applied-ai-018's picture
Add files using upload-large-folder tool
804c12f verified
import os
import click
from datasets import load_dataset, concatenate_datasets
from chat_data_pipeline.pipeline import logger
from chat_data_pipeline import utils
from chat_data_pipeline.preprocessor import DataPreprocessor
PAD = 32
@click.command()
@click.option('--config_path')
def main(config_path):
config = utils.load_yaml(config_path)
dataset_paths = [dataset["dataset_path"] for dataset in config["datasets"]]
output_dataset_path = config["output_dataset_path"]
verbose = config.get("verbose", False)
instruction_config = config["instruction_config"]
response_config = config["response_config"]
dataset = combine_datasets(dataset_paths)
dataset = dataset.map(
convert_to_input_output,
batched=True,
num_proc=os.cpu_count(),
remove_columns=list(dataset.features),
desc="Converring to I/O..."
)
dataset = dataset.map(
add_content_columns,
batched=False,
num_proc=os.cpu_count(),
desc="Adding content column..."
)
print(utils.get_cleaners_from_config(response_config))
print(utils.get_filters_from_config(response_config))
print(response_config.get("deduplication", {}))
preprocessor = DataPreprocessor(
dataset=dataset,
column_name="response",
cleaners=utils.get_cleaners_from_config(response_config),
filters=utils.get_filters_from_config(response_config),
deduplication_config=response_config.get("deduplication", {}),
verbose=verbose,
)
dataset = preprocessor.run()
cleaners = utils.get_cleaners_from_config(instruction_config)
if len(cleaners) > 0:
logger.warning("Cleaner does not work on instructions. Cleaners set to empty list.")
preprocessor = DataPreprocessor(
dataset=dataset,
column_name="instruction",
cleaners=[],
filters=utils.get_filters_from_config(instruction_config),
deduplication_config=instruction_config.get("deduplication", {}),
verbose=verbose,
)
dataset = preprocessor.run()
prepared_dataset_chatml = dataset.map(
convert_to_chatml,
batched=False,
num_proc=os.cpu_count(),
remove_columns=list(dataset.features)
)
prepared_dataset_chatml = prepared_dataset_chatml.shuffle(seed=42)
prepared_dataset_chatml.push_to_hub(output_dataset_path)
logger.info(prepared_dataset_chatml)
def combine_datasets(dataset_paths):
datasets = []
for dataset_path in dataset_paths:
dataset = load_dataset(dataset_path)
dataset = concatenate_datasets(list(dataset.values()))
if "source" not in dataset.features:
dataset = dataset.add_column("source", [dataset_path] * len(dataset))
datasets.append(dataset)
dataset = concatenate_datasets(datasets)
return dataset
def convert_to_input_output(examples):
sources = []
inputs = []
outputs = []
for conversation, source in zip(examples["conversation"], examples["source"]):
input = []
for message in conversation:
if message["do_train"]:
inputs.append(input.copy())
outputs.append(message)
sources.append(source)
input.append(message)
return {
"input": inputs,
"output": outputs,
"source": sources
}
def add_content_columns(example):
response = example["output"]["content"].strip()
instruction = ""
if len(example["input"]) > 0:
instruction = example["input"][-1]["content"].strip()
return {
"instruction": instruction,
"response": response,
}
def convert_to_chatml(example):
conversation = []
for message in example["input"]:
message["do_train"] = False
conversation.append(message)
conversation.append(
{
"content": example["response"],
"role": example["output"]["role"],
"do_train": True,
}
)
return {
"conversation": conversation,
"source": example["source"]
}
if __name__ == "__main__":
main()