|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
class FrequencyModulation(nn.Module): |
|
def __init__(self, frequency): |
|
super(FrequencyModulation, self).__init__() |
|
self.frequency = frequency |
|
|
|
def forward(self, x): |
|
|
|
return torch.sin(2 * torch.pi * self.frequency * x) |
|
|
|
class EncryptionLayer(nn.Module): |
|
def __init__(self, key_frequency): |
|
super(EncryptionLayer, self).__init__() |
|
self.key_frequency = key_frequency |
|
|
|
def forward(self, x): |
|
|
|
return torch.sin(2 * torch.pi * (self.key_frequency + x)) |
|
|
|
class FrequencyHopping(nn.Module): |
|
def __init__(self, frequencies): |
|
super(FrequencyHopping, self).__init__() |
|
self.frequencies = frequencies |
|
|
|
def forward(self, x): |
|
|
|
for freq in self.frequencies: |
|
x = torch.sin(2 * torch.pi * freq * x) |
|
return x |
|
|
|
class DecryptionLayer(nn.Module): |
|
def __init__(self, key_frequency): |
|
super(DecryptionLayer, self).__init__() |
|
self.key_frequency = key_frequency |
|
|
|
def forward(self, x): |
|
|
|
return torch.asin(x) / (2 * torch.pi * self.key_frequency) |
|
|
|
class FrequencyVPN(nn.Module): |
|
def __init__(self, frequency, key_frequency, hopping_frequencies): |
|
super(FrequencyVPN, self).__init__() |
|
self.modulation = FrequencyModulation(frequency) |
|
self.encryption = EncryptionLayer(key_frequency) |
|
self.hopping = FrequencyHopping(hopping_frequencies) |
|
self.decryption = DecryptionLayer(key_frequency) |
|
|
|
def forward(self, x): |
|
x = self.modulation(x) |
|
x = self.encryption(x) |
|
x = self.hopping(x) |
|
return self.decryption(x) |
|
|
|
|
|
model = FrequencyVPN(frequency=5, key_frequency=10, hopping_frequencies=[15, 20, 25]) |
|
data = torch.tensor([1.0, 0.5, 0.3]) |
|
encrypted_data = model(data) |
|
|
|
!pip install matplotlib |
|
|
|
import torch |
|
import torch.nn as nn |
|
import matplotlib.pyplot as plt |
|
import numpy as np |
|
|
|
|
|
class FrequencyModulation(nn.Module): |
|
def __init__(self, frequency): |
|
super(FrequencyModulation, self).__init__() |
|
self.frequency = frequency |
|
|
|
def forward(self, x): |
|
return torch.sin(2 * torch.pi * self.frequency * x) |
|
|
|
|
|
class EncryptionLayer(nn.Module): |
|
def __init__(self, key_frequency): |
|
super(EncryptionLayer, self).__init__() |
|
self.key_frequency = key_frequency |
|
|
|
def forward(self, x): |
|
return torch.sin(2 * torch.pi * (self.key_frequency + x)) |
|
|
|
|
|
class FrequencyHopping(nn.Module): |
|
def __init__(self, frequencies): |
|
super(FrequencyHopping, self).__init__() |
|
self.frequencies = frequencies |
|
|
|
def forward(self, x): |
|
for freq in self.frequencies: |
|
x = torch.sin(2 * torch.pi * freq * x) |
|
return x |
|
|
|
|
|
class DecryptionLayer(nn.Module): |
|
def __init__(self, key_frequency): |
|
super(DecryptionLayer, self).__init__() |
|
self.key_frequency = key_frequency |
|
|
|
def forward(self, x): |
|
return torch.asin(x) / (2 * torch.pi * self.key_frequency) |
|
|
|
|
|
class FrequencyVPN(nn.Module): |
|
def __init__(self, frequency, key_frequency, hopping_frequencies): |
|
super(FrequencyVPN, self).__init__() |
|
self.modulation = FrequencyModulation(frequency) |
|
self.encryption = EncryptionLayer(key_frequency) |
|
self.hopping = FrequencyHopping(hopping_frequencies) |
|
self.decryption = DecryptionLayer(key_frequency) |
|
|
|
def forward(self, x): |
|
x_modulated = self.modulation(x) |
|
x_encrypted = self.encryption(x_modulated) |
|
x_hopped = self.hopping(x_encrypted) |
|
x_decrypted = self.decryption(x_hopped) |
|
return x_modulated, x_encrypted, x_hopped, x_decrypted |
|
|
|
|
|
frequency = 5 |
|
key_frequency = 10 |
|
hopping_frequencies = [15, 20, 25] |
|
|
|
|
|
model = FrequencyVPN(frequency, key_frequency, hopping_frequencies) |
|
|
|
|
|
data = torch.linspace(0, 1, 100) |
|
|
|
|
|
x_modulated, x_encrypted, x_hopped, x_decrypted = model(data) |
|
|
|
|
|
data_np = data.numpy() |
|
x_modulated_np = x_modulated.detach().numpy() |
|
x_encrypted_np = x_encrypted.detach().numpy() |
|
x_hopped_np = x_hopped.detach().numpy() |
|
x_decrypted_np = x_decrypted.detach().numpy() |
|
|
|
|
|
plt.figure(figsize=(12, 8)) |
|
|
|
plt.subplot(4, 1, 1) |
|
plt.plot(data_np, x_modulated_np, label='Modulated Data', color='blue') |
|
plt.title('Modulated Data') |
|
plt.grid(True) |
|
|
|
plt.subplot(4, 1, 2) |
|
plt.plot(data_np, x_encrypted_np, label='Encrypted Data', color='green') |
|
plt.title('Encrypted Data') |
|
plt.grid(True) |
|
|
|
plt.subplot(4, 1, 3) |
|
plt.plot(data_np, x_hopped_np, label='Frequency Hopped Data', color='red') |
|
plt.title('Frequency Hopped Data') |
|
plt.grid(True) |
|
|
|
plt.subplot(4, 1, 4) |
|
plt.plot(data_np, x_decrypted_np, label='Decrypted Data', color='purple') |
|
plt.title('Decrypted Data') |
|
plt.grid(True) |
|
|
|
plt.tight_layout() |
|
plt.show() |