peacock-data-public-datasets-idc-bigscience / evaluation /utilities /find_checkpoints_at_token_intervals.py
applied-ai-018's picture
Add files using upload-large-folder tool
cf5659c verified
import datasets
import json
steps_vs_samples = datasets.load_dataset("csv", data_files="run-.-tag-steps-vs-samples_y=steps,x=samples.csv")["train"]
slope = (steps_vs_samples[-1]["Step"] - steps_vs_samples[-2]["Step"]) / (
steps_vs_samples[-1]["Value"] - steps_vs_samples[-2]["Value"])
offset = steps_vs_samples[-1]["Step"] - steps_vs_samples[-1]["Value"] * slope
token_interval = 1e10
step_interval = 1500
tokens_per_sample = 2048
token_count = token_interval
output_checkpoints = []
for item in steps_vs_samples:
if item["Step"] * tokens_per_sample > token_count:
token_count += token_interval
step = step_interval * (item['Value'] // step_interval)
tokens = tokens_per_sample * (slope * (step_interval * (item['Value'] // step_interval)) + offset)
print(f"step: {step}")
print(f"tokens at that step: {tokens}")
output_checkpoints.append({"step": step, "tokens": tokens})
json.dump(output_checkpoints, open("steps_to_evaluate_with_tokens.json", "w"))