|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
set -x -e |
|
|
|
source $six_ALL_CCFRWORK/start-prod |
|
export TRANSFORMERS_CACHE=$six_ALL_CCFRWORK/models |
|
export HF_DATASETS_CACHE=$six_ALL_CCFRWORK/datasets |
|
export HF_MODULES_CACHE=$six_ALL_CCFRWORK/modules |
|
export HF_METRICS_CACHE=$six_ALL_CCFRWORK/metrics |
|
export HF_DATASETS_OFFLINE=1 |
|
export TRANSFORMERS_OFFLINE=1 |
|
|
|
DATASET=openwebtext |
|
LOGG_FREQUENCY=125 |
|
SAVE_FREQUENCY=250 |
|
EVAL_FREQUENCY=100000 |
|
SERIALIZATION_DIR=${eha_ALL_CCFRSCRATCH}/experiments/preprocesslmt5 |
|
LOGGING_DIR=${eha_ALL_CCFRSCRATCH}/tensorboard/preprocesslmt5 |
|
|
|
python ${six_ALL_CCFRWORK/code/bigscience/jz/scripts/run_text2text.py \ |
|
--model_type t5 \ |
|
--tokenizer_name t5-small \ |
|
--config_name ${six_ALL_CCFRWORK/code/bigscience/jz/configs/lm_t5/lm_t5-tiny.json \ |
|
--dataset_name ${DATASET} --block_size 512 \ |
|
--preprocessing_num_workers 76 \ |
|
--do_train --do_eval \ |
|
--max_train_samples 1 --max_val_samples 1 \ |
|
--per_device_train_batch_size 1 --gradient_accumulation_steps 1 \ |
|
--per_device_eval_batch_size 1 \ |
|
--output_dir ${SERIALIZATION_DIR} --overwrite_output_dir \ |
|
--report_to tensorboard \ |
|
--logging_strategy steps --logging_first_step --logging_dir ${LOGGING_DIR} --logging_steps ${LOGG_FREQUENCY} \ |
|
--eval_steps ${EVAL_FREQUENCY} --evaluation_strategy steps \ |
|
--save_strategy steps --save_steps ${SAVE_FREQUENCY} --save_total_limit 200 |
|
|