
xdim,ydim = self.set_x_y_dimension(len(select_lines))
grid_size = xdim * ydim
excess_axs = grid_size - len(select_lines)
mplt = PlotLibrary(ydim, xdim, squeeze=False,
ravel_axs=True)
fig, axs = mplt.get_figure()
plt.subplots_adjust(wspace=0.05, hspace=0.2)
reported_lines = self["line_Flow"].get(self.Scenarios[0]).index.get_level_values('line_name').unique()
n = -1
missing_lines = 0
chunks = []
for line in select_lines:
n += 1
#Remove leading spaces
if line[0] == ' ':
line = line[1:]
if line in reported_lines:
single_line = flow_diff.xs(line,level = 'line_name')
single_line.columns = [line]
if self.shift_leapday == True:
single_line = self.adjust_for_leapday(single_line)
single_line_out = single_line.copy()
if duration_curve:
single_line = self.sort_duration(single_line,line)
#mplt.lineplot(single_line,line, label = self.Scenario_Diff[1] + ' - \n' + self.Scenario_Diff[0] + '\n line flow', sub_pos = n)
mplt.lineplot(single_line,line, label = 'BESS - no BESS \n line flow', sub_pos=n)
else:
self.logger.warning(line + ' not found in results. Have you tagged it with the "Must Report" property in PLEXOS?')
excess_axs += 1
missing_lines += 1
continue
mplt.remove_excess_axs(excess_axs,grid_size)
axs[n].set_title(line)
if not duration_curve:
mplt.set_subplot_timeseries_format(sub_pos=n)
chunks.append(single_line_out)
if missing_lines == len(select_lines):
outputs = MissingInputData()
return outputs
Data_Table_Out = pd.concat(chunks,axis = 1)
mplt.add_legend()
plt.ylabel('Flow difference (MW)', color='black', rotation='vertical', labelpad=30)
plt.tight_layout()
fn_suffix = '_duration_curve' if duration_curve else ''
fig.savefig(os.path.join(self.Marmot_Solutions_folder, 'Figures_Output',self.AGG_BY + '_transmission',figure_name + fn_suffix + '.svg'), dpi=600, bbox_inches='tight')
Data_Table_Out.to_csv(os.path.join(self.Marmot_Solutions_folder, 'Figures_Output',self.AGG_BY + '_transmission',figure_name + fn_suffix + '.csv'))
outputs = DataSavedInModule()
return outputs
def line_flow_ind_seasonal(self, figure_name: str = None, prop: str = None,
start_date_range: str = None,
end_date_range: str = None, **_):
"""TODO: Finish Docstring.
This method differs from the previous method, in that it plots seasonal line limits.
To use this method, line import/export must be an "interval" property, not a "year" property.
This can be selected in "plexos_properties.csv".
Re-run the formatter if necessary, it will overwrite the existing properties in "*_formatted.h5"
This method plots flow, import and export limit, for individual transmission lines, with a facet for each line.
The lines are specified in the plot properties field of Marmot_plot_select.csv (column 4).
The plot includes every interchange that originates or ends in the aggregation zone.
Figures and data tables saved in the module.
Args:
figure_name (str, optional): [description]. Defaults to None.
prop (str, optional): [description]. Defaults to None.
start_date_range (str, optional): [description]. Defaults to None.
end_date_range (str, optional): [description]. Defaults to None.
Returns:
[type]: [description]
"""
#TODO: Use auto unit converter in method
if pd.isna(start_date_range):
self.logger.warning('You are attempting to plot a time series facetted by two seasons,\n\
but you are missing a value in the "Start Date" column of "Marmot_plot_select.csv" \
Please enter dates in "Start Date" and "End Date". These will define the bounds of \
one of your two seasons. The other season will be comprised of the rest of the year.')
return MissingInputData()
duration_curve=False
if 'duration_curve' in figure_name:
duration_curve = True
# List of properties needed by the plot, properties are a set of tuples and contain 3 parts:
# required True/False, property name and scenarios required, scenarios must be a list.
properties = [(True,"line_Flow",self.Scenarios),
(True,"line_Import_Limit",self.Scenarios),
(True,"line_Export_Limit",self.Scenarios)]
# Runs get_formatted_data within PlotDataHelper to populate PlotDataHelper dictionary
# with all required properties, returns a 1 if required data is missing
check_input_data = self.get_formatted_data(properties)
if 1 in check_input_data:
return MissingInputData()
#Select only lines specified in Marmot_plot_select.csv.
select_lines = prop.split(",")
if select_lines == None:
return InputSheetError()
self.logger.info('Plotting only lines specified in Marmot_plot_select.csv')
self.logger.info(select_lines)
scenario = self.Scenarios[0]
#Line limits are seasonal.
export_limits = self["line_Export_Limit"].get(scenario).droplevel('timestamp')
export_limits.mask(export_limits[0]==0.0,other=0.01,inplace=True) #if limit is zero set to small value
export_limits = export_limits[export_limits[0].abs() < 99998] #Filter out unenforced lines.
import_limits = self["line_Import_Limit"].get(scenario).droplevel('timestamp')
import_limits.mask(import_limits[0]==0.0,other=0.01,inplace=True) #if limit is zero set to small value
import_limits = import_limits[import_limits[0].abs() < 99998] #Filter out unenforced lines.
#Extract time index
ti = self["line_Flow"][self.Scenarios[0]].index.get_level_values('timestamp').unique()
reported_lines = self["line_Flow"][self.Scenarios[0]].index.get_level_values('line_name').unique()
self.logger.info('Carving out season from ' + start_date_range + ' to ' + end_date_range)
#Remove missing interfaces from the list.
for line in select_lines:
#Remove leading spaces
if line[0] == ' ':
line = line[1:]
if line not in reported_lines:
self.logger.warning(line + ' not found in results.')
select_lines.remove(line)
if not select_lines:
outputs = MissingInputData()
return outputs
xdim = 2
ydim = len(select_lines)
grid_size = xdim * ydim
excess_axs = grid_size - len(select_lines)
mplt = PlotLibrary(ydim, xdim, squeeze=False)
fig, axs = mplt.get_figure()
i = -1
missing_lines = 0
chunks = []
limits_chunks = []
for line in select_lines:
i += 1
#Remove leading spaces
if line[0] == ' ':
line = line[1:]
chunks_line = []
single_exp_lim = export_limits.loc[line]
single_exp_lim.index = ti
single_imp_lim = import_limits.loc[line]
single_imp_lim.index = ti
limits = pd.concat([single_exp_lim,single_imp_lim],axis = 1)
limits.columns = ['export limit','import limit']
limits.index = ti
limits_chunks.append(limits)
for scenario in self.Scenarios:
flow = self["line_Flow"][scenario]
single_line = flow.xs(line,level = 'line_name')
single_line = single_line.droplevel('units')
single_line_out = single_line.copy()
single_line.columns = [line]
if self.shift_leapday == True:
single_line = self.adjust_for_leapday(single_line)
#Split into seasons.
summer = single_line[start_date_range : end_date_range]
winter = single_line.drop(summer.index)
summer_lim = limits[start_date_range:end_date_range]
winter_lim = limits.drop(summer.index)
if duration_curve:
summer = self.sort_duration(summer,line)
winter = self.sort_duration(winter,line)
summer_lim = self.sort_duration(summer_lim,'export limit')
winter_lim = self.sort_duration(winter_lim,'export limit')
axs[i,0].plot(summer[line],linewidth = 1,label = scenario + '\n line flow')
axs[i,1].plot(winter[line],linewidth = 1,label = scenario + '\n line flow')
if scenario == self.Scenarios[-1]:
for col in summer_lim:
limits_color_dict = {'export limit': 'red', 'import limit': 'green'}
axs[i,0].plot(summer_lim[col],linewidth = 1,linestyle = '--',color = limits_color_dict[col],label = col)
axs[i,1].plot(winter_lim[col],linewidth = 1,linestyle = '--',color = limits_color_dict[col],label = col)
for j in [0,1]:
axs[i,j].spines['right'].set_visible(False)
axs[i,j].spines['top'].set_visible(False)
axs[i,j].tick_params(axis='y', which='major', length=5, width=1)
axs[i,j].tick_params(axis='x', which='major', length=5, width=1)
axs[i,j].set_title(line)
if i == len(select_lines) - 1:
axs[i,j].legend(loc = 'lower left',bbox_to_anchor=(1.05,0),facecolor='inherit', frameon=True)
#For output time series .csv
scenario_names = pd.Series([scenario] * len(single_line_out),name = 'Scenario')
single_line_out.columns = [line]
single_line_out = single_line_out.set_index([scenario_names],append = True)
chunks_line.append(single_line_out)
Data_out_line = pd.concat(chunks_line,axis = 0)
chunks.append(Data_out_line)
if missing_lines == len(select_lines):
outputs = MissingInputData()
return outputs
Data_Table_Out = pd.concat(chunks,axis = 1)
#Limits_Out = pd.concat(limits_chunks,axis = 1)
#Limits_Out.index = ['Export Limit','Import Limit']
fig.text(0.3,1,'Summer (Jun - Sep)')
fig.text(0.6,1,'Winter (Jan - Mar,Oct - Dec)')
plt.ylabel('Flow (MW)', color='black', rotation='vertical', labelpad=30)
plt.tight_layout()
fn_suffix = '_duration_curve' if duration_curve else ''
fig.savefig(os.path.join(self.Marmot_Solutions_folder, 'Figures_Output',self.AGG_BY + '_transmission','Individual_Line_Flow' + fn_suffix + '_seasonal.svg'), dpi=600, bbox_inches='tight')
Data_Table_Out.to_csv(os.path.join(self.Marmot_Solutions_folder, 'Figures_Output',self.AGG_BY + '_transmission','Individual_Line_Flow' + fn_suffix + '_seasonal.csv'))
#Limits_Out.to_csv(os.path.join(self.Marmot_Solutions_folder, 'Figures_Output',self.AGG_BY + '_transmission','Individual_Line_Limits.csv'))
outputs = DataSavedInModule()
return outputs
def extract_tx_cap(self, **_):
"""Plot under development
Returns:
UnderDevelopment(): Exception class, plot is not functional.
"""
return UnderDevelopment() #TODO: Needs finishing
# List of properties needed by the plot, properties are a set of tuples and contain 3 parts:
# required True/False, property name and scenarios required, scenarios must be a list.
properties = [(True,"interface_Import_Limit",self.Scenarios),
(True,"interface_Export_Limit",self.Scenarios),
(True,"line_Import_Limit",self.Scenarios),
(True,"line_Export_Limit",self.Scenarios)]
# Runs get_formatted_data within PlotDataHelper to populate PlotDataHelper dictionary
# with all required properties, returns a 1 if required data is missing
check_input_data = self.get_formatted_data(properties)
if 1 in check_input_data:
return MissingInputData()
for scenario in self.Scenarios:
self.logger.info(scenario)
for zone_input in self.Zones:
#Lines
# lines = self.meta.region_interregionallines(scenario)
# if scenario == 'ADS':
# zone_input = zone_input.split('_WI')[0]
# lines = self.meta_ADS.region_interregionallines()
# lines = lines[lines['region'] == zone_input]
# import_lim = self["line_Import_Limit"][scenario].reset_index()
# export_lim = self["line_Export_Limit"][scenario].reset_index()
# lines = lines.merge(import_lim,how = 'inner',on = 'line_name')
# lines = lines[['line_name',0]]
# lines.columns = ['line_name','import_limit']
# lines = lines.merge(export_lim, how = 'inner',on = 'line_name')
# lines = lines[['line_name','import_limit',0]]
# lines.columns = ['line_name','import_limit','export_limit']
# fn = os.path.join(self.Marmot_Solutions_folder, 'NARIS', 'Figures_Output',self.AGG_BY + '_transmission','Individual_Interregional_Line_Limits_' + scenario + '.csv')
# lines.to_csv(fn)
# lines = self.meta.region_intraregionallines(scenario)
# if scenario == 'ADS':
# lines = self.meta_ADS.region_intraregionallines()
# lines = lines[lines['region'] == zone_input]
# import_lim = self["line_Import_Limit"][scenario].reset_index()
# export_lim = self["line_Export_Limit"][scenario].reset_index()
# lines = lines.merge(import_lim,how = 'inner',on = 'line_name')
# lines = lines[['line_name',0]]
# lines.columns = ['line_name','import_limit']
# lines = lines.merge(export_lim, how = 'inner',on = 'line_name')
# lines = lines[['line_name','import_limit',0]]
# lines.columns = ['line_name','import_limit','export_limit']
# fn = os.path.join(self.Marmot_Solutions_folder, 'NARIS', 'Figures_Output',self.AGG_BY + '_transmission','Individual_Intraregional_Line_Limits_' + scenario + '.csv')
# lines.to_csv(fn)
#Interfaces
PSCo_ints = ['P39 TOT 5_WI','P40 TOT 7_WI']
int_import_lim = self["interface_Import_Limit"][scenario].reset_index()
int_export_lim = self["interface_Export_Limit"][scenario].reset_index()
if scenario == 'NARIS':
last_timestamp = int_import_lim['timestamp'].unique()[-1] #Last because ADS uses the last timestamp.
int_import_lim = int_import_lim[int_import_lim['timestamp'] == last_timestamp]
int_export_lim = int_export_lim[int_export_lim['timestamp'] == last_timestamp]
lines2ints = self.meta_ADS.interface_lines()
else:
lines2ints = self.meta.interface_lines(scenario)
fn = os.path.join(self.Marmot_Solutions_folder, 'NARIS', 'Figures_Output',self.AGG_BY + '_transmission','test_meta_' + scenario + '.csv')
lines2ints.to_csv(fn)
ints = pd.merge(int_import_lim,int_export_lim,how = 'inner', on = 'interface_name')
ints.rename(columns = {'0_x':'import_limit','0_y': 'export_limit'},inplace = True)
all_lines_in_ints = lines2ints['line'].unique()
test = [line for line in lines['line_name'].unique() if line in all_lines_in_ints]
ints = ints.merge(lines2ints, how = 'inner', left_on = 'interface_name',right_on = 'interface')
def region_region_interchange_all_scenarios(self, **kwargs):
"""
#TODO: Finish Docstring
This method creates a timeseries line plot of interchange flows between the selected region
to each connecting region.
If there are more than 4 total interchanges, all other interchanges are aggregated into an 'other' grouping
Each scenarios is plotted on a separate Facet plot.
Figures and data tables are returned to plot_main
"""
outputs = self._region_region_interchange(self.Scenarios, **kwargs)
return outputs
def region_region_interchange_all_regions(self, **kwargs):
"""
#TODO: Finish Docstring
This method creates a timeseries line plot of interchange flows between the selected region
to each connecting region. All regions are plotted on a single figure with each focus region placed on a separate
facet plot
If there are more than 4 total interchanges, all other interchanges are aggregated into an 'other' grouping
This figure only plots a single scenario that is defined by Main_scenario_plot in user_defined_inputs.csv.
Figures and data tables are saved within method
"""
outputs = self._region_region_interchange([self.Scenarios[0]],plot_scenario=False, **kwargs)
return outputs
def _region_region_interchange(self, scenario_type: str, plot_scenario: bool = True,
timezone: str = "", **_):
"""#TODO: Finish Docstring
Args:
scenario_type (str): [description]
plot_scenario (bool, optional): [description]. Defaults to True.
timezone (str, optional): [description]. Defaults to "".
Returns:
[type]: [description]
"""
outputs = {}
if self.AGG_BY == 'zone':
agg = 'zone'
else:
agg = 'region'
# List of properties needed by the plot, properties are a set of tuples and contain 3 parts:
# required True/False, property name and scenarios required, scenarios must be a list.
properties = [(True,f"{agg}_{agg}s_Net_Interchange",scenario_type)]
# Runs get_formatted_data within PlotDataHelper to populate PlotDataHelper dictionary
# with all required properties, returns a 1 if required data is missing
check_input_data = self.get_formatted_data(properties)
if 1 in check_input_data:
return MissingInputData()
for zone_input in self.Zones:
self.logger.info(f"Zone = {zone_input}")
ncols, nrows = self.set_facet_col_row_dimensions(multi_scenario=scenario_type)
mplt = PlotLibrary(nrows, ncols, sharey=True,
squeeze=False, ravel_axs=True)
fig, axs = mplt.get_figure()
plt.subplots_adjust(wspace=0.6, hspace=0.3)
data_table_chunks=[]
n=0
for scenario in scenario_type:
rr_int = self[f"{agg}_{agg}s_Net_Interchange"].get(scenario)
if self.shift_leapday == True:
rr_int = self.adjust_for_leapday(rr_int)
# For plot_main handeling - need to find better solution
if plot_scenario == False:
outputs={}
for zone_input in self.Zones:
outputs[zone_input] = pd.DataFrame()
if self.AGG_BY != 'region' and self.AGG_BY != 'zone':
agg_region_mapping = self.Region_Mapping[['region',self.AGG_BY]].set_index('region').to_dict()[self.AGG_BY]
# Checks if keys all aggregate to a single value, this plot requires multiple values to work
if len(set(agg_region_mapping.values())) == 1:
return UnsupportedAggregation()
rr_int = rr_int.reset_index()
rr_int['parent'] = rr_int['parent'].map(agg_region_mapping)
rr_int['child'] = rr_int['child'].map(agg_region_mapping)
rr_int_agg = rr_int.groupby(['timestamp','parent','child'],as_index=True).sum()
rr_int_agg.rename(columns = {0:'flow (MW)'}, inplace = True)
rr_int_agg = rr_int_agg.reset_index()
# If plotting all regions update plot setup
if plot_scenario == False:
#Make a facet plot, one panel for each parent zone.
parent_region = rr_int_agg['parent'].unique()
plot_number = len(parent_region)
ncols, nrows = self.set_x_y_dimension(plot_number)
mplt = PlotLibrary(nrows, ncols,
squeeze=False, ravel_axs=True)
fig, axs = mplt.get_figure()
plt.subplots_adjust(wspace=0.6, hspace=0.7)
else:
parent_region = [zone_input]
plot_number = len(scenario_type)
grid_size = ncols*nrows
excess_axs = grid_size - plot_number
for parent in parent_region:
single_parent = rr_int_agg[rr_int_agg['parent'] == parent]
single_parent = single_parent.pivot(index = 'timestamp',columns = 'child',values = 'flow (MW)')
single_parent = single_parent.loc[:,(single_parent != 0).any(axis = 0)] #Remove all 0 columns (uninteresting).
if (parent in single_parent.columns):
single_parent = single_parent.drop(columns = [parent]) #Remove columns if parent = child
#Neaten up lines: if more than 4 total interchanges, aggregated all but the highest 3.
if len(single_parent.columns) > 4:
# Set the "three highest zonal interchanges" for all three scenarios.
cols_dontagg = single_parent.max().abs().sort_values(ascending = False)[0:3].index
df_dontagg = single_parent[cols_dontagg]
df_toagg = single_parent.drop(columns = cols_dontagg)
agged = df_toagg.sum(axis = 1)
df_dontagg.insert(len(df_dontagg.columns),'Other',agged)
single_parent = df_dontagg.copy()
#Convert units
if n == 0:
unitconversion = self.capacity_energy_unitconversion(single_parent)
single_parent = single_parent / unitconversion['divisor']
for column in single_parent.columns:
mplt.lineplot(single_parent, column, label=column, sub_pos=n)
axs[n].set_title(parent)
axs[n].margins(x=0.01)
mplt.set_subplot_timeseries_format(sub_pos=n)
axs[n].hlines(y = 0, xmin = axs[n].get_xlim()[0], xmax = axs[n].get_xlim()[1], linestyle = ':') #Add horizontal line at 0.
axs[n].legend(loc='lower left',bbox_to_anchor=(1,0))
n+=1
# Create data table for each scenario
scenario_names = pd.Series([scenario]*len(single_parent),name='Scenario')
data_table = single_parent.add_suffix(f" ({unitconversion['units']})")
data_table = data_table.set_index([scenario_names],append=True)
data_table_chunks.append(data_table)
# if plotting all scenarios add facet labels
if plot_scenario == True:
mplt.add_facet_labels(xlabels=self.xlabels,
ylabels = self.ylabels)
#Remove extra axes
mplt.remove_excess_axs(excess_axs, grid_size)
plt.xlabel(timezone, color='black', rotation='horizontal',labelpad = 30)
plt.ylabel(f"Net Interchange ({unitconversion['units']})", color='black', rotation='vertical', labelpad = 40)
# If plotting all regions save output and return none plot_main
if plot_scenario == False:
# Location to save to
Data_Table_Out = rr_int_agg
save_figures = os.path.join(self.figure_folder, self.AGG_BY + '_transmission')
fig.savefig(os.path.join(save_figures, "Region_Region_Interchange_{}.svg".format(self.Scenarios[0])), dpi=600, bbox_inches='tight')
Data_Table_Out.to_csv(os.path.join(save_figures, "Region_Region_Interchange_{}.csv".format(self.Scenarios[0])))
outputs = DataSavedInModule()
return outputs
Data_Out = pd.concat(data_table_chunks, copy=False, axis=0)
# if plotting all scenarios return figures to plot_main
outputs[zone_input] = {'fig': fig,'data_table':Data_Out}
return outputs
def region_region_checkerboard(self, **_):
"""Creates a checkerboard/heatmap figure showing total interchanges between regions/zones.
Each scenario is plotted on its own facet plot.
Plots and Data are saved within the module.
Returns:
DataSavedInModule: DataSavedInModule exception.
"""
outputs = {}
if self.AGG_BY == 'zone':
agg = 'zone'
else:
agg = 'region'
# List of properties needed by the plot, properties are a set of tuples and contain 3 parts:
# required True/False, property name and scenarios required, scenarios must be a list.
properties = [(True,f"{agg}_{agg}s_Net_Interchange",self.Scenarios)]
# Runs get_formatted_data within PlotDataHelper to populate PlotDataHelper dictionary
# with all required properties, returns a 1 if required data is missing
check_input_data = self.get_formatted_data(properties)
if 1 in check_input_data:
return MissingInputData()
ncols, nrows = self.set_x_y_dimension(len(self.Scenarios))
grid_size = ncols*nrows
excess_axs = grid_size - len(self.Scenarios)
mplt = PlotLibrary(nrows, ncols,
squeeze=False, ravel_axs=True)
fig, axs = mplt.get_figure()
plt.subplots_adjust(wspace=0.02, hspace=0.4)
max_flow_group = []
Data_Out = []
n=0
for scenario in self.Scenarios:
rr_int = self[f"{agg}_{agg}s_Net_Interchange"].get(scenario)
if self.shift_leapday == True:
rr_int = self.adjust_for_leapday(rr_int)
if self.AGG_BY != 'region' and self.AGG_BY != 'zone':
agg_region_mapping = self.Region_Mapping[['region',self.AGG_BY]].set_index('region').to_dict()[self.AGG_BY]
# Checks if keys all aggregate to a single value, this plot requires multiple values to work
if len(set(agg_region_mapping.values())) == 1:
return UnsupportedAggregation()
rr_int = rr_int.reset_index()
rr_int['parent'] = rr_int['parent'].map(agg_region_mapping)
rr_int['child'] = rr_int['child'].map(agg_region_mapping)
rr_int_agg = rr_int.groupby(['parent','child'],as_index=True).sum()
rr_int_agg.rename(columns = {0:'flow (MW)'}, inplace = True)
rr_int_agg=rr_int_agg.loc[rr_int_agg['flow (MW)']>0.01] # Keep only positive flows
rr_int_agg.sort_values(ascending=False,by='flow (MW)')
rr_int_agg = rr_int_agg/1000 # MWh -> GWh
data_out = rr_int_agg.copy()
data_out.rename(columns={'flow (MW)':'{} flow (GWh)'.format(scenario)},inplace=True)
max_flow = max(rr_int_agg['flow (MW)'])
rr_int_agg = rr_int_agg.unstack('child')
rr_int_agg = rr_int_agg.droplevel(level = 0, axis = 1)
current_cmap = plt.cm.get_cmap()
current_cmap.set_bad(color='grey')
axs[n].imshow(rr_int_agg)
axs[n].set_xticks(np.arange(rr_int_agg.shape[1]))
axs[n].set_yticks(np.arange(rr_int_agg.shape[0]))
axs[n].set_xticklabels(rr_int_agg.columns)
axs[n].set_yticklabels(rr_int_agg.index)
axs[n].set_title(scenario.replace('_',' '),fontweight='bold')
# Rotate the tick labels and set their alignment.
plt.setp(axs[n].get_xticklabels(), rotation=30, ha="right",
rotation_mode="anchor")
#Delineate the boxes and make room at top and bottom
axs[n].set_xticks(np.arange(rr_int_agg.shape[1]+1)-.5, minor=True)
axs[n].set_yticks(np.arange(rr_int_agg.shape[0]+1)-.5, minor=True)
axs[n].grid(which="minor", color="k", linestyle='-', linewidth=1)
axs[n].tick_params(which="minor", bottom=False, left=False)
max_flow_group.append(max_flow)
Data_Out.append(data_out)
n+=1
#Remove extra axes
mplt.remove_excess_axs(excess_axs,grid_size)
cmap = cm.inferno
norm = mcolors.Normalize(vmin=0, vmax=max(max_flow_group))
cax = plt.axes([0.90, 0.1, 0.035, 0.8])
fig.colorbar(cm.ScalarMappable(norm=norm, cmap=cmap),
cax=cax, label='Total Net Interchange [GWh]')
plt.xlabel('To Region', color='black', rotation='horizontal',
labelpad=40)
plt.ylabel('From Region', color='black', rotation='vertical',
labelpad=40)
Data_Table_Out = pd.concat(Data_Out,axis=1)
save_figures = os.path.join(self.figure_folder, f"{self.AGG_BY}_transmission")
fig.savefig(os.path.join(save_figures, "region_region_checkerboard.svg"),
dpi=600, bbox_inches='tight')
Data_Table_Out.to_csv(os.path.join(save_figures, "region_region_checkerboard.csv"))
outputs = DataSavedInModule()
return outputs
def line_violations_timeseries(self, **kwargs):
"""Creates a timeseries line plot of lineflow violations for each region.
The magnitude of each violation is plotted on the y-axis
Each sceanrio is plotted as a separate line.
This methods calls _violations() to create the figure.
Returns:
dict: Dictionary containing the created plot and its data table.
"""
outputs = self._violations(**kwargs)
return outputs
def line_violations_totals(self, **kwargs):
"""Creates a barplot of total lineflow violations for each region.
Each sceanrio is plotted as a separate bar.
This methods calls _violations() and passes the total_violations=True argument
to create the figure.
Returns:
dict: Dictionary containing the created plot and its data table.
"""
outputs = self._violations(total_violations=True, **kwargs)
return outputs
def _violations(self, total_violations: bool = False,
timezone: str = "",
start_date_range: str = None,
end_date_range: str = None, **_):
"""Creates line violation plots, line plot and barplots
This methods is called from line_violations_timeseries() and line_violations_totals()
Args:
total_violations (bool, optional): If True finds the sum of violations.
Used to create barplots. Defaults to False.
timezone (str, optional): The timezone to display on the x-axes.
Defaults to "".
start_date_range (str, optional): Defines a start date at which to represent data from.
Defaults to None.
end_date_range (str, optional): Defines a end date at which to represent data to.
Defaults to None.
Returns:
dict: dictionary containing the created plot and its data table
"""
outputs = {}
# List of properties needed by the plot, properties are a set of tuples and contain 3 parts:
# required True/False, property name and scenarios required, scenarios must be a list.
properties = [(True,"line_Violation",self.Scenarios)]
# Runs get_formatted_data within PlotDataHelper to populate PlotDataHelper dictionary
# with all required properties, returns a 1 if required data is missing
check_input_data = self.get_formatted_data(properties)
if 1 in check_input_data:
return MissingInputData()
for zone_input in self.Zones:
self.logger.info(f'Zone = {zone_input}')
all_scenarios = pd.DataFrame()
for scenario in self.Scenarios:
self.logger.info(f"Scenario = {str(scenario)}")
if self.AGG_BY == 'zone':
lines = self.meta.zone_lines(scenario)
else:
lines = self.meta.region_lines(scenario)
line_v = self["line_Violation"].get(scenario)
line_v = line_v.reset_index()
viol = line_v.merge(lines,on = 'line_name',how = 'left')
if self.AGG_BY == 'zone':
viol = viol.groupby(["timestamp", "zone"]).sum()
else:
viol = viol.groupby(["timestamp", self.AGG_BY]).sum()
one_zone = viol.xs(zone_input, level = self.AGG_BY)
one_zone = one_zone.rename(columns = {0 : scenario})
one_zone = one_zone.abs() #We don't care the direction of the violation
all_scenarios = pd.concat([all_scenarios,one_zone], axis = 1)
all_scenarios.columns = all_scenarios.columns.str.replace('_',' ')
#remove columns that are all equal to 0
all_scenarios = all_scenarios.loc[:, (all_scenarios != 0).any(axis=0)]
if all_scenarios.empty:
outputs[zone_input] = MissingZoneData()
continue
unitconversion = self.capacity_energy_unitconversion(all_scenarios)
all_scenarios = all_scenarios/unitconversion['divisor']
Data_Table_Out = all_scenarios.add_suffix(f" ({unitconversion['units']})")
#Make scenario/color dictionary.
color_dict = dict(zip(all_scenarios.columns,self.color_list))
mplt = PlotLibrary()
fig, ax = mplt.get_figure()
if total_violations==True:
all_scenarios_tot = all_scenarios.sum()
all_scenarios_tot.plot.bar(stacked=False, rot=0,
color=[color_dict.get(x, '#333333') for x in all_scenarios_tot.index],
linewidth='0.1', width=0.35, ax=ax)
else:
for column in all_scenarios:
mplt.lineplot(all_scenarios,column,color=color_dict,label=column)
ax.margins(x=0.01)
mplt.set_subplot_timeseries_format(minticks=6,maxticks=12)
ax.set_xlabel(timezone, color='black', rotation='horizontal')
mplt.add_legend()
if mconfig.parser("plot_title_as_region"):
fig.set_title(zone_input)
ax.set_ylabel(f"Line violations ({unitconversion['units']})", color='black', rotation='vertical')
outputs[zone_input] = {'fig': fig,'data_table':Data_Table_Out}
return outputs
def net_export(self, timezone: str = "",
start_date_range: str = None,
end_date_range: str = None, **_):
"""creates a timeseries net export line graph.
Scenarios are plotted as separate lines.
Args:
timezone (str, optional): The timezone to display on the x-axes.
Defaults to "".
start_date_range (str, optional): Defines a start date at which to represent data from.
Defaults to None.
end_date_range (str, optional): Defines a end date at which to represent data to.
Defaults to None.
Returns:
dict: dictionary containing the created plot and its data table
"""
if self.AGG_BY == 'zone':
agg = 'zone'
else:
agg = 'region'
# List of properties needed by the plot, properties are a set of tuples and contain 3 parts:
# required True/False, property name and scenarios required, scenarios must be a list.
properties = [(True,f"{agg}_Net_Interchange",self.Scenarios)]
# Runs get_formatted_data within PlotDataHelper to populate PlotDataHelper dictionary
# with all required properties, returns a 1 if required data is missing
check_input_data = self.get_formatted_data(properties)
if 1 in check_input_data:
return MissingInputData()
outputs = {}
for zone_input in self.Zones:
self.logger.info(f"{self.AGG_BY} = {zone_input}")
net_export_all_scenarios = pd.DataFrame()
for scenario in self.Scenarios:
self.logger.info(f"Scenario = {scenario}")
net_export_read = self[f"{agg}_Net_Interchange"].get(scenario)
if self.shift_leapday == True:
net_export_read = self.adjust_for_leapday(net_export_read)
net_export = net_export_read.xs(zone_input, level = self.AGG_BY)
net_export = net_export.groupby("timestamp").sum()
net_export.columns = [scenario]
if pd.notna(start_date_range):
self.logger.info(f"Plotting specific date range: \
{str(start_date_range)} to {str(end_date_range)}")
net_export = net_export[start_date_range : end_date_range]
net_export_all_scenarios = pd.concat([net_export_all_scenarios,net_export], axis = 1)
net_export_all_scenarios.columns = net_export_all_scenarios.columns.str.replace('_', ' ')
unitconversion = self.capacity_energy_unitconversion(net_export_all_scenarios)
net_export_all_scenarios = net_export_all_scenarios/unitconversion["divisor"]
# Data table of values to return to main program
Data_Table_Out = net_export_all_scenarios.add_suffix(f" ({unitconversion['units']})")
#Make scenario/color dictionary.
color_dict = dict(zip(net_export_all_scenarios.columns,self.color_list))
mplt = PlotLibrary()
fig, ax = mplt.get_figure()
plt.subplots_adjust(wspace=0.05, hspace=0.2)
if net_export_all_scenarios.empty:
out = MissingZoneData()
outputs[zone_input] = out
continue
for column in net_export_all_scenarios:
mplt.lineplot(net_export_all_scenarios,column,color_dict, label=column)
ax.set_ylabel(f'Net exports ({unitconversion["units"]})', color='black',
rotation='vertical')
ax.set_xlabel(timezone, color='black', rotation='horizontal')
ax.margins(x=0.01)
ax.hlines(y=0, xmin=ax.get_xlim()[0], xmax=ax.get_xlim()[1],
linestyle=':')
mplt.set_subplot_timeseries_format()
mplt.add_legend(reverse_legend=True)
if mconfig.parser("plot_title_as_region"):
mplt.add_main_title(zone_input)
outputs[zone_input] = {'fig': fig, 'data_table': Data_Table_Out}
return outputs
def zonal_interchange(self, figure_name: str = None,
start_date_range: str = None,
end_date_range: str = None, **_):
"""Creates a line plot of the net interchange between each zone, with a facet for each zone.
The method will only work if agg_by = "zone".
The code will create either a timeseries or duration curve depending on
if the word 'duration_curve' is in the figure_name.
To make a duration curve, ensure the word 'duration_curve' is found in the figure_name.
Args:
figure_name (str, optional): User defined figure output name.
Defaults to None.
start_date_range (str, optional): Defines a start date at which to represent data from.
Defaults to None.
end_date_range (str, optional): Defines a end date at which to represent data to.
Defaults to None.
Returns:
dict: dictionary containing the created plot and its data table
"""
if self.AGG_BY not in ["zone", "zones", "Zone", "Zones"]:
self.logger.warning("This plot only supports aggregation zone")
return UnsupportedAggregation()
duration_curve=False
if 'duration_curve' in figure_name:
duration_curve = True
# List of properties needed by the plot, properties are a set of tuples and contain 3 parts:
# required True/False, property name and scenarios required, scenarios must be a list.
properties = [(True,"line_Flow",self.Scenarios)]
# Runs get_formatted_data within PlotDataHelper to populate PlotDataHelper dictionary
# with all required properties, returns a 1 if required data is missing
check_input_data = self.get_formatted_data(properties)
if 1 in check_input_data:
return MissingInputData()
outputs = {}
# sets up x, y dimensions of plot
ncols, nrows = self.set_facet_col_row_dimensions(multi_scenario=self.Scenarios)
grid_size = ncols*nrows
# Used to calculate any excess axis to delete
plot_number = len(self.Scenarios)
excess_axs = grid_size - plot_number
for zone_input in self.Zones:
self.logger.info(f"{self.AGG_BY} = {zone_input}")
mplt = PlotLibrary(nrows, ncols, sharey=True,
squeeze=False, ravel_axs=True)
fig, axs = mplt.get_figure()
plt.subplots_adjust(wspace=0.1, hspace=0.5)
net_exports_all = []
for n, scenario in enumerate(self.Scenarios):
net_exports = []
exp_lines = self.meta.zone_exporting_lines(scenario)
imp_lines = self.meta.zone_importing_lines(scenario)
if exp_lines.empty or imp_lines.empty:
return MissingMetaData()
exp_lines.columns = ['region','line_name']
imp_lines.columns = ['region','line_name']
#Find list of lines that connect each region.
exp_oz = exp_lines[exp_lines['region'] == zone_input]
imp_oz = imp_lines[imp_lines['region'] == zone_input]
other_zones = self.meta.zones(scenario).name.tolist()
try:
other_zones.remove(zone_input)
except:
self.logger.warning("Are you sure you set agg_by = zone?")
self.logger.info(f"Scenario = {str(scenario)}")
flow = self["line_Flow"][scenario].copy()
if self.shift_leapday == True:
flow = self.adjust_for_leapday(flow)
flow = flow.reset_index()
for other_zone in other_zones:
exp_other_oz = exp_lines[exp_lines['region'] == other_zone]
imp_other_oz = imp_lines[imp_lines['region'] == other_zone]
exp_pair = pd.merge(exp_oz, imp_other_oz, left_on='line_name',
right_on='line_name')
imp_pair = pd.merge(imp_oz, exp_other_oz, left_on='line_name',
right_on='line_name')
#Swap columns for importing lines
imp_pair = imp_pair.reindex(columns=['region_from', 'line_name', 'region_to'])
export = flow[flow['line_name'].isin(exp_pair['line_name'])]
imports = flow[flow['line_name'].isin(imp_pair['line_name'])]
export = export.groupby(['timestamp']).sum()
imports = imports.groupby(['timestamp']).sum()
#Check for situations where there are only exporting or importing lines for this zonal pair.
if imports.empty:
net_export = export
elif export.empty:
net_export = -imports
else:
net_export = export - imports
net_export.columns = [other_zone]
if pd.notna(start_date_range):
if other_zone == [other_zones[0]]:
self.logger.info(f"Plotting specific date range: \
{str(start_date_range)} to {str(end_date_range)}")
net_export = net_export[start_date_range : end_date_range]
if duration_curve:
net_export = self.sort_duration(net_export,other_zone)
net_exports.append(net_export)
net_exports = pd.concat(net_exports,axis = 1)
net_exports = net_exports.dropna(axis = 'columns')
net_exports.index = pd.to_datetime(net_exports.index)
net_exports['Net export'] = net_exports.sum(axis = 1)
# unitconversion based off peak export hour, only checked once
if zone_input == self.Zones[0] and scenario == self.Scenarios[0]:
unitconversion = self.capacity_energy_unitconversion(net_exports)
net_exports = net_exports / unitconversion['divisor']
if duration_curve:
net_exports = net_exports.reset_index().drop(columns = 'index')
for column in net_exports:
linestyle = '--' if column == 'Net export' else 'solid'
mplt.lineplot(net_exports, column=column, label=column,
sub_pos=n, linestyle=linestyle)
axs[n].margins(x=0.01)
#Add horizontal line at 0.
axs[n].hlines(y=0, xmin=axs[n].get_xlim()[0], xmax=axs[n].get_xlim()[1],
linestyle=':')
if not duration_curve:
mplt.set_subplot_timeseries_format(sub_pos=n)
#Add scenario column to output table.
scenario_names = pd.Series([scenario] * len(net_exports), name='Scenario')
net_exports = net_exports.add_suffix(f" ({unitconversion['units']})")
net_exports = net_exports.set_index([scenario_names], append=True)
net_exports_all.append(net_exports)
mplt.add_facet_labels(xlabels=self.xlabels,
ylabels = self.ylabels)
mplt.add_legend()
#Remove extra axes
mplt.remove_excess_axs(excess_axs,grid_size)
if mconfig.parser("plot_title_as_region"):
mplt.add_main_title(zone_input)
plt.ylabel(f"Net export ({unitconversion['units']})", color='black',
rotation='vertical', labelpad=40)
if duration_curve:
plt.xlabel('Sorted hour of the year', color='black', labelpad=30)
Data_Table_Out = pd.concat(net_exports_all)
# if plotting all scenarios return figures to plot_main
outputs[zone_input] = {'fig': fig,'data_table' : Data_Table_Out}
return outputs
def zonal_interchange_total(self, start_date_range: str = None,
end_date_range: str = None, **_):
"""Creates a barplot of the net interchange between each zone, separated by positive and negative flows.
The method will only work if agg_by = "zone".
Args:
start_date_range (str, optional): Defines a start date at which to represent data from.
Defaults to None.
end_date_range (str, optional): Defines a end date at which to represent data to.
Defaults to None.
Returns:
dict: dictionary containing the created plot and its data table
"""
if self.AGG_BY not in ["zone", "zones", "Zone", "Zones"]:
self.logger.warning("This plot only supports aggregation zone")
return UnsupportedAggregation()
# List of properties needed by the plot, properties are a set of tuples and contain 3 parts:
# required True/False, property name and scenarios required, scenarios must be a list.
properties = [(True,"line_Flow",self.Scenarios)]
# Runs get_formatted_data within PlotDataHelper to populate PlotDataHelper dictionary
# with all required properties, returns a 1 if required data is missing
check_input_data = self.get_formatted_data(properties)
if 1 in check_input_data:
return MissingInputData()
outputs = {}
for zone_input in self.Zones:
self.logger.info(f"{self.AGG_BY} = {zone_input}")
mplt = PlotLibrary()
fig, ax = mplt.get_figure()
plt.subplots_adjust(wspace=0.05, hspace=0.2)
net_exports_all = []
# Holds each scenario output table
data_out_chunk = []
for n, scenario in enumerate(self.Scenarios):
exp_lines = self.meta.zone_exporting_lines(scenario)
imp_lines = self.meta.zone_importing_lines(scenario)
if exp_lines.empty or imp_lines.empty:
return MissingMetaData()
exp_lines.columns = ['region', 'line_name']
imp_lines.columns = ['region', 'line_name']
#Find list of lines that connect each region.
exp_oz = exp_lines[exp_lines['region'] == zone_input]
imp_oz = imp_lines[imp_lines['region'] == zone_input]
other_zones = self.meta.zones(scenario).name.tolist()
other_zones.remove(zone_input)
net_exports = []
self.logger.info(f"Scenario = {str(scenario)}")
flow = self["line_Flow"][scenario]
flow = flow.reset_index()
for other_zone in other_zones:
exp_other_oz = exp_lines[exp_lines['region'] == other_zone]
imp_other_oz = imp_lines[imp_lines['region'] == other_zone]
exp_pair = pd.merge(exp_oz, imp_other_oz, left_on='line_name',
right_on='line_name')
imp_pair = pd.merge(imp_oz, exp_other_oz, left_on='line_name',
right_on='line_name')
#Swap columns for importing lines
imp_pair = imp_pair.reindex(columns=['region_from', 'line_name', 'region_to'])
export = flow[flow['line_name'].isin(exp_pair['line_name'])]
imports = flow[flow['line_name'].isin(imp_pair['line_name'])]
export = export.groupby(['timestamp']).sum()
imports = imports.groupby(['timestamp']).sum()
#Check for situations where there are only exporting or importing lines for this zonal pair.
if imports.empty:
net_export = export
elif export.empty:
net_export = -imports
else:
net_export = export - imports
net_export.columns = [other_zone]
if pd.notna(start_date_range):
if other_zone == other_zones[0]:
self.logger.info(f"Plotting specific date range: \
{str(start_date_range)} to {str(end_date_range)}")
net_export = net_export[start_date_range : end_date_range]
net_exports.append(net_export)
net_exports = pd.concat(net_exports, axis=1)
net_exports = net_exports.dropna(axis='columns')
net_exports.index = pd.to_datetime(net_exports.index)
net_exports['Net Export'] = net_exports.sum(axis=1)
positive = net_exports.agg(lambda x: x[x>0].sum())
negative = net_exports.agg(lambda x: x[x<0].sum())
both = pd.concat([positive,negative], axis=1)
both.columns = ["Total Export", "Total Import"]
# unitconversion based off peak export hour, only checked once
if scenario == self.Scenarios[0]:
unitconversion = self.capacity_energy_unitconversion(both)
both = both / unitconversion['divisor']
net_exports_all.append(both)
#Add scenario column to output table.
scenario_names = pd.Series([scenario] * len(both), name='Scenario')
data_table = both.set_index([scenario_names], append=True)
data_table = data_table.add_suffix(f" ({unitconversion['units']})")
data_out_chunk.append(data_table)
Data_Table_Out = pd.concat(data_out_chunk)
#Make scenario/color dictionary.
color_dict = dict(zip(self.Scenarios, self.color_list))
mplt.clustered_stacked_barplot(net_exports_all,
labels=self.Scenarios,
color_dict=color_dict)
ax.hlines(y=0, xmin=ax.get_xlim()[0], xmax=ax.get_xlim()[1],
linestyle=':')
ax.set_ylabel(f"Interchange ({unitconversion['units']}h)", color='black',
rotation='vertical')
if mconfig.parser("plot_title_as_region"):
mplt.add_main_title(zone_input)
outputs[zone_input] = {'fig': fig,'data_table': Data_Table_Out}
return outputs
def total_int_flow_ind(self, prop: str = None,
start_date_range: str = None,
end_date_range: str = None, **_):
"""Creates a clustered barplot of the total flow for a specific interface, separated by positive and negative flows.
Specify the interface(s) of interest by providing a comma separated
string to the property entry.
Scenarios are clustered together as different colored bars.
If multiple interfaces are provided, each will be plotted as a
separate group of clustered bar.
Args:
prop (str, optional): Comma separated string of interfaces to plot.
Defaults to None.
start_date_range (str, optional): Defines a start date at which to represent data from.
Defaults to None.
end_date_range (str, optional): Defines a end date at which to represent data to.
Defaults to None.
Returns:
DataSavedInModule: DataSavedInModule exception.
"""
# List of properties needed by the plot, properties are a set of tuples and contain 3 parts:
# required True/False, property name and scenarios required, scenarios must be a list.
properties = [(True,"interface_Flow",self.Scenarios)]
# Runs get_formatted_data within PlotDataHelper to populate PlotDataHelper dictionary
# with all required properties, returns a 1 if required data is missing
check_input_data = self.get_formatted_data(properties)
if 1 in check_input_data:
return MissingInputData()
#Select only interfaces specified in Marmot_plot_select.csv.
select_ints = prop.split(",")
if select_ints == None:
return InputSheetError()
self.logger.info('Plotting only the interfaces specified in Marmot_plot_select.csv')
self.logger.info(select_ints)
mplt = PlotLibrary()
fig, ax = mplt.get_figure()
plt.subplots_adjust(wspace=0.05, hspace=0.2)
net_flows_all = []
# Holds each scenario output table
data_out_chunk = []
for i, scenario in enumerate(self.Scenarios):
self.logger.info(f"Scenario = {str(scenario)}")
flow_all = self["interface_Flow"][scenario]
pos = pd.Series(name='Total Export')
neg = pd.Series(name='Total Import')
available_inter = select_ints.copy()
for inter in select_ints:
if inter not in flow_all.index.get_level_values('interface_name'):
self.logger.info(f'{inter} Not in Data')
available_inter.remove(inter)
continue
#Remove leading spaces
if inter[0] == ' ':
inter = inter[1:]
flow = flow_all.xs(inter, level='interface_name')
flow = flow.reset_index()
if pd.notna(start_date_range):
self.logger.info("Plotting specific date range: \
{} to {}".format(str(start_date_range), str(end_date_range)))
flow = flow[start_date_range : end_date_range]
flow = flow[0]
pos_sing = pd.Series(flow.where(flow > 0).sum())
pos = pos.append(pos_sing)
neg_sing = pd.Series(flow.where(flow < 0).sum())
neg = neg.append(neg_sing)
both = pd.concat([pos,neg],axis = 1)
both.columns = ['Total Export','Total Import']
if scenario == self.Scenarios[0]:
unitconversion = self.capacity_energy_unitconversion(both)
both = both / unitconversion['divisor']
both.index = available_inter
net_flows_all.append(both)
#Add scenario column to output table.
scenario_names = pd.Series([scenario] * len(both),name = 'Scenario')
data_table = both.set_index([scenario_names],append = True)
data_table = data_table.add_suffix(f" ({unitconversion['units']})")
data_out_chunk.append(data_table)
Data_Table_Out = pd.concat(data_out_chunk)
#Make scenario/color dictionary.
color_dict = dict(zip(self.Scenarios, self.color_list))
mplt.clustered_stacked_barplot(net_flows_all,
labels=self.Scenarios,
color_dict=color_dict)
ax.hlines(y=0, xmin=ax.get_xlim()[0], xmax=ax.get_xlim()[1],
linestyle=':')
ax.set_ylabel('Flow ({}h)'.format(unitconversion['units']), color='black',
rotation='vertical')
ax.set_xlabel('')
fig.savefig(os.path.join(self.Marmot_Solutions_folder, "Figures_Output", f"{self.AGG_BY }_transmission",
"Individual_Interface_Total_Flow.svg"),
dpi=600, bbox_inches='tight')
Data_Table_Out.to_csv(os.path.join(self.Marmot_Solutions_folder, "Figures_Output", f"{self.AGG_BY }_transmission",
"Individual_Interface_Total_Flow.csv"))
outputs = DataSavedInModule()
return outputs
### Archived Code ####
# def line_util_agged(self):
# self["line_Flow"] = {}
# interface_flow_collection = {}
# line_limit_collection = {}
# interface_limit_collection = {}
# #Load data
# self._getdata(self["line_Flow"],"line_Flow")
# self._getdata(interface_flow_collection,"interface_Flow")
# self._getdata(line_limit_collection,"line_Export_Limit")
# self._getdata(interface_limit_collection,"interface_Export_Limit")
# outputs = {}
# for zone_input in self.Zones:
# self.logger.info('Zone = ' + str(zone_input))
# all_scenarios = pd.DataFrame()
# for scenario in self.Scenarios:
# self.logger.info("Scenario = " + str(scenario))
# lineflow = self["line_Flow"].get(scenario)
# linelim = line_limit_collection.get(scenario)
# linelim = linelim.reset_index().drop('timestamp', axis = 1).set_index('line_name')
# #Calculate utilization.
# alllines = pd.merge(lineflow,linelim,left_index=True,right_index=True)
# alllines = alllines.rename(columns = {'0_x':'flow','0_y':'capacity'})
# alllines['flow'] = abs(alllines['flow'])
# #Merge in region ID and aggregate by region.
# if self.AGG_BY == 'region':
# line2region = self.region_lines
# elif self.AGG_BY == 'zone':
# line2region = self.zone_lines
# alllines = alllines.reset_index()
# alllines = alllines.merge(line2region, on = 'line_name')
# #Extract ReEDS expansion lines for next section.
# reeds_exp = alllines.merge((self.lines.rename(columns={"name":"line_name"})), on = 'line_name')
# reeds_exp = reeds_exp[reeds_exp['category'] == 'ReEDS_Expansion']
# reeds_agg = reeds_exp.groupby(['timestamp',self.AGG_BY],as_index = False).sum()
# #Subset only enforced lines. This will subset to only EI lines.
# enforced = pd.read_csv('/projects/continental/pcm/Results/enforced_lines.csv')
# enforced.columns = ['line_name']
# lineutil = pd.merge(enforced,alllines, on = 'line_name')
# lineutil['line util'] = lineutil['flow'] / lineutil['capacity']
# lineutil = lineutil[lineutil.capacity < 10000]
# #Drop duplicates if AGG_BY == Interconnection.
# #Aggregate by region, merge in region mapping.
# agg = alllines.groupby(['timestamp',self.AGG_BY],as_index = False).sum()
# agg['util'] = agg['flow'] / agg['capacity']
# agg = agg.rename(columns = {'util' : scenario})
# onezone = agg[agg[self.AGG_BY] == zone_input]
# onezone = onezone.set_index('timestamp')[scenario]
# #If zone_input is in WI or ERCOT, the dataframe will be empty here. Lines are not enforced here. Instead, use interfaces.
# if onezone.empty:
# #Start with interface flow.
# intflow = interface_flow_collection.get(scenario)
# intlim = interface_limit_collection.get(scenario)
# allint = pd.merge(intflow,intlim,left_index=True,right_index=True)
# allint = allint.rename(columns = {'0_x':'flow','0_y':'capacity'})
# allint = allint.reset_index()
# #Merge in interface/line/region mapping.
# line2int = self.interface_lines
# line2int = line2int.rename(columns = {'line' : 'line_name','interface' : 'interface_name'})
# allint = allint.merge(line2int, on = 'interface_name', how = 'inner')
# allint = allint.merge(line2region, on = 'line_name')
# allint = allint.merge(self.Region_Mapping, on = 'region')
# allint = allint.drop(columns = 'line_name')
# allint = allint.drop_duplicates() #Merging in line info duplicated most of the interfaces.
# agg = allint.groupby(['timestamp',self.AGG_BY],as_index = False).sum()
# agg = pd.concat([agg,reeds_agg]) #Add in ReEDS expansion lines, re-aggregate.
# agg = agg.groupby(['timestamp',self.AGG_BY],as_index = False).sum()
# agg['util'] = agg['flow'] / agg['capacity']
# agg = agg.rename(columns = {'util' : scenario})
# onezone = agg[agg[self.AGG_BY] == zone_input]
# onezone = onezone.set_index('timestamp')[scenario]
# if (prop != prop) == False: #Show only subset category of lines.
# reeds_agg = reeds_agg.groupby('timestamp',as_index = False).sum()
# reeds_agg['util'] = reeds_agg['flow'] / reeds_agg['capacity']
# onezone = reeds_agg.rename(columns = {'util' : scenario})
# onezone = onezone.set_index('timestamp')[scenario]
# all_scenarios = pd.concat([all_scenarios,onezone], axis = 1)
# # Data table of values to return to main program
# Data_Table_Out = all_scenarios.copy()
# #Make scenario/color dictionary.
# scenario_color_dict = {}
# for idx,column in enumerate(all_scenarios.columns):
# dictionary = {column : self.color_list[idx]}
# scenario_color_dict.update(dictionary)
# all_scenarios.index = pd.to_datetime(all_scenarios.index)
# fig, ax = plt.subplots(figsize=(9,6))
# for idx,column in enumerate(all_scenarios.columns):
# ax.plot(all_scenarios.index.values,all_scenarios[column], linewidth=2, color = scenario_color_dict.get(column,'#333333'),label=column)
# ax.set_ylabel('Transmission utilization (%)', color='black', rotation='vertical')
# ax.set_xlabel(timezone, color='black', rotation='horizontal')
# ax.spines['right'].set_visible(False)
# ax.spines['top'].set_visible(False)
# ax.tick_params(axis='y', which='major', length=5, width=1)
# ax.tick_params(axis='x', which='major', length=5, width=1)
# ax.margins(x=0.01)
# locator = mdates.AutoDateLocator(minticks=6, maxticks=12)
# formatter = mdates.ConciseDateFormatter(locator)
# formatter.formats[2] = '%d\n %b'
# formatter.zero_formats[1] = '%b\n %Y'
# formatter.zero_formats[2] = '%d\n %b'
# formatter.zero_formats[3] = '%H:%M\n %d-%b'
# formatter.offset_formats[3] = '%b %Y'
# formatter.show_offset = False
# ax.xaxis.set_major_locator(locator)
# ax.xaxis.set_major_formatter(formatter)
# ax.yaxis.set_major_formatter(mtick.PercentFormatter(1.0))
# ax.hlines(y = 1, xmin = ax.get_xlim()[0], xmax = ax.get_xlim()[1], linestyle = ':') #Add horizontal line at 100%.
# handles, labels = ax.get_legend_handles_labels()
# #Legend 1
# leg1 = ax.legend(reversed(handles), reversed(labels), loc='best',facecolor='inherit', frameon=True)
# # Manually add the first legend back
# ax.add_artist(leg1)
# outputs[zone_input] = {'fig': fig, 'data_table': Data_Table_Out}
# return outputs
# def region_region_duration(self):
# rr_int = pd.read_hdf(os.path.join(self.Marmot_Solutions_folder,self.Scenarios[0],"Processed_HDF5_folder", self.Scenarios[0] + "_formatted.h5"),"region_regions_Net_Interchange")
# agg_region_mapping = self.Region_Mapping[['region',self.AGG_BY]].set_index('region').to_dict()[self.AGG_BY]
# rr_int = rr_int.reset_index()
# rr_int['parent'] = rr_int['parent'].map(agg_region_mapping)
# rr_int['child'] = rr_int['child'].map(agg_region_mapping)
# rr_int_agg = rr_int.groupby(['parent','child'],as_index=True).sum() # Determine annual net flow between regions.
# rr_int_agg.rename(columns = {0:'flow (MW)'}, inplace = True)
# rr_int_agg = rr_int_agg.reset_index(['parent','child'])
# rr_int_agg=rr_int_agg.loc[rr_int_agg['flow (MW)']>0.01] # Keep only positive flows
# # rr_int_agg.set_index(['parent','child'],inplace=True)
# rr_int_agg['path']=rr_int_agg['parent']+"_"+rr_int_agg['child']
# if (prop!=prop)==False: # This checks for a nan in string. If a number of paths is selected only plot those
# pathlist=rr_int_agg.sort_values(ascending=False,by='flow (MW)')['path'][1:int(prop)+1] #list of top paths based on number selected
# else:
# pathlist=rr_int_agg['path'] #List of paths
# rr_int_hr = rr_int.groupby(['timestamp','parent','child'],as_index=True).sum() # Hourly flow
# rr_int_hr.rename(columns = {0:'flow (MW)'}, inplace = True)
# rr_int_hr.reset_index(['timestamp','parent','child'],inplace=True)
# rr_int_hr['path']=rr_int_hr['parent']+"_"+rr_int_hr['child']
# rr_int_hr.set_index(['path'],inplace=True)
# rr_int_hr['Abs MW']=abs(rr_int_hr['flow (MW)'])
# rr_int_hr['Abs MW'].sum()
# rr_int_hr.loc[pathlist]['Abs MW'].sum()*2 # Check that the sum of the absolute value of flows is the same. i.e. only redundant flows were eliminated.
# rr_int_hr=rr_int_hr.loc[pathlist].drop(['Abs MW'],axis=1)
# ## Plot duration curves
# fig, ax3 = plt.subplots(figsize=(9,6))
# for i in pathlist:
# duration_curve = rr_int_hr.loc[i].sort_values(ascending=False,by='flow (MW)').reset_index()
# plt.plot(duration_curve['flow (MW)'],label=i)
# del duration_curve
# ax3.set_ylabel('flow MW', color='black', rotation='vertical')
# ax3.set_xlabel('Intervals', color='black', rotation='horizontal')
# ax3.spines['right'].set_visible(False)
# ax3.spines['top'].set_visible(False)
# # if (prop!=prop)==False: # This checks for a nan in string. If no limit selected, do nothing
# ax3.legend(loc='best')
# # plt.lim((0,int(prop)))
# Data_Table_Out = rr_int_hr
# return {'fig': fig, 'data_table': Data_Table_Out}
|
[
"marmot.plottingmodules.plotutils.plot_exceptions.MissingInputData",
"matplotlib.pyplot.axes",
"marmot.plottingmodules.plotutils.plot_exceptions.InputSheetError",
"marmot.plottingmodules.plotutils.plot_exceptions.UnsupportedAggregation",
"numpy.arange",
"marmot.plottingmodules.plotutils.plot_exceptions.DataSavedInModule",
"os.path.join",
"matplotlib.pyplot.tight_layout",
"pandas.DataFrame",
"matplotlib.cm.ScalarMappable",
"pandas.merge",
"marmot.config.mconfig.parser",
"pandas.isna",
"pandas.concat",
"marmot.plottingmodules.plotutils.plot_library.PlotLibrary",
"matplotlib.dates.ConciseDateFormatter",
"pandas.to_datetime",
"pandas.Series",
"marmot.plottingmodules.plotutils.plot_exceptions.MissingMetaData",
"matplotlib.pyplot.subplots_adjust",
"matplotlib.pyplot.ylabel",
"matplotlib.pyplot.cm.get_cmap",
"pandas.notna",
"pandas.isnull",
"marmot.plottingmodules.plotutils.plot_exceptions.UnderDevelopment",
"matplotlib.dates.AutoDateLocator",
"marmot.plottingmodules.plotutils.plot_exceptions.MissingZoneData",
"matplotlib.pyplot.xlabel",
"logging.getLogger"
] |
[((1941, 1985), 'logging.getLogger', 'logging.getLogger', (["('marmot_plot.' + __name__)"], {}), "('marmot_plot.' + __name__)\n", (1958, 1985), False, 'import logging\n'), ((2013, 2044), 'marmot.config.mconfig.parser', 'mconfig.parser', (['"""font_settings"""'], {}), "('font_settings')\n", (2027, 2044), True, 'import marmot.config.mconfig as mconfig\n'), ((12724, 12750), 'pandas.notna', 'pd.notna', (['start_date_range'], {}), '(start_date_range)\n', (12732, 12750), True, 'import pandas as pd\n'), ((33180, 33198), 'marmot.plottingmodules.plotutils.plot_exceptions.UnderDevelopment', 'UnderDevelopment', ([], {}), '()\n', (33196, 33198), False, 'from marmot.plottingmodules.plotutils.plot_exceptions import MissingInputData, DataSavedInModule, UnderDevelopment, InputSheetError, MissingMetaData, UnsupportedAggregation, MissingZoneData\n'), ((46521, 46575), 'marmot.plottingmodules.plotutils.plot_library.PlotLibrary', 'PlotLibrary', (['ydim', 'xdim'], {'squeeze': '(False)', 'ravel_axs': '(True)'}), '(ydim, xdim, squeeze=False, ravel_axs=True)\n', (46532, 46575), False, 'from marmot.plottingmodules.plotutils.plot_library import PlotLibrary\n'), ((50685, 50710), 'pandas.concat', 'pd.concat', (['chunks'], {'axis': '(1)'}), '(chunks, axis=1)\n', (50694, 50710), True, 'import pandas as pd\n'), ((50863, 50935), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Flow (MW)"""'], {'color': '"""black"""', 'rotation': '"""vertical"""', 'labelpad': '(30)'}), "('Flow (MW)', color='black', rotation='vertical', labelpad=30)\n", (50873, 50935), True, 'import matplotlib.pyplot as plt\n'), ((50996, 51014), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (51012, 51014), True, 'import matplotlib.pyplot as plt\n'), ((51576, 51595), 'marmot.plottingmodules.plotutils.plot_exceptions.DataSavedInModule', 'DataSavedInModule', ([], {}), '()\n', (51593, 51595), False, 'from marmot.plottingmodules.plotutils.plot_exceptions import MissingInputData, DataSavedInModule, UnderDevelopment, InputSheetError, MissingMetaData, UnsupportedAggregation, MissingZoneData\n'), ((53751, 53805), 'marmot.plottingmodules.plotutils.plot_library.PlotLibrary', 'PlotLibrary', (['ydim', 'xdim'], {'squeeze': '(False)', 'ravel_axs': '(True)'}), '(ydim, xdim, squeeze=False, ravel_axs=True)\n', (53762, 53805), False, 'from marmot.plottingmodules.plotutils.plot_library import PlotLibrary\n'), ((53879, 53923), 'matplotlib.pyplot.subplots_adjust', 'plt.subplots_adjust', ([], {'wspace': '(0.05)', 'hspace': '(0.2)'}), '(wspace=0.05, hspace=0.2)\n', (53898, 53923), True, 'import matplotlib.pyplot as plt\n'), ((55588, 55613), 'pandas.concat', 'pd.concat', (['chunks'], {'axis': '(1)'}), '(chunks, axis=1)\n', (55597, 55613), True, 'import pandas as pd\n'), ((55650, 55737), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Flow difference (MW)"""'], {'color': '"""black"""', 'rotation': '"""vertical"""', 'labelpad': '(30)'}), "('Flow difference (MW)', color='black', rotation='vertical',\n labelpad=30)\n", (55660, 55737), True, 'import matplotlib.pyplot as plt\n'), ((55743, 55761), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (55759, 55761), True, 'import matplotlib.pyplot as plt\n'), ((56177, 56196), 'marmot.plottingmodules.plotutils.plot_exceptions.DataSavedInModule', 'DataSavedInModule', ([], {}), '()\n', (56194, 56196), False, 'from marmot.plottingmodules.plotutils.plot_exceptions import MissingInputData, DataSavedInModule, UnderDevelopment, InputSheetError, MissingMetaData, UnsupportedAggregation, MissingZoneData\n'), ((57627, 57652), 'pandas.isna', 'pd.isna', (['start_date_range'], {}), '(start_date_range)\n', (57634, 57652), True, 'import pandas as pd\n'), ((60804, 60842), 'marmot.plottingmodules.plotutils.plot_library.PlotLibrary', 'PlotLibrary', (['ydim', 'xdim'], {'squeeze': '(False)'}), '(ydim, xdim, squeeze=False)\n', (60815, 60842), False, 'from marmot.plottingmodules.plotutils.plot_library import PlotLibrary\n'), ((64336, 64361), 'pandas.concat', 'pd.concat', (['chunks'], {'axis': '(1)'}), '(chunks, axis=1)\n', (64345, 64361), True, 'import pandas as pd\n'), ((64588, 64660), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Flow (MW)"""'], {'color': '"""black"""', 'rotation': '"""vertical"""', 'labelpad': '(30)'}), "('Flow (MW)', color='black', rotation='vertical', labelpad=30)\n", (64598, 64660), True, 'import matplotlib.pyplot as plt\n'), ((64670, 64688), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (64686, 64688), True, 'import matplotlib.pyplot as plt\n'), ((65292, 65311), 'marmot.plottingmodules.plotutils.plot_exceptions.DataSavedInModule', 'DataSavedInModule', ([], {}), '()\n', (65309, 65311), False, 'from marmot.plottingmodules.plotutils.plot_exceptions import MissingInputData, DataSavedInModule, UnderDevelopment, InputSheetError, MissingMetaData, UnsupportedAggregation, MissingZoneData\n'), ((65524, 65542), 'marmot.plottingmodules.plotutils.plot_exceptions.UnderDevelopment', 'UnderDevelopment', ([], {}), '()\n', (65540, 65542), False, 'from marmot.plottingmodules.plotutils.plot_exceptions import MissingInputData, DataSavedInModule, UnderDevelopment, InputSheetError, MissingMetaData, UnsupportedAggregation, MissingZoneData\n'), ((80411, 80467), 'marmot.plottingmodules.plotutils.plot_library.PlotLibrary', 'PlotLibrary', (['nrows', 'ncols'], {'squeeze': '(False)', 'ravel_axs': '(True)'}), '(nrows, ncols, squeeze=False, ravel_axs=True)\n', (80422, 80467), False, 'from marmot.plottingmodules.plotutils.plot_library import PlotLibrary\n'), ((80543, 80587), 'matplotlib.pyplot.subplots_adjust', 'plt.subplots_adjust', ([], {'wspace': '(0.02)', 'hspace': '(0.4)'}), '(wspace=0.02, hspace=0.4)\n', (80562, 80587), True, 'import matplotlib.pyplot as plt\n'), ((83463, 83495), 'matplotlib.pyplot.axes', 'plt.axes', (['[0.9, 0.1, 0.035, 0.8]'], {}), '([0.9, 0.1, 0.035, 0.8])\n', (83471, 83495), True, 'import matplotlib.pyplot as plt\n'), ((83621, 83695), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""To Region"""'], {'color': '"""black"""', 'rotation': '"""horizontal"""', 'labelpad': '(40)'}), "('To Region', color='black', rotation='horizontal', labelpad=40)\n", (83631, 83695), True, 'import matplotlib.pyplot as plt\n'), ((83723, 83797), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""From Region"""'], {'color': '"""black"""', 'rotation': '"""vertical"""', 'labelpad': '(40)'}), "('From Region', color='black', rotation='vertical', labelpad=40)\n", (83733, 83797), True, 'import matplotlib.pyplot as plt\n'), ((83844, 83871), 'pandas.concat', 'pd.concat', (['Data_Out'], {'axis': '(1)'}), '(Data_Out, axis=1)\n', (83853, 83871), True, 'import pandas as pd\n'), ((83894, 83957), 'os.path.join', 'os.path.join', (['self.figure_folder', 'f"""{self.AGG_BY}_transmission"""'], {}), "(self.figure_folder, f'{self.AGG_BY}_transmission')\n", (83906, 83957), False, 'import os\n'), ((84203, 84222), 'marmot.plottingmodules.plotutils.plot_exceptions.DataSavedInModule', 'DataSavedInModule', ([], {}), '()\n', (84220, 84222), False, 'from marmot.plottingmodules.plotutils.plot_exceptions import MissingInputData, DataSavedInModule, UnderDevelopment, InputSheetError, MissingMetaData, UnsupportedAggregation, MissingZoneData\n'), ((110774, 110787), 'marmot.plottingmodules.plotutils.plot_library.PlotLibrary', 'PlotLibrary', ([], {}), '()\n', (110785, 110787), False, 'from marmot.plottingmodules.plotutils.plot_library import PlotLibrary\n'), ((110832, 110876), 'matplotlib.pyplot.subplots_adjust', 'plt.subplots_adjust', ([], {'wspace': '(0.05)', 'hspace': '(0.2)'}), '(wspace=0.05, hspace=0.2)\n', (110851, 110876), True, 'import matplotlib.pyplot as plt\n'), ((113122, 113147), 'pandas.concat', 'pd.concat', (['data_out_chunk'], {}), '(data_out_chunk)\n', (113131, 113147), True, 'import pandas as pd\n'), ((114170, 114189), 'marmot.plottingmodules.plotutils.plot_exceptions.DataSavedInModule', 'DataSavedInModule', ([], {}), '()\n', (114187, 114189), False, 'from marmot.plottingmodules.plotutils.plot_exceptions import MissingInputData, DataSavedInModule, UnderDevelopment, InputSheetError, MissingMetaData, UnsupportedAggregation, MissingZoneData\n'), ((5012, 5030), 'marmot.plottingmodules.plotutils.plot_exceptions.MissingInputData', 'MissingInputData', ([], {}), '()\n', (5028, 5030), False, 'from marmot.plottingmodules.plotutils.plot_exceptions import MissingInputData, DataSavedInModule, UnderDevelopment, InputSheetError, MissingMetaData, UnsupportedAggregation, MissingZoneData\n'), ((5548, 5617), 'marmot.plottingmodules.plotutils.plot_library.PlotLibrary', 'PlotLibrary', (['nrows', 'ncols'], {'sharey': '(True)', 'squeeze': '(False)', 'ravel_axs': '(True)'}), '(nrows, ncols, sharey=True, squeeze=False, ravel_axs=True)\n', (5559, 5617), False, 'from marmot.plottingmodules.plotutils.plot_library import PlotLibrary\n'), ((5704, 5748), 'matplotlib.pyplot.subplots_adjust', 'plt.subplots_adjust', ([], {'wspace': '(0.1)', 'hspace': '(0.25)'}), '(wspace=0.1, hspace=0.25)\n', (5723, 5748), True, 'import matplotlib.pyplot as plt\n'), ((10129, 10167), 'marmot.config.mconfig.parser', 'mconfig.parser', (['"""plot_title_as_region"""'], {}), "('plot_title_as_region')\n", (10143, 10167), True, 'import marmot.config.mconfig as mconfig\n'), ((10337, 10358), 'pandas.concat', 'pd.concat', (['data_table'], {}), '(data_table)\n', (10346, 10358), True, 'import pandas as pd\n'), ((12633, 12651), 'marmot.plottingmodules.plotutils.plot_exceptions.MissingInputData', 'MissingInputData', ([], {}), '()\n', (12649, 12651), False, 'from marmot.plottingmodules.plotutils.plot_exceptions import MissingInputData, DataSavedInModule, UnderDevelopment, InputSheetError, MissingMetaData, UnsupportedAggregation, MissingZoneData\n'), ((13032, 13046), 'pandas.DataFrame', 'pd.DataFrame', ([], {}), '()\n', (13044, 13046), True, 'import pandas as pd\n'), ((15667, 15681), 'pandas.notna', 'pd.notna', (['prop'], {}), '(prop)\n', (15675, 15681), True, 'import pandas as pd\n'), ((16106, 16160), 'marmot.plottingmodules.plotutils.plot_library.PlotLibrary', 'PlotLibrary', (['ydim', 'xdim'], {'squeeze': '(False)', 'ravel_axs': '(True)'}), '(ydim, xdim, squeeze=False, ravel_axs=True)\n', (16117, 16160), False, 'from marmot.plottingmodules.plotutils.plot_library import PlotLibrary\n'), ((16336, 16380), 'matplotlib.pyplot.subplots_adjust', 'plt.subplots_adjust', ([], {'wspace': '(0.05)', 'hspace': '(0.2)'}), '(wspace=0.05, hspace=0.2)\n', (16355, 16380), True, 'import matplotlib.pyplot as plt\n'), ((20551, 20576), 'pandas.concat', 'pd.concat', (['chunks'], {'axis': '(1)'}), '(chunks, axis=1)\n', (20560, 20576), True, 'import pandas as pd\n'), ((21214, 21286), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Flow (GW)"""'], {'color': '"""black"""', 'rotation': '"""vertical"""', 'labelpad': '(30)'}), "('Flow (GW)', color='black', rotation='vertical', labelpad=30)\n", (21224, 21286), True, 'import matplotlib.pyplot as plt\n'), ((21437, 21478), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {'rect': '[0, 0.03, 1, 0.97]'}), '(rect=[0, 0.03, 1, 0.97])\n', (21453, 21478), True, 'import matplotlib.pyplot as plt\n'), ((21494, 21532), 'marmot.config.mconfig.parser', 'mconfig.parser', (['"""plot_title_as_region"""'], {}), "('plot_title_as_region')\n", (21508, 21532), True, 'import marmot.config.mconfig as mconfig\n'), ((23565, 23583), 'marmot.plottingmodules.plotutils.plot_exceptions.MissingInputData', 'MissingInputData', ([], {}), '()\n', (23581, 23583), False, 'from marmot.plottingmodules.plotutils.plot_exceptions import MissingInputData, DataSavedInModule, UnderDevelopment, InputSheetError, MissingMetaData, UnsupportedAggregation, MissingZoneData\n'), ((23791, 23805), 'pandas.DataFrame', 'pd.DataFrame', ([], {}), '()\n', (23803, 23805), True, 'import pandas as pd\n'), ((27335, 27373), 'marmot.plottingmodules.plotutils.plot_library.PlotLibrary', 'PlotLibrary', (['ydim', 'xdim'], {'squeeze': '(False)'}), '(ydim, xdim, squeeze=False)\n', (27346, 27373), False, 'from marmot.plottingmodules.plotutils.plot_library import PlotLibrary\n'), ((27518, 27562), 'matplotlib.pyplot.subplots_adjust', 'plt.subplots_adjust', ([], {'wspace': '(0.05)', 'hspace': '(0.2)'}), '(wspace=0.05, hspace=0.2)\n', (27537, 27562), True, 'import matplotlib.pyplot as plt\n'), ((31541, 31566), 'pandas.concat', 'pd.concat', (['chunks'], {'axis': '(1)'}), '(chunks, axis=1)\n', (31550, 31566), True, 'import pandas as pd\n'), ((31705, 31777), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Flow (GW)"""'], {'color': '"""black"""', 'rotation': '"""vertical"""', 'labelpad': '(30)'}), "('Flow (GW)', color='black', rotation='vertical', labelpad=30)\n", (31715, 31777), True, 'import matplotlib.pyplot as plt\n'), ((32072, 32113), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {'rect': '[0, 0.03, 1, 0.97]'}), '(rect=[0, 0.03, 1, 0.97])\n', (32088, 32113), True, 'import matplotlib.pyplot as plt\n'), ((32129, 32167), 'marmot.config.mconfig.parser', 'mconfig.parser', (['"""plot_title_as_region"""'], {}), "('plot_title_as_region')\n", (32143, 32167), True, 'import marmot.config.mconfig as mconfig\n'), ((33949, 33967), 'marmot.plottingmodules.plotutils.plot_exceptions.MissingInputData', 'MissingInputData', ([], {}), '()\n', (33965, 33967), False, 'from marmot.plottingmodules.plotutils.plot_exceptions import MissingInputData, DataSavedInModule, UnderDevelopment, InputSheetError, MissingMetaData, UnsupportedAggregation, MissingZoneData\n'), ((34079, 34105), 'pandas.isnull', 'pd.isnull', (['self.start_date'], {}), '(self.start_date)\n', (34088, 34105), True, 'import pandas as pd\n'), ((34396, 34410), 'pandas.DataFrame', 'pd.DataFrame', ([], {}), '()\n', (34408, 34410), True, 'import pandas as pd\n'), ((37442, 37498), 'marmot.plottingmodules.plotutils.plot_library.PlotLibrary', 'PlotLibrary', (['nrows', 'ncols'], {'squeeze': '(False)', 'ravel_axs': '(True)'}), '(nrows, ncols, squeeze=False, ravel_axs=True)\n', (37453, 37498), False, 'from marmot.plottingmodules.plotutils.plot_library import PlotLibrary\n'), ((37673, 37717), 'matplotlib.pyplot.subplots_adjust', 'plt.subplots_adjust', ([], {'wspace': '(0.05)', 'hspace': '(0.2)'}), '(wspace=0.05, hspace=0.2)\n', (37692, 37717), True, 'import matplotlib.pyplot as plt\n'), ((41800, 41825), 'pandas.concat', 'pd.concat', (['chunks'], {'axis': '(1)'}), '(chunks, axis=1)\n', (41809, 41825), True, 'import pandas as pd\n'), ((42434, 42506), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Flow (GW)"""'], {'color': '"""black"""', 'rotation': '"""vertical"""', 'labelpad': '(30)'}), "('Flow (GW)', color='black', rotation='vertical', labelpad=30)\n", (42444, 42506), True, 'import matplotlib.pyplot as plt\n'), ((42637, 42678), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {'rect': '[0, 0.03, 1, 0.97]'}), '(rect=[0, 0.03, 1, 0.97])\n', (42653, 42678), True, 'import matplotlib.pyplot as plt\n'), ((42694, 42732), 'marmot.config.mconfig.parser', 'mconfig.parser', (['"""plot_title_as_region"""'], {}), "('plot_title_as_region')\n", (42708, 42732), True, 'import marmot.config.mconfig as mconfig\n'), ((44638, 44656), 'marmot.plottingmodules.plotutils.plot_exceptions.MissingInputData', 'MissingInputData', ([], {}), '()\n', (44654, 44656), False, 'from marmot.plottingmodules.plotutils.plot_exceptions import MissingInputData, DataSavedInModule, UnderDevelopment, InputSheetError, MissingMetaData, UnsupportedAggregation, MissingZoneData\n'), ((44813, 44830), 'marmot.plottingmodules.plotutils.plot_exceptions.InputSheetError', 'InputSheetError', ([], {}), '()\n', (44828, 44830), False, 'from marmot.plottingmodules.plotutils.plot_exceptions import MissingInputData, DataSavedInModule, UnderDevelopment, InputSheetError, MissingMetaData, UnsupportedAggregation, MissingZoneData\n'), ((50613, 50631), 'marmot.plottingmodules.plotutils.plot_exceptions.MissingInputData', 'MissingInputData', ([], {}), '()\n', (50629, 50631), False, 'from marmot.plottingmodules.plotutils.plot_exceptions import MissingInputData, DataSavedInModule, UnderDevelopment, InputSheetError, MissingMetaData, UnsupportedAggregation, MissingZoneData\n'), ((51101, 51230), 'os.path.join', 'os.path.join', (['self.Marmot_Solutions_folder', '"""Figures_Output"""', "(self.AGG_BY + '_transmission')", "(figure_name + fn_suffix + '.svg')"], {}), "(self.Marmot_Solutions_folder, 'Figures_Output', self.AGG_BY +\n '_transmission', figure_name + fn_suffix + '.svg')\n", (51113, 51230), False, 'import os\n'), ((51286, 51415), 'os.path.join', 'os.path.join', (['self.Marmot_Solutions_folder', '"""Figures_Output"""', "(self.AGG_BY + '_transmission')", "(figure_name + fn_suffix + '.csv')"], {}), "(self.Marmot_Solutions_folder, 'Figures_Output', self.AGG_BY +\n '_transmission', figure_name + fn_suffix + '.csv')\n", (51298, 51415), False, 'import os\n'), ((53102, 53120), 'marmot.plottingmodules.plotutils.plot_exceptions.MissingInputData', 'MissingInputData', ([], {}), '()\n', (53118, 53120), False, 'from marmot.plottingmodules.plotutils.plot_exceptions import MissingInputData, DataSavedInModule, UnderDevelopment, InputSheetError, MissingMetaData, UnsupportedAggregation, MissingZoneData\n'), ((53307, 53324), 'marmot.plottingmodules.plotutils.plot_exceptions.InputSheetError', 'InputSheetError', ([], {}), '()\n', (53322, 53324), False, 'from marmot.plottingmodules.plotutils.plot_exceptions import MissingInputData, DataSavedInModule, UnderDevelopment, InputSheetError, MissingMetaData, UnsupportedAggregation, MissingZoneData\n'), ((55516, 55534), 'marmot.plottingmodules.plotutils.plot_exceptions.MissingInputData', 'MissingInputData', ([], {}), '()\n', (55532, 55534), False, 'from marmot.plottingmodules.plotutils.plot_exceptions import MissingInputData, DataSavedInModule, UnderDevelopment, InputSheetError, MissingMetaData, UnsupportedAggregation, MissingZoneData\n'), ((55848, 55977), 'os.path.join', 'os.path.join', (['self.Marmot_Solutions_folder', '"""Figures_Output"""', "(self.AGG_BY + '_transmission')", "(figure_name + fn_suffix + '.svg')"], {}), "(self.Marmot_Solutions_folder, 'Figures_Output', self.AGG_BY +\n '_transmission', figure_name + fn_suffix + '.svg')\n", (55860, 55977), False, 'import os\n'), ((56033, 56162), 'os.path.join', 'os.path.join', (['self.Marmot_Solutions_folder', '"""Figures_Output"""', "(self.AGG_BY + '_transmission')", "(figure_name + fn_suffix + '.csv')"], {}), "(self.Marmot_Solutions_folder, 'Figures_Output', self.AGG_BY +\n '_transmission', figure_name + fn_suffix + '.csv')\n", (56045, 56162), False, 'import os\n'), ((58068, 58086), 'marmot.plottingmodules.plotutils.plot_exceptions.MissingInputData', 'MissingInputData', ([], {}), '()\n', (58084, 58086), False, 'from marmot.plottingmodules.plotutils.plot_exceptions import MissingInputData, DataSavedInModule, UnderDevelopment, InputSheetError, MissingMetaData, UnsupportedAggregation, MissingZoneData\n'), ((58901, 58919), 'marmot.plottingmodules.plotutils.plot_exceptions.MissingInputData', 'MissingInputData', ([], {}), '()\n', (58917, 58919), False, 'from marmot.plottingmodules.plotutils.plot_exceptions import MissingInputData, DataSavedInModule, UnderDevelopment, InputSheetError, MissingMetaData, UnsupportedAggregation, MissingZoneData\n'), ((59076, 59093), 'marmot.plottingmodules.plotutils.plot_exceptions.InputSheetError', 'InputSheetError', ([], {}), '()\n', (59091, 59093), False, 'from marmot.plottingmodules.plotutils.plot_exceptions import MissingInputData, DataSavedInModule, UnderDevelopment, InputSheetError, MissingMetaData, UnsupportedAggregation, MissingZoneData\n'), ((60608, 60626), 'marmot.plottingmodules.plotutils.plot_exceptions.MissingInputData', 'MissingInputData', ([], {}), '()\n', (60624, 60626), False, 'from marmot.plottingmodules.plotutils.plot_exceptions import MissingInputData, DataSavedInModule, UnderDevelopment, InputSheetError, MissingMetaData, UnsupportedAggregation, MissingZoneData\n'), ((61355, 61406), 'pandas.concat', 'pd.concat', (['[single_exp_lim, single_imp_lim]'], {'axis': '(1)'}), '([single_exp_lim, single_imp_lim], axis=1)\n', (61364, 61406), True, 'import pandas as pd\n'), ((64120, 64150), 'pandas.concat', 'pd.concat', (['chunks_line'], {'axis': '(0)'}), '(chunks_line, axis=0)\n', (64129, 64150), True, 'import pandas as pd\n'), ((64264, 64282), 'marmot.plottingmodules.plotutils.plot_exceptions.MissingInputData', 'MissingInputData', ([], {}), '()\n', (64280, 64282), False, 'from marmot.plottingmodules.plotutils.plot_exceptions import MissingInputData, DataSavedInModule, UnderDevelopment, InputSheetError, MissingMetaData, UnsupportedAggregation, MissingZoneData\n'), ((64776, 64925), 'os.path.join', 'os.path.join', (['self.Marmot_Solutions_folder', '"""Figures_Output"""', "(self.AGG_BY + '_transmission')", "('Individual_Line_Flow' + fn_suffix + '_seasonal.svg')"], {}), "(self.Marmot_Solutions_folder, 'Figures_Output', self.AGG_BY +\n '_transmission', 'Individual_Line_Flow' + fn_suffix + '_seasonal.svg')\n", (64788, 64925), False, 'import os\n'), ((64981, 65130), 'os.path.join', 'os.path.join', (['self.Marmot_Solutions_folder', '"""Figures_Output"""', "(self.AGG_BY + '_transmission')", "('Individual_Line_Flow' + fn_suffix + '_seasonal.csv')"], {}), "(self.Marmot_Solutions_folder, 'Figures_Output', self.AGG_BY +\n '_transmission', 'Individual_Line_Flow' + fn_suffix + '_seasonal.csv')\n", (64993, 65130), False, 'import os\n'), ((66351, 66369), 'marmot.plottingmodules.plotutils.plot_exceptions.MissingInputData', 'MissingInputData', ([], {}), '()\n', (66367, 66369), False, 'from marmot.plottingmodules.plotutils.plot_exceptions import MissingInputData, DataSavedInModule, UnderDevelopment, InputSheetError, MissingMetaData, UnsupportedAggregation, MissingZoneData\n'), ((72682, 72700), 'marmot.plottingmodules.plotutils.plot_exceptions.MissingInputData', 'MissingInputData', ([], {}), '()\n', (72698, 72700), False, 'from marmot.plottingmodules.plotutils.plot_exceptions import MissingInputData, DataSavedInModule, UnderDevelopment, InputSheetError, MissingMetaData, UnsupportedAggregation, MissingZoneData\n'), ((72905, 72974), 'marmot.plottingmodules.plotutils.plot_library.PlotLibrary', 'PlotLibrary', (['nrows', 'ncols'], {'sharey': '(True)', 'squeeze': '(False)', 'ravel_axs': '(True)'}), '(nrows, ncols, sharey=True, squeeze=False, ravel_axs=True)\n', (72916, 72974), False, 'from marmot.plottingmodules.plotutils.plot_library import PlotLibrary\n'), ((73070, 73113), 'matplotlib.pyplot.subplots_adjust', 'plt.subplots_adjust', ([], {'wspace': '(0.6)', 'hspace': '(0.3)'}), '(wspace=0.6, hspace=0.3)\n', (73089, 73113), True, 'import matplotlib.pyplot as plt\n'), ((78074, 78145), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['timezone'], {'color': '"""black"""', 'rotation': '"""horizontal"""', 'labelpad': '(30)'}), "(timezone, color='black', rotation='horizontal', labelpad=30)\n", (78084, 78145), True, 'import matplotlib.pyplot as plt\n'), ((78160, 78271), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['f"""Net Interchange ({unitconversion[\'units\']})"""'], {'color': '"""black"""', 'rotation': '"""vertical"""', 'labelpad': '(40)'}), '(f"Net Interchange ({unitconversion[\'units\']})", color=\'black\',\n rotation=\'vertical\', labelpad=40)\n', (78170, 78271), True, 'import matplotlib.pyplot as plt\n'), ((78941, 78989), 'pandas.concat', 'pd.concat', (['data_table_chunks'], {'copy': '(False)', 'axis': '(0)'}), '(data_table_chunks, copy=False, axis=0)\n', (78950, 78989), True, 'import pandas as pd\n'), ((80223, 80241), 'marmot.plottingmodules.plotutils.plot_exceptions.MissingInputData', 'MissingInputData', ([], {}), '()\n', (80239, 80241), False, 'from marmot.plottingmodules.plotutils.plot_exceptions import MissingInputData, DataSavedInModule, UnderDevelopment, InputSheetError, MissingMetaData, UnsupportedAggregation, MissingZoneData\n'), ((82213, 82230), 'matplotlib.pyplot.cm.get_cmap', 'plt.cm.get_cmap', ([], {}), '()\n', (82228, 82230), True, 'import matplotlib.pyplot as plt\n'), ((83518, 83557), 'matplotlib.cm.ScalarMappable', 'cm.ScalarMappable', ([], {'norm': 'norm', 'cmap': 'cmap'}), '(norm=norm, cmap=cmap)\n', (83535, 83557), True, 'import matplotlib.cm as cm\n'), ((83978, 84038), 'os.path.join', 'os.path.join', (['save_figures', '"""region_region_checkerboard.svg"""'], {}), "(save_figures, 'region_region_checkerboard.svg')\n", (83990, 84038), False, 'import os\n'), ((84122, 84182), 'os.path.join', 'os.path.join', (['save_figures', '"""region_region_checkerboard.csv"""'], {}), "(save_figures, 'region_region_checkerboard.csv')\n", (84134, 84182), False, 'import os\n'), ((86833, 86851), 'marmot.plottingmodules.plotutils.plot_exceptions.MissingInputData', 'MissingInputData', ([], {}), '()\n', (86849, 86851), False, 'from marmot.plottingmodules.plotutils.plot_exceptions import MissingInputData, DataSavedInModule, UnderDevelopment, InputSheetError, MissingMetaData, UnsupportedAggregation, MissingZoneData\n'), ((86972, 86986), 'pandas.DataFrame', 'pd.DataFrame', ([], {}), '()\n', (86984, 86986), True, 'import pandas as pd\n'), ((88710, 88723), 'marmot.plottingmodules.plotutils.plot_library.PlotLibrary', 'PlotLibrary', ([], {}), '()\n', (88721, 88723), False, 'from marmot.plottingmodules.plotutils.plot_library import PlotLibrary\n'), ((89508, 89546), 'marmot.config.mconfig.parser', 'mconfig.parser', (['"""plot_title_as_region"""'], {}), "('plot_title_as_region')\n", (89522, 89546), True, 'import marmot.config.mconfig as mconfig\n'), ((91237, 91255), 'marmot.plottingmodules.plotutils.plot_exceptions.MissingInputData', 'MissingInputData', ([], {}), '()\n', (91253, 91255), False, 'from marmot.plottingmodules.plotutils.plot_exceptions import MissingInputData, DataSavedInModule, UnderDevelopment, InputSheetError, MissingMetaData, UnsupportedAggregation, MissingZoneData\n'), ((91418, 91432), 'pandas.DataFrame', 'pd.DataFrame', ([], {}), '()\n', (91430, 91432), True, 'import pandas as pd\n'), ((92927, 92940), 'marmot.plottingmodules.plotutils.plot_library.PlotLibrary', 'PlotLibrary', ([], {}), '()\n', (92938, 92940), False, 'from marmot.plottingmodules.plotutils.plot_library import PlotLibrary\n'), ((92993, 93037), 'matplotlib.pyplot.subplots_adjust', 'plt.subplots_adjust', ([], {'wspace': '(0.05)', 'hspace': '(0.2)'}), '(wspace=0.05, hspace=0.2)\n', (93012, 93037), True, 'import matplotlib.pyplot as plt\n'), ((93825, 93863), 'marmot.config.mconfig.parser', 'mconfig.parser', (['"""plot_title_as_region"""'], {}), "('plot_title_as_region')\n", (93839, 93863), True, 'import marmot.config.mconfig as mconfig\n'), ((95263, 95287), 'marmot.plottingmodules.plotutils.plot_exceptions.UnsupportedAggregation', 'UnsupportedAggregation', ([], {}), '()\n', (95285, 95287), False, 'from marmot.plottingmodules.plotutils.plot_exceptions import MissingInputData, DataSavedInModule, UnderDevelopment, InputSheetError, MissingMetaData, UnsupportedAggregation, MissingZoneData\n'), ((95972, 95990), 'marmot.plottingmodules.plotutils.plot_exceptions.MissingInputData', 'MissingInputData', ([], {}), '()\n', (95988, 95990), False, 'from marmot.plottingmodules.plotutils.plot_exceptions import MissingInputData, DataSavedInModule, UnderDevelopment, InputSheetError, MissingMetaData, UnsupportedAggregation, MissingZoneData\n'), ((96440, 96509), 'marmot.plottingmodules.plotutils.plot_library.PlotLibrary', 'PlotLibrary', (['nrows', 'ncols'], {'sharey': '(True)', 'squeeze': '(False)', 'ravel_axs': '(True)'}), '(nrows, ncols, sharey=True, squeeze=False, ravel_axs=True)\n', (96451, 96509), False, 'from marmot.plottingmodules.plotutils.plot_library import PlotLibrary\n'), ((96594, 96637), 'matplotlib.pyplot.subplots_adjust', 'plt.subplots_adjust', ([], {'wspace': '(0.1)', 'hspace': '(0.5)'}), '(wspace=0.1, hspace=0.5)\n', (96613, 96637), True, 'import matplotlib.pyplot as plt\n'), ((101642, 101680), 'marmot.config.mconfig.parser', 'mconfig.parser', (['"""plot_title_as_region"""'], {}), "('plot_title_as_region')\n", (101656, 101680), True, 'import marmot.config.mconfig as mconfig\n'), ((101742, 101848), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['f"""Net export ({unitconversion[\'units\']})"""'], {'color': '"""black"""', 'rotation': '"""vertical"""', 'labelpad': '(40)'}), '(f"Net export ({unitconversion[\'units\']})", color=\'black\',\n rotation=\'vertical\', labelpad=40)\n', (101752, 101848), True, 'import matplotlib.pyplot as plt\n'), ((102024, 102050), 'pandas.concat', 'pd.concat', (['net_exports_all'], {}), '(net_exports_all)\n', (102033, 102050), True, 'import pandas as pd\n'), ((103068, 103092), 'marmot.plottingmodules.plotutils.plot_exceptions.UnsupportedAggregation', 'UnsupportedAggregation', ([], {}), '()\n', (103090, 103092), False, 'from marmot.plottingmodules.plotutils.plot_exceptions import MissingInputData, DataSavedInModule, UnderDevelopment, InputSheetError, MissingMetaData, UnsupportedAggregation, MissingZoneData\n'), ((103657, 103675), 'marmot.plottingmodules.plotutils.plot_exceptions.MissingInputData', 'MissingInputData', ([], {}), '()\n', (103673, 103675), False, 'from marmot.plottingmodules.plotutils.plot_exceptions import MissingInputData, DataSavedInModule, UnderDevelopment, InputSheetError, MissingMetaData, UnsupportedAggregation, MissingZoneData\n'), ((103832, 103845), 'marmot.plottingmodules.plotutils.plot_library.PlotLibrary', 'PlotLibrary', ([], {}), '()\n', (103843, 103845), False, 'from marmot.plottingmodules.plotutils.plot_library import PlotLibrary\n'), ((103898, 103942), 'matplotlib.pyplot.subplots_adjust', 'plt.subplots_adjust', ([], {'wspace': '(0.05)', 'hspace': '(0.2)'}), '(wspace=0.05, hspace=0.2)\n', (103917, 103942), True, 'import matplotlib.pyplot as plt\n'), ((107974, 107999), 'pandas.concat', 'pd.concat', (['data_out_chunk'], {}), '(data_out_chunk)\n', (107983, 107999), True, 'import pandas as pd\n'), ((108595, 108633), 'marmot.config.mconfig.parser', 'mconfig.parser', (['"""plot_title_as_region"""'], {}), "('plot_title_as_region')\n", (108609, 108633), True, 'import marmot.config.mconfig as mconfig\n'), ((110429, 110447), 'marmot.plottingmodules.plotutils.plot_exceptions.MissingInputData', 'MissingInputData', ([], {}), '()\n', (110445, 110447), False, 'from marmot.plottingmodules.plotutils.plot_exceptions import MissingInputData, DataSavedInModule, UnderDevelopment, InputSheetError, MissingMetaData, UnsupportedAggregation, MissingZoneData\n'), ((110607, 110624), 'marmot.plottingmodules.plotutils.plot_exceptions.InputSheetError', 'InputSheetError', ([], {}), '()\n', (110622, 110624), False, 'from marmot.plottingmodules.plotutils.plot_exceptions import MissingInputData, DataSavedInModule, UnderDevelopment, InputSheetError, MissingMetaData, UnsupportedAggregation, MissingZoneData\n'), ((111194, 111224), 'pandas.Series', 'pd.Series', ([], {'name': '"""Total Export"""'}), "(name='Total Export')\n", (111203, 111224), True, 'import pandas as pd\n'), ((111243, 111273), 'pandas.Series', 'pd.Series', ([], {'name': '"""Total Import"""'}), "(name='Total Import')\n", (111252, 111273), True, 'import pandas as pd\n'), ((112414, 112443), 'pandas.concat', 'pd.concat', (['[pos, neg]'], {'axis': '(1)'}), '([pos, neg], axis=1)\n', (112423, 112443), True, 'import pandas as pd\n'), ((113730, 113864), 'os.path.join', 'os.path.join', (['self.Marmot_Solutions_folder', '"""Figures_Output"""', 'f"""{self.AGG_BY}_transmission"""', '"""Individual_Interface_Total_Flow.svg"""'], {}), "(self.Marmot_Solutions_folder, 'Figures_Output',\n f'{self.AGG_BY}_transmission', 'Individual_Interface_Total_Flow.svg')\n", (113742, 113864), False, 'import os\n'), ((113976, 114110), 'os.path.join', 'os.path.join', (['self.Marmot_Solutions_folder', '"""Figures_Output"""', 'f"""{self.AGG_BY}_transmission"""', '"""Individual_Interface_Total_Flow.csv"""'], {}), "(self.Marmot_Solutions_folder, 'Figures_Output',\n f'{self.AGG_BY}_transmission', 'Individual_Interface_Total_Flow.csv')\n", (113988, 114110), False, 'import os\n'), ((7390, 7404), 'pandas.notna', 'pd.notna', (['prop'], {}), '(prop)\n', (7398, 7404), True, 'import pandas as pd\n'), ((9314, 9328), 'pandas.notna', 'pd.notna', (['prop'], {}), '(prop)\n', (9322, 9328), True, 'import pandas as pd\n'), ((9449, 9527), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Number of lines"""'], {'color': '"""black"""', 'rotation': '"""vertical"""', 'labelpad': '(30)'}), "('Number of lines', color='black', rotation='vertical', labelpad=30)\n", (9459, 9527), True, 'import matplotlib.pyplot as plt\n'), ((9573, 9673), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['f"""Line Utilization: {prop_name}"""'], {'color': '"""black"""', 'rotation': '"""horizontal"""', 'labelpad': '(30)'}), "(f'Line Utilization: {prop_name}', color='black', rotation=\n 'horizontal', labelpad=30)\n", (9583, 9673), True, 'import matplotlib.pyplot as plt\n'), ((9735, 9749), 'pandas.notna', 'pd.notna', (['prop'], {}), '(prop)\n', (9743, 9749), True, 'import pandas as pd\n'), ((9872, 9970), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['f"""Line Utilization: {prop_name}"""'], {'color': '"""black"""', 'rotation': '"""vertical"""', 'labelpad': '(60)'}), "(f'Line Utilization: {prop_name}', color='black', rotation=\n 'vertical', labelpad=60)\n", (9882, 9970), True, 'import matplotlib.pyplot as plt\n'), ((10010, 10084), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Intervals"""'], {'color': '"""black"""', 'rotation': '"""horizontal"""', 'labelpad': '(20)'}), "('Intervals', color='black', rotation='horizontal', labelpad=20)\n", (10020, 10084), True, 'import matplotlib.pyplot as plt\n'), ((21359, 21424), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Sorted hour of the year"""'], {'color': '"""black"""', 'labelpad': '(30)'}), "('Sorted hour of the year', color='black', labelpad=30)\n", (21369, 21424), True, 'import matplotlib.pyplot as plt\n'), ((27207, 27225), 'marmot.plottingmodules.plotutils.plot_exceptions.MissingInputData', 'MissingInputData', ([], {}), '()\n', (27223, 27225), False, 'from marmot.plottingmodules.plotutils.plot_exceptions import MissingInputData, DataSavedInModule, UnderDevelopment, InputSheetError, MissingMetaData, UnsupportedAggregation, MissingZoneData\n'), ((28199, 28250), 'pandas.concat', 'pd.concat', (['[single_exp_lim, single_imp_lim]'], {'axis': '(1)'}), '([single_exp_lim, single_imp_lim], axis=1)\n', (28208, 28250), True, 'import pandas as pd\n'), ((30482, 30514), 'pandas.concat', 'pd.concat', (['chunks_interf'], {'axis': '(0)'}), '(chunks_interf, axis=0)\n', (30491, 30514), True, 'import pandas as pd\n'), ((31826, 31891), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Sorted hour of the year"""'], {'color': '"""black"""', 'labelpad': '(30)'}), "('Sorted hour of the year', color='black', labelpad=30)\n", (31836, 31891), True, 'import matplotlib.pyplot as plt\n'), ((42555, 42620), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Sorted hour of the year"""'], {'color': '"""black"""', 'labelpad': '(30)'}), "('Sorted hour of the year', color='black', labelpad=30)\n", (42565, 42620), True, 'import matplotlib.pyplot as plt\n'), ((47200, 47243), 'pandas.concat', 'pd.concat', (['[single_exp_lim, single_imp_lim]'], {}), '([single_exp_lim, single_imp_lim])\n', (47209, 47243), True, 'import pandas as pd\n'), ((47690, 47744), 'pandas.Series', 'pd.Series', (['[single_exp_lim, single_imp_lim]'], {'name': 'line'}), '([single_exp_lim, single_imp_lim], name=line)\n', (47699, 47744), True, 'import pandas as pd\n'), ((49841, 49871), 'pandas.concat', 'pd.concat', (['chunks_line'], {'axis': '(0)'}), '(chunks_line, axis=0)\n', (49850, 49871), True, 'import pandas as pd\n'), ((69483, 69622), 'os.path.join', 'os.path.join', (['self.Marmot_Solutions_folder', '"""NARIS"""', '"""Figures_Output"""', "(self.AGG_BY + '_transmission')", "('test_meta_' + scenario + '.csv')"], {}), "(self.Marmot_Solutions_folder, 'NARIS', 'Figures_Output', self.\n AGG_BY + '_transmission', 'test_meta_' + scenario + '.csv')\n", (69495, 69622), False, 'import os\n'), ((69679, 69753), 'pandas.merge', 'pd.merge', (['int_import_lim', 'int_export_lim'], {'how': '"""inner"""', 'on': '"""interface_name"""'}), "(int_import_lim, int_export_lim, how='inner', on='interface_name')\n", (69687, 69753), True, 'import pandas as pd\n'), ((78500, 78563), 'os.path.join', 'os.path.join', (['self.figure_folder', "(self.AGG_BY + '_transmission')"], {}), "(self.figure_folder, self.AGG_BY + '_transmission')\n", (78512, 78563), False, 'import os\n'), ((78866, 78885), 'marmot.plottingmodules.plotutils.plot_exceptions.DataSavedInModule', 'DataSavedInModule', ([], {}), '()\n', (78883, 78885), False, 'from marmot.plottingmodules.plotutils.plot_exceptions import MissingInputData, DataSavedInModule, UnderDevelopment, InputSheetError, MissingMetaData, UnsupportedAggregation, MissingZoneData\n'), ((82347, 82377), 'numpy.arange', 'np.arange', (['rr_int_agg.shape[1]'], {}), '(rr_int_agg.shape[1])\n', (82356, 82377), True, 'import numpy as np\n'), ((82409, 82439), 'numpy.arange', 'np.arange', (['rr_int_agg.shape[0]'], {}), '(rr_int_agg.shape[0])\n', (82418, 82439), True, 'import numpy as np\n'), ((87930, 87974), 'pandas.concat', 'pd.concat', (['[all_scenarios, one_zone]'], {'axis': '(1)'}), '([all_scenarios, one_zone], axis=1)\n', (87939, 87974), True, 'import pandas as pd\n'), ((88278, 88295), 'marmot.plottingmodules.plotutils.plot_exceptions.MissingZoneData', 'MissingZoneData', ([], {}), '()\n', (88293, 88295), False, 'from marmot.plottingmodules.plotutils.plot_exceptions import MissingInputData, DataSavedInModule, UnderDevelopment, InputSheetError, MissingMetaData, UnsupportedAggregation, MissingZoneData\n'), ((91977, 92003), 'pandas.notna', 'pd.notna', (['start_date_range'], {}), '(start_date_range)\n', (91985, 92003), True, 'import pandas as pd\n'), ((92270, 92327), 'pandas.concat', 'pd.concat', (['[net_export_all_scenarios, net_export]'], {'axis': '(1)'}), '([net_export_all_scenarios, net_export], axis=1)\n', (92279, 92327), True, 'import pandas as pd\n'), ((93108, 93125), 'marmot.plottingmodules.plotutils.plot_exceptions.MissingZoneData', 'MissingZoneData', ([], {}), '()\n', (93123, 93125), False, 'from marmot.plottingmodules.plotutils.plot_exceptions import MissingInputData, DataSavedInModule, UnderDevelopment, InputSheetError, MissingMetaData, UnsupportedAggregation, MissingZoneData\n'), ((99761, 99791), 'pandas.concat', 'pd.concat', (['net_exports'], {'axis': '(1)'}), '(net_exports, axis=1)\n', (99770, 99791), True, 'import pandas as pd\n'), ((99896, 99929), 'pandas.to_datetime', 'pd.to_datetime', (['net_exports.index'], {}), '(net_exports.index)\n', (99910, 99929), True, 'import pandas as pd\n'), ((101916, 101981), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Sorted hour of the year"""'], {'color': '"""black"""', 'labelpad': '(30)'}), "('Sorted hour of the year', color='black', labelpad=30)\n", (101926, 101981), True, 'import matplotlib.pyplot as plt\n'), ((106789, 106819), 'pandas.concat', 'pd.concat', (['net_exports'], {'axis': '(1)'}), '(net_exports, axis=1)\n', (106798, 106819), True, 'import pandas as pd\n'), ((106921, 106954), 'pandas.to_datetime', 'pd.to_datetime', (['net_exports.index'], {}), '(net_exports.index)\n', (106935, 106954), True, 'import pandas as pd\n'), ((107182, 107221), 'pandas.concat', 'pd.concat', (['[positive, negative]'], {'axis': '(1)'}), '([positive, negative], axis=1)\n', (107191, 107221), True, 'import pandas as pd\n'), ((111886, 111912), 'pandas.notna', 'pd.notna', (['start_date_range'], {}), '(start_date_range)\n', (111894, 111912), True, 'import pandas as pd\n'), ((7625, 7690), 'pandas.merge', 'pd.merge', (['flow', 'line_relations'], {'left_index': '(True)', 'right_index': '(True)'}), '(flow, line_relations, left_index=True, right_index=True)\n', (7633, 7690), True, 'import pandas as pd\n'), ((17089, 17140), 'pandas.concat', 'pd.concat', (['[single_exp_lim, single_imp_lim]'], {'axis': '(1)'}), '([single_exp_lim, single_imp_lim], axis=1)\n', (17098, 17140), True, 'import pandas as pd\n'), ((19795, 19827), 'pandas.concat', 'pd.concat', (['chunks_interf'], {'axis': '(0)'}), '(chunks_interf, axis=0)\n', (19804, 19827), True, 'import pandas as pd\n'), ((20467, 20485), 'marmot.plottingmodules.plotutils.plot_exceptions.MissingInputData', 'MissingInputData', ([], {}), '()\n', (20483, 20485), False, 'from marmot.plottingmodules.plotutils.plot_exceptions import MissingInputData, DataSavedInModule, UnderDevelopment, InputSheetError, MissingMetaData, UnsupportedAggregation, MissingZoneData\n'), ((30767, 30813), 'matplotlib.dates.AutoDateLocator', 'mdates.AutoDateLocator', ([], {'minticks': '(4)', 'maxticks': '(8)'}), '(minticks=4, maxticks=8)\n', (30789, 30813), True, 'import matplotlib.dates as mdates\n'), ((30846, 30882), 'matplotlib.dates.ConciseDateFormatter', 'mdates.ConciseDateFormatter', (['locator'], {}), '(locator)\n', (30873, 30882), True, 'import matplotlib.dates as mdates\n'), ((38474, 38525), 'pandas.concat', 'pd.concat', (['[single_exp_lim, single_imp_lim]'], {'axis': '(1)'}), '([single_exp_lim, single_imp_lim], axis=1)\n', (38483, 38525), True, 'import pandas as pd\n'), ((40887, 40919), 'pandas.concat', 'pd.concat', (['chunks_interf'], {'axis': '(0)'}), '(chunks_interf, axis=0)\n', (40896, 40919), True, 'import pandas as pd\n'), ((41716, 41734), 'marmot.plottingmodules.plotutils.plot_exceptions.MissingInputData', 'MissingInputData', ([], {}), '()\n', (41732, 41734), False, 'from marmot.plottingmodules.plotutils.plot_exceptions import MissingInputData, DataSavedInModule, UnderDevelopment, InputSheetError, MissingMetaData, UnsupportedAggregation, MissingZoneData\n'), ((74919, 74975), 'marmot.plottingmodules.plotutils.plot_library.PlotLibrary', 'PlotLibrary', (['nrows', 'ncols'], {'squeeze': '(False)', 'ravel_axs': '(True)'}), '(nrows, ncols, squeeze=False, ravel_axs=True)\n', (74930, 74975), False, 'from marmot.plottingmodules.plotutils.plot_library import PlotLibrary\n'), ((75085, 75128), 'matplotlib.pyplot.subplots_adjust', 'plt.subplots_adjust', ([], {'wspace': '(0.6)', 'hspace': '(0.7)'}), '(wspace=0.6, hspace=0.7)\n', (75104, 75128), True, 'import matplotlib.pyplot as plt\n'), ((81270, 81294), 'marmot.plottingmodules.plotutils.plot_exceptions.UnsupportedAggregation', 'UnsupportedAggregation', ([], {}), '()\n', (81292, 81294), False, 'from marmot.plottingmodules.plotutils.plot_exceptions import MissingInputData, DataSavedInModule, UnderDevelopment, InputSheetError, MissingMetaData, UnsupportedAggregation, MissingZoneData\n'), ((82895, 82929), 'numpy.arange', 'np.arange', (['(rr_int_agg.shape[1] + 1)'], {}), '(rr_int_agg.shape[1] + 1)\n', (82904, 82929), True, 'import numpy as np\n'), ((82975, 83009), 'numpy.arange', 'np.arange', (['(rr_int_agg.shape[0] + 1)'], {}), '(rr_int_agg.shape[0] + 1)\n', (82984, 83009), True, 'import numpy as np\n'), ((96986, 97003), 'marmot.plottingmodules.plotutils.plot_exceptions.MissingMetaData', 'MissingMetaData', ([], {}), '()\n', (97001, 97003), False, 'from marmot.plottingmodules.plotutils.plot_exceptions import MissingInputData, DataSavedInModule, UnderDevelopment, InputSheetError, MissingMetaData, UnsupportedAggregation, MissingZoneData\n'), ((98081, 98154), 'pandas.merge', 'pd.merge', (['exp_oz', 'imp_other_oz'], {'left_on': '"""line_name"""', 'right_on': '"""line_name"""'}), "(exp_oz, imp_other_oz, left_on='line_name', right_on='line_name')\n", (98089, 98154), True, 'import pandas as pd\n'), ((98226, 98299), 'pandas.merge', 'pd.merge', (['imp_oz', 'exp_other_oz'], {'left_on': '"""line_name"""', 'right_on': '"""line_name"""'}), "(imp_oz, exp_other_oz, left_on='line_name', right_on='line_name')\n", (98234, 98299), True, 'import pandas as pd\n'), ((99230, 99256), 'pandas.notna', 'pd.notna', (['start_date_range'], {}), '(start_date_range)\n', (99238, 99256), True, 'import pandas as pd\n'), ((104337, 104354), 'marmot.plottingmodules.plotutils.plot_exceptions.MissingMetaData', 'MissingMetaData', ([], {}), '()\n', (104352, 104354), False, 'from marmot.plottingmodules.plotutils.plot_exceptions import MissingInputData, DataSavedInModule, UnderDevelopment, InputSheetError, MissingMetaData, UnsupportedAggregation, MissingZoneData\n'), ((105228, 105301), 'pandas.merge', 'pd.merge', (['exp_oz', 'imp_other_oz'], {'left_on': '"""line_name"""', 'right_on': '"""line_name"""'}), "(exp_oz, imp_other_oz, left_on='line_name', right_on='line_name')\n", (105236, 105301), True, 'import pandas as pd\n'), ((105374, 105447), 'pandas.merge', 'pd.merge', (['imp_oz', 'exp_other_oz'], {'left_on': '"""line_name"""', 'right_on': '"""line_name"""'}), "(imp_oz, exp_other_oz, left_on='line_name', right_on='line_name')\n", (105382, 105447), True, 'import pandas as pd\n'), ((106379, 106405), 'pandas.notna', 'pd.notna', (['start_date_range'], {}), '(start_date_range)\n', (106387, 106405), True, 'import pandas as pd\n'), ((6669, 6686), 'marmot.plottingmodules.plotutils.plot_exceptions.MissingZoneData', 'MissingZoneData', ([], {}), '()\n', (6684, 6686), False, 'from marmot.plottingmodules.plotutils.plot_exceptions import MissingInputData, DataSavedInModule, UnderDevelopment, InputSheetError, MissingMetaData, UnsupportedAggregation, MissingZoneData\n'), ((17932, 17958), 'pandas.notna', 'pd.notna', (['start_date_range'], {}), '(start_date_range)\n', (17940, 17958), True, 'import pandas as pd\n'), ((73637, 73651), 'pandas.DataFrame', 'pd.DataFrame', ([], {}), '()\n', (73649, 73651), True, 'import pandas as pd\n'), ((74063, 74087), 'marmot.plottingmodules.plotutils.plot_exceptions.UnsupportedAggregation', 'UnsupportedAggregation', ([], {}), '()\n', (74085, 74087), False, 'from marmot.plottingmodules.plotutils.plot_exceptions import MissingInputData, DataSavedInModule, UnderDevelopment, InputSheetError, MissingMetaData, UnsupportedAggregation, MissingZoneData\n'), ((39306, 39332), 'pandas.isnull', 'pd.isnull', (['self.start_date'], {}), '(self.start_date)\n', (39315, 39332), True, 'import pandas as pd\n')]
|
import os
import numpy as np
import h5py
import lsst.sims.photUtils as photUtils
import GCRCatalogs
from GCR import GCRQuery
import time
import argparse
import multiprocessing
def validate_chunk(data_in,
in_dir, healpix,
read_lock, write_lock, output_dict):
galaxy_id = data_in['galaxy_id']
redshift = data_in['redshift']
mag_in = {}
for bp in 'ugrizy':
mag_in[bp] = data_in['mag_true_%s_lsst' % bp]
eps = 1.0e-20
disk_to_bulge = {}
for bp in 'ugrizy':
disk_name = 'LSST_filters/diskLuminositiesStellar:'
disk_name += 'LSST_%s:observed:dustAtlas' % bp
bulge_name = 'LSST_filters/spheroidLuminositiesStellar:'
bulge_name += 'LSST_%s:observed:dustAtlas' % bp
denom = np.where(data_in[bulge_name]>0.0, data_in[bulge_name], eps)
disk_to_bulge[bp] = data_in[disk_name]/denom
assert np.isfinite(disk_to_bulge[bp]).sum()==len(disk_to_bulge[bp])
sed_dir = os.environ['SIMS_SED_LIBRARY_DIR']
tot_bp_dict = photUtils.BandpassDict.loadTotalBandpassesFromFiles()
fit_file = os.path.join(in_dir, 'sed_fit_%d.h5' % healpix)
assert os.path.isfile(fit_file)
with read_lock:
with h5py.File(fit_file, 'r') as in_file:
sed_names = in_file['sed_names'][()]
galaxy_id_fit = in_file['galaxy_id'][()]
valid = np.in1d(galaxy_id_fit, galaxy_id)
galaxy_id_fit = galaxy_id_fit[valid]
np.testing.assert_array_equal(galaxy_id_fit, galaxy_id)
disk_magnorm = in_file['disk_magnorm'][()][:,valid]
disk_av = in_file['disk_av'][()][valid]
disk_rv = in_file['disk_rv'][()][valid]
disk_sed = in_file['disk_sed'][()][valid]
bulge_magnorm = in_file['bulge_magnorm'][()][:,valid]
bulge_av = in_file['bulge_av'][()][valid]
bulge_rv = in_file['bulge_rv'][()][valid]
bulge_sed = in_file['bulge_sed'][()][valid]
sed_names = [name.decode() for name in sed_names]
local_worst = {}
local_worst_ratio = {}
ccm_w = None
dummy_sed = photUtils.Sed()
for i_obj in range(len(disk_av)):
for i_bp, bp in enumerate('ugrizy'):
d_sed = photUtils.Sed()
fname = os.path.join(sed_dir, sed_names[disk_sed[i_obj]])
d_sed.readSED_flambda(fname)
fnorm = photUtils.getImsimFluxNorm(d_sed,
disk_magnorm[i_bp][i_obj])
d_sed.multiplyFluxNorm(fnorm)
if ccm_w is None or not np.array_equal(d_sed.wavelen, ccm_w):
ccm_w = np.copy(d_sed.wavelen)
ax, bx = d_sed.setupCCM_ab()
d_sed.addDust(ax, bx, R_v=disk_rv[i_obj], A_v=disk_av[i_obj])
d_sed.redshiftSED(redshift[i_obj], dimming=True)
d_flux = d_sed.calcFlux(tot_bp_dict[bp])
b_sed = photUtils.Sed()
fname = os.path.join(sed_dir, sed_names[bulge_sed[i_obj]])
b_sed.readSED_flambda(fname)
fnorm = photUtils.getImsimFluxNorm(b_sed,
bulge_magnorm[i_bp][i_obj])
b_sed.multiplyFluxNorm(fnorm)
if ccm_w is None or not np.array_equal(b_sed.wavelen, ccm_w):
ccm_w = np.copy(b_sed.wavelen)
ax, bx = b_sed.setupCCM_ab()
b_sed.addDust(ax, bx, R_v=bulge_rv[i_obj], A_v=bulge_av[i_obj])
b_sed.redshiftSED(redshift[i_obj], dimming=True)
b_flux = b_sed.calcFlux(tot_bp_dict[bp])
flux_ratio = d_flux/max(b_flux, eps)
if flux_ratio<1.0e3 or disk_to_bulge[bp][i_obj]<1.0e3:
delta_ratio = np.abs(flux_ratio-disk_to_bulge[bp][i_obj])
if disk_to_bulge[bp][i_obj]>eps:
delta_ratio /= disk_to_bulge[bp][i_obj]
if bp not in local_worst_ratio or delta_ratio>local_worst_ratio[bp]:
local_worst_ratio[bp] = delta_ratio
tot_flux = b_flux + d_flux
true_flux = dummy_sed.fluxFromMag(mag_in[bp][i_obj])
delta_flux = np.abs(1.0-tot_flux/true_flux)
if bp not in local_worst or delta_flux>local_worst[bp]:
local_worst[bp] = delta_flux
with write_lock:
for bp in 'ugrizy':
if bp not in output_dict or local_worst[bp]>output_dict[bp]:
output_dict[bp] = local_worst[bp]
ratio_name = '%s_ratio' % bp
if (ratio_name not in output_dict
or local_worst_ratio[bp]>output_dict[ratio_name]):
output_dict[ratio_name] = local_worst_ratio[bp]
if __name__ == "__main__":
t_start = time.time()
parser = argparse.ArgumentParser()
parser.add_argument('--healpix', type=int, default=None)
parser.add_argument('--in_dir', type=str, default=None)
parser.add_argument('--seed', type=int, default=None)
parser.add_argument('--nsamples', type=int, default=1000000)
parser.add_argument('--n_threads', type=int, default=10)
parser.add_argument('--d_gal', type=int, default=10000)
args = parser.parse_args()
if args.healpix is None:
raise RuntimeError("must specify healpix")
if args.in_dir is None or not os.path.isdir(args.in_dir):
raise RuntimeError("invalid in_dir")
if args.seed is None:
raise RuntimeError("must specify seed")
cache_dir = os.path.join(os.environ['HOME'],'workspace','sed_cache')
photUtils.cache_LSST_seds(wavelen_min=0.0, wavelen_max=1500.0,
cache_dir=cache_dir)
mgr = multiprocessing.Manager()
read_lock = mgr.Lock()
write_lock = mgr.Lock()
output_dict = mgr.dict()
col_names = ['galaxy_id', 'redshift']
for bp in 'ugrizy':
col_names.append('mag_true_%s_lsst' % bp)
col_names.append('LSST_filters/diskLuminositiesStellar:'
'LSST_%s:observed:dustAtlas' % bp)
col_names.append('LSST_filters/spheroidLuminositiesStellar:'
'LSST_%s:observed:dustAtlas' % bp)
print('loading catalog')
cat = GCRCatalogs.load_catalog('cosmoDC2_v1.1.4_image')
h_query = GCRQuery('healpix_pixel==%d' % args.healpix)
data = cat.get_quantities(col_names,
native_filters=[h_query])
print('got catalog')
if args.nsamples>0:
rng = np.random.RandomState(args.seed)
sub_dexes = rng.choice(np.arange(len(data['galaxy_id']), dtype=int),
size=args.nsamples,
replace=False)
for k in data.keys():
data[k] = data[k][sub_dexes]
sorted_dex = np.argsort(data['galaxy_id'])
for k in data.keys():
data[k] = data[k][sorted_dex]
print('n galaxies %e' % len(data['galaxy_id']))
p_list = []
ct = 0
for i_start in range(0,len(data['galaxy_id']), args.d_gal):
sub_sample = slice(i_start, i_start+args.d_gal)
sub_data = {}
for k in data:
sub_data[k] = data[k][sub_sample]
p = multiprocessing.Process(target=validate_chunk,
args=(sub_data,
args.in_dir, args.healpix,
read_lock, write_lock, output_dict))
p.start()
p_list.append(p)
while len(p_list)>=args.n_threads:
exit_list = []
for p in p_list:
exit_list.append(p.exitcode)
was_popped = False
for ii in range(len(p_list)-1,-1,-1):
if exit_list[ii] is not None:
p_list.pop(ii)
ct += args.d_gal
was_popped = True
#if was_popped:
# duration = (time.time()-t_start)/3600.0
# per = duration/ct
# pred = len(data['galaxy_id'])*per
# print('checked %d in %.2e; pred %.2e' % (ct, duration, pred))
for p in p_list:
p.join()
for bp in output_dict.keys():
print('hp %d %s %e' % (args.healpix, bp, output_dict[bp]))
print('hp %d that took %.2e hrs' %
(args.healpix, (time.time()-t_start)/3600.0))
|
[
"numpy.abs",
"argparse.ArgumentParser",
"numpy.argsort",
"os.path.isfile",
"os.path.join",
"numpy.copy",
"GCR.GCRQuery",
"lsst.sims.photUtils.Sed",
"numpy.isfinite",
"numpy.random.RandomState",
"h5py.File",
"numpy.testing.assert_array_equal",
"lsst.sims.photUtils.getImsimFluxNorm",
"GCRCatalogs.load_catalog",
"multiprocessing.Process",
"os.path.isdir",
"multiprocessing.Manager",
"lsst.sims.photUtils.cache_LSST_seds",
"time.time",
"numpy.where",
"numpy.array_equal",
"lsst.sims.photUtils.BandpassDict.loadTotalBandpassesFromFiles",
"numpy.in1d"
] |
[((1044, 1097), 'lsst.sims.photUtils.BandpassDict.loadTotalBandpassesFromFiles', 'photUtils.BandpassDict.loadTotalBandpassesFromFiles', ([], {}), '()\n', (1095, 1097), True, 'import lsst.sims.photUtils as photUtils\n'), ((1114, 1161), 'os.path.join', 'os.path.join', (['in_dir', "('sed_fit_%d.h5' % healpix)"], {}), "(in_dir, 'sed_fit_%d.h5' % healpix)\n", (1126, 1161), False, 'import os\n'), ((1173, 1197), 'os.path.isfile', 'os.path.isfile', (['fit_file'], {}), '(fit_file)\n', (1187, 1197), False, 'import os\n'), ((2132, 2147), 'lsst.sims.photUtils.Sed', 'photUtils.Sed', ([], {}), '()\n', (2145, 2147), True, 'import lsst.sims.photUtils as photUtils\n'), ((4728, 4739), 'time.time', 'time.time', ([], {}), '()\n', (4737, 4739), False, 'import time\n'), ((4754, 4779), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (4777, 4779), False, 'import argparse\n'), ((5455, 5513), 'os.path.join', 'os.path.join', (["os.environ['HOME']", '"""workspace"""', '"""sed_cache"""'], {}), "(os.environ['HOME'], 'workspace', 'sed_cache')\n", (5467, 5513), False, 'import os\n'), ((5516, 5604), 'lsst.sims.photUtils.cache_LSST_seds', 'photUtils.cache_LSST_seds', ([], {'wavelen_min': '(0.0)', 'wavelen_max': '(1500.0)', 'cache_dir': 'cache_dir'}), '(wavelen_min=0.0, wavelen_max=1500.0, cache_dir=\n cache_dir)\n', (5541, 5604), True, 'import lsst.sims.photUtils as photUtils\n'), ((5641, 5666), 'multiprocessing.Manager', 'multiprocessing.Manager', ([], {}), '()\n', (5664, 5666), False, 'import multiprocessing\n'), ((6162, 6211), 'GCRCatalogs.load_catalog', 'GCRCatalogs.load_catalog', (['"""cosmoDC2_v1.1.4_image"""'], {}), "('cosmoDC2_v1.1.4_image')\n", (6186, 6211), False, 'import GCRCatalogs\n'), ((6226, 6270), 'GCR.GCRQuery', 'GCRQuery', (["('healpix_pixel==%d' % args.healpix)"], {}), "('healpix_pixel==%d' % args.healpix)\n", (6234, 6270), False, 'from GCR import GCRQuery\n'), ((786, 847), 'numpy.where', 'np.where', (['(data_in[bulge_name] > 0.0)', 'data_in[bulge_name]', 'eps'], {}), '(data_in[bulge_name] > 0.0, data_in[bulge_name], eps)\n', (794, 847), True, 'import numpy as np\n'), ((6432, 6464), 'numpy.random.RandomState', 'np.random.RandomState', (['args.seed'], {}), '(args.seed)\n', (6453, 6464), True, 'import numpy as np\n'), ((6731, 6760), 'numpy.argsort', 'np.argsort', (["data['galaxy_id']"], {}), "(data['galaxy_id'])\n", (6741, 6760), True, 'import numpy as np\n'), ((7139, 7269), 'multiprocessing.Process', 'multiprocessing.Process', ([], {'target': 'validate_chunk', 'args': '(sub_data, args.in_dir, args.healpix, read_lock, write_lock, output_dict)'}), '(target=validate_chunk, args=(sub_data, args.in_dir,\n args.healpix, read_lock, write_lock, output_dict))\n', (7162, 7269), False, 'import multiprocessing\n'), ((1231, 1255), 'h5py.File', 'h5py.File', (['fit_file', '"""r"""'], {}), "(fit_file, 'r')\n", (1240, 1255), False, 'import h5py\n'), ((1390, 1423), 'numpy.in1d', 'np.in1d', (['galaxy_id_fit', 'galaxy_id'], {}), '(galaxy_id_fit, galaxy_id)\n', (1397, 1423), True, 'import numpy as np\n'), ((1485, 1540), 'numpy.testing.assert_array_equal', 'np.testing.assert_array_equal', (['galaxy_id_fit', 'galaxy_id'], {}), '(galaxy_id_fit, galaxy_id)\n', (1514, 1540), True, 'import numpy as np\n'), ((2251, 2266), 'lsst.sims.photUtils.Sed', 'photUtils.Sed', ([], {}), '()\n', (2264, 2266), True, 'import lsst.sims.photUtils as photUtils\n'), ((2287, 2336), 'os.path.join', 'os.path.join', (['sed_dir', 'sed_names[disk_sed[i_obj]]'], {}), '(sed_dir, sed_names[disk_sed[i_obj]])\n', (2299, 2336), False, 'import os\n'), ((2398, 2458), 'lsst.sims.photUtils.getImsimFluxNorm', 'photUtils.getImsimFluxNorm', (['d_sed', 'disk_magnorm[i_bp][i_obj]'], {}), '(d_sed, disk_magnorm[i_bp][i_obj])\n', (2424, 2458), True, 'import lsst.sims.photUtils as photUtils\n'), ((2923, 2938), 'lsst.sims.photUtils.Sed', 'photUtils.Sed', ([], {}), '()\n', (2936, 2938), True, 'import lsst.sims.photUtils as photUtils\n'), ((2959, 3009), 'os.path.join', 'os.path.join', (['sed_dir', 'sed_names[bulge_sed[i_obj]]'], {}), '(sed_dir, sed_names[bulge_sed[i_obj]])\n', (2971, 3009), False, 'import os\n'), ((3071, 3132), 'lsst.sims.photUtils.getImsimFluxNorm', 'photUtils.getImsimFluxNorm', (['b_sed', 'bulge_magnorm[i_bp][i_obj]'], {}), '(b_sed, bulge_magnorm[i_bp][i_obj])\n', (3097, 3132), True, 'import lsst.sims.photUtils as photUtils\n'), ((4150, 4184), 'numpy.abs', 'np.abs', (['(1.0 - tot_flux / true_flux)'], {}), '(1.0 - tot_flux / true_flux)\n', (4156, 4184), True, 'import numpy as np\n'), ((5291, 5317), 'os.path.isdir', 'os.path.isdir', (['args.in_dir'], {}), '(args.in_dir)\n', (5304, 5317), False, 'import os\n'), ((2646, 2668), 'numpy.copy', 'np.copy', (['d_sed.wavelen'], {}), '(d_sed.wavelen)\n', (2653, 2668), True, 'import numpy as np\n'), ((3320, 3342), 'numpy.copy', 'np.copy', (['b_sed.wavelen'], {}), '(b_sed.wavelen)\n', (3327, 3342), True, 'import numpy as np\n'), ((3726, 3771), 'numpy.abs', 'np.abs', (['(flux_ratio - disk_to_bulge[bp][i_obj])'], {}), '(flux_ratio - disk_to_bulge[bp][i_obj])\n', (3732, 3771), True, 'import numpy as np\n'), ((914, 944), 'numpy.isfinite', 'np.isfinite', (['disk_to_bulge[bp]'], {}), '(disk_to_bulge[bp])\n', (925, 944), True, 'import numpy as np\n'), ((2584, 2620), 'numpy.array_equal', 'np.array_equal', (['d_sed.wavelen', 'ccm_w'], {}), '(d_sed.wavelen, ccm_w)\n', (2598, 2620), True, 'import numpy as np\n'), ((3258, 3294), 'numpy.array_equal', 'np.array_equal', (['b_sed.wavelen', 'ccm_w'], {}), '(b_sed.wavelen, ccm_w)\n', (3272, 3294), True, 'import numpy as np\n'), ((8267, 8278), 'time.time', 'time.time', ([], {}), '()\n', (8276, 8278), False, 'import time\n')]
|
import numpy as np
def bb_iou(a, b):
a_x_tl = a[2]
a_y_tl = a[3]
a_x_br = a[0]
a_y_br = a[1]
b_x_tl = b[2]
b_y_tl = b[3]
b_x_br = b[0]
b_y_br = b[1]
# a_x_tl = a[0]-a[2]
# a_y_tl = a[1]-a[3]
# a_x_br = a[0]
# a_y_br = a[1]
#
# b_x_tl = b[0]-b[2]
# b_y_tl = b[1]-b[3]
# b_x_br = b[0]
# b_y_br = b[1]
x1 = max(a_x_tl, b_x_tl)
y1 = max(a_y_tl, b_y_tl)
x2 = min(a_x_br, b_x_br)
y2 = min(a_y_br, b_y_br)
w = x2 - x1 + 1
h = y2 - y1 + 1
# set invalid entries to 0 overlap
if w <= 0 or h <= 0:
o = 0
else:
inter = w * h
aarea = (a_x_br-a_x_tl+1)*(a_y_br-a_y_tl+1)
barea = (b_x_br-b_x_tl+1)*(b_y_br-b_y_tl+1)
# intersection over union overlap
o = inter/ (aarea + barea - inter)
return o
def box_iou(gt_bboxes, pre_bboxes, pre_bb_images, thresh_iou=0.5):
nrof_images = np.shape(gt_bboxes)[0]
pre_bboxes_iou = []
pre_bboxes_confidence = []
pre_bboxes_label = []
gt_recall_bboxes_idx = []
pre_iou_images = []
for i in range(nrof_images):
# print(i)
# if i == 32599:
# print("stop")
gt_bb_per_image = gt_bboxes[i]
pre_bb_per_image = pre_bboxes[i]
nrof_gt_bboxes = len(gt_bb_per_image)
nrof_pre_bboxes = len(pre_bb_per_image)
for j in range(nrof_pre_bboxes):
pre_bb = pre_bb_per_image[j]
for k in range(nrof_gt_bboxes):
gt_bb = gt_bb_per_image[k]
pre_bb_iou=bb_iou(gt_bb, pre_bb)
if pre_bb_iou > thresh_iou:
label = 1
else:
label = 0
pre_bboxes_iou.append(pre_bb_iou)
pre_bboxes_confidence.append(pre_bb[4])
pre_bboxes_label.append(label)
gt_recall_bboxes_idx.append([i,k])
pre_iou_images.append(pre_bb_images[i])
### Normalisation the cofidence of the bounding boxes
confi_max = max(pre_bboxes_confidence)
confi_min = min(pre_bboxes_confidence)
pre_bboxes_confidence_norm = [(x-confi_min)/(confi_max-confi_min) for x in pre_bboxes_confidence]
return pre_bboxes_iou, pre_bboxes_confidence_norm, pre_bboxes_label, gt_recall_bboxes_idx, pre_iou_images
def label_pre_bboxes(pre_bboxes_iou, thresh_iou=0.5):
labels_pre_bboxes = []
for pre_bb_iou in pre_bboxes_iou:
if pre_bb_iou[0]>thresh_iou:
label = 1
else:
label = 0
labels_pre_bboxes.append(label)
return labels_pre_bboxes
|
[
"numpy.shape"
] |
[((928, 947), 'numpy.shape', 'np.shape', (['gt_bboxes'], {}), '(gt_bboxes)\n', (936, 947), True, 'import numpy as np\n')]
|
import sys
sys.path.append('..')
import numpy as np
import math
from geneticalgorithm import geneticalgorithm as ga
def f(X):
dim = len(X)
OF = 0
for i in range (0, dim):
OF+=(X[i]**2)-10*math.cos(2*math.pi*X[i])+10
return OF
def test_rastrigin():
parameters={'max_num_iteration': 1000,
'population_size':200,
'mutation_probability':0.1,
'elit_ratio': 0.02,
'crossover_probability': 0.5,
'parents_portion': 0.3,
'crossover_type':'two_point',
'max_iteration_without_improv':None,
'multiprocessing_ncpus': 4,
'multiprocessing_engine': None,
}
varbound = np.array([[-5.12, 5.12]]*2)
model = ga(function=f, dimension=2, variable_type='real',
variable_boundaries=varbound, algorithm_parameters=parameters)
model.run()
assert model.best_function < 1e-6
if __name__ == '__main__':
test_rastrigin()
|
[
"sys.path.append",
"numpy.array",
"math.cos",
"geneticalgorithm.geneticalgorithm"
] |
[((11, 32), 'sys.path.append', 'sys.path.append', (['""".."""'], {}), "('..')\n", (26, 32), False, 'import sys\n'), ((749, 778), 'numpy.array', 'np.array', (['([[-5.12, 5.12]] * 2)'], {}), '([[-5.12, 5.12]] * 2)\n', (757, 778), True, 'import numpy as np\n'), ((790, 907), 'geneticalgorithm.geneticalgorithm', 'ga', ([], {'function': 'f', 'dimension': '(2)', 'variable_type': '"""real"""', 'variable_boundaries': 'varbound', 'algorithm_parameters': 'parameters'}), "(function=f, dimension=2, variable_type='real', variable_boundaries=\n varbound, algorithm_parameters=parameters)\n", (792, 907), True, 'from geneticalgorithm import geneticalgorithm as ga\n'), ((211, 239), 'math.cos', 'math.cos', (['(2 * math.pi * X[i])'], {}), '(2 * math.pi * X[i])\n', (219, 239), False, 'import math\n')]
|
import numpy as np
from glip.math import mat4
def test_is_similarity():
assert mat4.is_similarity(mat4.translate(4.0, 56.7, 2.3))
assert mat4.is_similarity(mat4.rotate_axis_angle(0, 1, 0, 0.453))
assert mat4.is_similarity(mat4.scale(1, -1, 1))
assert not mat4.is_similarity(mat4.scale(2, 1, 1))
assert not mat4.is_similarity(mat4.affine(A=np.random.randn(3, 3)))
|
[
"glip.math.mat4.translate",
"numpy.random.randn",
"glip.math.mat4.rotate_axis_angle",
"glip.math.mat4.scale"
] |
[((104, 134), 'glip.math.mat4.translate', 'mat4.translate', (['(4.0)', '(56.7)', '(2.3)'], {}), '(4.0, 56.7, 2.3)\n', (118, 134), False, 'from glip.math import mat4\n'), ((166, 204), 'glip.math.mat4.rotate_axis_angle', 'mat4.rotate_axis_angle', (['(0)', '(1)', '(0)', '(0.453)'], {}), '(0, 1, 0, 0.453)\n', (188, 204), False, 'from glip.math import mat4\n'), ((236, 256), 'glip.math.mat4.scale', 'mat4.scale', (['(1)', '(-1)', '(1)'], {}), '(1, -1, 1)\n', (246, 256), False, 'from glip.math import mat4\n'), ((293, 312), 'glip.math.mat4.scale', 'mat4.scale', (['(2)', '(1)', '(1)'], {}), '(2, 1, 1)\n', (303, 312), False, 'from glip.math import mat4\n'), ((362, 383), 'numpy.random.randn', 'np.random.randn', (['(3)', '(3)'], {}), '(3, 3)\n', (377, 383), True, 'import numpy as np\n')]
|
import numpy as np
import copy
import pickle
# Data loading related
def load_from_pickle(filename, n_jets):
jets = []
fd = open(filename, "rb")
for i in range(n_jets):
jet = pickle.load(fd)
jets.append(jet)
fd.close()
return jets
# Jet related
def _pt(v):
pz = v[2]
p = (v[0:3] ** 2).sum() ** 0.5
eta = 0.5 * (np.log(p + pz) - np.log(p - pz))
pt = p / np.cosh(eta)
return pt
def permute_by_pt(jet, root_id=None):
# ensure that the left sub-jet has always a larger pt than the right
if root_id is None:
root_id = jet["root_id"]
if jet["tree"][root_id][0] != -1:
left = jet["tree"][root_id][0]
right = jet["tree"][root_id][1]
pt_left = _pt(jet["content"][left])
pt_right = _pt(jet["content"][right])
if pt_left < pt_right:
jet["tree"][root_id][0] = right
jet["tree"][root_id][1] = left
permute_by_pt(jet, left)
permute_by_pt(jet, right)
return jet
def rewrite_content(jet):
jet = copy.deepcopy(jet)
if jet["content"].shape[1] == 5:
pflow = jet["content"][:, 4].copy()
content = jet["content"]
tree = jet["tree"]
def _rec(i):
if tree[i, 0] == -1:
pass
else:
_rec(tree[i, 0])
_rec(tree[i, 1])
c = content[tree[i, 0]] + content[tree[i, 1]]
content[i] = c
_rec(jet["root_id"])
if jet["content"].shape[1] == 5:
jet["content"][:, 4] = pflow
return jet
def extract(jet, pflow=False):
# per node feature extraction
jet = copy.deepcopy(jet)
s = jet["content"].shape
if not pflow:
content = np.zeros((s[0], 7))
else:
# pflow value will be one-hot encoded
content = np.zeros((s[0], 7+4))
for i in range(len(jet["content"])):
px = jet["content"][i, 0]
py = jet["content"][i, 1]
pz = jet["content"][i, 2]
p = (jet["content"][i, 0:3] ** 2).sum() ** 0.5
eta = 0.5 * (np.log(p + pz) - np.log(p - pz))
theta = 2 * np.arctan(np.exp(-eta))
pt = p / np.cosh(eta)
phi = np.arctan2(py, px)
content[i, 0] = p
content[i, 1] = eta if np.isfinite(eta) else 0.0
content[i, 2] = phi
content[i, 3] = jet["content"][i, 3]
content[i, 4] = (jet["content"][i, 3] /
jet["content"][jet["root_id"], 3])
content[i, 5] = pt if np.isfinite(pt) else 0.0
content[i, 6] = theta if np.isfinite(theta) else 0.0
if pflow:
if jet["content"][i, 4] >= 0:
content[i, 7+int(jet["content"][i, 4])] = 1.0
jet["content"] = content
return jet
def randomize(jet):
# build a random tree
jet = copy.deepcopy(jet)
leaves = np.where(jet["tree"][:, 0] == -1)[0]
nodes = [n for n in leaves]
content = [jet["content"][n] for n in nodes]
nodes = [i for i in range(len(nodes))]
tree = [[-1, -1] for n in nodes]
pool = [n for n in nodes]
next_id = len(nodes)
while len(pool) >= 2:
i = np.random.randint(len(pool))
left = pool[i]
del pool[i]
j = np.random.randint(len(pool))
right = pool[j]
del pool[j]
nodes.append(next_id)
c = (content[left] + content[right])
if len(c) == 5:
c[-1] = -1
content.append(c)
tree.append([left, right])
pool.append(next_id)
next_id += 1
jet["content"] = np.array(content)
jet["tree"] = np.array(tree).astype(int)
jet["root_id"] = len(jet["tree"]) - 1
return jet
def sequentialize_by_pt(jet, reverse=False):
# transform the tree into a sequence ordered by pt
jet = copy.deepcopy(jet)
leaves = np.where(jet["tree"][:, 0] == -1)[0]
nodes = [n for n in leaves]
content = [jet["content"][n] for n in nodes]
nodes = [i for i in range(len(nodes))]
tree = [[-1, -1] for n in nodes]
pool = sorted([n for n in nodes],
key=lambda n: _pt(content[n]),
reverse=reverse)
next_id = len(pool)
while len(pool) >= 2:
right = pool[-1]
left = pool[-2]
del pool[-1]
del pool[-1]
nodes.append(next_id)
c = (content[left] + content[right])
if len(c) == 5:
c[-1] = -1
content.append(c)
tree.append([left, right])
pool.append(next_id)
next_id += 1
jet["content"] = np.array(content)
jet["tree"] = np.array(tree).astype(int)
jet["root_id"] = len(jet["tree"]) - 1
return jet
|
[
"copy.deepcopy",
"numpy.arctan2",
"numpy.log",
"numpy.zeros",
"numpy.isfinite",
"pickle.load",
"numpy.array",
"numpy.where",
"numpy.exp",
"numpy.cosh"
] |
[((1061, 1079), 'copy.deepcopy', 'copy.deepcopy', (['jet'], {}), '(jet)\n', (1074, 1079), False, 'import copy\n'), ((1631, 1649), 'copy.deepcopy', 'copy.deepcopy', (['jet'], {}), '(jet)\n', (1644, 1649), False, 'import copy\n'), ((2803, 2821), 'copy.deepcopy', 'copy.deepcopy', (['jet'], {}), '(jet)\n', (2816, 2821), False, 'import copy\n'), ((3543, 3560), 'numpy.array', 'np.array', (['content'], {}), '(content)\n', (3551, 3560), True, 'import numpy as np\n'), ((3777, 3795), 'copy.deepcopy', 'copy.deepcopy', (['jet'], {}), '(jet)\n', (3790, 3795), False, 'import copy\n'), ((4530, 4547), 'numpy.array', 'np.array', (['content'], {}), '(content)\n', (4538, 4547), True, 'import numpy as np\n'), ((198, 213), 'pickle.load', 'pickle.load', (['fd'], {}), '(fd)\n', (209, 213), False, 'import pickle\n'), ((413, 425), 'numpy.cosh', 'np.cosh', (['eta'], {}), '(eta)\n', (420, 425), True, 'import numpy as np\n'), ((1717, 1736), 'numpy.zeros', 'np.zeros', (['(s[0], 7)'], {}), '((s[0], 7))\n', (1725, 1736), True, 'import numpy as np\n'), ((1811, 1834), 'numpy.zeros', 'np.zeros', (['(s[0], 7 + 4)'], {}), '((s[0], 7 + 4))\n', (1819, 1834), True, 'import numpy as np\n'), ((2175, 2193), 'numpy.arctan2', 'np.arctan2', (['py', 'px'], {}), '(py, px)\n', (2185, 2193), True, 'import numpy as np\n'), ((2836, 2869), 'numpy.where', 'np.where', (["(jet['tree'][:, 0] == -1)"], {}), "(jet['tree'][:, 0] == -1)\n", (2844, 2869), True, 'import numpy as np\n'), ((3810, 3843), 'numpy.where', 'np.where', (["(jet['tree'][:, 0] == -1)"], {}), "(jet['tree'][:, 0] == -1)\n", (3818, 3843), True, 'import numpy as np\n'), ((367, 381), 'numpy.log', 'np.log', (['(p + pz)'], {}), '(p + pz)\n', (373, 381), True, 'import numpy as np\n'), ((384, 398), 'numpy.log', 'np.log', (['(p - pz)'], {}), '(p - pz)\n', (390, 398), True, 'import numpy as np\n'), ((2148, 2160), 'numpy.cosh', 'np.cosh', (['eta'], {}), '(eta)\n', (2155, 2160), True, 'import numpy as np\n'), ((2252, 2268), 'numpy.isfinite', 'np.isfinite', (['eta'], {}), '(eta)\n', (2263, 2268), True, 'import numpy as np\n'), ((2489, 2504), 'numpy.isfinite', 'np.isfinite', (['pt'], {}), '(pt)\n', (2500, 2504), True, 'import numpy as np\n'), ((2547, 2565), 'numpy.isfinite', 'np.isfinite', (['theta'], {}), '(theta)\n', (2558, 2565), True, 'import numpy as np\n'), ((3579, 3593), 'numpy.array', 'np.array', (['tree'], {}), '(tree)\n', (3587, 3593), True, 'import numpy as np\n'), ((4566, 4580), 'numpy.array', 'np.array', (['tree'], {}), '(tree)\n', (4574, 4580), True, 'import numpy as np\n'), ((2054, 2068), 'numpy.log', 'np.log', (['(p + pz)'], {}), '(p + pz)\n', (2060, 2068), True, 'import numpy as np\n'), ((2071, 2085), 'numpy.log', 'np.log', (['(p - pz)'], {}), '(p - pz)\n', (2077, 2085), True, 'import numpy as np\n'), ((2117, 2129), 'numpy.exp', 'np.exp', (['(-eta)'], {}), '(-eta)\n', (2123, 2129), True, 'import numpy as np\n')]
|
import sklearn
import numpy as np
import sklearn.datasets as skdata
from matplotlib import pyplot as plt
boston_housing_data = skdata.load_boston()
print(boston_housing_data)
x = boston_housing_data.data
feat_names = boston_housing_data.feature_names
print(feat_names)
#print(boston_housing_data.DESCR)
y = boston_housing_data.target
#print(y[0],y[0, :])
crime_rate = x[:, 0]
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
ax.scatter(crime_rate, y)
#plt.show()
'''
fig.suptitle('Boston Housing Data')
ax = fig.add_subplot(1, 1, 1)
ax.set_ylabel('Housing Price')
ax.set_xlabel('Crime Rate ({})'.format(feat_names[0]))
ax.scatter(crime_rate, y)
#plt.show()
'''
'''
ax1 = fig.add_subplot(2, 1, 1)
ax1.set_title("Per Capita Crime rate")
ax1.set_ylabel('Housing Price')
ax1.set_xlabel('Crime Rate ({})'.format(feat_names[0]))
ax.scatter(crime_rate, y)
nitric_oxide = x[:, 4]
ax2 = fig.add_subplot(2, 1, 2)
ax2.set_title("Nitric Oxide Concentration (PP 10M)")
ax2.set_ylabel('Housing Price')
ax2.set_xlabel('Nitric Oxide ({})'.format(feat_names[4]))
ax2.scatter(nitric_oxide, y)
plt.show()
'''
'''
#VISUALIZING DATA PAGE 1
fig = plt.figure()
fig.suptitle('Boston Housing Data')
ax1 = fig.add_subplot(2, 1, 1)
ax1.set_title("Per Capita Crime Rate")
ax1.set_ylabel('Housing Price')
ax1.set_xlabel('Crime Rate ({})'.format(feat_names[0]))
ax1.scatter(crime_rate,y)
'''
nitric_oxide = x[:, 4]
ax2 = fig.add_subplot(2, 1, 2)
ax2.set_title("Nitric Oxide Concentration (PP 10M")
ax2.set_ylabel('Housing Price')
ax2.set_xlabel('Nitric Oxide ({})'.format(feat_names[4]))
ax2.scatter(nitric_oxide, y)
#plt.show()
'''
#VISUALIZING DATA PAGE 2
fig = plt.figure()
fig.suptitle('Boston Housing Data')
ax = fig.add_subplot(1, 1, 1)
ax.set_ylabel('Housing Price')
ax.set_xlabel('Features')
'''
observations = (crime_rate, nitric_oxide)
targets = (y, y,)
colors = ("blue", "red") # Crime rate will be blue and nitric oxide will be red
labels = (feat_names[0], feat_names[4])
markers =('o', '^')
for obs, tgt, col, lab, m in zip(observations, targets, colors, labels, markers):
ax.scatter(obs, tgt, c=col, label=lab, marker=m)
ax.legend(loc='upper right')
#plt.show()
def min_max_norm(x):
return (x-np.min(x))/(np.max(x)-np.min(x))
crime_rate_minmax = min_max_norm(crime_rate)
nitric_oxide_minmax = min_max_norm(nitric_oxide)
print(np.min(crime_rate_minmax), np.max(crime_rate_minmax))
print(np.min(nitric_oxide_minmax), np.max(nitric_oxide_minmax))
#MIN-MAX NORMALIZATION
fig = plt.figure()
fig.suptitle('Boston Housing Data')
ax = fig.add_subplot(1, 1, 1)
ax.set_ylabel('Housing Price')
ax.set_xlabel('Min-Max Norm Features')
observations_minmax = (crime_rate_minmax, nitric_oxide_minmax)
for obs, tgt, col, lab, m in zip(observations, targets, colors, labels, markers):
ax.scatter(obs, tgt, c=col, label=lab, marker=m)
ax.legend(loc='upper right')
plt.show()
|
[
"matplotlib.pyplot.show",
"sklearn.datasets.load_boston",
"matplotlib.pyplot.figure",
"numpy.max",
"numpy.min"
] |
[((128, 148), 'sklearn.datasets.load_boston', 'skdata.load_boston', ([], {}), '()\n', (146, 148), True, 'import sklearn.datasets as skdata\n'), ((390, 402), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (400, 402), True, 'from matplotlib import pyplot as plt\n'), ((2491, 2503), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (2501, 2503), True, 'from matplotlib import pyplot as plt\n'), ((2872, 2882), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (2880, 2882), True, 'from matplotlib import pyplot as plt\n'), ((2341, 2366), 'numpy.min', 'np.min', (['crime_rate_minmax'], {}), '(crime_rate_minmax)\n', (2347, 2366), True, 'import numpy as np\n'), ((2368, 2393), 'numpy.max', 'np.max', (['crime_rate_minmax'], {}), '(crime_rate_minmax)\n', (2374, 2393), True, 'import numpy as np\n'), ((2401, 2428), 'numpy.min', 'np.min', (['nitric_oxide_minmax'], {}), '(nitric_oxide_minmax)\n', (2407, 2428), True, 'import numpy as np\n'), ((2430, 2457), 'numpy.max', 'np.max', (['nitric_oxide_minmax'], {}), '(nitric_oxide_minmax)\n', (2436, 2457), True, 'import numpy as np\n'), ((2208, 2217), 'numpy.min', 'np.min', (['x'], {}), '(x)\n', (2214, 2217), True, 'import numpy as np\n'), ((2220, 2229), 'numpy.max', 'np.max', (['x'], {}), '(x)\n', (2226, 2229), True, 'import numpy as np\n'), ((2230, 2239), 'numpy.min', 'np.min', (['x'], {}), '(x)\n', (2236, 2239), True, 'import numpy as np\n')]
|
import pandas as pd
import numpy as np
import sklearn
import warnings
import sys
# sys.path.append('Feature Comparison/Basic.py')
from sklearn.naive_bayes import GaussianNB
from sklearn.naive_bayes import MultinomialNB
from sklearn.svm import SVC
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score
from sklearn.metrics import confusion_matrix
from sklearn.preprocessing import MinMaxScaler
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import train_test_split
from sklearn.pipeline import Pipeline
Basic_Feature_path = 'Feature Comparison/Basic_FeatureSet.npy'
Botnet_Feature_path = 'Feature Comparison/Botnet_FeatureSet.npy'
Blacklist_Feature_path = 'Feature Comparison/Blacklist_FeatureSet.npy'
Whois_Feature_path = 'Feature Comparison/Whois_FeatureSet.npy'
Hostbased_Feature_path = 'Feature Comparison/Host_based_FeatureSet.npy'
Lexical_Feature_path = 'Feature Comparison/Lexical_FeatureSet.npy'
Full_ex_wb_path = 'Feature Comparison/Full_except_WB.npy'
warnings.filterwarnings("ignore", category=FutureWarning, module="sklearn", lineno=196)
warnings.filterwarnings("ignore", category=FutureWarning, module="sklearn", lineno=433)
warnings.filterwarnings("ignore", category=RuntimeWarning, module="sklearn", lineno=436)
warnings.filterwarnings("ignore", category=RuntimeWarning, module="sklearn", lineno=438)
pd.set_option('display.max_columns', 10000)
pd.set_option('display.max_rows', 10000)
pd.set_option('display.max_colwidth', 10000)
pd.set_option('display.width',1000)
blacklist_path = 'Data/url_blacklists.txt'
dataset_path = 'Data/train_dataset.csv'
### Read the training Dataset file
df = pd.read_csv(dataset_path, header=0)
label = df['Lable'].values
# print(label.shape)
# (7000,)
# print(df.head(20))
### Read the blackurls
blacklist = []
with open(blacklist_path,'r') as f:
for i in f.readlines():
blacklist.append(i)
# print('len(blacklist) = ',len(blacklist))
### Feature Selection
## 1. Basic Feature set
Basic_Feature = np.load(Basic_Feature_path).astype(int)
df_Basic = pd.DataFrame(data=Basic_Feature, columns=['Total dot','Is IP in hostname','Creation date','Is Creation date'])
# print('### Basic Feature Set ###')
# print(df_Basic.head(10))
# print('\n')
## 2. Botnet Feature set
Botnet_Feature = np.load(Botnet_Feature_path).astype(int)
df_Botnet = pd.DataFrame(data=Botnet_Feature, columns=['Is client','is server','Is IP in hostname','Is PTR','Is PTR resolved'])
# print('### Botnet Feature Set ###')
# print(df_Botnet.head(10))
# print('\n')
## 3. Blacklist Feature set
Blacklist_Feature = np.load(Blacklist_Feature_path).astype(int).reshape(7000,1)
df_Blacklist = pd.DataFrame(data=Blacklist_Feature, columns=['Is in blacklist'])
# print('### Blacklist Feature Set ###')
# print(df_Blacklist.head(10))
# print('\n')
## 4. Whois Feature set
Whois_Feature = np.load(Whois_Feature_path).astype(int)
df_Whois = pd.DataFrame(data=Whois_Feature, columns=['Creation date','Last updated','Expiration date','Is registarar','Is registrant'])
# print('### Whois Feature Set ###')
# print(df_Whois.head(10))
# print('\n')
## 5. Host-based Feature set
Hostbased_Feature = np.load(Hostbased_Feature_path).astype(int)
df_Hostbased = pd.DataFrame(data=Hostbased_Feature, columns=['Is in blacklist','Creation date','Last updated','Expiration date','Is registarar','Is registrant','Is client','is server','Is IP in hostname','Is PTR','Is PTR resolved','Is DNS record','TTL record'])
# print(df_Hostbased.columns)
# print('### Hostbased Feature Set ###')
# print(df_Hostbased.head(10))
# print('\n')
## 6. Lexical Feature set
Lexical_Feature = np.load(Lexical_Feature_path).astype(int)
df_Lexical = pd.DataFrame(data=Lexical_Feature, columns=['Total delims','Total hyphens','URL len','Dot num','Host token','Path_token'])
# print(df_Lexical.head(10))
## 7. Lexical + Host-based Feature set
Full_Feature = np.hstack((Lexical_Feature,Hostbased_Feature)).astype(int)
df_Full = pd.DataFrame(data=Full_Feature, columns=['Total delims','Total hyphens','URL len','Dot num','Host token','Path_token','Is in blacklist','Creation date','Last updated','Expiration date','Is registarar','Is registrant','Is client','is server','Is IP in hostname','Is PTR','Is PTR resolved','Is DNS record','TTL record'])
print(len(df_Full.columns))
# 19
# print(df_Full.head(10))
## 8. Full except Whois + Blacklist Feature set
Full_ex_wb = np.load(Full_ex_wb_path).astype(int)
df_Full_except = pd.DataFrame(data=Full_ex_wb, columns=['Total delims','Total hyphens','URL len','Dot num','Host token','Path_token','Is client','is server','Is IP in hostname','Is PTR','Is PTR resolved','Is DNS record','TTL record'])
# print(df_Full_except.head(10))
print(len(df_Full_except.columns))
## 9. Blacklist+Botnet Feature set
Blk_Bot_Feature = np.hstack((Blacklist_Feature,Botnet_Feature)).astype(int)
df_Blk_Bot = pd.DataFrame(data=Blk_Bot_Feature, columns=['Is in blacklist','Is client','is server','Is IP in hostname','Is PTR','Is PTR resolved'])
# print(df_Blk_Bot.head(10))
def Classification_Process(Featureset,label):
## 1. [0-1] Normalization
scaler = MinMaxScaler()
## 2. Split training and testing dataset
X_train, X_test, y_train, y_test = train_test_split(Featureset.astype(float), label, test_size=0.2, random_state=123)
X_train = scaler.fit_transform(X_train)
X_test = scaler.fit_transform(X_test)
## 3. Algorithm
G_NB = GaussianNB()
M_NB = MultinomialNB()
linear_svm = SVC(kernel='linear')
rbf_svm = SVC(kernel='rbf')
LR = LogisticRegression(penalty='l1')
## 4. Cross validation
print('####### Cross validation #######')
print('G_NB cross value: ', cross_val_score(G_NB, X_train, y_train, cv=5, scoring='accuracy').mean())
print('M_NB cross value: ', cross_val_score(M_NB, X_train, y_train, cv=5, scoring='accuracy').mean())
print('linear svm cross value: ', cross_val_score(linear_svm, X_train, y_train, cv=5, scoring='accuracy').mean())
print('rbf svm cross value: ', cross_val_score(rbf_svm, X_train, y_train, cv=5, scoring='accuracy').mean())
print('LR cross value: ', cross_val_score(LR, X_train, y_train, cv=5, scoring='accuracy').mean())
print('\n')
## 5. Prediction
y_pred_gnb = G_NB.fit(X_train, y_train).predict(X_test)
y_pred_mnb = M_NB.fit(X_train, y_train).predict(X_test)
y_pred_l_svm = linear_svm.fit(X_train, y_train).predict(X_test)
y_pred_r_svm = rbf_svm.fit(X_train, y_train).predict(X_test)
y_pred_lr = LR.fit(X_train, y_train).predict(X_test)
print('######### Prediction ###########')
print('Gaussian Naive Bayes prediction: ', accuracy_score(y_test, y_pred_gnb))
print('Multinomial Naive Bayes prediction: ', accuracy_score(y_test, y_pred_mnb))
print('Linear SVM prediction: ', accuracy_score(y_test, y_pred_l_svm))
print('RBF SVM prediction: ', accuracy_score(y_test, y_pred_r_svm))
print('L1-Logistic Regression prediction: ', accuracy_score(y_test, y_pred_lr))
return 0
############ Classification ###########
print('##### 1. Basic Feature Classification Results #####')
Classification_Process(Basic_Feature,label)
print('\n')
print('##### 2. Botnet Feature Set Classification Results #####')
Classification_Process(Botnet_Feature,label)
print('\n')
print('##### 3. Blacklist Feature Set Classification Results ######')
Classification_Process(Blacklist_Feature,label)
print('\n')
print('##### 4. Blacklist+Botnet Feature Set Classification Results ######')
Classification_Process(Blk_Bot_Feature,label)
print('\n')
print('##### 5. Whois Feature Set Classification Results ######')
Classification_Process(Whois_Feature,label)
print('\n')
print('##### 6. Host-based Feature Set Classification Results #####')
Classification_Process(Hostbased_Feature,label)
print('\n')
print('##### 7. Lexica Feature Set Classification Results #####')
Classification_Process(Lexical_Feature,label)
print('\n')
print('##### 8. Full(Lexica + Host-based) Feature Set Classification Results #####')
Classification_Process(Full_Feature,label)
print('\n')
print('##### 9. Full except Whois+Blacklist Feature Set Classification Results #####')
Classification_Process(Full_ex_wb,label)
print('\n')
|
[
"pandas.DataFrame",
"sklearn.naive_bayes.GaussianNB",
"numpy.load",
"sklearn.naive_bayes.MultinomialNB",
"warnings.filterwarnings",
"pandas.read_csv",
"sklearn.model_selection.cross_val_score",
"sklearn.metrics.accuracy_score",
"sklearn.preprocessing.MinMaxScaler",
"numpy.hstack",
"sklearn.linear_model.LogisticRegression",
"sklearn.svm.SVC",
"pandas.set_option"
] |
[((1042, 1133), 'warnings.filterwarnings', 'warnings.filterwarnings', (['"""ignore"""'], {'category': 'FutureWarning', 'module': '"""sklearn"""', 'lineno': '(196)'}), "('ignore', category=FutureWarning, module='sklearn',\n lineno=196)\n", (1065, 1133), False, 'import warnings\n'), ((1130, 1221), 'warnings.filterwarnings', 'warnings.filterwarnings', (['"""ignore"""'], {'category': 'FutureWarning', 'module': '"""sklearn"""', 'lineno': '(433)'}), "('ignore', category=FutureWarning, module='sklearn',\n lineno=433)\n", (1153, 1221), False, 'import warnings\n'), ((1218, 1310), 'warnings.filterwarnings', 'warnings.filterwarnings', (['"""ignore"""'], {'category': 'RuntimeWarning', 'module': '"""sklearn"""', 'lineno': '(436)'}), "('ignore', category=RuntimeWarning, module='sklearn',\n lineno=436)\n", (1241, 1310), False, 'import warnings\n'), ((1307, 1399), 'warnings.filterwarnings', 'warnings.filterwarnings', (['"""ignore"""'], {'category': 'RuntimeWarning', 'module': '"""sklearn"""', 'lineno': '(438)'}), "('ignore', category=RuntimeWarning, module='sklearn',\n lineno=438)\n", (1330, 1399), False, 'import warnings\n'), ((1398, 1441), 'pandas.set_option', 'pd.set_option', (['"""display.max_columns"""', '(10000)'], {}), "('display.max_columns', 10000)\n", (1411, 1441), True, 'import pandas as pd\n'), ((1442, 1482), 'pandas.set_option', 'pd.set_option', (['"""display.max_rows"""', '(10000)'], {}), "('display.max_rows', 10000)\n", (1455, 1482), True, 'import pandas as pd\n'), ((1483, 1527), 'pandas.set_option', 'pd.set_option', (['"""display.max_colwidth"""', '(10000)'], {}), "('display.max_colwidth', 10000)\n", (1496, 1527), True, 'import pandas as pd\n'), ((1528, 1564), 'pandas.set_option', 'pd.set_option', (['"""display.width"""', '(1000)'], {}), "('display.width', 1000)\n", (1541, 1564), True, 'import pandas as pd\n'), ((1691, 1726), 'pandas.read_csv', 'pd.read_csv', (['dataset_path'], {'header': '(0)'}), '(dataset_path, header=0)\n', (1702, 1726), True, 'import pandas as pd\n'), ((2100, 2217), 'pandas.DataFrame', 'pd.DataFrame', ([], {'data': 'Basic_Feature', 'columns': "['Total dot', 'Is IP in hostname', 'Creation date', 'Is Creation date']"}), "(data=Basic_Feature, columns=['Total dot', 'Is IP in hostname',\n 'Creation date', 'Is Creation date'])\n", (2112, 2217), True, 'import pandas as pd\n'), ((2385, 2508), 'pandas.DataFrame', 'pd.DataFrame', ([], {'data': 'Botnet_Feature', 'columns': "['Is client', 'is server', 'Is IP in hostname', 'Is PTR', 'Is PTR resolved']"}), "(data=Botnet_Feature, columns=['Is client', 'is server',\n 'Is IP in hostname', 'Is PTR', 'Is PTR resolved'])\n", (2397, 2508), True, 'import pandas as pd\n'), ((2705, 2770), 'pandas.DataFrame', 'pd.DataFrame', ([], {'data': 'Blacklist_Feature', 'columns': "['Is in blacklist']"}), "(data=Blacklist_Feature, columns=['Is in blacklist'])\n", (2717, 2770), True, 'import pandas as pd\n'), ((2949, 3081), 'pandas.DataFrame', 'pd.DataFrame', ([], {'data': 'Whois_Feature', 'columns': "['Creation date', 'Last updated', 'Expiration date', 'Is registarar',\n 'Is registrant']"}), "(data=Whois_Feature, columns=['Creation date', 'Last updated',\n 'Expiration date', 'Is registarar', 'Is registrant'])\n", (2961, 3081), True, 'import pandas as pd\n'), ((3261, 3531), 'pandas.DataFrame', 'pd.DataFrame', ([], {'data': 'Hostbased_Feature', 'columns': "['Is in blacklist', 'Creation date', 'Last updated', 'Expiration date',\n 'Is registarar', 'Is registrant', 'Is client', 'is server',\n 'Is IP in hostname', 'Is PTR', 'Is PTR resolved', 'Is DNS record',\n 'TTL record']"}), "(data=Hostbased_Feature, columns=['Is in blacklist',\n 'Creation date', 'Last updated', 'Expiration date', 'Is registarar',\n 'Is registrant', 'Is client', 'is server', 'Is IP in hostname',\n 'Is PTR', 'Is PTR resolved', 'Is DNS record', 'TTL record'])\n", (3273, 3531), True, 'import pandas as pd\n'), ((3724, 3855), 'pandas.DataFrame', 'pd.DataFrame', ([], {'data': 'Lexical_Feature', 'columns': "['Total delims', 'Total hyphens', 'URL len', 'Dot num', 'Host token',\n 'Path_token']"}), "(data=Lexical_Feature, columns=['Total delims', 'Total hyphens',\n 'URL len', 'Dot num', 'Host token', 'Path_token'])\n", (3736, 3855), True, 'import pandas as pd\n'), ((4000, 4352), 'pandas.DataFrame', 'pd.DataFrame', ([], {'data': 'Full_Feature', 'columns': "['Total delims', 'Total hyphens', 'URL len', 'Dot num', 'Host token',\n 'Path_token', 'Is in blacklist', 'Creation date', 'Last updated',\n 'Expiration date', 'Is registarar', 'Is registrant', 'Is client',\n 'is server', 'Is IP in hostname', 'Is PTR', 'Is PTR resolved',\n 'Is DNS record', 'TTL record']"}), "(data=Full_Feature, columns=['Total delims', 'Total hyphens',\n 'URL len', 'Dot num', 'Host token', 'Path_token', 'Is in blacklist',\n 'Creation date', 'Last updated', 'Expiration date', 'Is registarar',\n 'Is registrant', 'Is client', 'is server', 'Is IP in hostname',\n 'Is PTR', 'Is PTR resolved', 'Is DNS record', 'TTL record'])\n", (4012, 4352), True, 'import pandas as pd\n'), ((4494, 4735), 'pandas.DataFrame', 'pd.DataFrame', ([], {'data': 'Full_ex_wb', 'columns': "['Total delims', 'Total hyphens', 'URL len', 'Dot num', 'Host token',\n 'Path_token', 'Is client', 'is server', 'Is IP in hostname', 'Is PTR',\n 'Is PTR resolved', 'Is DNS record', 'TTL record']"}), "(data=Full_ex_wb, columns=['Total delims', 'Total hyphens',\n 'URL len', 'Dot num', 'Host token', 'Path_token', 'Is client',\n 'is server', 'Is IP in hostname', 'Is PTR', 'Is PTR resolved',\n 'Is DNS record', 'TTL record'])\n", (4506, 4735), True, 'import pandas as pd\n'), ((4905, 5048), 'pandas.DataFrame', 'pd.DataFrame', ([], {'data': 'Blk_Bot_Feature', 'columns': "['Is in blacklist', 'Is client', 'is server', 'Is IP in hostname', 'Is PTR',\n 'Is PTR resolved']"}), "(data=Blk_Bot_Feature, columns=['Is in blacklist', 'Is client',\n 'is server', 'Is IP in hostname', 'Is PTR', 'Is PTR resolved'])\n", (4917, 5048), True, 'import pandas as pd\n'), ((5162, 5176), 'sklearn.preprocessing.MinMaxScaler', 'MinMaxScaler', ([], {}), '()\n', (5174, 5176), False, 'from sklearn.preprocessing import MinMaxScaler\n'), ((5463, 5475), 'sklearn.naive_bayes.GaussianNB', 'GaussianNB', ([], {}), '()\n', (5473, 5475), False, 'from sklearn.naive_bayes import GaussianNB\n'), ((5487, 5502), 'sklearn.naive_bayes.MultinomialNB', 'MultinomialNB', ([], {}), '()\n', (5500, 5502), False, 'from sklearn.naive_bayes import MultinomialNB\n'), ((5520, 5540), 'sklearn.svm.SVC', 'SVC', ([], {'kernel': '"""linear"""'}), "(kernel='linear')\n", (5523, 5540), False, 'from sklearn.svm import SVC\n'), ((5555, 5572), 'sklearn.svm.SVC', 'SVC', ([], {'kernel': '"""rbf"""'}), "(kernel='rbf')\n", (5558, 5572), False, 'from sklearn.svm import SVC\n'), ((5582, 5614), 'sklearn.linear_model.LogisticRegression', 'LogisticRegression', ([], {'penalty': '"""l1"""'}), "(penalty='l1')\n", (5600, 5614), False, 'from sklearn.linear_model import LogisticRegression\n'), ((2049, 2076), 'numpy.load', 'np.load', (['Basic_Feature_path'], {}), '(Basic_Feature_path)\n', (2056, 2076), True, 'import numpy as np\n'), ((2332, 2360), 'numpy.load', 'np.load', (['Botnet_Feature_path'], {}), '(Botnet_Feature_path)\n', (2339, 2360), True, 'import numpy as np\n'), ((2898, 2925), 'numpy.load', 'np.load', (['Whois_Feature_path'], {}), '(Whois_Feature_path)\n', (2905, 2925), True, 'import numpy as np\n'), ((3202, 3233), 'numpy.load', 'np.load', (['Hostbased_Feature_path'], {}), '(Hostbased_Feature_path)\n', (3209, 3233), True, 'import numpy as np\n'), ((3669, 3698), 'numpy.load', 'np.load', (['Lexical_Feature_path'], {}), '(Lexical_Feature_path)\n', (3676, 3698), True, 'import numpy as np\n'), ((3931, 3978), 'numpy.hstack', 'np.hstack', (['(Lexical_Feature, Hostbased_Feature)'], {}), '((Lexical_Feature, Hostbased_Feature))\n', (3940, 3978), True, 'import numpy as np\n'), ((4440, 4464), 'numpy.load', 'np.load', (['Full_ex_wb_path'], {}), '(Full_ex_wb_path)\n', (4447, 4464), True, 'import numpy as np\n'), ((4834, 4880), 'numpy.hstack', 'np.hstack', (['(Blacklist_Feature, Botnet_Feature)'], {}), '((Blacklist_Feature, Botnet_Feature))\n', (4843, 4880), True, 'import numpy as np\n'), ((6675, 6709), 'sklearn.metrics.accuracy_score', 'accuracy_score', (['y_test', 'y_pred_gnb'], {}), '(y_test, y_pred_gnb)\n', (6689, 6709), False, 'from sklearn.metrics import accuracy_score\n'), ((6761, 6795), 'sklearn.metrics.accuracy_score', 'accuracy_score', (['y_test', 'y_pred_mnb'], {}), '(y_test, y_pred_mnb)\n', (6775, 6795), False, 'from sklearn.metrics import accuracy_score\n'), ((6834, 6870), 'sklearn.metrics.accuracy_score', 'accuracy_score', (['y_test', 'y_pred_l_svm'], {}), '(y_test, y_pred_l_svm)\n', (6848, 6870), False, 'from sklearn.metrics import accuracy_score\n'), ((6906, 6942), 'sklearn.metrics.accuracy_score', 'accuracy_score', (['y_test', 'y_pred_r_svm'], {}), '(y_test, y_pred_r_svm)\n', (6920, 6942), False, 'from sklearn.metrics import accuracy_score\n'), ((6993, 7026), 'sklearn.metrics.accuracy_score', 'accuracy_score', (['y_test', 'y_pred_lr'], {}), '(y_test, y_pred_lr)\n', (7007, 7026), False, 'from sklearn.metrics import accuracy_score\n'), ((2630, 2661), 'numpy.load', 'np.load', (['Blacklist_Feature_path'], {}), '(Blacklist_Feature_path)\n', (2637, 2661), True, 'import numpy as np\n'), ((5721, 5786), 'sklearn.model_selection.cross_val_score', 'cross_val_score', (['G_NB', 'X_train', 'y_train'], {'cv': '(5)', 'scoring': '"""accuracy"""'}), "(G_NB, X_train, y_train, cv=5, scoring='accuracy')\n", (5736, 5786), False, 'from sklearn.model_selection import cross_val_score\n'), ((5827, 5892), 'sklearn.model_selection.cross_val_score', 'cross_val_score', (['M_NB', 'X_train', 'y_train'], {'cv': '(5)', 'scoring': '"""accuracy"""'}), "(M_NB, X_train, y_train, cv=5, scoring='accuracy')\n", (5842, 5892), False, 'from sklearn.model_selection import cross_val_score\n'), ((5939, 6010), 'sklearn.model_selection.cross_val_score', 'cross_val_score', (['linear_svm', 'X_train', 'y_train'], {'cv': '(5)', 'scoring': '"""accuracy"""'}), "(linear_svm, X_train, y_train, cv=5, scoring='accuracy')\n", (5954, 6010), False, 'from sklearn.model_selection import cross_val_score\n'), ((6054, 6122), 'sklearn.model_selection.cross_val_score', 'cross_val_score', (['rbf_svm', 'X_train', 'y_train'], {'cv': '(5)', 'scoring': '"""accuracy"""'}), "(rbf_svm, X_train, y_train, cv=5, scoring='accuracy')\n", (6069, 6122), False, 'from sklearn.model_selection import cross_val_score\n'), ((6161, 6224), 'sklearn.model_selection.cross_val_score', 'cross_val_score', (['LR', 'X_train', 'y_train'], {'cv': '(5)', 'scoring': '"""accuracy"""'}), "(LR, X_train, y_train, cv=5, scoring='accuracy')\n", (6176, 6224), False, 'from sklearn.model_selection import cross_val_score\n')]
|
from pylightnix import ( RRef, Build, rref2path, rref2dref, match_some,
realizeMany, match_latest, store_buildtime, store_buildelta, store_context,
BuildArgs, mkdrv, build_wrapper, match_only, build_setoutpaths, readjson )
from stagedml.stages.all import *
from stagedml.stages.bert_finetune_glue import ( Model as BertClsModel,
build as bert_finetune_build )
from stagedml.types import ( Dict, Union, Optional, List, Any )
from stagedml.core import ( protocol_rref_metric )
from stagedml.imports.sys import ( read_csv, OrderedDict,
DataFrame, makedirs, json_dump, environ, contextmanager)
from stagedml.imports.tf import ( FullTokenizer, MakeNdarray, ScalarEvent,
TensorEvent, Features, Feature, Example, Dataset )
from stagedml.utils.tf import ( tensorboard_tags, tensorboard_tensors, te2float )
from official.nlp.bert.classifier_data_lib import ( InputExample, InputFeatures,
convert_single_example )
from altair import Chart
from altair_saver import save as altair_save
import numpy as np
import tensorflow as tf
@contextmanager
def prepare_markdown_image(image_filename:str, alt:str='', attrs:str=''):
genimgdir=environ['REPOUT']
repimgdir=environ.get('REPIMG',genimgdir)
makedirs(genimgdir, exist_ok=True)
yield join(genimgdir,image_filename)
print("{%s}"%(alt, join(repimgdir,image_filename), attrs))
def altair_print(chart:Chart, png_filename:str, alt:str='', attrs:str='')->None:
with prepare_markdown_image(png_filename, alt, attrs) as path:
altair_save(chart, path)
class Runner:
def __init__(self, rref:RRef):
self.rref=rref
self.tokenizer=FullTokenizer(
vocab_file=mklens(rref).tfrecs.bert_vocab.syspath,
do_lower_case=mklens(rref).tfrecs.lower_case.val)
self.max_seq_length=mklens(rref).max_seq_length.val
self.model=BertClsModel(
BuildArgs(rref2dref(rref), store_context(rref), None, {}, {}))
bert_finetune_build(self.model)
self.model.model.load_weights(mklens(rref).checkpoint_full.syspath)
def eval(self, sentences:List[str], batch_size:int=10)->List[List[float]]:
@tf.function
def _tf_step(inputs):
return self.model.model_eval(inputs, training=False)
def _step(inputs:List[Tuple[Any,Any,Any]]):
return _tf_step((tf.constant([i[0] for i in inputs], dtype=tf.int64),
tf.constant([i[1] for i in inputs], dtype=tf.int64),
tf.constant([i[2] for i in inputs], dtype=tf.int64)))\
.numpy().tolist()
buf=[]
outs:List[List[float]]=[]
for i,s in enumerate(sentences):
ie=InputExample(guid=f"eval_{i:04d}", text_a=s, label='dummy')
f=convert_single_example(
10, ie, ['dummy'], self.max_seq_length, self.tokenizer)
buf.append((f.input_ids, f.input_mask, f.segment_ids))
if len(buf)>=batch_size:
outs.extend(_step(buf))
buf=[]
outs.extend(_step(buf))
return outs
# runner ends
learning_rates=[2e-5, 5e-5, 1e-4]
def all_multibert_finetune_rusentiment1(m:Manager, lr:Optional[float]=None):
lr_ = lr if lr is not None else learning_rates[0]
def _nc(c):
mklens(c).name.val='rusent-pretrained'
mklens(c).train_batch_size.val=8
mklens(c).train_epoches.val=5
mklens(c).lr.val=lr_
return redefine(all_multibert_finetune_rusentiment, new_config=_nc)(m) # end1
def all_multibert_finetune_rusentiment0(m:Manager):
def _nc(c):
mklens(c).name.val='rusent-random'
mklens(c).bert_ckpt_in.val=None
return redefine(all_multibert_finetune_rusentiment1, new_config=_nc)(m) #end0
def bert_rusentiment_evaluation(m:Manager, stage:Stage)->DRef:
def _realize(b:Build):
build_setoutpaths(b,1)
r=Runner(mklens(b).model.rref)
df=read_csv(mklens(b).model.tfrecs.refdataset.output_tests.syspath)
labels=sorted(df['label'].value_counts().keys())
df['pred']=[labels[np.argmax(probs)] for probs in r.eval(list(df['text']))]
confusion={l:{l2:0.0 for l2 in labels} for l in labels}
for i,row in df.iterrows():
confusion[row['label']][row['pred']]+=1.0
confusion={l:{l2:i/sum(items.values()) for l2,i in items.items()} \
for l,items in confusion.items()}
with open(mklens(b).confusion_matrix.syspath,'w') as f:
json_dump(confusion,f,indent=4)
df.to_csv(mklens(b).prediction.syspath)
return mkdrv(m, matcher=match_only(), realizer=build_wrapper(_realize),
config=mkconfig({
'name':'confusion_matrix',
'model':stage(m),
'confusion_matrix':[promise, 'confusion_matrix.json'],
'prediction':[promise, 'prediction.csv'],
'version':2,
}))
# eval ends
if __name__== '__main__':
for lr in learning_rates:
print(realize(instantiate(all_multibert_finetune_rusentiment1, lr=lr)))
print(realize(instantiate(all_multibert_finetune_rusentiment0)))
stage=partial(all_multibert_finetune_rusentiment1, lr=min(learning_rates))
print(realize(instantiate(bert_rusentiment_evaluation, stage)))
|
[
"stagedml.imports.sys.environ.get",
"official.nlp.bert.classifier_data_lib.convert_single_example",
"numpy.argmax",
"official.nlp.bert.classifier_data_lib.InputExample",
"pylightnix.store_context",
"tensorflow.constant",
"pylightnix.build_wrapper",
"stagedml.imports.sys.json_dump",
"stagedml.stages.bert_finetune_glue.build",
"pylightnix.build_setoutpaths",
"pylightnix.match_only",
"altair_saver.save",
"pylightnix.rref2dref",
"stagedml.imports.sys.makedirs"
] |
[((1178, 1210), 'stagedml.imports.sys.environ.get', 'environ.get', (['"""REPIMG"""', 'genimgdir'], {}), "('REPIMG', genimgdir)\n", (1189, 1210), False, 'from stagedml.imports.sys import read_csv, OrderedDict, DataFrame, makedirs, json_dump, environ, contextmanager\n'), ((1212, 1246), 'stagedml.imports.sys.makedirs', 'makedirs', (['genimgdir'], {'exist_ok': '(True)'}), '(genimgdir, exist_ok=True)\n', (1220, 1246), False, 'from stagedml.imports.sys import read_csv, OrderedDict, DataFrame, makedirs, json_dump, environ, contextmanager\n'), ((1508, 1532), 'altair_saver.save', 'altair_save', (['chart', 'path'], {}), '(chart, path)\n', (1519, 1532), True, 'from altair_saver import save as altair_save\n'), ((1905, 1936), 'stagedml.stages.bert_finetune_glue.build', 'bert_finetune_build', (['self.model'], {}), '(self.model)\n', (1924, 1936), True, 'from stagedml.stages.bert_finetune_glue import Model as BertClsModel, build as bert_finetune_build\n'), ((3661, 3684), 'pylightnix.build_setoutpaths', 'build_setoutpaths', (['b', '(1)'], {}), '(b, 1)\n', (3678, 3684), False, 'from pylightnix import RRef, Build, rref2path, rref2dref, match_some, realizeMany, match_latest, store_buildtime, store_buildelta, store_context, BuildArgs, mkdrv, build_wrapper, match_only, build_setoutpaths, readjson\n'), ((2588, 2647), 'official.nlp.bert.classifier_data_lib.InputExample', 'InputExample', ([], {'guid': 'f"""eval_{i:04d}"""', 'text_a': 's', 'label': '"""dummy"""'}), "(guid=f'eval_{i:04d}', text_a=s, label='dummy')\n", (2600, 2647), False, 'from official.nlp.bert.classifier_data_lib import InputExample, InputFeatures, convert_single_example\n'), ((2656, 2734), 'official.nlp.bert.classifier_data_lib.convert_single_example', 'convert_single_example', (['(10)', 'ie', "['dummy']", 'self.max_seq_length', 'self.tokenizer'], {}), "(10, ie, ['dummy'], self.max_seq_length, self.tokenizer)\n", (2678, 2734), False, 'from official.nlp.bert.classifier_data_lib import InputExample, InputFeatures, convert_single_example\n'), ((4251, 4284), 'stagedml.imports.sys.json_dump', 'json_dump', (['confusion', 'f'], {'indent': '(4)'}), '(confusion, f, indent=4)\n', (4260, 4284), False, 'from stagedml.imports.sys import read_csv, OrderedDict, DataFrame, makedirs, json_dump, environ, contextmanager\n'), ((4354, 4366), 'pylightnix.match_only', 'match_only', ([], {}), '()\n', (4364, 4366), False, 'from pylightnix import RRef, Build, rref2path, rref2dref, match_some, realizeMany, match_latest, store_buildtime, store_buildelta, store_context, BuildArgs, mkdrv, build_wrapper, match_only, build_setoutpaths, readjson\n'), ((4377, 4400), 'pylightnix.build_wrapper', 'build_wrapper', (['_realize'], {}), '(_realize)\n', (4390, 4400), False, 'from pylightnix import RRef, Build, rref2path, rref2dref, match_some, realizeMany, match_latest, store_buildtime, store_buildelta, store_context, BuildArgs, mkdrv, build_wrapper, match_only, build_setoutpaths, readjson\n'), ((1848, 1863), 'pylightnix.rref2dref', 'rref2dref', (['rref'], {}), '(rref)\n', (1857, 1863), False, 'from pylightnix import RRef, Build, rref2path, rref2dref, match_some, realizeMany, match_latest, store_buildtime, store_buildelta, store_context, BuildArgs, mkdrv, build_wrapper, match_only, build_setoutpaths, readjson\n'), ((1865, 1884), 'pylightnix.store_context', 'store_context', (['rref'], {}), '(rref)\n', (1878, 1884), False, 'from pylightnix import RRef, Build, rref2path, rref2dref, match_some, realizeMany, match_latest, store_buildtime, store_buildelta, store_context, BuildArgs, mkdrv, build_wrapper, match_only, build_setoutpaths, readjson\n'), ((3867, 3883), 'numpy.argmax', 'np.argmax', (['probs'], {}), '(probs)\n', (3876, 3883), True, 'import numpy as np\n'), ((2262, 2313), 'tensorflow.constant', 'tf.constant', (['[i[0] for i in inputs]'], {'dtype': 'tf.int64'}), '([i[0] for i in inputs], dtype=tf.int64)\n', (2273, 2313), True, 'import tensorflow as tf\n'), ((2338, 2389), 'tensorflow.constant', 'tf.constant', (['[i[1] for i in inputs]'], {'dtype': 'tf.int64'}), '([i[1] for i in inputs], dtype=tf.int64)\n', (2349, 2389), True, 'import tensorflow as tf\n'), ((2414, 2465), 'tensorflow.constant', 'tf.constant', (['[i[2] for i in inputs]'], {'dtype': 'tf.int64'}), '([i[2] for i in inputs], dtype=tf.int64)\n', (2425, 2465), True, 'import tensorflow as tf\n')]
|
from kepler import *
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as animation
import streamlit as st
import streamlit.components.v1 as components
test = keplerCalc()
el = test.ellipse()
x = el[0]
y = el[1]
def update_line(i, x,y ,line):
ax.patches = []
x = x[i]
y = y[i]
circle = plt.Circle(([x], [y]),(1/23454.8)*100,color = 'red')
l = ax.add_patch(circle)
#line.center(x,y)
return l,
fig = plt.figure()
ax = fig.subplots()
# Fixing random state for reproducibility
#np.random.seed(19680801)
#data = keplerCalc()
data = np.random.rand(2,25)
circle = plt.Circle(([1], [0]),(1/23454.8)*100,color = 'red')
l = ax.add_patch(circle)
plt.xlim(-2, 2)
plt.ylim(-2, 2)
plt.xlabel('x')
plt.title('test')
line_ani = animation.FuncAnimation(fig, update_line, 100, fargs=(x,y, l), interval=50, blit=True)
st.title("Embed Matplotlib animation in Streamlit")
#st.markdown("https://matplotlib.org/gallery/animation/basic_example.html")
components.html(line_ani.to_jshtml(), height=1000)
|
[
"matplotlib.pyplot.title",
"matplotlib.pyplot.xlim",
"matplotlib.pyplot.ylim",
"streamlit.title",
"matplotlib.animation.FuncAnimation",
"matplotlib.pyplot.figure",
"matplotlib.pyplot.Circle",
"numpy.random.rand",
"matplotlib.pyplot.xlabel"
] |
[((456, 468), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (466, 468), True, 'import matplotlib.pyplot as plt\n'), ((586, 607), 'numpy.random.rand', 'np.random.rand', (['(2)', '(25)'], {}), '(2, 25)\n', (600, 607), True, 'import numpy as np\n'), ((616, 670), 'matplotlib.pyplot.Circle', 'plt.Circle', (['([1], [0])', '(1 / 23454.8 * 100)'], {'color': '"""red"""'}), "(([1], [0]), 1 / 23454.8 * 100, color='red')\n", (626, 670), True, 'import matplotlib.pyplot as plt\n'), ((694, 709), 'matplotlib.pyplot.xlim', 'plt.xlim', (['(-2)', '(2)'], {}), '(-2, 2)\n', (702, 709), True, 'import matplotlib.pyplot as plt\n'), ((710, 725), 'matplotlib.pyplot.ylim', 'plt.ylim', (['(-2)', '(2)'], {}), '(-2, 2)\n', (718, 725), True, 'import matplotlib.pyplot as plt\n'), ((726, 741), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""x"""'], {}), "('x')\n", (736, 741), True, 'import matplotlib.pyplot as plt\n'), ((742, 759), 'matplotlib.pyplot.title', 'plt.title', (['"""test"""'], {}), "('test')\n", (751, 759), True, 'import matplotlib.pyplot as plt\n'), ((771, 862), 'matplotlib.animation.FuncAnimation', 'animation.FuncAnimation', (['fig', 'update_line', '(100)'], {'fargs': '(x, y, l)', 'interval': '(50)', 'blit': '(True)'}), '(fig, update_line, 100, fargs=(x, y, l), interval=50,\n blit=True)\n', (794, 862), True, 'import matplotlib.animation as animation\n'), ((859, 910), 'streamlit.title', 'st.title', (['"""Embed Matplotlib animation in Streamlit"""'], {}), "('Embed Matplotlib animation in Streamlit')\n", (867, 910), True, 'import streamlit as st\n'), ((331, 385), 'matplotlib.pyplot.Circle', 'plt.Circle', (['([x], [y])', '(1 / 23454.8 * 100)'], {'color': '"""red"""'}), "(([x], [y]), 1 / 23454.8 * 100, color='red')\n", (341, 385), True, 'import matplotlib.pyplot as plt\n')]
|
from __future__ import annotations
import numpy as np
import pandas as pd
from sklearn import datasets
from IMLearn.metrics import mean_square_error
from IMLearn.utils import split_train_test
from IMLearn.model_selection import cross_validate
from IMLearn.learners.regressors import PolynomialFitting, LinearRegression, RidgeRegression
from sklearn.linear_model import Lasso
from utils import *
import plotly.graph_objects as go
from plotly.subplots import make_subplots
def select_polynomial_degree(n_samples: int = 100, noise: float = 5):
"""
Simulate data from a polynomial model and use cross-validation to select the best fitting degree
Parameters
----------
n_samples: int, default=100
Number of samples to generate
noise: float, default = 5
Noise level to simulate in responses
"""
# Question 1 - Generate dataset for model f(x)=(x+3)(x+2)(x+1)(x-1)(x-2) + eps for eps Gaussian noise
# and split into training- and testing portions
f_true = lambda x: (x+3)*(x+2)*(x+1)*(x-1)*(x-2)
def epsilon(x):
if type(x) == np.number:
return np.random.normal(0, noise)
return np.random.normal(0, noise, x.shape)
f = lambda x: (f_true(x) + epsilon(x))
X = pd.DataFrame({"x": np.random.uniform(-1.2, 2, n_samples)})
y = f(X)["x"]
y.name = "y"
train_X, train_y, test_X, test_y = split_train_test(X, y, train_proportion=(2/3))
fig = go.Figure()
sorted_x = X["x"].sort_values()
fig.add_traces([
go.Scatter(x=sorted_x, y=f_true(sorted_x), name="True values", line=dict(color='black', width=1.5)),
go.Scatter(x=train_X, y=train_y, name="Train set", mode='markers', marker=dict(color='royalblue', symbol="x")),
go.Scatter(x=test_X, y=test_y, name="Test set", mode='markers', marker=dict(color='firebrick', symbol="circle")),
])
fig.update_layout(title=f"Train and test sets compared to true Model. {n_samples} samples with noise {noise}", xaxis_title="x", yaxis_title="y")
fig.show()
# Question 2 - Perform CV for polynomial fitting with degrees 0,1,...,10
loss_by_degree_train = []
loss_by_degree_validation = []
for k in range(11):
estimator = PolynomialFitting(k)
t, v = cross_validate(estimator, train_X, train_y, mean_square_error, 5)
loss_by_degree_train.append(t)
loss_by_degree_validation.append(v)
fig = go.Figure()
fig.add_traces([
go.Scatter(x=np.arange(11), y=loss_by_degree_train, name="Train error", mode='lines+markers', marker=dict(color='royalblue', symbol="x"), line=dict(color='royalblue', width=1.5)),
go.Scatter(x=np.arange(11), y=loss_by_degree_validation, name="Validation error", mode='lines+markers', marker=dict(color='firebrick', symbol="circle"), line=dict(color='firebrick', width=1.5))
])
fig.update_layout(title=f"Calculated loss from 5-fold cross validation on train set. {n_samples} samples with noise {noise}", xaxis_title="Polynomial degree", yaxis_title="Loss")
fig.show()
# Question 3 - Using best value of k, fit a k-degree polynomial model and report test error
k_star = np.argmin(loss_by_degree_validation)
estimator = PolynomialFitting(k_star)
estimator.fit(train_X, train_y)
print(f" {n_samples} samples with noise {noise}:")
print("Optimal polynomial degree: %d" % k_star)
print("Mean validation error: %.2f" % loss_by_degree_validation[k_star])
print("Test error: %.2f" % estimator.loss(test_X, test_y))
def select_regularization_parameter(n_samples: int = 50, n_evaluations: int = 500):
"""
Using sklearn's diabetes dataset use cross-validation to select the best fitting regularization parameter
values for Ridge and Lasso regressions
Parameters
----------
n_samples: int, default=50
Number of samples to generate
n_evaluations: int, default = 500
Number of regularization parameter values to evaluate for each of the algorithms
"""
# Question 6 - Load diabetes dataset and split into training and testing portions
X, y = datasets.load_diabetes(return_X_y=True)
train_X = X[:n_samples]
test_X = X[n_samples:]
train_y = y[:n_samples]
test_y = y[n_samples:]
# Question 7 - Perform CV for different values of the regularization parameter for Ridge and Lasso regressions
lambdas = np.linspace(0.01, 2.5, n_evaluations)
best_lamda = {}
for name, model in zip(["ridge", "lasso"], [RidgeRegression, Lasso]):
loss_by_lambda_train = []
loss_by_lambda_validation = []
for lam in lambdas:
estimator = model(lam)
t, v = cross_validate(estimator, train_X, train_y, mean_square_error, 5)
loss_by_lambda_train.append(t)
loss_by_lambda_validation.append(v)
best_lamda[name] = lambdas[np.argmin(loss_by_lambda_validation)]
fig = go.Figure()
fig.add_traces([
go.Scatter(x=lambdas, y=loss_by_lambda_train, name="Train error", mode='markers', marker=dict(color='royalblue', symbol="x")),
go.Scatter(x=lambdas, y=loss_by_lambda_validation, name="Validation error", mode='markers', marker=dict(color='firebrick', symbol="circle"))
])
fig.update_layout(title=f"Loss from 5-fold cross validation on {name} regression model", xaxis_title="Lambda", yaxis_title="Loss")
fig.show()
# Question 8 - Compare best Ridge model, best Lasso model and Least Squares model
for m, l in best_lamda.items():
print(f"Best lambda for {m} is: {l}")
ridge = RidgeRegression(best_lamda["ridge"])
lasso = Lasso(best_lamda["lasso"])
least_squares = LinearRegression()
ridge.fit(train_X, train_y)
lasso.fit(train_X, train_y)
least_squares.fit(train_X, train_y)
for name, model in zip(["ridge", "lasso", "least squares"], [ridge, lasso, least_squares]):
print(f"Test loss for {name} is: {mean_square_error(test_y, model.predict(test_X))}")
if __name__ == '__main__':
np.random.seed(0)
select_polynomial_degree()
select_polynomial_degree(100, 0)
select_polynomial_degree(1500, 10)
select_regularization_parameter()
|
[
"numpy.random.uniform",
"numpy.random.seed",
"IMLearn.learners.regressors.RidgeRegression",
"plotly.graph_objects.Figure",
"sklearn.datasets.load_diabetes",
"numpy.argmin",
"IMLearn.learners.regressors.PolynomialFitting",
"IMLearn.model_selection.cross_validate",
"IMLearn.utils.split_train_test",
"numpy.arange",
"numpy.linspace",
"numpy.random.normal",
"IMLearn.learners.regressors.LinearRegression",
"sklearn.linear_model.Lasso"
] |
[((1383, 1429), 'IMLearn.utils.split_train_test', 'split_train_test', (['X', 'y'], {'train_proportion': '(2 / 3)'}), '(X, y, train_proportion=2 / 3)\n', (1399, 1429), False, 'from IMLearn.utils import split_train_test\n'), ((1440, 1451), 'plotly.graph_objects.Figure', 'go.Figure', ([], {}), '()\n', (1449, 1451), True, 'import plotly.graph_objects as go\n'), ((2414, 2425), 'plotly.graph_objects.Figure', 'go.Figure', ([], {}), '()\n', (2423, 2425), True, 'import plotly.graph_objects as go\n'), ((3153, 3189), 'numpy.argmin', 'np.argmin', (['loss_by_degree_validation'], {}), '(loss_by_degree_validation)\n', (3162, 3189), True, 'import numpy as np\n'), ((3206, 3231), 'IMLearn.learners.regressors.PolynomialFitting', 'PolynomialFitting', (['k_star'], {}), '(k_star)\n', (3223, 3231), False, 'from IMLearn.learners.regressors import PolynomialFitting, LinearRegression, RidgeRegression\n'), ((4095, 4134), 'sklearn.datasets.load_diabetes', 'datasets.load_diabetes', ([], {'return_X_y': '(True)'}), '(return_X_y=True)\n', (4117, 4134), False, 'from sklearn import datasets\n'), ((4375, 4412), 'numpy.linspace', 'np.linspace', (['(0.01)', '(2.5)', 'n_evaluations'], {}), '(0.01, 2.5, n_evaluations)\n', (4386, 4412), True, 'import numpy as np\n'), ((5586, 5622), 'IMLearn.learners.regressors.RidgeRegression', 'RidgeRegression', (["best_lamda['ridge']"], {}), "(best_lamda['ridge'])\n", (5601, 5622), False, 'from IMLearn.learners.regressors import PolynomialFitting, LinearRegression, RidgeRegression\n'), ((5635, 5661), 'sklearn.linear_model.Lasso', 'Lasso', (["best_lamda['lasso']"], {}), "(best_lamda['lasso'])\n", (5640, 5661), False, 'from sklearn.linear_model import Lasso\n'), ((5682, 5700), 'IMLearn.learners.regressors.LinearRegression', 'LinearRegression', ([], {}), '()\n', (5698, 5700), False, 'from IMLearn.learners.regressors import PolynomialFitting, LinearRegression, RidgeRegression\n'), ((6029, 6046), 'numpy.random.seed', 'np.random.seed', (['(0)'], {}), '(0)\n', (6043, 6046), True, 'import numpy as np\n'), ((1163, 1198), 'numpy.random.normal', 'np.random.normal', (['(0)', 'noise', 'x.shape'], {}), '(0, noise, x.shape)\n', (1179, 1198), True, 'import numpy as np\n'), ((2218, 2238), 'IMLearn.learners.regressors.PolynomialFitting', 'PolynomialFitting', (['k'], {}), '(k)\n', (2235, 2238), False, 'from IMLearn.learners.regressors import PolynomialFitting, LinearRegression, RidgeRegression\n'), ((2254, 2319), 'IMLearn.model_selection.cross_validate', 'cross_validate', (['estimator', 'train_X', 'train_y', 'mean_square_error', '(5)'], {}), '(estimator, train_X, train_y, mean_square_error, 5)\n', (2268, 2319), False, 'from IMLearn.model_selection import cross_validate\n'), ((4907, 4918), 'plotly.graph_objects.Figure', 'go.Figure', ([], {}), '()\n', (4916, 4918), True, 'import plotly.graph_objects as go\n'), ((1121, 1147), 'numpy.random.normal', 'np.random.normal', (['(0)', 'noise'], {}), '(0, noise)\n', (1137, 1147), True, 'import numpy as np\n'), ((1269, 1306), 'numpy.random.uniform', 'np.random.uniform', (['(-1.2)', '(2)', 'n_samples'], {}), '(-1.2, 2, n_samples)\n', (1286, 1306), True, 'import numpy as np\n'), ((4663, 4728), 'IMLearn.model_selection.cross_validate', 'cross_validate', (['estimator', 'train_X', 'train_y', 'mean_square_error', '(5)'], {}), '(estimator, train_X, train_y, mean_square_error, 5)\n', (4677, 4728), False, 'from IMLearn.model_selection import cross_validate\n'), ((4855, 4891), 'numpy.argmin', 'np.argmin', (['loss_by_lambda_validation'], {}), '(loss_by_lambda_validation)\n', (4864, 4891), True, 'import numpy as np\n'), ((2468, 2481), 'numpy.arange', 'np.arange', (['(11)'], {}), '(11)\n', (2477, 2481), True, 'import numpy as np\n'), ((2656, 2669), 'numpy.arange', 'np.arange', (['(11)'], {}), '(11)\n', (2665, 2669), True, 'import numpy as np\n')]
|
import threading
import unittest
import tensorflow as tf
import numpy as np
import fedlearner.common.fl_logging as logging
from fedlearner.fedavg import train_from_keras_model
(x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data()
x_train = x_train.reshape(x_train.shape[0], -1).astype(np.float32) / 255.0
y_train = y_train.astype(np.int32)
x_test = x_test.reshape(x_test.shape[0], -1).astype(np.float32) / 255.0
y_test = y_test.astype(np.int32)
def create_model():
model = tf.keras.Sequential([
tf.keras.layers.Dense(200, activation='relu', input_shape=(784, )),
tf.keras.layers.Dense(200, activation='relu'),
tf.keras.layers.Dense(10, activation='softmax'),
])
model.compile(optimizer=tf.keras.optimizers.SGD(0.01),
loss=tf.keras.losses.SparseCategoricalCrossentropy(),
metrics=['acc'])
return model
class TestFedavgTrain(unittest.TestCase):
def setUp(self):
super(TestFedavgTrain, self).__init__()
self._fl_cluster = {
"leader": {
"name": "leader",
"address": "0.0.0.0:20050"
},
"followers": [{
"name": "follower"
}]
}
self._batch_size = 64
self._epochs = 1
self._steps_per_sync = 10
self._l_eval_result = None
self._f_eval_result = None
def _train_leader(self):
x = x_train[:len(x_train) // 2]
y = y_train[:len(y_train) // 2]
model = create_model()
train_from_keras_model(model,
x,
y,
batch_size=self._batch_size,
epochs=self._epochs,
fl_name="leader",
fl_cluster=self._fl_cluster,
steps_per_sync=self._steps_per_sync)
self._l_eval_result = model.evaluate(x_test, y_test)
def _train_follower(self):
x = x_train[len(x_train) // 2:]
y = y_train[len(y_train) // 2:]
model = create_model()
train_from_keras_model(model,
x,
y,
batch_size=self._batch_size,
epochs=self._epochs,
fl_name="follower",
fl_cluster=self._fl_cluster,
steps_per_sync=self._steps_per_sync)
self._f_eval_result = model.evaluate(x_test, y_test)
def test_train(self):
l_thread = threading.Thread(target=self._train_leader)
f_thread = threading.Thread(target=self._train_follower)
l_thread.start()
f_thread.start()
l_thread.join()
f_thread.join()
assert len(self._l_eval_result) == 2
assert len(self._f_eval_result) == 2
for v1, v2 in zip(self._l_eval_result, self._f_eval_result):
assert np.isclose(v1, v2)
if __name__ == '__main__':
logging.set_level("debug")
unittest.main()
|
[
"unittest.main",
"threading.Thread",
"fedlearner.fedavg.train_from_keras_model",
"tensorflow.keras.losses.SparseCategoricalCrossentropy",
"tensorflow.keras.layers.Dense",
"tensorflow.keras.optimizers.SGD",
"tensorflow.keras.datasets.mnist.load_data",
"numpy.isclose",
"fedlearner.common.fl_logging.set_level"
] |
[((216, 251), 'tensorflow.keras.datasets.mnist.load_data', 'tf.keras.datasets.mnist.load_data', ([], {}), '()\n', (249, 251), True, 'import tensorflow as tf\n'), ((3083, 3109), 'fedlearner.common.fl_logging.set_level', 'logging.set_level', (['"""debug"""'], {}), "('debug')\n", (3100, 3109), True, 'import fedlearner.common.fl_logging as logging\n'), ((3114, 3129), 'unittest.main', 'unittest.main', ([], {}), '()\n', (3127, 3129), False, 'import unittest\n'), ((1549, 1727), 'fedlearner.fedavg.train_from_keras_model', 'train_from_keras_model', (['model', 'x', 'y'], {'batch_size': 'self._batch_size', 'epochs': 'self._epochs', 'fl_name': '"""leader"""', 'fl_cluster': 'self._fl_cluster', 'steps_per_sync': 'self._steps_per_sync'}), "(model, x, y, batch_size=self._batch_size, epochs=\n self._epochs, fl_name='leader', fl_cluster=self._fl_cluster,\n steps_per_sync=self._steps_per_sync)\n", (1571, 1727), False, 'from fedlearner.fedavg import train_from_keras_model\n'), ((2148, 2328), 'fedlearner.fedavg.train_from_keras_model', 'train_from_keras_model', (['model', 'x', 'y'], {'batch_size': 'self._batch_size', 'epochs': 'self._epochs', 'fl_name': '"""follower"""', 'fl_cluster': 'self._fl_cluster', 'steps_per_sync': 'self._steps_per_sync'}), "(model, x, y, batch_size=self._batch_size, epochs=\n self._epochs, fl_name='follower', fl_cluster=self._fl_cluster,\n steps_per_sync=self._steps_per_sync)\n", (2170, 2328), False, 'from fedlearner.fedavg import train_from_keras_model\n'), ((2645, 2688), 'threading.Thread', 'threading.Thread', ([], {'target': 'self._train_leader'}), '(target=self._train_leader)\n', (2661, 2688), False, 'import threading\n'), ((2708, 2753), 'threading.Thread', 'threading.Thread', ([], {'target': 'self._train_follower'}), '(target=self._train_follower)\n', (2724, 2753), False, 'import threading\n'), ((532, 597), 'tensorflow.keras.layers.Dense', 'tf.keras.layers.Dense', (['(200)'], {'activation': '"""relu"""', 'input_shape': '(784,)'}), "(200, activation='relu', input_shape=(784,))\n", (553, 597), True, 'import tensorflow as tf\n'), ((608, 653), 'tensorflow.keras.layers.Dense', 'tf.keras.layers.Dense', (['(200)'], {'activation': '"""relu"""'}), "(200, activation='relu')\n", (629, 653), True, 'import tensorflow as tf\n'), ((663, 710), 'tensorflow.keras.layers.Dense', 'tf.keras.layers.Dense', (['(10)'], {'activation': '"""softmax"""'}), "(10, activation='softmax')\n", (684, 710), True, 'import tensorflow as tf\n'), ((747, 776), 'tensorflow.keras.optimizers.SGD', 'tf.keras.optimizers.SGD', (['(0.01)'], {}), '(0.01)\n', (770, 776), True, 'import tensorflow as tf\n'), ((801, 848), 'tensorflow.keras.losses.SparseCategoricalCrossentropy', 'tf.keras.losses.SparseCategoricalCrossentropy', ([], {}), '()\n', (846, 848), True, 'import tensorflow as tf\n'), ((3031, 3049), 'numpy.isclose', 'np.isclose', (['v1', 'v2'], {}), '(v1, v2)\n', (3041, 3049), True, 'import numpy as np\n')]
|
#! /usr/bin/env python3
import os
import time
import matplotlib.pyplot as plt
import numpy as np
from scipy.stats import norm
from sklearn.datasets import make_blobs
from lib_dist_app import plt_data, nns
# ### do a loop for the number of dimensions and the values of p.
ti = time.time()
np.random.seed(0)
N = 601
nn = [50]
pp = [2*i/10 for i in range(1,5)]+[2, 3]
# n_proc = 20
# n_features = 50
# processes = np.empty((n_proc, n_features))
#
#
# for proc in processes:
#
# proc[:] = np.random.normal(loc=np.random.randint(100), size=n_features)
#
# # plt.figure()
# # for point in processes:
# # plt.plot(point)
# # plt.show()
# # plt.close()
# #
#
# data = np.empty((N, n_features))
#
# plt.figure()
# for point in data:
# i = np.random.randint(low=15, high=20)
# point[:] = np.sum(processes[:i, :], axis=0)
# plt.plot(point)
#
# plt.show()
# plt.close()
## outliers
# ## wave data
#
# data = np.genfromtxt('wave_data.csv', delimiter=',', dtype='float32', filling_values=0.0)
#
#
#
# print(np.count_nonzero(np.isnan(data)))
##NNs
# n_neighbors = data.shape[0]
#
# for p in pp:
#
# dd, idxx = nns(data=data[:], n_neighbors=n_neighbors, p=p)
# print(dd.shape)
# rr = [10]#[1, 50, 100, 200, 400, 600]
#
# for r in rr:
#
# fig, ax = plt.subplots(figsize=(10,5))
#
# d_r = np.mean(dd[:, :r], axis=1)
# # print(np.count_nonzero(np.isnan(d_r)),np.max(d_r))
# d_r /= np.max(d_r)
#
# ax.hist(d_r, bins=100)
# plt.tight_layout()
#
# fig.savefig(f'./gaussians/nns_{r}_n_{data.shape[1]}_p_{p}_outlier_score.png')
#
# plt.close()
## intuition data
# inliers
n_samples = [100, 100, 100, 100, 150, 51]
# nn_samples = [10*i for i in n_samples]
# nn_samples[-1] -= -9
centers = [ [5, 5], [5, 9], [9, 5], [5, 1], [2, 5], [-5, -2] ]
cluster_std = [0.25, 0.5, 1, 1.5, 3, 0.25]
data, y= make_blobs(n_samples=n_samples, centers=centers, cluster_std=cluster_std, random_state=1)
plt_data(data=data, fname='data_distribution', face_color = False)
# data, y= make_blobs(n_samples=nn_samples, centers=centers, cluster_std=cluster_std, random_state=1)
# plt_data(data=data, fname='data_distribution', alpha=0.05, face_color = True)
##NNs
p = 2
n_neighbors = data.shape[0]
dd, idxx = nns(data=data, n_neighbors=n_neighbors, p=p, n_jobs=None)
# np.save(f'distances_p_{p}.npy', dd)
rr = [1, 50, 100, 200, 400, 600]
# rr = [1, 500, 1000, 2000, 4000, 6000]
for r in rr:
fig, ax = plt.subplots(figsize=(10,5))
d_r = np.mean(dd[:, :r], axis=1)
d_r /= np.max(d_r)
ax.hist(d_r, bins=100)
plt.tight_layout()
fig.savefig(f'./intuition/nns_{r}_p_{p}_o_score.png')
plt.close()
#
# fig, ax = plt.subplots(figsize=(12, 8))
# dd_sorted = np.sort(dd)
# ax.hist(dd_sorted[:1_000], bins=100)
# plt.tight_layout()
#
# fig.savefig('hist_outlier_intuitive.pdf')
# fig.savefig('hist_outlier_intuitive.png', facecolor='none')
# # silly example
# X = np.array([[1, 1], [2, 1], [3, 2]])
#
# dd, idxx = nns(data=X, nns=3, p=2)
#
# print(X, '\n', dd, '\n', idxx, '\n')
#############################################################################
# n_points = 40
# mm = np.array([1, 0, -1, 2])
# x = np.linspace(0, 1, n_points)
# features = [['a', 'b'], ['i', 'j'], ['m', 'n'], ['x', 'y']]
# for idx, m in enumerate(mm):
#
# if m == 2:
# x = np.random.random(size=n_points)
# y = np.random.random(size=n_points)
# A = [x[n_points//3], y[n_points//3]]
# B = [2*x[n_points//3], 2*y[n_points//3]]
# else:
# y = m*x + np.random.normal(loc=0, scale=0.2, size=n_points)
# if m == 1:
# A = [x[-3], y[-3] - 1.5]
# B = [x[10], y[10]]
# elif m == -1:
# A = [x[10], y[10]]
# B = [x[-3], y[-3] + 1.5]
# else:
# A = [x[10], y[10]]
# B = [x[-3], y[-3]]
# fig, ax = plt.subplots(figsize=(10, 5))
# # ax.axis('equal')
# # ax.set_xlim((-0.3, 1.3))
# # ax.set_xlim((-0.3, 1.3))
#
# ax.set_xticklabels([])
# ax.set_yticklabels([])
# ax.set_xlabel(f'Feature {features[idx][0]}', fontsize='xx-large')
# ax.set_ylabel(f'Feature {features[idx][1]}', fontsize='xx-large')
# ax.scatter(x, y)
# ax.scatter(A[0], A[1], s=150, label='A')
# ax.scatter(B[0], B[1], s=150, label='B')
# ax.legend(loc='upper left')
#
# plt.tight_layout()
# fig.savefig(f'{path}/{idx}_projection_approach.png')
# fig.savefig(f'{path}/{idx}_projection_approach.pdf')
# ####################################################
# path = './pics_generative_approach'
# np.random.seed(0)
#
# n_points = 10_000
#
# mus = np.array([2, 3, 5, 7])
# sigmas = np.random.random(size=mus.size)
# x = np.linspace(0, 9, n_points)
# models = np.empty((sigmas.size, n_points))
#
# fig, ax = plt.subplots(figsize=(10, 5))
# ax.set_xlabel('Observables', fontsize='xx-large')
# ax.set_ylabel('Measurements', fontsize='xx-large')
# ax.set_yticklabels([])
# ax.set_xticklabels([])
#
# lines = []
# for idx, mu in enumerate(mus):
# models[idx, :] = norm.pdf(x, loc=mu, scale=sigmas[idx])
# model_line, = ax.plot(x, models[idx, :], alpha=0.12)
# # lines.append(model_line)
#
# legends = [f'Model {idx+1}' for idx in range(len(lines))]
#
# # Final model
# model = np.sum(models, axis=0)
# line, = ax.plot(x, model, color='black', alpha=5)
# lines.append(line)
# legends.append('Generative process')
#
# ax.legend(lines, legends, loc='upper right', shadow=True)
#
# # Deviations
#
# noise = 0.5 - np.random.random(size=n_points)
# data = model + noise*0.7
# idx = np.random.randint(0, n_points, int(n_points*0.015))
#
# ax.scatter(x[idx], data[idx], s=2.)
# plt.tight_layout()
# fig.savefig(f'{path}/generative_models.png')
# fig.savefig(f'{path}/generative_models.pdf')
tf = time.time()
print(f'Running time: {tf-ti:.2f}')
|
[
"matplotlib.pyplot.tight_layout",
"numpy.random.seed",
"lib_dist_app.nns",
"matplotlib.pyplot.close",
"sklearn.datasets.make_blobs",
"time.time",
"lib_dist_app.plt_data",
"numpy.mean",
"numpy.max",
"matplotlib.pyplot.subplots"
] |
[((280, 291), 'time.time', 'time.time', ([], {}), '()\n', (289, 291), False, 'import time\n'), ((292, 309), 'numpy.random.seed', 'np.random.seed', (['(0)'], {}), '(0)\n', (306, 309), True, 'import numpy as np\n'), ((1880, 1973), 'sklearn.datasets.make_blobs', 'make_blobs', ([], {'n_samples': 'n_samples', 'centers': 'centers', 'cluster_std': 'cluster_std', 'random_state': '(1)'}), '(n_samples=n_samples, centers=centers, cluster_std=cluster_std,\n random_state=1)\n', (1890, 1973), False, 'from sklearn.datasets import make_blobs\n'), ((1970, 2034), 'lib_dist_app.plt_data', 'plt_data', ([], {'data': 'data', 'fname': '"""data_distribution"""', 'face_color': '(False)'}), "(data=data, fname='data_distribution', face_color=False)\n", (1978, 2034), False, 'from lib_dist_app import plt_data, nns\n'), ((2273, 2330), 'lib_dist_app.nns', 'nns', ([], {'data': 'data', 'n_neighbors': 'n_neighbors', 'p': 'p', 'n_jobs': 'None'}), '(data=data, n_neighbors=n_neighbors, p=p, n_jobs=None)\n', (2276, 2330), False, 'from lib_dist_app import plt_data, nns\n'), ((5817, 5828), 'time.time', 'time.time', ([], {}), '()\n', (5826, 5828), False, 'import time\n'), ((2472, 2501), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {'figsize': '(10, 5)'}), '(figsize=(10, 5))\n', (2484, 2501), True, 'import matplotlib.pyplot as plt\n'), ((2512, 2538), 'numpy.mean', 'np.mean', (['dd[:, :r]'], {'axis': '(1)'}), '(dd[:, :r], axis=1)\n', (2519, 2538), True, 'import numpy as np\n'), ((2550, 2561), 'numpy.max', 'np.max', (['d_r'], {}), '(d_r)\n', (2556, 2561), True, 'import numpy as np\n'), ((2594, 2612), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (2610, 2612), True, 'import matplotlib.pyplot as plt\n'), ((2677, 2688), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (2686, 2688), True, 'import matplotlib.pyplot as plt\n')]
|
from __future__ import print_function
import numpy as np
c0prop = np.array([4, -2, 0, 0, 5]) # Frosting
c1prop = np.array([0, 5, -1, 0, 8]) # Candy
c2prop = np.array([-1, 0, 5, 0, 6]) # Butterscotch
c3prop = np.array([0, 0, -2, 2, 1]) # Sugar
max_score = 0
max_500_score = 0
for c0 in range(101):
for c1 in range(0, 101-c0):
remain = 100 - c0 - c1
c2 = np.arange(remain + 1)
c3 = remain - c2
sums_of_prop = (c0*c0prop + c1*c1prop +
np.outer(c2, c2prop) + np.outer(c3, c3prop))
calories = sums_of_prop[:, -1]
sums_of_prop = sums_of_prop[:, :-1] # remove calories
sums_of_prop[sums_of_prop < 0] = 0 # replace negatives with zeros
max_score = max(np.prod(sums_of_prop, axis=1).max(), max_score)
# part B, find all the cookies with 500 calories
cal_500_prop = sums_of_prop[calories == 500]
if len(cal_500_prop) == 0:
continue
max_500_score = max(np.prod(cal_500_prop, axis=1).max(), max_500_score)
print(max_score)
print(max_500_score)
|
[
"numpy.outer",
"numpy.array",
"numpy.arange",
"numpy.prod"
] |
[((67, 93), 'numpy.array', 'np.array', (['[4, -2, 0, 0, 5]'], {}), '([4, -2, 0, 0, 5])\n', (75, 93), True, 'import numpy as np\n'), ((116, 142), 'numpy.array', 'np.array', (['[0, 5, -1, 0, 8]'], {}), '([0, 5, -1, 0, 8])\n', (124, 142), True, 'import numpy as np\n'), ((162, 188), 'numpy.array', 'np.array', (['[-1, 0, 5, 0, 6]'], {}), '([-1, 0, 5, 0, 6])\n', (170, 188), True, 'import numpy as np\n'), ((215, 241), 'numpy.array', 'np.array', (['[0, 0, -2, 2, 1]'], {}), '([0, 0, -2, 2, 1])\n', (223, 241), True, 'import numpy as np\n'), ((383, 404), 'numpy.arange', 'np.arange', (['(remain + 1)'], {}), '(remain + 1)\n', (392, 404), True, 'import numpy as np\n'), ((526, 546), 'numpy.outer', 'np.outer', (['c3', 'c3prop'], {}), '(c3, c3prop)\n', (534, 546), True, 'import numpy as np\n'), ((503, 523), 'numpy.outer', 'np.outer', (['c2', 'c2prop'], {}), '(c2, c2prop)\n', (511, 523), True, 'import numpy as np\n'), ((751, 780), 'numpy.prod', 'np.prod', (['sums_of_prop'], {'axis': '(1)'}), '(sums_of_prop, axis=1)\n', (758, 780), True, 'import numpy as np\n'), ((994, 1023), 'numpy.prod', 'np.prod', (['cal_500_prop'], {'axis': '(1)'}), '(cal_500_prop, axis=1)\n', (1001, 1023), True, 'import numpy as np\n')]
|
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Thu Nov 12 12:07:33 2020
@author: student
"""
import numpy as np
import tensorflow as tf
from base_functions import one_one
# File path for saving the tfrecords files
path = '/home/student/Work/Keras/GAN/mySRGAN/new_implementation/multiGPU_datasetAPI/custom_train_loop_function_method/DATA_FOR_AAAI/code/'
###############################################################################
# Documentation:
# https://www.tensorflow.org/tutorials/load_data/tfrecord
# https://www.tensorflow.org/guide/data
# How to shard a large dataset:
# https://jkjung-avt.github.io/tfrecords-for-keras/
# https://github.com/jkjung-avt/keras_imagenet
# https://github.com/jkjung-avt/keras_imagenet/blob/master/data/build_imagenet_data.py <- this one builds the dataset
# Working example (partially adapted to produce this code):
# https://stackoverflow.com/questions/57717004/tensorflow-modern-way-to-load-large-data
# Another working example:
# https://stackoverflow.com/questions/50955798/keras-model-fit-with-tf-dataset-api-validation-data#50979587
# Some benefits to working with tf.data.Dataset as opposed to a numpy array:
# https://stackoverflow.com/questions/47732186/tensorflow-tf-record-too-large-to-be-loaded-into-an-np-array-at-once?rq=1
###############################################################################
"""
First, download the fashion-MNIST dataset, preprocess, and convert to numpy.
"""
# Load training and validation (test) data using built-in TF function.
((x_train,
y_train),
(x_val,
y_val)) = tf.keras.datasets.fashion_mnist.load_data()
# Expand dims to include depth dimension
x_train = np.expand_dims(x_train,
-1)
x_val = np.expand_dims(x_val,
-1)
# Convert from uint8 to float32
x_train = x_train.astype(np.float32)
x_val = x_val.astype(np.float32)
# By default, the intensities are in [0,255]. Rescale to [-1,1]. Do this SEPARATELY for the training and validation sets.
x_train = one_one(x_train)
x_val = one_one(x_val)
# Set aside the first example from each class as a "demo" dataset, for tracking changes in the model outputs during training.
indices = [19,2,1,13,6,8,4,9,18,0]
x_demo = np.zeros((10,28,28,1))
for i in range(10):
x_demo[i] = x_val[indices[i]]
# Make a set of 4 "demo" z vectors.
# They will be very long, and can be adapted to any reasonable z_dim by simply chopping off the extra dimensions.
z_demo = np.random.randn(4,1000,1)
# The x data have now been preprocessed for conversion to tfrecords files.
# We are not doing anything with the class labels, but for the sake of completeness, here is the conversion:
y_train = tf.keras.utils.to_categorical(y_train,
num_classes=10,
dtype='float32')
y_val = tf.keras.utils.to_categorical(y_val,
num_classes=10,
dtype='float32')
###############################################################################
"""
FUNCTION DEFINITIONS
"""
def _bytes_feature(value):
"""Returns a bytes_list from a string / byte."""
return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value]))
def _float_feature(value):
"""Returns a float_list from a float (32 or 64 precision)."""
return tf.train.Feature(float_list=tf.train.FloatList(value=[value]))
def _int64_feature(value):
""" Returns an int64_list from bool / enum / int / uint."""
return tf.train.Feature(int64_list=tf.train.Int64List(value=[value]))
def _convert_img_to_str(img):
"""
Convert an image in numpy array format, shape (1, height, width, depth), to a string. Depth is 1 for grayscale, 3 for RGB.
Returns:
img_string
height
width
depth
"""
# height, width, and depth are all going to be features in the serialized example (just the same as the class label will be).
height = img.shape[1]
width = img.shape[2]
depth = img.shape[3]
img_string = img.tostring()
return img_string, height, width, depth
def _convert_1hot_to_str(one_hot):
"""
Convert a one-hot class label vector, shape (1, num_classes), to a string.
Returns:
one_hot_string
"""
one_hot_string = one_hot.tostring()
return one_hot_string
def _convert_to_example(img_string,
height,
width,
depth,
one_hot_string):
"""
Serialize an example with a single image and corresponding one-hot class label.
This creates a tf.Example message ready to be written to a file.
Args:
img_string: string, image in array of shape (1, height, width, depth).
height: integer, image height in pixels.
width: integer, image width in pixels.
depth: integer, image depth in pixels.
one_hot_string: string, one-hot vector that identifies the ground truth label.
Returns:
Example proto
"""
# Create a dictionary mapping the feature name to the tf.Example-compatible data type.
feature = {'img': _bytes_feature(img_string),
'height': _int64_feature(height),
'width': _int64_feature(width),
'depth': _int64_feature(depth),
'label': _bytes_feature(one_hot_string)}
# Create a Features message using tf.train.Example.
example_proto = tf.train.Example(features=tf.train.Features(feature=feature))
return example_proto
def _make_TFRecord(x,
y,
output_file):
"""
Processes and saves an array of image data and array of label data as a TFRecord.
Args:
x: numpy array of images.
Has shape (num_examples, height, width, depth).
y: numpy array of one-hot class labels.
Has shape (num_examples, num_classes)
output_file: string, filename for the saved TFRecord file.
"""
# Open the file writer. All of the examples will be written here.
writer = tf.io.TFRecordWriter(output_file)
for i in range(x.shape[0]):
# Get the image and corresponding label for one example.
img = x[i:i+1]
label = y[i:i+1]
# Convert the image to a string and obtain the image dimensions.
(img_string,
height,
width,
depth) = _convert_img_to_str(img)
# Convert the one-hot class label to a string.
one_hot_string = _convert_1hot_to_str(label)
# Put all the features into the example.
example = _convert_to_example(img_string,
height,
width,
depth,
one_hot_string)
# Write the example into the TFRecords file.
writer.write(example.SerializeToString())
print(f'Created example {i} of {x.shape[0]}.')
writer.close()
print(f'Saved TFRecord to {output_file}.')
def _parse_example(serialized_example):
"""
Takes a single serialized example and converts it back into an image (AS A TENSOR OBJECT) and the corresponding label.
"""
features = {'img': tf.io.FixedLenFeature([],
tf.string),
'height': tf.io.FixedLenFeature([],
tf.int64),
'width': tf.io.FixedLenFeature([],
tf.int64),
'depth': tf.io.FixedLenFeature([],
tf.int64),
'label': tf.io.FixedLenFeature([],
tf.string)}
parsed_example = tf.io.parse_single_example(serialized=serialized_example,
features=features)
# Get the class label.
label = parsed_example['label']
label = tf.io.decode_raw(label,
tf.float32)
# Get the image dimensions.
height = parsed_example['height']
width = parsed_example['width']
depth = parsed_example['depth']
# Get the raw byte string and convert it to a tensor object.
img = parsed_example['img']
img = tf.io.decode_raw(img,
tf.float32)
# The tensor object is 1-dimensional, so reshape it using the image dimensions we obtained earlier.
img = tf.reshape(img,
shape=(height,
width,
depth))
return img, label
###############################################################################
def make_TFRecords():
"""
Function that creates training and validation tfrecords files using the above functions.
"""
_make_TFRecord(x_train,
y_train,
path + 'xy_train_fMNIST.tfrecords')
_make_TFRecord(x_val,
y_val,
path + 'xy_val_fMNIST.tfrecords')
np.save(path + 'x_demo.npy',
x_demo)
np.save(path + 'z_demo.npy',
z_demo)
def verify_TFRecords(path):
"""
Function that verifies that the tfrecords files were created properly.
Args:
path: location of xy_train.tfrecords and xy_val.tfrecords
Plots several images from the validation set and prints the corresponding labels.
"""
import matplotlib.pyplot as plt
xy_val = path + 'xy_val_fMNIST.tfrecords'
xy_val = tf.data.TFRecordDataset(xy_val)
# Check the first 5 examples from the dataset.
xy_val = xy_val.take(5).map(_parse_example)
plt.close('all')
# Each example looks like (img, label)
for ex in xy_val:
img = ex[0].numpy()
label = ex[1].numpy()
plt.figure()
plt.imshow(img[:,:,0],
cmap='gray',
vmin=-1,
vmax=1)
print(label)
|
[
"tensorflow.train.Int64List",
"tensorflow.reshape",
"matplotlib.pyplot.figure",
"tensorflow.train.FloatList",
"numpy.random.randn",
"matplotlib.pyplot.close",
"matplotlib.pyplot.imshow",
"tensorflow.io.decode_raw",
"base_functions.one_one",
"tensorflow.train.BytesList",
"numpy.save",
"tensorflow.keras.utils.to_categorical",
"tensorflow.train.Features",
"tensorflow.io.TFRecordWriter",
"tensorflow.keras.datasets.fashion_mnist.load_data",
"tensorflow.data.TFRecordDataset",
"numpy.zeros",
"numpy.expand_dims",
"tensorflow.io.parse_single_example",
"tensorflow.io.FixedLenFeature"
] |
[((1597, 1640), 'tensorflow.keras.datasets.fashion_mnist.load_data', 'tf.keras.datasets.fashion_mnist.load_data', ([], {}), '()\n', (1638, 1640), True, 'import tensorflow as tf\n'), ((1693, 1720), 'numpy.expand_dims', 'np.expand_dims', (['x_train', '(-1)'], {}), '(x_train, -1)\n', (1707, 1720), True, 'import numpy as np\n'), ((1754, 1779), 'numpy.expand_dims', 'np.expand_dims', (['x_val', '(-1)'], {}), '(x_val, -1)\n', (1768, 1779), True, 'import numpy as np\n'), ((2039, 2055), 'base_functions.one_one', 'one_one', (['x_train'], {}), '(x_train)\n', (2046, 2055), False, 'from base_functions import one_one\n'), ((2064, 2078), 'base_functions.one_one', 'one_one', (['x_val'], {}), '(x_val)\n', (2071, 2078), False, 'from base_functions import one_one\n'), ((2250, 2275), 'numpy.zeros', 'np.zeros', (['(10, 28, 28, 1)'], {}), '((10, 28, 28, 1))\n', (2258, 2275), True, 'import numpy as np\n'), ((2486, 2513), 'numpy.random.randn', 'np.random.randn', (['(4)', '(1000)', '(1)'], {}), '(4, 1000, 1)\n', (2501, 2513), True, 'import numpy as np\n'), ((2707, 2778), 'tensorflow.keras.utils.to_categorical', 'tf.keras.utils.to_categorical', (['y_train'], {'num_classes': '(10)', 'dtype': '"""float32"""'}), "(y_train, num_classes=10, dtype='float32')\n", (2736, 2778), True, 'import tensorflow as tf\n'), ((2867, 2936), 'tensorflow.keras.utils.to_categorical', 'tf.keras.utils.to_categorical', (['y_val'], {'num_classes': '(10)', 'dtype': '"""float32"""'}), "(y_val, num_classes=10, dtype='float32')\n", (2896, 2936), True, 'import tensorflow as tf\n'), ((6124, 6157), 'tensorflow.io.TFRecordWriter', 'tf.io.TFRecordWriter', (['output_file'], {}), '(output_file)\n', (6144, 6157), True, 'import tensorflow as tf\n'), ((7849, 7925), 'tensorflow.io.parse_single_example', 'tf.io.parse_single_example', ([], {'serialized': 'serialized_example', 'features': 'features'}), '(serialized=serialized_example, features=features)\n', (7875, 7925), True, 'import tensorflow as tf\n'), ((8050, 8085), 'tensorflow.io.decode_raw', 'tf.io.decode_raw', (['label', 'tf.float32'], {}), '(label, tf.float32)\n', (8066, 8085), True, 'import tensorflow as tf\n'), ((8366, 8399), 'tensorflow.io.decode_raw', 'tf.io.decode_raw', (['img', 'tf.float32'], {}), '(img, tf.float32)\n', (8382, 8399), True, 'import tensorflow as tf\n'), ((8541, 8586), 'tensorflow.reshape', 'tf.reshape', (['img'], {'shape': '(height, width, depth)'}), '(img, shape=(height, width, depth))\n', (8551, 8586), True, 'import tensorflow as tf\n'), ((9124, 9160), 'numpy.save', 'np.save', (["(path + 'x_demo.npy')", 'x_demo'], {}), "(path + 'x_demo.npy', x_demo)\n", (9131, 9160), True, 'import numpy as np\n'), ((9177, 9213), 'numpy.save', 'np.save', (["(path + 'z_demo.npy')", 'z_demo'], {}), "(path + 'z_demo.npy', z_demo)\n", (9184, 9213), True, 'import numpy as np\n'), ((9609, 9640), 'tensorflow.data.TFRecordDataset', 'tf.data.TFRecordDataset', (['xy_val'], {}), '(xy_val)\n', (9632, 9640), True, 'import tensorflow as tf\n'), ((9746, 9762), 'matplotlib.pyplot.close', 'plt.close', (['"""all"""'], {}), "('all')\n", (9755, 9762), True, 'import matplotlib.pyplot as plt\n'), ((7305, 7341), 'tensorflow.io.FixedLenFeature', 'tf.io.FixedLenFeature', (['[]', 'tf.string'], {}), '([], tf.string)\n', (7326, 7341), True, 'import tensorflow as tf\n'), ((7414, 7449), 'tensorflow.io.FixedLenFeature', 'tf.io.FixedLenFeature', (['[]', 'tf.int64'], {}), '([], tf.int64)\n', (7435, 7449), True, 'import tensorflow as tf\n'), ((7524, 7559), 'tensorflow.io.FixedLenFeature', 'tf.io.FixedLenFeature', (['[]', 'tf.int64'], {}), '([], tf.int64)\n', (7545, 7559), True, 'import tensorflow as tf\n'), ((7633, 7668), 'tensorflow.io.FixedLenFeature', 'tf.io.FixedLenFeature', (['[]', 'tf.int64'], {}), '([], tf.int64)\n', (7654, 7668), True, 'import tensorflow as tf\n'), ((7742, 7778), 'tensorflow.io.FixedLenFeature', 'tf.io.FixedLenFeature', (['[]', 'tf.string'], {}), '([], tf.string)\n', (7763, 7778), True, 'import tensorflow as tf\n'), ((9896, 9908), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (9906, 9908), True, 'import matplotlib.pyplot as plt\n'), ((9917, 9971), 'matplotlib.pyplot.imshow', 'plt.imshow', (['img[:, :, 0]'], {'cmap': '"""gray"""', 'vmin': '(-1)', 'vmax': '(1)'}), "(img[:, :, 0], cmap='gray', vmin=-1, vmax=1)\n", (9927, 9971), True, 'import matplotlib.pyplot as plt\n'), ((3244, 3277), 'tensorflow.train.BytesList', 'tf.train.BytesList', ([], {'value': '[value]'}), '(value=[value])\n', (3262, 3277), True, 'import tensorflow as tf\n'), ((3412, 3445), 'tensorflow.train.FloatList', 'tf.train.FloatList', ([], {'value': '[value]'}), '(value=[value])\n', (3430, 3445), True, 'import tensorflow as tf\n'), ((3578, 3611), 'tensorflow.train.Int64List', 'tf.train.Int64List', ([], {'value': '[value]'}), '(value=[value])\n', (3596, 3611), True, 'import tensorflow as tf\n'), ((5525, 5559), 'tensorflow.train.Features', 'tf.train.Features', ([], {'feature': 'feature'}), '(feature=feature)\n', (5542, 5559), True, 'import tensorflow as tf\n')]
|
from scipy import linalg
import numpy as np
def error_norm(theta_star, theta_hat, norm='frobenius', scaling=True, squared=True):
""" sklearn Graphical LASSO """
# compute the error
error = theta_star - theta_hat
# compute the error norm
if norm == "frobenius":
squared_norm = np.sum(error ** 2)
elif norm == "spectral":
squared_norm = np.amax(linalg.svdvals(np.dot(error.T, error)))
else:
raise NotImplementedError(
"Only spectral and frobenius norms are implemented")
# optionally scale the error norm
if scaling:
squared_norm = squared_norm / error.shape[0]
# finally get either the squared norm or the norm
if squared:
result = squared_norm
else:
result = np.sqrt(squared_norm)
return result
|
[
"numpy.dot",
"numpy.sum",
"numpy.sqrt"
] |
[((306, 324), 'numpy.sum', 'np.sum', (['(error ** 2)'], {}), '(error ** 2)\n', (312, 324), True, 'import numpy as np\n'), ((769, 790), 'numpy.sqrt', 'np.sqrt', (['squared_norm'], {}), '(squared_norm)\n', (776, 790), True, 'import numpy as np\n'), ((400, 422), 'numpy.dot', 'np.dot', (['error.T', 'error'], {}), '(error.T, error)\n', (406, 422), True, 'import numpy as np\n')]
|
"""
Script that trains Tensorflow multitask models on PCBA dataset.
"""
from __future__ import print_function
from __future__ import division
from __future__ import unicode_literals
import os
import numpy as np
import shutil
from pcba_datasets import load_pcba
from deepchem.utils.save import load_from_disk
from deepchem.data import Dataset
from deepchem import metrics
from deepchem.metrics import Metric
from deepchem.metrics import to_one_hot
from deepchem.utils.evaluate import Evaluator
from deepchem.models.tensorflow_models.fcnet import TensorflowMultiTaskClassifier
np.random.seed(123)
pcba_tasks, pcba_datasets, transformers = load_pcba()
(train_dataset, valid_dataset, test_dataset) = pcba_datasets
metric = Metric(metrics.roc_auc_score, np.mean, mode="classification")
n_features = train_dataset.get_data_shape()[0]
model_dir = None
model = TensorflowMultiTaskClassifier(
len(pcba_tasks),
n_features,
model_dir,
dropouts=[.25],
learning_rate=0.001,
weight_init_stddevs=[.1],
batch_size=64,
verbosity="high")
# Fit trained model
model.fit(train_dataset)
model.save()
train_evaluator = Evaluator(
model, train_dataset, transformers, verbosity=verbosity)
train_scores = train_evaluator.compute_model_performance([metric])
print("Train scores")
print(train_scores)
valid_evaluator = Evaluator(
model, valid_dataset, transformers, verbosity=verbosity)
valid_scores = valid_evaluator.compute_model_performance([metric])
print("Validation scores")
print(valid_scores)
|
[
"pcba_datasets.load_pcba",
"deepchem.utils.evaluate.Evaluator",
"numpy.random.seed",
"deepchem.metrics.Metric"
] |
[((577, 596), 'numpy.random.seed', 'np.random.seed', (['(123)'], {}), '(123)\n', (591, 596), True, 'import numpy as np\n'), ((640, 651), 'pcba_datasets.load_pcba', 'load_pcba', ([], {}), '()\n', (649, 651), False, 'from pcba_datasets import load_pcba\n'), ((723, 784), 'deepchem.metrics.Metric', 'Metric', (['metrics.roc_auc_score', 'np.mean'], {'mode': '"""classification"""'}), "(metrics.roc_auc_score, np.mean, mode='classification')\n", (729, 784), False, 'from deepchem.metrics import Metric\n'), ((1135, 1201), 'deepchem.utils.evaluate.Evaluator', 'Evaluator', (['model', 'train_dataset', 'transformers'], {'verbosity': 'verbosity'}), '(model, train_dataset, transformers, verbosity=verbosity)\n', (1144, 1201), False, 'from deepchem.utils.evaluate import Evaluator\n'), ((1336, 1402), 'deepchem.utils.evaluate.Evaluator', 'Evaluator', (['model', 'valid_dataset', 'transformers'], {'verbosity': 'verbosity'}), '(model, valid_dataset, transformers, verbosity=verbosity)\n', (1345, 1402), False, 'from deepchem.utils.evaluate import Evaluator\n')]
|
import numpy as np
import pandas as pd
def table_atm(h, parametr):
"""
Cтандартная атмосфера для высот h = -2000 м ... 80000 м (ГОСТ 4401-81)
arguments: h высота [м], parametr:
1 - температура [К];
2 - давление [Па];
3 - плотность [кг/м^3];
4 - местная скорость звука [м/с];
5 - динамическая вязкость [Па*с]
6 - кинематическая вязкость [м^2*с];
return: значение выбранного параметра на высоте h
"""
table = pd.read_csv('data_constants/table_atm.csv', names=['h', 'p', 'rho', 'T'], sep=',')
table_h = table['h']
table_p = table['p']
table_T = table['T']
table_rho = table['rho']
if parametr == 1:
return np.interp(h, table_h, table_T)
elif parametr == 2:
return np.interp(h, table_h, table_p)
elif parametr == 3:
return np.interp(h, table_h, table_rho)
elif parametr == 4:
p_h = np.interp(h, table_h, table_p)
rho_h = np.interp(h, table_h, table_rho)
k_x = 1.4
a_h = np.sqrt(k_x * p_h / rho_h)
return a_h
elif parametr == 5:
T_h = np.interp(h, table_h, table_T)
rho_h = np.interp(h, table_h, table_rho)
betta_s = 1.458*1e-6
S = 110.4
myu = betta_s * T_h**(3/2) / (T_h + S)
return myu
elif parametr == 6:
T_h = np.interp(h, table_h, table_T)
rho_h = np.interp(h, table_h, table_rho)
betta_s = 1.458*1e-6
S = 110.4
myu = betta_s * T_h**(3/2) / (T_h + S)
nyu = myu / rho_h
return nyu
else:
print("Ошибка: неверное значение при выборе параметра")
def Cx43(Mah):
"""
Ф-ция закона сопротивления 1943 года
arguments: число Маха
return: коэф-т лобового сопротивления Cx
"""
table = pd.read_csv('data_constants/table_cx43.csv', names=['mah', 'cx'], sep=',')
table_mah = table['mah']
table_cx = table['cx']
return np.interp(Mah, table_mah, table_cx)
|
[
"pandas.read_csv",
"numpy.interp",
"numpy.sqrt"
] |
[((611, 697), 'pandas.read_csv', 'pd.read_csv', (['"""data_constants/table_atm.csv"""'], {'names': "['h', 'p', 'rho', 'T']", 'sep': '""","""'}), "('data_constants/table_atm.csv', names=['h', 'p', 'rho', 'T'],\n sep=',')\n", (622, 697), True, 'import pandas as pd\n'), ((1934, 2008), 'pandas.read_csv', 'pd.read_csv', (['"""data_constants/table_cx43.csv"""'], {'names': "['mah', 'cx']", 'sep': '""","""'}), "('data_constants/table_cx43.csv', names=['mah', 'cx'], sep=',')\n", (1945, 2008), True, 'import pandas as pd\n'), ((2086, 2121), 'numpy.interp', 'np.interp', (['Mah', 'table_mah', 'table_cx'], {}), '(Mah, table_mah, table_cx)\n', (2095, 2121), True, 'import numpy as np\n'), ((837, 867), 'numpy.interp', 'np.interp', (['h', 'table_h', 'table_T'], {}), '(h, table_h, table_T)\n', (846, 867), True, 'import numpy as np\n'), ((907, 937), 'numpy.interp', 'np.interp', (['h', 'table_h', 'table_p'], {}), '(h, table_h, table_p)\n', (916, 937), True, 'import numpy as np\n'), ((977, 1009), 'numpy.interp', 'np.interp', (['h', 'table_h', 'table_rho'], {}), '(h, table_h, table_rho)\n', (986, 1009), True, 'import numpy as np\n'), ((1048, 1078), 'numpy.interp', 'np.interp', (['h', 'table_h', 'table_p'], {}), '(h, table_h, table_p)\n', (1057, 1078), True, 'import numpy as np\n'), ((1095, 1127), 'numpy.interp', 'np.interp', (['h', 'table_h', 'table_rho'], {}), '(h, table_h, table_rho)\n', (1104, 1127), True, 'import numpy as np\n'), ((1160, 1186), 'numpy.sqrt', 'np.sqrt', (['(k_x * p_h / rho_h)'], {}), '(k_x * p_h / rho_h)\n', (1167, 1186), True, 'import numpy as np\n'), ((1244, 1274), 'numpy.interp', 'np.interp', (['h', 'table_h', 'table_T'], {}), '(h, table_h, table_T)\n', (1253, 1274), True, 'import numpy as np\n'), ((1291, 1323), 'numpy.interp', 'np.interp', (['h', 'table_h', 'table_rho'], {}), '(h, table_h, table_rho)\n', (1300, 1323), True, 'import numpy as np\n'), ((1475, 1505), 'numpy.interp', 'np.interp', (['h', 'table_h', 'table_T'], {}), '(h, table_h, table_T)\n', (1484, 1505), True, 'import numpy as np\n'), ((1522, 1554), 'numpy.interp', 'np.interp', (['h', 'table_h', 'table_rho'], {}), '(h, table_h, table_rho)\n', (1531, 1554), True, 'import numpy as np\n')]
|
from tensorflow.keras import models
import numpy as np
# for using PIL, we have to add "Pillow" to requirements.txt
from PIL import Image
import io
from flask import jsonify, make_response
import json
import base64
import cv2 as cv
from google.cloud import storage
# Xception Fine Tuning モデルを読み込む( Global variable として定義)
def loadCustomModel():
# 'gs://kagawa-ai-lesson/model_4.hdf5'
storage_client = storage.Client()
bucket = storage_client.get_bucket('kagawa-ai-lesson')
#blob = bucket.blob('model_4.hdf5')
blob = bucket.blob('model_8.hdf5')
blob.download_to_filename('/tmp/tmp.hdf5')
return models.load_model('/tmp/tmp.hdf5')
# Xception Fine Tuning モデルを読み込む( Global variable として定義)
model = loadCustomModel()
# ポケモン画像を予測する( HTTP トリガーで呼び出されるメソッド)
def predictPokemon(request):
"""Responds to any HTTP request.
Args:
request (flask.Request): HTTP request object.
Returns:
The response text or any set of values that can be turned into a
Response object using
`make_response <http://flask.pocoo.org/docs/1.0/api/#flask.Flask.make_response>`.
"""
# Set CORS headers for the preflight request
if request.method == 'OPTIONS':
# Allows GET requests from any origin with the Content-Type
# header and caches preflight response for an 3600s
headers = {
'Access-Control-Allow-Origin': '*',
'Access-Control-Allow-Methods': 'GET',
'Access-Control-Allow-Headers': 'Content-Type',
'Access-Control-Max-Age': '3600'
}
return ('', 204, headers)
#if not request.files['captured']:
# data = dict(success=False, message='request.file["captured"] were not found.')
# return jsonify(data)
#img = request.files['captured'].read()
#img = Image.open(io.BytesIO(img))
#img = img.resize((196, 196))
#img.save('captured.jpg')
request_json = request.get_json()
captured = request_json['captured']
image_decoded = base64.b64decode(captured.split(',')[1]) # remove header
#image_obj = Image.open(io.BytesIO(image_decoded))
#image_array = np.asarray(image_obj)
#image_array = np.delete(image_array, 3, 2) # (196, 196, 4) -> (196, 196, 3)
temp_array = np.fromstring(image_decoded, np.uint8)
image_obj = cv.imdecode(temp_array, cv.IMREAD_COLOR)
image_array = np.array(image_obj).reshape(196, 196, 3)
image_array = image_array / 255.0
image_array = np.expand_dims(image_array, axis=0)
print('#### image_array shape')
print(image_array.shape)
pred = model.predict(image_array)
pokemon_names = [
"Abra",
"Aerodactyl",
"Alakazam",
"Arbok",
"Arcanine",
"Articuno",
"Beedrill",
"Bellsprout",
"Blastoise",
"Bulbasaur",
"Butterfree",
"Caterpie",
"Chansey",
"Charizard",
"Charmander",
"Charmeleon",
"Clefable",
"Clefairy",
"Cloyster",
"Cubone",
"Dewgong",
"Diglett",
"Ditto",
"Dodrio",
"Doduo",
"Dragonair",
"Dragonite",
"Dratini",
"Drowzee",
"Dugtrio",
"Eevee",
"Ekans",
"Electabuzz",
"Electrode",
"Exeggcute",
"Exeggutor",
"Farfetchd",
"Fearow",
"Flareon",
"Gastly",
"Gengar",
"Geodude",
"Gloom",
"Golbat",
"Goldeen",
"Golduck",
"Golem",
"Graveler",
"Grimer",
"Growlithe",
"Gyarados",
"Haunter",
"Hitmonchan",
"Hitmonlee",
"Horsea",
"Hypno",
"Ivysaur",
"Jigglypuff",
"Jolteon",
"Jynx",
"Kabuto",
"Kabutops",
"Kadabra",
"Kakuna",
"Kangaskhan",
"Kingler",
"Koffing",
"Krabby",
"Lapras",
"Lickitung",
"Machamp",
"Machoke",
"Machop",
"Magikarp",
"Magmar",
"Magnemite",
"Magneton",
"Mankey",
"Marowak",
"Meowth",
"Metapod",
"Mew",
"Mewtwo",
"Moltres",
"MrMime",
"Muk",
"Nidoking",
"Nidoqueen",
"Nidorina",
"Nidorino",
"Ninetales",
"Oddish",
"Omanyte",
"Omastar",
"Onix",
"Paras",
"Parasect",
"Persian",
"Pidgeot",
"Pidgeotto",
"Pidgey",
"Pikachu",
"Pinsir",
"Poliwag",
"Poliwhirl",
"Poliwrath",
"Ponyta",
"Porygon",
"Primeape",
"Psyduck",
"Raichu",
"Rapidash",
"Raticate",
"Rattata",
"Rhydon",
"Rhyhorn",
"Sandshrew",
"Sandslash",
"Scyther",
"Seadra",
"Seaking",
"Seel",
"Shellder",
"Slowbro",
"Slowpoke",
"Snorlax",
"Spearow",
"Squirtle",
"Starmie",
"Staryu",
"Tangela",
"Tauros",
"Tentacool",
"Tentacruel",
"Vaporeon",
"Venomoth",
"Venonat",
"Venusaur",
"Victreebel",
"Vileplume",
"Voltorb",
"Vulpix",
"Wartortle",
"Weedle",
"Weepinbell",
"Weezing",
"Wigglytuff",
"Zapdos",
"Zubat"
]
pokemon_names_jp = {
"Abra": "ケーシィ",
"Aerodactyl": "プテラ",
"Alakazam": "フーディン",
"Arbok": "アーボック",
"Arcanine": "ウインディ",
"Articuno": "フリーザー",
"Beedrill": "スピアー",
"Bellsprout": "マダツボミ",
"Blastoise": "カメックス",
"Bulbasaur": "フシギダネ",
"Butterfree": "バタフリー",
"Caterpie": "キャタピー",
"Chansey": "ラッキー",
"Charizard": "リザードン",
"Charmander": "ヒトカゲ",
"Charmeleon": "リザード",
"Clefable": "ピクシー",
"Clefairy": "ピッピ",
"Cloyster": "パルシェン",
"Cubone": "カラカラ",
"Dewgong": "ジュゴン",
"Diglett": "ディグダ",
"Ditto": "メタモン",
"Dodrio": "ドードリオ",
"Doduo": "ドードー",
"Dragonair": "ハクリュー",
"Dragonite": "カイリュー",
"Dratini": "ミニリュウ",
"Drowzee": "スリープ",
"Dugtrio": "ダグトリオ",
"Eevee": "イーブイ",
"Ekans": "アーボ",
"Electabuzz": "エレブー",
"Electrode": "マルマイン",
"Exeggcute": "タマタマ",
"Exeggutor": "ナッシー",
"Farfetchd": "カモネギ",
"Fearow": "オニドリル",
"Flareon": "ブースター",
"Gastly": "ゴース",
"Gengar": "ゲンガー",
"Geodude": "イシツブテ",
"Gloom": "クサイハナ",
"Golbat": "ゴルバット",
"Goldeen": "トサキント",
"Golduck": "ゴルダック",
"Golem": "ゴローニャ",
"Graveler": "ゴローン",
"Grimer": "ベトベター",
"Growlithe": "ガーディ",
"Gyarados": "ギャラドス",
"Haunter": "ゴースト",
"Hitmonchan": "エビワラー",
"Hitmonlee": "サワムラー",
"Horsea": "タッツー",
"Hypno": "スリーパー",
"Ivysaur": "フシギソウ",
"Jigglypuff": "プリン",
"Jolteon": "サンダース",
"Jynx": "ルージュラ",
"Kabuto": "カブト",
"Kabutops": "カブトプス",
"Kadabra": "ユンゲラー",
"Kakuna": "コクーン",
"Kangaskhan": "ガルーラ",
"Kingler": "キングラー",
"Koffing": "ドガース",
"Krabby": "クラブ",
"Lapras": "ラプラス",
"Lickitung": "ベロリンガ",
"Machamp": "カイリキー",
"Machoke": "ゴーリキー",
"Machop": "ワンリキー",
"Magikarp": "コイキング",
"Magmar": "ブーバー",
"Magnemite": "コイル",
"Magneton": "レアコイル",
"Mankey": "マンキー",
"Marowak": "ガラガラ",
"Meowth": "ニャース",
"Metapod": "トランセル",
"Mew": "ミュウ",
"Mewtwo": "ミュウツー",
"Moltres": "ファイヤー",
"MrMime": "バリヤード",
"Muk": "ベトベトン",
"Nidoking": "ニドキング",
"Nidoqueen": "ニドクイン",
"Nidorina": "ニドリーナ",
"Nidorino": "ニドリーノ",
"Ninetales": "キュウコン",
"Oddish": "ナゾノクサ",
"Omanyte": "オムナイト",
"Omastar": "オムスター",
"Onix": "イワーク",
"Paras": "パラス",
"Parasect": "パラセクト",
"Persian": "ペルシアン",
"Pidgeot": "ピジョット",
"Pidgeotto": "ピジョン",
"Pidgey": "ポッポ",
"Pikachu": "ピカチュウ",
"Pinsir": "カイロス",
"Poliwag": "ニョロモ",
"Poliwhirl": "ニョロゾ",
"Poliwrath": "ニョロボン",
"Ponyta": "ポニータ",
"Porygon": "ポリゴン",
"Primeape": "オコリザル",
"Psyduck": "コダック",
"Raichu": "ライチュウ",
"Rapidash": "ギャロップ",
"Raticate": "ラッタ",
"Rattata": "コラッタ",
"Rhydon": "サイドン",
"Rhyhorn": "サイホーン",
"Sandshrew": "サンド",
"Sandslash": "サンドパン",
"Scyther": "ストライク",
"Seadra": "シードラ",
"Seaking": "アズマオウ",
"Seel": "パウワウ",
"Shellder": "シェルダー",
"Slowbro": "ヤドラン",
"Slowpoke": "ヤドン",
"Snorlax": "カビゴン",
"Spearow": "オニスズメ",
"Squirtle": "ゼニガメ",
"Starmie": "スターミー",
"Staryu": "ヒトデマン",
"Tangela": "モンジャラ",
"Tauros": "ケンタロス",
"Tentacool": "メノクラゲ",
"Tentacruel": "ドククラゲ",
"Vaporeon": "シャワーズ",
"Venomoth": "モルフォン",
"Venonat": "コンパン",
"Venusaur": "フシギバナ",
"Victreebel": "ウツボット",
"Vileplume": "ラフレシア",
"Voltorb": "ビリリダマ",
"Vulpix": "ロコン",
"Wartortle": "カメール",
"Weedle": "ビードル",
"Weepinbell": "ウツドン",
"Weezing": "マタドガス",
"Wigglytuff": "プクリン",
"Zapdos": "サンダー",
"Zubat": "ズバット"
}
confidence = str(round(max(pred[0]), 3))
predicted_pokemon_name = pokemon_names[np.argmax(pred)]
# Translate pokemon name to japanese
predicted_pokemon_name_jp = pokemon_names_jp[predicted_pokemon_name]
data = dict(success=True, predicted=predicted_pokemon_name, predicted_jp=predicted_pokemon_name_jp, confidence=confidence)
## return jsonify(data)
#response = make_response(json.dumps(data, ensure_ascii=False))
#response.headers['Access-Control-Allow-Origin'] = 'https://kagawa-ai-lesson.firebaseapp.com, http://localhost:8080'
#response.headers['Access-Control-Allow-Methods'] = 'GET, POST, PUT, PATCH, DELETE, OPTIONS'
#response.headers['Access-Control-Allow-Headers'] = 'DNT,User-Agent,X-Requested-With,If-Modified-Since,Cache-Control,Content-Type,Range,Authorization'
#response.headers['Access-Control-Expose-Headers'] = 'Content-Length,Content-Range'
#return response
# Set CORS headers for the main request
headers = {
'Access-Control-Allow-Origin': '*',
'Content-Type': 'application/json'
}
return (json.dumps(data, ensure_ascii=False), 200, headers)
|
[
"tensorflow.keras.models.load_model",
"numpy.argmax",
"cv2.imdecode",
"numpy.expand_dims",
"json.dumps",
"google.cloud.storage.Client",
"numpy.array",
"numpy.fromstring"
] |
[((409, 425), 'google.cloud.storage.Client', 'storage.Client', ([], {}), '()\n', (423, 425), False, 'from google.cloud import storage\n'), ((622, 656), 'tensorflow.keras.models.load_model', 'models.load_model', (['"""/tmp/tmp.hdf5"""'], {}), "('/tmp/tmp.hdf5')\n", (639, 656), False, 'from tensorflow.keras import models\n'), ((2263, 2301), 'numpy.fromstring', 'np.fromstring', (['image_decoded', 'np.uint8'], {}), '(image_decoded, np.uint8)\n', (2276, 2301), True, 'import numpy as np\n'), ((2318, 2358), 'cv2.imdecode', 'cv.imdecode', (['temp_array', 'cv.IMREAD_COLOR'], {}), '(temp_array, cv.IMREAD_COLOR)\n', (2329, 2358), True, 'import cv2 as cv\n'), ((2475, 2510), 'numpy.expand_dims', 'np.expand_dims', (['image_array'], {'axis': '(0)'}), '(image_array, axis=0)\n', (2489, 2510), True, 'import numpy as np\n'), ((10361, 10376), 'numpy.argmax', 'np.argmax', (['pred'], {}), '(pred)\n', (10370, 10376), True, 'import numpy as np\n'), ((11365, 11401), 'json.dumps', 'json.dumps', (['data'], {'ensure_ascii': '(False)'}), '(data, ensure_ascii=False)\n', (11375, 11401), False, 'import json\n'), ((2377, 2396), 'numpy.array', 'np.array', (['image_obj'], {}), '(image_obj)\n', (2385, 2396), True, 'import numpy as np\n')]
|
import sys, os
sys.path.append(os.path.abspath(__file__).split('test')[0])
import pandas as pd
import numpy as np
from pyml.supervised.linear_regression.LinearRegression import LinearRegression
"""
------------------------------------------------------------------------------------------------------------------------
SIMPLE LINEAR REGRESSION
------------------------------------------------------------------------------------------------------------------------
"""
#-----------------------------------------------------------------------------------------------------------------------
#---------------------------------------------- OBTENCION DATOS --------------------------------------------------------
#-----------------------------------------------------------------------------------------------------------------------
data = pd.read_csv('../../../data/ex1data1.txt', sep=",", header=None) #Cargamos los datos
data.columns = ["population", "profit"]
print("\n--------------------------------------------")
print("--------------------------------------------")
print(" SIMPLE LINEAR REGRESSION ")
print("--------------------------------------------")
print("--------------------------------------------\n")
print(data.head()) #Imprimimos los datos
print(data.describe())
num_col = data.shape[0] #Numero de columnas: numero de ejemplos
num_filas = data.shape[1] #Numero de filas: numero de features
X = np.matrix([np.ones(num_col), data['population']]).T #Cada fila es un ejemplo, cada columna es un feature del ejemplo
y = np.matrix(data['profit']).T #Vector columna
#-----------------------------------------------------------------------------------------------------------------------
#---------------------------------------------------- TEST -------------------------------------------------------------
#-----------------------------------------------------------------------------------------------------------------------
norm_linear_regression = LinearRegression(X, y, axis=1)
norm_linear_regression.norm_equation()
print("\n--------------------------------------------")
print(" RESULTADOS ")
print("--------------------------------------------\n")
print("\nMinimizacion parámetros theta: ", norm_linear_regression.theta)
print("Dimension theta: ", norm_linear_regression.theta.shape)
print("Theta como array: ", np.ravel(norm_linear_regression.theta))
print("Prueba prediccion de: ", 6.1101, " con nuestro modelo de Linear Regression: ", norm_linear_regression.prediccion(np.matrix([1, 6.1101]).T))
norm_linear_regression.plot_regression("Plot sin division", "Poblacion", "Beneficio")
#-----------------------------------------------------------------------------------------------------------------------
#---------------------------------------------- DIVISION Y TEST --------------------------------------------------------
#-----------------------------------------------------------------------------------------------------------------------
norm_linear_regression = LinearRegression(X, y, axis=1, split=0.2)
norm_linear_regression.norm_equation()
norm_linear_regression.plot_regression("Training set", "Poblacion", "Beneficio")
norm_linear_regression.plot_regression_test("Test set", "Poblacion", "Beneficio")
"""
------------------------------------------------------------------------------------------------------------------------
EJEMPLO SALARIOS
------------------------------------------------------------------------------------------------------------------------
"""
#-----------------------------------------------------------------------------------------------------------------------
#---------------------------------------------- OBTENCION DATOS --------------------------------------------------------
#-----------------------------------------------------------------------------------------------------------------------
data_salarios = pd.read_csv("../../../data/Salary_Data.csv", sep=",")
print("\n--------------------------------------------")
print(" SALARIOS ")
print("--------------------------------------------\n")
print(data_salarios.head())
print(data_salarios.describe())
num_filas = data_salarios.values.shape[0]
num_col = data_salarios.values.shape[1]
X_salarios = np.matrix([np.ones(num_filas), np.ravel(data_salarios.iloc[:, :-1].values)]).T
y_salarios = np.matrix(data_salarios.iloc[:, -1].values).T
#-----------------------------------------------------------------------------------------------------------------------
#---------------------------------------------- DIVISION Y TEST --------------------------------------------------------
#-----------------------------------------------------------------------------------------------------------------------
norm_linear_regression = LinearRegression(X_salarios, y_salarios, axis=1, split=0.2)
norm_linear_regression.norm_equation()
norm_linear_regression.plot_regression("Training set", "Experiencia", "Salario")
norm_linear_regression.plot_regression_test("Test set", "Experiencia", "Salario")
"""
------------------------------------------------------------------------------------------------------------------------
MULTIPLE LINEAR REGRESSION
------------------------------------------------------------------------------------------------------------------------
"""
print("\n--------------------------------------------")
print("--------------------------------------------")
print(" MULTIPLE LINEAR REGRESSION ")
print("--------------------------------------------")
print("--------------------------------------------\n")
#-----------------------------------------------------------------------------------------------------------------------
#---------------------------------------------- OBTENCION DATOS --------------------------------------------------------
#-----------------------------------------------------------------------------------------------------------------------
data = pd.read_csv('../../../data/ex1data2.txt', sep=",", header=None) #Cargamos los datos
data.columns = ["size", "n_bedrooms", "price"]
print(data.head()) #Imprimimos los datos
print(data.describe())
num_col = data.shape[0] #Numero de columnas: numero de ejemplos
num_filas = data.shape[1] #Numero de filas: numero de features
X = np.matrix([np.ones(num_col), data['size'], data['n_bedrooms']]).T #Cada fila es un ejemplo, cada columna es un feature del ejemplo
y = np.matrix(data['price']).T #Vector columna
#-----------------------------------------------------------------------------------------------------------------------
#---------------------------------------------------- TEST -------------------------------------------------------------
#-----------------------------------------------------------------------------------------------------------------------
print("\n--------------------------------------------")
print(" RESULTADOS CON FEATURE NORMALIZATION ")
print("--------------------------------------------\n")
norm_linear_regression = LinearRegression(X, y, axis=1)
norm_linear_regression.aplicar_feature_normalization(include_y=True)
norm_linear_regression.norm_equation()
print("\nMinimizacion parámetros theta: ", norm_linear_regression.theta)
print("Dimension theta: ", norm_linear_regression.theta.shape)
print("Theta como array: ", np.ravel(norm_linear_regression.theta))
print("Prueba prediccion de: ", 2104, " size y ", 3, " numero de camas, con nuestro modelo de Linear Regression: "
, norm_linear_regression.prediccion(np.matrix([np.ones(1), np.matrix([2104]), np.matrix([3])])), ", valor real: ", y[0])
print("\n--------------------------------------------")
print(" RESULTADOS SIN FEATURE NORMALIZATION ")
print("--------------------------------------------\n")
norm_linear_regression = LinearRegression(X, y, axis=1)
norm_linear_regression.norm_equation()
print("\nMinimizacion parámetros theta: ", norm_linear_regression.theta)
print("Dimension theta: ", norm_linear_regression.theta.shape)
print("Theta como array: ", np.ravel(norm_linear_regression.theta))
print("Prueba prediccion de: ", 2104, " size y ", 3, " numero de camas, con nuestro modelo de Linear Regression: "
, norm_linear_regression.prediccion(np.matrix([np.ones(1), np.matrix([2104]), np.matrix([3])])), ", valor real: ", y[0])
"""
------------------------------------------------------------------------------------------------------------------------
EJEMPLO REAL STATE
------------------------------------------------------------------------------------------------------------------------
"""
#-----------------------------------------------------------------------------------------------------------------------
#---------------------------------------------- OBTENCION DATOS --------------------------------------------------------
#-----------------------------------------------------------------------------------------------------------------------
data = pd.read_csv("../../../data/50_Startups.csv", sep=",")
print("\n--------------------------------------------")
print(" REAL STATE ")
print("--------------------------------------------\n")
print(data.head())
print(data.describe())
data_encoded = pd.get_dummies(data)
num_filas = data_encoded.values.shape[0]
num_col = data_encoded.values.shape[1]
X = np.matrix([np.ones(num_filas)])
X = np.concatenate((X, data_encoded.loc[:, data_encoded.columns != 'Profit'].values.T)).T
y = np.matrix(data_encoded['Profit'].values).T
#-----------------------------------------------------------------------------------------------------------------------
#---------------------------------------------------- TEST -------------------------------------------------------------
#-----------------------------------------------------------------------------------------------------------------------
print("\n--------------------------------------------")
print(" RESULTADOS SIN FEATURE NORMALIZATION ")
print("--------------------------------------------\n")
norm_linear_regression = LinearRegression(X, y, axis=1)
norm_linear_regression.norm_equation()
print("\nMinimizacion parámetros theta: ", norm_linear_regression.theta)
print("Dimension theta: ", norm_linear_regression.theta.shape)
print("Theta como array: ", np.ravel(norm_linear_regression.theta))
print("Prueba prediccion: ", norm_linear_regression.prediccion(X[0, :].T), ", valor real: ", y[0])
|
[
"numpy.matrix",
"os.path.abspath",
"numpy.concatenate",
"numpy.ravel",
"pandas.read_csv",
"pandas.get_dummies",
"numpy.ones",
"pyml.supervised.linear_regression.LinearRegression.LinearRegression"
] |
[((894, 957), 'pandas.read_csv', 'pd.read_csv', (['"""../../../data/ex1data1.txt"""'], {'sep': '""","""', 'header': 'None'}), "('../../../data/ex1data1.txt', sep=',', header=None)\n", (905, 957), True, 'import pandas as pd\n'), ((2303, 2333), 'pyml.supervised.linear_regression.LinearRegression.LinearRegression', 'LinearRegression', (['X', 'y'], {'axis': '(1)'}), '(X, y, axis=1)\n', (2319, 2333), False, 'from pyml.supervised.linear_regression.LinearRegression import LinearRegression\n'), ((3370, 3411), 'pyml.supervised.linear_regression.LinearRegression.LinearRegression', 'LinearRegression', (['X', 'y'], {'axis': '(1)', 'split': '(0.2)'}), '(X, y, axis=1, split=0.2)\n', (3386, 3411), False, 'from pyml.supervised.linear_regression.LinearRegression import LinearRegression\n'), ((4317, 4370), 'pandas.read_csv', 'pd.read_csv', (['"""../../../data/Salary_Data.csv"""'], {'sep': '""","""'}), "('../../../data/Salary_Data.csv', sep=',')\n", (4328, 4370), True, 'import pandas as pd\n'), ((5215, 5274), 'pyml.supervised.linear_regression.LinearRegression.LinearRegression', 'LinearRegression', (['X_salarios', 'y_salarios'], {'axis': '(1)', 'split': '(0.2)'}), '(X_salarios, y_salarios, axis=1, split=0.2)\n', (5231, 5274), False, 'from pyml.supervised.linear_regression.LinearRegression import LinearRegression\n'), ((6465, 6528), 'pandas.read_csv', 'pd.read_csv', (['"""../../../data/ex1data2.txt"""'], {'sep': '""","""', 'header': 'None'}), "('../../../data/ex1data2.txt', sep=',', header=None)\n", (6476, 6528), True, 'import pandas as pd\n'), ((7776, 7806), 'pyml.supervised.linear_regression.LinearRegression.LinearRegression', 'LinearRegression', (['X', 'y'], {'axis': '(1)'}), '(X, y, axis=1)\n', (7792, 7806), False, 'from pyml.supervised.linear_regression.LinearRegression import LinearRegression\n'), ((8562, 8592), 'pyml.supervised.linear_regression.LinearRegression.LinearRegression', 'LinearRegression', (['X', 'y'], {'axis': '(1)'}), '(X, y, axis=1)\n', (8578, 8592), False, 'from pyml.supervised.linear_regression.LinearRegression import LinearRegression\n'), ((9775, 9828), 'pandas.read_csv', 'pd.read_csv', (['"""../../../data/50_Startups.csv"""'], {'sep': '""","""'}), "('../../../data/50_Startups.csv', sep=',')\n", (9786, 9828), True, 'import pandas as pd\n'), ((10044, 10064), 'pandas.get_dummies', 'pd.get_dummies', (['data'], {}), '(data)\n', (10058, 10064), True, 'import pandas as pd\n'), ((10884, 10914), 'pyml.supervised.linear_regression.LinearRegression.LinearRegression', 'LinearRegression', (['X', 'y'], {'axis': '(1)'}), '(X, y, axis=1)\n', (10900, 10914), False, 'from pyml.supervised.linear_regression.LinearRegression import LinearRegression\n'), ((1819, 1844), 'numpy.matrix', 'np.matrix', (["data['profit']"], {}), "(data['profit'])\n", (1828, 1844), True, 'import numpy as np\n'), ((2704, 2742), 'numpy.ravel', 'np.ravel', (['norm_linear_regression.theta'], {}), '(norm_linear_regression.theta)\n', (2712, 2742), True, 'import numpy as np\n'), ((4777, 4820), 'numpy.matrix', 'np.matrix', (['data_salarios.iloc[:, -1].values'], {}), '(data_salarios.iloc[:, -1].values)\n', (4786, 4820), True, 'import numpy as np\n'), ((7119, 7143), 'numpy.matrix', 'np.matrix', (["data['price']"], {}), "(data['price'])\n", (7128, 7143), True, 'import numpy as np\n'), ((8080, 8118), 'numpy.ravel', 'np.ravel', (['norm_linear_regression.theta'], {}), '(norm_linear_regression.theta)\n', (8088, 8118), True, 'import numpy as np\n'), ((8798, 8836), 'numpy.ravel', 'np.ravel', (['norm_linear_regression.theta'], {}), '(norm_linear_regression.theta)\n', (8806, 8836), True, 'import numpy as np\n'), ((10186, 10274), 'numpy.concatenate', 'np.concatenate', (["(X, data_encoded.loc[:, data_encoded.columns != 'Profit'].values.T)"], {}), "((X, data_encoded.loc[:, data_encoded.columns != 'Profit'].\n values.T))\n", (10200, 10274), True, 'import numpy as np\n'), ((10276, 10316), 'numpy.matrix', 'np.matrix', (["data_encoded['Profit'].values"], {}), "(data_encoded['Profit'].values)\n", (10285, 10316), True, 'import numpy as np\n'), ((11120, 11158), 'numpy.ravel', 'np.ravel', (['norm_linear_regression.theta'], {}), '(norm_linear_regression.theta)\n', (11128, 11158), True, 'import numpy as np\n'), ((10161, 10179), 'numpy.ones', 'np.ones', (['num_filas'], {}), '(num_filas)\n', (10168, 10179), True, 'import numpy as np\n'), ((1685, 1701), 'numpy.ones', 'np.ones', (['num_col'], {}), '(num_col)\n', (1692, 1701), True, 'import numpy as np\n'), ((2864, 2886), 'numpy.matrix', 'np.matrix', (['[1, 6.1101]'], {}), '([1, 6.1101])\n', (2873, 2886), True, 'import numpy as np\n'), ((4696, 4714), 'numpy.ones', 'np.ones', (['num_filas'], {}), '(num_filas)\n', (4703, 4714), True, 'import numpy as np\n'), ((4716, 4759), 'numpy.ravel', 'np.ravel', (['data_salarios.iloc[:, :-1].values'], {}), '(data_salarios.iloc[:, :-1].values)\n', (4724, 4759), True, 'import numpy as np\n'), ((6985, 7001), 'numpy.ones', 'np.ones', (['num_col'], {}), '(num_col)\n', (6992, 7001), True, 'import numpy as np\n'), ((31, 56), 'os.path.abspath', 'os.path.abspath', (['__file__'], {}), '(__file__)\n', (46, 56), False, 'import sys, os\n'), ((8288, 8298), 'numpy.ones', 'np.ones', (['(1)'], {}), '(1)\n', (8295, 8298), True, 'import numpy as np\n'), ((8300, 8317), 'numpy.matrix', 'np.matrix', (['[2104]'], {}), '([2104])\n', (8309, 8317), True, 'import numpy as np\n'), ((8319, 8333), 'numpy.matrix', 'np.matrix', (['[3]'], {}), '([3])\n', (8328, 8333), True, 'import numpy as np\n'), ((9006, 9016), 'numpy.ones', 'np.ones', (['(1)'], {}), '(1)\n', (9013, 9016), True, 'import numpy as np\n'), ((9018, 9035), 'numpy.matrix', 'np.matrix', (['[2104]'], {}), '([2104])\n', (9027, 9035), True, 'import numpy as np\n'), ((9037, 9051), 'numpy.matrix', 'np.matrix', (['[3]'], {}), '([3])\n', (9046, 9051), True, 'import numpy as np\n')]
|
import unittest
import sys
sys.path.append('..')
from scipy.stats import hypergeom, fisher_exact
import numpy as np
from server.from_uniprot_get_go import create_all_go_map
from server.go_processing import process_ontology
from server.add_go_from_higherup import enrich_cnag_map
from server.cnag_list_to_go import find_enriched_groups
class BaseTestCase(unittest.TestCase):
def test_create_all_go_map(self):
'''Creates a dictionary of all GOs from the Uniprot file as keys
and a dictionary of all CNAG IDs as keys'''
GO_map, CNAG_map = create_all_go_map("test/test_uniprot.txt", "test/uniprot_output.txt")
test_go_map = {'GO:0005886': {'CNAG_07636'},
'GO:0008047': {'CNAG_07636'},
'GO:0005774': {'CNAG_00025'},
'GO:0015369': {'CNAG_00025'}}
test_cnag_map = {'CNAG_07636': {'GO:0008047', 'GO:0005886'},
'CNAG_00025': {'GO:0005774', 'GO:0015369'}}
self.assertEqual(GO_map, test_go_map)
self.assertEqual(CNAG_map, test_cnag_map)
def test_create_all_go_map_one_go(self):
'''Creates a dictionary of all GOs from the Uniprot file as keys
and a dictionary of all CNAG IDs as keys'''
GO_map, CNAG_map = create_all_go_map("test/test_go_uniprot.txt", "test/uniprot_output.txt")
test_go_map = {'GO:0000001': {'CNAG_07636'},
'GO:0006594': {'CNAG_00025'},
'GO:0006871': {'CNAG_07724'},
'GO:0048308': {'CNAG_05655'},
'GO:0048311': {'CNAG_05449'},
'GO:0000002': {'CNAG_00156'},
'GO:0007005': {'CNAG_07701'}}
test_cnag_map = {'CNAG_07636': {'GO:0000001'},
'CNAG_00025': {'GO:0006594'},
'CNAG_07724': {'GO:0006871'},
'CNAG_05655': {'GO:0048308'},
'CNAG_05449': {'GO:0048311'},
'CNAG_00156': {'GO:0000002'},
'CNAG_07701': {'GO:0007005'}}
self.assertEqual(GO_map, test_go_map)
self.assertEqual(CNAG_map, test_cnag_map)
def test_process_onthology(self):
'''Processes go-basic.obo file to extract higher GO terms'''
GO_association = process_ontology("test/test_go.txt", "test/test_go_association.txt")
test = {'GO:0000001': {'GO:0048311', 'GO:0048308'},
'GO:0006594': {'GO:0048311', 'GO:0048308'},
'GO:0006871': {'GO:0048311', 'GO:0048308'},
'GO:0000002': {'GO:0007005'}}
self.assertEqual(GO_association, test)
def test_enrich_cnag_map(self):
'''Creates a dictionary and a file with CNAG IDs as keys and GO terms
as values; includes higher GO categories. Returns CNAG_map['CNAG_XXXXX'] = (GO1, GO2...)'''
go_basic = "test/test_go.txt"
uniprot_proteome = "test/test_go_uniprot.txt"
CNAG_to_func = "test/test_cnag_to_func.txt"
CNAG_to_GO = "test/test_cnag_to_go.txt"
GO_to_CNAG = "test/test_go_to_cnag.txt"
go_association = "test/test_go_association.txt"
GO_map, CNAG_map = enrich_cnag_map(go_basic, uniprot_proteome, CNAG_to_func, CNAG_to_GO, GO_to_CNAG, go_association)
test_cnag_map = {'CNAG_07636': {'GO:0048308', 'GO:0000001', 'GO:0048311'},
'CNAG_00025': {'GO:0048308', 'GO:0048311', 'GO:0006594'},
'CNAG_07724': {'GO:0006871', 'GO:0048308', 'GO:0048311'},
'CNAG_05655': {'GO:0048308'},
'CNAG_05449': {'GO:0048311'},
'CNAG_00156': {'GO:0000002', 'GO:0007005'},
'CNAG_07701': {'GO:0007005'}}
test_go_map = {'GO:0048311': {'CNAG_05449', 'CNAG_07724', 'CNAG_07636', 'CNAG_00025'},
'GO:0000001': {'CNAG_07636'},
'GO:0048308': {'CNAG_07724', 'CNAG_07636', 'CNAG_05655', 'CNAG_00025'},
'GO:0006594': {'CNAG_00025'},
'GO:0006871': {'CNAG_07724'}, 'GO:0000002': {'CNAG_00156'},
'GO:0007005': {'CNAG_07701', 'CNAG_00156'}}
self.assertEqual(test_cnag_map, CNAG_map)
self.assertEqual(test_go_map, GO_map)
def test_find_enriched_groups(self):
sample_test = 8
sample_control = 2
number_of_test_annotations = 1
number_of_control_annotations = 5
_, p = fisher_exact(np.array([[sample_test, sample_control],[number_of_test_annotations,
number_of_control_annotations]]))
self.assertEqual(round(p, 4), 0.035) # https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.fisher_exact.html#scipy.stats.fisher_exact
if __name__ == "__main__":
unittest.main()
|
[
"sys.path.append",
"unittest.main",
"server.go_processing.process_ontology",
"numpy.array",
"server.add_go_from_higherup.enrich_cnag_map",
"server.from_uniprot_get_go.create_all_go_map"
] |
[((28, 49), 'sys.path.append', 'sys.path.append', (['""".."""'], {}), "('..')\n", (43, 49), False, 'import sys\n'), ((4986, 5001), 'unittest.main', 'unittest.main', ([], {}), '()\n', (4999, 5001), False, 'import unittest\n'), ((576, 645), 'server.from_uniprot_get_go.create_all_go_map', 'create_all_go_map', (['"""test/test_uniprot.txt"""', '"""test/uniprot_output.txt"""'], {}), "('test/test_uniprot.txt', 'test/uniprot_output.txt')\n", (593, 645), False, 'from server.from_uniprot_get_go import create_all_go_map\n'), ((1286, 1358), 'server.from_uniprot_get_go.create_all_go_map', 'create_all_go_map', (['"""test/test_go_uniprot.txt"""', '"""test/uniprot_output.txt"""'], {}), "('test/test_go_uniprot.txt', 'test/uniprot_output.txt')\n", (1303, 1358), False, 'from server.from_uniprot_get_go import create_all_go_map\n'), ((2335, 2403), 'server.go_processing.process_ontology', 'process_ontology', (['"""test/test_go.txt"""', '"""test/test_go_association.txt"""'], {}), "('test/test_go.txt', 'test/test_go_association.txt')\n", (2351, 2403), False, 'from server.go_processing import process_ontology\n'), ((3218, 3319), 'server.add_go_from_higherup.enrich_cnag_map', 'enrich_cnag_map', (['go_basic', 'uniprot_proteome', 'CNAG_to_func', 'CNAG_to_GO', 'GO_to_CNAG', 'go_association'], {}), '(go_basic, uniprot_proteome, CNAG_to_func, CNAG_to_GO,\n GO_to_CNAG, go_association)\n', (3233, 3319), False, 'from server.add_go_from_higherup import enrich_cnag_map\n'), ((4647, 4753), 'numpy.array', 'np.array', (['[[sample_test, sample_control], [number_of_test_annotations,\n number_of_control_annotations]]'], {}), '([[sample_test, sample_control], [number_of_test_annotations,\n number_of_control_annotations]])\n', (4655, 4753), True, 'import numpy as np\n')]
|
"""
Test the CONMIN optimizer component
"""
import unittest
import numpy
# pylint: disable=F0401,E0611
from openmdao.main.api import Assembly, Component, VariableTree, set_as_top, Driver
from openmdao.main.datatypes.api import Float, Array, Str, VarTree
from openmdao.lib.casehandlers.api import ListCaseRecorder
from openmdao.main.interfaces import IHasParameters, implements
from openmdao.main.hasparameters import HasParameters
from openmdao.util.decorators import add_delegate
from openmdao.lib.drivers.conmindriver import CONMINdriver
from openmdao.util.testutil import assert_rel_error
class OptRosenSuzukiComponent(Component):
""" From the CONMIN User's Manual:
EXAMPLE 1 - CONSTRAINED ROSEN-SUZUKI FUNCTION. NO GRADIENT INFORMATION.
MINIMIZE OBJ = X(1)**2 - 5*X(1) + X(2)**2 - 5*X(2) +
2*X(3)**2 - 21*X(3) + X(4)**2 + 7*X(4) + 50
Subject to:
G(1) = X(1)**2 + X(1) + X(2)**2 - X(2) +
X(3)**2 + X(3) + X(4)**2 - X(4) - 8 .LE.0
G(2) = X(1)**2 - X(1) + 2*X(2)**2 + X(3)**2 +
2*X(4)**2 - X(4) - 10 .LE.0
G(3) = 2*X(1)**2 + 2*X(1) + X(2)**2 - X(2) +
X(3)**2 - X(4) - 5 .LE.0
This problem is solved beginning with an initial X-vector of
X = (1.0, 1.0, 1.0, 1.0)
The optimum design is known to be
OBJ = 6.000
and the corresponding X-vector is
X = (0.0, 1.0, 2.0, -1.0)
"""
x = Array(iotype='in', low=-10, high=99)
g = Array([1., 1., 1.], iotype='out')
result = Float(iotype='out')
obj_string = Str(iotype='out')
opt_objective = Float(iotype='out')
# pylint: disable=C0103
def __init__(self):
super(OptRosenSuzukiComponent, self).__init__()
self.x = numpy.array([1., 1., 1., 1.], dtype=float)
self.result = 0.
self.opt_objective = 6.*10.0
self.opt_design_vars = [0., 1., 2., -1.]
def execute(self):
"""calculate the new objective value"""
x = self.x
self.result = (x[0]**2 - 5.*x[0] + x[1]**2 - 5.*x[1] +
2.*x[2]**2 - 21.*x[2] + x[3]**2 + 7.*x[3] + 50)
self.obj_string = "Bad"
#print "rosen", self.x
self.g[0] = (x[0]**2 + x[0] + x[1]**2 - x[1] +
x[2]**2 + x[2] + x[3]**2 - x[3] - 8)
self.g[1] = (x[0]**2 - x[0] + 2*x[1]**2 + x[2]**2 +
2*x[3]**2 - x[3] - 10)
self.g[2] = (2*x[0]**2 + 2*x[0] + x[1]**2 - x[1] +
x[2]**2 - x[3] - 5)
#print self.x, self.g
class RosenSuzuki2D(Component):
""" RosenSuzuki with 2D input. """
x = Array(iotype='in', low=-10, high=99)
result = Float(iotype='out')
opt_objective = Float(iotype='out')
# pylint: disable=C0103
def __init__(self):
super(RosenSuzuki2D, self).__init__()
self.x = numpy.array([[1., 1.], [1., 1.]], dtype=float)
self.result = 0.
self.opt_objective = 6.*10.0
self.opt_design_vars = [0., 1., 2., -1.]
def execute(self):
"""calculate the new objective value"""
self.result = (self.x[0][0]**2 - 5.*self.x[0][0] +
self.x[0][1]**2 - 5.*self.x[0][1] +
2.*self.x[1][0]**2 - 21.*self.x[1][0] +
self.x[1][1]**2 + 7.*self.x[1][1] + 50)
class RosenSuzukiMixed(Component):
""" RosenSuzuki with mixed scalar and 1D inputs. """
x0 = Float(iotype='in', low=-10, high=99)
x12 = Array(iotype='in', low=-10, high=99)
x3 = Float(iotype='in', low=-10, high=99)
result = Float(iotype='out')
opt_objective = Float(iotype='out')
# pylint: disable=C0103
def __init__(self):
super(RosenSuzukiMixed, self).__init__()
self.x0 = 1.
self.x12 = numpy.array([1., 1.], dtype=float)
self.x3 = 1.
self.result = 0.
self.opt_objective = 6.*10.0
self.opt_design_vars = [0., 1., 2., -1.]
def execute(self):
"""calculate the new objective value"""
self.result = (self.x0**2 - 5.*self.x0 +
self.x12[0]**2 - 5.*self.x12[0] +
2.*self.x12[1]**2 - 21.*self.x12[1] +
self.x3**2 + 7.*self.x3 + 50)
class CONMINdriverTestCase(unittest.TestCase):
"""test CONMIN optimizer component"""
def setUp(self):
self.top = set_as_top(Assembly())
self.top.add('driver', CONMINdriver())
self.top.add('comp', OptRosenSuzukiComponent())
self.top.driver.workflow.add('comp')
self.top.driver.iprint = 0
self.top.driver.itmax = 30
def test_opt1(self):
# Run with scalar parameters, scalar constraints, and OpenMDAO gradient.
self.top.driver.add_objective('10*comp.result')
# pylint: disable=C0301
map(self.top.driver.add_parameter,
['comp.x[0]', 'comp.x[1]', 'comp.x[2]', 'comp.x[3]'])
map(self.top.driver.add_constraint, [
'comp.x[0]**2+comp.x[0]+comp.x[1]**2-comp.x[1]+comp.x[2]**2+comp.x[2]+comp.x[3]**2-comp.x[3] < 8',
'comp.x[0]**2-comp.x[0]+2*comp.x[1]**2+comp.x[2]**2+2*comp.x[3]**2-comp.x[3] < 10',
'2*comp.x[0]**2+2*comp.x[0]+comp.x[1]**2-comp.x[1]+comp.x[2]**2-comp.x[3] < 5'])
self.top.recorders = [ListCaseRecorder()]
self.top.driver.iprint = 0
self.top.run()
# pylint: disable=E1101
assert_rel_error(self, self.top.comp.opt_objective,
self.top.driver.eval_objective(), 0.01)
assert_rel_error(self, 1 + self.top.comp.opt_design_vars[0],
1 + self.top.comp.x[0], 0.05)
assert_rel_error(self, self.top.comp.opt_design_vars[1],
self.top.comp.x[1], 0.06)
assert_rel_error(self, self.top.comp.opt_design_vars[2],
self.top.comp.x[2], 0.06)
assert_rel_error(self, self.top.comp.opt_design_vars[3],
self.top.comp.x[3], 0.05)
cases = self.top.recorders[0].get_iterator()
end_case = cases[-1]
self.assertEqual(self.top.comp.x[1],
end_case.get_input('comp.x[1]'))
self.assertEqual(10*self.top.comp.result,
end_case.get_output('_pseudo_0.out0'))
def test_opt1_a(self):
# Run with scalar parameters, 1D constraint, and OpenMDAO gradient.
self.top.driver.add_objective('10*comp.result')
# pylint: disable=C0301
map(self.top.driver.add_parameter,
['comp.x[0]', 'comp.x[1]', 'comp.x[2]', 'comp.x[3]'])
self.top.driver.add_constraint('comp.g <= 0')
self.top.driver.iprint = 0
self.top.run()
# pylint: disable=E1101
assert_rel_error(self, self.top.comp.opt_objective,
self.top.driver.eval_objective(), 0.01)
assert_rel_error(self, 1 + self.top.comp.opt_design_vars[0],
1 + self.top.comp.x[0], 0.06)
assert_rel_error(self, self.top.comp.opt_design_vars[1],
self.top.comp.x[1], 0.06)
assert_rel_error(self, self.top.comp.opt_design_vars[2],
self.top.comp.x[2], 0.06)
assert_rel_error(self, self.top.comp.opt_design_vars[3],
self.top.comp.x[3], 0.05)
def test_opt1_with_CONMIN_gradient(self):
# Note: all other tests use OpenMDAO gradient
self.top.driver.add_objective('10*comp.result')
self.top.driver.add_parameter('comp.x[0]', fd_step=.00001)
self.top.driver.add_parameter('comp.x[1]', fd_step=.00001)
self.top.driver.add_parameter('comp.x[2]', fd_step=.00001)
self.top.driver.add_parameter('comp.x[3]', fd_step=.00001)
# pylint: disable=C0301
map(self.top.driver.add_constraint, [
'comp.x[0]**2+comp.x[0]+comp.x[1]**2-comp.x[1]+comp.x[2]**2+comp.x[2]+comp.x[3]**2-comp.x[3] < 8',
'comp.x[0]**2-comp.x[0]+2*comp.x[1]**2+comp.x[2]**2+2*comp.x[3]**2-comp.x[3] < 10',
'2*comp.x[0]**2+2*comp.x[0]+comp.x[1]**2-comp.x[1]+comp.x[2]**2-comp.x[3] < 5'])
self.top.driver.conmin_diff = True
self.top.run()
# pylint: disable=E1101
assert_rel_error(self, self.top.comp.opt_objective,
self.top.driver.eval_objective(), 0.01)
assert_rel_error(self, 1 + self.top.comp.opt_design_vars[0],
1 + self.top.comp.x[0], 0.06)
assert_rel_error(self, self.top.comp.opt_design_vars[1],
self.top.comp.x[1], 0.06)
assert_rel_error(self, self.top.comp.opt_design_vars[2],
self.top.comp.x[2], 0.06)
assert_rel_error(self, self.top.comp.opt_design_vars[3],
self.top.comp.x[3], 0.05)
def test_opt1_with_CONMIN_gradient_a(self):
# Scalar parameters, array constraint, CONMIN gradient.
# Note: all other tests use OpenMDAO gradient
self.top.driver.add_objective('10*comp.result')
self.top.driver.add_parameter('comp.x[0]', fd_step=.00001)
self.top.driver.add_parameter('comp.x[1]', fd_step=.00001)
self.top.driver.add_parameter('comp.x[2]', fd_step=.00001)
self.top.driver.add_parameter('comp.x[3]', fd_step=.00001)
self.top.driver.add_constraint('comp.g <= 0')
self.top.driver.conmin_diff = True
self.top.run()
# pylint: disable=E1101
assert_rel_error(self, self.top.comp.opt_objective,
self.top.driver.eval_objective(), 0.01)
assert_rel_error(self, 1 + self.top.comp.opt_design_vars[0],
1 + self.top.comp.x[0], 0.05)
assert_rel_error(self, self.top.comp.opt_design_vars[1],
self.top.comp.x[1], 0.06)
assert_rel_error(self, self.top.comp.opt_design_vars[2],
self.top.comp.x[2], 0.06)
assert_rel_error(self, self.top.comp.opt_design_vars[3],
self.top.comp.x[3], 0.05)
def test_opt1_flippedconstraints(self):
self.top.driver.add_objective('10*comp.result')
map(self.top.driver.add_parameter,
['comp.x[0]', 'comp.x[1]', 'comp.x[2]', 'comp.x[3]'])
# pylint: disable=C0301
map(self.top.driver.add_constraint, [
'8 > comp.x[0]**2+comp.x[0]+comp.x[1]**2-comp.x[1]+comp.x[2]**2+comp.x[2]+comp.x[3]**2-comp.x[3]',
'10 > comp.x[0]**2-comp.x[0]+2*comp.x[1]**2+comp.x[2]**2+2*comp.x[3]**2-comp.x[3]',
'5 > 2*comp.x[0]**2+2*comp.x[0]+comp.x[1]**2-comp.x[1]+comp.x[2]**2-comp.x[3]'])
self.top.run()
# pylint: disable=E1101
assert_rel_error(self, self.top.comp.opt_objective,
self.top.driver.eval_objective(), 0.01)
assert_rel_error(self, 1 + self.top.comp.opt_design_vars[0],
1 + self.top.comp.x[0], 0.05)
assert_rel_error(self, self.top.comp.opt_design_vars[1],
self.top.comp.x[1], 0.06)
assert_rel_error(self, self.top.comp.opt_design_vars[2],
self.top.comp.x[2], 0.06)
assert_rel_error(self, self.top.comp.opt_design_vars[3],
self.top.comp.x[3], 0.05)
def test_gradient_step_size_large(self):
# Test that a larger value of fd step-size is less acurate
self.top.driver.add_objective('10*comp.result')
map(self.top.driver.add_parameter, ['comp.x[0]', 'comp.x[1]',
'comp.x[2]', 'comp.x[3]'])
# pylint: disable=C0301
map(self.top.driver.add_constraint, [
'comp.x[0]**2+comp.x[0]+comp.x[1]**2-comp.x[1]+comp.x[2]**2+comp.x[2]+comp.x[3]**2-comp.x[3] < 8.',
'comp.x[0]**2-comp.x[0]+2*comp.x[1]**2+comp.x[2]**2+2*comp.x[3]**2-comp.x[3] < 10.',
'2*comp.x[0]**2+2*comp.x[0]+comp.x[1]**2-comp.x[1]+comp.x[2]**2-comp.x[3] < 5.'])
self.top.driver.conmin_diff = True
self.top.driver.fdch = 1.0e-6
self.top.driver.fdchm = 1.0e-6
self.top.run()
baseerror = abs(self.top.comp.opt_objective - self.top.driver.eval_objective())
self.top.driver.fdch = .3
self.top.driver.fdchm = .3
self.top.comp.x = numpy.array([1., 1., 1., 1.], dtype=float)
self.top.run()
newerror = abs(self.top.comp.opt_objective - self.top.driver.eval_objective())
# pylint: disable=E1101
if baseerror > newerror:
self.fail("Coarsening CONMIN gradient step size did not make the objective worse.")
def test_linear_constraint_specification(self):
# Note, just testing problem specification and setup
self.top.driver.add_objective('comp.result')
map(self.top.driver.add_parameter,
['comp.x[0]', 'comp.x[1]', 'comp.x[2]', 'comp.x[3]'])
self.top.driver.add_constraint('comp.x[1] + 3.0*comp.x[2] > 3.0', linear=True)
self.top.driver.add_constraint('comp.x[2] + comp.x[3] > 13.0', linear=True)
self.top.driver.add_constraint('comp.x[1] - 0.73*comp.x[3]*comp.x[2] > -12.0', linear=False)
self.top.driver.itmax = 1
self.top.run()
self.assertEqual(self.top.driver._cons_is_linear[0], 1, 1e-6)
self.assertEqual(self.top.driver._cons_is_linear[1], 1, 1e-6)
self.assertEqual(self.top.driver._cons_is_linear[2], 0, 1e-6)
lcons = self.top.driver.get_constraints(linear=True)
self.assertTrue(len(lcons) == 2)
self.assertTrue('comp.x[2]+comp.x[3]>13.0' in lcons)
self.assertTrue('comp.x[1]-0.73*comp.x[3]*comp.x[2]>-12.0' not in lcons)
lcons = self.top.driver.get_constraints(linear=False)
self.assertTrue(len(lcons) == 1)
self.assertTrue('comp.x[2]+comp.x[3]>13.0' not in lcons)
self.assertTrue('comp.x[1]-0.73*comp.x[3]*comp.x[2]>-12.0' in lcons)
def test_max_iteration(self):
self.top.driver.add_objective('comp.result')
map(self.top.driver.add_parameter, ['comp.x[0]', 'comp.x[1]',
'comp.x[2]', 'comp.x[3]'])
self.top.driver.nscal = -1
self.top.driver.itmax = 2
# pylint: disable=C0301
self.top.run()
# pylint: disable=E1101
self.assertEqual(self.top.driver.iter_count, 2)
def test_remove(self):
self.top.driver.add_objective('comp.result')
map(self.top.driver.add_parameter,
['comp.x[0]', 'comp.x[1]', 'comp.x[2]', 'comp.x[3]'])
# pylint: disable=C0301
map(self.top.driver.add_constraint, [
'comp.x[0]**2+comp.x[0]+comp.x[1]**2-comp.x[1]+comp.x[2]**2+comp.x[2]+comp.x[3]**2-comp.x[3] < 8',
'comp.x[0]**2-comp.x[0]+2*comp.x[1]**2+comp.x[2]**2+2*comp.x[3]**2-comp.x[3] < 10',
'2*comp.x[0]**2+2*comp.x[0]+comp.x[1]**2-comp.x[1]+comp.x[2]**2-comp.x[3] < 5'])
self.top.remove('comp')
self.assertEqual(self.top.driver.list_param_targets(), [])
self.assertEqual(self.top.driver.list_constraints(), [])
self.assertEqual(self.top.driver.get_objectives(), {})
def test_initial_run(self):
# Test the fix that put run_iteration at the top
# of the start_iteration method
class MyComp(Component):
x = Float(0.0, iotype='in', low=-10, high=10)
xx = Float(0.0, iotype='in', low=-10, high=10)
f_x = Float(iotype='out')
y = Float(iotype='out')
def execute(self):
if self.xx != 1.0:
self.raise_exception("Lazy", RuntimeError)
self.f_x = 2.0*self.x
self.y = self.x
@add_delegate(HasParameters)
class SpecialDriver(Driver):
implements(IHasParameters)
def execute(self):
self.set_parameters([1.0])
top = set_as_top(Assembly())
top.add('comp', MyComp())
top.add('driver', CONMINdriver())
top.add('subdriver', SpecialDriver())
top.driver.workflow.add('subdriver')
top.subdriver.workflow.add('comp')
top.subdriver.add_parameter('comp.xx')
top.driver.add_parameter('comp.x')
top.driver.add_constraint('comp.y > 1.0')
top.driver.add_objective('comp.f_x')
top.run()
class TestContainer(VariableTree):
dummy1 = Float(desc='default value of 0.0') #this value is being grabbed by the optimizer
dummy2 = Float(11.0)
class TestComponent(Component):
dummy_data = VarTree(TestContainer(), iotype='in')
x = Float(iotype='out')
def execute(self):
self.x = (self.dummy_data.dummy1-3)**2 - self.dummy_data.dummy2
class TestAssembly(Assembly):
def configure(self):
self.add('dummy_top', TestContainer())
self.add('comp', TestComponent())
self.add('driver', CONMINdriver())
self.driver.workflow.add(['comp'])
#self.driver.iprint = 4 #debug verbosity
self.driver.add_objective('comp.x')
self.driver.add_parameter('comp.dummy_data.dummy1', low=-10.0, high=10.0)
class CONMINdriverTestCase2(unittest.TestCase):
def test_vartree_opt(self):
blah = set_as_top(TestAssembly())
blah.run()
self.assertAlmostEqual(blah.comp.dummy_data.dummy1, 3.0, 1) #3.0 should be minimum
class TestCase1D(unittest.TestCase):
"""Test using 1D array connections and 1D array constraint."""
def setUp(self):
self.top = set_as_top(Assembly())
self.top.add('comp', OptRosenSuzukiComponent())
driver = self.top.add('driver', CONMINdriver())
driver.workflow.add('comp')
driver.iprint = 0
driver.itmax = 30
driver.add_objective('10*comp.result')
driver.add_parameter('comp.x')
def test_conmin_gradient_a(self):
# Run with 1D parameter, 1D constraint, and CONMIN gradient.
self.top.driver.add_constraint('comp.g <= 0')
self.top.driver.conmin_diff = True
self.top.driver.fdch = .000001
self.top.driver.fdchm = .000001
self.top.run()
# pylint: disable=E1101
assert_rel_error(self, self.top.comp.opt_objective,
self.top.driver.eval_objective(), 0.01)
assert_rel_error(self, 1 + self.top.comp.opt_design_vars[0],
1 + self.top.comp.x[0], 0.05)
assert_rel_error(self, self.top.comp.opt_design_vars[1],
self.top.comp.x[1], 0.06)
assert_rel_error(self, self.top.comp.opt_design_vars[2],
self.top.comp.x[2], 0.06)
assert_rel_error(self, self.top.comp.opt_design_vars[3],
self.top.comp.x[3], 0.05)
def test_conmin_gradient_s(self):
# Run with 1D parameter, scalar constraints, and CONMIN gradient.
# pylint: disable=C0301
map(self.top.driver.add_constraint, [
'comp.x[0]**2+comp.x[0]+comp.x[1]**2-comp.x[1]+comp.x[2]**2+comp.x[2]+comp.x[3]**2-comp.x[3] < 8',
'comp.x[0]**2-comp.x[0]+2*comp.x[1]**2+comp.x[2]**2+2*comp.x[3]**2-comp.x[3] < 10',
'2*comp.x[0]**2+2*comp.x[0]+comp.x[1]**2-comp.x[1]+comp.x[2]**2-comp.x[3] < 5'])
self.top.driver.conmin_diff = True
self.top.driver.fdch = .000001
self.top.driver.fdchm = .000001
self.top.run()
# pylint: disable=E1101
assert_rel_error(self, self.top.driver.eval_objective(),
self.top.comp.opt_objective,
0.01)
assert_rel_error(self, 1 + self.top.comp.opt_design_vars[0],
1 + self.top.comp.x[0], 0.05)
assert_rel_error(self, self.top.comp.opt_design_vars[1],
self.top.comp.x[1], 0.06)
assert_rel_error(self, self.top.comp.opt_design_vars[2],
self.top.comp.x[2], 0.06)
assert_rel_error(self, self.top.comp.opt_design_vars[3],
self.top.comp.x[3], 0.05)
def test_openmdao_gradient_a(self):
# Run with 1D parameter, 1D constraint, and OpenMDAO gradient.
self.top.driver.add_constraint('comp.g <= 0')
self.top.driver.conmin_diff = False
self.top.run()
# pylint: disable=E1101
assert_rel_error(self, self.top.comp.opt_objective,
self.top.driver.eval_objective(), 0.01)
assert_rel_error(self, 1 + self.top.comp.opt_design_vars[0],
1 + self.top.comp.x[0], 0.05)
assert_rel_error(self, self.top.comp.opt_design_vars[1],
self.top.comp.x[1], 0.06)
assert_rel_error(self, self.top.comp.opt_design_vars[2],
self.top.comp.x[2], 0.06)
assert_rel_error(self, self.top.comp.opt_design_vars[3],
self.top.comp.x[3], 0.05)
def test_openmdao_gradient_s(self):
# Run with 1D parameter, scalar constraints, and OpenMDAO gradient.
# pylint: disable=C0301
map(self.top.driver.add_constraint, [
'comp.x[0]**2+comp.x[0]+comp.x[1]**2-comp.x[1]+comp.x[2]**2+comp.x[2]+comp.x[3]**2-comp.x[3] < 8',
'comp.x[0]**2-comp.x[0]+2*comp.x[1]**2+comp.x[2]**2+2*comp.x[3]**2-comp.x[3] < 10',
'2*comp.x[0]**2+2*comp.x[0]+comp.x[1]**2-comp.x[1]+comp.x[2]**2-comp.x[3] < 5'])
self.top.driver.conmin_diff = False
self.top.run()
# pylint: disable=E1101
assert_rel_error(self, self.top.comp.opt_objective,
self.top.driver.eval_objective(), 0.01)
assert_rel_error(self, 1 + self.top.comp.opt_design_vars[0],
1 + self.top.comp.x[0], 0.05)
assert_rel_error(self, self.top.comp.opt_design_vars[1],
self.top.comp.x[1], 0.06)
assert_rel_error(self, self.top.comp.opt_design_vars[2],
self.top.comp.x[2], 0.06)
assert_rel_error(self, self.top.comp.opt_design_vars[3],
self.top.comp.x[3], 0.05)
class TestCase2D(unittest.TestCase):
"""Test using 2D array connections."""
def setUp(self):
self.top = set_as_top(Assembly())
self.top.add('comp', RosenSuzuki2D())
driver = self.top.add('driver', CONMINdriver())
driver.workflow.add('comp')
driver.iprint = 0
driver.itmax = 30
driver.add_objective('10*comp.result')
driver.add_parameter('comp.x')
# pylint: disable=C0301
map(driver.add_constraint, [
'comp.x[0][0]**2+comp.x[0][0]+comp.x[0][1]**2-comp.x[0][1]+comp.x[1][0]**2+comp.x[1][0]+comp.x[1][1]**2-comp.x[1][1] < 8',
'comp.x[0][0]**2-comp.x[0][0]+2*comp.x[0][1]**2+comp.x[1][0]**2+2*comp.x[1][1]**2-comp.x[1][1] < 10',
'2*comp.x[0][0]**2+2*comp.x[0][0]+comp.x[0][1]**2-comp.x[0][1]+comp.x[1][0]**2-comp.x[1][1] < 5'])
def test_conmin_gradient(self):
# Run with 2D parameter and CONMIN gradient.
self.top.driver.conmin_diff = True
self.top.run()
# pylint: disable=E1101
assert_rel_error(self, self.top.comp.opt_objective,
self.top.driver.eval_objective(), 0.01)
assert_rel_error(self, 1 + self.top.comp.opt_design_vars[0],
1 + self.top.comp.x[0][0], 0.05)
assert_rel_error(self, self.top.comp.opt_design_vars[1],
self.top.comp.x[0][1], 0.06)
assert_rel_error(self, self.top.comp.opt_design_vars[2],
self.top.comp.x[1][0], 0.06)
assert_rel_error(self, self.top.comp.opt_design_vars[3],
self.top.comp.x[1][1], 0.05)
def test_openmdao_gradient(self):
# Run with 2D parameter and OpenMDAO gradient.
self.top.driver.conmin_diff = False
self.top.run()
# pylint: disable=E1101
assert_rel_error(self, self.top.comp.opt_objective,
self.top.driver.eval_objective(), 0.01)
assert_rel_error(self, 1 + self.top.comp.opt_design_vars[0],
1 + self.top.comp.x[0][0], 0.05)
assert_rel_error(self, self.top.comp.opt_design_vars[1],
self.top.comp.x[0][1], 0.06)
assert_rel_error(self, self.top.comp.opt_design_vars[2],
self.top.comp.x[1][0], 0.06)
assert_rel_error(self, self.top.comp.opt_design_vars[3],
self.top.comp.x[1][1], 0.05)
class TestCaseMixed(unittest.TestCase):
"""Test using mixed scalar and 1D connections."""
def setUp(self):
self.top = set_as_top(Assembly())
self.top.add('comp', RosenSuzukiMixed())
driver = self.top.add('driver', CONMINdriver())
driver.workflow.add('comp')
driver.iprint = 0
driver.itmax = 30
driver.add_objective('10*comp.result')
map(driver.add_parameter, ['comp.x0', 'comp.x12', 'comp.x3'])
# pylint: disable=C0301
map(driver.add_constraint, [
'comp.x0**2+comp.x0+comp.x12[0]**2-comp.x12[0]+comp.x12[1]**2+comp.x12[1]+comp.x3**2-comp.x3 < 8',
'comp.x0**2-comp.x0+2*comp.x12[0]**2+comp.x12[1]**2+2*comp.x3**2-comp.x3 < 10',
'2*comp.x0**2+2*comp.x0+comp.x12[0]**2-comp.x12[0]+comp.x12[1]**2-comp.x3 < 5'])
def test_conmin_gradient(self):
# Run with mixed parameters and CONMIN gradient.
self.top.driver.conmin_diff = True
self.top.run()
# pylint: disable=E1101
assert_rel_error(self, self.top.comp.opt_objective,
self.top.driver.eval_objective(), 0.01)
assert_rel_error(self, 1 + self.top.comp.opt_design_vars[0],
1 + self.top.comp.x0, 0.05)
assert_rel_error(self, self.top.comp.opt_design_vars[1],
self.top.comp.x12[0], 0.06)
assert_rel_error(self, self.top.comp.opt_design_vars[2],
self.top.comp.x12[1], 0.06)
assert_rel_error(self, self.top.comp.opt_design_vars[3],
self.top.comp.x3, 0.05)
def test_openmdao_gradient(self):
# Run with mixed parameters and OpenMDAO gradient.
self.top.driver.conmin_diff = False
self.top.run()
# pylint: disable=E1101
assert_rel_error(self, self.top.comp.opt_objective,
self.top.driver.eval_objective(), 0.01)
assert_rel_error(self, 1 + self.top.comp.opt_design_vars[0],
1 + self.top.comp.x0, 0.05)
assert_rel_error(self, self.top.comp.opt_design_vars[1],
self.top.comp.x12[0], 0.06)
assert_rel_error(self, self.top.comp.opt_design_vars[2],
self.top.comp.x12[1], 0.06)
assert_rel_error(self, self.top.comp.opt_design_vars[3],
self.top.comp.x3, 0.05)
if __name__ == "__main__":
unittest.main()
|
[
"unittest.main",
"openmdao.main.api.Assembly",
"openmdao.main.datatypes.api.Str",
"openmdao.util.testutil.assert_rel_error",
"openmdao.main.interfaces.implements",
"openmdao.main.datatypes.api.Float",
"openmdao.util.decorators.add_delegate",
"openmdao.main.datatypes.api.Array",
"numpy.array",
"openmdao.lib.drivers.conmindriver.CONMINdriver",
"openmdao.lib.casehandlers.api.ListCaseRecorder"
] |
[((1529, 1565), 'openmdao.main.datatypes.api.Array', 'Array', ([], {'iotype': '"""in"""', 'low': '(-10)', 'high': '(99)'}), "(iotype='in', low=-10, high=99)\n", (1534, 1565), False, 'from openmdao.main.datatypes.api import Float, Array, Str, VarTree\n'), ((1574, 1610), 'openmdao.main.datatypes.api.Array', 'Array', (['[1.0, 1.0, 1.0]'], {'iotype': '"""out"""'}), "([1.0, 1.0, 1.0], iotype='out')\n", (1579, 1610), False, 'from openmdao.main.datatypes.api import Float, Array, Str, VarTree\n'), ((1621, 1640), 'openmdao.main.datatypes.api.Float', 'Float', ([], {'iotype': '"""out"""'}), "(iotype='out')\n", (1626, 1640), False, 'from openmdao.main.datatypes.api import Float, Array, Str, VarTree\n'), ((1658, 1675), 'openmdao.main.datatypes.api.Str', 'Str', ([], {'iotype': '"""out"""'}), "(iotype='out')\n", (1661, 1675), False, 'from openmdao.main.datatypes.api import Float, Array, Str, VarTree\n'), ((1696, 1715), 'openmdao.main.datatypes.api.Float', 'Float', ([], {'iotype': '"""out"""'}), "(iotype='out')\n", (1701, 1715), False, 'from openmdao.main.datatypes.api import Float, Array, Str, VarTree\n'), ((2717, 2753), 'openmdao.main.datatypes.api.Array', 'Array', ([], {'iotype': '"""in"""', 'low': '(-10)', 'high': '(99)'}), "(iotype='in', low=-10, high=99)\n", (2722, 2753), False, 'from openmdao.main.datatypes.api import Float, Array, Str, VarTree\n'), ((2767, 2786), 'openmdao.main.datatypes.api.Float', 'Float', ([], {'iotype': '"""out"""'}), "(iotype='out')\n", (2772, 2786), False, 'from openmdao.main.datatypes.api import Float, Array, Str, VarTree\n'), ((2807, 2826), 'openmdao.main.datatypes.api.Float', 'Float', ([], {'iotype': '"""out"""'}), "(iotype='out')\n", (2812, 2826), False, 'from openmdao.main.datatypes.api import Float, Array, Str, VarTree\n'), ((3522, 3558), 'openmdao.main.datatypes.api.Float', 'Float', ([], {'iotype': '"""in"""', 'low': '(-10)', 'high': '(99)'}), "(iotype='in', low=-10, high=99)\n", (3527, 3558), False, 'from openmdao.main.datatypes.api import Float, Array, Str, VarTree\n'), ((3569, 3605), 'openmdao.main.datatypes.api.Array', 'Array', ([], {'iotype': '"""in"""', 'low': '(-10)', 'high': '(99)'}), "(iotype='in', low=-10, high=99)\n", (3574, 3605), False, 'from openmdao.main.datatypes.api import Float, Array, Str, VarTree\n'), ((3615, 3651), 'openmdao.main.datatypes.api.Float', 'Float', ([], {'iotype': '"""in"""', 'low': '(-10)', 'high': '(99)'}), "(iotype='in', low=-10, high=99)\n", (3620, 3651), False, 'from openmdao.main.datatypes.api import Float, Array, Str, VarTree\n'), ((3665, 3684), 'openmdao.main.datatypes.api.Float', 'Float', ([], {'iotype': '"""out"""'}), "(iotype='out')\n", (3670, 3684), False, 'from openmdao.main.datatypes.api import Float, Array, Str, VarTree\n'), ((3705, 3724), 'openmdao.main.datatypes.api.Float', 'Float', ([], {'iotype': '"""out"""'}), "(iotype='out')\n", (3710, 3724), False, 'from openmdao.main.datatypes.api import Float, Array, Str, VarTree\n'), ((16557, 16591), 'openmdao.main.datatypes.api.Float', 'Float', ([], {'desc': '"""default value of 0.0"""'}), "(desc='default value of 0.0')\n", (16562, 16591), False, 'from openmdao.main.datatypes.api import Float, Array, Str, VarTree\n'), ((16651, 16662), 'openmdao.main.datatypes.api.Float', 'Float', (['(11.0)'], {}), '(11.0)\n', (16656, 16662), False, 'from openmdao.main.datatypes.api import Float, Array, Str, VarTree\n'), ((16761, 16780), 'openmdao.main.datatypes.api.Float', 'Float', ([], {'iotype': '"""out"""'}), "(iotype='out')\n", (16766, 16780), False, 'from openmdao.main.datatypes.api import Float, Array, Str, VarTree\n'), ((27171, 27186), 'unittest.main', 'unittest.main', ([], {}), '()\n', (27184, 27186), False, 'import unittest\n'), ((1842, 1888), 'numpy.array', 'numpy.array', (['[1.0, 1.0, 1.0, 1.0]'], {'dtype': 'float'}), '([1.0, 1.0, 1.0, 1.0], dtype=float)\n', (1853, 1888), False, 'import numpy\n'), ((2943, 2993), 'numpy.array', 'numpy.array', (['[[1.0, 1.0], [1.0, 1.0]]'], {'dtype': 'float'}), '([[1.0, 1.0], [1.0, 1.0]], dtype=float)\n', (2954, 2993), False, 'import numpy\n'), ((3867, 3903), 'numpy.array', 'numpy.array', (['[1.0, 1.0]'], {'dtype': 'float'}), '([1.0, 1.0], dtype=float)\n', (3878, 3903), False, 'import numpy\n'), ((5625, 5720), 'openmdao.util.testutil.assert_rel_error', 'assert_rel_error', (['self', '(1 + self.top.comp.opt_design_vars[0])', '(1 + self.top.comp.x[0])', '(0.05)'], {}), '(self, 1 + self.top.comp.opt_design_vars[0], 1 + self.top.\n comp.x[0], 0.05)\n', (5641, 5720), False, 'from openmdao.util.testutil import assert_rel_error\n'), ((5749, 5835), 'openmdao.util.testutil.assert_rel_error', 'assert_rel_error', (['self', 'self.top.comp.opt_design_vars[1]', 'self.top.comp.x[1]', '(0.06)'], {}), '(self, self.top.comp.opt_design_vars[1], self.top.comp.x[1],\n 0.06)\n', (5765, 5835), False, 'from openmdao.util.testutil import assert_rel_error\n'), ((5865, 5951), 'openmdao.util.testutil.assert_rel_error', 'assert_rel_error', (['self', 'self.top.comp.opt_design_vars[2]', 'self.top.comp.x[2]', '(0.06)'], {}), '(self, self.top.comp.opt_design_vars[2], self.top.comp.x[2],\n 0.06)\n', (5881, 5951), False, 'from openmdao.util.testutil import assert_rel_error\n'), ((5981, 6067), 'openmdao.util.testutil.assert_rel_error', 'assert_rel_error', (['self', 'self.top.comp.opt_design_vars[3]', 'self.top.comp.x[3]', '(0.05)'], {}), '(self, self.top.comp.opt_design_vars[3], self.top.comp.x[3],\n 0.05)\n', (5997, 6067), False, 'from openmdao.util.testutil import assert_rel_error\n'), ((6970, 7065), 'openmdao.util.testutil.assert_rel_error', 'assert_rel_error', (['self', '(1 + self.top.comp.opt_design_vars[0])', '(1 + self.top.comp.x[0])', '(0.06)'], {}), '(self, 1 + self.top.comp.opt_design_vars[0], 1 + self.top.\n comp.x[0], 0.06)\n', (6986, 7065), False, 'from openmdao.util.testutil import assert_rel_error\n'), ((7094, 7180), 'openmdao.util.testutil.assert_rel_error', 'assert_rel_error', (['self', 'self.top.comp.opt_design_vars[1]', 'self.top.comp.x[1]', '(0.06)'], {}), '(self, self.top.comp.opt_design_vars[1], self.top.comp.x[1],\n 0.06)\n', (7110, 7180), False, 'from openmdao.util.testutil import assert_rel_error\n'), ((7210, 7296), 'openmdao.util.testutil.assert_rel_error', 'assert_rel_error', (['self', 'self.top.comp.opt_design_vars[2]', 'self.top.comp.x[2]', '(0.06)'], {}), '(self, self.top.comp.opt_design_vars[2], self.top.comp.x[2],\n 0.06)\n', (7226, 7296), False, 'from openmdao.util.testutil import assert_rel_error\n'), ((7326, 7412), 'openmdao.util.testutil.assert_rel_error', 'assert_rel_error', (['self', 'self.top.comp.opt_design_vars[3]', 'self.top.comp.x[3]', '(0.05)'], {}), '(self, self.top.comp.opt_design_vars[3], self.top.comp.x[3],\n 0.05)\n', (7342, 7412), False, 'from openmdao.util.testutil import assert_rel_error\n'), ((8471, 8566), 'openmdao.util.testutil.assert_rel_error', 'assert_rel_error', (['self', '(1 + self.top.comp.opt_design_vars[0])', '(1 + self.top.comp.x[0])', '(0.06)'], {}), '(self, 1 + self.top.comp.opt_design_vars[0], 1 + self.top.\n comp.x[0], 0.06)\n', (8487, 8566), False, 'from openmdao.util.testutil import assert_rel_error\n'), ((8595, 8681), 'openmdao.util.testutil.assert_rel_error', 'assert_rel_error', (['self', 'self.top.comp.opt_design_vars[1]', 'self.top.comp.x[1]', '(0.06)'], {}), '(self, self.top.comp.opt_design_vars[1], self.top.comp.x[1],\n 0.06)\n', (8611, 8681), False, 'from openmdao.util.testutil import assert_rel_error\n'), ((8711, 8797), 'openmdao.util.testutil.assert_rel_error', 'assert_rel_error', (['self', 'self.top.comp.opt_design_vars[2]', 'self.top.comp.x[2]', '(0.06)'], {}), '(self, self.top.comp.opt_design_vars[2], self.top.comp.x[2],\n 0.06)\n', (8727, 8797), False, 'from openmdao.util.testutil import assert_rel_error\n'), ((8827, 8913), 'openmdao.util.testutil.assert_rel_error', 'assert_rel_error', (['self', 'self.top.comp.opt_design_vars[3]', 'self.top.comp.x[3]', '(0.05)'], {}), '(self, self.top.comp.opt_design_vars[3], self.top.comp.x[3],\n 0.05)\n', (8843, 8913), False, 'from openmdao.util.testutil import assert_rel_error\n'), ((9714, 9809), 'openmdao.util.testutil.assert_rel_error', 'assert_rel_error', (['self', '(1 + self.top.comp.opt_design_vars[0])', '(1 + self.top.comp.x[0])', '(0.05)'], {}), '(self, 1 + self.top.comp.opt_design_vars[0], 1 + self.top.\n comp.x[0], 0.05)\n', (9730, 9809), False, 'from openmdao.util.testutil import assert_rel_error\n'), ((9838, 9924), 'openmdao.util.testutil.assert_rel_error', 'assert_rel_error', (['self', 'self.top.comp.opt_design_vars[1]', 'self.top.comp.x[1]', '(0.06)'], {}), '(self, self.top.comp.opt_design_vars[1], self.top.comp.x[1],\n 0.06)\n', (9854, 9924), False, 'from openmdao.util.testutil import assert_rel_error\n'), ((9954, 10040), 'openmdao.util.testutil.assert_rel_error', 'assert_rel_error', (['self', 'self.top.comp.opt_design_vars[2]', 'self.top.comp.x[2]', '(0.06)'], {}), '(self, self.top.comp.opt_design_vars[2], self.top.comp.x[2],\n 0.06)\n', (9970, 10040), False, 'from openmdao.util.testutil import assert_rel_error\n'), ((10070, 10156), 'openmdao.util.testutil.assert_rel_error', 'assert_rel_error', (['self', 'self.top.comp.opt_design_vars[3]', 'self.top.comp.x[3]', '(0.05)'], {}), '(self, self.top.comp.opt_design_vars[3], self.top.comp.x[3],\n 0.05)\n', (10086, 10156), False, 'from openmdao.util.testutil import assert_rel_error\n'), ((10955, 11050), 'openmdao.util.testutil.assert_rel_error', 'assert_rel_error', (['self', '(1 + self.top.comp.opt_design_vars[0])', '(1 + self.top.comp.x[0])', '(0.05)'], {}), '(self, 1 + self.top.comp.opt_design_vars[0], 1 + self.top.\n comp.x[0], 0.05)\n', (10971, 11050), False, 'from openmdao.util.testutil import assert_rel_error\n'), ((11079, 11165), 'openmdao.util.testutil.assert_rel_error', 'assert_rel_error', (['self', 'self.top.comp.opt_design_vars[1]', 'self.top.comp.x[1]', '(0.06)'], {}), '(self, self.top.comp.opt_design_vars[1], self.top.comp.x[1],\n 0.06)\n', (11095, 11165), False, 'from openmdao.util.testutil import assert_rel_error\n'), ((11195, 11281), 'openmdao.util.testutil.assert_rel_error', 'assert_rel_error', (['self', 'self.top.comp.opt_design_vars[2]', 'self.top.comp.x[2]', '(0.06)'], {}), '(self, self.top.comp.opt_design_vars[2], self.top.comp.x[2],\n 0.06)\n', (11211, 11281), False, 'from openmdao.util.testutil import assert_rel_error\n'), ((11311, 11397), 'openmdao.util.testutil.assert_rel_error', 'assert_rel_error', (['self', 'self.top.comp.opt_design_vars[3]', 'self.top.comp.x[3]', '(0.05)'], {}), '(self, self.top.comp.opt_design_vars[3], self.top.comp.x[3],\n 0.05)\n', (11327, 11397), False, 'from openmdao.util.testutil import assert_rel_error\n'), ((12440, 12486), 'numpy.array', 'numpy.array', (['[1.0, 1.0, 1.0, 1.0]'], {'dtype': 'float'}), '([1.0, 1.0, 1.0, 1.0], dtype=float)\n', (12451, 12486), False, 'import numpy\n'), ((15873, 15900), 'openmdao.util.decorators.add_delegate', 'add_delegate', (['HasParameters'], {}), '(HasParameters)\n', (15885, 15900), False, 'from openmdao.util.decorators import add_delegate\n'), ((18451, 18546), 'openmdao.util.testutil.assert_rel_error', 'assert_rel_error', (['self', '(1 + self.top.comp.opt_design_vars[0])', '(1 + self.top.comp.x[0])', '(0.05)'], {}), '(self, 1 + self.top.comp.opt_design_vars[0], 1 + self.top.\n comp.x[0], 0.05)\n', (18467, 18546), False, 'from openmdao.util.testutil import assert_rel_error\n'), ((18575, 18661), 'openmdao.util.testutil.assert_rel_error', 'assert_rel_error', (['self', 'self.top.comp.opt_design_vars[1]', 'self.top.comp.x[1]', '(0.06)'], {}), '(self, self.top.comp.opt_design_vars[1], self.top.comp.x[1],\n 0.06)\n', (18591, 18661), False, 'from openmdao.util.testutil import assert_rel_error\n'), ((18691, 18777), 'openmdao.util.testutil.assert_rel_error', 'assert_rel_error', (['self', 'self.top.comp.opt_design_vars[2]', 'self.top.comp.x[2]', '(0.06)'], {}), '(self, self.top.comp.opt_design_vars[2], self.top.comp.x[2],\n 0.06)\n', (18707, 18777), False, 'from openmdao.util.testutil import assert_rel_error\n'), ((18807, 18893), 'openmdao.util.testutil.assert_rel_error', 'assert_rel_error', (['self', 'self.top.comp.opt_design_vars[3]', 'self.top.comp.x[3]', '(0.05)'], {}), '(self, self.top.comp.opt_design_vars[3], self.top.comp.x[3],\n 0.05)\n', (18823, 18893), False, 'from openmdao.util.testutil import assert_rel_error\n'), ((19743, 19838), 'openmdao.util.testutil.assert_rel_error', 'assert_rel_error', (['self', '(1 + self.top.comp.opt_design_vars[0])', '(1 + self.top.comp.x[0])', '(0.05)'], {}), '(self, 1 + self.top.comp.opt_design_vars[0], 1 + self.top.\n comp.x[0], 0.05)\n', (19759, 19838), False, 'from openmdao.util.testutil import assert_rel_error\n'), ((19867, 19953), 'openmdao.util.testutil.assert_rel_error', 'assert_rel_error', (['self', 'self.top.comp.opt_design_vars[1]', 'self.top.comp.x[1]', '(0.06)'], {}), '(self, self.top.comp.opt_design_vars[1], self.top.comp.x[1],\n 0.06)\n', (19883, 19953), False, 'from openmdao.util.testutil import assert_rel_error\n'), ((19983, 20069), 'openmdao.util.testutil.assert_rel_error', 'assert_rel_error', (['self', 'self.top.comp.opt_design_vars[2]', 'self.top.comp.x[2]', '(0.06)'], {}), '(self, self.top.comp.opt_design_vars[2], self.top.comp.x[2],\n 0.06)\n', (19999, 20069), False, 'from openmdao.util.testutil import assert_rel_error\n'), ((20099, 20185), 'openmdao.util.testutil.assert_rel_error', 'assert_rel_error', (['self', 'self.top.comp.opt_design_vars[3]', 'self.top.comp.x[3]', '(0.05)'], {}), '(self, self.top.comp.opt_design_vars[3], self.top.comp.x[3],\n 0.05)\n', (20115, 20185), False, 'from openmdao.util.testutil import assert_rel_error\n'), ((20606, 20701), 'openmdao.util.testutil.assert_rel_error', 'assert_rel_error', (['self', '(1 + self.top.comp.opt_design_vars[0])', '(1 + self.top.comp.x[0])', '(0.05)'], {}), '(self, 1 + self.top.comp.opt_design_vars[0], 1 + self.top.\n comp.x[0], 0.05)\n', (20622, 20701), False, 'from openmdao.util.testutil import assert_rel_error\n'), ((20730, 20816), 'openmdao.util.testutil.assert_rel_error', 'assert_rel_error', (['self', 'self.top.comp.opt_design_vars[1]', 'self.top.comp.x[1]', '(0.06)'], {}), '(self, self.top.comp.opt_design_vars[1], self.top.comp.x[1],\n 0.06)\n', (20746, 20816), False, 'from openmdao.util.testutil import assert_rel_error\n'), ((20846, 20932), 'openmdao.util.testutil.assert_rel_error', 'assert_rel_error', (['self', 'self.top.comp.opt_design_vars[2]', 'self.top.comp.x[2]', '(0.06)'], {}), '(self, self.top.comp.opt_design_vars[2], self.top.comp.x[2],\n 0.06)\n', (20862, 20932), False, 'from openmdao.util.testutil import assert_rel_error\n'), ((20962, 21048), 'openmdao.util.testutil.assert_rel_error', 'assert_rel_error', (['self', 'self.top.comp.opt_design_vars[3]', 'self.top.comp.x[3]', '(0.05)'], {}), '(self, self.top.comp.opt_design_vars[3], self.top.comp.x[3],\n 0.05)\n', (20978, 21048), False, 'from openmdao.util.testutil import assert_rel_error\n'), ((21799, 21894), 'openmdao.util.testutil.assert_rel_error', 'assert_rel_error', (['self', '(1 + self.top.comp.opt_design_vars[0])', '(1 + self.top.comp.x[0])', '(0.05)'], {}), '(self, 1 + self.top.comp.opt_design_vars[0], 1 + self.top.\n comp.x[0], 0.05)\n', (21815, 21894), False, 'from openmdao.util.testutil import assert_rel_error\n'), ((21923, 22009), 'openmdao.util.testutil.assert_rel_error', 'assert_rel_error', (['self', 'self.top.comp.opt_design_vars[1]', 'self.top.comp.x[1]', '(0.06)'], {}), '(self, self.top.comp.opt_design_vars[1], self.top.comp.x[1],\n 0.06)\n', (21939, 22009), False, 'from openmdao.util.testutil import assert_rel_error\n'), ((22039, 22125), 'openmdao.util.testutil.assert_rel_error', 'assert_rel_error', (['self', 'self.top.comp.opt_design_vars[2]', 'self.top.comp.x[2]', '(0.06)'], {}), '(self, self.top.comp.opt_design_vars[2], self.top.comp.x[2],\n 0.06)\n', (22055, 22125), False, 'from openmdao.util.testutil import assert_rel_error\n'), ((22155, 22241), 'openmdao.util.testutil.assert_rel_error', 'assert_rel_error', (['self', 'self.top.comp.opt_design_vars[3]', 'self.top.comp.x[3]', '(0.05)'], {}), '(self, self.top.comp.opt_design_vars[3], self.top.comp.x[3],\n 0.05)\n', (22171, 22241), False, 'from openmdao.util.testutil import assert_rel_error\n'), ((23437, 23535), 'openmdao.util.testutil.assert_rel_error', 'assert_rel_error', (['self', '(1 + self.top.comp.opt_design_vars[0])', '(1 + self.top.comp.x[0][0])', '(0.05)'], {}), '(self, 1 + self.top.comp.opt_design_vars[0], 1 + self.top.\n comp.x[0][0], 0.05)\n', (23453, 23535), False, 'from openmdao.util.testutil import assert_rel_error\n'), ((23564, 23654), 'openmdao.util.testutil.assert_rel_error', 'assert_rel_error', (['self', 'self.top.comp.opt_design_vars[1]', 'self.top.comp.x[0][1]', '(0.06)'], {}), '(self, self.top.comp.opt_design_vars[1], self.top.comp.x[0]\n [1], 0.06)\n', (23580, 23654), False, 'from openmdao.util.testutil import assert_rel_error\n'), ((23683, 23773), 'openmdao.util.testutil.assert_rel_error', 'assert_rel_error', (['self', 'self.top.comp.opt_design_vars[2]', 'self.top.comp.x[1][0]', '(0.06)'], {}), '(self, self.top.comp.opt_design_vars[2], self.top.comp.x[1]\n [0], 0.06)\n', (23699, 23773), False, 'from openmdao.util.testutil import assert_rel_error\n'), ((23802, 23892), 'openmdao.util.testutil.assert_rel_error', 'assert_rel_error', (['self', 'self.top.comp.opt_design_vars[3]', 'self.top.comp.x[1][1]', '(0.05)'], {}), '(self, self.top.comp.opt_design_vars[3], self.top.comp.x[1]\n [1], 0.05)\n', (23818, 23892), False, 'from openmdao.util.testutil import assert_rel_error\n'), ((24240, 24338), 'openmdao.util.testutil.assert_rel_error', 'assert_rel_error', (['self', '(1 + self.top.comp.opt_design_vars[0])', '(1 + self.top.comp.x[0][0])', '(0.05)'], {}), '(self, 1 + self.top.comp.opt_design_vars[0], 1 + self.top.\n comp.x[0][0], 0.05)\n', (24256, 24338), False, 'from openmdao.util.testutil import assert_rel_error\n'), ((24367, 24457), 'openmdao.util.testutil.assert_rel_error', 'assert_rel_error', (['self', 'self.top.comp.opt_design_vars[1]', 'self.top.comp.x[0][1]', '(0.06)'], {}), '(self, self.top.comp.opt_design_vars[1], self.top.comp.x[0]\n [1], 0.06)\n', (24383, 24457), False, 'from openmdao.util.testutil import assert_rel_error\n'), ((24486, 24576), 'openmdao.util.testutil.assert_rel_error', 'assert_rel_error', (['self', 'self.top.comp.opt_design_vars[2]', 'self.top.comp.x[1][0]', '(0.06)'], {}), '(self, self.top.comp.opt_design_vars[2], self.top.comp.x[1]\n [0], 0.06)\n', (24502, 24576), False, 'from openmdao.util.testutil import assert_rel_error\n'), ((24605, 24695), 'openmdao.util.testutil.assert_rel_error', 'assert_rel_error', (['self', 'self.top.comp.opt_design_vars[3]', 'self.top.comp.x[1][1]', '(0.05)'], {}), '(self, self.top.comp.opt_design_vars[3], self.top.comp.x[1]\n [1], 0.05)\n', (24621, 24695), False, 'from openmdao.util.testutil import assert_rel_error\n'), ((25879, 25972), 'openmdao.util.testutil.assert_rel_error', 'assert_rel_error', (['self', '(1 + self.top.comp.opt_design_vars[0])', '(1 + self.top.comp.x0)', '(0.05)'], {}), '(self, 1 + self.top.comp.opt_design_vars[0], 1 + self.top.\n comp.x0, 0.05)\n', (25895, 25972), False, 'from openmdao.util.testutil import assert_rel_error\n'), ((26001, 26090), 'openmdao.util.testutil.assert_rel_error', 'assert_rel_error', (['self', 'self.top.comp.opt_design_vars[1]', 'self.top.comp.x12[0]', '(0.06)'], {}), '(self, self.top.comp.opt_design_vars[1], self.top.comp.x12[\n 0], 0.06)\n', (26017, 26090), False, 'from openmdao.util.testutil import assert_rel_error\n'), ((26119, 26208), 'openmdao.util.testutil.assert_rel_error', 'assert_rel_error', (['self', 'self.top.comp.opt_design_vars[2]', 'self.top.comp.x12[1]', '(0.06)'], {}), '(self, self.top.comp.opt_design_vars[2], self.top.comp.x12[\n 1], 0.06)\n', (26135, 26208), False, 'from openmdao.util.testutil import assert_rel_error\n'), ((26237, 26322), 'openmdao.util.testutil.assert_rel_error', 'assert_rel_error', (['self', 'self.top.comp.opt_design_vars[3]', 'self.top.comp.x3', '(0.05)'], {}), '(self, self.top.comp.opt_design_vars[3], self.top.comp.x3, 0.05\n )\n', (26253, 26322), False, 'from openmdao.util.testutil import assert_rel_error\n'), ((26674, 26767), 'openmdao.util.testutil.assert_rel_error', 'assert_rel_error', (['self', '(1 + self.top.comp.opt_design_vars[0])', '(1 + self.top.comp.x0)', '(0.05)'], {}), '(self, 1 + self.top.comp.opt_design_vars[0], 1 + self.top.\n comp.x0, 0.05)\n', (26690, 26767), False, 'from openmdao.util.testutil import assert_rel_error\n'), ((26796, 26885), 'openmdao.util.testutil.assert_rel_error', 'assert_rel_error', (['self', 'self.top.comp.opt_design_vars[1]', 'self.top.comp.x12[0]', '(0.06)'], {}), '(self, self.top.comp.opt_design_vars[1], self.top.comp.x12[\n 0], 0.06)\n', (26812, 26885), False, 'from openmdao.util.testutil import assert_rel_error\n'), ((26914, 27003), 'openmdao.util.testutil.assert_rel_error', 'assert_rel_error', (['self', 'self.top.comp.opt_design_vars[2]', 'self.top.comp.x12[1]', '(0.06)'], {}), '(self, self.top.comp.opt_design_vars[2], self.top.comp.x12[\n 1], 0.06)\n', (26930, 27003), False, 'from openmdao.util.testutil import assert_rel_error\n'), ((27032, 27117), 'openmdao.util.testutil.assert_rel_error', 'assert_rel_error', (['self', 'self.top.comp.opt_design_vars[3]', 'self.top.comp.x3', '(0.05)'], {}), '(self, self.top.comp.opt_design_vars[3], self.top.comp.x3, 0.05\n )\n', (27048, 27117), False, 'from openmdao.util.testutil import assert_rel_error\n'), ((4470, 4480), 'openmdao.main.api.Assembly', 'Assembly', ([], {}), '()\n', (4478, 4480), False, 'from openmdao.main.api import Assembly, Component, VariableTree, set_as_top, Driver\n'), ((4513, 4527), 'openmdao.lib.drivers.conmindriver.CONMINdriver', 'CONMINdriver', ([], {}), '()\n', (4525, 4527), False, 'from openmdao.lib.drivers.conmindriver import CONMINdriver\n'), ((5381, 5399), 'openmdao.lib.casehandlers.api.ListCaseRecorder', 'ListCaseRecorder', ([], {}), '()\n', (5397, 5399), False, 'from openmdao.lib.casehandlers.api import ListCaseRecorder\n'), ((15488, 15529), 'openmdao.main.datatypes.api.Float', 'Float', (['(0.0)'], {'iotype': '"""in"""', 'low': '(-10)', 'high': '(10)'}), "(0.0, iotype='in', low=-10, high=10)\n", (15493, 15529), False, 'from openmdao.main.datatypes.api import Float, Array, Str, VarTree\n'), ((15547, 15588), 'openmdao.main.datatypes.api.Float', 'Float', (['(0.0)'], {'iotype': '"""in"""', 'low': '(-10)', 'high': '(10)'}), "(0.0, iotype='in', low=-10, high=10)\n", (15552, 15588), False, 'from openmdao.main.datatypes.api import Float, Array, Str, VarTree\n'), ((15607, 15626), 'openmdao.main.datatypes.api.Float', 'Float', ([], {'iotype': '"""out"""'}), "(iotype='out')\n", (15612, 15626), False, 'from openmdao.main.datatypes.api import Float, Array, Str, VarTree\n'), ((15643, 15662), 'openmdao.main.datatypes.api.Float', 'Float', ([], {'iotype': '"""out"""'}), "(iotype='out')\n", (15648, 15662), False, 'from openmdao.main.datatypes.api import Float, Array, Str, VarTree\n'), ((15951, 15977), 'openmdao.main.interfaces.implements', 'implements', (['IHasParameters'], {}), '(IHasParameters)\n', (15961, 15977), False, 'from openmdao.main.interfaces import IHasParameters, implements\n'), ((16079, 16089), 'openmdao.main.api.Assembly', 'Assembly', ([], {}), '()\n', (16087, 16089), False, 'from openmdao.main.api import Assembly, Component, VariableTree, set_as_top, Driver\n'), ((16151, 16165), 'openmdao.lib.drivers.conmindriver.CONMINdriver', 'CONMINdriver', ([], {}), '()\n', (16163, 16165), False, 'from openmdao.lib.drivers.conmindriver import CONMINdriver\n'), ((17051, 17065), 'openmdao.lib.drivers.conmindriver.CONMINdriver', 'CONMINdriver', ([], {}), '()\n', (17063, 17065), False, 'from openmdao.lib.drivers.conmindriver import CONMINdriver\n'), ((17678, 17688), 'openmdao.main.api.Assembly', 'Assembly', ([], {}), '()\n', (17686, 17688), False, 'from openmdao.main.api import Assembly, Component, VariableTree, set_as_top, Driver\n'), ((17786, 17800), 'openmdao.lib.drivers.conmindriver.CONMINdriver', 'CONMINdriver', ([], {}), '()\n', (17798, 17800), False, 'from openmdao.lib.drivers.conmindriver import CONMINdriver\n'), ((22396, 22406), 'openmdao.main.api.Assembly', 'Assembly', ([], {}), '()\n', (22404, 22406), False, 'from openmdao.main.api import Assembly, Component, VariableTree, set_as_top, Driver\n'), ((22494, 22508), 'openmdao.lib.drivers.conmindriver.CONMINdriver', 'CONMINdriver', ([], {}), '()\n', (22506, 22508), False, 'from openmdao.lib.drivers.conmindriver import CONMINdriver\n'), ((24864, 24874), 'openmdao.main.api.Assembly', 'Assembly', ([], {}), '()\n', (24872, 24874), False, 'from openmdao.main.api import Assembly, Component, VariableTree, set_as_top, Driver\n'), ((24965, 24979), 'openmdao.lib.drivers.conmindriver.CONMINdriver', 'CONMINdriver', ([], {}), '()\n', (24977, 24979), False, 'from openmdao.lib.drivers.conmindriver import CONMINdriver\n')]
|
# _SequenceGenerator.py
__module_name__ = "_SequenceGenerator.py"
__author__ = ", ".join(["<NAME>"])
__email__ = ", ".join(["<EMAIL>",])
# package imports #
# --------------- #
import numpy as np
def _set_weight_simplex(A=1, C=1, G=1, T=1):
"""
Change the composition of weights for sampling bases at random.
Parameters:
----------
N {A, C, G, T}
proportions of bases to be sampled. simplex.
Returns:
-------
Initializes self.Gene and creates/modifies self.SeqGen
Notes:
------
(1) As an example, if A=2, the simplex vector would appear as: [0.4, 0.2, 0.2, 0.2]
"""
bases = np.array([A, C, G, T])
return bases / bases.sum()
class _SequenceGenerator:
def __init__(self, A=1, C=1, G=1, T=1,):
"""
Initialize random sequence generator.
Parameters:
----------
N {A, C, G, T}
proportions of bases to be sampled. simplex.
Returns:
-------
self.bases
Array of available bases.
type: numpy.ndarray
self.weights
Weights to be passed for base selection.
type: numpy.ndarray
Notes:
------
(1) As an example, if A=2, the simplex vector would appear as: [0.4, 0.2, 0.2, 0.2]
"""
self.bases = np.array(["A", "C", "G", "T"])
self.weights = _set_weight_simplex(A, C, G, T)
def simulate(self, n_bases, return_seq=True):
""""
Simulate a DNA sequence of arbitrary length.
Parameters:
-----------
n_bases
Number of bases to be selected.
return_seq
Indicates if the generated sequence should be returned directly. Saved as a subclass object by default.
type: bool
default: True
Returns:
--------
[ optional ] self.seq
Generated sequence of length(n_bases)
type: str
Notes:
------
"""
self.seq = "".join(np.random.choice(self.bases, n_bases, p=self.weights))
if return_seq:
return self.seq
|
[
"numpy.array",
"numpy.random.choice"
] |
[((653, 675), 'numpy.array', 'np.array', (['[A, C, G, T]'], {}), '([A, C, G, T])\n', (661, 675), True, 'import numpy as np\n'), ((1359, 1389), 'numpy.array', 'np.array', (["['A', 'C', 'G', 'T']"], {}), "(['A', 'C', 'G', 'T'])\n", (1367, 1389), True, 'import numpy as np\n'), ((2134, 2187), 'numpy.random.choice', 'np.random.choice', (['self.bases', 'n_bases'], {'p': 'self.weights'}), '(self.bases, n_bases, p=self.weights)\n', (2150, 2187), True, 'import numpy as np\n')]
|
#!/usr/bin/env python
import sys
import argparse
import matplotlib
import numpy as np
import pandas as pd
matplotlib.use('Agg')
from pathlib import Path
import matplotlib.pyplot as plt
def get_ase(ase_fname):
"""parse the ASE TSV for the top n most promising str-tissue pairs"""
ase = pd.read_csv(
ase_fname, sep="\t", header=0, index_col=['str', 'tissue'], usecols=[
'str', 'tissue', 'chrom', 'str_pos', 'str_a1', 'str_a2', 'distance',
'variant_annotation', 'gene', 'ase', 'allelic_ratio'
]
)
ase['repeat_ratio'] = ase['str_a1'].str.len()/ase['str_a2'].str.len()
return ase
def plot(ase, out, n=None):
"""make plots for each str-tissue pair in the ase table"""
str_tissue_pairs = ase.index.unique()
if n is None:
n = len(str_tissue_pairs)
for STR in str_tissue_pairs:
if n <= 0:
break
plt.figure()
vals = ase[['repeat_ratio','allelic_ratio']].loc[STR].to_numpy()
#'ase': ase[['repeat_ratio','ase']].loc[STR].to_numpy()
x = vals[:,0]
y = vals[:,1]
# perform a simple linear regression
p = np.polyfit(x, y, 1)
r_squared = 1 - (
sum((y - (p[0]*x+p[1]))**2) / ((len(y) - 1) * np.var(y, ddof=1))
)
p = np.poly1d(p)
# plot the points and the line
plt.scatter(x, y, color='r', label="_nolegend_")
plt.plot(
x, p(x),
label="{}\nr-squared: {}\nn = {}".format(p, round(r_squared, 2), len(x))
)
# TODO: include information about distance, tissue, gene?, variant_annotation?
plt.xlabel("Ratio of STR Lengths")
plt.ylabel("Allelic Expression Ratio")
plt.legend(frameon=False, loc='lower right')
plt.tight_layout()
plt.savefig(str(out)+"/"+"-".join(STR)+".png", bbox_inches='tight')
plt.clf()
n -= 1
def get_args():
"""parse the arguments to this script using argparse"""
parser = argparse.ArgumentParser(description=
"Plot linear associations between ASE and STR repeat number."
)
parser.add_argument(
'-n', '--num-plots', default=None, type=int,
help='Only create plots for the first n STRs'
)
parser.add_argument(
'out', type=Path, help='Path to a directory in which to place each plot'
# TODO: describe the structure of this tsv file better
)
parser.add_argument(
'ase', default=sys.stdin, nargs='?',
help="""
A TSV containing ASE for each STR. The columns of this TSV must have names:
str, tissue, chrom, str_pos, str_a1, str_a2, distance, variant_annotation,
gene, ase
If this argument is not provided, it will be read from stdin
"""
)
args = parser.parse_args()
return args
def main(args):
# create the output directory if it doesn't exist yet
args.out.mkdir(exist_ok=True)
plot(get_ase(args.ase), args.out, args.num_plots)
if __name__ == "__main__":
main(get_args())
|
[
"numpy.poly1d",
"argparse.ArgumentParser",
"numpy.polyfit",
"pandas.read_csv",
"matplotlib.pyplot.scatter",
"matplotlib.pyplot.legend",
"matplotlib.pyplot.clf",
"numpy.var",
"matplotlib.pyplot.figure",
"matplotlib.use",
"matplotlib.pyplot.ylabel",
"matplotlib.pyplot.xlabel",
"matplotlib.pyplot.tight_layout"
] |
[((106, 127), 'matplotlib.use', 'matplotlib.use', (['"""Agg"""'], {}), "('Agg')\n", (120, 127), False, 'import matplotlib\n'), ((296, 508), 'pandas.read_csv', 'pd.read_csv', (['ase_fname'], {'sep': '"""\t"""', 'header': '(0)', 'index_col': "['str', 'tissue']", 'usecols': "['str', 'tissue', 'chrom', 'str_pos', 'str_a1', 'str_a2', 'distance',\n 'variant_annotation', 'gene', 'ase', 'allelic_ratio']"}), "(ase_fname, sep='\\t', header=0, index_col=['str', 'tissue'],\n usecols=['str', 'tissue', 'chrom', 'str_pos', 'str_a1', 'str_a2',\n 'distance', 'variant_annotation', 'gene', 'ase', 'allelic_ratio'])\n", (307, 508), True, 'import pandas as pd\n'), ((1999, 2102), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Plot linear associations between ASE and STR repeat number."""'}), "(description=\n 'Plot linear associations between ASE and STR repeat number.')\n", (2022, 2102), False, 'import argparse\n'), ((903, 915), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (913, 915), True, 'import matplotlib.pyplot as plt\n'), ((1154, 1173), 'numpy.polyfit', 'np.polyfit', (['x', 'y', '(1)'], {}), '(x, y, 1)\n', (1164, 1173), True, 'import numpy as np\n'), ((1299, 1311), 'numpy.poly1d', 'np.poly1d', (['p'], {}), '(p)\n', (1308, 1311), True, 'import numpy as np\n'), ((1359, 1407), 'matplotlib.pyplot.scatter', 'plt.scatter', (['x', 'y'], {'color': '"""r"""', 'label': '"""_nolegend_"""'}), "(x, y, color='r', label='_nolegend_')\n", (1370, 1407), True, 'import matplotlib.pyplot as plt\n'), ((1637, 1671), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Ratio of STR Lengths"""'], {}), "('Ratio of STR Lengths')\n", (1647, 1671), True, 'import matplotlib.pyplot as plt\n'), ((1680, 1718), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Allelic Expression Ratio"""'], {}), "('Allelic Expression Ratio')\n", (1690, 1718), True, 'import matplotlib.pyplot as plt\n'), ((1727, 1771), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'frameon': '(False)', 'loc': '"""lower right"""'}), "(frameon=False, loc='lower right')\n", (1737, 1771), True, 'import matplotlib.pyplot as plt\n'), ((1780, 1798), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (1796, 1798), True, 'import matplotlib.pyplot as plt\n'), ((1883, 1892), 'matplotlib.pyplot.clf', 'plt.clf', ([], {}), '()\n', (1890, 1892), True, 'import matplotlib.pyplot as plt\n'), ((1258, 1275), 'numpy.var', 'np.var', (['y'], {'ddof': '(1)'}), '(y, ddof=1)\n', (1264, 1275), True, 'import numpy as np\n')]
|
import os
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from ez_torch.base_module import Module
from ez_torch.utils import get_uv_grid
def leaky(slope=0.2):
return nn.LeakyReLU(slope, inplace=True)
def conv_block(i, o, ks, s, p, a=leaky(), d=1, bn=True):
block = [nn.Conv2d(i, o, kernel_size=ks, stride=s, padding=p, dilation=d)]
if bn:
block.append(nn.BatchNorm2d(o))
if a is not None:
block.append(a)
return nn.Sequential(*block)
def deconv_block(i, o, ks, s, p, a=leaky(), d=1, bn=True):
block = [
nn.ConvTranspose2d(
i,
o,
kernel_size=ks,
stride=s,
padding=p,
dilation=d,
)
]
if bn:
block.append(nn.BatchNorm2d(o))
if a is not None:
block.append(a)
if len(block) == 1:
return block[0]
return nn.Sequential(*block)
def dense(i, o, a=leaky()):
l = nn.Linear(i, o)
return l if a is None else nn.Sequential(l, a)
class Reshape(nn.Module):
def __init__(self, *shape):
super().__init__()
self.shape = shape
def forward(self, x):
return x.reshape(self.shape)
class Lambda(nn.Module):
def __init__(self, forward):
super().__init__()
self.forward = forward
def forward(self, *args):
return self.forward(*args)
class SpatialLinearTransformer(nn.Module):
def __init__(self, i, num_channels, only_translations=False):
super().__init__()
self.only_translations = only_translations
self.num_channels = num_channels
self.locator = nn.Sequential(
nn.Linear(i, num_channels * 2 * 3),
Reshape(-1, 2, 3),
)
self.device = self.locator[0].bias.device
# Taken from the pytorch spatial transformer tutorial.
self.locator[0].weight.data.zero_()
self.locator[0].bias.data.copy_(
torch.tensor(
[1, 0, 0, 0, 1, 0] * num_channels,
dtype=torch.float,
).to(self.device)
)
def forward(self, x):
param_features, input_to_transform = x
theta = self.locator(param_features)
_, C, H, W = input_to_transform.shape
if self.only_translations:
theta[:, :, :-1] = (
torch.tensor(
[[1, 0], [0, 1]],
dtype=torch.float,
)
.to(self.device)
.unsqueeze_(0)
)
grid = F.affine_grid(
theta,
(theta.size(dim=0), 1, H, W),
align_corners=True,
)
input_to_transform = input_to_transform.reshape(-1, 1, H, W)
input_to_transform = F.grid_sample(
input_to_transform,
grid,
align_corners=True,
)
return input_to_transform.reshape(-1, C, H, W)
class SpatialUVTransformer(nn.Module):
def __init__(self, i, uv_resolution_shape):
super().__init__()
self.uv_resolution_shape = uv_resolution_shape
self.infer_uv = nn.Sequential(
nn.Linear(i, np.prod(self.uv_resolution_shape) * 2),
Reshape(-1, 2, *self.uv_resolution_shape),
nn.Sigmoid(),
Lambda(lambda x: x * 2 - 1), # range in [-1, 1]
)
def forward(self, x):
inp, tensor_3d = x
uv_map = self.infer_uv(inp)
H, W = tensor_3d.shape[-2:]
uv_map = uv_map.ez.resize(H, W).raw.permute(0, 2, 3, 1)
tensor_3d = F.grid_sample(
tensor_3d,
uv_map,
align_corners=True,
)
return tensor_3d
class SpatialUVOffsetTransformer(nn.Module):
def __init__(self, inp, uv_resolution_shape, weight_mult_factor=0.5):
super().__init__()
self.uv_resolution_shape = uv_resolution_shape
self.infer_offset = nn.Sequential(
nn.Linear(inp, np.prod(self.uv_resolution_shape) * 2),
Reshape(-1, 2, *self.uv_resolution_shape),
nn.Sigmoid(),
Lambda(lambda x: x * 2 - 1), # range in [-1, 1]
)
self.id_uv_map = nn.parameter.Parameter(
get_uv_grid(*uv_resolution_shape),
requires_grad=False,
)
self.infer_offset[0].weight.data *= weight_mult_factor
self.infer_offset[0].bias.data.fill_(0)
def forward(self, x):
inp, tensor_3d = x
offset_map = self.infer_offset(inp) + self.id_uv_map
H, W = tensor_3d.shape[-2:]
offset_map = offset_map.ez.resize(H, W).raw.permute(0, 2, 3, 1)
tensor_3d = F.grid_sample(
tensor_3d,
offset_map,
align_corners=True,
).clamp(0, 1)
return tensor_3d
class TimeDistributed(nn.Module):
def __init__(self, module):
super().__init__()
self.module = module
def forward(self, input):
shape = input[0].size() if type(input) is list else input.size()
bs = shape[0]
seq_len = shape[1]
if type(input) is list:
input = [i.reshape(-1, *i.shape[2:]) for i in input]
else:
input = input.reshape(-1, *shape[2:])
out = self.module(input)
out = out.view(bs, seq_len, *out.shape[1:])
return out
|
[
"torch.nn.ConvTranspose2d",
"torch.nn.functional.grid_sample",
"torch.nn.Sequential",
"torch.nn.Conv2d",
"numpy.prod",
"torch.nn.BatchNorm2d",
"ez_torch.utils.get_uv_grid",
"torch.nn.Linear",
"torch.nn.LeakyReLU",
"torch.tensor",
"torch.nn.Sigmoid"
] |
[((212, 245), 'torch.nn.LeakyReLU', 'nn.LeakyReLU', (['slope'], {'inplace': '(True)'}), '(slope, inplace=True)\n', (224, 245), True, 'import torch.nn as nn\n'), ((493, 514), 'torch.nn.Sequential', 'nn.Sequential', (['*block'], {}), '(*block)\n', (506, 514), True, 'import torch.nn as nn\n'), ((920, 941), 'torch.nn.Sequential', 'nn.Sequential', (['*block'], {}), '(*block)\n', (933, 941), True, 'import torch.nn as nn\n'), ((980, 995), 'torch.nn.Linear', 'nn.Linear', (['i', 'o'], {}), '(i, o)\n', (989, 995), True, 'import torch.nn as nn\n'), ((318, 382), 'torch.nn.Conv2d', 'nn.Conv2d', (['i', 'o'], {'kernel_size': 'ks', 'stride': 's', 'padding': 'p', 'dilation': 'd'}), '(i, o, kernel_size=ks, stride=s, padding=p, dilation=d)\n', (327, 382), True, 'import torch.nn as nn\n'), ((598, 671), 'torch.nn.ConvTranspose2d', 'nn.ConvTranspose2d', (['i', 'o'], {'kernel_size': 'ks', 'stride': 's', 'padding': 'p', 'dilation': 'd'}), '(i, o, kernel_size=ks, stride=s, padding=p, dilation=d)\n', (616, 671), True, 'import torch.nn as nn\n'), ((1027, 1046), 'torch.nn.Sequential', 'nn.Sequential', (['l', 'a'], {}), '(l, a)\n', (1040, 1046), True, 'import torch.nn as nn\n'), ((2789, 2848), 'torch.nn.functional.grid_sample', 'F.grid_sample', (['input_to_transform', 'grid'], {'align_corners': '(True)'}), '(input_to_transform, grid, align_corners=True)\n', (2802, 2848), True, 'import torch.nn.functional as F\n'), ((3590, 3642), 'torch.nn.functional.grid_sample', 'F.grid_sample', (['tensor_3d', 'uv_map'], {'align_corners': '(True)'}), '(tensor_3d, uv_map, align_corners=True)\n', (3603, 3642), True, 'import torch.nn.functional as F\n'), ((416, 433), 'torch.nn.BatchNorm2d', 'nn.BatchNorm2d', (['o'], {}), '(o)\n', (430, 433), True, 'import torch.nn as nn\n'), ((794, 811), 'torch.nn.BatchNorm2d', 'nn.BatchNorm2d', (['o'], {}), '(o)\n', (808, 811), True, 'import torch.nn as nn\n'), ((1690, 1724), 'torch.nn.Linear', 'nn.Linear', (['i', '(num_channels * 2 * 3)'], {}), '(i, num_channels * 2 * 3)\n', (1699, 1724), True, 'import torch.nn as nn\n'), ((3295, 3307), 'torch.nn.Sigmoid', 'nn.Sigmoid', ([], {}), '()\n', (3305, 3307), True, 'import torch.nn as nn\n'), ((4096, 4108), 'torch.nn.Sigmoid', 'nn.Sigmoid', ([], {}), '()\n', (4106, 4108), True, 'import torch.nn as nn\n'), ((4242, 4275), 'ez_torch.utils.get_uv_grid', 'get_uv_grid', (['*uv_resolution_shape'], {}), '(*uv_resolution_shape)\n', (4253, 4275), False, 'from ez_torch.utils import get_uv_grid\n'), ((4676, 4732), 'torch.nn.functional.grid_sample', 'F.grid_sample', (['tensor_3d', 'offset_map'], {'align_corners': '(True)'}), '(tensor_3d, offset_map, align_corners=True)\n', (4689, 4732), True, 'import torch.nn.functional as F\n'), ((1978, 2044), 'torch.tensor', 'torch.tensor', (['([1, 0, 0, 0, 1, 0] * num_channels)'], {'dtype': 'torch.float'}), '([1, 0, 0, 0, 1, 0] * num_channels, dtype=torch.float)\n', (1990, 2044), False, 'import torch\n'), ((3188, 3221), 'numpy.prod', 'np.prod', (['self.uv_resolution_shape'], {}), '(self.uv_resolution_shape)\n', (3195, 3221), True, 'import numpy as np\n'), ((3989, 4022), 'numpy.prod', 'np.prod', (['self.uv_resolution_shape'], {}), '(self.uv_resolution_shape)\n', (3996, 4022), True, 'import numpy as np\n'), ((2369, 2418), 'torch.tensor', 'torch.tensor', (['[[1, 0], [0, 1]]'], {'dtype': 'torch.float'}), '([[1, 0], [0, 1]], dtype=torch.float)\n', (2381, 2418), False, 'import torch\n')]
|
import tensorflow as tf
import numpy as np
x_data = np.array([
[0,0] , [0,1], [1,0], [1,1]
])
y_data = np.array([
[1,0], #0
[1,0], #0
[1,0], #0
[0,1] #1
])
X = tf.placeholder(tf.float32)
Y = tf.placeholder(tf.float32)
W = tf.Variable(tf.random_uniform([2, 2], -1., 1.))
b = tf.Variable(tf.zeros([2]))
model = tf.nn.softmax(tf.matmul(X, W) + b)
cost = -tf.reduce_mean(Y*tf.log(model) + (1-Y)*tf.log(1-model))
optimizer = tf.train.GradientDescentOptimizer(learning_rate = 0.1)
train_op = optimizer.minimize(cost)
init = tf.global_variables_initializer()
correct_prediction = tf.equal(tf.floor(model + 0.5), Y)
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
sess = tf.Session()
sess.run(init)
for step in range(10000):
sess.run(train_op, feed_dict={X: x_data, Y: y_data})
c = sess.run(cost, feed_dict={X:x_data, Y:y_data})
if c < 0.01:
print("step : ", step)
break
if (step + 1) % 10 == 0:
print(step+1, c)
#prediction = tf.argmax(model, 1)
#target = tf.argmax(Y, 1)
#print("predict : ", sess.run(prediction, feed_dict={X: x_data}))
#print("real : ", sess.run(target, feed_dict={Y: y_data}))
print("accuracy : " , sess.run(accuracy, feed_dict={X: x_data, Y: y_data}))
|
[
"tensorflow.random_uniform",
"tensorflow.global_variables_initializer",
"tensorflow.Session",
"tensorflow.placeholder",
"tensorflow.floor",
"tensorflow.zeros",
"numpy.array",
"tensorflow.cast",
"tensorflow.matmul",
"tensorflow.log",
"tensorflow.train.GradientDescentOptimizer"
] |
[((54, 96), 'numpy.array', 'np.array', (['[[0, 0], [0, 1], [1, 0], [1, 1]]'], {}), '([[0, 0], [0, 1], [1, 0], [1, 1]])\n', (62, 96), True, 'import numpy as np\n'), ((108, 150), 'numpy.array', 'np.array', (['[[1, 0], [1, 0], [1, 0], [0, 1]]'], {}), '([[1, 0], [1, 0], [1, 0], [0, 1]])\n', (116, 150), True, 'import numpy as np\n'), ((172, 198), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32'], {}), '(tf.float32)\n', (186, 198), True, 'import tensorflow as tf\n'), ((203, 229), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32'], {}), '(tf.float32)\n', (217, 229), True, 'import tensorflow as tf\n'), ((436, 488), 'tensorflow.train.GradientDescentOptimizer', 'tf.train.GradientDescentOptimizer', ([], {'learning_rate': '(0.1)'}), '(learning_rate=0.1)\n', (469, 488), True, 'import tensorflow as tf\n'), ((535, 568), 'tensorflow.global_variables_initializer', 'tf.global_variables_initializer', ([], {}), '()\n', (566, 568), True, 'import tensorflow as tf\n'), ((698, 710), 'tensorflow.Session', 'tf.Session', ([], {}), '()\n', (708, 710), True, 'import tensorflow as tf\n'), ((247, 283), 'tensorflow.random_uniform', 'tf.random_uniform', (['[2, 2]', '(-1.0)', '(1.0)'], {}), '([2, 2], -1.0, 1.0)\n', (264, 283), True, 'import tensorflow as tf\n'), ((299, 312), 'tensorflow.zeros', 'tf.zeros', (['[2]'], {}), '([2])\n', (307, 312), True, 'import tensorflow as tf\n'), ((600, 621), 'tensorflow.floor', 'tf.floor', (['(model + 0.5)'], {}), '(model + 0.5)\n', (608, 621), True, 'import tensorflow as tf\n'), ((652, 688), 'tensorflow.cast', 'tf.cast', (['correct_prediction', '"""float"""'], {}), "(correct_prediction, 'float')\n", (659, 688), True, 'import tensorflow as tf\n'), ((337, 352), 'tensorflow.matmul', 'tf.matmul', (['X', 'W'], {}), '(X, W)\n', (346, 352), True, 'import tensorflow as tf\n'), ((384, 397), 'tensorflow.log', 'tf.log', (['model'], {}), '(model)\n', (390, 397), True, 'import tensorflow as tf\n'), ((406, 423), 'tensorflow.log', 'tf.log', (['(1 - model)'], {}), '(1 - model)\n', (412, 423), True, 'import tensorflow as tf\n')]
|
# This file is part of the P3IV Simulator (https://github.com/fzi-forschungszentrum-informatik/P3IV),
# copyright by FZI Forschungszentrum Informatik, licensed under the BSD-3 license (see LICENSE file in main directory)
from __future__ import division
import numpy as np
import warnings
import random
from .external.dataset_types import Track
from p3iv_types.motion import MotionState
from p3iv_core.bindings.dataset import DataConverterInterface
from p3iv_core.bindings.interaction_dataset.track_reader import track_reader
class DatasetValueError(Exception):
repr("Value not present in dataset")
class DataConverter(DataConverterInterface):
def __init__(self, configurations):
self.configurations = configurations
self._tracks = track_reader(
configurations["map"], configurations["dataset"], configurations["track_file_number"]
)
def fill_environment(self, environment, timestamp):
"""Fill environment model with data from the dataset.
Parameters
----------
environment: EnvironmentModel
Environmnet model object to be filled.
timestamp: int
Integer that of current timestamp.
"""
assert isinstance(timestamp, int)
for t_id, track in list(self._tracks.items()):
state = self.get_state(timestamp, t_id)
if state:
environment.add_object(t_id, self.get_color(t_id), track.length, track.width, state)
return environment
def get_state(self, timestamp, track_id):
"""Read from dataset in VehicleState-format. Extract only current timestamp state."""
assert isinstance(track_id, int)
assert isinstance(timestamp, int)
if not track_id in self._tracks:
raise DatasetValueError
track = self._tracks[track_id]
try:
data = self._read_track_at_timestamp(track, timestamp)
state = self.state(*data[1:])
except DatasetValueError:
state = None
return state
def read_track_at_timestamp(self, track_id, timestamp):
if not track_id in self._tracks:
return None
return self._read_track_at_timestamp(self._tracks[track_id], timestamp)
@staticmethod
def _read_track_at_timestamp(track, timestamp):
"""Read track data at provided timestamp.
Protected, as it serves as a helper func.
"""
assert isinstance(timestamp, (int, np.int, np.int64))
assert isinstance(track, Track)
if not (track.time_stamp_ms_first <= timestamp <= track.time_stamp_ms_last):
raise DatasetValueError
data = np.empty(6)
data[0] = timestamp
data[1] = track.motion_states[timestamp].x
data[2] = track.motion_states[timestamp].y
data[3] = track.motion_states[timestamp].psi_rad
data[4] = track.motion_states[timestamp].vx
data[5] = track.motion_states[timestamp].vy
return data
|
[
"p3iv_core.bindings.interaction_dataset.track_reader.track_reader",
"numpy.empty"
] |
[((761, 864), 'p3iv_core.bindings.interaction_dataset.track_reader.track_reader', 'track_reader', (["configurations['map']", "configurations['dataset']", "configurations['track_file_number']"], {}), "(configurations['map'], configurations['dataset'],\n configurations['track_file_number'])\n", (773, 864), False, 'from p3iv_core.bindings.interaction_dataset.track_reader import track_reader\n'), ((2686, 2697), 'numpy.empty', 'np.empty', (['(6)'], {}), '(6)\n', (2694, 2697), True, 'import numpy as np\n')]
|
#!python
# -*- coding: utf-8 -*-
#
# This software and supporting documentation are distributed by
# Institut Federatif de Recherche 49
# CEA/NeuroSpin, Batiment 145,
# 91191 Gif-sur-Yvette cedex
# France
#
# This software is governed by the CeCILL license version 2 under
# French law and abiding by the rules of distribution of free software.
# You can use, modify and/or redistribute the software under the
# terms of the CeCILL license version 2 as circulated by CEA, CNRS
# and INRIA at the following URL "http://www.cecill.info".
#
# As a counterpart to the access to the source code and rights to copy,
# modify and redistribute granted by the license, users are provided only
# with a limited warranty and the software's author, the holder of the
# economic rights, and the successive licensors have only limited
# liability.
#
# In this respect, the user's attention is drawn to the risks associated
# with loading, using, modifying and/or developing or reproducing the
# software by the user in light of its specific status of free software,
# that may mean that it is complicated to manipulate, and that also
# therefore means that it is reserved for developers and experienced
# professionals having in-depth computer knowledge. Users are therefore
# encouraged to load and test the software's suitability as regards their
# requirements in conditions enabling the security of their systems and/or
# data to be ensured and, more generally, to use and operate it in the
# same conditions as regards security.
#
# The fact that you are presently reading this means that you have had
# knowledge of the CeCILL license version 2 and that you accept its terms.
"""Write skeletons from graph files
Typical usage
-------------
You can use this program by first entering in the brainvisa environment
(here brainvisa 5.0.0 installed with singurity) and launching the script
from the terminal:
>>> bv bash
>>> python write_skeleton.py
"""
import sys
import glob
import os
import re
import argparse
from pqdm.processes import pqdm
from joblib import cpu_count
from soma import aims
import numpy as np
def define_njobs():
"""Returns number of cpus used by main loop
"""
nb_cpus = cpu_count()
return max(nb_cpus-2, 1)
def parse_args(argv):
"""Parses command-line arguments
Args:
argv: a list containing command line arguments
Returns:
args
"""
# Parse command line arguments
parser = argparse.ArgumentParser(
prog='write_skeleton.py',
description='Generates bucket files converted from volume files')
parser.add_argument(
"-s", "--src_dir", type=str, required=True,
help='Source directory where the graph data lies.')
parser.add_argument(
"-t", "--tgt_dir", type=str, required=True,
help='Output directory where to put skeleton files.')
parser.add_argument(
"-i", "--side", type=str, required=True,
help='Hemisphere side (either L or R).')
args = parser.parse_args(argv)
return args
class GraphConvert2Skeleton:
"""
"""
def __init__(self, src_dir, tgt_dir, side):
self.src_dir = src_dir
self.tgt_dir = tgt_dir
self.side = side
# self.graph_dir = "t1mri/default_acquisition/default_analysis/folds/3.1/default_session_auto/"
self.graph_dir = "t1mri/default_acquisition/default_analysis/folds/3.1/default_session_*"
def write_skeleton(self, subject):
"""
"""
# graph_file = f"{self.side}{subject}*.arg"
graph_file = glob.glob(f"{self.src_dir}/{subject}*/{self.graph_dir}/{self.side}{subject}*.arg")[0]
graph = aims.read(graph_file)
skeleton_filename = f"{self.tgt_dir}/{self.side}skeleton_{subject}_generated.nii.gz"
voxel_size = graph['voxel_size'][:3]
# Adds 1 for each x,y,z dimension
dimensions = [i+j for i, j in zip(graph['boundingbox_max'], [1,1,1,0])]
vol = aims.Volume(dimensions, dtype='S16')
vol.header()['voxel_size'] = voxel_size
if 'transformations' in graph.keys():
vol.header()['transformations'] = graph['transformations']
if 'referentials' in graph.keys():
vol.header()['referentials'] = graph['referentials']
if 'referential' in graph.keys():
vol.header()['referential'] = graph['referential']
arr = np.asarray(vol)
for edge in graph.edges():
for bucket_name, value in {'aims_junction':110, 'aims_plidepassage':120}.items():
bucket = edge.get(bucket_name)
if bucket is not None:
voxels = np.array(bucket[0].keys())
if voxels.shape == (0,):
continue
for i,j,k in voxels:
arr[i,j,k] = value
for vertex in graph.vertices():
for bucket_name, value in {'aims_bottom': 30, 'aims_ss': 60, 'aims_other': 100}.items():
bucket = vertex.get(bucket_name)
if bucket is not None:
voxels = np.array(bucket[0].keys())
if voxels.shape == (0,):
continue
for i,j,k in voxels:
arr[i,j,k] = value
aims.write(vol, skeleton_filename)
def write_loop(self):
filenames = glob.glob(f"{self.src_dir}/*/")
list_subjects = [re.search('([ae\d]{5,6})', filename).group(0) for filename in filenames]
pqdm(list_subjects, self.write_skeleton, n_jobs=define_njobs())
# self.write_skeleton(list_subjects[0])
def main(argv):
"""
"""
# Parsing arguments
args = parse_args(argv)
conversion = GraphConvert2Skeleton(args.src_dir, args.tgt_dir, args.side)
conversion.write_loop()
if __name__ == '__main__':
# This permits to call main also from another python program
# without having to make system calls
# src_dir = "/neurospin/lnao/Panabase/lborne/data/ACCpatterns/tissier_2018/subjects"
# tgt_dir = "/neurospin/dico/data/deep_folding/datasets/ACC_patterns/tissier"
# args = "-i R -s " + src_dir + " -t " + tgt_dir
# argv = args.split(' ')
# main(argv=argv)
main(argv=sys.argv[1:])
|
[
"argparse.ArgumentParser",
"soma.aims.Volume",
"joblib.cpu_count",
"numpy.asarray",
"soma.aims.write",
"soma.aims.read",
"glob.glob",
"re.search"
] |
[((2251, 2262), 'joblib.cpu_count', 'cpu_count', ([], {}), '()\n', (2260, 2262), False, 'from joblib import cpu_count\n'), ((2502, 2622), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'prog': '"""write_skeleton.py"""', 'description': '"""Generates bucket files converted from volume files"""'}), "(prog='write_skeleton.py', description=\n 'Generates bucket files converted from volume files')\n", (2525, 2622), False, 'import argparse\n'), ((3710, 3731), 'soma.aims.read', 'aims.read', (['graph_file'], {}), '(graph_file)\n', (3719, 3731), False, 'from soma import aims\n'), ((4009, 4045), 'soma.aims.Volume', 'aims.Volume', (['dimensions'], {'dtype': '"""S16"""'}), "(dimensions, dtype='S16')\n", (4020, 4045), False, 'from soma import aims\n'), ((4438, 4453), 'numpy.asarray', 'np.asarray', (['vol'], {}), '(vol)\n', (4448, 4453), True, 'import numpy as np\n'), ((5345, 5379), 'soma.aims.write', 'aims.write', (['vol', 'skeleton_filename'], {}), '(vol, skeleton_filename)\n', (5355, 5379), False, 'from soma import aims\n'), ((5428, 5459), 'glob.glob', 'glob.glob', (['f"""{self.src_dir}/*/"""'], {}), "(f'{self.src_dir}/*/')\n", (5437, 5459), False, 'import glob\n'), ((3608, 3695), 'glob.glob', 'glob.glob', (['f"""{self.src_dir}/{subject}*/{self.graph_dir}/{self.side}{subject}*.arg"""'], {}), "(\n f'{self.src_dir}/{subject}*/{self.graph_dir}/{self.side}{subject}*.arg')\n", (3617, 3695), False, 'import glob\n'), ((5485, 5522), 're.search', 're.search', (['"""([ae\\\\d]{5,6})"""', 'filename'], {}), "('([ae\\\\d]{5,6})', filename)\n", (5494, 5522), False, 'import re\n')]
|
#!/usr/bin/python3
import sys
from nuscenes.nuscenes import NuScenes
import nuscenes.utils.geometry_utils as geoutils
from pyquaternion import Quaternion
import numpy as np
import os
import numpy.linalg as la
if __name__ == "__main__":
if len(sys.argv) < 3:
print("Usage: ./nuscenes2kitti.py <dataset_folder> <output_folder> [<scene_name>]")
exit(1)
dataroot = sys.argv[1]
nusc = NuScenes(version = 'v1.0-mini', dataroot = dataroot, verbose = True)
name2id = {scene["name"]:id for id, scene in enumerate(nusc.scene)}
scenes2parse = []
if len(sys.argv) > 3:
if sys.argv[3] not in name2id:
print("No scene with name {} found.".format(sys.argv[2]))
print("Available scenes: {}".format(" ".join(name2id.keys())))
exit(1)
scenes2parse.append(sys.argv[3])
else:
scenes2parse = name2id.keys()
for scene_name in scenes2parse:
print("Converting {} ...".format(scene_name))
output_folder = os.path.join(sys.argv[2], scene_name)
velodyne_folder = os.path.join(output_folder, "velodyne/")
first_lidar = nusc.get('sample', nusc.scene[name2id[scene_name]]["first_sample_token"])["data"]["LIDAR_TOP"]
last_lidar = nusc.get('sample', nusc.scene[name2id[scene_name]]["last_sample_token"])["data"]["LIDAR_TOP"]
current_lidar = first_lidar
lidar_filenames = []
poses = []
if not os.path.exists(velodyne_folder):
print("Creating output folder: {}".format(output_folder))
os.makedirs(velodyne_folder)
original = []
while current_lidar != "":
lidar_data = nusc.get('sample_data', current_lidar)
calib_data = nusc.get("calibrated_sensor", lidar_data["calibrated_sensor_token"])
egopose_data = nusc.get('ego_pose', lidar_data["ego_pose_token"])
car_to_velo = geoutils.transform_matrix(calib_data["translation"], Quaternion(calib_data["rotation"]))
pose_car = geoutils.transform_matrix(egopose_data["translation"], Quaternion(egopose_data["rotation"]))
pose = np.dot(pose_car, car_to_velo)
scan = np.fromfile(os.path.join(dataroot, lidar_data["filename"]), dtype=np.float32)
points = scan.reshape((-1, 5))[:, :4]
# ensure that remission is in [0,1]
max_remission = np.max(points[:, 3])
min_remission = np.min(points[:, 3])
points[:, 3] = (points[:, 3] - min_remission) / (max_remission - min_remission)
output_filename = os.path.join(velodyne_folder, "{:05d}.bin".format(len(lidar_filenames)))
points.tofile(output_filename)
original.append(("{:05d}.bin".format(len(lidar_filenames)), lidar_data["filename"]))
poses.append(pose)
lidar_filenames.append(os.path.join(dataroot, lidar_data["filename"]))
current_lidar = lidar_data["next"]
ref = la.inv(poses[0])
pose_file = open(os.path.join(output_folder, "poses.txt"), "w")
for pose in poses:
pose_str = [str(v) for v in (np.dot(ref, pose))[:3,:4].flatten()]
pose_file.write(" ".join(pose_str))
pose_file.write("\n")
print("{} scans read.".format(len(lidar_filenames)))
pose_file.close()
# write dummy calibration.
calib_file = open(os.path.join(output_folder, "calib.txt"), "w")
calib_file.write("P0: 1 0 0 0 0 1 0 0 0 0 1 0\n")
calib_file.write("P1: 1 0 0 0 0 1 0 0 0 0 1 0\n")
calib_file.write("P2: 1 0 0 0 0 1 0 0 0 0 1 0\n")
calib_file.write("P3: 1 0 0 0 0 1 0 0 0 0 1 0\n")
calib_file.write("Tr: 1 0 0 0 0 1 0 0 0 0 1 0\n")
calib_file.close()
original_file = open(os.path.join(output_folder, "original.txt"), "w")
for pair in original: original_file.write(pair[0] + ":" + pair[1] + "\n")
original_file.close()
|
[
"os.makedirs",
"nuscenes.nuscenes.NuScenes",
"os.path.exists",
"numpy.max",
"numpy.min",
"numpy.linalg.inv",
"pyquaternion.Quaternion",
"numpy.dot",
"os.path.join"
] |
[((414, 476), 'nuscenes.nuscenes.NuScenes', 'NuScenes', ([], {'version': '"""v1.0-mini"""', 'dataroot': 'dataroot', 'verbose': '(True)'}), "(version='v1.0-mini', dataroot=dataroot, verbose=True)\n", (422, 476), False, 'from nuscenes.nuscenes import NuScenes\n'), ((1018, 1055), 'os.path.join', 'os.path.join', (['sys.argv[2]', 'scene_name'], {}), '(sys.argv[2], scene_name)\n', (1030, 1055), False, 'import os\n'), ((1082, 1122), 'os.path.join', 'os.path.join', (['output_folder', '"""velodyne/"""'], {}), "(output_folder, 'velodyne/')\n", (1094, 1122), False, 'import os\n'), ((3063, 3079), 'numpy.linalg.inv', 'la.inv', (['poses[0]'], {}), '(poses[0])\n', (3069, 3079), True, 'import numpy.linalg as la\n'), ((1457, 1488), 'os.path.exists', 'os.path.exists', (['velodyne_folder'], {}), '(velodyne_folder)\n', (1471, 1488), False, 'import os\n'), ((1572, 1600), 'os.makedirs', 'os.makedirs', (['velodyne_folder'], {}), '(velodyne_folder)\n', (1583, 1600), False, 'import os\n'), ((2173, 2202), 'numpy.dot', 'np.dot', (['pose_car', 'car_to_velo'], {}), '(pose_car, car_to_velo)\n', (2179, 2202), True, 'import numpy as np\n'), ((2440, 2460), 'numpy.max', 'np.max', (['points[:, 3]'], {}), '(points[:, 3])\n', (2446, 2460), True, 'import numpy as np\n'), ((2489, 2509), 'numpy.min', 'np.min', (['points[:, 3]'], {}), '(points[:, 3])\n', (2495, 2509), True, 'import numpy as np\n'), ((3105, 3145), 'os.path.join', 'os.path.join', (['output_folder', '"""poses.txt"""'], {}), "(output_folder, 'poses.txt')\n", (3117, 3145), False, 'import os\n'), ((3490, 3530), 'os.path.join', 'os.path.join', (['output_folder', '"""calib.txt"""'], {}), "(output_folder, 'calib.txt')\n", (3502, 3530), False, 'import os\n'), ((3884, 3927), 'os.path.join', 'os.path.join', (['output_folder', '"""original.txt"""'], {}), "(output_folder, 'original.txt')\n", (3896, 3927), False, 'import os\n'), ((1989, 2023), 'pyquaternion.Quaternion', 'Quaternion', (["calib_data['rotation']"], {}), "(calib_data['rotation'])\n", (1999, 2023), False, 'from pyquaternion import Quaternion\n'), ((2103, 2139), 'pyquaternion.Quaternion', 'Quaternion', (["egopose_data['rotation']"], {}), "(egopose_data['rotation'])\n", (2113, 2139), False, 'from pyquaternion import Quaternion\n'), ((2247, 2293), 'os.path.join', 'os.path.join', (['dataroot', "lidar_data['filename']"], {}), "(dataroot, lidar_data['filename'])\n", (2259, 2293), False, 'import os\n'), ((2939, 2985), 'os.path.join', 'os.path.join', (['dataroot', "lidar_data['filename']"], {}), "(dataroot, lidar_data['filename'])\n", (2951, 2985), False, 'import os\n'), ((3220, 3237), 'numpy.dot', 'np.dot', (['ref', 'pose'], {}), '(ref, pose)\n', (3226, 3237), True, 'import numpy as np\n')]
|
"""
Test the various utilities in serpentTools/utils.py
"""
from unittest import TestCase
from numpy import arange, ndarray, array, ones, ones_like, zeros_like
from numpy.testing import assert_array_equal
from serpentTools.utils import (
convertVariableName,
splitValsUncs,
str2vec,
getCommonKeys,
directCompare,
getOverlaps,
splitDictByKeys,
DC_STAT_GOOD,
DC_STAT_LE_LOWER,
DC_STAT_MID,
DC_STAT_GE_UPPER,
DC_STAT_NOT_IDENTICAL,
DC_STAT_NOT_IMPLEMENTED,
DC_STAT_DIFF_TYPES,
DC_STAT_DIFF_SHAPES,
formatPlot,
)
from tests import plotTest, plotAttrTest
class VariableConverterTester(TestCase):
"""Class for testing our variable name conversion function."""
def test_variableConversion(self):
""" Verify the variable name conversion function."""
testCases = {
"VERSION": "version",
"INF_KINF": "infKinf",
"ADJ_PERT_KEFF_SENS": "adjPertKeffSens",
}
for serpentStyle, expected in testCases.items():
actual = convertVariableName(serpentStyle)
self.assertEqual(expected, actual, msg=serpentStyle)
class VectorConverterTester(TestCase):
"""Class for testing the str2vec function"""
@classmethod
def setUpClass(cls):
cls.testCases = ("0 1 2 3", [0, 1, 2, 3], (0, 1, 2, 3), arange(4))
def test_str2Arrays(self):
"""Verify that the str2vec converts to arrays."""
expected = arange(4)
for case in self.testCases:
actual = str2vec(case)
assert_array_equal(expected, actual, err_msg=case)
def test_listOfInts(self):
"""Verify that a list of ints can be produced with str2vec."""
expected = [0, 1, 2, 3]
self._runConversionTest(int, expected, list)
def test_vecOfStr(self):
"""Verify a single word can be converted with str2vec"""
key = 'ADF'
expected = array('ADF')
actual = str2vec(key)
assert_array_equal(expected, actual)
def _runConversionTest(self, valType, expected, outType=None):
if outType is None:
outType = array
compareType = ndarray
else:
compareType = outType
for case in self.testCases:
actual = str2vec(case, dtype=valType, out=outType)
self.assertIsInstance(actual, compareType, msg=case)
ofRightType = [isinstance(xx, valType) for xx in actual]
self.assertTrue(all(ofRightType),
msg="{} -> {}, {}".format(case, actual,
type(actual)))
self.assertEqual(expected, actual, msg=case)
class SplitValsTester(TestCase):
"""Class that tests splitValsUncs."""
@classmethod
def setUp(cls):
cls.input = arange(4)
def test_splitVals(self):
"""Verify the basic functionality."""
expectedV = array([0, 2])
expectedU = array([1, 3])
actualV, actualU = splitValsUncs(self.input)
assert_array_equal(expectedV, actualV, err_msg="Values")
assert_array_equal(expectedU, actualU, err_msg="Uncertainties")
def test_splitCopy(self):
"""Verfiy that a copy, not a view, is returned when copy=True"""
viewV, viewU = splitValsUncs(self.input)
copyV, copyU = splitValsUncs(self.input, copy=True)
for view, copy, msg in zip(
(viewV, viewU), (copyV, copyU), ('value', 'uncertainty')):
assert_array_equal(view, copy, err_msg=msg)
self.assertFalse(view is copy, msg=msg)
def test_splitAtCols(self):
"""Verify that the splitValsUncs works for 2D arrays."""
mat = self.input.reshape(2, 2)
expectedV = array([[0], [2]])
expectedU = array([[1], [3]])
actualV, actualU = splitValsUncs(mat)
assert_array_equal(expectedV, actualV, err_msg="Values")
assert_array_equal(expectedU, actualU, err_msg="Uncertainties")
class CommonKeysTester(TestCase):
"""Class that tests getCommonKeys"""
def test_goodKeys_dict(self):
"""Verify a complete set of keys is returned from getCommonKeys"""
d0 = {1: None, '2': None, (1, 2, 3): "tuple"}
expected = set(d0.keys())
actual = getCommonKeys(d0, d0, 'identical dictionary')
self.assertSetEqual(expected, actual,
msg="Passed two dictionaries")
actual = getCommonKeys(d0, expected, 'dictionary and set')
self.assertSetEqual(expected, actual,
msg="Passed dictionary and set")
def test_getKeys_missing(self):
"""Verify that missing keys are properly notified."""
log = []
d0 = {1, 2, 3}
emptyS = set()
desc0 = "xObj0x"
desc1 = "xObj1x"
common = getCommonKeys(d0, emptyS, 'missing keys', desc0, desc1,
herald=log.append)
self.assertSetEqual(emptyS, common)
self.assertEqual(len(log), 1, msg="Failed to append warning message")
warnMsg = log[0]
self.assertIsInstance(warnMsg, str, msg="Log messages is not string")
for desc in (desc0, desc1):
errMsg = "Description {} missing from warning message\n{}"
self.assertIn(desc, warnMsg, msg=errMsg.format(desc, warnMsg))
class DirectCompareTester(TestCase):
"""Class for testing utils.directCompare."""
NUMERIC_ITEMS = (
[0, 0.001],
[1E-8, 0],
[array([1, 1, ]), array([1, 1.0001])],
)
def checkStatus(self, expected, obj0, obj1, lower, upper, msg=None):
"""Wrapper around directCompare with ``args``. Pass ``kwargs`` to
assertEqual."""
actual = directCompare(obj0, obj1, lower, upper)
self.assertEqual(expected, actual, msg=msg)
def test_badTypes(self):
"""Verify that two objects of different types return -1."""
status = DC_STAT_DIFF_TYPES
value = 1
for otherType in (bool, str):
self.checkStatus(status, value, otherType(value), 0, 1,
msg=str(otherType))
asIterable = [value, ]
for otherType in (list, set, tuple, array):
self.checkStatus(status, value, otherType(asIterable), 0, 1,
msg=str(otherType))
def test_identicalString(self):
"""Verify that identical strings return 0."""
msg = obj = 'identicalStrings'
status = DC_STAT_GOOD
self.checkStatus(status, obj, obj, 0, 1, msg=msg)
def test_dissimilarString(self):
"""Verify returns the proper code for dissimilar strings."""
msg = "dissimilarStrings"
status = DC_STAT_NOT_IDENTICAL
self.checkStatus(status, 'item0', 'item1', 0, 1, msg=msg)
def _testNumericsForItems(self, status, lower, upper):
msg = "lower: {lower}, upper: {upper}\n{}\n{}"
for (obj0, obj1) in self.NUMERIC_ITEMS:
self.checkStatus(status, obj0, obj1, lower, upper,
msg=msg.format(obj0, obj1, lower=lower,
upper=upper))
def test_acceptableLow(self):
"""Verify returns the proper code for close numerics."""
lower = 5
upper = 1E4
self._testNumericsForItems(DC_STAT_LE_LOWER, lower, upper)
def test_acceptableHigh(self):
"""Verify returns the proper code for close but not quite values."""
lower = 0
upper = 1E4
self._testNumericsForItems(DC_STAT_MID, lower, upper)
def test_outsideTols(self):
"""Verify returns the proper code for values outside tolerances."""
lower = 1E-8
upper = 1E-8
self._testNumericsForItems(DC_STAT_GE_UPPER, lower, upper)
def test_notImplemented(self):
"""Check the not-implemented cases."""
self.checkStatus(DC_STAT_NOT_IMPLEMENTED, {'hello': 'world'},
{'hello': 'world'}, 0, 0,
msg="testing on dictionaries")
def test_stringArrays(self):
"""Verify the function handles string arrays properly."""
stringList = ['hello', 'world', '1', '-1']
vec0 = array(stringList)
self.checkStatus(DC_STAT_GOOD, vec0, vec0, 0, 0,
msg='Identical string arrays')
vec1 = array(stringList)
vec1[-1] = 'foobar'
self.checkStatus(DC_STAT_NOT_IDENTICAL, vec0, vec1, 0, 0,
msg='Dissimilar string arrays')
def test_diffShapes(self):
"""
Verify that that directCompare fails for arrays of different shape.
"""
vec0 = [0, 1, 2, 3, 4]
vec1 = [0, 1]
mat0 = [[0, 1], [1, 2]]
mat1 = [[0, 1, 2], [3, 4, 5], [6, 7, 8]]
self.checkStatus(DC_STAT_DIFF_SHAPES, vec0, vec1, 0, 0,
msg="Compare two vectors.")
self.checkStatus(DC_STAT_DIFF_SHAPES, vec0, mat0, 0, 0,
msg="Compare vector and array.")
self.checkStatus(DC_STAT_DIFF_SHAPES, mat0, mat1, 0, 0,
msg="Compare vector and array.")
class OverlapTester(TestCase):
"""Class for testing the Overlapping uncertainties function."""
a0 = ones(4)
a1 = ones(4) * 0.5
u0 = array([0, 0.2, 0.1, 0.2])
u1 = array([1, 0.55, 0.25, 0.4])
expected = array([True, True, False, True])
sigma = 1
relative = False
_errMsg = "Sigma:{}\na0:\n{}\nu0:\n{}\na1:\n{}\nu1:\n{}"
def _test(self, expected, a0, a1, u0, u1, sigma, relative):
"""Symmetric test on the data by switching the order of arguments."""
assert_array_equal(expected, getOverlaps(a0, a1, u0, u1, sigma,
relative),
err_msg=self._errMsg.format(a0, u0, a1, u1, sigma))
assert_array_equal(expected, getOverlaps(a1, a0, u1, u0, sigma,
relative),
err_msg=self._errMsg.format(sigma, a1, u1, a0, u0))
def _testWithReshapes(self, expected, a0, a1, u0, u1, sigma, shape,
relative):
"""Call symmetric test twice, using reshaped arrays the second time."""
self._test(expected, a0, a1, u0, u1, sigma, relative)
ra0, ra1, ru0, ru1 = [arg.reshape(*shape) for arg in [a0, a1, u0, u1]]
self._test(expected.reshape(*shape), ra0, ra1, ru0, ru1, sigma,
relative)
def test_overlap_absolute(self):
"""Verify the getOverlaps works using absolute uncertainties."""
self._testWithReshapes(self.expected, self.a0, self.a1, self.u0,
self.u1, self.sigma, (2, 2), False)
def test_overlap_relative(self):
"""Verify the getOverlaps works using relative uncertainties."""
u0 = self.u0 / self.a0
u1 = self.u1 / self.a1
self._testWithReshapes(self.expected, self.a0, self.a1, u0,
u1, self.sigma, (2, 2), True)
@staticmethod
def _setupIdentical(nItems, shape=None):
arr = arange(nItems)
if shape is not None:
arr = arr.reshape(*shape)
unc = zeros_like(arr)
expected = ones_like(arr, dtype=bool)
return arr, unc, expected
def test_overlap_identical_1D(self):
"""
Verify that all positions are found to overlap for identical arrays.
"""
vec, unc, expected = self._setupIdentical(8)
self._test(expected, vec, vec, unc, unc, 1, False)
def test_overlap_identical_2D(self):
"""
Verify that all positions are found to overlap for identical arrays.
"""
vec, unc, expected = self._setupIdentical(8, (2, 4))
self._test(expected, vec, vec, unc, unc, 1, False)
def test_overlap_identical_3D(self):
"""
Verify that all positions are found to overlap for identical arrays.
"""
vec, unc, expected = self._setupIdentical(8, (2, 2, 2))
self._test(expected, vec, vec, unc, unc, 1, False)
def test_overlap_badshapes(self):
"""Verify IndexError is raised for bad shapes."""
vec = arange(4)
mat = vec.reshape(2, 2)
with self.assertRaises(IndexError):
getOverlaps(vec, mat, vec, mat, 1)
class SplitDictionaryTester(TestCase):
"""Class for testing utils.splitDictByKeys."""
@classmethod
def setUpClass(cls):
cls.map0 = {
'hello': 'world',
'missingFrom1': True,
'infKeff': arange(2),
'float': 0.24,
'absKeff': arange(2),
'anaKeff': arange(6),
'notBool': 1,
}
cls.map1 = {
'hello': 'world',
'infKeff': arange(2),
'float': 0.24,
'missingFrom0': True,
'notBool': False,
'anaKeff': arange(2),
'absKeff': arange(2),
}
cls.badTypes = {'notBool': (int, bool)}
cls.badShapes = {'anaKeff': ((6, ), (2, )), }
cls.goodKeys = {'hello', 'absKeff', 'float', 'infKeff', }
def callTest(self, keySet=None):
return splitDictByKeys(self.map0, self.map1, keySet)
def test_noKeys(self):
"""Verify that splitDictByKeys works when keySet is None."""
m0, m1, badTypes, badShapes, goodKeys = self.callTest(None)
self.assertSetEqual({'missingFrom0', }, m0)
self.assertSetEqual({'missingFrom1', }, m1)
self.assertDictEqual(self.badTypes, badTypes)
self.assertDictEqual(self.badShapes, badShapes)
self.assertSetEqual(self.goodKeys, goodKeys)
def test_keySet_all(self):
"""Verify that splitDictByKeys works when keySet is all keys."""
keys = set(self.map0.keys())
keys.update(set(self.map1.keys()))
keys.add('NOT IN ANY MAP')
missing0 = set()
missing1 = set()
for key in keys:
if key not in self.map0:
missing0.add(key)
if key not in self.map1:
missing1.add(key)
m0, m1, badTypes, badShapes, goodKeys = self.callTest(keys)
self.assertSetEqual(missing0, m0)
self.assertSetEqual(missing1, m1)
self.assertDictEqual(self.badTypes, badTypes)
self.assertDictEqual(self.badShapes, badShapes)
self.assertSetEqual(self.goodKeys, goodKeys)
class PlotTestTester(TestCase):
"""Class to test the validity of the plot test utils"""
XLABEL = "Test x label"
YLABEL = "Test y label"
def buildPlot(self):
from matplotlib.pyplot import gca
ax = gca()
ax.plot([1, 2, 3], label=1)
ax.legend()
ax.set_ylabel(self.YLABEL)
ax.set_xlabel(self.XLABEL)
return ax
@plotTest
def test_plotAttrs_gca(self):
"""Test the plotAttrTest without passing an axes object"""
self.buildPlot()
plotAttrTest(self, xlabel=self.XLABEL, ylabel=self.YLABEL)
@plotTest
def test_plotAttrs_fail(self):
"""Test the failure modes of the plotAttrTest function"""
ax = self.buildPlot()
with self.assertRaisesRegex(AssertionError, 'xlabel'):
plotAttrTest(self, ax, xlabel="Bad label")
with self.assertRaisesRegex(AssertionError, 'ylabel'):
plotAttrTest(self, ax, ylabel="Bad label")
with self.assertRaisesRegex(AssertionError, 'xscale'):
plotAttrTest(self, ax, xscale="log")
with self.assertRaisesRegex(AssertionError, 'yscale'):
plotAttrTest(self, ax, yscale="log")
with self.assertRaisesRegex(AssertionError, 'legend text'):
plotAttrTest(self, ax, legendLabels='bad text')
with self.assertRaisesRegex(AssertionError, 'legend text'):
plotAttrTest(self, ax, legendLabels=['1', '2'])
with self.assertRaisesRegex(AssertionError, 'title'):
plotAttrTest(self, ax, title='Bad title')
@plotTest
def test_formatPlot(self):
"""Test the capabilities of the formatPlot function"""
ax = self.buildPlot()
newX = 'new x label'
newY = 'new y label'
title = 'plot title'
formatPlot(ax, xlabel=newX, ylabel=newY, loglog=True,
title=title)
plotAttrTest(self, ax, xlabel=newX, ylabel=newY,
xscale='log', yscale='log', title=title)
|
[
"numpy.zeros_like",
"numpy.ones_like",
"serpentTools.utils.formatPlot",
"numpy.testing.assert_array_equal",
"serpentTools.utils.splitValsUncs",
"numpy.ones",
"serpentTools.utils.directCompare",
"tests.plotAttrTest",
"serpentTools.utils.getOverlaps",
"serpentTools.utils.getCommonKeys",
"serpentTools.utils.splitDictByKeys",
"numpy.arange",
"numpy.array",
"serpentTools.utils.str2vec",
"matplotlib.pyplot.gca",
"serpentTools.utils.convertVariableName"
] |
[((9305, 9312), 'numpy.ones', 'ones', (['(4)'], {}), '(4)\n', (9309, 9312), False, 'from numpy import arange, ndarray, array, ones, ones_like, zeros_like\n'), ((9345, 9370), 'numpy.array', 'array', (['[0, 0.2, 0.1, 0.2]'], {}), '([0, 0.2, 0.1, 0.2])\n', (9350, 9370), False, 'from numpy import arange, ndarray, array, ones, ones_like, zeros_like\n'), ((9380, 9407), 'numpy.array', 'array', (['[1, 0.55, 0.25, 0.4]'], {}), '([1, 0.55, 0.25, 0.4])\n', (9385, 9407), False, 'from numpy import arange, ndarray, array, ones, ones_like, zeros_like\n'), ((9423, 9455), 'numpy.array', 'array', (['[True, True, False, True]'], {}), '([True, True, False, True])\n', (9428, 9455), False, 'from numpy import arange, ndarray, array, ones, ones_like, zeros_like\n'), ((1477, 1486), 'numpy.arange', 'arange', (['(4)'], {}), '(4)\n', (1483, 1486), False, 'from numpy import arange, ndarray, array, ones, ones_like, zeros_like\n'), ((1943, 1955), 'numpy.array', 'array', (['"""ADF"""'], {}), "('ADF')\n", (1948, 1955), False, 'from numpy import arange, ndarray, array, ones, ones_like, zeros_like\n'), ((1973, 1985), 'serpentTools.utils.str2vec', 'str2vec', (['key'], {}), '(key)\n', (1980, 1985), False, 'from serpentTools.utils import convertVariableName, splitValsUncs, str2vec, getCommonKeys, directCompare, getOverlaps, splitDictByKeys, DC_STAT_GOOD, DC_STAT_LE_LOWER, DC_STAT_MID, DC_STAT_GE_UPPER, DC_STAT_NOT_IDENTICAL, DC_STAT_NOT_IMPLEMENTED, DC_STAT_DIFF_TYPES, DC_STAT_DIFF_SHAPES, formatPlot\n'), ((1994, 2030), 'numpy.testing.assert_array_equal', 'assert_array_equal', (['expected', 'actual'], {}), '(expected, actual)\n', (2012, 2030), False, 'from numpy.testing import assert_array_equal\n'), ((2845, 2854), 'numpy.arange', 'arange', (['(4)'], {}), '(4)\n', (2851, 2854), False, 'from numpy import arange, ndarray, array, ones, ones_like, zeros_like\n'), ((2952, 2965), 'numpy.array', 'array', (['[0, 2]'], {}), '([0, 2])\n', (2957, 2965), False, 'from numpy import arange, ndarray, array, ones, ones_like, zeros_like\n'), ((2986, 2999), 'numpy.array', 'array', (['[1, 3]'], {}), '([1, 3])\n', (2991, 2999), False, 'from numpy import arange, ndarray, array, ones, ones_like, zeros_like\n'), ((3027, 3052), 'serpentTools.utils.splitValsUncs', 'splitValsUncs', (['self.input'], {}), '(self.input)\n', (3040, 3052), False, 'from serpentTools.utils import convertVariableName, splitValsUncs, str2vec, getCommonKeys, directCompare, getOverlaps, splitDictByKeys, DC_STAT_GOOD, DC_STAT_LE_LOWER, DC_STAT_MID, DC_STAT_GE_UPPER, DC_STAT_NOT_IDENTICAL, DC_STAT_NOT_IMPLEMENTED, DC_STAT_DIFF_TYPES, DC_STAT_DIFF_SHAPES, formatPlot\n'), ((3061, 3117), 'numpy.testing.assert_array_equal', 'assert_array_equal', (['expectedV', 'actualV'], {'err_msg': '"""Values"""'}), "(expectedV, actualV, err_msg='Values')\n", (3079, 3117), False, 'from numpy.testing import assert_array_equal\n'), ((3126, 3189), 'numpy.testing.assert_array_equal', 'assert_array_equal', (['expectedU', 'actualU'], {'err_msg': '"""Uncertainties"""'}), "(expectedU, actualU, err_msg='Uncertainties')\n", (3144, 3189), False, 'from numpy.testing import assert_array_equal\n'), ((3317, 3342), 'serpentTools.utils.splitValsUncs', 'splitValsUncs', (['self.input'], {}), '(self.input)\n', (3330, 3342), False, 'from serpentTools.utils import convertVariableName, splitValsUncs, str2vec, getCommonKeys, directCompare, getOverlaps, splitDictByKeys, DC_STAT_GOOD, DC_STAT_LE_LOWER, DC_STAT_MID, DC_STAT_GE_UPPER, DC_STAT_NOT_IDENTICAL, DC_STAT_NOT_IMPLEMENTED, DC_STAT_DIFF_TYPES, DC_STAT_DIFF_SHAPES, formatPlot\n'), ((3366, 3402), 'serpentTools.utils.splitValsUncs', 'splitValsUncs', (['self.input'], {'copy': '(True)'}), '(self.input, copy=True)\n', (3379, 3402), False, 'from serpentTools.utils import convertVariableName, splitValsUncs, str2vec, getCommonKeys, directCompare, getOverlaps, splitDictByKeys, DC_STAT_GOOD, DC_STAT_LE_LOWER, DC_STAT_MID, DC_STAT_GE_UPPER, DC_STAT_NOT_IDENTICAL, DC_STAT_NOT_IMPLEMENTED, DC_STAT_DIFF_TYPES, DC_STAT_DIFF_SHAPES, formatPlot\n'), ((3779, 3796), 'numpy.array', 'array', (['[[0], [2]]'], {}), '([[0], [2]])\n', (3784, 3796), False, 'from numpy import arange, ndarray, array, ones, ones_like, zeros_like\n'), ((3817, 3834), 'numpy.array', 'array', (['[[1], [3]]'], {}), '([[1], [3]])\n', (3822, 3834), False, 'from numpy import arange, ndarray, array, ones, ones_like, zeros_like\n'), ((3862, 3880), 'serpentTools.utils.splitValsUncs', 'splitValsUncs', (['mat'], {}), '(mat)\n', (3875, 3880), False, 'from serpentTools.utils import convertVariableName, splitValsUncs, str2vec, getCommonKeys, directCompare, getOverlaps, splitDictByKeys, DC_STAT_GOOD, DC_STAT_LE_LOWER, DC_STAT_MID, DC_STAT_GE_UPPER, DC_STAT_NOT_IDENTICAL, DC_STAT_NOT_IMPLEMENTED, DC_STAT_DIFF_TYPES, DC_STAT_DIFF_SHAPES, formatPlot\n'), ((3889, 3945), 'numpy.testing.assert_array_equal', 'assert_array_equal', (['expectedV', 'actualV'], {'err_msg': '"""Values"""'}), "(expectedV, actualV, err_msg='Values')\n", (3907, 3945), False, 'from numpy.testing import assert_array_equal\n'), ((3954, 4017), 'numpy.testing.assert_array_equal', 'assert_array_equal', (['expectedU', 'actualU'], {'err_msg': '"""Uncertainties"""'}), "(expectedU, actualU, err_msg='Uncertainties')\n", (3972, 4017), False, 'from numpy.testing import assert_array_equal\n'), ((4310, 4355), 'serpentTools.utils.getCommonKeys', 'getCommonKeys', (['d0', 'd0', '"""identical dictionary"""'], {}), "(d0, d0, 'identical dictionary')\n", (4323, 4355), False, 'from serpentTools.utils import convertVariableName, splitValsUncs, str2vec, getCommonKeys, directCompare, getOverlaps, splitDictByKeys, DC_STAT_GOOD, DC_STAT_LE_LOWER, DC_STAT_MID, DC_STAT_GE_UPPER, DC_STAT_NOT_IDENTICAL, DC_STAT_NOT_IMPLEMENTED, DC_STAT_DIFF_TYPES, DC_STAT_DIFF_SHAPES, formatPlot\n'), ((4478, 4527), 'serpentTools.utils.getCommonKeys', 'getCommonKeys', (['d0', 'expected', '"""dictionary and set"""'], {}), "(d0, expected, 'dictionary and set')\n", (4491, 4527), False, 'from serpentTools.utils import convertVariableName, splitValsUncs, str2vec, getCommonKeys, directCompare, getOverlaps, splitDictByKeys, DC_STAT_GOOD, DC_STAT_LE_LOWER, DC_STAT_MID, DC_STAT_GE_UPPER, DC_STAT_NOT_IDENTICAL, DC_STAT_NOT_IMPLEMENTED, DC_STAT_DIFF_TYPES, DC_STAT_DIFF_SHAPES, formatPlot\n'), ((4864, 4938), 'serpentTools.utils.getCommonKeys', 'getCommonKeys', (['d0', 'emptyS', '"""missing keys"""', 'desc0', 'desc1'], {'herald': 'log.append'}), "(d0, emptyS, 'missing keys', desc0, desc1, herald=log.append)\n", (4877, 4938), False, 'from serpentTools.utils import convertVariableName, splitValsUncs, str2vec, getCommonKeys, directCompare, getOverlaps, splitDictByKeys, DC_STAT_GOOD, DC_STAT_LE_LOWER, DC_STAT_MID, DC_STAT_GE_UPPER, DC_STAT_NOT_IDENTICAL, DC_STAT_NOT_IMPLEMENTED, DC_STAT_DIFF_TYPES, DC_STAT_DIFF_SHAPES, formatPlot\n'), ((5769, 5808), 'serpentTools.utils.directCompare', 'directCompare', (['obj0', 'obj1', 'lower', 'upper'], {}), '(obj0, obj1, lower, upper)\n', (5782, 5808), False, 'from serpentTools.utils import convertVariableName, splitValsUncs, str2vec, getCommonKeys, directCompare, getOverlaps, splitDictByKeys, DC_STAT_GOOD, DC_STAT_LE_LOWER, DC_STAT_MID, DC_STAT_GE_UPPER, DC_STAT_NOT_IDENTICAL, DC_STAT_NOT_IMPLEMENTED, DC_STAT_DIFF_TYPES, DC_STAT_DIFF_SHAPES, formatPlot\n'), ((8252, 8269), 'numpy.array', 'array', (['stringList'], {}), '(stringList)\n', (8257, 8269), False, 'from numpy import arange, ndarray, array, ones, ones_like, zeros_like\n'), ((8398, 8415), 'numpy.array', 'array', (['stringList'], {}), '(stringList)\n', (8403, 8415), False, 'from numpy import arange, ndarray, array, ones, ones_like, zeros_like\n'), ((9322, 9329), 'numpy.ones', 'ones', (['(4)'], {}), '(4)\n', (9326, 9329), False, 'from numpy import arange, ndarray, array, ones, ones_like, zeros_like\n'), ((11181, 11195), 'numpy.arange', 'arange', (['nItems'], {}), '(nItems)\n', (11187, 11195), False, 'from numpy import arange, ndarray, array, ones, ones_like, zeros_like\n'), ((11278, 11293), 'numpy.zeros_like', 'zeros_like', (['arr'], {}), '(arr)\n', (11288, 11293), False, 'from numpy import arange, ndarray, array, ones, ones_like, zeros_like\n'), ((11313, 11339), 'numpy.ones_like', 'ones_like', (['arr'], {'dtype': 'bool'}), '(arr, dtype=bool)\n', (11322, 11339), False, 'from numpy import arange, ndarray, array, ones, ones_like, zeros_like\n'), ((12269, 12278), 'numpy.arange', 'arange', (['(4)'], {}), '(4)\n', (12275, 12278), False, 'from numpy import arange, ndarray, array, ones, ones_like, zeros_like\n'), ((13262, 13307), 'serpentTools.utils.splitDictByKeys', 'splitDictByKeys', (['self.map0', 'self.map1', 'keySet'], {}), '(self.map0, self.map1, keySet)\n', (13277, 13307), False, 'from serpentTools.utils import convertVariableName, splitValsUncs, str2vec, getCommonKeys, directCompare, getOverlaps, splitDictByKeys, DC_STAT_GOOD, DC_STAT_LE_LOWER, DC_STAT_MID, DC_STAT_GE_UPPER, DC_STAT_NOT_IDENTICAL, DC_STAT_NOT_IMPLEMENTED, DC_STAT_DIFF_TYPES, DC_STAT_DIFF_SHAPES, formatPlot\n'), ((14724, 14729), 'matplotlib.pyplot.gca', 'gca', ([], {}), '()\n', (14727, 14729), False, 'from matplotlib.pyplot import gca\n'), ((15023, 15081), 'tests.plotAttrTest', 'plotAttrTest', (['self'], {'xlabel': 'self.XLABEL', 'ylabel': 'self.YLABEL'}), '(self, xlabel=self.XLABEL, ylabel=self.YLABEL)\n', (15035, 15081), False, 'from tests import plotTest, plotAttrTest\n'), ((16294, 16360), 'serpentTools.utils.formatPlot', 'formatPlot', (['ax'], {'xlabel': 'newX', 'ylabel': 'newY', 'loglog': '(True)', 'title': 'title'}), '(ax, xlabel=newX, ylabel=newY, loglog=True, title=title)\n', (16304, 16360), False, 'from serpentTools.utils import convertVariableName, splitValsUncs, str2vec, getCommonKeys, directCompare, getOverlaps, splitDictByKeys, DC_STAT_GOOD, DC_STAT_LE_LOWER, DC_STAT_MID, DC_STAT_GE_UPPER, DC_STAT_NOT_IDENTICAL, DC_STAT_NOT_IMPLEMENTED, DC_STAT_DIFF_TYPES, DC_STAT_DIFF_SHAPES, formatPlot\n'), ((16388, 16481), 'tests.plotAttrTest', 'plotAttrTest', (['self', 'ax'], {'xlabel': 'newX', 'ylabel': 'newY', 'xscale': '"""log"""', 'yscale': '"""log"""', 'title': 'title'}), "(self, ax, xlabel=newX, ylabel=newY, xscale='log', yscale='log',\n title=title)\n", (16400, 16481), False, 'from tests import plotTest, plotAttrTest\n'), ((1061, 1094), 'serpentTools.utils.convertVariableName', 'convertVariableName', (['serpentStyle'], {}), '(serpentStyle)\n', (1080, 1094), False, 'from serpentTools.utils import convertVariableName, splitValsUncs, str2vec, getCommonKeys, directCompare, getOverlaps, splitDictByKeys, DC_STAT_GOOD, DC_STAT_LE_LOWER, DC_STAT_MID, DC_STAT_GE_UPPER, DC_STAT_NOT_IDENTICAL, DC_STAT_NOT_IMPLEMENTED, DC_STAT_DIFF_TYPES, DC_STAT_DIFF_SHAPES, formatPlot\n'), ((1357, 1366), 'numpy.arange', 'arange', (['(4)'], {}), '(4)\n', (1363, 1366), False, 'from numpy import arange, ndarray, array, ones, ones_like, zeros_like\n'), ((1544, 1557), 'serpentTools.utils.str2vec', 'str2vec', (['case'], {}), '(case)\n', (1551, 1557), False, 'from serpentTools.utils import convertVariableName, splitValsUncs, str2vec, getCommonKeys, directCompare, getOverlaps, splitDictByKeys, DC_STAT_GOOD, DC_STAT_LE_LOWER, DC_STAT_MID, DC_STAT_GE_UPPER, DC_STAT_NOT_IDENTICAL, DC_STAT_NOT_IMPLEMENTED, DC_STAT_DIFF_TYPES, DC_STAT_DIFF_SHAPES, formatPlot\n'), ((1570, 1620), 'numpy.testing.assert_array_equal', 'assert_array_equal', (['expected', 'actual'], {'err_msg': 'case'}), '(expected, actual, err_msg=case)\n', (1588, 1620), False, 'from numpy.testing import assert_array_equal\n'), ((2294, 2335), 'serpentTools.utils.str2vec', 'str2vec', (['case'], {'dtype': 'valType', 'out': 'outType'}), '(case, dtype=valType, out=outType)\n', (2301, 2335), False, 'from serpentTools.utils import convertVariableName, splitValsUncs, str2vec, getCommonKeys, directCompare, getOverlaps, splitDictByKeys, DC_STAT_GOOD, DC_STAT_LE_LOWER, DC_STAT_MID, DC_STAT_GE_UPPER, DC_STAT_NOT_IDENTICAL, DC_STAT_NOT_IMPLEMENTED, DC_STAT_DIFF_TYPES, DC_STAT_DIFF_SHAPES, formatPlot\n'), ((3526, 3569), 'numpy.testing.assert_array_equal', 'assert_array_equal', (['view', 'copy'], {'err_msg': 'msg'}), '(view, copy, err_msg=msg)\n', (3544, 3569), False, 'from numpy.testing import assert_array_equal\n'), ((5536, 5549), 'numpy.array', 'array', (['[1, 1]'], {}), '([1, 1])\n', (5541, 5549), False, 'from numpy import arange, ndarray, array, ones, ones_like, zeros_like\n'), ((5553, 5571), 'numpy.array', 'array', (['[1, 1.0001]'], {}), '([1, 1.0001])\n', (5558, 5571), False, 'from numpy import arange, ndarray, array, ones, ones_like, zeros_like\n'), ((9733, 9777), 'serpentTools.utils.getOverlaps', 'getOverlaps', (['a0', 'a1', 'u0', 'u1', 'sigma', 'relative'], {}), '(a0, a1, u0, u1, sigma, relative)\n', (9744, 9777), False, 'from serpentTools.utils import convertVariableName, splitValsUncs, str2vec, getCommonKeys, directCompare, getOverlaps, splitDictByKeys, DC_STAT_GOOD, DC_STAT_LE_LOWER, DC_STAT_MID, DC_STAT_GE_UPPER, DC_STAT_NOT_IDENTICAL, DC_STAT_NOT_IMPLEMENTED, DC_STAT_DIFF_TYPES, DC_STAT_DIFF_SHAPES, formatPlot\n'), ((9944, 9988), 'serpentTools.utils.getOverlaps', 'getOverlaps', (['a1', 'a0', 'u1', 'u0', 'sigma', 'relative'], {}), '(a1, a0, u1, u0, sigma, relative)\n', (9955, 9988), False, 'from serpentTools.utils import convertVariableName, splitValsUncs, str2vec, getCommonKeys, directCompare, getOverlaps, splitDictByKeys, DC_STAT_GOOD, DC_STAT_LE_LOWER, DC_STAT_MID, DC_STAT_GE_UPPER, DC_STAT_NOT_IDENTICAL, DC_STAT_NOT_IMPLEMENTED, DC_STAT_DIFF_TYPES, DC_STAT_DIFF_SHAPES, formatPlot\n'), ((12367, 12401), 'serpentTools.utils.getOverlaps', 'getOverlaps', (['vec', 'mat', 'vec', 'mat', '(1)'], {}), '(vec, mat, vec, mat, 1)\n', (12378, 12401), False, 'from serpentTools.utils import convertVariableName, splitValsUncs, str2vec, getCommonKeys, directCompare, getOverlaps, splitDictByKeys, DC_STAT_GOOD, DC_STAT_LE_LOWER, DC_STAT_MID, DC_STAT_GE_UPPER, DC_STAT_NOT_IDENTICAL, DC_STAT_NOT_IMPLEMENTED, DC_STAT_DIFF_TYPES, DC_STAT_DIFF_SHAPES, formatPlot\n'), ((12645, 12654), 'numpy.arange', 'arange', (['(2)'], {}), '(2)\n', (12651, 12654), False, 'from numpy import arange, ndarray, array, ones, ones_like, zeros_like\n'), ((12706, 12715), 'numpy.arange', 'arange', (['(2)'], {}), '(2)\n', (12712, 12715), False, 'from numpy import arange, ndarray, array, ones, ones_like, zeros_like\n'), ((12740, 12749), 'numpy.arange', 'arange', (['(6)'], {}), '(6)\n', (12746, 12749), False, 'from numpy import arange, ndarray, array, ones, ones_like, zeros_like\n'), ((12861, 12870), 'numpy.arange', 'arange', (['(2)'], {}), '(2)\n', (12867, 12870), False, 'from numpy import arange, ndarray, array, ones, ones_like, zeros_like\n'), ((12986, 12995), 'numpy.arange', 'arange', (['(2)'], {}), '(2)\n', (12992, 12995), False, 'from numpy import arange, ndarray, array, ones, ones_like, zeros_like\n'), ((13020, 13029), 'numpy.arange', 'arange', (['(2)'], {}), '(2)\n', (13026, 13029), False, 'from numpy import arange, ndarray, array, ones, ones_like, zeros_like\n'), ((15303, 15345), 'tests.plotAttrTest', 'plotAttrTest', (['self', 'ax'], {'xlabel': '"""Bad label"""'}), "(self, ax, xlabel='Bad label')\n", (15315, 15345), False, 'from tests import plotTest, plotAttrTest\n'), ((15421, 15463), 'tests.plotAttrTest', 'plotAttrTest', (['self', 'ax'], {'ylabel': '"""Bad label"""'}), "(self, ax, ylabel='Bad label')\n", (15433, 15463), False, 'from tests import plotTest, plotAttrTest\n'), ((15539, 15575), 'tests.plotAttrTest', 'plotAttrTest', (['self', 'ax'], {'xscale': '"""log"""'}), "(self, ax, xscale='log')\n", (15551, 15575), False, 'from tests import plotTest, plotAttrTest\n'), ((15651, 15687), 'tests.plotAttrTest', 'plotAttrTest', (['self', 'ax'], {'yscale': '"""log"""'}), "(self, ax, yscale='log')\n", (15663, 15687), False, 'from tests import plotTest, plotAttrTest\n'), ((15768, 15815), 'tests.plotAttrTest', 'plotAttrTest', (['self', 'ax'], {'legendLabels': '"""bad text"""'}), "(self, ax, legendLabels='bad text')\n", (15780, 15815), False, 'from tests import plotTest, plotAttrTest\n'), ((15896, 15943), 'tests.plotAttrTest', 'plotAttrTest', (['self', 'ax'], {'legendLabels': "['1', '2']"}), "(self, ax, legendLabels=['1', '2'])\n", (15908, 15943), False, 'from tests import plotTest, plotAttrTest\n'), ((16018, 16059), 'tests.plotAttrTest', 'plotAttrTest', (['self', 'ax'], {'title': '"""Bad title"""'}), "(self, ax, title='Bad title')\n", (16030, 16059), False, 'from tests import plotTest, plotAttrTest\n')]
|
# Filename: ahrs.py
# -*- coding: utf-8 -*-
# pylint: disable=locally-disabled
"""
AHRS calibration.
"""
import io
from collections import defaultdict
import time
import xml.etree.ElementTree as ET
import km3db
import numpy as np
from numpy import cos, sin, arctan2
import km3pipe as kp
from km3pipe.tools import timed_cache
from km3pipe.io.daq import TMCHData
__author__ = "<NAME>"
__email__ = "<EMAIL>"
__status__ = "Development"
log = kp.logger.get_logger(__name__) # pylint: disable=C0103
# log.setLevel("DEBUG")
class AHRSCalibrator(kp.Module):
"""Calculates AHRS yaw, pitch and roll from median A and H of an interval.
Parameters
----------
det_id: int
The detector ID, e.g. 29)
Other Parameters
----------------
interval: int (accumulation interval in [sec], default: 10s)
Notes
-----
Writes 'AHRSCalibration' in the blob with:
dict: key=dom_id, value=tuple: (timestamp, du, floor, yaw, pitch, roll)
"""
def configure(self):
det_id = self.require("det_id")
self.interval = self.get("interval") or 10 # in sec
self.A = defaultdict(list)
self.H = defaultdict(list)
self.detector = kp.hardware.Detector(det_id=det_id)
self.clbmap = km3db.CLBMap(det_id)
self.timestamp = time.time()
def process(self, blob):
tmch_data = TMCHData(io.BytesIO(blob["CHData"]))
dom_id = tmch_data.dom_id
try:
du, floor, _ = self.detector.doms[dom_id]
except KeyError: # base CLB
return blob
self.A[dom_id].append(tmch_data.A)
self.H[dom_id].append(tmch_data.H)
if time.time() - self.timestamp > self.interval:
self.timestamp = time.time()
calib = self.calibrate()
blob["AHRSCalibration"] = calib
return blob
def calibrate(self):
"""Calculate yaw, pitch and roll from the median of A and H.
After successful calibration, the `self.A` and `self.H` are reset.
DOMs with missing AHRS pre-calibration data are skipped.
Returns
-------
dict: key=dom_id, value=tuple: (timestamp, du, floor, yaw, pitch, roll)
"""
now = time.time()
dom_ids = self.A.keys()
print("Calibrating AHRS from median A and H for {} DOMs.".format(len(dom_ids)))
calibrations = {}
for dom_id in dom_ids:
print("Calibrating DOM ID {}".format(dom_id))
clb_upi = self.clbmap.doms_ids[dom_id].clb_upi
ahrs_calib = get_latest_ahrs_calibration(clb_upi)
if ahrs_calib is None:
log.warning("AHRS calibration missing for '{}'".format(dom_id))
continue
du, floor, _ = self.detector.doms[dom_id]
A = np.median(self.A[dom_id], axis=0)
H = np.median(self.H[dom_id], axis=0)
cyaw, cpitch, croll = fit_ahrs(A, H, *ahrs_calib)
calibrations[dom_id] = (now, du, floor, cyaw, cpitch, croll)
self.A = defaultdict(list)
self.H = defaultdict(list)
return calibrations
def fit_ahrs(A, H, Aoff, Arot, Hoff, Hrot):
"""Calculate yaw, pitch and roll for given A/H and calibration set.
Author: <NAME>
Parameters
----------
A: list, tuple or numpy.array of shape (3,)
H: list, tuple or numpy.array of shape (3,)
Aoff: numpy.array of shape(3,)
Arot: numpy.array of shape(3, 3)
Hoff: numpy.array of shape(3,)
Hrot: numpy.array of shape(3, 3)
Returns
-------
yaw, pitch, roll
"""
Acal = np.dot(A - Aoff, Arot)
Hcal = np.dot(H - Hoff, Hrot)
# invert axis for DOM upside down
for i in (1, 2):
Acal[i] = -Acal[i]
Hcal[i] = -Hcal[i]
roll = arctan2(-Acal[1], -Acal[2])
pitch = arctan2(Acal[0], np.sqrt(Acal[1] * Acal[1] + Acal[2] * Acal[2]))
yaw = arctan2(
Hcal[2] * sin(roll) - Hcal[1] * cos(roll),
sum(
(
Hcal[0] * cos(pitch),
Hcal[1] * sin(pitch) * sin(roll),
Hcal[2] * sin(pitch) * cos(roll),
)
),
)
yaw = np.degrees(yaw)
while yaw < 0:
yaw += 360
# yaw = (yaw + magnetic_declination + 360 ) % 360
roll = np.degrees(roll)
pitch = np.degrees(pitch)
return yaw, pitch, roll
@timed_cache(hours=1, maxsize=None, typed=False)
def get_latest_ahrs_calibration(clb_upi, max_version=3):
"""Retrieve the latest AHRS calibration data for a given CLB
Parameters
----------
clb_upi: str
max_version: int, maximum version to check, optional
Returns
-------
Aoff: numpy.array with shape(3,)
Arot: numpy.array with shape(3,3)
Hoff: numpy.array with shape(3,)
Hrot: numpy.array with shape(3,3)
or None if no calibration found.
"""
ahrs_upi = km3db.tools.clbupi2compassupi(clb_upi)
db = km3db.DBManager()
datasets = []
for version in range(max_version, 0, -1):
for n in range(1, 100):
log.debug("Iteration #{} to get the calib data".format(n))
url = (
"show_product_test.htm?upi={0}&"
"testtype=AHRS-CALIBRATION-v{1}&n={2}&out=xml".format(
ahrs_upi, version, n
)
)
log.debug("AHRS calib DB URL: {}".format(url))
_raw_data = db.get(url).replace("\n", "")
log.debug("What I got back as AHRS calib: {}".format(_raw_data))
if len(_raw_data) == 0:
break
try:
xroot = ET.parse(io.StringIO(_raw_data)).getroot()
except ET.ParseError:
continue
else:
datasets.append(xroot)
if len(datasets) == 0:
return None
latest_dataset = _get_latest_dataset(datasets)
return _extract_calibration(latest_dataset)
def _get_latest_dataset(datasets):
"""Find the latest valid AHRS calibration dataset"""
return sorted(datasets, key=lambda d: d.findall(".//EndTime")[0].text)[-1]
def _extract_calibration(xroot):
"""Extract AHRS calibration information from XML root.
Parameters
----------
xroot: XML root
Returns
-------
Aoff: numpy.array with shape(3,)
Arot: numpy.array with shape(3,3)
Hoff: numpy.array with shape(3,)
Hrot: numpy.array with shape(3,3)
"""
names = [c.text for c in xroot.findall(".//Name")]
val = [[i.text for i in c] for c in xroot.findall(".//Values")]
# The fields has to be reindeced, these are the index mappings
col_ic = [int(v) for v in val[names.index("AHRS_Matrix_Column")]]
try:
row_ic = [int(v) for v in val[names.index("AHRS_Matrix_Row")]]
except ValueError:
row_ic = [2, 2, 2, 1, 1, 1, 0, 0, 0]
try:
vec_ic = [int(v) for v in val[names.index("AHRS_Vector_Index")]]
except ValueError:
vec_ic = [2, 1, 0]
Aoff_ix = names.index("AHRS_Acceleration_Offset")
Arot_ix = names.index("AHRS_Acceleration_Rotation")
Hrot_ix = names.index("AHRS_Magnetic_Rotation")
Aoff = np.array(val[Aoff_ix])[vec_ic].astype(float)
Arot = (
np.array(val[Arot_ix]).reshape(3, 3)[col_ic, row_ic].reshape(3, 3).astype(float)
)
Hrot = (
np.array(val[Hrot_ix]).reshape(3, 3)[col_ic, row_ic].reshape(3, 3).astype(float)
)
Hoff = []
for q in "XYZ":
values = []
for t in ("Min", "Max"):
ix = names.index("AHRS_Magnetic_{}{}".format(q, t))
values.append(float(val[ix][0]))
Hoff.append(sum(values) / 2.0)
Hoff = np.array(Hoff)
return Aoff, Arot, Hoff, Hrot
|
[
"km3db.CLBMap",
"io.BytesIO",
"numpy.arctan2",
"io.StringIO",
"numpy.degrees",
"numpy.median",
"km3pipe.logger.get_logger",
"km3db.DBManager",
"collections.defaultdict",
"time.time",
"km3pipe.tools.timed_cache",
"numpy.sin",
"numpy.array",
"numpy.cos",
"km3db.tools.clbupi2compassupi",
"numpy.dot",
"km3pipe.hardware.Detector",
"numpy.sqrt"
] |
[((444, 474), 'km3pipe.logger.get_logger', 'kp.logger.get_logger', (['__name__'], {}), '(__name__)\n', (464, 474), True, 'import km3pipe as kp\n'), ((4368, 4415), 'km3pipe.tools.timed_cache', 'timed_cache', ([], {'hours': '(1)', 'maxsize': 'None', 'typed': '(False)'}), '(hours=1, maxsize=None, typed=False)\n', (4379, 4415), False, 'from km3pipe.tools import timed_cache\n'), ((3606, 3628), 'numpy.dot', 'np.dot', (['(A - Aoff)', 'Arot'], {}), '(A - Aoff, Arot)\n', (3612, 3628), True, 'import numpy as np\n'), ((3640, 3662), 'numpy.dot', 'np.dot', (['(H - Hoff)', 'Hrot'], {}), '(H - Hoff, Hrot)\n', (3646, 3662), True, 'import numpy as np\n'), ((3789, 3816), 'numpy.arctan2', 'arctan2', (['(-Acal[1])', '(-Acal[2])'], {}), '(-Acal[1], -Acal[2])\n', (3796, 3816), False, 'from numpy import cos, sin, arctan2\n'), ((4171, 4186), 'numpy.degrees', 'np.degrees', (['yaw'], {}), '(yaw)\n', (4181, 4186), True, 'import numpy as np\n'), ((4290, 4306), 'numpy.degrees', 'np.degrees', (['roll'], {}), '(roll)\n', (4300, 4306), True, 'import numpy as np\n'), ((4319, 4336), 'numpy.degrees', 'np.degrees', (['pitch'], {}), '(pitch)\n', (4329, 4336), True, 'import numpy as np\n'), ((4880, 4918), 'km3db.tools.clbupi2compassupi', 'km3db.tools.clbupi2compassupi', (['clb_upi'], {}), '(clb_upi)\n', (4909, 4918), False, 'import km3db\n'), ((4929, 4946), 'km3db.DBManager', 'km3db.DBManager', ([], {}), '()\n', (4944, 4946), False, 'import km3db\n'), ((7651, 7665), 'numpy.array', 'np.array', (['Hoff'], {}), '(Hoff)\n', (7659, 7665), True, 'import numpy as np\n'), ((1129, 1146), 'collections.defaultdict', 'defaultdict', (['list'], {}), '(list)\n', (1140, 1146), False, 'from collections import defaultdict\n'), ((1164, 1181), 'collections.defaultdict', 'defaultdict', (['list'], {}), '(list)\n', (1175, 1181), False, 'from collections import defaultdict\n'), ((1206, 1241), 'km3pipe.hardware.Detector', 'kp.hardware.Detector', ([], {'det_id': 'det_id'}), '(det_id=det_id)\n', (1226, 1241), True, 'import km3pipe as kp\n'), ((1264, 1284), 'km3db.CLBMap', 'km3db.CLBMap', (['det_id'], {}), '(det_id)\n', (1276, 1284), False, 'import km3db\n'), ((1310, 1321), 'time.time', 'time.time', ([], {}), '()\n', (1319, 1321), False, 'import time\n'), ((2235, 2246), 'time.time', 'time.time', ([], {}), '()\n', (2244, 2246), False, 'import time\n'), ((3050, 3067), 'collections.defaultdict', 'defaultdict', (['list'], {}), '(list)\n', (3061, 3067), False, 'from collections import defaultdict\n'), ((3085, 3102), 'collections.defaultdict', 'defaultdict', (['list'], {}), '(list)\n', (3096, 3102), False, 'from collections import defaultdict\n'), ((3846, 3892), 'numpy.sqrt', 'np.sqrt', (['(Acal[1] * Acal[1] + Acal[2] * Acal[2])'], {}), '(Acal[1] * Acal[1] + Acal[2] * Acal[2])\n', (3853, 3892), True, 'import numpy as np\n'), ((1381, 1407), 'io.BytesIO', 'io.BytesIO', (["blob['CHData']"], {}), "(blob['CHData'])\n", (1391, 1407), False, 'import io\n'), ((1745, 1756), 'time.time', 'time.time', ([], {}), '()\n', (1754, 1756), False, 'import time\n'), ((2813, 2846), 'numpy.median', 'np.median', (['self.A[dom_id]'], {'axis': '(0)'}), '(self.A[dom_id], axis=0)\n', (2822, 2846), True, 'import numpy as np\n'), ((2863, 2896), 'numpy.median', 'np.median', (['self.H[dom_id]'], {'axis': '(0)'}), '(self.H[dom_id], axis=0)\n', (2872, 2896), True, 'import numpy as np\n'), ((1670, 1681), 'time.time', 'time.time', ([], {}), '()\n', (1679, 1681), False, 'import time\n'), ((3931, 3940), 'numpy.sin', 'sin', (['roll'], {}), '(roll)\n', (3934, 3940), False, 'from numpy import cos, sin, arctan2\n'), ((3953, 3962), 'numpy.cos', 'cos', (['roll'], {}), '(roll)\n', (3956, 3962), False, 'from numpy import cos, sin, arctan2\n'), ((7143, 7165), 'numpy.array', 'np.array', (['val[Aoff_ix]'], {}), '(val[Aoff_ix])\n', (7151, 7165), True, 'import numpy as np\n'), ((4017, 4027), 'numpy.cos', 'cos', (['pitch'], {}), '(pitch)\n', (4020, 4027), False, 'from numpy import cos, sin, arctan2\n'), ((4068, 4077), 'numpy.sin', 'sin', (['roll'], {}), '(roll)\n', (4071, 4077), False, 'from numpy import cos, sin, arctan2\n'), ((4118, 4127), 'numpy.cos', 'cos', (['roll'], {}), '(roll)\n', (4121, 4127), False, 'from numpy import cos, sin, arctan2\n'), ((4055, 4065), 'numpy.sin', 'sin', (['pitch'], {}), '(pitch)\n', (4058, 4065), False, 'from numpy import cos, sin, arctan2\n'), ((4105, 4115), 'numpy.sin', 'sin', (['pitch'], {}), '(pitch)\n', (4108, 4115), False, 'from numpy import cos, sin, arctan2\n'), ((5626, 5648), 'io.StringIO', 'io.StringIO', (['_raw_data'], {}), '(_raw_data)\n', (5637, 5648), False, 'import io\n'), ((7209, 7231), 'numpy.array', 'np.array', (['val[Arot_ix]'], {}), '(val[Arot_ix])\n', (7217, 7231), True, 'import numpy as np\n'), ((7317, 7339), 'numpy.array', 'np.array', (['val[Hrot_ix]'], {}), '(val[Hrot_ix])\n', (7325, 7339), True, 'import numpy as np\n')]
|
import topas2numpy as t2np
import numpy as np
import os
######################
os.chdir("/home/ethanb/TOPAS/Linac_Model/output/PDD")
######################
cyl1 = t2np.BinnedResult("../../mac/PDDCyl.csv")
depth = np.flip(cyl1.dimensions[2].get_bin_centers())
files = {}
for filename in os.listdir():
print(filename,os.stat(filename ))
if filename.endswith('.csv') & os.stat(filename).st_size > 0:
file_contents = t2np.BinnedResult(filename)
files[filename] = file_contents
print(filename)
elif filename == 'pdd_combined.csv':
pass
sum_dose = np.zeros(len(np.squeeze(cyl1.data["Mean"])))
counts_in_bin = np.zeros(len(np.squeeze(cyl1.data["Count_in_Bin"])))
count = 0
for file in files:
sum_dose += np.squeeze(files[file].data["Sum"])
counts_in_bin += np.squeeze(files[file].data["Count_in_Bin"])
count +=1
comb_array = np.asarray([depth,sum_dose,counts_in_bin])
np.savetxt('pdd_combined.csv',comb_array,delimiter=',')
|
[
"topas2numpy.BinnedResult",
"os.stat",
"numpy.asarray",
"numpy.savetxt",
"os.chdir",
"numpy.squeeze",
"os.listdir"
] |
[((81, 134), 'os.chdir', 'os.chdir', (['"""/home/ethanb/TOPAS/Linac_Model/output/PDD"""'], {}), "('/home/ethanb/TOPAS/Linac_Model/output/PDD')\n", (89, 134), False, 'import os\n'), ((167, 208), 'topas2numpy.BinnedResult', 't2np.BinnedResult', (['"""../../mac/PDDCyl.csv"""'], {}), "('../../mac/PDDCyl.csv')\n", (184, 208), True, 'import topas2numpy as t2np\n'), ((292, 304), 'os.listdir', 'os.listdir', ([], {}), '()\n', (302, 304), False, 'import os\n'), ((893, 937), 'numpy.asarray', 'np.asarray', (['[depth, sum_dose, counts_in_bin]'], {}), '([depth, sum_dose, counts_in_bin])\n', (903, 937), True, 'import numpy as np\n'), ((938, 995), 'numpy.savetxt', 'np.savetxt', (['"""pdd_combined.csv"""', 'comb_array'], {'delimiter': '""","""'}), "('pdd_combined.csv', comb_array, delimiter=',')\n", (948, 995), True, 'import numpy as np\n'), ((762, 797), 'numpy.squeeze', 'np.squeeze', (["files[file].data['Sum']"], {}), "(files[file].data['Sum'])\n", (772, 797), True, 'import numpy as np\n'), ((819, 863), 'numpy.squeeze', 'np.squeeze', (["files[file].data['Count_in_Bin']"], {}), "(files[file].data['Count_in_Bin'])\n", (829, 863), True, 'import numpy as np\n'), ((325, 342), 'os.stat', 'os.stat', (['filename'], {}), '(filename)\n', (332, 342), False, 'import os\n'), ((442, 469), 'topas2numpy.BinnedResult', 't2np.BinnedResult', (['filename'], {}), '(filename)\n', (459, 469), True, 'import topas2numpy as t2np\n'), ((615, 644), 'numpy.squeeze', 'np.squeeze', (["cyl1.data['Mean']"], {}), "(cyl1.data['Mean'])\n", (625, 644), True, 'import numpy as np\n'), ((676, 713), 'numpy.squeeze', 'np.squeeze', (["cyl1.data['Count_in_Bin']"], {}), "(cyl1.data['Count_in_Bin'])\n", (686, 713), True, 'import numpy as np\n'), ((387, 404), 'os.stat', 'os.stat', (['filename'], {}), '(filename)\n', (394, 404), False, 'import os\n')]
|
# -*- coding: utf-8 -*-
# Copyright (c) 2020 <NAME>
# Licensed under the MIT License
"""Main module for applying zreion function."""
import warnings
import numpy as np
import pyfftw
from . import _zreion
# define constants
b0 = 1.0 / 1.686
def tophat(x):
"""
Compute spherical tophat Fourier window function.
Compute the window function of a Fourier tophat window function W_R(k),
where R is the characteristic radius of the tophat in real space and k is
the amplitude of the Fourier vector. As can be shown, the tophat function
has the form:
W_R(k) = 3 * (sin(R * k) - (R * k) * cos(R * k)) / (R * k)**3.
For small values of R*k, we use the Taylor series approximation, which is:
W_R(k) ~ 1 - (R * k)**2 / 10.
Note that this function itself does not handle a potential RuntimeWarning
arising from arguments that cause division by zero. However, np.where
statement handles this cases appropriately, so it can be generally be
ignored by the user for typical arguments.
Parameters
----------
x : ndarray
An array containing the arguments R*k.
Returns
-------
ndarray
An array of the same size containing the tophat applied to each element.
"""
return np.where(
np.abs(x) > 1e-6, 3 * (np.sin(x) - x * np.cos(x)) / x ** 3, 1 - x ** 2 / 10.0
)
def sinc(x):
"""
Compute sinc(x) = sin(x) / x function.
Compute the sinc function sin(x) / x, which is necessary for deconvolving
the cloud-in-cell (CIC) window function typically used to deposit particles
onto a grid. For small values of x, we use the Taylor series appriximation,
which is:
sinc(x) ~ 1 - x**2 / 6.
Note that this function itself does not handle a potential RuntimeWarning
arising from arguments that cause division by zero. However, np.where
statement handles this cases appropriately, so it can be generally be
ignored by the user for typical arguments.
Parameters
----------
x : ndarray
An array containing the arguments x.
Returns
-------
ndarray
An array of the same size containing sinc applied to each element.
"""
return np.where(np.abs(x) > 1e-6, np.sin(x) / x, 1 - x ** 2 / 6.0)
def _fft3d(array, data_shape, direction="f"):
"""
Apply an FFT using pyFFTW.
Parameters
----------
array : ndarray
The array to apply the transform to.
data_shape : 3-ple of int
The shape of the input data array. Used for determining the size of the
output array for a forward transform and the target shape for a backward
one.
direction : str
The direction of the transform. Must be either "f" (for forward) or "b"
(for backward).
Returns
-------
ndarray
An ndarray of the resulting transform.
"""
if direction.lower() not in ["f", "b"]:
raise ValueError(f'"direction" must be "f" or "b", got "{direction}"')
dtype = array.dtype.type
if direction.lower() == "f":
if dtype is np.float32:
precision = "single"
elif dtype is np.float64:
precision = "double"
else:
raise ValueError(
"a forward transform requires input have np.float32 or np.float64 "
"datatype"
)
else: # "b"
if dtype is np.complex64:
precision = "single"
elif dtype is np.complex128:
precision = "double"
else:
raise ValueError(
"a backward transform requires input to have np.complex64 or "
"np.complex128 datatype"
)
if precision == "single":
input_dtype = "float32"
output_dtype = "complex64"
else: # "double"
input_dtype = "float64"
output_dtype = "complex128"
# define size of FFTW arrays
if len(array.shape) != 3:
raise ValueError("input array must be a 3-dimensional array")
if len(data_shape) != 3:
raise ValueError("data_shape must have 3 dimensions")
padded_shape = (data_shape[0], data_shape[1], 2 * (data_shape[2] // 2 + 1))
full_array = pyfftw.empty_aligned(
padded_shape, input_dtype, n=pyfftw.simd_alignment
)
# make input and output arrays
real_input = full_array[:, :, : data_shape[2]]
complex_output = full_array.view(output_dtype)
if direction == "f":
fftw_obj = pyfftw.FFTW(real_input, complex_output, axes=(0, 1, 2))
real_input[:] = array
else:
fftw_obj = pyfftw.FFTW(
complex_output, real_input, axes=(0, 1, 2), direction="FFTW_BACKWARD"
)
complex_output[:] = array
# perform computation and return
return fftw_obj()
def apply_zreion(density, zmean, alpha, k0, boxsize, rsmooth=1.0, deconvolve=True):
"""
Apply zreion ionization history to density field.
Parameters
----------
density : numpy array
A numpy array of rank 3 holding the density field. Note this should be
the overdensity field delta = (rho - <rho>)/<rho>, where <rho> is the
average density value. This quantity has a mean of 0 and a minimum value
of -1.
zmean : float
The mean redshift of reionization.
alpha : float
The alpha value of the bias parameter.
k0 : float
The k0 value of the bais parameter, in units of h/Mpc.
boxsize : float or array of floats
The physical extent of the box along each dimension. If a single value,
this is assumed to be the same for each axis.
rsmooth: float, optional
The smoothing length of the reionziation field, in Mpc/h. Defaults to 1
Mpc/h.
deconvolve : bool, optional
Whether to deconvolve the CIC particle deposition window. If density
grid is derived in Eulerian space directly, this step is not needed.
Returns
-------
zreion : numpy array
A numpy array of rank 3 containing the redshift corresponding to when
that portion of the volume was reionized.
"""
# check that parameters make sense
if len(density.shape) != 3:
raise ValueError("density must be a 3d array")
if isinstance(boxsize, (int, float, np.float_)):
boxsize = np.asarray([np.float64(boxsize)])
else:
# assume it's an array of length 1 or 3
if len(boxsize) not in (1, 3):
raise ValueError(
"boxsize must be either a single number or an array of length 3"
)
# compute FFT of density field
density_fft = np.fft.rfftn(density)
# compute spherical k-indices for cells
nx, ny, nz = density.shape
if len(boxsize) == 1:
lx = ly = lz = boxsize[0]
else:
lx, ly, lz = boxsize
dx = lx / (2 * np.pi * nx)
dy = ly / (2 * np.pi * ny)
dz = lz / (2 * np.pi * nz)
kx = np.fft.fftfreq(nx, d=dx)
ky = np.fft.fftfreq(ny, d=dy)
kz = np.fft.rfftfreq(nz, d=dz) # note we're using rfftfreq!
# compute bias factor
kkx, kky, kkz = np.meshgrid(kx, ky, kz, indexing="ij")
spherical_k = np.sqrt(kkx ** 2 + kky ** 2 + kkz ** 2)
bias_val = b0 / (1 + spherical_k / k0) ** alpha
# compute smoothing factor
# turn off numpy errors that come from near-zero values
with warnings.catch_warnings():
warnings.simplefilter("ignore")
smoothing_window = tophat(spherical_k * rsmooth)
if deconvolve:
# compute deconvolution window in grid units
kkx *= lx / nx
kky *= ly / ny
kkz *= lz / nz
# turn off numpy errors that come from near-zero values
with warnings.catch_warnings():
warnings.simplefilter("ignore")
deconv_window = (sinc(kkx / 2) * sinc(kky / 2) * sinc(kkz / 2)) ** 2
else:
deconv_window = np.ones_like(density_fft, dtype=np.float64)
assert (
bias_val.shape == density_fft.shape
), "Bias and density grids are not compatible"
assert (
smoothing_window.shape == density_fft.shape
), "Smoothing window and density grids are not compatible"
assert (
deconv_window.shape == density_fft.shape
), "Deconvolution window and density grids are not compatible"
# apply transformations to Fourier field
density_fft *= bias_val
density_fft *= smoothing_window
density_fft /= deconv_window
# inverse FFT
zreion = np.fft.irfftn(density_fft, density.shape)
# finish computing zreion field
zreion *= 1 + zmean
zreion += zmean
return zreion
def apply_zreion_fast(density, zmean, alpha, k0, boxsize, rsmooth=1.0, deconvolve=True):
"""
Use as a fast, drop-in replacement for apply_zreion.
The speedups are accomplished by using pyfftw for FFT computation, and
parallelized cython code for most of the rest of the calculation. As an
added benefit, this version requires significantly less memory.
Parameters
----------
density : numpy array
A numpy array of rank 3 holding the density field. Note this should be
the overdensity field delta = (rho - <rho>)/<rho>, where <rho> is the
average density value. This quantity has a mean of 0 and a minimum value
of -1.
zmean : float
The mean redshift of reionization.
alpha : float
The alpha value of the bias parameter.
k0 : float
The k0 value of the bais parameter, in units of h/Mpc.
boxsize : float or array of floats
The physical extent of the box along each dimension. If a single value,
this is assumed to be the same for each axis.
rsmooth: float, optional
The smoothing length of the reionziation field, in Mpc/h. Defaults to 1
Mpc/h.
deconvolve : bool, optional
Whether to deconvolve the CIC particle deposition window. If density
grid is derived in Eulerian space directly, this step is not needed.
Returns
-------
zreion : numpy array
A numpy array of rank 3 containing the redshift corresponding to when
that portion of the volume was reionized.
"""
# check that parameters make sense
if len(density.shape) != 3:
raise ValueError("density must be a 3d array")
if isinstance(boxsize, (int, float, np.float_)):
boxsize = np.asarray([np.float64(boxsize)])
else:
# assume it's an array of length 1 or 3
if len(boxsize) not in (1, 3):
raise ValueError(
"boxsize must be either a single number or an array of length 3"
)
# save input type
input_type = density.dtype
# unpack boxsize argument
if len(boxsize) == 1:
lx = ly = lz = boxsize[0]
else:
lx, ly, lz = boxsize
# save input array shape
array_shape = density.shape
# perform fft
density_fft = _fft3d(density, array_shape, direction="f")
# cast to required type
density_fft = density_fft.astype(np.complex64)
# call cython funtion for applying bias relation
# need to tell function if last dimension has an odd number of elements
odd_nz = density.shape[2] % 2 == 1
density_fft = np.asarray(
_zreion._apply_zreion(
density_fft, alpha, k0, lx, ly, lz, rsmooth, deconvolve, odd_nz
)
)
# perform inverse fft
density = _fft3d(density_fft, array_shape, direction="b")
# finish computing zreion field
density *= 1 + zmean
density += zmean
return density.astype(input_type)
|
[
"numpy.meshgrid",
"numpy.ones_like",
"warnings.simplefilter",
"numpy.abs",
"numpy.fft.irfftn",
"numpy.fft.rfftn",
"pyfftw.empty_aligned",
"numpy.fft.rfftfreq",
"numpy.fft.fftfreq",
"numpy.sin",
"warnings.catch_warnings",
"pyfftw.FFTW",
"numpy.cos",
"numpy.float64",
"numpy.sqrt"
] |
[((4212, 4284), 'pyfftw.empty_aligned', 'pyfftw.empty_aligned', (['padded_shape', 'input_dtype'], {'n': 'pyfftw.simd_alignment'}), '(padded_shape, input_dtype, n=pyfftw.simd_alignment)\n', (4232, 4284), False, 'import pyfftw\n'), ((6634, 6655), 'numpy.fft.rfftn', 'np.fft.rfftn', (['density'], {}), '(density)\n', (6646, 6655), True, 'import numpy as np\n'), ((6933, 6957), 'numpy.fft.fftfreq', 'np.fft.fftfreq', (['nx'], {'d': 'dx'}), '(nx, d=dx)\n', (6947, 6957), True, 'import numpy as np\n'), ((6967, 6991), 'numpy.fft.fftfreq', 'np.fft.fftfreq', (['ny'], {'d': 'dy'}), '(ny, d=dy)\n', (6981, 6991), True, 'import numpy as np\n'), ((7001, 7026), 'numpy.fft.rfftfreq', 'np.fft.rfftfreq', (['nz'], {'d': 'dz'}), '(nz, d=dz)\n', (7016, 7026), True, 'import numpy as np\n'), ((7104, 7142), 'numpy.meshgrid', 'np.meshgrid', (['kx', 'ky', 'kz'], {'indexing': '"""ij"""'}), "(kx, ky, kz, indexing='ij')\n", (7115, 7142), True, 'import numpy as np\n'), ((7161, 7200), 'numpy.sqrt', 'np.sqrt', (['(kkx ** 2 + kky ** 2 + kkz ** 2)'], {}), '(kkx ** 2 + kky ** 2 + kkz ** 2)\n', (7168, 7200), True, 'import numpy as np\n'), ((8468, 8509), 'numpy.fft.irfftn', 'np.fft.irfftn', (['density_fft', 'density.shape'], {}), '(density_fft, density.shape)\n', (8481, 8509), True, 'import numpy as np\n'), ((4482, 4537), 'pyfftw.FFTW', 'pyfftw.FFTW', (['real_input', 'complex_output'], {'axes': '(0, 1, 2)'}), '(real_input, complex_output, axes=(0, 1, 2))\n', (4493, 4537), False, 'import pyfftw\n'), ((4597, 4684), 'pyfftw.FFTW', 'pyfftw.FFTW', (['complex_output', 'real_input'], {'axes': '(0, 1, 2)', 'direction': '"""FFTW_BACKWARD"""'}), "(complex_output, real_input, axes=(0, 1, 2), direction=\n 'FFTW_BACKWARD')\n", (4608, 4684), False, 'import pyfftw\n'), ((7354, 7379), 'warnings.catch_warnings', 'warnings.catch_warnings', ([], {}), '()\n', (7377, 7379), False, 'import warnings\n'), ((7389, 7420), 'warnings.simplefilter', 'warnings.simplefilter', (['"""ignore"""'], {}), "('ignore')\n", (7410, 7420), False, 'import warnings\n'), ((7883, 7926), 'numpy.ones_like', 'np.ones_like', (['density_fft'], {'dtype': 'np.float64'}), '(density_fft, dtype=np.float64)\n', (7895, 7926), True, 'import numpy as np\n'), ((1288, 1297), 'numpy.abs', 'np.abs', (['x'], {}), '(x)\n', (1294, 1297), True, 'import numpy as np\n'), ((2230, 2239), 'numpy.abs', 'np.abs', (['x'], {}), '(x)\n', (2236, 2239), True, 'import numpy as np\n'), ((2248, 2257), 'numpy.sin', 'np.sin', (['x'], {}), '(x)\n', (2254, 2257), True, 'import numpy as np\n'), ((7697, 7722), 'warnings.catch_warnings', 'warnings.catch_warnings', ([], {}), '()\n', (7720, 7722), False, 'import warnings\n'), ((7736, 7767), 'warnings.simplefilter', 'warnings.simplefilter', (['"""ignore"""'], {}), "('ignore')\n", (7757, 7767), False, 'import warnings\n'), ((6336, 6355), 'numpy.float64', 'np.float64', (['boxsize'], {}), '(boxsize)\n', (6346, 6355), True, 'import numpy as np\n'), ((10378, 10397), 'numpy.float64', 'np.float64', (['boxsize'], {}), '(boxsize)\n', (10388, 10397), True, 'import numpy as np\n'), ((1311, 1320), 'numpy.sin', 'np.sin', (['x'], {}), '(x)\n', (1317, 1320), True, 'import numpy as np\n'), ((1327, 1336), 'numpy.cos', 'np.cos', (['x'], {}), '(x)\n', (1333, 1336), True, 'import numpy as np\n')]
|
import tensorflow as tf
import tensorflow_probability as tfp
import numpy as np
import src.utils as utils
def gaussian_d(x, y):
"""
A conceptual lack of understanding here.
Do I need a dx to calculate this over?
Doesnt make sense for a single point!?
"""
d = tf.norm(x - y, axis=1)
return tf.exp(-0.5*d)/(tf.sqrt(2*tf.constant(np.pi)))
class SparseAE():
def __init__(self, n_hidden, width, depth, stddev=0.0001):
"""
Args:
"""
self.n_hidden = n_hidden
self.width = width
self.depth = depth
self.n_channels = 1
self.stddev = stddev
self.e = 1e-1
self.prior = tfp.distributions.RelaxedBernoulli(1e-1,
logits=tf.get_variable(name='prior_params'),
shape=[16, 1, 1, n_hidden])
self.construct()
def construct(self):
"""
Constructs:
encoder (tf.keras.Model): encode the gradient into the hidden space
decoder (tf.keras.Model): decodes a hidden state into an image
"""
layers = []
layers.append(tf.keras.layers.Conv2D(self.width, 4, strides=(2, 2),
padding='same',
# input_shape=(28,28,1)
))
layers.append(tf.keras.layers.Activation(tf.keras.activations.selu))
for i in range(self.depth):
layers.append(tf.keras.layers.Conv2D(self.width,
4,
strides=(2, 2),
padding='same'),)
layers.append(tf.keras.layers.Activation(tf.keras.activations.selu))
layers.append(tf.keras.layers.Conv2D(self.n_hidden,
1,
strides=(1, 1),
padding='same'))
self.encoder = tf.keras.Sequential(layers)
# decoder
layers = []
layers.append(tf.keras.layers.Conv2DTranspose(self.width, 4, strides=(2, 2),
padding='same',
# input_shape=(1,1,self.n_hidden)
))
layers.append(tf.keras.layers.Activation(tf.keras.activations.selu))
for _ in range(self.depth):
layers.append(tf.keras.layers.Conv2DTranspose(self.width, 4, strides=(2, 2), padding='same'))
layers.append(tf.keras.layers.Activation(tf.keras.activations.selu))
layers.append(tf.keras.layers.Conv2DTranspose(self.n_channels, 1, strides=(1, 1), padding='same'))
self.decoder = tf.keras.Sequential(layers)
def __call__(self, x):
"""
Args:
x (tf.tensor): the input
shape is [None, width, height, channels],
dtype is tf.float32
"""
with tf.name_scope('sparseae'):
self.h = self.encoder(x)
self.z = tf.nn.relu(self.h + self.e) - tf.nn.relu(-self.h-self.e)
self.y = self.decoder(self.z)
return self.y
def make_losses(self, x, y=None):
self.x = x
if y is None:
print('...')
y = self.__call__(self.x)
with tf.name_scope('loss'):
recon_loss = tf.losses.mean_squared_error(x, y)
latent_loss = tf.reduce_mean(tf.reduce_sum(tf.abs(self.z), axis=[1]))
# or could use a distribution over discrete vals and entropy!?
return recon_loss, latent_loss
def estimate_density(self, x):
x_ = self.__call__(x)
return gaussian_d(self.z, tf.zeros_like(self.z))
@staticmethod
def preprocess(x):
im = np.reshape(x, [-1, 28, 28, 1])
im = np.round(im).astype(np.float32) # NOTE important !?
return np.pad(im, [(0,0), (2,2), (2,2), (0,0)], 'constant', constant_values=0)
if __name__ == '__main__':
tf.enable_eager_execution()
x = tf.random_normal((100, 32, 32, 1))
nn = SparseAE(12, 16, 4)
x_ = nn(x)
loss = nn.make_losses(x)
assert x_.shape == x.shape
|
[
"numpy.pad",
"tensorflow.nn.relu",
"tensorflow.keras.layers.Conv2D",
"tensorflow.abs",
"tensorflow.losses.mean_squared_error",
"tensorflow.enable_eager_execution",
"tensorflow.zeros_like",
"tensorflow.constant",
"tensorflow.keras.layers.Activation",
"tensorflow.exp",
"tensorflow.random_normal",
"numpy.reshape",
"tensorflow.keras.Sequential",
"tensorflow.keras.layers.Conv2DTranspose",
"numpy.round",
"tensorflow.name_scope",
"tensorflow.norm",
"tensorflow.get_variable"
] |
[((284, 306), 'tensorflow.norm', 'tf.norm', (['(x - y)'], {'axis': '(1)'}), '(x - y, axis=1)\n', (291, 306), True, 'import tensorflow as tf\n'), ((4033, 4060), 'tensorflow.enable_eager_execution', 'tf.enable_eager_execution', ([], {}), '()\n', (4058, 4060), True, 'import tensorflow as tf\n'), ((4069, 4103), 'tensorflow.random_normal', 'tf.random_normal', (['(100, 32, 32, 1)'], {}), '((100, 32, 32, 1))\n', (4085, 4103), True, 'import tensorflow as tf\n'), ((318, 334), 'tensorflow.exp', 'tf.exp', (['(-0.5 * d)'], {}), '(-0.5 * d)\n', (324, 334), True, 'import tensorflow as tf\n'), ((1987, 2014), 'tensorflow.keras.Sequential', 'tf.keras.Sequential', (['layers'], {}), '(layers)\n', (2006, 2014), True, 'import tensorflow as tf\n'), ((2754, 2781), 'tensorflow.keras.Sequential', 'tf.keras.Sequential', (['layers'], {}), '(layers)\n', (2773, 2781), True, 'import tensorflow as tf\n'), ((3817, 3847), 'numpy.reshape', 'np.reshape', (['x', '[-1, 28, 28, 1]'], {}), '(x, [-1, 28, 28, 1])\n', (3827, 3847), True, 'import numpy as np\n'), ((3929, 4004), 'numpy.pad', 'np.pad', (['im', '[(0, 0), (2, 2), (2, 2), (0, 0)]', '"""constant"""'], {'constant_values': '(0)'}), "(im, [(0, 0), (2, 2), (2, 2), (0, 0)], 'constant', constant_values=0)\n", (3935, 4004), True, 'import numpy as np\n'), ((1131, 1200), 'tensorflow.keras.layers.Conv2D', 'tf.keras.layers.Conv2D', (['self.width', '(4)'], {'strides': '(2, 2)', 'padding': '"""same"""'}), "(self.width, 4, strides=(2, 2), padding='same')\n", (1153, 1200), True, 'import tensorflow as tf\n'), ((1355, 1408), 'tensorflow.keras.layers.Activation', 'tf.keras.layers.Activation', (['tf.keras.activations.selu'], {}), '(tf.keras.activations.selu)\n', (1381, 1408), True, 'import tensorflow as tf\n'), ((1794, 1866), 'tensorflow.keras.layers.Conv2D', 'tf.keras.layers.Conv2D', (['self.n_hidden', '(1)'], {'strides': '(1, 1)', 'padding': '"""same"""'}), "(self.n_hidden, 1, strides=(1, 1), padding='same')\n", (1816, 1866), True, 'import tensorflow as tf\n'), ((2076, 2154), 'tensorflow.keras.layers.Conv2DTranspose', 'tf.keras.layers.Conv2DTranspose', (['self.width', '(4)'], {'strides': '(2, 2)', 'padding': '"""same"""'}), "(self.width, 4, strides=(2, 2), padding='same')\n", (2107, 2154), True, 'import tensorflow as tf\n'), ((2346, 2399), 'tensorflow.keras.layers.Activation', 'tf.keras.layers.Activation', (['tf.keras.activations.selu'], {}), '(tf.keras.activations.selu)\n', (2372, 2399), True, 'import tensorflow as tf\n'), ((2646, 2734), 'tensorflow.keras.layers.Conv2DTranspose', 'tf.keras.layers.Conv2DTranspose', (['self.n_channels', '(1)'], {'strides': '(1, 1)', 'padding': '"""same"""'}), "(self.n_channels, 1, strides=(1, 1), padding\n ='same')\n", (2677, 2734), True, 'import tensorflow as tf\n'), ((2992, 3017), 'tensorflow.name_scope', 'tf.name_scope', (['"""sparseae"""'], {}), "('sparseae')\n", (3005, 3017), True, 'import tensorflow as tf\n'), ((3359, 3380), 'tensorflow.name_scope', 'tf.name_scope', (['"""loss"""'], {}), "('loss')\n", (3372, 3380), True, 'import tensorflow as tf\n'), ((3407, 3441), 'tensorflow.losses.mean_squared_error', 'tf.losses.mean_squared_error', (['x', 'y'], {}), '(x, y)\n', (3435, 3441), True, 'import tensorflow as tf\n'), ((3738, 3759), 'tensorflow.zeros_like', 'tf.zeros_like', (['self.z'], {}), '(self.z)\n', (3751, 3759), True, 'import tensorflow as tf\n'), ((344, 362), 'tensorflow.constant', 'tf.constant', (['np.pi'], {}), '(np.pi)\n', (355, 362), True, 'import tensorflow as tf\n'), ((747, 783), 'tensorflow.get_variable', 'tf.get_variable', ([], {'name': '"""prior_params"""'}), "(name='prior_params')\n", (762, 783), True, 'import tensorflow as tf\n'), ((1472, 1541), 'tensorflow.keras.layers.Conv2D', 'tf.keras.layers.Conv2D', (['self.width', '(4)'], {'strides': '(2, 2)', 'padding': '"""same"""'}), "(self.width, 4, strides=(2, 2), padding='same')\n", (1494, 1541), True, 'import tensorflow as tf\n'), ((1717, 1770), 'tensorflow.keras.layers.Activation', 'tf.keras.layers.Activation', (['tf.keras.activations.selu'], {}), '(tf.keras.activations.selu)\n', (1743, 1770), True, 'import tensorflow as tf\n'), ((2463, 2541), 'tensorflow.keras.layers.Conv2DTranspose', 'tf.keras.layers.Conv2DTranspose', (['self.width', '(4)'], {'strides': '(2, 2)', 'padding': '"""same"""'}), "(self.width, 4, strides=(2, 2), padding='same')\n", (2494, 2541), True, 'import tensorflow as tf\n'), ((2569, 2622), 'tensorflow.keras.layers.Activation', 'tf.keras.layers.Activation', (['tf.keras.activations.selu'], {}), '(tf.keras.activations.selu)\n', (2595, 2622), True, 'import tensorflow as tf\n'), ((3077, 3104), 'tensorflow.nn.relu', 'tf.nn.relu', (['(self.h + self.e)'], {}), '(self.h + self.e)\n', (3087, 3104), True, 'import tensorflow as tf\n'), ((3107, 3135), 'tensorflow.nn.relu', 'tf.nn.relu', (['(-self.h - self.e)'], {}), '(-self.h - self.e)\n', (3117, 3135), True, 'import tensorflow as tf\n'), ((3861, 3873), 'numpy.round', 'np.round', (['im'], {}), '(im)\n', (3869, 3873), True, 'import numpy as np\n'), ((3497, 3511), 'tensorflow.abs', 'tf.abs', (['self.z'], {}), '(self.z)\n', (3503, 3511), True, 'import tensorflow as tf\n')]
|
# ===============================================================================
# Copyright 2014 <NAME>
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ===============================================================================
# ============= enthought library imports =======================
from __future__ import absolute_import
import os
from numpy import array
from traits.api import HasTraits, Instance
# ============= standard library imports ========================
# ============= local library imports ==========================
from pychron.core.helpers.filetools import fileiter
from pychron.graph.graph import Graph
from pychron.graph.time_series_graph import TimeSeriesStackedGraph
from pychron.paths import paths
class ScanInspector(HasTraits):
graph = Instance(Graph)
def activated(self):
p = os.path.join(paths.spectrometer_scans_dir, 'scan-005.txt')
g = self.graph
with open(p, 'r') as rfile:
fi = fileiter(rfile, strip=True)
fi.next().split(',')
plot = g.new_plot(padding=[60, 5, 5, 50])
g.set_y_title('Intensity (fA)')
data = [line.split(',') for line in fi]
data = array(data, dtype=float).T
xs = data[0]
for ys in data[1:]:
g.new_series(x=xs, y=ys)
plot.value_scale = 'log'
def _graph_default(self):
g = TimeSeriesStackedGraph()
# g.new_plot()
return g
# ============= EOF =============================================
|
[
"pychron.graph.time_series_graph.TimeSeriesStackedGraph",
"traits.api.Instance",
"numpy.array",
"os.path.join",
"pychron.core.helpers.filetools.fileiter"
] |
[((1282, 1297), 'traits.api.Instance', 'Instance', (['Graph'], {}), '(Graph)\n', (1290, 1297), False, 'from traits.api import HasTraits, Instance\n'), ((1336, 1394), 'os.path.join', 'os.path.join', (['paths.spectrometer_scans_dir', '"""scan-005.txt"""'], {}), "(paths.spectrometer_scans_dir, 'scan-005.txt')\n", (1348, 1394), False, 'import os\n'), ((1910, 1934), 'pychron.graph.time_series_graph.TimeSeriesStackedGraph', 'TimeSeriesStackedGraph', ([], {}), '()\n', (1932, 1934), False, 'from pychron.graph.time_series_graph import TimeSeriesStackedGraph\n'), ((1471, 1498), 'pychron.core.helpers.filetools.fileiter', 'fileiter', (['rfile'], {'strip': '(True)'}), '(rfile, strip=True)\n', (1479, 1498), False, 'from pychron.core.helpers.filetools import fileiter\n'), ((1704, 1728), 'numpy.array', 'array', (['data'], {'dtype': 'float'}), '(data, dtype=float)\n', (1709, 1728), False, 'from numpy import array\n')]
|
import os
import torch
import torch.nn.functional as F
from torch.utils.data import Dataset, DataLoader
from torch.utils.tensorboard import SummaryWriter
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
import seaborn as sns
import sklearn
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import MinMaxScaler
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
#device = "cpu"
#print("USING DEVICE: ", device)
DIRNAME = os.path.abspath(__file__ + "/../vis_data/")
BATCH_SIZE = 5
EPOCHS = 10000
LEARNING_RATE = 0.0001
MOMENTUM = 0.9
NLAYERS = 3
LAYERDIMS = [3, 100, 50, 1]
class VisDataset(Dataset):
"""
Pytorch dataset for the visibility uncertainty values
X: relative position of obstacles
y: the visibility error
"""
def __init__(self, X_data, y_data):
self.X_data = X_data
self.y_data = y_data
def __getitem__(self, idx):
return self.X_data[idx], self.y_data[idx]
def __len__(self):
return len(self.X_data)
class VisNet(torch.nn.Module):
"""
Neural net for regression on visibility uncertainty based on
vehicle relative position (x, y, z)
"""
def __init__(self):
super(VisNet, self).__init__()
self.linears = torch.nn.ModuleList([])
for i in range(NLAYERS):
layer = torch.nn.Linear(LAYERDIMS[i], LAYERDIMS[i + 1])
self.linears.append(layer)
self.relu = torch.nn.LeakyReLU()
# linear(3, 30), relu, linear(30, 15), relu, linear(15, 1)
def forward(self, x):
for i in range(NLAYERS - 1):
x = self.relu(self.linears[i](x))
x = self.linears[NLAYERS - 1](x) # no relu on last layer
# add last layer (sigmoid): x -> 0 - 1
#x = torch.sigmoid(x)
return x
def normalize_data(X_train, X_test, y_train, y_test):
xscaler = MinMaxScaler(feature_range=(-1, 1))
X_train = xscaler.fit_transform(X_train)
X_test = xscaler.transform(X_test)
return X_train, X_test, y_train, y_test
def split_data(X, y, test_fraction):
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_fraction)
#X_train, X_test, y_train, y_test = normalize_data(X_train, X_test, y_train, y_test)
X_train, y_train = np.array(X_train), np.array(y_train)
X_test, y_test = np.array(X_test), np.array(y_test)
X_train, X_test, y_train, y_test = X_train.astype(float), X_test.astype(float), \
y_train.astype(float), y_test.astype(float)
return X_train, X_test, y_train, y_test
def process_df(df):
THRESHOLD = 1000
def squash_01(row):
"""
Squeezes a row's vis error value into 0.001 (close to zero) or 1 (far away)
"""
if (row['ERROR'] > THRESHOLD):
return 1
else:
return 0
#df['ERROR'] = df.apply(squash_01, axis=1)
df = df[df.ERROR < 1000.0] # temporary? ignores all rows with high errors to avoid
df = df[df.CAMERA == 'FRONT-eval']
df.reset_index(drop=True)
# df = df[df.CAMERA == 'BACK-eval']
return df
def prepare_data(filename):
"""
Reads the visibility data (in csv format) from the filename
inside vis_data folder
Returns a pandas dataframe split into train (70) and test (30)
normalize inputs/outputs? or no?
"""
filepath = os.path.join(DIRNAME, filename)
df = pd.read_csv(filepath)
df = process_df(df)
X = df.iloc[:1000, -4:-1]
y = df.iloc[:1000, -1]
print(X)
return split_data(X, y, 0.3)
def get_datasets(X_train, X_test, y_train, y_test):
train_dataset = VisDataset(torch.from_numpy(X_train).float(),
torch.from_numpy(y_train).float())
test_dataset = VisDataset(torch.from_numpy(X_test).float(),
torch.from_numpy(y_test).float())
return train_dataset, test_dataset
def get_dataloader(dataset, batch_size):
loader = DataLoader(dataset=dataset,
batch_size=batch_size,
num_workers=2)
return loader
def run_nn(writer, trainloader, testloader):
# define neural net architecture
net = VisNet().to(device)
print(net)
criterion = torch.nn.MSELoss() # (y - yhat)^2
#criterion = torch.nn.BCELoss() # binary loss
optimizer = torch.optim.Adam(net.parameters(), lr=LEARNING_RATE)
print("============== BEGIN TRAINING =================")
# train the neural net
for epoch in range(EPOCHS):
trainloss = 0
valloss = 0
# training
for step, data in enumerate(trainloader):
# find X, y
X_batch, y_batch = data
y_batch = torch.clamp(y_batch, 0, 100)
X_batch = X_batch.to(device)
y_batch = y_batch.to(device)
optimizer.zero_grad() # zero the optim gradients
prediction = net(X_batch)
y_batch = y_batch.view(-1, 1)
loss = criterion(prediction, y_batch)
loss.backward() # backprop
optimizer.step() # apply gradients
trainloss += loss
avg_trainloss = trainloss / len(trainloader)
writer.add_scalar("Loss/train", avg_trainloss, epoch)
##################################################################
# compute validation loss
for step, data in enumerate(testloader):
# find X, y
X_batch, y_batch = data
y_batch = torch.clamp(y_batch, 0, 100)
X_batch = X_batch.to(device)
y_batch = y_batch.to(device)
prediction = net(X_batch)
y_batch = y_batch.view(-1, 1)
loss = criterion(prediction, y_batch)
valloss += loss
avg_valloss = valloss / len(testloader)
writer.add_scalar("Loss/validation", avg_valloss, epoch)
print("EPOCH: {:2d}, TRAIN LOSS: {:.4f}, VAL LOSS: {:.4f}".format(epoch, avg_trainloss, avg_valloss))
def train(filename, log_msg=None):
X_train, X_test, y_train, y_test = prepare_data(filename)
print("X TRAINING")
print(X_train)
print("Y TRAINING")
print(y_train)
train_dataset, test_dataset = get_datasets(X_train, X_test, y_train, y_test)
train_loader = get_dataloader(train_dataset, BATCH_SIZE)
test_loader = get_dataloader(test_dataset, BATCH_SIZE)
if (log_msg is not None):
logdir = "runs/" + log_msg
writer = SummaryWriter(log_dir=logdir)
else:
writer = SummaryWriter()
run_nn(writer, train_loader, test_loader)
writer.flush()
writer.close()
def debug(continuous=True, log_msg=None):
"""
continuous: boolean
(true if continuous fake data, false if discrete fake data)
"""
if (continuous):
filename = "fakecont.csv"
else:
filename = "fakedis.csv"
train(filename, log_msg)
if __name__ == "__main__":
train("vis00.csv", "moreneurons2")
#debug(True) # continuous
#debug(False, "FAKEBCE2") # discrete
pass
|
[
"os.path.abspath",
"torch.nn.MSELoss",
"torch.utils.data.DataLoader",
"torch.nn.ModuleList",
"pandas.read_csv",
"sklearn.model_selection.train_test_split",
"sklearn.preprocessing.MinMaxScaler",
"torch.clamp",
"torch.cuda.is_available",
"numpy.array",
"torch.utils.tensorboard.SummaryWriter",
"torch.nn.Linear",
"torch.nn.LeakyReLU",
"os.path.join",
"torch.from_numpy"
] |
[((497, 540), 'os.path.abspath', 'os.path.abspath', (["(__file__ + '/../vis_data/')"], {}), "(__file__ + '/../vis_data/')\n", (512, 540), False, 'import os\n'), ((1918, 1953), 'sklearn.preprocessing.MinMaxScaler', 'MinMaxScaler', ([], {'feature_range': '(-1, 1)'}), '(feature_range=(-1, 1))\n', (1930, 1953), False, 'from sklearn.preprocessing import MinMaxScaler\n'), ((2160, 2207), 'sklearn.model_selection.train_test_split', 'train_test_split', (['X', 'y'], {'test_size': 'test_fraction'}), '(X, y, test_size=test_fraction)\n', (2176, 2207), False, 'from sklearn.model_selection import train_test_split\n'), ((3418, 3449), 'os.path.join', 'os.path.join', (['DIRNAME', 'filename'], {}), '(DIRNAME, filename)\n', (3430, 3449), False, 'import os\n'), ((3459, 3480), 'pandas.read_csv', 'pd.read_csv', (['filepath'], {}), '(filepath)\n', (3470, 3480), True, 'import pandas as pd\n'), ((4021, 4086), 'torch.utils.data.DataLoader', 'DataLoader', ([], {'dataset': 'dataset', 'batch_size': 'batch_size', 'num_workers': '(2)'}), '(dataset=dataset, batch_size=batch_size, num_workers=2)\n', (4031, 4086), False, 'from torch.utils.data import Dataset, DataLoader\n'), ((4298, 4316), 'torch.nn.MSELoss', 'torch.nn.MSELoss', ([], {}), '()\n', (4314, 4316), False, 'import torch\n'), ((399, 424), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (422, 424), False, 'import torch\n'), ((1304, 1327), 'torch.nn.ModuleList', 'torch.nn.ModuleList', (['[]'], {}), '([])\n', (1323, 1327), False, 'import torch\n'), ((1490, 1510), 'torch.nn.LeakyReLU', 'torch.nn.LeakyReLU', ([], {}), '()\n', (1508, 1510), False, 'import torch\n'), ((2322, 2339), 'numpy.array', 'np.array', (['X_train'], {}), '(X_train)\n', (2330, 2339), True, 'import numpy as np\n'), ((2341, 2358), 'numpy.array', 'np.array', (['y_train'], {}), '(y_train)\n', (2349, 2358), True, 'import numpy as np\n'), ((2380, 2396), 'numpy.array', 'np.array', (['X_test'], {}), '(X_test)\n', (2388, 2396), True, 'import numpy as np\n'), ((2398, 2414), 'numpy.array', 'np.array', (['y_test'], {}), '(y_test)\n', (2406, 2414), True, 'import numpy as np\n'), ((6531, 6560), 'torch.utils.tensorboard.SummaryWriter', 'SummaryWriter', ([], {'log_dir': 'logdir'}), '(log_dir=logdir)\n', (6544, 6560), False, 'from torch.utils.tensorboard import SummaryWriter\n'), ((6588, 6603), 'torch.utils.tensorboard.SummaryWriter', 'SummaryWriter', ([], {}), '()\n', (6601, 6603), False, 'from torch.utils.tensorboard import SummaryWriter\n'), ((1382, 1429), 'torch.nn.Linear', 'torch.nn.Linear', (['LAYERDIMS[i]', 'LAYERDIMS[i + 1]'], {}), '(LAYERDIMS[i], LAYERDIMS[i + 1])\n', (1397, 1429), False, 'import torch\n'), ((4766, 4794), 'torch.clamp', 'torch.clamp', (['y_batch', '(0)', '(100)'], {}), '(y_batch, 0, 100)\n', (4777, 4794), False, 'import torch\n'), ((5564, 5592), 'torch.clamp', 'torch.clamp', (['y_batch', '(0)', '(100)'], {}), '(y_batch, 0, 100)\n', (5575, 5592), False, 'import torch\n'), ((3694, 3719), 'torch.from_numpy', 'torch.from_numpy', (['X_train'], {}), '(X_train)\n', (3710, 3719), False, 'import torch\n'), ((3761, 3786), 'torch.from_numpy', 'torch.from_numpy', (['y_train'], {}), '(y_train)\n', (3777, 3786), False, 'import torch\n'), ((3826, 3850), 'torch.from_numpy', 'torch.from_numpy', (['X_test'], {}), '(X_test)\n', (3842, 3850), False, 'import torch\n'), ((3892, 3916), 'torch.from_numpy', 'torch.from_numpy', (['y_test'], {}), '(y_test)\n', (3908, 3916), False, 'import torch\n')]
|
import sys
import random
import numpy as np
from numpy.random import randn
sys.path.append('../DescriptiveStatisticsFunction')
sys.path.append('../HelperFunctions')
from HelperFunctions.HelperFunctions import lib_mean
from HelperFunctions.HelperFunctions import lib_median
from HelperFunctions.HelperFunctions import lib_mode
from HelperFunctions.HelperFunctions import lib_variance
from HelperFunctions.HelperFunctions import lib_standard_deviation
from HelperFunctions.HelperFunctions import lib_skewness
from HelperFunctions.HelperFunctions import lib_sample_correlation
from HelperFunctions.HelperFunctions import lib_zscore
from DescriptiveStatisticsFunction.DescriptiveStatisticsFunction import created_mean
from DescriptiveStatisticsFunction.DescriptiveStatisticsFunction import created_median
from DescriptiveStatisticsFunction.DescriptiveStatisticsFunction import created_mode
from DescriptiveStatisticsFunction.DescriptiveStatisticsFunction import created_variance1
from DescriptiveStatisticsFunction.DescriptiveStatisticsFunction import created_variance2
from DescriptiveStatisticsFunction.DescriptiveStatisticsFunction import created_standard_deviation
from DescriptiveStatisticsFunction.DescriptiveStatisticsFunction import created_quartile
from DescriptiveStatisticsFunction.DescriptiveStatisticsFunction import created_skewness
from DescriptiveStatisticsFunction.DescriptiveStatisticsFunction import created_sample_correlation
from DescriptiveStatisticsFunction.DescriptiveStatisticsFunction import created_population_correlation
from DescriptiveStatisticsFunction.DescriptiveStatisticsFunction import created_zscore
from DescriptiveStatisticsFunction.DescriptiveStatisticsFunction import created_mean_deviation
from DescriptiveStatisticsFunction import DescriptiveStatisticsFunction
from HelperFunctions import HelperFunctions
import unittest
class MyTestCase(unittest.TestCase):
def setUp(self) -> None:
self.val_int = random.sample(range(1,100), 13)
# self.libStat = HelperFunctions
# self.createStat = DescriptiveStatisticsFunction
self.mode_data = random.choices(range(10), k= 10)
self.quartile_data = [10, 20, 30, 40, 50, 60, 70]
self.datax = np.array(20*randn(10) + 100).tolist()
self.datay = self.datax + (10*randn(10) + 50)
def test_mean_calculator(self):
self.assertEqual(created_mean(self.val_int), lib_mean(self.val_int))
def test_median_calculator(self):
self.assertEqual(created_median(self.val_int), lib_median(self.val_int))
def test_mode_calculator(self):
self.assertEqual(created_mode(self.val_int), lib_mode(self.val_int))
def test_variance_calculator(self):
self.assertEqual(created_variance1(self.val_int), lib_variance(self.val_int))
def test_stdev_calculator(self):
self.assertEqual(created_standard_deviation(self.val_int), lib_standard_deviation(self.val_int))
def test_quartile_calculator(self):
self.assertEqual(created_quartile(self.quartile_data), [20, 40, 60])
def test_skewness_calculator(self):
self.assertEqual(created_skewness(self.val_int), lib_skewness(self.val_int))
def test_correlation_calculator(self):
created_correlation = created_sample_correlation(self.datax, self.datay)
lib_correlation = lib_sample_correlation(self.datax, self.datay)
self.assertEqual(created_correlation, "{0:.2f}".format(round(lib_correlation[0],2)))
def test_zscore(self):
self.assertEqual(created_zscore(self.datax), lib_zscore(self.datax))
if __name__ == '__main__':
unittest.main()
|
[
"DescriptiveStatisticsFunction.DescriptiveStatisticsFunction.created_median",
"DescriptiveStatisticsFunction.DescriptiveStatisticsFunction.created_quartile",
"DescriptiveStatisticsFunction.DescriptiveStatisticsFunction.created_skewness",
"HelperFunctions.HelperFunctions.lib_zscore",
"DescriptiveStatisticsFunction.DescriptiveStatisticsFunction.created_standard_deviation",
"HelperFunctions.HelperFunctions.lib_sample_correlation",
"sys.path.append",
"unittest.main",
"numpy.random.randn",
"DescriptiveStatisticsFunction.DescriptiveStatisticsFunction.created_mean",
"DescriptiveStatisticsFunction.DescriptiveStatisticsFunction.created_zscore",
"DescriptiveStatisticsFunction.DescriptiveStatisticsFunction.created_sample_correlation",
"HelperFunctions.HelperFunctions.lib_median",
"DescriptiveStatisticsFunction.DescriptiveStatisticsFunction.created_mode",
"DescriptiveStatisticsFunction.DescriptiveStatisticsFunction.created_variance1",
"HelperFunctions.HelperFunctions.lib_variance",
"HelperFunctions.HelperFunctions.lib_mean",
"HelperFunctions.HelperFunctions.lib_standard_deviation",
"HelperFunctions.HelperFunctions.lib_mode",
"HelperFunctions.HelperFunctions.lib_skewness"
] |
[((75, 126), 'sys.path.append', 'sys.path.append', (['"""../DescriptiveStatisticsFunction"""'], {}), "('../DescriptiveStatisticsFunction')\n", (90, 126), False, 'import sys\n'), ((127, 164), 'sys.path.append', 'sys.path.append', (['"""../HelperFunctions"""'], {}), "('../HelperFunctions')\n", (142, 164), False, 'import sys\n'), ((3608, 3623), 'unittest.main', 'unittest.main', ([], {}), '()\n', (3621, 3623), False, 'import unittest\n'), ((3252, 3302), 'DescriptiveStatisticsFunction.DescriptiveStatisticsFunction.created_sample_correlation', 'created_sample_correlation', (['self.datax', 'self.datay'], {}), '(self.datax, self.datay)\n', (3278, 3302), False, 'from DescriptiveStatisticsFunction.DescriptiveStatisticsFunction import created_sample_correlation\n'), ((3329, 3375), 'HelperFunctions.HelperFunctions.lib_sample_correlation', 'lib_sample_correlation', (['self.datax', 'self.datay'], {}), '(self.datax, self.datay)\n', (3351, 3375), False, 'from HelperFunctions.HelperFunctions import lib_sample_correlation\n'), ((2378, 2404), 'DescriptiveStatisticsFunction.DescriptiveStatisticsFunction.created_mean', 'created_mean', (['self.val_int'], {}), '(self.val_int)\n', (2390, 2404), False, 'from DescriptiveStatisticsFunction.DescriptiveStatisticsFunction import created_mean\n'), ((2406, 2428), 'HelperFunctions.HelperFunctions.lib_mean', 'lib_mean', (['self.val_int'], {}), '(self.val_int)\n', (2414, 2428), False, 'from HelperFunctions.HelperFunctions import lib_mean\n'), ((2494, 2522), 'DescriptiveStatisticsFunction.DescriptiveStatisticsFunction.created_median', 'created_median', (['self.val_int'], {}), '(self.val_int)\n', (2508, 2522), False, 'from DescriptiveStatisticsFunction.DescriptiveStatisticsFunction import created_median\n'), ((2524, 2548), 'HelperFunctions.HelperFunctions.lib_median', 'lib_median', (['self.val_int'], {}), '(self.val_int)\n', (2534, 2548), False, 'from HelperFunctions.HelperFunctions import lib_median\n'), ((2612, 2638), 'DescriptiveStatisticsFunction.DescriptiveStatisticsFunction.created_mode', 'created_mode', (['self.val_int'], {}), '(self.val_int)\n', (2624, 2638), False, 'from DescriptiveStatisticsFunction.DescriptiveStatisticsFunction import created_mode\n'), ((2640, 2662), 'HelperFunctions.HelperFunctions.lib_mode', 'lib_mode', (['self.val_int'], {}), '(self.val_int)\n', (2648, 2662), False, 'from HelperFunctions.HelperFunctions import lib_mode\n'), ((2730, 2761), 'DescriptiveStatisticsFunction.DescriptiveStatisticsFunction.created_variance1', 'created_variance1', (['self.val_int'], {}), '(self.val_int)\n', (2747, 2761), False, 'from DescriptiveStatisticsFunction.DescriptiveStatisticsFunction import created_variance1\n'), ((2763, 2789), 'HelperFunctions.HelperFunctions.lib_variance', 'lib_variance', (['self.val_int'], {}), '(self.val_int)\n', (2775, 2789), False, 'from HelperFunctions.HelperFunctions import lib_variance\n'), ((2854, 2894), 'DescriptiveStatisticsFunction.DescriptiveStatisticsFunction.created_standard_deviation', 'created_standard_deviation', (['self.val_int'], {}), '(self.val_int)\n', (2880, 2894), False, 'from DescriptiveStatisticsFunction.DescriptiveStatisticsFunction import created_standard_deviation\n'), ((2896, 2932), 'HelperFunctions.HelperFunctions.lib_standard_deviation', 'lib_standard_deviation', (['self.val_int'], {}), '(self.val_int)\n', (2918, 2932), False, 'from HelperFunctions.HelperFunctions import lib_standard_deviation\n'), ((3000, 3036), 'DescriptiveStatisticsFunction.DescriptiveStatisticsFunction.created_quartile', 'created_quartile', (['self.quartile_data'], {}), '(self.quartile_data)\n', (3016, 3036), False, 'from DescriptiveStatisticsFunction.DescriptiveStatisticsFunction import created_quartile\n'), ((3118, 3148), 'DescriptiveStatisticsFunction.DescriptiveStatisticsFunction.created_skewness', 'created_skewness', (['self.val_int'], {}), '(self.val_int)\n', (3134, 3148), False, 'from DescriptiveStatisticsFunction.DescriptiveStatisticsFunction import created_skewness\n'), ((3150, 3176), 'HelperFunctions.HelperFunctions.lib_skewness', 'lib_skewness', (['self.val_int'], {}), '(self.val_int)\n', (3162, 3176), False, 'from HelperFunctions.HelperFunctions import lib_skewness\n'), ((3522, 3548), 'DescriptiveStatisticsFunction.DescriptiveStatisticsFunction.created_zscore', 'created_zscore', (['self.datax'], {}), '(self.datax)\n', (3536, 3548), False, 'from DescriptiveStatisticsFunction.DescriptiveStatisticsFunction import created_zscore\n'), ((3550, 3572), 'HelperFunctions.HelperFunctions.lib_zscore', 'lib_zscore', (['self.datax'], {}), '(self.datax)\n', (3560, 3572), False, 'from HelperFunctions.HelperFunctions import lib_zscore\n'), ((2300, 2309), 'numpy.random.randn', 'randn', (['(10)'], {}), '(10)\n', (2305, 2309), False, 'from numpy.random import randn\n'), ((2236, 2245), 'numpy.random.randn', 'randn', (['(10)'], {}), '(10)\n', (2241, 2245), False, 'from numpy.random import randn\n')]
|
from abc import ABC, abstractmethod
from multiprocessing import Pool
from shutil import rmtree
from time import time
import numpy as np
import os
import progressbar
import pysam
import pysamstats
class PileupGenerator(ABC):
"""
Base class for generating pileups from read alignments.
Usage:
X, y = PileupGenerator(reference_fasta_path, mode).generate()
"""
def __init__(self, reference_fasta_path, mode, save_directory_path=None):
"""
Mode must be one of 'training' or 'inference' string indicating pileups
generation mode. If 'training' is selected, pileups from different
contigs are all be concatenated. If 'inference' is selected, pileups
from different contig will be hold separate to enable to make
consensus with same number of contigs.
If save_directory_path is provided, generated pileups are stored in that
directory. Also, paths to those stored files are returned in
generate_pileups() method.
:param reference_fasta_path: path to reference stored in fasta file
format
:type reference_fasta_path: str
:param mode: either 'training' or 'inference' string, representing the
mode for pileups generation
:type mode: str
:param save_directory_path: path to directory for storing pileups
:type save_directory_path: str
"""
self.reference_fasta_path = reference_fasta_path
self.mode = mode
self.save_directory_path = save_directory_path
self._check_mode()
def _check_mode(self):
"""
Checks if given mode is supported: 'training' or 'inference'.
:raise ValueError: if selected mode is not supported
"""
modes = ['training', 'inference']
if self.mode not in modes:
raise ValueError(
'You must provide either \'training\' or \'inference\' mode, '
'but \'{}\' given.'.format(self.mode))
def _check_save_directory_path(self):
"""
Checks if given save directory path doesn't exists. If given
directory doesnt' exists, it creates it.
:raise ValueError: if given save directory exists
"""
if self.save_directory_path is not None:
if os.path.exists(self.save_directory_path):
raise ValueError(
'You must provide non-existing save output directory, '
'{} given.'.format(self.save_directory_path))
else:
os.makedirs(self.save_directory_path)
def generate_pileups(self):
"""
Generates pileups from given alignments.
:return: Pileups (X) and matching nucleus bases from reference (y) with
concatenated contigs for inference mode, or separate contigs for
training mode; also, if save_directory_path is provided, list of
paths to saved files is returned in tuple (X, y_oh,
contig_names, X_save_paths, y_save_paths). In both cases list of
contig names is also returned.
:rtype tuple of np.ndarray and list of str or tuple of np.array and
list of str
"""
self._check_mode()
self._check_save_directory_path()
X, y_oh, contig_names = self._generate_pileups()
total_pileups = len(X)
if self.mode == 'training': # training mode
X, y_oh = [np.concatenate(X, axis=0)], [
np.concatenate(y_oh, axis=0)]
total_pileups = 1
else: # inference mode
pass # nothing to do
if self.save_directory_path is not None:
return self._save_data(X, y_oh, contig_names, total_pileups)
else:
return X, y_oh, contig_names
def _save_data(self, X, y_oh, contig_names, total_pileups):
"""
Saves data to given save_directory path.
:param X: generated pileups
:type X: list of np.ndarray
:param y_oh: generated ground truth
:type y_oh: list of np.ndarray
:param contig_names: list of contig names
:type contig_names: list of str
:param total_pileups: total number of pileups
:type total_pileups: int
:return: generated pileups and ground truths
:rtype: tuple of np.ndarrays and list of str
"""
X_save_paths = [
os.path.join(
self.save_directory_path,
'pileups-X-{}.npy'.format(i))
for i in range(total_pileups)]
y_save_paths = [os.path.join(self.save_directory_path,
'pileups-y-{}.npy'.format(i))
for i in range(total_pileups)]
for X_save_path, y_save_path, Xi, yi in zip(
X_save_paths, y_save_paths, X, y_oh):
np.save(X_save_path, Xi)
np.save(y_save_path, yi)
return X, y_oh, X_save_paths, y_save_paths, contig_names
@abstractmethod
def _generate_pileups(self):
"""
Abstract method for generating pileups.
:return: generated pileups, ground truth and contig names
:rtype tuple of np.ndarray and list of str
"""
pass
class PysamstatsNoIndelGenerator(PileupGenerator):
"""
Pileup generator which uses Pysamstats as backend
(https://github.com/alimanfoo/pysamstats).
This version doesn't include indels nor in pileups nor in ground truth.
One example is:
x_i = (num_A, num_C, num_G, num_T)
y_i = ground truth class one-hot encoded (one of A, C, G or T)
"""
def __init__(self, bam_file_path, reference_fasta_path, mode,
save_directory_path=None):
"""
:param bam_file_path: path to .bam file containing alignments
:type bam_file_path: str
:param reference_fasta_path: path to reference stored in fasta file
format
:type reference_fasta_path: str
:param mode: either 'training' or 'inference' string, representing the
mode for pileups generation
:type mode: str
:param save_directory_path: path to directory for storing pileups
:type save_directory_path: str
"""
PileupGenerator.__init__(self, reference_fasta_path, mode,
save_directory_path=save_directory_path)
self.bam_file_path = bam_file_path
def _generate_pileups(self):
bam_file = pysam.AlignmentFile(self.bam_file_path)
info_of_interest = ['A', 'C', 'G', 'T']
# Last number in shape - 5 - is for letters other than A, C, G and T.
mapping = {'A': 0, 'a': 0, 'C': 1, 'c': 1, 'G': 2, 'g': 2, 'T': 3,
't': 3}
total_options = len(info_of_interest) + 1
pileups = [np.zeros(
(bam_file.get_reference_length(contig_name),
len(info_of_interest)
)) for contig_name in bam_file.references]
y_oh = [np.zeros(
(bam_file.get_reference_length(contig_name),
total_options
)) for contig_name in bam_file.references]
total_length = np.sum(
[bam_file.get_reference_length(contig_name) for contig_name in
bam_file.references])
progress_counter = 0
contig_names = bam_file.references
with progressbar.ProgressBar(max_value=total_length) as progress_bar:
for contig_id, contig_name in enumerate(contig_names):
for record in pysamstats.stat_variation(
bam_file, chrom=contig_name,
fafile=self.reference_fasta_path):
progress_bar.update(progress_counter)
progress_counter += 1
curr_position = record['pos']
for i, info in enumerate(info_of_interest):
pileups[contig_id][curr_position][i] += record[info]
y_oh[contig_id][curr_position][
mapping.get(record['ref'], -1)] = 1
return pileups, y_oh, contig_names
class PysamstatsIndelGenerator(PileupGenerator):
"""
Pileup generator which uses Pysamstats as backend
(https://github.com/alimanfoo/pysamstats).
This version includes indels both in pileups and ground truth.
One example is:
x_i = (num_A, num_C, num_G, num_T, num_I, num_D)
y_i = ground truth class one-hot encoded (one of A, C, G, T, I or D)
"""
def __init__(self, bam_file_path, reference_fasta_path, mode,
save_directory_path=None):
"""
:param bam_file_path: path to .bam file containing alignments
:type bam_file_path: str
:param reference_fasta_path: path to reference stored in fasta file
format
:type reference_fasta_path: str
:param mode: either 'training' or 'inference' string, representing the
mode for pileups generation
:type mode: str
:param save_directory_path: path to directory for storing pileups
:type save_directory_path: str
"""
PileupGenerator.__init__(self, reference_fasta_path, mode,
save_directory_path=save_directory_path)
self.bam_file_path = bam_file_path
def _generate_pileups(self):
bam_file = pysam.AlignmentFile(self.bam_file_path)
info_of_interest = ['A', 'C', 'G', 'T', 'insertions', 'deletions']
indel_positions = [4, 5]
# Last number in shape - 5 - is for letters other than A, C, G and T.
mapping = {'A': 0, 'a': 0, 'C': 1, 'c': 1, 'G': 2, 'g': 2, 'T': 3,
't': 3}
total_options = len(info_of_interest) + 1
pileups = [np.zeros(
(bam_file.get_reference_length(contig_name),
len(info_of_interest)
)) for contig_name in bam_file.references]
y_oh = [np.zeros(
(bam_file.get_reference_length(contig_name),
total_options
)) for contig_name in bam_file.references]
total_length = np.sum(
[bam_file.get_reference_length(contig_name) for contig_name in
bam_file.references])
progress_counter = 0
contig_names = bam_file.references
with progressbar.ProgressBar(max_value=total_length) as progress_bar:
for contig_id, contig_name in enumerate(contig_names):
for record in pysamstats.stat_variation(
bam_file, chrom=contig_name,
fafile=self.reference_fasta_path):
progress_bar.update(progress_counter)
progress_counter += 1
curr_position = record['pos']
for i, info in enumerate(info_of_interest):
pileups[contig_id][curr_position][i] += record[info]
pileup_argmax = np.argmax(
pileups[contig_id][curr_position])
if pileup_argmax in indel_positions:
y_oh[contig_id][curr_position][pileup_argmax] = 1
else:
y_oh[contig_id][curr_position][
mapping.get(record['ref'], -1)] = 1
return pileups, y_oh, contig_names
class RaconMSAGenerator(PileupGenerator):
"""
Pileup generator which uses MSA algorithm in order to give moge
informative pileups.
As MSA algorithm, Racon tool is used: https://github.com/isovic/racon
One example is:
x_i = (num_A, num_C, num_G, num_T, num_D)
y_i = ground truth class one-hot encoded (one of A, C, G, T, I or D)
Before pileup generation, Racon tool produces MSA which is stored in
textual file. Every six lines in that file represent the following:
- contig
- number of As
- number of Cs
- number of Gs
- number of Ts
- number of Ds
"""
_RACON_CMD = '{}/racon-hax/racon_hax -t {} {} {} {} > {}'
def __init__(self, reads_path, sam_file_path, reference_fasta_path, mode,
tools_dir, racon_hax_output_dir, save_directory_path=None,
num_threads=1):
"""
:param reads_path: path to fastq file containg reads
:type reads_path: str
:param sam_file_path: path to .sam file containing alignments
:type sam_file_path: str
:param reference_fasta_path: path to reference stored in fasta file
format
:type reference_fasta_path: str
:param mode: either 'training' or 'inference' string, representing the
mode for pileups generation
:type mode: str
:param tools_dir: path to root directory containing tools (like Racon)
:type tools_dir: str
:param racon_hax_output_dir: path to directory where Racon output
will be temporary stored
:type racon_hax_output_dir: str
:param save_directory_path: path to directory for storing pileups
:type save_directory_path: str
:param num_threads: number of threads for running the Racon tool
:type num_threads: int
"""
PileupGenerator.__init__(self, reference_fasta_path, mode,
save_directory_path=save_directory_path)
self.reads_path = reads_path
self.sam_file_path = sam_file_path
self.num_threads = num_threads
self.tools_dir = tools_dir
self.racon_hax_output_dir = racon_hax_output_dir
@staticmethod
def parse_line(line):
"""
Parses given line by splitting numbers are casting them to int.
Given line is one output line from Racon tool.
:param line: line to be parsed
:type line: str
:return: integers parsed from given line
:rtype: list of int
"""
return [int(v) for v in line.strip().split()]
def _parse_racon_hax_output(self, racon_hax_output_path):
"""
Every pileup has 5 rows A, C, G, T and D. At some column i, number of
As, Cs, Gs, Ts and Ds correspond to number of those letters at
position i on reference in pileup.
:param racon_hax_output_path:
:return:
"""
references, pileups = list(), list()
with Pool(self.num_threads) as pool:
with open(racon_hax_output_path) as f:
while True: # loop for multiple contigs
reference = f.readline().strip()
if len(reference) == 0: # EOF
break
lines = [f.readline() for _ in range(5)]
pileup = np.array(pool.map(self.parse_line, lines))
references.append(reference)
pileups.append(pileup)
return references, pileups
@staticmethod
def _generate_contig_names(num_contigs):
return ['contig_{}'.format(i) for i in range(num_contigs)]
def _generate_pileups(self):
timestamp = str(int(time()))
racon_hax_output_path = os.path.join(self.racon_hax_output_dir,
'racon-hex-{}.txt'.format(
timestamp))
os.makedirs(self.racon_hax_output_dir)
# Generate racon_hax output (MSA algorithm).
os.system(
RaconMSAGenerator._RACON_CMD.format(
self.tools_dir,
self.num_threads,
self.reads_path,
self.sam_file_path,
self.reference_fasta_path,
racon_hax_output_path
))
# Parse the racon_hax output.
references, pileups = self._parse_racon_hax_output(
racon_hax_output_path)
# Remove racon_hax output.
rmtree(self.racon_hax_output_dir)
num_contigs = len(references)
contig_names = self._generate_contig_names(num_contigs)
# D - deletions; I - insertions.
y_classes = ['A', 'C', 'G', 'T', 'I', 'D']
mapping = {'A': 0, 'a': 0, 'C': 1, 'c': 1, 'G': 2, 'g': 2, 'T': 3,
't': 3}
# Parse all contigs.
total_options = len(y_classes) + 1
y_oh = [np.zeros(
(len(reference), total_options)) for reference in references]
# Transpose pileups to make one example to have shape: (1,
# num_features).
pileups = [pileup.T for pileup in pileups]
total_length = np.sum([len(reference) for reference in references])
progress_counter = 0
with progressbar.ProgressBar(max_value=total_length) as progress_bar:
for contig_id, reference in enumerate(references):
for position, base in enumerate(reference):
progress_bar.update(progress_counter)
progress_counter += 1
num_Ds = pileups[contig_id][position][4]
num_bases = np.max(pileups[contig_id][position][:4])
if base == '-': # insertion
y_oh[contig_id][position][4] = 1 # 4 is insertion id
elif num_Ds > num_bases: # deletion
y_oh[contig_id][position][5] = 1 # 5 is deletion id
else:
y_oh[contig_id][position][
mapping.get(base, -1)] = 1
return pileups, y_oh, contig_names
|
[
"numpy.save",
"os.makedirs",
"numpy.argmax",
"pysam.AlignmentFile",
"os.path.exists",
"time.time",
"numpy.max",
"multiprocessing.Pool",
"shutil.rmtree",
"pysamstats.stat_variation",
"progressbar.ProgressBar",
"numpy.concatenate"
] |
[((6509, 6548), 'pysam.AlignmentFile', 'pysam.AlignmentFile', (['self.bam_file_path'], {}), '(self.bam_file_path)\n', (6528, 6548), False, 'import pysam\n'), ((9409, 9448), 'pysam.AlignmentFile', 'pysam.AlignmentFile', (['self.bam_file_path'], {}), '(self.bam_file_path)\n', (9428, 9448), False, 'import pysam\n'), ((15350, 15388), 'os.makedirs', 'os.makedirs', (['self.racon_hax_output_dir'], {}), '(self.racon_hax_output_dir)\n', (15361, 15388), False, 'import os\n'), ((15920, 15953), 'shutil.rmtree', 'rmtree', (['self.racon_hax_output_dir'], {}), '(self.racon_hax_output_dir)\n', (15926, 15953), False, 'from shutil import rmtree\n'), ((2314, 2354), 'os.path.exists', 'os.path.exists', (['self.save_directory_path'], {}), '(self.save_directory_path)\n', (2328, 2354), False, 'import os\n'), ((4877, 4901), 'numpy.save', 'np.save', (['X_save_path', 'Xi'], {}), '(X_save_path, Xi)\n', (4884, 4901), True, 'import numpy as np\n'), ((4914, 4938), 'numpy.save', 'np.save', (['y_save_path', 'yi'], {}), '(y_save_path, yi)\n', (4921, 4938), True, 'import numpy as np\n'), ((7401, 7448), 'progressbar.ProgressBar', 'progressbar.ProgressBar', ([], {'max_value': 'total_length'}), '(max_value=total_length)\n', (7424, 7448), False, 'import progressbar\n'), ((10361, 10408), 'progressbar.ProgressBar', 'progressbar.ProgressBar', ([], {'max_value': 'total_length'}), '(max_value=total_length)\n', (10384, 10408), False, 'import progressbar\n'), ((14398, 14420), 'multiprocessing.Pool', 'Pool', (['self.num_threads'], {}), '(self.num_threads)\n', (14402, 14420), False, 'from multiprocessing import Pool\n'), ((16688, 16735), 'progressbar.ProgressBar', 'progressbar.ProgressBar', ([], {'max_value': 'total_length'}), '(max_value=total_length)\n', (16711, 16735), False, 'import progressbar\n'), ((2566, 2603), 'os.makedirs', 'os.makedirs', (['self.save_directory_path'], {}), '(self.save_directory_path)\n', (2577, 2603), False, 'import os\n'), ((7563, 7656), 'pysamstats.stat_variation', 'pysamstats.stat_variation', (['bam_file'], {'chrom': 'contig_name', 'fafile': 'self.reference_fasta_path'}), '(bam_file, chrom=contig_name, fafile=self.\n reference_fasta_path)\n', (7588, 7656), False, 'import pysamstats\n'), ((10523, 10616), 'pysamstats.stat_variation', 'pysamstats.stat_variation', (['bam_file'], {'chrom': 'contig_name', 'fafile': 'self.reference_fasta_path'}), '(bam_file, chrom=contig_name, fafile=self.\n reference_fasta_path)\n', (10548, 10616), False, 'import pysamstats\n'), ((15128, 15134), 'time.time', 'time', ([], {}), '()\n', (15132, 15134), False, 'from time import time\n'), ((3464, 3489), 'numpy.concatenate', 'np.concatenate', (['X'], {'axis': '(0)'}), '(X, axis=0)\n', (3478, 3489), True, 'import numpy as np\n'), ((3510, 3538), 'numpy.concatenate', 'np.concatenate', (['y_oh'], {'axis': '(0)'}), '(y_oh, axis=0)\n', (3524, 3538), True, 'import numpy as np\n'), ((10992, 11036), 'numpy.argmax', 'np.argmax', (['pileups[contig_id][curr_position]'], {}), '(pileups[contig_id][curr_position])\n', (11001, 11036), True, 'import numpy as np\n'), ((17070, 17110), 'numpy.max', 'np.max', (['pileups[contig_id][position][:4]'], {}), '(pileups[contig_id][position][:4])\n', (17076, 17110), True, 'import numpy as np\n')]
|
import numpy as np
class Method:
def __call__(self, x):
raise NotImplementedError()
def disable(self, index, x):
raise NotImplementedError
def __repr__(self):
raise NotImplementedError
class Max(Method):
def __call__(self, x):
return x.argmax()
def disable(self, index, x):
x[index] = -np.inf
def __repr__(self):
return 'Max'
class Top(Method):
def __init__(self, n=5):
self.n = n
def __call__(self, x):
return np.random.choice(np.argpartition(x, -self.n, axis=None)[-self.n:])
def disable(self, index, x):
x[index] = -np.inf
def __repr__(self):
return 'Top' + str(self.n)
class PowerProb(Method):
def __init__(self, power=4):
self.power = power
def __call__(self, x):
raveled = np.power(np.ravel(x), self.power)
return np.random.choice(np.arange(x.size), p=(raveled / np.sum(raveled)))
def disable(self, index, x):
x[index] = 0.0
def __repr__(self):
return 'PowerProb' + str(self.power)
class RandomInference(Method):
def __call__(self, x):
return np.random.choice(np.arange(x.size))
def disable(self, index, x):
pass
def __repr__(self):
return 'RandomInference'
|
[
"numpy.argpartition",
"numpy.arange",
"numpy.sum",
"numpy.ravel"
] |
[((848, 859), 'numpy.ravel', 'np.ravel', (['x'], {}), '(x)\n', (856, 859), True, 'import numpy as np\n'), ((905, 922), 'numpy.arange', 'np.arange', (['x.size'], {}), '(x.size)\n', (914, 922), True, 'import numpy as np\n'), ((1174, 1191), 'numpy.arange', 'np.arange', (['x.size'], {}), '(x.size)\n', (1183, 1191), True, 'import numpy as np\n'), ((535, 573), 'numpy.argpartition', 'np.argpartition', (['x', '(-self.n)'], {'axis': 'None'}), '(x, -self.n, axis=None)\n', (550, 573), True, 'import numpy as np\n'), ((937, 952), 'numpy.sum', 'np.sum', (['raveled'], {}), '(raveled)\n', (943, 952), True, 'import numpy as np\n')]
|
import numpy as np
from scipy import interpolate
from scipy.ndimage import gaussian_filter
import functools
from . import mdfmodels, fast_mdfmodels
import dynesty as dy
from dynesty import plotting as dyplot
"""
TODO: figure out how to deal with error bars.
Do I just have to hierarchical inference it?
"""
def ptform_leaky_box(u, logpmin, logpmax):
return 10**((logpmax-logpmin)*u + logpmin)
def lnlkhd_leaky_box(theta, fehdata):
p = theta[0]
lnp = mdfmodels.log_leaky_box(fehdata, p)
return np.sum(lnp)
def fit_leaky_box(fehdata, logpmin=-3, logpmax=-1,
pool=None, ptform=None, **run_nested_kwargs):
lnlkhd = functools.partial(lnlkhd_leaky_box, fehdata=fehdata)
if ptform is None:
ptform = functools.partial(ptform_leaky_box, logpmin=logpmin, logpmax=logpmax)
dsampler = dy.DynamicNestedSampler(lnlkhd, ptform, ndim=1, pool=pool)
dsampler.run_nested(**run_nested_kwargs)
return dsampler
def lnlkhd_pre_enriched_box(theta, fehdata):
p, feh0 = theta
lnp = mdfmodels.log_pre_enriched_box(fehdata, p, feh0)
return np.sum(lnp)
def ptform_pre_enriched_box(u, logpmin, logpmax, feh0min, feh0max):
u[0] = 10**((logpmax-logpmin)*u[0] + logpmin)
u[1] = (feh0max-feh0min)*u[1] + feh0min
return u
def fit_pre_enriched_box(fehdata,
logpmin=-3, logpmax=-1,
feh0min=-5, feh0max=-2,
pool=None, ptform=None, **run_nested_kwargs):
lnlkhd = functools.partial(lnlkhd_pre_enriched_box, fehdata=fehdata)
if ptform is None:
ptform = functools.partial(ptform_pre_enriched_box, logpmin=logpmin, logpmax=logpmax,
feh0min=feh0min, feh0max=feh0max)
dsampler = dy.DynamicNestedSampler(lnlkhd, ptform, ndim=2, pool=pool)
dsampler.run_nested(**run_nested_kwargs)
return dsampler
def lnlkhd_extra_gas(theta, fehdata):
p, M = theta
lnp = mdfmodels.log_extra_gas(fehdata, p, M)
return np.sum(lnp)
def ptform_extra_gas(u, logpmin, logpmax, Mmin, Mmax):
u[0] = 10**((logpmax-logpmin)*u[0] + logpmin)
u[1] = (Mmax-Mmin)*u[1] + Mmin
return u
def fit_extra_gas(fehdata,
logpmin=-3, logpmax=-1,
Mmin=1, Mmax=10,
pool=None, ptform=None, **run_nested_kwargs):
lnlkhd = functools.partial(lnlkhd_extra_gas, fehdata=fehdata)
if ptform is None:
ptform = functools.partial(ptform_extra_gas, logpmin=logpmin, logpmax=logpmax,
Mmin=Mmin, Mmax=Mmax)
dsampler = dy.DynamicNestedSampler(lnlkhd, ptform, ndim=2, pool=pool)
dsampler.run_nested(**run_nested_kwargs)
return dsampler
def fit_leaky_box_errors(fehdata, efehdata,
logpmin=-3, logpmax=-1,
pool=None, ptform=None, **run_nested_kwargs):
griddata = fast_mdfmodels.load_data("leaky_box")
lnlkhd = functools.partial(fast_mdfmodels.fast_loglkhd_leaky_box,
fehdata=fehdata, efehdata=efehdata,
griddata=griddata)
if ptform is None:
ptform = functools.partial(ptform_leaky_box, logpmin=logpmin, logpmax=logpmax)
dsampler = dy.DynamicNestedSampler(lnlkhd, ptform, ndim=1, pool=pool)
dsampler.run_nested(**run_nested_kwargs)
return dsampler
def fit_pre_enriched_box_errors(fehdata, efehdata,
logpmin=-3, logpmax=-1,
feh0min=-5, feh0max=-2,
pool=None, ptform=None, **run_nested_kwargs):
griddata = fast_mdfmodels.load_data("pre_enriched_box")
lnlkhd = functools.partial(fast_mdfmodels.fast_loglkhd_pre_enriched_box,
fehdata=fehdata, efehdata=efehdata,
griddata=griddata)
if ptform is None:
ptform = functools.partial(ptform_pre_enriched_box, logpmin=logpmin, logpmax=logpmax, feh0min=feh0min, feh0max=feh0max)
dsampler = dy.DynamicNestedSampler(lnlkhd, ptform, ndim=2, pool=pool)
dsampler.run_nested(**run_nested_kwargs)
return dsampler
def fit_extra_gas_errors(fehdata, efehdata,
logpmin=-3, logpmax=-1,
Mmin=1, Mmax=10,
pool=None, ptform=None, **run_nested_kwargs):
griddata = fast_mdfmodels.load_data("extra_gas")
lnlkhd = functools.partial(fast_mdfmodels.fast_loglkhd_extra_gas,
fehdata=fehdata, efehdata=efehdata,
griddata=griddata)
if ptform is None:
ptform = functools.partial(ptform_extra_gas, logpmin=logpmin, logpmax=logpmax, Mmin=Mmin, Mmax=Mmax)
dsampler = dy.DynamicNestedSampler(lnlkhd, ptform, ndim=2, pool=pool)
dsampler.run_nested(**run_nested_kwargs)
return dsampler
def ptform_gaussian(u, mumin, mumax, logsigmamin, logsigmamax):
u[0] = (mumax-mumin)*u[0] + mumin
u[1] = 10**((logsigmamax-logsigmamin)*u[1] + logsigmamin)
return u
def fit_gaussian_errors(fehdata, efehdata,
mumin = -4, mumax = -1,
logsigmamin=-2, logsigmamax=1,
pool=None, ptform=None, **run_nested_kwargs):
lnlkhd = functools.partial(fast_mdfmodels.fast_loglkhd_gaussian,
fehdata=fehdata, efehdata=efehdata)
if ptform is None:
ptform = functools.partial(ptform_gaussian, mumin=mumin, mumax=mumax,
logsigmamin=logsigmamin, logsigmamax=logsigmamax)
dsampler = dy.DynamicNestedSampler(lnlkhd, ptform, ndim=2, pool=pool)
dsampler.run_nested(**run_nested_kwargs)
return dsampler
|
[
"functools.partial",
"dynesty.DynamicNestedSampler",
"numpy.sum"
] |
[((513, 524), 'numpy.sum', 'np.sum', (['lnp'], {}), '(lnp)\n', (519, 524), True, 'import numpy as np\n'), ((653, 705), 'functools.partial', 'functools.partial', (['lnlkhd_leaky_box'], {'fehdata': 'fehdata'}), '(lnlkhd_leaky_box, fehdata=fehdata)\n', (670, 705), False, 'import functools\n'), ((831, 889), 'dynesty.DynamicNestedSampler', 'dy.DynamicNestedSampler', (['lnlkhd', 'ptform'], {'ndim': '(1)', 'pool': 'pool'}), '(lnlkhd, ptform, ndim=1, pool=pool)\n', (854, 889), True, 'import dynesty as dy\n'), ((1091, 1102), 'numpy.sum', 'np.sum', (['lnp'], {}), '(lnp)\n', (1097, 1102), True, 'import numpy as np\n'), ((1494, 1553), 'functools.partial', 'functools.partial', (['lnlkhd_pre_enriched_box'], {'fehdata': 'fehdata'}), '(lnlkhd_pre_enriched_box, fehdata=fehdata)\n', (1511, 1553), False, 'import functools\n'), ((1755, 1813), 'dynesty.DynamicNestedSampler', 'dy.DynamicNestedSampler', (['lnlkhd', 'ptform'], {'ndim': '(2)', 'pool': 'pool'}), '(lnlkhd, ptform, ndim=2, pool=pool)\n', (1778, 1813), True, 'import dynesty as dy\n'), ((1995, 2006), 'numpy.sum', 'np.sum', (['lnp'], {}), '(lnp)\n', (2001, 2006), True, 'import numpy as np\n'), ((2341, 2393), 'functools.partial', 'functools.partial', (['lnlkhd_extra_gas'], {'fehdata': 'fehdata'}), '(lnlkhd_extra_gas, fehdata=fehdata)\n', (2358, 2393), False, 'import functools\n'), ((2576, 2634), 'dynesty.DynamicNestedSampler', 'dy.DynamicNestedSampler', (['lnlkhd', 'ptform'], {'ndim': '(2)', 'pool': 'pool'}), '(lnlkhd, ptform, ndim=2, pool=pool)\n', (2599, 2634), True, 'import dynesty as dy\n'), ((2931, 3046), 'functools.partial', 'functools.partial', (['fast_mdfmodels.fast_loglkhd_leaky_box'], {'fehdata': 'fehdata', 'efehdata': 'efehdata', 'griddata': 'griddata'}), '(fast_mdfmodels.fast_loglkhd_leaky_box, fehdata=fehdata,\n efehdata=efehdata, griddata=griddata)\n', (2948, 3046), False, 'import functools\n'), ((3230, 3288), 'dynesty.DynamicNestedSampler', 'dy.DynamicNestedSampler', (['lnlkhd', 'ptform'], {'ndim': '(1)', 'pool': 'pool'}), '(lnlkhd, ptform, ndim=1, pool=pool)\n', (3253, 3288), True, 'import dynesty as dy\n'), ((3668, 3791), 'functools.partial', 'functools.partial', (['fast_mdfmodels.fast_loglkhd_pre_enriched_box'], {'fehdata': 'fehdata', 'efehdata': 'efehdata', 'griddata': 'griddata'}), '(fast_mdfmodels.fast_loglkhd_pre_enriched_box, fehdata=\n fehdata, efehdata=efehdata, griddata=griddata)\n', (3685, 3791), False, 'import functools\n'), ((4015, 4073), 'dynesty.DynamicNestedSampler', 'dy.DynamicNestedSampler', (['lnlkhd', 'ptform'], {'ndim': '(2)', 'pool': 'pool'}), '(lnlkhd, ptform, ndim=2, pool=pool)\n', (4038, 4073), True, 'import dynesty as dy\n'), ((4411, 4526), 'functools.partial', 'functools.partial', (['fast_mdfmodels.fast_loglkhd_extra_gas'], {'fehdata': 'fehdata', 'efehdata': 'efehdata', 'griddata': 'griddata'}), '(fast_mdfmodels.fast_loglkhd_extra_gas, fehdata=fehdata,\n efehdata=efehdata, griddata=griddata)\n', (4428, 4526), False, 'import functools\n'), ((4732, 4790), 'dynesty.DynamicNestedSampler', 'dy.DynamicNestedSampler', (['lnlkhd', 'ptform'], {'ndim': '(2)', 'pool': 'pool'}), '(lnlkhd, ptform, ndim=2, pool=pool)\n', (4755, 4790), True, 'import dynesty as dy\n'), ((5263, 5358), 'functools.partial', 'functools.partial', (['fast_mdfmodels.fast_loglkhd_gaussian'], {'fehdata': 'fehdata', 'efehdata': 'efehdata'}), '(fast_mdfmodels.fast_loglkhd_gaussian, fehdata=fehdata,\n efehdata=efehdata)\n', (5280, 5358), False, 'import functools\n'), ((5587, 5645), 'dynesty.DynamicNestedSampler', 'dy.DynamicNestedSampler', (['lnlkhd', 'ptform'], {'ndim': '(2)', 'pool': 'pool'}), '(lnlkhd, ptform, ndim=2, pool=pool)\n', (5610, 5645), True, 'import dynesty as dy\n'), ((746, 815), 'functools.partial', 'functools.partial', (['ptform_leaky_box'], {'logpmin': 'logpmin', 'logpmax': 'logpmax'}), '(ptform_leaky_box, logpmin=logpmin, logpmax=logpmax)\n', (763, 815), False, 'import functools\n'), ((1594, 1708), 'functools.partial', 'functools.partial', (['ptform_pre_enriched_box'], {'logpmin': 'logpmin', 'logpmax': 'logpmax', 'feh0min': 'feh0min', 'feh0max': 'feh0max'}), '(ptform_pre_enriched_box, logpmin=logpmin, logpmax=logpmax,\n feh0min=feh0min, feh0max=feh0max)\n', (1611, 1708), False, 'import functools\n'), ((2434, 2530), 'functools.partial', 'functools.partial', (['ptform_extra_gas'], {'logpmin': 'logpmin', 'logpmax': 'logpmax', 'Mmin': 'Mmin', 'Mmax': 'Mmax'}), '(ptform_extra_gas, logpmin=logpmin, logpmax=logpmax, Mmin=\n Mmin, Mmax=Mmax)\n', (2451, 2530), False, 'import functools\n'), ((3145, 3214), 'functools.partial', 'functools.partial', (['ptform_leaky_box'], {'logpmin': 'logpmin', 'logpmax': 'logpmax'}), '(ptform_leaky_box, logpmin=logpmin, logpmax=logpmax)\n', (3162, 3214), False, 'import functools\n'), ((3889, 4003), 'functools.partial', 'functools.partial', (['ptform_pre_enriched_box'], {'logpmin': 'logpmin', 'logpmax': 'logpmax', 'feh0min': 'feh0min', 'feh0max': 'feh0max'}), '(ptform_pre_enriched_box, logpmin=logpmin, logpmax=logpmax,\n feh0min=feh0min, feh0max=feh0max)\n', (3906, 4003), False, 'import functools\n'), ((4625, 4721), 'functools.partial', 'functools.partial', (['ptform_extra_gas'], {'logpmin': 'logpmin', 'logpmax': 'logpmax', 'Mmin': 'Mmin', 'Mmax': 'Mmax'}), '(ptform_extra_gas, logpmin=logpmin, logpmax=logpmax, Mmin=\n Mmin, Mmax=Mmax)\n', (4642, 4721), False, 'import functools\n'), ((5426, 5541), 'functools.partial', 'functools.partial', (['ptform_gaussian'], {'mumin': 'mumin', 'mumax': 'mumax', 'logsigmamin': 'logsigmamin', 'logsigmamax': 'logsigmamax'}), '(ptform_gaussian, mumin=mumin, mumax=mumax, logsigmamin=\n logsigmamin, logsigmamax=logsigmamax)\n', (5443, 5541), False, 'import functools\n')]
|
import numpy as np
import os
import numpy as np
import math
import matplotlib as mpl
mpl.rcParams.update({
"axes.titlesize" : "medium"
})
import matplotlib.pyplot as plt
plt.rcParams.update({
"pgf.texsystem": "pdflatex",
"pgf.preamble": [
r"\usepackage[utf8x]{inputenc}",
r"\usepackage[T1]{fontenc}",
]
})
pgf_with_rc_fonts = {
"font.family": "serif",
"font.serif": [],
"font.size": 10,
}
mpl.rcParams.update(pgf_with_rc_fonts)
#dist_folder = '/home/rettenls/data/experiments/wiki/analysis/word-wise-instability/'
dist_folder = '/home/lucas/data/experiments/wiki/analysis/word-wise-instability/'
language = 'pl'
models = ['word2vec', 'glove', 'fasttext']
name_models = ['\\textbf{word2vec}', '\\textbf{GloVe}', '\\textbf{fastText}']
fig, ax = plt.subplots(nrows=3, ncols=1, sharex=True, sharey=True, figsize=(4, 7.5))
# GET X & Y Minimum and Maximum
x_min = 1
x_max = 0
y_min = 1
y_max = 0
for i,cell in enumerate(ax):
# Get Data
model = models[i]
# Intrinsic Stability
data_int = np.load(dist_folder + language + '_' + model + '_shuffle.npz')
stab_int = np.mean(data_int['arr_0'], axis = 1)
freq = data_int['arr_1'] / 120
# Extrinsic Stability
data_ext = np.load(dist_folder + language + '_' + model + '_bootstrap.npz')
stab_ext = np.sqrt(np.square( np.mean(data_ext['arr_0'], axis = 1)) - np.square(stab_int))
x_min = min(x_min, np.min(freq))
x_max = max(x_max, np.max(freq))
y_min = min(y_min, np.min(stab_int), np.min(stab_ext))
y_max = max(y_max, np.max(stab_int), np.max(stab_ext))
freq, stab_int, stab_ext
for i,cell in enumerate(ax):
# Get Data
model = models[i]
# Intrinsic Stability
data_int = np.load(dist_folder + language + '_' + model + '_shuffle.npz')
stab_int = np.mean(data_int['arr_0'], axis = 1)
freq = data_int['arr_1'] / 120
# Extrinsic Stability
data_ext = np.load(dist_folder + language + '_' + model + '_bootstrap.npz')
stab_ext = np.sqrt(np.square( np.mean(data_ext['arr_0'], axis = 1)) - np.square(stab_int))
cell.scatter(freq, stab_int, s = 3, label = 'Intrinsic Instability')
cell.scatter(freq, stab_ext, s = 3, label = 'Extrinsic Instability')
# Settings
cell.set_xlim([x_min,x_max])
cell.set_xscale('log')
cell.set_ylim([0, (int(100 * y_max) + 1) / 100])
#cell.set_yticks([0,0.02,0.04,0.06])
# Plot
cell.legend()
cell.set_ylabel('Word Instability', rotation = 90)
secax = cell.secondary_yaxis('right')
secax.set_ylabel(name_models[i], rotation = 90)
secax.set_ticks([])
if (i == 2):
cell.set_xlabel('Word Frequency')
"""
# SETTINGS
plt.xlabel('Word Frequency')
plt.ylabel('Stability')
plt.legend()
plt.ylim([0,0.04])
plt.xlim(smallest, largest)
plt.xscale('log')
"""
#plt.tight_layout()
plt.savefig("/home/lucas/Google Drive/Documents/Studium/Masterthesis/Thesis/plots/word-wise-instability-" + language + ".pgf")
plt.show()
"""
plt.tight_layout()
plt.savefig("/home/lucas/Google Drive/Documents/Studium/Masterthesis/Thesis/plots/gauss_p_values.pgf") """
"""
total_batch_num = 20
total_sample_num = len(freq)
sort_indices = np.argsort(freq)
space = np.logspace(np.log10(smallest), np.log10(largest), num = total_batch_num + 1)
print(space, smallest, largest, largest < space[-1])
batch_data = list()
for batch_num in range(total_batch_num):
lower = space[batch_num]
upper = space[batch_num + 1]
if batch_num == (total_batch_num - 1):
indices = np.where(freq >= lower)
else:
indices = np.where((freq < upper) & (freq >= lower))
if len(indices[0]) > 25:
batch_data_point = np.zeros((3, 2))
batch_data_point[0][0] = (lower + upper) / 2
batch_data_point[1][0] = np.mean(stab_int[indices])
batch_data_point[1][1] = np.std(stab_int[indices])
batch_data_point[2][0] = np.mean(stab_ext[indices])
batch_data_point[2][1] = np.std(stab_ext[indices])
batch_data.append(batch_data_point)
batch_data = np.array(batch_data)
#plt.fill_between(batch_data[:,0,0], batch_data[:,1,0]-batch_data[:,1,1], batch_data[:,1,0]+batch_data[:,1,1], alpha=0.5, label = 'Intrinsic')
#plt.fill_between(batch_data[:,0,0], batch_data[:,2,0]-batch_data[:,2,1], batch_data[:,2,0]+batch_data[:,2,1], alpha=0.5, label = 'Extrinsic')
"""
|
[
"numpy.load",
"matplotlib.pyplot.show",
"matplotlib.rcParams.update",
"numpy.square",
"numpy.min",
"matplotlib.pyplot.rcParams.update",
"numpy.mean",
"numpy.max",
"matplotlib.pyplot.subplots",
"matplotlib.pyplot.savefig"
] |
[((88, 137), 'matplotlib.rcParams.update', 'mpl.rcParams.update', (["{'axes.titlesize': 'medium'}"], {}), "({'axes.titlesize': 'medium'})\n", (107, 137), True, 'import matplotlib as mpl\n'), ((178, 313), 'matplotlib.pyplot.rcParams.update', 'plt.rcParams.update', (["{'pgf.texsystem': 'pdflatex', 'pgf.preamble': [\n '\\\\usepackage[utf8x]{inputenc}', '\\\\usepackage[T1]{fontenc}']}"], {}), "({'pgf.texsystem': 'pdflatex', 'pgf.preamble': [\n '\\\\usepackage[utf8x]{inputenc}', '\\\\usepackage[T1]{fontenc}']})\n", (197, 313), True, 'import matplotlib.pyplot as plt\n'), ((467, 505), 'matplotlib.rcParams.update', 'mpl.rcParams.update', (['pgf_with_rc_fonts'], {}), '(pgf_with_rc_fonts)\n', (486, 505), True, 'import matplotlib as mpl\n'), ((822, 896), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {'nrows': '(3)', 'ncols': '(1)', 'sharex': '(True)', 'sharey': '(True)', 'figsize': '(4, 7.5)'}), '(nrows=3, ncols=1, sharex=True, sharey=True, figsize=(4, 7.5))\n', (834, 896), True, 'import matplotlib.pyplot as plt\n'), ((2875, 3011), 'matplotlib.pyplot.savefig', 'plt.savefig', (["(\n '/home/lucas/Google Drive/Documents/Studium/Masterthesis/Thesis/plots/word-wise-instability-'\n + language + '.pgf')"], {}), "(\n '/home/lucas/Google Drive/Documents/Studium/Masterthesis/Thesis/plots/word-wise-instability-'\n + language + '.pgf')\n", (2886, 3011), True, 'import matplotlib.pyplot as plt\n'), ((3002, 3012), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (3010, 3012), True, 'import matplotlib.pyplot as plt\n'), ((1081, 1143), 'numpy.load', 'np.load', (["(dist_folder + language + '_' + model + '_shuffle.npz')"], {}), "(dist_folder + language + '_' + model + '_shuffle.npz')\n", (1088, 1143), True, 'import numpy as np\n'), ((1159, 1193), 'numpy.mean', 'np.mean', (["data_int['arr_0']"], {'axis': '(1)'}), "(data_int['arr_0'], axis=1)\n", (1166, 1193), True, 'import numpy as np\n'), ((1273, 1337), 'numpy.load', 'np.load', (["(dist_folder + language + '_' + model + '_bootstrap.npz')"], {}), "(dist_folder + language + '_' + model + '_bootstrap.npz')\n", (1280, 1337), True, 'import numpy as np\n'), ((1764, 1826), 'numpy.load', 'np.load', (["(dist_folder + language + '_' + model + '_shuffle.npz')"], {}), "(dist_folder + language + '_' + model + '_shuffle.npz')\n", (1771, 1826), True, 'import numpy as np\n'), ((1842, 1876), 'numpy.mean', 'np.mean', (["data_int['arr_0']"], {'axis': '(1)'}), "(data_int['arr_0'], axis=1)\n", (1849, 1876), True, 'import numpy as np\n'), ((1956, 2020), 'numpy.load', 'np.load', (["(dist_folder + language + '_' + model + '_bootstrap.npz')"], {}), "(dist_folder + language + '_' + model + '_bootstrap.npz')\n", (1963, 2020), True, 'import numpy as np\n'), ((1457, 1469), 'numpy.min', 'np.min', (['freq'], {}), '(freq)\n', (1463, 1469), True, 'import numpy as np\n'), ((1494, 1506), 'numpy.max', 'np.max', (['freq'], {}), '(freq)\n', (1500, 1506), True, 'import numpy as np\n'), ((1532, 1548), 'numpy.min', 'np.min', (['stab_int'], {}), '(stab_int)\n', (1538, 1548), True, 'import numpy as np\n'), ((1550, 1566), 'numpy.min', 'np.min', (['stab_ext'], {}), '(stab_ext)\n', (1556, 1566), True, 'import numpy as np\n'), ((1591, 1607), 'numpy.max', 'np.max', (['stab_int'], {}), '(stab_int)\n', (1597, 1607), True, 'import numpy as np\n'), ((1609, 1625), 'numpy.max', 'np.max', (['stab_ext'], {}), '(stab_ext)\n', (1615, 1625), True, 'import numpy as np\n'), ((1412, 1431), 'numpy.square', 'np.square', (['stab_int'], {}), '(stab_int)\n', (1421, 1431), True, 'import numpy as np\n'), ((2095, 2114), 'numpy.square', 'np.square', (['stab_int'], {}), '(stab_int)\n', (2104, 2114), True, 'import numpy as np\n'), ((1372, 1406), 'numpy.mean', 'np.mean', (["data_ext['arr_0']"], {'axis': '(1)'}), "(data_ext['arr_0'], axis=1)\n", (1379, 1406), True, 'import numpy as np\n'), ((2055, 2089), 'numpy.mean', 'np.mean', (["data_ext['arr_0']"], {'axis': '(1)'}), "(data_ext['arr_0'], axis=1)\n", (2062, 2089), True, 'import numpy as np\n')]
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.