peacock-data-public-datasets-idc-bigscience
/
evaluation
/utilities
/export_results_through_training_to_wandb.py
import os | |
import numpy as np | |
import wandb | |
import json | |
import argparse | |
RANDOM_BASELINE={ | |
"arc_challenge": 0.2502, # Source: https://arxiv.org/pdf/1803.05457.pdf table 6 | |
"arc_easy": 0.2502, # Source: https://arxiv.org/pdf/1803.05457.pdf table 6 | |
"boolq": 0.5, | |
"copa": 0.5, | |
"headqa_en": 0.25, | |
"hellaswag": 0.25, | |
"lambada": 0., # Safe to say that random models won't perform well at all. | |
"logiqa": 0.25, | |
"mathqa": (4360 * 1/ 5 - (4475 - 4360) * 1/ 4) / 4475, | |
"mrpc": 0.5, | |
"multirc": 0., # TODO: I couldn't figure it out | |
"openbookqa": 0.25, | |
"piqa": 0.5, | |
"prost": 0.25, | |
"pubmedqa": 1/3, | |
"qnli": 0.5, | |
"qqp": 0.5, | |
"race": 0.25, # Source: https://arxiv.org/pdf/1704.04683.pdf table 5 | |
"rte": 0.5, | |
"sciq": 0.25, | |
"sst": 0.5, | |
"triviaqa": 0., | |
"webqs": 0., | |
"wic": 0.5, | |
"winogrande": 0.5, | |
"wnli": 0.5, | |
"wsc": 0.5 | |
} | |
def normalise(score, task): | |
return (score - RANDOM_BASELINE[task]) / (1. - RANDOM_BASELINE[task]) | |
def parse_args(): | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--input_files", type=lambda s: s.split(','), required=True) | |
parser.add_argument("--all_tasks", action="store_true") | |
parser.add_argument("--naive_average", action="store_true") | |
parser.add_argument("--acc_average", action="store_true") | |
parser.add_argument("--normalised_acc_average", action="store_true") | |
return parser.parse_args() | |
def main(): | |
args = parse_args() | |
for input_file in args.input_files: | |
assert os.path.basename(input_file).endswith("_agg.json") | |
experiment_name = os.path.basename(input_file).split("_agg.json")[0] | |
with open(input_file, "r") as fi: | |
experiment = json.load(fi) | |
results = experiment["results"] | |
tokens = experiment["tokens"] | |
run = wandb.init(project="bigscience-tr3-evaluation-through-training", entity="timerobber", name=experiment_name, | |
reinit=True) | |
for i, n_tokens in enumerate(tokens): | |
all_values = [] | |
acc_average = [] | |
normalised_acc_average = [] | |
for task, task_results in results.items(): | |
values = None | |
for metric, values in task_results.items(): | |
if args.all_tasks: | |
wandb.log({f"{task}_{metric}": values[i], "tokens": tokens[i]}) | |
if "stderr" not in metric and "ppl" not in metric: | |
all_values.append(values[i]) | |
if metric == "acc": | |
acc_average.append(values[i]) | |
normalised_acc_average.append(normalise(values[i], task)) | |
if args.naive_average: | |
wandb.log({f"naive_average": np.mean(all_values), "tokens": tokens[i]}) | |
if args.acc_average: | |
wandb.log({f"acc_average": np.mean(acc_average), "tokens": tokens[i]}) | |
if args.normalised_acc_average: | |
wandb.log({f"normalised_acc_average": np.mean(normalised_acc_average), "tokens": tokens[i]}) | |
run.finish() | |
if __name__ == "__main__": | |
main() | |