applied-ai-018's picture
Add files using upload-large-folder tool
cf5659c verified
import csv
import json
import re
import subprocess
from argparse import ArgumentParser
import matplotlib.pyplot as plt
from pathlib import Path
import numpy as np
"""
Plot results per (dataset_name, dataset_config_name).
"""
def get_args():
parser = ArgumentParser()
parser.add_argument("--json_paths", nargs="+", type=str, help="Json files to plot together", required=True)
parser.add_argument("--t0_csv_path", type=str, help="T0 eval results path")
args = parser.parse_args()
return args
def load_t0_results(csv_path):
with open(csv_path, "r") as f:
return list(csv.DictReader(f))
def load_json(json_path):
with open(json_path, "r") as fi:
return json.load(fi)
def get_experiment_name(filename: str):
name = re.sub(r"_([0-9]*)$", r" [\1]", filename)
name = name.replace("span_corruption", "SC")
name = re.sub(r"^enc_dec", "ED", name)
name = re.sub(r"^nc_dec", "NCD", name)
name = re.sub(r"^c_dec", 'CD', name)
name = name.replace("full_lm", "FLM")
name = name.replace("prefix_lm", "PLM")
name = re.sub(r"t0_adapt_([0-9]+)", r"T0(\1)", name)
if name[:3] == "CD_":
name = re.sub(r"lm_adapt_([0-9]+)", r"FLM(\1)", name)
name = re.sub(r"t0_adapt_nc_([0-9]+)", r"T0 AS NC (\1)", name)
name = re.sub(r"nc_sc_([0-9]+)", r"SC as NC(\1)", name)
name = re.sub(r"nc_t0_([0-9]+)", r"T0 as NC(\1)", name)
elif name[:4] == "NCD_" or name[:3] == "ED_":
if "flm_adapt" in name:
name = re.sub(r"flm_adapt_([0-9]+)", r"FLM AS CD(\1)", name)
else:
name = re.sub(r"lm_adapt_([0-9]+)", r"PLM(\1)", name)
else:
raise NotImplementedError
name = name.replace("_", " + ")
return name
TASKS = {
# T0 evaluation
"super_glue_copa": ("COPA", 0.5),
"anli_dev_r1": ("ANLI R1", 1/3),
"anli_dev_r2": ("ANLI R2", 1/3),
"anli_dev_r3": ("ANLI R3", 1/3),
"super_glue_cb": ("CB", 1/3),
"super_glue_rte": ("RTE", 0.5),
"super_glue_wsc.fixed": ("WSC", 0.5),
"winogrande_winogrande_xl": ("Winogrande", 0.5),
"super_glue_wic": ("WiC", 0.5),
"hellaswag": ("HellaSwag", 0.25),
"story_cloze_2016": ("StoryCloze", 0.5),
# XNLI evaluation
"xnli_ar": ("XNLI ar (en prompts)", 1/3),
"xnli_bg": ("XNLI bg (en prompts)", 1/3),
"xnli_de": ("XNLI de (en prompts)", 1/3),
"xnli_el": ("XNLI el (en prompts)", 1/3),
"xnli_en": ("XNLI en (en prompts)", 1/3),
"xnli_es": ("XNLI es (en prompts)", 1/3),
"xnli_fr": ("XNLI fr (en prompts)", 1/3),
"xnli_hi": ("XNLI hi (en prompts)", 1/3),
"xnli_ru": ("XNLI ru (en prompts)", 1/3),
"xnli_sw": ("XNLI sw (en prompts)", 1/3),
"xnli_th": ("XNLI th (en prompts)", 1/3),
"xnli_tr": ("XNLI tr (en prompts)", 1/3),
"xnli_ur": ("XNLI ur (en prompts)", 1/3),
"xnli_vi": ("XNLI vi (en prompts)", 1/3),
"xnli_zh": ("XNLI zh (en prompts)", 1/3),
}
def plot(mtf_data, t0_data):
args = get_args()
assert len(TASKS) == 26
fig, axs = plt.subplots(3, 9, figsize=(20, 5))
axs = axs.flatten()
task_min_score = {}
task_max_score = {}
task_median_score = {}
for n, (task, (task_name, random_baseline)) in enumerate(TASKS.items()):
# Normalising names
mtf_task = task
t0_task = task
if task.startswith("anli_dev_r"):
t0_task = re.sub("dev_", "", task)
elif task == "hellaswag":
mtf_task = "hellaswag_None"
t5lm_scores = [float(r["score"]) for r in t0_data
if r["runs"] == "xxl-lm-d4-091621"
and r["dataset_name"] == t0_task
and r["metric_name"] == "accuracy (Rank)"
and r["score"]]
t0_scores = [float(r["score"]) for r in t0_data
if r["runs"] == "xxl-lm-d4-091621-512"
and r["dataset_name"] == t0_task
and r["metric_name"] == "accuracy (Rank)"
and r["score"]]
mtf_scores = [
(
name,
[100 * value["evaluation"]["accuracy"] for prompt, value in data[mtf_task].items()]
if mtf_task in data else
[]
)
for name, data in mtf_data.items()
]
all_experiment_scores_with_name = [("T5 + LM", t5lm_scores), ("T0", t0_scores), *mtf_scores]
# Plot
axs[n].axhline(100 * random_baseline, 0, len(all_experiment_scores_with_name), label="Random")
for i, (exp_name, scores) in enumerate(all_experiment_scores_with_name):
axs[n].scatter([i] * len(scores), scores, s=50, alpha=0.4, label=exp_name)
axs[n].set_title(task_name, fontsize=8)
# # Gather median values
# task_min_score[task] = [("Random", 100 * random_baseline)] + [(exp_name, np.min(scores)) for (exp_name, scores) in all_experiment_scores_with_name]
# task_max_score[task] = [("Random", 100 * random_baseline)] + [(exp_name, np.max(scores)) for (exp_name, scores) in all_experiment_scores_with_name]
# task_median_score[task] = [("Random", 100 * random_baseline)] + [(exp_name, np.median(scores)) for (exp_name, scores) in all_experiment_scores_with_name]
last_ax_id = len(TASKS) - 1
axs[last_ax_id].legend(bbox_to_anchor=(1, 1), loc="upper left")
for ax in axs[last_ax_id + 1:]:
ax.set_visible(False)
# if args.aggregated_results:
# # ====== Plot agregated values =======
# fig, axs = plt.subplots(1, 3, figsize=(20, 8))
# axs = axs.flatten()
# last_ax_id=0
# experiment_names = [elt[0] for elt in next(iter(task_median_score.values()))]
#
# def plot_scores_with_name(median_score_with_name, max_score, min_score, ax, title):
# assert len(median_score_with_name) == len(max_score) and len(median_score_with_name) == len(min_score)
# ax.axhline(
# median_score_with_name[0][1],
# 0, len(median_score_with_name) - 1,
# label=median_score_with_name[0][0]
# )
# for i, ((name, median_score), max_score, min_score) in enumerate(zip(median_score_with_name[1:], max_score[1:], min_score[1:])):
# ax.errorbar(
# i, median_score, ((median_score - min_score,), (max_score - median_score,)),
# fmt="o", elinewidth=1, label=name)
# ax.set_title(title)
#
# def get_average_normalised_score(task_scores):
# normalised_scores = []
# for scores_with_name in task_scores.values():
# random_name, random_baseline = scores_with_name[0]
# assert random_name == "Random"
# normalised_scores_per_task = [(scores - random_baseline) / (100 - random_baseline) for _, scores in
# scores_with_name]
# normalised_scores.append(normalised_scores_per_task)
# return np.mean(normalised_scores, axis=0)
#
# def get_average_score(task_scores):
# return np.mean(
# [[scores for _, scores in scores_with_name] for scores_with_name in task_scores.values()], axis=0)
#
# # Plot average task score
# average_task_median_score = get_average_score(task_median_score)
# assert len(experiment_names) == len(average_task_median_score)
# average_task_media_score_with_name = list(zip(experiment_names, average_task_median_score))
# del average_task_median_score
# plot_scores_with_name(
# median_score_with_name=average_task_media_score_with_name,
# max_score=get_average_score(task_max_score),
# min_score=get_average_score(task_min_score),
# ax=axs[last_ax_id],
# title=f"Average of task median scores"
# )
# last_ax_id += 1
#
# # Plot average of task median normalised scores `normalised_score = (score - random) / (1 - random)`
# average_task_normalised_median_score = get_average_normalised_score(task_median_score)
# assert len(experiment_names) == len(average_task_normalised_median_score)
# average_task_normalised_median_score_with_name = list(
# zip(experiment_names, average_task_normalised_median_score))
# del average_task_normalised_median_score
# plot_scores_with_name(
# median_score_with_name=average_task_normalised_median_score_with_name,
# max_score=get_average_normalised_score(task_max_score),
# min_score=get_average_normalised_score(task_min_score),
# ax=axs[last_ax_id],
# title=f"Average of task normalised median scores"
# )
# last_ax_id += 1
#
# axs[last_ax_id -1].legend(bbox_to_anchor=(1, 1), loc="upper left")
# for ax in axs[last_ax_id:]:
# ax.set_visible(False)
def main():
args = get_args()
# Load results
t0_data = load_t0_results(args.t0_csv_path)
mtf_data = {
re.sub(".json", "", json_path): load_json(json_path)
for json_path in args.json_paths
}
plot(mtf_data, t0_data)
plt.show()
print("Finished")
if __name__ == "__main__":
main()