formal
stringlengths 41
427k
| informal
stringclasses 1
value |
---|---|
essSup_map_measure_of_measurable ** α : Type u_1 β : Type u_2 m : MeasurableSpace α μ ν : Measure α inst✝⁵ : CompleteLattice β γ : Type u_3 mγ : MeasurableSpace γ f : α → γ g : γ → β inst✝⁴ : MeasurableSpace β inst✝³ : TopologicalSpace β inst✝² : SecondCountableTopology β inst✝¹ : OrderClosedTopology β inst✝ : OpensMeasurableSpace β hg : Measurable g hf : AEMeasurable f ⊢ essSup g (Measure.map f μ) = essSup (g ∘ f) μ ** refine' le_antisymm _ (essSup_comp_le_essSup_map_measure hf) ** α : Type u_1 β : Type u_2 m : MeasurableSpace α μ ν : Measure α inst✝⁵ : CompleteLattice β γ : Type u_3 mγ : MeasurableSpace γ f : α → γ g : γ → β inst✝⁴ : MeasurableSpace β inst✝³ : TopologicalSpace β inst✝² : SecondCountableTopology β inst✝¹ : OrderClosedTopology β inst✝ : OpensMeasurableSpace β hg : Measurable g hf : AEMeasurable f ⊢ essSup g (Measure.map f μ) ≤ essSup (g ∘ f) μ ** refine' limsSup_le_limsSup (by isBoundedDefault) (by isBoundedDefault) (fun c h_le => _) ** α : Type u_1 β : Type u_2 m : MeasurableSpace α μ ν : Measure α inst✝⁵ : CompleteLattice β γ : Type u_3 mγ : MeasurableSpace γ f : α → γ g : γ → β inst✝⁴ : MeasurableSpace β inst✝³ : TopologicalSpace β inst✝² : SecondCountableTopology β inst✝¹ : OrderClosedTopology β inst✝ : OpensMeasurableSpace β hg : Measurable g hf : AEMeasurable f c : β h_le : ∀ᶠ (n : β) in map (g ∘ f) (Measure.ae μ), n ≤ c ⊢ ∀ᶠ (n : β) in map g (Measure.ae (Measure.map f μ)), n ≤ c ** rw [eventually_map] at h_le ⊢ ** α : Type u_1 β : Type u_2 m : MeasurableSpace α μ ν : Measure α inst✝⁵ : CompleteLattice β γ : Type u_3 mγ : MeasurableSpace γ f : α → γ g : γ → β inst✝⁴ : MeasurableSpace β inst✝³ : TopologicalSpace β inst✝² : SecondCountableTopology β inst✝¹ : OrderClosedTopology β inst✝ : OpensMeasurableSpace β hg : Measurable g hf : AEMeasurable f c : β h_le : ∀ᵐ (a : α) ∂μ, (g ∘ f) a ≤ c ⊢ ∀ᵐ (a : γ) ∂Measure.map f μ, g a ≤ c ** rw [ae_map_iff hf (measurableSet_le hg measurable_const)] ** α : Type u_1 β : Type u_2 m : MeasurableSpace α μ ν : Measure α inst✝⁵ : CompleteLattice β γ : Type u_3 mγ : MeasurableSpace γ f : α → γ g : γ → β inst✝⁴ : MeasurableSpace β inst✝³ : TopologicalSpace β inst✝² : SecondCountableTopology β inst✝¹ : OrderClosedTopology β inst✝ : OpensMeasurableSpace β hg : Measurable g hf : AEMeasurable f c : β h_le : ∀ᵐ (a : α) ∂μ, (g ∘ f) a ≤ c ⊢ ∀ᵐ (x : α) ∂μ, g (f x) ≤ c ** exact h_le ** α : Type u_1 β : Type u_2 m : MeasurableSpace α μ ν : Measure α inst✝⁵ : CompleteLattice β γ : Type u_3 mγ : MeasurableSpace γ f : α → γ g : γ → β inst✝⁴ : MeasurableSpace β inst✝³ : TopologicalSpace β inst✝² : SecondCountableTopology β inst✝¹ : OrderClosedTopology β inst✝ : OpensMeasurableSpace β hg : Measurable g hf : AEMeasurable f ⊢ IsCobounded (fun x x_1 => x ≤ x_1) (map g (Measure.ae (Measure.map f μ))) ** isBoundedDefault ** α : Type u_1 β : Type u_2 m : MeasurableSpace α μ ν : Measure α inst✝⁵ : CompleteLattice β γ : Type u_3 mγ : MeasurableSpace γ f : α → γ g : γ → β inst✝⁴ : MeasurableSpace β inst✝³ : TopologicalSpace β inst✝² : SecondCountableTopology β inst✝¹ : OrderClosedTopology β inst✝ : OpensMeasurableSpace β hg : Measurable g hf : AEMeasurable f ⊢ IsBounded (fun x x_1 => x ≤ x_1) (map (g ∘ f) (Measure.ae μ)) ** isBoundedDefault ** Qed
| |
VitaliFamily.eventually_measure_lt_top ** α : Type u_1 inst✝² : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝¹ : NormedAddCommGroup E inst✝ : IsLocallyFiniteMeasure μ x : α ⊢ ∀ᶠ (a : Set α) in filterAt v x, ↑↑μ a < ⊤ ** obtain ⟨ε, εpos, με⟩ : ∃ (ε : ℝ), 0 < ε ∧ μ (closedBall x ε) < ∞ :=
(μ.finiteAt_nhds x).exists_mem_basis nhds_basis_closedBall ** case intro.intro α : Type u_1 inst✝² : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝¹ : NormedAddCommGroup E inst✝ : IsLocallyFiniteMeasure μ x : α ε : ℝ εpos : 0 < ε με : ↑↑μ (closedBall x ε) < ⊤ ⊢ ∀ᶠ (a : Set α) in filterAt v x, ↑↑μ a < ⊤ ** exact v.eventually_filterAt_iff.2 ⟨ε, εpos, fun a _ haε => (measure_mono haε).trans_lt με⟩ ** Qed
| |
VitaliFamily.measure_le_of_frequently_le ** α : Type u_1 inst✝⁴ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝³ : NormedAddCommGroup E inst✝² : SecondCountableTopology α inst✝¹ : BorelSpace α ρ ν : Measure α inst✝ : IsLocallyFiniteMeasure ν hρ : ρ ≪ μ s : Set α hs : ∀ (x : α), x ∈ s → ∃ᶠ (a : Set α) in filterAt v x, ↑↑ρ a ≤ ↑↑ν a ⊢ ↑↑ρ s ≤ ↑↑ν s ** apply ENNReal.le_of_forall_pos_le_add fun ε εpos _ => ?_ ** α : Type u_1 inst✝⁴ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝³ : NormedAddCommGroup E inst✝² : SecondCountableTopology α inst✝¹ : BorelSpace α ρ ν : Measure α inst✝ : IsLocallyFiniteMeasure ν hρ : ρ ≪ μ s : Set α hs : ∀ (x : α), x ∈ s → ∃ᶠ (a : Set α) in filterAt v x, ↑↑ρ a ≤ ↑↑ν a ε : ℝ≥0 εpos : 0 < ε x✝ : ↑↑ν s < ⊤ ⊢ ↑↑ρ s ≤ ↑↑ν s + ↑ε ** obtain ⟨U, sU, U_open, νU⟩ : ∃ (U : Set α), s ⊆ U ∧ IsOpen U ∧ ν U ≤ ν s + ε :=
exists_isOpen_le_add s ν (ENNReal.coe_pos.2 εpos).ne' ** case intro.intro.intro α : Type u_1 inst✝⁴ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝³ : NormedAddCommGroup E inst✝² : SecondCountableTopology α inst✝¹ : BorelSpace α ρ ν : Measure α inst✝ : IsLocallyFiniteMeasure ν hρ : ρ ≪ μ s : Set α hs : ∀ (x : α), x ∈ s → ∃ᶠ (a : Set α) in filterAt v x, ↑↑ρ a ≤ ↑↑ν a ε : ℝ≥0 εpos : 0 < ε x✝ : ↑↑ν s < ⊤ U : Set α sU : s ⊆ U U_open : IsOpen U νU : ↑↑ν U ≤ ↑↑ν s + ↑ε ⊢ ↑↑ρ s ≤ ↑↑ν s + ↑ε ** let f : α → Set (Set α) := fun _ => {a | ρ a ≤ ν a ∧ a ⊆ U} ** case intro.intro.intro α : Type u_1 inst✝⁴ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝³ : NormedAddCommGroup E inst✝² : SecondCountableTopology α inst✝¹ : BorelSpace α ρ ν : Measure α inst✝ : IsLocallyFiniteMeasure ν hρ : ρ ≪ μ s : Set α hs : ∀ (x : α), x ∈ s → ∃ᶠ (a : Set α) in filterAt v x, ↑↑ρ a ≤ ↑↑ν a ε : ℝ≥0 εpos : 0 < ε x✝ : ↑↑ν s < ⊤ U : Set α sU : s ⊆ U U_open : IsOpen U νU : ↑↑ν U ≤ ↑↑ν s + ↑ε f : α → Set (Set α) := fun x => {a | ↑↑ρ a ≤ ↑↑ν a ∧ a ⊆ U} ⊢ ↑↑ρ s ≤ ↑↑ν s + ↑ε ** have h : v.FineSubfamilyOn f s := by
apply v.fineSubfamilyOn_of_frequently f s fun x hx => ?_
have :=
(hs x hx).and_eventually
((v.eventually_filterAt_mem_sets x).and
(v.eventually_filterAt_subset_of_nhds (U_open.mem_nhds (sU hx))))
apply Frequently.mono this
rintro a ⟨ρa, _, aU⟩
exact ⟨ρa, aU⟩ ** case intro.intro.intro α : Type u_1 inst✝⁴ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝³ : NormedAddCommGroup E inst✝² : SecondCountableTopology α inst✝¹ : BorelSpace α ρ ν : Measure α inst✝ : IsLocallyFiniteMeasure ν hρ : ρ ≪ μ s : Set α hs : ∀ (x : α), x ∈ s → ∃ᶠ (a : Set α) in filterAt v x, ↑↑ρ a ≤ ↑↑ν a ε : ℝ≥0 εpos : 0 < ε x✝ : ↑↑ν s < ⊤ U : Set α sU : s ⊆ U U_open : IsOpen U νU : ↑↑ν U ≤ ↑↑ν s + ↑ε f : α → Set (Set α) := fun x => {a | ↑↑ρ a ≤ ↑↑ν a ∧ a ⊆ U} h : FineSubfamilyOn v f s ⊢ ↑↑ρ s ≤ ↑↑ν s + ↑ε ** haveI : Encodable h.index := h.index_countable.toEncodable ** case intro.intro.intro α : Type u_1 inst✝⁴ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝³ : NormedAddCommGroup E inst✝² : SecondCountableTopology α inst✝¹ : BorelSpace α ρ ν : Measure α inst✝ : IsLocallyFiniteMeasure ν hρ : ρ ≪ μ s : Set α hs : ∀ (x : α), x ∈ s → ∃ᶠ (a : Set α) in filterAt v x, ↑↑ρ a ≤ ↑↑ν a ε : ℝ≥0 εpos : 0 < ε x✝ : ↑↑ν s < ⊤ U : Set α sU : s ⊆ U U_open : IsOpen U νU : ↑↑ν U ≤ ↑↑ν s + ↑ε f : α → Set (Set α) := fun x => {a | ↑↑ρ a ≤ ↑↑ν a ∧ a ⊆ U} h : FineSubfamilyOn v f s this : Encodable ↑(FineSubfamilyOn.index h) ⊢ ↑↑ρ s ≤ ↑↑ν s + ↑ε ** calc
ρ s ≤ ∑' x : h.index, ρ (h.covering x) := h.measure_le_tsum_of_absolutelyContinuous hρ
_ ≤ ∑' x : h.index, ν (h.covering x) := (ENNReal.tsum_le_tsum fun x => (h.covering_mem x.2).1)
_ = ν (⋃ x : h.index, h.covering x) := by
rw [measure_iUnion h.covering_disjoint_subtype fun i => h.measurableSet_u i.2]
_ ≤ ν U := (measure_mono (iUnion_subset fun i => (h.covering_mem i.2).2))
_ ≤ ν s + ε := νU ** α : Type u_1 inst✝⁴ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝³ : NormedAddCommGroup E inst✝² : SecondCountableTopology α inst✝¹ : BorelSpace α ρ ν : Measure α inst✝ : IsLocallyFiniteMeasure ν hρ : ρ ≪ μ s : Set α hs : ∀ (x : α), x ∈ s → ∃ᶠ (a : Set α) in filterAt v x, ↑↑ρ a ≤ ↑↑ν a ε : ℝ≥0 εpos : 0 < ε x✝ : ↑↑ν s < ⊤ U : Set α sU : s ⊆ U U_open : IsOpen U νU : ↑↑ν U ≤ ↑↑ν s + ↑ε f : α → Set (Set α) := fun x => {a | ↑↑ρ a ≤ ↑↑ν a ∧ a ⊆ U} ⊢ FineSubfamilyOn v f s ** apply v.fineSubfamilyOn_of_frequently f s fun x hx => ?_ ** α : Type u_1 inst✝⁴ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝³ : NormedAddCommGroup E inst✝² : SecondCountableTopology α inst✝¹ : BorelSpace α ρ ν : Measure α inst✝ : IsLocallyFiniteMeasure ν hρ : ρ ≪ μ s : Set α hs : ∀ (x : α), x ∈ s → ∃ᶠ (a : Set α) in filterAt v x, ↑↑ρ a ≤ ↑↑ν a ε : ℝ≥0 εpos : 0 < ε x✝ : ↑↑ν s < ⊤ U : Set α sU : s ⊆ U U_open : IsOpen U νU : ↑↑ν U ≤ ↑↑ν s + ↑ε f : α → Set (Set α) := fun x => {a | ↑↑ρ a ≤ ↑↑ν a ∧ a ⊆ U} x : α hx : x ∈ s ⊢ ∃ᶠ (a : Set α) in filterAt v x, a ∈ f x ** have :=
(hs x hx).and_eventually
((v.eventually_filterAt_mem_sets x).and
(v.eventually_filterAt_subset_of_nhds (U_open.mem_nhds (sU hx)))) ** α : Type u_1 inst✝⁴ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝³ : NormedAddCommGroup E inst✝² : SecondCountableTopology α inst✝¹ : BorelSpace α ρ ν : Measure α inst✝ : IsLocallyFiniteMeasure ν hρ : ρ ≪ μ s : Set α hs : ∀ (x : α), x ∈ s → ∃ᶠ (a : Set α) in filterAt v x, ↑↑ρ a ≤ ↑↑ν a ε : ℝ≥0 εpos : 0 < ε x✝ : ↑↑ν s < ⊤ U : Set α sU : s ⊆ U U_open : IsOpen U νU : ↑↑ν U ≤ ↑↑ν s + ↑ε f : α → Set (Set α) := fun x => {a | ↑↑ρ a ≤ ↑↑ν a ∧ a ⊆ U} x : α hx : x ∈ s this : ∃ᶠ (x_1 : Set α) in filterAt v x, ↑↑ρ x_1 ≤ ↑↑ν x_1 ∧ x_1 ∈ setsAt v x ∧ x_1 ⊆ U ⊢ ∃ᶠ (a : Set α) in filterAt v x, a ∈ f x ** apply Frequently.mono this ** α : Type u_1 inst✝⁴ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝³ : NormedAddCommGroup E inst✝² : SecondCountableTopology α inst✝¹ : BorelSpace α ρ ν : Measure α inst✝ : IsLocallyFiniteMeasure ν hρ : ρ ≪ μ s : Set α hs : ∀ (x : α), x ∈ s → ∃ᶠ (a : Set α) in filterAt v x, ↑↑ρ a ≤ ↑↑ν a ε : ℝ≥0 εpos : 0 < ε x✝ : ↑↑ν s < ⊤ U : Set α sU : s ⊆ U U_open : IsOpen U νU : ↑↑ν U ≤ ↑↑ν s + ↑ε f : α → Set (Set α) := fun x => {a | ↑↑ρ a ≤ ↑↑ν a ∧ a ⊆ U} x : α hx : x ∈ s this : ∃ᶠ (x_1 : Set α) in filterAt v x, ↑↑ρ x_1 ≤ ↑↑ν x_1 ∧ x_1 ∈ setsAt v x ∧ x_1 ⊆ U ⊢ ∀ (x_1 : Set α), ↑↑ρ x_1 ≤ ↑↑ν x_1 ∧ x_1 ∈ setsAt v x ∧ x_1 ⊆ U → x_1 ∈ f x ** rintro a ⟨ρa, _, aU⟩ ** case intro.intro α : Type u_1 inst✝⁴ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝³ : NormedAddCommGroup E inst✝² : SecondCountableTopology α inst✝¹ : BorelSpace α ρ ν : Measure α inst✝ : IsLocallyFiniteMeasure ν hρ : ρ ≪ μ s : Set α hs : ∀ (x : α), x ∈ s → ∃ᶠ (a : Set α) in filterAt v x, ↑↑ρ a ≤ ↑↑ν a ε : ℝ≥0 εpos : 0 < ε x✝ : ↑↑ν s < ⊤ U : Set α sU : s ⊆ U U_open : IsOpen U νU : ↑↑ν U ≤ ↑↑ν s + ↑ε f : α → Set (Set α) := fun x => {a | ↑↑ρ a ≤ ↑↑ν a ∧ a ⊆ U} x : α hx : x ∈ s this : ∃ᶠ (x_1 : Set α) in filterAt v x, ↑↑ρ x_1 ≤ ↑↑ν x_1 ∧ x_1 ∈ setsAt v x ∧ x_1 ⊆ U a : Set α ρa : ↑↑ρ a ≤ ↑↑ν a left✝ : a ∈ setsAt v x aU : a ⊆ U ⊢ a ∈ f x ** exact ⟨ρa, aU⟩ ** α : Type u_1 inst✝⁴ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝³ : NormedAddCommGroup E inst✝² : SecondCountableTopology α inst✝¹ : BorelSpace α ρ ν : Measure α inst✝ : IsLocallyFiniteMeasure ν hρ : ρ ≪ μ s : Set α hs : ∀ (x : α), x ∈ s → ∃ᶠ (a : Set α) in filterAt v x, ↑↑ρ a ≤ ↑↑ν a ε : ℝ≥0 εpos : 0 < ε x✝ : ↑↑ν s < ⊤ U : Set α sU : s ⊆ U U_open : IsOpen U νU : ↑↑ν U ≤ ↑↑ν s + ↑ε f : α → Set (Set α) := fun x => {a | ↑↑ρ a ≤ ↑↑ν a ∧ a ⊆ U} h : FineSubfamilyOn v f s this : Encodable ↑(FineSubfamilyOn.index h) ⊢ ∑' (x : ↑(FineSubfamilyOn.index h)), ↑↑ν (FineSubfamilyOn.covering h ↑x) = ↑↑ν (⋃ x, FineSubfamilyOn.covering h ↑x) ** rw [measure_iUnion h.covering_disjoint_subtype fun i => h.measurableSet_u i.2] ** Qed
| |
VitaliFamily.ae_eventually_measure_zero_of_singular ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ⟂ₘ μ ⊢ ∀ᵐ (x : α) ∂μ, Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 0) ** have A : ∀ ε > (0 : ℝ≥0), ∀ᵐ x ∂μ, ∀ᶠ a in v.filterAt x, ρ a < ε * μ a := by
intro ε εpos
set s := {x | ¬∀ᶠ a in v.filterAt x, ρ a < ε * μ a} with hs
change μ s = 0
obtain ⟨o, _, ρo, μo⟩ : ∃ o : Set α, MeasurableSet o ∧ ρ o = 0 ∧ μ oᶜ = 0 := hρ
apply le_antisymm _ bot_le
calc
μ s ≤ μ (s ∩ o ∪ oᶜ) := by
conv_lhs => rw [← inter_union_compl s o]
exact measure_mono (union_subset_union_right _ (inter_subset_right _ _))
_ ≤ μ (s ∩ o) + μ oᶜ := (measure_union_le _ _)
_ = μ (s ∩ o) := by rw [μo, add_zero]
_ = (ε : ℝ≥0∞)⁻¹ * (ε • μ) (s ∩ o) := by
simp only [coe_nnreal_smul_apply, ← mul_assoc, mul_comm _ (ε : ℝ≥0∞)]
rw [ENNReal.mul_inv_cancel (ENNReal.coe_pos.2 εpos).ne' ENNReal.coe_ne_top, one_mul]
_ ≤ (ε : ℝ≥0∞)⁻¹ * ρ (s ∩ o) := by
refine' mul_le_mul_left' _ _
refine' v.measure_le_of_frequently_le ρ ((Measure.AbsolutelyContinuous.refl μ).smul ε) _ _
intro x hx
rw [hs] at hx
simp only [mem_inter_iff, not_lt, not_eventually, mem_setOf_eq] at hx
exact hx.1
_ ≤ (ε : ℝ≥0∞)⁻¹ * ρ o := (mul_le_mul_left' (measure_mono (inter_subset_right _ _)) _)
_ = 0 := by rw [ρo, mul_zero] ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ⟂ₘ μ A : ∀ (ε : ℝ≥0), ε > 0 → ∀ᵐ (x : α) ∂μ, ∀ᶠ (a : Set α) in filterAt v x, ↑↑ρ a < ↑ε * ↑↑μ a ⊢ ∀ᵐ (x : α) ∂μ, Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 0) ** obtain ⟨u, _, u_pos, u_lim⟩ :
∃ u : ℕ → ℝ≥0, StrictAnti u ∧ (∀ n : ℕ, 0 < u n) ∧ Tendsto u atTop (𝓝 0) :=
exists_seq_strictAnti_tendsto (0 : ℝ≥0) ** case intro.intro.intro α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ⟂ₘ μ A : ∀ (ε : ℝ≥0), ε > 0 → ∀ᵐ (x : α) ∂μ, ∀ᶠ (a : Set α) in filterAt v x, ↑↑ρ a < ↑ε * ↑↑μ a u : ℕ → ℝ≥0 left✝ : StrictAnti u u_pos : ∀ (n : ℕ), 0 < u n u_lim : Tendsto u atTop (𝓝 0) ⊢ ∀ᵐ (x : α) ∂μ, Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 0) ** have B : ∀ᵐ x ∂μ, ∀ n, ∀ᶠ a in v.filterAt x, ρ a < u n * μ a :=
ae_all_iff.2 fun n => A (u n) (u_pos n) ** case intro.intro.intro α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ⟂ₘ μ A : ∀ (ε : ℝ≥0), ε > 0 → ∀ᵐ (x : α) ∂μ, ∀ᶠ (a : Set α) in filterAt v x, ↑↑ρ a < ↑ε * ↑↑μ a u : ℕ → ℝ≥0 left✝ : StrictAnti u u_pos : ∀ (n : ℕ), 0 < u n u_lim : Tendsto u atTop (𝓝 0) B : ∀ᵐ (x : α) ∂μ, ∀ (n : ℕ), ∀ᶠ (a : Set α) in filterAt v x, ↑↑ρ a < ↑(u n) * ↑↑μ a ⊢ ∀ᵐ (x : α) ∂μ, Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 0) ** filter_upwards [B, v.ae_eventually_measure_pos] ** case h α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ⟂ₘ μ A : ∀ (ε : ℝ≥0), ε > 0 → ∀ᵐ (x : α) ∂μ, ∀ᶠ (a : Set α) in filterAt v x, ↑↑ρ a < ↑ε * ↑↑μ a u : ℕ → ℝ≥0 left✝ : StrictAnti u u_pos : ∀ (n : ℕ), 0 < u n u_lim : Tendsto u atTop (𝓝 0) B : ∀ᵐ (x : α) ∂μ, ∀ (n : ℕ), ∀ᶠ (a : Set α) in filterAt v x, ↑↑ρ a < ↑(u n) * ↑↑μ a ⊢ ∀ (a : α), (∀ (n : ℕ), ∀ᶠ (a : Set α) in filterAt v a, ↑↑ρ a < ↑(u n) * ↑↑μ a) → (∀ᶠ (a : Set α) in filterAt v a, 0 < ↑↑μ a) → Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v a) (𝓝 0) ** intro x hx h'x ** case h α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ⟂ₘ μ A : ∀ (ε : ℝ≥0), ε > 0 → ∀ᵐ (x : α) ∂μ, ∀ᶠ (a : Set α) in filterAt v x, ↑↑ρ a < ↑ε * ↑↑μ a u : ℕ → ℝ≥0 left✝ : StrictAnti u u_pos : ∀ (n : ℕ), 0 < u n u_lim : Tendsto u atTop (𝓝 0) B : ∀ᵐ (x : α) ∂μ, ∀ (n : ℕ), ∀ᶠ (a : Set α) in filterAt v x, ↑↑ρ a < ↑(u n) * ↑↑μ a x : α hx : ∀ (n : ℕ), ∀ᶠ (a : Set α) in filterAt v x, ↑↑ρ a < ↑(u n) * ↑↑μ a h'x : ∀ᶠ (a : Set α) in filterAt v x, 0 < ↑↑μ a ⊢ Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 0) ** refine' tendsto_order.2 ⟨fun z hz => (ENNReal.not_lt_zero hz).elim, fun z hz => _⟩ ** case h α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ⟂ₘ μ A : ∀ (ε : ℝ≥0), ε > 0 → ∀ᵐ (x : α) ∂μ, ∀ᶠ (a : Set α) in filterAt v x, ↑↑ρ a < ↑ε * ↑↑μ a u : ℕ → ℝ≥0 left✝ : StrictAnti u u_pos : ∀ (n : ℕ), 0 < u n u_lim : Tendsto u atTop (𝓝 0) B : ∀ᵐ (x : α) ∂μ, ∀ (n : ℕ), ∀ᶠ (a : Set α) in filterAt v x, ↑↑ρ a < ↑(u n) * ↑↑μ a x : α hx : ∀ (n : ℕ), ∀ᶠ (a : Set α) in filterAt v x, ↑↑ρ a < ↑(u n) * ↑↑μ a h'x : ∀ᶠ (a : Set α) in filterAt v x, 0 < ↑↑μ a z : ℝ≥0∞ hz : z > 0 ⊢ ∀ᶠ (b : Set α) in filterAt v x, ↑↑ρ b / ↑↑μ b < z ** obtain ⟨w, w_pos, w_lt⟩ : ∃ w : ℝ≥0, (0 : ℝ≥0∞) < w ∧ (w : ℝ≥0∞) < z :=
ENNReal.lt_iff_exists_nnreal_btwn.1 hz ** case h.intro.intro α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ⟂ₘ μ A : ∀ (ε : ℝ≥0), ε > 0 → ∀ᵐ (x : α) ∂μ, ∀ᶠ (a : Set α) in filterAt v x, ↑↑ρ a < ↑ε * ↑↑μ a u : ℕ → ℝ≥0 left✝ : StrictAnti u u_pos : ∀ (n : ℕ), 0 < u n u_lim : Tendsto u atTop (𝓝 0) B : ∀ᵐ (x : α) ∂μ, ∀ (n : ℕ), ∀ᶠ (a : Set α) in filterAt v x, ↑↑ρ a < ↑(u n) * ↑↑μ a x : α hx : ∀ (n : ℕ), ∀ᶠ (a : Set α) in filterAt v x, ↑↑ρ a < ↑(u n) * ↑↑μ a h'x : ∀ᶠ (a : Set α) in filterAt v x, 0 < ↑↑μ a z : ℝ≥0∞ hz : z > 0 w : ℝ≥0 w_pos : 0 < ↑w w_lt : ↑w < z ⊢ ∀ᶠ (b : Set α) in filterAt v x, ↑↑ρ b / ↑↑μ b < z ** obtain ⟨n, hn⟩ : ∃ n, u n < w := ((tendsto_order.1 u_lim).2 w (ENNReal.coe_pos.1 w_pos)).exists ** case h.intro.intro.intro α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ⟂ₘ μ A : ∀ (ε : ℝ≥0), ε > 0 → ∀ᵐ (x : α) ∂μ, ∀ᶠ (a : Set α) in filterAt v x, ↑↑ρ a < ↑ε * ↑↑μ a u : ℕ → ℝ≥0 left✝ : StrictAnti u u_pos : ∀ (n : ℕ), 0 < u n u_lim : Tendsto u atTop (𝓝 0) B : ∀ᵐ (x : α) ∂μ, ∀ (n : ℕ), ∀ᶠ (a : Set α) in filterAt v x, ↑↑ρ a < ↑(u n) * ↑↑μ a x : α hx : ∀ (n : ℕ), ∀ᶠ (a : Set α) in filterAt v x, ↑↑ρ a < ↑(u n) * ↑↑μ a h'x : ∀ᶠ (a : Set α) in filterAt v x, 0 < ↑↑μ a z : ℝ≥0∞ hz : z > 0 w : ℝ≥0 w_pos : 0 < ↑w w_lt : ↑w < z n : ℕ hn : u n < w ⊢ ∀ᶠ (b : Set α) in filterAt v x, ↑↑ρ b / ↑↑μ b < z ** filter_upwards [hx n, h'x, v.eventually_measure_lt_top x] ** case h α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ⟂ₘ μ A : ∀ (ε : ℝ≥0), ε > 0 → ∀ᵐ (x : α) ∂μ, ∀ᶠ (a : Set α) in filterAt v x, ↑↑ρ a < ↑ε * ↑↑μ a u : ℕ → ℝ≥0 left✝ : StrictAnti u u_pos : ∀ (n : ℕ), 0 < u n u_lim : Tendsto u atTop (𝓝 0) B : ∀ᵐ (x : α) ∂μ, ∀ (n : ℕ), ∀ᶠ (a : Set α) in filterAt v x, ↑↑ρ a < ↑(u n) * ↑↑μ a x : α hx : ∀ (n : ℕ), ∀ᶠ (a : Set α) in filterAt v x, ↑↑ρ a < ↑(u n) * ↑↑μ a h'x : ∀ᶠ (a : Set α) in filterAt v x, 0 < ↑↑μ a z : ℝ≥0∞ hz : z > 0 w : ℝ≥0 w_pos : 0 < ↑w w_lt : ↑w < z n : ℕ hn : u n < w ⊢ ∀ (a : Set α), ↑↑ρ a < ↑(u n) * ↑↑μ a → 0 < ↑↑μ a → ↑↑μ a < ⊤ → ↑↑ρ a / ↑↑μ a < z ** intro a ha μa_pos μa_lt_top ** case h α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ⟂ₘ μ A : ∀ (ε : ℝ≥0), ε > 0 → ∀ᵐ (x : α) ∂μ, ∀ᶠ (a : Set α) in filterAt v x, ↑↑ρ a < ↑ε * ↑↑μ a u : ℕ → ℝ≥0 left✝ : StrictAnti u u_pos : ∀ (n : ℕ), 0 < u n u_lim : Tendsto u atTop (𝓝 0) B : ∀ᵐ (x : α) ∂μ, ∀ (n : ℕ), ∀ᶠ (a : Set α) in filterAt v x, ↑↑ρ a < ↑(u n) * ↑↑μ a x : α hx : ∀ (n : ℕ), ∀ᶠ (a : Set α) in filterAt v x, ↑↑ρ a < ↑(u n) * ↑↑μ a h'x : ∀ᶠ (a : Set α) in filterAt v x, 0 < ↑↑μ a z : ℝ≥0∞ hz : z > 0 w : ℝ≥0 w_pos : 0 < ↑w w_lt : ↑w < z n : ℕ hn : u n < w a : Set α ha : ↑↑ρ a < ↑(u n) * ↑↑μ a μa_pos : 0 < ↑↑μ a μa_lt_top : ↑↑μ a < ⊤ ⊢ ↑↑ρ a / ↑↑μ a < z ** rw [ENNReal.div_lt_iff (Or.inl μa_pos.ne') (Or.inl μa_lt_top.ne)] ** case h α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ⟂ₘ μ A : ∀ (ε : ℝ≥0), ε > 0 → ∀ᵐ (x : α) ∂μ, ∀ᶠ (a : Set α) in filterAt v x, ↑↑ρ a < ↑ε * ↑↑μ a u : ℕ → ℝ≥0 left✝ : StrictAnti u u_pos : ∀ (n : ℕ), 0 < u n u_lim : Tendsto u atTop (𝓝 0) B : ∀ᵐ (x : α) ∂μ, ∀ (n : ℕ), ∀ᶠ (a : Set α) in filterAt v x, ↑↑ρ a < ↑(u n) * ↑↑μ a x : α hx : ∀ (n : ℕ), ∀ᶠ (a : Set α) in filterAt v x, ↑↑ρ a < ↑(u n) * ↑↑μ a h'x : ∀ᶠ (a : Set α) in filterAt v x, 0 < ↑↑μ a z : ℝ≥0∞ hz : z > 0 w : ℝ≥0 w_pos : 0 < ↑w w_lt : ↑w < z n : ℕ hn : u n < w a : Set α ha : ↑↑ρ a < ↑(u n) * ↑↑μ a μa_pos : 0 < ↑↑μ a μa_lt_top : ↑↑μ a < ⊤ ⊢ ↑↑ρ a < z * ↑↑μ a ** exact ha.trans_le (mul_le_mul_right' ((ENNReal.coe_le_coe.2 hn.le).trans w_lt.le) _) ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ⟂ₘ μ ⊢ ∀ (ε : ℝ≥0), ε > 0 → ∀ᵐ (x : α) ∂μ, ∀ᶠ (a : Set α) in filterAt v x, ↑↑ρ a < ↑ε * ↑↑μ a ** intro ε εpos ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ⟂ₘ μ ε : ℝ≥0 εpos : ε > 0 ⊢ ∀ᵐ (x : α) ∂μ, ∀ᶠ (a : Set α) in filterAt v x, ↑↑ρ a < ↑ε * ↑↑μ a ** set s := {x | ¬∀ᶠ a in v.filterAt x, ρ a < ε * μ a} with hs ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ⟂ₘ μ ε : ℝ≥0 εpos : ε > 0 s : Set α := {x | ¬∀ᶠ (a : Set α) in filterAt v x, ↑↑ρ a < ↑ε * ↑↑μ a} hs : s = {x | ¬∀ᶠ (a : Set α) in filterAt v x, ↑↑ρ a < ↑ε * ↑↑μ a} ⊢ ∀ᵐ (x : α) ∂μ, ∀ᶠ (a : Set α) in filterAt v x, ↑↑ρ a < ↑ε * ↑↑μ a ** change μ s = 0 ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ⟂ₘ μ ε : ℝ≥0 εpos : ε > 0 s : Set α := {x | ¬∀ᶠ (a : Set α) in filterAt v x, ↑↑ρ a < ↑ε * ↑↑μ a} hs : s = {x | ¬∀ᶠ (a : Set α) in filterAt v x, ↑↑ρ a < ↑ε * ↑↑μ a} ⊢ ↑↑μ s = 0 ** obtain ⟨o, _, ρo, μo⟩ : ∃ o : Set α, MeasurableSet o ∧ ρ o = 0 ∧ μ oᶜ = 0 := hρ ** case intro.intro.intro α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ ε : ℝ≥0 εpos : ε > 0 s : Set α := {x | ¬∀ᶠ (a : Set α) in filterAt v x, ↑↑ρ a < ↑ε * ↑↑μ a} hs : s = {x | ¬∀ᶠ (a : Set α) in filterAt v x, ↑↑ρ a < ↑ε * ↑↑μ a} o : Set α left✝ : MeasurableSet o ρo : ↑↑ρ o = 0 μo : ↑↑μ oᶜ = 0 ⊢ ↑↑μ s = 0 ** apply le_antisymm _ bot_le ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ ε : ℝ≥0 εpos : ε > 0 s : Set α := {x | ¬∀ᶠ (a : Set α) in filterAt v x, ↑↑ρ a < ↑ε * ↑↑μ a} hs : s = {x | ¬∀ᶠ (a : Set α) in filterAt v x, ↑↑ρ a < ↑ε * ↑↑μ a} o : Set α left✝ : MeasurableSet o ρo : ↑↑ρ o = 0 μo : ↑↑μ oᶜ = 0 ⊢ ↑↑μ s ≤ ⊥ ** calc
μ s ≤ μ (s ∩ o ∪ oᶜ) := by
conv_lhs => rw [← inter_union_compl s o]
exact measure_mono (union_subset_union_right _ (inter_subset_right _ _))
_ ≤ μ (s ∩ o) + μ oᶜ := (measure_union_le _ _)
_ = μ (s ∩ o) := by rw [μo, add_zero]
_ = (ε : ℝ≥0∞)⁻¹ * (ε • μ) (s ∩ o) := by
simp only [coe_nnreal_smul_apply, ← mul_assoc, mul_comm _ (ε : ℝ≥0∞)]
rw [ENNReal.mul_inv_cancel (ENNReal.coe_pos.2 εpos).ne' ENNReal.coe_ne_top, one_mul]
_ ≤ (ε : ℝ≥0∞)⁻¹ * ρ (s ∩ o) := by
refine' mul_le_mul_left' _ _
refine' v.measure_le_of_frequently_le ρ ((Measure.AbsolutelyContinuous.refl μ).smul ε) _ _
intro x hx
rw [hs] at hx
simp only [mem_inter_iff, not_lt, not_eventually, mem_setOf_eq] at hx
exact hx.1
_ ≤ (ε : ℝ≥0∞)⁻¹ * ρ o := (mul_le_mul_left' (measure_mono (inter_subset_right _ _)) _)
_ = 0 := by rw [ρo, mul_zero] ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ ε : ℝ≥0 εpos : ε > 0 s : Set α := {x | ¬∀ᶠ (a : Set α) in filterAt v x, ↑↑ρ a < ↑ε * ↑↑μ a} hs : s = {x | ¬∀ᶠ (a : Set α) in filterAt v x, ↑↑ρ a < ↑ε * ↑↑μ a} o : Set α left✝ : MeasurableSet o ρo : ↑↑ρ o = 0 μo : ↑↑μ oᶜ = 0 ⊢ ↑↑μ s ≤ ↑↑μ (s ∩ o ∪ oᶜ) ** conv_lhs => rw [← inter_union_compl s o] ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ ε : ℝ≥0 εpos : ε > 0 s : Set α := {x | ¬∀ᶠ (a : Set α) in filterAt v x, ↑↑ρ a < ↑ε * ↑↑μ a} hs : s = {x | ¬∀ᶠ (a : Set α) in filterAt v x, ↑↑ρ a < ↑ε * ↑↑μ a} o : Set α left✝ : MeasurableSet o ρo : ↑↑ρ o = 0 μo : ↑↑μ oᶜ = 0 ⊢ ↑↑μ (s ∩ o ∪ s ∩ oᶜ) ≤ ↑↑μ (s ∩ o ∪ oᶜ) ** exact measure_mono (union_subset_union_right _ (inter_subset_right _ _)) ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ ε : ℝ≥0 εpos : ε > 0 s : Set α := {x | ¬∀ᶠ (a : Set α) in filterAt v x, ↑↑ρ a < ↑ε * ↑↑μ a} hs : s = {x | ¬∀ᶠ (a : Set α) in filterAt v x, ↑↑ρ a < ↑ε * ↑↑μ a} o : Set α left✝ : MeasurableSet o ρo : ↑↑ρ o = 0 μo : ↑↑μ oᶜ = 0 ⊢ ↑↑μ (s ∩ o) + ↑↑μ oᶜ = ↑↑μ (s ∩ o) ** rw [μo, add_zero] ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ ε : ℝ≥0 εpos : ε > 0 s : Set α := {x | ¬∀ᶠ (a : Set α) in filterAt v x, ↑↑ρ a < ↑ε * ↑↑μ a} hs : s = {x | ¬∀ᶠ (a : Set α) in filterAt v x, ↑↑ρ a < ↑ε * ↑↑μ a} o : Set α left✝ : MeasurableSet o ρo : ↑↑ρ o = 0 μo : ↑↑μ oᶜ = 0 ⊢ ↑↑μ (s ∩ o) = (↑ε)⁻¹ * ↑↑(ε • μ) (s ∩ o) ** simp only [coe_nnreal_smul_apply, ← mul_assoc, mul_comm _ (ε : ℝ≥0∞)] ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ ε : ℝ≥0 εpos : ε > 0 s : Set α := {x | ¬∀ᶠ (a : Set α) in filterAt v x, ↑↑ρ a < ↑ε * ↑↑μ a} hs : s = {x | ¬∀ᶠ (a : Set α) in filterAt v x, ↑↑ρ a < ↑ε * ↑↑μ a} o : Set α left✝ : MeasurableSet o ρo : ↑↑ρ o = 0 μo : ↑↑μ oᶜ = 0 ⊢ ↑↑μ ({x | ¬∀ᶠ (a : Set α) in filterAt v x, ↑↑ρ a < ↑ε * ↑↑μ a} ∩ o) = ↑ε * (↑ε)⁻¹ * ↑↑μ ({x | ¬∀ᶠ (a : Set α) in filterAt v x, ↑↑ρ a < ↑ε * ↑↑μ a} ∩ o) ** rw [ENNReal.mul_inv_cancel (ENNReal.coe_pos.2 εpos).ne' ENNReal.coe_ne_top, one_mul] ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ ε : ℝ≥0 εpos : ε > 0 s : Set α := {x | ¬∀ᶠ (a : Set α) in filterAt v x, ↑↑ρ a < ↑ε * ↑↑μ a} hs : s = {x | ¬∀ᶠ (a : Set α) in filterAt v x, ↑↑ρ a < ↑ε * ↑↑μ a} o : Set α left✝ : MeasurableSet o ρo : ↑↑ρ o = 0 μo : ↑↑μ oᶜ = 0 ⊢ (↑ε)⁻¹ * ↑↑(ε • μ) (s ∩ o) ≤ (↑ε)⁻¹ * ↑↑ρ (s ∩ o) ** refine' mul_le_mul_left' _ _ ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ ε : ℝ≥0 εpos : ε > 0 s : Set α := {x | ¬∀ᶠ (a : Set α) in filterAt v x, ↑↑ρ a < ↑ε * ↑↑μ a} hs : s = {x | ¬∀ᶠ (a : Set α) in filterAt v x, ↑↑ρ a < ↑ε * ↑↑μ a} o : Set α left✝ : MeasurableSet o ρo : ↑↑ρ o = 0 μo : ↑↑μ oᶜ = 0 ⊢ ↑↑(ε • μ) (s ∩ o) ≤ ↑↑ρ (s ∩ o) ** refine' v.measure_le_of_frequently_le ρ ((Measure.AbsolutelyContinuous.refl μ).smul ε) _ _ ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ ε : ℝ≥0 εpos : ε > 0 s : Set α := {x | ¬∀ᶠ (a : Set α) in filterAt v x, ↑↑ρ a < ↑ε * ↑↑μ a} hs : s = {x | ¬∀ᶠ (a : Set α) in filterAt v x, ↑↑ρ a < ↑ε * ↑↑μ a} o : Set α left✝ : MeasurableSet o ρo : ↑↑ρ o = 0 μo : ↑↑μ oᶜ = 0 ⊢ ∀ (x : α), x ∈ s ∩ o → ∃ᶠ (a : Set α) in filterAt v x, ↑↑(ε • μ) a ≤ ↑↑ρ a ** intro x hx ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ ε : ℝ≥0 εpos : ε > 0 s : Set α := {x | ¬∀ᶠ (a : Set α) in filterAt v x, ↑↑ρ a < ↑ε * ↑↑μ a} hs : s = {x | ¬∀ᶠ (a : Set α) in filterAt v x, ↑↑ρ a < ↑ε * ↑↑μ a} o : Set α left✝ : MeasurableSet o ρo : ↑↑ρ o = 0 μo : ↑↑μ oᶜ = 0 x : α hx : x ∈ s ∩ o ⊢ ∃ᶠ (a : Set α) in filterAt v x, ↑↑(ε • μ) a ≤ ↑↑ρ a ** rw [hs] at hx ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ ε : ℝ≥0 εpos : ε > 0 s : Set α := {x | ¬∀ᶠ (a : Set α) in filterAt v x, ↑↑ρ a < ↑ε * ↑↑μ a} hs : s = {x | ¬∀ᶠ (a : Set α) in filterAt v x, ↑↑ρ a < ↑ε * ↑↑μ a} o : Set α left✝ : MeasurableSet o ρo : ↑↑ρ o = 0 μo : ↑↑μ oᶜ = 0 x : α hx : x ∈ {x | ¬∀ᶠ (a : Set α) in filterAt v x, ↑↑ρ a < ↑ε * ↑↑μ a} ∩ o ⊢ ∃ᶠ (a : Set α) in filterAt v x, ↑↑(ε • μ) a ≤ ↑↑ρ a ** simp only [mem_inter_iff, not_lt, not_eventually, mem_setOf_eq] at hx ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ ε : ℝ≥0 εpos : ε > 0 s : Set α := {x | ¬∀ᶠ (a : Set α) in filterAt v x, ↑↑ρ a < ↑ε * ↑↑μ a} hs : s = {x | ¬∀ᶠ (a : Set α) in filterAt v x, ↑↑ρ a < ↑ε * ↑↑μ a} o : Set α left✝ : MeasurableSet o ρo : ↑↑ρ o = 0 μo : ↑↑μ oᶜ = 0 x : α hx : (∃ᶠ (x : Set α) in filterAt v x, ↑ε * ↑↑μ x ≤ ↑↑ρ x) ∧ x ∈ o ⊢ ∃ᶠ (a : Set α) in filterAt v x, ↑↑(ε • μ) a ≤ ↑↑ρ a ** exact hx.1 ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ ε : ℝ≥0 εpos : ε > 0 s : Set α := {x | ¬∀ᶠ (a : Set α) in filterAt v x, ↑↑ρ a < ↑ε * ↑↑μ a} hs : s = {x | ¬∀ᶠ (a : Set α) in filterAt v x, ↑↑ρ a < ↑ε * ↑↑μ a} o : Set α left✝ : MeasurableSet o ρo : ↑↑ρ o = 0 μo : ↑↑μ oᶜ = 0 ⊢ (↑ε)⁻¹ * ↑↑ρ o = 0 ** rw [ρo, mul_zero] ** Qed
| |
VitaliFamily.null_of_frequently_le_of_frequently_ge ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ c d : ℝ≥0 hcd : c < d s : Set α hc : ∀ (x : α), x ∈ s → ∃ᶠ (a : Set α) in filterAt v x, ↑↑ρ a ≤ ↑c * ↑↑μ a hd : ∀ (x : α), x ∈ s → ∃ᶠ (a : Set α) in filterAt v x, ↑d * ↑↑μ a ≤ ↑↑ρ a ⊢ ↑↑μ s = 0 ** apply null_of_locally_null s fun x _ => ?_ ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ c d : ℝ≥0 hcd : c < d s : Set α hc : ∀ (x : α), x ∈ s → ∃ᶠ (a : Set α) in filterAt v x, ↑↑ρ a ≤ ↑c * ↑↑μ a hd : ∀ (x : α), x ∈ s → ∃ᶠ (a : Set α) in filterAt v x, ↑d * ↑↑μ a ≤ ↑↑ρ a x : α x✝ : x ∈ s ⊢ ∃ u, u ∈ 𝓝[s] x ∧ ↑↑μ u = 0 ** obtain ⟨o, xo, o_open, μo⟩ : ∃ o : Set α, x ∈ o ∧ IsOpen o ∧ μ o < ∞ :=
Measure.exists_isOpen_measure_lt_top μ x ** case intro.intro.intro α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ c d : ℝ≥0 hcd : c < d s : Set α hc : ∀ (x : α), x ∈ s → ∃ᶠ (a : Set α) in filterAt v x, ↑↑ρ a ≤ ↑c * ↑↑μ a hd : ∀ (x : α), x ∈ s → ∃ᶠ (a : Set α) in filterAt v x, ↑d * ↑↑μ a ≤ ↑↑ρ a x : α x✝ : x ∈ s o : Set α xo : x ∈ o o_open : IsOpen o μo : ↑↑μ o < ⊤ ⊢ ∃ u, u ∈ 𝓝[s] x ∧ ↑↑μ u = 0 ** refine' ⟨s ∩ o, inter_mem_nhdsWithin _ (o_open.mem_nhds xo), _⟩ ** case intro.intro.intro α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ c d : ℝ≥0 hcd : c < d s : Set α hc : ∀ (x : α), x ∈ s → ∃ᶠ (a : Set α) in filterAt v x, ↑↑ρ a ≤ ↑c * ↑↑μ a hd : ∀ (x : α), x ∈ s → ∃ᶠ (a : Set α) in filterAt v x, ↑d * ↑↑μ a ≤ ↑↑ρ a x : α x✝ : x ∈ s o : Set α xo : x ∈ o o_open : IsOpen o μo : ↑↑μ o < ⊤ ⊢ ↑↑μ (s ∩ o) = 0 ** let s' := s ∩ o ** case intro.intro.intro α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ c d : ℝ≥0 hcd : c < d s : Set α hc : ∀ (x : α), x ∈ s → ∃ᶠ (a : Set α) in filterAt v x, ↑↑ρ a ≤ ↑c * ↑↑μ a hd : ∀ (x : α), x ∈ s → ∃ᶠ (a : Set α) in filterAt v x, ↑d * ↑↑μ a ≤ ↑↑ρ a x : α x✝ : x ∈ s o : Set α xo : x ∈ o o_open : IsOpen o μo : ↑↑μ o < ⊤ s' : Set α := s ∩ o ⊢ ↑↑μ (s ∩ o) = 0 ** by_contra h ** case intro.intro.intro α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ c d : ℝ≥0 hcd : c < d s : Set α hc : ∀ (x : α), x ∈ s → ∃ᶠ (a : Set α) in filterAt v x, ↑↑ρ a ≤ ↑c * ↑↑μ a hd : ∀ (x : α), x ∈ s → ∃ᶠ (a : Set α) in filterAt v x, ↑d * ↑↑μ a ≤ ↑↑ρ a x : α x✝ : x ∈ s o : Set α xo : x ∈ o o_open : IsOpen o μo : ↑↑μ o < ⊤ s' : Set α := s ∩ o h : ¬↑↑μ (s ∩ o) = 0 ⊢ False ** apply lt_irrefl (ρ s') ** case intro.intro.intro α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ c d : ℝ≥0 hcd : c < d s : Set α hc : ∀ (x : α), x ∈ s → ∃ᶠ (a : Set α) in filterAt v x, ↑↑ρ a ≤ ↑c * ↑↑μ a hd : ∀ (x : α), x ∈ s → ∃ᶠ (a : Set α) in filterAt v x, ↑d * ↑↑μ a ≤ ↑↑ρ a x : α x✝ : x ∈ s o : Set α xo : x ∈ o o_open : IsOpen o μo : ↑↑μ o < ⊤ s' : Set α := s ∩ o h : ¬↑↑μ (s ∩ o) = 0 ⊢ ↑↑ρ s' < ↑↑ρ s' ** calc
ρ s' ≤ c * μ s' := v.measure_le_of_frequently_le (c • μ) hρ s' fun x hx => hc x hx.1
_ < d * μ s' := by
apply (ENNReal.mul_lt_mul_right h _).2 (ENNReal.coe_lt_coe.2 hcd)
exact (lt_of_le_of_lt (measure_mono (inter_subset_right _ _)) μo).ne
_ ≤ ρ s' :=
v.measure_le_of_frequently_le ρ ((Measure.AbsolutelyContinuous.refl μ).smul d) s' fun x hx =>
hd x hx.1 ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ c d : ℝ≥0 hcd : c < d s : Set α hc : ∀ (x : α), x ∈ s → ∃ᶠ (a : Set α) in filterAt v x, ↑↑ρ a ≤ ↑c * ↑↑μ a hd : ∀ (x : α), x ∈ s → ∃ᶠ (a : Set α) in filterAt v x, ↑d * ↑↑μ a ≤ ↑↑ρ a x : α x✝ : x ∈ s o : Set α xo : x ∈ o o_open : IsOpen o μo : ↑↑μ o < ⊤ s' : Set α := s ∩ o h : ¬↑↑μ (s ∩ o) = 0 ⊢ ↑c * ↑↑μ s' < ↑d * ↑↑μ s' ** apply (ENNReal.mul_lt_mul_right h _).2 (ENNReal.coe_lt_coe.2 hcd) ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ c d : ℝ≥0 hcd : c < d s : Set α hc : ∀ (x : α), x ∈ s → ∃ᶠ (a : Set α) in filterAt v x, ↑↑ρ a ≤ ↑c * ↑↑μ a hd : ∀ (x : α), x ∈ s → ∃ᶠ (a : Set α) in filterAt v x, ↑d * ↑↑μ a ≤ ↑↑ρ a x : α x✝ : x ∈ s o : Set α xo : x ∈ o o_open : IsOpen o μo : ↑↑μ o < ⊤ s' : Set α := s ∩ o h : ¬↑↑μ (s ∩ o) = 0 ⊢ ↑↑μ (s ∩ o) ≠ ⊤ ** exact (lt_of_le_of_lt (measure_mono (inter_subset_right _ _)) μo).ne ** Qed
| |
VitaliFamily.ae_tendsto_div ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ ⊢ ∀ᵐ (x : α) ∂μ, ∃ c, Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 c) ** obtain ⟨w, w_count, w_dense, _, w_top⟩ :
∃ w : Set ℝ≥0∞, w.Countable ∧ Dense w ∧ 0 ∉ w ∧ ∞ ∉ w :=
ENNReal.exists_countable_dense_no_zero_top ** case intro.intro.intro.intro α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ w : Set ℝ≥0∞ w_count : Set.Countable w w_dense : Dense w left✝ : ¬0 ∈ w w_top : ¬⊤ ∈ w ⊢ ∀ᵐ (x : α) ∂μ, ∃ c, Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 c) ** have I : ∀ x ∈ w, x ≠ ∞ := fun x xs hx => w_top (hx ▸ xs) ** case intro.intro.intro.intro α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ w : Set ℝ≥0∞ w_count : Set.Countable w w_dense : Dense w left✝ : ¬0 ∈ w w_top : ¬⊤ ∈ w I : ∀ (x : ℝ≥0∞), x ∈ w → x ≠ ⊤ A : ∀ (c : ℝ≥0∞), c ∈ w → ∀ (d : ℝ≥0∞), d ∈ w → c < d → ∀ᵐ (x : α) ∂μ, ¬((∃ᶠ (a : Set α) in filterAt v x, ↑↑ρ a / ↑↑μ a < c) ∧ ∃ᶠ (a : Set α) in filterAt v x, d < ↑↑ρ a / ↑↑μ a) ⊢ ∀ᵐ (x : α) ∂μ, ∃ c, Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 c) ** have B : ∀ᵐ x ∂μ, ∀ c ∈ w, ∀ d ∈ w, c < d →
¬((∃ᶠ a in v.filterAt x, ρ a / μ a < c) ∧ ∃ᶠ a in v.filterAt x, d < ρ a / μ a) := by
simpa only [ae_ball_iff w_count, ae_all_iff] ** case intro.intro.intro.intro α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ w : Set ℝ≥0∞ w_count : Set.Countable w w_dense : Dense w left✝ : ¬0 ∈ w w_top : ¬⊤ ∈ w I : ∀ (x : ℝ≥0∞), x ∈ w → x ≠ ⊤ A : ∀ (c : ℝ≥0∞), c ∈ w → ∀ (d : ℝ≥0∞), d ∈ w → c < d → ∀ᵐ (x : α) ∂μ, ¬((∃ᶠ (a : Set α) in filterAt v x, ↑↑ρ a / ↑↑μ a < c) ∧ ∃ᶠ (a : Set α) in filterAt v x, d < ↑↑ρ a / ↑↑μ a) B : ∀ᵐ (x : α) ∂μ, ∀ (c : ℝ≥0∞), c ∈ w → ∀ (d : ℝ≥0∞), d ∈ w → c < d → ¬((∃ᶠ (a : Set α) in filterAt v x, ↑↑ρ a / ↑↑μ a < c) ∧ ∃ᶠ (a : Set α) in filterAt v x, d < ↑↑ρ a / ↑↑μ a) ⊢ ∀ᵐ (x : α) ∂μ, ∃ c, Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 c) ** filter_upwards [B] ** case h α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ w : Set ℝ≥0∞ w_count : Set.Countable w w_dense : Dense w left✝ : ¬0 ∈ w w_top : ¬⊤ ∈ w I : ∀ (x : ℝ≥0∞), x ∈ w → x ≠ ⊤ A : ∀ (c : ℝ≥0∞), c ∈ w → ∀ (d : ℝ≥0∞), d ∈ w → c < d → ∀ᵐ (x : α) ∂μ, ¬((∃ᶠ (a : Set α) in filterAt v x, ↑↑ρ a / ↑↑μ a < c) ∧ ∃ᶠ (a : Set α) in filterAt v x, d < ↑↑ρ a / ↑↑μ a) B : ∀ᵐ (x : α) ∂μ, ∀ (c : ℝ≥0∞), c ∈ w → ∀ (d : ℝ≥0∞), d ∈ w → c < d → ¬((∃ᶠ (a : Set α) in filterAt v x, ↑↑ρ a / ↑↑μ a < c) ∧ ∃ᶠ (a : Set α) in filterAt v x, d < ↑↑ρ a / ↑↑μ a) ⊢ ∀ (a : α), (∀ (c : ℝ≥0∞), c ∈ w → ∀ (d : ℝ≥0∞), d ∈ w → c < d → ¬((∃ᶠ (a : Set α) in filterAt v a, ↑↑ρ a / ↑↑μ a < c) ∧ ∃ᶠ (a : Set α) in filterAt v a, d < ↑↑ρ a / ↑↑μ a)) → ∃ c, Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v a) (𝓝 c) ** intro x hx ** case h α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ w : Set ℝ≥0∞ w_count : Set.Countable w w_dense : Dense w left✝ : ¬0 ∈ w w_top : ¬⊤ ∈ w I : ∀ (x : ℝ≥0∞), x ∈ w → x ≠ ⊤ A : ∀ (c : ℝ≥0∞), c ∈ w → ∀ (d : ℝ≥0∞), d ∈ w → c < d → ∀ᵐ (x : α) ∂μ, ¬((∃ᶠ (a : Set α) in filterAt v x, ↑↑ρ a / ↑↑μ a < c) ∧ ∃ᶠ (a : Set α) in filterAt v x, d < ↑↑ρ a / ↑↑μ a) B : ∀ᵐ (x : α) ∂μ, ∀ (c : ℝ≥0∞), c ∈ w → ∀ (d : ℝ≥0∞), d ∈ w → c < d → ¬((∃ᶠ (a : Set α) in filterAt v x, ↑↑ρ a / ↑↑μ a < c) ∧ ∃ᶠ (a : Set α) in filterAt v x, d < ↑↑ρ a / ↑↑μ a) x : α hx : ∀ (c : ℝ≥0∞), c ∈ w → ∀ (d : ℝ≥0∞), d ∈ w → c < d → ¬((∃ᶠ (a : Set α) in filterAt v x, ↑↑ρ a / ↑↑μ a < c) ∧ ∃ᶠ (a : Set α) in filterAt v x, d < ↑↑ρ a / ↑↑μ a) ⊢ ∃ c, Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 c) ** exact tendsto_of_no_upcrossings w_dense hx ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ w : Set ℝ≥0∞ w_count : Set.Countable w w_dense : Dense w left✝ : ¬0 ∈ w w_top : ¬⊤ ∈ w I : ∀ (x : ℝ≥0∞), x ∈ w → x ≠ ⊤ ⊢ ∀ (c : ℝ≥0∞), c ∈ w → ∀ (d : ℝ≥0∞), d ∈ w → c < d → ∀ᵐ (x : α) ∂μ, ¬((∃ᶠ (a : Set α) in filterAt v x, ↑↑ρ a / ↑↑μ a < c) ∧ ∃ᶠ (a : Set α) in filterAt v x, d < ↑↑ρ a / ↑↑μ a) ** intro c hc d hd hcd ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ w : Set ℝ≥0∞ w_count : Set.Countable w w_dense : Dense w left✝ : ¬0 ∈ w w_top : ¬⊤ ∈ w I : ∀ (x : ℝ≥0∞), x ∈ w → x ≠ ⊤ c : ℝ≥0∞ hc : c ∈ w d : ℝ≥0∞ hd : d ∈ w hcd : c < d ⊢ ∀ᵐ (x : α) ∂μ, ¬((∃ᶠ (a : Set α) in filterAt v x, ↑↑ρ a / ↑↑μ a < c) ∧ ∃ᶠ (a : Set α) in filterAt v x, d < ↑↑ρ a / ↑↑μ a) ** lift c to ℝ≥0 using I c hc ** case intro α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ w : Set ℝ≥0∞ w_count : Set.Countable w w_dense : Dense w left✝ : ¬0 ∈ w w_top : ¬⊤ ∈ w I : ∀ (x : ℝ≥0∞), x ∈ w → x ≠ ⊤ d : ℝ≥0∞ hd : d ∈ w c : ℝ≥0 hc : ↑c ∈ w hcd : ↑c < d ⊢ ∀ᵐ (x : α) ∂μ, ¬((∃ᶠ (a : Set α) in filterAt v x, ↑↑ρ a / ↑↑μ a < ↑c) ∧ ∃ᶠ (a : Set α) in filterAt v x, d < ↑↑ρ a / ↑↑μ a) ** lift d to ℝ≥0 using I d hd ** case intro.intro α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ w : Set ℝ≥0∞ w_count : Set.Countable w w_dense : Dense w left✝ : ¬0 ∈ w w_top : ¬⊤ ∈ w I : ∀ (x : ℝ≥0∞), x ∈ w → x ≠ ⊤ c : ℝ≥0 hc : ↑c ∈ w d : ℝ≥0 hd : ↑d ∈ w hcd : ↑c < ↑d ⊢ ∀ᵐ (x : α) ∂μ, ¬((∃ᶠ (a : Set α) in filterAt v x, ↑↑ρ a / ↑↑μ a < ↑c) ∧ ∃ᶠ (a : Set α) in filterAt v x, ↑d < ↑↑ρ a / ↑↑μ a) ** apply v.null_of_frequently_le_of_frequently_ge hρ (ENNReal.coe_lt_coe.1 hcd) ** case intro.intro.hc α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ w : Set ℝ≥0∞ w_count : Set.Countable w w_dense : Dense w left✝ : ¬0 ∈ w w_top : ¬⊤ ∈ w I : ∀ (x : ℝ≥0∞), x ∈ w → x ≠ ⊤ c : ℝ≥0 hc : ↑c ∈ w d : ℝ≥0 hd : ↑d ∈ w hcd : ↑c < ↑d ⊢ ∀ (x : α), x ∈ {x | (fun x => ¬((∃ᶠ (a : Set α) in filterAt v x, ↑↑ρ a / ↑↑μ a < ↑c) ∧ ∃ᶠ (a : Set α) in filterAt v x, ↑d < ↑↑ρ a / ↑↑μ a)) x}ᶜ → ∃ᶠ (a : Set α) in filterAt v x, ↑↑ρ a ≤ ↑c * ↑↑μ a ** simp only [and_imp, exists_prop, not_frequently, not_and, not_lt, not_le, not_eventually,
mem_setOf_eq, mem_compl_iff, not_forall] ** case intro.intro.hc α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ w : Set ℝ≥0∞ w_count : Set.Countable w w_dense : Dense w left✝ : ¬0 ∈ w w_top : ¬⊤ ∈ w I : ∀ (x : ℝ≥0∞), x ∈ w → x ≠ ⊤ c : ℝ≥0 hc : ↑c ∈ w d : ℝ≥0 hd : ↑d ∈ w hcd : ↑c < ↑d ⊢ ∀ (x : α), (∃ᶠ (a : Set α) in filterAt v x, ↑↑ρ a / ↑↑μ a < ↑c) → (∃ᶠ (x : Set α) in filterAt v x, ↑d < ↑↑ρ x / ↑↑μ x) → ∃ᶠ (a : Set α) in filterAt v x, ↑↑ρ a ≤ ↑c * ↑↑μ a ** intro x h1x _ ** case intro.intro.hc α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ w : Set ℝ≥0∞ w_count : Set.Countable w w_dense : Dense w left✝ : ¬0 ∈ w w_top : ¬⊤ ∈ w I : ∀ (x : ℝ≥0∞), x ∈ w → x ≠ ⊤ c : ℝ≥0 hc : ↑c ∈ w d : ℝ≥0 hd : ↑d ∈ w hcd : ↑c < ↑d x : α h1x : ∃ᶠ (a : Set α) in filterAt v x, ↑↑ρ a / ↑↑μ a < ↑c a✝ : ∃ᶠ (x : Set α) in filterAt v x, ↑d < ↑↑ρ x / ↑↑μ x ⊢ ∃ᶠ (a : Set α) in filterAt v x, ↑↑ρ a ≤ ↑c * ↑↑μ a ** apply h1x.mono fun a ha => ?_ ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ w : Set ℝ≥0∞ w_count : Set.Countable w w_dense : Dense w left✝ : ¬0 ∈ w w_top : ¬⊤ ∈ w I : ∀ (x : ℝ≥0∞), x ∈ w → x ≠ ⊤ c : ℝ≥0 hc : ↑c ∈ w d : ℝ≥0 hd : ↑d ∈ w hcd : ↑c < ↑d x : α h1x : ∃ᶠ (a : Set α) in filterAt v x, ↑↑ρ a / ↑↑μ a < ↑c a✝ : ∃ᶠ (x : Set α) in filterAt v x, ↑d < ↑↑ρ x / ↑↑μ x a : Set α ha : ↑↑ρ a / ↑↑μ a < ↑c ⊢ ↑↑ρ a ≤ ↑c * ↑↑μ a ** refine' (ENNReal.div_le_iff_le_mul _ (Or.inr (bot_le.trans_lt ha).ne')).1 ha.le ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ w : Set ℝ≥0∞ w_count : Set.Countable w w_dense : Dense w left✝ : ¬0 ∈ w w_top : ¬⊤ ∈ w I : ∀ (x : ℝ≥0∞), x ∈ w → x ≠ ⊤ c : ℝ≥0 hc : ↑c ∈ w d : ℝ≥0 hd : ↑d ∈ w hcd : ↑c < ↑d x : α h1x : ∃ᶠ (a : Set α) in filterAt v x, ↑↑ρ a / ↑↑μ a < ↑c a✝ : ∃ᶠ (x : Set α) in filterAt v x, ↑d < ↑↑ρ x / ↑↑μ x a : Set α ha : ↑↑ρ a / ↑↑μ a < ↑c ⊢ ↑↑μ a ≠ 0 ∨ ↑c ≠ ⊤ ** simp only [ENNReal.coe_ne_top, Ne.def, or_true_iff, not_false_iff] ** case intro.intro.hd α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ w : Set ℝ≥0∞ w_count : Set.Countable w w_dense : Dense w left✝ : ¬0 ∈ w w_top : ¬⊤ ∈ w I : ∀ (x : ℝ≥0∞), x ∈ w → x ≠ ⊤ c : ℝ≥0 hc : ↑c ∈ w d : ℝ≥0 hd : ↑d ∈ w hcd : ↑c < ↑d ⊢ ∀ (x : α), x ∈ {x | (fun x => ¬((∃ᶠ (a : Set α) in filterAt v x, ↑↑ρ a / ↑↑μ a < ↑c) ∧ ∃ᶠ (a : Set α) in filterAt v x, ↑d < ↑↑ρ a / ↑↑μ a)) x}ᶜ → ∃ᶠ (a : Set α) in filterAt v x, ↑d * ↑↑μ a ≤ ↑↑ρ a ** simp only [and_imp, exists_prop, not_frequently, not_and, not_lt, not_le, not_eventually,
mem_setOf_eq, mem_compl_iff, not_forall] ** case intro.intro.hd α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ w : Set ℝ≥0∞ w_count : Set.Countable w w_dense : Dense w left✝ : ¬0 ∈ w w_top : ¬⊤ ∈ w I : ∀ (x : ℝ≥0∞), x ∈ w → x ≠ ⊤ c : ℝ≥0 hc : ↑c ∈ w d : ℝ≥0 hd : ↑d ∈ w hcd : ↑c < ↑d ⊢ ∀ (x : α), (∃ᶠ (a : Set α) in filterAt v x, ↑↑ρ a / ↑↑μ a < ↑c) → (∃ᶠ (x : Set α) in filterAt v x, ↑d < ↑↑ρ x / ↑↑μ x) → ∃ᶠ (a : Set α) in filterAt v x, ↑d * ↑↑μ a ≤ ↑↑ρ a ** intro x _ h2x ** case intro.intro.hd α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ w : Set ℝ≥0∞ w_count : Set.Countable w w_dense : Dense w left✝ : ¬0 ∈ w w_top : ¬⊤ ∈ w I : ∀ (x : ℝ≥0∞), x ∈ w → x ≠ ⊤ c : ℝ≥0 hc : ↑c ∈ w d : ℝ≥0 hd : ↑d ∈ w hcd : ↑c < ↑d x : α a✝ : ∃ᶠ (a : Set α) in filterAt v x, ↑↑ρ a / ↑↑μ a < ↑c h2x : ∃ᶠ (x : Set α) in filterAt v x, ↑d < ↑↑ρ x / ↑↑μ x ⊢ ∃ᶠ (a : Set α) in filterAt v x, ↑d * ↑↑μ a ≤ ↑↑ρ a ** apply h2x.mono fun a ha => ?_ ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ w : Set ℝ≥0∞ w_count : Set.Countable w w_dense : Dense w left✝ : ¬0 ∈ w w_top : ¬⊤ ∈ w I : ∀ (x : ℝ≥0∞), x ∈ w → x ≠ ⊤ c : ℝ≥0 hc : ↑c ∈ w d : ℝ≥0 hd : ↑d ∈ w hcd : ↑c < ↑d x : α a✝ : ∃ᶠ (a : Set α) in filterAt v x, ↑↑ρ a / ↑↑μ a < ↑c h2x : ∃ᶠ (x : Set α) in filterAt v x, ↑d < ↑↑ρ x / ↑↑μ x a : Set α ha : ↑d < ↑↑ρ a / ↑↑μ a ⊢ ↑d * ↑↑μ a ≤ ↑↑ρ a ** exact ENNReal.mul_le_of_le_div ha.le ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ w : Set ℝ≥0∞ w_count : Set.Countable w w_dense : Dense w left✝ : ¬0 ∈ w w_top : ¬⊤ ∈ w I : ∀ (x : ℝ≥0∞), x ∈ w → x ≠ ⊤ A : ∀ (c : ℝ≥0∞), c ∈ w → ∀ (d : ℝ≥0∞), d ∈ w → c < d → ∀ᵐ (x : α) ∂μ, ¬((∃ᶠ (a : Set α) in filterAt v x, ↑↑ρ a / ↑↑μ a < c) ∧ ∃ᶠ (a : Set α) in filterAt v x, d < ↑↑ρ a / ↑↑μ a) ⊢ ∀ᵐ (x : α) ∂μ, ∀ (c : ℝ≥0∞), c ∈ w → ∀ (d : ℝ≥0∞), d ∈ w → c < d → ¬((∃ᶠ (a : Set α) in filterAt v x, ↑↑ρ a / ↑↑μ a < c) ∧ ∃ᶠ (a : Set α) in filterAt v x, d < ↑↑ρ a / ↑↑μ a) ** simpa only [ae_ball_iff w_count, ae_all_iff] ** Qed
| |
VitaliFamily.ae_tendsto_limRatio ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ ⊢ ∀ᵐ (x : α) ∂μ, Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 (limRatio v ρ x)) ** filter_upwards [v.ae_tendsto_div hρ] ** case h α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ ⊢ ∀ (a : α), (∃ c, Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v a) (𝓝 c)) → Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v a) (𝓝 (limRatio v ρ a)) ** intro x hx ** case h α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ x : α hx : ∃ c, Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 c) ⊢ Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 (limRatio v ρ x)) ** exact tendsto_nhds_limUnder hx ** Qed
| |
VitaliFamily.exists_measurable_supersets_limRatio ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ p q : ℝ≥0 hpq : p < q ⊢ ∃ a b, MeasurableSet a ∧ MeasurableSet b ∧ {x | limRatio v ρ x < ↑p} ⊆ a ∧ {x | ↑q < limRatio v ρ x} ⊆ b ∧ ↑↑μ (a ∩ b) = 0 ** let s := {x | ∃ c, Tendsto (fun a => ρ a / μ a) (v.filterAt x) (𝓝 c)} ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ p q : ℝ≥0 hpq : p < q s : Set α := {x | ∃ c, Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 c)} ⊢ ∃ a b, MeasurableSet a ∧ MeasurableSet b ∧ {x | limRatio v ρ x < ↑p} ⊆ a ∧ {x | ↑q < limRatio v ρ x} ⊆ b ∧ ↑↑μ (a ∩ b) = 0 ** let o : ℕ → Set α := spanningSets (ρ + μ) ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ p q : ℝ≥0 hpq : p < q s : Set α := {x | ∃ c, Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 c)} o : ℕ → Set α := spanningSets (ρ + μ) ⊢ ∃ a b, MeasurableSet a ∧ MeasurableSet b ∧ {x | limRatio v ρ x < ↑p} ⊆ a ∧ {x | ↑q < limRatio v ρ x} ⊆ b ∧ ↑↑μ (a ∩ b) = 0 ** let u n := s ∩ {x | v.limRatio ρ x < p} ∩ o n ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ p q : ℝ≥0 hpq : p < q s : Set α := {x | ∃ c, Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 c)} o : ℕ → Set α := spanningSets (ρ + μ) u : ℕ → Set α := fun n => s ∩ {x | limRatio v ρ x < ↑p} ∩ o n ⊢ ∃ a b, MeasurableSet a ∧ MeasurableSet b ∧ {x | limRatio v ρ x < ↑p} ⊆ a ∧ {x | ↑q < limRatio v ρ x} ⊆ b ∧ ↑↑μ (a ∩ b) = 0 ** let w n := s ∩ {x | (q : ℝ≥0∞) < v.limRatio ρ x} ∩ o n ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ p q : ℝ≥0 hpq : p < q s : Set α := {x | ∃ c, Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 c)} o : ℕ → Set α := spanningSets (ρ + μ) u : ℕ → Set α := fun n => s ∩ {x | limRatio v ρ x < ↑p} ∩ o n w : ℕ → Set α := fun n => s ∩ {x | ↑q < limRatio v ρ x} ∩ o n ⊢ ∃ a b, MeasurableSet a ∧ MeasurableSet b ∧ {x | limRatio v ρ x < ↑p} ⊆ a ∧ {x | ↑q < limRatio v ρ x} ⊆ b ∧ ↑↑μ (a ∩ b) = 0 ** refine'
⟨toMeasurable μ sᶜ ∪ ⋃ n, toMeasurable (ρ + μ) (u n),
toMeasurable μ sᶜ ∪ ⋃ n, toMeasurable (ρ + μ) (w n), _, _, _, _, _⟩ ** case refine'_5 α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ p q : ℝ≥0 hpq : p < q s : Set α := {x | ∃ c, Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 c)} o : ℕ → Set α := spanningSets (ρ + μ) u : ℕ → Set α := fun n => s ∩ {x | limRatio v ρ x < ↑p} ∩ o n w : ℕ → Set α := fun n => s ∩ {x | ↑q < limRatio v ρ x} ∩ o n ⊢ ↑↑μ ((toMeasurable μ sᶜ ∪ ⋃ n, toMeasurable (ρ + μ) (u n)) ∩ (toMeasurable μ sᶜ ∪ ⋃ n, toMeasurable (ρ + μ) (w n))) = 0 ** suffices H : ∀ m n : ℕ, μ (toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n)) = 0 ** case H α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ p q : ℝ≥0 hpq : p < q s : Set α := {x | ∃ c, Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 c)} o : ℕ → Set α := spanningSets (ρ + μ) u : ℕ → Set α := fun n => s ∩ {x | limRatio v ρ x < ↑p} ∩ o n w : ℕ → Set α := fun n => s ∩ {x | ↑q < limRatio v ρ x} ∩ o n ⊢ ∀ (m n : ℕ), ↑↑μ (toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n)) = 0 ** intro m n ** case H α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ p q : ℝ≥0 hpq : p < q s : Set α := {x | ∃ c, Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 c)} o : ℕ → Set α := spanningSets (ρ + μ) u : ℕ → Set α := fun n => s ∩ {x | limRatio v ρ x < ↑p} ∩ o n w : ℕ → Set α := fun n => s ∩ {x | ↑q < limRatio v ρ x} ∩ o n m n : ℕ ⊢ ↑↑μ (toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n)) = 0 ** have I : (ρ + μ) (u m) ≠ ∞ := by
apply (lt_of_le_of_lt (measure_mono _) (measure_spanningSets_lt_top (ρ + μ) m)).ne
exact inter_subset_right _ _ ** case H α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ p q : ℝ≥0 hpq : p < q s : Set α := {x | ∃ c, Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 c)} o : ℕ → Set α := spanningSets (ρ + μ) u : ℕ → Set α := fun n => s ∩ {x | limRatio v ρ x < ↑p} ∩ o n w : ℕ → Set α := fun n => s ∩ {x | ↑q < limRatio v ρ x} ∩ o n m n : ℕ I : ↑↑(ρ + μ) (u m) ≠ ⊤ ⊢ ↑↑μ (toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n)) = 0 ** have J : (ρ + μ) (w n) ≠ ∞ := by
apply (lt_of_le_of_lt (measure_mono _) (measure_spanningSets_lt_top (ρ + μ) n)).ne
exact inter_subset_right _ _ ** case H α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ p q : ℝ≥0 hpq : p < q s : Set α := {x | ∃ c, Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 c)} o : ℕ → Set α := spanningSets (ρ + μ) u : ℕ → Set α := fun n => s ∩ {x | limRatio v ρ x < ↑p} ∩ o n w : ℕ → Set α := fun n => s ∩ {x | ↑q < limRatio v ρ x} ∩ o n m n : ℕ I : ↑↑(ρ + μ) (u m) ≠ ⊤ J : ↑↑(ρ + μ) (w n) ≠ ⊤ ⊢ ↑↑μ (toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n)) = 0 ** have A :
ρ (toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n)) ≤
p * μ (toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n)) :=
calc
ρ (toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n)) =
ρ (u m ∩ toMeasurable (ρ + μ) (w n)) :=
measure_toMeasurable_add_inter_left (measurableSet_toMeasurable _ _) I
_ ≤ (p • μ) (u m ∩ toMeasurable (ρ + μ) (w n)) := by
refine' v.measure_le_of_frequently_le (p • μ) hρ _ fun x hx => _
have L : Tendsto (fun a : Set α => ρ a / μ a) (v.filterAt x) (𝓝 (v.limRatio ρ x)) :=
tendsto_nhds_limUnder hx.1.1.1
have I : ∀ᶠ b : Set α in v.filterAt x, ρ b / μ b < p := (tendsto_order.1 L).2 _ hx.1.1.2
apply I.frequently.mono fun a ha => ?_
rw [coe_nnreal_smul_apply]
refine' (ENNReal.div_le_iff_le_mul _ (Or.inr (bot_le.trans_lt ha).ne')).1 ha.le
simp only [ENNReal.coe_ne_top, Ne.def, or_true_iff, not_false_iff]
_ = p * μ (toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n)) := by
simp only [coe_nnreal_smul_apply,
measure_toMeasurable_add_inter_right (measurableSet_toMeasurable _ _) I] ** case H α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ p q : ℝ≥0 hpq : p < q s : Set α := {x | ∃ c, Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 c)} o : ℕ → Set α := spanningSets (ρ + μ) u : ℕ → Set α := fun n => s ∩ {x | limRatio v ρ x < ↑p} ∩ o n w : ℕ → Set α := fun n => s ∩ {x | ↑q < limRatio v ρ x} ∩ o n m n : ℕ I : ↑↑(ρ + μ) (u m) ≠ ⊤ J : ↑↑(ρ + μ) (w n) ≠ ⊤ A : ↑↑ρ (toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n)) ≤ ↑p * ↑↑μ (toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n)) ⊢ ↑↑μ (toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n)) = 0 ** have B :
(q : ℝ≥0∞) * μ (toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n)) ≤
ρ (toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n)) :=
calc
(q : ℝ≥0∞) * μ (toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n)) =
(q : ℝ≥0∞) * μ (toMeasurable (ρ + μ) (u m) ∩ w n) := by
conv_rhs => rw [inter_comm]
rw [inter_comm, measure_toMeasurable_add_inter_right (measurableSet_toMeasurable _ _) J]
_ ≤ ρ (toMeasurable (ρ + μ) (u m) ∩ w n) := by
rw [← coe_nnreal_smul_apply]
refine' v.measure_le_of_frequently_le _ (AbsolutelyContinuous.rfl.smul _) _ _
intro x hx
have L : Tendsto (fun a : Set α => ρ a / μ a) (v.filterAt x) (𝓝 (v.limRatio ρ x)) :=
tendsto_nhds_limUnder hx.2.1.1
have I : ∀ᶠ b : Set α in v.filterAt x, (q : ℝ≥0∞) < ρ b / μ b :=
(tendsto_order.1 L).1 _ hx.2.1.2
apply I.frequently.mono fun a ha => ?_
rw [coe_nnreal_smul_apply]
exact ENNReal.mul_le_of_le_div ha.le
_ = ρ (toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n)) := by
conv_rhs => rw [inter_comm]
rw [inter_comm]
exact (measure_toMeasurable_add_inter_left (measurableSet_toMeasurable _ _) J).symm ** case H α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ p q : ℝ≥0 hpq : p < q s : Set α := {x | ∃ c, Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 c)} o : ℕ → Set α := spanningSets (ρ + μ) u : ℕ → Set α := fun n => s ∩ {x | limRatio v ρ x < ↑p} ∩ o n w : ℕ → Set α := fun n => s ∩ {x | ↑q < limRatio v ρ x} ∩ o n m n : ℕ I : ↑↑(ρ + μ) (u m) ≠ ⊤ J : ↑↑(ρ + μ) (w n) ≠ ⊤ A : ↑↑ρ (toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n)) ≤ ↑p * ↑↑μ (toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n)) B : ↑q * ↑↑μ (toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n)) ≤ ↑↑ρ (toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n)) ⊢ ↑↑μ (toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n)) = 0 ** by_contra h ** case H α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ p q : ℝ≥0 hpq : p < q s : Set α := {x | ∃ c, Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 c)} o : ℕ → Set α := spanningSets (ρ + μ) u : ℕ → Set α := fun n => s ∩ {x | limRatio v ρ x < ↑p} ∩ o n w : ℕ → Set α := fun n => s ∩ {x | ↑q < limRatio v ρ x} ∩ o n m n : ℕ I : ↑↑(ρ + μ) (u m) ≠ ⊤ J : ↑↑(ρ + μ) (w n) ≠ ⊤ A : ↑↑ρ (toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n)) ≤ ↑p * ↑↑μ (toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n)) B : ↑q * ↑↑μ (toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n)) ≤ ↑↑ρ (toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n)) h : ¬↑↑μ (toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n)) = 0 ⊢ False ** apply lt_irrefl (ρ (toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n))) ** case refine'_1 α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ p q : ℝ≥0 hpq : p < q s : Set α := {x | ∃ c, Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 c)} o : ℕ → Set α := spanningSets (ρ + μ) u : ℕ → Set α := fun n => s ∩ {x | limRatio v ρ x < ↑p} ∩ o n w : ℕ → Set α := fun n => s ∩ {x | ↑q < limRatio v ρ x} ∩ o n ⊢ MeasurableSet (toMeasurable μ sᶜ ∪ ⋃ n, toMeasurable (ρ + μ) (u n)) ** exact
(measurableSet_toMeasurable _ _).union
(MeasurableSet.iUnion fun n => measurableSet_toMeasurable _ _) ** case refine'_2 α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ p q : ℝ≥0 hpq : p < q s : Set α := {x | ∃ c, Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 c)} o : ℕ → Set α := spanningSets (ρ + μ) u : ℕ → Set α := fun n => s ∩ {x | limRatio v ρ x < ↑p} ∩ o n w : ℕ → Set α := fun n => s ∩ {x | ↑q < limRatio v ρ x} ∩ o n ⊢ MeasurableSet (toMeasurable μ sᶜ ∪ ⋃ n, toMeasurable (ρ + μ) (w n)) ** exact
(measurableSet_toMeasurable _ _).union
(MeasurableSet.iUnion fun n => measurableSet_toMeasurable _ _) ** case refine'_3 α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ p q : ℝ≥0 hpq : p < q s : Set α := {x | ∃ c, Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 c)} o : ℕ → Set α := spanningSets (ρ + μ) u : ℕ → Set α := fun n => s ∩ {x | limRatio v ρ x < ↑p} ∩ o n w : ℕ → Set α := fun n => s ∩ {x | ↑q < limRatio v ρ x} ∩ o n ⊢ {x | limRatio v ρ x < ↑p} ⊆ toMeasurable μ sᶜ ∪ ⋃ n, toMeasurable (ρ + μ) (u n) ** intro x hx ** case refine'_3 α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ p q : ℝ≥0 hpq : p < q s : Set α := {x | ∃ c, Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 c)} o : ℕ → Set α := spanningSets (ρ + μ) u : ℕ → Set α := fun n => s ∩ {x | limRatio v ρ x < ↑p} ∩ o n w : ℕ → Set α := fun n => s ∩ {x | ↑q < limRatio v ρ x} ∩ o n x : α hx : x ∈ {x | limRatio v ρ x < ↑p} ⊢ x ∈ toMeasurable μ sᶜ ∪ ⋃ n, toMeasurable (ρ + μ) (u n) ** by_cases h : x ∈ s ** case pos α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ p q : ℝ≥0 hpq : p < q s : Set α := {x | ∃ c, Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 c)} o : ℕ → Set α := spanningSets (ρ + μ) u : ℕ → Set α := fun n => s ∩ {x | limRatio v ρ x < ↑p} ∩ o n w : ℕ → Set α := fun n => s ∩ {x | ↑q < limRatio v ρ x} ∩ o n x : α hx : x ∈ {x | limRatio v ρ x < ↑p} h : x ∈ s ⊢ x ∈ toMeasurable μ sᶜ ∪ ⋃ n, toMeasurable (ρ + μ) (u n) ** refine' Or.inr (mem_iUnion.2 ⟨spanningSetsIndex (ρ + μ) x, _⟩) ** case pos α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ p q : ℝ≥0 hpq : p < q s : Set α := {x | ∃ c, Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 c)} o : ℕ → Set α := spanningSets (ρ + μ) u : ℕ → Set α := fun n => s ∩ {x | limRatio v ρ x < ↑p} ∩ o n w : ℕ → Set α := fun n => s ∩ {x | ↑q < limRatio v ρ x} ∩ o n x : α hx : x ∈ {x | limRatio v ρ x < ↑p} h : x ∈ s ⊢ x ∈ toMeasurable (ρ + μ) (u (spanningSetsIndex (ρ + μ) x)) ** exact subset_toMeasurable _ _ ⟨⟨h, hx⟩, mem_spanningSetsIndex _ _⟩ ** case neg α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ p q : ℝ≥0 hpq : p < q s : Set α := {x | ∃ c, Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 c)} o : ℕ → Set α := spanningSets (ρ + μ) u : ℕ → Set α := fun n => s ∩ {x | limRatio v ρ x < ↑p} ∩ o n w : ℕ → Set α := fun n => s ∩ {x | ↑q < limRatio v ρ x} ∩ o n x : α hx : x ∈ {x | limRatio v ρ x < ↑p} h : ¬x ∈ s ⊢ x ∈ toMeasurable μ sᶜ ∪ ⋃ n, toMeasurable (ρ + μ) (u n) ** exact Or.inl (subset_toMeasurable μ sᶜ h) ** case refine'_4 α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ p q : ℝ≥0 hpq : p < q s : Set α := {x | ∃ c, Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 c)} o : ℕ → Set α := spanningSets (ρ + μ) u : ℕ → Set α := fun n => s ∩ {x | limRatio v ρ x < ↑p} ∩ o n w : ℕ → Set α := fun n => s ∩ {x | ↑q < limRatio v ρ x} ∩ o n ⊢ {x | ↑q < limRatio v ρ x} ⊆ toMeasurable μ sᶜ ∪ ⋃ n, toMeasurable (ρ + μ) (w n) ** intro x hx ** case refine'_4 α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ p q : ℝ≥0 hpq : p < q s : Set α := {x | ∃ c, Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 c)} o : ℕ → Set α := spanningSets (ρ + μ) u : ℕ → Set α := fun n => s ∩ {x | limRatio v ρ x < ↑p} ∩ o n w : ℕ → Set α := fun n => s ∩ {x | ↑q < limRatio v ρ x} ∩ o n x : α hx : x ∈ {x | ↑q < limRatio v ρ x} ⊢ x ∈ toMeasurable μ sᶜ ∪ ⋃ n, toMeasurable (ρ + μ) (w n) ** by_cases h : x ∈ s ** case pos α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ p q : ℝ≥0 hpq : p < q s : Set α := {x | ∃ c, Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 c)} o : ℕ → Set α := spanningSets (ρ + μ) u : ℕ → Set α := fun n => s ∩ {x | limRatio v ρ x < ↑p} ∩ o n w : ℕ → Set α := fun n => s ∩ {x | ↑q < limRatio v ρ x} ∩ o n x : α hx : x ∈ {x | ↑q < limRatio v ρ x} h : x ∈ s ⊢ x ∈ toMeasurable μ sᶜ ∪ ⋃ n, toMeasurable (ρ + μ) (w n) ** refine' Or.inr (mem_iUnion.2 ⟨spanningSetsIndex (ρ + μ) x, _⟩) ** case pos α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ p q : ℝ≥0 hpq : p < q s : Set α := {x | ∃ c, Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 c)} o : ℕ → Set α := spanningSets (ρ + μ) u : ℕ → Set α := fun n => s ∩ {x | limRatio v ρ x < ↑p} ∩ o n w : ℕ → Set α := fun n => s ∩ {x | ↑q < limRatio v ρ x} ∩ o n x : α hx : x ∈ {x | ↑q < limRatio v ρ x} h : x ∈ s ⊢ x ∈ toMeasurable (ρ + μ) (w (spanningSetsIndex (ρ + μ) x)) ** exact subset_toMeasurable _ _ ⟨⟨h, hx⟩, mem_spanningSetsIndex _ _⟩ ** case neg α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ p q : ℝ≥0 hpq : p < q s : Set α := {x | ∃ c, Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 c)} o : ℕ → Set α := spanningSets (ρ + μ) u : ℕ → Set α := fun n => s ∩ {x | limRatio v ρ x < ↑p} ∩ o n w : ℕ → Set α := fun n => s ∩ {x | ↑q < limRatio v ρ x} ∩ o n x : α hx : x ∈ {x | ↑q < limRatio v ρ x} h : ¬x ∈ s ⊢ x ∈ toMeasurable μ sᶜ ∪ ⋃ n, toMeasurable (ρ + μ) (w n) ** exact Or.inl (subset_toMeasurable μ sᶜ h) ** case refine'_5 α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ p q : ℝ≥0 hpq : p < q s : Set α := {x | ∃ c, Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 c)} o : ℕ → Set α := spanningSets (ρ + μ) u : ℕ → Set α := fun n => s ∩ {x | limRatio v ρ x < ↑p} ∩ o n w : ℕ → Set α := fun n => s ∩ {x | ↑q < limRatio v ρ x} ∩ o n H : ∀ (m n : ℕ), ↑↑μ (toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n)) = 0 A : (toMeasurable μ sᶜ ∪ ⋃ n, toMeasurable (ρ + μ) (u n)) ∩ (toMeasurable μ sᶜ ∪ ⋃ n, toMeasurable (ρ + μ) (w n)) ⊆ toMeasurable μ sᶜ ∪ ⋃ m, ⋃ n, toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n) ⊢ ↑↑μ ((toMeasurable μ sᶜ ∪ ⋃ n, toMeasurable (ρ + μ) (u n)) ∩ (toMeasurable μ sᶜ ∪ ⋃ n, toMeasurable (ρ + μ) (w n))) = 0 ** refine' le_antisymm ((measure_mono A).trans _) bot_le ** case refine'_5 α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ p q : ℝ≥0 hpq : p < q s : Set α := {x | ∃ c, Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 c)} o : ℕ → Set α := spanningSets (ρ + μ) u : ℕ → Set α := fun n => s ∩ {x | limRatio v ρ x < ↑p} ∩ o n w : ℕ → Set α := fun n => s ∩ {x | ↑q < limRatio v ρ x} ∩ o n H : ∀ (m n : ℕ), ↑↑μ (toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n)) = 0 A : (toMeasurable μ sᶜ ∪ ⋃ n, toMeasurable (ρ + μ) (u n)) ∩ (toMeasurable μ sᶜ ∪ ⋃ n, toMeasurable (ρ + μ) (w n)) ⊆ toMeasurable μ sᶜ ∪ ⋃ m, ⋃ n, toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n) ⊢ ↑↑μ (toMeasurable μ sᶜ ∪ ⋃ m, ⋃ n, toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n)) ≤ 0 ** calc
μ (toMeasurable μ sᶜ ∪
⋃ (m) (n), toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n)) ≤
μ (toMeasurable μ sᶜ) +
μ (⋃ (m) (n), toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n)) :=
measure_union_le _ _
_ = μ (⋃ (m) (n), toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n)) := by
have : μ sᶜ = 0 := v.ae_tendsto_div hρ; rw [measure_toMeasurable, this, zero_add]
_ ≤ ∑' (m) (n), μ (toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n)) :=
((measure_iUnion_le _).trans (ENNReal.tsum_le_tsum fun m => measure_iUnion_le _))
_ = 0 := by simp only [H, tsum_zero] ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ p q : ℝ≥0 hpq : p < q s : Set α := {x | ∃ c, Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 c)} o : ℕ → Set α := spanningSets (ρ + μ) u : ℕ → Set α := fun n => s ∩ {x | limRatio v ρ x < ↑p} ∩ o n w : ℕ → Set α := fun n => s ∩ {x | ↑q < limRatio v ρ x} ∩ o n H : ∀ (m n : ℕ), ↑↑μ (toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n)) = 0 ⊢ (toMeasurable μ sᶜ ∪ ⋃ n, toMeasurable (ρ + μ) (u n)) ∩ (toMeasurable μ sᶜ ∪ ⋃ n, toMeasurable (ρ + μ) (w n)) ⊆ toMeasurable μ sᶜ ∪ ⋃ m, ⋃ n, toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n) ** simp only [inter_distrib_left, inter_distrib_right, true_and_iff, subset_union_left,
union_subset_iff, inter_self] ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ p q : ℝ≥0 hpq : p < q s : Set α := {x | ∃ c, Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 c)} o : ℕ → Set α := spanningSets (ρ + μ) u : ℕ → Set α := fun n => s ∩ {x | limRatio v ρ x < ↑p} ∩ o n w : ℕ → Set α := fun n => s ∩ {x | ↑q < limRatio v ρ x} ∩ o n H : ∀ (m n : ℕ), ↑↑μ (toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n)) = 0 ⊢ (⋃ n, toMeasurable (ρ + μ) ({x | ∃ c, Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 c)} ∩ {x | limRatio v ρ x < ↑p} ∩ spanningSets (ρ + μ) n)) ∩ toMeasurable μ {x | ∃ c, Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 c)}ᶜ ⊆ toMeasurable μ {x | ∃ c, Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 c)}ᶜ ∪ ⋃ m, ⋃ n, toMeasurable (ρ + μ) ({x | ∃ c, Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 c)} ∩ {x | limRatio v ρ x < ↑p} ∩ spanningSets (ρ + μ) m) ∩ toMeasurable (ρ + μ) ({x | ∃ c, Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 c)} ∩ {x | ↑q < limRatio v ρ x} ∩ spanningSets (ρ + μ) n) ∧ toMeasurable μ {x | ∃ c, Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 c)}ᶜ ∩ ⋃ n, toMeasurable (ρ + μ) ({x | ∃ c, Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 c)} ∩ {x | ↑q < limRatio v ρ x} ∩ spanningSets (ρ + μ) n) ⊆ toMeasurable μ {x | ∃ c, Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 c)}ᶜ ∪ ⋃ m, ⋃ n, toMeasurable (ρ + μ) ({x | ∃ c, Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 c)} ∩ {x | limRatio v ρ x < ↑p} ∩ spanningSets (ρ + μ) m) ∩ toMeasurable (ρ + μ) ({x | ∃ c, Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 c)} ∩ {x | ↑q < limRatio v ρ x} ∩ spanningSets (ρ + μ) n) ∧ (⋃ n, toMeasurable (ρ + μ) ({x | ∃ c, Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 c)} ∩ {x | limRatio v ρ x < ↑p} ∩ spanningSets (ρ + μ) n)) ∩ ⋃ n, toMeasurable (ρ + μ) ({x | ∃ c, Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 c)} ∩ {x | ↑q < limRatio v ρ x} ∩ spanningSets (ρ + μ) n) ⊆ toMeasurable μ {x | ∃ c, Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 c)}ᶜ ∪ ⋃ m, ⋃ n, toMeasurable (ρ + μ) ({x | ∃ c, Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 c)} ∩ {x | limRatio v ρ x < ↑p} ∩ spanningSets (ρ + μ) m) ∩ toMeasurable (ρ + μ) ({x | ∃ c, Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 c)} ∩ {x | ↑q < limRatio v ρ x} ∩ spanningSets (ρ + μ) n) ** refine' ⟨_, _, _⟩ ** case refine'_1 α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ p q : ℝ≥0 hpq : p < q s : Set α := {x | ∃ c, Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 c)} o : ℕ → Set α := spanningSets (ρ + μ) u : ℕ → Set α := fun n => s ∩ {x | limRatio v ρ x < ↑p} ∩ o n w : ℕ → Set α := fun n => s ∩ {x | ↑q < limRatio v ρ x} ∩ o n H : ∀ (m n : ℕ), ↑↑μ (toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n)) = 0 ⊢ (⋃ n, toMeasurable (ρ + μ) ({x | ∃ c, Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 c)} ∩ {x | limRatio v ρ x < ↑p} ∩ spanningSets (ρ + μ) n)) ∩ toMeasurable μ {x | ∃ c, Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 c)}ᶜ ⊆ toMeasurable μ {x | ∃ c, Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 c)}ᶜ ∪ ⋃ m, ⋃ n, toMeasurable (ρ + μ) ({x | ∃ c, Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 c)} ∩ {x | limRatio v ρ x < ↑p} ∩ spanningSets (ρ + μ) m) ∩ toMeasurable (ρ + μ) ({x | ∃ c, Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 c)} ∩ {x | ↑q < limRatio v ρ x} ∩ spanningSets (ρ + μ) n) ** exact (inter_subset_right _ _).trans (subset_union_left _ _) ** case refine'_2 α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ p q : ℝ≥0 hpq : p < q s : Set α := {x | ∃ c, Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 c)} o : ℕ → Set α := spanningSets (ρ + μ) u : ℕ → Set α := fun n => s ∩ {x | limRatio v ρ x < ↑p} ∩ o n w : ℕ → Set α := fun n => s ∩ {x | ↑q < limRatio v ρ x} ∩ o n H : ∀ (m n : ℕ), ↑↑μ (toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n)) = 0 ⊢ toMeasurable μ {x | ∃ c, Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 c)}ᶜ ∩ ⋃ n, toMeasurable (ρ + μ) ({x | ∃ c, Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 c)} ∩ {x | ↑q < limRatio v ρ x} ∩ spanningSets (ρ + μ) n) ⊆ toMeasurable μ {x | ∃ c, Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 c)}ᶜ ∪ ⋃ m, ⋃ n, toMeasurable (ρ + μ) ({x | ∃ c, Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 c)} ∩ {x | limRatio v ρ x < ↑p} ∩ spanningSets (ρ + μ) m) ∩ toMeasurable (ρ + μ) ({x | ∃ c, Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 c)} ∩ {x | ↑q < limRatio v ρ x} ∩ spanningSets (ρ + μ) n) ** exact (inter_subset_left _ _).trans (subset_union_left _ _) ** case refine'_3 α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ p q : ℝ≥0 hpq : p < q s : Set α := {x | ∃ c, Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 c)} o : ℕ → Set α := spanningSets (ρ + μ) u : ℕ → Set α := fun n => s ∩ {x | limRatio v ρ x < ↑p} ∩ o n w : ℕ → Set α := fun n => s ∩ {x | ↑q < limRatio v ρ x} ∩ o n H : ∀ (m n : ℕ), ↑↑μ (toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n)) = 0 ⊢ (⋃ n, toMeasurable (ρ + μ) ({x | ∃ c, Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 c)} ∩ {x | limRatio v ρ x < ↑p} ∩ spanningSets (ρ + μ) n)) ∩ ⋃ n, toMeasurable (ρ + μ) ({x | ∃ c, Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 c)} ∩ {x | ↑q < limRatio v ρ x} ∩ spanningSets (ρ + μ) n) ⊆ toMeasurable μ {x | ∃ c, Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 c)}ᶜ ∪ ⋃ m, ⋃ n, toMeasurable (ρ + μ) ({x | ∃ c, Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 c)} ∩ {x | limRatio v ρ x < ↑p} ∩ spanningSets (ρ + μ) m) ∩ toMeasurable (ρ + μ) ({x | ∃ c, Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 c)} ∩ {x | ↑q < limRatio v ρ x} ∩ spanningSets (ρ + μ) n) ** simp_rw [iUnion_inter, inter_iUnion] ** case refine'_3 α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ p q : ℝ≥0 hpq : p < q s : Set α := {x | ∃ c, Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 c)} o : ℕ → Set α := spanningSets (ρ + μ) u : ℕ → Set α := fun n => s ∩ {x | limRatio v ρ x < ↑p} ∩ o n w : ℕ → Set α := fun n => s ∩ {x | ↑q < limRatio v ρ x} ∩ o n H : ∀ (m n : ℕ), ↑↑μ (toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n)) = 0 ⊢ ⋃ i, ⋃ i_1, toMeasurable (ρ + μ) ({x | ∃ c, Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 c)} ∩ {x | limRatio v ρ x < ↑p} ∩ spanningSets (ρ + μ) i) ∩ toMeasurable (ρ + μ) ({x | ∃ c, Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 c)} ∩ {x | ↑q < limRatio v ρ x} ∩ spanningSets (ρ + μ) i_1) ⊆ toMeasurable μ {x | ∃ c, Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 c)}ᶜ ∪ ⋃ i, ⋃ i_1, toMeasurable (ρ + μ) ({x | ∃ c, Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 c)} ∩ {x | limRatio v ρ x < ↑p} ∩ spanningSets (ρ + μ) i) ∩ toMeasurable (ρ + μ) ({x | ∃ c, Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 c)} ∩ {x | ↑q < limRatio v ρ x} ∩ spanningSets (ρ + μ) i_1) ** exact subset_union_right _ _ ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ p q : ℝ≥0 hpq : p < q s : Set α := {x | ∃ c, Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 c)} o : ℕ → Set α := spanningSets (ρ + μ) u : ℕ → Set α := fun n => s ∩ {x | limRatio v ρ x < ↑p} ∩ o n w : ℕ → Set α := fun n => s ∩ {x | ↑q < limRatio v ρ x} ∩ o n H : ∀ (m n : ℕ), ↑↑μ (toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n)) = 0 A : (toMeasurable μ sᶜ ∪ ⋃ n, toMeasurable (ρ + μ) (u n)) ∩ (toMeasurable μ sᶜ ∪ ⋃ n, toMeasurable (ρ + μ) (w n)) ⊆ toMeasurable μ sᶜ ∪ ⋃ m, ⋃ n, toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n) ⊢ ↑↑μ (toMeasurable μ sᶜ) + ↑↑μ (⋃ m, ⋃ n, toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n)) = ↑↑μ (⋃ m, ⋃ n, toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n)) ** have : μ sᶜ = 0 := v.ae_tendsto_div hρ ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ p q : ℝ≥0 hpq : p < q s : Set α := {x | ∃ c, Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 c)} o : ℕ → Set α := spanningSets (ρ + μ) u : ℕ → Set α := fun n => s ∩ {x | limRatio v ρ x < ↑p} ∩ o n w : ℕ → Set α := fun n => s ∩ {x | ↑q < limRatio v ρ x} ∩ o n H : ∀ (m n : ℕ), ↑↑μ (toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n)) = 0 A : (toMeasurable μ sᶜ ∪ ⋃ n, toMeasurable (ρ + μ) (u n)) ∩ (toMeasurable μ sᶜ ∪ ⋃ n, toMeasurable (ρ + μ) (w n)) ⊆ toMeasurable μ sᶜ ∪ ⋃ m, ⋃ n, toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n) this : ↑↑μ sᶜ = 0 ⊢ ↑↑μ (toMeasurable μ sᶜ) + ↑↑μ (⋃ m, ⋃ n, toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n)) = ↑↑μ (⋃ m, ⋃ n, toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n)) ** rw [measure_toMeasurable, this, zero_add] ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ p q : ℝ≥0 hpq : p < q s : Set α := {x | ∃ c, Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 c)} o : ℕ → Set α := spanningSets (ρ + μ) u : ℕ → Set α := fun n => s ∩ {x | limRatio v ρ x < ↑p} ∩ o n w : ℕ → Set α := fun n => s ∩ {x | ↑q < limRatio v ρ x} ∩ o n H : ∀ (m n : ℕ), ↑↑μ (toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n)) = 0 A : (toMeasurable μ sᶜ ∪ ⋃ n, toMeasurable (ρ + μ) (u n)) ∩ (toMeasurable μ sᶜ ∪ ⋃ n, toMeasurable (ρ + μ) (w n)) ⊆ toMeasurable μ sᶜ ∪ ⋃ m, ⋃ n, toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n) ⊢ ∑' (m : ℕ) (n : ℕ), ↑↑μ (toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n)) = 0 ** simp only [H, tsum_zero] ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ p q : ℝ≥0 hpq : p < q s : Set α := {x | ∃ c, Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 c)} o : ℕ → Set α := spanningSets (ρ + μ) u : ℕ → Set α := fun n => s ∩ {x | limRatio v ρ x < ↑p} ∩ o n w : ℕ → Set α := fun n => s ∩ {x | ↑q < limRatio v ρ x} ∩ o n m n : ℕ ⊢ ↑↑(ρ + μ) (u m) ≠ ⊤ ** apply (lt_of_le_of_lt (measure_mono _) (measure_spanningSets_lt_top (ρ + μ) m)).ne ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ p q : ℝ≥0 hpq : p < q s : Set α := {x | ∃ c, Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 c)} o : ℕ → Set α := spanningSets (ρ + μ) u : ℕ → Set α := fun n => s ∩ {x | limRatio v ρ x < ↑p} ∩ o n w : ℕ → Set α := fun n => s ∩ {x | ↑q < limRatio v ρ x} ∩ o n m n : ℕ ⊢ u m ⊆ spanningSets (ρ + μ) m ** exact inter_subset_right _ _ ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ p q : ℝ≥0 hpq : p < q s : Set α := {x | ∃ c, Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 c)} o : ℕ → Set α := spanningSets (ρ + μ) u : ℕ → Set α := fun n => s ∩ {x | limRatio v ρ x < ↑p} ∩ o n w : ℕ → Set α := fun n => s ∩ {x | ↑q < limRatio v ρ x} ∩ o n m n : ℕ I : ↑↑(ρ + μ) (u m) ≠ ⊤ ⊢ ↑↑(ρ + μ) (w n) ≠ ⊤ ** apply (lt_of_le_of_lt (measure_mono _) (measure_spanningSets_lt_top (ρ + μ) n)).ne ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ p q : ℝ≥0 hpq : p < q s : Set α := {x | ∃ c, Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 c)} o : ℕ → Set α := spanningSets (ρ + μ) u : ℕ → Set α := fun n => s ∩ {x | limRatio v ρ x < ↑p} ∩ o n w : ℕ → Set α := fun n => s ∩ {x | ↑q < limRatio v ρ x} ∩ o n m n : ℕ I : ↑↑(ρ + μ) (u m) ≠ ⊤ ⊢ w n ⊆ spanningSets (ρ + μ) n ** exact inter_subset_right _ _ ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ p q : ℝ≥0 hpq : p < q s : Set α := {x | ∃ c, Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 c)} o : ℕ → Set α := spanningSets (ρ + μ) u : ℕ → Set α := fun n => s ∩ {x | limRatio v ρ x < ↑p} ∩ o n w : ℕ → Set α := fun n => s ∩ {x | ↑q < limRatio v ρ x} ∩ o n m n : ℕ I : ↑↑(ρ + μ) (u m) ≠ ⊤ J : ↑↑(ρ + μ) (w n) ≠ ⊤ ⊢ ↑↑ρ (u m ∩ toMeasurable (ρ + μ) (w n)) ≤ ↑↑(p • μ) (u m ∩ toMeasurable (ρ + μ) (w n)) ** refine' v.measure_le_of_frequently_le (p • μ) hρ _ fun x hx => _ ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ p q : ℝ≥0 hpq : p < q s : Set α := {x | ∃ c, Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 c)} o : ℕ → Set α := spanningSets (ρ + μ) u : ℕ → Set α := fun n => s ∩ {x | limRatio v ρ x < ↑p} ∩ o n w : ℕ → Set α := fun n => s ∩ {x | ↑q < limRatio v ρ x} ∩ o n m n : ℕ I : ↑↑(ρ + μ) (u m) ≠ ⊤ J : ↑↑(ρ + μ) (w n) ≠ ⊤ x : α hx : x ∈ u m ∩ toMeasurable (ρ + μ) (w n) ⊢ ∃ᶠ (a : Set α) in filterAt v x, ↑↑ρ a ≤ ↑↑(p • μ) a ** have L : Tendsto (fun a : Set α => ρ a / μ a) (v.filterAt x) (𝓝 (v.limRatio ρ x)) :=
tendsto_nhds_limUnder hx.1.1.1 ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ p q : ℝ≥0 hpq : p < q s : Set α := {x | ∃ c, Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 c)} o : ℕ → Set α := spanningSets (ρ + μ) u : ℕ → Set α := fun n => s ∩ {x | limRatio v ρ x < ↑p} ∩ o n w : ℕ → Set α := fun n => s ∩ {x | ↑q < limRatio v ρ x} ∩ o n m n : ℕ I : ↑↑(ρ + μ) (u m) ≠ ⊤ J : ↑↑(ρ + μ) (w n) ≠ ⊤ x : α hx : x ∈ u m ∩ toMeasurable (ρ + μ) (w n) L : Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 (limRatio v ρ x)) ⊢ ∃ᶠ (a : Set α) in filterAt v x, ↑↑ρ a ≤ ↑↑(p • μ) a ** have I : ∀ᶠ b : Set α in v.filterAt x, ρ b / μ b < p := (tendsto_order.1 L).2 _ hx.1.1.2 ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ p q : ℝ≥0 hpq : p < q s : Set α := {x | ∃ c, Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 c)} o : ℕ → Set α := spanningSets (ρ + μ) u : ℕ → Set α := fun n => s ∩ {x | limRatio v ρ x < ↑p} ∩ o n w : ℕ → Set α := fun n => s ∩ {x | ↑q < limRatio v ρ x} ∩ o n m n : ℕ I✝ : ↑↑(ρ + μ) (u m) ≠ ⊤ J : ↑↑(ρ + μ) (w n) ≠ ⊤ x : α hx : x ∈ u m ∩ toMeasurable (ρ + μ) (w n) L : Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 (limRatio v ρ x)) I : ∀ᶠ (b : Set α) in filterAt v x, ↑↑ρ b / ↑↑μ b < ↑p ⊢ ∃ᶠ (a : Set α) in filterAt v x, ↑↑ρ a ≤ ↑↑(p • μ) a ** apply I.frequently.mono fun a ha => ?_ ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ p q : ℝ≥0 hpq : p < q s : Set α := {x | ∃ c, Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 c)} o : ℕ → Set α := spanningSets (ρ + μ) u : ℕ → Set α := fun n => s ∩ {x | limRatio v ρ x < ↑p} ∩ o n w : ℕ → Set α := fun n => s ∩ {x | ↑q < limRatio v ρ x} ∩ o n m n : ℕ I✝ : ↑↑(ρ + μ) (u m) ≠ ⊤ J : ↑↑(ρ + μ) (w n) ≠ ⊤ x : α hx : x ∈ u m ∩ toMeasurable (ρ + μ) (w n) L : Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 (limRatio v ρ x)) I : ∀ᶠ (b : Set α) in filterAt v x, ↑↑ρ b / ↑↑μ b < ↑p a : Set α ha : ↑↑ρ a / ↑↑μ a < ↑p ⊢ ↑↑ρ a ≤ ↑↑(p • μ) a ** rw [coe_nnreal_smul_apply] ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ p q : ℝ≥0 hpq : p < q s : Set α := {x | ∃ c, Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 c)} o : ℕ → Set α := spanningSets (ρ + μ) u : ℕ → Set α := fun n => s ∩ {x | limRatio v ρ x < ↑p} ∩ o n w : ℕ → Set α := fun n => s ∩ {x | ↑q < limRatio v ρ x} ∩ o n m n : ℕ I✝ : ↑↑(ρ + μ) (u m) ≠ ⊤ J : ↑↑(ρ + μ) (w n) ≠ ⊤ x : α hx : x ∈ u m ∩ toMeasurable (ρ + μ) (w n) L : Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 (limRatio v ρ x)) I : ∀ᶠ (b : Set α) in filterAt v x, ↑↑ρ b / ↑↑μ b < ↑p a : Set α ha : ↑↑ρ a / ↑↑μ a < ↑p ⊢ ↑↑ρ a ≤ ↑p * ↑↑μ a ** refine' (ENNReal.div_le_iff_le_mul _ (Or.inr (bot_le.trans_lt ha).ne')).1 ha.le ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ p q : ℝ≥0 hpq : p < q s : Set α := {x | ∃ c, Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 c)} o : ℕ → Set α := spanningSets (ρ + μ) u : ℕ → Set α := fun n => s ∩ {x | limRatio v ρ x < ↑p} ∩ o n w : ℕ → Set α := fun n => s ∩ {x | ↑q < limRatio v ρ x} ∩ o n m n : ℕ I✝ : ↑↑(ρ + μ) (u m) ≠ ⊤ J : ↑↑(ρ + μ) (w n) ≠ ⊤ x : α hx : x ∈ u m ∩ toMeasurable (ρ + μ) (w n) L : Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 (limRatio v ρ x)) I : ∀ᶠ (b : Set α) in filterAt v x, ↑↑ρ b / ↑↑μ b < ↑p a : Set α ha : ↑↑ρ a / ↑↑μ a < ↑p ⊢ ↑↑μ a ≠ 0 ∨ ↑p ≠ ⊤ ** simp only [ENNReal.coe_ne_top, Ne.def, or_true_iff, not_false_iff] ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ p q : ℝ≥0 hpq : p < q s : Set α := {x | ∃ c, Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 c)} o : ℕ → Set α := spanningSets (ρ + μ) u : ℕ → Set α := fun n => s ∩ {x | limRatio v ρ x < ↑p} ∩ o n w : ℕ → Set α := fun n => s ∩ {x | ↑q < limRatio v ρ x} ∩ o n m n : ℕ I : ↑↑(ρ + μ) (u m) ≠ ⊤ J : ↑↑(ρ + μ) (w n) ≠ ⊤ ⊢ ↑↑(p • μ) (u m ∩ toMeasurable (ρ + μ) (w n)) = ↑p * ↑↑μ (toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n)) ** simp only [coe_nnreal_smul_apply,
measure_toMeasurable_add_inter_right (measurableSet_toMeasurable _ _) I] ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ p q : ℝ≥0 hpq : p < q s : Set α := {x | ∃ c, Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 c)} o : ℕ → Set α := spanningSets (ρ + μ) u : ℕ → Set α := fun n => s ∩ {x | limRatio v ρ x < ↑p} ∩ o n w : ℕ → Set α := fun n => s ∩ {x | ↑q < limRatio v ρ x} ∩ o n m n : ℕ I : ↑↑(ρ + μ) (u m) ≠ ⊤ J : ↑↑(ρ + μ) (w n) ≠ ⊤ A : ↑↑ρ (toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n)) ≤ ↑p * ↑↑μ (toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n)) ⊢ ↑q * ↑↑μ (toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n)) = ↑q * ↑↑μ (toMeasurable (ρ + μ) (u m) ∩ w n) ** conv_rhs => rw [inter_comm] ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ p q : ℝ≥0 hpq : p < q s : Set α := {x | ∃ c, Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 c)} o : ℕ → Set α := spanningSets (ρ + μ) u : ℕ → Set α := fun n => s ∩ {x | limRatio v ρ x < ↑p} ∩ o n w : ℕ → Set α := fun n => s ∩ {x | ↑q < limRatio v ρ x} ∩ o n m n : ℕ I : ↑↑(ρ + μ) (u m) ≠ ⊤ J : ↑↑(ρ + μ) (w n) ≠ ⊤ A : ↑↑ρ (toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n)) ≤ ↑p * ↑↑μ (toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n)) ⊢ ↑q * ↑↑μ (toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n)) = ↑q * ↑↑μ (w n ∩ toMeasurable (ρ + μ) (u m)) ** rw [inter_comm, measure_toMeasurable_add_inter_right (measurableSet_toMeasurable _ _) J] ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ p q : ℝ≥0 hpq : p < q s : Set α := {x | ∃ c, Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 c)} o : ℕ → Set α := spanningSets (ρ + μ) u : ℕ → Set α := fun n => s ∩ {x | limRatio v ρ x < ↑p} ∩ o n w : ℕ → Set α := fun n => s ∩ {x | ↑q < limRatio v ρ x} ∩ o n m n : ℕ I : ↑↑(ρ + μ) (u m) ≠ ⊤ J : ↑↑(ρ + μ) (w n) ≠ ⊤ A : ↑↑ρ (toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n)) ≤ ↑p * ↑↑μ (toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n)) ⊢ ↑q * ↑↑μ (toMeasurable (ρ + μ) (u m) ∩ w n) ≤ ↑↑ρ (toMeasurable (ρ + μ) (u m) ∩ w n) ** rw [← coe_nnreal_smul_apply] ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ p q : ℝ≥0 hpq : p < q s : Set α := {x | ∃ c, Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 c)} o : ℕ → Set α := spanningSets (ρ + μ) u : ℕ → Set α := fun n => s ∩ {x | limRatio v ρ x < ↑p} ∩ o n w : ℕ → Set α := fun n => s ∩ {x | ↑q < limRatio v ρ x} ∩ o n m n : ℕ I : ↑↑(ρ + μ) (u m) ≠ ⊤ J : ↑↑(ρ + μ) (w n) ≠ ⊤ A : ↑↑ρ (toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n)) ≤ ↑p * ↑↑μ (toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n)) ⊢ ↑↑(q • μ) (toMeasurable (ρ + μ) (u m) ∩ w n) ≤ ↑↑ρ (toMeasurable (ρ + μ) (u m) ∩ w n) ** refine' v.measure_le_of_frequently_le _ (AbsolutelyContinuous.rfl.smul _) _ _ ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ p q : ℝ≥0 hpq : p < q s : Set α := {x | ∃ c, Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 c)} o : ℕ → Set α := spanningSets (ρ + μ) u : ℕ → Set α := fun n => s ∩ {x | limRatio v ρ x < ↑p} ∩ o n w : ℕ → Set α := fun n => s ∩ {x | ↑q < limRatio v ρ x} ∩ o n m n : ℕ I : ↑↑(ρ + μ) (u m) ≠ ⊤ J : ↑↑(ρ + μ) (w n) ≠ ⊤ A : ↑↑ρ (toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n)) ≤ ↑p * ↑↑μ (toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n)) ⊢ ∀ (x : α), x ∈ toMeasurable (ρ + μ) (u m) ∩ w n → ∃ᶠ (a : Set α) in filterAt v x, ↑↑(q • μ) a ≤ ↑↑ρ a ** intro x hx ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ p q : ℝ≥0 hpq : p < q s : Set α := {x | ∃ c, Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 c)} o : ℕ → Set α := spanningSets (ρ + μ) u : ℕ → Set α := fun n => s ∩ {x | limRatio v ρ x < ↑p} ∩ o n w : ℕ → Set α := fun n => s ∩ {x | ↑q < limRatio v ρ x} ∩ o n m n : ℕ I : ↑↑(ρ + μ) (u m) ≠ ⊤ J : ↑↑(ρ + μ) (w n) ≠ ⊤ A : ↑↑ρ (toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n)) ≤ ↑p * ↑↑μ (toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n)) x : α hx : x ∈ toMeasurable (ρ + μ) (u m) ∩ w n ⊢ ∃ᶠ (a : Set α) in filterAt v x, ↑↑(q • μ) a ≤ ↑↑ρ a ** have L : Tendsto (fun a : Set α => ρ a / μ a) (v.filterAt x) (𝓝 (v.limRatio ρ x)) :=
tendsto_nhds_limUnder hx.2.1.1 ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ p q : ℝ≥0 hpq : p < q s : Set α := {x | ∃ c, Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 c)} o : ℕ → Set α := spanningSets (ρ + μ) u : ℕ → Set α := fun n => s ∩ {x | limRatio v ρ x < ↑p} ∩ o n w : ℕ → Set α := fun n => s ∩ {x | ↑q < limRatio v ρ x} ∩ o n m n : ℕ I : ↑↑(ρ + μ) (u m) ≠ ⊤ J : ↑↑(ρ + μ) (w n) ≠ ⊤ A : ↑↑ρ (toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n)) ≤ ↑p * ↑↑μ (toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n)) x : α hx : x ∈ toMeasurable (ρ + μ) (u m) ∩ w n L : Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 (limRatio v ρ x)) ⊢ ∃ᶠ (a : Set α) in filterAt v x, ↑↑(q • μ) a ≤ ↑↑ρ a ** have I : ∀ᶠ b : Set α in v.filterAt x, (q : ℝ≥0∞) < ρ b / μ b :=
(tendsto_order.1 L).1 _ hx.2.1.2 ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ p q : ℝ≥0 hpq : p < q s : Set α := {x | ∃ c, Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 c)} o : ℕ → Set α := spanningSets (ρ + μ) u : ℕ → Set α := fun n => s ∩ {x | limRatio v ρ x < ↑p} ∩ o n w : ℕ → Set α := fun n => s ∩ {x | ↑q < limRatio v ρ x} ∩ o n m n : ℕ I✝ : ↑↑(ρ + μ) (u m) ≠ ⊤ J : ↑↑(ρ + μ) (w n) ≠ ⊤ A : ↑↑ρ (toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n)) ≤ ↑p * ↑↑μ (toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n)) x : α hx : x ∈ toMeasurable (ρ + μ) (u m) ∩ w n L : Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 (limRatio v ρ x)) I : ∀ᶠ (b : Set α) in filterAt v x, ↑q < ↑↑ρ b / ↑↑μ b ⊢ ∃ᶠ (a : Set α) in filterAt v x, ↑↑(q • μ) a ≤ ↑↑ρ a ** apply I.frequently.mono fun a ha => ?_ ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ p q : ℝ≥0 hpq : p < q s : Set α := {x | ∃ c, Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 c)} o : ℕ → Set α := spanningSets (ρ + μ) u : ℕ → Set α := fun n => s ∩ {x | limRatio v ρ x < ↑p} ∩ o n w : ℕ → Set α := fun n => s ∩ {x | ↑q < limRatio v ρ x} ∩ o n m n : ℕ I✝ : ↑↑(ρ + μ) (u m) ≠ ⊤ J : ↑↑(ρ + μ) (w n) ≠ ⊤ A : ↑↑ρ (toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n)) ≤ ↑p * ↑↑μ (toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n)) x : α hx : x ∈ toMeasurable (ρ + μ) (u m) ∩ w n L : Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 (limRatio v ρ x)) I : ∀ᶠ (b : Set α) in filterAt v x, ↑q < ↑↑ρ b / ↑↑μ b a : Set α ha : ↑q < ↑↑ρ a / ↑↑μ a ⊢ ↑↑(q • μ) a ≤ ↑↑ρ a ** rw [coe_nnreal_smul_apply] ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ p q : ℝ≥0 hpq : p < q s : Set α := {x | ∃ c, Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 c)} o : ℕ → Set α := spanningSets (ρ + μ) u : ℕ → Set α := fun n => s ∩ {x | limRatio v ρ x < ↑p} ∩ o n w : ℕ → Set α := fun n => s ∩ {x | ↑q < limRatio v ρ x} ∩ o n m n : ℕ I✝ : ↑↑(ρ + μ) (u m) ≠ ⊤ J : ↑↑(ρ + μ) (w n) ≠ ⊤ A : ↑↑ρ (toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n)) ≤ ↑p * ↑↑μ (toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n)) x : α hx : x ∈ toMeasurable (ρ + μ) (u m) ∩ w n L : Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 (limRatio v ρ x)) I : ∀ᶠ (b : Set α) in filterAt v x, ↑q < ↑↑ρ b / ↑↑μ b a : Set α ha : ↑q < ↑↑ρ a / ↑↑μ a ⊢ ↑q * ↑↑μ a ≤ ↑↑ρ a ** exact ENNReal.mul_le_of_le_div ha.le ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ p q : ℝ≥0 hpq : p < q s : Set α := {x | ∃ c, Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 c)} o : ℕ → Set α := spanningSets (ρ + μ) u : ℕ → Set α := fun n => s ∩ {x | limRatio v ρ x < ↑p} ∩ o n w : ℕ → Set α := fun n => s ∩ {x | ↑q < limRatio v ρ x} ∩ o n m n : ℕ I : ↑↑(ρ + μ) (u m) ≠ ⊤ J : ↑↑(ρ + μ) (w n) ≠ ⊤ A : ↑↑ρ (toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n)) ≤ ↑p * ↑↑μ (toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n)) ⊢ ↑↑ρ (toMeasurable (ρ + μ) (u m) ∩ w n) = ↑↑ρ (toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n)) ** conv_rhs => rw [inter_comm] ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ p q : ℝ≥0 hpq : p < q s : Set α := {x | ∃ c, Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 c)} o : ℕ → Set α := spanningSets (ρ + μ) u : ℕ → Set α := fun n => s ∩ {x | limRatio v ρ x < ↑p} ∩ o n w : ℕ → Set α := fun n => s ∩ {x | ↑q < limRatio v ρ x} ∩ o n m n : ℕ I : ↑↑(ρ + μ) (u m) ≠ ⊤ J : ↑↑(ρ + μ) (w n) ≠ ⊤ A : ↑↑ρ (toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n)) ≤ ↑p * ↑↑μ (toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n)) ⊢ ↑↑ρ (toMeasurable (ρ + μ) (u m) ∩ w n) = ↑↑ρ (toMeasurable (ρ + μ) (w n) ∩ toMeasurable (ρ + μ) (u m)) ** rw [inter_comm] ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ p q : ℝ≥0 hpq : p < q s : Set α := {x | ∃ c, Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 c)} o : ℕ → Set α := spanningSets (ρ + μ) u : ℕ → Set α := fun n => s ∩ {x | limRatio v ρ x < ↑p} ∩ o n w : ℕ → Set α := fun n => s ∩ {x | ↑q < limRatio v ρ x} ∩ o n m n : ℕ I : ↑↑(ρ + μ) (u m) ≠ ⊤ J : ↑↑(ρ + μ) (w n) ≠ ⊤ A : ↑↑ρ (toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n)) ≤ ↑p * ↑↑μ (toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n)) ⊢ ↑↑ρ (w n ∩ toMeasurable (ρ + μ) (u m)) = ↑↑ρ (toMeasurable (ρ + μ) (w n) ∩ toMeasurable (ρ + μ) (u m)) ** exact (measure_toMeasurable_add_inter_left (measurableSet_toMeasurable _ _) J).symm ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ p q : ℝ≥0 hpq : p < q s : Set α := {x | ∃ c, Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 c)} o : ℕ → Set α := spanningSets (ρ + μ) u : ℕ → Set α := fun n => s ∩ {x | limRatio v ρ x < ↑p} ∩ o n w : ℕ → Set α := fun n => s ∩ {x | ↑q < limRatio v ρ x} ∩ o n m n : ℕ I : ↑↑(ρ + μ) (u m) ≠ ⊤ J : ↑↑(ρ + μ) (w n) ≠ ⊤ A : ↑↑ρ (toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n)) ≤ ↑p * ↑↑μ (toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n)) B : ↑q * ↑↑μ (toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n)) ≤ ↑↑ρ (toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n)) h : ¬↑↑μ (toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n)) = 0 ⊢ ↑p * ↑↑μ (toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n)) < ↑q * ↑↑μ (toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n)) ** apply (ENNReal.mul_lt_mul_right h _).2 (ENNReal.coe_lt_coe.2 hpq) ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ p q : ℝ≥0 hpq : p < q s : Set α := {x | ∃ c, Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 c)} o : ℕ → Set α := spanningSets (ρ + μ) u : ℕ → Set α := fun n => s ∩ {x | limRatio v ρ x < ↑p} ∩ o n w : ℕ → Set α := fun n => s ∩ {x | ↑q < limRatio v ρ x} ∩ o n m n : ℕ I : ↑↑(ρ + μ) (u m) ≠ ⊤ J : ↑↑(ρ + μ) (w n) ≠ ⊤ A : ↑↑ρ (toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n)) ≤ ↑p * ↑↑μ (toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n)) B : ↑q * ↑↑μ (toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n)) ≤ ↑↑ρ (toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n)) h : ¬↑↑μ (toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n)) = 0 ⊢ ↑↑μ (toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n)) ≠ ⊤ ** suffices H : (ρ + μ) (toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n)) ≠ ∞ ** case H α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ p q : ℝ≥0 hpq : p < q s : Set α := {x | ∃ c, Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 c)} o : ℕ → Set α := spanningSets (ρ + μ) u : ℕ → Set α := fun n => s ∩ {x | limRatio v ρ x < ↑p} ∩ o n w : ℕ → Set α := fun n => s ∩ {x | ↑q < limRatio v ρ x} ∩ o n m n : ℕ I : ↑↑(ρ + μ) (u m) ≠ ⊤ J : ↑↑(ρ + μ) (w n) ≠ ⊤ A : ↑↑ρ (toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n)) ≤ ↑p * ↑↑μ (toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n)) B : ↑q * ↑↑μ (toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n)) ≤ ↑↑ρ (toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n)) h : ¬↑↑μ (toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n)) = 0 ⊢ ↑↑(ρ + μ) (toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n)) ≠ ⊤ ** apply (lt_of_le_of_lt (measure_mono (inter_subset_left _ _)) _).ne ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ p q : ℝ≥0 hpq : p < q s : Set α := {x | ∃ c, Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 c)} o : ℕ → Set α := spanningSets (ρ + μ) u : ℕ → Set α := fun n => s ∩ {x | limRatio v ρ x < ↑p} ∩ o n w : ℕ → Set α := fun n => s ∩ {x | ↑q < limRatio v ρ x} ∩ o n m n : ℕ I : ↑↑(ρ + μ) (u m) ≠ ⊤ J : ↑↑(ρ + μ) (w n) ≠ ⊤ A : ↑↑ρ (toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n)) ≤ ↑p * ↑↑μ (toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n)) B : ↑q * ↑↑μ (toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n)) ≤ ↑↑ρ (toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n)) h : ¬↑↑μ (toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n)) = 0 ⊢ ↑↑(ρ + μ) (toMeasurable (ρ + μ) (u m)) < ⊤ ** rw [measure_toMeasurable] ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ p q : ℝ≥0 hpq : p < q s : Set α := {x | ∃ c, Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 c)} o : ℕ → Set α := spanningSets (ρ + μ) u : ℕ → Set α := fun n => s ∩ {x | limRatio v ρ x < ↑p} ∩ o n w : ℕ → Set α := fun n => s ∩ {x | ↑q < limRatio v ρ x} ∩ o n m n : ℕ I : ↑↑(ρ + μ) (u m) ≠ ⊤ J : ↑↑(ρ + μ) (w n) ≠ ⊤ A : ↑↑ρ (toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n)) ≤ ↑p * ↑↑μ (toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n)) B : ↑q * ↑↑μ (toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n)) ≤ ↑↑ρ (toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n)) h : ¬↑↑μ (toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n)) = 0 ⊢ ↑↑(ρ + μ) (u m) < ⊤ ** apply lt_of_le_of_lt (measure_mono _) (measure_spanningSets_lt_top (ρ + μ) m) ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ p q : ℝ≥0 hpq : p < q s : Set α := {x | ∃ c, Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 c)} o : ℕ → Set α := spanningSets (ρ + μ) u : ℕ → Set α := fun n => s ∩ {x | limRatio v ρ x < ↑p} ∩ o n w : ℕ → Set α := fun n => s ∩ {x | ↑q < limRatio v ρ x} ∩ o n m n : ℕ I : ↑↑(ρ + μ) (u m) ≠ ⊤ J : ↑↑(ρ + μ) (w n) ≠ ⊤ A : ↑↑ρ (toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n)) ≤ ↑p * ↑↑μ (toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n)) B : ↑q * ↑↑μ (toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n)) ≤ ↑↑ρ (toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n)) h : ¬↑↑μ (toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n)) = 0 ⊢ u m ⊆ spanningSets (ρ + μ) m ** exact inter_subset_right _ _ ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ p q : ℝ≥0 hpq : p < q s : Set α := {x | ∃ c, Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 c)} o : ℕ → Set α := spanningSets (ρ + μ) u : ℕ → Set α := fun n => s ∩ {x | limRatio v ρ x < ↑p} ∩ o n w : ℕ → Set α := fun n => s ∩ {x | ↑q < limRatio v ρ x} ∩ o n m n : ℕ I : ↑↑(ρ + μ) (u m) ≠ ⊤ J : ↑↑(ρ + μ) (w n) ≠ ⊤ A : ↑↑ρ (toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n)) ≤ ↑p * ↑↑μ (toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n)) B : ↑q * ↑↑μ (toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n)) ≤ ↑↑ρ (toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n)) h : ¬↑↑μ (toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n)) = 0 H : ↑↑(ρ + μ) (toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n)) ≠ ⊤ ⊢ ↑↑μ (toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n)) ≠ ⊤ ** simp only [not_or, ENNReal.add_eq_top, Pi.add_apply, Ne.def, coe_add] at H ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ p q : ℝ≥0 hpq : p < q s : Set α := {x | ∃ c, Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 c)} o : ℕ → Set α := spanningSets (ρ + μ) u : ℕ → Set α := fun n => s ∩ {x | limRatio v ρ x < ↑p} ∩ o n w : ℕ → Set α := fun n => s ∩ {x | ↑q < limRatio v ρ x} ∩ o n m n : ℕ I : ↑↑(ρ + μ) (u m) ≠ ⊤ J : ↑↑(ρ + μ) (w n) ≠ ⊤ A : ↑↑ρ (toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n)) ≤ ↑p * ↑↑μ (toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n)) B : ↑q * ↑↑μ (toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n)) ≤ ↑↑ρ (toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n)) h : ¬↑↑μ (toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n)) = 0 H : ¬↑↑ρ (toMeasurable (ρ + μ) ({x | ∃ c, Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 c)} ∩ {x | limRatio v ρ x < ↑p} ∩ spanningSets (ρ + μ) m) ∩ toMeasurable (ρ + μ) ({x | ∃ c, Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 c)} ∩ {x | ↑q < limRatio v ρ x} ∩ spanningSets (ρ + μ) n)) = ⊤ ∧ ¬↑↑μ (toMeasurable (ρ + μ) ({x | ∃ c, Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 c)} ∩ {x | limRatio v ρ x < ↑p} ∩ spanningSets (ρ + μ) m) ∩ toMeasurable (ρ + μ) ({x | ∃ c, Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 c)} ∩ {x | ↑q < limRatio v ρ x} ∩ spanningSets (ρ + μ) n)) = ⊤ ⊢ ↑↑μ (toMeasurable (ρ + μ) (u m) ∩ toMeasurable (ρ + μ) (w n)) ≠ ⊤ ** exact H.2 ** Qed
| |
VitaliFamily.ae_tendsto_limRatioMeas ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ ⊢ ∀ᵐ (x : α) ∂μ, Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 (limRatioMeas v hρ x)) ** filter_upwards [v.ae_tendsto_limRatio hρ, AEMeasurable.ae_eq_mk (v.aemeasurable_limRatio hρ)] ** case h α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ ⊢ ∀ (a : α), Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v a) (𝓝 (limRatio v ρ a)) → limRatio v ρ a = AEMeasurable.mk (limRatio v ρ) (_ : AEMeasurable (limRatio v ρ)) a → Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v a) (𝓝 (limRatioMeas v hρ a)) ** intro x hx h'x ** case h α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ x : α hx : Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 (limRatio v ρ x)) h'x : limRatio v ρ x = AEMeasurable.mk (limRatio v ρ) (_ : AEMeasurable (limRatio v ρ)) x ⊢ Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 (limRatioMeas v hρ x)) ** rwa [h'x] at hx ** Qed
| |
VitaliFamily.measure_le_mul_of_subset_limRatioMeas_lt ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ p : ℝ≥0 s : Set α h : s ⊆ {x | limRatioMeas v hρ x < ↑p} ⊢ ↑↑ρ s ≤ ↑p * ↑↑μ s ** let t := {x : α | Tendsto (fun a => ρ a / μ a) (v.filterAt x) (𝓝 (v.limRatioMeas hρ x))} ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ p : ℝ≥0 s : Set α h : s ⊆ {x | limRatioMeas v hρ x < ↑p} t : Set α := {x | Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 (limRatioMeas v hρ x))} ⊢ ↑↑ρ s ≤ ↑p * ↑↑μ s ** have A : μ tᶜ = 0 := v.ae_tendsto_limRatioMeas hρ ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ p : ℝ≥0 s : Set α h : s ⊆ {x | limRatioMeas v hρ x < ↑p} t : Set α := {x | Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 (limRatioMeas v hρ x))} A : ↑↑μ tᶜ = 0 ⊢ ↑↑ρ s ≤ ↑p * ↑↑μ s ** suffices H : ρ (s ∩ t) ≤ (p • μ) (s ∩ t) ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ p : ℝ≥0 s : Set α h : s ⊆ {x | limRatioMeas v hρ x < ↑p} t : Set α := {x | Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 (limRatioMeas v hρ x))} A : ↑↑μ tᶜ = 0 H : ↑↑ρ (s ∩ t) ≤ ↑↑(p • μ) (s ∩ t) ⊢ ↑↑ρ s ≤ ↑p * ↑↑μ s case H α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ p : ℝ≥0 s : Set α h : s ⊆ {x | limRatioMeas v hρ x < ↑p} t : Set α := {x | Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 (limRatioMeas v hρ x))} A : ↑↑μ tᶜ = 0 ⊢ ↑↑ρ (s ∩ t) ≤ ↑↑(p • μ) (s ∩ t) ** exact
calc
ρ s = ρ (s ∩ t ∪ s ∩ tᶜ) := by rw [inter_union_compl]
_ ≤ ρ (s ∩ t) + ρ (s ∩ tᶜ) := (measure_union_le _ _)
_ ≤ p * μ (s ∩ t) + 0 :=
(add_le_add H ((measure_mono (inter_subset_right _ _)).trans (hρ A).le))
_ ≤ p * μ s := by
rw [add_zero]; exact mul_le_mul_left' (measure_mono (inter_subset_left _ _)) _ ** case H α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ p : ℝ≥0 s : Set α h : s ⊆ {x | limRatioMeas v hρ x < ↑p} t : Set α := {x | Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 (limRatioMeas v hρ x))} A : ↑↑μ tᶜ = 0 ⊢ ↑↑ρ (s ∩ t) ≤ ↑↑(p • μ) (s ∩ t) ** refine' v.measure_le_of_frequently_le (p • μ) hρ _ fun x hx => _ ** case H α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ p : ℝ≥0 s : Set α h : s ⊆ {x | limRatioMeas v hρ x < ↑p} t : Set α := {x | Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 (limRatioMeas v hρ x))} A : ↑↑μ tᶜ = 0 x : α hx : x ∈ s ∩ t ⊢ ∃ᶠ (a : Set α) in filterAt v x, ↑↑ρ a ≤ ↑↑(p • μ) a ** have I : ∀ᶠ b : Set α in v.filterAt x, ρ b / μ b < p := (tendsto_order.1 hx.2).2 _ (h hx.1) ** case H α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ p : ℝ≥0 s : Set α h : s ⊆ {x | limRatioMeas v hρ x < ↑p} t : Set α := {x | Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 (limRatioMeas v hρ x))} A : ↑↑μ tᶜ = 0 x : α hx : x ∈ s ∩ t I : ∀ᶠ (b : Set α) in filterAt v x, ↑↑ρ b / ↑↑μ b < ↑p ⊢ ∃ᶠ (a : Set α) in filterAt v x, ↑↑ρ a ≤ ↑↑(p • μ) a ** apply I.frequently.mono fun a ha => ?_ ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ p : ℝ≥0 s : Set α h : s ⊆ {x | limRatioMeas v hρ x < ↑p} t : Set α := {x | Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 (limRatioMeas v hρ x))} A : ↑↑μ tᶜ = 0 x : α hx : x ∈ s ∩ t I : ∀ᶠ (b : Set α) in filterAt v x, ↑↑ρ b / ↑↑μ b < ↑p a : Set α ha : ↑↑ρ a / ↑↑μ a < ↑p ⊢ ↑↑ρ a ≤ ↑↑(p • μ) a ** rw [coe_nnreal_smul_apply] ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ p : ℝ≥0 s : Set α h : s ⊆ {x | limRatioMeas v hρ x < ↑p} t : Set α := {x | Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 (limRatioMeas v hρ x))} A : ↑↑μ tᶜ = 0 x : α hx : x ∈ s ∩ t I : ∀ᶠ (b : Set α) in filterAt v x, ↑↑ρ b / ↑↑μ b < ↑p a : Set α ha : ↑↑ρ a / ↑↑μ a < ↑p ⊢ ↑↑ρ a ≤ ↑p * ↑↑μ a ** refine' (ENNReal.div_le_iff_le_mul _ (Or.inr (bot_le.trans_lt ha).ne')).1 ha.le ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ p : ℝ≥0 s : Set α h : s ⊆ {x | limRatioMeas v hρ x < ↑p} t : Set α := {x | Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 (limRatioMeas v hρ x))} A : ↑↑μ tᶜ = 0 x : α hx : x ∈ s ∩ t I : ∀ᶠ (b : Set α) in filterAt v x, ↑↑ρ b / ↑↑μ b < ↑p a : Set α ha : ↑↑ρ a / ↑↑μ a < ↑p ⊢ ↑↑μ a ≠ 0 ∨ ↑p ≠ ⊤ ** simp only [ENNReal.coe_ne_top, Ne.def, or_true_iff, not_false_iff] ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ p : ℝ≥0 s : Set α h : s ⊆ {x | limRatioMeas v hρ x < ↑p} t : Set α := {x | Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 (limRatioMeas v hρ x))} A : ↑↑μ tᶜ = 0 H : ↑↑ρ (s ∩ t) ≤ ↑↑(p • μ) (s ∩ t) ⊢ ↑↑ρ s = ↑↑ρ (s ∩ t ∪ s ∩ tᶜ) ** rw [inter_union_compl] ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ p : ℝ≥0 s : Set α h : s ⊆ {x | limRatioMeas v hρ x < ↑p} t : Set α := {x | Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 (limRatioMeas v hρ x))} A : ↑↑μ tᶜ = 0 H : ↑↑ρ (s ∩ t) ≤ ↑↑(p • μ) (s ∩ t) ⊢ ↑p * ↑↑μ (s ∩ t) + 0 ≤ ↑p * ↑↑μ s ** rw [add_zero] ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ p : ℝ≥0 s : Set α h : s ⊆ {x | limRatioMeas v hρ x < ↑p} t : Set α := {x | Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 (limRatioMeas v hρ x))} A : ↑↑μ tᶜ = 0 H : ↑↑ρ (s ∩ t) ≤ ↑↑(p • μ) (s ∩ t) ⊢ ↑p * ↑↑μ (s ∩ t) ≤ ↑p * ↑↑μ s ** exact mul_le_mul_left' (measure_mono (inter_subset_left _ _)) _ ** Qed
| |
VitaliFamily.mul_measure_le_of_subset_lt_limRatioMeas ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ q : ℝ≥0 s : Set α h : s ⊆ {x | ↑q < limRatioMeas v hρ x} ⊢ ↑q * ↑↑μ s ≤ ↑↑ρ s ** let t := {x : α | Tendsto (fun a => ρ a / μ a) (v.filterAt x) (𝓝 (v.limRatioMeas hρ x))} ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ q : ℝ≥0 s : Set α h : s ⊆ {x | ↑q < limRatioMeas v hρ x} t : Set α := {x | Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 (limRatioMeas v hρ x))} ⊢ ↑q * ↑↑μ s ≤ ↑↑ρ s ** have A : μ tᶜ = 0 := v.ae_tendsto_limRatioMeas hρ ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ q : ℝ≥0 s : Set α h : s ⊆ {x | ↑q < limRatioMeas v hρ x} t : Set α := {x | Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 (limRatioMeas v hρ x))} A : ↑↑μ tᶜ = 0 ⊢ ↑q * ↑↑μ s ≤ ↑↑ρ s ** suffices H : (q • μ) (s ∩ t) ≤ ρ (s ∩ t) ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ q : ℝ≥0 s : Set α h : s ⊆ {x | ↑q < limRatioMeas v hρ x} t : Set α := {x | Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 (limRatioMeas v hρ x))} A : ↑↑μ tᶜ = 0 H : ↑↑(q • μ) (s ∩ t) ≤ ↑↑ρ (s ∩ t) ⊢ ↑q * ↑↑μ s ≤ ↑↑ρ s case H α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ q : ℝ≥0 s : Set α h : s ⊆ {x | ↑q < limRatioMeas v hρ x} t : Set α := {x | Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 (limRatioMeas v hρ x))} A : ↑↑μ tᶜ = 0 ⊢ ↑↑(q • μ) (s ∩ t) ≤ ↑↑ρ (s ∩ t) ** exact
calc
(q • μ) s = (q • μ) (s ∩ t ∪ s ∩ tᶜ) := by rw [inter_union_compl]
_ ≤ (q • μ) (s ∩ t) + (q • μ) (s ∩ tᶜ) := (measure_union_le _ _)
_ ≤ ρ (s ∩ t) + q * μ tᶜ := by
apply add_le_add H
rw [coe_nnreal_smul_apply]
exact mul_le_mul_left' (measure_mono (inter_subset_right _ _)) _
_ ≤ ρ s := by
rw [A, mul_zero, add_zero]; exact measure_mono (inter_subset_left _ _) ** case H α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ q : ℝ≥0 s : Set α h : s ⊆ {x | ↑q < limRatioMeas v hρ x} t : Set α := {x | Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 (limRatioMeas v hρ x))} A : ↑↑μ tᶜ = 0 ⊢ ↑↑(q • μ) (s ∩ t) ≤ ↑↑ρ (s ∩ t) ** refine' v.measure_le_of_frequently_le _ (AbsolutelyContinuous.rfl.smul _) _ _ ** case H α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ q : ℝ≥0 s : Set α h : s ⊆ {x | ↑q < limRatioMeas v hρ x} t : Set α := {x | Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 (limRatioMeas v hρ x))} A : ↑↑μ tᶜ = 0 ⊢ ∀ (x : α), x ∈ s ∩ t → ∃ᶠ (a : Set α) in filterAt v x, ↑↑(q • μ) a ≤ ↑↑ρ a ** intro x hx ** case H α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ q : ℝ≥0 s : Set α h : s ⊆ {x | ↑q < limRatioMeas v hρ x} t : Set α := {x | Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 (limRatioMeas v hρ x))} A : ↑↑μ tᶜ = 0 x : α hx : x ∈ s ∩ t ⊢ ∃ᶠ (a : Set α) in filterAt v x, ↑↑(q • μ) a ≤ ↑↑ρ a ** have I : ∀ᶠ a in v.filterAt x, (q : ℝ≥0∞) < ρ a / μ a := (tendsto_order.1 hx.2).1 _ (h hx.1) ** case H α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ q : ℝ≥0 s : Set α h : s ⊆ {x | ↑q < limRatioMeas v hρ x} t : Set α := {x | Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 (limRatioMeas v hρ x))} A : ↑↑μ tᶜ = 0 x : α hx : x ∈ s ∩ t I : ∀ᶠ (a : Set α) in filterAt v x, ↑q < ↑↑ρ a / ↑↑μ a ⊢ ∃ᶠ (a : Set α) in filterAt v x, ↑↑(q • μ) a ≤ ↑↑ρ a ** apply I.frequently.mono fun a ha => ?_ ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ q : ℝ≥0 s : Set α h : s ⊆ {x | ↑q < limRatioMeas v hρ x} t : Set α := {x | Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 (limRatioMeas v hρ x))} A : ↑↑μ tᶜ = 0 x : α hx : x ∈ s ∩ t I : ∀ᶠ (a : Set α) in filterAt v x, ↑q < ↑↑ρ a / ↑↑μ a a : Set α ha : ↑q < ↑↑ρ a / ↑↑μ a ⊢ ↑↑(q • μ) a ≤ ↑↑ρ a ** rw [coe_nnreal_smul_apply] ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ q : ℝ≥0 s : Set α h : s ⊆ {x | ↑q < limRatioMeas v hρ x} t : Set α := {x | Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 (limRatioMeas v hρ x))} A : ↑↑μ tᶜ = 0 x : α hx : x ∈ s ∩ t I : ∀ᶠ (a : Set α) in filterAt v x, ↑q < ↑↑ρ a / ↑↑μ a a : Set α ha : ↑q < ↑↑ρ a / ↑↑μ a ⊢ ↑q * ↑↑μ a ≤ ↑↑ρ a ** exact ENNReal.mul_le_of_le_div ha.le ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ q : ℝ≥0 s : Set α h : s ⊆ {x | ↑q < limRatioMeas v hρ x} t : Set α := {x | Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 (limRatioMeas v hρ x))} A : ↑↑μ tᶜ = 0 H : ↑↑(q • μ) (s ∩ t) ≤ ↑↑ρ (s ∩ t) ⊢ ↑↑(q • μ) s = ↑↑(q • μ) (s ∩ t ∪ s ∩ tᶜ) ** rw [inter_union_compl] ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ q : ℝ≥0 s : Set α h : s ⊆ {x | ↑q < limRatioMeas v hρ x} t : Set α := {x | Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 (limRatioMeas v hρ x))} A : ↑↑μ tᶜ = 0 H : ↑↑(q • μ) (s ∩ t) ≤ ↑↑ρ (s ∩ t) ⊢ ↑↑(q • μ) (s ∩ t) + ↑↑(q • μ) (s ∩ tᶜ) ≤ ↑↑ρ (s ∩ t) + ↑q * ↑↑μ tᶜ ** apply add_le_add H ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ q : ℝ≥0 s : Set α h : s ⊆ {x | ↑q < limRatioMeas v hρ x} t : Set α := {x | Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 (limRatioMeas v hρ x))} A : ↑↑μ tᶜ = 0 H : ↑↑(q • μ) (s ∩ t) ≤ ↑↑ρ (s ∩ t) ⊢ ↑↑(q • μ) (s ∩ tᶜ) ≤ ↑q * ↑↑μ tᶜ ** rw [coe_nnreal_smul_apply] ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ q : ℝ≥0 s : Set α h : s ⊆ {x | ↑q < limRatioMeas v hρ x} t : Set α := {x | Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 (limRatioMeas v hρ x))} A : ↑↑μ tᶜ = 0 H : ↑↑(q • μ) (s ∩ t) ≤ ↑↑ρ (s ∩ t) ⊢ ↑q * ↑↑μ (s ∩ tᶜ) ≤ ↑q * ↑↑μ tᶜ ** exact mul_le_mul_left' (measure_mono (inter_subset_right _ _)) _ ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ q : ℝ≥0 s : Set α h : s ⊆ {x | ↑q < limRatioMeas v hρ x} t : Set α := {x | Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 (limRatioMeas v hρ x))} A : ↑↑μ tᶜ = 0 H : ↑↑(q • μ) (s ∩ t) ≤ ↑↑ρ (s ∩ t) ⊢ ↑↑ρ (s ∩ t) + ↑q * ↑↑μ tᶜ ≤ ↑↑ρ s ** rw [A, mul_zero, add_zero] ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ q : ℝ≥0 s : Set α h : s ⊆ {x | ↑q < limRatioMeas v hρ x} t : Set α := {x | Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 (limRatioMeas v hρ x))} A : ↑↑μ tᶜ = 0 H : ↑↑(q • μ) (s ∩ t) ≤ ↑↑ρ (s ∩ t) ⊢ ↑↑ρ (s ∩ t) ≤ ↑↑ρ s ** exact measure_mono (inter_subset_left _ _) ** Qed
| |
VitaliFamily.measure_limRatioMeas_top ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ ⊢ ↑↑μ {x | limRatioMeas v hρ x = ⊤} = 0 ** refine' null_of_locally_null _ fun x _ => _ ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ x : α x✝ : x ∈ {x | limRatioMeas v hρ x = ⊤} ⊢ ∃ u, u ∈ 𝓝[{x | limRatioMeas v hρ x = ⊤}] x ∧ ↑↑μ u = 0 ** obtain ⟨o, xo, o_open, μo⟩ : ∃ o : Set α, x ∈ o ∧ IsOpen o ∧ ρ o < ∞ :=
Measure.exists_isOpen_measure_lt_top ρ x ** case intro.intro.intro α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ x : α x✝ : x ∈ {x | limRatioMeas v hρ x = ⊤} o : Set α xo : x ∈ o o_open : IsOpen o μo : ↑↑ρ o < ⊤ ⊢ ∃ u, u ∈ 𝓝[{x | limRatioMeas v hρ x = ⊤}] x ∧ ↑↑μ u = 0 ** let s := {x : α | v.limRatioMeas hρ x = ∞} ∩ o ** case intro.intro.intro α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ x : α x✝ : x ∈ {x | limRatioMeas v hρ x = ⊤} o : Set α xo : x ∈ o o_open : IsOpen o μo : ↑↑ρ o < ⊤ s : Set α := {x | limRatioMeas v hρ x = ⊤} ∩ o ⊢ ∃ u, u ∈ 𝓝[{x | limRatioMeas v hρ x = ⊤}] x ∧ ↑↑μ u = 0 ** refine' ⟨s, inter_mem_nhdsWithin _ (o_open.mem_nhds xo), le_antisymm _ bot_le⟩ ** case intro.intro.intro α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ x : α x✝ : x ∈ {x | limRatioMeas v hρ x = ⊤} o : Set α xo : x ∈ o o_open : IsOpen o μo : ↑↑ρ o < ⊤ s : Set α := {x | limRatioMeas v hρ x = ⊤} ∩ o ⊢ ↑↑μ s ≤ 0 ** have ρs : ρ s ≠ ∞ := ((measure_mono (inter_subset_right _ _)).trans_lt μo).ne ** case intro.intro.intro α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ x : α x✝ : x ∈ {x | limRatioMeas v hρ x = ⊤} o : Set α xo : x ∈ o o_open : IsOpen o μo : ↑↑ρ o < ⊤ s : Set α := {x | limRatioMeas v hρ x = ⊤} ∩ o ρs : ↑↑ρ s ≠ ⊤ A : ∀ (q : ℝ≥0), 1 ≤ q → ↑↑μ s ≤ (↑q)⁻¹ * ↑↑ρ s ⊢ ↑↑μ s ≤ 0 ** have B : Tendsto (fun q : ℝ≥0 => (q : ℝ≥0∞)⁻¹ * ρ s) atTop (𝓝 (∞⁻¹ * ρ s)) := by
apply ENNReal.Tendsto.mul_const _ (Or.inr ρs)
exact ENNReal.tendsto_inv_iff.2 (ENNReal.tendsto_coe_nhds_top.2 tendsto_id) ** case intro.intro.intro α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ x : α x✝ : x ∈ {x | limRatioMeas v hρ x = ⊤} o : Set α xo : x ∈ o o_open : IsOpen o μo : ↑↑ρ o < ⊤ s : Set α := {x | limRatioMeas v hρ x = ⊤} ∩ o ρs : ↑↑ρ s ≠ ⊤ A : ∀ (q : ℝ≥0), 1 ≤ q → ↑↑μ s ≤ (↑q)⁻¹ * ↑↑ρ s B : Tendsto (fun q => (↑q)⁻¹ * ↑↑ρ s) atTop (𝓝 (⊤⁻¹ * ↑↑ρ s)) ⊢ ↑↑μ s ≤ 0 ** simp only [zero_mul, ENNReal.inv_top] at B ** case intro.intro.intro α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ x : α x✝ : x ∈ {x | limRatioMeas v hρ x = ⊤} o : Set α xo : x ∈ o o_open : IsOpen o μo : ↑↑ρ o < ⊤ s : Set α := {x | limRatioMeas v hρ x = ⊤} ∩ o ρs : ↑↑ρ s ≠ ⊤ A : ∀ (q : ℝ≥0), 1 ≤ q → ↑↑μ s ≤ (↑q)⁻¹ * ↑↑ρ s B : Tendsto (fun q => (↑q)⁻¹ * ↑↑ρ ({x | limRatioMeas v hρ x = ⊤} ∩ o)) atTop (𝓝 0) ⊢ ↑↑μ s ≤ 0 ** apply ge_of_tendsto B ** case intro.intro.intro α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ x : α x✝ : x ∈ {x | limRatioMeas v hρ x = ⊤} o : Set α xo : x ∈ o o_open : IsOpen o μo : ↑↑ρ o < ⊤ s : Set α := {x | limRatioMeas v hρ x = ⊤} ∩ o ρs : ↑↑ρ s ≠ ⊤ A : ∀ (q : ℝ≥0), 1 ≤ q → ↑↑μ s ≤ (↑q)⁻¹ * ↑↑ρ s B : Tendsto (fun q => (↑q)⁻¹ * ↑↑ρ ({x | limRatioMeas v hρ x = ⊤} ∩ o)) atTop (𝓝 0) ⊢ ∀ᶠ (c : ℝ≥0) in atTop, ↑↑μ s ≤ (↑c)⁻¹ * ↑↑ρ ({x | limRatioMeas v hρ x = ⊤} ∩ o) ** exact eventually_atTop.2 ⟨1, A⟩ ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ x : α x✝ : x ∈ {x | limRatioMeas v hρ x = ⊤} o : Set α xo : x ∈ o o_open : IsOpen o μo : ↑↑ρ o < ⊤ s : Set α := {x | limRatioMeas v hρ x = ⊤} ∩ o ρs : ↑↑ρ s ≠ ⊤ ⊢ ∀ (q : ℝ≥0), 1 ≤ q → ↑↑μ s ≤ (↑q)⁻¹ * ↑↑ρ s ** intro q hq ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ x : α x✝ : x ∈ {x | limRatioMeas v hρ x = ⊤} o : Set α xo : x ∈ o o_open : IsOpen o μo : ↑↑ρ o < ⊤ s : Set α := {x | limRatioMeas v hρ x = ⊤} ∩ o ρs : ↑↑ρ s ≠ ⊤ q : ℝ≥0 hq : 1 ≤ q ⊢ ↑↑μ s ≤ (↑q)⁻¹ * ↑↑ρ s ** rw [mul_comm, ← div_eq_mul_inv, ENNReal.le_div_iff_mul_le _ (Or.inr ρs), mul_comm] ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ x : α x✝ : x ∈ {x | limRatioMeas v hρ x = ⊤} o : Set α xo : x ∈ o o_open : IsOpen o μo : ↑↑ρ o < ⊤ s : Set α := {x | limRatioMeas v hρ x = ⊤} ∩ o ρs : ↑↑ρ s ≠ ⊤ q : ℝ≥0 hq : 1 ≤ q ⊢ ↑q * ↑↑μ s ≤ ↑↑ρ s ** apply v.mul_measure_le_of_subset_lt_limRatioMeas hρ ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ x : α x✝ : x ∈ {x | limRatioMeas v hρ x = ⊤} o : Set α xo : x ∈ o o_open : IsOpen o μo : ↑↑ρ o < ⊤ s : Set α := {x | limRatioMeas v hρ x = ⊤} ∩ o ρs : ↑↑ρ s ≠ ⊤ q : ℝ≥0 hq : 1 ≤ q ⊢ s ⊆ {x | ↑q < limRatioMeas v hρ x} ** intro y hy ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ x : α x✝ : x ∈ {x | limRatioMeas v hρ x = ⊤} o : Set α xo : x ∈ o o_open : IsOpen o μo : ↑↑ρ o < ⊤ s : Set α := {x | limRatioMeas v hρ x = ⊤} ∩ o ρs : ↑↑ρ s ≠ ⊤ q : ℝ≥0 hq : 1 ≤ q y : α hy : y ∈ s ⊢ y ∈ {x | ↑q < limRatioMeas v hρ x} ** have : v.limRatioMeas hρ y = ∞ := hy.1 ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ x : α x✝ : x ∈ {x | limRatioMeas v hρ x = ⊤} o : Set α xo : x ∈ o o_open : IsOpen o μo : ↑↑ρ o < ⊤ s : Set α := {x | limRatioMeas v hρ x = ⊤} ∩ o ρs : ↑↑ρ s ≠ ⊤ q : ℝ≥0 hq : 1 ≤ q y : α hy : y ∈ s this : limRatioMeas v hρ y = ⊤ ⊢ y ∈ {x | ↑q < limRatioMeas v hρ x} ** simp only [this, ENNReal.coe_lt_top, mem_setOf_eq] ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ x : α x✝ : x ∈ {x | limRatioMeas v hρ x = ⊤} o : Set α xo : x ∈ o o_open : IsOpen o μo : ↑↑ρ o < ⊤ s : Set α := {x | limRatioMeas v hρ x = ⊤} ∩ o ρs : ↑↑ρ s ≠ ⊤ q : ℝ≥0 hq : 1 ≤ q ⊢ ↑q ≠ 0 ∨ ↑↑ρ s ≠ 0 ** simp only [(zero_lt_one.trans_le hq).ne', true_or_iff, ENNReal.coe_eq_zero, Ne.def,
not_false_iff] ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ x : α x✝ : x ∈ {x | limRatioMeas v hρ x = ⊤} o : Set α xo : x ∈ o o_open : IsOpen o μo : ↑↑ρ o < ⊤ s : Set α := {x | limRatioMeas v hρ x = ⊤} ∩ o ρs : ↑↑ρ s ≠ ⊤ A : ∀ (q : ℝ≥0), 1 ≤ q → ↑↑μ s ≤ (↑q)⁻¹ * ↑↑ρ s ⊢ Tendsto (fun q => (↑q)⁻¹ * ↑↑ρ s) atTop (𝓝 (⊤⁻¹ * ↑↑ρ s)) ** apply ENNReal.Tendsto.mul_const _ (Or.inr ρs) ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ x : α x✝ : x ∈ {x | limRatioMeas v hρ x = ⊤} o : Set α xo : x ∈ o o_open : IsOpen o μo : ↑↑ρ o < ⊤ s : Set α := {x | limRatioMeas v hρ x = ⊤} ∩ o ρs : ↑↑ρ s ≠ ⊤ A : ∀ (q : ℝ≥0), 1 ≤ q → ↑↑μ s ≤ (↑q)⁻¹ * ↑↑ρ s ⊢ Tendsto (fun x => (↑x)⁻¹) atTop (𝓝 ⊤⁻¹) ** exact ENNReal.tendsto_inv_iff.2 (ENNReal.tendsto_coe_nhds_top.2 tendsto_id) ** Qed
| |
VitaliFamily.measure_limRatioMeas_zero ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ ⊢ ↑↑ρ {x | limRatioMeas v hρ x = 0} = 0 ** refine' null_of_locally_null _ fun x _ => _ ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ x : α x✝ : x ∈ {x | limRatioMeas v hρ x = 0} ⊢ ∃ u, u ∈ 𝓝[{x | limRatioMeas v hρ x = 0}] x ∧ ↑↑ρ u = 0 ** obtain ⟨o, xo, o_open, μo⟩ : ∃ o : Set α, x ∈ o ∧ IsOpen o ∧ μ o < ∞ :=
Measure.exists_isOpen_measure_lt_top μ x ** case intro.intro.intro α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ x : α x✝ : x ∈ {x | limRatioMeas v hρ x = 0} o : Set α xo : x ∈ o o_open : IsOpen o μo : ↑↑μ o < ⊤ ⊢ ∃ u, u ∈ 𝓝[{x | limRatioMeas v hρ x = 0}] x ∧ ↑↑ρ u = 0 ** let s := {x : α | v.limRatioMeas hρ x = 0} ∩ o ** case intro.intro.intro α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ x : α x✝ : x ∈ {x | limRatioMeas v hρ x = 0} o : Set α xo : x ∈ o o_open : IsOpen o μo : ↑↑μ o < ⊤ s : Set α := {x | limRatioMeas v hρ x = 0} ∩ o ⊢ ∃ u, u ∈ 𝓝[{x | limRatioMeas v hρ x = 0}] x ∧ ↑↑ρ u = 0 ** refine' ⟨s, inter_mem_nhdsWithin _ (o_open.mem_nhds xo), le_antisymm _ bot_le⟩ ** case intro.intro.intro α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ x : α x✝ : x ∈ {x | limRatioMeas v hρ x = 0} o : Set α xo : x ∈ o o_open : IsOpen o μo : ↑↑μ o < ⊤ s : Set α := {x | limRatioMeas v hρ x = 0} ∩ o ⊢ ↑↑ρ s ≤ 0 ** have μs : μ s ≠ ∞ := ((measure_mono (inter_subset_right _ _)).trans_lt μo).ne ** case intro.intro.intro α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ x : α x✝ : x ∈ {x | limRatioMeas v hρ x = 0} o : Set α xo : x ∈ o o_open : IsOpen o μo : ↑↑μ o < ⊤ s : Set α := {x | limRatioMeas v hρ x = 0} ∩ o μs : ↑↑μ s ≠ ⊤ ⊢ ↑↑ρ s ≤ 0 ** have A : ∀ q : ℝ≥0, 0 < q → ρ s ≤ q * μ s := by
intro q hq
apply v.measure_le_mul_of_subset_limRatioMeas_lt hρ
intro y hy
have : v.limRatioMeas hρ y = 0 := hy.1
simp only [this, mem_setOf_eq, hq, ENNReal.coe_pos] ** case intro.intro.intro α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ x : α x✝ : x ∈ {x | limRatioMeas v hρ x = 0} o : Set α xo : x ∈ o o_open : IsOpen o μo : ↑↑μ o < ⊤ s : Set α := {x | limRatioMeas v hρ x = 0} ∩ o μs : ↑↑μ s ≠ ⊤ A : ∀ (q : ℝ≥0), 0 < q → ↑↑ρ s ≤ ↑q * ↑↑μ s ⊢ ↑↑ρ s ≤ 0 ** have B : Tendsto (fun q : ℝ≥0 => (q : ℝ≥0∞) * μ s) (𝓝[>] (0 : ℝ≥0)) (𝓝 ((0 : ℝ≥0) * μ s)) := by
apply ENNReal.Tendsto.mul_const _ (Or.inr μs)
rw [ENNReal.tendsto_coe]
exact nhdsWithin_le_nhds ** case intro.intro.intro α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ x : α x✝ : x ∈ {x | limRatioMeas v hρ x = 0} o : Set α xo : x ∈ o o_open : IsOpen o μo : ↑↑μ o < ⊤ s : Set α := {x | limRatioMeas v hρ x = 0} ∩ o μs : ↑↑μ s ≠ ⊤ A : ∀ (q : ℝ≥0), 0 < q → ↑↑ρ s ≤ ↑q * ↑↑μ s B : Tendsto (fun q => ↑q * ↑↑μ s) (𝓝[Ioi 0] 0) (𝓝 (↑0 * ↑↑μ s)) ⊢ ↑↑ρ s ≤ 0 ** simp only [zero_mul, ENNReal.coe_zero] at B ** case intro.intro.intro α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ x : α x✝ : x ∈ {x | limRatioMeas v hρ x = 0} o : Set α xo : x ∈ o o_open : IsOpen o μo : ↑↑μ o < ⊤ s : Set α := {x | limRatioMeas v hρ x = 0} ∩ o μs : ↑↑μ s ≠ ⊤ A : ∀ (q : ℝ≥0), 0 < q → ↑↑ρ s ≤ ↑q * ↑↑μ s B : Tendsto (fun q => ↑q * ↑↑μ ({x | limRatioMeas v hρ x = 0} ∩ o)) (𝓝[Ioi 0] 0) (𝓝 0) ⊢ ↑↑ρ s ≤ 0 ** apply ge_of_tendsto B ** case intro.intro.intro α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ x : α x✝ : x ∈ {x | limRatioMeas v hρ x = 0} o : Set α xo : x ∈ o o_open : IsOpen o μo : ↑↑μ o < ⊤ s : Set α := {x | limRatioMeas v hρ x = 0} ∩ o μs : ↑↑μ s ≠ ⊤ A : ∀ (q : ℝ≥0), 0 < q → ↑↑ρ s ≤ ↑q * ↑↑μ s B : Tendsto (fun q => ↑q * ↑↑μ ({x | limRatioMeas v hρ x = 0} ∩ o)) (𝓝[Ioi 0] 0) (𝓝 0) ⊢ ∀ᶠ (c : ℝ≥0) in 𝓝[Ioi 0] 0, ↑↑ρ s ≤ ↑c * ↑↑μ ({x | limRatioMeas v hρ x = 0} ∩ o) ** filter_upwards [self_mem_nhdsWithin] using A ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ x : α x✝ : x ∈ {x | limRatioMeas v hρ x = 0} o : Set α xo : x ∈ o o_open : IsOpen o μo : ↑↑μ o < ⊤ s : Set α := {x | limRatioMeas v hρ x = 0} ∩ o μs : ↑↑μ s ≠ ⊤ ⊢ ∀ (q : ℝ≥0), 0 < q → ↑↑ρ s ≤ ↑q * ↑↑μ s ** intro q hq ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ x : α x✝ : x ∈ {x | limRatioMeas v hρ x = 0} o : Set α xo : x ∈ o o_open : IsOpen o μo : ↑↑μ o < ⊤ s : Set α := {x | limRatioMeas v hρ x = 0} ∩ o μs : ↑↑μ s ≠ ⊤ q : ℝ≥0 hq : 0 < q ⊢ ↑↑ρ s ≤ ↑q * ↑↑μ s ** apply v.measure_le_mul_of_subset_limRatioMeas_lt hρ ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ x : α x✝ : x ∈ {x | limRatioMeas v hρ x = 0} o : Set α xo : x ∈ o o_open : IsOpen o μo : ↑↑μ o < ⊤ s : Set α := {x | limRatioMeas v hρ x = 0} ∩ o μs : ↑↑μ s ≠ ⊤ q : ℝ≥0 hq : 0 < q ⊢ s ⊆ {x | limRatioMeas v hρ x < ↑q} ** intro y hy ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ x : α x✝ : x ∈ {x | limRatioMeas v hρ x = 0} o : Set α xo : x ∈ o o_open : IsOpen o μo : ↑↑μ o < ⊤ s : Set α := {x | limRatioMeas v hρ x = 0} ∩ o μs : ↑↑μ s ≠ ⊤ q : ℝ≥0 hq : 0 < q y : α hy : y ∈ s ⊢ y ∈ {x | limRatioMeas v hρ x < ↑q} ** have : v.limRatioMeas hρ y = 0 := hy.1 ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ x : α x✝ : x ∈ {x | limRatioMeas v hρ x = 0} o : Set α xo : x ∈ o o_open : IsOpen o μo : ↑↑μ o < ⊤ s : Set α := {x | limRatioMeas v hρ x = 0} ∩ o μs : ↑↑μ s ≠ ⊤ q : ℝ≥0 hq : 0 < q y : α hy : y ∈ s this : limRatioMeas v hρ y = 0 ⊢ y ∈ {x | limRatioMeas v hρ x < ↑q} ** simp only [this, mem_setOf_eq, hq, ENNReal.coe_pos] ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ x : α x✝ : x ∈ {x | limRatioMeas v hρ x = 0} o : Set α xo : x ∈ o o_open : IsOpen o μo : ↑↑μ o < ⊤ s : Set α := {x | limRatioMeas v hρ x = 0} ∩ o μs : ↑↑μ s ≠ ⊤ A : ∀ (q : ℝ≥0), 0 < q → ↑↑ρ s ≤ ↑q * ↑↑μ s ⊢ Tendsto (fun q => ↑q * ↑↑μ s) (𝓝[Ioi 0] 0) (𝓝 (↑0 * ↑↑μ s)) ** apply ENNReal.Tendsto.mul_const _ (Or.inr μs) ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ x : α x✝ : x ∈ {x | limRatioMeas v hρ x = 0} o : Set α xo : x ∈ o o_open : IsOpen o μo : ↑↑μ o < ⊤ s : Set α := {x | limRatioMeas v hρ x = 0} ∩ o μs : ↑↑μ s ≠ ⊤ A : ∀ (q : ℝ≥0), 0 < q → ↑↑ρ s ≤ ↑q * ↑↑μ s ⊢ Tendsto (fun x => ↑x) (𝓝[Ioi 0] 0) (𝓝 ↑0) ** rw [ENNReal.tendsto_coe] ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ x : α x✝ : x ∈ {x | limRatioMeas v hρ x = 0} o : Set α xo : x ∈ o o_open : IsOpen o μo : ↑↑μ o < ⊤ s : Set α := {x | limRatioMeas v hρ x = 0} ∩ o μs : ↑↑μ s ≠ ⊤ A : ∀ (q : ℝ≥0), 0 < q → ↑↑ρ s ≤ ↑q * ↑↑μ s ⊢ Tendsto (fun x => x) (𝓝[Ioi 0] 0) (𝓝 0) ** exact nhdsWithin_le_nhds ** Qed
| |
VitaliFamily.le_mul_withDensity ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ s : Set α hs : MeasurableSet s t : ℝ≥0 ht : 1 < t ⊢ ↑↑ρ s ≤ ↑t * ↑↑(withDensity μ (limRatioMeas v hρ)) s ** have t_ne_zero' : t ≠ 0 := (zero_lt_one.trans ht).ne' ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ s : Set α hs : MeasurableSet s t : ℝ≥0 ht : 1 < t t_ne_zero' : t ≠ 0 ⊢ ↑↑ρ s ≤ ↑t * ↑↑(withDensity μ (limRatioMeas v hρ)) s ** have t_ne_zero : (t : ℝ≥0∞) ≠ 0 := by simpa only [ENNReal.coe_eq_zero, Ne.def] using t_ne_zero' ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ s : Set α hs : MeasurableSet s t : ℝ≥0 ht : 1 < t t_ne_zero' : t ≠ 0 t_ne_zero : ↑t ≠ 0 ⊢ ↑↑ρ s ≤ ↑t * ↑↑(withDensity μ (limRatioMeas v hρ)) s ** let ν := μ.withDensity (v.limRatioMeas hρ) ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ s : Set α hs : MeasurableSet s t : ℝ≥0 ht : 1 < t t_ne_zero' : t ≠ 0 t_ne_zero : ↑t ≠ 0 ν : Measure α := withDensity μ (limRatioMeas v hρ) ⊢ ↑↑ρ s ≤ ↑t * ↑↑(withDensity μ (limRatioMeas v hρ)) s ** let f := v.limRatioMeas hρ ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ s : Set α hs : MeasurableSet s t : ℝ≥0 ht : 1 < t t_ne_zero' : t ≠ 0 t_ne_zero : ↑t ≠ 0 ν : Measure α := withDensity μ (limRatioMeas v hρ) f : α → ℝ≥0∞ := limRatioMeas v hρ ⊢ ↑↑ρ s ≤ ↑t * ↑↑(withDensity μ (limRatioMeas v hρ)) s ** have f_meas : Measurable f := v.limRatioMeas_measurable hρ ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ s : Set α hs : MeasurableSet s t : ℝ≥0 ht : 1 < t t_ne_zero' : t ≠ 0 t_ne_zero : ↑t ≠ 0 ν : Measure α := withDensity μ (limRatioMeas v hρ) f : α → ℝ≥0∞ := limRatioMeas v hρ f_meas : Measurable f ⊢ ↑↑ρ s ≤ ↑t * ↑↑(withDensity μ (limRatioMeas v hρ)) s ** have A : ρ (s ∩ f ⁻¹' {0}) ≤ (t • ν) (s ∩ f ⁻¹' {0}) := by
refine' le_trans (measure_mono (inter_subset_right _ _)) (le_trans (le_of_eq _) (zero_le _))
exact v.measure_limRatioMeas_zero hρ ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ s : Set α hs : MeasurableSet s t : ℝ≥0 ht : 1 < t t_ne_zero' : t ≠ 0 t_ne_zero : ↑t ≠ 0 ν : Measure α := withDensity μ (limRatioMeas v hρ) f : α → ℝ≥0∞ := limRatioMeas v hρ f_meas : Measurable f A : ↑↑ρ (s ∩ f ⁻¹' {0}) ≤ ↑↑(t • ν) (s ∩ f ⁻¹' {0}) ⊢ ↑↑ρ s ≤ ↑t * ↑↑(withDensity μ (limRatioMeas v hρ)) s ** have B : ρ (s ∩ f ⁻¹' {∞}) ≤ (t • ν) (s ∩ f ⁻¹' {∞}) := by
apply le_trans (le_of_eq _) (zero_le _)
apply hρ
rw [← nonpos_iff_eq_zero]
exact (measure_mono (inter_subset_right _ _)).trans (v.measure_limRatioMeas_top hρ).le ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ s : Set α hs : MeasurableSet s t : ℝ≥0 ht : 1 < t t_ne_zero' : t ≠ 0 t_ne_zero : ↑t ≠ 0 ν : Measure α := withDensity μ (limRatioMeas v hρ) f : α → ℝ≥0∞ := limRatioMeas v hρ f_meas : Measurable f A : ↑↑ρ (s ∩ f ⁻¹' {0}) ≤ ↑↑(t • ν) (s ∩ f ⁻¹' {0}) B : ↑↑ρ (s ∩ f ⁻¹' {⊤}) ≤ ↑↑(t • ν) (s ∩ f ⁻¹' {⊤}) ⊢ ↑↑ρ s ≤ ↑t * ↑↑(withDensity μ (limRatioMeas v hρ)) s ** have C :
∀ n : ℤ,
ρ (s ∩ f ⁻¹' Ico ((t : ℝ≥0∞) ^ n) ((t : ℝ≥0∞) ^ (n + 1))) ≤
(t • ν) (s ∩ f ⁻¹' Ico ((t : ℝ≥0∞) ^ n) ((t : ℝ≥0∞) ^ (n + 1))) := by
intro n
let I := Ico ((t : ℝ≥0∞) ^ n) ((t : ℝ≥0∞) ^ (n + 1))
have M : MeasurableSet (s ∩ f ⁻¹' I) := hs.inter (f_meas measurableSet_Ico)
simp only [M, withDensity_apply, coe_nnreal_smul_apply]
calc
ρ (s ∩ f ⁻¹' I) ≤ (t : ℝ≥0∞) ^ (n + 1) * μ (s ∩ f ⁻¹' I) := by
rw [← ENNReal.coe_zpow t_ne_zero']
apply v.measure_le_mul_of_subset_limRatioMeas_lt hρ
intro x hx
apply hx.2.2.trans_le (le_of_eq _)
rw [ENNReal.coe_zpow t_ne_zero']
_ = ∫⁻ x in s ∩ f ⁻¹' I, (t : ℝ≥0∞) ^ (n + 1) ∂μ := by
simp only [lintegral_const, MeasurableSet.univ, Measure.restrict_apply, univ_inter]
_ ≤ ∫⁻ x in s ∩ f ⁻¹' I, t * f x ∂μ := by
apply lintegral_mono_ae ((ae_restrict_iff' M).2 (eventually_of_forall fun x hx => ?_))
rw [add_comm, ENNReal.zpow_add t_ne_zero ENNReal.coe_ne_top, zpow_one]
exact mul_le_mul_left' hx.2.1 _
_ = t * ∫⁻ x in s ∩ f ⁻¹' I, f x ∂μ := lintegral_const_mul _ f_meas ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ s : Set α hs : MeasurableSet s t : ℝ≥0 ht : 1 < t t_ne_zero' : t ≠ 0 t_ne_zero : ↑t ≠ 0 ν : Measure α := withDensity μ (limRatioMeas v hρ) f : α → ℝ≥0∞ := limRatioMeas v hρ f_meas : Measurable f A : ↑↑ρ (s ∩ f ⁻¹' {0}) ≤ ↑↑(t • ν) (s ∩ f ⁻¹' {0}) B : ↑↑ρ (s ∩ f ⁻¹' {⊤}) ≤ ↑↑(t • ν) (s ∩ f ⁻¹' {⊤}) C : ∀ (n : ℤ), ↑↑ρ (s ∩ f ⁻¹' Ico (↑t ^ n) (↑t ^ (n + 1))) ≤ ↑↑(t • ν) (s ∩ f ⁻¹' Ico (↑t ^ n) (↑t ^ (n + 1))) ⊢ ↑↑ρ s ≤ ↑t * ↑↑(withDensity μ (limRatioMeas v hρ)) s ** calc
ρ s =
ρ (s ∩ f ⁻¹' {0}) + ρ (s ∩ f ⁻¹' {∞}) +
∑' n : ℤ, ρ (s ∩ f ⁻¹' Ico ((t : ℝ≥0∞) ^ n) ((t : ℝ≥0∞) ^ (n + 1))) :=
measure_eq_measure_preimage_add_measure_tsum_Ico_zpow ρ f_meas hs ht
_ ≤
(t • ν) (s ∩ f ⁻¹' {0}) + (t • ν) (s ∩ f ⁻¹' {∞}) +
∑' n : ℤ, (t • ν) (s ∩ f ⁻¹' Ico ((t : ℝ≥0∞) ^ n) ((t : ℝ≥0∞) ^ (n + 1))) :=
(add_le_add (add_le_add A B) (ENNReal.tsum_le_tsum C))
_ = (t • ν) s :=
(measure_eq_measure_preimage_add_measure_tsum_Ico_zpow (t • ν) f_meas hs ht).symm ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ s : Set α hs : MeasurableSet s t : ℝ≥0 ht : 1 < t t_ne_zero' : t ≠ 0 ⊢ ↑t ≠ 0 ** simpa only [ENNReal.coe_eq_zero, Ne.def] using t_ne_zero' ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ s : Set α hs : MeasurableSet s t : ℝ≥0 ht : 1 < t t_ne_zero' : t ≠ 0 t_ne_zero : ↑t ≠ 0 ν : Measure α := withDensity μ (limRatioMeas v hρ) f : α → ℝ≥0∞ := limRatioMeas v hρ f_meas : Measurable f ⊢ ↑↑ρ (s ∩ f ⁻¹' {0}) ≤ ↑↑(t • ν) (s ∩ f ⁻¹' {0}) ** refine' le_trans (measure_mono (inter_subset_right _ _)) (le_trans (le_of_eq _) (zero_le _)) ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ s : Set α hs : MeasurableSet s t : ℝ≥0 ht : 1 < t t_ne_zero' : t ≠ 0 t_ne_zero : ↑t ≠ 0 ν : Measure α := withDensity μ (limRatioMeas v hρ) f : α → ℝ≥0∞ := limRatioMeas v hρ f_meas : Measurable f ⊢ ↑↑ρ (f ⁻¹' {0}) = 0 ** exact v.measure_limRatioMeas_zero hρ ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ s : Set α hs : MeasurableSet s t : ℝ≥0 ht : 1 < t t_ne_zero' : t ≠ 0 t_ne_zero : ↑t ≠ 0 ν : Measure α := withDensity μ (limRatioMeas v hρ) f : α → ℝ≥0∞ := limRatioMeas v hρ f_meas : Measurable f A : ↑↑ρ (s ∩ f ⁻¹' {0}) ≤ ↑↑(t • ν) (s ∩ f ⁻¹' {0}) ⊢ ↑↑ρ (s ∩ f ⁻¹' {⊤}) ≤ ↑↑(t • ν) (s ∩ f ⁻¹' {⊤}) ** apply le_trans (le_of_eq _) (zero_le _) ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ s : Set α hs : MeasurableSet s t : ℝ≥0 ht : 1 < t t_ne_zero' : t ≠ 0 t_ne_zero : ↑t ≠ 0 ν : Measure α := withDensity μ (limRatioMeas v hρ) f : α → ℝ≥0∞ := limRatioMeas v hρ f_meas : Measurable f A : ↑↑ρ (s ∩ f ⁻¹' {0}) ≤ ↑↑(t • ν) (s ∩ f ⁻¹' {0}) ⊢ ↑↑ρ (s ∩ f ⁻¹' {⊤}) = 0 ** apply hρ ** case a α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ s : Set α hs : MeasurableSet s t : ℝ≥0 ht : 1 < t t_ne_zero' : t ≠ 0 t_ne_zero : ↑t ≠ 0 ν : Measure α := withDensity μ (limRatioMeas v hρ) f : α → ℝ≥0∞ := limRatioMeas v hρ f_meas : Measurable f A : ↑↑ρ (s ∩ f ⁻¹' {0}) ≤ ↑↑(t • ν) (s ∩ f ⁻¹' {0}) ⊢ ↑↑μ (s ∩ f ⁻¹' {⊤}) = 0 ** rw [← nonpos_iff_eq_zero] ** case a α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ s : Set α hs : MeasurableSet s t : ℝ≥0 ht : 1 < t t_ne_zero' : t ≠ 0 t_ne_zero : ↑t ≠ 0 ν : Measure α := withDensity μ (limRatioMeas v hρ) f : α → ℝ≥0∞ := limRatioMeas v hρ f_meas : Measurable f A : ↑↑ρ (s ∩ f ⁻¹' {0}) ≤ ↑↑(t • ν) (s ∩ f ⁻¹' {0}) ⊢ ↑↑μ (s ∩ f ⁻¹' {⊤}) ≤ 0 ** exact (measure_mono (inter_subset_right _ _)).trans (v.measure_limRatioMeas_top hρ).le ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ s : Set α hs : MeasurableSet s t : ℝ≥0 ht : 1 < t t_ne_zero' : t ≠ 0 t_ne_zero : ↑t ≠ 0 ν : Measure α := withDensity μ (limRatioMeas v hρ) f : α → ℝ≥0∞ := limRatioMeas v hρ f_meas : Measurable f A : ↑↑ρ (s ∩ f ⁻¹' {0}) ≤ ↑↑(t • ν) (s ∩ f ⁻¹' {0}) B : ↑↑ρ (s ∩ f ⁻¹' {⊤}) ≤ ↑↑(t • ν) (s ∩ f ⁻¹' {⊤}) ⊢ ∀ (n : ℤ), ↑↑ρ (s ∩ f ⁻¹' Ico (↑t ^ n) (↑t ^ (n + 1))) ≤ ↑↑(t • ν) (s ∩ f ⁻¹' Ico (↑t ^ n) (↑t ^ (n + 1))) ** intro n ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ s : Set α hs : MeasurableSet s t : ℝ≥0 ht : 1 < t t_ne_zero' : t ≠ 0 t_ne_zero : ↑t ≠ 0 ν : Measure α := withDensity μ (limRatioMeas v hρ) f : α → ℝ≥0∞ := limRatioMeas v hρ f_meas : Measurable f A : ↑↑ρ (s ∩ f ⁻¹' {0}) ≤ ↑↑(t • ν) (s ∩ f ⁻¹' {0}) B : ↑↑ρ (s ∩ f ⁻¹' {⊤}) ≤ ↑↑(t • ν) (s ∩ f ⁻¹' {⊤}) n : ℤ ⊢ ↑↑ρ (s ∩ f ⁻¹' Ico (↑t ^ n) (↑t ^ (n + 1))) ≤ ↑↑(t • ν) (s ∩ f ⁻¹' Ico (↑t ^ n) (↑t ^ (n + 1))) ** let I := Ico ((t : ℝ≥0∞) ^ n) ((t : ℝ≥0∞) ^ (n + 1)) ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ s : Set α hs : MeasurableSet s t : ℝ≥0 ht : 1 < t t_ne_zero' : t ≠ 0 t_ne_zero : ↑t ≠ 0 ν : Measure α := withDensity μ (limRatioMeas v hρ) f : α → ℝ≥0∞ := limRatioMeas v hρ f_meas : Measurable f A : ↑↑ρ (s ∩ f ⁻¹' {0}) ≤ ↑↑(t • ν) (s ∩ f ⁻¹' {0}) B : ↑↑ρ (s ∩ f ⁻¹' {⊤}) ≤ ↑↑(t • ν) (s ∩ f ⁻¹' {⊤}) n : ℤ I : Set ℝ≥0∞ := Ico (↑t ^ n) (↑t ^ (n + 1)) ⊢ ↑↑ρ (s ∩ f ⁻¹' Ico (↑t ^ n) (↑t ^ (n + 1))) ≤ ↑↑(t • ν) (s ∩ f ⁻¹' Ico (↑t ^ n) (↑t ^ (n + 1))) ** have M : MeasurableSet (s ∩ f ⁻¹' I) := hs.inter (f_meas measurableSet_Ico) ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ s : Set α hs : MeasurableSet s t : ℝ≥0 ht : 1 < t t_ne_zero' : t ≠ 0 t_ne_zero : ↑t ≠ 0 ν : Measure α := withDensity μ (limRatioMeas v hρ) f : α → ℝ≥0∞ := limRatioMeas v hρ f_meas : Measurable f A : ↑↑ρ (s ∩ f ⁻¹' {0}) ≤ ↑↑(t • ν) (s ∩ f ⁻¹' {0}) B : ↑↑ρ (s ∩ f ⁻¹' {⊤}) ≤ ↑↑(t • ν) (s ∩ f ⁻¹' {⊤}) n : ℤ I : Set ℝ≥0∞ := Ico (↑t ^ n) (↑t ^ (n + 1)) M : MeasurableSet (s ∩ f ⁻¹' I) ⊢ ↑↑ρ (s ∩ f ⁻¹' Ico (↑t ^ n) (↑t ^ (n + 1))) ≤ ↑↑(t • ν) (s ∩ f ⁻¹' Ico (↑t ^ n) (↑t ^ (n + 1))) ** simp only [M, withDensity_apply, coe_nnreal_smul_apply] ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ s : Set α hs : MeasurableSet s t : ℝ≥0 ht : 1 < t t_ne_zero' : t ≠ 0 t_ne_zero : ↑t ≠ 0 ν : Measure α := withDensity μ (limRatioMeas v hρ) f : α → ℝ≥0∞ := limRatioMeas v hρ f_meas : Measurable f A : ↑↑ρ (s ∩ f ⁻¹' {0}) ≤ ↑↑(t • ν) (s ∩ f ⁻¹' {0}) B : ↑↑ρ (s ∩ f ⁻¹' {⊤}) ≤ ↑↑(t • ν) (s ∩ f ⁻¹' {⊤}) n : ℤ I : Set ℝ≥0∞ := Ico (↑t ^ n) (↑t ^ (n + 1)) M : MeasurableSet (s ∩ f ⁻¹' I) ⊢ ↑↑ρ (s ∩ limRatioMeas v hρ ⁻¹' Ico (↑t ^ n) (↑t ^ (n + 1))) ≤ ↑t * ∫⁻ (a : α) in s ∩ limRatioMeas v hρ ⁻¹' Ico (↑t ^ n) (↑t ^ (n + 1)), limRatioMeas v hρ a ∂μ ** calc
ρ (s ∩ f ⁻¹' I) ≤ (t : ℝ≥0∞) ^ (n + 1) * μ (s ∩ f ⁻¹' I) := by
rw [← ENNReal.coe_zpow t_ne_zero']
apply v.measure_le_mul_of_subset_limRatioMeas_lt hρ
intro x hx
apply hx.2.2.trans_le (le_of_eq _)
rw [ENNReal.coe_zpow t_ne_zero']
_ = ∫⁻ x in s ∩ f ⁻¹' I, (t : ℝ≥0∞) ^ (n + 1) ∂μ := by
simp only [lintegral_const, MeasurableSet.univ, Measure.restrict_apply, univ_inter]
_ ≤ ∫⁻ x in s ∩ f ⁻¹' I, t * f x ∂μ := by
apply lintegral_mono_ae ((ae_restrict_iff' M).2 (eventually_of_forall fun x hx => ?_))
rw [add_comm, ENNReal.zpow_add t_ne_zero ENNReal.coe_ne_top, zpow_one]
exact mul_le_mul_left' hx.2.1 _
_ = t * ∫⁻ x in s ∩ f ⁻¹' I, f x ∂μ := lintegral_const_mul _ f_meas ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ s : Set α hs : MeasurableSet s t : ℝ≥0 ht : 1 < t t_ne_zero' : t ≠ 0 t_ne_zero : ↑t ≠ 0 ν : Measure α := withDensity μ (limRatioMeas v hρ) f : α → ℝ≥0∞ := limRatioMeas v hρ f_meas : Measurable f A : ↑↑ρ (s ∩ f ⁻¹' {0}) ≤ ↑↑(t • ν) (s ∩ f ⁻¹' {0}) B : ↑↑ρ (s ∩ f ⁻¹' {⊤}) ≤ ↑↑(t • ν) (s ∩ f ⁻¹' {⊤}) n : ℤ I : Set ℝ≥0∞ := Ico (↑t ^ n) (↑t ^ (n + 1)) M : MeasurableSet (s ∩ f ⁻¹' I) ⊢ ↑↑ρ (s ∩ f ⁻¹' I) ≤ ↑t ^ (n + 1) * ↑↑μ (s ∩ f ⁻¹' I) ** rw [← ENNReal.coe_zpow t_ne_zero'] ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ s : Set α hs : MeasurableSet s t : ℝ≥0 ht : 1 < t t_ne_zero' : t ≠ 0 t_ne_zero : ↑t ≠ 0 ν : Measure α := withDensity μ (limRatioMeas v hρ) f : α → ℝ≥0∞ := limRatioMeas v hρ f_meas : Measurable f A : ↑↑ρ (s ∩ f ⁻¹' {0}) ≤ ↑↑(t • ν) (s ∩ f ⁻¹' {0}) B : ↑↑ρ (s ∩ f ⁻¹' {⊤}) ≤ ↑↑(t • ν) (s ∩ f ⁻¹' {⊤}) n : ℤ I : Set ℝ≥0∞ := Ico (↑t ^ n) (↑t ^ (n + 1)) M : MeasurableSet (s ∩ f ⁻¹' I) ⊢ ↑↑ρ (s ∩ f ⁻¹' I) ≤ ↑(t ^ (n + 1)) * ↑↑μ (s ∩ f ⁻¹' I) ** apply v.measure_le_mul_of_subset_limRatioMeas_lt hρ ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ s : Set α hs : MeasurableSet s t : ℝ≥0 ht : 1 < t t_ne_zero' : t ≠ 0 t_ne_zero : ↑t ≠ 0 ν : Measure α := withDensity μ (limRatioMeas v hρ) f : α → ℝ≥0∞ := limRatioMeas v hρ f_meas : Measurable f A : ↑↑ρ (s ∩ f ⁻¹' {0}) ≤ ↑↑(t • ν) (s ∩ f ⁻¹' {0}) B : ↑↑ρ (s ∩ f ⁻¹' {⊤}) ≤ ↑↑(t • ν) (s ∩ f ⁻¹' {⊤}) n : ℤ I : Set ℝ≥0∞ := Ico (↑t ^ n) (↑t ^ (n + 1)) M : MeasurableSet (s ∩ f ⁻¹' I) ⊢ s ∩ f ⁻¹' I ⊆ {x | limRatioMeas v hρ x < ↑(t ^ (n + 1))} ** intro x hx ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ s : Set α hs : MeasurableSet s t : ℝ≥0 ht : 1 < t t_ne_zero' : t ≠ 0 t_ne_zero : ↑t ≠ 0 ν : Measure α := withDensity μ (limRatioMeas v hρ) f : α → ℝ≥0∞ := limRatioMeas v hρ f_meas : Measurable f A : ↑↑ρ (s ∩ f ⁻¹' {0}) ≤ ↑↑(t • ν) (s ∩ f ⁻¹' {0}) B : ↑↑ρ (s ∩ f ⁻¹' {⊤}) ≤ ↑↑(t • ν) (s ∩ f ⁻¹' {⊤}) n : ℤ I : Set ℝ≥0∞ := Ico (↑t ^ n) (↑t ^ (n + 1)) M : MeasurableSet (s ∩ f ⁻¹' I) x : α hx : x ∈ s ∩ f ⁻¹' I ⊢ x ∈ {x | limRatioMeas v hρ x < ↑(t ^ (n + 1))} ** apply hx.2.2.trans_le (le_of_eq _) ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ s : Set α hs : MeasurableSet s t : ℝ≥0 ht : 1 < t t_ne_zero' : t ≠ 0 t_ne_zero : ↑t ≠ 0 ν : Measure α := withDensity μ (limRatioMeas v hρ) f : α → ℝ≥0∞ := limRatioMeas v hρ f_meas : Measurable f A : ↑↑ρ (s ∩ f ⁻¹' {0}) ≤ ↑↑(t • ν) (s ∩ f ⁻¹' {0}) B : ↑↑ρ (s ∩ f ⁻¹' {⊤}) ≤ ↑↑(t • ν) (s ∩ f ⁻¹' {⊤}) n : ℤ I : Set ℝ≥0∞ := Ico (↑t ^ n) (↑t ^ (n + 1)) M : MeasurableSet (s ∩ f ⁻¹' I) x : α hx : x ∈ s ∩ f ⁻¹' I ⊢ ↑t ^ (n + 1) = ↑(t ^ (n + 1)) ** rw [ENNReal.coe_zpow t_ne_zero'] ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ s : Set α hs : MeasurableSet s t : ℝ≥0 ht : 1 < t t_ne_zero' : t ≠ 0 t_ne_zero : ↑t ≠ 0 ν : Measure α := withDensity μ (limRatioMeas v hρ) f : α → ℝ≥0∞ := limRatioMeas v hρ f_meas : Measurable f A : ↑↑ρ (s ∩ f ⁻¹' {0}) ≤ ↑↑(t • ν) (s ∩ f ⁻¹' {0}) B : ↑↑ρ (s ∩ f ⁻¹' {⊤}) ≤ ↑↑(t • ν) (s ∩ f ⁻¹' {⊤}) n : ℤ I : Set ℝ≥0∞ := Ico (↑t ^ n) (↑t ^ (n + 1)) M : MeasurableSet (s ∩ f ⁻¹' I) ⊢ ↑t ^ (n + 1) * ↑↑μ (s ∩ f ⁻¹' I) = ∫⁻ (x : α) in s ∩ f ⁻¹' I, ↑t ^ (n + 1) ∂μ ** simp only [lintegral_const, MeasurableSet.univ, Measure.restrict_apply, univ_inter] ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ s : Set α hs : MeasurableSet s t : ℝ≥0 ht : 1 < t t_ne_zero' : t ≠ 0 t_ne_zero : ↑t ≠ 0 ν : Measure α := withDensity μ (limRatioMeas v hρ) f : α → ℝ≥0∞ := limRatioMeas v hρ f_meas : Measurable f A : ↑↑ρ (s ∩ f ⁻¹' {0}) ≤ ↑↑(t • ν) (s ∩ f ⁻¹' {0}) B : ↑↑ρ (s ∩ f ⁻¹' {⊤}) ≤ ↑↑(t • ν) (s ∩ f ⁻¹' {⊤}) n : ℤ I : Set ℝ≥0∞ := Ico (↑t ^ n) (↑t ^ (n + 1)) M : MeasurableSet (s ∩ f ⁻¹' I) ⊢ ∫⁻ (x : α) in s ∩ f ⁻¹' I, ↑t ^ (n + 1) ∂μ ≤ ∫⁻ (x : α) in s ∩ f ⁻¹' I, ↑t * f x ∂μ ** apply lintegral_mono_ae ((ae_restrict_iff' M).2 (eventually_of_forall fun x hx => ?_)) ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ s : Set α hs : MeasurableSet s t : ℝ≥0 ht : 1 < t t_ne_zero' : t ≠ 0 t_ne_zero : ↑t ≠ 0 ν : Measure α := withDensity μ (limRatioMeas v hρ) f : α → ℝ≥0∞ := limRatioMeas v hρ f_meas : Measurable f A : ↑↑ρ (s ∩ f ⁻¹' {0}) ≤ ↑↑(t • ν) (s ∩ f ⁻¹' {0}) B : ↑↑ρ (s ∩ f ⁻¹' {⊤}) ≤ ↑↑(t • ν) (s ∩ f ⁻¹' {⊤}) n : ℤ I : Set ℝ≥0∞ := Ico (↑t ^ n) (↑t ^ (n + 1)) M : MeasurableSet (s ∩ f ⁻¹' I) x : α hx : x ∈ s ∩ f ⁻¹' I ⊢ ↑t ^ (n + 1) ≤ ↑t * f x ** rw [add_comm, ENNReal.zpow_add t_ne_zero ENNReal.coe_ne_top, zpow_one] ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ s : Set α hs : MeasurableSet s t : ℝ≥0 ht : 1 < t t_ne_zero' : t ≠ 0 t_ne_zero : ↑t ≠ 0 ν : Measure α := withDensity μ (limRatioMeas v hρ) f : α → ℝ≥0∞ := limRatioMeas v hρ f_meas : Measurable f A : ↑↑ρ (s ∩ f ⁻¹' {0}) ≤ ↑↑(t • ν) (s ∩ f ⁻¹' {0}) B : ↑↑ρ (s ∩ f ⁻¹' {⊤}) ≤ ↑↑(t • ν) (s ∩ f ⁻¹' {⊤}) n : ℤ I : Set ℝ≥0∞ := Ico (↑t ^ n) (↑t ^ (n + 1)) M : MeasurableSet (s ∩ f ⁻¹' I) x : α hx : x ∈ s ∩ f ⁻¹' I ⊢ ↑t * ↑t ^ n ≤ ↑t * f x ** exact mul_le_mul_left' hx.2.1 _ ** Qed
| |
VitaliFamily.ae_tendsto_rnDeriv_of_absolutelyContinuous ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ ⊢ ∀ᵐ (x : α) ∂μ, Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 (rnDeriv ρ μ x)) ** have A : (μ.withDensity (v.limRatioMeas hρ)).rnDeriv μ =ᵐ[μ] v.limRatioMeas hρ :=
rnDeriv_withDensity μ (v.limRatioMeas_measurable hρ) ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ A : rnDeriv (withDensity μ (limRatioMeas v hρ)) μ =ᶠ[ae μ] limRatioMeas v hρ ⊢ ∀ᵐ (x : α) ∂μ, Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 (rnDeriv ρ μ x)) ** rw [v.withDensity_limRatioMeas_eq hρ] at A ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ A : rnDeriv ρ μ =ᶠ[ae μ] limRatioMeas v hρ ⊢ ∀ᵐ (x : α) ∂μ, Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 (rnDeriv ρ μ x)) ** filter_upwards [v.ae_tendsto_limRatioMeas hρ, A] with _ _ h'x ** case h α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ hρ : ρ ≪ μ A : rnDeriv ρ μ =ᶠ[ae μ] limRatioMeas v hρ a✝¹ : α a✝ : Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v a✝¹) (𝓝 (limRatioMeas v hρ a✝¹)) h'x : rnDeriv ρ μ a✝¹ = limRatioMeas v hρ a✝¹ ⊢ Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v a✝¹) (𝓝 (rnDeriv ρ μ a✝¹)) ** rwa [h'x] ** Qed
| |
VitaliFamily.ae_tendsto_rnDeriv ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ ⊢ ∀ᵐ (x : α) ∂μ, Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 (rnDeriv ρ μ x)) ** let t := μ.withDensity (ρ.rnDeriv μ) ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ t : Measure α := withDensity μ (rnDeriv ρ μ) ⊢ ∀ᵐ (x : α) ∂μ, Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 (rnDeriv ρ μ x)) ** have eq_add : ρ = ρ.singularPart μ + t := haveLebesgueDecomposition_add _ _ ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ t : Measure α := withDensity μ (rnDeriv ρ μ) eq_add : ρ = singularPart ρ μ + t ⊢ ∀ᵐ (x : α) ∂μ, Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 (rnDeriv ρ μ x)) ** have A : ∀ᵐ x ∂μ, Tendsto (fun a => ρ.singularPart μ a / μ a) (v.filterAt x) (𝓝 0) :=
v.ae_eventually_measure_zero_of_singular (mutuallySingular_singularPart ρ μ) ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ t : Measure α := withDensity μ (rnDeriv ρ μ) eq_add : ρ = singularPart ρ μ + t A : ∀ᵐ (x : α) ∂μ, Tendsto (fun a => ↑↑(singularPart ρ μ) a / ↑↑μ a) (filterAt v x) (𝓝 0) ⊢ ∀ᵐ (x : α) ∂μ, Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 (rnDeriv ρ μ x)) ** have B : ∀ᵐ x ∂μ, t.rnDeriv μ x = ρ.rnDeriv μ x :=
rnDeriv_withDensity μ (measurable_rnDeriv ρ μ) ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ t : Measure α := withDensity μ (rnDeriv ρ μ) eq_add : ρ = singularPart ρ μ + t A : ∀ᵐ (x : α) ∂μ, Tendsto (fun a => ↑↑(singularPart ρ μ) a / ↑↑μ a) (filterAt v x) (𝓝 0) B : ∀ᵐ (x : α) ∂μ, rnDeriv t μ x = rnDeriv ρ μ x ⊢ ∀ᵐ (x : α) ∂μ, Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 (rnDeriv ρ μ x)) ** have C : ∀ᵐ x ∂μ, Tendsto (fun a => t a / μ a) (v.filterAt x) (𝓝 (t.rnDeriv μ x)) :=
v.ae_tendsto_rnDeriv_of_absolutelyContinuous (withDensity_absolutelyContinuous _ _) ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ t : Measure α := withDensity μ (rnDeriv ρ μ) eq_add : ρ = singularPart ρ μ + t A : ∀ᵐ (x : α) ∂μ, Tendsto (fun a => ↑↑(singularPart ρ μ) a / ↑↑μ a) (filterAt v x) (𝓝 0) B : ∀ᵐ (x : α) ∂μ, rnDeriv t μ x = rnDeriv ρ μ x C : ∀ᵐ (x : α) ∂μ, Tendsto (fun a => ↑↑t a / ↑↑μ a) (filterAt v x) (𝓝 (rnDeriv t μ x)) ⊢ ∀ᵐ (x : α) ∂μ, Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 (rnDeriv ρ μ x)) ** filter_upwards [A, B, C] with _ Ax Bx Cx ** case h α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ t : Measure α := withDensity μ (rnDeriv ρ μ) eq_add : ρ = singularPart ρ μ + t A : ∀ᵐ (x : α) ∂μ, Tendsto (fun a => ↑↑(singularPart ρ μ) a / ↑↑μ a) (filterAt v x) (𝓝 0) B : ∀ᵐ (x : α) ∂μ, rnDeriv t μ x = rnDeriv ρ μ x C : ∀ᵐ (x : α) ∂μ, Tendsto (fun a => ↑↑t a / ↑↑μ a) (filterAt v x) (𝓝 (rnDeriv t μ x)) a✝ : α Ax : Tendsto (fun a => ↑↑(singularPart ρ μ) a / ↑↑μ a) (filterAt v a✝) (𝓝 0) Bx : rnDeriv t μ a✝ = rnDeriv ρ μ a✝ Cx : Tendsto (fun a => ↑↑t a / ↑↑μ a) (filterAt v a✝) (𝓝 (rnDeriv t μ a✝)) ⊢ Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v a✝) (𝓝 (rnDeriv ρ μ a✝)) ** convert Ax.add Cx using 1 ** case h.e'_3 α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ t : Measure α := withDensity μ (rnDeriv ρ μ) eq_add : ρ = singularPart ρ μ + t A : ∀ᵐ (x : α) ∂μ, Tendsto (fun a => ↑↑(singularPart ρ μ) a / ↑↑μ a) (filterAt v x) (𝓝 0) B : ∀ᵐ (x : α) ∂μ, rnDeriv t μ x = rnDeriv ρ μ x C : ∀ᵐ (x : α) ∂μ, Tendsto (fun a => ↑↑t a / ↑↑μ a) (filterAt v x) (𝓝 (rnDeriv t μ x)) a✝ : α Ax : Tendsto (fun a => ↑↑(singularPart ρ μ) a / ↑↑μ a) (filterAt v a✝) (𝓝 0) Bx : rnDeriv t μ a✝ = rnDeriv ρ μ a✝ Cx : Tendsto (fun a => ↑↑t a / ↑↑μ a) (filterAt v a✝) (𝓝 (rnDeriv t μ a✝)) ⊢ (fun a => ↑↑ρ a / ↑↑μ a) = fun x => ↑↑(singularPart ρ μ) x / ↑↑μ x + ↑↑t x / ↑↑μ x ** ext1 a ** case h.e'_3.h α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ t : Measure α := withDensity μ (rnDeriv ρ μ) eq_add : ρ = singularPart ρ μ + t A : ∀ᵐ (x : α) ∂μ, Tendsto (fun a => ↑↑(singularPart ρ μ) a / ↑↑μ a) (filterAt v x) (𝓝 0) B : ∀ᵐ (x : α) ∂μ, rnDeriv t μ x = rnDeriv ρ μ x C : ∀ᵐ (x : α) ∂μ, Tendsto (fun a => ↑↑t a / ↑↑μ a) (filterAt v x) (𝓝 (rnDeriv t μ x)) a✝ : α Ax : Tendsto (fun a => ↑↑(singularPart ρ μ) a / ↑↑μ a) (filterAt v a✝) (𝓝 0) Bx : rnDeriv t μ a✝ = rnDeriv ρ μ a✝ Cx : Tendsto (fun a => ↑↑t a / ↑↑μ a) (filterAt v a✝) (𝓝 (rnDeriv t μ a✝)) a : Set α ⊢ ↑↑ρ a / ↑↑μ a = ↑↑(singularPart ρ μ) a / ↑↑μ a + ↑↑t a / ↑↑μ a ** conv_lhs => rw [eq_add] ** case h.e'_3.h α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ t : Measure α := withDensity μ (rnDeriv ρ μ) eq_add : ρ = singularPart ρ μ + t A : ∀ᵐ (x : α) ∂μ, Tendsto (fun a => ↑↑(singularPart ρ μ) a / ↑↑μ a) (filterAt v x) (𝓝 0) B : ∀ᵐ (x : α) ∂μ, rnDeriv t μ x = rnDeriv ρ μ x C : ∀ᵐ (x : α) ∂μ, Tendsto (fun a => ↑↑t a / ↑↑μ a) (filterAt v x) (𝓝 (rnDeriv t μ x)) a✝ : α Ax : Tendsto (fun a => ↑↑(singularPart ρ μ) a / ↑↑μ a) (filterAt v a✝) (𝓝 0) Bx : rnDeriv t μ a✝ = rnDeriv ρ μ a✝ Cx : Tendsto (fun a => ↑↑t a / ↑↑μ a) (filterAt v a✝) (𝓝 (rnDeriv t μ a✝)) a : Set α ⊢ ↑↑(singularPart ρ μ + t) a / ↑↑μ a = ↑↑(singularPart ρ μ) a / ↑↑μ a + ↑↑t a / ↑↑μ a ** simp only [Pi.add_apply, coe_add, ENNReal.add_div] ** case h.e'_5 α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ t : Measure α := withDensity μ (rnDeriv ρ μ) eq_add : ρ = singularPart ρ μ + t A : ∀ᵐ (x : α) ∂μ, Tendsto (fun a => ↑↑(singularPart ρ μ) a / ↑↑μ a) (filterAt v x) (𝓝 0) B : ∀ᵐ (x : α) ∂μ, rnDeriv t μ x = rnDeriv ρ μ x C : ∀ᵐ (x : α) ∂μ, Tendsto (fun a => ↑↑t a / ↑↑μ a) (filterAt v x) (𝓝 (rnDeriv t μ x)) a✝ : α Ax : Tendsto (fun a => ↑↑(singularPart ρ μ) a / ↑↑μ a) (filterAt v a✝) (𝓝 0) Bx : rnDeriv t μ a✝ = rnDeriv ρ μ a✝ Cx : Tendsto (fun a => ↑↑t a / ↑↑μ a) (filterAt v a✝) (𝓝 (rnDeriv t μ a✝)) ⊢ 𝓝 (rnDeriv ρ μ a✝) = 𝓝 (0 + rnDeriv t μ a✝) ** simp only [Bx, zero_add] ** Qed
| |
VitaliFamily.ae_tendsto_measure_inter_div ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ s : Set α ⊢ ∀ᵐ (x : α) ∂Measure.restrict μ s, Tendsto (fun a => ↑↑μ (s ∩ a) / ↑↑μ a) (filterAt v x) (𝓝 1) ** let t := toMeasurable μ s ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ s : Set α t : Set α := toMeasurable μ s ⊢ ∀ᵐ (x : α) ∂Measure.restrict μ s, Tendsto (fun a => ↑↑μ (s ∩ a) / ↑↑μ a) (filterAt v x) (𝓝 1) ** have A :
∀ᵐ x ∂μ.restrict s,
Tendsto (fun a => μ (t ∩ a) / μ a) (v.filterAt x) (𝓝 (t.indicator 1 x)) := by
apply ae_mono restrict_le_self
apply ae_tendsto_measure_inter_div_of_measurableSet
exact measurableSet_toMeasurable _ _ ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ s : Set α t : Set α := toMeasurable μ s A : ∀ᵐ (x : α) ∂Measure.restrict μ s, Tendsto (fun a => ↑↑μ (t ∩ a) / ↑↑μ a) (filterAt v x) (𝓝 (indicator t 1 x)) ⊢ ∀ᵐ (x : α) ∂Measure.restrict μ s, Tendsto (fun a => ↑↑μ (s ∩ a) / ↑↑μ a) (filterAt v x) (𝓝 1) ** have B : ∀ᵐ x ∂μ.restrict s, t.indicator 1 x = (1 : ℝ≥0∞) := by
refine' ae_restrict_of_ae_restrict_of_subset (subset_toMeasurable μ s) _
filter_upwards [ae_restrict_mem (measurableSet_toMeasurable μ s)] with _ hx
simp only [hx, Pi.one_apply, indicator_of_mem] ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ s : Set α t : Set α := toMeasurable μ s A : ∀ᵐ (x : α) ∂Measure.restrict μ s, Tendsto (fun a => ↑↑μ (t ∩ a) / ↑↑μ a) (filterAt v x) (𝓝 (indicator t 1 x)) B : ∀ᵐ (x : α) ∂Measure.restrict μ s, indicator t 1 x = 1 ⊢ ∀ᵐ (x : α) ∂Measure.restrict μ s, Tendsto (fun a => ↑↑μ (s ∩ a) / ↑↑μ a) (filterAt v x) (𝓝 1) ** filter_upwards [A, B] with x hx h'x ** case h α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ s : Set α t : Set α := toMeasurable μ s A : ∀ᵐ (x : α) ∂Measure.restrict μ s, Tendsto (fun a => ↑↑μ (t ∩ a) / ↑↑μ a) (filterAt v x) (𝓝 (indicator t 1 x)) B : ∀ᵐ (x : α) ∂Measure.restrict μ s, indicator t 1 x = 1 x : α hx : Tendsto (fun a => ↑↑μ (t ∩ a) / ↑↑μ a) (filterAt v x) (𝓝 (indicator t 1 x)) h'x : indicator t 1 x = 1 ⊢ Tendsto (fun a => ↑↑μ (s ∩ a) / ↑↑μ a) (filterAt v x) (𝓝 1) ** rw [h'x] at hx ** case h α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ s : Set α t : Set α := toMeasurable μ s A : ∀ᵐ (x : α) ∂Measure.restrict μ s, Tendsto (fun a => ↑↑μ (t ∩ a) / ↑↑μ a) (filterAt v x) (𝓝 (indicator t 1 x)) B : ∀ᵐ (x : α) ∂Measure.restrict μ s, indicator t 1 x = 1 x : α hx : Tendsto (fun a => ↑↑μ (t ∩ a) / ↑↑μ a) (filterAt v x) (𝓝 1) h'x : indicator t 1 x = 1 ⊢ Tendsto (fun a => ↑↑μ (s ∩ a) / ↑↑μ a) (filterAt v x) (𝓝 1) ** apply hx.congr' _ ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ s : Set α t : Set α := toMeasurable μ s A : ∀ᵐ (x : α) ∂Measure.restrict μ s, Tendsto (fun a => ↑↑μ (t ∩ a) / ↑↑μ a) (filterAt v x) (𝓝 (indicator t 1 x)) B : ∀ᵐ (x : α) ∂Measure.restrict μ s, indicator t 1 x = 1 x : α hx : Tendsto (fun a => ↑↑μ (t ∩ a) / ↑↑μ a) (filterAt v x) (𝓝 1) h'x : indicator t 1 x = 1 ⊢ (fun a => ↑↑μ (t ∩ a) / ↑↑μ a) =ᶠ[filterAt v x] fun a => ↑↑μ (s ∩ a) / ↑↑μ a ** filter_upwards [v.eventually_filterAt_measurableSet x] with _ ha ** case h α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ s : Set α t : Set α := toMeasurable μ s A : ∀ᵐ (x : α) ∂Measure.restrict μ s, Tendsto (fun a => ↑↑μ (t ∩ a) / ↑↑μ a) (filterAt v x) (𝓝 (indicator t 1 x)) B : ∀ᵐ (x : α) ∂Measure.restrict μ s, indicator t 1 x = 1 x : α hx : Tendsto (fun a => ↑↑μ (t ∩ a) / ↑↑μ a) (filterAt v x) (𝓝 1) h'x : indicator t 1 x = 1 a✝ : Set α ha : MeasurableSet a✝ ⊢ ↑↑μ (t ∩ a✝) / ↑↑μ a✝ = ↑↑μ (s ∩ a✝) / ↑↑μ a✝ ** congr 1 ** case h.e_a α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ s : Set α t : Set α := toMeasurable μ s A : ∀ᵐ (x : α) ∂Measure.restrict μ s, Tendsto (fun a => ↑↑μ (t ∩ a) / ↑↑μ a) (filterAt v x) (𝓝 (indicator t 1 x)) B : ∀ᵐ (x : α) ∂Measure.restrict μ s, indicator t 1 x = 1 x : α hx : Tendsto (fun a => ↑↑μ (t ∩ a) / ↑↑μ a) (filterAt v x) (𝓝 1) h'x : indicator t 1 x = 1 a✝ : Set α ha : MeasurableSet a✝ ⊢ ↑↑μ (t ∩ a✝) = ↑↑μ (s ∩ a✝) ** exact measure_toMeasurable_inter_of_sigmaFinite ha _ ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ s : Set α t : Set α := toMeasurable μ s ⊢ ∀ᵐ (x : α) ∂Measure.restrict μ s, Tendsto (fun a => ↑↑μ (t ∩ a) / ↑↑μ a) (filterAt v x) (𝓝 (indicator t 1 x)) ** apply ae_mono restrict_le_self ** case a α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ s : Set α t : Set α := toMeasurable μ s ⊢ {x | (fun x => Tendsto (fun a => ↑↑μ (t ∩ a) / ↑↑μ a) (filterAt v x) (𝓝 (indicator t 1 x))) x} ∈ ae μ ** apply ae_tendsto_measure_inter_div_of_measurableSet ** case a.hs α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ s : Set α t : Set α := toMeasurable μ s ⊢ MeasurableSet t ** exact measurableSet_toMeasurable _ _ ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ s : Set α t : Set α := toMeasurable μ s A : ∀ᵐ (x : α) ∂Measure.restrict μ s, Tendsto (fun a => ↑↑μ (t ∩ a) / ↑↑μ a) (filterAt v x) (𝓝 (indicator t 1 x)) ⊢ ∀ᵐ (x : α) ∂Measure.restrict μ s, indicator t 1 x = 1 ** refine' ae_restrict_of_ae_restrict_of_subset (subset_toMeasurable μ s) _ ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ s : Set α t : Set α := toMeasurable μ s A : ∀ᵐ (x : α) ∂Measure.restrict μ s, Tendsto (fun a => ↑↑μ (t ∩ a) / ↑↑μ a) (filterAt v x) (𝓝 (indicator t 1 x)) ⊢ ∀ᵐ (x : α) ∂Measure.restrict μ (toMeasurable μ s), indicator t 1 x = 1 ** filter_upwards [ae_restrict_mem (measurableSet_toMeasurable μ s)] with _ hx ** case h α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ s : Set α t : Set α := toMeasurable μ s A : ∀ᵐ (x : α) ∂Measure.restrict μ s, Tendsto (fun a => ↑↑μ (t ∩ a) / ↑↑μ a) (filterAt v x) (𝓝 (indicator t 1 x)) a✝ : α hx : a✝ ∈ toMeasurable μ s ⊢ indicator t 1 a✝ = 1 ** simp only [hx, Pi.one_apply, indicator_of_mem] ** Qed
| |
VitaliFamily.ae_tendsto_lintegral_div' ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ f : α → ℝ≥0∞ hf : Measurable f h'f : ∫⁻ (y : α), f y ∂μ ≠ ⊤ ⊢ ∀ᵐ (x : α) ∂μ, Tendsto (fun a => (∫⁻ (y : α) in a, f y ∂μ) / ↑↑μ a) (filterAt v x) (𝓝 (f x)) ** let ρ := μ.withDensity f ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ✝ : Measure α inst✝ : IsLocallyFiniteMeasure ρ✝ f : α → ℝ≥0∞ hf : Measurable f h'f : ∫⁻ (y : α), f y ∂μ ≠ ⊤ ρ : Measure α := withDensity μ f ⊢ ∀ᵐ (x : α) ∂μ, Tendsto (fun a => (∫⁻ (y : α) in a, f y ∂μ) / ↑↑μ a) (filterAt v x) (𝓝 (f x)) ** have : IsFiniteMeasure ρ := isFiniteMeasure_withDensity h'f ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ✝ : Measure α inst✝ : IsLocallyFiniteMeasure ρ✝ f : α → ℝ≥0∞ hf : Measurable f h'f : ∫⁻ (y : α), f y ∂μ ≠ ⊤ ρ : Measure α := withDensity μ f this : IsFiniteMeasure ρ ⊢ ∀ᵐ (x : α) ∂μ, Tendsto (fun a => (∫⁻ (y : α) in a, f y ∂μ) / ↑↑μ a) (filterAt v x) (𝓝 (f x)) ** filter_upwards [ae_tendsto_rnDeriv v ρ, rnDeriv_withDensity μ hf] with x hx h'x ** case h α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ✝ : Measure α inst✝ : IsLocallyFiniteMeasure ρ✝ f : α → ℝ≥0∞ hf : Measurable f h'f : ∫⁻ (y : α), f y ∂μ ≠ ⊤ ρ : Measure α := withDensity μ f this : IsFiniteMeasure ρ x : α hx : Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 (rnDeriv ρ μ x)) h'x : rnDeriv (withDensity μ f) μ x = f x ⊢ Tendsto (fun a => (∫⁻ (y : α) in a, f y ∂μ) / ↑↑μ a) (filterAt v x) (𝓝 (f x)) ** rw [← h'x] ** case h α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ✝ : Measure α inst✝ : IsLocallyFiniteMeasure ρ✝ f : α → ℝ≥0∞ hf : Measurable f h'f : ∫⁻ (y : α), f y ∂μ ≠ ⊤ ρ : Measure α := withDensity μ f this : IsFiniteMeasure ρ x : α hx : Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 (rnDeriv ρ μ x)) h'x : rnDeriv (withDensity μ f) μ x = f x ⊢ Tendsto (fun a => (∫⁻ (y : α) in a, f y ∂μ) / ↑↑μ a) (filterAt v x) (𝓝 (rnDeriv (withDensity μ f) μ x)) ** apply hx.congr' _ ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ✝ : Measure α inst✝ : IsLocallyFiniteMeasure ρ✝ f : α → ℝ≥0∞ hf : Measurable f h'f : ∫⁻ (y : α), f y ∂μ ≠ ⊤ ρ : Measure α := withDensity μ f this : IsFiniteMeasure ρ x : α hx : Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 (rnDeriv ρ μ x)) h'x : rnDeriv (withDensity μ f) μ x = f x ⊢ (fun a => ↑↑ρ a / ↑↑μ a) =ᶠ[filterAt v x] fun a => (∫⁻ (y : α) in a, f y ∂μ) / ↑↑μ a ** filter_upwards [v.eventually_filterAt_measurableSet x] with a ha ** case h α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ✝ : Measure α inst✝ : IsLocallyFiniteMeasure ρ✝ f : α → ℝ≥0∞ hf : Measurable f h'f : ∫⁻ (y : α), f y ∂μ ≠ ⊤ ρ : Measure α := withDensity μ f this : IsFiniteMeasure ρ x : α hx : Tendsto (fun a => ↑↑ρ a / ↑↑μ a) (filterAt v x) (𝓝 (rnDeriv ρ μ x)) h'x : rnDeriv (withDensity μ f) μ x = f x a : Set α ha : MeasurableSet a ⊢ ↑↑ρ a / ↑↑μ a = (∫⁻ (y : α) in a, f y ∂μ) / ↑↑μ a ** rw [← withDensity_apply f ha] ** Qed
| |
VitaliFamily.ae_tendsto_lintegral_div ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ f : α → ℝ≥0∞ hf : AEMeasurable f h'f : ∫⁻ (y : α), f y ∂μ ≠ ⊤ ⊢ ∀ᵐ (x : α) ∂μ, Tendsto (fun a => (∫⁻ (y : α) in a, f y ∂μ) / ↑↑μ a) (filterAt v x) (𝓝 (f x)) ** have A : (∫⁻ y, hf.mk f y ∂μ) ≠ ∞ := by
convert h'f using 1
apply lintegral_congr_ae
exact hf.ae_eq_mk.symm ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ f : α → ℝ≥0∞ hf : AEMeasurable f h'f : ∫⁻ (y : α), f y ∂μ ≠ ⊤ A : ∫⁻ (y : α), AEMeasurable.mk f hf y ∂μ ≠ ⊤ ⊢ ∀ᵐ (x : α) ∂μ, Tendsto (fun a => (∫⁻ (y : α) in a, f y ∂μ) / ↑↑μ a) (filterAt v x) (𝓝 (f x)) ** filter_upwards [v.ae_tendsto_lintegral_div' hf.measurable_mk A, hf.ae_eq_mk] with x hx h'x ** case h α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ f : α → ℝ≥0∞ hf : AEMeasurable f h'f : ∫⁻ (y : α), f y ∂μ ≠ ⊤ A : ∫⁻ (y : α), AEMeasurable.mk f hf y ∂μ ≠ ⊤ x : α hx : Tendsto (fun a => (∫⁻ (y : α) in a, AEMeasurable.mk f hf y ∂μ) / ↑↑μ a) (filterAt v x) (𝓝 (AEMeasurable.mk f hf x)) h'x : f x = AEMeasurable.mk f hf x ⊢ Tendsto (fun a => (∫⁻ (y : α) in a, f y ∂μ) / ↑↑μ a) (filterAt v x) (𝓝 (f x)) ** rw [h'x] ** case h α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ f : α → ℝ≥0∞ hf : AEMeasurable f h'f : ∫⁻ (y : α), f y ∂μ ≠ ⊤ A : ∫⁻ (y : α), AEMeasurable.mk f hf y ∂μ ≠ ⊤ x : α hx : Tendsto (fun a => (∫⁻ (y : α) in a, AEMeasurable.mk f hf y ∂μ) / ↑↑μ a) (filterAt v x) (𝓝 (AEMeasurable.mk f hf x)) h'x : f x = AEMeasurable.mk f hf x ⊢ Tendsto (fun a => (∫⁻ (y : α) in a, f y ∂μ) / ↑↑μ a) (filterAt v x) (𝓝 (AEMeasurable.mk f hf x)) ** convert hx using 1 ** case h.e'_3 α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ f : α → ℝ≥0∞ hf : AEMeasurable f h'f : ∫⁻ (y : α), f y ∂μ ≠ ⊤ A : ∫⁻ (y : α), AEMeasurable.mk f hf y ∂μ ≠ ⊤ x : α hx : Tendsto (fun a => (∫⁻ (y : α) in a, AEMeasurable.mk f hf y ∂μ) / ↑↑μ a) (filterAt v x) (𝓝 (AEMeasurable.mk f hf x)) h'x : f x = AEMeasurable.mk f hf x ⊢ (fun a => (∫⁻ (y : α) in a, f y ∂μ) / ↑↑μ a) = fun a => (∫⁻ (y : α) in a, AEMeasurable.mk f hf y ∂μ) / ↑↑μ a ** ext1 a ** case h.e'_3.h α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ f : α → ℝ≥0∞ hf : AEMeasurable f h'f : ∫⁻ (y : α), f y ∂μ ≠ ⊤ A : ∫⁻ (y : α), AEMeasurable.mk f hf y ∂μ ≠ ⊤ x : α hx : Tendsto (fun a => (∫⁻ (y : α) in a, AEMeasurable.mk f hf y ∂μ) / ↑↑μ a) (filterAt v x) (𝓝 (AEMeasurable.mk f hf x)) h'x : f x = AEMeasurable.mk f hf x a : Set α ⊢ (∫⁻ (y : α) in a, f y ∂μ) / ↑↑μ a = (∫⁻ (y : α) in a, AEMeasurable.mk f hf y ∂μ) / ↑↑μ a ** congr 1 ** case h.e'_3.h.e_a α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ f : α → ℝ≥0∞ hf : AEMeasurable f h'f : ∫⁻ (y : α), f y ∂μ ≠ ⊤ A : ∫⁻ (y : α), AEMeasurable.mk f hf y ∂μ ≠ ⊤ x : α hx : Tendsto (fun a => (∫⁻ (y : α) in a, AEMeasurable.mk f hf y ∂μ) / ↑↑μ a) (filterAt v x) (𝓝 (AEMeasurable.mk f hf x)) h'x : f x = AEMeasurable.mk f hf x a : Set α ⊢ ∫⁻ (y : α) in a, f y ∂μ = ∫⁻ (y : α) in a, AEMeasurable.mk f hf y ∂μ ** apply lintegral_congr_ae ** case h.e'_3.h.e_a.h α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ f : α → ℝ≥0∞ hf : AEMeasurable f h'f : ∫⁻ (y : α), f y ∂μ ≠ ⊤ A : ∫⁻ (y : α), AEMeasurable.mk f hf y ∂μ ≠ ⊤ x : α hx : Tendsto (fun a => (∫⁻ (y : α) in a, AEMeasurable.mk f hf y ∂μ) / ↑↑μ a) (filterAt v x) (𝓝 (AEMeasurable.mk f hf x)) h'x : f x = AEMeasurable.mk f hf x a : Set α ⊢ (fun a => f a) =ᶠ[ae (Measure.restrict μ a)] fun a => AEMeasurable.mk f hf a ** exact ae_restrict_of_ae hf.ae_eq_mk ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ f : α → ℝ≥0∞ hf : AEMeasurable f h'f : ∫⁻ (y : α), f y ∂μ ≠ ⊤ ⊢ ∫⁻ (y : α), AEMeasurable.mk f hf y ∂μ ≠ ⊤ ** convert h'f using 1 ** case h.e'_2 α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ f : α → ℝ≥0∞ hf : AEMeasurable f h'f : ∫⁻ (y : α), f y ∂μ ≠ ⊤ ⊢ ∫⁻ (y : α), AEMeasurable.mk f hf y ∂μ = ∫⁻ (y : α), f y ∂μ ** apply lintegral_congr_ae ** case h.e'_2.h α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ f : α → ℝ≥0∞ hf : AEMeasurable f h'f : ∫⁻ (y : α), f y ∂μ ≠ ⊤ ⊢ (fun a => AEMeasurable.mk f hf a) =ᶠ[ae μ] fun a => f a ** exact hf.ae_eq_mk.symm ** Qed
| |
VitaliFamily.ae_tendsto_lintegral_nnnorm_sub_div_of_integrable ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ f : α → E hf : Integrable f ⊢ ∀ᵐ (x : α) ∂μ, Tendsto (fun a => (∫⁻ (y : α) in a, ↑‖f y - f x‖₊ ∂μ) / ↑↑μ a) (filterAt v x) (𝓝 0) ** have I : Integrable (hf.1.mk f) μ := hf.congr hf.1.ae_eq_mk ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ f : α → E hf : Integrable f I : Integrable (AEStronglyMeasurable.mk f (_ : AEStronglyMeasurable f μ)) ⊢ ∀ᵐ (x : α) ∂μ, Tendsto (fun a => (∫⁻ (y : α) in a, ↑‖f y - f x‖₊ ∂μ) / ↑↑μ a) (filterAt v x) (𝓝 0) ** filter_upwards [v.ae_tendsto_lintegral_nnnorm_sub_div'_of_integrable I hf.1.stronglyMeasurable_mk,
hf.1.ae_eq_mk] with x hx h'x ** case h α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ f : α → E hf : Integrable f I : Integrable (AEStronglyMeasurable.mk f (_ : AEStronglyMeasurable f μ)) x : α hx : Tendsto (fun a => (∫⁻ (y : α) in a, ↑‖AEStronglyMeasurable.mk f (_ : AEStronglyMeasurable f μ) y - AEStronglyMeasurable.mk f (_ : AEStronglyMeasurable f μ) x‖₊ ∂μ) / ↑↑μ a) (filterAt v x) (𝓝 0) h'x : f x = AEStronglyMeasurable.mk f (_ : AEStronglyMeasurable f μ) x ⊢ Tendsto (fun a => (∫⁻ (y : α) in a, ↑‖f y - f x‖₊ ∂μ) / ↑↑μ a) (filterAt v x) (𝓝 0) ** apply hx.congr _ ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ f : α → E hf : Integrable f I : Integrable (AEStronglyMeasurable.mk f (_ : AEStronglyMeasurable f μ)) x : α hx : Tendsto (fun a => (∫⁻ (y : α) in a, ↑‖AEStronglyMeasurable.mk f (_ : AEStronglyMeasurable f μ) y - AEStronglyMeasurable.mk f (_ : AEStronglyMeasurable f μ) x‖₊ ∂μ) / ↑↑μ a) (filterAt v x) (𝓝 0) h'x : f x = AEStronglyMeasurable.mk f (_ : AEStronglyMeasurable f μ) x ⊢ ∀ (x_1 : Set α), (∫⁻ (y : α) in x_1, ↑‖AEStronglyMeasurable.mk f (_ : AEStronglyMeasurable f μ) y - AEStronglyMeasurable.mk f (_ : AEStronglyMeasurable f μ) x‖₊ ∂μ) / ↑↑μ x_1 = (∫⁻ (y : α) in x_1, ↑‖f y - f x‖₊ ∂μ) / ↑↑μ x_1 ** intro a ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ f : α → E hf : Integrable f I : Integrable (AEStronglyMeasurable.mk f (_ : AEStronglyMeasurable f μ)) x : α hx : Tendsto (fun a => (∫⁻ (y : α) in a, ↑‖AEStronglyMeasurable.mk f (_ : AEStronglyMeasurable f μ) y - AEStronglyMeasurable.mk f (_ : AEStronglyMeasurable f μ) x‖₊ ∂μ) / ↑↑μ a) (filterAt v x) (𝓝 0) h'x : f x = AEStronglyMeasurable.mk f (_ : AEStronglyMeasurable f μ) x a : Set α ⊢ (∫⁻ (y : α) in a, ↑‖AEStronglyMeasurable.mk f (_ : AEStronglyMeasurable f μ) y - AEStronglyMeasurable.mk f (_ : AEStronglyMeasurable f μ) x‖₊ ∂μ) / ↑↑μ a = (∫⁻ (y : α) in a, ↑‖f y - f x‖₊ ∂μ) / ↑↑μ a ** congr 1 ** case e_a α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ f : α → E hf : Integrable f I : Integrable (AEStronglyMeasurable.mk f (_ : AEStronglyMeasurable f μ)) x : α hx : Tendsto (fun a => (∫⁻ (y : α) in a, ↑‖AEStronglyMeasurable.mk f (_ : AEStronglyMeasurable f μ) y - AEStronglyMeasurable.mk f (_ : AEStronglyMeasurable f μ) x‖₊ ∂μ) / ↑↑μ a) (filterAt v x) (𝓝 0) h'x : f x = AEStronglyMeasurable.mk f (_ : AEStronglyMeasurable f μ) x a : Set α ⊢ ∫⁻ (y : α) in a, ↑‖AEStronglyMeasurable.mk f (_ : AEStronglyMeasurable f μ) y - AEStronglyMeasurable.mk f (_ : AEStronglyMeasurable f μ) x‖₊ ∂μ = ∫⁻ (y : α) in a, ↑‖f y - f x‖₊ ∂μ ** apply lintegral_congr_ae ** case e_a.h α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ f : α → E hf : Integrable f I : Integrable (AEStronglyMeasurable.mk f (_ : AEStronglyMeasurable f μ)) x : α hx : Tendsto (fun a => (∫⁻ (y : α) in a, ↑‖AEStronglyMeasurable.mk f (_ : AEStronglyMeasurable f μ) y - AEStronglyMeasurable.mk f (_ : AEStronglyMeasurable f μ) x‖₊ ∂μ) / ↑↑μ a) (filterAt v x) (𝓝 0) h'x : f x = AEStronglyMeasurable.mk f (_ : AEStronglyMeasurable f μ) x a : Set α ⊢ (fun a => ↑‖AEStronglyMeasurable.mk f (_ : AEStronglyMeasurable f μ) a - AEStronglyMeasurable.mk f (_ : AEStronglyMeasurable f μ) x‖₊) =ᶠ[ae (Measure.restrict μ a)] fun a => ↑‖f a - f x‖₊ ** apply ae_restrict_of_ae ** case e_a.h.h α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ f : α → E hf : Integrable f I : Integrable (AEStronglyMeasurable.mk f (_ : AEStronglyMeasurable f μ)) x : α hx : Tendsto (fun a => (∫⁻ (y : α) in a, ↑‖AEStronglyMeasurable.mk f (_ : AEStronglyMeasurable f μ) y - AEStronglyMeasurable.mk f (_ : AEStronglyMeasurable f μ) x‖₊ ∂μ) / ↑↑μ a) (filterAt v x) (𝓝 0) h'x : f x = AEStronglyMeasurable.mk f (_ : AEStronglyMeasurable f μ) x a : Set α ⊢ ∀ᵐ (x_1 : α) ∂μ, (fun a => ↑‖AEStronglyMeasurable.mk f (_ : AEStronglyMeasurable f μ) a - AEStronglyMeasurable.mk f (_ : AEStronglyMeasurable f μ) x‖₊) x_1 = (fun a => ↑‖f a - f x‖₊) x_1 ** filter_upwards [hf.1.ae_eq_mk] with y hy ** case h α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ f : α → E hf : Integrable f I : Integrable (AEStronglyMeasurable.mk f (_ : AEStronglyMeasurable f μ)) x : α hx : Tendsto (fun a => (∫⁻ (y : α) in a, ↑‖AEStronglyMeasurable.mk f (_ : AEStronglyMeasurable f μ) y - AEStronglyMeasurable.mk f (_ : AEStronglyMeasurable f μ) x‖₊ ∂μ) / ↑↑μ a) (filterAt v x) (𝓝 0) h'x : f x = AEStronglyMeasurable.mk f (_ : AEStronglyMeasurable f μ) x a : Set α y : α hy : f y = AEStronglyMeasurable.mk f (_ : AEStronglyMeasurable f μ) y ⊢ ↑‖AEStronglyMeasurable.mk f (_ : AEStronglyMeasurable f μ) y - AEStronglyMeasurable.mk f (_ : AEStronglyMeasurable f μ) x‖₊ = ↑‖f y - f x‖₊ ** rw [hy, h'x] ** Qed
| |
VitaliFamily.eventually_filterAt_integrableOn ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ x : α f : α → E hf : LocallyIntegrable f ⊢ ∀ᶠ (a : Set α) in filterAt v x, IntegrableOn f a ** rcases hf x with ⟨w, w_nhds, hw⟩ ** case intro.intro α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ x : α f : α → E hf : LocallyIntegrable f w : Set α w_nhds : w ∈ 𝓝 x hw : IntegrableOn f w ⊢ ∀ᶠ (a : Set α) in filterAt v x, IntegrableOn f a ** filter_upwards [v.eventually_filterAt_subset_of_nhds w_nhds] with a ha ** case h α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ x : α f : α → E hf : LocallyIntegrable f w : Set α w_nhds : w ∈ 𝓝 x hw : IntegrableOn f w a : Set α ha : a ⊆ w ⊢ IntegrableOn f a ** exact hw.mono_set ha ** Qed
| |
VitaliFamily.ae_tendsto_average_norm_sub ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ f : α → E hf : LocallyIntegrable f ⊢ ∀ᵐ (x : α) ∂μ, Tendsto (fun a => ⨍ (y : α) in a, ‖f y - f x‖ ∂μ) (filterAt v x) (𝓝 0) ** filter_upwards [v.ae_tendsto_lintegral_nnnorm_sub_div hf] with x hx ** case h α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ f : α → E hf : LocallyIntegrable f x : α hx : Tendsto (fun a => (∫⁻ (y : α) in a, ↑‖f y - f x‖₊ ∂μ) / ↑↑μ a) (filterAt v x) (𝓝 0) ⊢ Tendsto (fun a => ⨍ (y : α) in a, ‖f y - f x‖ ∂μ) (filterAt v x) (𝓝 0) ** have := (ENNReal.tendsto_toReal ENNReal.zero_ne_top).comp hx ** case h α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ f : α → E hf : LocallyIntegrable f x : α hx : Tendsto (fun a => (∫⁻ (y : α) in a, ↑‖f y - f x‖₊ ∂μ) / ↑↑μ a) (filterAt v x) (𝓝 0) this : Tendsto (ENNReal.toReal ∘ fun a => (∫⁻ (y : α) in a, ↑‖f y - f x‖₊ ∂μ) / ↑↑μ a) (filterAt v x) (𝓝 (ENNReal.toReal 0)) ⊢ Tendsto (fun a => ⨍ (y : α) in a, ‖f y - f x‖ ∂μ) (filterAt v x) (𝓝 0) ** simp only [ENNReal.zero_toReal] at this ** case h α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ f : α → E hf : LocallyIntegrable f x : α hx : Tendsto (fun a => (∫⁻ (y : α) in a, ↑‖f y - f x‖₊ ∂μ) / ↑↑μ a) (filterAt v x) (𝓝 0) this : Tendsto (ENNReal.toReal ∘ fun a => (∫⁻ (y : α) in a, ↑‖f y - f x‖₊ ∂μ) / ↑↑μ a) (filterAt v x) (𝓝 0) ⊢ Tendsto (fun a => ⨍ (y : α) in a, ‖f y - f x‖ ∂μ) (filterAt v x) (𝓝 0) ** apply Tendsto.congr' _ this ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ f : α → E hf : LocallyIntegrable f x : α hx : Tendsto (fun a => (∫⁻ (y : α) in a, ↑‖f y - f x‖₊ ∂μ) / ↑↑μ a) (filterAt v x) (𝓝 0) this : Tendsto (ENNReal.toReal ∘ fun a => (∫⁻ (y : α) in a, ↑‖f y - f x‖₊ ∂μ) / ↑↑μ a) (filterAt v x) (𝓝 0) ⊢ (ENNReal.toReal ∘ fun a => (∫⁻ (y : α) in a, ↑‖f y - f x‖₊ ∂μ) / ↑↑μ a) =ᶠ[filterAt v x] fun a => ⨍ (y : α) in a, ‖f y - f x‖ ∂μ ** filter_upwards [v.eventually_measure_lt_top x, v.eventually_filterAt_integrableOn x hf]
with a h'a h''a ** case h α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ f : α → E hf : LocallyIntegrable f x : α hx : Tendsto (fun a => (∫⁻ (y : α) in a, ↑‖f y - f x‖₊ ∂μ) / ↑↑μ a) (filterAt v x) (𝓝 0) this : Tendsto (ENNReal.toReal ∘ fun a => (∫⁻ (y : α) in a, ↑‖f y - f x‖₊ ∂μ) / ↑↑μ a) (filterAt v x) (𝓝 0) a : Set α h'a : ↑↑μ a < ⊤ h''a : IntegrableOn f a ⊢ (ENNReal.toReal ∘ fun a => (∫⁻ (y : α) in a, ↑‖f y - f x‖₊ ∂μ) / ↑↑μ a) a = ⨍ (y : α) in a, ‖f y - f x‖ ∂μ ** simp only [Function.comp_apply, ENNReal.toReal_div, setAverage_eq, div_eq_inv_mul] ** case h α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ f : α → E hf : LocallyIntegrable f x : α hx : Tendsto (fun a => (∫⁻ (y : α) in a, ↑‖f y - f x‖₊ ∂μ) / ↑↑μ a) (filterAt v x) (𝓝 0) this : Tendsto (ENNReal.toReal ∘ fun a => (∫⁻ (y : α) in a, ↑‖f y - f x‖₊ ∂μ) / ↑↑μ a) (filterAt v x) (𝓝 0) a : Set α h'a : ↑↑μ a < ⊤ h''a : IntegrableOn f a ⊢ (ENNReal.toReal (↑↑μ a))⁻¹ * ENNReal.toReal (∫⁻ (y : α) in a, ↑‖f y - f x‖₊ ∂μ) = (ENNReal.toReal (↑↑μ a))⁻¹ • ∫ (y : α) in a, ‖f y - f x‖ ∂μ ** have A : IntegrableOn (fun y => (‖f y - f x‖₊ : ℝ)) a μ := by
simp_rw [coe_nnnorm]
exact (h''a.sub (integrableOn_const.2 (Or.inr h'a))).norm ** case h α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ f : α → E hf : LocallyIntegrable f x : α hx : Tendsto (fun a => (∫⁻ (y : α) in a, ↑‖f y - f x‖₊ ∂μ) / ↑↑μ a) (filterAt v x) (𝓝 0) this : Tendsto (ENNReal.toReal ∘ fun a => (∫⁻ (y : α) in a, ↑‖f y - f x‖₊ ∂μ) / ↑↑μ a) (filterAt v x) (𝓝 0) a : Set α h'a : ↑↑μ a < ⊤ h''a : IntegrableOn f a A : IntegrableOn (fun y => ↑‖f y - f x‖₊) a ⊢ (ENNReal.toReal (↑↑μ a))⁻¹ * ENNReal.toReal (∫⁻ (y : α) in a, ↑‖f y - f x‖₊ ∂μ) = (ENNReal.toReal (↑↑μ a))⁻¹ • ∫ (y : α) in a, ‖f y - f x‖ ∂μ ** rw [lintegral_coe_eq_integral _ A, ENNReal.toReal_ofReal] ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ f : α → E hf : LocallyIntegrable f x : α hx : Tendsto (fun a => (∫⁻ (y : α) in a, ↑‖f y - f x‖₊ ∂μ) / ↑↑μ a) (filterAt v x) (𝓝 0) this : Tendsto (ENNReal.toReal ∘ fun a => (∫⁻ (y : α) in a, ↑‖f y - f x‖₊ ∂μ) / ↑↑μ a) (filterAt v x) (𝓝 0) a : Set α h'a : ↑↑μ a < ⊤ h''a : IntegrableOn f a ⊢ IntegrableOn (fun y => ↑‖f y - f x‖₊) a ** simp_rw [coe_nnnorm] ** α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ f : α → E hf : LocallyIntegrable f x : α hx : Tendsto (fun a => (∫⁻ (y : α) in a, ↑‖f y - f x‖₊ ∂μ) / ↑↑μ a) (filterAt v x) (𝓝 0) this : Tendsto (ENNReal.toReal ∘ fun a => (∫⁻ (y : α) in a, ↑‖f y - f x‖₊ ∂μ) / ↑↑μ a) (filterAt v x) (𝓝 0) a : Set α h'a : ↑↑μ a < ⊤ h''a : IntegrableOn f a ⊢ IntegrableOn (fun y => ‖f y - f x‖) a ** exact (h''a.sub (integrableOn_const.2 (Or.inr h'a))).norm ** case h α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ f : α → E hf : LocallyIntegrable f x : α hx : Tendsto (fun a => (∫⁻ (y : α) in a, ↑‖f y - f x‖₊ ∂μ) / ↑↑μ a) (filterAt v x) (𝓝 0) this : Tendsto (ENNReal.toReal ∘ fun a => (∫⁻ (y : α) in a, ↑‖f y - f x‖₊ ∂μ) / ↑↑μ a) (filterAt v x) (𝓝 0) a : Set α h'a : ↑↑μ a < ⊤ h''a : IntegrableOn f a A : IntegrableOn (fun y => ↑‖f y - f x‖₊) a ⊢ (ENNReal.toReal (↑↑μ a))⁻¹ * ∫ (a : α) in a, ↑‖f a - f x‖₊ ∂μ = (ENNReal.toReal (↑↑μ a))⁻¹ • ∫ (y : α) in a, ‖f y - f x‖ ∂μ ** simp_rw [coe_nnnorm] ** case h α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ f : α → E hf : LocallyIntegrable f x : α hx : Tendsto (fun a => (∫⁻ (y : α) in a, ↑‖f y - f x‖₊ ∂μ) / ↑↑μ a) (filterAt v x) (𝓝 0) this : Tendsto (ENNReal.toReal ∘ fun a => (∫⁻ (y : α) in a, ↑‖f y - f x‖₊ ∂μ) / ↑↑μ a) (filterAt v x) (𝓝 0) a : Set α h'a : ↑↑μ a < ⊤ h''a : IntegrableOn f a A : IntegrableOn (fun y => ↑‖f y - f x‖₊) a ⊢ (ENNReal.toReal (↑↑μ a))⁻¹ * ∫ (a : α) in a, ‖f a - f x‖ ∂μ = (ENNReal.toReal (↑↑μ a))⁻¹ • ∫ (y : α) in a, ‖f y - f x‖ ∂μ ** rfl ** case h α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ f : α → E hf : LocallyIntegrable f x : α hx : Tendsto (fun a => (∫⁻ (y : α) in a, ↑‖f y - f x‖₊ ∂μ) / ↑↑μ a) (filterAt v x) (𝓝 0) this : Tendsto (ENNReal.toReal ∘ fun a => (∫⁻ (y : α) in a, ↑‖f y - f x‖₊ ∂μ) / ↑↑μ a) (filterAt v x) (𝓝 0) a : Set α h'a : ↑↑μ a < ⊤ h''a : IntegrableOn f a A : IntegrableOn (fun y => ↑‖f y - f x‖₊) a ⊢ 0 ≤ ∫ (a : α) in a, ↑‖f a - f x‖₊ ∂μ ** apply integral_nonneg ** case h.hf α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ f : α → E hf : LocallyIntegrable f x : α hx : Tendsto (fun a => (∫⁻ (y : α) in a, ↑‖f y - f x‖₊ ∂μ) / ↑↑μ a) (filterAt v x) (𝓝 0) this : Tendsto (ENNReal.toReal ∘ fun a => (∫⁻ (y : α) in a, ↑‖f y - f x‖₊ ∂μ) / ↑↑μ a) (filterAt v x) (𝓝 0) a : Set α h'a : ↑↑μ a < ⊤ h''a : IntegrableOn f a A : IntegrableOn (fun y => ↑‖f y - f x‖₊) a ⊢ 0 ≤ fun a => ↑‖f a - f x‖₊ ** intro x ** case h.hf α : Type u_1 inst✝⁵ : MetricSpace α m0 : MeasurableSpace α μ : Measure α v : VitaliFamily μ E : Type u_2 inst✝⁴ : NormedAddCommGroup E inst✝³ : SecondCountableTopology α inst✝² : BorelSpace α inst✝¹ : IsLocallyFiniteMeasure μ ρ : Measure α inst✝ : IsLocallyFiniteMeasure ρ f : α → E hf : LocallyIntegrable f x✝ : α hx : Tendsto (fun a => (∫⁻ (y : α) in a, ↑‖f y - f x✝‖₊ ∂μ) / ↑↑μ a) (filterAt v x✝) (𝓝 0) this : Tendsto (ENNReal.toReal ∘ fun a => (∫⁻ (y : α) in a, ↑‖f y - f x✝‖₊ ∂μ) / ↑↑μ a) (filterAt v x✝) (𝓝 0) a : Set α h'a : ↑↑μ a < ⊤ h''a : IntegrableOn f a A : IntegrableOn (fun y => ↑‖f y - f x✝‖₊) a x : α ⊢ OfNat.ofNat 0 x ≤ (fun a => ↑‖f a - f x✝‖₊) x ** exact NNReal.coe_nonneg _ ** Qed
| |
Turing.BlankExtends.refl ** Γ : Type u_1 inst✝ : Inhabited Γ l : List Γ ⊢ l = l ++ List.replicate 0 default ** simp ** Qed
| |
Turing.BlankExtends.trans ** Γ : Type u_1 inst✝ : Inhabited Γ l₁ l₂ l₃ : List Γ ⊢ BlankExtends l₁ l₂ → BlankExtends l₂ l₃ → BlankExtends l₁ l₃ ** rintro ⟨i, rfl⟩ ⟨j, rfl⟩ ** case intro.intro Γ : Type u_1 inst✝ : Inhabited Γ l₁ : List Γ i j : ℕ ⊢ BlankExtends l₁ (l₁ ++ List.replicate i default ++ List.replicate j default) ** exact ⟨i + j, by simp [List.replicate_add]⟩ ** Γ : Type u_1 inst✝ : Inhabited Γ l₁ : List Γ i j : ℕ ⊢ l₁ ++ List.replicate i default ++ List.replicate j default = l₁ ++ List.replicate (i + j) default ** simp [List.replicate_add] ** Qed
| |
Turing.BlankExtends.below_of_le ** Γ : Type u_1 inst✝ : Inhabited Γ l l₁ l₂ : List Γ ⊢ BlankExtends l l₁ → BlankExtends l l₂ → List.length l₁ ≤ List.length l₂ → BlankExtends l₁ l₂ ** rintro ⟨i, rfl⟩ ⟨j, rfl⟩ h ** case intro.intro Γ : Type u_1 inst✝ : Inhabited Γ l : List Γ i j : ℕ h : List.length (l ++ List.replicate i default) ≤ List.length (l ++ List.replicate j default) ⊢ BlankExtends (l ++ List.replicate i default) (l ++ List.replicate j default) ** use j - i ** case h Γ : Type u_1 inst✝ : Inhabited Γ l : List Γ i j : ℕ h : List.length (l ++ List.replicate i default) ≤ List.length (l ++ List.replicate j default) ⊢ l ++ List.replicate j default = l ++ List.replicate i default ++ List.replicate (j - i) default ** simp only [List.length_append, add_le_add_iff_left, List.length_replicate] at h ** case h Γ : Type u_1 inst✝ : Inhabited Γ l : List Γ i j : ℕ h : i ≤ j ⊢ l ++ List.replicate j default = l ++ List.replicate i default ++ List.replicate (j - i) default ** simp only [← List.replicate_add, add_tsub_cancel_of_le h, List.append_assoc] ** Qed
| |
Turing.BlankExtends.above_of_le ** Γ : Type u_1 inst✝ : Inhabited Γ l l₁ l₂ : List Γ ⊢ BlankExtends l₁ l → BlankExtends l₂ l → List.length l₁ ≤ List.length l₂ → BlankExtends l₁ l₂ ** rintro ⟨i, rfl⟩ ⟨j, e⟩ h ** case intro.intro Γ : Type u_1 inst✝ : Inhabited Γ l₁ l₂ : List Γ i j : ℕ e : l₁ ++ List.replicate i default = l₂ ++ List.replicate j default h : List.length l₁ ≤ List.length l₂ ⊢ BlankExtends l₁ l₂ ** use i - j ** case h Γ : Type u_1 inst✝ : Inhabited Γ l₁ l₂ : List Γ i j : ℕ e : l₁ ++ List.replicate i default = l₂ ++ List.replicate j default h : List.length l₁ ≤ List.length l₂ ⊢ l₂ = l₁ ++ List.replicate (i - j) default ** refine' List.append_right_cancel (e.symm.trans _) ** case h Γ : Type u_1 inst✝ : Inhabited Γ l₁ l₂ : List Γ i j : ℕ e : l₁ ++ List.replicate i default = l₂ ++ List.replicate j default h : List.length l₁ ≤ List.length l₂ ⊢ l₁ ++ List.replicate i default = l₁ ++ List.replicate (i - j) default ++ List.replicate j default ** rw [List.append_assoc, ← List.replicate_add, tsub_add_cancel_of_le] ** case h Γ : Type u_1 inst✝ : Inhabited Γ l₁ l₂ : List Γ i j : ℕ e : l₁ ++ List.replicate i default = l₂ ++ List.replicate j default h : List.length l₁ ≤ List.length l₂ ⊢ j ≤ i ** apply_fun List.length at e ** case h Γ : Type u_1 inst✝ : Inhabited Γ l₁ l₂ : List Γ i j : ℕ h : List.length l₁ ≤ List.length l₂ e : List.length (l₁ ++ List.replicate i default) = List.length (l₂ ++ List.replicate j default) ⊢ j ≤ i ** simp only [List.length_append, List.length_replicate] at e ** case h Γ : Type u_1 inst✝ : Inhabited Γ l₁ l₂ : List Γ i j : ℕ h : List.length l₁ ≤ List.length l₂ e : List.length l₁ + i = List.length l₂ + j ⊢ j ≤ i ** rwa [← add_le_add_iff_left, e, add_le_add_iff_right] ** Qed
| |
Turing.BlankRel.trans ** Γ : Type u_1 inst✝ : Inhabited Γ l₁ l₂ l₃ : List Γ ⊢ BlankRel l₁ l₂ → BlankRel l₂ l₃ → BlankRel l₁ l₃ ** rintro (h₁ | h₁) (h₂ | h₂) ** case inl.inl Γ : Type u_1 inst✝ : Inhabited Γ l₁ l₂ l₃ : List Γ h₁ : BlankExtends l₁ l₂ h₂ : BlankExtends l₂ l₃ ⊢ BlankRel l₁ l₃ ** exact Or.inl (h₁.trans h₂) ** case inl.inr Γ : Type u_1 inst✝ : Inhabited Γ l₁ l₂ l₃ : List Γ h₁ : BlankExtends l₁ l₂ h₂ : BlankExtends l₃ l₂ ⊢ BlankRel l₁ l₃ ** cases' le_total l₁.length l₃.length with h h ** case inl.inr.inl Γ : Type u_1 inst✝ : Inhabited Γ l₁ l₂ l₃ : List Γ h₁ : BlankExtends l₁ l₂ h₂ : BlankExtends l₃ l₂ h : List.length l₁ ≤ List.length l₃ ⊢ BlankRel l₁ l₃ ** exact Or.inl (h₁.above_of_le h₂ h) ** case inl.inr.inr Γ : Type u_1 inst✝ : Inhabited Γ l₁ l₂ l₃ : List Γ h₁ : BlankExtends l₁ l₂ h₂ : BlankExtends l₃ l₂ h : List.length l₃ ≤ List.length l₁ ⊢ BlankRel l₁ l₃ ** exact Or.inr (h₂.above_of_le h₁ h) ** case inr.inl Γ : Type u_1 inst✝ : Inhabited Γ l₁ l₂ l₃ : List Γ h₁ : BlankExtends l₂ l₁ h₂ : BlankExtends l₂ l₃ ⊢ BlankRel l₁ l₃ ** cases' le_total l₁.length l₃.length with h h ** case inr.inl.inl Γ : Type u_1 inst✝ : Inhabited Γ l₁ l₂ l₃ : List Γ h₁ : BlankExtends l₂ l₁ h₂ : BlankExtends l₂ l₃ h : List.length l₁ ≤ List.length l₃ ⊢ BlankRel l₁ l₃ ** exact Or.inl (h₁.below_of_le h₂ h) ** case inr.inl.inr Γ : Type u_1 inst✝ : Inhabited Γ l₁ l₂ l₃ : List Γ h₁ : BlankExtends l₂ l₁ h₂ : BlankExtends l₂ l₃ h : List.length l₃ ≤ List.length l₁ ⊢ BlankRel l₁ l₃ ** exact Or.inr (h₂.below_of_le h₁ h) ** case inr.inr Γ : Type u_1 inst✝ : Inhabited Γ l₁ l₂ l₃ : List Γ h₁ : BlankExtends l₂ l₁ h₂ : BlankExtends l₃ l₂ ⊢ BlankRel l₁ l₃ ** exact Or.inr (h₂.trans h₁) ** Qed
| |
Turing.ListBlank.cons_head_tail ** Γ : Type u_1 inst✝ : Inhabited Γ ⊢ ∀ (l : ListBlank Γ), cons (head l) (tail l) = l ** apply Quotient.ind' ** case h Γ : Type u_1 inst✝ : Inhabited Γ ⊢ ∀ (a : List Γ), cons (head (Quotient.mk'' a)) (tail (Quotient.mk'' a)) = Quotient.mk'' a ** refine' fun l ↦ Quotient.sound' (Or.inr _) ** case h Γ : Type u_1 inst✝ : Inhabited Γ l : List Γ ⊢ BlankExtends l (head (Quotient.mk'' l) :: List.tail l) ** cases l ** case h.nil Γ : Type u_1 inst✝ : Inhabited Γ ⊢ BlankExtends [] (head (Quotient.mk'' []) :: List.tail []) ** exact ⟨1, rfl⟩ ** case h.cons Γ : Type u_1 inst✝ : Inhabited Γ head✝ : Γ tail✝ : List Γ ⊢ BlankExtends (head✝ :: tail✝) (head (Quotient.mk'' (head✝ :: tail✝)) :: List.tail (head✝ :: tail✝)) ** rfl ** Qed
| |
Turing.ListBlank.nth_zero ** Γ : Type u_1 inst✝ : Inhabited Γ l : ListBlank Γ ⊢ nth l 0 = head l ** conv => lhs; rw [← ListBlank.cons_head_tail l] ** Γ : Type u_1 inst✝ : Inhabited Γ l : ListBlank Γ ⊢ nth (cons (head l) (tail l)) 0 = head l ** exact Quotient.inductionOn' l.tail fun l ↦ rfl ** Qed
| |
Turing.ListBlank.nth_succ ** Γ : Type u_1 inst✝ : Inhabited Γ l : ListBlank Γ n : ℕ ⊢ nth l (n + 1) = nth (tail l) n ** conv => lhs; rw [← ListBlank.cons_head_tail l] ** Γ : Type u_1 inst✝ : Inhabited Γ l : ListBlank Γ n : ℕ ⊢ nth (cons (head l) (tail l)) (n + 1) = nth (tail l) n ** exact Quotient.inductionOn' l.tail fun l ↦ rfl ** Qed
| |
Turing.ListBlank.ext ** Γ : Type u_1 i : Inhabited Γ L₁ L₂ : ListBlank Γ ⊢ (∀ (i_1 : ℕ), nth L₁ i_1 = nth L₂ i_1) → L₁ = L₂ ** refine' ListBlank.induction_on L₁ fun l₁ ↦ ListBlank.induction_on L₂ fun l₂ H ↦ _ ** Γ : Type u_1 i : Inhabited Γ L₁ L₂ : ListBlank Γ l₁ l₂ : List Γ H : ∀ (i_1 : ℕ), nth (mk l₁) i_1 = nth (mk l₂) i_1 ⊢ mk l₁ = mk l₂ ** wlog h : l₁.length ≤ l₂.length ** Γ : Type u_1 i : Inhabited Γ L₁ L₂ : ListBlank Γ l₁ l₂ : List Γ H : ∀ (i_1 : ℕ), nth (mk l₁) i_1 = nth (mk l₂) i_1 h : List.length l₁ ≤ List.length l₂ ⊢ mk l₁ = mk l₂ ** refine' Quotient.sound' (Or.inl ⟨l₂.length - l₁.length, _⟩) ** Γ : Type u_1 i : Inhabited Γ L₁ L₂ : ListBlank Γ l₁ l₂ : List Γ H : ∀ (i_1 : ℕ), nth (mk l₁) i_1 = nth (mk l₂) i_1 h : List.length l₁ ≤ List.length l₂ ⊢ l₂ = l₁ ++ List.replicate (List.length l₂ - List.length l₁) default ** refine' List.ext_get _ fun i h h₂ ↦ Eq.symm _ ** case refine'_2 Γ : Type u_1 i✝ : Inhabited Γ L₁ L₂ : ListBlank Γ l₁ l₂ : List Γ H : ∀ (i : ℕ), nth (mk l₁) i = nth (mk l₂) i h✝ : List.length l₁ ≤ List.length l₂ i : ℕ h : i < List.length l₂ h₂ : i < List.length (l₁ ++ List.replicate (List.length l₂ - List.length l₁) default) ⊢ List.get (l₁ ++ List.replicate (List.length l₂ - List.length l₁) default) { val := i, isLt := h₂ } = List.get l₂ { val := i, isLt := h } ** simp only [ListBlank.nth_mk] at H ** case refine'_2 Γ : Type u_1 i✝ : Inhabited Γ L₁ L₂ : ListBlank Γ l₁ l₂ : List Γ H : ∀ (i : ℕ), List.getI l₁ i = List.getI l₂ i h✝ : List.length l₁ ≤ List.length l₂ i : ℕ h : i < List.length l₂ h₂ : i < List.length (l₁ ++ List.replicate (List.length l₂ - List.length l₁) default) ⊢ List.get (l₁ ++ List.replicate (List.length l₂ - List.length l₁) default) { val := i, isLt := h₂ } = List.get l₂ { val := i, isLt := h } ** cases' lt_or_le i l₁.length with h' h' ** case inr Γ : Type u_1 i : Inhabited Γ L₁ L₂ : ListBlank Γ l₁ l₂ : List Γ H : ∀ (i_1 : ℕ), nth (mk l₁) i_1 = nth (mk l₂) i_1 this : ∀ {Γ : Type u_1} [i : Inhabited Γ] {L₁ L₂ : ListBlank Γ} (l₁ l₂ : List Γ), (∀ (i_1 : ℕ), nth (mk l₁) i_1 = nth (mk l₂) i_1) → List.length l₁ ≤ List.length l₂ → mk l₁ = mk l₂ h : ¬List.length l₁ ≤ List.length l₂ ⊢ mk l₁ = mk l₂ ** cases le_total l₁.length l₂.length <;> [skip; symm] <;> apply this <;> try assumption ** case inr.inr.H Γ : Type u_1 i : Inhabited Γ L₁ L₂ : ListBlank Γ l₁ l₂ : List Γ H : ∀ (i_1 : ℕ), nth (mk l₁) i_1 = nth (mk l₂) i_1 this : ∀ {Γ : Type u_1} [i : Inhabited Γ] {L₁ L₂ : ListBlank Γ} (l₁ l₂ : List Γ), (∀ (i_1 : ℕ), nth (mk l₁) i_1 = nth (mk l₂) i_1) → List.length l₁ ≤ List.length l₂ → mk l₁ = mk l₂ h : ¬List.length l₁ ≤ List.length l₂ h✝ : List.length l₂ ≤ List.length l₁ ⊢ ∀ (i_1 : ℕ), nth (mk l₂) i_1 = nth (mk l₁) i_1 ** intro ** case inr.inr.H Γ : Type u_1 i : Inhabited Γ L₁ L₂ : ListBlank Γ l₁ l₂ : List Γ H : ∀ (i_1 : ℕ), nth (mk l₁) i_1 = nth (mk l₂) i_1 this : ∀ {Γ : Type u_1} [i : Inhabited Γ] {L₁ L₂ : ListBlank Γ} (l₁ l₂ : List Γ), (∀ (i_1 : ℕ), nth (mk l₁) i_1 = nth (mk l₂) i_1) → List.length l₁ ≤ List.length l₂ → mk l₁ = mk l₂ h : ¬List.length l₁ ≤ List.length l₂ h✝ : List.length l₂ ≤ List.length l₁ i✝ : ℕ ⊢ nth (mk l₂) i✝ = nth (mk l₁) i✝ ** rw [H] ** case inr.inr.h Γ : Type u_1 i : Inhabited Γ L₁ L₂ : ListBlank Γ l₁ l₂ : List Γ H : ∀ (i_1 : ℕ), nth (mk l₁) i_1 = nth (mk l₂) i_1 this : ∀ {Γ : Type u_1} [i : Inhabited Γ] {L₁ L₂ : ListBlank Γ} (l₁ l₂ : List Γ), (∀ (i_1 : ℕ), nth (mk l₁) i_1 = nth (mk l₂) i_1) → List.length l₁ ≤ List.length l₂ → mk l₁ = mk l₂ h : ¬List.length l₁ ≤ List.length l₂ h✝ : List.length l₂ ≤ List.length l₁ ⊢ List.length l₂ ≤ List.length l₁ ** assumption ** case refine'_1 Γ : Type u_1 i : Inhabited Γ L₁ L₂ : ListBlank Γ l₁ l₂ : List Γ H : ∀ (i_1 : ℕ), nth (mk l₁) i_1 = nth (mk l₂) i_1 h : List.length l₁ ≤ List.length l₂ ⊢ List.length l₂ = List.length (l₁ ++ List.replicate (List.length l₂ - List.length l₁) default) ** simp only [add_tsub_cancel_of_le h, List.length_append, List.length_replicate] ** case refine'_2.inl Γ : Type u_1 i✝ : Inhabited Γ L₁ L₂ : ListBlank Γ l₁ l₂ : List Γ H : ∀ (i : ℕ), List.getI l₁ i = List.getI l₂ i h✝ : List.length l₁ ≤ List.length l₂ i : ℕ h : i < List.length l₂ h₂ : i < List.length (l₁ ++ List.replicate (List.length l₂ - List.length l₁) default) h' : i < List.length l₁ ⊢ List.get (l₁ ++ List.replicate (List.length l₂ - List.length l₁) default) { val := i, isLt := h₂ } = List.get l₂ { val := i, isLt := h } ** simp only [List.get_append _ h', List.get?_eq_get h, List.get?_eq_get h',
← List.getI_eq_get _ h, ← List.getI_eq_get _ h', H] ** case refine'_2.inr Γ : Type u_1 i✝ : Inhabited Γ L₁ L₂ : ListBlank Γ l₁ l₂ : List Γ H : ∀ (i : ℕ), List.getI l₁ i = List.getI l₂ i h✝ : List.length l₁ ≤ List.length l₂ i : ℕ h : i < List.length l₂ h₂ : i < List.length (l₁ ++ List.replicate (List.length l₂ - List.length l₁) default) h' : List.length l₁ ≤ i ⊢ List.get (l₁ ++ List.replicate (List.length l₂ - List.length l₁) default) { val := i, isLt := h₂ } = List.get l₂ { val := i, isLt := h } ** simp only [List.get_append_right' h', List.get_replicate, List.get?_eq_get h,
List.get?_len_le h', ← List.getI_eq_default _ h', H, List.getI_eq_get _ h] ** Qed
| |
Turing.ListBlank.nth_modifyNth ** Γ : Type u_1 inst✝ : Inhabited Γ f : Γ → Γ n i : ℕ L : ListBlank Γ ⊢ nth (modifyNth f n L) i = if i = n then f (nth L i) else nth L i ** induction' n with n IH generalizing i L ** case zero Γ : Type u_1 inst✝ : Inhabited Γ f : Γ → Γ i✝ : ℕ L✝ : ListBlank Γ i : ℕ L : ListBlank Γ ⊢ nth (modifyNth f Nat.zero L) i = if i = Nat.zero then f (nth L i) else nth L i ** cases i <;> simp only [ListBlank.nth_zero, if_true, ListBlank.head_cons, ListBlank.modifyNth,
ListBlank.nth_succ, if_false, ListBlank.tail_cons, Nat.zero_eq] ** case succ Γ : Type u_1 inst✝ : Inhabited Γ f : Γ → Γ i✝ : ℕ L✝ : ListBlank Γ n : ℕ IH : ∀ (i : ℕ) (L : ListBlank Γ), nth (modifyNth f n L) i = if i = n then f (nth L i) else nth L i i : ℕ L : ListBlank Γ ⊢ nth (modifyNth f (Nat.succ n) L) i = if i = Nat.succ n then f (nth L i) else nth L i ** cases i ** case succ.zero Γ : Type u_1 inst✝ : Inhabited Γ f : Γ → Γ i : ℕ L✝ : ListBlank Γ n : ℕ IH : ∀ (i : ℕ) (L : ListBlank Γ), nth (modifyNth f n L) i = if i = n then f (nth L i) else nth L i L : ListBlank Γ ⊢ nth (modifyNth f (Nat.succ n) L) Nat.zero = if Nat.zero = Nat.succ n then f (nth L Nat.zero) else nth L Nat.zero ** rw [if_neg (Nat.succ_ne_zero _).symm] ** case succ.zero Γ : Type u_1 inst✝ : Inhabited Γ f : Γ → Γ i : ℕ L✝ : ListBlank Γ n : ℕ IH : ∀ (i : ℕ) (L : ListBlank Γ), nth (modifyNth f n L) i = if i = n then f (nth L i) else nth L i L : ListBlank Γ ⊢ nth (modifyNth f (Nat.succ n) L) Nat.zero = nth L Nat.zero ** simp only [ListBlank.nth_zero, ListBlank.head_cons, ListBlank.modifyNth, Nat.zero_eq] ** case succ.succ Γ : Type u_1 inst✝ : Inhabited Γ f : Γ → Γ i : ℕ L✝ : ListBlank Γ n : ℕ IH : ∀ (i : ℕ) (L : ListBlank Γ), nth (modifyNth f n L) i = if i = n then f (nth L i) else nth L i L : ListBlank Γ n✝ : ℕ ⊢ nth (modifyNth f (Nat.succ n) L) (Nat.succ n✝) = if Nat.succ n✝ = Nat.succ n then f (nth L (Nat.succ n✝)) else nth L (Nat.succ n✝) ** simp only [IH, ListBlank.modifyNth, ListBlank.nth_succ, ListBlank.tail_cons, Nat.succ.injEq] ** Qed
| |
Turing.ListBlank.head_map ** Γ : Type u_1 Γ' : Type u_2 inst✝¹ : Inhabited Γ inst✝ : Inhabited Γ' f : PointedMap Γ Γ' l : ListBlank Γ ⊢ head (map f l) = PointedMap.f f (head l) ** conv => lhs; rw [← ListBlank.cons_head_tail l] ** Γ : Type u_1 Γ' : Type u_2 inst✝¹ : Inhabited Γ inst✝ : Inhabited Γ' f : PointedMap Γ Γ' l : ListBlank Γ ⊢ head (map f (cons (head l) (tail l))) = PointedMap.f f (head l) ** exact Quotient.inductionOn' l fun a ↦ rfl ** Qed
| |
Turing.ListBlank.tail_map ** Γ : Type u_1 Γ' : Type u_2 inst✝¹ : Inhabited Γ inst✝ : Inhabited Γ' f : PointedMap Γ Γ' l : ListBlank Γ ⊢ tail (map f l) = map f (tail l) ** conv => lhs; rw [← ListBlank.cons_head_tail l] ** Γ : Type u_1 Γ' : Type u_2 inst✝¹ : Inhabited Γ inst✝ : Inhabited Γ' f : PointedMap Γ Γ' l : ListBlank Γ ⊢ tail (map f (cons (head l) (tail l))) = map f (tail l) ** exact Quotient.inductionOn' l fun a ↦ rfl ** Qed
| |
Turing.ListBlank.map_cons ** Γ : Type u_1 Γ' : Type u_2 inst✝¹ : Inhabited Γ inst✝ : Inhabited Γ' f : PointedMap Γ Γ' l : ListBlank Γ a : Γ ⊢ map f (cons a l) = cons (PointedMap.f f a) (map f l) ** refine' (ListBlank.cons_head_tail _).symm.trans _ ** Γ : Type u_1 Γ' : Type u_2 inst✝¹ : Inhabited Γ inst✝ : Inhabited Γ' f : PointedMap Γ Γ' l : ListBlank Γ a : Γ ⊢ cons (head (map f (cons a l))) (tail (map f (cons a l))) = cons (PointedMap.f f a) (map f l) ** simp only [ListBlank.head_map, ListBlank.head_cons, ListBlank.tail_map, ListBlank.tail_cons] ** Qed
| |
Turing.ListBlank.nth_map ** Γ : Type u_1 Γ' : Type u_2 inst✝¹ : Inhabited Γ inst✝ : Inhabited Γ' f : PointedMap Γ Γ' l : ListBlank Γ n : ℕ ⊢ nth (map f l) n = PointedMap.f f (nth l n) ** refine' l.inductionOn fun l ↦ _ ** Γ : Type u_1 Γ' : Type u_2 inst✝¹ : Inhabited Γ inst✝ : Inhabited Γ' f : PointedMap Γ Γ' l✝ : ListBlank Γ n : ℕ l : List Γ ⊢ nth (map f (Quotient.mk (BlankRel.setoid Γ) l)) n = PointedMap.f f (nth (Quotient.mk (BlankRel.setoid Γ) l) n) ** suffices ((mk l).map f).nth n = f ((mk l).nth n) by exact this ** Γ : Type u_1 Γ' : Type u_2 inst✝¹ : Inhabited Γ inst✝ : Inhabited Γ' f : PointedMap Γ Γ' l✝ : ListBlank Γ n : ℕ l : List Γ ⊢ nth (map f (mk l)) n = PointedMap.f f (nth (mk l) n) ** simp only [List.get?_map, ListBlank.map_mk, ListBlank.nth_mk, List.getI_eq_iget_get?] ** Γ : Type u_1 Γ' : Type u_2 inst✝¹ : Inhabited Γ inst✝ : Inhabited Γ' f : PointedMap Γ Γ' l✝ : ListBlank Γ n : ℕ l : List Γ ⊢ Option.iget (Option.map f.f (List.get? l n)) = PointedMap.f f (Option.iget (List.get? l n)) ** cases l.get? n ** Γ : Type u_1 Γ' : Type u_2 inst✝¹ : Inhabited Γ inst✝ : Inhabited Γ' f : PointedMap Γ Γ' l✝ : ListBlank Γ n : ℕ l : List Γ this : nth (map f (mk l)) n = PointedMap.f f (nth (mk l) n) ⊢ nth (map f (Quotient.mk (BlankRel.setoid Γ) l)) n = PointedMap.f f (nth (Quotient.mk (BlankRel.setoid Γ) l) n) ** exact this ** case none Γ : Type u_1 Γ' : Type u_2 inst✝¹ : Inhabited Γ inst✝ : Inhabited Γ' f : PointedMap Γ Γ' l✝ : ListBlank Γ n : ℕ l : List Γ ⊢ Option.iget (Option.map f.f none) = PointedMap.f f (Option.iget none) ** exact f.2.symm ** case some Γ : Type u_1 Γ' : Type u_2 inst✝¹ : Inhabited Γ inst✝ : Inhabited Γ' f : PointedMap Γ Γ' l✝ : ListBlank Γ n : ℕ l : List Γ val✝ : Γ ⊢ Option.iget (Option.map f.f (some val✝)) = PointedMap.f f (Option.iget (some val✝)) ** rfl ** Qed
| |
Turing.proj_map_nth ** ι : Type u_1 Γ : ι → Type u_2 inst✝ : (i : ι) → Inhabited (Γ i) i : ι L : ListBlank ((i : ι) → Γ i) n : ℕ ⊢ ListBlank.nth (ListBlank.map (proj i) L) n = ListBlank.nth L n i ** rw [ListBlank.nth_map] ** ι : Type u_1 Γ : ι → Type u_2 inst✝ : (i : ι) → Inhabited (Γ i) i : ι L : ListBlank ((i : ι) → Γ i) n : ℕ ⊢ PointedMap.f (proj i) (ListBlank.nth L n) = ListBlank.nth L n i ** rfl ** Qed
| |
Turing.ListBlank.map_modifyNth ** Γ : Type u_1 Γ' : Type u_2 inst✝¹ : Inhabited Γ inst✝ : Inhabited Γ' F : PointedMap Γ Γ' f : Γ → Γ f' : Γ' → Γ' H : ∀ (x : Γ), PointedMap.f F (f x) = f' (PointedMap.f F x) n : ℕ L : ListBlank Γ ⊢ map F (modifyNth f n L) = modifyNth f' n (map F L) ** induction' n with n IH generalizing L <;>
simp only [*, ListBlank.head_map, ListBlank.modifyNth, ListBlank.map_cons, ListBlank.tail_map] ** Qed
| |
Turing.ListBlank.append_mk ** Γ : Type u_1 inst✝ : Inhabited Γ l₁ l₂ : List Γ ⊢ append l₁ (mk l₂) = mk (l₁ ++ l₂) ** induction l₁ <;>
simp only [*, ListBlank.append, List.nil_append, List.cons_append, ListBlank.cons_mk] ** Qed
| |
Turing.ListBlank.append_assoc ** Γ : Type u_1 inst✝ : Inhabited Γ l₁ l₂ : List Γ l₃ : ListBlank Γ ⊢ append (l₁ ++ l₂) l₃ = append l₁ (append l₂ l₃) ** refine' l₃.inductionOn fun l ↦ _ ** Γ : Type u_1 inst✝ : Inhabited Γ l₁ l₂ : List Γ l₃ : ListBlank Γ l : List Γ ⊢ append (l₁ ++ l₂) (Quotient.mk (BlankRel.setoid Γ) l) = append l₁ (append l₂ (Quotient.mk (BlankRel.setoid Γ) l)) ** suffices append (l₁ ++ l₂) (mk l) = append l₁ (append l₂ (mk l)) by exact this ** Γ : Type u_1 inst✝ : Inhabited Γ l₁ l₂ : List Γ l₃ : ListBlank Γ l : List Γ ⊢ append (l₁ ++ l₂) (mk l) = append l₁ (append l₂ (mk l)) ** simp only [ListBlank.append_mk, List.append_assoc] ** Γ : Type u_1 inst✝ : Inhabited Γ l₁ l₂ : List Γ l₃ : ListBlank Γ l : List Γ this : append (l₁ ++ l₂) (mk l) = append l₁ (append l₂ (mk l)) ⊢ append (l₁ ++ l₂) (Quotient.mk (BlankRel.setoid Γ) l) = append l₁ (append l₂ (Quotient.mk (BlankRel.setoid Γ) l)) ** exact this ** Qed
| |
Turing.Tape.move_left_right ** Γ : Type u_1 inst✝ : Inhabited Γ T : Tape Γ ⊢ move Dir.right (move Dir.left T) = T ** cases T ** case mk Γ : Type u_1 inst✝ : Inhabited Γ head✝ : Γ left✝ right✝ : ListBlank Γ ⊢ move Dir.right (move Dir.left { head := head✝, left := left✝, right := right✝ }) = { head := head✝, left := left✝, right := right✝ } ** simp [Tape.move] ** Qed
| |
Turing.Tape.move_right_left ** Γ : Type u_1 inst✝ : Inhabited Γ T : Tape Γ ⊢ move Dir.left (move Dir.right T) = T ** cases T ** case mk Γ : Type u_1 inst✝ : Inhabited Γ head✝ : Γ left✝ right✝ : ListBlank Γ ⊢ move Dir.left (move Dir.right { head := head✝, left := left✝, right := right✝ }) = { head := head✝, left := left✝, right := right✝ } ** simp [Tape.move] ** Qed
| |
Turing.Tape.mk'_left_right₀ ** Γ : Type u_1 inst✝ : Inhabited Γ T : Tape Γ ⊢ mk' T.left (right₀ T) = T ** cases T ** case mk Γ : Type u_1 inst✝ : Inhabited Γ head✝ : Γ left✝ right✝ : ListBlank Γ ⊢ mk' { head := head✝, left := left✝, right := right✝ }.left (right₀ { head := head✝, left := left✝, right := right✝ }) = { head := head✝, left := left✝, right := right✝ } ** simp only [Tape.right₀, Tape.mk', ListBlank.head_cons, ListBlank.tail_cons, eq_self_iff_true,
and_self_iff] ** Qed
| |
Turing.Tape.move_left_mk' ** Γ : Type u_1 inst✝ : Inhabited Γ L R : ListBlank Γ ⊢ move Dir.left (mk' L R) = mk' (ListBlank.tail L) (ListBlank.cons (ListBlank.head L) R) ** simp only [Tape.move, Tape.mk', ListBlank.head_cons, eq_self_iff_true, ListBlank.cons_head_tail,
and_self_iff, ListBlank.tail_cons] ** Qed
| |
Turing.Tape.move_right_mk' ** Γ : Type u_1 inst✝ : Inhabited Γ L R : ListBlank Γ ⊢ move Dir.right (mk' L R) = mk' (ListBlank.cons (ListBlank.head R) L) (ListBlank.tail R) ** simp only [Tape.move, Tape.mk', ListBlank.head_cons, eq_self_iff_true, ListBlank.cons_head_tail,
and_self_iff, ListBlank.tail_cons] ** Qed
| |
Turing.Tape.right₀_nth ** Γ : Type u_1 inst✝ : Inhabited Γ T : Tape Γ n : ℕ ⊢ ListBlank.nth (right₀ T) n = nth T ↑n ** cases n <;> simp only [Tape.nth, Tape.right₀, Int.ofNat_zero, ListBlank.nth_zero,
ListBlank.nth_succ, ListBlank.head_cons, ListBlank.tail_cons, Nat.zero_eq] ** Qed
| |
Turing.Tape.move_left_nth ** Γ : Type u_1 inst✝ : Inhabited Γ a : Γ L R : ListBlank Γ n : ℕ ⊢ nth (move Dir.left { head := a, left := L, right := R }) (↑(n + 1) + 1) = nth { head := a, left := L, right := R } (↑(n + 1) + 1 - 1) ** rw [add_sub_cancel] ** Γ : Type u_1 inst✝ : Inhabited Γ a : Γ L R : ListBlank Γ n : ℕ ⊢ nth (move Dir.left { head := a, left := L, right := R }) (↑(n + 1) + 1) = nth { head := a, left := L, right := R } ↑(n + 1) ** change (R.cons a).nth (n + 1) = R.nth n ** Γ : Type u_1 inst✝ : Inhabited Γ a : Γ L R : ListBlank Γ n : ℕ ⊢ ListBlank.nth (ListBlank.cons a R) (n + 1) = ListBlank.nth R n ** rw [ListBlank.nth_succ, ListBlank.tail_cons] ** Qed
| |
Turing.Tape.write_self ** Γ : Type u_1 inst✝ : Inhabited Γ ⊢ ∀ (T : Tape Γ), write T.head T = T ** rintro ⟨⟩ ** case mk Γ : Type u_1 inst✝ : Inhabited Γ head✝ : Γ left✝ right✝ : ListBlank Γ ⊢ write { head := head✝, left := left✝, right := right✝ }.head { head := head✝, left := left✝, right := right✝ } = { head := head✝, left := left✝, right := right✝ } ** rfl ** Qed
| |
Turing.Tape.write_mk' ** Γ : Type u_1 inst✝ : Inhabited Γ a b : Γ L R : ListBlank Γ ⊢ write b (mk' L (ListBlank.cons a R)) = mk' L (ListBlank.cons b R) ** simp only [Tape.write, Tape.mk', ListBlank.head_cons, ListBlank.tail_cons, eq_self_iff_true,
and_self_iff] ** Qed
| |
Turing.Tape.map_fst ** Γ : Type u_1 Γ' : Type u_2 inst✝¹ : Inhabited Γ inst✝ : Inhabited Γ' f : PointedMap Γ Γ' ⊢ ∀ (T : Tape Γ), (map f T).head = PointedMap.f f T.head ** rintro ⟨⟩ ** case mk Γ : Type u_1 Γ' : Type u_2 inst✝¹ : Inhabited Γ inst✝ : Inhabited Γ' f : PointedMap Γ Γ' head✝ : Γ left✝ right✝ : ListBlank Γ ⊢ (map f { head := head✝, left := left✝, right := right✝ }).head = PointedMap.f f { head := head✝, left := left✝, right := right✝ }.head ** rfl ** Qed
| |
Turing.Tape.map_write ** Γ : Type u_1 Γ' : Type u_2 inst✝¹ : Inhabited Γ inst✝ : Inhabited Γ' f : PointedMap Γ Γ' b : Γ ⊢ ∀ (T : Tape Γ), map f (write b T) = write (PointedMap.f f b) (map f T) ** rintro ⟨⟩ ** case mk Γ : Type u_1 Γ' : Type u_2 inst✝¹ : Inhabited Γ inst✝ : Inhabited Γ' f : PointedMap Γ Γ' b head✝ : Γ left✝ right✝ : ListBlank Γ ⊢ map f (write b { head := head✝, left := left✝, right := right✝ }) = write (PointedMap.f f b) (map f { head := head✝, left := left✝, right := right✝ }) ** rfl ** Qed
| |
Turing.Tape.write_move_right_n ** Γ : Type u_1 inst✝ : Inhabited Γ f : Γ → Γ L R : ListBlank Γ n : ℕ ⊢ write (f (ListBlank.nth R n)) ((move Dir.right)^[n] (mk' L R)) = (move Dir.right)^[n] (mk' L (ListBlank.modifyNth f n R)) ** induction' n with n IH generalizing L R ** case succ Γ : Type u_1 inst✝ : Inhabited Γ f : Γ → Γ L✝ R✝ : ListBlank Γ n : ℕ IH : ∀ (L R : ListBlank Γ), write (f (ListBlank.nth R n)) ((move Dir.right)^[n] (mk' L R)) = (move Dir.right)^[n] (mk' L (ListBlank.modifyNth f n R)) L R : ListBlank Γ ⊢ write (f (ListBlank.nth R (Nat.succ n))) ((move Dir.right)^[Nat.succ n] (mk' L R)) = (move Dir.right)^[Nat.succ n] (mk' L (ListBlank.modifyNth f (Nat.succ n) R)) ** simp only [ListBlank.head_cons, ListBlank.nth_succ, ListBlank.modifyNth, Tape.move_right_mk',
ListBlank.tail_cons, iterate_succ_apply, IH] ** case zero Γ : Type u_1 inst✝ : Inhabited Γ f : Γ → Γ L✝ R✝ L R : ListBlank Γ ⊢ write (f (ListBlank.nth R Nat.zero)) ((move Dir.right)^[Nat.zero] (mk' L R)) = (move Dir.right)^[Nat.zero] (mk' L (ListBlank.modifyNth f Nat.zero R)) ** simp only [ListBlank.nth_zero, ListBlank.modifyNth, iterate_zero_apply, Nat.zero_eq] ** case zero Γ : Type u_1 inst✝ : Inhabited Γ f : Γ → Γ L✝ R✝ L R : ListBlank Γ ⊢ write (f (ListBlank.head R)) (mk' L R) = mk' L (ListBlank.cons (f (ListBlank.head R)) (ListBlank.tail R)) ** rw [← Tape.write_mk', ListBlank.cons_head_tail] ** Qed
| |
Turing.Tape.map_move ** Γ : Type u_1 Γ' : Type u_2 inst✝¹ : Inhabited Γ inst✝ : Inhabited Γ' f : PointedMap Γ Γ' T : Tape Γ d : Dir ⊢ map f (move d T) = move d (map f T) ** cases T ** case mk Γ : Type u_1 Γ' : Type u_2 inst✝¹ : Inhabited Γ inst✝ : Inhabited Γ' f : PointedMap Γ Γ' d : Dir head✝ : Γ left✝ right✝ : ListBlank Γ ⊢ map f (move d { head := head✝, left := left✝, right := right✝ }) = move d (map f { head := head✝, left := left✝, right := right✝ }) ** cases d <;> simp only [Tape.move, Tape.map, ListBlank.head_map, eq_self_iff_true,
ListBlank.map_cons, and_self_iff, ListBlank.tail_map] ** Qed
| |
Turing.Tape.map_mk' ** Γ : Type u_1 Γ' : Type u_2 inst✝¹ : Inhabited Γ inst✝ : Inhabited Γ' f : PointedMap Γ Γ' L R : ListBlank Γ ⊢ map f (mk' L R) = mk' (ListBlank.map f L) (ListBlank.map f R) ** simp only [Tape.mk', Tape.map, ListBlank.head_map, eq_self_iff_true, and_self_iff,
ListBlank.tail_map] ** Qed
| |
Turing.reaches₁_eq ** σ : Type u_1 f : σ → Option σ a b c : σ h : f a = f b ⊢ (∃ b_1, b_1 ∈ f b ∧ ReflTransGen (fun a b => b ∈ f a) b_1 c) ↔ ∃ b, b ∈ f a ∧ ReflTransGen (fun a b => b ∈ f a) b c ** rw [h] ** Qed
| |
Turing.reaches₁_fwd ** σ : Type u_1 f : σ → Option σ a b c : σ h₁ : Reaches₁ f a c h₂ : b ∈ f a ⊢ Reaches f b c ** rcases TransGen.head'_iff.1 h₁ with ⟨b', hab, hbc⟩ ** case intro.intro σ : Type u_1 f : σ → Option σ a b c : σ h₁ : Reaches₁ f a c h₂ : b ∈ f a b' : σ hab : b' ∈ f a hbc : ReflTransGen (fun a b => b ∈ f a) b' c ⊢ Reaches f b c ** cases Option.mem_unique hab h₂ ** case intro.intro.refl σ : Type u_1 f : σ → Option σ a b c : σ h₁ : Reaches₁ f a c h₂ hab : b ∈ f a hbc : ReflTransGen (fun a b => b ∈ f a) b c ⊢ Reaches f b c ** exact hbc ** Qed
| |
Turing.mem_eval ** σ : Type u_1 f : σ → Option σ a b : σ ⊢ b ∈ eval f a ↔ Reaches f a b ∧ f b = none ** refine' ⟨fun h ↦ _, fun ⟨h₁, h₂⟩ ↦ _⟩ ** case refine'_1 σ : Type u_1 f : σ → Option σ a b : σ h : b ∈ eval f a ⊢ Reaches f a b ∧ f b = none ** refine' @evalInduction _ _ _ (fun a ↦ Reaches f a b ∧ f b = none) _ h fun a h IH ↦ _ ** case refine'_1 σ : Type u_1 f : σ → Option σ a✝ b : σ h✝ : b ∈ eval f a✝ a : σ h : b ∈ eval f a IH : ∀ (a' : σ), f a = some a' → (fun a => Reaches f a b ∧ f b = none) a' ⊢ (fun a => Reaches f a b ∧ f b = none) a ** cases' e : f a with a' ** case refine'_1.none σ : Type u_1 f : σ → Option σ a✝ b : σ h✝ : b ∈ eval f a✝ a : σ h : b ∈ eval f a IH : ∀ (a' : σ), f a = some a' → (fun a => Reaches f a b ∧ f b = none) a' e : f a = none ⊢ Reaches f a b ∧ f b = none ** rw [Part.mem_unique h
(PFun.mem_fix_iff.2 <| Or.inl <| Part.mem_some_iff.2 <| by rw [e] <;> rfl)] ** case refine'_1.none σ : Type u_1 f : σ → Option σ a✝ b : σ h✝ : b ∈ eval f a✝ a : σ h : b ∈ eval f a IH : ∀ (a' : σ), f a = some a' → (fun a => Reaches f a b ∧ f b = none) a' e : f a = none ⊢ Reaches f a a ∧ f a = none ** exact ⟨ReflTransGen.refl, e⟩ ** σ : Type u_1 f : σ → Option σ a✝ b : σ h✝ : b ∈ eval f a✝ a : σ h : b ∈ eval f a IH : ∀ (a' : σ), f a = some a' → (fun a => Reaches f a b ∧ f b = none) a' e : f a = none ⊢ Sum.inl ?m.63851 = Option.elim (f a) (Sum.inl a) Sum.inr ** rw [e] <;> rfl ** case refine'_1.some σ : Type u_1 f : σ → Option σ a✝ b : σ h✝ : b ∈ eval f a✝ a : σ h : b ∈ eval f a IH : ∀ (a' : σ), f a = some a' → (fun a => Reaches f a b ∧ f b = none) a' a' : σ e : f a = some a' ⊢ Reaches f a b ∧ f b = none ** rcases PFun.mem_fix_iff.1 h with (h | ⟨_, h, _⟩) <;> rw [e] at h <;>
cases Part.mem_some_iff.1 h ** case refine'_1.some.inr.intro.intro.refl σ : Type u_1 f : σ → Option σ a✝ b : σ h✝¹ : b ∈ eval f a✝ a : σ h✝ : b ∈ eval f a IH : ∀ (a' : σ), f a = some a' → (fun a => Reaches f a b ∧ f b = none) a' a' : σ e : f a = some a' h : Sum.inr a' ∈ Part.some (Option.elim (some a') (Sum.inl a) Sum.inr) right✝ : b ∈ PFun.fix (fun s => Part.some (Option.elim (f s) (Sum.inl s) Sum.inr)) a' ⊢ Reaches f a b ∧ f b = none ** cases' IH a' e with h₁ h₂ ** case refine'_1.some.inr.intro.intro.refl.intro σ : Type u_1 f : σ → Option σ a✝ b : σ h✝¹ : b ∈ eval f a✝ a : σ h✝ : b ∈ eval f a IH : ∀ (a' : σ), f a = some a' → (fun a => Reaches f a b ∧ f b = none) a' a' : σ e : f a = some a' h : Sum.inr a' ∈ Part.some (Option.elim (some a') (Sum.inl a) Sum.inr) right✝ : b ∈ PFun.fix (fun s => Part.some (Option.elim (f s) (Sum.inl s) Sum.inr)) a' h₁ : Reaches f a' b h₂ : f b = none ⊢ Reaches f a b ∧ f b = none ** exact ⟨ReflTransGen.head e h₁, h₂⟩ ** case refine'_2 σ : Type u_1 f : σ → Option σ a b : σ x✝ : Reaches f a b ∧ f b = none h₁ : Reaches f a b h₂ : f b = none ⊢ b ∈ eval f a ** refine' ReflTransGen.head_induction_on h₁ _ fun h _ IH ↦ _ ** case refine'_2.refine'_1 σ : Type u_1 f : σ → Option σ a b : σ x✝ : Reaches f a b ∧ f b = none h₁ : Reaches f a b h₂ : f b = none ⊢ b ∈ eval f b ** refine' PFun.mem_fix_iff.2 (Or.inl _) ** case refine'_2.refine'_1 σ : Type u_1 f : σ → Option σ a b : σ x✝ : Reaches f a b ∧ f b = none h₁ : Reaches f a b h₂ : f b = none ⊢ Sum.inl b ∈ Part.some (Option.elim (f b) (Sum.inl b) Sum.inr) ** rw [h₂] ** case refine'_2.refine'_1 σ : Type u_1 f : σ → Option σ a b : σ x✝ : Reaches f a b ∧ f b = none h₁ : Reaches f a b h₂ : f b = none ⊢ Sum.inl b ∈ Part.some (Option.elim none (Sum.inl b) Sum.inr) ** apply Part.mem_some ** case refine'_2.refine'_2 σ : Type u_1 f : σ → Option σ a b : σ x✝¹ : Reaches f a b ∧ f b = none h₁ : Reaches f a b h₂ : f b = none a✝ c✝ : σ h : c✝ ∈ f a✝ x✝ : ReflTransGen (fun a b => b ∈ f a) c✝ b IH : b ∈ eval f c✝ ⊢ b ∈ eval f a✝ ** refine' PFun.mem_fix_iff.2 (Or.inr ⟨_, _, IH⟩) ** case refine'_2.refine'_2 σ : Type u_1 f : σ → Option σ a b : σ x✝¹ : Reaches f a b ∧ f b = none h₁ : Reaches f a b h₂ : f b = none a✝ c✝ : σ h : c✝ ∈ f a✝ x✝ : ReflTransGen (fun a b => b ∈ f a) c✝ b IH : b ∈ eval f c✝ ⊢ Sum.inr c✝ ∈ Part.some (Option.elim (f a✝) (Sum.inl a✝) Sum.inr) ** rw [h] ** case refine'_2.refine'_2 σ : Type u_1 f : σ → Option σ a b : σ x✝¹ : Reaches f a b ∧ f b = none h₁ : Reaches f a b h₂ : f b = none a✝ c✝ : σ h : c✝ ∈ f a✝ x✝ : ReflTransGen (fun a b => b ∈ f a) c✝ b IH : b ∈ eval f c✝ ⊢ Sum.inr c✝ ∈ Part.some (Option.elim (some c✝) (Sum.inl a✝) Sum.inr) ** apply Part.mem_some ** Qed
| |
Turing.eval_maximal₁ ** σ : Type u_1 f : σ → Option σ a b : σ h : b ∈ eval f a c : σ x✝ : Reaches₁ f b c bc : Reaches₁ f b c := x✝ ⊢ False ** let ⟨_, b0⟩ := mem_eval.1 h ** σ : Type u_1 f : σ → Option σ a b : σ h : b ∈ eval f a c : σ x✝ : Reaches₁ f b c bc : Reaches₁ f b c := x✝ left✝ : Reaches f a b b0 : f b = none ⊢ False ** let ⟨b', h', _⟩ := TransGen.head'_iff.1 bc ** σ : Type u_1 f : σ → Option σ a b : σ h : b ∈ eval f a c : σ x✝ : Reaches₁ f b c bc : Reaches₁ f b c := x✝ left✝ : Reaches f a b b0 : f b = none b' : σ h' : b' ∈ f b right✝ : ReflTransGen (fun a b => b ∈ f a) b' c ⊢ False ** cases b0.symm.trans h' ** Qed
| |
Turing.eval_maximal ** σ : Type u_1 f : σ → Option σ a b : σ h : b ∈ eval f a c : σ left✝ : Reaches f a b b0 : f b = none b' : σ h' : b' ∈ f b ⊢ False ** cases b0.symm.trans h' ** Qed
| |
Turing.tr_reaches₁ ** σ₁ : Type u_1 σ₂ : Type u_2 f₁ : σ₁ → Option σ₁ f₂ : σ₂ → Option σ₂ tr : σ₁ → σ₂ → Prop H : Respects f₁ f₂ tr a₁ : σ₁ a₂ : σ₂ aa : tr a₁ a₂ b₁ : σ₁ ab : Reaches₁ f₁ a₁ b₁ ⊢ ∃ b₂, tr b₁ b₂ ∧ Reaches₁ f₂ a₂ b₂ ** induction' ab with c₁ ac c₁ d₁ _ cd IH ** case single σ₁ : Type u_1 σ₂ : Type u_2 f₁ : σ₁ → Option σ₁ f₂ : σ₂ → Option σ₂ tr : σ₁ → σ₂ → Prop H : Respects f₁ f₂ tr a₁ : σ₁ a₂ : σ₂ aa : tr a₁ a₂ b₁ c₁ : σ₁ ac : c₁ ∈ f₁ a₁ ⊢ ∃ b₂, tr c₁ b₂ ∧ Reaches₁ f₂ a₂ b₂ ** have := H aa ** case single σ₁ : Type u_1 σ₂ : Type u_2 f₁ : σ₁ → Option σ₁ f₂ : σ₂ → Option σ₂ tr : σ₁ → σ₂ → Prop H : Respects f₁ f₂ tr a₁ : σ₁ a₂ : σ₂ aa : tr a₁ a₂ b₁ c₁ : σ₁ ac : c₁ ∈ f₁ a₁ this : match f₁ a₁ with | some b₁ => ∃ b₂, tr b₁ b₂ ∧ Reaches₁ f₂ a₂ b₂ | none => f₂ a₂ = none ⊢ ∃ b₂, tr c₁ b₂ ∧ Reaches₁ f₂ a₂ b₂ ** rwa [show f₁ a₁ = _ from ac] at this ** case tail σ₁ : Type u_1 σ₂ : Type u_2 f₁ : σ₁ → Option σ₁ f₂ : σ₂ → Option σ₂ tr : σ₁ → σ₂ → Prop H : Respects f₁ f₂ tr a₁ : σ₁ a₂ : σ₂ aa : tr a₁ a₂ b₁ c₁ d₁ : σ₁ a✝ : TransGen (fun a b => b ∈ f₁ a) a₁ c₁ cd : d₁ ∈ f₁ c₁ IH : ∃ b₂, tr c₁ b₂ ∧ Reaches₁ f₂ a₂ b₂ ⊢ ∃ b₂, tr d₁ b₂ ∧ Reaches₁ f₂ a₂ b₂ ** rcases IH with ⟨c₂, cc, ac₂⟩ ** case tail.intro.intro σ₁ : Type u_1 σ₂ : Type u_2 f₁ : σ₁ → Option σ₁ f₂ : σ₂ → Option σ₂ tr : σ₁ → σ₂ → Prop H : Respects f₁ f₂ tr a₁ : σ₁ a₂ : σ₂ aa : tr a₁ a₂ b₁ c₁ d₁ : σ₁ a✝ : TransGen (fun a b => b ∈ f₁ a) a₁ c₁ cd : d₁ ∈ f₁ c₁ c₂ : σ₂ cc : tr c₁ c₂ ac₂ : Reaches₁ f₂ a₂ c₂ ⊢ ∃ b₂, tr d₁ b₂ ∧ Reaches₁ f₂ a₂ b₂ ** have := H cc ** case tail.intro.intro σ₁ : Type u_1 σ₂ : Type u_2 f₁ : σ₁ → Option σ₁ f₂ : σ₂ → Option σ₂ tr : σ₁ → σ₂ → Prop H : Respects f₁ f₂ tr a₁ : σ₁ a₂ : σ₂ aa : tr a₁ a₂ b₁ c₁ d₁ : σ₁ a✝ : TransGen (fun a b => b ∈ f₁ a) a₁ c₁ cd : d₁ ∈ f₁ c₁ c₂ : σ₂ cc : tr c₁ c₂ ac₂ : Reaches₁ f₂ a₂ c₂ this : match f₁ c₁ with | some b₁ => ∃ b₂, tr b₁ b₂ ∧ Reaches₁ f₂ c₂ b₂ | none => f₂ c₂ = none ⊢ ∃ b₂, tr d₁ b₂ ∧ Reaches₁ f₂ a₂ b₂ ** rw [show f₁ c₁ = _ from cd] at this ** case tail.intro.intro σ₁ : Type u_1 σ₂ : Type u_2 f₁ : σ₁ → Option σ₁ f₂ : σ₂ → Option σ₂ tr : σ₁ → σ₂ → Prop H : Respects f₁ f₂ tr a₁ : σ₁ a₂ : σ₂ aa : tr a₁ a₂ b₁ c₁ d₁ : σ₁ a✝ : TransGen (fun a b => b ∈ f₁ a) a₁ c₁ cd : d₁ ∈ f₁ c₁ c₂ : σ₂ cc : tr c₁ c₂ ac₂ : Reaches₁ f₂ a₂ c₂ this : match some d₁ with | some b₁ => ∃ b₂, tr b₁ b₂ ∧ Reaches₁ f₂ c₂ b₂ | none => f₂ c₂ = none ⊢ ∃ b₂, tr d₁ b₂ ∧ Reaches₁ f₂ a₂ b₂ ** rcases this with ⟨d₂, dd, cd₂⟩ ** case tail.intro.intro.intro.intro σ₁ : Type u_1 σ₂ : Type u_2 f₁ : σ₁ → Option σ₁ f₂ : σ₂ → Option σ₂ tr : σ₁ → σ₂ → Prop H : Respects f₁ f₂ tr a₁ : σ₁ a₂ : σ₂ aa : tr a₁ a₂ b₁ c₁ d₁ : σ₁ a✝ : TransGen (fun a b => b ∈ f₁ a) a₁ c₁ cd : d₁ ∈ f₁ c₁ c₂ : σ₂ cc : tr c₁ c₂ ac₂ : Reaches₁ f₂ a₂ c₂ d₂ : σ₂ dd : tr d₁ d₂ cd₂ : Reaches₁ f₂ c₂ d₂ ⊢ ∃ b₂, tr d₁ b₂ ∧ Reaches₁ f₂ a₂ b₂ ** exact ⟨_, dd, ac₂.trans cd₂⟩ ** Qed
| |
Turing.tr_reaches_rev ** σ₁ : Type u_1 σ₂ : Type u_2 f₁ : σ₁ → Option σ₁ f₂ : σ₂ → Option σ₂ tr : σ₁ → σ₂ → Prop H : Respects f₁ f₂ tr a₁ : σ₁ a₂ : σ₂ aa : tr a₁ a₂ b₂ : σ₂ ab : Reaches f₂ a₂ b₂ ⊢ ∃ c₁ c₂, Reaches f₂ b₂ c₂ ∧ tr c₁ c₂ ∧ Reaches f₁ a₁ c₁ ** induction' ab with c₂ d₂ _ cd IH ** case refl σ₁ : Type u_1 σ₂ : Type u_2 f₁ : σ₁ → Option σ₁ f₂ : σ₂ → Option σ₂ tr : σ₁ → σ₂ → Prop H : Respects f₁ f₂ tr a₁ : σ₁ a₂ : σ₂ aa : tr a₁ a₂ b₂ : σ₂ ⊢ ∃ c₁ c₂, Reaches f₂ a₂ c₂ ∧ tr c₁ c₂ ∧ Reaches f₁ a₁ c₁ ** exact ⟨_, _, ReflTransGen.refl, aa, ReflTransGen.refl⟩ ** case tail σ₁ : Type u_1 σ₂ : Type u_2 f₁ : σ₁ → Option σ₁ f₂ : σ₂ → Option σ₂ tr : σ₁ → σ₂ → Prop H : Respects f₁ f₂ tr a₁ : σ₁ a₂ : σ₂ aa : tr a₁ a₂ b₂ c₂ d₂ : σ₂ a✝ : ReflTransGen (fun a b => b ∈ f₂ a) a₂ c₂ cd : d₂ ∈ f₂ c₂ IH : ∃ c₁ c₂_1, Reaches f₂ c₂ c₂_1 ∧ tr c₁ c₂_1 ∧ Reaches f₁ a₁ c₁ ⊢ ∃ c₁ c₂, Reaches f₂ d₂ c₂ ∧ tr c₁ c₂ ∧ Reaches f₁ a₁ c₁ ** rcases IH with ⟨e₁, e₂, ce, ee, ae⟩ ** case tail.intro.intro.intro.intro σ₁ : Type u_1 σ₂ : Type u_2 f₁ : σ₁ → Option σ₁ f₂ : σ₂ → Option σ₂ tr : σ₁ → σ₂ → Prop H : Respects f₁ f₂ tr a₁ : σ₁ a₂ : σ₂ aa : tr a₁ a₂ b₂ c₂ d₂ : σ₂ a✝ : ReflTransGen (fun a b => b ∈ f₂ a) a₂ c₂ cd : d₂ ∈ f₂ c₂ e₁ : σ₁ e₂ : σ₂ ce : Reaches f₂ c₂ e₂ ee : tr e₁ e₂ ae : Reaches f₁ a₁ e₁ ⊢ ∃ c₁ c₂, Reaches f₂ d₂ c₂ ∧ tr c₁ c₂ ∧ Reaches f₁ a₁ c₁ ** rcases ReflTransGen.cases_head ce with (rfl | ⟨d', cd', de⟩) ** case tail.intro.intro.intro.intro.inl σ₁ : Type u_1 σ₂ : Type u_2 f₁ : σ₁ → Option σ₁ f₂ : σ₂ → Option σ₂ tr : σ₁ → σ₂ → Prop H : Respects f₁ f₂ tr a₁ : σ₁ a₂ : σ₂ aa : tr a₁ a₂ b₂ c₂ d₂ : σ₂ a✝ : ReflTransGen (fun a b => b ∈ f₂ a) a₂ c₂ cd : d₂ ∈ f₂ c₂ e₁ : σ₁ ae : Reaches f₁ a₁ e₁ ce : Reaches f₂ c₂ c₂ ee : tr e₁ c₂ ⊢ ∃ c₁ c₂, Reaches f₂ d₂ c₂ ∧ tr c₁ c₂ ∧ Reaches f₁ a₁ c₁ ** have := H ee ** case tail.intro.intro.intro.intro.inl σ₁ : Type u_1 σ₂ : Type u_2 f₁ : σ₁ → Option σ₁ f₂ : σ₂ → Option σ₂ tr : σ₁ → σ₂ → Prop H : Respects f₁ f₂ tr a₁ : σ₁ a₂ : σ₂ aa : tr a₁ a₂ b₂ c₂ d₂ : σ₂ a✝ : ReflTransGen (fun a b => b ∈ f₂ a) a₂ c₂ cd : d₂ ∈ f₂ c₂ e₁ : σ₁ ae : Reaches f₁ a₁ e₁ ce : Reaches f₂ c₂ c₂ ee : tr e₁ c₂ this : match f₁ e₁ with | some b₁ => ∃ b₂, tr b₁ b₂ ∧ Reaches₁ f₂ c₂ b₂ | none => f₂ c₂ = none ⊢ ∃ c₁ c₂, Reaches f₂ d₂ c₂ ∧ tr c₁ c₂ ∧ Reaches f₁ a₁ c₁ ** revert this ** case tail.intro.intro.intro.intro.inl σ₁ : Type u_1 σ₂ : Type u_2 f₁ : σ₁ → Option σ₁ f₂ : σ₂ → Option σ₂ tr : σ₁ → σ₂ → Prop H : Respects f₁ f₂ tr a₁ : σ₁ a₂ : σ₂ aa : tr a₁ a₂ b₂ c₂ d₂ : σ₂ a✝ : ReflTransGen (fun a b => b ∈ f₂ a) a₂ c₂ cd : d₂ ∈ f₂ c₂ e₁ : σ₁ ae : Reaches f₁ a₁ e₁ ce : Reaches f₂ c₂ c₂ ee : tr e₁ c₂ ⊢ (match f₁ e₁ with | some b₁ => ∃ b₂, tr b₁ b₂ ∧ Reaches₁ f₂ c₂ b₂ | none => f₂ c₂ = none) → ∃ c₁ c₂, Reaches f₂ d₂ c₂ ∧ tr c₁ c₂ ∧ Reaches f₁ a₁ c₁ ** cases' eg : f₁ e₁ with g₁ <;> simp only [Respects, and_imp, exists_imp] ** case tail.intro.intro.intro.intro.inl.none σ₁ : Type u_1 σ₂ : Type u_2 f₁ : σ₁ → Option σ₁ f₂ : σ₂ → Option σ₂ tr : σ₁ → σ₂ → Prop H : Respects f₁ f₂ tr a₁ : σ₁ a₂ : σ₂ aa : tr a₁ a₂ b₂ c₂ d₂ : σ₂ a✝ : ReflTransGen (fun a b => b ∈ f₂ a) a₂ c₂ cd : d₂ ∈ f₂ c₂ e₁ : σ₁ ae : Reaches f₁ a₁ e₁ ce : Reaches f₂ c₂ c₂ ee : tr e₁ c₂ eg : f₁ e₁ = none ⊢ f₂ c₂ = none → ∃ c₁ c₂, Reaches f₂ d₂ c₂ ∧ tr c₁ c₂ ∧ Reaches f₁ a₁ c₁ ** intro c0 ** case tail.intro.intro.intro.intro.inl.none σ₁ : Type u_1 σ₂ : Type u_2 f₁ : σ₁ → Option σ₁ f₂ : σ₂ → Option σ₂ tr : σ₁ → σ₂ → Prop H : Respects f₁ f₂ tr a₁ : σ₁ a₂ : σ₂ aa : tr a₁ a₂ b₂ c₂ d₂ : σ₂ a✝ : ReflTransGen (fun a b => b ∈ f₂ a) a₂ c₂ cd : d₂ ∈ f₂ c₂ e₁ : σ₁ ae : Reaches f₁ a₁ e₁ ce : Reaches f₂ c₂ c₂ ee : tr e₁ c₂ eg : f₁ e₁ = none c0 : f₂ c₂ = none ⊢ ∃ c₁ c₂, Reaches f₂ d₂ c₂ ∧ tr c₁ c₂ ∧ Reaches f₁ a₁ c₁ ** cases cd.symm.trans c0 ** case tail.intro.intro.intro.intro.inl.some σ₁ : Type u_1 σ₂ : Type u_2 f₁ : σ₁ → Option σ₁ f₂ : σ₂ → Option σ₂ tr : σ₁ → σ₂ → Prop H : Respects f₁ f₂ tr a₁ : σ₁ a₂ : σ₂ aa : tr a₁ a₂ b₂ c₂ d₂ : σ₂ a✝ : ReflTransGen (fun a b => b ∈ f₂ a) a₂ c₂ cd : d₂ ∈ f₂ c₂ e₁ : σ₁ ae : Reaches f₁ a₁ e₁ ce : Reaches f₂ c₂ c₂ ee : tr e₁ c₂ g₁ : σ₁ eg : f₁ e₁ = some g₁ ⊢ ∀ (x : σ₂), tr g₁ x → Reaches₁ f₂ c₂ x → ∃ c₁ c₂, Reaches f₂ d₂ c₂ ∧ tr c₁ c₂ ∧ Reaches f₁ a₁ c₁ ** intro g₂ gg cg ** case tail.intro.intro.intro.intro.inl.some σ₁ : Type u_1 σ₂ : Type u_2 f₁ : σ₁ → Option σ₁ f₂ : σ₂ → Option σ₂ tr : σ₁ → σ₂ → Prop H : Respects f₁ f₂ tr a₁ : σ₁ a₂ : σ₂ aa : tr a₁ a₂ b₂ c₂ d₂ : σ₂ a✝ : ReflTransGen (fun a b => b ∈ f₂ a) a₂ c₂ cd : d₂ ∈ f₂ c₂ e₁ : σ₁ ae : Reaches f₁ a₁ e₁ ce : Reaches f₂ c₂ c₂ ee : tr e₁ c₂ g₁ : σ₁ eg : f₁ e₁ = some g₁ g₂ : σ₂ gg : tr g₁ g₂ cg : Reaches₁ f₂ c₂ g₂ ⊢ ∃ c₁ c₂, Reaches f₂ d₂ c₂ ∧ tr c₁ c₂ ∧ Reaches f₁ a₁ c₁ ** rcases TransGen.head'_iff.1 cg with ⟨d', cd', dg⟩ ** case tail.intro.intro.intro.intro.inl.some.intro.intro σ₁ : Type u_1 σ₂ : Type u_2 f₁ : σ₁ → Option σ₁ f₂ : σ₂ → Option σ₂ tr : σ₁ → σ₂ → Prop H : Respects f₁ f₂ tr a₁ : σ₁ a₂ : σ₂ aa : tr a₁ a₂ b₂ c₂ d₂ : σ₂ a✝ : ReflTransGen (fun a b => b ∈ f₂ a) a₂ c₂ cd : d₂ ∈ f₂ c₂ e₁ : σ₁ ae : Reaches f₁ a₁ e₁ ce : Reaches f₂ c₂ c₂ ee : tr e₁ c₂ g₁ : σ₁ eg : f₁ e₁ = some g₁ g₂ : σ₂ gg : tr g₁ g₂ cg : Reaches₁ f₂ c₂ g₂ d' : σ₂ cd' : d' ∈ f₂ c₂ dg : ReflTransGen (fun a b => b ∈ f₂ a) d' g₂ ⊢ ∃ c₁ c₂, Reaches f₂ d₂ c₂ ∧ tr c₁ c₂ ∧ Reaches f₁ a₁ c₁ ** cases Option.mem_unique cd cd' ** case tail.intro.intro.intro.intro.inl.some.intro.intro.refl σ₁ : Type u_1 σ₂ : Type u_2 f₁ : σ₁ → Option σ₁ f₂ : σ₂ → Option σ₂ tr : σ₁ → σ₂ → Prop H : Respects f₁ f₂ tr a₁ : σ₁ a₂ : σ₂ aa : tr a₁ a₂ b₂ c₂ d₂ : σ₂ a✝ : ReflTransGen (fun a b => b ∈ f₂ a) a₂ c₂ cd : d₂ ∈ f₂ c₂ e₁ : σ₁ ae : Reaches f₁ a₁ e₁ ce : Reaches f₂ c₂ c₂ ee : tr e₁ c₂ g₁ : σ₁ eg : f₁ e₁ = some g₁ g₂ : σ₂ gg : tr g₁ g₂ cg : Reaches₁ f₂ c₂ g₂ cd' : d₂ ∈ f₂ c₂ dg : ReflTransGen (fun a b => b ∈ f₂ a) d₂ g₂ ⊢ ∃ c₁ c₂, Reaches f₂ d₂ c₂ ∧ tr c₁ c₂ ∧ Reaches f₁ a₁ c₁ ** exact ⟨_, _, dg, gg, ae.tail eg⟩ ** case tail.intro.intro.intro.intro.inr.intro.intro σ₁ : Type u_1 σ₂ : Type u_2 f₁ : σ₁ → Option σ₁ f₂ : σ₂ → Option σ₂ tr : σ₁ → σ₂ → Prop H : Respects f₁ f₂ tr a₁ : σ₁ a₂ : σ₂ aa : tr a₁ a₂ b₂ c₂ d₂ : σ₂ a✝ : ReflTransGen (fun a b => b ∈ f₂ a) a₂ c₂ cd : d₂ ∈ f₂ c₂ e₁ : σ₁ e₂ : σ₂ ce : Reaches f₂ c₂ e₂ ee : tr e₁ e₂ ae : Reaches f₁ a₁ e₁ d' : σ₂ cd' : d' ∈ f₂ c₂ de : ReflTransGen (fun a b => b ∈ f₂ a) d' e₂ ⊢ ∃ c₁ c₂, Reaches f₂ d₂ c₂ ∧ tr c₁ c₂ ∧ Reaches f₁ a₁ c₁ ** cases Option.mem_unique cd cd' ** case tail.intro.intro.intro.intro.inr.intro.intro.refl σ₁ : Type u_1 σ₂ : Type u_2 f₁ : σ₁ → Option σ₁ f₂ : σ₂ → Option σ₂ tr : σ₁ → σ₂ → Prop H : Respects f₁ f₂ tr a₁ : σ₁ a₂ : σ₂ aa : tr a₁ a₂ b₂ c₂ d₂ : σ₂ a✝ : ReflTransGen (fun a b => b ∈ f₂ a) a₂ c₂ cd : d₂ ∈ f₂ c₂ e₁ : σ₁ e₂ : σ₂ ce : Reaches f₂ c₂ e₂ ee : tr e₁ e₂ ae : Reaches f₁ a₁ e₁ cd' : d₂ ∈ f₂ c₂ de : ReflTransGen (fun a b => b ∈ f₂ a) d₂ e₂ ⊢ ∃ c₁ c₂, Reaches f₂ d₂ c₂ ∧ tr c₁ c₂ ∧ Reaches f₁ a₁ c₁ ** exact ⟨_, _, de, ee, ae⟩ ** Qed
| |
Turing.frespects_eq ** σ₁ : Type u_1 σ₂ : Type u_2 f₂ : σ₂ → Option σ₂ tr : σ₁ → σ₂ a₂ b₂ : σ₂ h : f₂ a₂ = f₂ b₂ ⊢ FRespects f₂ tr a₂ none ↔ FRespects f₂ tr b₂ none ** unfold FRespects ** σ₁ : Type u_1 σ₂ : Type u_2 f₂ : σ₂ → Option σ₂ tr : σ₁ → σ₂ a₂ b₂ : σ₂ h : f₂ a₂ = f₂ b₂ ⊢ (match none with | some b₁ => Reaches₁ f₂ a₂ (tr b₁) | none => f₂ a₂ = none) ↔ match none with | some b₁ => Reaches₁ f₂ b₂ (tr b₁) | none => f₂ b₂ = none ** rw [h] ** Qed
| |
Turing.fun_respects ** σ₁ : Type u_1 σ₂ : Type u_2 f₁ : σ₁ → Option σ₁ f₂ : σ₂ → Option σ₂ tr : σ₁ → σ₂ a₁ : σ₁ ⊢ (∀ ⦃a₂ : σ₂⦄, (fun a b => tr a = b) a₁ a₂ → match f₁ a₁ with | some b₁ => ∃ b₂, (fun a b => tr a = b) b₁ b₂ ∧ Reaches₁ f₂ a₂ b₂ | none => f₂ a₂ = none) ↔ FRespects f₂ tr (tr a₁) (f₁ a₁) ** cases f₁ a₁ <;> simp only [FRespects, Respects, exists_eq_left', forall_eq'] ** Qed
| |
Turing.tr_eval' ** σ₁ σ₂ : Type u_1 f₁ : σ₁ → Option σ₁ f₂ : σ₂ → Option σ₂ tr : σ₁ → σ₂ H : Respects f₁ f₂ fun a b => tr a = b a₁ : σ₁ b₂ : σ₂ h : b₂ ∈ tr <$> eval f₁ a₁ ⊢ b₂ ∈ eval f₂ (tr a₁) ** rcases (Part.mem_map_iff _).1 h with ⟨b₁, ab, bb⟩ ** case intro.intro σ₁ σ₂ : Type u_1 f₁ : σ₁ → Option σ₁ f₂ : σ₂ → Option σ₂ tr : σ₁ → σ₂ H : Respects f₁ f₂ fun a b => tr a = b a₁ : σ₁ b₂ : σ₂ h : b₂ ∈ tr <$> eval f₁ a₁ b₁ : σ₁ ab : b₁ ∈ eval f₁ a₁ bb : tr b₁ = b₂ ⊢ b₂ ∈ eval f₂ (tr a₁) ** rcases tr_eval H rfl ab with ⟨_, rfl, h⟩ ** case intro.intro.intro.intro σ₁ σ₂ : Type u_1 f₁ : σ₁ → Option σ₁ f₂ : σ₂ → Option σ₂ tr : σ₁ → σ₂ H : Respects f₁ f₂ fun a b => tr a = b a₁ : σ₁ b₂ : σ₂ h✝ : b₂ ∈ tr <$> eval f₁ a₁ b₁ : σ₁ ab : b₁ ∈ eval f₁ a₁ bb : tr b₁ = b₂ h : tr b₁ ∈ eval f₂ (tr a₁) ⊢ b₂ ∈ eval f₂ (tr a₁) ** rwa [bb] at h ** Qed
| |
Turing.TM0.step_supports ** Γ : Type u_1 inst✝¹ : Inhabited Γ Λ : Type u_2 inst✝ : Inhabited Λ M : Machine₀ S : Set Λ ss : Supports M S ⊢ ∀ {c c' : Cfg₀}, c' ∈ step M c → c.q ∈ S → c'.q ∈ S ** intro ⟨q, T⟩ c' h₁ h₂ ** Γ : Type u_1 inst✝¹ : Inhabited Γ Λ : Type u_2 inst✝ : Inhabited Λ M : Machine₀ S : Set Λ ss : Supports M S q : Λ T : Tape Γ c' : Cfg₀ h₁ : c' ∈ step M { q := q, Tape := T } h₂ : { q := q, Tape := T }.q ∈ S ⊢ c'.q ∈ S ** rcases Option.map_eq_some'.1 h₁ with ⟨⟨q', a⟩, h, rfl⟩ ** case intro.mk.intro Γ : Type u_1 inst✝¹ : Inhabited Γ Λ : Type u_2 inst✝ : Inhabited Λ M : Machine₀ S : Set Λ ss : Supports M S q : Λ T : Tape Γ h₂ : { q := q, Tape := T }.q ∈ S q' : Λ a : Stmt₀ h : M q T.head = some (q', a) h₁ : (fun x => match x with | (q', a) => { q := q', Tape := match a with | Stmt.move d => Tape.move d T | Stmt.write a => Tape.write a T }) (q', a) ∈ step M { q := q, Tape := T } ⊢ ((fun x => match x with | (q', a) => { q := q', Tape := match a with | Stmt.move d => Tape.move d T | Stmt.write a => Tape.write a T }) (q', a)).q ∈ S ** exact ss.2 h h₂ ** Qed
| |
Turing.TM0.univ_supports ** Γ : Type u_1 inst✝¹ : Inhabited Γ Λ : Type u_2 inst✝ : Inhabited Λ M : Machine₀ ⊢ Supports M Set.univ ** constructor <;> intros <;> apply Set.mem_univ ** Qed
| |
Turing.TM1.stmts₁_self ** Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 q : Stmt₁ ⊢ q ∈ stmts₁ q ** cases q <;> simp only [stmts₁, Finset.mem_insert_self, Finset.mem_singleton_self] ** Qed
| |
Turing.TM1.stmts₁_trans ** Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 q₁ q₂ : Stmt₁ ⊢ q₁ ∈ stmts₁ q₂ → stmts₁ q₁ ⊆ stmts₁ q₂ ** intro h₁₂ q₀ h₀₁ ** Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 q₁ q₂ : Stmt₁ h₁₂ : q₁ ∈ stmts₁ q₂ q₀ : Stmt₁ h₀₁ : q₀ ∈ stmts₁ q₁ ⊢ q₀ ∈ stmts₁ q₂ ** induction' q₂ with _ q IH _ q IH _ q IH <;> simp only [stmts₁] at h₁₂ ⊢ <;>
simp only [Finset.mem_insert, Finset.mem_union, Finset.mem_singleton] at h₁₂ ** case goto Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 q₁ q₂ : Stmt₁ h₁₂✝ : q₁ ∈ stmts₁ q₂ q₀ : Stmt₁ h₀₁ : q₀ ∈ stmts₁ q₁ a✝ : Γ → σ → Λ h₁₂ : q₁ = goto a✝ ⊢ q₀ ∈ {goto a✝} case halt Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 q₁ q₂ : Stmt₁ h₁₂✝ : q₁ ∈ stmts₁ q₂ q₀ : Stmt₁ h₀₁ : q₀ ∈ stmts₁ q₁ h₁₂ : q₁ = halt ⊢ q₀ ∈ {halt} ** case goto l => subst h₁₂; exact h₀₁ ** case halt Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 q₁ q₂ : Stmt₁ h₁₂✝ : q₁ ∈ stmts₁ q₂ q₀ : Stmt₁ h₀₁ : q₀ ∈ stmts₁ q₁ h₁₂ : q₁ = halt ⊢ q₀ ∈ {halt} ** case halt => subst h₁₂; exact h₀₁ ** case load Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 q₁ q₂ : Stmt₁ h₁₂✝ : q₁ ∈ stmts₁ q₂ q₀ : Stmt₁ h₀₁ : q₀ ∈ stmts₁ q₁ a✝ : Γ → σ → σ q : Stmt₁ IH : q₁ ∈ stmts₁ q → q₀ ∈ stmts₁ q h₁₂ : q₁ = load a✝ q ∨ q₁ ∈ stmts₁ q ⊢ q₀ ∈ insert (load a✝ q) (stmts₁ q) case branch Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 q₁ q₂ : Stmt₁ h₁₂✝ : q₁ ∈ stmts₁ q₂ q₀ : Stmt₁ h₀₁ : q₀ ∈ stmts₁ q₁ a✝² : Γ → σ → Bool a✝¹ a✝ : Stmt₁ a_ih✝¹ : q₁ ∈ stmts₁ a✝¹ → q₀ ∈ stmts₁ a✝¹ a_ih✝ : q₁ ∈ stmts₁ a✝ → q₀ ∈ stmts₁ a✝ h₁₂ : q₁ = branch a✝² a✝¹ a✝ ∨ q₁ ∈ stmts₁ a✝¹ ∨ q₁ ∈ stmts₁ a✝ ⊢ q₀ ∈ insert (branch a✝² a✝¹ a✝) (stmts₁ a✝¹ ∪ stmts₁ a✝) case goto Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 q₁ q₂ : Stmt₁ h₁₂✝ : q₁ ∈ stmts₁ q₂ q₀ : Stmt₁ h₀₁ : q₀ ∈ stmts₁ q₁ a✝ : Γ → σ → Λ h₁₂ : q₁ = goto a✝ ⊢ q₀ ∈ {goto a✝} case halt Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 q₁ q₂ : Stmt₁ h₁₂✝ : q₁ ∈ stmts₁ q₂ q₀ : Stmt₁ h₀₁ : q₀ ∈ stmts₁ q₁ h₁₂ : q₁ = halt ⊢ q₀ ∈ {halt} ** rcases h₁₂ with (rfl | h₁₂) ** case load.inl Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 q₂ q₀ : Stmt₁ a✝ : Γ → σ → σ q : Stmt₁ h₁₂ : load a✝ q ∈ stmts₁ q₂ h₀₁ : q₀ ∈ stmts₁ (load a✝ q) IH : load a✝ q ∈ stmts₁ q → q₀ ∈ stmts₁ q ⊢ q₀ ∈ insert (load a✝ q) (stmts₁ q) ** unfold stmts₁ at h₀₁ ** case load.inl Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 q₂ q₀ : Stmt₁ a✝ : Γ → σ → σ q : Stmt₁ h₁₂ : load a✝ q ∈ stmts₁ q₂ IH : load a✝ q ∈ stmts₁ q → q₀ ∈ stmts₁ q h₀₁ : q₀ ∈ insert (load a✝ q) (stmts₁ q) ⊢ q₀ ∈ insert (load a✝ q) (stmts₁ q) ** exact h₀₁ ** case load.inr Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 q₁ q₂ : Stmt₁ h₁₂✝ : q₁ ∈ stmts₁ q₂ q₀ : Stmt₁ h₀₁ : q₀ ∈ stmts₁ q₁ a✝ : Γ → σ → σ q : Stmt₁ IH : q₁ ∈ stmts₁ q → q₀ ∈ stmts₁ q h₁₂ : q₁ ∈ stmts₁ q ⊢ q₀ ∈ insert (load a✝ q) (stmts₁ q) ** exact Finset.mem_insert_of_mem (IH h₁₂) ** Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 q₁✝ q₂✝ : Stmt₁ h₁₂✝ : q₁✝ ∈ stmts₁ q₂✝ q₀ : Stmt₁ h₀₁ : q₀ ∈ stmts₁ q₁✝ p : Γ → σ → Bool q₁ q₂ : Stmt₁ IH₁ : q₁✝ ∈ stmts₁ q₁ → q₀ ∈ stmts₁ q₁ IH₂ : q₁✝ ∈ stmts₁ q₂ → q₀ ∈ stmts₁ q₂ h₁₂ : q₁✝ = branch p q₁ q₂ ∨ q₁✝ ∈ stmts₁ q₁ ∨ q₁✝ ∈ stmts₁ q₂ ⊢ q₀ ∈ insert (branch p q₁ q₂) (stmts₁ q₁ ∪ stmts₁ q₂) ** rcases h₁₂ with (rfl | h₁₂ | h₁₂) ** case inl Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 q₂✝ q₀ : Stmt₁ p : Γ → σ → Bool q₁ q₂ : Stmt₁ h₁₂ : branch p q₁ q₂ ∈ stmts₁ q₂✝ h₀₁ : q₀ ∈ stmts₁ (branch p q₁ q₂) IH₁ : branch p q₁ q₂ ∈ stmts₁ q₁ → q₀ ∈ stmts₁ q₁ IH₂ : branch p q₁ q₂ ∈ stmts₁ q₂ → q₀ ∈ stmts₁ q₂ ⊢ q₀ ∈ insert (branch p q₁ q₂) (stmts₁ q₁ ∪ stmts₁ q₂) ** unfold stmts₁ at h₀₁ ** case inl Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 q₂✝ q₀ : Stmt₁ p : Γ → σ → Bool q₁ q₂ : Stmt₁ h₁₂ : branch p q₁ q₂ ∈ stmts₁ q₂✝ IH₁ : branch p q₁ q₂ ∈ stmts₁ q₁ → q₀ ∈ stmts₁ q₁ IH₂ : branch p q₁ q₂ ∈ stmts₁ q₂ → q₀ ∈ stmts₁ q₂ h₀₁ : q₀ ∈ insert (branch p q₁ q₂) (stmts₁ q₁ ∪ stmts₁ q₂) ⊢ q₀ ∈ insert (branch p q₁ q₂) (stmts₁ q₁ ∪ stmts₁ q₂) ** exact h₀₁ ** case inr.inl Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 q₁✝ q₂✝ : Stmt₁ h₁₂✝ : q₁✝ ∈ stmts₁ q₂✝ q₀ : Stmt₁ h₀₁ : q₀ ∈ stmts₁ q₁✝ p : Γ → σ → Bool q₁ q₂ : Stmt₁ IH₁ : q₁✝ ∈ stmts₁ q₁ → q₀ ∈ stmts₁ q₁ IH₂ : q₁✝ ∈ stmts₁ q₂ → q₀ ∈ stmts₁ q₂ h₁₂ : q₁✝ ∈ stmts₁ q₁ ⊢ q₀ ∈ insert (branch p q₁ q₂) (stmts₁ q₁ ∪ stmts₁ q₂) ** exact Finset.mem_insert_of_mem (Finset.mem_union_left _ <| IH₁ h₁₂) ** case inr.inr Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 q₁✝ q₂✝ : Stmt₁ h₁₂✝ : q₁✝ ∈ stmts₁ q₂✝ q₀ : Stmt₁ h₀₁ : q₀ ∈ stmts₁ q₁✝ p : Γ → σ → Bool q₁ q₂ : Stmt₁ IH₁ : q₁✝ ∈ stmts₁ q₁ → q₀ ∈ stmts₁ q₁ IH₂ : q₁✝ ∈ stmts₁ q₂ → q₀ ∈ stmts₁ q₂ h₁₂ : q₁✝ ∈ stmts₁ q₂ ⊢ q₀ ∈ insert (branch p q₁ q₂) (stmts₁ q₁ ∪ stmts₁ q₂) ** exact Finset.mem_insert_of_mem (Finset.mem_union_right _ <| IH₂ h₁₂) ** Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 q₁ q₂ : Stmt₁ h₁₂✝ : q₁ ∈ stmts₁ q₂ q₀ : Stmt₁ h₀₁ : q₀ ∈ stmts₁ q₁ l : Γ → σ → Λ h₁₂ : q₁ = goto l ⊢ q₀ ∈ {goto l} ** subst h₁₂ ** Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 q₂ q₀ : Stmt₁ l : Γ → σ → Λ h₁₂ : goto l ∈ stmts₁ q₂ h₀₁ : q₀ ∈ stmts₁ (goto l) ⊢ q₀ ∈ {goto l} ** exact h₀₁ ** Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 q₁ q₂ : Stmt₁ h₁₂✝ : q₁ ∈ stmts₁ q₂ q₀ : Stmt₁ h₀₁ : q₀ ∈ stmts₁ q₁ h₁₂ : q₁ = halt ⊢ q₀ ∈ {halt} ** subst h₁₂ ** Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 q₂ q₀ : Stmt₁ h₁₂ : halt ∈ stmts₁ q₂ h₀₁ : q₀ ∈ stmts₁ halt ⊢ q₀ ∈ {halt} ** exact h₀₁ ** Qed
| |
Turing.TM1.stmts₁_supportsStmt_mono ** Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 S : Finset Λ q₁ q₂ : Stmt₁ h : q₁ ∈ stmts₁ q₂ hs : SupportsStmt S q₂ ⊢ SupportsStmt S q₁ ** induction' q₂ with _ q IH _ q IH _ q IH <;>
simp only [stmts₁, SupportsStmt, Finset.mem_insert, Finset.mem_union, Finset.mem_singleton]
at h hs ** case move Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 S : Finset Λ q₁ q₂ : Stmt₁ h✝ : q₁ ∈ stmts₁ q₂ hs✝ : SupportsStmt S q₂ a✝ : Dir q : Stmt₁ IH : q₁ ∈ stmts₁ q → SupportsStmt S q → SupportsStmt S q₁ hs : SupportsStmt S q h : q₁ = move a✝ q ∨ q₁ ∈ stmts₁ q ⊢ SupportsStmt S q₁ case write Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 S : Finset Λ q₁ q₂ : Stmt₁ h✝ : q₁ ∈ stmts₁ q₂ hs✝ : SupportsStmt S q₂ a✝ : Γ → σ → Γ q : Stmt₁ IH : q₁ ∈ stmts₁ q → SupportsStmt S q → SupportsStmt S q₁ hs : SupportsStmt S q h : q₁ = write a✝ q ∨ q₁ ∈ stmts₁ q ⊢ SupportsStmt S q₁ case load Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 S : Finset Λ q₁ q₂ : Stmt₁ h✝ : q₁ ∈ stmts₁ q₂ hs✝ : SupportsStmt S q₂ a✝ : Γ → σ → σ q : Stmt₁ IH : q₁ ∈ stmts₁ q → SupportsStmt S q → SupportsStmt S q₁ hs : SupportsStmt S q h : q₁ = load a✝ q ∨ q₁ ∈ stmts₁ q ⊢ SupportsStmt S q₁ case branch Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 S : Finset Λ q₁ q₂ : Stmt₁ h✝ : q₁ ∈ stmts₁ q₂ hs✝ : SupportsStmt S q₂ a✝² : Γ → σ → Bool a✝¹ a✝ : Stmt₁ a_ih✝¹ : q₁ ∈ stmts₁ a✝¹ → SupportsStmt S a✝¹ → SupportsStmt S q₁ a_ih✝ : q₁ ∈ stmts₁ a✝ → SupportsStmt S a✝ → SupportsStmt S q₁ hs : SupportsStmt S a✝¹ ∧ SupportsStmt S a✝ h : q₁ = branch a✝² a✝¹ a✝ ∨ q₁ ∈ stmts₁ a✝¹ ∨ q₁ ∈ stmts₁ a✝ ⊢ SupportsStmt S q₁ case goto Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 S : Finset Λ q₁ q₂ : Stmt₁ h✝ : q₁ ∈ stmts₁ q₂ hs✝ : SupportsStmt S q₂ a✝ : Γ → σ → Λ hs : ∀ (a : Γ) (v : σ), a✝ a v ∈ S h : q₁ = goto a✝ ⊢ SupportsStmt S q₁ case halt Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 S : Finset Λ q₁ q₂ : Stmt₁ h✝ : q₁ ∈ stmts₁ q₂ hs✝ : SupportsStmt S q₂ hs : True h : q₁ = halt ⊢ SupportsStmt S q₁ ** iterate 3 rcases h with (rfl | h) <;> [exact hs; exact IH h hs] ** case branch Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 S : Finset Λ q₁ q₂ : Stmt₁ h✝ : q₁ ∈ stmts₁ q₂ hs✝ : SupportsStmt S q₂ a✝² : Γ → σ → Bool a✝¹ a✝ : Stmt₁ a_ih✝¹ : q₁ ∈ stmts₁ a✝¹ → SupportsStmt S a✝¹ → SupportsStmt S q₁ a_ih✝ : q₁ ∈ stmts₁ a✝ → SupportsStmt S a✝ → SupportsStmt S q₁ hs : SupportsStmt S a✝¹ ∧ SupportsStmt S a✝ h : q₁ = branch a✝² a✝¹ a✝ ∨ q₁ ∈ stmts₁ a✝¹ ∨ q₁ ∈ stmts₁ a✝ ⊢ SupportsStmt S q₁ case goto Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 S : Finset Λ q₁ q₂ : Stmt₁ h✝ : q₁ ∈ stmts₁ q₂ hs✝ : SupportsStmt S q₂ a✝ : Γ → σ → Λ hs : ∀ (a : Γ) (v : σ), a✝ a v ∈ S h : q₁ = goto a✝ ⊢ SupportsStmt S q₁ case halt Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 S : Finset Λ q₁ q₂ : Stmt₁ h✝ : q₁ ∈ stmts₁ q₂ hs✝ : SupportsStmt S q₂ hs : True h : q₁ = halt ⊢ SupportsStmt S q₁ ** case branch p q₁ q₂ IH₁ IH₂ => rcases h with (rfl | h | h); exacts [hs, IH₁ h hs.1, IH₂ h hs.2] ** case goto Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 S : Finset Λ q₁ q₂ : Stmt₁ h✝ : q₁ ∈ stmts₁ q₂ hs✝ : SupportsStmt S q₂ a✝ : Γ → σ → Λ hs : ∀ (a : Γ) (v : σ), a✝ a v ∈ S h : q₁ = goto a✝ ⊢ SupportsStmt S q₁ case halt Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 S : Finset Λ q₁ q₂ : Stmt₁ h✝ : q₁ ∈ stmts₁ q₂ hs✝ : SupportsStmt S q₂ hs : True h : q₁ = halt ⊢ SupportsStmt S q₁ ** case goto l => subst h; exact hs ** case halt Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 S : Finset Λ q₁ q₂ : Stmt₁ h✝ : q₁ ∈ stmts₁ q₂ hs✝ : SupportsStmt S q₂ hs : True h : q₁ = halt ⊢ SupportsStmt S q₁ ** case halt => subst h; trivial ** case load Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 S : Finset Λ q₁ q₂ : Stmt₁ h✝ : q₁ ∈ stmts₁ q₂ hs✝ : SupportsStmt S q₂ a✝ : Γ → σ → σ q : Stmt₁ IH : q₁ ∈ stmts₁ q → SupportsStmt S q → SupportsStmt S q₁ hs : SupportsStmt S q h : q₁ = load a✝ q ∨ q₁ ∈ stmts₁ q ⊢ SupportsStmt S q₁ case branch Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 S : Finset Λ q₁ q₂ : Stmt₁ h✝ : q₁ ∈ stmts₁ q₂ hs✝ : SupportsStmt S q₂ a✝² : Γ → σ → Bool a✝¹ a✝ : Stmt₁ a_ih✝¹ : q₁ ∈ stmts₁ a✝¹ → SupportsStmt S a✝¹ → SupportsStmt S q₁ a_ih✝ : q₁ ∈ stmts₁ a✝ → SupportsStmt S a✝ → SupportsStmt S q₁ hs : SupportsStmt S a✝¹ ∧ SupportsStmt S a✝ h : q₁ = branch a✝² a✝¹ a✝ ∨ q₁ ∈ stmts₁ a✝¹ ∨ q₁ ∈ stmts₁ a✝ ⊢ SupportsStmt S q₁ case goto Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 S : Finset Λ q₁ q₂ : Stmt₁ h✝ : q₁ ∈ stmts₁ q₂ hs✝ : SupportsStmt S q₂ a✝ : Γ → σ → Λ hs : ∀ (a : Γ) (v : σ), a✝ a v ∈ S h : q₁ = goto a✝ ⊢ SupportsStmt S q₁ case halt Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 S : Finset Λ q₁ q₂ : Stmt₁ h✝ : q₁ ∈ stmts₁ q₂ hs✝ : SupportsStmt S q₂ hs : True h : q₁ = halt ⊢ SupportsStmt S q₁ ** rcases h with (rfl | h) <;> [exact hs; exact IH h hs] ** Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 S : Finset Λ q₁✝ q₂✝ : Stmt₁ h✝ : q₁✝ ∈ stmts₁ q₂✝ hs✝ : SupportsStmt S q₂✝ p : Γ → σ → Bool q₁ q₂ : Stmt₁ IH₁ : q₁✝ ∈ stmts₁ q₁ → SupportsStmt S q₁ → SupportsStmt S q₁✝ IH₂ : q₁✝ ∈ stmts₁ q₂ → SupportsStmt S q₂ → SupportsStmt S q₁✝ hs : SupportsStmt S q₁ ∧ SupportsStmt S q₂ h : q₁✝ = branch p q₁ q₂ ∨ q₁✝ ∈ stmts₁ q₁ ∨ q₁✝ ∈ stmts₁ q₂ ⊢ SupportsStmt S q₁✝ ** rcases h with (rfl | h | h) ** case inl Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 S : Finset Λ q₂✝ : Stmt₁ hs✝ : SupportsStmt S q₂✝ p : Γ → σ → Bool q₁ q₂ : Stmt₁ hs : SupportsStmt S q₁ ∧ SupportsStmt S q₂ h : branch p q₁ q₂ ∈ stmts₁ q₂✝ IH₁ : branch p q₁ q₂ ∈ stmts₁ q₁ → SupportsStmt S q₁ → SupportsStmt S (branch p q₁ q₂) IH₂ : branch p q₁ q₂ ∈ stmts₁ q₂ → SupportsStmt S q₂ → SupportsStmt S (branch p q₁ q₂) ⊢ SupportsStmt S (branch p q₁ q₂) case inr.inl Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 S : Finset Λ q₁✝ q₂✝ : Stmt₁ h✝ : q₁✝ ∈ stmts₁ q₂✝ hs✝ : SupportsStmt S q₂✝ p : Γ → σ → Bool q₁ q₂ : Stmt₁ IH₁ : q₁✝ ∈ stmts₁ q₁ → SupportsStmt S q₁ → SupportsStmt S q₁✝ IH₂ : q₁✝ ∈ stmts₁ q₂ → SupportsStmt S q₂ → SupportsStmt S q₁✝ hs : SupportsStmt S q₁ ∧ SupportsStmt S q₂ h : q₁✝ ∈ stmts₁ q₁ ⊢ SupportsStmt S q₁✝ case inr.inr Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 S : Finset Λ q₁✝ q₂✝ : Stmt₁ h✝ : q₁✝ ∈ stmts₁ q₂✝ hs✝ : SupportsStmt S q₂✝ p : Γ → σ → Bool q₁ q₂ : Stmt₁ IH₁ : q₁✝ ∈ stmts₁ q₁ → SupportsStmt S q₁ → SupportsStmt S q₁✝ IH₂ : q₁✝ ∈ stmts₁ q₂ → SupportsStmt S q₂ → SupportsStmt S q₁✝ hs : SupportsStmt S q₁ ∧ SupportsStmt S q₂ h : q₁✝ ∈ stmts₁ q₂ ⊢ SupportsStmt S q₁✝ ** exacts [hs, IH₁ h hs.1, IH₂ h hs.2] ** Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 S : Finset Λ q₁ q₂ : Stmt₁ h✝ : q₁ ∈ stmts₁ q₂ hs✝ : SupportsStmt S q₂ l : Γ → σ → Λ hs : ∀ (a : Γ) (v : σ), l a v ∈ S h : q₁ = goto l ⊢ SupportsStmt S q₁ ** subst h ** Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 S : Finset Λ q₂ : Stmt₁ hs✝ : SupportsStmt S q₂ l : Γ → σ → Λ hs : ∀ (a : Γ) (v : σ), l a v ∈ S h : goto l ∈ stmts₁ q₂ ⊢ SupportsStmt S (goto l) ** exact hs ** Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 S : Finset Λ q₁ q₂ : Stmt₁ h✝ : q₁ ∈ stmts₁ q₂ hs✝ : SupportsStmt S q₂ hs : True h : q₁ = halt ⊢ SupportsStmt S q₁ ** subst h ** Γ : Type u_1 inst✝ : Inhabited Γ Λ : Type u_2 σ : Type u_3 S : Finset Λ q₂ : Stmt₁ hs✝ : SupportsStmt S q₂ hs : True h : halt ∈ stmts₁ q₂ ⊢ SupportsStmt S halt ** trivial ** Qed
| |
Turing.TM1.step_supports ** Γ : Type u_1 inst✝¹ : Inhabited Γ Λ : Type u_2 σ : Type u_3 inst✝ : Inhabited Λ M : Λ → Stmt₁ S : Finset Λ ss : Supports M S l₁ : Λ v : σ T : Tape Γ c' : Cfg₁ h₁ : c' ∈ step M { l := some l₁, var := v, Tape := T } h₂ : { l := some l₁, var := v, Tape := T }.l ∈ ↑Finset.insertNone S ⊢ c'.l ∈ ↑Finset.insertNone S ** replace h₂ := ss.2 _ (Finset.some_mem_insertNone.1 h₂) ** Γ : Type u_1 inst✝¹ : Inhabited Γ Λ : Type u_2 σ : Type u_3 inst✝ : Inhabited Λ M : Λ → Stmt₁ S : Finset Λ ss : Supports M S l₁ : Λ v : σ T : Tape Γ c' : Cfg₁ h₁ : c' ∈ step M { l := some l₁, var := v, Tape := T } h₂ : SupportsStmt S (M l₁) ⊢ c'.l ∈ ↑Finset.insertNone S ** simp only [step, Option.mem_def, Option.some.injEq] at h₁ ** Γ : Type u_1 inst✝¹ : Inhabited Γ Λ : Type u_2 σ : Type u_3 inst✝ : Inhabited Λ M : Λ → Stmt₁ S : Finset Λ ss : Supports M S l₁ : Λ v : σ T : Tape Γ c' : Cfg₁ h₂ : SupportsStmt S (M l₁) h₁ : stepAux (M l₁) v T = c' ⊢ c'.l ∈ ↑Finset.insertNone S ** subst c' ** Γ : Type u_1 inst✝¹ : Inhabited Γ Λ : Type u_2 σ : Type u_3 inst✝ : Inhabited Λ M : Λ → Stmt₁ S : Finset Λ ss : Supports M S l₁ : Λ v : σ T : Tape Γ h₂ : SupportsStmt S (M l₁) ⊢ (stepAux (M l₁) v T).l ∈ ↑Finset.insertNone S ** revert h₂ ** Γ : Type u_1 inst✝¹ : Inhabited Γ Λ : Type u_2 σ : Type u_3 inst✝ : Inhabited Λ M : Λ → Stmt₁ S : Finset Λ ss : Supports M S l₁ : Λ v : σ T : Tape Γ ⊢ SupportsStmt S (M l₁) → (stepAux (M l₁) v T).l ∈ ↑Finset.insertNone S ** induction' M l₁ with _ q IH _ q IH _ q IH generalizing v T <;> intro hs ** case move Γ : Type u_1 inst✝¹ : Inhabited Γ Λ : Type u_2 σ : Type u_3 inst✝ : Inhabited Λ M : Λ → Stmt₁ S : Finset Λ ss : Supports M S l₁ : Λ v✝ : σ T✝ : Tape Γ a✝ : Dir q : Stmt₁ IH : ∀ (v : σ) (T : Tape Γ), SupportsStmt S q → (stepAux q v T).l ∈ ↑Finset.insertNone S v : σ T : Tape Γ hs : SupportsStmt S (move a✝ q) ⊢ (stepAux (move a✝ q) v T).l ∈ ↑Finset.insertNone S case write Γ : Type u_1 inst✝¹ : Inhabited Γ Λ : Type u_2 σ : Type u_3 inst✝ : Inhabited Λ M : Λ → Stmt₁ S : Finset Λ ss : Supports M S l₁ : Λ v✝ : σ T✝ : Tape Γ a✝ : Γ → σ → Γ q : Stmt₁ IH : ∀ (v : σ) (T : Tape Γ), SupportsStmt S q → (stepAux q v T).l ∈ ↑Finset.insertNone S v : σ T : Tape Γ hs : SupportsStmt S (write a✝ q) ⊢ (stepAux (write a✝ q) v T).l ∈ ↑Finset.insertNone S case load Γ : Type u_1 inst✝¹ : Inhabited Γ Λ : Type u_2 σ : Type u_3 inst✝ : Inhabited Λ M : Λ → Stmt₁ S : Finset Λ ss : Supports M S l₁ : Λ v✝ : σ T✝ : Tape Γ a✝ : Γ → σ → σ q : Stmt₁ IH : ∀ (v : σ) (T : Tape Γ), SupportsStmt S q → (stepAux q v T).l ∈ ↑Finset.insertNone S v : σ T : Tape Γ hs : SupportsStmt S (load a✝ q) ⊢ (stepAux (load a✝ q) v T).l ∈ ↑Finset.insertNone S case branch Γ : Type u_1 inst✝¹ : Inhabited Γ Λ : Type u_2 σ : Type u_3 inst✝ : Inhabited Λ M : Λ → Stmt₁ S : Finset Λ ss : Supports M S l₁ : Λ v✝ : σ T✝ : Tape Γ a✝² : Γ → σ → Bool a✝¹ a✝ : Stmt₁ a_ih✝¹ : ∀ (v : σ) (T : Tape Γ), SupportsStmt S a✝¹ → (stepAux a✝¹ v T).l ∈ ↑Finset.insertNone S a_ih✝ : ∀ (v : σ) (T : Tape Γ), SupportsStmt S a✝ → (stepAux a✝ v T).l ∈ ↑Finset.insertNone S v : σ T : Tape Γ hs : SupportsStmt S (branch a✝² a✝¹ a✝) ⊢ (stepAux (branch a✝² a✝¹ a✝) v T).l ∈ ↑Finset.insertNone S case goto Γ : Type u_1 inst✝¹ : Inhabited Γ Λ : Type u_2 σ : Type u_3 inst✝ : Inhabited Λ M : Λ → Stmt₁ S : Finset Λ ss : Supports M S l₁ : Λ v✝ : σ T✝ : Tape Γ a✝ : Γ → σ → Λ v : σ T : Tape Γ hs : SupportsStmt S (goto a✝) ⊢ (stepAux (goto a✝) v T).l ∈ ↑Finset.insertNone S case halt Γ : Type u_1 inst✝¹ : Inhabited Γ Λ : Type u_2 σ : Type u_3 inst✝ : Inhabited Λ M : Λ → Stmt₁ S : Finset Λ ss : Supports M S l₁ : Λ v✝ : σ T✝ : Tape Γ v : σ T : Tape Γ hs : SupportsStmt S halt ⊢ (stepAux halt v T).l ∈ ↑Finset.insertNone S ** iterate 3 exact IH _ _ hs ** case goto Γ : Type u_1 inst✝¹ : Inhabited Γ Λ : Type u_2 σ : Type u_3 inst✝ : Inhabited Λ M : Λ → Stmt₁ S : Finset Λ ss : Supports M S l₁ : Λ v✝ : σ T✝ : Tape Γ a✝ : Γ → σ → Λ v : σ T : Tape Γ hs : SupportsStmt S (goto a✝) ⊢ (stepAux (goto a✝) v T).l ∈ ↑Finset.insertNone S case halt Γ : Type u_1 inst✝¹ : Inhabited Γ Λ : Type u_2 σ : Type u_3 inst✝ : Inhabited Λ M : Λ → Stmt₁ S : Finset Λ ss : Supports M S l₁ : Λ v✝ : σ T✝ : Tape Γ v : σ T : Tape Γ hs : SupportsStmt S halt ⊢ (stepAux halt v T).l ∈ ↑Finset.insertNone S ** case goto => exact Finset.some_mem_insertNone.2 (hs _ _) ** case halt Γ : Type u_1 inst✝¹ : Inhabited Γ Λ : Type u_2 σ : Type u_3 inst✝ : Inhabited Λ M : Λ → Stmt₁ S : Finset Λ ss : Supports M S l₁ : Λ v✝ : σ T✝ : Tape Γ v : σ T : Tape Γ hs : SupportsStmt S halt ⊢ (stepAux halt v T).l ∈ ↑Finset.insertNone S ** case halt => apply Multiset.mem_cons_self ** case load Γ : Type u_1 inst✝¹ : Inhabited Γ Λ : Type u_2 σ : Type u_3 inst✝ : Inhabited Λ M : Λ → Stmt₁ S : Finset Λ ss : Supports M S l₁ : Λ v✝ : σ T✝ : Tape Γ a✝ : Γ → σ → σ q : Stmt₁ IH : ∀ (v : σ) (T : Tape Γ), SupportsStmt S q → (stepAux q v T).l ∈ ↑Finset.insertNone S v : σ T : Tape Γ hs : SupportsStmt S (load a✝ q) ⊢ (stepAux (load a✝ q) v T).l ∈ ↑Finset.insertNone S case branch Γ : Type u_1 inst✝¹ : Inhabited Γ Λ : Type u_2 σ : Type u_3 inst✝ : Inhabited Λ M : Λ → Stmt₁ S : Finset Λ ss : Supports M S l₁ : Λ v✝ : σ T✝ : Tape Γ a✝² : Γ → σ → Bool a✝¹ a✝ : Stmt₁ a_ih✝¹ : ∀ (v : σ) (T : Tape Γ), SupportsStmt S a✝¹ → (stepAux a✝¹ v T).l ∈ ↑Finset.insertNone S a_ih✝ : ∀ (v : σ) (T : Tape Γ), SupportsStmt S a✝ → (stepAux a✝ v T).l ∈ ↑Finset.insertNone S v : σ T : Tape Γ hs : SupportsStmt S (branch a✝² a✝¹ a✝) ⊢ (stepAux (branch a✝² a✝¹ a✝) v T).l ∈ ↑Finset.insertNone S case goto Γ : Type u_1 inst✝¹ : Inhabited Γ Λ : Type u_2 σ : Type u_3 inst✝ : Inhabited Λ M : Λ → Stmt₁ S : Finset Λ ss : Supports M S l₁ : Λ v✝ : σ T✝ : Tape Γ a✝ : Γ → σ → Λ v : σ T : Tape Γ hs : SupportsStmt S (goto a✝) ⊢ (stepAux (goto a✝) v T).l ∈ ↑Finset.insertNone S case halt Γ : Type u_1 inst✝¹ : Inhabited Γ Λ : Type u_2 σ : Type u_3 inst✝ : Inhabited Λ M : Λ → Stmt₁ S : Finset Λ ss : Supports M S l₁ : Λ v✝ : σ T✝ : Tape Γ v : σ T : Tape Γ hs : SupportsStmt S halt ⊢ (stepAux halt v T).l ∈ ↑Finset.insertNone S ** exact IH _ _ hs ** Γ : Type u_1 inst✝¹ : Inhabited Γ Λ : Type u_2 σ : Type u_3 inst✝ : Inhabited Λ M : Λ → Stmt₁ S : Finset Λ ss : Supports M S l₁ : Λ v✝ : σ T✝ : Tape Γ p : Γ → σ → Bool q₁' q₂' : Stmt₁ IH₁ : ∀ (v : σ) (T : Tape Γ), SupportsStmt S q₁' → (stepAux q₁' v T).l ∈ ↑Finset.insertNone S IH₂ : ∀ (v : σ) (T : Tape Γ), SupportsStmt S q₂' → (stepAux q₂' v T).l ∈ ↑Finset.insertNone S v : σ T : Tape Γ hs : SupportsStmt S (branch p q₁' q₂') ⊢ (stepAux (branch p q₁' q₂') v T).l ∈ ↑Finset.insertNone S ** unfold stepAux ** Γ : Type u_1 inst✝¹ : Inhabited Γ Λ : Type u_2 σ : Type u_3 inst✝ : Inhabited Λ M : Λ → Stmt₁ S : Finset Λ ss : Supports M S l₁ : Λ v✝ : σ T✝ : Tape Γ p : Γ → σ → Bool q₁' q₂' : Stmt₁ IH₁ : ∀ (v : σ) (T : Tape Γ), SupportsStmt S q₁' → (stepAux q₁' v T).l ∈ ↑Finset.insertNone S IH₂ : ∀ (v : σ) (T : Tape Γ), SupportsStmt S q₂' → (stepAux q₂' v T).l ∈ ↑Finset.insertNone S v : σ T : Tape Γ hs : SupportsStmt S (branch p q₁' q₂') ⊢ (bif p T.head v then stepAux q₁' v T else stepAux q₂' v T).l ∈ ↑Finset.insertNone S ** cases p T.1 v ** case false Γ : Type u_1 inst✝¹ : Inhabited Γ Λ : Type u_2 σ : Type u_3 inst✝ : Inhabited Λ M : Λ → Stmt₁ S : Finset Λ ss : Supports M S l₁ : Λ v✝ : σ T✝ : Tape Γ p : Γ → σ → Bool q₁' q₂' : Stmt₁ IH₁ : ∀ (v : σ) (T : Tape Γ), SupportsStmt S q₁' → (stepAux q₁' v T).l ∈ ↑Finset.insertNone S IH₂ : ∀ (v : σ) (T : Tape Γ), SupportsStmt S q₂' → (stepAux q₂' v T).l ∈ ↑Finset.insertNone S v : σ T : Tape Γ hs : SupportsStmt S (branch p q₁' q₂') ⊢ (bif false then stepAux q₁' v T else stepAux q₂' v T).l ∈ ↑Finset.insertNone S ** exact IH₂ _ _ hs.2 ** case true Γ : Type u_1 inst✝¹ : Inhabited Γ Λ : Type u_2 σ : Type u_3 inst✝ : Inhabited Λ M : Λ → Stmt₁ S : Finset Λ ss : Supports M S l₁ : Λ v✝ : σ T✝ : Tape Γ p : Γ → σ → Bool q₁' q₂' : Stmt₁ IH₁ : ∀ (v : σ) (T : Tape Γ), SupportsStmt S q₁' → (stepAux q₁' v T).l ∈ ↑Finset.insertNone S IH₂ : ∀ (v : σ) (T : Tape Γ), SupportsStmt S q₂' → (stepAux q₂' v T).l ∈ ↑Finset.insertNone S v : σ T : Tape Γ hs : SupportsStmt S (branch p q₁' q₂') ⊢ (bif true then stepAux q₁' v T else stepAux q₂' v T).l ∈ ↑Finset.insertNone S ** exact IH₁ _ _ hs.1 ** Γ : Type u_1 inst✝¹ : Inhabited Γ Λ : Type u_2 σ : Type u_3 inst✝ : Inhabited Λ M : Λ → Stmt₁ S : Finset Λ ss : Supports M S l₁ : Λ v✝ : σ T✝ : Tape Γ a✝ : Γ → σ → Λ v : σ T : Tape Γ hs : SupportsStmt S (goto a✝) ⊢ (stepAux (goto a✝) v T).l ∈ ↑Finset.insertNone S ** exact Finset.some_mem_insertNone.2 (hs _ _) ** Γ : Type u_1 inst✝¹ : Inhabited Γ Λ : Type u_2 σ : Type u_3 inst✝ : Inhabited Λ M : Λ → Stmt₁ S : Finset Λ ss : Supports M S l₁ : Λ v✝ : σ T✝ : Tape Γ v : σ T : Tape Γ hs : SupportsStmt S halt ⊢ (stepAux halt v T).l ∈ ↑Finset.insertNone S ** apply Multiset.mem_cons_self ** Qed
| |
Turing.TM1to1.stepAux_move ** Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ d : Dir q : Stmt Bool Λ' σ v : σ T : Tape Bool ⊢ stepAux (move d q) v T = stepAux q v ((Tape.move d)^[n] T) ** suffices ∀ i, stepAux ((Stmt.move d)^[i] q) v T = stepAux q v ((Tape.move d)^[i] T) from this n ** Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ d : Dir q : Stmt Bool Λ' σ v : σ T : Tape Bool ⊢ ∀ (i : ℕ), stepAux ((Stmt.move d)^[i] q) v T = stepAux q v ((Tape.move d)^[i] T) ** intro i ** Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ d : Dir q : Stmt Bool Λ' σ v : σ T : Tape Bool i : ℕ ⊢ stepAux ((Stmt.move d)^[i] q) v T = stepAux q v ((Tape.move d)^[i] T) ** induction' i with i IH generalizing T ** case succ Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ d : Dir q : Stmt Bool Λ' σ v : σ T✝ : Tape Bool i : ℕ IH : ∀ (T : Tape Bool), stepAux ((Stmt.move d)^[i] q) v T = stepAux q v ((Tape.move d)^[i] T) T : Tape Bool ⊢ stepAux ((Stmt.move d)^[Nat.succ i] q) v T = stepAux q v ((Tape.move d)^[Nat.succ i] T) ** rw [iterate_succ', iterate_succ] ** case succ Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ d : Dir q : Stmt Bool Λ' σ v : σ T✝ : Tape Bool i : ℕ IH : ∀ (T : Tape Bool), stepAux ((Stmt.move d)^[i] q) v T = stepAux q v ((Tape.move d)^[i] T) T : Tape Bool ⊢ stepAux ((Stmt.move d ∘ (Stmt.move d)^[i]) q) v T = stepAux q v (((Tape.move d)^[i] ∘ Tape.move d) T) ** simp only [stepAux, Function.comp_apply] ** case succ Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ d : Dir q : Stmt Bool Λ' σ v : σ T✝ : Tape Bool i : ℕ IH : ∀ (T : Tape Bool), stepAux ((Stmt.move d)^[i] q) v T = stepAux q v ((Tape.move d)^[i] T) T : Tape Bool ⊢ stepAux ((Stmt.move d)^[i] q) v (Tape.move d T) = stepAux q v ((Tape.move d)^[i] (Tape.move d T)) ** rw [IH] ** case zero Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ d : Dir q : Stmt Bool Λ' σ v : σ T✝ T : Tape Bool ⊢ stepAux ((Stmt.move d)^[Nat.zero] q) v T = stepAux q v ((Tape.move d)^[Nat.zero] T) ** rfl ** Qed
| |
Turing.TM1to1.supportsStmt_move ** Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ S : Finset Λ' d : Dir q : Stmt Bool Λ' σ ⊢ SupportsStmt S (move d q) = SupportsStmt S q ** suffices ∀ {i}, SupportsStmt S ((Stmt.move d)^[i] q) = _ from this ** Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ S : Finset Λ' d : Dir q : Stmt Bool Λ' σ ⊢ ∀ {i : ℕ}, SupportsStmt S ((Stmt.move d)^[i] q) = SupportsStmt S q ** intro i ** Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ S : Finset Λ' d : Dir q : Stmt Bool Λ' σ i : ℕ ⊢ SupportsStmt S ((Stmt.move d)^[i] q) = SupportsStmt S q ** induction i generalizing q <;> simp only [*, iterate] ** case succ Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ S : Finset Λ' d : Dir n✝ : ℕ n_ih✝ : ∀ {q : Stmt Bool Λ' σ}, SupportsStmt S ((Stmt.move d)^[n✝] q) = SupportsStmt S q q : Stmt Bool Λ' σ ⊢ SupportsStmt S (Stmt.move d q) = SupportsStmt S q ** rfl ** Qed
| |
Turing.TM1to1.supportsStmt_write ** Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ S : Finset Λ' l : List Bool q : Stmt Bool Λ' σ ⊢ SupportsStmt S (write l q) = SupportsStmt S q ** induction' l with _ l IH <;> simp only [write, SupportsStmt, *] ** Qed
| |
Turing.TM1to1.supportsStmt_read ** Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ S : Finset Λ' f✝ : Γ → Stmt Bool Λ' σ this : ∀ (i : ℕ) (f : Vector Bool i → Stmt Bool Λ' σ), (∀ (v : Vector Bool i), SupportsStmt S (f v)) → SupportsStmt S (readAux i f) hf : ∀ (a : Γ), SupportsStmt S (f✝ a) ⊢ ∀ (v : Vector Bool n), SupportsStmt S (move Dir.left (f✝ (dec v))) ** intro ** Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ S : Finset Λ' f✝ : Γ → Stmt Bool Λ' σ this : ∀ (i : ℕ) (f : Vector Bool i → Stmt Bool Λ' σ), (∀ (v : Vector Bool i), SupportsStmt S (f v)) → SupportsStmt S (readAux i f) hf : ∀ (a : Γ), SupportsStmt S (f✝ a) v✝ : Vector Bool n ⊢ SupportsStmt S (move Dir.left (f✝ (dec v✝))) ** simp only [supportsStmt_move, hf] ** Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ S : Finset Λ' f✝ : Γ → Stmt Bool Λ' σ i : ℕ f : Vector Bool i → Stmt Bool Λ' σ hf : ∀ (v : Vector Bool i), SupportsStmt S (f v) ⊢ SupportsStmt S (readAux i f) ** induction' i with i IH ** case succ Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ S : Finset Λ' f✝¹ : Γ → Stmt Bool Λ' σ i✝ : ℕ f✝ : Vector Bool i✝ → Stmt Bool Λ' σ hf✝ : ∀ (v : Vector Bool i✝), SupportsStmt S (f✝ v) i : ℕ IH : ∀ (f : Vector Bool i → Stmt Bool Λ' σ), (∀ (v : Vector Bool i), SupportsStmt S (f v)) → SupportsStmt S (readAux i f) f : Vector Bool (Nat.succ i) → Stmt Bool Λ' σ hf : ∀ (v : Vector Bool (Nat.succ i)), SupportsStmt S (f v) ⊢ SupportsStmt S (readAux (Nat.succ i) f) ** constructor <;> apply IH <;> intro <;> apply hf ** case zero Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ S : Finset Λ' f✝¹ : Γ → Stmt Bool Λ' σ i : ℕ f✝ : Vector Bool i → Stmt Bool Λ' σ hf✝ : ∀ (v : Vector Bool i), SupportsStmt S (f✝ v) f : Vector Bool Nat.zero → Stmt Bool Λ' σ hf : ∀ (v : Vector Bool Nat.zero), SupportsStmt S (f v) ⊢ SupportsStmt S (readAux Nat.zero f) ** exact hf _ ** Qed
| |
Turing.TM1to1.trTape'_move_left ** Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ L R : ListBlank Γ ⊢ (Tape.move Dir.left)^[n] (trTape' enc0 L R) = trTape' enc0 (ListBlank.tail L) (ListBlank.cons (ListBlank.head L) R) ** obtain ⟨a, L, rfl⟩ := L.exists_cons ** case intro.intro Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ R : ListBlank Γ a : Γ L : ListBlank Γ ⊢ (Tape.move Dir.left)^[n] (trTape' enc0 (ListBlank.cons a L) R) = trTape' enc0 (ListBlank.tail (ListBlank.cons a L)) (ListBlank.cons (ListBlank.head (ListBlank.cons a L)) R) ** simp only [trTape', ListBlank.cons_bind, ListBlank.head_cons, ListBlank.tail_cons] ** case intro.intro Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ R : ListBlank Γ a : Γ L : ListBlank Γ ⊢ (Tape.move Dir.left)^[n] (Tape.mk' (ListBlank.append (List.reverse (Vector.toList (enc a))) (ListBlank.bind L (fun x => List.reverse (Vector.toList (enc x))) (_ : ∃ n_1, (fun x => List.reverse (Vector.toList (enc x))) default = List.replicate n_1 default))) (ListBlank.bind R (fun x => Vector.toList (enc x)) (_ : ∃ n_1, (fun x => Vector.toList (enc x)) default = List.replicate n_1 default))) = Tape.mk' (ListBlank.bind L (fun x => List.reverse (Vector.toList (enc x))) (_ : ∃ n_1, (fun x => List.reverse (Vector.toList (enc x))) default = List.replicate n_1 default)) (ListBlank.append (Vector.toList (enc a)) (ListBlank.bind R (fun x => Vector.toList (enc x)) (_ : ∃ n_1, (fun x => Vector.toList (enc x)) default = List.replicate n_1 default))) ** suffices ∀ {L' R' l₁ l₂} (_ : Vector.toList (enc a) = List.reverseAux l₁ l₂),
(Tape.move Dir.left)^[l₁.length]
(Tape.mk' (ListBlank.append l₁ L') (ListBlank.append l₂ R')) =
Tape.mk' L' (ListBlank.append (Vector.toList (enc a)) R') by
simpa only [List.length_reverse, Vector.toList_length] using this (List.reverse_reverse _).symm ** case intro.intro Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ R : ListBlank Γ a : Γ L : ListBlank Γ ⊢ ∀ {L' R' : ListBlank Bool} {l₁ l₂ : List Bool}, Vector.toList (enc a) = List.reverseAux l₁ l₂ → (Tape.move Dir.left)^[List.length l₁] (Tape.mk' (ListBlank.append l₁ L') (ListBlank.append l₂ R')) = Tape.mk' L' (ListBlank.append (Vector.toList (enc a)) R') ** intro _ _ l₁ l₂ e ** case intro.intro Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ R : ListBlank Γ a : Γ L : ListBlank Γ L'✝ R'✝ : ListBlank Bool l₁ l₂ : List Bool e : Vector.toList (enc a) = List.reverseAux l₁ l₂ ⊢ (Tape.move Dir.left)^[List.length l₁] (Tape.mk' (ListBlank.append l₁ L'✝) (ListBlank.append l₂ R'✝)) = Tape.mk' L'✝ (ListBlank.append (Vector.toList (enc a)) R'✝) ** induction' l₁ with b l₁ IH generalizing l₂ ** case intro.intro.cons Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ R : ListBlank Γ a : Γ L : ListBlank Γ L'✝ R'✝ : ListBlank Bool l₁✝ l₂✝ : List Bool e✝ : Vector.toList (enc a) = List.reverseAux l₁✝ l₂✝ b : Bool l₁ : List Bool IH : ∀ {l₂ : List Bool}, Vector.toList (enc a) = List.reverseAux l₁ l₂ → (Tape.move Dir.left)^[List.length l₁] (Tape.mk' (ListBlank.append l₁ L'✝) (ListBlank.append l₂ R'✝)) = Tape.mk' L'✝ (ListBlank.append (Vector.toList (enc a)) R'✝) l₂ : List Bool e : Vector.toList (enc a) = List.reverseAux (b :: l₁) l₂ ⊢ (Tape.move Dir.left)^[List.length (b :: l₁)] (Tape.mk' (ListBlank.append (b :: l₁) L'✝) (ListBlank.append l₂ R'✝)) = Tape.mk' L'✝ (ListBlank.append (Vector.toList (enc a)) R'✝) ** simp only [List.length, List.cons_append, iterate_succ_apply] ** case intro.intro.cons Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ R : ListBlank Γ a : Γ L : ListBlank Γ L'✝ R'✝ : ListBlank Bool l₁✝ l₂✝ : List Bool e✝ : Vector.toList (enc a) = List.reverseAux l₁✝ l₂✝ b : Bool l₁ : List Bool IH : ∀ {l₂ : List Bool}, Vector.toList (enc a) = List.reverseAux l₁ l₂ → (Tape.move Dir.left)^[List.length l₁] (Tape.mk' (ListBlank.append l₁ L'✝) (ListBlank.append l₂ R'✝)) = Tape.mk' L'✝ (ListBlank.append (Vector.toList (enc a)) R'✝) l₂ : List Bool e : Vector.toList (enc a) = List.reverseAux (b :: l₁) l₂ ⊢ (Tape.move Dir.left)^[List.length l₁] (Tape.move Dir.left (Tape.mk' (ListBlank.append (b :: l₁) L'✝) (ListBlank.append l₂ R'✝))) = Tape.mk' L'✝ (ListBlank.append (Vector.toList (enc a)) R'✝) ** convert IH e ** case h.e'_2.h.e'_4 Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ R : ListBlank Γ a : Γ L : ListBlank Γ L'✝ R'✝ : ListBlank Bool l₁✝ l₂✝ : List Bool e✝ : Vector.toList (enc a) = List.reverseAux l₁✝ l₂✝ b : Bool l₁ : List Bool IH : ∀ {l₂ : List Bool}, Vector.toList (enc a) = List.reverseAux l₁ l₂ → (Tape.move Dir.left)^[List.length l₁] (Tape.mk' (ListBlank.append l₁ L'✝) (ListBlank.append l₂ R'✝)) = Tape.mk' L'✝ (ListBlank.append (Vector.toList (enc a)) R'✝) l₂ : List Bool e : Vector.toList (enc a) = List.reverseAux (b :: l₁) l₂ ⊢ Tape.move Dir.left (Tape.mk' (ListBlank.append (b :: l₁) L'✝) (ListBlank.append l₂ R'✝)) = Tape.mk' (ListBlank.append l₁ L'✝) (ListBlank.append (b :: l₂) R'✝) ** simp only [ListBlank.tail_cons, ListBlank.append, Tape.move_left_mk', ListBlank.head_cons] ** Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ R : ListBlank Γ a : Γ L : ListBlank Γ this : ∀ {L' R' : ListBlank Bool} {l₁ l₂ : List Bool}, Vector.toList (enc a) = List.reverseAux l₁ l₂ → (Tape.move Dir.left)^[List.length l₁] (Tape.mk' (ListBlank.append l₁ L') (ListBlank.append l₂ R')) = Tape.mk' L' (ListBlank.append (Vector.toList (enc a)) R') ⊢ (Tape.move Dir.left)^[n] (Tape.mk' (ListBlank.append (List.reverse (Vector.toList (enc a))) (ListBlank.bind L (fun x => List.reverse (Vector.toList (enc x))) (_ : ∃ n_1, (fun x => List.reverse (Vector.toList (enc x))) default = List.replicate n_1 default))) (ListBlank.bind R (fun x => Vector.toList (enc x)) (_ : ∃ n_1, (fun x => Vector.toList (enc x)) default = List.replicate n_1 default))) = Tape.mk' (ListBlank.bind L (fun x => List.reverse (Vector.toList (enc x))) (_ : ∃ n_1, (fun x => List.reverse (Vector.toList (enc x))) default = List.replicate n_1 default)) (ListBlank.append (Vector.toList (enc a)) (ListBlank.bind R (fun x => Vector.toList (enc x)) (_ : ∃ n_1, (fun x => Vector.toList (enc x)) default = List.replicate n_1 default))) ** simpa only [List.length_reverse, Vector.toList_length] using this (List.reverse_reverse _).symm ** case intro.intro.nil Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ R : ListBlank Γ a : Γ L : ListBlank Γ L'✝ R'✝ : ListBlank Bool l₁ l₂✝ : List Bool e✝ : Vector.toList (enc a) = List.reverseAux l₁ l₂✝ l₂ : List Bool e : Vector.toList (enc a) = List.reverseAux [] l₂ ⊢ (Tape.move Dir.left)^[List.length []] (Tape.mk' (ListBlank.append [] L'✝) (ListBlank.append l₂ R'✝)) = Tape.mk' L'✝ (ListBlank.append (Vector.toList (enc a)) R'✝) ** cases e ** case intro.intro.nil.refl Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ R : ListBlank Γ a : Γ L : ListBlank Γ L'✝ R'✝ : ListBlank Bool l₁ l₂ : List Bool e : Vector.toList (enc a) = List.reverseAux l₁ l₂ ⊢ (Tape.move Dir.left)^[List.length []] (Tape.mk' (ListBlank.append [] L'✝) (ListBlank.append (enc a).1 R'✝)) = Tape.mk' L'✝ (ListBlank.append (Vector.toList (enc a)) R'✝) ** rfl ** Qed
| |
Turing.TM1to1.trTape'_move_right ** Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ L R : ListBlank Γ ⊢ (Tape.move Dir.right)^[n] (trTape' enc0 L R) = trTape' enc0 (ListBlank.cons (ListBlank.head R) L) (ListBlank.tail R) ** suffices ∀ i L, (Tape.move Dir.right)^[i] ((Tape.move Dir.left)^[i] L) = L by
refine' (Eq.symm _).trans (this n _)
simp only [trTape'_move_left, ListBlank.cons_head_tail, ListBlank.head_cons,
ListBlank.tail_cons] ** Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ L R : ListBlank Γ ⊢ ∀ (i : ℕ) (L : Tape Bool), (Tape.move Dir.right)^[i] ((Tape.move Dir.left)^[i] L) = L ** intro i _ ** Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ L R : ListBlank Γ i : ℕ L✝ : Tape Bool ⊢ (Tape.move Dir.right)^[i] ((Tape.move Dir.left)^[i] L✝) = L✝ ** induction' i with i IH ** case succ Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ L R : ListBlank Γ L✝ : Tape Bool i : ℕ IH : (Tape.move Dir.right)^[i] ((Tape.move Dir.left)^[i] L✝) = L✝ ⊢ (Tape.move Dir.right)^[Nat.succ i] ((Tape.move Dir.left)^[Nat.succ i] L✝) = L✝ ** rw [iterate_succ_apply, iterate_succ_apply', Tape.move_left_right, IH] ** Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ L R : ListBlank Γ this : ∀ (i : ℕ) (L : Tape (?m.376782 i)), (Tape.move Dir.right)^[i] ((Tape.move Dir.left)^[i] L) = L ⊢ (Tape.move Dir.right)^[n] (trTape' enc0 L R) = trTape' enc0 (ListBlank.cons (ListBlank.head R) L) (ListBlank.tail R) ** refine' (Eq.symm _).trans (this n _) ** Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ L R : ListBlank Γ this : ∀ (i : ℕ) (L : Tape Bool), (Tape.move Dir.right)^[i] ((Tape.move Dir.left)^[i] L) = L ⊢ (Tape.move Dir.right)^[n] ((Tape.move Dir.left)^[n] (trTape' enc0 (ListBlank.cons (ListBlank.head R) L) (ListBlank.tail R))) = (Tape.move Dir.right)^[n] (trTape' enc0 L R) ** simp only [trTape'_move_left, ListBlank.cons_head_tail, ListBlank.head_cons,
ListBlank.tail_cons] ** case zero Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ L R : ListBlank Γ L✝ : Tape Bool ⊢ (Tape.move Dir.right)^[Nat.zero] ((Tape.move Dir.left)^[Nat.zero] L✝) = L✝ ** rfl ** Qed
| |
Turing.TM1to1.stepAux_write ** Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ q : Stmt Bool Λ' σ v : σ a b : Γ L R : ListBlank Γ ⊢ stepAux (write (Vector.toList (enc a)) q) v (trTape' enc0 L (ListBlank.cons b R)) = stepAux q v (trTape' enc0 (ListBlank.cons a L) R) ** simp only [trTape', ListBlank.cons_bind] ** Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ q : Stmt Bool Λ' σ v : σ a b : Γ L R : ListBlank Γ ⊢ stepAux (write (Vector.toList (enc a)) q) v (Tape.mk' (ListBlank.bind L (fun x => List.reverse (Vector.toList (enc x))) (_ : ∃ n_1, (fun x => List.reverse (Vector.toList (enc x))) default = List.replicate n_1 default)) (ListBlank.append (Vector.toList (enc b)) (ListBlank.bind R (fun x => Vector.toList (enc x)) (_ : ∃ n_1, (fun x => Vector.toList (enc x)) default = List.replicate n_1 default)))) = stepAux q v (Tape.mk' (ListBlank.append (List.reverse (Vector.toList (enc a))) (ListBlank.bind L (fun x => List.reverse (Vector.toList (enc x))) (_ : ∃ n_1, (fun x => List.reverse (Vector.toList (enc x))) default = List.replicate n_1 default))) (ListBlank.bind R (fun x => Vector.toList (enc x)) (_ : ∃ n_1, (fun x => Vector.toList (enc x)) default = List.replicate n_1 default))) ** suffices ∀ {L' R'} (l₁ l₂ l₂' : List Bool) (_ : l₂'.length = l₂.length),
stepAux (write l₂ q) v (Tape.mk' (ListBlank.append l₁ L') (ListBlank.append l₂' R')) =
stepAux q v (Tape.mk' (L'.append (List.reverseAux l₂ l₁)) R') by
refine' this [] _ _ ((enc b).2.trans (enc a).2.symm) ** Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ q : Stmt Bool Λ' σ v : σ a b : Γ L R : ListBlank Γ ⊢ ∀ {L' R' : ListBlank Bool} (l₁ l₂ l₂' : List Bool), List.length l₂' = List.length l₂ → stepAux (write l₂ q) v (Tape.mk' (ListBlank.append l₁ L') (ListBlank.append l₂' R')) = stepAux q v (Tape.mk' (ListBlank.append (List.reverseAux l₂ l₁) L') R') ** clear a b L R ** Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ q : Stmt Bool Λ' σ v : σ ⊢ ∀ {L' R' : ListBlank Bool} (l₁ l₂ l₂' : List Bool), List.length l₂' = List.length l₂ → stepAux (write l₂ q) v (Tape.mk' (ListBlank.append l₁ L') (ListBlank.append l₂' R')) = stepAux q v (Tape.mk' (ListBlank.append (List.reverseAux l₂ l₁) L') R') ** intro L' R' l₁ l₂ l₂' e ** Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ q : Stmt Bool Λ' σ v : σ L' R' : ListBlank Bool l₁ l₂ l₂' : List Bool e : List.length l₂' = List.length l₂ ⊢ stepAux (write l₂ q) v (Tape.mk' (ListBlank.append l₁ L') (ListBlank.append l₂' R')) = stepAux q v (Tape.mk' (ListBlank.append (List.reverseAux l₂ l₁) L') R') ** induction' l₂ with a l₂ IH generalizing l₁ l₂' ** case cons Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ q : Stmt Bool Λ' σ v : σ L' R' : ListBlank Bool l₁✝ l₂✝ l₂'✝ : List Bool e✝ : List.length l₂'✝ = List.length l₂✝ a : Bool l₂ : List Bool IH : ∀ (l₁ l₂' : List Bool), List.length l₂' = List.length l₂ → stepAux (write l₂ q) v (Tape.mk' (ListBlank.append l₁ L') (ListBlank.append l₂' R')) = stepAux q v (Tape.mk' (ListBlank.append (List.reverseAux l₂ l₁) L') R') l₁ l₂' : List Bool e : List.length l₂' = List.length (a :: l₂) ⊢ stepAux (write (a :: l₂) q) v (Tape.mk' (ListBlank.append l₁ L') (ListBlank.append l₂' R')) = stepAux q v (Tape.mk' (ListBlank.append (List.reverseAux (a :: l₂) l₁) L') R') ** cases' l₂' with b l₂' <;> simp only [List.length_nil, List.length_cons, Nat.succ_inj'] at e ** case cons.cons Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ q : Stmt Bool Λ' σ v : σ L' R' : ListBlank Bool l₁✝ l₂✝ l₂'✝ : List Bool e✝ : List.length l₂'✝ = List.length l₂✝ a : Bool l₂ : List Bool IH : ∀ (l₁ l₂' : List Bool), List.length l₂' = List.length l₂ → stepAux (write l₂ q) v (Tape.mk' (ListBlank.append l₁ L') (ListBlank.append l₂' R')) = stepAux q v (Tape.mk' (ListBlank.append (List.reverseAux l₂ l₁) L') R') l₁ : List Bool b : Bool l₂' : List Bool e : List.length l₂' = List.length l₂ ⊢ stepAux (write (a :: l₂) q) v (Tape.mk' (ListBlank.append l₁ L') (ListBlank.append (b :: l₂') R')) = stepAux q v (Tape.mk' (ListBlank.append (List.reverseAux (a :: l₂) l₁) L') R') ** rw [List.reverseAux, ← IH (a :: l₁) l₂' e] ** case cons.cons Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ q : Stmt Bool Λ' σ v : σ L' R' : ListBlank Bool l₁✝ l₂✝ l₂'✝ : List Bool e✝ : List.length l₂'✝ = List.length l₂✝ a : Bool l₂ : List Bool IH : ∀ (l₁ l₂' : List Bool), List.length l₂' = List.length l₂ → stepAux (write l₂ q) v (Tape.mk' (ListBlank.append l₁ L') (ListBlank.append l₂' R')) = stepAux q v (Tape.mk' (ListBlank.append (List.reverseAux l₂ l₁) L') R') l₁ : List Bool b : Bool l₂' : List Bool e : List.length l₂' = List.length l₂ ⊢ stepAux (write (a :: l₂) q) v (Tape.mk' (ListBlank.append l₁ L') (ListBlank.append (b :: l₂') R')) = stepAux (write l₂ q) v (Tape.mk' (ListBlank.append (a :: l₁) L') (ListBlank.append l₂' R')) ** simp only [stepAux, ListBlank.append, Tape.write_mk', Tape.move_right_mk', ListBlank.head_cons,
ListBlank.tail_cons] ** Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ q : Stmt Bool Λ' σ v : σ a b : Γ L R : ListBlank Γ this : ∀ {L' R' : ListBlank Bool} (l₁ l₂ l₂' : List Bool), List.length l₂' = List.length l₂ → stepAux (write l₂ q) v (Tape.mk' (ListBlank.append l₁ L') (ListBlank.append l₂' R')) = stepAux q v (Tape.mk' (ListBlank.append (List.reverseAux l₂ l₁) L') R') ⊢ stepAux (write (Vector.toList (enc a)) q) v (Tape.mk' (ListBlank.bind L (fun x => List.reverse (Vector.toList (enc x))) (_ : ∃ n_1, (fun x => List.reverse (Vector.toList (enc x))) default = List.replicate n_1 default)) (ListBlank.append (Vector.toList (enc b)) (ListBlank.bind R (fun x => Vector.toList (enc x)) (_ : ∃ n_1, (fun x => Vector.toList (enc x)) default = List.replicate n_1 default)))) = stepAux q v (Tape.mk' (ListBlank.append (List.reverse (Vector.toList (enc a))) (ListBlank.bind L (fun x => List.reverse (Vector.toList (enc x))) (_ : ∃ n_1, (fun x => List.reverse (Vector.toList (enc x))) default = List.replicate n_1 default))) (ListBlank.bind R (fun x => Vector.toList (enc x)) (_ : ∃ n_1, (fun x => Vector.toList (enc x)) default = List.replicate n_1 default))) ** refine' this [] _ _ ((enc b).2.trans (enc a).2.symm) ** case nil Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ q : Stmt Bool Λ' σ v : σ L' R' : ListBlank Bool l₁✝ l₂ l₂'✝ : List Bool e✝ : List.length l₂'✝ = List.length l₂ l₁ l₂' : List Bool e : List.length l₂' = List.length [] ⊢ stepAux (write [] q) v (Tape.mk' (ListBlank.append l₁ L') (ListBlank.append l₂' R')) = stepAux q v (Tape.mk' (ListBlank.append (List.reverseAux [] l₁) L') R') ** cases List.length_eq_zero.1 e ** case nil.refl Γ : Type u_1 inst✝² : Inhabited Γ Λ : Type u_2 inst✝¹ : Inhabited Λ σ : Type u_3 inst✝ : Inhabited σ n : ℕ enc : Γ → Vector Bool n dec : Vector Bool n → Γ enc0 : enc default = Vector.replicate n false M : Λ → Stmt₁ q : Stmt Bool Λ' σ v : σ L' R' : ListBlank Bool l₁✝ l₂ l₂' : List Bool e✝ : List.length l₂' = List.length l₂ l₁ : List Bool e : List.length [] = List.length [] ⊢ stepAux (write [] q) v (Tape.mk' (ListBlank.append l₁ L') (ListBlank.append [] R')) = stepAux q v (Tape.mk' (ListBlank.append (List.reverseAux [] l₁) L') R') ** rfl ** Qed
| |
Turing.TM2.stmts₁_self ** K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 q : Stmt₂ ⊢ q ∈ stmts₁ q ** cases q <;> simp only [Finset.mem_insert_self, Finset.mem_singleton_self, stmts₁] ** Qed
| |
Turing.TM2.stmts₁_trans ** K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 q₁ q₂ : Stmt₂ ⊢ q₁ ∈ stmts₁ q₂ → stmts₁ q₁ ⊆ stmts₁ q₂ ** intro h₁₂ q₀ h₀₁ ** K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 q₁ q₂ : Stmt₂ h₁₂ : q₁ ∈ stmts₁ q₂ q₀ : Stmt₂ h₀₁ : q₀ ∈ stmts₁ q₁ ⊢ q₀ ∈ stmts₁ q₂ ** induction' q₂ with _ _ q IH _ _ q IH _ _ q IH _ q IH <;> simp only [stmts₁] at h₁₂ ⊢ <;>
simp only [Finset.mem_insert, Finset.mem_singleton, Finset.mem_union] at h₁₂ ** case goto K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 q₁ q₂ : Stmt₂ h₁₂✝ : q₁ ∈ stmts₁ q₂ q₀ : Stmt₂ h₀₁ : q₀ ∈ stmts₁ q₁ a✝ : σ → Λ h₁₂ : q₁ = goto a✝ ⊢ q₀ ∈ {goto a✝} case halt K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 q₁ q₂ : Stmt₂ h₁₂✝ : q₁ ∈ stmts₁ q₂ q₀ : Stmt₂ h₀₁ : q₀ ∈ stmts₁ q₁ h₁₂ : q₁ = halt ⊢ q₀ ∈ {halt} ** case goto l => subst h₁₂; exact h₀₁ ** case halt K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 q₁ q₂ : Stmt₂ h₁₂✝ : q₁ ∈ stmts₁ q₂ q₀ : Stmt₂ h₀₁ : q₀ ∈ stmts₁ q₁ h₁₂ : q₁ = halt ⊢ q₀ ∈ {halt} ** case halt => subst h₁₂; exact h₀₁ ** case load K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 q₁ q₂ : Stmt₂ h₁₂✝ : q₁ ∈ stmts₁ q₂ q₀ : Stmt₂ h₀₁ : q₀ ∈ stmts₁ q₁ a✝ : σ → σ q : Stmt₂ IH : q₁ ∈ stmts₁ q → q₀ ∈ stmts₁ q h₁₂ : q₁ = load a✝ q ∨ q₁ ∈ stmts₁ q ⊢ q₀ ∈ insert (load a✝ q) (stmts₁ q) case branch K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 q₁ q₂ : Stmt₂ h₁₂✝ : q₁ ∈ stmts₁ q₂ q₀ : Stmt₂ h₀₁ : q₀ ∈ stmts₁ q₁ a✝² : σ → Bool a✝¹ a✝ : Stmt₂ a_ih✝¹ : q₁ ∈ stmts₁ a✝¹ → q₀ ∈ stmts₁ a✝¹ a_ih✝ : q₁ ∈ stmts₁ a✝ → q₀ ∈ stmts₁ a✝ h₁₂ : q₁ = branch a✝² a✝¹ a✝ ∨ q₁ ∈ stmts₁ a✝¹ ∨ q₁ ∈ stmts₁ a✝ ⊢ q₀ ∈ insert (branch a✝² a✝¹ a✝) (stmts₁ a✝¹ ∪ stmts₁ a✝) case goto K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 q₁ q₂ : Stmt₂ h₁₂✝ : q₁ ∈ stmts₁ q₂ q₀ : Stmt₂ h₀₁ : q₀ ∈ stmts₁ q₁ a✝ : σ → Λ h₁₂ : q₁ = goto a✝ ⊢ q₀ ∈ {goto a✝} case halt K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 q₁ q₂ : Stmt₂ h₁₂✝ : q₁ ∈ stmts₁ q₂ q₀ : Stmt₂ h₀₁ : q₀ ∈ stmts₁ q₁ h₁₂ : q₁ = halt ⊢ q₀ ∈ {halt} ** rcases h₁₂ with (rfl | h₁₂) ** case load.inl K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 q₂ q₀ : Stmt₂ a✝ : σ → σ q : Stmt₂ h₁₂ : load a✝ q ∈ stmts₁ q₂ h₀₁ : q₀ ∈ stmts₁ (load a✝ q) IH : load a✝ q ∈ stmts₁ q → q₀ ∈ stmts₁ q ⊢ q₀ ∈ insert (load a✝ q) (stmts₁ q) ** unfold stmts₁ at h₀₁ ** case load.inl K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 q₂ q₀ : Stmt₂ a✝ : σ → σ q : Stmt₂ h₁₂ : load a✝ q ∈ stmts₁ q₂ IH : load a✝ q ∈ stmts₁ q → q₀ ∈ stmts₁ q h₀₁ : q₀ ∈ insert (load a✝ q) (stmts₁ q) ⊢ q₀ ∈ insert (load a✝ q) (stmts₁ q) ** exact h₀₁ ** case load.inr K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 q₁ q₂ : Stmt₂ h₁₂✝ : q₁ ∈ stmts₁ q₂ q₀ : Stmt₂ h₀₁ : q₀ ∈ stmts₁ q₁ a✝ : σ → σ q : Stmt₂ IH : q₁ ∈ stmts₁ q → q₀ ∈ stmts₁ q h₁₂ : q₁ ∈ stmts₁ q ⊢ q₀ ∈ insert (load a✝ q) (stmts₁ q) ** exact Finset.mem_insert_of_mem (IH h₁₂) ** K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 q₁✝ q₂✝ : Stmt₂ h₁₂✝ : q₁✝ ∈ stmts₁ q₂✝ q₀ : Stmt₂ h₀₁ : q₀ ∈ stmts₁ q₁✝ f : σ → Bool q₁ q₂ : Stmt₂ IH₁ : q₁✝ ∈ stmts₁ q₁ → q₀ ∈ stmts₁ q₁ IH₂ : q₁✝ ∈ stmts₁ q₂ → q₀ ∈ stmts₁ q₂ h₁₂ : q₁✝ = branch f q₁ q₂ ∨ q₁✝ ∈ stmts₁ q₁ ∨ q₁✝ ∈ stmts₁ q₂ ⊢ q₀ ∈ insert (branch f q₁ q₂) (stmts₁ q₁ ∪ stmts₁ q₂) ** rcases h₁₂ with (rfl | h₁₂ | h₁₂) ** case inl K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 q₂✝ q₀ : Stmt₂ f : σ → Bool q₁ q₂ : Stmt₂ h₁₂ : branch f q₁ q₂ ∈ stmts₁ q₂✝ h₀₁ : q₀ ∈ stmts₁ (branch f q₁ q₂) IH₁ : branch f q₁ q₂ ∈ stmts₁ q₁ → q₀ ∈ stmts₁ q₁ IH₂ : branch f q₁ q₂ ∈ stmts₁ q₂ → q₀ ∈ stmts₁ q₂ ⊢ q₀ ∈ insert (branch f q₁ q₂) (stmts₁ q₁ ∪ stmts₁ q₂) ** unfold stmts₁ at h₀₁ ** case inl K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 q₂✝ q₀ : Stmt₂ f : σ → Bool q₁ q₂ : Stmt₂ h₁₂ : branch f q₁ q₂ ∈ stmts₁ q₂✝ IH₁ : branch f q₁ q₂ ∈ stmts₁ q₁ → q₀ ∈ stmts₁ q₁ IH₂ : branch f q₁ q₂ ∈ stmts₁ q₂ → q₀ ∈ stmts₁ q₂ h₀₁ : q₀ ∈ insert (branch f q₁ q₂) (stmts₁ q₁ ∪ stmts₁ q₂) ⊢ q₀ ∈ insert (branch f q₁ q₂) (stmts₁ q₁ ∪ stmts₁ q₂) ** exact h₀₁ ** case inr.inl K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 q₁✝ q₂✝ : Stmt₂ h₁₂✝ : q₁✝ ∈ stmts₁ q₂✝ q₀ : Stmt₂ h₀₁ : q₀ ∈ stmts₁ q₁✝ f : σ → Bool q₁ q₂ : Stmt₂ IH₁ : q₁✝ ∈ stmts₁ q₁ → q₀ ∈ stmts₁ q₁ IH₂ : q₁✝ ∈ stmts₁ q₂ → q₀ ∈ stmts₁ q₂ h₁₂ : q₁✝ ∈ stmts₁ q₁ ⊢ q₀ ∈ insert (branch f q₁ q₂) (stmts₁ q₁ ∪ stmts₁ q₂) ** exact Finset.mem_insert_of_mem (Finset.mem_union_left _ (IH₁ h₁₂)) ** case inr.inr K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 q₁✝ q₂✝ : Stmt₂ h₁₂✝ : q₁✝ ∈ stmts₁ q₂✝ q₀ : Stmt₂ h₀₁ : q₀ ∈ stmts₁ q₁✝ f : σ → Bool q₁ q₂ : Stmt₂ IH₁ : q₁✝ ∈ stmts₁ q₁ → q₀ ∈ stmts₁ q₁ IH₂ : q₁✝ ∈ stmts₁ q₂ → q₀ ∈ stmts₁ q₂ h₁₂ : q₁✝ ∈ stmts₁ q₂ ⊢ q₀ ∈ insert (branch f q₁ q₂) (stmts₁ q₁ ∪ stmts₁ q₂) ** exact Finset.mem_insert_of_mem (Finset.mem_union_right _ (IH₂ h₁₂)) ** K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 q₁ q₂ : Stmt₂ h₁₂✝ : q₁ ∈ stmts₁ q₂ q₀ : Stmt₂ h₀₁ : q₀ ∈ stmts₁ q₁ l : σ → Λ h₁₂ : q₁ = goto l ⊢ q₀ ∈ {goto l} ** subst h₁₂ ** K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 q₂ q₀ : Stmt₂ l : σ → Λ h₁₂ : goto l ∈ stmts₁ q₂ h₀₁ : q₀ ∈ stmts₁ (goto l) ⊢ q₀ ∈ {goto l} ** exact h₀₁ ** K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 q₁ q₂ : Stmt₂ h₁₂✝ : q₁ ∈ stmts₁ q₂ q₀ : Stmt₂ h₀₁ : q₀ ∈ stmts₁ q₁ h₁₂ : q₁ = halt ⊢ q₀ ∈ {halt} ** subst h₁₂ ** K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 q₂ q₀ : Stmt₂ h₁₂ : halt ∈ stmts₁ q₂ h₀₁ : q₀ ∈ stmts₁ halt ⊢ q₀ ∈ {halt} ** exact h₀₁ ** Qed
| |
Turing.TM2.stmts₁_supportsStmt_mono ** K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 S : Finset Λ q₁ q₂ : Stmt₂ h : q₁ ∈ stmts₁ q₂ hs : SupportsStmt S q₂ ⊢ SupportsStmt S q₁ ** induction' q₂ with _ _ q IH _ _ q IH _ _ q IH _ q IH <;>
simp only [stmts₁, SupportsStmt, Finset.mem_insert, Finset.mem_union, Finset.mem_singleton]
at h hs ** case push K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 S : Finset Λ q₁ q₂ : Stmt₂ h✝ : q₁ ∈ stmts₁ q₂ hs✝ : SupportsStmt S q₂ k✝ : K a✝ : σ → Γ k✝ q : Stmt₂ IH : q₁ ∈ stmts₁ q → SupportsStmt S q → SupportsStmt S q₁ hs : SupportsStmt S q h : q₁ = push k✝ a✝ q ∨ q₁ ∈ stmts₁ q ⊢ SupportsStmt S q₁ case peek K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 S : Finset Λ q₁ q₂ : Stmt₂ h✝ : q₁ ∈ stmts₁ q₂ hs✝ : SupportsStmt S q₂ k✝ : K a✝ : σ → Option (Γ k✝) → σ q : Stmt₂ IH : q₁ ∈ stmts₁ q → SupportsStmt S q → SupportsStmt S q₁ hs : SupportsStmt S q h : q₁ = peek k✝ a✝ q ∨ q₁ ∈ stmts₁ q ⊢ SupportsStmt S q₁ case pop K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 S : Finset Λ q₁ q₂ : Stmt₂ h✝ : q₁ ∈ stmts₁ q₂ hs✝ : SupportsStmt S q₂ k✝ : K a✝ : σ → Option (Γ k✝) → σ q : Stmt₂ IH : q₁ ∈ stmts₁ q → SupportsStmt S q → SupportsStmt S q₁ hs : SupportsStmt S q h : q₁ = pop k✝ a✝ q ∨ q₁ ∈ stmts₁ q ⊢ SupportsStmt S q₁ case load K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 S : Finset Λ q₁ q₂ : Stmt₂ h✝ : q₁ ∈ stmts₁ q₂ hs✝ : SupportsStmt S q₂ a✝ : σ → σ q : Stmt₂ IH : q₁ ∈ stmts₁ q → SupportsStmt S q → SupportsStmt S q₁ hs : SupportsStmt S q h : q₁ = load a✝ q ∨ q₁ ∈ stmts₁ q ⊢ SupportsStmt S q₁ case branch K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 S : Finset Λ q₁ q₂ : Stmt₂ h✝ : q₁ ∈ stmts₁ q₂ hs✝ : SupportsStmt S q₂ a✝² : σ → Bool a✝¹ a✝ : Stmt₂ a_ih✝¹ : q₁ ∈ stmts₁ a✝¹ → SupportsStmt S a✝¹ → SupportsStmt S q₁ a_ih✝ : q₁ ∈ stmts₁ a✝ → SupportsStmt S a✝ → SupportsStmt S q₁ hs : SupportsStmt S a✝¹ ∧ SupportsStmt S a✝ h : q₁ = branch a✝² a✝¹ a✝ ∨ q₁ ∈ stmts₁ a✝¹ ∨ q₁ ∈ stmts₁ a✝ ⊢ SupportsStmt S q₁ case goto K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 S : Finset Λ q₁ q₂ : Stmt₂ h✝ : q₁ ∈ stmts₁ q₂ hs✝ : SupportsStmt S q₂ a✝ : σ → Λ hs : ∀ (v : σ), a✝ v ∈ S h : q₁ = goto a✝ ⊢ SupportsStmt S q₁ case halt K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 S : Finset Λ q₁ q₂ : Stmt₂ h✝ : q₁ ∈ stmts₁ q₂ hs✝ : SupportsStmt S q₂ hs : True h : q₁ = halt ⊢ SupportsStmt S q₁ ** iterate 4 rcases h with (rfl | h) <;> [exact hs; exact IH h hs] ** case branch K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 S : Finset Λ q₁ q₂ : Stmt₂ h✝ : q₁ ∈ stmts₁ q₂ hs✝ : SupportsStmt S q₂ a✝² : σ → Bool a✝¹ a✝ : Stmt₂ a_ih✝¹ : q₁ ∈ stmts₁ a✝¹ → SupportsStmt S a✝¹ → SupportsStmt S q₁ a_ih✝ : q₁ ∈ stmts₁ a✝ → SupportsStmt S a✝ → SupportsStmt S q₁ hs : SupportsStmt S a✝¹ ∧ SupportsStmt S a✝ h : q₁ = branch a✝² a✝¹ a✝ ∨ q₁ ∈ stmts₁ a✝¹ ∨ q₁ ∈ stmts₁ a✝ ⊢ SupportsStmt S q₁ case goto K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 S : Finset Λ q₁ q₂ : Stmt₂ h✝ : q₁ ∈ stmts₁ q₂ hs✝ : SupportsStmt S q₂ a✝ : σ → Λ hs : ∀ (v : σ), a✝ v ∈ S h : q₁ = goto a✝ ⊢ SupportsStmt S q₁ case halt K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 S : Finset Λ q₁ q₂ : Stmt₂ h✝ : q₁ ∈ stmts₁ q₂ hs✝ : SupportsStmt S q₂ hs : True h : q₁ = halt ⊢ SupportsStmt S q₁ ** case branch f q₁ q₂ IH₁ IH₂ => rcases h with (rfl | h | h); exacts [hs, IH₁ h hs.1, IH₂ h hs.2] ** case goto K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 S : Finset Λ q₁ q₂ : Stmt₂ h✝ : q₁ ∈ stmts₁ q₂ hs✝ : SupportsStmt S q₂ a✝ : σ → Λ hs : ∀ (v : σ), a✝ v ∈ S h : q₁ = goto a✝ ⊢ SupportsStmt S q₁ case halt K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 S : Finset Λ q₁ q₂ : Stmt₂ h✝ : q₁ ∈ stmts₁ q₂ hs✝ : SupportsStmt S q₂ hs : True h : q₁ = halt ⊢ SupportsStmt S q₁ ** case goto l => subst h; exact hs ** case halt K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 S : Finset Λ q₁ q₂ : Stmt₂ h✝ : q₁ ∈ stmts₁ q₂ hs✝ : SupportsStmt S q₂ hs : True h : q₁ = halt ⊢ SupportsStmt S q₁ ** case halt => subst h; trivial ** case load K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 S : Finset Λ q₁ q₂ : Stmt₂ h✝ : q₁ ∈ stmts₁ q₂ hs✝ : SupportsStmt S q₂ a✝ : σ → σ q : Stmt₂ IH : q₁ ∈ stmts₁ q → SupportsStmt S q → SupportsStmt S q₁ hs : SupportsStmt S q h : q₁ = load a✝ q ∨ q₁ ∈ stmts₁ q ⊢ SupportsStmt S q₁ case branch K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 S : Finset Λ q₁ q₂ : Stmt₂ h✝ : q₁ ∈ stmts₁ q₂ hs✝ : SupportsStmt S q₂ a✝² : σ → Bool a✝¹ a✝ : Stmt₂ a_ih✝¹ : q₁ ∈ stmts₁ a✝¹ → SupportsStmt S a✝¹ → SupportsStmt S q₁ a_ih✝ : q₁ ∈ stmts₁ a✝ → SupportsStmt S a✝ → SupportsStmt S q₁ hs : SupportsStmt S a✝¹ ∧ SupportsStmt S a✝ h : q₁ = branch a✝² a✝¹ a✝ ∨ q₁ ∈ stmts₁ a✝¹ ∨ q₁ ∈ stmts₁ a✝ ⊢ SupportsStmt S q₁ case goto K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 S : Finset Λ q₁ q₂ : Stmt₂ h✝ : q₁ ∈ stmts₁ q₂ hs✝ : SupportsStmt S q₂ a✝ : σ → Λ hs : ∀ (v : σ), a✝ v ∈ S h : q₁ = goto a✝ ⊢ SupportsStmt S q₁ case halt K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 S : Finset Λ q₁ q₂ : Stmt₂ h✝ : q₁ ∈ stmts₁ q₂ hs✝ : SupportsStmt S q₂ hs : True h : q₁ = halt ⊢ SupportsStmt S q₁ ** rcases h with (rfl | h) <;> [exact hs; exact IH h hs] ** K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 S : Finset Λ q₁✝ q₂✝ : Stmt₂ h✝ : q₁✝ ∈ stmts₁ q₂✝ hs✝ : SupportsStmt S q₂✝ f : σ → Bool q₁ q₂ : Stmt₂ IH₁ : q₁✝ ∈ stmts₁ q₁ → SupportsStmt S q₁ → SupportsStmt S q₁✝ IH₂ : q₁✝ ∈ stmts₁ q₂ → SupportsStmt S q₂ → SupportsStmt S q₁✝ hs : SupportsStmt S q₁ ∧ SupportsStmt S q₂ h : q₁✝ = branch f q₁ q₂ ∨ q₁✝ ∈ stmts₁ q₁ ∨ q₁✝ ∈ stmts₁ q₂ ⊢ SupportsStmt S q₁✝ ** rcases h with (rfl | h | h) ** case inl K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 S : Finset Λ q₂✝ : Stmt₂ hs✝ : SupportsStmt S q₂✝ f : σ → Bool q₁ q₂ : Stmt₂ hs : SupportsStmt S q₁ ∧ SupportsStmt S q₂ h : branch f q₁ q₂ ∈ stmts₁ q₂✝ IH₁ : branch f q₁ q₂ ∈ stmts₁ q₁ → SupportsStmt S q₁ → SupportsStmt S (branch f q₁ q₂) IH₂ : branch f q₁ q₂ ∈ stmts₁ q₂ → SupportsStmt S q₂ → SupportsStmt S (branch f q₁ q₂) ⊢ SupportsStmt S (branch f q₁ q₂) case inr.inl K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 S : Finset Λ q₁✝ q₂✝ : Stmt₂ h✝ : q₁✝ ∈ stmts₁ q₂✝ hs✝ : SupportsStmt S q₂✝ f : σ → Bool q₁ q₂ : Stmt₂ IH₁ : q₁✝ ∈ stmts₁ q₁ → SupportsStmt S q₁ → SupportsStmt S q₁✝ IH₂ : q₁✝ ∈ stmts₁ q₂ → SupportsStmt S q₂ → SupportsStmt S q₁✝ hs : SupportsStmt S q₁ ∧ SupportsStmt S q₂ h : q₁✝ ∈ stmts₁ q₁ ⊢ SupportsStmt S q₁✝ case inr.inr K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 S : Finset Λ q₁✝ q₂✝ : Stmt₂ h✝ : q₁✝ ∈ stmts₁ q₂✝ hs✝ : SupportsStmt S q₂✝ f : σ → Bool q₁ q₂ : Stmt₂ IH₁ : q₁✝ ∈ stmts₁ q₁ → SupportsStmt S q₁ → SupportsStmt S q₁✝ IH₂ : q₁✝ ∈ stmts₁ q₂ → SupportsStmt S q₂ → SupportsStmt S q₁✝ hs : SupportsStmt S q₁ ∧ SupportsStmt S q₂ h : q₁✝ ∈ stmts₁ q₂ ⊢ SupportsStmt S q₁✝ ** exacts [hs, IH₁ h hs.1, IH₂ h hs.2] ** K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 S : Finset Λ q₁ q₂ : Stmt₂ h✝ : q₁ ∈ stmts₁ q₂ hs✝ : SupportsStmt S q₂ l : σ → Λ hs : ∀ (v : σ), l v ∈ S h : q₁ = goto l ⊢ SupportsStmt S q₁ ** subst h ** K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 S : Finset Λ q₂ : Stmt₂ hs✝ : SupportsStmt S q₂ l : σ → Λ hs : ∀ (v : σ), l v ∈ S h : goto l ∈ stmts₁ q₂ ⊢ SupportsStmt S (goto l) ** exact hs ** K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 S : Finset Λ q₁ q₂ : Stmt₂ h✝ : q₁ ∈ stmts₁ q₂ hs✝ : SupportsStmt S q₂ hs : True h : q₁ = halt ⊢ SupportsStmt S q₁ ** subst h ** K : Type u_1 inst✝ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 S : Finset Λ q₂ : Stmt₂ hs✝ : SupportsStmt S q₂ hs : True h : halt ∈ stmts₁ q₂ ⊢ SupportsStmt S halt ** trivial ** Qed
| |
Turing.TM2.step_supports ** K : Type u_1 inst✝¹ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 inst✝ : Inhabited Λ M : Λ → Stmt₂ S : Finset Λ ss : Supports M S l₁ : Λ v : σ T : (k : K) → List (Γ k) c' : Cfg₂ h₁ : c' ∈ step M { l := some l₁, var := v, stk := T } h₂ : { l := some l₁, var := v, stk := T }.l ∈ ↑Finset.insertNone S ⊢ c'.l ∈ ↑Finset.insertNone S ** replace h₂ := ss.2 _ (Finset.some_mem_insertNone.1 h₂) ** K : Type u_1 inst✝¹ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 inst✝ : Inhabited Λ M : Λ → Stmt₂ S : Finset Λ ss : Supports M S l₁ : Λ v : σ T : (k : K) → List (Γ k) c' : Cfg₂ h₁ : c' ∈ step M { l := some l₁, var := v, stk := T } h₂ : SupportsStmt S (M l₁) ⊢ c'.l ∈ ↑Finset.insertNone S ** simp only [step, Option.mem_def, Option.some.injEq] at h₁ ** K : Type u_1 inst✝¹ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 inst✝ : Inhabited Λ M : Λ → Stmt₂ S : Finset Λ ss : Supports M S l₁ : Λ v : σ T : (k : K) → List (Γ k) c' : Cfg₂ h₂ : SupportsStmt S (M l₁) h₁ : stepAux (M l₁) v T = c' ⊢ c'.l ∈ ↑Finset.insertNone S ** subst c' ** K : Type u_1 inst✝¹ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 inst✝ : Inhabited Λ M : Λ → Stmt₂ S : Finset Λ ss : Supports M S l₁ : Λ v : σ T : (k : K) → List (Γ k) h₂ : SupportsStmt S (M l₁) ⊢ (stepAux (M l₁) v T).l ∈ ↑Finset.insertNone S ** revert h₂ ** K : Type u_1 inst✝¹ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 inst✝ : Inhabited Λ M : Λ → Stmt₂ S : Finset Λ ss : Supports M S l₁ : Λ v : σ T : (k : K) → List (Γ k) ⊢ SupportsStmt S (M l₁) → (stepAux (M l₁) v T).l ∈ ↑Finset.insertNone S ** induction' M l₁ with _ _ q IH _ _ q IH _ _ q IH _ q IH generalizing v T <;> intro hs ** case push K : Type u_1 inst✝¹ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 inst✝ : Inhabited Λ M : Λ → Stmt₂ S : Finset Λ ss : Supports M S l₁ : Λ v✝ : σ T✝ : (k : K) → List (Γ k) k✝ : K a✝ : σ → Γ k✝ q : Stmt₂ IH : ∀ (v : σ) (T : (k : K) → List (Γ k)), SupportsStmt S q → (stepAux q v T).l ∈ ↑Finset.insertNone S v : σ T : (k : K) → List (Γ k) hs : SupportsStmt S (push k✝ a✝ q) ⊢ (stepAux (push k✝ a✝ q) v T).l ∈ ↑Finset.insertNone S case peek K : Type u_1 inst✝¹ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 inst✝ : Inhabited Λ M : Λ → Stmt₂ S : Finset Λ ss : Supports M S l₁ : Λ v✝ : σ T✝ : (k : K) → List (Γ k) k✝ : K a✝ : σ → Option (Γ k✝) → σ q : Stmt₂ IH : ∀ (v : σ) (T : (k : K) → List (Γ k)), SupportsStmt S q → (stepAux q v T).l ∈ ↑Finset.insertNone S v : σ T : (k : K) → List (Γ k) hs : SupportsStmt S (peek k✝ a✝ q) ⊢ (stepAux (peek k✝ a✝ q) v T).l ∈ ↑Finset.insertNone S case pop K : Type u_1 inst✝¹ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 inst✝ : Inhabited Λ M : Λ → Stmt₂ S : Finset Λ ss : Supports M S l₁ : Λ v✝ : σ T✝ : (k : K) → List (Γ k) k✝ : K a✝ : σ → Option (Γ k✝) → σ q : Stmt₂ IH : ∀ (v : σ) (T : (k : K) → List (Γ k)), SupportsStmt S q → (stepAux q v T).l ∈ ↑Finset.insertNone S v : σ T : (k : K) → List (Γ k) hs : SupportsStmt S (pop k✝ a✝ q) ⊢ (stepAux (pop k✝ a✝ q) v T).l ∈ ↑Finset.insertNone S case load K : Type u_1 inst✝¹ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 inst✝ : Inhabited Λ M : Λ → Stmt₂ S : Finset Λ ss : Supports M S l₁ : Λ v✝ : σ T✝ : (k : K) → List (Γ k) a✝ : σ → σ q : Stmt₂ IH : ∀ (v : σ) (T : (k : K) → List (Γ k)), SupportsStmt S q → (stepAux q v T).l ∈ ↑Finset.insertNone S v : σ T : (k : K) → List (Γ k) hs : SupportsStmt S (load a✝ q) ⊢ (stepAux (load a✝ q) v T).l ∈ ↑Finset.insertNone S case branch K : Type u_1 inst✝¹ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 inst✝ : Inhabited Λ M : Λ → Stmt₂ S : Finset Λ ss : Supports M S l₁ : Λ v✝ : σ T✝ : (k : K) → List (Γ k) a✝² : σ → Bool a✝¹ a✝ : Stmt₂ a_ih✝¹ : ∀ (v : σ) (T : (k : K) → List (Γ k)), SupportsStmt S a✝¹ → (stepAux a✝¹ v T).l ∈ ↑Finset.insertNone S a_ih✝ : ∀ (v : σ) (T : (k : K) → List (Γ k)), SupportsStmt S a✝ → (stepAux a✝ v T).l ∈ ↑Finset.insertNone S v : σ T : (k : K) → List (Γ k) hs : SupportsStmt S (branch a✝² a✝¹ a✝) ⊢ (stepAux (branch a✝² a✝¹ a✝) v T).l ∈ ↑Finset.insertNone S case goto K : Type u_1 inst✝¹ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 inst✝ : Inhabited Λ M : Λ → Stmt₂ S : Finset Λ ss : Supports M S l₁ : Λ v✝ : σ T✝ : (k : K) → List (Γ k) a✝ : σ → Λ v : σ T : (k : K) → List (Γ k) hs : SupportsStmt S (goto a✝) ⊢ (stepAux (goto a✝) v T).l ∈ ↑Finset.insertNone S case halt K : Type u_1 inst✝¹ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 inst✝ : Inhabited Λ M : Λ → Stmt₂ S : Finset Λ ss : Supports M S l₁ : Λ v✝ : σ T✝ : (k : K) → List (Γ k) v : σ T : (k : K) → List (Γ k) hs : SupportsStmt S halt ⊢ (stepAux halt v T).l ∈ ↑Finset.insertNone S ** iterate 4 exact IH _ _ hs ** case goto K : Type u_1 inst✝¹ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 inst✝ : Inhabited Λ M : Λ → Stmt₂ S : Finset Λ ss : Supports M S l₁ : Λ v✝ : σ T✝ : (k : K) → List (Γ k) a✝ : σ → Λ v : σ T : (k : K) → List (Γ k) hs : SupportsStmt S (goto a✝) ⊢ (stepAux (goto a✝) v T).l ∈ ↑Finset.insertNone S case halt K : Type u_1 inst✝¹ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 inst✝ : Inhabited Λ M : Λ → Stmt₂ S : Finset Λ ss : Supports M S l₁ : Λ v✝ : σ T✝ : (k : K) → List (Γ k) v : σ T : (k : K) → List (Γ k) hs : SupportsStmt S halt ⊢ (stepAux halt v T).l ∈ ↑Finset.insertNone S ** case goto => exact Finset.some_mem_insertNone.2 (hs _) ** case halt K : Type u_1 inst✝¹ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 inst✝ : Inhabited Λ M : Λ → Stmt₂ S : Finset Λ ss : Supports M S l₁ : Λ v✝ : σ T✝ : (k : K) → List (Γ k) v : σ T : (k : K) → List (Γ k) hs : SupportsStmt S halt ⊢ (stepAux halt v T).l ∈ ↑Finset.insertNone S ** case halt => apply Multiset.mem_cons_self ** case load K : Type u_1 inst✝¹ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 inst✝ : Inhabited Λ M : Λ → Stmt₂ S : Finset Λ ss : Supports M S l₁ : Λ v✝ : σ T✝ : (k : K) → List (Γ k) a✝ : σ → σ q : Stmt₂ IH : ∀ (v : σ) (T : (k : K) → List (Γ k)), SupportsStmt S q → (stepAux q v T).l ∈ ↑Finset.insertNone S v : σ T : (k : K) → List (Γ k) hs : SupportsStmt S (load a✝ q) ⊢ (stepAux (load a✝ q) v T).l ∈ ↑Finset.insertNone S case branch K : Type u_1 inst✝¹ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 inst✝ : Inhabited Λ M : Λ → Stmt₂ S : Finset Λ ss : Supports M S l₁ : Λ v✝ : σ T✝ : (k : K) → List (Γ k) a✝² : σ → Bool a✝¹ a✝ : Stmt₂ a_ih✝¹ : ∀ (v : σ) (T : (k : K) → List (Γ k)), SupportsStmt S a✝¹ → (stepAux a✝¹ v T).l ∈ ↑Finset.insertNone S a_ih✝ : ∀ (v : σ) (T : (k : K) → List (Γ k)), SupportsStmt S a✝ → (stepAux a✝ v T).l ∈ ↑Finset.insertNone S v : σ T : (k : K) → List (Γ k) hs : SupportsStmt S (branch a✝² a✝¹ a✝) ⊢ (stepAux (branch a✝² a✝¹ a✝) v T).l ∈ ↑Finset.insertNone S case goto K : Type u_1 inst✝¹ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 inst✝ : Inhabited Λ M : Λ → Stmt₂ S : Finset Λ ss : Supports M S l₁ : Λ v✝ : σ T✝ : (k : K) → List (Γ k) a✝ : σ → Λ v : σ T : (k : K) → List (Γ k) hs : SupportsStmt S (goto a✝) ⊢ (stepAux (goto a✝) v T).l ∈ ↑Finset.insertNone S case halt K : Type u_1 inst✝¹ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 inst✝ : Inhabited Λ M : Λ → Stmt₂ S : Finset Λ ss : Supports M S l₁ : Λ v✝ : σ T✝ : (k : K) → List (Γ k) v : σ T : (k : K) → List (Γ k) hs : SupportsStmt S halt ⊢ (stepAux halt v T).l ∈ ↑Finset.insertNone S ** exact IH _ _ hs ** K : Type u_1 inst✝¹ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 inst✝ : Inhabited Λ M : Λ → Stmt₂ S : Finset Λ ss : Supports M S l₁ : Λ v✝ : σ T✝ : (k : K) → List (Γ k) p : σ → Bool q₁' q₂' : Stmt₂ IH₁ : ∀ (v : σ) (T : (k : K) → List (Γ k)), SupportsStmt S q₁' → (stepAux q₁' v T).l ∈ ↑Finset.insertNone S IH₂ : ∀ (v : σ) (T : (k : K) → List (Γ k)), SupportsStmt S q₂' → (stepAux q₂' v T).l ∈ ↑Finset.insertNone S v : σ T : (k : K) → List (Γ k) hs : SupportsStmt S (branch p q₁' q₂') ⊢ (stepAux (branch p q₁' q₂') v T).l ∈ ↑Finset.insertNone S ** unfold stepAux ** K : Type u_1 inst✝¹ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 inst✝ : Inhabited Λ M : Λ → Stmt₂ S : Finset Λ ss : Supports M S l₁ : Λ v✝ : σ T✝ : (k : K) → List (Γ k) p : σ → Bool q₁' q₂' : Stmt₂ IH₁ : ∀ (v : σ) (T : (k : K) → List (Γ k)), SupportsStmt S q₁' → (stepAux q₁' v T).l ∈ ↑Finset.insertNone S IH₂ : ∀ (v : σ) (T : (k : K) → List (Γ k)), SupportsStmt S q₂' → (stepAux q₂' v T).l ∈ ↑Finset.insertNone S v : σ T : (k : K) → List (Γ k) hs : SupportsStmt S (branch p q₁' q₂') ⊢ (bif p v then stepAux q₁' v T else stepAux q₂' v T).l ∈ ↑Finset.insertNone S ** cases p v ** case false K : Type u_1 inst✝¹ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 inst✝ : Inhabited Λ M : Λ → Stmt₂ S : Finset Λ ss : Supports M S l₁ : Λ v✝ : σ T✝ : (k : K) → List (Γ k) p : σ → Bool q₁' q₂' : Stmt₂ IH₁ : ∀ (v : σ) (T : (k : K) → List (Γ k)), SupportsStmt S q₁' → (stepAux q₁' v T).l ∈ ↑Finset.insertNone S IH₂ : ∀ (v : σ) (T : (k : K) → List (Γ k)), SupportsStmt S q₂' → (stepAux q₂' v T).l ∈ ↑Finset.insertNone S v : σ T : (k : K) → List (Γ k) hs : SupportsStmt S (branch p q₁' q₂') ⊢ (bif false then stepAux q₁' v T else stepAux q₂' v T).l ∈ ↑Finset.insertNone S ** exact IH₂ _ _ hs.2 ** case true K : Type u_1 inst✝¹ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 inst✝ : Inhabited Λ M : Λ → Stmt₂ S : Finset Λ ss : Supports M S l₁ : Λ v✝ : σ T✝ : (k : K) → List (Γ k) p : σ → Bool q₁' q₂' : Stmt₂ IH₁ : ∀ (v : σ) (T : (k : K) → List (Γ k)), SupportsStmt S q₁' → (stepAux q₁' v T).l ∈ ↑Finset.insertNone S IH₂ : ∀ (v : σ) (T : (k : K) → List (Γ k)), SupportsStmt S q₂' → (stepAux q₂' v T).l ∈ ↑Finset.insertNone S v : σ T : (k : K) → List (Γ k) hs : SupportsStmt S (branch p q₁' q₂') ⊢ (bif true then stepAux q₁' v T else stepAux q₂' v T).l ∈ ↑Finset.insertNone S ** exact IH₁ _ _ hs.1 ** K : Type u_1 inst✝¹ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 inst✝ : Inhabited Λ M : Λ → Stmt₂ S : Finset Λ ss : Supports M S l₁ : Λ v✝ : σ T✝ : (k : K) → List (Γ k) a✝ : σ → Λ v : σ T : (k : K) → List (Γ k) hs : SupportsStmt S (goto a✝) ⊢ (stepAux (goto a✝) v T).l ∈ ↑Finset.insertNone S ** exact Finset.some_mem_insertNone.2 (hs _) ** K : Type u_1 inst✝¹ : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 σ : Type u_4 inst✝ : Inhabited Λ M : Λ → Stmt₂ S : Finset Λ ss : Supports M S l₁ : Λ v✝ : σ T✝ : (k : K) → List (Γ k) v : σ T : (k : K) → List (Γ k) hs : SupportsStmt S halt ⊢ (stepAux halt v T).l ∈ ↑Finset.insertNone S ** apply Multiset.mem_cons_self ** Qed
| |
Turing.TM2to1.stk_nth_val ** K : Type u_1 Γ : K → Type u_2 L : ListBlank ((k : K) → Option (Γ k)) k : K S : List (Γ k) n : ℕ hL : ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some S)) ⊢ ListBlank.nth L n k = List.get? (List.reverse S) n ** rw [← proj_map_nth, hL, ← List.map_reverse, ListBlank.nth_mk, List.getI_eq_iget_get?,
List.get?_map] ** K : Type u_1 Γ : K → Type u_2 L : ListBlank ((k : K) → Option (Γ k)) k : K S : List (Γ k) n : ℕ hL : ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some S)) ⊢ Option.iget (Option.map some (List.get? (List.reverse S) n)) = List.get? (List.reverse S) n ** cases S.reverse.get? n <;> rfl ** Qed
| |
Turing.TM2to1.addBottom_map ** K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ L : ListBlank ((k : K) → Option (Γ k)) ⊢ default.2 = default ** rfl ** K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ L : ListBlank ((k : K) → Option (Γ k)) ⊢ ListBlank.map { f := Prod.snd, map_pt' := (_ : default.2 = default.2) } (addBottom L) = L ** simp only [addBottom, ListBlank.map_cons] ** K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ L : ListBlank ((k : K) → Option (Γ k)) ⊢ ListBlank.cons (ListBlank.head L) (ListBlank.map { f := Prod.snd, map_pt' := (_ : default.2 = default.2) } (ListBlank.map { f := Prod.mk false, map_pt' := (_ : (false, default) = (false, default)) } (ListBlank.tail L))) = L ** convert ListBlank.cons_head_tail L ** case h.e'_2.h.e'_4 K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ L : ListBlank ((k : K) → Option (Γ k)) ⊢ ListBlank.map { f := Prod.snd, map_pt' := (_ : default.2 = default.2) } (ListBlank.map { f := Prod.mk false, map_pt' := (_ : (false, default) = (false, default)) } (ListBlank.tail L)) = ListBlank.tail L ** generalize ListBlank.tail L = L' ** case h.e'_2.h.e'_4 K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ L L' : ListBlank ((k : K) → Option (Γ k)) ⊢ ListBlank.map { f := Prod.snd, map_pt' := (_ : default.2 = default.2) } (ListBlank.map { f := Prod.mk false, map_pt' := (_ : (false, default) = (false, default)) } L') = L' ** refine' L'.induction_on fun l ↦ _ ** case h.e'_2.h.e'_4 K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ L L' : ListBlank ((k : K) → Option (Γ k)) l : List ((k : K) → Option (Γ k)) ⊢ ListBlank.map { f := Prod.snd, map_pt' := (_ : default.2 = default.2) } (ListBlank.map { f := Prod.mk false, map_pt' := (_ : (false, default) = (false, default)) } (ListBlank.mk l)) = ListBlank.mk l ** simp ** Qed
| |
Turing.TM2to1.addBottom_nth_succ_fst ** K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ L : ListBlank ((k : K) → Option (Γ k)) n : ℕ ⊢ (ListBlank.nth (addBottom L) (n + 1)).1 = false ** rw [ListBlank.nth_succ, addBottom, ListBlank.tail_cons, ListBlank.nth_map] ** Qed
| |
Turing.TM2to1.addBottom_head_fst ** K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ L : ListBlank ((k : K) → Option (Γ k)) ⊢ (ListBlank.head (addBottom L)).1 = true ** rw [addBottom, ListBlank.head_cons] ** Qed
| |
Turing.TM2to1.supports_run ** K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ S : Finset Λ k : K s : StAct k q : Stmt₂ ⊢ TM2.SupportsStmt S (stRun s q) ↔ TM2.SupportsStmt S q ** cases s <;> rfl ** Qed
| |
Turing.TM2to1.trStmts₁_run ** K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K s : StAct k q : Stmt₂ ⊢ trStmts₁ (stRun s q) = {go k s q, ret q} ∪ trStmts₁ q ** cases s <;> simp only [trStmts₁] ** Qed
| |
Turing.TM2to1.tr_respects_aux₂ ** K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : TM1.Stmt Γ' Λ' σ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) o : StAct k ⊢ let v' := stVar v (S k) o; let Sk' := stWrite v (S k) o; let S' := update S k Sk'; ∃ L', (∀ (k : K), ListBlank.map (proj k) L' = ListBlank.mk (List.reverse (List.map some (S' k)))) ∧ TM1.stepAux (trStAct q o) v ((Tape.move Dir.right)^[List.length (S k)] (Tape.mk' ∅ (addBottom L))) = TM1.stepAux q v' ((Tape.move Dir.right)^[List.length (S' k)] (Tape.mk' ∅ (addBottom L'))) ** dsimp only ** K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : TM1.Stmt Γ' Λ' σ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) o : StAct k ⊢ ∃ L', (∀ (k_1 : K), ListBlank.map (proj k_1) L' = ListBlank.mk (List.reverse (List.map some (update S k (stWrite v (S k) o) k_1)))) ∧ TM1.stepAux (trStAct q o) v ((Tape.move Dir.right)^[List.length (S k)] (Tape.mk' ∅ (addBottom L))) = TM1.stepAux q (stVar v (S k) o) ((Tape.move Dir.right)^[List.length (update S k (stWrite v (S k) o) k)] (Tape.mk' ∅ (addBottom L'))) ** simp ** K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : TM1.Stmt Γ' Λ' σ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) o : StAct k ⊢ ∃ L', (∀ (k_1 : K), ListBlank.map (proj k_1) L' = ListBlank.mk (List.reverse (List.map some (update S k (stWrite v (S k) o) k_1)))) ∧ TM1.stepAux (trStAct q o) v ((Tape.move Dir.right)^[List.length (S k)] (Tape.mk' ∅ (addBottom L))) = TM1.stepAux q (stVar v (S k) o) ((Tape.move Dir.right)^[List.length (stWrite v (S k) o)] (Tape.mk' ∅ (addBottom L'))) ** cases o <;> simp only [stWrite, stVar, trStAct, TM1.stepAux] ** K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : TM1.Stmt Γ' Λ' σ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) f : σ → Γ k ⊢ ∃ L', (∀ (k_1 : K), ListBlank.map (proj k_1) L' = ListBlank.mk (List.reverse (List.map some (update S k (f v :: S k) k_1)))) ∧ TM1.stepAux q v (Tape.move Dir.right (Tape.write (((Tape.move Dir.right)^[List.length (S k)] (Tape.mk' ∅ (addBottom L))).head.1, update ((Tape.move Dir.right)^[List.length (S k)] (Tape.mk' ∅ (addBottom L))).head.2 k (some (f v))) ((Tape.move Dir.right)^[List.length (S k)] (Tape.mk' ∅ (addBottom L))))) = TM1.stepAux q v ((Tape.move Dir.right)^[List.length (f v :: S k)] (Tape.mk' ∅ (addBottom L'))) ** have := Tape.write_move_right_n fun a : Γ' ↦ (a.1, update a.2 k (some (f v))) ** K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : TM1.Stmt Γ' Λ' σ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) f : σ → Γ k this : ∀ (L R : ListBlank Γ') (n : ℕ), Tape.write ((ListBlank.nth R n).1, update (ListBlank.nth R n).2 k (some (f v))) ((Tape.move Dir.right)^[n] (Tape.mk' L R)) = (Tape.move Dir.right)^[n] (Tape.mk' L (ListBlank.modifyNth (fun a => (a.1, update a.2 k (some (f v)))) n R)) ⊢ ∃ L', (∀ (k_1 : K), ListBlank.map (proj k_1) L' = ListBlank.mk (List.reverse (List.map some (update S k (f v :: S k) k_1)))) ∧ TM1.stepAux q v (Tape.move Dir.right (Tape.write (((Tape.move Dir.right)^[List.length (S k)] (Tape.mk' ∅ (addBottom L))).head.1, update ((Tape.move Dir.right)^[List.length (S k)] (Tape.mk' ∅ (addBottom L))).head.2 k (some (f v))) ((Tape.move Dir.right)^[List.length (S k)] (Tape.mk' ∅ (addBottom L))))) = TM1.stepAux q v ((Tape.move Dir.right)^[List.length (f v :: S k)] (Tape.mk' ∅ (addBottom L'))) ** refine'
⟨_, fun k' ↦ _, by
erw [Tape.move_right_n_head, List.length, Tape.mk'_nth_nat, this,
addBottom_modifyNth fun a ↦ update a k (some (f v)), Nat.add_one, iterate_succ']
rfl⟩ ** K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : TM1.Stmt Γ' Λ' σ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) f : σ → Γ k this : ∀ (L R : ListBlank Γ') (n : ℕ), Tape.write ((ListBlank.nth R n).1, update (ListBlank.nth R n).2 k (some (f v))) ((Tape.move Dir.right)^[n] (Tape.mk' L R)) = (Tape.move Dir.right)^[n] (Tape.mk' L (ListBlank.modifyNth (fun a => (a.1, update a.2 k (some (f v)))) n R)) k' : K ⊢ ListBlank.map (proj k') (ListBlank.modifyNth (fun a => update a k (some (f v))) (List.length (S k)) L) = ListBlank.mk (List.reverse (List.map some (update S k (f v :: S k) k'))) ** refine' ListBlank.ext fun i ↦ _ ** K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : TM1.Stmt Γ' Λ' σ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) f : σ → Γ k this : ∀ (L R : ListBlank Γ') (n : ℕ), Tape.write ((ListBlank.nth R n).1, update (ListBlank.nth R n).2 k (some (f v))) ((Tape.move Dir.right)^[n] (Tape.mk' L R)) = (Tape.move Dir.right)^[n] (Tape.mk' L (ListBlank.modifyNth (fun a => (a.1, update a.2 k (some (f v)))) n R)) k' : K i : ℕ ⊢ ListBlank.nth (ListBlank.map (proj k') (ListBlank.modifyNth (fun a => update a k (some (f v))) (List.length (S k)) L)) i = ListBlank.nth (ListBlank.mk (List.reverse (List.map some (update S k (f v :: S k) k')))) i ** rw [ListBlank.nth_map, ListBlank.nth_modifyNth, proj, PointedMap.mk_val] ** K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : TM1.Stmt Γ' Λ' σ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) f : σ → Γ k this : ∀ (L R : ListBlank Γ') (n : ℕ), Tape.write ((ListBlank.nth R n).1, update (ListBlank.nth R n).2 k (some (f v))) ((Tape.move Dir.right)^[n] (Tape.mk' L R)) = (Tape.move Dir.right)^[n] (Tape.mk' L (ListBlank.modifyNth (fun a => (a.1, update a.2 k (some (f v)))) n R)) k' : K i : ℕ ⊢ ite (i = List.length (S k)) (update (ListBlank.nth L i) k (some (f v))) (ListBlank.nth L i) k' = ListBlank.nth (ListBlank.mk (List.reverse (List.map some (update S k (f v :: S k) k')))) i ** by_cases h' : k' = k ** K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : TM1.Stmt Γ' Λ' σ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) f : σ → Γ k this : ∀ (L R : ListBlank Γ') (n : ℕ), Tape.write ((ListBlank.nth R n).1, update (ListBlank.nth R n).2 k (some (f v))) ((Tape.move Dir.right)^[n] (Tape.mk' L R)) = (Tape.move Dir.right)^[n] (Tape.mk' L (ListBlank.modifyNth (fun a => (a.1, update a.2 k (some (f v)))) n R)) ⊢ TM1.stepAux q v (Tape.move Dir.right (Tape.write (((Tape.move Dir.right)^[List.length (S k)] (Tape.mk' ∅ (addBottom L))).head.1, update ((Tape.move Dir.right)^[List.length (S k)] (Tape.mk' ∅ (addBottom L))).head.2 k (some (f v))) ((Tape.move Dir.right)^[List.length (S k)] (Tape.mk' ∅ (addBottom L))))) = TM1.stepAux q v ((Tape.move Dir.right)^[List.length (f v :: S k)] (Tape.mk' ∅ (addBottom ?m.673260))) ** erw [Tape.move_right_n_head, List.length, Tape.mk'_nth_nat, this,
addBottom_modifyNth fun a ↦ update a k (some (f v)), Nat.add_one, iterate_succ'] ** K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : TM1.Stmt Γ' Λ' σ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) f : σ → Γ k this : ∀ (L R : ListBlank Γ') (n : ℕ), Tape.write ((ListBlank.nth R n).1, update (ListBlank.nth R n).2 k (some (f v))) ((Tape.move Dir.right)^[n] (Tape.mk' L R)) = (Tape.move Dir.right)^[n] (Tape.mk' L (ListBlank.modifyNth (fun a => (a.1, update a.2 k (some (f v)))) n R)) ⊢ TM1.stepAux q v (Tape.move Dir.right ((Tape.move Dir.right)^[List.length (S k)] (Tape.mk' ∅ (addBottom (ListBlank.modifyNth (fun a => update a k (some (f v))) (List.length (S k)) L))))) = TM1.stepAux q v ((Tape.move Dir.right ∘ (Tape.move Dir.right)^[List.length (S k)]) (Tape.mk' ∅ (addBottom ?m.673260))) K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : TM1.Stmt Γ' Λ' σ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) f : σ → Γ k this : ∀ (L R : ListBlank Γ') (n : ℕ), Tape.write ((ListBlank.nth R n).1, update (ListBlank.nth R n).2 k (some (f v))) ((Tape.move Dir.right)^[n] (Tape.mk' L R)) = (Tape.move Dir.right)^[n] (Tape.mk' L (ListBlank.modifyNth (fun a => (a.1, update a.2 k (some (f v)))) n R)) ⊢ ListBlank ((k : K) → Option (Γ k)) K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : TM1.Stmt Γ' Λ' σ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) f : σ → Γ k this : ∀ (L R : ListBlank Γ') (n : ℕ), Tape.write ((ListBlank.nth R n).1, update (ListBlank.nth R n).2 k (some (f v))) ((Tape.move Dir.right)^[n] (Tape.mk' L R)) = (Tape.move Dir.right)^[n] (Tape.mk' L (ListBlank.modifyNth (fun a => (a.1, update a.2 k (some (f v)))) n R)) ⊢ ListBlank ((k : K) → Option (Γ k)) K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : TM1.Stmt Γ' Λ' σ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) f : σ → Γ k this : ∀ (L R : ListBlank Γ') (n : ℕ), Tape.write ((ListBlank.nth R n).1, update (ListBlank.nth R n).2 k (some (f v))) ((Tape.move Dir.right)^[n] (Tape.mk' L R)) = (Tape.move Dir.right)^[n] (Tape.mk' L (ListBlank.modifyNth (fun a => (a.1, update a.2 k (some (f v)))) n R)) ⊢ ListBlank ((k : K) → Option (Γ k)) K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : TM1.Stmt Γ' Λ' σ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) f : σ → Γ k this : ∀ (L R : ListBlank Γ') (n : ℕ), Tape.write ((ListBlank.nth R n).1, update (ListBlank.nth R n).2 k (some (f v))) ((Tape.move Dir.right)^[n] (Tape.mk' L R)) = (Tape.move Dir.right)^[n] (Tape.mk' L (ListBlank.modifyNth (fun a => (a.1, update a.2 k (some (f v)))) n R)) ⊢ ListBlank ((k : K) → Option (Γ k)) K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : TM1.Stmt Γ' Λ' σ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) f : σ → Γ k this : ∀ (L R : ListBlank Γ') (n : ℕ), Tape.write ((ListBlank.nth R n).1, update (ListBlank.nth R n).2 k (some (f v))) ((Tape.move Dir.right)^[n] (Tape.mk' L R)) = (Tape.move Dir.right)^[n] (Tape.mk' L (ListBlank.modifyNth (fun a => (a.1, update a.2 k (some (f v)))) n R)) ⊢ ListBlank ((k : K) → Option (Γ k)) K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : TM1.Stmt Γ' Λ' σ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) f : σ → Γ k this : ∀ (L R : ListBlank Γ') (n : ℕ), Tape.write ((ListBlank.nth R n).1, update (ListBlank.nth R n).2 k (some (f v))) ((Tape.move Dir.right)^[n] (Tape.mk' L R)) = (Tape.move Dir.right)^[n] (Tape.mk' L (ListBlank.modifyNth (fun a => (a.1, update a.2 k (some (f v)))) n R)) ⊢ ListBlank ((k : K) → Option (Γ k)) K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : TM1.Stmt Γ' Λ' σ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) f : σ → Γ k this : ∀ (L R : ListBlank Γ') (n : ℕ), Tape.write ((ListBlank.nth R n).1, update (ListBlank.nth R n).2 k (some (f v))) ((Tape.move Dir.right)^[n] (Tape.mk' L R)) = (Tape.move Dir.right)^[n] (Tape.mk' L (ListBlank.modifyNth (fun a => (a.1, update a.2 k (some (f v)))) n R)) ⊢ ListBlank ((k : K) → Option (Γ k)) ** rfl ** case pos K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : TM1.Stmt Γ' Λ' σ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) f : σ → Γ k this : ∀ (L R : ListBlank Γ') (n : ℕ), Tape.write ((ListBlank.nth R n).1, update (ListBlank.nth R n).2 k (some (f v))) ((Tape.move Dir.right)^[n] (Tape.mk' L R)) = (Tape.move Dir.right)^[n] (Tape.mk' L (ListBlank.modifyNth (fun a => (a.1, update a.2 k (some (f v)))) n R)) k' : K i : ℕ h' : k' = k ⊢ ite (i = List.length (S k)) (update (ListBlank.nth L i) k (some (f v))) (ListBlank.nth L i) k' = ListBlank.nth (ListBlank.mk (List.reverse (List.map some (update S k (f v :: S k) k')))) i ** subst k' ** case pos K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : TM1.Stmt Γ' Λ' σ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) f : σ → Γ k this : ∀ (L R : ListBlank Γ') (n : ℕ), Tape.write ((ListBlank.nth R n).1, update (ListBlank.nth R n).2 k (some (f v))) ((Tape.move Dir.right)^[n] (Tape.mk' L R)) = (Tape.move Dir.right)^[n] (Tape.mk' L (ListBlank.modifyNth (fun a => (a.1, update a.2 k (some (f v)))) n R)) i : ℕ ⊢ ite (i = List.length (S k)) (update (ListBlank.nth L i) k (some (f v))) (ListBlank.nth L i) k = ListBlank.nth (ListBlank.mk (List.reverse (List.map some (update S k (f v :: S k) k)))) i ** split_ifs with h
<;> simp only [List.reverse_cons, Function.update_same, ListBlank.nth_mk, List.map] ** case neg K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : TM1.Stmt Γ' Λ' σ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) f : σ → Γ k this : ∀ (L R : ListBlank Γ') (n : ℕ), Tape.write ((ListBlank.nth R n).1, update (ListBlank.nth R n).2 k (some (f v))) ((Tape.move Dir.right)^[n] (Tape.mk' L R)) = (Tape.move Dir.right)^[n] (Tape.mk' L (ListBlank.modifyNth (fun a => (a.1, update a.2 k (some (f v)))) n R)) i : ℕ h : ¬i = List.length (S k) ⊢ ListBlank.nth L i k = List.getI (List.reverse (List.map some (S k)) ++ [some (f v)]) i ** rw [← proj_map_nth, hL, ListBlank.nth_mk] ** case neg K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : TM1.Stmt Γ' Λ' σ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) f : σ → Γ k this : ∀ (L R : ListBlank Γ') (n : ℕ), Tape.write ((ListBlank.nth R n).1, update (ListBlank.nth R n).2 k (some (f v))) ((Tape.move Dir.right)^[n] (Tape.mk' L R)) = (Tape.move Dir.right)^[n] (Tape.mk' L (ListBlank.modifyNth (fun a => (a.1, update a.2 k (some (f v)))) n R)) i : ℕ h : ¬i = List.length (S k) ⊢ List.getI (List.reverse (List.map some (S k))) i = List.getI (List.reverse (List.map some (S k)) ++ [some (f v)]) i ** cases' lt_or_gt_of_ne h with h h ** case pos K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : TM1.Stmt Γ' Λ' σ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) f : σ → Γ k this : ∀ (L R : ListBlank Γ') (n : ℕ), Tape.write ((ListBlank.nth R n).1, update (ListBlank.nth R n).2 k (some (f v))) ((Tape.move Dir.right)^[n] (Tape.mk' L R)) = (Tape.move Dir.right)^[n] (Tape.mk' L (ListBlank.modifyNth (fun a => (a.1, update a.2 k (some (f v)))) n R)) i : ℕ h : i = List.length (S k) ⊢ some (f v) = List.getI (List.reverse (List.map some (S k)) ++ [some (f v)]) i ** rw [List.getI_eq_get, List.get_append_right'] <;>
simp only [h, List.get_singleton, List.length_map, List.length_reverse, Nat.succ_pos',
List.length_append, lt_add_iff_pos_right, List.length, le_refl] ** case neg.inl K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : TM1.Stmt Γ' Λ' σ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) f : σ → Γ k this : ∀ (L R : ListBlank Γ') (n : ℕ), Tape.write ((ListBlank.nth R n).1, update (ListBlank.nth R n).2 k (some (f v))) ((Tape.move Dir.right)^[n] (Tape.mk' L R)) = (Tape.move Dir.right)^[n] (Tape.mk' L (ListBlank.modifyNth (fun a => (a.1, update a.2 k (some (f v)))) n R)) i : ℕ h✝ : ¬i = List.length (S k) h : i < List.length (S k) ⊢ List.getI (List.reverse (List.map some (S k))) i = List.getI (List.reverse (List.map some (S k)) ++ [some (f v)]) i ** rw [List.getI_append] ** case neg.inl.h K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : TM1.Stmt Γ' Λ' σ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) f : σ → Γ k this : ∀ (L R : ListBlank Γ') (n : ℕ), Tape.write ((ListBlank.nth R n).1, update (ListBlank.nth R n).2 k (some (f v))) ((Tape.move Dir.right)^[n] (Tape.mk' L R)) = (Tape.move Dir.right)^[n] (Tape.mk' L (ListBlank.modifyNth (fun a => (a.1, update a.2 k (some (f v)))) n R)) i : ℕ h✝ : ¬i = List.length (S k) h : i < List.length (S k) ⊢ i < List.length (List.reverse (List.map some (S k))) ** simpa only [List.length_map, List.length_reverse] using h ** case neg.inr K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : TM1.Stmt Γ' Λ' σ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) f : σ → Γ k this : ∀ (L R : ListBlank Γ') (n : ℕ), Tape.write ((ListBlank.nth R n).1, update (ListBlank.nth R n).2 k (some (f v))) ((Tape.move Dir.right)^[n] (Tape.mk' L R)) = (Tape.move Dir.right)^[n] (Tape.mk' L (ListBlank.modifyNth (fun a => (a.1, update a.2 k (some (f v)))) n R)) i : ℕ h✝ : ¬i = List.length (S k) h : i > List.length (S k) ⊢ List.getI (List.reverse (List.map some (S k))) i = List.getI (List.reverse (List.map some (S k)) ++ [some (f v)]) i ** rw [gt_iff_lt] at h ** case neg.inr K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : TM1.Stmt Γ' Λ' σ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) f : σ → Γ k this : ∀ (L R : ListBlank Γ') (n : ℕ), Tape.write ((ListBlank.nth R n).1, update (ListBlank.nth R n).2 k (some (f v))) ((Tape.move Dir.right)^[n] (Tape.mk' L R)) = (Tape.move Dir.right)^[n] (Tape.mk' L (ListBlank.modifyNth (fun a => (a.1, update a.2 k (some (f v)))) n R)) i : ℕ h✝ : ¬i = List.length (S k) h : List.length (S k) < i ⊢ List.getI (List.reverse (List.map some (S k))) i = List.getI (List.reverse (List.map some (S k)) ++ [some (f v)]) i ** rw [List.getI_eq_default, List.getI_eq_default] <;>
simp only [Nat.add_one_le_iff, h, List.length, le_of_lt, List.length_reverse,
List.length_append, List.length_map] ** case neg K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : TM1.Stmt Γ' Λ' σ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) f : σ → Γ k this : ∀ (L R : ListBlank Γ') (n : ℕ), Tape.write ((ListBlank.nth R n).1, update (ListBlank.nth R n).2 k (some (f v))) ((Tape.move Dir.right)^[n] (Tape.mk' L R)) = (Tape.move Dir.right)^[n] (Tape.mk' L (ListBlank.modifyNth (fun a => (a.1, update a.2 k (some (f v)))) n R)) k' : K i : ℕ h' : ¬k' = k ⊢ ite (i = List.length (S k)) (update (ListBlank.nth L i) k (some (f v))) (ListBlank.nth L i) k' = ListBlank.nth (ListBlank.mk (List.reverse (List.map some (update S k (f v :: S k) k')))) i ** split_ifs <;> rw [Function.update_noteq h', ← proj_map_nth, hL] ** case pos K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : TM1.Stmt Γ' Λ' σ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) f : σ → Γ k this : ∀ (L R : ListBlank Γ') (n : ℕ), Tape.write ((ListBlank.nth R n).1, update (ListBlank.nth R n).2 k (some (f v))) ((Tape.move Dir.right)^[n] (Tape.mk' L R)) = (Tape.move Dir.right)^[n] (Tape.mk' L (ListBlank.modifyNth (fun a => (a.1, update a.2 k (some (f v)))) n R)) k' : K i : ℕ h' : ¬k' = k h✝ : i = List.length (S k) ⊢ ListBlank.nth (ListBlank.mk (List.reverse (List.map some (S k')))) i = ListBlank.nth (ListBlank.mk (List.reverse (List.map some (update S k (f v :: S k) k')))) i ** rw [Function.update_noteq h'] ** K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : TM1.Stmt Γ' Λ' σ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) f : σ → Option (Γ k) → σ ⊢ ∃ L', (∀ (k_1 : K), ListBlank.map (proj k_1) L' = ListBlank.mk (List.reverse (List.map some (update S k (S k) k_1)))) ∧ TM1.stepAux q (f v ((Tape.move Dir.left ((Tape.move Dir.right)^[List.length (S k)] (Tape.mk' ∅ (addBottom L)))).head.2 k)) (Tape.move Dir.right (Tape.move Dir.left ((Tape.move Dir.right)^[List.length (S k)] (Tape.mk' ∅ (addBottom L))))) = TM1.stepAux q (f v (List.head? (S k))) ((Tape.move Dir.right)^[List.length (S k)] (Tape.mk' ∅ (addBottom L'))) ** rw [Function.update_eq_self] ** K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : TM1.Stmt Γ' Λ' σ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) f : σ → Option (Γ k) → σ ⊢ ∃ L', (∀ (k : K), ListBlank.map (proj k) L' = ListBlank.mk (List.reverse (List.map some (S k)))) ∧ TM1.stepAux q (f v ((Tape.move Dir.left ((Tape.move Dir.right)^[List.length (S k)] (Tape.mk' ∅ (addBottom L)))).head.2 k)) (Tape.move Dir.right (Tape.move Dir.left ((Tape.move Dir.right)^[List.length (S k)] (Tape.mk' ∅ (addBottom L))))) = TM1.stepAux q (f v (List.head? (S k))) ((Tape.move Dir.right)^[List.length (S k)] (Tape.mk' ∅ (addBottom L'))) ** use L, hL ** case right K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : TM1.Stmt Γ' Λ' σ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) f : σ → Option (Γ k) → σ ⊢ TM1.stepAux q (f v ((Tape.move Dir.left ((Tape.move Dir.right)^[List.length (S k)] (Tape.mk' ∅ (addBottom L)))).head.2 k)) (Tape.move Dir.right (Tape.move Dir.left ((Tape.move Dir.right)^[List.length (S k)] (Tape.mk' ∅ (addBottom L))))) = TM1.stepAux q (f v (List.head? (S k))) ((Tape.move Dir.right)^[List.length (S k)] (Tape.mk' ∅ (addBottom L))) ** rw [Tape.move_left_right] ** case right K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : TM1.Stmt Γ' Λ' σ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) f : σ → Option (Γ k) → σ ⊢ TM1.stepAux q (f v ((Tape.move Dir.left ((Tape.move Dir.right)^[List.length (S k)] (Tape.mk' ∅ (addBottom L)))).head.2 k)) ((Tape.move Dir.right)^[List.length (S k)] (Tape.mk' ∅ (addBottom L))) = TM1.stepAux q (f v (List.head? (S k))) ((Tape.move Dir.right)^[List.length (S k)] (Tape.mk' ∅ (addBottom L))) ** congr ** case right.e_a.e_a K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : TM1.Stmt Γ' Λ' σ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) f : σ → Option (Γ k) → σ ⊢ (Tape.move Dir.left ((Tape.move Dir.right)^[List.length (S k)] (Tape.mk' ∅ (addBottom L)))).head.2 k = List.head? (S k) ** cases e : S k ** case right.e_a.e_a.cons K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : TM1.Stmt Γ' Λ' σ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) f : σ → Option (Γ k) → σ head✝ : Γ k tail✝ : List (Γ k) e : S k = head✝ :: tail✝ ⊢ (Tape.move Dir.left ((Tape.move Dir.right)^[List.length (head✝ :: tail✝)] (Tape.mk' ∅ (addBottom L)))).head.2 k = List.head? (head✝ :: tail✝) ** rw [List.length_cons, iterate_succ', Function.comp, Tape.move_right_left,
Tape.move_right_n_head, Tape.mk'_nth_nat, addBottom_nth_snd, stk_nth_val _ (hL k), e,
List.reverse_cons, ← List.length_reverse, List.get?_concat_length] ** case right.e_a.e_a.cons K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : TM1.Stmt Γ' Λ' σ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) f : σ → Option (Γ k) → σ head✝ : Γ k tail✝ : List (Γ k) e : S k = head✝ :: tail✝ ⊢ some head✝ = List.head? (head✝ :: tail✝) ** rfl ** case right.e_a.e_a.nil K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : TM1.Stmt Γ' Λ' σ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) f : σ → Option (Γ k) → σ e : S k = [] ⊢ (Tape.move Dir.left ((Tape.move Dir.right)^[List.length []] (Tape.mk' ∅ (addBottom L)))).head.2 k = List.head? [] ** rfl ** K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : TM1.Stmt Γ' Λ' σ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) f : σ → Option (Γ k) → σ ⊢ ∃ L', (∀ (k_1 : K), ListBlank.map (proj k_1) L' = ListBlank.mk (List.reverse (List.map some (update S k (List.tail (S k)) k_1)))) ∧ (bif ((Tape.move Dir.right)^[List.length (S k)] (Tape.mk' ∅ (addBottom L))).head.1 then TM1.stepAux q (f v none) ((Tape.move Dir.right)^[List.length (S k)] (Tape.mk' ∅ (addBottom L))) else TM1.stepAux q (f v ((Tape.move Dir.left ((Tape.move Dir.right)^[List.length (S k)] (Tape.mk' ∅ (addBottom L)))).head.2 k)) (Tape.write ((Tape.move Dir.left ((Tape.move Dir.right)^[List.length (S k)] (Tape.mk' ∅ (addBottom L)))).head.1, update (Tape.move Dir.left ((Tape.move Dir.right)^[List.length (S k)] (Tape.mk' ∅ (addBottom L)))).head.2 k none) (Tape.move Dir.left ((Tape.move Dir.right)^[List.length (S k)] (Tape.mk' ∅ (addBottom L)))))) = TM1.stepAux q (f v (List.head? (S k))) ((Tape.move Dir.right)^[List.length (List.tail (S k))] (Tape.mk' ∅ (addBottom L'))) ** cases' e : S k with hd tl ** case nil K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : TM1.Stmt Γ' Λ' σ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) f : σ → Option (Γ k) → σ e : S k = [] ⊢ ∃ L', (∀ (k_1 : K), ListBlank.map (proj k_1) L' = ListBlank.mk (List.reverse (List.map some (update S k (List.tail []) k_1)))) ∧ (bif ((Tape.move Dir.right)^[List.length []] (Tape.mk' ∅ (addBottom L))).head.1 then TM1.stepAux q (f v none) ((Tape.move Dir.right)^[List.length []] (Tape.mk' ∅ (addBottom L))) else TM1.stepAux q (f v ((Tape.move Dir.left ((Tape.move Dir.right)^[List.length []] (Tape.mk' ∅ (addBottom L)))).head.2 k)) (Tape.write ((Tape.move Dir.left ((Tape.move Dir.right)^[List.length []] (Tape.mk' ∅ (addBottom L)))).head.1, update (Tape.move Dir.left ((Tape.move Dir.right)^[List.length []] (Tape.mk' ∅ (addBottom L)))).head.2 k none) (Tape.move Dir.left ((Tape.move Dir.right)^[List.length []] (Tape.mk' ∅ (addBottom L)))))) = TM1.stepAux q (f v (List.head? [])) ((Tape.move Dir.right)^[List.length (List.tail [])] (Tape.mk' ∅ (addBottom L'))) ** simp only [Tape.mk'_head, ListBlank.head_cons, Tape.move_left_mk', List.length,
Tape.write_mk', List.head?, iterate_zero_apply, List.tail_nil] ** case nil K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : TM1.Stmt Γ' Λ' σ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) f : σ → Option (Γ k) → σ e : S k = [] ⊢ ∃ L', (∀ (k_1 : K), ListBlank.map (proj k_1) L' = ListBlank.mk (List.reverse (List.map some (update S k [] k_1)))) ∧ (bif (ListBlank.head (addBottom L)).1 then TM1.stepAux q (f v none) (Tape.mk' ∅ (addBottom L)) else TM1.stepAux q (f v ((ListBlank.head ∅).2 k)) (Tape.mk' (ListBlank.tail ∅) (ListBlank.cons ((ListBlank.head ∅).1, update (ListBlank.head ∅).2 k none) (addBottom L)))) = TM1.stepAux q (f v none) (Tape.mk' ∅ (addBottom L')) ** rw [← e, Function.update_eq_self] ** case nil K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : TM1.Stmt Γ' Λ' σ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) f : σ → Option (Γ k) → σ e : S k = [] ⊢ ∃ L', (∀ (k : K), ListBlank.map (proj k) L' = ListBlank.mk (List.reverse (List.map some (S k)))) ∧ (bif (ListBlank.head (addBottom L)).1 then TM1.stepAux q (f v none) (Tape.mk' ∅ (addBottom L)) else TM1.stepAux q (f v ((ListBlank.head ∅).2 k)) (Tape.mk' (ListBlank.tail ∅) (ListBlank.cons ((ListBlank.head ∅).1, update (ListBlank.head ∅).2 k none) (addBottom L)))) = TM1.stepAux q (f v none) (Tape.mk' ∅ (addBottom L')) ** exact ⟨L, hL, by rw [addBottom_head_fst, cond]⟩ ** K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : TM1.Stmt Γ' Λ' σ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) f : σ → Option (Γ k) → σ e : S k = [] ⊢ (bif (ListBlank.head (addBottom L)).1 then TM1.stepAux q (f v none) (Tape.mk' ∅ (addBottom L)) else TM1.stepAux q (f v ((ListBlank.head ∅).2 k)) (Tape.mk' (ListBlank.tail ∅) (ListBlank.cons ((ListBlank.head ∅).1, update (ListBlank.head ∅).2 k none) (addBottom L)))) = TM1.stepAux q (f v none) (Tape.mk' ∅ (addBottom L)) ** rw [addBottom_head_fst, cond] ** case cons K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : TM1.Stmt Γ' Λ' σ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) f : σ → Option (Γ k) → σ hd : Γ k tl : List (Γ k) e : S k = hd :: tl ⊢ ∃ L', (∀ (k_1 : K), ListBlank.map (proj k_1) L' = ListBlank.mk (List.reverse (List.map some (update S k (List.tail (hd :: tl)) k_1)))) ∧ (bif ((Tape.move Dir.right)^[List.length (hd :: tl)] (Tape.mk' ∅ (addBottom L))).head.1 then TM1.stepAux q (f v none) ((Tape.move Dir.right)^[List.length (hd :: tl)] (Tape.mk' ∅ (addBottom L))) else TM1.stepAux q (f v ((Tape.move Dir.left ((Tape.move Dir.right)^[List.length (hd :: tl)] (Tape.mk' ∅ (addBottom L)))).head.2 k)) (Tape.write ((Tape.move Dir.left ((Tape.move Dir.right)^[List.length (hd :: tl)] (Tape.mk' ∅ (addBottom L)))).head.1, update (Tape.move Dir.left ((Tape.move Dir.right)^[List.length (hd :: tl)] (Tape.mk' ∅ (addBottom L)))).head.2 k none) (Tape.move Dir.left ((Tape.move Dir.right)^[List.length (hd :: tl)] (Tape.mk' ∅ (addBottom L)))))) = TM1.stepAux q (f v (List.head? (hd :: tl))) ((Tape.move Dir.right)^[List.length (List.tail (hd :: tl))] (Tape.mk' ∅ (addBottom L'))) ** refine'
⟨_, fun k' ↦ _, by
erw [List.length_cons, Tape.move_right_n_head, Tape.mk'_nth_nat, addBottom_nth_succ_fst,
cond, iterate_succ', Function.comp, Tape.move_right_left, Tape.move_right_n_head,
Tape.mk'_nth_nat, Tape.write_move_right_n fun a : Γ' ↦ (a.1, update a.2 k none),
addBottom_modifyNth fun a ↦ update a k none, addBottom_nth_snd,
stk_nth_val _ (hL k), e,
show (List.cons hd tl).reverse.get? tl.length = some hd by
rw [List.reverse_cons, ← List.length_reverse, List.get?_concat_length],
List.head?, List.tail]⟩ ** case cons K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : TM1.Stmt Γ' Λ' σ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) f : σ → Option (Γ k) → σ hd : Γ k tl : List (Γ k) e : S k = hd :: tl k' : K ⊢ ListBlank.map (proj k') (ListBlank.modifyNth (fun a => update a k none) (List.length tl) L) = ListBlank.mk (List.reverse (List.map some (update S k (List.tail (hd :: tl)) k'))) ** refine' ListBlank.ext fun i ↦ _ ** case cons K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : TM1.Stmt Γ' Λ' σ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) f : σ → Option (Γ k) → σ hd : Γ k tl : List (Γ k) e : S k = hd :: tl k' : K i : ℕ ⊢ ListBlank.nth (ListBlank.map (proj k') (ListBlank.modifyNth (fun a => update a k none) (List.length tl) L)) i = ListBlank.nth (ListBlank.mk (List.reverse (List.map some (update S k (List.tail (hd :: tl)) k')))) i ** rw [ListBlank.nth_map, ListBlank.nth_modifyNth, proj, PointedMap.mk_val] ** case cons K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : TM1.Stmt Γ' Λ' σ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) f : σ → Option (Γ k) → σ hd : Γ k tl : List (Γ k) e : S k = hd :: tl k' : K i : ℕ ⊢ ite (i = List.length tl) (update (ListBlank.nth L i) k none) (ListBlank.nth L i) k' = ListBlank.nth (ListBlank.mk (List.reverse (List.map some (update S k (List.tail (hd :: tl)) k')))) i ** by_cases h' : k' = k ** K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : TM1.Stmt Γ' Λ' σ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) f : σ → Option (Γ k) → σ hd : Γ k tl : List (Γ k) e : S k = hd :: tl ⊢ (bif ((Tape.move Dir.right)^[List.length (hd :: tl)] (Tape.mk' ∅ (addBottom L))).head.1 then TM1.stepAux q (f v none) ((Tape.move Dir.right)^[List.length (hd :: tl)] (Tape.mk' ∅ (addBottom L))) else TM1.stepAux q (f v ((Tape.move Dir.left ((Tape.move Dir.right)^[List.length (hd :: tl)] (Tape.mk' ∅ (addBottom L)))).head.2 k)) (Tape.write ((Tape.move Dir.left ((Tape.move Dir.right)^[List.length (hd :: tl)] (Tape.mk' ∅ (addBottom L)))).head.1, update (Tape.move Dir.left ((Tape.move Dir.right)^[List.length (hd :: tl)] (Tape.mk' ∅ (addBottom L)))).head.2 k none) (Tape.move Dir.left ((Tape.move Dir.right)^[List.length (hd :: tl)] (Tape.mk' ∅ (addBottom L)))))) = TM1.stepAux q (f v (List.head? (hd :: tl))) ((Tape.move Dir.right)^[List.length (List.tail (hd :: tl))] (Tape.mk' ∅ (addBottom ?m.690014))) ** erw [List.length_cons, Tape.move_right_n_head, Tape.mk'_nth_nat, addBottom_nth_succ_fst,
cond, iterate_succ', Function.comp, Tape.move_right_left, Tape.move_right_n_head,
Tape.mk'_nth_nat, Tape.write_move_right_n fun a : Γ' ↦ (a.1, update a.2 k none),
addBottom_modifyNth fun a ↦ update a k none, addBottom_nth_snd,
stk_nth_val _ (hL k), e,
show (List.cons hd tl).reverse.get? tl.length = some hd by
rw [List.reverse_cons, ← List.length_reverse, List.get?_concat_length],
List.head?, List.tail] ** K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : TM1.Stmt Γ' Λ' σ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) f : σ → Option (Γ k) → σ hd : Γ k tl : List (Γ k) e : S k = hd :: tl ⊢ List.get? (List.reverse (hd :: tl)) (List.length tl) = some hd ** rw [List.reverse_cons, ← List.length_reverse, List.get?_concat_length] ** case pos K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : TM1.Stmt Γ' Λ' σ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) f : σ → Option (Γ k) → σ hd : Γ k tl : List (Γ k) e : S k = hd :: tl k' : K i : ℕ h' : k' = k ⊢ ite (i = List.length tl) (update (ListBlank.nth L i) k none) (ListBlank.nth L i) k' = ListBlank.nth (ListBlank.mk (List.reverse (List.map some (update S k (List.tail (hd :: tl)) k')))) i ** subst k' ** case pos K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : TM1.Stmt Γ' Λ' σ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) f : σ → Option (Γ k) → σ hd : Γ k tl : List (Γ k) e : S k = hd :: tl i : ℕ ⊢ ite (i = List.length tl) (update (ListBlank.nth L i) k none) (ListBlank.nth L i) k = ListBlank.nth (ListBlank.mk (List.reverse (List.map some (update S k (List.tail (hd :: tl)) k)))) i ** split_ifs with h <;> simp only [Function.update_same, ListBlank.nth_mk, List.tail] ** case neg K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : TM1.Stmt Γ' Λ' σ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) f : σ → Option (Γ k) → σ hd : Γ k tl : List (Γ k) e : S k = hd :: tl i : ℕ h : ¬i = List.length tl ⊢ ListBlank.nth L i k = List.getI (List.reverse (List.map some tl)) i ** rw [← proj_map_nth, hL, ListBlank.nth_mk, e, List.map, List.reverse_cons] ** case neg K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : TM1.Stmt Γ' Λ' σ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) f : σ → Option (Γ k) → σ hd : Γ k tl : List (Γ k) e : S k = hd :: tl i : ℕ h : ¬i = List.length tl ⊢ List.getI (List.reverse (List.map some tl) ++ [some hd]) i = List.getI (List.reverse (List.map some tl)) i ** cases' lt_or_gt_of_ne h with h h ** case pos K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : TM1.Stmt Γ' Λ' σ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) f : σ → Option (Γ k) → σ hd : Γ k tl : List (Γ k) e : S k = hd :: tl i : ℕ h : i = List.length tl ⊢ none = List.getI (List.reverse (List.map some tl)) i ** rw [List.getI_eq_default] ** case pos.hn K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : TM1.Stmt Γ' Λ' σ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) f : σ → Option (Γ k) → σ hd : Γ k tl : List (Γ k) e : S k = hd :: tl i : ℕ h : i = List.length tl ⊢ List.length (List.reverse (List.map some tl)) ≤ i ** rw [h, List.length_reverse, List.length_map] ** case pos K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : TM1.Stmt Γ' Λ' σ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) f : σ → Option (Γ k) → σ hd : Γ k tl : List (Γ k) e : S k = hd :: tl i : ℕ h : i = List.length tl ⊢ none = default ** rfl ** case neg.inl K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : TM1.Stmt Γ' Λ' σ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) f : σ → Option (Γ k) → σ hd : Γ k tl : List (Γ k) e : S k = hd :: tl i : ℕ h✝ : ¬i = List.length tl h : i < List.length tl ⊢ List.getI (List.reverse (List.map some tl) ++ [some hd]) i = List.getI (List.reverse (List.map some tl)) i ** rw [List.getI_append] ** case neg.inl.h K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : TM1.Stmt Γ' Λ' σ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) f : σ → Option (Γ k) → σ hd : Γ k tl : List (Γ k) e : S k = hd :: tl i : ℕ h✝ : ¬i = List.length tl h : i < List.length tl ⊢ i < List.length (List.reverse (List.map some tl)) ** simpa only [List.length_map, List.length_reverse] using h ** case neg.inr K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : TM1.Stmt Γ' Λ' σ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) f : σ → Option (Γ k) → σ hd : Γ k tl : List (Γ k) e : S k = hd :: tl i : ℕ h✝ : ¬i = List.length tl h : i > List.length tl ⊢ List.getI (List.reverse (List.map some tl) ++ [some hd]) i = List.getI (List.reverse (List.map some tl)) i ** rw [gt_iff_lt] at h ** case neg.inr K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : TM1.Stmt Γ' Λ' σ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) f : σ → Option (Γ k) → σ hd : Γ k tl : List (Γ k) e : S k = hd :: tl i : ℕ h✝ : ¬i = List.length tl h : List.length tl < i ⊢ List.getI (List.reverse (List.map some tl) ++ [some hd]) i = List.getI (List.reverse (List.map some tl)) i ** rw [List.getI_eq_default, List.getI_eq_default] <;>
simp only [Nat.add_one_le_iff, h, List.length, le_of_lt, List.length_reverse,
List.length_append, List.length_map] ** case neg K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : TM1.Stmt Γ' Λ' σ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) f : σ → Option (Γ k) → σ hd : Γ k tl : List (Γ k) e : S k = hd :: tl k' : K i : ℕ h' : ¬k' = k ⊢ ite (i = List.length tl) (update (ListBlank.nth L i) k none) (ListBlank.nth L i) k' = ListBlank.nth (ListBlank.mk (List.reverse (List.map some (update S k (List.tail (hd :: tl)) k')))) i ** split_ifs <;> rw [Function.update_noteq h', ← proj_map_nth, hL] ** case pos K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ k : K q : TM1.Stmt Γ' Λ' σ v : σ S : (k : K) → List (Γ k) L : ListBlank ((k : K) → Option (Γ k)) hL : ∀ (k : K), ListBlank.map (proj k) L = ListBlank.mk (List.reverse (List.map some (S k))) f : σ → Option (Γ k) → σ hd : Γ k tl : List (Γ k) e : S k = hd :: tl k' : K i : ℕ h' : ¬k' = k h✝ : i = List.length tl ⊢ ListBlank.nth (ListBlank.mk (List.reverse (List.map some (S k')))) i = ListBlank.nth (ListBlank.mk (List.reverse (List.map some (update S k (List.tail (hd :: tl)) k')))) i ** rw [Function.update_noteq h'] ** Qed
| |
Turing.TM2to1.tr_eval ** K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ M : Λ → Stmt₂ k : K L : List (Γ k) L₁ : ListBlank Γ' L₂ : List (Γ k) H₁ : L₁ ∈ TM1.eval (tr M) (trInit k L) H₂ : L₂ ∈ TM2.eval M k L ⊢ ∃ S L', addBottom L' = L₁ ∧ (∀ (k : K), ListBlank.map (proj k) L' = ListBlank.mk (List.reverse (List.map some (S k)))) ∧ S k = L₂ ** obtain ⟨c₁, h₁, rfl⟩ := (Part.mem_map_iff _).1 H₁ ** case intro.intro K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ M : Λ → Stmt₂ k : K L L₂ : List (Γ k) H₂ : L₂ ∈ TM2.eval M k L c₁ : TM1.Cfg Γ' Λ' σ h₁ : c₁ ∈ eval (TM1.step (tr M)) (TM1.init (trInit k L)) H₁ : Tape.right₀ c₁.Tape ∈ TM1.eval (tr M) (trInit k L) ⊢ ∃ S L', addBottom L' = Tape.right₀ c₁.Tape ∧ (∀ (k : K), ListBlank.map (proj k) L' = ListBlank.mk (List.reverse (List.map some (S k)))) ∧ S k = L₂ ** obtain ⟨c₂, h₂, rfl⟩ := (Part.mem_map_iff _).1 H₂ ** case intro.intro.intro.intro K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ M : Λ → Stmt₂ k : K L : List (Γ k) c₁ : TM1.Cfg Γ' Λ' σ h₁ : c₁ ∈ eval (TM1.step (tr M)) (TM1.init (trInit k L)) H₁ : Tape.right₀ c₁.Tape ∈ TM1.eval (tr M) (trInit k L) c₂ : Cfg₂ h₂ : c₂ ∈ eval (TM2.step M) (TM2.init k L) H₂ : TM2.Cfg.stk c₂ k ∈ TM2.eval M k L ⊢ ∃ S L', addBottom L' = Tape.right₀ c₁.Tape ∧ (∀ (k : K), ListBlank.map (proj k) L' = ListBlank.mk (List.reverse (List.map some (S k)))) ∧ S k = TM2.Cfg.stk c₂ k ** obtain ⟨_, ⟨L', hT⟩, h₃⟩ := Turing.tr_eval (tr_respects M) (trCfg_init k L) h₂ ** case intro.intro.intro.intro.intro.intro.mk K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ M : Λ → Stmt₂ k : K L : List (Γ k) c₁ : TM1.Cfg Γ' Λ' σ h₁ : c₁ ∈ eval (TM1.step (tr M)) (TM1.init (trInit k L)) H₁ : Tape.right₀ c₁.Tape ∈ TM1.eval (tr M) (trInit k L) q✝ : Option Λ v✝ : σ S✝ : (k : K) → List (Γ k) L' : ListBlank ((k : K) → Option (Γ k)) hT : ∀ (k : K), ListBlank.map (proj k) L' = ListBlank.mk (List.reverse (List.map some (S✝ k))) h₂ : { l := q✝, var := v✝, stk := S✝ } ∈ eval (TM2.step M) (TM2.init k L) H₂ : TM2.Cfg.stk { l := q✝, var := v✝, stk := S✝ } k ∈ TM2.eval M k L h₃ : { l := Option.map normal q✝, var := v✝, Tape := Tape.mk' ∅ (addBottom L') } ∈ eval (TM1.step (tr M)) (TM1.init (trInit k L)) ⊢ ∃ S L', addBottom L' = Tape.right₀ c₁.Tape ∧ (∀ (k : K), ListBlank.map (proj k) L' = ListBlank.mk (List.reverse (List.map some (S k)))) ∧ S k = TM2.Cfg.stk { l := q✝, var := v✝, stk := S✝ } k ** cases Part.mem_unique h₁ h₃ ** case intro.intro.intro.intro.intro.intro.mk.refl K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ M : Λ → Stmt₂ k : K L : List (Γ k) q✝ : Option Λ v✝ : σ S✝ : (k : K) → List (Γ k) L' : ListBlank ((k : K) → Option (Γ k)) hT : ∀ (k : K), ListBlank.map (proj k) L' = ListBlank.mk (List.reverse (List.map some (S✝ k))) h₂ : { l := q✝, var := v✝, stk := S✝ } ∈ eval (TM2.step M) (TM2.init k L) H₂ : TM2.Cfg.stk { l := q✝, var := v✝, stk := S✝ } k ∈ TM2.eval M k L h₃ : { l := Option.map normal q✝, var := v✝, Tape := Tape.mk' ∅ (addBottom L') } ∈ eval (TM1.step (tr M)) (TM1.init (trInit k L)) h₁ : { l := Option.map normal q✝, var := v✝, Tape := Tape.mk' ∅ (addBottom L') } ∈ eval (TM1.step (tr M)) (TM1.init (trInit k L)) H₁ : Tape.right₀ { l := Option.map normal q✝, var := v✝, Tape := Tape.mk' ∅ (addBottom L') }.Tape ∈ TM1.eval (tr M) (trInit k L) ⊢ ∃ S L'_1, addBottom L'_1 = Tape.right₀ { l := Option.map normal q✝, var := v✝, Tape := Tape.mk' ∅ (addBottom L') }.Tape ∧ (∀ (k : K), ListBlank.map (proj k) L'_1 = ListBlank.mk (List.reverse (List.map some (S k)))) ∧ S k = TM2.Cfg.stk { l := q✝, var := v✝, stk := S✝ } k ** exact ⟨_, L', by simp only [Tape.mk'_right₀], hT, rfl⟩ ** K : Type u_1 inst✝² : DecidableEq K Γ : K → Type u_2 Λ : Type u_3 inst✝¹ : Inhabited Λ σ : Type u_4 inst✝ : Inhabited σ M : Λ → Stmt₂ k : K L : List (Γ k) q✝ : Option Λ v✝ : σ S✝ : (k : K) → List (Γ k) L' : ListBlank ((k : K) → Option (Γ k)) hT : ∀ (k : K), ListBlank.map (proj k) L' = ListBlank.mk (List.reverse (List.map some (S✝ k))) h₂ : { l := q✝, var := v✝, stk := S✝ } ∈ eval (TM2.step M) (TM2.init k L) H₂ : TM2.Cfg.stk { l := q✝, var := v✝, stk := S✝ } k ∈ TM2.eval M k L h₃ : { l := Option.map normal q✝, var := v✝, Tape := Tape.mk' ∅ (addBottom L') } ∈ eval (TM1.step (tr M)) (TM1.init (trInit k L)) h₁ : { l := Option.map normal q✝, var := v✝, Tape := Tape.mk' ∅ (addBottom L') } ∈ eval (TM1.step (tr M)) (TM1.init (trInit k L)) H₁ : Tape.right₀ { l := Option.map normal q✝, var := v✝, Tape := Tape.mk' ∅ (addBottom L') }.Tape ∈ TM1.eval (tr M) (trInit k L) ⊢ addBottom L' = Tape.right₀ { l := Option.map normal q✝, var := v✝, Tape := Tape.mk' ∅ (addBottom L') }.Tape ** simp only [Tape.mk'_right₀] ** Qed
| |
borel_eq_top_of_countable ** α : Type u_1 β : Type u_2 γ : Type u_3 γ₂ : Type u_4 δ : Type u_5 ι : Sort y s t u : Set α inst✝² : TopologicalSpace α inst✝¹ : T1Space α inst✝ : Countable α ⊢ borel α = ⊤ ** refine' top_le_iff.1 fun s _ => biUnion_of_singleton s ▸ _ ** α : Type u_1 β : Type u_2 γ : Type u_3 γ₂ : Type u_4 δ : Type u_5 ι : Sort y s✝ t u : Set α inst✝² : TopologicalSpace α inst✝¹ : T1Space α inst✝ : Countable α s : Set α x✝ : MeasurableSet s ⊢ MeasurableSet (⋃ x ∈ s, {x}) ** apply MeasurableSet.biUnion s.to_countable ** α : Type u_1 β : Type u_2 γ : Type u_3 γ₂ : Type u_4 δ : Type u_5 ι : Sort y s✝ t u : Set α inst✝² : TopologicalSpace α inst✝¹ : T1Space α inst✝ : Countable α s : Set α x✝ : MeasurableSet s ⊢ ∀ (b : α), b ∈ s → MeasurableSet {b} ** intro x _ ** α : Type u_1 β : Type u_2 γ : Type u_3 γ₂ : Type u_4 δ : Type u_5 ι : Sort y s✝ t u : Set α inst✝² : TopologicalSpace α inst✝¹ : T1Space α inst✝ : Countable α s : Set α x✝ : MeasurableSet s x : α a✝ : x ∈ s ⊢ MeasurableSet {x} ** apply MeasurableSet.of_compl ** case h α : Type u_1 β : Type u_2 γ : Type u_3 γ₂ : Type u_4 δ : Type u_5 ι : Sort y s✝ t u : Set α inst✝² : TopologicalSpace α inst✝¹ : T1Space α inst✝ : Countable α s : Set α x✝ : MeasurableSet s x : α a✝ : x ∈ s ⊢ MeasurableSet {x}ᶜ ** apply GenerateMeasurable.basic ** case h.a α : Type u_1 β : Type u_2 γ : Type u_3 γ₂ : Type u_4 δ : Type u_5 ι : Sort y s✝ t u : Set α inst✝² : TopologicalSpace α inst✝¹ : T1Space α inst✝ : Countable α s : Set α x✝ : MeasurableSet s x : α a✝ : x ∈ s ⊢ {x}ᶜ ∈ {s | IsOpen s} ** exact isClosed_singleton.isOpen_compl ** Qed
| |
borel_eq_generateFrom_Iio ** α : Type u_1 β : Type u_2 γ : Type u_3 γ₂ : Type u_4 δ : Type u_5 ι : Sort y s t u : Set α inst✝³ : TopologicalSpace α inst✝² : SecondCountableTopology α inst✝¹ : LinearOrder α inst✝ : OrderTopology α ⊢ borel α = MeasurableSpace.generateFrom (range Iio) ** refine' le_antisymm _ (generateFrom_le _) ** case refine'_1 α : Type u_1 β : Type u_2 γ : Type u_3 γ₂ : Type u_4 δ : Type u_5 ι : Sort y s t u : Set α inst✝³ : TopologicalSpace α inst✝² : SecondCountableTopology α inst✝¹ : LinearOrder α inst✝ : OrderTopology α ⊢ borel α ≤ MeasurableSpace.generateFrom (range Iio) ** rw [borel_eq_generateFrom_of_subbasis (@OrderTopology.topology_eq_generate_intervals α _ _ _)] ** case refine'_1 α : Type u_1 β : Type u_2 γ : Type u_3 γ₂ : Type u_4 δ : Type u_5 ι : Sort y s t u : Set α inst✝³ : TopologicalSpace α inst✝² : SecondCountableTopology α inst✝¹ : LinearOrder α inst✝ : OrderTopology α ⊢ MeasurableSpace.generateFrom {s | ∃ a, s = Ioi a ∨ s = Iio a} ≤ MeasurableSpace.generateFrom (range Iio) ** letI : MeasurableSpace α := MeasurableSpace.generateFrom (range Iio) ** case refine'_1 α : Type u_1 β : Type u_2 γ : Type u_3 γ₂ : Type u_4 δ : Type u_5 ι : Sort y s t u : Set α inst✝³ : TopologicalSpace α inst✝² : SecondCountableTopology α inst✝¹ : LinearOrder α inst✝ : OrderTopology α this : MeasurableSpace α := MeasurableSpace.generateFrom (range Iio) ⊢ MeasurableSpace.generateFrom {s | ∃ a, s = Ioi a ∨ s = Iio a} ≤ MeasurableSpace.generateFrom (range Iio) ** have H : ∀ a : α, MeasurableSet (Iio a) := fun a => GenerateMeasurable.basic _ ⟨_, rfl⟩ ** case refine'_1 α : Type u_1 β : Type u_2 γ : Type u_3 γ₂ : Type u_4 δ : Type u_5 ι : Sort y s t u : Set α inst✝³ : TopologicalSpace α inst✝² : SecondCountableTopology α inst✝¹ : LinearOrder α inst✝ : OrderTopology α this : MeasurableSpace α := MeasurableSpace.generateFrom (range Iio) H : ∀ (a : α), MeasurableSet (Iio a) ⊢ MeasurableSpace.generateFrom {s | ∃ a, s = Ioi a ∨ s = Iio a} ≤ MeasurableSpace.generateFrom (range Iio) ** refine' generateFrom_le _ ** case refine'_1 α : Type u_1 β : Type u_2 γ : Type u_3 γ₂ : Type u_4 δ : Type u_5 ι : Sort y s t u : Set α inst✝³ : TopologicalSpace α inst✝² : SecondCountableTopology α inst✝¹ : LinearOrder α inst✝ : OrderTopology α this : MeasurableSpace α := MeasurableSpace.generateFrom (range Iio) H : ∀ (a : α), MeasurableSet (Iio a) ⊢ ∀ (t : Set α), t ∈ {s | ∃ a, s = Ioi a ∨ s = Iio a} → MeasurableSet t ** rintro _ ⟨a, rfl | rfl⟩ <;> [skip; apply H] ** case refine'_1.intro.inl α : Type u_1 β : Type u_2 γ : Type u_3 γ₂ : Type u_4 δ : Type u_5 ι : Sort y s t u : Set α inst✝³ : TopologicalSpace α inst✝² : SecondCountableTopology α inst✝¹ : LinearOrder α inst✝ : OrderTopology α this : MeasurableSpace α := MeasurableSpace.generateFrom (range Iio) H : ∀ (a : α), MeasurableSet (Iio a) a : α ⊢ MeasurableSet (Ioi a) ** by_cases h : ∃ a', ∀ b, a < b ↔ a' ≤ b ** case pos α : Type u_1 β : Type u_2 γ : Type u_3 γ₂ : Type u_4 δ : Type u_5 ι : Sort y s t u : Set α inst✝³ : TopologicalSpace α inst✝² : SecondCountableTopology α inst✝¹ : LinearOrder α inst✝ : OrderTopology α this : MeasurableSpace α := MeasurableSpace.generateFrom (range Iio) H : ∀ (a : α), MeasurableSet (Iio a) a : α h : ∃ a', ∀ (b : α), a < b ↔ a' ≤ b ⊢ MeasurableSet (Ioi a) ** rcases h with ⟨a', ha'⟩ ** case pos.intro α : Type u_1 β : Type u_2 γ : Type u_3 γ₂ : Type u_4 δ : Type u_5 ι : Sort y s t u : Set α inst✝³ : TopologicalSpace α inst✝² : SecondCountableTopology α inst✝¹ : LinearOrder α inst✝ : OrderTopology α this : MeasurableSpace α := MeasurableSpace.generateFrom (range Iio) H : ∀ (a : α), MeasurableSet (Iio a) a a' : α ha' : ∀ (b : α), a < b ↔ a' ≤ b ⊢ MeasurableSet (Ioi a) ** rw [(_ : Ioi a = (Iio a')ᶜ)] ** α : Type u_1 β : Type u_2 γ : Type u_3 γ₂ : Type u_4 δ : Type u_5 ι : Sort y s t u : Set α inst✝³ : TopologicalSpace α inst✝² : SecondCountableTopology α inst✝¹ : LinearOrder α inst✝ : OrderTopology α this : MeasurableSpace α := MeasurableSpace.generateFrom (range Iio) H : ∀ (a : α), MeasurableSet (Iio a) a a' : α ha' : ∀ (b : α), a < b ↔ a' ≤ b ⊢ Ioi a = (Iio a')ᶜ ** simp [Set.ext_iff, ha'] ** case pos.intro α : Type u_1 β : Type u_2 γ : Type u_3 γ₂ : Type u_4 δ : Type u_5 ι : Sort y s t u : Set α inst✝³ : TopologicalSpace α inst✝² : SecondCountableTopology α inst✝¹ : LinearOrder α inst✝ : OrderTopology α this : MeasurableSpace α := MeasurableSpace.generateFrom (range Iio) H : ∀ (a : α), MeasurableSet (Iio a) a a' : α ha' : ∀ (b : α), a < b ↔ a' ≤ b ⊢ MeasurableSet (Iio a')ᶜ ** exact (H _).compl ** case neg α : Type u_1 β : Type u_2 γ : Type u_3 γ₂ : Type u_4 δ : Type u_5 ι : Sort y s t u : Set α inst✝³ : TopologicalSpace α inst✝² : SecondCountableTopology α inst✝¹ : LinearOrder α inst✝ : OrderTopology α this : MeasurableSpace α := MeasurableSpace.generateFrom (range Iio) H : ∀ (a : α), MeasurableSet (Iio a) a : α h : ¬∃ a', ∀ (b : α), a < b ↔ a' ≤ b ⊢ MeasurableSet (Ioi a) ** rcases isOpen_iUnion_countable (fun a' : { a' : α // a < a' } => { b | a'.1 < b }) fun a' =>
isOpen_lt' _ with ⟨v, ⟨hv⟩, vu⟩ ** case neg.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 γ₂ : Type u_4 δ : Type u_5 ι : Sort y s t u : Set α inst✝³ : TopologicalSpace α inst✝² : SecondCountableTopology α inst✝¹ : LinearOrder α inst✝ : OrderTopology α this : MeasurableSpace α := MeasurableSpace.generateFrom (range Iio) H : ∀ (a : α), MeasurableSet (Iio a) a : α h : ¬∃ a', ∀ (b : α), a < b ↔ a' ≤ b v : Set { a' // a < a' } vu : ⋃ i ∈ v, {b | ↑i < b} = ⋃ i, {b | ↑i < b} hv : Encodable ↑v ⊢ MeasurableSet (Ioi a) ** simp [Set.ext_iff] at vu ** case neg.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 γ₂ : Type u_4 δ : Type u_5 ι : Sort y s t u : Set α inst✝³ : TopologicalSpace α inst✝² : SecondCountableTopology α inst✝¹ : LinearOrder α inst✝ : OrderTopology α this✝ : MeasurableSpace α := MeasurableSpace.generateFrom (range Iio) H : ∀ (a : α), MeasurableSet (Iio a) a : α h : ¬∃ a', ∀ (b : α), a < b ↔ a' ≤ b v : Set { a' // a < a' } hv : Encodable ↑v vu : ∀ (x : α), (∃ a_1, (∃ x, { val := a_1, property := (_ : a < a_1) } ∈ v) ∧ a_1 < x) ↔ ∃ a_1, a < a_1 ∧ a_1 < x this : Ioi a = ⋃ x, (Iio ↑↑x)ᶜ ⊢ MeasurableSet (Ioi a) ** rw [this] ** case neg.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 γ₂ : Type u_4 δ : Type u_5 ι : Sort y s t u : Set α inst✝³ : TopologicalSpace α inst✝² : SecondCountableTopology α inst✝¹ : LinearOrder α inst✝ : OrderTopology α this✝ : MeasurableSpace α := MeasurableSpace.generateFrom (range Iio) H : ∀ (a : α), MeasurableSet (Iio a) a : α h : ¬∃ a', ∀ (b : α), a < b ↔ a' ≤ b v : Set { a' // a < a' } hv : Encodable ↑v vu : ∀ (x : α), (∃ a_1, (∃ x, { val := a_1, property := (_ : a < a_1) } ∈ v) ∧ a_1 < x) ↔ ∃ a_1, a < a_1 ∧ a_1 < x this : Ioi a = ⋃ x, (Iio ↑↑x)ᶜ ⊢ MeasurableSet (⋃ x, (Iio ↑↑x)ᶜ) ** apply MeasurableSet.iUnion ** case neg.intro.intro.intro.h α : Type u_1 β : Type u_2 γ : Type u_3 γ₂ : Type u_4 δ : Type u_5 ι : Sort y s t u : Set α inst✝³ : TopologicalSpace α inst✝² : SecondCountableTopology α inst✝¹ : LinearOrder α inst✝ : OrderTopology α this✝ : MeasurableSpace α := MeasurableSpace.generateFrom (range Iio) H : ∀ (a : α), MeasurableSet (Iio a) a : α h : ¬∃ a', ∀ (b : α), a < b ↔ a' ≤ b v : Set { a' // a < a' } hv : Encodable ↑v vu : ∀ (x : α), (∃ a_1, (∃ x, { val := a_1, property := (_ : a < a_1) } ∈ v) ∧ a_1 < x) ↔ ∃ a_1, a < a_1 ∧ a_1 < x this : Ioi a = ⋃ x, (Iio ↑↑x)ᶜ ⊢ ∀ (b : ↑v), MeasurableSet (Iio ↑↑b)ᶜ ** exact fun _ => (H _).compl ** α : Type u_1 β : Type u_2 γ : Type u_3 γ₂ : Type u_4 δ : Type u_5 ι : Sort y s t u : Set α inst✝³ : TopologicalSpace α inst✝² : SecondCountableTopology α inst✝¹ : LinearOrder α inst✝ : OrderTopology α this : MeasurableSpace α := MeasurableSpace.generateFrom (range Iio) H : ∀ (a : α), MeasurableSet (Iio a) a : α h : ¬∃ a', ∀ (b : α), a < b ↔ a' ≤ b v : Set { a' // a < a' } hv : Encodable ↑v vu : ∀ (x : α), (∃ a_1, (∃ x, { val := a_1, property := (_ : a < a_1) } ∈ v) ∧ a_1 < x) ↔ ∃ a_1, a < a_1 ∧ a_1 < x ⊢ Ioi a = ⋃ x, (Iio ↑↑x)ᶜ ** simp only [compl_Iio, iUnion_coe_set, Set.ext_iff, mem_Ioi, mem_iUnion, mem_Ici,
exists_prop, Subtype.exists, exists_and_right] ** α : Type u_1 β : Type u_2 γ : Type u_3 γ₂ : Type u_4 δ : Type u_5 ι : Sort y s t u : Set α inst✝³ : TopologicalSpace α inst✝² : SecondCountableTopology α inst✝¹ : LinearOrder α inst✝ : OrderTopology α this : MeasurableSpace α := MeasurableSpace.generateFrom (range Iio) H : ∀ (a : α), MeasurableSet (Iio a) a : α h : ¬∃ a', ∀ (b : α), a < b ↔ a' ≤ b v : Set { a' // a < a' } hv : Encodable ↑v vu : ∀ (x : α), (∃ a_1, (∃ x, { val := a_1, property := (_ : a < a_1) } ∈ v) ∧ a_1 < x) ↔ ∃ a_1, a < a_1 ∧ a_1 < x ⊢ ∀ (x : α), a < x ↔ ∃ a_1, (∃ x, { val := a_1, property := (_ : a < a_1) } ∈ v) ∧ a_1 ≤ x ** refine' fun x => ⟨fun ax => _, fun ⟨a', ⟨h, _⟩, ax⟩ => lt_of_lt_of_le h ax⟩ ** α : Type u_1 β : Type u_2 γ : Type u_3 γ₂ : Type u_4 δ : Type u_5 ι : Sort y s t u : Set α inst✝³ : TopologicalSpace α inst✝² : SecondCountableTopology α inst✝¹ : LinearOrder α inst✝ : OrderTopology α this : MeasurableSpace α := MeasurableSpace.generateFrom (range Iio) H : ∀ (a : α), MeasurableSet (Iio a) a : α h : ¬∃ a', ∀ (b : α), a < b ↔ a' ≤ b v : Set { a' // a < a' } hv : Encodable ↑v vu : ∀ (x : α), (∃ a_1, (∃ x, { val := a_1, property := (_ : a < a_1) } ∈ v) ∧ a_1 < x) ↔ ∃ a_1, a < a_1 ∧ a_1 < x x : α ax : a < x ⊢ ∃ a_1, (∃ x, { val := a_1, property := (_ : a < a_1) } ∈ v) ∧ a_1 ≤ x ** rcases (vu x).2 (by
refine' not_imp_comm.1 (fun h => _) h
exact ⟨x, fun b =>
⟨fun ab => le_of_not_lt fun h' => h ⟨b, ab, h'⟩, lt_of_lt_of_le ax⟩⟩) with ⟨a', h₁, h₂⟩ ** α : Type u_1 β : Type u_2 γ : Type u_3 γ₂ : Type u_4 δ : Type u_5 ι : Sort y s t u : Set α inst✝³ : TopologicalSpace α inst✝² : SecondCountableTopology α inst✝¹ : LinearOrder α inst✝ : OrderTopology α this : MeasurableSpace α := MeasurableSpace.generateFrom (range Iio) H : ∀ (a : α), MeasurableSet (Iio a) a : α h : ¬∃ a', ∀ (b : α), a < b ↔ a' ≤ b v : Set { a' // a < a' } hv : Encodable ↑v vu : ∀ (x : α), (∃ a_1, (∃ x, { val := a_1, property := (_ : a < a_1) } ∈ v) ∧ a_1 < x) ↔ ∃ a_1, a < a_1 ∧ a_1 < x x : α ax : a < x ⊢ ∃ a_1, a < a_1 ∧ a_1 < x ** refine' not_imp_comm.1 (fun h => _) h ** α : Type u_1 β : Type u_2 γ : Type u_3 γ₂ : Type u_4 δ : Type u_5 ι : Sort y s t u : Set α inst✝³ : TopologicalSpace α inst✝² : SecondCountableTopology α inst✝¹ : LinearOrder α inst✝ : OrderTopology α this : MeasurableSpace α := MeasurableSpace.generateFrom (range Iio) H : ∀ (a : α), MeasurableSet (Iio a) a : α h✝ : ¬∃ a', ∀ (b : α), a < b ↔ a' ≤ b v : Set { a' // a < a' } hv : Encodable ↑v vu : ∀ (x : α), (∃ a_1, (∃ x, { val := a_1, property := (_ : a < a_1) } ∈ v) ∧ a_1 < x) ↔ ∃ a_1, a < a_1 ∧ a_1 < x x : α ax : a < x h : ¬∃ a_1, a < a_1 ∧ a_1 < x ⊢ ∃ a', ∀ (b : α), a < b ↔ a' ≤ b ** exact ⟨x, fun b =>
⟨fun ab => le_of_not_lt fun h' => h ⟨b, ab, h'⟩, lt_of_lt_of_le ax⟩⟩ ** case intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 γ₂ : Type u_4 δ : Type u_5 ι : Sort y s t u : Set α inst✝³ : TopologicalSpace α inst✝² : SecondCountableTopology α inst✝¹ : LinearOrder α inst✝ : OrderTopology α this : MeasurableSpace α := MeasurableSpace.generateFrom (range Iio) H : ∀ (a : α), MeasurableSet (Iio a) a : α h : ¬∃ a', ∀ (b : α), a < b ↔ a' ≤ b v : Set { a' // a < a' } hv : Encodable ↑v vu : ∀ (x : α), (∃ a_1, (∃ x, { val := a_1, property := (_ : a < a_1) } ∈ v) ∧ a_1 < x) ↔ ∃ a_1, a < a_1 ∧ a_1 < x x : α ax : a < x a' : α h₁ : ∃ x, { val := a', property := (_ : a < a') } ∈ v h₂ : a' < x ⊢ ∃ a_1, (∃ x, { val := a_1, property := (_ : a < a_1) } ∈ v) ∧ a_1 ≤ x ** exact ⟨a', h₁, le_of_lt h₂⟩ ** case refine'_2 α : Type u_1 β : Type u_2 γ : Type u_3 γ₂ : Type u_4 δ : Type u_5 ι : Sort y s t u : Set α inst✝³ : TopologicalSpace α inst✝² : SecondCountableTopology α inst✝¹ : LinearOrder α inst✝ : OrderTopology α ⊢ ∀ (t : Set α), t ∈ range Iio → MeasurableSet t ** rw [forall_range_iff] ** case refine'_2 α : Type u_1 β : Type u_2 γ : Type u_3 γ₂ : Type u_4 δ : Type u_5 ι : Sort y s t u : Set α inst✝³ : TopologicalSpace α inst✝² : SecondCountableTopology α inst✝¹ : LinearOrder α inst✝ : OrderTopology α ⊢ ∀ (i : α), MeasurableSet (Iio i) ** intro a ** case refine'_2 α : Type u_1 β : Type u_2 γ : Type u_3 γ₂ : Type u_4 δ : Type u_5 ι : Sort y s t u : Set α inst✝³ : TopologicalSpace α inst✝² : SecondCountableTopology α inst✝¹ : LinearOrder α inst✝ : OrderTopology α a : α ⊢ MeasurableSet (Iio a) ** exact GenerateMeasurable.basic _ isOpen_Iio ** Qed
| |
borel_eq_generateFrom_Ioi ** α : Type u_1 β : Type u_2 γ : Type u_3 γ₂ : Type u_4 δ : Type u_5 ι : Sort y s t u : Set α inst✝³ : TopologicalSpace α inst✝² : SecondCountableTopology α inst✝¹ : LinearOrder α inst✝ : OrderTopology α ⊢ SecondCountableTopology α ** infer_instance ** Qed
| |
borel_eq_generateFrom_Iic ** α : Type u_1 β : Type u_2 γ : Type u_3 γ₂ : Type u_4 δ : Type u_5 ι : Sort y s t u : Set α inst✝³ : TopologicalSpace α inst✝² : SecondCountableTopology α inst✝¹ : LinearOrder α inst✝ : OrderTopology α ⊢ borel α = MeasurableSpace.generateFrom (range Iic) ** rw [borel_eq_generateFrom_Ioi] ** α : Type u_1 β : Type u_2 γ : Type u_3 γ₂ : Type u_4 δ : Type u_5 ι : Sort y s t u : Set α inst✝³ : TopologicalSpace α inst✝² : SecondCountableTopology α inst✝¹ : LinearOrder α inst✝ : OrderTopology α ⊢ MeasurableSpace.generateFrom (range Ioi) = MeasurableSpace.generateFrom (range Iic) ** refine' le_antisymm _ _ ** case refine'_1 α : Type u_1 β : Type u_2 γ : Type u_3 γ₂ : Type u_4 δ : Type u_5 ι : Sort y s t u : Set α inst✝³ : TopologicalSpace α inst✝² : SecondCountableTopology α inst✝¹ : LinearOrder α inst✝ : OrderTopology α ⊢ MeasurableSpace.generateFrom (range Ioi) ≤ MeasurableSpace.generateFrom (range Iic) ** refine' MeasurableSpace.generateFrom_le fun t ht => _ ** case refine'_1 α : Type u_1 β : Type u_2 γ : Type u_3 γ₂ : Type u_4 δ : Type u_5 ι : Sort y s t✝ u : Set α inst✝³ : TopologicalSpace α inst✝² : SecondCountableTopology α inst✝¹ : LinearOrder α inst✝ : OrderTopology α t : Set α ht : t ∈ range Ioi ⊢ MeasurableSet t ** obtain ⟨u, rfl⟩ := ht ** case refine'_1.intro α : Type u_1 β : Type u_2 γ : Type u_3 γ₂ : Type u_4 δ : Type u_5 ι : Sort y s t u✝ : Set α inst✝³ : TopologicalSpace α inst✝² : SecondCountableTopology α inst✝¹ : LinearOrder α inst✝ : OrderTopology α u : α ⊢ MeasurableSet (Ioi u) ** rw [← compl_Iic] ** case refine'_1.intro α : Type u_1 β : Type u_2 γ : Type u_3 γ₂ : Type u_4 δ : Type u_5 ι : Sort y s t u✝ : Set α inst✝³ : TopologicalSpace α inst✝² : SecondCountableTopology α inst✝¹ : LinearOrder α inst✝ : OrderTopology α u : α ⊢ MeasurableSet (Iic u)ᶜ ** exact (MeasurableSpace.measurableSet_generateFrom (mem_range.mpr ⟨u, rfl⟩)).compl ** case refine'_2 α : Type u_1 β : Type u_2 γ : Type u_3 γ₂ : Type u_4 δ : Type u_5 ι : Sort y s t u : Set α inst✝³ : TopologicalSpace α inst✝² : SecondCountableTopology α inst✝¹ : LinearOrder α inst✝ : OrderTopology α ⊢ MeasurableSpace.generateFrom (range Iic) ≤ MeasurableSpace.generateFrom (range Ioi) ** refine' MeasurableSpace.generateFrom_le fun t ht => _ ** case refine'_2 α : Type u_1 β : Type u_2 γ : Type u_3 γ₂ : Type u_4 δ : Type u_5 ι : Sort y s t✝ u : Set α inst✝³ : TopologicalSpace α inst✝² : SecondCountableTopology α inst✝¹ : LinearOrder α inst✝ : OrderTopology α t : Set α ht : t ∈ range Iic ⊢ MeasurableSet t ** obtain ⟨u, rfl⟩ := ht ** case refine'_2.intro α : Type u_1 β : Type u_2 γ : Type u_3 γ₂ : Type u_4 δ : Type u_5 ι : Sort y s t u✝ : Set α inst✝³ : TopologicalSpace α inst✝² : SecondCountableTopology α inst✝¹ : LinearOrder α inst✝ : OrderTopology α u : α ⊢ MeasurableSet (Iic u) ** rw [← compl_Ioi] ** case refine'_2.intro α : Type u_1 β : Type u_2 γ : Type u_3 γ₂ : Type u_4 δ : Type u_5 ι : Sort y s t u✝ : Set α inst✝³ : TopologicalSpace α inst✝² : SecondCountableTopology α inst✝¹ : LinearOrder α inst✝ : OrderTopology α u : α ⊢ MeasurableSet (Ioi u)ᶜ ** exact (MeasurableSpace.measurableSet_generateFrom (mem_range.mpr ⟨u, rfl⟩)).compl ** Qed
| |
IsGδ.measurableSet ** α : Type u_1 β : Type u_2 γ : Type u_3 γ₂ : Type u_4 δ : Type u_5 ι : Sort y s t u : Set α inst✝¹² : TopologicalSpace α inst✝¹¹ : MeasurableSpace α inst✝¹⁰ : OpensMeasurableSpace α inst✝⁹ : TopologicalSpace β inst✝⁸ : MeasurableSpace β inst✝⁷ : OpensMeasurableSpace β inst✝⁶ : TopologicalSpace γ inst✝⁵ : MeasurableSpace γ inst✝⁴ : BorelSpace γ inst✝³ : TopologicalSpace γ₂ inst✝² : MeasurableSpace γ₂ inst✝¹ : BorelSpace γ₂ inst✝ : MeasurableSpace δ h : IsGδ s ⊢ MeasurableSet s ** rcases h with ⟨S, hSo, hSc, rfl⟩ ** case intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 γ₂ : Type u_4 δ : Type u_5 ι : Sort y t u : Set α inst✝¹² : TopologicalSpace α inst✝¹¹ : MeasurableSpace α inst✝¹⁰ : OpensMeasurableSpace α inst✝⁹ : TopologicalSpace β inst✝⁸ : MeasurableSpace β inst✝⁷ : OpensMeasurableSpace β inst✝⁶ : TopologicalSpace γ inst✝⁵ : MeasurableSpace γ inst✝⁴ : BorelSpace γ inst✝³ : TopologicalSpace γ₂ inst✝² : MeasurableSpace γ₂ inst✝¹ : BorelSpace γ₂ inst✝ : MeasurableSpace δ S : Set (Set α) hSo : ∀ (t : Set α), t ∈ S → IsOpen t hSc : Set.Countable S ⊢ MeasurableSet (⋂₀ S) ** exact MeasurableSet.sInter hSc fun t ht => (hSo t ht).measurableSet ** Qed
| |
measurable_of_isOpen ** α : Type u_1 β : Type u_2 γ : Type u_3 γ₂ : Type u_4 δ : Type u_5 ι : Sort y s t u : Set α inst✝¹² : TopologicalSpace α inst✝¹¹ : MeasurableSpace α inst✝¹⁰ : OpensMeasurableSpace α inst✝⁹ : TopologicalSpace β inst✝⁸ : MeasurableSpace β inst✝⁷ : OpensMeasurableSpace β inst✝⁶ : TopologicalSpace γ inst✝⁵ : MeasurableSpace γ inst✝⁴ : BorelSpace γ inst✝³ : TopologicalSpace γ₂ inst✝² : MeasurableSpace γ₂ inst✝¹ : BorelSpace γ₂ inst✝ : MeasurableSpace δ f : δ → γ hf : ∀ (s : Set γ), IsOpen s → MeasurableSet (f ⁻¹' s) ⊢ Measurable f ** exact measurable_generateFrom hf ** Qed
| |
measurable_of_isClosed ** α : Type u_1 β : Type u_2 γ : Type u_3 γ₂ : Type u_4 δ : Type u_5 ι : Sort y s t u : Set α inst✝¹² : TopologicalSpace α inst✝¹¹ : MeasurableSpace α inst✝¹⁰ : OpensMeasurableSpace α inst✝⁹ : TopologicalSpace β inst✝⁸ : MeasurableSpace β inst✝⁷ : OpensMeasurableSpace β inst✝⁶ : TopologicalSpace γ inst✝⁵ : MeasurableSpace γ inst✝⁴ : BorelSpace γ inst✝³ : TopologicalSpace γ₂ inst✝² : MeasurableSpace γ₂ inst✝¹ : BorelSpace γ₂ inst✝ : MeasurableSpace δ f : δ → γ hf : ∀ (s : Set γ), IsClosed s → MeasurableSet (f ⁻¹' s) ⊢ Measurable f ** apply measurable_of_isOpen ** case hf α : Type u_1 β : Type u_2 γ : Type u_3 γ₂ : Type u_4 δ : Type u_5 ι : Sort y s t u : Set α inst✝¹² : TopologicalSpace α inst✝¹¹ : MeasurableSpace α inst✝¹⁰ : OpensMeasurableSpace α inst✝⁹ : TopologicalSpace β inst✝⁸ : MeasurableSpace β inst✝⁷ : OpensMeasurableSpace β inst✝⁶ : TopologicalSpace γ inst✝⁵ : MeasurableSpace γ inst✝⁴ : BorelSpace γ inst✝³ : TopologicalSpace γ₂ inst✝² : MeasurableSpace γ₂ inst✝¹ : BorelSpace γ₂ inst✝ : MeasurableSpace δ f : δ → γ hf : ∀ (s : Set γ), IsClosed s → MeasurableSet (f ⁻¹' s) ⊢ ∀ (s : Set γ), IsOpen s → MeasurableSet (f ⁻¹' s) ** intro s hs ** case hf α : Type u_1 β : Type u_2 γ : Type u_3 γ₂ : Type u_4 δ : Type u_5 ι : Sort y s✝ t u : Set α inst✝¹² : TopologicalSpace α inst✝¹¹ : MeasurableSpace α inst✝¹⁰ : OpensMeasurableSpace α inst✝⁹ : TopologicalSpace β inst✝⁸ : MeasurableSpace β inst✝⁷ : OpensMeasurableSpace β inst✝⁶ : TopologicalSpace γ inst✝⁵ : MeasurableSpace γ inst✝⁴ : BorelSpace γ inst✝³ : TopologicalSpace γ₂ inst✝² : MeasurableSpace γ₂ inst✝¹ : BorelSpace γ₂ inst✝ : MeasurableSpace δ f : δ → γ hf : ∀ (s : Set γ), IsClosed s → MeasurableSet (f ⁻¹' s) s : Set γ hs : IsOpen s ⊢ MeasurableSet (f ⁻¹' s) ** rw [← MeasurableSet.compl_iff, ← preimage_compl] ** case hf α : Type u_1 β : Type u_2 γ : Type u_3 γ₂ : Type u_4 δ : Type u_5 ι : Sort y s✝ t u : Set α inst✝¹² : TopologicalSpace α inst✝¹¹ : MeasurableSpace α inst✝¹⁰ : OpensMeasurableSpace α inst✝⁹ : TopologicalSpace β inst✝⁸ : MeasurableSpace β inst✝⁷ : OpensMeasurableSpace β inst✝⁶ : TopologicalSpace γ inst✝⁵ : MeasurableSpace γ inst✝⁴ : BorelSpace γ inst✝³ : TopologicalSpace γ₂ inst✝² : MeasurableSpace γ₂ inst✝¹ : BorelSpace γ₂ inst✝ : MeasurableSpace δ f : δ → γ hf : ∀ (s : Set γ), IsClosed s → MeasurableSet (f ⁻¹' s) s : Set γ hs : IsOpen s ⊢ MeasurableSet (f ⁻¹' sᶜ) ** apply hf ** case hf.a α : Type u_1 β : Type u_2 γ : Type u_3 γ₂ : Type u_4 δ : Type u_5 ι : Sort y s✝ t u : Set α inst✝¹² : TopologicalSpace α inst✝¹¹ : MeasurableSpace α inst✝¹⁰ : OpensMeasurableSpace α inst✝⁹ : TopologicalSpace β inst✝⁸ : MeasurableSpace β inst✝⁷ : OpensMeasurableSpace β inst✝⁶ : TopologicalSpace γ inst✝⁵ : MeasurableSpace γ inst✝⁴ : BorelSpace γ inst✝³ : TopologicalSpace γ₂ inst✝² : MeasurableSpace γ₂ inst✝¹ : BorelSpace γ₂ inst✝ : MeasurableSpace δ f : δ → γ hf : ∀ (s : Set γ), IsClosed s → MeasurableSet (f ⁻¹' s) s : Set γ hs : IsOpen s ⊢ IsClosed sᶜ ** rw [isClosed_compl_iff] ** case hf.a α : Type u_1 β : Type u_2 γ : Type u_3 γ₂ : Type u_4 δ : Type u_5 ι : Sort y s✝ t u : Set α inst✝¹² : TopologicalSpace α inst✝¹¹ : MeasurableSpace α inst✝¹⁰ : OpensMeasurableSpace α inst✝⁹ : TopologicalSpace β inst✝⁸ : MeasurableSpace β inst✝⁷ : OpensMeasurableSpace β inst✝⁶ : TopologicalSpace γ inst✝⁵ : MeasurableSpace γ inst✝⁴ : BorelSpace γ inst✝³ : TopologicalSpace γ₂ inst✝² : MeasurableSpace γ₂ inst✝¹ : BorelSpace γ₂ inst✝ : MeasurableSpace δ f : δ → γ hf : ∀ (s : Set γ), IsClosed s → MeasurableSet (f ⁻¹' s) s : Set γ hs : IsOpen s ⊢ IsOpen s ** exact hs ** Qed
| |
measurable_of_is_closed' ** α : Type u_1 β : Type u_2 γ : Type u_3 γ₂ : Type u_4 δ : Type u_5 ι : Sort y s t u : Set α inst✝¹² : TopologicalSpace α inst✝¹¹ : MeasurableSpace α inst✝¹⁰ : OpensMeasurableSpace α inst✝⁹ : TopologicalSpace β inst✝⁸ : MeasurableSpace β inst✝⁷ : OpensMeasurableSpace β inst✝⁶ : TopologicalSpace γ inst✝⁵ : MeasurableSpace γ inst✝⁴ : BorelSpace γ inst✝³ : TopologicalSpace γ₂ inst✝² : MeasurableSpace γ₂ inst✝¹ : BorelSpace γ₂ inst✝ : MeasurableSpace δ f : δ → γ hf : ∀ (s : Set γ), IsClosed s → Set.Nonempty s → s ≠ univ → MeasurableSet (f ⁻¹' s) ⊢ Measurable f ** apply measurable_of_isClosed ** case hf α : Type u_1 β : Type u_2 γ : Type u_3 γ₂ : Type u_4 δ : Type u_5 ι : Sort y s t u : Set α inst✝¹² : TopologicalSpace α inst✝¹¹ : MeasurableSpace α inst✝¹⁰ : OpensMeasurableSpace α inst✝⁹ : TopologicalSpace β inst✝⁸ : MeasurableSpace β inst✝⁷ : OpensMeasurableSpace β inst✝⁶ : TopologicalSpace γ inst✝⁵ : MeasurableSpace γ inst✝⁴ : BorelSpace γ inst✝³ : TopologicalSpace γ₂ inst✝² : MeasurableSpace γ₂ inst✝¹ : BorelSpace γ₂ inst✝ : MeasurableSpace δ f : δ → γ hf : ∀ (s : Set γ), IsClosed s → Set.Nonempty s → s ≠ univ → MeasurableSet (f ⁻¹' s) ⊢ ∀ (s : Set γ), IsClosed s → MeasurableSet (f ⁻¹' s) ** intro s hs ** case hf α : Type u_1 β : Type u_2 γ : Type u_3 γ₂ : Type u_4 δ : Type u_5 ι : Sort y s✝ t u : Set α inst✝¹² : TopologicalSpace α inst✝¹¹ : MeasurableSpace α inst✝¹⁰ : OpensMeasurableSpace α inst✝⁹ : TopologicalSpace β inst✝⁸ : MeasurableSpace β inst✝⁷ : OpensMeasurableSpace β inst✝⁶ : TopologicalSpace γ inst✝⁵ : MeasurableSpace γ inst✝⁴ : BorelSpace γ inst✝³ : TopologicalSpace γ₂ inst✝² : MeasurableSpace γ₂ inst✝¹ : BorelSpace γ₂ inst✝ : MeasurableSpace δ f : δ → γ hf : ∀ (s : Set γ), IsClosed s → Set.Nonempty s → s ≠ univ → MeasurableSet (f ⁻¹' s) s : Set γ hs : IsClosed s ⊢ MeasurableSet (f ⁻¹' s) ** cases' eq_empty_or_nonempty s with h1 h1 ** case hf.inr α : Type u_1 β : Type u_2 γ : Type u_3 γ₂ : Type u_4 δ : Type u_5 ι : Sort y s✝ t u : Set α inst✝¹² : TopologicalSpace α inst✝¹¹ : MeasurableSpace α inst✝¹⁰ : OpensMeasurableSpace α inst✝⁹ : TopologicalSpace β inst✝⁸ : MeasurableSpace β inst✝⁷ : OpensMeasurableSpace β inst✝⁶ : TopologicalSpace γ inst✝⁵ : MeasurableSpace γ inst✝⁴ : BorelSpace γ inst✝³ : TopologicalSpace γ₂ inst✝² : MeasurableSpace γ₂ inst✝¹ : BorelSpace γ₂ inst✝ : MeasurableSpace δ f : δ → γ hf : ∀ (s : Set γ), IsClosed s → Set.Nonempty s → s ≠ univ → MeasurableSet (f ⁻¹' s) s : Set γ hs : IsClosed s h1 : Set.Nonempty s ⊢ MeasurableSet (f ⁻¹' s) ** by_cases h2 : s = univ ** case neg α : Type u_1 β : Type u_2 γ : Type u_3 γ₂ : Type u_4 δ : Type u_5 ι : Sort y s✝ t u : Set α inst✝¹² : TopologicalSpace α inst✝¹¹ : MeasurableSpace α inst✝¹⁰ : OpensMeasurableSpace α inst✝⁹ : TopologicalSpace β inst✝⁸ : MeasurableSpace β inst✝⁷ : OpensMeasurableSpace β inst✝⁶ : TopologicalSpace γ inst✝⁵ : MeasurableSpace γ inst✝⁴ : BorelSpace γ inst✝³ : TopologicalSpace γ₂ inst✝² : MeasurableSpace γ₂ inst✝¹ : BorelSpace γ₂ inst✝ : MeasurableSpace δ f : δ → γ hf : ∀ (s : Set γ), IsClosed s → Set.Nonempty s → s ≠ univ → MeasurableSet (f ⁻¹' s) s : Set γ hs : IsClosed s h1 : Set.Nonempty s h2 : ¬s = univ ⊢ MeasurableSet (f ⁻¹' s) ** exact hf s hs h1 h2 ** case hf.inl α : Type u_1 β : Type u_2 γ : Type u_3 γ₂ : Type u_4 δ : Type u_5 ι : Sort y s✝ t u : Set α inst✝¹² : TopologicalSpace α inst✝¹¹ : MeasurableSpace α inst✝¹⁰ : OpensMeasurableSpace α inst✝⁹ : TopologicalSpace β inst✝⁸ : MeasurableSpace β inst✝⁷ : OpensMeasurableSpace β inst✝⁶ : TopologicalSpace γ inst✝⁵ : MeasurableSpace γ inst✝⁴ : BorelSpace γ inst✝³ : TopologicalSpace γ₂ inst✝² : MeasurableSpace γ₂ inst✝¹ : BorelSpace γ₂ inst✝ : MeasurableSpace δ f : δ → γ hf : ∀ (s : Set γ), IsClosed s → Set.Nonempty s → s ≠ univ → MeasurableSet (f ⁻¹' s) s : Set γ hs : IsClosed s h1 : s = ∅ ⊢ MeasurableSet (f ⁻¹' s) ** simp [h1] ** case pos α : Type u_1 β : Type u_2 γ : Type u_3 γ₂ : Type u_4 δ : Type u_5 ι : Sort y s✝ t u : Set α inst✝¹² : TopologicalSpace α inst✝¹¹ : MeasurableSpace α inst✝¹⁰ : OpensMeasurableSpace α inst✝⁹ : TopologicalSpace β inst✝⁸ : MeasurableSpace β inst✝⁷ : OpensMeasurableSpace β inst✝⁶ : TopologicalSpace γ inst✝⁵ : MeasurableSpace γ inst✝⁴ : BorelSpace γ inst✝³ : TopologicalSpace γ₂ inst✝² : MeasurableSpace γ₂ inst✝¹ : BorelSpace γ₂ inst✝ : MeasurableSpace δ f : δ → γ hf : ∀ (s : Set γ), IsClosed s → Set.Nonempty s → s ≠ univ → MeasurableSet (f ⁻¹' s) s : Set γ hs : IsClosed s h1 : Set.Nonempty s h2 : s = univ ⊢ MeasurableSet (f ⁻¹' s) ** simp [h2] ** Qed
| |
Set.OrdConnected.measurableSet ** α : Type u_1 β : Type u_2 γ : Type u_3 γ₂ : Type u_4 δ : Type u_5 ι : Sort y s t u : Set α inst✝¹⁶ : TopologicalSpace α inst✝¹⁵ : MeasurableSpace α inst✝¹⁴ : OpensMeasurableSpace α inst✝¹³ : TopologicalSpace β inst✝¹² : MeasurableSpace β inst✝¹¹ : OpensMeasurableSpace β inst✝¹⁰ : TopologicalSpace γ inst✝⁹ : MeasurableSpace γ inst✝⁸ : BorelSpace γ inst✝⁷ : TopologicalSpace γ₂ inst✝⁶ : MeasurableSpace γ₂ inst✝⁵ : BorelSpace γ₂ inst✝⁴ : MeasurableSpace δ α' : Type u_6 inst✝³ : TopologicalSpace α' inst✝² : MeasurableSpace α' inst✝¹ : LinearOrder α inst✝ : OrderClosedTopology α a b x : α h : OrdConnected s ⊢ MeasurableSet s ** let u := ⋃ (x ∈ s) (y ∈ s), Ioo x y ** α : Type u_1 β : Type u_2 γ : Type u_3 γ₂ : Type u_4 δ : Type u_5 ι : Sort y s t u✝ : Set α inst✝¹⁶ : TopologicalSpace α inst✝¹⁵ : MeasurableSpace α inst✝¹⁴ : OpensMeasurableSpace α inst✝¹³ : TopologicalSpace β inst✝¹² : MeasurableSpace β inst✝¹¹ : OpensMeasurableSpace β inst✝¹⁰ : TopologicalSpace γ inst✝⁹ : MeasurableSpace γ inst✝⁸ : BorelSpace γ inst✝⁷ : TopologicalSpace γ₂ inst✝⁶ : MeasurableSpace γ₂ inst✝⁵ : BorelSpace γ₂ inst✝⁴ : MeasurableSpace δ α' : Type u_6 inst✝³ : TopologicalSpace α' inst✝² : MeasurableSpace α' inst✝¹ : LinearOrder α inst✝ : OrderClosedTopology α a b x : α h : OrdConnected s u : Set α := ⋃ x ∈ s, ⋃ y ∈ s, Ioo x y ⊢ MeasurableSet s ** have huopen : IsOpen u := isOpen_biUnion fun _ _ => isOpen_biUnion fun _ _ => isOpen_Ioo ** α : Type u_1 β : Type u_2 γ : Type u_3 γ₂ : Type u_4 δ : Type u_5 ι : Sort y s t u✝ : Set α inst✝¹⁶ : TopologicalSpace α inst✝¹⁵ : MeasurableSpace α inst✝¹⁴ : OpensMeasurableSpace α inst✝¹³ : TopologicalSpace β inst✝¹² : MeasurableSpace β inst✝¹¹ : OpensMeasurableSpace β inst✝¹⁰ : TopologicalSpace γ inst✝⁹ : MeasurableSpace γ inst✝⁸ : BorelSpace γ inst✝⁷ : TopologicalSpace γ₂ inst✝⁶ : MeasurableSpace γ₂ inst✝⁵ : BorelSpace γ₂ inst✝⁴ : MeasurableSpace δ α' : Type u_6 inst✝³ : TopologicalSpace α' inst✝² : MeasurableSpace α' inst✝¹ : LinearOrder α inst✝ : OrderClosedTopology α a b x : α h : OrdConnected s u : Set α := ⋃ x ∈ s, ⋃ y ∈ s, Ioo x y huopen : IsOpen u ⊢ MeasurableSet s ** have humeas : MeasurableSet u := huopen.measurableSet ** α : Type u_1 β : Type u_2 γ : Type u_3 γ₂ : Type u_4 δ : Type u_5 ι : Sort y s t u✝ : Set α inst✝¹⁶ : TopologicalSpace α inst✝¹⁵ : MeasurableSpace α inst✝¹⁴ : OpensMeasurableSpace α inst✝¹³ : TopologicalSpace β inst✝¹² : MeasurableSpace β inst✝¹¹ : OpensMeasurableSpace β inst✝¹⁰ : TopologicalSpace γ inst✝⁹ : MeasurableSpace γ inst✝⁸ : BorelSpace γ inst✝⁷ : TopologicalSpace γ₂ inst✝⁶ : MeasurableSpace γ₂ inst✝⁵ : BorelSpace γ₂ inst✝⁴ : MeasurableSpace δ α' : Type u_6 inst✝³ : TopologicalSpace α' inst✝² : MeasurableSpace α' inst✝¹ : LinearOrder α inst✝ : OrderClosedTopology α a b x : α h : OrdConnected s u : Set α := ⋃ x ∈ s, ⋃ y ∈ s, Ioo x y huopen : IsOpen u humeas : MeasurableSet u ⊢ MeasurableSet s ** have hfinite : (s \ u).Finite := s.finite_diff_iUnion_Ioo ** α : Type u_1 β : Type u_2 γ : Type u_3 γ₂ : Type u_4 δ : Type u_5 ι : Sort y s t u✝ : Set α inst✝¹⁶ : TopologicalSpace α inst✝¹⁵ : MeasurableSpace α inst✝¹⁴ : OpensMeasurableSpace α inst✝¹³ : TopologicalSpace β inst✝¹² : MeasurableSpace β inst✝¹¹ : OpensMeasurableSpace β inst✝¹⁰ : TopologicalSpace γ inst✝⁹ : MeasurableSpace γ inst✝⁸ : BorelSpace γ inst✝⁷ : TopologicalSpace γ₂ inst✝⁶ : MeasurableSpace γ₂ inst✝⁵ : BorelSpace γ₂ inst✝⁴ : MeasurableSpace δ α' : Type u_6 inst✝³ : TopologicalSpace α' inst✝² : MeasurableSpace α' inst✝¹ : LinearOrder α inst✝ : OrderClosedTopology α a b x : α h : OrdConnected s u : Set α := ⋃ x ∈ s, ⋃ y ∈ s, Ioo x y huopen : IsOpen u humeas : MeasurableSet u hfinite : Set.Finite (s \ u) ⊢ MeasurableSet s ** have : u ⊆ s := iUnion₂_subset fun x hx => iUnion₂_subset fun y hy =>
Ioo_subset_Icc_self.trans (h.out hx hy) ** α : Type u_1 β : Type u_2 γ : Type u_3 γ₂ : Type u_4 δ : Type u_5 ι : Sort y s t u✝ : Set α inst✝¹⁶ : TopologicalSpace α inst✝¹⁵ : MeasurableSpace α inst✝¹⁴ : OpensMeasurableSpace α inst✝¹³ : TopologicalSpace β inst✝¹² : MeasurableSpace β inst✝¹¹ : OpensMeasurableSpace β inst✝¹⁰ : TopologicalSpace γ inst✝⁹ : MeasurableSpace γ inst✝⁸ : BorelSpace γ inst✝⁷ : TopologicalSpace γ₂ inst✝⁶ : MeasurableSpace γ₂ inst✝⁵ : BorelSpace γ₂ inst✝⁴ : MeasurableSpace δ α' : Type u_6 inst✝³ : TopologicalSpace α' inst✝² : MeasurableSpace α' inst✝¹ : LinearOrder α inst✝ : OrderClosedTopology α a b x : α h : OrdConnected s u : Set α := ⋃ x ∈ s, ⋃ y ∈ s, Ioo x y huopen : IsOpen u humeas : MeasurableSet u hfinite : Set.Finite (s \ u) this : u ⊆ s ⊢ MeasurableSet s ** rw [← union_diff_cancel this] ** α : Type u_1 β : Type u_2 γ : Type u_3 γ₂ : Type u_4 δ : Type u_5 ι : Sort y s t u✝ : Set α inst✝¹⁶ : TopologicalSpace α inst✝¹⁵ : MeasurableSpace α inst✝¹⁴ : OpensMeasurableSpace α inst✝¹³ : TopologicalSpace β inst✝¹² : MeasurableSpace β inst✝¹¹ : OpensMeasurableSpace β inst✝¹⁰ : TopologicalSpace γ inst✝⁹ : MeasurableSpace γ inst✝⁸ : BorelSpace γ inst✝⁷ : TopologicalSpace γ₂ inst✝⁶ : MeasurableSpace γ₂ inst✝⁵ : BorelSpace γ₂ inst✝⁴ : MeasurableSpace δ α' : Type u_6 inst✝³ : TopologicalSpace α' inst✝² : MeasurableSpace α' inst✝¹ : LinearOrder α inst✝ : OrderClosedTopology α a b x : α h : OrdConnected s u : Set α := ⋃ x ∈ s, ⋃ y ∈ s, Ioo x y huopen : IsOpen u humeas : MeasurableSet u hfinite : Set.Finite (s \ u) this : u ⊆ s ⊢ MeasurableSet (u ∪ s \ u) ** exact humeas.union hfinite.measurableSet ** Qed
| |
generateFrom_Ico_mem_le_borel ** α✝ : Type u_1 β : Type u_2 γ : Type u_3 γ₂ : Type u_4 δ : Type u_5 ι : Sort y s✝ t✝ u : Set α✝ inst✝¹⁹ : TopologicalSpace α✝ inst✝¹⁸ : MeasurableSpace α✝ inst✝¹⁷ : OpensMeasurableSpace α✝ inst✝¹⁶ : TopologicalSpace β inst✝¹⁵ : MeasurableSpace β inst✝¹⁴ : OpensMeasurableSpace β inst✝¹³ : TopologicalSpace γ inst✝¹² : MeasurableSpace γ inst✝¹¹ : BorelSpace γ inst✝¹⁰ : TopologicalSpace γ₂ inst✝⁹ : MeasurableSpace γ₂ inst✝⁸ : BorelSpace γ₂ inst✝⁷ : MeasurableSpace δ α' : Type u_6 inst✝⁶ : TopologicalSpace α' inst✝⁵ : MeasurableSpace α' inst✝⁴ : LinearOrder α✝ inst✝³ : OrderClosedTopology α✝ a b x : α✝ α : Type u_7 inst✝² : TopologicalSpace α inst✝¹ : LinearOrder α inst✝ : OrderClosedTopology α s t : Set α ⊢ MeasurableSpace.generateFrom {S | ∃ l, l ∈ s ∧ ∃ u, u ∈ t ∧ l < u ∧ Ico l u = S} ≤ borel α ** apply generateFrom_le ** case h α✝ : Type u_1 β : Type u_2 γ : Type u_3 γ₂ : Type u_4 δ : Type u_5 ι : Sort y s✝ t✝ u : Set α✝ inst✝¹⁹ : TopologicalSpace α✝ inst✝¹⁸ : MeasurableSpace α✝ inst✝¹⁷ : OpensMeasurableSpace α✝ inst✝¹⁶ : TopologicalSpace β inst✝¹⁵ : MeasurableSpace β inst✝¹⁴ : OpensMeasurableSpace β inst✝¹³ : TopologicalSpace γ inst✝¹² : MeasurableSpace γ inst✝¹¹ : BorelSpace γ inst✝¹⁰ : TopologicalSpace γ₂ inst✝⁹ : MeasurableSpace γ₂ inst✝⁸ : BorelSpace γ₂ inst✝⁷ : MeasurableSpace δ α' : Type u_6 inst✝⁶ : TopologicalSpace α' inst✝⁵ : MeasurableSpace α' inst✝⁴ : LinearOrder α✝ inst✝³ : OrderClosedTopology α✝ a b x : α✝ α : Type u_7 inst✝² : TopologicalSpace α inst✝¹ : LinearOrder α inst✝ : OrderClosedTopology α s t : Set α ⊢ ∀ (t_1 : Set α), t_1 ∈ {S | ∃ l, l ∈ s ∧ ∃ u, u ∈ t ∧ l < u ∧ Ico l u = S} → MeasurableSet t_1 ** borelize α ** case h α✝ : Type u_1 β : Type u_2 γ : Type u_3 γ₂ : Type u_4 δ : Type u_5 ι : Sort y s✝ t✝ u : Set α✝ inst✝¹⁹ : TopologicalSpace α✝ inst✝¹⁸ : MeasurableSpace α✝ inst✝¹⁷ : OpensMeasurableSpace α✝ inst✝¹⁶ : TopologicalSpace β inst✝¹⁵ : MeasurableSpace β inst✝¹⁴ : OpensMeasurableSpace β inst✝¹³ : TopologicalSpace γ inst✝¹² : MeasurableSpace γ inst✝¹¹ : BorelSpace γ inst✝¹⁰ : TopologicalSpace γ₂ inst✝⁹ : MeasurableSpace γ₂ inst✝⁸ : BorelSpace γ₂ inst✝⁷ : MeasurableSpace δ α' : Type u_6 inst✝⁶ : TopologicalSpace α' inst✝⁵ : MeasurableSpace α' inst✝⁴ : LinearOrder α✝ inst✝³ : OrderClosedTopology α✝ a b x : α✝ α : Type u_7 inst✝² : TopologicalSpace α inst✝¹ : LinearOrder α inst✝ : OrderClosedTopology α s t : Set α this✝¹ : MeasurableSpace α := borel α this✝ : BorelSpace α ⊢ ∀ (t_1 : Set α), t_1 ∈ {S | ∃ l, l ∈ s ∧ ∃ u, u ∈ t ∧ l < u ∧ Ico l u = S} → MeasurableSet t_1 ** rintro _ ⟨a, -, b, -, -, rfl⟩ ** case h.intro.intro.intro.intro.intro α✝ : Type u_1 β : Type u_2 γ : Type u_3 γ₂ : Type u_4 δ : Type u_5 ι : Sort y s✝ t✝ u : Set α✝ inst✝¹⁹ : TopologicalSpace α✝ inst✝¹⁸ : MeasurableSpace α✝ inst✝¹⁷ : OpensMeasurableSpace α✝ inst✝¹⁶ : TopologicalSpace β inst✝¹⁵ : MeasurableSpace β inst✝¹⁴ : OpensMeasurableSpace β inst✝¹³ : TopologicalSpace γ inst✝¹² : MeasurableSpace γ inst✝¹¹ : BorelSpace γ inst✝¹⁰ : TopologicalSpace γ₂ inst✝⁹ : MeasurableSpace γ₂ inst✝⁸ : BorelSpace γ₂ inst✝⁷ : MeasurableSpace δ α' : Type u_6 inst✝⁶ : TopologicalSpace α' inst✝⁵ : MeasurableSpace α' inst✝⁴ : LinearOrder α✝ inst✝³ : OrderClosedTopology α✝ a✝ b✝ x : α✝ α : Type u_7 inst✝² : TopologicalSpace α inst✝¹ : LinearOrder α inst✝ : OrderClosedTopology α s t : Set α this✝¹ : MeasurableSpace α := borel α this✝ : BorelSpace α a b : α ⊢ MeasurableSet (Ico a b) ** exact measurableSet_Ico ** Qed
| |
Dense.borel_eq_generateFrom_Ico_mem ** α✝ : Type u_1 β : Type u_2 γ : Type u_3 γ₂ : Type u_4 δ : Type u_5 ι : Sort y s✝ t u : Set α✝ inst✝²² : TopologicalSpace α✝ inst✝²¹ : MeasurableSpace α✝ inst✝²⁰ : OpensMeasurableSpace α✝ inst✝¹⁹ : TopologicalSpace β inst✝¹⁸ : MeasurableSpace β inst✝¹⁷ : OpensMeasurableSpace β inst✝¹⁶ : TopologicalSpace γ inst✝¹⁵ : MeasurableSpace γ inst✝¹⁴ : BorelSpace γ inst✝¹³ : TopologicalSpace γ₂ inst✝¹² : MeasurableSpace γ₂ inst✝¹¹ : BorelSpace γ₂ inst✝¹⁰ : MeasurableSpace δ α' : Type u_6 inst✝⁹ : TopologicalSpace α' inst✝⁸ : MeasurableSpace α' inst✝⁷ : LinearOrder α✝ inst✝⁶ : OrderClosedTopology α✝ a b x : α✝ α : Type u_7 inst✝⁵ : TopologicalSpace α inst✝⁴ : LinearOrder α inst✝³ : OrderTopology α inst✝² : SecondCountableTopology α inst✝¹ : DenselyOrdered α inst✝ : NoMinOrder α s : Set α hd : Dense s ⊢ ∀ (x : α), IsBot x → x ∈ s ** simp ** Qed
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.