peacock-data-public-datasets-idc-bigscience
/
evaluation
/utilities
/find_checkpoints_at_token_intervals.py
import datasets | |
import json | |
steps_vs_samples = datasets.load_dataset("csv", data_files="run-.-tag-steps-vs-samples_y=steps,x=samples.csv")["train"] | |
slope = (steps_vs_samples[-1]["Step"] - steps_vs_samples[-2]["Step"]) / ( | |
steps_vs_samples[-1]["Value"] - steps_vs_samples[-2]["Value"]) | |
offset = steps_vs_samples[-1]["Step"] - steps_vs_samples[-1]["Value"] * slope | |
token_interval = 1e10 | |
step_interval = 1500 | |
tokens_per_sample = 2048 | |
token_count = token_interval | |
output_checkpoints = [] | |
for item in steps_vs_samples: | |
if item["Step"] * tokens_per_sample > token_count: | |
token_count += token_interval | |
step = step_interval * (item['Value'] // step_interval) | |
tokens = tokens_per_sample * (slope * (step_interval * (item['Value'] // step_interval)) + offset) | |
print(f"step: {step}") | |
print(f"tokens at that step: {tokens}") | |
output_checkpoints.append({"step": step, "tokens": tokens}) | |
json.dump(output_checkpoints, open("steps_to_evaluate_with_tokens.json", "w")) | |